
On Finding Optimal Sub-structures in

Graphs

By

Sanjana Dey

A thesis presented for the award of the degree of

Doctor of Philosophy

in

Computer Science

at the

Indian Statistcal Institute, Kolkata

Under the supervision of

Professor Subhas C. Nandy

Advanced Computing and Microelectronics Unit

Indian Statistical Institute

203, B. T. Road, Kolkata, India 700 108

July 2022



Publications1

⋆ Subhadeep R Dev, Sanjana Dey, Florent Foucaud, Ralf Klasing and Tuomo

Lehtila. The Red-Blue Separation problem on graphs. International Work-

shop on Combinatorial Algorithms (IWOCA), LNCS 13270(285-298), Springer,

2022.

⋆ Sanjana Dey, Anil Maheshwari and Subhas C. Nandy. Minimum Consistent

Subset Problem for Trees. International Symposium on Fundamentals of

Computation Theory (FCT), LNCS 12867(204-216), Springer, 2021.

⋆ Sanjana Dey, Anil Maheshwari and Subhas C. Nandy. Minimum Consis-

tent Subset of Simple Graph Classes. International Conference on Algo-

rithms and Discrete Applied Mathematics (CALDAM), LNCS, 12601(471�

484), Springer, 2021.

⋆ Sanjana Dey, Florent Foucaud, Subhas C. Nandy and Arunabha Sen. Dis-

criminating Codes in Geometric Setups. International Symposium on Algo-

rithms and Computation (ISAAC), LIPIcs, 181(24:1-24:16), Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2020.

� Kaustav Basu, Sanjana Dey, Subhas C. Nandy and Arunabha Sen. Sensor

Networks for Structural Health Monitoring of Critical Infrastructures Using

Identifying Codes. International Conference on the Design of Reliable Net-

works (DRCN), (43-50), IEEE, 2019.

1The publications which are part of the thesis are highlighted with ⋆.

i



ii

� Sanjana Dey, Ramesh K. Jallu and Subhas C. Nandy. Minimum Spanning

Tree of Line Segments. Computing and Combinatorial Conference (CO-

COON), LNCS, 10976(529-541), Springer, 2018.

⋆ Sanjana Dey, Florent Foucaud, Subhas C. Nandy and Arunabha Sen. Com-

plexity and Approximation for Discriminating and Identifying Code Problems

in Geometric Setups. Revised draft submitted in February 2022. Submitted

to Algorithmica in June 2021 (Manuscript No: ALGO-D-21-00098R1).

⋆ Sanjana Dey, Anil Maheshwari and Subhas C. Nandy. Minimum Consistent

Subset Problem for Trees. Submitted to Journal of Combinatorial Optimiza-

tion in June 2022 (Manuscript No: JOCO-S-22-00269).

⋆ Sanjana Dey, Anil Maheshwari and Subhas C. Nandy. Minimum Consistent

Subset of Simple Graph Classes. Submitted to Discrete Applied Mathematics

in July 2021 (Manuscript No: DA13552).



Acknowledgement

Having have a doctorate was a long standing dream for me. Hence the decision to

pursue Ph.D. It wasn't an easy decision to live through. What one never knows

before doing a Ph.D. is the number of failures are much higher than the number of

successes. It is sheer grit and will-power that gets you through. But the one thing

that helps one survive and successfully complete is the immense support of one's

peers. Now that I am �nally in the last phase of the journey, I would like to take

the opportunity to thank everyone whose help and love made this thesis possible.

An advisor is an undetachable part in completion of a thesis and mine has been the

same. Professor Subhas C Nandy has been one of the most important pillars behind

this thesis. He has shown immense patience in handling a naive and simpleton like

me. He has been a steady in�uence throughout my Ph.D. career. He has oriented

and supported me with promptness and care, and has always been encouraging

in times of di�culties. His hard work has set an example for me. He has even

made me listen to Nazrul sangeet sometimes to lighten the mood around us and

shared his experiences accumulated across his years. Without his encouragement

and guidance this thesis would not have materialized.

After advisor comes the role of co-authors who also play an important part in

shaping one's thesis. I would like to thank Dr. Florent Foucaud for working with

me and teaching me a lot of tricks on the way. He has been a friend and mentor.

He has supported me, guided me and helped me a great deal all through. Because

of his initiative, I even got the opportunity to work in LIMOS, Clermont Ferrand

iii



iv

which was an experience on its own for me.

Another indispensible person whose role cannot be ignored is Professor Anil Ma-

heshwari. He has been a mentor all through my journey. I have always been in

his awe by the way he handles a new problem. He has always been a calm and

patient listener and it has been an absolute delight working with him.

I would also wish to extend my gratitude to Professor Ralf Klasing for inviting me

to LaBRI, Bordeaux. It was an amazing experience working with him and getting

to know a dedicated and funny person like him.

I would also like to thank all my other co-authors Prof. Arunabha Sen, Kaustav

Basu, Dr. Ramesh Jallu and Dr. Tuomo Lehtila for all their help.

I acknowledge, each and every member of Advanced Computing and Microelectron-

ics unit (ACMU); teachers, workers and students alike; for a relaxed, family-like,

but nonetheless research-oriented environment. I am also grateful to the Indian

Statistical Institute (ISI), Kolkata, for providing me the required funds for various

visits, as well as for the purchase of reference materials, and technical pieces of

equipment during the course of my research.

Personally, I owe a huge deal to Subhadeep and Suranjana for taking care of me and

being my personal cheerleaders. They have ensured my mental health throughout

the whole time. They have made me laugh at times when smiling seemed di�cult.

Last but not least, I am indebted to my parents for being my life-support and

tolerating all my tantrums with love.

I hope you enjoy reading this thesis as much I enjoyed writing it.

Sanjana Dey



Abstract

In computer science, a problem is said to have an optimal sub-structure if an

optimal solution can be constructed from optimal solutions of its sub-problems.

These optimal sub-structures are computed in the classical graph-theoretic setting

where the graph is a structure with a set of vertices and edges. In computational

geometry, the vertex set is usually represented by a set of geometric objects like

unit disks, etc., and the edge set is represented by the intersection of these geo-

metric structures. In this thesis, three problems are investigated namely minimum

discriminating codes, red-blue separation, and minimum consistent subset.

In the minimum discriminating codes problem, we handle some geometric struc-

tures like unit intervals and arbitrary intervals in R and axis parallel unit squares

in R2. We prove the hardness of the problem in both one-dimensional and two-

dimensional planes. We also propose PTAS for the unit interval case and a 2-factor

approximation algorithm for the arbitrary interval case. In polynomial time we

have given approximation algorithms producing constant-factor solution in R2 with

axis parallel unit square objects. We have also studied a similar problem known

as the minimum identifying codes in some geometric settings.

In the red-blue separation problem, we consider a graph whose vertices are colored

red or blue. We study the computational complexity in some graph classes. We

design polynomial-time algorithms when one of the colored classes is bounded by

a constant. We also give some tight bounds on the cardinality of the optimal

solution.

v



vi

In the minimum consistent subset problem, we work with simple graph classes like

paths, caterpillars, trees, etc. For each of these graphs, we have designed optimal

algorithms. We have also considered both undirected and directed versions for a

few of the graphs.

Keywords: dominating sets, discriminating codes, identifying codes, red-blue

separation, consistent subset, graphs, approximation algorithms.



Table of Contents

List of Figures x

1 Introduction 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . 11

2 Review and Related Works 13

2.1 Discrimination and Identi�cation . . . . . . . . . . . . . . . . . . . 14

2.2 Red-Blue Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Consistent Subset Problem . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Applications and Motivations . . . . . . . . . . . . . . . . . . . . . 30

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



TABLE OF CONTENTS viii

3 Discrimination and Identi�cation 37

3.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The G-Min-Disc-Code problem in 1D . . . . . . . . . . . . . . . . 41

3.2.1 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 A 2-approximation algorithm . . . . . . . . . . . . . . . . . 48

3.2.3 A PTAS for the unit interval case . . . . . . . . . . . . . . . 52

3.3 The G-Min-Disc-Code problem in 2D . . . . . . . . . . . . . . . . 58

3.3.1 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Approximation algorithms . . . . . . . . . . . . . . . . . . . 61

3.3.3 Approximation algorithm for Discrete-G-Min-Disc-Code 70

3.4 Min-ID-Code for geometric intersection graphs . . . . . . . . . . . 78

4 Red-Blue Separation 81

4.1 Preleminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Complexity of Red-Blue Separation . . . . . . . . . . . . . . . 86

4.3.1 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Positive algorithmic results . . . . . . . . . . . . . . . . . . . 93

4.4 Extremal values and bounds for max-sepRB . . . . . . . . . . . . . . 96



ix TABLE OF CONTENTS

4.4.1 Lower bounds for general graphs . . . . . . . . . . . . . . . 96

4.4.2 Upper bound for general graphs . . . . . . . . . . . . . . . . 101

4.4.3 Upper bound for trees . . . . . . . . . . . . . . . . . . . . . 102

4.5 Complexity of Max Red-Blue Separation . . . . . . . . . . . . 111

5 Minimum Consistent Subset in Simple Graphs 117

5.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Path Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Undirected Paths . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Directed Paths . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Spider Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1 Undirected Spiders . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Directed Spiders . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Bi-chromatic Caterpillar Graph . . . . . . . . . . . . . . . . . . . . 143

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.2 Correctness and complexity . . . . . . . . . . . . . . . . . . 152

5.5 Bi-chromatic Comb Graph . . . . . . . . . . . . . . . . . . . . . . . 154

5.5.1 Preprocessing and Algorithm: . . . . . . . . . . . . . . . . . 156

5.5.2 Correctness and complexity . . . . . . . . . . . . . . . . . . 163



TABLE OF CONTENTS x

6 Minimum Consistent Subset in Trees 165

6.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Computing MCS of a tree rooted at an anchor . . . . . . . . . . . . 173

6.3.1 Computation of C(Tz) . . . . . . . . . . . . . . . . . . . . . 176

6.3.2 Analysis of Algorithm of MCS(T ) . . . . . . . . . . . . . . . 183

6.4 Approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 185

6.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 Concluding Remarks 193

7.1 Discrimination and Identi�cation . . . . . . . . . . . . . . . . . . . 193

7.2 Red-Blue Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 197



List of Figures

1.1 An intersection graph of unit disks. . . . . . . . . . . . . . . . . . . 4

2.1 A graph with (a) dominating set, (b) separating code and (c) iden-

tifying code; highlighted in black vertices. . . . . . . . . . . . . . . 15

2.2 Twins in a graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 A graph with the members of the discriminating code is highlighted

in black vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 An illustration for the geometric red-blue separation. . . . . . . . . 22

2.5 A path graph whose highlighted vertices give a red-blue separation. 24

2.6 Classi�cation by nearest neighbor rule: the representatives of di�er-

ent classes are shown using square points and the sample elements

are shown using circular points. . . . . . . . . . . . . . . . . . . . . 25

2.7 Consistent subset of a point set: di�erent classes are shown using

di�erent colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A covering gadget Π, and its schematic representation. . . . . . . . 43

xi



LIST OF FIGURES xii

3.2 A clause gadget Π(ci), and its schematic representation. . . . . . . . 43

3.3 Variable gadget for variable xj. . . . . . . . . . . . . . . . . . . . . 44

3.4 The instance Γ(X,C) for the formula (X,C) = (x1∨x2∨x3)∧ (x1∨
x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Demonstration of redundant edges in a free region which are non-

redundant in the problem instance (P, S). . . . . . . . . . . . . . . 54

3.6 (a) A grid graph G. (b) Its corresponding geometric instance PG,

where the dashed axis-parallel unit squares are those covering two

points each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Schematic of the problem structure. . . . . . . . . . . . . . . . . . . 62

3.8 Object that needs to be hit corresponding to segment ℓ = [a, b],

where (a) length(ℓ) ≥ 1 and (b) length(ℓ) < 1. . . . . . . . . . . . . 63

3.9 An L-shaped object, which is the union of a type A and a type B

object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 An instance of shifting strategy where λi's indicate the horizontal

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.11 An instance of discrete hitting set of unit height rectangles stabbed

by a horizontal line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 The instance where the rectangles above the horizontal line are con-

sidered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 A maximum independent set of rectangles from Ra (shown in or-

ange/thick lines) and the strips χi, i = 1, 2, . . . , |I|+ 1. . . . . . . . 73



xiii LIST OF FIGURES

3.14 The points part of ∆I (shown as square points) and ∆′
I (shown as

cross points) and their corresponding rectangles in R′ (shown by

violet/dashed and brown/dotted lines respectively). . . . . . . . . . 74

3.15 Demonstration of rectangles in R1, R2 and R3 using dash dotted

red line, dashed green line and dotted blue line respectively. . . . . 74

3.16 Possible intersection patterns of a pair of axis-parallel unit squares

(full lines): the dotted square around each square corresponds to

the locations where a square centered at this point will intersect the

enclosed unit square. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.17 Feasible regions for placing the center of the square s ∈ ID for

discriminating si, sj ∈ S: three possible situations. . . . . . . . . . . 79

4.1 A split graph with a girth highlighted. . . . . . . . . . . . . . . . . 83

4.2 An example showing the di�erence between sepRB and max-sepRB

in a path graph of 6 vertices. . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Proof of Theorem 4.1: reduction from Set Cover to Red-Blue

Separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Reduction from an instance of Dominating Set to an instance of

Red-Blue Separation. . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Construction from an instance of Dominating Set to an instance

of Red-Blue Separation where size of the smaller color class is

bounded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 A reduction instance from Red-Blue Separation of (G, c) to Set

Cover of (U,S). The separating set in the colored graph (G, c)

and the corresponding set cover in the set system (U,S) has been
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



LIST OF FIGURES xiv

4.7 Illustration of Proposition 4.2: here v1 has just one blue neighbor

hence w1 is added in S. v2's neighbors w2 and w3 are also included

in S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Illustration of Proposition 4.3: the two sub-cases of Case 1 when

the vertices v and w are (a) not adjacent and (b) adjacent. . . . . . 95

4.9 Construction of C1 from C ′
1 where the highlighted elements repre-

sents members of the set. . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10 The cases of Claim 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.11 Comparison of C ′
1 and C ′

2 where the vertices highlighted in green

belong to the set V (T ) \ (L(T ) ∪ S+(T ) ∪NS3(T )). . . . . . . . . . 106

4.12 Gadgets used for the reduction from 3-SAT-2l toMax Red-Blue

Separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.13 An example to show the reduction from 3-SAT-2l to Max Red-

Blue Separation where (a) Dotted rectangles are variable gadgets

and dashed rectangles are clause gadgets and (b) Illustration of a

domination gadget. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 The graphs considered in this chapter. . . . . . . . . . . . . . . . . 119

5.2 Runs in a path graph: each run is indicated by a black rectangle. . 120

5.3 Valid Pairs: (vi, vl−1), (vi, vl) and (vi, vl+1). . . . . . . . . . . . . . . 121

5.4 The graph H with type-1 and type-2 edges where (a) type-1 edges,

(b) type-2 edges are in orange, (c) the shortest path is highlighted,

and (d) the MCS C are circled in the path G. . . . . . . . . . . . . 122

5.5 Illustration of a directed path with source and sink highlighted. . . 124



xv LIST OF FIGURES

5.6 Illustration of run and directed block. . . . . . . . . . . . . . . . . . 125

5.7 The graph G partitioned by the sinks. . . . . . . . . . . . . . . . . 126

5.8 The step by step execution of the algorithm. . . . . . . . . . . . . . 128

5.9 Illustration of mi ≤ |Ci| ≤ mi + 1. . . . . . . . . . . . . . . . . . . . 128

5.10 Tri-chromatic spiders. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 Ci(u): optimum solution for Vi ∪ U , and Ĉj(u): optimum solution

for Vj \ U ∪ {u}: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.12 All possible gates of a trichromatic spider. Figure (a), (b) and (c)

are the 2-gates of a trichromatic spider. Figure (d) is a 3-gate. The

base of a gate is always the head v. . . . . . . . . . . . . . . . . . . 133

5.13 Special trichromatic spiders for Case (iii). . . . . . . . . . . . . . . . 135

5.14 Special trichromatic spiders for Case (iv). . . . . . . . . . . . . . . . 136

5.15 Directed Spider graph. . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.16 Gate in an directed spider. . . . . . . . . . . . . . . . . . . . . . . . 139

5.17 Cases in an directed Spider graph. . . . . . . . . . . . . . . . . . . . 141

5.18 Illustration for θi's. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.19 (a) Left gate. (b) Right gate. (c) Visualizing Observation 5.8. (d)

A caterpillar with only left gate (OLG). (e) A caterpillar with both

gates (BG). All dotted regions signify the part of the caterpillar

covered by the gates. . . . . . . . . . . . . . . . . . . . . . . . . . . 144



LIST OF FIGURES xvi

5.20 Demonstration of Observation 5.10. The squared vertices show the

solution with LG, and the circled vertices show the optimal solution. 148

5.21 The covering region of LG and RG do not overlap . . . . . . . . . 149

5.22 A special case that arises if the covering region of LG and RG overlap150

5.23 Caterpillar with the blocks highlighted. . . . . . . . . . . . . . . . . 151

5.24 A comb graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.25 Data structure σq: (a) σq(i) for j ̸= i, (b) σq(i) for j = i . . . . . . . 157

5.26 Gates in comb graph. . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.27 Type 1 edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.28 Type 2 edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 Illustration of n_block and ℓ_block. . . . . . . . . . . . . . . . . . . 167

6.2 Illustration of gates Γ(u,w), Γ(u,w′), Γ(u,w′′). . . . . . . . . . . . . 168

6.3 The covered tree T−(u,w)
v = T \ (Tvu ∪ Tvw) . . . . . . . . . . . . . . 169

6.4 Nested sibling gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.5 Processing of a useful sibling gate . . . . . . . . . . . . . . . . . . . 171

6.6 Demonstration of Ca(T−a
x ): (a) dist(x, z) > dist(a, x), (b) dist(x, z′) <

dist(x, a), and (c) dist(x, x′) >> dist(z, z′); we choose another ver-

tex a′ ∈ x −→ x′ (satisfying dist(x, a′) ≥ dist(x, a)) to have a next

feasible gate Γ(a, ζ), ζ ∈ z −→ z′. . . . . . . . . . . . . . . . . . . . 175

6.7 Computation of C(Tz): Tz = T ′
z ∪ T ′′

z . . . . . . . . . . . . . . . . . 177



1 LIST OF FIGURES

6.8 Illustration of part (iii) of Lemma 6.4 . . . . . . . . . . . . . . . . . 179

6.9 Demonstration of the graph GΠ for the path Π = u −→ z −→ τ for

processing the tree T−u
z � (a) where GΠ is connected, and (b) where

GΠ is disconnected as the red run {z −→ z′} is much longer than

the next blue run so that there is no edge from u . . . . . . . . . . 180

6.10 Demonstration of edges in E1
z where (a) the number of vertices on

the path a −→ b is odd, and (b) the number of vertices on the path

a −→ b is even. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.11 Demonstration of vertices and edges in the graph H . . . . . . . . . 186

6.12 Demonstration of situation (i) that arise in a partial ℓ_block . . . . 188

6.13 Demonstration of situations (ii-a) and (ii-b) that arise in a partial

ℓ_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.14 Obtained Steiner tree . . . . . . . . . . . . . . . . . . . . . . . . . . 190



LIST OF FIGURES 2



CHAPTER 1

Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . 11

1.1 Introduction

With the cognitive evolution of the species of homo sapiens, few of the most

interesting inventions have been developed in the �eld of sciences. Under close

observation, it can be claimed that computer science as a �eld has improved and

grown by leaps and bounds. In the �eld of computer science the progress has been

nothing less than evolutionary in the last century with the discovery of the 'bit'.

The technology of computer science has shrunk the size of the world manifolds

with the transfer of information being established in a ji�y. But as we all know,

with great power comes great responsibility. Such huge amount of information

3



CHAPTER 1. INTRODUCTION 4

cannot be used raw. It needs processing and in some cases, even re�ning. Thus,

arises the need to study structures such as graphs, which are modelled from real

world scenarios, and deeply understand the sub-structures in such graphs for better

processing and utilizing these vast array of information.

In mathematics, or more speci�cally in the �eld of graph theory, a graph is a

structure that amounts to a set of objects in which some pairs of the objects can

be said to be in some sense "related". The objects correspond to mathematical

abstractions called vertices and each of the related pairs of vertices is called an

edge. In diagrammatic form, a graph is typically depicted as a set of dots or circles

for the vertices, joined by lines or curves for the edges.

The edges can be of two types: directed or undirected. For example, if the vertices

represent people at a party, and there exists an edge between any two people if

they have shaken hands, then this graph is undirected because a person p1 can

shake hands with another person p2 only if p2 also shakes his/her hands with p1.

In contrast, if any edge from a person p1 to a person p2 corresponds to p1 owes

money to p2, then this graph is directed. The former type of graph is referred as

an undirected graph while the latter type of graph is called a directed graph.

An intersection graph is a graph where each vertex is associated with a set and the

vertices are connected by edges whenever the corresponding sets have a nonempty

intersection. If the sets are geometric objects, the resulting graph is a geometric

graph. For instance, the intersection graph of disks in the plane is a disk graph

(shown in Figure 1.1).

u1 u2

u3

u4

u5

u1
u2

u3

u4

u5

Figure 1.1: An intersection graph of unit disks.



5 CHAPTER 1. INTRODUCTION

This thesis deals with problems related to �nding optimal sub-structures in graphs.

Now that we know what we mean by a graph, let us give a formal de�nition of

what do we mean by optimal sub-structure. Let a "problem" be a collection of

"alternatives" A, and let each alternative a have an associated cost c(a). The

task is to �nd a set of alternatives A ⊆ A that minimizes
∑

a∈A c(a). Suppose

that the alternatives can be partitioned into subsets, i.e. each alternative belongs

to only one subset and each subset has its own cost function. The minima of

the global cost function can be found restricted to the subset. A few important

sub-structures in graphs which make them an indispensable asset in computer

science are vertex cover, edge cover, independent set, maximum clique, maximum

matching etc. Each of these sub-structures have their unique set of applications

in the real world.

In order to judge the e�ciency of the method of computing an optimal sub-

structure of a graph, one needs to analyze the time and space complexities of

executing the corresponding algorithm. If the running time of an algorithm is up-

per bounded by a polynomial expression in the size of the input for the algorithm,

i.e., T (n) = O(nk) for some positive constant k then we call it a polynomial time

algorithm. Some examples of polynomial time algorithms in a graph are maximum

matching, edge cover, etc. If k = 0, then the algorithm is known as a constant

time algorithm. All the basic arithmetic operations (addition, subtraction, multi-

plication, division, and comparison) can be done in constant time.

Problems for which a deterministic polynomial time algorithm exists belong to the

complexity class P. The concept of polynomial time leads to several complexity

classes in computational complexity theory. One of the most important classes

de�ned using polynomial time is NP (nondeterministic polynomial time). NP is the

complexity class of decision problems1 that can be solved on a non-deterministic

Turing machine in polynomial time [KT05]. The two main types of problem widely

studied with respect to class NP are:

NP-hard problem: A problem H is NP-hard when every problem L in NP can

1A decision problem is a problem that can be posed as a yes�no question of the input values.



CHAPTER 1. INTRODUCTION 6

be reduced in polynomial time to an instance of H; that is, assuming a

solution for the reduced instance of H one can produce the solution of the

problem L in polynomial time [VL91, Knu74].

NP-complete problem: A problem is NP-complete when it is both NP-hard

and in NP.

Simple example of NP-hard problems are the minimum vertex cover problem, the

maximum independent set problem, etc. whereas the independent set decision

problem is NP-complete.

In complexity theory, co-NP is another complexity class. A decision problem X is

a member of co-NP if and only if its complement X is in the complexity class NP.

The polynomial hierarchy is a hierarchy of complexity classes that generalize the

classes NP and co-NP.

Oracle De�nition of Polynomial Hierarchy

De�nition 1.1. "For the oracle de�nition of the polynomial hierarchy,

de�ne

∆P
0 := ΣP

0 := ΠP
0 := P,

where P is the set of decision problems solvable in polynomial time. Then

for i ≥ 0 de�ne

∆P
i+1 := PΣP

i

ΣP
i+1 := NPΣP

i

ΠP
i+1 := coNPΣP

i

where PA is the set of decision problems solvable in polynomial time by a

Turing machine augmented by an oracle for some complete problem in class

A."

The classes NPA and coNPA are de�ned analogously. For example, ΣP
1 = NP,ΠP

1 =

coNP, and ∆P
2 = PNP is the class of problems solvable in polynomial time with an

oracle for some NP-complete problem.



7 CHAPTER 1. INTRODUCTION

In the �eld of theoretical computer science as a consequence of the widely believed

P ̸= NP conjecture, a wide class of optimization problems (in particular NP-hard

problems) cannot be solved exactly in polynomial time. Thus, arises the need of

approximate solutions in place of optimal solutions which gives us the following

de�nition:

Approximation algorithm [WS11]

De�nition 1.2. "An approximation algorithm for a problem is an e�cient

(most preferably polynomial time) algorithm that given any arbitrary in-

stance of the problem, one can �nd a solution to that optimization problem

with provable guarantee on the di�erence of the returned solution to the

optimal solution of the problem for that given instance."

By now there are several established techniques to design approximation algo-

rithms. These include greedy algorithms, local search, enumeration and dynamic

programming etc.

Polynomial-Time Approximation Scheme (PTAS)

De�nition 1.3. "A PTAS is an algorithm which takes an instance of an

optimization (minimization/maximization) problem and a parameter ϵ >

0 and produces a solution that is within a factor (1 + ϵ) of the optimal

solution of the minimization problem or (1 − ϵ) of the optimal solution of

the maximization problem."

For example, for the Euclidean traveling salesman problem, a PTAS would produce

a tour with length at most (1− ϵ)L, where L is the length of the shortest tour for

the given instance. The running time of a PTAS is required to be polynomial in the

problem size i.e. T (n) = f(n)g(n, ϵ). Thus, an algorithm running in time O(n1/ϵ)

or even O(nexp(1/ϵ)) counts as a PTAS. Although getting a PTAS is sometimes not

possible.



CHAPTER 1. INTRODUCTION 8

APX

De�nition 1.4. "In computational complexity theory, the class APX is the

set of NP optimization problems that allow polynomial-time approximation

algorithms with approximation ratio bounded by a constant."

The traveling salesman problem when the distances in the graph satisfy the con-

ditions of a metric belongs to the class of APX. It is also to be noted that there

exists problems for which �nding a constant factor approximation algorithm might

not be possible. An instance would be the set cover problem.

In computer science, parameterized complexity is a class of computational complex-

ity theory which focuses mainly on classifying computational problems according

to their inherent di�culty with respect to multiple parameters of the input or the

output. The complexity of a problem is measured as a function of those parame-

ters. This has allowed the classi�cation of NP-hard problems on a �ner scale than

in the classical setting, where the complexity of a problem is only measured as a

function of the number of bits in the input.

The existence of e�cient, exact, and deterministic solving algorithms for NP-

complete, or otherwise NP-hard, problems is considered unlikely, if input param-

eters are not �xed; all known solving algorithms for these problems require time

that is exponential in the total size of the input.

Fixed Parameter Tractable algorithm [DF99]

De�nition 1.5. "Some problems can be solved by algorithms that are

exponential only in the size of a �xed parameter while polynomial in the

size of the input. Such an algorithm is called a �xed-parameter tractable

(FPT-)algorithm, because the problem can be solved e�ciently for small

values of the �xed parameter."

FPT problems are those that can be solved in time f(k) · |x|O(1) for some com-

putable function f , k is the given parameter and |x| is the size of the input x of

the problem. Typically, this function is thought of as single exponential, such as



9 CHAPTER 1. INTRODUCTION

2O(k) but the de�nition admits functions that grow even faster. A vertex cover of

size k in a graph of n vertices can be found in time O(2kn), so this problem is in

FPT [CKX10]. The problem of �nding the maximum clique is both �xed param-

eter intractable and hard to approximate. However, for sparse graphs (graphs in

which the number of edges is at most a constant times the number of vertices in

any subgraph), the maximum clique has bounded size and may be found exactly

in linear time [CN85].

1.2 Scope of the thesis

In this thesis, we have studied three special types of optimal sub-structures in

graph settings and in geometric settings which are closely related to a fundamen-

tal problem of �nding a dominating set in a graph (which has been de�ned later).

Apart from theoretical interest, all of these problems have huge practical appli-

cations as well. The speci�c problems which have been focused in this thesis are

enlisted.

Minimum Discriminating and Identifying Codes: Given a set of points

P and a set of objects S, we study the minimum discriminating code and the

minimum identifying code problem in some geometric set-ups. In the minimum

discriminating code problem, the objective is to select a minimum size subset

S ′ ⊆ S such that all the points are covered by at least one object in S ′ and

for any pair of points pi, pj, the subset of objects covering pi and the subset of

objects covering pj are di�erent. The obtained results of the problem of minimum

discriminating codes in various geometric set-ups are listed below:

� We have shown that when the set of points P are on a horizontal line and

the set of objects S are arbitrary length intervals, then �nding the minimum

discriminating code problem is NP-complete.

� We have designed a 2-factor approximation algorithm for the above problem.



CHAPTER 1. INTRODUCTION 10

� When the set of points P are on a horizontal line and the set of objects S

are unit length intervals, then we have designed a PTAS.

� Also, when the set of points P are on the 2D plane and the set of objects S

are axis parallel unit squares, then �nding the minimum discriminating code

is shown to be NP-complete.

� With the above setting, we have also given constant factor approximation

algorithms.

For the identifying code problem, we are given a set of objects S and the objective

is to choose a subset of objects S ′ ⊆ S such that each object in S have non-empty

intersection with some object in S ′ and the subset of objects of S ′ having non-empty

intersection with each object in S is unique. In our study, the objects in S are

axis parallel unit squares, and we have designed a constant factor approximation

algorithm for the minimum identifying code problem.

Red-Blue Separation: We study two variations of the separation problem. In

the �rst variation, we are given a graph whose vertices are colored either red or

blue, and we are to �nd a subset V ′ of the vertex set of minimum cardinality such

that no red-blue vertex pair is dominated by the same subset of vertices in V ′.

The results we have discussed regarding the minimum red-blue separation are as

follows:

� We have shown that the problem is NP-complete in several restricted graph

classes.

� When the smaller color class is of unit size, the problem is hard to approxi-

mate with a factor of (1− ϵ) lnn even for split graphs.

� On general graphs, the problem has an algorithm that can produce a 2 lnn-

factor approximation result.

� When the smaller color class is bounded by a constant, the problem can be

solved in polynomial time in triangle free graphs and bounded-degree graphs.



11 CHAPTER 1. INTRODUCTION

The other variation studied is where the coloring of the vertices is not speci�ed and

we study the problem of �nding the maximum value achievable for the minimum

red-blue separation over all possible colorings of the vertices of the graph. In this

max-version of the separation problem we have discussed the following results:

� We show the existence of tight bounds on the size of V ′ in terms of the

number of vertices of a graph which are ⌊log2 n⌋ for general graphs and 2n
3

for trees.

� We show that the problem can be approximated within a factor of O(ln2 n).

Minimum Consistent Subset: This problem is studied in a graph theoretic

setting. We are given a graph G = (V,E) whose vertices are colored red or blue.

The objective is to �nd a subset of vertices V ′ ⊆ V vertices such that for any

vertex v ∈ V , the vertex v′ ∈ V ′ closest to v is of the same color as that of v. We

have given polynomial time algorithms for various graph classes, listed below. We

have studied the problem for the directed versions of some graph classes.

� For paths (both undirected and directed), we have given linear time algo-

rithms.

� For spiders (both undirected and directed), we have designed quadratic and

linear time algorithms respectively.

� For undirected caterpillars we have give an O(n) time algorithm.

� For undirected trees we have designed an O(n4) time algorithm.

1.3 Organization of the thesis

The thesis is organized in a total of seven chapters. In Chapter 2, we give a detailed

overview of related works. In Chapter 3, we study the minimum discriminating



CHAPTER 1. INTRODUCTION 12

and minimum identifying code problem in various geometric set-ups. In Chapter

4, we study the problem of red-blue separation in bi-coloured graphs. In Chapter 5

and 6, the minimum consistent subset problem for various graph classes have been

studied. Finally, in Chapter 7, concluding remarks on our studies and possible

future directions of research are illuminated.



CHAPTER 2

Review and Related Works

This thesis studies three types of problems for extracting optimal sub structures

in a graph:

(i) minimum discriminating/identifying codes,

(ii) red-blue separation and

(iii) minimum consistent subset.

The existing study of each of these three problems in the literature has been

described in details in these sections.

Contents

2.1 Discrimination and Identi�cation . . . . . . . . . . . . . 14

2.2 Red-Blue Separation . . . . . . . . . . . . . . . . . . . . 21

2.3 Consistent Subset Problem . . . . . . . . . . . . . . . . . 25

2.4 Applications and Motivations . . . . . . . . . . . . . . . 30

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 33

13



CHAPTER 2. REVIEW AND RELATED WORKS 14

2.1 Discrimination and Identi�cation

Separation problems for discrete structures have been studied extensively from

various perspectives. In the 1960s, Rényi [R�61] introduced the Separation

problem for set systems (a set system is a collection of sets over a set of ele-

ments), which has been rediscovered by various authors in di�erent contexts, see

e.g. [Bon72, CCHL08, HY14, MS85]. In this problem, one aims at selecting a solu-

tion subset S of sets from the input set system to separate every pair of elements,

such that the subset of S, which correspond to the sets to which each element

belongs to, is unique. The graph version of this problem (where the sets of the

input set system are the closed neighborhoods of a graph), called Identifying

Code [KCL98], is also extensively studied. The two problems that are primarily

discussed in this section are minimum discriminating codes and minimum identi-

fying codes. We �rst discuss the problem of minimum identifying codes as it can

be considered as a parent problem for minimum discriminating codes.

A graph G is henceforth de�ned as a tuple (V,E) where V is the set of vertices

and E is the set of edges. The closed neighborhood N [v] of a vertex v in a graph

is the set of all the vertices adjacent to v including v itself. An identifying code of

a graph G is a subset of vertices of G that allows one to distinguish each vertex of

G by means of its neighborhood within the identifying code. This notion, de�ned

by Karpovsky, Chakrabarty and Levitin in 1998 [KCL98], has been widely studied

since then. In order to de�ne an identifying code formally the notion of dominating

set and separating set is required.

Dominating set

De�nition 2.1. A dominating set of a graph G = (V,E) is a subset D of

vertices of G such that for each vertex v ∈ V , D∩N [v] ̸= ϕ. The size of the

dominating set is known as domination number and it denoted by γ(G).

An example of a dominating set is shown in Figure 2.1(a). It is to be noted that

dominating sets and many of their variants have been studied extensively in two



15 CHAPTER 2. REVIEW AND RELATED WORKS

a

b

cd

e
f

a

b

cd

e
f

{a, e, f}

{a, f}

{a}

{e, f}

{a, e}

φ

a

b

cd

e
f

{b, e, f}

{d, f}

{b}

{d, e, f}

{d, e}

{b, d}

(a) A dominating set (b) A separating code

(c) An identifying code

Figure 2.1: A graph with (a) dominating set, (b) separating code and (c) identi-
fying code; highlighted in black vertices.

classic textbooks [HHS98b] and [HHS98a].

Separating set

De�nition 2.2. A separating set is a subset S of vertices of G = (V,E)

such that for each pair u, v of distinct vertices in V , we have N [u] ∩ S ̸=
N [v] ∩ S.

We can assign a code to each vertex with respect to a separating set which we call

as the separating code of the vertex. The code of each vertex v ∈ V , with respect

to S, is the combination of the vertices of N [v] ∩ S. An example of a separating

code is depicted in Figure 2.1(b) where the code of each vertex is shown.



CHAPTER 2. REVIEW AND RELATED WORKS 16

p

q

Figure 2.2: Twins in a graph.

Identifying code [KCL98]

De�nition 2.3. Given a graph G, a subset C of V is an identifying code

of G if C is both a dominating set and a separating set of G i.e.

� for a vertex v ∈ V , C ∩N [v] ̸= ϕ and

� for a pair of vertices u, v, N [u] ∩ C ̸= N [v] ∩ C.

An identifying code has been represented in Figure 2.1(c) where the code of each

vertex is also given. It should be noted that both the dominating set and the

separating set may not produce the identifying code for a graph, as shown in

Figure 2.1.

An important observation on a graph is that: not all graphs can admit the iden-

tifying code of the vertices of the graph.

Twins

De�nition 2.4. Two distinct vertices u and v are called twins if N [u] =

N [v]. Here u and v cannot be separated as mentioned in Observation 2.1.

An example with two twin vertices p and q is shown in Figure 2.2.

Observation 2.1

A graph has an identifying code if and only if it is twin-free.

In fact, in a twin-free graph G, C = V is itself an identifying code of G, C is

de�nitely a dominating set, and for each vertex v ∈ V , we also have N [v] ∩ C =



17 CHAPTER 2. REVIEW AND RELATED WORKS

N [v]. Because of the twin-freeness of G, all these sets are unique, and C is also a

separating code of G. All the graphs considered in this thesis are twin-free. Twin

free graphs have also been studied independently in [CHHL07, Aug08, LHH+09,

ACHL10, CHL12].

The upper and lower bound of identifying codes in general graphs is shown to be

(n − 1) in [Ber01, GM07] and ⌊log2(n+ 1)⌋ in [KCL98] respectively. The tight-

ness of the bounds has been proved in [Fou12] and [Mon06] respectively. The same

bounds are true for bipartite graphs. The upper bound for both interval graphs and

unit interval graphs is (n−1) [Ber01, GM07]. The lower bounds for interval graphs

is
√
2n+ 1

4
− 1

2
and that of unit interval graphs is n+1

2
[Fou12]. The identifying code

problem has been shown to be NP-complete for bipartite graphs in [CHL03]. Even

in planar bipartite unit disk graph the problem remains NP-complete [MS09]. It

was shown thatMin-ID-Code (and thusMin-Disc-Code) for graphs is log-APX

hard [LT08], and this holds even for split graphs, bipartite graphs, co-bipartite

graphs [Fou15], and for bipartite graphs of girth 6 [BLL+15]. However, for line

graphs and planar graphs, Min-ID-Code remains NP-complete but constant fac-

tor approximation algorithms are available (see [FGN+13] and [BFS19, SR84],

respectively).

The notion of geometric separator in computational geometry comes from [DHMS01].

Let us assume having k �nite disjoint sets C1, . . . , Ck of R2. A �nite set of curves

S in the plane is a separator for the sets C1, . . . , Ck if every connected component

in R2 \ S contains points from only one set Ci. Finding separators has been a

classical problem of computational geometry, in particular for image analysis. The

most studied case is k = 2, i.e., there are two types of points and the separation is

to be done with lines or circles [AHM+00]. In [GP19], the problem of identifying

n points in the plane using disks, i.e., minimizing the number of disks so that each

point is contained in a disk and no two points are in exactly the same set of disks,

is considered. In [GP19], it is proved that if there are no three colinear points

nor four co-circular points, then
⌈
n
6

⌉
+ 1 disks are enough, improving the known

bound of
⌈
n+1
2

⌉
when no three points are colinear. This problem was mentioned

in [GT13], which considered a more general separation with convex sets. In par-



CHAPTER 2. REVIEW AND RELATED WORKS 18

ticular, they proved that
⌊
n
2

⌋
circles are enough to separate n points even if they

are in a general position (i.e. no three colinear points). In [BU95] an algorithm is

given with time complexity O(n log n) to �nd a family of n
2
lines that separates any

set of n points in a general position. In [CDKW05] it is proved that in the case,

particularly where the lines are parallel to the axis, the problem is NP-complete

and gave a polynomial time constant factor approximation algorithm for this case.

The identifying code problem in the grid i.e. in Z2, using Euclidean balls is studied

in [JL11]. The underlying graph has a subset of grid points in Z2 as vertices and

the closed neighborhoods are given by the Euclidean balls of a �xed radius r. The

authors give lower and upper bounds on the sizes of minimum identifying codes

in this graph as a function of r. An implementation of indoor location detection

systems based on identifying codes with some experimental evidence is shown in

[UTS04].

A problem that is much related to identifying codes and which has been studied

for several decades is the test cover problem, which generalizes the separating set.

Let I be a set of elements and A be a set of subsets of I. Members of I and A
are referred to as individuals and attributes respectively. We say that an attribute

a ∈ A separates two distinct elements i, i′ of I if a is contained in exactly one of

i or i′. A test cover of the set system (I,A) is a set T ⊆ A such that each pair of

distinct elements of I is separated by some subset of T . Note that, as in the case

of separating sets, a test cover may only exist if all pairs of individuals can actually

be separated. In that case, we say that the set system (I,A) is identi�able. The
notion of a test cover has appeared in a large number of papers under di�erent

contexts (test cover in [dBHH+03], test collection in [GJ02], and test set in [MS85]).

In [Kog95], the essential test set of a matrix, which is the intersection of all the

test sets, has been studied and a relationship between the size of a matrix and the

cardinality of the essential test set is derived. In [ACHL13], the notion of watching

systems in graphs is introduced, which is a generalization of identifying codes. A

watching system in a graph G = (V,E) is a �nite set W = {w1, w2, . . . , wk} where
each wi is a tuple wi = (vi, Zi) where vi is a vertex in V and the edges are de�ned

by the set Zi = N [vi] such that {Z1, Z2, . . . , Zk} is an identi�able system. The

authors give some basic properties of watching systems, and also study the cases of



19 CHAPTER 2. REVIEW AND RELATED WORKS

the paths and cycles, and give some complexity results. Similar problems are also

sometimes called shattering problems, see [NAH02]. The problem of Identifying

Code is extensively studied (see [Lob] for an online bibliography with almost 500

references as of January 2022).

Theorem 2.1: [Fou12]

Let (I,A) be an identi�able set system. Then there is a test cover of (I,A)
of at most |I| − 1 elements of A.

The analogy between test covers and identifying codes is however limited to some

extent: the test cover problem does not ask for each individual to actually belong

to an attribute of the test cover (i.e. there is no domination condition). However

we have the following notion, which slightly di�ers from the one of a test cover.

Given an I-identi�able set system (I,A), a subset C of A is a discriminating code

of (I,A) if it is a test cover of (I,A) and each element of I belongs to some set

of C. The notion of a discriminating code is de�ned below.

Discriminating code [CCCH06]

De�nition 2.5. Let G = (I ∪ A,E) be a bipartite undirected graph. A

subset C of A is said to be a discriminating code of G if:

� ∀i ̸= j : C ∩N [i] ̸= C ∩N [j], and

� ∀i ∈ I : C ∩N [i] ̸= ϕ.

a1 a2 a3 a4 a5

i1 i2 i3 i4 i5 i6
{a1} {a1, a3} {a1, a3, a5} {a3} {a3, a5} {a5}

Figure 2.3: A graph with the members of the discriminating code is highlighted in
black vertices.

A discriminating code has been represented in Figure 2.3 where the code of each



CHAPTER 2. REVIEW AND RELATED WORKS 20

vertex is also given. For the simpli�cation of understanding, I can be viewed as

a set of individuals and A as a set of attributes, with an edge between i ∈ I and

a ∈ A if attribute a belongs to individual i; a discriminating code is then a set

of attributes su�cient to distinguish all the individuals. Discriminating codes are

closely related to locating-dominating codes [CSS87].

Thus, two individuals are called twins if their neighborhoods are equal (i.e. two

individuals have the same set of attributes). The graph G = (I ∪ A,E) is said to

be twin-free if no elements of I are twins.

Observation 2.2

A bipartite graph has a discriminating code if and only if it is twin-free.

In [CCHL08], it is shown that the decision version of the discriminating code

problem for bipartite graphs i.e. does there exist a discriminating code of size k, is

NP-complete. In [CCHL08], a polynomial time algorithm is given for computing

discriminating code when the graph G is a tree. In [CCHL07], it is shown that the

discriminating codes and identifying codes de�ned for general graphs are equivalent

in the case of the Hamming space1. Some properties of discriminating codes are

studied in [CCC+08]. In particular, they give bounds on the minimum size of

these codes, investigate graphs where minimal discriminating codes have size close

to the upper bound, or give the exact minimum size in particular graphs. More

generally, for an integer r ≥ 1, they de�ne Br(v), which can be seen as a ball

of radius r centred at v, as the set of vertices within distance r from v, where

the distance d(x, y) between two vertices x and y is the smallest possible number

of edges in any path between them. They also give an NP-completeness result

for the existence of an r-discriminating code2 C ⊆ A of size at most k where

r ≥ 1 is odd. In [MRT14], open-out separating codes3 are handled which are

1A Hamming space can be de�ned over an alphabet set Q as the set of di�erent words of a
�xed length N with elements from Q.

2A code C ⊆ A for a bipartite graph G = (I ∪A,E) is called r-discriminating if for each v ∈ I
all the sets C ∩Br(v) are nonempty and distinct.

3Given a digraph D and C ⊆ V (D) we say that C is an open-out-separating code if for distinct
u, v ∈ V (D) it holds N+(u) ∩ C = N+(v) ∩ C where N+(v) denotes the open-out neighbor of a
vertex v ∈ V excluding v itself.



21 CHAPTER 2. REVIEW AND RELATED WORKS

similar to discriminating codes. [LHC20] presents a survey of the major results on

identi�cation and on locating-domination4.

More references on several coding mechanisms on graphs based on di�erent appli-

cations, namely locating-dominating sets, open locating dominating sets, metric

dimension, etc, and their computational hardness results are available in [Fou12,

FMN+17].

2.2 Red-Blue Separation

The Red-Blue-Separation problem is well studied in Computational Geometry.

Here two sets of points R and B are given in Rd where the points in R are colored

�red� and the points in B are colored �blue�. The objective is to use a set A of

minimum number of hyperplanes in Rd such that each cell in the arrangement of

the hyperplanes in A is either empty or contains point(s) of same color. In R2, if

the question is does there exists a single line that separates the points in R from

the points in B, then it can be solved in O(n2 log n) time as follows: generate a

set S of O(|R| × |B|) line segments by joining each point in R with every point

in B, and execute the O(n log n) time algorithm of [EMP+82] for computing a

transversal of that set of line segments S, if it exists.

For example say we are given a set R of red points and a set B of blue points

in the plane, the Red-Blue Separation problem asks if there are at most k

axis parallel lines that separate R from B, or in other words, each cell induced by

the lines of the solution is either empty or monochromatic (containing point(s) of

only one color, see Figure 2.4). A more natural variation of this problem targets

separating the red and blue points by a set of k lines of arbitrary orientation

which has been shown to be W [1] Hard in [BGL19]. Red-Blue Separation

has been studied in the geometric setting of red and blue points in the Euclidean

plane [BGL19, CDKW05, MMS20]. In this problem, one wishes to select a small

4A set C of vertices in a graph G = (V,E) is a locating-dominating code if it is dominating
and any two vertices of V \ C are dominated by distinct set of codes.



CHAPTER 2. REVIEW AND RELATED WORKS 22

Figure 2.4: An illustration for the geometric red-blue separation.

set of (axis-parallel) lines such that any pair of red and blue points lie on the two

sides of one of the solution lines.

In [CH98], it is shown that the problem of computing a Red-Blue-Separator5

of minimum cardinality in R2 is NP-hard. Gaur et al. proposed a 2-factor approx-

imation algorithm for stabbing a set of axis-parallel rectangles using minimum

number of axis-parallel lines [GIK02]. As this problem is same as the problem of

hitting a given set of segments of arbitrary orientation using minimum number

of axis-parallel line, we can use it to produces a 2-factor approximation solu-

tion for the Red-Blue-Separation problem using axis-parallel lines. It is also

shown that the problem is �xed parameter tractable when parameterized by the

size of the smallest color class and the solution size [KMM+21]. The Red-Blue-

Separation problem using arbitrary lines in R2 can easily be formulated as a set

cover problem, and hence a O(log n) factor approximation is obvious. Consider

each line segment joining a pair of red and blue points; consider its dual, which

is an wedge. Thus, we have the set W of wedges corresponding to the duals of

these line segments. Consider the arrangement AW of the wedges in W . Each cell

of AW is the intersection of a subset χ ∈ W of wedges. Thus choosing a point in

that cell implies the corresponding line in the primal plane separates each pair of

5A set of lines that separates each point in R from every point in B



23 CHAPTER 2. REVIEW AND RELATED WORKS

points corresponding to the members in χ. Thus, we have O(|R| × |B|) red-blue
pairs, and each cell in AW de�nes a subset of red-blue pairs. We need to choose

minimum number of subsets to cover all these red-blue pairs.

Motivated by machine learning applications, the following Red-Blue Separa-

tion problem has been studied in the literature, where the points are given in

the plane and the sets of S are de�ned by half-planes [CH98]. Geometric Red-

Blue Separation problem can be considered in higher dimension also. The

motivation of Red-Blue Separation problem stems from the Discretiza-

tion problem for two classes of points in machine learning, where each point

has multiple features represented by its coordinates. Here the color of a point

represents a data class. The problem is useful in a preprocessing step to trans-

form the continuous features into discrete ones, with the aim of classifying the

data points [CH98, KMM+21, KE07]. In 2D, this problem was shown to be NP-

hard [CH98] but 2-approximable [CDKW05] and �xed-parameter tractable when

parameterized by the size of a smallest color class [BGL19] and by the solution

size [KMM+21]. A polynomial-time algorithm for a special case, where the points

are on a circle, was recently given in [MMS20].

Another similar problem is theRed-Blue-Set-Cover problem, where given a red

point set, a blue point set, and a set of objects, the objective is to choose a subset

of objects to cover all the blue points, while minimizing the number of red points

covered. In [CH15], it has been proved that the problem is NP-hard even when the

objects are unit squares in 2D, and the �rst polynomial-time approximation scheme

(PTAS) for this case has been given. In [MNP21] variations of the geometric Red-

Blue-Set-Cover problem in the plane using various geometric objects has been

studied.

The Separation problem for set systems (also known as Test Cover) was in-

troduced in the 1960s [R�61] and widely studied from a combinatorial point of

view [BS07] as well as from the algorithmic perspective for the settings of clas-

sical, approximation and parameterized algorithms [CGJ+16, MS85]. Geometric

versions of Separation have been studied as well [DFNS20, GP19, HPJ20]. The



CHAPTER 2. REVIEW AND RELATED WORKS 24

Separation problem is also closely related to theVC Dimension problem [VC15]

which is very important in the context of machine learning. In VC Dimension,

for a given set system (V,S), one is looking for a (large) set X of vertices that is

shattered, that is, for every possible subset of X, there is a set of S whose trace on

X is the subset. This can be seen as �perfectly separating� a subset of S using X;

see [BLL+15] for more details on this connection. It thus seems natural to study

the graph version of Red-Blue Separation.

We study the Red-Blue Separation problem for graphs. The problem is mo-

tivated from its geometric counterpart, which is the red blue separation of points

in the Euclidean plane. The Red-Blue Separation problem which we study

here is a red-blue colored version of Separation de�ned in the previous section

as separating code, where instead of all pairs we only need to separate red vertices

from blue vertices in the graph. The formal de�nition of the problem is given

below.

Red-Blue Separation

De�nition 2.6. Given a graph G = (V,E) where each vertex is colored

either blue or red, the objective is to choose a subset C ⊆ V of minimum

cardinality such that the code of every pair of red and blue vertices is dif-

ferent. The code assigned to each vertex v ∈ V is the combination of the

vertices in C which are in the closed neighborhood of v.

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 2.5: A path graph whose highlighted vertices give a red-blue separation.

In Figure 2.5 the Red-Blue Separation problem is demonstrated using a path

graph. Here, if the vertices v4 and v6 are chosen in the red-blue separating set

then all the red vertices are separated from the blue vertices as the red vertices

have empty code.



25 CHAPTER 2. REVIEW AND RELATED WORKS

2.3 Consistent Subset Problem

In the classi�cation problems, there are two extremes of knowledge: either com-

plete statistical knowledge of the underlying distribution of the observation o and

the true category c, or no knowledge of the underlying distribution except that

which can be inferred from samples [CH67].

Nearest Neighbor Rule [CH67]

De�nition 2.7. A decision to classify an observation o into the category

c is allowed to depend only on a collection of n correctly classi�ed samples

o1, . . . , on into their corresponding categories c1, . . . , cn, and the simplest

decision procedure is the nearest neighbor (NN) rule, which classi�es an

observation o in the category of its nearest neighbor. See Figure 2.6.

o1 o2 o3 o4 o5 o6 o7

c1 c2

Figure 2.6: Classi�cation by nearest neighbor rule: the representatives of di�erent
classes are shown using square points and the sample elements are shown using
circular points.

The NN rule is such that it assigns an unclassi�ed sample to the same class as the

nearest of n stored, correctly classi�ed samples. In other words, given a collection

of n reference points, where each of them is classi�ed by some external source,

a new point is assigned to the same class as its nearest neighbor among those

reference points. From a practical point of view the NN rule is not a good choice

for many applications because of the storage requirements it imposes. In [Har68],

the following concept of Condensed Nearest Neighbor (CNN) rule is introduced

which retains the basic approach of the NN rule without imposing such stringent

storage requirements as each point classi�ed in the NN rule by some external

source, a new point is assigned to the same class as its nearest neighbor.

The CNN rule de�nes the notion of a consistent subset of a sample set which



CHAPTER 2. REVIEW AND RELATED WORKS 26

can correctly classify all of the remaining objects in the sample set. A minimal

consistent subset is a consistent subset with a minimum number of elements.

Minimum Consistent Subset [Har68]

De�nition 2.8. Given a set P of n points in the plane that is partitioned

into P1, ..., Pk, with k ≥ 2, and the goal is to �nd an smallest set S ⊆ P such

that for every i ∈ {1, ..., k} it holds that if p ∈ Pi then the nearest neighbor

of p in S belongs to Pi. It is implied by the de�nition that S should contain

at least one point from every Pi.

Figure 2.7: Consistent subset of a point set: di�erent classes are shown using
di�erent colors.

Note the di�erence between Figure 2.6 and 2.7. In the former �gure two new points

apart from P were introduced as representatives to the two sets of points whereas

in the later the representatives are chosen from the point set P itself. A further

modi�cation to the nearest neighbor decision rule by [Har68] is the reduced nearest

neighbor rule which is introduced in [Gat72]. It is an extension of the CNN rule.

Since every set is trivially a consistent subset of itself, every set has a consistent

subset.

Since the inception of this problem in 1968, from the algorithmic point of view

a signi�cant progress has not been observed. There had been several attempts

of developing algorithms, but those were either not optimal [Wil91] or had an

exponential running time [RWLI75]. In [RWLI75], a procedure is introduced to

approximate nearest neighbor decision boundaries. The algorithm in the paper

produces a selective subset of the original data so that (1) the subset is consistent,

(2) the distance between any sample and its nearest neighbor in that subset is

less than the distance from the sample to any sample of the other members of the

subset, and (3) the subset is the smallest possible. A two-stage iterative algorithm

for selecting a subset of a training set of samples to be used in a condensed nearest

neighbor (CNN) decision rule was introduced in [GK79]. The k-center problem

[MIH81] is to place k objects on the plane so that the distance from a client (a



27 CHAPTER 2. REVIEW AND RELATED WORKS

point) to its closest object is not greater than a given number r. Apart from the

algorithmic study, the theory of fuzzy sets is introduced into the k-nearest neighbor

technique to develop a fuzzy version of the algorithm in [KGG85].

In [Wil91] it has been proved that the consistent subset problem is NP-complete if

the input points are colored by at least three colors; the proof is based on the NP

completeness of the disc cover problem [MIH81]. In the same paper, a technically-

involved O(n2)-time algorithm is presented for a special case of two-colored input

points where one point is red and all other points are blue. [Wil91] showed that this

problem, even with two colors, is also NP-complete. In [Cla94] output-sensitive

geometric algorithms are proposed for the nearest-neighbor classi�cation problem.

Traditionally, the nearest-neighbor (NN) search has been based on two basic index-

ing approaches: object-based indexing and solution-based indexing. The former's

construct is based on the locations of data objects. The latter is built on a precom-

puted solution space. Thus, NN queries can be reduced to and processed as simple

point queries in the solution space. Both approaches exhibit some disadvantages,

especially when employed for wireless data broadcast in mobile computing environ-

ments. In [ZXLL04], a new index method is introduced, called the grid-partition

index. The grid-partition index is constructed using the Voronoi diagram. This

method has two distinctive characteristics. First, the solution space is divided into

grid cells such that a query point can be e�ciently mapped into a grid cell around

which the nearest object is located which signi�cantly reduces the search space.

Second, the grid-partition index stores the objects that are potential NNs of any

query falling within the cell. The storage of objects, instead of the Voronoi cells,

makes the grid-partition index a hybrid of the solution-based and object-based

approaches. In [Tou02], a variety of open problems are mentioned, which are ba-

sically of a computational geometric nature that arise in instance based learning.

In [Tou05], geometric proximity graphs such as Voronoi diagrams and their many

relatives are discussed which provide elegant solutions to data mining problems

such as outlier detection.

In [Ang05, Ang07] a novel algorithm is proposed, called the fast condensed nearest



CHAPTER 2. REVIEW AND RELATED WORKS 28

neighbor (FCNN) rule, for computing a training-set-consistent subset for the near-

est neighbor decision rule. The objective is to show that condensation algorithms

for the nearest neighbor rule can be applied to huge collections of data. [HLT22]

has worked on the nearest neighbor representation of Boolean functions.

In [AF07], the parallel fast condensed nearest neighbor (PFCNN) rule is presented

which is a distributed method for computing a consistent subset of a very large

data set for the nearest neighbor classi�cation rule. Di�erent variants of the basic

PFCNN method are introduced in [AF07] in order to cope with the communica-

tion overhead typical of distributed environments and to reduce memory require-

ments. An analysis of spatial cost, CPU cost, and communication overhead is

accomplished for all the algorithms. They indeed scale up well and are e�cient in

memory consumption, con�rming the theoretical analysis, and achieve noticeable

data reduction and good classi�cation accuracy.

The general de�nition of the MCS problem was given in [GEC+07] as follows. A

ground set X and a constraint t is given. The objective is to compute a subset

X ′ ⊆ X that satisfy the constraint t. They proposed the following application

for reducing the data communication: if a constraint t and the consistent subset

X ′ with respect to the constraint t are communicated to a user, then the user can

classify each element of the ground set X using the subset X ′ and the constraint

t. In its geometric variation in real domain some distance measure serves as the

constraint assuming that the distances between each pair of objects is distinct.

In [AB08], the SAT�CNN algorithm is introduced, which is a method for comput-

ing a minimum size consistent subset using the Nearest Neighbor rule via SAT

encodings. It exploits a suitable encoding of the CNN problem in a sequence of

SAT problems in order to exactly solve it, provided that enough computational re-

sources are available. Comparison of SAT�CNN with well-known greedy methods

have shown that SAT�CNN is able to return a better solution.

Recently it has been proved that the consistent subset problem with points having

two colors is also NP-complete using a reduction from the planar rectilinear mono-



29 CHAPTER 2. REVIEW AND RELATED WORKS

tone 3-SAT [KKR18]. It must be noted that the one color version of the problem

is trivial as every single point in the set P is a consistent subset. [ADBH+15] has

studied a class of geometric optimization problems closely related to the 2-center

problem: Given a set S of n pairs of points in the plane. For every pair, one

has to assign red color to a point of the pair and blue color to the other point in

order to optimize the radii of the minimum enclosing ball of the red points and the

minimum enclosing ball of the blue points. More recently, [BBC18] showed that

the consistent subset problem on collinear points, i.e., points that lie on a straight

line, can be solved optimally in O(n2) time. A sub-exponential time algorithm for

the consistent subset problem in R2 is also available in [BCC+19]. It is also shown

that in O(n log n) time one can test whether the size of the MCS of a bi-colored

point set in R2 is 2 or not. In the same paper, an O(n) time algorithm is presented

for the collinear points, thereby improving the previous running time by a factor

of Θ(n). They also propose an O(n6) time dynamic programming algorithm for

points arranged on two parallel lines.

We will study the graph-theoretic version of the consistent subset problem with

nearest neighbor (with respect to the hop-distance) as the constraint.

Minimum Consistent Subset in Graphs

De�nition 2.9. For a set of colored vertices V in the graph G = (V,E),

a set C ⊆ V is a consistent subset if for each vertex v ∈ V \ C, the closest

vertex of v ∈ C has the same color as that of v. The consistent subset

problem requires a consistent subset with minimum cardinality.

A related problem is recently studied in [BCMPR20, BCMPR21], where the inverse

Voronoi diagram (IVD) in graphs is de�ned as follows. A graph G = (V,E)

with positive edge weights, and a sequence of subsets {V1, V2, . . . , Vk}, Vi ⊆ V for

i = 1, 2, . . . , k, are given where each subset Vi is connected in G, and ∪ki=1Vi = V .

The objective is to identify the existence of a subset X = {x1, x2, . . . , xk}, where
each xi ∈ Vi is such that for every element v ∈ Vi its nearest neighbor in X is

xi. Here, by distance of a pair of vertices u, v ∈ V , we mean the shortest path

distance with respect to the edge weights in G. In [BCMPR20, BCMPR21], it



CHAPTER 2. REVIEW AND RELATED WORKS 30

is shown that the IVD problem for planar graphs is NP-complete. For trees, the

IVD problem can be solved in O(N + n log2 n) time [BCMPR21], where n is the

number of vertices in the tree and N = n+
∑k

i=1 |Vi|.

2.4 Applications and Motivations

The three types of problems that has been studied in this thesis are motivated

from a myriad of applications. The applications have been divided into three

parts speci�c to the problems.

Discrimination and Identi�cation: Identi�cation problems in general have a

wide range of applications in situations which involve di�erent variants of

testing. For example, test covers can be used for biological identi�cation of

individuals according to their attributes, the diagnosis of faults or diseases,

or pattern recognition [dBHH+03, MS85]. Identifying codes have also been

applied to scenarios where one wishes to detect failures in a computer net-

work. Some variants, such as (1,≤ ℓ)-identifying codes allow one to handle

the case of several simultaneous failures. This type of situation arises when

the network is a complex of rooms and corridors, and detectors are e.g. �re

alarms or motion sensors. Detectors placed as an identifying code, allow one

to detect and locate a �re in the building or an intruder. This idea has been

explained in e.g. [RUP+03, SS10] and a real experimental motion sensor

system based on identifying codes has been implemented and discussed in

[UTS04]. Identifying codes have been known to be used in routing problems

in networks. Given two computers which form a part of a network, the ob-

jective is to send a message from one to the other under certain constraints

depending on the network. The message usually transits through speci�c

computers of the network called routers. In some applications, these routers

form a dominating set. In [LTCS09] the problem has been solved using iden-

tifying codes and domination-based routing schemes, by using the fact that

identifying codes are dominating sets and that they induce unique identi�ers



31 CHAPTER 2. REVIEW AND RELATED WORKS

to each network node. Another application of identifying codes have been

used in comparing secondary RNA structures (viewing these molecules as

graphs) [HKSZ06]. Experiments have indeed shown that the values of domi-

nation parameters for RNA molecules help to give a good description of the

molecular properties of these structures. Identifying code also has several ap-

plications in the �eld of localization and contamination detection [RSTU04].

Discrimination has also been related to many real life problems. Using wire-

less sensor networks, the Structural Health Monitoring (SHM) problem for

critical infrastructures, such as bridges, buildings, electric power equipments,

has received considerable attention in the research community in recent years

[NAE+17]. Sensors placed in the deployment area have two functions: (i) to

sense a target function such as temperature, pressure, vibration, etc., and

(ii) to transmit the sensed data either directly or through multiple other

sensor nodes (which serves as relays) to the control station, for the analy-

sis of the sensed data. While the �rst function relates to coverage of the

sensing region, the second function relates to the connectivity aspects of the

network formed by the sensors. In [BZSG19], a novel terror network moni-

toring approach is proposed that claims to signi�cantly reduce the resource

requirement of law enforcement authorities, but still provide the capability

of uniquely identifying a suspect in case the suspect becomes active in plan-

ning a terrorist attack. The approach relies on the assumption that, when an

individual becomes active in planning a terrorist attack, his/her friends/as-

sociates will have some hints of the individual's plan. Accordingly, even if the

individual is not under active surveillance by the authorities, but the indi-

vidual's friends/associates are, then the individual planning the attack, can

be uniquely identi�ed. Very recently, in [BS21] two types of networks related

to drug tra�cking organizations and terrorist organizations are considered,

and they have presented a methodology for the surveillance of individuals

associated with these networks based on the notion of discriminating codes.

In [Bel18], the problem of tra�c monitoring is studied which consists in dif-

ferentiating a set of walks on a directed graphs by placing sensors on as few

arcs as possible. Tra�c monitoring presents new challenges such as taking



CHAPTER 2. REVIEW AND RELATED WORKS 32

into account the multiplicity and order of the arcs in a walk. A new and

stronger model of separation based on languages that generalizes the tra�c

monitoring problem is introduced in their work.

Red-Blue Separation: Separation problems are closely related to identi�cation

and discrimination problems. The separation problem has numerous appli-

cations in areas such as monitoring and fault-detection in networks [UTS04],

biological testing [MS85], and machine learning [KE07]. It has applications

to fault-tolerant multi-modal sensor fusion in the context of embedded sensor

networks [KSPSV02]. When using linear arrangements for separation, there

are applications in the domain of manufacturing, constructive solid geometry

and statistical classi�cation [Fre00].

The notion of separation or separating codes has many applications in a

wide range of domains. In each case a diagnosis has to be delivered with

limited or expensive access to information. Notable examples in such sce-

narios include visualization and pattern detection [dBHH+03, NF77], routing

[LTCS09] or fault detection [DDSM76] in telecommunication networks. It

also has applications in many areas of bio-informatics, such as analysis of

molecular structures [HKSZ06] or in medical diagnosis, where test covers are

the core of diagnostic tables (see [WL72]) and are therefore important for

blood sampling or bacterial identi�cation (see [WLH80] for a survey on dif-

ferent methods). Separating codes have also been studied under the name

of sieves in the context of logic characterizations of graphs; the size of a

minimal separating code determines the complexity of the �rst-order logic

formula required to describe a graph [KPSV05].

Consistency: A new and highly parallel method of exploiting continuity has been

introduced in [Ull74] for the problem of character recognition in a class of

hand-printed characters using the concept of nearest neighbor. In [Pat71], an

approach to interactive pattern recognition is dealt with using a-priori prob-

lem knowledge. The a-priori knowledge is either in the form of uncertain

correlation information among features or new features which are nonlin-

ear functions of original features. In [ZXLL04], the grid-partition index is

introduced to support NN search in both on-demand access and periodic



33 CHAPTER 2. REVIEW AND RELATED WORKS

broadcast modes of mobile computing. In [Das17] the concept is applied on

datasets related to image classi�cation of hand digits and face recognition

dataset.

In addition to being a natural variant of the fundamental 2-center problem

from facility location, our problem is motivated by a problem in �chromatic

clustering�, called the Chromatic Cone Clustering problem. It arises in cer-

tain applications in biology, as studied by Ding and Xu [DX11]. Another

view of motivation of our problem comes from a transportation problem, in

which case there are origin/destination pairs of points between which the

tra�c �ows. There is the option of establishing a special high-priority tra�c

corridor, which can be modeled as a straight segment, where the knowledge

about the tra�c �ow is required for going between pairs of points. The goal

is to locate the corridor in a way such that the o�-corridor travel is min-

imized when tra�c between origin/destination pairs utilizes the corridor.

Models dealing with alternative transportation systems have been suggested

in location theory [BP88], and simpli�ed mathematical models have been

widely studied in order to investigate basic geometric properties of urban

transportation systems [AHS+03]. Recently, there has been an interest in fa-

cility location problems derived from urban modeling. In many of the cases

one might be interested in locating a highway that optimizes some given

function that depends on the distance between elements of a given point set

[AAA+07, CCH+08, DBKPLV13, KT08]. In [ADBH+15] an application in

air tra�c management has been studied speci�cally with the use of ��ow

corridors� (or �tubes�).

2.5 Contributions

The contributions of the thesis is categorized as follows:

Discrimination and Identi�cation: We study geometric variations of the dis-

criminating code problem. In the discrete version of the problem, a �nite



CHAPTER 2. REVIEW AND RELATED WORKS 34

set of points P and a �nite set of objects S are given in Rd. The objective

is to choose a subset S∗ ⊆ S of minimum cardinality such that for each

point pi ∈ P the subset S∗
i ⊆ S∗ covering pi, satisfy S∗

i ̸= ∅, and each pair

pi, pj ∈ P , i ̸= j, satis�es S∗
i ̸= S∗

j . In the continuous version of the problem,

the solution set S∗ can be chosen freely among a (potentially in�nite) class

of allowed geometric objects.

We �rst study the 1-dimensional case (d = 1), the points in P are placed on

a line L, and the objects in S are �nite-length line segments aligned with L

(called intervals). We show that the discrete version of this problem is NP-

complete. This is somewhat surprising as the continuous version is known

to be polynomial-time solvable. This is also in contrast with most geomet-

ric covering problems, which are usually polynomial-time solvable in one

dimension. However, we have proposed a polynomial-time 2-approximation

algorithm for this discrete version of the problem. We also design a PTAS

for both discrete and continuous versions in one dimension, for the restric-

tion where the intervals are all required to have the same length. We then

study the 2-dimensional case (d = 2) for axis-parallel unit square objects.

We show that both continuous and discrete versions are NP-complete, and

design polynomial-time approximation algorithms that produce (16+ ϵ) and

(128 + ϵ) approximate solutions respectively, using rounding of suitably de-

�ned integer linear programming problems.

Finally, we apply our techniques to a related variant of the discrete problem,

where instead of points and geometric objects we just have a set S of objects

which are axis-parallel unit squares. The goal is to select a small subset S∗ of

objects so that all objects of S are discriminated by their intersection with the

objects of S∗. This problem can be viewed as a graph problem by stating

it in terms of the vertices of the geometric intersection graph of S; under

this graph-theoretical form, it is known as the identifying code problem. Our

previously mentioned reduction for d = 1 can be adapted for the identifying

code problem on interval graphs. We show that the identifying code problem

for unit square intersection graphs (d = 2) can also be solved in the same

manner as for the discrete version of the discriminating code problem for



35 CHAPTER 2. REVIEW AND RELATED WORKS

unit square objects described above, and all our approximation results still

hold in this setting.

Red-Blue Separation: Here, we introduce and study the Red-Blue Separa-

tion problem on graphs, where we a graph is given whose vertices are colored

either red or blue, and we want to select a (small) subset of vertices, called

red-blue separating set, such that for every red-blue pair of vertices, there is

a vertex from the separating set whose closed neighborhood contains exactly

one of the two vertices of the pair. This problem was previously studied in a

geometric setting (where red and blue points in the plane are to be separated

by lines), motivated by applications in machine learning.

We study the computational complexity of Red-Blue Separation on

graphs, in which one asks whether a given red-blue vertex colored graph

has a red-blue separating set of size at most a given integer. The decision

problem is NP-complete even for restricted graph classes such as planar bi-

partite sub-cubic graphs, in the setting where the two color classes have equal

size. We also show that the optimization problem is NP-hard to approxi-

mate within a factor of (1 − ϵ) lnn for every ϵ > 0, even for split graphs

of order n, and when one color class has size 1. On the other hand, it is

always approximable in polynomial-time within a factor of 2 lnn. In con-

trast, for triangle-free graphs and for graphs of bounded maximum degree,

Red-Blue Separation is solvable in polynomial-time when the size of the

smaller color class is bounded by a constant (using algorithms that are in

the parameterized class XP, with the size of the smaller color class as pa-

rameter). However, on general graphs, the problem is W [2]-hard even when

parameterized by the solution size plus the size of the smaller color class.

We also consider the problem Max Red-Blue Separation where the col-

oring is not part of the input. In this problem, given an input graph G, we

want to determine the smaller integer k such that, for every possible red-blue-

coloring of G, there is a red-blue separating set of size at most k. We study

tight bounds on the cardinality of an optimal solution of Max Red-Blue

Separation on graphs, showing that it can range from logarithmic in the

number of vertices, up to the number of vertices minus one. We also give



CHAPTER 2. REVIEW AND RELATED WORKS 36

bounds with respect to related parameters. For trees however we prove an

upper bound which is two-thirds the number of vertices in the graph. We

then show that Max Red-Blue Separation is NP-hard, even for graphs

of bounded maximum degree, but can be approximated in polynomial time

within a factor of O(ln2 n).

Consistency: We study the minimum consistent subset (MCS) problem on graphs.

We are given a connected simple undirected graph G = (V,E) whose each

vertex is colored by one of the colors {c1, c2, . . . , ck}. The objective is to

compute a subset C ⊆ V such that for each vertex v ∈ V , its set of near-

est neighbors in C (with respect to the hop-distance) contains at least one

vertex of the same color as v. The decision version of the MCS problem is NP-

complete for general graphs. Even for planar graphs, the decision version of

the MCS problem is NP-complete. We will �srt consider some simple graph

classes like k-chromatic path, k-chromatic spider, bi-chromatic caterpillar,

bi-chromatic comb, and propose polynomial-time algorithms for solving the

problem on those graphs. We then discuss the minimum consistent problem

on trees. Even on trees, the problem is non-trivial. However, we propose

an involved polynomial-time algorithm for computing a minimum consistent

subset of bi-chromatic trees. We also give a simple approximation algorithm

by extending the idea from Steiner trees.



CHAPTER 3

Discrimination and Identi�cation

Contents

3.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The G-Min-Disc-Code problem in 1D . . . . . . . . . 41

3.2.1 NP-completeness . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 A 2-approximation algorithm . . . . . . . . . . . . . . . 48

3.2.3 A PTAS for the unit interval case . . . . . . . . . . . . . 52

3.3 The G-Min-Disc-Code problem in 2D . . . . . . . . . 58

3.3.1 NP-completeness . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Approximation algorithms . . . . . . . . . . . . . . . . . 61

3.3.3 Approximation algorithm for Discrete-G-Min-Disc-

Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Min-ID-Code for geometric intersection graphs . . . . 78

37



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 38

3.1 Organization

In this chapter we study the geometric version of the Min-Disc-Code problem

introduced in [BDNS19], which will be referred to as G-Min-Disc-Code. Here

we have two sets of nodes in the bipartite graph G = (U ∪ V,E) where U = S,

a set of geometric objects, and V = P , a set of points in Rd; a vertex u ∈ U has

edges to a subset Vu ⊆ V in E if the object Su corresponding to u contain the

points in P corresponding to the vertices in Vu. Each object in S has its label.

We assign an identi�cation(id) of a point which is the label of all the objects

containing that point. Given an instance (P, S), two points pi, pj ∈ P are called

twins if each member in S that contains pi also contains pj, and vice-versa. An

instance (P, S) of G-Min-Disc-Code is twin-free if no two points in P are twins.

Geometrically, if we consider the arrangement A of the geometric objects S, then

the instance (P, S) is twin-free if each cell of A contains at most one point of P .

As mentioned earlier, for a twin-free instance, a subset of S that can uniquely

assign id's to all the points in P is said to discriminate the points of P and is

called a discriminating code or disc-code in short. In the discrete version of the

problem the set S of objects is given along with the set of points P as the input;

the objective is to �nd a subset S∗ ⊆ S of minimum cardinality that is a disc-code

for the points in P . In the continuous version, we can freely choose the position

of objects S∗ in Rd such that each point gets a unique id, and the size of the set

S∗ is minimum. The two problems are formally stated as follows.

Problem: Discrete-G-Min-Disc-Code

Input: A point set P to be discriminated, and a set of objects S to be used for

the discrimination.

Output: A minimum-size subset S∗ ⊆ S that discriminates all points in P .

A related problem, namely Minimum Identifying Code (Min-ID-Code) is de�ned



39 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

in the literature. Here a set S of objects are given.

Problem: Continuous-G-Min-Disc-Code

Input: A point set P to be discriminated.

Output: A minimum-size set S∗ of objects, placed anywhere in the region under

consideration, that discriminates the points in P .

Problem: Min-ID-Code

Input: A set of objects S to be identi�ed.

Output: A minimum-size subset S∗ ⊆ S that identi�es all objects in S.

The following proposition from [HPV98] (which uses the technique of partition

re�nement for computing twins) will be useful.

Proposition 3.1: [HPV98]

Checking whether a given instance (P, S) of Discrete-G-Min-Disc-Code

with |P | = n and |S| = m is twin-free can be done in time O(m+ n).

We will study the computation hardness issues of di�erent variations of Min-Disc-

Code problems and propose approximation algorithms. The chapter is organized

as follows. Section 3.2 deals with the G-Min-Disc-Code in 1D where the objects

are intervals. By using a polynomial time reduction from a restricted version

of the 3-SAT problem, we show that Discrete-G-Min-Disc-Code problem for

discriminating points on a real line by interval objects of arbitrary length, is NP-

complete. Here, the challenge is to overcome the linear nature of the problem

and to transmit the information across the entire construction without a�ecting

intermediate regions as an interval can stretch over many other smaller intervals

as well as points and complicate the construction of an instance. This result

is in contrast with Continuous-G-Min-Disc-Code problem in 1D, which is

polynomial-time solvable [GP19]. This is also in contrast with most geometric

covering problems, which are often polynomial-time solvable in 1D [DBRDG17].

We also propose a simple polynomial-time 2-factor approximation algorithm for



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 40

Object
Type

Continuous-G-Min-Disc-Code Discrete-G-Min-Disc-Code

Hardness Algorithm Hardness Algorithm

1D intervals un-
bounded

- Polynomial-time solvable ([GP19]) NP-hard (Thm. 3.1) 2-approximable (Thm. 3.2)

1D intervals
bounded

- Polynomial-time solvable ([GP19]) Open 2-approximable (Thm. 3.2)

1D unit intervals Open PTAS (Cor. 3.1) Open PTAS (Thm. 3.3)

2D axis-parallel
unit squares

NP-hard (Thm. 3.4) (16OPT + 1)-approximable (Thm. 3.5) NP-hard (Thm. 3.4) (128OPT + 1)-approximable (Thm. 3.6)

Table 3.1: Summary of our results on G-Min-Disc-Code problems.

Discrete-G-Min-Disc-Code in 1D.

We also design a PTAS for bothDiscrete-G-Min-Disc-Code andContinuous-

G-Min-Disc-Code problems in 1D, when all the objects are required to have

the same length. In this context, it needs to be mentioned once again that the

Continuous-G-Min-Disc-Code problem for arbitrary intervals is polynomially

solvable [GP19].

In Section 3.3 we study both problems in 2D for axis-parallel unit square objects,

which is a natural extension of 1D intervals to the 2D setting. The continuous

version is known to be NP-complete for unit disks [GP19], and we show that the

reduction can be adapted to our setting, for both the continuous and discrete cases.

We then design polynomial-time constant-factor approximation algorithms for

both problems in that setting. The approximation factors are 16 and 128 for

the continuous and discrete problem respectively.1 To obtain these algorithms, we

re-formulate our problems into a problem of stabbing line segments in 2D, which

can be reduced to a geometric Hitting Set problem.

Our results on Discriminating Code problems are summarized in Table 3.1.

Finally, in Section 3.4, we consider the related Min-Id-Code problem restricted

to unit square graphs (geometric intersection graphs for 2D axis-parallel unit

1Note that, the (4 + ϵ) factor approximation algorithms presented in the conference version
of this paper [DFNS20] were wrong and the algorithms have been corrected here.



41 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

squares). We show that Min-Id-Code for unit square graphs can be solved in

the same manner as the Discrete-G-Min-Disc-Code problem for axis-parallel

unit square objects, and our approximation results for Discrete-G-Min-Disc-

Code still hold for Min-Id-Code on this class of graphs.

3.2 The G-Min-Disc-Code problem in 1D

It has been shown that Continuous-G-Min-Disc-Code is polynomial-time solv-

able in 1D [GP19]. Thus, in this section we focus on Discrete-G-Min-Disc-

Code.

An instance (P, S) of the Discrete-G-Min-Disc-Code problem is a set P =

{p1, . . . , pn} of points and a set S of m intervals of arbitrary lengths placed on a

real line R. Assuming that the points are sorted with respect to their x-coordinate

values, we de�ne n+1 gaps G = {g1, . . . , gn+1}, where g1 = (−∞, p1), gi = (pi−1, pi)

for 2 ≤ i ≤ n, and gn+1 = (pn,∞).

Observe that (i) if both endpoints of an interval s ∈ S lie in the same gap of

G, then it can not discriminate any pair of points; thus s is useless, and (ii) if

more than one interval in S have both their endpoints in the same two gaps, say

ga = (pa, pa+1), gb = (pb, pb+1) ∈ G, then both of them discriminate exactly the

same point-pairs. Thus, they are redundant and we need to keep only one interval

among them. In a linear scan, we can �rst eliminate the useless and redundant

intervals. From now onwards, m will denote the number of intervals, none of which

are useless or redundant. Hence, m may be O(n2) in the worst case.

3.2.1 NP-completeness

The Discrete-G-Min-Disc-Code problem is in NP, since given a subset S ′ ⊆ S,

in linear time one can test whether the problem instance (P, S ′) is twin-free (i.e.,



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 42

whether the id of every point in P induced by S ′ is unique) by Proposition 3.1.

We prove the NP-hardness of Discrete-G-Min-Disc-Code using a polynomial-

time reduction from the 3-SAT-2l problem (de�ned below), which is known to be

NP-complete [Tov84].

Problem: 3-SAT-2l

Input: A collection of m clauses C = {c1, c2, . . . , cm} where each clause contains

at most three literals, over a set of n Boolean variables X = {x1, x2, . . . , xn}, and
each literal appears at most twice.

Output: A truth assignment of X such that each clause is satis�ed (if it exists).

Given an instance (X,C) of 3-SAT-2l, we construct in polynomial time an in-

stance (P, S) = Γ(X,C) of the Discrete-G-Min-Disc-Code problem on the

real line R. The main challenge of this reduction is to be able to connect variable

and clause gadgets, despite the linear nature of our 1D setting. The basic idea is

that we will construct an instance where some speci�c set of critical point-pairs

will need to be discriminated (all other pairs being discriminated by some partial

solution forced by our gadgets). Let us start by describing our basic gadgets.

Covering Gadget

De�nition 3.1. A covering gadget Π consists of three intervals I, J , K

and four points p1, p2, p3 and p4 satisfying p1 ∈ I, p2 ∈ I ∩J , p3 ∈ I ∩J ∩K
and p4 ∈ J ∩ K as in Figure 3.1. Every other interval of the construction

will either contain all four points, or none. There may exist a set of points

in K \ {I ∪ J}, depending on the need of the reduction (see Figure 3.1).

The idea of the covering gadget is to forcefully discriminate the points placed in

K \ {I ∪ J} by the other intervals in the construction, so that they are all covered

by K, are discriminated from p1, p2, p3, p4, and also discriminated from all other

points not in I ∪ J ∪K.



43 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

I

J

K

Π

p1 p2 p3 p4

Figure 3.1: A covering gadget Π, and its schematic representation.

Observation 3.1

The points p1,p2,p3,p4 in a covering gadget can only be discriminated by

choosing all three intervals I, J , K in the solution.

Proof. Follows from the fact that none of the intervals in Γ(X,C), that is not a

member of the covering gadget Π can discriminate the four points in Π. Moreover,

if we do not choose I, then p3, p4 are not discriminated. If we do not choose J ,

p1, p2 are not discriminated. If we do not choose K, p2, p3 are not discriminated

(see Figure 3.1).

Let us now de�ne the gadgets modeling the clauses and variables of the 3-SAT-2l

instance.

Clause Gadget

De�nition 3.2. Let ci be a clause of C. The clause gadget for ci, denoted

Gc(ci), is de�ned by a covering gadget Π(ci) along with two points pci , p
′
ci

placed in K \ {I ∪ J} (see Figure 3.2).

I

J

K

p1 p2 p3 p4

Π(ci)

pci p′ci

Figure 3.2: A clause gadget Π(ci), and its schematic representation.

The idea behind the clause gadget is that some interval that ends between points

pci , p
′
ci
will have to be taken in the solution, so that this pair gets discriminated.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 44

Variable Gadget

De�nition 3.3. Let xj be a variable of X. The variable gadget for

xj, denoted Gv(xj), is de�ned by a covering gadget Π(xj), and �ve points

p1xj
, . . . , p5xj

placed consecutively in K \ {I ∪ J}. We place six intervals I0xj
,

I1xj
, I2xj

, I0xj
, I1xj

, I2xj
, as in Figure 3.3.

� Interval I0xj
starts between p1xj

and p2xj
, and ends between p3xj

and p4xj
.

� Interval I0xj
starts between p2xj

and p3xj
, and ends between p4xj

and p5xj
.

� Interval I1xj
starts between p2xj

and p3xj
, and ends after p5xj

.

� Interval I2xj
starts between p4xj

and p5xj
, and ends after p5xj

.

� Interval I1xj
starts between p1xj

and p2xj
, and ends after p5xj

.

� Interval I2xj
starts between p3xj

and p4xj
, and ends after p5xj

.

(The end-point of the four intervals, namely I1xj
, I1xj

, I2xj
, I2xj

, will be deter-

mined at the time of construction of the whole instance.)

Π(xj)

p1xj p2xj p3xj p4xj p5xj

I0xj
I1xj

I2xj
I0xj

I1xj
I2xj

Figure 3.3: Variable gadget for variable xj.

In a variable gadget Gv(xj), the intervals I1xj
and I2xj

represent the two possible

occurrences of literal xj because a literal can occur at most twice, while I1xj
and

I2xj
represent the two possible occurrences of xj in the 3-SAT formula. The right

end points of each of these four intervals will be in the clause gadget of the clause

where the occurrence of that literal takes place.



45 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

An example for the construction of Γ(X,C) is shown in Figure 3.4. We assume

that every literal appears in at least one clause2. Now the construction of the

G-Min-Disc-Code instance Γ(X,C) is as follows:

� For each variable xi ∈ X, Γ(X,C) contains a variable gadget Gv(xi).

� The gadgets Gv(x1), Gv(x2), . . . , Gv(xn) are positioned consecutively, in this

order, without overlap.

� For each clause cj ∈ C, Γ(X,C) contains a clause gadget Gc(cj).

� The gadgets Gc(c1), Gc(c2), . . . , Gc(cm) are positioned consecutively, in this

order, to the right of the placement of the variable gadgets, without overlap.

� For every variable xi, assume xi appears in clauses ci1 and ci2 , and xi appears

in ci3 and ci4 (possibly i1 = i2 or i3 = i4). Then, we extend the intervals I1xi
,

I1xi
, I2xi

, I2xi
so that I1xi

ends between pci1 and p′ci1 , I
2
xi
ends between pci2 and

p′ci2 , I
1
xi
ends between pci3 and p′ci3 , and I

2
xi
ends between pci4 and p′ci4 .

Thus, our geometric instance (P, S) = Γ(X,C) of the Discrete-G-Min-Disc-

Code problem instance has |P | = 6m+ 9n points and |S| = 3m+ 9n intervals.

Let SΠ be the union of the discriminating codes (i.e., all intervals of type I, J,K,

as mentioned in Observation 3.1) of all covering gadgets of type Π(xi) and Π(cj)

of Γ(X,C).

Consider any covering gadget Π1. By Observation 3.1, the points p1, p2, p3, p4 of

each covering gadget used in the reduction are discriminated among each other by

the set SΠ, and they are discriminated from all other points of Γ(X,C), since they

are the only ones to be covered by one of the intervals I, J from Π1. Moreover, all

the points covered by the interval K from Π1 are discriminated from all the points

not covered by K. Thus, overall, all point-pairs of Γ(X,C) are discriminated by

SΠ, except the following critical point-pairs:

2If a literal does not appear in any clause, then we can assign a truth value to its variable so
that all its occurrences are true, and further ignore this variable.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 46

V
ar

ia
b

le
G

a
d

g
et

s
C

la
u

se
G

ad
ge

ts

p
1 x
1

p
2 x
1
p
3 x
1
p
4 x
1
p
5 x
1

Π
(x

1
)

p
1 x
2

p
2 x
2
p
3 x
2
p
4 x
2
p
5 x
2

Π
(x

2
)

p
1 x
3

p
2 x
3
p
3 x
3
p
4 x
3
p
5 x
3

Π
(x

3
)

p
c
1

p
′ c
1

Π
(c

1
)

p
c
2

p
′ c
2

Π
(c

2
)

I
0 x
1

I
1 x
1

I
2 x
1

I
0 x
1

I
1 x
1

I
2 x
1

I
0 x
2

I
1 x
2

I
2 x
2

I
0 x
2

I
1 x
2

I
2 x
2

I
0 x
3

I
1 x
3

I
2 x
3

I
0 x
3

I
1 x
3

I
2 x
3

p
c
3

p
′ c
3

Π
(c

3
)

Figure 3.4: The instance Γ(X,C) for the formula (X,C) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).



47 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

� the point-pairs among the �ve points p1xi
, . . . , p5xi

of each variable gadget

Gv(xi), and

� the point-pair {pcj , p′cj} of each clause gadget Gc(cj).

In the proof of the following main result of this section, we will demonstrate, in

particular, that if there exists a truth assignment of the variables in X such that all

the clauses in C are satis�ed, then the critical point-pairs are also discriminated.

Theorem 3.1

Discrete-G-Min-Disc-Code in 1D is NP-complete.

Proof. We prove that (X,C) is satis�able if and only if Γ(X,C) has a discriminat-

ing code of size 6n+ 3m. In both directions of the proof, we will consider the set

SΠ de�ned above. Each variable gadget and clause gadget contains one covering

gadget. Thus, |SΠ| = 3(n+m).

( =⇒ ) Consider �rst some satisfying truth assignment of X. We build a solution

set S∗ as follows. First, we put all intervals of SΠ in S∗. Then, for each variable

xi, if xi is true, we add intervals I0xi
, I1xi

and I2xi
to S∗. Otherwise, we add intervals

I0xi
, I1xi

and I2xi
to S∗. Notice that |S∗| = 6n+3m. As observed before, it su�ces to

show that S∗ discriminates the point-pair {pcj , p′cj} of each clause gadget Gc(cj),

and the points p1xi
, . . . , p5xi

of each variable gadget Gv(xi). (All other pairs are

discriminated by SΠ.)

Since the assignment is satisfying, each clause cj contains a true literal li ∈ {xi, xi}.
Then, one interval of Gv(xi) is in S∗ and discriminates pcj and p

′
cj
. Furthermore,

consider a variable xi. Point p1xi
is discriminated from p2xi

, . . . , p5xi
as it is the only

one not covered by any of I0xi
, I1xi

, I2xi
, I0xi

, I1xi
, and I2xi

. If xi is true, p2xi
is covered

by I0xi
; p3xi

is covered by I0xi
and I1xi

; p4xi
is covered by I1xi

; p5xi
is covered by I1xi

and

I2xi
. If xi is false, p2xi

is covered by I1xi
; p3xi

is covered by I0xi
and I1xi

; p4xi
is covered

by I0xi
, I1xi

and I2xi
; p5xi

is covered by I1xi
and I2xi

. Thus, in both cases, the �ve points

are discriminated, and S∗ is discriminating, as claimed.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 48

( ⇐= ) For the converse, assume that S∗ is a discriminating code of Γ(X,C) of

size 6n + 3m. By Observation 3.1, SΠ ⊆ S∗. Thus there are 3n intervals of S∗

that are not in SΠ.

First, we show that S∗ \SΠ contains exactly three intervals of each variable gadget

Gv(xi). Indeed, it cannot contain less than three, otherwise we show that the points

p1xi
, . . . , p5xi

cannot be discriminated. To see this, note that each consecutive pair

{psxi
, ps+1

xi
} (1 ≤ s ≤ 4) must be discriminated, thus S∗ must contain one interval

with an endpoint between these two points. There are four such consecutive pairs

in Gv(xi), thus if S∗ \SΠ contains at most two intervals of Gv(xi), it must contain

I0xi
and I0xi

. But now, the points p1xi
and p5xi

are not discriminated, a contradiction.

Let us now show how to construct a truth assignment of (X,C). Notice that at

least one of I0xi
and I0xi

must belong to S∗, otherwise some points of Gv(xi) cannot

be discriminated. If I0xi
∈ S∗ but I0xi

/∈ C, then necessarily I1xi
∈ S∗ to discriminate

p2xi
and p3xi

, and I2xi
∈ S∗ to discriminate p4xi

and p5xi
. In this case, we set xi to

true. Similarly, if I0xi
∈ S∗ but I0xi

/∈ S∗, then necessarily I1xi
∈ S∗ to discriminate

p1xi
and p2xi

, and I2xi
∈ S∗ to discriminate p3xi

and p4xi
. In this case, we set xi to

false. Finally, if both I0xi
and I0xi

belong to S∗, the third interval of S∗ \ SΠ in

Gv(xi) may be any of the four intervals covering p5xi
. If this third interval is I1xi

or

I2xi
, we set xi to true; otherwise, we set it to false.

Observe that when we set xi to true, none of I1xi
and I2xi

belongs to S∗; likewise,

when we set xi to false, none of I1xi
and I2xi

belongs to S∗. Thus, our truth assign-

ment is coherent. As for every clause cj, the point-pair {pcj , p′cj} is discriminated

by S∗, one interval corresponding to a true literal discriminates it. The obtained

assignment is satisfying, completing the proof.

3.2.2 A 2-approximation algorithm

We next design a 2-approximation algorithm for Discrete-G-Min-Disc-Code

in 1D by carefully choosing at most n intervals to discriminate the n points of P .



49 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

First, we will need the following proposition, already observed in [GP19].

Proposition 3.2: [GP19]

Any solution of Discrete-G-Min-Disc-Code and Continuous-G-Min-

Disc-Code in 1D for inputs of n points has size at least n+1
2
.

Proof. In order to discriminate the consecutive points in P , for any feasible solution

SOL for P , every gap between two consecutive points will contain an end-point of

at least one interval in SOL. There exist n− 1 gaps for the n points in P . But we

must also have intervals covering the �rst point and the last point, which amounts

to n + 1 positions for the end-points of intervals of SOL. Thus, any solution has

size at least (n+ 1)/2.

We now describe an iterative algorithm for the Discrete G-Min-Disc-Code prob-

lem. Let (P, S) be an instance of G-Min-Disc-Code problem where the points

in P are sorted in increasing order with respect to their x-coordinate values. For

the �rst step, we let S1 consist of any interval that contains p1. At Step i, our

partial solution Si ⊆ S will have the property that it covers and discriminates all

the points in {p1, . . . , pi} (using at most i intervals). Thus, at step n, Sn is a valid

solution for (P, S) of size at most n.

We need to execute n iterations steps for p1, . . . , pn. We assume that i iterations

have already been executed, and thus we have correctly computed a set Si that

discriminates Pi = {p1, . . . , pi}. We now consider the set Pi+1 = {p1, . . . , pi+1}.
We distinguish three cases as follows.

Case 1: The id of pi+1 using the intervals in Si is non-null and is di�erent from

the id of every point p ∈ Pi. Here, simply let Si+1 = Si, that is, Si is already

a feasible solution for Pi+1.

Case 2: The id of pi+1 using the intervals in Si is null, that is, no interval of

Si covers pi+1. Here, we choose any arbitrary interval s ∈ S that covers



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 50

pi+1. Thus, we have Si+1 = Si ∪ {s}. As the members in Pi are already

discriminated up to i-th iteration, they remain discriminated by Si+1 (even

if the new interval covers a subset of Pi).

Case 3: The id of pi+1 using the intervals in Si is non-null, but is the same as

the id of some pj ∈ Pi (j < i). Note that, in such a case the id of pi+1 can

match with at most one element of Pi as the id's of Pi are all distinct with

respect to Si. Here, we choose an interval s of S that can discriminate pj and

pi+1. Such an interval always exists as we have already checked that (P, S)

is twin-free. Thus, Si+1 = Si ∪ {s} is our valid partial solution.

As we have inserted at most one interval at each iteration, |Sn| ≤ n. By Proposi-

tion 3.2, |Sn| ≤ 2OPT − 1. Thus, we have a 2-approximation factor.

We now analyze the time and space complexity. We will use two tree data struc-

tures for processing the points in P and the intervals in S e�ciently. These are a

height-balanced binary tree TH , and a priority search tree TP .

TH: It is a binary tree in which the depth of the two subtrees of every node does

not di�er by more than 1 [Knu97]. A height-balanced binary tree with n

nodes has height Θ(log n). Each operation (lookup, insertion or deletion)

takes time Θ(log n) in the worst case.

TP : A priority search tree [McC85, dBCvKO08] is a hybrid of a priority queue and

a binary search tree. It stores a set of 2-dimensional points (a pair of real

numbers) for the e�cient answering of 1.5-dimensional queries in a one-side

open query box of the form (−∞, a] × [b, c]. In other words, it can report

or count the points whose x-coordinate is smaller than a, and y-coordinate

lies in the range [b, c]. The preprocessing time and space complexities of this

data structure are O(n log n) and O(n) respectively; the time complexity for

reporting and counting a 1.5-dimensional query is O(s+ log n) and O(log n)

respectively, where s is the number of points returned by the search.



51 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Before the start of the algorithm, we compute a TP data structure with a set of

pairs of reals (ℓ(s), r(s)) corresponding to the segments in S, where ℓ(s) and r(s)

denote the coordinates of the left and right end-point of the interval s ∈ S (on

the x-axis). The preprocessing time and space required for TP are O(m logm)

and O(m) (m = |S|) respectively. Identifying the intervals in S that contains a

point p ∈ P and does not contain a point q ∈ P is equivalent to a 1.5-dimensional

range query with the query box (−∞, x(p)]× (x(p), x(q)), where x(p) denotes the

x-coordinate of the point p.

The height-balanced binary tree TH stores the groups generated after processing

the intervals in Si, and is updated at the end of each iteration i. A group is

a maximal set of pairwise intersecting intervals of Si. These groups are totally

ordered in the sense that a pair of consecutive groups share only their common

end-point. Each group contains at most one point of Pi as Si discriminates Pi at

the end of the ith iteration. Thus, each group is attached with the corresponding

point of Pi, if exists. Since |Si| ≤ i, and the number of groups created with |Si|
is 2 × |Si| + 1, the size of the data structure TH for storing the groups during

the entire execution is O(n). While processing pi+1, this tree structure is used to

identify an appropriate interval to cover the point pi+1 (depending on Cases 2 and

3 of the algorithm stated below) in O(log n) time. As a result, we also know which

case to follow for discriminating pi+1. The cost of maintenance of TH after each

iteration is also O(log n)

If Case 2 happens, we need to identify an interval s ∈ S that covers pi+1, i.e., a

segment with ℓ(s) < x(pi+1) < r(s), or in other words, a pair of reals (ℓ(s), r(s))

that lies in the range box (−∞, x(pi+1)]× [x(pi+1),∞).

If Case 3 happens, then we need to choose a segment s ∈ S satisfying either

x(pj) < ℓ(s) < x(pi+1) < r(s) i.e., (ℓ(s), r(s)) ∈ (x(pj), x(pi+1)]× [x(pi+1),∞) or

ℓ(s) < x(pj) < r(s) < x(pi+1) i.e., (ℓ(s), r(s)) ∈ (−∞, x(pj)]× [x(pj), x(pi+1)).

As mentioned earlier, in either of the cases such an element can be found in the

data structure TP in O(logm) time. Thus, the only task that remains is to modify



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 52

the data structure TH after inserting s = [a, b] ∈ TH . Let a and b lie in the groups

gα = [θ1, θ2] and gβ = [ψ1, ψ2], respectively. Now, gα and gβ is to be deleted from

TH and four intervals [θ1, a], [a, θ2], [ψ1, b] and [b, ψ2] need to be inserted in TH .
If = [a, b] lies entirely in the same group [θ1, θ2], then [θ1, θ2] is split into three

groups [θ1, a], [a, b] and [b, θ2]. Surely, we need to attach the points pj and pi+1 to

the appropriate interval groups to which they belong. This needs another O(log n)

time. Thus, processing pi+1 requires O(logm+ log n) time in the worst case.

The construction of TP needs O(m logm) time and O(m) space [Lee04, McC85].

Processing n points requires O(n(log n+logm)) time as earlier. As n = O(m), we

thus have the following result:

Theorem 3.2

There exists a 2-factor approximation algorithm solving Discrete-G-Min-

Disc-Code in 1D, that runs in O(m logm) time and O(m) space.

3.2.3 A PTAS for the unit interval case

We now design a PTAS for the 1D case where all intervals in S have the same

length. For the sake of simplicity let us assume that the endpoints of the intervals

in S are distinct.

The following observation (which was also made in the related setting of identifying

codes of unit interval graphs [Fou12, Proposition 5.12]) plays an important role in

designing our PTAS.

Observation 3.2: [Fou12]

In an instance (P, S) of Discrete-G-Min-Disc-Code in 1D, if the objects

in S are intervals of the same (unit) length, then discriminating all the pairs

of consecutive points in P is equivalent to discriminating all the pairs of

points in P .



53 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Proof. Assume that we have a set S ′ ⊆ S that covers all the points and discrim-

inates all consecutive point-pairs in P , but there exists a pair of non-consecutive

points pi and pj (i < j) which are not discriminated. Since pi and pj are covered

by the same set of intervals of S ′ and the intervals are of unit length, they must

be at a distance at most 1 apart. Now, since they are not consecutive, pi+1 lies

between pi and pj. Since S ′ discriminates pi and pi+1, there is an interval I ∈ S ′

with an endpoint in the gap gi = [pi, pi+1]. If it is a right endpoint, I covers pi but

not pj, a contradiction. Thus, it must be the left endpoint. But since the distance

between pi and pj is at most 1, I contains pj (but not pi), again a contradiction.

For a given ϵ > 0, we choose ⌈nϵ
4
⌉ points, namely q1, q2, . . . , q⌈nϵ

4
⌉ ∈ P , called the

reference points, as follows: q1 is the ⌈2
ϵ
⌉-th point of P from the left, and for

each i = 1, 2, . . . , ⌊nϵ
4
⌋, the number of points in P between every consecutive pair

(qi, qi+1) is ⌈4ϵ ⌉ (both inclusive). The number of points to the right of q⌈nϵ
4
⌉ may

be less than or equal to ⌈2
ϵ
⌉. For each reference point qi, we choose two intervals

I1i , I
2
i ∈ S such that both I1i , I

2
i contain (span) qi, and the left (resp. right) endpoint

of I1i (resp. I2i ) have the minimum x-coordinate (resp. maximum x-coordinate)

among all intervals in S that span qi. Observe that all the points in P that lie in the

range Gi = [ℓ(I1i ), r(I
2
i )] are covered, where ℓ(I

1
i ) and r(I

2
i ) are the x-coordinates of

the left endpoint of I1i and the right endpoint of I2i , respectively. These ranges will

be referred to as group-ranges. Since the endpoints of the intervals are distinct,

the span of a group-range is strictly greater than 1.

We now de�ne a block as follows. Observe that the ranges Gi and Gi+1 may or may

not overlap. If several consecutive rangesGi, Gi+1, . . . , Gk are pairwise overlapping,

then the horizontal range [ℓ(I1i ), r(I
2
k)] forms a block. The region between a pair

of consecutive blocks will be referred to as a free region. We use B1, B2, . . . , Bl to

name the blocks in order, and F0, F1, . . . , Fl to name the free regions (from left

to right). The points in each block are covered. Here, the remaining tasks are

(i) for each block, choose intervals from S such that consecutive pairs of points in

that block are discriminated, and (ii) for each free region, choose intervals from

S such that all its points are covered, and the pairs of consecutive points are



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 54

Ga
Ga+1Fi

group-range free region

reference points

gap

Figure 3.5: Demonstration of redundant edges in a free region which are non-
redundant in the problem instance (P, S).

discriminated.

Observation 3.3

There exists no interval I ∈ S that contains both a point in Fi and a point

in Fi+1.

Proof. Note that, Fi and Fi+1 are separated by the block Bi+1. If there exists an

interval I that contains a point in Fi and a point in Fi+1, then I will contain the

point qj ∈ Bi+1 just to the right of Fi, which is the reference point of the leftmost

group-range Gj of the block Bi+1. This contradicts the existence of I ∈ S. Also,
the size of I then has to be greater than one, which is impossible.

Thus, the discriminating code for a free region Fi is disjoint from that of its

neighboring free region Fi+1. So, we can process the free regions independently.

Processing of a free region: Let the neighboring group-ranges of a free region

Fi be Ga and Ga+1, respectively. There are at most 4
ϵ
points lying between the

reference points of Ga and Ga+1. Among these, several points of P to the right

(resp. left) of the reference point of Ga (resp. Ga+1) are inside block Bi (resp.

Bi+1). Thus, there are at most 4
ϵ
points in Fi. Let SFi

⊆ S be a set such that the

intervals in SFi
cover at least one point of Fi. Note that, though we have deleted

all the redundant intervals of S, there may exist several intervals in S whose one

endpoint lies in a gap inside that free region, and their other endpoint lies in



55 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

distinct gaps of the neighboring block. In Figure 3.5, there are some blue intervals

which are redundant with respect to the points Fi ∩ P , but are non-redundant

with respect to the whole point set P . However, the number of such intervals is at

most 4
ϵ
due to the de�nition of (I1i , I

2
i ) of the right-most group-range of the block

Bi and left-most group-range of the block Bi+1.

Thus, we have |SFi
| = O(1/ϵ2). We consider all possible subsets of intervals of SFi

,

and test each of them for being a discriminating code for the points in Fi. Let Di

be all possible di�erent discriminating codes of the points in Fi, with |Di| = 2O(1/ϵ2)

in the worst case.

Processing of a block: Consider a block Bi; its neighboring free regions are Fi

and Fi+1. Consider two discriminating codes d ∈ Di and d′ ∈ Di+1. We create a

graph Gi = (Vi, Ei) whose nodes Vi correspond to the gaps of Bi which are not

discriminated by the intervals used in Di and Di+1. Each edge e ∈ Ei corresponds

to an interval in S that discriminates pairs of consecutive points corresponding to

two di�erent nodes (gaps) of Vi. Now, we can discriminate each non-discriminated

pair of consecutive points in Bi by computing a minimum edge-cover of Gi in

O(|Vi|2) time [MV80]. As mentioned earlier, all the points in Bi are covered.

Thus, the discrimination process for the block Bi is over. We will use θ(d, d′) to

denote the size of a minimum edge-cover of Bi using d ∈ Di and d′ ∈ Di+1.

Computing a discriminating code for P : We now create a multipartite di-

rected graph H = (D,F). Its i-th partite set corresponds to the discriminating

codes in Di, and D = ∪li=0Di. Each node d ∈ D has its weight equal to the size of

the discriminating code d. A directed edge (d, d′) ∈ F connects two nodes d and

d′ of two adjacent partite sets, say d ∈ Di and d′ ∈ Di+1, and has its weight equal

to θ(d, d′). For every pair of partite sets Di and Di+1, we connect every pair of

nodes (d, d′), d ∈ Di and d′ ∈ Di+1, where i = 0, 1, . . . , l − 1. Every node of D0 is

connected to a node s with weight 0, and every node of Dl is connected to a node

t with weight 0.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 56

Lemma 3.1

The minimum weight s-t path in H is a lower bound on the size of the

optimum discriminating code for (P, S), where the weight of a path is equal

to the sum of costs of all the vertices and edges on that path.

Proof. Let Π be the minimum weight s-t path in the graph H, which corresponds

to a set of intervals S ′ ⊆ S. To show, |S ′| ≤ |Sopt|, where Sopt ⊆ S corresponds to

the minimum size discriminating code. For a contradiction, let |S ′| > |Sopt|. As

Sopt is a discriminating code, the points of every free region Fi are discriminated by

a subset, say δi ∈ S. Since, we maintain all the discriminating codes in Di, surely

the subset δi ∈ Di. Let bi ⊂ S be the set of intervals that span the points of the

block Bi. As Sopt is a discriminating code, the points in Bi are discriminated by the

intervals in bi ∪ δi ∪ δi+1. Thus, the set of intervals βi = bi \ (δi ∪ δi+1) discriminate

the pair of points of Bi that are not discriminated by δi ∪ δi+1. Observe that, for

every i = 0, 1, . . . , l, we have δi ∈ Di. Moreover, there exists a path Πopt that

connects δi, i = 0, 1, . . . , l, whose each edge (δi, δi+1) has cost equal to |βi|. Thus,
we have the contradiction that Πopt is a path in H having cost less than that of

Π.

The set of intervals may not form a discriminating code for P , as the points in

a block may not all be covered. However, the additional intervals {(I1i , I2i ), i =
1, 2, . . . , ⌈nϵ

2
⌉} ensure that the optimum size of the discriminating code satis�es

|Sopt| ≥ ⌈n+1
2
⌉ due to the fact that we have (n + 1) gaps, and each interval in S

covers exactly 2 gaps. This fact, along with Lemma 3.1 implies:

Lemma 3.2

|SOL| ≤ (1 + ϵ)|Sopt|.

Proof. By Lemma 3.1, |S ′| ≤ |Sopt|. The number of extra intervals to cover the

blocks is nϵ
2
. Again, n

2
≤MEC(P ) ≤ |Sopt|, whereMEC(P ) is the size of minimum



57 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

edge-cover of the graphG created with the points in P and the intervals in S. Thus,

|SOL| = |S ′|+ nϵ
2
≤ |Sopt|+ ϵ|Sopt| ≤ (1 + ϵ)|Sopt|.

We now analyze the time complexity of the algorithm. Note that, the number

of possible discriminating codes in a free region is 2O(1/ϵ2). Thus, in the graph

H, the number of edges between a pair of consecutive partite sets Di and Di+1

is |Di| × |Di+1| = 2O(1/ϵ2). As the computation of the cost of an edge between

the sets Di and Di+1 invokes the edge-cover algorithm of an undirected graph,

it needs O(|Bi|2) time [MV80]. Thus, the total running time of the algorithm is

A+B, where A is the total time of generating the edge costs, and B is the time for

computing a shortest path of H. We have A ≤
∑⌈nϵ

4
⌉

i=1 2O(1/ϵ2) × O(|Bi|2). As the

Bi's are mutually disjoint, we get A = O(n2 × 2O(1/ϵ2)). Moreover, B = O(|F|) =
O(n

ϵ
× 2O(1/ϵ2)) [Tho99].

In order to reduce the space requirement of the algorithm, we generate partite sets

of the multipartite graph H one by one, and compute the length of the shortest

path from s up to each node of that set. Initially, the length of the path up to

a node d ∈ D0 is |d|. While generating Di+1, the nodes in Di are available along

with the length of the shortest path χ(d) up to each node d ∈ Di from s. Now, we

execute the following steps:

Step 1: We generate the nodes of Di+1, and initialize their cost χ(.) with ∞.

Step 2: For each pair of nodes (d, d′), d ∈ Di, d
′ ∈ Di+1, do the following:

� Compute the edge cost θ(d, d′), which is the size of the edge-cover of

the block Bi using the discriminating codes d of the free region Fi and

d′ of the free region Fi+1. This needs O(|Bi|2) time using the matching

algorithm of an undirected graph [MV80].

� Compute the length of the shortest path from s to d′ using the edge

(d, d′), which is χ∗ = χ(d) + θ(d, d′) + |d′|.

� If the computed length is less than the existing value of χ(d′), then

update χ(d′) with χ∗.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 58

As the number of discriminating codes in each partite set is 2O(1/ϵ2) in the worst

case which are computed online while considering the (i + 1)-th partite set, and

each discriminating code is of length at most O(1
ϵ
), we have the following result.

Theorem 3.3

The Discrete-G-Min-Disc-Code problem in 1D for unit interval objects

admits a PTAS: for every ϵ > 0, there is a (1 + ϵ)-factor approximation

algorithm with time complexity 2O(1/ϵ2)n2 using 1
ϵ
2O(1/ϵ2)n2 space.

Moreover, in this unit interval setting, we easily reduce an instance of Continuous-

G-Min-Disc-Code problem to an instance of Discrete-G-Min-Disc-Code

problem by �rst computing the O(n2) possible non-redundant unit intervals among

the n+ 1 gaps. Thus:

Corollary 3.1

The Continuous-G-Min-Disc-Code problem in 1D for unit interval ob-

jects has a PTAS with the same approximation factor, time and space com-

plexity as those for Discrete-G-Min-Disc-Code.

3.3 The G-Min-Disc-Code problem in 2D

Here, the point set P = {p1, p2, . . . , pn} is given in R2, and the shape of allowed ob-

jects used for covering and discriminating the points of P are axis-parallel squares

of equal size. We will use the term unit square to refer to these objects.

3.3.1 NP-completeness

In [GP19], it has been shown that Continuous-G-Min-Disc-Code for unit disks

in 2D is NP-complete. They reduced the P3-Partition-Grid problem, stated

below, to Continuous-G-Min-Disc-Code for unit disks in 2D. We will modify



59 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

their reduction and apply it to Continuous-G-Min-Disc-Code for axis-parallel

unit squares in 2D.

A grid graph is a graph whose vertices are positioned in Z2, and a pair of vertices

are adjacent if they are at Euclidean distance 1 [vBBB+14].

Problem: P3-Partition-Grid [vBBB+14]

Input: A grid graph G.

Output: A partition of the vertices of G into disjoint P3-paths, where a P3-path

is a path with three vertices.

v1 v2 v3

v4 v5 v6

p(v1)

p(v2)

p(v3)

p(v4)

p(v5)

p(v6)

(a) (b)

Figure 3.6: (a) A grid graph G. (b) Its corresponding geometric instance PG, where
the dashed axis-parallel unit squares are those covering two points each.

Given an instance G of P3-Partition-Grid, we construct an instance PG (a point

set) for Continuous-G-Min-Disc-Code as follows. For every vertex v of G with

coordinates (x, y), we create a point p(v) with coordinates (x, y) and add it to PG.

The construction from [GP19] stops here, and we will now slightly change it. For

each point p(v) with coordinates (x, y), we replace it by a point with coordinates

(y−x, y+x), that is, we rotate the whole point set by an angle of π/4 and stretch

it by a factor of
√
2 (See Figure 3.6 for an illustration).



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 60

Lemma 3.3

A P3-partition for G = (V,E) exists if and only if there exists a set of 2|V |
3

axis-parallel unit squares discriminating the points in PG.

Proof. ( =⇒ ) The key idea is to notice that any axis-parallel unit square can

contain at most two points of PG, and if it contains two, then it contains two

points corresponding to vertices of G joined by an edge (the center of the square

is then placed at the middle-most position of the line segment joining the two

points). Moreover, any two points corresponding to an edge of G can be covered

by some axis-parallel unit square in that way. Three points corresponding to the

three vertices of a P3-path v1v2v3 in G can be discriminated using two unit squares

s and s′, centered at the mid-points of the two segments joining (p(v1), p(v2)) and

(p(v2), p(v3)), respectively. Now, p(v1) is covered by s only, p(v3) by s′ only, and

p(v2) by both. Thus, if a P3-partition of G exists, we have our solution of size 2|V |
3

to the Continuous-G-Min-Disc-Code problem.

( ⇐= ) Conversely, assume that we have 2|V |
3

axis-parallel unit squares that dis-

criminate all points of PG. Recall that every square can cover at most two points.

For any square s covering two points p(v1), p(v2), we necessarily have that v1v2 is

an edge in G. Moreover, one of p(v1) and p(v2) needs to be covered by a second

square s′ (so that the two points are discriminated). Thus, any solution needs at

least 2|V |
3

squares, and any solution of exactly this size will consist of disjoint sets

of three points covered by two squares (one point covered by both squares, and

the other two, by one of the squares each). These three points must correspond

to three vertices of G forming a P3. Thus, we obtain our P3-partition of G, as

claimed.

Lemma 3.3 leads to the following result.



61 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Theorem 3.4

Continuous-G-Min-Disc-Code and Discrete-G-Min-Disc-Code for

axis-parallel unit squares in 2D are NP-complete.

Proof. The statement follows directly from Lemma 3.3 in the case of Continuous-

G-Min-Disc-Code. Let SG contain the set of all axis-parallel unit squares that

cover two points of PG. For Discrete-G-Min-Disc-Code, we can simply modify

the reduction by creating the instance (PG, SG) from G.

3.3.2 Approximation algorithms

We formulate an approximation algorithm by extending the ideas for the 1D case,

described in Section 3.2.2. We will use the techniques of rounding some suitable

Integer Linear Programmes (ILPs). Here, our goal is to choose a set Q of points

in R2 of minimum cardinality such that (i) every point of P is covered by at least

one axis-parallel unit square among those centered at the points in Q (covering

condition) and (ii) for every pair of points pi, pj ∈ P (i ̸= j), there exists at least

one square in Q whose boundary intersects the interior of the line segment [pi, pj]

exactly once (discrimination condition).

We transform our Continuous-G-Min-Dic-Code problem into an equivalent

problem of segment stabbing (which will be de�ned below). The segment stabbing

problem can also be seen as a hitting set problem of a pair of shapes, called L-

shapes. Each of these L-shape hitting set problems is further split into two hitting

set problems of unit height rectangles (or unit width rectangles). A schematic

representation of this process is shown in Figure 3.7.

We de�ne the set of line segments L(P ) = {[pi, pj] for all pi, pj ∈ P, i ̸= j}. Thus,
the discrimination condition leads to the following problem.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 62

Continuous-

G-Min-

Disc-Code

Min-Seg

Stab-Set

Hitting-Set

Hitting-Set Hitting-Set

Hitting-Set Hitting-Set

Z0

Z1

ZA ZB

Figure 3.7: Schematic of the problem structure.

Problem: Minimum Segment-Stabbing Set (Min-Seg-Stab-Set)

Input: A set L of segments in 2D.

Output: A minimum-size set S of axis-parallel unit squares in 2D such that each

segment is stabbed by some square of S.a

a
Note: By stabbing a line segment ℓ by a unit square s, we mean that exactly one end-point

of ℓ lies inside s.

In fact,Min-Seg-Stab-Set for the input segments L(P ) is equivalent to the Test

Cover problem for P using axis-parallel unit squares as tests. As in the edge-cover

formulation of Discrete-G-Min-Disc-Code problem in 1D (see Section 3.2.2),

here also a feasible solution of Min-Seg-Stab-Set ensures the following:

Observation 3.4

Every feasible solution Φ of Min-Seg-Stab-Set (a) discriminates every

point-pair in P , and (b) at most one point is not covered by any square in

Φ.

In order to discriminate the two endpoints of a member ℓ = [a, b] ∈ L(P ), we

need to consider the two cases: length(ℓ) ≥ 1 and length(ℓ) < 1, where length(ℓ)



63 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

denotes the length of ℓ. In the former case, if a center is chosen in any one of

the unit squares D(a) and D(b), the segment ℓ is stabbed, where D(q) is the axis

parallel unit square centered at a point q. However, more generally in the second

case, to stab ℓ, we need to choose a center in the region (D(a)\D(b))∪(D(b)\D(a)).

In Figure 3.8 the shaded region is the feasible region for placing the center of the

unit squares to stab a line segment in L(P ). We de�ne a set of distinct objects

O corresponding to the elements of L(P ), where each object corresponds to the

feasible region of placing the center of a stabbing square of an element of L(P ).

Thus, theMin-Seg-Stab-Set problem reduces to aHitting-Set problem, where

the objective is to choose a minimum number of points in R2, such that each object

in O contains at least one of those chosen points.

(a) (b)

Figure 3.8: Object that needs to be hit corresponding to segment ℓ = [a, b], where
(a) length(ℓ) ≥ 1 and (b) length(ℓ) < 1.

The Hitting-Set problem. We use the technique followed in [ANPR19] to solve

this problem. Consider the arrangement A of the objects in O. Create a set Q

of points by choosing one point in each cell of A. Thus, the size of the set Q

is polynomial in the size of the set P . A square centered at a point q inside a

cell A ∈ A will stab all the segments whose corresponding objects have common

intersection region A. For each point qα ∈ Q, we use an indicator variable xα, and

can write an integer linear programming (ILP) problem as follows.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 64

Z0 : min

|Q|∑
α=1

xα,

subject to σ1(ℓ) + σ2(ℓ) ≥ 1 for each segment ℓ = [a, b] ∈ L(P ),

where σ1(ℓ) =
∑

qα∈Q∩(D(a)\D(b))

xα,

σ2(ℓ) =
∑

qα∈Q∩(D(b)\D(a))

xα,

and xα ∈ {0, 1} for all points qα ∈ Q.

As the ILP problem is NP-hard [PS82], we relax the integrality condition of the

variables xα for all qα ∈ Q from Z0, and solve the corresponding LP problem in

polynomial time.

Z0 : min

|Q|∑
α=1

xα

subject to σ1(ℓ) + σ2(ℓ) ≥ 1 ∀ ℓ = [a, b] ∈ L(P ),

and 0 ≤ xα ≤ 1 ∀ qα ∈ Q.

Observe that in the optimum solution OPT 0 of Z0, for each constraint (corre-

sponding to a segment ℓ ∈ L(P )), at least one of σ1(ℓ) or σ2(ℓ) will be greater

than or equal to 1
2
. We now de�ne two sets, namely O1 and O2. If σ1(ℓ) ≥ 1

2

then we put ℓ in the set O1, and if σ2(ℓ) ≥ 1
2
then put ℓ in the set O2. In other

words, we choose to hit the objects (D(pi) \ D(pj)) for all ℓij = [pi, pj], i < j, if

σ1(ℓij) ≥ 1
2
, and choose to hit the objects (D(pj)\D(pi)) for all ℓij = [pi, pj], i < j,

if σ2(ℓij) ≥ 1
2
. It needs to be mentioned that, for a constraint corresponding to

a point-pair ℓ = [a, b] both σ1(ℓ) ≥ 1
2
and σ2(ℓ) ≥ 1

2
may happen. In that case ℓ

may be considered in any one the sets O1, O2 arbitrarily. We form a new ILP as

follows:



65 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Z1 : min

|Q|∑
α=1

xα

subject to σ1(ℓ) ≥ 1 ∀ ℓ ∈ O1,

σ2(ℓ) ≥ 1 ∀ ℓ ∈ O2,

and xα ∈ {0, 1} ∀ qα ∈ Q.

We use Z1 to denote the LP corresponding to the ILP Z1, OPT0 and OPT1, the

optimal solutions of Z0 and Z1 respectively, and OPT 0 and OPT 1 the optimal

solutions of Z0 and Z1 respectively. Observe that 2OPT 0 produces a feasible

solution to Z1. Thus,

OPT 1 ≤ 2OPT 0 (≤ 2OPT0). (3.1)

However, as the values of the variables in OPT 1 are fractional, it is not possible

to generate a solution of Z0 from OPT 1. Observe the objects O1 ∪O2 considered

in Z1 are either a unit square, or a L-shaped object for which one of its length and

its width is 1. Thus, our objective is to solve the L-Hit problem, stated below.

T
y
p
e
A

Type B

Figure 3.9: An L-shaped object, which is the union of a type A and a type B
object.

The L-HIT problem. Here, given a set of L-shaped objects as de�ned above,

and a set of points Q, we wish to choose a minimum-size set of points in Q to hit



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 66

all the L-shaped objects in O1 ∪ O2.

We can view an L-shaped object as the union of two rectangles of type A and type

B, where each type A rectangle has height 1 and width less than or equal to 1 and

each type B rectangle has width 1 and height less than 1 (see Figure 3.9). (Unit

squares are considered to be type A rectangles.)

While solving Z1, for each constraint (with respect to O1 and O2) any one or

both of the following cases may happen: (a) the sum of variables whose corre-

sponding points lie in a type A rectangle is ≥ 1
2
, and (b) the sum of variables

whose corresponding points lie in a type B rectangle is ≥ 1
2
. We accumulate all

the rectangles in the set A (resp. B) where condition (a) (resp. condition (b)) is

satis�ed. The objective is to choose a minimum number of points in Q to hit all

the rectangles in A and B. We formulate two ILPs' ZA and ZB corresponding to

twoMin-UHR-Hit-Set problems with the set of rectangles A and B respectively,

as stated below.

Problem: Minimum Unit Height Rectangle Hitting Set (Min-UHR-Hit-Set)

Input: A set R of unit height rectangles in R2.

Output: A set of points that hits all the members of R.

A PTAS for theMin-UHR-Hit-Set problem is known [MR10]; however it cannot

be used in Equation 6.2 since that does not guarantee any approximation factor

for the optimum solution of the corresponding LP problem. However, the Min-

UHR-Hit-Set problem for a set of rectangles R = A (resp. B) can be formulated

as an ILP ZA (resp. ZB) as follows:



67 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

ZA : min

|Q|∑
α=1

xα,

s. t.
∑

qα∈Ai∩Q

xα ≥ 1,∀ rectangle Ai ∈ A,

and xα ∈ {0, 1},∀ α ∈ Q.

ZB : min

|Q|∑
α=1

xα,

s. t.
∑

qα∈Bi∩Q

xα ≥ 1,∀ rectangle Bi ∈ B,

and xα ∈ {0, 1},∀ α ∈ Q.

Denoting by ZA and ZB the LP version of ZA and ZB, and OPTA and OPTB

the optimum solutions for ZA and ZB respectively, we observe that 2OPT 1 gives

a feasible solution to both ZA and ZB simultaneously. Note that, as the variables

participating in OPTA and OPTB may not be disjoint, it is not possible to write

OPTA + OPTB = 2OPT 1. However, ZA ≤ 2OPT 1 and ZB ≤ 2OPT 1. Thus by

Equation 6.2, we have

OPTA +OPTB ≤ 4OPT 1 ≤ 8OPT 0 (3.2)

We apply the shifting strategy (see [HM85]) for solving the Min-UHR-Hit-Set

problem. Here R2 is split using x-axis parallel lines from a set L = {λ1, λ2, . . .}
such that λi and λi+1 are at distance 1 of each other, and such that each rectangle

is hit by one of the lines of L. Thus, each rectangle in A is intersected by exactly

one line of L (assuming that no rectangle in A is aligned with a line in L). See

Figure 3.10 for a visual representation.

Let Aeven (resp. Aodd) denote the set of rectangles in A that are intersected by even

(resp. odd) numbered lines of L. Now, denoting by ZA, Z(Aeven) and Z(Aodd)

the ILP of the hitting set problems corresponding to the set of rectangles A, Aeven

and Aodd respectively, OPTA, OPT (Aeven) and OPT (Aodd) as the optimum solu-

tions of these problems, and OPTA, OPT (Aeven) and OPT (Aodd) as the optimum

solutions of the corresponding LP problems, we have

OPT (Aeven) ≤ OPTA and OPT (Aodd) ≤ OPTA.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 68

λ1

λ3

λ5

λ2

λ4

Figure 3.10: An instance of shifting strategy where λi's indicate the horizontal
lines.

Now, combining these two inequalities, we have

OPT (Aeven) +OPT (Aodd) ≤ 2OPTA. (3.3)

Again, if Z(Ai) is the hitting set problem with the set of rectangles intersected

by λi ∈ L, OPT (Ai) and OPT (Ai) are the optimum solutions for its ILP and LP

versions, then we can show that OPT (Ai) = OPT (Ai), as follows.

In the arrangement of Ai, each cell is adjacent to the horizontal line λi. Thus,

the representative hitting point in QAi
of each cell in the ILP formulation

Z(Ai) can be chosen on λi. Thus, the constraint matrix in the formulation

of Z(Ai) will satisfy the consecutive ones property. It is a classic theorem

that the matrix is totally uni-modular and Z(Ai) can be solved optimally by

solving its corresponding LP Z(Ai) [Sch03]. Thus, in the optimum solution

of Z(Ai) the variables will have value 0 or 1, and the corresponding points



69 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

can be used as the solution of the hitting set problem.

Thus, we have OPT (Aodd) = OPT (Aodd) = OPT (A1) + OPT (A3) + . . .. The

reason is that for the problem Z(Aodd) none of the rectangles in Ai overlap with

any rectangle in Aj, for all i, j odd and i ̸= j. Thus, the hitting set problem for

those instances can be solved independently. Similarly, we have OPT (Aeven) =

OPT (Aeven) = OPT (A2) +OPT (A4) + . . ..

Equations 6.3, 6.4 and the subsequent discussions lead to the following. Consid-

ering the previously computed optimal solutions SOL(ZA) and SOL(ZB) for ZA

and ZB, which, by the previous discussions, together form a solution for Z0, we

obtain the following chain of inequalities.

|SOL(ZA)|+ |SOL(ZB)| = |SOL(Aeven)|+ |SOL(Aodd)|+ |SOL(Beven)|+ |SOL(Bodd)|

= OPT (Aeven) +OPT (Aodd) +OPT (Beven) +OPT (Bodd)

≤ 2× (OPT (A) +OPT (B)) by Equation 6.4

≤ 16×OPT0 by Equation 6.3

≤ 16×OPT0

Lemma 3.4

The aforesaid algorithm computes a 16-factor approximate solution forMin-

Seg-Stab-Set.

We accumulate the hitting set for type A rectangles corresponding to each hori-

zontal line and the hitting set for type B rectangles corresponding to each vertical

line in a set Q∗. By Observation 3.4, at most one point in P may not be covered

by the squares centered at the points of Q∗. Thus, we may require at most one

extra square to cover that uncovered point. Thus, we have the following.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 70

Theorem 3.5

There exists a polynomial-time approximation algorithm for the

Continuous-G-Min-Disc-Code problem for axis-parallel unit squares

which can produce a solution of size at most 16OPT + 1, where OPT is

the size of an optimal solution.

3.3.3 Approximation algorithm forDiscrete-G-Min-Disc-

Code

In this section, we modify the algorithm of Section 3.3.2 for Continuous-G-Min-

Disc-Code to solve Discrete-G-Min-Disc-Code. Recall that here, in addition

to the set of points P (in R2), the set S of axis-parallel unit squares is also given in

the input. As in Section 3.3.2, Discrete-G-Min-Disc-Code also reduces to the

discrete version of the Min-UHR-Hit-Set problem, whose objective is to hit a

set O of unit/width height rectangles by choosing a minimum cardinality subset of

a given set of points Q, where Q is the set of centers of the given set of squares S.

Unlike the continuous version, the discrete version of the hitting set problem for

a set of unit height rectangles intersected by a horizontal line cannot be solved in

polynomial time, since the points to be used for hitting the rectangles are already

speci�ed. However, if we can design an α-factor approximation algorithm for

the discrete version of the hitting set problem for a set of unit height rectangles

intersected by a horizontal line, we can use that to get a 16α-factor approximation

algorithm for Discrete-G-Min-Disc-Code.

Discrete hitting of rectangles stabbed by a horizontal line

Let us �rst solve a restricted version of the discrete Min-UHR-Hit-Set problem,

where the input is a set of axis-parallel unit-height rectangles R intersected by a

horizontal line λ and a set of points Q (see Figure 3.11). The objective is to choose

a minimum number of points from Q to hit all the rectangles in R. This problem



71 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Figure 3.11: An instance of discrete hitting set of unit height rectangles stabbed
by a horizontal line.

can be formulated as the following ILP.

Uλ : min
∑
qα∈Q

xα

Subject to σ1(r) + σ2(r) ≥ 1, for all r ∈ R,

where σ1(r) (resp. σ2(r)) is the sum of the variables corresponding to the points

above (resp. below) the line λ that lie inside the rectangle r. We will use OPTλ
to denote the optimum solution of this ILP.

On the basis of the LP relaxation of this ILP, we can partition the rectangles into

two groups: Ra and Rb, such that Ra (resp. Rb) contains the rectangles whose

solution in the LP relaxation satis�es σ1(r) ≥ σ2(r), and thus σ1(r) ≥ 1
2
(resp.

σ1(r) < σ2(r) and thus σ2(r) > 1
2
). The rectangles in Ra (resp. Rb) will thus be

assumed to be hit by the points in Qa (resp. Qb) that lie above (resp. below) the

line λ; Qa ∪Qb = Q, Qa ∩Qb = ∅.

Let Ua
λ and U b

λ be the ILPs for the minimum hitting set problems for the rectangles

in Ra and points in Qa (Rb and Qb, respectively). As opposed to the relation of

OPTA, OPTB and OPT 1 in Equation 6.3, here we can say that if OPT
a

λ and



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 72

OPT
b

λ are optimum solutions of the LP relaxation of Ua
λ and U b

λ, respectively, then

OPT
a

λ +OPT
b

λ ≤ 2OPT λ (3.4)

due to the fact that Qa and Qb are disjoint point sets and 2OPT λ is a solution to

both relaxations Ua

λ and U b

λ. Now, we concentrate on solving the ILP Ua
λ . U b

λ can

be solved in a similar manner.

Approximation algorithm for solving Ua

Figure 3.12: The instance where the rectangles above the horizontal line are con-
sidered.

Here, the rectangles in Ra are to be hit by the points in Qa ⊆ Q that lie above the

line λ. Ignoring the portions of the rectangles in Ra below the line λ, the problem

reduces to hitting a set of axis-parallel rectangles (Ra), whose one side is aligned

with a horizontal line λ, using the input points of Qa (see Figure 3.12). We solve

this problem to compute OPT a, the size of the optimum solution of this problem.

We compute the maximum independent set I = {r1, r2, . . .} of the set of rectangles
Ra such that there does not exist any other maximum independent set

I ′ = {r′1, r′2, . . .} (of same size) where the span of a rectangle r′j ∈ I ′

completely contains the span of a rectangle ri ∈ I along the line λ. The

maximum independent set I can be computed in the same way we compute the

maximum independent set of an interval graph where the horizontal range of each

rectangle corresponds to an interval. It can be computed in O(n log n) time with

the concept of interval scheduling [KT05].



73 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

∆I = {lowest point of Qa inside ri for all the elements ri ∈ I }

is the minimum hitting set for the rectangles in I. Such a point inside each ri will

always exist. Next, we consider the set of points

∆′
I = {lowest point of Qa inside the strip χi bounded by the right side of ri and left

side of ri+1 for each pair of consecutive elements ri, ri+1 ∈ I, i = 1, 2, . . . , |∆I |−1}.

χ0 χ1 χ2 χ3 χ4 χ5 χ6r6r5r4r3r2r1

Figure 3.13: A maximum independent set of rectangles from Ra (shown in or-
ange/thick lines) and the strips χi, i = 1, 2, . . . , |I|+ 1.

In Figure 3.13 the rectangles in the maximum independent set I are shown using

orange color, and the strips χi are also shown.

Let R′ ⊆ Ra be the set of rectangles that are hit by ∆I ∪∆′
I . Below is a pictorial

representation of the rectangles in R′ (see Figure 3.14).

The remaining set of rectangles R′′ = Ra \R′ can be grouped into three exhaustive

and mutually exclusive sets R1, R2 and R3, where

R1 = ∪ri∈IRi
1, where R

i
1 is the set of non-hit rectangles in Ra that span from

the interior of the strip χi−1 up to the interior of the rectangle ri.

R2 = ∪ri∈IRi
2, where R

i
2 is the set of non-hit rectangles in Ra that spans from

the interior of the rectangle ri up to the interior of the strip χi.

R3 is the set of non-hit rectangles that overlap with the complete horizontal

span of at least one rectangle in I or a strip.



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 74

χ0 χ1 χ2 χ3 χ4 χ5 χ6r6r5r4r3r2r1

Figure 3.14: The points part of ∆I (shown as square points) and ∆′
I (shown as

cross points) and their corresponding rectangles in R′ (shown by violet/dashed
and brown/dotted lines respectively).

χ0 χ1 χ2 χ3 χ4 χ5 χ6r6r5r4r3r2r1

Figure 3.15: Demonstration of rectangles in R1, R2 and R3 using dash dotted red
line, dashed green line and dotted blue line respectively.

Note that, there exists no rectangle whose span along the line λ is included inside

a strip (in that case it would have been included in I) nor is included in a member

of I (due to the restriction imposed in forming I). In Figure 3.15, the rectangles

in R1, R2 and R3 are shown using red, green and blue colors, respectively.

Now, observe that in a feasible solution for R′′, we have the following.

• Each rectangle ρ ∈ Ri
1 can be hit by a point of Qa lying in the right-part of ρ

inside ri, or by a point of Qa lying in the left-part of ρ inside the vertical

strip χi−1.

• Similarly, a rectangle in ρ ∈ Ri
2 may be hit in its left-part (inside ri ∈ I) or in

its right-part (inside the strip χi).



75 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

• Finally, consider the rectangles in R3. If a rectangle in R3 spans from the strip

χi−1 to the strip χj, and ρ is not hit by any point in ∆I ∪∆′
I , then the top

boundary of ρ is below the chosen points in ri, χi, ri+1, . . . , χj−1, rj. Thus, it

can only be hit by a point of Qa ∩ χi−1 in its left part (the portion in the

right side of the point chosen in χi−1 ∩ ∆′
I) or by a point of Qa ∩ χj in its

right-part (the portion in the left side of the point chosen in χj ∩∆′
I).

Note that the left (resp. right) boundary of ρ may also lie inside of ri and/or

rj. In that case, the left (resp. right) part of ρ lies inside ri (resp. rj).

In a solution, a rectangle in R′′ may be said to be a left-hit (resp. right-hit)

rectangle if its left (resp. right) part is hit by a point in the solution.

Thus, one can decide whether a rectangle in R′′ = R1 ∪ R2 ∪ R3 is left-hit or

right-hit by formulating an ILP with these rectangles as follows.

V : min
∑

pα∈Qa

xα

Subject to σleft(ρ) + σright(ρ) ≥ 1 ∀ ρ ∈ R′′,

xα ∈ {0, 1} for all pα ∈ Qa

where σleft(ρ) (resp. σright(ρ)) is the sum of the variables corresponding to the

points in Qa in the left-part (resp. right-part) of the rectangle ρ. The solution of its

LP relaxation V (see Section 3.3.2) partitions the set R′′ into two subsets Rleft (left-

hit) and Rright (right-hit) such that for each ρ ∈ Rleft, we have σleft(ρ) ≥ σright(ρ)

(thus, σleft(ρ) ≥ 1
2
) and for each ρ ∈ Rright, we have σleft(ρ) < σright(ρ) (thus,

σright(ρ) >
1
2
).

Below, we describe the method of computing the optimum solution of the ILPs:

Vleft : min
∑

pα∈Qa

xα

Subject to σleft(ρ) ≥ 1 ∀ ρ ∈ Rleft,

xα ∈ {0, 1} for all pα ∈ Qa



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 76

Vright : min
∑

pα∈Qa

xα

Subject to σright(ρ) ≥ 1 ∀ ρ ∈ Rright,

xα ∈ {0, 1} for all pα ∈ Qa

Denoting by OPT Vleft
, OPT Vright

, OPT V the optimal solutions of the LP versions

of Vleft, Vright and V , we have

OPT Vleft
+OPT Vright

≤ 2OPT V (3.5)

Indeed, 2OPT V is a solution for the LP versions of both Vright and Vleft. Moreover,

the points involved in the solution of the LP version of Vleft are distinct from those

of the LP version of Vright. Indeed, if for two rectangles in R′′, the left-part of one

and the right-part of the other were hit by a same point of Qa, then together these

two intervals would span an entire rectangle of I or a strip: but then one of them

would have already been hit by ∆I ∪∆′
I , a contradiction.

As mentioned earlier, |∆I | ≤ OPT
a

λ as ∆I satis�es a subset of constraints of Ua
λ .

Due to the same reason, OPT V ≤ OPT
a

λ since the rectangles in R′′ are not hit

by the points in ∆I ∪∆′
I . Moreover, the variables involved in ∆I and OPT V are

di�erent. Thus, using Equation 3.5, we have

|∆I |+ |∆′
I |+OPT Vleft

+OPT Vright
≤ 4OPT

a

We now show that OPT Vleft
(resp. OPT Vright

) are integer valued, and thus are in

fact optimal solutions of the ILPs' Vleft (resp. Vright).



77 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Computation of an optimal solution of Vleft

We will consider each vertical strip {S0, S1, S2, . . . , S2k+1}= {χ0, r1, χ1, r2, χ2, . . . , rk, χk}
in this order, where I = {r1, r2, . . . , rk}. Consider a strip Sj, and let Γj be the

portions of the members of Rleft inside Sj; each member in Γj is to the right of the

point in ∆ ∪∆′ chosen in that strip. Observe that the right side of the elements

of Γj are aligned. The elements of Γj are arranged in order of their left-boundary.

If an element ρ ∈ Γj is completely contained in another element ρ̂ ∈ Γj, then ρ̂ is

deleted3 from Γj. This pruning step of Γj can be made in a linear scan of the left

boundaries of the elements of Γj in right-to-left order, and the remaining elements

in Γj form a staircase. We can write an ILP for computing the minimum hitting set

∆j ⊆ Qa ∩ Sj for Γj, where the variables correspond to the points in Qa ∩ Sj, and

constraints correspond to the members in Γj. It can be shown that if the points

in Qa ∩ Sj are ordered and the rectangles in Γj are also ordered with respect to

their left boundaries from right to left, then the incidence matrix becomes totally

unimodular i.e. the 1's in each row of the constraint matrix are in consecutive

columns. Thus, the LP solution of this problem becomes 0-1 valued. Finally,

∆left = ∪2k+1
j=1 ∆j is the optimum solution OPT Vleft

for hitting the rectangles in

Rleft.

The same process is executed with the right-part of the rectangles in Rright to

compute the optimal solution ∆right = OPT Vright
. Finally, we have

SOLa = ∆I ∪∆′
I ∪∆left ∪∆right,

Thus,

|SOLa| ≤ 4OPT
a

The same process is executed to compute the subset SOLb ⊂ Qb used for hitting

the rectangles in Rb, and |SOLb| ≤ 4OPT
b
. Thus, SOLλ = SOLa ∪ SOLb,

and hence |SOLλ| ≤ 4(OPT
a
+ OPT

b
). Now, using Equation 3.4, we have the

following.

3as hitting ρ implies hitting ρ̂



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 78

Lemma 3.5

For each line λ ∈ L, we have |SOLλ| ≤ 8×OPTλ = 8OPT λ.

Now, using Equations 6.3, 6.4 and Lemma 3.5, we have the following result:

Theorem 3.6

Discrete-G-Min-Disc-Code for axis-parallel unit squares in 2D has

a polynomial-time algorithm that produces a solution of size at most

128OPT + 1, where OPT is the size of an optimum solution.

3.4 Min-ID-Code for geometric intersection graphs

In this section, we will use techniques similar to those used in the previous sec-

tions and apply them to the setting of the graph problem Min-ID-Code, for the

intersection graph of axis-parallel unit squares (unit square graphs). To the best

of our knowledge, Min-ID-Code was not yet studied for unit square intersection

graphs in the literature.

Here, the input is a set S of axis-parallel unit squares in 2D. In the graph G =

(V,E), the nodes in V = {v1, . . . , vn} correspond to the squares in S; an edge

eij = {vi, vj} ∈ E if the squares corresponding to vi, vj intersect.

Note that it is not mentioned in the literature whether Min-Id-Code on unit

square graphs is NP-hard, however, the techniques from [MS09] used for unit disk

graphs can be applied to prove it.

We can reformulateMin-ID-Code for unit square graphs in geometric terms: the

objective is to compute a subset Sopt ⊆ S of minimum cardinality such that each

square in S intersects some square in Sopt, and for each pair of squares si, sj ∈ S,
there exists a square σ ∈ Sopt such that (σ ∩ si ̸= ∅ and σ ∩ sj = ∅) or (σ ∩ si = ∅
and σ ∩ sj ̸= ∅). If we do only satisfy the discrimination constraint, then in order



79 CHAPTER 3. DISCRIMINATION AND IDENTIFICATION

Figure 3.16: Possible intersection patterns of a pair of axis-parallel unit squares
(full lines): the dotted square around each square corresponds to the locations
where a square centered at this point will intersect the enclosed unit square.

to satisfy the domination constraint, we may need to include at most one more

square from S in Sopt.

Figure 3.17: Feasible regions for placing the center of the square s ∈ ID for
discriminating si, sj ∈ S: three possible situations.

Let S ′ ⊆ S be an identifying code for the set of squares in S. A square σ ∈ S ′

intersects a square si ∈ S if the center of σ is placed inside the square δ centered

at the center of s and the side-length of δ is twice the side-length of s (shown

using dotted line around si in Figure 3.16). In order to satisfy the discrimination

constraint among si, sj ∈ S, the center of a square σ ∈ S ′ must be placed inside

δi∇δj, where ∇ is the symmetric di�erence operator, i.e., (δi \ δj) ∪ (δj \ δi).
In Figure 3.16, di�erent patterns of intersection of a pair si, sj ∈ S are depicted,

along with their covering regions δi, δj. Thus, in order to satisfy the discrimination

constraint (si, sj), we need to place the center of a square σ ∈ S ′ in the regions

shown in Figure 3.17.

Thus, as in Section 3.3.2, we can solve Min-ID-Code for unit square graphs by

solving a problem of hitting the feasible regions corresponding to each pair of



CHAPTER 3. DISCRIMINATION AND IDENTIFICATION 80

squares si, sj ∈ S using the centers of the squares in S. The objective will be to

choose the minimum number of hitting squares from S. Thus, the same techniques

as in Section 3.3.2 can be applied, and we obtain the following theorem.

Theorem 3.7

Min-ID-Code has a polynomial-time approximation algorithm for unit

square graphs (if the unit square intersection model of the input graph is

known) that produces a solution of size at most 128OPT + 1, where OPT

is the size of an optimal solution.



CHAPTER 4

Red-Blue Separation

Contents

4.1 Preleminaries . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Complexity of Red-Blue Separation . . . . . . . . . 86

4.3.1 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Positive algorithmic results . . . . . . . . . . . . . . . . 93

4.4 Extremal values and bounds for max-sepRB . . . . . . . 96

4.4.1 Lower bounds for general graphs . . . . . . . . . . . . . 96

4.4.2 Upper bound for general graphs . . . . . . . . . . . . . . 101

4.4.3 Upper bound for trees . . . . . . . . . . . . . . . . . . . 102

4.5 Complexity of Max Red-Blue Separation . . . . . . 111

81



CHAPTER 4. RED-BLUE SEPARATION 82

4.1 Preleminaries

Before delving into the problem let us �rst discuss some de�nitions which will

make the reading of the chapter easier. We �rst need to de�ne some notations

with respect to a graph G.

Order of a graph

De�nition 4.1. By the order of a graph G = (V,E) we mean the number

of vertices in V which is usually denoted by n.

Neighborhood

De�nition 4.2. In graph theory, an adjacent vertex of a vertex v ∈ V

is a vertex that is connected to v by an edge. The open neighborhood of a

vertex v in a graph G is used to refer to sets of adjacent vertices of v where

v itself is not included. The open neighborhood is denoted N(v). The closed

neighborhood of a vertex v in a graph G is used to refer to sets of adjacent

vertices of v in which v itself is also included. The closed neighborhood is

denoted N [v] = N(v) ∪ {v}.

Split Graph

De�nition 4.3. A graph G is known as a split graph if it can be partitioned

into a clique and an independent set.

Figure 4.1 is a split graph where vertices v1 and v2 form an independent set and

the vertices v3 through v6 form a clique.



83 CHAPTER 4. RED-BLUE SEPARATION

v1

v2

v3 v4

v5v6

Figure 4.1: A split graph with a girth highlighted.

Girth of a graph

De�nition 4.4. The girth of a graph is the length of a shortest cycle

contained in the graph. See the highlighted portion of the graph in Figure

4.1.

Symmetric Di�erence

De�nition 4.5. The symmetric di�erence A△B of two sets A and B is

the set of elements which are in either of the sets A and B, but not in their

intersection. Thus A△B = (A \B) ∪ (B \ A).

Since this chapter talks about the problem of Red-Blue Separation, let me �rst

de�ne what we mean by separation or separating code in a non-colored setup.

Separation in a graph

De�nition 4.6. A separating set is a subset S of vertices ofG = (V,E) such

that for each pair u, v ∈ V of distinct vertices, we have N [u]∩S ̸= N [v]∩S.
The separating code of a vertex u is N [u]∩S. The size of the separating set

of the graph G is known as the separation number of G and is denoted by

sep(G).



CHAPTER 4. RED-BLUE SEPARATION 84

4.2 Organization

In the graph setting, we are given a graph G = (V,E) and a red-blue coloring

function c : V → {red, blue} of the vertices of G; we want to select a (small)

subset S ⊆ V called red-blue separating set, such that for every red-blue pair

r, b ∈ V (r is of red color and b is of blue color), there is a vertex v ∈ S such

that the closed neighborhood of v contains exactly one of r and b, in other words

|N [v] ∩ {r, b}| = 1. Equivalently, N [r] ∩ S ̸= N [b] ∩ S, where N [x] denotes the

closed neighborhood of vertex x; the set N [x] ∩ S is called the code of vertex x

(with respect to S). Thus the code of each blue vertex is di�erent from the codes of

all the red vertices. Note that, the code of a pair of red (respectively blue) vertices

may be same or di�erent. The smallest size of a red-blue separating set of (G, c)

is denoted by sepRB(G, c). In this chapter, a twin is a red-blue pair of vertices

r, b such that N [r] = N [b]. If G contains a twin, then it cannot be separated.

Thus, for simplicity, we will consider only twin-free graphs, that is, graphs where

no two di�erent colored vertices have the same closed neighborhood. We have the

following associated computational problem.

Problem: Red-Blue Separation((G, c), k)

Input: A red-blue colored twin-free graph (G, c) and an integer k.

Output: Do we have sepRB(G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is not part

of the input. For a given graph G, we thus de�ne the parameter max-sepRB(G)

which denotes the largest size of a smallest red-blue separating set of (G, c) over all

possible red-blue coloring c of G. Mathematically, max-sepRB(G) = maxc∈C{|Sc|}
where Sc is the separating set with respect to the color function c and |C| = 2n.

The associated decision problem is stated as follows.



85 CHAPTER 4. RED-BLUE SEPARATION

Problem: Max Red-Blue Separation(G, k)

Input: A twin-free graph G and an integer k.

Output: Do we have max-sepRB(G) ≤ k?

(a)

(b)

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

Figure 4.2: An example showing the di�erence between sepRB and max-sepRB in
a path graph of 6 vertices.

In order to understand the di�erence between the two problems, let us look at

Figure 4.2. In Figure 4.2(a), we are given a path graph of 6 vertices and a coloring

c. If we choose the vertex v5 in the separating set, then all the vertices in the

path are separated. Thus, sepRB(G, c) = 1. On the contrary in Figure 4.2(b), we

are given just a path of 6 vertices. Over all possible colorings of this given path,

if we consider the particular coloring shown in the �gure, then the separating set

includes the vertices v2 through v4 in order to separate all the vertices in the path.

Hence, max-sepRB(G) = 3.

In this chapter we show that Red-Blue Separation is NP-complete even for

restricted graph classes such as planar bipartite sub-cubic graphs, in the setting

where the two color classes have equal size. We also show that the problem is

NP-hard to approximate within a factor of (1 − ϵ) lnn for every ϵ > 0, even for

split graphs of order n having one color class of size 1. On the other hand, we show

that Red-Blue Separation is always approximable in polynomial-time within

a factor of 2 lnn for any bi-colored graph. In contrast, for triangle-free graphs and

for graphs of bounded maximum degree, Red-Blue Separation is solvable in

polynomial time when the smallest color class is bounded by a constant (using

algorithms that are in the parameterized class XP, with the size of the smallest



CHAPTER 4. RED-BLUE SEPARATION 86

color class as parameter). However, on general graphs, the problem is W [2]-hard

even when parameterized by the solution size plus the size of the smallest color

class.

When the coloring is not speci�ed, max-sepRB(G) is a parameter that is worth

studying from a structural viewpoint. In particular, we study the possible values

for max-sepRB(G). We show the existence of tight bounds on max-sepRB(G) in

terms of the order n of the graph G, proving that it can range from ⌊log2 n⌋ up
to n − 1 (both bounds are tight). For trees however we prove bounds involving

the number of support vertices (i.e. which have a leaf neighbor), which imply that

max-sepRB(G) ≤ 2n
3
. We also give bounds ofmax-sepRB(G) in terms of sep(G). We

then show that the associated decision problem Max Red-Blue Separation is

NP-hard, even for graphs of bounded maximum degree, but can be approximated

in polynomial time within a factor of O(ln2 n).

4.3 Complexity of Red-Blue Separation

We will prove some algorithmic results for Red-Blue Separation by reducing

to or from the following problems.

Problem: Set Cover of ((U,S), k)
Input: A set of elements U , a family S of subsets of U and an integer k.

Output: Does there exist a cover C ⊆ S, with |C| ≤ k such that
⋃

C∈C C = U?

Problem: Dominating Set

Input: A graph G = (V,E) and an integer k.

Output: Does there exist a set D ⊆ V of size k such that ∀v ∈ V,N [v] ∩D ̸= ∅?



87 CHAPTER 4. RED-BLUE SEPARATION

4.3.1 Hardness

Theorem 4.1

For a split graph of order n, Red-Blue Separation cannot be approxi-

mated within a factor of (1 − ϵ) · lnn for any ϵ > 0 even when the smaller

color class has size 1 unless P = NP. Moreover, Red-Blue Separation is

W[2]-hard when parameterized by the solution size together with the size of

the smallest color class, even on split graphs.

Proof. For an instance ((U,S), k) of Set-Cover, we construct in polynomial time

an instance ((G, c), k) of Red-Blue Separation where G is a split graph and one

color class has size 1. The statement will follow from the hardness of approximating

Min Set Cover proved in [DS14], and from the fact that Set Cover is W[2]-

hard when parameterized by the solution size [DF99].

Construction: We create the graph (G, c) by �rst creating vertices corresponding

to all the elements in U and the sets in S. Let VU and VS be the set of vertices

corresponding to the elements in U and the subsets in S respectively. We

connect a vertex ui ∈ VU corresponding to an element i ∈ U to a vertex

vj ∈ VS corresponding to a set Sj ∈ S provided i ∈ Sj. We color all these

vertices blue. We add two isolated blue vertices b and b′. We connect every

pair of vertices in VU . Also, we add a red vertex r and connect all vertices

ui ∈ VU to r. Now, note that the vertices VU ∪ {r} form a clique whereas

the vertices in VS along with b and b′ form an independent set1. Thus, our

constructed graph G is a split graph. See Figure 4.3.

Now Claim 4.1, stated below, proves the result.

1The reason for using two isolated vertices b and b′ is to ensure that the red vertex r does not
receive the empty code.



CHAPTER 4. RED-BLUE SEPARATION 88

Sets Elements

{}

{}

r

u1

un

ui

v1

vj

vm

b
b′

Figure 4.3: Proof of Theorem 4.1: reduction from Set Cover to Red-Blue
Separation.

Claim 4.1

S has a set cover of size k if and only if G has a red-blue separating set of

size at most k + 1.

Proof. ( =⇒ ) Let C be a set cover of (U,S) of size k. We construct a red-blue

separating set S of (G, c) of size at most k+ 1 as follows. For each set Sj selected

in the set cover C, we choose the corresponding vertex vj in S. Also, include the

vertex r in S. Observe that some blue vertices2 may have the empty code and the

red vertex has itself as the code. Also, every vertex in VU is dominated by some

vertex/vertices in VS and have some unique code di�erent from r. Thus, every

blue vertex has code di�erent from the code of r. Therefore, S is a separating set

of (G, c) of size at most k + 1.

( ⇐= ) Conversely, consider a red-blue separating set S of (G, c) of size k′. Since

the vertices in VU∪{r} form a clique, choosing any vertex from VU will not separate

any two vertices of the clique. Let us assume that the red vertex r ∈ VU gets the

empty code. Then, we have the two isolated blue vertices b and b′, one of which

also gets the empty code, which is not permissible. Thus, the red vertex has to

be selected. But r, being part of the clique, has to be separated from the blue

vertices in the set VU . Thus, we have to choose vertices from the independent set

to separate the blue vertices of the clique from r. So, we dominate the blue vertices

2corresponding to subsets that are not included in C and b, b′



89 CHAPTER 4. RED-BLUE SEPARATION

of the clique by using the vertices in the independent set of VS , which implies that

the size of our set cover is at most k′ − 1 = k.

Theorem 4.2

Red-Blue Separation is NP-hard for bipartite planar sub-cubic graphs

of girth at least 12 when the color classes have almost the same size.

Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar

sub-cubic graphs with girth at least 12 that contain some degree 2 vertices [ZZ95].

We reduce any instance (G, k) of Dominating Set to an instance ((H, c), k + 1)

of Red-Blue Separation where the number of red and blue vertices in H di�er

by at most 2.

HRG HB

construction

v vB vR

u1

u2

u3

u4

Figure 4.4: Reduction from an instance of Dominating Set to an instance of
Red-Blue Separation.

Construction: We create two disjoint copies ofG = (V,E) namelyHB = (VB, EB)

and HR = (VR, ER) and color all vertices of HB as blue and all vertices of

HR as red. Select an arbitrary vertex v of degree 2 in V (we may assume

such a vertex exists in G by the reduction from the Dominating Set problem

for 3-regular planar graphs of [ZZ95]) and look at its corresponding vertices

vR ∈ VR and vB ∈ VB. We connect vR and vB with the head of a path

u1, u2, u3, u4 as shown in Figure 4.4. The tail of the path, i.e. the vertex u4,

is colored blue and the remaining three vertices u1, u2 and u3 are colored red.

The vertices in the graph H is VH = VR ∪ VB ∪ {u1, u2, u3, u4} and the edges

of H are EH = EB ∪ER ∪ {(u1, vB), (u1, vR), (u1, u2), (u2, u3), (u3, u4)}. The
coloring c is as described.



CHAPTER 4. RED-BLUE SEPARATION 90

Now Claim 4.2 and Claim 4.3, stated below, proves the result.

Claim 4.2

If G is a connected bipartite planar sub-cubic graph of girth at least g, then

so is H.

Proof. The graph H is also bipartite as the vertices vB and vR can belong to

the same partition of G where v belonged (both being replication of the vertex

v ∈ V ) along with u2 and u4, while the vertices u1 and u3 can belong to the other

partition.

Claim 4.3

The instance (G, k) is a YES-instance of Dominating Set if and only if

sepRB(H, c) ≤ k′ = k + 1.

Proof. ( =⇒ ) Let D be a dominating set of G of size k. We construct a red-blue

separating set S of (H, c) of size at most k + 1 as follows. For each vertex v ∈ D,

include its corresponding vertex vR ∈ VR in S. Also include in S, the vertex

u2 ∈ VH . Observe that all blue vertices have the empty code and all red vertices

have some non-empty code. Therefore S is a separating set of (H, c) of size at

most k + 1.

(⇐= ) Consider a red-blue separating set S of (H, c) of size k+1. We are to show

that there exists a dominating set of size k in G. Without loss of generality, let us

assume that no red vertex of (H, c) gets the empty code. Then, the set S has to

dominate all the red vertices in VR ∪ {u1, u2, u3} in order to ensure the separation

of the red vertices from the blue vertices. Since u3 can only be dominated by a

vertex x ∈ {u2, u3, u4}, the vertices in VR are to be dominated by S ′ = S \ {x}.
Now two cases need to be considered:

S ′ ⊆ VR: Here, the set D, formed by choosing the vertices of V corresponding to

the vertices of S ′ is a dominating set of G of size k.



91 CHAPTER 4. RED-BLUE SEPARATION

S ′ ̸⊆ VR: This implies ∃ y ∈ S ′ such that y ̸∈ VR. The only possible vertex which

can be y is u1, i.e., u1 ∈ S ′. That happens when neither vR nor u2 is in S.

But if x is either u3 or u4 in the set S, x will not separate u3 and u4. So u2
has to be in S to ensure that u3 and u4 are separated. But the sole choice

of u2 ∈ S itself ensures the separation of the three red vertices {u1, u2, u3}
from all the blue vertices. Hence, y is not necessary in S ′.

Thus, S ′ ⊆ VR, and it implies |D| = k.

In the reduction of Theorem 4.2, the chosen graph could be any arbitrary graph

G for which Dominating Set is known to be NP-hard. We could also create a

graph H by simply taking two copies of the original graph G and obtain a coloring

with two color classes of equal size and dominate just one color class. Thus, all

the vertices of one color class, where the dominating set D is chosen in S, have

non-empty code. All the vertices of the other color class receive empty code. Then,

D is a separating set of H. But note that here H is a disconnected graph.

Theorem 4.3

Red-Blue Separation is NP-hard even when the input is a sub-cubic

planar bipartite graph of girth at least 12.

Proof. We reduce from an instance (G, k) of the Dominating Set which is NP-

hard when the input graph G is a sub-cubic planar bipartite graph of girth at least

12 [ZZ95].

Let (G, k) be an instance of the Dominating Set problem, where G is as men-

tioned above. We create an instance ((H, c′), k + 1) of Red-Blue Separation

where c′ is a coloring of H with the minimum color class being of size at most k+1

as follows (See Figure 4.5):

Construction: Without loss of generality let us assume the smaller sized color

class to be red. For H we create a copy GH of G with all its vertices colored



CHAPTER 4. RED-BLUE SEPARATION 92

G H

construction

...
k + 1 reds

G

Figure 4.5: Construction from an instance of Dominating Set to an instance of
Red-Blue Separation where size of the smaller color class is bounded.

blue and an independent set I of size k + 1 all its vertices colored red.

Now Claim 4.4, stated below, proves the result.

Claim 4.4

(G, k) is an YES-instance of Dominating Set if and only if ((H, c′), k) is

a YES-instance of Red-Blue Separation.

Proof. ( =⇒ ) Let D be a dominating set of G. We construct a red-blue separating

set of (H, c′) by selecting the corresponding vertices of D in GH . Since D is a

dominating set of G, all blue vertices receive a non-empty code. The red vertices

on the other hand receive the empty code and we have a valid separating set.

(⇐= ) Let (H, c′) have a separating set C of size at most k. Since there are k+1

independent red vertices, there will be at least one red vertex which receives the

empty code. So, in order for C to be a valid separating set, all blue vertices must

receive some non-empty code. This implies that C ∩ V (GH) is a dominating set

of GH of size at most k, and which implies a dominating set of G of size at most

k.



93 CHAPTER 4. RED-BLUE SEPARATION

4.3.2 Positive algorithmic results

We start with a reduction from sepRB(G, c) problem to Set Cover with an ob-

jective to suggest possible approximation algorithm(s) for the Red-Blue Sepa-

ration problem.

Proposition 4.1

Red-Blue Separation has a polynomial time (2 lnn)-factor approxima-

tion algorithm.

Proof. We reduce Red-Blue Separation to Set Cover. Let ((G, c), k) be an

input instance of Red-Blue Separation. We reduce it to an instance ((U,S), k)
of Set Cover. For each red-blue vertex pair (r, b) in G create an element ur,b in

U . For each vertex v in G create a set in S with all possible elements uri,bj in U

such that v is in the closed neighborhood of exactly one of ri and bj in G. Observe

that a set cover C of size k in ((U,S), k) corresponds to a separating set S of size at

most k of the graph G and vice versa (see Figure 4.6 for a visual representation).

r1

r2

r3

b1

b2

b3

ur1,b1
ur1,b3
ur2,b2
ur2,b3
ur3,b1
ur3,b3

S(r1)
S(r2)
S(r3)
S(b1)
S(b2)
S(b3)

elements of U sets of S(G, c)

Figure 4.6: A reduction instance from Red-Blue Separation of (G, c) to Set
Cover of (U,S). The separating set in the colored graph (G, c) and the corre-
sponding set cover in the set system (U,S) has been highlighted.

The greedy algorithm for Set Cover has an approximation factor of ln |U | + 1.

Since, in our case |U | ≤ n2/4, the resulting approximation factor for Red-Blue

Separation is at most ln(n2/4) + 1 ≤ 2 lnn.



CHAPTER 4. RED-BLUE SEPARATION 94

Proposition 4.2

Let (G, c) be a red-blue colored triangle-free and twin-free graph with R,B

the two color classes. Then, sepRB(G, c) ≤ 3min{|R|, |B|}.

Proof. We construct a red-blue separating set S of (G, c) as follows. Without loss

of generality, we assume |R| ≤ |B|. First, we add all red vertices to S. It remains

to separate every red vertex from its blue neighbors. If a red vertex v ∈ R has at

least two neighbors, we add (any) two such neighbors to S 3. Since G is triangle-

free, no blue neighbor of v is in the closed neighborhood of both these neighbors

of v, and thus v is separated from all its neighbors. If v had only one neighbor w,

and it was blue, then we separate w from v by adding one arbitrary neighbor of w

(other than v) to S. Since G is triangle-free, v and w are separated. See Figure

4.7. Thus, we have built a red-blue separating set S of size at most 3|R|.

v1

v2

w1

w2

w3

Figure 4.7: Illustration of Proposition 4.2: here v1 has just one blue neighbor hence
w1 is added in S. v2's neighbors w2 and w3 are also included in S.

3Note that as red vertices are already added in S, if a red vertex v has at least two red
neighbors, then there is no need to add any more vertex in S as already two neighbors of v are
already present in S. If v has one or zero red neighbors, then only this step needs to be executed.



95 CHAPTER 4. RED-BLUE SEPARATION

v
w

w

v

z z

(a) (b)

Figure 4.8: Illustration of Proposition 4.3: the two sub-cases of Case 1 when the
vertices v and w are (a) not adjacent and (b) adjacent.

Proposition 4.3

Let (G, c) be a red-blue colored twin-free graph with maximum degree∆ ≥ 3.

Then, sepRB(G, c) ≤ ∆min{|R|, |B|}.

Proof. We construct a red-blue separating set S of (G, c) as follows. Without loss

of generality, let us assume |R| ≤ |B|. For every red vertex v ∈ R, we need to

consider the following two cases:

Case 1: If there is a blue vertex w whose closed neighborhood contains all neigh-

bors of v (w could be a neighbor of v), we add both v and w to S. If v is

adjacent to w, since they cannot be twins, there must be a vertex z that can

separate v and w; we add z to S. Now, v is separated from every blue vertex

in G (See Figure 4.8(a)).

Case 2: If such a vertex w does not exist, then we add all neighbors of v to S.

Now again, v is separated from every vertex of G (See Figure 4.8(b)).

Thus, we have built a red-blue separating set S of size at most ∆|R|.

The previous propositions imply thatRed-Blue Separation can be solved in XP

time for the parameter �size of a smaller color class� on triangle-free graphs and on



CHAPTER 4. RED-BLUE SEPARATION 96

graphs of bounded degree. This is in contrast with the fact that in general graphs,

it remains NP-hard even when the smallest color class has size 1 (Theorem 4.1).

Theorem 4.4

Red-Blue Separation on red-blue colored graphs with color classes R

and B can be solved in time O(n3min{|R|,|B|}) on triangle-free graphs, and in

time O(n∆min{|R|,|B|}) on graphs of maximum degree ∆.

4.4 Extremal values and bounds for max-sepRB

As de�ned earlier, we denote by sep(G) the smallest size of a (non-colored) sepa-

rating set of G, that is, a set that separates all pairs of vertices. In this section,

we will throughout use the relation max-sepRB(G) ≤ sep(G), which clearly holds

for every twin-free graph G.

4.4.1 Lower bounds for general graphs

We can have a large twin-free colored graph with solution size 2 (for an example,

in a large blue path with a single red vertex at any position, two vertices su�ce).

We show that in every twin-free graph, there is always a coloring that requires a

large solution.

Theorem 4.5

There exists twin-free graph G of order n ≥ 1 and n ̸∈ {8, 9, 16, 17}, where
max-sepRB(G) ≥ ⌊log2 n⌋.

Proof. Let G be a twin-free graph of order n with max-sepRB(G) = k. In a twin-

free graph G, there are 2n di�erent red-blue colorings. Now max-sepRB(G) = k

implies for each of these 2n graphs sepRB(G, c) ≤ k. Consider the set of vertex



97 CHAPTER 4. RED-BLUE SEPARATION

subsets of G which are separating sets of size k for some red-blue colorings of G.

In G, there are
(
n
k

)
≤ nk sets of k vertices.

Consider such a separating set S of k vertices with some coloring function c. Let

the set I(S) be the subsets of S such that for each subset S ′ ∈ I(S) for which

there exists a vertex v of G with N [v] ∩ S = S ′. Let iS = |I(S)|, the number of

these subsets. Surely, we have iS ≤ 2|S| ≤ 2k. As S is a separating set for (G, c),

all vertices of G having the same intersection between their closed neighborhood

and S must receive the same color by the coloring function c. Thus, there are at

most 2iS ≤ 22
k
red-blue colorings of G for which S is a separating set. Overall, we

thus have at most
(
n
k

)
22

k
possible red-blue coloring, implying 2n ≤

(
n
k

)
22

k ≤ nk22
k
,

and thus n ≤ k log2 n+ 2k.

We now claim that this implies that k ≥ log2(n − (log2 n)
2). Suppose to the

contrary that this is not the case, then we would obtain:

n < log2(n− (log2 n)
2) log2 n+ n− (log2 n)

2

n < log2 n log2 n+ n− (log2 n)
2

n < n =⇒ a contradiction

Since k is an integer, we actually have k ≥ ⌈log2(n − (log2 n)
2)⌉. To conclude,

one can check that whenever n ≥ 70, we have ⌈log2(n − (log2 n)
2)⌉ ≥ ⌊log2 n⌋.

Moreover, if we compute values for 2n−
(
n
k

)
22

k
when 1 ≤ n ≤ 69 and k = ⌊log2 n⌋−

1, then we observe that this is negative only when n ∈ {8, 9, 16, 17}. Thus, ⌊log2 n⌋
is a lower bound for max-sepRB(G) as long as n ̸∈ {8, 9, 16, 17}.

Proposition 4.4

For any integer k ≥ 1, if n = 2k, there is a graph G of order n with

max-sepRB(G) = k.



CHAPTER 4. RED-BLUE SEPARATION 98

Proof. We build G as follows. Let us take a set S = {v1, . . . , vk} of k vertices

in G. Create another set T of vertices (disjoint from S). For every subset S ′ of

S of size at least 2, we add a vertex vS′ to T . We join vS′ to all vertices of S ′

and also with the other vertices of T . Finally, we add an isolated vertex v∅ to G.

Thus, the vertices of G are {v∅} ∪ S ∪ T . The edges in the undirected graph G

can be classi�ed into two types: for a subset S ′ ⊆ S, the vertex vS′ is connected

to (i) each vi ∈ S ′ and (ii) all vertices of type vS′′ where |S ′′| ≤ |S ′| and S ′′ ⊂ S.

Observe that there is no edge between the vertices of S. Thus, the graph G is a

split graph since the set S forms an independent set and the set T induces a clique

in G because of the edges of the second type.

To see that max-sepRB(G) ≤ k, notice that S is a separating set of G regardless

of the coloring of the vertices of G. The reason is that every vertex of S receives a

di�erent code which is the id of that vertex. Since all possible subsets correspond

to the vertices of T , thus all the vertices of G receive unique code.

If k = 1: c(v1) = red and c(v∅) = blue shows that max-sepRB(G) ≥ 1.

If k = 2: c(v1) = c(v2) = red and c(v{1,2}) = c(v∅) = blue. To separate v{1,2} from

v1, v2 must belong to any separating set. Again, to separate v{1,2} from v2,

v1 must belong to any separating set. Thus, we have max-sepRB(G) ≥ 2.

If k ≥ 3: c(vS) = blue and the other vertices in G are red. For each subset S ′ of S

with |S ′| = k−1, in order to separate vS from vS′ , any separating set needs to

contain a vertex vi where {vi} = S \S ′. This shows that max-sepRB(G) ≥ k.

We next relate parameter max-sepRB to other graph parameters.



99 CHAPTER 4. RED-BLUE SEPARATION

Theorem 4.6

Let G be a graph on n vertices. Then, sep(G) ≤ min{(⌈log2 n⌉ ×
max-sepRB(G)), (⌈log2(∆(G) + 1)⌉ × max-sepRB(G) + γ(G))}, where γ(G)
is the domination number of G and ∆(G) is its maximum degree.

Proof. Let G be an arbitrary graph with n vertices, where 2k−1 + 1 ≤ n ≤ 2k for

some integer k. We �rst prove that sep(G) ≤ ⌈log2 n⌉ ×max-sepRB(G). Next, we

prove that sep(G) ≤ ⌈log2(∆(G) + 1)⌉ ×max-sepRB(G) + γ(G). We denote each

vertex by a di�erent k-length binary word x1x2 · · · xk where each xi ∈ {0, 1}. More-

over, we give k di�erent red-blue colorings c1, . . . , ck such that vertex x1x2 · · ·xk is
red in coloring ci if and only if xi = 0 and blue otherwise. For each i, let Si be an

optimal red-blue separating set of (G, ci). We have |Si| ≤ max-sepRB(G) for each

i. Let S =
⋃k

i=1 Si. Now, |S| ≤ k ·max-sepRB(G) = ⌈log2 n⌉ ·max-sepRB(G). We

claim that S is a separating set of G. Assume to the contrary that for two vertices

x = x1x2 · · ·xk and y = y1y2 · · · yk, N [x] ∩ S = N [y] ∩ S. As x and y are two

distinct vertices, we have yi ̸= xi for some i. Thus, in coloring ci, vertices x and y

have di�erent colors and hence, there is a vertex z ∈ G such that z ∈ N [y]△N [x],

a contradiction which proves the �rst bound.

Let S be an optimal red-blue separating set for such a coloring c ∈ {c1, . . . , ck}
of the vertices in G and let D be a minimum-size dominating set in G; S ∪ D
is also a red-blue separating set for the coloring c. Thus, sep(G) ≤ |S| + |D|.
At most ∆(G) + 1 vertices of G may have the same closed neighborhood in

D. This situation arises when these (∆(G) + 1) vertices form a clique. Now

we demonstrate the maximum possible size of S. As stated earlier, we may

again choose ⌈log2(∆(G) + 1)⌉ di�erent colorings, as explained earlier, and the

corresponding optimal separating set for each of these colorings. Now we con-

struct a red-blue separating set S by taking the union of the red-blue separating

sets of all ⌈log2(∆(G) + 1)⌉ colorings. Since each of these sets has size at most

max-sepRB(G), hence we have |S| ≤ ⌈log2(∆(G) + 1)⌉ ×max-sepRB(G). Thus, we

have sep(G) ≤ |S|+ |D| = ⌈log2(∆(G) + 1)⌉ ×max-sepRB(G) + γ(G).



CHAPTER 4. RED-BLUE SEPARATION 100

We do not know whether the previous bound from Theorem 4.6 is reached, but as

seen next, there are graphs G such that sep(G) = 2max-sepRB(G).

Proposition 4.5

LetG = Kk1,...,kt be a complete t-partite graph for t ≥ 2, ki ≥ 5 where ki is an

odd number for each i. Then sep(G) = n− t and max-sepRB(G) = (n− t)/2.

Proof. Let us name each of the t parts of G as G1, . . . , Gt with vertex sets V (Gi) =

{vi1, . . . , viki}. Observe that a set S ⊆ V = ∪ti=1V (Gi) is a separating set in G if and

only if |S ∩ V (Gi)| ≥ ki − 1 for each i = 1, 2, . . . , t. Indeed, if we have vij, v
i
h ̸∈ S,

then N [vij] ∩ S = N [vih] ∩ S since N(vij) = N(vih) as the graph G is complete

t-partite. Moreover, each vertex in S is separated from vertices not in S and each

vertex in V (Gi) is separated from vertices in V (Gj). Thus, we have sep(G) = n−t.

Let c be such a coloring of G that attains sepRB(G, c) = max-sepRB(G). We now

form a red-blue separating set S ′ for coloring c as follows:

For each part Gi, we choose in S ′, the vertices of the color class whose count

is lesser in that particular part (however, we have to choose at least two

vertices in S ′ from each part). As the di�erence between the vertex sets

of the two color classes in a part will be at least 1 (ki being odd), nearly

half the vertices from a part might be chosen in S ′. Hence, observe that

|S ′| ≤
∑t

i=1
ki−1
2

= (n− t)/2.

Now, we can see that S ′ is a red-blue separating set due to the fact that if vij ̸∈ S ′

and vih ̸∈ S ′, then vij and vih will have the same color as S ′ consists of all the

vertices of the smaller color class from Gi and no vertex from the larger color class

of Gi.



101 CHAPTER 4. RED-BLUE SEPARATION

4.4.2 Upper bound for general graphs

We will use the following classical theorem in combinatorics to show that we can

always spare one vertex in the solution of Max Red-Blue Separation.

Theorem 4.7: Bondy's Theorem [Bon72]

Let V be a set of size n with a family A = {A1,A2, . . . ,An} of n distinct

subsets of V . There is a subset X of V of size (n − 1) such that the sets

A1 ∩X,A2 ∩X,A3 ∩X, . . . ,An ∩X are still distinct.

Corollary 4.1

Let be G be a twin-free graph on n vertices. Then we have max-sepRB(G) ≤
sep(G) ≤ n− 1.

Proof. Regardless of the coloring, by Theorem 4.7 we can always �nd a set of size

n− 1 that separates all pairs of vertices.

This bound is tight for every even n for complements of half-graphs (stated below)

which are studied in the context of identifying codes in [FGK+11].

Half-graph [Erd06]

De�nition 4.7. For any integer k ≥ 1, the half-graph Hk is the bipartite

graph on vertex sets {v1, . . . , vk} and {w1, . . . , wk}, with an edge between

every pair (vi, wj) of vertices satisfying i ≤ j.

Thus, the complement Hk of Hk consists of two cliques {v1, . . . , vk} and

{w1, . . . , wk} and with an edge between every pair (vi, wj) of vertices satis-

fying i > j.

Proposition 4.6

For every k ≥ 1, we have max-sepRB(Hk) = 2k − 1.



CHAPTER 4. RED-BLUE SEPARATION 102

Proof. The upper bound (i.e. max-sepRB(Hk) ≤ 2k−1) follows from Corollary 4.1.

To prove the lower bound, consider the red-blue coloring c such that vi is blue

whenever i is odd, and red otherwise. If k is odd, wi is red whenever i is odd, and

blue otherwise. If k is even, wi is blue whenever i is odd, and red otherwise.

For any integer i between 1 and k−1, vi and vi+1 have di�erent colors and can only

be separated by wi. Likewise, wi and wi+1 have di�erent colors and can only be

separated by vi+1. This shows that {w1, . . . , wk−1} and {v2, . . . , vk} must belong to

any separating set of (Hk, c). Finally, consider w1 and vk. They also have di�erent

colors and can only be separated by either v1 or wk. This shows that we need at

least n− 1 vertices in any separating set. Thus, max-sepRB(Hk) ≥ 2k − 1

4.4.3 Upper bound for trees

We will now show that a much better upper bound holds for trees.

In a tree T , the vertices having degree 1 are called leaves and the set of leaves of

T is denoted as L(T ). Vertices adjacent to leaves are called support vertices, and

the set of support vertices of T is denoted by S(T ). We denote by ℓ(T ) = |L(T )|
and s(T ) = |S(T )|. The set of support vertices with exactly i adjacent leaves is

denoted Si(T ) and the set of leaves adjacent to support vertices in Si(T ) is denoted

Li(T ). Observe that |L1(T )| = |S1(T )|. Moreover, let L+(T ) = L(T ) \ L1(T ) and

S+(T ) = S(T ) \ S1(T ). We denote the sizes of these sets Si(T ), Li(T ), S+(T ) and

L+(T ) by si(T ), ℓi(T ), s+(T ) and ℓ+(T ) respectively.

Theorem 4.8

Let T be a tree on n ≥ 3 vertices and let c be a coloring with exactly one

red (or blue) vertex. We have sepRB(T, c) ≤ 2.

Proof. If T is a tree with two vertices and exactly one of them is red then it has

to be a forest (otherwise it will not be twin-free) and sepRB(T, c) = 1. So, we



103 CHAPTER 4. RED-BLUE SEPARATION

x

x

u v

u vw

C ′
1

C1

Figure 4.9: Construction of C1 from C ′
1 where the highlighted elements represents

members of the set.

assume that T is a tree with at least three vertices such that there is exactly one

red vertex v ∈ V (T ).

Let us assume �rst that v ̸∈ L(T ). Thus, v has at least two neighbors w and u.

If we now include w and u in the separating set S, then v is the only vertex in T

which has two adjacent vertices in S and hence, S is a red-blue separating set in

T for coloring c.

On the other hand, if v ∈ L(T ), u ∈ N(v) and w ∈ N(u) \ {v}, then S = {v, w}
is a red-blue separating set in T for coloring c. Thus, sepRB(T, c) ≤ 2.

Theorem 4.8 says the lower bound on max-sepRB(T ). Now we prove an upper

bound on max-sepRB(T ).

We build two separating sets C1 and C2 for T with |C1| ≠ |C2|. We �rst create

two sets C ′
1 and C

′
2 and obtain C1 and C2 from these sets respectively. We choose

an arbitrary non-leaf vertex x.

Construction of C1: We add to the �rst set C ′
1 every vertex at odd distance

from x and every leaf of T . If there is a support vertex u ∈ S1(T ) ∩ C ′
1 and



CHAPTER 4. RED-BLUE SEPARATION 104

an adjacent leaf v ∈ L1(T ) ∩ N(u), we create a separating set C1 from C ′
1

which is obtained by replacing the leaf v with some vertex w ∈ N(u) \L(T ).
See Figure 4.9.

Construction of C2: We add to the second set C ′
2 every vertex at even distance

from x and every leaf of T . If there is a support vertex u ∈ S1(T ) ∩ C ′
2 and

an adjacent leaf v ∈ L1(T ) ∩ N(u), we create a separating set C2 from C ′
2

which is obtained by replacing the leaf v with some vertex w ∈ N(u) \L(T ).

x u vw

x x

w

w

(b) (i) d(v, x) is even and v ∈ L1(T )

(c) w /∈ L(T ) and d(w, x) is odd (d) w /∈ L(T ) and d(w, x) is even

x

(a) (i) d(v, x) is odd and v ∈ L1(T )

xv

(a) (ii) d(v, x) is odd and v ∈ L+(T )

x

u v

(b) (ii) d(v, x) is even and v ∈ L+(T )

v

w

u

w

Figure 4.10: The cases of Claim 4.5.

Claim 4.5

Both C1 and C2 are separating sets with |C1| ≠ |C2|.

Proof. Let us consider the set C1. First, we show that each leaf v ∈ L(T ) is

separated by C1. Let u ∈ N(v) be a support vertex adjacent to v. We know that



105 CHAPTER 4. RED-BLUE SEPARATION

x is the chosen non-leaf vertex for creating C ′
1. We show that v is separated from

the other vertices of T through the following exhaustive cases. See Figure 4.10.

(a) If d(x, v) is odd, then v ∈ C1. Now we need to consider two cases depending

on whether (i) v ∈ L1(T ) and (ii) v ∈ L+(T ). In the �rst case, the node u ∈
S1(T ) ∩N(v) is at even distance from x and is not present in C1. However, there

exists a node w ∈ N(u) \ {v} which is at odd distance from x and is present in

C1. In the second case, v has at least one other sibling w which is also at odd

distance from x, and is present in C1. Thus, in both cases |N(u)∩C1| ≥ 2, where

u ∈ N(v). This indicates that the members in N [u] ∩ C1 ̸= N [v] ∩ C1.

(b) If d(v, x) is even, then (i) v ∈ L1(T ), then v /∈ C1 by the rule of construction of

C1. However, u ∈ N(v) and the member w ∈ N(u) \ {v} is present in C1 implying

|N [u] ∩ C1| ≥ 2 and (ii) v ∈ L+(T ), then v ∈ C1 and there exists at least two

other members of N(u) (they may or may not be leaves of T ) in C1, implying

|N [u] ∩ C1| ≥ 3.

Now, we show that each non-leaf w /∈ L(T ) is separated by C1.

(c) If d(w, x) is odd, then w ∈ C1. Moreover, each neighbor u ∈ N(w) has even

distance from x and is either a leaf which is separated from w or has at least two

neighbors with odd distance from x and hence, |C1∩N(u)| ≥ 2 and u is separated

from w.

(d) If d(w, x) is even, then w ̸∈ C ′
1. Here at least one of the members in N(w)\{u}

is in C1. Thus w is separated from u.

Similarly it can be shown that the vertices in T are separated using the set C2 as

the separating set. Hence, the claim follows.

|C1| ≠ |C2| follows from the fact that the number of vertices at odd and even

distance from x ∈ T always di�er.

Let c be a coloring of T such that max-sepRB(T ) = sepRB(T, c). We assume that



CHAPTER 4. RED-BLUE SEPARATION 106

s(T ) ≥ 2 which implies that T is not a star graph.

We now use C ′
1 and C ′

2 to create a red-blue separating set C. Let us denote by

NS3(T ) a smallest set of vertices in T such that for each vertex v ∈ S3(T ) which

has N(v) ∩ S+(T ) = ∅, we have at least one vertex u ∈ N(v) \ L(T ) (say the

predecessor of v in T ) in NS3(T ) (such a vertex will always exist as T is not a

star).

x u v

x u v

C ′
2

C ′
1

Figure 4.11: Comparison of C ′
1 and C ′

2 where the vertices highlighted in green
belong to the set V (T ) \ (L(T ) ∪ S+(T ) ∪NS3(T )).

Let C ′
a denote one of the the two sets C ′

1 and C ′
2 which contain lesser vertices

from the set V (T ) \ (L(T ) ∪ S+(T ) ∪NS3(T )) (see Figure 4.11). In particular, it

contains at most half of those vertices and we have |C ′
a\(L(T )∪S+(T )∪NS3(T ))| ≤

(n− ℓ(T )−s+(T )−|NS3(T )|)/2. Now, we will construct a red-blue separating set
C from C ′

a. Initialize C by C ′
a. First, for each support vertex u ∈ S+(T ), remove

from C every leaf w ∈ L+(T ) ∩ N(u) where w is in the larger color class with

respect to coloring c among the vertices in N(u)∩L+(T ). Now, we add some more

vertices to C as follows.

� For all u ∈ Si(T ), i ≥ 4, we add u and some leaves to C such that there

are at least two vertices in N(u) ∩ C. We have at most |N [u] ∩ L(T )|/2 + 1

vertices from (N [u] ∩ L(T )) ∪ {u} in the set C.



107 CHAPTER 4. RED-BLUE SEPARATION

� For i = 3 i.e., u ∈ S3(T ), we add to C either u or any vertex v ∈ NS3(T ) ∩
N(u), depending on which one does not already belong to C. Then, if all

leaves in N(u) have the same color and had been deleted from C at the

beginning of the construction, we add one of them to C. After this, we have

exactly three vertices in C ∩N [u] ∩ (L(T ) ∪ {u} ∪ {v}).

� Finally, for i = 2 i.e., u ∈ S2(T )
4, if the two leaves adjacent to u have the

same color and u ̸∈ C ′
a, we add u and one of its two leaves to C. If the two

leaves have the same color and u ∈ C ′
a, we add a non-leaf neighbor of u to

C. If the leaves have di�erent colors, one of them, say u′, has the same color

as u. We add u to C and to separate the leaves from u, we put u′ in C. We

have added at most two vertices to C in this case.

Thus, each time we added to C at most half the considered vertices in N(u), and

at most one additional vertex. After these changes, we might have to replace some

vertices from L1(T ) in C, similar to the way we have built Ca from C ′
a.

Claim 4.6

|C| ≤ n+s(T )
2

.

Proof. As we know,

|C ′
a \ (L(T ) ∪ S+(T ) ∪NS3(T ))| ≤ (n− ℓ(T )− s+(T )− |NS3(T )|)/2,

we get:

|C| ≤ n− ℓ(T )− s+(T )− |NS3(T )|
2

+ ℓ1(T ) +
ℓ+(T ) + |NS3(T )|

2
+ s+(T )

=
n+ ℓ1(T ) + s+(T )

2
=
n+ s(T )

2
.

4The set of support vertices with exactly 2 adjacent leaves is denoted S2(T )



CHAPTER 4. RED-BLUE SEPARATION 108

Claim 4.7

C is a red-blue separating set for the coloring c.

Proof. Since Ca is a separating set and Ca\C ⊆ L+(T ), if two vertices w, v are not

separated by C, then they were separated by a leaf in L+(T ) in Ca. Moreover, there

exists a support vertex u ∈ S+(T ) such that v, w ∈ N [u]. Recall that S+(T ) ⊆ C

and hence, u ∈ C. In the following, we go through all possibilities for w and v.

When w, v ∈ L(T ): If w, v ∈ L(T ), then they have the same color and do not

need to be separated.

When w, v ̸∈ L(T ) and d(w, v) = 1: Observe that either w = u or v = u. Oth-

erwise, we have triangle wuv. Assume that w = u. Notice that if any of the

leaves in N(w)∩L(T ) are in C, then w and v are separated. Since u ∈ S+(T )

and how we construct C, we have u ∈ S2(T ). The leaves adjacent to u have

the same color, and u ∈ C ′
a. Hence, u ∈ C. Since there are no cycles in T ,

d(w, x) and d(v, x) have di�erent parities5. Thus, v ̸∈ C ′
a. As v ̸∈ L(T ), there

exists a vertex b ∈ N(v) \ {u} and d(w, x) has the same parity as d(b, x).

Thus, b ∈ C ′
a. Since v ̸∈ C ′

a, we have b ∈ C unless v ∈ S+(T ), b ∈ L+(T ) and

we removed b from C ′
a when we constructed C. However, in the same way as

we concluded that u ∈ S2(T ) ∩ C ′
a, we observe that v ∈ C ′

a, a contradiction.

Thus, C separates v and w.

When one of w or v in L(T ): Let us say v ∈ L(T ) and since v ∈ N(u), we

have v ∈ L+(T ). Assume �rst that d(v, w) = 2. Thus, v, w ̸∈ C. However,

then we again have b ∈ C such that b ∈ N(w) \ {u}, either due to the

parity of d(x, b) or because b is a leaf. As the last case we have u = w and

v ∈ L+(T ) ∩ N(u). If u ̸∈ C ′
a, then, by parity, u has an adjacent non-leaf

vertex in C since T is not a star. On the other hand, if u ∈ C ′
a, then if

u ∈ S2(T ) and the two leaves have the same color, there is again a non-leaf

neighbor in C. If u ∈ S2(T ) and the two leaves have di�erent colors, then

5Parity refers to being even or odd with respect to the distance in between the vertices.



109 CHAPTER 4. RED-BLUE SEPARATION

there is a leaf of the same color, in N(u), as u which is in C. If u ∈ S3(T ),

then u has a non-leaf neighbor in NS3(T )∩C or in S+(T )∩C. If u ∈ Si(T )

for i ≥ 4, then u has at least two adjacent leaves which are in C. Hence, w

and v are either separated or they have the same color.

Theorem 4.9

For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ n+s(T )
2

.

Proof. Follows from Claim 4.5, Claim 4.6 and Claim 4.7. Observe that the claim

holds when T is a star. Here, we select the leaves of the smaller color class, and at

least two other leaves from the larger color class to handle all possible situations

enlisted: (i) all vertices of same color, (ii) all leaves of same color and the root of

di�erent color, (iii) leaves are of di�erent color and the color of the root is of the

smaller color class and (iv) leaves are of di�erent color and the color of the root is

of the larger color class. In case (i) no vertex needs to be chosen in C. In case (ii)

any two leaves in C will su�ce. In case (iii) all the leaves of the smaller color class

is enough. In case (iv) all the leaves of the smaller color class is enough if the size

of the smaller color class is greater than one, otherwise one more leaf needs to be

chosen in C which will belong to the larger color class.

The upper bound of Theorem 4.9 is tight. Consider, for example, a path on eight

vertices of alternating colors. Also, the trees presented in Proposition 4.7 (stated

later in this chapter) are within a factor of 1/2 of this upper bound. In fact, the

bound of the theorem is tight for all even paths except for P6 (and P2). In the

following theorem, we o�er another upper bound for trees which is useful when

the number of support vertices is large.

Theorem 4.10

For any tree T of order n ≥ 5, sep(T ) ≤ n− s(T ).



CHAPTER 4. RED-BLUE SEPARATION 110

Proof. Let us choose for each support vertex u ∈ S(T ) exactly one adjacent leaf

v ∈ L(T ) and say that these vertices form the set S ′. Next, we form the separating

set S = V (T ) \ S ′. Notice that |S| = n − s(T ). In the following, we show that S

is a separating set in T .

Observe that if v ̸∈ S, then v is a leaf and no support vertex has two adjacent

leaves which do not belong to S. Thus, vertices which do not belong to S are

pairwise separated. Since S ′ ⊆ L(T ), T [S] is a connected induced subgraph of

T due to the fact that T [S] is missing only a few leaves of T . V (T [S]) forms a

(non-optimal) separating set of T [S]. Moreover, as n ≥ 5, we have |N [w]∩ S| ≥ 2

for each vertex w ∈ S. Thus, vertices in S are separated from vertices which are

not in S. Finally, any two vertices w,w′ ∈ S are separated since |V (T [S])| ≥ 3;

hence, each closed neighborhood is unique in T [S].

The following corollary is a direct consequence of Theorems 4.9 and 4.10. These

two bounds will be equal when s(T ) = n
3
.

Corollary 4.2

For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ 2n
3
.

We next show that Corollary 4.2 (and Theorem 4.9) is not far from tight.

Proposition 4.7

For any k ≥ 1, there is a tree T of order n = 5k + 1 with max-sepRB(T ) =
3(n−1)

5
= n+s(T )−1

2
.

Proof. Consider the tree T formed by taking k disjoint copies P 1, . . . , P k of a path

of order 6 and identifying one endpoint of each path into one single vertex x.

Intuitively we mean that we take k copies of P6 which have one end in common.

We consider the coloring that where x is colored red, and all other vertices are

colored red-blue-red... following the bipartition of the tree. Let vi1, . . . , v
i
5 be the

vertices of P i distinct from x, where x is adjacent to vi1. In order to separate vi5



111 CHAPTER 4. RED-BLUE SEPARATION

from vi4, we need v
i
3 in any red-blue separating set. To separate vi4 from vi3, we need

either vi2 or v
i
5. To separate vi3 from vi2, we need either vi1 or v

i
4. Thus, we need at

least three vertices (vi1, v
i
3, v

i
5 separates all pairs of vertices) of P i in any red-blue

separating set, which shows that max-sepRB(T ) ≥ 3k. Finally, since s(T ) = k and

n− 1 = 5k, we have 3k = 3(n−1)
5

= n+s(T )−1
2

.

4.5 Complexity of Max Red-Blue Separation

The problem Max Red-Blue Separation does not seem to be naturally in the

class NP (it is in the second level of the polynomial hierarchy). Nevertheless, we

show that it is NP-hard by reduction from a special version of 3-SAT [Tov84].

Problem: 3-SAT-2l

Input: A set of m clauses C = {c1, . . . , cm} each with at most three literals, over

n Boolean variables X = {x1, . . . , xn}, and each literal appears at most twice.

Output: Is there an assignment of X where each clause is satis�ed?

Theorem 4.11

Max Red-Blue Separation is NP-hard even for graphs of maximum

degree 12.

Proof. To show hardness we reduce from the 3-SAT-2l problem. Given an in-

stance σ of 3-SAT-2l with m clauses and n variables, we create an instance

(G, k) of Max Red-Blue Separation as follows.

We create a domination gadget and use it to construct the variable and clause gad-

gets required for this reduction. First let us explain the construction of a domina-

tion gadget and its properties. A domination gadget is a graph as shown in Figure

4.12(a). Here, we have 16 vertices, named v1, v2, u1, . . . , u4, p1, . . . , p6, q1, . . . , q4.



CHAPTER 4. RED-BLUE SEPARATION 112

(b) represetation of H(v1, v2)

v1

v2

x x

x1

x2

y y

y1

y2

z1

z2

z z

c1

c2

variable gadget

clause gadget

u1

u2

u3

u4

v1

v2

p4

q3

(a) domination gadget on v1, v2 i.e. H(v1, v2) (c) Variable and clause gadget with clause c = (x ∨ y ∨ z)

Figure 4.12: Gadgets used for the reduction from 3-SAT-2l to Max Red-Blue
Separation.

The edges are drawn as follows. The vertices v1 and v2 may be connected to each

other and/or to some other vertices which is represented by the dashed edges.

Both v1 and v2 are also connected to the vertices u1, u2, u3 and u4 as shown in Fig-

ure 4.12(a) using solid lines. Next we have a clique K10 consisting of the vertices

{p1, . . . , p6, q1, . . . , q4}. Every vertex pi is connected to a unique pair of vertices

from {u1, u2, u3, u4} and every vertex qj is connected to a unique triple of vertices

from {u1, u2, u3, u4}. For example in the �gure we have p4 connected with the

pair of vertices u2 and u3 (using solid edges) and q3 connected with the triplet

of vertices u1, u3 and u4 (using solid edges). From now onwards this graph corre-

sponding to a domination gadget will be referred to as H(v1, v2) and represented

as shown in Figure 4.12(b). H(v1, v2) is a part of G and is connected with the rest

of the graph G through the vertices v1 and v2.

The variable gadget for a variable x of the given 3-SAT-2l instance consists of

the graph H(x1, x2) and H(x, x) with additional edges (x1, x2), (x1, x) and (x1, x).

If x1 and x2 are colored di�erently, then either x or x needs to be in the red-blue

separating set S. Selecting at least one of x or x also separates x and x themselves.



113 CHAPTER 4. RED-BLUE SEPARATION

The clause gadget for a clause c = (x∨ y∨ z) is H(c1, c2), where c1 is connected to

the vertices x, y and z from the variable gadgets H(x1, x2), H(y1, y2) and H(z1, z2)

and also to c2. If c1 and c2 are colored di�erently, then S should contain at least

one of x, y or z in order to separate them. The variable gadget and clause gadget

are demonstrated in Figure 4.12(c).

In Figure 4.13, we illustrate the coloring of vertices in the various gadgets used in

a 3-SAT-2L expression, using an example instance demonstrating the reduction

from 3-SAT-2l to Max Red-Blue Separation. In this example we have the

formula as (w ∨ x ∨ y) ∧ (x ∨ y ∨ z). Thus, we have two clauses C1 = w ∨ x ∨ y
and C2 = x∨ y ∨ z and four variables w, x, y and z. Corresponding to each clause

and each variable we have a clause gadget and a variable gadget respectively (as

described earlier). The structure of the domination gadget attached with both the

clause and variable gadgets has been shown separately to avoid making the Figure

4.13 too messy. We have shown one possible coloring in this instance to maximize

the Red-Blue Separation. There are other possible colorings as well.

Say a satisfying assignment for the formula is when w = 0, x = 1, y = 0 and z = 1.

Now according to the value of a variable v, either the vertex corresponding to v

(if v = 1) or v (if v = 0) is included in the red-blue separating set S. The vertices

u1, u2, u3 and u4 of all the domination gadgets are always required to be a part of

the S. Thus in the instance shown below, along with the vertices of type ui, the

vertices w, x, y and z are also a part of S, are squared in the �gure.

We de�ne a worst-coloring of G as a {red, blue} color assignment to the vertices

of G for which sepRB(G, c) = max-sepRB(G). We make the following claims that

proves the theorem.

Claim 4.8

For any worst-coloring c of G the optimal red-blue separating code of (G, c)

will always contains the vertices u1, u2, u3 and u4.

Proof. Since the subgraph consisting of the vertices {pi, i = 1, . . . , 6} ∪ {qi, i =



CHAPTER 4. RED-BLUE SEPARATION 114

x x

x1

x2

y y

y1

y2

z1

z2

z z

c21

c22

w w

w1

w2

c11

c12

u1

u2

u3

u4

v1

v2

p1
p2
p3
p4
p5
p6
q1
q2
q3
q4

v1

v2

{u1, u2}
{u1, u3}
{u1, u4}
{u2, u3}
{u2, u4}
{u3, u4}
{u1, u2, u3}
{u1, u2, u4}
{u1, u3, u4}
{u2, u3, u4}{u1, u2, u3, u4}

{u1, u2, u3, u4}

F = (w ∨ x ∨ y) ∧ (x ∨ y ∨ z)

K10

H(v1, v2)

(a)

(b)

Figure 4.13: An example to show the reduction from 3-SAT-2l to Max Red-
Blue Separation where (a) Dotted rectangles are variable gadgets and dashed
rectangles are clause gadgets and (b) Illustration of a domination gadget.



115 CHAPTER 4. RED-BLUE SEPARATION

1, . . . , 4} is a clique (denoted by K10), its vertices can be separated amongst them-

selves only by taking the vertices in {u1, u2, u3, u4} in the red-blue separating set,

S as explained below. Now consider a red-blue coloring of a domination gadget

H(v1, v2) where all the pi's are colored red and the qj's colored blue. The col-

oring of the rest of the vertices are not relevant. Observe that for every vertex

u ∈ {u1, u2, u3, u4}, there exists a pi and a qj such that N [pi]△N [qj] = {u}. Since,
pi and qj are colored di�erently, x must be chosen in the code in order to separate

them. Therefore there exist red-blue colorings of G such that it is necessary to

take all the vertices in {u1, u2, u3, u4} in S of G with respect to those coloring.

Thus, the claim follows.

Claim 4.9

σ is satis�able if and only if max-sepRB(G) ≤ 4m+ 9n.

Proof. ( =⇒ ) Let σ be satis�able. Consider any worst-coloring ĉ of G. For every

variable x of the given 3-SAT-2l expression, if x1 and x2 have the same color

in ĉ then we change the color of x2. We similarly change the color of c2 in a

clause gadget if the vertices c1 and c2 in G corresponding to that clause are of

same color in ĉ. These two steps do not increase the size of S (since we had a

worst-coloring), but since all the pair of vertices x1 and x2 in each variable gadget

are now colored di�erently, therefore either x or x needs to be in S. And since σ

is satis�able, therefore, choosing the truth assignment of σ as in S along with the

vertices u1, u2, u3 and u4 of each domination gadget separates all red-blue vertex

pairs. If the number of variables is n and the number of clauses is m, then the

number of domination gadgets is m+2n. Therefore, the total size of S is 4m+9n

and our claim holds.

(⇐= ) For the reverse direction, assume that there is a coloring of G for which the

size of S is 4m+ 9n. Again we change the coloring of x2 and c2 for all variables x

and all clauses c as before. The size of S need not have to decrease for this change.

Each variable has at most one of x or x chosen in S. Since 4m + 8n vertices

are already chosen corresponding to the ui's in all the domination gadgets, each



CHAPTER 4. RED-BLUE SEPARATION 116

variable gadget can have exactly one of x or x chosen6.

We can use Theorem 4.6 and a reduction to Set Cover to show the following.

Theorem 4.12

Max Red-Blue Separation can be approximated within a factor of

O((lnn)2) on graphs of order n in polynomial time.

Proof. Let A be a polynomial-time (2 lnn + 1)-approximation algorithm for the

Separation problem the uncolored version of the graph G [GKM08]. For any

graph G, let S(G) denote the separating set returned by the algorithm A on the

input graph G. Using Theorem 4.6, we have

|S(G)| ≤ (2 lnn+ 1) · sep(G) ≤ (2 lnn+ 1) · ⌈log2 n⌉ ·max-sepRB(G).

Hence, algorithm A is a polynomial-time O((lnn)2)-approximation algorithm for

Max Red-Blue Separation.

6The size of the S shown in Figure 4.13 is 4m+ 8n+ n = 4× 2 + 8× 4 + 4 = 44.



CHAPTER 5

Minimum Consistent Subset in Simple Graphs

Contents

5.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Path Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Undirected Paths . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Directed Paths . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Spider Graph . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1 Undirected Spiders . . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Directed Spiders . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Bi-chromatic Caterpillar Graph . . . . . . . . . . . . . . 143

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.2 Correctness and complexity . . . . . . . . . . . . . . . . 152

5.5 Bi-chromatic Comb Graph . . . . . . . . . . . . . . . . . 154

5.5.1 Preprocessing and Algorithm: . . . . . . . . . . . . . . . 156

5.5.2 Correctness and complexity . . . . . . . . . . . . . . . . 163

117



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 118

5.1 Organization

In this chapter, we will study a graph-theoretic version of the minimum consistent

subset (MCS) problem. Here, the distance between a pair of vertices u and v is

the number of vertices in the shortest path from u to v, and will be referred to as

hop-distance(u, v).

Problem: Minimum Consistent Subset (MCS)

Input: A graph G = (V,E) whose vertices are partitioned into k classes (i.e.,

colors), namely V1, V2, . . . , Vk.

Output: Subsets V ′
i ⊆ Vi, i = 1, 2, . . . , k such that for every member v ∈ V , if

v ∈ Vi then among its nearest neighbors in ∪kj=1V
′
j there is a vertex of V ′

i , and∑k
j=1 |V ′

k| is minimum.

We �rst study the MCS problem for some simple graph classes, namely, (i) path,

(ii) spider, (iii) caterpillar and (iv) comb. In the next chapter, we consider the

problem of computing MCS for the more general problem where the given graph

is a bi-colored undirected tree.

We introduce the concept of run, gate and block to partition the graph into sub-

graphs so that each subgraph can be handled independently with limited inter-

actions with its `neighboring' subgraphs. The non-trivial part of this approach

using these structures is to carefully design techniques to handle the limited inter-

action. The basic idea is to use these structures from the given graph G to create

a new graph H, called overlay graph. In doing so, we reduce the MCS problem

on G to �nding a shortest s-t path in this new graph H. The k-chromatic version

for undirected paths and undirected spiders can be solved in O(n) and O(nm)

time, respectively, where n is the number of vertices of that graph and m is the

number of legs of the spider. We have also handled directed paths and directed

spiders where the underlying undirected graph is a path or a spider respectively.

The k-chromatic version for directed paths and directed spiders can be solved in



119 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

linear time. For the caterpillar graph and comb graph we can handle only the

bi-chromatic and undirected version of the problem. The time complexity of these

two algorithms are O(n) and O(n2) respectively. In Figure 5.1 we show all the

graphs handled in this chapter.

(a) undirected path

(b) directed path

(c) undirected spider

(d) directed spider

(e) undirected caterpillar

(f) undirected comb

Figure 5.1: The graphs considered in this chapter.

See Table 5.1 for a compilation of all the results presented in this chapter. In the

rest of the chapter, we will use C to denote a MCS of the input graph G = (V,E).

5.2 Path Graph

In a path graph or a linear graph G = (V,E), the vertices in V are listed in

the order v1, v2, . . . , vn, and each pair of consecutive vertices de�ne an edge of

the graph, i.e., E = {(vi, vi+1), i = 1, 2, . . . , n − 1}. Here each vertex has degree



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 120

Graphs

k-chromatic Path
Undirected O(n) [Theorem 5.1]

Directed O(n) [Theorem 5.2]

k-chromatic Spider
Undirected O(nm) [Corollary 5.1]

Directed O(n) [Theorem 5.4]

bi-chromatic Caterpillar Undirected O(n) [Theorem 5.5]

bi-chromatic Comb Undirected O(n2) [Theorem 5.6]

Table 5.1: Summary of results in the chapter.

2 excepting the two terminal vertices of the path which have degree 1. In a k-

chromatic path graph, each vertex is assigned with one color in {c1, c2, . . . , ck}.
We consider both the undirected and directed versions of the path graph.

5.2.1 Undirected Paths

We �rst handle the problem of computing the MCS of a path graph G where the

edges of the graph are undirected.

5.1: Run

A run is a consecutive set of vertices of same color on the path (see Figure

5.2).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 5.2: Runs in a path graph: each run is indicated by a black rectangle.



121 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Lemma 5.1

In the minimum consistent subset of a path graph, each run will have at

least one and at most two representatives. Moreover, exactly one vertex will

be su�cient from the �rst and the last run.

Proof. The presence of at least one element from each run in C is obvious. It is

also obvious that if more than two elements from a run R are chosen in C then all

the chosen elements in that run excepting the �rst and last one can be dropped

without violating the consistency, and thereby reducing the size of C. By the

same argument if more than one element from the �rst (resp. last) run is chosen

in C then all those chosen elements excepting the rightmost in the �rst run (resp.

leftmost in the last run) can also be dropped without violating the consistency.

1

2

3

vi vi+1 vl−1 vl vl+1

Figure 5.3: Valid Pairs: (vi, vl−1), (vi, vl) and (vi, vl+1).

Consider a pair of adjacent runs Rj and Rj+1, assume without loss of generality

|Rj| ≤ |Rj+1|. For each member vi ∈ Rj, there exists at most three members, say

vl−1, vl, vl+1 ∈ Rj+1 such that if vi is included in C then any one of those three

members of Rj+1 must be included in C to satisfy the consistency property (with

respect to hop-distance) of the boundary vertices of Rj and Rj+1 that are adjacent

to each other. Thus, (vi, vl+θ) forms a valid-pair, where θ is chosen such that the

number of red and blue vertices between vi and vl are same, and θ = −1, 0, 1
(Figure 5.3).

We de�ne the overlay graph H = (V ∪ D,F) as follows. The vertices of H are

the vertices of G, and r dummy vertices D = {d1, . . . dr}, where r is the number

of runs. The edges in the set F are of two types. For each valid-pair, we put a

directed type-1 edge in F , see Figure 5.4(a). For each vertex vi in a run Rj we put

two directed type-2 edges (vi, dj) and (dj, vi) in F , see Figure 5.4(b). The weight



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 122

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1

v10

v6

v5

v3

v4

v7

v8 v9

s = d1 d3 = td2

v1

v10

v6

v5

v3

v4

v7

v8 v9

s = d1 d3 = td2

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

(a)

(b)

(c)

(d)

Figure 5.4: The graph H with type-1 and type-2 edges where (a) type-1 edges, (b)
type-2 edges are in orange, (c) the shortest path is highlighted, and (d) the MCS
C are circled in the path G.

of each type-1 edge is 0. The type-2 edges incident to D \ {d1, dr} have weight

1, and each type-2 edge incident to d1 and dr has weight 0. For the complete

demonstration of the graph H, see Figure 5.4(c). A forward s-t path is a path

from s to t where the indices of the vertices along the s-t path appear in increasing

order. Now we �nd the shortest forward s-t path with s = d1 and t = dr in the

graph H. Next we remove the dj's from the obtained path to get the MCS of the

given path graph G.



123 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Theorem 5.1

The shortest s-t path of the overlay graph H gives the minimum consistent

subset of the path G, and it executes in O(n) time.

Proof. We �rst prove that any forward s-t path of the graph H constructed from

the given path graph G gives a consistent subset of the graph G. Observe that

at least one vertex from each run is present in the s-t path of the graph H.

The reason is that the edges corresponding to the valid pairs are de�ned only

between adjacent runs in forward direction, and each dummy vertex (say di) is

bidirectionally connected with only the vertices of one run in the graph H. Each

edge (vi, vj) of H between two consecutive runs in G justify the consistency of

the vertices {vi, vi+1, . . . , vj} of the graph G. As all the vertices in any path of H

between a pair of vertices vi, vj in the same run are of same color, choice of those

vertices on the path in the consistent subset does not destroy the consistency

property of the not chosen vertices between vi and vj. Thus, any s-t path with

s = d1 and t = dr in H gives a consistent subset of the vertices in the path graph

G.

Now, we will consider the nature of the minimum s-t path in H. Each forward

move in the minimum s-t path from a vertex vi ∈ Rj either reaches a vertex

vℓ ∈ Rj+1 or to a vertex vm ∈ Rj through the dummy vertex dj where i < m.

If no dummy vertex in {d2, . . . dk−1} is visited in the s-t path then exactly one

vertex is present from each run in the obtained s-t path of the graph H. However,

the presence of every dummy vertex di in the shortest s-t path implies that two

vertices of the corresponding run is present in the consistent subset obtained by

that s-t path.

Also, the construction of the graph suggests that if a subset of vertices in V ∪D do

not form a s-t path, then they cannot form a consistent subset. The minimality

in the size of the consistent subset is justi�ed from the choice of the shortest s-t

path.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 124

The number of type-1 edges in the graph H is at most 3n since each vertex in a

run G can participate in at most 3 valid pairs in its succeeding run. The number

of type-2 edges is 2n since each vertex in G is bidirectionally connected with the

dummy vertex of its corresponding run. Thus we have O(n) edges in H. In the

special case of integer weights and directed connected graphs, Dijkstra's algorithm

for shortest s-t path executes in O(|E|) time ([Tho99]). Thus, the time complexity

follows.

5.2.2 Directed Paths

We are given a directed path graph G = (V,E) where V is the set of vertices,

where each vertex is assigned one of the colors in {c1, c2. . . . , ck}, and E is the

set of edges where each edge (vi, vi+1) ∈ E has a direction (i.e., vi ← vi+1 or

vi → vi+1) (see Figure 5.5). The MCS C ⊆ V for G is the subset C ⊆ V of

minimum cardinality such that for a pair of consecutive vertices1 c, c′ ∈ C with

color(c) ̸= color(c′), we have ∀v ∈ V between c and c′ along the path with

color(v) = color(c) (resp, color(v) = color(c′)), distance(v, c) ≤ distance(v, c′)

(resp. distance(v, c′) ≤ distance(v, c))2, and there is no vertex of color di�erent

from that of c and c′ in the path segment from c to c′ in G.

SourceSink

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Figure 5.5: Illustration of a directed path with source and sink highlighted.

5.2: Source

A vertex in the directed graph G is said to be a source vertex, if only

outgoing edge(s) are incident to it.

1By a pair of consecutive vertices in C, we mean that in the directed path, while scanning the
vertices from left to right, c is the vertex seen just before c′ in C.

2Here distance(a, b) means the minimum number of edges in directed paths that connect a
to b. If there is no directed path from a to b, we de�ne distance(a, b) =∞.



125 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Run Directed Block

Figure 5.6: Illustration of run and directed block.

5.3: Sink

A vertex in the directed graph G is said to be a sink vertex, if only incoming

edge(s) are incident to it.

Observation 5.1

All the sink vertices in G are in C.

Proof. Follows from the fact that a sink vertex does not have any outgoing edge,

and hence to make it consistent, it must thus be included in C.

Observation 5.2

Exactly one source vertex exists between a pair of consecutive sink vertices

si and si+1 in G. We use ŝi to denote the source vertex between si and si+1.

As in the earlier section, a run is a set of consecutive vertices of same color along

the path graph G.

A directed block in the graph G is a maximal directed path in a run (see Figure

5.6).

We partition the graph G using the sink vertices. In the left to right ordering

of the vertices in G, every pair of consecutive sink vertices si and si+1 de�nes a

subgraph Gi. Thus, G = G0 ∪G1 ∪ . . .∪Gm where m is the total number of sinks

in G. By Observation 5.1, other than the terminal vertices (si, si+1), the other

members (if any) in the consistent subset of each subgraph Gi are disjoint. Let Ci
denote the MCS of Gi.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 126

Observation 5.3

The minimum consistent subset of each subgraph Gi can be computed in-

dependently and C = C0 ∪ C1 ∪ . . . ∪ Cm (See Figure 5.7).

s1 s2 smsm−1

G0 G1 GmGm−1

Figure 5.7: The graph G partitioned by the sinks.

We now describe the algorithm for computing the MCS C of a directed path (see

Figure 5.8).

Lemma 5.2

If the number of runs in a subgraph Gi is mi then mi ≤ |Ci| ≤ mi + 1. The

vertex at the end of each run of that subgraph must be present in Ci.

Proof. Consider a partition Gi with mi runs. Usually taking one vertex from each

run su�ces to make the partition consistent. However, sometimes the single source

between two consecutive sinks might become inconsistent. In order to make the

source consistent, one more vertex may have to be included in C. We know that

the sink vertices si must be included in C for i = 1, 2, . . . ,m. For i = 0, no extra

vertex needs to be included in Ci as the path from ŝ0 goes to s1 only. So, we

consider the case of each Gi where 0 < i ≤ m. Now, for every vertex v in between

si and si+1, any one of the following three cases might occur:

v ̸= ŝi and ∃ a path from v to si : If the path is monochromatic, then si makes

v and every vertex along the path v −→ si consistent. Otherwise, the path

changes color at v or some intermediate vertex v′ on the path v −→ si. We

have to include the last vertex of the same color as color(v) along the said

path to make v consistent.

v ̸= ŝi and ∃ a path from v to si+1 : Same as above.



127 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Algorithm 5.1: An MCS C of G
Input: A directed path graph G = (V,E)
Output: An MCS C for the graph G

1 //STEP 1;
2 Identify all m sinks in G;
3 C = C ∪ {s1, s2, . . . , sm};
4 //STEP 2;
5 for each partition Gi of G where i = {0, 1, . . . ,m} do
6 //STEP 2.1;
7 if Gi is monochromatic then
8 do nothing;
9 else
10 Traverse Gi;
11 //STEP 2.2;
12 Path from si to ŝi;
13 if new run encountered then
14 Put the �rst member in C;
15 end
16 //STEP 2.3;
17 Path from ŝi to si+1;
18 if new run encountered then
19 Put the �rst member in C;
20 end

21 end

22 end
23 //STEP 3;
24 for each source ŝi where i = {0, 1, . . . ,m} do
25 if ŝi is not consistent then
26 C = C ∪ {ŝi};
27 end

28 end
29 return C;



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 128

si

si

si

si+1

si+1

si+1

ŝi

ŝi

ŝi

Step 1

Step 2.2

Step 2.3

lŝ

lŝ

lŝ rŝ

rŝ

rŝ

si si+1ŝi

Step 3

lŝ rŝ

Figure 5.8: The step by step execution of the algorithm.

v = ŝi: Let v lie in the run B. If both si and si+1 lie in B, then no further vertex

needs to be included in Ci. Otherwise, if si (resp. si+1 ) is outside B then

the last vertex of B towards si (resp. si+1) needs to be included in Ci. But
the inclusion of this last vertex in Ci can make v inconsistent. So ŝi has to

be included in Ci. Thus both the inequalities on the size of Ci follow. See

Figure 5.9 for an illustration of di�erent cases.

si si+1ŝi

si si+1ŝi

|Ci| = mi

|Ci| = mi + 1

Figure 5.9: Illustration of mi ≤ |Ci| ≤ mi + 1.

Theorem 5.2

Algorithm 6.1 correctly computes a minimum consistent subset of a directed

path in linear time.



129 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Proof. Identifying sources and sinks need O(n) time by scanning the vertices of

G from left to right. Processing each partition Gi also needs a total of ni (=

|Vi|) time for scanning from ŝi to si and from ŝi to si+1. As the partitions can be

independently processed, the result follows.

5.3 Spider Graph

In a spider graph G(V,E) is an undirected graph with V = {v} ∪mi=1 Vi where v

is called the head, and each Vi is a path of length ni whose one end is connected

with v. Each vertex in V is assigned a color from the set {c1, c2, . . . , ck}. The set
E is the union of edges of the m paths. |V | =

∑m
i=1 |Vi|+ 1, and |E| =

∑m
i=1 |Vi|.

We will refer each path Vi as a leg of the spider. In each Vi, the run attached to v

is referred to as �rst run of that leg, and will be denoted as ρi. We will use C to

denote the minimum cardinality consistent subset for the graph G. We will handle

both undirected and directed spiders.

5.3.1 Undirected Spiders

For the sake of simplicity of the presentation, we shall �rst consider k = 3, and

the colors used are red, blue and green. The algorithm can be easily extended for

arbitrary integer k. Without loss of generality, assume that the color of the head

vertex v is red. We will use C(u) to denote a minimum size consistent subset of G

among all possible consistent subsets that contain the vertex u.

In order to compute the MCS C, we need to consider the following four exhaustive

situations (see Figure 5.10) depending on the color of the �rst run ρi of each leg

Vi of G:

Case (i): ρi, i = 1, 2, . . . ,m are all of colors di�erent from color(v) = red,



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 130

(a) Case (i) (b) Case (ii)

(c) Case (iii) (d) Case (iv)

Figure 5.10: Tri-chromatic spiders.



131 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Case (ii): ρi, i = 1, 2, . . . ,m are all of color red; since it contains the head let us

refer to this set of connected vertices as head block,

Case (iii): ρi, i = 1, 2, . . . ,m are of 2 di�erent colors with color(ρi) = red for at

least one leg Vi, i = 1, 2, . . . ,m, and

Case (iv): ρi, i = 1, 2, . . . ,m are of 3 di�erent colors; needless to say, here surely

exists at least one leg Vi with color(ρi) = red.

Processing of Case (i): In this case, v must be included in C. We compute

a consistent subset C ′ as C ′ = (∪m
i=1Ci)

⋃
{v}, where Ci is the MCS of the path

(leg) Vi ∪ {v} assuming that v is chosen in Ci. This can be computed by slightly

modifying the algorithm of Section 5.2.1 for undirected paths with t = v assuming

t has a color di�erent from all the colors used in G. We have C = ∪mi=1Ci and
|C| =

∑m
i=1 |Ci| −m+ 1 since v is included in each Ci.

Preprocessing: For ease in the computation of cases (ii)-(iv), we execute the

following preprocessing step. Let θ = maxmi=1 |ρi|. For each leg Vi, we create

V ′
i = Vi ∪ ρ where ρ is a path of vertices of size θ having color red (= color(v)).

The elements of ρ∪ ρi are numbered as follows: v is numbered as 0, starting from

the next vertex of v, the elements of ρi are numbered as 1, 2, . . . in order, and the

elements of ρ are numbered as −1,−2, . . .. We use Ci(w) to denote the size of the

minimum consistent set of V ′
i with w ∈ ρi ∪ ρ as a member of Ci(w). Note that,

a single execution of the algorithm of Section 5.2.1 on V ′
i computes Ci(w) for all

w ∈ ρi ∪ ρ.

We create a table T of size m×2θ, and set T [i, α] = Ci(wα) for i = 1, 2, . . . ,m and

α = −θ,−θ + 1, . . . , 0, 1, 2, . . . , |ρi| where wα is the α-th element in ρi ∪ ρ. The

remaining entries will remain ∞. Assuming that the �rst θ columns in each row

of T correspond to the members of ρ, the 0-th element in all the rows of the array

T are aligned in a single column of T . This computation needs O(nm) time due

to the fact that (i) Each Vi can be handled independently, (ii) and each leg Vi can

be of size O(n) in the worst case due to the addition of ρ with it.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 132

Processing of Case (ii): Here v and ρi, are of same color for all i = 1, 2, . . . ,m.

Let U =
⋃m

i=1 ρi ∪ {v}. Lemma 5.3, stated below, describes an O(nm) time

algorithm for computing C. For the demonstration, see Figure 5.11.

u v

Vj: j
th leg

U

v: head of the spider

Vi: i
th leg

: nodes in Ci(u)

: nodes in Ĉj(u)

Figure 5.11: Ci(u): optimum solution for Vi ∪ U , and Ĉj(u): optimum solution for
Vj \ U ∪ {u}:

Observation 5.4

C must contain

(i) at least one member of the set (∪mi=1ρi)
⋃
{v}, and

(ii) at least one member from each run, excepting its �rst run, in every leg

of the spider.

From Observation 5.4, we know that C will always have at least one vertex from

the head block. In order to compute the MCS of such a spider, we consider each

vertex v′ in the head block to be a member of C and compute the consistent subset

of each leg, given v′ ∈ C. The following lemma states the computation using an

array T of size m× 2θ.

Lemma 5.3

If u is the α-th element of ρj, then

(a) Ci(u) = T [i,−α] for all i ̸= j, and Cj(u) = T [j, α],

(b) C(u) =
∑m

i=1 Ci(u), and

(c) C = minu∈U C(u).

Proof. Part (a) follows from the indexing of the array T ; part (b) is true as the



133 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

legs can be processed independently and part(c) holds as atleast one node from

the head block should be in the MCS.

For processing Cases (iii) and (iv), we will require the de�nition of gates.

5.4: λ-gate

A λ-gate is de�ned as a λ-tuple (u1, u2, . . . , uλ) (λ ≤ k) such that (see Figure

5.12):

� The colors of all uis' in the tuple are distinct.

� uis' appear in the �rst run of di�erent legs of the spider,

� The head v is called the base of the gate.

� The hop-distances from the head v to all the vertices {u1, u2, . . . uλ}
are same.

(a) (b)
u1 u2 u1 u2

v v

(c) (d)
u1 u2 u3u1 u2

v v

Figure 5.12: All possible gates of a trichromatic spider. Figure (a), (b) and (c) are
the 2-gates of a trichromatic spider. Figure (d) is a 3-gate. The base of a gate is
always the head v.

Processing of Case (iii): Here, v and the �rst run ρi for a few legs Vi, i ∈ R ⊂
{V1, V2, . . . , Vm} are colored red, and ρi for other legs {Vj, j ∈ B = {V1, V2, . . . , Vm}\
R} are colored blue. In order to handle this case, we introduce the concept of gate

as follows:

In Case (iii), we have λ = 2, and in this section we will refer each 2-gate as a gate.

Now, if such a 2-gate (u,w) is selected in C, u ∈ ρi and w ∈ ρj and the color of u

and w are red and blue respectively, then all the legs Vℓ, ℓ ̸= {i, j} and containing

no green vertex, are consistently covered irrespective of the color (red, blue) of the



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 134

head vertex v of the spider. Thus, we need to consider the computation of the MCS

of Vi, Vj, and all the legs ∆ = {Vℓ | Vℓ contains at least one green vertex}. We will

use R (resp. B) to denote the set of legs of the spider V such that color(ρi) = red

(resp. blue) for all Vi ∈ R (resp. B).

We consider each pair of legs Vi, Vj, i, j ∈ {1, 2, . . . ,m}, i ̸= j, and compute its

MCS Cij, Finally, C = min{Cij|i, j ∈ {1, 2, . . . ,m}, i ̸= j}.

Computation of Cij: Let us now denote θ = min(|ρi|, |ρj|). Thus, each pair of

vertices (uα, wα), uα ∈ ρi and wα ∈ ρj and α ≤ θ can form a gate. We consider

each of the gates (uα, wα), α = 1, 2, . . . θ, and compute the size of the MCS as

follows, assuming uα, wα is in Cij. Finally, the one having the minimum size is Cij.

It needs to be mentioned that, we can consider the gates (uα, wα), α = 1, 2, . . . , θ

at a time for computing Cij. The MCSs' for Vi (resp. Vj) for di�erent uα (resp.

wα) are available in T [i, α] (resp. T [j, α]). The size of the MCS for each leg

Vℓ, having the presence of green vertices (i.e., Vℓ ∈ ∆) are also available in

T [ℓ,−α] for di�erent α = 1, 2, . . . , θ. Thus, Cij = minθ
α=1(T [i, α] + T [j, α] +∑

Vℓ∈∆ T [ℓ,−α]), and C = min{Cij|i = 1, . . . ,m, j = 1, . . . ,m, i ̸= j}.

Lemma 5.4

The time complexity for processing this step is O(nm).

Proof. Our computation proceeds as follows: Let θ∗ = max{|ρi| | color(ρi) =

color(v)}. We already have T [ℓ, α], for all Vℓ ∈ ∆, and α = −1,−2, . . . ,−θ∗. For
each α = 1, 2, . . . , θ∗ �nd X[α] = min{T [ℓ, α] | ℓ ∈ R} and Y [α] = min{T [ℓ, α] |
ℓ ∈ B} by searching at most O(m) elements of the array T , since |R| + |B| =
m − |∆|. Finally compute C = minθ∗

α=1(X[α] + Y [α] +
∑

Vℓ∈∆ T [ℓ,−α]). Since

θ∗ = O(n) in the worst case and |∆| < m, the result follows.

The following observation say that, there are situations where 2-gate exists, but

considering that 2-gate sometimes leads to a non-optimal solution (see Figure



135 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

5.13).

(a) With 2-gate on the unique leg (b) Without 2-gate on the unique leg

w z

u u

w

z

Figure 5.13: Special trichromatic spiders for Case (iii).

Observation 5.5

If |B| = 1 then using a gate may lead to non-optimal result.

Proof. Consider a situation with B = {Vi}; δ = max{|ρj| | Vj ∈ R}, and δ < |ρi|.
For Vi, the optimal solution of the MCS (of size k) exists for a blue vertex z ∈ ρi
such that hop-distance(v, z) > δ. The solution is perfectly admissible for G since

for such a choice of z ∈ C, the head vertex v can be made consistent with an

appropriate choice z′ ∈ ρj (of color red) and hop-distance(v, z′) ≤ δ. If we choose

any 2-gate (u,w) with w ∈ ρi, then hop-distance(v, w) ≤ δ, and the size of the

MCS of Vi with w in the solution is of size ≥ k+1, creating a non-optimal solution.

However,

� if the optimal solution for Vi exists with z ∈ ρi and hop-distance(v, z) ≤ δ,

we can get optimum solution of G using a 2-gate even if Vi is the only leg

with color(ρi) = blue.

� if there exists more than one leg with the blue color in their �rst run, i.e.,

|B| > 1, then this type of situation does not arise due to the fact that (i) if

a gate is chosen only one leg in B will contribute in the optimum solution;



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 136

otherwise more than one leg from B will contribute in the solution, and (ii)

as v is red, the size of optimum solution of each leg in B is ≥ 1.

Thus, the observation follows.

Thus if |B| = 1, we compute the solution both with and without using 2-gate.

Processing of Case (iv): Here 3-gates exist (see Figure 5.14). For each gate

(xα, yα, zα) with color(xα) = red, color(yα) = blue and color(zα) = green, we

need to compute the MCS. Let xα ∈ ρi, yα ∈ ρj and zα ∈ ρℓ. Now, for the choice
of this gate in the solution, all the legs in {1, 2, . . . ,m} \ {i, j, ℓ} are covered.

So, C[i, j, ℓ] = T [i, α] + T [j, α] + T [ℓ, α]. Finally C = min{C[i, j, ℓ] | i ∈ R, j ∈
B and ℓ ∈ ∆}, where R, B and ∆ are the legs in G with their �rst run red, blue

and green respectively. Let θ∗ = maxmi=1 |ρi|. In a linear scan in the array T , we can

compute A[α] = mini∈R T [i, α], B[α] = mini∈B T [i, α] and C[α] = mini∈Γ T [i, α]

for all α = 1, 2, . . . , θ∗. Thus, C = minθ∗

α=1(A[α] + B[α] + C[α]). Thus, this case

can be solved in O(n) time.

(a) With 3-gate (b) Without 3-gate

xα

yα

zα

xα

yα

z

Figure 5.14: Special trichromatic spiders for Case (iv).

As in Observation 5.5, here also, we may have non-optimal solution using 3-gate.

Thus, here (i) we need to consider all possible 2-gates if there exists exactly one leg

with �rst run of green color, and also (ii) we need to consider all possible solution



137 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

without gate if there exists exactly one leg with �rst run of green color, and exactly

one leg with �rst run of blue color.

Let the head vertex v is of color red, and the gate(s) with 3-tuple exists. In addition

to consider the 3-gates, we also consider all possible 2-gates whose one elements

are (red,blue). It can be shown that this case can also be solved as in Case (iii) in

O(nm) time. Thus, we have the following result:

Theorem 5.3

The proposed algorithm correctly computes the minimum consistent subset

C of a tri-chromatic spider graph G in O(nm) time, where n is the number

of vertices, and m is the number of legs.

Proof. The correctness follows from the fact that the stated four cases are ex-

haustive. The processing of cases (i), (ii) and (iv) are straightforward. While

processing case (iii) using gates, the exception, mentioned in Observation 5.5 is

properly handled.

Time complexity in each of the four cases is analyzed while describing that case.

When handling a k-chromatic spider, we will have k + 1 cases depending on the

colors of the �rst runs of the m legs. For spiders following Case (i) and Case

(ii), the computation of a MCS is exactly as explained earlier. But a k-chromatic

spider with a λ-gate will have to be computed according to the value of λ. The

procedure above has been explained in details for 2-gates and 3-gates. However,

the similar idea follows for λ-gates where the value of λ is greater than 3. Thus

we have the following corollary.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 138

Corollary 5.1

The proposed algorithm computes the minimum consistent subset of a k-

chromatic spider graph G in O(nm) time, where n is the number of vertices

in the graph G and m is the number of the legs of the spider.

5.3.2 Directed Spiders

In a directed spider graph G = (V,E) (see Figure 5.15), the edges are all directed,

but, the underlying undirected version of the graph is a spider. As earlier, assume

that the number of legs is m, |V | = n, |Vi| = ni, and each vertex is assigned one

of the colors in {1, 2, . . . , k}. Note that V =
⋃m

i=1 Vi ∪ {v} where v is the head

of the spider. The head v is connected with the �rst vertex of all the legs by an

incoming or an outgoing edge. We also assume that there is no bidirectional edge

between any pair of vertices in G. We use LI (resp. LO) to denote the set of legs

having edge incident to the head v from that leg is incoming (resp. outgoing). We

�rst introduce the concept of a directed gate as follows:

Figure 5.15: Directed Spider graph.



139 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

5.5: Directed Gate

A directed gate (see Figure 5.16) in a directed spider graph G is a λ-tuple

(u1, . . . , uλ) (renaming the colors, we assume ui has color i) such that:

� λ ≤ k,

� v is assigned a color in {1, . . . , λ},

� vertices (u1, . . . , uλ) are in the �rst runs of di�erent legs in LO,

� color(ui) ̸= color(uj) i, j ∈ {1, . . . , λ}, i ̸= j

� there exists directed paths from v to each of the vertices {ui, i =

1, . . . , λ} is of same length,

� all the vertices on the path v → ui are of color(ui), i = 1, . . . , λ.

Here, we will use the same terminologies as de�ned for directed path.

Observation 5.6

If (u1, . . . , uλ) forms a λ-gate, then in each leg Vi (with ui ∈ Vi), the source
vertex nearest to v is at least at a distance equal to the length of the path

from v to ui, for all i = 1, 2, . . . , λ.

v

u1 uλ

hop-distance(v, ui) =

hop-distance(v, uj),

∀i, j ∈ {1, . . . , λ}

Figure 5.16: Gate in an directed spider.

Observation 5.7

If the λ-tuple of a gate (u1, . . . , uλ) is included in C then all the vertices

from the source vertex closet to v in each leg of LI that does not contain

any vertex having color di�erent from {c1, c2 . . . , cλ} are covered by that

tuple.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 140

As an initial step, we choose the head vertex v in C. Thus, every leg of the

spider can be treated as an independent path, and its MCS is computed using the

algorithm for a directed path (Section 5.3.2) with the constraint that v ∈ C. The
union of those solutions form an initial solution of C. Next, we try to improve

this solution (decreasing the size of C, if possible) using gate (if any), i.e., without

choosing v in C. Here, we need to do an exhaustive case analysis.

Case 1: The head vertex v is a sink vertex

Case 2: The head vertex v is a source vertex.

Case 3: The head vertex v is neither a sink nor a source.

In Case 1, Observation 5.1 suggests that v should belong to the MCSs' (see Figure

5.17(a)). Thus here the solution of the initial step is the optimum solution.

In Case 2, we have the following sub-cases:

Case 2.1: there exists no leg having its �rst run of color same as that of v (see

Figure 5.17(b)). Here, v ∈ C. Hence this case can be considered as in Case

1.

Case 2.2: all the vertices adjacent to vertex v are of the same color as of v (see

Figure 5.17(c)). Here, the head vertex will not contribute to the MCS. We

compute the MCS of all the outgoing legs as paths and since all the adjacent

vertices are of same color, the consistency of vertex v is guaranteed. Thus,

the optimum C is the union of solutions of all the legs.

Case 2.3: The vertices adjacent to the vertex v are assigned di�erent colors in

1 ≤ α ≤ k (see Figure 5.17(d)). In this case, we �nd the MCS of all the

outgoing legs excluding v as independent directed paths, and take their union

as C ′. At the end, consistency of v is checked in C ′; if v is consistent then we

are done; otherwise we include v in C ′. Next, if |C ′| < |C|, we set C = C ′.



141 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

(a) Case 1

(b) Case 2.1 (c) Case 2.2

(e) Case 3.1 (f) Case 3.2 (g) Case 3.3

(d) Case 2.3

Figure 5.17: Cases in an directed Spider graph.

Finally, to handle Case 3, let us classify the legs as LI and LO, where LI (resp.

LO) is the set of legs whose edge incident to v is incoming (resp. outgoing). Let

the colors of the vertices adjacent to v in the legs of LO be {c1, c2, . . . , cλ}, where
λ ≤ k. If the color of v does not belong to {1, 2, . . . , λ} (see Figure 5.17(e)), then
v ∈ C is to be chosen, and this case is considered earlier. Otherwise, we execute

the following tasks:

Task 1: Compute the MCS of all the legs in LO independently, and compute their

union C ′.

Task 2: If λ = 1, i.e., all the outgoing edges from head are to vertices of same



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 142

color (see Figure 5.17(f)), then the consistency of v may be achieved by the

�rst chosen vertex in any one of those legs.

Task 3: If λ > 1, i.e., outgoing and incoming edges at the vertex v are of more

than one color (see Figure 5.17(g)). Let θi be the distance of the furthest

vertex of color ci from v in Vi ∈ LO, and θ = minλ
i=1 θi. For each j with

θj > θ, we choose a leg with its �rst run of color cj, and include a vertex uj
at a distance θ from v (see Figure 5.18). These additionally included vertices

{u1, u2, . . . , uλ} will form a gate. This gate will cover v, and a portion, say

from vertex uℓ to v of each leg Vℓ ∈ LI such that there exists a directed path

πℓ from uℓ to v where all the vertices are of color in the set {c1, c2, . . . , cλ}.
Now, it remains to perform the following:

Task 4: In each leg ℓ ∈ LI , we need to solve the MCS problem for the subpath

Vℓ \ πℓ independently. If Cℓ is the solution for the leg ℓ, then C ′ is updated
to C ′ ∪ℓ∈LI

Cℓ. If |C ′| < |C| then C = C ′ is assigned.

l1

l2

l3

l4

l5

l6

l7

l8

θ1 = 2

θ2 = 2

θ3 = 4

θ4 = 4θ6 = 3

θ7 = 3

LI = l5, l8 LO = l1, l2, l3, l4, l6, l7

Figure 5.18: Illustration for θi's.



143 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Note: It can be shown that unlike Observation 5.5 of the earlier subsection, here

using a λ-gate will not produce non-optimal results. The reason is that in order

to cover the �rst run of each leg Vℓ ∈ LI having its vertex incident to v of color ci,

we need to choose a vertex at distance at most θ∗ from v among the legs Vj ∈ LO

which is reachable from v and is of color ci, in addition to the sink closest to v in

Vj.

Theorem 5.4

The proposed algorithm for computing the minimum consistent subset of a

directed spider is correct, and it needs O(n) time, where n = |V |.

Proof. We have computed the solution both by including v ∈ C and by not in-

cluding v ∈ C if at all possible, and reported the one having smaller size. While

checking the possibility of getting a feasible solution by not including v ∈ C, we
have done an exhaustive case analysis.

The time complexity of the preprocessing phase is O(n), where n =
∑k

i=1 ni; ni is

the size of the i-th leg. Now, if v is not included in C , then for each leg a part of it

needs to be solved independently. As solving a leg (or its portion) needs scanning

the vertices in that path in order once, it needs time linear in the size of that leg.

Unlike the undirected version of this problem, here we have only one choice of a

gate. In each leg, the portion that is not covered by the gate is independent of

the gate chosen. Thus, the uncovered portion can be solved independently as in a

directed path. The total time complexity follows.

5.4 Bi-chromatic Caterpillar Graph

A caterpillar G = (V,E) is a tree in which every vertex is within distance 1 from a

path in G, called the skeleton. The vertices in V that are not on the skeleton are

termed as dangling vertices. Thus, V = S ∪D, where the vertices in S are on the

skeleton, and D contains dangling vertices of all vertices in S, i.e., D =
⋃

v∈S Dv,



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 144

where Dv is the set of vertices dangling at the vertex v ∈ S. Each dangling vertex

in Dv is at distance 1 from a vertex v ∈ S. Also v can be called as the parent of

the vertices in Dv.

In this section, we will consider the MCS problem for a bi-chromatic caterpillar

where each vertex of V is colored by red or blue. The cases |V | = 1 or 2 can be

solved trivially. If |V | ≥ 3, then we assume that the �rst and the last vertex of

the skeleton consist of at least one dangling vertex. If the �rst (resp. last) vertex

v of the skeleton does not have any dangling vertex and the vertex adjacent to v

is u, then we can consider vertex v as the dangling vertex of u.

Observation 5.8

If any vertex on the skeleton S has two dangling vertices p, q of opposite

colors, then C = {p, r}.

Proof. Let q ∈ S be the common neighbor of p and r. Every vertex in S \ {p, r}
reaches p, r through the vertex q. Thus the result follows.

p

r

p

r

(a) Left Gate

q q

p p

r r

(b) Right Gate

qq

(c) C = {p, r}

(d) OLG case

(e) BG case

p

p

r

q

p′

r′

q′p

r

q

q

r

Figure 5.19: (a) Left gate. (b) Right gate. (c) Visualizing Observation 5.8. (d) A
caterpillar with only left gate (OLG). (e) A caterpillar with both gates (BG). All
dotted regions signify the part of the caterpillar covered by the gates.



145 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

So, we consider the cases where V does not satisfy Observation 5.8. In other words,

if more than one dangling vertex is present at a vertex v ∈ S, then they are all of

the same color. To simplify the exposition, we assume that the vertices in S are

arranged on a horizontal line from left to right.

Consider two structures as shown in Figure 5.19 consisting of three vertices (p, q, r),

where vertex q ∈ S is of color either red or blue, and is attached with two vertices

p and r of opposite colors. As we are considering instances that do not satisfy

Observation 5.8, both p and r cannot be dangling at vertex q. Without loss of

generality, let us assume that p ∈ S and r ∈ Dq. We now de�ne the concept of

gate where vertex q is called the base of the gate. The two cases shown in Figure

5.19(a) and 5.19(b) are referred to as left-gate and right-gate respectively. The

existence of a left-gate (resp. right-gate) (p, q, r) implies that by choosing {p, r}
in C all the vertices to the right (resp. left) of that gate, including the base vertex

q, are covered3, and we need to compute the MCS of the subgraph of G that is

attached with p ∈ S at its left (resp. right) side. Here, the following four situations

need to be considered depending on the occurrence/non-occurrence of left and/or

right-gate.

OLG: Only left-gate(s) is/are present in G. The leftmost left-gate is called LG.

ORG: Only right-gate(s) is/are present in G. The rightmost right-gate is called

RG.

BG: Both left-gate(s) and right-gate(s) are present in G. Here LG and RG are

de�ned as above.

NG: There is no gate in G.

In our algorithm, we consider each of the aforesaid four cases separately, and

formulate the steps for solving them.

3By the term "a vertex v ∈ V is covered by C" we mean that the nearest vertex (or one of
the nearest vertices) of the vertex v in C is of color(v).



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 146

5.4.1 Algorithm

The algorithm for computing the MCS of a bi-chromatic caterpillar has been dis-

cussed through the following four cases. Let us recall that, for a gate (p, q, r) in

the caterpillar: vertices p and q are on the skeleton S and vertex r is dangling at

vertex q.

Handling OLG

We �nd LG = (pLG, qLG, rLG). Let SR be the set of vertices in S that are to the

right of qLG (along with their dangling vertices), and SL be the set of vertices to

the left of pLG.

Observation 5.9

If C contains {pLG, rLG} and no vertex from SR then

(a) all the vertices in {qLG} ∪SR

⋃
(∪u∈SR

Du), irrespective of their colors,

are covered by C; in addition,

(b) if DpLG
̸= ∅ and if the color of all the dangling vertices in DpLG

are of

color(pLG), then the members of DpLG
are also covered; otherwise the

vertices in D(pLG) are to be included in C to make them consistent.

Proof. (a) Follows from the fact that for every vertex v ∈ SR, its two nearest

vertices in C are pLG and rLG, and both of them can be reached from v through

qLG. As pLG and rLG are of di�erent colors, distance property of v is maintained

irrespective of its color.

(b) The �rst part is trivial as we are choosing pLG in C. For the second part, we

need to consider two cases:

� If the left neighbor v of pLG in S is of color same as that of pLG, then



147 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

(v, u, pLG) is a left gate, where u ∈ DpLG
. This contradicts the fact that

LG = (p, q, r) is the left-most left-gate.

� If the left neighbor v of pLG in S is of color di�erent from that of pLG, then

all the members of DpLG
need to be included in C as pLG is included in C.

By Observation 5.9(b), if DpLG
are not covered, then all the members of DpLG

are

to be included in C. Now, as LG is the left-most left gate, there does not exist any

gate in SL. Thus, we solve the MCS problem for SL as the NG case.

It might occur that even in the case where the caterpillar has only left gates, the

left most left gate does not provide an optimal solution (see Figure 5.20). To

handle such instances we have the following observation:

Observation 5.10

If all the vertices in SR are of color(qLG), then instead of including {pLG, rLG}
in C an appropriate pair {p′, r′} may be included in C, where p′ ∈ SL and

r′ ∈ SR, to reduce the size of the MCS C.

Proof. Since the color of the vertices in SR is the same as rLG, and qLG (irrespective

of its color) is not included in C, we may include the right neighbor of qLG (say r̂) in

C instead of rLG, and C covers all the members in SL. Now, (pLG, r̂) may further be

replaced by (p′, r′) in C with color(p′) = color(pLG), where hop-distance(qLG, p′) =

hop-distance(qLG, r′) and all the vertices in S from qLG to p′ are of color(pLG). Also

note that, as LG = (pLG, qLG, rLG) is the leftmost left gate, the dangling vertices

(if any) from qLG to p′ are of color(pLG), and hence they will also be consistent

for the presence of p′ in C as their parents in S are consistent with p′. Figure

5.20 demonstrates the situation with both (a) color(qLG) = color(rLG) and (b)

color(qLG) ̸= color(rLG).



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 148

(a) color(qLG) = color(rLG)

(b) color(qLG) 6= color(rLG)

p′ pLG qLG

rLG

r′

r′qLG

rLG

pLGp′

Figure 5.20: Demonstration of Observation 5.10. The squared vertices show the

solution with LG, and the circled vertices show the optimal solution.

Thus, if Observation 5.10 is satis�ed in the OLG case then C can be obtained

by ignoring all the vertices to the right of qLG (all are of color color(rLG)). After

choosing appropriate vertices p′ and r′, the left of p′ can have no more gates. Thus,

we can process the modi�ed problem instance as the NG case, explained later.

Handling ORG

We �rst �nd RG = (pRG, qRG, rRG), the right-most right gate. Next, this case is

handled analogously as the case OLG.

Handling BG

In a linear scan, we identify the base vertices of all the left gates and of all the

right gates. Let QL = {qL0 , qL1 , . . .} be the base vertices of the left gates in left to

right order, and QR = {qR0 , qR1 , . . .} be the base vertices of the right gates in right

to left order. Note that, here QL ̸= ∅ and QR ̸= ∅ since it is neither a ORG case

nor a OLG case. For each left gate (p, q, r) with q ∈ QL, if we choose (p, r) in



149 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

the set C, all the vertices to the right of q are covered. Thus, it is bene�cial to

consider the left-most left-gate LG = (pLG, qLG, rLG), where qLG = qL0 . In a similar

argument, we also de�ne the right-most right gate RG = (pRG, qRG, rRG), where

qRG = qR0 . Now, we may face two di�erent scenarios: (i) LG is to the right of RG,

and (ii) LG is to the left of RG.

pRG

rRG

qRG pLG qLG

rLG

Figure 5.21: The covering region of LG and RG do not overlap

In Case (i), the portion to the left of qRG that is covered by RG, and the portion

to the right of qLG covered by LG are disjoint, see Figure 5.21. We include the

vertices {pLG, rLG, pRG, qRG} in C. As mentioned earlier, if the color of all the

vertices in DpLG
(if any) are di�erent from color(pLG), then the members of DpLG

also need to be included in C. Similarly, if the color of all the vertices in DpRG

is di�erent from color(pRG), then the members of DpRG
need to be included in C.

Here also Observation 5.10 may apply for LG or RG or both. Accordingly, the

unsolved part Smid (the portion between pRG and pLG) will be de�ned. We process

Smid as the NG case.

In Case (ii), the portions of S covered by LG and RG are overlapping. We sepa-

rately consider the pair (pLG, rLG) and (pRG, rRG) for inclusion in C as was done in
the OLG and ORG cases respectively. Hence, the portion of S to the right of qLG
or the left of qRG will be covered depending on whether LG or RG is considered

for inclusion in C. If (pLG, rLG) (resp. (pRG, rRG)) be considered for inclusion in

C then SL (resp. SR) satis�es an NG case, and needs to be solved separately. In

these two procedures, let the obtained solutions be C1 and C2 respectively. Here

another situation may arise as shown in Figure 5.22, where both C1 and C2 pro-

duces non-optimal solution. Here, we need to execute another procedure as stated

below: merge the base vertices of all the left-gates and all the right-gates in left to

right order. Now, consider any pair of consecutive base vertices (qRi , q
L
j ). Inclusion

of (pRi , r
R
i ) corresponding to the right-gate Ri and (pLj , r

L
j ) corresponding to the



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 150

(a) With both left and right gates

(b) With rightmost right gate, RG

(c) With leftmost left gate, LG

Figure 5.22: A special case that arises if the covering region of LG andRG overlap

right-gate Lj in the MCS cover the vertices to the left of qRi and the vertices to

the right of qLj . Moreover, the portion S ′ of S between the vertices pRi and pLj

does not contain any gate. Thus, S ′ can be solved as an NG case. We consider all

possible consecutive pairs of base vertices (qRi , q
L
j ) of a left-gate and a right-gate.

Compute an MCS taking union of {pRi , rRi , pLj , rLj } and the MCS for the portion S ′

between qRi and qLj as a NG case. Let C3 be of minimum size among the solutions

considering all possible pair of consecutive (right-gate, left-gate) pair. Finally, we

set C = min{C1, C2, C3}.

Handling NG

We now describe the method of handling a part S ′ of S that does not contain any

gate. It may happen that S ≡ S ′. Similar to the concept of a run in Section 5.2,

here we de�ne a block as a connected component in S ′ of the same color (see Figure

5.23, where each block is highlighted by a box). Let us recall from Observation 5.8

that the dangling vertices (if any) attached to any vertex of S ′ are of same color.

As S ′ does not contain any gate, we have the following observation.



151 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

w

Figure 5.23: Caterpillar with the blocks highlighted.

Observation 5.11

(a) If a pair of adjacent vertices (u and v say) on the skeleton are of

opposite color then each of them (u and v) can not have any dangling

vertex of its own color.

(b) If a block on the skeleton has exactly one vertex (say w), then the

dangling vertices (if any) of w are all of color di�erent from that of w.

We will name such a vertex w as split-vertex (see Figure 5.23).

Lemma 5.5

Each block in the NG scenario will have at least one and at most two rep-

resentatives in C.

Proof. If the vertices of S ′ form a path, i.e., there is no dangling vertex attached

to any vertex in S ′, then by Lemma 5.1 the result follows. If the dangling vertices

Dw (|Dw| ≥ 1) of a vertex w ∈ S ′ are of color(w) (i.e., w and Dw belong to the

same block), then the member in C closest to w is also closest to all the members

in Dw. Thus, here also by Lemma 5.1, the result follows. We only need to consider

the case of a split vertices w, where the dangling vertex(s) Dw of vertex w is of

opposite color. Thus, each member in the set Dw ∪ {w} is a separate block. We

need to show that all the members in Dw ∪ {w} are in C. If any member v ∈ Dw

is not in C, then w /∈ C. Thus, we only need to show that w ∈ C.

For a contradiction, let w ̸∈ C. As w is a split vertex, its neighbor(s) u, u′ ∈ S

and also the members of Dw (if any) are of color di�erent from color(w). If any

member v ∈ Dw belongs to C, it can not be the closest member of w among the



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 152

members in C. Thus, if β ∈ C is closest to w among the vertices in C, then any

one of u and u′ is closer to β than to w. Thus, the consistency of w is violated

with the members of C. Thus, w ∈ C, and this implies all the members in Dw are

also in C.

Using similar argument as in Lemma 5.1, it can be shown that more than two

vertices in a block will never be included in C.

By Observation 5.11 and Lemma 5.5, each split vertex (along with its dangling

vertices) is included in C. Thus, S ′ is further divided using split-vertices. Let us

now consider each of these unsolved parts separately as follows.

We de�ne a graph H, whose vertices are those on the skeleton of that unsolved

part S ′′ ⊆ S ′ and at most one dangling vertex (if exists) of each vertex of S ′′

(by Observation 5.8). The dummy vertex for each block is also added; the edges,

de�ned in H, are as in Section 5.2. If any (left/right) or both side(s) of S ′′ is (are)

attached with a vertex in C (for handling a case with gate), then that vertex is

chosen as s and/or t depending on the respective cases. If s (resp. t) is not de�ned

for S ′′ then the dummy vertex of the �rst (resp. last) block will play the role of s

(resp. t). Now, the vertices of S ′′ that appear on the shortest s-t path are included

in C.

5.4.2 Correctness and complexity

Theorem 5.5

The proposed algorithm for the caterpillar is correct, and produces optimum

result in O(n) time.

Proof. Correctness: The correctness trivially follows if Observation 5.8 is true for

G, since every other vertex in S, and also its dangling vertices (if any) are equidis-

tant from the only two opposite colored members of C. Thus, we consider the sit-



153 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

uation where Observation 5.8 does not hold. Let us recall that QL = {qL0 , qL1 , . . .}
were the base vertices of the left gates in left to right order, and QR = {qR0 , qR1 , . . .}
were the base vertices of the right gates in right to left order. A further scan iden-

ti�es the sets QL and QR, if any. We consider LG, RG and every (right-gate,

left-gate) pair de�ned by (qRi , q
L
j ) where q

R
i ∈ QR ,qLj ∈ QL, and (qRi , q

L
j ) are con-

secutive in QL ∪ QR. For each pair, we considered the size of MCS by including

vertices (pRi , r
R
i , p

L
j , r

L
j ) of the right- and left-gates corresponding to qRi and qLj re-

spectively, the dangling vertices of pRi and pLj (provided their color do not match

with that of pRi and pLj respectively), and solving the part between pRi and pLj as

the NG case. Now, the correctness of the OLG, ORG and BG cases follow from

the correctness of the NG case.

In the NG case, we further scan the skeleton to identify the split vertices, which,

along with their dangling vertices are included in C by Lemma 5.5. This splits

S into multiple unsolved parts4. Further using Lemma 5.5, we have a feasible

solution for each block that is included in C. Thus C is a feasible solution for S.

Optimality: In order to prove the optimality, we need to justify only the situation

where gate(s) is/are present. If the covered side of the gate is bi-colored, then (p, r)

is essential for covering all the vertices in the covered side. However, in the case

where the covered side of a gate is uni-colored, q is ignored to convert it as a NG

case. Finally, the optimality of the algorithm follows from the optimality of the

shortest path of the created graph H in the NG case.

Time complexity: The time complexity follows from three scans of S; once each

for identifying the members of QL and QR respectively, and once for scanning each

NG case between a pair of consecutive (right-gate, left-gate) to identify the blocks.

Next, for solving each NG case, we need to execute the algorithm of Section 5.2

for computing the MCS for a path which also needs time linear in the number of

vertices. The time complexity of computing the shortest s-t path in the graph H

is also linear in the number of edges in H. The time complexity follows from the

fact that the NG cases we solved separately are all vertex disjoint.

4If there is no split vertex, we have only one unsolved part.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 154

5.5 Bi-chromatic Comb Graph

pi

Ψ(pi)

pj

B(pj)

Sk

D(pj)

Figure 5.24: A comb graph.

A comb graph G = (V,E) consists of a path S of m vertices, called skeleton, and

at each vertex pi ∈ S a path D(pi) (called leg) is dangling. The size of D(pi) is

ni (≥ 1) that includes pi also. Here, V = ∪mi=1D(pi) with |V | =
∑m

i=1 ni = n.

The edges in E are de�ned by the edges in the path S and the leg D(pi) at each

skeleton vertex pi, i = 1, 2, . . . ,m. Here also, we consider bicolored version of the

problem where each vertex is assigned a color in {red, blue} (see Figure 5.24). The

objective is to choose a MCS C ⊆ V for the graph G of minimum size.

We will use the following notations to describe our algorithm:

� A run is a maximal5 monochromatic path on the skeleton. Assume that

S = S1 ∪S2 ∪ . . .∪Sk, where Sj is the j-th run of S; k is the number of runs

in S.

� For a vertex pi ∈ S, Ψ(pi) denotes the run in the path D(pi) attached to the

vertex pi.

� As in Section 5.4, here also we de�ne a block as a connected set of ver-

tices of same color. For an element pi ∈ Sj, B(pi) is the block of vertices

Sj

⋃
∪q∈Sj

Ψ(q), each of color(pi). Thus, all nodes of a run belong to the

same block, and B(pi) is same for each pi in the run Sj.

5extension of the path in any direction does not keep it monochromatic



155 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

� L(pi) ⊂ S is the subset of vertices in S that are to the left of pi ∈ S.

Similarly, R(pi) ⊂ S is the subset of vertices in S that are to the right of

pi ∈ S.

We will use the idea of Section 5.2 to formulate the problem as the shortest s-t

path problem of an overlay graph H = (U, F ) whose vertices are U = ∪m+1
i=0 Ψ(pi),

where Ψ(p0) = s, and Ψ(pm+1) = t, and ∪mi=1Ψ(pi) is the union of the run of all

the legs attached to the skeleton. An edge (q, r) ∈ F , q ∈ Ψ(pℓ), r ∈ Ψ(pℓ′) and

q, r are not in the same leg, i.e., ℓ ̸= ℓ′. The cost of the edge w(q, r) is computed

as follows.

For any two vertices pℓ and pℓ′ any of the two scenarios may occur:

� pℓ and pℓ′ belong to two adjacent runs: Here, we identify a pair of consecutive

vertices pθ, pθ+1 ∈ S from the adjacent blocks with color(pθ) ̸= color(pθ+1)

such that pθ (resp. pθ+1) is nearer to pℓ (resp. pℓ′). Explained in details in

Subsection 5.5.1 as type-1 edge.

� pℓ and pℓ′ belong to the same block: Here, we identify a pair of consecutive

vertices pθ, pθ+1 ∈ S from the same block hence with color(pθ) = color(pθ+1)

such that pθ (resp. pθ+1) is nearer to pℓ (resp. pℓ′). Explained in details in

Subsection 5.5.1 as type-2 edge.

Now, w(q, r) is the sum of the sizes of the consistent subsets of (i) D(pα) for all

vertices pα on the skeleton from pℓ to pθ with q as the only vertex in the last run of

the path D(pα)⊕{pα, . . . , q}, and (ii) D(pβ) for all vertices pβ on the skeleton from

pℓ′ to pθ+1 with r as the only vertex in the last run of the path D(pβ)⊕{pβ, . . . , r},
where ⊕ is the concatenation operator.

Before describing the algorithm, we �rst state the following preprocessing phase.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 156

5.5.1 Preprocessing and Algorithm:

Preprocessing:

For each vertex q ∈ ∪m
i=1Ψ(pi), we create an array σq of size m as stated below.

Let pi and pj belong to the same run, say Sα, of the skeleton, and q ∈ Ψ(pj).

The i-th element of the array of σq contains the size of the constrained MCS of

D(pi), denoted by C(D(pi), q), with the constraint that only q (∈ B(pi)) from that

particular run is in that consistent subset (see Figure 5.25).

Step 1: Generation of C(D(pi), q) for all the vertices q ∈ ∪mi=1Ψ(pi).

� Let pi ∈ Sα. Compute µ = maxq∈B(pi) hop-distance(pi, q), and let X be a

chain of µ vertices of color(pi). Create a path Π = D(pi)⊕X. The �rst run

of Π starts from the leaf vertex of D(pi) and its last run is Ψ(pi)⊕X.

� Create the overlay graph H for the path Π as in Section 5.2; the vertex s of

H is connected to all the members in the �rst run of Π, and vertex t of H

is connected to all the vertices in the last run of Π. Each vertex q ∈ Π is

attached with a weight �eld w(q), initialized with ∞.

� We execute the algorithm of Section 5.2 on the path Π. After execution of

the algorithm, the w(q) �eld for each vertex q of the last run will contain the

size of the MCS of D(pi) that contains the vertex q.

� Note that, as in Section 5.2, here also in the MCS of Π, the members present

from both the �rst run and the last run are exactly one. Thus, for each

vertex q ∈ Π, if the weight w(q) = ∞ then it implies that there does not

exist any consistent subset of D(pi) with only the vertex q in the last run of

Π.

Step 2: Assign the value of σq(i) (= C(D(pi), q)) for each vertex q ∈ ∪pj∈B(pi)Ψ(pj)

with the w value of the θ-th elements of Π where θ = |Ψ(pi)|+hop-distance(q, pi).



157 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

q

σq

pi

σq[i] = consistent

D(pi) ∪ {pi−1, . . . , pj , . . . , q}

D(pi)

pj

subset of the path

Π

q

σq

pj

Πσq[j] = consistent

D(pj) \ {pj , . . . , p′}
subset of the path

minimum

p′

D(pj)

pj+1 pi−1

p′
(a) (b)

minimum
constrained constrained

Figure 5.25: Data structure σq: (a) σq(i) for j ̸= i, (b) σq(i) for j = i

Algorithm:

As in Section 5.4, here also we de�ne three types of gates. Each gate is a tuple

(q, p, r) of vertices in V , where p ∈ S may be of any color; vertices q and r are

of opposite colors. Unlike the case of caterpillar, here q, r may not always be

adjacent to p. However, q and r are equidistant from p and all the vertices on the

path from p to q (resp. p to r), excluding p, are of same color as that of q (resp.

r).

Before de�ning the gates, we de�ne ∆ = {q, r} ∪ C(D(q), q) ∪ C(D(r), r) as a

quantity which will be required for computing the minimum consistent set with

any gate (q, p, r) such that q, r ∈ C. The mathematical signi�cance of ∆ is that it

consists of the constrained minimum consistent subset of D(q) (resp. D(r)) given

q (resp. r) is chosen in the MCS along with the vertices in the gate. Thus when a

particular type of gate is chosen, ∆ is an invariant for all the computations.

left-gate Lq,pi,r: It is a tuple (q, pi, r), where pi ∈ S, r ∈ D(pi), q ∈ D(pj),

pj ∈ L(pi) such that hop-distance(q, pi) = hop-distance(pi, r), and all the

vertices on the path from q to pi−1 are of color(q), and all the vertices on

the path segment Ψ(pi) \ {pi} are of color(r) (see Figure 5.26((i)). Here pi
is referred to be the base vertex for this left-gate. If {q, r} of this left-gate
is included in C, then all the vertices in R(pi) (right side of the vertex pi on



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 158

q

pi

D(pi)

pi−1

r

pi+1

r

q

pi

D(pi)

pipi−1 pi+1pj p′j

q r

D(pj) D(p′j)

(i) Left Gate (ii) Right Gate

(iii)Path Gate

pj pj

Figure 5.26: Gates in comb graph.

the skeleton) along with their dangling legs are covered. Thus, we have

C = ∆
⋃

(∪pθ∈{pj ,...,pi−1}C(Dpθ , q))
⋃
C(L(pj), q).

Note that, for all pθ ∈ {pi−1, . . . , pj}, (Dpθ , q) is already computed in pre-

processing step and stored in σq. Moreover, L(pj) does not contain any left

gate.

right-gate Rq,pi,r: It is a tuple (q, pi, r), where pi ∈ S, r ∈ D(pi), q ∈ D(pj),

pj ∈ R(pi) such that hop-distance(q, pi) = hop-distance(pi, r), and all the

vertices on the path from q to pi+1 are of color(q) and all the vertices on the

path segment Ψ(pi) \ {pi} are of color(r) (see Figure 5.26((ii)). Here pi is

referred to be the base vertex for this right-gate. If {q, r} of this right-gate
is included in C, then all the vertices in L(pi) (left side of the vertex pi on



159 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

the skeleton) along with their dangling legs are covered. Thus, we have

C = ∆
⋃

(∪pθ∈{pj ,...,pi+1}C(Dpθ , q))
⋃
C(R(pj), q).

path-gate Pq,pi,r: It is a tuple (q, pi, r), q ∈ D(pj), r ∈ D(pj′); pj, p′j ∈ S

are respectively in the left and right sides of pi and hop-distance(q, pi) =

hop-distance(pi, r) (Figure 5.26((iii)). Here pi is referred to be the base ver-

tex for this path-gate. If {q, r} of this path-gate is included in C, then all

the vertices in D(pi) (dangling at pi) are covered. Thus we have L for the

left uncovered part of pi and R for the right uncovered part of pi which will

have to be combined with ∆ to get the overall MCS.

L =
(
∪i−1

θ=jC(D(pθ), q)
)⋃(

∪pθ∈L(pj)C(D(pθ), q)
)

R =
(
∪j

′

θ=i+1C(D(pθ), r)
)⋃(

∪pθ∈R(pj′ )
C(D(pθ), r)

)
C = ∆ ∪ L ∪R

Arguing as in Section 5.4, here also if left-gates (resp. right-gates) are present

in the problem instance, then the base vertex of the left-most (resp. right-most)

left-gates (resp. right gates) needs to be considered. However, in both the cases,

the q and r vertex need to be appropriately chosen to minimize the size of C.

In a sequential scan from left to right, we can identify the base vertex pℓ of the

left-most left-gate Lq,pℓ,r, and the base vertex pρ of the right-most right-gate Rq,pρ,r

and the base vertex of all possible path gates. If left gate (resp. right gate) is not

present, then we set ℓ = −∞ (resp. ρ =∞). As in Section 5.4, here also, we need

to consider the four situations, namely OLG, ORG, BG and NG, where NG

case may include path gate(s).



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 160

Handling OLG and ORG Case

If there exists no right-gate, and has at least one left-gate, then we identify Lq,pℓ,r

as the left-most left-gate. We include {q, r} in C, and compute C as described for

left-gate. Here, C(L(pℓ), q) is processed as NG case. The ORG case is similarly

handled for a right gate Rq,pρ,r.

Handling BG Case

� if ℓ ≤ ρ, then we need to compute (i) the size of C considering only the

left-most left-gate using the method for OLG case, and also (ii) the size of

C considering only the right-most right-gate as in ORG case. The minimum

of them is reported as the optimum C.

� if ℓ > ρ, then the R(pℓ) and the L(pρ) part are already covered. We need to

compute the consistent subset of the portion L(pℓ)
⋂
R(pρ) as the NG case.

Note that, as in Section 5.4, here the special case will not arise due to the

fact that we have considered all possible left-gates with pℓ as the base vertex,

and all possible right-gates with pρ as the base vertex.

Handling NG Case

Now, we will explain the processing of the portion of S as the NG instance. From

now onwards, we will use T for this portion of the given instance of the problem.

We may have T = S. We create a multi-partite overlay graph H = (U, F ) with

the vertices U = U0 ∪ U1 ∪ U2 ∪ . . . ∪ Um ∪ Um+1 where Ui corresponds to pi ∈ S,
and its vertices correspond to the elements of Ψ(pi), i = 1, 2, . . . ,m; U0 = {s} and
Um+1 = {t}. Let us remind that, if the last vertex of the MCS (C(D(pi), q)) of the

leg D(pi) is q ∈ Ψ(pj) (pi, pj belongs to the same run of S) then |C(D(pi), q)| is
available in σq(i).



161 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

Needless to say, there is no edge between any pair of vertices in Ui, i = 1, . . . ,m.

For a pair of sets Uℓ and Uℓ′ , we put edge between every pair of vertices (q, r),

where q ∈ Uℓ and r ∈ Uℓ′ . The edge weights are computed as follows:

Type-0 edge: The vertex s ∈ U0 is connected with every vertex of U1 ∪ . . . Ur1 ,

where p1, . . . , pr1 ∈ S1 (where r1 is the length of S1, the �rst run of S). If

q ∈ Uℓ, where ℓ ≤ r1, then the weight of the directed edge (s, q) is ω(s, q) =∑ℓ−1
i=1 σq(i) +

1
2
σq(ℓ).

Type-1 edge: For a pair of vertices (q, r) where q ∈ Uℓ and r ∈ Uℓ′ and the

corresponding elements pℓ ∈ Sα and pℓ′ ∈ Sα+1 then the cost ω(q, r) of the

type-1 edge (q, r) is computed as follows (see Figure 5.27):

q

σq

pθpl pθ+1 pl′

r
σr

Sum of minimum
consistent subset
corresponding to
Dpl, . . . , Dpθ

Sum of minimum
consistent subset
corresponding to
Dpθ+1

, . . . , Dpl′

A = B =

w(q, r) = A+B

Figure 5.27: Type 1 edge.

− Let pθ and pθ+1 be two consecutive elements in S that belong to Sα and

Sα+1 respectively. If the consistency condition for pθ (θ − ℓ ≤ ℓ′ − θ)
and for pθ+1 ((θ + 1)− ℓ ≤ ℓ′ − (θ + 1)) are satis�ed then we set

ω(q, r) = 1
2
σq(ℓ) +

∑α
j=ℓ+1 σq(j) +

∑ℓ′−1
j=α+1 σr(j) +

1
2
σr(ℓ

′);

− otherwise we set ω(q, r) =∞.

Type-2 edge: For a pair of vertices (q, r) where q ∈ Uℓ and r ∈ Uℓ′ and both the

corresponding elements pℓ, pℓ′ ∈ Sα with λ = ⌈hop-distance(q,r)
2

⌉, then the cost

ω(q, r) of the type-2 edge (q, r) is computed as follows (see Figure 5.28):



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 162

q

σq

pl

Sum of minimum
consistent subset
corresponding to
Dpl, . . . , Dpl′

pθ

A′ =

pθ+1 pl′

w(q, r) = A′

r

Figure 5.28: Type 2 edge.

− If λ > max(hop-distance(q, pℓ), hop-distance(r, pℓ′)) then we can get

pθ ∈ S such that hop-distance(q, pθ) = λ. In such a case, for all elements

in Ψ(pℓ), . . .Ψ(pθ) the nearest element will be q, and for all elements

Ψ(pθ+1), . . .Ψ(pℓ′) the nearest element will be r, and we set

ω(q, r) = 1
2
σq(ℓ) +

∑λ
j=ℓ+1 σq(j) +

∑ℓ′−1
j=λ+1 σr(j) +

1
2
σr(ℓ

′);

− otherwise we set ω(q, r) =∞.

Type-0′ edge: Uβ ∪ . . . ∪ Um is connected with t ∈ Um+1, where pβ, . . . , pm ∈ Sk

(last run of S). If q ∈ Uℓ, where β ≤ ℓ ≤ m, then the weight of the directed

edge (q, t) is ω(q, t) = 1
2
σr(ℓ) +

∑m
i=ℓ+1 σq(i).

Now, a shortest path from s to t in the overlay graph H will give the size of the

MCS C for T . The following two notes are important for the correctness of the

algorithm:

1 We need to speci�cally mention that the weight of an edge is equal to the sum of

the size of the MCS of the legs whose corresponding elements in S are covered

by that edge. Thus, for a valid edge (q, r) (i.e., λ > max(hop-distance(q, pℓ),

hop-distance(r, pℓ′))), if any one of σq(j) in the �rst sum or any one of σr(j)

in the second sum is ∞, then ω(q, r) is set to ∞.

2 In order to avoid duplicate counting, we have added 1/2 of the cost of each (one

or two) terminal leg covered by an edge to the weight of that edge.



163 CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS

5.5.2 Correctness and complexity

Theorem 5.6

The aforesaid algorithm correctly computes the minimum consistent subset

of a comb graph in O(m(m + n)) time, where m = |S| (the size of the

skeleton) and n = |V | (the total number of vertices in the input graph G).

Proof. The correctness of the algorithm follows from the arguments in Sections

5.2 and 5.4, and the construction and weight assignment of the overlay graph H.

The total weight of the edges in the shortest path of the graph H is exactly the

size of the minimum consistent subset C of the graph G.

The worst case time complexity of the algorithm is dominated by the execution

for the NG case, and is discussed below.

− In the graph H, a vertex q ∈ Ψ(pi), where pi ∈ Sα is connected with at most

3 vertices of each Ψ(pj) (see Figure 5.3), pj ∈ Sα+1 using Type-1 edge,

indicating that at most O(ξ) Type-1 edges are incident at q, where ξ is the

length of the largest run in S. By a similarly argument, it can be shown that

at most O(ξ) Type-2 edges are incident at q. The number of Type-0 and

Type-0′ edges is at most O(n). Thus, the total number of edges is O(nξ).

The creation of every edge needs adding the size of the consistent subsets

of di�erent legs with sink vertex at the terminal vertices of that edge. This

again needs O(ξ) time. However, it is possible to compute the edge costs of

all the edges in an amortized O((m+ n)ξ) time.

− The total number of edges in the graph is O(nξ). Dijkstra's shortest path

algorithm needs O(nξ + n log n) time.

As ξ = O(m) in the worst case, the time complexity follows.



CHAPTER 5. MINIMUM CONSISTENT SUBSET IN SIMPLE GRAPHS 164



CHAPTER 6

Minimum Consistent Subset in Trees

Contents

6.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Computing MCS of a tree rooted at an anchor . . . . . 173

6.3.1 Computation of C(Tz) . . . . . . . . . . . . . . . . . . . 176

6.3.2 Analysis of Algorithm of MCS(T ) . . . . . . . . . . . . 183

6.4 Approximation algorithm . . . . . . . . . . . . . . . . . . 185

6.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

165



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 166

6.1 Organization

In this chapter, we will study the MCS problem for undirected bi-colored trees

T = (V,E) whose vertices are assigned colors {red, blue}. We now describe the

chapter section-wise. In Section 6.2 some of the preliminary concepts required

to solve the minimum consistent problem have been discussed. In Section 6.3 we

propose a polynomial time algorithm for the problem. Finally in Section 6.4, we

propose a simple algorithm that produces a 2× 1.386 factor approximation result.

It establishes the connection of consistent subset problem for trees with the Steiner

tree problem of a graph. We apply the best-known 1.386 factor approximation

algorithm of an undirected weighted graph using LP-relaxation [BGRS10] to solve

this problem1. In the rest of the chapter, we will use C to denote a minimum

consistent subset of the input graph T .

6.2 Preliminaries

We use C ⊆ V to denote a consistent subset of the tree T = (V,E) of minimum

cardinality. We will use u −→ v to denote a path between u and v in T , and
dist(u, v) to denote the length of the path u −→ v in T .

Observation 6.1

If all the vertices in T are of the same color, then C consists of a single vertex
(any vertex forms a MCS) of T . If T can be arranged as a rooted tree with

an appropriate vertex, say ρ ∈ V , as the root, such that the vertices in each

alternate level of T are of a di�erent color then C = V .

Thus, we will consider the problem of computing C for the tree T where T does

not satisfy Observation 6.1 and propose a polynomial-time algorithm. From now

onwards, the term covered for a set of vertices implies that those vertices are

1Considering time complexity, it is not an e�cient algorithm even though the quality of the
solution is compromised.



167 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

consistently covered, i.e., the vertices satisfy the property of being consistent with

some vertex in C. We will use the following notations to describe our algorithm.

� A path u −→ v of the same color is referred to as a run.

� Let v and x be two vertices in T , and let vx be the neighbor of v such that

if we delete the edge (v, vx) from T , then T is split into two sub-trees, one

(rooted at vx) containing the vertex x, and the remaining part contains the

vertex v. The sub-tree containing v will be referred to as T−x
v . Similarly, for

a triple of vertices v, x and y, T−(x,y)
v is obtained by deleting the sub-trees

rooted at vx and vy by removing the edges (v, vx) and (v, vy).

partial l-block

truly l-block

n-block

Figure 6.1: Illustration of n_block and ℓ_block.

6.1: Block

A block in a tree is de�ned as a connected set of vertices of the same color.

We have two types of blocks, namely leaf blocks and non-leaf blocks (see

Figure 6.1). A leaf block consists of at least one leaf vertex of T , and is

denoted as ℓ_block. An ℓ_block having exactly one vertex connected with

a vertex of another color, through which this ℓ_block is connected with

the rest of the tree, is called a true ℓ_block; if an ℓ_block has more than

one vertex connected with vertices of other color, then it is called a partial

ℓ_block. A non-leaf block does not contain any leaf vertex of T , and is

denoted as n_block. See Figure 6.1 for the demonstration.



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 168

6.2: Gate

A gate Γ(u,w) is de�ned by a tuple (u,w), u,w ∈ V such that (a) u and

w are of di�erent colors, (b) there exists exactly two runs of di�erent colors

on the path u −→ w in T , and (c) the di�erence in the number of vertices

in these two runs is at most 1 (see Figure 6.2). If the number of vertices

on the path u −→ w is odd, then the middle-most vertex v on this path is

referred to as the anchor vertex of Γ(u,w). If the number of vertices on the

path u −→ w is even, then there is no anchor vertex in that gate. However,

then the middle-most edge is referred to as the anchor edge of Γ(u,w).

u w w′′w′

Figure 6.2: Illustration of gates Γ(u,w), Γ(u,w′), Γ(u,w′′).

Observation 6.2

Every bi-colored tree T of size greater than three that does not satisfy

Observation 6.1, has at least one gate.

Observation 6.3

Let the number of vertices in the path u −→ w of a gate Γ(u,w) is odd. Let

v be the anchor vertex of Γ(u,w), N(v) be the set of neighbors of v, and for

the pair of neighbors vu, vw ∈ N(v), the subtrees Tvu and Tvw , obtained by

deleting the edge (v, vu) and (v, vw) from T , contains u (in Tvu) and w (in

Tvw), respectively. Now, the inclusion of (u,w) in C causes all the vertices

in T \ (Tvu ∪ Tvw) to be consistently covered (see Figure 6.3).

Proof. Follows from the fact that both the paths from every vertex in T−(u,w)
v to

u and w passes through v and; u and w are equidistant from v. Thus, all of the

vertices in T−(u,w)
v are covered by inclusion of (u,w) in C.



169 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

v

uv w

ρ

T−(u,w)
v

vu vw

Figure 6.3: The covered tree T−(u,w)
v = T \ (Tvu ∪ Tvw)

6.3: Sibling Gate

In a rooted tree T , a gate Γ(u,w) will be referred to as a sibling gate if the

number of vertices in the path u −→ w is odd, and the anchor v of Γ(u,w)

is the predecessor of both u and w in T . We denote this type of gate as

Γsib(u, v, w).

As mentioned earlier, if {u,w} of Γsib(u, v, w) is included in C then all the vertices

of the tree T−(u,w)
v are consistently covered.

Observation 6.4

Let Γsib(u, v, w) be a sibling gate in T ; vu and vw are two children of v such

that the sub-trees rooted at vu and vw contain u and w, respectively. Now,

if there exists a sibling gate Γsib(û, v̂, ŵ) in any of the sub-trees rooted at

vu and vw (see Figure 6.4), then the set of vertices consistently covered by

{u,w} is a subset of vertices consistently covered by {û, ŵ}.

Proof. If there exists a sibling gate Γsib(û, v̂, ŵ) in any of the sub-trees rooted at

vu and vw, then the set of vertices consistently covered by {u,w} is a subset of

vertices consistently covered by {û, ŵ}. In that case, the size of the consistent set

of Tv cannot be smaller than that of Tv̂, and hence there is no point in computing

C(Tv).



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 170

u

v

w

û

v̂

ŵ

Figure 6.4: Nested sibling gate.

Observation 6.4 leads to the following de�nition for choosing a sibling gate for

inclusion in C.

6.4: Useful Sibling Gate

A sibling gate Γsib(u, v, w) is said to be a useful sibling gate if the two sub-

trees of v containing the vertices u and w respectively do not contain any

other sibling gates.

Assume that T doesn't satisfy Observation 6.1. Let us consider an MCS C of a

tree T . Let us consider a pair of bi-chromatic vertices (u,w) in C such that u is red

and w is blue and among all such bi-chromatic pairs in C they have the minimum

distance in T . Observe that this pair of vertices forms a gate Γ(u,w). There are

two cases depending on whether the number of vertices in the path u −→ w is

even or odd.

First, consider the case it is odd. By Observation 6.3, the middlemost vertex v in

the path u −→ w is an anchor vertex. We orient the tree T such that its root is

v. Let Tv denote the tree rooted at v. Now T has a minimum consistent subset C
such that C contains a pair of vertices constituting a sibling gate with the root of

Tv as the anchor.

Now consider the case that the number of vertices in the path u −→ w is even.

Here we have an anchor edge (see De�nition 6.2). We introduce a �ctitious vertex

v on the anchor edge and root the tree T at this vertex (as if the tree is `rooted at

the anchor edge'). In this case, also, Tv has a minimum consistent subset C such

that C contains a pair of vertices constituting a sibling gate with the root of Tv as



171 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

v

u = u0 w

uk wk

Tree Tv Processing of T−ux where x = uk

x = ui

u = u0

T ′x = T−ux

T ′′x = the path x −→ u

Figure 6.5: Processing of a useful sibling gate

the anchor. Thus we have,

Lemma 6.1

Assume that T doesn't satisfy Observation 6.1. There exists a vertex v (real

or �ctitious), such that if T is rooted at v, T has a minimum consistent

subset C such that C contains a pair of vertices constituting a sibling gate

with v as its anchor.

We now explain the main structure of our algorithm for the computation of MCS

for a bi-colored tree T . See Algorithm 6.1 for a pseudo-code. If T satis�es Ob-

servation 6.1, then the computation of MCS is straightforward. Otherwise, we

compute MCS of all the rooted trees at the anchor vertices of the gates as stated

in Lemma 6.1. Among all the rooted trees, the MCS of T will be the one that is

of the smallest size.

Next, we brie�y discuss each of the steps of Algorithm 6.1. Step 1 can be accom-

plished by rooting T at an arbitrary vertex and then checking whether conditions

for Observation 6.1 are met. Step 2 requires rooting tree T at n vertices of T
and n− 1 �ctitious vertices corresponding to each edge of T . In Step 3, we need

to check whether the root v of Tv is an anchor of a useful sibling gate. A simple

procedure is outlined in Algorithm 6.2 for using in Step 3. Step 4 is discussed in

detail in Section 6.3 where we compute the MCS of each rooted tree C(Tv). Finally,
we show that Algorithm MCS(T ) is correct and runs in polynomial time.



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 172

Algorithm 6.1: MCS(T )
Input: An un-rooted tree T = (V,E)
Output: An MCS C for the tree T

1 //STEP 1;
2 if T is monochromatic or T is alternating then
3 report MCS and return;
4 end
5 //STEP 2;
6 R = ∅;
7 for each vertex v of T do
8 root T at v, and let Tv be the resulting rooted tree;
9 R = R∪ {Tv};

10 end
11 for each edge e of T do
12 Root T at a �ctitious vertex v on e, let Tv be the rooted tree;
13 R = R∪ {Tv};
14 end
15 //STEP 3;
16 for each tree Tv ∈ R do
17 if the root v is not an anchor of a useful sibling gate then
18 R = R \ {Tv};
19 end

20 end
21 //STEP 4;
22 for each tree Tv ∈ R do
23 Compute C(Tv) of Tv;
24 end
25 //STEP 5;
26 C = min

Tv∈R
|C(Tv)|;

27 return C;



173 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

Algorithm 6.2: IsAnchorUseful(Tv)
Input: A rooted tree Tv
Output: Whether v is an anchor of a useful sibling gate

1 A = ϕ;

2 for each vertex x ∈ Tv do
3 x = unmarked;

4 end

5 Perform a post-order traversal on Tv and store it in P ;

6 for each vertex p ∈ P do

7 if p is marked then

8 predecessor(p) = marked ;

9 end

10 if p is unmarked ∧ p has a pair of children of opposite colors then

11 A = A ∪ {p};
12 p = marked;

13 parent(p) = marked;

14 end

15 end

16 if any successor of v in A then

17 return NO;

18 else

19 return YES;

20 end

6.3 Computing MCS of a tree rooted at an anchor

In this section, we show how to compute minimum consistent subset C(Tv) for a
tree Tv rooted at an anchor vertex v. Note that v is an anchor vertex (either a

vertex of T or a �ctitious vertex) corresponding to a sibling gate Γ(u, v, w) (see

De�nition 6.3). Moreover, we can assume that Γ(u, v, w) is a useful sibling gate

(see De�nition 6.4).



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 174

We �rst note that there may be several useful sibling gates that are anchored

at the root v of Tv. Traverse each pair of bi-colored runs incident at v. Let

Πred = {u1, u2, ...} and Πblue = {w1, w2, ...} be a pair of such runs, and k =

min{|Πred|, |Πblue|}. Let u ∈ Πred and w ∈ Πblue be two vertices having hop-

distance k from v along the paths Πred and Πblue. Now, every pair of vertices

(ui, wi) forms a useful sibling gate Γsib(ui, v, wi), where i = 1, 2, . . . , k, ui ∈ Πred,

wi ∈ Πblue. Next we outline the computation of MCS with respect one of these

useful sibling gates. Overall MCS of Tv is the minimum among the size of MCS

for all these sibling gates.

The MCS C(Tv) for a useful sibling gate Γsib(u, v, w) is computed using Equation

6.1, stated below.

C(Tv) = {u,w}
⋃
∪ui∈U Cu(T−u

ui
)
⋃
∪wi∈W Cw(T−w

wi
), (6.1)

where U = {u0 = u, u1, . . . , uk = vu}, and W = {w0 = w,w1, . . . , wk = vw} (see
Figure 6.5), and Ca(T−a

x ) for a pair of vertices a, x ∈ Tv, where a and x belong to

the same block, is de�ned as follows.

Observation 6.5

Let a and x be two vertices in a block. We use Ca(T−a
x ) to denote the MCS

of a subtree T−a
x , assuming that the vertex x is consistently covered by the

vertex a ∈ Ca(T−a
x ) (see Figure 6.6(a)). In other words, there does not exist

y ∈ Ca(T−a
x ) with color(y) = color(x) = color(a) such that dist(x, y) <

dist(x, a). Surely, in order to maintain the consistent covering of x, there

does not exist any vertex ζ ∈ Ca(T−a
x ) of color(ζ) ̸= color(a) (i.e., ζ in

an adjacent block z −→ z′ of the block containing x) with dist(x, ζ) <

dist(a, x).

Remark 1: There may not exist any such consistent set of the tree T−a
x . This

occurs when the run {z −→ z′} of di�erent color in T−a
x closest to x satisfy

dist(x, z′) < dist(x, a). Here, in order to consistently cover the vertices on the

path z −→ z′ one needs to choose a vertex in the run {z −→ z′} in Ca(T−a
x ), which

will make the vertex x inconsistent (see Figure 6.6(b)).



175 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

Remark 2: There may exist situation where the length of the run {x −→ x′} (of
color(a)) is greater than the length of its adjacent run {z −→ z′} of other color
(see Figure 6.6(c)). In such a case, one chooses another vertex a′ ∈ {x −→ x′}
satisfying dist(x, a′) ≥ dist(x, a), (i.e., maintaining x to cover by a) to include in

Ca(T−a
x ), such that a vertex ζ ∈ {z −→ z′} may be chosen to have a gate Γ(a′, ζ),

and the vertices in the path z −→ z′ be covered by including ζ ∈ Ca(T−a
x ).

b

c a

x

z

(a)

b

c a

x z

z′

(b)

b

c a

x

a′

zx
′

z′
ζ

(c)

Figure 6.6: Demonstration of Ca(T−a
x ): (a) dist(x, z) > dist(a, x), (b) dist(x, z′) <

dist(x, a), and (c) dist(x, x′) >> dist(z, z′); we choose another vertex a′ ∈ x −→ x′

(satisfying dist(x, a′) ≥ dist(x, a)) to have a next feasible gate Γ(a, ζ), ζ ∈ z −→ z′.

Lemma 6.2

For a useful sibling gate Γsib(u, v, w), the following holds

(a) Let z, y ∈ U , and z ̸= y. The computation of the consistent subset

Cu(T−u
z ) does not a�ect the computation of Cu(T−u

y ), and vice-versa.

(b) Similarly, if z ∈ U and y ∈ W , then the computation of the consistent

subset Cu(T−u
z ) does not a�ect the computation of Cw(T−w

y ), and vice-

versa.

Proof. For part (a), let z be closer to u than y, and the color of u, z, y be red. The

subtrees T−u
z and T−u

y are disjoint. Let a be the blue vertex that is closest to z in

Cu(T−u
z )) and b be the blue vertex that is closest to y in Cu(T−u

y ). We now consider

the following situations independently:

Case 1: Cu(T−u
z ) contains a red vertex a′ that lies on the path z −→ a. Here, since z

is covered by u, dist(z, a′) ≥ dist(u, z). Observe that, there exists no vertex



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 176

x ∈ T−u
y which is only covered by the vertex a′ since the path x −→ a′ passes

through z, and dist(z, a′) ≥ dist(u, z).

Case 2: Cu(T−u
z ) does not contain any red vertex lying on the path z −→ a. Here the

blue vertex a ∈ T−u
z does not violate the consistency of any red vertex x on

the path y −→ b in the tree T−u
y since the path x −→ a passes through the

vertex z and the red vertices on the path z −→ a are consistently covered.

Case 3: Cu(T−u
y ) contains a red vertex b′ lying on the path y −→ b. Using similar

argument as in Case 1, it can be shown that there exists no vertex x ∈ T−u
z

which is only covered by the vertex b′

Case 4: Cu(T−u
y ) does not contain any red vertex lying on the path y −→ b. Using

similar argument as in Case 2, it can be shown that the blue vertex b ∈ T−u
y

does not violate the consistency of any red vertex x on the path z −→ a in

the tree T−u
z .

For part (b), remember that the color of z and y are red and blue, respectively.

The result follows from the fact that none of the (red) vertices on the path v −→ z

can be covered by some (blue) vertex in the tree T−w
vw (See Observation 6.4, vw is

the child of v along the path that contains w), since these are closer to u than w,

and every vertex x ∈ Cw(T−w
y ) satis�es dist(x, y) ≥ dist(x,w).

6.3.1 Computation of C(Tz)

Recall Equation 6.1, and consider the processing of the uncovered sub-trees Tz
rooted at every vertex z on the path v −→ u of the sibling gate Γsib(u, v, w). The

processing of the uncovered sub-trees rooted at the vertices on the path v −→ w

is analogous. While processing the vertex z on the path v −→ u, we will consider

Tz = T ′
z ∪ T ′′

z , where T
′
z = T−u

z , and T ′′
z = all the sub-trees rooted at the vertices

of the path z −→ u. Note that the set C(Tv) contains u, and z is covered by the

vertex u (see Figure 6.7). We know that Tz does not contain any sibling gate,

as Γsib(u, v, w) is a useful sibling gate. However, it may have ordinary gates (see



177 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

z

v

u w

T ′
zT ′′

z

Figure 6.7: Computation of C(Tz): Tz = T ′
z ∪ T ′′

z

De�nition 6.2). If Observation 6.1 holds for T ′
z, then C(Tz) is easy to compute.

Otherwise, the following characterizations are required to formulate the algorithm

for computing C(Tz).

Lemma 6.3

C(Tz) contains at least one vertex that belongs to a leaf block of Tz.

Proof. Assume that there does not exist any vertex in C(Tz) that belongs to a

leaf block of Tz. Consider an ℓ_block, say ℓ1. As none of its members lies in

C(Tz), ℓ1 must belong to a subtree rooted at the anchor of a gate Γ(u1, w1) so

that the vertices of ℓ1 are covered. Let dist(z, w1) > dist(z, u1). Surely w1 ̸∈
ℓ1 due to the contradiction assumption that there does not exist any vertex in

C(Tz) that belongs to a leaf block of Tz of the lemma. Now consider another

ℓ_block, say ℓ2, in the subtree rooted at w1. It is again covered by one of the

pair of vertices (u2, w2) ∈ C(Tz) of a gate Γ(u2, w2) in the subtree Tw1 , where

dist(z, w2) > dist(z, u2). Needless to say, the depth of w2 is greater than that of

w1 in the tree Tz. As the tree Tz is �nite, proceeding similarly we will reach an

ℓ_block, say ℓi, whose vertices are covered by wi ∈ C(Tz), where wi de�nes a gate

Γ(ui, wi) as well as wi ∈ ℓi. Thus the lemma follows.



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 178

Lemma 6.4

The set C(Tz) contains a subset of vertices C ′ whose elements can be arranged

in increasing order of their names, say {χ1, χ2, . . . , χm}, such that (i) χm is

in a leaf block of Tz, (ii) at least one vertex from each block on the path

from z to χm is present in C ′, and (iii) χi is the predecessor (not necessarily

immediate predecessor) of χi+1 in Tz for each i = 1, 2, . . . ,m− 1.

Proof. Part (i) follows from Lemma 6.3. Part (ii) follows trivially since if there

exists a block on the path from z to χm which has no representative in C ′, then the

nearest neighbor of each vertex (of color, say red) in that block is of color blue,

and hence it becomes inconsistent.

We prove part (iii) by contradiction. Assume that, χ ∈ C(Tz) is the representative
of a leaf block. Consider a sequence of vertices Ψ = {ψ1, ψ2, . . . , ψm′ = χ} ∈ C ′

such that for each pair (ψj, ψj+1) either they are in the same block, or they are in

the adjacent block, j = 1, 2, . . . ,m′ − 1. Suppose for a contradiction, (ψi, ψi+1) is

the �rst pair observed in the sequence Ψ such that ψi is not the predecessor of ψi+1.

Here, if ψi lies in a partial leaf block, the path from z to ψi satis�es the lemma.

If ψi lies in a non-leaf block, say B, two cases may happen: (a) color(ψi+1) =

color(ψi), i.e., ψi, ψi+1 ∈ B (see Figure 6.8(a)), and (b) color(ψi+1) ̸= color(ψi) i.e

ψi ∈ B and ψi+1 ∈ B′, where B and B′ are adjacent blocks (see Figure 6.8(b)). In

either case, as B is a non-leaf block, there exists another block B′′ adjacent to B

which can be reached from B using a gate Γ(ψ′, ϕ′) (where dist(z, ψi) < dist(z, ψ′))

and ψ′ is reachable from ψi using the successor links in T . So instead of considering

the path Ψ, we will consider the path Ψ′ = {ψ1, . . . , ψi, . . . ψ
′ . . . ϕ′ . . .} (see the

thick edges in Figure 6.8(a,b)). Proceeding in this way, we will reach a leaf block.

Thus, the result follows.

As demonstrated in Figure 6.6(c), there may exist multiple vertices of a block in

C(Tz). Moreover, from the de�nition of the gate (of odd length), it is also clear

that the representative of all the blocks may not have representatives in C(Tz).
Thus, we consider each leaf τ of Tz and compute the size of the MCS assuming



179 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

z

ψi−1

ψi

τ ′

τ

(a)

ψi+1

z

ψi−1

ψi

τ ′ τ

(b)

ψi+1

block B

φj block B′
φj

block B′′

block B

anchor

block B′′

Figure 6.8: Illustration of part (iii) of Lemma 6.4

that the ℓ_block λ containing τ has a representative in C(Tz).

Consider the path Π = u −→ z −→ τ , where τ is a leaf of Tz; τ belongs to

the leaf block λ. We formulate the problem as a shortest path problem in a

directed weighted graph GΠ = (X,E), called the consistency graph. Here X

contains the vertices on the path Π and two vertices {u, t}, where u de�nes the

sibling gate Γsib(u, v, w) under process, and t is a dummy sink vertex, and z is a

vertex on the path u −→ v. We assume that u ∈ C(Tz) and de�ne the edge set

E = E0
z ∪ E1

z ∪ E2
z ∪ E3

z , as follows (see Figure 6.9(a,b)).

E0
z : It consists of consistency edges (colored orange) from u to the next run (of

color di�erent from that of u) in Π. We may have at most three such edges

in E0
z depending on the size of that run. See Figures 6.9(a) and 6.9(b) for

two di�erent situations depending on the length of the run {u −→ z −→ z′}.

E1
z : It consists of consistency edges (colored orange) between every pair of adja-

cent runs in Π. See Figures 6.10(a) and 6.10(b).

E2
z : It consists of the edges (colored pink) of a complete graph among the vertices

of each run on the path Π.



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 180

z

u

tree T−uz

z′

(a)

z

u

tree T−uz

z′

(b)

Figure 6.9: Demonstration of the graph GΠ for the path Π = u −→ z −→ τ
for processing the tree T−u

z � (a) where GΠ is connected, and (b) where GΠ is
disconnected as the red run {z −→ z′} is much longer than the next blue run so
that there is no edge from u

E3
z : The vertex t is connected with every vertex of the leaf block λ (these edges

are not shown in Figure 6.7).

Now, we assign the weights of the esges in E. For an edge
−→
ab ∈ E1

z , if the number

of vertices on the path a −→ b is odd, then the subtree T−(a,b)
c rooted at the anchor

c of Γ(a, b) are consistently covered. Thus, the weight of the edge (a, b) is

w(a, b) =
ca∑
x=a

|Ca(T−a
x )|+

b′∑
x=cb

|Cc(T−b
x )|, (6.2)

where b′ is the neighbor of b on the path a −→ b, ca and cb are the neighbors of c

along the path a −→ c and c −→ b respectively2.

For an edge
−→
ab ∈ E1

z , if the number of vertices on the path a −→ b is even, then

w(a, b) =
ca∑
x=a

|Ca(T−a
x )|+

b′∑
x=cb

|Cb(T−b
x )|, (6.3)

2The subtree rooted at b will be considered when another edge from b to a successor vertex
will be considered



181 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

ca cb

c

a b

ca cb

a b

b′ b′

(a) (b)

Figure 6.10: Demonstration of edges in E1
z where (a) the number of vertices on

the path a −→ b is odd, and (b) the number of vertices on the path a −→ b is
even.

where ca and cb are the pair of middle-most vertices along the path segment a −→ b.

To avoid the confusion, we mention that T−a
a = Ta.

The weight computation of the edges (u, b) ∈ E0
z are done with a minor change

in the �rst sum in Equations 6.2 and 6.3; here the range of the �rst sum is from

vertex z to ca instead of u to ca.

For an edge (a, b) ∈ E2
z ,

w(a, b) =
ca∑
x=a

|Ca(T−a
x )|+

b′∑
x=cb

|Cb(T−b
x )|. (6.4)

Here, if the number of vertices on the path a −→ b is odd then we assume ca = c

and cb is the immediate successor of c along the path c −→ b; and if it is even then

ca and cb are as de�ned in Equation 6.3. Each edge (a, t) ∈ E3
z will have weight

w(a, t) = 0. For pseudocode, see Algorithm 6.3.

The graph GΠ may not be connected as the vertex u may not be connected to a

vertex b ∈ X in the next run on the path Π. This situation happens when the

path u −→ c is much longer than the path c −→ b. In such a case the path Π (or



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 182

Algorithm 6.3: ConstructGraph(Π)
Input: A path Π = u −→ z −→ τ
Output: A consistency graph GΠ(X,E)

1 Create a dummy vertex t;
2 X = {u, t} ∪ vertices of Π;
3 E0

z = Edges from u to the next run in Π;
4 E1

z = Edges between every pair of adjacent runs in Π.;
5 E2

z = Edges of a complete graph among the vertices of each run in Π.;
6 //weight of the edges in E0

z , E
1
z , E

2
z are calculated using eqns 6.2, 6.3, 6.4;

7 E3
z = Edges between t and every vertex of the leaf block λ;

8 //weight of the edges in E3
z is 0;

9 E = E0
z ∪ E1

z ∪ E2
z ∪ E3

z ;
10 return GΠ

the corresponding leaf τ) contributes ∞ in C(Tz). Thus, it remains to explain the

computation of Ca(T−a
x ), where a and x are in the same block on Π.

We use bottom-up dynamic programming technique to compute C(Tx) for all ver-
tices x ∈ Π. LetM(x) denote the members in the run containing the vertex x, and

m(x) = |M(x)|. These vertices are named as M(x) = {b1 = x, b2, . . . , bm(x)} in
order. The vertex x is attached with an array Ax of size M(x). For each element

bi ∈M(x), Ax(bi) contains Cbi(T−bi
x ). While processing a vertex x ∈ Tz, we assume

that the Ax(bi) parameters of all the vertices bi ∈ M(x) in the run containing x

are available; otherwise we recurse. We initialize Ax(bi) = ∞ for all bi ∈ M(x).

Next, we consider every leaf vertex θ of the tree T−bi
x , and construct the graph

GΦ for the path Φ = β −→ bi −→ θ, where β is the m(x)-th vertex in the run

containing bi. The edges in the graph GΦ are similar to those in GΠ constructed

while processing the vertex z on the path Π = u −→ z as described earlier3. If for

every vertex y on the path Φ the Ay(.) values are available, then the costs of those

edges can be computed using Equations 6.2 and 6.3 as described for z. Otherwise,

this will lead to a further recursive call. Finally, Ax(bi) is updated by comparing

the existing value of Ax(bi) and the shortest path cost of GΦ. For pseudocode, see

Algorithm 6.4.

3For vertex u de�ning the sibling gate Γsib(u, v, w)



183 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

Algorithm 6.4: ConsistentOf(T−u
z )

Input: The tree T−u
z

Output: The minimum consistent subset C(T−u
z )

1 //initialisation for the dynamic programming;
2 for each x ∈ Tz do
3 Create an array Ax of size |M(x)|;
4 for each bi ∈M(x) do
5 Ax(bi) =∞
6 end
7 for each bi ∈M(x) do
8 //β is the m(x)-th vertex in the run containing bi;
9 for every leaf θ of T−bi

x do
10 ConstructGraph(Φ) // where Φ = β −→ bi −→ θ;
11 for each y on Φ do
12 if Ay(bi) ̸=∞ then
13 Determine edge costs using eqns 6.2 and 6.3;
14 else
15 Ay(bi) = ConsistentOf(T−bi

x );
16 end

17 end
18 if Ax(bi) > shortest path cost of GΦ then
19 Ax(bi) = shortest path cost of GΦ

20 end

21 end

22 end
23 return C(T−u

z )

6.3.2 Analysis of Algorithm of MCS(T )

Theorem 6.1

Algorithm 6.1 correctly computes a minimum consistent subset of a bi-

colored tree T on n vertices in O(n4) time.

Proof. From the property of sibling gates, it follows that the presence of {u,w}
in C(Tv) of any one sibling gate, say Γsib(u, v, w), will consistently cover all the



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 184

vertices of T \ (Tvu ∪ Tvw). We have chosen the one of minimum size among all

possible useful sibling gates anchored at v. Now, it remains to prove the correctness

and minimality of computing C(Tv).

Again {u,w} consistently covers the vertices on the paths v −→ u and v −→ w.

We added the MCS' Cu(T−u
x ) for each x ∈ {v −→ u} and Cw(T−w

y ) for each

y ∈ {v −→ w}. The computation of consistent subsets for the sub-trees rooted

at the vertices on the path v −→ u and v −→ w, under the condition that

u,w ∈ C(Tv), can be done independently (see Lemma 6.2). Now, we prove Cu(T−u
x )

is correctly computed. By Lemmas 6.3 and 6.4, there is a path Π from vertex x

to a leaf of the tree T−u
x such that the vertices on a path of the consistency graph

GΠ are in the consistent subset Cu(T−u
x ), and {u}∪ Cu(T−u

x ) covers all the vertices

on Π. The recursive argument of computing the MCS for the uncovered sub-trees

of Tx justi�es the correctness of computing the C(Tv). The minimality is ensured

from the fact that for each leaf τ of Tx, we considered the path Π = u −→ x −→ τ ,

and considered the shortest path of the graph GΠ, and have chosen the result for

a leaf that produces the minimum cost.

Now, we will analyze the time complexity. Step 1 of Algorithm 6.1 can be im-

plemented in O(n) time. Step 2 requires O(n2) time as we are constructing O(n)

rooted trees. Step 3, for each tree Tv, can be implemented in O(n) time using

Algorithm 6.2. Now we analyze Step 4.

While processing a vertex z on the path u −→ v of a sibling gate Γsib(u, v, w),

assuming that the array Ax(.) of every vertex on x ∈ Tv are available, the time of

processing a path Π = u −→ z −→ τ , where τ is a leaf of T−u
z , needs computation

of edge costs of GΠ and the computation of shortest path in GΠ. In the graph

GΠ, the vertex u and each vertex of the path z −→ τ has at most three orange

edges to its successor run in Π. Thus the total number of orange edges in GΠ is

O(mΠ), where mΠ is the length of Π. Moreover, the span of an edge (ai, bj) covers

the span of another edge (ai+1, bj−1) (if it exists). Thus, the total time needed for

computation of edge costs of all these pink edges in GΠ is O(mΠ). However, we

may have O(m2
Π) pink edges in GΠ. Processing each leaf vertex τ in T−u

z incurs



185 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

O(m2
Π) time.

The shortest path computation of a directed graph needs time proportional to its

number of edges. As the number of leaves of the tree Tz is O(nz) in the worst case,

where nz is the number of vertices in Tz, the total time of processing the vertex z

is O(n3
z). Since the trees for the vertices along the path u −→ z are disjoint, the

time complexity of processing these vertices are additive. Again, as the vertices in

the subtree rooted at the anchor of useful sibling gates in T are also disjoint, the

total time for processing all the sibling gates is O(n3) in the worst case, provided

the Ax(.) values of every vertex on x ∈ T are available.

Now, we consider the computation of Ax(.) values of every vertex x ∈ Tv. We

consider the vertices in each level of the rooted tree Tv separately, and compute

their Ax(.) values. While processing the vertices in its predecessor level, we will use

those without recomputing. Similar to the processing of the vertex z ∈ {u −→ v}
discussed earlier, the processing of every vertex x ∈ Tz for the computation of

their Ax(.) values requires O(n3
x) time, where nx is the number of vertices in Tx.

The sub-trees rooted at the vertices in a particular level are disjoint, and the total

computation time for the vertices in a level is additive. Thus, the overall time

complexity of the algorithm is O(n3h), where h is the maximum number of levels

among the sub-trees rooted at the anchor of all possible useful sibling gates in

T . Though we will consider the anchor of every gate as a sibling gate and do the

above computation, this will not increase the time complexity since the result of

a sibling gate once computed can be used later when it is needed.

6.4 Approximation algorithm

In this section, we will demonstrate that computation of minimum consistent sub-

set of an undirected tree T = (V,E) can be formulated as computing the minimum

Steiner tree of an undirected weighted graph. Let us �rst give a brief idea about

the Steiner tree of a graph. Let G = (V,E) be an undirected graph with non-



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 186

negative edge weights c and let S ⊆ V be a subset of vertices, called terminals. A

Steiner tree is a tree in G that spans S. In the optimization problem associated

with Steiner trees, the task is to �nd a minimum-weight Steiner tree.

As in Section 6.2, here also a block is a connected set of vertices of same color, the

ℓ_block, n_block and true ℓ_block are as in De�nition 6.1. Unlike Section 6.2,

here we de�ne only one type of gate as stated in De�nition 6.2.

(a) gate edges (in
orange color)

(b) Edges in a block (in
pink color)

λ2

λ3λ1

(c) Terminal vertices
and edges (in green

color)

Figure 6.11: Demonstration of vertices and edges in the graph H

6.4.1 Algorithm

We formulate the problem as the computation of a Steiner tree in the consistency

graph H = (V ′, E ′) constructed from the given tree T . The graph H is an undi-

rected weighted graph. Its vertices V ′ = V ∪ Vℓ ∪ Vη and E ′ = Eℓ ∪Eη, where the

subsets of the vertices in V ′ and the edges in E ′ are explained below.

V : the set of vertices in T ;

Vη and Eη: Needless to mention that the vertices in two adjacent runs on a path

in the tree are of di�erent colors. As in Section 5.2, in order to maintain

consistency, we need to introduce two types of edges to cover the following

two situations:

� Consider a path Π in T . A vertex p of a run θ on a path Π may be

connected by an edge with at most three vertices r, r′ and r′′ in its



187 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

adjacent run θ′ on that path where the di�erence in the number of

vertices of two di�erent colors in the span of that edge is at most 1. We

put three consistency edges of type (i) from p to r, r′ and r′′. Thus,

the vertices adjacent to each type (i) consistency edge are of di�erent

colors.

� We may sometimes choose two vertex on a run in the set C. Thus,

every pair of vertices in a run is connected by a type (ii) consistency

edge. Thus, the vertices adjacent to each type (ii) consistency edge are

of same color.

We put a vertex v(p,r) (colored orange) on each type (i) edge (p, r), and

replace that type (i) edge (p, r) by two orange edges (p, v(p,r)) and (r, v(p,r))

(see Figure 6.11(a)), each with weight equal to 1
2
. The consistency edges of

type (ii) are colored pink (see Figure 6.11(b)), and the assigned weight is 1.

The orange vertices are referred to as Vη, and the orange and pink edges are

referred to an Eη.

Vℓ and Eℓ: We create a vertex vλ corresponding to each ℓ_block λ of T . We use

Vℓ to denote the set of vertices corresponding to the ℓ_blocks in T . The

vertices in Vℓ are indicated using green color. The edges from the vertices

in Vℓ to the vertex vλ form the set Eℓ, and are colored green (see Figure

6.11(c)). Below, we explain the method of generating the edges in Eℓ.

Generation of Eℓ

Let (p, r) ∈ Eη be a consistency edge among the bi-colored vertices and the number

of vertices k on the path from p to r is odd. As mentioned in Section 5.2, if we

include p, r in the consistent subset C, then all the vertices in each subtree rooted at
the anchor vertex q at distance ⌈k

2
⌉+1 from both p and r are consistently covered,

excepting two subtrees rooted at q that contain p and r respectively. Thus, the

covered subtrees need not contribute in the minimum consistent subset C that

includes (p, r). So, we put edges from the orange vertex v(p,r) to the vertices in Vℓ



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 188

corresponding to all the ℓ_blocks in the subtrees rooted at q that are covered by

(p, r). These edges are colored green with weight 0.

Observe that, in a true ℓ_block λ if there exists a vertex in C, all the vertices of
that ℓ_block is covered. Thus, from every vertex of the true ℓ_block λ, we add

a green edge to the vertex vλ of that ℓ_block. We assign weight 1 to these green

edges.

Now, consider a partial ℓ_block of color red (say). There exists two types of run:

(i) at least one run containing a leaf vertex, and (ii) at least one non-leaf run

(i.e containing two extreme vertices of that run connected to blue vertices. Now,

consider a situation where a vertex u of T in a partial ℓ_block (colored red) is

reached by a Steiner tree TST . Here one of the two situations may arise to reach

in its adjacent (blue) run:

(i) from u (of color red) a blue vertex w in its adjacent run can be directly

reached through an orange edge, and

λ1

λ2

λ3

Figure 6.12: Demonstration of situation (i) that arise in a partial ℓ_block

(ii) from u (of color red) another red vertex u′ in the same run is reached in the

following two ways, and then from u′ the blue vertex w is reached:

(ii-a) u′ can be reached from u using either a pink edge or

(ii-b) u′ can be reached from u through two green edges via the vλ vertex of

that ℓ_block.



189 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

λ1

λ2

λ3

(a)

λ1

λ2

λ3

(b)

Figure 6.13: Demonstration of situations (ii-a) and (ii-b) that arise in a partial
ℓ_block

Thus in both cases of situation (ii), the cost incurred to reach from u to w is

2. In situation (ii-b), if there exists a green edge (λ, u) in TST , the other green

edge (λ, u′) can be replaced with a pink edge (u, u′) as mentioned in (ii-a) without

changing the tree property of TST and maintaining its cost (see Figure 6.13).

If there exists multiple green edges of a Steiner tree that are incident on vλ vertex

of a partial ℓ_block λ, then we retain one of them, say (v1, vλ) and replace every

other green edges {(vi, vλ), i = 2, . . . , k} by a pink edge {(v1, vi), i = 2, . . . , k}
in that partial ℓ_block, retaining the cost of the Steiner tree unchanged. The

following things are important to mention.

� The terminal vertex vλ of each ℓ_block λ in H are reached in TST ,

� some of the vλ vertices that are reached from an orange vertex of some other

block have incurred cost 0, and

� if a vλ vertex is reached from a vertex of T in its corresponding ℓ_block it

will incur cost 1. If M is the total cost of edges in TST due to the edges

incident in the terminal vertices, then M is less than the number of terminal

(λ) vertices present in TST since some of the terminal vertices are reached

with cost 0 (see Figure 6.12), and some terminal vertices are reached with

exactly one edge of cost 1 (see Figure 6.13(b)).

The Steiner tree obtained in this example is shown in Figure 6.14.



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 190

λ2 λ4

λ1

λ3

λ3

Figure 6.14: Obtained Steiner tree

6.4.2 Analysis

Lemma 6.5

The vertices of T that belong to a Steiner tree constitute a consistent subset

of the vertices of T , and vice-versa.

Proof. First part: Every orange edge (u,w) (where u and w are of di�erent colors)

makes all the vertices on the path from u to w in T consistent. Moreover, if the

number of vertices from u to w is odd then the vertices in the subtree rooted at the

middle-most vertex v on the path from u to w become consistent. Hence no vertex

in that subtree is included in TST by our algorithm. Needless to mention, all the

vertices in T on the path of every pink edge (u,w) in TST are consistent. For a

green edge (u, vλ) in a true ℓ_block, inclusion of v in C makes all the vertices of that

ℓ_block consistent. For a green edge (u, vλ) in a partial ℓ_block, all the vertices

in its uni-colored branch are consistent for the inclusion of v in C as mentioned

above, and in all the vertices of its bi-colored branch there will be an orange edge,

say (u′, w′), where u′, w′ ∈ C (u′ may be equal to u). This make the vertices of

color that of w′ in its adjacent run consistent. The subtrees of the vertices on the



191 CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES

path u −→ u′ −→ w′ (if exists) are all reached from u, u′, w′ using orange or pink

edges. The subtree rooted at v′ of the gate (u′, w′) (if exists) are all consistently

covered for inclusion of {u′, w′} in C.

Second part: Now to prove that every consistent subset of T corresponds to a

Steiner tree ST in H. Consider a path Π in T . Observe that, each pair of

consecutive members of that consistent subset in the path Π are connected by

an orange or a pink edge depending on whether their colors are di�erent or same.

Finally, for each leaf block containing at least one member of that consistent subset,

we connect one member of them with the λ vertex of that leaf block. For each

of the not-connected λ vertex trace the path until it reaches a vertex v ∈ V (of

T ) that is marked as anchor. Connect that λ vertex with the orange vertex on

the orange edge connecting two vertices u,w ∈ V of Γ(u,w) whose anchor is v.

Thus, all the terminal vertices of H are spanned by a tree ST which is an induced

subgraph of the graph H.

Lemma 6.5 says that the minimum consistent subset of T corresponds to the

minimum size Steiner tree in the graph H. We can apply any heuristic algorithm

to compute a Steiner tree of the graph H to get an aproximation result of the

minimum consistent subset of T .

Theorem 6.2

The approximation factor of our proposed algorithm for computing the min-

imum consistent subset of T is 2 × α, where α is the approximation factor

of the algorithm for computing Steiner tree of an weighted undirected graph

with best known approximation factor in polynomial time.

Proof. By Lemma 6.5, the optimum consistent subset Copt corresponds the vertices
of T present in T opt

ST (optimum Steiner tree), which is 1 more than the sum of edge

costs of T opt
ST . Thus

|Copt| = cost(T opt
ST ) + 1−#(λoptleaf )

, where λoptleaf is the set of terminal (λ) vertices present in T opt
ST that are reached



CHAPTER 6. MINIMUM CONSISTENT SUBSET IN TREES 192

from a vertex of their corresponding leaf block4, and #(λoptleaf ) is the number of

such vertices. Also, note that

#(λoptleaf ) ≤ |Copt|

, since every vertex in λoptleaf is reached from a vertex of T that belongs to Copt.

Similarly, |C| = cost(TST ) + 1 + #(λleaf ), where λleaf is the number of λ vertices

in TST that are reached from the corresponding leaf block by our algorithm.

We already have cost(TST ) ≤ α × cost(T opt
ST ). As the number of vertices present

in TST of the graph H is one more than the sum of edge costs of TST , we have

|C| ≤ cost(TST ) + 1 ≤ α× cost(T opt
ST ) = α× (|Copt|+#(λoptleaf ) ≤ 2α× |Copt|.

By Theorem 3 of [BGRS10], we know that the computation of C takes polynomial

time too.

4since only these terminal vertices are reached from a vertex of the corresponding leaf block
with cost 1; other terminal vertices are reached with cost 0 from an orange vertex.



CHAPTER 7

Concluding Remarks

Finally, in this chapter, we summarize the main contributions of this thesis and

state possible future directions of research.

Contents

7.1 Discrimination and Identi�cation . . . . . . . . . . . . . 193

7.2 Red-Blue Separation . . . . . . . . . . . . . . . . . . . . 195

7.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.1 Discrimination and Identi�cation

We have seen that Discrete-G-Min-Disc-Code is NP-complete, even in 1D.

This is in contrast with most covering problems and to Continuous-G-Min-

Disc-Code, which are polynomial-time solvable in 1D [DBRDG17, GP19].

193



CHAPTER 7. CONCLUDING REMARKS 194

We also proposed a simple 2-factor approximation algorithm for the Discrete-

G-Min-Disc-Code problem in 1D, and a PTAS for a special case where each

interval in the set S is of unit length. It seems a challenging open problem to

explore whether Discrete-G-Min-Disc-Code problem in 1D is polynomial time

solvable for unit intervals. As noted in [GP19], this would be related to Min-ID-

Code on unit interval graphs, which also remains unsolved [FMN+17]. In fact,

it also seems to be unknown whether Continuous-G-Min-Disc-Code problem

in 1D remains polynomial-time solvable with the restriction that each interval is

of unit length. However our PTAS algorithm for Discrete-G-Min-Disc-Code

problem with unit intervals in 1D also produces a PTAS for the continuous case.

We also do not know whether a PTAS exists for the general 1D case.

In 2D, bothContinuous-G-Min-Disc-Code andDiscrete-G-Min-Disc-Code

problems are NP-complete even when S must be a set of axis-parallel unit square

objects. We propose polynomial-time approximation algorithms for bothContinuous-

G-Min-Disc-Code andDiscrete-G-Min-Disc-Code using several steps of round-

ing using the LP-relaxation of integer programming. However, the approximation

factors are very large; 16 for the continuous version and 128 for the discrete ver-

sion. Improving the approximation factor is a challenging open problem. Can

PTASes be obtained here?

Finally, we showed that a minor tailoring of the proposed algorithms forDiscrete-

G-Min-Disc-Code for unit square objects works forMin-Id-Code on unit square

graphs, with the same approximation factors. However, the layout of the squares

corresponding to the nodes of the graph is needed. It is worthy to see whether it

is possible to design an approximation algorithm when only the graph is given1?

It is easy to observe that all the techniques for designing approximation algorithms

for solving the aforesaid problems in 2D work for the case where the objects are

�xed-size axis-parallel rectangles. It is an interesting open problem whether similar

approximation algorithms exist, where the objects in S are unit disks, or arbitrary

axis-parallel rectangles.

1Note that computing a geometric layout of square intersection graph is NP-hard [Bre96].



195 CHAPTER 7. CONCLUDING REMARKS

7.2 Red-Blue Separation

We have initiated the study of Red-Blue Separation and Max Red-Blue

Separation on graphs, problems which seem natural given the interest that their

geometric version has gathered, and the popularity of its �non-colored� variants

Identifying Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Separation

can be as small as 2, even for large instances; however, we have seen that this is

not possible for Max Red-Blue Separation since max-sepRB(G) ≥ ⌊log2(n)⌋
for any twin-free graphs of order n. max-sepRB(G) can be as large as n − 1 in

general graphs, yet, on trees, it is at most 2n/3. We do not know whether the

upper bound is tight, or whether the upper bound is 3n/5, which would be best

possible to hold. It would also be interesting to see if other interesting upper or

lower bounds can be shown for other simple graph classes.

We have shown that sep(G) ≤ ⌈log2(n)⌉ ·max-sepRB(G). Is it true that sep(G) ≤
c ·max-sepRB(G), where c is some constant (independent of n)? As we have seen,

c = 2 would be a tight bound in the sense that there exists instances which achieves

this bound.

We have also shown that Max Red-Blue Separation is NP-hard, yet it does

not naturally belong to NP. Is the problem actually hard for the second level of

the polynomial hierarchy?

7.3 Consistency

We have seen that theMCS problem, in the undirected set-up, is solvable in linear

time in k-chromatic paths. It is also solvable in quadratic time in k-chromatic

spider graphs, bi-chromatic caterpillar graphs and bi-chromatic comb graphs. For

the directed set-up, the problem is solvable in linear time in both k-chromatic



CHAPTER 7. CONCLUDING REMARKS 196

paths and bi-chromatic spiders. The problem remains open for k-chromatic and

directed caterpillar graphs and comb graphs.

We have also presented a polynomial-time algorithm for computing the minimum

consistent subset of bi-chromatic trees. We also present an easy to understand 2α-

factor approximation algorithm for solving the minimum consistent subset problem

for trees, where α is the best-known achievable approximation factor of the Steiner

tree problem of an undirected weighted graph. According to the present literature

α = 1.386 [BGRS10], and it uses LP-rounding. Improving the approximation fac-

tor and running time (without using LP-rounding) may be an interesting direction

to explore. The problem remains unsolved for outer-planar graphs. Note that

the minimum consistent subset problem is NP-hard even for bi-chromatic planar

graphs. The status of the problem with three or more colors is still unknown for

trees.



Bibliography

[AAA+07] Hee-Kap Ahn, Helmut Alt, Tetsuo Asano, Sang Bae, Peter Brass,

Otfried Cheong, Christian Knauer, Hyeon-Suk Na, Chan-Su Shin,

and Alexander Wol�. Constructing optimal highways. International

Journal of Foundations of Computer Science, 20(01):3�23, 2007.

[AB08] F. Angiulli and S. Basta. Optimal subset selection for classi�ca-

tion through SAT encodings. In IFIP International Conference on

Arti�cial Intelligence in Theory and Practice, pages 309�318, 2008.

[ACHL10] David Auger, Irène Charon, Olivier Hudry, and Antoine Lobstein.

On the existence of a cycle of length at least 7 in a (1,≤2)-twin-free
graph. Discuss. Math. Graph Theory, 30(4):591�609, 2010.

[ACHL13] David Auger, Irène Charon, Olivier Hudry, and Antoine Lobstein.

Watching systems in graphs: an extension of identifying codes. Dis-

crete Applied Mathematics, 161(12):1674�1685, 2013.

[ADBH+15] Esther M. Arkin, José Miguel Díaz-Báñez, Ferran Hurtado, Piyush

Kumar, Joseph S.B. Mitchell, Belén Palop, Pablo Pérez-Lantero,

Maria Saumell, and Rodrigo I. Silveira. Bichromatic 2-center of

pairs of points. Computational Geometry, 48(2):94�107, 2015.

[AF07] F. Angiulli and G. Folino. Distributed nearest neighbor-based con-

densation of very large data sets. IEEE Transactions on Knowledge

and Data Engineering, 19(12):1593�1606, 2007.

197



BIBLIOGRAPHY 198

[AHM+00] Esther M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara, and S. S.

Skiena. Some separability problems in the plane. Procceedings of

the 16-th European Workshop on Computational Geometry, pages

51�54, 2000.

[AHS+03] M. Abellanas, F. Hurtado, V. Sacristán, C. Icking, L. Ma, R. Klein,

E. Langetepe, and B. Palop. Voronoi diagram for services neigh-

boring a highway. Information Processing Letters, 86(5):283�288,

2003.

[Ang05] F. Angiulli. Fast condensed nearest neighbor rule. In 22nd Interna-

tional Conference on Machine learning, pages 25�32, 2005.

[Ang07] F. Angiulli. Fast nearest neighbor condensation for large data sets

classi�cation. IEEE Transactions on Knowledge and Data Engineer-

ing, 19(11):1450�1464, 2007.

[ANPR19] Ankush Acharyya, Subhas C. Nandy, Supantha Pandit, and Sasanka

Roy. Covering segments with unit squares. Comput. Geom., 79:1�13,

2019.

[Aug08] David Auger. Induced paths in twin-free graphs. The Electronic

Journal of Combinatorics (E-JC), 15(17), 2008.

[BBC18] Sandip Banerjee, Sujoy Bhore, and Rajesh Chitnis. Algorithms and

hardness results for nearest neighbor problems in bicolored point

sets. In LATIN 2018: Theoretical Informatics, pages 80�93, 2018.

[BCC+19] Ahmad Biniaz, Sergio Cabello, Paz Carmi, Jean-Lou De Carufel,

Anil Maheshwari, Saeed Mehrabi, and Michiel H. M. Smid. On

the minimum consistent subset problem. In Algorithms and Data

Structures - 16th International Symposium, (WADS), pages 155�

167, 2019.

[BCMPR20] Édouard Bonnet, Sergio Cabello, Bojan Mohar, and Hubert Pérez-

Rosés. The inverse Voronoi problem in graphs I: hardness. Algo-

rithmica, 82(10):3018�3040, 2020.



199 BIBLIOGRAPHY

[BCMPR21] Édouard Bonnet, Sergio Cabello, Bojan Mohar, and Hubert Pérez-

Rosés. The inverse Voronoi problem in graphs II: trees. Algorith-

mica, 83(5):1165�1200, 2021.

[BDNS19] Kaustav Basu, Sanjana Dey, Subhas C. Nandy, and Arunabha Sen.

Sensor networks for structural health monitoring of critical infras-

tructures using identifying codes. 15th Int. Conf. on the Design of

Reliable Communication Networks (DRCN), pages 43�50, 2019.

[Bel18] T. Bellitto. Separating codes and tra�c monitoring. Theoretical

Computer Science, 717:73�85, 2018.

[Ber01] N. Bertrand. Combinatorial and algorithmic aspects of identifying

codes in graphs. PhD thesis, Université Bordeaux 1, France, June

2001.

[BFS19] Cristina Bazgan, Florent Foucaud, and Florian Sikora. Parameter-

ized and approximation complexity of partial VC dimension. Theor.

Comput. Sci., 766:1�15, 2019.

[BGL19] Édouard Bonnet, Panos Giannopoulos, and Michael Lampis. On the

parameterized complexity of red-blue points separation. Journal of

Computational Geometry, 10(1):181�206, 2019.

[BGRS10] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvob, and Laura

Sanita. An improved LP-based approximation for Steiner tree. In

42nd ACM Symposium on Theory of Computing, pages 583�592,

2010.

[BLL+15] Nicolas Bousquet, Aurélie Lagoutte, Zhentao Li, Aline Parreau, and

Stéphan Thomassé. Identifying codes in hereditary classes of graphs

and VC-dimension. SIAM J. Discrete Math., 29(4):2047�2064, 2015.

[Bon72] J. A. Bondy. Induced subsets. Journal of Combinatorial Theory,

Series B, 12(2):201�202, 1972.

[BP88] Rajan Batta and Udatta S. Palekar. Mixed planar/network facility

location problems. Comput. Oper. Res., 15(1):61�67, 1988.



BIBLIOGRAPHY 200

[Bre96] Heinz Breu. Algorithmic Aspects of Constrained Unit Disk Graphs.

PhD thesis, University of British Columbia, Vancouver, Canada,

1996.

[BS07] Béla Bollobás and Alex Scott. On separating systems. European

Journal of Combinatorics, 28(4):1068�1071, 2007.

[BS21] Kaustav Basu and Arunabha Sen. Identifying individuals associated

with organized criminal networks: A social network analysis. Social

Networks, 64:42�54, 2021.

[BU95] Ralph P. Boland and Jorge Urrutia. Separating collections of points

in euclidean spaces. Information Processing Letters, 53(4):177�183,

1995.

[BZSG19] Kaustav Basu, Chenyang Zhou, Arunabha Sen, and Victoria Ho-

ran Goliber. A novel graph analytic approach to monitor terrorist

networks. In 2018 IEEE Intl Conf on Parallel Distributed Process-

ing with Applications, Ubiquitous Computing Communications, Big

Data Cloud Computing, Social Computing Networking, Sustainable

Computing Communications (ISPA/IUCC/BDCloud/SocialCom/-

SustainCom), pages 1159�1166, 2019.

[CCC+08] Emmanuel Charbit, Irène Charon, Gérard D. Cohen, Olivier Hudry,

and Antoine Lobstein. Discriminating codes in bipartite graphs:

Bounds, extremal cardinalities, complexity. Advances in Mathemat-

ics of Communications, 2(4):403�420, 2008.

[CCCH06] Emmanuel Charbit, Irène Charon, Gérard D. Cohen, and Olivier

Hudry. Discriminating codes in bipartite graphs. Electronic Notes

in Discrete Mathematics, 26:29�35, 2006.

[CCH+08] Jean Cardinal, Sébastien Collette, Ferran Hurtado, Stefan Langer-

man, and Belen Palop. Optimal location of transportation devices.

Computational Geometry, 41(3):219�229, 2008.



201 BIBLIOGRAPHY

[CCHL07] Irène Charon, Gerard Cohen, Olivier Hudry, and Antoine Lobstein.

Links between discriminating and identifying codes in the binary

hamming space. In International Symposium on Applied Algebra,

Algebraic Algorithms, and Error-Correcting Codes, pages 267�270,

2007.

[CCHL08] Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lob-

stein. Discriminating codes in (bipartite) planar graphs. Eur. J.

Comb., 29(5):1353�1364, 2008.

[CDKW05] G. Cãlinescu, A. Dumitrescu, H. Karlo�, and P.-J. Wan. Separating

points by axis-parallel lines. International Journal of Computational

Geometry and Applications, 15(6):575�590, 2005.

[CGJ+16] Robert Crowston, Gregory Z. Gutin, Mark Jones, Gabriele Muciac-

cia, and Anders Yeo. Parameterizations of test cover with bounded

test sizes. Algorithmica, 74(1):367�384, 2016.

[CH67] Thomas Cover and Peter Hart. Nearest neighbor pattern classi�ca-

tion. IEEE transactions on information theory, 13(1):21�27, 1967.

[CH98] Bogdan Chlebus and Nguyen Hoa. On �nding optimal discretiza-

tions for two attributes. In International Conference on Rough Sets

and Current Trends in Computing (RSCTC), pages 537�544, 1998.

[CH15] Timothy M. Chan and Nan Hu. Geometric red�blue set cover

for unit squares and related problems. Computational Geometry,

48(5):380�385, 2015.

[CHHL07] Irène Charon, Iiro Honkala, Olivier Hudry, and Antoine Lobstein.

Structural properties of twin-free graphs. Electr. J. Comb., 14(1),

2007.

[CHL03] Irène Charon, Olivier Hudry, and Antoine Lobstein. Minimizing

the size of an identifying or locating-dominating code in a graph is

NP-hard. Theor. Comput. Sci., 290(3):2109�2120, 2003.



BIBLIOGRAPHY 202

[CHL12] Iréne Charon, Olivier Hudry, and Antoine Lobstein. Extremal values

for the maximum degree in a twin-free graph. Ars Combinatoria,

107:257�274, 2012.

[CKX10] Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for

vertex cover. Theoretical Computer Science, 411(40-42):3736�3756,

2010.

[Cla94] K. Clarkson. More output-sensitive geometric algorithms (extended

abstract). 35th Annual Symposium on Foundations of Computer

Science, pages 695�702, 1994.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph list-

ing algorithms. SIAM Journal on Computing, 14(1):210�223, 1985.

[CSS87] Colbourn C.J., P.J. Slater, and L.K. Stewart. Locating dominating

sets in series parallel networks. Congr. Numer., 56(8):135�162, 1987.

[Das17] Tanmoy Das. Machine learning algorithms for image classi�cation

of hand digits and face recognition dataset. International Research

Journal of Engineering and Technology (IRJET), 4(12):640�649,

2017.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark

Overmars. Computational Geometry: Algorithms and Applications.

Springer-Verlag TELOS, USA, 2008.

[dBHH+03] Koen M. J. de Bontridder, Bjarni V. Halldórsson, Magnús M.

Halldórsson, A. J. Hurkens, Jan Karel Lenstra, R. Ravi, and Leen

Stougie. Approximation algorithms for the test cover problem.

Math. Program., 98(1):477�491, 2003.

[DBKPLV13] José Díaz-Báñez, M. Korman, Pablo Pérez-Lantero, and Inmaculada

Ventura. The 1-median and 1-highway problem. European Journal

of Operational Research, 225(3):552�557, 2013.



203 BIBLIOGRAPHY

[DBRDG17] Krupa R. Datta, Aniket Basu Roy, Minati De, and Sathish Govin-

darajan. Demand hitting and covering of intervals. In Conference on

Algorithms and Discrete Applied Mathematics (CALDAM), pages

267�280, 2017.

[DDSM76] S. R. Das, C. R. Datta, P. K. Srimani, and K. Mandal. Com-

ments on "Derivation of minimal complete sets of test-input se-

quences using boolean di�erences". IEEE Transactions on Com-

puters, 25(10):1053�1056, 1976.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity.

Springer Verlag, 1999.

[DFNS20] Sanjana Dey, Florent Foucaud, Subhas C. Nandy, and Arunabha

Sen. Discriminating Codes in Geometric Setups. In 31st Interna-

tional Symposium on Algorithms and Computation (ISAAC), vol-

ume 181 of LIPIcs, pages 24:1�24:16, 2020.

[DHMS01] Olivier Devillers, Ferran Hurtado, Mercè Mora, and Carlos Seara.

Separating several point sets in the plane. In 13th Canadian Con-

ference on Computational Geometry, pages 81�84, 2001.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repe-

tition. In 46th Annual ACM Symposium on Theory of Computing,

pages 624�633, 2014.

[DX11] Hu Ding and Jinhui Xu. Solving the chromatic cone clustering prob-

lem via minimum spanning sphere. In 38th International Colloquium

on Automata, Languages and Programming (ICALP), pages 773�

784, 2011.

[EMP+82] Herbert Edelsbrunner, Hermann Maurer, F. Preparata, Arnold

Rosenberg, E. Welzl, and D. Wood. Stabbing line segments. BIT

Numerical Mathematics, 22(3):274�281, 1982.



BIBLIOGRAPHY 204

[Erd06] Paul Erd®s. Some combinatorial, geometric and set theoretic prob-

lems in measure theory. In Measure Theory Oberwolfach 1983, vol-

ume 1089, pages 321�327. 2006.

[FGK+11] Florent Foucaud, Eleonora Guerrini, Matja Kov²e, Reza Naserasr,

Aline Parreau, and Petru Valicov. Extremal graphs for the identi-

fying code problem. Eur. J. Comb., 32(4):628�638, 2011.

[FGN+13] Florent Foucaud, Sylvain Gravier, Reza Naserasr, Aline Parreau,

and Petru Valicov. Identifying codes in line graphs. Journal of

Graph Theory, 73(4):425�448, 2013.

[FMN+17] Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau,

and Petru Valicov. Identi�cation, location-domination and metric

dimension on interval and permutation graphs. II. algorithms and

complexity. Algorithmica, 78(3):914�944, 2017.

[Fou12] Florent Foucaud. Codes identi�ants et codes localisateurs-

dominateurs sur certains graphes. PhD thesis, ENST, France, 2012.

[Fou15] Florent Foucaud. Decision and approximation complexity for identi-

fying codes and locating-dominating sets in restricted graph classes.

J. Discrete Algorithms, 31:48�68, 2015.

[Fre00] Robert Wilson Freimer. Investigations in geometric subdivisions:

linear shattering and cartographic map coloring. PhD thesis, 2000.

[Gat72] G. Gates. The reduced nearest neighbor rule (corresp.). IEEE Trans-

actions on Information Theory, 18(3):431�433, 1972.

[GEC+07] Byron J. Gao, Martin Ester, Jin-Yi Cai, Oliver Schulte, and Hui

Xiong. The minimum consistent subset cover problem and its ap-

plications in data mining. In 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD), page

310�319, 2007.



205 BIBLIOGRAPHY

[GIK02] Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti.

Constant ratio approximation algorithms for the rectangle stabbing

problem and the rectilinear partitioning problem. Journal of Algo-

rithms, 43(1):138�152, 2002.

[GJ02] Michael R. Garey and David S. Johnson. Computers and intractabil-

ity. W. H. Freeman New York, 2002.

[GK79] K. Gowda and G. Krishna. The condensed nearest neighbor rule

using the concept of mutual nearest neighborhood (corresp.). IEEE

Transactions on Information Theory, 25(4):488�490, 1979.

[GKM08] Sylvain Gravier, Ralf Klasing, and Julien Moncel. Hardness results

and approximation algorithms for identifying codes and locating-

dominating codes in graphs. Algorithmic Operations Research,

3(1):43�50, 2008.

[GM07] Sylvain Gravier and Julien Moncel. On graphs having a V \ {x} set
as an identifying code. Discrete Mathematics, 307(3):432�434, 2007.

[GP19] Valentin Gledel and Aline Parreau. Identi�cation of points using

disks. Discrete Math., 342:256�269, 2019.

[GT13] Dániel Gerbner and Géza Tóth. Separating families of convex sets.

Computational Geometry, 46(9):1056�1058, 2013.

[Har68] P. Hart. The condensed nearest neighbor rule (corresp.). IEEE

Transactions on Information Theory, 14(3):515�516, 1968.

[HHS98a] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Domina-

tion in Graphs: Advanced Topics. CRC Press, 1998.

[HHS98b] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Funda-

mentals of Domination in Graphs. CRC Press, 1998.

[HKSZ06] Teresa Haynes, Debra Knisley, Edith Seier, and Yue Zou. A quanti-

tative analysis of secondary RNA structure using domination based

parameters on trees. BMC bioinformatics, 7(1):1�11, 2006.



BIBLIOGRAPHY 206

[HLT22] P. Hajnal, Zhihao Liu, and György Turán. Nearest neighbor repre-

sentations of boolean functions. Information and Computation (In

Press), 2022.

[HM85] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes

for covering and packing problems in image processing and VLSI.

J. ACM, 32(1):130�136, 1985.

[HPJ20] Sariel Har-Peled and Mitchell Jones. On separating points by lines.

Discrete and Computational Geometry, 63(3):705�730, 2020.

[HPV98] Michel Habib, Christophe Paul, and Laurent Vienot. A synthesis on

partition re�nement: A useful routine for strings, graphs, boolean

matrices and automata. In 15th Annual Symposium on Theoretical

Aspects of Computer Science (STACS), page 25�38, 1998.

[HY14] Michael A. Henning and Anders Yeo. Distinguishing-transversal in

hypergraphs and identifying open codes in cubic graphs. Graphs

and Combinatorics, 30(4):909�932, 2014.

[JL11] Ville Junnila and Tero Laihonen. Identi�cation in Z2 using Eu-

clidean balls. Discrete Applied Mathematics, 159(5):335�343, 2011.

[KCL98] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin.

On a new class of codes for identifying vertices in graphs. IEEE

Trans. Information Theory, 44(2):599�611, 1998.

[KE07] Jussi Kujala and Tapio Elomaa. Improved algorithms for univariate

discretization of continuous features. In 11th European Conference

on Principles of Data Mining and Knowledge Discovery, pages 188�

199, 2007.

[KGG85] James M. Keller, Michael R. Gray, and James A. Givens. A fuzzy

k-nearest neighbor algorithm. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-15(4):580�585, 1985.



207 BIBLIOGRAPHY

[KKR18] Kamyar Khodamoradi, Ramesh Krishnamurti, and Bodhayan Roy.

Consistent subset problem with two labels. In 4th International

Conference on Algorithms and Discrete Applied Mathematics (CAL-

DAM), pages 131�142, 2018.

[KMM+21] Stefan Kratsch, Tomá² Masa°ík, Irene Muzi, Marcin Pilipczuk, and

Manuel Sorge. Optimal discretization is �xed-parameter tractable.

In 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1702�1719. 2021.

[Knu74] Donald E. Knuth. Postscript about NP-Hard problems. SIGACT

News, 6(2):15�16, 1974.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fun-

damental Algorithms. Third edition, 1997.

[Kog95] Alexander Kogan. On the essential test sets of discrete matrices.

Discrete Applied Mathematics, 60(1):249�255, 1995.

[KPSV05] Jeong Kim, Oleg Pikhurko, Joel Spencer, and Oleg Verbitsky. How

complex are random graphs in �rst order logic? Random Structures

and Algorithms, 26(1-2):119�145, 2005.

[KSPSV02] Farinaz Koushanfar, Sasha Slijepcevic, Miodrag Potkonjak, and Al-

berto Sangiovanni-Vincentelli. Error-tolerant multi-modal sensor

fusion. In IEEE CAS Workshop on Wireless Communication and

Networking, pages 5�6, 2002.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley

Longman Publishing Co., Inc., 2005.

[KT08] Matias Korman and Takeshi Tokuyama. Optimal insertion of a seg-

ment highway in a city metric. In 14th Annual International Confer-

ence on Computing and Combinatorics (COCOON), page 611�620,

2008.



BIBLIOGRAPHY 208

[Lee04] D. T. Lee. Interval, segment, range, and priority search trees. In

Handbook of Data Structures and Applications. Chapman and Hal-

l/CRC, 2004.

[LHC20] Antoine Lobstein, Olivier Hudry, and Irène Charon. Locating-

domination and identi�cation. In Topics in Domination in Graphs,

volume 4, pages 251�299. 2020.

[LHH+09] Antoine Lobstein, Olivier Hudry, Iiro Honkala, Irène Charon, and

David Auger. Edge number, minimum degree, maximum indepen-

dent set, radius and diameter in twin-free graphs. Advances in Math-

ematics of Communications, 3(1):97�114, 2009.

[Lob] Antoine Lobstein. Watching systems, identifying, locating-

dominating and discriminating codes in graphs: a bibliography.

https://www.lri.fr/ lobstein/debutBIBidetlocdom.pdf.

[LT08] Moshe Laifenfeld and Ari Trachtenberg. Identifying codes and cov-

ering problems. IEEE Trans. Information Theory, 54(9):3929�3950,

2008.

[LTCS09] Moshe Laifenfeld, Ari Trachtenberg, Reuven Cohen, and David

Starobinski. Joint monitoring and routing in wireless sensor net-

works using robust identifying codes. Mobile Network Applications,

14(4):415�432, 2009.

[McC85] Edward M. McCreight. Priority search trees. SIAM Journal on

Computing, 14(2):257�276, 1985.

[MIH81] Shigeru Masuyama, Toshihide Ibaraki, and Toshiharu Hasegawa.

The computational complexity of the m-center problems on the

plane. The Transactions of the Institute of Electronics and Commu-

nication Engineers of Japan, E-64(2):57�64, 1981.

[MMS20] Neeldhara Misra, Harshil Mittal, and Aditi Sethia. Red-blue point

separation for points on a circle. In CCCG, pages 266�272, 2020.



209 BIBLIOGRAPHY

[MNP21] Raghunath Reddy Madireddy, Subhas C. Nandy, and Supantha

Pandit. On the geometric red-blue set cover problem. In 15th In-

ternational Conference and Workshops, WALCOM, pages 129�141,

2021.

[Mon06] Julien Moncel. On graphs on n vertices having an identifying code of

cardinality ⌊log2(n+ 1)⌋. Discrete Appl. Math., 154(14):2032�2039,

2006.

[MR10] Nabil H. Mustafa and Saurabh Ray. Improved results on geomet-

ric hitting set problems. Discrete and Computational Geometry,

44(4):883�895, 2010.

[MRT14] M. Milanic̃, R. Rizzi, and A.I. Tomescu. Set graphs. II. complexity

of set graph recognition and similar problems. Theoretical Computer

Science, 547:70�81, 2014.

[MS85] Bernard M. E. Moret and Henry D. Shapiro. On minimizing a set

of tests. SIAM Journal on Scienti�c and Statistical Computing,

6(4):983�1003, 1985.

[MS09] Tobias Müller and Jean-Sébastien Sereni. Identifying and locating-

dominating codes in (random) geometric networks. Comb. Probab.

Comput., 18(6):925�952, 2009.

[MV80] Silvio Micali and Vijay V. Vazirani. An O(sqrt(|V|) |E|) algorithm
for �nding maximum matching in general graphs. In 21st Symp. on

Foundations of Computer Science, pages 17�27, 1980.

[NAE+17] Adam B Noel, Abderrazak Abdaoui, Tarek Elfouly, Mohamed Hos-

sam Ahmed, Ahmed Badawy, and Mohamed S Shehata. Structural

health monitoring using wireless sensor networks: A comprehensive

survey. IEEE Communications Surveys & Tutorials, 19(3):1403�

1423, 2017.



BIBLIOGRAPHY 210

[NAH02] Subhas C. Nandy, Tetsuo Asano, and Tomohiro Harayama. Shatter-

ing a set of objects in 2D. Discrete Applied Mathematics, 122(1):183�

194, 2002.

[NF77] Patrenahalli M. Narendra and Keinosuke Fukunaga. A branch and

bound algorithm for feature subset selection. IEEE Transactions on

Computers, C-26(9):917�922, 1977.

[Pat71] E.A. Patrick. Interactive pattern analysis and classi�cation utilizing

prior knowledge. Pattern Recognition, 3(1):53�71, 1971.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial

Optimization: Algorithms and Complexity. Prentice-Hall, Inc., 1982.

[R�61] A Rényi. On random generating elements of a �nite boolean algebra.

Acta Scientiarum Mathematicarum Szeged, 22:75�81, 1961.

[RSTU04] Saikat Ray, David Starobinski, Ari Trachtenberg, and Rachanee Un-

grangsi. Robust location detection with sensor networks. IEEE J.

Selected Areas Communications, 22(6):1016�1025, 2004.

[RUP+03] Saikat Ray, Rachanee Ungrangsi, De Pellegrini, Ari Trachtenberg,

and David Starobinski. Robust location detection in emergency

sensor networks. In 22nd Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), volume 2,

pages 1044�1053. IEEE, 2003.

[RWLI75] G. Ritter, H. Woodru�, S. Lowry, and T. Isenhour. An algorithm for

a selective nearest neighbor decision rule (corresp.). IEEE Transac-

tions on Information Theory, 21(6):665�669, 1975.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and E�-

ciency, volume 24 of Algorithms and Combinatorics. Springer, 2003.

[SR84] P. J. Slater and D. F. Rall. On location domination numbers for cer-

tain classes of graphs. Congressus Numerantium, 45:97�106, 1984.



211 BIBLIOGRAPHY

[SS10] Suk Jai Seo and Peter J Slater. Open neighborhood locating domi-

nating sets. Australas. J Comb., 46:109�120, 2010.

[Tho99] Mikkel Thorup. Undirected single-source shortest paths with posi-

tive integer weights in linear time. J. ACM, 46(3):362�394, 1999.

[Tou02] G. Toussaint. Open problems in geometric methods for instance-

based learning. In Japanese Conference on Discrete and Computa-

tional Geometry (JCDCG), pages 273�283, 2002.

[Tou05] G. Toussaint. Geometric proximity graphs for improving nearest

neighbor methods in instance-based learning and data mining. Int.

J. Comput. Geom. Appl., 15(2):101�150, 2005.

[Tov84] Craig A. Tovey. A simpli�ed NP-complete satis�ability problem.

Discrete Applied Mathematics, 8(1):85�89, 1984.

[Ull74] Julian R. Ullmann. A use of continuity in character recogni-

tion. IEEE Transactions on Systems, Man, and Cybernetics, SMC-

4(3):294�300, 1974.

[UTS04] Rachanee Ungrangsi, Ari Trachtenberg, and David Starobinski. An

implementation of indoor location detection systems based on iden-

tifying codes. In Intelligence in Communication Systems, pages 175�

189, 2004.

[vBBB+14] René van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen,

Vincent Froese, Rolf Niedermeier, and Gerhard J. Woeginger. Star

partitions of perfect graphs. In International Colloqium on Au-

tomata, Languages, and Programming (ICALP), pages 174�185,

2014.

[VC15] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence

of relative frequencies of events to their probabilities. In Measures

of Complexity, pages 11�30. 2015.

[VL91] Jan Van Leeuwen. Handbook of Theoretical Computer Science (Vol.

A): Algorithms and Complexity. MIT Press, 1991.



BIBLIOGRAPHY 212

[Wil91] Gordon Wilfong. Nearest neighbor problems. In Proceedings of

the Seventh Annual Symposium on Computational Geometry (SCG),

page 224�233, 1991.

[WL72] W. R. Willcox and S. P. Lapage. Automatic Construction of Diag-

nostic Tables. The Computer Journal, 15(3):263�267, 1972.

[WLH80] W. R. Willcox, S. P. Lapage, and B Holmes. A review of numeri-

cal methods in bacterial identi�cation. Antonie van Leeuwenhoek,

46(3):233�299, 1980.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approx-

imation Algorithms. Cambridge University Press, 2011.

[ZXLL04] Baihua Zheng, Jianliang Xu, Wang-Chien Lee, and D. T. Lee. Grid-

partition index: a hybrid method for nearest-neighbor queries in

wireless location-based services. The VLDB Journal, 15(1):21�39,

2004.

[ZZ95] Igor E. Zvervich and Vadim E. Zverovich. An induced subgraph

characterization of domination perfect graphs. Journal of Graph

Theory, 20(3):375�395, 1995.


	List of Figures
	Introduction
	Introduction
	Scope of the thesis
	Organization of the thesis

	Review and Related Works
	Discrimination and Identification
	Red-Blue Separation
	Consistent Subset Problem
	Applications and Motivations
	Contributions

	Discrimination and Identification
	Organization
	The G-Min-Disc-Code problem in 1D
	NP-completeness
	A 2-approximation algorithm
	A PTAS for the unit interval case

	The G-Min-Disc-Code problem in 2D
	NP-completeness
	Approximation algorithms
	Approximation algorithm for Discrete-G-Min-Disc-Code

	Min-ID-Code for geometric intersection graphs

	Red-Blue Separation
	Preleminaries
	Organization
	Complexity of Red-Blue Separation
	Hardness
	Positive algorithmic results

	Extremal values and bounds for `3́9`42`"̇613A``45`47`"603Amax-sepRB
	Lower bounds for general graphs
	Upper bound for general graphs
	Upper bound for trees

	Complexity of Max Red-Blue Separation

	Minimum Consistent Subset in Simple Graphs
	Organization
	Path Graph
	Undirected Paths
	Directed Paths

	Spider Graph
	Undirected Spiders
	Directed Spiders

	Bi-chromatic Caterpillar Graph
	Algorithm
	Correctness and complexity

	Bi-chromatic Comb Graph
	Preprocessing and Algorithm:
	Correctness and complexity


	Minimum Consistent Subset in Trees
	Organization
	Preliminaries
	Computing MCS of a tree rooted at an anchor
	Computation of C(Tz)
	Analysis of Algorithm of MCS(T)

	Approximation algorithm
	Algorithm
	Analysis


	Concluding Remarks
	Discrimination and Identification
	Red-Blue Separation
	Consistency

	Bibliography

