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Abstract

Su, Boyd and Candes ’14 [1] showed that if we make the stepsizes smaller and

smaller, Nesterov Accelerated Gradient Descent converges to a 2nd order ODE. On

the other hand, arjevani has shown recently some convergence results on delayed

vanilla Gradient descent . Our idea is to take a delayed version of Nesterov Accel-

erated Gradient Descent and derive it’s corresponding ODE and prove convergence

for the convex case.

Keywords: Nesterov Accelerated Gradient Descent, Asynchronous
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Chapter 1

Introduction

Optimization is the workhorse of deep learning with large data. And Optimizers like

Stohcastic Gradient Descent and Adam are the most important. Parallelism and

acceleration are two important aspects of optimization. Vanilla gradient descent is a

Greedy approach that takes step in the direction of steepest descent . However, this

approach turns out to be slow and there are ways to boost convergence by having

some sort of momentum that pushes the ball in the direction of descent. Nesterov

Accelerated Gradient Descent(NAG)[8] is one such method that improve the rate of

convergence under same assumptions as vanilla Gradient Descent.One vital point is

NAG is not a descent method i.e the function value does not necessarily decrease

with each update as is the case in vanilla Gradient Descent. Acceleration is still mys-

terious and Su Boyd Candes [1] derived an ODE for NAG [8] in the continuous case

which sheds some physical intution on it in terms of ball moving with momentum

along with friction . These optimizers serve to train deep neural networks.Another

way of speeding up the training is parallelism using multiple machines . Mini-batch

methods can be easily parallelized.These are synchronous methods. We can also

consider asynchronous methods. And these tend to work well in practice. However,

theoretically analyzing them is extremely difficult.
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Chapter 2

Related Works

Optimization broadly deals with the problem min f(x) where f is a function that

may be convex or non-convex, smooth or non-smooth. Several methods have been

proposed since Newton’s method to deal with these optimization problems. These

days data size is becoming larger and larger and to deal with these acceleration of

optimization is being studied. First order methods are more popular due to lesser

computational cost and memory efficiency. Nesterov 30 years back in [8] proposed

the following algorithm

• xk = yk−1 − ε∇f(yk−1)

• yk = xk + βk−1(xk − xk−)

where ε is the stepsize and βk is the momentum term . Let L be the smoothness

constant of the function f i.e ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ . Let x∗ be the minima

of the convex function f and e0 = ‖x0 − x∗‖ where x0 is the starting point of the

algorithm .

Theorem 2.0.1. In [8],Nesterov proved if the ε ≤ 1
L

, f is convex with smoothness

parameter L , then f(xk)− f(x∗) ≤ O(
e20
εk2

)

This rate is considered to be optimal among first order methods. This method

has applications in training deep architectures as well as classical machine learning

problems like sparse regression, compressed sensing. Connections between Ordinary

differential equations have been an object of study for a long time. If the step sizes

are taken a limit to 0 , then the path converges to solution of an ODE. This provides
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2.1. 2ND ORDER ODE FOR NESTEROV ACCELERATED GRADIENT
DESCENT

some intuition into the gradient descent methods since analysis of continuous ODE’s

is a lot easier.

2.1 2nd order ODE for Nesterov Accelerated Gra-

dient Descent

In Su Boyd Candes [1], the authors derive an ODE which is a continuized ver-

sion of Nesterov Accelerated Gradient Descent. This is in the spirit of the con-

tinuous version of gradient descent known as Gradient Flow given by the equation

Ẏ (t) = −∇f(Y (t)) where t ∈ 0,∞) Unlike the latter which is a first order differential

equation, this happens to be a 2nd order ODE This is interesting because deriving

the convergences of the continuous version is generally easier than the discrete ver-

sion under the usual assumptions of convexity and strong convexity the following

ODE is derived as the continuous version of discrete NAG Ẍ + 3
t
Ẋ + ∇f(X) = 0

....(1) in the case of convexity , i.e f is assumed to be convex, convergence rate is

O( 1
t2

) compared to the case of gradient flow in which case there is a convergence

rate of O(1
t
) , analogy of acceleration of convergence extends onto the continuous

case.

in the case f is not assumed to be differentiable , using subgradients a similiar rate

of convergence O( 1
t2

) is shown

Theorem 2.1.1. Consider f ∈ F∞ := ∪L>0FL and any x0 R , the ODE (1)
with boundary conditions X(0) = x0,X

′
(0) = 0 has a unique global solution X ∈

C2((0,+∞);Rn)
⋃
C1([0,+∞);Rn) ).

Theorem 2.1.2. For any f ∈ F∞, as the step size ε→ 0, Nesterov’s algorithm con-
verges to the ODE (1) in the following sense : limε→0 max0≤k≤

√
T ‖xk−X(k

√
ε)‖ = 0

Theorem 2.1.3. Consider the space F∞ = ∪FL where FL denotes the set of convex
smooth functions with smoothness parameter L . Let X(t) be global soltion to (1).

Then f(X(t))− f(x∗) ≤ 2
e20
t2

. Proof Idea: Consider the Lyanopunov function E(t) = t2(f(X(t)) − f(x∗)) +

2‖X(t) + t
2
Ẋ − x∗‖2 . Show the derivative Ė(t) is less than equal to 0 .

With the identification of t ≈ k
√
ε, analogy with the Theorem 2.0.1 is clear . Con-

sider Ẍ + r
t

+ ∇f(X) = 0 where the constant 3 in (1) is replaced by a general

constant r.

Theorem 2.1.4. For r ≥ 3, f(X(t))− f(x∗) ≤ (r − 1)2
e20
2t2

8



2.1. 2ND ORDER ODE FOR NESTEROV ACCELERATED GRADIENT
DESCENT

Proof Idea: Take the Lyanpunov function E(t) = 2t2(f(X(t)) − f(x∗)) + (r −

1)2‖X(t) + t
2
Ẋ − x∗‖2 Show the derivative Ė(t) is less than equal to 0 .then E(t) ≤

E(0) from which the result follows .

Theorem 2.1.5. For r ≤ 3 and if (f(x)−f(x∗))
r−1
2 is a convex function , f(X(t))−

f(x∗) ≤ (r − 1)2
e20
2t2

Definition 1. For any convex function f , we can define directional derivative in
the direction p at point x ∈ Rd f

′
(x; p) = lim t→ 0+f(x+tp)−f(x)

t
. This limit can be

shown to exist for any convex function though it may be unbounded.

f has a derivative at x x⇔ f
′
(x; p) is linear in p

f
′
(x; p) = supg∈∂f(x) g

Tp where ∂f(x) is set of subgradients of f

Theorem 2.1.6. If f is a convex function with directional derivated Gf (x, p) and
consider the following 2nd order ODE, Ẍ + r

t
+ Gf (X, Ẋ) = 0 has a solution X(t)

on t ∈ [0, γ) . for t ∈ [0, γ), the following holds, f(X(t))− f(x∗) ≤ 2
e20
t2

Here r ≥ 3
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2.2. DELAYED VANILLA GRADIENT DESCENT

2.2 Delayed Vanilla Gradient Descent

Yossi Arjevani [2 ] considers a simple version of Asynchronous Stochastic Gradient

Descent and proves the following theorems xk+1 = Xk − ε(∇f(xk−τ ) + ξk) where

x0 = x1 = .....xτ f is assumed to be convex or strongly convex function so f(x) =

1
2
xTMx+ bTx+ c where M ∈ Rd×d .

Theorem 2.2.1. for the delay τ ≥ 1and k ≥ (τ + 1)log(2(τ + 1)) above version of
delayed gradient descent in the deterministic case where ψk = 0 . L is the smoothness
parameter and µ is the strong convexity parameter and ε = 1

µτ
, then f(xk)−f(x∗) ≤

O( Le20 exp(− kµ
Lτ

)) and in case of smooth L convex function f(xk)− f(x∗) ≤ O(
Lτe20
k

)

Theorem 2.2.2. E [f(xk)− f(x∗)] ≤ O( Le20 exp(− kµ
Lτ

) + σ2

µk
) for the strongly convex

case under the same assumptions as Thm 2.2.1 and E is the expectation . and for

the convex smooth case, then E [f(xk) − f(x∗)] ≤ O(
Lτe20
k

+ σe0√
k

) assuming second

moment of the noise is bounded by σ2

As we can see , in the case σ = 0, Thm 2.2.2 is equivalent to thm 2.2.1 . In

case of deterministic case, we can see the bounds linearly worsen with the delay.

however, in the delayed SGD case, dominant terms in both convex and strongly

convex case are dominated by terms that are free of delay . so we can overcome the

effects of delay in the delayed SGD. Proof technique follows the method of generating

functions . , then treating the delayed GD updates as recursion we can solve for the

coefficients in terms of generating functions standard for solving things like fibonacci

series to get a closed form .Thus we recover xk = [zk] x0
1−z+εMzτ+1 . now using some

complex analysis to bound the roots of the polynomial and the fact that operator

norm of a polynomial in operator is bounded by values of the polynomial on one of

its eigenvalues, we can prove the results mentioned in Thm 2.2.1 and Thm 2.2.2

2.3 Delay Compensated Stochastic Gradient De-

scent

Stich’s paper [3]extends the results of Arjevani’s paper [2] to more general case of

functions where f is not assumed to be quadratic. This requires more challenges.
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2.3. DELAY COMPENSATED STOCHASTIC GRADIENT DESCENT

And authors deal with these with the theory of Delay Compensation they have

developed over several previous papers. Equivalent rates of convergence in Thm

2.2.1 and Thm 2.2.2 in case of general convex + smooth and strongly convex +

smooth are proven .

Definition 2. Assumption 1 (µ quasi convexity wrt x∗ ) of a function f when the
following holds at all points in x ∈ Rd :
f(x)− f ? + µ

2
‖x− x?‖2 ≤ 〈∇f(x), x− x?〉

Definition 3. f is µ strongly convex when the following holds for for all x, y ∈ Rd :
f(x)− f(y) + µ

2
‖x− x?‖2 ≤ 〈∇f(x), x− y〉

Definition 4. Polyak Lojasiewicz inequality holds when ‖∇f(x)‖2 ≥ 2µ(f(x)−f(x?)
for all points x ∈ Rd. This is weaker than quasi convexity since
f(x)− f ? + µ

2
‖x− x?‖2 ≤ 〈∇f(x), x− x?〉 ≤ 1

2µ
‖∇f(x)‖2 + µ

2
‖x− x∗‖2

Definition 5. Assumption 2 f is L smooth when
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x,y. this implies Nesterov 2004, lemma 1.2.3
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2 for all x, y ∈ Rd

Definition 6. Assumption 3a of (M,σ2) bounded noise hold when . g = ∇f(x) + ξ
for some differentiable function f and conditionally independent noise ξ , then there
exists constants M,σ2 > 0 s.t E[ξ|x] = 0 and E[‖ξ‖2|x] ≤M‖∇f(x)‖2 + σ2

Definition 7. Assumption 3b of (M,σ2) bounded noise hold when . g = ∇f(x) + ξ
for some L smooth quasi convex f and conditionally independent noise ξ , then there
exists constants M,σ2 > 0 s.t E[ξ|x] = 0 and E[‖ξ‖2|x] ≤ 2LM(f(x)− f ?) + σ2

f(x) = |x|(1− exp (−|x|)) is quasi convex but not convex. following the ideas of

perturbed iterate analysis .

Consider delay compensated algorithms of the form :

xt+1 = xt − vt
et+1 = et + γtgt − vt
After T such updates, we output xout ∈ (xt)

T−1
t=0 where xt is chosen according to

probabilities proportional to wt for a sequence of positive weights wt

For delayed SGD we can recover it from the above algorithm by putting vt =

γt−τgt−τ for t ≥, and vt = 0 o.w; with et :=
∑i=τ

i=1 γt−igt−i

Theorem 2.3.1. Let xt for t ≥ 0 be the iterates of delayed SGD with stepsize γt = γ
constant for all t ≥ 0 on a function f that satisfies Assumptions 2 , 3. Then,

• if f also satisfy Assumption 1 for some positive µ , then with an appropriate
γ less than 1

10L(τ+M)

E[f(xout) − f(x∗)] = O(L(τ + M)‖x0 − x∗‖2 exp ( −µT
−10L(τ+M)

) + σ2

µT
) where wt

is proportional to (1− µγ
2

)−t
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2.3. DELAY COMPENSATED STOCHASTIC GRADIENT DESCENT

• If f satisfies Assumption 1 for µ = 0, and γ less than 1
10L(τ+M)

, then E[f(xout)−
f(x∗)] = O(L(τ+M)‖x0−x∗‖2

T
+ σ‖x0−x∗‖√

T
) where wt = 1 for all t

• take an arbitrary non-convex function, then for some stepsize small enough ,
E[‖∇f(xout)‖2] = O(L(τ+M)(f(x0)−f(x∗))

T
+ σ√

T

√
L(f(x0)− f(x∗))) where wt = 1

Definition 8. δ -approximate compressor.. A random operator C : Rd → Rd that
satisifes for δ positive, EC [‖x− C(x)‖2] ≤ (1− δ)‖x‖2

To reduce communication costs we consider a compressor C . In this case we

only have a single worker. here vt = C(et + γtgt) and et+1 := et + γtgt − vt

Theorem 2.3.2. Let xt for t ≥ 0 be the iterates of the above delay compensated
compressed sgd with stepsize γt = γ constant for all t ≥ 0 on a function f that
satisfies Assumptions 2 , 3. Then,

• if f also satisfy Assumption 1 for some positive µ , then with an appropriate
γ less than 1

10L( 2
δ
+M)

E[f(xout) − f(x∗)] = O(L(1
δ

+ M)‖x0 − x∗‖2 exp ( −µT
−10L( 2

δ
+M)

) + σ2

µT
) where wt

is proportional to (1− µγ
2

)−t

• If f satisfies Assumption 1 for µ = 0, and γ less than 1
10L(τ+M)

, then E[f(xout)−

f(x∗)] = O(
L( 1

δ
+M)‖x0−x∗‖2

T
+ σ‖x0−x∗‖√

T
) where wt = 1 for all t

• take an arbitrary non-convex function, then for some stepsize small enough ,

E[‖∇f(xout)‖2] = O(
L( 1

δ
+M)(f(x0)−f(x∗))

T
+ σ√

T

√
L(f(x0)− f(x∗))) where wt = 1

in case of Local SGD , xkt+1 = 1
K

∑K
k=1(x

k
t − γtgkt ) if τ |(t + 1) else xkt+1 = xkt − γtgkt

here the sequences evolve parallely and it synchronized in every τ th step

Theorem 2.3.3. Let xkt for t ≥ 0 be the iterates of Local SGD with stepsize γt = γ
constant for all t ≥ 0 on a function f that satisfies Assumptions 2 , 3. Then,

• if f also satisfy Assumption 1 for some positive µ , then with an appropriate
γ less than 1

10L(τK+M)

E[f(xout) − f(x∗)] = O(L(τK + M)‖x0 − x∗‖2 exp ( −µT
−10L(τK+M)

) + σ2

µT
) where

wt is proportional to (1− µγ
2

)−t

• If f satisfies Assumption 1 for µ = 0, and γ less than 1
10L(τK+M)

, then

E[f(xout)− f(x∗)] = O(L(τK+M)‖x0−x∗‖2
T

+ σ‖x0−x∗‖√
TK

) where wt = 1 for all t

• take an arbitrary non-convex function, then for some stepsize small enough
, E[‖∇f(xout)‖2] = O(L(τK+M)(f(x0)−f(x∗))

T
+ σ√

KT

√
L(f(x0)− f(x∗))) where

wt = 1
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2.4. NESTEROV ACCELERATION IN DISTRIBUTED SETTINGS

2.4 Nesterov Acceleration in distributed settings

Distributed Nesterov Gradient descent is studied in [8]. This method has a sequence

(xi(k), yi(k)) at each node i of a network. Each node does updates after communi-

cating with its neighboring nodes and computes the gradient step with respect to

its own value.. The update equations are

xi(k + 1) =
∑

j∈NiWijyj(k)− αk∇fi(yi(k))

yi(k + 1) = xk+1 + βk(xi(k + 1)− xi(k))

where Wij is the weight of the edge connecting nodes i and j and Ni is the neigh-

bourhood of node i . choose αk = c
k+1

and βk = k
k+3

At each update , each node

sends yi(k) to its neighbors and each node as a result also receive that value from its

neighbours. Then the values are weighed according to the weight of the edge of the

network and then substracts gradient with regard to its component function fi . In

this method, Distributed Nesterov Gradient, achieves rates O (log K/K) and O (log

k/k), where per-node communications is K and the per-node gradient evaluations k

Another method is developed in [8] Distributed Nesterov gradient with Consensus

iterations. This requires apriori knownledge of smoothness parameter of f as well as

of the largest singular value of the weight matrix W. Here the convergence rates are

improved to O( 1
K2−ε ) and O( 1

k2
) . Boundedness of the gradients is assumed here.

Based on these papers, the next target could be to extend the results of Stich

and Arjevani to the accelerated case with delay.
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2.5. PROBLEM STATEMENT

2.5 Problem Statement

Asynchronous methods have been extremely useful for training deep neural nets. Ar-

jevani’s paper[2] considered a simple version of the delayed gradient descent namely

with constant delay . In that case, Arjevani was able to show Delayed SGD is able

to overcome the effects of delay . Extending these results to accelerated gradient

descent methods is still an open problem . In this thesis, we take a simpler problem,

namely we derive a 2nd order ODE associated to delayed version of NAG in the

spirit of Su,Boyd,Candes [1] paper. We are able to show that for convex function

not neccesarily differentiable a convergence rate of O( τ
2

t2
). We hope in the same

spirit O( τ
2

εk2
) would extend into the discrete delayed NAG. however , that would

involve more complex methods and we keep that for the future.
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Chapter 3

Mini-Batch vs Asynchronous
Gradient Descent

Parallelization of data for the purpose of optimization to reduce computational time

is widely used. It is used to reduce training time of deep neural networks. Joeri

R. Hermans[7] compares minibatch to asynchronous methods. In mini-batch data

parallelism , work is divided among n workers each of which compute gradients for

m data points.

. In the beginning , all the components get a copy of the parameter θ0 of the

central machine. After each of the worker completes it’s task, central machine

updates the parameter θ0 using average of the received computations and produces

a new update of the central parameter. Then the workers can update themselves

with the new parameter and begin to work again. This leads to the phenomenon

of locking in that all the workers are not always active as some of them finish early

and some finish later and have to wait for the others to complete before the central

worker can begin to work . The visualization for this is given in Fig 1 In order to

stop wasteful waiting and speed up the processes asynchronous methods are used.

In asynchronous method of updates, whoever finishes the computation updates the

central parameter first. this leads to problem that gradients being sent to the central

machine gets delayed. although this generally works well in practice, analyzing them

theoretically is hard. The Visualization for this is given in Fig 2 .
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Figure 3.1: Mini-Batch Parallelism

Figure 3.2: Asynchronous Parallelism
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3.1. HOGWILD

3.1 hogwild

Niu [4] came up with a decentralized gradient descent scheme called Hogwild! that

does updates in parallel on CPUs. Processors can access a common memory without

locking the parameters.This method can only work for sparse data so that in each

update , the scheme will only modify a small part of parameter space.The authors

then prove prove optimal rates of convergence for this algorithm.

3.2 DownPour SGD

Downpour SGD in Dean [5] is an asynchronous version of Stochastic Gradient De-

scent by Dean in their DistBelief framework . It runs multiple copies of a algorithm

parallely on different parts of the training set. These models send their updates

to a the central server containing the parameters, which is divided among different

machines. However,this method has the risk of divergence.

3.3 Delay-tolerant Algorithms for SGD

McMahan and Streeter [6] has extended AdaGrad to the distributed setting by

developing delay-tolerant algorithms that as in adagrad adapts past gradients and

also likewise update delays . This experimentally works well.
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Chapter 4

Convergence of Gradient Flow

4.1 Heuristic derivation of the ODE for Gradient

Descent

Let’s derive a 1st order ODE for gradient descent in continuous time. Throughout

we will assume the functions are sufficiently smooth Consider the differential equa-

tion.

dx
dt

= −∇f(x)

Consider the flow of x(t) along the ODE . then for small δ,

xt+δ = xt + δẋ+O(δ2) ....(1)

as the velocity ẋ = −∇f(x), by substituting it in (1) , we get xt+δ = xt− δf(xt)

Define Xk := xδk

then Xk+1 = Xk − δ∇f(x). –(2)

thus we recover the vanilla gradient descent in (2) by discretization of (1). So let’s

prove some convergences for gradient flow equation which was shown above to be a

continous version of the Vanilla Gradient Descent :

dx
dt

= −∇f(x(t)) ...(1) This equation is the gradient flow equation It is easy to

demonstrate that if a particle flows along the above ODE, then the value of the

function decreases.

4.2 Proof of Convergence of Gradient Flow

Lemma 4.2.1. df(x(t))
dt
≤ 0

Proof : df(x(t))
dt

= 〈 ∇f(x(t)), dx(t)
dt
〉 = −‖∇f(x(t))‖2 ≤ 0 where the second

18



4.3. CONVERGENCE IN THE CASE F IS A STRONGLY CONVEX
FUNCTION

equality follows from (1) and first equality follows from application of chain rule if

f is assumed to be greater than equal to some bounded constant , then along with

monotonicity we get convergence of f(x(t)). However, to get convergence of x(t)

requires the method of Lynapunov functions that we will discuss next.

Convergence in the case f is a convex function

Definition 9. Convexity means f is bounded below by its tangent which means
f(y) ≥ f(x) + 〈∇f(x), y − x〉 where the R.H.S is the value of tangent equation
at x evaluated at y.

Theorem 4.2.2. :Assuming f to be convex, gradient flow has a convergence rate of

O(1
t
). Then f(xt)− f(x∗) ≤ ‖x−x0‖2

t

Proof Technique : Define E(t) = t(f(xt)− f(x∗)) + 1
2
‖x(t)− x∗‖2 . E(t) can be

shown to be a decreasing function of time . Such functions are known as Lynapunov

functions.

4.3 Convergence in the case f is a strongly convex

function

Definition 10. If f is µ strongly convex, it means that

f(x) ≥ f(y)+ < ∇f(y), x − y > +µ‖x−y‖
2

2
which means that f is lower bounded by

a quadratic function.

Using these assumptions, it can be shown that gradient flow converges linearly

which is an improvement over sublinear convergence as in the linear case.

Theorem 4.3.1. : if f is µ strongly convex, gradient flow converges at f(x(t)) −
f(x∗) ≤ O(exp(−2µt))

Lemma 4.3.2. : if f is µ strongly convex then f also follows PL-inequality 1
2
‖∇f(x)‖2 ≥

µ(f(x)− f(x∗))

Proof : Using the assumptions of strong convexity we get

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2

...(3)

Now let’s try to minimize both sides the inequality in (3) wrt y. :

min
y
{f(y)} = f(x∗)
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4.3. CONVERGENCE IN THE CASE F IS A STRONGLY CONVEX
FUNCTION

Since the R.H.S is a quadratic in y , we do simple differentiation to get the minima

∂R.H.S

∂y
= ∇f(x) + µ(y − x) = 0 ⇐⇒ y = x− 1

µ
∇f(x)

....(4) Putting (4) back into the R.H.S , we get f(x) − 1
µ
‖∇f(x)‖2 + 1

2µ
‖∇f(x)‖2

and hence we get f(x∗) ≥ f(x)− 1
2µ
‖∇f(x)‖2 Proof of the Theorem : d(f(x(t))−f∗)

dt
=

〈 ∇f(x(t)), dx(t)
dt
〉 = −‖∇f(x(t))‖2 ≤ 2µ(f ∗ − f(x(t))) thus we can get linear con-

vergence for the strongly convex case
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Chapter 5

ODE for Nesterov Accelerated
Gradient Descent method

Nesterov Accelerated Gradient Descent aka NAG

xk+1 = yk − ε∇f(yk) ..(1)

yk+1 = xk+1 + βk(xk+1 − xk)...(2) where the ε is the size of each step and βk is the

parameter that denotes the momentum

Theorem 5.0.1. in [8],nesterov proposed the following : Assuming f to be convex
and 1

ε
smooth, and taking the βk = k

k+3
, we can get a convergence rate of O( 1

εk2
)

This is an improvement over O( 1
εk

) convergence in case of vanilla gradient descent

The following results in this chapter are from Su,Boyd,Candes [1]

5.1 ODE associated to NAG

Theorem 5.1.1. as ε the stepsize tends to 0, the above scheme converges to Ẍ(t) +
3/tẊ(t) +∇f(X) = 0

Main ingredient that we will use here is the Taylor expansion Proof : For a

function u, taylor expansion around a point x0 is given by

u(x0 + δx) = u(x0) + δx∂u
∂x
|x=x0 + 1

2
(δx)2 ∂

2u
∂x2
|x=x0 + o(δx) where o(δx) contains

higher order difference terms. the above gives a 2nd order approximation which

is a quadratic in δx from the eqn (2), we can plug in k = k − 1

yk = xk + βk−1(xk − xk−1)− ε∇f(yk) ...(3)

Plugging (3) into (1), xk+1 = xk + βk−1(xk − xk−1)− ε∇f(yk)...(4)

from (4) we get

xk+1 − xk = βk−1(xk − xk−1)− ε∇f(yk)

next we will try to derive an ODE of NAG in the spirit of the derivation of ODE
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5.1. ODE ASSOCIATED TO NAG

we carried out for the vanilla gradient descent in the previous chapter. Correspond-

ingly, one would expect O( 1
t2

) rates of convergence for the continuous case.

with the heuristic of t = δk, δ =
√
ε and t = δk =

√
εk so with these approximations

xk+1 is identified to X(t+
√
ε) , xk with X(t) and xk−1 with X(t−

√
ε)

so xk+1 − xk = X(t) +
√
εẊ(t) + ε

2
Ẍ(t)−X(t) =

√
εẊ(t) + ε

2
Ẍ(t) + o(ε)

similarly xk − xk−1 = −(X(t)−
√
εẊ(t) + ε

2
Ẍ(t)) +X(t) =

√
εẊ(t)− ε

2
Ẍ(t) + o(ε)

Plugging these into (4) , we get
√
εẊ(t) + ε

2
Ẍ(t) + o(ε) = βk−1(

√
ε ˙X(t)− α

2
Ẍ(t) +

o(ε)− ε∇f(yk)

so collecting the coefficients of ε we get ε
2
(1 + βk−1)Ẍ(t) +

√
ε(1 − βk−1)Ẋ(t) +

α∇f(yk) + o(
√
ε) = 0 ....(5) using the paul teng parameters βk−1 = k−1

k+2
= 1 − 3

k+2

which is appoximately 1− 3
k

= 1− 3
√
ε
t

we can also approximate yk with X(t) plugging in these form of βk and yk in (5)

and comparing the coefficients of ε we can derive the following differential equation

. Ẍ + 3
t

+ ∇f(X) = 0 ...(5) the constant 3 can also be replaced with a general

constant r the paper also proves similiar convergence rates for the case the constant

3 is replace with a general r .

Theorem 5.1.2. if X(t) flows along the the ODE (5), we get a O( 1
t2

) rate of con-
vergence

Proof : Take the Lyanpunov function to be E(t) = 2t2(f(X(t)− f ∗) + ‖X(t) +

tẊ(t) − X∗‖2 and show using convexity that Ė(t) ≤ 0 . Hence E(t) ≤ E(0) from

where the result follows
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Chapter 6

New Contributions

We have already seen the benefits of accelerated gradient descent methods in the

synchronous case. However, we want the benefits of acceleration in the synchronous

case to carry into asynchronous case. As in the case of Vanilla SGD with delay,

analysis of accelerated methods with delay is much harder. We use the setup of

Yossi Arjevani’s paper [2] which assumes constant delay of the gradients to reach

the central machine.

Theorem 6.0.1. consider the following delayed NAG .
xk = yk−τ−1 − ε∇f(yt−τ−1) ..(1)
yk = xk − k−1

k+2
(xk − xk−τ−1) = 0 ...(2)

as ε the stepsize tends to 0, the above scheme converges to Ẍ(t) + 3/tẊ(t) +
1

(τ+1)2
∇f(X) = 0

Proof : t ≈ k
√
ε and τ̂ ≈ τ

√
ε using the same heuristic as the non delayed case.

using (1) and (2), first put k → k+ 1, in both (1) and (2) , then put k → −τ in (2)

and plug it back to (1) we can get,

xk+1 − xk−τ − k−τ−1
k−τ+2

(xk−τ − xk−2τ−1) + ε∇f(yk−τ ) = 0 ...(3)

Consider the taylor expansion

(xk+1 − xk−τ ) = Ẋ(t− τ̂)
√
ε+ 1

2
ε(1 + τ)2Ẍ(t− τ̂) + o(ε)...(4)

similiarly consider the taylor expansion of

(xk−τ − xk−2τ−1) = Ẋ(t− τ̂)
√
ε(1 + τ)− 1

2
Ẍε(1 + τ)2 + o(ε)

also, k−1
k+2

= 1− 3
k+2
≈ 1− 3

k
≈ 1− 3

√
ε
t

we can plug in the taylor expansions into (3)

,consider only the coefficients of ε and derive the following

ODE : Ẍ + 3
t

+ 1
(1+τ)2

∇f(X) = 0

we can also consider the general case where the constant 3 is replaced by r .now Ẍ+
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3
t
+ 1

(1+τ)2
∇f(X) = 0 is equivalent to Ẍ+ 3

t
+∇f(X) = 0 as far as proving existence

of global solution is concerned under appropriate differentiablity assumptions on f.

so Thm 1 of Su,Boyd,Candes [1] paper extends to this new setting and existence

of global solution holds. This derivation is inspired by Su Boyd Candes paper [1]

Theorem 1 in Su Boyd Candes paper [1] show the existence of global solution under

appopriate condition of smoothness and Theorem 2 shows NAG converges to the

above ODE.

we prove the following convergence result below analogous to thm 24 of Su,Boyd,

Candes ’14 [1]

Theorem 6.0.2. . using the same setup i.e assume a not neccesarily smooth con-
vex function f(x) with directional subgradient G(x, p; f), and consider the boundary
conditions to be X(0) = x0 and Ẋ(0) = 0. The corresponding delayed NAG is then
Ẍ(t) + 3

t
Ẋ(t) + 1

(τ+1)2)
G(X, Ẋ) = 0 has a convergence like this

f(X(t))− f ∗ ≤ (τ + 1)2O(‖x0−x∗‖
2

t2
)

Proof : Define E(t) = t2(f(X(t)− f ∗) + 2(τ + 1)2‖X(t) + t
2
Ẋ(t)−X∗‖2 . Since f

is not assumed to be differentiable first part of E need not be differentiable but the

second part of E is .

Consider E(t+ δt)−E(t) for small δt > 0 . In E(t) the second term is differen-

tiable and its derivative is

4(τ + 1)2〈X + t
2
Ẋ(t)−X∗, Ẋ(t) + 1

2
Ẋ(t) + t

2
Ẍ(t)〉

= 4(τ + 1)2〈X + t
2
Ẋ(t)−X∗, 3

2
Ẋ(t) + t

2
Ẍ(t)〉..(3)

from the ode 3
2
Ẋ(t) + t

2
Ẍ(t) = − t

2(τ+1)2
G(X, Ẋ).

4(τ+1)2〈X+ t
2
Ẋ(t)−X?,− t

2(τ+1)2
G(X, Ẋ)〉 = −2t〈X−X∗, G(X, Ẋ)〉−t2〈Ẋ(t), G(X, Ẋ)〉

hence the 2nd part of E(t+ δt)− E(t) is equal to

(−2t〈X −X∗, G(X, Ẋ)〉 − t2〈Ẋ(t), G(X, Ẋ)〉δt+O(δt)

first part of E(t+δt)−E(t) is equal to (t+δt)2(f(X(t+δt))−f ∗)−t2(f(X(t)−f ∗)

= 2t(f(X(t+ δt))− f ∗)δt+ t2(f(X(t+ δt))− f(X(t)))

also f(X(t+ δt)) = f(X + δtẊ) +O(δt)

f(X + δtẊ) = f(X) + 〈Ẋ,G(X, Ẋ)〉+O(δt)

now combing both parts E(t+ δt)− E(t)

= 2t(f(X(t+δt))−f ∗)δt+t2〈Ẋ(t), G(X, Ẋ)〉+(−2t〈X−X∗, G(X, Ẋ)〉−t2〈Ẋ(t), G(X, Ẋ)〉δt+

O(δt) = 2t((f(X)− f ∗)− 〈X −X∗, G(X, Ẋ)〉) +O(δt) ≤ O(δt)

since f is convex so f(X)− f ∗ ≥ 〈X −X∗, G(X, Ẋ)〉and .
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Thus lim supt→+0
E(t+δt)−E(t)

δt
≤ 0

which shows E(t) is a non-increasing function .

Then the required result follows from the fact that E(t) ≤ E(0) since t is strictly

positive

Theorem 6.0.3. . using the same setup i.e assume a not neccesarily smooth con-
vex function f(x) with directional subgradient G(x, p; f), and consider the boundary
conditions to be X(0) = x0 and Ẋ(0) = 0. Consider the more general case of r > 3
Ẍ(t) + r

t
Ẋ(t) + 1

(τ+1)2)
G(X, Ẋ) = 0 has a convergence like this

f(X(t))− f ∗ ≤ (τ + 1)2O(‖x0−x∗‖
2

t2
)

Proof : Define E(t) = 2t2(f(X(t)−f ∗)+(r−1)2(τ +1)2‖X(t)+ t
r−1Ẋ(t)−X∗‖2

. Since f is not assumed to be differentiable first part of E need not be differentiable

but the second part of E is .

Consider E(t+ δt)−E(t) for small δt > 0 . In E(t) the second term is differen-

tiable and its derivative is

2(r − 1)2(τ + 1)2〈X + t
r−1Ẋ(t)−X∗, Ẋ(t) + 1

r−1Ẋ(t) + t
r−1Ẍ(t)〉

= 2(r + 1)2(τ + 1)2〈X + t
2
Ẋ(t)−X∗, r

r−1Ẋ(t) + t
r−1Ẍ(t)〉..(3)

from the ode r
r−1Ẋ(t) + t

r−1Ẍ(t) = − t
(r−1)(τ+1)2

G(X, Ẋ).

2(r−1)2(τ+1)2〈X+ t
r−1Ẋ(t)−X?,− t

2(τ+1)2
G(X, Ẋ)〉 = −t(r−1)2〈X−X∗, G(X, Ẋ)〉−

t2(r − 1)〈Ẋ(t), G(X, Ẋ)〉 hence the 2nd part of E(t+ δt)− E(t) is equal to

(−t(r − 1)2〈X −X∗, G(X, Ẋ)〉 − t2(r − 1)〈Ẋ(t), G(X, Ẋ)〉δt+O(δt)

first part of E(t+δt)−E(t) is equal to (t+δt)2(f(X(t+δt))−f ∗)−t2(f(X(t)−f ∗)

= 2t(f(X(t+ δt))− f ∗)δt+ t2(f(X(t+ δt))− f(X(t)))

also f(X(t+ δt)) = f(X + δtẊ) +O(δt)

f(X + δtẊ) = f(X) + 〈Ẋ,G(X, Ẋ)〉+O(δt)

now combing both parts E(t+ δt)− E(t)

= 4t(f(X(t+ δt))− f ∗)δt+ 2t2〈Ẋ(t), G(X, Ẋ)〉δt− t(r− 1)2〈X −X∗, G(X, Ẋ)〉δt−

t2(r−1)〈Ẋ(t), G(X, Ẋ)〉δt+O(δt) = 4t((f(X)−f ∗)− (r−1)2
4
〈X−X∗, G(X, Ẋ)〉)δt+

t2(3− r)〈Ẋ(t), G(X, Ẋ)〉δt+O(δt) ≤ 4t((f(X)−f ∗)− (r−1)2
4

(f(X)−f ∗))δt+ t2(3−

r)〈Ẋ(t), G(X, Ẋ)〉δt+O(δt) ≤ O(δt)

since f is convex so f(X)− f ∗ ≥ 〈X −X∗, G(X, Ẋ)〉and r > 3.

Thus lim supt→+0
E(t+δt)−E(t)

δt
≤ O(δt)

which shows E(t) is a non-increasing function .

Then the required result follows from the fact that E(t) ≤ E(0) since t is strictly
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positive

These results are my main contribution .
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Chapter 7

Future Work and Conclusion

7.1 Open Problems

One direction is to extend the convergence result proved for continuous version of

delayed NAG in the convex case to be extended to the discrete NAG . Nesterov

Accelerated Gradient Descent unfortunately does not accelerated in the stochastic

case.Different Accelerated Stochastic Gradient methods have been proposed like

Natasha 2 in [6] in the non-convex setting , Katusha X in [7] in the convex setting

recently. One idea could be to try to find continuous ODE of these methods and

derive convergence results in a similiar fashion. We haven’t derived the stochastic

differential equation for delayed vanilla SGD . This could also be a future direction

.

7.2 conclusion

We first take limit of step sizes of the delayed version of NAG to find a 2nd order

ODE . By using previous results in [1] we are able to establish global solution for

the derived differential equation. Next , we find that if a solution path along this

ODE converges to the minimum of the function at a rate ( τ
2

t2
). This is the same

rate of O(1/t2) as in case of ode for the NAG. except it worsens with the delay

quadratically. This is bad. To solve this problem , a future direction could be to

consider gradient descent/flow methods that are stochastic and we expect as in the

case of [2],[3] for noise to solve this problem of converges rates being affected by the

delay.
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