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Introduction. Let f be a real-valued additive arithmetic function.
In this paper we characterize the spectrum of the distribution of {f(n)—
~fin+1),..., f(n+h—1)—f(n+h)} whenever the above distribution
exists, where & is a positive integer. We obtain a theorem of Erdds and
A. Schinzel {3) as & corollary of one of our propositions. Under very
general conditions we shall show that, for any m =1, {fi(F.(m), ...
o JylFa(m))} belongs to the spectrum of the distribution of {f;(F,(n)), ...
[yl Fp(n))} i it exists, where fy,...,f, are real additive arithwetic
functions and F,, ..., F, are positive integer-valued polynomials. In the
last section we give a sufficient condition for am additive arithmetic
fonction to have a singular distribution. Finally we shall show, under
fairly general conditions on ¥, that if the distributions of f(n) and f(F(m))
exist (F is an integer-valued polynomial) and if the distribution of f(n)
is absolutely continuous, then the distribution of f(F(m)) is also abso-
lutely continuous. At the end we shall give an example to show that
this is the best possible result.

Notations and definitions. Define,

P = {F: P is an integer-valued polynomial of degree vz > 1 which
8 not divisible by the square of any irreducible polynomial and F(m) > 0
form =1,2,...}.

Let r(¥F, d) denote the number of incongruent solutions of the con-
gruence relation F(m) = 0 (mod d).

?,q, ... denote prime numbers.

Y denote the sum over prime numbers.

n
Put
fe) iElflpi<l,

Jey= 1 otherwise.
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Results,
ProrosITION 1. Suppose that the series

Urenr
2

is comvergent. For any positive integer h,
(1) {F)=f(r+1), ..o, fin+b=1)—f(n+ 1)}

has a distribution and for any n, = 1, the veotor {f(ne) —f(me+1), ..., fin,+

+h—1)—f(ny+k)} belongs to the spectrum of the distribution of (1).
Moreover, if Noy Nyy..., N, are positive integers such that for all

$=0,1,..,k (N, (h+1)!) =1 and (¥;, N)) =1 (053 <j<Ch), then

{f¥ ) —f(2N), f(2N) —f(BN), .o, SN ) = f (B + 1) N}

18 in the spectrum of the distribution of (1)

CoroLTARY (Erdos and A. Schinzel [3]). Let f(n) be an additive arithme-
tic function satisfying the following condilions:

) 18
1 2 {f(p) < oo}
3 ?

2. There is a number o, such that, for amy integer M > 0, the sel of
aumbers f(N), where (N, M) = 1, is dense in (¢,, o).

Then for any given sequence of h real numbers ay, Gy, ..., Gy and ¢ > 0

the set {n=1: |f(n+i) —fn+i—1)—a] <ei=1,...,h} has positive
natural density.

PROPOSITION 2. Suppose that F,, ..., T, belong to P. Suppose
S (B 9> 0

a8 p—>oofork=1,..., vp,—1 whenever vy > 2. If, moreover, the distri-
bution of

(2) {fx(Fl(""'))’ ...,f,(F,(m)}}

6xists, then one can find o K, such that the spectrum S of the distribulion
of (2) is the closure of the set

4 = 1‘7 2‘,..., "; =21, Cof-
[[HZf(p)pl“‘%?)f(p) S5 m=1,k> k)

Wy (m) phyFm’
Ik 1)2]; )

Remark 1. Clearly 4 o B = {(f:(l"x(’rn)), -~~,fs(1",(m)))= m>1}-

Proofs.

Proof of Propesition 1. Let H;  (n) =f(n+i—1)—f(n+i),
i=1,...,h. We extend the functions H, to the polyadie domnin (see
Novoselov, [8]) and show that for each ¢, H;¢ §, ([8]), proceeding as follows.
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Let .
if i,
ko) o
wip, o) = 0 otherwise.
For any prime number p define
fol@) = D et a+i), i=0,1,...,h—1.

kel
Since the random variables {f,(#): p is a prime} are mutually independent
([8)) and

!

’ 2
/v {f () c o
5 7
by Kolmogorov’s three series theorem, it follows that

: f(p)
T
‘,,Z Jl ? P
converges almost everywhere for ¢ = 0, 1, ..., k. Hence
D (@) — fiasnn (@)}
»

converges a.e. for ¢ =0,1,...,h—1. Moreover, it is easy to see that
the random variables [{fi,(#) —fusnp(®)}: P is a prime] are mutually
independent random variables for each ¢ =0,1,...,h—1.
Let
g(z) = 2 {fip(@) —fusnp(@)} it it converges,
0

otherwise.

Clearly ¢;(z) is an extension of H;(n). By using the Turin-Kubilius
inequality ([6]), it is easy to show that H;(n)e H, ({8]) and the distri-
bution of Hy(n) is Q;(c) = P{x: g;(z) < ¢}.

Note that for any h-tuple (i, ...,1,_,) of real numbers the distri-

h—1
bution of 3 t,H,(n) is given by
f=
¢ h=1
P {z: Z Lg:(z) < o}.
=0

Henee by the Cramer-Wold device ([4]) we find that the distribution
of {Hy(n), Hy(n), ..., H,_,(n)} is given by

Qlogy -y ehy) =Plo: gil@) <oy £ =0, ..., h—1].
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Let 0 < 6 < 1. Since
{(fnp(x)_fm(z)r '--yf(h—l)p(x) —flnp(x)]: » is a prime};

is a sequenco of mutunally independent random variables, by using Egoroff’s
theorem one can find & H < G such that P(H)>1—6 and 3 {f, (z)~
rsr

—fusnp(®)} converges uniformly on H for 1=0,1,...,h—1.

Now fix a positive integer n, and a Teal number &> 0. Lot
N =ny(ny+1)...(n,+h). Let k be any integer greater than N? and
such that for x¢ H

[ i@ —famp@)|<e for i=0,...,h-1.
>k

Hence
Pla: | ¥ Liol®) —fenp(@)] < & for 6 = 0,..., h—1} > 15
ok

Now the density of
fnz L ifin+i=1)—f(n+id)—flny+i) < et =1,2,...,h)
is greater than or equal fo

P {o: |2 (@) —fip(@)] | < s and

2 Uscnpl®) ~Figl@)] = Fmot-i—1) ~fimo-+1) for i =1,...,4} >
Pk

(1- a)P{z: D@ ~fipl®)] = flmg+i—1)—f(me+i); 6 = 1, ..., h].
p<k

Put
P = H?; Q = Nip,
<k
Py

Plo: 3 Uin(@) —furnpla)] = Fing+i) ~ f(mg+i +1); i = 0, ..., h—1}
<k
= Density of {n >1: Zu,,(n) ~Faanyp ()] = f(0g +6) —f (o +1 +1);
psk

i=0,1, ...,h—1}>%> 0.
In fact, since (P, ¥) = 1, we can find an I such that
l=ny(mod N®) and I =1(mod Py.
It is easy to show that, for any integer ¢,
Q4l+i

et i y t=0,1,...,h,
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is an integer not divisible by any prime p < k. Since k > N% we have

(Qt+l+i

prosr R no+i) =1.
Q

lence for any ¢ such that Qt+1> 0, we get

Z_Uip(Q‘ 1) = fruynpl @+ D} = fIQE+14+4) — (@t + T +44-1),

" 1=0,1,...,h—1.
But the density of the positive integers of the form Qe 41 is equal to
1/¢. This proves the first part of Proposition 1. The proof of the second

part of Proposition 1 is similar to the above proof. So here we only note
the following faot:

We put
N=NN,...N, P=][p and @=(+1)!N*P.
psk
PN

Since (N, (B +1)!) =1fors =0,...,h and (N, ¥)) =1 (0<i<j<h),
it follows from th¢ Chinese Remainder Theorem that there exists & number
! satisfying the congruence relations
1 =1 {mod (k+1)}P),
l=—i+N,(mod N})) (0<igh).
It is casy to see that for every integer ¢ the numbers
{@+1+DE+VNY, i=1,...,h,

are integers which are not divisible by any prime p < k. Also the density
of the integers @Qt+1 is 1/¢ > 0.

This completes the proof of Proposition 1.

Proof of the Corollary. Lot s be a positive number and let a se-
quence @ (4 = 1,..., k) be given. By condition 2 we can find positive
integers N, Ny, ..., N, such that

(N“ (h+1)!) =1 =9, -~'vh)y (Ni)-Nj) =1(0<7 <.7< k),

¢
fNo) > e+ max {fE+1)— Y o}
q 1gigh =1
an

{
A~ V) —fE+ 1+ Y a)|< et <i<n.
Tence =1

‘3) I+ DN ~fGN ) —a) <sf2  AL<i<h).
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By Proposition 1, we have

(4) {" 21: ‘f(”) ‘f("+1)—f(No)+f(2N1)| <ef2y..,y
[fin+b—1)—fn+B) ~F(hNs_,) +1{(h+ 1) V)| <s/2}
hss positive density. Hence the corollary follows from (3) and (4).
Proof of Proposition 2. We need the following two lemmas,
Luyma 1. If h(m) and g(m) are integer-valued polynomials having no
conmvmon factors, then there enists a &, such that p > k, implies that there iy
no m such that h(m) = 0 (mod p) and g(m) = 0 (mod p).
Lexma 3. If Fe P, then there exists o k such that p > k implies
r(F,p) =r(F,p) for all 121,

Also there emists a constant o suoh that r(P, p') < o for all p and 1,

For proofs of &hese lemmas see [9].

Let Fi(m) = [| Fy(m), where {F,{m): j =1,...,1} are irreducible

-]

and each Fye P. ,Such & fastorization is possible and is unique.

Let {@,...,@} ={Fy: j =1,...,};,4 =1,..., 8} such that G and
G, have no common factors if ¢ # j. By Lemma 1 choose a k, such that
P >k, implies that there is no m such that G,(m) = 0 (mod p) and G;(m)
=0(modp) (1<t<j<h) Let G)(x) be the continuous extension of
G(m) to Novoselov’s space ©.

It is easy to see that

{(mll Glo); $ =1,..., h): ‘?i“l Glo)yi=1,..., h)) ceey
(P Ge(a)y § =1, ..., )}
are independent events if ¢, are non-negative integers, r > 1, p,> ki,
¢ £yt 4 5 j and m, is not divisible by any primep > k, (¢ =1,..., ).
Bince either Fy(m) = Fy(m) or Fy(m) and Fy(m) are mutually prime,
we infer that
{(m( | F@) ¢ =1,...,8), (p}it| Fylo),§ =1,..., 8.y
(P?‘IFI(W)y'. =1, ---,3,}
are independent events on Novoselov's space if 13 1,%,2 0, p,> kn
P #p; i ¢ +#j and m; I8 not divisible by any prime p > &, for sny

$=1..,4.
Now choose k, > k, (by using Lemms 3) such that, it p > ¥,, then

’(‘F"")-'(Fﬂp) m ‘)1)‘:‘1,“-,0

(Fop)<pfs, sel,..
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We now show that 4 < 8. Let
fol@) = D' fiph, i=1,..,s.

PHiF2)
psky
Forp>poandi=1,...,s we put
f @) = (f.-(p“) it phlil Fyla), & = 1,
n if either ptF(z) or p*| F.(x) for all k> 1.

By Theorem 2 of (1], we conclude that

f;(?)T(th) U Fu?
D e

converge. Hence by Kolmogorov’s three series theorem 3' f,(x) con-
p>ky

vorges a.e.
Fix a positive real number é < 1/4s. By Egoroff’s theorem choose

H = & such that P(H) > 10 and, on ¥, 3 f,,(z) converges uniformly
n>kg

fori =1,...,8
Now fix £ > 0, k > k, and m 2 1. Choose k, > k such that

P{z: r Zf,),(m)f< e; 1 =1, ...,s}> 1—7n where 4 = ds.
r>ky

Let D{...} denote the natural density of integers satisfying the conditions
mentioned in {...}.

D ”f((Fa("")) - 2 fin(m) —fio(m)| <gi=1,..., 8}

ko<p<k
P{o: fol®) = folm), Y fple) = X fp(m)
ko<p<gk ko<npsk
and ] Sfpm)] < i =1,
P/kg
2(1_77)P{m:flo(x) fuo(m = 1 "18}X
x ] Plo:fiu(@) = fipmlyi =1, 58 x [ Pifipla) =0, =1,...,5}.
kp<ph k<pkhy
Clearly
P{fi(x) =0, =1,...,8} =1-P{a: f,,(z) # 0 for some i}
_ _y)(-an) it p> k.

(-1
Suppose k, < p < k and p% || Fyy(m) for some l; > 1 and for some (i, j).
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Tn this case by the definition of k,, wo have clearly

P (o1 fpl@) = fiplm)y i = 1yy 8} > Bla: 2V Fy(@)
(P, 2 r(Fy 2
P P

Let &,(m) = [] p'. Note that
! PlIF(m)
pskg
P{s: Jul®) =f(0(m’)y i=1,.. 3}
> D{P;(m) | Fi(n) and @;(m)p1Fi(n) for any p < koand fori =1,... s}
>0 (since »n =m i8 @ solution of the above relations).

Sod 8 Hence Bc d < §. Clearly B is dense in §. This completes the
proof of Proposition 2.
Absolute continuity of the distributions of f(m) and f(F(m)).
Remark 2. Let f be the strongly additive arithmetic function defined
by
0 if p<e,
flp) = 1 i .
(loglogp)*” P>

Let F(m) be any polynomial taking positive integral values for
m > 1. From Theorem 1 of [1] we can conclude that f(F(m)) has a distri-
bution. Since

(¥, p)
S—= logl
» rloglogn 4 O(1)

PLn

(8ee [9]) where r is the number of distinet irreducible factors of F.

Following an argument similar to the argument given in [2] it is not
difficult to conclude that the distribution of f(F(m)) is absolutely con-
tinuous.

Remark 3. Let f be any real-valued additive arithmetic function
having a distribution. Suppose that there exist sequences of real numbers
gny by, 8y and a constant b such that gyly — 0, Ly — oo.

%{pg;{f’g’)}’_F(p;vf;lﬁ.)z}_)o a8 N oo

and there exist positive integers m,, ..., my,, composed of primes p < sy
In

1
2 — > bfor all sufficiently large ¥. Then tho distribution
0g8y &4 my
of f is singular.

such that
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This fact can be proved as follows. Without loss of generality we
can assume that f is strongly additive and |f(p)| < 1. We write cvery
po»xtlve integer m = m'm', where m’ is composed of primes p < sy
and m’ of primes p > sy. The density of integers m = m'm” such that
m' = my; for some 4 =1,..., 1y is

Iy
1 1 1 _
@ 2wl (1“5) logsNZl >,

where y 18 Buler’s constant.
For ¢S and any prime p, put

flpy i# ople,
otherwise.

f,,(ﬂi) =

Since f has a distribution, Zf,,(:c) converges almost everywhere ([8])
P

and
Din: f(n) < ¢} = P{:c: Dhpla) < o}.
Clearly
o 2l | Saialaf < | S SO}
Tp>IN ¥ pan P>SN

a8 N - oo.

Cousider the open intervals (f(m,) —gN,f(m,.)+yN),i =1, ...y ly. By (3)
and (6)
v

Pl Zf,,(w)s 'Ul(f(m.‘)‘“gtv;f(mi)*’r‘glv)}

>be"’—%( S’_f@+(2 f(Tp))’)>bg—v

M e D 2

P

P>3y
for all sufficiently large N.

And the sum of the Jengths of these I intervals is less than or equal
to 2y, ly. Hence it follows that tho distribution of f() cannot be absolutely
continuous. Hence it is singular.

ProrositioN 3. Let Fe P. Let f be a real-valued additive arithmelic
Junction such that

f(p")r(F,p*) >0 as p—> oo for k=1,...,9p—1,

vz > 2. (This condition can be dropped if F is a produect of linear poly-
nomials.)
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Let @ be a s6t of primes such that

() V‘i< oo and q ¢ Q implies sither r{F, q) + 0

“ip

PQ

or 1{(F,q) =0 and f(q) = 0.
If f(m) and f{F(m)) have distributions, then the distribution of f(F(m)) s
absolutely continuous if the distribution of f(m) is absolutely continuous.
Proof. By Lemma 2 there exists a constant ¢ such that »(F, p*) < ¢
for all p and k and
r(F,p*)y =r(F,p) dor all k if p > e.

Without loss of generality we can assume that f is strongly additive.
Lrana 3. If {X,} i3 a sequence of independent discrete random variables
and {Y,} is another sequence of independent discrete random variables such
that 3 P{X, # ¥,} < oo, then Y X, converges almost sverywhere and
n n
its distribution function is absolutely comtinuwous iff ' ¥, converges almost
everywhere and its distribution is absolutely continuous.
The proof of this lemma is well known {10].
Lemna 4. Suppose thal 0 < s(p) < ¢ and {a,} is a sequence of real
numbers. Then one can find a sequence of independent random variables
{¥,: p > 2¢} defined on a complete probability space (2,%, P) such that

P{Y, = 0} — 1—‘;‘?’1,

P{Y, ~ na,} = (3(;;)) (1— s_(p;i)' n=112..

and another sequence of independent random variables {X,: p > 2¢} defined
on the same probability space (12, U, P) such that

s(p) 3(p)
P{X, =0} =1—T, P{X, =a,} = »
and
D P{X, £ T} < oo,
p2c
The proof of this lemma is easy and so is omitted.
LeEMdA B. Suppose that h is the characteristio function of am infini-

tely divisible distribulion with the Levy function M. If the total variation

of MM is finite and M i3 discrete, then tho distribution corresponding to h is
discrete.
(Beo (6], p. 124.)
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Wow we prove Propesition 3. Let {X,: p > 2¢} be a sequence of
independent random variables such that

, 1
PRI, =0} =1-—

and

P(T, =fl)) =5

By Lemma 3 and from the results of [1], if f has an absolutely continuous
distribution, it follows that ' X, converges almost everywhere and its

P>2
distribution function is absolutely continuous.

By Lemmas 3 and 4 one can find a sequence {X,} of independent
random variables such that

1
P(X, =0} =1~

P{X, = nf(p)} = ;1"-(1—%), n=12,..

2 X, converges almost everywhere and its distribution is absolutely

P>

continuous. If h(?) is the characteristic function of ) X, then clearly
p>2

Z(cak/(p)_l_ atkf(p) | 1

logh(t) =ty't + 2 H—L’f’(—ps W

P>2 k=l
for some ', Since

Z‘ ZZI;"“’

P> k=2

by Lemma 6 we infer that the distribution function corresponding to the
characteristic function

‘P(l)=exp=2(,,wm_1_%)%}

PQ
P>2

is absolutely continuous. From now on we write r(p) for r(p, F).

Now suppose that {¥}: p > 2¢} is a sequence of independent random
variables such that

, 7(p) (:n)
Y,=0} =1——- and P(Y,= =
P{Y, =0} » { (2} 7
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Since f(F(m)} has a distribution, L Y, converges almost everywhere

[1] and the distribution function of f(F(m)} is absolutely continuous
if the distribution function of 3 ¥, is absolutely continuous. Again,

p>20
by Lemmnias 3, 4 and 5 as above, we conclude that the distribution function

of ¥ T,isabsolutely continuous if the distribution function corresponding
p>2
to the characteristic function g(¢) given by

itf (p) ) ﬁ}

g(t) = exp{z(e""”—l— T UF

p>2c
»Q

is absolutely continuous.

Since
1+ p

p>2c
»mQ

and
(c-'u(p) —1— itf(p) ) 7(p)
1+{f(p))

p>2¢
mQ

converge absolutely and uniformly in every compact interval of the

real line,
2 (eil/(p) —1— itf(p) ) {r(p)— 1)
1+(f(p)f ?

P>

pQ
converges absolutely and uniformly in cvery compact interval of the
real line. Since »(p) = 1 or f(p) = 0 if p ¢ @, it follows that

W) = exp{Z(e"/(ﬂ) 1o B ) (r(p) —1)}
1+/2p)  »
»Q
is & characteristic function. We note that g(t) = ¢ (t)-1(2).

Since ¢(t) is a characteristic function of an absolutely continuous
distribution, g(¢) is also a characteristic function of wn absolutely conti-
nuous distribution. This completes the proof of Proposition 3.

(7) holds for many polynomials. In fact, if ' has u lincar factor,
then condition (7) obviously holds. (7) is not a necessary condition, as
is evident from Remark 2. But Proposition 3 is the best possible in the
sense that if condition (7) is omitted then the conclusion of the proposition
is not necessarily true.
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Examrre. Lot f be the strongly additive arithmetic function defined
by
L if >6° and p = 3 (mod
f®) = { (loglogp)™ p>o ond p =3(modd),
0 otherwise.
Let F{m) be the polynomial m3*+1.

The following lemma shows that f(F(m)) = 0 for all m and hence
{(F(m)} has a degenerate distribution.

LEMMA 6. If p is a prime = 1 (mod 4), the congruence
(8) 2* = —1 (mod p)

has cxactly two incongruent solutions. The congruence (8) has no solution
when D 18 & prime = 3 (mod 4).
See [7], p. 99, Theorem 38.

Now wo shall show that tho distribution of f(m) exists and is absolutely
continuous.

We need the following

LEMMA 7. If Fe P and the number of distinet factors of F 18 k, then
F

2% = kloglogz+ O (1).

P

See [9].
The characteristic function of the distribution function of f(m) is

given by
1 — ¢'wip)
L{u) = (1— ——)
w =[] .

»

Now as in [2] for u # 0
1 1 —exp{in(loglogp)~?

©) wwi< [T ;

where the product [] for each fixed » # 0, is taken over those primes
which satisty the following conditions:

(10) p>e¢, p=3(mod4) and 3r< 4fu(loglogp) ** < 5m.

1
Now each factor of the product on the right of (9) is less than 1— ;;

o
i< [] (1—5).

8o that
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Hence

L) = 0 exp(— > 1/p)),
where, for each fixed % # 0, " denotes the sum over those primes which
satisfy (10). By Leminas 6 and 7 we get

2/p = loglogz+ O(1).
pwiI(mod )
prid

Hence

IZ(w)] = O({exp(—eclul*)}),

14\ 1 1
o=3\%) |z >0
So L(u) is integrable and hence L(«) is the characteristic function of an
absolutely continuous distribution function.

where
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