
INDIAN STATISTICAL INSTITUTE

KOLKATA

Facets of Quantum Computation – Practice and

Theory

Submitted in partial fulfillment of requirements

for the degree of

M. Tech. in Computer Science

by

Chandra Sekhar Mukherjee

Roll No: CS1908

Guide:

Subhamoy Maitra

Indian Statistical Institute, Kolkata

Batch: 2019-2021

Declaration

I declare that this thesis has been composed by myself and that
this work has not been submitted for any other qualification. I con-
firm that the work submitted is my own, or part of jointly authored
publications that has been included. My contribution and those of
the other authors to this work have been explicitly indicated in the
“Publications from the Dissertation” page. I further confirm that
appropriate credit has been given where reference has been made to
the work of others.

Chondienekler Muklojee

Chandra Sekhar Mukherjee,

M. Tech. CS, 2nd year,

Roll: CS1908,

Indian Statistical Institute.

2

Certificate

This is to certify that the dissertation titled “Facets of Quantum
Computation – Practice and Theory” submitted by Chandra Sekhar
Mukherjee to Indian Statistical Institute, Kolkata in partial fulfil-
ment for the award of the degree of Master of Technology in Com-
puter Science is a bonafide record of work carried out by him under
my supervision and guidance. The dissertation has fulfilled all the
requirements as per regulation of this institute and, in my opinion,
has reached the standard needed for submission.

Subhamoy Maitra,

Professor, Applied Statistics Unit,

Indian Statistical Institute.

3

Acknowledgment

I am very fortunate to have Professor Subhamoy Maitra as my advisor, who continually sup-

ported me and pushed me throughout my time in Indian Statistical Institute and always encouraged

me to trot into uncharted territories. His support in academics and beyond, and availability in help-

ing me with doubts and ideas has been central to completion of this work.

I am also thankful to my collaborators Dibyendu Roy and Vineet Gaurav for the many valuable

discussions.

Most importantly I would like to acknowledge my friends and family, especially my mother, for

believing in me through varying times.

4

Dedication

I dedicate this to my father, as a step towards the dream we shared.

5

Abstract

Quantum computation has seen rapid development both in theory as well as hardware and imple-

mentation in the past three decades. Against this backdrop we study both the implementational

and theoretical aspects of quantum computation.

In Part I we approach the problem of efficient implementation of quantum algorithm. The

exact requirement of CNOT and single qubit gates needed for optimal implementation in a given

architecture is one of the central problems in this computational paradigm. Specifically, we study

preparation of Dicke states (|Dn
k 〉) using concise realizations of partially defined unitary transfor-

mations. We further optimize the state of the art deterministic Dicke state preparation circuit in

terms of CNOT and single qubit gates. We explain theoretical ideas in reducing the gate counts

and observe how these improvements are reflected in actual implementation of the circuits. To

emphasize the advantages, we describe the circuit for preparing |D4
2〉 on the “ibmqx2” machine of

the IBM QX service. Our approach shows that the error induced due to noise in the system is lesser

in comparison to the existing works. We conclude by describing the CNOT map of the generic |Dn
k 〉

preparation circuit and analyze different ways of distributing the CNOT gates in the circuit and

its effect on the induced error in the Noisy Intermediate Scale Quantum (NISQ) environment.

In Part II we concentrate on the query complexity model of evaluating functions for unknown

inputs in a setup where the value of the input variables can only be accessed by making query to

an oracle. First we study the separation between the deterministic query complexity (D(f)) and

exact quantum query complexity QE(f) of query friendly functions (QF). These are functions on

n variables with minimum D(f) value. We observe that there is a non separable QF function f

(D(f) = QE(f)) for all values of n. Additionally, for some values of n all QF functions are non-

6

separable. Finally we construct separable QF functions for some other values of n via the parity

method, which is the most well known exact quantum query algorithm. We further show that for

rest of the values of n no separation can be obtained through parity decision tree model.

Next we look into obtaining separation between D(f) and QE(f) that is not reachable via any

parity method (D
(2)
⊕ (f)). In this direction we study the algebraic normal form of Boolean (ANF)

functions to obtain separation between D(f) and QE(f) beyond parity for classes of non-symmetric

functions. We combine existing results on Fourier analysis along with novel exact quantum algo-

rithmic techniques that we design to obtain a class of direct sum based functions of size Ω
(√

2
√
n
)

functions for which we have QE(f) < D
(2)
⊕ (f) < D(f) for which we design optimal quantum algo-

rithm. In fact our algorithms are more efficient than any possible general parity method, a model in

which one can obtain parity of any number of variables in one query. To the best of our knowledge,

this is the first family of algorithms beyond generalized parity (and thus parity) for a large class of

non-symmetric functions.

Finally we use our novel ANF based algorithmic techniques to obtain a d5n
8 e-query exact quan-

tum algorithm for a set of Maiorana-McFarland type bent functions of size 22
n
4 functions. This

is better than the best parity method we could obtain for these functions, which has a query

complexity of d3n
4 e.

7

Publications from the Dissertation

The following papers have been communicated as outcomes of this
dissertation work:

1. C. S. Mukherjee, S. Maitra, V. Gaurav and D. Roy, “Preparing Dicke States on a Quantum

Computer,” in IEEE Transactions on Quantum Engineering, DOI: 10.1109/TQE/2020.3041479

(2020).

2. C. S. Mukherjee and S. Maitra, “ Parity decision tree in classical–quantum separations for cer-

tain classes of Boolean functions,” in Quantum Information Processing, DOI: 10.1007/s11128-

021-03158-1 (2021).

3. C. S. Mukherjee and S. Maitra, “ Exact Quantum Query Algorithms Outperforming Parity

– Beyond The Symmetric functions, ” ArXiv: 2008.06317

8

Contents

Declaration 2

Certificate 4

Acknowledgment 5

Dedication 6

Abstract 7

Publications from the Dissertation 9

Layout 13

I Quantum Circuits and Architecture Dependence 16

1 Optimizing Quantum Hardware – Dicke State Preparation 17

1.1 Introduction . 18

1.1.1 Organization . 20

1.2 Preliminaries . 22

1.2.1 Notations . 22

1.2.2 Maximally Partial Unitary Transformation 22

1.2.3 The Dicke State Preparation Circuit Cn,k . 23

1.3 Example of Optimality for a Maximally Partial Unitary Transformation 25

1.4 Improving the implementation of |Dn
k 〉 . 29

9

1.4.1 Replacing CRy with CU . 31

1.4.2 The µ and M transformations that act like Identity 31

1.4.3 The first non identity M transformation in SCSnk 34

1.5 Actual Implementation and architectural constraints 37

1.5.1 Architectural Constraints . 37

1.5.2 Implementation and Improvement for |D4
2〉 39

1.5.3 Modifications leading to different CNOT error distributions 43

1.5.4 The CNOT map of Ĉn,k . 48

1.6 Conclusion . 51

1.7 Code for C4,2 . 54

1.8 Code for Ĉ4,2 . 56

II The Query Complexity Model 57

1 Background and Organization 58

1.1 The Ox Query Model . 60

1.2 Outline . 63

2 Query Friendly Functions 65

2.1 Introduction . 66

2.1.1 Organization & Contribution . 66

2.2 Decision Trees and No-separation results . 67

2.2.1 Query Friendly Functions . 70

2.2.2 Extending the result for n 6= 2k − 1 . 71

2.3 Parity Decision Trees and Separation results . 73

2.3.1 Separable Query Friendly functions . 76

2.4 Conclusion . 82

3 Novel Exact Quantum Query Algorithms from ANF 86

3.1 Introduction . 87

3.1.1 Organization and Contribution . 90

3.2 Warm up . 91

10

3.2.1 Parity Decision Tree Method . 92

3.2.2 Granularity . 93

3.2.3 Perfect Direct Sum and Beyond . 94

3.2.4 Setup for Quantum Query Algorithm . 94

3.2.5 Some Unitary Matrices . 96

3.3 The pdsp class . 98

3.3.1 D(f) and D⊕(f) for pdsp: . 100

3.3.2 The Exact Quantum Query Algorithms for pdsp 102

3.4 Conclusion and Future Directions . 114

4 Results on Maiorana-McFarland Type Bent Functions. 118

4.1 Introduction . 119

4.2 On Decision and Parity Decision Tree Complexity 120

4.3 A Novel Exact Quantum Query Algorithm for a Subclass of Bn 123

4.3.1 Beyond the Identity Permutation . 124

4.3.2 The number of functions evaluated: . 127

4.4 Future Directions . 128

11

Layout

Quantum Computation is one of the most fundamental aspects of quantum mechanics. Coined by

the renowned Richard Feynman, quantum computation has been one of the most widely studied

and fast developing field in computer science. It began to gain attention with the famous Shor’s

algorithm for factoring and Simon’s algorithm for period finding in the early 90’s. Shor’s algo-

rithm showed how prime factorization can be done in the bounded error quantum model in time

polynomial in the number of bits of the number in question, whereas till date we only have super

polynomial solutions in the classical computation model. Since then the domain of quantum com-

putation has seen tremendous progress both in theory and in realization towards practical quantum

computers. In this direction we look into two of the main aspects of quantum computation, that is

hardware optimization and analysis of the query complexity model.

In terms of realization of quantum computers, today we have noisy quantum computers of

upto as many as 100 qubits (qubits are the classical counterpart of bits) and have cloud access

to quantum computers with 5 to 20 qubits via different platforms such as IBM-Q and Rigetti

computing. Despite this progress, the existing technologies on which quantum computers are built

are noisy by nature, which makes any computation erroneous, even in the very small scale. In

this direction we look into the superconducting model of quantum hardware. In this model any

unitary applied on the system (gate) increases error induced into the system. Moreover, two-qubit

CNOT gates, which has the highest error induction rate of the ones in the universal gate sets,

cannot be applied to any pairs of qubits due to hardware limitations. Part I is dedicated towards

showing how optimizing circuits in terms of both architecture demands and gate count improves

the error in the outcome. Specifically, we study the “Dicke State Preparation” problem and in this

direction further optimize the state of the art deterministic algorithm, and in doing so also relax

its architectural constraints. We observe these improvements by implementing and comparing our

12

circuit in a publicly available quantum computer.

Although Shor’s algorithm has an asymptotically better time complexity than all known clas-

sical algorithms, one can not yet rule out the existence of a classical algorithm of similar efficiency.

Overall understanding whether quantum computation is inherently a more powerful form of compu-

tation has been a very challenging problem. In this regard certain restricted models of computation

(also called the black-box model) have been used to show separation between classical and quantum

computation in a complexity theoretic fashion. In fact Shor’s algorithm and the famous Grover’s

search algorithm are all set up in this model. The query complexity model we discuss in Part II is

one such model, although it differs from the model in which the aforementioned algorithms were

setup. Here the goal is to evaluate a function given its description for any inputs. Our functions

of interest are Boolean functions, one of the most centrally studied discrete functions. Here the

restriction is that one can only access the inputs to the functions my making queries to an ora-

cle, whose internal functioning is unknown to us. In the classical model given a function f on n

variables x1, . . . , xn, if one queries the oracle with i, they get back the value of xi. Similarly in

case of the quantum model one can make superposition of queries, and attempt to evaluate the

function making lesser number of queries. We are interested in the difference in query complexity

between the deterministic classical (D(f))and exact quantum query models (QE(f)), the two error

free computational models. We are interested in evaluating the separations in the two models in

different circumstances, that shall allow to us to understand how structure of Boolean functions

can be exploited in the quantum computational model, as well as possibly lead us to new results

in quantum computation.

In Chapter 2, Part II we analyze the functions on n variables with least possible deterministic

query complexity. We term them as query friendly functions. We observe that for certain values

of n all query friendly functions have same QE(f) and D(f) values. For certain other values of

n we obtain separation via the most well known exact quantum algorithmic technique, known as

the parity decision tree. For the rest of the cases we show that no separation can be achieved via

parity decision tree technique.

Next in Chapter 3 we analyze the exact quantum query complexity of functions through their

algebraic normal form (ANF). ANFs are widely studied in the domain of cryptography but is

not widely explored in the query complexity model. Using our analytical techniques we obtain

13

large classes of functions for which we are able to show separation between D(f) and QE(f) as

well as design novel exact quantum query algorithms. We further show that the well known parity

decision tree techniques would not work equally efficiently for these functions. In doing so we design

a novel exact quantum algorithmic protocol that untangles a system under certain conditions more

efficiently.

Finally we finish our work in Chapter 4 by studying the Maiorana-McFarland (MM) type bent

functions, a class of size doubly exponential in n for any even n. Deterministic query complexity of

all functions in this class is n. We first obtain a d3n
4 e-query parity decision tree technique for any

functions in this class by exploiting its ANF structure. Next, we obtain a more efficient d5n
8 e-query

algorithm for a large subclass
(

2
n
4
)

of MM type bent functions using our algorithmic techniques

of Chapter 3. We conclude each chapter with related future directions and open problems.

Finally, we conclude this document with an ending note.

14

Part I

Quantum Circuits and Architecture

Dependence

15

Chapter 1

Optimizing Quantum Hardware –

Dicke State Preparation

16

1.1 Introduction

Quantum Computers enable Quantum Algorithms that can perform operations with even super

exponential speed-ups in time over the best known classical algorithms. Any quantum algorithm

can be defined as a series of unitary transformations and can be implemented as a Quantum Circuit.

A quantum circuit has a discrete set of gates such that their combinations can express any unitary

transformation with any desired accuracy. Such a set of gates is called a universal set of gates. We

know from the fundamental work by Barenco et.al [1] that single qubit gates and the controlled

NOT (CNOT) gate form a universal set of gates. In this work, we call these gates elementary gates.

Quantum State Preparation is a topic within Quantum Computation that has garnered interest

in the past two decades due to applications of special quantum states in several fields of Quantum

Information Theory. A n-qubit quantum state |ψn〉 can be expressed as the superposition of

2n orthonormal basis states. In this work we look at n qubit states as super position of the

computational basis states |x1x2 . . . xn〉 , xi ∈ {0, 1}, 1 ≤ i ≤ n. The basis states in the expression

of |ψn〉 with non zero amplitude are called the active basis states. Starting from the state |0〉⊗n

any arbitrary quantum state can be formed using O(2n) elementary gates, although for many n

qubit states preparation circuits with polynomial (in n) number of elementary gates is possible.

The family of Dicke States |Dn
k 〉 is one such example. |Dn

k 〉 is the n-qubit state which is the equal

superposition state of all
(
n
k

)
basis states of weight k. For example |D3

1〉 = 1√
3
(|001〉+ |010〉+ |100〉).

Dicke states are an interesting family of states due to the fact that they have
(
n
k

)
active basis states,

which can be exponential in n when k = Θ(n) but need only polynomial number of elementary

gates to prepare. Dicke states also have applications in the areas of Quantum Game Theory,

Quantum Networking, among others. One can refer to [2] for getting a more in-depth view of these

applications.

There has been several probabilistic and deterministic Dicke state algorithms designed in the

last two decades [3, 9, 4]. In this document we focus on the algorithm described by Bärtschi

et.al [2] which gives a deterministic algorithm that takes O(kn) CNOT gates and O(n) depth to

prepare the state |Dn
k 〉. To the best of our knowledge this circuit description has the best gate

count among the deterministic algorithms. Here it is important to note that the paper by Cruz

et.al [5] describes two algorithms for preparing the |Dn
1 〉 states, also known as Wn states. Both

the algorithms have better gate count than the description by Bärtschi et.al [2] and one of the

17

algorithms has logarithmic depth. However, their work is restricted to |Dn
1 〉 and has no implication

on the circuits for |Dn
k 〉 , 2 ≤ k ≤ n−2. We further observe in Section 4.3 that the circuit obtained

by us after the improvements for |Dn
1 〉 is same as the linear Wn circuit described in [5].

Because of the noisy behavior of current generation Quantum Computers the exact number of

elementary gates needed and the distribution of the gates over the corresponding circuit become

crucial issues which need to be optimized in order to prepare a state with high fidelity. An example

of a very recent work done in this area is [8] which reduces the gate count of AES implementation.

In this regard we discuss the following important problems in the domain of Quantum Circuit

Design.

A unitary transformation acting on n qubits can be expressed as a 2n × 2n unitary matrix and

can be decomposed into elementary gates in several ways. Therefore finding the decomposition

that needs the least amount of elementary gates is a very fundamental problem, with [6], [10]

being examples of work done in this area. There has also been work on obtaining lower bounds

on approximately preparing states using quantum circuits [7] and also the work of [12] that gives

some upper-bounds on number of CNOT gates needed to implement any arbitrary n qubit unitary

matrix. However, the result by [12] is general and therefore the number of CNOT is exponential

in the number of qubits, where as in case of Dicke state preparation circuit we have deterministic

circuits with only polynomial in n CNOT gates.

It is crucial to minimize the number of gates while decomposing a unitary matrix as every gate

induces some amount of error into the result. Especially reducing the number of CNOT gates is of

importance due to the well known fact that it induces more error compared to single qubit gates.

Here we first describe a fundamental problem that decomposition of matrix using a universal

set of gates poses. Let there be a unitary transformation that is to be performed on a system of

n qubits. This task can be represented as a unitary matrix Un that works on the Hilbert Space

Hn of dimension 2n. If we know the intended transformation for all the states of any orthonormal

basis of Hn, that completely defines the unitary matrix Un. Let us consider such a transformation

for n = 1. If the transformation is defined for the two states in the computational basis |0〉 and

|1〉 then the corresponding unitary matrix is completely defined. If the transformation is defined

as |0〉 → 1√
2
(|0〉 + |1〉) and |1〉 → 1√

2
(|0〉 − |1〉) then the corresponding matrix is the Hadamard

18

matrix, expressed as

 1√
2

1√
2

1√
2
− 1√

2

. However if the transformation is only defined for one state,

|0〉 → 1√
2
(|0〉 + |1〉) and not defined for |1〉 then there can be uncountably many unitary matrices

that can perform the said transformation. Specifically, any matrix of the form

 1√
2

α

1√
2
−α

 can

perform this task, where α ∈ C, |α|2 = 1
2 .

There exists many quantum algorithms where at a step a particular transformation on n qubits

is defined only for a a subset of the states of a orthonormal basis. This creates the possibility of

there being uncountably many unitary matrices capable of such a transformation. The algorithm

described in [2] contains such transformations that are not completely defined for all basis states.

Let such a transformation be defined as a partially defined unitary transformation on n qubits.

There are possibly multiple unitary matrices that can perform this transformation. In that case

it becomes an important problem to find out which candidate unitary matrix can be decomposed

using the minimal number of elementary gates.

Furthermore, the number of elementary gates needed to implement a well defined Quantum

Circuit also varies with the architecture of the actual Quantum Computer. The architectures of

current generation Quantum Computers do not allow for CNOT gates to be implemented between

any two arbitrary qubits. This CNOT constraint may further increase the total number of CNOT

and single qubit gates needed to implement a Quantum Circuit on a specific Quantum Architecture.

Therefore the total number of CNOT gates needed to implement a circuit on an architecture maybe

more than the theoretical value if the logical CNOT map of the circuit is not a subgraph of the

CNOT mapping of the architecture. There has been different optimization techniques developed

for efficient implementation such as the work in [15] but ensuring any sort of optimality is in this

scenario.

Against this backdrop, let us draw out the organization of the rest of the document.

1.1.1 Organization

In Section 4.2 we first define the concept of maximally partial unitary transformation. We then

describe the the circuit in [2] for preparing Dicke States. We denote the circuit described in [2] for

preparing |Dn
k 〉 as Cn,k.

We start Section 1.3 by showing that a transformation implemented in Cn,k is in fact a partially

19

defined construction. We then show that the unitary matrix used to represent the transformation

is not optimal in terms of number of elementary gates needed to decompose it. We propose a

different construction that indeed requires lesser number of elementary gates and we also argue its

optimality w.r.t the Universal gate set.

In Section 4.3 we propose additional methods to reduce the gate count of the implementation

shown in [2], centered around different partially defined unitary transformations used in the circuit.

We remove the redundant gates in the circuit and analyze the different partially defined transfor-

mations implemented in the circuit to further reduce the gate counts of the circuit. We denote the

improved circuit for preparing any Dicke State |Dn
k 〉 as Ĉn,k.

Next in Section 4.4 we discuss the architectural constraints posed by the current generation

Quantum Computers that are available for public use through different cloud services. We discuss

the restrictions in terms of implementing CNOT gates between two qubits in an architecture and

how it increases the number of CNOT gates needed to implement a circuit in an architecture. In

this regard we show that the improvements described by us in Section 4.3 not only reduces gate

counts but also reduces architectural constraints.

We implement the circuits C4,2 and Ĉ4,2 on the IBM-QX machine “ibmqx2”[16] and calculate

the deviation in each case from ideal measurement statistics using a simple error measure, and we

also describe the results obtained by full tomography. Next we show how two circuits with the same

number of CNOT gates and the same architectural restrictions can lead to different expected error

due to different CNOT distribution across the qubits. We analyze this by proposing modifications

in the circuit Ĉ4,2 possible because partial nature of certain transformations and how it reduces the

number of CNOT gates functioning erroneously on expectation in a fairly generalized error model.

We finish this section by drawing out the general CNOT map of Ĉn,k, shown as the graph Gn,k and

observing that there in fact exists n− k − 1 independent modifications each leading to a different

CNOT distribution.

We conclude the document in Section 1.6 by noting down open problems in this area that we

feel will improve our understanding both in the domains of partially defined transformations and

architectural constraints.

20

1.2 Preliminaries

Let us first define some terminologies that we shall frequently use before moving onto some defini-

tions and the preliminaries.

1.2.1 Notations

1. |v(2)〉: If we look at a system with n qubits then all the 2n orthogonal states in the compu-

tational basis can be expressed as |b1b2 . . . bn〉 , bi ∈ {0, 1}, 1 ≤ i ≤ n.

In that case for representing the state |b1b2 . . . bn〉 we treat it as a binary string and express

it as |v(2)〉 where v =

n∑
i=1

bi2
n−i.

2. Ry(θ): The Ry gate is a single qubit gate defined as follows. Ry(θ) =

cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)

.

3. X: This is a single qubit gate defined as X =

0 1

1 0

.

4. CU ij : While implementing a controlled unitary on a two qubit subsystem we use the following

notations. Let there be a n-qubit system. CU ij represents a two qubit controlled unitary

operation where the i-th qubit is the control qubit and the j-th qubit is the target qubit.

1.2.2 Maximally Partial Unitary Transformation

Let there be a unitary transformation that acts on n qubits. To perform this transformation we

have to create a corresponding unitary matrix. If the transformation is defined for all 2n states

of some orthonormal basis then the unitary matrix is completely defined. On the other hand

if the transformation is defined for a single state belonging to the computational basis, only a

single column of the corresponding 2n × 2n matrix is filled. The rest can be filled up conveniently,

provided its unitary property is satisfied. In this regard we call a unitary transformation on n

qubits to be maximally partial if it is defined for 2n − 1 states of some orthonormal basis. That

implies only a column of the matrix is not defined. This tutorial is centered around the observation

that corresponding to a maximally partial unitary transformation there can be multiple unitary

21

matrices and the number of elementary gates needed to implement each of these matrices may not

be same.

Next we discuss the structure of Dicke states and the current state of the art Dicke state

protocol [2], for which we show methods for efficient implementations in the later sections.

1.2.3 The Dicke State Preparation Circuit Cn,k

The circuit Cn,k as described in [2] works on the n qubit system |q1q2 . . . qn〉. The circuit Cn,k
is broken into n − 1 blocks of the form SCSxy of which the first n − k blocks are of the form

SCSn−tk , n− t > k which is then followed by k − 1 blocks of the form SCSii−1, k ≥ i ≥ 2.

A block SCSnk consists of a two qubit transformation and k−1 three qubit transformations. The

two qubit transformation works on the n− 1 and n-th qubits and we denote it as µn. We describe

the overall structure of the circuit again in Section 4.4. The basic intuition behind the construction

is as follows. Starting from the computational basis state ⊗ni=1 |0〉, the state preparation circuit of

|Dn
k 〉 can be designed as the combination of SCSnk acting on the last k+ 1-qubits and the the state

preparation circuit of |Dn−1
k 〉 acting on the first n − 1 qubits. One can refer to [2] to get a more

in-depth view of this construction.

The three qubit transformations are of the formMl
n, n− 1 ≤ i ≤ n− k+ 1 whereMn

l works on

the qubits l− 1, l and n. This construction is interesting in how the transformations µ and M are

partially defined which raises different implementation choices, with possibly different number of

gates needed for elemental decomposition. We now describe these two transformations for reference.

We denote by |ab〉x the qubits in the x− 1 and x-th position in a system.

µn : |00〉n → |00〉n

|11〉n → |11〉n

|01〉n →
√

1

n
|01〉n +

√
n− 1

n
|10〉n

22

• Ry(2 cos−1
√

l
n) •

•

Figure 1.1: Implementation of µn

Ml
n : |00〉l |0〉n → |00〉l |0〉n

|01〉l |0〉n → |01〉l |0〉n

|00〉l |1〉n → |00〉l |1〉n

|11〉l |1〉n → |11〉l |1〉n

|01〉l |1〉n →
√
n− l + 1

n
|01〉l |1〉n

+

√
l − 1

n
|11〉l |0〉n

• Ry(2 cos−1
√

n−l+1
n) •

•

•

Figure 1.2: Implementation of Ml
n

The implementations of these transformations in [2] is shown in Figure 1.1 and 1.2 respectively.

The first transformation, µn is in fact a maximally partial unitary transform. Because of the

partially defined nature of the transformation the CRy and CCRy gates are also not fed all possible

inputs. Instead the input to the CRy gates is only from the subspace spanned by the computational

basis states |00〉 , |10〉 and |01〉. Similarly the input to the CCRy gate is only from the subspace

spanned by the states |000〉 , |010〉 , |001〉 , |011〉 , and |110〉.

Next in Section 1.3 we look how partially defined transformations can be implemented more

efficiently, and argue the optimality of this improvement with respect to this particular building

block. Then in Section 4.3 we study how the gate count of the circuit Cn,k can be reduced by

removing redundancies and analyzing how the µ and M transformations act only on a subset of

23

the defined computational basis states in specific cases.

1.3 Example of Optimality for a Maximally Partial Unitary Trans-

formation

We have already described the two partially defined unitary transformations used in the circuit Cn,k.

The implementation of the first transformation, µn is done using a controlled CRy gate and two

CNOT gates in [2]. This CRy gate only acts on the states |00〉 , |10〉 , |01〉 and their superpositions

and the transformation never acts on the |11〉 state. If we take θ = 2 cos−1
(√

1
n

)
and denote the

transformation implemented by the CRy(θ) gate on the defined basis states as T1(θ), then it can

be expressed as follows:

T1(θ) : |00〉 → |00〉 (1.1)

|10〉 → |10〉

|01〉 →
(

cos(
θ

2
) |0〉+ sin(

θ

2
) |1〉

)
|1〉

This is in fact a maximally defined partial unitary transformation. While the gate CRY (θ) can

perform this transformation, it needs at least 4 elementary gates to implement. We first show this

necessary requirement using an important result from [6, Theorem B], which we note down for

reference.

Theorem 1. [6]

1. For a controlled gate CU if tr(UX) = 0, tr(U) 6= 0, detU = 1, U 6= ±I then the minimal

number of elementary gates needed to implement CU is 4.

2. For a controlled gate CU if tr(U) = 0, detU = −1, U 6= ±X then the minimal number of

elementary gates needed to implement CU is 3.

3. For a controlled gate CU the minimal number of number of elementary gates needed to im-

plement CU is less than three 3 iff U ∈ {eiφI, eiφX, eiφZ}, 0 ≤ φ ≤ 2π.

Our lemma follows immediately.

Lemma 1. It takes minimum 4 elementary gates to implement the CRy(θ) gate.

24

Proof. We calculate the values of detRy(θ) and tr(Ry(θ)X) to confirm the minimal number of

gates needed to decompose CRy(θ).

detRy(θ) = sin2(
θ

2
) + cos2(

θ

2
) = 1

Ry(θ)X =

− sin(θ2) cos(θ2)

cos(θ2) sin(θ2)

 =⇒ tr(Ry(θ)X) = 0

The result (1) of Theorem 1 concludes the proof.

However the transformation T1(θ) can in fact be implemented using three elementary gates as

follows.

T1(θ) ≡
(
Ry(
−α
2

)⊗ I2

)
CNOT2

1

(
Ry(

α

2
)⊗ I2

)
,
α

2
=
π

2
− θ

2

This decomposition has also been used by Cruz et.al [5] in the Wn (Dn
1) state preparation algorithm.

However, the corresponding transformation there is defined only for the states |00〉 and |01〉 and

no insight into the optimality of the implementation is given.

We first derive the underlying 4× 4 unitary matrix U0(α) that describes this three gate trans-

formation. Next we show that U0(α) needs at least three gates to be implemented by verifying

the conditions of result (2) of Theorem 1. We end this section by showing that the transformation

T1(θ) needs at least three elementary gates (including one CNOT) to be implemented, proving the

optimality of the U0(α) implementation.

Ry(−θ2) Ry(θ2)

• •
Figure 1.3: Implementation of CRy(θ)

Ry(α2) Ry(−α2)

•
Figure 1.4: Implementation of Uo(α)

Theorem 2. The gate U0(α) performs the partially defined unitary transformation T1(θ) where

α = π − θ and needs minimum three elementary gates to be implemented.

Proof. We first study the transformation carried out by U0 in the subspace of T1.

|00〉
Ry(α2) on q1
−−−−−−−−→

(
cos(

α

4
) |0〉+ sin(

α

4
) |1〉

)
|0〉

25

CNOT2
1−−−−→
(

cos(
α

4
) |0〉+ sin(

α

4
) |1〉

)
|0〉

Ry(−α
2

) on q1
−−−−−−−−−→

(
cos(

α

4
)
(

cos(
α

4
) |0〉 − sin(

α

4
)) |1〉

)
+

sin(
α

4
))
(

sin(
α

4
)) |0〉+ cos(

α

4
)) |1〉

))
|0〉

=
(

cos2(
α

4
) + sin2(

α

4
)
)
|00〉 = |00〉

|10〉
Ry(α2) on q1
−−−−−−−−→

(
− sin(

α

4
) |0〉+ cos(

α

4
) |1〉

)
|0〉

CNOT2
1−−−−→
(
− sin(

α

4
) |0〉+ cos(

α

4
) |1〉

)
|0〉

Ry(−α
2

) on q1
−−−−−−−−−→

(
− sin(

α

4
)
(

cos(
α

4
) |0〉 − sin(

α

4
)) |1〉

)
+

cos(
α

4
))
(

sin(
α

4
)) |0〉+ cos(

α

4
)) |1〉

))
|0〉

=
(

cos2(
α

4
) + sin2(

α

4
)
)
|10〉 = |10〉

|01〉
Ry(α2) on q1
−−−−−−−−→

(
cos(

α

4
) |0〉+ sin(

α

4
) |1〉

)
|1〉

CNOT2
1−−−−→
(

sin(
α

4
) |0〉+ cos(

α

4
) |1〉

)
|1〉

Ry(−α
2

) on q1
−−−−−−−−−→

(
sin(

α

4
)
(

cos(
α

4
) |0〉 − sin(

α

4
)) |1〉

)
+

cos(
α

4
))
(

sin(
α

4
)) |0〉+ cos(

α

4
)) |1〉

))
|1〉

=
(
2 cos(

α

4
) sin(

α

4
) |0〉+ (cos2(

α

4
)− sin2(

α

4
) |1〉

)
|1〉

=
(

sin(
α

2
) |0〉+ cos(

α

2
) |1〉

)
|1〉

Setting α = π − θ gives us the same transformation as defined by T1(θ).

Now we completely define the gate U0 by studying the transformation acted on the state |11〉.

|11〉
Ry(α2) on q1
−−−−−−−−→

(
− sin(

α

4
) |0〉+ cos(

α

4
) |1〉

)
|1〉

CNOT2
1−−−−→
(

cos(
α

4
) |0〉 − sin(

α

4
) |1〉

)
|1〉

Ry(−α
2

) on q1
−−−−−−−−−→

(
cos(

α

4
)
(

cos(
α

4
) |0〉 − sin(

α

4
)) |1〉

)
−

26

sin(
α

4
))
(

sin(
α

4
)) |0〉+ cos(

α

4
)) |1〉

))
|1〉

=
(
(cos2(

α

4
)− sin2(

α

4
) |0〉 − 2 cos(

α

4
) sin(

α

4
) |0〉

)
|1〉

=
(

cos(
α

2
) |0〉 − sin(

α

2
) |1〉

)
|1〉

So the overall transformation provided by U0(α) is:

|00〉 → |00〉

|10〉 → |10〉

|01〉 →
(

sin(
α

2
) |0〉+ cos(

α

2
) |1〉

)
|1〉

|11〉 →
(

cos(
α

2
) |0〉 − sin(

α

2
) |1〉

)
|1〉

Therefore the gate U0(α) is a two qubit gate which can be expressed as a controlled gate CU(α)

gate where U(α) =

sin(α2) cos(α2)

cos(α2) − sin(α2)

. Now trU(α) = 0 and detU(α) = −1 for all α. Therefore

we can conclude from the result (2) in Theorem 1 that this gate requires at least three gates to be

implemented.

We finally show the optimality of this implementation for implementing the two qubit transfor-

mation T1(θ).

Lemma 2. The transformation T1(θ) needs at least one CNOT and two single qubit gates to be

implemented for 0 < θ < π.

Proof. The transformation T1(θ) is only defined for the basis states |00〉 , |01〉 and |10〉. Any matrix

M(θ) that can carry out the transformation is of the form


1 0 0 a

0 cos(θ2) 0 b

0 0 1 c

0 sin(θ2) 0 d

 where a, b, c, d are

complex unknowns. However since M(θ) is unitary we have M(θ)M †(θ) = I. Therefore 1 + aa∗ =

1 =⇒ a = 0 and 1 + cc∗ = 1 =⇒ c = 0. That is the matrix Mθ is a controlled unitary CM1(θ)

and M1(θ) =

cos(θ2) b

sin(θ2) d

.

27

Now for 0 < θ < π both cos(θ2) and sin(θ2) are non zero. This implies that the matrix cannot

fulfill the necessary conditions defined in result (3) of Theorem 1 and therefore cannot be expressed

with less than three elementary gates.

The code snippets in Listing 1.1 and Listing 1.2 show the two implementations for T1(θ) where

θ = 2 cos−1(1√
3
) in the QASM language.

1 cx q[2],q[1];

2 ry(-pi /3.2885) q[1];

3 cx q[2],q[1];

4 ry(pi /3.2885) q[1];

Listing 1.1: T1(θ) implemented as CRy

1 ry ((pi/2)-pi /3.2885) q[1];

2 cx q[2],q[1];

3 ry (-((pi/2)-pi /3.2885)) q[1];

Listing 1.2: Modified implementation as U0(θ)

Now we use these observations to show how efficient implementation of partially defined unitary

transformations can lead to better implementation of the Dicke state preparation circuit Cn,k.

1.4 Improving the implementation of |Dn
k 〉

We first count the number of CNOT and single qubit gates in Cn,k by reviewing the circuit. The

circuit is composed of n − 1 blocks of gates called SCS. There are n − k − 1 blocks of the form

SCStk, k < t ≤ n and k − 1 blocks of the form SCSi+1
i , 1 ≤ i ≤ k − 1.

Each block SCStk consists of one two qubit transformation µt which is implemented on the

qubits t − 1 and t and k − 1 three qubit transformations of the type Ml
t, t − 1 ≤ l ≤ t − k − 2.

Here µt is implemented on the t− 1 and t-th qubit andMl
t is implemented on the l− 1, l and t-th

qubit, as described in Section 4.2. Each transformation of type µ is decomposed into two CNOT

and a T1(θ) transformation which is implemented as a CRy gate by adjusting the value of θ. One

can refer to Section 4.2 for the functioning of the CRy gate. We have shown in Lemma 1 that a

CRy transformation needs minimum 4 gates to implement. In fact it needs at least two CNOT

gates. Therefore each µ transformation needs four CNOT and two single qubit gate. The number

28

of transformations of type Ml
n is

(n− k)(k − 1) +

k−2∑
i=1

i

= nk − n+ k − k2 +
(k − 1)(k − 2)

2

= nk − k(k + 1)

2
− n+ 1.

Each Ml
n transformation is shown to require six CNOT and four single qubit gates. However one

CNOT gate of for each Ml
n transformation can be canceled by rearranging the first two CNOT

gates of the next transformation.

The total number of CNOT gates and single qubit gates used to prepare the state |Dn
k 〉 is shown

in Table 1.1.

CNOT gates 5(nk − k(k+1)
2 − n+ 1) + 4(n− 1)

single qubit gates 4(nk − k(k+1)
2 − n+ 1) + 2(n− 1)

Table 1.1: Gates needed to prepare |Dn
k 〉 as in [2]

Figure 1.5 shows the circuit C6,3 in terms of CNOT, CRy and CCRy gates.

|0〉 •
√

3
4
• •

√
2
3
• •

√
1
2
•

|0〉 •
√

3
5
• •

√
2
4
• • •

√
1
3
• • •

|0〉 •
√

3
6
• •

√
2
5
• • •

√
1
4
• • • •

|0〉 X •
√

2
6
• • •

√
1
5
• • • • •

|0〉 X •
√

1
6
• • • • •

|0〉 X • • •

Figure 1.5: Description of the circuit C6,3

Having discussed the gate count of the original circuit description, let us now explore methods

through which this gate count can be reduced. Here it should be noted that both CNOT and

single gate count of the original circuit description is O(nk) for implementing |Dn
k 〉. If one applies

the implementation that we shall suggest, the gate counts will still remain O(nk). However, the

reduction in the number of gates has direct consequence in terms of the error induced in the circuit,

29

even for as low value of n as 4.

Here, note that Figure 1.5 contains of the blocks SCS6
3 , SCS5

3 , SCS4
3 , SCS3

2 and SCS2
1 and we

have separated these blocks with dotted line. The same partitioning is continued in the improved

circuit Figure 1.6 to help understand the block-wise reduction in gate count.

1.4.1 Replacing CRy with CU

If one uses the CU gate shown in Section 1.3 to implement the transformation T1 corresponding to

each µ transformation, then that requires one CNOT and two single qubit gates to be implemented.

Therefore each µ transformation needs three CNOT and two single qubit gates. Since there are

n − 1 µ transformations this reduces the number of CNOT by n − 1 for any |Dn
k 〉. In this regard

one can also refer to the work in [13] which shows that any two qubit unitary can be implemented

with 3 CNOT gates, but our approach leaves the CNOT gates available for forward cancellation

with the next M block.

One of the more easily identifiable redundancy in the circuit is of gates that do not actually

have any impact on the state. That is there are controlled gates in the circuit that always have

the qubit of the control in state |0〉 in all the superposition states that is fed to it. These kinds of

redundancies occur as a result of direct implementation of a theoretical argument. Next we observe

that some of the µn and Ml
n transformations act as identity transformation, which we count as a

function of k for any |Dn
k 〉.

1.4.2 The µ and M transformations that act like Identity

Let there be a n qubit system in some state |φ〉. This state can be uniquely represented as a

superposition of all 2n (computational) basis state. The amplitude of a particular basis state may

or may not be zero depending on the description of |φ〉. Let us call a basis state with non zero

amplitude an active basis state. The affect of a unitary transformation T on this state can be

completely described by observing how it transforms the active basis states of |φ〉. If the k-th qubit

is in the zero (one) state in all the active basis states and the transformation T doesn’t act on

the k-th qubit in non trivial way on any of those basis states then the k-th qubit in all the active

basis states of T |φ〉 will also be in the zero(one) state. Here we observe that in the Dicke state

preparation circuit we have many CNOT gates where the control is always in the |0〉 state and all

30

such gates can be removed. In this regard we prove the following theorem using induction.

Theorem 3. If the n qubit system is expressed as superposition of computational basis states after

the block SCSn−tk has acted then it can be expressed as

2t+1−1∑
a=0

2t+1−1∑
b=0

αa,b

(
|0〉⊗n−k−1−t (t+1⊗

i=1

|abini 〉
)

|1〉⊗k−1−t (t+1⊗
j=1

|bbinj 〉
))
.

Proof. The statement implies that the first n − k − t − 1 qubits are all in the state |0〉 and the

(n− k + 1)-th qubit and the next k − t− 1 qubits are all in the state |1〉 in all active basis states

of the n qubit system after the block SCSn−tk has acted on it.

We first prove the statement for t = 0. The n qubit system is at first in the state |ψ0〉 =

|0〉⊗(n−k) |1〉⊗k and the block to be applied is SCSnk . This block consists of the gates µn,Mi
n, n−1 ≤

i ≤ n− k + 1. We know that the transformation µn affects the (n− 1) and the n-th qubit and the

transformation Ml
n affects the (l − 1) and n th qubit. Additionally µn acts as identity on a basis

state if the n − qth qubit of the basis state is in the |1〉 state. Similarly Ml
n acts as identity on a

basis state if the (n− l − 1)-th qubit is in the |1〉 state.

The last k qubits of |ψ0〉 are in the state |1〉 and therefore µn andMn−1
n ,Mn−2

n , . . .Mn−k+2
n act

as identity transformations. Finally the transformation Mn−k+2
n is applied. The first qubit to this

transformation is in the state |0〉 and therefore this transformation may lead to basis states with

either |0〉 or |1〉 in the (n− k)-th and n-th positions. Therefore the resultant state can be written

as ∑
a1,a2∈{0,1}

αa1a2 |0〉
⊗n−k−1 |a1〉 |1〉⊗k−1 |a2〉 .

Thus the first n− k− 1 qubits are all in the state |0〉 and the (n− k+ 1)-th qubit and the next

k − 1 qubits are all in the |1〉 state in all active basis states of the system.This concludes the base

case.

Now assuming that our statement holds true for some t−1 < k−2 we show that the statement

also holds for t. The SCSn−tk block is composed of the transformations µn−t, Mi
n−t, n − t − 1 ≤

31

t ≤ n− t− k + 1. The n qubit system is in the state

|ψt−1〉 =

2t−1∑
a=0

2t−1∑
b=0

αa,b

(
|0〉⊗n−k−t

(t⊗
i=1

|abini 〉
)

|1〉⊗k−t
(t⊗
j=1

|bbinj 〉
))
.

That is, the first n − k − t qubits are in the state |0〉 in all active basis states and the n − k + 1

and the next k− t− 1 qubits are in the state |1〉. These are the first qubits to the transformations

µn−t,Mi
n−t, n − t − 1 ≤ i ≤ n − k. This implies the µ transformation and the (k − 2 − t) M

transformations act as identity transformations on all active basis states.

The next tM transformations may get the |0〉 state as the first qubit and therefore the n-qubit

system before the last M has been applied is in the state

|ψ′t−1〉 =
2t−1∑
a=0

2t+1−1∑
b=0

αa,b

(
|0〉⊗n−k−t

(t⊗
i=1

|abini 〉
)

|1〉⊗k−1−t (t+1⊗
j=1

|bbinj 〉
))
.

Finally, the last three qubit transformation of the block SCSn−tk Mn−t−k+1
n−t acts on the system.

Now since the (n− t− k)-th qubit is in the state |0〉 in all active basis states, theM gate may non

trivially act on it and the (n− t)-th qubit. This results in the state

|ψt〉 =

2t+1−1∑
a=0

2t+1−1∑
b=0

αa,b

(
|0〉⊗n−k−t−1 (t+1⊗

i=1

|abini 〉
)

|1〉⊗k−1−t (t+1⊗
j=1

|bbinj 〉
))
.

This completes the proof. It is important to note that there may be many basis states in the

expression of |ψt〉 with zero amplitude. However our focus is on qubits that are definitely going to

be either in the zero state or in the one state in all active basis states.

This proof also shows that the µ transformation and the k−2−tM transformations in the block

SCSn−tk , t < k − 1 act as identity transformations and therefore can be removed from the circuit.

32

Therefore the number of µ transformations omitted is k − 1 and the number of M transformation

omitted are (k−2)(k−1)
2 . This removes 3(k− 1) + 5(k−2)(k−1)

2 CNOT and 2(k− 1) + 4(k−2)(k−1)
2 single

qubit gates.

1.4.3 The first non identity M transformation in SCSnk

Once the µ and M transformations are removed, we are essentially left with no redundant trans-

formation. But that does not imply this circuit is optimal. For some controlled unitary operations,

the control is always in the state |0〉 in all active basis state, in which case the whole operation can

be removed. In some other cases the controls to a controlled unitary is always in the |1〉 states in

all active basis states, and sometimes some of the controls are always in the |1〉 state, in which case

these controls can be removed, which reduces the number of CNOT gates in the circuit. Here we

analyze the first transformation of the block SCSn−tk , t < k − 1 after the identity transformations

are removed, which is Mn−k+1
n−t . This transformation depends on the state of the n − k, n − k + 1

and (n− t)-th qubits and affects the state of the (n− k)-th and the (n− t)-th qubit. At this stage

the n = qubit system is at the state

2t−1∑
a=0

2t−1∑
b=0

αa,b |0〉⊗n−k−t
(t⊗

i=1

|abini 〉
)
|1〉⊗k−t

(t⊗
j=1

|bbinj 〉
)
.

Therefore in all the active basis states both the n− kth and the n− tth qubits are in the state

|1〉. Therefore the three qubit transformation applied by Mn−k+1
n−t can be expressed as follows,

substituting l = n− k + 1:

|11〉l |1〉n−t → |11〉l |1〉n−t

|01〉l |1〉n−t →
√
n− t− l + 1

n− t
|01〉l |1〉n−t

+

√
l − 1

n− t
|11〉l |0〉n−t .

This is in-fact can be implemented as a a two qubit transformation of the type µ. as the (n−k+1)-

th qubit is in the |1〉 state in all the active basis states.

The transformation acts on the (n− k)-th and (n− t)-th qubits as

Mn−k+1
n−t ≡ (CNOTn−kn−t)(CU

n−t
n−k(θ))(CNOT

n−k
n−t) where θ = 2 cos−1

(√
n−t−l+1
n−t

)
. We know that

the CU gate requires one CNOT and two Ry gates to be implemented therefore Mn−k+1
n−t requires

33

only three CNOT and two Ry gates. This improvement is reflected for all SCSn−tk such that

n− t ≥ n− k + 2 that is for 0 ≤ t ≤ k − 2. Therefore it reduces the number of CNOT gate in the

circuit by further 2(k − 1) and the number of single qubit gates by 2(k − 1) as well.

Additionally for |Dn
k 〉 , k > 1 when SCSnk is applied the n-qubit system is in the state

|0〉⊗n−k |1〉⊗k and therefore the transformation Mn−k+1
n−t only acts on the basis state |011〉. The

corresponding transformation is

|01〉n−k+1 |1〉n →
√
k

n
|01〉n−k+1 |1〉n

+

√
n− k
n
|11〉n−k+1 |0〉n .

This can be implemented using a Ry(cos−1
√

k
n) on the (n− k)-th qubit followed by a CNOT gate

CNOTn−kn which removes further two CNOT and one single qubit gate.

|0〉
√

3
4
• •

√
2
3
• •

√
1
2
•

|0〉
√

3
5
• •

√
2
4
• • •

√
1
3
• • •

|0〉
√

3
6
• •

√
2
5
• • •

√
1
4
• • • •

|0〉 X • • •
|0〉 X • •
|0〉 X

Figure 1.6: Description of the Circuit Ĉ6,3

We denote this circuit by Ĉn,k. Figure 1.6 shows the structure of Ĉ6,3. Combining these modifications

one can get the following count of CNOT and single qubit gates in the improved circuit.

• The total number of CNOT gates removed = n− 1 + 3(k − 1) + 5(k−2)(k−1)
2 + 2(k − 1) + 2.

• The total number of single qubit gates removed = 2(k − 1) + 4(k−2)(k−1)
2 + 2(k − 1) + 1.

34

Therefore the total number of CNOT gates present in the circuit is

5(nk − k(k + 1)

2
)− n+ 1

−
(
n− 1 + 3(k − 1) +

5(k − 2)(k − 1)

2
+ 2(k − 1) + 2

)
= 5nk − 5k2 − 2n

The number of single qubit gates present in the circuit is

4(nk − k(k + 1)

2
− n+ 1) + 2(n− 1)

−
(

2(k − 1) +
4(k − 2)(k − 1)

2
+ 2(k − 1) + 1

)
= 4nk − 4k2 − 2n+ 1

For k = 1 the number of CNOT gates is 3n− 3 (from n− 1 µ transformations) and the number

of single qubits gate as 2n− 2. However, one CNOT gate can be further removed from each µ gate

as the active basis states in input to the µ transformations are only |00〉 and |01〉. The resultant

circuit is identical to the linear Wn preparation circuit in [5] and contains 2n−2 CNOT and 2n−2

single qubit gates and thus we don’t elaborate it further.

We know that the state |Dn
k 〉 can be prepared by first forming the state |Dn

n−k〉 and then applying

a X gate to each qubit. On that note it is interesting to observe that after these modifications the

circuits for |Dn
k 〉 and |Dn

n−k〉 require the same number of CNOT gates.

k

n
4 5 6 7 8

2 22,12 31,20 40,28 49,36 58,44

3 27,7 41,20 55,33 69,46 83,59

4 46,10 65,28 84,46 103,64

5 70,13 94,36 118,59

6 99,16 128,44

7 133,19

Table 1.2: CNOT gate count of the pair Cn,k, Ĉn,k

35

k

n
4 5 6 7 8

2 14,9 20,15 26,21 32,27 38,33

3 18,5 28,15 38,25 48,35 58,45

4 32,7 46,21 60,35 74,49

5 50,9 68,27 86,45

6 72,11 94,33

7 98,13

Table 1.3: Single qubit gate count of the pair Cn,k, Ĉn,k

Table 1.2 and 1.3 show the number of CNOT and single qubit gates needed to implement the

states |Dn
k 〉 for 4 ≤ n ≤ 8, 1 ≤ k ≤ n− 1, respectively.

In the next section we discuss how these modifications not only reduces the gate counts of the

circuit but also relaxes its architectural constraints.

1.5 Actual Implementation and architectural constraints

1.5.1 Architectural Constraints

We are at the stage where quantum circuits can be implemented on actual quantum computers

using cloud services, such as IBM Quantum Experience, also known as IQX [16]. However the

architecture of the individual back-end quantum machines pose restrictions to implementation of

a particular circuit. The most prominent constraint is that of the CNOT implementation. In this

regard we use the terms architectural constraint and CNOT constraint interchangeably. Every

quantum system Q with n (physical) qubits has a CNOT map, which we express as GQA(V Q, EQ)

where V Q = {q1, q2, . . . qn}. In this graph the nodes represent the qubits and the edges represent

CNOT implementability. A directed edge qi → qj implies that a CNOT can be implemented with

qi as control and qj as target in the system Q. The edges in the CNOT maps of all the publicly

available IQX machines are bidirectional.

Let there be a circuit C on n qubits. We denote the (logical) qubits c1, c2, . . . cn. We also have a

CNOT map corresponding to the circuit, which describes the CNOT gates used in the circuit. We

36

describe this as the directed graph GC(V
C , EC) where V C = {c1, c2, . . . cm} and there is a directed

edge ci → cj if there is one or more CNOT with ci as control and cj as target.

Therefore if the graph GC can shown to be the subgraph of GQA by some mapping of the logical

qubits to the physical qubits then the circuit C can be implemented on the architecture with the

same number of CNOT gates. However, if such a map is not possible, then the circuit can be

implemented on that architecture, either by using swap gates which require additional CNOT

gates or changing the construction of the circuit. There are mapping solutions such as the one

applied by IQX which dynamically changes the structure of the circuit to implement a circuit in an

architecture that does not meet the circuit’s CNOT constraints. Similarly in their paper Zulehner

et.al [15] have also proposed an efficient mapping solution. However it is not always possible to

avoid an increase in the number of CNOT gates. Given a circuit it is crucial to find it’s minimal

architectural needs in terms of the CNOT map without increasing the CNOT gate count. The

IBM-Q systems mapping solutions show the modified circuit as the transpiled circuit given any

circuit as input, although its solutions are not always optimal. In this chapter we first consider the

system “ibmqx2” (Q1) of IQX. The CNOT map of Q1 is shown in the Figure 1.7.

1

2

30

4

Figure 1.7: The CNOT map of Q1 represented as GQ1

A

Against this backdrop we first observe the CNOT constraints of the circuit C4,2, implemented to

prepare |D4
2〉. Then we implement the circuit Ĉ4,2 which is the result of the improvements shown in

Section 4.3. We shall see that the modifications that we have discussed in the previous sections not

only reduces gate counts but also reduces CNOT constraints. We shall implement these circuits

in the system Q1 and compare the measurement statistics of the two circuits by measuring the

deviation from the ideal measurement statistics and find that the results of Ĉ4,2 is much more

closely aligned with the ideal results. To solidify the argument of reduced error, we will perform

37

full state tomography, which simulates the state prepared by the system in form of a density matrix.

We end this section by discussing how some changes in the circuit Ĉ4,2 possible because of

partially defined transformations can lower the error in the circuit due to CNOT on expectation

without a reduction in number of CNOT gates or change in the CNOT constraints.

1.5.2 Implementation and Improvement for |D4
2〉

Let us first construct the circuit C4,2. We shall implement every CRy gate using two CNOT gates

and two Ry gate as we know that the CRy gate needs at least 4 gates to be implemented and every

three qubit Ml
n transformation using five CNOT and four Ry gates (as given in the description

of [2]). The resultant circuit C4,2 is shown in Figure 1.8. This circuit contains 22 CNOT gates. The

corresponding QASM code for C4,2 and Ĉ4,2 have been attached in the appendix as Listing 1.3 and

Listing 1.4 respectively.

We use the notation θxy to denote the angle 2 cos−1(
√

x
y).

The CNOT map of the circuit is shown in Figure 1.9.

|0〉 • −θ23
4

θ23
4

−θ23
4

θ23
4
• • −θ12

2

θ12
2
•

|0〉 • −θ24
4

θ24
4

−θ24
4

θ24
4
• • −θ13

2

θ13
2
• • • •

|0〉 X • −θ14
2

θ14
2
• • • • • •

|0〉 X • • • •

Figure 1.8: The circuit C4,2 due to [2]

q0 q1

q2 q3

Figure 1.9: The CNOT map of C4,2

Then the modified circuit Ĉ4,2 can be implemented by making the following changes to C4,2.

1. Implement the CUo gate instead of CRy gates.

2. Remove the Redundant µ and M transformation.

38

3. Reduce the gate count in implementation of Mn−k+1
n−t type transformations.

This brings the total number of CNOT gates in the circuit to 12. We name the circuit at this stage

Ĉ4,2.

These steps not only reduce the CNOT gates in the circuit but also reduces the CNOT con-

straints of the circuit. Figure 1.10 shows the circuit at this stage and the reduced CNOT map GĈ4,2

as shown in the Figure 1.11.

|0〉 • −θ23
4

θ23
4

−θ23
4

θ23
4
• • π

2 −
θ12
2 −(π2 −

θ12
2) •

|0〉 θ2
4 • • π

2 −
θ13
2 −(π2 −

θ13
2) • • •

|0〉 X • • •

|0〉 X

Figure 1.10: The Circuit Ĉ4,2

q0 q1

q2 q3

Figure 1.11: The CNOT map GĈ4,2 corresponding to the circuit Ĉ4,2

In fact the Graph GĈ4,2 can be shown to be a subgraph of GQ1

A under several mappings of

qubits. Therefore this circuit can be implemented in the “ibmqx2” (Q1) machine with 12 CNOT

gates. Here it should be noted that any 4 qubit state can be prepared using a maximum of 9-CNOT

gates. However the corresponding CNOT map is a 4-cycle [11], which is also not available in the

“ibmqx2” machine.

However the CNOT constraints of the circuits corresponding to even D5
k, k > 1 cannot be met

by any IBM-Q architecture at this stage. Now let us compare the results of the circuits C4,2 which

is due to [2] and Ĉ4,2 which is what we obtained after the reductions and modifications.

39

Comparison of Measurement Statistics of C4,2 and Ĉ4, 2

The output by an ideal Quantum Computer would produce the state
√

1

(nk)

∑
wt(i)=k

|i(2)〉 on a correct

|Dn
k 〉 preparation circuit. One can verify the resultant state vectors of the two circuits to see that

they both ideally produce
√

1
6

(
|0011〉+|0101〉+|0110〉+|1100〉+|1010〉+|1001〉

)
using a simulator.

Here we first discuss a primary error measure based on measurement in computational basis to

estimate the closeness of the states formed by the two circuits from the ideal state |D4
2〉. Let us

run both the circuits for the maximum possible shots (8192) and use the measurement statistics

to estimate the closeness to the desired state using the following error measure. We define our

error measure EMn,k for the Dicke state |Dn
k 〉 as follows. Let pi be the percentage of times the

measurement of the circuit C yields the result i(2). Then we have

EMn,k(C) =
1

2

(∑
j,wt(j)=k

|∗| pj −
1(
n
k

) +
∑

j,wt(j)6=k

pj

)

Figure 1.12: Measurement statistics for C4,2 with 25 CNOT in transpiled circuit

An EM value of 0 signifies that the measurement statistics are exactly aligned with the expected

ideal results while the EM value can at maximum be 1. We have calculated the EM values for

results of different mappings for the circuit C4,2. The transpiled circuits for C4,2 had a minimum of

25 CNOT gates and were as high as 31 in some cases. The corresponding transpiled circuit contains

25 CNOT gates which is the least of all the transpiled circuits. Figure 1.12 shows the measurement

statistics corresponding to the circuit with the minimum EM value, which is equal to 0.4088.

Next we look at the measurement statistics of the circuit Ĉ4,2. There are many mappings

between logical and physical qubits in this case such that the CNOT constraint of the circuit is

40

Figure 1.13: Measurement statistics for Ĉ4,2 corresponding to the map M1

met. Let such a map be M : {q0, q2, q3, q4} → {0, 1, 2, 3, 4}. Then if there is a CNOT between qi

and qj then there is an edge M(qi) ↔ M(qj) in graph GQ1

A . In such mappings the IQX mapping

solution didn’t implement any modification in the transpiled circuit as expected.

Here we present the result for the following map M1

M1 : q0 → 3, q1 → 2, q2 → 4, q3 → 0.

Figure 1.13 shows the measurement statistics corresponding to this mapping and the resultant EM

value is 0.282103. These results show that the circuit C4,2 needs more than the specified number of

CNOT while being implemented on “ibmqx2” and the measurement statistics of Ĉ4,2 is much more

closely aligned with the ideal measurement statistics compared to C4,2.

Different Optimization Levels and Tomography results

The results that we have portrayed so far are obtained without exhausting the ability of the QISKIT

compiler. There are four optimization levels that the QISKIT compiler of IBM-QX provides, with

0 being the least and 3 being the maximum possible optimization level, where the default level is 1.

Compiling the circuit with different optimization level results in different transpiled circuits. We

know that the number of CNOT gates in C4,2 is originally 22. The best that we could achieve using

the different optimization levels is 19. This is better than the original count of 22, but still quite

higher than the number of CNOT gates in Ĉ4,2 which is 12. We now also discuss the quality of the

states prepared using these circuits via full state tomography.

Although the measurement EM gives us an idea about the error induced in the circuits, it

does not account for the full picture. For example, we cannot identify the imaginary amplitude

41

that the circuits induce separately, rather we only get the real norm value. To understand the

complete structure of the state prepared for these circuits, full state tomography needs to be done.

Since the circuit consists of 4 qubits, we need to perform measurements in 34 = 81 different ways.

Tomography is used to measure the fidelity of the obtained state with the ideal state which is

well known measure of closeness. A fidelity of 1(maximum value) implies that the two states are

identical and a fidelity of 0(minimum value) implies the two states are completely distinguishable.

Let us now measure the fidelity of the state prepared by the following circuits and the ideal |D4
2〉

state.

1. The original circuit description, C4,2

2. The circuit compiled by the transpiler using maximum possible optimization, which we denote

as trans(C4,2).

3. The improved circuit due to our modifications, Ĉ4,2.

Here one should note that, the error rates in the IBMQ systems vary significantly and therefore

the results of tomography would be different if recorded on different time. The error rates in the

IBMQ machines are calibrated roughly once every 24 hours and can be found at [16]. We present

two such instances of results and find the relation between the fidelity of the three circuits remain

unchanged. We now note down the results in Table 1.4 and Table 1.5.

We have plotted the density matrices corresponding to the simulator and the result of Ĉ4,2

described on Table 1.5 in Figure 1.14 and Figure 1.15 respectively. Each density matrix consists of

two plots, one depicting the real and the other depicting the complex components of the density

matrix.

Thus we can see that even when we account for full tomography, the modifications that we have

discussed forms better state than the circuit formed by the transpiler using maximum optimization

level.

1.5.3 Modifications leading to different CNOT error distributions

We have discussed possible modifications to reduce gate count of the circuit for preparing the Dicke

state |Dn
k 〉 and have also seen how these modifications affect the error induced in the circuit with

42

Circuit Backend Fidelity

C4,2, Ĉ4,2 Simulator 1

C4,2 “ibmqx2” ≈ 0.40

trans(C4,2) “ibmqx2” ≈ 0.43

Ĉ4,2 “ibmqx2” ≈ 0.53

Table 1.4: Fidelity of |D4
2〉 prepared using different circuits on 20/09/2021

Circuit Backend Fidelity

C4,2, Ĉ4,2 Simulator 1

C4,2 “ibmqx2” ≈ 0.25

trans(C4,2) “ibmqx2” ≈ 0.35

Ĉ4,2 “ibmqx2” ≈ 0.40

Table 1.5: Fidelity of |D4
2〉 prepared using different circuits on 04/11/2021

Figure 1.14: Density matrix corresponding to |D4
2〉 when run in simulator

Figure 1.15: Density matrix corresponding to Ĉ4,2 corresponding to the result in Table 1.5

respect to the “ imbqx2” machine provided by IBM-QX. The main tool behind these modifications

were identification and analysis of different partially defined unitary transformations.

Let us now shift our focus to observing how these partially defined transformations can also

43

come in handy when analyzing the expected amount of noise affecting a circuit. We describe this

scenario with the case study of Ĉ4,2. Consider a four qubit architecture A4 that has the same

CNOT connectivity as GĈ4,2 and only differs in CNOT error distribution. We will now observe how

further modifying the circuit Ĉ4,2 can lead to lower CNOT error on expectation against some error

distributions in the architecture A4. We assume every edge in the CNOT map of A4 is bidirectional,

as is the case with all currently publicly available IBM-Q machines. The CNOT error rate when

applying a CNOT between qubits i and j (such that the edge i ↔ j is present in GA) is denoted

as eij .Figure 1.17 shows the CNOT map of the architecture.

CNOT error model

In this regard let us define a plausible error model to calculate CNOT error on expectation of a

circuit implemented in the architecture A4. The probability of a CNOT placed between qubits i and

j acting erroneously in a circuit is dependent on the error rate of the corresponding CNOT coupling

in the architecture. We call this CNOT error. We denote this probability with fe : [0, 1] → [0, 1].

We do not assume the exact nature of fe, but only that it is a monotonically increasing function

w.r.t to CNOT error rate which is by definition.

Next we define the following Bernoulli random variables to calculate the the number of CNOT

acting erroneously on expectation when a circuit is applied on this architecture. We define a variable

xk corresponding to each CNOT used in a circuit. The variable is assigned zero if the k-th CNOT

is applied correctly while executing a circuit, and one otherwise.

Let us suppose the k-th CNOT is applied between qubits i and j. Then we have Pr(xk = 1) =

fe(eij) and The expected error while applying the CNOT is E(xk) = fe(eij). Therefore the CNOT

error on expectation while implementing a circuit C on the architecture is

E(C) =
∑

vijfe(eij).

Having described the error model we look at the CNOT distribution of the circuit Ĉ4,2 as a

weighted graph Gf . The vertices and the edges of this graph is same as that of GĈ4,2 . The weight

of an edge qi ↔ qj is the number of CNOT gates applied between the two qubits in the circuit.

The graph Gf is shown in Figure 1.16.

Now we implement the circuit Ĉ4,2 on the architecture A4 so that all CNOT constraints can be

44

met. We observe that only the qubit 1 has degree 3 and therefore q1 is mapped to the physical

qubit 1. Then we can have the following maps which satisfies all the CNOT constraints.

1. q1 → 1, q0 → 0, q2 → 2, q3 → 3. 2. q1 → 1, q0 → 2, q2 → 0, q3 → 3.

Then the expected CNOT error of the circuit Ĉ4,2 when applied on the architecture A4 is

E(Ĉ4,2) = 5fe(e01) + 3fe(e02) + 3fe(e12) + fe(e13).

Now let us observe how the circuit Ĉ4,2 (described in Figure 1.10) can be further modified using

partially defined transformations so that the CNOT error in the circuit on this architecture will

reduce on expectation under some error distribution conditions.

q0 q1

q2 q3

5

3 13

Figure 1.16: Graph Gf corre-

sponding to GĈ4,2 .

0 1

2 3

e01

e12 e13e02

Figure 1.17: CNOT map of the
architecture A.

q0 q1

q2 q3

5

3

1

3

Figure 1.18: Graph G′f corre-

sponding to Ĉ′4,2

|0〉 • −θ23
4

θ23
4

−θ23
4

θ23
4
• • π

2 −
θ12
2 −(π2 −

θ12
2) •

|0〉 θ2
4 • π

2 −
θ13
2 −(π2 −

θ13
2) • • •

|0〉 X • • • •

|0〉

Figure 1.19: Circuit description of Ĉ′4,2

The first Ry gate that acts on the second qubit of Ĉ4,2 is followed by the CNOT gates CNOT2
3

and CNOT2
4. The combined transformation T4 of these two CNOT is defined only for two basis

states on 4 qubits |0011〉 → |0011〉 and |0111〉 → |0100〉.

We can use the partial nature of the transformation to modify the circuit as follows. Note that

transformation T4 is the first transformation that acts on q3. Then if we start the circuit from the

45

state |0010〉 instead of |0011〉 then we can define the transformation T 1
4 such that

T 1
4 ≡ (I2 ⊗ CNOT3

2 ⊗ I2)(I2 ⊗ I2 ⊗ CNOT2
1)

=⇒ T 1
4 |0010〉 = |0011〉 , T 1

4 |0110〉 = |0100〉

resulting in the same output states as T4 for all the computational basis states for which T4 is

defined. It is important to note that this implementation would not have been possible if the

transformation was defined for all the 8 basis states of the second third and fourth qubits.

Let’s denote this circuit as Ĉ′4,2 and it is drawn in Figure 1.19. The weighted CNOT map of the

circuit Ĉ′4,2 is denoted as as G′f and it is shown in Figure 1.18.

Now observe that in the graph G′f ,q2 has degree three and therefore any map that meets all

the CNOT constraints will have q2 → 1. Therefore we can have the following maps that satisfies

all the CNOT constraints.

1. q2 → 1, q0 → 0, q1 → 2, q3 → 3. 2. q2 → 1, q0 → 2, q1 → 0, q3 → 3.

The CNOT error on expectation for both the circuits is

E(Ĉ′4,2) = 5fe(e02) + 3fe(e01) + 3fe(e12) + fe(e13).

Now we calculate the conditions when E(Ĉ′4,2) is less than E(Ĉ′4,2).

E(Ĉ′4,2) < E(Ĉ4,2)

=⇒ 5fe(e02) + 3fe(e01) + 3fe(e12) + fe(e13)

< 5fe(e01) + 3fe(e02) + 3fe(e12) + fe(e13)

=⇒ fe(e02) < fe(e01)

=⇒ e02 < e01.

This gives us an insight into how different CNOT distributions in a circuit may lead to better results

without reduction in the number of CNOT gates or a reduction in the architectural constraints.

We conclude this section by describing the architectural constraint of the circuit Ĉn,k. Here note

that this CNOT error model is rather simplistic and we design this model to emphasize how the

46

distribution of the CNOT gates in the circuit is also of importance in trying to reduce the error

due to the noise in the system. One can refer to [14] to get a more formal approach towards noise

aware circuit compilation.

1.5.4 The CNOT map of Ĉn,k

The CNOT gates in the circuit Ĉn,k are due to implementation of the µ and M transformation of

the different SCSnk blocks. µn forms an edge in the CNOT map of the form n− 1↔ n. where as

Ml
n forms the edges (l − 1) ↔ n and l → (l − 1). However in the circuit Ĉn,k the transformations

Mn−k+1
t do not have a CNOT between the neighboring qubits n− k and n− k + 1.

We divide the edges into two groups. One corresponding to CNOT gates between neighboring

qubits and one where the positions of the qubits differ at least by two. We calculate the edges of

each of these types.

• The neighboring qubits with CNOT connections are the qubits (n− k+ 1− i) and (n− k− i)

where i varies from 0 to n−k−1. The other neighboring qubits do not have CNOT connections

due to removal of identity transformations form those qubits. This results in n− k edges.

• Now consider the second kind of connections. These connections are formed between l − 1

and t th qubit for any Ml
t transformation.

There are n − k SCSnK blocks with originally k − 1 M transformations in Cn,k which forms

the edges:

(n− t)↔ (n− t− 2− i), 0 ≤ i ≤ k − 2, 0 ≤ t ≤ n− k − 1.

Then there are k− 1 blocks of SCSi+1
i with i− 1M transformations which forms the edges:

(k − t)↔ (k − t− 2− i), 0 ≤ i ≤ k − t− 2, 0 ≤ t ≤ k − 2.

However in Ĉn,k there are no M transformations of the type Mn−k+1+x
y , x > 0. Removing

such edges n− k+ x↔ y gives us the complete description of the CNOT map of Ĉn,k, which

we denote by Gn,k. Additionally, in the transformation Mn−k+1
n the edge n→ (n− k) is not

present.

Figure 1.20 and 1.21 show the CNOT maps G6,2 and G6,3 respectively.

47

1

2

3

4

5

6

Figure 1.20: The CNOT map G6,2

1

2

3

4

5

6

Figure 1.21: The CNOT map G6,3

The number of edges present due to M transformations is nk − k(k+1)
2 − n + 1 − (k−1)(k−2)

2 =

nk−n−k2 +k. There are further n−k edges due to the µ transformations. Which brings the total

number of edges in Gn,k to nk − k2. It is important to note that although the number of edges in

Gn,k and Gn,n−k are same they are not isomorphic. Moreover the Graph Gn,i is not a subgraph of

Gn,i+1. This is an interesting implication of the improvements that we have discussed and further

analyzing the relation between the different Gn,i graphs is an intriguing combinatorial prospect.

The final point of discussion in this document is the fact that circuit Ĉn,k can be modified so that

the number of CNOT gates between the qubits change for certain cases, although the total number

of CNOT gates and the overall CNOT map does not change. We call these different instances as

different CNOT distributions of Ĉn,k.

48

n− k − i •
n− k − i+ 1 • •

n− i

Figure 1.22: Initial Implementation

n− k − i •
n− k − i+ 1 •

n− i

Figure 1.23: Modification in Cn,k
n− k − i

n− k − i+ 1 • •
n− i

Figure 1.24: Alternate Implementation

Different CNOT distributions for Ĉn,k

We know from the description of Cn,k [2] that the number of CNOT gates in the three qubit

transformation M is reduced from 6 to 5 by canceling the last CNOT of every transformation by

rearranging the first two CNOT gates of the next transformation. Figure 1.22 shows the original

layout as per the algorithm and Figure 1.23 shows the reduction due to [2].

Now let us consider the last transformation (k-th) of each SCSn−ik , 0 < i < n − k block,

Mn−i−k+1
n−i . This transformation acts on the qubits n − i − k, n − i − k + 1 and (n − i). This

is in fact the first transformation that affects the qubit (n − i − k) and thus the qubit is in the

state |0〉. If we do not cancel the last CNOT of the preceding M transformation (CNOTn−i−k+1
n−i)

this then enables us to remove of the CNOT gate (CNOTn−i−kn−i), changing the CNOT distribution

of the circuit without a change in CNOT map or number of CNOT gates. This leads to the

implementation shown in Figure 1.24. Since there are n − k − 1 such transformations, this leads

to a total of 2n−k−1 different CNOT distributions. However, these modifications do not alter the

CNOT map of the circuit due to the fact that there are other CNOT gates applied between these

qubits, which is evident from the circuit description. As we have observed in Section 1.5.3 such

different CNOT distributions may lead to different number of CNOT gates acting erroneously on

expectation and thus affect the overall error induced in the circuit.

49

1.6 Conclusion

In this chapter we have explored the domain of optimal circuit implementation in terms of CNOT

and single qubit gates. In this regard we have shown how concise realization of partially defined uni-

tary transformations can improve the gate count of the current state of the art deterministic Dicke

state (|Dn
k 〉) preparation circuit (Cn,k). We have reduced the gate count of one such implementation

and have also proven the optimality of our implementation. We have further shown ways in which

one can further reduce the gate count of the said Dicke State preparation circuit by removing re-

dundant gates and modifying implementations of certain partially defined unitary transformations

depending on the active basis states that that act as input to these transformations. We have then

discussed how these improvements not only reduce the number of CNOT and single qubit gates

but also reduces the architectural constraints of the circuit using the case of |D4
2〉. The resultant

circuit is the deterministic Dicke State (|Dn
k 〉 , 2 ≤ k ≤ n− 1) has the same asymptotic gate count

as the original circuit O(nk), but we see the CNOT and single qubit gate count being reduced by

O(k2). We have then shown how to implement the circuit C4,2 and the improved circuit Ĉ4,2 on

the IBM-Q machine “ibmqx2” and observed that the deviation from ideal measurement statistics

is significantly lesser in case of Ĉ4,2. We have also discussed that the full tomography results also

support this observation. Furthermore, we have discussed how different CNOT distributions can

help a circuit without changing the number of gates or the architectural constraints by comparing

the expected CNOT error of two such distributions against a fairly generalized error model. We

have concluded by describing the CNOT map of the circuit Ĉn,k and observe the exponential num-

ber of different CNOT distributions that can be derived by modifying the circuit to complete our

generalization.

We observed that even the circuits for |D5
2〉 could not be implemented in the IBM back end

machines without adding further CNOT gates to our description. This is because of incompatibility

of the architecture and circuit CNOT maps. Therefore it is of all the more importance to form the

circuit for an algorithm in the most concise way possible. In conclusion we note down the following

optimization problems that should help the readers implement algorithms more efficiently in the

current scenario.

1. Given a maximally partial unitary transformation what is the corresponding unitary matrix

that can be decomposed using the least number of elementary gates?

50

2. Given two circuits corresponding to an algorithm with isomorphic CNOT maps and the same

number of CNOT gates, but different CNOT distribution across the qubits, which circuit will

produce less erroneous outcome?

51

Bibliography

[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. W. Shor, T. Sleator,

J. A. Smolin, and H. Weinfurter. 1995. Elementary gates for quantum computation. Phys. Rev.

A, 52:3457-3467. DOI: 10.1103/PhysRevA.52.3457.

[2] A. Bärtschi and S. Eidenbenz. 2019. Deterministic Preparation of Dicke States. Fundamentals

of Computation Theory, 126-139. DOI: 10.1007/978-3-030-25027-0 9.

[3] K. Chakraborty, B. Choi, A. Maitra and S. Maitra. 2014. Efficient quantum algorithms to

construct arbitrary Dicke states. Quantum Inf Process 13, 2049–2069. DOI: 10.1007/s11128-

014-0797-8.

[4] A. M. Childs, E. Farhi, J. Goldstone, and S. Gutmann. 2002. Finding cliques by quantum

adiabatic evolution. Quantum Information & Computation, 2(3):181–191, Apr 2002. DOI:

10.26421/QIC2.3.

[5] D. Cruz, R. Fournier, F. Gremion, A. Jeannerot, K. Komagata, T. Tosic, J. Thiesbrummel, C.L.

Chan, N. Macris,M.-A. Dupertuis and C. Javerzac-Galy. 2019. Efficient Quantum Algorithms

for GHZ and W States, and Implementation on the IBM Quantum Computer. Adv. Quantum

Technol., 2: 1900015. DOI: 10.1002/qute.201900015.

[6] G. Song and A. Klappenecker. 2003. Optimal realizations of controlled unitary gates. Quantum

Info. Comput. 3, 2 (March 2003), 139–156.

[7] E. Knill. 1995. Approximation by Quantum Circuits.

52

[8] B. Langenberg, H. Pham and R. Steinwandt. 2020. Reducing the Cost of Implementing the

Advanced Encryption Standard as a Quantum Circuit. IEEE Transactions on Quantum Engi-

neering, vol. 1, pp. 1-12, 2020, 2500112. DOI: 10.1109/TQE.2020.2965697.

[9] M. Mosca and P. Kaye. 2001. Quantum Networks for Generating Arbitrary Quantum States.

Optical Fiber Communication Conference and International Conference on Quantum Informa-

tion ICQI, page PB28, Jun 2001. DOI: 10.1364/ICQI.2001.PB28.

[10] M. Möttönen, J.J Vartiainen, V. Bergholm, and M.M Salomaa. 2004. Quantum Circuits for

General Multiqubit Gates. Phys. Rev. Lett, 93, 130502. DOI: 10.1103/PhysRevLett.93.130502.

[11] Martin Plesch and Časlav Brukner. 2011. Quantum-state preparation with universal gate de-

compositions. Phys. Rev. A 83, 032302. DOI: 10.1103/PhysRevA.83.032302.

[12] V. V. Shende, S. S. Bullock and I. L. Markov. 2006. Synthesis of quantum-logic circuits. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, pp.

1000-1010. DOI: 10.1109/TCAD.2005.855930.

[13] G. Vidal and C. M. Dawson. 2004. Universal quantum circuit for two-qubit transforma-

tions with three controlled-NOT gates. Phys. Rev. A 69, 010301(R). DOI: 10.1103/Phys-

RevA.69.010301.

[14] E. Wilson, S. Singh and F. Mueller. 2020. Just-in-time quantum circuit transpilation reduces

noise. In proceedings of IEEE International Conference on Quantum Computing & Engineering

(QCE20).

[15] A. Zulehner,A. Paler, and R. Wille. 2019. An Efficient Methodology for Mapping Quantum

Circuits to the IBM QX Architectures. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 38, 1226-1236. DOI: 10.1109/TCAD.2018.2846658.

[16] IBM Q Experience Website, https://quantum-computing.ibm.com

1.7 Code for C4,2

1 OPENQASM 2.0;

2 include "qelib1.inc";

53

https://quantum-computing.ibm.com

3 qreg q[4];

4

5 x q[2];

6 x q[3];

7 cx q[2],q[3];

8 cx q[3],q[2];

9 ry(-pi/3) q[2];

10 cx q[3],q[2];

11 ry(pi/3) q[2];

12 cx q[2],q[1];

13 cx q[1],q[3];

14 ry(-pi/8) q[1];

15 cx q[3],q[1];

16 ry(pi/8) q[1];

17 cx q[2],q[1];

18 ry(-pi/8) q[1];

19 cx q[3],q[1];

20 ry(pi/8) q[1];

21 cx q[1],q[3];

22 cx q[1],q[2];

23 cx q[2],q[1];

24 ry(-pi /3.2885) q[1];

25 cx q[2],q[1];

26 ry(pi /3.2885) q[1];

27 cx q[1],q[0];

28 cx q[0],q[2];

29 ry(-pi /10.208) q[0];

30 cx q[2],q[0];

31 ry(pi /10.208) q[0];

32 cx q[1],q[0];

33 ry(-pi /10.208) q[0];

34 cx q[2],q[0];

35 ry(pi /10.208) q[0];

36 cx q[0],q[2];

37 cx q[0],q[1];

38 cx q[1],q[0];

39 ry(-pi/4) q[0];

40 cx q[1],q[0];

54

41 ry(pi/4) q[0];

42 cx q[0],q[1];

Listing 1.3: The preparation circuit for |D4
2〉

1.8 Code for Ĉ4,2

1 OPENQASM 2.0;

2 include "qelib1.inc";

3 qreg q[4];

4

5 x q[2];

6 x q[3];

7 ry(pi/2) q[1];

8 cx q[1],q[3];

9 cx q[1],q[2];

10 ry((pi/2)-pi /3.2885) q[1];

11 cx q[2],q[1];

12 ry(-((pi/2)-pi /3.2885)) q[1];

13 cx q[1],q[0];

14 cx q[0],q[2];

15 ry(-pi /10.208) q[0];

16 cx q[2],q[0];

17 ry(pi /10.208) q[0];

18 cx q[1],q[0];

19 ry(-pi /10.208) q[0];

20 cx q[2],q[0];

21 ry(pi /10.208) q[0];

22 cx q[0],q[2];

23 cx q[0],q[1];

24 ry((pi/2)-pi/4) q[0];

25 cx q[1],q[0];

26 ry(-((pi/2)-pi/4)) q[0];

27 cx q[0],q[1];

Listing 1.4: The post modification preparation circuit for |D4
2〉

55

Part II

The Query Complexity Model

56

Chapter 1

Background and Organization

57

Ever since the inception of quantum computation, one of the central questions has been that

of understanding its quantitative difference from classical computation. Quantum computation

is driven by qubits and has mysterious properties like superposition and entanglement, properties

with seemingly no classical counterpart. However, despite these striking advantages, any asymptotic

comparison between the power of quantum and classical computation in the general framework has

been elusive. One can arguably say that the interest in quantum computation began to grow in the

computer science community with the Shor’s algorithm and Simon’s algorithm in the late 1990’s.

Shor’s algorithm showed that the factoring problem can be solved in a quantum computer in only

polynomial (in number of bits needed to express the number to be factored) time, where as the

best known classical algorithm has exponential time requirement. Although this algorithm implied

that if large scale quantum computers could break the famous RSA encryption, one of the most

commercially used public encryption models, it did not have any impact in separating the general

power of classical and quantum computation. This is because although there is no polynomial time

algorithm for the factoring problem, it has not been possible yet to prove that there can never be

one.

Now, both the Shor’s algorithm and Simon’s algorithm are developed in a particular model,

known as the query model. We describe this model briefly using Simon’s algorithm. There are

two different kinds of query model, and although the model we concentrate on is different from

the one used in the aforementioned algorithm, it is useful to have an idea about both, since the

underlying idea is the same. First we define the period of a function. A function f with a domain

X is said to have a period α if for all x ∈ X we have f(x) = f(x + α). The problem of interest

for Simon’s algorithm is to find the period of a function given “black box access” to it. This

“black box access”, popularly called oracle access is the fundamental characteristics and restriction

of the query model. In this model the an oracle Uf (which can viewed as a quantum operator)

corresponding to a function f is given, so that for any x ∈ X Uf |x〉 = (−1)f(x) |x〉 where |x〉 is

a quantum state defined so that there is a known bijection from x to |x〉. Here the restriction is

that the underlying functioning of Uf is not revealed. In the classical model similarly we could

have a circuit Ûf : Ûf (x) = f(x) to which we have black box access. In this model one can show

that Simon’s algorithm is more efficient than any possible classical algorithm for finding hidden

period of functions. The different asymptotic separation known between quantum and classical

58

computation are in different variations of the query model. The model we discussed here is the

most popular model, which we shall refer to as the Uf model. In the rest of this chapter and the

coming chapters we discuss a different model, which we call the Ox model.

1.1 The Ox Query Model

The Ox query model can be defined for any kinds of functions. We are only interested in Boolean

functions, both for their simplicity and the deep interest in them in different areas of mathematics

and computer science, including but not restricted to combinatorics, coding theory and cryptogra-

phy. From hereon we refer to Boolean functions simply as functions. The problem we are interested

in Ox query model is as follows.

We are given the complete description of a function on n variables f(x1, . . . xn) : {0, 1}n →

{0, 1}. Now, given this information we are to evaluate the function f for any given input with the

restriction that the inputs to the function can only be accessed by making queries to an oracle Ox.

Before moving forward let us first formally describe this oracle in both classical and the quantum

paradigm.

Classical and Quantum Oracle: In the query complexity model, the value of any variable

can only be queried using an oracle. An oracle is a black-box which can perform a particular

computation. In the classical model, an oracle accepts an input i (1 ≤ i ≤ n) and output the value

of the variable xi. In the quantum model, the oracle needs to be reversible. It is represented as an

unitary Ox which functions as follows.

Ox |i〉 |φ〉 = |i〉 |φ⊕ xi〉 , 1 ≤ i ≤ n

Figure 1.1 represents the working of an oracle in the quantum complexity model.

In this framework, we are only interested in the minimum number of queries one would need to

make to this oracle in the worst case scenario, which is called the query complexity of the function.

Definition 1. The query complexity of a function is the maximum number of times this oracle

needs to be used to evaluate the value of the function f for any value of the variables x1, x2, . . . , xn

59

Figure 1.1: Working of a quantum oracle

in a given model.

The query complexity of a function can be defined in both deterministic and probabilistic

classical models as well as exact and bounded error quantum models. The main advantage of

quantum models over the classical model is that we can query the superposition of variables in

the same query, which allows us to possibly extract more “global” information about the variables

which could be intelligently used to reduce the query requirement to evaluate a function. Here

we will be interested in the deterministic classical and the exact quantum query models, and the

comparison of how efficiently different functions can be evaluated in these two models. Before

proceeding, it is important to underline the motivation behind the work and results to follow.

Like we discussed earlier the main driving force behind research in the query complexity model is

understanding the difference in power of quantum and classical computation in a restricted model.

Another very interesting problem is that of understanding how the structure of different Boolean

functions can effect the difference in the query complexity for it between the classical and quantum

query models. For there are functions for which the maximum number of queries are same in

both the models, others for which it only differs in constant factors w.r.t n, and for others we

have superlinear separation. Exploring and exploiting different Boolean functions properties and

structures to observe these scenarios, and as a result laying out new separation results as well

as new algorithmic techniques are our main motivations. Let us now formally define the terms

deterministic classical and exact quantum query complexities.

Deterministic (Classical) Query Complexity: The minimum number of queries that a func-

tion f needs to be evaluated using a deterministic algorithm is called its Deterministic Query

Complexity (D(f)). We generally omit the word ‘classical’. A query based classical deterministic

algorithm for evaluating a Boolean function f : {0, 1}n → {0, 1} can be expressed as a rooted

decision tree as follows.

60

0

Figure 1.2: Example of a decision tree

In this model, every internal node corresponds to a query to a variable xi 1 ≤ i ≤ n. Each leaf

is labeled as either 0 or 1. The tree is traversed from the root of the tree till it reaches a leaf in the

following manner. Every internal node has exactly two children and depending on the outcome of

the query (0 or 1 respectively), one of the two children are visited (left or right, respectively). That

is this is a binary tree. The leaf nodes correspond to the output of f for different inputs. Every

decision tree uniquely defines a Boolean function which we can obtain by deriving the Algebraic

Normal Form (ANF) from a given tree. This can be obtained as follows. We start from the root node

with the following recursion. Let T be the decision tree in question and let it’s ANF be ANF (T).

Assume the root node is some xj and T 0
j and T 1

j be the subtrees connected to xj through the edged

weighted 0 and 1 respectively. Then the ANF is ANF (T) = xjANF (T 1
j) ⊕ (xj ⊕ 1)ANF (T 0

j).

For example, the ANF of the Boolean function corresponding to the tree shown in Figure 1.2 is

(x1⊕ 1)(x2)⊕x1(x3⊕ 1) = x1x2⊕x1x3⊕x1⊕x2⊕x3. When evaluating the function for any input

point, we start from the root and if the value of the variable at a node is 0, we traverse down the

edge marked 0, and the edge marked 1 otherwise, till we reach a leaf node, which is the output of

the function for that particular input.

Corresponding to a function, there can be many Deterministic Query Algorithms that can

evaluate it. The depth of a decision tree is defined as the number of edges encountered in the

longest root to leaf path. Given f , the shortest depth decision tree representing the function, is

called the optimal decision tree of f and the corresponding depth is termed as the Deterministic

classical complexity of f , denoted as D(f).

Exact Quantum Query Complexity: A Quantum Query Algorithm is defined using a start

state |ψstart〉 and a series of unitary Transformations

U0, Ox, U1, Ox, . . . , Ut−1, Ox, Ut,

61

where the unitary operations Uj are indifferent of the values of the variables xi and Ox is the oracle

as defined above. Therefore, the final state of the algorithm is

|ψfinal〉 = UtOxUt−1 . . . U1OxU0 |ψstart〉

and the output is decided by some measurement of the state |ψfinal〉. A quantum algorithm is said

to exactly compute f if for all (x1, x2, . . . , xn) it outputs the value of the function correctly with

probability 1. The minimum number of queries needed by a Quantum Algorithm to achieve this

is called the Exact Quantum Query Complexity QE(f) of the function. We also define the term

separable as we often use it.

Definition 2. A Boolean function f is called separable if QE(f) < D(f) and non-separable other-

wise.

Now, it is easy to see that in both the models the maximum query complexity of a function

can be n, in any model. One can also show that the least exact quantum query complexity of a

non-degenerate function on n variables is Ω
(√

log n
)
. Let us now move to query friendly functions.

1.2 Outline

In chapter 2 we explore functions who have the lowest possible deterministic classical query com-

plexity of all functions on n variables. We term these as “query friendly functions”. With respect

to these functions we have a very interesting observation, around which the chapter revolves. For

certain values of n, all query friendly functions on n variables are non-separable. For certain other

values of n we show that they are separable. For all other values of n we show that they cannot

be separated using the arguably most popular algorithmic technique of the exact quantum query

model, known as the parity decision tree technique.

In chapter 3 we aim to study separation between D(f) and QE(f) for non-symmetric functions

using the properties of the algebraic normal form of certain Boolean functions. Our motivation for

this chapter stems from the fact that there are not many techniques known for obtaining efficient

exact quantum query algorithms and most functions that have been studied so far symmetric in

62

nature. In this regard we design a new algorithmic technique that gives us separation for a class of

functions with Ω
(

2
√
n
)

functions built using direct sum constructions.

Finally In Chapter 4 we study the D(f) and QE(f) of the Maiorana-Mcfarland (MM) type bent

functions. This is a class of size super-exponential in n, with more than 22
n
4 functions for any n.

The motivation behind this study is the uniformity in the algebraic normal form of these functions.

We obtain that D(f) = n for functions in this class. Then we design a parity decision tree based

technique with query complexity of dn4 e. We further reduce it to d5n
8 e using the techniques we have

developed in Chapter 3. We finish the chapter with open questions in this area that we are yet to

solve.

63

Chapter 2

Query Friendly Functions

64

2.1 Introduction

In this chapter we concentrate on the deterministic and exact quantum query complexity of different

Boolean function classes. There are other computational models such as the classical randomized

model and the bounded error quantum model [1] and there exists rich literature on work on these

models as well. However, those are not in the scope of this work.

In this regard one may note that the work by Barnum et.al [5] can be used to find the ex-

act quantum query complexity of any function on n variables by repetitively solving semi definite

programs (SDP). Montanaro et.al [10] have used this method to find exact quantum query com-

plexity of all Boolean functions upto four variables as well as describe a procedure of formulating

the quantum algorithm to achieve the said exact quantum query complexity. This method is not

yet found to be suitable for finding the exact quantum query complexity of a general classes of

Boolean functions. Additionally, the SDP are resource intensive in nature and solving the SDP for

large values of n is computationally challenging. But for the cases where the number of variables

is low, this does offer an exhaustive view of the exact quantum query complexities of all Boolean

functions.

As an example, in a very recent paper Chen et.al [8] have shown that f(x) = xi or f(x) = xi1⊕xi2
are the only Boolean functions with QE(f) = 1. However the work of Montanaro et.al [10, Section

6.1] show that the Boolean functions f with 2 or lesser variables and QE(f) = 1 are

• The single variable function xi.

• The two variable functions xi1 ⊕ xi2 .

Then it is shown in [10, Section 6.2] that the minimum quantum exact quantum query complexity

of any Boolean function with 3 or more influencing variables is 2. This essentially implies that the

work of [8] is in fact a direct corollary of [10].

We now lay out of the structure of the rest of the chapter.

2.1.1 Organization & Contribution

In Section 2.2, we start by describing the fact that the maximum number of influencing variables

that a function with k deterministic query complexity can have is (2k − 1). We first construct such

a function using the decision tree model. The decision tree representation of such a function is a

65

k-depth fully-complete binary tree in which every internal node queries a unique variable. We first

prove in Theorem 4 that any function with 2k − 1 influencing variables and k deterministic query

complexity must have the same exact quantum query complexity (k).

Next, we define a special class of Boolean functions in Section 2.2.1, called the “Query Friendly”

functions. A function f with n influencing variables is called query friendly if there does not exist

any other function with n influencing variables with lesser deterministic query complexity than

f . If n lies between 2k−1 and 2k − 1 (both inclusive) then all functions with deterministic query

complexity k are called query friendly functions. The proof in Theorem 4 directly implies that all

query friendly functions with n = 2k − 1 influencing variables are non-separable.

Then in Section 2.2.2 we identify a class of non-separable query friendly functions for all values

of n. We conclude this section by showing that all query friendly functions with n = 2k− 2 (k > 2)

influencing variables are non-separable as well.

In Section 2.3, we describe the parity decision tree model. We first discuss the simple result that

a k-depth parity decision tree can describe functions with upto 2k+1 − 2 influencing variables.

In Section 2.3.1 we define another set of query friendly functions on n influencing variables that

exhibit minimum separation (i.e., one) between deterministic and exact quantum query complexity

for certain generalized values of n. We prove by construction that if 2k−1 ≤ n < 2k−1 + 2k−2 then

there exists a class of query friendly functions such that for any function f in that class we have

QE(f) = D(f)− 1. We conclude the section by showing that for other values of n there does not

exist separable query friendly functions that can be completely described by the parity decision

tree model.

We conclude the study in Section 2.4 outlining the future direction of our work. We further state

open problems that we have encountered in this work. Solution to these problems will help us

better understand the limitations of the parity decision tree model.

2.2 Decision Trees and No-separation results

As we have discussed, query algorithms can be expressed as decision trees in the classical determin-

istic model. In this regard, let us present the two following simple technical results. These results

66

are well known in folklore and we present them for completeness.

Lemma 3. There exists a Boolean function fk with 2k−1 influencing variables such that D(f) ≤ k.

Proof. We construct this function for any k as follows. We know that if a Boolean function f can

be expressed as a decision tree of depth d, then D(f) ≤ d. We now build a decision tree, which is a

fully-complete binary tree of depth k. Each of the internal nodes in this tree is a unique variable,

that is, no variable appears in the decision tree more than once. Since there are 2k − 1 internal

nodes in such a tree, this decision tree represents a Boolean function fk on 2k − 1 variables with

D(fk) ≤ k.

Without loss of generality we can name the root variable of the corresponding decision tree as

x1 and label the variables from left to right at each level in ascending order. The resultant structure

of the tree is shown in Figure 2.1.

0

level:1

level:2

level:3

level:k

Figure 2.1: Decision Tree corresponding to function f with maximum influencing variables for
D(f) = k

Having constructed such a Boolean function fk, we now show that is indeed the function with

the maximum number of influencing variables that can be evaluated using the deterministic com-

putational model using k queries.

Lemma 4. Given any integer k, the maximum number of influencing variables that a Boolean

function f has such that D(f) = k is 2k − 1.

Proof. Suppose there exists a Boolean function with n1(> 2k− 1) influencing variables that can be

evaluated using k queries. This implies that there exists a corresponding decision tree of depth k

that expresses this function. However, in a decision tree corresponding to a Boolean function f , all

67

the influencing variables should be present as an internal node at least once in the decision tree.

Otherwise,

f(x1, x2, . . . , xi−1, 0, . . . , xn)

= f(x1, x2, . . . , xi−1, 1, . . . , xn) ∀xj ∈ {0, 1} : j 6= i,

which implies that xi is not an influencing variable of the function. Since there cannot exist a

decision tree of depth k that has more than 2k − 1 internal nodes, such a function can not exist.

This implies that for any function f with n = 2k − 1 influencing variables and D(f) = k, the

corresponding decision tree is a k-depth complete tree where every variable is queried only once.

It immediately follows that a function f with n = 2k− 1 influencing variables has deterministic

query complexity D(f) ≥ k.

Theorem 4. Given any Boolean function f with 2k − 1 influencing variables and D(f) = k we

have QE(f) = k.

Proof. This is proven by showing that any function f characterized as above is at least as hard to

evaluate as the function ANDk, which is AND of k variables.

Given such a function f , there exists a corresponding k-depth complete tree Tf . As we have

shown in Lemma 4, in such a tree all internal nodes will query a variable and all the variables will

appear in the tree exactly once.

Given the decision tree Tf corresponding to f let xi1 , xi2 , xi3 , . . . , xik be a root to internal node

path in the tree so that children of xik are the leaf nodes. Here

val(xit , 1) = xit+1 , 1 ≤ t ≤ k − 1.

We call this set of variables smax. We fix the values of the variables {x1, x2, x3, . . . , x2k−1} \ smax

as follows. Each of the variables at a level less than or equal to k− 1 is assigned either 0 or 1. Now

either val(xik , 0) = 0 and val(xik , 0) = 1 or val(xik , 0) = 1 and val(xik , 0) = 0.

• In the first case, If a variable is at the k-th level, i.e., its children are the leaf nodes then each

such variable yi is fixed at the value ci such that val(yi, ci) = 0. Then the function is reduced

68

to
k∏
t=1

xik .

• In the second case, the values of variables yi in the k-th level is fixed at the value ei so that

val(yi, ci) = 1. Then the function is reduced to
(k∏
t=1

xik

)
⊕ 1.

The reduced function is ANDk in the first case and ORk in the second case. In both the cases we

have QE(f) ≥ k, as QE(ANDk) = QE(ORk) = k [6, Table 1]. We also know that QE(f) ≤ D(f)

for any Boolean function f and therefore QE(f) ≤ k. Combining the two we get QE(f) = k.

We reiterate the idea behind the proof to further simplify the argument. Reducing a function to

ANDk essentially implies that there exists a set of variables x1, x2, . . . xk, such that if they are not

all equal to 1, then the function outputs 0. In terms of the tree the implication is as follows. Let

the path in the proof of Theorem 4 be xi1 , xi2 , . . . xilk such that the function is reduced to ANDk

by fixing values of the other variables. Then while the decision tree is traversed from the root, if

any of these k variable’s value is 0, we move to a node that is out of the path, and then the value

of the other internal nodes should be so fixed that we always reach a 0-valued leaf node.

2.2.1 Query Friendly Functions

Having established these results, we characterize a special class of Boolean functions. Given any n,

We call the Boolean functions with n influencing variables that have minimum deterministic query

complexity as the query friendly functions on n variables. We denote the corresponding query

complexity of this class of functions as DQn, and its value is calculated as follows.

Lemma 5. The value of DQn is equal to dlog(n+ 1)e.

Proof. We consider any n such that 2k−1 − 1 < n ≤ 2k − 1. We have shown in lemma 4 that there

cannot exist a Boolean function with n variables that can be evaluated with k− 1 classical queries.

Since the maximum number of influencing variables that a Boolean function with k query

complexity has is 2k − 1 as proven above, there exists a Boolean function with n variables with

D(f) = k. Now dlog(n+ 1)e = k, which concludes the proof.

Corollary 1. For n = 2k − 1, there does not exist any separable query friendly functions.

69

Proof. For n = 2k − 1, we have DQn = k. We have shown in Theorem 4 that any function f with

2k − 1 influencing variables and D(f) = k has QE(f) = k.

Now let us provide some examples of such functions where the deterministic classical and exact

quantum query complexities are equal.

• k = 2, n = 2k − 1 = 3, QE(f) = D(f) = 2: the function is f = (x1 ⊕ 1)x2 ⊕ x1x3 =

x1x2 ⊕ x1x3 ⊕ x2.

• k = 3, n = 2k − 1 = 7, QE(f) = D(f) = 3: the function is f = (x1 ⊕ 1)((x2 ⊕ 1)x4 ⊕ x2x5)⊕

x1((x3⊕1)x6⊕x3x7) = x1x2x4⊕x1x2x5⊕x1x4⊕x2x4⊕x2x5⊕x4⊕x1x3x6⊕x1x3x7⊕x1x6.

Next we move to a generalization when n 6= 2k − 1.

2.2.2 Extending the result for n 6= 2k − 1

We first identify a generic set of non-separable query friendly functions where 2k−1−1 < n < 2k−1

and then show that no query friendly function on n = 2k − 2, k > 2 influencing variables are

separable. We define such a set of non-separable query friendly functions for 2k−1− 1 < n < 2k− 1

using the decision tree model again. We construct a decision tree of depth k such that the first

k − 1 levels are completely filled and every variable occurs exactly once in the decision tree. That

implies there are n− 2k−1 + 1 nodes in the k-th level. Let us denote the corresponding function as

f(n,1).

Theorem 5. The Boolean function f(n,1) on n influencing variables has D(f(n,1)) = QE(f(n,1)).

Proof. This k-depth decision tree constructed for any n such that 2k−1 − 1 < n < 2k − 1 has the

following properties.

• The corresponding function has deterministic query complexity equal to k. This is because

the number of influencing variables in the function is more than the number of variables that

a Boolean function with deterministic query complexity k − 1 can have.

• There is at least one internal node at k-th level. let that node be called xik . Let the root

to xik path be x1, xi2 , xi3 , . . . , xik−1
, xik such that val(x1, d1) = xi2 , val(xi2 , d2) = xi3 and so

on. Applying the reduction used in Theorem 4 the corresponding Boolean function can be

70

Figure 2.2: Decision Tree corresponding to f(5,1)

reduced to the function (x1⊕d1)(xi2 ⊕d2) . . . (xik ⊕dk) which is isomorphic to ANDk. (Note

that di = 1⊕ di, i.e., the complement of di.) This implies that QE(fn,1) ≥ k. We also know

D(fn,1) = k, and therefore the exact quantum query complexity of the function is k. Figure

2.2 gives an example of a function in f(5,1).

The result is thus a generalization when 2k−1−1 < n < 2k−1, in identifying a class of functions

where the separation between classical and quantum domain is not possible.

We now show that in fact for k > 2, all query friendly functions with 2k − 2 variables are

non-separable.

Theorem 6. Let f be a query friendly function on n = 2k − 2 variables, such that k > 2. Then

D(f) = QE(f).

Proof. There exists a decision tree Tf of depth-k that evaluates f . Since f has 2k − 2 variables

then Tf can be of the following forms:

1. Tf has 2k − 2 internal nodes and each of the nodes query a unique variable. Each tree of this

type corresponds to a function of the type f(n,1) and therefore is non-separable.

2. Tf has 2k − 1 internal nodes and there exists two nodes in the tree which query the same

variable.

We analyze the different structures of Tf corresponding to the second case. Let the root node

queries a variable x1. Then the following cases can occur.

Case 1: Both the children of x1 query the same variable x2:

Let the two nodes be represented by x0
2 and x1

2. We choose a k-depth path x1, x
1
2, x3, . . . xk such

71

that val(xi, 1) = xi+1, 1 ≤ i ≤ k−1. Let us assume for simplicity val(xk, 0) = 0 and val(xk, 1) = 1.

For all vertices xt on the k − th level such that xt 6= xk we fix the value of the variable to dt such

that val(xt, dt) = 0. This construction reduces the function f to the ANDk function, implying

QE(f) ≥ k. As we know D(f) = k, this implies QE(f) = k.

Case 2: At most one of the children of x1 query a variable that appears more than once in the

decision tree:

In this case there exists a k-depth path consisting of nodes querying x1, x2, . . . xk such that each of

these variables appear only once in the tree such that

val(xi, di) = xi+1, 1 ≤ i ≤ k − 1 and val(xk, dk) = 1

.

Now let the variable that is queried twice be xdup and the nodes querying the variable be denoted

as x1
dup and x2

dup. If at most one of these nodes is in the k-th level then we can simply follow the

method of the first case to reduce the function into
k∏
i=1

(xi ⊕ d̄i).

If both the node querying xdup are in the k-th level, then at least one of their parent nodes do

not belong to the set {x1, x2 . . . xk}. Let the variable being queried by that node be xpar and it

is parent of at-least x1
dup. We fix the value of xpar to be c such that val(xpar, c̄) = x1

dup. Now we

again fix all the value of the variables xt on the k-th level except x1
dup and xk in the same way as

in case 1 to reduce the function to
k∏
i=1

(xi ⊕ d̄i).

The function
k∏
i=1

(xi⊕ d̄i) is isomorphic to the ANDk function and thus the proof is completed.

2.3 Parity Decision Trees and Separation results

We now explore the parity decision tree model introduced in [10]. This model is constructed using

the fact that in the exact quantum query model, the value of xi1 ⊕ xi2 can be evaluated using a

single query.

A parity decision tree is similar to a deterministic decision tree. But while in a decision tree a

72

query can only return the value of a variable xi, in a parity decision tree a query can return either

the value of a variable xi or the parity of two variables xi1 ⊕ xi2 . A parity decision tree represents

a quantum algorithm in which the oracle is queried values of type xi1 and xi1 ⊕ xi2 . In fact in this

case the work qubits can be measured after each query and reset to a default state.

Let f be a Boolean function that can be expressed as a k-depth decision tree in which every

internal node either queries a variable xi or the parity of two variables, xi1 ⊕ xi2 . We can then say

that QE(f) ≤ k. Figure 2.3 gives an example of a parity decision tree.

0

Figure 2.3: Example of a parity decision tree

The corresponding Boolean function is (x1 ⊕ x2)x4 ⊕ (x1 ⊕ x2 ⊕ 1)x3, with deterministic query

complexity 3 and exact quantum query complexity 2.

A k-depth parity decision tree can only evaluate a function of algebraic degree less than or equal

to k, whereas there may exist a Boolean function of degree higher than k that can be evaluated using

k queries. Thus, although this model does not completely capture the power of the quantum query

model, we use the generalized structure of this model to find separable query friendly functions for

certain values of n.

We say a parity decision tree T completely describes a Boolean function f if T is a parity

decision tree with the minimum depth (say depthf) among all parity decision trees that represent

f and QE(f) is equal to depthf .

Lemma 6. Given any k there exists a Boolean function f with 2k+1−2 variables such that QE(f) =

k.

Proof. This proof follows directly from the definition of parity decision trees and the proof of

existence of a Boolean function with 2k−1 variables with D(f) = k. Again we construct a k depth

complete parity decision tree such that every internal node is a query of the form xi1 ⊕ xi2 such

73

that no variable appears twice in the tree. This tree represents a Boolean function f of 2(2k − 1)

variables and inherently QE(f) ≤ k. This function can also be reduced to the ANDk function

which implies QE(f) ≥ f . This implies QE(f) = k. We skip the proof of reduction to avoid

repetition.

This is also the maximum number of influencing variables that a function f can have so that

QE(f) = k and f can be completely described using parity decision trees. This can be proven in

the same way as in lemma 4 and we do not repeat it for brevity.

We now prove some observations related to separability for a broader class of functions and

then explore separability in query friendly functions.

Theorem 7. If n 6= 2k−1 for any k, then there exists a Boolean function for which QE(f) < DQn.

Proof. Let 2k−1 − 1 < n < 2k − 1 for some natural number k. In this case DQn = k. However,

there exist Boolean functions fQ with n influencing variables such that QE(fQ) = k− 1. We define

a generic class of such functions using parity decision trees. Let n = 2k−1 − 1 + y. Then we can

always construct a complete parity decision tree of depth k − 1 with the following constraints:

• Every variable appears only once in the tree.

• y internal nodes have query of the form xi1 ⊕ xi2 . The rest of the internal nodes query the

value of a single variable.

Since y ≤ 2k−1 − 1, which is the number of internal nodes in a complete parity decision tree of

depth k − 1, such a function always exists.

However, if n = 2k − 1 for some k, then there not does not exist any Boolean function f that

can be completely expressed using the parity decision trees such that QE(f) < DQn. If n = 2k − 1

then DQn = k as well and there does not exist any Boolean function fQ with n variables that can

be expressed using parity trees and has QE(fQ) ≤ k − 1. This is true as we have already obtained

that the Boolean function with maximum number of influencing variables and depth k − 1, that

can be expressed using parity decision tree is 2k−2 (putting k−1 in place of k in Lemma 6 above).

Moreover, there does not exist any Boolean function with 3 influencing variable such that exact

query complexity is less than DQ3, which is equal to 2. It is interesting to note that if for some

74

n = 2k − 1 there exists a Boolean function with QE(f) = k − 1 then there exists separation for all

n = 2j − 1 : j > k. This can be easily proven with induction.

Lemma 7. If there exists a function fk with 2k − 1 influencing variables such that QE(f) = k− 1,

then there exists a function fj with 2j − 1 influencing variables such that QE(f) ≤ j − 1 for all

j > k.

Proof. If there exists a function fk with the specified property then fk+1 can be constructed as

follows:

fk+1 = x2k+1−1(fk(x1, x2, . . . x2k−1)⊕ (x2k+1−1 ⊕ 1)fk(x2k , x2k+1, . . . x2k+1−2).

It is easy to see QE(fk+1) ≤ k. Using this construction recursively yields a desired function for any

j > k.

We complete the categorization by defining a generalized subclass of Query friendly Boolean

functions. We define this subclass such that a function f , belonging to this, has QE(f) = DQn−1.

2.3.1 Separable Query Friendly functions

We construct a generic function for this set of query friendly functions using parity decision trees

for values of n such that there exists k, 2k−1 − 1 < n ≤ 2k−1 + 2k−2 − 1. We first describe the

construction using a parity decision tree and then prove the query complexity values of the function.

Let us construct a parity decision tree of depth k − 1 in the following manner. The first k − 2

levels are completely filled, with each internal node querying a single variable. All variable appears

exactly once in this tree. Let these variables be termed x1, x2, . . . , x2k−2−1. In the (k − 1)-th

level, there are dn−(2k−2−1)
2 e internal nodes, with each query being of the form xi1 ⊕ xi2 . (In case

n − 2k−2 + 1 is odd, there is one node querying a single variable). Then if n = 2k−1 there are

2k−3 + 1 internal nodes in (k − 1)-th level and if n=2k−1 + 2k−2 − 1 there are 2k−2 nodes in the

(k − 1)-th level, resulting in a fully-complete binary tree of depth k − 1. We denote this generic

function as f(n,2).

Theorem 8. The Boolean function f(n,2) on n influencing variables has D(f) = DQn and QE(f) =

DQn − 1.

75

Proof. If 2k−1 − 1 < n ≤ 2k−1 + 2k−2 − 1 then DQn = k. We first prove that QE(f(n,2)) = k − 1.

Since there exists a parity decision tree of depth k − 1,

QE(f(n,2)) ≤ k − 1. (2.1)

If we fix one of the variables of each query of type xi1⊕xi2 to zero then the reduced tree corresponds

to a non-separable function shown in 2.2.2 of depth k − 1,that is the function can be reduced to

ANDk−1. This implies

QE(f(n,2)) ≥ k − 1. (2.2)

Combining (2.1) and (2.2) we get QE(f(n,2)) = k − 1.

Now we show that D(f(n,2)) = k by converting the parity decision tree to a deterministic decision

tree of depth k. All the internal nodes of the parity decision tree from level 1 to level k− 2 queries

a single variable. The nodes in the k − 1-th level have queries of the form xi1 ⊕ xi2 . Each such

node can be replaced by a deterministic tree of of depth 2 in the following way. Suppose there is a

internal node xi1 ⊕ xi2 in the (k − 1)-th level.

We replace this node with a tree, whose root is xi1 . Both the children of the node queries

xi2 and the leaf node values are swapped in the two subtrees. Without loss of generality, sup-

pose in the original tree val(xi1 ⊕ xi2 , 0) = 0 and val(xi1 ⊕ xi2 , 1) = 1 Then in the root node

val(val(x1, 0), 0) = 0 and val(val(x1, 1), 0) = 1 and so on. Figure 2.4 gives a pictorial representa-

tion of the transformation. The resultant deterministic decision tree is of depth k as there is at

least 2k−3 node in the k− 1-th level in the parity decision tree which goes through transformation.

This implies D(f(n,2)) ≤ k. We also know that in this case DQn = k. Combining the two results

we get D(f(n,2)) = k.

Remark 1. It should be noted that although we use a particular function f for any n to show the

separation for QE(f) and D(f), this immediately means that this separation is established for at

least the class of functions on n influencing variables that are PNP equivalent to f .

76

Parity Decision Tree

Corresponding Deterministic Decision Tree

Figure 2.4: Conversion of a node in the parity decision tree to a deterministic decision tree

Let us now consider a function of the form f(5,2) described by its ANF as below:

f = (x1 ⊕ 1)(x2 ⊕ x3)⊕ x1(x4 ⊕ x5)

= x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x1x5 ⊕ x2 ⊕ x3.

This provides an example for n = 5, D(f) = 3, and QE(f) = 2. In Figure 2.5 we present the

decision tree for this function and the corresponding quantum circuit is provided in Figure 2.6.

(a) (b)

Figure 2.5: Parity Decision (a) and Deterministic (b) Tree corresponding to f(5,2)

We now explain for the sake of completeness the difference in working of the exact quantum

and deterministic algorithm for this function.

Suppose we want to evaluate this function at the point (1, 0, 1, 0, 1). The deterministic algorithm

will first query x1, and getting its value as 1 it will then query x4. Since x4 is 0 it will query the

77

NN44

X

X

X

X

H

X

H H M
output

Figure 2.6: Quantum algorithm responding to f(5,2)

x5 node which is it’s left children and then output 1 as x5 is 1.

The quantum algorithm will evaluate as follows.

1. Here ψstart = |0〉 |0〉 |0〉 |0〉 |0〉.

2. The first X gate transforms it into |1〉2 |0〉 |0〉

Here |i〉2 implies |a〉 |b〉 |c〉 where abc is the binary representation of integer i.

3. Then we get Ox(|1〉2 |0〉 |0〉) = |1〉2 |x1〉 |0〉 = |1〉2 |1〉 |0〉.

4. The CNOT gates, the not gate and the Hadamard gates (H3 and H4) transform the state into

(
|4〉2+|5〉2√

2
) |−〉 |0〉 where |−〉 = |0〉−|1〉√

2
.

5. Now

Ox(
|4〉2 + |5〉2√

2
) |−〉 |1〉 =

(
(−1)x4 |4〉2 + (−1)x5 |5〉2√

2
) |−〉 |1〉 .

Let this state be |φ〉.

6. H3 |φ〉 = 1
2((−1)x4 + (−1)x5) |4〉2 + ((−1)x4 − (−1)x5) |5〉2) |−〉 |1〉

7. since x4 = 0 and x5 = 1 we get |5〉2 |−〉 |1〉 which is equal to |1〉 |0〉 |1〉 |−〉 |1〉. Measuring the

third qubit in computational basis we get the desired output, 1.

Here please note that that only of the 3rd and 4th CNOT gate will work for any given run of the

circuit. If x1 = 1 we need to evaluate only x4 ⊕ x5 and the 4th CNOT gate has |1〉 in its control.

However if x1 = 0 then we would have to output x2 ⊕ x3 in which case the 3rd CNOT gate would

have been activated and the 4th CNOT gate will not be doing anything. Since the circuit needs to

evalaute for all possible inputs, both the CNOT gates are present. This completes the example of

separation.

78

Finally, we conclude this section by proving that our construction of separable query friendly

function indeed finds such examples for all cases where a parity decision tree can compute such a

function. This completes the characterization using parity decision trees.

Theorem 9. If 2k−1 + 2k−2 − 1 < n ≤ 2k − 1, there does not exist any separable query friendly

function that can be completely described using parity decision trees.

Proof. Let fn be a query friendly function on 2k−1 +2k−2 +1 < n ≤ 2k−1 influencing variables. In

this case DQn = k, and hence D(fn) = k. Therefore there exists a corresponding k-depth decision

tree Tf . As we know there are at most 2k− 1 internal nodes in such a tree and at least 2k−1 + 2k−2

variables that needs to be queried at least once. Therefore there can be at most 2k−2 − 1 internal

nodes which query variables that appear more than once in the tree.

This implies that there exists a node in the k-th level querying a variable xi0k
such that it appears

only once in the decision tree. We consider the root(xi1) to xi0k
path. It is to be noted that the

root variable needs to be queried only once in any optimal tree. Let us also assume for simplicity

that val(xik0 , 0) = 0 and

val(xit , dt) = xit+1 , 1 ≤ t ≤ k − 2

val(xik−1
, dk−1) = xi0k

Let us now define the following sets of variables:

Wj ⊆ {x1, x2, . . . xn}

Xj = Wj ∪ {xi0k}

Yj ⊆ ({x1, x2, . . . xn} \ {xi0k})

where 1 ≤ j ≤ k

Let gj and hj , 1 ≤ j ≤ k be functions with influencing variables belonging from the sets Xj , Yj

respectively. Then the ANF of fn can be described as:

fn = (xi1 ⊕ d1)g1(X1)⊕ (xi1 ⊕ d1)h1(Y1)

79

This is because the variable xi0k
can influence the function if and only if xi1 = d1. This is due to

the fact that xi0k
is queried only once in the decision tree. Similarly,

g1(X1) = (xi2 ⊕ d2)g2(X2)⊕ (xi2 ⊕ d2)h2(Y2),

and so on. Finally we have

gk−2(Xk−2) = (xik−1
⊕ dk−1)xi0k

⊕ (xik−1
⊕ dk−1)hk−2(Yk−2).

Therefore, the function fn can be written as

fn = (xi1 ⊕ d1)(xi1 ⊕ d2) . . . (xik−1
⊕ dk−1)xi0k

⊕ hk−1(Yk).

This implies that the resultant ANF contains a k-term monomial xi1xi2 . . . xi0k
, i.e., deg(f) ≥ k.

It has been shown in [10, 3.1] that the minimum depth of any parity decision tree completely

describing f is at equal to or greater than deg(f), which implies there does not exist any query

friendly function that can be completely described with a parity decision tree of depth k− 1. This

concludes our proof.

With this proof of limitation we conclude the study of Query friendly functions in this chapter.

Finally, we present a graphical representation of our understanding of the query friendly functions

in Figure 2.7 for n ≤ 950 variables.

To summarize, our understanding is as follows.

• For values of n such that n ∈ {2k − 1, 2k − 2}, k ∈ I≥2 where I≥2 is the set of all integers

greater than 2 we have obtained that no query friendly functions on n variables is separable.

• For values of n such that 2k−1 − 1 < n ≤ 2k−1 + 2k−2 − 1 we have obtained functions whose

exact quantum query complexity is less than DQn and this complexity can be achieved using

a parity decision tree.

• Finally, for other values of n, that is 2k−1 + 2k−2 − 1 < n < 2k − 2 we have proven that one

cannot design a parity decision tree for a query friendly function on n variables such that the

80

5050 100100 150150 200200 250250 300300 350350 400400 450450 500500 550550 600600 650650 700700 750750 800800 850850 900900 950950

DQDQnn

22

44

66

88

1010

1212

1414

1616

1818

2020

2222

00

No query friendly function on n variables are separable.

Example of separable Query friendly functions obtained.

No query friendly function can be separated

 using parity decision tree.

Note: The functions are defined only on integer values of n

Figure 2.7: Current understanding of query friendly functions

query complexity of the tree is less than DQn. This completes our study of query friendly

functions.

2.4 Conclusion

In this chapter we have first discussed the separation between the deterministic and exact quantum

query model in terms of the number of influencing variables in Section 2.2 and 2.3. We have used

the parity decision tree model to find separation between deterministic and exact quantum query

in a special class of Boolean functions (Query Friendly functions) using the structured nature of the

parity decision tree model. The characterization achieved by us in terms of query friendly functions

is as follows.

1. For all varies of n there exists a non-separable query friendly function.

2. If n = 2k − 1 or n = 2k − 2, k > 2 , then all query friendly functions are non-separable.

3. If n 6= 2k − 1, then we construct a set of non-separable functions, namely f(n,1).

4. If 2k−1 − 1 < n ≤ 2k−1 + 2k−2 − 1, then we construct a set of separable functions, namely

f(n,2).

81

5. If 2k−1 + 2k−2 − 1 < n ≤ 2k − 1, we show that no separable function on n variables can be

completely described using parity decision trees.

In this regard we have observed the following open problems which shall exhaustively determine

the limitation of the parity decision tree model in these cases. The problems are as follows:

1. Does there exist a function f1 with n = 2k − 1 influencing variables such that QE(f1) < k?

2. Does there exist a separable query friendly function f2 with n influencing variables, where

2k−1 + 2k−2 − 1 < n < 2k − 2, k > 2?

If any of the above problems yield a negative result that would imply the parity decision tree model

indeed completely characterizes the functions in such a scenario.

82

Bibliography

[1] A. Ambainis. 2018. Understanding Quantum Algorithms via Query Complexity Proceedings of

the International Congress of Mathematicians, pp. 3265-3285.

[2] A. Ambainis. 2016. Superlinear Advantage for Exact Quantum Algorithms SIAM J. Comput.

45, pp. 617-631.

[3] A. Ambainis. 2013. Superlinear advantage for exact quantum algorithms. In Proceedings of the

45th Annual ACM Symposium on Theory of Computing (ACM Press, New York), pp. 891–900.

[4] A. Ambainis , J. Iraids and D. Nagaj. 2017. Exact Quantum Query Complexity of EXACTn
k,l.

Theory and Practice of Computer Science. SOFSEM 2017. LNCS, vol 10139.

[5] H. Barnum, M. Saks and M. Szegedy. 2003. Quantum query complexity and semi-definite pro-

gramming, In proceedings of 18th IEEE Annual Conference on Computational Complexity, pp.

179-193.

[6] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. 2001. Quantum lower bounds by

polynomials. Journal of the ACM, 48(4), pp. 778-797.

[7] H. Buhrman and R. de Wolf. 2002. Complexity measures and decision tree complexity: a survey

Theoretical Computer Science, 288(1), pp. 21-43.

[8] W. Chen, L. Li and Z. Ye. 2020. Characterization of exact one-query quantum algorithms Phys.

Rev. A 101, 022325.

[9] M. Grant and S. Boyd. 2011. CVH: Matlab software for disciplined convex programming, version

1.21. http://cvxr.com/cvx

83

http://cvxr.com/cvx

[10] A. Montanaro, R. Jozsa, and G. Mitchison. 2015. On Exact Quantum Query Complexity.

Algorithmica 71, pp. 775–796.

84

Chapter 3

Novel Exact Quantum Query

Algorithms from ANF

85

3.1 Introduction

In this chapter our main aim is to analyze certain structural properties of Boolean functions to

obtain new separations between the deterministic classical and exact quantum query model via a

combination of new algorithmic techniques through un-entangling of systems along with classical

results in the domain of Boolean function analysis. In the query complexity model, different aspects

of Boolean functions are analyzed to design efficient quantum query algorithms. Examples are

symmetry and Walsh Spectrum (Fourier spectrum) of the function in consideration. In this chapter

we concentrate on the F2 polynomial of a Boolean function. This is also called the algebraic normal

form (ANF). Notably ANF is a very important property of Boolean functions from a cryptographic

aspect [7], in particular the algebraic degree. However ANFs are seldom used in complexity theoretic

studies. Against this backdrop, a central theme of this chapter is to use the ANF of the functions

in the pdsp class to merge our positive and negative results. Our exact quantum query algorithm

Qalgo() is designed by analyzing the ANF of these functions. In this regard we have created a novel

untangling protocol that gives us optimal complexity. On the other hand the functions in the pdsp

class have high granularity. Granularity is a property of the Fourier spectrum of a function and

higher value implies higher parity decision tree complexity. Now, the high granularity of the pdsp

class is a direct consequence of its ANF structure. This result allows us to separate QCalgo(f) and

D⊕(f), which, alongside the novel untangling protocol, is the main result of this chapter.

As we have discussed before, query complexity can be defined for both deterministic and proba-

bilistic classical computational settings, as well as in the bounded error quantum and exact quantum

model. Out of these models, the Exact Quantum Query complexity model is perhaps the least ex-

plored. Algorithms showing separations between the classical deterministic and the exact quantum

query model has been formulated for very few classes of functions. In the exact quantum query

model, a Boolean function f needs to be evaluated correctly for all possible inputs. The class of

functions for which classical-quantum separation is known, and more importantly, for which we

have exact quantum algorithms which outperform the classical algorithms are far and few. Mostly

the exact quantum query algorithms that exist use the same method of calculating of parity of two

input bits in one query, as mentioned in the work by Ambainis et. al. [2].

“However, the techniques for designing exact quantum algorithms are rudimentary com-

pared to the bounded error setting. Other than the well known ‘XOR’ trick — con-

86

structing a quantum algorithm from a classical decision tree that is allowed to ‘query’

the XOR of any two bits — there are few alternate approaches.”

Even in this case, there is no generalized method for constructing parity decision trees that exhibit

deterministic-exact quantum advantage for a given class of functions. The most striking result in

this area is the example of super-linear separation between the deterministic classical and exact

quantum models, shown in [1]. The work by Barnum et. al. [5] is also equally important, defining

a semidefinite programming formulation to find out the exact quantum query complexity of a given

function and also discovering an algorithm to achieve it. Finding such separations remains the most

interesting problem in this area. In terms of the gap between D(f) and QE(f), the separations can

be distinguished into two different kinds.

1. The first is identifying functions f so that QE(f) < D(f)
2 . As explained in [12] this leads

to super-linear separation between QE(fk) and D(fk) where fk is obtained by recursively

expanding the function f .

2. The second is where QE(f) ≥ D(f)
2 . We do not have any known method of converting such

a result into super-linear separation. However, studying separation of this kind is still of

considerable importance. This is because there are very few results in the exact quantum

query model, and it is always of interest to find new approaches of evaluating functions in

this model beyond the well known parity method, as highlighted in the quote above [2].

Before proceeding further, let us first review the main results in this area in a chronological

fashion to show where exactly our work is placed among the state of the art literature.

2012: [1] Superlinear separation between exact quantum query complexity (QE(f)) and

deterministic query complexity (D(f)) is obtained. This could be achieved by first obtaining

a function f with QE(f) < D(f)
2 and then recursively expanding it.

2013: [3] Exact quantum query complexities of the symmetric function classes Thresholdnk

and Exactnk have been obtained. For both the cases QE(f) > D(f)
2 and thus these results

provided linear separation only.

2015: [4] Near quadratic separation between QE(f) and D(f) was obtained using the concept

of pointer functions.

87

2016: [2] Exact quantum query complexity of the symmetric function class Exactnk,l was

obtained. For all the functions we have QE(f) > D(f)
2 and thus the separation was linear.

As observed from the chronology above, discovering exact quantum query complexity, with only

linear separation between the classical and quantum models, that is, QE(f) > D(f)
2 , remained a

relevant topic even after discovering the results related to near quadratic separation.

Against this backdrop, we study the exact quantum query model for Boolean functions by

a combined analysis of F2 polynomial and Fourier spectrum to obtain linear separation between

QE(f) and D(f) and show that our algorithms are more efficient than any parity decision tree

method. In fact, the algorithms we design outperform generalized parity decision tree methods,

where one can obtain the parity of any i ≤ n variables using a single query. Another interesting

characteristics of the class of functions we obtain is that, the size of these classes are considerably

larger compared to the symmetric function classes for which linear separations were previously

obtained. The comparison of the existing results with our findings are summarized in Table 3.1.

Function Ref.
Complexity of

Exact Quantum
Query Algorithm

Total
functions

covered for n

Provably
Optimal?

Exactnk [3] max{k, n− k}
n+ 1

(one for
each value of k)

yes

Thresholdnk [3] max{k, n− k + 1}
n+ 1

(one for
each value of k)

yes

Exactnk,l [2] max{n− k, l}+ 1

(
n
2

)
(one for

each {k, l} pair)

For most
cases

The class –
pdsp

our
work

b3n
4 c Ω(

√
2
√
n) yes

A subclass of
MM type

Bent functions

our
work

(Chapter 4)
d5n

8 e Ω((2b
n
4
c!)222b

n
4 c) No

Table 3.1: Advantage achieved by Query Algorithms

Before proceeding further, we first define the following notations that we use in the document.

88

Definition 3.

1. D⊕(f) and D
(2)
⊕ (f): We define the generalized parity decision tree complexity D⊕(f) of a

function f as the minimum number of queries any algorithm must make where the algorithm

can obtain any parity ⊕i∈Sxi in a single query where S is any subset of [n] = {1, . . . , n}. If

we restrict |S| = 2 then the algorithm is a parity decision tree, which is the most well known

exact quantum query algorithm and we denote by D
(2)
⊕ (f) the minimum number of queries

any parity decision tree needs to make to evaluate f . Consequently D⊕(f) ≤ D(2)
⊕ (f).

2. Qalgo(f) and QCalgo(f): For any Boolean function f , we denote by Qalgo(f) the exact

quantum query algorithm designed in this document to evaluate the function. The number

of queries required by Qalgo(f) is denoted with QCalgo(f), which we denote as the query

complexity of the exact quantum query algorithm Qalgo(f). We call an algorithm Qalgo(f)

optimal if we have QCalgo(f) = QE(f). Here it should be clearly noted that Qalgo(f) is an

exact quantum query algorithm we design whereas QCalgo(f) is a number, which is the query

complexity of Qalgo(f).

We have the following relations between the aforementioned quantities.

Fact 1. For any Boolean function f we have

1. QE(f) ≤ D(2)
⊕ (f) ≤ D(f). 2. D⊕(f) ≤ D(2)

⊕ (f) ≤ D(f).

One should note here that unlike the situation of QE(f) ≤ D(2)
⊕ (f), there is no strict relationship

between D⊕(f) and QE(f). In fact for the simple parity function on n variables, we have QE(f) =

dn2 e whereas it only takes a single query in the generalized parity decision tree model by definition,

making D⊕(f) = 1. Let us now lay out the organization and contribution of this chapter.

3.1.1 Organization and Contribution

Section 3.2 is a warm up to the contributory sections ahead. We discuss the different notions and

definitions we use to obtain our result, along with a Semi Definite Programming based buildup to

our results.

Section 3.3 is on the pdsp class of functions. We build various algorithmic techniques needed

towards proving Theorem 14, which is the main contribution of this chapter. We show the existence

89

of a class of direct sum based non symmetric functions of size Ω
(√

2
√
n
)

functions for which we

show that QCalgo(f) = QalgoE(f) = dn4 e and the generalized parity decision complexity is always

higher than QCalgo(f), ranging from dn4 e + 1 to n − 1. En route to proving these results, we also

obtain a new untangling protocol whose applications beyond these classes and this model should

be interest.

This chapter is concluded in Section 3.4 with open problems and future research directions.

3.2 Warm up

In this text we will be interested in the exact quantum and deterministic classical model. Like

we have discussed, different properties of Boolean functions can be exploited to design quantum

query algorithms that outperform classical query algorithms. In the exact quantum model, we

have two classes of functions for which superlinear separation have been obtained[2]. The work

on [2] was based on starting with the symmetric function x1x2 ⊕ x1x3 ⊕ x2x3 and then recursive

amplifying it to obtain superlinear advantage. The other work was based on pointer functions,

which obtained separation between QE(f) and D(f) in non-Boolean functions and then carried over

the transformation to Boolean function via appropriate modification. These are the two seminal

works in this domain. Beyond that, optimal exact quantum query algorithm with linear separation

has been obtained for some classes of symmetric functions such as EXACTn
k, THRESHOLDk [3],

by exploiting properties of symmetry. However, given that there are 22n Boolean functions on n

variables, this constitutes only a minuscule proportion of functions for which optimal algorithms are

known in the exact quantum query model. This makes analysis and design of new exact quantum

algorithms necessary to have a better understanding of this paradigm. To this end we analyze the

algebraic normal form (ANF) of Boolean functions. The ANF of a function f(x) = f(x1, . . . , xn)

is the unique F2 polynomial on these variables that represents a Boolean function. Any ANF has

the two following operation:

• The · operation, which is the simple multiplication operator. For any two variables, or more

we write x1 · x2 simply as x1x2.

• The ⊕ operation, which is the addition modulo operation.

Naturally, let us first look into the following two ANFs for functions on n variables.

90

1. The function f1 that only uses the ⊕ operation. he ANF is f1(x) = x1 ⊕ x2 . . . ⊕ xn. This

is generally called the parity function on n variables. It has QE(f) = dn2 e and D(f) = n.

So we have a linear separation but since QE(f) ≥ D(f)
2 there is no possibility of superlinear

separation starting from this function.

2. The function that only uses the · operation. The corresponding ANF is f2(x) = x1x2 · · ·xn.

This is generally called the ANDn function. For this function we have QE(f) = D(f) = n,

and there is no separation.

Naturally we are interested in the two most immediate ANF with some degree of symmetry in

their structure, described in the following problem statement.

Problem statement. Let us assume that n is even with n = 2k. Then what is the QE(f) and

D(f) value of the functions

1. f(x) = x1xk+1 ⊕ x2xk+2 . . . xkxn?

2. f(x) = x1x2 · · ·xk ⊕ xk+1 · · ·xn?

Studying these two ANF forms has led us to the results described in this Part. Before moving

ahead, we now describe the parity decision tree and the more powerful general parity decision

method, which is an important benchmark for the results to follow. First we describe the deter-

ministic query model, which can also be viewed as a decision tree.

Decision Tree

3.2.1 Parity Decision Tree Method

The parity method is the most well known method in the exact quantum query model. It relies

simply on the fact that for any two variables xi and xj one can obtain the value of xi⊕xj in the exact

quantum model using a single query. In contrast it would require 2 queries in the classical model.

We simply create the state |i〉+|j〉√
2
|−〉 and apply the oracle Ox to it to get (−1)xi |i〉+(−1)xj |j〉√

2
|−〉 and

apply a Hadamard like get to get back |xi ⊕ xj〉 |−〉. This method optimally evaluates the parity

function in the exact quantum query model. In this regard, any exact quantum query algorithm

that either queries a single variable or the parity of any two variables can be viewed as a decision

tree where each internal node is either a variable xi or the parity of two variables xi ⊕ xj . These

91

algorithms are called parity decision trees. Given a function f , we have defined by D
(2)
⊕ (f) the

minimum number of queries a parity decision tree would have to make to evaluate a function in

the worst case scenario.

Thus, given a Boolean function, if QE(f) = D
(2)
⊕ (f) then one does not need to formulate any

other strategy to have an optimal exact quantum query algorithm. Next, we simply extend this

model to one in which one can take the parity of any number of variables using a single query. This

we denote as the generalized parity decision tree. For example, in this model the query complexity

of the parity function would just be 1, as opposed to QE(f) = dn2 e. We call the minimum query

requirement in this model as the generalized parity decision tree complexity D⊕(f). Note that

unlike the original parity decision tree model, this does not generate from an equivalent quantum

protocol, but is rather an extension of the model. This however trivially implies D⊕(f) ≤ D(2)
⊕ (f)

for any function.

Having described these two models, now we discuss a result on D⊕(f) due to a property of the

Fourier spectrum of a Boolean function termed “granularity” citeqalgo-PAR. This result gives us

lower bound on the generalized parity decision tree complexity which separates our exact quantum

query algorithm from any parity decision tree technique.

3.2.2 Granularity

First we define the Fourier spectrum of a function, The Fourier Spectrum of a function f on n

variables f̂ : 2[n] → R defined as follows.

Definition 4 (Fourier Spectrum).

1. For a set S ⊆ [n] the Fourier Character at S is defined as χS(x) =
∏
i∈S

(−1)xi.

2. The Fourier coefficient of f on a set S ⊆ [n] is denoted as f̂(S) =

∑
x∈{0,1}n

(
(−1)f(x)χS(x)

)
2n .

The Fourier spectrum is one of the most important tools for Boolean function analysis, with

impact in domains ranging from cryptography and coding theory to complexity theory. Here we

discuss the property of granularity, which was used by [16] to give lower bounds on the generalized

decision parity tree complexity.

92

Definition 5 (Granularity). The granularity of a rational number t is defined as gran(f) = k

where k is the smallest power of two such that t× k is an integer.

Now we note the result in [16] that elegantly shows D⊕(f) is connected to granularity.

Theorem 10. [16] The general parity complexity of a Boolean function f on n variables is lower

bounded by D⊕(f) ≥ granm(f) + 1 where granm(f) = max
S⊆[n]

gran(f̂(S)).

Now we discuss the class of functions that we study in this text along with some basic motivation

behind the selection.

3.2.3 Perfect Direct Sum and Beyond

Next we look into functions of the form f(x) =
∏k
i=1 xi ⊕

∏n
j=k+1 xj . As we shall formally prove

in Section 3.3, due to Theorem 10 the generalized parity complexity of this function is n−1. When

we checked QE(f) value of this function for n = 7 we obtained QE(f) = 6, which implies that

the parity decision tree method cannot be the optimal method for this class of functions. In this

direction we worked on this function to create a class called perfect direct sum with product that

we denote as pdsp class that contains Ω
√

2
√
n functions. We obtain optimal exact quantum query

algorithm outperforming parity decision as well as generalized parity decision tree bounds for this

class in Section 3.3. Note that both the optimality of our novel algorithmic technique as well as the

high D⊕ value are consequences of a study of its ANF structure. Finally we formally describe the

environment in which the exact quantum query algorithms are designed along with some unitary

operations that we use.

3.2.4 Setup for Quantum Query Algorithm

The set-up for a Quantum Query algorithm in relation to Boolean functions is as follows. Given

a Boolean function on n influencing variables, a Quantum Query Algorithm for evaluating the

function is defined on the Hilbert space H = Ha ⊗Hq ⊗Hw.

• Here Ha represents an n qubit register that contains the input to the function. The inputs

stored in the input register can only be accessed using the oracle Ox, which operates on

Ha ⊗Hq.

93

• The Hilbert space Hq is n + 1 dimensional, and can be indexed with the basis states |000〉

|111〉 , |222〉 , . . . |nnn〉. This space is used to make queries to the oracle and we call this the query

register Qn.

• The Hilbert space Hw is used as the working memory and has no restrictions. We define Hw

to be formed of some w qubits, where the basis states of a qubit is |0〉 and |1〉 1.

The oracle Ox works on the space Ha ⊗Hq in the following way.

• 1 ≤ i ≤ n : Ox |x〉 |iii〉 |w〉 = (−1)xi |x〉 |iii〉 |w〉.

• i = 0 : Ox |x〉 |000〉 |w〉 = |x〉 |000〉 |w〉.

Since the input register remains unchanged throughout the algorithm, we describe our algorithm

on Hq ⊗ Hw, and describe the working of the oracle as Ox |iii〉 = (−1)xi |iii〉 , 1 ≤ i ≤ n and

Ox |000〉 = |000〉.

An algorithm that uses the oracle k times can be expressed as a series of unitaries U0, U1, . . . Uk

applied on Hq⊗Hw with an oracle access between each Ui and Ui+1, 0 ≤ i ≤ k−1. The algorithm

starts with the state |ψ〉 = |000〉 |0〉 . . . |0〉 and finally reaches the state UkOxUk−1 . . . U1OxU0 |ψ〉, on

which some measurement is performed and the output is decided depending on some predefined

condition on the result.

An exact quantum query algorithm is one which evaluates a function correctly for any input.

The Exact Quantum Query complexity (QE) of a function is the least possible number of queries

an exact quantum query algorithm needs to make at most to evaluate the function in any point.

The workspace of Qalgo

The workspace of the algorithms that we design consists of Qn and l+ 1 qubits for some l. In this

document we denote the basis states of the query register with |000〉0 , |111〉0 , . . . , |nnn〉0. The qubits are

denoted by w1 through wl+1. We denote the computational basis states of the i-th work qubit by

|0〉i and |1〉i. Thus we describe this system with the basis states

|a0a0a0〉0
t⊗
i=1

|ai〉i , a0 ∈ {0, 1, . . . , n}, ai ∈ {0, 1} ∀i ∈ {1, . . . , l + 1}.

1Therefore a Quantum Query Algorithm corresponding to a function f with n influencing variables is essentially a
circuit defined on the Hilbert space H of n+dlog(n+1)e+w qubits with the restriction that the n qubits corresponding
to the input register can only be accessed through an oracle.

94

We finish this section by describing some general unitary operations that we use in our algo-

rithms.

3.2.5 Some Unitary Matrices

We use the following classes of unitary operators (defined as matrices) to build the algorithms

corresponding to different functions.

Pn
i :

This operator is applied on the n+ 1 dimensional query register Qn. This is a permutation matrix

which transforms the state |1〉0 to |i〉0 and transforms |i〉0 to |1〉0 for all other basis states |j〉0 , j 6= i

it acts as Pn
i |j〉0 = |j〉0. The corresponding (n+ 1)× (n+ 1) matrix can be built with the following

directions.

• Pn
j (1, i) = 1

• Pn
j (i, 1) = 1

• Pn
j (j, j) = 1 if j /∈ {1, i}.

• Pn
j (j, k) = 0 otherwise.

Parni,j:

This is a Hadamard like operator intended for the following transformation of the query register

Qn.
(−1)a |i〉0 + (−1)b |j〉0√

2

Parni,j−−−→ (−1)a |a⊕ b〉0

This operation can be implemented as an (n+ 1)× (n+ 1) matrix with the following constraints.

• Parni,j(0, i) = 0

• Parni,j(0, j) = 1√
2

• Parni,j(1, i) = − 1√
2

• Parni,j(1, j) = 1√
2

Sni,j:

This operation simply transforms the state |0〉0 to
|i〉0+|j〉0√

2
. We can simply define this matrix as

Sni,j =
(
Parni,j

)T
where AT is the transpose of A.

95

Sni,j

This operation is also defined on an n+1 dimensional register. It only performs the transformation

|0〉
Sni,j−−→ 1√

2
(|i〉+ |j〉).

The corresponding matrix can fairly simply be defined as Sni,j =
(
Parni,j

)∗
. Below are examples

of the matrices corresponding to operations of type Pn
i , Parni,j and Sni,j.

P4
3 =



1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1


Par41,3 =



0 1√
2

0 1√
2

0

0 1√
2

0 − 1√
2

0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1


S40,1 =



1√
2

1√
2

0 0 0

1√
2
− 1√

2
0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



To avoid confusion, it should be noted that in a Quantum Computer built with qubits, a unitary

operator working on z qubits is has a dimension of 2z. In the following remark we state how a

general n dimensional register can be implemented in such a setup.

Remark 2. To implement an unitary operator U on an n+1 dimensional register, it would require

dlog(n+1)e qubits and thus the corresponding unitary matrix U ′ being applied on these qubits would

actually be 2dlog(n+1)e dimensional. The matrix U ′ can be formed by adding 2dlog(n+1)e − (n + 1)

rows and columns to U , such that entries in the rows and columns corresponding to the basis states

|i〉 , i ∈ {n+ 1, . . . , dlog(n+ 1)e − 1} would simply be U ′(i, i) = 1.

For example, given the matrix P2
2, the matrix P2

2
′
that would be implemented in a 2dlog(3+1)e = 4

dimensional system built of 2 qubits is as follows:

P2
2 =


1 0 0

0 0 1

0 1 0

 P2
2
′
=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


96

C0U and C1U

The algorithm we design uses unitary matrices that are controlled on the state of a work qubit

w1. At each step we apply a set of unitaries controlled on w1 = |0〉 and another set controlled on

w1 = |1〉. Given any unitary U , we denote by C0U the operation that is U controlled on w1 = |0〉.

We use the notation C1U to denote the operation that is U controlled on w1 = |1〉. It is easy to

see that if U is a unitary operation, then so is C0U and C1U .

CNOTa
b

This operation is the Controlled-NOT operation from register a to register b, with register a as

control and register b as target. Here either one of the registers is the query register, or else both the

registers are work qubits. Let us suppose register a is the query register, then the transformation

will be denoted by

• |1〉a |0〉b → |1〉a |1〉b

• |1〉a |1〉b → |1〉a |0〉b

If both the registers are qubits, then it works as the conventional C-NOT operation. If a and b

are both qubits, then it is a 4 dimensional unitary operation, otherwise it is a 2(n+ 1) dimensional

operation.

swap(a, b)

This operation is simply defined as swap(a, b) = CNOTa
b CNOTb

a CNOTa
b, and swaps the value of

two registers a and b, with dimensions d1 and d2, so that it is defined on the computational basis

states |i〉 ⊗ |j〉 : i, j ≤ min(d1, d2).

3.3 The pdsp class

Before formalizing things we give an introduction to the functions we deal with in this section

and the way the results follow. We will assume n = 2k for brevity for now. We start with the

function f1(x) =
k∏
i=1

xi
⊕ n∏

j=k+1

xj , which is our second function of interest in understanding ANF

structures with respect to exact quantum query complexity. This function is just the direct sum

97

of two ANDn
2

defined on two disjoint sets of variables. Thus this can be called a “perfect direct

sum” function.

One very interesting fact about this function is that the granularity of this function is high with

it being n = 1. This implies no parity decision tree can exactly compute this function for all values

by making less than n− 1 queries. In this regard we will form an algorithm via a novel untangling

protocol Qalgo with QCalgo(f1) = d3n
4 e. However we cannot show that QE(f1) = QCalgo(f1) for

this function and thus our methodology is not yet proven to be optimal. In this direction we design

the function f2(x) =
n∏

l=b 3n
4
c+1

xl

(
k∏
i=1

xi
⊕ b 3n

4
c∏

j=k+1

xj

)
and observe that for this function we have

QE(f2) = QCalgo(f2) = d3n
4 e and granularity and this D⊕(f2) = n−1 which is the ideally desirable

situation. We call this function a “perfect direct sum with product”, abbreviated as pdsp. We

further modify the product term
b 3n

4
c∏

j=k+1

xj and break it up into a perfect direct sum of multiple

monomials. As we shall observe this modification does not effect the QE(f) and QCalgo(f) values.

However, we need certain restrictions so that the granularity value remains high and our algorithm

is essential. Now we formally define the pdsp class. Then we shall obtain the deterministic and

generalized parity decision tree complexity before moving onto the design of our exact quantum

query algorithm.

Definition 6 (The pdsp class). A function is called a perfect direct sum function on n variables if

all the variables xi, 1 ≤ i ≤ n appear only once in the function’s unique algebraic normal form (F2

polynomial).

A function f is said to belong to the class pdsp(n, l, q) if the variable space x = (x1, x2, . . . , xn)

consisting of n variables can be divided into the two subspaces x̂ = (xr1 , xr2 , . . . , xrl) and x̃ =

(xrl+1
, xrl+2

, . . . , xrn) containing l and n− l variables respectively so that

1. f(x) = f1(x̂)f2(x̃).

2. f1 is a perfect direct sum function defined on the l variables x̂, which consists of q monomials

such that each monomial consists of at least q variables.

3. f2 is the product function of the n− l variables in x̃. That is, f2(x̃) =
n∏

i=l+1

xri. If l = n then

f2 function is not defined.

98

3.3.1 D(f) and D⊕(f) for pdsp:

We first obtain the deterministic query complexity of the functions defined in Definition 6 by

analyzing the polynomial degree of the function. Let pdeg(f) be the degree of the unique real multi-

linear polynomial p : Fn2 → R such that f(x) = p(x) ∀x ∈ Fn2 . From [6], we know D(f) ≥ pdeg(f).

Then we have the following result.

Theorem 11. For any function f ∈ pdsp(n, l, q) we have pdeg(f) = n.

Now let us discuss the generalized parity decision tree complexity D⊕(f) for these functions.

1In this regard we have the following result.

Lemma 8. Let f be a function defined on n variables such that f ∈ pdsp(n, l, q). Then we have

D⊕(f) = granm(f) + 1 = gran(f̂({φ}) + 1 = n− q + 1.

Proof. We prove this by first showing gran(f̂({φ}) = n− q which implies D⊕(f) ≥ n− q + 1 and

then describe a simple general parity decision tree with complexity n− 1 + 1. For simplicity let us

assume ri = i.

granm(f) ≥ n− q The ANF of f1 can be represented as a partition of x̂ = {xr1 , xr2 , . . . xrl} into

q disjoint sets. We denote these sets as mi, 1 ≤ i ≤ q, where mi consists of qi variables. Then f

can be written as

f(x) =

 q⊕
i=1

 ∏
xj∈mi

xj

 n∏
p=l+1

xp.

We know that f̂({φ}) =
∑

a∈{0,1}n
(−1)f(a) = 2n− 2wt(f) where wt(f) is the number of input points

for which the function outputs 1.

The output of f1 for some input is 1 if some odd number of these q monomials are evaluated

to 1 and xrp = 1, l+ 1 ≤ p ≤ n. Let us denote by xj all inputs from {0, 1}l for which j of the said

monomials evaluate to 1. If j is odd then for each input in xj f1 evaluates to 1. For each such a ∈ xj ,

there is only input a′ ∈ {0, 1}n for which f evaluates to 1, where a′ = a||1n−l. We can represent

the number of ones in the truth table of f as
b q−1

2
c∑

i=0

∣∣x2i+1
∣∣ . Then we have

∣∣x1
∣∣ =

q∑
i=1

(∏
j 6=i

(2qj − 1)

)
as it consists of inputs for which exactly one monomial has all variables set to one, and because of

the monomial disjoint nature of the function there is no repetition in the counting. We can express

x1 as

99

∣∣x1
∣∣ = α12q + q such that α1 is an integer, if q is odd.

∣∣x1
∣∣ = α12q − q such that α1 is an integer, if q is even.

This is because in expansion of
∣∣x1
∣∣ in each product term we have a (−1)q−1 (−1 if k is even +1

otherwise) and all other terms are of the form ±2qi1+qi2 ...+qij . since qi ≥ q ∀i, all these terms

are integer multiple of 2q, and thus their sum is also an integer multiple of 2q, or zero. Now since

each product term has a (−1)q−1 and there are q terms in the expansion can be written as some

α12q + (−1)q−1q. Similarly, xi can be expressed as αi2
q + (−1)q−1

(
q
i

)
and therefore the support

set of f is of the size

b q−1
2
c∑

i=0

(
α2i+12q + (−1)q−1

(
q

2i+ 1

))
= α2q + (−1)q−12q−1. Therefore the

Fourier coefficient of the function at S = {φ} is

f̂({φ}) =
2n − 2

(
α2q + (−1)q−12q−1

)
2n

=
2n − α2q+1 + (−1)q2q

2n
.

Thus granularity of the Fourier coefficient at this point is gran(f̂({φ})) = n− q and therefore

granm(f) ≥ n− q + 1.

D⊕ ≤ n− q+ 1 We now show a simple general parity tree of with n− q+ 1 queries that evaluates

f , showing D⊕(f) ≤ n − q + 1. Given an input a = {a1, a2, . . . , an} It first queries all but one

variable from each monomial of f1. This takes l − q queries. For the monomial mi the product

of these variables evaluate to m̃i =
∏qi−1
j=1 aij . Then only if m̃i = 1 the output of f1 depends

on xiqi . Therefore the final query to evaluate f1 is the linear function
⊕q

i=1 m̃ixiqi as the value

of m̃i are already calculated. Thus evaluating f1 needs l − q + 1 queries. Now we can simply

evaluate f2 which is defined on n− l variables by querying each of the variables individually which

enables us as to output the function f(x) = f1(x̂)f2(x̃). Therefore this method requires a total of

l − q + 1 + n− l = n− q + 1 query, which shows D⊕(f) ≤ n− q + 1.

Since D⊕(f) ≥ granm(f) and we have granm(f) ≥ n−q+1 and D⊕(f) ≤ n−q+1 this implies

D⊕(f) = granm(f) = n− q + 1.

Having determined D(f), D⊕(f) and D
(2)
⊕ (f), we now describe the family of exact quantum

query algorithms Qalgo that we design, and their query complexity QCalgo(f).

100

3.3.2 The Exact Quantum Query Algorithms for pdsp

Remark 3. From here on we assume n ≡ 2 mod 4 with k = n
2 . This is to simply reduce the

tediousness of the proof. For other cases the algorithms and the bounds develop in an almost

identical manner, conforming to the same generalized query complexity value. One can refer to the

extended version of this work [14] to view the simple modifications needed to incorporate the other

cases.

The general flow of the algorithms are as follows.

• The function is expressed as f(x) = g(x̂)⊕ h(x̃) where x̂ and x̃ are two subspaces that form

a disjoint partition of x.

• We then start with the state |000〉0
s+1⊗
i=1
|0〉i where s is dependent on the structure of the function.

• We apply a Hadamard gate on the first work qubit w1 to obtain the state

|ψ0〉 =
1√
2

(
|000〉0 |0〉1 ⊗

s
i=1 |0〉i+1 + |000〉0 |1〉1 ⊗

s
i=1 |0〉i+1

)
.

• Here we have two product states in equal superposition, identifiable with the value of w1. Note

that the value of this qubit remains unchanged till the penultimate step of our algorithm and

allows us to parallely obtain values of the variables. We transform the superposition state

with w1 = |0〉 according to values of the variables in x̂ and the superposition state with

w1 = |1〉 according to the variables in x̃. This brings us to the state

|ψf 〉 =
1√
2

(
(−1)g(x̂) |000〉0 |0〉1

s⊗
i=1

|xi〉i+1 + (−1)h(x̃) |000〉0 |1〉1
s⊗
i=1

|xk+i〉i+1

)
(3.1)

using some ŝ ≤ s queries. Here note that we can have different variables instead of xi ∈ x̂ and

xk+i ∈ x̃ reflected in the qubits |i+ 1〉 with the two product states depending on the structure

of the function, but it does not affect the analysis and the progress of the algorithms, so we

write it as such for simplicity.

At this stage if we had xk+i = xi = mi (say) ∀i we could write the state as

|000〉0
1√
2

(
(−1)g(x̂) |0〉1 + (−1)h(x̃) |1〉1

)⊗s
i=1 |mi〉i+1 and we could simply apply a Hadamard gate

on the w1 to obtain

101

|000〉0
1√
2
|g(x̂)⊕ h(x̃)〉

⊗s
i=1 |mi〉i+1 (ignoring global phase) and measuring w1 would suffice. How-

ever we do not have any way of ensuring xr(i) = xr(l+i) which leaves the state |ψf 〉 in an entangled

form. Here we design a new untangling protocol that finally gives us the separations.

The Untangling Protocol:

Our algorithm is currently in the state

|β0〉 =
1√
2

(
(−1)g(x̂) |000〉0 |0〉1

s⊗
i=1

|xi〉i+1 + (−1)h(x̃) |000〉0 |1〉1
s⊗
i=1

|xk+i〉i+1

)
.

If the system was in a product state at this stage, we could have simply obtained the parity

of the phases (−1)g(x̂) and (−1)h(x̃), which would have given us the desired outcome. However,

the system is entangled as the value of xi may differ depending on the input on which we have

no control. At this stage we design a technique of untangling two qubits deterministically using a

single query. This protocol, and the fact that we can untangle “two” qubits using a single query is

what gives us the advantage over the deterministic and parity decision tree technique. This can be

summarized as follows.

Theorem 12. Let a quantum query algorithm be in the state

|γ〉 =
1√
2

(|xa〉0 |0〉1 |xb〉2 |W1〉+ |xc〉0 |1〉1 |xd〉2 |W2〉)

Here xa, xb, xc and xd are inputs to a function corresponding to an oracle. Then this state can be

transformed to

|γ′〉 = (−1)xb
1√
2

(|xb〉0 |0〉1 |xd〉2 |W1〉+ |xb〉0 |1〉1 |xd〉2 |W2〉)

using a single query to the oracle. Here |W1〉 and |W2〉 represent any two arbitrary m-qubit states.

Proof. We again define a protocol, untangle which enables the defined transformation by making a

single query to the oracle.

We first define the unitaries U1 and U2 that act on Qn. The structure of untangle is as follows.

First C0U1 and C1U2 are applied, followed by the oracle Ox and then C0Par
n
a,d and C1Par

n
b,c. That

102

is, we define

untangle =
(
C0Par

n
a,d C1Par

n
b,c Ox C0U1 C1U2

)
,

and show that |γ〉 untangle−−−−−→ |γ′〉.

We denote |xa〉0 |0〉1 |xb〉2 |W1〉 = |γ1〉 and |xc〉0 |1〉1 |xd〉2 |W2〉 = |γ2〉.Then |γ〉 = 1√
2

(|γ1〉+ |γ2〉)

Let us now observe the evolution of the two states |xa〉0 |0〉1 |xb〉2 and |xc〉0 |1〉1 |xd〉2 individually,

depending on the state of the w1.

We start with the case when w1 = |0〉. U1 can be looked as the composition of two operations

U10 and U11. U10 and U20 acts on the register Qn depending on if w2 = |0〉 or |1〉, i.e. xb = 0

or xb = 1 respectively. That is U10 and U20 are operators acting on Hq ⊗ H2. Therefore at any

point, only one of the unitaries actually perform their transformations, depending on the value of

xb. These transformations are defined as follows.

U10

1. |0〉0 →
1√
2
(|a〉0 + |d〉0)

2. |1〉0 →
1√
2
(− |a〉0 + |d〉0)

U11

1. |0〉0 →
1√
2
(− |a〉0 + |d〉0)

2. |1〉0 →
1√
2
(|a〉0 + |d〉0)

That is,

• |xa〉0
U10−−→ 1√

2
((−1)xa |a〉0 + |d〉0)

• |xa〉0
U11−−→ 1√

2
((−1)xa+1 |a〉0 + |d〉0)

The oracle is then applied on C0U10C0U11 |γ1〉, followed by the Unitary Operation C0Par
n
a,d. We

now observe the state
(
C0Par

n
a,dOxC0U10C0U11

)
|γ1〉, depending on the value of x2 and compare

the resultant state with

(−1)xb (|xb ⊕ xd〉0) |0〉1 |xb〉2 .

We tabulate the comparisons for both xb = 0 and xb = 1 in Table 3.2. The transformations

C0U10,C0U11, Ox and C0Par
n
a,d only act on the query register, depending on the values of the qubits

w1 and w2, which remain unaltered throughout. Therefore we only show the evolution of the query

register.

103

xb = 0 :

xa C0U10 |γ1〉 OxC0U10 |γ1〉 C0Par
n
a,dOxC0U10 |γ1〉 |β〉

0
1√
2
|a〉0

+ 1√
2
|d〉0

1√
2
(−1)xa |a〉0

+ 1√
2
(−1)xd |d〉0

(−1)xa |xa ⊕ xd〉0
= |xd〉0

|xd〉0

1
− 1√

2
|a〉0

+ 1√
2
|d〉0

1√
2
(−1)xa+1 |a〉0

+ 1√
2
(−1)xd |d〉0

(−1)xa+1 |xa ⊕ xd ⊕ 1〉0
= |xd〉0

|xd〉0

xb = 1 :

xa C0U11 |γ1〉 OxC0U11 |γ1〉 C0Par
n
a,dOxC0U11 |γ1〉 |β〉

0
− 1√

2
|a〉0

+ 1√
2
|d〉0

1√
2
(−1)xa+1 |a〉0

+ 1√
2
(−1)xd |d〉0

(−1)xa+1 |xa ⊕ xd ⊕ 1〉0
= − |xd ⊕ 1〉0

− |xd ⊕ 1〉0

1
1√
2
|a〉0

+ 1√
2
|d〉0

1√
2
(−1)xa |a〉0

+ 1√
2
(−1)xd |d〉0

(−1)xa |xa ⊕ xd〉0
= − |xd ⊕ 1〉0

− |xd ⊕ 1〉0

Table 3.2: Evolution of |γ1〉 and comparison with |β〉 = (−1)xb |xb ⊕ xd〉0

Therefore in all the cases the state post these transformations is

(−1)xb |xb ⊕ xd〉0 |0〉1 |xb〉2 .

Now we describe the evolution of the state |xc〉0 |1〉1 |xd〉2. As in the previous case, we apply

an unitary C1U2 and then the state queries to the oracle, which is followed by C1Par
n
b,c. We define

U2 as the composition of two unitary operators defined on Hq ⊗H2, U20 and U21. Similar to U10

and U11, these are operators that transform the query register depending on w2 = |0〉 and |1〉,

respectively. The transformations due to U20 and U21 are as follows.

U20

1. |0〉0 →
1√
2
(|b〉0 + |c〉0)

2. |1〉0 →
1√
2
(|b〉0 − |c〉0)

U21

1. |0〉0 →
1√
2
(|b〉0 − |c〉0)

2. |1〉0 →
1√
2
(|b〉0 + |c〉0)

That is

• |xc〉0
U20−−→ 1√

2
(|b〉0 + (−1)xc |c〉0)

104

• |xc〉0
U21−−→ 1√

2
(|b〉0 + (−1)xc+1 |c〉0)

The oracle is applied on C1U21C1U20 |γ2〉 and on the resultant state,

OxC1U21C1U20 |γ2〉 we apply C1Par
n
b,c. We observe the evolution for all possible {xb, xc, xd} tuples

and compare the final state with (−1)xb |xb ⊕ xd〉0 |1〉1 |xd〉2. We again list solely the evolution of

the query register in Table 3.3, as the other registers remain unchanged.

xd C1U21C1U20 |γ2〉 OxC1U21C1U20 |γ1〉
C1Par

n
b,cOx

C1U21C1U20 |γ2〉
|β〉

0
1√
2
|b〉0

+(−1)xc 1√
2
|c〉0

1√
2
(−1)xb |b〉0

+ 1√
2
(−1)2xc |c〉0

(−1)xb |xb〉0 (−1)xb |xb〉0

1
1√
2
|b〉0

+(−1)xc+1 1√
2
|c〉0

1√
2
(−1)xb |b〉0

+ 1√
2
(−1)2xc+1 |c〉0

(−1)xb |xb ⊕ 1〉0 (−1)xb |xb ⊕ 1〉0

Table 3.3: Evolution of |γ2〉 and comparison with |β〉 = (−1)xb |xb ⊕ xd〉0

Therefore in all the cases the state post these transformations is

(−1)xb |xb ⊕ xd〉0 |0〉0 |xd〉1 .

We now look at the collective effect of the transformations C0U1, C1U2, Ox, C0Par
n
a,d and C1Par

n
b,c.

The state at start was

1√
2

(|xa〉0 |0〉1 |xb〉2 |W1〉+ |xc〉0 |1〉1 |xd〉2 |W2〉) .

The state after these operations are applied is

1√
2

((−1)xb |xb ⊕ xd〉0 |0〉1 |xb〉2 |W1〉+ (−1)xb |xb ⊕ xd〉0 |1〉1 |xd〉2 |W2〉) .

We now apply the operations C0CNOT
Qn
w2

followed by CNOTw2
Qn

, evolving the system to

(−1)xb 1√
2

(|xb〉0 |0〉1 |xd〉2 |W1〉+ |xb〉0 |1〉1 |xd〉2 |W2〉) . and this completes the step. This also

shows that for this method the qubit w2 can be swapped with any other work qubit, and the method

is indifferent towards its choice.

105

Observe that this subroutine does not depend on the function we are dealing with. However,

the advantage is most prominent for the classes of functions that we discuss. Given the general

framework of this technique, it is an interesting problem to check if this technique can have appli-

cations in other black box problems in the quantum paradigm as well as if this methodology can

be further optimized in the bounded error quantum model.

Let us now denote the generalized routine in this regard that form part of the exact quantum

query algorithm. This is simply obtained by applying the untangling protocol many times, each

time untangling two new qubits. We omit this proof for brevity.

Lemma 9. Let there be a quantum query algorithm defined on the variables x = (x1, x2, . . . , xn)

with x̂ and x̃ are two subspaces that form a disjoint partition of x, where s = 2t. Define any

two injective maps r : [n] → [n] and r̂ : [n] → [n] such that if i ≤ k then r(i), r̂(i) ≤ k and

r(i), r̂(i) > k otherwise. That is, r and r̂ are both combinations of two permutations acting on x̂

and x̃ individually. Then, the state

|β0〉 =
1√
2

(−1)g(x̂) |0〉0 |0〉1
s⊗
i=1

|xri〉i+1 + (−1)h(x̃) |0〉0 |1〉1
s⊗
j=1

|xrk+j 〉j+1


can be evolved to the state |βf 〉 using the protocol untanglesn, where,

|βf 〉 =
1√
2

(
(−1)g(x̂) |0〉0 |0〉1 + (−1)h(x̃) |0〉0 |1〉1

) t⊗
i=1

(∣∣xr̂(i)〉2i

∣∣xr̂(k+i)

〉
2i+1

)
.

by making t queries to the oracle Ox.

Using this protocol on the state |ψf 〉 described in Equation (3.1) gives us the state using a

further t queries:

|ψend′〉 =
1√
2

(
(−1)g(x̂) |000〉0 |0〉1 + (−1)h(x̃) |000〉0 |1〉1

) t⊗
i=1

(∣∣xr̂(i)〉2i

∣∣xr̂(k+i)

〉
2i+1

)
.

Applying a Hadamard gate and then measuring w1 in the computational basis gives us the

output after a total of k + d s2e queries. The efficiency of the algorithm relies on how well can we

partition x into x̂ and x̃ and then choose s properly. We now move onto the specific functions and

the corresponding algorithms.

106

Complete Description of Qalgo for the pdsp class:

First we establish a common omission that we shall follow, before going into the algorithm.

Remark 4. From hereon we omit any global phase that occurs in the algorithm for notational

simplicity, because of the fact that the global phase does not in anyway effect the evolution of the

algorithms.

Now we describe a simple protocol to obtain the values of two variables parallely into the two

different product states, which forms the first phase of our algorithms. This is then followed by the

untangling protocol described above.

Lemma 10. Let f(x) be a Boolean function on n variable which is being evaluated using an algo-

rithm Qalgo(f) with the registers Qn and k qubits of working memory. Let |W1〉 and |W2〉 be two

states defined on the qubits w2 through wk.

Then the state |φ〉 = 1√
2

(|0〉0 |0〉1 |W1〉+ |0〉0 |1〉1 |W2〉) . can be converted into the state |φf 〉 =

1√
2

(|xa〉0 |0〉1 |W1〉+ |xb〉0 |1〉1 |W2〉) . by making a single query to the oracle where 1 ≤ a, b ≤ n

where we denote the protocol get(a, b).

Proof. We show that this transformation can be achieved by using the get(a, b) transformation

defined as the sequential application of the following unitaries and the oracle in the given order:

C0S
n
0,a,C1S

n
0,b Ox, C0Par

n
0,a,C1Par

n
0,b.

The stepwise transformation is as follows.

|φ〉 =
1√
2

(|0〉0 |0〉1 |W1〉+ |0〉0 |1〉1 |W2〉)

C0Sn0,i C1Sn0,k+i−−−−−−−−−→ 1√
2

((
|0〉0 + |i〉0√

2

)
|0〉1 |W1〉+

(
|0〉0 + |k+ i〉0√

2

)
|1〉1 |W2〉

)
Ox−−→ 1√

2

((
|0〉0 + (−1)xi |i〉0√

2

)
|0〉1 |W1〉+

(
|0〉0 + (−1)xk+i |k+ i〉0√

2

)
|1〉1 |W2〉

)
C0Parn0,i C1Parn0,k+i−−−−−−−−−−−→ 1√

2
(|xa〉0 |0〉1 |W1〉+ |xb〉0 |1〉1 |W2〉) = |φf 〉 .

107

We now start describing our complete exact quantum query algorithm, starting with f1(x) ==
k∏
i=1

xi
⊕ n∏

j=k+1

xj . Then we describe the modifications needed to cover the targeted set of functions

from the pdsp class.

This coupled with the generalized parity decision tree complexity of the function provides the

first separation result.

Theorem 13. For the function f1 =

n
2∏
i=1

xi ⊕
n∏

j=n
2

+1

xj, we have QCalgo(f1) = b3n
4 c and D⊕(f1) =

n− 1.

Proof.

D⊕(f) = n− 1 : This is a direct implication of Proposition 8 where f ∈ pdsp(n, n, 2)

QCalgo(f) = b3n
4 c :

We run Algorithm 1 initializing it in the state |0〉0 ⊗ki=1 |0〉i. This algorithm makes a total of

n
2 + bn4 c = b3n

4 c queries, which completes the proof.

For f1 we are able to separate QCalgo(f) and D⊕(f), but the algorithm is not provably optimal

for this function. However we observe that this technique is indeed optimal for the following

function.

Corollary 2. For the function f2 on n = 2k variables where f2(x) =
b 3n

4
c∏

i=1
xi ⊕

n∏
j=n

2
+1

xj we have

QCalgo(f2) = QE(f2) = b3n
4 c and D⊕(f2) = n− 1.

Proof.

QE(f) ≥ b3n
4 c We can reduce f1 to ANDb 3n

4
c by fixing the variables xi = 0, b3n

4 c+ 1 ≤ i ≤ n, and

therefore evaluating f must take at least b3n
4 c queries as we know QE(ANDb 3n

4
c) = b3n

4 c.

QCalgo(f) = b3n
4 c This function can in fact be written as

108

Algorithm 1 Qalgo(f) to evaluate f(x) =

n
2∏
i=1

xi ⊕
n∏

j=n
2

+1

xj along with query complexity count

(QCalgo(f)) :

1 Begin with the state |0〉0
k⊗
i=1
|0〉i, consisting of the Query register and n

2 work qubits wi, 1 ≤ i ≤ n
2 .

2 We apply a Hadamard to the first work qubit w1 to get |ψ0〉 =

1√
2

(
|0〉0 |0〉1

k⊗
i=2
|0〉i + |0〉0 |1〉1

k⊗
i=2
|0〉i
)

.

3 We do the following steps for 1 ≤ i ≤ n
2 − 1.

i Apply get
(
i, n2
)

ii Swap the value of Qn with the i+ 1-th work qubit wi+1 by applying CNOT
wi+1

Qn
followed by

CNOT
wi+1

Qn
.

Each application of get() consists of one query these steps the state from |ψ0〉 to |ψn
2
−1〉, where

|ψi〉 =
1√
2

|0〉0 |0〉1 i⊗
j=2

|xj−1〉j
k⊗

j=i+1

|0〉j + |0〉0 |1〉1
i⊗

j=2

|xk+j−1〉j
k⊗

j=i+1

|0〉j

 .

4 Here let us define g(x̂) =

n
2∏
i=1

xi and h(x̃) =

n
2∏
j=1

xn
2

+j . Apply an k = 1 controlled CNOT operation

Ck−1 with Qn as the target and w2, . . . wk as the controls. This converts the state to

1√
2

∣∣∣∣∣∣
k−1∏∏∏
i=1

xi

〉
0

|0〉1
i⊗

j=2

|xj−1〉j
k⊗

j=i+1

|0〉j +

∣∣∣∣∣∣
k−1∏∏∏
i=1

xk+i

〉
0

|1〉1
i⊗

j=2

|xk+j−1〉j
k⊗

j=i+1

|0〉j

 .

5 Apply Pn
n
2

controlled on w1 = |0〉 and Pn
n controlled on w1 = |1〉 followed by a call to an oracle

and then another application of Ck−1 to restore Qn to |0〉 state. Then after n
2 queries the system

is in the state

|ψn
2
〉 =

1√
2

(−1)g(x̂) |0〉0 |0〉1
k⊗
j=2

|xj−1〉j + (−1)h(x̃) |0〉0 |1〉1
k⊗
j=2

|xk+j−1〉j

 .

6 We then apply the transformation untanglesn described in Lemma 9 where s = n
2 − 1. This step

requires a further bn4 c queries, and finally the system is in the state

|βf 〉 = (−1)g
′(x) |0〉0 |g(x̂)⊕ h(x̃)〉1

k1⊗
i=1

(|x2i〉i+1 |xk+2i〉i+2)

after a total of b3n
4 c queries.

6 Get the output by then measuring w1 in the computational basis.

109

f(x) =

 n
2∏
i=1

xi
⊕ n∏

i=n
2

xi

 b 3n
4
c∏

j=n
2

+1

xj .

We proceed in the same direction as Theorem 13. After n
2 queries the system is in the state

|ψn
2
〉 =

1√
2

(−1)g(x̂) |0〉0 |0〉1
k⊗
j=2

|xj−1〉j + (−1)h(x̃) |0〉0 |1〉1
k⊗
j=2

|xk+j−1〉j

 .

Now only apply the untanglesn in such a way that the values of the variables xn
2

+1, . . . xb 3n
4
c are

carried over so that w2i+2 is in the state
∣∣∣xn

2
+i

〉
2i+2

. Thus the system’s state after b3n
4 c queries is

|0〉0
1√
2

(
(−1)g(x̂) |0〉1 + (−1)h(x̃) |0〉0 |1〉1

) s⊗
j=1

|xj−1〉2j |xk+j−1〉2j+1 .

We can apply a Hadamard to obtain the state |0〉0 |g(x̂)⊕ h(x̃)〉
⊗s

j=1 |xj−1〉2j |xk+j−1〉2j+1 .

We can now obtain the value of f(x) as we obtain the value g(x̂)⊕h(x̃) =

 n
2∏
i=1

xi
⊕ n∏

i=b 3n
4
c+1

xi


by measuring w1 and the variables variable xn

2
, . . . xb 3n

4
c. measuring the qubits of the form w2i+2.

Theorem 14. Let f ∈ pdsp(n, d3n4 e, t + 1) be a function on n = 2k variables such that

f(x) =

 n
2∏
i=1

xi
⊕

g(x′)

 b 3n
4
c∏

j=n
2

+1

xj

 , x′ =
(
xb 3n

4
c+1, xb 3n

4
c+2, . . . , xn

)
.

where g is perfect direct sum function defined on
(
xb 3n

4
c+1, xb 3n

4
c+2, . . . , xn

)
so that it contains

t monomials such that each monomial consists of at least t + 1 variables. Then we have (i)

QCalgo(f) = QE(f) = b3n
4 c, (ii) D⊕(f) = n− t, (iii) D(f) = n.

Proof.

QE(f) ≥ b3n
4 c For any such function, if we fix the variables xi, b3n

4 c + 1 ≤ i ≤ n to 0 then the

function is reduced to ANDb 3n
4
c which implies QE(f) ≥ b3n

4 c.

110

D⊕(f) = n − t This is a direct implication of Proposition 8 where the number of monomials is

t+ 1.

QCalgo(f) = b3n
4 c We initialize the algorithm in the state |0〉0

k+1⊗
i=1
|0〉i. We first apply a Not gate

and a Hadamard gate to wk+1 to get |0〉0
k⊗
i=1
|0〉i |−〉. We proceed in the same way as Algorithm 1

till step 3 and wk+1 is not modified. This evolves the state after n
2 − 1 queries to

1√
2

(
|0〉0 |0〉1

(
k⊗
i=2

|xi−1〉i

)
+ |0〉0 |1〉1

(
k⊗
i=2

|xk+i−1〉i

))
|0〉k+1 |−〉k+2 .

The only difference in the functions in this class from f2 is that instead of
∏n
i=b 3n

4
c+1 xi now

we have have perfect direct sum of variable disjoint monomials on the variables xb 3n
4
c+1 to xn.

However all, but xn of these variable’s value is now in the state. Let the monomial of which xn is

a part of be m(x̃) =
∏
i∈Γ xi where Γ ∈ [n] and n ∈ Γ.

So we do the following, we apply a k − 1 controlled not gate on Qn controlled on w1 = |0〉. We

apply another multi controlled gate on Qn controlled on w1 = |1〉 so that all the qubits containing

the values of xi, i ∈ Γ is used as a control.

Then we apply the oracle and again the controlled operations and after n
2 queries have the state

|ψn
2
〉 =

1√
2

(−1)g(x̂) |0〉0 |0〉1
k⊗
j=2

|xj−1〉j + (−1)m,(x̃) |0〉0 |1〉1
k⊗
j=2

|xk+j−1〉j

 |−〉k+1 .

Now to obtain the perfect direct sum of the other monomials with m(x̃) we simply make multi

controlled not operations controlled on w1 = |1〉 on the |−〉k+1 state and this just adds local phase

to m(x̃) because of the well known phase back protocol. These protocols do not take any queries

and after obtaining the direct sum of all the monomials we are in the state

|ψn
2
〉 =

1√
2

(−1)g(x̂) |0〉0 |0〉1
k⊗
j=2

|xj−1〉j + (−1)h(x̃) |0〉0 |1〉1
k⊗
j=2

|xk+j−1〉j

 |−〉k+1 .

From here on the algorithm proceeds identically as Corollary 2, and after applying untanglekn and a

total of b3n
4 c queries the algorithm is in the state |0〉0 |g(x̂)⊕ h(x̃)〉

⊗s
j=1 |xj−1〉2j |xk+j−1〉2j+1 |−〉k+1.

We can now obtain the requisite function by simply obtaining the product
∏b 3n

4
c

i=k=1 xi. This

111

completes the proof.

The number of functions covered by the class, referred in Theorem 14, is as follows.

Corollary 3. For any n there are Ω
(

2
√
n
2

)
functions (without considering permutation of variables)

for which we can obtain Qalgo(f) = QE(f) < D⊕(f).

Proof. We give a lower bound on number of functions which satisfy the constraints of the function

described in Theorem 14. Without considering the permutation of variables, we can simply count

the number of ways the function g(x′) can be constructed. The function g is defined on dn4 e

variables and is it self a perfect direct sum function as defined in Definition 6. If g contains t

monomials then then each of the monomial must have at least t + 1 variables in them. This is

because
∏k
i=1 xi

⊕
g(x′) must satisfy the constraints of Definition 6. Therefore each construction

of g is a different way of partitioning the dn4 e variables into t sets. If we do not consider which

variable is in which monomial, and rather just the distribution of the variables in the partitions,

then this becomes same as finding the number of solutions to
∑t

i=1 vi = dn4 e where vi ≥ t + 1 ∀i.

We do this is as it is well known that if a function is derived from some other function just by

a permutation of the variable names, they have the same query complexity and are called PNP

equivalent [12]. We aim to count the functions that are not PNP equivalent with each other. The

number of such partitions is

(
n+ t− (t+ 1)2 − 1

t− 1

)
=

(
dn4 e − t

2 − t− 1

t− 1

)
. Here t is minimum 1

and at maximum
√
dn4 e − 1. Therefore the total possible number of function is


√
dn
4
e−1∑

x=1

(
bn4 c − x

2 − x− 1

x− 1

) >


√
dn
4
e−1∑

x=1

(√
dn4 e − 1

x

) = Ω
(

2
√

n
4

)
= Ω

(
2
√
n
2

)
.

Again, note that the advantage is from being able to deterministically untangle two qubits

with a single query, owing to the result of Theorem 12 and the fact that these functions have high

granularity.

The next important fact is in untangling we have a degree of freedom in terms of which variables

we want to carry over to the end, and then their values can again be deterministically to obtain

other monomials. In fact in the state |β0〉, if there are s variables each whose values are stored in

112

the two superposition state, we can carry over d s2e values from each of the superposition states to

the final state that is simply a tensor product of qubits in computational basis states, meaning the

value of all the variables stored in the working memory can be deterministically obtained.

This is evident from the structure of the state that we obtain at the end for f1(x) and f2(x)

(For f2 we have already decided on which values from xi,
n
2 ≤ i ≤ n we want to carry over to the

final, pre-measurement state):

|βf 〉 = (−1)g
′(x) |0〉0

∣∣∣∣∣
k∏
i=1

xi ⊕
n∏

i=k+1

xi

〉
1

k1⊗
i=1

(|xr(2i)〉i+1
|xk+i〉i+2).

The algorithm for the other functions progresses in a similar manner. This coupled with the fact

that the pdsp class has high granularity, which allows us to efficiently lower bound the generalized

parity tree complexity gives us the desired advantage.

3.4 Conclusion and Future Directions

In this document we have designed a new family of exact quantum algorithms (Qalgo) for certain

classes of non-symmetric functions f with query complexity QCalgo(f).

First we have described the class pdsp(n, d3n
4 e, q) using perfect direct sum constructions with

products, and shown that for a set of Ω(2
√
n
2) functions in this class we get QE(f) = QCalgo(f) =

b3n
4 c with D⊕(f) > b3n

4 c. For these set of functions we have b3n
4 c+ 1 ≤ D⊕(f) ≤ n− 1, depending

on the value of q in pdsp(n, d3n
4 e, q). We have obtained this result by designing exact quantum

query algorithms based on F2 polynomial structure and then proven separation from generalized

parity complexity technique by exploiting the high granularity of these functions.

In this regard we design a subroutine as described in Theorem 10 which un-entangles two qubits

in an entangled system with a single query, which allows us to obtain the said separations and is

central to our algorithms. It would be interesting to study if this subroutine can be modified to be

more efficient in the bounded error quantum query model.

In fact, we not only obtain advantage over the parity decision tree model in which the parity of

two bits is calculated in a single query, but also the stronger generalized parity decision tree model

in which parity of any number of bits can be calculated in a single query. It remains of interest to

understand the extent to which these techniques can be applied and how can they be modified to

113

get optimal query complexity for other classes of Boolean functions, towards better understanding

of this domain.

114

Bibliography

[1] A. Ambainis. Superlinear advantage for exact quantum algorithms. In Proceedings of the forty-

fifth annual ACM symposium on Theory of Computing (STOC’13), 891-900 (2013). Arxiv:

https://arxiv.org/abs/1211.0721

[2] A. Ambainis, J. Iraids and D. Nagaj. Exact Quantum Query Complexity of EXACTn
k,l. SOFSEM

2017: Theory and Practice of Computer Science, 243-255 (2016).

[3] A, Ambainis, J. Iraids and J. Smotrovs. Exact quantum query complexity of EXACT and

THRESHOLD. Proceedings of the 8th conference on the theory of quantum computation, com-

munication, and cryptography (TQC’13), pp 263–269. Arxiv: https://arxiv.org/abs/1302.

1235

[4] A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha and J. Smotrovs. Separations in Query

Complexity Based on Pointer Functions. Journal of the ACM, DOI: https://doi.org/10.1145/

3106234 (2017). Arxiv Version: https://arxiv.org/abs/1506.04719 (2015).

[5] H. Barnum, M. Saks and M. Szegedy. Quantum query complexity and semi-definite program-

ming. In proceedings of 18th IEEE Annual Conference on Computational Complexity, pp. 179-

193, (2003).

[6] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca and Ronald de Wolf. Quantum

lower bounds by polynomials. J. ACM 48, 4 (July 2001), 778–797. DOI: https://doi.org/10.

1145/502090.502097.

[7] T. Cusick and P. Stanica. Cryptographic Boolean Functions and Applications. Academic Press,

Elsevier (2009).

115

https://arxiv.org/abs/1211.0721
https://arxiv.org/abs/1302.1235
https://arxiv.org/abs/1302.1235
https://doi.org/10.1145/3106234
https://doi.org/10.1145/3106234
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097

[8] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In Proceedings

of Royal Society London, vol. 439, issue 1907, pp. 553–558, DOI: https://doi.org/10.1098/

rspa.1992.0167, 1992.

[9] J. F. Dillon. Elementary Hadamard Difference sets. Ph.D. Dissertation, Univ. of Maryland

(1974).

[10] M. Grant and S. Boyd. CVH: Matlab software for disciplined convex programming, version

1.21, (2011). http://cvxr.com/cvx

[11] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of Computing (STOC ’96), Association for

Computing Machinery, New York, NY, USA, 212–219 (1996).

[12] A. Montanaro, R. Jozsa and G. Mitchison. On Exact Quantum Query Complexity. Algorith-

mica 71, 775–796 (2015).

[13] C. S. Mukherjee and S. Maitra. Classical-Quantum Separations in Certain Classes of Boolean

Functions– Analysis using the Parity Decision Trees. Arxiv: https://arxiv.org/abs/2004.

12942 (2020).

[14] C. S. Mukherjee and S. Maitra. Exact Quantum Query Algorithms Outperforming Parity –

Beyond The Symmetric functions (Extended Version) Arxiv: https://arxiv.org/abs/2008.

06317

[15] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. 10th

Anniversary Edition, Cambridge University Press, January 2011.

[16] V. V. Podolskii and A. Chistopolskaya, Parity Decision Tree Complexity is Greater Than

Granularity, https://arxiv.org/abs/1810.08668 (2018).

[17] D. R. Simon. On the Power of Quantum Computation. SIAM Journal on Computing, vol. 26,

no. 5, pp. 1474–1483, October 1997, DOI: https://doi.org/10.1137/S0097539796298637.

[18] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on

a Quantum Computer. SIAM J. Comput. 26, 5, 1484–1509 (1997).

116

https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
http://cvxr.com/cvx
https://arxiv.org/abs/2004.12942
https://arxiv.org/abs/2004.12942
https://arxiv.org/abs/2008.06317
https://arxiv.org/abs/2008.06317
https://arxiv.org/abs/1810.08668
https://doi.org/10.1137/S0097539796298637

Chapter 4

Results on Maiorana-McFarland Type

Bent Functions.

117

4.1 Introduction

Now we focus on the first kind of functions described in the problem statement for n = 2k in

Chapter 3. The ANF has k monomials, each with degree 2 and each variable appears only once in

the ANF. A first observation is that this function in fact is an MM type bent function. This class

of functions is defined as follows.

Definition 7 (MM type functions). For any two positive integers n1 and n2 with n1 +n2 = n, An

MM Boolean function on Fn2 is defined as

f(x̂, x̃) = φ(x̂) · x̃⊕ g(x̂)

where the subspaces are x̂ ∈ Fn1
2 , x̃ ∈ Fn2

2 , g is any Boolean function defined on Fn1
2 and φ is a

map of the form φ : Fn1
2 → Fn2

2 .

Here we assume n
2 = k and x̂ = (x1, . . . , xk) and x̃ = (xk+1, . . . xn).

Here a·b is the dot product of two n2 dimensional vectors, defined as a·b = a1b1⊕a2b2 . . . an2bn2 .

If we set n1 = n2 and restrict φ to be a bijective map, then all resultant Boolean functions are

bent and are called as MM type bent functions. These are the functions with highest possible

nonlinearity for any even n [1]. We denote this class of MM Bent functions by Bn. There are

22
n
2 (2

n
2 !) functions in this class and the algebraic degree of the functions in this class vary between

2 and n
2 . The MM type Bent functions and its different modifications have extensive applications

in cryptographic primitives and in coding theory [5]. Let us now layout the organization of this

chapter.

In section 4.2 we study the deterministic query complexity of this class. We shall see that

D(f) = n for all f ∈ Bn. Next we shall design a b3n
4 c-query parity decision tree for any function in

Bn.

Then in Section 4.3 we design a d5n
8 e-query exact quantum algorithm for the function f idn using

the results and techniques of chapter 3. Next we modify the techniques so it can give us a d5n
8 e-

query exact quantum algorithm for a subclass of Bn of size approximately 22b
n
4 c functions. We also

extend this result for odd values of n by adding an extra variable linearly to a candidate MM type

bent function on n− 1 variables.

118

4.2 On Decision and Parity Decision Tree Complexity

We first calculate the deterministic query complexity of any function in the Bn. Given a point

α ∈ {0, 1}
n
2 we define the point α(i), 1 ≤ i ≤ n

2 as follows.

1 ≤ j ≤ n

2
, j 6= i : α(i) = αj

j = i : α
(i)
j = αj

We also define the points A1, A0 ∈ 0, 1
n
2 so that A1

i = 1 ∀i and A0
i = 1 ∀i.

Theorem 15. The deterministic query complexity of any function in Bn is n.

Proof. Let us assume that there exists a deterministic decision tree D that queries n− 1 variables

to evaluate a function f ∈ Bn in the worst case. Let D(x̂, x̃) denote the output obtained using the

Deterministic tree with D(x̂, x̃) as the input. This means the longest root to leaf vertex contains

n− 1 internal nodes (queries).

We consider a point y ∈ {0, 1}
n
2 such that φ(y) = A1. Then f(y, z) = xk+1 ⊕ . . . xn ⊕ h(y) for

all z ∈ {0, 1}
n
2 . Therefore at any point (y, z) any deterministic decision tree (algorithm) has to

query all n
2 bits of z to evaluate the function correctly.

Now if a decision tree doesn’t query a variable xi ∈ x̂ at a point (y, z) Then the decision tree

traversal for the points (y, z) and (y(i), z) will be identical, so that D(y, z) = D(y(i), z) ∀z ∈ {0, 1}
n
2 .

But weight of (φy(i)) is at most n − 1. This implies for any point (y(i), z) there is at least an

index 1 ≤ k ≤ n such that f(y(i), z) = f(y(i), z(k)).

However we know from the definition that f(y, z) 6= f(y, z(i)). This contradicts the claim that

a deterministic decision tree can evaluate a function f ∈ Bn with n − 1 queries in the worst case,

and thus we have D(f) = n.

Now we observe how parity decision tree can be used to form a quantum algorithm which can

always evaluate a function in Bn with less than n queries.

We first provide a very simply derivable quantum advantage using parity decision trees.

Lemma 11. Given any function f ∈ Bn we have QE(f) ≤ d3n
4 e.

Proof. We prove this by describing an algorithm that can evaluate any Boolean function in of the

type Bn using d3n
4 e queries.

119

The queries made by this quantum algorithm are of the form xi or xi1 ⊕ xi2 and can therefore

be expressed as a parity decision tree.

Given any input (y, z) where y = (x1, . . . , xk) = (y1, . . . , yk) and z = (xk+1, . . . , xn) = (z1, . . . , zk)

the algorithm first queries the n
2 variables x1, x2, . . . , xn. Then depending on the definition of the

function it does one of the following two tasks.

1. If h(y) = 0 then it evaluates
⊕

φ(y)i=1

zi

2. If h(x) = 1 then it evaluates
(⊕
φ(y)i=1

zi

)
⊕ 1

In either case this requires dwt(φ(y))
2 e queries and therefore at max requires dn4 e queries. This proves

the upper bound.

Now we obtain a lower bound on the exact quantum query complexity of the functions in Bn.

Lemma 12. The degree of the real polynomial corresponding to any function in Bn is n.

Proof. The polynomial corresponding to the function f ∈ Bn such that f(x̂, x̃) = φ(x̂) ·x̃⊕h(x̂) can

be formulated as follows. We observe that only one of the linear function defined on the variables

x̃ is evaluated for any input (x̂, x̃) depending on the value of φ(x̂). Therefore we first form the

following product terms on the variables {x1, x2, . . . , xk}. We define the Pa, a ∈ {0, 1}
n
2 as

Pa =
∏
ai=0

(1− xi)
∏
ai=1

xi.

Pa evaluates to 1 iff x̂ = a, 0 otherwise. Now we append the corresponding linear functions

defined by φ(a) to each of these product terms. We also account for the function h(x) which

evaluates to h(a) for any input (a, y).

Therefore the linear function to be evaluated is
(⊕
φ(a)i=1

xk+i

)
⊕ h(a), which is represented as

La =

(∏
φ(a)i=1

(2xk+i − 1)
)

(−1)h(a) + 1

2

120

Therefore we have the polynomial p(x) corresponding to the function f as

p(x) =
∑

a∈{0,1}n
PaLa.

Therefore by definition we have degR(La) = wt(a) and degR(Pa) = n
2 , ∀a and since there is only

one value of a with wt(a) = n
2 this implies degR(p) = n.

This polynomial is defined as p : Rn → R but its range becomes {0, 1} when the domain is

restricted to {0, 1}n.

This proof is also another way of showing that the Deterministic Query complexity of any

function in Bn is n.

Combining Lemma 11 and Lemma 12 we obtain the following result.

Theorem 16. For any MM Bent function f ∈ Bn, we have n
2 ≤ QE(f) ≤ 3n

4 .

The statement of Theorem 16 gives rise to the following corollary.

Corollary 4. For all values of n there are two or more MM Bent functions that have different

algebraic degree and same exact quantum query complexity.

Proof. The algebraic degree of the functions in Bn vary between 2 and n
2 where as the exact quantum

query complexity varies between n
2 and d3n

4 e.

Therefore applying pigeonhole principle it is easy to see that there are at least two Boolean

functions with different algebraic degree and same exact quantum query complexity.

It is important to note that two functions in Bn may have the same algebraic degree yet different

exact quantum query complexity. Characterizing these equivalence classes for Bn appears to be a

very interesting problem. It is also interesting to observe that the real polynomial corresponding to

any function in Bn can be obtained from the description of the corresponding parity decision tree.

We further observe the exact quantum query complexity of functions in B4 which gives us more

insight into this problem. The different Boolean functions in the class B4 upto isomorphism are

the following.

f1(x) = x1x2 ⊕ x3x4

f2(x) = x1x2 ⊕ x3x4 ⊕ x2x3

121

The exact quantum query complexity of all 4 variable MM Bent functions can be observed from

[3, Table A.1]. In this regard we observe that QE(f1) = QE(f2) = 3 which touches the upper bound

of d3n
4 e in this case. However we observed that QE(f id6) = 4 using the SDP formulation whereas

the parity decision tree complexity due to our algorithm is 5. This motivated us to look beyond

and we obtained a new algorithm using our F2-polynomial based methods.

4.3 A Novel Exact Quantum Query Algorithm for a Subclass of

Bn

We proceed in an almost identical fashion as we did for the pdsp class, creating equal superposition

of two product state, parallely obtaining values of variables and then untangling the system to

obtain the output. However although we obtain a d5n
8 e-query exact quantum algorithm for a set of

Ω
(

22
n
4
)

functions, we are not yet able to prove either the optimality of this algorithm or whether

this is lower than parity decision tree complexity D
(2)
⊕ (f), which remain two challenging open

problems.

Here we shall assume that n ≡ 0 mod 4 for simplicity of calculation. The results remain same

for n ≡ 2 mod 4 (bent functions are only defined for even n) but we leave the modifications out

due to tediousness.

We first design a protocol similar to get(a, b) in Lemma 9 of Chapter 3 and then describe the

d5n
8 e-query algorithm.

Lemma 13. Let f(x) be a Boolean function on n variable which is being evaluated using an

algorithm Qalgo(f) with the registers Qn and k qubits of working memory. Let |W1〉 and |W2〉 be two

states defined on the qubits w2 through wk. Then the state |φ〉 = 1√
2

(|0〉0 |0〉1 |W1〉+ |0〉0 |1〉1 |W2〉) .

can be converted into |φf 〉 = 1√
2

((−1)xaxb |xb〉0 |0〉1 |W1〉+ (−1)xcxd |xd〉0 |1〉1 |W2〉) by making a

two queries to the oracle where 1 ≤ a, b, c, d ≤ n where we denote the protocol get(a, b, c, d).

Proof. We first apply get(b, d) that consists of a single query to obtain 1√
2

(|xb〉0 |0〉1 |W1〉+ |xd〉0 |1〉1 |W2〉) .

Next we apply C0P
n
a and C1P

n
c then make a query to the oracle, and use the permutation matrices

with the same controls. It is easy to see that this evolves the state to

1√
2

((−1)xaxb |xb〉0 |0〉1 |W1〉+ (−1)xcxd |xd〉0 |1〉1 |W2〉) which is the desired state using a total

of two queries.

122

The algorithm for f idn is same as that of the perfect direct sum function with only minimal

changes. Specifically, get(a, b) is replaced by get(a, b, c, d) and after n
2 queries you have to untangle

n
4 qubits instead of n

2 − 1. This takes a further dn8 e queries and the query complexity of this

algorithm is d5n
8 which we show formally for n ≡ 0 mod 4 as we have discussed before.

Theorem 17. The function f idn can be evaluated by an exact quantum algorithm that makes d5n
8 e

queries to the oracle and uses bn4 c+ 1 qubits as working memory.

Proof.

For 1 ≤ i ≤ bn4 c apply get(2i− 1, 2i, 2i+ k− 1, 2i+ k), followed by CNOTQn
wi+1

and CNOT
wi+1

Qn
.

12 After n
2 queries the algorithm is in the state

1√
2

(−1)f1(x) |0〉0 |0〉1

n
4

+1⊗
j=2

|x2j−1〉j + (−1)f2(x) |0〉0 |1〉1

n
4

+1⊗
j=2

|x2j+k−1〉j

 |−〉k+1 .

where f1(x) = x1x2 ⊕ . . . ⊕ xk−1xk f2(x) = xk+1xk+2 ⊕ . . . ⊕ xn−1xn so that f idn (x) =

f1(x)⊕ f2(x).

3 At this stage apply untangle
n
4
n which further makes dn8 e queries and the system is in

1√
2

(
(−1)g(x̂) |0〉0 |0〉1 + (−1)h(x̃) |0〉0 |1〉1

)⊗n
4
i=1

∣∣xr(i)〉2i

∣∣xr(k+i)

〉
2i+1

and measuring w1 in the

computational basis gives us the output.

4.3.1 Beyond the Identity Permutation

We have shown that our algorithm can evaluate the MM Bent functions of type f idn (x) ⊕ g(x̂′)

where x′ is a subset of x̂ consisting of at most dn4 e variables. However, the techniques we have

used are do not restrict the permutation to be identity permutation. The algorithm works on

dividing the variables of x̂ into two (close to) equal disjoint sets and then calculating the value of

the corresponding points of x̃, depending on the permutation. In case of the identity permutation,

since the importance of the variable xn
2

+i ∈ x̃ depended solely on the value of xi ∈ x̂ we could

123

realize this procedure in a sequential manner. Therefore, as long we have a permutation such

that it can be expressed as the concatenation of two permutations on n
4 variables each, or more

precisely concatenation of permutations on bn4 c and dn4 e variables, we should be able to calculate

the influencing variables in x̃ corresponding to the values of the variables in x̂ at parallel, and thus

be able to evaluate the function with the same query complexity of d5n
8 e. We now concretize this

relaxation in restraint and the corresponding modifications needed in the algorithm.

Theorem 18. Let f be an MM Bent function f on n variables such that f = φ(x̂) · x̃⊕ g(x̂′), with

the following constraints:

1 φ1 and φ2 are two permutations such that φ(x̂) · x̃ = φ1(ŷ) · ỹ ⊕ φ2(ẑ) · z̃

2 The sets of variables ŷ, ẑ, ỹ, z̃ are all disjoint, |ŷ| = ỹ = bn4 c, ẑ = z̃ = dn4 e

3 ŷ ∪ ẑ = x̂ and ỹ ∪ z̃ = x̃

4 x̂′ ⊂ x̂, |x̂′ ∩ ŷ| ≤ dn8 e, |x̂
′ ∩ ẑ| ≤ dn8 e

Then the function can be evaluated by an exact quantum query algorithm that makes d5n
8 e queries

to the oracle and uses n
2 + 1 qubits as working memory.

Proof. Without loss of generalization, let us assume ŷ =
{
x1, . . . xbn

4
c

}
, ẑ =

{
xbn

4
c+1, . . . , xn2

}
and

ỹ =
{
xn

2
+1, . . . xn

2
+bn

4
c

}
, z̃ =

{
xn

2
+bn

4
c+1, . . . , xn

}
.

Here we know that linear function in x̃ to be evaluated for an input is dependent on x̂ so that

the influencing variables in ỹ are solely dependent on ŷ and the influencing variables in z̃ are solely

dependent on ẑ. Thus we need to first obtain the values of ŷ and ẑ in the two product states of the

superposition state, and the obtain the local phase of the corresponding linear function and obtain

the outcome using untangling protocol. This happens as follows.

1 We initialize the algorithm in the state |0〉0
dn
4
e+1⊗
i=1
|0〉i. and apply Hadamard on w1 to obtain

|ψ0〉 = 1√
2

(
|0〉0 |0〉1

dn
4
e+1⊗
i=2
|0〉i + |0〉0 |1〉1

dn
4
e+1⊗
i=2
|0〉i

)
.

2 We apply get
(
i, n2 + i

)
followed by CNOTQn

wi+1
and CNOT

wi+1

Qn
for 1 ≤ i ≤ bn4 c and then

controlled on w1 = |1〉1 also obtain the value of xn
2

in case dn4 e = bn4 c + 1 (we shall anyhow

assume n ≡ 0 mod 4 for simplicity).

124

3 After n
4 queries the system is in the state

|ψ0〉 = 1√
2

(
|0〉0 |0〉1

n
4⊗
i=1
|xi〉i+1 + |0〉0 |1〉1

n
4⊗
i=1
|xn

4
+i〉i+1

)
.

4 Controlled on w1 = |0〉 obtain the phase of the variables in ỹ according to the values of

the variables in ŷ using controlled not operations and oracle queries Similarly controlled on

w1 = |1〉 obtain the phase of the variables in z̃ according to the values of the variables in ẑ.

These steps take a total of n
4 queries and thus n

2 queries the system is in the state

|ψ0〉 =
1√
2

(−1)φ1(ŷ)·ỹ |0〉0 |0〉1

n
4⊗
i=1

|xi〉i+1 + (−1)φ2(ẑ)·z̃ |0〉0 |1〉1

n
4⊗
i=1

|xn
4

+i〉i+1


.

4 Apply the protocol untangle
n
4
n which takes a further dn8 e queries to bring the system to

|βf 〉 = |0〉0 |φ1(ŷ) · ỹ ⊕ φ2(ẑ) · z̃〉1

dn
8
e⊗

i=1

(|xr(i)〉i+1
|xr̂(i)〉i+2

)

where {r(i)}d
n
8
e

i=1 ⊂ ŷ and {r̂(i)}d
n
8
e

i=1 ⊂ ẑ are as per our choice, which can then be used to

evaluate g(x̂′), which completes the protocol.

The case of odd n

So far, we have concentrated on the class of MM Bent functions, which are defined for all even n,

and have obtained a large class of functions with deterministic query complexity of n which our

exact quantum algorithm evaluates using d5n
8 e queries.

However this technique can be extended for all odd values of odd n as well. This can be done

as follows.

1. Take any function on f = φ(x̂).x̃ ⊕ g(x′) on n = 2k variables such that φ and g follow the

constraints of Theorem 18.

2. Form the function f ′ = f(x)⊕ xn+1

125

Since f has a polynomial degree of n, as shown in [4], this implies f ′ has a polynomial degree of n+1.

This function can be evaluated in the exact quantum model by first evaluating f using d5n
8 e queries

and using one more query to obtain the value of xn+1. Thus this takes d5n
8 e + 1 ≤ d5(n+1)

8 e + 1

queries. The number of functions that can be evaluated in this case is same as that for n.

4.3.2 The number of functions evaluated:

We finally calculate the number of functions covered via the definition of Theorem 17 for even n

(|Γn|), and the number of functions for any odd n is the same as the number of functions for n− 1.

We essentially give a lower bound on the number of functions, as our calculation is based on a

single partition of x̂ and x̃ into these four sets, and any choice of x′.

There are 2b
n
4
c inputs to the first permutation and 2d

n
4
e inputs to the second permutation, and

x′ contains dn4 e inputs. Therefore the total number of functions are
(

2b
n
4
c!
)(

2d
n
4
e!
)(

22d
n
4 e
)

.

We now recall the definition of PNP-equivalence from [3].

Definition 8. Two functions f and g are called PNP-equivalent if f can be obtained from g by

permuting the name of the variables in g, replacing some variables xi with xi⊕1 in g and by finally

complementing the new formed function with 1.

If two functions are PNP equivalent then they have the same deterministic and exact quantum

query algorithm and often an algorithm to evaluate one of them can be very easily modified to

evaluate the other using the same number of queries.

Corresponding to a function on n variables, there can be at most n!2n+1 functions that are

PNP-equivalent to it. This is because there can be n! permutation of variables and each variable

xi can be replaced with xi ⊕ 1, and finally each function f(x) can be replaced with f(x)⊕ 1. Also,

the PNP-equivalence relation is reflective, symmetric and transitive in nature.

Therefore if there is a set of cardinality S consisting of functions on n variables, then it consists

of at least S
n!2n+1 functions that are not PNP-equivalent.

Therefore in this case the class Γn (exactly evaluated by our algorithm using d5n
8 e or d5n

8 e+ 1

queries) must consist of at least

(
2b

n
4
c!
)(

2d
n
4
e!
)(

22d
n
4 e
)

n!2n+1
= Ω

(
2

(
bn
4
c2(bn4 c)

))
126

functions, which is doubly exponential in bn4 c.

In conclusion, the fact that this algorithm cannot evaluate all MM Bent functions and thus all

functions derived using the Bent concatenation method for odd values of n is a limitation compared

to the parity decision method, which we note down in the following remark.

Remark 5. The parity decision tree method in [4] evaluates all MM Bent functions on n variables

using d3n
4 e queries where as the algorithm described in this requires d5n

8 e queries, but is able to

evaluate only the MM Bent functions that meet the constraints described in Theorem 18.

While the family of algorithms designed by us evaluates a class of functions super exponential

in bn4 c, with a query complexity lower than any known parity decision tree technique, it lacks in

two areas. The first is that we are unable to show that QCalgo(f) = QE(f) for these functions. The

second is that we are unable to show QCalgo(f) < D2
⊕(f) for any of these functions. That is, we do

not know if there exists a parity decision tree technique that can have the same query complexity

as the family of algorithms we have presented. We have noted down in Chapter 3, Theorem 10

that D⊕(f) is lower bounded by granularity. It is known that MM type Bent functions have a flat

Fourier Spectra, with f̂(S) = 1

2
n
2
∀ S ⊆ [n]. Therefore granularity of any MM type Bent function

is n
2 which gives us a lower bound that we can show to be tight.

4.4 Future Directions

In this chapter we have made progresses in terms of applying parity decision tree and our novel

exact quantum query algorithms to find optimal query algorithms for the MM type bent functions,

a non symmetric class of functions with a size of super exponential in O(n).

First in Section 4.2 we obtained a d3n
4 e-query parity decision tree technique for all MM type

bent functions by analyzing its F2 polynomial (algebraic normal form).

Then in Section 4.3 we applied the F2 polynomial and untangling based techniques of Chapter 3.

In doing so we have designed algorithms for a subclass of MM type Bent functions (a variable XOR-

ed with MM Bent function when n is odd) consisting of at least Ω(22b
n
4 c) functions that are not

PNP equivalent for any value of n. This family of algorithms have query complexity of d5n
8 e

where as the lowest query complexity of any known parity decision tree technique is d3n
4 e. While

Qalgo(f) is optimal for f = x1x4 ⊕ x2x5 ⊕ x3x6, we could neither show QCalgo(f) = QE(f) or that

127

QCalgo(f) < D
(2)
⊕ (f) for these classes of functions, which we note down here as open problems.

1. Does there exist any parity based method that can evaluate functions from this subclass using

less than d3n
4 e queries?

2. What is the exact quantum query complexity of the functions in this class?

128

Bibliography

[1] P. Camion, C. Carlet, P. Charpin and N. Sendrier. 1991. On correlation-immune functions.

Advances in Cryptology: Crypto 1991, Proceedings, LNCS, Vol. 576, Springer, Berlin,1991, pp.

86–100.

[2] J. F. Dillon. 1974. Elementary Hadamard Difference sets. Ph.D. Dissertation, Univ. of Maryland.

[3] A. Montanaro, R. Jozsa, and G. Mitchison. 2015. On Exact Quantum Query Complexity. Al-

gorithmica 71, pp. 775–796.

[4] C. S. Mukherjee and S. Maitra. Classical-Quantum Separations in Certain Classes of Boolean

Functions– Analysis using the Parity Decision Trees. Arxiv: https://arxiv.org/abs/2004.

12942 (2020).

[5] P. Sarkar and S. Maitra. 2000. Construction of Nonlinear Boolean Functions with Important

Cryptographic Properties. 485-506. Advances in Cryptology - EUROCRYPT 2000. LNCS, vol

1807.

129

https://arxiv.org/abs/2004.12942
https://arxiv.org/abs/2004.12942

Ending Note

In this document we have studied both implementational and theoretical aspects of quantum com-

putation. Part I concentrates on efficient implementation of an algorithm on a given architecture.

Specifically, we study the state of the art deterministic Dicke state preparation circuits, and further

optimize them using the concept of “partial unitary transformation”. Our modifications not only

reduce the gate count of the circuits, but also reduces architectural dependence in terms of CNOT

connectivity, which is beneficial when implementing on superconducting based architectures, such

as the IBM-Q cloud platform. To demonstrate the advantage of these changes, we implement our

algorithm for |D4
2〉 on the “ibmqx2” machine and show that our improvements indeed reduce error

by a significant margin. We also discuss a simplified error model that helps us capture error due

to different implementation on expectation.

Part II of this document is dedicated to the query complexity model. In this model, the central

problem is, given the description of a function f on n variables evaluating the function for all possible

inputs, with the restriction that the value of the variables can only be accessed via querying an

oracle. We introduce the model in Chapter 1. Then we explore the separations between classical

deterministic and exact quantum query complexity in for different classes of Boolean functions in

Chapter 2, 3 and 4.

Chapter 2 is dedicated to query friendly functions, which are functions on any n variables with

minimum deterministic complexity of n variable functions. We obtain several separability and non-

separability results and show in some cases the parity decision tree is the optimal method for exact

quantum query complexity, giving new instances of said case and also point out to open questions

that should help us better understand the power of parity method.

In chapter 3 we go beyond parity decision and general parity decision tree techniques for certain

130

classes of non-symmetric Boolean functions. We explore how the ANF structure of Boolean func-

tions can be used to design optimal exact quantum query algorithms that outperform any parity

decision tree technique. In doing so we design a novel untangling technique that is not limited in

its implementation to these particular functions.

Chapter 4 contains study of deterministic and exact quantum query complexity for the MM

type bent functions, which is a large class with doubly exponential in n functions for any even n.

For this class we obtain deterministic query complexity and give bounds on parity decision tree

complexity and exact quantum query complexity, although our bounds are not tight. We also show

that our untangling based protocols outperforms all known parity decision methods for a subclass

of MM type bent functions of size Ω
(

22
n
4
)

functions. We conclude with the open questions we

have in this domain.

131

	Declaration
	Certificate
	Acknowledgment
	Dedication
	Abstract
	Publications from the Dissertation
	Layout
	I Quantum Circuits and Architecture Dependence
	Optimizing Quantum Hardware – Dicke State Preparation
	Introduction
	Organization

	Preliminaries
	Notations
	Maximally Partial Unitary Transformation
	The Dicke State Preparation Circuit Cn,k

	Example of Optimality for a Maximally Partial Unitary Transformation
	Improving the implementation of |Dnk
	Replacing CRy with CU
	The and M transformations that act like Identity
	The first non identity M transformation in SCSnk

	Actual Implementation and architectural constraints
	Architectural Constraints
	Implementation and Improvement for |D42
	Modifications leading to different CNOT error distributions
	The CNOT map of C"0362Cn,k

	Conclusion
	Code for C4,2
	Code for C"0362C4,2

	II The Query Complexity Model
	Background and Organization
	The Ox Query Model
	Outline

	Query Friendly Functions
	Introduction
	Organization & Contribution

	Decision Trees and No-separation results
	Query Friendly Functions
	Extending the result for n =2k - 1

	Parity Decision Trees and Separation results
	Separable Query Friendly functions

	Conclusion

	Novel Exact Quantum Query Algorithms from ANF
	Introduction
	Organization and Contribution

	Warm up
	Parity Decision Tree Method
	Granularity
	Perfect Direct Sum and Beyond
	Setup for Quantum Query Algorithm
	Some Unitary Matrices

	The pdsp class
	D(f) and D(f) for pdsp:
	The Exact Quantum Query Algorithms for pdsp

	Conclusion and Future Directions

	Results on Maiorana-McFarland Type Bent Functions.
	Introduction
	On Decision and Parity Decision Tree Complexity
	A Novel Exact Quantum Query Algorithm for a Subclass of Bn
	Beyond the Identity Permutation
	The number of functions evaluated:

	Future Directions

