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Overview

In this thesis, we study combinatorial batch codes (CBCs) and permutation binomials
(PBs) over �nite �elds of even characteristic. Our primarymotivation for consid-
ering these problems comes from their importance in cryptography. CBCs are
replication based variants of batch codes, which were introduced in [IKOS04a]
as a tool for reducing the computational overhead of private information retrieval
protocols (a cryptographic primitive). On the other hand, permutation polyno-
mials, with favourable cryptographic properties, have applications in symmetric
key encryption schemes, especially in block ciphers.

Moreover, these two objects are interesting in their own right, and they have
connections with other important combinatorial objects. CBCs are much similar
to unbalanced expanders, a much studied combinatorial object having numerous
applications in theoretical computer science. On the other hand, the speci�c
class of PBs that we consider in this work, are intimately related to orthomor-
phisms. Orthomorphisms are relevant in the construction of mutually orthogonal
latin squares, a classical combinatorial objects having applications in design of
statistical experiments. These aspects motivate us to explore theoretical proper-
ties of CBCs and PBs over �nite �elds.

However, these two objects are inherently widely di�erent; CBCs are purely
combinatorial objects, and PBs are algebraic entities. So, we explore these two
objects independently in two di�erent parts, where our entire focus lies in ex-
ploring theoretical aspects of these objects. In Part I, we consider CBCs. There,
we provide bounds on the parameters of CBCs and obtain explicit constructions
of optimal CBCs. In Part II, we consider PBs over �nite �elds. There, we obtain
explicit characterization and enumeration of subclasses of PBs under certain re-
strictions. Next, we describe these two parts in more detail.
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Overview 2

Part I

In Part I of the thesis, we consider CBCs. This part is divided into four chapters.

1. In Chapter 1, we give introductory details on CBCs. There, we discuss
basic setup and problems of CBCs that we consider in subsequent chap-
ters. To motivate the discussion we begin with a brief description of batch
codes.

More detailed discussion on general batch codes is deferred till Appendix
C. There, we stress their practical signi�cance in the area of cryptography
and load balancing.

We point out that Appendix C is provided only for a general overview of
batch codes. Its content is not required for understanding CBCs, discussed
in the rest of this thesis (Chapters 1-4).

2. In Chapter 2, we consider the problem of �nding minimum value of to-
tal storage of a CBC for given values of other parameters. There, we give
a general lower bound on the total storage. We also obtain explicit con-
structions of optimal CBCs (i.e., CBCs that meet the stated lower bound).
This partly answers an open question posed in [PSW09]. Also, one of our
constructions establishes a connection between CBCs and constant weight
codes.

Results from this chapter have been published in [BRR12].

3. In Chapter 3, we consider the problem of obtaining the value of maximum
number of input data items of uniform CBCs for given values of other pa-
rameters. We pose the problem as a hypergraph Turán type problem. Sub-
sequently, we obtain upper bound on the order of magnitude of number
of input data items. With respect to degree of uniformity (a parameter of
uniform CBCs), this bound is best possible. This is shown by an explicit
construction of uniform CBCs, where the number of input data items have
asymptotically optimal order of magnitude. Several results pertaining to
2-uniform case are also presented.

Results from this chapter have been published in [BB14].
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4. In Chapter 4, we present globally explicit construction of uniform and al-
most regular CBCs. We derandomize a randomized construction of uni-
form CBCs, presented in [IKOS04a], to obtain our construction. Order of
magnitude of input data items for the constructed CBCs is satisfactorily
close to corresponding upper bound. More importantly, this construction,
in terms of its explicitness, �lls the void where no previous construction,
with similar order of magnitude of input data items, is known. Also, prior
to this, CBCs, that are both regular and uniform, have not been considered.

Results from this chapter have been published in [Bha15].

In Appendices A and B, we formally state the notions and terminology from
graph/hypergraph theory and coding theory that we use in this part of the the-
sis; though their use is fairly standard in the literature.

Bibliography I is the bibliography for Part I.

Part II
Part II of the thesis comprises of a single chapter, where we consider cyclotomic
mapping PBs over F2n . More speci�cally, we study two classes of PBs of the
form x

2n
−1

2t−1 +1 + ax over F2n under certain restrictions. For one class of binomi-
als we provide explicit characterization (necessary and su�cient conditions),
i.e., characterization, which can be computed e�ciently by a deterministic algo-
rithm. For another class, we provide enumeration results. In both the cases, our
results are under the restriction that a belong to certain sub�elds of F2n .

To set proper context for our results we brie�y discuss relevant aspects of per-
mutation polynomials, cyclotomicmapping polynomials, and orthomorphisms.
This includes their practical signi�cance, especially in the areas of cryptography
and combinatorial designs. We formalize the notion of explicit characterization
of permutation polynomials in terms of computational complexity. We discuss
existing results, which are relevant to the speci�c cases considered by us.

In Appendix D, we provide proofs of some known results discussed in Chapter
5. Also, we brie�y describe relation between orthomorphisms and latin squares.

Results from this part have been published in [SBÇ12, BS15].

Bibliography II is the bibliography for Part II.
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Combinatorial Batch
Codes
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Notation Summary For Part I

In this part of the thesis, we will use the following asymptotic notations.

Let f and g be functions of variable n. Then we write

• f � O(g) if there is an absolute constant c such that | f (n) |/|g(n) | ≤ c for
su�ciently large n,

• f � o(g) if limn→∞ f (n)/g(n) � 0,

• f � Ω(g) if g � O( f ),

• f � Θ(g) if f � O(g) and g � O( f ),

• f ∼ g if f � (1 + o(1))g,

• f . g if lim sup
n→∞

f (n)/g(n) ≤ 1.

7





Chapter 1

Combinatorial Batch Codes:
Introductory Details

Historically coding theory has been concerned with design of good codes, i.e.,
codes having good error-correcting capabilities with e�cient encoding and de-
coding algorithms. However, in recent times, especially in the last two decades,
the �eld has seen rapid and signi�cant emergence of new characterizations and
paradigms like local decodability, local correctability, local testability, non-malleability,
etc., and also new families of codes like Expander codes, Parvaresh-Vardy codes,
Matching vector codes,Multiplicity codes, etc. Much of the recent developments
is motivated by applications in the domains of complexity theory and cryptog-
raphy.

Batch codes were introduced in [IKOS04a] as an abstraction of a particular dis-
tributed database problem. It has strong practical and theoretical motivations.
In this part of the thesis, we consider replication based variants of batch codes,
known as combinatorial batch codes (CBCs). As we explore multiple aspects of
CBCs, our presentation is divided into chapters. We make each chapter self-
contained in terms of preliminaries and background required to understand the
particular aspect treated in the chapter. To keep things in context, we introduce
essential and relevant ideas when required. At various places in this part of the

9
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thesis, we use terminology from coding theory and graph theory. Though the
notions and terminology are fairly standard, in order to avoid any confusion, we
formally de�ne and describe them in Appendices A and B.

In this chapter, we discuss introductory details of CBCs. We formulate CBCs
in appropriate setting and discuss the problems that we consider in subsequent
chapters. However, tomotivate the discussionwebeginwith a brief introduction
to general batch codes. Somewhat more detailed discussion on various aspects
of general batch codes, not essentially relevant to CBCs or more particularly to
our contribution in this thesis, is deferred till Appendix C. It is left to the reader’s
discretion to go through that part.

1.1 Batch Codes

An (n ,N, k ,m , t)-batch code abstracts the following data distribution problem.

Batch code problem. 1 n data items are to be distributed among m

servers in such a way that any k of the n items can be retrieved by
reading at most t items from each server, and the total amount of
storage across m servers is bounded by N .

Here, we state the following points regarding the above formulation.

1. In the sequel, we will refer to the parameter k in the above problem as
retrievability parameter.

2. Although in [IKOS04a], batch codes were de�ned for general t, the case
t � 1 seems to capture the crux of the problem. Hence, this case is ex-
clusively treated in the literature (with the exception of [BT12]). In this
work, we also consider the case t � 1 only and we will not explicitly men-
tion t as a parameter. So, an (n ,N, k ,m)-batch code should be under-
stood as (n ,N, k ,m , t � 1)-batch code. In Corollary C.2 of Appendix C,
we list some straightforward relations between (n ,N, k ,m , t)-batch codes
and (n ,N, k ,m)-batch codes.

1Refer to Appendix C for a formal de�nition of batch codes formulated in the language of
coding theory.
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Example 1.1 ((15, 20, 2, 4)-Batch code). Consider distribution of n � 15 data
items x1, . . . , x15 ∈ {0, 1} among m � 4 servers S1, . . . , S4, such that any k � 2
items can be retrieved by reading at most t � 1 item from each server. This can
be achieved by replicating each of the 15 items in all the servers. This trivial
arrangement requires N � 15 × 4 � 60 bits of storage. To improve the situation
we employ the following method. We store x1, . . . , x5 in S1, x6, . . . , x10 in S2,
x11, . . . , x15 in S3, and �nally we store x1 ⊕ x6 ⊕ x11, . . . , x5 ⊕ x10 ⊕ x15 in S4,
where (and henceforth) ⊕ is the binary ‘xor’ operator. It can be observed that
any 2 of the 15 elements can be retrieved by reading at most 1 element from
each server. For example, to retrieve {x4, x5} (i.e., to execute the query {4, 5}),
x4 is read from S1, x10 is read from S2, x15 is read from S3, and x5 ⊕ x10 ⊕ x15

is read from S4. Now, with x4 already obtained from S1, x5 is obtained as x5 �

(x10)⊕ (x15)⊕ (x5⊕ x10⊕ x15). In this case, the total storage is N � 4×5 � 20 bits.

Remark 1.1. In fact, Example 1.1 is an example of multiset batch codes (see Ap-
pendix C), which supports the following stronger form of retrieval: in this case,
we can retrieve a multiset {i , i}, i ∈ {1, . . . , 15} in such a way that the sets of
servers queried for individual items form a partition of the entire set of servers.
For example, to retrieve {8, 8} in Example 1.1, x8 is read from S2, x3 is read from
S1, x13 is read from S3, and x3 ⊕ x8 ⊕ x13 is read from S4. With one x8 already ob-
tained from S2, the other x8 can be obtained as x8 � (x3) ⊕ (x13) ⊕ (x3⊕ x8⊕ x13).
Now, the sets of servers {S2}, {S1, S3, S4} form the partition.

Batch codes were introduced in [IKOS04a]. Primary motivation behind their in-
troductionwas amortization of computational work done by servers during exe-
cution of private information retrieval (PIR) protocol. The authors have shown that
these codes can be used to batch several PIR queries together while limiting total
storage across servers (see [IKOS04a] for more details). Also, it can be seen from
the above description that these codes can have potential application in a dis-
tributed database scenario. There, these codes can be used to distribute queries
among participating servers while optimizing total storage. In Appendix C, we
discuss these practical aspects in greater detail.

On the theoretical side, batch codes resemble other combinatorial objects like
locally decodable codes, expanders, etc. Also, there is similarity with Rabin’s infor-
mation dispersal ([Rab89]). Below, we highlight this similarity, since it is immedi-
ate from the problem description of batch codes. Relations with expanders and
locally decodable codes will be discussed later at appropriate places.
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Relation with information dispersal. Informally, in an information dispersal
scheme, a database X is distributed among n servers in such a way that the en-
tire database can be reconstructed by reading from m(< n) servers; the objective
here is to minimize total storage across n servers. So, in both cases, the idea is
to distribute a database in a way that facilitates its reconstruction; and in both
the cases it is desirable to minimize the total storage across all the participating
servers. However, in case of information dispersal, the goal is to achieve fault-
tolerance and reconstruction of the entire database. While batch codes facilitate
partial reconstruction of database by limiting the amount of retrieved informa-
tion from each server; fault-tolerance is not an inherent objective of batch codes.

These similarities and dissimilarities, which are also present in the case of ex-
panders and locally-decodable codes, make batch codes unique and intriguing.
Similarities with other objects make batch codes theoretically important. On the
other hand, di�erences make it di�cult to set up a satisfactory and meaningful
correspondence of batch codes with these objects in terms of parameters. In par-
ticular, it seems unlikely that existing bounds and constructions of expanders,
locally decodable codes, etc., can be used in the context of batch codes.

1.2 Combinatorial Batch Codes

CBCs are replication based batch codes. In this case, each of the N stored data
items is a copy of one of the n input data items. We illustrate this in the example
of Figure 1.1, where we consider a (7, 10, 4, 6)-CBC. It can be checked that any 4
of the 7 data items can be retrieved by reading at most 1 item from each server.

   

n = 7 input data items

m = 6 
servers

Total N=10 
data items

Figure 1.1: (7, 10, 4, 6)-CBC

   

n = 9 input data items

m = 6 
servers

Total N=18 
data items

Figure 1.2: 2-uniform (9, 18, 5, 6)-
CBC
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Advantage of CBCs is clear from their formulation; storage and retrieval of data
items are simple forCBCs. However, the requirement to store data itemswithout
any modi�cation results in increased total storage (N). For example, below we
show that a CBC with parameters from Example 1.1 can not exist.

Proposition 1.2. A (15, 20, 2, 4)-CBC is not possible.

Proof. Since the total storage (N) is 20, we observe that at least 10 input data
items have single instances as stored data items in 4 servers. So, one of the 4
servers stores at least 3 of these 10 items. Now, any 2 of these 3 items can not be
retrieved, as at most one item can be read from each server. �

The requirement to store data itemswithout anymodi�cationmakesCBCspurely
combinatorial objects. As combinatorial objects CBCs are very interesting, and
they have received considerable attention in recent literature ([PSW09, BKMS10a,
BT11c, BT11b, BT15, SG14, BRR12, BB14]). Next, we formalize CBCs in the set-
ting of a bipartite graph.

LetC be an (n ,N, k ,m)-CBC,with the set of input data items {x1, . . . , xn } and the
set of servers {s1, . . . , sm }. We represent C as a bipartite graph GC � (L ,R , E).
Set of left vertices L represents |L| � n input data items, where vertex ui ∈ L

represents data item xi , 1 ≤ i ≤ n. Set of right vertices R represents |R| � m

servers, where vertex v j ∈ R represents server s j , 1 ≤ j ≤ m. (ui , v j) ∈ E is
an edge in GC if the data item xi is stored in server s j . Since the total storage
is N , it follows that

∑
u∈L de g(u) �

∑
v∈R de g(v) � |E | � N , where de g(.) is

the degree of a vertex in GC . Now, we observe that any subset {xi1 , . . . , xik } of
k input data items can be retrieved by reading one item from each of k distinct
servers si1 , . . . , sik i� there are distinct vi1 , . . . , vik ∈ R such that vi j ∈ Γ(ui j ) for
all 1 ≤ j ≤ k, where Γ(ur ), with r ∈ {1, . . . , n}, is the neighbourhood of the vertex
ur ∈ L. According to Hall’s theorem (cf. [Bol86], pp. 6), this is equivalent to the
condition that union of any j sets Γ(ui1), . . . Γ(ui j ) contains at least j elements
for 1 ≤ j ≤ k. These considerations lead naturally to the following theorem of
[PSW09], which can also be thought as de�nition of a CBC.

Theorem1.3 ([PSW09]). Abipartite graphGC � (L ,R , E) represents an (n ,N, k ,m)-
CBC C if and only if |L| � n, |R| � m , |E | � N , and union of any collection of j sets
Γ(ui1), . . . , Γ(ui j ), with {ui1 , . . . , ui j } ⊂ L, contains at least j elements for 1 ≤ j ≤ k.
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Remark 1.4. Formal de�nition of general batch codes, given in [IKOS04a] (see
Appendix C), also involves decoding algorithm for the code. Here, we consider
CBCs, which are a purely combinatorial subclass of general batch codes. Our
focus is on bounds on parameters of CBCs and construction of optimal CBCs.
Theorem 1.3, as a de�nition of a CBC, is su�cient for this purpose.

An (n ,N, k ,m)-CBC is called c-uniform if each of the n input data items is stored
in exactly c servers, and it is called `-regular if each of the m servers stores exactly
` data items. Rephrasing in the setting of bipartite graph, a CBC GC � (L ,R , E)
is called c-uniform if for each u ∈ L, de g(u) � c, and it is called `-regular if for
each v ∈ R, de g(v) � `. So, if an (n ,N, k ,m)-CBC is c-uniform then N � cn and
if it is `-regular then N � `m. In Figure 1.2, we give an example of a 2-uniform
(9, 18, 5, 6)-CBC, which is also 3-regular.

1.2.0.1 Two problems

In this thesis, we consider the following two problems related to CBCs. In fact,
these are the only two problems that have so far been addressed in the literature.

1. Given n ,m , k, we denote by N (n , k ,m) minimum value of N such that
there is an (n ,N, k ,m)-CBC. An (n ,N, k ,m)-CBC, with N � N (n , k ,m) is
termed optimal. For example, it can be formally shown that N (7, 4, 6) � 10.
Hence, the (7, 10, 4, 6)-CBC, shown in Figure 1.1, is optimal.2

However, it is challenging to �nd N (n , k ,m), in general, for given n , k,
and m. Also, it is practically motivating to obtain explicit construction of
optimal CBCs. We study this problem in Chapter 2, where we provide
a general lower bound on N (n , k ,m). Also, we provide constructions of
optimal (with respect to the obtained lower bound) and almost optimal
CBCs for certain range of values of n (with respect to �xed values of m

and k).

2Here, we note that an optimal CBC may not be unique.
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2. Given m , c , k, we denote by n(m , c , k) maximum value of n such that there
is a c-uniform (n , cn , k ,m)-CBC. A c-uniform (n , cn , k ,m)-CBC, with n �

n(m , c , k) is termed extremal3. For example, it can be formally shown that
n(6, 2, 5) � 9. In this case, the extremal CBC is obtained as follows. Par-
tition the set of 6 servers into two groups of 3 servers each. Store each of
the 9 input data items into any 2 of the 6 servers, one server from each
group, in such a way that each of the 6 servers stores exactly 3 data items
and no two data items are stored in the same set of 2 servers. In Figure 1.2,
we give an example of an extremal 2-uniform (9, 18, 5, 6)-CBC (in fact, the
CBC turns out to be 3-regular as well).

However, �nding n(m , c , k) and constructing extremal CBCs, in general,
is an extremely di�cult problem, even for speci�c small values of the pa-
rameters. So, our goal is to understand the asymptotics of n(m , c , k), where
n(m , c , k) is expressed as a function of m, with c , k constants independent
of m. To bemore precise, we aremostly concerned about the order of mag-
nitude of n(m , c , k). We study this problem in Chapter 3 and Chapter 4.

In Chapter 3, we phrase the problem as an extremal hypergraph problem
(Turán type problem). Subsequently, we obtain upper bound on n(m , c , k).
Also, we provide explicit construction of c-uniform (n , cn , k ,m)-CBCs,
where the order of magnitude of n is asymptotically optimal for certain
range of values of c (with respect to k). For 2-uniform and 3-uniform CBCs
we obtain several bounds (lower and upper) and explicit constructions.

Explicit constructions ofCBCs, obtained inChapter 3, are for speci�c ranges
of values of c and k. In Chapter 4, we obtain a general explicit construction
of uniform and regular CBCs. Order of magnitude of n for the constructed
CBCs is satisfactorily close to corresponding upper bound. More impor-
tantly, this construction, in terms of its explicitness, �lls the void where no
previous construction with similar parameters is known.

A note on setting and notation. In subsequent three chapters of this part, we
consider the above mentioned problems of CBCs. We choose appropriate set-
ting for each problem andwe adjust notations accordingly. In Chapter 2, in order
to simplify notation and description, we �nd it more convenient to represent a

3In the context of CBCs we will use the terms “extremal” and “optimal” interchangeably. In
both cases, we refer to CBCs that meet certain bounds, which will be explicitly stated or clear
from the context.
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CBC as a set system (S ,X), where S is the set of servers and X is a set of sub-
sets of S which corresponds to the set of data items. In Chapter 3, we phrase
the problem of obtaining n(m , c , k) as an extremal hypergraph problem. There,
we represent the CBC as a hypergraph (V , F ), whereV is the set of vertices of
the hypergraph that correspond to the set of servers of the CBC, and F is the set
of edges of the hypergraph that correspond to the set of data items of the CBC.
In Chapter 4, we reuse the setting of bipartite graph described in this chapter.
This inter-chapter variation of notation and setting simpli�es description and
notation for individual problems and makes it easier to relate our results to ex-
isting literature. However, to remove any confusion, in each chapter, we describe
appropriate setting and notation with ample clarity.

In this part of thesis, we will use standard and basic results from probability
theory. We refer the reader to [MR95] for relevant background on these results.



Chapter 2

Combinatorial Batch Codes: Lower
Bound on Storage and Optimal
Constructions

2.1 Introduction

In this chapter, we consider the problem of �nding minimum value of total stor-
age (N) of a CBC for given values of the number of data items (n), retrievability
parameter (k), and number of servers (m). An (n ,N, k ,m)-CBC is termed optimal
if N is minimum for given n ,m , and k. We denote by N (n , k ,m) value of N of
an optimal (n ,N, k ,m)-CBC. Finding N (n , k ,m) for given n ,m , k and construct-
ing corresponding optimal CBCs forms a practically important and interesting
problem. For example, if n ≤ m then we trivially observe that N (n , k ,m) � n;
and for corresponding optimal CBC, n items are stored in any n out of m servers.
But for n ≥ m + 1, �nding N (n , k ,m) is a fairly non-trivial problem.

In this section, we cover preliminaries, recall existing results, and state our con-
tribution. In Section 2.2, we present proofs of our results. In Section 2.3, we
conclude by reporting recent progress on this problem.

17
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2.1.1 Preliminaries

2.1.1.1 Setting

As we have mentioned in Chapter 1, in order to simplify notation and descrip-
tion, in this chapter, we represent a CBC as a set-system. More formally, an
(n ,N, k ,m)-CBC is a set system (S ,X), where the ground setS � {s1, . . . , sm } is
the set of m servers, andX � {X1,X2, . . . ,Xn } is a set of n subsets of S such that
si ∈ X j i� the j-th data item is stored in the i-th server. Next, we recall Theorem
1.3 of Chapter 1 for this setting.

Theorem 2.1 ([PSW09]). A set-system (S ,X) represents an (n ,N, k ,m)-CBC if and
only if |S| � m , |X| � n ,

∑
X∈X
|X | � N and union of each collection of j sets Xi1 , . . . ,Xi j

⊂ X contains at least j elements of S for 1 ≤ j ≤ k.

2.1.1.2 An inequality

Now, we derive an inequality regarding the number of sets of di�erent cardi-
nalities in an (n ,N, k ,m)-CBC (S ,X). This inequality is key to our proof of the
lower bound on N (n , k ,m). The same inequality was obtained in [PSW09], as
well as in [BT11c]. Here, our proof is somewhat di�erent; we use probabilistic ar-
gument to derive the inequality. We also make certain additional observations.

Theorem 2.2. Let (S ,X) be an (n ,N, k ,m)-CBC, and Ai be the number of i element
sets of X. Then for any j, with 1 ≤ j ≤ k − 1, we have

j∑
i�1

(
m − i
j − i

)
Ai ≤ j

(
m
j

)
.

Proof. We pick uniformly at random a subset S′ ⊆ S of cardinality j ≤ k − 1. Let
XS′ � {X ∈ X|X ⊆ S′}.

Now, for X ∈ X, with |X | � i, probability that X ⊆ S′ is given by

Pr{X ⊆ S′} �

(m−i
j−i

)(m
j
) .
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Hence, expected value of |XS′ | is given by

E[|XS′ |] �
j∑

i�1
Ai

(m−i
j−i

)(m
j
) ,

where the expectation is taken over random choices for the subset S′. Now,
E[|XS′ |] ≤ j; otherwise, there is a subset S′′ ⊆ S, with |S′′| � j, such that
|X
′′

S
| > j, but this violates Theorem 2.1. Hence, we have

j∑
i�1

Ai

(m−i
j−i

)(m
j
) � E[|XS′ |] ≤ j.

So,

j∑
i�1

Ai

(
m − i
j − i

)
≤ j

(
m
j

)
(2.1)

�

So, considering every j in the range 1 ≤ j ≤ k − 1, we get k − 1 inequalities
like (2.1), each of which is satis�ed by the (n ,N, k ,m)-CBC (S ,X). However,
we observe that these k − 1 inequalities are not mutually independent. In fact,
in the next lemma, we show that if ( j + 1)-th inequality is satis�ed then j-th
inequality is also satis�ed.

Lemma 2.3. Let m ≥ 3 and 1 ≤ j ≤ k − 2. If

j+1∑
i�1

(
m − i

j − i + 1

)
Ai ≤ ( j + 1)

(
m

j + 1

)

then
j∑

i�1

(
m − i
j − i

)
Ai ≤ j

(
m
j

)
.

Proof. We prove the contrapositive, i.e., we show that if

j∑
i�1

(
m − i
j − i

)
Ai > j

(
m
j

)
(2.2)
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then
j+1∑
i�1

(
m − i

j − i + 1

)
Ai > ( j + 1)

(
m

j + 1

)
.

Now, we have

j+1∑
i�1

(
m − i

j − i + 1

)
Ai � A j+1 + (m − j)

j∑
i�1

(m−i
j−i

)
Ai

j − i + 1

≥ A j+1 +
m − j

j

j∑
i�1

(
m − i
j − i

)
Ai . (2.3)

Now, from assumption (2.2) and from (2.3) we have

j+1∑
i�1

(
m − i

j − i + 1

)
Ai > A j+1 + (m − j)

(
m
j

)
≥ ( j + 1)

(
m

j + 1

)
,

where, in the last step, we observe that A j+1 ≥ 0 and (m− j)
(m

j
)
� ( j+1)

( m
j+1

)
. �

Hence, it follows that if the (k − 1)-th inequality, i.e.,

k−1∑
i�1

(
m − i

k − i − 1

)
Ai ≤ (k − 1)

(
m

k − 1

)
, (2.4)

is satis�ed then the remaining k − 2 inequalities (obtained from (2.1) for 1 ≤
j ≤ k − 2) are also satis�ed. That is, as necessary conditions for existence of
an (n ,N, k ,m)-CBC, the other k − 2 inequalities are redundant with respect to
inequality (2.4). Hence, we exclude these k − 2 inequalities from further consid-
eration, and only use (2.4) as necessary condition for existence of an (n ,N, k ,m)-
CBC. In [PSW09], the authors obtained inequality (2.4) in the proof of Theorem
2.1.1 by considering the case of j � k − 1 only. Here, we have also shown that
the other k − 2 inequalities obtained from similar considerations are redundant;
a fact which was not observed in [PSW09] and was not very evident in the �rst
place.
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2.1.2 Existing results

1. In [PSW09], the authors obtained N (n , k , k), N (m+1, k ,m), and N (n , k ,m)
for n ≥ (k − 1)

( m
k−1

)
. More precisely, they have shown that

(a) N (n , k , k) � kn − k(k − 1),

(b) N (m + 1, k ,m) � m + k,

(c) N (n , k ,m) � kn − (k − 1)
( m

k−1
)
for n ≥ (k − 1)

( m
k−1

)
.

The authors left the problem of �nding N (n , k ,m) for n < (k − 1)
( m

k−1
)
as

an open problem.

2. In [BKMS10a] (see also [BKMS10b]), it was shown that

N (m + 2, k ,m) �



2m + b m
m−k+1c if k ≤ m ≤ k +

√
k ,

m + k − 2 + d2
√

k + 1e if m > k +
√

k.

The authors proved the above results in the setting of transversalmatroids.
In [BT11a], the authors used a completely di�erent technique to obtain
these results. Moreover, in [BT11a], the authors also showed that

N (n , k ,m) ≤ 2m + (n − m − 1)


k
b

m−k
n−m−1c + 1


− b for all m ≥ k ≥ 1,

n ≥ m + 2, where b is the residue of m − k modulo n − m − 1.

3. In [BT11c], the authors showed that for
( m

k−2
)
≤ n ≤ (k − 1)

( m
k−1

)
,

N (n , k ,m) � n(k − 1) −
⌊

(k − 1)
( m

k−1
)
− n

m − k + 1

⌋
.

This result was obtained in a simultaneous and independent work with
our work ([BRR12]). However, they used a di�erent technique. In a di�er-
ent direction, they also obtained N (n , 3,m) and N (n , 4,m) for all possible
values of n and m.
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2.1.3 Our contribution

In this chapter, we obtain the following results.

1. We obtain a lower bound on N (n , k ,m) for n in the range 1 ≤ n ≤ (k −

1)
( m

k−1
)
. More, precisely, our result is the following.

Theorem 2.1.1. Let 1 ≤ n ≤ (k − 1)
( m

k−1
)
, and 1 ≤ c ≤ k − 1. Then for an

(n ,N, k ,m)-CBC we have N ≥ nc −


(k−c)
(

(k−1)(m
c )

(k−1
c )
−n

)
m−k+1


. The r.h.s. expression

attains its maximum for least c such that n ≤ (k−1)(m
c )

(k−1
c ) .

2. Weprovide explicit construction of optimalCBCs thatmeet the lower bound
of Theorem 2.1.1 for n in the range

( m
k−2

)
≤ n ≤ (k − 1)

( m
k−1

)
. Exact value

of N (n , k ,m) for this range is given by the following theorem.

Theorem 2.1.2. Let
( m

k−2
)
≤ n ≤ (k − 1)

( m
k−1

)
. Then we have N (n , k ,m) �

n(k − 1) −
⌊

(k−1)( m
k−1)−n

m−k+1

⌋
.

3. Using binary constant weight codes, we give explicit construction of CBCs for
values of n in the range

( m
k−2

)
− (m− k +1)A(m , 4, k−3) ≤ n ≤

( m
k−2

)
, k ≥ 5,

where A(m , 4, k − 3) is the maximum number of codewords of a binary
constant weight code of length m, weight k − 3, and Hamming distance 4.
This construction yields optimal CBCs for approximately half of the values
of n in this range. For the rest of the values of n, the construction yields
almost optimal CBCs; for these CBCs, obtained value of N di�ers by one
from the corresponding value of N given by the lower bound stated in (1)
above. Below we state the theorem.

Theorem 2.1.3. Let
( m

k−2
)
− (m − k + 1)A(m , 4, k − 3) ≤ n ≤

( m
k−2

)
. Then

N (n , k ,m) � n(k − 2) −
⌊2(

( m
k−2

)
− n)

m − k + 1

⌋

for 0 ≤
((

m
k − 2

)
− n

)
mod (m − k + 1) <

m − k + 1
2 , and

N (n , k ,m) ≤ n(k − 2) − 2
⌊ ( m

k−2
)
− n

m − k + 1

⌋

for m − k + 1
2 ≤

((
m

k − 2

)
− n

)
mod (m − k + 1) < m − k + 1.

Constructions of optimal CBCs, stated in (2) and (3) above, partially settles the
problem of �nding N (n , k ,m) for n < (k − 1)

( m
k−1

)
, left open in [PSW09].
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2.2 Proofs

2.2.1 Lower bound on N (n , k ,m) for n in the range
1 ≤ n ≤ (k − 1)

( m
k−1

)
We begin with the following lemma, where we derive an inequality to be used
in Theorem 2.1.1.

Lemma 2.4. Let 1 ≤ c < k ≤ m and 0 ≤ i ≤ k − 1. Then we have( m−i
k−1−i

)( m−c
k−1−c

) − 1 ≥ (m − k + 1)(c − i)
k − c

. (2.5)

Proof. We note that both sides of (2.5) are equal for i � c and i � c − 1, and
both sides decrease as i goes from 0 to k − 1. Hence, it is su�cient to show that
di�erence of values of l.h.s. of (2.5), for i − 1 and i, is greater than or equal

to m − k + 1
k − c

for 2 ≤ i ≤ c − 1, and it is less than or equal to m − k + 1
k − c

for
c + 1 ≤ i ≤ k − 1. Now, we have(m−i+1

k−i
)( m−c

k−c−1
) − ( m−i

k−i−1
)( m−c

k−c−1
) �

m−k+1
k−i

( m−i
k−i−1

)( m−c
k−c−1

) �

m−k+1
k−c

(m−i
k−i

)(m−c
k−c

) .

Here, we note that for c > i,(
m − i
k − i

) (
k − i
c − i

)
�

(
m − i
c − i

) (
m − c
k − c

)
,

and for i > c, (
m − c
k − c

) (
k − c
i − c

)
�

(
m − c
i − c

) (
m − i
k − i

)
.

In the above two cases, we use the identity
(x

y
) (y

z
)
�

(x
z
) (x−z

y−z
)
for x ≥ y ≥ z ≥ 0.

Hence, it follows that

m−k+1
k−c

(m−i
k−i

)(m−c
k−c

) �




m−k+1
k−c

(m−i
c−i

)(k−i
c−i

) ≥
m − k + 1

k − c
, when c > i ,

m−k+1
k−c

(k−c
i−c

)(m−c
i−c

) ≤
m − k + 1

k − c
, when i > c .
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Theorem2.1.1. Let 1 ≤ n ≤ (k−1)
( m

k−1
)
, and 1 ≤ c ≤ k−1. Then for an (n ,N, k ,m)-

CBC we have N ≥ nc −


(k−c)
(

(k−1)(m
c )

(k−1
c )
−n

)
m−k+1


. The r.h.s. expression attains its maximum

for least c such that n ≤ (k−1)(m
c )

(k−1
c ) .

Proof. Let (S ,X) be an (n ,N, k ,m)-CBC. So, according to Theorem 2.1 union
of any i sets, with 1 ≤ i ≤ k, of X contains at least i elements. Therefore, it is
su�cient for a set of X to be of size at most k. Hence, without loss of generality,
we assume that each set of X is of cardinality at most k. Let Ai be the number
of i-sets of X. Then we have the following equation:

k∑
i�1

Ai � n. (2.6)

Next, (S ,X) satis�es (2.4), which we recall below.

k−1∑
i�1

(
m − i

k − i − 1

)
Ai ≤ (k − 1)

(
m

k − 1

)
. (2.7)

We divide both sides of (2.7) by
( m−c

k−c−1
)
and then subtract (2.6) to have

k−1∑
i�1

*
,

( m−i
k−i−1

)( m−c
k−c−1

) − 1+
-

Ai − Ak ≤
(k − 1)

(m
c
)(k−1

c
) − n. (2.8)

Employing (2.5) from Lemma 2.4 to (2.8), we get

k−1∑
i�1

(c − i)Ai ≤

(k − c)
(

(k−1)(m
c )

(k−1
c ) + Ak − n

)
m − k + 1 . (2.9)

Now, we have

N �

k∑
i�1

iAi � nc −
k∑

i�1
(c − i)Ai . (2.10)

Using (2.9) in (2.10), we get

N ≥ nc −
(k − c)

(
(k−1)(m

c )
(k−1

c ) − n
)

m − k + 1 + (k − c)(m − k)
m − k + 1 Ak . (2.11)
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Since Ak ≥ 0, we have

N (n , k ,m) ≥ nc −
(k − c)

(
(k−1)(m

c )
(k−1

c ) − n
)

m − k + 1 . (2.12)

Di�erence between r.h.s. expressions of (2.12) for consecutive values c and c +1,
where 1≤ c≤ k − 2, is given by

nc −
(k − c)

(
(k−1)(m

c )
(k−1

c ) − n
)

m − k + 1 − n(c + 1) +
(k − c − 1)

(
(k−1)( m

c+1)
(k−1

c+1)
− n

)
m − k + 1

�

(m − k)
(

(k−1)(m
c )

(k−1
c ) − n

)
m − k + 1 . (2.13)

Here, we note that (m
c )

(k−1
c ) is an increasing function of c. Hence, second part of

the theorem follows from from (2.13). Final expression of the l.h.s of the lower
bound, involving �oor operator, follows from (2.12) and the fact that N (n , k ,m)
assumes integral values. �

2.2.2 Construction of optimal CBCs for n in the range( m
k−2

)
≤ n ≤ (k − 1)

( m
k−1

)
Let S be the set of servers, where |S| � m. Now, for k � 2, the range of values of
n is 1 ≤ n ≤ m. As discussed in the beginning, for this range of values of n, we
trivially have N (n , k ,m) � n. Therefore, for the purpose of present construction,
we consider cases where m ≥ k ≥ 3. Roughly, the construction is as follows. We
start with a CBC (S ,Xi), in which Xi is a collection of (k − 1)-subsets of S. We
also take an auxiliary collection Xa of distinct (k − 2)-subsets of S. From Xi we
systematically delete (k−1)-sets and add to it (k−2)-sets fromXa to get the �nal
collection X. Below we describe the construction in more detail.

Construction. In the initial collectionXi there are k−1 copies of each of the (k−1)-
subsets of S. For the CBC to be constructed, we have

( m
k−2

)
≤ n ≤ (k − 1)

( m
k−1

)
.

Hence, we have 0 ≤ (k − 1)
( m

k−1
)
− n ≤ (m − k + 1)

( m
k−2

)
. The auxiliary collection

Xa contains single copies of any
⌈

(k−1)( m
k−1)−n

m−k+1

⌉
distinct (k − 2)-subsets of S. This

is clearly possible for the range of values of (k − 1)
( m

k−1
)
− n. Next, we do the

following
⌊

(k−1)( m
k−1)−n

m−k+1

⌋
times.
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1. Select a (k − 2)-set from Xa and delete one copy of each of its m − k + 2
supersets fromXi . For each selected (k−2)-set ofXa , we can always delete
one copy of each of its m − k + 2 supersets fromXi irrespective of previous
deletions. This is because there are k−1 copies of each of the (k−1)-subsets
of S in the initial collection Xi . So, for a (k − 1)-set of Xi , its k − 1 copies
may be assumed to be assigned to its k−1 distinct (k−2)-subsets; one copy
per subset. Therefore, for a (k − 2)-set of Xa , there corresponds a copy of
each of its m − k + 2 supersets in Xi .

2. Add the (k − 2)-set to the collection Xi and delete it from the auxiliary
collection Xa .

Finally, if (m− k +1) - ((k−1)
( m

k−1
)
− n), then for the remaining (k−2)-set ofXa ,

delete one copy of each of its ((k−1)
( m

k−1
)
−n)−

⌊
(k−1)( m

k−1)−n
m−k+1

⌋
(m−k+1) supersets

from Xi . In the end, we get the �nal collection X of n subsets of S. Before we
prove correctness of the construction, we give an example to illustrate it.

Example 2.1. Let us take m � 6, k � 4, n � 43 and S � {s1, s2, s3, s4, s5, s6}.
Hence, in the initial collection Xi there are k − 1 � 3 copies of each of the 20
3-subsets of S. The auxiliary collection Xa contains

⌈
(k−1)( m

k−1)−n
m−k+1

⌉
� 6 2-subsets

of S. Let the collection Xa be ({s1, s2}, {s2, s3}, {s3, s4}, {s4, s5}, {s5, s6}, {s1, s6}).

In step 1, we select the set {s1, s2} from Xa , delete a single copy of each of its
m− k +2 � 4 supersets (i.e., {s1, s2, s3}, {s1, s2, s4}, {s1, s2, s5}, {s1, s2, s6}) fromXi ,
add the set {s1, s2} to Xi , and delete it from Xa . We repeat these steps for 4 other
sets (let us assume {s2, s3}, {s3, s4}, {s4, s5}, {s5, s6}) of Xa .

Finally, for the remaining set {s1, s6}, we delete two of its supersets {s1, s2, s6}
and {s1, s3, s6} from collection Xi . Table 5.1 shows the �nal collection X. Next,
we prove correctness of this construction.

Proof of correctness. First, we note that sets ofX are of cardinality k − 1 and k − 2,
where the (k − 2)-sets are all distinct. Hence, it follows that union of i sets of X
contains at least i elements for 1 ≤ i ≤ k−1. Next, we observe that the collection
X contains at most k−1 subsets of a (k−1)-set, which may possibly include one
or more copies of the (k − 1)-set itself. So, in a collection of k sets of X there can
be at most k − 1 subsets of a (k − 1)-set. Hence, union of any k sets ofX contains
at least k elements. �
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Table 2.1: Final collection X of Example 2.1

Subset Number of copies Subset Number of copies
{s1, s2, s3} 1 {s2, s3, s6} 2
{s1, s2, s4} 2 {s2, s4, s6} 3
{s1, s2, s5} 2 {s2, s5, s6} 3
{s1, s2, s6} 2 {s3, s4, s5} 1
{s1, s3, s4} 2 {s3, s4, s6} 2
{s1, s3, s5} 3 {s3, s5, s6} 2
{s1, s3, s6} 2 {s4, s5, s6} 1
{s1, s4, s5} 2 {s1, s2} 1
{s1, s4, s6} 3 {s2, s3} 1
{s1, s5, s6} 2 {s3, s4} 1
{s2, s3, s4} 1 {s4, s5} 1
{s2, s3, s5} 2 {s5, s6} 1
{s1, s4, s6} 3 {s2, s3} 1
{s1, s5, s6} 2 {s3, s4} 1
{s2, s3, s4} 1 {s4, s5} 1
{s2, s3, s5} 2 {s5, s6} 1

So, (S ,X) is an (n ,N, k ,m)-CBC, where N �
∑

X∈X
|X | � n(k − 1) −

⌊
(k−1)( m

k−1)−n
m−k+1

⌋
.

Hence, following Theorem 2.1.1, it is an optimal CBC. Therefore, we have proved
the following.

Theorem 2.1.2. Let
( m

k−2
)
≤ n ≤ (k − 1)

( m
k−1

)
. Then we have N (n , k ,m) � n(k −

1) −
⌊

(k−1)( m
k−1)−n

m−k+1

⌋
.

2.2.3 Construction of optimal and almost optimal CBCs
using binary constant weight codes

A binary constant weight code is a nonlinear code over F2, �nite �eld of order
2, whose every codeword has same weight. In order to apply binary constant
weight codes for construction of CBCs, we view codewords as characteristic
vectors 1 of subsets. A w-subset of an n-set is identi�ed with a codeword of
length n and weight w, where the codeword is the characteristic vector of the
subset. Thus, if distance between two codewords is d then symmetric di�erence
between the two corresponding subsets is also d. We say that such a pair of
subsets is d distance apart.

1Let S be an `-set {s1 , s2 , . . . , s` }. For I ⊆ S, characteristic vector of I is the vector χI �

(c1 , c2 , . . . , c`) ∈ F`2 such that ci � 1 i� si ∈ I, 1 ≤ i ≤ `, where F2 is the �nite �eld of order
2. So, a subset of a set can be naturally identi�ed with its characteristic vector.
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Let A(n , 2d , w) denote maximum number of codewords of a binary constant
weight code of length n, weight w, and minimum distance 2d 2 over �eld F2.
Our construction of optimal and almost optimal CBCs is for the range of values
of n, with

( m
k−2

)
− (m − k + 1)A(m , 4, k − 3) ≤ n ≤

( m
k−2

)
, where k ≥ 5. To get an

approximate idea of this range, we state few results from [GS80] regarding lower
bound on A(n , 2d , w). For improvements on these results and other relevant
details of constant weight codes, we refer the reader to [BSSS90, AVZ00, BE10,
Klo81, VPE89, SHP06].

Theorem 2.5 ([GS80]). A(n , 4, w) ≥
1
n

(
n
w

)
.

For arbitrary d we note the following lower bound.

Theorem 2.6 ([GS80]). A(n , 2d , w) ≥
1

qd−1

(
n
w

)
, where q is a prime power such that

q ≥ n.

Theorem 2.6, along with Johnson’s upper bound on the size of binary constant
weight codes, implies the following asymptotic estimate of A(n , 2d , w).

Theorem 2.7 ([GS80]). n (w−d+1)

w! . A(n , 2d , w) .
(d − 1)!n (w−d+1)

w! , for w �xed as
n →∞.

For d � 2, Theorem 2.7 implies A(n , 4, w) ∼
n (w−d+1)

w! .

Construction. Our overall construction procedure, in this case, is similar to our
previous construction; although, with a di�erent initial collection (Xi) and aux-
iliary collection (Xa). LetS to be the set of servers with |S| � m. Initial collection
Xi consists of all the

( m
k−2

)
(k − 2)-subsets of S.

Range of possible values of n is
( m

k−2
)
− (m − k + 1)A(m , 4, k − 3) ≤ n ≤

( m
k−2

)
.

Hence, we have 0 ≤
( m

k−2
)
− n ≤ (m − k +1)A(m , 4, k − 3). Unlike in the previous

construction, our choice of auxiliary collection (Xa) of sets is not arbitrary. In
this case, Xa is a collection of

⌈
( m

k−2)−n
m−k+1

⌉
distinct (k − 3)-subsets of S, which are

mutuallyminimum4distance apart. Our choice of the (k−3)-sets ofXa is guided
by codewords of corresponding binary constant weight codes. This is possible
for the range of values of

( m
k−2

)
− n. Next, we do the following

⌊
( m

k−2)−n
m−k+1

⌋
times.

2Here, we note that distance between two codewords of a constant weight code is always
even.
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1. Select a (k − 3)-set from Xa and delete each of its m − k + 3 supersets from
Xi . This can be done for each (k − 3)-set of Xa irrespective of all the previ-
ous deletions. This is because (k − 3)-sets of Xa are mutually minimum 4
distance apart. Hence, union of any two (k − 3)-sets of Xa contains at least
k−1 elements. Therefore, no two (k−3)-sets ofXa have the same (k−2)-set
in Xi as superset.

2. Delete the (k − 3)-set from Xa and add two copies of the set to Xi .

Finally, if (m− k +1) - (
( m

k−2
)
−n), then for the remaining (k−3)-set ofXa , delete

its (
( m

k−2
)
− n) −

⌊
( m

k−2)−n
m−k+1

⌋
(m − k + 1) supersets from Xi .

In the end, we get the �nal collection X of n subsets of S.

Proof of correctness. Sets of the collection X are of cardinality k − 2 and k − 3.
There are exactly two copies of a (k − 3)-set, and the (k − 2)-sets are all distinct.
Also, following the choice of auxiliary collection Xa , union of any two distinct
(k − 3)-sets contains at least k − 1 elements. Therefore, union of k − 1 sets of X
contains at least k − 1 elements for k ≥ 5.

Now, we consider any collection Xk of k sets of X. If union of the sets of Xk

contains at least k elements then we are done. Otherwise, from the above, it
follows that the union contains at least k − 1 elements. Let us denote the set of
these k − 1 elements by X. Since union of k distinct (k − 2)-sets contains at least
k elements, Xk contains at least one (k − 3)-set. Let the number of (k − 3)-sets in
Xk be r, where 1 ≤ r ≤ k. Since there are exactly two copies of each (k−3)-set in
X, there are at least d r

2e distinct (k − 3)-sets in Xk . Each of these (k − 3)-sets has
exactly two (k−2)-supersets, which are subsets of X. Now, from the choice ofXa

it follows that no two distinct (k − 3)-sets of Xk share the same (k − 2)-superset
that is a subset of X. Hence, there are at least 2d r

2e distinct (k − 2)-subsets of X

that are supersets of (k − 3)-sets of Xk . Also, there are k − r distinct (k − 2)-sets
inXk that are subsets of X, and are not supersets of any (k − 3)-set ofXk . Hence,
there are at least 2d r

2e + k − r ≥ k distinct (k − 2)-subsets of X. But this is a
contradiction, since X is a set of k − 1 elements. �

So, (S ,X) is an (n ,N, k ,m)-CBC, where N �
∑

X∈X
|X | � n(k − 2) − 2

⌊
( m

k−2)−n
m−k+1

⌋
.
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Now, we discuss optimality of this construction. We note that Theorem 2.1.1
implies the following lower bound.

N (n , k ,m) ≥ n(k − 2) −


2
(( m

k−2
)
− n

)
m − k + 1


, (2.14)

for n ≤
( m

k−2
)
. Hence, di�erence between value of N obtained from our con-

struction and value of N given by the lower bound (2.14) for given values of
n ,m , and k is

(
n(k − 2) − 2

⌊ ( m
k−2

)
− n

m − k + 1

⌋)
−

*.
,

n(k − 2) −


2
(( m

k−2
)
− n

)
m − k + 1



+/
-

�




0, when 0 ≤
(( m

k−2
)
− n

)
mod (m − k + 1) < m−k+1

2 ;

1, when m−k+1
2 ≤

(( m
k−2

)
− n

)
mod (m − k + 1) < m − k + 1.

So, the construction yields optimal CBCs for approximately half of the values

of n in the range
( m

k−2
)
− (m − k + 1)A(m , 4, k − 3) ≤ n ≤

( m
k−2

)
. For the rest of the

values of n within this range, value of N for the constructed CBC di�ers by one
from the value of N , given by the lower bound (2.14). Therefore, for these values
of n constructed CBCs are almost optimal. More formally, we have proved the
following result.

Theorem 2.1.3. Let
( m

k−2
)
− (m − k + 1)A(m , 4, k − 3) ≤ n ≤

( m
k−2

)
. Then

N (n , k ,m) � n(k − 2) −
⌊2(

( m
k−2

)
− n)

m − k + 1

⌋

for 0 ≤
((

m
k − 2

)
− n

)
mod (m − k + 1) <

m − k + 1
2 , and

N (n , k ,m) ≤ n(k − 2) − 2
⌊ ( m

k−2
)
− n

m − k + 1

⌋

for m − k + 1
2 ≤

((
m

k − 2

)
− n

)
mod (m − k + 1) < m − k + 1.
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2.3 Conclusion and Subsequent Work

Along with the construction, given in Theorem 2.1.3, in [BRR12], we used con-
stant weight codes for construction of c-uniform (n , cn , k ,m)-CBCs. For these
CBCs, we showed n � Ω(m2c−k+2). We do not discuss the result here, as the
order of magnitude of n has been signi�cantly improved by the constructions
given in Chapter 3 and Chapter 4.

In this chapter, we have constructed optimal and almost optimal (n ,N, k ,m)-
CBCs, where data items are stored in ∼ k servers, that is, for such a CBC (S ,X),
sets of X have cardinality ∼ k. In a recent work ([SG14]), the authors have con-
structed optimal CBCs (S ,X), where sets of X have cardinality ∼

√
k. More

precisely, using transversal designs, they have constructed optimal (n ,N, k ,m)-
CBCs, with n � q2 + q − 1, k � q2 − q − 1,m � q2 − q ,N � q3 − q, where q ≥ 3 is a
prime power. For such a CBC (S ,X), sets of X have cardinality ∈ {q , q − 1}. We
note that for these optimal CBCs, setting of parameters is relatively speci�c (e.g.,
in this case, m � k + 1). However, the important point is that, the construction
shows that the lower bound on N (n , k ,m), obtained in Theorem 2.1.1, is tight
for a rather di�erent setting of parameters; namely, when the sets of X (for an
(n ,N, k ,m)-CBC (S ,X)) have cardinality ∼

√
k.





Chapter 3

On an Extremal Hypergraph
Problem Related to Combinatorial
Batch Codes

3.1 Introduction

In this chapter, we consider the problem of obtaining the value of maximum
number of input data items (n) of a uniform CBC for given values of the num-
ber of servers (m), retrievability parameter (k), and degree of uniformity (c).
Given m , c , k, we denote by n(m , c , k) maximum value of n such that there
is a c-uniform (n , cn , k ,m)-CBC. We term a c-uniform (n , cn , k ,m)-CBC, with
n � n(m , c , k), extremal. As we mentioned in Chapter 1, �nding the value of
n(m , c , k) is a very di�cult problem, even for speci�c small values of m , c, and
k. We view the problem as an extremal hypergraph problem, or more precisely,
as a hypergraph Turán type problem. We obtain bounds on n(m , c , k) and construct
extremal (up to order of magnitude of n) CBCs. For certain ranges of values of
parameters, our constructions improve on existing lower bounds on n(m , c , k),
which also includes an improvement on a non-constructive lower bound, ob-
tained by Brown, Erdős, and Sós ([BES73]), for a degenerate extremal problem.

33
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In this section, we cover the preliminaries, wherewediscuss basics ofTurán num-
bers and Turán density. We formally phrase the problem of obtaining n(m , c , k)
as an extremal hypergraph problem, and make initial observations on the prob-
lem. Then we discuss existing results and state our contribution. Section 3.2
comprises of proofs of our results. Finally, we conclude in Section 3.3 by report-
ing subsequent progress made on this problem.

3.1.1 Preliminaries

3.1.1.1 Turán numbers and Turán density

Let H be a family of c-uniform hypergraphs. Maximum size of a c-uniform
hypergraph on m 1 vertices, that does not contain a copy of any of the hyper-
graphs of H as a sub-hypergraph, is called Turán number of the family H , and
is denoted by ex(m ,H ) 2. A hypergraph (which may not be unique) on m ver-
tices and with ex(m ,H ) edges that does not contain a member ofH is extremal
for the familyH . Given a familyH of hypergraphs determining ex(m ,H ) and
corresponding extremal hypergraph(s) is commonly termed Turán type problem,
where the familyH is called the family of forbidden hypergraphs for the problem.
Turán type problems form one of the most interesting classes of extremal com-
binatorial problems.

One of the classical results in this area is due to Turán [Tur41], who determined
ex(m , Kt ) and also the corresponding unique extremal graph.3 This, however,
is one of the very few exact results for this type of problems, which are known
to be notoriously hard. For large number of families (even containing a single
member) F of c-uniform hypergraphs, even the order ofmagnitude of ex(m , F )
is not known. For graphs, the situation is somewhat better due to the famous

1In order to maintain notational consistency throughout the thesis, we deviate from the stan-
dard notation of graph/ hypergraph literature. We denote by m, number of vertices and by n,
number of edges of a graph / hypergraph. This is in exact contradiction to their standard use in
graph / hypergraph literature.

2We do not include the degree of uniformity c in the notation as it is clear from the context,
and does not create any confusion.

3Although the earliest known result in this area is due to Mantel [Man07], who solved the
case for t � 3, i.e., for triangles.
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Erdős-Stone -Simonovits theorem [ES46, ES66], which roughly asserts that

ex(m , F ) �
(
min
G∈F

(
1 − 1

χ(G) − 1

)
+ o(1)

) (
m
2

)
, (3.1)

where χ(G) is the chromatic number of G. So, apart from the case when the

family F contains a bipartite graph (which have chromatic number 2) the prob-
lem of determining the Turán number for graphs is settled as far as asymptotic
is concerned.

For c-uniform hypergraphs, with c ≥ 3, the problem is still very much open.
There are no analogues of Turán’s theorem or Erdős-Stone-Simonovits theorem
for these hypergraphs, and result of general nature is almost missing. In fact,
di�culty of Turán type problems in this setting can be gauged from the fact that
even one of the basic non-trivial problems in this domain (famously known as
Turán’s 3 − 4 problem), that of determining the Turán number of Tetrahedron,
i.e., determining ex(m , K3

4), is unsettled till date.4 Since obtaining exact value of
ex(m ,H ) is a di�cult problem in general, it is natural to focus on the asymp-
totics of ex(m ,H ). In order to understand the asymptotics of ex(m ,H ), we con-
sider the following two sub-problems.

– Determination of the order of magnitude of ex(m ,H ): Logically the �rst step
towards understanding the asymptotics of ex(m ,H ) is to understand its
order of magnitude, i.e., the value α such that ex(m ,H ) � Θ(mα). It is
known that ex(m ,H ) � o(mc) if and only if the c-uniform family of forbid-
den hypergraphs H contains a member that is c-partite. However, given
a description of the family H , it may not be obvious whether the fam-
ily contains a c-partite member. More interestingly, and almost always it
is the case that when ex(m ,H ) � o(mc), determination of exact value α
such that ex(m ,H ) � Θ(mα) becomes exceedingly challenging, even in
the case of graphs. For this special case, the problem is known as degen-
erate extremal problem. There is a vast literature covering these types of
problems. We refer the reader to [FS13] for a recent and extensive survey
of degenerate extremal problems in the case of graphs.

4Erdős o�ered $500 for a solution of this problem and $1000 for solution of ex(m , Kc
t )
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– Determination of the leading coe�cient of ex(m ,H ): Once the order of mag-
nitude of ex(m ,H ) is determined, the next step is to obtain its leading co-
e�cient. However, this is also a very di�cult problem, even for c-uniform
families H for which ex(m ,H ) � Θ(mc). For such a family, the leading
coe�cient of ex(m ,H ) is expressed as Turán density ofH . More formally,
for a c-uniform family H , its Turán density, denoted by π(H ), is de�ned
as (see [Kee11])

π(H ) , lim
m→∞

ex(m ,H )(m
c
) .

That the above limit exists was shown in [KNS64]. For a degenerate c-
uniform familyH , i.e., for a family with ex(m ,H ) � o(mc), it immediately
follows that π(H ) � 0. So, Turán density is meaningful only for a non-
degenerate c-uniform family H , and in this case, it immediately follows
that ex(m ,H ) ∼ π(H )

(m
c
)
. There are only a few speci�c families for which

Turán density is known (see [Kee11] for a detailed and updated survey on
progress in this area, mostly for small families and for c � 3 and 4 cases).
However, the problem, in general, is far from being solved.

We refer the reader to (somewhat old) surveys [Fűr91, Sid95], and more recent
[Sud10] for further details and results on Turán type problems.

3.1.1.2 Combinatorial batch codes and an extremal problem

Setting and notation. In this chapter, we consider the problem of �nding max-
imum number of input data items (n) of a uniform CBC for given values of the
number of servers (m), retrievability parameter (k), and degree of uniformity (c).
We represent a uniform CBC by a uniform hypergraph and pose the problem as
a hypergraph Turán type problem.

Following their common use in literature, we will use the notation ex(m ,H )
to denote Turán number of the family H taken over simple hypergraphs only,
i.e., to denote maximum size of a simple hypergraph without containing any
member of H . We use ex∗(m ,H ) when we allow considered hypergraphs to
have repeated edges,i.e., wedenote by ex∗(m ,H ) maximumsize of a hypergraph
with repeated edges that does not contain any member ofH .
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Problem de�nition and basic observations. We represent a c-uniform (n , cn , k ,

m)-CBC by a c-uniform hypergraph (V , F ), where the set of vertices V, with
|V| � m, represents the set of m servers, and the set of edges F , with |F | � n,
represents the set of n data items. Edge Fi ∈ F contains vertex v j ∈ V if and
only if i-th data item is stored in j-th server. Now, we recall Theorem 1.3 of
Chapter 1, which serves as a de�nition of a CBC in this setting.

Theorem 3.1 ([PSW09]). A c-uniform hypergraph (V , F ) represents a c-uniform
(n , cn , k ,m)-CBC if and only if |V| � m, |F | � n,

∑
F∈F |F | � cn, and every collec-

tion of i edges from F contains at least i vertices for 1 ≤ i ≤ k.

Now, we formally state the problem, which we consider in this chapter, in the
setting of hypergraphs.

Let m , c , k be positive integers such that 3 ≤ k < n and 2 ≤ c ≤ k − 1.
Determine n(m , c , k), i.e., the maximum number of edges a c-uniform hy-
pergraph on m vertices can have subject to the condition that any collection
of i edges spans at least i vertices for 1 ≤ i ≤ k.

This is a Turán type problem, where we have the following family of forbidden
hypergraphs:

G
c (k) �{H |H is a c-uniform hypergraph with i edges and < i vertices for

1 ≤ i ≤ k}. (3.2)

We are interested in the order of magnitude of n(m , c , k) � ex∗(m ,Gc (k)) as
m → ∞, where c and k are constants independent of m. Here, we note that
members of Gc (k), as well as extremal hypergraphs for Gc (k), contain repeated
edges. However, in the following, we show that for the purpose of understand-
ing the order of magnitude of n(m , c , k), it is su�cient to restrict our attention
on simple hypergraphs only.

Let H be a c-uniform hypergraph that is extremal for the collectionGc (k). Let H′

be a simple c-uniform hypergraph that has maximum number of edges among
all simple hypergraphs without having anymember of Gc (k). Then we have the
following proposition.
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Proposition 3.2. Let Gc (k),H,H′ be as de�ned above, then |H′| ≥ 1
c |H |.

Proof. Since H does not have anymember ofGc (k), an edge of H can have atmost
c copies. Hence, for the maximal simple sub-hypergraph of H′′ of H, it follows
that |H′′| ≥ 1

c |H |. Now, both H′ and H′′ are simple hypergraphs without any
member of Gc (k). Hence, from the de�nition of H′, we have that |H′| ≥ |H′′| ≥
1
c |H |. �

Now, let

H
c (k) �{H |H is a c-uniform simple hypergraph with i edges and < i vertices,

where 1 ≤ i ≤ k} ⊆ Gc (k). (3.3)

Then, following Proposition 3.2, we have

ex∗(m ,Gc (k)) ≤ c ex(m ,H c (k)). (3.4)

Also, since any simple hypergraph not containing any member of H c (k) does
not contain any member of Gc (k), we have

ex∗(m ,Gc (k)) ≥ ex(m ,H c (k)). (3.5)

So, from (3.4) and (3.5), we have

n(m , c , k) � ex∗(m ,Gc (k)) � Θ(ex(m ,H c (k))). (3.6)

Hence, to understand order of magnitude of n(m , c , k) it is su�cient to consider
Turán number of the family H c (k) over simple hypergraphs. Furthermore, in
the next lemma, we show that the subfamily

I
c (k) �{H |H is a simple c-uniform hypergraph with i edges and i − 1 vertices,

where c + 3 ≤ i ≤ k} ⊆ H c (k) (3.7)

can be considered as the forbidden family for our problem at hand. In fact, in
Theorem 3.7, where we obtain lower bound on n(m , c , k), we use the subfamily
I

c (k) as the forbidden family.
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Lemma 3.3. LetH c (k) and Ic (k) be de�ned as above. Then we have

ex(m ,Ic (k)) � ex(m ,H c (k)).

Proof. SinceH c (k) ⊇ Ic (k), it trivially follows that ex(m ,H c (k)) ≤ ex(m ,Ic (k)).
To prove the other direction, we make the following claim.

Claim 3.1. Let H � (V , F ) be a simple c-uniform hypergraph such that |F | � k and
|V| < k. Then there is sub-hypergraph (not necessarily an induced one) H′ � (V′, F ′)
of H, such that |F ′| � `, |V′| � ` − 1, for some ` in the range c + 2 < ` ≤ k.

Proof of the Claim. Indeed, and even in a stronger sense, we can arbitrarily delete
edges from H until the condition is satis�ed and guaranteed to get the desired
sub-hypergraph H′. To show that this always holds, we �rst observe that any
collection of c + 2 edges of H spans at least c + 2 vertices. So, we have k > c + 2.
Next, we consider the sequence of sub-hypergraphs H � Hk ⊃ Hk−1 ⊃ . . . ⊃

Hc+2, obtained by arbitrarily deleting edges one by one, where |Hi | � i. Let mi

be the number of vertices of Hi for c + 2 ≤ i ≤ k. Then we have k − mk ≥

1, and c + 2 − mc+2 ≤ 0. Now, since mi ≥ mi−1 for c + 3 ≤ i ≤ k, we have
(i − mi) − (i − 1 − mi−1) ≤ 1. Hence, there must be some H′ � H` , where
c + 2 < ` ≤ k, such that ` − m` � 1. This proves the claim. �

So, following above claim, any simple hypergraph, that does not contain any
member ofIc (k), does not contain anymember ofH c (k). Hence, ex(m ,H c (k)) ≥
ex(m ,Ic (k)). So, the lemma follows. �

Following the above discussion, in the sequel, all the considered hypergraphs
will be simple unless we state otherwise.

3.1.2 Existing results

Turán type problem, where the forbidden family of is characterized by number
of vertices and number edges of the hypergraphs of the family, was introduced
byBrown, Erdős, and Sós in [BES73]. There, the authors considered as forbidden
family the following family of hypergraphs:

H
c (p , q) � {H : H is a c-uniform hypergraph with p vertices and q edges }.

(3.8)
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They showed, through non-constructive arguments, the following lower bound:

ex(m ,H c (p , q)) � Ω(m
cq−p
q−1 ). (3.9)

However, the lower bound in (3.9) can not be immediately interpreted as a lower
bound on n(m , c , k). In case of (3.9), the forbidden family consists of hyper-
graphs having a �xed number of vertices and a �xed number of edges. On the
other hand, for n(m , c , k) � Θ(ex(m ,Ic (k))), we need to consider as forbidden
family the hypergraphs whose number of vertices lies within a certain range,
and number of edges is one more than the number of vertices.

More recently, a lower bound on n(m , c , k) was obtained in [IKOS04a]. There,
the authors obtained the following result using a probabilistic argument:

n(m , c , k) � Ω(mc−1). (3.10)

In [PSW09], the authors extended the method of [BES73] for the forbidden fam-
ily Gc (k) to obtain the following improvement:

n(m , c , k) � Ω(m
kc

k−1−1). (3.11)

On the other hand, in [PSW09], the authors showed the following upper bound:

n(m , c , k) ≤
(k − 1)(k−1

c
) (

m
c

)
. (3.12)

It is trivial to observe that the bound (3.12) is tight for c � 1. In [PSW09], it
was shown by explicit construction that this bound is also tight for the cases
c � k − 1 and c � k − 2. Indeed, k − 1 copies of Kk−1

m and a single copy of Kk−2
m are

the respective constructions.

For our setting of parameters (i.e., for c , k constants independent of m), (3.12)
essentially shows that n(m , c , k) � O(mc). Now, we are considering the Turán
number ex(m ,Ic (k)) over simple c-uniform hypergraphs on m vertices. For
such hypergraphs there can be at most

(m
c
)
� O(mc) edges. Hence, (3.6) and

Lemma 3.3 immediately imply n(m , c , k) � O(mc). Therefore, for our setting of
parameters, the upper bound (3.12) is trivial, in terms of order of magnitude.
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3.1.3 Our contribution

Below, we informally list our contributions in this chapter.

(I) We improve the upper bound (3.12) in terms of order of magnitude. In
particular, using a result due to Erdős ([Erd64]), we show that n(m , c , k) �
o(mc) for 7 ≤ k, and 3 ≤ c ≤ k−1−dlog ke. This result is best possible with
respect to the upper bound on c, as we subsequently demonstrate through
explicit construction that for k ≥ 6, and k− dlog ke ≤ c ≤ k−1, n(m , c , k) �
Θ(mc).

The above mentioned explicit construction improves on the general lower
bound, obtained in [PSW09], and also the lower bound (3.9), obtained in
[BES73], for the parameters p � k − 1, q � k , k − dlog ke ≤ c ≤ k − 1, where
k ≥ 6.

(II) For the graph case, i.e., for 2-uniform CBCs, we obtain the following re-
sults.

(i) We obtain exact value of n(m , 2, 5) for m ≥ 5. We note that exact val-
ues of n(m , 2, 3) and n(m , 2, 4) are already known due to the bound
(3.12) and constructions (corresponding to c � k − 1 and c � k − 2
case) given in [PSW09]; namely, we have n(m , 2, 3) � m(m − 1) and
n(m , 2, 4) �

(m
2
)
.

(ii) Using a result (regarding maximum size of graphs with large girth)
of Lazebnik et al. [LUW95], we improve the existing lower bound
n(m , 2, k) � Ω(m

k+1
k−1 ), obtained in [PSW09], for all k ≥ 8 and in�nitely

many values of m.

(iii) We show n(m , 2, k) � O(m
1+ 1
b

k
4 c ) using a result due to Bondy and

Simonovits [BS74].

(iv) For small values of k, we obtain the following exact orders of magni-
tude:

(a) n(m , 2, k) � Θ(m
3
2 ) for k � 6, 7, 8;

(b) n(m , 2, k) � Θ(m
4
3 ) for k � 9, 10, 11;

(c) n(m , 2, k) � Θ(m
6
5 ) for k � 15, 16, 17.
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(III) In Section 3.2.3, we brie�y discuss Turán density of the family I3(6). For
3-uniform CBCs, Theorem 3.7 indicates n(m , 3, k) � θ(m3) for k ≤ 6. So,
we have positive Turán density for families I3(k), for k ≤ 6. Hence, it
is meaningful to investigate Turán densities of these families. Now, we
observe that ex(m ,I3(4)) � ex(m ,I3(5)) �

(m
3
)
(indeed, it is trivial to

see that both are ≤
(m
3
)
, and in both the cases K3

m is the extremal graph).
Hence, we have

π(I3(4)) � lim
m→∞

ex(m ,I3(4))(m
3
) � 1,

and
π(I3(5)) � lim

m→∞

ex(m ,I3(5))(m
3
) � 1.

However, the case of π(I3(6)) is much involved, and we only have partial
answer for it. We relate Turán density ofI3(6) to much studied Turán den-
sity of K3−

4 (in this case, the forbidden family consists of the single member
K3−
4 ), where K3−

4 is the 3-uniform hypergraph on 4 verticeswith 3 edges . In
fact, we essentially show that Turán densities of the two families are same.
Hence, existing upper and lower bounds on Turán density of K3−

4 apply for
the family I3(6) as well.

3.2 Results and Proofs

3.2.1 c-uniform case for c ≥ 3

We begin this section by stating the following result due to Erdős that will be
crucial in our proof of Theorem 3.5.

Theorem 3.4 ([Erd64]). Let m , c , ` be positive integers, with ` > 1 and m > m0(c , `),
where m0(c , `) is an integer that depends only on c and `. Then for su�ciently large C,
where C is independent of m , c, and `, we have

mc− C
`c−1 < ex(m , Kc (`, . . . , `)) ≤ mc− 1

`c−1 .

Now, we show that n(m , c , k) � o(mc) for 7 ≤ k, and 3 ≤ c ≤ k − 1− dlog ke. All
the logarithms mentioned in this chapter are to the base 2.
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Theorem 3.5. Let k ≥ 7, and 3 ≤ c ≤ k − 1 − dlog ke. Then for su�ciently large m

(m > m1(c), where m1 is a constant that depends only on c), n(m , c , k) ≤ cmc− 1
2c−1 .

Proof. Let u , v be such that 7 ≤ u ≤ k, 1 ≤ v ≤ u−2dlog ue, and c � u−v−dlog ue.
It is possible to �nd such u, v for the range of values of c stated in the theorem.
Next, we consider the c-uniform, complete c-partite hypergraph H � (V , F ),
where

V :� {x1, . . . , xu−v−2dlog ue , . . . , xc , y1, . . . , yu−v−2dlog ue , . . . , yc }

and
F :�

{
{z1, . . . , zc } : zi ∈ {xi , yi }, 1 ≤ i ≤ c

}
.

Now, we apply Theorem 3.4 with H � K(c) (2, . . . , 2). We get, for su�ciently
large m, i.e., for m > m0(c , 2) � m1(c)

ex(m ,H ) ≤ mc− 1
2c−1 . (3.13)

Next, we consider the c-uniform sub-hypergraphH ′

� (V′

, F
′) ofH , where

V ⊇ V
′ :� {x1, . . . , xu−v−2dlog ue , . . . , xc , yu−v−2dlog ue+1, . . . , yc }

and

F
′ :�

{
{x1, . . . , xu−v−2dlog ue , zu−v−2dlog ue+1, . . . , zc } : z j ∈ {x j , y j },

u − v − 2dlog ue + 1 ≤ j ≤ c
}
.

Since v ≥ 1, we have

|V
′

| � u − v ≤ u − 1, (3.14)

and

|F
′
| � 2dlog ue

≥ u. (3.15)

Now, since u ≤ k, H ′

∈ H
c (k), where H c (k) is the family de�ned in (3.3). So,

we have
ex(m ,H c (k)) ≤ ex(m ,H

′

) ≤ ex(m ,H ).
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Hence, from (3.4) and (4.9), we get for su�ciently large m, i.e., for m > m1(c),

n(m , c , k) ≤ cmc− 1
2c−1 . �

In the following example, we demonstrate the construction of the forbidden hy-
pergraph for small parameter values.

Example 3.1. Let c � 4, k � 8. We choose u � 8, which yields v � u−dlog ue−c �

1. So, H � (V , F ), where V � {x1, x2, x3, x4, y1, y2, y3, y4} and F � {x1, y1} ×

{x2, y2} × {x3, y3} × {x4, y4}. Similarly, as forbidden hypergraph we can consider
H
′

� (V′

, F
′) ⊂ H , where V′

� {x1, x2, x3, x4, y2, y3, y4}, and F
′

� {x1} ×

{x2, y2} × {x3, y3} × {x4, y4}. Consequently, 7 � |V
′

| ≤ |F
′

| � 8.

A few remarks regarding the theorem are in order.

Remark 3.6. 1. Each edge ofF ′ has the �xed set of vertices {x1, . . . , xu−v−2dlog ue }.
This choice is arbitrary. Any �xed set of u − v − 2dlog ue vertices {z1, . . . ,
zu−v−2dlog ue } can be selected subject to the condition z j ∈ {x j , y j }, where
1 ≤ j ≤ u − v − 2dlog ue.

2. We also observe that the same constructionwith partite sets of size `, along
with Theorem 3.4, produces similar result for c ≤ k − 1 − (` − 1)dlog` ke.

3. Inequalities (3.14) and (3.15) are tight when u is a power of 2 and v � 1. In
particular, when k is a power of 2 and c � k−1− log k, we have |V′

| � k−1
and |F ′ | � k. So, k edges ofH ′ span exactly k − 1 vertices.

In the next theorem, we show that the bound c ≤ k− dlog ke −1, in Theorem 3.5,
is tight. More precisely, our result is the following.

Theorem 3.7. n(m , c , k) � Θ(mc) for 6 ≤ k, k − dlog ke ≤ c ≤ k − 1.

Proof. Here, we show that n(m , c , k) � Ω(mc) for the stated ranges of values
of c and k. This, together with n(m , c , k) � O(mc) from (3.12), would imply
n(m , c , k) � Θ(mc). First, we prove the above for c � k − dlog ke, as this turns
out to be the tight case. The same argument holds for the rest of the range of
values of c. Note that the cases c � k − 1 and c � k − 2 have already been settled
in [PSW09].
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Construction: Let H � (V , F ) be a complete c-uniform, c-partite hypergraph,
whereV �V1∪V2∪ . . .∪Vc , such thatVi ∩Vj � ∅ for i , j, and |Vi | � b

m+i−1
c c

for 1 ≤ i ≤ c. Clearly, |F | � Ω(mc).

In the following claim, we show thatH does not contain any member of Ic (k),
where Ic (k) is as de�ned in (3.7). This, together with Lemma 3.3 and (3.5), im-
plies n(m , c , k) � Ω(mc).

Claim 3.2. H does not contain a sub-hypergraphH ′

� (V′

, F
′) such that |V′

| � i−1
and |F ′ | ≥ i for c + 3 ≤ i ≤ k.

Proof. First, we observe that if there is a sub-hypergraph H ′

� (V′

, F
′) such

that |V′

| � i − 1 and |F ′ | ≥ i for some c + 3 ≤ i < k, then there is another sub-
hypergraphH ′′

� (V′′

, F
′′) such thatH ′

⊆ H
′′

⊆ H , |V′′

| � k−1, and |F ′′ | ≥ k.
To getH ′′ fromH ′ we add k − i edges to F ′ with the following condition. Each
of the added k − i edges contains exactly one unique vertex not contained in
V
′, i.e., there are newly added k − i vertices, each belonging to a unique newly

added edge. This is always possible due to the structure of H , provided there
are k − i distinct vertices inV \V′. But this can be safely assumed because m is
large enough; in fact, m ≥ k is su�cient. Hence, it is su�cient to establish that
H does not contain a sub-hypergraphH ′

� (V′

, F
′) such that |V′

| � k − 1 and
|F

′

| ≥ k. In other words, we need to show that any subset of V of size k − 1
spans at most k − 1 edges.

LetV′

⊆ V, with |V′

| � k − 1. So,V′

�V
′

1 ∪V
′

2 ∪ . . . ∪V
′

c , whereV′

i ⊆ Vi for
1 ≤ i ≤ c. Furthermore, we note that |V′

i | ≥ 1 for each i; otherwise, F ′ is empty.
Now, we have

c∑
i�1
|V

′

i | � |V
′

| � k − 1, and |F ′ | �
c∏

i�1
|V

′

i |. (3.16)

Next, we observe that subject to (3.16), |F ′ | attains its maximumwhen |V′

i |s are
as equal as possible, i.e., when

| |V
′

i | − |V
′

j | | ≤ 1, for 1 ≤ i , j ≤ c. (3.17)

We show this by the following argument. First, let us assume, without loss of
generality, that |V′

2 | − |V
′

1 | ≥ 2 when |F ′ | attains its maximum value; we denote
this maximum by Fmax . So, let |V

′

1 | � r, |V
′

2 | � r + `, where r ≥ 1 and ` ≥ 2.
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Remaining |V′

i |s, i.e., |V
′

i |s for 3 ≤ i ≤ c, have arbitrary but �xed values. So,
we have Fmax �

∏c
i�1 |V

′

i | � (r2 + r`)
∏c

i�3 |V
′

i |. Next, we modify |V′

1 | and |V
′

2 |

keeping the other |V′

i |s same. Let |V′

1 | � r + 1, |V′

2 | � r + ` − 1. So, clearly∑c
i�1 |V

′

i | � k − 1. However, in this case we have |F ′ | �
∏c

i�1 |V
′

i | � (r2 + `r + ` −
1)

∏c
i�3 |V

′

i | > Fmax for ` ≥ 2. This contradicts the fact that maximum value of
|F

′

| is Fmax .

Here, we note that |{V′

i : |V′

i | � 1, 1 ≤ i ≤ c}| ≥ 2c − k + 1 ≥ 1 for 6 ≤ k, and
c � k−dlog ke; otherwise, we have

∑c
i�1 |V

′

i | > k−1, a contradiction. Hence, from
(3.17), it follows that when |F ′ | is maximum we have |V′

i | ∈ {1, 2} for 1 ≤ i ≤ c.
But this implies that, in this case, there are exactly (k− c−1)V

′

i s, 1 ≤ i ≤ c with
|V

′

i | � 2, and for the remaining 2c − k + 1V′

i s, |V
′

i | � 1.

So, �nally we have
|F

′

| ≤ 2k−c−1
� 2dlog ke−1

≤ k − 1.

Hence, the claim is proven. �

Now, repeating the same argument as above for the cases with c in the range
k − dlog ke < c ≤ k − 1, we observe that |F ′ | ≤ 2k−c−1 < 2dlog ke−1

≤ k − 1. Hence,
the theorem. �

3.2.2 2-uniform case

For 2−uniform (graph) CBCs, we obtain the following improvements over exist-
ing results.

3.2.2.1 An exact result

As we have discussed in Section 3.1.3, exact values of n(m , 2, k) are already
known for k � 3, 4. In the following theorem, we obtain the exact value of
n(m , 2, 5).

Theorem 3.8. n(m , 2, 5) � bm2

4 c for m ≥ 5.

Proof. In [PSW09], the authors observed that n(m , 2, 5) ≥ bm2

4 c. Indeed, a com-
plete bipartite graph on m(m ≥ 5) vertices with partite sets having dm

2 e and
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b
m
2 c vertices is a 2-uniform CBC with k � 5 and n � b

m2

4 c. Hence, it su�ces to
prove that n(m , 2, 5) ≤ bm2

4 c. This is an exact result. So, here we need to show
that n(m , 2, 5) � ex∗(m ,G2(5)) ≤ bm2

4 c, where G2(5) is the forbidden family of
multigraphs (i.e., graphs with repeated edges) de�ned according to (3.2).

We show that any multigraph with m vertices and at least bm2

4 c + 1 edges con-
tains a sub-multigraph with 4 vertices and 5 edges. We prove this by induction
on m. This is clearly true for m � 4. Now, suppose we have a multigraph with
m vertices and at least bm2

4 c + 1 edges. In fact, we assume that the multigraph
has exactly bm2

4 c + 1 edges by removing any extra edges from the given multi-
graph. We observe that the multigraph contains a vertex of degree at most bm

2 c.
Removing this vertex along with all its incident edges leaves a multigraph with
m − 1 vertices and at least b (m−1)2

4 c + 1 edges. By the induction hypothesis, the
resulting multigraph contains a sub-multigraph with 4 vertices and 5 edges. �

3.2.2.2 Improvement of the lower bound

The lower bound (3.11), obtained in [PSW09], implies n(m , 2, k) � Ω(m
k+1
k−1 ).

Here, we improve this lower bound on n(m , 2, k) for all k and in�nitely many
values of m. We need the following lemma, which also appears as an exercise in
[Bol98]. For the sake of completeness, we include its proof.

Lemma 3.9. Let k ≥ 6. If a graph has k edges and at most k − 1 vertices then it has
girth at most b 2k

3 c. This bound is tight.

Proof. The statement is true for k � 6. Let us assume that the statement does not
hold for some k > 6. We choose k minimum so that the statement does not hold,
i.e., for this minimum k we have a graph G with k edges, at most k − 1 vertices,
and the girth of G is ≥ b 2k

3 c + 1. Without loss of generality, we assume that the
graph is connected. Since G has k edges and at most k − 1 vertices, it contains
at least 2 distinct cycles. Let the cycles be C1, C2. Now, if C1 and C2 are edge
disjoint then one of them will have length at most b k

2c < b
2k
3 c which contradicts

the assumption on the girth of G.

Let E(Ci) be the set of edges of Ci for i ∈ {1, 2}. If C1 and C2 are not edge disjoint,
let `0 � |E(C1) ∩ E(C2) | be the number of common edges between C1 and C2.
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Also, let `1 and `2 be the number of edges that exclusively belong to C1 and C2

respectively. So, by the assumption on the girth of G we have

`0 + `1 � |E(C1) | ≥ b
2k
3 c + 1, and `0 + `2 � |E(C2) | ≥ b

2k
3 c + 1. (3.18)

Now, we consider the subgraph of G consisting of the edges of E(C1)∆E(C2),
where ∆ refers to the symmetric di�erence of the corresponding edge sets. It
follows that every vertex in this subgraph has even degree. So, it contains a
cycle. Again, by the assumption on the girth of G we have

`1 + `2 ≥ b
2k
3 c + 1. (3.19)

From (3.18) and (3.19) we have `0 + `1 + `2 > k, a contradiction.

This bound is tight as shown by a theta graph5 θ(3, k
3 ) (for k a multiple of 3).

θ(3, k
3 ) has k − 1 vertices, k edges, and girth 2k

3 . �

Our improvement on the lower bound on n(m , 2, k), stated as Corollary 3.11, is
a consequence of the following result of [LUW95].

Theorem 3.10 ([LUW95]). For s ≥ 2, ex(m , {C3, C4, . . . , C2s+1}) � Ω(m1+ 2
3s−3+ε )

for in�nitely many values of m, where ε � 0 if s is odd, and � 1 if s is even.

Informally, Theorem3.10 provides a (explicit) construction of a graphwith “many”
edges that does not contain “small” cycles. Lemma 3.9 implies that such a graph
is a 2-uniform CBC with large n. More speci�cally, our result is the following.

Corollary 3.11. Let k ≥ 8, then

n(m , 2, k) �




Ω(m
k−3
k−5 ) if k � 5 mod 6

Ω(m
k−2
k−4 ) if k � 2 mod 6 or k � 4 mod 6

Ω(m
k−1
k−3 ) if k � 1 mod 6 or k � 3 mod 6

Ω(m
k

k−2 ) if k � 0 mod 6

for in�nitely many values of m.

Proof. The proof follows directly from Lemma 3.9 and Theorem 3.10. �

5Given integers t and `, the theta graph θ(t , `) is a graph on t` − t + 2 vertices and t` edges
such that two particular vertices are joined by t vertex disjoint paths of length `. By setting
T � K1,t , and connecting the t vertices of one partition with a vertex outside of T by t vertex
disjoint paths of length ` − 1 we get θ(t , `).



Chapter 3 49

Remark 3.12. 1. For the caseswhere k � 0 mod 3 or k � 1 mod 3, the bounds
of the Corollary 3.11 may be improved. Lemma 3.9 requires the girth to be
b
2k
3 c + 1, which is odd in these cases. Whereas, the bounds for these cases

were obtained by applying Theorem 3.10 for graphs of girth b 2k
3 c + 2.

2. The lower bound (3.11) is probabilistic, i.e., non-constructive. On the other
hand, the construction of Theorem 3.10 is strongly explicit (wewill discuss
this notion in detail in Chapter 4). This, in turn, means the construction of
CBCs in Corollary 3.11 is also strongly explicit. Strongly explicit construc-
tions are very useful for practical applications.

3.2.2.3 Improvement of the upper bound

The upper bound n(m , c , k) ≤ cmc− 1
2c−1 , that we have obtained in Theorem 3.5,

implies n(m , 2, k) � O(m
3
2 ). Here, we improve this upper bound on n(m , 2, k).

The next theorem from [BS74] is crucial for our proof.

Theorem 3.13. ([BS74]) If in a graph of order m, the number of edges > 100km1+ 1
k ,

then the graph contains a C2` for every ` ∈ [k , km
1
k ].

Informally, Theorem 3.13 shows that a graph with “many” edges has a “small”
cycle. There have been improvements (cf. [Ver00], [Pik12]) in the constant term
(100k) of this important theorem. However, our focus is on the order of mag-
nitude of the upper bound, and we do not require best of the constants for our
result. So, we use Theorem 3.13. We utilize this to show that such a graph can
not be a 2-uniform CBC. In particular, our result is the following.

Theorem 3.14. For k ≥ 4, n(m , 2, k) � O(m1+β), where β �
1
b

k
4 c
.

In the proof of Theorem 3.14, we need the following observation. This is a folk-
lore result in this area. We include its proof for the sake of completeness.

Observation 3.1. In any �nite graph G, there is a non-empty subgraph H with the
following properties. Minimum vertex degree of H is at least one fourth of the average
vertex degree of G, and size of H is at least half of the size of G.

Proof. Let the number of vertices and the average degree of vertices of G be m

and dav g respectively. Therefore, the number of edges of G is given by mdav g
2 .
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Next, we delete vertices of G having degree less than dav g
4 one by one. Since there

are only �nitely many vertices in G, we terminate after �nitely many steps with
a subgraph H. Now, to show that H is non-empty it is su�cient to show that
the average degree of vertices increases after each step. Indeed, at the end of the
�rst step, the number of edges in the resulting graph is ≥ mdav g

2 −
dav g
4 . Hence, at

the end of �rst step average degree of vertices is > dav g . Similar argument holds
for subsequent steps. Next, total number of edges deleted before termination is
at most mdav g

4 . Hence, number of edges in H is at least mdav g
4 . �

Proof of Theorem 3.14. Herewe show that n(m , 2, k) ≤ 200km1+β. Let G be a graph
with 200km1+β edges. Hence, by Observation 3.1, G has a subgraph H with at
least 100km1+β edges and minimum vertex degree at least 100kmβ. So, Theorem
3.13 implies that H has a cycle C of length at most 2b k

4c. Let v ∈ C be an arbitrary
vertex. We consider all the walks of length b k

4c in H starting at v such that no
edge of H repeats consecutively in any of the walks. Clearly, the number of such
walks is

100kmβ (100kmβ
− 1) b

k
4 c−1 > m.

Consequently, there is a vertex v′ such that at least two distinct walks of length
b

k
4c starting at v terminate at v′. These two walks along with C constitute a

subgraph of H with ` edges spanning at most `−1 vertices, where ` ≤ k. Hence,
G is not a CBC. �

3.2.2.4 Exact orders of magnitude

From earlier results ([PSW09] and Theorem 3.8), exact values of n(m , 2, k) are
known for k � 3, 4, 5. Here, we derive exact orders of magnitude of n(m , 2, k)
for subsequent speci�c values of k. Below, we list these cases.

(i) Theorem 3.14 implies trivial upper bound O(m2) on n(m , 2, k) for k � 6, 7.
We improve on this trivial upper bound on n(m , 2, k) for k � 6, 7, by the
following well-known theorem due to Kővári et al.

Theorem 3.15 ([KST54], see also [Bol78]). Suppose 2 ≤ s, 2 ≤ t, and s ≥ t.
Then ex(m , K(s , t)) ≤ 1

2 (s − 1)
1
t (m − t + 1)m1− 1

t + 1
2 (t − 1)m.

Corollary 3.16. n(m , 2, k) � Θ(m
3
2 ) for k � 6, 7, 8.
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Proof. Theorem 3.15 clearly implies ex(m , K(s , 2)) � O(m
3
2 ). More pre-

cisely, it implies that there is a constant cs ,2 such that for all su�ciently
large m, any graph of order m with more than cs ,2m

3
2 edges contains a

K(s , 2). Next, we consider K(d k
2e , 2). It has ≥ k edges and ≤ k − 1 vertices

for k ≥ 6. Hence, it has a subgraph where k edges span ≤ k − 1 vertices.
This implies n(m , 2, k) ≤ ex(m , K(d k

2e , 2)) � O(m
3
2 ) for k ≥ 6.

Now, we show tightness of the abovementioned upper bound for the cases
k � 6, 7, 8. Wenote that Lemma3.9 implies that a graphwhich is {C3, C4, C5}-
free, is a 2-uniformCBCwith k ≤ 8. Now, it is well-known (cf. [Bol78]) that
for q a prime power, the incidence graph of PG(2, q) is a (q +1)-regular bi-
partite graphwith 2(q2+q+1) vertices and girth 6. In fact, and itwas shown
in [ERS66], for su�ciently large m (and not just when m � 2(q2 + q + 1) for
a prime power q) this construction leads to a graph on m vertices having
Ω(m

3
2 ) edges whose girth is 6. 6 So, �nally we have n(m , 2, k) � Ω(m

3
2 ) for

k � 6, 7, 8. �

In the following two cases, uppper boundon the order ofmagnitude of n(m , 2, k)
follows froma recent result of [BT15]. There, the authors have shown n(m , 2, k) �

O(m
1+ 1
b

k
3 c ). This is an improvement on the upper bound, obtained in Theorem

3.14. We will brie�y discuss the results of [BT15] in Section 3.3.

(ii) n(m , 2, k) � Θ(m
4
3 ), for k � 9, 10, 11. In this case, the lower bound on the

order of magnitude follows from Corollary 3.11.

(iii) n(m , 2, k) � Θ(m
6
5 ), for k � 15, 16, 17. In this case, the lower bound on the

order of magnitude follows by considering the incidence graph of �nite
generalized hexagon (cf. [PT09]) of order q, where q is a prime power. The
graph is a (q + 1)-regular bipartite graph of girth 12 and has partite sets of
size q5+q4+q3+q2+q+1. This, togetherwith Lemma 3.9 and a consideration
similar to [ERS66], discussed for (i) above, implies the result.

3.2.3 Turán density of I3(6)

Our main theorem in this section is the following.

6This construction also improves on the non-constructive lower bound in (3.11) for n(m , 2, 7)
and n(m , 2, 8).
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Theorem 3.17. π(I3(6)) � π(K3−
4 ), where K3−

4 is the 3-uniform hypergraph on 4
vertices with 3 edges.

Now, from the bounds on π(K3−
4 ), we have the followingupper and lower bounds

on the Turán density of the family I3(6).

Corollary 3.18. 2
7 (1 − o(1)) ≤ π(I3(6)) ≤ 0.2871

In [Cae83], it was shown that π(K3−
4 ) ≤ 1

3 . This was subsequently improved in
[Mub03, MT08, Raz10, Tal07]. The present upper bound (0.2871) was obtained
in [BT11], using �ag algebras (cf. [Raz07]), and the lower bound was obtained
in [FF84]. Here, we will not discuss �ag algebras because the topic is much ad-
vanced and involved. However, we �nd it motivating to discuss the construction
from [FF84] that leads to the lower bound in Corollary 3.18. We will discuss it
after the proof of Theorem 3.17. To prove Theorem 3.17 we need the idea of
blow-up (see [Kee11] for further details).

Let H be a c-uniform hypergraph. t-blow-up of H, denoted as H(t), is ob-
tained in the following manner. Each vertex v of H is replaced by t copies
v1, v2, . . . , vt in H(t). Each edge of H is replaced by a copy of a c-partite c-
uniform hypergraph on the blown-up vertices of the edge. More precisely, an
edge {v1, v2, . . . , vc } of H is replaced in H(t) with a c-partite c-uniform hyper-
graph

{
{vw1

1 , vw2
2 , . . . , vwc

c }|1 ≤ wi ≤ t , 1 ≤ i ≤ c
}
. The next theorem, which is

implied by a result of [Erd71], states that Turán densities of a hypergraph and
its t-blowup are the same. We need this in our proof of Theorem 3.17.

Theorem 3.19 (cf. [Kee11]). π(H) � π(H(t)) for constant t.

Proof of Theorem 3.17: First, we show π(K3−
4 ) ≤ π(I3(6)). Consider a hypergraph

H3 having ex(m ,I3(6)) + 1 edges. So, there is H′3 � {V′, E′} ⊆ H3, with |V′| �
5, |E′| � 6. Next, we observe that there is v ∈ V′, such that de gH′3 (v) ≤ 3 ;
otherwise,

∑
v∈V′

de gH′3 (v) ≥ 20 > 18 �
∑

e∈E′
|e |, a contradiction. By removing

v and its incident edges from H′3 we get a set of 4 vertices that span at least 3
edges. So, ex(m , K3−

4 ) ≤ ex(m ,I3(6)).

Now, we show π(K3−
4 ) ≥ π(I3(6)) 7. Let K3−

4 � {V , E}, whereV � {v1, v2, v3,

v4}, and E � {{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}}, without loss of generality.

7This part was proven by Dhruv Mubayi [Mub12].
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Next, we consider a hypergraph H3 with (π(K3−
4 ) + ε)

(m
3
)
edges, where ε > 0.

So, according to Theorem 3.19, there is a sub-hypergraph H′3 � {V′, E′} ⊆ H3

which is a 2-blowup of K3−
4 . Let V′ � {v1

1 , v
2
1 , v

1
2 , v

2
2 , v

1
3 , v

2
3 , v

1
4 , v

2
4}. In K3−

4 , the
vertex v1 has degree 3. We exploit this to construct two copies of K3−

4 in H′3. In
place of v1, these two copies of K3−

4 have its (blown-up) copies v1
1 , v

2
1 respectively.

More precisely, in the blow-up of K3−
4 there is the sub-hypergraph consisting of

the 6 edges - {v1
1 , v

1
2 , v

1
3}, {v

1
1 , v

1
2 , v

1
4}, {v

1
1 , v

1
3 , v

1
4}, {v

2
1 , v

1
2 , v

1
3}, {v

2
1 , v

1
2 , v

1
4}, {v

2
1 , v

1
3 ,

v1
4}, on the 5 vertices {v1

1 , v
1
2 , v

1
3 , v

1
4 , v

2
1}. This sub-hypergraph is a member of

I3(6). Hence, π(K3−
4 ) ≥ π(I3(6)). �

Construction showing π(K3−
4 ) ≥ 2

7 (1 − o(1)) [FF84]. Let H � (V , E), where |V| �
m. We partitionV asV �V1

⋃
· · ·

⋃
V6, where |Vi | ∈ {

⌊
m
6

⌋
,

⌈
m
6

⌉
}, 1 ≤ i ≤ 6. To

de�ne the edge set let us de�ne the set S6 � {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6},
{1, 5, 6}, {3, 4, 5}, {3, 4, 6}, {2, 3, 6}, {2, 5, 6}, {2, 4, 5}}. On the left of Figure 3.1, we
present a pictorial view of the set (as was done in [FF84]).

1 2 3 4 5 6

1

2 3

4

5

6

4

5

6

Figure 3.1: S6

In fact, elements of S6 are given by the triangles of graph, given on the right of
Figure 3.1. Vertices of each triangle constitute an element of S6. we note that, in
the graph, any four of the six points {1, 2, 3, 4, 5, 6} span either 0 or 2 triangles.

Next, we take the edge set to be the set {{x , y , z}|x ∈ Vi , y ∈ Vj , z ∈ Vk , {i , j, k} ∈

S6}, along with the edges generated by applying the same construction recur-
sively on eachVi , 1 ≤ i ≤ 6. So,

|E | � 10
(m
6

)3 {
1 +

(1
6

)2
+

(1
6

)4
+ · · ·

}
≈

m3

21 (1 − o(1)).
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From the construction, we observe that any set of 4 vertices either spans no edge
or exactly 2 edges. So, π(K3−

4 ) ≥ 2
7 (1 − o(1)).

3.3 Concluding Remarks

In a very recent work ([BT15]), the authors have improved the upper bound on
n(m , c , k) further. They consider the following family of forbidden hypergraphs:

Jc (k , q) � {H � (V , E) : H is c-uniform ∧ |E| − |V| � q + 1 ∧ 1 ≤ |E| ≤ k},

where c ≥ 2, q ≥ −c + 1, k ≥ q + c + 1 are �xed integers. Jc (k , q) containsH c (k)
as a subfamily. For this forbidden family, their upper bound is the following:

ex∗(m ,Jc (k , q)) � O(m
c−1+ 1⌊

k
q+c+1

⌋

). (3.20)

For q � 0, (3.20) leads to

n(m , c , k) � O(m
c−1+ 1
b k

c+1c ). (3.21)

For c ≤
⌊

k
2

⌋
− 1, the upper bound in (3.21) signi�cantly improves on the upper

bound stated in Theorem 3.5.

Also, for c � 2, (3.21) yields a better upper bound (O(m
1+ 1
b

k
3 c )) than the upper

bound (O(m
1+ 1
b

k
4 c )) we have obtained in Theorem 3.14. Here, we brie�y show

that the same upper bound, in terms of the order of magnitude, can be derived
by direct application of an earlier result of [FS83]. Next, we state the required
theorem of [FS83].

Let T be a tree 8 and v be a vertex outside of T. We construct a graph T′ from T

and v in the following manner. We consider T as a bipartite graph, and connect
the vertices of one partition to v by vertex disjoint paths of length ` − 1. Then
we have the following upper bound.

Theorem 3.20 ([FS83]). ex(m , T′) � O(m1+ 1
` ).

8A tree is a connected acyclic graph which can also be considered as a connected bipartite
graph without cycles.
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Remark 3.21. If we set T � K1,2, and connect the two vertices of one partitionwith
a vertex out of T, by two vertex disjoint paths of lengths ` − 1, we get T′ � C2` .
Then crux of Theorem 3.13, i.e., ex(m , C2`) � O(m1+ 1

` ) follows as corollary of
Theorem 3.20.

Finally, we obtain the following improvement on the upper bound, obtained in
Theorem 3.14.

Corollary 3.22. n(m , 2, k) � O(m
1+ 1
b k
3c ).

Proof. We consider the graph θ(3, b k
3c). It has p edges and p − 1 vertices, where

p � 3b k
3c ≤ k. Now, we apply Theorem 3.20 with T′ � θ(3, b k

3c), and the upper
bound follows. �

For general c, our results show n(m , c , k) � Θ(mc) for k−dlog ke ≤ c ≤ k−1. For
c ≤ k−dlog ke−1, exact order ofmagnitude of n(m , c , k) is not known. However,
for c ≤ b k

2c − 1, orders of magnitude of upper and lower bounds on n(m , c , k)
are satisfactorily close; (3.11) shows n(m , c , k) � Ω(mc−1+ c

k−1 ), whereas (3.21)

shows n(m , c , k) � O(m
c−1+ 1
b k

c+1c ). Now, the lower bound in (3.11), or even the
weaker one in (3.10), are non-constructive. In fact, for c ≤ k − dlog ke − 1 (except
for c � 2), there is no non-trivial (in terms of order of magnitude of n) explicit
construction of c-uniform CBCs in the literature. This motivates us to explicitly
construct uniform CBCs with large value of n. We consider this problem in the
next chapter.





Chapter 4

Derandomized Construction of
Combinatorial Batch Codes

4.1 Introduction

In this chapter, we present explicit construction of uniform and almost regu-
lar CBCs. More precisely, we construct c-uniform (n , cn , k ,m)-CBCs with n �

Ω(mc−1+ 1
k ) input data items. Constructed CBCs are almost regular. In particular,

number of data items stored in each server is in the range [nc
m −

√
n
2 ln(4m), nc

m +√
n
2 ln(4m)]. Our construction is based on the randomized construction pre-

sented in [IKOS04a]. Our analysis of the construction of [IKOS04a] shows that
the constructed CBCs are almost regular, an aspect that has so far not been
addressed in the literature. On the other hand, derandomization of the ran-
domized construction is indeed an explicit construction of c-uniformCBCswith
n � Ω(mc−1+ 1

k ). Before this, explicit construction of c-uniform CBCs, with simi-
lar order of magnitude of n, was not known for a wide range of values of c.

In this section, we cover the preliminaries, where we discuss the notion of ex-
plicit construction of a combinatorial object, setting and formulation of the con-
struction problem, existing results related to the problem, and our contribution.

57
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Section 4.2 comprises of the main technical part of this chapter, which includes
proof of existence of a CBC with relevant parameters, derandomization of the
proof, proof of correctness of the derandomization algorithm, and analysis of
its runtime. Finally, in Section 4.3, we consider the possibility of a speed-up of
the algorithm through parallelization.

4.1.1 Preliminaries

4.1.1.1 Notion of Explicit Construction

Construction of a combinatorial object with desirable properties is computation
of a representation of the object by a deterministic algorithm and is tied with
the resources used for the computation. In the literature, those constructions,
which require practically feasible amount of resources, such as polynomial time
or logarithmic space, are termed explicit. This can be contrasted with exhaus-
tive search of a combinatorial object whose existence has been proven (e.g., by
probabilistic argument); the search is done in the space of the object (i.e., the
space from which the object is drawn) and requires infeasible amount of re-
sources (e.g., exponential time). The notion of explicitness we will adhere to in
this work is polynomial time constructibility, which requires that the time re-
quired for the construction by a deterministic algorithm be bounded by a poly-
nomial in the size of the representation. Among numerous examples of explicit
constructions, a notable one is Justesen’s construction of asymptotically optimal
explicit binary codes whose existence had been proven by Shannon by proba-
bilistic argument. Explicitness is further classi�ed as following.

– Globally explicit. In this case, the whole object is constructed in time polyno-
mial in the size of the object. For example, a globally explicit construction
of a graph G � (V , E) would construct the adjacency matrix of the graph
in time pol y(|V|). However, the construction does not guarantee “quick”
local access to individual members of the constructed object, which is nec-
essary for practical applications. Hence, it is a weaker notion of construc-
tion (compared to the one discussed next) and often termedweakly explicit.
Examples of constructions of this nature include universal sets and fami-
lies of perfect hash functions in [NSS95], subspace-evasive sets in [PR04] and
more recently in [BAS14], constructions for various restriction problems in
[Bsh15], etc.
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– Locally explicit. In this case, the idea is to have quick local access to the ob-
ject. More formally, for a desirable combinatorial object G, locally explicit
construction of G is a deterministic algorithm that, given an index of size
log(|G|), outputs the member of G with the given index (or does some
local computation on the member) in time pol ylo g(|G|). This is more spe-
cialized notion and depends on the context. For example, a locally explicit
construction of a d-regular graph G � (V , E) would list the neighbour-
hood of a vertex v ∈ V in time pol y(log|V|, log d), given the index of v

(which is of size log|V|). It is a stronger notion of construction (and hence
termed strongly explicit) than the previous one, and is always desirable as it
is useful for algorithmic applications. In fact, common notion of construc-
tion of combinatorial objects (e.g. using various algebraic structures) falls
in this category.

4.1.1.2 Setting and the problem

In this chapter, we will use the setting of Chapter 1. However, for the conve-
nience of the reader, here, we provide a verbatim reproduction of the description
of the setting from Chapter 1.

LetC be an (n ,N, k ,m)-CBC,with the set of input data items {x1, . . . , xn } and the
set of servers {s1, . . . , sm }. We represent C as a bipartite graph GC � (L ,R , E).
Set of left vertices L represents |L| � n input data items, where vertex ui ∈ L

represents data item xi , 1 ≤ i ≤ n. Set of right vertices R represents |R| � m

servers, where vertex v j ∈ R represents server s j , 1 ≤ j ≤ m. (ui , v j) ∈ E is
an edge in GC if the data item xi is stored in server s j . Since the total storage
is N , it follows that

∑
u∈L de g(u) �

∑
v∈R de g(v) � |E | � N , where de g(.) is

the degree of a vertex in GC . Now, we observe that any subset {xi1 , . . . , xik } of
k input data items can be retrieved by reading one item from each of k distinct
servers si1 , . . . , sik i� there are distinct vi1 , . . . , vik ∈ R such that vi j ∈ Γ(ui j ) for
all 1 ≤ j ≤ k, where Γ(ur ), with r ∈ {1, . . . , n}, is the neighbourhood of the vertex
ur ∈ L. According to Hall’s theorem (cf. [Bol86], pp. 6), this is equivalent to the
condition that union of any j sets Γ(ui1), . . . Γ(ui j ) contains at least j elements
for 1 ≤ j ≤ k. These considerations lead naturally to the following theorem of
[PSW09], which can also be thought as de�nition of a CBC.
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Theorem4.1 ([PSW09]). Abipartite graphGC � (L ,R , E) represents an (n ,N, k ,m)-
CBC C if and only if |L| � n, |R| � m , |E | � N , and union of any collection of j sets
Γ(ui1), . . . , Γ(ui j ), with {ui1 , . . . , ui j } ⊂ L, contains at least j elements for 1 ≤ j ≤ k.

From now on, we will identify the graph GC � (L ,R , E) with an
(n ,N, k ,m)-CBC, and omit the subscript C as it will not cause any confusion.
We recall from Chapter 1 that a CBC G � (L ,R , E) is called c-uniform if for each
u ∈ L , de g(u) � c, and it is called `-regular if for each v ∈ R , de g(v) � `.

As discussed at the end of the previous chapter, the result that we obtain in this
chapter, is motivated by the following problem: explicitly construct c-uniform
(n , cn , k , k)-CBC with large value of n. Similar to the previous chapter, our set-
ting of parameters is such that c and k are constants while m is variable. Also,
similar to the previous chapter, we focus on the order of magnitude of n, ex-
pressed as a function of m, with c and k constants.

In the context of this problem, uniform CBCs resemble unbalanced expanders
(resemblance of general batch codes with information dispersal problem was
highlighted in Chapter 1), especially those constructed in [GUV09]. Next, we
discuss this relationship.

Relation with unbalanced expanders. Expanders are sparse graphs with high
connectivity. These graphs have found numerous applications in di�erent ar-
eas, especially in theoretical computer science (see [HLW06]). Existence of ex-
panders, with favourable parameters, is easy to prove through probabilistic ar-
guments; however, their explicit construction is a very di�cult task.

There are di�erent notions of expansion of an expander. In one of the formu-
lations, the term refers to graphs with linear (in terms of the number of ver-
tices) number of edges, where each small subset of vertices ‘expands’, i.e., has
many neighbours. For a bipartite graphG � (L ,R , E), the condition is that each
small subset of vertices of one of the partite sets (typically the left partite set L)
has many neighbours in the other partite set (typically the right partite set R).
More speci�cally, an (n ,m , c , γ, α)-expander is a bipartite graph G � (L ,R , E)
with the following properties: (i ) |L| � n, (ii ) |R| � m, (iii ) for each vertex
v ∈ L , de g(v) � c, (iv ) for each S ⊆ L, with |S| ≤ γn , |Γ(S) | ≥ αn. Expanders
with n > m are termed ‘unbalanced’. They have many applications, especially
in the construction of asymptotically good error-correcting codes ([SS96]), space
e�cient storage schemes ([BMRV02]), etc.
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c-uniform CBCs can be naturally viewed as unbalanced expander with expan-
sion α � 1. Both are bipartite graphs with constant left-degree c. In both the
cases, it is required that every subset of vertices L, of up to a speci�ed size,
should have neighbourhood in R with certain minimum cardinality. Also, in
both the cases, it is desirable that |L| >> |R|.

However, the dissimilarities are more signi�cant. In the case of unbalanced ex-
panders, the goal is to stretch the expansion α, of subsets (of speci�ed sizes) of
L, as close to the left-degree c as possible (typically, α � c(1 − ε) for any ε > 0).
Whereas, in case of CBCs, expansion α � 1 is su�cient. On the other hand, for
CBCs, it is more important to make |L| as large as possible with respect to |R|.
Also, the parameter k is a constant in case of CBCs (within our setting of param-
eters). Whereas, for unbalanced expanders, k varies with n. These di�erences
make the (desirable) parameters in these two cases essentially unrelated. For
example, it will be shown later that by relaxing α to 1, it is possible to achieve
much higher values of n than obtained in the construction of [GUV09]. Depen-
dence of k on n, in [GUV09], makes it essential (by a result of [RTS00]) for the
left-degree c to be pol y(log n). Whereas, in case of CBCs (within our setting), c

is a constant independent of n.

Therefore, it is unlikely that the construction of unbalanced expander from [GUV09]
(or any other method of construction of unbalanced expanders) can be immedi-
ately used for construction of c-uniform (n , cn , k ,m)-CBCs, where c and k are
constants independent of m.

4.1.2 Existing results

To set the context for our results, we brie�y recall existing results, pertaining to
bounds on n(m , c , k).

(i) In [IKOS04a], the authors have shown, using probabilistic method, that
n(m , c , k) � Ω(mc−1). In [PSW09], the authors have re�ned the above es-
timate, using the method of deletion (another probabilistic technique, see
[AS00]), to n(m , c , k) � Ω(m

ck
k−1−1). They have also shown, through explicit

construction, that n(m , k − 1, k) � (k − 1)
( m

k−1
)
and n(m , k − 2, k) �

( m
k−2

)
.
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(ii) In the previous chapter, we have shown that n(m , c , k) � O(mc− 1
2c−1 ) for

7 ≤ k, and 3 ≤ c ≤ k − dlog ke − 1. Also, for k − dlog ke ≤ c ≤ k − 1, we
have shown, through explicit construction, that n(m , c , k) � Θ(mc). For
c � 2 case, we have improved the lower bound (stated above) of [PSW09],
through explicit construction, to n(m , 2, k) � Ω(m

k+1
k−1 ) for all k ≥ 8 and

in�nitely many values of m.

(iii) In [BT15], the authors have improved the general upper bound to show

that n(m , c , k) � O(m
c−1+ 1

b
k

c+1 c ) for c ≤ k
2 − 1.

All the explicit constructions, mentioned above, are locally explicit. The above
results show n(m , c , k) � Θ(mc) for k−dlog ke ≤ c ≤ k−1. For c ≤ k−dlog ke−1,
exact order of magnitude of n(m , c , k) is not known. However, for c ≤ b k

2c − 1,
orders of magnitude of upper and lower bounds on n(m , c , k) are satisfactorily

close; namely n(m , c , k) � Ω(mc−1+ c
k−1 ) and n(m , c , k) � O(m

c−1+ 1
b k

c+1c ) respec-
tively. Now, the lower bound n(m , c , k) � Ω(mc−1+ c

k−1 ), or even the weaker one
n(m , c , k) � Ω(mc−1), are non-constructive. In fact, for c ≤ k− dlog ke −1 (except
for c � 2), there is no non-trivial (in terms of order of magnitude of n) explicit
construction of c-uniform CBCs in the literature.1

All of the above results pertain to uniform CBCs only. CBCs, which are both
uniform and regular, have not been considered in the literature so far. Study of
uniformand regular CBCs is theoretically interesting for its own sake. Moreover,
in case of regular CBCs, number of data items stored in each server is the same.
Hence, it is easier to allocate storage uniformly and optimally across di�erent
servers. This is very useful, especially under dynamic conditions, where the
database (i.e., the set of distinct data items to be stored) changes with addition
and deletion of data items.

Above considerations motivate us to explicitly construct uniform CBCs with
large value of n, which are both uniform and regular.

1In [SG14], constructions of CBCs are given for a setting of parameters where k and c vary
with m. Since in our setting we require k and c to be constants, we do not discuss the results of
[SG14].
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4.1.3 Our contribution

We construct c-uniform (n , cn , k ,m)-CBCs, where n � Ω(mc−1+ 1
k ). These CBCs

are almost regular; for these CBCs, number of data items stored in each server
is nc

m + o(n). Here, we point out that for regular CBCs, with same parameters,
this value is exactly nc

m . Formal statement of our result is the following.

Theorem 4.2. Let c , k be positive constants. Then for all su�ciently large m, there
exists c-uniform (n , cn , k ,m)-CBC, where n � Ω(mc−1+ 1

k ), and number of items in
each server is in the range

[
nc
m −

√
n
2 ln(4m), nc

m +
√

n
2 ln(4m)

]
. Moreover, there is a

globally explicit construction of the CBC that runs in pol y(m) time.

We use the randomized construction of uniform CBCs, given in [IKOS04a], and
analyze it in greater detail. Our analysis shows almost regularity of the con-
structed CBCs. Also, we observe that, for the constructed CBCs, n � Ω(mc−1+ 1

k ),
as opposed to n � Ω(mc−1), shown in [IKOS04a]. Thenwe derandomize the con-
struction using the method of conditional expectation (see [AS00]). Our analysis of
the runtime of the derandomization shows that the derandomization is indeed a
globally explicit construction of CBCs. Order of magnitude of n (� Ω(mc−1+ 1

k )),
of our constructed CBCs, is inferior to that (� Ω(mc−1+ c

k−1 )) of [PSW09]. How-
ever, we point out that our construction is explicit, and the constructed CBCs
are uniform and almost regular. It is not known whether these properties are
there in the construction of [PSW09].

To describe our construction, we provide a deterministic algorithmwith the fol-
lowing properties.

(i ) The algorithm is given as input integers k , c, and su�ciently large m;

(ii ) it runs in time pol y(m);

(iii ) it outputs the edges of a bipartite graph (L ,R , E), with |R| � m, |L| � n �

mc−1+ 1
k

4kc+1 ; the bipartite graph satis�es the following conditions,

(a) each vertex inL, has degree c, and each vertex in R ,has degree in the
range

[
nc
m −

√
n
2 ln(4m), nc

m +
√

n
2 ln(4m)

]
,

(b) each subset of i , 1 ≤ i ≤ k , vertices in L, has at least i neighbours in
R.
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Here, we point out that there is a trivial non-explicit algorithm to construct the
required bipartite graph. For the given input parameters, the algorithm searches
the space of all possible bipartite graphs (L ,R , E), with |R| � m, |L| � n �

mc−1+ 1
k

4kc+1 , and outputs one that satis�es the conditions (a) and (b). The algorithm
runs in time exponential in m. Hence, it is non-explicit.

In the proof of Theorem 4.2, we use various probabilistic methods. These meth-
ods are standard in the literature. We refer the reader to [AS00] for relevant back-
ground. In particular, we need the following version of Hoe�ding’s inequality.

Theorem4.3 (Hoe�ding’s inequality[Hoe63]). Let X1,X2, . . . ,Xn be independent
random variables taking their values in the interval [0, 1]. Let X �

∑
i Xi . Then for every

real number a > 0,Pr{|X − E[X]| ≥ a} ≤ 2e
−2a2

n .

Also, given a set S and a positive integer c(≤ |S|), we will denote by
(
S

c
)
, the set

of all c element subsets of S.

4.2 Proof of Theorem 4.2
We split the proof of Theorem 4.2 into two parts. In the �rst part, we give prob-
abilistic proof of existence of the CBC. This proof is essentially a randomized
construction of the CBC. In the second part, we derandomize the construction
using the method of conditional expectation. This is a standard method to de-
randomize a randomized algorithm. It has its genesis in [ES73]. It was later
on applied to prove many other derandomization results (e.g. [Rag88, Spe94]).
Informally, the method systematically performs a binary (or more commonly a
d-ary) search on the sample space, from where the corresponding randomized
algorithm makes its choices, for a “good point”. Due to this systematic search,
it �nds a good point “quickly”.

Proof of existence. We construct a bipartite graph G � (L ,R , E), whereL is the
set {u1, . . . , un } of n left vertices, R is the set {v1, . . . , vm } of m right vertices, and
E is the set of edges, in the following manner. For each vertex in L, we choose
its c distinct neighbours by picking randomly, uniformly, and independently a
subset of c vertices fromR. So, neighbourhood of the vertex is an independently
and uniformly chosen random element of

(
R

c
)
.
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Hence, for u ∈ L , S′ ⊆ R,

Pr {Γ(u) ⊆ S′} �
(
|S′ |
c
)(m

c
) ≤ (

|S′|
m

) c
.

Next, for a subset S ⊂ L, with |S | � i , c + 1 ≤ i ≤ k, and a subset S′ ⊂ R, with
|S′| � i − 1, we say that event BadS,S′ has occured if Γ(S) ⊆ S′. So, we have

Pr{BadS,S′} ≤

( i − 1
m

) ic
, (4.1)

using independence of the events Γ(u) ⊆ S′ for u ∈ L. Now, our goal is to
bound the probability of occurrence of any BadS,S′, with S ⊂ L, S′ ⊂ R, and
c + 1 ≤ i ≤ k. To this end, we have

∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

Pr{BadS,S′} ≤
∑

c+1≤i≤k

(
n
i

) (
m

i − 1

) ( i − 1
m

) ic

≤

∑
1≤i≤k

n im i−1
( i − 1

m

) ic

≤

∑
1≤i≤k

n im i−1
(

k
m

) ic

≤

∑
1≤i≤k

( 1
4k

) i
since n �

mc−1+ 1
k

4kc+1

≤
1
4 . (4.2)

Next, for u ∈ L , v ∈ R, we de�ne the indicator random variable Xu
v such that

Xu
v �




1 (u , v) ∈ E

0 otherwise.

Also, let Xv , v ∈ R, be a random variable denoting the degree of vertex v.
Clearly, Xv �

∑
u∈L

Xu
v . Now, Pr{Xu

v � 1} � c
m . So, by linearity of expectation,

we have

E[Xv] � E


∑
u∈L

Xu
v


�

∑
u∈L

E[Xu
v ] �

nc
m
.

Since the neighbourhoods of vertices u ∈ L are chosen independently, it follows
that the variables Xu

v , with u ∈ L, and a �xed v ∈ R, are mutually independent.
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So, by applying Theorem 4.3, with a �

√
n
2 ln(4m), we have

Pr
{
|Xv − E[Xv]| ≥

√
n
2 ln(4m)

}
≤ 2(4m)−1 ≤

1
2m

. (4.3)

By union bound, the probability, that the event |Xv−E[Xv]| ≥
√

n
2 ln(4m) occurs

for some v , v ∈ R, is bounded by

∑
v∈R

Pr
{
|Xv − E[Xv]| ≥

√
n
2 ln(4m)

}
≤

1
2 . (4.4)

Hence, from equations (4.2) and (4.4), with probability at least 1 − ( 14 + 1
2 ) �

1
4 ,

none of the above events occur. �

Derandomization. The derandomization algorithm has n iterations. At the be-
ginning of t-th iteration, with 1 ≤ t ≤ n, neighbourhoods of vertices u1, . . . , ut−1

∈ L are �xed. At the t-th iteration, Γ(ut ) ∈
(
R

c
)
(i.e., neighbourhood of ut) is

�xed in such a way that minimizes the expected number of violations of con-
ditions (a) and (b) stated before (in Section 4.1.3). Before we present the de-
randomization algorithm, we derive expressions for (i ) the expected number
of BadS,S′ events, and (ii ) the expected number of vertices v ∈ R, for which
|de g(v)− nc

m | >
√

n
2 ln(4m), conditional on �xed choices of Γ(u1), . . . , Γ(ut ).Then

we show that if at t-th iteration, with 1 ≤ t ≤ n, with Γ(u1), . . . , Γ(ut−1) already
�xed, the algorithm selects Γ(ut ) in such a way to minimize the sum of these
two expectations, then in the �nal graph (which is no longer random since all
the neighbourhoods are �xed), there are (i) no BadS,S′ events, and (ii) no vertices
v ∈ R for which |de g(v) − nc

m | >
√

n
2 ln(4m). So, there are no violations of con-

ditions (a) and (b). Now, the algorithm (Algorithm 1) follows immediately from
these observations.

Let us de�ne indicator randomvariablesYS,S′ corresponding to each event BadS,S′,
i.e.,

YS,S′ �




1 if Γ(S) ⊆ S′

0 otherwise.
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Also, we de�ne Y �
∑

c+1≤i≤k
∑

S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

YS,S′. By linearity of expectation,

we have

E[Y] � E



∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

YS,S′


�

∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

E[YS,S′]

�

∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

Pr{YS,S′} ≤
1
4 from (4.2).

Let C1, C2, . . . , Ct ∈
(
R

c
)
be �xed subsets such that Γ(u j) � C j , with 1 ≤ j ≤ t.

Neighbourhoods of the remaining vertices in L are chosen independently and
uniformly at random from

(
R

c
)
. Let S ⊆ L , S′ ⊆ R, with |S | � i, and |S′| � i − 1,

be �xed subsets, where c + 1 ≤ i ≤ k. Also, let W � S ∩ {u1, u2, . . . , ut }, where
|W | � w and Γ(W ) � ∅ for W � ∅. Then, we have

E[YS,S′ |Γ(u1) � C1, . . . , Γ(ut ) � Ct]

� Pr{Γ(S) ⊆ S′|Γ(u1) � C1, . . . , . . . Γ(ut ) � Ct }

�




0 if Γ(W ) * S′(
(i−1

c )
(m

c )

) i−w
otherwise.

(4.5)

So, by applying linearity of expectation, and from (4.5), we have

E[Y |Γ(u1) � C1, . . . , Γ(ut ) � Ct]

�

∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

E[YS,S′ |Γ(u1) � C1, . . . , . . . Γ(ut ) � Ct]

�

∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

Pr{Γ(S) ⊆ S′|Γ(u1) � C1, . . . , . . . Γ(ut ) � Ct }

�

∑
c+1≤i≤k

∑
S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1
Γ(W )⊆S′

*
,

(i−1
c
)(m

c
) +

-

i−w

. (4.6)
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Next, corresponding to each vertex v ∈ R, we introduce an indicator random
variable Zv , such that

Zv �




1 |de g(v) − nc
m | >

√
n
2 ln(4m)

0 otherwise.

Let Z �
∑

v∈R
Zv . So, by linearity of expectation, we have

E[Z] � E


∑
v∈R

Zv


�

∑
v∈R

E[Zv] �
∑
v∈R

Pr{Zv � 1} ≤ 1
2 , from (4.4).

Like in the previous case, we estimate E[Z |Γ(u1) � C1, . . . , Γ(ut ) � Ct], by esti-
matingE[Zv |Γ(u1) � C1, . . . , Γ(ut ) � Ct] for each v ∈ R. For a �xed v ∈ R, let ` �
|{ui |v ∈ Γ(ui), 1 ≤ i ≤ t}|. Also, let α �

nc
m −

√
n
2 ln(4m), and β �

nc
m +

√
n
2 ln(4m).

Then, we have

E[Z |Γ(u1) � C1, . . . , Γ(ut ) � Ct]

�

∑
v∈R

E[Zv |Γ(u1) � C1, . . . , Γ(ut ) � Ct]

�

∑
v∈R

Pr{de g(v) < α − ` or de g(v) > β − ` |Γ(u1) � C1, . . . , Γ(ut ) � Ct }

�

∑
v∈R

(i�α−`−1∑
i�0

(
n − t

i

) ( c
m

) i (
1 − c

m

)n−t−i
+

n−t∑
i�β−`+1

(
n − t

i

) ( c
m

) i (
1 − c

m

)n−t−i)
. (4.7)

Finally, we show that if at t-th iteration, with �xed Γ(u1) � C1, . . . , Γ(ut−1) �

Ct−1 at the beginning, Γ(ut ) � Ct is chosen so as to minimize E[Y + Z |Γ(u1) �

C1, . . . , Γ(ut ) � C], C ∈
(
R

c
)
, then in the �nal graph (which is no longer random)

conditions (a) and (b) are satis�ed. To this end, we �rst observe that

E[Y + Z |Γ(u1) � C1, . . . , Γ(ut−1) � Ct−1]

�
1(m
c
) ∑

C∈(Rc )
E[Y + Z |Γ(u1) � C1, . . . , Γ(ut ) � C]

≥ min
C∈(Rc )

E[Y + Z |Γ(u1) � C1, . . . , Γ(ut ) � C] . (4.8)
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Hence, it follows that

min
C1 ,...,Cn∈(Rc )

E[Y + Z |Γ(u1) � C1, . . . , Γ(un) � Cn]

≤ min
C1 ,...,Cn−1∈(Rc )

E[Y + Z |Γ(u1) � C1, . . . , Γ(un−1) � Cn−1]

...

≤ min
C1∈(Rc )

E[Y + Z |Γ(u1) � C1] ≤ E[Y + Z] ≤ 3
4 . (4.9)

Since Y and Z are integer valued random variables, (4.9) implies that, at the end,
with Γ(u1), . . . , Γ(un) �xed, Y � 0 and Z � 0. So, the conditions (a) and (b) are
met. Now, we have the following algorithm to construct the bipartite graph.

Algorithm 1: Algorithm to construct uniform and almost regular CBC
Input: Positive constants c , k, and su�ciently large m.
Output: A bipartite graph (L ,R , E), where

L � {u1, u2, . . . , un }(n �
mc−1+ 1

k

4kc+1 ) and R � {v1, v2, . . . , vm } such
that Γ(u j) � C j ∈

(
R

c
)
, 1 ≤ j ≤ n meeting conditions (a) and (b).

α �
nc
m −

√
n
2 ln(4m), and β �

nc
m +

√
n
2 ln(4m);

for j ← 1 to n do
U j−1 � {u1, u2, . . . , u j−1},min ← 1
for C ∈

(
R

c
)
do

Y′←
∑

c+1≤i≤k

∑
u j∈S⊂L ,
|S |�i

∑
S′⊂R ,
|S′ |�i−1

Γ(U j−1∩S)∪C⊆S′

*
,

(i−1
c
)(m

c
) +

-

i−|U j−1∩S |−1

Z ←
∑
v∈R

(α−|U j−1∩Γ(v) |−|{v}∩C |−1∑
i�0

(
n − j

i

) ( c
m

) i (
1 − c

m

)n− j−i

+
n− j∑

i�β−|U j−1∩Γ(v) |−|{v}∩C |+1

(
n − j

i

) ( c
m

) i (
1 − c

m

)n− j−i)
if min > Y′ + Z then
Γ(u j) � C
min ← Y′ + Z

end
end

end
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Proof of correctness of the algorithm. At the beginning of the j-th iteration,
Γ(u1) � C1, . . . , Γ(u j−1) � C j−1 are �xed, and the algorithm selects C � C j , which
minimizes Y′ + Z for given Γ(u1) � C1, . . . , Γ(u j) � C. We note that according
to (4.5), E[YS,S′ |Γ(u1) � C1, . . . , Γ(u j) � C j] is independent of the particular
choice of C j if u j < S. So, in the j-th iteration of the algorithm, while computing
Y′, only those summands E[YS,S′ |Γ(u1) � C1, . . . , Γ(u j) � C] are considered for
which u j ∈ S. Hence, Y′ ≤ E[YS,S′ |Γ(u1) � C1, . . . , Γ(u j) � C], and the particular
choice of C � C j , which minimizes Y′ + Z for given Γ(u1) � C1, . . . , Γ(u j−1) �

C j−1, Γ(u j) � C, also minimizes E[Y + Z |Γ(u1) � C1, . . . , Γ(u j−1) � C j−1, Γ(u j) �
C]. This, along with (4.9), also justi�es setting min to 1 at the beginning of j-th
iteration. Hence, the proof follows from the discussion preceding Algorithm 1.

Runtime of the algorithm. Now, we present a coarse analysis of the runtime
of the algorithm, which is su�cient to indicate that the algorithm runs in time
pol y(m). For our analysis, we consider the RAMmodel of computation. In this
model, addition, multiplication, and division are atomic operations, i.e., these
operations are assumed to take unit time. We refer the reader to [MR95] for
further details about this model.

First, we estimate the time required by the algorithm to compute Y′. We ob-
serve that, by using dynamic programming, the time required to compute

(m
c
)

and
(i−1

c
)
is O(m2). The exponentiation takes time O(log k). These operations

are repeated O(knk−1mk−1) times to get the summation. So, the time required
by the algorithm to compute Y′ is O(m (c+1)(k−1)+2). Similarly, in the case of com-
puting Z, computation of binomial coe�cients

(n−i
j
)
takes time O(n2). The ex-

ponentiations take time O(log n). Hence, the time required to compute Z is
O(mn3 log n) � O(m3c−1 log m). These two steps, i.e., computation of Y′ and
Z, are repeated O(nmc) � O(m2c) times. So, overall time complexity of the
algorithm is O(m (k+1)(c+1)).

Therefore, Algorithm 1 is indeed a globally explicit construction of c-uniform
(n , cn , k ,m)-CBCs, with n � Ω(mc−1+ 1

k ) and number of data items stored in
each server in the range [nc

m −

√
n
2 ln(4m), nc

m +
√

n
2 ln(4m)].
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4.3 Concluding remarks

Limitations of the construction. Here, we point out the following limitations of
our construction.

(a) Our runtime analysis of Algorithm 1 shows that e�ciency of the algorithm
crucially depends on k. Runtime of the algorithm is pol y(m) if and only
if k is constant. This limits applicability of Algorithm 1 to wider setting
where k is allowed to vary.

(b) The construction is globally explicit. As discussed in the beginning, this is
a weaker notion of explicitness.

(c) Analysis of the runtime of Algorithm 1 shows that its time complexity
(O(m (k+1)(c+1))) is relatively higher, even in terms of the number of edges
(which is O(mc)). One of the reasons for this is the sequential nature of
the algorithm. A possible approach to speed-up the construction is to de-
randomize the parallel randomized construction presented in the �rst part
of Theorem 4.2, i.e., in the proof of existence of the CBC. Next, we brie�y
explore this possibility.

Towards derandomization in NC. First, we observe that the construction can
be carried out on a probabilistic Parallel Random Access Machine (PRAM) (cf.
[MR95]). The probabilistic PRAM constructs the CBC in constant time using
n � pol y(m) many processors. Indeed, for each of the n items we allocate one
processor. These n processors make their random choices parallelly in constant
time. So, the construction is in RNC.2 It is naturally interesting to investigate
NC-derandomization of problems in RNC. In such derandomization, the same
problem is solved using a deterministic PRAM subject to same set of restrictions
on resources. Two of themost commonly used techniques employed for such de-
randomization are themethod of conditional expectation and themethod of small
sample spaces (see [AS00]). Sometimes they are used together [BR91, MNN94].
Next, we very brie�y and informally describe these two methods

We �rst point out that, in order to (completely) derandomize a randomized al-
gorithm, it is su�cient to deterministically and quickly �nd a good point in the
sample space, fromwhich the randomized algorithmmakes its random choices.

2In fact, the construction is in ZNC with the expected number of iterations at most 4.
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As we have discussed and shown (in Algorithm 1) earlier, in the method of con-
ditional expectation, a binary search (or more commonly a d-ary search) is per-
formed in the sample space for a goodpoint. Due to binary search a goodpoint is
found out quickly. On the other hand, method of small sample spaces is appli-
cable when the randomized algorithm involves random variables that require
limited independence among themselves. It is known that random variables,
with limited (typically, constant) independence, can be de�ned over a (appropri-
ately chosen) small sized (polynomial in the number of variables) sample space.
So, the randomized algorithm can be executed using such a small sized sample
space. Now, it is possible to deterministically �nd a good point from the sam-
ple space by exhaustive search. Since the sample space is small, i.e., polynomial
sized, the exhaustive search can be done quickly, i.e., in polynomial time. Thus,
we �nally have a deterministic algorithm, which runs in polynomial time.

In the proof of Theorem 4.2, we have used independence twice: (i) in (4.1), we
have used k-wise independence, and (ii) in (4.3), we used n-wise independence
among random variables X1, . . . ,Xn for application of Hoe�ding’s inequality
(Theorem 4.3).3 However, such independence comes at the cost of a large sam-
ple space. More precisely, in [ABI86], it was shown that, in order to ensure k-
wise independence among n random variables, the sample space size has to
be Ω(n

k
2 ). So, in case of Theorem 4.2, requirement on the size of sample space

is huge (Ω(mm)). However, we observe that the requirement of n-wise inde-
pendence in Theorem 4.2 can be brought down to O(ln(m))-wise independence
with the help of following limited independence Cherno� bound. First, we state
the bound.

Theorem 4.4 ([BR94]). Let t ≥ 4 be an even integer. Suppose X1, . . . ,Xn are t-wise
independent random variables taking values in [0, 1]. Let X � X1+ · · ·+Xn , and a > 0.
Then

Pr{|X − E[X]| ≥ a} ≤ Ct

(nt
a2

) t
2
,

where Ct is a constant depending on t, and Ct < 1 for t ≥ 6.

Now, in (4.3), we need 1
2m in the r.h.s. This is possible by setting t � 2 ln(2m) (for

simplicity we assume 2 ln(2m) is even) and a �
√
2en ln(2m) in Theorem 4.4.

3Here, we again point out that k-wise independence in choices of Γ(u), u ∈ L induces k-wise
independence among random variables Xu

v , u ∈ L for �xed v ∈ R. Though the events and
random variables are di�erent in two cases.



Chapter 4 73

Hence, O(ln(m))-wise independence, in choosing Γ(u) for u ∈ L, is su�cient
for the randomized construction (with somewhat inferior bound on the devia-
tion of the degrees from the average).

In [BR91,MNN94], the authors developed frameworks forNC-derandomization
of certain algorithms (notably, the set discrepancy problem of Spencer [Spe94]).
These algorithms require O(logc (n))-wise independence among n randomvari-
ables, where c is a constant. One of the vital points of these frameworks is par-
allel computation of relevant conditional expectations of limited independence
randomvariables in logarithmic time. In case ofAlgorithm1, thismeans compu-
tation of Y′ and Z by pol y(m) processors, in pol ylo g(m) time, under O(ln(m))-
wise independence among random choices of Γ(u) for u ∈ L. At present, it is
not clear to us how this can be achieved in the frameworks of [BR91, MNN94],
and seems to require a more specialized technique.
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Graphs and Hypergraphs:
Definitions and Notations

Here, we recall some standard de�nitions of graph and hypergraph theory that
are required for our purpose. A hypergraph or set system F is a tuple F :� (V , E),
whereV is a set of vertices and E is a family of subsets ofV. Sets of E are called
edges of the hypergraph and cardinality of E is called size of the hypergraph; we
will denote the size of F by |E |. A hypergraph is called simple if it does not con-
tain repeated edges, i.e., there are nomultiple copies of any edge. A hypergraph
is called r-uniform if each of its edges has cardinality r. A graph is a 2-uniform hy-
pergraph. Inmost of the cases, wewill consider simple graphs and hypergraphs
only. So, by the terms graph and hypergraph we will refer to simple graphs and
hypergraphs. We will use multigraph and multihypergraph to refer to graphs and
hypergraphs with repeated edges.

Given a hypergraph F � (V , E), and a vertex x ∈ V, degree of x, denoted as
de gF (x), is the number of edges in E containing x; if there is no confusion re-
garding the hypergraph F, we will simply write it as de g(x). Vertices x , y ∈ V

are called adjacent if {x , y} ⊆ E for some E ∈ E. The neighbourhood of x, denoted
as Γ(x), is the set of all vertices adjacent to x, i.e., Γ(x) � {y ∈ V|{x , y} ⊆ E ∈ E}.
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Also, givenU ⊆ V , Γ(U ) � {y |y ∈ Γ(x) for some x ∈ U}, and expansion ofU
is given by |Γ(U ) |

|U |
.

An r-uniform hypergraph (V , E) is called r-partite if its vertex set V can be
partitioned into r classesV1, . . . ,Vr (i.e.V �V1∪V2∪ · · ·∪Vr andVi ∩Vj � ∅

for i , j, 1 ≤ i , j ≤ r ), such that E ⊆ V1 ×V2 × . . . ,×Vr . The hypergraph is also
denoted as (V1, . . . ,Vr , E). In particular, a graph (L ,R , E) is called bipartite if
its set of vertices can be partitioned into two classesL andR such thatE ⊆ L×R.

Further, by K(r)
n we will denote the complete r-uniform hypergraph (V , E) on

n vertices, i.e., E is the set of all possible r-subsets of V. By K(r) (`, . . . , `) we
will denote the complete r-uniform r-partite hypergraph (V1, . . . ,Vr , E) with
` vertices in each part, i.e., |Vi | � ` for 1 ≤ i ≤ r and E � V1 × V2 × . . . ,×Vr .
We will denote by K(s , t) the complete bipartite graph with partite sets of size
s and t respectively. By Ci , we will denote a cycle of length i. For a graph with
cycle, its girth is the length of the its shortest cycle.
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Basics of Coding Theory

In this appendix, we recall basic details of coding theory. Part of the reason
for this appendix is to provide necessary framework for Appendix C, where we
give formal introduction to batch codes. Hence, the treatment of this appendix
is slightly formal. We begin with de�nitions of a few technical terms.

– Alphabet: An alphabet Σ is a �nite set of symbols. A very natural choice for
Σ is the binary alphabet {0, 1}.

– Source: A source is a formal model of some natural phenomena such as hu-
man conversation, etc., which contains “information”. More formally, a
source X � {Xi }i≥1 is a sequence of discrete random variables. Here, we
will assume that the variables Xi are independent with the same proba-
bility distribution D over the alphabet Σ. Such a source is called discrete
memoryless source. So, for any k ≥ 1, a discretememoryless source naturally
induces product distributionDk on Σk , which is given by

Pr{X1 . . .Xk � x1 . . . xk } �

k∏
i�1

Pr{Xi � xi }, x1, . . . , xk ∈ Σ.
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– Channel: A channel is a medium through which information is transmitted
from source to destination. Formally, a channel Z � (Σ,Σ, Pr{.|.}) is a tu-
ple consisting of an input alphabet Σ, an output alphabet Σ, and transition
probabilities Pr{y |x}, where Pr{y |x} denotes the probability that the sym-
bol y ∈ Σ is received at the destination end of the channel given that x ∈ Σ

is sent at the source end. Similar to source, we assume the channel to be
discrete memoryless as well. Hence, we have

Pr{y1 . . . yn |x1 . . . xn } �

n∏
i�1

Pr{yi |xi },

, where y1, . . . , yn ∈ Σ are received in the destination endwhen x1, . . . , xn ∈

Σ are sent at the source end. Here, we also assume that the channel char-
acteristic is independent of the other parts of the system.

Purpose of communication system is to convey information from source (or sender),
which generates information, to destination (or receiver) through a channel. The
channel may be noisy, i.e., it may introduce error in the communication that al-
ters the information sent. Here, we note that the source and the destination
may be separated in time domain (in the case, where information is stored in
a medium to be retrieved back at a later point in time, such as in a magnetic
disk) or in space domain (in the case, where the information is transmitted from
one place to another through a communication channel, such as in a wi-� sys-
tem). Since it is not possible to alter the characteristics of the source or channel,
the way to achieve reliable and e�cient (in terms of space, bandwidth, or time)
communication is to transform the information in an appropriate manner.

Purpose of a code is to ensure reliability of communication through noisy chan-
nel in an e�cient manner. Before proceeding further, we formally de�ne a code
and its associated parameters.

De�nition B.1. A code C of length n over an alphabet Σ is a subset of Σn . Each
member of C is called codeword. Given two codewords c , c′ ∈ C, distance be-
tween c and c′ is the number of places in which they di�er, i.e., dist(c , c′) �

|{ j ∈ [n]|c j , c
′

j }|. Minimum distance or simply distance d of C is de�ned as
d � dist(C) , min

c ,c′c,c′
dist(c , c′). Rate R of C is de�ned as R , k

n , where
k � log

|Σ|
|C|.
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Figure B.1: Communication System

Associatedwith a codeC are twomappings E and D. Themapping E : Σk
7→ Σn ,

known as encoding, transforms a given message of length k into a codeword of
length n. Themapping D : Σn

7→ Σk , known as decoding, transform a codeword
of lenth n into a message of length k.

Basic framework of a communication system is as follows. Source encoder trans-
forms the raw information generated by the source into codewords of a suit-
ably chosen source code. These codewords are then transformed by channel en-
coder into codewords of a suitably chosen channel code (or error-correcting code)
for storage or transmission over the given medium. At the destination end, the
received codewords are transformed back into original information using (con-
secutively) channel decoder and source decoder respectively. Next, we brie�y elab-
orate on source code and channel code.

Source code: Loosely speaking, purpose of a source code is to capture informa-
tion, generated by the source, into suitable form to make its storage and trans-
mission possible through a given medium. In this case, the goal is to compress
information in an e�cient manner so that its transmission or storage requires
less amount of bandwidth or space respectively. An important parameter of a
source code C is probability of decoding error. For source X , the probability of
decoding error of the code C is given by

Derr (C ,X ) , Pr
XkD

k
←Σk

{D(E(Xk)) , Xk
},

where Dk is the probability distribution on Σk according to which the source
string Xk is generated.
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Given source X , the objective is to �nd a source code with high rate and low
probability of decoding error. High rate ensures less space/ bandwidth for the
transmitted information.1

Broadly speaking (and more precisely, for the error-free setting, i.e., in a setting
where probability of decoding error is not allowed), source coding is concerned
with the problem of minimizing storage / bandwidth in storing / transmitting
information without considering the e�ect of the channel(noise). Hence, it is
also called noiseless coding.

Channel code: Channel codes ensure reliable communication through a noisy
medium. In this case, the goal is to encode the message word (i.e., the input
word to the encoder) into a codeword in such a way so that message word can
be recovered after decoding at the receiver, even if a signi�cant portion of the
transmitted codeword is corrupted by the channel noise. Analogous to source
codes, for a channel Z , the average decoding error of a (channel) code C is given
by

Derr (C ,Z ) ,
1
|Σ|k

∑
x1...xk∈Σ

k

Pr{y1 . . . yn |E(x1 . . . xk)}I(D(y1 . . . yn) , x1 . . . xk).

, where Pr(.|.) is the transition probability of the channel Z and I(.) is the indi-
cator function.

Similar to the case of source codes, for channel codes it is a challenging goal to
�nd codes with low average decoding error and high rate. To this end, it can be
observed that for a code with minimum distance d, it is always possible to re-
cover the message word if the codeword is corrupted in at most b d−1

2 c positions.
Hence, it is desirable to have codes with high rate and high minimum distance.
In fact, formally stated, the prime goal, in this case, is construction of an in�nite
family (ni , ki , di)i binary codes with ki

ni
> 0 and di

ni
> 0 together with e�cient

encoding and decoding algorithms.

1For source codes it is more natural to de�ne the mappings E and D as E : Σ∗ 7→ Σ∗ ,D : Σ∗ 7→
Σ∗, i.e., from arbitrary length strings to arbitrary length strings. In fact, optimum codes like
Hu�man code are not block codes, but are of varying length. For simplicity, here, we de�ned
them as block codes.
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Brief Overview of Batch Codes

Purpose of this appendix is to provide an introduction to (general) batch codes
in amore formalway, especially, to describe their practicalmotivationwith some
more detail. We beginwith the formal de�nition of batch codes. Thenwediscuss
multiset batch codes, which are important from practical perspective. After-
wards, we describe primitive batch codes, which capture underlying di�culty
of the batch code problem. There, we also point out relationship of primitive
batch codes with locally decodable codes. Finally, we discuss practical applica-
tions of batch codes. The material, presented in this appendix, is mostly from
[IKOS04a], and it is not required for understanding our contribution (presented
in Chapters 2-4).

De�nition C.1 Batch code: An (n ,N, k ,m , t)-batch code over an alphabet Σ is
de�ned by an encoding function C : Σn

→ (Σ∗)m (each output of which is called a
bucket) and a decoding algorithm A such that

(i) The total length of all m buckets is N (where the length of each bucket is indepen-
dent of x);

(ii) For any x ∈ Σn and {i1, . . . , ik } j [n],A(C(x), i1, . . . , ik) � (xi1 , . . . , xik ), and
A probes at most t items from each bucket in C(x) (whose positions are determined
by i1, . . . , ik ).
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RemarkC.1. De�nition of batch code does not specify the parameter k (whichwe
termed “retrievability parameter” in Chapter 1) uniquely for a batch code. More
precisely, an (n ,N, k ,m , t)-batch code is also an (n ,N, k′,m , t)-batch code for
any k′ ≤ k. However, following the literature, we assume that it is the maximum
possible k such that a decoding algorithm A can decode at most k items.

By (n ,N, k ,m)-batch code, we mean (n ,N, k ,m , t � 1)-batch code. Following
corollary is immediate from the de�nition.

Corollary C.2 ([IKOS04a]). 1. An (n ,N, k ,m , t)-batch code (for any arbitrary t)
implies an (n , tN, k , tm)-batch code.

2. An (n ,N, k ,m)-batch code implies an (n ,N, tk ,m , t)-code and an (n ,N, k , dm
t e , t)-

code.

3. An (n ,N, k ,m)-batch code implies an (n ,N, k ,m)-code over Σ � {0, 1}w , for an
arbitrary w.

4. An (n ,N, k ,m)-batch code over {0, 1}w implies a (wn , wN, k , wm)-code over
Σ � {0, 1}.

From the description given inAppendix B, it can be seen that batch codes, which
are de�ned for a noiseless setting, can be classi�ed as source codes. However,
here the decoding is of certain type, which has some similarity with local decod-
ing (to be discussed later). Like error-free source codes, one of the prime goals
for batch codes is to �nd constructions with high rate, i.e., for given n construc-
tions with minimum N .

De�nition of batch codes does not limit the use of a retrieved item for decoding
of multiple source items. However, in a multiuser scenario where users will try
to decode source items parallelly, it is required that each retrieved data item be
used for decoding only one source item. It is also possible that many users will
try to decode the same source item. Motivated by this type ofmultiuser scenario
the authors, in [IKOS04a], also de�ned multiset batch codes. The de�nition is
stated for t � 1; however, it can be generalized for t > 1.

De�nition C.2 Multiset batch code: An (n ,N, k ,m)-multiset batch code is an
(n ,N, k ,m)-batch code that satis�es the following additional properties. For any multi-
set i1, i2, . . . , ik ∈ [n] there is a partition of the m buckets into subsets S1, S2, . . . , Sk ⊆

[m], such that each item xi j , j ∈ [k], can be recovered by reading at most one item from
each bucket in S j .
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Example of a multiset batch code has been given in Example 1.1 of Chapter 1. In
fact, that construction can be generalized for any value of m.

Another variant of batch codes, termed primitive batch code, captures inherent
problem of batch codes in amore fundamental way. Next, we give its de�nition.

De�nition C.3 Primitive batch code: A primitive batch code is an (n ,N, k ,m)-
batch code in which each bucket contains a single item, i.e., N � m.

For primitive batch codes, always t � 1. We also note that primitive batch codes
without multiset property are the trivial ones, i.e., each of the m � n buckets
contains a (distinct) source item. So, by primitive batch codes, we mean primi-
tive multiset batch codes only. Since N � m (and t � 1 automatically) for these
codes, wewrite an (n ,m , k ,m)-primitive batch code as (n , k ,m)-primitive batch
code.

ExampleC.1 ((n, 2, n + 1)-primitive batch code over {0, 1}.). Astring (x1, . . . , xn)
is encoded as (x1, . . . , xn , x1 ⊕ · · · ⊕ xn). It follows (quite similar to Example 1.1
of Chapter 1) that any multiset of two source items can be decoded by reading
from two disjoint sets of servers.

Few properties of multiset batch codes. Similar to error-correcting codes, mul-
tiset batch codes have the following properties, which we state without proofs.

Theorem C.3 (Direct product). Let C1 be an (n1,N1, k1,m1)-multiset batch code
and C2 be an (n2,N2, k2,m2)-batch code. Then there is an (n1n2,N1N2, k ,

m1m2)-batch code, where k ≥ k1k2. Moreover, the code is multiset batch code if C2 has
multiset property.

Theorem C.3 is essentially a direct product (between C1 and C2) construction.
It is uni�cation of Lemma 3.3 (Gadget lemma) and Lemma 3.5 (Composition
lemma) of [IKOS04a] with a transparent view of the obtained parameters. How-
ever, its statement is more general in the sense that, in the composite construc-
tion of [IKOS04a] (obtained by unifying Lemma 3.3 (Gadget lemma) and Lemma
3.5 (Composition lemma)), it is required that C1 be primitive, which is not the
case for Theorem C.3. Indeed, C1 can be an arbitrary (n1,N1, k1,m1)-multiset
batch code. Proof of Theorem C.3 is given in [Bha14].
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When a multiset batch code is viewed as a set of strings over some alphabet
(arranged in buckets), we obtain the following lower bound on its minimum
distance. Its proof is given in [IKOS04b].

Theorem C.4 (Distance). Let C be any (n ,N, k ,m) multiset batch code having min-
imum distance d. Then d ≥ k.

Primitive batch codes also support concatenation. More speci�cally, we have the
following theorem from [Bha14].

Theorem C.5 (Concatenation). Let C1 be an (n1, k1,m1)-primitive mulitset batch
code over alphabet Σn2 and C2 be an (n2, k2,m2)-primitive mulitset batch code over
alphabet Σ, then there is an (n1n2, k1k2,m1m2)-primitive multiset batch code over al-
phabet Σ, which is obtained by concatenating C1 with C2.

In all the above three theorems, stated multiset properties are crucial; without
it, the corresponding result will not hold. Now, we point out similarities and
di�erences of primitive batch codes with locally decodable codes.

Relationwith locally decodable codes (LDCs). Informally, an (r, δ, ε)-LDC over
alphabet Σ is a mapping C : Σk

7→ Σn , which maps a string x ∈ Σk into a string
C(x) ∈ Σn so that the following holds. For any i ∈ [k], the i-th item of x can
be decoded by a randomized decoding algorithm with probability (taken over
coin tosses of the randomized decoding algorithm) ≥ 1 − ε by querying r items
of C(x), even if δn positions of C(x) are corrupted.

LDCs were formally introduced in [KT00]. However, the basic idea and some
of the techniques appeared earlier implicitly in the context of several other well
studied problems such as self-correcting computations [GLR+91, GS92], random
self-reducibility [AFK89, FF93, BF90], probabilistic checking of computations
[BFLS91], worst-case to average-case reductions [BFNW93], private information
retrieval [CKGS98], etc. Apart from many theoretical applications, LDCs are
also important from practical perspective. In some practical scenarios, it is de-
sirable to retrieve a small portion of the encoded message rather than the entire
message e�ciently (typically the decoding algorithm should be sublinear in the
length of the codeword). One way to achieve this is by dividing the message
into smaller blocks, and then encoding each block separately. However, such an
encoding can not handle a constant fraction (of the codeword) of errors.
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In order to compare LDCs with primitive batch codes, we note that both LDCs
and primitive batch codes support local decoding in certain ways. In both cases,
the objective is to decode parts of the input message instead of the whole mes-
sage. Indeed, in case of LDCs, a particular symbol of the message, and in case
of primitive batch codes, a set of k input message symbols are decoded.

However, there are fundamental di�erences between LDCs and primitive batch
codes. LDCs support decoding from a corrupt (with a constant fraction cor-
ruption) codeword with a limited number of queries (this forces the decoding
algorithm to be randomized). On the other hand, primitive batch codes support
decoding from an error-free codeword with an unlimited number of queries
(i.e., the whole codeword can be queried) in a restricted manner. Perhaps, due
to this di�erence, there is a large gap between the lengths of the codewords in
these cases. For example, a 2-query LDC require exponential length ([KdW04]);
whereas, for an (n , k ,m) primitive batch code it trivially follows that the length
of the codeword m ≤ kn.1

C.1 Application

C.1.1 Load balancing

Load balancing is inherent in the de�nition of batch codes. In fact, batch codes
are abstraction of certain type of load balancing problem in coding theoretic
terms. Broadly speaking, the goal of this load balancing problem is to store
data items among a set of servers in such a way that a limited number of data
items are retrieved from each server when a group of data items are retrieved.
In this way, it is possible to limit maximum load on a particular server. Thus, no
particular server is overloaded. This, in turn, ensures uniform availability of the
participating servers.

With the advent of cloud computing (see [Gar11], [AFG+09]), a distributed com-
puting paradigm that has fast emerged as a commercially successful state-of-
the-art client-server computingmodel, it is reasonable to expect that these types

1Here, we stress that the two cases are not directly comparable owing to di�erent types of
restrictions in these two cases.
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of codes will �nd practical applicability. One of the key concerns in cloud com-
puting is to ensure availability of resources when needed (see [AFG+10]). Load
balancing among resources, especially in a way so as not to overload a partic-
ular one, plays important role in maintaining availability and redundancy. It
is in this scenario that batch codes, with their e�cient encoding and decoding
algorithms, can play very signi�cant role.

C.1.2 Private information retrieval (PIR)

We consider the following problem: a user wants to retrieve a particular record
from a public database without revealing the index of the retrieved record to
the database. Here, the only concern is privacy of the index of the retrieved
record, rather than privacy of the record or the privacy of the user. It is possible
to solve the problem by sending the entire database to the user. This solution
is clearly impractical as it requires huge communication overhead; namely, the
whole database, which can be very large for practical applications.

This, however (see [CKGS98]), is the only solution (i.e., any other solution will
require at least the same amount of communication overhead) if the database is
stored in a single server, and the privacy requirement is information theoretic,
i.e., if the server is assumed to be computationally unbounded. So, it is desirable
to �nd better solutions by relaxing the assumptions in a feasible manner.

In [CKGS98], the authors proposed a construction for k-server PIR protocol.
They consider the scenario where k identical copies of the database are stored
in k servers, and the privacy requirement is that no server gets any informa-
tion (in information theoretic sense) about the queried index. For a database of
size n, this protocol requires O(n

1
k ) communication. They also proposed a con-

struction for 2-server PIR protocol that requires O(n
1
3 ) communication. More

e�cient constructions for k-server PIR protocol appeared in subsequent works
[Amb97, BIKR02, BIK05, Ito99, Yek08, Efr12, KY09, CFL+13].

There have been di�erent variations and extensions of this basic protocol. For
example, the requirement of information theoretic privacy in the above protocol
has been relaxed to computational privacy in [CG97, KO97], i.e., servers in pro-
tocols of [CG97, KO97] are assumed to be computationally polynomially (in the
length of the database) bounded. For other variations and extensions and more
recent results, see [Bei08, Gas04].
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Mainstream research in PIR focused on reducing the communication complex-
ity between user and server(s). This is because, in addition to being practically
important, the goal has a certain theoretical appeal and well-established con-
nection with other problems. However, another issue, which is no less impor-
tant from practical point of view, is the (on-line) computational work done by
server(s) in answering queries made by the user. In fact, in [SC07] (see also
[OG12] for a more recent account of the practical issues of PIR), it was observed
that computation time of the server(s) dominates the overall response time in
answering a query made by the user. More precisely, the authors observed that
the single server computational PIR protocol of [KO97], which involves compu-
tationally demanding number theory operations, is order of magnitude slower
than the trivial protocol of sending the entire database; although communica-
tion complexity of the former is much less than the latter.

In every proposed solution of PIR protocol, it was observed that the computa-
tion on the part of database is at least linear in the length of the database. That it
was not an artifact of proposed solutions, was �rst formally shown in [BIM04].
There, the authors have proven, inter alia, that for information theoretic privacy,
expected total computational work done by the server(s) is at least linear in the
length of the database. Following this, it was necessary to �nd alternative strat-
egy to reduce on-line computation done by the servers, rather than �ndingways
to improve the protocols in terms of computational e�ciency. Following alter-
natives were suggested and formally treated in the literature.

– Auxiliary servers: Delegate bulk of the on-line computation to auxiliary servers.

– Preprocessing: Preprocess database(s) before sending queries.

– Amortization: Amortize the computational work over multiple queries.

In [GGM98], the authors proposed a model that includes auxiliary (random-
ized) servers, in addition to the server that keeps the database. In their model,
database is kept only in one server (database provider), and contents of the auxil-
iary servers can bemade totally independent of the database. Given anyPIRpro-
tocol, their model can bring down on-line computation of the database provider
to O(1) or no computation at all, while maintaining the privacy requirements of
the original protocol. One advantage of their proposed solution is that replica-
tion of the original database is not needed for information theoretic security.
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However, their solution hardly makes any progress in solving the original prob-
lem. Though on-line computation of the database provider is su�ciently re-
duced, on-line computation of the auxiliary servers remains same, i.e., linear
in the size of the database. Communication complexity of their protocol is also
higher than the communication complexity of the original protocol. Also, in
order to achieve full information theoretic security, their proposed protocol re-
quires costly resource of truly randombits that is linear in the size of the database.
Their protocol also requires reinitialization, whose cost is linear in the length of
the database, after a certain number of queries.

In the preprocessing based approach of [BIM04], proposed solutions include the
following.

1. A k-server PIR protocol with O(n1+ε) extra storage, O( n
(ε log n)2k−2 ) work,

and O(n
1

2k−1 ) communication.

2. A k-server protocol with polynomially (in the size of the database) extra
bits, and O(n

1
k +ε) work and communication.

The proposed solutions reduce the amount of work done by the server(s) signi�-
cantly. The solutions also provide a trade-o� between extra storage and amount
of work keeping the communication complexity same (in the �rst case), and
between communication complexity and amount of work (in the second case).
However, the requirement of extra storage, whose size is at least linear in the
length of the database, seems prohibitive for large databases, where PIR is more
likely to �nd application.

Amortization through batch codes. An (n ,N, k ,m)-batch code amortizes com-
putational cost over k queries for an m-server PIR on a database of size n in the
followingmanner. First the n-item database is encoded by the (n ,N, k ,m)-batch
code. Let the amount of storage for the i-th bucket of the batch code be Ni , for
1 ≤ i ≤ m. Hence,

∑m
i�1 Ni � N . Next, the i-th server stores the i-th bucket

according to the requirement of a suitably chosen single server PIR protocol.

Now, on receiving k queries for the original n-item database, the batch decoder
generates a single query for each server. Next, each server runs the chosen single
server PIR protocol for its query on its database, and returns the corresponding
data item(s). Finally, the batch decoder outputs k queried items from the items
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returned by the m servers. Total computational overhead for the servers in this
case is

∑m
i�1 T (Ni) and communication overhead is

∑m
i�1 C(Ni), where T (Ni) and

C(Ni) are the computational and communication cost of PIR protocols for the
i-th server on a database of size Ni .

First, we note that the above protocol is correct and secure if the underlying
single server protocol is so. Now, signi�cant saving in computational and com-
munication cost may be achieved if

∑m
i�1 T (Ni) and

∑m
i�1 C(Ni) are signi�cantly

less than kn. For example, in a theoretical setting, this can already be achieved
by using the (n , 2, n + 1)-primitive batch code of Example C.1.
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Notation Summary For Chapter 5
and Appendix D

Here, we formally state our notational convention for this part of the thesis.

1. Lower case Greek letters will denote �eld elements.

2. Upper case Roman letters will denote sets as well as special functions.

3. Among lower case Roman letters

(a) {a , b , c} will denote �eld elements, this choice is guided by common
practice in the literature;

(b) {d , e} will denote integers;

(c) { f , g , h} will denote functions;

(d) {i , j, k , `,m , n , o , p , q , r, s , t , u , v , w}will denote integerswith {i , j} nor-
mally reserved for indices and {p , q} reserved for prime and prime
power respectively;

(e) {x , y , z} will denote variables and indeterminates.

4. Conventions on asymptotic notations O(.) andΩ(.) remains same as in the
�rst part.
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Chapter 5

On Some Cyclotomic Mapping
Permutation Binomials Over F2n

5.1 Introduction

In this chapter, we study permutation binomials (PBs) of the form x
2n
−1

2t−1 +1+ ax over
F2n . We explicitly characterize and enumerate these PBs under certain restric-
tions. These PBs belong to the class of cyclotomic mapping polynomials (de�nitions
and details to be discussed later). Also, these PBs are very closely related to or-
thomorphisms / complete mappings, which are special types of permutations with
applications in constructions of various combinatorial designs.

Permutation polynomials (PPs) over �nite �elds have a long and rich history. In
order to set the context for our results, in Section 5.1, we give an overview of
basic problems and results of this area that are relevant to our work. This also
includes brief discussion on cyclotomic mapping polynomials and orthomor-
phisms. In section 5.2, we discuss our contribution as well as existing results
which are more speci�c to our contribution. In Section 5.3, we provide proofs
of our results. Finally, we conclude in Section 5.4
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5.1.1 Background and Motivation

It is well known that �nite �elds are polynomially complete, i.e., any functionmap-
ping a �nite �eld to itself can be represented by a polynomial.1 PPs are those
polynomials that induce a permutation function. More formally, we have:

De�nition 5.1. Let Fq be a �nite �eld of q elements. A polynomial f ∈ Fq[x] is
a PP of Fq if the function f : a 7→ f (a), a ∈ Fq , is a permutation of Fq .

Following are some well-known classes of PPs.

Example 5.1. (i) Monomials: xd is a PP of Fq i� gcd(d , q − 1) � 1.

(ii) Linearized polynomials: Apolynomial of the form L(x) �
∑n−1

s�0 as xqs
∈ Fq[x]

is a PP of Fq i� L(x) � 0 �⇒ x � 0.

(iii) Dickson polynomials: For a ∈ Fq , k ∈ N, and indeterminate x, Dickson
polynomial of the �rst kind 2 Dk (x , a) is de�ned as

Dk (x , a) �
b

k
2 c∑

j�0

k
k − j

(
k − j

j

)
(−a) jxk−2 j

It is known that the Dickson polynomial Dk (x , a), a ∈ F∗q , is a permutation
polynomial of Fq if and only if gcd(k , q2 − 1) � 1

Study of PPs can be traced back to the work of Betti ([Bet51, Bet55]), Mathieu
([Mat61]), Hermite ([Her63]), Brioschi ([Bri70, Bri79]), Grandi ([Gra81, Gra83]).
Perhaps the �rst systematic exposition on the topic is the seminal work of Dick-
son [Dic96] (arising out in connection with his work on linear groups([Dic58])).
Since then PPs have been subject of extensive research; a rigorous account of this
can be found in [LN97]. Selected aspects of the early part of the development
of the theory have also been captured in [LN73, Sma91]. Several open problems
thatwere outcome of the early part of the development, were formally discussed
in [LM88, LM93].

1In fact, �nite �eld is the only algebraic structure possessing this property. Given a function
f : Fq 7→ Fq , the unique polynomial f (x) ∈ Fq[x] representing f is given by f (x) �

∑
a∈Fq f(a)(1−

(x − a)q−1).
2See [LN97, LMT93] for details on this interesting class of polynomials.
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PPs represent purely combinatorial constructs, namely permutations. This in-
�uences their algebraic attributes. For example (formally stated as Corollary
5.5), for d | q − 1, there are no PP of degree d over Fq . Also, it is known (and for-
mally proven in [Das02, KP02]) that almost all PPs over Fq have degree q−2. On
the other hand, many outstanding problems of the theory, such as Carlitz’s con-
jecture on exceptional polynomials (PPs that permute in�nitelymany extensions
of a �nite �eld), require deep algebraic machinery for their resolution. This in-
terplay between combinatorics and algebra makes PPs theoretically appealing.

PPs over �nite �elds, especially over prime �elds are theoretically very impor-
tant as well. For example, it can be shown (see [Nar84, Nöb65]) (by Chinese
Remainder Theorem) that permutation behaviour of a polynomial f modulo an
integer n is essentially determined by permutation behaviours of f over Fpi s
(with some additional conditions), where the prime power decomposition of n

is given by n �
∏

i pai
i .

While the above facts underlie broad theoretical appeal and importance for study
of PPs over �nite �elds, it is perhaps the concrete problems of this theory that
generated signi�cant interest among researchers. Problems such as character-
ization, existence and enumeration, algorithmic testing, investigation of group
structure generated by various classes of PPs, etc. have received signi�cant at-
tention in the literature. In this thesis, we consider two problems of fundamen-
tal importance - (i) characterization, and (ii) existence and enumeration of PPs.
Next, we present a brief outline of these two categories of problems.3

Characterization. Finding necessary and su�cient conditions for a class of
polynomials to be PPs forms the crux of research on PPs. We term a class of
PPs characterized if there are necessary and su�cient conditions (to be PP) for
polynomials belonging to that class. A trivial characterization for the class of
all PPs (arising out of the de�nition of PPs) is that the cardinality of the value
set4 of a polynomial over Fq is q i� it is a PP. The �rst non-trivial characteriza-
tion for the class of all PPs is given by the following result, commonly known as
Hermite-Dickson criteria. Hermite ([Her63]) formulated the criteria for prime
�elds, Dickson ([Dic96]) extended it to non-prime �elds. Wewill use this criteria
later to prove Theorem 5.2.2.

3For a detailed account of results related to various other problems see notes (though slightly
dated) at the end of Chapter 7 of [LN97]. For results related to algorithmic testing of PPs see
[Shp92b, MvzG94, MVZG95b, MVZG95a, Kay05].

4For a polynomial f ∈ Fq[x], its value set is the set { f (a) : a ∈ Fq }.
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Theorem 5.2 ([LN97]). A polynomial f ∈ Fq[x] is a PP if and only if

(i) f has exactly one root in Fq ,

(ii) f t mod (xq
− x) has degree less than q − 1 for 1 ≤ t ≤ q − 2, p - t, where p is

the characteristic of Fq .

Remark 5.3. In the above theorem the condition p - t can be removed; in fact, we
will do so in the proof of Theorem 5.2.2.

Alternate characterization for the class of all PPs have been proposed in the lit-
erature (see [LZ67, Vau74, Wan92, Tur95]). For example, in [Wan92], the author
characterized PPs in terms of value sets, and in [Tur95], the author extended
this approach in various directions. Another very useful characterization can
be given in terms of additive characters; see [LN97] for details.

Here, we point out an important aspect of characterization of PPs in terms of
computational complexity of evaluating the necessary and su�cient conditions
that describe the characterization. First, we note that a �nite �eld of q elements
can be represented on a machine (or more formally on a RAM) using O(log q)
bits. Runtime of an algorithm involving operations of a �nite �eld of q ele-
ments is measured in terms of the size of the representation of the �eld, which is
O(log q).5 An algorithms whose runtime is bounded by a polynomial in log q,
i.e., runtime is pol y(log q), is practically feasible. We term this algorithm e�-
cient. For example, there are e�cient algorithms to check necessary and su�-
cient conditions of all the classes of PPs discussed in Example 5.1. For example,
in case of Example 5.1 (i) computing the gcd takes time O((log q)3). However,
this does not seem to be the case for the necessary and su�cient conditions of
Theorem 5.2 (and in general for the other characterizations of the class of all PPs
discussed above). It can only be guaranteed that these conditions can be eval-
uated in time O(q), which is exponential in log q; and hence, are not e�cient.
This motivates us to formally introduce the notion of explicit characterization of
a class of PPs.

5It is possible that the algorithm takes several inputs. In that case, the runtime becomes a
function of the sizes of all inputs. However, more frequently, these additional inputs turn out to
be constant parameters and they do not a�ect the asymptotic runtime of the algorithm. More
speci�cally, these additional constant parameters do not a�ect the polynomiality (in terms of
log q) of the runtime.
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De�nition 5.4. A class of PPs over Fq is explicitly characterized if there are neces-
sary and su�cient conditions for the class which can be checked e�ciently for
each polynomial belonging to the class; i.e., if the conditions can be checked by a
deterministic algorithmwhich given as input a representation of Fq and expres-
sion for any polynomial belonging to the class in the given representation, runs
in time polynomial in log q and in the (binary) length of the parameters (which
are independent of q) de�ning the class.

For example, an explicit characterization of the class of PPs of the form xr f (x
q−1

d ),
where d , r are parameters independent of q, would comprise of necessary and
su�cient conditions that can be checked by an algorithm that runs in time
pol y(log q , log d , log r). Without providing details, we mention that the char-
acterizations in Example 5.1 can be evaluated e�ciently (see [vzGG13, Shp92a]
for algorithmic aspects of �nite �elds). Hence, classes of PPs in Example 5.1 are
explicitly characterized.

However, it is not known whether the class of all PPs can be explicitly char-
acterized.6 So, a reasonable goal is to obtain explicit characterization of spe-
ci�c classes of PPs. While the monomials are explicitly characterized (Example
5.1(a)), there is no such explicit characterization for binomials in general. So,
characterization of binomials is the “next” non-trivial open case. Hence, for
a systematic understanding of characterization of PPs it is highly desirable to
characterize binomials, or at least speci�c classes of binomials.

Existence and enumeration. Characterization brings forth the question of exis-
tence and enumeration of speci�c classes of PPs, which form some of the most
fundamental open problems. For example, the characterization of monomials
given in Example 5.1(a) immediately implies that the number of permutation
monomials is (q − 1)φ(q − 1), where φ(.) is the Euler’s phi function. On the
other hand, Hermite-Dickson criteria (Theorem 5.2) implies the following gen-
eral non-existence result.

6In [Kay05], the author gave a deterministic algorithm to test PPs of degree ` that runs
in time pol y(` log q). This leads to explicit characterization of the class of PPs with degree
` � pol y(log q). However, the algorithm is not useful when ` is superpolynomial in log q (as the
runtime of the algorithm becomes superpolynomial in log q, and hence the algorithm is not ef-
�cient for these values of `). The polynomials considered in this work are of the form xr f (x

q−1
d ),

where r is constant and d � O(
√

q), so they have degree superpolynomial in log q. Hence, the
algorithm of [Kay05] is not relevant to our case.
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Corollary 5.5 (of Theorem 5.2). If d > 1 is divisor of q − 1 then there is no PP of Fq

of degree d.

Several other non-existence results (see, e.g., [Wan87, Tur88, MZ09] ), especially
for PPs over prime �elds were proven using Hermite-Dickson criteria.

However, these questions, in general, often require rather deep tools from alge-
bra and geometry for their resolution. One such important example ofwide gen-
erality is the Carlitz-Wan conjecture, which is now a proven result (see [Wan93,
CF95, vzG91, CG14]). It states that if gcd(n , q − 1) > 1 and q > n4 then there is
no PP of degree n over Fq .

In [Car62], the author showed existence of PBs of the form x
q−1
3 +1 + ax ∈ Fq[x]

for su�ciently large q. Subsequent improvements of this result, which will
be discussed in somewhat more detail in Section 5.3, led to signi�cantly pre-
cise estimate of the number of PBs ([MZ09]) and in general PPs of the form
xr f (x

q−1
d ) ([AGW09]). However, despite all these improvements, precise count

of PBs seems extremely di�cult to obtain. Hence, a reasonable goal is to obtain
enumeration results for speci�c classes of PBs.7

Apart from having inherent theoretical appeal, PPs (not necessarily univari-
ate) have been considered in several practical contexts, such as in cryptogra-
phy ([Lid85, Pat96, CCZ98, LM84, MP14]), coding theory ([Din13]), combinato-
rial designs (e.g. Mutually Orthogonal Latin Squares ([Man42, JDM61, Eva92,
Zie13]), Tuscan k-arrays ([CG02]), Costas arrays ([GM96]), [DY06]), sequences
([BEP96]), construction of high-girth graphs ([DLW07]), etc.

For example, PPs, due to their bijective property, are used in various symmetric-
key encryption schemes (in fact, the S-Box transformation in the much widely
usedAES encryption scheme is a permutation, namely f (x) � x−1, f (0) � 0 over
F28 , see [DR02] for more details); there it is required that the PPs have provable,
favorable cryptographic properties. Analyzing andmathematically establishing
such properties becomes easier in case of polynomials with fewer terms, e.g.,
for monomials and binomials. In particular, for permutations used in S-Boxes
of block ciphers it is required that they do not have any linear structure ([Eve88]).

7There is another line of research which focuses on enumeration of PPs according to degree.
For example, it is easy to see that there are no PPs of degree 0 and there are exactly q(q − 1) PPs
of degree 1 (the set of all linear polynomials). However, the problem of counting PPs of arbitrary
degree also seems to be very di�cult. See [KP02, Das02, KP06] for results in this direction.
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Based on a result of [CS11] it can be shown that PBs of the form x
2n
−1

d +1 + ax ∈

F2n [x] do not have linear structure. Hence, these PBs are potential candidates
for use in S-Boxes.

Motivated by their theoretical as well as practical signi�cance, there is a spurt
in research interest in PPs, especially in the past twenty years. Several classes of
PPs have been discovered and their properties have been investigated. Account
of this relatively recent development can be found in [MP13, Hou15b].

These considerations motivate us to consider PBs, and revisit the problems of
their characterization, existence and enumeration. We obtain exact solutions for
these problems for binomials of the form x

2n
−1

2t−1 +1 + ax over F2n , under certain re-
strictions. These PBs are of the form x(x

q−1
d +a) over Fq , which are closely related

to orthomorphism binomials (to be discussed shortly). On the other hand, they
belong to the class of cyclotomic mapping binomials (to be described shortly),
i.e., binomials of the form xr (x

q−1
d s + a).

Hence, to rephrase our contribution, we obtain characterization, existence and
enumeration results for certain cyclotomic mapping PBs over F2n . Our choice
of even characteristic is motivated by possible applications in cryptography. On
the other hand, our consideration of cyclotomic mapping binomials is not com-
pletely arbitrary. Indeed, as the next proposition (also observed in [Hou15c])
whose proof is postponed to Appendix D shows, permutation property of any
arbitrary binomial is somewhat related to permutation property of a cyclotomic
mapping binomial. This partly explains our motivation behind considering this
particular class.

Proposition 5.1.1. The binomial f (x) � xm + axn
∈ Fq[x], with m > n, can be

transformed modulo (xq
−x), into a binomial of the form xr (x

q−1
d +a) for some d | q−1.

We conclude this subsection by brie�y recalling basic details of cyclotomic map-
ping polynomials and orthomorphism polynomials.

Cyclotomic mapping polynomial. Let γ be a primitive element of Fq , and q−1 �

de, where d , e ∈ N. Let C0 be the set of d-th powers of Fq , i.e., C0 � {γdj
| j ∈

{0, . . . , e − 1}}. So, C0 is a subgroup of order e and index d of the multiplicative
group F∗q � Fq \ {0}. Elements of the factor group F∗q/C0 are the cyclotomic cosets
given by

Ci � γ
iC0, i ∈ {0, . . . d − 1}.
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Note that the cyclotomic cosetsCi , i ∈ {0, . . . , d−1} partitionF∗q . Given a0, . . . , ad−1 ∈

Fq , the r-th order cyclotomic mapping f r
a0 ,...,ad−1 of index d is de�ned as

f r
a0 ,...,ad−1 (α) ,




0, if α � 0

aiαr , if α ∈ Ci , i ∈ {0, . . . , d − 1}

The polynomial f r
a0 ,...,ad−1 (x) ∈ Fq[x] of degree at most q − 1, representing 8 the

mapping f r
a0 ,...,ad−1 (we use the same notation for the mapping as well as for the

unique polynomial representing it) is an r-th order cyclotomicmapping polyno-
mial (CMP) of index d. In particular, for r � 1, the polynomial is simply termed
a cyclotomic mapping polynomial of index d.

It is clear that any mapping f : Fq 7→ Fq , with f (0) � 0, is a cyclotomic mapping
of index q − 1. In fact, for d1 | d2, any cyclotomic mapping of index d1 is also a
cyclotomic mapping of index d2. Cyclotomic mappings of index 1, 2, 3, . . ., are
called linear, quadratic, cubic, . . . , cyclotomic mappings respectively.

It can be seen from the de�nition that linear CMPs are of the form f (x) � ax

for �xed a ∈ Fq . Next proposition (see [Eva92, NW05, Wan13]) shows that r-th
order CMPs of index d are essentially the polynomials of the form xr f (x

q−1
d ).

For the sake of completeness, we give its proof in Appendix D.

Proposition 5.1.2. For integers r > 0, and d | q−1, r-th order CMPs of index d are the
polynomials of the form xr f (x

q−1
d ). Moreover, if the mapping f r

a0 ,...,ad−1 is represented

by the unique polynomial xr
d−1∑
i�0

bix
i(q−1)

d , then we have the following relations

(i) a j �
d−1∑
i�0

biγ
ji(q−1)

d , j ∈ {0, . . . , d − 1},

(ii) bi �
1
d

d−1∑
j�0

a jγ
− ji(q−1)

d , i ∈ {0, . . . , d − 1},

where γ is a primitive element of Fq .

The following theorem from [LW91] is a fundamental tool for analyzing permu-
tation properties of CMPs, i.e., polynomials of the form xr f (x

q−1
d ). The theo-

rem was reproven at various other places (see e.g., [Wan07, Zie09]). We also re-
prove it in Appendix D. Our proof of the theorem is somewhat di�erent, though

8As noted in the beginning, any mapping f : Fq 7→ Fq can be represented by a unique
polynomial of degree at most q − 1.
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slightlymore involved than the proofs found in the literature. Here, we note that
the case r � 1was proven earlier in [NR82]. In fact, for our purpose the case r � 1
is su�cient.

Theorem 5.1.1 ([LW91]). Let d , r be positive integers and q be a prime power such
that d divides q − 1. Let γ be a primitive element in Fq , and f ∈ Fq[x]. Then g(x) �

xr f (x
q−1

d ) is a PP of Fq if and only if the following conditions are satis�ed.

1. gcd(r, q−1
d ) � 1,

2. for all i, with 0 ≤ i < d, f (γi q−1
d ) , 0,

3. for all j, with 0 ≤ i < j < d, g(γi)
q−1

d , g(γ j)
q−1

d .

It is not known whether Theorem 5.1.1 is an explicit characterization of CMPs,
i.e., PPs of the form xr f (x

q−1
d ); computation of necessary and su�cient condi-

tions of Theorem 5.1.1 requires computation of a primitive root of Fq , which is
not known to have an e�cient algorithm (see e.g. [MP13]).

Theorem5.1.1 reduces permutationproperty of the polynomial g(x) � xr f (x
q−1

d )
over Fq into permutation property of a related polynomial g(x)

q−1
d over a smaller

subset, the set of d-th roots of unity, of Fq . If the smaller subset is chosen to
be the multiplicative group of a sub�eld Fq′ of Fq then the original polynomial
xr f (x

q−1
d ) reduces to a polynomial of the form yr f (y) over Fq′. With careful

choices the polynomial yr f (y) turns out to be a polynomial whose permutation
properties over Fq′ are well-known, or can be easily analyzed. This approach
was taken in ([Zie13, WLHZ14]), where the reduced polynomials are low de-
gree (degree ≤ 5) polynomials explicitly characterized by Dickson (see [LN97]
or [Zie13]) or Dickson polynomials.

We use Theorem 5.1.1 in our proof of Theorem 5.2.1 from Theorem 5.2.2. In the
proof of Theorem 5.2.1, our approach is somewhat similar to the one described
above. However, in our case (described in Section 5.2.1) , the reducedpolynomial
is more involved.

Results on permutation properties of cyclotomic mapping binomials, which are
relevant to our contribution, are discussed in Section 5.2.1. For further infor-
mation on permutation properties of CMPs, see [LW91, Eva92, Eva94, NW05,
Zie10, Wan13].
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Orthomorphism polynomials. First, we recall de�nition of orthomorphism and
complete mapping.

De�nition 5.6. Let G be a �nite abelian group, written additively. A mapping
h : G 7→ G is an orthomorphism if both the mappings x 7→ h(x) and x 7→ h(x) − x

are bijective for x ∈ G, and it is called complete mapping if both x 7→ h(x) and
x 7→ h(x) + x are bijective.

By takingG to be the additive group of a �nite �eldFq , orthomorphism polynomials
and complete mapping polynomials can be naturally de�ned for �nite �elds. A
polynomial h(x) ∈ Fq[x] is an orthomorphism (complete mapping) polynomial
if both h(x) and h(x) − x (h(x) + x respectively) are PPs. Here, we note that for
�nite �elds of even characteristic orthomorphisms and complete mappings are
same.

Example 5.2. For a �nite �eld Fq , the set of linearmaps given by the polynomials
fa (x) � ax , a ∈ Fq , a , 0, 1 (a , 0,−1) forms a set of q − 2 orthomorphisms
(complete mappings).

Next proposition, which follows directly from De�nition 5.6, establishes con-
nection between PBs of the form x(x

q−1
d + a) over F2n and orthomorphisms.

Proposition 5.7. x(x
q−1

d + a) is a PB of F2n if and only if x(a−1x
q−1

d + 1) is an ortho-
morphism.

In fact, it can be immediately seen that, in the above case, a−1x
q−1

d +1 is also an
orthomorphism of F2n .

Study of complete mappings begun in [Man42] in connection with construc-
tion of mutually orthogonal latin squares (MOLS). MOLS are extremely impor-
tant statistical designs that are used in statistical experiments. Subsequently,
in [Pai47, Pai51, HP55], conditions were obtained under which a group admits
complete mapping. Orthomorphisms, though very much related to complete
mappings, were formally introduced in [JDM61], also in connection with con-
struction of MOLS. In Appendix D, we illustrate how orthomorphisms can be
used to construct MOLS.9For further details on complete mappings and ortho-
morphisms, especially over �nite �elds, see [NR82, NR81, Eva92, Eva87, Eva89,
Eva94, NW05] .

9Apart from various combinatorial designs, such as MOLS, transversal designs, generalized
Hadamardmatrices, Roomsquares, orthomorphismswere also used in the construction of check
digit systems [Sch96, SW10, Win14], and multi-permutations (useful in cryptography) [SV95],
etc.
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5.2 Existing results and our contribution

We divide the discussion on our contribution and relevant existing results into
two parts - characterization and enumeration.

5.2.1 Characterization

In our �rst result, we explicitly characterize certain class of cyclotomic mapping
PBs over F2n . In order to motivate our result, �rst, we discuss relevant existing
explicit characterizations. Subsequently, we discuss our contributionswhich are
stated as Theorem 5.2.1 and Theorem 5.2.2.

Although our focus lies in explicit characterization of PBs, given in Theorem
5.2.1, crux of the proof of Theorem 5.2.1 is explicit characterization of permu-
tation trinomials of speci�c form, given in Theorem 5.2.2. Explicit characteri-
zation is even more di�cult and rare for permutation trinomials (see [Hou15b,
DQW+15]). We do not discuss the few existing explicit characterizations as those
are not relevant to our case, and also because our primary motivation is explicit
characterization of PBs. We hope that our result on trinomials, presented in
Theorem 5.2.2, will be a valuable addition to the theory.

Existing explicit characterizations

Belowwe discuss existing explicit characterizations of cyclotomic mapping PBs,
i.e., PBs of the form xr (x

q−1
d s + a) ∈ Fq[x], q even. 10

1. In [Wan02], the author characterized PBs of the form xr (x
q−1

d s + 1) ∈ Fq[x]
for d ∈ {3, 5}, and in [AW05], characterization for d � 7 was settled. For the
case d � 3 in [Wan02], the author used Hermite-Dickson criteria (Theorem
5.2). For the cases d ∈ {5, 7}, Hermite-Dickson criteria along with various
properties of Fibonacci and Lucas sequences were used.

10PBs of the form xr (xes + a) were characterized in [AW06, Wan07, Zie09] for considerably
general setting of parameters. However, it is not clear whether those characterizations are ex-
plicit.
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2. In [Zie13], the author characterized PBs of the form (i ) x
q2−1
q−1 +1+ax over Fq2 ,

(ii ) x
q3−1
q−1 +1+ax over Fq3 , for all characteristic. He used a variant of Theorem

5.1.1 to reduce the polynomials (in both the cases) into a polynomial of
low degree (degree ≤ 5) over Fq . Then he used characterizations of such
low degree polynomials fromDickson’s table. These two characterizations
generalize the results of [GC15, TZH14,WLHZ14] pertaining to PBs of this
form.

In [BZ15b], the authors reproved the above two cases using di�erent tech-
niques. Along with Theorem 5.1.1 (the version given in [NR82]), they es-
sentially used criteria for solvability of bivariate equations over Fq .

3. In another line of work, characterization of PBs of the form xr (x
q2−1
q+1 s + a)

over Fq2 was considered. Unlike in the above cases, in this case, it is not
possible to reduce the polynomial to a polynomial over Fq using Theorem
5.1.1 (due to the form of the exponent q2−1

q+1 ).

In [Zie13], the author characterized this class under the restriction that
a is a (q + 1)-th root of unity. This characterization generalizes a similar
characterization for even characteristic obtained in [TZHL13].

PBs of the form x2(q−1)+1 + ax and x3(q−1)+1 + ax ∈ Fq2 have been character-
ized in [Hou15a] and [dHL15] respectively. These are speci�c subclasses

of PBs of the form xr (x
q2−1
q+1 s + a) ∈ Fq2 . Hermite-Dickson criteria, along

with additional techniques, was used in both the cases.

Our contribution

Our �rst result is explicit characterization of PBs of the form f (x) � x
2n
−1

2t−1 +1+ ax,
a ∈ F∗22t , where n � 2s t. More precisely, our result is the following.

Theorem 5.2.1. Let s and t be positive integers, and n � 2s t. Then the polynomial
f (x) � x

2n
−1

2t−1 +1 + ax, a ∈ F∗22t , is a PB of F2n if and only if (i) t is odd,(ii) s ∈ {1, 2},
and (iii) a ∈ ωF∗2t ∪ ω

2F∗2t , where ω ∈ F22 is a root of the equation ω2 + ω + 1 � 0.

The condition a ∈ ωF∗2t ∪ ω
2F∗2t in Theorem 5.3.1, is equivalent to the condition

a2(2t
−1) + a2

t
−1+1 � 0, and the latter can be checked in time pol y(t). So, Theorem

5.3.1 is indeed an explicit characterization of PBs of the form x
2n
−1

2t−1 +1+ax, a ∈ F∗22t .
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Theorem 5.2.1 immediately leads to the following enumeration result.

Corollary 5.2.1. Let n � 2s t , s ∈ {1, 2}, and t be odd, then the number of a ∈ F∗22t

such that x
2n
−1

2t−1 +1 + ax is a PB of F2n is 2(2t
− 1). For t even, there is no such PB.

The case s � 1 of Theorem 5.2.1 was proven in our earlier work [SBÇ12]. The
proof, given there, is more direct than the one obtained as part of Theorem 5.2.1
(which uses characterization of Dickson polynomials). So, we also include the
proof separately in Section 5.3.1. In fact, this special case was already proven
in [CK08] as part of a more general result. There, classi�cation of this type of
PBs was used in the context of cubic monomial bent functions of Maiorana-
McFarland class. However, the method used there is rather complex, and is
based on the results related to Walsh spectrum of quadratic boolean functions.
We derive the same result here using a direct application of Theorem 5.1.1 along
with some very elementary techniques. Our proof is rather short and simple. As
stated in item (2)-(i) above, this result was fully generalized, i.e., extended to odd
characteristic, in the later work [Zie13].

Further impetus for characterization, in Theorem 5.2.1, came from the recent
work ([WLHZ14]), where PBs of the form x

2st
−1

2t−1 +1+ ax over F2st were considered.
There, the authors obtained su�cient conditions (to be PB) for this class for the
following combinations: (i) s � 3 and gcd(t , 9) � 3 (see [TZH14] for the case
s � 3 and gcd(t , 9) � 1) (ii) s � 4 and gcd(t , 4) � 1, (iii) s � 6 and gcd(t , 6) � 1,
(iv) s � 10 and gcd(t , 10) � 1.11 In particular, we observed that while there are

a ∈ F22t such that x
24t
−1

2t−1 +1 + ax is a PB over F24t , there are no such a ∈ F22t such
that x

28t
−1

2t−1 +1 + ax is a PB. This observation is generalized in Theorem 5.2.1.

In a simultaneous and independent work ([BZ15a]), the authors have character-

ized PBs of the form x
24t
−1

2t−1 +1+ax over F24t . They have shown that for t(≥ 4) even,
there does not exist any PB of this form, and for t(≥ 3) odd, they have charac-
terized all PBs of this form. So, there is overlap of this result with Theorem 5.2.1
for the case s � 2, a ∈ F22t . However, their approach, in this case, is similar to
[BZ15b], and is di�erent from ours.

11In [WLHZ15], the authors extended these results to odd characteristic for the cases s ∈ {4, 6}
under various restrictions.
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Here, we highlight the fact that while we restrict a to the sub�eld F22t of F2n , the
setting for n(� 2s t) is considerably general than the previously discussed cases
of [Zie13, WLHZ14, TZH14, BZ15b, BZ15a]; in all these cases, n is of the form
2st for speci�c values of s only. Also, we note that Theorem 5.2.1 is essentially a
non-existence result (apart from the cases s � 1, 2). However, it does not follow
from the otherwell-knownnon-existence results such as Carlitz-Wan conjecture,
not even for large enough n (with respect to t). It would be interesting to see if
analogous non-existence results hold for odd characteristics as well.

Our approach (discussed inmore detail in Section 5.3.2), in the proof of Theorem
5.2.1, is di�erent from those of [Zie13, WLHZ14, BZ15b, BZ15a] to some extent.
In our case, we use Theorem 5.1.1 to reduce (preserving permutation property)
the the polynomial x

2n
−1

2t−1 +1 + ax ∈ Fn[x], n � 2s t , a ∈ F∗22t to a trinomial of
the form x2s+1 + x2s−1+1 + αx over F2t . To (explicitly) characterize trinomials of
the form x2s+1 + x2s−1+1 + αx, where s ≥ 3, we use Hermite-Dickson criteria
(Theorem 5.2). For 0 ≤ s ≤ 2, we use known characterization of low degree
PPs from Dickson’s table and characterization of Dickson polynomials. More
formally, explicit characterization of trinomials of the form x2s+1 + x2s−1+1 + αx is
the following.

Theorem 5.2.2. x2s+1 + x2s−1+1 + αx ∈ F2t [x], is a PP of F2t if and only if (i) t is
odd,(ii) α � 1, and (iii) s ∈ {1, 2}.

Theorem 5.2.2 forms the crux of the proof of Theorem 5.2.1. Though our main
motivation is to prove Theorem 5.2.1, as a result Theorem 5.2.2 may be of in-
dependent interest. More so, because permutation properties of trinomials are
much less known.

5.2.2 Enumeration

Genesis of the line ofwork on enumeration of PBs can be traced batck to thework
[Car62]. There, the author showed that, for su�ciently large q, there is a ∈ Fq

such that x
q−1
3 +1+ax is a PB. Later, in [CW66], this resultwas extended for general

d. In [WMS95], number of such PBs was estimated to be d!
dd q + O(

√
q). This

estimate was re�ned and extended in [LC07, MZ09]. In particular, in [MZ09],
the following estimate was obtained.
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Theorem 5.8. Pick integers 0 < n < m such that gcd(m , n , q − 1) � 1, and suppose
that q ≥ 4. If gcd(m − n , q − 1) > 2q(log log q)

log q , then there exists a ∈ F∗q such that
xm + axn permutes Fq . Further let T denote the number of a ∈ Fq for which xm + axn

permutes Fq , and putting d :� q−1
gcd(m−n ,q−1) , we have

q − 2√q + 1
dd−1 − (d − 3)

√
q − 2 ≤ T

(d − 1)! ≤
q + 2√q + 1

dd−1 + (d − 3)
√

q

These results are general, in the sense that they are applicable for a wide class
of binomials. Though they present an overall picture, their accuracy is limited
when it comes to speci�c cases. So, it is naturally motivating to make the above
results precise, at least in speci�c cases.

Our contribution

In our next result, we partially enumerate PBs of the form x(x
2n
−1
3 + a) ∈ F2n [x],

where n � 2s t , a ∈ F2t . For the special case of t � 1, we only prove existence
of these PBs. This can be thought of as a proof of Carlitz’z result ([Car62]),
mentioned earlier, in even characteristic, usingmuch elementary techniques and
with more precision.

Theorem 5.2.3. Let n � 2s t, where t ≥ 1 is odd and s ≥ 1 is any integer. Then

1. for t > 1, the number of PBs of the form x(x
2n
−1
3 + a) ∈ F2n [x], where a ∈ F2t is




2t+1
−7

3 , when t � 0 mod (3);
2t+1
−4

3 , otherwise;

2. for t � 1, there exists a ∈ F2n such that x(x
2n
−1
3 + a) ∈ F2n [x] is a PB.

Interestingly, for t > 1 case, our result indicates that the density of elements
a ∈ F2t such that x(x

2n
−1
3 + a) is a PP is higher than the density of those elements

in F2n . In the former case, density given by Theorem 5.2.3 is ≈ 2
3 , while in the

latter case, density given by Theorem 5.8 is ≈ 2
9 . This information is useful when

such PBs are constructed by randomly sampling a from F2n , which is a method
of choice since there is no known e�cient deterministic algorithm to construct
a s. Our result shows that sampling from smaller sub�eld F2t is more likely to
produce a PB of this form than sampling from the �eld F2n .
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5.3 Proofs

5.3.1 Explicit characterization of PBs of the form
x2t+2 + ax over F22t

Theorem 5.3.1. Let t ≥ 3 and a ∈ F∗22t . Then for t odd, x2t+2 + ax ∈ F22t [x] is a PB i�
a2

t
−1
∈ {ω, ω2

}, i.e., i� a ∈ ωF∗2t

⋃
ω2F∗2t . For t even, there is no such PB of this form.

Proof. First, we observe that for f (x) � x2t+2 + ax to be a PB it is necessary that
a ∈ F∗22t \F

∗

2t ; otherwise, f (x) � 0 has two distinct solutions in F2t . Next, we note

that x2t+2 + ax � x(x
22t
−1

2t−1 + a). So, we check conditions of Theorem 5.1.1 to �nd if
f (x) is a PB. The �rst condition is trivially satis�ed. Let γ be a primitive element
of F22t . Then for 0 ≤ i < 2t

− 1, γ(2t+1)i
∈ F∗2t . So, by the observation made at the

beginning, it follows that the second condition is also satis�ed.

Hence, f (x) is a PB if and only if the last condition of Theorem 5.1.1 is satis�ed,
wherewe need to show that f 2

t+1 is injective over the domain {γi : 0 ≤ i < 2t
−1}.

First, we note that for 0 ≤ i < 2t
−1, (γ2t+1) i runs through all the elements of F∗2t .

Hence, it remains to show that g : F∗2t 7→ F
∗

2t , de�ned as g(α) � α(α + a)2t+1, is
injective over F∗2t . Now, for α ∈ F∗2t , g(α) � α(α+a)2t+1 � α3+(a2

t+a)α2+a2
t+1α.12

We simplify further bymaking the substitution α � β+a2
t +a in g(α). Therefore,

the �nal condition is that f (x) is a PB if and only if the mapping h, de�ned as
h(β) � β3 + (a2

t+1 + a2 + a2
t+1)β, is injective over the domain F2t \ {a2

t + a}. Next,
we consider the following two cases.

Case 1. t odd: Here, we claim that h is injective i� a2
t+1 + a2 + a2

t+1 � 0. For, if
the condition holds then h, de�ned as h(β) � β3, is injective because gcd(3, 2t

−

1) � 1 for odd t. Next, if a2
t+1 + a2 + a2

t+1 , 0 then h(β) � 0 for β � 0 and
β � a2

t + a + a2
2t−1+2t−1 . Now, we have (a2

t + a + a2
2t−1+2t−1)2 � a2

t+1 + a2 + a2
t+1 , 0.

So, a2
t + a + a2

2t−1+2t−1
, 0. Hence, h is not injective.

We note that a2
t+1+a2+a2

t+1 � a2((a2
t
−1)2+a2

t
−1+1). Therefore, a2

t+1+a2+a2
t+1 � 0

i� a2
t
−1 is a root of the equation x′2 + x′ + 1 � 0 in F22t , i.e., a2

t
−1
∈ {ω, ω2

}, i.e.,
a ∈ ωF∗2t

⋃
ω2F∗2t .

12Here, we note that g(y) ∈ F2t [y] as (a2
t + a)2t

� a2
t + a and (a2

t+1)2t
−1 � 1 are both in F2t .
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Case 2. t even: In this case, if a2
t+1 + a2+ a2

t+1 , 0 then by the previous argument
it follows that h is not injective over the domain F2t \{a2

t +a}. If a2
t+1+a2+a2

t+1 � 0
then h, de�ned as h(β) � β3, is not injective, because for even t, 3 | 2t

− 1. �

5.3.2 Explicit characterization of PBs of the form

x
22

s t
−1

2t−1 +1 + ax, a ∈ F∗22t

Theorem 5.2.1. Let s and t be positive integers, and n � 2s t. Then the polynomial
f (x) � x

2n
−1

2t−1 +1 + ax, a ∈ F∗22t , is a PB of F2n if and only if (i) t is odd,(ii) s ∈ {1, 2},
and (iii) a ∈ ωF∗2t ∪ ω

2F∗2t , where ω ∈ F22 is a root of the equation ω2 + ω + 1 � 0.

Our proof of Theorem 5.2.1 is through explicit characterization of permutation
trinomials of the form given in Theorem 5.2.2. More speci�cally, we have:

Theorem 5.2.2. x2s+1 + x2s−1+1 + αx ∈ F2t [x], is a PP of F2t if and only if (i) t is
odd,(ii) α � 1, and (iii) s ∈ {1, 2}.

In the next subsection, we state results that we will use in our proofs. In the
subsequent subsection, �rst we prove Theorem 5.2.2, and then Theorem 5.2.1.

5.3.2.1 Tools

Hermite-Dickson criteria and Lucas’ theorem (Theorem 5.9) are our main tools
in our proof of Theorem 5.2.2; in fact, we use a corollary (Corollary 5.10) of Lu-
cas’ theorem. Finally, we derive Theorem 5.2.1 from Theorem 5.2.2 by applying
Theorem 5.1.1. Next, we state Lucas’ theorem.

Theorem 5.9 (Lucas (see [LN97])). Let p be a prime, and n , r1, r2, . . . , rt be non-
negative integers such that

n � d0 + d1p + d2p2 + . . . + ds ps (0 ≤ di ≤ p − 1,∀ 0 ≤ i ≤ s)

r j � d j0 + d j1p + d j2p2 + . . . + d js ps (0 ≤ d ji ≤ p − 1,∀ 1 ≤ j ≤ t ,∀ 0 ≤ i ≤ s)

Then (
n

r1, r2, . . . , rt

)
�

(
d0

d10, d20, . . . , dt0

)
· · ·

(
ds

d1s , d2s , . . . , dts

)
mod (p)
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We will need the following corollary of the above theorem.

Corollary 5.10.
( n

r1 ,r2 ,...,rt

)
, 0 mod (p) i�

∑t
i�1 di j � d j ,∀ 0 ≤ j ≤ s.

Let a �
∑l

i�0 ai2i be the 2-adic representation of a, then we denote by ai the ith
bit 13 of a. For example, a � 2 has base-2 representation 10; its 0th bit is 0, and
1st bit is 1. Also, let wt(a) , |{i |ai , 0}|.

5.3.2.2 Proof of Theorem 5.2.2

Proof. First, we note that it is su�cient to consider the cases with s < t. For s ≥ t,
f (x) � x2s+1 + x2s−1+1 + αx can be reduced modulo x2t + x to get a polynomial
x2s′+1 + x2s′−1+1 + αx , s′ < t, which induces identical mapping on F2t .

Next, we consider the cases corresponding to s � 0, 1, 2. For these cases we
directly refer to the work of Dickson [Dic96] (see also [LN97]), where all PPs of
degree ≤ 5 for all characteristics were characterized. The characterization is in
terms of reduced or normalized polynomials. A polynomial f (x) of degree n is
normalized if i ) f (x) is monic ii ) f (0) � 0, and iii ) when degree of f (x) is not
divisible by the characteristic, coe�cient of the term of degree n − 1 is zero.

For s � 0, we have f (x) � x2 + x2t−1+1 + αx. Here, we note that f (x) is a PP
i� g(x) � f (x)2 mod (x2t + x) is a PP. Now, g(x) � f (x)2 mod (x2t + x) �

x4 + x3 + α2x2. So, g(x) is in normalized form and it follows from [Dic96] that
g(x) is not a PP of F2t for any t.

Similarly, it also follows from [Dic96] that for the cases s � 1 and s � 2, f (x) is
a PP of F2t i� t is odd and α � 1. In fact, for s � 2, α � 1, f (x) � x5 + x3 + αx is
the Dickson polynomial, D5(x , 1), which is a PP of F2t i� gcd(22t

− 1, 5) � 1; this
is true if and only if t is odd.

Now, we show that f (x) is not a PP for s ≥ 3 by applying the Hermite-Dickson
criteria (Theorem 5.2). For this, we raise f (x) to 2t

−3 and 2t
−4modulo (x2t +x),

and show that the degree of the resulting polynomial is 2t
− 1 in at least one of

the two cases. Here, it is important to note that for any polynomial g(x) ∈ F2t [x],
exactly those terms whose exponents are multiples of 2t

− 1 reduce to the term
with exponent 2t

− 1 when g(x) is reduced modulo x2t + x. More precisely, and
speci�cally for our case, we state the following fact, which we will use later.

13We will use the abbreviation ‘bit’ for binary digit.
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Fact 5.1. Let g(x) �
∑

i ai x i
∈ F2t [x], and let g(x) mod (x2t + x) � b2t−1x2t

−1 +∑2t
−2

i�0 bix i . Then b2t−1 �
∑

j,2t
−1| j

a j

Hence, we will be done if we can show that sum of the coe�cients of the terms,
whose exponents are multiples of 2t

− 1 in the expansion of f (x)2t
−3 or f (x)2t

−4

modulo (x2t + x), is non-zero. To show this, we �rst consider the expansion
f (x)2t

−3 mod (x2t + x) and then f (x)2t
−4 mod (x2t + x). We show that if, in the

�rst case, the sum is zero then it is non-zero in the second case. Though the
approaches are similar in these two cases, they are not exactly same.
Case 1. f (x)2t

−3 mod (x2t + x): First, we point out that coe�cient of a term
whose exponent is `(2t

− 1), ` ≥ 1, in the expansion of f (x)2t
−3 mod (x2t + x)

is (
( 2t
−3

u ,v ,w
)

mod (2))αw , where 0 ≤ u , v , w ≤ 2t
− 3 are such that the following

conditions hold

u + v + w � 2t
− 3, (5.1)

(2s + 1)u + (2s−1 + 1)v + w � `(2t
− 1). (5.2)

Let S � {(u , v , w , `) |u , v , w , ` non-negative, and satis�es (5.1) and (5.2)}. Our
goal is to obtain the sum

∑
(u ,v ,w ,`)∈S

(
( 2t
−3

u ,v ,w
)

mod (2))αw . To do this, we split the

sum into parts according to the value of `, and investigate contribution from
each part.

Henceforth, for this case, whenever we write
( 2t
−3

u ,v ,w
)
, we implicitly assume val-

ues of u , v , w that satisfy, possibly along with some other constraints, (5.1) and
(5.2) for some `, whose value will be clear from the context. Also, we have the
following observation.

Observation 5.1. 1st bit of 2t
− 3 is zero. Hence, if any of u , v , w ∈ {2, 3} mod (4)

then following Corollary 5.10
( 2t
−3

u ,v ,w
)
� 0 mod (2).

Next, (5.2)−(5.1) yields

2s u + 2s−1v � 2t (` − 1) − (` − 3). (5.3)

Clearly, both u and v can not be zero at the same time. Now, since t > s, we have
from (5.3), ` � 3 mod (2s−1). Also, from (5.1) and (5.2), ` ≤ 2s + 1. So, possible
values of ` are 3 and 2s−1 + 3. We consider the following two subcases based on
these two values of `.
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– Subcase 1.1. ` � 3 : In this case, (5.3) yields v � 2t−s+2
− 2u. We consider the

following subcases depending on wt(u).

– Subsubcase 1.1.1. wt(u) > 1: Let the �rst k(k ≥ 1) consecutive bits of u be
1, i.e., u �

∑i1
j�i1−k+1 2

j +
∑i2

j�0 u j2 j , where i1 ≤ t − s , i2 ≤ i1− k−1, u j ∈

{0, 1}, 0 ≤ j ≤ i2, and if k � 1 then at least one u j is non-zero (since
wt(u) > 1). So, v � 2t−s+2

−
∑i1+1

j�i1−k+2 2
j
−

∑i2+1
j�1 u j−12 j . Hence, v �

2i1+2 −
∑i1+1

j�i1−k+2 2
j
−

∑i2+1
j�1 u j−12 j mod (2i1+2), since i1 + 2 ≤ t − s + 2.

Now, 2i1+2 −
∑i1+1

j�i1−k+2 2
j � 2i1−k+2, and

∑i2+1
j�1 u j2 j < 2i2+2 ≤ 2i1−k+1.

So, v mod (2i1+2) ≤ 2i1−k+2, and v mod (2i1+2) > 2i1−k+2
− 2i1−k+1 �

2i1−k+1. Now, we have the following two possibilities.

(i) v mod (2i1+2) < 2i1−k+2: In this case, (i1 − k + 1)-th bit of v is 1,
since v mod (2i1+2) > 2i1−k+1. So, (i1− k+1)-th bits of both u and
v are 1. Hence, following Corollary 5.10,

( 2t
−3

u ,v ,w
)
� 0 mod (2).

(ii) v � 2i1−k+2 mod (2i1+2): In this case, we note that k > 1. Since
otherwise, at least one u j in the sum

∑i2
j�0 u j2 j , appearing in the

binary representation of u, is non-zero. This implies v < 2i1−k+2

mod (2i1+2), a contradiction. Now, for k > 1, (i1 − k + 2)-th bit of
both u and v are 1. So, again

( 2t
−3

u ,v ,w
)
� 0 mod (2).

– Subsubcase 1.1.2. wt(u) ≤ 1: For ` � 3, (5.3) implies u ≤ 2t−s+1. Also, if
u � 1 then v � 2t−s+2

− 2u, i.e., v � 2 mod (4). So, by Observation
5.1,

( 2t
−3

u ,v ,w
)
� 0 mod (2). For the remaining possible values of u, i.e.,

for u � 0 or 2i , with 2 ≤ i ≤ t − s + 1, we examine the bit patterns of
u , v , w in Table 5.1. For better understanding, we illustrate the case
t � 9, s � 3, i � 4 in Table 5.2.

Table 5.1

Values Bit positions with 1
u � 0,
v � 2t−s+2,
w � 2t

− 2t−s+2
− 3

u ∅

v {t − s + 2}

w
{r |r � 0,

2 ≤ r ≤ t − s + 1,
t − s + 3 ≤ r ≤ t − 1}

u � 2i ,
v � 2t−s+2

− 2i+1,
w � 2t

− 2t−s+2 + 2i
− 3

(2 ≤ i ≤ t − s + 1)

u {i}
v {r |i + 1 ≤ r ≤ t − s + 1}

w
{r |r � 0,

2 ≤ r ≤ i − 1,
t − s + 2 ≤ r ≤ k − 1}
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Table 5.2

Value Bit representation
2t
− 3 � 29 − 3 1 1 1 1 1 1 1 1 0 1

u � 24 0 0 0 0 0 1 0 0 0 0
v � 28 − 25 0 0 1 1 1 0 0 0 0 0

w � 29 − 28 + 24 − 3 0 1 0 0 0 0 1 1 0 1

From Table 5.1, it can be observed that for these t − s + 1 values of u,
none of u , v , w has 1 in the 1st bit position; each of u , v , w has 0 in the
t-th bit position. For any other bit position r, where 0 ≤ r ≤ k − 1, r ,
1, exactly one among u , v , w has 1 in the r-th position. Therefore, for
each of these t − s + 1 values of u,

( 2t
−3

u ,v ,w
)
� 1 mod (2).

So, coe�cient of the term with exponent 3(2t
− 1) in the expansion of

f (x)2t
−3 mod (x2t + x) is α2t

−2t−s+2
−3(1 +

t−s+1∑
i�2

α2
i ).

– Subcase 1.2. ` � 2s−1 + 3 : For ` � 2s−1+3, (5.3) yields v � 2t−s+2(2s−2+1)−2u−1.
When u � 0 mod (4), v � 3 mod (4), since s ≥ 3 and t > s. So, v has
1 in the 1st bit position. Hence, by Observation 5.1

( 2t
−3

u ,v ,w
)
� 0 mod (2).

Next, From (5.1) and (5.2), we get w � u − 2t−s+2
− 2. Hence, for u � 1

mod (4), w � 3 mod (4), which, by Observation 5.1, implies
( 2t
−3

u ,v ,w
)
� 0

mod (2). Again using Observation 5.1,
( 2t
−3

u ,v ,w
)
� 0 mod (2) for u � 2, or 3

mod (4).

Hence, considering the above cases, we get that the coe�cient of the term with
exponent 2t

− 1 in the expansion of f (x)2t
−3 mod (x2t + x) is α2t

−2t−s+2
−3(1 +

t−s+1∑
i�2

α2
i ). Therefore, if 1 +

t−s+1∑
i�2

α2
i
, 0 then x2s+1 + x2s−1+1 + x, with 3 ≤ s < t, is

not a PP of F2t . Otherwise, i.e., if

t−s+1∑
i�2

α2
i
� 1, (5.4)

we consider the next case.

Case 2. f (x)2t
−4 mod (x2t+x): Similar to equations (5.1), (5.2), and (5.3) from the

previous case, we get from the expansion of f (x)2t
−4 mod (x2t +x) the following

set of equations (in this case, 0 ≤ u , v , w ≤ 2t
− 4, and ` ≥ 0).

u + v + w � 2t
− 4 (5.5)
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(2s + 1)u + (2s−1 + 1)v + w � `(2t
− 1) (5.6)

2s u + 2s−1v � 2t (` − 1) − (` − 4) (5.7)

As in the previous case, when we write
( 2t
−4

u ,v ,w
)
, we mean values of u , v , w that

satisfy (5.5), (5.6) (and thereby (5.7)) for some `, which is clear from the context.
Here, we have the following observation.

Observation 5.2. 0-th bit and 1st bit of 2t
− 4 are zero. So, if any of u , v , w ∈ {1, 2, 3}

mod (4) then following Corollary 5.10
( 2t
−4

u ,v ,w
)
� 0 mod (2).

Next, following similar considerations as in Case 1, from (5.7), we get for this
case ` ∈ {4, 2s−1 + 4}. Now, for ` � 2s−1 + 4, v � 2t−s+1(2s−1 + 3) − 2u − 1.
Since, t > s, v ∈ {1, 3} mod (4). This implies, by Observation 5.2,

( 2t
−4

u ,v ,w
)
� 0

mod (2). So, we are left with the ` � 4 case. Next, we consider the following
subcases of ` � 4 case.

– Subcase 2.1. wt(u) ≤ 1 : In this case, u � 0, or u � 2i , with 0 ≤ i ≤ t − s + 1
(upper bound on i follows from (5.7)). Now, if i ∈ {0, 1} then following
Observation 5.2,

( 2t
−4

u ,v ,w
)
� 0 mod (2). Also, for i � t − s + 1, v � 2t−s+1.

So, both u and v have 1 in (t − s + 1)-th bit position. This again implies( 2t
−4

u ,v ,w
)
� 0 mod (2) for i � t−s+1. For the remaining values of i, we show

the bit patterns of u , v , w in Table 5.3. In Table 5.4, we illustrate the case
for t � 11, s � 4, i � 5. From Table 5.3 it is clear that

( 2t
−4

u ,v ,w
)
� 1 mod (2)

for these t − s values of u.

Table 5.3

Values Bit positions with 1
u � 0,
v � 2t−s+2 + 2t−s+1,
w � 2t

− 2t−s+2
− 2t−s+1

− 4

u ∅

v {t − s + 2, t − s + 1}

w
{
r |2 ≤ r ≤ t − s ,

t − s + 3 ≤ r ≤ t − 1
}

u � 2i ,
v � 2t−s+2 + 2t−s+1

− 2i+1,
w � 2t

− 2t−s+2
− 2t−s+1 + 2i

− 4
(2 ≤ i ≤ t − s)

u {i}

v
{
r |r � t − s + 2,

i + 1 ≤ r ≤ t − s
}

w

{
r |2 ≤ r ≤ i − 1,

r � t − s + 1,
t − s + 3 ≤ r ≤ k − 1

}
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Table 5.4

Value Bit representation
2t
− 4 � 211 − 4 1 1 1 1 1 1 1 1 1 1 0 0

u � 25 0 0 0 0 0 0 1 0 0 0 0 0
v � 29 + 28 − 26 0 0 1 0 1 1 0 0 0 0 0 0

w � 210 + 28 + 25 − 4 0 1 0 1 0 0 0 1 1 1 0 0

– Subcase 2.2. wt(u) > 1 : Let the �rst k(k ≥ 1) consecutive bits of u be 1, i.e.,
u �

∑i1
j�i1−k+1 2

j +
∑i2

j�0 u j2 j , where i1 ≤ t − s + 1, i2 ≤ i1 − k − 1, u j ∈

{0, 1}, 0 ≤ j ≤ i2, and if k � 1 then at least one u j is non-zero. Next, we
consider the following subcases.

– Subsubcase 2.2.1. i1 ≤ t − s : We note that v � 2t−s+2 + 2t−s+1
− 2u, i.e.,

v � 2t−s+1 + (2t−s+2
− 2u). Now, from the analysis of the Subsubcase

1.1.1 (wt(u) > 1) of Case 1, we have that both u and 2t−s+2
− 2u have

1 in the r-th bit position, where r ≤ i1 ≤ t − s. Then it is easy to see
that both u and 2t−s+2 +2t−s+1

− 2u has 1 in the same r-th bit position.
So, following Corollary 5.10,

( 2t
−4

u ,v ,w
)
� 0 mod (2) in this case.

– Subsubcase 2.2.2. i1 � t − s + 1 : We have the following two possibilities.

(i) wt(u − 2t−s+1) ≥ 2: So, v � 2t−s+2 + 2t−s+1
− 2u � 2t−s+1

− 2u′,
where u′ � u − 2t−s+1, and wt(u′) ≥ 2. Let u′ � 2 j +

∑ j−1
m�0 um2m ,

um ∈ {0, 1}, and at least one um � 1. It is clear that j ≤ t − s − 1;
otherwise, v < 0. But this is equivalent to the Subsubcase 1.1.1
(wt(u) > 1) of Case 1, which implies u′ and v has 1 in the same
rth bit position for some r ≤ t − s −1. This, in turn, implies u and
v has 1 in the same (as the previous) r-th bit position. Hence, we
get that

( 2t
−4

u ,v ,w
)
� 0 mod (2) in this case as well.

(ii) wt(u − 2t−s+1) � 1: Let us assume that u � 2t−s+1 + 2 j , where
2 ≤ j ≤ t − s. In Table 5.5, we consider bit patterns of u , v , w for
this case. Bit patterns from Table 5.5 imply that for these t − s − 1
values of j,

( 2t
−4

u ,v ,w
)
� 1 mod (2).

Table 5.5

Values Bit positions with 1
u � 2t−s+1 + 2 j ,
v � 2t−s+1

− 2 j+1,
w � 2t

− 2t−s+2 + 2 j
− 4

(2 ≤ j ≤ t − s)

u { j, t − s + 1}
v {r | j + 1 ≤ r ≤ t − s}

w
{
r |2 ≤ r ≤ j − 1,

t − s + 2 ≤ r ≤ t − 1
}
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So, considering the above possibilities, we conclude that the coe�cient of the
term with exponent 4(2t

− 1), in the expansion of f (x)2t
−4 mod (x2t + x), is

α2
t
−2t−s+2

−2t−s+1
−4(1 +

t−s∑
i�2

α2
i
) + α2t

−2t−s+2
−4

t−s∑
i�2

α2
i
. (5.8)

Now, by employing (5.4) and simplifying, we get that (5.8) equals α2t
−2t−s+2+2t−s+1

−4,
which is non-zero. From earlier discussion, coe�cient of the termwith exponent
(2s−1 + 4)(2t

− 1), in the expansion of f (x)2t
−4 mod (x2t + x), is 0. So, the coe�-

cient of the termwith exponent 2t
−1, in the expansion of f (x)2t

−4 mod x2t + x,
is clearly non-zero. �

5.3.2.3 Proof of Theorem 5.2.1

Proof. We apply Theorem 5.1.1 by setting g(x) � x(x
2n
−1

2t−1 + a). Since r � 1 in this
case, condition (i) of Theorem 5.1.1 is satis�ed. Next, we observe that condition
(ii) of Theorem 5.1.1 is satis�ed if and only if a ∈ F∗22t \F

∗

2t . So, g(x) is a PP if and
only if condition (iii) of Theorem 5.1.1 is satis�ed for a ∈ F∗22t \ F

∗

2t .

Let γ be a primitive element of F2n . Then β � γ
2n
−1

2t−1 is a primitive element of
F2t . So, for all 0 ≤ i < j < 2t

− 1, g(γi)
2n
−1

2t−1 , g(γ j)
2n
−1

2t−1 is equivalent to the
condition

βi (βi + a)
2n
−1

2t−1 , β j (β j + a)
2n
−1

2t−1 , for a ∈ F∗22t \ F
∗

2t and i , j.

For a ∈ F∗22t \ F
∗

2t , the above condition implies x(x + a)
2n
−1

2t−1 is a PP of F2t . Hence,

g(x) is a PP of F2n if and only if x(x + a)
2n
−1

2t−1 is a PP of F2t for a ∈ F∗22t \ F
∗

2t . Let
F22t � F2t (ζ), where ζ is a root of the irreducible polynomial x2 + x + θ ∈ F2t [x].
So, we have

ζ + ζ2t
� 1 (5.9)

Hence, a ∈ F∗22t \ F
∗

2t can be written as a � b + cζ, where b , c ∈ F2t , c , 0. So,

x(x + a)
2n
−1

2t−1 � x(x + b + cζ)
22

s t
−1

2t−1

� x(x + b + cζ)2
(2s
−1)t+2(2s

−2)t+···+1

� x(x + b + cζ)2
(2s
−1)t

(x + b + cζ)2
(2s
−2)t
. . . (x + b + cζ)
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� x
2s−1∏
i�1

(x + b + cζ2
t
)(x + b + cζ)

(By noting that for odd `, (x + b + cζ)2`t
� (x + b + cζ2

t ), and for even `,

(x + b + cζ)2`t
� (x + b + cζ).)

� x
2s−1∏
i�1

(x2 + cx + b2 + bc + c2ζ + c2ζ2)

(Using Equation 5.9, and after some regular calculations.)

� c2
s *

,
x2s+1 + x2s−1+1 +

(
b2 + bc + c2ζ + c2ζ2

c2

)2s−1

x+
-

(By the transformation x 7→ cx.)

Since b , c , and ζ2 + ζ � θ ∈ F∗2t , we have b2+bc+c2ζ+c2ζ2
c2 ∈ F∗2t . Next, by apply-

ing Theorem 5.2.2 on the polynomial x2s+1 + x2s−1+1 +
(

b2+bc+c2ζ+c2ζ2
c2

)2s−1

x, we

get that x(x + a)
2n
−1

2t−1 is a PP of F2t if and only if (i) t is odd,(ii) s � 1, 2, and
(iii) b2+bc+c2ζ+c2ζ2

c2 � 1, i.e., b2 + bc + c2(1 + ζ + ζ2) � 0.

Now, we have

a2
t+1 + a2 + a2

t+1
� (b + cζ)2

t+1 + (b + cζ)2 + (b + cζ)2
t+1

� ((b + cζ)2
t
)2 + (b + cζ)2 + (b + cζ)(b + cζ)2

t

� (b + c(1 + ζ))2 + (b + cζ)2 + (b + cζ)(b + c(1 + ζ))

(By employing Equation 5.9.)

� b2 + bc + c2(1 + ζ + ζ2)

So, condition (iii) above is equivalent to a2
t+1 + a2 + a2

t+1 � 0.

Finally, as in the proof of Theorem5.3.1, wemake the above condition succinct by
noting that a2

t+1+a2+a2
t+1 � a2((a2

t
−1)2+a2

t
−1+1). Therefore, a2

t+1+a2+a2
t+1 � 0 if

and only if a2
t
−1 is a root of the equation x′2+x′+1 � 0 in F22t , i.e., a2

t
−1
∈ {ω, ω2

},
i.e., a ∈ ωF∗2t

⋃
ω2F∗2t .

�
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5.3.3 Existence and enumeration results of permuta-
tion binomials of the form x

2n
−1
3 +1 + ax ∈ F2n[x]

Theorem 5.2.3. Let n � 2s t, where t ≥ 1 is odd and s ≥ 1 is any integer. Then

1. for t > 1, the number of PBs of the form x(x
2n
−1
3 + a) ∈ F2n [x], where a ∈ F2t is




2t+1
−7

3 , when t � 0 mod (3);
2t+1
−4

3 , otherwise;

2. for t � 1, there exists a ∈ F2n such that x(x
2n
−1
3 + a) ∈ F2n [x] is a PB.

5.3.3.1 Tools

Main tool in our proof of Theorem 5.2.3 is Theorem 5.1.1 and some properties
of the Norm map. More formally, given an extension Fqm of Fq , the Norm map

NFqm /Fq : Fqm 7→ Fq is de�ned as NFqm /Fq (α) , α
qm
−1

q−1 . We will use the following
known properties (see [LN97] for details) of the Norm map.

1. For α, β ∈ Fqm , NFqm /Fq (αβ) � NFqm /Fq (α)NFqm /Fq (β).

2. For β ∈ F∗q , |{α ∈ F∗qm |NFqm /Fq (α) � β}| � qm
−1

q−1 .

3. For r |m, NFqm /Fq (α) � NFqr /Fq (NFqm /Fqr (α)).

4. For α ∈ Fq , NFqm /Fq (α) � αm ; this essentially follows from property 1.

5.3.3.2 Proof of Theorem 5.2.3

Proof. Let γ be a primitive element of F2n and ω � γ
2n
−1
3 . So, ω is a primitive cube

root of unity, i.e., F∗22 � {1, ω, ω2
}. Hence, by Theorem 5.1.1, x(x

2n
−1
3 + a), a ∈

F2n \ F22 , is a PB of F2n if and only if

(1 + a)
2n
−1
3 , ω(ω + a)

2n
−1
3 , ω2(ω2 + a)

2n
−1
3

, are all distinct, i.e.,
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Condition 5.1.

NF2n /F22
(1 + a), ωNF2n /F22

(ω + a), ω2NF2n /F22
(ω2 + a)

are all distinct.

Now, we consider the two cases separately.

Case 1. t > 1: First, we settle the following claims.

Claim 5.1. For α ∈ F∗2t , NF22t /F22
(α) � 1.

Proof. For α ∈ F∗2t , NF22t /F22
(α) � α

22t
−1
3 � α

(2t
−1)(2t+1)

3 � 1, since for odd t,
3 �� (2t + 1). �

Claim 5.2. For α ∈ F∗2t , β ∈ F
∗

22 , if NF2n /F22
(α + ω) � β, then NF2n /F22

(α + ω2) � β2.

Proof. For β ∈ F22 and t odd, we have

β2 � β2
t
� (NF2n / F22

(α + ω))2
t

� NF2n / F22
((α + ω)2

t
) (follows from property 1 of Norm map)

� NF2n / F22
((α + ω2t

))

� NF2n / F22
((α + ω2)) �

Next, we note that cosets of F2t in F22t can be written as F2t + αω, where α ∈ F∗2t .
Our next claim is that the Norm NF22t /F22

(.) maps equal number of elements
from every coset of F2t in F22t to a �xed element in F22 .

Claim 5.3. ∀α ∈ F∗2t , β ∈ F
∗

22 , |{ζ ∈ F2t |NF22t /F22
(ζ+αω) � β}| � |{ζ ∈ F2t |NF22t /F22

(ζ+
ω) � β}|.

Proof. For ζ ∈ F2t we have

NF22t /F22
(ζ + αω) � NF22t /F22

(α(α−1ζ + ω))

� NF22t /F22
(α)NF22t /F22

((α−1ζ + ω))

� NF22t /F22
((α−1ζ + ω)), since NF22t /F22

(α) � 1 for α ∈ F∗2t

So, the claim follows by the bijectivity of the mapping ζ 7→ α−1ζ for α ∈ F∗2t . �
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Fact 5.2.

NF2n /F22
(ω) �




1 if t � 0 mod (3),

ω if t � 1 mod (3) and s is odd, or t � 2 mod (3) and s is even,

ω2 if t � 1 mod (3) and s is even, or t � 2 mod (3) and s is odd;

and similarly

NF2n /F22
(ω2) �




1 if t � 0 mod (3),

ω2 if t � 1 mod (3) and s is odd, or t � 2 mod (3) and s is even,

ω if t � 1 mod (3) and s is even, or t � 2 mod (3) and s is odd.

Proof. Following property 4 of Norm, we have NF2n /F22
(ω) � ω2s−1t , also (by

property 1) NF2n /F22
(ω2) � (NF2n /F22

(ω))2. The result follows from these two
observations. �

For a ∈ F2t \ {F22 }, a + 1 ∈ F∗2t . Hence, from Claim D.1 and property 3 of Norm it
follows that NF2n /F22

(1 + a) � NF22t /F22
(NF2n /F22t (1 + a)) � NF22t /F22

((1 + a)2s−1) �

(NF22t /F22
(1 + a))2s−1

� 1. Also, following Claim 5.2, NF2n /F22
(a + ω2) � 1 when

NF2n /F22
(a + ω) � 1, and NF2n /F22

(a + ω2) � ω2 when NF2n /F22
(a + ω) � ω. Hence,

Condition 5.1 is satis�ed only in the cases when (i) NF2n /F22
(a + ω) � 1, or

(ii) NF2n /F22
(a +ω) � ω. But cardinality of the set {a ∈ F2t \F22 | NF2n /F22

(a +ω) �
1 or ω} is given by 2t

−2− |{a ∈ F2t \F22 | NF2n /F22
(a+ω) � ω2

}. So, it is su�cient
to �nd cardinality of the set {a ∈ F2t \ F22 | NF2n /F22

(a + ω) � ω2
}.

From property 2 of Norm and Claim 5.3 it follows that

|{a ∈ F2t |NF22t /F22
(a + ω) � ω}| � |{a ∈ F2t | NF22t /F22

(a + ω) � ω2
}|

�
1

2t − 1
22t
− 1
3

�
2t + 1
3 .

Further, by the previous argument, NF2n /F22
(a+ω) � (NF22t /F22

(a+ω))2s−1 . Hence,
NF2n /F22

(a+ω) � NF22t /F22
(a+ω) if s is odd, and NF2n /F22

(a+ω) � NF22t /F22
(a+ω2)

if s is even. So, for both the cases we have |{a ∈ F2t | NF2n /F22
(a +ω) � ω}| � 2t+1

3 .
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However, following Fact 5.2, either NF2n /F22
(0 + ω) � ω2 or NF2n /F22

(1 + ω) � ω2

(but not both) when t , 0 mod (3). Hence, we have

|{a ∈ F2t \ F22 | NF2n /F22
(a + ω) � ω2

}| �




2t+1
3 , whent � 0 mod (3)

2t
−2
3 , otherwise.

Therefore, the result follows.

Case 2. t � 1: Here, we consider the following two subcases.

– Subcase 2.1. s � 3: In this case, we have n � 8 and the �eld is F28 . By direct
computation it can be shown that there exists an a ∈ F28 \ F22 such that
NF28/F22 (1 + a) � NF28/F22 (ω + a) � NF28/F22 (ω2 + a) � 1. Therefore, we have

{(1 + a)
2n
−1
3 , ω(ω + a)

2n
−1
3 , ω2(ω2 + a)

2n
−1
3 } � {1, ω, ω2

}.

– Subcase 2.2. s ≥ 4: First, we note that if α ∈ F28 then

NF22s /F22
(α) � NF28/F22 (NF22s /F28

(α)) � NF28/F22 (α2
s−3

) � (NF28/F22 (α))2
s−3
.

This implies that for a obtained in the previous subcase, we have

NF22s /F22
(1 + a) � NF22s /F22

(ω + a) � NF22s /F22
(ω2 + a) � 1.

Consequently,

{(1 + a)
2n
−1
3 , ω(ω + a)

2n
−1
3 , ω2(ω2 + a)

2n
−1
3 } � {1, ω, ω2

}.

Hence, the result follows. �

Remark 5.11. 1. There is an error in [SBÇ12] in the expression obtained for
Case 1 (t > 1), which we have corrected here.

2. For Case 2, a (whose existence has been proven) essentially belongs to F28 .
For this a ∈ F28 , we obtain a PB x(x

2n
−1
3 + a) ∈ F2n [x] for all n � 2s , s ≥ 3.
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5.4 Conclusion

In this part of the thesis, motivated by their theoretical as well as practical sig-
ni�cance, we have considered PBs over �nite �elds of even characteristic. There
are very few classes or PBs for which explicit characterization is known. First,
we have formalized the idea of explicit characterization in terms of computa-
tional complexity of evaluating corresponding necessary and su�cient condi-
tions. Then we have explicitly characterized permutation binomials of the form

x
22

s t
−1

2t−1 +1 + ax, a ∈ F∗22t . These extends very recent results of [WLHZ14, BZ15b,
BZ15a] in various directions. It would be interesting to explore permutation
properties of this class of binomials by removing the restriction a ∈ F∗22t , and
also for analogous setting in odd characteristic.

Our second result is on the existence and enumeration of the class of permuta-
tion binomials of the form x

2n
−1
3 +1+ax ∈ F2n [x]. Our result is, in fact, Carlitz’s re-

sult [Car62] for even characteristic, although using only elementary techniques
(Carlitz’s proof uses heavy machinery from algebraic geometry) and with more
precision, in the sense that for all n, which are not powers of 2, we have given
exact number of a ∈ F2t such that x

2n
−1
3 +1 + ax is a PB of F2n . Like in the previous

case, it would be interesting to remove the restriction a ∈ F2t . Also, from practi-
cal point of view it is worth studying relevant cryptographic properties of these
permutation binomials with regard to their use in S-boxes of block ciphers.
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Deferred Details

Proofs

Proposition 5.1.1. The binomial f (x) � xm + axn
∈ Fq[x], with m > n, can be

transformed modulo (xq
−x), into a binomial of the form xr (x

q−1
d +a) for some d | q−1.

Proof. We have f (x) � xn (xm−n + a). Let gcd(m − n , q − 1) � e. Then, there are
s , t ∈ Z such that s(m − n) + t(q − 1) � e. So, s( m−n

e ) + t( q−1
e ) � 1, and we have

gcd(s , ( q−1
e )) � 1. Let ` ∈ Z be such that ` � s mod ( q−1

e ), and gcd(`, e) � 1.
Indeed, the following argument shows that such an integer exists.

Since gcd(s , ( q−1
e )) � 1, it follows from Dirichlet’s theorem (see [Apo76]) that

there are in�nitely many primes of the form s + u( q−1
e ), u ∈ N. However, e has

only �nitelymanyprimedivisors. So, there is a prime p - e of the form s+u( q−1
e ),

with u ∈ N, for which gcd(p , e) � 1.

Therefore, we have gcd(`, q − 1) � 1. Hence, y 7→ y` is a bijection of Fq . Now,
by applying this transformation we have f (y`) � yn` (y`(m−n) + a) � yn` (ye + a)
mod (yq

− y). The polynomial in the last expression is of the form xr (x
q−1

d + a)
for de � q − 1. �

135
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RemarkD.1. Proof of Proposition 5.1.1 does not provide any e�cient determinis-
tic algorithm 1 for transforming any arbitrary binomial f (x) � xm + axn

∈ Fq[x],
with m > n, into a binomial of the form xr (x

q−1
d + a). However, it certainly

indicates that permutation properties of binomials are information theoretically
related to the permutation properties of binomials of the form xr (x

q−1
d + a).

Proposition 5.1.2. For integers r > 0, and d | q−1, r-th order CMPs of index d are the
polynomials of the form xr f (x

q−1
d ). Moreover, if the mapping f r

a0 ,...,ad−1 is represented

by the unique polynomial xr
d−1∑
i�0

bix
i(q−1)

d , then we have the following relations

(i) a j �
d−1∑
i�0

biγ
ji(q−1)

d , j ∈ {0, . . . , d − 1},

(ii) bi �
1
d

d−1∑
j�0

a jγ
− ji(q−1)

d , i ∈ {0, . . . , d − 1},

where γ is a primitive element of Fq .

Proof. First, we settle the following claim.

Claim D.1. Let q − 1 � de, where d , e ∈ N. A mapping f : Fq 7→ Fq is r-th order
cyclotomic mapping of index d if and only if f (αx) � αr f (x) for all x ∈ Fq and for all
α ∈ Fq such that αe � 1.

Proof. One direction (only if) is clear from the de�nition. For the other direction,
let C j be a coset of C0, and β, ζ ∈ C j . Then clearly β � αζ for some α ∈ C0, i.e.,
for some α such that αe � 1. Then we have f (β)

βr �
f (αζ)
(αζ)r �

αr f (ζ)
(αζ)r �

f (ζ)
ζr . This

implies f is cyclotomic mapping of order r and index d. �

Next, let f r
a0 ,...,ad−1 (x) �

∑
ci x i

∈ Fq[x]. Hence, by Claim D.1, it follows that
αr f r

a0 ,...,ad−1 (x) �
∑

ciαix i for all x ∈ Fq , and for all α ∈ C0. This is true if and
only if αi−r � 1 for all α ∈ C0, and for all i such that ci , 0. This is possible if and
only if e | i − r, i.e., i � r + `( q−1

d ) for some ` ∈ N. Hence, the �rst part is proven.

Now, an element α ∈ C j can be written as α � γ j+id for some 0 ≤ i < q−1
d . So,

from de�nition a jαr � αr
d−1∑
i�0

biγ
ji(q−1)

d . Hence, (i) follows.

1Here, the notion of e�cient algorithm is same as discussed before, i.e., an algorithm that
runs in time O(pol y(log q)).
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In order to show (ii), we note that the coe�cient matrix for the set of equations

a j �

d−1∑
i�0

biγ
ji(q−1)

d , j ∈ {0, . . . , d − 1}

is the Vandermonde matrix V � (γ
ji(q−1)

d ). This matrix is non-singular, and its
inverse is given by V−1 � 1

d (γ
− ji(q−1)

d ). �

Theorem 5.1.1 ([LW91]). Let d , r be positive integers and q be a prime power such
that d divides q − 1. Let γ be a primitive element in Fq , and f ∈ Fq[x]. Then g(x) �

xr f (x
q−1

d ) is a PP of Fq if and only if the following conditions are satis�ed.

1. gcd(r, q−1
d ) � 1,

2. for all i, with 0 ≤ i < d, f (γi q−1
d ) , 0,

3. for all j, with 0 ≤ i < j < d, g(γi)
q−1

d , g(γ j)
q−1

d .

Proof. Let g(x) � xr f (x
q−1

d ) be a PP. Then gcd(r, q−1
d ) � 1; otherwise, there are

two elements α1 , α2 ∈ Fq of order d such that g(α1) � g(α2). We also note
that f (γi q−1

d ) , 0 for 0 ≤ i < d; otherwise, g(α) � 0 for two distinct values of α.
So, assuming conditions (1) and (2), we need to show that condition (3) holds if
and only if g(x) is a PP. Now, according to condition (1), gcd(r, q−1

d ) � 1. Hence,
there are s , t ∈ Z such that

sr + t
q − 1

d
� 1. (D.1)

We �rst prove the if part and then only-if part.

(If) Let conditions (1) and (2) above hold. We show that if g(x) � xr f (x
q−1

d )
is not a PP then condition (3) does not hold. Let 0 ≤ i < j ≤ q − 2 be such
that γir f (γ

i(q−1)
d ) � γ jr f (γ

j(q−1)
d ). Also, let i1 � i mod (d), and j1 � j mod (d).

Then we claim that i1 , j1; otherwise, f (γ
i(q−1)

d ) � f (γ
j(q−1)

d ) , 0 (last inequality
follows from condition (2)). Hence, we have

γ(i− j)r
� 1

⇒γ(i− j)sr
� 1

⇒γ(i− j)(1−t q−1
d )

� 1

⇒γi− j
� 1 since d | i − j.
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The last condition is impossible since γ is a primitive element, and 0 ≤ i <

j ≤ q − 2. Now, from γir f (γ
i(q−1)

d ) � γ jr f (γ
j(q−1)

d ) we have (γir f (γ
i(q−1)

d ))
q−1

d �

(γ jr f (γ
j(q−1)

d ))
q−1

d . But, then we have (γi1r f (γ
i1 (q−1)

d ))
q−1

d � (γ j1r f (γ
j1 (q−1)

d ))
q−1

d for
0 ≤ i1 < j1 < d. This contradicts condition (3).

(Only if) Here, we show that if condition (3) does not hold then g(x) is not a PP.

Let i , j, with 0 ≤ i < j < d, be such that (γir f (γ
i(q−1)

d ))
q−1

d � (γ jr f (γ
j(q−1)

d ))
q−1

d .

Let ζ � γ
q−1

d . So, ζ is a primitive d-th root of unity. So, we have

(γir f (ζi))
q−1

d � ζ jr ( f (ζ j))
q−1

d

⇒ζ jr
�

(
γir f (ζi)

f (ζ j)

) q−1
d

⇒ζ j(1−t q−1
d )

�

(
γirs f (ζi)s

f (ζ j)s

) q−1
d

(raising both sides to s and substituting D.1 in l. h. s.)

⇒ζ j
�

(
γirs f (ζi)sζt j

f (ζ j)s

) q−1
d

.

Let η �

(
γirs f (ζi )sζ jt

f (ζ j )s

)
. Then it follows that η , γi ; otherwise, we have ζi � ζ j ,

where 0 ≤ i < j < d. But, this is not possible since ζ is a primitive d-th root
of unity. Next, we substitute the value of η and do some regular calculation to
have the following relation.

ηr f (η
q−1

d ) � ηr f (ζ j) � γir f (γ
i(q−1)

d ). (D.2)

(D.2) shows that g(x) is not a PP. �

Remark D.2. Theorem 5.1.1 was proven earlier in various other works [LW91,
Wan07, Zie08, Zie09]. Main technique in those proofs is counting. In our proof
of the theorem, we have shown explicit pair of distinct elements as “witnesses”
of non-injectivity of g(x)

q−1
d (in the if part) and g(x) (in the only if part).

Orthomorphisms and Latin squares

A latin square L of order n over an alphabet S of size n is an n×n arraywith entries
from S, such that each element of S appears exactly once in each row and each
column of L. An immediate example of a latin square of order n (for any n) is



Appendix D 139

Cayley table of any group of order n. Latin squares L1 and L2 of same order
are said to be orthogonal if each ordered pair of elements of S occurs exactly
once among the pairs (L1(i , j), L2(i , j)), where 1 ≤ i , j ≤ n. Let h : G 7→ G
be a mapping, where G is a �nite abelian group of order n. We observe that
L(x , y) � h(x) + y is a latin square if and only if h is a permutation. We further
observe that two latin squares L1, L2 given by the entries L1(x , y) � h1(x) + y

and L2(x , y) � h2(x) + y, where h1, h2 : G 7→ G, are mutually orthogonal if and
only if h1(x) − h2(x) is a permutation. In [Zie13], the author used this method
to construct complete sets2 of MOLS of order q2 and q3 for di�erent values of
q. As an example, Theorem 5.3.1 shows that x2t+2 + ax over F22t is a PB if and
only if a ∈ ωF∗2t ∪ ω

2F∗2t . Now, it follows that for such a �xed PB, the set of
22t
−1 PBs, given by {bx2t+2+acx |b , c ∈ F2t ,with both not zero at the same time},

corresponds to a complete set of MOLS.

2A set of n − 1 MOLS (maximum possible) of order n is termed complete.
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