
M.Tech 4th Semester Thesis Project Report

Efficient and Secure Access Control for
Sensitive Healthcare Data

Under the Supervision of:

Prof. Dr. Ir. Bart Preneel
Electrical Engineering Department

Katholieke Universiteit Leuven, Belgium

Prof. Bimal Kumar Roy
Applied Statistics Unit

Indian Statistical Institute, Kolkata

Submitted by:

Asmita Samanta
Roll no.- CrS1902

M.Tech CrS 4 th Semester Student
Indian Statistical Institute

July 8, 2021

bart.preneel@esat.kuleuven.be
bimal@isical.ac.in

Declaration

We do hereby declare that Miss Asmita Samanta has done her Master Thesis under our guid-
ance and this project report entitled “Efficient and Secure Access Control for Sensitive
Healthcare Data" has been submitted for the partial fulfilment of the Internship in M.Tech
4th Semester for the year 2021 at Indian Statistical Institute, Kolkata.

Prof. Dr. Ir. Bart Preneel
Electrical Engineering Department

Katholieke Universiteit Leuven, Belgium

Prof. Bimal Kumar Roy
Applied Statistics Unit

Indian Statistical Institute, Kolkata

Acknowledgement

I take immense pleasure in thanking my primary supervisor Prof. Bart Preneel, Electrical
Engineering Department, Katholieke Universiteit Leuven, Belgium, and my secondary supervi-
sor Prof. Bimal Kumar Roy, Applied Statistics Unit, Indian Statistical Institute, Kolkata,
for giving me a wonderful opportunity to carry out this project work.

Special thanks to my daily supervisors Seyed Farhad Aghili and Dave Singelée for their
advice, guidence and useful suggestions, which helped me a lot.

Finally, yet importantly, I would like to express my thanks from the core of my heart to my
beloved family for their blessings and to my friends for their help and wishes.

Asmita Samanta
Student

M.Tech in Cryptology and Security
Indian Statistical Institute

Kolkata

Abstract

Healthcare services produce and use a great deal of sensitive personal data. But the fact is that
this healthcare data has very high black market value. Now to easily access the healthcare data
we can think about an access control server. So if we want to make an accesss control server
for healthcare data then it has to be very secure. On the other hand, this data also needs to be
easily accessible by the patient itself and authorized care givers.

In this thesis we have studied an existing token-based access control solution which is being
applied to protect medical data in a hospital and observed its security limitations. After that
we modify that model using Multi-Authority CP-ABE, as a building block, to overcome the
security limitations. We have proposed two modified models in our paper.

Our first model relies on centralized MA-CP-ABE, which is based on composite order bilin-
ear group. Since it is a centralized model, there is an central authority. In my case External
IAM plays the role of Central Authority. I have used External IAM and Policy Decision Point
as my two attribute authorities. This MA-CP-ABE is computed on a composite order bilinear
group. According to the security analysis, my first model is adaptively secure. We have done
this security analysis in standard model.
Our second model relies on decentralized MA-CP-ABE, which is based on prime order bilinear
group. Since it is an decentralized scheme so there is no central authority. Here also I have used
External IAM and Policy Decision Point as my two attribute authorities. This MA-CP-ABE is
computed on a prime order bilinear group. According to the security analysis, my second model
is CPA secure. We have done this security analysis in random oracle model.
Our second model is more efficient according to the computation cost than the first model
whereas our first model is more efficient according to the communication cost than the second
model.

We have implemented the decentralized Multi-Authority CP-ABE scheme, which is the build-
ing block of our second model, to use in modified Access Control Model. We have implemented
the code in Python and used Charm-crypto framework for the implementation. Because of using
decryption out-sourcing our final decryption time has become constant, it does not depend on
the size of the data consumer’s attribute set or on the number of attributes in access policy.
Also we have implemented a modified LSSS in our thesis which is more efficient than Charm’s
LSSS.
We have also introduced revocation property in the scheme and provided insights on how to
implement the whole access control model in this thesis.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Recent Access Control Model and Security Limitations 2

1.2.1 Basic Idea of Some Simple Access Control Model 2
1.2.2 Components and their responsibilities . 3

1.3 Security Limitation in Recent Model . 5
1.4 Our Contribution (Solution Idea) . 6
1.5 Research Methodology . 7
1.6 Thesis Organization . 7

2 Background 8
2.1 Attribute Based Access Control . 8
2.2 Attribute Based Encryption . 8

2.2.1 Idea of ABE . 8
2.2.2 Variations of CP-ABE . 10

2.3 Access Structure . 11
2.3.1 Linear Secret Sharing Scheme (LSSS) . 11

2.4 Bilinear Mapping . 13
2.4.1 Bilinear Mapping in Prime order bilinear group 13
2.4.2 Bilinear Mapping in Composite order bilinear group 13

2.5 System Model . 14
2.6 Trust Model . 14
2.7 Security Requirements . 14

3 Centralized Multi-Authority Model (First Model) 15
3.1 Modified Components . 15
3.2 System Definition . 16
3.3 Fuctionalities used in the System . 17
3.4 Data Storing . 19

3.4.1 Architecture Explained Step by Step . 19
3.5 Data Consuming . 20

3.5.1 Architecture Explained Step by Step . 21
3.6 Security Analysis . 22

4 Decentralized Multi-Authority Model (Second Model) 24
4.1 Modified Components and Their Uses . 24
4.2 Full System Definition . 25
4.3 Fuctionalities used in the System . 26
4.4 Data Storing . 28

4.4.1 Architecture Explained Step by Step . 28
4.5 Data Consuming . 30

4.5.1 Architecture Explained Step by Step . 30
4.6 Security Analysis . 32

4.6.1 Security Game Description . 33
4.6.2 Security Game . 33

5 Comparison of Efficiency 36
5.1 Comparison of Computation Cost . 36

5.1.1 Key Generation . 37
5.1.2 Data Storing . 37
5.1.3 Data Consuming . 38

5.2 Comparison of Communication Cost . 38
5.2.1 Data Storing . 39
5.2.2 Key Accessing . 39
5.2.3 Data Consuming . 40

6 Implementation 41
6.1 Framework . 41
6.2 Implementation Details and Comparisons . 41

7 Further Modification 48
7.1 First Model with Revocation . 48

7.1.1 Components and Their Uses . 48
7.1.2 Fuctionalities used in the System . 49
7.1.3 Data Storing . 51
7.1.4 Data Consuming . 52
7.1.5 Security Analysis . 53

7.2 Second Model with Revocation . 53
7.2.1 Modified Components and Their Uses . 53
7.2.2 Fuctionalities used in the System . 54
7.2.3 Data Storing . 56
7.2.4 Data Consuming . 57
7.2.5 Security Analysis . 58

8 Idea of Implementing whole Access Control Server 59

9 Conclusion 61

A Security Proof of Centralized Multi-authority CP-ABE (First) Model 64

B Approximate Security Level of all Charm Elliptic Curves 68

C Prime vs Composite Order Group Operations 69

D Implementation of LSSS 70
D.1 Implementation of LSSS for Encryption . 70

D.1.1 Algorithm . 70
D.1.2 My Python Code to Implement Above Algorithm 71

D.2 Implementation of LSSS for Decryption . 73
D.2.1 Algorithm . 73
D.2.2 My Python Code to Implement Above Algorithm 74

List of Tables

3.1 List of Notations used in System Definition . 17

4.1 List of Notations used in the System . 28

5.1 Computation costs for Key Generation . 37
5.2 Computation costs for Data Storing . 37
5.3 Computation costs for Data Consuming . 38
5.4 Communication costs for Data Storing . 39
5.5 Communication costs for Key Accessing . 39
5.6 Communication costs for Data Consuming . 40

6.1 Charm’s LSSS Vs. Modified LSSS : Comparison of Efficiency 46
6.2 Comparison Table of Running Times of Schemes 47

B.1 Approximate security levels of the utilized ECC groups [17] 68

C.1 Average timing of group exponentiations and pairings in MIRACL [17] 69

List of Figures

1.1 Components of Recent Access Control Model . 3

2.1 ABE based Access Control System . 9

3.1 Rough Architecture of Data storing in first (Centralized) model 20
3.2 Rough Architecture of Data consuming in first (Centralized) model 21

4.1 Rough Architecture of Data storing in Second (Decentralized) model 29
4.2 Rough Architecture of Data consuming in Second (Decentralized) model 31

6.1 Comparision of Setup Time . 42
6.2 Comparision of Authority Setup Time . 43
6.3 Comparision of Key Generation Time . 43
6.4 Comparision of Encryption Time . 44
6.5 Comparision of Cipher-text Size . 45
6.6 Comparision of Decryption Time . 45

D.1 Output of LSSS for Encryption . 73
D.2 Output of LSSS for Decryption . 77

List of Abbreviations

Abbreviation Full Form
DO Data Owner
DU Data User
DC Data Consumer
RD Raw Data
RK Random Key
EK Encrypted Key
ED Encrypted Data
WK Wrapped Key
ABE Attribute Based Encryption
CP-ABE Ciphertext Policy Attribute Based Encryption
MA-CP-ABE Multi-Authority Ciphertext Policy Attribute Based Encryption
KMS Key Management Server
KWS Key Wrapping Server
External IAM External Identity and Access Management (IAM) server
LSSS Linear Secret Sharing Scheme
CA Central Authority
GID / gid Global Identifier
AA Attribute Authority
GS Global Setup
AS Authority Setup
KG Key Generation for a user
EC Encrypt
DE Decrypt
ACS Access Control System
U User
ACL Access Control List
RBAC Roll-based Access Control

1

Chapter 1

Introduction

First we are going to discuss what is the motivation of this thesis, which problem we are going
to address and then what is our solution idea.

1.1 Motivation
Healthcare services produce and use a great deal of sensitive personal data. This data has a high
black market value and therefore is a lucrative target for data theft and ransomware attacks.
Indeed, reports have shown that a healthcare record may be valued at up to $250 per record on
the black market [23], which is significantly more than for example stolen financial records. It is
obvious that this healthcare data needs to be strongly protected. However, on the other hand,
this data also needs to be easily accessible by the patient itself and authorized care givers.

In this thesis I have studied a specific Token-Based access control system (recent access control
model / basic model) of a hospital toolkit, its components and their functionalities. After that
I identified the security limitations (threat) of this basic model and what we can do to avoid
the threats of sensitive healthcare data leaking. Then I have studied about Attribute Based
Encryption (ABE) schemes and various Access Structures. After getting these basic concepts, I
have modified the basic model using multi authority ciphertext policy attribute based encryption
(MA CP-ABE) and I have used linear secret sharing scheme (LSSS) as my access structure.

1.2 Recent Access Control Model and Security Limitations
At first I am going to discuss about basic idea of some simple access control models Access
Control List (ACL), Roll-based Access Control (RBAC) etc [20] and why we can not use them
for sensitive healthcare data. Then I shall explain the idea of the recent Access Control model
for Health Care data, i.e. functions, components, responsiblities, and the possible security
limitations with our solution idea.

1.2.1 Basic Idea of Some Simple Access Control Model

In the most simple access control model we can have three components, namely Data Owner
(DO), Data User (DU) and one Cloud Storage associated with an access handling server.
The DO stores its data to the cloud and in most cases the admin of the system defines a list
mentioning who can access this data. The access handling server associated with cloud storage
remembers who can access this data.
Now whenever a DU wants to access some data, the access handling server associated with cloud
storage checks whether he is authorized to access that data or not and then depending on that

2

the access handling server sends the data or error message ⊥ to DU.

There were many access control model before token based access control model, like ACL,
RBAC etc.

Access Control List (ACL) : In the early days (1970), to give access to a computing re-
source, the list of legitimate users was appended to the resource itself. This was then called the
Access Control List (ACL) [22]. But the main problems of this model are :
(i) each time a resource was added, the administrator had to list all legitimated users again;
(ii) each time a new user is added, the administrators have to add him/her to the access list of
each resource he/she may need.

Role-Based Access Control (RBAC) : Role-Based Access Control (RBAC) [21] has been
introduced to grant access based on the roles that users own in their organization. If a user has
a certain role in the organization, he/she must be granted to access a definite, but variable, list
of resources. The roles are often associated to the group of users. Users are assigned to groups,
and then groups are associated to roles and those roles are associated to resources. RBAC was
a vast improvement compared to the management of simple lists of users for every resource. It
also offeres an improved security.

But in those models all the raw data are stored in the cloud server. So there was a con-
fidentiality issue. Now I am going to describe a token-based access control model where this
confidentiality issue has been taken care partially (but not fully, actually we are going to modify
this model and solve the confidentiality issue fully in this thesis). At first I am going to dis-
cuss about all the components and their responsibilities of our recent token-based access control
model.

1.2.2 Components and their responsibilities

The following figure gives an idea about the components of recent token-based access control
model. Here the both sided arrows indicate that there is a communication channel in between
the components.

Figure 1.1: Components of Recent Access Control Model

3

At first I want to say what is Cloud Server, because many of our components are cloud compo-
nents. The “Cloud" refers to the servers which can be accessed over the Internet. The softwares
or databases which actually run on those cloud servers are cloud components in my case. These
cloud servers are located in data centers all over the world. By using cloud computing, users and
organisations don’t have to manage physical servers by themselves or run any software applica-
tions, which are cloud components, on their own machines. Now I am going to explain about
the components.

1. External IAM (External Identity and Access Management (IAM) server) : It is
a semi-honest (It only does its assigned jobs nothing else but it is curious. I have discussed
the definition in the Section 2.6) server which verifies the identity of all users and generates
token corresponding to there identity attributes. User uses this token as a proof of his/her
identity to the other components.

2. Data Gateway : It is a semi-honest server and it is in cloud, i.e. it ia a cloud component.
Data Owner and Data User communicate with Data Gateway to store the data or to access
the data.
At the time of data storing, Data Owner sends its raw data (RD) and its token (token_o)
to the data gateway. After that Data Gateway generates a random key RK to encrypt
the raw data using this key RK and get the encrypted data (ED). Then it also encrypts
the encryption key (RK) and get encrypted encryption key (EK). After that it sends EK
along with data owner’s token (token_o) to the Access Control Server to wrap EK.
At the data consuming, Data Consumer sends its token (token_c) to Data Gateway. After
that Data Gateway collects (ED, WK) from storage and sends the wrapped key along with
data consumer’s token (token_c) to Access Control server and gets the unwrapped key
EK or “Access Denied". If it gets EK, then it decrypts EK and get RK and then using RK
it decrypts ED to get RD. It sends RD or “Access Denied" to Data Consumer.

3. Access Control Server : It is a semi-honest server, it is in cloud and it has three
different components in it :

(a) Control Interface : At the time of data storing Data Gateway sends encrypted
encryption key EK and data owner’s token (token_o) to Control Interface and Con-
trol Interface sends EK to KMS and data owner’s token to Policy Decision Point.
After the completion of key wrapping process Control Interface sends the wrapped
key (WK) to the data gateway.
At the time of data consuming, Data Gateway sends WK and data consumer’s token
(token_c) to the Control Interface and Control Interface sends WK to KMS and con-
sumer’s token (token_c) to Policy Decision Point. Control Interface gets unwrapped
key EK and data owner’s parameter from KMS and it sends data owner’s parame-
ters to Policy Decision Point. Control Interface finally gets either “Access granted"
or “Access Denied" (I have explained the process at the time of explanation about
Policy Decision Point) and send either EK or “Access Denied" to Data Gateway. It
is basically a communication component of Access Control Server, i.e. if any other
component like Data Gateway wants to communicate with KMS or Policy Decision
Point of Access Control Server, then it has to continue the communication through
Control Interface.

(b) KMS (Key Management Server) : KMS basically wraps EK with the data
owner’s parameters and unwrap WK.
At the time of data storing, it gets EK from Control Interface and data owner’s pa-
rameters from Policy Decision Point and wrap EK with those parameters to produce

4

WK. KMS stores EK and sends WK to Control Interface.
At the time of Data consuming KMS gets WK from Control Interface and unwrap
WK (using its key storage) to get EK and data owner’s parameters. KMS sends those
to control interface.

(c) Policy Decision Point : It actually handles all the access policies. Policy Decision
Point decides that which data will be consumed by whom.
At the time of data storing Policy Decision Point gets data owner’s token (token_o)
from Control Interface and recovers data owner’s parameters and sends these to KMS.
At the time of data consuming Policy Decision Point gets data consumer’s token (to-
ken_c) and data owner’s parameters from Control Interface. Policy Decision Point
first recovers data consumer’s parameters from its token (token_c). After that de-
pending on data owner’s parameter and data consumer’s parameter, Policy Decision
Point decides whether the consumer should get the access of the data or not.

4. Storage : This is the component in cloud in which data gateway stores the (ED,WK)
pair for future access. Storage is not trusted at all and anyone can access the stored data.

The other two components in this access model is Data Owner and Data Consumer but
they don’t take part in message encryption or decryption.

This access control model uses the following algorithms :

1. DataEncryption (RD) → (ED) : Data Gateway runs this algorithm with raw data RD
as input. Then it chooses a random encryption key RK to encrypt RD and to produce an
encrypted data ED.

2. KeyEncryption (RK) → (EK) : Data Gateway runs this algorithm with encryption
key RK as input to produce encrypted form of the key EK.

3. KeyWrapping (EK, tokeno) → (WK) : Access Control server runs this algorithm with
encrypted key EK and data owner’s token tokeno as input. It takes help of KMS and
Policy Decision Point to wrap EK (use the parameters of tokeno) and produced wrapped
key WK. It sends WK to the DataGateway.

4. KeyUnWrapping (WK, tokenc) → (EK) : Access Control server runs this algorithm
with wrapped key WK and data consumer’s token tokenc as input. It takes help of KMS
and Policy Decision Point to unwrap WK if and only if tokenc satisfies the data accessing
criterias (set by Policy Decision Point) and produced either unwrapped key EK or ⊥. It
sends EK or ⊥ to the DataGateway.

5. KeyDecryption (EK) → (RK) : Data Gateway runs this algorithm with unwrapped
encrypted key EK as input to produce decrypted form of the key RK.

6. DataDecryption (ED, RK) → (RD) : Data Gateway runs this algorithm with en-
crypted data ED and encryption key RK as input to produce the decrypted data RD.

1.3 Security Limitation in Recent Model
This recent access control model seems very secure at a glance but if we observe it properly
then we can see that here KMS has stored all EK’s in its memory and anyone can access the
stored pair (ED, WK) in Storage. Now if any attacker gets access of KMS somehow and can
successfuly attack the Data Gateway, then using those access it actually get all the raw data

5

from stored pairs (ED, WK) which is not expected at all.

Now since KMS and Data Gateway are in cloud, we can’t gurantee the full security of those two
components. A powerful Attacker may try to attack them any time. Here the actual problem
is the Data owner sends its raw data to store in cloud and all the encryptions are computed in
cloud and also all the decryption keys can be recovered by attacking the cloud components only.

1.4 Our Contribution (Solution Idea)
• We want to avoid the thing that the Data Gateway and KMS together can decrypt all the

data stored in cloud storage. So, the data owner should encrypt the data before sending
it to the Data Gateway.

• This creates a new problem. The problem is how can the data consumer decrypt this data.
Using of simple private or public key encryption does not work here. Because if we use
private key encryption scheme then Data Owner has to send the secret decryption key to
all the Data Consumers by a secret channel, or if we use public key encryption scheme then
data consumers have to send public keys corresponding to their secret decryption key to
data owner and data owner has to encrypt a single data with many more keys, which are
not good ideas. Moreover, the data owner does not necessarily know the data consumer
in advance.

• As a solution to the above problem is to use Attribute Based Encryption (ABE), where
the data owner can specify which users could decrypt the data, based on specific access
control policies and any communication in between data owner and data consumer is not
needed at all.

Now in ABE, we have two categories. The first is ciphertext-policy ABE (CP-ABE), and the
second category is key-policy ABE (KP-ABE).
However, CP-ABE is much more appropriate than KP-ABE in our case because the access policy
determination in CP-ABE is put on the data owner’s hand which we actually want.
In CP-ABE, we also have two type of models : i) Single Authority CP-ABE, ii) Multi-Authority
CP-ABE. In Single authority model we have to have a fully trusted authority. But in the basic
model we don’t have any fully trusted component and also we don’t want to impose such strong
condition. So, we discard single authority model and choose the Multi-Authority CP-ABE
model.In multi-authority model we also have two categories : i) Centralized Multi-authority, ii)
Decentralized Multi-Authority.
In Centralized models, there are many schemes which have to have one fully trusted central
authority but I notice that the scheme in the paper [11], don’t need a fully trusted central
authority. It is sufficient to have a semi-honest central authority. So, I choose this scheme for
my first modified model.
But the thing is this scheme uses composite order bilinear group operations which takes much
more time than prime order bilinear group operations. So I have taken the idea of the papers
[10, 12], and modify the access control model second time with a Decentralized multi-authority
scheme.
To decrease the computation cost of data consumer, we choose decryption outsourcing property
in our scheme. In decryption outsourcing, the data consumer does not do all the computations
for message decryption. The message is partially decrypted in some cloud component and sent
to the data consumer. The data consumer does very little amount of computation to get the
final decrypted message.
Again to penalize malicious users, we have used revocation property. Actually whenever we

6

detect that some user of the system is doing some malicious thing we revoke the necessary
attributes from that user to prevent the malicious work.

1.5 Research Methodology
Literature Review : At first I have studied the recent access cotrol model and tried to find out
its security limitations. After that I have gone through many existing literatures. First I have
gone through the paper [1] to get an overview of the topic “Attribute Based Encryption" (ABE)
and its variations. After that I have gone through the paper [2] from where I can understand
the motivation behind ABE and how we can use the idea of Identity Based Encryption IBE to
construct ABE. But there the access policy was attached with the secret key which is basically
the idea of KP-ABE. Here they also have used tree structure for access policy. Then I have
gone through the paper [3] where I get the clear idea about Ciphertext Policy ABE (CP-ABE)
and here I have also introduced with LSSS access structure. Then I have gone through some
more CP-ABE schemes from paper [7, 8]. After that I have gone through the papers [4, 5, 6]
to fully understand the LSSS access structure. From paper [5] I also got very clear idea about
the transformation of other access structures into LSSS. They actually presents a more efficient
version of LSSS matrix generation. After that I have gone through the paper [9], where I get
the motivation of Multi-Authority CP-ABE but they have used tree structure for their access
policy. Actually among all the structures, LSSS is more efficient for access policy because it
is easy to implement and all the other access structures can be converted into LSSS easily.
After that I have gone through papers [10, 11, 12, 13]. All these papers are on Multi-Authority
CP-ABE (MA-CP-ABE). But the schemes of papers [10, 12] are decentralized MA-CP-ABE
whereas the schemes of the paper [11] is centralized MA-CP-ABE. The scheme of paper [13]
does not have any central authority but here the attribute authorities communicates in between
them. Though the schemes of the paper [11] is centralized MA-CP-ABE but we can make that
central authority a semi-honest component and also can merge it with one of the attribute
authorities. From here actually I get the idea of my first scheme. I get the idea of my second
scheme from the papers [10, 12].

Requirement & Design : Then I have figured out how to use this MA-CP-ABE scheme to
modify recent access control model and design two different schemes to modify the recent access
control model. I have also modified those schemes to achive revocation property also. I have
compared the schemes with many other existing schemes.

Implementation : I have implemented one of the schemes and have compared with some other
schemes. After that I have implemented the LSSS matrix generation using paper [5]. Then I
used it to modify my implementations.

1.6 Thesis Organization
In the next chapter, I shall discuss about ABE architecture and some preliminaries (chapter 2).
After that I shall introduce my centralized model (chapter 3) and decentralized model (chapter
4) and also analyse their security. Then I shall compare the models to see the efficiency (chapter
5). After that I shall discuss about the implementation of the scheme (chapter 6). Next I shall
further modify both the model to introduce revocation property (chapter 7). Then I shall give
my idea about implementation of the full access control server (chapter 8).

7

Chapter 2

Background

2.1 Attribute Based Access Control
At first we have to know what is Logical Access control. The main motive of Logical Access
control is to protect object (which is data, some executable applications, network devices,
services owned by some individual or some organizations) from unauthorized operations like
reading or creating or editing or deleting objects by unauthorized persons. Owners of the
objects actually have the right to define policies to describe who can operate which operation
on which object.If the subject satisfies the access control policy defined by the object owner,
then the subject is authorized to perform the desired operation on that object. The Access
Control Mechanism (ACM) is the logical component which receives the access request from the
subject, then decides and enforces the access decision. Attribute Based Access Control (ABAC)
is one of the Access Control Mechanisms. Based on NIST standard ABAC model [15], we get
the formal definition of ABAC as follows :

Attribute Based Access Control (ABAC) : A logical access control methodology where
authorization to perform a set of operations is determined by evaluating attributes associated
with the subject, object, requested operations, and, in some cases, environment conditions
against policy, rules, or relationships that describe the allowable operations for a given set of
attributes.

Here, Attributes are characteristics that define specific aspects of the subject, object, environ-
ment conditions, and/or requested actions that are predefined and preassigned by an authority.

2.2 Attribute Based Encryption

2.2.1 Idea of ABE

When we store some data in cloud storage then it becomes accessable by anyone. So, it is very
necessary to ensure that only authorized users can access the data. To ensure this we can store
encrypted data in cloud storage, instead of the raw data. For the encryption we can use either
the symmetric encryption technology or the traditional public-key encryption technology. In
a symmetric encryption-based access control system, when a new data user (DU) enters into
the system, the data owner (DO) has to share the secret key that acts as a shared key with the
new DU also such that new DU can access the data. Similarly, in the traditional public-key
encryption-based access control, the DO is required to encrypt his data again via the new DU’s
public key, so the DO has to encrypt a single data multiple time with different public keys of
the DU’s. And also in both these cases the DO has to have a detail knowledge about the DU’s

8

in advance.

So obviously these two access control mechanisms lack flexibility and scalability (flexibility and
scalability refer to the expressiveness of access control policies and the impact of newly joined
data users on the access control system, respectively). But luckily the Attribute-Based Encryp-
tion (ABE) technology plays a key role in realizing access control systems with fine granularity
and scalability.

Figure 2.1: ABE based Access Control System

As shown in the above figure of access control system (based on ABE), the flexible attributes
are embedded into the ciphertext and the DO does not need to know the identities of specific
DUs before encryption. When a new DU joins the system, DOs have to do nothing. Therefore,
both flexibility and scalability are enabled in the ABE-enabled access control system.

Sahai and Waters introduced the ABE notion for the first time and it is a promising crypto-
graphic primitive and has successfully attracted considerable research efforts [1]. ABE has two
categories, ciphertext-policy ABE (CP-ABE), and key-policy ABE (KP-ABE).

In CP-ABE, a user’s attribute secret key is associated with an attribute list, and a ci-
phertext specifies an access policy that is defined over an attribute universe of the system.
A ciphertext can be decrypted by a user if and only if the user’s attribute list matches the
ciphertext’s access policy.
In KP-ABE, an access policy, which is defined over the system’s attribute universe, is encoded
into a user’s attribute secret key and a ciphertext is created with respect to an attribute list.
A ciphertext can be decrypted by a user if and only if the corresponding attribute list matches
the access policy associated with the user’s attribute secret key.

However, we have already mentioned that CP-ABE is much more appropiate than KP-ABE in
our case because the access policy determination in CP-ABE is put on the data owner’s hand.

The basic CP-ABE has four components, namely the cloud service provider (CSP), the attribute
authority (AA), the DO, and the DU [1]. The main four algorithms which are used in basic
CP-ABE are as follows :

1. SetUp (λ) → (PK, MK) : This algorithm is known as the system setup algorithm. The
Attribute authority (AA) runs this algorithm at the begining. It takes security parameter
λ as an input, and produce system public key PK and master key MK.

9

2. KeyGeneration (PK, MK, L)→ (SKL) : This algorithm is known as the attribute key
generation algorithm, which is also performed by the AA. The AA takes system public key
PK , master key MK, and an attribute list L as inputs and generates SKL as the attribute
secret key corresponding to L. Here the attribute list is basically the set of attributes of
an user and SKL is called the attribute secret key of that user.

3. Encryption (PK, M, A) → (CTA) : This algorithm is performed by the data owner
(DO). The DO first chooses an access policy A for the desired message M, and then takes
PK, M, and A as inputs and produces a ciphertext CTA of message M associated with the
access policy A. This ciphertext is stored on the cloud service provider CSP.

4. Decryption (PK, CTA, SKL) → (M or ⊥) : This algorithm is performed by the data
user DU (DU is basically the data consumer). It takes system public key PK, a ciphertext
CTA of M associated with A, and an attribute secret key SKL corresponding to DU’s
attribute list L, and returns M if L satisfies the access policy A. Otherwise outputs the
error symbol ⊥ as an indication of failure of decryption.

2.2.2 Variations of CP-ABE

From paper [1] we can observe that according to the requirements of access control in different
application scenarios, CP-ABE schemes are further divided into many categories. Each category
has some specific property. In my model I will use CP-ABE with some properties. My CP-ABE
will be multi-authority, revocable, hierarchial with decryption outsourcing. For future work, I
also want to introduce accountability and policy updating property in it (I do not do this in this
paper but left it as future work). Now I am going to describe these properties in brief.

1. Revocable CP-ABE : The functionality of revocation is realized in revocable CP-ABE.
According to the graininess, revocation mechanisms fall into user revocation and attribute
revocation. Actually when we can detect that any user is doing some malicious things,
we just revoke some attributes of the user or all the attributes of the user to prevent
that malicious work. However, according to the effect to non-revoked users, revocation
mechanisms are divided into indirect revocation and direct revocation. In my case I have
used direct revocation, i.e. whenever a revocation list is published, the authorities directly
send the required update informations to the cloud.

2. Accountable CP-ABE : The functionality of accountability is realized in accountable
CP-ABE. Both the user traceability and the attribute authority accountability are involved
in accountable CP-ABE. Mainly by this property we can detect a malicious user. My model
does not have this property but it will be very interesting future work to add this property
also.

3. CP-ABE with Policy Updating : In basic CP-ABE, it is impossible to change a
ciphertext’s access policy. Considering access control in emergencies, CP-ABE with policy
updating can be adopted to update the access policy in an involved ciphertext. Suppose
the authorized person is not present to recive the message and he wants to transfer the
authority of message reciving to someone he trusts. Using this property we basically can
handle this senario. But this property is also left for future work.

4. Multi-authority CP-ABE : With this type of CP-ABE construction, distributed ac-
cess privilege can be realized. According to whether a central authority exists or not,
multi-authority CP-ABE schemes are divided into centralized multi-authority CP-ABE
constructions and decentralized multi-authority CP-ABE constructions. In my case I have
made two models, one is centralized and another is decentralized.

10

5. Hierarchical CP-ABE : As for hierarchical CP-ABE constructions, the delegation of
access privilege is organized in a hierarchical manner. Suppose A is authorized to access
some data and the attribute set of B is basically a super set of the attribute set of A, then
B can also access that data. My model has this property as I have used monotone access
structure.

6. Outsourced CP-ABE : To support data users (respectively, data owers and the author-
ity) with constrained computation resources, outsourced CP-ABE is proposed to outsource
laborious computation in decryption (respectively, encryption and key generation) to third-
party servers. My model actually outsources the decryption.

2.3 Access Structure
In CP-ABE we encrypts the data under some Access Policy. This Access policy is actually
an access structure and any consumer can access the data iff it satisfies the access structure.
We mainly prefer monotone Access Structure for our model. Now I will give the formal definition.

Access Structure : We denote P = {P1, P2, ..., PT} as a set of parties. A collection
A ⊆ 2{P1,P2,...,PT } is monotonic if ∀A1, A2 : if A1 ∈ A and A1 ⊆ A2, then A2 ∈ A. An (monotone)
access structure is a (monotone) collection A of non-empty subsets of P = {P1, P2, ..., PT}.
That is, A ⊆ 2{P1,P2,...,PT } − {0}. So, an access structure A is basically a non-empty set of
subsets of P . If a subset B of P is in A, then we said that that subset B is an authorized set.
But if B is not in A, then we said that subset B is unauthorized.

Here in our case these parties are actually the attributes of an user.
There are various types of Access Structure like tree, threshold, AND-OR, LSSS etc. But I have
decided to use LSSS as my Access Structure because it is easy to compute with LSSS access
structure.

2.3.1 Linear Secret Sharing Scheme (LSSS)

Linear Secret Sharing Scheme (LSSS) : Let P denote a set of parties, s ∈ Zp be the shared
secret. A secret sharing scheme Π over P is linear (over Zp) if it has the following properties :

1. The shares of s for each party form a vector over Zp.

2. There is a matrix W ∈ Zl×np which is called the share-generating matrix for Π. For all
i = 1, ..., l, a function ρ ∈ F([l] 7→ P) associates the row Wi with a party. To generate the
shares, we choose a column vector ~v = (s, r2, ..., rn)T , where r2, ..., rn are randomly picked
from Zp, then W ·~v is the vector of l shares of s according to Π. The share (W ·~v)i belongs
to the party ρ(i).

Every linear secret sharing scheme mentioned before has the following linear reconstruction
property : assume that A is an access structure. Π is an LSSS for A. So, A = (W, ρ).
Now assume S denotes an authorized set, i.e. S satisfies the access structure A. Then let
I = {i : ρ(i) ∈ S} be the index set of rows whose labels are in S. There exist constants
{wi ∈ Zp}i∈I such that: if the shares {λi = (W · ~v)i} are valid, then we have Σi∈Iwiλi = s. But
for unauthorized sets, no such constants exist.

This property is very important to decrypt the message.

11

Also we can transform any accees structure into threshold access structure and any threshold
access structure can be converted into LSSS. Actually using a simple algorithm from paper
[5, 6] we can do it efficiently.

Example : Here we will use Shamir’s secret sharing scheme and the construction of the
following theorem from paper [5] :

Theorem : Let A1 and A2 be monotone access structures defined on participant sets
P1 and P2, realized by LSSS (M (1), ρ(1)) of size m1 and (M (2), ρ(2)) of size m2, respectively. Let
Pz ∈ P1. There exists an LSSS (M,ρ) of size m1 + (m2 − 1) · q realizing the access structure
A1(Pz → A2), where q is the number of rows labeled by Pz in (M (1), ρ(1)).

Suppose the access policy is ((A ∧ B) ∨ (c ∧ D)) ∧ E. Let M is the access matrix
and L is the vector whose co-ordinates are attributes. Initially we let M = (1) and
L = (((A,B, 2), (C,D, 2), 1), E, 2).

Step - 1 : M =

(
1 1
1 2

)
and L =

(
((A,B, 2), (C,D, 2), 1)

E

)

Step - 2 : M =

1 1
1 1
1 2

 and L =

(A,B, 2)
(C,D, 2)

E



Step - 3 : M =


1 1 1
1 1 2
1 1 0
1 2 0

 and L =


A
B

(C,D, 2)
E



Step - 4 : M =


1 1 1 0
1 1 2 0
1 1 0 1
1 1 0 2
1 2 0 0

 and L =


A
B
C
D
E


Here M is the generating matrix of LSSS correcponding to the given access policy and ρ
maps i-th row of M to i-th co-ordinate of L.

Now let our secret is s and we take a vector ~v = (s, r1, r2, r3).

Now we just compute all the secret shares for the attributes A, B, C, D and E one by one.
Secret share for A (λA) is (s+ r1 + r2)
Secret share for B (λB) is (s+ r1 + 2 · r2)
Secret share for C (λC) is (s+ r1 + r3)
Secret share for D (λD) is (s+ r1 + 2 · r3)
Secret share for E (λE) is (s+ 2 · r1)

Now just consider a set of attributes S = {A,B,E}

At the time of decrtption we first compute the matrix just following the algorithm of the paper [5].

12

Step - 1 : M ′
=

(
1 1
1 2

)
and L′

=

(
((A,B, 2), (C,D, 2), 1)

E

)

Step - 2 : M ′
=

1 1
1 1
1 2

 and L′
=

(A,B, 2)
(C,D, 2)

E



Step - 3 : M ′
=


1 1 1
1 1 2
1 1 0
1 2 0

 and L′
=


A
B

(C,D, 2)
E



Step - 4 : M ′
=

1 1 1
1 1 2
1 2 0

 and L′
=

AB
E


Now we will compute a vector ~c = (c1, c2, c3) such that ~c ·M ′

= (1, 0, 0).
It can be easily computed that ~c = (4,−2,−1) serves our purpose. It also implies that S is an
authorized set of attributes.

To get the secret just compute (c1 · λA + c2 · λB + c3 · λE).

c1 · λA + c2 · λB + c3 · λE
= 4 · (s+ r1 + r2) + (−2) · (s+ r1 + 2 · r2) + (−1) · (s+ 2 · r1)
= s · (4− 2− 1) + r1 · (4− 2− 2) + r2 · (4− 4)
= s

So it is very easy to compute the secret using the linear reconstruction property of LSSS.

2.4 Bilinear Mapping
We will discuss bilinear mapping for both prime order bilinear group and composite order bilinear
group here. We have used both of them in different models.

2.4.1 Bilinear Mapping in Prime order bilinear group

Let G1 , G2 and GT be cyclic groups of the same prime order p. Then a bilinear map from G1×G2

is a function e : G1 ×G2 7→ GT such that ∀P ∈ G1, Q ∈ G2, a, b ∈ Zp, e(P a, Qb) = e(P,Q)ab.
The map is called a bilinear mapping if
i) e(g1, g2) generates the group GT , where g1 and g2 are generators of G1 and G2 respectively,
ii) e is efficiently computable.
The map we consider here is symmetric, with e : G × G 7→ GT , where G and GT are cyclic
groups of the same prime order p.

2.4.2 Bilinear Mapping in Composite order bilinear group

Here the group generator G takes a security parameter λ as an input and produce the terms
(N = p1p2p3,G,GT , e) , where p1, p2 and p3 are different primes, N = p1 · p2 · p3 is the order of
cyclic groups G and GT , and e : G×G 7→ GT is a map with such properties :

13

i) ∀p, q ∈ G, a, b ∈ ZN , e(pa, qb) = e(p, q)ab.
ii) ∃g ∈ G such that e(g, g) generates the group GT

iii) e is efficiently computable.

Gpi denotes the subgroup of order pi in G. The subgroups Gp1 , Gp2 and Gp3 have the
orthogonality property. That is, for hi ∈ Gpi and hj ∈ Gpj , if i 6= j, we have e(hi, hj) = 1.

2.5 System Model
We will use the same components of recent access model except the KMS. But their functional-
ities will be different for two models. So, I will discuss about them in detail when I will explain
the models (in chapter 3 and chapter 4).

2.6 Trust Model
First I am going to describe about the Honest component and the Semi-Honest component.

Honest Component : This type of components basically do only the works which are assigned
to it. It computes nothing more than that and also not curious about any more informations.

Semi-Honest Component : This type of components basically do all the works which are
assigned to it. It computes nothing more than that but it is curious about to know more. It
may gather all the extra informations and save them.

In my case trust model is basically same with the recent access model with some extra restric-
tions. I will discuss about it also in detail when I will explain the models (in chapter 3 and
chapter 4).

2.7 Security Requirements
Mainly we need collusion resistance property in our model but we also need some security
assumptions and some more properties like :
i) All the communication channels are very safe and secure.
ii) Each user has a very secure memory to store their keys.
iii) External IAM and Policy Decision Point can not collude in between them.
iv) All the access policies must containts components of both the Authorities.

I will discuss more about it at the time of model description.

14

Chapter 3

Centralized Multi-Authority Model (First
Model)

I have tried to fit my model with the recent structure’s components but add some more respon-
sibilities & functionalities to them. I am going to explain about it.

3.1 Modified Components
External IAM : In my model External IAM plays a big role. It serves as Central Authority
(CA) and also one of the two Multi-Authorities besides its basic works (which it does in recent
basic model).
In my model this component has to be Semi-Honest and it can not collude with Policy
Decision Point (which is another Attribute Authority in my model).
It basically verify the attributes based on the global id of the users and gives a token
corresponding to their id (basic model functionality) and gives Central Authority Public &
Secret Key and one Decryption Secret Key with respect to the global id (work as CA)
and also one Authority Attribute Secret Key based on the user’s attributes which are
handled by it (work as AA). Here it is very important to mention that It does not store
any information about Decryption Secret Key in its memory or Central Authority
Public & Secret Key, after giving the keys to the user, it removes those information from its
memory.

Policy Decision Point : In my model Policy Decision Point serves also as another
Attribute Authority besides its basic work.
This compoent must be Semi-Honest and have to handle some attributes of the Access
Policies (since for Multi-Authority CPABE encryption we have only two authorities and if one
of them only containts all attributes of the Access Policy then it will be no more secure).
This Policy Decision Point mainly set the Access Policy of Key Wrapping and supply one of
the attribute secret key to user (as it is an AA).

Data Owner : He/she first encrypts the raw data using AES and then encrypts the
AES encryption key with the two Attribute Public Key under his/her Access Policy A1.

Data Consumer : Data Consumer use his/her own Decryption Secret Key to De-
crypt the Pre-Decryted data. After that he actually get the AES encryption key and the raw
data encrypted with that key. He/she easily decryts the encrypted message and get the raw data.

Data Gateway : It does all its basic works on two-time encrypted data in stead of

15

the raw data. But besides these it also does pre-decryption of the user’s message. As Basic
Model, it is also Semi-Honest in my model.

Key Wrapping Server (KWS) : It wraps the encrypted key and also unwraps the
wrapped key using MA-CP-ABE and it is also Semi-Honest. It is basically a replacement of
KMS of recent system.

3.2 System Definition
Our Multi-Authority Access Control System consists of a Multi-Authority CP-ABE scheme
with decryption outsourcing property which is taken from the paper [11]. This Multi-Authority
CP-ABE scheme is a collection of the following 8 algorithms:

1. GlobalSetup (λ)→ (GPK) : This algorithm takes the security parameter λ as an input
and produces the global parameters GPK for the system.

2. CASetup (GPK) → (CPK , CMK) : The CA runs this algorithm with GPK as
input to produce its public parameter CPK and the corresponding master secret key CMK.
CPK will be used by AAs only and CMK will be used to generate user’s secret key by CA.

3. AASetup (GPK , f , Uf) → (APKf , AMKf) : Each AAf runs this algorithm with
GPK and its attribute domain Uf as input to produce the public parameter APKf and
the corresponding master secret key AMKf . For i 6= j, Ui ∩ Uj = φ.

4. Encrypt (M , A , GPK , ∪APKf) → (CT) : This algorithm takes in GPK, a
message M, an access structure A(W, ρ) and the set of public parameters of relevant AAs.
It produces a ciphertext CT. We assume the access structure A is implicitly included in
CT.

5. CAKeyGen (GPK , gid) → (DSKgid, CASKgid, CAPKgid) : This algorithm takes in
GPK and the user’s gid. It then outputs a decryption key DSKgid , a gid-related private
key CASKgid and a gid-related public key CAPKgid , where DSKgid will be used by the
user, CASKgid will be used in pre-decrypting the ciphertext and CAPKgid will be used to
generate the attribute-related secret keys by the AAs.

6. AAKeyGen (Sgid,f , GPK,CPK,CAPKgid, AMKf)ß(ASKS,gid,f) : When a user submits
a set of attributes Sgid,f belongs to AAf to request the attribute-related key ASKgid,f , AAf
runs this algorithm with Sgid,f , GPK, CPK, CAPKgid and AMKf as input. If CAPKgid

is invalid, it outputs ⊥. Otherwise, it outputs ASKS,gid,f = {ASKi,gid|i ∈ Sgid,f} . We let
ASKS,gid = ∪ASKS,gid,f denote the attribute-related key of Sgid , where Sgid = ∪Sgid,f .
We assume the set Sgid is implicitly included in ASKS,gid.

7. Pre-Decrypt (CT , GPK , CASKgid, ASKS, gid) → (PDKEY) : This algorithm
takes in CT, GPK, CASKgid and ASKS,gid. It outputs the pre-decryption key PDKEY of
CT if and only if Sgid satisfies A .

8. Decrypt (CT , PDKEY , DSKgid) → (M) : This algorithm takes in CT, PDKEY
and DSKgid . It outputs the plaintext message M.

We use this Multi-Authority CP-ABE scheme as a building block in our new modified model.
Table-3.1 lists the notations that are used in the system definition.

16

Table : Notations
Notations Descriptions
M, RD M is the Plaintext (actually the raw data of Data

Owner). RD is the Data send to the Data Gateway
by Data Owner. In recent basic model RD = M

RK Randomly choosen encrytion key by Data Gateway
ED Encrypted data of Data Gateway
EK Encrypted encryption key
WK Wrapped key EK
LSSS Linear Secret Sharing Scheme
CA Central Authority
gid Global identifier
AAf Attribute authority with index f
GPK System global public parameters
CPK The CA’s public parameters
CMK The CA’s master secret key
Uf The attribute universe governed by AAf
APKf Public parameters of AAf
AMKf Master secret key of AAf
CT Ciphertext (the encrypted data which the data owner

send to data gateway in modified model. it is basi-
cally the pair (encrypted data private key encryption,
encrypted private key))

A(W, ρ) Access structure (policy) expressed by LSSS matrix W
and map function ρ

DSKgid User decryption key for gid
CAPKgid gid-related public key
CASKgid gid-related private key
Sgid,f The set of attributes of user (gid) governed by AAf
ASKS,gid,f The private key for Sgid,f
PDKEY Pre-decryption key
λ The security parameter of the system
N Product of 3 different primes p1, p2, p3

ZN The ring of integers modulo N (without 0)

Table 3.1: List of Notations used in System Definition

3.3 Fuctionalities used in the System
Global Setup : Let G and G1 denote two bilinear groups of order N = p1p2p3 (a product of 3
different primes). Let Gpi be the subgroup of order pi in G. Here the subgroups Gp1 , Gp2 and
Gp3 have to have the orthogonality property. That is, for hi ∈ Gpiandhj ∈ Gpj , if i 6= j, we have
e(hi, hj) = 1 . Let e : G × G 7→ G1 denote a bilinear map. g is a random chosen element from
Gp1 . Additionally, choose an UF-CMA (unforgeable under adaptive chosen message attacks)
secure signature system Σsign = (KeyGen, Sign, V erify). The GPK is broadcasted as GPK =
(N, e, g,Σsign).

Central Authority Setup : The CA runs the KenGen algorithm of Σsign . It sets
the sign-key as CMK (Central Master Key) and verify-key as CPK (Central Public Key). The

17

CPK will be used by the AAs only. The CMK is used by only CA to generate Keys (only for
one time) for Users.

Attribute Authorities Setup : Each AAf governs its attribute universe Uf . For
each i ∈ Uf , it chooses a random exponent tf,i ∈ ZN and computes Tf,i = gtf,i . It also chooses
two random exponents αf , af ∈ ZN . Finally, the public parameter of AAf is broadcasted as :
APKf = (gaf , e(g, g)αf , Tf,i ∀i). The master secret key of AAf is AMKf = (αf , af , tf,i ∀i).

Encrypt : Here the access policy is defined by A = (W, ρ), where W is a LSSS matrix
with l rows and n columns, and ρ associates each row Wx to attribute ρ(x).
Each Attribute Authority (External IAM, Policy Decision Point) has broadcasted their Public
Keys previously. Data Owner’s encryptor uses those public keys and encrypts M under A as
follows :

1. Chooses a random vector ~v = (s, v2, ..., vn) ∈ ZnN , where s is the secret value.

2. For each x ∈ [l], it selects a random exponent rx ∈ ZN .

3. Computes C1 = M · (Π2
f=1e(g, g)αf)s, C01 = gs. For each x ∈ [l] it also computes Cx1 =

g(Σ2
f=1af)·Wx·~v · T−rxρ(x) , Dx1 = grx .

4. Set CT = (A, C1, C01, {Cx1, Dx1}x∈[l]).

When a new user joins in the system, he/she has to register himself/herself and will obtain a
unique gid. By running the CAKeyGen algorithm, the CA provides the gid-related keys to the
users. Then, each AA runs the AAKeyGen algorithm and gives the attribute-related keys to
the users.

CAKeyGen : For each user, the CA first chooses two random exponents bgid, cgid ∈ ZN
, two random elements Rgid, Rgid,0 ∈ Gp3 and computes CASKgid = Lgid = gbgid/cgid · Rgid,
Lgid,0 = g1/cgid ·Rgid,0. After that, it uses CMK to sign on the string (CMK, gid||CASKgid||Lgid,0)
and gets a signature σgid. Let CAPKgid = (gid, CASKgid, Lgid,0, σgid). Finally, it sends the
DSKgid = cgid, CASKgid and CAPKgid to the user. After sending the keys to user CA delete
bgid, cgid, RgidRgid,0 from its memory.

AAKeyGen : After receiving the submitted key CAPKgid, the AAf first uses the
CPK to verify whether the CAPKgid is valid. If not, it aborts. Otherwise, it issues
the user a set of attributes Sgid,f . It randomly selects Rgid,f,0 ∈ Gp3 and computes
Kgid,f = L

αf
gid,0 · L

af
gid · Rgid,f,0 = gαf/cgid · gaf ·bgid/cgid · Rgid,f , where Rgid,f = Rgid,f,0 · R

αf
gid,0 · R

af
gid.

For each attribute i ∈ Sgid,f , it randomly picks R
′

gid,f,i ∈ Gp3 and computes
Kgid,f,i = L

tf,i
gid · R

′

gid,f,i = T
bgid/cgid
f,i · Rgid,f,i, where Rgid,f,i = R

tf,i
gid · R

′

gid,f,i. It finally
sends ASKS,gid,f = (Kgid,f , {Kgid,f,i}i∈Sgid,f).

PreDecrypt : The Data consumer sends ASKS,gid,f = (Kgid,f , {Kgid,f,i}i∈Sgid,f) and
CASKgid = Lgid to the cloud server and asks it to pre-decrypt the CT. Policy Decision Point
computes K2 = Πf∈1,2Kgid,f and constants yx ∈ ZN , such that Σρ(x)∈Sgid(yx ·Wx) = (1, 0, ..., 0).
Then computes

PDKEY = e(K2,C01)
Πρ(x)∈Sgid (e(Cx1,Lgid)·e(Dx1,Kρ(x)))yx

= e(g, g)Σ2
f=1αf ·s/cgid .

18

Cloud server sends PDKEY to Data consumer.

Decrypt : Data Consumer’s decryptor computes M = C1

(PDKEY)
cgid .

We now want to change Key wrapping and unwrapping procedure of the recent model,
we will use MA-CPABE here also. In this case we replace the component KMS (Key
Management Server) of basic model by KWS (Key Wrapping Server).

3.4 Data Storing
In this section I am presenting data storing Architecture of my model with step by step expla-
nation.

3.4.1 Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point

1. Data Owner sends his/her Global ID (gid) to the External IAM.

2. External IAM sends a token to Data Owner after verifying all of its attributes.

3. Data Owner choose the message M and then using AES encryption it encrypts M and get
enc(M). The AES encryption key (AK) and the choosen access policy A = (W, ρ), where
W is a LSSS matrix with l rows and n columns, and ρ associates each row Wx to attribute
ρ(x), to the encryptor. In my model I forcefully assume that Data Owner’s Access
Policy must include attributes of both Attribute Authorities.

4. Each Attribute Authority (External IAM, Policy Decision Point) has broadcasted their
Public Keys previously. Encryptor uses those public keys and encrypts AK under A1

using Encrypt algorithm and produce CT0.

5. Encryptor Sends CT0 to the Data Owner.

6. Data Owner sends CT = (enc(M), CT0) = (enc(M),A1, C1, C01, {Cx1, Dx1}x∈[l]) to the
Data Gateway along with own token.

7. Data Gateway take RD = CT . Now it does following things (as basic model) on RD :

(a) Chooses a random key RK and encrypts RD with RK and gets ED.

(b) Then also encrypts RK with its some special secret key and get EK.

8. Data Gateway sends EK with Data Owners token to the Control Interface.

9. Control Interface sends EK to the KWS and token to the Policy Decision Point.

10. Policy Decision Point first retrieve data owner’s identity from the token and decides an
access policy A2 = (A

′
, ρ

′
) (where A′ has l′ many rows). It sends A2 = (A

′
, ρ

′
) to the

KWS.

11. KWS runs the Encrypt algorithm on EK under the access policy A2 = (A
′
, ρ

′
) and get

the wrapped key (doubly encrypted encryption key) WK = (A′
, C2, C02, {Cx2, Dx2}x∈[l′]).

19

Storage

Data Gateway (7)

Control
Inter-
face

KWS
(11)

Policy
Decision
Point

External IAM

Data Owner

Encryptor (4)

14

1

2
3 5

6

8
9(ii)

9(i)
1012

13

Figure 3.1: Rough Architecture of Data storing in first (Centralized) model

12. KWS sends WK to Control Interface.

13. Control Interface sends WK to the Data Gateway.

14. Data Gateway sends ED and WK to the Storage.

3.5 Data Consuming
In this section I am presenting data consuming Architecture of my model with step by step
explanation.

20

Storage

Data Gateway (16, 17)

Control
Inter-
face

KWS
(8)

Policy
Decision
Point

External IAM

Data Consumer (22)

Decryptor (13, 20)

4

1

2
12, 19 21, 14

3, 15

5
6(ii)

6(i)

7(ii)

7(i)

9

10

11, 18

Figure 3.2: Rough Architecture of Data consuming in first (Centralized) model

3.5.1 Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point.

1. Data Consumer sends Global ID (gid) to the External IAM.

2. External IAM sends token, CAPKgid, CASKgid, DSKgid, ASKS,gid,1 =
(Kgid,1, {Kgid,1,i}i∈Sgid,1) to the Data Consumer.

3. Data Consumer sends ASKS,gid,1 = (Kgid,1, {Kgid,1,i}i∈Sgid,1), token, CASKgid and
CAPKgid to the Data Gateway.

21

4. Data Gateway collects ED and WK from the Storage, where WK =
(A′

, C2, C02, {Cx2, Dx2}x∈[l′]).

5. Data Gateway sends WK, CAPKgid, CASKgid, ASKS,gid,1 and consumer’s token to Con-
trol Interface of Access Control Server.

6. Control Interface sends WK, ASKS,gid,1 to KWS and sends CAPKgid, consumer’s token
to Policy Decision Point.

7 Policy Decision Point runs AAKeyGen and sends ASKS,gid,2 to control interface and to
KWS both.

8 KWS runs PreDecrypt on WK with ASKS,gid,1, ASKS,gid,2, CASKgid and computes
EK

′
= PreDecryption key (PDKEY) for decrypting WK.

9 KWS sends EK ′ to Control Interface.

10 Control Interface sends EK ′
, ASKS,gid,2 to the Data Gateway.

11 Data Gateway sends EK ′
, C2 to the Data Consumer.

12 Data Consumer sends EK ′
, C2, DSKgid to its Decryptor.

13 Decrytor runs Decrypt on EK ′
, C2, DSKgid (with PDKEY = EK

′) and get EK.

14 Decryptor sends EK to Data Consumer.

15 Data Consumer sends EK to Data Gateway.

16 Data Gateway decrypts EK and gets RK, and after that using that RK decrypts ED
and gets RD = CT = (enc(M),A1, C1, C01, {Cx1, Dx1}x∈[l]) = (enc(M), CT0).

17 Data Gateway runs PreDecrypt with CT0, ASKS,gid,1, ASKS,gid,2 and CASKgid as input
and produce CT ′

= PreDecryption key (PDKEY) for decrypting CT0.

18 Data Gateway sends enc(M), CT
′ and C1 to Data Consumer.

19 Data consumer sends CT ′ , C1 and DSKgid = cgid to its Decryptor.

20 Decryptor runs Decrypt algorithm on CT ′ , C1 and DSKgid = cgid (with PDKEY = CT
′)

as input and retrieve the AES encryption key AK.

21 Decryptor sends AK to Data Consumer.

22 Data Consumer decrypts enc(M) using AK and gets M.

3.6 Security Analysis
The security proof which is used in the paper [11] implies that our model is also adaptively
secure. I have given the proof in Appendix-A.

Our Scheme is also collusion resistant because Lgid, Lgid,0 is different for each users, so they
can’t combine their Authority Attribute Secret keys to access an unauthorized data.

22

Suppose Alice or Bob does not have an authorized set of attributes but union of their attribute
sets is an authorized set and they are planning to collude.

Let us consider all the keys of both Alice and Bob.

Alice’s Key :

CASKgid = Lgid = gb1/c1 ·R1

Lgid,0 = g1/c1 ·R1,0

DSKgid = c1

Kgid,f = gαf/c1 · gaf ·b1/c1 ·R1,f,0 ·R
αf
1,0 ·R

af
1 .

Kgid,f,i = T
b1/c1
f,i ·Rtf,i

1 ·R′

1,f,i, ∀i ∈ Uf

Bob’s Key :

CASKgid = Lgid = gb2/c2 ·R2

Lgid,0 = g1/c2 ·R2,0

DSKgid = c2

Kgid,f = gαf/c2 · gaf ·b2/c2 ·R2,f,0 ·R
αf
2,0 ·R

af
2 .

Kgid,f,i = T
b2/c2
f,i ·Rtf,i

2 ·R′

2,f,i, ∀i ∈ Uf

Suppose after mixing up their keys there is two attributes i, j ∈ Uf where i is only Alice’s
attribute and j is only Bob’s attribute. In that case they will produce CASKgid, Lgid,0, Kgid,f

of only one of them but produce Kgid,f,i’s from both of them.

Let Alice gives all its keys with Kgid,f,j of Bob and when we add attribute j to Alice’s attribute
set it becomes an authorized set.

But then if we calculate the pre-decryption key PDKEY, it will be PDKEY =
(e(g, g)Σ2

f=1αf ·s/c1)/(e(g, g)
rjtf,j(

b2
c2
− b1
c1

)
) instead of PDKEY = e(g, g)Σ2

f=1αf ·s/c1 .
Then Alice will decrypt the message using its secret key c1.
So, at the end of decryption we will get M · e(g, g)

rjtf,j(
b2c1
c2
−b1) instead of the message M .

Similarly for the other case also we will get a wrong result. Therefore two unauthorized user
can’t get any facility after a successful collusion. Hence Our scheme is collusion resistant.

23

Chapter 4

Decentralized Multi-Authority Model
(Second Model)

Firstly the MA-CP-ABE, which we have used in our first model is actually based on the
composite order bilinear groups. Now if we can change it with a MA-CP-ABE based on prime
order bilinear group, then we can achive more efficiency [14]. For this I take the idea of the
paper [10, 12], and construct another modified model (using decentralized MA-CP-ABE).
As my first model here we also use KWS instead of KMS. For key-wrapping and unwrapping
in KWS we use another CP-ABE without decryption outsourcing. Actually here the full
computation for key-unwrapping will be in cloud (KWS does the computations and it is a cloud
component). So we do not need a CP-ABE with decryption outsourcing for key-wrapping and
unwrapping.

Here I will omit the concept of Central Authority.

4.1 Modified Components and Their Uses
In modified version I have changed the responses of some components. So I am explaining all
the components functionalities once again.

External IAM : In this model External IAM serves as one of the two Multi-Authorities
besides its basic works.
This component has to be Semi-Honest and it can not collude with Policy Decision
Point (which is another Attribute Authority in my model).
It basically verify the attributes based on the global id of the users and gives a token
corresponding to their id (basic model functionality) and one Authority Attribute Secret
Key based on the user’s attributes which are handled by it (work as AA).

Policy Decision Point : In this model Policy Decision Point serves also as another
Attribute Authority besides its basic work.
This compoent must be Semi-Honest and have to handle some attributes of its Access Policy
(since for Multi-Authority CP-ABE encryption we have only two authorities and if one of them
only containts all attributes of the Access Policy then it will be no more secure).
It basically produce one another access policy A2 for key wrapping and computes the au-
thority attribute secret key for Data Consumer and all the Pre-Decryption operations in cloud.

Data Owner : He/she first encrypts the raw data using AES and then encrypts the
AES encryption key with the two Attribute Public Key under his/her Access Policy A1.

24

Data Consumer : Data Consumer use his/her own Decryption Secret Key to De-
crypt the Pre-Decryted data. After that he actually get the AES encryption key and the raw
data encrypted with that key. He/she easily decryts the encrypted message and get the raw data.

Data Gateway : It does all its basic works on encrypted data in stead of the raw
data and it unwraps the wrapped key. But besides these it also does pre-decryption of the
user’s message. As Basic Model, it is also Semi-Honest in my model.

Key Wrapping Server (KWS) : It wraps the encrypted key and also unwraps the
wrapped key using MA-CP-ABE and it is also Semi-Honest.

4.2 Full System Definition
Following functions are basically combination of two different MA-CP-ABE (one with decryp-
tion outsourcing and another is without decryption outsourcing).

Global Setup (λ) → GP : This algorithm takes the security parameter λ as an input
and outputs the global parameters GP for the system.

Authority Setup (f, GP)→ (PKf , PK
′

f ,MSKf ,MSK
′

f) : Authority AAf (which is
indexed by f) takes GP as input and runs the algorithm to generate public parameters
(PKf , PK

′

f) and secret parameters (MSKf ,MSK
′

f).
In my case I have two authorities, so f ∈ {1, 2}. AA1 = External IAM and AA2 = Policy
Decision Point.

Encrypt (M, A1, GP, {PK1, PK2}) → CT : Data owner’s Encryptor takes message
M, data owner’s access policy A1, GP, {PK1, PK2} as input and compute the encrypted data
CT.

ReEncrypt (CT) → (ED) : Data Gateway runs this algorithm with encrypted data
CT as input. Then it chooses a random encryption key RK to encrypt CT and to produce an
encrypted data ED.

KeyEncryption (RK) → (EK) : Data Gateway runs this algorithm with encryption
key RK as input to produce encrypted form of the key EK.

Wrap (EK, A2, GP, {PK ′
1, PK

′
2}) → WK : KWS takes encrypted encryption key

EK, policy decision point’s access policy A2, GP, {PK ′
1, PK

′
2} as input and compute the

wrapped key WK.

AAKeyGen1 (GP, GID, f, SGID,f ,MSKf) → Kf,GID : Authority AAf (which is in-
dexed by f) takes global parameter GP, unique global id GID of the user, set of attributes of
the user SGID,f which are handled by AAf , secret parameter MSKf as input and computes
secret attribute key Kf,GID which is used for message decryption.

AAKeyGen2 (GP, GID, f, SGID,f ,MSK
′

f) → K
′

f,GID : Authority AAf (which is in-
dexed by f) takes global parameter GP, unique global id GID of the user, set of attributes of
the user SGID,f which are handled by AAf , secret parameter MSK

′

f as input and computes
secret attribute key K ′

f,GID which is used for key unwrapping by Data Gateway.

25

KeyTransform (GID, Kf,GID) → (Tf,GID, DSK) : Data consumer runs this algo-
rithm to transfer attribute secret keys Kf,GID to Tf,GID using its own decryption secret key
DSK.

UnWrap (GP, WK, {K ′
1,GID, K

′
2,GID}) → EK : This Algorithm takes global parame-

ter GP, wrapped key WK, secret attribute keys {K ′
1,GID, K

′
2,GID} as input and compute

unwrapped key (actual encrypted encryption key) EK.

KeyDecryption (EK) → (RK) : Data Gateway runs this algorithm with unwrapped
encrypted key EK as input to produce decrypted form of the key RK.

PartialDecryption (ED, RK) → (CT) : Data Gateway runs this algorithm with en-
crypted data ED and encryption key RK as input to produce the partially decrypted data CT.

PreDecrypt (GP, CT, {T1,GID, T2,GID}) → CT
′ : This algorithm takes GP, CT, transformed

keys {T1,GID, T2,GID} as input and compute pre-decrypted ciphertext CT ′ .

Decrypt (DSK, CT
′) → M : Data Consumer takes its own decryption secret key

DSK, pre-decrypted cipher text CT
′ as input and runs this algorithm to compute actual

message M.

4.3 Fuctionalities used in the System
Global Setup : Let G and G1 denote two bilinear groups of prime order p. Let e : G×G 7→ G1

denote a bilinear map. Choose a generator g of the group G. Also computes e(g, g). After
that choose a collision resistant hash function H : {GID} 7→ G. Set global parameter GP =
{g, p, e,H, e(g, g)}.

Authority Setup : AAf chooses αi, yi, βi, zi ∈ Zp ∀i ∈ Uf (Uf is the set of attributes handled by
AAf). Then it computes e(g, g)αi , gyi , e(g, g)βi , gzi ∀i ∈ Uf . It sets PKf = {(e(g, g)αi , gyi)}i∈Uf ,
PK

′

f = {e(g, g)βi , gzi}i∈Uf as public keys and sets MSKf = {αi, yi}i∈Uf , MSK
′

f = {βi, zi}i∈Uf
as secret keys.

Encrypt : Data Owner sends its data m and its own policy A1 = (A, ρ), where A is a
LSSS matrix with l rows and n columns, and ρ associates each row Ax to attribute ρ(x), as
input to its encryptor. After that it chooses some secret s ∈ Zp. Select two random vectors
~v, ~w ∈ Znp such that 1st co-ordinate of ~v is s and 1st co-ordinate of ~w is 0. Now computes
λj = Aj · ~v and wj = Aj · ~w for all rows j ∈ [l]. Now it chooses rj ∈ Zp ∀j ∈ [l]. Then it
computes C0 = m · e(g, g)s and ∀j ∈ [l] also computes C1j = e(g, g)λj · e(g, g)αρ(j)rj , C2j = grj ,
C3j = gyjrj · gwj . Finally sets CT = (C0, {C1j, C2j, C3j}j∈[l]).

ReEncrypt : It is same as basic model.

KeyEncryption : It is same as basic model.

Wrap : KWS takes encrypted encryption key EK from Data Gateway and Policy Deci-
sion Point’s access policy A2 = (A

′
, ρ

′
), where A

′ is a LSSS matrix with l
′ rows and n

′

columns, and ρ
′ associates each row A

′
x to attribute ρ′

(x), as input. After that it chooses
some secret s′ ∈ Zp. Select two random vectors ~v′ , ~w′ ∈ Zn

′

p such that 1st co-ordinate of ~v′

26

is s′ and 1st co-ordinate of ~w′ is 0. Now computes λ′
j = A

′
j · ~v

′ and w
′
j = A

′
j · ~w

′ for all
rows j ∈ [l

′
]. Now it chooses r′j ∈ Zp ∀j ∈ [l

′
]. Then it computes D0 = EK · e(g, g)s

′
and

∀j ∈ [l
′
] also computes D1j = e(g, g)λ

′
j · e(g, g)

β
′

ρ
′
(j)
r
′
j , D2j = gr

′
j , D3j = gzjr

′
j · gw

′
j . Finally sets

WK = (D0, {D1j, D2j, D3j}j∈[l′]).

It is basically the Encrypt Algorithm with input EK and A2 with public parameters
PK

′
1, PK

′
2. (Since it has used different public parameters, we just separate them by different

names)

AAKeyGen1 : Authority AAf (which is indexed by f) takes global parame-
ter GP, unique global id GID of the user, set of attributes of the user SGID,f
which are handled by AAf , secret parameter MSKf as input. Then it computes
Kf,GID = {Ki,GID}i∈SGID,f = {gαi · H(GID)yi}i∈SGID,f . This the secret attribute key,
which is used for Message decryption

AAKeyGen2 : Authority AAf (which is indexed by f) takes global parame-
ter GP, unique global id GID of the user, set of attributes of the user SGID,f
which are handled by AAf , secret parameter MSK

′

f as input. Then it computes
K

′

f,GID = {K ′
i,GID}i∈SGID,f = {gβi · H(GID)zi}i∈SGID,f . This secret attribute key is

used for Key Unwrapping

KeyTransform : Data Consumer takes the secret attribute keys {Ki,GID}i∈SGID as in-
put. After that it chooses d ∈ Zp, and set its own secret decryption key DSK = d. After that
it trsforms the attribute keys as {Ti,GID}i∈SGID = {(K

1
d
i,GID, H(GID)

1
d}i∈SGID .

UnWrap : KWS takes wrapped key WK = (D0, {D1j, D2j, D3j}j∈[l′]) and attribute secret keys
K

′
1,GID, K

′
2,GID as input. Then computes constants c′x ∈ Zp , such that Σρ′ (x)∈Sgid(c

′
x · A

′
x) =

(1, 0, ..., 0). Now it computes C ′
= Πl

′

j=1((e(H(GID), D3j) ·D1j)/(e(K
′

ρ′ (j),GID
, D2j)))

c
′
j . Finally

computes EK = D0

C′ . Then sends EK to Data Gateway.

KeyDecryption : It is same as basic model.

PartialDecryption : It is same as basic model.

PreDecrypt : Data Gateway takes cipher text CT = (C0, {C1j, C2j, C3j}j∈[l]) and
transformed secret keys T1,GID, T2,GID as input. Then computes constants cx ∈ Zp , such
that Σρ(x)∈Sgid(cx · Ax) = (1, 0, ..., 0). Here Ti,GID = (K

1
d
i,GID, H(GID)

1
d), ∀i ∈ SGID. If 2nd

component of each Ti,GID is not same then it will return ⊥.
Otherwise it computes C1 = Πl

j=1((e(H(GID)
1
d , D3j))/(e(Tρ(j),GID, D2j)))

cj and
C2 = Πl

j=1(C1j)
cj . Finally it sets CT ′

= (C1, C2) and sends C0, CT
′ to Data Consumer.

Decrypt : Data consumer sends C0, CT
′

= (C1, C2) and own decryption secret key
DSK = d to its Decryptor as input. Then it computes C ′′

= ((C2)
1
d · C1)d. Finally generates

m = C0/C
′′ .

27

Table : Notations
Notations Descriptions
M, RD M is the Plaintext (actually the raw data of Data

Owner). RD is the Data send to the Data Gateway
by Data Owner. In recent basic model RD = M

RK Randomly choosen encrytion key by Data Gateway
ED Encrypted data of Data Gateway
EK Encrypted encryption key
WK Wrapped key EK
LSSS Linear Secret Sharing Scheme
GID Global identifier
AAf Attribute authority with index f
GP System global public parameters
Uf The attribute universe governed by AAf
PKf , PK

′

f Public parameters of AAf
MSKf ,MSK

′

f Master secret key of AAf
CT Ciphertext (the encrypted data which the data owner

send to data gateway in modified model. it is basi-
cally the pair (encrypted data private key encryption,
encrypted private key))

A1(A, ρ) Access structure (policy) expressed by LSSS matrix A
and map function ρ and it is set decided by the data
owner

A2(A
′
, ρ

′
) Access structure (policy) expressed by LSSS matrix A′

and map function ρ′ and it is set decided by the policy
decision point

DSK Data consumer’s secret decryption key
Sgid,f The set of attributes of user (gid) governed by AAf
Ki,gid, K

′

i,gid The attribute secret keys for the attribute i ∈ Sgid,f
Kf,gid, K

′

f,gid The private keys for Sgid,f
Ti,gid The transformed attribute secret key for the attribute

i ∈ Sgid,f
Tf,gid The transformed private key for Sgid,f
λ The security parameter of the system
Zp The ring of integers modulo p (without 0)

Table 4.1: List of Notations used in the System

4.4 Data Storing
In this section I am presenting data storing Architecture of my model with step by step expla-
nation.

4.4.1 Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point

28

Storage

Data Gateway (7)

Control
Inter-
face

KWS
(11)

Policy
Decision
Point

External IAM

Data Owner

Encryptor (4)

14

1

2
3 5

6

8
9(ii)

9(i)
1012

13

Figure 4.1: Rough Architecture of Data storing in Second (Decentralized) model

1. Data Owner sends his/her Global ID (gid) to the External IAM.

2. External IAM sends a token to Data Owner after verifying all of its attributes.

3. Data Owner choose the message M and then using AES encryption it encrypts M and get
enc(M). The AES encryption key (AK) and the choosen access policy A1 = (A, ρ) to its
encrypter. In my model I forcefully assume that Data Owner’s Access Policy must
include attributes of both Attribute Authorities.

4. Each Attribute Authority (External IAM, Policy Decision Point) has broadcasted their
Public Keys previously. Encryptor uses those public keys and encrypts AK under A1

using Encrypt algorithm and produce CT0.

29

5. Encryptor Sends CT0 to the Data Owner.

6. Data Owner sends CT = (enc(M), CT0) = (enc(M),A1, C1, C01, {Cx1, Dx1}x∈[l]) to the
Data Gateway along with own token.

7. Data Gateway take RD = CT . Now it does following things (as basic model) on RD :

(a) Chooses a random key RK and encrypts RD with RK and gets ED.

(b) Then also encrypts RK with its some special secret key and get EK.

8. Data Gateway sends EK with Data Owner’s token to the Control Interface.

9. Control Interface sends EK to the KWS and token to the Policy Decision Point.

10. Policy Decision Point sends another access policy A2 = (A
′
, ρ

′
) to the KWS based on data

owner’s token.

11. KWS runs the Wrap (which is basically as same as Encrypt algorithm just with dif-
ferent public parameters) algorithm on EK and get the wrapped key (doubly encrypted
encryption key) WK.

12. KWS sends WK to Control Interface.

13. Control Interface sends WK to the Data Gateway.

14. Data Gateway sends ED and WK to the Storage.

4.5 Data Consuming
In this section I am presenting data consuming Architecture of my model with step by step
explanation.

4.5.1 Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point.

1. Data Consumer sends Global ID (gid) to the External IAM.

2. External IAM runs AAKeyGen1, AAKeyGen2 and sends token, K1,GID, K
′
1,GID to

Data Consumer.

3. Data Consumer sends token, K ′
1,GID to the Data Gateway.

4. Data Gateway collects ED and WK from the Storage.

5. Data Gateway sends WK, K ′
1,GID and consumer’s token to Control Interface of Access

Control Server.

6. Control Interface sends WK, K ′
1,GID to KWS and sends consumer’s token to Policy Deci-

sion Point.

7. Policy Decision Point runs AAKeyGen1, AAKeyGen2 and sends K2,GID to control
interface and K ′

2,GID to KWS.

30

Storage

Data Gateway (12, 15)

Control
Inter-
face

KWS
(8)

Policy
Decision
Point

External IAM

Data Consumer (13, 20)

Decryptor (18)

4

1

2
17 19

3, 14

5
6(ii)

6(i)

7(ii)

7(i)

9

10

11, 16

Figure 4.2: Rough Architecture of Data consuming in Second (Decentralized) model

8. KWS runs UnWrap and computes unwrapped key EK.

9. KWS sends EK to Control Interface.

10. Control Interface sends K2,GID and EK to the Data Gateway.

11. Data Gateway sends K2,GID to Data Consumer.

12. Data Gateway decrypts EK and gets RK, and after that using that RK decrypts ED
and gets RD = CT = (enc(M),A1, C0, {C1j, C2j, C3j}j∈[l]) = (enc(M), CT0).

13. Data Consumer runs KeyTransform on {Ki,GID}i∈SGID = {K1,GID, K2,GID} and com-
putes {Ti,GID}i∈SGID and DSK.

31

14. Data Consumer sends {Ti,GID}i∈SGID to Data Gateway.

15. Data Gateway runs PreDecrypt on CT0 and computes CT ′ .

16. Data Gateway sends enc(M), C0, CT
′ to Data Consumer.

17. Data consumer sends CT ′
, C0 and DSK to its Decryptor.

18. Decryptor runs Decrypt algorithm with CT ′
, C0 and DSK as input and retrieve the AES

encryption key AK.

19. Decryptor sends AK to Data Consumer.

20. Data Consumer decrypts enc(M) using AK and gets M.

4.6 Security Analysis
Here I will prove the security of the main MA-CP-ABE scheme (base of the construction) which
I have used as building block in this second model. First I will describe the base MA-CP-ABE
scheme.

Base MA-CP-ABE

This consists of the following algorithms :

Global Setup : Let G and G1 denote two bilinear groups of prime order p. Let
e : G × G 7→ G1 denote a bilinear map. Choose a generator g of the group G. Also computes
e(g, g). After that choose a collision resistant hash function H : {GID} 7→ G. Set global
parameter GP = {g, p, e,H, e(g, g)}.

Authority Setup : AAf chooses αi, yi ∈ Zp ∀i ∈ Uf (Uf is the set of attributes han-
dled by AAf). Then it computes e(g, g)αi , gyi ∀i ∈ Uf . It sets PKf = {(e(g, g)αi , gyi)}i∈Uf as
public key and sets MSKf = {αi, yi}i∈Uf as secret key.

Encrypt : Data Owner sends its data m and its own policy A1 = (A, ρ), where A is a
LSSS matrix with l rows and n columns, and ρ associates each row Ax to attribute ρ(x), as
input to its encryptor. After that it chooses some secret s ∈ Zp. Select two random vectors
~v, ~w ∈ Znp such that 1st co-ordinate of ~v is s and 1st co-ordinate of ~w is 0. Now computes
λj = Aj · ~v and wj = Aj · ~w for all rows j ∈ [l]. Now it chooses rj ∈ Zp ∀j ∈ [l]. Then it
computes C0 = m · e(g, g)s and ∀j ∈ [l] also computes C1j = e(g, g)λj · e(g, g)αρ(j)rj , C2j = grj ,
C3j = gyjrj · gwj . Finally sets CT = (C0, {C1j, C2j, C3j}j∈[l]).

AAKeyGen : Authority AAf (which is indexed by f) takes global parameter GP, unique global
id GID of the user, set of attributes of the user SGID,f which are handled by AAf , secret param-
eter MSKf as input. Then it computes Kf,GID = {Ki,GID}i∈SGID,f = {gαi ·H(GID)yi}i∈SGID,f .

KeyTransform : Data Consumer takes the secret attribute keys {Ki,GID}i∈SGID as in-
put. After that it chooses d ∈ Zp, and set its own secret decryption key DSK = d. After that
it trsforms the attribute keys as {Ti,GID}i∈SGID = {(K

1
d
i,GID, H(GID)

1
d}i∈SGID .

PreDecrypt : Data Gateway takes cipher text CT = (C0, {C1j, C2j, C3j}j∈[l]) and
transformed secret keys T1,GID, T2,GID as input. Then computes constants cx ∈ Zp , such

32

that Σρ(x)∈Sgid(cx · Ax) = (1, 0, ..., 0). Here Ti,GID = (K
1
d
i,GID, H(GID)

1
d), ∀i ∈ SGID. If 2nd

component of each Ti,GID is not same then it will return ⊥.
Otherwise it computes C1 = Πl

j=1((e(H(GID)
1
d , D3j))/(e(Tρ(j),GID, D2j)))

cj and
C2 = Πl

j=1(C1j)
cj . Finally it sets CT ′

= (C1, C2) and sends C0, CT
′ to Data Consumer.

Decrypt : Data consumer sends C0, CT
′

= (C1, C2) and own decryption secret key
DSK = d to its Decryptor as input. Then it computes C ′′

= ((C2)
1
d · C1)d. Finally generates

m = C0/C
′′ .

To prove the security of this scheme I will prove that if any attacker can successfully attack this
scheme then we can generate one attacker who can successfully attack the OO-MA-DO-CPABE
scheme of the paper [12]. Here I will prove that our model is CPA secure.

4.6.1 Security Game Description

A CP-ABE scheme is said to be secure against chosen plaintext attacks (CPA) if no probabilistic
polynomial-time adversaries have non-negligible advantage in this following game (DC-MA-CP-
ABE_GameA,π(S, λ)).

• Init : The adversary chooses the challenge access structure W and gives it to the challenger.

• SetUp : The challenger runs the Setup algorithm and gives the public parameters PK to
the adversary.

• Phase-1 : The adversary submits Attribute set S for a KeyGen query. Provided S 2 W ,
the challenger answers with a secret key SK for S. This can be repeated adaptively.

• Challenge : The adversary submits two messages M0 and M1 of equal length. The
challenger chooses µ ∈ {0, 1} at random and encrypts Mµ to W . The resulting ciphertext
CT is given to the adversary.

• Phase-2 : Same as Phase-1.

• Guess : The adversary outputs a guess µ0 of µ.

Definition : Security of scheme is CPA-secure for attribute universe S if for all PPT adversaries
A, there exists a negligible function negl such that :

Pr [DC-MA-CP-ABE_GameA,π(S, λ) = 1] 6 1/2 + negl(λ).

4.6.2 Security Game

Theorem : Suppose the construction of OO-MA-DO-CPABE scheme is CPA-secure. Then our
proposed scheme is also CPA-secure with due to the Definition.

Proof : If possible let A be the adversary who can successfully attack our scheme with
probability ε. Now I will construct an adversary B who will attack [SS] scheme successfully
with probability ε. For adversary A, adversary B plays the role of challenger.

• Init : A chooses some access structure W = (A, ρ), and send this to B.
B sends this W = (A, ρ) to the challenger.

33

• SetUp : Challenger runs Global Setup and Authority Setup Algorithm and sends all the
public keys GP, PK1 and PK2 to B.
B sends public keys GP, PK1 and PK2 to A.

• Phase-1 : Now A queries to B for secret keys for the set S 2 W and B passes those same
queries to challenger.
Challenger sends the query responses to B and B sends those responses directly to A.

• Challenge : Now A chooses two messages m0,m1 of same length and send those to B.
B sends m0,m1 to the challenger.
Challenger chooses random b ∈ {0, 1} and encrypts mb and gets
CT

′
= ((A, ρ), C0, {C

′
1j, C

′
2j, C

′
3j, C

′
4j, C

′
5j, CT1j, CT2j}j∈[1,p]). Challenger sends CT

′ to B.
B computes C1j = C

′
1j · CT1j · e(g, g)C

′
4j , C2j = C

′
2j and C3j = C

′
3j · CT2j · gC

′
5j and sends

CT = ((A, ρ), C0, {C1j, C2j, C3j}j∈[1,p]) to A.

• Phase-2 : Again A queries to B for secret keys for the set S 2 W and B passes those
same queries to challenger.
Challenger sends the query responses to B and B sends those responses directly to A.

• Guess : A guess b′ ∈ {0, 1} and sends b′ to B.
B sends b′ to Challenger.

Since C0 = mb · e(g, g)s is same in both CT and CT ′ , we can say that win probability of B is
same as A. This completes my proof.

�

This Scheme is also collusion resistant because H(GID) is different for each users with very
high probability (since H is collision resistant), so they can’t combine their Authority Attribute
Secret keys to access an unauthorized data.

Suppose Alice or Bob does not have an authorized set of attributes but union of their attribute
sets is an authorized set and they are planning to collude.

Let us consider all the keys of both Alice and Bob.

Alice’s Key : {Ki,GIDA}i∈SGIDA,f = {gαi ·H(GIDA)yi}i∈SGIDA,f

Bob’s Key : {Ki,GIDB}i∈SGIDB,f = {gαi ·H(GIDB)yi}i∈SGIDB,f

Suppose after mixing up their keys there is two attributes i, j ∈ Uf where i is only Alice’s
attribute and j is only Bob’s attribute. In that case they will use H(GID) of only one of them
but use Ki,GID’s from both of them to make transform keys. They can not use H(GID) of both
of them to generate transform keys because the last component of all transformed keys have to
be same, otherwise they will be caught.

Let Alice gives all its keys with Kj,GIDB of Bob and when we add attribute j to Alice’s attribute
set it becomes an authorized set.

But then if we calculate C1 = Πl
j=1((e(H(GID)

1
d , D3j))/(e(Tρ(j),GID, D2j)))

cj , we will get
C1 = (1/e(g, g)

αjrjcj
d) · (e(H(GIDA),g)

e(H(GIDB),g)
)
yjrjcj
d instead of getting C1 = (1/e(g, g)

αjrjcj
d). And So when

34

we will calculate C ′′
= ((C2)

1
d · C1)d we will get C ′′

= e(g, g)s · (e(H(GIDA),g)
e(H(GIDB),g)

)yjrjcj instead of
getting C ′′

= e(g, g)s. And finally after decryption we will get M · (e(H(GIDB),g)
e(H(GIDA),g)

)yjrjcj instead of
getting the actual message M .

Now M · (e(H(GIDB),g)
e(H(GIDA),g)

)yjrjcj = M will happen iff H(GIDA) = H(GIDB) (as alice and bob can
be choosen arbitrarily). But H(GIDA) = H(GIDB) where GIDA 6= GIDB implies that we
have found a collision for the hash function H, which is not possible as H is collision resistant.
So, Alice do not get the actual message M .

Similarly for the other case also we will get a wrong result. Therefore two unauthorized user
can not get any facility after a successful collusion. Hence Our scheme is collusion resistant.

35

Chapter 5

Comparison of Efficiency

I am going to compare my two models, Centralized Multi-Authority Model (First Model) and
Decentralized Multi-Authority Model (Second Model), and the models with the schemes (if we
use those schemes in our model) from the papers “Decentralizing Attribute-Based Encryption"
by Allison Lewko and Brent Waters [LW][10] (scheme with prime order bilinear group [LWP] and
scheme with composite order bilinear group [LWC]), “Efficient Statically-Secure Large-Universe
Multi-Authority Attribute-Based Encryption" by Yannis Rouselakis and Brent Waters [RW][17]
and “Efficient Decentralized Attribute Based Access Control for Mobile Clouds" by Sourya
Joyee De and Sushmita Ruj [SS][12].

For simplicity of expression, we assume that

u = number of user’s attribute
i = number of user’s attribute handled by External IAM
p = number of user’s attribute handled by Policy Decision Point
(So, clearly i+ p = u.)
l = number of rows of the Data Owner’s Access Policy matrix
r = number of rows of the Data Owner’s Access Policy matrix which actually indicates user’s
attribute
s = number of rows of the Policy Decision Point’s Access Policy matrix
v = number of rows of the Policy Decision Point’s Access Policy matrix which actually indicates
user’s attribute
exp = exponentiation

We ignore the costs of Basic Model, i.e. we will ignore the cost of those cmputations
which are in the Recent Basic Model.

5.1 Comparison of Computation Cost
We have divided all the communication costs in 3 parts, Key Generation, Data Storing and
Data Consuming (we deon’t consider revocation here as all the schemes of those papers are not
revocable and if we include our revocation process in those schemes then the computation cost
for revocation will be same in each schemes).

36

5.1.1 Key Generation

Table : Key Generation Computation Cost
Schemes External IAM Policy Decision

Point

[LWP] [10] 4i exp 4p exp
[LWC] [10] 4i exp 4p exp
[RW] [17] 4i exp 4p exp
[SS] [12] 4i exp 4p exp
First (i+ 4) exp (p+ 2) exp
Second 4i exp 4p exp

Table 5.1: Computation costs for Key Generation

5.1.2 Data Storing

Table : Data Storing Computation Cost
Schemes Data Owner’s En-

cryptor
KWS

[LWP] [10] (5l + 1) exp + 1
pairing

(5s + 1) exp + 1
pairing

[LWC] [10] (5l + 1) exp + 1
pairing

(5s + 1) exp + 1
pairing

[RW] [17] (6l + 1) exp + 1
pairing

(6s + 1) exp + 1
pairing

[SS] [12] (9l + 1) exp + 1
pairing

(9s + 1) exp + 1
pairing

First (3l + 2) exp + 1
pairing

(3s + 2) exp + 1
pairing

Second (5l + 1) exp (5s+ 1) exp

Table 5.2: Computation costs for Data Storing

37

5.1.3 Data Consuming

Table : Data Consuming Computation Cost
Schemes Data

Con-
sumer

Data Con-
sumer’s
Decryptor

Data Gateway KWS

[LWP] [10] − 2r pairing
+ r exp

− 2v pairing + v
exp

[LWC] [10] − 2r pairing
+ r exp

− 2v pairing + v
exp

[RW] [17] − 3r pairing
+ r exp

− 3v pairing + v
exp

[SS] [12] 4u exp 4 exp 2r pairing + 2r
exp

2v pairing + 2v
exp

First − 2 exp (2r + 1) pairing
+ r exp

(2v + 1) pairing
+ v exp

Second 2u exp 2 exp 2r pairing + 2r
exp

2v pairing + v
exp

Table 5.3: Computation costs for Data Consuming

From the above tables it seems that my first model is more efficient than others but that is
not true. We know that cost of pairing and exponentiation in composite order bilinear group is
much more than in prime order bilinear group. From the paper [17] we can get the idea. I have
also explained about it in Appendix-C.

So from that fact and my comparison tables I can say that my second model i.e. the decentralized
model is more efficient than others acccording to computation costs.

5.2 Comparison of Communication Cost
Here we will consider only those communications which involves more than basic model. For
simplicity of expression, we assume that

|G| = The bit length of the element in G
|G1| = The bit length of the element in G1

|N | = The bit length of the element in ZN
|EK| = The bit length of encrypted encryption key which is choosed by Data Gateway
Here we have assume that the pairing map is e : G×G 7→ G1.

38

5.2.1 Data Storing

Table : Data Storing Communication Cost
Schemes Data Owner to

Data Gateway
Control Interface
to Data Gateway

Data Gateway to
Storage

[LW] [10] 2l|G|+ (l + 1)|G1| 2s|G|+ (s+ 1)|G1| 2(l+s)|G|+(l+s+
2)|G1|

[RW] [17] 3l|G|+ (l + 1)|G1| 3s|G|+ (s+ 1)|G1| 3(l+s)|G|+(l+s+
2)|G1|

[SS] [12] 3l|G|+(2l+1)|G1| 3s|G|+(2s+1)|G1| 3(l + s)|G| + 2(l +
s+ 1)|G1|

First (2l + 1)|G|+ |G1| (2s+ 1)|G|+ |G1| 2(l + s + 1)|G| +
2|G1|

Second 2l|G|+ (l + 1)|G1| 2s|G|+ (s+ 1)|G1| 2(l+s)|G|+(l+s+
2)|G1|

Table 5.4: Communication costs for Data Storing

5.2.2 Key Accessing

Table : Key Accessing Communication Cost
Schemes External IAM to

Data Consumer
Control Interface
to Data Gateway

Data Gateway to
Data Consumer

[LW] [10] 2i|G| 2p|G| 2p|G|
[RW] [17] 4i|G| 4p|G| 4p|G|
[SS] [12] 2i|G| 2p|G| 2p|G|
First |N |+ (i+ 4)|G| (p+ 1)|G| (p+ 1)|G|
Second 2i|G| 2p|G| 2p|G|

Table 5.5: Communication costs for Key Accessing

39

5.2.3 Data Consuming

Table : Data Consuming Communication Cost
Schemes Storage to

Data Gate-
way

Data Con-
sumer to
Data Gate-
way

Data Gate-
way to
Control
Interface

Control
Interface
to Data
Gateway

Data Gate-
way to Data
Consumer

[LW] [10] 2(l + s)|G| +
(l+ s+ 2)|G1|

u|G| (2s+u)|G|+
(s+ 1)|G1|

|EK| 2l|G| + (l +
1)|G1|

[RW] [17] 3(l + s)|G| +
(l+ s+ 2)|G1|

2u|G| (3s +
2u)|G| +
(s+ 1)|G1|

|EK| 3l|G| + (l +
1)|G1|

[SS] [12] 3(l + s)|G| +
2(l+s+1)|G1|

2u|G|+ |EK| (3s+u)|G|+
(2s+ 1)|G1|

2|G1| 4|G1|

First 2(l + s +
1)|G|+ 2|G1|

(u + 2)|G| +
|EK|

(2s + u +
3)|G|+ |G1|

|G1| 2|G1|

Second 2(l + s)|G| +
(l+ s+ 2)|G1|

2u|G| (2s+u)|G|+
(s+ 1)|G1|

|EK| 2|G1|

Table 5.6: Communication costs for Data Consuming

From the above comparison tables it is very clear that my first model i.e. the centralized model
is more efficient than others acccording to communication costs.

40

Chapter 6

Implementation

In this thesis one of the main goal is to implement the Multi-Authority CP-ABE scheme. I have
implemented my Second Multi-Authority CP-ABE scheme i.e. Decentralized Multi-Authority
CP-ABE scheme. To implement this I have choosen python language and Charm-crypto
framework.

I have not implemented my first Multi-Authority CP-ABE scheme i.e. Centralized Multi-
Authority CP-ABE scheme. Actually that scheme is based on composite order bilinear group
which are several orders of magnitude slower than the prime order groups that provide the same
security level. And another important reason of not implementing my first scheme is Charm
does not support composite order groups. Although my first scheme takes more computation
time than my second scheme, my first scheme is more secure than my second scheme. It is adap-
tively secure in standard model. Also my first scheme needs less communication cost. Because
of these strong positive things we don’t discard this scheme from our thesis. Actually if there
is a scenario where to get adaptive security in standard model is much more important than
computation cost, then our first scheme is a very good fit for that.

6.1 Framework
We implemented our scheme in Charm-crypto [18], a framework developed for convenience rapid
prototyping of cryptographic schemes and protocols. It is based on the Python language which
allows the programmer to write code similar to the theoretical implementations. However,
the routines that implement the dominant group operations use the PBC library [16] (written
natively in C) and the time overhead imposed by the use of Python is usually less than 1%.

We tested several ABE constructions on all elliptic curve bilinear groups provided by Charm-
crypto, i.e. two super-singular “SS" symmetric EC groups and three “MNT" asymmetric EC
groups. In Appendix-B, we have presented the approximate security level each group provides
with respect to the discrete log problem. All our benchmarks were executed on a Intel(R)
Core(TM) i3-7020U CPU @ 2.30GHz with 4GB RAM running Ubuntu 20.04 and Python3.8.5.

6.2 Implementation Details and Comparisons
All Charm-crypto routines use formally asymmetric groups (although the underlining groups
might be symmetric) and therefore we translated our schemes to the asymmetric setting.
Namely, we have three groups G1, G2 and GT and the pairing e is a function from G1×G2 to
GT.

41

To get the bilinear group and the pairing, I have imported all functions like PairingGroup,
pair, G1,G2, ZR from “charm.toolbox.pairinggroup". Here initially I have used “SS512" as
group object but it can be done with some other group objects also. I have implemented that
CP-ABE with and without decryption outsourcing. Here I am attaching my programs :

• Decentralized Multi-Authority CP-ABE without Decryption Outsourcing
• Decentralized Multi-Authority CP-ABE with Decryption Outsourcing

I have compared my program with some other decentralized multi-authority CP-ABE programs
which are based on the papers [10, 17]. I have denoted paper [10] (the prime version) by
[LWP10] and paper [17] by [RW17]. I have compared their Setup time, Key Generation time,
cipher text size, Encryption time and Decryption time. I get some diagrams which I am
attaching here and with each diagram I will describe the parameters.

Setup Time : Here we observe that how the setup time differs when we increase the total
number of attributes of the system. So it is basically a graph for Setup time Vs Total Number
of Attributes.

Figure 6.1: Comparision of Setup Time

Here we can observe that our setup time is more than [LWP10] but we need this Setup
Algorithm only once at the time of initializing the model. So, there is nothing to worry about
it.

Authority Setup Time : Here we observe that how the authority setup time differs
when we increase the total number of attributes of the system. So it is basically a graph for
Authority Setup time Vs Total Number of Attributes.

42

https://drive.google.com/file/d/1RWoiEzK0SMmq2fvg8o-LNAfeZyzoa6Pz/view?usp=sharing
https://drive.google.com/file/d/1x5YGao2bfa7hJ2zVCabQYvT70B3U-UzQ/view?usp=sharing

Figure 6.2: Comparision of Authority Setup Time
Here we can observe that our authority set up time is more than [RW17] but we need this
Authority Setup Algorithm only once at the time of initializing the Attribute Authorities in the
model. And also in our application we are not dealing with very large number of attributes, so
here also we do not need to be worried.

Key Generation Time : Here we observe that how the Key Generation Time increases when
we increase the number of user’s attributes. So it is basically a graph for Key Generation Time
Vs Number of User’s Attributes.

43

Figure 6.3: Comparision of Key Generation Time

We can observe that key generation algorithm of our model is taking the least time among all
of them. So it is a very positive thing for our model.

Encryption Time : Here we observe that how the Encryption Time differs when we
increase the number of attributes in the access policy. So it is basically a graph for Encryption
Time Vs Number of Attributes in Access Policy.

Figure 6.4: Comparision of Encryption Time

We can observe that encryption algorithm of our model is taking the least time among all of
them. So it is also a positive thing for our model.

Cipher-text Size : Here we observe that how the Cipher-text Size differs when we in-
crease the number of attributes in the access policy. So it is basically a graph for Cipher-text
Size Vs Number of Attributes in Access Policy.

44

Figure 6.5: Comparision of Cipher-text Size
Here we can see that the ciphertext size of our model is more than [LWP10], but for our
application we do not need large number of attributes in the access policy. So it will not be
that much problematic. And scince the encryption time is less we can say that our model is a
good fit for our application scenario.

Decryption Time : Here we observe that how the Decryption Time differs when we
increase the number of user’s attributes. So it is basically a graph for Decryption Time Vs
Number of User’s Attributes.

45

Figure 6.6: Comparision of Decryption Time

Here we have shown our pre-decryption time and final decryption time in this graph. Our
pre-decryption process is computed in the cloud component Data Gateway and our final
decryption process is computed on the data consumer’s personal device. In the graph, our
decryption time is constant because we have used the scheme with decryption outsourcing. So
for our final decryption we just have to do only two exponentiations, one multiplication and
one devision irrespective of number of user’s attribute (see Section 4.3). And also here we can
observe that the pre-decryption time is also good.

After that I have modified my programs to achieve more efficiency. For that at first I have
implemented the paper [5]. I have implemented a program which can transfer any threshold
access structure into LSSS. After that I have further modify the program for generating LSSS
matrix at the time of decryption. I am attaching my code links here :

• Program to generate LSSS
• Modified Program to generate LSSS for decryption

I have also given the algorithm and python code to implement the LSSS of the paper [5] in
Appendix-D.

Then using this two programs I have modified my code. Now I am attaching my modified
programs here :

• Modified Program without decryption outsourcing
• Modified Program with decryption outsourcing

After using this modified LSSS the implementation of the CP-ABE scheme becomes more
efficient. One can easily observe that from the following table :

Charm’s LSSS Vs. Modified LSSS
Number of
Attributes in
Access Policy

Encryption
Time with
Charm’s
LSSS (ms)

Pre-
Decryption
Time with
Charm’s
LSSS (ms)

Encryption
Time with
Modified
LSSS (ms)

Pre-
Decryption
Time with
Modified
LSSS (ms)

8 48.56 18.21 45.58 13.07
12 70.96 26.41 67.70 21.07
16 94.37 35.53 89.64 29.25
20 119.56 43.99 112.06 34.72
24 139.58 52.17 133.70 38.98
28 162.99 58.97 158.76 55.42

Table 6.1: Charm’s LSSS Vs. Modified LSSS : Comparison of Efficiency

Now I am going to give a comparison table for our modified CP-ABE code and the other two
CP-ABE codes for better understanding. In the following table, average running times are in

46

https://drive.google.com/file/d/1KJAOUkgOm22u3lrPwwE4YDjXQakBfF4e/view?usp=sharing
https://drive.google.com/file/d/1EEn1Wt10A3Uhpo0i0I65alnWYCnIqfdC/view?usp=sharing
https://drive.google.com/file/d/1lYDh3T2DkOfPZ-W6qi-A-2XrV8Uaab3y/view?usp=sharing
https://drive.google.com/file/d/1Fb4-TTAGScPqfCSz960Cr6Osl-1nZfpg/view?usp=sharing

milliseconds(ms). The algorithms are denoted as GS: Global setup, AS: Authority setup, KG:
Key generation for a user, EC: Encrypt, DE: Decrypt. The numbers in parentheses refer to the
number of attributes in key generation, the number of rows of the policy in encryption, and the
number of rows utilized during decryption.

Our Decentralized scheme with decryption outsourcing
Curves GS AS(19) KG(6) EC(8) DC(6)

SS512 4.66 41.60 42.32 46.45 0.32
SS1024 33.65 477.42 272.17 579.50 5.13
MNT159 9.49 120.51 7.32 138.46 2.24
MNT201 12.23 152.30 10.57 176.17 2.86
MNT224 15.11 189.16 13.95 220.27 3.51

[LWP10][10]
Curves GS AS(19) KG(6) EC(8) DC(6)

SS512 3.48 63.42 42.06 58.88 21.22
SS1024 2.44 1068.31 272.45 856.04 384.61
MNT159 5.60 189.86 7.17 174.64 53.32
MNT201 7.30 245.67 10.48 223.14 68.10
MNT224 9.23 304.86 13.41 279.95 84.11

[RW17][17]
Curves GS AS(19) KG(6) EC(8) DC(6)

SS512 4.70 4.21 84.27 89.87 45.91
SS1024 32.95 51.96 545.85 762.12 575.17
MNT159 9.47 4.11 240.67 194.88 160.79
MNT201 12.18 5.35 363.22 265.61 221.77
MNT224 15.28 6.18 371.98 300.69 249.80

Table 6.2: Comparison Table of Running Times of Schemes

The modified CP-ABE code with ‘Modified LSSS’ uses ‘numpy’ to get the solution of a system
of linear equations (for linear reconstruction property). Actually in our application senario we
do not need large number of attributes in access policy, so this modified CP-ABE code with
‘Modified LSSS’ works very good for our application.

But if anyone want to apply our modified CP-ABE code with ‘Modified LSSS’ in an application
where they have to work with large number of attributes in access policy, then they have to
think about an efficient way to solve a system of linear equations with large number of equations
because ‘numpy’ does not give accurate results for large number of equations. If one can find
a efficient way to solve a system of linear equations with large number of equations then they
can apply our modified CP-ABE code with ‘Modified LSSS’ for their application also.

47

Chapter 7

Further Modification

In reality there may be some malicious user in access control model. In that case it is very much
necessary to revoke them from the system or revoke some attributes of them.
But in previous models we have no scope for revocation, so now we want to introduce revocable
access model just modyfing some components and functionalities. We will introduce this property
in both of my models. However, the revocation phase is not efficient because the proxy server
(which I have introduced in the next section) needs to re-encrypt the data.

7.1 First Model with Revocation

7.1.1 Components and Their Uses

I add one extra component and add some more responsibilities & functionalities to the
components. The other components are same as First Model (Centralized Multi-Authority
Model).

External IAM : In my model External IAM plays a big role. It serves as Central
Authority (CA) and also one of the two Multi-Authorities besides its basic works (which it does
in recent basic model).
In my model this component has to be Semi-Honest and it can not collude with Policy
Decision Point (which is another Attribute Authority in my model).
It basically verify the attributes based on the global id of the users and gives a token
corresponding to their id (basic model functionality) and gives Central Authority Public &
Secret Key and one Decryption Secret Key with respect to the global id (work as CA) and
also one Authority Attribute Secret Key based on the user’s attributes which are handled
by it (work as AA).

Policy Decision Point : In my model Policy Decision Point serves also as another
Attribute Authority besides its basic work.
This compoent must be Semi-Honest and have to handle some attributes of its Access Policy
(since for Multi-Authority CPABE encryption we have only two authorities and if one of them
only containts all attributes of the Access Policy then it will be no more secure).
It basically handle all policies, produce one another access policy A2 for key wrapping, publish
revocation list and computes the authority attribute secret key for Data Consumer.

Data Owner : He/she first encrypts the raw data with the two Attribute Public Key
under his/her Access Policy A.

48

Data Consumer : Data Consumer use his/her own Decryption Secret Key (which
he/she gets from External IAM) to Decrypt the Pre-Decryted data.

Data Gateway : It does all its basic works on two-time encrypted data in stead of
the raw data. But besides these it also does pre-decryption of the user’s message. As Basic
Model, it is also Semi-Honest in my model.

KWS : It wraps the encrypted key and also unwraps the wrapped key using MA-CPABE and
it is also Semi-Honest.

Proxy Server : We introduce a Proxy server which is basically in cloud and it stores
all necessary keys related to revocation and also update cipher texts properly. It is also
Semi-Honest and can’t colude with any Revoked User ever.

7.1.2 Fuctionalities used in the System

Global Setup : Let G and G1 denote two bilinear groups of order N = p1p2p3 (a product of 3
different primes). Let Gpi be the subgroup of order pi in G. Moreover, the subgroups Gp1 , Gp2

and Gp3 have the orthogonality property. That is, for hi ∈ Gpiandhj ∈ Gpj , if i 6= j, we have
e(hi, hj) = 1 . Let e : G × G 7→ G1 denote a bilinear map. g is a random chosen element from
Gp1 . Additionally, choose an UF-CMA (unforgeable under adaptive chosen message attacks)
secure signature system Σsign = (KeyGen, Sign, V erify). The GPK is broadcasted as GPK =
(N, e, g,Σsign).

Central Authority Setup : The CA runs the KenGen algorithm of Σsign . It sets
the sign-key as CMK (Central Master Key) and verify-key as CPK (Central Public Key). The
CPK will be used by the AAs only. The CMK is used by only CA to generate Keys (only for
one time) for Users.

Attribute Authorities Setup : Each AAf governs its attribute universe Uf . For
each i ∈ Uf , it chooses a random exponent tf,i ∈ ZN and computes Tf,i = gtf,i . It also chooses
two random exponents αf , af ∈ ZN . Finally, the public parameter of AAf is broadcasted as :
APKf = (gaf , e(g, g)αf , Tf,i ∀i). The master secret key of AAf is AMKf = (αf , af , tf,i ∀i).
Additionally, each AAf also maintains a binary tree TREEf . In TREEf , each node j is
associated with a different encryption key KEKf,j and each leaf node is labeled by a user (gid).
Such a tree with height h can accommodate at most 2h users. Moreover, there is a path Pj from
j to the root node. When a new user comes to AAf for requesting the attribute-related keys,
AAf not only generates the requested keys, but also adds the user to the leftmost leaf node j
and gives him/her the path keys in the path Pj. For each attribute i ∈ Uf , AAf establishes
an attribute-user group Gf,i, which is a set of the users who own this attribute i. We let Gnf,i
denote the minimum set of nodes whose descendant nodes cover all the users in Gf,i. At the
beginning of system initialization, each AAf shares a unique attribute group key AKf,i ∈ ZN
with the proxy server (in cloud) for each i ∈ Uf . Whenever a new user registered in the system
or a revocation list is published it updates all AKf,i.

Encrypt : Here the access policy is defined by A = (W, ρ), where W is a LSSS matrix
with l rows and n columns, and ρ associates each row Wx to attribute ρ(x).
Each Attribute Authority (External IAM, Policy Decision Point) has broadcasted their Public
Keys previously. Data Owner’s encryptor uses those public keys and encrypts M under A as
follows :

49

1. Chooses a random vector ~v = (s, v2, ..., vn1) ∈ ZnN , where s is the secret value.

2. For each x ∈ [l], it selects a random exponent rx ∈ ZN .

3. Computes C1 = M · (Π2
f=1e(g, g)αf)s, C01 = gs. For each x ∈ [l] it also computes Cx1 =

g(Σ2
f=1af)·Wx·~v · T−rxρ(x) , Dx1 = grx .

4. Set CT = (A, C1, C01, {Cx1, Dx1}x∈[l]).

After encryption, at the time of data storing first CT = (A, C1, C01, {Cx1, Dx1}x∈[l])

is sent to proxy server and proxy server computes D
′
x1 = D

AKρ(x)
x1 and sets CT

′
=

(A, C1, C01, {Cx1, D
′
x1}x∈[l]) and sends CT ′ for storing.

When a new user joins in the system, he/she has to register himself/herself and will ob-
tain a unique gid. By running the CAKeyGen algorithm, the CA issues the gid-related keys to
the users. Then, each AA runs the AAKeyGen algorithm and gives the attribute-related keys
to the users.

CAKeyGen : For each user, the CA first chooses two random exponents bgid, cgid ∈ ZN
, two random elements Rgid, Rgid,0 ∈ Gp3 and computes CASKgid = Lgid = gbgid/cgid · Rgid,
Lgid,0 = g1/cgid ·Rgid,0. After that, it uses CMK to sign on the string (CMK, gid||CASKgid||Lgid,0)
and gets a signature σgid. Let CAPKgid = (gid, CASKgid, Lgid,0, σgid). Finally, it sends the
DSKgid = cgid, CASKgid and CAPKgid to the user. After sending the keys to user CA delete
bgid, cgid, RgidRgid,0 from its memory.

AAKeyGen : After receiving the submitted key CAPKgid, the AAf first uses the
CPK to verify whether the CAPKgid is valid. If not, it aborts. Otherwise, it issues
the user a set of attributes Sgid,f . It randomly selects Rgid,f,0 ∈ Gp3 and computes
Kgid,f = L

αf
gid,0 · L

af
gid · Rgid,f,0 = gαf/cgid · gaf ·bgid/cgid · Rgid,f , where Rgid,f = Rgid,f,0 · R

αf
gid,0 · R

af
gid.

For each attribute i ∈ Sgid,f , it randomly picks R
′

gid,f,i ∈ Gp3 and computes
Kgid,f,i = L

tf,i
gid ·R

′

gid,f,i = T
bgid/cgid
f,i ·Rgid,f,i, where Rgid,f,i = R

tf,i
gid ·R

′

gid,f,i.
In addition, for each unrevocked attribute i ∈ Sgid,f , the AAf sets the set Gf,i and Gnf,i. It
then encrypts AKf,i by KEKf,j if j ∈ Gnf,i is the ancestor node of the leaf node in which
the user is assigned. It finally sends ASKS,gid,f = (Kgid,f , {Kgid,f,i}i∈Sgid,f) and the encrypted
{AKf,i| unrevocked i ∈ Sgid,f} to the user.

TransformKey : The Data consumer first use path decryption keys (path keys of
AAf) to get {AKf,i|i ∈ Sgid,f} and computes K ′

gid,f,i = K
1/AKf,i
gid,f,i ,

∀i ∈ Sgid,f . Then it sets ASK ′

S,gid,f = (Kgid,f , {K
′

gid,f,i}i∈Sgid,f).

PreDecrypt : The Data consumer sends ASK
′

S,gid,f = (Kgid,f , {K
′

gid,f,i}i∈Sgid,f) and
CASKgid = Lgid to the cloud server and asks it to pre-decrypt the CT ′ . Policy Decision Point
computes K2 = Πf∈1,2Kgid,f and constants yx ∈ ZN , such that Σρ(x)∈Sgid(yx ·Wx) = (1, 0, ..., 0).
Then computes

PDKEY = e(K2,C01)

Πρ(x)∈Sgid (e(Cx1,Lgid)·e(D′
x1,K

′
ρ(x)

))yx
= e(K2,C01)

Πρ(x)∈Sgid (e(Cx1,Lgid)·e(Dx1,Kρ(x)))yx

= e(g, g)Σ2
f=1αf ·s/cgid .

Cloud server sends PDKEY to Data consumer.

50

Decrypt : Data Consumer’s decryptor computes M = C1

(PDKEY)
cgid .

Revocation of User

Suppose the attribute i
′ ∈ Uf ′ is revoked from some users, AAf ′ randomly choose a new

AKf ′ ,i ∈ ZN . Whenever a user is about to losing an attribute i′ ∈ Uf ′ , AAf ′ sends a new
attribute group key AK ′

f ′ ,i
to the proxy server via a secure channel and proxy server reencrypts

the encrypted data stored in the storage. Meanwhile, it also defines a new set Gnf ′ ,i′ , which
denotes the minimum set of nodes whose descendant nodes cover all the unrevoked users.
It then encrypts AK ′

f ′ ,i
by KEKf ′ ,j for each j ∈ Gnf ′ ,i′ . Finally, it sends the encrypted

{AK ′

f ′ ,i
}KEK

f
′
,j
to the unrevoked users who is labeled by the node that is the descendant of j.

After receiving {AK ′

f
′
,i
}KEK

f
′
,j
, the user recovers the new attribute group key AK ′

f ′ ,i
and use

it for further processes.

7.1.3 Data Storing

In this section I am presenting data storing Architecture of my model with step by step
explanation.

Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point

1. Data Owner sends his/her Global ID (gid) to the External IAM.

2. External IAM sends a token to Data Owner after verifying all of its attributes.

3. Data Owner sends the message M (here it is basically AES encryption key) and the access
policy A = (W, ρ), where W is a LSSS matrix with l rows and n columns, and ρ associates
each rowWx to attribute ρ(x) to the encryptor. In my model I forcefully assume thatData
Owner’s Access Policy must include attributes of both Attribute Authorities.

4. Each Attribute Authority (External IAM, Policy Decision Point) has broadcasted their
Public Keys previously. Encryptor uses those public keys and encrypts M under A1 using
Encrypt algorithm and produce CT.

5. Encryptor Sends CT = (A, C1, C01, {Cx1, Dx1}x∈[l]) to the Data Owner.

6. Data Owner sends this CT = (A, C1, C01, {Cx1, Dx1}x∈[l]) to the Data Gateway along with
its own token.

7. Data Gateway take RD = CT . Now it does following things (as basic model) on RD :

(a) Chooses a random key RK and encrypts RD with RK and gets ED.

(b) Then also encrypts RK with its some special secret key and get EK.

8. Data Gateway sends EK with Data Owners token to the Control Interface.

9. Control Interface sends EK to the KWS and token to the Policy Decision Point.

51

10. Policy Decision Point sends another access policy A2 = (A
′
, ρ

′
) (where A′ has l′ many

rows) to the KWS based on data owner’s token.

11. KWS runs the Encrypt algorithm on EK under the access policy A2 = (A
′
, ρ

′
) and get

the wrapped key (doubly encrypted encryption key) PWK = (A′
, C2, C02, {Cx2, Dx2}x∈[l

′
]).

12. KWS sends PWK to Control Interface.

13. Control Interface sends PWK to the Data Gateway.

14. Data Gateway sends PWK to Proxy Server.

15. Proxy Server computes WK = (A′
, C2, C02, {Cx2, D

′
x2}x∈[l′]) and sends WK to Data Gate-

way.

16. Data Gateway sends ED and WK to the Storage.

7.1.4 Data Consuming

In this section I am presenting data consuming Architecture of my model with step by step
explanation.

Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point.

1. Data Consumer sends Global ID (gid) to the External IAM.

2. External IAM sends token, CAPKgid, CASKgid, DSKgid, ASKS,gid,1 =
(Kgid,1, {Kgid,1,i}i∈Sgid,1) to the Data Consumer.

3. Data Consumer transform its key and sends ASK ′

S,gid,1 = (Kgid,1, {K
′

gid,1,i}i∈Sgid,1), token,
CASKgid and CAPKgid to the Data Gateway.

4. Data Gateway collects ED and WK from the Storage, where WK =
(A′

, C2, C02, {Cx2, D
′
x2}x∈[l′]).

5. Data Gateway sends WK, CAPKgid, CASKgid, ASK
′

S,gid,1 and consumer’s token to Con-
trol Interface of Access Control Server.

6. Control Interface sends WK, ASK ′

S,gid,1 to KWS and sends CAPKgid, consumer’s token
to Policy Decision Point.

7. Policy Decision Point runs AAKeyGen and sends ASKS,gid,2 to control interface.

8. Control Interface sends ASKS,gid,2 to the Data Gateway.

9. Data Gateway sends ASKS,gid,2 to the Data Consumer.

10. Data Consumer transforms ASKS,gid,2 into ASK ′

S,gid,2.

11. Data Consumer sends ASK ′

S,gid,2, ASKS,gid,1 to Data Gateway.

12. Data Gateway sends ASK ′

S,gid,2 to Control Interface of Access Control Server.

52

13. Control Interface sends ASK ′

S,gid,2 to KWS.

14. KWS runs PreDecrypt on WK with ASK
′

S,gid,1, ASK
′

S,gid,2, CASKgid and computes
EK

′
= PreDecryption key (PDKEY) for decrypting WK.

15. KWS sends EK ′ to Control Interface.

16. Control Interface sends EK ′ to the Data Gateway.

17. Data Gateway sends EK ′
, C2 to the Data Consumer.

18. Data Consumer sends EK ′
, C2, DSKgid to its Decryptor.

19. Decrytor runs Decrypt on EK ′
, C2, DSKgid (with PDKEY = EK

′) and get EK.

20. Decryptor sends EK to Data Consumer.

21. Data Consumer sends EK to Data Gateway.

22. Data Gateway decrypts EK and gets RK, and after that using that RK decrypts ED
and gets RD = CT

′ .

23. Data Gateway runs PreDecrypt with CT ′ , ASKS,gid,1, ASKS,gid,2 and CASKgid as input
and produce CT ′′

= PreDecryption key (PDKEY) for decrypting CT ..

24. Data Gateway sends CT ′′ and C1 to Data Consumer.

25. Data consumer sends CT ′′ , C1 and DSKgid = cgid to its Decryptor.

26. Decryptor runsDecrypt algorithm on CT ′′ , C1 and DSKgid = cgid (with PDKEY = CT
′′)

as input and produce M.

27. Decryptor sends M to Data Consumer.

7.1.5 Security Analysis

It is adaptively secure and collusion resistant (see Section 3.6). It also has forward security.

Forward secrecy : When an attribute is revoked from a user at some time instance,
the corresponding AKf,i will be updated and transmitted to the unrevoked users. Meanwhile,
the relevant ciphertext components are also re-encrypted under the new AKf,i by the cloud
server. In this way, the ciphertext associated with new attribute group key cannot be decrypted
by the private keys labeled by old AKf,i. Thus, forward secrecy is guaranteed.

7.2 Second Model with Revocation

7.2.1 Modified Components and Their Uses

In this modified version (which I am going to describe) I add one extra component and add
some more responsibilities & functionalities to the components. The other components are
same as Second Model (Decentralized Multi-Authority Model).

External IAM : In this model External IAM serves as one of the two Multi-Authorities

53

besides its basic works.
This component has to be Semi-Honest and it can not collude with Policy Decision
Point (which is another Attribute Authority in my model).
It basically verify the attributes based on the global id of the users and gives a token
corresponding to their id (basic model functionality) and one Authority Attribute Secret
Key based on the user’s attributes which are handled by it (work as AA).

Policy Decision Point : In this model Policy Decision Point serves also as another
Attribute Authority besides its basic work.
This compoent must be Semi-Honest and have to handle some attributes of its Access Policy
(since for Multi-Authority CPABE encryption we have only two authorities and if one of them
only containts all attributes of the Access Policy then it will be no more secure).
It basically publish the revocation list, produce one another access policy A2 for key wrapping
and computes the authority attribute secret key for Data Consumer and all thePre-Decryption
operations in cloud.

Data Owner : He/she first encrypts the raw data with the two Attribute Public Key
under his/her Access Policy A1.

Data Consumer : Data Consumer use his/her own Decryption Secret Key to De-
crypt the Pre-Decryted data.

Data Gateway : It does all its basic works on encrypted data in stead of the raw
data and it unwraps the wrapped key. But besides these it also does pre-decryption of the
user’s message. As Basic Model, it is also Semi-Honest in my model.

Key Wrapping Server (KWS) : It wraps the encrypted key and also unwraps the
wrapped key using MA-CPABE and it is also Semi-Honest.

Proxy Server : We introduce a Proxy server which is basically in cloud and it stores
all necessary keys related to revocation and also update cipher texts properly. It is also
Semi-Honest and can’t colude with any Revoked User ever.

7.2.2 Fuctionalities used in the System

Global Setup : Let G and G1 denote two bilinear groups of prime order p. Let e : G×G 7→ G1

denote a bilinear map. Choose a generator g of the group G. Also computes e(g, g). After
that choose a collision resistant hash function H : {GID} 7→ G. Set global parameter GP =
{g, p, e,H, e(g, g)}.

Authority Setup : AAf chooses αi, yi, βi, zi ∈ Zp ∀i ∈ Uf (Uf is the set of attributes handled by
AAf). Then it computes e(g, g)αi , gyi , e(g, g)βi , gzi ∀i ∈ Uf . It sets PKf = {(e(g, g)αi , gyi)}i∈Uf ,
PK

′

f = {e(g, g)βi , gzi}i∈Uf as public keys and sets MSKf = {αi, yi}i∈Uf , MSK
′

f = {βi, zi}i∈Uf
as secret keys.
Additionally, each AAf also maintains a binary tree TREEf . In TREEf , each node j is
associated with a different encryption key KEKf,j and each leaf node is labeled by a user (gid).
Such a tree with height h can accommodate at most 2h users. Moreover, there is a path Pj from
j to the root node. When a new user comes to AAf for requesting the attribute-related keys,
AAf not only generates the requested keys, but also adds the user to the leftmost leaf node j
and gives him/her the path keys in the path Pj. For each attribute i ∈ Uf , AAf establishes
an attribute-user group Gf,i, which is a set of the users who own this attribute i. We let Gnf,i

54

denote the minimum set of nodes whose descendant nodes cover all the users in Gf,i. At the
beginning of system initialization, each AAf shares a unique attribute group key AKf,i ∈ ZN
with the proxy server (in cloud) for each i ∈ Uf . Whenever a new user registered in the system
or a revocation list is published it updates all AKf,i.

Encrypt : Data Owner sends it raw data M and its own policy A1 = (A, ρ), where A
is a LSSS matrix with l rows and n columns, and ρ associates each row Ax to attribute ρ(x),
as input to its encryptor. After that it chooses some secret s ∈ Zp. Select two random vectors
~v, ~w ∈ Znp such that 1st co-ordinate of ~v is s and 1st co-ordinate of ~w is 0. Now computes
λj = Aj · ~v and wj = Aj · ~w for all rows j ∈ [l]. Now it chooses rj ∈ Zp ∀j ∈ [l]. Then it
computes C0 = M · e(g, g)s and ∀j ∈ [l] also computes C1j = e(g, g)λj · e(g, g)αρ(j)rj , C2j = grj ,
C3j = gyjrj · gwj . Finally sets CT = (C0, {C1j, C2j, C3j}j∈[l]).

ReEncrypt : It is same as basic model.

KeyEncryption : It is same as basic model.

Wrap : KWS takes encrypted encryption key EK from Data Gateway and Policy Deci-
sion Point’s access policy A2 = (A

′
, ρ

′
), where A

′ is a LSSS matrix with l
′ rows and n

′

columns, and ρ
′ associates each row A

′
x to attribute ρ′

(x), as input. After that it chooses
some secret s′ ∈ Zp. Select two random vectors ~v′ , ~w′ ∈ Zn

′

p such that 1st co-ordinate of ~v′

is s′ and 1st co-ordinate of ~w′ is 0. Now computes λ′
j = A

′
j · ~v

′ and w
′
j = A

′
j · ~w

′ for all
rows j ∈ [l

′
]. Now it chooses r′j ∈ Zp ∀j ∈ [l

′
]. Then it computes D0 = EK · e(g, g)s

′
and

∀j ∈ [l
′
] also computes D1j = e(g, g)λ

′
j · e(g, g)

β
′

ρ
′
(j)
r
′
j , D2j = gr

′
j , D3j = gzjr

′
j · gw

′
j . Finally sets

PWK = (D0, {D1j, D2j, D3j}j∈[l′]).
After encryption, at the time of data storing PWK = (D0, {D1j, D2j, D3j}j∈[l′]) is sent to proxy

server and proxy server computes D′
3j = D

AKρ(j)
3j and sets WK = (D0, {D1j, D2j, D

′
3j}j∈[l′]) and

sends WK for storing.

AAKeyGen1 : Authority AAf (which is indexed by f) takes global parame-
ter GP, unique global id GID of the user, set of attributes of the user SGID,f
which are handled by AAf , secret parameter MSKf as input. Then it computes
Kf,GID = {Ki,GID}i∈SGID,f = {gαi · H(GID)yi}i∈SGID,f . This the secret attribute key,
which is used for Message decryption.
In addition, for each unrevocked attribute i ∈ Sgid,f , the AAf sets the set Gf,i and Gnf,i. It
then encrypts AKf,i by KEKf,j if j ∈ Gnf,i is the ancestor node of the leaf node which the user
is associated with. It finally sends Kf,GID and the encrypted {AKf,i| unrevocked i ∈ Sgid,f} to
the user.

AAKeyGen2 : Authority AAf (which is indexed by f) takes global parame-
ter GP, unique global id GID of the user, set of attributes of the user SGID,f
which are handled by AAf , secret parameter MSK

′

f as input. Then it computes
K

′

f,GID = {K ′
i,GID}i∈SGID,f = {gβi · H(GID)zi}i∈SGID,f . This secret attribute key is

used for Key Unwrapping. It finally sends K ′

f,GID to the user.

KeyTransform : Data Consumer takes the secret attribute keys {Ki,GID}i∈SGID as in-
put. After that it chooses d ∈ Zp, and set its own secret decryption key DSK = d. After
that it trsforms the attribute keys as {Ti,GID}i∈SGID = {(K

1
d
i,GID, H(GID)

1
d}i∈SGID and

55

{T ′
i,GID}i∈SGID = {(K ′

i,GID, H(GID)
1

AKi }i∈SGID .

UnWrap : KWS takes wrapped key WK = (D0, {D1j, D2j, D
′
3j}j∈[l′]) and attribute

secret keys T
′
1,GID, T

′
2,GID as input. Here T

′

f,GID = {T ′
i,GID}i∈SGID,f Then computes

constants c
′
x ∈ Zp , such that Σρ′ (x)∈Sgid(c

′
x · A

′
x) = (1, 0, ..., 0). Now it computes

C
′

= Πl
′

j=1((e(H(GID)
1

AKj , D
′
3j) · D1j)/(e(K

′

ρ′ (j),GID
, D2j)))

c
′
j . Finally computes EK = D0

C′ .
Then sends EK to Data Gateway.

KeyDecryption : It is same as basic model.

PartialDecryption : It is same as basic model.

PreDecrypt : Data Gateway takes cipher text CT
′

= (C0, {C1j, C2j, C3j}j∈[l]) and
transformed secret keys T1,GID, T2,GID as input. Then computes constants cx ∈ Zp , such that
Σρ(x)∈Sgid(cx · Ax) = (1, 0, ..., 0). Here Ti,GID = (K

1
d
i,GID, H(GID)

1
d), ∀i ∈ SGID.

Now it computes C1 = Πl
j=1((e(H(GID)

1
d , C3j))/(e(K

1
d

ρ(j),GID, C2j)))
cj and C2 = Πl

j=1(C1j)
cj .

Finally it sets CT ′′
= (C1, C2) and sends C0 and CT ′′ to Data Consumer.

Decrypt : Data consumer sends C0, CT
′′

= (C1, C2) and own decryption secret key
DSK = d to its Decryptor as input. Then it computes C ′′

= ((C2)
1
d · C1)d. Finally generates

M = C0/C
′′ .

Revocation of User

Suppose the attribute i
′ ∈ Uf ′ is revoked from some users, AAf ′ randomly choose a new

AKf ′ ,i ∈ ZN . Whenever a user is about to losing an attribute i′ ∈ Uf ′ , AAf ′ sends a new
attribute group key AK ′

f ′ ,i
to the proxy server via a secure channel and proxy server reencrypts

the encrypted data stored in the storage. Meanwhile, it also defines a new set Gnf ′ ,i′ , which
denotes the minimum set of nodes whose descendant nodes cover all the unrevoked users.
It then encrypts AK ′

f ′ ,i
by KEKf ′ ,j for each j ∈ Gnf ′ ,i′ . Finally, it sends the encrypted

{AK ′

f ′ ,i
}KEK

f
′
,j
to the unrevoked users who is labeled by the node that is the descendant of j.

After receiving {AK ′

f ′ ,i
}KEK

f
′
,j
, the user recovers the new attribute group key AK ′

f ′ ,i
and use

it for further processes.

7.2.3 Data Storing

In this section I am presenting data storing Architecture of my model with step by step
explanation.

Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point

1. Data Owner sends his/her Global ID (gid) to the External IAM.

56

2. External IAM sends a token to Data Owner after verifying all of its attributes.

3. Data Owner sends the message M (here it is basically AES encryption key) and the access
policy A1 = (A, ρ) to its encrypter. In my model I forcefully assume that Data Owner’s
Access Policy must include attributes of both Attribute Authorities.

4. Each Attribute Authority (External IAM, Policy Decision Point) has broadcasted their
Public Keys previously. Encryptor uses those public keys and encrypts M under A1 using
Encrypt algorithm and produce CT.

5. Encryptor Sends CT to the Data Owner.

6. Data Owner sends this CT to the Data Gateway along with its own token.

7. Data Gateway take RD = CT . Now it does following things (as basic model) on RD :

(a) Chooses a random key RK and encrypts RD with RK and gets ED.

(b) Then also encrypts RK with its some special secret key and get EK.

8. Data Gateway sends EK with Data Owner’s token to the Control Interface.

9. Control Interface sends EK to the KWS and token to the Policy Decision Point.

10. Policy Decision Point sends another access policy A2 = (A
′
, ρ

′
) to the KWS based on data

owner’s token.

11. KWS runs the Wrap algorithm on EK and get the wrapped key (doubly encrypted en-
cryption key) PWK = (D0, {D1j, D2j, D3j}j∈[l′]).

12. KWS sends PWK to Control Interface.

13. Control Interface sends PWK to the Data Gateway.

14. Data Gateway sends PWK to Proxy Server.

15. Proxy Server computesWK = (D0, {D1j, D2j, D
′
3j}j∈[l′]) and sendsWK to Data Gateway.

16. Data Gateway sends ED and WK to the Storage.

7.2.4 Data Consuming

In this section I am presenting data consuming Architecture of my model with step by step
explanation.

Architecture Explained Step by Step

Here I assume AA1 = External IAM, AA2 = Policy Decision Point.

1. Data Consumer sends Global ID (gid) to the External IAM.

2. External IAM runs AAKeyGen1, AAKeyGen2 and sends token, K1,GID, K
′
1,GID to

Data Consumer.

3. Data Consumer sends token to the Data Gateway.

57

4. Data Gateway collects ED and WK from the Storage.

5. Data Gateway sends WK and consumer’s token to Control Interface of Access Control
Server.

6. Control Interface sendsWK to KWS and sends consumer’s token to Policy Decision Point.

7. Policy Decision Point runs AAKeyGen1, AAKeyGen2 and sends K2,GID and K ′
2,GID

to control interface.

8. Control Interface sends K2,GID, K
′
2,GID to the Data Gateway.

9. Data Gateway sends K2,GID, K
′
2,GID to Data Consumer.

10. Data Consumer runs KeyTransform on {Ki,GID}i∈SGID = {K1,GID, K2,GID} and com-
putes {Ti,GID}i∈SGID and DSK. After that Data Consumer runs KeyTransform on
{K ′

i,GID}i∈SGID = {K ′
1,GID, K

′
2,GID} and computes {T ′

i,GID}i∈SGID

11. Data Consumer sends {Ti,GID}i∈SGID and {T ′
i,GID}i∈SGID to Data Gateway.

12. Data Gateway sends {T ′
i,GID}i∈SGID to Control Interface.

13. Control Interface sends {T ′
i,GID}i∈SGID to KWS

14. KWS runs UnWrap and computes unwrapped key EK.

15. KWS sends EK to Control Interface.

16. Control Interface sends EK to Data Gateway.

17. Data Gateway decrypts EK and gets RK, and after that using that RK decrypts ED
and gets RD = CT

′ .

18. Data Gateway runs PreDecrypt on CT ′ and computes CT ′′ .

19. Data Gateway sends CT ′′
, C0 to Data Consumer.

20. Data consumer sends CT ′′
, C0 and DSK to its Decryptor.

21. Decryptor runs Decrypt algorithm with CT ′′
, C0 and DSK as input and produce M.

22. Decryptor sends M to Data Consumer.

7.2.5 Security Analysis

It is CPA secure and collusion resistant (see Section 4.6). It also has forward security (by the
same argument as Subsection 7.1.5).

58

Chapter 8

Idea of Implementing whole Access
Control Server

I was thinking that we can divide this full Access Control system in three phases : Initial Setup,
Key Updation, Data Accessing.

1. Initial Setup : Whenever a new user (U) register into this system :

(a) U gets a global unique ID and It will send this to External IAM.
(b) After reciving the global unique ID of U, External IAM will send the token and the

all keys corresponding to External IAM to U.
(c) U will send that token and relevant keys (if it is needed) to Policy Decision Point

through Data Gateway and Control Interface.
(d) Policy Decision Point sends all the keys to U through Control Interface and Data

Gateway.

2. Key Updation : Whenever a revocation list will be published :

(a) Authorities will refresh their revocation keys.
(b) Authorities will update those revocation keys in proxy server also.
(c) U will ask for updated revocation keys corresponding to its unrevocked attributes.
(d) U gets updated revocation keys corresponding to its unrevocked attributes (following

the steps from 1.(b) to 1.(d)).

3. Data Accessing : At the time of data storing :

(a) DO gets its token from External IAM and logs in to the system.
(b) DO just encrypt its data and send it to Data Gateway. Rest of the part will be same

(as I described in Subsection 7.2.3).

At the time of Data Consuming :

(a) DC gets its token from External IAM and logs in to the system.
(b) DC sends transformed keys directly along with its other necessary keys to Data Gate-

way. Rest of the part will be same (as I described in Subsection 7.2.4, from step-12
to step-22).

59

Now I will describe my idea in details. Suppose we have an access control system (ACS).

Initial Setup : Now whenever a new user (U) will register in that system ACS, U produces all
of its identity proof to the External IAM and gets a global unique ID (GID) and a token as
a proof of its identity. This token will basicaaly have the information of all attributes of the
user. This U may be DO or DC. External IAM also update its revocation tree (where actually
it stores the keys related to the revocation process) and hands over all of his secret keys related
with the authority External IAM. After that U sends his token, GID and all other neccessary
informations to Policy Decision Point, through Data Gateway and Control Interface, to get all of
his secret keys related with the authority Policy Decision Point and gets the required secret keys.

Key Updation : Whenever External IAM detects some malicious user, it revokes that user
fully or revokes some of his attributes and publishes an revocation List. After publication of
the revocation list the authorities updates all of their revocation related keys and also sends
them to the proxy server (in our revocation model). Proxy server updates its storage where it
stores all the keys related to revocation. After that Proxy server also access the cipher texts,
strored in the cloud storage, which needs an update and updates those cipher-texts with new
revocation keys. Here at the time of updation proxy server basically does re-encryption only on
those ciphertexts.
All the users of the systems time to time check whether a revocation list has been published or
not. If they notice that a revocation list has been published, they asks the authorities for new
updated keys. They updates their storage with the updated keys.

Data Accessing : Since all the users have updated keys, at the time of data storing or
consuming they do not ask the authorities for keys.
At the time of Data storing, the data owner (DO) just encrypts necessary data with the keys
which he already has in his personal storage and sends the encrypted data to Data Gateway for
further processing.
At the time of Data consuming, data consumer (DC) sends his secret transformed keys to Data
Gateway which are neccessary to pre-decrypt the data. DC don’t asks the authorities for secret
keys as he already has all the keys in his personal storage. After the full cloud computation
Data Gateway sends the partially decrypted data to DC and DC easily computes the raw data
using his own decryption secret key.

If we divide the full access control structure in this way, then it will help to reduce the commu-
nication costs. Because here the DC is not asking for the keys to the attribute authorities at the
time of each data consumption. Also if you see the Subsection 7.1.4 and Subsection 7.2.4, then
you can observe that at first DC is asking for all keys, then after getting the keys DC transforms
those keys and again sends those transformed keys to the Data Gateway. But here since the DC
already has all the keys, he just sends the final transformed keys directly to the Data Gateway.
So, the number of communications will be reduced.

60

Chapter 9

Conclusion

In this thesis I have studied the recent Token-Based access control model and found the security
limitation in it. I have studied many constructions of ABE, CP-ABE, MA-CP-ABE, LSSS and
then I have choosen suitable building blocks to design two access control model which can avoid
those security limitations.

My first model is based on centralized MA-CP-ABE. In the first model I have used composite
order bilinear group. Since it is a centralized model, there is an central authority. In my
case External IAM plays the role of Central Authority. I have used External IAM and Policy
Decision Point as my two attribute authorities. According to the security analysis, my first
model is adaptively secure. We have done this security analysis in standard model.
My second model is based on decentralized MA-CP-ABE. For my second model I have used
prime order bilinear group. Since it is an decentralized scheme so there is no central authority.
Here also I have used External IAM and Policy Decision Point as my two attribute authorities.
According to the security analysis, my second model is CPA secure. We have done this security
analysis in random oracle model.
My second model is more efficient according to the computation cost than the first model
whereas my first model is more efficient according to the communication cost than the second
model. Also my first model has adaptive security in standard model whereas we have used
random oracle model for the second model.

Then I have implemented the CP-ABE scheme of my Second model. I have also implemented a
more efficient form of LSSS matrix generation and used that to make my scheme more efficient.
I have only implemented the Second Multi-Authority CP-ABE scheme i.e. Deentralized
Multi-Authority CP-ABE scheme because this is the efficient one (according to computation
cost). Actually the first scheme i.e. the Centralized Multi-Authority CP-ABE scheme is
based on composite order bilinear group which are several orders of magnitude slower than
the prime order groups that provide the same security level. Another important reason of not
implementing my first scheme is Charm does not support composite order groups.
Although my first scheme takes more computation time than my second scheme, my first
scheme is more secure than my second scheme, it is adaptively secure in standard model. Also
my first scheme needs less communication cost.

I have also introduced revocation property in the models to penalize the malicious users. But
for this introduction of revocation property needs additional overhead. It also increases the
computation and communication costs of the model. But to decrease the communication cost
we have given an implementation idea for the whole access control model. For future work one
can think about introducing accountability property or policy updating property in the models.

61

Bibliography

[1] “Attribute-based Encryption for Cloud Computing Access Control: A Survey" by YINGHUI
ZHANG, ROBERT H. DENG, SHENGMIN XU, JIANFEI SUN, QI LI and DONG ZHENG.

[2] “Fuzzy Identity-Based Encryption" by Amit Sahai and Brent Waters.

[3] “Ciphertext-Policy Attribute-Based Encryption" by John Bethencourt, Amit Sahai and Brent
Waters.

[4] “Secure Schemes for Secret Sharing and Key Distribution" by Amos Beimel.

[5] “Efficient Generation of Linear Secret Sharing Scheme Matrices from Threshold Access Trees"
by Zhen Liu, Zhenfu Cao, and Duncan S. Wong.

[6] “New Monotone Span Programs from Old" by Ventzislav Nikov and Svetla Nikova.

[7] “Computationally Efficient Ciphertext-Policy Attribute-Based Encryption with Constant-
Size Ciphertexts" by Yinghui Zhang, Dong Zheng, Xiaofeng Chen, Jin Li and Hui Li.

[8] “Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Se-
cure Realization" by Brent Waters.

[9] “Multi-authority Attribute Based Encryption" by Melissa Chase.

[10] “Decentralizing Attribute-Based Encryption" by Allison Lewko and Brent Waters.

[11] “Secure, efficient and revocable multi-authority access control system in cloud storage" by
Qi Li, Jianfeng Ma, Rui Li, Ximeng Liu, Jinbo Xiong and Danwei Chen.

[12] “Efficient Decentralized Attribute Based Access Control for Mobile Clouds" by Sourya Joyee
De and Sushmita Ruj.

[13] “Improving Privacy and Security in Multi-Authority Attribute-Based Encryption" by
Melissa Chase and Sherman S.M. Chow.

[14] “Comparing the Pairing Efficiency over Composite-Order and Prime-Order Elliptic Curves"
by Aurore Guillevic.

[15] “Guide to Attribute Based Access Control (ABAC) Definition and Considerations" by Vin-
cent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J. Lang, Margaret M.
Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone. NIST Special
Publication 800-162.

[16] “The stanford pairing based crypto library" by Ben Lynn.

[17] “Efficient Statically-Secure Large-Universe Multi-Authority Attribute-Based Encryption"
by Yannis Rouselakis and Brent Waters.

62

[18] “Charm: A framework for rapidly prototyping cryptosystems" by Joseph A. Akinyele,
Matthew Green, and Avi Rubin. Cryptology ePrint Archive, Report 2011/617, 2011.

[19] Miracl crypto sdk. https://certivox.com/solutions/miracl-crypto-sdk/.

[20] “Token Based Authorization" by Giovanni Augusto Baruzzi.

[21] “Role-Based Access Control" by Ferraiolo D.F., Kuhn D.R.. 15th National Computer Secu-
rity Conference: 554–563, 1992.

[22] “ACLA: A Framework for Access Control List (ACL) Analysis and Optimization" by Jiang
Qian, Susan Hinrichs, and Klara Nahrstedt.

[23] https://www.securelink.com/blog/healthcare-data-new-prize-hackers/

63

https://certivox.com/solutions/miracl-crypto-sdk/
https://www.securelink.com/blog/healthcare-data-new-prize-hackers/

Appendix A

Security Proof of Centralized
Multi-authority CP-ABE (First) Model

Before giving out the proof, we have to introduce the definitions of two additional but necessary
structures: semi-functional ciphertext (SF-CT) and semi-functional key (SF-Key), which will
not be employed in the real constructions, but are necessary in the proof. For each attribute
i ∈ Uf , we pick a random exponent zf,i ∈ ZN .

Semi-functional ciphertext (SF-CT) : A SF-CT is formed in the following way. We let
g2 be a generator of Gp2 , c be a random chosen exponent from ZN . For each row x ∈ [l], we
randomly select γx ∈ ZN . In addition, we choose a random vector ~y ∈ ZnN . Then, we set
C0 = gsgc2. For each x ∈ [l] :

Cx = gΣf∈{1,2}af ·Wx·~v · T−rxρ(x) · g
Wx·~y+γxzρ(x)
2

Dx = grx · g−γx2

Semi-functional key (SF-Key) : For a gid, a SF-Key will be one of the two following forms:

• SF-Key of type 1 : We pick random exponents b, df ∈ ZN and set :

Lgid = gbgid/cgid ·Rgid · gb2
Lgid, 0 = g1/cgid ·Rgid,0

CAPKgid = (gid, CASKgid, Lgid,0, σgid)
DSKgid = cgid
Kgid,f = gαf/cgid · gaf bgid/cgid ·Rgid,f · g

df
2

Kgid,f,i = T
bgid/cgid
f,i ·Rgid,f,i · g

bzf,i
2

• SF-Key of type 2 : We pick random exponents b, df ∈ ZN and set :

Lgid = gbgid/cgid ·Rgid

Lgid, 0 = g1/cgid ·Rgid,0

CAPKgid = (gid, CASKgid, Lgid,0, σgid)
DSKgid = cgid
Kgid,f = gαf/cgid · gaf bgid/cgid ·Rgid,f · g

df
2

Kgid,f,i = T
bgid/cgid
f,i ·Rgid,f,i

Observe that, if we use an SF-Key to decrypt a normal ciphertext or use a normal key to decrypt

64

an SF-CT, Πf∈{1,2}e(g, g)αf s can be correctly computed. However, if we attempt to employ an
SF-Key to decrypt an SF-CT, it will come out an additional term : e(g2, g2)cΣf∈{1,2}df−by1 , where
y1 is the first coordinate of ~y . An SF-Key of type 1 is said to be nominal if cΣf∈{1,2}df−by1 = 0.
In this case, such an SF-key can decrypt the corresponding SF-CT.

Before going into the proof, we shall discuss about some security assumptions which will be
used to proof that the first centralized MA-CP-ABE scheme is adaptively secure.

• Assumption - 1 : Let G denote a group generator, which produces the group description
G = (G,G1, N = p1p2p3, e) . Given the terms D = (G, g, τ3), where g R←− Gp1 and
τ3

R←− Gp3 , the adversary has to distinguish the element φ1
R←− Gp1p2 from φ2

R←− Gp1 .
The advantage with which an adversary A can break Assumption 1 is defined as :
Adv1G,A = |Pr[A(D,φ1) = 1]− Pr[A(D,φ2) = 1]|

• Definition - 1 : G satisfies Assumption 1 if the advantage Adv1G,A is negligible for any
PPT adversary A .

• Assumption - 2 : Let G denote a group generator, which produces the group description
G = (G,G1, N = p1p2p3, e) . Given the terms D = (G, g, τ1, τ2, τ3, θ2, θ3), where g, τ1

R←−
Gp1 , τ2, θ2

R←− Gp2 and τ3, θ3
R←− Gp3 , the adversary has to distinguish the element φ1

R←− G

from φ2
R←− Gp1p3 .

The advantage with which an adversary A can break Assumption 2 is defined as :
Adv2G,A = |Pr[A(D,φ1) = 1]− Pr[A(D,φ2) = 1]|

• Definition - 2 : G satisfies Assumption 2 if the advantage Adv2G,A is negligible for any
PPT adversary A .

• Assumption - 3 : Let G denote a group generator, which produces the group description
G = (G,G1, N = p1p2p3, e) . Given the terms D = (G, g, gατ2, τ3, g

sθ2, r2), where g R←− Gp1 ,
τ2, θ2, r2

R←− Gp2 and τ3
R←− Gp3 , the adversary has to distinguish the element φ1 = e(g, g)αs

from φ2
R←− G1.

The advantage with which an adversary A can break Assumption 3 is defined as :
Adv3G,A = |Pr[A(D,φ1) = 1]− Pr[A(D,φ2) = 1]|

• Definition - 3 : G satisfies Assumption 3 if the advantage Adv3G,A is negligible for any
PPT adversary A .

Now we are going to introduce the security game run between an adversary A and a simulator
B. If total number of AAs is F , then A is assumed to corrupt at most F − 1 AAs (In my model
F = 2). We let Fc , Fuc = F − Fc denote the index set of corrupted and uncorrupted AAs,
respectively.

Security Game :

• Setup : The simulator B runs theGlobalSetup, CASetup andAASetup algorithms. It
then transmits the system public parameters GPK, CPK, and ∪Ff=1APKf to the adversary
A. A appoints an index set of the AAs Fc which it wants to corrupt, where F− Fc 6= φ .
For f ∈ Fc , B sends the master key {AMKf |f ∈ Fc} to A .

65

• Phase-1 : The adversary can make adaptive secret key queries as follows:
CAkey queries : To answer these queries, B responds by DSKgid, CASKgid and

CAPKgid.
AAkey queries : The adversary makes AAkey queries by submitting ∪Sgid,f and

CAPKgid to B, where f ∈ Fuc. B returns {ASKSgid,f}f∈Fuc .

• Challenge : The adversary declares two equal-length message M0,M1 and a challenge
access structure A∗. B first flips a random coin and choose b ∈ {0, 1}. It then encrypts Mb

under A∗ and gets the challenge ciphertext CT ∗. It gives CT ∗ to A.

• Phase-2 : The adversary A can make adaptive secret key queries as in Phase-1.

• Guess : A outputs its guess b′ of b.

We note that the adversary A cannot make AAkey queries on the attribute set Sgid,f such that
(∪f∈FucSgid,f) ∪ (∪f∈FcUf) can satisfy the challenge access structure A∗. The advantage of A is
defined as (Pr[b

′
= b]− 1/2).

Now to prove the adaptive security of our centralized MA-CP-ABE scheme from Assumptions
1, 2, 3, a sequence of games are used. The detailed definitions are given in the following :

• GameReal : The first game GameReal denotes the real security game. The challenge
ciphertext and all users’ keys are normal.

• Game0 : In this game, all users’ keys are normal, but the challenge ciphertext is semi-
functional.

We let q be the number of key queries that are requested by A . For k from 1 to q, we consider :

• Gamek,1 : In this game, the first k − 1 keys are semifunctional form of type 2. The k-th
key is semi-functional form of type 1. The remaining keys are normal.

• Gamek,2 : In this game, the first k keys are semi-functional form of type 2. The other
keys are normal form.

• GameFinal : In this game, all the keys are semi-functional form of type 2. Different from
Gamek,2, the semi-functional challenge ciphertext is an encryption of a random (unknown)
message, which is independent of M0 and M1.

To proof the that our centralized MA-CP-ABE is adaptively secure we need the following
lemmas. These lemmas can be proved using the assumptions. You can see the paper [11] for
the detail proof.

• Lemma - 1 : Given a UF-CMA (unforgeable under adaptive chosen message attacks)
secure signature scheme, suppose that there is a PPT adversary A with advantage :
GameRealAdvA − Game0AdvA = ε, we then can construct a PPT simulator B to break
Assumption-1 with advantage ε.

• Lemma - 2 : Given a UF-CMA (unforgeable under adaptive chosen message attacks)
secure signature scheme, suppose that there is a PPT adversary A with advantage :
Gamek−1,2AdvA − Gamek,1AdvA = ε, we then can employ A to construct a PPT sim-
ulator B to break Assumption-2 with advantage negligibly approximate to ε.

66

• Lemma - 3 : Given a UF-CMA (unforgeable under adaptive chosen message attacks)
secure signature scheme, suppose that there is a PPT adversary A with advantage :
Gamek,1AdvA − Gamek,2AdvA = ε, we then can employ A to construct a PPT simulator
B to break Assumption-2 with advantage negligibly approximate to ε.

• Lemma - 4 : Given a UF-CMA (unforgeable under adaptive chosen message attacks)
secure signature scheme, suppose that there is a PPT adversary A with advantage :
Gameq,2AdvA − GameFinalAdvA = ε, we then can employ A to construct a PPT sim-
ulator B to break Assumption-3 with advantage negligibly approximate to ε.

Now we shall proof the following theorem :

Theorem : Suppose that the signature system is existentially unforgeable against adaptive
chosen message attack (UF-CMA) and Assumptions 1, 2, 3 hold. Then no polynomial-time
adversary A can break our MA-CP-ABE scheme with a non-negligible advantage.

Proof : If Assumptions 1, 2 and 3 hold and the signature system Σsign is UF-CMA secure, using
the mentioned 4 lemmas we get that GameFinal is indistinguishable from the real security game.
In GameFinal, the value of b is information-theoretically hidden from A . Thus, the adversary A
cannot gain a non-negligible advantage in breaking our scheme.

67

Appendix B

Approximate Security Level of all Charm
Elliptic Curves

In the following table we present the approximate security levels of all the elliptic curves
supported by Charm. The results of the table provides an intuitive comparison between the
security levels of the different instantiations [17].

Curve Security Level (bits)

SS512 80
SS1024 112
MNT159 70
MNT201 90
MNT224 100

Table B.1: Approximate security levels of the utilized ECC groups [17]

“SS" are super singular curves (symmetric bilinear groups), while “MNT" are the Miyaji,
Nakabayashi, Takano curves (asymmetric bilinear groups). The number after the type of the
curve denotes the size of the base field in bits.

68

Appendix C

Prime vs Composite Order Group
Operations

In the paper [17], in order to demonstrate the generic difference in the efficiency of prime order
vs composite order implementations, they timed the group exponentiation (of a random group
element with a random exponent) and pairing operations (on random group elements) in the
MIRACL framework [19] for different security levels. The benchmarks were executed on a dual
core Intel® Xeon® CPU W3503@2.40GHz with 2.0GB RAM running Ubuntu R10.04. The
elliptic curve utilized for all benchmarks was the super-singular (symmetric) curve y2 = x3 + 1
mod p with embedding degree 2 for suitable primes p.

In the following table we can see the significant gap between the timings in prime and composite
order groups for the same security levels. This is the main reason that we have implemented
our second model which is based on prime order groups.

Group Exponentiation
Security Level (bits) Prime Composite (2 primes) Composite (3 primes)

80 3.5 66.9 201.6
112 14.8 448.1 1404.3
128 34.4 1402.5 4512.5
192 273.8 20097.0 66526.0

Group Pairing
Security Level (bits) Prime Composite (2 primes) Composite (3 primes)

80 13.9 245.3 762.3
112 65.7 1706.8 5485.2
128 176.6 5428.2 17494.4
192 1752.3 79046.8 263538.1

Table C.1: Average timing of group exponentiations and pairings in MIRACL [17]

Here timing results are in milliseconds over 100 repeats of group exponentiations and pairings
in MIRACL.

69

Appendix D

Implementation of LSSS

D.1 Implementation of LSSS for Encryption

D.1.1 Algorithm

The following algorithm generates the LSSS matrix for encryption [5]. In each step of the
algorithm, I have mentioned all the pyhton code (D.1.2) line numbers which are used to
implement that algorithm step.

• Input : A threshold-tree-string FA for a Threshold-gate access tree A. (line-1)

• Output : A matrix M and a function ρ , which maps the ith row of M to the ith attribute
in FA. (M,ρ) is the LSSS realizing A. (from line-71 to line-74)

• Convert (FA) : In the following, M is an m× d matrix over Zp, and L = (L1, L2, ..., Lm)
is a vector with m coordinates, where each coordinate is an attribute or a threshold-tree-
string. The ith coordinate of L labels the ith row of M .

1. Let matrix M = (1)1×1, vector L = (FA) , and m = 1, d = 1. (from line-2 to line-9)

2. Repeat the following until all coordinates of L are attributes : (from line-10 to line-68)

(a) Consider M to be an m× d matrix over Zp, and L = (L1, L2, ..., Lm).
(b) Scan the coordinates of L to find the first coordinate that is a threshold-tree-

string rather than an attribute. Suppose the index of this coordinate is z. We
have a threshold-tree-string Lz = Fz = (Fz,1, Fz,2, ..., Fz,m2 , d2). (from line-12 to
line-17)
Remark : If such a coordinate does not exist, it means that all the coordinates
have been attributes and the algorithm should stop and output the matrix M .

(c) Resolve Fz to obtain its m2 children Fz,1, Fz,2, ..., Fz,m2 and threshold value d2.
(from line-18 to line-27)

(d) For this (d2,m2) threshold access structure, construct the corresponding LSSS
matrix according to Equation(1), then execute “insertion" of this (d2,m2) LSSS
matrix on the zth row ofM to obtain a newM withm−1+m2 rows and d+d2−1
columns. Set L = (L1, L2, ..., Lz−1, Fz,1, Fz,2, ..., Fz,m2 , Lz+1, ..., Lm) , and then set
m = m− 1 +m2 and d = d− 1 + d2. (from line-46 to line-66)

3. Return the matrix M and vector L. (from line-69 to line-74)

70

Equation(1) :
For a (t, n) threshold access structure (P1, P2, ..., Pn, t) , we can construct the corresponding
LSSS over Zp, p > n+ 1, as follows :

ρ(i) = Pi,∀i ∈ {1, 2, ..., n} and M =



1 1 1 ... 1
1 2 4 ... 2t−1

1 3 9 ... 3t−1

.

.

.
1 n n2 ... nt−1



D.1.2 My Python Code to Implement Above Algorithm

1 ap= [[[‘a’,‘b’,‘c’,2],[‘d’,‘e’,‘f’,2],[‘g’,‘h’,[‘i’,‘j’,‘k’,‘l’,3],2],2]]
2 M=[]
3 p=[]
4 p.append(1)
5 M.append(p)
6 l=[]
7 l=ap
8 m=1
9 d=1
10 z=0
11 while (z>=0) :
12 z=(-1)
13 i=0
14 while (i<=m-1 and z==(-1)) :
15 if (isinstance(l[i],list)) :
16 z=i
17 i=i+1
18 if (z>=0) :
19 fz=l[z]
20 l2=[]
21 m2=0
22 for ele in fz :
23 if (isinstance(ele, (list, str))) :
24 m2 = m2 + 1
25 l2.append(ele)
26 if (isinstance(ele, int)) :
27 d2 = ele
28 m1=m
29 d1=d
30 M1=[]
31 for i in range(0,m1,1) :
32 p=[]
33 for j in range(0,d1,1) :

71

34 p.append(M[i][j])
35 M1.append(p)
36 l1=[]
37 for i in l :
38 l1.append(i)
39 l=[]
40 M=[]
41 for i in range(0,m1+m2-1,1) :
42 p=[]
43 for j in range(0,d1+d2-1,1) :
44 p.append(0)
45 M.append(p)
46 for i in range(0,(z),1) :
47 l.append(l1[i])
48 for j in range(0,(d1),1) :
49 M[i][j]=M1[i][j]
50 for j in range(d1,(d1+d2-1),1) :
51 M[i][j]=0
52 for i in range(z,(z+m2),1) :
53 l.append(l2[i-z])
54 for j in range(0,(d1),1) :
55 M[i][j]=M1[z][j]
56 a=i-(z-1)
57 x=i-(z-1)
58 for j in range(d1,(d1+d2-1),1) :
59 M[i][j]=x
60 x=x*a
61 for i in range((z+m2),(m1+m2-1),1) :
62 l.append(l1[i-m2+1])
63 for j in range(0,(d1),1) :
64 M[i][j]=M1[i-m2+1][j]
65 for j in range(d1,(d1+d2-1),1) :
66 M[i][j]=0
67 m=m1+m2-1
68 d=d1+d2-1
69 print(‘\n L is as follows :\n’)
70 print(l)
71 print(‘\n\n M is as follows :\n’)
72 for i in range(0,m,1) :
73 print(M[i])
74 print(‘\n\n’)

72

This program gives me the following output :

Figure D.1: Output of LSSS for Encryption

D.2 Implementation of LSSS for Decryption

D.2.1 Algorithm

The following algorithm generates the LSSS matrix for decryption [5]. I have highlighted
all the steps which are different from the algorithm D.1.1 with bold letters. In each step of
the algorithm, I have mentioned all the pyhton code (D.2.2) line numbers which are used to
implement that algorithm step.

• Input : A threshold-tree-string FA for a Threshold-gate access tree A and an attribute
set S. (line-1 and line-2)

• Output : A matrix M and a vector L whose coordinates are the attributes in S.
The ith row of M is labeled by the ith coordinate of L. (from line-113 to line-118)

• Convert (FA) : In the following, M is an m× d matrix over Zp, and L = (L1, L2, ..., Lm)
is a vector with m coordinates, where each coordinate is an attribute or a threshold-tree-
string. The ith coordinate of L labels the ith row of M .

1. Let matrix M = (1)1×1, vector L = (FA) , and m = 1, d = 1. (from line-3 to line-10)

2. Repeat the following until all coordinates of L are attributes :

(a) Consider M to be an m× d matrix over Zp, and L = (L1, L2, ..., Lm).
(b) Scan the coordinates of L to find the first coordinate that is a threshold-tree-

string rather than an attribute. Suppose the index of this coordinate is z. We
have a threshold-tree-string Lz = Fz = (Fz,1, Fz,2, ..., Fz,m2 , d2). (from line-14 to
line-18)
If Lz does not contain any attribute in S, remove the zth row of M and
the zth coordinate of L , set m = m − 1, and go to (a). (from line-29 to
line-66)

73

(c) Resolve Fz to obtain its m2 children Fz,1, Fz,2, ..., Fz,m2 and threshold value d2.
(from line-20 to line-28)

(d) For this (d2,m2) threshold access structure, construct the corresponding LSSS
matrix according to Equation(1), then execute “insertion" of this (d2,m2) LSSS
matrix on the zth row ofM to obtain a newM withm−1+m2 rows and d+d2−1
columns. Set L = (L1, L2, ..., Lz−1, Fz,1, Fz,2, ..., Fz,m2 , Lz+1, ..., Lm) , and then set
m = m− 1 +m2 and d = d− 1 + d2. (from line-67 to line-95)

3. Remove the coordinates (i.e. attributes) of L that do not appear in S,
and remove the corresponding rows of M (from line-107 to line-112), then
return the matrix M and vector L. (from line-107 to line-118)

Equation(1) :
For a (t, n) threshold access structure (P1, P2, ..., Pn, t) , we can construct the corresponding
LSSS over Zp, p > n+ 1, as follows :

ρ(i) = Pi,∀i ∈ {1, 2, ..., n} and M =



1 1 1 ... 1
1 2 4 ... 2t−1

1 3 9 ... 3t−1

.

.

.
1 n n2 ... nt−1



D.2.2 My Python Code to Implement Above Algorithm

1 ap= [[[‘a’,‘b’,‘c’,2],[‘d’,‘e’,‘f’,2],[‘g’,‘h’,[‘i’,‘j’,‘k’,‘l’,3],2],2]]
2 S=[‘a’,‘b’,‘g’,‘h’]
3 M=[]
4 p=[]
5 p.append(1)
6 M.append(p)
7 l=[]
8 l=ap
9 m=1
10 d=1
11 z=0
12 while (z>=0) :
13 z=(-1)
14 i=0
15 while (i<=m-1 and z==(-1)) :
16 if (isinstance(l[i],list,)) :
17 z=i
18 i=i+1
19 if (z>=0) :
20 fz=l[z]
21 l2=[]
22 m2=0

74

23 for ele in fz :
24 if (isinstance(ele, (list, str))) :
25 m2 = m2 + 1
26 l2.append(ele)
27 if (isinstance(ele, int)) :
28 d2 = ele
29 k=0
30 for ele in l2 :
31 if (isinstance(ele, str)) and ele in S :
32 k=k+1
33 ch=1
34 while (isinstance(ele, list)) and (ch!=0) :
35 ch=0
36 t1=[]
37 for el in ele :
38 if (isinstance(el, str)) and el in S :
39 k=k+1
40 if (isinstance(el, list)) :
41 ch=ch+1
42 for elm in el :
43 t1.append(elm)
44 ele=[]
45 for el in t1 :
46 ele.append(el)
47 m1=m
48 d1=d
49 M1=[]
50 for i in range(0,m1,1) :
51 p=[]
52 for j in range(0,d1,1) :
53 p.append(M[i][j])
54 M1.append(p)
55 l1=[]
56 for i in l :
57 l1.append(i)
58 l=[]
59 M=[]
60 if (k==0) :
61 for i in range(0,m1,1) :
62 if (i!=z) :
63 l.append(l1[i])
64 M.append(M1[i])
65 m=m1-1
66 d=d1
67 else :
68 for i in range(0,m1+m2-1,1) :
69 p=[]
70 for j in range(0,d1+d2-1,1) :
71 p.append(0)
72 M.append(p)

75

73 for i in range(0,(z),1) :
74 l.append(l1[i])
75 for j in range(0,(d1),1) :
76 M[i][j]=M1[i][j]
77 for j in range(d1,(d1+d2-1),1) :
78 M[i][j]=0
79 for i in range(z,(z+m2),1) :
80 l.append(l2[i-z])
81 for j in range(0,(d1),1) :
82 M[i][j]=M1[z][j]
83 a=i-(z-1)
84 x=i-(z-1)
85 for j in range(d1,(d1+d2-1),1) :
86 M[i][j]=x
87 x=x*a
88 for i in range((z+m2),(m1+m2-1),1) :
89 l.append(l1[i-m2+1])
90 for j in range(0,(d1),1) :
91 M[i][j]=M1[i-m2+1][j]
92 for j in range(d1,(d1+d2-1),1) :
93 M[i][j]=0
94 m=m1+m2-1
95 d=d1+d2-1
96 M1=[]
97 for i in range(0,m,1) :
98 p=[]
99 for j in range(0,d,1) :
100 p.append(M[i][j])
101 M1.append(p)
102 l1=[]
103 for i in l :
104 l1.append(i)
105 l=[]
106 M=[]
107 k=0
108 for i in range(0,m,1) :
109 if l1[i] in S :
110 l.append(l1[i])
111 M.append(M1[i])
112 k=k+1
113 print(‘\n L is as follows :\n’)
114 print(l)
115 print(‘\n\n M is as follows :\n’)
116 for i in range(0,k,1) :
117 print(M[i])
118 print(‘\n\n’)

76

This program gives me the following output :

Figure D.2: Output of LSSS for Decryption

77

	Introduction
	Motivation
	Recent Access Control Model and Security Limitations
	Basic Idea of Some Simple Access Control Model
	Components and their responsibilities

	Security Limitation in Recent Model
	Our Contribution (Solution Idea)
	Research Methodology
	Thesis Organization

	Background
	Attribute Based Access Control
	Attribute Based Encryption
	Idea of ABE
	Variations of CP-ABE

	Access Structure
	Linear Secret Sharing Scheme (LSSS)

	Bilinear Mapping
	Bilinear Mapping in Prime order bilinear group
	Bilinear Mapping in Composite order bilinear group

	System Model
	Trust Model
	Security Requirements

	Centralized Multi-Authority Model (First Model)
	Modified Components
	System Definition
	Fuctionalities used in the System
	Data Storing
	Architecture Explained Step by Step

	Data Consuming
	Architecture Explained Step by Step

	Security Analysis

	Decentralized Multi-Authority Model (Second Model)
	Modified Components and Their Uses
	Full System Definition
	Fuctionalities used in the System
	Data Storing
	Architecture Explained Step by Step

	Data Consuming
	Architecture Explained Step by Step

	Security Analysis
	Security Game Description
	Security Game

	Comparison of Efficiency
	Comparison of Computation Cost
	Key Generation
	Data Storing
	Data Consuming

	Comparison of Communication Cost
	Data Storing
	Key Accessing
	Data Consuming

	Implementation
	Framework
	Implementation Details and Comparisons

	Further Modification
	First Model with Revocation
	Components and Their Uses
	Fuctionalities used in the System
	Data Storing
	Data Consuming
	Security Analysis

	Second Model with Revocation
	Modified Components and Their Uses
	Fuctionalities used in the System
	Data Storing
	Data Consuming
	Security Analysis

	Idea of Implementing whole Access Control Server
	Conclusion
	Security Proof of Centralized Multi-authority CP-ABE (First) Model
	Approximate Security Level of all Charm Elliptic Curves
	Prime vs Composite Order Group Operations
	Implementation of LSSS
	Implementation of LSSS for Encryption
	Algorithm
	My Python Code to Implement Above Algorithm

	Implementation of LSSS for Decryption
	Algorithm
	My Python Code to Implement Above Algorithm

