
Indian Statistical Institute
Kolkata

On Search of Highly Nonlinear
Boolean Functions

Manmatha Roy
Supervisor: Subhamoy Maitra

A thesis submitted in partial fulfilment of
the degree of M.Tech in Computer Science

11th July 2020

i

Contents

Contents ii

I Preliminary 1

1 Boolean Functions 2
1.1 Definition of Boolean Functions 2
1.2 Algebraic Normal Form . 3
1.3 Walsh Hadamard Transformation 4
1.4 Important Cryptographic Properties of Boolean Functions . . 5
1.5 Document Structure . 6

2 On Bent Functions 7
2.1 Non-linearity Revisited . 7
2.2 Definition of Bent Functions 8
2.3 Properties Of Bent Functions 9
2.4 Equivalent Represenation of Bent Functions 10
2.5 Construction of Bent Functions 12
2.6 Application of Bent Functions 12
2.7 Open Problems . 13

II Problem Definition 15

3 The Curious Case of Odd n 16
3.1 The Patterson Weidemann Construction 18
3.2 Notion of Interleaved Sequences 21
3.3 Modified Patterson Wiedemann Construction 27
3.4 The Case of n = 15 . 30
3.5 The Case of n = 21 . 30
3.6 Algorithm: Prepare-Inequalities(n, ς) 31

III Our Works 32

4 Solving PWF21 Inequalities 33
4.1 Definition of Integer Programming 33

ii

Contents

4.2 Using Exact Solvers For Integer Programming 35
4.3 Using Pseudo Boolean Solvers 38
4.4 Using Metaheuristics Methods 39

5 PWF21 in Quantum Paradigm 41
5.1 Quantum Annealing Technique 41
5.2 D’WAVE Architecture . 42
5.3 QUBO Formulation of Our Problem 43
5.4 Experimenting with DWAVE 44

6 Conclusion and Future Works 45

Bibliography 46

iii

PART I

Preliminary

1

CHAPTER 1

Boolean Functions

At the very beginning, we will define some basic definitions related to boolean
functions and their analysis keeping cryptographic applications in mind.

1.1 Definition of Boolean Functions

Let Fn2 be the vector space over prime field F2. And x be a vector of length n
over F2. Then boolean function f is defined as a mapping from Fn2 to F2.

f : Fn2 → F2

Like any other mapping from finite domain, boolean functions can be also be
uniquely described by enumeration of function values at all the elements from
its domain set.

f = {(σ, f(σ)) | ∀σ ∈ Fn2 }

For particularly boolean functions, this representation became so popular, it
even got a name for this. It is called truth table of boolean function. It is
visually depicted by a table of 2n rows and 2 columns, where in the first column
there are all possible vectors of F 2

n and in the second column there are values
of the boolean function at those vectors taken in the same order as they were
in the first column.

We suppose that the arguments of a function (i.e., vectors of length n) follow in
lexicographical order. This assumption does not any way affect the definition
of boolean function apart from uniqueness of the representation.

For example, if n = 3, the order is (000), (001), (010), (011), (100), (101), (110), (111)
Let us come back to the truth table representation For instance, the following are
Boolean functions: g : F 2

2 → F2 such that g(00) = g(11) = 1, g(01) = g(10) = 0;
Then the truth table of g can be depicted as follows

x1x2 g(x1x2)
00 1
01 0
10 0
11 1

2

It is to deduce that there exists 22n boolean functions of the form f : Fn2 → F2.
We will call this set of boolean functions of n variable Bn.

1.2 Algebraic Normal Form

Apart from truth table representation, another way of representing boolean
functions is through algebraic formulation of the boolean system.

Algebra of finite fields asserts that there exist unique multivariate polynomial
over GF (2n) for each of boolean functions of n variable.

Let ⊕ and · denote the usual addition and multiplication operation under F2.
Note that sometimes we will be doing abuse of notation here by skipping the
· sign and end up writing xy instead of x · y. It is known that any boolean
function can be uniquely represented by its algebraic normal form.

f(x1x2...xn) =
n∑
k=1

∑
i1i2...ik

ai1i2...ikxi1xi2 ...xin ⊕ a0

where for each k indices i1, ..., ik are pairwise distinct and sets {i1, ..., ik} are
exactly all different nonempty subsets of the set {1, ..., n}; coefficients ai1...ik ,
a0 take values from F2.

If someone has any experience of building equivalent algebraic expression for a
boolean function from its truth table through Karnough Map techniques, she
may remember the problem of non uniqueness of the final algebraic expression.
We want to stress on the fact that algebraic normal form uniquely represents a
boolean function. Thanks to earlier research in this area, given a truth table
one can derive it’s algebraic normal form. The algorithm is quite involved.

Some more definitions are now ready to be given at this point.

• For a boolean function f , the number of variables in the longest item
of it’s algebraic normal form, is called the algebraic degree of a function
(or briefly degree) and is denoted by deg(f). A boolean function is called
affine, quadratic, or cubic when it’s degree is 1, 2, or 3 respectively. A
special case of affine function, when a0 = 0, is called linear function.

• A boolean function is called homogeneous, if all the terms of it’s algebraic
normal form contain equal number of variables only.

• A boolean function is called non-degenerate, if it’s algebraic normal form
contains all the variables.

3

1.3 Walsh Hadamard Transformation

Here comes the central tool of analysis of boolean functions.

The Walsh-Hadamard transform of a boolean function f in n variables is the
integer-valued function on F 2

n defined as

Wf (γ) =
∑
x∈Fn2

(−1)〈x.γ〉+f(x) ∀γ ∈ Fn2

Numbers Wf (γ) are called Walsh-Hadamard coefficients of a boolean function
f . The ordered multiset Wf = {Wf (x) : x ∈ Fn2 },where vector x ∈ Fn2 in
lexicographical order, is the Walsh-Hadamard spectrum of a function f .

There are many important lemmas involving Walsh-Hadamard transformation,
many of them central to the analysis of boolean functions. We state here some
of them, we would be using in our work [CS17a].
Theorem 1.3.1. Walsh-Hadamard spectrum determines a boolean function in a
unique manner.

Theorem 1.3.2. For a boolean function f in n variables and an arbitrary vector
x ∈ Fn2 ,

(−1)f (x) = 1
2n

∑
γ∈Fn2

Wf (γ)(−1)〈x.γ〉

Theorem 1.3.3. A function f is balanced if and only if Wf (0) = 0.

Theorem 1.3.4. For a Boolean function f in n variables, Parseval’s equality
holds ∑

γ∈Fn2

(Wf (γ))2 = 22n

Theorem 1.3.5. For every Boolean function f in n variables,

max
γ∈Fn2

|Wf (γ)| ≥ 2n2

4

1.4 Important Cryptographic Properties of Boolean
Functions

Property Definition
Hamming

Weight
The Hamming weight of a binary string T , denoted
by wt(T), is the number of 1’s in T .

Balanced
An n-variable function f is said to be balanced if it’s
truth table contains an equal number of 0’s and 1’s,
i.e., wt(f) = 2n−1

Nonlinearity

Let A(n) be the set of all n-variable affine functions.
Then nonlinearity of a function f of n variable is
defined as

nl(f) = min
g∈A(n)

d(f, g)

Correlation
immunity

A function f is said to be correlation immune (CI) of
order m (m-CI) if for every m indices 1 ≤ i1 < i2 <
... < im ≤ n and for every tuple (a1a2...am) ∈ Fm2 ,

Prob(f(x) = 1|(xi1 , xi2 , xi3 ...xin = (a1, a2, ...am))

= Prob(f(x) = 1)

Auto-
correlation

Another important results in the area of boolean
function analysis is that given any n variable boolean
function f , it is always possible to get a boolean
function g with degree at most dn2 e such that fg is of
degree at most dn2 e Here the functions are considered
to be multivariate polynomials over F2 and fg is the
polynomial multiplication over F2.

• Given f ∈ Bn, a nonzero function g ∈ Bn is
called an annihilator of f if fg = 0. By AN(f)
we mean the set of annihilators of f .

• Given f ∈ Bn, the algebraic immunity of f ,
denoted by µ(f) = deg(g), where g ∈ Bn is the
minimum degree nonzero function such that
either fg = 0or(1 + f)g = 0 [CS17b] [CS17d]
[CS17e].

5

1.5 Document Structure

The rest of the text is organised as follows

Chapter 2 introduces bent functions, their properties in a detailed manner.

Chapter 3 provides sketches on Patterson-Weidemann construction construc-
tion technique of boolean functions of odd no of variable beating bent
concatenation bound.

Chapter 4 details our efforts on computer aided search techniques for finding
Patterson-Weidemann functions

Chapter 5 details our efforts for the same using quantum powered systems

Chapter 6 conclusion and sketches direction of further research

6

CHAPTER 2

On Bent Functions

2.1 Non-linearity Revisited

In earlier portion of the text, Walsh Hadamard transformation of the boolean
function was defined as

Wf (γ) =
∑
x∈Fn2

(−1)〈x.γ〉⊕f(x) ∀γ ∈ Fn2

=
∑
x∈Fn2

(−1)lγ⊕f(x) ∀γ ∈ Fn2
(2.1)

Where lγ = 〈x.γ〉 ∈ Ln the set of all linear functions of n variable.

Careful inspection allow us to interpret the expression in the following way

• Fix any γ ∈ Fn2
• Fixing γ also fixes lγ = 〈x.γ〉

• ∀x ∈ Fn2 , compare function values of our function of interest f and lγ .

• Start a counter with zero. count +1 when they are matching, −1 otherwise.

• After all x have been processed, counter value is Walsh-Hadamard value
at γ

Therefore it can reformulated in the following way

Wf (γ) = #(f = lγ)−#(f 6= lγ)
= 2n − 2.#(f 6= lγ)
= 2n − 2.d(f, lγ)
= 2n − 2.wt(f ⊕ lγ)

(2.2)

At this point, we recall the definition of nonlinearity of a boolean function f
in n variables. It is the hamming distance with respect to the set of all affine
functions. Mathematically it can be expressed as follows

7

nl(f) = min
g∈An

dist(f, g)

If, among all the linear functions of n variable, the minimum distance of f
occurs for the linear function lγ , then above equation implies for that Wf (γ)
has the maximum value in the Walsh spectrum of f .

On the other hand, if the minimum distance occurs for the affine function hγ ,
then −Wf (γ) will have the maximum value.

Therefore, in terms of the Walsh spectrum, the nonlinearity of f is given by

nl(f) = 2n−1 − 1
2 max
γ∈F2n

|Wf (γ)|

As we already stated in earlier section, for any boolean function f , maximum
of absolute value of Walsh-Hadamard spectrum is lower bounded by 2n2 ,
nonlinearity of any boolean function is upper bounded at 2n−1 − 2n2−1 [CS17a]

2.2 Definition of Bent Functions

If n is even, then the maximal possible value of nonlinearity can be found using
the expression

2n−1 − 2n2−1

. When n is odd, then maximum nonlinearity bound can’t be found using
this expression, in fact it still remains as one of the unsolved p. Leaving this
complications for the later part of this text, we move to define bent functions.

1. A bent function is a maximal nonlinear Boolean function
with an even number of variables. Its nonlinearity is
2n−1 − 2fraqn2−1

2. A bent function is a boolean function in n variables (n
is even) such that

|Wf (γ)| = 2n2 ∀γ ∈ Fn2

3. A bent function is a boolean function in n variables (n
is even) such that for any nonzero vector y its derivative
Dyf(x) = f(x)⊕f(x⊕y) is balanced, that is, it takes values
0 and 1 equally often

First two definitions directly follows from our discussion. Intuition for the third
one can be described as follows.
It is called ’bent’ because it is maximum possible distance from all
of the linear and affine functions lying in the same space.

8

2.3 Properties Of Bent Functions

Though our work involves boolean functions of odd no of variables only with
high nonlinearity, we will provide some interesting results on bent functions.
The reason is that even if the type of functions we will be working with are
not bent functions, they have uncanny similarity with bent functions. For
example many of the attempts of the construction methods were inspired by
some construction methods of the bent function. In some sense, bent functions
are closest neighbours of the functions we would be dealing with. We will study
bent functions to have a rough understanding on different aspects of functions
with high nonlinearity.

The following property of bent functions is very important and plays a key role
in proving many results in bent functions

Degree of Bent Functions

The degree deg(f) of a bent function f in n ≥ 4 variables is not more than n
2 .

If n = 2, a bent function is quadratic.

Invariance Under Affine Transformations

It is desirable that a nonlinearity criterion remains invariant under a large group
of transformations. For many applications, this symmetry group should contain
the group of affine transformations. The perfect nonlinear or bent functions are
indeed invariant under this group, as we shall see now.
First we will define affine equivalence in a more formal way.

f and g are affinely equivalent if there is a nonsingular n×n matrix
A and a vector b of length n, such that

g(x) = f(Ax⊕ b) ∀x ∈ Fn2

Additionally f and g are extended affinely equivalent if there is a
nonsingular n×n matrix A, vectors b and c of length n, and a constant
λ ∈ F2, such that

g(x) = f(Ax⊕ b)⊕ 〈c, x〉 ⊕ λ ∀x ∈ Fn2

Now we are ready to state our main theorems.

1. a Boolean function f(Ax ⊕ b) is bent, where A is an n × n invertible
matrix over F2 and b is an arbitrary vector of length n.

2. a function f ⊕ l is bent for any affine function l .

Thus, class Bn is closed up to any non-degenerate affine transformation of
variables and addition of any affine boolean function.[CS17c]

9

Duality of Bent Functions

For a bent function f , the dual function f ′ in n variables is defined by the
equality

Wf (γ) = 2n2 (−1)f ′(γ)

This definition is correct since |Wf (γ)| = 2n2 ∀γ ∈ Fn2 It is not hard to prove
that the function f ′ is a bent function too. It holds that f = f ′ [CS17c].

Hamming Weight of Bent Functions

Every bent function in n variables is of Hamming weight of 2n−1±2n2−1 [Tok15a]

Nondegeneracy of Bent Functions

A bent function in n variables is nondegenerate; that is, all variables are
presented in its algebraic normal form. [Tok15a]

2.4 Equivalent Represenation of Bent Functions

Hadamard Matrices

A Hadamard matrix is a square k × k matrix A with elements ±1 such that
AA′ = kI. Let us enumerate the rows and columns of a 2n× 2n matrix with
binary vectors x and y of length n.

Theorem 2.4.1. The following statements are equivalent [Tok15a]:

2.4.1.1. A Boolean function f in n variables is bent.

2.4.1.2. A = (axy), whereaxy = 2−fraqn2Wf (x ⊕ y), is a Hadamard
matrix.

2.4.1.3. D = (dxy), wheredxy = (−1)f(x⊕y), is a Hadamard matrix.

Difference Sets

From the beginning, bent functions were studied in connection with difference
sets. Let a finite Abelian group G have order v and be presented in the additive
form. A subset D ⊆ G of size k is called a difference set with parameters
(v, k, λ) if every nonzero element g ∈ G can be represented in the form g = b−d
exactly in λ ways, where b and d are elements of the set D.

10

Theorem 2.4.2. A Boolean function f in n variables is a bent function
if and only if the set D = {(x, f(x))|x ∈ Fn2 } is a difference set with
parameters (2n+1, 2n, 2n−1) in the additive group Zn+1

2

Strongly Regular Graph

Consider the Cayley graph Gf = G(Fn2 , supp(f)) of a Boolean function f . All
vectors of length n are vertices of the graph. There is an edge between two
vertices x and y if vector x⊕ y belongs to supp(f).A regular graph G is called
strongly regular if there are nonnegative integers λ and µ such that for any
vertices x and y the number of vertices incident to x and y is both equal λ or
µ and depends on the presence or absence of the edge between x and y. The
following is proven:

Theorem 2.4.3. A Boolean function f is bent if and only if the Cayley
graph Gf is strongly regular and λ = µ.

Bent Rectangles

Let f be a Boolean function in n variables, n = r + k. Let us represent the
vector of values textitf of a function f in the form textitf = (f1, ..., f2r), where
every vector fi has length 2k. Let fi be a boolean function in k variables for
which fi is the vector of values. Let us consider the matrix Mf of size 2r × 2k
with spectral vectors Wf (1), ...,Wf (2r) as rows. A matrix of size 2r × 2k is
called a bent rectangle if every line (row or column) multiplied by 2(r−n2) is
a spectral vector of the appropriate boolean function. The following theorem
holds

Theorem 2.4.4. A Boolean function f is a bent function if and only if
the matrix Mf is a bent rectangle

11

2.5 Construction of Bent Functions

Maiorana-
Mc Farland’s
class

the best known construction of bent functions defined
in bivariate form (explicit construction). fπ,g(x, y) =
x.π(y) + g(y) with π : Fm2 → Fm2 and g : Fm2 → F2

Dillon’s Par-
tial Spreads
class PS−

well known construction of bent functions whose bent-
ness is achieved under a condition based on a decom-
position of its supports (not explicit construction)
support(f) = ∪i∈[2m−1] E

∗
i where Ei are m dimen-

sional vector spaces with Ei ∩ Ej = φ[Tok15b]
[Tok15c]

Dillon’s Par-
tial Spreads
class PSap

Functions are defined explicitly in bivariate form
:f(x, y) = g(xy2m−2) with g as a balanced Boolean
function on Fm2 which vanishes at 0 [Tok15b] [Tok15c]

.

2.6 Application of Bent Functions

Bent Functions in Cryptography

• In the arena of symmetric key cryptography, where the outputs of several
linear feedback shift registers (LFSRs) are combined by a nonlinear
Boolean function to generate the keystream, the correlation between
the keystream and one of the LFSR outputs (or a linear combination of
the LFSR outputs) is used to obtain the key. In other words, a correlation
attack can be mounted if there is a high correlation between the combining
function and a linear function, which implies low nonlinearity. Hence, as
it is well known, high nonlinearity provides resistance against correlation
and fast correlation attacks. Though bent functions are not directly used
in building cryptographic primitives, study on them sheds helps the design
as well as analysis of the ciphers a lot.

• Their derivatives Df : x → f(x) + f(x + a) are balanced, this has an
important relationship with the differential attack on block ciphers.

Bent Functions in Coding Theory

• The covering radius plays an important role in error correcting codes. It
essentially measures the maximum errors to be corrected in the context

12

of maximum-likelihood decoding. The Covering radius ρ(1, n) of the
Reed-Muller code RM(1, n) coincides with the maximum nonlinearity
nl(f).

• It is well-known that Kerdock codes are constructed from bent functions.
Moreover, bent functions can also be used to construct linear codes with
few weights. Such codes have applications in secret sharing, authentication
codes, regular graphs.

2.7 Open Problems

Equivalent Representation

Bent functions can be represented in terms of Hadamard matrices, difference
sets, block schemes, linear spreads, sets of subspaces in the Boolean cube,
strongly regular graphs, and bent rectangles;The problem is to obtain a new
equivalent representation of bent functions in order to get a classification of
them [Tok15a]

Exact No of Bent Functions

It is known that there are exactly 8, 896, 5425430528 u 232.3, and29 ·
193887869660028067003488010240 u 2106.29 bent functions in two, four, six, and
eight variables, respectively. But what is the exact number of bent functions if
n ≥ 10 [Tok15e]?

Construction of Bent Functions

Propose new direct constructions of bent functions. For now the simplest
constructive class of bent functions is the Maiorana-McFarland class. Are
there other (larger) classes of bent functions with examples that are so easily
constructed [Tok17b] [Tok17c] ?

Algebraic Criteria of Bent Functions

Propose an algebraic characterization of bent functions—that is, find necessary
and sufficient conditions on a trace form (or polynomial form) of a boolean
function to be bent. Think about other algebraic representations of bent
functions [Tok15g].

Cryptographic Properties of Bent Functions

Study the connections between bentness and other cryptographic properties.
For example, prove that there are bent functions in n variables of the maximal

13

possible algebraic immunity fraqn2. For this you need to prove the special
combinatorial conjecture[Cs17c] [Tok15d]?

Duality of Bent Functions

Let A be a subset of F 2
n . Let B be the set of all binary vectors from F 2

n that
are at the maximal possible distance from the set A. Now let A′ be the set of
all vectors that are at the maximal possible distance from B. We call a set A
metrically regular if A = A′. In the case of regular sets, it is possible to say
that there is duality between the definitions of A and B; the set A defines B
and vice versa. It is proven that the set of vectors of all bent functions (affine
functions) is metrically regular. Are there other such sets in the Boolean cube?
Give a classification of them [CS17c] [Tok15d]?

Bounds on no of Bent Functions

Obtain the new (better) upper and lower bounds for the number of bent
functions in n variables. For now there is a large gap between the simple
lower 22

n
2 +log(n−2)−1 and upper 22n−1+ 1

2 (nn
2
) bounds for this number. There are

several improvements of these bounds, but they are not too big [Tok15e] ?

Bent Decomposition Problem

Is it true that an arbitrary Boolean function in n variables (niseven, n ≥ 2) of
degree not more than n

2 can be represented as the sum of two bent functions in
n variables [Tok15f]?

Optimal Codes via Bent Functions

A code C of length 2n is a constant-amplitude code if every nonzero code
word is a vector of values of some bent function in n variables. Such codes
are very important for transmission in code division multiple access. The
following natural problem arises: How does one get constructions of linear
optimal constant amplitude codes? What is the maximal possible dimension of
such a code for any even n [Tok15c]?

14

PART II

Problem Definition

15

CHAPTER 3

The Curious Case of Odd n

The design of Boolean functions on an odd number of variables n achieving very
high nonlinearity, constitutes one of the most challenging problems encountered
in the area of cryptography, coding theory, and combinatorics. Until 1983, it
was believed one can not get functions of odd no of variables having nonlinearity
exceeding bent concatenation bound.

Bent Concatenation Bound: It was proved that for odd n, one can
get a function f of high nonlinearity using two bent functions of (n− 1)
variable in following way

f = (1⊕ xn)f0 ⊕ xnf1

One can prove that, nonlinearity of f is equal to 2n−1 − 2n−1
2 . For long

time it was believed to be highest nonlinearity one can expect from
boolean functions of odd no variables. This constructions essentially
concatenates two smaller truth table to build a big one only thus giving
rationale behind the name.

In their seminal paper [PW83], Patterson and Wiedemann in 1983 could come up
with a construction, involving combinatorial arguments over algebraic elements,
for functions with non linearity exceeding bent concatenation bound. Since
then numerous attempts have been made in finding high nonlinearity functions
of odd variables. We summarize all the best results achieved so far in this
direction of research in bent functions.

1. In 1970, it has been shown that for n = 5, the maximum nonlinearity of
n-variable boolean functions is exactly equal to the bent concatenation
bound, which is 12.

2. In 1980, the question for n = 7 could be solved and it has been noted
that here also the maximum nonlinearity is the bent concatenation bound
which is 56.

3. In 1983, it was shown that one can construct a 15-variable boolean
function f with nonlinearity (215−1 − 2 15−1

2 + 20) = 16276. This
construction was named after the two authors of the original e.g. Patterson
Weidemann construction. It is well known that using this function,

16

one can construct any n-variable Boolean function F with nonlinearity
(2n−1 − 2n−1

2 + 20.2n−15
2) for n > 15. In fact, F can be written as f ⊕ g,

where g is an (n− 15)-variable bent function. Note that this construction
does not preserve the type of function e.g. structure of F and f are not
same.

4. In 2009, 9-variable Boolean functions with nonlinearity 241 = (29−1 −
2 9−1

2 + 1) were identified in the rotation-symmetric class and subsequently
this result was improved to 242 by defining the generalized rotation
symmetric class [KY10].

5. In 2016, boolean functions with 21 variables with non linearity exceeding
bent concatenation bound could be found by modifying Patterson
Weidemann construction, e.g. incorporation of notion of generalized
rotation symmetric boolean function. One thing has to be noted here
about this result. The functions we got in this result has non linearity
221−1 − 2 21−1

2 + 20. While concatenation of Patterson Weidemann type
functions of 15 variable, with bent functions of 6 variable one can get
nonlinearity (2n−1 − 2n−1

2 + 20.2n−15
2), which remains as upper bound of

non linearity for 21 variable till date. But such functions are not Patterson
Weidemann type functions. Hence this new functions can be considered
as Patterson Weidemann type functions of 21 variable with highest non
linearity [KM16].

In light of above mentioned progress of research in this area, we would be now
focusing on Patterson Weidemann constructions and its other expositions as
well as later modifications.

17

3.1 The Patterson Weidemann Construction

Before diving into actual work of the duo , let us have fast recap on some related
definitions from the topic of boolean functions.

• Support: Support of a boolean function is defined as

sup(f) = {x ∈ Fn2 | f(x) = 1}

It is to be noted that support of a boolean function uniquely
determines the function.

• Trace representation of linear function: Trace representation
of a linear function lα = α · x can be described in the following
way

lα = trn1 (αx)

where trn1 (x) =
∑n−1
i=0 x

2i

It is to be noted that, support of a linear function lα defined as

Sup(lα) = {x ∈ Fn2 | trn1 (x) = 1}

In the same way, support of the corresponding affine function hα
defined as

Sup(hα){x ∈ Fn2 | trn1 (x) = 0}

• For two functions f and g on same no of variables n, their hamming
distance can be described as symmetric difference between supports
of those functions

d(f, g) = wt(sup(f)⊕ sup(f))

Now we are ready to look into Patterson-Weidemann construction.
Let a and b be two ppositive integers such that n = a.b and a and b are coprime
to each other. Then we define the following galois fields for our purpose

• M = GF (2ab)

• L = GF (2a)

• J = GF (2b)

• K = GF (2)

18

Let M∗, L∗, J∗,K∗ the corresponding multiplicative group. Now the index of
L∗ in M∗ is

m = 2ab−a
2a − 1

Then M∗ can be written as

M∗ = ∪i∈[m]L
∗ · xi

where x1, x2, ..., xm are coset representatives from respective equivalence classes
of cosets.
Patterson and Weidemann considered functions whose supports are
of the form

sup(f) = ∪i∈[p]L
∗ · xi, p ≤ m

Let Ia,b be the set of all such functions. What they showed that for any f ∈ Ia,b
and for arbitrary linear(affine) functions lα(hα), following inequalities hold

• d(f,0) = l(2a − 1)

• d(f,1) = 2ab− l(2a − 1)

• d(f, hα) = 2ab−1 − 2a · t(α) + l

• d(f, lα) = 2ab−1 − 2a · t(α) + l

In earlier expression 0 and 1 are constant functions with all 0 values and all 1
values respectively, t(α) is the number of cosets of the form L · xi which are
present the support hyperplane of the corresponding linear(or affine) functions.
Now by definition of nonlinearity of boolean functions,

nl(f) = min(l(2a−1), 2ab−l(2a−1), 2ab−1−(2a·t(α)+l, 2ab−1−(2a·t(α)+l) ∀α ∈ Fn2

For any of these functions with nonlinearity nl(f) ≥ 2ab−1 − 2 ab−1
2 each of the

four terms in the min expression should be greater than 2ab−1 − 2 ab−1
2 for all

values of α ∈ Fn2 .Rearranging them we get,

• 2ab−1−2
ab−1

2
2a−1 < l < 2ab−1+2

ab−1
2

2a−1

• 1
2a (2ab−1−2

ab−1
2

2a−1 − 2 ab−1
2) < l(α) < 1

2a (2ab−1+2
ab−1

2
2a−1 + 2 ab−1

2)

Patterson-Weidemann’s next observation was when b = 3 then the cosets of
L∗ ∈ M∗ form the Desarguesian projective plane PG(2, 2a). Now, suppose
n = 15, a = 5, b = 3. Let L∗ and J∗ be the multiplicative group of GF (23) and
GF (25) respectively. One can identify the group M∗ to the group ψ(M∗) of
left multiplications by the elements of M∗ in GLK(M) and this correspondence
is an isomorphism. Let φ2 ∈ GLK(M) be the Frobenius automorphism of M
defined by

φ2(x) = x2 ∀x ∈M

19

The group 〈φ2〉 is a cyclic group of order ab and lies within GLK(M). The group
〈φ2〉 acts trivially on the projective plane PG(2, 2a). Then they considered the
action of the group

G = [ψ(L∗) · ψ(J∗)]〈φ2〉/ψ(L∗)

,where [ψ(L∗) · ψ(J∗)]〈φ2〉 is the semidirect product of ψ(L∗) and ψ(J∗) by
〈ψ〉, on the supports of the functions they picked earlier. This is in view of
constructing supports of functions in I5,3 which are invariant under the action
of G and also satisfy the required inequalities.

Here comes the counting part, which clears the rationale behind this setup

• All of the (23−1)(25−1) = 217 elements from the cyclic subgroup, derived
as direct product of L∗ and J∗, are of same value and that holds true for
all the elements in each of cosets too.

• Then comes the invariance under frobenius transformation constraints.
This divides the 215−1

(23−1)(25−1) = 151 elements into 10 groups of 15 size
each and 1 with only 1 element. Class of single element can be initially
assumed to be of zero value.

• Weight restriction imposes that one must choose 5 orbits of the 10 orbits
of size 15. . Therefore, the total number of possible choices is

(10
5
)
.

Exhausting all the possibilities they have obtained two solutions up to
complementation. The functions corresponding to these two solutions
have nonlinearity 16276.

In summary, Patterson-Weidemann construction can be summarized in
following way.

1. Picking up the class of functions of whose supports are of the form

sup(f) = ∪i∈[p]L
∗ · xi, p ≤ m

It is to be noted that existence of such functions will known prior
their work. In fact such functions are being heavily used in Dilon’s
construction of bent functions.

2. To come up with simple expressions in form of inequalities for
feasibility of such functions

3. Search space for above mentioned inequalities still remains large.
Here comes the trickiest part. They considered only those functions
whose supports are invariant under certain group action. This
trick substantially reduced the search space.

20

3.2 Notion of Interleaved Sequences

Let a = {a0, a1, a2, ..., am−1} be an arbitrary binary string of length m = 2n−1.
Now fundamental rule of finite field tells us that given a primitive element
ς ∈ GF (2n) we can always come with a function f such that

f(0) = 0

f(ςi) = ai

where i ∈ [m − 1]. It is to be clearly noted that function f is specific to the
given sequence a as well as the the primitive element ς. It should be written
as fa,ς . For the sake of convenience we would do an abuse of notation and
continue with f . If we change the primitive element then we obtain a different
function.

Now comes converse part. if f is a function from GF (2n) to GF (2) with
f(0) = 0 and ς ∈ GF (2n) is a primitive element of the respective field then the
sequence {f(1), f(ς), f(ς2), ..., f(ςn−2)} is referred to as the sequence associated
to f with respect to ς.

More formally speaking, there is a bijection here between these two sets.

if σ : Σ ×A→ F δ : F × ς → A

and ς ∈ Σ, a ∈ A

then δ(σ(ς, a), ς) = a

where Σ be the set of all primitive roots of GF (2n), A be the set of 2n−1 length
binary strings, F being the set of all boolean functions of n variable.

Now we will define interleaved sequence.
Suppose m is a composite number such that m = d · k where d and
k are both positive integers greater than 1, a is a binary sequence
{a0, a1, a2, ..., am−1} where ai ∈ F2∀i ∈ [m], then the (d, k)-interleaved
sequence ad,k corresponding to the binary sequence a is defined as

a a1 a2 · · ad
ad a1+d a2+d · · ad+d
a2d a1+2d a2+2d · · ad+2d
· · · · · ·
· · · · · ·

a(k−1)d a1+(k−1)d a2+(k−1)d · · ad+(k−1)d

Let d · k = m = 2n − 1. And we define ai+jd = f(ςi+jd). This will be
called as interleaved sequence of f with respect to ς.

21

the connection beween Patterson-Weidemann construction
and interleaved sequences of functions is here that

• First note that, if we fix ς ∈ Σ, any interleaved sequence along
with the assumption that f(0) = 0 acts like support of a function.
It unquely identifies the function.

• Assumption of invariances under certain group actions on the
support set of the function, puts extra restriction on the choice
of our interleaved sequence from set of all interleaved sequences
of same length e.g. reduced search space. The sequence is to be
arranged in such a way that this reduction of search space can be
handled with ease.

• It is to be kept in mind the way of deriving nonlinearities of
Patterson Weidemann functions in earlier setup is not valid here.
They have to carried out again for this setup. Arranging the
interleaved sequence should not make this task too complicated.

Now we are ready to state our first observation related to interleaved sequence.

If the support of a function f ∈ Fn is invariant under the action of a
cyclic subgroup K of order k of GF (2n)∗ then the (2n−1, k) interleaved
sequence of f with respect to any primitive element of GF (2n) has a
fixed binary sequence of length 2n−1

k as rows. Conversely, if the 2n−1
k

interleaved sequence of f with respect to a primitive element ς ∈ GF (2n)
has a fixed binary sequence of length 2n−1

k as rows, then the support of
f is invariant under the action of K.

Proof: If d = 2n−1
k , then ςd is clearly a generator of the cyclic subgroup K.

k = 〈ςd〉

If the support of f is invariant under the action of K then f(ςi) = f(ςi+jd) for
j ∈ [k− 1] and i ∈ [d− 1]. As a consequence the i-th column of ad,k is constant
for each i.
On the other hand if a has a fixed binary sequence of length d as rows, then
ai = ai+jd. Then the support of the function corresponding to this interleaved
sequence will be invariant under action of any group of order k.

22

Now we will see that how does the interleaved sequences behave
with addition restriction of invariance under the action of the group
of Frobenius automorphisms φ2.

We will first define a suitable equivalence relation on the index set of our
interleaved sequence.

Let ρ be an equivalence relation on {0, 1, 2, ..., (d − 1)} by i1ρdi2 if
and only if i1 ∼= 2ji2 mod d for some non-negative integer j where
i1, i2 ∈ {0, 1, 2, ..., (d− 1)}.

The set {0, 1, 2, ..., (d−1)} is the set of column numbers of the (d, k) interleaved
sequence of a boolean function. Thus ρd partitions this set into equivalence
classes.

Now we will state our second observation related to this interleaved sequence.

A function f invariant under the action of K is also invariant under
the action of φ2 if and only if the (d, k)-interleaved sequence of the
function has a fixed binary sequence of length d as rows and the columns
in the same equivalence class with respect to ρd are either ‘all zero’
columns(denoted as 0) or ‘all one’ columns(denoted as 1).

Proof : Any function f invariant under the action of K and φ2 is invariant
under the action of K and hence by earlier observation the (d, k)-interleaved
sequence of this function has a fixed binary sequence of length d as rows.

Consider the i-th column where Under the Frobenius automorphism ψj , the
element ςi is mapped to ς2j .i. If the support of f is invariant under the Frobenius
automorphisms then

f(ςi) = f(ς2j .i)
Using euclid’s division algorithm, we can always come up with such qi,j and
ri,j so that

2j · i = qi,jd+ ri,j

where 0 ≤ ri,j < d.

Now if we peek into our interleaved sequence, element f(ς2j .i) will be sitting on
the qi,j-th row and ri,j -th column in the (d, k)-interleaved sequence of f .

Since, due to the restriction of the invariance under the action of K, the columns
of this interleaved sequence corresponding to f are either 0 or 1 columns, the
ri,j -th column of the interleaved sequence has the same value as f(ςi). In
particular

f(ςri,j) = f(ςri,j)
.
Thus all the columns which are in the same equivalence class of ρd has the same
value.

23

Conversely if the function f has the (d, k)-interleaved sequence with the above
mentioned property then for any j ≥ 0 and i ∈ {0, 1, 2, ..., (d − 1)}, f(ς2j .i)
appears in the qi,j -th row and ri,j -th column. But ri,j ∼= 2j .i mod d, therefore
ri,j and i are in the same equivalence class of ρd. Hence

f(ςi) = f(ς2j .i)

Thus the function is invariant under the action of φ. Again since the interleaved
sequence under consideration has a fixed binary sequence of length d as rows
the corresponding function f is invariant under the action of the group K.

We will now move to analysing the structure the interleaved sequence of the
linear(affine) functions.

A function of the form f(x) = trn1 (αxc) where α ∈ GF (2n) and gcd(c, 2n−1) = 1
is called a bijective monomial. When c = 1, f is the linear function lα.

Suppose t|n and d = 2n−1

2t−1 . Then the following theorem holds

Let f(x) = trn1 (xc). Then for all (d, 2t−1) interleaved sequence of f with
respect to a primitive element ς ∈ GF (2n) is such that

1. The columns are either 0 or cyclic shifts of the binary sequence
corresponding to trti(x) when evaluated at ςc.i.d∀i ∈ [2−1] which
contains 2t−1 1’s.

2. The number of 0 columns is d− 2n−t

Proof: Let ς be a primitive 2n−1-th root of unity. Then the entry in the i-th
column and j-th row of the (d, 2t−1)- interleaved sequence of f is

ui,j = f(ςi+jd)
= trn1 (ςc(i+jd))
= trt1(trnt (ςc(i+jd)))

= trt1(
n
t −1∑
p=0

ς2p(ci+cjd))

= trt1(
n
t −1∑
p=0

ς2p.ciςcjd)

(3.1)

The sequence {ui,j |j = 0, 1, ..., 2t − 2} corresponds to the linear function of the
form trt1(zix), where zi =

∑n
t −1
p=0 ς2p.ci when evaluated at the points ςcpd where

p ∈ [2t − 1].

Now observe if for some i, zi becomes 0, then the i-th column consists of only
zeros. Otherwise it is cyclic shift of the binary sequence generated by trt1(x)

24

when evaluated at the points ςcpd where p ∈ [2t − 1]. Now we are done with
the first part of the proof.

For the second part, observe that since each non-zero column is a sequence
corresponding to a linear function with respect to the element ςcd, the number
of ‘one’s in each them is 2t−1.
On the other hand, the number of ‘one’s in the binary sequences corresponding
to f(x) and trn1 (x) are equal, therefore the total number of ‘one’s in the binary
sequence corresponding to f(x) is 2n−1.

Let the number of non-zero columns be r. Then

r.2t−1 = 2n−1

or, r = 2n−t

So, the number of zero columns is d− r = d− 2n−t

Now we will do the trickest part of this section, calculation on non linearity
through interleaved sequence.

First note that for any affine function hα = trn1 (αx) + 1 as a we can always
prepare a (2ab−1

2a−1 , 2a − 1)-interleaved sequence. By earlier calculation, the
number of 1 columns in the interleaved sequence of hα is d− 2ab−a.

Now note that for Patterson-Weidemann functions type, where the support
of f is union of cosets of the type L ∗ xi earlier deductions dictates that
corresponding (2ab−1

2a−1 , 2a − 1)-interleaved sequence of f will have a fixed binary
sequence of length 2ab−1

2a−1 as rows.

Remember the original work of Patterson-Weidemann in earlier section of this
chapter. They introducced t(α) as the number of cosets in the support of f
that are contained in hα. This is equivalent to the number of 1 columns of the
(2ab−1

2a−1 , 2a − 1)-interleaved sequence of f that correspond to the 1 columns of
the (2ab−1

2a−1 , 2a − 1)-interleaved sequence of hα.

As our final goal is to search for a function f ∈ Iab having nonlinearity greater
than 2n−1 − 2n−1

2 for any α ∈ GF (2n). Therefore we need,

2n−1 − 2
n−1

2 < d(f, hα) < 2n−1 + 2
n−1

2

In particular for α = 0 , we get,

2n−1 − 2
n−1

2 < l(2a − 1) < 2n−1 + 2
n−1

2

where l is the number of 1 columns in the (2ab−1
2a−1 , 2a − 1)-interleaved sequence

of f and consequently

2n−1 − 2n−1
2

2a − 1 < l <
2n−1 + 2n−1

2

2a − 1

25

Now, for other values of α, out of 2ab−1
2a−1 columns of hα, number of 1 columns is

2ab−1
2a−1 − 2ab−a and among them t(α) number of 1 columns match with the 1
columns of f .

This is same as saying that t(α) number of 0 columns of lα match with the 1
columns of f . From this we have

d(f, lα) = t(α)(2a − 1) + (l − t(α))(2a − 1) + (2ab − l + t(α)2a−1

= 2ab + t(α)2a − l

Similarly we get
d(f, hα) = 2ab − t(α)2a + l

Again for the function f to have nonlinearity greater than 2n−1 − 2n−1
2 for any

α ∈ GF (2n), both of d(f, hα) and d(f, lα) have to greater than 2n−1 − 2n−1
2 .

Therefore we need,

1
2a (2ab−1 + 2 ab−1

2

2a − 1 − 2
ab−1

2) < t(α) < 1
2a (2ab−1 − 2 ab−1

2

2a − 1 + 2
ab−1

2)

Note that we got exactly those inequalities what we got in earler section.

It is to be noted that any (2ab−1
2a−1 , 2a − 1)-interleaved sequence with a

fixed binary sequence of length 2ab−1
2a−1 as rows correspond to a function in

Iab and conversely. If we construct such an interleaved sequence with l
non-zero columns satisfying above equations then by the above discussion
the function corresponding to this sequence will have nonlinearity greater
than 2n−1 − 2n−1

2 . However it is usually impossible to search all the
possibilities. Because of this reason Patterson and Wiedemann have put
extra restriction in the form of invariance under aforesaid operations
and exhaustively searched the more restricted search space for n = 15.
However the analogous search space even for n = 21 becomes too large
to search exhaustively

26

3.3 Modified Patterson Wiedemann Construction

Patterson Weidemann construction when viewed through the lenses of inter-
leaved sequences, appears very neat. But there is one caveat. Search space
remains same as it was in the original construction. It essentially makes it
difficult to adopt for higher values of n.

A fantastic enhancement to the method was proposed later [GKM06].

It reduces the search space further by applying notion of generalized
rotation symmetric boolean functions e.g. they restricted the search
space further by considering only the subset of k-RSBF.

Suppose K be a proper subgroup of GF (2n)∗ of order k and index d containing
GF (2t)∗ where t|n.

Consider any f which is invariant under the action of K and ψ. Also let us
suppose that all the interleaved sequences considered are with respect to a
particular primitive element ς ∈ GF (2n). The index of GF(2t)∗ in GF (2n)∗ is

d1 = 2n − 1
2t − 1

Since kd = 2n − 1 = d1(2t − 1) and (2t − 1)|k it can easily deducted that d|d1.
By the invariance property of the support set of f under the action of K and
ψ, the (d, k)-interleaved sequence of f has a

• fixed binary sequence of length d as rows

• all the columns in the same equivalence class of ρd are of same type e.g.
either 1 columns or 0 columns.

If originally l columns of the (d, k)-interleaved sequence of f were 1 columns,
then (d1, 2t − 1)-interleaved sequence of f then each column of the (d, k)-
interleaved sequence splits up into d1

d number of columns. Thus the total
number of 1 columns in the (d1, 2t − 1)-interleaved sequence is l.d1

d .

Since invariance under action of set implies invariance under any subset of
that set, support of the function f will remain invariant under the action of
GF (2t)∗, as GF (2t)∗ ∈ K. Therefore the (d1, 2t1)-interleaved sequence of f is
also repetition of a fixed binary sequence of length d1 as rows.

Using earlier knowledge, function f has nonlinearity greater than 2n−1 − 2n−1
2

if and only if

2n−1 − 2n−1
2

2t − 1 < l.
d1

d
<

2n−1 + 2n−1
2

2t − 1

1
2t (

2n−1 + 2n−1
2

2t − 1 − 2
n−1

2) < t(α) < 1
2t (

2n−1 − 2n−1
2

2t − 1 + 2
n−1

2)

27

Here we analyse the invariance under teh action of the group ψ in a tighter way.

Because ρd is an equivalence relation defined on the column numbers of (d, k)-
interleaved sequence of f . Suppose that there are r equivalence classes. Define
r distinct binary variables l0, l1, ..., lr−1 such that lj = 1 if the j-th equivalence
class consists of 1 columns else lj = 0. Let sj be the size of the j-th equivalence
class where j ∈ [r].

In the (d, k)-interleaved sequence of the function f if the j-th equivalence class
has columns with entries lj then corresponding to these columns there are sj d1

d
columns in the (d1, 2t−1)-interleaved sequence of f with entries lj . Let Sj be
the set of column numbers of these columns.

Consider the (d1, 2t−1)-interleaved sequence of trn1 (ςix). Let Ti be the set of
column numbers of 0 columns of this interleaved sequence. Let cij = |Ti ∩ Sj||.
From this we obtain

t(ςi) =
r−1∑
j=0

cij lj

The number cij is the number of 0 columns of the (d1, 2t−1)-interleaved sequence
of trn1 (ςix) having the same column numbers as the columns corresponding
to the j-th equivalence class in the (d1, 2t−1)-interleaved sequence of f. Thus
earlier constraints can be written as

1
2t (

2n−1 + 2n−1
2

2t − 1 − 2
n−1

2) <
r−1∑
j=0

cij lj <
1
2t (

2n−1 − 2n−1
2

2t − 1 + 2
n−1

2)

The number of inequalities in the above system is 2n − 1. Below we prove
that it is enough to solve r inequalities among them, where r is the number of
equivalence classes with respect to ρd.

28

Let f invariant under the action of K and ψ. If i and j are in the same
equivalence class of ρd i.e., j ∼= i2k mod d for some k ≥ 0, then

1. Wf (ςi) = Wf (ςj)

2. t(ςi) = t(ςj)

Proof:
Let j = i2k − qd

Wf (ςj) =
∑

x∈GF (2n)

(−1)tr(ςjx)+f(x)

=
∑

x∈GF (2n)

(−1)tr(ςjςqdx)+f(ςqdx)

=
∑

x∈GF (2n)

(−1)tr(ςi2
k
x)+f(x)

=
∑

x∈GF (2n)

(−1)tr(ςi2
k
x)+f(x)

= Wf (ςi2
k

)

=
∑

x∈GF (2n)

(−1)tr(ςi2
k
xi2

k
)+f(x)

=
∑

x∈GF (2n)

(−1)tr(ςix)+f(x)

= Wf (ςi)

(3.2)

The (d1, 2t−1)-interleaved sequence of tr(ςix) has t(ςi) zero columns correspond-
ing to 1columns of the (d1, 2t−1)-interleaved sequence of f(x). The total number
of zero columns of the (d1, 2t−1)-interleaved sequence of tr(ςix) is d1 − 2n−t
and the total number of 1 columns and 0 columns of the (d1, 2t−1)-interleaved
sequence of f(x) are l′ and d− l′ respectively.

The number of zero columns of tr(ςix) that correspond to 1 columns of f(x) is
t(ςi). The number of 1 columns of f(x) that correspond to nonzero columns
of tr(ςix) is l′ − t(ςi) and the number of zero columns that correspond to the
nonzero columns of tr(ςix) is 2n−t − (l′ − t(ςi)). Thus the Walsh transform

Wf (ςi) = (2t−1)t(ςi) + (1)(l′ − t(ςi)) + (−1)(2n−t − (l′ − t(ςi)))

. Thus for any i, j if Wf (ςi) = Wf (ςj) then t(ςi) = t(ςj)

29

3.4 The Case of n = 15

We now discuss about preparing interleaved sequences corresponding to
Patterson Weidemann type bent functions of 15 variable.

1. We consider 15 = 5× 3.

2. |L∗| = 23 − 1, |J∗| = 25 − 1, |K| = |J∗ × L∗| = (25 − 1)(23 − 1) = 31.7

3. since k = 31.7 , d = 215−1
31.7 = 151

4. ρ151 has 11 equivalence classes where ρ151 : i1ρ151i2 =⇒ i1 ∼= 2si2 mod
151 for some s ∈ Z+.

5. By definition, d1 = 151.7

6. Using apropriate inequality, we get 74 < l < 76

3.5 The Case of n = 21

We now discuss about preparing interleaved sequences corresponding to
Patterson Weidemann type bent functions of 15 variable.

1. We consider 21 = 7× 3.

2. |L∗| = 23 − 1, |J∗| = 27 − 1, |K| = |J∗ × L∗| = (27 − 1)(23 − 1) = 127.7

3. since k = 127.7 , d = 215−1
31.7 = 2359

4. ρ2359 has 115 equivalence classes where ρ2359 : i1ρ2359i2 =⇒ i1 ∼= 2si2
mod 2359 for some s ∈ Z+.

5. By definition, d1 = 2359.7

6. Using apropriate inequality, we get 58 < l < 72

30

3.6 Algorithm: Prepare-Inequalities(n, ς)

Here is the concrete algorithms which can be used to generate inequalities for
any odd n as long as n = a.b. gcd(a, , b) = 1 holds true.

1. Factorize n = a.b a < b

2. d = 2n−1
2a−1 k = (2b − 1)

3. Evaluate trn1 (ςi) ∀i ∈ [2n−1] and fill up the interleaved sequence
a = (d.k) accordingly.

4. Find no of 0 columns as d− 2n−a. Let Z be the array containing
the index of 0 columns.

5. Find the equvalence classes on the index no of columns as induced
by ρd. Let E contains all the representatives of each of the
equivalece classes.

6. Set i = 0

7. Let L of length equals to d such that E[L[j]] is the representative
of the equivalence class of ρd containing j.

8. Initilize C and K to 0

9. for j = 0, 1,, 2b, do the following

a) K[j] = (Z[j]− E[i]) mod d
b) m = K[j] mod d
c) C[L[m]] = C[L[m]] + 1

10. Out put C = (ci,0, ci,0,ci,|E|)

11. i = i+ 1. Go to Step 7 till i < |E|.

31

PART III

Our Works

32

CHAPTER 4

Solving PWF21 Inequalities

4.1 Definition of Integer Programming

Finding solutions for the derived set of inequalities along with with appropriate
weight condition, falls into a well known mathematical model called Integer
Linear Programming.

Standard form of such problems are defined as follows

max c′x
where, Ax ≤ B

x ≥ 0
x ∈ Z+

n

(4.1)

Two things are to noted at this point.
Firstly feasibility problem e.g. to find a feasible solution to given instance, is
no less hard than optimization e.g. finding optimum value of the optimization
problem, as long as integer linear problem is concerned.

Secondly any other problem with form other than above, can be converted into
standard form. For example, in our case, problem instance has following form

max c′x
subject to,

Ax ≤ b
Gx ≥ h
x ≥ 0
x ∈ Zn

(4.2)

We negate G and h to convert it into standard form

33

max c′x
subject to,

Ax ≤ b
Gx ≥ h
x ≥ 0
x ∈ Zn

(4.3)

On Hardness

Now we move to hardness part of our problem instance. Integer programming is
NP-complete. In particular, the special case of 0−1 integer linear programming,
in which unknowns are binary, and only the restrictions must be satisfied, is
one of Karp’s 21 NP-complete problems. There is one caveat.

NP-Completeness does not mean all instances of the given problem are
equally difficult. In fact there might exist many easy instances of the
problem. NP Completeness asserts that there exists some instances
which are difficult to solve.

ILP does not have much such ’easy type instance’ known to us. There are few.
Probably most famous of them is ’Totally Unimodular Matrices’

If the problem instance is of the following form

max c′x
subject to,

Ax = B

x ≥ 0
x ∈ Zn

(4.4)

and A is unimodular e.g. matrix for which every square non-singular
submatrix is unimodular; equivalently, every square submatrix has
determinant 0,+1 or −1.
Then usual polynomial time LP algorithm returns exact solution.

Our careful inspection along with suggests that problem instance we are working
with , is indeed a ’hard instance’

34

4.2 Using Exact Solvers For Integer Programming

The naive way to solve an ILP is to simply remove the constraint that x is
integer, solve the corresponding LP. This particular step got a very intuitive
name e.g. LP relaxation. Then round the entries of the solution to the LP
relaxation. But, not only may this solution not be optimal, it may not even be
feasible; that is, it may violate some constraint.

When the matrix A is not totally unimodular, there are a variety of algorithms
that can be used to solve integer linear programs exactly. One class of al-
gorithms is cutting plane methods which work by solving the LP relaxation and
then adding linear constraints that drive the solution towards being integer
without excluding any integer feasible points.

Another class of algorithms are variants of the branch and bound method. For
example, the branch and cut method that combines both branch and bound
and cutting plane methods. Branch and bound algorithms have a number of
advantages over algorithms that only use cutting planes. One advantage is that
the algorithms can be terminated early and as long as at least one integral
solution has been found, a feasible, although not necessarily optimal, solution
can be returned. Further, the solutions of the LP relaxations can be used to
provide a worst-case estimate of how far from optimal the returned solution
is. Finally, branch and bound methods can be used to return multiple optimal
solutions.

Experimental Setup

All the experiments we performed, were carried out in the following environment.

System E5-2690 v3 CPU with 24 cores and 96GB of RAM

Tools

cplex(branch-and-cut, cutting plane), lpsolve(branch-
and-cut), GLPK(branch-and-cut, cutting plane),
Gurobi(branch-and-cut, cutting plane, trees of tree
search)

Our rigorous experimentation with these solvers shows that gurobi always
outperforms other solvers in all aspects. So the all the observations that would
be given follow, should be considered as observations from the experiments with
gurobi.

Experiments Performed With Exact Solvers

1. SEARCHING WHOLE SPACE:
We encoded the problem lp format asked ILP solver to search for solutions.
But running for 24 hours on above mentioned setup, none of them were
able to find any solution.

35

2. SEARCHING PARTIAL SPACE:
A smaller solution space is easier to search for the solvers. Therefore, we
cut the solution space by fixing a few bits from the known solutions of the
equations. We created different problem instances for the solver, fixing
different number of bits, varying from 46 - 65 (bits selected randomly).

36

Observations From Experiments

Observation 1: Sensitivity of (existing) solutions This observa-
tion is related to the question of how much change we can inflict to
a solution, before it potentially converts to a new solution. In other
words, how much portion of the solution determines a solution ’uniquely’?

We started with partial solutions e.g. setting some variables as per one
of the existing solutions, and then tried to solve the set of inequalities
as a feasibility problem using a LP solver. Number of variables, being
set in this way, was varied from 100 to 40 with a pretty fine grained
manner during the whole course of experiment. Not to mention that
same procedure was repeated with all of the four existing solutions.
We observed that when we were setting less than 55 variables then,
our solver does not return any solution even within 24 hours. On the
contrary, setting more than 55 variable returns the original solution(
from the partial solutions were taken) in a couple of minutes(sometimes
hours). This clearly demonstrates that even randomly chosen 55
variable, when set in ’right way’ will eventually gravitate to ’the solution’.

Observation 2: Distance of (existing) solutions To further dig
into the the above mentioned issue, we considered known solutions in
pairs only to find out at what positions both of them agree and then
accordingly set the bits while searching in partial solution space. We
again observed convergence into existing solution in a couple of minutes.
We repeated the experiment with all pairs of known solutions available
to us. There was no exception in it e.g. always converged into a existing
solution.This observation is probably a stronger than the previous one.

Observation 3: (Almost) Dimensional Reduction Motivation
was to find mutually (something like) ’orthogonal pairs’ of equations
from the set of equations. We observed that making some equation
to satisfy lower bounds pushes some other equations to violate upper
bounds. In existing solutions they were spared by narrow margin at
respective bounds. We searched for such suitable pair of collections of
equations and found 29 of them. The interesting part of the whole thing
is, if we now redefine (setting low margins) upper and lower bounds
of those equation, following an existing solution, and leave rest of the
equations with usual bounds, and this new set of inequalities when given
to a solver, returns the original solution in couple of hours. Note that this
observation possibly tells something stronger than the first one. Instead
of setting individual variables, here we are narrowing margins (as advised
by an existing solution) for ’mutually orthogonal’ pairs and getting same
solution back. And that too only 29 in number. This observation can
be used directly as a goodness heuristics in search procedure

37

4.3 Using Pseudo Boolean Solvers

Before going into details of this experimentation, we will have quick look into
various related definitions.
LITERALS
A literal is a propositional variable v or its negation ¬v.

PSEUDO BOOLEAN CONSTRAINTS
A pseudo-boolean (PB) constraint (sometimes called linear zero-one constraint
or simply linear inequality) in normal form is a constraint of the form

c1l1 + · · ·+ cnln ≥ k,

where c1, . . . , cn (the weights) and k (the threshold) are positive integers, and
l1, . . . , ln are boolean literals.

PSEUDO BOOLEAN FORMULA
A PB formula P is a set of PB constraints over a set of variables V .

ASSIGNMENT
An assignment σ is called satisfying assignment or solution of P if the assign-
ment satisfies all the constraints in P .

CONJUNCTIVE NORMAL FORM
A Boolean formula F over the set of variables V is in Conjunctive Normal
Form (CNF) if F is expressed as conjunction of clauses wherein each clause is
a disjunction over a subset of literals. The problem of Boolean Satisfiability
(SAT) seeks to ask whether there exists a satisfying assignment of F .

Experimental Setup

All the experiments we performed, were carried out in the following environment.

System E5-2690 v3 CPU with 24 cores and 96GB of RAM

Tools RoundingSAT(Psuedo-boolean solver), CryptoMin-
iSAT(SAT solver)

Encoding OPB(Psuedo-boolean solver), DIMACS(SAT solver)

EXPERIMENTS PERFORMED WITH PB SOLVERS

Just like exact solvers, we performed experiments in both of whole solution
space as well as partial solution space in the same way we did in case of exact
solvers.

38

OBSERVATION FROM THE EXPERIMENTS

Experimentation with PB and SAT solvers confirms our obseravtions in our
experiments with exact solvers. In 24 hours, the solver could solve instances
only if more than 56 bits are set.

In each of the cases, there were no other solutions apart from the known
solution. We blocked the solution which has been used to set the bits,
and the solver returned that the problems are unsatisfiable, therefore
we are sure that no other solution exists other than the used one. In
fact this observation leads to a stronger intution about structure of
the solutions. It says that solutions are fairly apart from each other.
This might be related to another unsolved problem in this arena e.g.
hamming distance of bent funnction in some way.

In table ??, we summerize the time taken by RoundingSAT to solve different
instances. CryptoMiniSat, despite it was given almost 24x resources to solve an
instance, was taking much more time to solve.

4.4 Using Metaheuristics Methods

Apart from those methods for exact solving, we tried with several metaheuristics
based techniques to come up with a feasible solution. List of the techniques is
given below

1. Tabu Search

2. Simulated Annealing

3. lp Alternating Direction Method of Multiplers

We mostly used opensource implemenation of these techniques to adapt to
our requirements and did experiments. Unfortunately our attempts with these
methods could be done with best of our efforts. and nothing fruitful came up
with our limited experimentation.

39

known bits seed solution time (s)
46 49 3 TO
47 34 2 TO
48 18 1 TO
49 35 2 TO
49 22 1 TO
49 37 2 TO
49 17 1 TO
50 33 2 TO
51 50 3 TO
52 21 1 TO
53 41 2 TO
54 59 3 TO
54 43 2 TO
55 6 0 TO
55 5 0 TO
55 52 3 TO
56 54 3 TO
56 24 1 TO
56 23 1 TO
56 19 1 TO
56 56 3 TO
57 57 3 3418.46
57 36 2 TO
57 53 3 TO
58 26 1 TO
59 58 3 36740.99
60 42 2 9591.37
61 7 0 10028.86
61 45 2 12669.94
61 38 2 15543.45
61 27 1 25297.87
61 60 3 57606.54
61 55 3 6520.71
61 40 2 TO
62 30 1 18222.45
62 25 1 33855.4
62 44 2 5110.37
62 39 2 67118.54
63 4 0 2423.26
63 15 0 2853.66
63 20 1 3835.54
64 29 1 1808.03
64 64 3 2086.71
64 8 0 649.92
65 32 1 18226.49
65 9 0 1989.78
65 13 0 646.51
65 31 1 656.8

Table 4.1: Time taken to solve different PB instances while some of the bits are
fixed. Each row represents a PB instance. Column 1 represents number of bits
fixed from the solution mentioned in column 3. Bits were selected randomly
with random seed mentioned in column 2. Column 4 represents time taken to
solve the instance (in seconds). TO represents that the solver timed out after
running for 24 hours.

40

CHAPTER 5

PWF21 in Quantum Paradigm

5.1 Quantum Annealing Technique

Quantum annealing controls quantum fluctuations to search for the minimum
of a cost function, possibly a multivariate function. The method is a generic
approximate method , a lots of real-life problems, which are possible to be
formulated as a combinatorial optimization problem, can also be formulated as
quantum annealing. This set of optimization problems include portfolio and
route optimization problems. These set of problems has a huge social import-
ance and researchers from various fields have tried to solve these problems in
numerous different methods. Quantum-mechanical methods has been attracted
significant attraction from researchers in recent days.

The procedure for performing quantum annealing include writing the cost
function in terms of Ising model of magnetism. The relation between the Ising
model and the annealing is the following : the Hamiltonian of the Ising model
should be chosen in such a way that solution to the combinatorial optimization
problem should be represented by the ground state or lowest energy state.
Once such a model is chosen, the Hamiltonian is modified by adding a term
that represents the quantum-mechanical fluctuations. This induces quantum
transitions between states.

Choosing the quantum term is an interesting factor. Generally, a value too
large in comparison to the cost function is chosen as the term in the beginning,
leading to a uniform probability to the states, such that all the states from
quantum-mechanical superposition exist with equal probability. In practice this
states are easy to prepare. In the second step, the the quantum term is gradually
reduced. Therefore, the state of the system starts to follow the time-dependent
Schrödinger equation, which is the natural evolution of a physical system over
time. When this coefficient reaches, reaches zero, only one of the term of the
Hamiltonian remains, which is the Ising model. If we identify the ground state
of the model, that remains in this process, we have found the solution. For a
successful process, at the end of the annealing procedure, the probability of the
solution is the largest.

41

5.2 D’WAVE Architecture

We use a D’Wave quantum computer to execute the above mentioned quantum
annealing procedure. The quantum processing unit (QPU) for D’Wave works
in the following manner:

• Similar to all modern quantum devices build till date, the QPU here also
runs in a framework that resembles the von Neumann architecture and
runs within that framework which contains a arithmatic and logical unit -
ALU, memory I/O and control unit.

• We may think that the QPU is an ALU that has qubits instead of bits,
couplers and the control unit has been made specialized to handle all
these.

• A quantum machine instruction - QMI is defined, which specifies how one
should specify the desired output. This QMI programs the network of
qubits and couplers, and mentions how one can get the output, which is
a vector consisting of spin values, si ∈ {±1}.

Specifying the desired output in accordance to the input is the most significant
part in quantum processing unit’s description. The input to the Ising Model
optimization is, in fact this desired output. The problem of optimization is :

Given a graph G = (V,E) with fields hi on vertices V and interactions
Jij on edges E, find a spin vector S that minimizes the objective function

E(S) =
∑

(i,j)∈E

Jijsisj +
∑
i∈V

hiSi

If the graph is not planar, then the optimization problem turns out to be
NP-hard. We provide the following data to the quantum machine instruction :

• h = {hi}

• J = {Jij},

• T : anneal time interval

The calculation by the quantum device can be affected by external noise or
other limitations, and that in turns mean that the result returned is not always
guaranteed to be the ground state solution. Therefore, it is a wise decision
to run the annealing procedure multiple times before for each input. And
this requires another input parameter: how many times should we repeat the
procedure, or, how many solutions do we want.

If we provide more parameters to the quantum machine instruction, we’ll
get different annealing procedures, generally termed as anneal path features.
A simple example of that can be specifying the anneal as a piecewise linear
waveform. This can be used for modifying the evolution near phase transition.

42

5.3. QUBO Formulation of Our Problem

Another example can be modifying a single qubit annealing schedule that limits
the degree by specifying anneal offsets. Furthermore, if we specify the initial
qubit values to quickly check the neighbouring values, that procedure is called
reverse anneal protocol.

As it was needed in GM, here in annealing based quantum processing unit, we
do not need to specify the instructions needed in every step. Instead, we are
needed to specify the desired output and an optimal spin assignment, objective
function defined in terms of input. The quantum algorithm does the remaining
tasks. Therefore it is clear that a declarative programming paradigm works
better than imperative one in case of quantum annealing.

5.3 QUBO Formulation of Our Problem

For a variety of combinatorial optimization problems, it has been established in
recent research that QUBO, or, Quadratic Unconstrained Binary Optimization
problem can perform quite nicely.
QUBO solvers can be used efficiently to solve different problems by reformulation,
that are easy to apply. After the reformulation, the problems are given to the
QUBO framework. Along with quantum annealing, QUBO model is used
in Fujitsu’s digital annealing. Neuromorphic computing also uses QUBO as
a subject for study. Due to all these reasons, QUBO models are widey in
experimentation by y D-Wave Systems and neuromorphic computers developed
by IBM.

The QUBO model is expressed by the optimization problem:

minmize y = x′Qx

where x is a vector of binary decision variables and Q is a square matrix
of constants.

We can assume that the Q matrix is in upper triangular form or symmetric.
We can achieve this form without loss of generality in the following manner:

Upper triangular form: ∀ i and j with i > j , replace qij by (qij +qji). Once
this is done, replace all qij for i < j by 0. (If the matrix is already symmetric,
this procedure doubles the qij values above the main diagonal, and then fixes
all values below the main diagonal to 0).
Symmetric form: ∀ i and j except i = j, replace qij by (qij+qji)

2 .

Handling Inequality Constraints

We assume that A and b have integer components. Now. if the problem has
inequality constraints, we can put them in this form by including slack variables
and then representing the slack variables by a binary expansion.

43

5.3. QUBO Formulation of Our Problem

(For example, this would introduce a slack variable s to convert the inequality
4x1 + 5x2 − x3 ≤ 6 into 4x1 + 5x2 − x3 + s = 6 , and since clearly s ≤ 7

s can be represented by the binary expansion s1 + 2s2 + 4s3 where s1, s2, s3
are extra binary variables. We convert the constrained quadratic optimization
models to an equivalent unconstrained QUBO models by the following manner :

• represent slack variables as x variables

• convert the constraints Ax = b into quadratic penalties

• add these quadratic penalties to the objective function

To be pecific, for a positive scalar P , we add a quadratic penalty P (Ax −
b)′(Ax− b) to the objective function and we get

y = x′Cx+ P (Ax− b)′(Ax− b)
= x′Cx+ x′Dx+ c

= x′Qx
(5.1)

where the matrix D and the additive constant c result from the matrix
multiplication shown. We drop the additive constant, and the equivalent
unconstrained version of the constrained problem turns to be

minmize y = x′Qx

5.4 Experimenting with DWAVE

When we converted our problem instance into QUBO format, it became of size
231× 1035. This polynomial increment of problem size happened beacuse of
conversion of ineqiality constarints into equality constarints. We didnot have
full access to DWAVE system but a trial access. Amount to time it got access
to DWAVE sampler was insufficient to come up with any valid solution. We
will try this again with a full access account in near future.

44

CHAPTER 6

Conclusion and Future Works

Despite knowing that integer linear programming is NP-Hard, main rationale
behind our desperate attempts lies in the fact that security of cryptographic(
especially symmetric key cryptography) constructions lies in non linearity
of underlying non linearity components and weakness of a cipher can be
demonstrated considering even a single instance of it. For example, four feasible
solutions were already achieved for the set of inequalities and it would be
considered as access to great resource in cryptanalysis of symmetric key ciphers.

In our experimentation, we could conclude about certain structures about the
problem especially hamming distance of the solutions and orthogonality of
certain set of inequalities. These observation could be used to come up with
new heuristics to solve the problem. This is to be noted that we lacked compu-
tational resources to run the search procedure which we hope to circumvent in
later phase of this research. May be we will be able to come with significant
results then.

Another attempt worth taking is to employ quantum power to solve them. Here
again comes comes the issue of hardness of particular instance. As we all know
that behaviour of quantum annealing techniques is not homogeneous on all
instances of the problem.

Another thing to noted here that solutions to this problem will not lead us to
achieve highest nonlinearity for 21 variable boolean functions. Usual Patterson
Weidemann functions of 15 variable concatenated with 6 variable bent functions
still holds the record for 21 variable. It still remains as open challenge to come
up with a direct construction for 21 variable.

45

Bibliography

[CS17a] Cusick, T. W. and Stanica, P. ‘Chapter 02 - Fourier Analysis
of Boolean Functions’. In: Cryptographic Boolean Functions and
Applications (Second Edition). Ed. by Cusick, T. W. and Stanica, P.
Second Edition. Academic Press, 2017, pp. 7–29.

[CS17b] Cusick, T. W. and Stanica, P. ‘Chapter 04 - Correlation Immune and
Resilient Boolean Functions’. In: Cryptographic Boolean Functions
and Applications (Second Edition). Ed. by Cusick, T. W. and Stanica,
P. Second Edition. Academic Press, 2017, pp. 55–82.

[CS17c] Cusick, T. W. and Stanica, P. ‘Chapter 05 - Bent Boolean Functions’.
In: Cryptographic Boolean Functions and Applications (Second
Edition). Ed. by Cusick, T. W. and Stanica, P. Second Edition.
Academic Press, 2017, pp. 83–108.

[CS17d] Cusick, T. W. and Stanica, P. ‘Chapter 07 - Stream Cipher Design’.
In: Cryptographic Boolean Functions and Applications (Second
Edition). Ed. by Cusick, T. W. and Stanica, P. Second Edition.
Academic Press, 2017, pp. 143–185.

[CS17e] Cusick, T. W. and Stanica, P. ‘Chapter 08 - Block Ciphers’. In:
Cryptographic Boolean Functions and Applications (Second Edition).
Ed. by Cusick, T. W. and Stanica, P. Second Edition. Academic
Press, 2017, pp. 187–221.

[GKM06] Gangopadhyay, S., Keskar, P. H. and Maitra, S. ‘Patter-
son–Wiedemann construction revisited’. In: Discrete Mathematics
vol. 306, no. 14 (2006). R.C. Bose Centennial Symposium on discrete
mathmematics and Applications, pp. 1540–1556.

[KM16] Kavut, S. and Maitra, S. ‘Patterson–Wiedemann Type Functions on
21 Variables With Nonlinearity Greater Than Bent Concatenation
Bound’. In: IEEE Transactions on Information Theory vol. 62, no. 4
(Apr. 2016), pp. 2277–2282.

[PW83] Patterson, N. and Wiedemann, D. ‘The covering radius of
the(215, 16)Reed−Mullercodeisatleast16276’. In: IEEE Transac-
tions on Information Theory vol. 29, no. 3 (May 1983), pp. 354–
356.

46

Bibliography

[Tok15a] Tokareva, N. ‘Chapter 06 - Equivalent Representations of Bent
Functions’. In: Bent Functions. Ed. by Tokareva, N. Boston:
Academic Press, 2015, pp. 49–53.

[Tok15b] Tokareva, N. ‘Chapter 08 - Combinatorial Constructions of Bent
Functions’. In: Bent Functions. Ed. by Tokareva, N. Boston:
Academic Press, 2015, pp. 63–72.

[Tok15c] Tokareva, N. ‘Chapter 09 - Algebraic Constructions of Bent
Functions’. In: Bent Functions. Ed. by Tokareva, N. Boston:
Academic Press, 2015, pp. 73–80.

[Tok15d] Tokareva, N. ‘Chapter 11 - Distances Between Bent Functions’. In:
Bent Functions. Ed. by Tokareva, N. Boston: Academic Press, 2015,
pp. 89–96.

[Tok15e] Tokareva, N. ‘Chapter 13 - Bounds on the Number of Bent
Functions’. In: Bent Functions. Ed. by Tokareva, N. Boston:
Academic Press, 2015, pp. 107–122.

[Tok15f] Tokareva, N. ‘Chapter 14 - Bent Decomposition Problem’. In: Bent
Functions. Ed. by Tokareva, N. Boston: Academic Press, 2015,
pp. 123–132.

[Tok15g] Tokareva, N. ‘Chapter 15 - Algebraic Generalizations of Bent
Functions’. In: Bent Functions. Ed. by Tokareva, N. Boston:
Academic Press, 2015, pp. 133–149.

47

	Contents
	Preliminary
	Boolean Functions
	Definition of Boolean Functions
	Algebraic Normal Form
	Walsh Hadamard Transformation
	Important Cryptographic Properties of Boolean Functions
	Document Structure

	On Bent Functions
	Non-linearity Revisited
	Definition of Bent Functions
	Properties Of Bent Functions
	Equivalent Represenation of Bent Functions
	Construction of Bent Functions
	Application of Bent Functions
	Open Problems

	Problem Definition
	The Curious Case of Odd n
	The Patterson Weidemann Construction
	Notion of Interleaved Sequences
	Modified Patterson Wiedemann Construction
	The Case of n = 15
	The Case of n = 21
	Algorithm: Prepare-Inequalities(n,)

	Our Works
	Solving PWF21 Inequalities
	Definition of Integer Programming
	Using Exact Solvers For Integer Programming
	Using Pseudo Boolean Solvers
	Using Metaheuristics Methods

	PWF21 in Quantum Paradigm
	Quantum Annealing Technique
	D'WAVE Architecture
	QUBO Formulation of Our Problem
	Experimenting with DWAVE

	Conclusion and Future Works
	Bibliography

