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Chapter 1

Introduction

This thesis is comprised of three essays in mechanism design. The first essay/chapter inves-

tigates the stability property of trading mechanisms of an internet platform that conducts

trades between buyers and sellers. The second chapter considers the allocation of a single

object among a set of agents whose valuations are interdependent. The third chapter is

about the allocation of multiple units of a good among a set of agents who have private

valuations for one unit of good.

We provide a brief description of each chapter below.

1.1 Stability and double auction design

This chapter is about an internet platform which is trying to conduct trades between buyers

and sellers. Each seller is in possession of a single unit of homogenous good and there are

several buyers each of whom desires a single unit of the good. The utility functions of both

buyers and sellers are quasi-linear with the valuations of buyers and sellers being private

information.

Our contribution is to introduce a novel consideration in the mechanism design prob-

lem for the platform in this model in addition to the standard ones of (interim) incentive-

compatibility and (interim) individual-rationality. Coalitions of buyers and sellers are free

to set up their own trading mechanisms and divide the surplus among themselves. This

threat by the buyers and sellers will impact the optimal expected revenue of the platform. If

the platform tries to extract “too much revenue”, a coalition of buyers and sellers can block

the mechanism offered by the platform and trade with a mechanism of their own choice.
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Specifically, we analyze the structure of revenue optimal mechanisms for the platform when

single buyer-seller coalitions can threaten to secede from the platform’s mechanism.

We look for revenue-optimal mechanisms in the class of stable mechanisms. The notion of

stability in private information settings has received a great deal of attention in the literature

beginning with Wilson (1978). Wilson defines an interim core in an incomplete information

setting. Dutta and Vohra (2005) refine the notion of interim core and define the credible

core. They prove the non-emptiness of incentive compatible credible core in an auction

model. Apart from the interim core, there are two other types of cores: the ex-post core

and the ex-ante core, depending on the stage (ex-post or ex-ante) in which the agents form

coalitions.

The notion of stability in private information settings that we use is called single-buyer-

single-seller (SBSS) ex-ante stability. It is based on the notion of ex-ante incentive compatible

core given by Forges et al. (2002a) for an exchange economy setting. It was also used recently

by Bikhchandani (2017) who studies ex-ante stability of matching mechanisms in a model

with one-sided incomplete information and nontransferable utilities. In our model, the agents

form coalitions before their private information is revealed. If a buyer-seller pair receive a

strictly higher expected payoff (before the realization of their privately observed valuations)

via a bilateral trading mechanism, they will block the mechanism proposed by the platform.

A platform’s mechanism is SBSS ex-ante stable if no buyer-seller pair can block it in this

sense.

Our first set of results concerns the SBSS ex-ante stability of several well-known double

auctions. We consider the trade reduction mechanism, its special case the McAfee double

auction and the positive-spread posted-price mechanism. In all cases, we assume that the

values of buyers and sellers are independently and identically distributed with a uniform

distribution over a unit interval. We show by the means of explicit computation that these

mechanisms are not stable for a particular value of number of buyers and sellers. In all

cases, the buyer and seller can block using the posted-price mechanism given by Hagerty

and Rogerson (1985). It is clear from these examples that stability imposes constraints on

mechanism chosen by the platform.

The main result of the chapter concerns the expected revenue-maximizing mechanism

that satisfies interim incentive-compatibility, interim individual-rationality and SBSS ex-

ante stability. Using ideas in Myerson (1981) and Myerson and Satterthwaite (1983) we

identify a revenue optimal mechanism without stability constraints, i.e. a mechanism that

maximizes expected revenue subject to interim incentive-compatibility and interim individual

rationality. We show that this mechanism is not SBSS ex-ante stable. There is therefore,
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genuine tension between stability and revenue maximization. Finally, we provide a revenue-

maximizing mechanism that satisfies the stability constraints.

1.2 Budget-balanced mechanisms for single-object

allocation problems with interdependent values

In this chapter we consider the problem of allocating a single object among a set of agents

in an interdependent value setting. Each agent receives a signal about the valuation of the

object. Her valuation depends on the signals received by all other agents. The mechanism

must satisfy the properties of ex-post incentive compatibility, ex-post individual-rationality,

budget-balance and ex-post efficiency.

In our model, the Green-Laffont impossibility continues to hold.∗ We consider two types

of mechanisms. The first are signal-ranking mechanisms (or s-ranking mechanisms). Agents

report their signals and are ranked according to these reports. The s-ranking allocation

rule assigns a probability for receiving the object to each agent. Transfers for agents are

determined accordingly. The valuation-ranking mechanisms or v-ranking mechanisms on

the other hand, assign probabilities for receiving the object based on the ranking of agents’

valuations.

We show that a ranking allocation rule that is strategy-proof and can be implemented

by budget-balanced transfers in the private-value case is also an ex-post incentive compat-

ible (EPIC) and ex-post individually rational (EPIR) s-ranking allocation rule that can be

implemented with budget-balanced (BB) transfers provided the valuation functions satisfy

an additive separability condition. An immediate consequence of this result is that the s-

ranking mechanism where the agents with the highest and second-highest ranking signals

receive the object with probabilities 1− 1
n

and 1
n

respectively (i.e. the Green-Laffont alloca-

tion vector) is EPIC, EPIR and implementable by budget-balanced transfers if the valuation

functions satisfy additive separability condition, single-crossing and symmetry. We show by

means of an example that the result does not hold. We also show that the allocation rule of

the mechanism that maximizes worst-case efficiency ratio given by Long et al. (2017) is the

s-ranking allocation rule which maximizes worst-case efficiency ratio among all EPIC, EPIR

and BB s-ranking mechanisms when valuation functions are of a specific form that satisfies

SAS condition, single-crossing, symmetry. We then provide an example to show that this

mechanism is no longer optimal when the valuation functions are not symmetric.

∗See Nath et al. (2015) for further details.
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For v-ranking mechanisms, first we show that it is necessary for valuation functions to

satisfy single-crossing for the mechanism to be EPIC. Then we show that a ranking alloca-

tion rule that is strategy-proof and can be implemented by budget-balanced transfers in the

private-value case is also an EPIC and EPIR v-ranking allocation rule that can be imple-

mented with budget-balanced transfers provided the valuation functions satisfy the additive

separability condition and single-crossing. Under an additional condition of symmetry of

valuation functions, the allocation functions for s-ranking mechanisms and v-ranking mech-

anisms are allocation equivalent. Moreover, the agents have the same payment functions and

get the same utility from allocation equivalent, EPIC, EPIR and BB s-ranking and v-ranking

mechanisms.

Another approach to the impossibility result is to allocate the object only to the agent

with the highest signal but with probability less than one. The object is thrown away or

retained by the seller with the remaining probability. The agent who is allocated the object

makes a payment which is redistributed among all the agents ensuring budget balancedness.

Such mechanisms were called probability-burning mechanisms by Mishra and Sharma (2018)

and studied in private valuation models. We explore the feasibility of such mechanisms in the

interdependent valuation case. For a semi-separable class of valuation functions, we show that

a particular probability-burning mechanism is EPIC, EPIR and BB. For additively separable

and symmetric class of valuation functions, we design another probability-burning mechanism

and show that it is welfare-maximizing in the class of EPIC, EPIR, BB mechanisms that

allocate only to the agents with topmost signal and satisfy an additional property called

equal treatment at equal signals.

1.3 Probability-burning mechanisms in multiple-good

allocation problems

The final chapter considers the problem of allocating m units of a good among n agents.

Each agent demands a single unit of good the valuation of which is his private information.

The mechanism must have the usual properties viz. incentive-compatibility, individual-

rationality, budget-balance and efficiency. This contrasts with the approach of Dastidar

(2017) who focuses on goals of efficiency and revenue generation for mechanisms that allocate

a scarce good to a set of agents. In our model, due to the Green-Laffont impossibility result

(Green and Laffont (1979)), no mechanism can simultaneously satisfy efficiency, incentive-

compatibility and budget-balance. So, one of the properties must be relaxed in order to find a

mechanism which satisfies two properties and a weakened version of the third. In a multi-unit
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allocation problem, Guo and Conitzer (2014) weaken the budget-balance condition and study

linear redistribution mechanisms. Gujar and Narahari (2008) extend the analysis to the case

of multiple heterogenous goods. In this chapter, we relax the property of efficiency and looks

within the class of incentive-compatible and budget-balanced mechanisms. We follow the

approach given by Mishra and Sharma (2018) called probability-burning mechanisms.

The chapter has two objectives. The first is to extend the mechanism of Mishra and

Sharma (2018) to the multi-good allocation problem. We propose the equal-probability-

burning mechanism which allocates a single unit of good to each of the top m highest-valued

agents with equal probability. The probability is auctioned through a multi-unit Vickrey

auction and the revenue collected is redistributed back to the agents which ensures budget-

balance. Some of the allocation probability is burnt at some valuation profiles for each unit

of good. We then compare the welfare properties of this mechanism with some other mech-

anisms that are budget-balanced, dominant strategy incentive-compatible and individually-

rational. These mechanisms are the multi-unit extension of Green-Laffont mechanism and

the single-unit burning mechanism given by Guo and Conitzer (2014).

We find that the worst-case efficiency ratio of multi-unit Green-Laffont mechanism is

higher than that of equal-probability-burning mechanism. If the number of agents is greater

than the threshold level m + m2

2
+
√
m(m2 − 1) + m4

4
, the worst-case efficiency ratio of

the equal-probability-burning mechanism is greater than that of the single-unit burning

mechanism. The expected total welfare of equal-probability-burning mechanism is less than

that of the multi-unit Green-Laffont mechanism but converges to it as n increases.

The second objective is to design probability-burning mechanism with reserve prices.

Goods are allocated only if the valuations of at least m agents are above the reserve price. In

this case each of the m agents with the highest ranked valuations is given a good with equal

probability. The allocation probability depends on the relationship between the reserve price

and the valuations of (m+ 1)th and (m+ 2)th ranked agents. We show that the mechanism

is budget-balanced, individually-rational and dominant strategy incentive-compatible.

Our main goal is to demonstrate that introducing reserve prices may increase the expected

welfare of agents. For this purpose we assume that valuations are uniformly distributed. In

the restricted setting of n = 4 and m = 2, we show that the optimal reserve price is non-zero.

For a single-good model we explicitly compute the optimal reserve price and show that the

expected total welfare with the reserve price is greater than the expected total welfare in the

mechanism of Mishra and Sharma (2018).
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Chapter 2

Stability and double auction design

2.1 Introduction

In recent years, there has been a phenomenal rise in number and size of internet platforms.

Sharing economy companies like Uber and Airbnb are platforms that facilitate the connection

between millions of buyers and sellers everyday. The combined size of these platforms was

1.5 per cent of US gross domestic product. i.e. USD 273 billion in 2015∗.

A platform generates revenue by matching buyers and sellers. On one side of the market

are sellers who hold various goods, and on the other side are buyers who wish to purchase

them from the sellers. Both buyers and sellers have valuations for the goods. Since the

platform is unaware of the valuations of buyers and sellers, it must use a “mechanism” in

which agents bid for the various goods. The mechanism then specifies the set of buyers and

sellers who trade with each other and the prices they pay and receive. The platform typically

charges a margin between buyer’s payment and seller’s receipt. Mechanisms are typically

required to satisfy incentive compatibility (truthful elicitation of valuations) and individual

rationality (ensuring voluntary participation). An early example of an analysis of such issues

is Myerson and Satterthwaite (1983). They considered the problem of a platform/broker in

a bilateral trading environment (a single buyer and a seller) which attempts to maximize its

expected revenue.

We consider the design of mechanisms from the perspective of platform in the double

auction setting. There is a single homogenous good, several sellers each in possession of a

single unit of good and several buyers each of whom desires a single unit of the good. The

∗See Measuring the digital economy, IMF, 2018
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utility functions of both buyers and sellers are quasi-linear with the valuations of buyers and

sellers being private information.

Our contribution is to introduce a novel consideration in the mechanism design prob-

lem for the platform in this model in addition to the standard ones of (interim) incentive-

compatibility and (interim) individual-rationality. Coalitions of buyers and sellers are free

to set up their own trading mechanisms and divide the surplus among themselves. It is clear

that this will impact the optimal expected revenue of the platform. If the platform tries to

extract “too much revenue”, a coalition of buyers and sellers can block the mechanism offered

by the platform and trade with a mechanism of their own choice. We restrict attention to

the case where the blocking coalition consists of a single buyer-seller pair. This assumption

considerably simplifies the analysis. It is also realistic - forming larger blocking coalitions will

involve greater coordination between agents. We analyze the structure of revenue optimal

mechanisms for the platform when single buyer-seller coalitions can threaten to secede from

the platform’s mechanism.

It is clear from the foregoing discussion that we are looking for revenue optimal mech-

anisms in the class of stable mechanisms. The notion of stability in private information

settings has received a great deal of attention in the literature beginning with Wilson (1978).

Wilson defines an interim core in an incomplete information setting. Apart from the interim

core, there are two other types of cores, the ex-post core and the ex-ante core, depending on

the stage (ex-post or ex-ante) in which the agents form coalitions.

Ex-post stability is the most demanding of the three notions. In this case, agents form

coalitions after they have communicated their private information and the outcomes specified

by the mechanism have been implemented. A weaker notion is the interim core where agents

form coalitions after their private information is revealed to them.† The weakest notion of

stability is ex-ante stability. Here agents form coalitions before their private information is

revealed. If a buyer-seller pair receive a strictly higher expected payoff (before the realization

of their privately observed valuations) via a bilateral trading mechanism, they will block the

mechanism proposed by the platform. A platform’s mechanism is single-buyer-single-seller

(SBSS) ex-ante stable if no buyer-seller pair can block in this sense. Forges et al. (2002a)

refer to this approach as the one that occurs “behind the veil of ignorance”.

Our first set of results concerns the SBSS ex-ante stability of several well-known double

auctions. We consider the trade reduction mechanism, its special case the McAfee double

auction and the positive-spread posted-price mechanism. In all cases, we assume that buyer

and seller are independently and identically distributed with a uniform distribution over a

†A detailed discussion of interim stability and ex-post stability can be found in Forges et al. (2002b).
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unit interval. We show by the means of explicit computation that these mechanisms are not

stable for a particular value of number of buyers and sellers. In all cases, the buyer and

seller can block using the posted-price mechanism given by Hagerty and Rogerson (1985). It

is clear from these examples that stability imposes constraints on mechanism chosen by the

platform.

The main result of the chapter concerns the expected revenue-maximizing mechanism

that satisfies interim incentive-compatibility, interim individual-rationality and SBSS ex-

ante stability. Using ideas in Myerson (1981) and Myerson and Satterthwaite (1983) we

identify a revenue optimal mechanism without stability constraints, i.e. a mechanism that

maximizes expected revenue subject to interim incentive-compatibility and interim individual

rationality. We show that this mechanism is not SBSS ex-ante stable. There is therefore,

genuine tension between stability and revenue maximization. Finally, we provide a revenue-

maximizing mechanism that satisfies the stability constraints.

The unconstrained revenue-maximizing mechanism allocates the goods to the buyers with

highest virtual valuation and sellers with lowest virtual costs till a buyer’s virtual valuation

becomes lower than a seller’s virtual cost. The constrained revenue-maximizing mechanism,

on the other hand allocates on the basis of adjusted virtual valuation. The adjusted virtual

valuation of buyer is higher than its virtual valuation and the adjusted virtual cost of a seller

is lower than its virtual cost. There will be more trades taking place as a result, resulting in

higher ex-ante expected utility of buyers and sellers but the platform will earn less revenue.

The chapter proceeds as follows. In Section 2.2 we give a brief overview of recent work

on stability of mechanisms. We describe the model and define some special mechanisms that

we use throughout the chapter in Section 2.3. In Section 2.4 we discuss the SBSS ex-ante

stability property of all the mechanisms. Section 2.5 starts with generalization of Myerson-

Satterthwaite model of revenue-maximization to a general market. We prove that it is not

generally SBSS ex-ante stable. We then find a mechanism that maximizes the revenue of

platform in class of SBSS ex-ante stable mechanisms. Section 2.6 concludes.

2.2 Related Literature

Like in our chapter, Forges (2004) considers the notion of the ex-ante incentive-compatible

core in the context of a two-sided assignment game. The paper demonstrates the non-

emptiness of the core when players have common values. Bikhchandani (2017) applies the

notion of ex-ante stability to a matching model with one-sided incomplete information but

where the utilities are nontransferable. Chen and Hu (2017) do the same in a two-sided
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incomplete information matching model.

In recent work Bochet and Ilkilic (2017) use the notion of bilateral stability (introduced

by Kranton and Minehart (2001)) to show that there generally does not exist a bilaterally

stable mechanism that satisfies strategyproofness, individual rationality and efficiency in a

bipartite network setting. If the network does not have cycles, the Vickrey auction is the

unique mechanism that satisfies all these properties. The notion used in the paper is related

to the ex-post core - the agents form a blocking coalition after the mechanism has already

allocated the goods and the transfers have taken place.

A few papers have considered the interim core. Peivandi and Vohra (2021) use a notion

of interim core called B-blocking to show that there does not exist a stable and interim

incentive-compatible mechanism for a centralized market. The threat of a mechanism to

which a coalition can deviate induces inefficiency in the trading mechanism of the market.

Dutta and Vohra (2005) use a refined notion of interim core called the credible core. They

prove the non-emptiness of incentive compatible credible core in an auction model. The

credible core is a refinement of the concept of interim incentive compatible core i.e. a coalition

can credibly identify an informational event such that the types of agents involved in the

event prefer the new mechanism to the existing one.

2.3 The model and basic definitions

There are N buyers B = {b1, b2, . . . , bN} and N sellers S = {s1, s2, . . . , sN} in a market‡. Let

K be the grand coalition of the buyers and sellers i.e. K = B∪S. A typical buyer and seller

will be denoted by bi and sj respectively. Each seller has a unit of an indivisible good and

all the goods are identical to each other. Each buyer demands at most one unit of the good.

Buyer bi has valuation (type) vi for the good, which is his private information. Similarly,

each seller sj has cost (type) cj of supplying the good, which is the private information of the

seller. We assume that vi and cj are independent random variables with support [0, 1]. The

distribution function for vi, i ∈ {1, 2, . . . , N} is F , with an associated density function f .

The distribution function for cj, j ∈ {1, 2, . . . , N} is G, with an associated density function

g.

A complete type profile denoted by (v, c) = (v1, . . . , vN , c1, . . . , cN) is a 2N tuple of

valuations of buyers and sellers. The space of type profiles is T = [0, 1]2N . For every buyer

bi ∈ B, let T \{bi} ≡ {(v1, . . . , vi−1, vi+1, . . . , vN , c1, . . . , cN)} i.e. it denotes the set of 2N −1

‡The number of buyers and sellers being equal makes the analysis tractable.
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types excluding that of buyer bi. Clearly, T \ {bi} = [0, 1]2N−1. Similarly, for every seller

sj ∈ S, T \ {sj} ≡ {(v1, . . . , vN , c1, . . . , cj−1, cj+1, . . . , cN)} i.e. it denotes the set of 2N − 1

types excluding that of buyer sj.

It will be assumed throughout the chapter that the distributions F and G satisfy the

regularity condition.

Definition 2.1 Let φ(vi) = vi − 1−F (vi)
f(vi)

and ψ(cj) = cj +
G(cj)

g(cj)
for each i and j ∈

{1, 2, . . . , N}. The distributions F and G satisfy regularity if the functions φ(vi) and ψ(cj)

are non-decreasing in vi and cj, respectively. The functions φ(vi) and ψ(cj) shall be referred

to as the virtual valuation functions of bi and sj at type vi and cj, respectively.

The regularity conditions are standard conditions in the literature. They considerably

simplify the analysis of the optimal mechanisms. They are weak conditions satisfied by, for

instance, the uniform distribution.

Let coalition A be a non-empty subset of K. A mechanism for A elicits type of each

agent in A and specifies the allocations and transfers of these agents. Formally, a mechanism

MA = (qA, tA) is a collection of functions (qAbi∈A, q
A
sj∈A, t

A
bi∈A, q

A
sj∈A).

qAbi , q
A
sj

: [0, 1]|A| → [0, 1]

tAbi , t
A
sj

: [0, 1]|A| → R

For every type profile (v, c), qAbi(v, c) is the probability of buyer bi receiving the good and

qAsj(v, c) is the probability of seller sj selling his good. Furthermore, tAbi(v, c) is the payment

made by the buyer bi, while tAsj(v, c) is the amount received by seller sj.

A mechanism is required to be feasible i.e. the sum of allocation probabilities of buyers

is equal to the sum of allocation probabilities of sellers. Formally, we require
∑
bi∈A

qAbi(v, c) =∑
sj∈A

qAsj(v, c) for every (v, c) ∈ [0, 1]|A|.

Two mechanisms will be of particular interest in the chapter. The first is for the grand

coalition K and is denoted byM = (q, t) (we suppress the superscript). The second is for a

coalition A = {bi, sj}. It is called a bilateral mechanism and denoted by MA.

Definition 2.2 The mechanism MA satisfies the no-budget deficit (NBD) condition if∫
(v,c)∈[0,1]|A|

(∑
bi∈A

tAbi(v, c)−
∑
sj∈A

tAsj(v, c)
)
f(v)g(c)dvdc ≥ 0
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If a mechanism satisfies the NBD condition for the grand coalition K, then the platform

can never make negative ex-ante revenue.

The ex-post utilities of a buyer bi and a seller cj in mechanism MA are:

UA
bi

(v, c) = qAbi(v, c)vi − t
A
bi

(v, c)

UA
sj

(v, c) = tAsj(v, c)− q
A
sj

(v, c)cj

The interim utilities of a buyer bi and a seller sj are:

Ubi(vi) =

∫
(v−i,c)∈T\bi

(qbi(v, c)vi − tbi(v, c))f(v−i)g(c)dv−idc

Usj(cj) =

∫
(v,c−j)∈T\sj

(tsj(v, c)− qsj(v, c)cj)f(v)g(c−j)dvdc−j

Also, the ex-ante expected utilities of a buyer bi and a seller sj are:

Ubi =

∫
(v,c)∈T

(qbi(v, c)vi − tbi(v, c))f(v)g(c)dvdc

Usj =

∫
(v,c)∈T

(tsj(v, c)− qsj(v, c)cj)f(v)g(c)dvdc

If a buyer bi’s valuation is vi, qbi(vi) is the expected probability of receiving a good and

tbi(vi) is the expected transfer defined as,

qbi(vi) =

∫
(v−i,c)∈T\bi

qbi(v, c)f(v−i)g(c)dv−idc

tbi(vi) =

∫
(v−i,c)∈T\bi

tbi(v, c)f(v−i)g(c)dv−idc

Similarly, qsj(cj) and tsj(cj) are defined for the seller cj. If its type is cj, then,

qsj(cj) =

∫
(v,c−j)∈T\sj

qcj(v, c)f(v)g(c−j)dvdc−j

tsj(cj) =

∫
(v,c−j)∈T\sj

tcj(v, c)f(v)g(c−j)dvdc−j

Fix a mechanism M. We define the following properties:
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Definition 2.3 A mechanism M = (qe, te) is ex-post efficient if for each (v, c) ∈ T ,

qebi(v, c) and qesj(v, c) for all i and j ∈ {1, 2, . . . , N}, it solves the following problem,

max
(qbi

,qsj ∀i,j=1,2,...,N)

( N∑
i=1

qbivi−
N∑
j=1

qsjcj

)

s.t.
N∑
i=1

qbi =
N∑
j=1

qsj ≤ N

and 0 ≤ qbi , qsj ≤ 1,∀ i, j ∈ {1, 2, . . . , N}

It is straightforward to characterize the ex-post efficient allocation rules at a type profile

(v, c). Arrange all the buyers in the descending order of their valuations i.e. v(i) denotes the

ith highest valuation among all buyers. Similarly, arrange the sellers in ascending order of

their costs i.e. c(j) denotes the seller with jth lowest cost. Let k be the highest index such

that v(k) ≥ c(k) and v(k+1) < c(k+1). In an ex-post efficient allocation rule, the k top buyers

trade with the k sellers with lowest costs.

Now we define a few notions of incentive compatibility and individual rationality.

Definition 2.4 A mechanism M = (q, t) is ex-post incentive-compatible if for each

(v, c) ∈ T , bi ∈ B and sj ∈ S, the following holds:

qbi(v, c)vi − tbi(v, c) ≥ qbi(v
′
i, v−i, c)vi − tbi(v′i, v−i, c) , ∀v′i ∈ [0, 1]

tsj(v, c)− qsj(v, c)cj ≥ tsj(v, c
′
j, c−j)− qsj(v, c′j, c−j)cj , ∀c′j ∈ [0, 1]

According to the definition, no agent is better-off by misrepresenting their own type no

matter what types of other players have been realized. This is clearly the same as dominant

strategy incentive-compatibility. A weaker notion of incentive compatibility requires the

agents to be better off in the interim sense.

Definition 2.5 A mechanism M = (q, t) is interim incentive-compatible if for each

bi ∈ B and sj ∈ S the following holds:

qbi(vi)vi − tbi(vi) ≥ qbi(v
′
i)vi − tbi(v′i) , ∀vi, v′i ∈ [0, 1]

tsj(cj)− qsj(cj)cj ≥ tsj(c
′
j)− qsj(c

′
j)cj , ∀cj, c′j ∈ [0, 1]

Here, revealing one’s true type yields an interim expected utility that is at least as great

as the one obtained by misrepresentation assuming that all other agents are telling the truth.
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Definition 2.6 A mechanism M = (q, t) is ex-post individually-rational if for each

(v, c) ∈ T and bi ∈ B and sj ∈ S, the following holds:

qbi(v, c)vi − tbi(v, c) ≥ 0

tsj(v, c)− qsj(v, c)cj ≥ 0

Individual rationality ensures that agents participate voluntarily in the mechanism. In

the case of ex-post individual rationality, each agent obtains non-negative ex-post utility

irrespective of the type profile. We also define a weaker notion of individual rationality

where each agent is better-off in expectations.

Definition 2.7 A mechanism M = (q, t) is interim individually-rational if for each

(v, c) ∈ T and i and j ∈ {1, 2, . . . , N} the following holds:

qbi(vi)vi − tbi(vi) ≥ 0 , ∀vi ∈ [0, 1]

tsj(cj)− qsj(cj)cj ≥ 0 , ∀cj ∈ [0, 1]

2.3.1 Some special mechanisms

We shall now describe some well-known mechanisms from the literature.

We begin with the posted price mechanism. The mechanism specifies a fixed price p. For

the type vector (v, c), let k be the highest index§ such that v(k) ≥ p ≥ c(k) and v(k+1) < p or

c(k+1) > p. In this case, k goods are transferred from the sellers to the buyers. In particular,

buyers with k highest valuations receive a good each from sellers with k lowest costs. Each

buyer who receives a good pays p and each seller who transfers a good receives p.

A generalization of the posted price mechanism is the the positive spread posted price

mechanism. The mechanism specifies two prices p1 and p2 with p1 > p2. Let k be the

highest index such that v(k) ≥ p1 and v(k+1) < p1. Also, c(k) ≤ p2 and c(k+1) > p2. Once

again the k-highest valuation buyers (i.e. those above v(k)) receive an good while k-lowest

cost sellers i.e. with valuations less than c(k) sell their goods. Each trading buyer pays p1

while each trading seller receives p2. Clearly, the positive spread posted price mechanism

reduces to the posted price mechanism when p1 = p2.

§Recall that in the type vector (v, c), the buyers are ranked in descending order of their types and the

sellers are ranked in ascending order of their types. So, v(1) is the highest valuation among all the buyers.

Also, c(1) is the lowest cost among all the sellers.
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The trade reduction mechanism was introduced in McAfee (1992). Let k be the highest

index such that v(k) ≥ c(k) and v(k+1) < c(k+1). In this case, k − 1 units of goods are traded.

Buyers with the highest k − 1 valuations i.e. buyers with valuation greater than or equal

to v(k−1) receive goods from sellers with lowest k − 1 costs i.e. sellers with costs lower than

or equal to c(k−1). The kth ranked buyer and seller do not trade. Each buyer who trades

pays v(k) i.e. an amount equal to the valuation of kth-highest buyer, while each seller who

trades receives c(k) i.e. an amount equal to the cost of kth-lowest seller. The trade reduction

mechanism is similar to the positive spread posted price mechanism in which the prices are

endogenously determined.

The McAfee double auction (McAfee (1992)) computes k which is the highest index such

that v(k) ≥ c(k) and v(k+1) < c(k+1). The mechanism specifies price p, where p =
v(k+1)+c(k+1)

2
.

If p ∈ [c(k), v(k)], then k trades take place where trading buyers pay p and trading sellers

receive p. Otherwise, buyers with the top k − 1 valuations trade with sellers with the k − 1

lowest costs. The buyers that receive a good pay v(k) and the sellers that sell their good get

c(k).

It is well known that all the four mechanisms are ex-post incentive compatible and ex-post

individually rational. However, none of them are ex-post efficient.

We also describe a well-known bilateral trading mechanism (for one buyer and one seller)

that we repeatedly use in our analysis. We will refer to this mechanism as the MS mechanism

following Myerson and Satterthwaite (1983). The mechanism is described below.

For all α ≥ 0 define functions φα and ψα as follows:

φα(v) = v − α
(1− F (v)

f(v)

)
and (2.1)

ψα(c) = c+ α
G(c)

g(c)
(2.2)

For type profile (v, c) of agents, allocations for buyer b and seller s are given by

(qαb (v, c), qαs (v, c)) where,

qαb (v, c) =

1, if φα(v) ≥ ψα(c)

0, if φα(v) < ψα(c)
(2.3)

qαs (v, c) =

1, if φα(v) ≥ ψα(c)

0, if φα(v) < ψα(c)
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The value of α∗ is obtained by solving equation given below.

1∫
0

1∫
0

(
qαb (v, c)

(
v − 1− F (v)

f(v)

)
− qαs (v, c)

(
c+

G(c)

g(c)

))
f(v)g(c)dvdc = 0 (2.4)

The final allocation probabilities are (qα
∗

b (v, c), qα
∗

s (v, c))¶. The transfer functions

(tα
∗

b (v, c), tα
∗
s (v, c)) can be chosen such that the mechanism is interim incentive-compatible

and interim individually-rational.

Myerson and Satterthwaite (1983) show the existence of such a mechanism. They also

show that it maximises the sum of ex-ante expected utilities of the buyer and the seller

in the class of interim incentive-compatible and interim individually rational mechanisms.

An example of ex-ante efficient mechanism is the Chatterjee-Samuelson mechanism given in

Myerson and Satterthwaite (1983). When both F and G are uniform, the mechanism at a

particular type profile (v, c) of agents is as follows,

qb(v, c) = qs(v, c) =

1, if v − c ≥ 1
4

0, otherwise

tb(v, c) = ts(v, c) =

1
3
(v + c+ 1

2
), if v − c ≥ 1

4

0, otherwise

2.4 Stability of Mechanisms

Consider the case where there are 2 buyers and 2 sellers. Assume for simplicity that F and

G are uniformly distributed in [0, 1]. Suppose the platform proposes the trade reduction

mechanism. Agents decide before the realisation of their types whether to trade through the

mechanism proposed by the platform or to trade among themselves. If they trade among

themselves, they do so using the posted price mechanism. The ex-ante expected utility‖ of a

buyer in the trade reduction mechanism is Ub1 = 0.0166 and that of a seller is Us1 = 0.0166.

On the other hand, the ex-ante expected utilities of the buyer and the seller in the posted

price mechanism∗∗ are UP
b = 0.0625 and UP

s = 0.0625, respectively. Clearly, both buyer and

¶Gresik and Satterthwaite (1989) generalized the result and found the ex-ante efficient mechanism when

there are multiple buyers and sellers in the market. In section 2.5, we comment on the difference between

the α∗ corresponding to this mechanism and to the one obtained by solving the constrained optimization

problem within the Mα class of mechanisms.
‖The calculations of ex-ante expected utilities of agents are included in the Appendix.
∗∗The calculations can be found once again in the Appendix.
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seller are better-off ex-ante (i.e. before the realisation of types) by trading through the posted

price mechanism. They will, therefore, block the mechanism proposed by the platform. This

motivates the consideration of the requirement of stability for mechanisms.

We follow Holmstrom and Myerson (1983) and Vohra (1999) in defining various notions

of stability. These depend on when the agents decide to form the coalition i.e. before the

realisation of their types (ex-ante), after the realisation of types but agents only being able to

observe their own types (interim), and when agents can observe everyone’s types (ex-post).

Assumption - We assume that all the deviating coalitions consist of only one buyer and

one seller. Unless explicitly mentioned, we will refer to A as the bilateral coalition consisting

of a single buyer bi and a single seller sj.

Let A ⊂ K be a coalition. Consider interim incentive compatible mechanisms,M = (q, t)

and MA = (qA, tA) for K and A, respectively. Let UM
A

k and UMk be the ex-ante expected

utility of agent k ∈ A in mechanismMA andM, respectively. The mechanismMA ex-ante

dominates mechanism M if

UM
A

k > UMk ,∀k ∈ A

Definition 2.8 A mechanism M is Single-buyer-single-seller (SBSS) ex-ante sta-

ble if it is not ex-ante dominated by any interim incentive-compatible mechanism MA for

any coalition A.

If the interim incentive-compatible mechanismM for the grand coalition K is such that

no coalition A of a buyer and a seller can increase the ex-ante expected utility of each agent

by trading among themselves through another interim incentive-compatible mechanismMA,

then the mechanismM is SBSS ex-ante stable. The agents form a coalition ex-ante i.e. before

they receive their private information.

The coalition A has an interim objection to M if there exists an interim incentive-

compatible mechanism MA such that

UM
A

bi
(vi) > UMbi (vi) ∀vi ∈ [0, 1], bi ∈ A and

UM
A

sj
(cj) > UMsj (cj) ∀cj ∈ [0, 1], sj ∈ A

Definition 2.9 A mechanism M is Single-buyer-single-seller (SBSS) interim sta-

ble if no coalition A has an interim objection to it.
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In the interim stage, each agent observes only his own type but not that of others.

A coalition can form at this stage and decide to adopt an interim incentive-compatible

mechanism MA. If each agent of each type in A does strictly better using this mechanism

than in the mechanism for the grand coalition under consideration, then A will have an

objection to the grand mechanism. The latter is SBSS interim stable if no agent has an

objection.

The coalition A has an ex-post objection to M at type vector (v∗A, c
∗
A) if there exists an

interim incentive compatible mechanismMA and a profile of valuations (v∗A, v
∗
K\A, c

∗
A, c

∗
K\A) ∈

T such that

UM
A

k (v∗A, c
∗
A) > UMk (v∗A, v

∗
K\A, c

∗
A, c

∗
K\A) ∀k ∈ A

Definition 2.10 A mechanismM is Single-buyer-single-seller (SBSS) ex-post sta-

ble if no coalition A has an ex-post objection to it.

In the SBSS ex-post stable case, agents form a coalition after the types of all agents can

be commonly observed. If there does not exists a coalition A and a type profile for each agent

in A which is strictly better-off by trading via an interim incentive compatible mechanism

MA, then the interim incentive compatible mechanism M is SBSS ex-post stable.

We note that SBSS interim stability is stronger than SBSS ex-ante stability.

Proposition 2.1 If an interim incentive-compatible mechanism is SBSS interim stable,

then it is SBSS ex-ante stable.

Proof: Consider a mechanism M that is SBSS interim stable. Therefore, for any coalition

A, and for any interim incentive-compatible mechanism MA we have,

UMbi (vi) ≥ UM
A

bi
(vi) for every vi ∈ [0, 1]

UMsj (cj) ≥ UM
A

sj
(cj) for every cj ∈ [0, 1]

For the buyer bi, this implies,

1∫
0

UMbi (vi)f(vi)dvi ≥
1∫
0

UM
A

bi
(vi)f(vi)dvi

Rewriting, we get UMbi ≥ UM
A

bi
. Similarly, UMsj ≥ UM

A

sj
. The mechanism M gives at least

as much ex-ante expected utilities to agents that they get from the mechanismMA. Hence,
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the mechanismM is not ex-ante dominated by any interim incentive-compatible mechanism

MA for any coalition A. Thus, the mechanism M is SBSS ex-ante stable. �

We check for the stability of mechanisms that we described earlier. We first show that

the trade reduction mechanism and McAfee double auction are not SBSS ex-post stable.

Proposition 2.2 The trade reduction mechanism and the McAfee double auction mecha-

nism are not SBSS ex-post stable.

Proof: Let (v, c) = (v1, . . . , vN , c1, . . . , cN) be a type profile such that v1 > v2 > . . . > vk >

vk+1 > . . . > vN , c1 < c2 < . . . < ck < ck+1 < . . . < cN , vk > ck and vk+1 < ck+1. In the trade

reduction mechanism buyer k and seller k do not trade. However this pair can trade at any

price in the open interval (ck, vk) and be strictly better-off. Therefore the trade reduction

mechanism is not SBSS ex-post stable.

Let (v, c) be a type profile as in the previous paragraph satisfying the additional restriction
vk+1+ck+1

2
/∈ [ck, vk]. Once again buyer k and seller k do not trade in the McAfee double

auction. However, this pair can trade at any price in the open interval (ck, vk) and be strictly

better-off. Thus, this pair of buyer and seller have an ex-post objection to the McAfee double

auction mechanism. Clearly, the McAfee double auction is not SBSS ex-post stable. �

Next we consider SBSS ex-ante stability. A bilateral coalition can block by using any

interim incentive-compatible mechanism. A considerable simplification is obtained by apply-

ing the next proposition where it is shown a mechanism is stable if and only if no bilateral

coalition gets lower aggregate utility than the one guaranteed by the MS mechanism.

Proposition 2.3 A mechanism M is SBSS ex-ante stable if and only if, for all bilateral

coalitions A = {bi, sj}, UMbi +UMsj ≥ UMSbi
+UMSsj

.(Recall that UMSbi
and UMSsj

are the ex-ante

expected utilities of buyer and seller in MS mechanism.)

Proof: Sufficiency. Suppose

UMbi + UMsj ≥ UMSbi
+ UMSsj

(2.5)

holds all coalitions for all coalitions A = {bi, sj}. We claim that M is stable. Suppose this

is false. Then there exists some coalition A = {bi, sj} and an interim incentive-compatible

mechanismM′ for A such that A blocksM withM′. Therefore UM
′

bi
> UMbi and UM

′
sj

> UMsj .

Hence,

UM
′

bi
+ UM

′

sj
> UMbi + UMsj (2.6)
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From (2.5) and (2.6),

UM
′

bi
+ UM

′

sj
> UMSbi

+ UMSsj

But this contradicts the property of MS mechanism that it maximizes the sum of ex-ante

expected utilities of agents.

Necessity. SupposeM is SBSS ex-ante stable. We claim that the inequality UMbi +UMsj ≥
UMSbi

+ UMSsj
holds for all coalitions A. Suppose this is false for a coalition A = {bi, sj} i.e.

UMbi + UMsj < UMSbi
+ UMSsj

.

If UMbi < UMSbi
and UMsj < UMSsj

, then the mechanism MS blocks the mechanismM. This

contradicts the assumption that M is SBSS ex-ante stable.

Assume without loss of generality therefore that, UMbi ≥ UMSbi
and UMSsj

> UMsj . Let

UMSbi
+ UMSsj

− (UMbi + UMsj ) = κ > 0. Consider another mechanism M′ = (qMS , t′) for

the coalition A. The allocation function is same as that of MS mechanism but the transfer

function is constructed as follows. Let ε > 0 be such that ε < min{κ, UMSsj
−UMsj }. Also, let

∆ = UMSsj
− UMsj − ε. The transfer functions are:

t′bi(v, c) = tMSbi
(v, c) + ∆

t′sj(v, c) = tMSsj
(v, c)−∆

Since the difference in the transfers of the agents in the MS and M′ mechanisms are

independent of type profile (v, c), and MS mechanism is interim incentive-compatible,M′ is

also interim incentive-compatible.

The ex-ante expected utilities of agents in mechanism M′ are, UM
′

bi
= UMSbi

+ ∆ and

UM
′

sj
(cj) = UMSsj

(cj) − ∆. By construction of ∆ it follows that UMsj < UM
′

sj
since UMSsj

>

UMsj +ε, and also UMbi < UM
′

bi
since this implies that UMbi < UMSbi

+∆ = UMSbi
+UMSsj

−UMsj −ε
which simplifies to ε < κ. Hence, mechanismM′ ex-ante dominatesM, i.e. M is not SBSS

ex-ante stable. This is a contradiction. �

We examine the SBSS ex-ante stability property of the trade reduction mechanism and

the McAfee double auction when both F and G distributions are uniform on [0, 1]. Figure

2.1 below shows the ex-ante expected utility of an agent in the trade reduction mechanism

and the McAfee double auction for different market sizes. The blue, red and green curves

correspond to McAfee double auction, trade reduction mechanism and MS mechanism, re-

spectively. Note that the model is symmetric, so the ex-ante expected utilities of buyers and

sellers are equal in each of the three mechanisms.
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Figure 2.1: Payoff of agents in McAfee double auction and Trade reduction mechanism

It is evident that the McAfee double auction is SBSS ex-ante stable for all N ≥ 2. For

N ≤ 6, the trade reduction mechanism is not SBSS ex-ante stable††. However, for N ≥ 7, it

does turn out to be SBSS ex-ante stable.

We now look at the positive spread posted price mechanism and then find the revenue-

maximizing mechanism for the platform.

2.5 Expected revenue-maximizing mechanism for a platform

Suppose a platform is earning revenue by matching large numbers of buyers and sellers. If it

attempts to extract ”too much surplus” from the market, buyers and sellers will presumably

be tempted to reject the service of the platform and set up a trading mechanism by them-

selves. For instance, suppose the platform uses a positive spread posted price mechanism

charging prices p1 and p2 to buyers and sellers respectively. If the distributions F and G are

uniform on [0, 1], and N = 2, the expected revenue of the platform is:

4(p1 − p2)
(1

2
p22(1− p1)2 + p1(1− p1)(p2 −

p22
2

) +
1

2
p2(1− p2)(1− p1)2

)
Revenue maximization yields a unique maximum at p1 = 0.6847 and p2 = 0.3152. Com-

putations reveal Ubi = Usj = 0.023. Clearly, Ubi + Usj = 0.046 < UMSb + UMSs = 0.1406.

Applying Proposition 2.3, the revenue-maximizing positive spread posted price mechanism

is not SBSS ex-ante stable, i.e it is infeasible for the platform.

††The ex-ante expected utility of an agent in trade reduction mechanism when N = 6 is 0.0687, whereas

in the MS mechanism the agent gets utility of 0.0703.
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There is clearly a tension between stability of a mechanism and the expected revenue that

the platform earns from it. Our goal is to design revenue-maximizing mechanisms, which

also ensure that the agents do not break away from the mechanism offered by the platform.

Before analyzing revenue-maximizing mechanisms with stability constraints, we consider

the benchmark case of revenue-maximizing mechanisms without stability constraints. This

analysis closely follows Myerson and Satterthwaite (1983) who solve the problem for the case

of a single buyer and seller.

2.5.1 The benchmark case: expected revenue-maximization without

stability constraints

We look for a mechanism that maximizes the expected revenue for the platform in the class of

feasible, interim incentive-compatible and interim individually-rational mechanism. Myerson

and Satterthwaite (1983) finds such a mechanism when there is only one buyer and one seller

in the market. We extend their result to the case when there are N buyers and N sellers.

The next proposition characterizes the class of interim incentive-compatible mechanisms.

These results are standard in the literature. However a proof is provided in the Appendix

for convenience.

Proposition 2.4 A mechanism (q, t) is interim incentive-compatible if and only if 1, 2 and

3 hold:

1. qbi(v,c) is increasing in vi for all i ∈ {1, 2, . . . , N}.

2. qsj(v, c) is decreasing in cj for all j ∈ {1, 2, . . . , N}.

3. tbi(vi) = tbi(0) + viqbi(vi)−
vi∫
0

qbi(x)dx ,for all i ∈ {1, 2, . . . , N}

tsj(cj) = tsj(1) + cjqsj(cj)+
1∫
cj

qsj(x)dx ,for all j ∈ {1, 2, . . . , N}

This proposition is used to prove another proposition which characterizes expected rev-

enue π0 of the platform.

Recall that the virtual valuation functions for bi and sj are φ(vi) and ψ(cj), respectively.
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Proposition 2.5 For any interim incentive-compatible mechanism (q, t), the expected rev-

enue of the platform is given by,

π0 =

1∫
0

. . .

1∫
0

( N∑
i=1

qbi(v, c)φ(vi)−
N∑
j=1

qsj(v, c)ψ(cj)
)
f(v)g(c)dvdc

−
N∑
i=1

Ubi(0)−
N∑
j=1

Usj(1) (2.7)

Proof: The revenue of the platform is given by:

π0 = Eb,s
[ N∑

i=1

tbi(v, c)−
N∑
j=1

tsj(v, c)
]

=
N∑
i=1

Eb,s[viqbi(v, c)− Ubi(v, c)]−
N∑
j=1

Eb,s[cjqsj(v, c) + Usj(v, c)]

Substituting the expression for utility functions of agents from proof of Proposition 2.4,

=

1∫
0

. . .

1∫
0

( N∑
i=1

viqbi(v, c)−
N∑
j=1

cjqsj(v, c)
)
f(v)g(c)dvdc−

N∑
i=1

Ubi(0)

+
N∑
i=1

1∫
0

. . .

1∫
0

qbi(v, c)
1− F (vi)

f(vi)
f(v)g(c)dvdc−

N∑
j=1

Usj(1)

+
N∑
j=1

1∫
0

. . .

1∫
0

qsj(v, c)
F (cj)

f(cj)
f(v)g(c)dvdc

Rearranging these terms gives us the expression for the revenue of the platform. Hence,

proved. �

We identify a mechanism, and then show that it is feasible, interim incentive-compatible,

interim individually-rational and maximizes the revenue of the platform in the class of interim

incentive-compatible mechanisms.

Define a mechanism M∗ = (q∗, t∗) as follows. Arrange the virtual reservation values

of the 2N agents (φ(v1), φ(v2), . . . , φ(vN), ψ(c1), ψ(c2), . . . , ψ(cN)) in descending order. Let

Rbi(v, c) and Rsj(v, c) be the ranks of the virtual valuation of bi and sj in the profile (v, c)
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respectively‡‡. Allocation functions for buyers and sellers are described below.

q∗bi(v, c) =

1 if Rbi(v, c) ≤ N

0 if Rbi(v, c) > N
∀i ∈ {1, 2, . . . , N} (2.8)

q∗sj(v, c) =

1 if Rsj(v, c) ≥ N

0 if Rsj(v, c) < N
∀j ∈ {1, 2, . . . , N}

Let B(v, c) and S(v, c) denote the set of buyers and sellers respectively who trade i.e.

B(v, c) = {i | Rbi(v, c) ≤ N} and S(v, c) = {j | Rsj(v, c) ≥ N}. Also let i∗ denote the buyer

with lowest ranked virtual valuation among the buyers who are allocated goods and let j∗

denote the seller with highest ranked virtual valuation among sellers who sell the good.

Payments for buyers and sellers are now described.

t∗bi(v, c) =

min{ṽ|ṽ > 0 and φ(ṽ) ≥ ψ(cj∗)} if i ∈ B(v, c)

0 if i /∈ B(v, c)

t∗sj(v, c) =

max{c̃|c̃ < 1 and ψ(c̃) ≤ φ(vi∗)} if j ∈ S(v, c)

0 if j /∈ S(v, c)

Observe that M∗ is feasible as the number of units sold by the seller is equal to the

number of units bought by the buyers.

Theorem 2.1 Assume F and G satisfy regularity, i.e. the virtual valuation functions φ

and ψ are increasing. The mechanism M∗ maximizes the expected revenue of platform in

the class of interim incentive-compatible and interim individually-rational mechanisms.

Proof: The platform solves the following optimization problem:

max
(qbi

,qsj ∀i,j=1,2,...,N)
π0

s.t., E−bi [qbi(v, c)vi − tbi(v, c)] ≥ 0 (2.9)

E−sj [tsj(v, c)− qsj(v, c)cj] ≥ 0 (2.10)

‡‡LetN = 3. Let the type profile (v, c) be such that φ(v1) = 0.6, φ(v2) = 0.1, φ(v3) = 0.9) and ψ(c1) = 0.7,

ψ(c2) = 0.2, ψ(c3) = 0.8. Ranking them in descending order we get (φ(v3), ψ(c3), ψ(c1), φ(v1), ψ(c2), φ(v2)).

Here, Rb1(v, c) = 4, Rb2(v, c) = 6, Rb3(v, c) = 1, Rs1(v, c) = 3, Rs2(v, c) = 5, Rs3(v, c) = 2.
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∀i, j ∈ {1, 2, . . . , N} and ∀vi, cj ∈ [0, 1]

Let M = (q, t) be an interim incentive-compatible mechanism. According to Proposition

2.5, the expected revenue of the platform is given by

π0 =

1∫
0

. . .

1∫
0

H(v, c)f(v)g(c)dvdc−
N∑
i=1

Ubi(0)−
N∑
j=1

Usj(1) (2.11)

where H(v, c) =
N∑
i=1

qbi(v, c)φ(vi)−
N∑
j=1

qsj(v, c)ψ(cj) and the allocation functions qbi(v, c) and

qsj(v, c) are increasing in vi and cj, respectively. Clearly, π0 will be maximized if:

1. H(v, c) is maximized at each value of the type profile (v, c)

2. Ubi(0) = Usj(1) = 0 for all i and j ∈ {1, 2, . . . , N}

3. inequalities (2.9) and (2.10) are satisfied.

We will show that 1, 2 and 3 are achieved by the mechanism M∗.

Fix an arbitrary type profile (v, c). Assume without loss of generality, v1 ≥ v2 ≥ . . . ≥ vN

and c1 ≤ c2 ≤ . . . ≤ cN . Since φ and ψ are increasing, φ(v1) ≥ φ(v2) ≥ . . . ≥ φ(vN) and

ψ(c1) ≤ ψ(c2) ≤ . . . ≤ ψ(cN). It follows from inspection that H(v, c) is maximized by the

allocation rule q∗(v, c) of mechanism M∗. For instance, if k is the highest index such that

φ(vk) ≥ ψ(ck)) and φ(vk+1) ≥ ψ(ck+1)), then H(v, c) decreases if buyer k+ 1 and seller k+ 1

trade.

The allocation functions qbi(v, c) and qsj(v, c) are clearly non-decreasing in vi and cj

respectively.

The mechanism M∗ is interim incentive-compatible. To see this, pick any buyer bi. If

at any type profile (v, c), φ(vi) < φ(vi∗), no good is allocated to bi. If the buyer misreports

v′i such that φ(v′i) > φ(vi′∗), bi is allocated an good. The buyer gets a utility of vi −
φ−1(ψ(cj′∗)) < 0. This is because bi was not allocated the good when he reported the truth

as his virtual valuation was less than ψ(cj∗) and ψ(cj′∗) ≥ ψ(cj∗). So, bi has no incentive to

misreport. Also, bi has no incentive to misreport v′i < vi. Similarly, it can be shown that

no seller has any incentive to misreport. So, the mechanism is ex-post incentive compatible,

and hence it is interim incentive-compatible.

To see how 2 is achieved, notice that if there is a buyer bi with valuation vi = 0 his virtual

reservation is φ(0) = − 1
f(0)

which is clearly less than zero. According toM∗, bi will be given
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a good only if there exists a seller with a lower virtual valuation. However the lowest possible

virtual valuation of a seller zero. Hence, bi is never allocated a good. Also tbi(0, v−i, c) = 0

for all c. Hence, Ubi(0) = 0.

Similarly, a seller sj with valuation cj = 1 has virtual reservation ψ(1) = 1 + 1
g(1)

which

is clearly greater than one. According to M∗, sj sells the good only if there exists a buyer

with a higher virtual valuation. However the highest possible virtual valuation of a buyer is

always less than 1. Hence, sj never sells the good. The transfer for sj is tsj(v, 1, c−j) = 0.

Hence, Usj(1) = 0.

The arguments in the previous two paragraphs show that requirement 2 is satisfied by

M∗.

By construction, H(v, c) ≥ 0 for all type profiles (v, c). Since requirement 2 holds, M∗,

satisfies the NBD condition.

Finally we verify interim individual-rationality. We know from Proposition 2.4 that the

interim expected utility of buyer bi with valuation vi is

Ubi(vi) = Ubi(0)+

vi∫
0

q∗bi(x)dx

Similarly, interim expected utility of seller sj with valuation cj is,

Usj(cj) = Usj(1)+

1∫
cj

q∗sj(y)dy

Since Ubi(0) = Usj(1) = 0 and q∗bi(vi) and q∗sj(cj) are non-negative for all vi and cj

respectively, Ubi(vi) ≥ 0 and Usj(cj) ≥ 0. Hence, mechanismM∗ satisfies interim individual-

rationality. This proves the result. �

2.5.2 Stability of the revenue-maximizing mechanism M∗

The ex-ante expected utility of a buyer bi and seller sj in M∗ are given by the expressions

below:

Ubi =
N−1∑
r=0

N !(N − 1)!

(r!)2((N − r − 1)!)2

1∫
φ−1(0)

ψ−1(φ(vi))∫
0

(vi − φ−1(ψ(cr+1)))(F (vi))
N−r−1(1− F (vi))

r

(F (cr+1))
r(1− F (cr+1))

N−r−1f(vi)f(cr+1)dcr+1dvi (2.12)
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Usj =
N−1∑
r=0

N !(N − 1)!

(r!)2((N − r − 1)!)2

1∫
φ−1(0)

ψ−1(φ(vi))∫
0

(ψ−1(φ(vr+1))− cj)(F (vi))
N−r−1(1− F (vi))

r

(F (cj))
r(1− F (cj))

N−r−1f(vr+1)f(cj)dcjdvr+1 (2.13)

The sum Ubi +Usj is computed for small values of N numerically in the case when F and

G are uniform (both on [0, 1]) and in the case where F is uniform and G(c) = c2 (both on

[0, 1]).

It is apparent from the graphs in Figure 2.2 that M∗ is not SBSS ex-ante stable for the

values of N shown. Thus an explicit stability constraint may be binding in the revenue-

maximization problem for the platform.

Table 2.1 shows the payoff that an agent (buyer or seller) obtains in the three main

mechanisms introduced in the previous sections. The unconstrained revenue-maximizing

mechanism gives less payoff compared to both the trade reduction mechanism and the McAfee

mechanism. The payoff of the trade reduction mechanism rises rapidly whereas the payoff in

the unconstrained revenue-maximizing mechanism converges to 0.03125 and hence the gains

from trade of agents is far lesser. Clearly, as the platform squeezes the agents more, they

get lesser utility. So, they will try to block the mechanism by trading among themselves as

they are guaranteed higher ex-ante payoffs.

Value of N Trade reduction McAfee Unconstrained

2 0.0166 0.0792 0.023

3 0.0357 0.0876 0.0265

4 0.0500 0.0936 0.0244

5 0.0606 0.0979 0.0249

6 0.0687 0.1013 0.0264

7 0.0750 0.1039 0.0279

8 0.0801 0.1060 0.0291

9 0.0842 0.1077 0.0301

10 0.0877 0.1092 0.0308

Table 2.1: Utility of an agent when both F and G are uniform

We turn to analysis of revenue-optimal mechanism when there are stability constraints

in the next sub-section.
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Figure 2.2: Payoff of agents in unconstrained revenue-maximizing mechanism for different

distributions F and G
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2.5.3 Revenue-maximizing mechanism with stability constraints

The revenue-optimization for the platform in the presence of stability constraints is as follows:

max
(qbi

,qsj ∀i,j=1,2,...,N)
π0

s.t., E−bi [qbi(v, c)vi − tbi(v, c)] ≥ 0 (2.14)

E−sj [tsj(v, c)− qsj(v, c)cj] ≥ 0 (2.15)

∀ i, j ∈ {1, 2, . . . , N} and ∀ vi, cj ∈ [0, 1]

Ubi + Usj ≥ UMSbi
+ UMSsj

, ∀ i, j ∈ {1, 2, . . . , N} (2.16)

In addition to constraints (2.14) and (2.15), we now have additional constraints specified

by inequality (2.16). These are extra N2 constraints, one for each possible buyer-seller

coalition. The constraints ensure that an arbitrary buyer bi, seller sj pair do not reject the

platform ex-ante and set-up their own trading mechanism.

There are significant difficulties involved in solving the problem above in full generality.

In particular, it is not apparent which of the constraints in (2.16) are binding. In order to

make progress we restrict attention to a class of sub-mechanisms and follow the technique

developed in Gresik and Satterthwaite (1989).

Let σB : B → B be a bijection. For every valuation profile v = (v1, v2, . . . , vN), let

vσ−1
B

= (vσ−1
B (1), vσ−1

B (2), . . . , vσ−1
B (N)). In other words, ith buyer’s valuation is now the valuation

of buyer σ−1B (i) in the profile v. Similarly, Let σS : S → S be a bijection. For every cost

profile c = (c1, c2, . . . , cN), let cσ−1
S

= (cσ−1
S (1), cσ−1

S (2), . . . , cσ−1
S (N)). In other words, jth seller’s

valuation is now the valuation of seller σ−1S (j) in the profile c.

Let vσ be the valuation profile which is obtained by interchanging the valuations vi and

vσ(i) in (v, c) with rest of the valuations and costs remaining same.

Definition 2.11 An allocation function is symmetric if for all (v, c) and for all permuta-

tions σB and σS

(i) qbi(v, c) = qbσ(i)
(vσ−1

B
, c), ∀i ∈ B

(ii) qsj(v, c) = qsσ(j)
(v, cσ−1

S
), ∀j ∈ S
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The definition of symmetric allocation function is with respect to either buyers or sellers.

While comparing the allocation probability of a buyer like in part (i) of the definition, only

the buyers are permuted. Similarly, in part (ii) of the definition, only the sellers are permuted

upon. This is because, the allocation probability of an agent (whether buyer or seller) does

not depend on the other agent (seller or buyer) to which it is matched i.e. a buyer can receive

a good from any seller and a seller can sell the good to any buyer.

Example 2.1 Consider the case where N = 3 i.e. there are 3 buyers and 3 sellers in the

market. Also, let σB(1) = 3, σB(2) = 1, σB(3) = 2, σS(1) = 2, σS(2) = 3 and σS(3) = 1. If

the mechanism is symmetric, this means, for buyer b1 and buyer b3, and for any type profile

(v1, v2, v3, c), the allocation function

qb1(v1, v2, v3, c) = qb3(v2, v3, v1, c)

Also, notice that if v1 = v2 ∈ [0, 1], qb1(v1) = qb2(v2) i.e. for the same valuation, the interim

allocation probabilities of buyers are equal.

Now, we define a symmetric mechanism.

Definition 2.12 A mechanism M is symmetric if its allocation function is symmetric.

For a symmetric mechanism, the utility of all the buyers is equal and that of all the

sellers is also equal. Hence, all the stability constraints become identical. By suppressing

the indices of buyer and seller, the single constraint can be written as

Ub + Us ≥ UMSb + UMSs (2.17)

The platform now solves the following revenue-optimization problem:

max
(qb,qs)

1∫
0

. . .

1∫
0

N

(
qb(v, c)

(
v−(1− F (v))

f(v)

)
−qs(v, c)

(
c+

G(c)

g(c)

))
f(v)g(c)dvdc−NUb(0)−NUs(1)

s.t., E−b[qb(v, c)v − tb(v, c)] ≥ 0 (2.18)

E−s[ts(v, c)− qs(v, c)c] ≥ 0 (2.19)

∀v, c ∈ [0, 1]

Ub + Us ≥ UMSb + UMSs , (2.20)
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In order to solve the optimization problem, we rely on techniques developed by Myerson

and Satterthwaite (1983) even though their problem is different from ours - they are interested

in finding a mechanism that maximizes the sum of ex-ante expected utilities of a buyer and

seller while we need to find a mechanism that maximizes the revenue of the platform subject

to the stability constraint.

Pick α ∈ [0, 1]. We describe below a class of symmetric mechanisms Mα = (qα, tα).

The α-virtual valuations for the buyers and sellers are the same as those described for

the MS mechanism (equations (2.1) and (2.2)) i.e.

φα = v − α1− F (v)

f(v)

ψα = c+ α
G(c)

g(c)

Fix a valuation profile (v, c). Arrange the α-virtual values of the 2N agents

(φα(v1), φα(v2), . . . , φα(vN), ψα(c1), ψα(c2), . . . , ψα(cN)) in descending order. Let Rbi(v, c)

and Rsj(v, c) be the ranks of the α-virtual valuations of bi and sj in the profile (v, c) re-

spectively. The allocation functions qαbi(v, c) for buyer bi and qαsj(v, c) for seller sj are as

follows:

qαbi(v, c) =

1 if Rbi(v, c) ≤ N

0 if Rbi(v, c) > N
∀i ∈ {1, 2, . . . , N} (2.21)

qαsj(v, c) =

1 if Rsj(v, c) ≥ N

0 if Rsj(v, c) < N
∀j ∈ {1, 2, . . . , N}

Let Bα(v, c) and Sα(v, c) denote the set of buyers and sellers respectively who trade.

Also let i∗ denote the buyer with lowest ranked virtual valuation among the buyers who are

allocated goods and let j∗ denote the seller with highest ranked virtual valuation among

sellers who sell the good.

Payments for buyers and sellers are now described.

tαbi(v, c) =

min{ṽ|ṽ > 0 and φα(ṽ) ≥ ψα(cj∗)} if i ∈ Bα(v, c)

0 if i /∈ Bα(v, c)

tαsj(v, c) =

max{c̃|c̃ < 1 and ψα(c̃) ≤ φα(vi∗)} if j ∈ Sα(v, c)

0 if j /∈ Sα(v, c)
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The mechanismMα is a straightforward generalization of mechanismM∗ described in the

previous section which maximizes the expected revenue of the platform. The only difference

is that the virtual valuations of buyers and sellers are adjusted by a factor of α. For α =

1, the allocation functions (qαbi(v, c), q
α
sj

(v, c)) correspond to the allocation functions of the

unconstrained revenue-maximizing mechanism M∗ i.e. (q∗bi(v, c), q
∗
sj

(v, c)). For α = 0, they

correspond to the allocation functions of the ex-post efficient mechanism (qebi(v, c), q
e
sj

(v, c))§§.

The α-virtual valuation of buyer bi is decreasing in α and the α-virtual valuation of seller

sj is increasing in α. When α increases, the buyers and sellers lose opportunities for trading.

For the mechanism Mα, the stability constraint in (2.17) can be written as,

1∫
0

. . .

1∫
0

(
qαb (v, c)

1− F (v)

f(v)
+ qαs (v, c)

F (c)

f(c)

)
f(v)g(c)dvdc

+ Ub(0) + Us(1) ≥ UMSb + UMSs (2.22)

The left-hand side of inequality (2.22) is the sum of the ex-ante expected utilities of a

buyer and a seller in Mα mechanism. Notice that Ub(0) = Us(1) = 0¶¶. Hence the relevant

constraint will reduce to

1∫
0

. . .

1∫
0

(
qαb (v, c)

1− F (v)

f(v)
+ qαs (v, c)

F (c)

f(c)

)
f(v)g(c)dvdc ≥ γ (2.23)

where γ = UMSb + UMSs .

Fix the mechanism Mα and consider the following function C(α):

C(α) =

1∫
0

. . .

1∫
0

(
qαb (v, c)

1− F (v)

f(v)
+ qαs (v, c)

F (c)

f(c)

)
f(v)g(c)dvdc− γ (2.24)

It is clear from inspection of (2.23) that Mα is stable if and only if C(α) ≥ 0.

If C(1) ≥ 0 the unconstrained revenue-maximizing mechanism M∗ satisfies the stability

constraint and the revenue-maximizing mechanism is also the optimal mechanism in the

presence of stability constraints. On the other hand, if C(1) < 0, the unconstrained revenue-

maximizing mechanism is not stable. In this case, we want an α less than one such that the

stability constraint is satisfied with equality. According to the next Proposition, such an α

can be found.

§§Recall the definition in Section 2.3.
¶¶The proof for this is similar to the one given in the proof of Theorem 2.1 for mechanism M∗.
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Proposition 2.6 If C(1) < 0, there exists an α∗ ∈ (0, 1) such that C(α∗) = 0.

Proof: Suppose C(1) < 0. If C(0) > 0 and the function C is decreasing and continuous in

α, the result follows by an application of the Intermediate Value Theorem.

According to Myerson and Satterthwaite (1983), the ex-post efficient mechanism (in the

class of interim incentive-compatible, interim individually-rational mechanisms) offered by

the platform to the buyers and sellers requires that the trade be subsidized by the platform.

The amount of subsidy is:

π0+
N∑
i=1

Ubi+
N∑
j=1

Usj =

1∫
0

. . .

1∫
0

( N∑
i=1

q0bi(v, c)(vi −
1− F (vi)

f(vi)
)

−
N∑
j=1

q0sj(v, c)(cj +
F (cj)

f(cj)
)
)
f(v)g(c)dvdc < 0 (2.25)

Rewriting the expression on the left-hand side of (2.25), we get,

1∫
0

. . .

1∫
0

(
q0bi(v, c)

1− F (vi)

f(vi)
+ q0sj(v, c)

F (cj)

f(cj)

)
f(v)g(c)dvdc

>
1

N

1∫
0

. . .

1∫
0

( N∑
i=1

q0bi(v, c)vi−
N∑
j=1

q0sj(v, c)cj

)
f(v)g(c)dvdc (2.26)

The expression on the right-hand side of inequality (2.26) is 1
N

th
of the expected potential

gains from trade for N buyers and N sellers i.e. the expected gains from trade of a pair of

one buyer and one seller in ex-post efficient mechanism (there are N such pairs). This value

is increasing in N . Specifically, for any N ≥ 2, this expression will be greater than its value

at N = 1.

1

N

1∫
0

. . .

1∫
0

( N∑
i=1

q0bi(v, c)vi−
N∑
j=1

q0sj(v, c)cj

)
f(v)g(c)dvdc

>

1∫
0

v∫
0

(
v − c

)
f(v)g(c)dvdc (2.27)

The expression on the right-hand side of inequality (2.27) is the expected gains from trade of

one buyer and one seller in ex-post efficient mechanism. We also know that in the one buyer

and one seller case, an ex-post efficient and interim incentive-compatible mechanism gives a
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higher sum of ex-ante expected utilities to the agents than the MS mechanism. Hence,

1∫
0

v∫
0

(
v − c

)
f(v)g(c)dvdc > γ (2.28)

From (2.26), (2.27) and (2.28), C(0) > 0. It remains to show that C(α) is decreasing in α

and is continuous. The arguments to establish these properties closely follow those in Gresik

and Satterthwaite (1989).

It is easy to see that φα(vi) is decreasing in α for each buyer bi. Similarly, ψα(cj) is increas-

ing in α for each seller sj. Observe that for every profile (v, c) and α′ > α, qα
′

bi
(v, c) ≤ qαbi(v, c)

and qα
′

sj
(v, c) ≤ qαsj(v, c). It follows immediately that C(α) is decreasing in α. Informally,

an increase in α shrinks the set of profiles where trade takes place, lowering the expected

utilities of both buyers and sellers.

We now demonstrate the continuity of the function C(·). Observe that C(α) can be

rewritten in the manner shown below:

C(α) =

1∫
0

qαbi(vi)
1− F (vi)

f(vi)
f(vi)dvi+

1∫
0

qαsj(cj)
G(cj)

g(cj)
g(cj)dcj − γ

Now, C(α) is continuous if qαbi(vi) and qαsj(cj) are continuous. Consider the smallest value

of vi for which buyer i’s α-virtual reservation value ranks in the top N ,

τbi(v−i, c, α) = min {vi|Rbi(v, c, α) ≥ N}

For seller j, τsj(v, c−j, α) is defined analogously. The functions τbi and τsj are continuous as

the virtual reservation functions are all continuous. Now, qαbi(vi) can be written as,

qαbi(vi) =

1∫
0

. . .

1∫
0

qαbi(v, c)f(v−i)g(c)dv−idc

=

1∫
0

. . .

1∫
0

( τsN∫
0

g(cN)dcN

)
f(v−i)g(c−N)dv−idc−N

This is continuous as τsN and all the density functions are continuous. Similarly, qαsj(cj) is

also continuous. Hence, C(α) is continuous.

The Intermediate Value Theorem can now be applied to conclude that there exists

α∗ ∈ (0, 1) such that C(α∗) = 0. This completes the proof of the proposition. �
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We claim that α∗-adjusted mechanism Mα∗ is indeed the one which maximizes the rev-

enue of the platform in the class of interim incentive-compatible, interim individually-rational

and SBSS ex-ante stable mechanisms.

Theorem 2.2 Mα∗ maximizes the revenue of the platform in the class of interim incentive-

compatible, interim individually-rational and SBSS ex-ante stable mechanisms.

Proof: The Lagrangian for the optimization problem is given below:

L(qb, qs, λ) ≡
1∫
0

. . .

1∫
0

N

(
qb(v, c)

(
v − (1− F (v))

f(v)

)
− qs(v, c)

(
c+

G(c)

g(c)

))

f(v)g(c)dvdc−NUb(0)−NUs(1) + λ
(
Ub + Us − γ

)
=

1∫
0

. . .

1∫
0

N

(
qb(v, c)

(
v − (1− λ

N
)
(1− F (v))

f(v)

)
− qs(v, c)

(
c+ (1− λ

N
)
G(c)

g(c)

))
f(v)g(c)dvdc− (N − λ)Ub(0)− (N − λ)Us(1)− λγ

Let H(v, c) = qb(v, c)
(
v − (1− λ

N
) (1−F (v))

f(v)

)
− qs(v, c)

(
c+ (1− λ

N
)G(c)
g(c)

)
. The Lagrangian

can be rewritten as:

L(qb, qs, λ) ≡
1∫
0

. . .

1∫
0

H(v, c)f(v)g(c)dvdc − (N − λ)Ub(0) − (N − λ)Us(1) − λγ (2.29)

The Lagrangian will be maximized if the following conditions hold for some λ ≥ 0 :

1. H(v, c) is maximized at each value of the type profile (v, c)

2. Ubi(0) = Usj(1) = 0 for all i, j ∈ {1, 2, . . . , N}

We will show that 1 and 2 are achieved by allocation rule qα
∗
(v, c) of the mechanismMα∗

where α∗ = 1− λ
N

. Thus,

H(v, c) = qb(v, c)
(
v − α∗ (1− F (v))

f(v)

)
− qs(v, c)

(
c+ α∗

G(c)

g(c)

)
= qb(v, c)φα∗(v)− qs(v, c)ψα∗(c)

As part of our maintained hypothesis, we assume that α∗ ∈ [0, 1]. This ensures that

φα∗(v) and ψα∗(c) are increasing in v and c, respectively.
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We now derive the allocation rule qb(v, c) and qs(v, c) that maximize the Lagrangian in

(2.29). Fix an arbitrary type profile (v, c). Assume without loss of generality, v1 ≥ v2 ≥
. . . ≥ vN and c1 ≤ c2 ≤ . . . ≤ cN . Since φα∗ and ψα∗ are increasing, φα∗(v1) ≥ φα∗(v2) ≥
. . . ≥ φα∗(vN) and ψα∗(c1) ≤ ψα∗(c2) ≤ . . . ≤ ψα∗(cN). It follows from inspection that

H(v, c) is maximized by the allocation rule qα
∗
(v, c) of mechanism Mα∗ . For instance, if k

is the highest index such that φα∗(vk) ≥ ψα∗(ck)) and φα∗(vk+1) ≥ ψα∗(ck+1)), then H(v, c)

decreases if buyer k + 1 and seller k + 1 trade.

As each mechanism inMα class of mechanisms satisfies the conditions Ubi(0) = Usj(1) =

0 for all i, j ∈ {1, 2, . . . , N}, the mechanism Mα∗ also satisfies these conditions.

These arguments establish that the functions qα
∗

b (v, c) and qα
∗

s (v, c) will maximize the

Lagrangian in (2.29). Note that the functions are exactly the same as the allocation functions

of mechanism Mα∗ .

Finally, Proposition 2.6 establishes that such an α∗ ∈ (0, 1) exists. Clearly, λ shall

always be positive. Thus, theorem is proved. �

Before proceeding forward, we briefly highlight how our mechanismMα∗ is different from

the α∗-mechanism given by Gresik and Satterthwaite (1989). Although they look within the

Mα class of interim incentive-compatible and interim individually-rational mechanisms just

like in our chapter, their goal is different as there is no trading platform or broker in their

model. They find the ex-ante efficient mechanism for the agents in this class of mechanisms.

Their optimal mechanism is strongly budget-balanced. In our model, the platform accrues

surplus and the optimal mechanism satisfies the NBD condition.

We illustrate the revenue-maximizing mechanism Mα∗ through an example below:

Example 2.2 Let both F and G be uniform distributions.

φ(vi, λ) = vi − (1− λ

N
)(1− vi) ,and

ψ(cj, λ) = cj + (1− λ

N
)cj

The trade takes place when,

vi − cj ≥
1−Nλ
2−Nλ

= µ

The deviating mechanism gives the payoff of:

U b =

1∫
1/4

v−1/4∫
0

(1− v)dcdv = 0.0703
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Similarly, U s = 0.0703. So, U b + U s = 0.1406. Let N = 2. The constraint is:

1∫
0

. . .

1∫
0

(
qαbi(v, c)(1− vi) + qαsj(v, c)cj

)
f(v)g(c)dvdc = 0.1406

Solving, we get µ = 0.279. Table 2.2 lists different values of µ as N changes. As N increases

beyond 3, the value of µ keeps decreasing. This µ is the wedge between the buyer’s valuation

and the seller’s cost which is the result of both the agents having private information. In the

unconstrained revenue-maximizing mechanism, the size of this wedge was 0.5. The stability

constraints, which guarantee ex-ante utility for the agents, decrease the size of the wedge.

This suggests that more trades are happening. Also, the size of the wedge goes down as the

market size increases making the market more efficient.

Value of N Value of µ

2 0.279

3 0.281

4 0.2789

5 0.2758

6 0.2731

7 0.2707

8 0.2688

9 0.2671

10 0.2660

Table 2.2: Value of µ when both F and G are uniform

Figure 2.3 shows the revenue of the platform in both the revenue-maximizing mechanisms.

As the market size N increases, the revenue of the platform in the constrained revenue-

maximizing mechanism diverges from the revenue in the unconstrained revenue-maximizing

mechanism. The agents are able to exert a cost on the platform which keeps increasing as

the number of buyers and sellers increase. Figure 2.4 shows the revenue of the platform per

buyer-seller pair for both the unconstrained and the constrained optimization mechanisms.

2.6 Conclusion

This chapter is an attempt to study the stability properties of a trading mechanism offered

by an internet platform to a market with multiple buyers and sellers. The unconstrained
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Figure 2.3: Revenue of platform for two optimization mechanisms

Figure 2.4: Revenue of platform per buyer-seller pair for two optimization mechanisms
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revenue-maximizing mechanism for the platform is not SBSS ex-ante stable. We then find the

revenue-optimizing mechanism for the platform which is SBSS ex-ante stable. In future, we

would like to study different notions of interim incentive-compatible core in our environment.

2.7 Appendix

We calculate ex-ante expected utilities of buyers and sellers in various mechanisms. We

assume the distribution F and G are uniform. There are 2 buyers and 2 sellers. The set of

players is {b1, b2, s1, s2}. Let the type profile be (v1, v2, c1, c2).

Trade reduction mechanism

Consider buyer b1. He is allocated a good only when:

1. v1 > v2, c1 < c2, v1 > c1, v2 > c2

2. v1 > v2, c2 < c1, v1 > c2, v2 > c1

In both the cases buyer b1 has the higher of the two valuations. In the first case, seller s1 has

the lower of the two costs and in the second case, seller s2 has the lower of the two costs. If

the valuation of buyer b1 is higher than the valuation of buyer b2 and the costs of the sellers

are less than the valuation of buyer b2, then the good is allocated to buyer b1. Only one

trade takes place in which b1 is allocated a good and the seller having the lowest cost sells a

good. The ex-ante expected utility of the buyer b1 is therefore,

Ub1 =

1∫
0

v2∫
0

1∫
v2

c2∫
0

(v1 − v2)dc1dv1dc2dv2+
1∫
0

v2∫
0

1∫
v2

c1∫
0

(v1 − v2)dc2dv1dc1dv2

=

1∫
0

v2∫
0

1

2
c2(1− v2)2dc2dv2+

1∫
0

v2∫
0

1

2
c1(1− v2)2dc1dv2 =

1

60

McAfee double auction
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Allocation probability

Cases qb1 qb2 qs1 qs2
v1 > v2, c1 < c2, v1 > c1, v2 > c2, p = 0.5 ∈ [c2, v2] 1 1 1 1

v1 > v2, c1 < c2, v1 > c1, v2 > c2, p = 0.5 /∈ [c2, v2] 1 0 1 0

v1 > v2, c1 < c2, v1 > c1, v2 < c2, p = v2+c2
2
∈ [c1, v1] 1 0 1 0

v2 > v1, c1 < c2, v2 > c1, v1 > c2, p = 0.5 ∈ [c2, v1] 1 1 1 1

Table 2.3: Allocation of goods in McAfee double auction

The cases when b1 is allocated a good are listed in Table 2.3. In the first three cases, b1

has the higher of the two valuations i.e. v1 > v2 and s1 has the lower of the two costs i.e.

c1 < c2. Buyer b1 is allocated the good if price p = 0.5 ∈ [c2, v2] and v1 > c1, v2 > c2. In

the second case when p = 0.5 /∈ [c2, v2], b1 still gets the good but at price of v2. In the third

case, v1 > c1, v2 < c2 and p = v2+c2
2
∈ [c1, v1]. So, b1 still gets the good at this price. In the

fourth case, b1 is the lower of two valuations and v1 > c2, v2 > c1, p = 0.5 ∈ [c2, v1]. He gets

the good at price p = 0.5. As the sellers are ex-ante identical, interchanging the sellers will

yield four more cases equivalent to the ones listed in Table 2.3. The ex-ante expected utility

of b1 is therefore,

Ub1 = 2

1∫
1/2

1/2∫
0

1∫
v2

c2∫
0

(v1 + v2 − 1)dc1dv1dc2dv2 + 2

1∫
1/2

v2∫
1/2

1∫
v2

c2∫
0

(v1 − v2)dc1dv1dc2dv2+

2

1/2∫
0

v2∫
0

1∫
v2

c2∫
0

(v1−v2)dc1dv1dc2dv2+2

1∫
0

c2∫
0

1∫
(v2+c2)/2

(v2+c2)/2∫
0

(
v1−

v2 + c2
2

)
dc1dv1dv2dc2 = 0.0792

Proof of Proposition 2.4:

Sufficiency. Suppose qbi and qsj are increasing and decreasing, respectively for each i and

j. Consider the following transfer rule

tbi(vi) = viqbi(vi)−
vi∫
0

qbi(x)dx

tsj(cj) = cjqsj(cj)+

1∫
cj

qsj(x)dx
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If the buyer bi reports v′i > vi his interim utility is Ubi(v
′
i) = viqbi(v

′
i)− v′iqbi(v

′
i)+

v′i∫
0

qbi(x)dx.

The difference in interim utility of bi is Ubi(vi) − Ubi(v′i) =
vi∫
0

qbi(x)dx − qbi(v
′
i)(vi − v′i)−

v′i∫
0

qbi(x)dx = −
v′i∫
vi

qbi(x)dx + qbi(v
′
i)(v

′
i − vi). As qbi(vi) is increasing in vi, qbi(v

′
i) ≥ qbi(vi).

This means Ubi(vi) − Ubi(v
′
i) ≥ 0. Hence, bi has no incentive to misreport. Similarly, it

can be shown that the buyer has no incentive to report any v′i < vi. Also, through similar

arguments it can be shown that no seller has any incentive to misreport. The mechanism is

interim incentive-compatible.

Necessity. Suppose (q, t) is interim incentive-compatible and interim individually-

rational. Let vi and v′i be two possible valuations for buyer bi. Then by interim incentive-

compatibility,

Ubi(vi) = qbi(vi)vi − tbi(vi) ≥ qbi(v
′
i)vi − tbi(v′i) (2.30)

Ubi(v
′
i) = qbi(v

′
i)v
′
i − tbi(v′i) ≥ qbi(vi)v

′
i − tbi(vi) (2.31)

Adding, we have

(v′i − vi)qbi(v
′
i) ≥ Ubi(v

′
i)− Ubi(vi) ≥ (v′i − vi)qbi(vi) (2.32)

If v′i > vi, then qbi(v
′
i) ≥ qbi(vi) follows immediately. This establishes that qbi(v, c) is

increasing in vi. By a similar argument, qsj(cj) is decreasing in cj for all j = 1, 2, . . . , N .

Also, dividing all the sides of expression in (2.32) by v′i − vi, taking limits and noticing

that the derivative of qbi(vi) exists almost everywhere, by the Sandwich Theorem,

dUbi(vi)

dvi
= qbi(vi) almost everywhere.

Integrating, we get,

Ubi(vi) = Ubi(0)+

vi∫
0

qbi(x)dx

Similarly, for every seller j, qsj(cj) is decreasing, and,

Usj(cj) = Usj(1)+

1∫
cj

qsj(y)dy
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The ex-ante expected utility of a buyer i can be written as,

Ubi =

1∫
0

Ubi(vi)f(vi)dvi

= Ubi(0)+

1∫
0

( vi∫
0

qbi(x)dx
)
f(vi)dvi

Integrating by parts,

Ubi = Ubi(0) + F (1)

1∫
0

qbi(x)dx− 0−
vi∫
0

qbi(vi)F (vi)dvi

= Ubi(0)+

1∫
0

qbi(vi)(1− F (vi))dvi

Or,

Ubi = Ubi(0)+

1∫
0

. . .

1∫
0

qbi(v, c)
(1− F (vi))

f(vi)
f(v)g(c)dvdc

Similarly, for every seller j,

Usj = Usj(1)+

1∫
0

. . .

1∫
0

qsj(v, c)
G(cj)

g(cj)
f(v)g(c)dvdc

Hence, proved. �
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Chapter 3

Budget-balanced mechanisms for

single-object allocation problems

with interdependent values

3.1 Introduction

Consider a family in which a bequest such as a house (which we shall henceforth call an

object) has to be divided among potential heirs or agents. Depending on the will, each agent

can potentially be allocated the whole bequest or a part of it. Each agent has a valuation

for the object which is private information. Agents can also be compensated by transfers i.e.

they can transfer money among each other. There is no outside agency which can provide

subsidies to the participants nor can any surplus accrue which is not redistributed. It is

also desirable to award the bequest to the agent who has the highest valuation for it. This

is clearly a problem in mechanism design. The goal is to identify mechanisms that provide

incentives to reveal their private information truthfully, is budget-balanced and efficient.

Recent literature on this question has studied this question in the private value setting.

According to the well-known Green-Laffont impossibility result (see Green and Laffont (1979)

for details) it is impossible to design a mechanism that meets all three objectives i.e. is

strategy-proof, efficient and budget-balanced. The impossibility result necessitates a second-

best approach. One such approach was formulated by Green and Laffont (1979). An agent,

say i, is selected with uniform probability. The remaining agents participate in a Vickrey

auction where the agent with highest bid wins the bequest and pays an amount equal to

the second-highest bid. This amount is transferred to agent i. This mechanism is obviously
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budget-balanced. It is also strategy-proof since truth-telling is a dominant strategy for agents

participating in the Vickrey auction while agent i’s private information plays no role. It is

clearly not efficient since agent i could be the agent with highest valuation among all the

agents.

The Green-Laffont idea has been significantly generalized by Long et al. (2017). They

introduce ranking mechanisms where the allocation is decided on the basis of the ranks of

announced valuations. The Green-Laffont mechanism is a particular ranking mechanism in

which the agent with the highest valuation receives the object with probability 1− 1
n

and the

agent with second-highest valuation gets the object with probability 1
n
. They characterize the

class of strategy-proof and budget-balanced mechanisms and also find the ranking mechanism

that maximizes the worst-case efficiency within this class.

We consider the same problem in an interdependent value setting. Each agent receives

a signal about the valuation of the object. Her valuation depends on the signals received

by all other agents. This is a familiar model in mechanism design and auction theory (see,

for example, Milgrom and Weber (1982) and Dasgupta and Maskin (2000)). The appro-

priate truth-telling notion in a model with interdependent valuations is ex-post incentive

compatibility. According to the requirement, each agent has the incentive to reveal his sig-

nal truthfully assuming that other agents are reporting their signals truthfully. Efficiency in

this context is ex-post efficiency according to which the agent with highest valuation receives

the object. In our model, the Green-Laffont impossibility continues to hold∗ - see Nath et al.

(2015) for example.

We consider two types of mechanisms. The first are signal-ranking mechanisms (or s-

ranking mechanisms). Agents report their signals and are ranked according to these reports.

The s-ranking allocation rule assigns a probability for receiving the object to each agent.

Transfers for agents are determined accordingly. Valuation-ranking mechanisms or v-ranking

mechanisms on the other hand, assign probabilities for receiving the object based on the

ranking of agents’ valuations.

Consider the class of s-ranking mechanisms. Our first observation is that the naive

Green-Laffont idea no longer works. An agent can no longer be “excluded” since her signal

determines the valuations of all agents. The signal from excluded agent must be elicited

since the valuations of the agents participating in the Vickrey auction depend on it. If the

surplus from the Vickrey auction is transferred to the excluded agent then he will typically

have an incentive to misreport his signal. Details can be found in Section 3.6.1.

∗In some special cases like the sequencing problem it might be possible to reconcile the three properties

e.g. Hain and Mitra (2004).
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Nevertheless, we show that a ranking allocation rule that is strategy-proof and can be

implemented by a budget-balanced transfers in the private-value case is also an ex-post incen-

tive compatible (EPIC) and ex-post individually rational (EPIR) s-ranking allocation rule

that can be implemented with budget-balanced (BB) transfers provided the valuation func-

tions satisfy an additive separability condition. An immediate consequence of this result is

that the s-ranking mechanism where the agents with the highest and second-highest ranking

signals receive the object with probabilities 1− 1
n

and 1
n

respectively (i.e. the Green-Laffont

allocation vector) is EPIC, EPIR and implementable by budget-balanced transfers if the val-

uation functions satisfy additive separability condition, single-crossing and symmetry. We

show by means of an example that the result does not hold. We also show that the allocation

rule of the mechanism that maximizes worst-case efficiency ratio given by Long et al. (2017)

is the s-ranking allocation rule which maximizes worst-case efficiency ratio among all EPIC,

EPIR and BB s-ranking mechanisms when valuation functions are of a specific form that

satisfies SAS condition, single-crossing and symmetry. We then provide an example to show

that this mechanism is no longer optimal when the valuation functions are not symmetric.

For v-ranking mechanisms, first we show that it is necessary for valuation functions to

satisfy single-crossing for the mechanism to be EPIC. Then we show that a ranking allocation

rule that is strategy-proof and can be implemented by a budget-balanced transfers in the

private-value case is also an EPIC and EPIR v-ranking allocation rule that can be imple-

mented with budget-balanced transfers provided the valuation functions satisfy the additive

separability condition and single-crossing. Under an additional condition of symmetry of

valuation functions, the allocation functions for s-ranking mechanisms and v-ranking mech-

anisms are allocation equivalent. Moreover, the agents have the same payment functions and

get the same utility from allocation equivalent, EPIC, EPIR and BB s-ranking and v-ranking

mechanisms.

Another approach to the impossibility result is to allocate the object only to the agent

with the highest signal but with probability less than one. The object is thrown away or

retained by the seller with the remaining probability. The agent who is allocated the object

makes a payment which is redistributed among all the agents ensuring budget balancedness.

Such mechanisms were called probability-burning mechanisms by Mishra and Sharma (2018)

and studied in private valuation models. We explore the feasibility of such mechanisms in

the interdependent valuation case. For a semi-separable class of valuation functions, we show

that a particular probability-burning mechanism is EPIC, EPIR and budget balanced (BB).

For additively separable and symmetric collection of valuation functions, we design another

probability-burning mechanism and show that it is welfare-maximizing in the class of EPIC,

EPIR, BB mechanisms that allocate only to the agents with topmost signal and satisfy an
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additional property called equal treatment at equal signals.

The literature of mechanism design in interdependent value setting emphasizes the impor-

tance of single-crossing for efficient mechanisms to be EPIC (see d’Aspremont and Gerard-

Varet (1982) and Dasgupta and Maskin (2000) for example). In this chapter, by relaxing

efficiency we identify two mechanisms viz. s-ranking mechanisms and probability-burning

mechanisms that are EPIC, EPIR and BB for valuation functions that satisfy additively

separable or semi-separable condition but not single-crossing.

This chapter proceeds as follows. Section 3.2 provides a literature survey. The model and

basic definitions are introduced in Section 3.3. Section 3.4 discusses the signal-ranking mech-

anisms and Section 3.5 discusses the valuation-ranking mechanisms. Section 3.6 extends the

discussion to welfare properties of these mechanisms and the failure of Green-Laffont mech-

anism. Section 3.7 discusses probability-burning mechanisms. Section 3.8 is the conclusion.

3.2 Literature review

Many papers have explored the single-object allocation problem with budget-balance in the

private value setting. Long et al. (2017) explores the class of dominant strategy incentive

compatible and BB ranking mechanisms. Their worst-case efficient ranking mechanism co-

incides with the Green-Laffont mechanism for n ≤ 8 and allocates to more than two agents

when n > 8 where n is the number of agents. Long (2019) extends this concept to a multi-

object model. Mishra and Sharma (2018) introduce the probability-burning mechanisms.

They find the Pareto optimal probability-burning mechanism in the class of top-only, BB

and dominant strategy incentive compatible mechanisms.

There is an extensive literature on the property of ex-post incentive compatibility in

interdependent-value models. For an efficient mechanism to be EPIC, the valuation functions

must satisfy the single-crossing condition (for further detailed discussion see d’Aspremont

and Gerard-Varet (1982), Perry and Reny (1999), Dasgupta and Maskin (2000), Jehiel and

Moldovanu (2001) and Bergemann and Morris (2005)). But there are many settings in which

the valuation functions do not satisfy the single-crossing condition - see Eden et al. (2018)

for a discussion.

In the private value setting, Long et al. (2017) give the necessary and sufficient condition

for a mechanism to be budget-balanced. They prove that a monotone allocation rule can be

implemented by a dominant strategy incentive compatible and budget-balanced mechanism

if and only if it satisfies residual balancedness. A similar result was obtained by Yenmez
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(2015) in an interdependent-value matching model.

3.3 The model

An object has to be allocated among the set of agents N = {1, 2, . . . , n}. Each agent i ∈ N
receives a signal si which is his private information. The signals are independently and

identically distributed in the unit interval S = [0, 1]. A signal profile s ∈ Sn is an n-tuple

s = (s1, s2, . . . , sn). Also s−i ∈ Sn−1 is the signal profile s−i = (s1, s2, . . . , si−1, si+1, . . . , sn)

containing all signals in s except that of agent i. Since we are investigating an interdependent

values model, we assume that each agent i ∈ N has a valuation function vi : Sn → R+. Thus

i’s valuation of the object depends on the signals received by all agents. In contrast, an

agent’s valuation in a private values model depends only on his own signal and can without

loss of generality be assumed to be the signal itself.

An allocation rule is a map f : Sn → [0, 1]n where fi(s) denotes the probability of

allocation of the object to agent i when the signal profile is s. The allocation probabilities

are assumed to satisfy the feasibility condition
∑
i∈N
fi(s) ≤ 1 for every s ∈ Sn. The payment

rule of agent i is pi : Sn → R. A mechanism M is pair (f, p) ≡ (f1, f2, . . . , fn, p1, p2, . . . , pn)

and gives utility of vi(s)fi(s)− pi(s) to agent i for all i = 1, 2, . . . , n and s ∈ Sn.

The following properties of a mechanism will be relevant for this chapter.

• The mechanism M ≡ (f, p) is ex-post incentive compatible (EPIC) if for every i ∈ N ,

every s−i ∈ Sn−1, and every si, s
′
i ∈ S, we have

vi(s)fi(si, s−i)− pi(si, s−i) ≥ vi(s)fi(s
′
i, s−i)− pi(s′i, s−i)

Ex-post incentive compatibility ensures that each agent prefers to report his own signal

truthfully if other agents are truthful.

• The mechanism M ≡ (f, p) is ex-post individually rational (EPIR) if for every i ∈ N
and every s ∈ Sn, we have

vi(s)fi(s)− pi(s) ≥ 0

This property guarantees that every agent gets a non-negative utility at every signal

profile if all agents report truthfully.

• The mechanism M ≡ (f, p) is budget-balanced (BB) if for every s ∈ Sn, we have∑
i∈N

pi(s) = 0
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The mechanism neither generates a surplus nor runs a deficit at any signal profile.

3.4 Signal-ranking mechanisms

We analyze signal-ranking mechanisms in this section. These mechanisms are adaptations

of the ranking mechanisms in Long et al. (2017).

Fix an arbitrary signal profile s. We partition the set of agents into equivalence classes

depending on the ranks of their signals. In particular s[1] is the set of agents with the highest

signals, s[2] is the set of agents with the second-highest signal and so on. Formally,

s[1] = {i ∈ N |si ≥ sj ∀j ∈ N}

and

s[k] = {i ∈ N \ (
k−1

∪
k′=1

s[k′]) : si ≥ sj ∀j ∈ N \ (
k−1

∪
k′=1

s[k′])}

Let L be the greatest integer such that s[L] 6= ∅.† Clearly 1 ≤ L ≤ n. Let |s[k]|,
k ∈ {1, . . . , L} denote the cardinality of the set s[k], i.e. it is the number of agents whose

signals are ranked k. Note
∑L

k=1 |s[k]| = n. Let |[s]| = (|s[1]|, |s[2]|, . . . , |s[L]|).

Suppose N = {1, 2, 3, 4, 5, 6} and s = (0.4, 0.9, 0.9, 0.3, 0.9, 0.3). Then s[1] = {2, 3, 5},
s[2] = {1} and s[3] = {4, 6}. Also L = 3 and |[s]| = (3, 1, 2).

Let π = (π1, π2, . . . , πn) be an n-tuple of real numbers such that 1 ≥ π1 ≥ π2 ≥ . . . ≥ πn ≥
0. Let α = (α1, . . . , αR) be a vector of R strictly positive integers such that

∑R
r=1 αr = n.

For all r = 1, 2, . . . , R, let Ar denote the partial sum α1 + α2 + . . . + αr. Finally, let 〈π(α)〉

be a R-dimensional vector whose rth component is 〈π(α)〉r =
Ar∑

k=Ar−1+1

πk for r ≥ 2 and

〈π(α)〉r=1 =
A1∑
k=1

πk. In other words, the first component of 〈π(α)〉 is the sum of the first α1

terms of π, the second component is the sum of the next α2 terms of π and so on.

Let π = (0.45, 0.25, 0.15, 0.1, 0.05, 0) and α = (2, 2, 1, 1). Then the vector of partial sums

A = (2, 4, 5, 6) and 〈π(α)〉 = (0.70, 0.25, 0.05, 0). Thus the first component of 〈π(α)〉 is the

sum of the first two terms of π, the second component is the sum of the next two terms of π,

the third component is the fifth term of π and the fourth component is the sixth term of π.

We are now ready to define s-ranking allocation rules.

†We suppress the dependence of L on s for notational convenience.
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Definition 3.1 An allocation rule f is a signal-ranking (s-ranking) allocation rule if there

exists π = (π1, π2, . . . , πn) such that 1 ≥ π1 ≥ π2 ≥ . . . ≥ πn ≥ 0 and
∑
i∈N
πi = 1 such that for

all s and k = 1, . . . , L we have:

(i)
∑
i∈s[k]

fi(s) = 〈π(|[s]|)〉k, and

(ii) fi(s) = fj(s) whenever i, j ∈ s[k].

A mechanism (f, p) is a s-ranking mechanism if f is a s-ranking allocation rule.

We illustrate the idea of an s-ranking mechanism by combining the earlier examples,

i.e. N = {1, 2, 3, 4, 5, 6}, s = (0.4, 0.9, 0.9, 0.3, 0.9, 0.3) and π = (0.45, 0.25, 0.15, 0.1, 0.05, 0).

Then |[s]| = (3, 1, 2) and 〈π(|[s]|)〉 = (0.85, 0.1, 0.05). The agents with the highest ranking

signals, s[1] = {2, 3, 5} together “share” the allocation probability 0.85, i.e. each of these

agents receives the object with probability 0.85
3

. The agent with the second-highest signal,

s[2] = {1} gets the object with probability 0.1 while the agents with the third-highest

signal s[3] = {4, 6} “share” the allocation probability 0.05, i.e. each receives the object with

probability 0.025.

The key to our result on s-ranking mechanisms is the particular structure we impose on

valuation functions. We describe this below.

Definition 3.2 The valuation functions vi : Sn → R+, i = 1, . . . , n satisfy the Strong

Additive Separability (SAS) condition if there exists n+ 1 increasing functions gi : S → R+,

i ∈ {1, . . . , n} and h : S → R+ with gi(0) = h(0) = 0 for all i ∈ {1, . . . , n} such that, for all

s ∈ Sn and i ∈ {1, . . . , n}, we have vi(s) = gi(si) +
∑

j 6=i h(sj).

It is important to note that the h function used to “aggregate the signals of other agents”

is common to all agents. Two examples of valuation functions that are not members of the

SAS class will be provided later in the section.

Our main result for this section is the following:

Theorem 3.1 Assume agents’ valuation functions satisfy the SAS condition. Assume fur-

ther that the s-ranking allocation rule π = (π1, π2, . . . , πn) satisfies the equation∑
j∈N

(−1)j
(
n− 1

j − 1

)
πj = 0. (3.1)
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Then there exist payment functions p = (p1, p2, . . . , pn) such that the s-ranking mechanism

(π, p) is EPIC, BB and EPIR.

The proof of the Theorem can be found in the Appendix. Here we outline the main

features of the argument. Our first step is to show that there exist payment functions p

such that (π, p)-allocation is EPIC whenever the valuation functions are increasing in own

signals. This is satisfied by the valuation functions in the SAS class since the gi functions are

increasing. Payments for the allocation rule can then be obtained by applying the Revenue

Equivalence formula for an interdependent value model (see Roughgarden and Talgam-Cohen

(2016))

pi(s) = vi(s)fi(s)− vi(0, s−i)fi(0, s−i)−
si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx , ∀i ∈ N (3.2)

By assuming pi(0, s−i) = 0 for all i ∈ N , individual rationality is ensured. A condition

ensuring budget-balance can be obtained from the more general condition of Yenmez (2015).

We introduce some notation before stating the result. Denote by R(s) the revenue collected

from the mechanism, i.e.

R(s) =
∑
i∈N

pi(s)

For any signal profile s, let N0
s = {i ∈ N |si = 0}. For any signal profile s and any T ⊆ N ,

(0T , s−T ) denotes the signal profile where the signals of all agents in T is 0 and each agent

i /∈ T has signal si, the ith component of s.

Theorem 3.2 (Yenmez (2015)) An EPIC mechanism M ≡ (f, p) is budget-balanced if

and only if ∑
T⊆N

(−1)|T |R(0T , s−T ) = 0 (3.3)

for all signal profiles s. Here R(s) is computed from the payment functions pi(s) given in

Condition 3.2.

Condition 3.3 is called the residual balancedness condition. We show that Condition

3.1 implies that the s-ranking allocation rule is residually balanced, thus implying budget-

balance. Condition 3.1 is similar to the condition derived by Long et al. (2017) for allocation

rules that are strategy-proof, BB and EPIR in the private values case. Also, they give

the unique payment functions for mechanisms that are strategy-proof, budget-balanced and
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satisfy the condition of symmetry. We adapt their payment functions for a mechanism that

is EPIC and BB:

pi(s) =



− 1

|N0
s |

∑
T⊆N :N0

s⊆T

(−1)|T\N
0
s |

C(|T |, |N0
s |)
R(0T , s−T ) , if i ∈ N0

s

vi(s)fi(s)− vi(0, s−i)fi(0, s−i)−
si∫
0

fi(x, s−i)
∂vi(x,s−i)

∂si
dx

− 1

|N0
s |+ 1

∑
T⊆N :(N0

s∪{i})⊆T

(−1)|T\N
0
s |−1

C(|T |, |N0
s |+ 1)

R(0T , s−T ) , if i /∈ N0
s

The next two examples illustrate two s-ranking mechanisms that satisfy all the required

properties.

Example 3.1 Let N = {1, 2, 3}. Assume that the valuation functions are of the form

vi(s) = gi(si) +
∑

j 6=i h(sj) where gi and h are increasing. Consider the s-ranking mechanism

π =
(
2
3
, 1
3
, 0
)
. It clearly satisfies Condition 3.1.

Pick an arbitrary signal profile s. Let s(1) > s(2) > s(3), i.e. (i) is the agent with the ith

ranked signal. Payments at s are given by:

p(i)(s) =


1
3
g(1)(s(2)) + 1

3
g(1)(s(3))− 1

3
g(2)(s(3)) + 1

2
h(s(2)) + 1

6
h(s(3)) , if i = 1

1
3
g(2)(s(3))− 1

3
g(1)(s(3)) + 1

6
h(s(1))− 1

6
h(s(3)) , if i = 2

−1
3
g(1)(s(2))− 1

6
h(s(1))− 1

2
h(s(2)) , if i = 3

It is easy to verify that
∑
i∈N
p(i)(s) = 0. Note that the budget-balance property depends

crucially on the fact that the function h is the same for all agents. In order to verify ex-post

incentive-compatibility, it has to be verified that no agent can gain by misrepresenting her

signal in a manner that changes the rank of her signal. We only confirm a special case

for agent 1 where s2 > s3 > s1. Truth-telling by agent 1 gives her the object with zero

probability while she receives a payment of 1
3
g2(s3) + 1

6
h(s2) + 1

2
h(s3). Suppose 1 announces

s′1 such that s′1 > s2 > s3. She now receives the object with probability 2
3

and has to pay
1
3
g1(s2)+ 1

3
g1(s3)− 1

3
g2(s3)+ 1

2
h(s2)+ 1

6
h(s3). The net change in payoff from misrepresentation

is 2
3
g1(s1) − 1

3
(g1(s2) + g1(s3)) = 1

3
(g1(s1) − (g1(s2)) + 1

3
(g1(s1) − g1(s3)) < 0 where the last

inequality follows from the fact that g1 is an increasing function. It can be verified that no

misrepresentation is profitable for any agent 1.

Example 3.2 Let N = {1, 2, 3, 4} agents. The valuation functions are given by vi(s) =

si+β(
∑
j 6=i
sj) where β > 0. Consider the s-ranking mechanism π =

(
4
9
, 5
18
, 1
6
, 1
9

)
which satisfies

Condition 3.1.
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Pick an arbitrary signal profile s and let s(1) ≥ s(2) ≥ s(3) ≥ s(4). Payments at s are given

by:

p(i)(s) =



(
1
6

+ 7
27
β
)
s(2) +

(
1
36

+ 19
108
β
)
s(3) + 4

27
βs(4) , if i = 1

5
54
βs(1) +

(
1
36

+ 1
108
β
)
s(3) − 1

54
βs(4) , if i = 2

− 2
27
βs(1) −

(
1
12

+ 11
108
β
)
s(2) − 7

54
βs(4) , if i = 3

− 1
54
βs(1) −

(
1
12

+ 17
108
β
)
s(2) −

(
1
18

+ 5
27
β
)
s(3) , if i = 4

It can again be verified that sum of agents’ payments is zero and that no agent can gain by

misrepresentation.

We have seen that the s-ranking mechanism (2
3
, 1
3
, 0) is EPIC, BB and EPIR provided

that the valuation functions belong to the SAS class. The next two examples show that this

result may not hold if valuation functions do not satisfy the SAS assumption.

Example 3.3 Let N = {1, 2, 3}. The valuation functions are v1(s) = s1 + 0.5(s2 + s3),

v2(s) = s2 + 0.4(s1 + s3) and v3(s) = s3 + 0.5(s1 + s2). The valuation functions violate the

SAS assumption since the function used to aggregate the signals of other agents is different

for each agent. Consider the s-ranking mechanism π = (2
3
, 1
3
, 0).

Pick an arbitrary signal profile s where s1 > s2 > s3 > 0. Table 3.1 below computes the

value of R(0T , s−T ) for various values of T ⊆ N .

R(s1, s2, s3)
1
3
v1(s2, s2, s3) + 1

3
v1(s3, s2, s3) + 1

3
v2(s1, s3, s3)

R(0, s2, s3)
1
3
v2(0, s3, s3) + 1

3
v2(0, 0, s3) + 1

3
v3(0, s2, 0)

R(s1, 0, s3)
1
3
v1(s3, 0, s3) + 1

3
v1(0, 0, s3) + 1

3
v3(s1, 0, 0)

R(s1, s2, 0) 1
3
v1(s2, s2, 0) + 1

3
v1(0, s2, 0) + 1

3
v2(s1, 0, 0)

R(s1, 0, 0) 1
6
v2(s1, 0, 0) + 1

6
v3(s1, 0, 0)

R(0, s2, 0) 1
6
v1(0, s2, 0) + 1

6
v3(0, s2, 0)

R(0, 0, s3)
1
6
v1(0, 0, s3) + 1

6
v2(0, 0, s3)

R(0, 0, 0) 0

Table 3.1: Value of R(0T , s−T ) for various T ⊆ N .

Therefore,∑
T⊆N

(−1)|T |R(0T , s−T ) = R(s1, s2, s3)−R(01, s−1)−R(02, s−2)−R(03, s−3) +R(012, s−12)

+R(013, s−13) +R(023, s−23)−R(0123, s−123)
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= R(s1, s2, s3)−R(0, s2, s3)−R(s1, 0, s3)−R(s1, s2, 0) +R(0, 0, s3)

+R(0, s2, 0) +R(s1, 0, 0)−R(0, 0, 0)

=
1

3
v1(s2, s2, s3) +

1

3
v1(s3, s2, s3) +

1

3
v2(s1, s3, s3) +

1

6
v2(s1, 0, 0)

+
1

6
v3(s1, 0, 0) +

1

6
v1(0, s2, 0) +

1

6
v3(0, s2, 0) +

1

6
v1(0, 0, s3)

+
1

6
v2(0, 0, s3)−

1

3
v2(0, s3, s3)−

1

3
v2(0, 0, s3)−

1

3
v3(0, s2, 0)

− 1

3
v1(s3, 0, s3)−

1

3
v1(0, 0, s3)−

1

3
v3(s1, 0, 0)− 1

3
v1(s2, s2, 0)

− 1

3
v1(0, s2, 0)− 1

3
v2(s1, 0, 0)

=
1

3
(s2 + 0.5(s2 + s3)) +

1

3
(s3 + 0.5(s2 + s3)) +

1

3
(s3 + 0.4(s1 + s3))

+
1

6
(0.4s1) +

1

6
(0.5s1) +

1

6
(0.5s2) +

1

6
(0.5s2) +

1

6
(0.5s3) +

1

6
(0.4s3)

− 1

3
(s3 + 0.4s3)−

1

3
(0.4s3)−

1

3
(0.5s2)−

1

3
(s3 + 0.5s3)−

1

3
(0.5s3)

− 1

3
(0.5s1)−

1

3
(s2 + 0.5s2)−

1

3
(0.5s2)−

1

3
(0.4s1)

= −1

6
(0.1s1 + 0.1s3) 6= 0

It follows from Theorem 3.2 that π is not BB.

Example 3.4 Let N = {1, 2, 3}. The valuation functions are v1(s) = s1 + s2s3, v2(s) =

s2 + s1s3 and v3(s) = s3 + s1s2. Once again the SAS condition is violated. Consider the

following allocation probabilities π = (2
3
, 1
3
, 0). Pick an arbitrary signal profile s such that

s1 > s2 > s3 > 0. Using Table 3.1 above we compute R(0T , s−T ) for various values of T ⊆ N .

Using the particular form of the valuation functions, we obtain:∑
T⊆N

(−1)|T |R(0T , s−T ) = R(s1, s2, s3)−R(01, s−1)−R(02, s−2)−R(03, s−3) +R(012, s−12)

+R(013, s−13) +R(023, s−23)−R(0123, s−123)

= R(s1, s2, s3)−R(0, s2, s3)−R(s1, 0, s3)−R(s1, s2, 0) +R(0, 0, s3)

+R(0, s2, 0) +R(s1, 0, 0)−R(0, 0, 0)

=
1

3
(s2 + s2s3) +

1

3
(s3 + s2s3) +

1

3
(s3 + s1s3)

− 1

3
(s3)−

1

3
(s3)−

1

3
(s2) =

1

3
(2s2s3 + s1s3) 6= 0

Once again, the mechanism is not residually balanced. So, Theorem 3.2 implies that π is not

budget-balanced.

53



3.5 Valuation ranking mechanisms

In a valuation ranking or v-ranking mechanism, the allocation probabilities are determined by

the ranks of the valuations of the agents. In other words, agents announce their signals which

are transformed by the designer using the valuation functions. These computed valuations

are then ranked and allocation probabilities determined according to these ranks. We define

v-ranking mechanisms below - the definition is identical to that of s-ranking mechanisms

except that signals are replaced by valuations.

Let v = (v1, v2, . . . vn) be an n-tuple of valuations. Let v[1] be the set of agents with

the highest valuations, v[2] the set of agents with the second-highest valuation and so on.

Formally,

v[1] = {i ∈ N |vi(s) ≥ vj(s) ∀j ∈ N}

and

v[k] = {i ∈ N \ (
k−1

∪
k′=1

v[k′]) : vi(s) ≥ vj(s) ∀j ∈ N \ (
k−1

∪
k′=1

v[k′])}

Let L be the greatest integer such that v[L] 6= ∅. Clearly 1 ≤ L ≤ n. Let |v[k]|,
k ∈ {1, . . . , L} denote the cardinality of the set v[k], i.e. it is the number of agents whose

signals are ranked k. Note
∑L

k=1 |v[k]| = n. Let |[v]| = (|v[1]|, |v[2]|, . . . , |v[L]|).

Let ρ = (ρ1, ρ2, . . . , ρn) be an n-tuple of real numbers such that 1 ≥ ρ1 ≥ ρ2 ≥ . . . ≥ ρn ≥
0. Let α = (α1, . . . , αR) be a vector of R strictly positive integers such that

∑R
r=1 αr = n.

For all r = 1, . . . , R, let Ar denote the partial sum α1 + α2 + . . . + αr. Finally, let 〈ρ(α)〉

be a R-dimensional vector whose rth component is 〈ρ(α)〉r =
Ar∑

k=Ar−1+1

ρk for r ≥ 2 and

〈ρ(α)〉r=1 =
A1∑
k=1

ρk. In other words, the first component of 〈ρ(α)〉 is the sum of the first α1

terms of ρ, the second component is the sum of the next α2 terms of ρ and so on.

Definition 3.3 An allocation rule f is a valuation-ranking (v-ranking) allocation rule if

there exists ρ = (ρ1, ρ2, . . . , ρn) such that 1 ≥ ρ1 ≥ ρ2 ≥ . . . ≥ ρn ≥ 0 and
∑
i∈N
ρi = 1 such

that for all s and k ∈ {1, . . . , L} we have:

(i)
∑
i∈v[k]

fi(s) = 〈ρ(|[v]|)〉k, and

(ii) fi(s) = fj(s) whenever i, j ∈ v[k].

A mechanism (f, p) is a v-ranking mechanism if f is a v-ranking allocation rule.
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Like an s-ranking mechanism, a valuation ranking mechanism is a n-tuple of non-negative

real numbers adding to one. The efficient allocation rule is an example of v-ranking allo-

cation rule where the allocation probabilities are ρ = (1, 0, 0, . . . , 0). We shall say that a

v-mechanism is trivial if ρ = ( 1
n
, 1
n
, . . . , 1

n
). A v-mechanism is non-trivial if it is not trivial,

i.e. there exists i ∈ {1, . . . , n− 1} such that ρi > ρi+1.

In order to address the question of v-ranking mechanisms that are EPIC , BB and EPIR,

we introduce the following property of valuation functions.

Definition 3.4 The valuation functions vi : [0, 1]n → R+, i ∈ N satisfy single-crossing if

for every i, j ∈ N , every s−i ∈ S−i and every si > s′i,

vi(si, s−i)− vi(s′i, s−i) > vj(si, s−i)− vj(s′i, s−i)

The single-crossing condition is a familiar condition in auction theory with interdependent

values (see Perry and Reny (1999), Dasgupta and Maskin (2000), Jehiel and Moldovanu

(2001) and Bergemann and Morris (2005)). It requires increases in the signal value of agent

i to affect the valuation of i more than that of any other agent j.

Our main result in this section is the following:

Theorem 3.3 (i) If a non-trivial v-ranking mechanism is EPIC, the valuation functions

must satisfy single-crossing.

(ii) Suppose the valuation functions satisfy the SAS condition and single-crossing. Assume

further that the v-ranking allocation rule ρ = (ρ1, ρ2, . . . , ρn) satisfies the equation∑
j∈N

(−1)j
(
n− 1

j − 1

)
ρj = 0. (3.4)

there exist payment functions p = (p1, p2, . . . , pn) such that the v-ranking mechanism

(ρ, p) is EPIC, BB and EPIR.

The proof of the Theorem is contained in the Appendix. Part (i) is a consequence of

the fact that signal monotonicity is a sufficient condition for monotonicity of the allocation

function (see the proof of Theorem 3.1). If single-crossing is violated, an increase in the signal

of agent i may lead to a greater change in the valuation of agent j than of i, causing a reversal

in the valuation rankings of i and j. This would lead to a failure of EPIC. Part (ii) follows

from a suitable application of Theorem 3.2. We note that SAS valuation functions satisfy
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single-crossing if they satisfy the additional requirement that gi(x
′) − gi(x) > h(x′) − h(x)

for all x′ > x and x′, x ∈ S, i ∈ {1, 2, . . . , n}.

We illustrate the v-ranking mechanism through an example. Consider the setting de-

scribed in Example 3.1 of previous section. Let ρ = (2
3
, 1
3
, 0). Pick an arbitrary signal profile

s. At this signal profile let v[1](s) > v[2](s) > v[3](s), i.e. [i] is the agent with the ith ranked

valuation. The corresponding signals are (s[1], s[2], s[3]). Payments at this profile s are given

by:

p[i](s) =


1
3
g[1](κ12(s[2])) + 1

3
g[1](κ13(s[3]))− 1

3
g[2](κ23(s[3])) + 1

2
h(s[2]) + 1

6
h(s[3]) , if i = 1

1
3
g[2](κ23(s[3]))− 1

3
g[1](κ13(s[3])) + 1

6
h(s[1])− 1

6
h(s[3]) , if i = 2

−1
3
g[1](κ12(s[2]))− 1

6
h(s[1])− 1

2
h(s[2]) , if i = 3

where,

κij(s[j]) = inf{s[i] ∈ S | g[i](s[i])− h(s[i]) ≥ g[j](s[j])− h(s[j])}

The function κij(·) (where i < j) is the minimum value of s[i] at which the valuation of

agent ranked [i] is equal to the valuation of agent ranked [j]. For valuation functions that

satisfy SAS condition, there exists ŝ[i] ∈ S such that

v[i](ŝ[i], s−[i]) = v[j](ŝ[i], s−[i]) =⇒ g[i](ŝ[i])− h(ŝ[i]) = g[j](s[j])− h(s[j])

Since g[i](0) = g[j](0) = h(0) = 0 and the functions g[i] and h are continuous and mono-

tonic, the Intermediate Value Theorem guarantees the existence of ŝ[i] ∈ (0, s[i]) which satis-

fies this equation.

It can be easily verified that
∑
i∈N
p[i](s) = 0. As in the s-ranking mechanism case, the

budget-balance property depends on the function h being the same for all agents. To verify

EPIC, consider agent 1. Pick a signal profile s such that v2(s) > v3(s) > v1(s). Truth-

telling by agent 1 gives her the object with zero probability while she receives a payment of
1
3
g2(κ23(s3))+ 1

6
h(s2)+ 1

2
h(s3). Suppose 1 announces s′1 such that s′1 > s1 and let v1(s

′
1, s−1) >

v2(s
′
1, s−1) > v3(s

′
1, s−1) at this new signal profile (s′1, s2, s3). She now receives the object

with probability 2
3

and has to pay 1
3
g1(κ12(s2))+ 1

3
g1(κ13(s3))− 1

3
g2(κ23(s3))+ 1

2
h(s2)+ 1

6
h(s3).

The net change in payoff from misrepresentation is 2
3
g1(s1)− 1

3
(g1(κ12(s2)) + g1(κ13(s3))) =

1
3
(g1(s1)− (g1(κ12(s2))) + 1

3
(g1(s1)− g1(κ13(s3))) < 0 where the last inequality follows from

the fact that g1 is an increasing function and κ12(s2) > s1 and κ13(s3) > s1. If the valuations

are ranked as v2(s
′
1, s−1) > v1(s

′
1, s−1) > v3(s

′
1, s−1) at this new signal profile (s′1, s2, s3),

then agent 1 is allocated the object with probability 1
3

and pays 1
3
g1(κ13(s3))− 1

3
g2(κ23(s3))+

1
6
h(s2)−1

6
h(s3). The net change in payoff from misrepresentation is 1

3
(g1(s1)−g1(κ13(s3))) < 0
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where the inequality follows because κ13(s3) > s1. It can similarly be verified that no

misrepresentation is profitable for any other agent.

Under certain assumptions on valuation functions an s-ranking allocation rule and a

“corresponding” v-ranking allocation rule are “equivalent”.

Definition 3.5 The valuation functions vi : [0, 1]n → R+, i ∈ N satisfy symmetry if for

every i ∈ N , for any permutation σ : N → N and all signal profiles s = (s1, s2, . . . , sn), we

have

vi(s1, s2, . . . , sn) = vσ(i)(sσ(1), sσ(2), . . . , sσ(n))

If the valuation functions are symmetric, the valuation of an agent i at signal profile s =

(s1, s2, . . . , sn) is equal to the valuation of agent σ(i) at signal profile (sσ(1), sσ(2), . . . , sσ(n))

for any permutation of the agents. For example if the permutation interchanges two agents,

say i and j leaving others unchanged, then symmetry implies vi(s1, . . . , si, . . . , sj, . . . , sn) =

vj(s1, . . . , sj, . . . , si, . . . , sn) and vk(s1, . . . , si, . . . , sj, . . . , sn) = vk(s1, . . . , sj, . . . , si, . . . , sn)

for all k 6= i, j.

The examples below show that the two conditions viz. single-crossing and symmetry are

independent. In each case N = {1, 2, 3}.

Example 3.5 The valuation functions are v1(s) = s1 +0.2(s2 +s3), v2(s) = s2 +0.2(s1 +s3)

and v3(s) = s3 + 0.2(s1 + s2). Both single-crossing and symmetry are satisfied.

Example 3.6 The valuation functions are v1(s) = s1 + s2s3, v2(s) = s2 + 0.5s1 and v3(s) =

s3. They satisfy single-crossing condition but not satisfy symmetry.

Example 3.7 The valuation functions are v1(s) = s1 + 2(s2 + s3), v2(s) = s2 + 2(s1 + s3)

and v3(s) = s3 + 2(s1 + s2). Symmetry is satisfied but not single-crossing.

Example 3.8 The valuation functions are v1(s) = s1 + 2s2 + 3s3, v2(s) = s2 + 3s1 + 5s3 and

v3(s) = s3 + 7s1 + 4s2. Neither single-crossing condition nor symmetry are satisfied.

We say that two allocation rules are allocation equivalent if they result in the same

allocation at every signal profile. Note that both s-ranking and v-ranking allocation rules

are n-tuples of decreasing real numbers adding up to one. Hence an s-ranking allocation rule

can be interpreted as a v-ranking allocation rule and vice-versa.
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Proposition 3.1 Assume that the valuation functions satisfy single-crossing and symme-

try. The s-ranking allocation rule π and the v-ranking allocation rule ρ are allocation equiv-

alent.

Proposition 3.1 in conjunction with our earlier results leads to the following result.

Proposition 3.2 Assume that the valuation functions satisfy the SAS condition, single-

crossing and symmetry. Assume further that the s-ranking allocation rule π satisfies Condi-

tion 3.1. Let p be a payment function such that the s-ranking mechanism (π, p) is EPIC, BB

and EPIR (Theorem 3.1). Then the v-ranking mechanism (π, p) is EPIC, BB and EPIR.

Moreover the two mechanisms give all agents the same utility at every signal profile.

The proofs of both Propositions are in the Appendix.

3.6 Further remarks on ranking mechanisms

In this section, we show that a natural adaptation of the Green-Laffont mechanism to the

interdependent value setting does not satisfy ex-post incentive-compatibility. We also analyze

s-ranking mechanisms from the perspective of efficiency in a special case.

3.6.1 The Green-Laffont mechanism

Recall that in the private values model, the Green-Laffont mechanism picks an agent uni-

formly at random from the set of agents. The object is allocated using the Vickrey auction

among rest of the agents. The revenue that is generated is given to the agent that was

removed. The mechanism allocates the object to the agents with the highest and second-

highest valuations with probability 1− 1
n

and 1
n

respectively, at every valuation profile.

Consider the interdependent values model where valuation functions satisfy the SAS

condition, single-crossing and symmetry, i.e. vi(s) = g(si) +
∑
j 6=i
h(sj) where g and h are

increasing functions and g′(x) > h′(x) for all x. In addition, suppose the Vickrey auction on

the private values case is replaced by the generalized Vickrey auction (see Krishna (2009)

for a detailed discussion on this mechanism) whose allocation rules and payment functions

(f, p) are as follows:

fi(s) =

1 , if vi(s) ≥ max
j 6=i

vj(s)

0 , otherwise
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and

pi(s) =

vi(κ(s−i), s−i) , if fi(s) = 1

0 , if fi(s) = 0

where κ(s−i) = inf {s′ ∈ S|vi(s′, s−i) ≥ max
j 6=i

vj(s
′, s−i)}.

It is well-known that the assumptions on valuation functions ensure that the generalized

Vickrey auction among the “remaining”n−1 agents, is EPIC‡. However, the mechanism as a

whole is not EPIC. In order to see this consider the case where N = {1, 2, 3} and the signal

profile s satisfies s1 > s2 > s3. In view of our assumption on valuation functions, we have

v1(s) > v2(s) > v3(s). If agent 1 is removed, the relative ranking of the other agents doesn’t

change. The object is allocated to 2 who pays v2(s1, s3, s3) to agent 1. Similarly, if agent 2

is removed, agent 1 is allocated the object and pays v1(s2, s2, s3) to agent 2. If agent 3 is

removed, agent 1 receives the object and pays v1(s3, s2, s3) to agent 3. The final payments

are as follows:

p1(s) =
1

3
(v1(s2, s2, s3) + v1(s3, s2, s3)− v2(s1, s3, s3))

p2(s) =
1

3
(v2(s1, s3, s3)− v1(s3, s2, s3))

p3(s) = −1

3
v1(s2, s2, s3)

If agent 3 reports s′3 where s1 > s2 > s′3 > s3, he receives a payoff of 1
3
v1(s2, s2, s

′
3). This

is higher than the payoff of 1
3
v1(s2, s2, s3) received when he reports his signal truthfully since

h(·) is increasing. Clearly the mechanism is not EPIC. Note however that the s-ranking

mechanism π = (1− 1
n
, 1
n
, 0, . . . , 0) satisfies Condition 3.1, and can therefore be implemented

by a mechanism that is EPIC, budget balanced and EPIR. Moreover the mechanism is

equivalent to the v-ranking mechanism ρ = (1− 1
n
, 1
n
, 0, . . . , 0).

3.6.2 Efficiency comparisons

In this section, we focus on the welfare properties of s-ranking mechanisms. Pick an arbitrary

signal profile s with s(1) ≥ s(2) ≥ . . . ≥ s(n) i.e. s(1) is the highest-ranked signal and s(n) is

the lowest-ranked signal. Corresponding to this ranking of signals the valuations of agents

are (v(1)(s), v(2)(s), . . . , v(n)(s)). The actual ranking of valuations at signal profile s satisfies

v[1](s) ≥ v[2](s) ≥ . . . ≥ v[n](s) i.e. v[1](s) is the highest-ranked valuation and v[n](s) is

‡See Krishna (2009) where it is shown that single-crossing condition is sufficient for ex-post incentive

compatibility of generalized Vickrey auction
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the lowest-ranked valuation. In general, v[i](s) 6= v(i)(s); however if the valuation functions

satisfy single-crossing condition and symmetry v[i](s) = v(i)(s) for all i ∈ {1, 2, . . . , n} and

all signal profiles s.

The maximum possible welfare at any signal profile s is generated when the object is

allocated with probability one to the agent with highest valuation at s i.e. the maximum

welfare is v[1](s). The efficiency ratio of a s-ranking mechanism at signal profile s is∑
i∈N

f(i)(s)v(i)(s)

v[1](s)
=
π1v(1)(s) + π2v(2)(s) + . . .+ πnv(n)(s)

v[1](s)

This is the ratio of the welfare achieved by the mechanism achieved by s-ranking mecha-

nism and the maximum possible welfare at the signal profile s. Notice that we are assuming

that mechanisms satisfy the BB property so that there is no loss of welfare because money

has to be “thrown away”. The worst-case efficiency ratio µ for the s-ranking mechanism is

the lowest possible value of efficiency ratio across all signal profiles, i.e.

µ = inf
s∈Sn

∑
i∈N

f(i)(s)v(i)(s)

v[1](s)

Our objective is to find a mechanism that maximizes the value of µ in the class of

EPIC, EPIR and BB s-ranking mechanisms. This problem does not appear to be easy when

valuation functions belong to the general SAS class. We show that if we restrict attention to

a symmetric subclass of SAS valuation functions, the optimal s-ranking mechanism coincides

with the optimal ranking mechanism of Long et al. (2017). The latter mechanism maximizes

µ in the class of dominant strategy incentive-compatible and BB ranking mechanisms in the

private-value setting. We also show through examples that the optimal mechanism may be

different when the valuation functions are not symmetric.

The allocation rule of the optimal ranking mechanism of Long et al. (2017), π∗ =

(π1, . . . , πm, . . . , πn) is defined as follows:

π∗i =


1− m−1

C(n−2,m−1)+m , if i = 1

1
C(n−2,m−1)+m , if i ∈ {2, 3, . . . ,m}

0 , otherwise

where,

m ∈ arg min
2≤i≤(n−1),i even

i− 1

C(n− 2, i− 1) + i
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The object is allocated only to the agents with the m highest signals. For n ≤ 8, m = 2.

This corresponds to the Green-Laffont allocation rule in which the object is allocated only

to the agents with the highest and second-highest valuations.

We now state the main result.

Theorem 3.4 Suppose the valuation functions satisfy SAS condition. In addition, assume

gi(x) = γh(x) for all i ∈ {1, 2, . . . , n} for some γ > 1, Then the s-ranking mechanism with

allocation rule π∗ maximizes the worst-case efficiency ratio among all s-ranking mechanisms

that satisfy EPIC, EPIR and BB.

The proof is in the Appendix. Proposition 3.2 applies since valuation functions satisfy

symmetry and single-crossing. As a result, the problem of finding an optimal s-ranking

mechanism reduces to the problem solved by Long et al. (2017) in the private-value setting.

The next example demonstrates that the s-ranking mechanism π∗ may not be optimal if

the valuation functions do not satisfy symmetry.

Example 3.9 Let N = {1, 2, 3}. The valuation functions are v1(s) = 100s1+s2+s3, v2(s) =

2s2+s1+s3 and v3(s) = 2s3+s1+s2. The valuation functions satisfy SAS condition and single-

crossing but violate symmetry. Consider an arbitrary s-ranking allocation π = (π1, π2, π3).

Suppose s2 ≥ s1 ≥ s3. So the ranking of valuation can either be v1(s) ≥ v2(s) ≥ v3(s)

if 99s1 ≥ s2 ≥ s3 or v2(s) ≥ v1(s) ≥ v3(s) if s2 ≥ 99s1 ≥ s3. The efficiency ratios are

respectively,

π1v2(s) + π2v1(s) + π3v3(s)

v1(s)
and

π1v2(s) + π2v1(s) + π3v3(s)

v2(s)

Combining all the cases, the worst-case efficiency of the mechanism is:

µ = inf
(s1,s2,s3)∈S3

∑
i∈N

fi(s)v[i](s)

max
i∈N
{vi(s)}

= inf
{(π1v3(s) + π2v2(s) + π3v1(s)

v3(s)

∣∣∣s3 ≥ s2 ≥ s1, s3 ≥ s2 ≥ 99s1

)
∪
(π1v3(s) + π2v2(s) + π3v1(s)

v1(s)

∣∣∣s3 ≥ s2 ≥ s1, 99s1 ≥ s3 ≥ s2

)
∪
(π1v3(s) + π2v2(s) + π3v1(s)

v3(s)

∣∣∣s3 ≥ s2 ≥ s1, s3 ≥ 99s1 ≥ s2

)
∪
(π1v3(s) + π2v1(s) + π3v2(s)

v3(s)

∣∣∣s3 ≥ s1 ≥ s2, s3 ≥ 99s1 ≥ s2

)
61



∪
(π1v3(s) + π2v1(s) + π3v2(s)

v1(s)

∣∣∣s3 ≥ s1 ≥ s2, 99s1 ≥ s3 ≥ s2

)
∪
(π1v1(s) + π2v2(s) + π3v3(s)

v1(s)

∣∣∣s1 ≥ s2 ≥ s3, 99s1 ≥ s2 ≥ s3

)
∪
(π1v1(s) + π2v3(s) + π3v2(s)

v1(s)

∣∣∣s1 ≥ s3 ≥ s2, 99s1 ≥ s3 ≥ s2

)
∪
(π1v2(s) + π2v3(s) + π3v1(s)

v2(s)

∣∣∣s2 ≥ s3 ≥ s1, s2 ≥ s3 ≥ 99s1

)
∪
(π1v2(s) + π2v3(s) + π3v1(s)

v1(s)

∣∣∣s2 ≥ s3 ≥ s1, 99s1 ≥ s2 ≥ s3

)
∪
(π1v2(s) + π2v3(s) + π3v1(s)

v2(s)

∣∣∣s2 ≥ s3 ≥ s1, s2 ≥ 99s1 ≥ s3

)
∪
(π1v2(s) + π2v1(s) + π3v3(s)

v2(s)

∣∣∣s2 ≥ s1 ≥ s3, s2 ≥ 99s1 ≥ s3

)
∪
(π1v2(s) + π2v1(s) + π3v3(s)

v1(s)

∣∣∣s2 ≥ s1 ≥ s3, 99s1 ≥ s2 ≥ s3

)}
= inf

{1

2
+

1

2
π1,

1

100
+

99

100
π1,

105

303
+

1

101
π1,

106

153
− 49

51
π1

}
(3.5)

The last equality is obtained by finding the minimum value of each of the terms in the

parentheses according to the respective constraints on s1, s2 and s3. We also know that from

Condition (3.1), −π1 + 2π2− π3 = 0. So, π2 = 1
3

and π3 = 2
3
− π1. By substituting these, we

get the expression in (3.5). Notice that this expression is a function of π1 where π1 ∈ [1
3
, 2
3
].

The maximum value of µ is the maxima of this function which occurs at π1 = 5351
15000

≈ 0.36

and it is µ = 0.35. Also, µπ∗ = 0.05. The mechanism π = (0.36, 0.33, 0.31) has a higher µ

than the mechanism π∗. Hence, the mechanism of Long et al. (2017) does not maximize the

worst-case efficiency ratio in the interdependent-value model.

3.7 Probability-burning mechanisms

In the s-ranking and v-ranking mechanisms, the object can be allocated to agents which

do not have the highest-ranking signal. In this section, we consider the case when the

object is allocated only to the agent with the highest signal with certain probability and if

the allocation does not take place then either rest of the probability is burnt or the object

is destroyed. Such a mechanism is called a probability-burning mechanism. Mishra and

Sharma (2018) introduced these mechanisms in the private-value setting and studied the

allocation of a single object. We now study these mechanisms in our model of agents having

interdependent valuations.
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We begin this section by defining the probability-burning mechanism. When agents’

valuations satisfy a special condition, we describe a probability-burning mechanism and

show that it is EPIC, EPIR and BB. In a restricted setting with 3 agents we find the

probability-burning mechanism that is welfare-maximizing in the class of EPIC, EPIR and

BB mechanisms which allocate the object only to the agent with the highest signal.

A probability-burning allocation function f satisfies the following properties: for all signal

profiles s,

(i) fi(s) = 0 for all i ∈ s[k], k ∈ {2, 3, . . . , L}

(ii)
∑
i∈N
fi(s) ≤ 1.

A probability-burning mechanism is a pair (f, p) where f is a probability-burning al-

location function. Note that a probability-burning allocation function assigns object with

positive probability only to the agent who has the highest signal. However, the object may

not be allocated with probability one. It allows for the possibility that at some signal pro-

file s,
∑
i∈N
fi(s) < 1, i.e. object is wasted or probability is “burnt”. This is a violation of

efficiency and will occur when probability-burning mechanisms are required to additionally

satisfy incentive-compatibility and budget-balance.

The mechanism we will now describe depends on valuation functions which follow a

special structure.

Definition 3.6 The valuation functions vi : Sn → R+, i = {1, . . . , n} satisfy the Addi-

tive Semi-separability (AS) condition if there exists increasing functions g : Sn−1 → R+

and h : Sn−1 → R+ which are weakly increasing functions with g(x1, x2, . . . , xn−1) ≥
h(x1, x2, . . . , xn−1) ∀(x1, x2, . . . , xn−1) ∈ Sn−1 such that, for all s ∈ Sn and i ∈ {1, . . . , n},
we have vi(s) = g(s−i) +

∑
j 6=i
h(s−j).

For each valuation function, the g function leaves out the agent’s own signal in its n− 1

arguments and each of the h functions leaves out one of the n − 1 signals of other agents.

Both the g and the h functions are common to all agents. The valuation function vi is the

sum of g function and (n − 1) number of h functions (si is an argument in each of the h

functions). Hence, each valuation function vi is a function of its own signal si in general, but

it may happen that for some specific functions g and h the valuation functions of some agents

may not depend on their own signals. The following examples elucidate the AS condition.
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Example 3.10 Let N = {1, 2, 3}. Let g(x, y) = max{x, y} and h(x, y) = x. The valuation

functions are

v1(s1, s2, s3) = g(s2, s3) + h(s1, s2) + h(s1, s3)

= max{s2, s3}+ s1 + s1 = max{s2, s3}+ 2s1

v2(s1, s2, s3) = g(s1, s3) + h(s1, s2) + h(s2, s3) = max{s1, s3}+ s1 + s2

v3(s1, s2, s3) = g(s1, s2) + h(s1, s3) + h(s2, s3) = max{s1, s2}+ s1 + s2

Example 3.11 Let N = {1, 2, 3}. Let g(x, y) = x and h(x, y) = xy. The valuation

functions are v1(s) = s2 + s2s1 + s1s3, v2(s) = s1 + s1s2 + s2s3 and v3(s) = s1 + s1s3 + s2s3.

Example 3.12 Let N = {1, 2, 3, 4}. Let g(x, y, z) = xy + z and h(x, y, z) = z. The

valuation functions are

v1(s1, s2, s3, s4) = g(s2, s3, s4) + h(s1, s2, s3) + h(s1, s2, s4) + h(s1, s3, s4)

= s2s3 + s4 + s3 + s4 + s4 = s2s3 + s3 + 3s4

v2(s1, s2, s3, s4) = g(s1, s3, s4) + h(s1, s2, s3) + h(s1, s2, s4) + h(s2, s3, s4)

= s1s3 + s4 + s3 + s4 + s4 = s1s3 + s3 + 3s4

v3(s1, s2, s3, s4) = g(s1, s2, s4) + h(s1, s2, s3) + h(s1, s3, s4) + h(s2, s3, s4)

= s1s2 + s4 + s3 + s4 + s4 = s1s2 + s3 + 3s4

v4(s1, s2, s3, s4) = g(s1, s2, s3) + h(s1, s2, s4) + h(s2, s3, s4) + h(s1, s3, s4)

= s1s2 + s3 + s4 + s4 + s4 = s1s2 + s3 + 3s4

We now describe the mechanism Mpb. Let there be a signal profile s such that s1 ≥ s2 ≥
. . . ≥ sn. The allocation functions of agents are

fi(s) =


1
|s[1]|

(
(n−1)h(sn,sn,...,sn)+h(sn−1,sn−1,...,sn−1)

g(s2,s3,...,sn)+h(s2,s3,...,sn)+
∑
j 6=1,2

h(s2,s2,s3,...,sj−1,sj+1,...,sn)

)
, if i ∈ s[1]

0 , otherwise

The payment function of each agent is given by the Revenue equivalence formula

pi(s) = pi(0, s−i) + vi(s)fi(s)−
si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx (3.6)

where,

pi(0, s−i) =

−h(sn, sn, . . . , sn) , if i ∈ {1, 2, 3, . . . , n− 1}

−h(sn−1, sn−1, . . . , sn−1) , if i = n
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Here, h(sn, sn, . . . , sn) is the value of function h(·) at signal profile (sn, sn, . . . , sn) and

h(sn−1, sn−1, . . . , sn−1) is the value at the signal profile (sn−1, sn−1, . . . , sn−1). For the signal

profile s such that s1 ≥ s2 ≥ . . . ≥ sn, the denominator in the expression of fi(s) is the

valuation of agent 1 computed at the signal profile (s2, s2, s3, s4, . . . , sn) where s1 = s2 i.e.

the minimum value of s1 at which the object is allocated to agent 1. As in the probability-

burning mechanism of Mishra and Sharma (2018), the redistribution amounts of all agents

except the agent with lowest-ranked signal depend only on the value of lowest-ranked signal.

The redistribution amount of agent with lowest-ranked signal depends only on the value of

signal of second-lowest ranked agent.

We illustrate the mechanism Mpb by taking specific valuation functions. The allocation

probabilities and payments of agents are computed at different signal profiles.

Example 3.13 Let N = {1, 2, 3}. Let signal profile be such that s3 > s1 > s2. The

mechanism Mpb is

f3(s) =
2h(s2, s2) + h(s1, s1)

g(s1, s2) + h(s1, s1) + h(s2, s1)

and f1(s) = f2(s) = 0. From the definition of AS condition, g(s1, s2) > h(s2, s2) as g is

increasing in all its arguments and g(x, y) ≥ h(x, y) for all (x, y) ∈ S2. Also, h(s1, s2) >

h(s2, s2). So, 2h(s2, s2)+h(s1, s1) < g(s1, s2)+h(s1, s1)+h(s1, s2). The allocation probability

f3(s) is feasible. Agent 3 pays f3(s)v3(s1, s2, s1) which is

2h(s2, s2) + h(s1, s1)

g(s1, s2) + h(s1, s1) + h(s2, s1)
(g(s1, s2) + h(s1, s1) + h(s2, s1)) = 2h(s2, s2) + h(s1, s1)

The payments are p3(s) = h(s2, s2) + h(s1, s1), p1(s) = −h(s2, s2) and p2(s) = −h(s1, s1).

Agent 3 pays 2h(s2, s2) + h(s1, s1) and receives a redistribution amount of h(s2, s2). Agent

1 receives amount of h(s2, s2) and agent 2 receives h(s1, s1).

Example 3.14 Let N = {1, 2, 3}. Let g(x, y) = max{x, y} and h(x, y) = x. The

valuation functions are v1(s) = max{s2, s3} + 2s1, v2(s) = max{s1, s3} + s1 + s2 and

v3(s) = max{s1, s2} + s1 + s2. Let signal profile be such that s2 > s3 > s1. The allo-

cation probabilities are

f2(s) =
2s1 + s3

3s3

and f1(s) = f3(s) = 0. The payments are p2(s) = s1 + s3, p3(s) = −s1 and p1(s) = −s3.
Agent 2 pays 2s1 + s3 and receives a redistribution transfer of s1. Agents 3 and 1 receive

redistribution amounts of s1 and s3, respectively.
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Example 3.15 Let N = {1, 2, 3}. Let g(x, y) = x and h(x, y) = xy. The valuation

functions are v1(s) = s2 + s2s1 + s1s3, v2(s) = s1 + s1s2 + s2s3 and v3(s) = s1 + s1s3 + s2s3.

Let the signal profile be such that s1 ≥ s2 ≥ s3. Following 4 cases are possible after resolving

the tie-breaking between agents:

• s1 > s2 > s3

The allocation probabilities are

f1(s) =
2s23 + s22

s2 + s22 + s2s3

and f2(s) = f3(s) = 0. The payments are p1(s) = s23+s22, p2(s) = −s23 and p3(s) = −s22.
Agent 1 pays 2s23+s22 and receives a redistribution amount of s23. Agents 2 and 3 receive

redistribution amount of s23 and s22.

• s1 = s2 > s3

The allocation probabilities are

f1(s) = f2(s) =
1

2

( 2s23 + s22
s2 + s22 + s2s3

)
and f3(s) = 0. Agent 1 and 2 each pay

1

2
(2s23 + s22). Agent 1 and 2 each receive s23 and

agent 3 receives s22.

• s1 > s2 = s3

The allocation probabilities are

f1(s) =
2s23 + s22

s2 + s22 + s2s3
=

3s2
2s2 + 1

and f2(s) = f3(s) = 0. Agent 1 pays 3s22. Each agent receives an amount of s22.

• s1 = s2 = s3

The allocation probabilities are

f1(s) = f2(s) = f3(s) =
1

3

( 2s23 + s22
s2 + s22 + s2s3

)
=

1

3

( 3s2
2s2 + 1

)
Agents 1, 2 and 3 each pay s22. Also, each agent receives an amount of s22. So, p1(s) =

p2(s) = p3(s) = 0.

In each of these 4 cases, some probability is burnt at all possible signal profiles. Also, the

semi-separability condition on valuation functions plays an important role in maintaining

budget-balance in all the examples.
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Every agent gets non-negative utility in each of these examples, hence the mechanism is

EPIR. It is also EPIC as we illustrate through one of the examples. Consider the valuation

functions as in Example 3.13. Let s1 > s2 > s3. The allocation probabilities are

f1(s) =
2h(s3, s3) + h(s2, s2)

g(s2, s3) + h(s2, s2) + h(s2, s3)

and f2(s) = f3(s) = 0. The payments are p1(s) = h(s2, s2)+h(s3, s3), p2(s) = −h(s3, s3) and

p3(s) = −h(s2, s2). Suppose agent with signal s3 misreports to s′3 such that s′3 > s1 > s2.

His allocation probability is

f3(s) =
2h(s2, s2) + h(s1, s1)

g(s1, s2) + h(s1, s1) + h(s1, s2)

and f1(s) = f2(s) = 0. The payments are p3(s) = h(s2, s2) + h(s1, s1), p1(s) = −h(s2, s2)

and p2(s) = −h(s1, s1). The utility of agent with signal s′3 is

2h(s2, s2) + h(s1, s1)

g(s1, s2) + h(s1, s1) + h(s1, s2)
(g(s1, s2) + h(s2, s3) + h(s1, s3))− (h(s2, s2) + h(s1, s1))

Net gain in utility of the agent is

2h(s2, s2) + h(s1, s1)

g(s1, s2) + h(s1, s1) + h(s1, s2)
(g(s1, s2) + h(s2, s3) + h(s1, s3))− (h(s2, s2) + h(s1, s1))− h(s2, s2)

= (2h(s2, s2) + h(s1, s1))
g(s1, s2) + h(s2, s3) + h(s1, s3)− (g(s1, s2) + h(s1, s1) + h(s1, s2))

g(s1, s2) + h(s1, s1) + h(s1, s2)

= (2h(s2, s2) + h(s1, s1))
(h(s2, s3)− h(s1, s1)) + (h(s1, s3)− h(s1, s2))

g(s1, s2) + h(s1, s1) + h(s1, s2)

As h is increasing in both the arguments, h(s2, s3) < h(s1, s1) and h(s1, s3) < h(s1, s2). The

expression in the numerator is negative. This means

(2h(s2, s2) + h(s1, s1))
(h(s2, s3)− h(s1, s1)) + (h(s1, s3)− h(s1, s2))

g(s1, s2) + h(s1, s1) + h(s1, s2)
< 0

So, the agent has no incentive to misreport to s′3. Similarly, it can be shown that no other

agent has any incentive to misreport.

The next result shows that the general mechanism Mpb also satisfies EPIC, EPIR and

BB.

Proposition 3.3 Mechanism Mpb is EPIC, EPIR and BB.

The proof of the proposition is in the Appendix.
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3.7.1 A welfare-maximizing probability-burning mechanism

In this subsection, we describe another probability-burning mechanism and study its welfare

properties. We consider a model of 3 agents i.e. N = {1, 2, 3}, and the valuation functions

that satisfy SAS condition and symmetry. The valuation functions are vi(s) = g(si)+
∑
j 6=i
h(sj)

for all i ∈ {1, 2, . . . , n}. Consider the following mechanism Mpbo.

fi(s) =


1

|s[1]|

(
2(g(s3) + 2h(s3)) + g(s2) + 2h(s2)

3(g(s2) + h(s2) + h(s3))

)
, if i ∈ s[1]

0 , otherwise

And the payment function of each agent is given by the Revenue Equivalence formula as

in (3.6) where,

pi(0, s−i) =

−1
3
(g(s3) + 2h(s3)) , if i = 1, 2

−1
3
(g(s2) + 2h(s2)) , if i = 3

This mechanism is similar to the one described by Mishra and Sharma (2018) and ex-

tends their mechanism to interdependent-value model. The object is auctioned using the

generalized Vickrey auction. The agent with highest ranked signal at a signal profile s re-

ceives the object with probability f1(s) as his valuation is the highest among all the agents.

The agent pays f1(s)((β + 1)s2 + βs3). This amount is redistributed to all the agents. The

mechanism is EPIC, BB and EPIR. The following example illustrates this mechanism for a

specific valuation function.

Example 3.16 Let g(x) = x and h(y) = βy. The valuation functions are vi(s) = si +

β(
∑
j 6=i
sj) where β > 0. Let there be a signal profile such that s2 ≥ s3 ≥ s1. Following 4 cases

are possible after resolving the tie-breaking between agents:

• s2 > s3 > s1

The allocation probabilities are

f2(s) =

(
1

3
s3 +

2

3
s1

)( 1 + 2β

(β + 1)s3 + βs1

)
and f1(s) = f3(s) = 0. The payments are p2(s) = 1

3
(1+2β)(s1+s3), p1(s) = −(1+2β) s3

3

and p3(s) = −(1+2β) s1
3

. Agent 2 pays 1
3
(1+2β)(2s1+s3) and receives a redistribution

amount of (1 + 2β) s1
3

. Agents 1 and 3 receive redistribution amount of (1 + 2β) s3
3

and

(1 + 2β) s1
3

respectively.
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• s2 = s1 > s3

The allocation probabilities are

f2(s) = f1(s) =
1

2

(
1

3
s3 +

2

3
s1

)( 1 + 2β

(β + 1)s3 + βs1

)
and f3(s) = 0. Agent 2 and 1 each pay 1

6
(1 + 2β)(2s1 + s3). Agent 2 and 1 each receive

(1 + 2β) s3
3

and agent 3 receives (1 + 2β) s1
3

.

• s2 > s1 = s3

The allocation probabilities are

f2(s) =

(
1

3
s3 +

2

3
s3

)( 1 + 2β

(β + 1)s3 + βs3

)
= 1

and f1(s) = f3(s) = 0. Agent 2 pays (1 + 2β)s1. Each agent receives an amount of

(1 + 2β) s1
3

.

• s2 = s1 = s3

The allocation probabilities are

f2(s) = f1(s) = f3(s) =
1

3

Agent 1, 2 and 3 each pay (1+2β) s3
3

. Also, each agent receives an amount of (1+2β) s3
3

.

So, p1(s) = p2(s) = p3(s) = 0.

We now turn to the welfare properties of the mechanism. The welfare that a budget-

balanced probability-burning mechanism M generates at a signal profile s is

WM(s) =
∑
i∈N

fi(s)vi(s) = f1(s)v1(s)

We compare the total welfare generated by Mpb with that of Mpbo through an example.

Let N = {1, 2, 3} and let the valuation functions of agents be v1(s) = 2
3
s1 + s2 + s3, v2(s) =

2
3
s2 + s1 + s3 and v3(s) = 2

3
s3 + s1 + s2. They satisfy the SAS condition with symmetry.

They also satisfy the AS condition§. Consider a signal profile such that s1 > s2 > s3. The

allocation probabilities are

fpb1 (s) =
4s3 + 2s2
5s2 + 3s3

and fpbo1 (s) =
16s3 + 8s2
15s2 + 9s3

§This can be seen by rewriting valuation functions as v1(s) = 2
3 (s2 + s3) + 1

3 (s1 + s2) + 1
3 (s1 + s3) and

similarly for v2(·) and v3(·) where g(x, y) = 2
3 (x+ y) and h(x, y) = 1

3 (x+ y).
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Taking their difference we get,

fpbo1 (s)− fpb1 (s) =
16s3 + 8s2
15s2 + 9s3

− 4s3 + 2s2
5s2 + 3s3

=
(12s23 + 10s22 + 26s2s3)

(5s2 + 3s3)(15s2 + 9s3)
> 0

So, fpbo1 (s) > fpb1 (s) for all s ∈ Sn. This implies W pbo(s) > W pb(s) for all s ∈ Sn. The

mechanism Mpbo welfare-dominates the mechanism Mpb. In fact, we will now show that

Mpbo is welfare-undominated in the class of EPIR, BB, EPIC mechanisms that allocate the

object to agents with topmost signal only and that satisfy an additional property called equal

treatment at equal signals. It can be seen that mechanism Mpbo satisfies ETES as all the

agents who have highest signal are allocated the object with same allocation probability.

We first define this additional property which is based on a similar property given by

Mishra and Sharma (2018) in private-value setting.

Definition 3.7 A mechanism M satisfies equal treatment at equal signals (ETES) if for

every signal profile s in which si = sj for any i, j ∈ N the following is true

fi(s) = fj(s) and pi(s) = pj(s)

We now define our notion of welfare-maximization. Let M be the class of EPIC, EPIR,

BB, ETES mechanisms that allocate the object to the agents with the highest signal.

Definition 3.8 A mechanism M is welfare-maximizing in the class M of mechanisms if

WM ′(s) ≥ WM(s) ∀s ∈ Sn

for all M ′ ∈M.

A mechanism M is welfare-maximizing if it welfare-dominates all other mechanisms in

the classM. By adapting the arguments in Mishra and Sharma (2018) in their private-value

model to our interdependent-value setting we can prove the following:

Theorem 3.5 Assume agents’ valuation functions satisfy the SAS condition and symmetry.

The mechanism Mpbo is welfare-maximizing in the class of EPIC, EPIR, BB and ETES

mechanisms that allocate the object only to the agents with the highest signal.

Proof: The valuation functions of agents are vi(s) = g(si) +
∑
j 6=i
h(sj). Let M ≡ (f, p) be a

probability-burning mechanism that is EPIC, EPIR, BB and ETES.
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If the signal profile is s = (a, a, a), ETES ensures that the object is allocated to each

agent with probability 1
3
. Hence, by (3.6), the payment of each agent is

pi(s) = pi(0, s−i) +
1

3
vi(a, a, a), ∀i ∈ {1, 2, 3}

As v1(a, a, a) = v2(a, a, a) = v3(a, a, a), and the mechanism is BB i.e.
∑
i∈N
pi(s) = 0, we have

∑
i∈N

pi(0, s−i) = −v1(a, a, a)

By ETES property, p1(0, s−1) = p2(0, s−2) = p3(0, s−3) = −1
3
v1(a, a, a).

Now, change the signals of second and third agent. Let the signal profile be (a, b, b) where

a > b. The payment of each agent is

p1(s) = p1(0, s−1) + v1(a, b, b)− (v1(a, b, b)− v1(b, b, b))

= p1(0, b, b) + v1(b, b, b) = −1

3
v1(b, b, b) + v1(b, b, b) =

2

3
v1(b, b, b)

p2(s) = p2(0, s−2) = p2(a, 0, b)

p3(s) = p3(0, s−3) = p3(a, b, 0)

Following the budget-balance condition, and the fact that p2(a, 0, b) = p3(a, b, 0) (this follows

from ETES as agent 2 and 3 have same signal b), we get

p2(a, 0, b) = p3(a, b, 0) = −1

3
v1(b, b, b)

Now consider the signal profile (a, a, b) where a > b. As M satisfies ETES, the object is

allocated to both agent 1 and 2 with equal probability. So f1(s) = f2(s). The payments of

each agent is

p1(s) = p1(0, s−1) + f1(s)v1(a, a, b) = p1(0, a, b) + f1(s)v1(a, a, b)

p2(s) = p2(0, s−2) + f1(s)v2(a, a, b) = p2(a, 0, b) + f2(s)v2(a, a, b)

p3(s) = p3(0, s−3) = p3(a, a, 0)

As v1(a, a, b) = v2(a, a, b), we have p1(0, a, b) = p2(a, 0, b) = −1
3
v1(b, b, b).

Hence, for any EPIC, EPIR, BB and ETES probability-burning mechanism, at the signal

profile (a, b, c) such that a > b > c, the following is true:∑
i∈N

pi(0, s−i) = −1

3
(2v1(c, c, c) + v1(b, b, b)) (3.7)
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Now we prove that the mechanism Mpbo maximizes welfare of agents. At signal profiles

(a, a, a) and (a, b, b), the mechanism allocates the object without burning any probability. So,

no mechanism can do better at these signal profiles. Now consider the signal profile (a, a, b).

Let there be a mechanismM′ ≡ (f ′, p′) in the classM of mechanisms which generates higher

welfare at this signal profile. So,

p′1(s) = p′1(0, s−1) + f ′1(s)v1(a, a, b) = p′1(0, a, b) + f ′1(s)v1(a, a, b)

p′2(s) = p′2(0, s−2) + f ′1(s)v2(a, a, b) = p′2(a, 0, b) + f ′2(s)v2(a, a, b)

p′3(s) = p′3(0, s−3) = p′3(a, a, 0)

From (3.7),
∑
i∈N
p′i(0, s−i) = −1

3
(2v1(b, b, b) + v1(a, a, a)). Using budget-balance condition and

substituting the expression of valuation functions, we get,

f ′1(s) = f ′2(s) =
1

2

(
2(g(b) + 2h(b)) + g(a) + 2h(a)

3(g(a) + h(a) + h(b))

)
This is same allocation probability as that of mechanism Mpbo. Now consider the signal

profile (a, b, c) where a > b > c. Let f ′1(a, b, c) > fpbo1 (a, b, c). We have

p′1(s) = p′1(0, s−1) + f ′1(s)v1(s)−
a∫
b

f ′1(x, s−1)
∂v1(x, s−1)

∂s1
dx

p′2(s) = p′2(0, s−2)

p′3(s) = p′3(0, s−3)

Adding these, the expression on right-hand side is,

∑
i∈N

p′i(s) =
∑
i∈N

p′i(0, s−i) + f ′1(s)v1(s)−
a∫
b

f ′1(x, s−1)
∂v1(x, s−1)

∂s1
dx (3.8)

≥
∑
i∈N

p′i(0, s−i) + f ′1(s)v1(s)− f ′1(s)(v1(a, b, c)− v1(b, b, c))

=
∑
i∈N

p′i(0, s−i) + f ′1(s)v1(b, b, c)

>
∑
i∈N

ppboi (0, s−i) + fpbo1 (s)v1(b, b, c) = 0

The first inequality follows from the the fact that the function f1(s) is increasing in s1. The

last inequality is due to
∑
i∈N
p′i(0, s−i) =

∑
i∈N
ppboi (0, s−i) = −1

3
(2v1(c, c, c) + v1(b, b, b)) .

By budget-balance the expression in (3.8) must be equal to zero. Hence, we get a con-

tradiction. So, fpbo1 (s) ≥ f ′1(s) at signal profile (a, b, c). �

A more general result for an arbitrary number of agents remains an open question.
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3.8 Conclusion

This chapter introduces a new and simple approach of designing EPIC, EPIR and BB mech-

anisms for interdependent valuation model. The s-ranking mechanisms relax ex-post effi-

ciency condition to obtain ex-post incentive compatibility without requiring the valuations

to satisfy single-crossing condition. Also, when the valuations are additively separable, the

s-ranking allocation rule can be implemented with BB transfers. In future, we would like to

characterize the complete set of valuation functions for which a BB mechanism can exist.

We also study probability-burning mechanisms by restricting the class of valuation func-

tions to semi-separable form. If the restrictions are relaxed, the existence of probability-

burning mechanisms needs to be explored. Also, finding whether there exists a welfare-

maximizing probability-burning mechanism for an arbitrary number of agents remains an

open problem.

3.9 Appendix

Before proving Theorem 3.1, we first prove the following lemma which provides the sufficient

condition for a s-ranking allocation rule to be ex-post implemented by a payment rule.

Lemma 3.1 If the valuation functions (v1(s), v2(s), . . . , vn(s)) are increasing in their own

signal, then there exists a payment rule p such that the s-ranking mechanism (π, p) is EPIC.

Proof : We show that the signal-ranking mechanism is EPIC. Consider an arbitrary

signal profile s and without loss of generality let s1 > s2 > . . . > sn. Let the payment of

agent ranked i is:

pi(s) = vi(s)πi−
si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx

=
n−i∑
j=1

vi(si+j, s−i)(πi+j−1 − πi+j) (3.9)

If the agent i reports si′ > si such that his rank is i′ < i, the payment of the agent is

pi′(si′ , s−i′) = vi′(si′ , s−i′)πi′−

si′∫
0

fi′(x, s−i′)
∂vi′(x, s−i′)

∂si′
dx
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=
i−i′−1∑
j=1

vi′(si′+j, s−i′)(πi′+j−1 − πi′+j) + vi′(si′−1, s−i′)(πi−1 − πi)

+
n−1∑
j=i+1

vi′(sj, s−i′)(πj − πj+1)

Let ∆u(si′ , si) = vi(s)πi − pi(s)−
(
vi′(s)πi′ − pi′(si′ , s−i′)

)
be the difference between utilities

obtained by agent ranked i with signal type si when he reports the true signal and when he

falsely reports si′ . Hence,

∆u(si′ , si) = vi(s)πi − vi′(s)πi′−
n−i∑
j=1

vi(si+j, s−i)(πi+j−1 − πi+j)+
i−i′−1∑
j=1

vi′(si′+j, s−i′)(πi′+j−1 − πi′+j)

+ vi′(si′−1, s−i′)(πi−1 − πi)+
n−1∑
j=i+1

vi′(sj, s−i′)(πj − πj+1)

= −vi(s)(πi′ − πi)+
i−i′∑
j=1

vi′(si′+j−1, s−i′)(πi′+j−1 − πi′+j)

=
i−i′∑
j=1

(
vi′(si′+j−1, s−i′)− vi(si, s−i)

)
(πi′+j−1 − πi′+j) (3.10)

As the function vi(si, s−i) is increasing in si, the expression in (3.10) is positive. Similarly if

si′ < si, then also ∆u(si′ , si) > 0. Hence, the mechanism is EPIC. �

Proof of Theorem 3.1:

Let the valuation functions satisfy SAS. Consider a s-ranking allocation π. From Lemma

3.1, there exists a EPIC payment rule p. We first show that when π satisfies the Condition 3.1

then it is residually balanced. Consider a signal profile s such that s1 > s2 > . . . > sn > 0.

So, using (3.2) and putting pi(0, s−i) = 0 for all the agents, the revenue that is generated is

R(s) =
∑
i∈N

pi(s) =
∑
i∈N

(
vi(s)πi−

si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx
)

=
∑
i∈N

((
gi(si) +

∑
j 6=i

h(sj)
)
πi−

si∫
0

fi(x, s−i)
∂gi(x, s−i)

∂si
dx
)

=
n∑
k=1

( n∑
l=1,l 6=k

πl
)
h(sk)+

n−1∑
j=1

(πj − πj+1)
(
g1(sj+1) + g2(sj+1) + . . .+ gj(sj+1)

)
(3.11)
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Let T ⊆ N be such that the last ranked agent n does not belong to the set of agents T

and |T | = n − m. In the profile (0T , s−T ), rank of agent n is m. The set T ∪ n contains

n−m+ 1 agents.

Now we can rewrite the condition of residual balancedness as,∑
T⊆N

(−1)|T |R(0T , s−T ) =
∑

T⊆N :n∈T

(−1)|T |R(0T , s−T ) +
∑

T⊆N :n/∈T

(−1)|T |R(0T , s−T )

=
∑

T⊆N :n/∈T

(−1)|T |
(
R(0T , s−T )−R(0T∪{n}, s−(T∪{n}))

)

From (3.11), we can compute

R(0T , s−T )−R(0T∪{n}, s−(T∪{n})) =
( n∑
k=1,k 6=|N\T |

πk
)
h(sn) + (π|N\T |−1 − π|N\T |)

∑
j∈N\(T∪{n})

gj(sn)

The residual balancedness condition now becomes∑
T⊆N

(−1)|T |R(0T , s−T ) =
∑

T⊆N :n/∈T

(−1)|T |
(( n∑

k=1,k 6=|N\T |

πk
)
h(sn) + (π|N\T |−1 − π|N\T |)

∑
j∈N\(T∪{n})

gj(sn)

)
=
(
− π1 +

(
n− 1

1

)
π2 −

(
n− 1

2

)
π3 + . . .+ (−1)n

(
n− 1

n− 1

)
πn

)
h(sn)

+
(
− π1 +

(
n− 1

1

)
π2 −

(
n− 1

2

)
π3 + . . .+ (−1)n

(
n− 1

n− 1

)
πn

)( n−1∑
j=1

gj(sn)
)

If π satisfies Condition 3.1, the above expression is equal to zero. Hence, the s-ranking

allocation rule satisfies residual balancedness condition. Following Theorem 3.2, there exist

transfers such that s-ranking mechanism is BB and EPIC. �

Proof of Theorem 3.3:

Proof of part (i): Let M v be a v-ranking mechanism with allocation probabilities

(ρ1, ρ2, . . . , ρn) and payment rules (p1, p2, . . . , pn) are given by the Revenue Equivalence prin-

ciple as in (3.2).

Consider a signal profile s and let v1(s) ≥ v2(s) ≥ . . . ≥ vn(s). The payment of agent

ranked i is:

pi(s) = vi(s)ρi − vi(0, s−i)fi(0, s−i)−
si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx

=
n−i∑
j=1

vi(κi,i+j(s−i), s−i)(ρi+j−1 − ρi+j)− vi(0, s−i)fi(0, s−i) + ρnvi(max{0, κi,0(s−i)}, s−i)
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where,

κi,i+j(s−i) = inf {y ∈ S | vi(y, s−i) ≥ vi+j(y, s−i)} (3.12)

and,

κi,0(s−i) = inf {y ∈ S | vi(y, s−i) ≥ 0}

If the agent i reports s′i > si such that his rank is k < i, the payment of the agent is

pk(s
′
i, s−i) = vk(s

′
i, s−i)ρk − vk(0, s−i)fk(0, s−i)−

s′i∫
0

fk(x, s−i)
∂vk(x, s−i)

∂s′i
dx

=
i−i′−1∑
j=1

vi′(κi′,i′+j(s−i′), s−i′)(ρi′+j−1 − ρi′+j) + vi′(κi′,i′−1(s−i′), s−i′)(ρi−1 − ρi)+

n−1∑
j=i+1

vi′(κi′,j(s−i′), s−i′)(ρj − ρj+1)− vi′(0, s−i′)fi(0, s−i′) + ρnvi′(max{0, κi,0(s−i)}, s−i′)

Let ∆u(si′ , si) = vi(s)ρi − pi(s)−
(
vi′(s)ρi′ − pi′(si′ , s−i′)

)
be the difference between utilities

obtained by agent ranked i with signal type si when he reports the true signal and when he

falsely reports si′ . Hence,

∆u(si′ , si) = vi(s)ρi − vi′(s)ρi′−
n−i∑
j=1

vi(κi,i+j(s−i), s−i)(ρi+j−1 − ρi+j)

+
i−i′−1∑
j=1

vi′(κi′,i′+j(s−i′), s−i′)(ρi′+j−1 − ρi′+j)

+ vi′(κi′,i′−1(s−i′), s−i′)(ρi−1 − ρi)+
n−1∑
j=i+1

vi′(κi′,j(s−i′)(ρj − ρj+1)

= −vi(s)(ρi′ − ρi)+
i−i′∑
j=1

vi′(κi′,i′+j−1(s−i′), s−i′)(ρi′+j−1 − ρi′+j)

=
i−i′∑
j=1

(
vi′(κi′,i′+j−1(s−i′), s−i′)− vi(si, s−i)

)
(ρi′+j−1 − ρi′+j) (3.13)

Notice the expression within the first parenthesis of (3.13). Consider any j ∈ {1, 2, . . . , i −
i′}. We prove that κi′,i′+j−1(s−i′) ≥ si for all j. Suppose if this is not true. Then si >

κi′,i′+j−1(s−i′). By the single-crossing condition,

vi(si, s−i)− vi(κi′,i′+j−1(s−i′ , s−i) > vi′+j−1(si, s−i)− vi′+j−1(κi′,i′+j−1(s−i′ , s−i)

Rearranging, we get

vi(si, s−i)− vi′+j−1(si, s−i) > vi(κi′,i′+j−1(s−i′ , s−i)− vi′+j−1(κi′,i′+j−1(s−i′ , s−i)
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The expression on right-hand side is zero. Hence,

vi(si, s−i)− vi′+j−1(si, s−i) > 0

But this is a contradiction because agent ranked i is ranked lower than agent ranked i′+j−1

at the type profile s. Hence, κi′,i′+j−1(s−i′) ≥ si for all j. Hence, the expression in (3.13),

i−i′∑
j=1

(
vi′(κi′,i′+j−1(s−i′), s−i′)− vi(si, s−i)

)
(ρi′+j−1 − ρi′+j) ≥ 0

Similarly if si′ < si, then also ∆u(si′ , si) > 0. Hence, the mechanism is EPIC.

Proof of part (ii):

Let the valuation functions satisfy SAS and single-crossing. Consider a v-ranking alloca-

tion ρ. From part (i) of this theorem, there exists a EPIC payment rule p. We first show that

when an v-ranking allocation rule satisfies the Condition 3.4 then it is residually balanced.

Consider a signal profile s such that v1(s) > v2(s) > . . . > vn(s). So, using (3.2) and putting

pi(0, s−i) = 0 for all the agents, the revenue that is generated is

R(s) =
∑
i∈N

pi(s) =
∑
i∈N

(
vi(s)ρi−

si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx
)

=
∑
i∈N

((
gi(si) +

∑
j 6=i

h(sj)
)
ρi−

si∫
0

fi(x, s−i)
∂gi(x, s−i)

∂si
dx
)

=
n∑
k=1

( n∑
l=1,l 6=k

ρl
)
h(sk)+

n−1∑
j=1

(ρj − ρj+1)
(
g1(κ1,j+1(sj+1)) + g2(κ2,j+1(sj+1))

+ . . .+ gj(κj,j+1(sj+1))
)

(3.14)

Let T ⊆ N be such that the last ranked agent n does not belong to the set of agents T

and |T | = n − m. In the profile (0T , s−T ), rank of agent n is m. The set T ∪ n contains

n−m+ 1 agents.

The condition of residual balancedness is,∑
T⊆N

(−1)|T |R(0T , s−T ) =
∑

T⊆N :n/∈T

(−1)|T |
(
R(0T , s−T )−R(0T∪{n}, s−(T∪{n}))

)

From (3.14), we can compute

R(0T , s−T )−R(0T∪{n}, s−(T∪{n})) =
( n∑
k=1,k 6=|N\T |

ρk
)
h(sn) + (ρ|N\T |−1 − ρ|N\T |)

∑
j∈N\(T∪{n})

gj(κj,n(sn))
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The residual balancedness condition now becomes∑
T⊆N

(−1)|T |R(0T , s−T ) =
∑

T⊆N :n/∈T

(−1)|T |
(( n∑

k=1,k 6=|N\T |

ρk
)
h(sn) + (ρ|N\T |−1 − ρ|N\T |)

∑
j∈N\(T∪{n})

gj(κj,n(sn))

)
=
(
− ρ1 +

(
n− 1

1

)
ρ2 −

(
n− 1

2

)
ρ3 + . . .+ (−1)n

(
n− 1

n− 1

)
ρn

)
h(sn)

+
(
− ρ1 +

(
n− 1

1

)
ρ2 −

(
n− 1

2

)
ρ3

+ . . .+ (−1)n
(
n− 1

n− 1

)
ρn

)( n−1∑
j=1

gj(κj,n(sn))
)

If ρ satisfies Condition 3.4, the above expression is equal to zero. Hence, the v-ranking

allocation rule satisfies residual balancedness condition. Following Theorem 3.2, there exist

transfers such that v-ranking mechanism is BB and EPIC. �

Before proving Propositions 3.1 and 3.2 we prove the following lemma.

Lemma 3.2 If the valuation functions satisfy single-crossing and symmetry, the following is

true for any two agents i, j ∈ N , and at every signal profile s:

(i) si > sj ⇔ vi(s) > vj(s), and

(ii) si = sj ⇔ vi(s) = vj(s).

Proof : Let σij be the permutation such that σij(k) = k for all k 6= i, j, σij(i) = j and

σij(j) = i. (ii) follows directly from definition of symmetry. For (i), let there be a signal

profile s. Pick any two agents i and j. As vi and vj satisfy single-crossing condition, this

implies that for any si > s′i,

vi(si, s−i)− vi(s′i, s−i) > vj(si, s−i)− vj(s′i, s−i) (3.15)

If s′i = sj, and let si = θ1 and sj = θ2, then (3.15) can be written as,

vi(s1, s2, . . . , θ1, . . . ,θ2, . . . , sn)− vi(s1, s2, . . . , θ2, . . . , θ2, . . . , sn) >

vj(s1,s2, . . . , θ1, . . . , θ2, . . . , sn)− vj(s1, s2, . . . , θ2, . . . , θ2, . . . , sn) (3.16)

As the valuation functions satisfy symmetry, the permutation σij implies that the second

term on both sides of (3.16) are identical

vi(s1, s2, . . . , θ2, . . . , θ2, . . . , sn) = vj(s1, s2, . . . , θ2, . . . , θ2, . . . , sn)
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Hence, from (3.16),

vi(s1, s2, . . . , θ1, . . . , θ2, . . . , sn) > vj(s1, s2, . . . , θ1, . . . , θ2, . . . , sn)

This proves (i). �

Proof of Proposition 3.1:

This follows directly from Lemma 3.2. As the ranking of signals and valuations coincides,

the s-ranking allocation rule π and v-ranking allocation rule ρ are the same. The s-ranking

mechanism and v-ranking mechanism are allocation equivalent. �

Proof of Proposition 3.2:

Consider the allocation equivalent s-ranking allocation rule π and v-ranking allocation

rule ρ. Their payments are also equivalent which we now prove. From Theorem 3.3, there

exists a payment rule such that the v-ranking allocation ρ is EPIC. Let the v-ranking mech-

anism be (ρ, p). Let signal profile be such that s1 > s2 > . . . > sn. Agent ranked i makes

payment of

pi(s) = vi(s)fi(s)− vi(0, s−i)fi(0, s−i)−
si∫
0

fi(x, s−i)
∂vi(x, s−i)

∂si
dx

= −vi(0, s−i)fi(0, s−i)+
n−i∑
j=1

vi(κi,i+j(s−i), s−i)(ρi+j−1 − ρi+j) + ρnvi(max{0, κi,0(s−i)}, s−i)

Here, as in (3.12) we have

κi,i+j(s−i) = inf {y ∈ S | vi(y, s−i) ≥ vi+j(y, s−i)} (3.17)

From Lemma 3.2, vi(y, s−i) = vi+j(y, s−i) only if si = si+j. Hence,

pi(s) = −vi(0, s−i)fi(0, s−i)+
n−i∑
j=1

vi(si+j, s−i)(ρi+j−1 − ρi+j) + ρnvi(0, s−i)

=
n−i∑
j=1

vi(si+j, s−i)(ρi+j−1 − ρi+j) (3.18)

Comparing (3.18) with (3.9), the allocation equivalent EPIC s-ranking mechanism with the

allocation rule π has the same payment as the payment of v-ranking mechanism. If the
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allocation rule satisfies Condition 3.1, then from Theorem 3.1, the payment rule can also be

BB. Hence, v-ranking mechanism is also EPIC and BB. �

Proof of Theorem 3.4:

Let there be an arbitrary s-ranking mechanism π = (π1, π2, . . . , πn). The efficiency ratio

of the mechanism at arbitrary signal profile s is:

π1v[1](s) + π2v[2](s) + . . .+ πnv[n](s)

v[1](s)
= π1 + π2

v[2](s)

v[1](s)
+ . . .+ πn

v[n](s)

v[1](s)

The worst-case efficiency ratio is

µ = inf
s∈Sn

(
π1 + π2

v[2](s)

v[1](s)
+ . . .+ πn

v[n](s)

v[1](s)

)
If the signal profile is such that s1 ≥ s2 ≥ . . . ≥ sn, then

µ = π1 + π2
v2(s)

v1(s)
+ . . .+ πn

vn(s)

v1(s)

= π1 + π2

(γh(s2) +
∑
j 6=2

h(sj)

γh(s1) +
∑
j 6=1

h(sj)

)
+ . . .+ πn

(γh(sn) +
∑
j 6=n
h(sj)

γh(s1) +
∑
j 6=1

h(sj)

)

The minimum value of each of the n − 1 ratios is 1
γ

and the minima occurs at

(s1, s2, . . . , sn) = (1, 0, 0, . . . , 0). Hence,

µ = π1 +
1

γ
(π2 + π3 + . . .+ πn) =

(
1− 1

γ

)
π1 +

1

γ

The optimization problem is:

max
(π1,π2,...,πn)

(
1− 1

γ

)
π1 +

1

γ

s.t. πi ≥ 0 ∀i ∈ {1, 2, . . . , n}
π1 + π2 + . . .+ πn = 1∑

j∈N

(−1)j
(
n− 1

j − 1

)
πj = 0

πi+1 − πi ≤ 0 ∀i ∈ {1, 2, . . . , n− 1}

This optimization problem is equivalent to the optimization problem solved by Long et al.

(2017) to find the optimal worst-case efficient ranking mechanism in the class of dominant
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strategy incentive compatible and BB mechanisms. This is because all the constraints in both

the problems are identical and the objective function above is a monotonic transformation

of objective function of their optimization problem. Hence, π∗ also solves our optimization

problem and maximizes the worst-case efficiency ratio. �

Proof of Proposition 3.3:

We first prove that the probability-burning mechanism is BB and EPIR.

Payments of agents are:

p1(s) = −h(sn, sn, . . . , sn)

+
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)(
g(s−1)

+
∑
j 6=1

h(s−j)
)
−
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)
(∑
j 6=1

h(s−j)− h(s2, s3, . . . , sn)−
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)
)

= −h(sn, sn, . . . , sn)+

+
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)(
g(s−1)+

h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)
)

= −h(sn, sn, . . . , sn) + (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

= (n− 2)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

pi(s) = −h(sn, sn, . . . , sn) ∀i ∈ {2, 3, . . . , n− 1}
pn(s) = −h(sn−1, sn−1, . . . , sn−1)

Clearly,
∑
i∈N

pi(s) = 0. The mechanism is BB.

The utility of agents are:

u1(s) = v1(s)f1(s)− p1(s)

=
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)(
g(s−1)

+
∑
j 6=1

h(s−j)
)
−
(
(n− 2)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

)
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=
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)(∑
j 6=1

h(s−j)

− h(s2, s3, . . . , sn)−
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)
)

+ h(sn, sn, . . . , sn)

ui(s) = h(sn, sn, . . . , sn) ∀i ∈ {2, 3, . . . , n− 1}
un(s) = h(sn−1, sn−1, . . . , sn−1)

As each valuation function is weakly increasing in its own signal,∑
j 6=1

h(s−j)− h(s2, s3, . . . , sn)−
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn) ≥ 0

Hence, u1(s) ≥ 0. If h(·) function is non-negative then ui(s) ≥ 0 for all i 6= 1. Hence, the

mechanism is EPIR.

Suppose, agent ranked n misreports to s′n > s1. His utility if he reports truthfully is

un(s) = h(sn−1, sn−1, . . . , sn−1). The agent’s new utility is

un(s′n, s−n) =
( (n− 1)h(sn−1, sn−1, . . . , sn−1) + h(sn−2, sn−2, . . . , sn−2)

g(s−n) + h(s1, s2, . . . , sn−1) +
∑
j 6=1,n

h(s1, s2, s3, . . . , sj−1, sj+1, . . . , s1)

)(
g(s−n)

+
∑
j 6=n

h(s−j)
)
−
(
(n− 2)h(sn−1, sn−1, . . . , sn−1) + h(sn−2, sn−2, . . . , sn−2)

)

Let ∆u(si′ , si) = vi(s)fi(s)−pi(s)−
(
vi(s)fi(s

′
i, s−i)−pi(s′i, s−i)

)
be the difference between

utilities obtained by agent ranked i with signal type si when he reports the true signal and

when he falsely reports si′ . Hence,

∆u(si′ , si) = −
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)(∑
j 6=n

h(s−j)

− h(s1, s2, . . . , sn−1)−
∑
j 6=1,n

h(s1, s2, s3, . . . , sj−1, sj+1, . . . , s1)
)

=
( (n− 1)h(sn, sn, . . . , sn) + h(sn−1, sn−1, . . . , sn−1)

g(s−1) + h(s2, s3, . . . , sn) +
∑
j 6=1,2

h(s2, s2, s3, . . . , sj−1, sj+1, . . . , sn)

)
×
(
h(s1, s2, . . . , sn−1) +

∑
j 6=1,n

h(s1, s2, s3, . . . , sj−1, sj+1, . . . , s1)−
(∑
j 6=n

h(s−j)
)

As each valuation function is weakly increasing in its own signal, the expression in the bigger

parenthesis on the right side is non-negative. Hence, ∆u(si′ , si) ≥ 0. Similarly we can

show that any agent ranked higher than agent n has no incentive to misreport. Hence, the

mechanism is EPIC. �
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Chapter 4

Probability-burning mechanisms in

multiple-good allocation problems

4.1 Introduction

We consider the problem of allocating m units of a good among n agents. Each agent

demands a single unit of good the valuation of which is his private information. Agents can

give or receive payments but aggregate payments must be zero. There are several instances

in real-life where such a problem arises, for instance, in allocating bequests among various

claimants (see Coombs (2013) for a real-life example).

Other properties that mechanisms are required to satisfy are incentive-compatibility,

individual-rationality and efficiency∗. A standard result in mechanism design theory is the

Green-Laffont impossibility result (Green and Laffont (1979)). According to it, no mechanism

can simultaneously satisfy efficiency, incentive-compatibility and budget-balance. So, one of

the properties must be relaxed in order to find a mechanism which satisfies two properties

and a weakened version of the third.

In this chapter, we relax the property of efficiency and look within the class of incentive-

compatible and budget-balanced mechanisms. We follow the approach of Mishra and Sharma

(2018). They consider a single-good allocation problem and their mechanism allocates the

good only to the agent with the highest valuation. Some of the allocation probability is burnt

at some valuation profiles. Such a mechanism is called a probability-burning mechanism.

∗This contrasts with the approach of Dastidar (2017) who focuses on goals of efficiency and revenue

generation for mechanisms that allocate a scarce object to a set of agents.
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The chapter has two objectives. The first is to extend the mechanism of Mishra and

Sharma (2018) to the multi-good allocation problem. We propose the equal-probability-

burning mechanism which allocates a single unit of good to each of the top m highest-

valued agents with equal probability. The probability is auctioned through a multi-unit

Vickrey auction and the revenue collected is redistributed back to the agents which ensures

budget-balance. We then compare the welfare properties of this mechanism with some other

mechanisms that are budget-balanced (BB), dominant strategy incentive-compatible (DSIC)

and individually-rational (IR). These mechanisms are the multi-unit extension of Green-

Laffont mechanism and the single-unit burning mechanism given by Guo and Conitzer (2014).

We find that the worst-case efficiency ratio of multi-unit Green-Laffont mechanism is

higher than that of equal-probability-burning mechanism. If the number of agents is greater

than m + m2

2
+
√
m(m2 − 1) + m4

4
the worst-case efficiency ratio of the equal-probability-

burning mechanism is greater than that of single-unit burning mechanism. The expected

total welfare of equal-probability-burning mechanism is less than that of the multi-unit

Green-Laffont mechanism but converges to it as n increases.

The second objective is to design probability-burning mechanism with reserve prices.

Goods are allocated only if the valuations of at least m agents are above the reserve price. In

this case each of the m agents with the highest ranked valuations is given a good with equal

probability. The allocation probability depends on the relationship between the reserve price

and the valuations of (m+ 1)th and (m+ 2)th ranked agents. We show that the mechanism

is BB, IR and DSIC.

Our main goal is to demonstrate that introducing reserve prices may increase the expected

welfare of agents. For this purpose we assume that valuations are uniformly distributed. In

the restricted setting of n = 4 and m = 2, we show that the optimal reserve price is non-zero.

For a single-good model we explicitly compute the optimal reserve price and show that the

expected total welfare with the reserve price is greater than the expected total welfare in the

mechanism of Mishra and Sharma (2018) (henceforth called the MS mechanism).

This chapter proceeds as follows. Section 4.2 discusses the literature survey. The

model and basic definitions are introduced in Section 4.3. Section 4.4 describes the equal-

probability-burning mechanism for multiple units of good and discusses the welfare proper-

ties. Section 4.5 describes the mechanism when there is a reserve price. Section 4.6 is the

conclusion.
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4.2 Related Literature

There are many papers that explore the relaxation of efficiency in the Green-Laffont impos-

sibility result†. The simplest mechanism is the Green-Laffont mechanism which allocates the

good to agent with highest valuation with a probability of 1 − 1
n

and to the second-highest

agent with probability 1
n
. Long et al. (2017) define a class of ranking mechanisms in which

the good is allocated to agents not having the highest valuation with positive probability.

They find the least inefficient mechanism in the class of BB and DSIC mechanisms which

allocates the good to n
2

agents. Long (2019) extends the result to multi-unit case. Long

(2018) finds the least inefficient mechanism in a class of envy-free, BB and DSIC ranking

mechanisms.

Mishra and Sharma (2018) find the Pareto optimal probability-burning mechanism for a

single good in the class of BB, IR and DSIC mechanisms. As number of agents grow, their

mechanism converges to efficiency and the ex-ante expected welfare converges to that of

Green-Laffont mechanism. Some of the probability is necessarily burnt in their mechanism.

This technique of destroying the good has also been explored by de Clippel et al. (2014). They

propose a deterministic mechanism in which the burning of units of good depends on the

valuation of agents but they optimize in the class of weakly BB, IR and DSIC mechanisms.

Vikram (2021) studies similar problem in an interdependent value setting. He identifies

three types of mechanisms - signal-ranking mechanisms, valuation-ranking mechanisms and

probability-burning mechanisms and gives conditions on valuation functions under which

these mechanisms satisfy incentive-compatibility, individual-rationality and budget-balance.

For multi-unit case, Guo and Conitzer (2014) study two types of linear redistribution

mechanisms for allocating multiple units of good while maintaining strict budget-balance.

One way is to partition the agents and goods into two sets each and allocate the sets of goods

arbitrarily to the sets of agents through separate VCG mechanisms. The revenue generated

by one set of agents is redistributed equally to all the agents in the other set. These are called

partition mechanisms and it turns out that Green-Laffont mechanism is the least inefficient

mechanism in this class. The other type of mechanism is the single-unit burning mechanism.

A unit of good is burnt with some probability and rest of the units of good are allocated to

highest valued agents. Gujar and Narahari (2008) extend their result to the case of multiple

heterogenous goods.

†Refer to Mishra and Sharma (2018) for a detailed literature survey on different ways in which the

Green-Laffont impossibility result can be relaxed.
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4.3 The model and basic definitions

There are m identical units of a good which are to be allocated among n agents. We assume

throughout that n ≥ m + 2‡. Let the set of agents be N = {1, 2, . . . , n}. Each agent

demands only one good and has a valuation vi for the good which is his private information.

The valuations are independently and identically distributed in the unit interval V = [0, 1]

according to the distribution function G and corresponding density function g. A valuation

profile is v = (v1, v2, . . . , vn). Denote the agent with ith highest valuation in any valuation

profile by v(i). The agents are ranked as v(1) ≥ v(2) ≥ . . . ≥ v(n) where v(1) is the highest

valuation and v(n) is the lowest valuation.

An allocation rule is a map f : V n → [0, 1]n where fi(v) denotes the probability of

allocation of a unit of good to agent i when the valuation profile is v = (v1, v2, . . . , vn).

The allocation probabilities are assumed to satisfy the feasibility condition
∑
i∈N
fi(v) ≤ m

for every v ∈ V n. The payment rule of agent i is pi : V n → R. A mechanism M is pair

(f, p) ≡ (f1, f2, . . . , fn, p1, p2, . . . , pn) and gives utility of vif(v) − pi(v) to agent i for all

i = 1, 2, . . . , n and v ∈ V n. A mechanism must satisfy the following properties:

• A mechanism M ≡ (f, p) is dominant strategy incentive-compatible (DSIC) if for every

i ∈ N , and every v−i ∈ V n−1, and for every vi, v
′
i ∈ V

vifi(vi, v−i)− pi(vi, v−i) ≥ vifi(v
′
i, v−i)− pi(v′i, v−i)

• A mechanism M ≡ (f, p) is individually-rational (IR) if for every i ∈ N , and every

v ∈ V n,

vifi(v)− pi(v) ≥ 0

• A mechanism M ≡ (f, p) is budget-balanced (BB) if for every v ∈ V n,∑
i∈N

pi(v) = 0

We define some welfare measures for mechanisms. The total welfare of a mechanism at

any valuation profile v ∈ V n is

WM(v) =
∑
i∈N

(vifi(v)− pi(v))

‡If n < m, the problem is trivial as each agent is always allocated a unit of good.
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For a budget-balanced mechanism, the total welfare becomes

WM(v) =
∑
i∈N

vifi(v)

The best possible welfare that a budget-balanced mechanism can achieve is

W ∗(v) = v(1) + v(2) + v(3) + . . .+ v(m)

We define the worst-case efficiency ratio for a budget-balanced mechanism.

Definition 4.1 For a budget-balanced mechanism M ≡ (f, p), the worst-case efficiency

ratio is given by

αM = min
v∈V n

WM(v)

W ∗(v)

This is the minimum ratio of total welfare generated by a mechanism and the best possible

welfare among all valuation profiles.

Another measure of welfare is the expected total welfare.

Definition 4.2 Given a distribution G, for a budget-balanced mechanism M ≡ (f, p), the

expected total welfare is given by

E[WM ] =

1∫
0

1∫
0

. . .

1∫
0

(∑
i∈N

vifi(v)
)
g(vn)g(vn−1) . . . g(v1)dvndvn−1 . . . dv1

Denote by v[k] the set of agents who have the kth highest valuation at v. Formally,

v[1] = {i ∈ N |vi ≥ vj ∀j ∈ N}

At any valuation profile v, the set of agents can be partitioned into disjoint sets

v[1], v[2], . . . , v[n0(v)] such that
n0(v)

∪
k=1

v[k] = N . Here, v[k] is given by,

v[k] = {i ∈ N \ (
k−1

∪
k′=1

v[k′]) : vi ≥ vj ∀j ∈ N \ (
k−1

∪
k′=1

v[k′])}

Also, n0(v) is the index corresponding to set of agents with lowest valuation at a valuation

profile v. If m units of a good are to be allocated, let the set of goods be partitioned into

m1,m2, . . . ,mn0(v) such that
n0(v)∑
k=1

mk = m. The set of agents v[k] is allocated mk ≤ |v[k]|

units of good for all k = 1, 2, . . . , n0(v).
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Now consider the special case in which the allocation of all units of good is done as

follows. Pick a valuation profile v ∈ V n. First, for k = 1 the agents in v[1] are allocated

m1 = |v[1]| units of good. Then for k = 2 agents in v[2] are allocated m2 = |v[2]| and so

on for each k till k = m(v) − 1. The index m(v) corresponds to the set of agents of lowest

valuation i.e. v[m(v)] to which the remaining units of good mm(v) are allocated such that

m1 +m2 + . . .+mm(v) = m and m(v) ≤ |v[m(v)]|. The agents in set v[m(v) + 1], . . . , v[n0(v)]

are never allocated any unit of the good at any valuation profile.

Definition 4.3 An allocation rule f is efficient if at every valuation profile v ∈ V n

(i) the agents in v[k] for each k ∈ {1, 2, . . . ,m(v) − 1} are allocated mk = |v[k]| units of

good

(ii) the agents in v[m(v)] are allocated the remaining units of good

(iii) the agents in v[k] for each k ∈ {m(v) + 1, . . . , n0} are never allocated any unit of good,

and the allocation probabilities are such that∑
i∈∪m(v)

k=1
v[k]

fi(v) = m

A mechanism M ≡ (f, p) is efficient if allocation rule f is efficient.

Efficiency requires all units to be allocated to the topm highest valued agents at any valuation

profile with probability one.

A probability-burning allocation function f satisfies the following properties: for all val-

uation profiles v,

(i) fi(v) = 0 for all i ∈ v[k], k ∈ {m̄(v) + 1, . . . , n0(v)}

(ii)
∑
i∈N
fi(v) ≤ m.

A probability-burning mechanism is a pair (f, p) where f is a probability-burning alloca-

tion function. Note that a probability-burning allocation function assigns the units of good

with positive probability only to agents who have the m highest valuations. However, all

units of the goods may not be allocated with probability one. It allows for the possibility

that at some valuation profile v,
∑
i∈N
fi(v) < m, i.e. units of the good are wasted or prob-

ability is “burnt”. This is a violation of efficiency and will occur when probability-burning

mechanisms are required to additionally satisfy incentive-compatibility and budget-balance.
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4.4 The Equal-probability-burning mechanism

Our goal in this section is to introduce the equal-probability-burning mechanism and compare

its welfare properties with two other BB, IR and DSIC mechanisms. We begin with an

informal description.

In the equal-probability-burning (EP) mechanism, all units of good are allocated through

a multi-unit Vickrey auction. The probability auctioned for each unit of good is the same

and it depends on the valuations of (m + 1)th and (m + 2)th ranked agents i.e. the agents

immediately after top m valuations. All agents who receive a unit of good pay the same

amount each which is a convex combination of valuations of (m+ 1)th and (m+ 2)th agents.

As m agents receive one unit each, the total revenue generated is m
n

(
(n−m−1)v(m+2)+(m+

1)v(m+1)

)
. All the revenue is distributed back to the agents and the amount that each agent

receives does not depend on the agent’s own valuation. The structure of EP mechanism is

similar to that of MS mechanism and is its straight-forward extension to the multi-unit case.

When there are ties in valuations of agents, the units of good are allocated in a sequential

manner with the agents having highest valuation being allocated first, the agents having

second-highest valuation being allocated next and so on until all the units have been assigned.

We now provide a detailed description of the mechanism by including the tie-breaking rules:

1. The agents report their valuations v1, v2, . . . , vn. The set of agents is partitioned into

the sets v[1], v[2], . . . , v[n0] and m(v) is computed.

2. The allocation is done as follows:

(a) Allocate m1 = |v[1]| units of good to agents in set v[1] with each agent receiving

one unit of good with probability
(
1− (m+1)

n

)
+
(
(m+1)
n

)v(m+2)

v(m+1)
.

(b) Repeat this for each k ∈ {2, 3, . . . ,m(v) − 1} such that each set of agents v[k]

receives mk = |v[k]| units of good.

(c) Allocate mm(v) units of good to agents in the set v[m(v)]. Each agent is allocated

a unit of good with probability
mm(v)

|v[m(v)]|

(
n−m−1

n
+ (m+1)

n

v(m+2)

v(m+1)

)
.

(d) Agents in the sets v[m(v) + 1], . . . , v[n0(v)] are not allocated anything.

3. Agents who receive a unit of good pay
(
1− (m+1)

n

)
v(m+1) +

(
m+1
n

)
v(m+2) each.

4. The surplus is redistributed as follows:

(a) Agents 1 to m+ 1 receive m
n
v(m+2) each.
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(b) Agents m+ 2 to n receive m
n
v(m+1) each.

The allocation functions are:

fEP(i) (v) =


mk
|v[k]|

((
1− (m+1)

n

)
+ (m+1)

n

v(m+2)

v(m+1)

)
, if i ∈ v[k] for k ∈ {1, 2, . . . ,m(v)}

0 , otherwise

The payment functions are given by:

pEP(i) (v) = pEP(i) (0, v−(i)) + v(i)f
EP
(i) (v)−

v(i)∫
0

fEP(i) (x, v−(i))dx

Here,

pEP(i) (0, v−(i)) =

−m
n
v(m+2) , if i ∈ {1, 2, . . . ,m+ 1}

−m
n
v(m+1) , if i ∈ {m+ 2, . . . , n}

The following examples illustrate the mechanism. In each case, let N = {1, 2, 3, 4, 5} and

m = 2.

Example 4.1 Let there be a valuation profile such that v2 = v3 = v4 > v1 > v5. Here,

v[1] = {2, 3, 4}, v[2] = {1} and v[3] = {5} and m(v) = 1. The allocation probabilities

are f2(v) = f3(v) = f4(v) = 2
3

(
2
5

+ 3
5
v1

v4

)
and f1(v) = f5(v) = 0. Agents 2, 3 and 4 pay

2
3

(
2
5

+ 3
5
v1

v4

)
v4 each. Agents 2, 3 and 4 receive 2

5
v1 each and agents 1 and 5 receive 2

5
v4 each.

So, p2(v) = p3(v) = p4(v) = 4
15
v4 and p1(v) = p5(v) = −2

5
v4.

Example 4.2 Let there be a valuation profile such that v2 > v5 = v1 = v4 = v3. Here,

v[1] = {2}, v[2] = {1, 3, 4, 5}. So, m1 = 1 and m(v) = 2. The allocation probabilities are

f2(v) = 2
5

+ 3
5
v4

v1
= 2

5
+ 3

5
= 1 and f5(v) = f1(v) = f4(v) = f3(v) = 1

4

(
2
5

+ 3
5
v4

v1

)
= 1

4
. Agent

2 pays v1 and agents 1, 3, 4 and 5 pay v1

4
. All agents receive 2

5
v1 each. So, p2(v) = 3

5
v1 and

p1(v) = p3(v) = p4(v) = p5(v) = − 3
20
v1.

Example 4.3 Let there be a valuation profile such that v5 > v1 > v3 > v4 > v2. Here,

v[1] = {5}, v[2] = {1}, v[3] = {3}, v[4] = {4}, v[5] = {2}. So, m1 = 1 and m(v) = 2. The

allocation probabilities are f5(v) = f1(v) = 2
5

+ 3
5
v4

v3
and f3(v) = f4(v) = f2(v) = 0. Agents

5 and 1 pay
(
2
5

+ 3
5
v4

v3

)
v3 each. Agents 5, 1 and 3 receive 2

5
v4 each and agents 4 and 2 receive

2
5
v3 each. So, p5(v) = p1(v) = 2

5
v3 + 1

5
v4, p3(v) = −2

5
v4 and p4(v) = p2(v) = −2

5
v3.

90



As is evident from the examples, the mechanism is BB. The mechanism is also IR as each

agent gets non-negative utility. We illustrate that it is DSIC. In the Example 4.3, let agent

4 report v′4 such that v′4 > v5 > v1 > v3 > v2. Agent 4 is allocated the good with probability
2
5

+ 3
5
v3

v1
and has to pay 2

5
v1 + 1

5
v3. The change in his utility is(2

5
+

3

5

v3
v1

)
v4 −

(2

5
v1 +

1

5
v3

)
− 2

5
v3 =

(2

5
+

3

5

v3
v1

)
(v4 − v1) < 0

Agent 4 has no incentive to report v′4. Similarly, it can be shown that no agent has any

incentive to misreport, i.e. the mechanism is DSIC.

The next proposition generalizes this.

Proposition 4.1 The EP mechanism is BB, IR and DSIC.

The proof is in the Appendix.

In the next subsection, we compare EP mechanism with different BB, IR and DSIC

mechanisms found in the literature.

4.4.1 Comparison of welfare properties of mechanisms

We first give a brief description of two mechanisms that are found in the literature of al-

location of goods among agents. The two mechanisms are the multi-unit version of the

Green-Laffont (GL) mechanism and the single-unit burning (SU) mechanism as given by

Guo and Conitzer (2014). Then we compare the welfare properties and worst-case efficiency

properties of equal-probability-burning mechanism with these mechanisms.

Multi-unit Green-Laffont mechanism: There are m units of a good which are to

be allocated to n agents. An agent is picked at random and a multi-unit Vickrey auction is

conducted among rest of the agents. The revenue that is generated is given to the agent that

was picked out. For instance, suppose there are 4 agents and 2 units of a good. Let there

be a valuation profile such that v3 > v1 > v4 > v2. If agent 1 is excluded then agents 3 are

4 are allocated the units of good and they pay v2 each which is given to agent 1. Formally,

the allocation and transfer functions are:

fGL(i) (v) =


1− 1

n
, if i ∈ {1, 2, . . . ,m}

m
n

, if i = m+ 1

0 , otherwise
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The payment functions are given by:

pGL(i) (v) =


(
1− m+1

n

)
v(m+1) , if i ∈ {1, 2, . . . ,m}

0 , if i = m+ 1

−m
n
v(m+1) , if i ∈ {m+ 2, . . . , n}

Example 4.4 Let N = {1, 2, 3, 4} and m = 2. Let there be a valuation profile such that

v3 > v1 > v4 > v2. Agents 3 and 1 get one unit of good each with allocation probability

f3(v) = f1(v) = 3
4
. Agent 4 gets a unit of good with probability f4(v) = 1

2
. Agent 3 and 1

pay v4

4
each and agent 2 receives v4

2
.

By construction, the mechanism is BB. Also, as the multi-unit Vickrey auction is DSIC

and IR, the GL mechanism is DSIC and IR.

Single-unit burning mechanism: There are m units of a good which are to be allo-

cated to n agents. Out of these m units, m− 1 units of good are allocated by the standard

multi-unit Vickrey auction. With a probability of m−1
n−1 , the good that is left is allocated and

with probability of n−m
n−1 the unit of good is burnt. If the mth good is allocated, all the agents

pay v(m+1) each, and if it is burnt then they pay vm each. Each agent receives a redistribution

amount of m−1
n−1 times the valuation of mth highest agent from among the rest of the n − 1

agents. For instance, let n = 5 and m = 3. Let valuation profile be v4 > v1 > v5 > v3 > v2.

Agents 4 and 1 are allocated one unit of good each. The third unit of good is allocated

with probability 1
2

to agent 5 and with rest of the probability it is burnt. If the third unit

of good is allocated, then agents 4, 1 and 5 pay v3 each. If the unit of good is destroyed,

then agents 4 and 1 pay v5 each. Agent 4, 1 and 5 receive v3

2
and agents 3 and 2 receive

v5

2
. Formally, suppose the valuations of agents are v1 > v2 > . . . > vn. The allocation and

transfer functions are:

fSU(i) (v) =


1 , if i ∈ {1, 2, . . . ,m− 1}
m−1
n−1 , if i = m

0 , otherwise

pSU(i) (v) = pSU(i) (0, v−(i)) + v(i)f
SU
(i) (v)−

v(i)∫
0

fSU(i) (x, v−(i))dx

Here,

p(i)(0, v−(i)) =

−
(
m−1
n−1

)
v(m+1) , if i ∈ {1, 2, . . . ,m}

−
(
m−1
n−1

)
v(m) , if i ∈ {m+ 1, . . . , n}
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Example 4.5 Let N = {1, 2, 3, 4, 5} and m = 3. Let there be a valuation profile such that

v4 > v1 > v5 > v3 > v2. Agents 4 and 1 get one unit of good each with allocation probability

f4(v) = f1(v) = 1. Agent 5 gets a unit of good with probability f3(v) = 1
2
. The payments

are p4(v) = p1(v) = v5

2
, p5(v) = 0, p3(v) = p2(v) = −v5

2
. Suppose agent 3 reports v′3 such

that v′3 > v4 > v1 > v5 > v2. He gets a unit of good with probability 1 and has to pay
v1

2
. His utility is v3 − v1

2
. The change in utility is v3 − v1

2
− v5

2
= 1

2
(v3 − v1 + v3 − v5) < 0.

The agent has no incentive to misreport as v′3. Similarly, none of the other agents has any

incentive to misreport. The mechanism is DSIC. Also, each agent gets non-negative utility.

So the mechanism is IR. The sum of payments is zero and hence the mechanism is BB.

The Table 4.1 gives the payoff of each agent in the 3 mechanisms when N = {1, 2, 3, 4, 5}
and m = 2. Notice that only the GL mechanism allocates the good to agents below top m

valuations. The SU mechanism allocates the units of good unequally. It allocates all the

units of good except one with probability of 1 and with positive probability destroys the last

unit of good. The lowest ranked agent to be allocated the good in GL and SU mechanisms

does not pay or receive any amount.

n = 5,m = 2 Agents

Mechanisms (1) (2) (3) (4) (5)

EP (2
5

+ 3
5

v(4)

v(3)
, 1
5
v(4) +

2
5
v(3))

(2
5

+ 3
5

v(4)

v(3)
, 1
5
v(4) +

2
5
v(3))

(0,−2
5
v(4)) (0,−2

5
v(3)) (0,−2

5
v(3))

GL (4
5
, 2
5
v(3)) (4

5
, 2
5
v(3)) (2

5
, 0) (0,−2

5
v(3)) (0,−2

5
v(3))

SU (1, 3
4
v(2)) (1

4
, 0) (0,−1

4
v(2)) (0,−1

4
v(2)) (0,−1

4
v(2))

Table 4.1: Allocation probabilities and payments of agents in different mechanisms

Given a valuation profile v, the welfare generated by these 3 mechanisms are:

WEP (v) =

((
1− m+ 1

n

)
+
(m+ 1

n

)v(m+2)

v(m+1)

)
(v(1) + v(2) + . . .+ v(m))

WGL(v) =
(

1− 1

n

)
v(1) + . . .+

(
1− 1

n

)
v(m) +

m

n
v(m+1)

=
(

1− 1

n

)
(v(1) + v(2) + . . .+ v(m)) +

m

n
v(m+1)

W SU(v) = (v(1) + v(2) + . . .+ v(m−1)) +
(m− 1

n− 1

)
v(m)

Suppose n = 4 and m = 2. The welfares of these three mechanisms are

WGL(v) =
3

4
(v(1) + v(2)) +

1

2
v(3)
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WEP (v) =
(1

4
+

3

4

v4
v3

)
(v(1) + v(2))

W SU(v) = v(1) +
1

3
v(2)

If v = (0.9, 0.8, 0.7, 0.1), then WGL > WEP and if v = (0.9, 0.8, 0.7, 0.7) then WGL <

WEP . So, there exists a set of valuation profiles with a positive Lebesgue measure where EP

mechanism generates more welfare than the GL mechanism.

We state the main result of this section.

Theorem 4.1 1. αGL > αEP

2. αEP > αSU if n > m+ m2

2
+
√
m(m2 − 1) + m4

4
.

3. For uniform distribution G, E[WGL]− E[WEP ] = O
(

1
n2

)
Proof : The worst-case efficiency ratios for the three mechanisms are

αEP = 1− m+ 1

n

αGL = 1− 1

n

αSU =
n(m− 1)

m(n− 1)

Clearly, the worst-case efficiency ratio of GL mechanism is higher than that of EP mech-

anism for all values of m. The worst-case efficiency ratio of EP mechanism is higher than

that of the SU mechanism if

1− m+ 1

n
>
n(m− 1)

m(n− 1)

or n > m+
m2

2
+

√
m(m2 − 1) +

m4

4

The expected total welfare of GL mechanism is:

E[WGL] = E
[(

1− 1

n

)
v(1) + . . .+

(
1− 1

n

)
v(m) +

m

n
v(m+1)

]
=
(

1− 1

n

)
(E[v(1)] + E[v(2)] + . . .+ E[v(m)]) +

m

n
E[v(m+1)]

=
(

1− 1

n

)( n

n+ 1
+
n− 1

n+ 1
+ . . .+

n−m+ 1

n

)
+
m

n

(n−m
n

)
=

m

2n(n+ 1)

(
(2n−m+ 1)(n− 1) + 2(n−m)

)
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(b) Green-Laffont mechanism
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Figure 4.1: Expected welfare of mechanims for uniform distribution

The expected total welfare of EP mechanism is:

E[WEP ] = E
[((

1− (m+ 1)

n

)
+
(m+ 1

n

)v(m+2)

v(m+1)

)
(v(1) + v(2) + . . .+ v(m))

]
=
(

1− m+ 1

n

)
(E[v(1)] + E[v(2)] + . . .+ E[v(m)])

+
(m+ 1)

n

(
E
[v(m+2)

v(m+1)

v(1)

]
+ E

[v(m+2)

v(m+1)

v(2)

]
+ . . .+ E

[v(m+2)

v(m+1)

v(m)

])
=
m(2n−m+ 1)

2(n+ 1)

(
n−m− 1

n
+
((m+ 1)

n

)(n−m− 1

n−m

))
=
m(n−m− 1)(2n−m+ 1)

2n(n−m)

The expected total welfare of SU mechanism is:

E[W SU ] = E
[
(v(1) + v(2) + . . .+ v(m−1) +

m− 1

n− 1
v(m))

]
= E[v(1)] + E[v(2)] + . . .+ E[v(m−1)] +

m− 1

n− 1
E[v(m)]

=
(2n−m)(m− 1)

2(n− 1)

Now,

E[WGL]− E[WEP ] =
m

2n(n+ 1)

(
(2n−m+ 1)(n− 1) + 2(n−m)

)
− m(n−m− 1)(2n−m+ 1)

2n(n−m)
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=
m(m+ 1)

2n(n−m)
(4.1)

Thus, E[WGL] > E[WEP ] for all values of n and m. As n increases the difference between

the two values decreases. The expression in (4.1) converges to zero at the rate 1
n2 . �

In Figure 4.1, notice that for small values of n, the gap between the ex-ante expected

welfares of the two mechanisms is large irrespective of values of m. Irrespective of the number

of units of goods, the difference between expected total welfare of GL mechanism and the

EP mechanism approaches zero as the number of agents increases. Thus, for large values of

n, both the mechanisms give approximately the same expected total welfare. As illustrated

by Mishra and Sharma (2018) in the single-good case, the comparison between the expected

total welfare of the two mechanisms is difficult for a general distribution of valuations.

4.5 Probability-burning mechanisms with a reserve price

In this section we show that introducing a reserve price in the equal probability burning

mechanism may improve the expected welfare generated by probability-burning mechanisms.

Consider the following variant of the probability-burning mechanism. Fix a reserve price

r. The allocation function allocates a unit of good to the top m agents only when the

valuation of each of them is above r. Even if the valuation of mth agent falls below the

reserve price, no good is allocated to any agent. The allocation probabilities depend on

the valuations of (m + 1)th and (m + 2)th agents. The mechanism differs from the equal-

probability-burning mechanism when the valuation of (m+2)th agent drops below the reserve

price. When the valuation profile is such that v(m+1) ≥ r > v(m+2), the allocation probabilities

depend on the reserve price and v(m+1), and if v(m+1) < r, the allocation probabilities are

constant values.

We give a formal description of the mechanism which we call the BR mechanism. Recall

m(v) from the previous section. Let mr(v) be the index corresponding to agents with least

valuation such that vi ≥ r for i ∈ v[mr(v)] and vi < r for all i ∈ v[k] where k ∈ {mr(v) +

1, . . . , n0(v)}.

1. The agents report their valuations v1, v2, . . . , vn. The set of agents is partitioned into

the sets v[1], v[2], . . . , v[n0], and m(v) and mr(v) are computed.

2. If m(v) ≤ mr(v), then all the m units are allocated through the top-only allocation rule.
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The allocation probabilities are calculated depending on whether v(m+1) and v(m+2) are

higher than r or not and are as follows:

(a) If m(v) ≤ mr(v) and v(m+2) ∈ v[k] for some k ≤ mr(v), then for each unit of

good the probability mk
|v[k]|

((
1 − (m+1)

n

)
+ (m+1)

n

v(m+2)

v(m+1)

)
where k ∈ {1, 2, . . . ,m(v)}

is allocated through the multi-unit Vickrey auction with reserve price.

(b) If m(v) ≤ mr(v), v(m+1) ∈ v[j] for some j ≤ mr(v), and v(m+2) ∈ v[mr(v) + 1],

then for each unit of good the probability mk
|v[k]|

((
1− (m+1)

n

)
+ (m+1)

n
r

v(m+1)

)
where

k ∈ {1, 2, . . . ,m(v)} is allocated through the multi-unit Vickrey auction with

reserve price.

(c) If m(v) = mr(v) and v(m+1) ∈ v[m(v) + 1], then for each unit of good the prob-

ability 1 − m
n

is allocated through the multi-unit Vickrey auction with reserve

price.

3. Agents make the following payment:

(a) If m(v) ≤ mr(v) and v(m+2) ∈ v[k] for some k ≤ mr(v), then agents in sets i ∈ v[k]

where k ∈ {1, 2, . . . ,m(v)} pay an amount of mk
|v[k]|

((
1− (m+1)

n

)
+ (m+1)

n

v(m+2)

v(m+1)

)
v(m+1)

each.

(b) If m(v) ≤ mr(v), v(m+1) ∈ v[j] for some j ≤ mr(v), and v(m+2) ∈ v[mr(v) + 1],

then agents in sets i ∈ v[k] where k ∈ {1, 2, . . . ,m(v)} pay an amount of mk
|v[k]|

((
1−

(m+1)
n

)
+ (m+1)

n
r

v(m+1)

)
v(m+1) each.

(c) If m(v) = mr(v) and v(m+1) ∈ v[m(v) + 1], then agents in sets i ∈ v[k] where

k ∈ {1, 2, . . . ,m(v)} pay an amount of
(
1− m

n

)
r each.

4. The generated revenue is reallocated to the agents as follows:

(a) If m(v) ≤ mr(v) and v(m+2) ∈ v[k] for some k ≤ mr(v), then each of the top

m+ 1 agents receives an amount of m
n
v(m+2) and rest n−m− 1 agents receive an

amount of m
n
v(m+1) each.

(b) If m(v) ≤ mr(v), v(m+1) ∈ v[j] for some j ≤ mr(v), and v(m+2) ∈ v[mr(v)+1], then

each of the top m+ 1 agents receives an amount of m
n
r and rest of the n−m− 1

agents receive an amount of m
n
v(m+1) each.

(c) If m(v) = mr(v) and v(m+1) ∈ v[m(v) + 1], then the lowest n −m agents receive

an amount m
n
r each.

5. If m(v) > mr(v), no unit of good is allocated to any agent and there is no payment or

reallocation to any agent.
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The allocation functions of BR mechanism are:

fBR(i) (v) =



mk
|v[k]|

((
1− m+1

n

)
+ m+1

n

v(m+2)

v(m+1)

)
, if i ∈ v[k], k ∈ {1, 2, . . . ,m(v)}, v(m+1), v(m+2) ≥ r

mk
|v[k]|

((
1− m+1

n

)
+ m+1

n
r

v(m+1)

)
, if i ∈ v[k], k ∈ {1, 2, . . . ,m(v)}, v(m+1) ≥ r, v(m+2) < r

mk
|v[k]|

(
1− m

n

)
, if i ∈ v[k], k ∈ {1, 2, . . . ,m(v)}, v(m) ≥ r, v(m+1), v(m+2) < r

0 , otherwise

The payment functions are given by:

pBR(i) (v) = pBR(i) (0, v−(i)) + v(i)f
BR
(i) (v)−

v(i)∫
0

fBR(i) (x, v−(i))dx

Here,

pBR(i) (0, v−(i)) =


−m

n
v(m+2) , if i ∈ {1, 2, . . . ,m+ 1} and v(m+1), v(m+2) ≥ r

−m
n
v(m+1) , if i ∈ {m+ 2, . . . , n} and v(m+1) ≥ r

−m
n
r , if i ∈ {1, 2, . . . ,m+ 1}, v(m), v(m+1) ≥ r, v(m+2) < r

−m
n
r , if i ∈ {m+ 2, . . . , n}, v(m) ≥ r, v(m+1), v(m+2) < r

The following examples illustrate the mechanism. In each case, let N = {1, 2, 3, 4, 5} and

m = 2.

Example 4.6 Consider the valuation profile v where v3 > v2 > v4 > r > v1 > v5. The

allocation probabilities are f3(v) = f2(v) = 2
5

+ 3
5
r
v4

and f4(v) = f1(v) = f5(v) = 0. Agents

3 and 2 pay
(
2
5

+ 3
5
r
v4

)
v4 each. Agents 3, 2 and 4 receive 2

5
r each and agents 1 and 5 receive

2
5
v4 each. So, p3(v) = p2(v) = 2

5
v4 + 1

5
r, p4(v) = −2

5
r and p1(v) = p5(v) = −2

5
v4.

Example 4.7 Consider the valuation profile v where v2 > v5 > r > v1 > v4 > v3. The

allocation probabilities are f2(v) = f5(v) = 3
5

and f1(v) = f4(v) = f3(v) = 0. Agents

2 and 5 pay 3
5
r each. Agents 1, 4 and 3 receive 2

5
r each. So, p2(v) = p5(v) = 3

5
r, and

p1(v) = p4(v) = p3(v) = −2
5
r.

Example 4.8 Consider the valuation profile v where v5 > v1 > v3 > v4 > r > v2. The

allocation probabilities are f5(v) = f1(v) = 2
5

+ 3
5
v4

v3
and f3(v) = f4(v) = f2(v) = 0. Agents

5 and 1 pay
(
2
5

+ 3
5
v4

v3

)
v3 each. Agents 5, 1 and 3 receive 2

5
v4 each and agents 4 and 2 receive

2
5
v3 each. So, p5(v) = p1(v) = 2

5
v3 + 1

5
v4, p3(v) = −2

5
v4 and p4(v) = p2(v) = −2

5
v3.
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Clearly, the mechanism is BB and also IR as each agent gets non-negative utility. We

illustrate that it is DSIC as well. In the Example 4.7, let agent 3 report v′3 such that

v2 > v′3 > v5 > r > v1 > v4. Agent 3 is allocated the good with probability 2
5

+ 3
5
r
v5

and has

to pay 2
5
v5 + 1

5
r. The change in his utility is(2

5
+

3

5

r

v5

)
v3 −

(2

5
v5 +

1

5
r
)
− 2

5
r =

(2

5
+

3

5

r

v5

)
(v3 − v5) < 0

Agent 3 has no incentive to report v′3. Similarly, it can be shown that no agent has any

incentive to misreport. The mechanism is DSIC. The next proposition generalizes this.

Proposition 4.2 The BR mechanism is BB, IR and DSIC.

The proof is in the Appendix. The next subsection discusses the welfare properties of

this mechanism.

4.5.1 Welfare properties

In auction theory, the seller’s revenue can be improved by setting a reserve price (see Krishna

(2009) for details). In our setting where budgets are balanced, we show nevertheless that

reserve prices are useful in improving the expected welfare generated by the mechanism.

We first give the formal description of BR mechanism when there is a single good. Sub-

stituting m = 1, the allocation functions are as follows:

fBR(i) (v) =



1
|v[1]|

((
1− 2

n

)
+ 2

n

v(3)

v(2)

)
, if i ∈ v[1], v(2), v(3) ≥ r

1
|v[1]|

((
1− 2

n

)
+ 2

n
r
v(2)

)
, if i ∈ v[1], v(2) ≥ r, v(3) < r

1− 1
n

, if i ∈ v[1], v(1) ≥ r, v(2), v(3) < r

0 , otherwise

The payment functions are given by:

pBR(i) (v) = pBR(i) (0, v−(i)) + v(i)f
BR
(i) (v)−

v(i)∫
0

fBR(i) (x, v−(i))dx

Here,

pBR(i) (0, v−(i)) =


−v(3)

n
, if i ∈ {1, 2} and v(2), v(3) ≥ r

−v(2)

n
, if i ∈ {3, . . . , n} and v(2) ≥ r

− r
n

, if i ∈ {1, 2}, v(1), v(2) ≥ r, v(3) < r or if i ∈ {2, 3, . . . , n}, v(1) ≥ r, v(2) < r

0 , if i = 1, and v(1) ≥ r, v(2) < r
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The total welfare generated by this mechanism is

WBR(v) =



((
1− 2

n

)
+ 2

n

v(3)

v(2)

)
v(1) , if v(1), v(2), v(3) ≥ r((

1− 2
n

)
+ 2

n
r
v(2)

)
v(1) , if v(1), v(2) ≥ r and v(3), v(4), . . . , v(n) < r(

n−1
n

)
v(1) , if v(1) ≥ r and v(2), v(3), . . . , v(n) < r

0 , otherwise

Before we compare the welfare generated by this mechanism with that of the probability-

burning mechanism of Mishra and Sharma (2018), we describe the MS mechanism in detail.

The allocation rule is as follows:

fMS
(i) (v) =

 1
|v[1]|

((
1− 2

n

)
+ 2

n

v(3)

v(2)

)
, if i ∈ v[1]

0 , otherwise

The payment functions are given by:

pMS
(i) (v) = pMS

(i) (0, v−(i)) + v(i)f
MS
(i) (v)−

v(i)∫
0

fMS
(i) (x, v−(i))dx

Here,

pMS
(i) (0, v−(i)) =

−
v(3)

n
, if i ∈ {1, 2}

−v(2)

n
, if i ∈ {3, . . . , n}

For a valuation profile v such that v(1) ≥ r and v(2) < r, the welfare generated by BR

mechanism is greater than that of MS mechanism if

1− 1

n
>
(
1− 2

n

)
+

2

n

v(3)
v(2)

(4.2)

or, v(2) > 2v(3)

So, setting a reserve price does improve the total welfare of the agents at some valuation

profiles as the allocation probability is greater in the BR mechanism. Also, note that the

worst-case efficiency ratio of this mechanism is zero i.e. αBR = 0.

We state the main result of this section.

Theorem 4.2 Assume G to be uniformly distributed. Then,

1. for m = 2, n = 4, r = 0 does not maximize the expected total welfare of BR mechanism
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2. for m = 1, n ≥ 3 the reserve price that maximizes the expected total welfare of BR

mechanism is r∗ = 1
e
, and

3. for m = 1 and any n, E[WBR] > E[WMS].

Proof: The expected total welfare when m = 2, n = 4 is:

E[WBR] = E
[(1

4
+

3

4

v(4)
v(3)

)
(v(1) + v(2))|v(1), v(2), v(3), v(4) ≥ r

]
Pr(v(1), v(2), v(3), v(4) ≥ r)

+ E
[(1

4
+

3

4

r

v(3)

)
(v(1) + v(2))|v(1), v(2), v(3) ≥ r ∩ v(4) < r

]
Pr(v(1), v(2), v(3) ≥ r

∩ v(4) < r)

+ E
[(1

2

)
(v(1) + v(2))|v(1), v(2) ≥ r ∩ v(3), v(4) < r

]
Pr(v(1), v(2) ≥ r

∩ v(3), v(4) < r)

As G is the uniform distribution, substituting in the above expression and taking deriva-

tive with respect to r, we get

dE[WBR]

dr
=

3

2
r(3r2 + 8r − 6 log(r)− 11)

For r ∈ (0, 0.219), dE[WBR]
dr

> 0. The expected total welfare increases as the reserve price

increases from zero. Hence, when there is a reserve price the expected total welfare of agents

is higher than when there is no reserve price.

The expected total welfare of BR mechanism when m = 1 is

E[WBR] = E
[((

1− 2

n

)
+

2

n

v(3)
v(2)

)
v(1)|v(1), v(2), v(3) ≥ r

]
Pr(v(1), v(2), v(3) ≥ r)

+ E
[((

1− 2

n

)
+

2

n

r

v(2)

)
v(1)|v(1), v(2) ≥ r and v(3) < r

]
Pr(v(1), v(2) ≥ r and v(3) < r)

+ E
[(

1− 1

n

)
v(1)|v(1) ≥ r, v(2) < r

]
Pr(v(1) ≥ r, v(2) < r)

=

1∫
r

v1∫
r

v2∫
r

v3∫
0

. . .

vn−1∫
0

n!
((

1− 2

n

)
+

2

n

v3
v2

)
v1g(vn)g(vn−1) . . . g(v1)dvn . . . dv1

+

1∫
r

v1∫
r

r∫
0

v3∫
0

. . .

vn−1∫
0

n!
((

1− 2

n

)
+

2

n

r

v2

)
v1g(vn)g(vn−1) . . . g(v1)dvn . . . dv1

+
(n− 1)

n

1∫
r

r∫
0

v2∫
0

. . .

vn−1∫
0

(n!)v1g(vn)g(vn−1) . . . g(v1)dvn . . . dv1

101



=

1∫
r

v1∫
r

v2∫
r

n!

(n− 3)!

((
1− 2

n

)
+

2

n

v3
v2

)
v1G

n−3(v3)g(v3)g(v2)g(v1)dv3dv2dv1

+

1∫
r

v1∫
r

n!

(n− 2)!

((
1− 2

n

)
+

2

n

r

v2

)
v1G

n−2(r)g(v2)g(v1)dv2dv1

+
(n− 1)

n

1∫
r

n!

(n− 1)!
v1G

n−1(r)g(v1)dv1

=
n!

(n− 2)!

1∫
r

v1∫
r

(
Gn−2(v2)+

v2∫
r

2

nv2
Gn−3(v3)dv3

)
v1g(v2)g(v1)dv2dv1

+
(n− 1)

n

1∫
r

n!

(n− 1)!
v1G

n−1(r)g(v1)dv1

Taking the derivative with respect to r, we get

dE[WBR]

dr
= −(n− 1)rg(r)Gn−1(r) + (n− 1)2g(r)Gn−2(r)

1∫
r

v1g(v1)dv1

− n(n− 1)Gn−2(r)g(r)

1∫
r

v1g(v1)dv1 − (n− 1)Gn−3(r)

1∫
r

v1∫
r

2v1
v2
g(v2)g(v1)dv2dv1 (4.3)

As G is the uniform distribution, equating (4.3) with zero at r = r∗, we have

− n

2
(n− 1)(r∗)n−2(1− (r∗)2) +

1

2
(n− 1)(r∗)n−2((r∗)2 − 2 log(r∗)− 1)

+
n− 1

2
((n− 1)(r∗)n−2 − (n+ 1)(r∗)n) = 0

Simplifying, we get r∗ = 1
e

= 0.367. The maximum indeed occurs at this point as at

r = r∗,

d2E[WBR]

dr2
= −(n− 1)(n− 2)rn−3(1 + log(r))− (n− 1)rn−3 = −(n− 1)

en−3
< 0

The expected total welfare at this reserve price is

E[WBR] =
n− 2

n− 1
+

1

(n− 1)en−1

For n = 3, Figure 4.2 plots the expected total welfare of the agents with respect to

the reserve price. From Mishra and Sharma (2018), the MS mechanism has expected total

welfare of

E[WMS] =
n− 2

n− 1
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Figure 4.2: Expected total welfare of agents for uniform distribution when n=3

Clearly, E[WBR] > E[WMS]. �

For the specific case of n = 4 and m = 2 we show that the expected total welfare of BR

mechanism is strictly greater than when there is no reserve price (at r = 0 the BR mechanism

is same as the EP mechanism). Also, the BR mechanism generates higher expected total

welfare than the MS mechanism and as the value of n increases, the two values converge.

Setting a reserve price r > 0 is beneficial for the mechanism designer. There is no allocation

if there are not at least m agents whose valuations are above the reserve price. This leads

to loss of welfare for the agents. But at some valuation profiles like the example in (4.2),

the BR mechanism allocates the units of good with higher probability as compared to the

MS mechanism. Thus, the BR mechanism generates higher welfare as compared to the MS

mechanism which also offsets the welfare losses incurred by not allocating when the agents

have low valuations.

4.6 Conclusion

In this chapter, we study probability-burning mechanisms for allocation of multiple units of

good. We propose the equal-burning-mechanism and study some of its welfare properties.

It remains to be seen whether the EP mechanism is welfare-undominated in the class of

BB, DSIC and IR mechanisms that allocate only to the topmost agents. Also, whether it

is possible to design a mechanism that allocates unequally to the agents and also generates

higher total welfare compared to the EP mechanism is also an open question.
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Then we propose a probability-burning mechanism when there is a reserve price. We

find that the expected total welfare of such a mechanism for single good is higher than the

expected total welfare of MS mechanism when the valuations are drawn from the uniform

distribution. It remains to be seen whether this result still holds when the valuations are

drawn from a general distribution. It will also be interesting to study how the reserve price

that maximizes the expected total welfare of agents changes as m and n increase.

4.7 Appendix

Proof of Proposition 4.1:

Consider a valuation profile v ∈ V n such that v(1) > v(2) > . . . > v(n). The payments

made by top m agents are
(
1− m+1

n
+ m+1

n

v(m+2)

v(m+1)

)
v(m+1) each. So, p(1)(v) = . . . = p(m)(v) =(

1 − m+1
n

)
v(m+1) +

(
1
n

)
v(m+2) and p(m+1)(v) = −m

n
v(m+2) and p(m+2)(v) = . . . = p(n)(v) =

−m
n
v(m+1). Clearly, the payments are balanced i.e.

∑
i∈N
p(i)(v) = 0. Each agent gets a non-

negative utility. So the mechanism is IR.

Pick any agent i from among the lowest n−m− 1 ranked agents. The agent’s utility is
m
n
vm+1. Let agent i misreport as v′i′ such that his rank in new valuation profile is i

′
and is

among the top m agents in new valuation profile. The agent’s utility from misreporting is(
1− m+ 1

n
+
m+ 1

n

v
′

(m+2)

v
′
(m+1)

)
v(i) −

(
1− (m+ 1)

n
+

(m+ 1)

n

v
′

(m+2)

v
′
(m+1)

)
v(m) +

m

n
v(m+1)

The net change in utility is(
1− m+ 1

n
+
m+ 1

n

v
′

(m+2)

v
′
(m+1)

)
v(i) −

(
1− (m+ 1)

n
+

(m+ 1)

n

v
′

(m+2)

v
′
(m+1)

)
v(m) +

m

n
v(m+1) −

m

n
v(m+1)

=
(

1− m+ 1

n
+
m+ 1

n

v
′

(m+2)

v
′
(m+1)

)
(v(i) − v(m)) < 0

So, the agent i has no incentive to misreport.

Suppose the (m+ 1)th ranked agent is picked. Agent’s utility when he reports truthfully

is m
n
v(m+2). Let him misreport as v′i′ such that his rank is among the top m agents in new

valuation profile. The agent’s utility from misreporting is(
1− m+ 1

n
+
m+ 1

n

v
′

(m+2)

v
′
(m+1)

)
v(m+1) −

(
1− (m+ 1)

n
+

(m+ 1)

n

v
′

(m+2)

v
′
(m+1)

)
v(m) +

m

n
v(m+2)
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The net change in utility is

(
1− m+ 1

n
+
m+ 1

n

v
′

(m+2)

v
′
(m+1)

)
v(m+1) −

(
1− (m+ 1)

n
+

(m+ 1)

n

v
′

(m+2)

v
′
(m+1)

)
v(m) +

m

n
v(m+2) −

m

n
v(m+2)

=
(

1− m+ 1

n
+
m+ 1

n

v
′

(m+2)

v
′
(m+1)

)
(v(m+1) − v(m)) < 0

So, the agent ranked m+ 1 has no incentive to misreport.

Similarly, no other agent has any incentive to misreport. Hence, the EP mechanism is

DSIC. �

Proof of Proposition 4.2:

If v(m+2) ≥ r, the mechanism is same as EP mechanism and we have proved the properties

in Proposition 4.1.

Consider a valuation profile v ∈ V n such that v(1) > v(2) > . . . > v(m+1) > r > v(m+2) >

. . . > v(n). The payments made by top m agents are
(
1− m+1

n
+ m+1

n
r

v(m+1)

)
v(m+1) each. So,

p(1)(v) = . . . = p(m)(v) =
(
1 − m+1

n

)
v(m+1) +

(
1
n

)
r and p(m+1)(v) = −m

n
r and p(m+2)(v) =

. . . = p(n)(v) = −m
n
v(m+1). Clearly, the payments are balanced i.e.

∑
i∈N
p(i)(v) = 0.

When the valuation profile is such that v(1) > v(2) > . . . > v(m) > r > v(m+1) . . . > v(n),

the payments made by top m agents are
(
1− m

n

)
r each. So, p(1)(v) = . . . = p(m)(v) =

(
n−m
n

)
r

and p(m+1)(v) = p(m+2)(v) = . . . = p(n)(v) = −m
n
r. Clearly, the payments are balanced i.e.∑

i∈N
p(i)(v) = 0.

In both these cases, each agent gets a non-negative utility. So the mechanism is IR.

Consider a valuation profile v ∈ V n. Let v1 ≥ v2 ≥ . . . ≥ vn. The valuation profile is

partitioned into the sets v[1], v[2], . . . , v[n0(v)]. The top-only allocation is such that the units

of good are allocated only to agents in v[1], v[2], . . . , v[m(v)] if m(v) ≤ mr(v). There are 3

possible cases

1. If m(v) ≤ mr(v) and v(m+2) ∈ v[k] for some k ≤ mr(v)

If any agent i misreports to any value v′i ≥ r, the mechanism is same as equal-

probability-burning mechanism which is DSIC.

If any agent i ∈ v[k] where k ∈ {1, 2, . . . ,m(v)} misreports as v′i < r, he gets a utility
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of
v(m+2)

n
and

mk

|v[k]|

(
1− 2

n
+

2

n

v3
v2

)
v1 −

mk

|v[k]|

(
1− 2

n
+

2

n

v3
v2

)
v2 +

v(m+2)

n
−
v(m+2)

n
< 0

If any agent i ∈ v[k] where k ∈ {m(v) + 1, . . . ,mr(v)} misreports as v′i < r, he gets a

utility of
v(m+1)

n
which is same as he gets at vi.

2. If m(v) ≤ mr(v), v(m+1) ∈ v[j] where j ≤ mr(v), and v(m+2) ∈ v[mr(v) + 1]

If any agent i ∈ v[k] where k ∈ {1, 2, . . . ,m(v)} misreports to any value v′i < r, he gets

a utility of m
n
r and

mk

|v[k]|

(
1−(m+ 1)

n
+

(m+ 1)

n

r

v(m+1)

)
vi−

mk

|v[k]|

(
1−(m+ 1)

n
+

(m+ 1)

n

r

v(m+1)

)
v(m+1)+

m

n
r−m

n
r < 0

Suppose v(m+1) ∈ v[m(v) + 1]. If any agent i ∈ v[k] where k ∈ {1, 2, . . . ,m(v)}
misreports to any value v(m+1) ≥ v′i, he gets a utility of m

n
r and

mk

|v[k]|

(
1−(m+ 1)

n
+

(m+ 1)

n

r

v(m+1)

)
vi−

mk

|v[k]|

(
1−(m+ 1)

n
+

(m+ 1)

n

r

v(m+1)

)
v(m+1)+

m

n
r−m

n
r < 0

If any agent i ∈ v[k] where k ∈ {mr(v)+1, . . . , n0(v)} misreports to any value v′i ≥ vm,

he gets a utility of
m′k
|v′[k]|

(
1− (m+1)

n
+ (m+1)

n

v(m+1)

vm

)
vi−

m′k
|v′[k]|

(
1− (m+1)

n
+ (m+1)

n

v(m+1)

vm

)
vm+

m
n
vm and

m′k
|v′[k]|

(
1− (m+ 1)

n
+

(m+ 1)

n

v(m+1)

vm

)
vi −

m′k
|v′[k]|

(
1− (m+ 1)

n
+

(m+ 1)

n

v(m+1)

vm

)
vm

+
m

n
v(m+1) −

m

n
v(m+1) < 0

If any agent i ∈ v[k] where k ∈ {mr(v)+1, . . . , n0(v)} misreports to any value v(m+1) >

v′i ≥ r then he gets a utility of m
n
v(m+1) and this is same as he gets at vi.

3. If m(v) = mr(v) and v(m+1) ∈ v[m(v) + 1]

If any agent i ∈ v[k] where k ∈ {m(v) + 1, . . . , n0(v)} misreports to any value v′i ≥ vm,

he gets a utility of
m′k
|v′[k]|

(
1− (m+1)

n
+ (m+1)

n
r
vm

)
vi−

m′k
|v′[k]|

(
1− (m+1)

n
+ (m+1)

n
r
vm

)
vm + m

n
r

and

m′k
|v′[k]|

(
1−(m+ 1)

n
+

(m+ 1)

n

r

vm

)
vi−

m′k
|v′[k]|

(
1−(m+ 1)

n
+

(m+ 1)

n

r

vm

)
vm+

m

n
r−m

n
r < 0

If any agent i ∈ v[k] where k ∈ {m(v) + 1, . . . , n0(v)} misreports to any value vm >

v′i ≥ r, he gets a utility of m
n
r and this is same as the utility he gets at vi.

Hence, the BR mechanism is DSIC. �
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