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Abstract

In the real world, we encounter many problems that can be modeled as graph-

theoretic problems. This modeling gives a concrete view of the constraints and

objectives of the problem and allows us to apply some well-known techniques to

solve it. Many of these problems do not have their computational complexity

settled; on the other hand, many others have been proved to be NP-hard. Thus

should be approximated. This thesis focuses on these aspects of some graph

theoretic problems.

The Traveling Tournament Problem is one of the interests of this thesis. A

constrained Traveling Tournament Problem(TTP-k) asks for a schedule of a double

round-robin tournament with an upper bound(k) on the lengths of home stands

and away trips of the teams where the total travel distance is minimized. The

hardness of the problem varies with the upper bound. This thesis attempts an

approximation algorithm for TTP-2, which is assumed to be NP-Hard. Then

considers a study on the hardness analysis of TTP-k where k > 3 and k ∈ N.
The Firefighter Problem is an important graph theoretic problem with practi-

cal application in a recent pandemic scenario. The firefighter problem asks for a

solution to save vertices in a graph by placing firefighters on some of them where

a fire broke out in a vertex and spread through the network with time. This thesis

considers Firefighter Problem on Unit Disk Graphs. Most networks can be mod-

eled in this wireless era as Unit Disk Graphs. The hardness of the problem and an

approximation algorithm for the same is attempted in this thesis. Then a special

version of the firefighter problem called the Firebreak Problem is considered where

the firefighters can be placed on the vertices only at the initial time instance when

the fire breaks out. An approximation algorithm is attempted for the Firebreak

Problem on Split Graphs which has been proven to be NP-Hard.

Keywords: Traveling Tournament Problem, Double Round-robin, Firefighter

Problem, Firebreak Problem, NP-Hardness.
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C H A P T E R 1

Introduction

In the field of Discrete Mathematics, Graph Theory is one of the most important

subjects. The main reason for this is the similarity of graphs with real-world

situations and structures. The similarities are mainly found when dealing with

connectivity, travel, or distribution-related problems. In this thesis, hardness or

computational complexity-related works on some of the graph theoretic problems

have been presented.

1.1 Motivation

This thesis is concerned with two types of graph theoretic problems: Tournament

Scheduling Problem and Firefighter Problem.

Nowadays, sports tournaments are very popular events. Many of these tour-

naments involve travel by the participating teams between the home venues of the

participating teams. This travel cost is a major part of the tournament budget.

The Tournament management wants to minimize the total travel in the tourna-

ment. Scheduling the tournament properly can optimize the cost to a great extent.

This practical real-world cause makes the tournament scheduling problem worth

studying.
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Introduction

Any social, distribution or communication network can be modeled as a graph.

If a harmful contagion or material or program starts spreading through this net-

work, then the nodes or elements are needed to be saved from that. This situation

in real life can be modeled as a firefighter problem on graphs where it is needed

to save the vertices of the graph from a spreading fire by placing firefighters on

some of the vertices. Keeping the recent pandemic scenario of the world in mind,

different versions of the firefighter problem becomes worth studying.

1.2 Background

In this thesis, two problems related to tournament scheduling have been discussed.

They both are traveling tournament problems. Traveling tournament problem

deals with the scheduling of double round-robin tournaments. In a double round-

robin tournament, each participating team has its home venue and any pair of

teams play two matches between them, once at each of their home venues. So

from the structure of the tournament, it is evident that teams travel to different

venues throughout the tournament. The goal is to minimize the total travel by

all the teams throughout the tournament. This minimization depends on many

factors. One of them is the upper bound on any team’s consecutive home and

away matches. This thesis concerns with the cases when this upper limit is two or

any natural number greater than three. Traveling Tournament Problem is called

TTP in short. In the work related to TTP-2, a betterment of the existing result

available in the literature for practical cases has been shown. Also, in another

work, the computational hardness of constrained TTP has been shown.

Firefighter problems can be classified into two major types: Max-save and

Min-budget. In both cases, fire breaks out at a vertex of a given graph and at

each time instance, it spreads to all the unprotected neighbors of a vertex on fire.

The goal for the max-save case is to maximize the number of saved vertices by

placing a given number of firefighters on different nodes at each time instance. In

the min-budget case, the goal is to calculate the minimum number of firefighters

required at each time step to save a given set of vertices of the graph. One of

the problems related to the firefighter problem in this thesis is the firefighter min-

budget problem on unit disk graphs. Unit disk graph is a special class of graphs

2



1.3 Concluding Remarks

described later in this thesis.

A firefighter problem becomes a firebreak problem when the firefighters can be

placed only once at the time of fire breakout and a given number of vertices has

to be saved using the minimum number of firefighters. The other problem related

to the firefighter problem in this thesis is the firebreak problem on split graphs.

In several chapters in this thesis, the terms NP-Hard and NP-Complete will

be used repeatedly. These represent specific classes of computational complexities

of the problems in Computer Science. Here NP stands for Non-deterministic

Polynomial Time. A problem is in the NP class if given a solution to the problem, a

deterministic algorithm can verify its correctness within a specified polynomial (of

the input size) time. On the other hand, NP-Hard problems are computationally

at least as hard as the hardest problems in the NP class. A problem in NP-Hard

class can be reduced from a problem in the NP class in polynomial time. The

problems which belong to both in NP and NP-Hard classes are said to be in NP-

Complete class. So NP-Complete class is the intersection of NP class and NP-Hard

class.

The main issues while working on the problems mentioned earlier are described

in the following section.

1.3 Concluding Remarks

The survey so far has brought out certain issues regarding the problems that can

be summarized as follows:

� Computational Complexity of TTP-2 is still not settled.

� Although many theoretical approximations have been done on TTP-2, prac-

tical results are less in number.

� There is a possibility of a better result of TTP-2 for less number of teams

compared to the existing generalized solution.

� Although work on the computational complexity of TTP-3 and TTP-∞
is present in literature, a study on the computation complexity of general

TTP-k for any natural number k has not been done yet.

3



Introduction

� Unlike TTP-2, finding a lower bound for TTP-k is hard. Over that, syn-

chronously fitting a schedule makes it even tougher.

� Computational complexity of firefighter problem on unit disk graphs is not

settled. Hence there is no approximation result for this problem.

� Although NP-hardness of firebreak problem on split graphs has been shown,

no approximation of the problem has been done yet.

1.4 Scope of the Present Work

The remaining chapters of this thesis attempt to address the issues mentioned in

the previous section. The development is as follows:

� Chapter 2 will attempt to find an improved approximation result of the

Traveling Tournament Problem with Maximum Trip Length Two for real-

world tournaments, specifically when the number of participating teams is

divisible by 4 and less or equal to 32. This eventually includes all practical

double round-robin tournaments played these days.

� Chapter 3 will try to evaluate the computational complexity of TTP-k for

k > 3 and k ∈ N. TTP-1 has been proven to be impossible to schedule. TTP-

2 is assumed to be NP-hard and approximation algorithms are attempted.

TTP-3 and TTP-∞ have been proven to be NP-hard. The only gap in terms

of the complexity of TTP is for the case of TTP-k where k > 3 and k ∈ N.
So it seems worthy to establish NP-hardness of general TTP-k.

� Chapter 4 will aim to prove the NP-hardness of the Firefighter Problem

on Unit Disk Graphs and also strive to present an approximation algorithm.

Although the NP-hardness of the Firefighter Problem on general graphs and

several other graph classes has been proved already, the question for the unit

disk graphs is still open. Unit disk graphs are of great importance due to

their similarity with real-world communication systems.

� Chapter 5 will seek to present an approximation algorithm for the Firebreak

Problem on Split Graphs. The firebreak Problem was introduced recently in

4



1.4 Scope of the Present Work

2020 and the NP-hardness of the problem on Split Graphs has been proved.

The Firebreak Problem on Split Graphs structure resembles the current

situation of protecting people in a social network from a harmful contagion.

5





C H A P T E R 2

A Better Approximation

Algorithm for Travelling

Tournament Problem with

Maximum Trip Length Two

2.1 Introduction

A double round-robin tournament is one of the most unbiased ways of evaluating

teams participating in a competition. In these kind of tournaments, each partic-

ipating team plays with every other team twice, i.e., one home match and one

away match. This nullifies the effects of home advantage. So, in these kind of

tournaments, each team is tested in all the venues and in all the conditions. If

there are n teams participating, then each team will play 2(n − 1) games and

the total number of games played will be n(n − 1). After all the matches are

played, the team with the highest point wins the tournament. The Traveling

Tournament Problem (TTP) is a combinatorial optimization problem for a dou-

ble round-robin tournament. In TTP, we have to provide a scheduling algorithm

that minimizes the total distance traveled by all participating teams maintaining
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certain constraints. Most of the instances of TTP with more than ten teams are

still unsolved. The number of participating teams in a TTP has to be even. The

distance between the participating teams’ home venues is symmetric and satisfies

the triangle inequality. Moreover, the distances are rational numbers and the time

instances are discrete-time instances which can be expressed as integers. There

are different variants of this problem depending on the constraints. TTP is in-

spired by Major League Baseball in USA. For given participating teams and all

the mutual distances between their home grounds, the general form of constrained

Traveling Tournament Problem, i.e., TTP-k for some natural number k, is defined

as follows.

Definition 2.1 TTP-k is the problem of scheduling a double round-robin tour-

nament where the total travel distance by all the participating teams is minimized

given the following constraints:

1. Each pair of participating teams play exactly two matches once in each of

their home venues.

2. No pair of teams play consecutive matches with each other.

3. In an away tour, a visiting team travels directly from the home of one op-

ponent to the home of the next opponent without returning to its own home.

At the end of the tournament, all the teams return to their respective home

venues.

4. The lengths of the home stands and away tours for any participating team

are not more than k.

For an odd number of teams, a solution to a Traveling Tournament Problem is

impossible as every team should participate on a match day.

Despite of several benefits, Traveling Tournament Problem has some draw-

backs also. The main drawbacks are: a huge number of matches and scheduling

complexity. Although we can not decrease the number of matches, we can lower

the complexity of the scheduling. But with imposed constraints on scheduling,

the complexity increases. For a small number of teams, the scheduling is simpler

and the complexity increases with the number of teams and imposed constraints.

8



2.1 Introduction

TTP-∞ and TTP-3 has been proven to be NP-hard in [1] and [2] respectively.

TTP-1 is impossible to schedule [3]. So, the only case where a complete solution

may be possible is TTP-2. The complexity of TTP-2 is still not settled. Xiao

and Kou gave the existing best result on approximating TTP-2 [4]. They gave an

approximation factor of (1 + 2
n
+ 2

n−2
) for TTP-2 on n teams with n divisible by

4. We also work on a similar setup, where we schedule a TTP-2 on n teams with

n divisible by 4 and our schedule improves the result for n ≤ 32.

A formal definition of the problem, other useful definitions, notations and

well-known results related to the Traveling Tournament Problem are given in the

following section.

2.1.1 Problem Definition

TTP-2: Traveling Tournament Problem-2 is the problem of scheduling a double

round-robin tournament where the total travel distance by all the participating

teams is minimized, maintaining the following constraints:

C1: Each pair of participating teams play exactly twice with each other

i.e., once in each of their home venues.

C2: No pair of teams play consecutive matches with each other.

C3: In an away tour, a visiting team travels directly from one opponent’s

home to the next without returning to its home and at the end of the

tournament, all the teams return to their respective home venues.

C4: The lengths of the home stands and away tours for any participating

team are not more than 2.

2.1.2 Previous Work

Traveling Tournament Problem (TTP) is a special variant of the Traveling Sales-

man Problem (TSP). The Traveling Tournament Problem was first introduced by

Easton, Nemhauser, and Trick [5]. In a TTP, when there is no constraint on home

stands or away trip length, it becomes a problem of synchronously scheduling n

9



Approximation of TTP-2

Traveling Salesman Problem. It has been shown that TTP-k is NP-Hard when

k = ∞ by Bhattacharyya [1]. Thielen and Westphal showed the NP-Hardness of

TTP-3 [2]. The relationship of some variants of round-robin tournaments with

the planar three-index assignment problem has been analyzed and the complexity

of scheduling a minimum cost round-robin tournament has been established using

the same by Briskorn, Drexl and Spieksma[6]. They also showed the applicabil-

ity of some techniques for the planar three-index assignment problem to solve a

sub-problem of scheduling a minimum-cost round-robin tournament. Lots of work

has been done towards the approximation algorithms of TTP [4, 7, 8, 9, 10, 11].

Works on heuristic algorithms of TTP can be found in [12, 13, 14, 15, 16]. Many

offline and online set of benchmark data can be found for TTP-3 in [5, 17]. Van

Hentenryck and Vergado showed that, for many benchmark results on improve-

ments and complete solutions, even high-performance computers take more than

a week [18]. But even then most of the instances of TTP-k on more than 10 teams

are not completely solvable, as shown by Trick [17]. They worked on a basketball

tournament with ten teams where the away trip for any team consisted of one or

two matches. It has also been shown that TTP-1 is impossible to schedule by De

Werra [3]. Rasmussen and Trick [19] conducted a survey on round-robin tourna-

ment scheduling. Work has also been done on complexity of TTP-k [20, 21, 22].

Our main focus is on TTP-2, which was introduced by Campbell and Chen [23].

Thielen and Westphal [24] has contributed towards approximation factor for TTP-

2 and later gave an approximation factor of (1+ 16
n
);∀n ≥ 12 and n divisible by 4.

Xiao and Kou have improved their result [4]. They gave an approximation factor

of (1 + 2
n−2

+ 2
n
) where n is divisible by 4. Our scheduling algorithm give better

result than this for n ≤ 32.

2.1.3 Our Result

We propose a scheduling algorithm for TTP-2 which yields an approximation

factor of

(
1 +

⌈log2 n
4 ⌉+4

2(n−2)

)
. For number of participating teams less or equal to

32 and divisible by 4, this gives a better result than existing best result, with

approximation factor of (1 + 2
n−2

+ 2
n
) in [4].

10



2.2 Preliminaries

2.2 Preliminaries

2.2.1 Definitions and Notations

In this chapter, the graph theoretic approach has been followed to get a better

approximation factor for TTP-2. Here, teams are invariably referred to as vertices

and distances between home locations of teams are referred to as weights of edges

of the graph.

Definition 2.2 Matching Graph: A matching graph G(V,E) is a graph where

no two edges have a common vertex. So, for a matching graph, |V | = n ⇒ |E| ≤
n
2
. The pair of vertices connected through an edge in a matching graph is called

matched vertices of the matching graph.

Definition 2.3 Maximal Matching of a Graph: Maximal matching M of

a graph G(V,E) is a matching graph, where for any other matching M ′ of G,

M ⊈ M ′. It may not be unique for a given graph.

Definition 2.4 Minimum Maximal Matching of an Undirected Weighted

Graph: Minimum Maximal Matching of an Undirected Weighted Graph G(V,E)

is a maximal matching of G with the sum of all the weights of its edges to be

the smallest among all the maximal matching subgraphs of G. For a minimum

maximal matching of an undirected weighted complete graph with n vertices, the

number of edges of the matching will be n
2
.

In this work, we represents an edge between two vertices as a match between the

teams corresponding to the vertices. Now a super-match is defined as follows:

Definition 2.5 Super-match: A super-match between two pairs of matched ver-

tices Mi and Mj is the set of edges {(u,w), (u, x), (v, w), (v, x)} where Mi = {u, v}
and Mj = {w, x}.

2.2.2 A Simple Lower Bound for TTP-2

Suppose there are n teams participating in TTP-2. Distances between the home

locations of each pair of teams are given. Let, dij be the distance between home

11
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locations of ith and jth team. Now we construct an undirected weighted complete

graph G(V,E) with all the n home locations as vertices and weights of the edges

as the physical distances between the home locations of teams corresponding to

the vertices connected through it. As G is a complete graph and |V | = n (even),

we get a minimum maximal matching in G and call it Gm. Let the sum of the

weights of all the edges of Gm be Wm; the sum of the weights of all the edges in

G be Wt and the sum of the weights of all the edges from a vertex i in G be Wi.

So, for an optimized schedule with the given constraints, it is natural for a

team to travel to two matched teams in Gm in an away trip. But for the vertex

matched with itself in Gm, it will make a to and fro journey. In that case, the

total travel by ith team is Wi + Wm. This gives a minimum travel by ith team

given the constraints.

Now, if it is possible to synchronously fit this above-mentioned minimum travel

by each participating team in the schedule, then the total traveled distance by all

the teams in the tournament will be,∑
i∈V

(Wi +Wm) = 2Wt + nWm.

This gives a lower bound of TTP-2. But due to the imposed constraints on

scheduling and the number of teams, it is not always possible to synchronously

fit the minimum travel schedule of each participating team in the schedule. The

hardness of the optimization makes this problem interesting.

There are (n
2
− 1)! number of minimum travel schedules for each participating

team. For synchronously fitting one of these Minimum Travel Schedules for each

team, we need an exhaustive search over a space of size exponential of the number

of teams. This gives an intuitive idea of the NP-Hardness of the problem.

2.3 Design of Schedule

Suppose there are n teams participating in a double round-robin tournament where

n is divisible by 4. We construct the undirected weighted graph G(V,E) as de-

scribed in Section 2 and also find the minimum maximal matching Gm in G. Now

we number the vertices and the matched pairs such that the matched pair Mi con-

12
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sist of vertices 2i − 1 and 2i, ∀i ∈ {1, . . . , n
2
}. Now, we design the schedule in

⌈log2 n
2
⌉ rounds and (n

2
− 1) levels such that ith round consists of ⌈1

2
( n
2i
− 1)⌉ levels

and each level consists of n
4
super-matches. A super-match is played between two

different matched pairs where both the teams in a matched pair play home and

away matches with both the teams in the other matched pair. In every level each

matched pair plays a super-match. We have designed three types of super-matches

which are used in our schedule. Suppose two pairs of matched vertices are A1, A2

and B1, B2 in Gm, as described in the previous section. We give three types of

super-match namely Type-1, Type-2, Type-3 which are the building blocks of our

schedule.

Type-1: This consists of four match days namely T1, T2, T3 and T4 and the

matches on this match days are given below:

T1 : A1 → B1, A2 → B2.

T2 : A1 → B2, A2 → B1.

T3 : B1 → A1, B2 → A2.

T4 : B1 → A2, B2 → A1.

where u → v means u is playing an away match with v in the home of v.

The home-away match sequence of the participating teams become the following:

A1 : Away − Away −Home−Home

A2 : Away − Away −Home−Home

B1 : Home−Home− Away − Away

B2 : Home−Home− Away − Away.

Type-1 super-match does not violate minimum travel of any of its participat-

ing teams.

This way, we can simultaneously schedule n
4
Type-1 super-matches in a level but

then we can not schedule matches between the teams with the same home away

match sequences due to constraint:4 of the problem definition. So we need a

different kind of super-match than Type-1 and hence comes the need of Type-2

super-match.

Type-2: This consists of four match days namely T1, T2, T3 and T4 and the

matches on this match days are given below:

13
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T1 : A1 → B1, A2 → B2.

T2 : B2 → A1, B1 → A2.

T3 : B1 → A1, B2 → A2.

T4 : A1 → B2, A2 → B1.

The home-away match sequence of the participating teams become the follow-

ing:

A1 : Away −Home−Home− Away

A2 : Away −Home−Home− Away

B1 : Home− Away − Away −Home

B2 : Home− Away − Away −Home.

Type-2 super-match violates the minimum travel of all of its participating teams

but helps to schedule matches of all the teams according to their minimum travel

schedule in the next level. We may refer the Type-2 super-match as flip in future.

But also after this modification, it is not possible to schedule home and away

matches between two matched teams in Gm, maintaining their minimum travel

schedule. So there comes the need for a Type-3 schedule block.

Type-3: This consists of six match days namely T1, T2, T3, T4, T5 and T6 and

the matches on this match days are given below:

T1 : A1 → B1, A2 → B2.

T2 : A1 → A2, B2 → B1.

T3 : B2 → A1, B1 → A2.

T4 : A2 → A1, B1 → B2.

T5 : A1 → B2, A2 → B1.

T6 : B1 → A1, B2 → A2.

The home-away match sequence of the participating teams become the follow-

ing:

A1 : Away − Away −Home−Home− Away −Home

A2 : Away −Home−Home− Away − Away −Home

B1 : Home−Home− Away − Away −Home− Away

14
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B2 : Home− Away − Away −Home−Home− Away.

Although Type-1 super-match does not violate the minimum travel schedule for

the teams, we can not schedule a double round robin tournament only with Type-1

super-matches. We need Type-2 and Type-3 super-matches. Now, n
4
number of

Type-3 super-matches are unavoidable for any TTP-2 scheduling as each Type-

3 super-match involves home and away matches between matched vertices for

two pairs of matched vertices of Gm described in the previous section. So, for

n participating teams at least n
4
number of Type-3 super-matches are required

and our algorithm uses exactly n
4
numbers of Type-3 schedule blocks. Now, the

only scope of improvement is reduction in numbers of Type-2 super-matches. So

our main aim to keep the the number of Type-2 super-matches or flips as low as

possible.

2.4 Our Algorithm

Following algorithm gives a improved schedule in terms of total distance traveled

by all the teams than the existing best result [4] for TTP-2 when, n ≤ 32 where

the number of Type-2 super matches are bounded by
(
n
8
∗
⌈
log2

n
4

⌉)
.

In the Algorithm-1 for TTP-2 of n teams our technique is presented. We work

on a euclidean plane where n teams are situated at their home venues. These

teams at their home venues are the vertices of the graph and the distance between

the home venues are the weights of the corresponding edge in the graph. First, we

find the Minimum Maximal Matching on all the vertices or teams in this complete

graph. Let the set of matched pair of vertices be {M1, . . . ,Mn/2}. Then we

consider each Mi’s as a team situated at the midpoint of the physical locations

of the constituent vertices in the euclidean plane. This midpoint serves as the

location of the matched pair of vertices when considering super matches between

different pairs of vertices. Then for a complete graph on these Mi’s as vertices, we

again find the minimum maximal matching and let the set of matched vertices be

{N1, . . . , Nn/4}.
Now, we schedule the Type-2 super-matches in the different levels of different

rounds according to the rule described in line 12 or line 14 of the algorithm,
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Algorithm 1 Schedule TTP-2

INPUT: G(V,E) with |V | = n, |E| =
(
n
2

)
,W = {we|e ∈ E}.

Identify the minimum maximal matching, Gm(V,Em), of G.
For all i ∈ {1, . . . , n

2
}, define Mi = {(u, v)|u, v ∈ V & Edge(u, v) ∈ Em}.

For all v ∈ V, allot a number to v such that (u, v) ∈ Mi =⇒ #u = (2i −
1) & #v = 2i ∀i ∈ {1, . . . , n

2
}.

Define X = {xi|location of xi is in the midpoint of u & v where (u, v) ∈
Mi ∀i ∈ {1, . . . , n

2
}}.

Define a complete graph H(X,E ′)|∀e ∈ E ′, weight of the edge e,We =
δ(xm, xn) where e is the edge between xm & xn.
Identify the minimum maximal matching, Hm(X,E ′

m), of H.
For all i ∈ {1, . . . , n

4
}, defineNi = {(Mm,Mn)|xm, xn ∈ X & Edge(xm, xn) ∈

E ′
m}.

for i = 1 : 1 : ⌈log2 n
2
⌉ do

while 2i+1 < n do
if 2i+2|n then
Schedule first

⌈
1
2
× ( n

2i
− 1)

⌉
− 1 levels of ith round each with n

4
Type-1

super-matches and last level with n
8
Type-1 and n

8
Type-2 super-matches.

else
Schedule the

⌊
n
2
(1− 2−i)− 1

⌋th
match days with

⌊
n
8

⌋
Type-2 super-matches for i ∈ {1, 2, . . . , log2 n} and rest of the
super-matches as Type-1. For all other match days except the last one
schedule all super-matches as Type-1.

end if
Schedule this last level of the tournament with n

4
Type-3 super-matches

where ∀i ∈ {1, . . . , n
4
},Mp plays with Mq|Mp,Mq ∈ Ni.

end while
end for

depending on the value of n. We schedule all the Type-3 super-matches in the

last level of the last round of the tournament between matched pairs of Mi’s, i.e.,

between the elements of Ni’s to minimize the total travel distance. In next section,

few schedules are given as examples using our algorithm.

2.5 Examples of Scheduling with Our Algorithm

For better understanding of our scheduling algorithm we give two examples of

schedule for n = 12, 16 in the following section and for n = 20, 24, 28 in the
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Appendix-A.1. An improved schedule of Indian Premier League, where n=8, is

presented in Appendix-A.2. Let,

Fn =
n

8
∗
⌈
log2

n

4

⌉
for n ∈ N. (2.1)

2.5.1 Schedule for n = 12

For designing a schedule for Traveling Tournament Problem with 12 teams using

our technique, first we number the teams or the vertices with natural numbers as

follows.

Vertex Set={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
Then we find the Minimum Maximal Matching in the complete graph contain-

ing the vertices in the above-mentioned vertex set. Let the set of matched pair of

vertices be {M1,M2,M3,M4,M5,M6} and without loss of generality, we can say

that,

M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12}.
Then we consider eachMi’s as a team situated at the mid point of the locations

of its constituent vertices for i ∈ {1, 2, 3, 4, 5, 6}. Then for a complete graph on

these Mi’s as vertices, we find the Minimum Maximal Matching and let the set of

matched vertices be

{N1, N2, N3} such that N1={M1,M5}, N2={M2,M3}, N3={M4,M6}.
Now, we describe below the super-matches to be scheduled in all the levels of

all the rounds according to our scheduling technique in a tabular form. We can

observe that the super-matches scheduled in the last level of the last round of the

tournament are between matched pairs of Mi’s, i.e., between the elements of Ni’s.

Number of Flips= 3 = F12.

2.5.2 Schedule for n = 16

For designing a schedule for Traveling Tournament Problem with 16 teams using

our technique, first we number the teams or the vertices with natural numbers in

a similar fashion as follows.

Vertex Set={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}.
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Round:1, Level:1 Round:1, Level:2 Round:1, Level:3

M1
Type−1−−−−→ M2

M3
Type−1−−−−→ M4

M5
Type−1−−−−→ M6

M1
Type−1−−−−→ M4

M3
Type−2−−−−→ M6

M5
Type−1−−−−→ M2

M1
Type−1−−−−→ M3

M6
Type−2−−−−→ M2

M5
Type−1−−−−→ M4

Round:2, Level:1 Round:3, Level:1

M1
Type−2−−−−→ M6

M2
Type−1−−−−→ M4

M5
Type−1−−−−→ M3

M6
Type−3−−−−→ M4

M2
Type−3−−−−→ M3

M5
Type−3−−−−→ M1

Then we find the Minimum Maximal Matching in the complete graph contain-

ing the vertices in the above-mentioned vertex set. Let the set of matched pair of

vertices be {M1,M2,M3,M4,M5,M6,M7,M8} and without loss of generality, we

can say that

M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12},
M7={13,14}, M8={15,16}.

Then we consider eachMi’s as a team situated at the mid point of the locations

of its constituent vertices for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Then for a complete graph

on these Mi’s as vertices, we find the Minimum Maximal Matching and let the set

of matched vertices be

N1={M1,M5}, N2={M2,M6}, N3={M3,M7}, N4={M4,M8}.
Now, we describe below the super-matches to be scheduled in all the levels of

all the rounds according to our scheduling technique in a tabular form. We can

observe that the super-matches scheduled in the last level of the last round of the

tournament are between matched pairs of Mi’s, i.e., between the elements of Ni’s.

Also, as 8 is a power of 2, we know exactly the super-matches, which are flips

in the different levels of all the tournament rounds according to our scheduling

technique.

Number of Flips= 4 = F16.

Correctness of this algorithm is assured by the structures of Type-1, Type-2

and Type-3 super-matches as all three of these structures do not violate any of
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Round:1, Level:1 Round:1, Level:2 Round:1, Level:3 Round:1, Level:4

M1
Type−1−−−−→ M2

M3
Type−1−−−−→ M4

M5
Type−1−−−−→ M6

M7
Type−1−−−−→ M8

M1
Type−1−−−−→ M4

M3
Type−1−−−−→ M6

M5
Type−1−−−−→ M8

M7
Type−1−−−−→ M2

M1
Type−1−−−−→ M6

M3
Type−1−−−−→ M8

M5
Type−1−−−−→ M2

M7
Type−1−−−−→ M4

M1
Type−1−−−−→ M8

M3
Type−2−−−−→ M2

M5
Type−1−−−−→ M4

M7
Type−2−−−−→ M6

Round:2, Level:1 Round:2, Level:2 Round:3, Level:1

M1
Type−1−−−−→ M3

M5
Type−1−−−−→ M7

M2
Type−1−−−−→ M8

M6
Type−1−−−−→ M4

M1
Type−1−−−−→ M7

M5
Type−2−−−−→ M3

M2
Type−1−−−−→ M4

M6
Type−2−−−−→ M8

M1
Type−3−−−−→ M5

M3
Type−3−−−−→ M7

M2
Type−3−−−−→ M6

M8
Type−3−−−−→ M4

the constraints in the problem definition. So, our schedule also does not violate

any of the constraints, which proves the correctness of our algorithm.

2.6 Proof of Results

Theorems related to the analysis of the proposed algorithm and their proofs are

presented in this section.

Let δ(x, y) denote the distance between the teams’ home venues x and y.

Theorem 2.1 All the Type-3 schedule blocks introduce a relative error at most
2

n−2
times the lower bound of TTP-2.

Proof. Suppose for some i ∈ {1, . . . , n
4
}, Ni includes 4 vertices of G i.e., A1, A2,

B1, B2 where A1 and A2 are matched pairs in Gm and so are B1 and B2. For a

Type-3 schedule in between them, travel for each team are given below:

A1 : A1 → B1 → A2 → A1 → B2 → A1

A2 : A2 → B2 → A2 → A1 → B1 → A2

B1 : B1 → A2 → B2 → B1 → A1 → B1

B2 : B2 → B1 → A1 → B2 → A2 → B2.

So the total distance traveled is,

5δ(A1, B1) + 3δ(A2, B1) + 2δ(A1, A2) + 3δ(A1, B2) + 5δ(A2, B2) + 2δ(B1, B2).
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For the minimum travel schedule the value is,

2δ(A1, B1) + 2δ(A2, B1) + 6δ(A1, A2) + 2δ(A1, B2) + 2δ(A2, B2) + 6δ(B1, B2).

So the extra amount of travel is,

3δ(A1, B1) + 1δ(A2, B1)− 4δ(A1, A2) + 1δ(A1, B2) + 3δ(A2, B2)− 4δ(B1, B2).

Using triangle inequality,the above expression is upper bounded by,

2δ(A1, B1) + 2δ(A2, B2) + 2δ(A1, B2) + 2δ(A2, B1).

Let us denote, super-edge Dij between pairs A1, A2 and B1, B2 as,

δ(A1, B1) + δ(A2, B2) + δ(A1, B2) + δ(A2, B1).

where

A1, A2 ∈ Mi and B1, B2 ∈ Mj for some i, j ∈ {1, . . . , n
2
}.

Now, there are n
2
numbers of pair of vertices like A1, A2. If we consider all

pairwise distances between all these n
2
pairs, then we get all the edges of the

complete graph G but the edges of the matching Gm. But among all these
(
n/2
2

)
pairwise distances, we are interested in n

4
matched pairwise distances as described

in line 16 of Algorithm 1, while calculating the error due to all Type-3 schedule

blocks. So, the total error due to Type-3 schedule blocks is bounded by

2 ∗ n/4(
n/2
2

) ∗ (Wt −Wm) <
2

n− 2
∗ (Lower Bound of TTP-2).

Theorem 2.2 All the Type-2 and Type-3 schedule blocks together introduces rel-

ative error at most
⌈log2 n

4 ⌉+4

2(n−2)
times of the Lower Bound of TTP-2.

Proof. Suppose a Type-2 schedule block is designed among 4 vertices of G i.e.,

A1, A2, B1, B2 where A1 and A2 are matched pairs in Gm and so are B1 and B2.

For a Type-2 schedule in between them, travel for each team are given below:
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A1 : A1 → B1 → A1 → B2 → A1

A2 : A2 → B2 → A2 → B1 → A2

B1 : B1 → A2 → A1 → B1

B2 : B2 → A1 → A2 → B2.

So the total distance traveled is,

3δ(A1, B1) + 3δ(A2, B1) + 2δ(A1, A2) + 3δ(A1, B2) + 3δ(A2, B2).

For the minimum travel schedule the value is,

2δ(A1, B1) + 2δ(A2, B1) + 2δ(A1, A2) + 2δ(A1, B2) + 2δ(A2, B2) + 2δ(B1, B2).

So the extra amount of travel is,

δ(A1, B1) + δ(A2, B1) + δ(A1, B2) + δ(A2, B2)− 2δ(B1, B2).

Which is upper bounded by,

δ(A1, B1) + δ(A2, B2) + δ(A1, B2) + δ(A2, B1).

Let us denote the pairwise distance DP (A,B) between pairs A1, A2 and B1, B2 as,

δ(A1, B1) + δ(A2, B2) + δ(A1, B2) + δ(A2, B1).

Now, there are n
2
numbers of pair of vertices like A1, A2. If we consider all pairwise

distances between all these n
2
pairs, then we get all the edges of the complete

graph G but the edges of the matching Gm. But among all these
(
n/2
2

)
pairwise

distances, we have already selected n
4
pairwise distances as described in the proof

of Theorem 2.1 and now we are interested in at most Fn, given in equation 2.1,

pairwise distances as per line 12 or 14 of Algorithm 1, while calculating the error

due to all Type-2 schedule blocks. So, the total error due to Type-2 and Type-3
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schedule blocks is bounded by,

n
8
∗ ⌈log2 n

4
⌉+ n

2(
n/2
2

) ∗ (Wt −Wm) <
⌈log2 n

4
⌉+ 4

2(n− 2)
∗ (Lower Bound of TTP-2).

Theorem 2.3 Our algorithm gives better approximation than existing best result

for number of participating teams less than or equal to 32.

Proof. From the last two theorems we can see that the approximation factor

in our algorithm is 1+
⌈log2 n

4 ⌉+4

2(n−2)
and in the existing best result the approximation

factor is 1 + 2
n−2

+ 2
n
[4]. So for n ≤ 32,

8

n
≤

⌊
log2

64

n

⌋
⇐⇒ 8

n
≤ 4−

⌈
log2

n

4

⌉
⇐⇒

⌈
log2

n

4

⌉
≤ 4− 8

n

⇐⇒
⌈
log2

n

4

⌉
≤ 4

n
(n− 2) ⇐⇒

⌈
log2

n
4

⌉
(n− 2)

≤ 4

n

⇐⇒
⌈
log2

n
4

⌉
2(n− 2)

≤ 2

n
⇐⇒

4 +
⌈
log2

n
4

⌉
2(n− 2)

≤ 2

n− 2
+

2

n
.

This proves the theorem.

2.7 Concluding Remarks

� In this chapter, a better approximation factor than the existing best result

has been achieved for the Traveling Tournament Problem with a maximum

trip length of two with our scheduling algorithm when the number of par-

ticipating teams is less or equal to 32.

� Due to time constraints and other factors, most of the tournaments involving

a number of teams more than 32 are not round-robin tournaments. For

example, a round-robin tournament with 40 teams will require 78 match

days, 1560 matches and 40 grounds, which demand lots of time, human

support and a very long season. That is why most round-robin tournaments

are conducted with less than 32 teams.
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� Therefore, it can be said that for almost all practical cases, the proposed

scheduling algorithm would produce a better result than the existing best

result.

� One of the popular double round-robin tournament in India is Indian Pre-

mier League (IPL) and the number of teams involved in this tournament

was 8 till the last year. This tournament is not in the TTP-2 structure

now. But, if it is scheduled in the TTP-2 structure, the proposed algorithm

will significantly lower the total travel distance. An improved schedule of

IPL using the proposed scheduling algorithm is presented in Appendix-A.2.

It shows a 15% decrease in total travel distance compared to the actual

IPL-2019 schedule.

� As described in our algorithm, we know the specific match days of the sched-

ule where the Type-2 super matches or Flips are to be incorporated. But

as we have specified the pairs of teams between whom the Type-3 super

matches are to be played to minimize the total travel distance due to the

Type-3 super matches, nothing of this kind is done for the Flips. So, a re-

visit in this topic can give some idea about the specific pairs of teams for

minimizing the distance due to the Flips.
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C H A P T E R 3

Complexity of Traveling

Tournament Problem with Trip

Length More Than Three

3.1 Introduction

Sports tournaments are very popular events all over the world. A huge amount

of money is involved in organizing these tournaments, and lots of revenue is gen-

erated by selling the tickets and broadcasting rights. Scheduling the matches is

a very important aspect of these tournaments. Scheduling specifies the sequence

of matches played by each participating team along with the venues. In a Dou-

ble Round-robin Tournament, every pair of participating teams play exactly two

matches between them once in both of their home venues. The Traveling Tour-

nament Problem (TTP) asks for a double round robin schedule minimizing the

total travel distance of the participating teams. The fairness condition imposes

an upper bound k to the maximum number of consecutive home or away matches

played by any team.

TTP was first introduced by Easton, Nemhauser, and Trick [5]. The problem

bears some similarities with Traveling Salesman Problem (TSP). In fact, a reduc-
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tion of the unconstrained version of TTP (or k = ∞) from TSP has been shown by

Bhattacharyya [1] proving the basic problem to be NP-hard. When the maximum

permissible length of consecutive home or away matches is set to 3, TTP is also

proven to be NP-Hard by Thielen and Westphal [2]. In this chapter, the natural

question has been asked, Is TTP NP-Hard for any fixed k > 3?

3.1.1 Problem Definition

Let T be the set of teams with |T | = n. Let ∆ be a square matrix of dimension

n×n whose element at ith row and jth column corresponds to the distance between

the home venues of ith and jth team in T for all i, j ≤ |T |. ∆ is symmetric with

diagonal terms 0 and all the distances in ∆ satisfy triangle inequality.

Definition 3.1 Decision Version of TTP-k: For a fixed natural number k,

an even integer n, a given set of teams T with |T | = n, mutual distances matrix (∆)

and a rational number δ, is it possible to schedule a double round-robin tournament

such that the total travel distance of the tournament is less or equal to δ, where

no team can have more than k consecutive away matches or consecutive home

matches and no team plays its consecutive matches with the same opponent.

3.1.2 Previous Work

The Traveling Tournament Problem was first introduced by Easton, Nemhauser,

and Trick [5]. Since then most of works focused on finding approximation algo-

rithms or heuristics when k = 3 [25, 14, 12, 13, 9]. Thielen and Westphal [2] proved

NP-hardness for TTP-3. In a series of two papers [26, 7] Imahori, Matsui, and

Miyashiro showed approximation algorithms for the unconstrained TTP. Bhat-

tacharyya [1] complemented this by proving the NP-hardness of unconstrained

TTP. For other values of k, only upper bound results are known. Thielen and

Westphal approximated TTP-2 [27] and improved by Xiao and Kou [4]. For TTP-

k with k > 3, approximation algorithms are given by Yamaguchi, Imahori and

Miyashiro [11] and Westphal and Noparlik [10].

Many different problems related to sports scheduling have been thoroughly

analyzed in the past. For detailed surveys and studies on round-robin tournament
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scheduling, the readers are referred to [22, 19, 17]. Graph Theoretic approach for

solving scheduling problems can be found in [28, 3] by De Werra.

3.1.3 Approach towards the Problem

In this chapter, a generalization of the approach by Thielen and Westphal [2] has

been done, which showed the NP-Hardness of TTP-3. Like them, a reduction from

the satisfiability problem has been shown. While [2] showed a reduction from 3-

SAT, a reduction from k-SAT is shown here. However, the reduction shown here

is different in a few crucial aspects. Firstly, the construction of the reduced TTP

instance graph is different from that in [2]. To accommodate trips of length k,

a new graph in terms of vertices and edge weights is required. In addition, the

trip structures and their synchronous assembly to get the tournament schedule

differ from that of TTP-3. The reconstruction of k-SAT with specific properties

of clauses requires a different technique.

3.1.4 Result

Here the main theorem is the following.

Theorem 3.1 TTP-k for a fixed k > 3 is strongly NP-Complete.

3.2 Proof of Theorem 3.1

This reduction requires that the input instance of the satisfiability problem satis-

fies certain properties. The first step is to show that any input instance can be

transformed into an instance with properties required for the reduction. Following

notations are used throughout the chapter. If x ∈ {0, 1} is a boolean variable, x̄

denotes its complement,i.e., x̄ = 1⊕ x.

Lemma 3.1 For a k-SAT instance Fk with t variables and p clauses there exists

another k-SAT instance F ′
k with t′ variable and p′ clauses such that a satisfy-

ing assignment of Fk implies a satisfying assignment of the variables of F ′
k and

vice-versa. Moreover, the number of occurrence of all the t′ variables and there

compliments are equal in F ′
k, t

′ ≤
(
t+ k+1

2

)
and k | p′ with k, t, t′, p, p′ ∈ N.
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Proof. Let xi and x̄i (i ∈ {1, . . . , t}) be the variables in Fk. Suppose ni and

n̄i are the number of occurrence of xi and x̄i in Fk respectively. Without loss of

generality it can be assume that ni ≤ n̄i. To make ni = n̄i, few clauses has been

added to Fk depending on the value of k is even or odd.

1. When k is odd, clauses of the form (xi∨xt+1∨ x̄t+1∨· · ·∨xt+ k−1
2
∨ x̄t+ k−1

2
) are

added until ni = n̄i ∀i ∈ {1, . . . , t} by introducing (k − 1)/2 new variables.

After adding these clauses number of clauses is even due to the Handshaking

Lemma. Then by adding at most (k − 1)/2 pairs of clauses of the form

(xt+1∨ x̄t+1∨ · · · ∨xt+ k−1
2

∨ x̄t+ k−1
2

∨xt+ k+1
2
) and (xt+1∨ x̄t+1∨ · · · ∨xt+ k−1

2
∨

x̄t+ k−1
2

∨ x̄t+ k+1
2
), number of clauses can be made divisible by k keeping

ni = n̄i,∀i ∈ {1, . . . , t+ k+1
2
}.

2. When k is even, then using the Handshaking Lemma it can be said that there

exist even number of indices j ∈ {1, . . . , t} such that (nj + n̄j) is odd. So,

∥nj− n̄j∥ is odd. Without loss of generality, it can be assumed that n̄j > nj.

By identifying two indices of this kind, namely m and n, clauses of the form

(xm∨xn∨xt+1∨ x̄t+1∨· · ·∨xt+ k
2
−1∨ x̄t+ k

2
−1) are added until ∥ni− n̄i∥ is even

∀i ∈ {1, . . . , t} by introducing (k/2− 1) new variables. Now ∀j ∈ {1, . . . , t}
such that nj ̸= n̄j, pair of clauses of the forms (xj∨xt+1∨x̄t+1∨· · ·∨xt+ k

2
−1∨

x̄t+ k
2
−1∨xt+ k

2
) and (xj ∨xt+1∨ x̄t+1∨· · ·∨xt+ k

2
−1∨ x̄t+ k

2
−1∨ x̄t+ k

2
) are added

until nj = n̄j ∀j ∈ {1, . . . , t}. Then by adding at most (k− 1) clauses of the

form (xt+1 ∨ x̄t+1 ∨ · · · ∨ xt+ k
2
∨ x̄t+ k

2
), the number of clauses can be made

divisible by k keeping (ni = n̄i) ∀i ∈ {1, . . . , t+ k
2
}.

Let the resulting k-SAT problem expression be F ′
k with t′ variables and p′

clauses where, k|p′. In both the cases explained above, all the additional clauses

always give truth values. So, F ′
k will have a truth assignment of variables xi

for all i ∈ {1, . . . , t′} if and only if Fk have a truth assignment of variables xi

∀i ∈ {1, . . . , t}. This proves the lemma.

3.2.1 TTP-k is NP-Complete

The first step is to show that TTP-k is indeed in NP.

Lemma 3.2 TTP-k is in NP.
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Proof. In a decision version of TTP-k with given set T of n teams, and the

constraint k it is verifiable in O(n2) whether a schedule is valid and gives a total

travel distance less than δ or not. This ensures the membership of TTP-k in NP.

Next, a reduction from k-SAT to TTP -k has been shown. For this, a specially

weighted graph G = (V,E) has been constructed with one or more teams situated

at each vertex of G and a predefined value δ of total travel distance such that there

is a satisfying assignment of variables for k-SAT if and only if there is a TTP -k

schedule between the teams in G with total travel distance less than δ. First, the

input k-SAT problem is modified using Lemma 3.1 such that the resulting formula

has the following properties.

(a) There are t variables x1, x2, . . . , xt.

(b) Number of occurrence of xi is equal to the number of occurrence of x̄i, i.e.,

ni = ni.

(c) Number of clauses p is divisible by k, i.e., k|p.

3.2.1.1 The Construction

We start with the construction of the reduced instance graph G. Recall that k is

the upper bound of the number of consecutive home or away matches and ni is

the number of occurrences of the variable xi. The main part of the graph is the

union of t many sub-graphs G1, G2, · · · , Gt, where t is the number of variables in

the (modified) input SAT instance. Each Gi consists of (k + 1)ni vertices, where,

(a) ni many vertices are denoted by xi,j and ni many vertices are denoted by

x̄i,j, where j ∈ {1, . . . , ni}.

(b) For j ∈ {1, . . . , ni}, the vertices yi,j denote ni many vertices.

(c) For j ∈ {1, . . . , ni} and l ∈ {1, · · · , k−2}, the vertices wl
i,j are the remaining

(k − 2)ni many vertices.

In addition, there are (k − 1)p + 1 many vertices in the graph where p is the

number of clauses of the (modified) input SAT instance. There is a central vertex
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v. Then there are p vertices of the form Cm and (k − 2)p vertices of the form

zlm ∀l ∈ {1, . . . , k − 2} and ∀m ∈ {1, . . . , p}.
For ease of explanation, we summarize the important parameters related to G.

The total number of vertices in G is
[(∑t

i=1(k + 1)ni

)
+ (k − 1)p+ 1

]
. We also

know that,
∑t

i=1 2ni = kp. So, The total number of vertices other than v in G is(
k(k+1)

2
+ k − 1

)
p, which we denote by a, i.e.,

a =

(
k(k + 1)

2
+ k − 1

)
p = p

(
k2 + 3k − 2

2

)
.

Weights of the edges. Let weight M = θ(a5) is assigned to the edges from

v to the vertices xi,j and x̄i,j, (M −2) to the edges from v to yi,j and (M −2k+4)

to edges from v to wk−2
i,j of Gi for every j ∈ {1, 2, . . . , ni}. Then xi,j is connected

with wk−2
i,j through k − 3 vertices serially namely w1

i,j, w
2
i,j, . . . , w

k−3
i,j , where each

of these consecutive vertices in this serial connection is connected with each other

with an edge of weight 2. Then x̄i,j is connected to w1
i,q with an edge of weight 2

where q = j(mod ni)+ 1 and also yi,j is connected to both xi,j and x̄i,j with edges

of weight 2 each as described in Figure 3.1.

For the connection between the remaining vertices in G, first xi,j or x̄i,j are

connected to cm with an edge of weight 2 if xi or x̄i,j has its j
th occurrence in the

mth clause of the modified k-SAT. Then cm is connected with zk−2
m through k − 3

vertices serially namely z1m, z
2
m, . . . , z

k−3
m , where each of these consecutive vertices

in this serial connection is connected with each other with an edge of weight 2. At

last zk−2
m and cm is connected to v by edges of weights (M − 2k + 6) and (M + 2)

respectively as described in Figure 3.2.

Formally, weights of all the edges of G are listed as follows:

� Weight(wr
i,j, w

s
i,j)=2∥r − s∥ for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}, for

all r, s ∈ {1, . . . , k-2}.

� Weight(xi,j, w
s
i,j)=2s for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}, for all

s ∈ {1, . . . , k-2}.

� Weight(x̄i,j, w
s
i,q)=2s for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}, for all

s ∈ {1, . . . , k-2} and q = j(mod ni) + 1.
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� Weight(xi,j, yi,j)=Weight(x̄i,j, yi,j)=2 for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}.

� Weight(cm, z
r
m)=2r for all r ∈ {1, . . . , k − 2} and for all m ∈ {1, . . . , p}.

� Weight(zrm, z
s
m)=2∥r − s∥ for all r, s ∈ {1, . . . , k − 2} and for all m ∈

{1, . . . , p}.

� Weight(xi,j, cm)=2, if jth occurrence of xi is present in mth clause of the

given k-SAT expression.

� Weight(x̄i,j, cm)=2, if jth occurrence of x̄i is present in mth clause of the

given k-SAT expression.

� Weight(v, wk−2
i,j )=M-2k+4 for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}.

� Weight(v, yi,j)=M-2 for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}.

� Weight(v, xi,j)=M for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}.

� Weight(v, x̄i,j)=M for all i ∈ {1, . . . , t}, for all j ∈ {1, . . . , ni}.

� Weight(v, zk−2
m )=M-2k+6 for all m ∈ {1, . . . , p}.

� Weight(v, cm)=M+2 for all m ∈ {1, . . . , p}.

All other edges in the complete graph G are given the maximum possible

weights without violating triangle inequality.

Creating TTP-k instance. Now, the teams are placed on the vertices of G to

construct the reduced instance.

� Total number of teams is equal to a3 + a.

� At each vertex of G except v, only one team is placed. This set of vertices

or teams is denoted as U .

� a3 teams are situated at v and distance between them is 0 and call this set

of vertices or teams T .

31



Hardness of TTP-k

v

wk� 2
i ,1

wk� 2
i ,2 · · · wk� 2

i ,n i

wk� 3
i ,1

wk� 3
i ,2 · · · wk� 3

i ,n i

...
...

...

w2
i ,1 w2

i ,2 · · · w2
i ,n i

w1
i ,1 w1

i ,2 · · · w1
i ,n i

xi ,1 xi ,1 xi ,2 xi ,2 xi , n i xi , n i

yi ,1 yi ,2 · · · yi ,n i

d1 d1 d1

2 2 2

2 2 2

2 2 2
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Figure 3.1: Sub-graph of G for the ith variable, where d1 = M − 2k + 4

We fix,

δ = M

[
4a4

k

]
+ pa3(k2 − 3k + 6) + 2a(a− 1)k +

4a4

k
.

Lemma 3.3 Weights of the edges of G preserve the Triangle Inequality.

Proof. For a tuple (v, xi,j, yi,j) or (v, x̄i,j, yi,j), for all i ∈ {1, . . . , t} and j ∈
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v
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2
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Figure 3.2: Sub-graph Corresponding to First Clause of the form C1 = (x1 ∨ x̄2 ∨
. . . ), where d2 = M − 2k + 6

{1, . . . , ni}, the triangle inequality is preserved as,

Weight(v, xi,j) = M = Weight(xi,j, yi,j) +Weight(v, yi,j) = 2 + (M − 2),

Weight(v, x̄i,j) = M = Weight(x̄i,j, yi,j) +Weight(v, yi,j) = 2 + (M − 2).

For a tuple (v, xi,j, w
1
i,j) or (v, x̄i,j, w

1
i,j), for all i ∈ {1, . . . , t} and j ∈ {1, . . . , ni},

the triangle inequality is preserved as,

Weight(v, xi,j) = M = Weight(xi,j, w
1
i,j) +Weight(v, w1

i,j) = 2 + (M − 2),

Weight(v, x̄i,j) = M = Weight(x̄i,j, w
1
i,j) +Weight(v, w1

i,j) = 2 + (M − 2).
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For a tuple (v, xi,j, cm) or (v, x̄i,j, cm), where j
th occurrence of xi or x̄i is present

in themth clause of the given k-SAT expression, the triangle inequality is preserved

as,

Weight(v, cm) = M + 2 = Weight(xi,j, cm) +Weight(v, xi,j) = 2 +M,

Weight(v, cm) = M + 2 = Weight(x̄i,j, cm) +Weight(v, x̄i,j) = 2 +M.

The triangle inequality for all other tuples of three vertices in G is followed

from these three cases as the weights are given maximum possible values without

violating triangle inequality while assigned.

3.2.2 The Reduction

As a desired value of δ has been derived, now the only remaining part is the

reduction. First, we show that a given satisfying assignment of variables in a

k-SAT ⇒ a TTP-k schedule of total travel distance less than δ. The tours for

the a3 vertices situated at v are constructed and we then show that, these tours

are so cheap in terms of travel distance that tours of similar structure must be

there in a tournament where the total travel distance is desired to be as low as

possible. So, a
k
node disjoint tours are constructed for a team at v where, all the

vertices xi,j, x̄i,j, yi,j, w
r
i,j, cm, z

r
m are visited. It is given that there is a satisfying

assignment of variables in the k-SAT. Let us define two conditions denoting with

the value of a variable bm in the following manner,

bm = 1 =⇒ ∃ i ∈ {1, . . . , t} such that xi = 1 & xi appears in the mthclause.

bm = 0 =⇒ ∃ i ∈ {1, . . . , t} such that xi = 0 & x̄i appears in the mthclause.

For all m ∈ {1, . . . , p}, if bm = 1 then Weight(xi,j, cm) = 2. Now, to visit a

team at cm only, a team in v has to travel 2(M + 2) distance. But if it travels to

a vertex xi,j, then to cm and travel through z1m to zk−2
m and return to v, it travels

the same distance, 2(M + 2), and also visits k vertices in a single trip which is a

desired situation here. Afterwards in another trip to a vertex x̄i,j, in spite of a to

and fro journey to x̄i,j only, i.e., 2M , if it travels to wk−2
i,q first then through all ws

i,q
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for q = j(mod ni)+ 1 and s ∈ {1, . . . , k− 3} to x̄i,j and yi,j and returns back to v,

the travel distance is same as 2M and also k vertices will be visited in a single trip.

Multiple trip to these extra (k− 1) vertices would cost much more in comparison.

Similar tours are taken when bm = 0 only interchanging xi,j and yi,j with x̄i,q and

yi,q respectively. This leaves (k − 2)p/2 number of xi,j type vertices to visit. As

k|p, this can be done in p(k− 2)/2k trips each of length k and travel distance less

than 2(M + k(k − 1)). So the total distance traveled by a team situated at v is

upper bounded by δ1, where,

δ1 = 2(M + 2)p+Mkp+M(k − 2)p/k + (k − 1)(k − 2)p

= p

[
M

(
k + 3− 2

k

)
+ k2 − 3k + 6

]
.

With tours involving distance M is minimized by covering exactly k vertices in

each of the tours. Now these tours can be numbered from 1 to a
k
and vertices in

each tour can be numbered from 1 to k. So, all the a vertices of U are named

as ui,j for all i ∈ {1, . . . , k} and j ∈ {1, . . . , a
k
} such that ui,j is the ith visited

team of the jth tour. Also the vertices in T are partitioned in a2 disjoint sets

T1, T2, . . . , Ta2 each of size a. Moreover, Tq = {tr,q such that r ∈ {1, . . . , a}}. The
tours by the teams in T are now designed in such a way that, t1,1 will take tour

number 1, i.e., travel through u1,1, u2,1, . . . , uk,1. Then, u1,1, u2,1, . . . , uk,1 visit t1,1

in the same order. Similarly, for all i ∈ {2, . . . , k}, ti,1 follows the same tour and

visited by the same teams as t1,1 but with a time delay of (i − 1). This way all

the teams in T1 first complete visits to all the teams in tour 1 and then get visited

by them. Then T1 starts tour 2. This way teams in T1 plays with the teams in

tour 1 to tour a
2k

in such a way that the teams in T1 visit first and then they get

visited. Similarly, teams in Tq for all q ∈ {1, . . . , a2
2
} follow a similar travel like T1.

The matches between teams in Tq for all q ∈ {a2

2
+ 1, . . . , a2} and the teams in U

that are in tour j, for all j ∈ { a
2k

+ 1, . . . , a
k
} are also played in a similar fashion

with the change that the teams in U visit the teams in T first and then they get

visited by the teams in T . This way the sets T and U both are divided in two
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parts according to the teams they completed playing. Formally,

Ta =

a2/2⋃
q=1

Tq, Tb =
a2⋃

q=a2/2+1

Tq, Ua =

a/2k⋃
j=1

Sj, Ub =

a/k⋃
j=a/2k+1

Sj.

Afterwards by changing the roles of Ta and Tb, matches between teams in Ta and

Ub are arranged and similarly between teams in Tb and Ua. So, the main remaining

part is schedule of matches between the teams in U and that of the teams in T .

For scheduling matches between teams in U , the teams in U are catego-

rized in k categories depending on their occurrence in the tours, i.e., for all

i ∈ {1, . . . , k}, Ui = {ui,j such that j ∈ {1, . . . , a
k
}}. For all i, the teams in Ui

play against the teams in T at the same slots but half of them play at home and

the other half play away. More specifically the teams in Ui play with the teams

in T at exactly on the slots (2i − 1) to (2a3 + 2i − 2). Keeping these busy slots

in mind, the schedule of a single round-robin tournament of the teams in U is

designed using the canonical tournament introduced by de Werra[3]. This is done

by assigning a vertex to each of the teams in a Ui in a special graph as done in

the canonical tournament design. This tournament structure gives assurance that

each team plays every other team exactly once and no team has a long sequence of

home and away matches. Here a match between i and j signifies a match between

a team in Ui and a team in Uj. In the end, the same tournament is repeated with

changed match venues, i.e., nullification of home field advantage.

Now the only remaining part is scheduling of the matches between the teams

in T . Let d(t), ∀ t ∈ T denote the first slot on which team t plays a team in U and

let Ti = {t ∈ T such that ((d(t)− 1)mod k) + 1 = i}, for all i ∈ {1, . . . , k}. Then
every Ti is partitioned into 2a2 groups of cardinality a

2k
such that d(t1) = d(t2) for

every two members t1, t2 of the same group. For every Ti, the matches between

teams in different groups in Ti are scheduled. Among the teams in Ti,
a
k
will always

be busy playing with some teams of U . To handle this fact, two dummy groups U1

and U2, as defined before, are introduced that play with these busy a
k
teams of Ti.

Then each group is treated as a team and again canonical tournament structure

is applied only skipping the day at which the two dummy groups meet.

For scheduling the matches between the members of two groups g and h of Ti
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in l rounds, where g = {g1, g2, . . . , gl} and h = {h1, h2, . . . , hl} the following steps

are done. The ith round contains the matches between hj and g((i+j) mod l)+1 for

all i, j ∈ {1, 2, . . . , l} with game taking place at the home of hj. This restricts the

lengths of away trips and home stands for all the teams from being long. Then

the same schedule is repeated with altered venues. Matches between the teams of

some group of Ti with the teams of a dummy group has already been taken care

when the matches between U and T were designed.

Now, for the scenario where the two dummy groups meet, two kinds of matches

are there which differ in length. The encounter between two groups consists of a
k

slots, while the encounter between two dummy groups, i.e., U1 and U2 consists of

a slots. The encounters between the groups of Ti are scheduled in the usual way

using a
k
slots and the extra (k−1)a

k
slots are used to schedule matches between the

teams in different Ti’s.

To schedule matches between the teams in different Ti’s, first each Ti is par-

titioned in two equal size, namely Ti,1 and Ti,2. Now, considering each Ti,j as a

single team for all i ∈ {1, 2, . . . , k} and all j ∈ {1, 2}, a canonical tournament is

again applied on these teams skipping the day at which Ti,1 encounters Ti,2 for all

i. This scenario can be achieved by properly initializing the canonical tournament.

Then the same schedule is repeated with altered venues to nullify home advantage

as done in all earlier canonical tournament structures.

For a team situated in one of the vertex in E \ v to visit the teams in v, it has

to travel at most 2(M+2)a3

k
using a3

k
trips of length k. So, the total travel distance

of all the teams in E \ {v} to the teams in v can be bounded by δ2, where,

δ2 =
2(M + 2)a4

k
.

As all the distances between the vertices in E \ {v} in G is less or equal to 2k,

the travel between all the teams in E \ {v} can be bounded above by δ3, where,

δ3 = 2a(a− 1)k.

The teams in T visit each other at zero cost as they are situated at the same

point. So, the total travel distance of the tournament is bounded by,
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δ1 · a3 + δ2 + δ3

= a3p

[
M

(
k + 3− 2

k

)
+ k2 − 3k + 6

]
+

2(M + 2)a4

k
+ 2a(a− 1)k

= δ.

In another way,

δ = Ma3
[
p

(
k + 3− 2

k

)
+

2a

k

]
+ pa3(k2 − 3k + 6) + 2a(a− 1)k +

4a4

k

= M

[
4a4

k

]
+ pa3(k2 − 3k + 6) + 2a(a− 1)k +

4a4

k
.

This completes the first direction of the proof.

3.2.3 Proof of the other direction

For the other direction of the proof, it has to be shown that k-SAT is not satisfiable

implies that a TTP-k schedule of total travel distance less than δ is not possible.

Here we are given that there is no satisfying assignment of variables of the k-SAT.

In the forward direction of the proof explained above, it is shown that the proposed

schedule is compact and gives an optimized travel distance value for the teams’

tours in T to the teams in U . But the travels are designed depending on a truth

assignment of x variables. The travel to cm vertex goes through a xi,j or x̄i,j which

is there in the mth clause of the k-SAT and assigned with value 1. Also, the other

variable among these two covers yi,j and ws
i,j for all i, j together in another tour.

Let’s assume that there exist optimum tours similar to the forward direction of

the proof, although there is no satisfying assignment of variables of the k-SAT. So,

there is an optimum path through each cm for all m ∈ {1, . . . , p} that includes a

vertex xi,j or x̄i,j which is present in the mth clause of the k-SAT expression. Now,

if value 1 is assigned to each of these variables, then that must end in a wrong

assignment of variables as it contradicts the assumption otherwise. This implies

that xi,j = x̄i,j = 1 has been assigned for some i ∈ {1, . . . , t} and j ∈ {1, . . . , ni}.
That means both xi,j and x̄i,j are included in optimized tours from v to ci and
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cj, where i, j ∈ {1, . . . , p}. Now, it will not be possible to design a trips from v,

that includes yi,j, w
1
i,j, . . . , w

k−2
i,j , for all i ∈ {1, . . . , k} and j ∈ {1, . . . , a

k
} using the

optimized trips. So, it is not possible to cover all the cm, yi,j, w
s
i,j for all i, j along

with all xi,j for all i, j using these optimized tours. To cover all the vertices in U ,

each of the a3 vertices of T has to tour at least once more to the vertices of U .

These extra tours will increase the total travel distance by at least 2·M ·a3. As the
total travel distance by the teams in U for matches among them is O(a2), the tours

of the teams of T to those of U dictate the total travel distance of the tournament.

So, an increase in this part will increase the total distance significantly and for

M being θ(a5), the total travel distance will be more than δ. This completes the

other direction of the proof and the reduction.

3.3 Concluding Remarks

� In this chapter, the general Traveling Tournament Problem-k for any natural

number k > 3 has been proven to be NP-Hard.

� In literature, TTP-3 and TTP-∞ has been proven to be NP-Hard. So the

result in this chapter closes the complexity analysis of the Traveling Tour-

nament Problem.
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C H A P T E R 4

Firefighter Problem with

Minimum Budget: Hardness and

Approximation Algorithm for

Unit Disk Graphs

4.1 Introduction

Firefighter Problem on a graph is broadly described by saving vertices of a

graph from fire by placing firefighters on them. Suppose there is a graph G(V,E).

Fire breaks out at one of the vertex s ∈ V . The vertex s is called the source of the

fire. Now at each time instance, the fire spreads to the neighbors of all the vertices

on fire unless a firefighter is placed on them to stop it. Firefighter Problems can

be classified into two main categories depending on the objective, i.e., Max-Save

and Min-Budget. In the Max-Save version, the goal is to save the maximum

number of vertices possible. In contrast, in the Min-Budget version, the goal is

to save a given set of vertices using the minimum number of firefighters at each

time instance. The formal definitions are given below.
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Definition 4.1 Firefighter Max-Save Problem

Input: Graph G(V,E), source vertex of fire s ∈ V and maximum number of

firefighters allowed to be placed at each time instance d ∈ N.
Question: At most how many vertices can be saved from fire and what is the

strategy?

Definition 4.2 Firefighter Min-Budget Problem

Input: Graph G(V,E), source vertex of fire s ∈ V and a set of vertices to be

saved T ⊂ V .

Question: What is the minimum number of firefighter required at each time

instance to save the vertices in T?

The firefighter problem has very important relevance to many real-life situa-

tions. Suppose a malicious program or virus is spreading through a communication

network and our goal is to prevent some nodes in the network from this virus by

using some preventive measures for some nodes. This real-life scenario can be

seen as a firefighter problem on a graph where the virus is like a spreading fire,

the preventative measure can be thought of as firefighters and the graph has the

same topology as the communication network. In another case, suppose sensitive

data or information has been leaked in a communication network and the flow of

the information to some vulnerable or less secured nodes is needed to be restricted.

This scenario also can be modeled as a firefighter problem, where the information

can be seen as the spreading fire and the vulnerable nodes as the vertices to be

saved using firefighters. Both the versions of the firefighter problem can be solved

in polynomial time for interval graphs, split graphs and permutation graphs. The

case of unit disk graphs is considered here.

Unit Disk Graph represents the intersection of the disk graph and interval

graph. For each vertex u in the graph, there is a disk of radius 1 in the Euclidean

plane. There is an edge between vertex u and v if v is inside the unit disk centered

at u.

Definition 4.3 A Unit Disk Graph is an undirected graph formed by corre-

spondence with a set of disks of unit radius on a euclidean plane, where each disk

corresponds to a vertex in the graph and two vertices have an edge in between them

if their corresponding disks intersect in the euclidean plane.
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Unit Disk Graphs are relevant to communication networks. In almost all prac-

tical wireless communication networks, the routers have the same communication

range, which can be modeled as disks of coverage area similar to a unit disk graph.

Also, measures have to be taken to prevent any virus or sensitive information from

reaching a node, which is the same as placing firefighters on some vertices in the

firefighter problem. In a practical scenario of communication networks, the goal is

to keep the sensitive data away from some specific nodes in the network, given the

network topology. This case resembles the Min-Budget version of the Firefighter

Problem, where the source vertex of fire and a set of vertices to be saved from the

fire are given. At each instance of time, the minimum number of firefighters is to

be placed to meet the objective of saving the given set of vertices.

4.1.1 Our Results

In this chapter, NP-Hardness of Firefighter Min-Budget Problem on Unit Disk

Graphs has been shown and also a 2-approximation algorithm for the problem has

been presented by proving the following two theorems.

Theorem 4.1 The Firefighter MIN-BUDGET problem on unit disk graph is NP

hard.

Theorem 4.2 There exists an approximation algorithm of Firefighter MIN-BUDGET

Problem on unit disk graph with a constant approximation factor of 2.

4.1.2 Previous Works

The Firefighter problem has a rich history of work. Some results which are most

relevant to our work are mentioned. For a detailed account, the readers are referred

to the survey on results, directions and open questions related to firefighter prob-

lems by Finbow and MacGillivray [29]. The firefighter problem was introduced by

Hartnell [30] who studied the way to protect an infinite graph from a spreading

virus. Hartnell [31] showed that a simple 2-approximation algorithm exists for

Firefighter Max-Save Problem. Wang and Moeller [32] showed 2 firefighters are

required to control the fire in a finite 2-dimensional grid with a minimum of 8
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steps and (r-1) firefighters are required to save an r-regular graph. Develin and

Hartke [33] further added that at least 18 vertices would burn to do so and (2n-

1) firefighters can hold a fire in an n-dimensional grid if a fire breaks out in a

single vertex. MacGillivray and Wang [34] proved the NP-hardness of firefighter

problem on Bipartite graphs and gave a polynomial time algorithm for the same

problem on P-trees and also gave an integer programming to determine an op-

timal sequence of vaccinating the vertices. This work was followed by the work

by Hartke [35] to narrow the integrality gap between the integer programming

optimal and the optimal of the linear programming relaxation. Finbow, King,

MacGillivray and Rizzi [36] showed that the Max-Save version of the firefighter

problem is NP-hard on trees with a maximum degree 3. However, suppose a fire

breaks out at a vertex with degree 2. In that case, the problem is in P. Chlebikova

and Chopin [37] showed the complexity of firefighter problem is governed by path

width and maximum degree of a graph. Work on parameterized complexity of

firefighter problems can be found in the works by Bazgan, Chopin and Fellows

[38] and Cygan, Fomin and Van Leeuwen [39]. Anshelevich, Chakrabarty, Hate

and Swamy [40] considered both spreading and non-spreading vaccination models

of firefighter problem to show the NP-hardness of approximation of the problem

within n1−ϵ for any ϵ. Fomin, Heggernes and Van Leeuwen [41, 42] considered the

Max-Save Firefighter problem and gave a polynomial time algorithm for interval

graphs, split graphs, permutation graphs and proved NP-hardness of the problem

on Unit Disk Graphs. Online firefighter problem and fractional firefighter problem

were introduced by Coupechoux, Demange, Ellison and Jouve [43] and they also

gave the optimal competitive ratio and asymptotic comparison of the number of

firefighters and the size of the tree levels. In another work, Clark, Colbourn and

Johnson showed the NP-completeness of different graph problems on unit disk

graphs [44].

4.1.2.1 Previous Works on the Min-Budget version

Resource Minimization for Fire Containment is similar to the Min-Budget version

of the Firefighter Problem. King and MacGillivray [45] showed that Resource

Minimization for Fire Containment (RMFC) is NP-hard on full trees of degree
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3. They also showed that the 2-approximation is hard as well, but on graphs of

maximum degree 3, if a fire breaks out at a vertex of degree 2, the problem is in

P. In a follow-up work of Chalermsook and Chuzhoy [46], the authors showed an

O(log n)-approximation LP-rounding algorithm for RMFC on trees.

4.2 Notation and Preliminaries

The following notations are used throughout this chapter.

� |S| denotes the size of the set S.

� In the Euclidean space, dℓ2(u, v) denotes the ℓ2 norm (i.e., Euclidean dis-

tance) of two points u and v.

� For an undirected, connected, simple graph G, (G, s) denotes an instance of

the firefighter problem with s as the source vertex of fire.

� VG and EG denote the vertex set and the edge set of G respectively.

Definition 4.4 Decision Version of Min-Budget Firefighter Problem in

Unit Disk Graph

Input: A unit disk graph G(V,E), a vertex s ∈ V , a subset T ⊆ V and B ∈ N.
Question: Can all the vertices of T be saved by placing at most B number of

firefighter at each time instance when the fire starts from s?

Definition 4.5 Interval Graph

An interval Graph is an undirected graph formed by correspondence with a set of

intervals on real line, where each interval corresponds to a vertex in the graph and

two vertices have an edge in between them if their corresponding intervals intersect.

In the field of economics, interval graphs and unit disk graphs represent the

resource allocation networks. One use case of firefighter problem on interval graph

or unit disk graph is when we need to stop the distribution of some malicious

product through a resource allocation network.

Our approximation algorithm for Firefighter Min-Budget Problem on Unit Disk

Graph uses the algorithm for Firefighter Min-Budget Problem on Interval Graphs.
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4.3 Proof of Theorem 4.1: the Reduction

A reduction is shown from the Firefighter Problem for Trees with a maximum

degree three, which is NP-hard. The proof idea is similar to the proof of the MAX-

SAVE version by Fomin et al. [42]. The first step is to transform an instance of

the MIN-BUDGET Firefighter problem on Trees with a maximum degree three to

an instance of the MIN-BUDGET firefighter problem on a unit disk graph. To do

that, an embedding of any full rooted tree of degree three into a unit disk graph

is shown in following section.

4.3.1 The Construction

Let (T,Γ, B) be the input instance of the firefighter problem on Trees with a

maximum degree three, where Γ denotes the set of vertices to be saved and B

denotes the budget. The first step is to embed T into a unit disk graph TG.

Rectilinear Embedding. Let T be a full rooted tree of maximum degree

three and r be the root of T . Let m be the number of vertices in T . A new vertex

s is added to the tree and connected to r. Let us call the new graph T ′ rooted at

s with number of vertices, N = m+ 1 vertices.

The leaves of the new graph T ′ are numbered according to their appearance in

the pre-order traversal starting from s. Then, for each non-leaf vertex, number it

with the median of the numbers corresponding to its children. If any of them has

two children, then number it with the maximum number belonging to its children.

After numbering all the nodes in this fashion, the vertex v gets the number n(v).

The embedding works in the following way. Put the vertex s at the coordinate

(2n(s), 0). Let v be any other vertex. Suppose the parent of v is u and u has

been placed at (Xu, Yu). The vertex v is placed at (Xv, Yv), where Xv = Xu +

2 (n(u)− n(v)), and Yv = Yu + 2 (N − |n(u)− n(v)|).
The edges are drawn as paths parallel to the axes. The edge between u and

v is drawn as follows. Draw a line of length 2 (N − |n(u)− n(v)|) in the positive

Y direction from u and then take a 90 degree turn and draw a line of length

2|n(u) − n(v)| in the positive or negative direction of X axis, according to the

positive or negative values of n(u)−n(v) respectively. By this construction method

the embedding is indeed a rectilinear embedding. Moreover, in this embedding
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each edge is of length exactly 2N and has at most one bend. A 90 degree shift

or rotation in the path has been termed as bend here.

The final step of our transformation is the following. On each edge start-

ing from a parent u to a child v in T ′, 2N − 1 new vertices are placed equal

distance apart in the path joining u to v. These new vertices are denoted by

W 1
v , . . . ,W

2N−1
v , where W 1

v is adjacent to u and W 2N−1
v is adjacent to v. Finally,

for each vertex v ∈ T ′, W 1
v is split 2N − 1 times and W 2

v ,W
3
v , ....,W

2N−1
v , v are

split 4N − 1 times. This graph is called TG.

Lemma 4.1 TG is a unit disk graph.

Proof. Consider any edge (w1, w2) in TG. By construction, w1, w2 are two

adjacent vertices in the path joining some vertices u and v of T . As all the paths

are drawn parallel to one of the axis, dℓ2(w1, w2) = 1.

For the other direction, consider any non-adjacent pair of vertices w1, w2 of TG. If

the vertices are in a path joining two vertices of T in the embedding, then there

is at least one vertex between w1 and w2 in the path. As the vertices are placed

at distance 1, and each path has only one bend, dℓ2(w1, w2) ≥
√
2 > 1.

Suppose, w1 and w2 are in different paths. By construction, distance between

two completely different paths in TG is at least 2. If some part of the paths are

same, then dℓ2(w1, w2) ≥
√
2 > 1. Hence, all the non adjacent vertices in TG are

more than unit distance away from each other.

For saving a vertex of the tree T , only one of its predecessors had to be vac-

cinated at some time instance. In another way, it can be said that at most, one

firefighter is used at each time step towards saving a vertex in T . As the topology

of the unit disk graph, TG is kept similar to that of the tree T ; the same rule

applies here also.

The last step of the above construction produces 4N images of every vertex

v ∈ T . Let ΓG be the set of all 4n images for each of the vertices Γ. The constructed

instance of the firefighter problem is (TG,ΓG, B). The following lemma proves the

correctness of the reduction.

Lemma 4.2 (TG,ΓG) is a YES instance for the Decision version of the Minimum

Budget Firefighter Problem on the unit disk graph if and only if (T,Γ) is a yes
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instance of the Minimum Budget Firefighter problem on tree with maximum degree

3.

4.3.1.1 Proof of Lemma 4.2

The proof of Lemma 4.2 follows from the following two lemmas.

Lemma 4.3 There is a strategy to save all 4N images of some vertex v of TG in

firefighter game if and only if there is a strategy to save all 2N images of W 1
v of

TG.

Proof. If in the graph TG all the 4N images of some vertex v are saved, then

it means at least one of the vertices W 2
v ,W

3
v , ....,W

2N−1
v , v had all its 4N images

vaccinated till fire came to that level or all the 2N images of W 1
v were vaccinated

before the fire came to it. Now, if the first case is true for v or some W k
v where

k ∈ {2, 3, . . . , 2N−1} and at each time instance only one vertex can be vaccinated

towards saving v, then at least 2N images of W k
v were vaccinated when the fire

reached to W 1
v . Then, in spite of vaccinating 2N images of W k

v , all the images of

W 1
v could be vaccinated.

Also, in a contra-positive sense, if by any optimal strategy all the 4N images of v

can’t be saved before it reaches that level, then at least one vertex of W 1
v must be

infected when the fire reaches its level. So in TG, saving v means saving W 1
v and

vice-versa.

To make this argument valid for W 1
t , where t is the child of r in T , the extra

vertex s to T is added in the construction.

Lemma 4.4 There is a strategy to save W 1
v where W 1

u can’t be saved in TG in

firefighter game if and only if there is a strategy to save v where u can’t be saved

in T given v is the child of u in T .

Proof. Now to correspond the unit disk graph problem to the case of a full

rooted tree of maximum degree three problem, it is sufficient to prove that,

1. If it is possible to save vertex v while its parent u can’t be saved in a full

rooted tree, then it is possible to save W 1
v when W 1

u can’t be saved in TG.
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2. In a contra-positive sense, if there is no strategy to save v while its parent

u is infected in T , then there is no strategy in TG to save W 1
v when W 1

u is

infected and fire came ahead of it.

Now, for case 1, when u just gets infected and the fire is about to come towards

v, v is vaccinated. A similar case in TG will be when the fire reachesW 1
u and affects

some of its images, vaccination of the images of W 1
v is started and it takes 2N

time steps to reach W 1
v by then all the images of it are vaccinated and save W 1

v .

For case 2, when u is infected, fire started to move towards v and by no strategy,

v can be vaccinated. The similar case in TG will be when W 1
u is already infected,

fire moved towards u and affected W 2
u , still it is not possible to start vaccinating

the copies of W 1
v . Then by the time fire reaches W 1

v , all the images of it can’t be

saved as it will take 2N − 1 time steps and 2N vertices have to be vaccinated. So,

W 1
v can’t be saved.

In lemma 4.3, the equivalence in terms of burning or saving between vertices

v and W 1
v of graph TG has been shown and in lemma 4.4, the equivalence of

saving strategies of vertex W 1
v in graph TG and vertex v in graph T has been

shown. These two lemmas together prove that saving or burning of vertex v in

graphs TG and T are equivalent and thus prove lemma 4.2.

Lemma 4.1 and Lemma 4.2 together proves Theorem 4.1.

4.4 Approximation Algorithm for MIN-BUDGET

problem

Firefighter problems on interval graphs are polynomial-time solvable. Keeping

this fact in mind, the underlying geometry of the unit disk graph in the Euclidean

space can be modified a bit to get another geometry with a polynomial time

solution.

Following is the polynomial time algorithm for the firefighter problem on in-

terval graphs, which will be extended later for an approximation algorithm for the

same problem on the unit disk graph.
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4.4.1 Exact Algorithm for Interval Graph

Let (G(V,E), v, T ) be an instance of the MIN-BUDGET Firefighter Problem on

the Interval graph, where v is the source vertex and T ⊂ V is the set of vertices

to be saved. The algorithm for Interval Graphs is described in Algorithm 2.

Algorithm 2 Algorithm for Firefighter Min-Budget Problem on Interval Graph

INPUT: G(V,E), v, T | where G is an Interval Graph, v ∈ V be the source
vertex of fire and T ⊆ V be the set of vertices to save.
T1 = T ∩N(v)
T ′ = T \ T1

V1 = V
A1 = |N(v)|
B1 = |T1|
for i = 2 : n : 1 do
if |T ′| ≠ 0 then
Vi = Vi−1 \ Ti−1.
Gi(Vi, Ei)|∀u, v ∈ Vi, (u, v) ∈ E ⇒ (u, v) ∈ Ei

Ti = {t ∈ T ′|DistGi
(v, t) = i}

Bi =
⌈∑i

k=1 |Tk|
i

⌉
Ai =

⌈∑i−1
k=1 |Tk|+|Ki|

i

⌉
end if

end for
if maxi Bi ≤ mini Ai then
The Budget is maxiBi and firefighters are to be placed on T

else
Let miniAi = Am, The Budget is max(Am,maxk Bk|k < m) and firefighters
are to be placed on ∪m−1

i=1 Ti ∪Km

end if

4.4.2 Description of Algorithm 2

Algorithm 2 deals with the problem in two ways:

1. At each step, it identifies the vertices of T which are vulnerable to fire using

the variable Bi.
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2. It also identifies the cut-set of the remaining vertices in T with the vertices

on fire at each time instance using the variable Ai.

After these calculation it determines the optimum result. In the process it

requires some other parameters namely Vi, Gi, Ti where,

� Vi is the set of vertices that are not vaccinated till the (i−1)th time instance.

� Gi is the induced graph of G on Vi.

� Ti is the set of vertices to save which are at distance i from the source vertex

in Gi.

The correctness of the algorithm has been proven below.

4.4.3 Correctness of Algorithm 2

Lemma 4.5 In the optimal strategy, Firefighters have to be placed on Ti, if not

placed on all the vertices of Ki at the ith time instance.

Proof. Consider the ith time instance. Suppose, there are some unprotected

vertices of Ti. Moreover, suppose there are some vertices in Ki where no firefighter

is placed. Then ∃ ui ∈ Ti, where fire reaches to the unprotected vertices of Ti at

the ith or the (i+ 1)th time instance, which is not permitted. So, firefighters have

to be placed on the unprotected vertices of Ti at the ith or the (i + 1)th time

instance. So, placing the firefighters on Ki \ Ti at the ith time instance will be

waste of firefighters and will also increase the budget. So, it will be wise to place

the firefighters either on Ki or on Ti at the ith time instance.

Lemma 4.6 If at the ith time instance firefighters are placed on Ki then fire will

never reach to Tk, ∀ k ≥ i.

Proof. Suppose, at the ith time instance firefighters are placed on all vertices

of Ki, then fire can never reach to any of the vertices of Wi : Wi = Ti \Ki. The

span of Wi ≥ 1 as the intervals are of unit length. So, fire will never reach to Tk

for all k ≥ i.
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If at some level i, the better strategy is to put firefighters on Ki then the fire

fighting process will stop at that time instance. So, either firefighters have to be

placed on Ki at the ith time instance and on Tk’s at corresponding time instance

for k < i or firefighters have to be placed on Ti’s ∀i. Now, if the optimum strategy

is to place fire fighters on Ki at the i
th step then the budget must be greater than

both Am and maxk Bk|k < m, where mini Ai = Am as both are the necessary

conditions. But, if maxi Bi ≤ mini Ai, then maxi Bi gives the optimum budget as

a necessary condition. This proves the correctness of the algorithm.

4.5 Approximation Algorithm for Unit Disk Graph

4.5.1 Description of Algorithm 3

The algorithm for minimum budget firefighter problem on unit disk graph is based

on the algorithm for minimum budget firefighter problem on unit interval graph

described in Algorithm 2. The problem on unit disk graph has been considered

as a combination of four simultaneous interval graph problems in four different

directions, i.e., left(l), right(r), up(u), down(d). For a given graph G(V,E) and

a fire break-out point v ∈ V , the minimum budget of firefighters to be placed at

each time instance has to be found to save a given set of vertices T ⊆ V .

As a first step, all the unit disks corresponding to the vertices of G are replaced

by their circumscribing squares with sides parallel to the rectilinear axes of the

plane. Then the vertices of G are sorted in two different arrays, one according

to the X-coordinates of the centers of their corresponding squares and the other

according to the Y-coordinates of the centers of their corresponding squares. These

two sorted arrays are for later use in different algorithm stages.

Afterwards, squares corresponding to the disk v i.e., (Sv) and its boundaries

(Sv
m), boundaries of the burning rectangle (Ri

m) at the ith iteration and direction

m, Set of vertices saved (T i
m) at the ith iteration and direction m, vertices saved

in the ith iteration (T i) and in each direction (T i
m), vertices at the boundary of

the burning rectangle at the ith iteration in each direction (Ci
m), Budget required

at each direction (B)m and set of vertices on which firefighters to be placed (Vm)
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Algorithm 3 Firefighter Min-Budget Problem on Unit Disk Graph
1: INPUT: G(V,E), v, T | where G is an Unit Disk Graph, v ∈ V be the source vertex of fire

and T ⊆ V be the set of vertices to save.
2: Replace all the disks by their circumscribing squares with sides parallel to coordinate axes

and G(V,E) becomes an Unit Square Graph.
3: ∀vi ∈ V sort them according to the Xi

l values of their corresponding Square Si in increasing

order. If Xi
l = Xj

l then sort them according to their increasing order of Y i
d and Y j

d .
4: ∀vi ∈ V sort them according to the Y i

d values of their corresponding Square Si in increasing

order. If Y i
d = Y j

d then sort them according to their increasing order of Xi
l and Xj

l .
5: The boundaries of the burning rectangle (R) be, R0

l = Xv
l , R

0
r = Xv

r , R
0
u = Y v

u , R
0
d = Y v

d .
6: T 0 = ϕ.
7: T ′ = T \ T 0.
8: V0 = V .
9: C0

m = {v}∀m ∈ {l, r, u, d}.
10: for i = 1 : n : 1 do
11: if T ′ ̸= ϕ then
12: V i

r = W | ∀w ∈ W ⊂ V,Ri−1
r − 1 < Sw

l < Ri−1
r & Ri−1

d − 1 < Sw
d < Ri−1

u & ∃v ∈
Ci−1

r |(Sw
l − Sv

l )
2 + (Sw

d − Sv
d)

2 ≤ 1.
13: V i

l = W | ∀w ∈ W ⊂ V,Ri−1
l + 1 > Sw

r > Ri−1
l & Ri−1

d − 1 < Sw
d < Ri−1

u & ∃v ∈
Ci−1

l |(Sw
r − Sv

r )
2 + (Sw

d − Sv
d)

2 ≤ 1.
14: V i

u = W | ∀w ∈ W ⊂ V,Ri−1
u > Sw

d > Ri−1
u − 1 & Ri−1

l − 1 < Sw
l < Ri−1

r & ∃v ∈
Ci−1

u |(Sw
l − Sv

l )
2 + (Sw

d − Sv
d)

2 ≤ 1.
15: V i

d = W | ∀w ∈ W ⊂ V,Ri−1
d < Sw

u < Ri−1
d + 1 & Ri−1

l − 1 < Sw
l < Ri−1

r & ∃v ∈
Ci−1

d |(Sw
l − Sv

l )
2 + (Sw

u − Sv
u)

2 ≤ 1.
16: for m ∈ {l, r, u, d} do
17: T i

m = T ∩ V i
m.

18: if V i
m \ T i

m ̸= ϕ then
19: Ci

m = V i
m \ T i

m

20: else
21: Ci

m = Ci−1
m

22: end if
23: Ri

m = Xv
m||Xv

m| = maxw |Xw
m|∀w ∈ Ci

m

24: end for
25: T i = T i

r ∪ T i
l ∪ T i

u ∪ T i
d.

26: T ′ = T ′ \ T i.
27: Vi = Vi−1 \ T i.
28: Gi(Vi, Ei)|∀u, v ∈ Vi, (u, v) ∈ E ⇒ (u, v) ∈ Ei.
29: Ki

m = Minimum Cut-set of V i
m in Gi where, m ∈ {r, l, u, d}.

30: Bi
m =

⌈∑i
k=1 |Tk

m|
i

⌉
where, m ∈ {r, l, u, d}.

31: Ai
m =

⌈∑i−1
k=1 |Tk

m|+|Ki
m|

i

⌉
where, m ∈ {r, l, u, d}.

32: end if
33: end for
34: B = 0,V = ϕ.
35: for each m ∈ {r, l, u, d} do
36: Tm = ∪n

i=1T
i
m.

37: Bm = 0,Vm = ϕ.
38: if maxi B

i
m ≤ mini A

i
m then

39: Then Budget Bm is maxi B
i
m and firefighters are to be placed on Vm = Tm

40: else
41: Let mini A

i
m = At

m, Then Budget Bm is max(At
m,maxk B

k
m|k < t) and firefighters are

to be placed on Vm = ∪t−1
i=1T

i
m ∪Kt

m.
42: end if
43: B = B+Bm.
44: V = V ∪ Vm.
45: end for
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are defined.

Now at each iteration, the new set of vertices whose corresponding squares have

an intersection with the burning rectangle is identified and also filtered depending

on whether their connected disks have an intersection with any of the disks corre-

sponding to the set of vertices constituting the boundary of the burning rectangle

at the previous iteration. Then the burning rectangle and its boundary, vertices to

be saved at the current iteration, the set of vertices constituting the new boundary

of the burning rectangle and the minimum cut set of the vertices that completely

hold fire at the current iteration is updated. Depending on the cut set and the

saved vertices at each iteration, the budget for each direction, along with the final

budget and the set of vertices to be placed firefighter on, are calculated.

Lemma 4.7 Algorithm 3 produces an approximation solution for the Firefighter

Min- Budget Problem on Unit Disk Graph with approximation factor 2.

Proof.

Let there be n vertices in the unit disk graph G(V,E), where v be the source

vertex of fire and T ⊂ V be the set of vertices to be saved. First, the disks are

replaced with circumscribing squares with sides parallel to the coordinate axes.

This problem can be seen as four firefighter MIN-BUDGET problems on Unit

interval graphs by observing that fire can spread in the up, down, left or right

direction accordingly starting from v. So, our algorithm for the MIN-BUDGET

problem on Interval Graph can be used simultaneously in the four directions

around v. Due to this modification, the shape of the region of influence of fire

at any time becomes a rectangle called the Burning Rectangle. The algorithm

accounts for the boundary vertices of this burning rectangle at each time instance.

Due to this geometric assumption, two kinds of errors are introduced, namely:

Topological Error and Time Dependent Error.

The Topological Error can be observed in terms of getting a denser graph

and, as a result, vaccinating more vertices than required in the actual scenario.

But this error can be eliminated by checking at each time instance whether a

vertex to save in consideration is indeed within the unit distance of any of the

boundary vertices of the burning rectangle.
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But the Time Dependent Error can not be eliminated. Due to the burning

rectangle assumption, a vertex corresponding to a unit disk centered at (X, Y )

can burn as early as at Max(X, Y ) time instant, while in actual case, it can take

at most 2(X + Y ) time. As the fire has to travel at most 2k squares to reach

(k, 0) point starting from (0, 0). The limiting case arises when every square has a

neighbor square slightly shifted in the X direction and the Y direction. Due to

this error, the partial average of the budget can be as big as 2(X+Y )
max(X,Y )

times the

optimum. As 2(X+Y )
max(X,Y )

≤ 2, this gives an approximation factor of 2.

4.5.2 Correctness of the Algorithm

In the algorithm for Minimum Budget Firefighter Problem on Unit Disk Graph,

the algorithm for Minimum Budget Firefighter Problem on Interval Graph has

been applied simultaneously in four directions, namely, upwards, downwards, left

and right, using the subscript m. So the correctness of the algorithm in each

of these four directions is guaranteed by the correctness of the algorithm for the

interval graph that is already proved in subsection 4.4.3.

It should also be noted that due to the geometric assumption of the burning

rectangle, an approximation factor of 2 has been introduced by this algorithm as

described in Lemma 4.7.

4.6 Concluding Remarks

� In this chapter, the Firefighter Min-Budget Problem on Unit Disk Graphs

has been proven to be NP-Hard.

� Also, an approximation algorithm of Firefighter Min-Budget Problem on

Unit Disk Graphs with an approximation factor of 2 has been presented in

this chapter.
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C H A P T E R 5

An Approximation Algorithm of

Firebreak Problem on Split

Graphs

5.1 Introduction

In many real-life communication, distribution and social networks, it is seen that a

set of nodes or elements are very strongly connected and the other nodes are only

connected to this strongly connected part of the network. This kind of network

structure resembles split graphs where the set of vertices can be split into two sets,

namely a clique or complete graph and an independent set.

When a malicious program or contagion starts spreading through a network,

then to contain it or to save some vertices of the network firefighter problem

is introduced. In a firefighter problem, the malicious program or contagion is

considered as fire and the goal is to save vertices from the fire. The firefighter

problem has two main variants, namely max-save and min-budget. In the Max-

save variant, the goal is to save maximum number of nodes by placing firefighters.

In the Min-budget variant, the goal is to save a given set of vertices by placing

the minimum number of firefighters on the nodes at each time instance. But in
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both variants, the common part is that the firefighters can be placed on different

vertices over time, making it a game between the firefighters and the fire.

Now, if the scenario changes in such a way that the firefighters must be placed

at once and the certain number of vertices of the graph to be saved, then the

firefighter problem becomes a firebreak problem. Like the max-save version of the

firefighter problem, maximizing the number of saved vertices is unnecessary. Also,

unlike the min-budget version of the firefighter problem, only the desired number

of vertices has to be saved instead of any specific set of vertices. This difference

from the firefighter problem makes it interesting. In a firebreak problem, we need

to place firefighters on some nodes of the network at once to save a given number

of nodes of the network. In another way, this problem is similar to the vertex cut

problem. But the difference is no specific set of saved vertices is given here. So the

firebreak problem on different graph classes has different hardness levels. Due to

its similarity with the current pandemic situation, the firebreak problem on split

graphs is a very relevant problem today.

A use case of the firebreak problem on split graphs can be seen in the privacy

policy on sharing content on Facebook with friends of friends. Suppose a Facebook

user wants to share a content with friends of friends. Then the content will be

seen by all the users within 2 distance from the source user of the content and

can not be seen outside this set of users. This can be seen as a firebreak problem

where the content can not reach the next level of users.

The firebreak problem on trees and intersection graphs is solvable in polynomial

time, but in the case of split graphs, the problem has been proven to be NP-hard

by Barnetson et al.[47]. This chapter presents an approximation algorithm with

an approximation factor of 2.

5.1.1 Previous Work

The firebreak problem is a special version of the firefighter problem and was in-

troduced by Barnetson, Burgess, Enright, Howell, Pike and Ryan [47]. The fire-

fighter problem was first introduced by Hartnell [30]. Harnell also showed a simple

2-approximation algorithm for Firefighter Max-Save Problem[31]. The firefighter

problem has a rich history of work. Some results relevant to this chapter are
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mentioned here. For a detailed account, readers are referred to the survey on re-

sults, directions and open questions related to firefighter problems by Finbow and

MacGillivray [29]. MacGillivray and Wang proved NP-hardness of the firefighter

problem on Bipartite graphs [34]. Fomin, Heggernes and Van Leeuwen considered

the max-save firefighter problem and gave a polynomial time algorithm for interval

graphs, split graphs and permutation graphs and also proved NP-hardness of the

problem on Unit Disk Graphs in [41, 42]. Borgatti first introduced a dissemination

problem related to the Firebreak Problem, where the goal is to select a set S of

k vertices of a graph G from where reaching G \ S is easy, along with a similar

separation problem in 2002 [48]. Borgatti also connected these two problems with

the key player problem in [49]. Applicability of the firebreak problem to the ro-

bustness of networks can be found in [50, 51, 52]. k-way vertex cut problem has

lots of similarities with the firebreak problem. Computational complexity of k-way

vertex cut problem on different types of graphs can be found in [53, 54, 55, 56]. A

survey by Lalou, Tahraoui and Kheddouci gives an insight into detecting critical

nodes of a network[57]. Works on edge-based version of the firebreak problem can

be found in [58, 59, 60].

5.1.2 Some Definitions

Definition 5.1 (Firebreak Problem) For a graph G(V,E) and a source of fire

s where s ∈ V , the firebreak problem asks for the minimum size of the subset S

of V \ {s} such that, placing firefighters on the vertices of S at least t number of

vertices of V \ (S ∪ {s}) can be saved from fire.

Definition 5.2 (Split Graph) A graph G(V,E) is called a split graph if its’ set

of vertices V can be split into two disjoint subsets A and B where A induces a

clique in G and B induces an independent set in G.

Definition 5.3 (t-Subset Cover) Let N={1, 2, . . . , n−1, n} and A,B, · · · ⊂ N .

The t-Subset Cover of N is the minimum sized subset T of N where at least t

among the given subsets of N are subsets of T .
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5.1.3 Problem Definition

Definition 5.4 (Firebreak Problem on Split Graph) For a given split graph

G(V,E), a natural number t and a source vertex of fire s ∈ V , the firebreak prob-

lem on G asks for the minimum size of the set T ⊂ (V \ {s}) such that in the

induced graph of G on V \ T at least t vertices are disconnected with s.

5.1.4 Our Result

Theorem 5.1 There is an approximation algorithm for the Firebreak Problem on

a split graph with an approximation factor of 2.

5.1.5 Correspondence of Firebreak Problem on Split Graphs

with t-Subset Cover

In this section, the correspondence between the Firebreak Problem on Split Graphs

and Subset Cover Problem has been established by proving the following theorem.

Let a given split graph G(X ∪ Y,E) has partitions of vertices X and Y where

X is the set of vertices of the clique and Y is the set of vertices of the independent

set. Suppose a solution to the firebreak problem on G to save t vertices is desired.

The vertices of X are denoted with numbers 1, 2, . . . and the vertices of Y are

denoted with alphabets a, b, . . .. Let |X| = n and |Y | ≥ t as otherwise, the

firebreak problem has no solution. There are no edges between the vertices in Y

as, by definition, they induce an independent set in G. Now each of the vertices

of Y i.e., a, b, . . . correspond to subsets γa, γb, . . . of X where γy = N(y) for all

y ∈ Y where N(y) is the set of neighbors of y in G.

Theorem 5.2 Firebreak Problem on Split Graph G to save t vertices is equivalent

to t-Subset Cover Problem where the vertices of X are elements and γy for all

y ∈ Y are the subsets.

Proof. The following lemmas are used to prove this theorem.

Lemma 5.1 All the firefighters has to be placed on the vertices in X.
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Proof. If fire breaks at a vertex s in X, then there is no point in placing

firefighters on the vertices of Y as saving them will not save any further vertices

of the graph. So all the firefighters must be placed on vertices of X. If fire breaks

at a vertex y ∈ Y , then either firefighters have to be placed on all the elements of

γy or the fire will reach some of the vertices of X as γy ⊆ X and the scenario will

merge with the first case. Now, if firefighters are placed on all the elements of γy,

then the only remaining job will be to check whether n − |γy| − 1 ≥ t as in this

case, fire can not spread further. If n− |γy| − 1 < t then firebreak problem has no

solution. But, if n− |γy| − 1 ≥ t then it is to be checked that whether there are t

vertices y1, y2, . . . , yt ∈ Y \ {y} such that,

t⋃
i=1

γyi < γy

which is also a Firebreak Problem on an induced sub-graph of G with vertex set

X ∪ Y \ {y}. So in all the cases, firefighters are placed on the vertices in X. This

proves the lemma.

Lemma 5.2 All the saved vertices can be assumed to belong to the set Y .

Proof. If a fire starts from a vertex in X, then the fire will reach all the other

vertices of X unless placed firefighters on, as the vertices of X induces a clique in

G. So they can not come in the set of saved vertices. Now, if the fire starts from

a vertex y ∈ Y , then either firefighters will be placed on all the elements of γy and

fire will be contained or some of the vertices in X will be open to fire. In the first

case, some vertices in X may be saved but to verify the correctness of the result,

the firebreak problem on an induced sub-graph of G by the vertex set X ∪Y \{y}
has to be examined, which makes the saving of vertices of X of no interest. In the

latter case, it is the same as the source of fire in X with delayed by an instance of

time. So in all the cases, the vertices of Y are considered for inclusion in the set

of saved vertices. This proves the lemma.

Lemma 5.3 Firefighters are placed on the smallest set of vertices in X that covers

at least t number of subsets of X corresponding to the vertices of Y .
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Proof. Here the goal should be finding the minimum number of vertices in X

for placing the firefighters on to save at least t number of vertices in Y . To save

a vertex y ∈ Y , the firefighters must be placed on all the elements of γy. Now to

save t such vertices in Y , it is needed to find a set of vertices y1, y2, . . . , yt ∈ Y

such that
t⋃

i=1

γyi is minimum. So saving t vertices in a firebreak problem in a split

graph G becomes the same as covering t subsets of X. This proves the lemma.

These three lemmas together prove the theorem 5.2.

5.1.6 Some Measures for t-Subset Cover Problem

Let dy be the degree of a vertex y ∈ Y . So |Ny| = |γy| = dy. We define f(y) = 1
dy

for all y ∈ Y . It can be observed that by including a neighbor of a vertex y ∈ Y

in T we are actually covering 1
dy

part of the set y. Now for each vertex x ∈ X we

define,

F (x) =
∑

y∈(Y ∩N(x))

f(y). (5.1)

C(y) =
∑

x∈N(y)

F (x). (5.2)

Definition 5.5 The density of a vertex y ∈ Y is defined as

Dy =
|N(y)|
C(y)

. (5.3)

5.2 Our Technique

Our technique involves a greedy algorithm based on density, as defined in the

previous section. We mainly follow a Density Based algorithm and in the end

do a little modification to get an approximation factor for our algorithm.

First, the set of neighbors for all the vertices in X and Y are formed. Let

Tden be our resulting subset of X that covers at least t vertices of Y . So we

initialize Tden = ϕ. All the neighbors of y1 ∈ Y are included in Tden where y1 has

the minimum density among all the vertices in Y . If two or more vertices in Y
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have minimum density, then we break the tie using the partial coverage of other

vertices in Y by their neighbors and select the one which covers the greater part

of another vertex in Y . Then we modify the set of neighbors for all vertices that

are not selected in both the sides X and Y and recalculate the densities of the

remaining vertices of Y .

We repeatedly apply the steps mentioned above on the modified settings till a

position where including neighbors of any remaining y ∈ Y makes the number of

covered vertices in Y more than t. If the inclusion makes the number of covered

vertices exactly t, then we give that Tden as our output. Otherwise, we go to the

next step where we look for the vertex in Y that is not covered by Tden till now

and has the minimum degree in the modified scenario. Then we include all its

neighbors in X that are not included in Tden and give the |Tden| as our result.

When the density-based part of the algorithm stops after covering (t − k)

vertices of Y by the elements of Tden where t ≥ k ≥ 1, it can be proved that the size

of Tden at that step is optimum if the firebreak problem is posed for (t−k) in spite of

t. Intuitively it may seem that a sequence of selected subsets may exist other than

that selected by our density-based algorithm, which keeps the cumulative density

of the selected subsets even smaller. Also, it can be proved that in that case, one

subset among the selected subsets will have an even smaller density than their

cumulative density. The cumulative density of these subsets is lesser than that of

the selected subsets using our density-based algorithm. Now, one of the selected

subsets in our algorithm will have more density than the cumulative density of

the subsets in our density-based algorithm. So there will be a contradiction that

why this subset with higher density was chosen over an existing less dense subset.

This shows that there can not be a situation like this. A detailed proof of this is

given in the proof section of the chapter.

5.2.1 Our Algorithm

The algorithm for t-Subset Cover Problem is presented in Algorithm-4.
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Algorithm 4 Algorithm for t-Subset Cover Problem

Input: Split graph G(V,E).
Determine the set of vertices X ⊂ V that induces clique in G.
Determine the set of vertices Y ⊂ V that induces independent set in G.
Determine f(y) for all y ∈ Y .
Calculate F (x) for all x ∈ X.
Calculate Dy for all y ∈ Y . {Calculation of initial densities }
Initialize Tden = ϕ. {Initialization of resulting set}
Initialize Z = ϕ. {Initialization of dummy set resulting subsets}
for |Z| < t do
Find y ∈ Y such that Dy is minimum among all Di’s for i ∈ Y .
Modify Z = Z ∪ y. {Inclusion of minimum density subset}
Modify Y = Y \ y. {Modification of set of subsets}
Modify X = X \N(y).{Modification of set of elements}
Modify F (x) for all x ∈ X.
Modify Dy for all y ∈ Y . {Modification of densities}
if Dy = 0 for some y ∈ Y then
Modify Z = Z ∪ y. {Considering the automatically included subsets}
Modify Y = Y \ y.

end if
if |Z| ≤ t then
Tden = Tden ∪N(y). {Including the elements of covered subset}

end if
end for {Condition checking for repeating the steps}
if |Z| > t then
Find y ∈ Y such that N(y) \ Tden is minimum.
Tden = Tden ∪N(y). {Inclusion of elements in the final step}

end if
Output: |Tden|.
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5.3 Proof of Results

In this section, all the proofs supporting the methods, techniques and results of this

chapter have been discussed. First, some conditions for the firebreak problem on

split graphs have been proved. Then the correspondence of these conditions with

the t-subset cover problem is shown. As the algorithm described in this chapter

gives an approximate solution to the t-subset cover problem, the application of

the algorithm in this case and its correctness are shown. At last, the correctness

of the approximation factor has been proved.

Theorem 5.3 It is sufficient to assume that the source vertex of the firebreak

problem on a split graph belongs to the clique and we need to save some of the

vertices of the independent set by placing firefighters on some of the vertices of the

clique.

Proof. To prove the theorem, the following lemmas are used.

Lemma 5.4 For the firebreak problem on split graphs, firefighters need not be

placed on the vertices in the independent set of the split graph.

Proof. In a split graph, any vertex in the independent set has edges only with

some of the vertices of the clique. Now in a firebreak problem, we are trying to

save its neighbors in the clique by placing firefighters on this vertex. But if this

vertex is the source of fire, then we can not place a firefighter on it by definition.

Also if the source of fire is any other vertex in the clique or the independent set,

then the fire reaches the vertices that we are trying to save first and then to the

vertex that we are placing firefighter on. So there is no point in placing a firefighter

on the vertex. This proves the lemma.

Lemma 5.5 In a firebreak problem on split graphs, it is enough to consider only

the vertices in the independent set for inclusion in the set of vertices to be saved

and a vertex in the clique as the source of the fire.

Proof. In a firebreak problem, the set of saved vertices consist of those vertices

where the fire can not reach due to placing firefighters. Now, if the source vertex

belongs to the set of the clique of the split graph, then each of the other vertices in
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the clique is directly connected to the source. So these vertices will either be brunt

or will be placed firefighters upon to save some of the vertices of the independent

set; thus can not be included in the set of saved vertices. If the source vertex

belongs to the independent set, placing firefighters on all its neighbors, all other

vertices of the graph can be saved but that may not be the minimum number of

vertices to place firefighters on to save the given minimum number of vertices. So

we need to check whether the set of neighbors of the source is indeed the minimum

sized set of vertices to place fighters on. For that, if we do not place firefighters on

all its neighbors, then one of the vertices in the clique gets fire and the case turns

out to be the same with a source of fire in the clique. Thus again, with the same

logic, none of the vertices in the clique can be put in the set of the saved vertices

and the source of the fire can always be considered as one of the vertices of the

clique. These two cases, depending on the location of the source of fire, cover all

the possibilities and proves the lemma.

These two lemmas together prove the theorem 5.3.

From the theorem above, it can be observed that some of the vertices of the

clique will be burnt and on others, firefighters will be placed to save some of the

vertices of the independent set as the vertices of the clique are connected with

each other directly. So the problem comes down to finding a t sized subset of the

independent set where the size of the union of the neighbors of its elements is min-

imum. The problem can be seen from another angle. If all the edges of the clique

are removed from the graph, it will become a bipartite graph with the vertices

of the clique and the independent set of the main graph as the two partitions.

Suppose each vertex of the independent set of the main graph is considered as

sets and their neighbors in the bipartite graph as their elements. In that case, the

problem turns into t-Subset Cover problem on the set of vertices in the clique

of the main graph, with the sets corresponding to the vertices in the independent

set of the main graph being the subsets.

The algorithm described in the chapter is used to get an approximate result

of this t-Subset Cover problem. So an approximate solution to the Firebreak

Problem on Split Graphs can also be found from this. Now the only part

remaining is to prove the correctness of the algorithm and the approximation

ratio.
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According to the technique described in the previous section, suppose the

density-based greedy algorithm stops when the number of subsets covered is (t−k)

where k ∈ {0, 1, 2, . . . , t}. In this scenario, it can be shown that this result is op-

timum for the (t-k)-Subset Cover Problem .

Theorem 5.4 If the density based greedy algorithm part of the approximation

algorithm for t-Subset Cover Problem halts after covering (t− k) subsets then

that is the optimal result for (t-k)-Subset Cover Problem on the same graph.

Proof. The theorem will be proved by contradiction. Suppose the density-

based greedy part of the algorithm halts after covering (t−k) subsets. Let t−k =

m and these subsets are covered by p elements. Suppose the optimum result

for covering be n (where n ≤ p) and in the optimum case the covered subsets

are {y1, y2, . . . , ym}. Let the elements that cover these m subsets are given as

{x1, x2, . . . , xn}. Now the following lemmas will help to prove the theorem.

Lemma 5.6 There is a subset of vertices yi for i ∈ {1, 2, . . . ,m} such that its

density is less or equal to n
m
.

Proof. Let the size of each subset yi be di for i ∈ {1, 2, . . . ,m} and each

xj occurs in Dj number of yi’s for j ∈ {1, 2, . . . , n}. This yi’s are vertices of G

and subsets in t-Subset Cover Problem. So the density of these subsets can be

calculated using the definition of density of a vertex in section 5.1.6. Density of

each subset yi will be,

Density of yi =
di

C(yi)
.

Lemma 5.7
m∑
i=1

di =
n∑

j=1

Dj.

Proof. The m number of subsets yi for i ∈ {1, 2, . . . ,m} are completely covered

by the n elements xj for j = {1, 2, . . . , n}. Also these n elements occur in these

m subsets exactly Dj times each respectively. Now if the sum over all di’s of the

m subsets is calculated, it gives exactly the total number of occurrences of the n

elements in these m subsets which is the sum over all Dj. This proves the lemma.
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Lemma 5.8 For two positive real sequences {a}n and {b}n if bi ≥ bj =⇒ ai
bi
≤ aj

bj

for all i, j ∈ {1, 2, . . . , n} then

n∑
i=1

ai
bi

n
≥

n∑
i=1

ai

n∑
i=1

bi

.

Proof. Let there be bi number of positive real elements of value ai
bi

for all

i ∈ {1, 2, . . . , n} and without loss of generality it can be assumed that,

a1
b1

≤ a2
b2

≤ a3
b3

≤ · · · ≤ an−1

bn−1

≤ an
bn

.

So it is evident that in this set of values, the lower values are high in number and

higher values are low in number. Also, the numerator of the RHS of the inequality

is the sum of all the elements and the denominator is the total number of elements

as, sum of the elements

=
n∑

i=1

ai×bi
bi

=
n∑

i=1

ai.

So the RHS is the arithmetic mean or average of all the elements. Also the LHS

of the inequality is the arithmetic mean of some of the elements of the set leaving

some of the smaller elements i.e., average of nbn of elements where each ai
bi

has

been taken into account bn times as, Average of these elements

=

bn
n∑

i=1

ai
bi

nbn
=

n∑
i=1

ai
bi

n
.

So as some of the smaller elements are not considered in the LHS for averaging,

the LHS will be bigger than the RHS This proves the lemma.

Lemma 5.9 For two positive real sequences {a}n and {b}n there exists an i for

which ai
bi
≤

n∑
i=1

ai

n∑
i=1

bi

.

Proof. In the proof of the previous lemma, it is shown that if there are bi

number of positive real elements of value ai
bi

for all i ∈ {1, 2, . . . , n} then RHS of

the inequality to prove becomes the arithmetic mean or the average of all these

elements. So if all the elements are not equal to this average, there is an element
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5.3 Proof of Results

that is less than this average. Otherwise, they are all equal to the average itself.

This proves the lemma.

Lemma 5.10
m∑
i=1

C(yi) ≥ m
n

n∑
j=1

Dj.

Proof. By definition,

m∑
i=1

C(yi) =
m∑
i=1

∑
xj∈yi

F (xj) =
m∑
i=1

∑
xj∈yi

∑
yp∈N(xj)

f(yp).

It can be observed that due to the double integration each f(yi) is summed
∑

xj∈yi
Dj

times for i ∈ {1, 2, . . . ,m}. So,

m∑
i=1

C(yi) =
m∑
i=1

f(yi)
∑
xj∈yi

Dj =
m∑
i=1

∑
xj∈yi

Dj

di
.

Now it is assumed that,

di ≥ dp =⇒

∑
xj∈yi

Dj

di
≤

∑
xj∈yp

Dj

dp

for all i, p ∈ {1, 2, . . . ,m}. The validity and supporting statements are given in

the next lemma.

So

m∑
i=1

C(yi) ≥
m

m∑
j=1

D2
j

m∑
j=1

Dj

≥
m

m∑
j=1

Dj

n
=

m

n

n∑
j=1

Dj.

Lemma 5.11 di ≥ dp =⇒

∑
xj∈yi

Dj

di
≤

∑
xj∈yp

Dj

dp
for all i, p ∈ {1, 2, . . . ,m}.

Proof. Suppose in the optimum solution of the (t− k)-subset cover problem

two subsets yi and yp are selected where di ≥ dp and∑
xj∈yi

Dj

di
≥

∑
xj∈yp

Dj

dp
.
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This implies that the subset with more elements has a higher average degree of its

elements. But with this higher average degree, its elements cover fewer subsets,

which implies that the subsets they are part of are comparatively bigger and tend

to make the optimum result bigger. So this contradicts the result being optimum

and proves the lemma.

So
m∑
i=1

di

m∑
i=1

C(yi)
≤ n

m

which implies that there exists an i ∈ {1, 2, . . . ,m} such that di
C(yi)

≤ n
m

and also

proves the lemma.

Now, the algorithm described in this chapter starts by including the subset

with a lower density. So it is evident that in the latter part of the algorithm, the

included subsets have a higher density than its final average density, i.e., p
m

> n
m
.

Now, if there is a subset in the optimum result with a density less than n
m
, then it

could have been added in the later part of our algorithm if not already included

earlier. It can be concluded that all the subsets with a density less than p
m

are

already included in the algorithm described in this chapter. So if all these common

subsets are excluded from both sides, then the average density of the remaining

subsets in the optimum result must be higher than that of the proposed algorithm,

which contradicts the optimity of the optimum result. This proves our theorem.

As the density based part of the proposed algorithm gives the optimum result

for (t− k)-Subset Cover Problem for some k ∈ {0, 1, 2, . . . , t}, this result will
be less than the optimum result for t-Subset Cover Problem . Otherwise, the

optimity of the results will be contradicted. Now, if k = 0, the optimum result

is obtained by the density-based part of the proposed algorithm. If k ̸= 0, then

according to the proposed algorithm, those new elements are included in Tden that

increases its size the least.

Lemma 5.12 The number of the new elements added to Tden in the last step of

the proposed algorithm is less than the optimum result of the t-Subset Cover

Problem.
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5.4 Concluding Remarks

Proof. Let the number of new elements added in the last step of the proposed

algorithm be l. Now, if it is greater than the optimum result of t-Subset Cover

Problem then there must be a subset with a size less than l whose all the elements

are not included in the Tden. Otherwise, the density-based part of the proposed

algorithm would have given the optimum result for t-Subset Cover Problem .

In that case, this subset will have fewer new elements that can be added to get the

optimum result for the problem. But this contradicts our assumption of l being

the smallest number of elements. So by contradiction, it can be proved that l is

less than the optimum result of the t-Subset Cover Problem .

Now both part of the proposed algorithm, i.e., the density-based part and the

inclusion of new elements at the last step, includes less number of elements than

the optimum result of the t-Subset Cover Problem . So the proposed algorithm

will provide a result within 2 times the optimum result of the t-Subset Cover

Problem . This proves Theorem 5.1.

5.4 Concluding Remarks

� The firebreak problem in a network is similar to the current pandemic situ-

ation in the world and also fits in a case of the spread of malicious program

through a communication network. To contain the spread, it is necessary to

know that on which nodes precautions have to be taken.

� When the network is a split graph, then an optimal solution in polynomial

time is not possible. But this chapter presents an approximation algorithm

that restricts the number of vertices where the precaution must be taken

within 2 times the optimal result.
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C H A P T E R 6

Conclusions and Scope of Future

Work

With the goal to study the hardness and provide an approximate result of some

graph theoretic problems, this thesis has achieved the following:

� Studied the complexity of the Traveling Tournament Problem with a con-

straint on the maximum length of home stands and away trips of the par-

ticipating teams and proved the NP-Hardness of the same when the value

of the upper bound of the length is any natural number greater than 3.

� Closed the complexity analysis gap of constrained Traveling Tournament

Problem.

� Presented an approximation algorithm of Traveling Tournament Problem-2

that give better result in practical cases than the existing best result when

the number of participating teams is less than 32 and a multiple of 4.

� Studied the computational complexity of Firefighter Problem on Unit Disk

Graphs and proved that the Min-Budget version of the problem is NP-Hard.

� Presented an approximation algorithm of Firefighter Problem on Unit Disk

Graphs with an approximation factor of 2.
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Conclusion

� Studied Firebreak Problem and gave an approximation algorithm of the

problem on Split Graphs with an approximation factor of 2.

6.1 Future Scopes

The process of inquiry carried out in this thesis leads one to the following ques-

tions worthy for further study:

1. The Traveling Tournament Problem with Maximum Trip Length Two is

assumed to be NP-Hard and approximation algorithms are attempted. There

is no proof of the problem being NP-Hard. Can it be proved to be NP-Hard?

2. As the Traveling Tournament Problem-k has been proven to be NP-Hard for

k > 3 and k ∈ N, Can there be any efficient approximation algorithm for

TTP-k?

3. Although the Firefighter Problem has been to be NP-Hard on general graphs

and many different graph classes, the complexity analysis of the problem on

several other graph classes can be attempted.

4. Can the approximation factor for the Firefighter Problem on Unit Disk

Graphs be further improved than the one presented in this thesis?

5. Complexity analysis of the Firebreak problem on different classes can be

tried.

6. Does there exist an approximation algorithm of the Firebreak Problem on

Split Graph with an approximation factor less than 2?
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A P P E N D I XA

Appendix

A.1 More Examples of Schedule

Schedules for n = 20, 24, 28 are given below for a better insight of our algorithm.

A.1.1 Schedule for n = 20

Vertex Set = {1, 2, . . . , 19, 20}. Set of Pair of vertices = {M1,M2, . . . ,M10};
where M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12},
M7={13,14}, M8={15,16}, M9={17,18}, M10={19,20}; and N1={M1, M5},
N2={M2, M10}, N3={M3, M9}, N4={M4, M7}, N5={M6, M8}.

Table A.1: Schedule for Tournament with 20 Teams

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3

M1
Type−1−−−−→ M2

M3
Type−1−−−−→ M4

M5
Type−1−−−−→ M6

M7
Type−1−−−−→ M8

M9
Type−1−−−−→ M10

M1
Type−1−−−−→ M4

M3
Type−1−−−−→ M6

M5
Type−1−−−−→ M8

M7
Type−1−−−−→ M10

M9
Type−1−−−−→ M2

M1
Type−1−−−−→ M6

M3
Type−2−−−−→ M8

M5
Type−1−−−−→ M10

M7
Type−2−−−−→ M2

M9
Type−1−−−−→ M4
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Round:1, Level:4 Round:1, Level:5 Round:2, Level:1

M1
Type−1−−−−→ M3

M8
Type−2−−−−→ M10

M5
Type−1−−−−→ M7

M2
Type−1−−−−→ M4

M9
Type−1−−−−→ M6

M1
Type−1−−−−→ M8

M10
Type−1−−−−→ M4

M5
Type−1−−−−→ M3

M2
Type−1−−−−→ M6

M9
Type−1−−−−→ M7

M1
Type−2−−−−→ M7

M10
Type−1−−−−→ M6

M5
Type−2−−−−→ M4

M2
Type−1−−−−→ M3

M9
Type−1−−−−→ M8

Round:2, Level:2 Round:3, Level:1 Round:4, Level:1

M7
Type−1−−−−→ M3

M10
Type−1−−−−→ M1

M4
Type−1−−−−→ M6

M2
Type−1−−−−→ M8

M9
Type−1−−−−→ M5

M7
Type−1−−−−→ M6

M10
Type−1−−−−→ M3

M4
Type−2−−−−→ M8

M2
Type−2−−−−→ M5

M9
Type−1−−−−→ M1

M7
Type−3−−−−→ M4

M10
Type−3−−−−→ M2

M8
Type−3−−−−→ M6

M5
Type−3−−−−→ M1

M9
Type−3−−−−→ M3

Number of Flips= 7 = ⌊F20⌋.

A.1.2 Schedule for n = 24

Vertex Set ={1, 2,. . . , 23, 24}. Set of Pair of vertices = {M1,M2, . . . ,M10,M11,M12};
where M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12},
M7={13,14},M8={15,16},M9={17,18},M10={19,20},M11={21,22},M12={23,24};
andN1={M9,M5}, N2={M1,M7}, N3={M11,M3}, N4={M10,M6}, N5={M2,M4},
N6={M8,M12}.

Table A.2: Schedule for Tournament with 24 Teams

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3 Round:1, Level:4

M1
Type−1−−−−→ M2

M3
Type−1−−−−→ M4

M5
Type−1−−−−→ M6

M7
Type−1−−−−→ M8

M9
Type−1−−−−→ M10

M11
Type−1−−−−→ M12

M1
Type−1−−−−→ M4

M3
Type−1−−−−→ M6

M5
Type−1−−−−→ M8

M7
Type−1−−−−→ M10

M9
Type−1−−−−→ M12

M11
Type−1−−−−→ M2

M1
Type−1−−−−→ M6

M3
Type−1−−−−→ M8

M5
Type−1−−−−→ M10

M7
Type−1−−−−→ M12

M9
Type−1−−−−→ M2

M11
Type−1−−−−→ M4

M1
Type−1−−−−→ M8

M3
Type−1−−−−→ M10

M5
Type−1−−−−→ M12

M7
Type−1−−−−→ M2

M9
Type−1−−−−→ M4

M11
Type−1−−−−→ M6
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A.1 More Examples of Schedule

Round:1, Level:5 Round:1, Level:6 Round:2, Level:1 Round:2, Level:2

M1
Type−1−−−−→ M10

M3
Type−1−−−−→ M12

M5
Type−1−−−−→ M2

M7
Type−1−−−−→ M4

M9
Type−1−−−−→ M6

M11
Type−1−−−−→ M8

M1
Type−2−−−−→ M12

M3
Type−1−−−−→ M2

M5
Type−2−−−−→ M4

M7
Type−1−−−−→ M6

M9
Type−2−−−−→ M8

M11
Type−1−−−−→ M10

M12
Type−1−−−−→ M2

M3
Type−1−−−−→ M1

M4
Type−1−−−−→ M6

M7
Type−1−−−−→ M5

M8
Type−1−−−−→ M10

M11
Type−1−−−−→ M9

M12
Type−1−−−−→ M6

M3
Type−1−−−−→ M5

M4
Type−2−−−−→ M10

M7
Type−2−−−−→ M9

M8
Type−1−−−−→ M2

M11
Type−1−−−−→ M1

Round:2, Level:3 Round:3, Level:1 Round:4, Level:1

M12
Type−1−−−−→ M4

M3
Type−1−−−−→ M7

M10
Type−2−−−−→ M2

M9
Type−2−−−−→ M1

M8
Type−1−−−−→ M6

M11
Type−1−−−−→ M5

M12
Type−2−−−−→ M10

M3
Type−2−−−−→ M9

M2
Type−1−−−−→ M6

M1
Type−1−−−−→ M5

M8
Type−1−−−−→ M4

M11
Type−1−−−−→ M7

M9
Type−3−−−−→ M5

M1
Type−3−−−−→ M7

M11
Type−3−−−−→ M3

M10
Type−3−−−−→ M6

M2
Type−3−−−−→ M4

M8
Type−3−−−−→ M12

Number of Flips= 9 = F24.

A.1.3 Schedule for n = 28

Vertex Set ={1, 2,. . . , 27, 28}. Set of Pair of vertices ={M1, M2,. . . , M14};
where M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12},
M7={13,14},M8={15,16},M9={17,18},M10={19,20},M11={21,22},M12={23,24},
M13={25,26}, M14={27,28}; and N1={M14, M4}, N2={M12,M6}, N3={M3,M2},
N4={M8,M10}, N5={M9,M5}, N6={M7,M11}, N7={M1,M13}.

Table A.3: Schedule for Tournament with 28 Teams

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3 Round:1, Level:4

M1
Type−1−−−−→ M2

M3
Type−1−−−−→ M4

M5
Type−1−−−−→ M6

M7
Type−1−−−−→ M8

M9
Type−1−−−−→ M10

M11
Type−1−−−−→ M12

M13
Type−1−−−−→ M14

M1
Type−1−−−−→ M4

M3
Type−1−−−−→ M6

M5
Type−1−−−−→ M8

M7
Type−1−−−−→ M10

M9
Type−1−−−−→ M12

M11
Type−1−−−−→ M14

M13
Type−1−−−−→ M2

M1
Type−1−−−−→ M6

M3
Type−1−−−−→ M8

M5
Type−1−−−−→ M10

M7
Type−1−−−−→ M12

M9
Type−1−−−−→ M14

M11
Type−1−−−−→ M2

M13
Type−1−−−−→ M4

M1
Type−1−−−−→ M8

M3
Type−1−−−−→ M10

M5
Type−1−−−−→ M12

M7
Type−1−−−−→ M14

M9
Type−1−−−−→ M2

M11
Type−1−−−−→ M4

M13
Type−1−−−−→ M6
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Round:1, Level:5 Round:1, Level:6 Round:1, Level:7

M1
Type−1−−−−→ M12

M3
Type−1−−−−→ M14

M5
Type−1−−−−→ M2

M7
Type−1−−−−→ M4

M9
Type−1−−−−→ M6

M11
Type−1−−−−→ M8

M13
Type−1−−−−→ M10

M1
Type−1−−−−→ M10

M3
Type−2−−−−→ M12

M5
Type−1−−−−→ M14

M7
Type−2−−−−→ M2

M9
Type−1−−−−→ M4

M11
Type−2−−−−→ M6

M13
Type−1−−−−→ M8

M1
Type−1−−−−→ M14

M12
Type−1−−−−→ M10

M5
Type−1−−−−→ M7

M2
Type−1−−−−→ M4

M9
Type−1−−−−→ M11

M6
Type−1−−−−→ M8

M13
Type−1−−−−→ M3

Round:2, Level:1 Round:2, Level:2 Round:2, Level:3

M1
Type−1−−−−→ M7

M12
Type−1−−−−→ M8

M5
Type−1−−−−→ M4

M2
Type−1−−−−→ M10

M9
Type−1−−−−→ M3

M6
Type−1−−−−→ M14

M13
Type−1−−−−→ M11

M1
Type−2−−−−→ M11

M12
Type−1−−−−→ M4

M5
Type−2−−−−→ M3

M2
Type−1−−−−→ M14

M9
Type−1−−−−→ M8

M6
Type−1−−−−→ M10

M13
Type−1−−−−→ M7

M11
Type−2−−−−→ M10

M12
Type−1−−−−→ M14

M3
Type−1−−−−→ M1

M2
Type−2−−−−→ M8

M9
Type−1−−−−→ M7

M6
Type−1−−−−→ M4

M13
Type−2−−−−→ M5

Round:3, Level:1 Round:3, Level:2 Round:4, Level:1

M10
Type−1−−−−→ M4

M12
Type−1−−−−→ M13

M3
Type−1−−−−→ M7

M8
Type−1−−−−→ M14

M9
Type−1−−−−→ M1

M6
Type−1−−−−→ M2

M5
Type−1−−−−→ M1

M10
Type−2−−−−→ M14

M12
Type−1−−−−→ M2

M3
Type−1−−−−→ M11

M8
Type−1−−−−→ M4

M9
Type−1−−−−→ M13

M6
Type−2−−−−→ M7

M5
Type−2−−−−→ M1

M14
Type−3−−−−→ M4

M12
Type−3−−−−→ M6

M3
Type−3−−−−→ M2

M8
Type−3−−−−→ M10

M9
Type−3−−−−→ M5

M7
Type−3−−−−→ M11

M1
Type−3−−−−→ M13

Number of Flips= 11 = ⌈F28⌉.

A.2 Tabular IPL Schedule

In this section, we present a schedule of Indian Premier League(IPL) using
our algorithm1. IPL is a Double Round-robin Tournament of eight teams. The
proposed schedule is presented in the following table.
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A.2 Tabular IPL Schedule

Table A.4: Proposed Indian Premier League Schedule

Match Day 1

Away Home

MUM KOL
HYD RAJ
CHE DEL
BANG PUN

Match Day 2

Away Home

MUM RAJ
HYD KOL
CHE PUN
BANG DEL

Match Day 3

Away Home

RAJ HYD
KOL MUM
DEL CHE
PUN BANG

Match Day 4

Away Home

RAJ MUM
KOL HYD
DEL BANG
PUN CHE

Match Day 5

Away Home

MUM DEL
HYD PUN
CHE KOL
BANG RAJ

Match Day 6

Away Home

MUM PUN
HYD DEL
RAJ CHE
KOL BANG

Match Day 7

Away Home

PUN HYD
DEL MUM
RAJ BANG
KOL CHE

Match Day 8

Away Home

DEL HYD
PUN MUM
CHE RAJ
BANG KOL

Match Day 9

Away Home

MUM CHE
HYD BANG
KOL DEL
RAJ PUN

Match Day 10

Away Home

MUM HYD
KOL RAJ
BAG CHE
PUN DEL

Match Day 11

Away Home

BANG MUM
CHE HYD
PUN KOL
DEL RAJ

Match Day 12

Away Home

HYD MUM
RAJ KOL
CHE BANG
DEL PUN

Match Day 13

Away Home

MUM BANG
HYD CHE
KOL PUN
RAJ DEL

Match Day 14

Away Home

CHE MUM
BANG HYD
DEL KOL
PUN RAJ
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KOL → Kolkata Knight Riders MUM → Mumbai Indians
CHE → Chennai Super Kings BANG → Royal Challengers Bangalore
RAJ → Rajasthan Royals DEL → Delhi Capitals
HYD → Sunrisers Hyderabad PUN → Kings XI Punjab

This schedule gives 15% better result than the actual IPL-2019 schedule in
terms of total distance traveled by all the teams.
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