MASTERS DISSERTATION

Verifiable e-auction over a Block-Chain

SAYANTAN CHAKRABORTY

MTECH CRYPTOLOGY AND SECURITY
INDIAN STATISTICAL INSTITUTE, KOLKATA

Verifiable e-auction over a Block-Chain

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in
Cryptology and Security

Submitted by
SAYANTAN CHAKRABORTY

RorLrL No CRS1907
MTECH CRYPTOLOGY AND SECURITY
INDIAN STATISTICAL INSTITUTE KOLKATA

Under the guidance of
Pror. FENG HAO
Professor of Security Engineering
University of Warwick, Warwick, UK

ProF. BiMAL KUMAR ROY
Applied Statistical Unit
Indian Statistical Institute, Kolkata, India

STATISTICAL

fzod

Ao/

Z>»—0 Z—
M) Cmtmm 0 Z—

4l

WARWICK
THE UNIVERSITY OF WARWICK

July 9, 2021

Dedicated to the asterowd “33179 Arsenewenger”

CERTIFICATE

STATISTICAL

7
..
WY [

Z>»—0DZ—
=
Mo Co=ef N Z—

e __‘;J— 5 ,_'
R daum 293x
[UNITY IN DIVERSITY |

This is to certify that the dissertation entitled “Verifiable e-auction over a Block-
Chain” submitted by Sayantan Chakraborty to Indian Statistical Institute, Kolkata, in
partial fulfillment for the award of the degree of Master of Technology in Cryptology
and Security is a bonafide record of work carried out by him under our supervision and
guidance. The dissertation has fulfilled all the requirements as per the regulations of this
institute and, in our opinion, has reached the standard needed for submission.

Feng Hao

Professor of Security Engineering,
Department of Computer Science,
University of Warwick, Warwick, UK.

Bimal Kumar Roy

Professor,

Applied Statistics Unit,

Indian Statistical Institute, Kolkata, India.

Acknowledgments

I would like to show my highest gratitude to my advisors, Prof. Feng Hao, Department
of Computer Science, University of Warwick, Coventry, UK and Prof. Bimal Kumar Roy,
Applied Statistics Unit, Indian Statistical Institute, Kolkata, India for their guidance and
continuous support and encouragement. Prof. Hao has taught me how to do good research,
and motivated me with great insights and innovative ideas. Prof. Roy has made it possible for
me to take part in such a good research work in collaboration with such prestigious institute
and has helped me in every manner starting from the beginning of my journey at Indian
Statistical Institute till date.

I would specially thank Subhra Majumder for her guidance to make me understand the
implementation details over Test Ethereum Network from scratch. She did help me a lot to
digest the earlier developed models, on basis of which I have designed the protocols in this
period. I would also thank Anisha Dutta for helping me throughout while implementing the
protocols and writing the thesis report in a suitable manner.

My deepest thanks to Somnath Panja for his suggestions and discussions. I shall be thankful
to Prabal Banerjee, and Bibhas Chandra Das for their initial help to make me understand the
subject and the SEAL protocol properly. They have made my work a lot easier to me with
their important suggestions. Last but not the least, I shall be grateful to my parents to keep
me motivated in such an unfortunate pandemic times, which let me left with no option but to
have the internship virtually, staying in the house for the maximum period of this six-month
duration of the internship.

Sayantan Chakraborty
Indian Statistical Institute
Kolkata - 700108 , India.

Abstract

Auction has been an integral part of trading throughout ages. Sealed-bid e-auction (both
first-price and second-price) is considered to be a classic example of Secure Multi-Party
Computation problem. In this project, without assuming any role of auctioneer, we try to
formulate a protocol in which the bidders jointly compute the highest bid, keeping all the
losing bids secret to the bidders. The focus of the work is to study and implement a verifiable
sealed-bid e-auction scheme in decentralized settings. We have studies some possible choices
of schemes and decides to further work on the SEAL protocol, which eventually is the first
decentralized sealed-bid auction protocol to achieve linear computation and communication
complexity. The project aims to build a platform which shall take bit-strings as bid inputs
from the bidders and output the final result which is maximum among the bids. We have
implemented the segments of the protocol using Solidity Language over a Test Ethereum
Network and the front end is to be done using HTML Languages. This implementation targets
to achieve publicly verifiability without leaking information about the bids form the bidders.

Keywords : SEAL, e-auction, Verifiability, Sealed-Bid Auction, Implementation, Block-
Chain, Solidity Language, Test Ethereum Network, secure Multi-Party Computation.

Contents

1__Introductionl 1
(L1 Basics of Auctionl L 1
(.2 Need for Auctioneer-free e-auctionl. 1
(1.3 Objective of the Project| 2
(.4 Our Contributionl 3

2 Background| 4
2.1 Number Theoritic Primitivesf 4

[2.1.1 Discrete Logarithm Problem| 4
2.1.2 Decisional Diffie-Hellman Problem|. 4
[2.2 Zero-Knowledge Proots| oo 6
[2.2.1 Example of Interactive ZKP|, 7
2.2.2 Example of Non-Interactive ZKP (NIZKP)| 8
2.3 Journey of Sealed-bid Auction| 8

3__Ethereum Network 10
[3.1 Block-Chain and it’s Applications| 10
(3.2 DBenefits of fithereum Platform|. o000 11
[3.3 Setting up Test Ethereum Network| 12

[4 Earlier Developments towards SEAL Protocol| 15
[4.1 Dining Cryptographers Problem| 15
4.2 Dining Cryptographer Network (DC Net) Protocol] 15
4.3 Anonymous Veto Network (AV Net) Protocol| 16
[4.4 Modified Anonymous Veto Network Protocoll 18
4.5 Differences between AV-net and Modified AV-net Protocols. 19

b _SEAL Protocol 20
5.1 Basic Overview of the Protocoll 20
(.2 Phase 1: Commit Phasel o o 20
[>.3 Phase 2 : Computing the Highest Bid|. 23
[5.4 Extension to Vickrey auction|] 000 29

[6 Implementation of SEAL Protocol| 31
[6.1 Design Rationale| 31

[6.1.1 Structure of Implementation| 31
[06.1.2 Auction stages| L 32
6.1.3 Overview of the Code Execution|. 33
[6.2 Elliptic Curve and its Usage in Cryptology| 34
6.2.1 [imitation of Finite Field Arithmetic 34
[6.2.2 Elliptic Curve Cryptologyl 34
[6.2.3 Elliptic curves over Solidity Language] 35
6.2.4 ECCMath and Secp256kl Libraries| 36
[6.3 Generating Private and Public Keys|. 38
[6.4 Implementing Tally| L 39
[6.4.1 Tally for Single Bit Case] L. 39
[6.4.2 Extending for Multiple Bits| 40
[6.5 Implementing Zero-Knowledge Proofs| 41
6.5.1 ZKP for Well-formedness of Public Keys| 41

6.5.2 7ZKP for Well-formedness of Commitments 42

[6.5.3 ZKP for Computation Phase : Stage I-II|

6.6 Further Work Directionl

[7__Final Notes

List of Figures

[l Bitcoin, Ethereum and Litecoin Transactions per day (Jan '11 — Jan '21)[. . . 11
[2 Working Example of forming Ethereum Accounts| 14
(3 Brief [llustration of DC Net Protocoll 16
[4 Generating Text file containing Random Nonces| 39
(5 Tally tor Commit Phase, Stage I and Stage I} 40
[6 SEAL Protocol : Complete Tally Results| 40
[7 ZKP for Well-formedness of Public Keys| 41
8 ZKP for Commitment Phasel 42
[9 ZKP for Stage I}o 43
(10 ZKP for Stage II} 44

1 Introduction

1.1 Basics of Auction

Auction is a well-known method of buying and selling goods or services by offering them
to a set of bidding-allowing people, said as bidders to compete against each other and bid.
The winner gets the good or service by offering the highest bid. The word auction is derived
from the Latin auctum, which means I increase, which is self-explaining the name of the
process. The origin of auctions can be traced back to approximately 500 B.C., in some
places of ancient Greece. Auction is now-a-days a common practice in our society from the
usage of allocation of bandwidth spectrum to the sales of antiques, painting, expensive wines,
commodities, livestock, radio spectrum, used cars and rare collectibles. It is also vastly used
by governments as the long-term securities are sold in weekly or monthly auctions conducted
by many government bodies. Investment bankers also use auctions to attract the highest
possible price when selling a company.

Auctions are mainly of two types - open cry auction and sealed bid auction. These two types
are further classified into different sub-types as well. In an open cry auction, either the bid
starts from a reserve price until there is only one bidder left (commonly known as English
Auction) or the bid goes in descending way from a high price until the first bidder agrees to
pay (known as Dutch auction). The open ascending price English auction is arguably the
most common form of auction in use throughout history. Participants bid openly against one
another, with each subsequent bid required to be higher than the previous bid. An auctioneer
may announce prices, bidders may call out their bids themselves or have a proxy call out a bid
on their behalf, or bids may be submitted electronically with the highest current bid publicly
displayed. Interestingly, in the Ancient Greece, women were auctioned off for marriage and
that auction followed a descending pricing Dutch method [12], beginning with the highest
price and going lower until the lowest bid was found, as long the bid price was more than, or
equal to, the reserve price set by the seller. In fact, the bidders were allowed to recover their
money as well, if they could not provide successful bids.

In a sealed-bid auction, each bidder hands over a sealed envelope containing their bid
to an auctioneer. The bid is supposed to be a secret to all other participants. After receiving
the secret bids from all the bidders, the auctioneer opens all envelopes in private and declares
the highest bidder as the winner, while keeping losing bids suppressed. Hence, if some bidder
do not want to reveal his/her bid to other bidders, the bid will remain secret. Sealed-bid
auctions mainly are of two varieties - first-price sealed-bid auction, commonly known as Blind
auction and second-price sealed-bid auction, also known as Vickrey Auction, as a tribute
to William Vickrey, who academically described the procedure. In the first-price sealed-bid
auction, the winner pays for the amount he/she has bidden i.e. the highest bid. While in the
second-price sealed-bid auction, the winner only needs to pay the second highest bid.

1.2 Need for Auctioneer-free e-auction

The advantage behind the sealed-bid auctions lies in the fact that no bidder learns any
information about the other bids. Hence, the bidders are encouraged to bid according to their
monetary valuation of the asset. The traditional sealed-bid auction schemes generally assume
the role of an honest auctioneer to conduct the whole process and evaluate the result. But, in
practise, we can have several drawbacks because of this assumption. A dishonest auctioneer

primarily may not follow the actual procedure of the auction and instead of declaring the
correct winner, it may disclose some other bid/bidder as winner. Since other bids are kept
as commercial secret, no one can directly identify the flaw. Also, a dishonest auctioneer
might disclose the losing bids to other parties, which should be kept as a secret. Moreover, in
Vickrey auction scheme, auctioneer may surreptitiously substitute the second highest price to
one slightly below the top price to increase the revenue. Since the winner also do not know
the exact figure of the second highest bid, he/she. once knowing that amount is less than
what he/she has bidden, would pay the cost. This affects the integrity and reliability of the
whole auction scheme.

Since the main drawbacks of the schemes are related to the distrust on the auctioneer,
the obvious target over years was to nullify the trust problem about the auctioneer. Some
schemes were proposed to apply threshold cryptography or multiparty computation techniques
to distribute the trust from a single auctioneer to two or several. However, one can never rule
out the possibility that the auctioneers may collude all together to compromise the privacy of
the bids. Therefore, the introduction of auctioneer-free e-auction schemes were welcomed.

Web-based online commercial activity for e-auctions were introduced back in 1995, when
two auction sites were founded independently with alternative business models. Though
primarily e-auction protocols assumed a role of an unknown auctioneer, but later on varieties
of sealed-bid e-auction schemes have been proposed over years, which were the auctioneer-free.
These auctions are completely run by the bidders themselves without involving any auctioneer,
and all operations are publicly verifiable.

1.3 Objective of the Project

Sealed-bid e-auction is considered to be an instance of a secure multiparty computation
(MPC) problem, in which the bidders jointly compute the highest bid, keeping all the losing
bids secret. In this project, we wish to study and implement a verifiable sealed-bid
e-auction scheme in decentralized settings. In a decentralized setting without any
auctioneer, it is desirable not to use any secret channels between bidders, so all operations
are publicly verifiable. Hence, third-party observer like the seller or any representative from
any of the bidders, who is not directly involved in the bidding part, can also verify the
integrity of the auction process. We hereby consider the SEAL protocol [13], which assumes
availability of only an authenticated public channel to all the participants. SEAL protocol is
also the first decentralized sealed-bid auction protocol, which achieves a linear computation
and communication complexity. No sealed-bid auction scheme prior to this has achieved the
linear system complexity in a decentralized setting.

Ethereum is an open-source, decentralized software platform, based on Block-Chain tech-
nology. It enables Smart Contracts and Distributed Applications (DApps) to be built and
run without any downtime, fraud, control or interference from a third party. Once DApps
are deployed on the Ethereum network, it is unchangeable. DApps can be decentralized
because they are controlled by the logic written into the contract, not an individual or a
company. To achieve the decentralized setting we need for the protocol, we shall use this
platform for implementation. Therefore, the primary objective of this project is to implement
the Self-Enforcing Auction Lot (SEAL) protocol over a Test Ethereum Network
(testnet). For a practical purpose usage, we initially intend to execute the protocol over a
Test Ethereum Network and further would try to have a real world demo, if possible.

1.4 Our Contribution

With the bigger picture of studying and designing the whole Self-Enforcing Auction Lot
protocol in mind, we can fairly claim to have these following works as our contributions
towards the mentioned SEAL protocol.

1. We thoroughly discussed the SEAL protocol and the journey towards the protocol over
years, starting from Dinning Cryptographer’s problem, DC Net, AV Net, Modified AV
Net and how that shaped the idea of SEAL protocol. We have analyzed earlier schemes
who tried to solve the specific problem of trust-issue free auction schemes and how
SEAL achieve that with linear computational and communication complexity.

2. We implemented the full tally part of the SEAL protocol. We have presented both the
cases with single bit inputs and how that can be extended into multiple bit inputs.

3. We have adapted the design rationale of the implementation of the SEAL protocol from
the earlier developed implementation of Open Vote Network by Patrick McCorry. We
have presented the idea in section 6.1. in details.

4. We have also implemented a total of four different NIZKPs, namely (Schnorr’s) ZKP for
well-formedness of Public Keys, one-out-of-two ZKP for well-formedness of commitments,
one-out-of-two ZKP for well-formedness of cryptograms in Stage I calculations and
one-out-of-three ZKP for well-formedness of cryptograms in Stage II tally. The ZKPs
are implemented in Solidity language over Ethereum Network. For generation of the
text file required for the registration process, which contains all random nonces, public
and private keys, we have implemented a JAVA code, which is also provided.

2 Background

2.1 Number Theoritic Primitives

Number theory is a source of several computational problems that serve as primitives in
the design of cryptographic schemes. Asymmetric cryptography in particular relies on these
primitives. As with other beasts that we have been calling primitives [7], these computational
problems exhibit some intractability features, but by themselves do not solve any crypto-
graphic problem directly relevant to a user security goal. But appropriately applied, they
become useful to this end. In order to later effectively exploit them it is useful to first spend
some time understanding them.

Let G be a cyclic group and let g be a generator of G i.e. G = {¢° ¢*,..., g™}, where
m = |G| is the order of G. The discrete logarithm function DLogg, : G — Z,, takes input
a group element a and returns the unique i € Z,, such that a = ¢°. There are several
computational problems related to this function that are used as primitives.

2.1.1 Discrete Logarithm Problem

Discrete Exponentiation function takes input i € Z,, and returns the group element ¢'.
Discrete Logarithm function is the inverse of the Discrete Exponentiation function. The
definition measures the one-wayness of the discrete exponentiation function according to the
standard definition of one-way function.

Let G be a cyclic group of order m, let g be a generator of G, and let A be an algo-
rithm that returns an integer in Z,,. We consider the following experiment.

Experiment Expgh(A)

T <R Ly,
T+ A(X)
If ¢° = X, then return 1
else return 0

Then the DL-advantage of A is Adng(A) = Pr[Expgf](A) =1]

The discrete logarithm problem is said to ‘hard’ in G if the DL-advantage of any adversary
of reasonable resources is small. Resources here means the time-complexity of the adversary,
which includes its code size as usual.

2.1.2 Decisional Diffie-Hellman Problem

The Decisional Diffie-Hellman (DDH) assumption is a computational hardness assumption
about a certain problem involving discrete logarithms in cyclic groups. It is used as the
basis to prove the security of many cryptographic protocols, most notably the ElGamal and
Cramer—Shoup cryptosystems. This is named after Whitfield Diffie and Martin Hellman [§].

The formalization of DDH Problem considers two-worlds setting. The adversary gets input
X,Y, Z. In either world, X,Y are random group elements, but the manner in which 7 is
chosen depends on the respective world. In World-1, Z = ¢*¥ where © = DLogg 4(X) and
y = DLogg4(Y). In World-0, Z is chosen at random from the group, independently of X,Y".
The adversary must decide in which world it is.

Experiment Expg’ ™~ (A) Experiment Expg "~ (A)
T <R Zm T <R Zm

Y <R Zm Y <R Zm

Z < xy mod m 2 4R L,

X g X g

Y < gY Y «+ ¢¥

Z g7 Z g7

d+ AX,)Y,Z) d+— AX,Y,2)

return d return d

Then the DDH-advantage of A is
AdvgP"(A) = PriExpgh ™' (A) = 1] — PriExpgl " %(A) = 1]

The Decisional Diffie-Hellman (DDH) Problem is said to ‘hard’ in G if the DDH-advantage
of any adversary of reasonable resources is small, where the resources is the time-complexity
of the adversary, as stated before.

When using a cryptographic protocol whose security depends on the DDH assumption,
it is important that the protocol is implemented using groups where DDH is believed to hold.
Here is some standard example of groups for which DDH is assumed to hold.

e A prime-order elliptic curve E over the field GF(p), where p is prime, provided E has
large embedding degree.

e A Jacobian of a hyper-elliptic curve over the field GF(p) with a prime number of reduced
divisors, where p is prime, provided the Jacobian has large embedding degree.

e The subgroup of kth residues modulo a prime p, where (p — 1)/k is also a large prime
(also called a Schnorr group). For the case of k = 2, this corresponds to the group of
quadratic residues modulo a safe prime.

Importantly, the DDH assumption does not hold in the multiplicative group Z,, where p is
prime. This is because if g is a generator of Zy, then the Legendre symbol of g reveals if a is
even or odd. Given ¢%, ¢g” and ¢, one can thus efficiently compute and compare the least
significant bit of a, b and ab, respectively, which provides a probabilistic method to distinguish
g from a random group element. Also, the DDH assumption does not hold on elliptic curves
over GF(p) with small embedding degree (say, less than log?(p)).

2.2 Zero-Knowledge Proofs

A zero-knowledge proof is one of the most abstract and fascinating concepts in applied
cryptography today. From potentially being used in nuclear disarmament to providing anony-
mous and secure transactions for public blockchain networks, a zero-knowledge proof is a
profound example of cryptographic innovation. In cryptography, Zero Knowledge Proof is
a method by which one party (the prover) can prove to another party (the verifier) that
she has the knowledge of a value x, without conveying any information apart from the
fact that she knows the value x. The essence of a zero-knowledge proof is that it is triv-
ial to prove that someone possesses knowledge of certain information by simply revealing
it. The challenge is to justify such possession without revealing the information itself or
any additional information.A zero-knowledge proof must satisfy the following three parameters.

1. Completeness. If the statement is true, the honest verifier, the one that is following
the protocol properly will be convinced of this fact by an honest prover.

2. Soundness. If the statement is false, no cheating prover can convince the honest verifier
that it is true, except for some small probability, and

3. Zero Knowledgeness. If the statement is true, no verifier learns anything, except the
fact that the statement is true. Completeness and soundness are properties of more
general interactive proof systems. The addition of zero knowledge is what turns the
verification process into a zero-knowledge proof.

Zero-knowledge proofs were first conceived in 1985 by Shafi Goldwasser, Silvio Micali, and
Charles Rackoff [19]. This paper introduced the IP hierarchy of interactive proof systems and
conceived the concept of knowledge complexity, a measurement of the amount of knowledge
about the proof transferred from the prover to the verifier. They also gave the first zero-
knowledge proof for a concrete problem, that of deciding quadratic non-residues mod m.
Non-Interactive Zero Knowledge Proofs (NIZKP) are special type of Zero Knowledge Proofs
that require no interaction between the prover and the verifier. Formally a non-interactive
zero-knowledge proof system for a relation R is the triplet I' = (K, P, V) where K, P and V
are three PPT algorithms defined as following.

e K is the set-up algorithm. It generates a common reference string(o). It takes a \ as
input and returns the common reference string. Mathematically we can say: o < K(1?*).

e Pis the prover algorithm. It takes as input a statement x and a corresponding witness
w such that R(x,w) = True. With x,w and also common input o, P outputs the proof
7. Mathematically we can write m < P(o, 2, w).

e Vis the verifier algorithm. It takes as input a statement = and the proof 7. With x, 7 and
also common input o, Vreturns v € {0,1}. Mathematically we can write v < V(o,z, 7).

By definition, an efficient NIZKP I' must satisfy the following three properties.

e Completeness. I is complete if verification succeeds for every o < K(1%) and for
every valid pair (z,w) € R,. Mathematically we can say for completeness.

Pr [0 — K(1");7 + P(o,2,w),1 <+ V(o,2,7) A R(x,w) = True] =1

e Soundness. To achieve soundness, I' has to guarantee that no prover can make
the verifier accept a wrong statement z ¢ L, except with some small probability.
Mathematically we can say for soundness.

Pr |:0' — K(1Y); (z,7) + D(0),1 < V(o,z,7) A ¢ L} < negl(\)

Here D is the algorithm that the cheating prover adapts to generate a statement x ¢ L
and the proof .

e Zero Knowledgeness. We say that ' is zero-knowledge if there exist a simulator
Sim = (S, .S2) such that for any non-uniform PPT adversary A the following condition
holds true.

Pr|o « K(1*) : AP@29) (5) = 1] = Pr [(0,) ¢ Sy : ASmeTEw) (6) =

Sim(o, T,x,w) outputs Sy for (z,w) € R,.

2.2.1 Example of Interactive ZKP

Suppose a voter has casts his vote x in encrypted manner, where instead of revealing =z,
she publishes X = ¢* publicly, where g be a generator of group G, in which the Discrete
Logarithm Problem is hard. Now she wants to prove the knowledge of z = log, X. Now to
form a Zero-Knowledge Proof, we design the following game.

Prover Verifier

Chooses 1 <p Z,
Computes € = g"

Chooses ch <—r 7,
Computes p=1r —x . ch

Checks if £ = gPXch

Correctness. The ZKP is accepted if the verification equation holds true i.e. ¢ = g? X"
The correctness proof lies to the fact that ¢ = g" = gPtech = gP(g%)h = gr X,

Soundness. The above calculation itself explains that any incorrect entry by the dis-
honest prover won’t be able to satisfy the equation.

Zero Knowledgeness. Note that the verifier knows information about ¢, ch,p and X.
From X, it cannot extract x due to the hardness of Discrete Logarithm problem. Also, it
cannot extract x through the equation p = r — x . ch as she cannot extract r from the
knowledge of g" = €. Therefore, no leakage is there.

7

2.2.2 Example of Non-Interactive ZKP (NIZKP)

We wish to evaluate the same problem we discussed in the above example for Interactive ZKP.
As above, a voter publishes X = ¢* in some public bulletin and wants to prove the knowledge
of z =log, X. The difference with the above proof is that here no interaction between the
prover and the verifier is allowed. Hence, we need a random challenge of the obtained through
feeding the commitment and all other available argument into a random oracle. We hereby
introduce a secure Hash function H, which outputs a random challenge z. Infact there is no
need for any verifier here as the code itself checks if the verification equations hold or not.

Prover Verification Equation

Chooses r <g Z,

Computes € = g" e = gPXeh
Computes ch = H(g,q", 9", 1)

Computes p=r —x . ch

In this NIZKP, we call ch as challenge, ¢ as commitment and p as response. The prover
needs to do just one exponentiation for generating the proof that contains one challenge, one
commitment and one response, 3 parameters in total. The verifier needs to do 2 exponen-
tiations to verify the proof. The NIZKP is accepted if the verification equation holds true
i.e. € = g X°*. The correctness and soundness proofs are exactly like the previous case. Also
this is zero-knowledge proof since we cannot extract information about .

2.3 Journey of Sealed-bid Auction

In the previous section, we discussed that Sealed-bid e-auction protocol has some major
disadvantage related to the distrust on the auctioneer. As a result, the obvious target over
years was to nullify the trust problem about the auctioneer. Since the beginning of the
research work in this field, we have seen different evaluations and innovations in this topic.
Generic MPC techniques were used to solve the problem but since these techniques require
pairwise secret channels between probably each pair of the participants and an authenticated
public channel for all, achieving these in practical scenario seems almost impossible. In
addition, generic MPC techniques suffer from various efficiency issues. We shall discuss some
well-studied e-auction schemes over ages to understand how this problem had a journey
through various proposed schemes.

The initial research papers, beginning with Franklin-Reiter’s work [3] in 1996, have all
assumed the role of a honest auctioneer, which is not appreciated for stated reasons. Hence,
in the next years, the mainstream research regarding this problem focuses on applying cryp-
tography to distribute trust on the auctioneer. In general, there were two main approaches.

1. The first approach is to apply threshold cryptography, or MPC techniques to distribute
the trust from a single auctioneer to several auctioneers. Franklin et al. [3] presented
a second-price sealed-bid auction scheme. In this scheme, a number of servers play
the role of the auctioneer, and they apply Shamir’s secret sharing technique to split

each bid among themselves so no single server sees all bids. However, there still can be
similar problem if a sufficient number of servers collude, and eventually the secrecy of
all bids could be lost. A similar approach like the last one was made to apply Threshold
cryptography by Sako [4] to let auctioneers jointly decrypt submitted bids. Kurosawa
and Ogata had a Bit-Slice approach to compute the highest bid bitwise, assuming
the majority of the auctioneers are honest. Their system involves m bidders and n
auctioneers, while the auctioneers apply secure multiparty computation on a bit-slice
circuit, and decrypt the result at each bit position using verifiable threshold decryption.
The threshold is set such that compromising the decryption requires compromising at
least the majority of the auctioneers. The number of rounds required for threshold
decryption is O(nc), where ¢ being the bit length of the bid. But the desired complete
trust-free condition has still not been satisfied by these protocols.

2. The second approach to solve the trust issue was introduction of more trusted third
parties in addition to auctioneers. Naor et al. presented a second-price sealed auction
scheme [24]. This scheme uses two different auction servers who communicate using an
oblivious transfer protocol. One server takes the role as an auctioneer and the other as
an auction issuer. The two servers are assumed not to collude. However, the original
Naor et al.’s scheme has a weakness in which one of the two servers can cheat to modify
bids without detection. Later on similar approaches were made by Abe and Suzuki
using homomorphic encryption [25], by Montengero et al. employing an auctioneer and
a randomness server [26], by Lipmaa et al. involving a seller and an auction authority
[27], and various other cryptographers.

Brandt was among the first to argue that neither of the above approaches is desirable due to
the involvement of trusted auctioneers or third parties. Brandt proposed Bidder Resolved
Auction and an auctioneer-free solution by applying secret sharing techniques. A major
drawback of this is that seller is actively involved in the protocol and if seller colludes with
bidders, the bidders can learn other bids. Inspired by Brandt’s scheme [2], Wu et al. remove
the seller and propose a decentralized sealed bid auction scheme based on a general Socialist
Millionaire Protocol. Though the cost of the computational load and the bandwidth usage
per bidder is O(2¢). SEAL [13] is an auctioneer-free sealed-bid auction protocol with a linear
computation and communication complexity O(c), which makes this suitable choice for study
and further implementation in our project. We shall discuss the scheme thoroughly and also
further discuss the implementation details of this protocol on a testnet.

3 Ethereum Network

3.1 Block-Chain and it’s Applications

A blockchain is a growing list of records, called Blocks, that are linked together using cryp-
tographic Hash function. Structurally, a Block-Chain is a linked list that is built with hash
pointers instead of pointers. Each block contains a cryptographic hash of the previous block,
namely a timestamp, and transaction data (generally represented as a Merkle tree). The
timestamp proves that the transaction data existed when the block was published in order to
get into its hash. As blocks each contain information about the block previous to it, they
form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains
are resistant to modification of their data because once recorded, the data in any given
block cannot be altered retroactively without altering all subsequent blocks. Blockchains are
typically managed by a peer-to-peer network for use as a publicly distributed ledger, where
nodes collectively adhere to a protocol to communicate and validate new blocks.

Cryptographer David Chaum first proposed a blockchain-like protocol in 1982 [20]. The first
blockchain was conceptualized by a person or group of people (interestingly the identity is
yet to be public) known as Satoshi Nakamoto [21] in 2008. Nakamoto improved the design
in an important way using a Hashcash-like method to timestamp blocks without requiring
them to be signed by a trusted party and introducing a difficulty parameter to stabilize rate
with which blocks are added to the chain. The design was implemented the following year by
Nakamoto as a core component of the cryptocurrency bitcoin, where it serves as the public
ledger for all transactions on the network.

As discussed, blockchain is a decentralized, distributed, and oftentimes public, digital blocks
consisting of records that is used to record transactions across many computers so that any
involved block cannot be altered retroactively, without the alteration of all subsequent blocks.
This allows the participants to verify and audit transactions independently and relatively
inexpensively. A blockchain database is managed autonomously using a peer-to-peer net-
work and a distributed time-stamping server. They are authenticated by mass collaboration
powered by collective self-interests. Every node in a decentralized system has a copy of
the blockchain. Whenever a new transaction is entered, it is transmitted to a network of
peer-to-peer computers scattered across the world. Mining nodes validate transactions, add
them to the block they are building, and then broadcast the completed block to other nodes.
Blockchains use various time-stamping schemes, such as proof-of-work, to serialize changes.
Once confirmed to be legitimate transactions, they are clustered together into blocks. The
blocks are chained together creating a long history of all transactions that are permanent.
And hence, the transaction gets completed.

Block-chain technology can be integrated into multiple areas. The primary use of blockchains
was as a distributed ledger for cryptocurrencies. Cryptocurrencies are digital currencies that
use blockchain technology to record and secure every transaction. A cryptocurrency (for
example, Bitcoin, Ethereum, etc) can be used as a digital form of cash to pay for everything
from everyday items to larger purchases like cars and homes. It can be bought using one of
several digital wallets or trading platforms, then digitally transferred upon purchase of an
item, with the blockchain recording the transaction and the new owner. Block-chains do have
several applications in implementing Smart contracts, developing video games, peer-to-peer
energy trading, supply chain management, etc.

10

3.2 Benefits of Ethereum Platform

Ethereum is a decentralized, open-source blockchain with smart contract functionality. Ether,
represented as FTH is the native cryptocurrency of the ethereum platform. It is the second-
largest cryptocurrency by market capitalization, while Bitcoin being the largest one. Though
Ethereum is the most actively used blockchain [23].

= Bitcolin - Transactions
— Ethereum - Transactions

. — Litecoin - Transactions
1.25M T T T T T
it
i

512k

| ransacuons
i
2
2

1V oy F ﬂ]
Jﬁlﬂt‘fw }Wm

M~M

Jan 2011 Jan2nz Jan 2013 Jan 2014 Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021

Figure 1: Bitcoin, Ethereum and Litecoin Transactions per day (Jan '11 — Jan '21)

Ethereum was initially described in a white paper in 2013 by Vitalik Buterin [22]. Buterin
argued that Bitcoin and blockchain technology could benefit from other applications besides
money and needed a scripting language for application development that could lead to at-
taching real-world assets, such as stocks and property, to the blockchain. The development
of Ethereum was crowdfunded in 2014, and the network went live on 30 July 2015, with an
initial supply of 72 million coins. The Ethereum Virtual Machine (EVM) can execute scripts
and run decentralized applications. Ethereum is massively used for decentralized finance, the
creation and exchange of non-fungible tokens, etc.

Ethereum is a permissionless, non-hierarchical network of computers (nodes) which build and
come to consensus on an ever-growing series of ”blocks”, or batches of transactions, known
as the blockchain. Each block contains an identifier of the block that it must immediately
follow in the chain if it is to be considered valid. Whenever a node adds a block to its chain,
it executes the transactions therein in their order, thereby altering the ETH balances and
other storage values of Ethereum accounts. These balances and values, collectively known
as the state, are maintained on the node’s computer separately from the blockchain, in a
Merkle tree. Each node communicates with a relatively small subset of the network, known
as its peers. Whenever a node wishes to include a new transaction in the blockchain, it sends
the transaction to its peers, who then send it to their peers, and so on. A transaction in
Ethereum is consists of (I) From : A signature from a user-controlled account to authorise the
transaction, (II) To : The receiver of the transaction and can be either a user-controlled or
contract address.(III) Data : Contains the contract code to create a new contract or execution
instructions for the contract. (IV) Gas Price : The conversion rate of purchasing gas using
the ether currency. (V) Total Gas : The maximum amount of gas that can be consumed by
the transaction, and (VI) Nonce : A counter that is incremented for each new transaction
from an account.

Ether (ETH) is the cryptocurrency generated by the Ethereum protocol as a reward to
miners in a proof-of-work system for adding blocks to the blockchain. It is the only currency
accepted in the payment of transaction fees, which also go to miners. The block reward
together with the transaction fees provide the incentive to miners to keep the blockchain

11

growing (i.e. to keep processing new transactions). Therefore, ETH is fundamental to the
operation of the network. Each Ethereum account has an ETH balance and may send ETH
to any other account. The smallest subunit of ETH is known as a Wei and is equal to 1018 ETH.

The Ethereum block-chain presumably provides the highest support for smart contracts
creation. Smart contracts are executed by a simple stack-based Turing complete 256-bit
virtual machine known as the Ethereum Virtual Machine (EVM). Solidity is the common
scripting language for writing smart contracts. We shall implement the scheme described in
the last section in Ethereum platform because of the following reasons.

e Ethereum is a public communication channel i.e. it is a peer to peer network.

e All communication in Ethereum Network is authenticated as transactions are signed by
the voter’s Ethereum address.

e Ethereum uses an immutable public ledger to store the necessary information like
eligibility white list, private and public keys and bids.

e Ethereum allows anyone with the read access to the public bulletin to verify the execu-
tion of the program, and that the protocol is executed correctly.

There are two types of accounts on Ethereum, namely user accounts (also known as externally-
owned accounts) and contracts. Both types have an ETH balance, may send ETH to any
account, may call any public function of a contract or create a new contract, and are identified
on the blockchain and in the state by their address. User accounts are the only type which
may create transactions. For a transaction to be valid, it must be signed using the sending
account’s private key, a 64-character hexadecimal string that should only be known to the
account’s owner. The signature algorithm used is ECDSA. Importantly, this algorithm allows
one to derive the signer’s address from the signature without knowing the private key. Gas is
a unit of account within the EVM used in the calculation of a transaction fee, which is the
amount of ETH a transaction’s sender must pay to the miner who includes the transaction in
the blockchain. Each type of operation which may be performed by the EVM is hardcoded
with a certain gas cost, which is intended to be roughly proportional to the amount of resources
(computation and storage) a node must expend to perform that operation. When creating a
transaction, the sender must specify a gas limit and gas price. The gas limit is the maximum
amount of gas the sender is willing to use in the transaction, and the gas price is the amount
of ETH the sender wishes to pay to the miner per unit of gas used. The higher the gas price,
the more incentive a miner has to include the transaction in their block, and thus the quicker
the transaction will be included in the blockchain. The sender buys the gas up-front, at the
start of the execution of the transaction, and is refunded at the end for any gas not used. If
at any point the transaction does not have enough gas to perform the next operation, the
transaction is reverted but the sender still pays for the gas used. This fee mechanism is
designed to mitigate transaction spam, prevent infinite loops during contract execution, and
provide for a market-based allocation of network resources.

3.3 Setting up Test Ethereum Network

Test networks exist to ease development and provide developers and companies an easy
solution to deliver their product on networks that are not exchanging real value but providing
the exact same service. The Ethereum Test Network is a simulation of Ethereum, with
the same environment and conditions found on the Ethereum network. Users can test new

12

projects and changes on this system before deploying them to the real Ethereum network.
And because it works the same way as the real one, developers can correct any errors or
mistakes here. The system also allows them to see firsthand how the project works and reacts,
so they can modify or improve it before it goes live. This process saves companies money
because they don’t have to use gas. Developers do use Ether and tokens, but these have
no real-world value outside the testnet. In this and the next section, we shall be walking
through the set up process of the Ethereum development environment along with local private
blockchain in Ubuntu and how to create ethereum accounts for the testnet. We thoroughly
discuss the required software, the process to start the Ethereum node and performs basic
transactions. We shall set up the Test Ethereum Network in the following configuration.

Operating System : Ubuntu 20.04
OS Version : 20.04.2 LTS (Focal Fossa)
Node Version : v10.19.0
NVM (Node Version Manager) Version : 6.14.4
Geth (Go Ethereum) version : 1.10.2-stable

We need Geth to be running in the background. We shall use localhost as host and the
Web3 provider endpoint would be http://127.0.0.1:8545. At first, we run the following
command in ubuntu terminal. This will create the desired environment.

geth --allow-insecure-unlock --dev --rpc --ipcpath " /.ethereum/geth.ipc"
--rpcapi="db,eth,net,web3,personal" --rpcport "8545" --rpcaddr "127.0.0.1"
—--rpccorsdomain "*" console

We wish to run our final protocol in a testnet environment, where there will be one main
ethereum account, which serves as the Admin of the protocol, at least three different Bidder
accounts and one Charity account. No Bidder account can serve as either Admin or Charity
account. The main ethereum account will have some initial test ether to perform the
experiments we want to have. We design our protocol in a way that the Bidder account must
initially have at least one ether 7.e. to participate in the bidding. The charity account may
own no ether. To set up the Ethereum accounts, we follow the mentioned steps.

e With the command given in the last section, while creating the Geth JavaScript console,
it automatically creates an ethereum account. This account is assumed to be the Admin
account and it automatically owns some test ether.

e We can get the list of ethereum accounts by running eth.accounts command.
e To get the balance of ¢-th account, run eth.getBalance(eth.accounts[i-1]).

e To create each new ethereum account, we run personal.newAccount(). We also
need to put a passphrase for each account. The passphrase for the main account i.e.
eth.accounts[0] is empty. Hence, we do not need to put any passphrase as Admin.

e For further transactions, we need to unlock the newly created accounts. The command is
personal.unlockAccount (<account address>,<passphrase>,<unlock duration>)

e Since to perform in bidding, each Bidder account needs at least one ether. Hence, we send
enough ether from the Admin account to newly created Bidder account. The command
eth.sendTransaction(from:eth.accounts[i],to:eth.accounts[j],value:<amount>)
is used to send ether from account 7 to account j.

The picture in the following page holds an working example of the above mentioned details.

13

([e]lsiunodoe-yia)adsueiegiabryia <

([z]s3unodoe-yia)asueiegiab-yia <

suolldesuell Jol Builiiem “pasned bBuryess [I8S°8z:.Z:€Z|90Z-t0]
«SM665 " TEZ,.=
0= 0= 0= «JB0P6.7E]Qq08, = 3Jom Builulw MaU I1uw [tes-gz:rz:c2l9z-v0]
«2PTPQ2"68L084 = 32019 1e13ualod paulw . [e85°8Z:/Z:€2|9Z-10]
+SPTPYI68.084 WCI21ZTPBLEBYT, = 32019 Mau paieas A11nissaddns [E8S 8Z:LZ:€2]9Z-+0]
LSAT98 otz , =
000TZ= i 0= WC4212TPBLBYT, = om Buluilw mau 1lwwod [E8S 8Z:LZ:€2|92-+0]

PEEEEREROREREREBFTE= BO8SB8/BPEDESOTC49€405DLSWLE8QI0BESRSETIX T BPEBEEE98595092/PH6FS62P2102V0EE0AL9A0SPXE=
22%¢qlea8ppoqgalereqeeqlplesd6RTEB69F923FPZZerI0ESEIIqQPEBITaVETIXE= uolldesuell pailiugns [e8S°8Z:L2:€2]|9Z-+0]
({ePPPPRRRRRREREEBFTZ : 2n]1ea ‘[z]siunodde-yia:o0l “[p]lsiunodde-y3a:woll})uocildEsSUBRI|pUIS Yl

([z]saunoooe-yia)asue)egiab-yia

siunodde-yla

anJ3
¢ .808S8/8PEDESOTZIOEI05D/5R/ZBGOPBZSRSESAGXQ,, JIUNOIDYD0 UN " JeUosIad <

ipJomssed Jnof Jaquawal aseald [e8z lz:9z:£zl9z-+v0]
8985B.BPEDESOTEI9EIOS2/.SR.E8QOPRESESE22] -
-Z.T.E€2608°52-95-LT102-+0-TZ0Z--21N/269896+6621035Aa3-wnasay3a-ob/duy /=y3e . 23 Jnok dnyoeq aseald [g8z".rz:92:€2|9Z-+0]
BOBSBLBPEDESOTZI9EI0SDLSYLZEQDABZSRSETQXD= 3jeJauab sem Asy mau unop [g8z°/z:0z:c€2|o2-+0]
:aseaydssed jeaday
:aseuydssed
()1unosdymau- | euosiad

slunod3e’yla

ing Ethereum Accounts

ing Example of form

: Work

2

igure

F

14

4 Earlier Developments towards SEAL Protocol

As we have discussed, SEAL protocol was the first auctioneer-free sealed-bid auction protocol
with a linear computation and communication complexity, published in 2019 by Samiran
Bag, Feng Hao, Siamak F. Shahandashti, and Indranil G. Ray. This protocol uses a modified
version of the 2-Round Autonomous Veto Network Protocol by Feng Hao and Piotr Zieliniski
as the building blocks for the protocol. Notably, Hao-Zielinski’s Anonymous Veto network
(AV-net) protocol is an alternative solution to the Dinning Cryptographer problem. In this
section, we briefly discuss all the protocols which eventually motivated the next protocol of
the sequence to finally reach the SEAL protocol.

4.1 Dining Cryptographers Problem

The dining cryptographers problem [5] studies how to perform a secure multi-party computa-
tion of the boolean-OR function. The formal problem statement is the following.

Problem Statement : Three cryptographers are having dinner in a table, where the
bill to be paid anonymously. US National Security Agency (NSA) or one of the cryptographers
may pay the bill. They respect each other’s right to make an anonymous payment, but they
wonder if NSA is paying for them or one of them is paying.

David Chaum first proposed this problem in the early 1980s and used it as an illustra-
tive example to show that it was possible to send anonymous messages with unconditional
sender and recipient intractability. Anonymous communication networks based on this prob-
lem are often referred to as DC-nets. In the next subsection, we describe how Chaum proposed
a 2-stage protocol [I] to find if NSA pays or not.

4.2 Dining Cryptographer Network (DC Net) Protocol

David Chaum proposed this solution named Dinning Cryptographer’s Network, in short
DC-Net in 1988 through a research paper in Journal of Cryptology. We primarily focus on
the problem with three cryptographers, but this can be generalized further. The solution is a
two-round protocol, described in the following.

Round 1. Each cryptographer flips an unbiased coin so that only him and the cryptographer
on his right hand side can see the outcome of the toss.

Round 2. Each cryptographer then states aloud whether the two coins he can see (one he
flipped, one his left-hand neighbor cryptographer flipped) fell on the same side or on different
sides. The cryptographer basically XORs the outputs (without loss of generality, assume
getting head is 1 and getting tail is 0) and tell the result. If one of the cryptographers is
the payer, he states the opposite of what he gets as the result and if he didn’t pay, then he
announces the actual result of the XOR.

Tally. Finally we XOR all the announced bits. An odd number of differences uttered
at the table indicates that a cryptographer is paying, while an even number indicates that
NSA is paying. Yet if a cryptographer is paying, neither of the other two learns anything
from the utterances about which cryptographer it is. A working example of this method is
illustrated in the following figure.

15

Non of them paid: A paid:

A A

B —m8 —

—C

c B
~ 1 1 _
ooro-3

1xorOxorl=0 0xorOxorl=1

Figure 3: Brief Illustration of DC Net Protocol

The DC Net protocol is indeed simple and elegant. But, it also has several limitations.

e If two (any even number for generalized case) cryptographers have paid for the dinner,
their messages will cancel each other out, and the final XOR result will be 0.

e A dishonest cryptographer may send random bits instead of the correct result of the
XOR. This occurs because the original protocol was designed without using any public
key technology and lacks reliable mechanisms to check whether participants are honest.

e Though DC Net protocol is unconditionally secure, but that depends on the assumption
that there exists unconditionally secure channels between pairs of the participants,
which is not easy to achieve in practice.

4.3 Anonymous Veto Network (AV Net) Protocol

The anonymous veto network (or AV-net) is is an alternative solution for the Dining Cryptog-
raphers Problem. Hence, like the DC Net protocol, this also serves as a multi-party secure
computation protocol to compute the boolean-OR function. AV Net was first proposed by
Feng Hao and Piotr Zielinski in 2006. We can extend the Dinning Cryptographer Problem
from three to any finite number of participants. The AV-net protocol will check if anyone
of the n cryptographers have paid the bill or not anonymously. AV-nets require no secrecy
channels, have no message collisions, and are more resistant to disruptions. It only assumes
an authenticated broadcast channel available to every participant, which can be achieved in
the practical world pretty easily.

Construction of AV Net protocol assumes certain mathematical assumptions. Let G be

a finite cyclic group of prime order ¢, in which Decisional Diffie-Hellman problem is in-
tractable. Let g be a generator in G. n-many participants P, ..., P, agree on (G, g).

16

Round 1.

e Fach participant P; selects a ‘secret’ random value x; <—r Zj.

e Each P, publishes ¢g* and a ZKP for z;
After Round 1 gets over, each P; checks the validity of other participant’s ZKPs and computes
i—1 n
g =197/ [] 97 =g>=" 2" ie yi =) a;—> x
J=1 Jj=it+l j<i J>i
Round 2.

e Depending on the participant wants to veto or not, he calculates ¢;.

o= J T P, sends 0 (No veto)
Y iR 2y P; sends 1 (Veto)

e Every participant broadcasts g“¥ and a ZKP for ¢;.
Zero Knowledge Proofs.

In Round 1, P, publishes ¢g" ZKP for x; and in Round 2, publishes (¢g¥)% ZKP for ¢;.
We can use Schnorr’s signature for the ZKPs of the knowledge of the exponents in both
the times. For knowledge of z, Schnorr’s Signature works in the following way. Assume
H :{0,1}* — Z, to be publicly agreed, secure Hash function.

e P, chooses v <—r Z,
e P, calculates z = H(g,¢",9%,i) and r = v — 2
e P, sends (g",r, z) to verifier.

e Verifier check if ¢g¥ = ¢g"¢"*

Note : ¢g" = ¢"(¢g*)* <= r = v — xz and since v is chosen randomly and H is secure Hash
function, one cannot deduce z; from published information, but ownership is established.

Tally. Finally we compute]}, ¢“¥% and check if anyone vetoes or not.

We claim that for y; as defined above,). z;y; = 0. Note that,

yizzx]’_ziﬂj — xiinZwixj—inwj =4 Z$1y122(2$11’]—2$l1‘]>

7<i 7>t 7<t >t 7 A 7<t >t
i j<i i > 1<t 7>t 7<t 7>

If no one vetoes, then ¢; = x; Vi and hence, [["_, ¢“¥ = [[_, g% = gXim Tl =],
If one or more participants vetoes, [, g“¥ # 1 with very high probability.

We have bypassed the first drawback we mentioned for DC Net protocol. Because of the
existence of the ZKPs, the participants can not be dishonest and by construction,, it is clear
that we do not need any secret channel between the participants. Thus, the one-bit message
has been sent anonymously without having the drawbacks we encountered for DC Net.

17

4.4 Modified Anonymous Veto Network Protocol

Let G be a (finite) cyclic group of prime order p, in which the Decisional Diffie-Hellman
problem is intractable. Let g be a random generator in G. All computations in G' are modular
operations with respect to a prime modulus q.

Aim of the protocol : A group of n bidders Vi, V5, ...V, wish to find out if there is
one voter who would like to veto a motion i.e. to securely compute \/"_, v;, the logical-OR
function of a number of input bits v; € {0, 1}, each (secret) bit coming from a separate V;.

Round 1.

e BFach bidder V; selects two random values z; <—g Z, and r; <—r Z,

e V; computes X; = ¢* and R; = g"

e Each V; publishes (X;, R;) and NIZKPs for z; and r; using Schnorr’s Signature.
After Round 1 gets finished, each V; checks the validity of NIZKPs of others.

Round 2.
e Vi computes Y; = H;;ll X/ H?:iJrl X;
e V; holds a secret bid v; € {0,1}

e V; posts encrypted ballot b; = { }]:7?” g Z)]Z i (1) on the bulletin board with NIZKP of b;

NIZKP for Round 1.

While publishing (X, R;) = (¢*, ¢") in Round 1, each bidder V; uses Schnorr’s signature to
prove the knowledge of z; and r;. The idea is exactly similar to the ZKP of AV Net, only
difference is that we use an extra random variable here. The process is described in the
following. Suppose, H : {0,1}* — Z, be publicly agreed, secure Hash function.

e P, chooses v <~ Z,
e P, calculates z; = H(g,g", g% ,i),w; = v —x;21; 20 = H(g,9",¢",1),ws = v — 729
e P; sends (g", 21, wy, 22, ws) to verifier.

e Verifier check if g” = ¢g"* (g%)* and g" = g*2(g")*

NIZKP for Round 2.

While publishing b; in Round 2, P; posts a NIZKP on the well-formedness of b;, which
is a disjunctive proof of two sub-statements.

e P, needs to prove (b; = Y,") V (b; = R;")

e Proving b; = Y, is equivalent to prove that (X;,Y;,b; = Y*") is a DDH tuple. To

3 3

prove that (X;,Y;,b; = Y,") is a DDH tuple, we need to prove that (g%, g%, (g¥)**)
and (g%, g¥i, g*) are computationally indistinguishable, where ; < Z, for 1 <i < n,

Y = Zj<i T — Zj>i x; and z; <—pg Z,.

18

e Proving b, = R;" is equivalent to prove that (X;, R;,b; = R;") is a DDH tuple. To
prove (X;, R;,b; = R;*) is a DDH tuple, we need to prove that (¢, g™, (¢"*)*) and
(g™, g™, g*) are computationally indistinguishable, where x;, 7, 2; g Z,.

Tally. Note that, if nobody vetoes i.e. v; = 0 Vi € N, then,

i—1 n
b= v = ([1 2/ T] X" = (¢Sm-S = grelCocinrSpnim)
j=1 Jj=i+1

— ﬁbi — g2 TN i %% — g0 = 1 gince, Z inxj — Z Zl’ﬂj =0

i=1 j<i §>i

After all the V;s submit their encrypted ballot, we compute B = [[_, b; to decide is there is
any non-zero bid or not. We already have, if we have all 0-bids, then B = 0. If at least one
input bid v; is 1, then B would a random element in GG, with the randomness of its coming
from r;. Basically, in the later case, B # 1 with very good probability. Noticing B, we can
guess if there is a single non-zero input for v; or not, which is enough to compute \/__; v;.
Hence, the logical-OR of all input bits has been securely computed by all participants without
revealing the value of each individual bit.

4.5 Differences between AV-net and Modified AV-net Protocols

e In AV-net protocol, we needed to choose one random value from Z,. Here we are
choosing two random values (z;, ;) € Zf,. This requires more computation from each
participant, but the (asymptotic) computation and communication complexity remains
the same as AV-net.

e In AV-net, the ‘veto’ vote is encoded by raising a pre-defined generator to the power
of a random variable, while in the modified veto protocol, the ‘1’ vote is encoded by
raising a random generator to the power of a pre-defined exponent x;. This modification
allows us to effectively integrate the veto protocol into the e-auction scheme as some
zero-knowledge proofs will require proving the equality of the exponents.

19

5 SEAL Protocol

SEAL protocol is an auctioneer-free sealed-bid e-auction protocol, which operates in a
decentralized setting, where bidders jointly compute the maximum bid while preserving the
privacy of losing bids. As we mentioned earlier, no secret channel between participants are
used and all operations are publicly verifiable. Upon learning the highest bid, the winner
comes forward with a proof to prove that (s)he is the real winner. Any third party verifier
can also verify if there is unique winner or there is a tie.

5.1 Basic Overview of the Protocol

A basic building block of the e-auction protocol is the Modified Anonymous Veto Network
(AV-Net) Protocol [13], which securely computes the logical-OR of binary inputs without
revealing each individual bit. Notably, Modified AV-Net protocol is a modification of Hao-
Zielinski’s AV-net protocol [9], which we described in the earlier section. We first describe
the Modified AV-Net Protocol and then explain the way the main SEAL protocol has been
sketched using this modified version of AV Net protocol.

Consider G to be the same group, which we assumed for the Modified AV-Net Protocol. As
described, G is a finite cyclic group of p elements, in which the Decisional Diffie-Hellman
problem is intractable. Say, g is a random generator of GG. All computations in G are modular
operations with respect to a prime modulus q.

Assume there are n many bidders, namely Vi, V5, ..., V,. Each bidder V; put their respective
bid p; on a public bulletin board. The binary representation of each bid contains ¢ bits. The
bid price by bidder V; is hence expressed in the binary form as p; = pi1 || piz || -+ || Pic,
where || denotes concatenation and p;; € {0,1}, with p;; being the most significant bit and
P the least significant bit.

Aim of the protocol : The SEAL e-auction protocol consists of two phases. In the
first phase i.e. the Commit Phase, n bidders Vi, Vs, ..., V, commit their respective bids
P1, D2, - - -, Pn o0 & public bulletin board. In the second phase, all bidders jointly compute the
maximum bid bit wise, starting from the most significant bit position on the left, without
revealing the other bids. This phase can be divided into two stages for better explanation.
SEAL protocol has ¢ iterations. (c is number of bits in binary representation of bid-prices)

5.2 Phase 1 : Commit Phase

In this phase, for each 1 < ¢ < n, the bidder V; commit their bid p; to the public bulletin
board, where binary representation of p; is p;1 || pi2 || ... || Dic, as mentioned. In order to do
this, V; computes ¢ many commitments ¢;;, each one for a bit of p;; , for j € {1,...,¢c}. The
process is as follows.

e For 1 < j <, the bidder V; chooses «;; <—r Z, and B;; <—r Z,
e V; computes ¢ individual commitments ¢;; = (giPi gris | g g)

e V; also posts a NIZK proof of well formedness of each committed bit.

20

NIZKPs for Phase 1.

Each bidder V; also posts a NIZK proof of well formedness of each committed bit in the form
of €;;, where NIZKP shows p;; € {0, 1}, without revealing the correct value. Suppose, each
commitment of our scheme is of the form ¢ = (¢*%g", g%, ¢°), where v is the committed bit.
Each bidder provides ¢ many commitments, each for exactly one of the ¢ many bits in the
binary representation of the bid-price of that bidder. The construction of the NIZK proof of
well-formedness of the commitment has two parts. First, given ¢® and ¢, the bidder (i.e. the
prover here) needs to prove knowledge of a and f using Schnorr’s signature (well-formedness
of public keys). Then the statement that the prover needs to show is that e is well formed for
v € {0,1}. We explain both the NIZKP in the following.

NIZKP of well-formedness of Public Keys.

We have seen that to form the commitments, the bidder needs to select a and § and
publishes ¢® and ¢® on the public bulletin board. Now to prove the knowledge of a and f3,
the prover (i.e. the bidder) uses the following NIZKP using Schnorr’s Signature.

Suppose, the prover V; has x and she publishes X = ¢g* publicly. Now she wants to prove the
knowledge of =z = log, X. In this proof, we need a random challenge of the obtained through
feeding the commitment and all other available argument into a random oracle. We hereby
introduce a Hash function H, which takes certain inputs and outputs a random challenge z.
Here we present the game based proof to understand the ZKP better. Note that, since we
need a NIZKP, only change we shall make is that instead of keeping the game between Prover
and verifier that at the last part, the prover will not send any information to verifier and the
code itself checks if the verification equation holds or not.

Prover Verifier

Chooses 1 <—g Z,,
Computes € = g"
Computes ch = H(g,4", g%, 1)
Computes p=r —z . ch
€, p, ch

e = grxeh

Correctness : The NIZKP is accepted if the verification equation holds true i.e. ¢ = g? X"
The correctness proof lies to the fact that ¢ = g" = gP - < = gP(g%)" = gP X I,

In the above ZKP, we call ch as challenge, £ as commitment and p as response. The
prover needs to do just one exponentiation for generating the proof that contains one chal-
lenge, one commitment and one response, 3 parameters in total. The verifier needs to do 2
exponentiations to verify the proof.

21

NIZKP of well-formedness of Commitments.

We assumed that each commitment is of the form e = (g*?¢%, g%, ¢”), where v is the commit-
ted bit. Each bidder provides ¢ such commitments. Now to prove that ¢ is well-formed 7.e.
v € {0, 1}, the prover i.e. the bidder needs to show the following statement holds.

o=(0=9"NA=g"NB=¢")V(o=g"gNA=g"AB=4g’)

Note that, depending upon v = 0 or v = 1, we have ¢g*?¢* = ¢*% or ¢*% = g*8¢, respectively.
Hence, only one of the statement can be true. WLOG we assume that the first statement is
correct i.e. ¢ = g** N A = g* A B = ¢®. So, the prover needs to provide a real proof for this
statement and a simulated proof for the other statement ¢ = ¢®°g A A = g®* A B = ¢°. the
NIZKP to prove this is following. As similar to the above NIZKP, instead of keeping the game
between Prover and verifier that at the last part, the prover will not send any information to
verifier and the code itself checks if the verification equations hold or not. As before, H is
publicly agreed secure Hash function.

Prover Verifier

Chooses 11 <—r Z,

Computes £1; = g"

Computes &5 = (g”)"
Chooses chy «g Z,

Chooses py < Z,

Computes 97 = g~2(g)"2
Computes 99 = (¢g°)P2(¢/g)>
Computes ch = H(g, g™, g",1)
Computes chy = ch — chy

Computes p; = r; — a.chy

€11, €12, €21, €22, P1, P2, chi, cha
7

en = go . (g7)M

€12 = (gﬁ)pl (¢ e
91 = g (g*)"
en = (97)7 . (9/g)"

Correctness : If all 4 relations hold then the proof is accepted. This works because

.ch h
o g = gT'l — gP1+OzC 1 — gpl.(ga)c 1

o £y = (gﬁ)m — (g/B)Pl+(l.Ch1 — (gﬁ)pl'(gaﬁ)chl — (gb’)pl.(qg)chl

o co1 = g”.(9%)™2 and e99 = (¢7)"2.(¢/g)"2, by construction.

The proof consists of 4 commitments, 2 challenges and 2 responses, making the space
complexity equal to 8. The prover needs to do 6 exponentiations for generating the proof.
The verifier needs to do 8 exponentiations for verifying them.

22

5.3 Phase 2 : Computing the Highest Bid

The second phase of the protocol is divided into two stages. As mentioned earlier, the Modified
AV-Net protocol is used as a basic building block to compute the logical-OR of the input bits.
Assume that, some bidder V; bids a value of p; = pi1 || pi2 || - .- || Pic, where p;; € {0,1}. Say,
for example some bid is of value 11, whose binary expression would be 01011, assuming ¢ = 5.

Now, at each iteration of the SEAL protocol, each bidder V; uses a bit d;; (for 1 < j < ¢)
as the input to the mentioned Modified Anonymous Veto protocol, without revealing the
committed bit. Now initially we consider d;; = p;;. All bidders can easily compute the logical
OR of all d;; bits for any of the bit positions using the described protocol.

Define T; = dy; V dy; V ...V dy;. We call a position j to be Deciding Position it T; = 1 and
Non-Deciding Position if T; # 1. The first deciding position is called a Junction. Notably
until the Junction, we keep d;; = p;; and after Junction, the bidder uses d;; = p;; A dﬁ,
where df]_- is the bit in previous deciding position. Consider the following example with bid
value p; = 01011. Here, Junction (J) position is the second position, hence dig = p1g = 0
and dy; = pip = 1. But, dig = pia Adjg =p2ANdin =0, dig = pis ANdyg = pra Adia =0
and finally, di4 = p1sa N dg = p12 Adia = 0. We call it Stage I until the computation of the
junction position is done, and the later stage is termed as Stage I1.

‘ Decimal Binary ‘ J D D ‘
Committed Bid 12 01100 |0 1 1 0 0
Submitted Bid 0 1 1 0 0
Committed Bid 11 01011 |0 1 0 1 1
Submitted Bid 0 1 0 0 0
Committed Bid 13 01101 |0 1 1 0 1
Submitted Bid 0 1 1 0 1
Committed Bid 7 00111 |0 0 1 1 1
Submitted Bid 0 0 0 0 0
| Highest Bid | 13 01101 | 0 1 1 0 1|

Index : D - Deciding position, J - Junction (1st Deciding) Position.
Stage I : Computation till Junction Position.

Bidders start from the most significant bit position i.e. 7 = 1 and move to the less sig-
nificant bit positions bit-by-bit until they reach a junction, where Stage I terminates. As
stated above, at the bit position j, bidders apply the Modified AV-Net protocol in following
way with private binary inputs d;; , for 1 < j < n, with a ZKP that the input bit is the same
as the committed one i.e. d;; = p;.

Round 1.
e Fach bidder V; selects two private keys x;; <—r Z, and r;; < Z,,.
e V; computes the public keys X;; = ¢"v and R;; = g"
e Each V; publishes Pub;; = (Xjj, Ri;) and NIZKPs for x;; = log, Xi; and r;; = log, R

i+

23

Round 2.
e Fach V; computes Y;; = g%/ = HZ_:11 g®i / HZ:Z,H gk
e V; already holds p;; € {0, 1}, corresponding to his choice of p;

e V; posts encrypted ciphertext, known as cryptogram

Y;fu = g*u¥i if Dij = 0; (O—Cryptogram)
bij =

on the bulletin board along with 7;;, a NIZKP of well-formedness of b;;.

Tally for Stage I.
e Compute [}, b;, the product of all the cryptograms.
o If [[", b; =1, the we conclude T; = 0.
o If [T, b; # 1, the we conclude T; = 1.

e Hence, we get 17175 ...T} as final output, where j is the Junction Position.

After the two rounds, all the bidders verify that the correctness of NIZKPs and compute 75, the
logical-OR of the input bits d;; for the jth position. This logical-OR computation is realized by
multiplying b;;s and comparing the result against 1. Basically, if [}, b = 1, then all bit inputs
were 0 and hence, T; = 0 and if [}, b; # 1, then at least one bit input was 1 and hence, T; = 1.
The explanation is similar to the one in the computation part of the Modified AV-Net protocol.

Finally, if T = 0 i.e. the bit position is non-deciding position, all bidders remain in Stage 1
and move on to compute the logical-OR of the next bit position. If T; = 1, which means the
junction is reached and all bidders move to Stage I1.

NIZKP for Stage I.

Note that, In Round I, every bidder posts Pub;; = (X;j, Ri;) and NIZKPs for z;; = log, X;;
and r;; = log, R;;. Both these NIZKPs are constructed based on Schnorr’s Signature. In pre-
vious subsection, we discussed the same NIZKPs to prove the well-formedness of Public Keys.
We have seen that how the bidder prove the knowledge of x while posting ¢g* on public bulletin.

In Round II, the bidder posts a NIZKP of the well-formedness of the encrypted cryptogram.
For proving the well-formedness of b;; in the Stage I of the protocol, the NIZK proof of

d;; = pij basically needs to prove the logical statement (d;; = 0Ap;; =0)V (d;j =1 Ap;; =1).
Basically, in iteration j, we need to prove that

o= ((bij = gtiivi /\Xij = g% A Yij — gyij) /\(Cij _ gocij/Bz‘j /\Aij = g% A\ Bij - gﬁij))

\/ ((bZ] _ g$ij7‘ij A Xij _ g.l’ij /\Y;j _ g’!’ij) /\(Cij _ gaijﬂijg /\Aij _ gOéij A Bz‘j _ gﬁij>)

24

We can write the statement in following way for simplicity.
o= ((B:g“’/\X:ngY:gy)/\(c:gaﬂAA:gaAB:gﬁ))
V(B=g"rAX=g"nY =¢g) Nc=g"gnA=g"rB=g")

This is an instance of one-out-of-two statement. Hence, only one of the two constituent
sub-statements can be true. We suppose the first sub-statement is true, i.e. (B=g"WANX =
FANY =g) Nle= g NA=g*A B = g?) holds. The ZKP is the following.

Prover Verifier

Chooses 111,712 <R Zy
Computes 17 = g™
Computes 19 = g"2
Computes 13 = Y™
Computes €14 = B2
Chooses pa1, p22 < Zyp
Chooses chy «r Z,
Computes g9, = gr2' Xh2
Computes 99 = gr22 A°h2
Computes 93 = R B°h2
Computes e94 = BP?2(c/g)"
ch <— Grand Challenge of NIZKP
Computes chy = ch — cho
Computes p11 = 11 — x.chy

Computes p1o = 119 — a.chy
commitments, challenges, responses

€11 z gr . X cht
€19 z g2 . Ach
€13 ; yru | Bem
€91 z gr . X che
€99 z g . Ach2
£93 ; R, BCh2
0 = Br2 . (c/g)™

As stated earlier, we make this NIZKP by involving no so-called Verifier and keeping the
check of the verifying equations happen by the code itself. If the above 8 relations hold, the
NIZK proof is authentic. A bidder needs to do 12 exponentiations for computing the above
NIZK proof arguments. The proof itself consists of 8 commitments, two challenges and 4
responses. Hence, the space complexity of the proof is 14. Moreover, a verifier needs to do 16
exponentiations for checking all the arguments of this NIZK proof. Similarly a NIZK proof
can be constructed if the second statement holds true.

25

Stage II : Computation after Junction Position

The later stage is almost the similar to the earlier one, except that d;; is defined differ-
ently. Instead of using a bit that must be the same as the committed one, every bidder now
uses d;; = pi; N dlx]—., where d « is the bit that the bidder used in the previous deciding bit
position. We assume that Stage Il starts from the jth position and iterates towards the
lest significant bit position until j = c¢. Therefore, the steps of Round 1 are exactly same
as the Stage I. The only difference in the Round 2 occurs while calculating the encrypted
cryptogram b;;. We present the stage in the following.

Round 1.
e Fach bidder V; selects two private keys x;; <—r Z, and r;; <—g Z,,.
e V; computes the public keys X;; = ¢"v and R;; = g"
e Each V; publishes Pub;; = (Xjj, Ri;) and NIZKPs for x;; = log, X;; and r;; = log, R;;.

Round 2.
e Each V; computes Yy; = g¥s = [[._} g"*/ [lizipi 9™
e V; already holds p;; € {0, 1}, corresponding to his choice of p;
e 1 posts encrypted ciphertext, known as cryptogram

Y =gy if pij A d;5 = 0; (0-cryptogram)

bij -
R = g¥imis if p; A 5 =1; (1-cryptogram)

)

on the bulletin board along with 7;;, a NIZKP of well-formedness of b;;.

Tally for Stage II.
e Compute [}, b;, the product of all the cryptograms.

o If [[", b; =1, the we conclude T} = 0.
o If []I, b; # 1, the we conclude T = 1.

e Hence, we get T;117)42... T, as final output, where j is the Junction Position.

After the second round, one can check all NIZKPs and compute 7j. The bidders follow the
same procedure to iterate through the rest of bit positions. The logical-OR outputs 7j from
each of the ¢ bit positions constitutes the binary representation of the highest bid, i.e. the
highest bid is T3||13]| ... ||T. in binary format.

Once, the highest bid is computed, the winning bidder V,, can come forward and prove
that (s)he is indeed the real winner either by opening her commitments {e,,; : 1 < j < ¢} or
by revealing the randomness z,,; = log, X, used in the last deciding bit position allowing
everyone else to decipher the cryptogram submitted by him/her in the iteration corresponding
to the last deciding bit position. It is easy to see that only the winner(s) would submit
l-cryptogram(s) in the iteration corresponding to the last deciding bit position. Based on
ZTwk, everyone is able to verify if there is only one winner of if there is a tie.

26

NIZKP for Stage II.

Since the calculations in Round I is exactly similar to the Round I of Stage I, the same ZKPs
would work here as well. In Round I, the bidder posts a NIZKP of the well-formedness of the
encrypted cryptogram. For proving well-formedness of b;;, we need to prove d;; = p;; /\dz.<]—.. For

that, we need to show the logical statement (d;; = 0A(piyAd5) = 0)V(di; = 1A (pyAd5) = 1),
which is equivalent to prove the following statement

Basically, in iteration j, we need to prove this one-out-of-three logical statement.

/\(Cij _ gaz‘jﬁz‘jg A Az‘j — gaij A Bz’j — gﬁz‘j)) \/ ((b” _ gacijyij A Xz’j — gzij A Y;;j — gyij>
/\(bij/ _ gxi]-/rij/ /\Xij/ _ gxi]-/ A Rij’ _ grij/) /\(Cij _ gOéij,Bij A Aij — gaij A Bij — gﬁij))
\/ ((bw _ gacijyij A Xz‘j — gmij A Y;j — gyij) /\(bij’ _ g“%‘j’yij’ A Xij’ _ g;tij/ A Y;j/ — gyij/))

We can write the statement in following way for simplicity.
0= ((Bi =g AXi=g" AR =g") \(B; = g™ A X = g% AR; = g7)

/\(CZ — gaiﬁig ANA= gai AB = gﬁi)) \/ <(Bz — gwiyz‘ ANX, = gffi ANY; = gyi)
/\(Bj _ gggjrj /\Xj _ ga:j /\Rj _ g”)/\(C'i :gaiﬁi ANA= gOéi A B :gﬁi))
V <<Bz‘ =g A K = g7 Y= g") \(Bj = g™ A X =g Ny, = gyj))

The above statement is a one-out-of-3 logical statement. The NIZK proof for the above
statement is constructed such that each bidder will be able to show the well-formedness of
her cryptogram without revealing whether the cryptogram is an encryption of 0 or 1.

Since this is a one-out-of-3 NIZKP, basically we construct three cases, where in each case we
assume one of these statements is correct. We here describe all these three cases and how
the commitments, responses and challenges are formed by the Prover (i.e. the Bidder) for
the NIZKP. After that, we shall describe the verifying equations. In Case 1, we assume that
(Bi = g""" ANX; = g" ARy = g") N(Bj = ¢"" AN X = g" ANRj = g") N(Ci = g*"ig NA =
g ANB = gﬁi) is true. Similarly, the second and third cases are assuming the other statements
are true, respectively. Overall it requires at most 28 exponentiations for computing the above
zero knowledge proof. Also the space complexity of the proof is 27. The verifier needs to
perform 32 exponentiations for verifying all the arguments in the given 16 equations.

27

Case I Case II

Chooses 111,712,713 <R Zy Chooses 191,792,723 <R Zy
en=g" e2=9g"e3=9g" €91 = g, €90 = g2, 893 = ¢
en = RV, e, = Rj? ey = B™ €y =Y, ey = R, ey = B™
Chooses pa1, p22, p23 <R Ly, Chooses pi1, p12, P13 <R Ly,
Chooses chy <—r Z, Chooses chy «—r Z,
E91 = gﬂ21XiCh27522 — g022Xj?h2’ €93 = gp23Ach2 £11 = ngXZ-Chl, £19 = gPl2X;h17€13 — gpl3Ach1

I __yPrrpche 1 _ pp22nche 1 ppasvche ! _ pPiipchi 1 _ ppi2pchi o1 Dpis) chi
ey =Y/ "' B; 7322—Rj Bj ,En3 = BPBC; ey = RV B; 7512—Rj Bj €13 = B (Ci/g)

Chooses ps1, p32, P33 <R Ly Chooses ps1, p32, P33 <R Ly
ooses chs < g ooses chs <+ g
Ch hs <—r Zy, Ch hs <r Zy,
ch ch ch ch
e31 = g X7 E39 = gM2 X g31 = g X E39 = gM X
! __ P31 pchs 1 __ yp32 pchs ! __ vP31pchs 1 __ \p32 pchs
ey =Y/ B; 7532—Y} Bj ey =Y, B; 7532—Yj Bj
ch <— Grand Challenge of NIZKP ch <+ Grand Challenge of NIZKP
chy = ch — chy — chs chy = ch — chy — chs
p11 = T11 — Ti.chy p21 = T21 — Tj.chy
p12 = T2 — Tj.chy P22 = Toa — Tj.Chy
p13 = r13 — ;.chy P23 = T3 — ;.chy
Case III Verifying Equations
ying bq
?
Chooses 131,732 <R Zy €11 = g . thl
?
€31 =9 €3 = g’ 12 = g"* . X;hl
?
/I __\T31 o _ \/T32 - 2 ch
€5 = Y7 E3 =Y £13 = g . A
‘?
/T P11 ch
Chooses p11, p12, P13 R Ly ey = RIY OB
?
r L P12 chy
Chooses chy <—r Z, g = R} . B
_ ch _ ch _ h r 2 h
€11 = gpllXi 1’512 = gplsz 1’513 = gPlSAC 1 €13 = Bris (C’l/g)c 1
! _ ppuipcht 1 _ ppi2pcht 1 ppis) chy 2 P21 cha
? ch
Chooses pa1, P22, P23 <R Ly £ = g . X
?
Chooses chy < g Z, £93 = P . A
_ ch _ ch _ h r 2 P21 ch
621—9"21Xi 2,822—9’022Xj 27523_gp23A02 €91 = YZ BZ 2
! __ vp21pche 1 pp22pchy 1 cho ;T P22 cho
ey =Y/ B g5y = R B 695 = Brscy €99 = R . B
?
ch < Grand Challenge of NIZKP ehy = Brs . C
?
chs = ch — chy — chs €31 = g3 . th3
? chs
p31 = 31 — T;.chg €32 = g . X7
?
_ A P31 ch
ps2 = T3z — xj.chs eq = Y/ LB

/ o P32 Ch3
€30 = Y[. B

28

5.4 Extension to Vickrey auction

We discussed the SEAL Protocol thoroughly in this section, which is developed for the
first-price sealed-bid auction. A straightforward way to extend it to support second-price
sealed-bid (i.e., Vickrey auction) works as follows. The protocol is first run to identify the
highest bid and the winner, and then run the second time with the winner excluded to compute
the second-highest bid. The bidder who commits the second-highest bid remains anonymous.
The winner pays the second-highest bid in the end. However, in this protocol the highest bid
will be revealed, which is not strictly necessary, and may cause some privacy concerns. Yet
we can say that this can be extended to second-price sealed bid auction protocol due to it’s
privacy policy. We first explain the property and state the formal proof of that and then we
discuss the way to extend the protocol.

An auction protocol is said to satisfy inclusive privacy, if each bidder V; learns nothing
more than their own input and the output of the function f,q.(pl,...,pn). Consider C to be
a set of colluding bidders and H be the rest of the bidders, 7.e. C'"U H 1is the full set of bidders.
Let € be the size of H and h; € H for i € {1,...,6}. We assume C' to be non-empty set. We
say an auction protocol satisfies exclusive privacy if besides the maximum of all inputs and
their own inputs, C' learns nothing more than fi,a.(Pay, - - -, Phy)-

Theorem. SEAL scheme satisfies exclusive privacy.

Proof of Theorem. To prove this theorem, we first prove the following lemma. As stated
above, we assume C' # ¢ to be the set of colluding bidders and H be the set of honest bidders.
Also, |[CUH|=n and |H| = 6.

Lemma. Let dp,; be the bit corresponding to the cryptogram submitted in iteration j
by V;, for hi € H,1 <1i <0 and d,,; be the bit corresponding to the cryptogram submitted
in iteration j by V., for ¢; € C,1 <7 < n — 0. Then, the set of colluding bidders can learn
nothing more than \/?_, d,,;.

Proof of Lemma. Suppose in some iteration j, we have K; = \/;9:1 dp,; = 0, which means anyone
can learn that dp,; = 0 for all h; € H. Hence, we have to show that when K; = \/f:1 dp,; = 1,
the colluding bidders will not learn any other information. In order for proving this fact it is
sufficient to show the followings.

e The colluding bidders will not be able to distinguish between the two cases where
\/f:1 dp,; = 1, but the number of bidders who submitted 1-cryptogram is different.

e If two honest bidders who submitted different bits exchange their inputs, then this
cannot be detected by the adversary.

We choose two scenarios in which a particular honest bidder submits different cryptograms
i.e. in one scenario the bidder submits a O-cryptogram and in the other one she submits
a l-cryptogram. We show that if the value of K is 1 in both the scenarios, then the two
scenarios will be indistinguishable to the adversary (colluding bidders). Once we prove these
results, they could be easily extended to show that the statement of the above lemma holds.
Let us assume that the public keys used by the colluding bidders are (X,,, R.,) = (¢", "),
for each ¢; € C. Similarly, the public keys of the honest bidders will be (Xj,, Rp,), for each

29

h; € H. The cryptograms of the colluding bidders will be g®<i*<i, where z., = y., or 2., = Y,
depending upon the choice of bid. Let, ¢ = {x., | 1 <i <n —60}. Now, let us assume that
one honest bidder V},, has submitted a 1-cryptogram in the form g*»«"m. As such we need to
show that the colluding bidders will not be able to find whether or not there is another bidder
Vi, he € H, who also submitted a 1-cryptogram. If V},, submitted a 1-cryptogram, then her
cryptogram will be by, = g**» " and if she submitted a 0-cryptogram, her cryptogram should
look like b, = g™,

Since we assumed DDH assumption in this group, we conclude that [13] no adversary can distin-
guish between A = (¢, b1,b2,...,bpy, -, b,y .., 0p) and B = (¢,b1,by, ..., bpyy ., 0o by).
Hence, the colluding bidders will not be able to distinguish between two cases where the value
of K; = \/?:1 dp,; is 1, but the number of bidders V},, h; € H who submitted 1-cryptogram in
iteration j is different. Let us assume b, = g"»™ for e € {w,t}. Now observe that

B = (¢,b1,b2, ..., bhyy -5 by,s oo by)

~ (A, b1, bay ... by bays e by)
2 (6,01,09, By o Dy)

Hence, the colluding adversary will not be able to distinguish between two cases where a pair
of honest bidders exchange the value of their submitted bits whose values are complement
to each other. This way anyone can prove that as long as at least one bidder submits a
l-cryptogram in any iteration, the colluding bidders will not be able to distinguish between
the set of all possible cryptograms corresponding to all possible values of the bits submitted
by honest bidders. What the colluding bidders learn is the logical-OR, of all bits submitted by
all honest bidders which is given by K; = \/?:1 dp,j- [Proves the lemma.|

Now note that, dp,; is the bit corresponding to the cryptogram submitted in iteration j
by Vj,. This is equal to the actual bid value by,; only if the bidder V},, remains in the race
(she will have to submit 0 if she has lost in the race as enforced by the ZKP in the equation
(dij = py ANdg =1)V(dy =0Ads =0)). Assume the winner is decided at the §-th
iteration, 1 < 8 < c. If the colluding set do not contain the winner, the bit value K that
they learn is the same as the j-th most significant bit in the highest bid. In other words, they
learn nothing more than the highest bid of all bidders. However, if the colluding set contain
the winner, they can learn K, || K» || ... || K3, which are the 8 most significant bits of the
maximum bid of the non-colluding set H. The colluding set will learn the maximum bid of
the non-colluding set in the worse case when § = ¢ (namely, the winner is only decided in the
last bit iteration). Hence, the theorem is established.]

We now describe a more efficient and privacy-preserving method to support the Vickrey
auction. In this method, the bit iterations will only need to be run once and the highest bid
remains secret. As we will show in the proof of the earlier theorem, at each j-th bit iteration,
every bidder V; learns nothing more than \/,. (12, 0Pk d;j . Therefore, at each bit iteration,
the bidder who remains a winner can learn if she is the only winner in the race. Thus, if the
bidder finds that she has submitted the sole one bit in that bit iteration and thus has become
a confirmed winner, she declares herself as the winner and steps aside to let other bidders
continue. Those losing bidders reset the output of that winning iteration to be 0 and make
it a non deciding iteration. Losing bidders then continue executing the rest of the steps as
specified in the main protocol. This would reveal the next highest bid, while hiding the ¢ — j
least significant bits of the highest bid.

30

6 Implementation of SEAL Protocol

In this section, we thoroughly discuss about the implementation of the discussed SEAL protocol
over a Test Ethereum Network. Three HTML5 / JavaScript pages are to be developed to
provide a browser interface for all bidder interactions. The web browser interacts with an
Ethereum daemon running in the background. We use the Remix Ethereum Platform to run
the whole protocol. We use Solidity language to design the tally and the Zero-knowledge
Proofs of the scheme. The protocol is executed in five stages, and requires bidder interaction
in two rounds. We give an overview of the implementation in the following subsection. The
code is supposed to achieve the following properties.

e All communication is public - no secret channels between bidders are required.
e The system is self-tallying - no tallying authorities are required.

e The bidder’s privacy protection is maximum - only a full collusion that involves all other
bidders in the election can uncover the bidder’s secret bid.

e The system is dispute-free - everybody can check whether all bidders act according to
the protocol, hence ensuring the the result of the auction protocol is publicly verifiable.

6.1 Design Rationale

6.1.1 Structure of Implementation

The smart contracts for the tally and the ZKPs are written in Ethereum’s Solidity language,
as stated. In the final protocol, we wish to keep only two smart contracts, namely the auction
contract and the cryptography contract. The auction contract implements the auction
protocol, controls the auction process and verifies all the zero knowledge proofs we have in
the SEAL e-auction protocol. The second contract i.e. the cryptography contract distributes
the code for creating the zero knowledge proofs. This provides all bidders with the same
cryptography code that can be used locally without interacting with the Ethereum network.
Also, we need to finally provide three HTML5 pages for the users.

1. Auction Administrator admin.html

This page administers the auction. This includes establishing the list of eligible bidders,
setting the auction question, and activating a list of timers to ensure the election pro-
gresses in a timely manner. The latter includes notifying Ethereum to begin registration,
to close registration and begin the auction, and to close bidding and compute the tally.

2. Bidder bid.html

This page is designed for the bidder. The bidder can register for an auction, and
once registered, she must cast her bid.

3. Observer liwefeed.html

Anyone, even any third party observer, can watch the auction’s progress consisting of
the administrator starting and closing each stage and bidders registering and casting
bids. The running tally is not computable.

31

6.1.2 Auction stages

The five stages of the auction are described below in brief. The smart contracts has a
designated owner that represents the auction administrator. This administrator is responsible
for authenticating the bidders with their user controlled account and updating the list of
eligible bidders. A list of timers is enforced by the smart contract to ensure that the auction
progresses in a timely manner. The contract only allows eligible bidders to register for an
auction, and registered bidders to cast their respective bids. Furthermore, the contract can
require each bidder to deposit ether upon registration, and automatically refund the ether
when their bid is accepted into the Block-chain.

1. SETUP Stage. The auction administrator authenticates each bidder with their user-
controlled account and updates the contract to include a whitelist of accounts as eligible
bidders. She defines a list of timers to ensure that the auction progresses in a timely
manner. The time stamp we wish to keep in our implementation are the followings.

® tfinishRegistration - All bidders must register their public keys (X;, R;) before this
time stamp.

® theginAuction : 1he administrator must notify Ethereum to begin the process by this
time.

® {tinishCommit © All bidders must commit to their bid before this time.
® ttinishpia - All bidders must submit their bid before this time.

e 7 : A minimum length of time in which the commitment and bidding stages must
remain active to give bidders sufficient time to bid.

The administrator also sets the registration deposit, the auction question/statement,
and finally, the administrator notifies Ethereum to transition from the SETUP to the
SIGNUP stage.

2. SIGNUP Stage. All eligible bidders can choose to register for the bid after reviewing
the auction statement and other parameters set by the administrator. To register,
the bidder computes their public key and ZKPs. Both the keys and proof are sent to
Ethereum alongside deposit ether. Ethereum does not accept any registrations after the
scheduled time. The administrator is responsible for notifying Ethereum to transition
from the SIGNUP to COMMIT stage. All bidder’s reconstructed keys are computed by
Ethereum during the transition.

3. COMMIT Stage. All bidders publish the commitments formed by them using their
bid to the Ethereum blockchain. The contract automatically transitions to the BIDDING
stage once the final commitment is accepted into the Block-chain.

4. BIDDING Stage. All bidders publish their (encrypted) bid and corresponding ZKP.
The deposit is refunded to the bidder when their bid is accepted by Ethereum. The
administrator notifies Ethereum to compute the tally once the final bid is cast.

5. TALLY Stage. The administrator notifies Ethereum to compute the tally. Ethereum
computes the product of all ballots (encrypted bids) and declared the result in the way
defined in the protocol.

32

SEAL e-auction protocol requires all the registered bidders to cast their bid to enable the tally
calculation. The deposit in our implementation provides a financial incentive for registered
bidders to bid. This deposit is returned to the bidder if they follow through with the SEAL
protocol and do not drop out. The list of timestamps defined by the administrator determines
if the bidder’s deposit is forfeited or refunded. There are three refund scenarios if a deadline
is missed in the protocol.

e Registered bidders can claim their refund if the auction does not begin by tycginAuction-

e Registered bidders who have committed can claim their refund if not all registered
bidders commit to their bid by ? finishcommit-

e Registered bidders can claim their refund if not all registered bidders cast their bid by
L finishBid-

As described earlier, the SEAL protocol has used a modified version of Hao-Zielinski’s
Anonymous Veto Protocol [9] as a building block for the scheme. Previously, this AV-Net
protocol was adapted for another scheme for e-voting, namely Anonymous voting scheme by
two-round public discussion [10] by Feng Hao, Peter Ryan, and Piotr Zielinski in 2010. The
implementation idea is almost in line with the implementation of the Open Vote Network
(based on paper Anonymous voting by two-round public discussion). Patrick McCorry has
implemented [15] this scheme over test ethereum network. We wish to adapt the code for the
scheme in favour of our SEAL Protocol. The detailed mechanism is also studied and adapted
for our protocol through their paper, namely A Smart Contract for Boardroom Voting with
Mazimum Voter Privacy [28].

6.1.3 Overview of the Code Execution

The final protocol is supposed to consists of the whole description given above. In this project,
we have calculated the backends of the whole protocol i.e. we have designed all the ZKPs
needed for this calculations as well as the tally for the Commit phase and Stage I and Stage II
calculations of the Computation Phase has been implemented. Also we have implemented the
JAVA file to generate the nonces needed and the output of the JAVA file is to be uploaded by
the bidders while registering to the process.

Furthermore, we need to design the HI'ML5 front end to finally run the protocol as de-
sired. As of now, to check the correctness of the protocols we designed, we have generated
test values through the protocol itself and checked if the ZKPs are working properly or
not. Similarly, we have generated a dummy tally as well to check if the whole SEAL code
can be checked working properly or not using small number of bidders and small size input
bids. We have kept the number of bidders to be three and each bidder can submit bid of 5 bits.

During the final execution, we need to run Geth in the background. Then the admin
would create three Bidder account and unlock them through terminal command. Now, the
admin needs to transact the minimum ether needed for bidding to each Bidder from Admin
account. We need to create a Charity account, which may contain any ether. Then, the admin
compile the sol file for eAuction. On successful compilation, deploy the contract using the
Admin account. Fix gas limit higher as required, gap to be 1 and keep the charity account
address as created. On successful deployment, the admin copies the Ethereum Address of the
newly created contract and put that into the correct positions within the code of Admin.html,
Bidder.html and Livefeed.html.

33

In similar way, we compile and deploy the other sol file for the ZKPs. After deployment, the
admin copies the address and put that into Admin.html and Bidder.html. Now, the admin
opens the Admin page and three Bidder pages in web browser. The Admin log into (default
passphrase is empty string) the system and update the list of eligible bidders into the system.
Note that, the Charity address won’t be a Bidder. Next Admin sets the timestamps, states
the Auction statement and begin the Registration. Each eligible Bidder now uploads the
text file, generated through the JAVA program and logs in the system using their Ethereum
Address and passphrase (assigned when creating account) and registers themselves, for which
they have to use some fixed amount of ether. Admin then finishes the Registration phase
and the bidders are allowed to cast their bids. They cast their encrypted bids and once all
the bidders are done, one can see the output of the program. Livefeed.html contains all the
information as well. Hence, any third party observer can also check this.

Since the HTML files are yet to be finished, we in this project would show how to as-
sign values and verify the correctness of the backend functions of this protocol. Also we shall
assign proper values and compute a dummy auction protocol to have a glimpse of the output
delivered through the final protocol.

6.2 Elliptic Curve and its Usage in Cryptology

6.2.1 Limitation of Finite Field Arithmetic

Finite field arithmetic plays the most important role in cryptography, as every hardness as-
sumption of cryptography (DDH, factorization) follows from properties of finite field. Each of
these hardness assumption comes with multiplication of large numbers and/or exponentiation
of the finite field elements with large numbers. Both of these type of operations comes with
a lot of computational overhead, and also the numbers go beyond the scope of computer
memory. In fact, multiplication of two 256-bit numbers can lead us to use memory of size
512-bit, which may go beyond the scope of computer-calculation.

During the execution of a cryptographic algorithm, we have to use these calculations for
multiple times. In finite field, if we want to keep the security intact, we have to use large
memory space again and again, making the system inefficient and even slow. Whereas, if we
try to make the system efficient, we shall have to provide small data, so that we don’t have to
deal much overhead. But this memory-efficiency trade-off will have an impact on the security.
In fact, since this time key-space size reduces, brute-force attacks will be easier. This scenario
leads us to change our computation mechanism.

6.2.2 Elliptic Curve Cryptology

e Elliptic Curve over Reals.

Let a,b € R such that 4a® + 270> # 0. Then a non-singular elliptic curve is the
set of points (z,y) € R x R that satisfy
V=23 4ar+0b
together with a special point O, called the point at infinity.
We can realize elliptic curves in finite field also. Surprisingly, elliptic curves repli-

cate finite field multiplications and exponentiation in a nice way which we can use to
establish security and hardness results of cryptology.

34

e Elliptic Curves in Finite Fields.

Let p > 3 be a prime. The elliptic curve y* = a® + az + b over Z, is the set of
solutions (x,y) € Z, x Z, of the congruence relation

V=2 a3+ ar+b modp

together with the point O at infinity.

e Operations over Elliptic Curve.

The addition operation over an elliptic curve £ follows certain conditions.
For any (z,y) € &,

1. O+ (z,y) =(x,y) + O = (x,y)
2. (z,y) + (z,—y) = O = (z,—y) + (z,y)
3. For (z1,y1) # (22,92) € €, let A = £=2(mod p). Then
(x1,91) + (22,42) = (A2 — 21 — 25 mod p, A\(2z1 + 22 — A\?) —y; mod p)

4. 2(x1,5) = (A — 22, mod p, A\(3z1 — A*) — g1 mod p) where \ = 32%;?&

e Interpretation of Finite Field Arithmetic in Elliptic Curve.

Let Gy, Gy, G5 be three abelian groups. A pairing is a function e : G; x Gy — G3 such
that for any P17Q1 € Gl, PQ, QQ S GQ,

6<P1 + Ql,P2> = 6(P17P2)€(Q1,P2) and

e(Pr, P+ Q2) = e(P1, Py)e(Pr,Q2)
Clearly, e(aP,bQ) = e(P,Q)™.

If we simply replace the groups G, Gy with £ and Gz with F i+, then we can understand the
relation between elliptic curve and finite field.

6.2.3 Elliptic curves over Solidity Language

Elliptic curve arithmetic uses less overhead than finite field calculations, yet provides the
same level of security. There are various publicly available elliptic curves to be used in solidity.
To use a particular elliptic curve y*> = 2% + az + b mod p for a finite field of size n, we need
to specify the values of a, b, p,n and the generator G of the elliptic curve group. The existing
elliptic curves can handle 192, 224, 256, 384 or 512-bit inputs. Also, the elliptic curves can be
either verifiably random, or Koblitz-type. In Koblitz curves, we can implement fast elliptic
curve operations. We have used the secp256k1 as our underlying Koblitz-elliptic curve.

The secp256k1 parameters. The elliptic curve domain parameters over F, associated with
a Koblitz curve secp256k1 for handling 256-bit data are specified by the tuple T = (p, a, b, G, n)
where the size of finite field F), is defined by:

p=0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFE FFFFFC2F

35

The elliptic curve £ is y* = 2% + az + b mod p where
a = 0 x 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

b = 0 x 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007
The X and Y coordinates of G are

Gr=0xT9BEG6TE FIDCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9

09F28158 16F'81798
Gy =0 x 483ADATT 26A3C465 5DAAFBFC 0E1108A8 FD17B448 A6855419
9C47DO8F FB10D4B8
Moreover, n = OXFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCEG
AFA8A03B BFD25E8C D0364141

6.2.4 ECCMath and Secp256k1 Libraries

1. The ECCMath library contains expmod and invmod functions, which finds b mod m
in square and multiply algorithm and a=! mod p respectively. Moreover, to handle
point at infinity, the elliptic curve is realized in a 3-dimensional space and Jacobian
coordinates. After calculating, the result is projected in £ using the subroutine toZ1.

2. The library Secp256k1 contains all the elliptic curve operations. It also checks if a given
point P is on the curve or not using the subroutines onCurve and isPubKey.

function onCurve(uint[2] P) internal constant returns (bool) {
uint p = pp;
if (0 == P[0] [| P[0] == p || O == P[1] || P[1] == p)
return false;
uint LHS = mulmod(P[1], P[1], p);
uint RHS = addmod (mulmod (mulmod (P[0], P[0], p), P[O], pP), 7, p

(=] ot - w [=

)
7 return LHS == RHS;
8 }

3. The functions _add, _addMixed, _addMixedM all are used to add two points on the
given elliptic curve. The only difference between these 3 functions is in the input type.
_add can add two points which are in Jacobian(3-d) format, whereas _addMixed adds
a point in the 2-d elliptic curve to another Jacobian point. _addMixedM is same as
_addMixed, but it adds the points internally and returns nothing.

1 function _add(uint [3] memory P, uint[3] memory Q) internal constant
returns (uint [3] memory R) {
if (P[2] == 0)
return Q;
if (Q[2] == 0)
return P;
uint p = pp;
uint [4] memory zs; // Pz"2, Pz"3, Qz"2, Qz~3

g A W N

© 0w 9 O

zs [0] = mulmod(P[2], P[2], p);

zs [1] = mulmod(P[2], zs[0], p);
10 zs [2] = mulmod(Q[2], Q[2], p);
11 zs [3] = mulmod(Q[2], zs[2], p);

36

= W N

11
12
13
14
15
16
17
18

19
20

uint [4] memory us = [
mulmod (P[0], zs[2], p),
mulmod (P[1], zs[3], p),
mulmod (Q[0], =zs[0], p),
mulmod (Q[1], zs[1], p)
1; // Pu, Ps, Qu, Qs
if (us[0] == us[2]) {
if (us[1] '= us[3])
return;
else {
return _double(P);
}
}
uint h
uint r
uint h2
uint h3
uint Rx
Rx = addmod(Rx, p - mulmod(2, mulmod(us[0],
R[0] = Rx;
R[1]
R[1]
R[2]

addmod (us[2], p - us[0], p);
addmod (us [3], p - us[1], p);
mulmod (h, h, p);

mulmod (h2, h, p);

mulmod (h, mulmod(P[2], Q[2], p), p);

addmod (mulmod(r, r, p), p - h3, p);

mulmod (r, addmod(mulmod(us([0], h2, p), p - Rx,
addmod (R[1], p - mulmod(us([1], h3, p), p);

P), P), P);

p), p);

. The function _mul takes a point P on the elliptic curve, an integer n and obtains nP on

the elliptic curve. The return type is a Jacobian point. The logic of the calculation is

exactly same as calculating nP in elliptic curve.

function _mul(uint d, uint[2] memory P) internal constant returns (

uint [3] memory Q) {
uint p = pp;

if (d == 0) // TODO
return;
uint dwPtr; // points to array of NAF coefficients.
uint 1i;
// wNAF
assembly
{
let dm := 0
dwPtr := mload (0x40)

mstore (0x40, add(dwPtr, 512)) // Should lower this.

loop:
jumpi (loop_end, iszero(d))
jumpi (even, iszero(and(d, 1)))
dm := mod(d, 32)

mstore8(add (dwPtr, i), dm) // Don'"t store as signed -

convert when reading.
d := add(sub(d, dm), mul(gt(dm, 16),
even:
d div(d, 2)
i := add(i, 1)
jump (loop)
loop_end:

37

6.3 Generating Private and Public Keys

As we described earlier, in the SIGNUP Stage of the protocol, the bidder needs to register
with their Auction Key. The Auction Key is nothing but the public keys (X;;, R;;), where
X,; = ¢g"7 and R;; = ¢g"7. Now these z;; and r;; are chosen randomly from Z,. Since we
assume that any bidder can bid for amount, which can be represented in ¢ bits in binary
representation, we can fairly claim that our protocol runs for ¢ iterations and hence, for each
iterations, we need to generate both z;; and r;;. We, for now, assume ¢ to be 5. Hence,
we need five pair of random numbers chosen from Z, to serve as Private keys and generate
(Xij, Ri;) pairs for each bit of the bid. We create a JAVA code to generate such and the JAVA
file outputs " auction.text”, which contains all this numbers. The bidder submits this file in
order to register herself for the process.

String xij = "";String Xij = "";
for (int i = 0; i < 5; i++) {
pair = g.generateKeyPair () ;

BigInteger v = ((ECPrivateKey) pair.getPrivate()).getD();
ECPoint vG = ((ECPublicKey) pair.getPublic()).getQQ);
BigInteger _vx = vG.getAffineXCoord().toBiglnteger ();
BigInteger _vy = vG.getAffineYCoord().toBigInteger ();

if (i == 0){

xij = v.toString();

Xij = _vx.toString();

Xij = Xij + "," + _vy;
}
elsed{

xij = xij + "," + v;

Xij = Xij + "," + _vx + "," + _vy;
}

The above code-snippet explains the way we generate each x;; and X;; = g*¥. Also, we need
to generate nonces for the ZKPs and we do generate, append to the same text file and submit
to the code in the SIGNUP Stage only. In cryptography, a Nonce is an arbitrary number that
can be used just once in a cryptographic communication. For a process with ¢ = 5 iterations,
we generate a total of 60 numbers and store them in the mentioned auction.txt file. The
generated elements are the followings.

e Random oy, B for 1 < j<c=5

e Private Keys z;j, 7 for 1 <j<ec¢=5

e Public Keys X;;, Rjj for 1 <j<c=5

e Random nonce r for the single ZKP.

e Random nonces for ZKP for well-formedness of commitments.
e Random nonces for 1-out-of-2 ZKP in Stage I.

e Random nonces for 1-out-of-3 ZKP in Stage II.

38

Also, we need to import some advanced libraries in order to run our protocol. For that,
alongside the JAVA file, we have added another auctioncodes.jar file, which handles the
libraries. For the final execution of the JAVA file, we can run the following command in order
to use the JAR file to fetch the libraries in the JAVA code we mentioned.

chaksayantan@arsenal: ~/Desktop/Auction/ImpSEAL

$ javac -cp "/home/chaksayantan/Desktop/Auction/ImpSEAL/auctioncodes.jar" auctioncodes.java
$ java -cp "/home/chaksayantan/Desktop/Auction/ImpSEAL/auctioncodes.jar" auctioncodes

Computing your auction codes.
Please wait for a while.
Auction codes computed. Calculated the Random Nonces.

Saving to file "auction.txt"

s [1

Figure 4: Generating Text file containing Random Nonces

6.4 Implementing Tally

6.4.1 Tally for Single Bit Case

We discussed in Section 5 that the SEAL protocol has two phases - Commit Phase and
Computation Phase. In the commit phase, the bidder computes ¢ many individual com-
mitments. For each of the ¢ many iteration of the protocol, the code basically generates
gi; = (giibiigPii g gPis). The commitment function in the protocol does this (Fig 5). Since
we are yet to finish designing the HTML5 front end, we cannot pass the values of o, 85, pij
and hence, for checking purpose we currently provide the internal inputs externally.

TallyStageOne, as the name suggests, does the calculations for the Stage I. Formally speaking,
given one bit bids from different (three) bidders, it calculates the Logical-OR of the bids.
The random nonces, as the commitment function, are to be given externally now but later
on this shall be done internally once the front end is implemented. TallyStageTwo does the
calculations for the Stage II phase of the protocol. pi denotes the bids from three different
bidders and di here denoted the bid that the bidder used in the previous deciding bit position.
As shown in the example pi A di = 0 is to be treated as O-cryptogram and pi A di =1 is to
be treated as 1-cryptogram. Since, pt A di = 0 for all three bits in the given example in the
Fig. 5, clearly the output 7 = 0 is a correct output.

Note that, the reader is advised not to misunderstood the given input pi as the bid submitted
by the ¢-th bidder. In the protocol we explained in the section 5.3., p; stands for the bid
of c-bits for the i-th candidate. Here, pi is the array of single-bit bids from three different
bidders. With the notation we used earlier, we can think of pi here as pi = [po;, p1;, Do;]
where the logical-OR of these three bits will generate Tj. Surely, all-zero inputs will generate
0 output and any other input will yield 1 output. Similarly, in the right hand picture, the
output is 1 if there exists at least one k such that both pi[k] = 1 and di[k] = 1.

39

commitment ~

~
alphaij: | 122842 7TEETEES5E4TESE5TEA344: TallyStageOne

[0, o m17]
betaij: | "34234TE546TOEETEETESTEETEGEE

98926512157, "42851 354584343

0 “

o: uwini2s5e: Tj 1
o: uint256[6]: epij 119062476691 65667 1660
E:\E I8T304314
354320662
TallyStageTwo A~
[1°,10"17]
dic | ['on,m1mm]
5TS5E9TI68TIZ3053040 l.JuJ?"BEJEGE .
791 7060040480018410471102738233887 arc | [F1549865692651", 956532124285
058573414
0 “
o: address: (MEREEALAZEFCASCS042CcC55DE o: uini2s56: T) O

BazAEdEB4G9fSCEE

Figure 5: Tally for Commit Phase, Stage I and Stage 11

6.4.2 Extending for Multiple Bits

In the section 6.1.3, we mentioned that for each iteration of the SEAL protocol, we basically
do the tally separately. Hence, the functions described in the earlier sections shall be used in
order to execute the whole protocol. yet we have implemented the computation using the
scheme and checked if the protocol designed by us are working for proper inputs. As stated
earlier, there are three bidders and each bidder is allowed to submit bids of five bits. The
fourth input is nothing but x;;, r;; nonces, which shall be passed through the Java output file
in the final protocol. The output of the protocol should be the highest bid value submitted in
the auction, which we fairly claim is satisfying in the given three instances.

ComputeTallySEAL A ComputeTallySEAL -~

ComputeTallySEAL ~
1 | Por = mpe1=1 pl: | 07,0001 L]

Nl :. i g Ll o .‘lu.-ulr: . h

P P —— 2 | [0, 0]
e T e ! !

e p3: | 07,0071]
na | o1 1] | 1
[98926512157","4285135458434F wiri- | 98926512157, 742851 354584343
[98326512157","42851354584343' '

- ran
ran | U

o int25E(s]: T 0.1.1,0.1 0: uini25&[S): T 1.0,0,0,0 0: wint2s5&[S]: T 0.0,1,1,0
o: address: 0xE0BE PEFCASCS042cC550E o: address: OxE0BG6ALAZEFCASCE0420c0c550B o: address: DxE0E6A4AZEFCA5CcE042cc550B
BazAEdER469/5C86 BaZAEJEB46SfSCE6 BaZAEdEB460fSCBE

Figure 6: SEAL Protocol : Complete Tally Results

40

6.5 Implementing Zero-Knowledge Proofs

6.5.1 ZKP for Well-formedness of Public Keys

Since the SEAL protocol is getting executed without an auctioneer to actually judge the
integrity of the protocol, we are depending upon the non-Interactive Zero-Knowledge proofs
for the well-formedness of the Public Keys and others. We have seen in the protocol that
Schnorr’s ZKP has been used for multiple times for proving well-formedness of Public keys
Xi; and R;; and also to prove knowledge of «;;, 3;; while publishing commitments. In this
section, we discuss the implementation of Schnorr’s ZKP for that.

The problem statement is to prove the knowledge of x while posting ¢” in the public bulletin.
In order to do that, we have created a sample example to check the correctness. The create-
Sample function takes x as input and outputs g*. Now recall that we have passed a random
nonce 7 in the text file in SIGNUP phase, which shall work as an input of createZKP function
along with = and ¢* to provide us (g, p, ch) as output. Now the verifyZKP function checks
the verifying equation and outputs if the the ZKP is accepted or not.

Clearly the output of one function is used as input of other function here. We have kept the
public view property on in these functions for checking purposes. If that is switched off, no
observer can see the calculations.

H £ Sch ZKP.sol
@) DEPLOY2RUNTRANSACTIONS 8 & @ @Home § SchnomZKPso
4

582 3}
563
584
JP— wintz56 2, uint25s b - 585 fI ¢ (random value) ep (blinding value), xG (public key), x (what we are proving)
ﬂa) 586 [/ ch = H(g, g*{r}, g"{x});
587 I r-x.ch(mod p);
563 /1 returnip, rG, ch})
580
P createSample -~ 518~ function createZKP{uint x, uint r, uint[2] x0) public view returns (uint[4] res) {
511
b i | 4324423423 512 uint[2] memory G
513 G[8] = Gx;
. 514 G[1] = Gy;
¢> O call 515 t !
516 ~ (! Secp256k1_noconflict. isPubKey(xG)) [
517 throw; [/Must be on the curve!
518 3
b . .
528 wint[3] memory ep = Secp256kl_noconflict. mul(r, G); // g°r
2 521 ECCMath_noconflict.toZl{ep, pp);
3 7 522 res[A] = ep[8];
a 523 res[1] = ep[1];
524
525 bytes32 chstr = sha2SE(msq.sender, Gx, Gy, xG, ep); /f ch = H(i, g, g*x, g"r);
\\// createZKP ~ 526 wint ch = wint{chstr);
521
S 523 J/f Get 'r" the zkp
I 529 uint xch = mulmod(x, ch, mn); /f x.ch
,‘r 538 wint p = submod(r, xch); [/ p=r - x.ch
"5675666776T6E7GETSET" :g; res[2] = p;
533 res[1] = ch;
A 534 return;
G: | ["11404719780925100867 7057100 53
536
- cal 537 1 Verify that ep = pG + chK = pG + ch.xG !
- 533
539 * function verifyZKP{uint[2] » uint[4]) public view returns (bool){
548 wint[2] memory G;
541 G[8] = Gx;
o 542 G[1] = Gy;
543
544 uvint[3] memory left;
545 left = Secp256kl_noconflict._add(Secp256kl_noconflict. mul({res[2], G), Secp256kl_noconflict. mul{res[3], =G}}; |
546 ECCMath_noconflict.toZl(left, pp);:
547 = if(left[8] != res[8] || left[1] !=res[1]){
543 return false;}
549 - else{
558 return true;}
551
552 1}
verifyZKP -~ 553}
5: | ["114047197909251008877057100
¥ @ 0 Q Search with transaction hash or address
[108043123748569808793115210 Tt T
cALL [call] from: Ox6686A4A26FCc45c5042cc550BBa2AEdEB469T5CE6 to: LocalCrypto.verifyZKP(uint256[2],uint
¢ o |

Figure 7: ZKP for Well-formedness of Public Keys

41

6.5.2 ZKP for Well-formedness of Commitments

This example is a classic example of one-out-of-two Zero-Knowledge Proof. Here, the bidder
need to show the following statement holds in order to prove the well-formedness of the

commitments.

0=(p=g"NA=g"ANB=¢")V(p=g""gNA=g"NB=g’)

Note that, depending upon v = 0 or v = 1, we have ¢g*?¢” = ¢*% or ¢*# = ¢*?g, respectively.
Hence, only one of the statement can be true. WLOG we assume that the first statement
is correct i.e. ¢ = g®* AN A = g® A B = ¢®. So, the prover needs to provide a real proof for
this statement and a simulated proof for the other statement ¢ = g®’g A A = ¢® A B = ¢°.
Similarly, if the second statement holds, then the bidder needs to provide a real proof for the

second statement and a simulated proof for the first.

m['EElEZZEEdEE?dE?lEEld?ld'id b4

o:

uint256[13]: res 3127158680167 77573540
0583847 T54060856135097 232802203830
33128241306103118608565, 7312363762
0686617007926 7205022T2T448907422
T52410516064015803854532604007478
6,371667 114054969822 28000383624096
T58430043908621 7905820557 700844653
T4T384747091.115548148311775875T85
841030801757552054630205100948475
268683256164213251544222 408194736
6078383834230215472043481511527635
STO0233463704823000460985TE550384
1,49997366556065200824386138315003
982641660TET0ZBEETETI46921B851373
471802615938,901755159337287787519
4812381761991 TEZ6T1209662644T0016
5735763933T7063601481551, 7863648025
TT281502090844343316753081546601048
2186722680066383791T5850333604074
7,11579208923731619542 357098500868
TO0TES2E3TE642790T49043T301333304
1418158601344 43T72734237751431453
441524424235553897 1901 66248365465
2153156.543046760235806TE00918B567T
034685487126088T85364431316216097T8
340916452305544275,7627010093116622
04230429001688248773458532082417T8
0B95T114276458423157 2610102096

anmss[a] rest, intz58 ch,untz | v

m['312?15353015???5?35dﬂ'}59&- i

o:

"456354 353454 353453457, "4 363 | W

uint256[8]: res1 581922634337T487155147
1454581660008T1444233T203T2036421
428510183846 T6689682476, 5675120916
00001435567 0287 273550284801875977
0355057546650854874313841228487042
7.537169158182356897326335023801537
913910762254604874036016322141338
135500319772 ,654443309644923531805
B878759800989836588004976450823540
18491036348346668166908, 20757162550
4573835536465489151400251 71966862
42473723478111330060385631572787,3
156079174155388364731089345532185
288856227471 748935135T52707241564
6518711938.543046760235896T6009158
567034695487 1269897585364431318216
979340816452305544275, 762701093116
GZ2042304200016882497T 34585329624
1790885711427645842315726 1010296

bool: true

uint256[8] resl, uint256 ch, uint2 |

["105462117T5TE411503160004: W

uint256[13]: res 413171585666 753731000
304508060197 183947737501018436300
43003356059494402040932, 1554193701
625150839376607T38305264580884860
419247107864 346208612392 1021971747
1 2368832241507 7450546501 24607 2384
98362220268671269339354701125951119
82060741844 1085822933373359784633
494577604236 7651700229392132268002
BlEE2794759967TI9030842, 1658457026
3722377 3838449696215038T4041 28746
36300749454262265T44 1454866953856
2. 40162313360861825222647002648372
3002866301 782834314988552 16544232
087314082176,884006880330374272903
60E6EE08038049265346753674295501154
BE71165152361 745450046, 13142247588
45357694698208 10348085098964094372
054340257 05382269 766807 7810001231,
11578208823731610542357 00850086879
0TAS283756427290T49043526051631415
13023622157,8153613.95536103,237337
478843542264 0929797 2456T620 149764
90510984146420844 78591 202074259254
23302 755T2449618267T4123161324939
83T00E161T1717240818TE6TOR3TEST21107T
20151884202060

uint256[8): resl 10546211 7757641150316
0084484 1584T0T7021619554875333001
3T126844066TBLEE72492014, 113448107
560TELZ17684499T810051537085093592
12425188017274546T130683893522241
476, 79457 1097565335361607708122444
BT3615024203686809320004738318121
8262T0B2357700,13207024826160970804
43127 T005835644 14983085 TAZLT2TTI2
B0L137179428334T287 1010650, 23733747
B84354226499297972486T62014975490
51984146420844 75591 2020T425925423
302.755T2449618267T7412316132493903
TODELELTITIVR4001BTETOO3TST2110720
151584202069, 11010221 3064675557138
364657 TE460915261682554T196704257
3576251007 35266482173251, 208734181
5279111379913383183383883840334756
720756808527 118608208010580454 1049

m['dlﬂl?lﬁﬂﬁﬁﬁﬁ?ﬁﬂ?ﬂlﬂmﬁ b

o:

boal: true

Figure 8: ZKP for Commitment Phase

42

The figure in the earlier page clearly showcases the two different cases. As before, we have
feed the random nonces externally as input. In the picture on the left side, we feed the data
generated in prereqZKP function and the random nonces in createZKPcasel assuming v = 0
and g*g® = ¢*¥ and feed it’s output in the verifyZKP function. Similar things have done in
the right side picture assuming v = 1. In both cases, we check the same set of equations in
the verifyZKP function, which are elaborated in the section 5.2.

6.5.3 ZKP for Computation Phase : Stage I-II

The final phase of the SEAL protocol is where we compute the highest bid from the bidders.
We performed two different ZKPs for two different cases in the final phase of the protocol to
prove the well-formedness of the cryptogram in Round II calculations. In order to do that,
we basically check if d;; = p;; holds or not in Stage I. Hence, the bidder need to prove that
(dij =0Ap;; =0)V(d;; =1Ap;; =1). This is another example of 1-out-of-2 ZKP and the
implementation is similar as above. In Fig. 9, we have shown the correctness for Case 1 only.
Similarly, as shown in the ZKP for well-formedness of commitments, we can perform for Case
2 with not handling the createZKPCasel function. The following picture elaborates the idea.

5400732985621 56843084 L 400ToEL T LE0M BTEES05 L03E605 TS 1205030 L TSR0 250037642564 203, "6EB0ET T45E08301 735113010090 | W

uiNt256[16] resl, uint256 ril, wint256 riz, wnt2s6 pll, uint2se plz, uintzse(2] ch, uint256 1, uintZs6 a, uint2se x hd

"3425423525325541212" "454 2534564 352455151 " 124 54542652645624527, "0B05 5656116512313 b

51130100904011979
068,81

verifyStagelZKP [6400732985621 56843084 1 400THEL T 1604 8TEE505 1036605 TS 1 2050301 TAS00 256037642564 203", "6EE0ET TASE0E301 735113010000 | W

[3 boal: true

Figure 9: ZKP for Stage I

The next ZKP, which is used in Stage II to prove d;; = p;; A dfj—. is an example of one-out-
of-three ZKP, where the bidder need to provide the real proof of one case based on some
assumption and the simulated proofs for the other two cases. We have provided an example
where we show the real proof assuming case 3 is the real scenario. Here, the bidder posts a
NIZKP of the well-formedness of the encrypted cryptogram. For proving well-formedness of
bij, the bidder needs to prove di; = p;; A dy . For that, she need to show the logical statement
(dij = 0N (pij ANd5) = 0)V(dij = 1A (pij Ady5) = 1), which is equivalent to prove the following
statement (di; =1 Ap;; =1Ad5 =1)V(dy=0Ap; =0Ad5 =1)V(dy=0Ads5 =0).

43

uint256[28] res3, uint2s6[3] r1, uint2se[3] p2. uint2s6{2] ps. Lint2sE ch. uint256 chz, uintzse ch, intzse[3] ind ~

uint256[28] res3, Uint2S6[3] r2, uint2S6[3] P, Uint2S6{2] p3, Uint2S6 ch, UINt256 chil, Uint2SE ch, uint2Se[3] ind ~

["9143673981186205361 2408525161 575658934516 336577 2666 70336 1 286450417231 5621846 T, "86 3026 700925737 185290744 197652561 72271921 9507565516691 644061 267653789551 W

5023948

10113507

15487623262° v

E2306851158991 769195
36178203222185235186217685,645

['9143873981196205361 2408525161 575656934516 3365772666 70335 1286450417231 5821846 7", "86 3026 700025737 1852007 44197652561 72271021 9507565516691 644061 267653780551

o bool: true

Figure 10: ZKP for Stage II

6.6 Further Work Direction

As discussed in the section 6.1.3, we need to implement the HTML5 front end to finally
achieve the goal we want to secure. For our experiment, where we are assuming three bidders
with 5-bit bid value for each bidder, there shall be one admin.html to administrate the whole
scheme and three bidder html files (one file which shall be used thrice) for registration and
bidding purpose. Once these are done, we can have the whole protocol running in decentral-
ized settings without any supervision of any trusted third party organisation, which we desired.

The whole back-end calculations are kept in separate files to easily understand the code and
the verify them in test ethereum network. We believe that the screenshots used in this section
would also help the reader to execute the programs easily. We have submitted the codes along
with this report as attachments. We keep the codes in the following Google Drive link for
easy access to public platforms.

https://drive.google.com/drive/folders/1QNJ7digwAc83bG8tMbdyyksS15UEnOpUX

44

https://drive.google.com/drive/folders/1QNJ7digwAc83bG8tM5dyykS15UEnOpUX

7 Final Notes

Auction, more generally, sealed-bid auction has been an integral part of trading goods for ages.
It has been developed many fundamental aspects of the computer science subject as well.
The privacy aspects of the problem and communication and computational complexity has
raised interest among the computer scientists pretty well in the last few decades. The scope
and reach of these auctions have been propelled by the Internet to a level beyond what the
initial purveyors had anticipated. This is mainly because e-auction break down and remove
the physical limitations of traditional auctions such as geography, presence, time, space, and
a small target audience.

As a result, we have been encountered a lot of well-established protocols on e-auction which
have been used in different areas. The protocol we mainly focused on, in this project, has
been adapted from the protocol of anonymous e-voting protocol to achieve linear complex-
ity as well. Now since the problem of e-auction is itself an instance of Secure Multi-party
computation, we can fairly say that the the security aspects of the protocols will further be
studied in coming years. As a result, we can further further encounter research works in the
intersection parts of different topics of cryptology. For example, recent advances indicate
that quantum computers may soon be reality. Motivated by this ever more realistic threat
for existing classical cryptographic protocols, researchers have developed several schemes to
resist "quantum attacks”. In particular, for electronic voting, several e-voting schemes relying
on properties of quantum mechanics have been proposed. We can certainly expect a new
direction of research into the field of quantum e-auction as well in future.

Finally, to conclude this project, I must acknowledge the fact that the studying and started
implementing of the backends of the SEAL protocol was indeed a challenging work. But
the help from my supervisors and my seniors and friends made me cope up to overcome the
burdens well. I have thoroughly enjoyed the work in last six months. We shall try to finish the
front end using HTML5 so that we can have a proper implementation of the whole protocol,
that could be handy for practical purposes.

45

References

[1] Chaum, D. The dining cryptographers problem: unconditional sender
and recipient untraceability. Journal of Cryptology 1(1), 65-67 (1988).
https://doi.org/10.1007/BF00206326

[2] Brandt, F. Secure and private auctions without auctioneers. Technical Report FKI-245-02.
Institut fur Informatick, Technishce Universitat Munchen, 2002.

[3] Franklin, M K and Reiter, M K. The design and implementation of a secure auction
service. IEEFE Transactions on Software Engineering, vol. 22, no. 5, pp. 302-312, 1996.

[4] Sako, K. An auction protocol which hides bids of losers. International Workshop on
Public Key Cryptography. Springer, 2000, pp. 422-432.

[5] Dining cryptographers problem. Wikipedia. Available at https://en.wikipedia.org/
wiki/Dining cryptographers_problem

(6] Diffie, W., and Hellman, M. E.: New Directions in Cryptography, IEEE Transactions on
Information Theory, vol. 22, no.6, 644-654(1976).

[7] Bellare, Mihir and Rogaway, Phillip : Introduction to Modern Cryptography. Available
at https://web.cs.ucdavis.edu/ rogaway/classes/227/spring05/book/main.pdf

[8] Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, 1423, pp. 48-63. Springer, Heidelberg (1998)

[9] F. Hao and P. Zielinski, A 2-round anonymous veto protocol, International Workshop on
Security Protocols. Springer, 2006, pp. 202-211.

[10] Hao, Feng and Ryan, Peter and Zielinski, Piotr. (2010). Anonymous voting by two-round
public discussion. Information Security, IET. 4. 62 - 67. 10.1049 /iet-ifs.2008.0127.

[11] Auction. Wikipedia. Available at https://en.wikipedia.org/wiki/Auction

[12] Auction. Corporate Finance Institute Article. Retrieved form CFI page https://
corporatefinanceinstitute.com/resources/knowledge/finance/auction/

[13] S. Bag, F. Hao, S. F. Shahandashti and I. G. Ray, SEAL: Sealed-Bid Auction Without
Auctioneers, IEEE Transactions on Information Forensics and Security, vol. 15, pp.
2042-2052, 2020, doi: 10.1109/TIFS.2019.2955793.

[14] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on the ethereum blockchain,”
in 2018 Financial Cryptography and Data Security Workshops on Trusted Smart Con-
tracts, 2018, pp. 265-278.

[15] Patrick McCorry. 2017. anonymousvoting (Open Vote Network). Retrieved from GitHub
page https://github.com/stonecoldpat/anonymousvoting

[16] Hisham S. Galal. 2018. Verifiable Sealed-bid Auction on Ethereum Blockchain. Retrieved
from GitHub page https://github.com/HSG88/AuctionContract

[17] Andreas Olofsson. 2016. secp256k1 Implementation. GitHub page link
https://github.com/androlo/standard-contracts/blob/master/contracts/
src/crypto/Secp256kl.sol

46

https://github.com/stonecoldpat/anonymousvoting
https://github.com/HSG88/AuctionContract
https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/Secp256k1.sol
https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/Secp256k1.sol

[18]

[19]

[20]

[21]

[22]

23]
[24]

[25]

[26]

[27]

28]

Andreas Olofsson. 2016. ECCMath Implementation. GitHub page https://github.com/
androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol

Goldwasser, S. and Micali, S. and Rackoff, C. " The knowledge complexity of interactive
proof systems” | SIAM Journal on Computing, 186-208, DOI :10.1137/0218012, 1989,
ISSN 1095-7111

Sherman, Alan T. and Javani, Farid and Zhang, Haibin and Golaszewski, Enis. On
the Origins and Variations of Blockchain Technologies. IEEE Security Privacy. 72-77.
arXiv:1810.06130. doi:10.1109/MSEC.2019.2893730. ISSN 1558-4046. S2CID 53114747.

Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System. Available at
http://www.bitcoin.org/bitcoin.pdf

Buterin, Vitalik. Ethereum Whitepaper. Originally published in 2013. Available at
https://ethereum.org/en/whitepaper/

Ethereum. Wikipedia. Available at https://en.wikipedia.org/wiki/Ethereum

Naor, M. and Pinkas, B. and Sumner, R. Privacy preserving auctions and mechanism
design. EC, vol. 99, pp. 129-139, 1999.

Abe, M. and Suzuki, K. (M + 1)-st price auction using homomorphic encryption. Public
Key Cryptography. vol. 2274. Springer, 2002, pp. 115-124.

Montenegro, J. A. and Fischer, M. J. and Lopez, J. and Peralta, R. Secure sealedbid online
auctions using discreet cryptographic proofs. Mathematical and Computer Modelling, vol.
57, no. 11, pp. 2583-2595, 2013.

Lipmaa, H. and Asokan, N. and Niemi, V. Secure vickrey auctions without threshold
trust. International Conference on Financial Cryptography. Springer, 2002, pp. 87-101.

Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A Smart Contract for Board-
room Voting with Maximum Voter Privacy. Financial Cryptography and Data Security.

21st International Conference, volume 10322 of Lecture Notes in Computer Science, pages
357-375. Springer, 2017.

47

https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol
https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol

	Introduction
	Basics of Auction
	Need for Auctioneer-free e-auction
	Objective of the Project
	Our Contribution

	Background
	Number Theoritic Primitives
	Discrete Logarithm Problem
	Decisional Diffie-Hellman Problem

	Zero-Knowledge Proofs
	Example of Interactive ZKP
	Example of Non-Interactive ZKP (NIZKP)

	Journey of Sealed-bid Auction

	Ethereum Network
	Block-Chain and it's Applications
	Benefits of Ethereum Platform
	Setting up Test Ethereum Network

	Earlier Developments towards SEAL Protocol
	Dining Cryptographers Problem
	Dining Cryptographer Network (DC Net) Protocol
	Anonymous Veto Network (AV Net) Protocol
	Modified Anonymous Veto Network Protocol
	Differences between AV-net and Modified AV-net Protocols

	SEAL Protocol
	Basic Overview of the Protocol
	Phase 1 : Commit Phase
	Phase 2 : Computing the Highest Bid
	Extension to Vickrey auction

	Implementation of SEAL Protocol
	Design Rationale
	Structure of Implementation
	Auction stages
	Overview of the Code Execution

	Elliptic Curve and its Usage in Cryptology
	Limitation of Finite Field Arithmetic
	Elliptic Curve Cryptology
	Elliptic curves over Solidity Language
	ECCMath and Secp256k1 Libraries

	Generating Private and Public Keys
	Implementing Tally
	Tally for Single Bit Case
	Extending for Multiple Bits

	Implementing Zero-Knowledge Proofs
	ZKP for Well-formedness of Public Keys
	ZKP for Well-formedness of Commitments
	ZKP for Computation Phase : Stage I-II

	Further Work Direction

	Final Notes

