
Multi-View Hierarchical
Clustering using Optimal

Transport

DISSERTATION SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

Master of Technology
in

Computer Science

by

Sohan Ghosh

[Roll No: CS1910]

under the guidance of

Dr. Swagatam Das
Associate Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata-700108, India

July, 2021

To my friends and family

1

CERTIFICATE

This is to certify that the dissertation entitled “Multi-View Hierarchical Clus-
tering using Optimal Transport” submitted by Sohan Ghosh to Indian Statis-
tical Institute, Kolkata, in partial fulfillment for the award of the degree of Master
of Technology in Computer Science is a bonafide record of work carried out
by him under my supervision and guidance. The dissertation has fulfilled all the
requirements as per the regulations of the institute and, in my opinion, has reached
the standard needed for submission.

Swagatam Das
Associate Professor,
Electronics and Communication Sciences Unit,
Indian Statistical Institute,
Kolkata-700108, India

2

Acknowledgements

I would like to express my highest gratitude to my advisor, Dr. Swagatam Das,
Associate Professor, Electronics and Communication Sciences Unit, Indian Statisti-
cal Institute, Kolkata, for his guidance and continuous encouragement. Without his
support this work would not have been possible.

My utmost thanks goes to all the teachers of Indian Statistical Institute for their
suggestions and discussions whenever I have needed them, which has undoubtedly
helped me to improve my research work.

I would also like to thank all of my friends for their help and support. In par-
ticular, I would like to express my appreciation to my classmate Abhirup Gupta for
his time and valuable insights during the formulation of this work. And Last but
not least, I am very much thankful to my parents and family for their everlasting
support.

Sohan Ghosh
Indian Statistical Institute

Kolkata - 700108 , India

3

Abstract

With the growing availability of multi-view data, development of multi-view cluster-
ing algorithms has gained prominence among researchers. However, most of these
algorithms are either based on subspace, graph or spectral clustering techniques,
with very few works done in terms of hierarchical clustering. In this work, we aim
to develop a Multi-View Agglomerative Hierarchical Clustering algorithm which uses
Optimal Transport (OT) for calculating distances between clusters. This takes into
consideration the entire data distribution of the clusters, unlike traditional single or
complete linkage techniques.

When incorporated naively in hierarchical clustering, OT imposes high time com-
plexity. To tackle this we have a Nearest Neighbor Agglomeration (NNA) step which
merges multiple clusters in each iteration using chains of first nearest neighbors. This
subsequently results in very few iterations and we show that incorporating OT in
this setup still leads to relatively low time complexity. Before NNA we have a Co-
sine or Euclidean Distance Integration (CDI/EDI) step, which essentially calculates
the distance between two data samples as the average over their distances in all the
views.

Extensive experiments performed on both single-view and multi-view datasets
illustrate the efficiency of our algorithm when compared to other state-of-the-art
single-view hierarchical clustering and multi-view clustering algorithms respectively.

Keywords: Multi-View Data, Multi-View Clustering, Hierarchical Clustering, Op-
timal Transport

4

Contents

1 Introduction 10
1.1 Introduction . 10
1.2 Our Contributions . 11
1.3 Thesis Outline . 12

2 Preliminaries 13
2.1 Notations . 13
2.2 Multi-View Learning . 14

2.2.1 Motivation . 14
2.2.2 Multi-View Data . 14
2.2.3 Multi-View Clustering Principles 15

2.3 Hierarchical Clustering . 15
2.4 Optimal Transport . 17

2.4.1 Motivation . 17
2.4.2 Monge Problem . 17
2.4.3 Kantorovich Problem . 18
2.4.4 Discrete OT . 18
2.4.5 Sinkhorn Distance . 18

3 Related Works 20
3.1 Hierarchical Clustering using Optimal Transport (HC-OT) 20

3.1.1 Formulation . 20
3.1.2 Observations . 21

3.2 Hierarchical Clustering using First Nearest Neighbors (FINCH) . . . 21
3.2.1 Formulation . 22
3.2.2 The Algorithm . 22
3.2.3 Observations . 23

3.3 Past works on Multi-View Hierarchical Clustering 24
3.3.1 Multi-View Agglomerative Clustering Algorithm based on En-

semble of Dendograms . 24
3.3.2 Multi-View Hierarchical Clustering based on Nearest Neighbors 25

4 Proposed Multi-View Hierarchical Clustering Algorithm 30
4.1 Incorporating Optimal Transport into Hierarchical Clustering with

First-Nearest Neighbors . 30
4.1.1 Formulation . 30
4.1.2 The Proposed FINCH-OT Algorithm 31

4.2 Extension to Multi-View Framework 32
4.2.1 Formulation . 32

5

CONTENTS

4.2.2 The Proposed MVHC-OT Algorithm 34

5 Performance Analysis of Proposed MVHC-OT Algorithm 37
5.1 Complexity Analysis . 37
5.2 Experimental Evaluations . 38

5.2.1 Datasets . 38
5.2.2 Compared Algorithms . 38
5.2.3 Evaluation Metrics . 40
5.2.4 Parameter Settings . 40
5.2.5 Performance when Pre-specified K number of clusters not re-

quired . 41
5.2.6 Performance when Pre-specified K number of clusters required 42
5.2.7 Sensitivity Analysis . 45

6 Conclusion and Future Work 50
6.1 Conclusion . 50
6.2 Scope for Future Work . 50

A Sinkhorn’s Algorithm 57

6

List of Figures

2.1 Examples of multi-view data (Image source: [1]) 14
2.2 Example of complementary and consensus principles (Image source:

[2]) . 15
2.3 Example of hierarchical clustering . 16
2.4 Illustration of Monge’s earth mover’s distance 17

3.1 Illustration of how two views X(1) and X(2) are partially projected
by P (1) and P (1) from the same underlying latent representation H
(Image source: [3]) . 26

3.2 Illustration of CDI and NNA steps over successive iterations (Image
source: [4]) . 27

5.1 Plots illustrating sensitivity analysis for change in NMI with differ-
ent values of threshold t and distance measure (euclidean/cosine) for
single-view datasets when K is given 47

5.2 Plots illustrating sensitivity analysis for change in NMI with differ-
ent values of threshold t and distance measure (euclidean/cosine) for
multi-view datasets when K is given 48

5.3 Plots illustrating sensitivity analysis for change in Accuracy with dif-
ferent values of threshold t and distance measure (euclidean/cosine)
for multi-view datasets when K is given 49

7

List of Tables

2.1 Notations used . 13

5.1 Description of real-world single-view datatsets 39
5.2 Description of real-world multi-view datatsets 39
5.3 Comparative results between MVHC-OT and MVHC on real-world

single-view datasets when K is not known. 42
5.4 Comparative results between MVHC-OT and MHC on real-world

multi-view datasets when K is not known 42
5.5 Performance comparison in terms of NMI index of MVHC-OT with

state-of-the-art hierarchical clustering algorithms on real-world single-
view datatsets when K is known . 43

5.6 Performance comparison in terms of NMI index of MVHC-OT with
state-of-the-art multi-view clustering algorithms on real-world multi-
view datatsets . 44

5.7 Performance comparison in terms of Accuracy of MVHC-OT with
state-of-the-art multi-view clustering algorithms on real-world multi-
view datatsets . 44

8

List of Algorithms

1 HC-OT Algorithm . 21
2 FINCH Algorithm . 23
3 FINCH Algorithm: Required Number of Clusters Mode 23
4 Multi-View Clustering based on Ensemble of Dendograms 25
5 MHC Algorithm . 28
6 MHC Algorithm with a fixed number of clusters 29

7 Proposed FINCH-OT Algorithm . 31
8 Proposed FINCH-OT Algorithm for K clusters required 32
9 Proposed MVHC-OT Algorithm . 35
10 Proposed MVHC-OT Algorithm for K clusters required 36

11 Sinkhorn’s Algorithm . 58

9

Chapter 1

Introduction

1.1 Introduction

Data is one of the most valuable commodities in modern-day life. This is because
of its abundance with the advent of modern technologies and big data. With this,
multi-view data [1] is available to us aplenty and in turn multi-view clustering has
become a research topic of significant interest among the scientific community. With
the different forms of information obtained from multi-view data, this is really of no
surprise.

Imagine a video stream. The image frames and speech can be considered as
different views which individually are capable of conveying the desired information.
However, many of us would agree that simultaneously listening to the speech and
watching the image frames can lead to an improved understanding of the informa-
tion that the video is trying to convey. Similarly the same word, say “Hello” can
be represented in multiple languages [1]. Each of these languages can essentially
be thought of as separate views. Chapter 2 contains more examples and detailed
analysis of multi-view data and in general multi-view learning.

Many algorithms have been proposed for clustering multi-view data in recent
years. Arguably the most widely used category among them is the Subspace Clus-
tering based algorithms. The naive or typical approach for this category is to learn
a final affinity matrix which is formed by combining the individual affinity matrices
of each view. Then Spectral Clustering [5] is applied to get the partitions. Several
variations have also been proposed in recent years. MVSC [6] uses a cluster indicator
matrix that is treated to be common with respect to all the views while attempting
to learn a graph representation for all views. LMVSC [7] uses the concept of anchor
graphs to reduce the time complexity to linear. Using the information that is com-
plementary to all the different views by finding a latent representation of the views
under consideration has been proposed in LMSC [3].

Also used often are Spectral Clustering based approaches. [8] initially forms
probability matrices corresponding to the different views and then derives a com-
bined probability matrix shared among those views. This is done using sparse and
low-rank representations. GMC [9] uses a mutual reinforcement strategy to learn
the graph matrix of each view and the unified graph matrix. Apart from these two
popular categories, several other well accepted works have been proposed as well
[10][11][12].

Due to the large amount of data inherently existing in a hierarchical structure,

10

1.2. OUR CONTRIBUTIONS

Hierarchical Clustering, without a doubt, is one of the most widely used clustering
methods as far as single-view data in concerned. A lot of new algorithms have been
developed recently [13][14][15][16][17][18][19]. FINCH [20] uses chains of first nearest
neighbors to merge multiple clusters in each step, thus leading to very few number
of iterations and low time complexity. Typically one would expect hierarchical clus-
tering to be equally popular with multi-view data. However, it is a bit surprising to
find that there is not much literature available on multi-view hierarchical clustering.
This is possibly because of the question as to how the distances of samples in differ-
ent views can be aggregated during the merging or division process in agglomerative
or divisive hierarchical clustering respectively. Probably the first notable multi-view
hierarchical clustering method was proposed by [21] where they used dendograms of
different views to derive a combined cophenetic distance matrix, from which a final
aggregate dendogram can be formed. Recently [4] has proposed MHC, a multi-view
agglomerative hierarchical clustering scheme which essentially considers the average
over the cosine distances of all the views as the distance in the latent representation,
which is then used for merging of clusters based on chains of first nearest neighbors.
Using Optimal Transport (OT) [22] to pick the two clusters to merge in an iteration
was introduced in HC-OT [23]. This ensures that the entire data distribution of
the clusters is considered while making the decision of merging. However HC-OT is
restricted to single-view domain and is also very time consuming.

This brings us to our proposed Multi-View Agglomerative Hierarchical Clustering
technique (MVHC-OT) which essentially incorporates OT in the setup suggested by
[4]. This allows us to leverage the utilities of OT over traditional measures like single-
linkage or complete-linkage as in the single-view scenario described in [23]. At the
same time the setup of [4] ensures that in spite of incorporating OT, we are able to
maintain a relatively low time complexity.

1.2 Our Contributions

The main contributions of our work can be summarized as follows:

• We propose a Multi-View Agglomerative Hierarchical Clustering Algorithm
which uses Optimal Transport (OT) to decide which clusters to merge in each
step. Using OT helps our method to compute the distance between the con-
cerned clusters while keeping in mind their entire data distribution, unlike
other traditional methods.

• Our Multi-View Hierarchical Clustering Algorithm merges multiple clusters
and produces inherently meaningful clusters in each step. This results in very
few iterations even for large datasets which in turn leads to a relatively low
time complexity despite the incorporation of OT.

• Elaborate experiments have been performed on real-life multi-view datasets
to compare the performance of our proposed algorithm with state-of-the-art
multi-view clustering methods. In addition, we provide results on some real-life
single-view datasets as well, showing that our proposed multi-view clustering
algorithm generalizes well for single-view data too.

11

1.3. THESIS OUTLINE

1.3 Thesis Outline

The rest of this thesis is outlined as follows. Chapter 2 contains the Preliminary
topics related to our method. Chapter 3 summarizes the Related Works done in
Hierarchical Clustering, both in single-view and multi-view domain. Chapter 4
discusses our proposed Multi-View Hierarchical Clustering Algorithm and Chapter
5 gives its detailed Performance Analysis. Finally Chapter 6 concludes our work
along with some future directions.

12

Chapter 2

Preliminaries

2.1 Notations

The notations used in this work are stated in Table 2.1. We follow these notations
throughout this work, unless otherwise mentioned.

Notations Description

n Number of samples in dataset

d Number of features

X = (xij) ∈ Rn×d Single-view dataset in matrix format

v Number of views

dk Number of features in k-th view

X(k) = (x
(k)
ij) ∈ Rn×dk k-th view of the dataset in matrix format

K Number of clusters

µ, ν Probability distributions

C = (cij) ∈ Rm×n Cost matrix of Optimal Transport

γ = (γij) ∈ Rm×n Transportation matrix of Optimal Transport

a = [a1, ..., am]T , b = [b1, ..., bn]T Discrete probability masses

λ Entropic regularization constant in Optimal Transport

dλ(µ, ν) Sinkhorn distance between µ and ν

Sλ(C1, C2) Sinkhorn distance between clusters C1 and C2

D = (dij) ∈ Rp×p Single-view distance matrix when there are p clusters left to be merged

D(k) = (d
(k)
ij) ∈ Rp×p Distance matrix of k-th view when there are p clusters left to be merged

D∗ = (d∗ij) ∈ Rp×p Essential Distance matrix when there are p clusters left to be merged

P (k) Orthogonal matrix of the k-th view

H Latent representation of multiple views

R = {R1, R2, ...} Partitions obtained during each step of hierarchical clustering

|Rk| Number of clusters in the k-th partition

G Nearest neighbor adjacency graph matrix

Table 2.1: Notations used

13

2.2. MULTI-VIEW LEARNING

2.2 Multi-View Learning

2.2.1 Motivation

From what can we identify a human being? His/her face, signature, voice tone, finger
prints, dental records etc can each help in identification of a person on its own [1].
However there always remains a possibility that there is some noise or ambiguity
in the above features collected from different sources which are detrimental to the
recognition process. In such scenarios it is quite natural to think that a combination
of the above features will aid in the identification task better. This is the motivation
behind Multi-View Learning.

2.2.2 Multi-View Data

In our day-to-day life, we encounter multi-view data every now and then. Different
newspapers report the same incident in different languages and from different per-
spectives. Different features like color, texture, SIFT, Gabor etc describe the same
image. Images shared in a website can be described by the image itself and also
by the text in the regions surrounding that image. All these can be thought of as
examples of multi-view data.

Figure 2.1: Examples of multi-view data (Image source: [1])

As we approach the age of big data where data is available in abundance to
us, different sources have emerged which provide data about the same entity; thus
providing different perspectives at the same time. The term ‘multi-view data’ refers
to these data and the sources are termed as ‘views ’ [2]. Although these data have
properties that are heterogeneous to each other, there exists some connection among
them which can prove to be fruitful in the learning task [24]. Exploiting these
connections for learning is the real aim of multi-view learning.

14

2.3. HIERARCHICAL CLUSTERING

2.2.3 Multi-View Clustering Principles

This leads us to Multi-View Clustering (MvC) [2][25] which has drawn increasing
attention of the researchers in recent times. MvC operates on the two principles:
Complementary and Consensus.

1. Complementary Principle: Although each single view is efficient to some
extent with respect to a particular kind of knowledge extraction task, sep-
arate views provide information that is complementary to one another and
hence they act as much better descriptors for the data objects as a whole. So
deploying multiple views is essential.

2. Consensus Principle: Since the different views are describing the same
object, the consistency across all the views should be maximized. This is the
simple goal of the consensus principle. [26] shows that the generalization error
of the classifiers on two independent views can be considered to be an upper
bound for the classification error on either view. Thus, a maximization in the
consensus among the two views should in turn result in the minimization of
error of each view.

Figure 2.2: Example of complementary and consensus principles (Image source: [2])

[2] illustrates the complementary and consensus principles using Figure 2.2 in the
following way. A data object expressed in the latent space has two inherent views.
Now, part A and part C are present exclusively in View 1 and View 2 respectively.
These represent the Complementary information of the two views. On the other
hand, part B is shared by both the two views. This represents the Consensus of the
two views.

Both these principles form the crux of MvC problem. However they are in a
way contradictory to each other. Hence the true challenge of MvC lies in the proper
balance between these two principles.

2.3 Hierarchical Clustering

Clustering [27] in one of the core facets of machine learning, where given a datatset
we aim to ‘cluster’ or group the data samples together into different sets based on
their properties or features. This kind of learning problem is unsupervised in nature
as we are not provided with any training labels with which we can train our model

15

2.3. HIERARCHICAL CLUSTERING

(a) Partitions obtained (b) Dendogram obtained

Figure 2.3: Example of hierarchical clustering

and then use it to predict the class/group of samples, as is the case for supervised
learning.

Clustering can be very broadly divided into two categories:

1. Partitional Clustering [28]: Here the dataset is partitioned into a set of
clusters such that every data point is a part of one and only one cluster. A
very common example of this kind of clustering technique is the K-means
algorithm.

2. Hierarchical Clustering [29][30]: Here the dataset is partitioned into dif-
ferent clusters such that a data point can be a part of more than one clusters.
This type of data is naturally observed in nature in many form and its quite
obvious that we wish to have a clustering structure resembling it. A tree like
structure called the dendogram is used to represent this hierarchical structure.
Figure 2.3 provides an illustration of this. This kind of clustering is of primary
concern to us in this thesis and hence let us delve a bit more elaborately into
this.

Hierarchical Clustering can be mainly divided into categories:

1. Divisive: This is a top-down approach. The idea is to consider the entire
dataset as a single cluster first. Then based on some metric, this cluster is
divided into two clusters. In the next step, one of the existing clusters is again
chosen and divided into two parts. This precess goes on until we are left with
only one data point in each cluster. Notice that this process enables each data
point to be a part of more than one cluster based on the clustering level.

2. Agglomerative: Contrary to the Divisive method, this approach is bottom-
up. We start with each data point as individual, separate clusters. Then in
each iteration, based on some metric, we merge two chosen clusters into a
single cluster. We stop when all data points belong to one single cluster. As
evident, similar to the divisive approach, we are once again able to cluster
each data point into more than one partition based on the clustering level or
step.

Our proposed approach depicted in this thesis in Chapter 4 falls under the Ag-
glomerative Hierarchical Clustering framework.

16

2.4. OPTIMAL TRANSPORT

2.4 Optimal Transport

2.4.1 Motivation

Optimal Transport (OT) [22] is essentially a distance measure between probability
distributions. Its history originates back to the year 1781 when Monge [31] first
introduced it to solve the problem of resource allocation. It was described through
an example of moving a pile of earth from a source location to another destination
location. The idea is that there is a pile of earth with a particular shape at a
particular location. At some distance there is a hole of some shape. A person has
to use a shovel and manually shift the pile of earth to put it in the destination hole.
The main motive is to reduce the total cost of transportation. Hence OT distance
is often referred to as earth-mover’s distance as well. This is analogous to using
OT to compare two probability distributions (the pile of sand in the source location
and the hole in the destination location of same volume can be thought of as two
probability distributions).

2.4.2 Monge Problem

Let us formally state the Monge Problem [31]. First, let us assume Ωs and Ωt to
be two Polish Spaces [32]. Then, consider c : Ωs × Ωt → [0,∞] to be a Borel-
measurable cost function. Assuming µ to be the probability measure on Ωs and ν
to be the probability measure on Ωt, a transport map T is defined from Ωs to Ωt.

inf
T :T#µ=ν

∫
Ωs

c(x, T (x))dµ(x) (2.1)

Monge treats OT problem as finding a T such that Equation (2.1) is minimized
under the condition that T#µ = ν. Here µ(T−1(B)) = ν(B), ∀B ∈ ν, ie T#µ must
push-forward µ by T towards ν.

Figure 2.4: Illustration of Monge’s earth mover’s distance

17

2.4. OPTIMAL TRANSPORT

2.4.3 Kantorovich Problem

Issue with Monge’s Formulation

The constraint imposed on the Monge Problem makes it ill-posed at times, since
there may not be any valid mapping which satisfies this constraint of T#µ = ν. To
understand the issue, without going into mathematical terms, let us once again go
back to the analogy of moving a pile of earth from a source location to a destination
location. The above constraint simply means that every particle of sand located at
the same position in the source location must be shifted to the same position in the
destination location. It is quite obvious that this may not be at all possible in a lot
of cases and depends on the shape of the hole to be filled. Here lies the issue with
Monge’s Formulation.

Kantorovich Relaxation

To solve this problem, Kantorovich proposed his formulation of the OT problem in
1942 [33]. Assume Γ to be the set of all measure couples between µ and ν. Given
this, Kantorovich proposed to solve Equation (2.2) such that γ ∈ Γ(µ, ν).

inf
γ∈Γ(µ,ν)

∫
Ωs×Ωt

c(x, y)dγ(x, y) (2.2)

[32] shows that under certain conditions of regularity, Equation (2.2) is always
solvable.

2.4.4 Discrete OT

If we shift our focus to only discrete domain, then the Kantorovich Problem of
Equation (2.2) can be considered as a Linear Programming Problem. Consider µ
and ν to be two discrete probability distributions on Rd (note that these were in
the continuous domain for Monge and Kantorovich Problem). Let us assume δzi to
be the Dirac delta function at point zi ∈ Rd. If ai and bi are probability masses at
points xi and yj respectively, such that

∑m
i=1 ai = 1 and

∑n
j=1 bj = 1, then we can

define µ =
∑m

i=1 aiδxi and ν =
∑n

j=1 bjδyj . Given this setup, assuming cij to be the
total cost of transporting from point xi to yj, the discrete version of the Kantorovich
Problem is given by Equation (2.3).

min
γ

m∑
i=1

n∑
j=1

cijγij such that γ1n = a, γT1m = b (2.3)

where a = [a1, ..., am]T , b = [b1, ..., bn]T .

2.4.5 Sinkhorn Distance

Issues with Traditional Discrete OT

[34] discusses elaborately the issues with the OT formulation described in Section
2.4.4. We briefly mention them as follows:

18

2.4. OPTIMAL TRANSPORT

i) If m = n in the discrete setup, then the minimum time taken by any flow solver
available for use in practice is O(n3logn). This is clearly is not suitable for
Machine Learning problems which require fast processing. This is the prime
reason why despite having its origin in the 18th century, OT has not been
exploited enough by the Machine Learning community.

ii) The solution is not always unique for the discrete OT problem. Machine Learn-
ing applications desire a more stable solution.

Solution using Entropic Regularization

[34] proposed to use Sinkhorn’s Algorithm [35] to solve Equation (2.4) such that
only fixed point iterations are used.

min
γ
{
m∑
i=1

n∑
j=1

cijγij + λ

m∑
i=1

n∑
j=1

γijlog(γij)} such that γ1n = a, γT1m = b (2.4)

With respect to the cost matrix C, we denote the required solution of Equation
(2.4) as dλC(µ, ν), the Sinkhorn Distance between µ and ν. For details on how to come
up with a solution for Equation (2.4), readers are suggested to refer to Appendix A.

Solving the above equation is found to give a time complexity of O(mn). Also,
the intuition behind adding the regularization term is as follows. The entropy term
−
∑m

i=1

∑n
j=1 γijlog(γij) is strongly concave in nature. Subtracting it from the orig-

inal discrete OT objective function makes it convex in nature, thus making the
solution to Equation (2.4) stable.

19

Chapter 3

Related Works

In this Chapter we focus on some algorithms which hold key components which
we have taken inspiration from in our proposed multi-view hierarchical clustering
method.

3.1 Hierarchical Clustering using Optimal Trans-

port (HC-OT)

In this section we discuss the Hierarchical Clustering using Optimal Transport (HC-
OT) algorithm [23] with uses the concept of OT to decide which clusters to merge
during agglomerative hierarchical clustering.

3.1.1 Formulation

The main motivation behind using OT instead of the traditional single or complete
linkage schemes is to consider the entire distribution of the clusters, which is not done
in the traditional schemes (only the maximum and minimum distance between the
two concerned clusters are taken into consideration for complete and single linkage
schemes respectively). The most important thing here is to define a measure in
terms of OT for the distance between two clusters.

Consider C1 and C2 to be two clusters. Now, assuming that xi is the i-th point of
C1, i = 1, ..., |C1| and yj is the j-th point of C2, j = 1, ..., |C2|, the distribution of the

data points in the two clusters can be given as µ =
∑|C1|

i=1
1
|C1|δxi and ν =

∑|C2|
j=1

1
|C2|δyj .

For λ > 0, if the distance between xi and yj is taken to be cij, the Sinkhorn distance
between µ and ν can also be considered to be the Sinkhorn distance between the
two clusters C1 and C2, ie. Sλ(C1, C2) = dλC(µ, ν).

However, it is to be noted that only if |C1| and |C2| are large enough, can we
come up with the above approximation. [23] uses Sinkhorn distance as a distance
measure between two clusters under consideration when they both have at least
n/10 data points. Hence, in the situation where this condition is not satisfied, the
traditional single or complete linkage is used instead of OT as the distance between
the respective clusters.

The HC-OT algorithm as per [23] is shown in Algorithm 1.

20

3.2. HIERARCHICAL CLUSTERING USING FIRST NEAREST NEIGHBORS
(FINCH)

3.1.2 Observations

[23] has presented the performance of HC-OT on two synthetic as well as several
real-life datasets and done an elaborate comparative analysis with other state-of-
the-art hierarchical clustering algorithms to show the improvement in performance
while using HC-OT in most of the cases.

However, the biggest issue faced by this algorithm is the increase in time complex-
ity compared to the naive agglomerative single linkage scheme which takes O(n3).
This is due to the incorporation of OT in distance computation which takes O(n2)
for each computation. This begs the questions. Can we incorporate OT into the
hierarchical clustering framework with an improved time complexity? Also, HC-OT
is essentially a single-view clustering algorithm. How about having a multi-view hi-
erarchical clustering framework which incorporates OT? In addition, HC-OT works
on the prior knowledge of the actual or required number of clusters in the data.
Can it be modified such that even without the knowledge of the actual number of
clusters, it can give a clustering result with approximately the actual number of
clusters or may give a clustering that somehow has some inherent meaning?

Algorithm 1: HC-OT Algorithm

Input : Distance matrix D ∈ Rn×n, λ
Output: Clustering dendogram

1 Initialize all data points as individual clusters;
2 L(0) = 0;
3 m = 0;
4 while number of clusters greater than 1 do
5 Find cluster pair (p) and (q) such that d[(p), (q)] = min(r),(s)d[(r), (s)],

∀((r), (s)) ∈ D;
6 Combine the (p) and (q) clusters into one cluster to form the new

clustering level;
7 L(m) = d[(p), (q)];
8 m = m+ 1;
9 Update D by eliminating the columns and rows corresponding to the (p)

and (q) clusters, and then including a new column and row for the new
cluster;

10 The distance between the new cluster indicated as (p, q), and a former
cluster (r) can be expressed as:

11 d[(r), (p, q)] =

{
Sλ((r), (p, q)), if |(r)|, |(p, q)| > n

10

min{d[(r), (p)], d[(r), (q)]}, otherwise
;

12 end

3.2 Hierarchical Clustering using First Nearest

Neighbors (FINCH)

In this section we take an elaborate look into [20], which presents an agglomer-
ative hierarchical clustering algorithm called FINCH. FINCH, unlike HC-OT [23]
does not require any hyperparameter, threshold or actual number of clusters. The
main intuition is that large chains in the dataset can be formed only by connecting

21

3.2. HIERARCHICAL CLUSTERING USING FIRST NEAREST NEIGHBORS
(FINCH)

data points via their first nearest neighbors, which essentially leads to large group-
ings/clusters among the data in a significantly small number of iterations. Also
the time complexity is shown to be very low and as a result can be scaled to large
datasets.

3.2.1 Formulation

FINCH Clustering Equation

Let κ1
i be the first nearest neighbor of data point i. Then, if the first nearest neighbor

corresponding to every data point is known, [20] builds an adjacency link matrix
defined as follows.

G(i, j) =

{
1, if j = κ1

i or κ1
j = i or κ1

i = κ1
j

0, otherwise
(3.1)

The above equations essentially lead to a symmetric sparse matrix G, whose strongly
connected components are the cluster partitions. The condition j = κ1

i joins a point
i to its first nearest neighbor. κ1

j = i ensures symmetry. And κ1
i = κ1

j joins the
points (i, j) which have the same neighbor.

3.2.2 The Algorithm

Finding the connected components from the adjacency matrix G after applying
Equation (3.1) gives a flat clustering of the data in the first iteration. The simple
idea is to recursively follow this same procedure as in the typical agglomerative
hierarchical clustering method repeatedly. Notice that unlike traditional agglomer-
ative approaches which merge only two clusters in each step, FINCH merges a large
number of clusters in each iteration. As a result convergence is achieved in only
a few number of iterations unlike other methods which take n − 1 steps. Results
in [20] show that even for large datasets having about 1000 to 8 millions samples,
FINCH converges in only 4-10 iterations. In addition the clusters provided in each
iteration is meaningful in its own inherent way. The number of iterations and also
the number of clusters returned in each step bear no direct relationship with the
number of samples n.

The FINCH Algorithm as per [20] is given in Algorithm 2 and Algorithm 3.
Algorithm 2 describes FINCH procedure when the actual number of clusters is not
provided to the algorithm as prior input data. FINCH also works if we require a
clustering with a particular number of clusters. This mode of FINCH is captured in
Algorithm 3.

As can be seen in Algorithm 2, the first neighbors can be computed through
fast approximation algorithms like k-d tree [36] instead of computing an entire
distance matrix. This essentially reduces the time complexity of FINCH in com-
parison with other state-of-the-art hierarchical clustering algorithms by taking only
O(nlogn) time. In contrary, computing distances in the usual manner would have
taken O(n2logn).

Algorithm 3 uses the result of Algorithm 2 to give us a clustering with the re-
quired number of clusters. The partition containing the number of clusters just

22

3.2. HIERARCHICAL CLUSTERING USING FIRST NEAREST NEIGHBORS
(FINCH)

greater than the required number of clusters is chosen. Then we proceed in an itera-
tive manner, merging only two clusters at a time until we reach the required number
of clusters.

Algorithm 2: FINCH Algorithm

Input : Data matrix X ∈ Rn×d

Output: Set of Partitions R = {R1, R2, ..., RL} where each partition
Ri = {C1, C2, ..., C|Ri|} st |Ri| > |Ri+1| ∀i ∈ R is a valid clustering
of X

1 Compute κ1 ∈ Rn×1 using exact distance or k-d tree;
2 Compute first partition R1 containing |R1| clusters using κ1 via Equation

(3.1);
3 while |Ri| ≥ 2 do
4 Given X and its partition Ri, compute cluster means and use these

means as new data points to form new data matrix W ∈ R|Ri|×d;

5 Compute first neighbors integer vector κ1 ∈ R|Ri|×1 of points in W ;
6 Given κ1 get partition RW of Ri via Equation (3.1), where RW ⊇ Ri;
7 if |RW | = 1 then
8 break;
9 else

10 Update cluster labels in Ri : RW → Ri;
11 end

12 end

Algorithm 3: FINCH Algorithm: Required Number of Clusters Mode

Input : Data matrix X ∈ Rn×d, a partition Ri from the result of
Algorithm 2

Output: Clustering RK which contains the required K number of clusters
1 for steps = |Ri| − |RK | do
2 Using X and its partition Ri, calculate cluster means to form a new

data matrix W ∈ R|Ri|×d;

3 Compute first neighbors integer vector κ1 ∈ R|Ri|×1 of points in W ;
4 Calculate adjacency matrix G using κ1 via Equation (3.1);
5 Find dmin, the minimum distance between all cluster pairs (k, l) for

which G(k, l) = 1;
6 Keep the symmetric link in G for the cluster pair (i, j) corresponding to

dmin, and set the rest to zero;
7 Modify the labels of the clusters in Ri: Merge corresponding (i, j)

clusters in Ri;

8 end

3.2.3 Observations

The general approach for agglomerative hierarchical clustering is as follows. A dis-
tance matrix is built from the data samples, which is then used for merging two
clusters having least distance in each step. Also, we go on updating the distance
matrix with each iteration. This not only requires extra space, but also access-

23

3.3. PAST WORKS ON MULTI-VIEW HIERARCHICAL CLUSTERING

ing the distance matrix in each step takes time. FINCH essentially avoids these
computational issues by maintaining only the first nearest neighbor relations. Also,
[20] compares the performance of FINCH with some state-of-the-art clustering tech-
niques to show its superiority.

In particular we can observe no issues with this algorithm. And it is better than
HC-OT as far as time complexity is concerned. Also, the fact that it can work
without knowing the actual number of clusters in the dataset is an added advan-
tage. However, like HC-OT, FINCH is essentially a single-view clustering technique.
Hence, an extension to multi-view framework can be an obvious direction. Also,
what happens with respect to time complexity and performance if we can somehow
incorporate OT into FINCH? Section 4.1 of Chapter 4 discusses this possibility with
our proposed FINCH-OT Algorithm.

3.3 Past works on Multi-View Hierarchical Clus-

tering

Considering the amount of data inherently available in the form of hierarchies, it
is surprising that not many of the recent works on multi-view clustering are based
on the hierarchical clustering approach. In the following subsections we elaborately
describe two significant works in this domain.

3.3.1 Multi-View Agglomerative Clustering Algorithm based
on Ensemble of Dendograms

In this section we take a look at [21], which, to the best of our knowledge, was the first
proposal for a hierarchical clustering approach for multi-view data. This approach,
called the Multi-View Agglomerative Clustering based on Ensemble of Partitions of
Different Views combines the dendograms obtained after performing agglomerative
clustering on every view independently. An intermediate matrix representation for
dendograms is used instead of combining them directly to improve the performance
with respect to time taken.

More specifically, the concept of cophentic distance [37][38][39] is used for com-
bining the individual dendograms of each view. The cophenetic distance between
two data samples can be defined as the height of the dendogram at which those
two samples are first joined or merged into a single cluster. Essentially a cophenetic
description matrix is built from each dendogram which consists of the cophenetic
distances among the different samples in the dataset. Before proceding futher, these
matrices are normalized so that the values lie between 0 and 1.

After forming these normalized matrices they can be aggregated in some suitable
way like taking average or maximum. Then a combined final dendogram for all the
views is generated from the aggregated cophenetic matrix. Algorithm 4 depicts the
algorithm as described by [21].

Observations

This method is significant for being one of the first to attempt a hierarchical cluster-
ing approach for multi-view clustering. But, the fact that it individually performs

24

3.3. PAST WORKS ON MULTI-VIEW HIERARCHICAL CLUSTERING

agglomerative clustering on each view has its disadvantage with respect to time
complexity.

Algorithm 4: Multi-View Clustering based on Ensemble of Dendograms

Input : {X(i)}vi=1 ∈ Rn×d, {D(i)}vi=1 ∈ Rn×n

Output: Combined dendogram for all v views
1 Initialize cluster Ci = xi, ∀i = 1, ..., n, where xk is the k-th data sample;
2 for p = 1, ..., v do
3 for q = 1, ..., n do
4 (Ci, Cj) = Closest cluster pair;
5 Merge Ci and Cj;

6 end

7 end

8 DD(i) = Cophenetic matrix of the i-th view, ∀i = 1, ..., v;

9 NDD(i) = Normalized Cophenetic matrix of the i-th view, ∀i = 1, ..., v;
10 Combined Descriptor = aggregation of all the dendogram descriptors in

appropriate manner;
11 Final Dendogram = Use the Combined Descriptor to form the links and

thus build the tree;

3.3.2 Multi-View Hierarchical Clustering based on Nearest
Neighbors

We devote this section for discussing about [4], which presents Multi-View Hierar-
chical Clustering (MHC). MHC essentially extends the FINCH Algorithm [20] in
multi-view domain. Like FINCH does for single-view data, MHC recursively finds
clusters in multi-view datasets in levels of granularity. Also, there is no hyperpa-
rameter selection. For the extension to multi-view framework, mainly two concepts
are used: Cosine Distance Integration (CDI) and Nearest Neighbor Agglomeration
(NNA). In the next subsection we take a deeper look at these two concepts.

Formulation

Cosine Distance Integration (CDI):
The main purpose of CDI is to compute an essential latent distance matrix from
the individual distance matrices of each view. This latent matrix must contain the
complementary information of all the views.

Following [3], let us assume H to be the latent representation of multiple views
{X(i)}vi=1, ie. H contains the complementary information of all the views. Given H,
the data for each view can be reconstructed as follows:

X(i) = P (i)H,P (i)TP (i) = I (3.2)

where P (i) is an orthgonal matrix of the i-th view.
Distances between samples in each view are calculated using the cosine distance.

More specifically, let a and b be two data samples represented as xa and xb respec-

25

3.3. PAST WORKS ON MULTI-VIEW HIERARCHICAL CLUSTERING

Figure 3.1: Illustration of how two views X(1) and X(2) are partially projected by
P (1) and P (1) from the same underlying latent representation H (Image source: [3])

tively. The cosine distance between them in the i-th view is given by:

d
(i)
ab = 1− x

(i)
a

T
x

(i)
b√

x
(i)
a

T
x

(i)
a

√
x

(i)
b

T
x

(i)
b

(3.3)

On the other hand, in the latent representation the distance between the above two
samples a and b can be computed as:

d∗ab = 1− hTa hb√
hTa ha

√
hTb hb

(3.4)

where ha and hb are the representations of a and b respectively in the latent repre-
sentation.

Now, putting x
(i)
a = P (i)ha and x

(i)
b = P (i)hb in the cosine distance formula of

Equation (3.3), it can be shown that dab
(i) = dab

∗ theoretically. As a result, in
practice, the essential cosine distance between the two samples a and b can be given
as

d∗ab =
1

v

v∑
i=1

d
(i)
ab (3.5)

In the next step of NNA, this learned essential distance matrix is used for finding
clusters in the data.

Nearest Neighbor Agglomeration (NNA):
NNA essentially applies FINCH algorithm by using the latent distance matrix com-
puted during NNA. It works on the same assumption as FINCH that data samples
and their first nearest neighbors should be clustered into the same partition [40][41].
This merging results in long chains of samples which are grouped together in a single
iteration.

To be more specific, the essential matrix computed during CDI is used to generate
a graph G in which indices corresponding to a data sample and its first nearest
neighbor are connected.

G(a, b) =

{
1, if a = nearest(b) or b = nearest(a)

0, otherwise
(3.6)

26

3.3. PAST WORKS ON MULTI-VIEW HIERARCHICAL CLUSTERING

where nearest(i) gives the first nearest neighbor of data sample i.
Connected components of the graph G form the clusters. But this clustering be-

ing in the latent representation, they have to be transferred to the individual views.
The idea is to consider the newly obtained clusters as individual data points for the
CDI in the next iteration. For this, a new data sample corresponding to a cluster is
obtained by averaging over all the data points belonging to that cluster. The nearest
neighbors in this step can be obtained using fast approximation algorithms like k-d
tree which help in reducing the time complexity of this algorithm to O(nlogn).

Figure 3.2: Illustration of CDI and NNA steps over successive iterations (Image
source: [4])

The Algorithm

All data samples are first treated as individual clusters. Then the CDI and NNA
steps are performed one after the other recursively, until we have only one cluster.

Algorithm 5 depicts the MHC Algorithm when a particular number of clusters
is not required. Like in FINCH, results are obtained in different levels of granular-
ity and the partitions obtained in each of these iterations have their own inherent
meaning.

MHC can also be modified with Algorithm 6 to operate when a fixed number of
clusters is required. It simply selects the clustering with closest number of partitions
greater than the required number of clusters. From that clustering, two clusters are
merged at a time following the approach of AGNES [42], which, contradictory to
MHC is a single-view clustering technique.

27

3.3. PAST WORKS ON MULTI-VIEW HIERARCHICAL CLUSTERING

Observations

MHC, as we have mentioned can be looked upon as an extension to FINCH in
multi-view framework. As a result it carries most of the advantages of FINCH.
MHC merges multiple clusters at a time leading to the final clustering result in
very few iterations even for large multi-view datasets. Having the ability to provide
clustering results even when no required number of clusters is pre-specified is an
added advantage in its own right as finding clustering results without mentioning
the actual number of clusters is a topic of interest among current researchers. Per-
formance comparisons shown in [4] shows the efficiency of MHC when compared to
other state-of-the-art multi-view clustering algorithms.

Now question is, can the multi-view framework developed for MHC be used to
incorporate OT into multi-view hierarchical clustering? Analysing this possibility is
the core component of subsequent chapters of this work.

Algorithm 5: MHC Algorithm

Input : {X(i)}vi=1, the data matrices for v views
Output: Clustering results at multiple levels of granularity,

R = {R0, R1, ...}
1 Performing the CDI:
2 for i=1 to v do
3 Calculating distance matrix D(i) using cosine distance;
4 end

5 Getting essential distance matrix D∗ = 1
v

∑v
i=1D

(i) ;
6 Performing the NNA:
7 Constructing G based on D∗ using Equation (3.6);
8 Getting clustering results R0 based on G;
9 Transferring current results R0 to multiple views;

10 Calculating new data samples as new input data by averaging data samples
in the same cluster;

11 Performing the CDI and NNA recursively:
12 while current results have more than two clusters do
13 Performing the CDI:
14 for i=1 to v do

15 Calculating distance matrix D
(i)
k based on new input using cosine

distance;

16 end

17 Getting essential distance matrix D∗k = 1
v

∑v
i=1 D

(i)
k ;

18 Performing the NNA:
19 Constructing Gk based on D∗k using Equation (3.6);
20 Getting clustering results Rk based on Gk;
21 Transferring current results Rk to multiple views;
22 Calculating new data samples as new input data by averaging data

samples in the same cluster;

23 end

28

3.3. PAST WORKS ON MULTI-VIEW HIERARCHICAL CLUSTERING

Algorithm 6: MHC Algorithm with a fixed number of clusters

Input : {X(i)}vi=1, K and the closest division clustering results Rclosest,
which has |Rclosest| clusters

Output: Clustering result RK with the required number of clusters
|RK | = K

1 Initializing:
2 Calculating new data samples of multiple views as new input data by

averaging samples in the same cluster according to Rclosest;
3 for iters = |Rclosest| − |RK | do
4 Performing the CDI:
5 for i=1 to v do

6 Calculating distance matrix D
(i)
iters based on latest R using cosine

distance;

7 end

8 Getting essential distance matrix D∗iters = 1
v

∑v
i=1D

(i)
iters;

9 Merging two closest clusters:
10 Getting new clustering results by merging two closest clusters based on

D∗iters;

11 end

29

Chapter 4

Proposed Multi-View Hierarchical
Clustering Algorithm

4.1 Incorporating Optimal Transport into Hier-

archical Clustering with First-Nearest Neigh-

bors

In this section, we aim to incorporate Optimal Transport (OT) into the single-view
FINCH Algorithm [20]. The strategy is quite similar to that done in HC-OT [23]
while incorporating OT into the traditional hierarchical clustering framework.

4.1.1 Formulation

Our approach remains the same as that in FINCH; however the modification comes
in the step where the first nearest neighbor of each cluster is calculated. The idea
of FINCH is to use euclidean or cosine distance between each cluster in a stage and
use these distances to find the first nearest neighbor of each cluster. In addition,
for large datasets, fast approximation algorithms like k-d tree can be leveraged for
finding these first nearest neighbors much faster.

Our approach uses OT to calculate the distances between the clusters. Then
these OT distances are used to find the first nearest neighbors contrary to using
simple euclidean or cosine distance measures. Obviously in doing so, we give up the
ability to use k-d tree as in FINCH to approximate the nearest neighbors faster.
However, our focus is mainly to improve the clustering performance here.

Defining the distance between two clusters using OT

The natural question to ponder is how the distance between two given clusters can
be defined using OT. We follow the setup for the incorporation of OT suggested
by [23]. As discussed in Section 3.1.1, given two clusters C1 and C2, the Sinkhorn
distance between them, Sλ(C1, C2), for λ > 0, is defined as follows. Let us assume
that xi is the i-th data point of C1, i = 1, ..., |C1| and yj is the j-th data point
of C2, j = 1, ..., |C2|. Also, consider that µ and ν denote empirical distributions

of the data points in the clusters C1 and C2 respectively. Thus µ =
∑|C1|

i=1
1
|C1|δxi

30

4.1. INCORPORATING OPTIMAL TRANSPORT INTO HIERARCHICAL
CLUSTERING WITH FIRST-NEAREST NEIGHBORS

and ν =
∑|C2|

j=1
1
|C2|δyj . cij is the distance between xi and yj. Then we can say that

Sλ(C1, C2) = dλC(µ, ν), the Sinkhorn distance between µ and ν.
Also note that this approximation is only valid if |C1| and |C2| are large enough.

[23] follows that if both |C1| and |C2| > n/10, then they can successfully use Sinkhorn
distance, otherwise they revert to single/complete linkage to get the distance be-
tween the two clusters. We, on the other hand, have observed that other thresholds
such as n/15, n/20 or n/25 may lead to much better performance on certain datasets
for our algorithm and as a result it is worthwhile to treat this threshold as a hyper-
parameter. Hence, we follow the rule that if both |C1| and |C2| > n/t, where t can
be chosen from a pre-defined set of values, then Sinkhorn distance can be success-
fully applied for approximating the distance between the two clusters. Otherwise,
we use normal euclidean or cosine distance computed between the means of the two
corresponding clusters as a measure of distance between them.

4.1.2 The Proposed FINCH-OT Algorithm

Algorithm 7 depicts the FINCH-OT Algorithm for clustering single-view data, when
clustering of a specific given K number of clusters is not required. As can be seen,
lines other than 9− 10 are similar to that of FINCH. In lines 9− 10, OT has been
leveraged to compute the distance between the two clusters C1 and C2, if both |C1|
and |C2| > n/t. Otherwise dist(C1, C2) calculates the distance between C1 and C2

using either traditional euclidean or cosine distance. The algorithm outputs valid
partitions at different levels of granularity.

Algorithm 7: Proposed FINCH-OT Algorithm

Input : X ∈ Rn×d, λ, t: threshold
Output: Clustering results at multiple levels of granularity,

R = {R0, R1, ...} where each Ri can be treated as a valid
clustering of X

1 Calculate the distance matrix D0 from X using euclidean/cosine distance;
2 Using D0 find the first nearest neighbor of each sample;
3 Compute the nearest neighbor adjacency graph matrix G0 using Equation

(3.1);
4 R0 = the connected components in G0;
5 i = 1;
6 while |Ri−1| ≥ 2 do
7 Compute cluster means for each cluster in Ri−1;

8 Prepare new data matrix M ∈ R|Ri−1|×d containing only these mean
points as representatives for each cluster in Ri−1;

9 Calculate Di as follows:

10 di[C1, C2] =

{
Sλ(C1, C2), if |C1|, |C2| > n

t

dist(C1, C2), otherwise
;

11 Compute Gi from Di using Equation (3.1);
12 Ri = the connected components in Gi;
13 i = i+ 1;

14 end

31

4.2. EXTENSION TO MULTI-VIEW FRAMEWORK

Algorithm 8: Proposed FINCH-OT Algorithm for K clusters required

Input : X ∈ Rn×d; λ; t: threshold; K; Rclosest obtained from Algorithm 7
st |Rclosest| ≥ K, |Rclosest+1| < K

Output: Partitioning RK with |RK | = K number of clusters
1 iters = |Rclosest| − |RK |;
2 R′ = Rclosest;
3 while iters ≥ 1 do
4 Compute cluster means for each cluster in R′.

5 Prepare new data matrix M ∈ R|R′|×d containing only these mean points
as representatives for each cluster in R′;

6 Calculate D as follows:

7 d[C1, C2] =

{
Sλ(C1, C2), if |C1|, |C2| > n

t

dist(C1, C2), otherwise
;

8 Compute the nearest neighbor adjacency graph matrix G from D using
Equation (3.1);

9 Find dmin, the minimum distance between all cluster pairs (k, l) for
which G(k, l) = 1;

10 Keep the symmetric link in G for the cluster pair (a, b) corresponding to
dmin, and set the rest to zero;

11 Merge corresponding (a, b) clusters to get new R′;
12 iters = iters− 1;

13 end

As is the case with FINCH, our proposed FINCH-OT algorithm works if the
required number of clusters K is provided as well. First, Algorithm 7 is run and
the partition Rclosest which contains the nearest number of clusters greater than K
is passed to Algorithm 8. The idea is to merge only the two nearest clusters in each
step so that from |Rclosest| clusters we can come down to K clusters in |Rclosest| −K
iterations. Similar to Algorithm 7, Sinkhorn distance is used to discern the distance
between two clusters.

4.2 Extension to Multi-View Framework

Section 4.1 introduces the FINCH-OT Algorithm for single-view data. In this sec-
tion, we look to build a multi-view hierarchical clustering scheme which can be
looked upon as a multi-view extension of FINCH-OT.

4.2.1 Formulation

We build on the concepts introduced in MHC [4] which uses Cosine Distance In-
tegration (CDI) and Nearest Neighbor Agglomeration (NNA) to form valid cluster
partitions in levels of granularity as in FINCH-OT. Essentially, MHC only uses
cosine distance as a measure between two clusters. This is mainly due to the as-
sumption that if several views are represented by a Latent Representation H and
P (i) is an orthogonal matrix of the i-th view, then

X(i) = P (i)H,P (i)TP (i) = I (4.1)

32

4.2. EXTENSION TO MULTI-VIEW FRAMEWORK

Now using the formula of cosine distance, [4] shows that using Equation (4.1) we

will get d
(i)
ab = d∗ab theoretically, for two data samples a and b. Thus is practice,

giving equal weight to each view, the latent distance between these two samples can
be calculated as

d∗ab =
1

v

v∑
i=1

d
(i)
ab (4.2)

Hence, using cosine distances allows us to compute a latent distance for all views
between points or clusters by a simple average, while satisfying Equation (4.1).

Introducing Euclidean Distance Integration (EDI)

Experiments with FINCH-OT performed by us have suggested that euclidean dis-
tance may provide better results compared to cosine distance for some datasets. So
it should be advantageous to incorporate euclidean distance in the multi-view setup
as well.

Lemma 4.2.1. Just as cosine distance, euclidean distance too satisfies d
(i)
ab = d∗ab,

and as a result can be fit into the existing MHC framework.

Proof. Let d
(i)
ab be the distance between samples a and b in the i-th view, and d∗ab

be the distance between them in the latent representation. Also let ha and hb
represent samples a and b respectively in the latent representation. Now consider
the square of the euclidean distance between samples a and b represented as x

(i)
a and

x
(i)
b respectively in the i-th view.

d
(i)
ab

2
= ||x(i)

a − x
(i)
b ||

2
2

= ||P (i)ha − P (i)hb||22 [Using Equation (4.1)]

= (P (i)ha − P (i)hb)
T (P (i)ha − P (i)hb)

= {(P (i)ha)
T − (P (i)hb)

T}(P (i)ha − P (i)hb)

= (P (i)ha)
TP (i)ha − (P (i)ha)

TP (i)hb − (P (i)hb)
TP (i)ha + (P (i)hb)

TP (i)hb

= hTaP
(i)TP (i)ha − hTaP (i)TP (i)hb − hTb P (i)TP (i)ha + hTb P

(i)TP (i)hb

= hTa ha − hTa hb − hTb ha + hTb hb

= (ha − hb)T (ha − hb)
= ||ha − hb||22
= d∗ab

2

Since, distance cannot be negative, d
(i)
ab = d∗ab.

So, euclidean distance can be used as well in the MHC setting in place of cosine
distance if required. In that case, we can have an Euclidean Distance Integration
(EDI) step to replace the Cosine Distance Integration (CDI) step.

Incorporating Optimal Transport

Optimal Transport is used in a similar manner to that in FINCH-OT. The Co-
sine/Euclidean Distance Integration step now consists of using OT to calculate d

(i)
ab ,

33

4.2. EXTENSION TO MULTI-VIEW FRAMEWORK

the distances between cluster a and b in each view, if the corresponding clusters
satisfy the desired criteria of having enough data points. These distances of each
individual view is then averaged to come up with d∗ab, the latent distance matrix
between a and b using Equation (4.2).

4.2.2 The Proposed MVHC-OT Algorithm

We call the multi-view version of our algorithm as Multi-View Hierarchical Clus-
tering with Optimal Transport (MVHC-OT). Algorithm 9 depicts the MVHC-OT
Algorithm when no required number of clusters is explicitly mentioned. Here we
provide a brief outline of the Algorithm. Initially we start with each data sample
as individual clusters. Then we have the CDI or EDI step as required for the corre-
sponding dataset. Cosine or Euclidean distances are computed among data points
in each view. Following this, the essential distance matrix D∗0 is computed by av-
eraging the distance matrices of all the views using Eqaution (4.2). We then move
on to the NNA step, where the first nearest adjacency graph G0 is computed from
D∗0 using Equation (3.6). Connected components of G0 provide the clustering result
at the first level R0. We now have the clusters in the latent representation. These
partitions are then transferred to the individual views.

The idea after this is to perform CDI/EDI and NNA recursively until all data
points belong to the same cluster. However, the distances in each view are now
calculated using OT. To be more specific, we check if the required conditions for
applying OT as a distance measure between two clusters are satisfied or not. If so,
we apply Sinkhorn distance to calculate the inter-cluster distance. Else, we calcu-
late the distance between their means using traditional cosine/euclidean distance as
suggested in MHC.

One thing to note is that we do not use OT in the first CDI/EDI step. To
be more general, one can keep the same conditions for applying OT in this step
too. However, observe that in this step each cluster is actually one data point, ie.
|Cj| = 1 ∀j = 1, ..., n. Thus according to the conditions for applying OT, we must
have n/t < 1 if we are to apply OT. As we will see in Chapter 6, t is chosen from
the set {10, 15, 20, 25}. Hence, if n = 25 or lower, then only this condition may be
satisfied, which is unlikely in most cases. Also, it can be very intuitively understood
that with only one data point directly computing euclidean or cosine distance serves
the purpose.

In case a partitioning with exactly K clusters are required, at first, Algorithm
9 is run and the partition Rclosest which contains the nearest number of clusters
greater than K is passed to Algorithm 10. The idea is to merge only the nearest
clusters in each step so that from |Rclosest| clusters we can come down to K clusters
in |Rclosest| − K iterations. Like before, distances are once again calculated using
OT only if the required conditions are satisfied.

34

4.2. EXTENSION TO MULTI-VIEW FRAMEWORK

Algorithm 9: Proposed MVHC-OT Algorithm

Input : {X(i)}vi=1: data matrices for v views, λ
Output: Clustering results at multiple levels of granularity,

R = {R0, R1, ...}
1 Perform CDI/EDI:
2 for i=1 to v do

3 calculate D
(i)
0 from X(i) using suitable distance measure;

4 end
5 Calculate latent distance matrix D∗0 using Equation (4.2);
6 Perform NNA:
7 Calculate first nearest neighbor graph G0 based on D∗0 using Equation (3.6);
8 R0 = the connected components of G0;
9 Transfer clustering results to each view;

10 k = 1;
11 Perform CDI/EDI and NNA recursively:
12 while |Rk−1| ≥ 2 do
13 for i=1 to v do

14 calculate D
(i)
k as follows:

d
(i)
k [C1, C2] =

{
Sλ(C1, C2), if |C1|, |C2| > n

t

dist(mean of C1,mean of C2), otherwise
;

15 end
16 Get D∗k using Equation (4.2);
17 Form Gk based on D∗k using Equation (3.6);
18 Rk = the connected components of Gk;
19 Transfer clustering results to each view;
20 k = k + 1;

21 end

35

4.2. EXTENSION TO MULTI-VIEW FRAMEWORK

Algorithm 10: Proposed MVHC-OT Algorithm for K clusters required

Input : {X(i)}vi=1; λ; t: threshold; K; Rclosest obtained from Algorithm 9
st |Rclosest| ≥ K, |Rclosest+1| < K

Output: Partitioning RK with |RK | = K number of clusters
1 iters = |Rclosest| − |RK |;
2 R′ = Rclosest;
3 while iters ≥ 1 do
4 for i=1 to v do
5 calculate D(i) as follows:

d(i)[C1, C2] =

{
Sλ(C1, C2), if |C1|, |C2| > n

t

dist(mean of C1,mean of C2), otherwise
;

6 end
7 Get latent distance matrix D∗;
8 Form first nearest neighbor graph G based on D∗;
9 Find dmin, the minimum distance between all cluster pairs (k, l) for

which G(k, l) = 1;
10 Keep the symmetric link in G for the cluster pair (a, b) corresponding to

dmin, and set the rest to zero;
11 Merge corresponding (a, b) clusters to get new R′;
12 iters = iters− 1;

13 end

FINCH-OT as a Special Case of MVHC-OT

If we carefully observe Algorithms 7 and 8 for FINCH-OT and Algorithms 9 and
10 for MVHC-OT, we can see that FINCH-OT, in reality, is just a special case
of MVHC-OT for single-view data. This is because in MVHC-OT, the distance
matrices of each view are simply averaged to calculate the latent distance matrix.
In case of only one view (as in the case of FINCH-OT), the distance matrix of the
only view will be same as the latent distance matrix. Hence, MVHC-OT suffices for
single-view data as well.

36

Chapter 5

Performance Analysis of Proposed
MVHC-OT Algorithm

5.1 Complexity Analysis

The time complexity of MVHC-OT is understandably going to be higher than that
of MHC due to the incorporation of OT during the computation of the distances
between two clusters which takes O(mn) time when the two clusters have m and n
points respectively. Here we analyse in detail the time complexity of our MVHC-OT
Algorithm.

The building of the initial distance matrices for v views takes O(vn2) time. This
initial distance matrix may be considered as pre-computed as well, as is done in many
previous works. Note that since every data point is a cluster in its own here, that
is, every cluster has only one data point, the distances can never be computed using
OT in a practical scenario. Then, the computation of the latent distance matrix
D∗0 takes O(vn2). Now, finding the closest neighbor of each point and computing
the nearest neighbor adjacency matrix from the nearest neighbor graph takes O(n2)
time. From this matrix, the clusters for the next stage can be derived by finding the
connected components in O(n) time. Say, we find l1 connected components (l1 has
no direct relationship with n, other than the fact that l1 << n). Hence, iteration 1
takes O(n2) time in total.

In the next iteration, the representative point for each cluster of iteration 1
is computed by averaging all the points in the corresponding cluster which takes
O(vn) in total. Now, during the computation of D1, the distance matrix for view
1, distances may be computed using OT if the corresponding clusters satisfy the
required criteria. So, in the worst case, for each of the l21 positions of the matrix D1

we may need to compute distances using OT. This, for v views, requires O(vl21n
2)

time in total. Then, the computation of the latent distance matrix D∗1 takes O(vl21).
Now, finding the closest neighbor of each point and computing the nearest neighbor
adjacency matrix from the nearest neighbor graph takes O(l21) time. From this
matrix, the clusters for the next stage can be derived by finding the connected
components in O(l1) time. Say, we find l2 connected components (l2 has no direct
relationship with n or l1, other than the fact that l2 << l1 << n). Hence, iteration
2 takes O(n2) time with respect to n in total as well. Similarly, the next stages
of the MVHC-OT algorithm takes O(n2) time as well due to the distance matrix
calculation step which uses OT (which takes O(n2)) when certain conditions are

37

5.2. EXPERIMENTAL EVALUATIONS

satisfied.
Note that we have only a limited number of iterations, say k. So, overall our

proposed MVHC-OT algorithm (Algorithm 9) costs O(kn2) time or O(n2) time in
n.

The above analysis holds for the case when the algorithm is not asked to output
partitions with a specific number of clusters. In case it is asked to do so, we need
to use Algorithm 10. Algorithm 10 essentially runs Algorithm 9 first, which takes
O(n2) as we have derived earlier. Then starting from the closest partitioning level
larger than the required number of clusters, it merges only two clusters at a time
using OT distances when conditions are satisfied. So suppose we start at partitioning
with number of clusters la and need to reach number of clusters K. So we will have
la−K iterations and each will take O(n2) in the worst case. Now unless, la = n, the
number of data samples, we will still end up with a worst case total time complexity
of O(n2). If la = n, we shall get a total time complexity of O(n3). However, as
we shall see in Section 6.2, in none of our experiments for single-view or multi-view
data, have we faced a scenario where la = n.

5.2 Experimental Evaluations

In this section, the performance evaluation of our MVHC-OT Algorithm on both
Single-View and Multi-View datasets has been performed. Our algorithm has been
implemented in Python 3.7 and the results obtained have been performed on a
Windows machine with a 4-core 2.30 GHz processor and 8 GB RAM.

5.2.1 Datasets

Single-View Data

8 real-world single-view datasets have been used for evaluating and comparing our
proposed MVHC-OT technique with state-of-the-art algorithms. These datasets are
as follows: Leukemia [43], Iris, Glass, Wine, Zoo, Seeds, Brain [44] and SRBCT
[45]. Iris, Glass, Wine, Zoo and Seeds datasets have been collected from the Keel
[46] and UCI machine learning [47] repositories. Influential Feature PCA (IF-HCT-
PCA) [48] is used for pre-processing the Brain and SRBCT datasets. A general
description of these datasets have been provided in Table 5.1.

Multi-View Data

In the multi-view scenario, for the purpose of evaluation and comparison with state-
of-the-art algorithms, we use 5 multi-view datasets: Caltech101 [49], UCI [50], Foot-
ball [51], Olympics [51], Politicsie [51] and 100 Leaves [52]. A general description of
these datasets have been provided in Table 5.2.

5.2.2 Compared Algorithms

For Single-View Data

In our study, we compare the performance of our MVHC-OT approach with sev-
eral existing state-of-the-art single-view hierarchical clustering algorithms like Single

38

5.2. EXPERIMENTAL EVALUATIONS

Dataset Samples Features K

Leukemia 72 3571 2

Iris 150 4 3

Glass 214 9 6

Wine 178 13 3

Zoo 101 16 7

Brain 42 5597 5

SRBCT 63 2308 4

Seeds 210 7 3

Table 5.1: Description of real-world single-view datatsets

Dataset Samples Views Number of features in each view K

Caltech101 9144 6 {48, 40, 254, 512, 928, 1984} 102

UCI 2000 3 {240, 76, 6} 10

Football 248 9 {248, 248, 3601, 7814, 248, 248, 248, 248, 11806} 20

Olympics 464 9 {464, 464, 3097, 4942, 464, 464, 464, 464, 18455} 28

Politicsie 348 9 {348, 348, 1051, 1047, 348, 348, 348, 348, 14377} 7

100Leaves 1600 3 {64, 64, 64} 100

Table 5.2: Description of real-world multi-view datatsets

Linkage [53][54], Complete Linkage [55], UPGMA or Average Linkage (Unweighted
Pair Group Method with Arithmetic Mean) [56], WPGMA (Weighted Pair Group
Method with Arithmetic Mean) [57], UPGMC (Unweighted Pair Group Method with
Arithmetic Centroid) [58], WPGMC (Weighted Pair Group Method with Centroid)
[58], SPHC (with average linkage) [19], FINCH (First Integer Neighbor indices to
produce a Cluster Hierarchy) [20] and HC-OT (Hierarchical Clustering with Opti-
mal Transport) [23]. Results for FINCH are obtained by running the code made
available publicly by the authors. For the rest of the algorithms, results are taken
from the very recently published [23]. Note that among the above mentioned al-
gorithms only FINCH can give a final clustering result even without knowing the
actual number of clusters in the input dataset.

For Multi-View Data

For the multi-view realm, we evaluate and compare the performance of our MVHC-
OT Algorithm with several state-of-the-art multi-view clustering algorithms such
as k-means, Low Rank Representation (LRR) [59], Auto-weighted Multiple Graph
Learning (AMGL) [10], Latent Multi-View Subspace Clustering (LMSC) [3], Binary
Multi-View Clustering (BMVC) [11], Graph-based Multi-View Clustering (GMC)
[9], Multi-view Clustering without Parameter Selection (COMIC) [12], Large Scale
Multi-View Subspace Clustering in Linear Time (LMVSC) [7] and Multi-View Hi-
erarchical Clustering (MHC) [4]. For MHC we reproduce the code following the

39

5.2. EXPERIMENTAL EVALUATIONS

algorithm in [4]. Codes provided by the authors are used with optimal parame-
ter settings to obtain results for BMVC, GMC, COMIC and LMVSC. In case of
k-means, the function available in scikit-learn [60] is used. For the remaining algo-
rithms, we take the results as reported by [4]. Among the aforementioned algorithms,
only MHC possesses the capability of providing multiple valid partitions in levels of
granularity even when no specific K is mentioned as input.

5.2.3 Evaluation Metrics

For Single-View Data

For single-view datasets we use the Normalized Mutual Information (NMI) score to
evaluate the performance of our proposed algorithm and to compare it with other
state-of-the-art algortihms.

For Multi-View Data

For multi-view datasets we use the Normalized Mutual Information (NMI) score
and Accuracy as means to compare the performance of our proposed algorithm with
state-of-the-art multi-view clustering algortihms.

5.2.4 Parameter Settings

The MVHC-OT algorithm has three parameters: the distance measure (euclidean/
cosine) to be used in the cost matrix of OT; λ, the regularization term for OT and
the threshold t, such that the distance between two clusters can be computed by
Sinkhorn distance if both contain more than n/t data samples.

Our experimental observations show that for almost all the datasets (both single
and multi-view), the value of λ can actually be set to anything from say 1.0 to
1000.0 without really changing the results. However for a couple of datasets, solving
the entropic regularized form of OT (Equation 2.4) throws an error while using the
POT: Python OT package [61] with λ = 1.0. So sticking to λ = 1000.0 serves our
purpose for all the datasets as other valid values of λ do not effect the performance.
Hence effectively, our true number of parameters becomes two instead of three.

Next, for setting t, we run our algorithm for each value from the set {10, 15, 20, 25}
and select the one which gives best performance. Similarly for the distance measure,
either euclidean or cosine is chosen. To be more specific, t and the distance measure
may be chosen by grid search method.

For Single-View Data

For the case when the required number of clusters is not pre-specified, the
hyperparameter settings under which we get the results obtained for MVHC-OT
(Table 5.3) are as follows (λ as mentioned earlier is always set to 1000.0). Euclidean
distance is used in case of Glass, Zoo, SRBCT and Seeds datasets, while cosine
distance is used for the rest. t = 10 is used for Wine, Zoo and Brain datasets. t = 15
is used for Iris,Glass and Seeds, while t = 25 is used for Leukemia and SRBCT. Note
that it may be the case that other valid values of t or distance measure may also
give equally good performance for a dataset. The values mentioned here are simply
the ones that give the best performance and were chosen first during grid search.

40

5.2. EXPERIMENTAL EVALUATIONS

In contrast, when the required number of clusters is pre-specified, we
get the results obtained for MVHC-OT (Table 5.5) under the following parameter
settings. Euclidean distance is used in case of Zoo, SRBCT and Seeds datasets,
while Cosine distance is used for the rest. t = 10 is used for Wine, Zoo, Brain and
Seeds datasets. t = 15 is used for Iris and Leukemia, while t = 20 is used for Glass,
and t = 25 for SRBCT.

For Multi-View Data

When the required number of clusters is not pre-specified, the hyperpa-
rameter settings under which we get the results obtained for MVHC-OT (Table 5.4)
are as follows. Euclidean Distance is used for UCI and 100Leaves datasets. Cosine
distance is used for the rest. Caltech101, UCI, 100Leaves, Olympics and Politicsie
datasets all use t = 10. t = 20 is used for Football dataset.

On the contrary, when the required number of clusters is pre-specified, we
get the results obtained for MVHC-OT (Table 5.6 and Table 5.7) under the following
parameter settings. Euclidean distance is used for only the 100Leaves dataset. For
all the other datasets cosine distance is used. t is set to 10 for Caltech101, Politicsie
and 100Leaves datasets. For UCI and Olympics t is chosen to be equal to 15 and
20 respectively. Football dataset on the other hand uses t = 25.

5.2.5 Performance when Pre-specified K number of clusters
not required

For Single-View Datasets

Apart from our MVHC-OT algorithm, only FINCH has the capability of providing
clustering results when K is not provided beforehand among our compared algo-
rithms. Table 5.3 shows the comparative results between the two algorithms on
the 8 real-world datasets mentioned previously. Underlined partitioning levels mean
that one of the levels correctly identifies the exact number of clusters.

The Table shows the number of clusters identified at each level of clustering
by the two algorithms. As we can see it takes just about 2-4 steps for both the
algorithms to find the clusterings. This is primarily because the number of clusters
in the first level is way less than the number of samples in all the datasets. And
in each further level it keeps reducing at a rapid rate. In addition, MVHC-OT
accurately finds the actual required number of clusters in one of its levels for four
out of the eight datasets, while FINCH does so in only one.

The NMI index is computed by using the clustering at the level where the number
of clusters is closest to the actual number of clusters K. We can see that the
addition of OT to compute the distances in MVHC-OT definitely gives a boost in
the performance as for all the 8 datasets MVHC-OT performs either as good as, or
better than FINCH.

For Multi-View Datasets

In this Section we take a look at the multi-view scenario, which successfully outputs
a set of partitions in levels of granularity just like its single-view counterpart. Each
of these partitions can be intuitively thought as a valid clustering. In fact, Table

41

5.2. EXPERIMENTAL EVALUATIONS

Dataset Actual K MVHC-OT FINCH

NMI Closest Level Levels NMI Closest Level Levels

Leukemia 2 0.774 2 {17, 2} 0.177 3 {17, 3, 1}
Iris 3 0.8705 3 {38, 12, 3, 1} 0.8705 3 {38, 12, 3, 1}

Glass 6 0.345 4 {52, 13, 4, 1} 0.321 4 {52, 13, 4, 1}
Wine 3 0.449 3 {47, 12, 3, 1} 0.381 4 {54, 14, 4, 1}
Zoo 7 0.788 5 {25, 5, 1} 0.788 5 {25, 5, 1}

Brain 5 0.624 8 {8, 2} 0.624 8 {8, 2}
SRBCT 4 0.646 4 {14, 4, 1} 0.598 5 {14, 5, 1}
Seeds 3 0.593 3 {62, 13, 3, 1} 0.542 4 {62, 13, 4, 1}

Table 5.3: Comparative results between MVHC-OT and MVHC on real-world single-
view datasets when K is not known.

5.4 shows that the closest number of clusters in a partition found by MVHC-OT is
indeed very close to K, the true number of clusters.

In case of multi-view data, apart from MVHC-OT only MHC is known to produce
similar partitions in levels of granularity even if the actual number of clusters in the
data is not provided explicitly. Table 5.4 compares the partition levels obtained by
MVHC-OT and MHC, and also depicts the performances in terms of NMI index
for the partition containing the closest number of clusters to K. We can see that
MVHC-OT performs better or at least as good as MHC on all the datasets.

Dataset Actual K MVHC-OT MHC

NMI Closest Level Levels NMI Closest Level Levels

Caltech101 102 0.448 132 {1288, 132, 19, 7, 2} 0.444 133 {1173, 133, 18, 5, 1}
UCI 10 0.903 8 {413, 80, 19, 8, 3, 1} 0.824 9 {396, 77, 23, 9, 4, 1}

Football 20 0.824 16 {44, 16, 3, 1} 0.821 16 {44, 16, 3, 1}
Olympics 28 0.905 25 {86, 25, 5, 1} 0.905 25 {86, 25, 5, 1}
Politicsie 7 0.773 6 {49, 6, 2} 0.773 6 {49, 6, 1}

100 Leaves 100 0.977 106 {371, 106, 26, 4, 1} 0.956 115 {384, 115, 27, 6, 1}

Table 5.4: Comparative results between MVHC-OT and MHC on real-world multi-
view datasets when K is not known

5.2.6 Performance when Pre-specified K number of clusters
required

For Single-View Datasets

Table 5.5 shows the comparative results between MVHC-OT and the state-of-the-
art hierarchical methods in terms of the NMI index on the 8 real-world datasets
mentioned previously when a particular K number of clusters are required. As
can be observed, MVHC-OT gives best performance on 5 of the 8 datasets, and is
evidently much more consistent than the rest of the algorithms.

Specifically we would like to make a note of the performance of MVHC-OT for
high dimensional datasets. A dataset is called high dimensional when the number
of features exceeds the number of samples. Referring back to Table 5.1 we can see
that according to our definition, Leukemia, Brain and SRBCT are high dimensional
datasets. Observe the performances of MVHC-OT and FINCH for these datasets

42

5.2. EXPERIMENTAL EVALUATIONS

Method Leukemia Iris Glass Wine Zoo Brain SRBCT Seeds

MVHC-OT 0.903 0.8705 0.416 0.449 0.784 0.694 0.646 0.593

FINCH 0.124 0.8705 0.379 0.449 0.788 0.587 0.540 0.593

HC-OT 0.9023 0.8705 0.2737 0.5725 0.8637 0.4997 0.4367 0.701

Single 0.0171 0.7175 0.0882 0.0348 0.6594 0.1972 0.1039 0.0198

Complete 0.6511 0.7221 0.1556 0.6143 0.8429 0.4158 0.3683 0.701

UPGMA 0.0034 0.8057 0.1126 0.01844 0.7512 0.3777 0.4184 0.6491

WPGMA 0.3817 0.7979 0.1024 0.5582 0.7781 0.3531 0.4184 0.5373

WPGMC 0.0171 0.7777 0.0724 0.0168 0.1843 0.3197 0.1007 0.4019

UPGMC 0.0411 0.7175 0.0833 0.018 0.1805 0.2299 0.1039 0.5764

SPHC 0.7740 0.7593 0.3910 0.4315 0.6134 0.4602 0.1282 0.6199

Table 5.5: Performance comparison in terms of NMI index of MVHC-OT with state-
of-the-art hierarchical clustering algorithms on real-world single-view datatsets when
K is known

in Table 5.5. Note that MVHC-OT for a single-view dataset is essentially just the
incorporation of OT into FINCH. As suggested by Table 5.5, simply incorporating
OT improves the performance by a large margin in case of all the three aforemen-
tioned datasets. While for the remaining datasets, we can see that performance
either improves slightly or remains the same. The poor performance of FINCH may
be attributed to the curse of dimensionality phenomenon [62] often observed in high
dimensional datasets. The massive improvement in performance for MVHC-OT is
suggestive that OT is more resistant to the effects of curse of dimensionality. If
indeed so, OT may be highly effective in certain other applications which operate
on high dimensional data.

For Multi-View Datasets

Table 5.6 shows the comparative analysis of MVHC-OT with the state-of-the-art
multi-view clustering techniques with respect to the NMI index. The values in bold
denote the best performance for a particular dataset, while the underlined values
denote the second best performance for that particular dataset. We can clearly see
that in case of majority of the datasets, MVHC-OT consistently gives either the
best or second-best performance.

The performance comparison in terms of Accuracy is shown in Table 5.7. It can
be observed that for all the datasets MVHC-OT consistently performs either the
best or second-best.

Once again like in case of single-view datasets, we would like to specifically inves-
tigate the performance of MVHC-OT on high-dimensional datasets. We have seen
that for single-view datasets, incorporation of OT massively boosts performance.
Does the same hold true for multi-view datasets as well? According to Table 5.2,
Foootball, Olympics and Politicsie datasets can be considered to be high dimen-
sional as they have at least one view in which the number of features exceeds the
number of samples. Now let us compare the performances of MHC and our MVHC-

43

5.2. EXPERIMENTAL EVALUATIONS

OT algorithm (which is essentially MHC with the incorporation of OT and EDI for
some datasets) for these datasets from Table 5.6 and Table 5.7. For both NMI and
Accuracy we do see an improvement in performance in all the cases, especially for
the Politicsie dataset. However, here the effect of OT for specifically high dimen-
sional datasets is not as conclusive as in the single-view case. This is because even
for non-high dimensional datasets, MVHC-OT is often seen to give a similar large
improvement in performance as well.

Method Caltech101 UCI Football Olympics Politicsie 100 Leaves

MVHC-OT 0.449 0.933 0.875 0.933 0.741 0.981

MHC (’20) 0.449 0.894 0.862 0.891 0.332 0.949

LMVSC (AAAI ’20) 0.263 0.712 0.681 0.705 0.474 0.785

COMIC (ICML ’19) 0.288 0.892 0.797 0.832 0.720 0.700

GMC (TKDE ’19) 0.345 0.812 0.879 0.875 0.753 0.929

BMVC (TPAMI ’18) 0.505 0.796 0.749 0.807 0.636 0.909

LMSC (CVPR ’17) 0.485 0.782 0.84 0.891 0.684 0.877

AMGL (IJCAI ’16) 0.391 0.798 0.802 0.810 0.764 0.890

LRR (TPAMI ’13) 0.495 0.768 0.85 0.867 0.779 0.736

k-means 0.495 0.75 0.567 0.475 0.519 0.838

Table 5.6: Performance comparison in terms of NMI index of MVHC-OT with state-
of-the-art multi-view clustering algorithms on real-world multi-view datatsets

Method Caltech101 UCI Football Olympics Politicsie 100 Leaves

MVHC-OT 0.286 0.969 0.859 0.869 0.836 0.94

MHC (’20) 0.286 0.83 0.806 0.791 0.491 0.828

LMVSC (AAAI ’20) 0.112 0.714 0.657 0.631 0.569 0.561

COMIC (ICML ’19) 0.111 0.940 0.772 0.759 0.713 0.407

GMC (TKDE ’19) 0.195 0.733 0.883 0.819 0.856 0.824

BMVC (TPAMI ’18) 0.288 0.783 0.685 0.724 0.721 0.776

LMSC (CVPR ’17) 0.251 0.859 0.795 0.804 0.690 0.748

AMGL (IJCAI ’16) 0.238 0.764 0.744 0.689 0.816 0.727

LRR (TPAMI ’13) 0.241 0.871 0.834 0.780 0.681 0.462

k-means 0.232 0.762 0.464 0.38 0.598 0.641

Table 5.7: Performance comparison in terms of Accuracy of MVHC-OT with state-
of-the-art multi-view clustering algorithms on real-world multi-view datatsets

44

5.2. EXPERIMENTAL EVALUATIONS

5.2.7 Sensitivity Analysis

We effectively use two parameters in our model: the threshold t and the distance
measure euclidean or cosine. Hence it is interesting to investigate how the per-
formance of MVHC-OT varies as we tweak these two parameters. We provide a
detailed Sensitivity Analysis in this Section. Note that t can take values from the
set {10, 15, 20, 25}.

For Single-View Datasets

Figure 5.1 shows the sensitivity analysis of NMI with respect to threshold t and
distance measure (euclidean/cosine) for the single-view datasets used in our exper-
iment. We also consider the NMI index value for FINCH with euclidean and cosine
distances as baselines in the plots.

First, let us try to analyse in terms of the distance measure. The plots suggest
that in a lot of the cases euclidean distance does actually give better performance
than cosine distance. And both the distance measures give similar results in a couple
of the datasets (Leukemia, Brain). Exploiting these cases is the major reason to treat
the distance measure as a parameter in our model.

Probably the most significant parameter of our model is the threshold t. Stability
of the performance with change in the parameter is a very important thing in any
machine learning model; we never want our outputs to vary too much with the
parameters, especially without any trend. If we take a look at the plots obtained,
in quite a lot of the cases, both for euclidean and cosine distances, we find that
for all the values of t, the NMI index remains constant. In the other cases, we
see that for smaller values of t the NMI value is on the lower side (close to the
baseline case of FINCH with the corresponding distance measure). And then as t is
increased we reach the optimal performance along with some fluctuations in some
cases (Leukemia, SRBCT).

However, the most important thing to note is that whatever be the value of t, the
performance almost always stays same as or better than the corresponding FINCH
baselines with the same distance measures. Only in case of SRBCT the NMI value
drops well below the baselines for a while before improving.

Another point to observe is that at least for the datasets we have experimented
on, choosing t from a smaller set of {15, 25} would still give us same best perfor-
mances.

For Multi-View Datasets

Figure 5.2 and Figure 5.3 show the sensitivity analysis of NMI and Accuracy re-
spectively with respect to threshold t and distance measure (euclidean/cosine) for
the multi-view datasets used in our experiment. The performance for MHC is also
plotted as a baseline.

As far as the distance measure is concerned, we observe that unlike the case
for single-view datasets, euclidean distance does not provide much improvement
in performances. Only for the 100Leaves dataset, euclidean distance gives better
performance than cosine. This however motivates us to still incorporate the distance
measure as a parameter in our model as it may be beneficial for some other datasets
which we have not used in our experiments.

45

5.2. EXPERIMENTAL EVALUATIONS

With respect to different values of t, similar to the case for single-view datasets,
MVHC-OT shows good stability in performance for both NMI and Accuracy in the
multi-case scenario as well. In fact, for the datasets we have experimented on, the
plots suggest much less fluctuations and variations.

Note that our baseline MHC uses only cosine distance. Compared to this base-
line, MVHC-OT with cosine distance almost always performs better or equally well
for all values of t.

Similar to the single-view case, we can again use a different smaller set of values
{10, 20, 25} for t which would still enable us to get similar best performance. So
a possible modification for the parameter selection step may be to use these two
different sets for single and multi-view datasets separately to reduce the number of
parameters to select from. However, our experiments are not conclusive that for
other datasets the omitted values of t will not give optimal performance. Hence, we
suggest to use the entire set of values during grid search for both the single-view
and multi-view cases.

46

5.2. EXPERIMENTAL EVALUATIONS

(a) Leukemia (b) Iris

(c) Glass (d) Wine

(e) Zoo (f) Brain

(g) SRBCT (h) Seeds

Figure 5.1: Plots illustrating sensitivity analysis for change in NMI with different
values of threshold t and distance measure (euclidean/cosine) for single-view datasets
when K is given

47

5.2. EXPERIMENTAL EVALUATIONS

(a) Caltech101 (b) UCI

(c) Football (d) Olympics

(e) Politicsie (f) 100Leaves

Figure 5.2: Plots illustrating sensitivity analysis for change in NMI with different
values of threshold t and distance measure (euclidean/cosine) for multi-view datasets
when K is given

48

5.2. EXPERIMENTAL EVALUATIONS

(a) Caltech101 (b) UCI

(c) Football (d) Olympics

(e) Politicsie (f) 100Leaves

Figure 5.3: Plots illustrating sensitivity analysis for change in Accuracy with dif-
ferent values of threshold t and distance measure (euclidean/cosine) for multi-view
datasets when K is given

49

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work we have developed a Multi-View Agglomerative Hierarchical Clustering
technique called MVHC-OT using the concept of Optimal Transport (OT) which has
been very recently used for the first time in the realm of hierarchical clustering by [23]
for taking into consideration the entire distribution of the data, but in single-view
domain. Also, incorporation of OT into naive agglomerative hierarchical clustering
leads to very high time complexity.

First, we have incorporated OT into the single-view FINCH algorithm [20] called
FINCH-OT, which merges multiple clusters in each iteration and as a result leads to
very few iterations even for large datasets. This leads to a comparatively low time
complexity even with the incorporation of OT. Then as an extension to FINCH-OT,
we have leveraged OT in the multi-view hierarchical clustering framework proposed
by [4]. Subsequently we have shown that our proposed multi-view clustering tech-
nique, MVHC-OT is a generalized version of the single-view FINCH-OT algorithm
derived by us for single-view domain.

Elaborate experiments have also been performed on both real-life single-view and
multi-view datasets which show that our proposed MVHC-OT algorithm outper-
forms or performs almost equally well when compared against other state-of-the-art
algorithms on most of the datasets. In addition, unlike many existing multi-view
clustering algorithms, our method is able to output a partitioning even when the
required number of clusters for a dataset is not pre-specified. Experiments have
shown that the number of clusters predicted by our algorithm is not too far off from
the actual number of clusters in the provided dataset.

6.2 Scope for Future Work

In spite of showing promising performance on the real-life datasets we have ex-
perimented on, our proposed MVHC-OT Algorithm does suffer from shortcomings
with respect to hyperparameter selection. MVHC-OT has three hyperparameters,
the regularization constant (λ), the fraction of data samples to be considered as a
threshold for deciding whether to use OT or traditional means for deciding inter-
cluster distances (given by t, such that the fraction of samples is equal to n/t, where
n = number of data samples) and the distance measure (cosine or euclidean) to
be used in the cost matrix for OT. Among these three hyperparameters, we have

50

6.2. SCOPE FOR FUTURE WORK

already mentioned in Section 5.2.4 that λ can be fixed to a particular value without
change in performance, and hence may be ignored as a potential hyperparameter
which needs to be tuned. But as far as the other two hyperparameters are con-
cerned, future works devoted to choosing particular parameter values depending on
some properties of the given dataset without actually going through the process of
performing the algorithm on all the possible parameter values and then choosing
the ones giving best performance can be interesting.

Also note that our proposed algorithm is an agglomerative hierarchical clus-
tering approach. Other hierarchical clustering techniques for multi-view domain
present in literature are also agglomerative in nature. To the best of our knowl-
edge, Divisive/Top-down Hierarchical Clustering techniques have not been explored
at all in the multi-view realm. This leads us to another possible direction of work in
multi-view hierarchical clustering. Also, can OT be used as a metric to define which
clusters to divide in case of divisive hierarchical clustering like we have previously
seen for the agglomerative case for merging two clusters? Such questions are worth
answering and may well be investigated in future works.

Furthermore, as mentioned in Section 5.2.6, OT seems to be resistant to the
curse of dimensionality problem to some extent. Further studies may be performed
to investigate this observation.

51

Bibliography

[1] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv preprint
arXiv:1304.5634, 2013.

[2] Y. Yang and H. Wang, “Multi-view clustering: A survey,” Big Data Mining
and Analytics, vol. 1, no. 2, pp. 83–107, 2018.

[3] C. Zhang, Q. Hu, H. Fu, P. Zhu, and X. Cao, “Latent multi-view subspace
clustering,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4279–4287, 2017.

[4] Q. Zheng, J. Zhu, and S. Ma, “Multi-view hierarchical clustering,” arXiv
preprint arXiv:2010.07573, 2020.

[5] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

[6] H. Gao, F. Nie, X. Li, and H. Huang, “Multi-view subspace clustering,” in
Proceedings of the IEEE international conference on computer vision, pp. 4238–
4246, 2015.

[7] Z. Kang, W. Zhou, Z. Zhao, J. Shao, M. Han, and Z. Xu, “Large-scale multi-
view subspace clustering in linear time,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 4412–4419, 2020.

[8] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral clustering via
low-rank and sparse decomposition,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 28, 2014.

[9] H. Wang, Y. Yang, and B. Liu, “Gmc: Graph-based multi-view cluster-
ing,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6,
pp. 1116–1129, 2019.

[10] F. Nie, J. Li, X. Li, et al., “Parameter-free auto-weighted multiple graph learn-
ing: a framework for multiview clustering and semi-supervised classification.,”
in IJCAI, pp. 1881–1887, 2016.

[11] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-view cluster-
ing,” IEEE transactions on pattern analysis and machine intelligence, vol. 41,
no. 7, pp. 1774–1782, 2018.

[12] X. Peng, Z. Huang, J. Lv, H. Zhu, and J. T. Zhou, “Comic: Multi-view clus-
tering without parameter selection,” in International Conference on Machine
Learning, pp. 5092–5101, PMLR, 2019.

52

BIBLIOGRAPHY

[13] W. Zhang, X. Wang, D. Zhao, and X. Tang, “Graph degree linkage: Agglom-
erative clustering on a directed graph,” in European Conference on Computer
Vision, pp. 428–441, Springer, 2012.

[14] W. Zhang, D. Zhao, and X. Wang, “Agglomerative clustering via maximum
incremental path integral,” Pattern Recognition, vol. 46, no. 11, pp. 3056–3065,
2013.

[15] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv
preprint arXiv:1109.2378, 2011.

[16] D. Zhao and X. Tang, “Cyclizing clusters via zeta function of a graph,” Ad-
vances in Neural Information Processing Systems, vol. 21, pp. 1953–1960, 2008.

[17] A. Fernández and S. Gómez, “Solving non-uniqueness in agglomerative hier-
archical clustering using multidendrograms,” Journal of Classification, vol. 25,
no. 1, pp. 43–65, 2008.

[18] J. Yang, E. Grunsky, and Q. Cheng, “A novel hierarchical clustering analy-
sis method based on kullback–leibler divergence and application on dalaimiao
geochemical exploration data,” Computers & Geosciences, vol. 123, pp. 10–19,
2019.

[19] D. M. Witten and R. Tibshirani, “A framework for feature selection in cluster-
ing,” Journal of the American Statistical Association, vol. 105, no. 490, pp. 713–
726, 2010.

[20] S. Sarfraz, V. Sharma, and R. Stiefelhagen, “Efficient parameter-free clustering
using first neighbor relations,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8934–8943, 2019.

[21] H. Mirzaei, “A novel multi-view agglomerative clustering algorithm based on
ensemble of partitions on different views,” in 2010 20th International Confer-
ence on Pattern Recognition, pp. 1007–1010, IEEE, 2010.

[22] C. Villani, Optimal transport: old and new, vol. 338. Springer, 2009.

[23] S. Chakraborty, D. Paul, and S. Das, “Hierarchical clustering with optimal
transport,” Statistics & Probability Letters, vol. 163, p. 108781, 2020.

[24] S. Bickel and T. Scheffer, “Multi-view clustering.,” in ICDM, vol. 4, pp. 19–26,
Citeseer, 2004.

[25] S. Sun, “A survey of multi-view machine learning,” Neural computing and ap-
plications, vol. 23, no. 7, pp. 2031–2038, 2013.

[26] S. Dasgupta, M. L. Littman, and D. McAllester, “Pac generalization bounds
for co-training,” Advances in neural information processing systems, vol. 1,
pp. 375–382, 2002.

[27] C. K. Reddy and B. Vinzamuri, “A survey of partitional and hierarchical clus-
tering algorithms,” in Data clustering, pp. 87–110, Chapman and Hall/CRC,
2018.

53

BIBLIOGRAPHY

[28] S. A. Elavarasi, J. Akilandeswari, and B. Sathiyabhama, “A survey on par-
tition clustering algorithms,” International Journal of Enterprise Computing
and Business Systems, vol. 1, no. 1, 2011.

[29] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Jour-
nal of the American statistical association, vol. 58, no. 301, pp. 236–244, 1963.

[30] Y. Rani1 and H. Rohil, “A study of hierarchical clustering algorithm,” ter S &
on Te SIT, vol. 2, p. 113, 2013.

[31] G. Monge, “Mémoire sur la théorie des déblais et des remblais,” Histoire de
l’Académie Royale des Sciences de Paris, 1781.

[32] C. Villani, Topics in optimal transportation. No. 58, American Mathematical
Soc., 2003.

[33] L. V. Kantorovich, “On the translocation of masses,” in Dokl. Akad. Nauk.
USSR (NS), vol. 37, pp. 199–201, 1942.

[34] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,”
Advances in neural information processing systems, vol. 26, pp. 2292–2300,
2013.

[35] P. A. Knight, “The sinkhorn–knopp algorithm: convergence and applications,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp. 261–275,
2008.

[36] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[37] D. B. Carr, C. J. Young, R. C. Aster, and X. Zhang, “Cluster analysis for ctbt
seismic event monitoring,” tech. rep., Sandia National Labs., Albuquerque, NM
(US); Sandia National Labs . . . , 1999.

[38] C. Romesburg, Cluster analysis for researchers. Lulu. com, 2004.

[39] F. J. Rohlf and D. R. Fisher, “Tests for hierarchical structure in random data
sets,” Systematic Biology, vol. 17, no. 4, pp. 407–412, 1968.

[40] W.-B. Xie, Y.-L. Lee, C. Wang, D.-B. Chen, and T. Zhou, “Hierarchical cluster-
ing supported by reciprocal nearest neighbors,” Information Sciences, vol. 527,
pp. 279–292, 2020.

[41] T. Zhang, P. Ji, M. Harandi, W. Huang, and H. Li, “Neural collaborative sub-
space clustering,” in International Conference on Machine Learning, pp. 7384–
7393, PMLR, 2019.

[42] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to
cluster analysis, vol. 344. John Wiley & Sons, 2009.

[43] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, et al., “Molecular clas-
sification of cancer: class discovery and class prediction by gene expression
monitoring,” science, vol. 286, no. 5439, pp. 531–537, 1999.

54

BIBLIOGRAPHY

[44] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E.
McLaughlin, J. Y. Kim, L. C. Goumnerova, P. M. Black, C. Lau, et al., “Pre-
diction of central nervous system embryonal tumour outcome based on gene
expression,” Nature, vol. 415, no. 6870, pp. 436–442, 2002.

[45] A. I. Su, J. B. Welsh, L. M. Sapinoso, S. G. Kern, P. Dimitrov, H. Lapp, P. G.
Schultz, S. M. Powell, C. A. Moskaluk, H. F. Frierson, et al., “Molecular clas-
sification of human carcinomas by use of gene expression signatures,” Cancer
research, vol. 61, no. 20, pp. 7388–7393, 2001.

[46] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and
F. Herrera, “Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework.,” Journal of Multiple-Valued
Logic & Soft Computing, vol. 17, 2011.

[47] D. Dua, C. Graff, et al., “Uci machine learning repository,” 2017.

[48] J. Jin, W. Wang, et al., “Influential features pca for high dimensional cluster-
ing,” Annals of Statistics, vol. 44, no. 6, pp. 2323–2359, 2016.

[49] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 ob-
ject categories,” in 2004 conference on computer vision and pattern recognition
workshop, pp. 178–178, IEEE, 2004.

[50] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[51] D. Greene and P. Cunningham, “Producing a unified graph representation from
multiple social network views,” in Proceedings of the 5th annual ACM web
science conference, pp. 118–121, 2013.

[52] C. Mallah, J. Cope, and J. Orwell, “Plant leaf classification using probabilistic
integration of shape, texture and margin features,” Signal Processing, Pattern
Recognition and Applications, vol. 5, no. 1, pp. 45–54, 2013.

[53] K. Florek, J. Lukaszewicz, J. Perkal, H. Steinhaus, and S. Zubrzycki, “Sur
la liaison et la division des points d’un ensemble fini,” in Colloquium mathe-
maticum, vol. 2, pp. 282–285, 1951.

[54] R. Sibson, “Slink: an optimally efficient algorithm for the single-link cluster
method,” The computer journal, vol. 16, no. 1, pp. 30–34, 1973.

[55] D. Defays, “An efficient algorithm for a complete link method,” The Computer
Journal, vol. 20, no. 4, pp. 364–366, 1977.

[56] R. R. Sokal, “A statistical method for evaluating systematic relationships.,”
Univ. Kansas, Sci. Bull., vol. 38, pp. 1409–1438, 1958.

[57] L. L. McQuitty, “Similarity analysis by reciprocal pairs for discrete and continu-
ous data,” Educational and Psychological measurement, vol. 26, no. 4, pp. 825–
831, 1966.

[58] P. Legendre and L. Legendre, Numerical ecology. Elsevier, 2012.

55

BIBLIOGRAPHY

[59] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace
structures by low-rank representation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 171–184, 2012.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Ma-
chine learning in python,” the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011.

[61] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon,
L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud,
H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J.
Sutherland, R. Tavenard, A. Tong, and T. Vayer, “Pot: Python optimal trans-
port,” Journal of Machine Learning Research, vol. 22, no. 78, pp. 1–8, 2021.

[62] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards remov-
ing the curse of dimensionality,” in Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pp. 604–613, 1998.

[63] R. Sinkhorn, “Diagonal equivalence to matrices with prescribed row and column
sums,” The American Mathematical Monthly, vol. 74, no. 4, pp. 402–405, 1967.

56

Appendix A

Sinkhorn’s Algorithm

Here we show in detail how to solve Equation (2.4) using Sinkhorn’s Algorithm. For
clarity, Equation (2.4) is as follows:

min
γ
{
m∑
i=1

n∑
j=1

cijγij + λ
m∑
i=1

n∑
j=1

γijlog(γij)} such that γ1n = a, γT1m = b (A.1)

For this section, we introduce the following notations:
MXY = [C(xi, yj)]ij,
U(a, b) = {γ ∈ Rm×n

+ |γ1n = a, γT1m = b}

In vector notation, Equation (A.1) can now be written as:

min
γ∈U(a,b)

< γ,MXY > +λ
mn∑
i,j=1

γijlogγij (A.2)

where < A,Z > =
∑mn

ij AijZij gives the Frobenius Inner Product of two matrices
A and Z of the order m× n.

Proposition 1. If γλ
def
= argmin

γ∈U(a,b)

< γ,MXY > +λ
∑mn

i,j=1 γijlogγij, then ∃ u ∈ Rm
+ ,

v ∈ Rn
+, such that γλ = diag(u)Bdiag(v), B

def
= e−MXY /λ.

Then dλM(µ, ν) =< γλ,MXY > gives the solution to Equation (A.2)

Using Lagrange Multipliers we can get the Lagrangian from Equation (A.2) as
follows:

L(γ, α, β) =
mn∑
ij

γijMij + λγijlogγij + αT (γ1− a) + βT (γT1− b) (A.3)

57

Taking derivative of L by γij and setting it to 0, we get

∂L

∂γij
= Mij + λ(γij

1

γij
+ logγij) + αi + βj

=⇒ 0 = Mij + λ(1 + logγij) + αi + βj

=⇒ γij = e−1/2−αi/λe−MXY /λe−1/2−βj/λ

=⇒ γij = uiBijvj

Now B is strictly positive. Given this, Sinkhorn’s Theorem [63] states that there
must exist a matrix γλ of the form diag(u)Bdiag(v) which is unique in nature and
belongs to U(a, b) where u, v ≥ 0.
Hence, we have the following:

γλ ∈ U(a, b) ⇐⇒

{
diag(u)Bdiag(v)1n = a

diag(v)BTdiag(u)1m = b
(A.4)

Here, diag(u)B = u � B, diag(v)1n = v, diag(v)BT = v � BT and diag(u)1m = u,
where � denotes element-wise product.

Then, we have

γλ ∈ U(a, b) ⇐⇒

{
u�Bv = a

v �BTu = b
(A.5)

γλ ∈ U(a, b) ⇐⇒

{
u = a/Bv

v = b/BTu
(A.6)

Sinkhorn’s Algorithm simply asks to iteratively update u and v using Equation
(A.6) in an alternate manner. In very simple terms, Sinkhorn’s Algorithm is de-
picted in Algorithm 11.

Algorithm 11: Sinkhorn’s Algorithm

Data: B, a, b
Result: u, v

1 while not converged do
2 u = a/Bv
3 v = b/BTu

4 end

Then let us assume that after L iterations Algorithm 11 returns uL and vL. Then
we can get,

γL = diag(uL)Bdiag(vL)

And, the solution is given by

< γL,MXY >= uTL(B �MXY)vL

58

