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Abstract

The concept of multi-label (ML) data generalizes the association of instances to classes
by labelling each data sample with more than one class simultaneously. Since this data
can belong to more than one class at the same time, instances that are multi-label in
nature, should not be forcefully assigned a single label. It needs to be handled in its
original form. However, various problems arise while dealing with multi-label data.

In this thesis, four such issues have been highlighted and dealt with. The �rst problem
is the large input dimension that sometimes occurs in multi-label data. Dimensionality
reduction of the features help to strike a balance between the feature size, the number
of samples and the output dimension. The next limitation is that of a complex decision
space with overlapping class boundaries. This occurs due to the instances belonging to
multiple classes simultaneously. Various approaches such as improving the feature to
class mapping, increasing the class separability and simplifying the decision space have
been implemented. The third drawback arises due to a large number of classes and
label-sets in multi-label data, most of which are under-represented. This emphasizes
the problem of class imbalance that widely prevails in multi-label data. This imbalance
has been handled through the usage of customized classi�ers suitable for the data at
hand. Finally, the problem of class correlation is to be handled in this thesis. Multiple
classes simultaneously assigned to every instance indicates a possibility of a few classes
co-occurring on numerous occasions. These frequently co-occurring classes might have
some correlation among them which have been identi�ed and utilized to improve the
multi-label classi�cation performance.

This thesis addresses the above-mentioned issues to perform e�cient multi-label classi-
�cation. Smaller components that target the individual issues have been incorporated
to build large classi�cation models. The �rst work aims to reduce feature dimensions
and learn a better feature to class mapping for the complex decision space. A shal-
low but fast network known as extreme learning machines (ELMs) has been cascaded
with autoencoders (AEs) to propose a network that can handle both issues. Two varia-
tions of the network have been proposed. To further explore the overlapping boundaries
of ML data, the second contribution increases the separability of the complex decision
space and also incorporates dimensionality reduction. Functional link arti�cial neural
network (FLANN) has been adopted here for the unique functional expansion capability
that transforms the features to a higher dimension thus making it considerably more
separable. After identifying the best con�guration of the network, it has then been in-
tegrated with autoencoders to reduce the functionally expanded feature dimension and
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bring additional transformation into the multi-label data. While these classi�ers display
improved performance, they do not consider the problems of class imbalance or label
correlation. Hence, the third work builds a tree of classi�ers that handles the problem
of class imbalance, simpli�es decision space for the ease of learning and preserves label
correlations. A novel label-set proximity-based technique has been devised that simpli�es
boundaries and splits the data while preserving label correlations. Every split is learned
by a classi�er suited for the balanced or imbalanced data at hand. While handling multi-
ple issues together successfully, this classi�er tree model preserves label correlations but
does not explicitly use them to improve classi�cation performance. In this regard, the
�nal contribution speci�cally extracts underlying label correlations from the data and
associates them with predictions of existing multi-label classi�ers to improve the overall
performance. A novel frequent label-set mining technique generates rules that help to
improve scores predicted by the existing multi-label algorithms. This thesis incorporates
various elements to handle the problems of multi-label data and converges them to create
cohesive models for multi-label classi�cation.
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Chapter 1

Introduction

Looking into the machine learning paradigm [5], data can be thought of as the key

ingredient to the constant development of the domain. The variation in the availability

of data has led to the vast improvement in machine learning technology in recent years.

Machine learning algorithms were developed to handle and learn from the various types

of data that were available. In the past, when access to data was limited, development

in this �eld was comparatively slow-paced. With the advent of social media and online

activity throughout the world, today there is an abundance of raw data that is being

accumulated every second. Also, the constant improvement and availability of technology

is changing the dimension of �elds like machine learning. Today, every data related

domain is experiencing exponential growth in research over time. This huge availability of

data made researchers re-evaluate past ideas and look into them in a new light. Concepts

that seemed far-fetched and di�cult to achieve are being thoroughly explored.

One such dimension is that of multi-label data [28]. Traditionally, data in machine

learning algorithms have always been said to belong to individual prede�ned categories.

Algorithms dealt with data that could belong to a single class at a time. Various concepts

have been introduced that have improved on these older ideas. Now, data is known to

belong to more than one class simultaneously. This concept falls under the umbrella of

multi-label learning. This kind of data occurs frequently around us, hence needs to be

1



1.1. MULTI-LABEL CLASSIFICATION CHAPTER 1. INTRODUCTION

well appreciated and explored.

1.1 Multi-label Classi�cation

Multi-label learning is a part of machine learning that deals with data that can belong to

more than one category simultaneously. Unlike traditional machine learning techniques [5]

which vastly deal with data that belong to one group (also known as single-label/multi-

class data), multi-label learning aims to handle data that, as the name suggests, has

multiple labels. In the domain of multi-label learning, the supervised learning approach,

speci�cally, classi�cation is being explored by researchers. Currently, multi-label learn-

ing is synonymous with multi-label classi�cation. This �eld of multi-label classi�cation

(MLC) [28] is being worked on for the last two decades, and it is mostly used in the �elds

of text categorization, gene-based classi�cation, learning from images, video, audio, etc.

In the past decade, the �eld of multi-label learning has been explored and some amount of

research work has been done in the �elds of text categorization, labelling of multi-media

data, gene prediction, etc.

For example, traditionally, while categorizing images from a set of classes, say, sand, sky

and sea, they are usually assigned a single label. Figure 1.1 shows three images which

belong to one of the above-mentioned classes. However, the problem arises if for the same

(a) Class: sand (b) Class: sea (c) Class: sky

Figure 1.1: Single-label images (Source: Google Images)

set of labels, the concerned images to be categorized contain more than one of the classes.

Figure 1.2 shows four images that have multiple classes like {sky, sand}, {sky, sea}, {sea,

sand} and {sky, sea, sand}. Clearly, each image belongs to all the classes labelled, thus

2
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(a) Class: {sky, sand} (b) Class: {sky, sea}

(c) Class: {sea, sand} (d) Class: {sky, sea, sand}

Figure 1.2: Multi-label images (Source: Google Images)

they cannot be passed as single-label data for the same set of classes. These types of data

are multi-label in nature. If these images are forcefully assigned to any one of the three

labels, it means ignoring the information in the data that might prominently describe

other classes. To avoid such issues with data, multi-label classi�cation is a more suitable

approach to deal with data that clearly might belong to multiple classes simultaneously.

However, unlike single-label data, simultaneous involvement of numerous classes makes

multi-label data somewhat ambiguous. This ambiguity arises due to its association with

multiple classes at the same time. Thus, it can be said, that ML data is quite complex

and hence needs to be handled e�ciently to deal with the inherent ambiguity in the data.

The concept of multi-label sometimes might be confused with other similar areas like

fuzzy logic [42]. In fuzzy, membership of instances to di�erent classes vary over a cer-

tain range of values. However, unlike fuzzy logic, the association of instances to all the

labels for ML data is absolutely crisp. It equally belongs to all the classes. Similarly,
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1.1. MULTI-LABEL CLASSIFICATION CHAPTER 1. INTRODUCTION

ML classi�cation is also quite di�erent from multi-object recognition. Object recognition

focusses on segregating and identifying various objects in an image, whereas ML classi-

�cation is more focused on identifying the underlying concepts in the data, instead of

speci�c objects. For a better understanding, the representation of multi-label data has

been discussed below.

Representation of Multi-label data In a multi-label dataset with N samples, the

ith instance is represented as a feature vector X⃗i = {xi1, xi2, ..., xid} (Table 1.1). Each

Table 1.1: Multi-label data representation

Instance No Feature 1 Feature 2 .. Feature d Class 1 Class 2 .. Class C
X1 x11 x12 · · · x1D y11 y12 · · · y1c
X2 x21 x22 · · · x2D y21 y22 · · · y2c
...

...
... · · · ...

...
...

...
...

XN xN1 xN2 · · · xND yN1 yN2 · · · yNC

element xij is a feature, where xij ∈ ℜ, 1 ≤ j ≤ d and d is the dimension of the input

space. Each of these input patterns X⃗i are associated with a corresponding output vector

Y⃗i = {yi1, yi2, ..., yiC}, where C is the dimension of the output space. Among these C

classes, the multi-label data instance can belong to more than one class at a time. Each

element of the vector Yi is a binary value, indicating if the corresponding label is relevant

to the sample or not. yic = 1 indicates that the ith input pattern belongs to the cth class,

therefore it is relevant, and yic = 0 indicates an irrelevant label. Several labels can be

active at once, unlike in the case of single-label data where only one label is active at a

time. The group of relevant labels associated with an instance is known as its label-set.

This relevant label-set indicates complete association of the instance with each of the

relevant classes.

Table 1.2: Example of multi-label data representation

Image Class sky Class sea Class sand Relevant label-set Irrelevant label-set
a 1 0 1 {sky, sand} {sea}
b 1 1 0 {sky, sea} {sand}
c 0 1 1 {sea, sand} {sky}
d 1 1 1 {sky, sea, sand} {}
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CHAPTER 1. INTRODUCTION 1.2. MOTIVATION

The multi-label representation of the images in Figure 1.2 are shown in Table 1.2. Each

class association is represented by 1 and it is a part of the relevant label-set. Despite the

various approaches to multi-label classi�cation, the inherently ambiguous nature of the

data results in several complexities that arise while dealing with this kind of data. Con-

cerns like complex decision space and correlated classes need to be handled speci�cally.

Researchers approach the issues from di�erent perspectives to handle the shortcomings.

1.2 Motivation

While exploring the �eld of multi-label learning, few inherent issues seem to cause a

bottleneck for multi-label algorithms. These problems are intriguing and gives the moti-

vation to develop techniques that can handle these drawbacks to achieve better multi-label

classi�cation.

1. Large input dimension - Multi-label data in general is seen to have a large

input and/or output dimension. This happens since the source of multi-label data

is mostly the internet which has a vast range of content. For example, for text

data, the sources may be online articles and blogs. If unique words are considered

as features, these sources generate a high input dimension. Similarly, since ML data

can belong to multiple classes at the same time, various output possibilities (even

the rare classes) are considered, which leads to the output dimension becoming huge

as well. To handle and obtain optimum information from the raw multi-label data

the input and output dimensions need to be considered fully. Complete removal

of rare classes or features might lead to information loss. In this way, almost all

types of multi-label data sources tend to generate large dimensions of input and

output which needs to be handled seriously. Another issue with multi-label data

is the availability of labelled data. When datasets with huge dimensions are being

used to train a multi-label classi�er, it needs to have su�cient number of instances

as well. If there is no balance between the feature and sample size, the training
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1.2. MOTIVATION CHAPTER 1. INTRODUCTION

might not be fruitful. Thus to reduce the bulk and create balance, these large

dimensional data need to be handled properly to achieve e�cient performance from

the ML classi�ers. The work in this thesis does not intend to reduce the class size

avoiding the chance of multi-label information loss or to increase sample size. Thus,

the path of feature dimensionality reduction has been chosen to strike a balance

between the feature dimension, sample size and number of classes.

2. Complex output dimension with overlapping class boundaries - When

dealing with multi-label data, one of the most important issues to keep in mind is

its complex decision space [28]. The multi-label classi�ers need to learn decision

boundaries to separate the various classes that are simultaneously associated with

multiple data instances. This situation is much more complex than what is encoun-

tered while performing single-label classi�cation. For single-label data, no matter

how the decision boundary looks like, at some higher dimensional space, each in-

stance can be distinctly separated from the other instances belonging to di�erent

classes. Each class will have a well-de�ned, non-overlapping decision boundary

which makes the task of classi�cation much simpler. However, for ML data, that is

not the case. Since each instance belongs to multiple classes, all the classes cannot

have completely segregated and well de�ned decision boundaries. Ideally, it can be

said that there is one decision boundary for each of the classes, where it partitions

the data in a one-vs-all approach. Therefore, on the whole, there are multiple over-

lapping class boundaries that help segregate di�erent classes of multi-label data.

For example, in Figure 1.3 a toy scenario has been shown with 3 classes. Each

class has a separate class boundary and the data which lie within the boundaries

have speci�c label-sets. Thus, each unique label-set can be well-separated and have

distinct boundaries, but that does not happen for each class. This makes the task

of ML classi�cation much more complex than its single-label counterpart. In this

thesis, the aim is to handle this bottleneck through various approaches. Initially, a

classi�cation model is built to learn the input to multi-label output mapping in a
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Figure 1.3: An example of multi-label class boundaries

better way. Another approach attempts to increase the separability of the complex

decision space. Finally, the classi�cation model tries to simplify the overlapping

boundaries of the data in order to perform better multi-label classi�cation.

3. Imbalanced classes - The next problem is that of class imbalance, which seems

very obvious if it is looked into. When a dataset has a large output dimension

with numerous classes, it is quite likely that all those classes may not be equally

represented. To encompass the entire essence of multi-label data, even the rarer

classes need to be kept under consideration. This leads to an uneven representation

of all the classes. Additionally, multi-label data also has the concept of label-sets,

which means that each unique set of classes that exist within the dataset also

needs to be well-represented. Practically, a su�cient amount of instances from all

classes as well as the unique label-sets is quite di�cult to achieve. Thus, multi-label

data is inherently imbalanced. Section 2.2.1 shows the imbalance in benchmark

multi-label datasets. This problem a�ects the training of ML classi�ers, since it

creates a bias towards the larger classes. Even if the imbalance cannot be removed
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completely, keeping in mind the large output dimension, it is important to improve

the balance and reduce the gap among the various classes for a better training

of the ML classi�er. This problem is handled in one of the contributions, where

instead of modifying the data to remove imbalance, the model has been customised

to speci�cally deal with imbalanced classes.

4. Class correlation - The �nal problem is the existence of class correlation among

multi-label data which should not be ignored. As multi-label instances belong to

multiple classes at the same time, this incurs a probability that in a dataset, a subset

of instances may have the same combination of labels. When this occurs repeatedly,

it is likely that some correlation exists between the frequently co-occurring classes.

Figure 1.4: Google image search for �car�

Consider an example for classifying images with classes car, road, boat and sea.

Figures 1.4 and 1.5 are Google image search results for car and boat respectively.

From the images it is seen that classes car and road are co-occurring more frequently

than car and sea. Similarly, class boat frequently co-occurs with class sea than

with class road. Thus, the pair of classes car - road or boat - sea should have

some correlation among them. The problem with existing ML algorithms is that in

most cases these correlations tend to be ignored. Applying the one-vs-all approach
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Figure 1.5: Google image search for �boat�

or a single classi�er without speci�cally incorporating class correlations makes the

classi�ers consider the individual classes to be distinct. This might lead to the

loss of information and misclassi�cation. Thus, it is important to acknowledge and

incorporate the label correlations that exist within the ML data to improve the

classi�cation mechanism. Keeping this in mind, one approach aims to preserve

label correlations implicitly while another approach creates a method that would

extract and utilize underlying correlations to be combined with existing multi-label

classi�cation models.

Handling each of these issues is quite essential in the �eld of multi-label classi�cation.

Researchers are attempting to deal one or more issues through their works. In this

thesis, through the endeavour to handle the bottlenecks in multi-label data, attempts to

include a combination of these above-mentioned problems has been made in each of the

proposed works. Smaller components targeted to handle the individual problems are in

turn combine to build the large classi�cation model.
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1.3 Scope of the Thesis

This thesis is a comprehensive attempt to deal with the various bottlenecks that occur

while classifying multi-label data. Di�erent models have been developed to handle a com-

bination of the four drawbacks while improving the multi-label classi�cation performance.

The models developed in this thesis are speci�cally adaptation-based models, that use

existing traditional models and adapt them to suit the multi-label requirement without

modifying the data. Some theoretical and experimental results have been presented to

demonstrate the e�ectiveness of the proposed techniques. Among the four speci�c prob-

lems targeted in this thesis, a subset of problems has been handled through di�erent

approaches by the proposed models in each chapter. The �rst problem of large feature

dimension has been handled with the use of autoencoders incorporating it with other

shallow networks that are adapted to handle the second problem of ML decision space

complexity. Thus, initially, dimensionality reduction and improved feature to decision

space mapping has been done using autoencoders and extreme learning machines. Then,

another approach of handling the complex decision space has been explored through the

use of functional link networks which projects the data to a higher dimension and improves

the separability. Alongside, autoencoders have been utilized to reduce the expanded in-

put dimension. The next model aims to handle the complex decision space problem by

simplifying it through partitions. Additionally, here, the third problem of class imbal-

ance is approached through the use of custom classi�ers and parameters and the �nal

problem of class dependencies is implicitly preserved through a proximity-based label-

space partitioning technique. The �nal work focusses on explicitly utilizing the existing

label dependencies in the data to improve traditional multi-label classi�er performance

through frequent label-set mining and association.

Figure 1.6 shows the �ow of the thesis highlighting the problems dealt with in each pro-

posed work. The current chapter deals with an introduction to multi-label classi�cation.

The next chapter briefs on the background and some key information followed by four
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contributory chapters and the �nal concluding chapter.

Figure 1.6: Flow of the thesis

Chapter 2

This chapter provides a background that is essential for a better understanding of multi-

label data and the work done in this thesis. It starts with a literature survey section,

that includes popular ML algorithms along with other relevant methods. The datasets

to be used later for experimental analysis have also been described here. Finally, the

performance metrics, speci�c to multi-label data have been included.

Chapter 3

This chapter introduces the �rst proposed work which is a cascade of neural networks for

the classi�cation of multi-label data. Two types of networks, namely, autoencoder (AE)

and extreme learning machine (ELM) have been incorporated in the proposed systems.

ELM is a compact and e�cient single-label classi�er that seems to lose its e�ciency while

dealing with multi-label data. This happens due to the complex nature of the multi-label

data, which makes it di�cult for the smaller networks to interpret it accurately. This

11



1.3. SCOPE CHAPTER 1. INTRODUCTION

work attempts to deal with two of the bottlenecks faced while handling multi-label data.

The �rst challenge is to handle the dimensionality and representation of the input space

for multi-label data, and the other challenge is the e�ective mapping of the input to the

complex output space. Thus, the aim is to enhance the performance of a stand-alone

multi-label extreme learning machine (MLELM) by collaborating it with other networks.

For the initial model, there are three basic phases: feature encoding, soft classi�cation

and class score approximation. In the �rst step, a stacked autoencoder (SAE) network is

employed to generate a discriminating and reduced input representation of the multi-label

data. This makes the data compact and more manageable for the successive stages. This

data in turn is used by an MLELM in the next phase for the prediction of soft labels.

In the �nal step, to improve the prediction capability of the previous network, a novel

approach of approximating the class score is proposed using an additional MLELM. This

model has been further improved to develop a deeper cascaded network that portrays

improved performance. This model incorporates a deep autoencoder (DAE) and stacked

MLELMs. In the �rst phase, the DAEs handle the large feature space of ML data and the

subsequent stacked MLELMs intricately learns the input to output mapping and performs

ML classi�cation. Comprehensive experimental evaluation of the proposed approaches

has been performed on various datasets and overall it displays a promising performance.

To improve the learning capability of the classi�cation model, in the next chapter the

possibility of increasing the class separability of the complex multi-label decision space

has been explored.

Chapter 4

To handle the inherent complexity of multi-label data, a compact and e�cient network

known as functional link arti�cial neural network (FLANN) has been explored in this

chapter. FLANNs are known to functionally transform the input space to introduce

non-linearity into the data, thus making the task of separating the classes in the out-

put space comparatively simpler. In this chapter, a multi-label functional link arti�cial
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neural network (MLFLANN) has been developed to e�ciently perform multi-label data

classi�cation. The input data is functionally expanded to a higher dimension, followed

by iterative learning of the MLFLANN using the training set. The architecture of the

network is less complex and the input space dimension is improved in an attempt to

overcome the non-linear nature of the multi-label classi�cation problem. Furthermore,

six multi-label FLANN models have been devised for multi-label classi�cation to procure

the optimal con�guration. These six variations of the network have been built using three

basis functions - trigonometric, Chebychev, power polynomial and two learning techniques

- backpropagation and particle swarm optimization. Finally, an extended model has been

developed where the input features are subjected to two transformations adapted from

MLFLANN and autoencoders. First, a functional expansion of the original features is

made using basis functions. This is followed by an autoencoder-aided transformation and

reduction on the expanded features. This network is capable of improving separability for

the multi-label data owing to the two-layer transformation while reducing the expanded

feature space to a more manageable amount. This balances the input dimension which

leads to a better classi�cation performance even for a limited amount of data. Since this

novel network does not exist in the single-label domain, the single-label variation of the

proposed network has been formulated simultaneously. All the developed models have

been tested on ML datasets to establish their e�ectiveness. After increasing the separa-

bility of the multi-label decision space, the following chapter aims to simplify the decision

boundary to some extent to ease the task of classi�cation. Alongside, attempts to handle

the problems of class imbalance and label correlation which were not dealt with in the

previous contributions has also been made.

Chapter 5

This chapter proposes a binary tree of classi�ers model for multi-label classi�cation that

aims to preserve label dependencies within the data and handle class imbalance. It also

attempts to simplify the complex decision boundary by splitting the data appropriately.
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A tree is built stepwise, where within each node, the input data is strategically split into

two subsets for its subsequent child nodes, keeping the label correlations intact. Unlike

other decision tree approaches, a best split is not aimed for since it might increase the

computational complexity of the algorithm, instead an approximate split in the data is

opted to serve a similar purpose in lesser time. A novel approach of partitioning the data

based on label-set proximity has also been proposed. It groups the data based on their

Hamming distance in the decision space which keeps similar label-sets and co-occurring

classes together. Various data appropriate classi�ers are trained to learn the binary

partition at every internal node. The tree of classi�ers grows iteratively depending on

two parameters � multi-label entropy and sample cardinality that are computed on the

data at the current node. During training, the decision at any node is based on these

parameters and the branching out is restricted, if deemed unnecessary. Speci�c classi�ers

at the leaf nodes perform the �nal classi�cation task and assign appropriate label-sets

to the unlabelled data. The proposed system aims to appropriately split the data and

build the hierarchical structure such that the training and classi�cation tasks become

simpler. Also, the problem of class imbalance leads to the irregular splitting of data and

excessive branching out of the tree which is handled through the novel use of suitable

classi�ers and parameters at the intermediate and leaf nodes. The proposed method

has shown signi�cant performance improvement on fourteen datasets against fourteen

existing multi-label classi�ers. Among the di�erent problems handled in this work, the

issue of class dependencies has been handled implicitly. It is an important characteristic

of multi-label data that often is ignored. To extract more information from the multi-label

data, the underlying label dependencies need to be speci�cally identi�ed and explored

further to incorporate more relevant information that can in turn improve the overall

classi�cation performance.
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Chapter 6

Multi-label data deals with multiple classes associated with individual samples at the

same time. This leads to the co-occurrence of several classes repeatedly, which indicates

some existing correlation among them. In this chapter, the correlation among classes

has been explored to improve the classi�cation performance of existing ML classi�ers. A

novel approach of performing frequent label-set mining to extract correlated classes has

been done. Both co-presence (CP) and co-absence (CA) of classes have been taken into

consideration. The rules mined from the ML data has been further used to incorporate

class correlation information into existing ML classi�ers. The soft scores generated by an

ML classi�er are modi�ed through a novel approach using the CP-CA rules. A concept of

certain and uncertain scores has been de�ned here, where the proposed method aims to

improve the uncertain scores with the help of the certain scores and their corresponding

CP-CA rules. This has been experimentally analysed on ten ML datasets for few existing

ML classi�ers which shows substantial improvement in their overall performance.

Chapter 7

In the �nal chapter, the various contributions presented in this thesis are brie�y sum-

marized. The limitations of these studies are highlighted. Also, several open areas are

enumerated, which present the scope of further extending the developed models discussed

in this thesis.

1.4 Contribution

This thesis encompasses various approaches to solve four concerns with ML data. For

a better understanding, here the speci�c novelty in the thesis, i. e., the chapter-wise

contributions have been highlighted in this section.

15



1.4. CONTRIBUTION CHAPTER 1. INTRODUCTION

Chapter 3 The �rst proposed work aims to handle the large input dimension and

complex decision space through novel models incorporating autoencoders and MLELMs.

The contributions are as follows.

� Building a cascade of networks with autoencoders (AEs) and MLELMs, where the

AEs are used for dimensionality reduction and MLELM are utilized for improved

learning.

� Incorporating stacked autoencoders (SAEs) in the main model and extending it to

a deep version which utilizes deep autoencoders (DAEs).

� Stacking MLELMs to learn the mapping of the class scores obtained from the

previous classi�er to the hard labels.

� Optimizing the network con�guration of the proposed model for varying depths of

the network.

� Determining the better-suited component among DAE and SAE for dimensionality

reduction.

Chapter 4 The second proposed work also aims to handle similar problems as the

previous work. The large input dimension of ML data is handled through the use of

autoencoders, whereas the complex decision space is dealt using functional link networks.

This work unfolds stepwise.

� First, a novel multi-label functional link arti�cial neural network (MLFLANN)

model is introduced that deals with the complex decision space of multi-label data

by improving separability among classes.

� Then, various combinations of basis functions and learning techniques are explored

to experimentally identify the optimal con�guration of MLFLANN.

� Finally, the simple MLFLANN network is extended to a novel two-layer network

based on MLFLANN and AE speci�cally for multi-label classi�cation. Use of the
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functional expansion layer followed by additional transformation by autoencoder

layer improves class separability and reduces the feature dimension expanded by

the �rst layer. This maintains a balance between the feature space and sample size,

which leads to a good training of the classi�er with limited data.

� Introducing the single-label variation of this novel two-layer network.

Chapter 5 The third work attempts to deal with the complex decision space, class

imbalance and label correlation issue of ML data through a binary tree of classi�ers

model. The contributions are as follows.

� A tree of classi�ers for multi-label classi�cation that utilizes suitable classi�ers at

the intermediate and leaf nodes to handle various bottlenecks.

� A novel label-space partitioning technique to implicitly handle the underlying class

correlations in the data.

� Approximate splitting of data to achieve faster convergence and simplifying the de-

cision space through broad partition that makes the problem of complex boundaries

and class imbalance less prominent.

� Explicitly handling imbalanced classes that cause uneven splitting of data through

the use of appropriate classi�ers at the intermediate and leaf nodes. Building

the tree based on parameters that facilitate restrictions to prevent its unnecessary

branching for smaller imbalanced classes.

Chapter 6 The �nal work speci�cally identi�es the label dependencies that exist in the

ML data through association rule mining and utilizes them to improve ML classi�cation

performance. The main contributions are:

� Introduce the concept of �frequent label-set mining� for �nding class/label corre-

lations. This identi�es co-presence (CP) and co-absence (CA) among classes to

generate rules for relevant and irrelevant label-sets.
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� Novel computation to improve classi�cation score for any classi�er by incorporating

class correlations with the help of frequent label-set mining.

Each of the individual models proposed in the four chapters target some of the identi�ed

problems of ML data. In some cases the outcome is better than the other, however, each

of the works are a novel attempt to deal with the bottlenecks through the construction

of adaptation-based classi�ers.

1.5 Organization of the Thesis

The brief description regarding the organization of the thesis is given here.

Chapter 2 gives the relevant background before discussing the proposed works. First,

the literature survey (Section 2.1) is discussed based on the approaches taken in litera-

ture, namely, data transformation, problem adaptation and ensemble approaches. These

encompass the relevant literature for all the proposed works. Only multi-label algorithms

have been explored in this chapter to keep the literature survey brief and relevant. Next,

in Section 2.2 all the ML datasets that have been used for experimentation have been

discussed. The label-set partitions have been shown to give an idea regarding the existing

imbalance in the data. Finally, the various ML performance metrics (Section 2.3) have

been brie�y discussed for a better understanding in the later chapters.

Chapter 3 is the �rst contributory chapter that begins by introducing the problems

(Section 3.1) and the proposed works brie�y. This work is based on autoencoders and

extreme learning machines, so Section 3.2 discusses the basics of AE and ELM net-

works. This is followed by the proposed works, Section 3.3 describes the stacked AE

and MLELMs based model and Section 3.4) describes the deep ML classi�cation network

autoencoders and stacked MLELMs model, each of which contain the model description

and elaborate experimental analysis. Section 3.5 concludes the chapter.
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Chapter 4 proposes the second contributory work beginning with Section 4.1 giving

an introduction to the problem. This work is mainly based on FLANN, hence Section

4.2 gives the preliminaries of the FLANN network. Section 4.3 discusses the �rst pro-

posed work, the multi-label FLANN model. Section 4.4 discusses the optimization of

the MLFLANN model and Section 4.5 proposes the autoencoder-integrated MLFLANN

model. Each of these proposed work sections has an elaborate description of the model

architecture and in-depth experimental analysis. Section 4.6 concludes the chapter.

Chapter 5 proposes a tree of classi�ers model, where Section 5.1 introduces the prob-

lem, Section 5.2 discusses the proposed model in detail. This section gives the model

description with elaborate details about building of the tree and the methodology and

also an experimental analysis. Section 5.3 concludes the chapter.

Chapter 6 proposes a frequent label-set mining and association technique to improve

ML classi�cation performance. Section 6.1 is an introduction to the problem, Section 6.2

discusses the proposed work in detail with the model description discussing the steps of

the algorithm individually, and then an elaborate experimental analysis. Finally Section

6.3 concludes the chapter.

Chapter 7 is the concluding chapter of the thesis that highlights the chapter-wise

conclusions in Section 7.1, discusses some �ndings in Section 7.2, and the limitations and

future scope in Section 7.3.
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Chapter 2

Background

Multi-label classi�cation in itself is quite an extensive area which is being thoroughly

explored in recent years. In this chapter, a few relevant areas and background have been

discussed, to have a better understanding of multi-label classi�cation and the proposed

methods in the following chapters. Firstly, a brief literature survey highlighting the popu-

lar and state-of-the-art research in the �eld of ML classi�cation. Most of these algorithms

have been used for comparative analysis in the later chapters. This is followed by an in-

depth description of the multi-label datasets that have been used for the experiments of

the proposed models. Finally, the performance metrics speci�c to multi-label data have

been described in detail.

2.1 Literature Survey

Multi-label classi�cation is being worked with by researchers mostly in the last decade.

Looking into the literature, various interesting algorithms being frequently developed by

researchers for e�cient multi-label classi�cation. In this thesis, the focus has been kept

mainly on the popular multi-label algorithms that have been developed over the years

and are still being used for comparison in the current literature. Alongside, some recent
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algorithms that are relevant to this thesis and the proposed methods have also been

included in this chapter. Generally, the literature survey for multi-label classi�cation is

presented by researchers based on the various approaches used. This is mainly due to the

evolution of the ML classi�cation techniques used over the years. Initially, when multi-

label data was being considered to be dealt with alongside single-label and binary data,

the simplest approach was opted, i.e., using the existing classi�cation algorithms. This

meant modifying the multi-label property of the data to convert it to single-label/binary

such that it can be used with the traditional algorithms. This approach was named

data-transformation. Since these approaches might have led to some loss of information,

another variant of algorithms were developed by researchers that became quite popular.

Here, instead of modifying the data, the algorithms were changed to adapt to the ML

property to handle the data as is. This was the problem-adaptation approach. Finally,

with the popularity of ML classi�cation using these previous approaches, researchers

developed ensemble models like in traditional classi�ers to improve the e�ciency of the

ML models. In this way, a gradual evolution of ML classi�ers is seen in the literature, and

hence, the literature survey in this thesis has been presented based on the approaches

chosen by researchers. Thus, as already discussed, there are broadly three categories

(Figure 2.1), namely, data transformation, problem adaptation and ensemble approaches.

Each of these approaches and their relevant algorithms have been brie�y discussed in the

following sections.

2.1.1 Data Transformation Methods

Data transformation was an initial approach opted by researchers that involved converting

the original multi-label data into one or multiple simpler datasets. These were then used

with traditional binary/single-label classi�ers. In a certain way, these methods act as

a preprocessing phase, producing new datasets from the original ones. These methods

can also be thought to be tampering with the original data while altering the unique

multi-label property of the data. These techniques either lead to loss of information
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Figure 2.1: Approaches and methods of Multi-label classi�cation

which eventually increases misclassi�cation, or they include a lot of redundancy in the

data, thus unnecessarily increasing the computation complexity. Some popular data

transformation techniques have been discussed here.

Model-s and Model-i � In [7], the authors developed few basic algorithms to forcefully

convert the multi-label data into single-label. Here s in Model-s stands for single-label.

Multi-label data has C number of classes each represented by 0 or 1 for irrelevant and

relevant labels respectively. Model-s retains the information for only one class, i.e, any

one of the classes remain 1 while the rest are changed to 0. This modi�cation can be

based on some heuristics like retaining the class which has maximum instances, etc. This
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is a pretty näive approach and is not feasible for real-life classi�cation.

Model-i on the other hand chooses to �ignore� all the instances that have more than one

labels and only retain the ones with a single label. This method chooses to remove all

multi-label instances, thus is not appropriate to be termed as a multi-label algorithm.

Label Powerset (LP) � Similar to Model-s and Model-i, there is a Model-n also

known as Label powerset (LP) [7]. This model encodes the multi-label information to

single-label without completely losing it. Here, each unique label-set of the multi-label

data is replaced by a unique single-label thereby, converting the multi-label classi�cation

to single-label classi�cation. For a C-class data, a maximum of 2C unique label-sets are

possible (including all zeros as a unique label-set), however, all of these 2C label-sets

may not occur in the multi-label dataset. Each unique label-set is replaced by unique

single labels. Thus C multi-label classes can be replaced by a maximum of 2C single-

label classes. Thus, the larger the initial C number of classes, the larger will be the

corresponding SL classes.

Binary Relevance (BR) � One of the most popular approaches is binary relevance

(BR) [24, 101]. It is a practical approach that splits the multi-label class information

into multiple binary classes. For C number of classes, the data classi�ed C number of

times, once for each class. It is a one-vs-all concept that creates C number of independent

classi�ers, and each classi�er works on the same number of input instances in the original

ML data, but the ith classi�er positively labels the ith label and others as negative.

Thus each classi�er is trained with Ci vs rest binary data. This has received much

popularity but it succumbs to certain inconveniences. It dismisses any label correlations

that might exist within the data since it handles each class independently. Also, the

already imbalanced multi-label classes create highly imbalanced binary class partitions

which creates a biased training of the classi�er. Although BR is a basic approach, it

still achieves comparable results for various loss functions. There are other variations of
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the basic BR algorithm that utilizes the strengths of BR. Recently, in [92] the authors

combined strengths of RankSVM (discussed in Section 2.1.2.2) and BR. It handles the

problem of error accumulation of RankSVM and class imbalance issue in BR by creating

a robust low-rank learning (RBRL). It learns to minimize ranking loss like in Rank-SVM

and Hamming loss like BR.

[63] gives an extensive experimental analysis of methods based on binary transformation

from multi-label data. The authors group their study into one-round, stacking and en-

semble approaches. They have included BR, classi�ers chains (CC), ensemble of classi�er

chains (ECC) (discussed in Section 2.1.3.1) along with other binary transformation classi-

�ers. It highlights the in�uence of base classi�ers such as support vector machines (SVM),

random forest (RF), eXtreme Gradient Boosting (XGB), etc on the �nal performance of

these techniques. Similarly, other data transformation approaches have also been devel-

oped over the years, however, the focus of this thesis is towards the next category of

multi-label classi�ers.

2.1.2 Problem Adaptation based Classi�ers

Problem adaptation based classi�ers, contrary to data transformation methods, mainly

adapt the algorithm to the ML data. They modify traditional classi�ers in a way that

they can tackle the original multi-label data without tampering with it. It aims to

retain the multi-label property of the data without having to convert them to single-label

or binary. Most of the problem adaptation approaches rely on modifying traditional

algorithms based on trees [13]), neural networks [103], instance-based learning [104], etc.

In [97], various popular classi�ers for multi-label data (discussed in this section) have

been tested experimentally. Studies like this help to analyse the performance of di�erent

methods under varied scenarios for multiple datasets and metrics. This particular study

highlights the dependance of performance on the size of the datasets, correlation between

the base classi�ers and the entire model, and a trade o� between performance and training
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time. In this section, some popular problem adaptation models have been discussed.

Additionally, some of the proposed methods discussed in the following chapters deal with

neural networks, hence few models from the sub-category has been highlighted.

2.1.2.1 Neural Network based adaptations

Neural networks are one of the most popular machine learning tools that have gained a

lot of attention over the years [27]. Today, various types of networks exist and are being

continuously adapted in numerous domains to perform e�cient classi�cation. Similarly,

while exploring the literature of multi-label classi�cation, it is seen that researchers have

developed di�erent neural network based techniques by tailoring the original models to

suit the problem at hand. However, in comparison to single-label NN based models being

developed, there are very few multi-label NN models. Here, few popular and recent NN

models for multi-label classi�cation have been discussed.

Backpropagation for multi-label learning (BP-MLL) � One of the �rst neural

network based model developed for ML classi�cation is backpropagation based multi-label

learning (BP-MLL) [103]. It is an adaptation of the traditional multi-layer perceptron

with a modi�ed error computation technique, that is more suited for multi-label data. It

takes into consideration the selection of multiple labels at the output layer. The two-layer

feed-forward network has been trained using backpropagation with a cost function that

incorporates the ranking of labels. The appropriate number of hidden neurons needed in

that single hidden layer is found experimentally. In the end, a unique threshold for each

testing instance is calculated based on the processing of the training set. The performance

of BP-MLL depends on the con�guration of the network and its parameters. Also, a

substantial amount of time is required for training the network.

Multi-label radial basis function network (ML-RBF) � ML-RBF [100] is an

adaptation of radial basis networks for ML classi�cation which incorporates neighbour-

hood information. It executes K-means clustering and uses the cluster centres in the
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RBF model. There is no way to know the distribution of the dataset beforehand, thus,

K-means may not always cluster the data well. The two-step process also increases the

computational complexity of the problem. There are other variations of ML-RBF [105]

that exist in the literature.

Multi-label Extreme Learning Machine (MLELM) � Extreme learning machines

(ELM) are simple two-layer feed-forward networks that have a one pass training phase.

It does not use backpropagation for learning, instead learns the weight matrix through

a pseudo-inverse. The most simple form is referred to as multi-label ELM (MLELM),

which is an adaptation of the simple ELM network. These models do not require any

architectural change, but the output provided at the last layer is multi-label in nature.

This ELM classi�er has been adapted by authors in [81] to develop a multi-label extreme

learning machine (MLELM) for fast classi�cation. They used the MLELM with a bipolar

representation of labels to improve the learning of the simple ELM. Authors in [74]

develop a model termed ELM-ML using two consecutive ELMs. The �rst MLELM is

trained as a multi-label classi�er with multiple class output nodes. The second ELM is

described as a sample-wise threshold function with a single output node. The threshold

determined by this ELM is then used on the outcome of the �rst ELM to generate the

�nal output. Canonical Correlation Analysis based ELM (CCA-ELM) was introduced

in [43]. Correlations among the input features and the set of labels are computed using

CCA, then the input space and label space are mapped to the new space. An ELM is

used to classify and �nally map the original input space. L21-norm Minimization ELM

[36] is an ELM based algorithm which combines the smallest training error of ELM with

L21-norm minimization of the hidden to output layer weight matrix. In [105], the authors

proposed a multi layer ELM-RBF for multi-label learning (ML-ELM-RBF). It is built

from radial basis function for multi-label learning (ML-RBF) and weight uncertainty

ELM-AE (WuELM-AE). This model stacks WuELM-AE to form a deep network, and

then it performs clustering analysis on sample features of each possible class to compose
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the last hidden layer.

Multi-label Random Vector Functional Link Network (ML-KRVFL) � Ran-

dom Vector Functional Link Network (RVFLN) [53] is a shallow feed-forward network

that uses non-iterative learning. Nodes from the input layer are connected to the output

layer in two ways. One is a direct connection and the other is connected through some

enhancement nodes. These enhancement nodes are similar to the hidden nodes in a sim-

ple neural network. The weights in the network are learnt through the computation of

pseudo-inverse. Various applications have been seen in the single-label domain using this

network. However, very few multi-label models based on RVFLN exist in literature. The

multi-label adaptation of this network in [10] creates a kernelized version of the tradi-

tional RVFL (ML-KRVFL). Here, a kernel function replaces the enhancement layer that

provides more stabilization to the network and reduces randomness.

Deep neural networks Among the neural network based approaches, deep learning

models are slowly �nding application in the �eld of multi-label data. Owing to the com-

plex nature of ML data, deep models are capable of extracting underlying information.

However, lack of labelled data leads to lesser exploration of this branch of approaches.

Deep models mostly �nd application in real-life multi-label image classi�cation prob-

lems and domains like medical image processing, emotion recognition, etc. To deal with

images, most researchers explore convolutional neural networks (CNNs) for multi-label

image classi�cation. In this context, [8] have developed a CNN-based network called

Multi-ECGNet that analyzes ECGs and identi�es patients who are suspected to multiple

cardiac ailments simultaneously. The proposed model embraces bene�ts of CNN and

residual networks to detect 55 symptoms of heart diseases. In [2], proposed a bidirec-

tional network that is capable of extracting high-level features and labels from the data.

There are multiple stacked pooling layers that identify and combine pairs of low-level

features to create higher level features. These in turn compose the next pooling layer

and so on. This approach helps to propagate association in both features and labels. In
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[88] hierarchical multi-label classi�cation networks (HMCN) were proposed that would

tree-structured hierarchies. They adopt a hybrid strategy that can optimize both global

and local loss functions in parallel while penalizing hierarchical violations. There is one

output layer per hierarchical level of the data and an additional global output layer. Both

recurrent and non-recurrent neural networks have been utilized to build the model. A

feed-forward version, HMCN-F and a recurrent version HMCN-R were developed in this

work as well. In [85] a label graph superimposing framework was proposed to improve the

performance of graph convolutional network (GCN) and CNN developed for ML recog-

nition. A label graph model is created to capture the label relationships that exist in

the data and a lateral connection (LC) operation is presented to inject GCN embeddings

into CNN features, thus creating the proposed Knowledge and Statistics Superimposing

Network (KSSNet). The LC operation aids the model in learning label-anchored feature

representations by acting as label-feature correlation modelling. There are not too many

deep learning models in the ML domain, and they are slowly being developed with the

availability of diverse data.

2.1.2.2 Other popular adaptations

Apart from the above-mentioned categories, there are other well-known classi�ers that

have been adapted in numerous ways to perform multi-label classi�cation.

Multi-label C4.5 � Decision tree-based techniques have been widely used for single-

label classi�cation [1], but have not been extensively explored in the ML scenario. Decision-

based building of the tree structure is quite simple and robust, which makes it an apt

candidate for ML data. In general, it is seen that decision tree (DT) based techniques

mostly vary on the way the data is split in each intermediate node. Some popular tree-

based methods have been included here. ML C4.5 [11] is one of the �rst adaptations of

decision trees for multi-label classi�cation. Traditional C4.5 was modi�ed to handle mul-

tiple labels at the same time. It performs multi-label gene expression data classi�cation.
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Here, the splitting of the tree is based on a modi�ed entropy measure to incorporate the

irrelevant class probability as well. The leaves of the tree indicate label-sets instead of

single classes which performs the �nal classi�cation.

Multi-label k Nearest Neighbour (ML-kNN) � Among the instance-based multi-

label classi�cation algorithms that exist in the literature, ML-kNN [104] is one of the

best-known algorithms. It is a lazy learning technique and is a multi-label adaptation

of the traditional k-nearest neighbours classi�er. It primarily works on the principle of

MAP (maximum a-posteriori) while incorporating �rst and second-degree neighbourhood

information for ML classi�cation. It internally works as a binary relevance classi�er, since

a separate set of apriori and conditional probabilities are independently computed for each

label. It involves a large number of computations in the second-order neighbourhood

of each training pattern before the actual classi�cation is done. For a dataset with a

huge number of samples, this method would be computationally expensive and quite

slow. Recently, in [58] a generalized version of prototype weighting has been proposed to

improve the performance of the kNN classi�er for multi-label data. It aims to minimize

error rate and optimize the F-measure metric. They aim to provide smooth boundaries

which would improve the classi�cation capability especially for overlapping boundaries.

RankSVM � In [21], authors develop a method based on the support vectors machine

(SVM) principle. This aims to incorporate label correlations through an approximation

of the Hamming loss metric. The SVM based model generates a ranking for the classes

and the �nal label-set is predicted using a thresholding function. Although Rank-SVM

considers label correlations, its performance is not exceptionally enhanced as compared

to other binary classi�cation models. Simpli�ed constraints RankSVM (SC-RankSVM)

[83], as its name suggests, is a modi�cation of the RankSVM with milder constraints to

minimize the ranking loss metric and have a large margin.
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MLLEM � In [41], ML classi�cation using Laplacian Eigen Map (MLLEM) has been

proposed as a non-linear embedding technique that incorporates instances and labels

in the same lower dimensional space. It considers instance-instance, label-instance and

label-label relationship in the data. For instance-instance relationship, instances that are

similar in the feature space are closer in the embedded space. For label-label relationship,

co-occurring label pairs are closer and for instance-label relationship, the actual associa-

tions mapped in the data are represented in the embedded space. This method attempts

to provide a simultaneous visualization for the patterns as well as the labels. It provides

both linear and non-linear mapping.

Multi-Label Tomek Link (MLTL) � Multi-Label Tomek Link (MLTL) [55] is a

recent work using Tomek link approach that handles the class imbalance problem of

multi-label data. It is a resampling based approach that has been used with existing

algorithms to improve their performance. It has been applied with algorithms like binary

relevance, label powerset, HOMER, CC, ML-kNN, RakEL. The Tomek-link for single-

label data has been adapted to handle multi-label data by de�ning the di�erence between

label-sets. It can be applied as an undersampling method where it removes samples to

reduce imbalance or as a post-processing clean-up step.

ML-LOC � In [33], authors performed multi-label learning by exploiting the label

correlations locally (ML-LOC), where a local correlation (LOC) code is determined and

used as additional features. The code vector for each instance encodes the in�uence of

class correlations with an assumption that similar instances have similar label-sets. This

similarity is measured in the label space. It algorithm uses the local correlation sensitivity

and global discrimination �tting into a single framework.

LIFT � ML learning with label-speci�c features (LIFT) [102] conducts clustering anal-

ysis on positive and negative instances and constructs features that are speci�c to the

individual classes. k-means algorithm is used to determine the cluster centres which rep-
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resent the structure of the training data. It then queries the clustering results to perform

training and testing of the classi�er. To eliminate the e�ect of class imbalance, LIFT

gives similar importance for both the positive and negative data with respect to their

cluster sizes.

2.1.3 Ensemble Approaches

Along with the evolution of stand-alone classi�ers, the concept of ensemble of classi�ers

have also proven to be quite e�cient in the �eld of ML classi�cation. These ensembles

are built from the basic data transformation models or the problem adaptation models,

hence it may or may not be considered as a completely distinct category. Some popular

ensemble techniques in the literature have been mentioned with a separate focus on tree-

shaped ensembles, since this is more relevant to one of the proposed approaches.

2.1.3.1 General Ensembles

There are few popular ensemble techniques for ML data that have been used extensively

over the years.

Classi�er Chains (CC) � Classi�er Chains (CC) [61, 62] is one of the best-known

ensembles of binary classi�ers for multi-label classi�cation.It is seen as an improvement

over binary relevance (BR) where it attempts to take into account the label information

at the same time. It also uses the same number of classi�ers as in BR, i.e., same as the

number of classes, but chosen at random order. It uses C classi�ers for the C individual

classes while incorporating the class information along with the features to have a better

classi�cation. The �rst classi�er is trained using only the original input attributes. The

�rst output label is then added as new input attribute, and the new input space is

used to train the second classi�er, and so on. This forms a chain of classi�ers which

incorporates label information. The �nal outcome is dependent on the order of training

of the classi�ers. Probabilistic Classi�er Chains (PCC) [18] is an extension of CC that
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incorporates Bayesian methods to optimize the order of chains, thus aiming to improve

the overall performance. An ensemble extension to CC, known as the Ensemble Classi�er

Chains (ECC) [62] the authors aim to handle the drawbacks of CC by introducing an

ensemble model. It is used to reduce the error propagating through the CC model. This

is done by several classi�er chains trained with a random ordering of labels and subsets

of training instances for ML classi�cation. ECC, like CC, also utilizes class information.

While CC is an ensemble of binary classi�ers, ECC can be thought of as an ensemble of

multi-label classi�ers.

Another adaptation of CC is the label speci�c features based classi�er chain for multi-

label classi�cation (LSF-CC) [89]. It is a very recent modi�cation of CC to handle some

drawbacks like random label ordering and noises in the original and additional features.

Ranking by pairwise comparison (RPC) � Unlike the previously discussed ensem-

bles, ranking by pairwise comparison (RPC) [35] is a one-vs-one (OVO) approach where

every pair of classes has a binary classi�er. This increases the number of classi�ers to

C(C−1)
2

, which might be a bottleneck if the data has a large number of classes. Linear

perceptron models were used as the base classi�ers for RPC. The job of each OVO classi-

�er is to individually identify the rank among the two classes, and later all the rankings

are merged to generate the label ranking of the entire data.

Calibrated Label Ranking (CLR) � Another ensemble of binary classi�ers, cal-

ibrated label ranking [22] was developed as an extension of RPC. CLR includes the

concept of a virtual label along with the actual labels in the dataset. This virtual label

works as a threshold that helps to calibrate the �nal classi�er to separate the relevant

and irrelevant labels. The classes that rank above the virtual label are considered in the

�nal label-set.

Random k-labelsets (RAKEL) � Random k-labelsets (RAKEL) [78, 79] is another

popular ensemble technique that employs multiple single-label classi�ers to perform multi-
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label classi�cation. It aims to consider the existing label correlations within the data. It

generates random subsets of labels and trains a single-label classi�er for each subset. The

working of RAKEL is also quite similar to BR, the number of classi�ers is the same as the

number of subsets. The number and length of subsets can be altered as per requirement.

The base classi�er used for RAKEL can be changed as per requirement, but the original

RAKEL model uses label powerset. [84] modi�es the RAKEL algorithm to improve the

concept of randomized label subsets by utilizing the active learning model. A selection

criteria is proposed that evaluates separability and balances the level of classes. The �rst

class is chosen randomly and the following labels are selected based on the active learning

concept.

2.1.3.2 Tree-shaped ensembles

This type of ensemble technique splits the data into partitions, to form a tree-like struc-

ture and uses multiple classi�ers as an ensemble to perform multi-label classi�cation.

Hierarchy of multi-label classi�ers (HOMER) � Hierarchy of multi-label classi-

�ers (HOMER) [77] splits the classes into several groups such that at the end each leaf

node corresponds to a particular class. Multiple label powerset (LP) classi�ers are used

at intermediate stages to learn the subset of classes. This model is speci�cally designed

to handle the large number of classes in ML data.

ML-TREE and ML-FOREST � ML-TREE [94] is another tree-based algorithm that

splits the data into multiple branches using one-vs-all SVM for each class at intermediate

nodes. The data is thought of as a hierarchy and thus it is split into multiple partitions

like in a hierarchical tree structure. At the �nal level, each leaf node contains a set of

classes which provides the predicted labels. ML-FOREST [93] is an ensemble of ensembles

where multiple ML-TREEs are combined. Both of these approaches use SVMs as there

base classi�er to train the data while building the tree structure.
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Boosting based � AdaBoost is a boosting based decision tree model which helps to

improve the performance of multiple weak classi�ers. AdaBoost.MH [68] is a multi-label

version of the boosting model. In [69], the authors proposed the BoosTexter approach

which is also a multi-label extension of the popular ensemble learning approach, Ad-

aBoost. Alternate decision trees (ADT) are a generalization of traditional DT models. It

modi�es AdaBoost models to propose an alternative way to using techniques like boost-

ing to improve their performance. Similarly, ADTBoost.MH [13] employs a one-vs-all

strategy to split the instances and then trains multiple ADTs on these data to perform

ML classi�cation.

G3P-kEMLC � In [50], a tree-shaped ensemble of ML classi�ers has been built which is

based on grammar-guided genetic programming (G3P-kEMLC). Each of these classi�ers

model dependencies among a sub-group of k labels. The predictions from the children

nodes are aggregated at each node, while the leaf nodes contain a classi�er to perform

�nal classi�cation.

A comparison among some of the popular ML algorithms has been shown in Table 2.1

stating their advantages and disadvantages. Most of the algorithms discussed in this

chapter have been relevantly used for comparative analysis with the di�erent proposed

methods on various multi-label datasets.

2.2 Datasets

For all the experimental analysis throughout the thesis, benchmark multi-label datasets

have been used. These datasets are available at multiple sources.

� http://www.uco.es/kdis/mllresources/

� http://mulan.sourceforge.net/datasets-mlc.html

� https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multilabel.html
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Table 2.1: Comparison of some popular ML methods

Method Description Advantage Disadvantage

Label powerset (LP) [7]
Unique label-set
transformed to a
new class

Simple model Large number of classes

Binary Relevance (BR) [24]
Binary classi�er
for each label

Simple model Ignores label dependencies

Classi�er Chain (CC) [61] Extension of BR
Includes class
dependencies

Performance depends on
the order of classi�ers in
the chain

Ensemble of Classi�er
Chains (ECC) [62]

Extension of CC

Chain ordering is
less likely to
negatively a�ect
performance

Potentially large redundancy
in learning space

Ranking by pairwise
comparison (RPC) [35]

Ranking by pairwise
comparison method

Handles class
imbalance issue

Number of classi�ers =
C(C-1)/2

Calibrated Label
Ranking (CLR) [22]

Extension of RPC
Additional virtual
class concept
improves performance

Large number of classi�ers

Hierarchy Of Multilabel
classi�ERs (HOMER) [77]

Tree-based method
that uses LP as its
base classi�er

Computationally
e�cient for datasets
with a large number
of labels

Additional parameter to tune,
i.e. the number of clusters

RAndom k -labELsets
(RAkEL) [78]

Extension of the
label powerset
method

An improvement over
LP for a large number
of labels and training
examples

Random nature may include
models that a�ect the
ensemble in a negative way

Multi-label kNN (MLkNN) [104]

Adaptation of the
traditional kNN with
second-order
neighbourhood
information

Works well with
small data

Large computational complexity

Experiments have been done using MATLAB 2017a on a Windows OS with Intel Core

i7 processor and 16GB RAM.

2.2.1 Description of Datasets

Details of the benchmark datasets has been given in Table 2.2. They are available in

pre-processed forms, which have been used after normalization for the experiments. The

table contains domain names of the data with the number of instances, features and

classes. It also has label cardinality (Label Card) which indicates the average size of
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the label-set, i.e., the average number of relevant labels per instance. Diversity indicates

number of unique label-sets of the data divided by the number of possible label-sets.

Multi-label datasets inherently have the issue of imbalanced classes. To provide a better

understanding of the class imbalance present in the data, Table 2.2 contains maximum

and mean imbalance ratios as MaxIR and MeanIR respectively [28].

Table 2.2: Dataset details

Dataset Domain Reference Instances Features Classes Label Card Diversity MaxIR MeanIR

Flags Image [23] 194 19 7 3.392 0.422 5.88 2.25
CAL500 Music [80] 502 68 174 26.04 1.000 88.80 20.58
CHD49 Medicine [71] 555 49 6 2.58 0.531 26.38 5.77
Emotions Music [76] 593 72 6 1.869 0.422 1.78 1.48
Water Quality Chemistry [6] 1060 16 14 5.073 0.778 2.84 1.77
GNegativePSEAAC Biology [96] 1392 440 8 1.046 0.074 69.63 18.448
Enron Text [60] 1702 1001 53 3.378 0.442 913.00 73.95
Image Image [104] 2000 294 5 1.236 0.625 1.42 1.19
Scene Image [7] 2407 294 6 1.074 0.234 1.46 1.25
Yeast Biology [21] 2417 103 14 4.237 0.082 53.41 7.20
HumanPSEAAC Biology [96] 3106 440 14 1.185 0.027 46.41 15.289
Slashdot Text [59] 3782 1079 22 1.181 0.041 194.67 19.462
Corel Image [19] 5000 499 374 3.522 0.635 1120.00 189.57
Bibtex Audio [38] 7395 1836 159 2.402 0.386 20.43 12.50
Yelp Text [67] 10810 671 5 1.638 1.000 7.57 2.88
Delicious Text [77] 16110 500 983 19.02 0.981 309.29 71.13
Eurlex Text [47] 19350 5000 201 2.213 0.129 4290.00 536.98

Additionally, the frequencies of unique label-sets have also been plotted for all the datasets

to visualize the imbalance in the data. Here, each unique label-set is considered as a

distinct class and the histograms for the datasets have been given in Figure 2.2, 2.3 and

2.4. The X-axis for all the plots are the unique label-sets and the Y-axis is the number

of data points belonging to that label-set. The datasets have also been marked as small,

medium and large based on the total number of instances in the dataset.

From these plots it is seen that all these ML datasets are highly imbalanced. CAL500

(Figure 2.2b) has a single data from each label-set, whereas delicious dataset (Figure 2.4d)

has almost 16000 unique label-sets mostly with one or two data points from each. Most

of the datasets have very few samples from individual label-sets which make the task of

multi-label classi�cation di�cult. The problem of imbalance has been handled in one of

the proposed methods.
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Figure 2.2: Histograms of small datasets

2.3 Performance Metrics

While computing performance of multi-label classi�ers there is a need of separate perfor-

mance metrics from those used for traditional single-label data. These should be able to

handle the occurrence of multiple labels in the data. They are broadly divided into few

categories as follows. Each of these metrics are computed using the actual labels Y and

the predicted labels Z.

2.3.1 Example-based Metrics

These scores are calculated separately for each sample, and then an average score is

computed. This indicates that each sample has equal weight, irrespective of whether it

belongs to a rare or frequent label-set.
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Figure 2.3: Histograms of medium datasets
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Figure 2.4: Histograms of large datasets
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2.3.1.1 Hamming Loss

It is a popular metric widely used by researchers to evaluate ML classi�ers.

Hamming Loss =
1

N

1

C

N∑
i=1

|Yi △ Zi| (2.1)

where, △ is the symmetric distance between Y and Z, N is the total number of instances

and C is the number of classes. This score computes the Hamming distance between the

two output vectors. It gives the number of wrong predictions with respect to the total

number of classes.

2.3.1.2 Accuracy

It is computed as a ratio of the correctly predicted classes to the total number of relevant

classes. Computation is done for every instance and then an average is made.

Accuracy =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(2.2)

2.3.1.3 Precision

It is the ratio between number of correctly predicted labels vs the total number of pre-

dicted labels.

Precision =
1

N

N∑
i=1

Yi ∩ Zi

Zi

(2.3)

2.3.1.4 Recall

It is the ratio between number of correctly predicted labels vs the total number of relevant

labels.

Recall =
1

N

N∑
i=1

Yi ∩ Zi

Yi
(2.4)
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2.3.1.5 F-Measure

It is a joint measure computed by the harmonic mean of precision and recall.

F-Measure = 2 ∗ Precision ∗ Recall
Precision+ Recall

(2.5)

2.3.1.6 Subset Accuracy

It is a strict metric which does not consider partial correctness of predicted labels. This

counts the number of completely correct predicted label-sets. This metric is quite di�cult

to achieve, and has lower possibility of correctness with a larger number of classes.

Subset Accuracy =
1

N

N∑
i=1

[[Yi = Zi]] (2.6)

2.3.2 Ranking-based Metrics

These metrics are based on the ranks of the score for each class. The scores are rearranged

in a descending order based on their rank(x, y) where x is the instance belonging to the

class y.

2.3.2.1 Ranking Loss

It considers all combinations of relevant and irrelevant labels for an instance and checks

the number of times an irrelevant label has ranked higher than a relevant label. Lower

ranking loss, indicates better performance.

Ranking Loss =
1

N

N∑
i=1

1

|Y | · |Ȳi|
|ya, yb : rank(xi, ya) > rank(xi, yb), (ya, yb) ∈ Yi × Ȳi|

(2.7)
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2.3.2.2 Coverage

This metric counts the number of steps in the ranking of classes that cover all the relevant

labels. Lower the coverage, better the performance. This means that all relevant labels

have the highest scores, or in other words, all classes with highest scores are actually

relevant.

Coverage =
1

N

N∑
i=1

argmax
y∈Yi

⟨rank(xi, y)⟩ − 1 (2.8)

2.3.2.3 One Error

This counts the number of wrong predictions for the top-most ranked classes. For each

instance, this metric returns 1 if the top-ranked class does not belong to the actual

label-set. Lower one error indicates better performance.

One Error =
1

N

N∑
i=1

[[[argmax
y∈Zi

⟨rank(xi, y)⟩ /∈ Yi]]] (2.9)

2.3.2.4 Average Precision

For every label of an instance, this metric computes the amount of relevant labels that

have predicted rank above it.

Average Precision =
1

N

N∑
i=1

1

|Yi|
∑
y∈Yi

|y′|rank(xi, y′) ≥ rank(xi, y), y
′ ∈ Yi|

rank(xi, y)
(2.10)

2.3.3 Label-based Metrics

Unlike the previous metrics which are calculated individually for each instance, the label-

based metrics are computed for each label and then averaged by the number of labels.

There are two techniques for averaging label-based metrics, macro-averaging and micro-

averaging. Metrics like Precision, Recall and F-measure can be micro or macro averaged.
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Here the F-Measure metric has been considered.

2.3.3.1 MacroF1

For macro-averaging, the FMeasure metric is evaluated once per class and then the values

are averaged.

Macro-F1 =
1

C

∑
c∈C

FMeasurec (2.11)

2.3.3.2 MicroF1

For micro-averaging, it computes all the parameters class-wise for the entire dataset and

does the �nal computation only once.

Micro-F1 =
1

C
∗ 2 ∗

∑
c∈C Precisionc ∗

∑
c∈C Recallc∑

c∈C Precisionc +
∑

c∈C Recallc
(2.12)

All the above described performance metrics have been used in the following contributory

chapters for experimental analysis. Using a wide variety of metrics help to analyse the

strengths and weaknesses of the di�erent approaches in comparison with the existing

ML techniques. Since the background is set, the next chapters describe the problems of

multi-label data to be handled and the various approaches.
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Chapter 3

Autoencoders and Extreme

Learning Machines based

Multi-label Classi�ers

3.1 Introduction

In order to deal with the challenges encountered with multi-label data, various approaches

are adopted by researchers. Since multi-label data belongs to more than one classes at

a time, the corresponding class boundaries invariably overlap thus making the decision

space quite complex. To handle this problem e�ciently, many researchers prefer using

arti�cial neural networks (ANNs) [27, 29, 49, 72] to learn the complex multi-label class

boundaries. In literature, adaptations of multi-layer perceptron (MLP) [103], radial ba-

sis functions (RBF) [100], extreme learning machine (ELM) [43], deep neural networks

(DNN) [91], etc have been done by researchers to classify multi-label data e�ciently.

From these works, it is seen that more complex architectures become computationally

bulky, whereas extremely simple networks may not be able to work as desired. Thus,
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while developing a classi�er, e�ciency and simplicity both need to be handled simulta-

neously. Keeping the above aspects in mind, in this chapter the focus is directed towards

one such simple yet e�ective model known as an extreme learning machine (ELM) [31].

ELMs are quite compact and perform e�ciently when dealing with single-label data.

Hence, adaptations of this single layer model have been made by various researchers to

perform multi-label classi�cation [36, 81, 105]. However, it is seen that the performance

of a stand-alone multi-label ELM (MLELM) relatively deteriorates when it comes to

multi-label data classi�cation. It is not able to approximate the weights for data with

multiple outputs as e�ciently as it can do for single-label data. The complex multi-label

data prove to be bulky for the simple one-pass ELM network. This served as the moti-

vation to build a model that utilizes the strengths of ELMs and handles their drawbacks

to improve the overall performance in the �eld of multi-label classi�cation.

In this chapter, a cascade of neural networks has been proposed which attempts to han-

dle a few of the setbacks in the �eld of multi-label data classi�cation. As mentioned

previously, the focus of this model is directed towards ELMs. To strengthen the per-

formance of ELMs, two speci�c issues faced due to the complexity of multi-label data

has been handled using a couple of complementing networks. One challenge is to handle

the dimensionality and representation of the input space for multi-label data. Simple

ELMs have the requirement of a huge number of nodes in the hidden layer as compared

to the input layer for e�cient approximation of weights. This proves to be a bottleneck

while using ELM for multi-label classi�cation. Since the input dimension is often quite

large, it drastically increases the number of weights to be learnt by the network in one

pass, thus reducing the approximation capability of the network. To battle this problem,

another simple yet e�cient neural network, namely autoencoder (AE) [29], is used in

the proposed model. Autoencoders are unsupervised networks that are capable of learn-

ing e�ective encoding of data. They produce a good representation of the actual data

which makes the consecutive learning steps more functional. The other challenge faced

is the e�ective mapping of the input to the complex output space. Due to this com-
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plexity, the one-pass learning scheme of ELMs falters while learning all the overlapping

relations among classes. To give this mechanism an additional scope of learning a novel

and slightly modi�ed MLELM in coalition with the original MLELM is introduced to

e�ectively approximate the class scores. Utilizing the simplistic nature of ELMs and the

e�ectiveness of AEs, a classi�er system based on stacked AEs and ELMs is presented to

perform multi-label classi�cation e�ciently.

The �rst proposed model is a cascade of stacked autoencoders and multi-label ELMs. It

has three phases: feature extraction [25], soft classi�cation [4], class score approximation.

The �rst phase of the proposed model is feature extraction: this is performed using

a stacked autoencoder. The large input dimension is thus transformed to a smaller,

appropriate space which is used in the subsequent classi�cation phase. In the classi�cation

phase of the model, a multi-label ELM is employed to predict the soft class labels for the

data. The outputs generated in this phase is then fed to another MLELM in the �nal

step. The last step is for class score approximation in which the second MLELM learns

to map the soft class labels to their corresponding hard class labels. After the �nal class

mapping is learned, a global threshold is calibrated to assign the hard class labels to the

data. The three-step cascade of classi�ers proposed in this chapter is a novel approach

to handling a couple of the challenges faced by multi-label classi�ers. This approach of

stacking networks has been used in accordance with the concept of stacked generalization

[90]. However, the main contribution lies in the technique of using an extreme learning

machine to learn the mapping of the class scores obtained from the previous classi�er to

the hard labels. The proposed model has been validated with seven multi-label datasets

along with comparative analysis against eleven relevant algorithms.

In the second approach, the above-proposed model has been further explored to create

a deeper version. Using deep learning in the context of ML classi�cation can be readily

assumed to have increased e�ciency compared to that of a simpler classi�er. However,

looking into ML literature, it is seen that deep neural networks are still being explored
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and do not have su�cient work in this area [34]. Considering it as a scope to delve

into this �eld, DNNs have been considered to handle the complex ML data. Among

the various types of AEs that exist, namely deep AE (DAE), stacked AE (SAE), varia-

tional AE, etc, contrary to the SAE in the previous model, in this work, a DAE has been

speci�cally considered, which can map complicated non-linear representation of the input

feature set. This seems apt to handle ML data, which inherently have a large number

of features and is di�cult to manage. Integrating deep autoencoders and multi-label

ELMs the proposed deep neural model is created for e�ective multi-label classi�cation.

The e�ort in this chapter has been to create a deep network that �rst performs feature

transformation-cum-reduction and then performs consecutive ML classi�cation. First,

a DAE with multiple hidden layers is implemented for e�ective feature engineering. A

large part of generalization capability depends upon the features; hence feature engineer-

ing becomes an integral part of a good classi�cation system. The transformed features are

then sent to a stacked network of MLELM (St-MLELM) for successfully classifying ML

data. Features are isolated from the bottleneck of the DAE and fed into the St-MLELM

network. The St-MLELM model stacks multiple MLELM networks sequentially to create

a deeper network that has improved input-output mapping capability. The main motiva-

tion of this work is to create a deeper network for the classi�cation task of handling ML

data. Dimensionality reduction is one of the aspects that is addressed through the use

of DAE; this network mainly targets feature extraction and better representation of the

features. The MLELM model is also being used, which is a fast and one-pass classi�er, fo-

cused primarily on the handling of multi-label outputs. A stacked network of MLELM is

being used, to increase the learning power of the network architecture. The performance

of the proposed deep network has been thoroughly experimented with on �ve benchmark

ML datasets against various performance measures. Depth alterations have been tested

with respect to the number of hidden layers for the DAE component and the number

of MLELMs in the stack to get the optimum con�guration for eleven performance mea-

sures. The proposed method has also been compared with six state-of-the-art algorithms
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to analyse the performance. Also, the e�ectiveness of DAE vs SAE has been tested.

The primary contributions of this chapter involve:

a. Building a cascade of networks with stacked autoencoders (SAEs) and MLELMs.

b. Stacking MLELMs to learn the mapping of the class scores obtained from the

previous classi�er to the hard labels.

c. Building a deep neural network model for ML classi�cation integrating deep au-

toencoders (DAEs) and extreme learning machines.

d. Optimizing the network con�guration of the proposed model by analysing its per-

formance for varying depths of the network.

e. Determining the better-suited component among DAE and SAE for dimensionality

reduction.

The rest of the chapter is outlined as follows. Section 3.2 discusses some preliminaries

that are required to understand the proposed works. Section 3.3 elaborates on the �rst

proposed model and Section 3.4 explains the second proposed model along with their

related results discussed in the respective sections. Finally, Section 3.5 concludes the

chapter.

3.2 Preliminaries

Among the problem adaptation techniques which exist in the literature, few of the multi-

label classi�er models have used ELMs and autoencoders. Since the proposed methods

are based on MLELM, stacked autoencoder (SAE) and deep autoencoder (DAE), a brief

description of the related models are given in the following sub-sections.
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Figure 3.1: Architecture of an autoencoder

3.2.1 Autoencoders

In this era of deep learning, the use of autoencoders (AEs) [44, 45] have increased in var-

ious domains. Among the di�erent types of autoencoders in the �eld of machine learning

like denoising AE [82], variational AE, etc., the focus of this work is on stacked autoen-

coders (SAEs) [9, 98] and deep AEs [29]. A simple AE is a variation of a feedforward

neural network that has three layers: input, hidden and output. For N samples, each

with feature vector Xi, for i = 1, .., N and Xi ∈ Rd, both the input and the output layer

of the autoencoder has d nodes. The autoencoder works in an unsupervised fashion,

unlike a regular feed-forward network.

An example of a simple autoencoder is shown in Figure 3.1. The autoencoder takes

X = {x1, x2, x3, .., xd} as both input and output. The task of an autoencoder is to

encode the d-dimensional data to d′ dimension in the �rst part (i.e., encode) and then

decode the features from d′ to d dimension in the decoder part. When d′ is smaller than

d, the autoencoder compresses the data to a smaller dimension and then uncompresses

it in the next layer. If the input to the autoencoder is X, the encoder maps it to a set of
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hidden nodes A = {a1, a2, .., ad′} where output at a node aj is computed as

aj = ϕ

(
d∑

i=1

wijxi + bj

)
, (3.1)

where, ϕ is the transfer function for the encoder, wij is the connection weight between

the xi and aj, and bj is the bias. The function of the decoder is to map the encoded

representation A back to an estimate X′ of the original input X. Thus, the value at the

kth output node x′k is computed as follows.

x′k = ψ

(
d′∑
j=1

wjkaj + b′k

)
, (3.2)

where, ψ is the transfer function for the decoder, wjk is the connection weight between

aj and x
′
k, and b

′
k is the bias for the k

th node of the decoder. The autoencoder is trained

iteratively and the weights are updated through backpropagation like a multi-layer per-

ceptron.

In the scenario of a stacked autoencoder, multiple autoencoders are sequentially placed

one after the other. The encoded data from one AE is passed on as input to the next AE

and so on, to further extract prominent features from the data. On the other hand, for

deep autoencoders, instead of having one hidden layer (as shown later in Figure 3.11),

they have multiple hidden nodes. The learning happens through backpropagation for

both the variations of AE. However, each AE in an SAE learns sequentially i.e., once the

�rst AE �nishes training, its weights do not get updated again in that training phase.

Whereas, all the layers in a DAE are updated throughout a training phase. Autoencoders

are used for various purposes, such as encoding of features, weight initialization of other

networks, etc. In the proposed models, for both types of AEs, their under-complete

architecture has been used where the number of nodes gradually reduce starting from the

input layer to the �nal encoder layer. This is suitable since the SAE and the DAE both

have been used in the form of a feature extractor before performing classi�cation using
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Figure 3.2: Architecture of ELM

ELMs.

3.2.2 Extreme Learning Machine

Extreme learning machine is a compact and e�cient single-layer feed-forward neural

network that has been quite popular in the past decade. This unique network performs

classi�cation task e�ciently and fast. It has been found that the learning speed of an

ELM can be a lot higher than the traditional feed-forward network while obtaining better

generalization performance [32]. The single-label ELM has been adapted for multi-label

classi�cation in [73, 74]. The structure of a single-label ELM and a multi-label ELM is

the same. The output layer in an ELM handles single outcomes, whereas, in the MLELM,

it handles multiple outcomes.

The architecture of the ELM has 3 layers: input, hidden and output. For a single-label

sample X, the class is denoted as Y , where X ∈ Rd and Y ∈ RC . The input layer of an

ELM has d nodes, the hidden layer has h nodes and the output layer has C nodes. The

network has input to hidden layer connection weights α, biases b and hidden to output

layer weights β. An illustration of the ELM network is given in Figure 3.2.

The uniqueness of this network is that the input layer weights and biases are randomly
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initialized and unlike most other ANNs, they are not updated any further. Learning from

the data occurs in the hidden layer weights alone. An activation function ϕ is used at

the hidden nodes. The output at any hidden node zj is computed as

zj = ϕ

(
d∑

i=1

αijxi + bj

)
, (3.3)

where, j = 1, .., h, αij is the connection weight between xi and hidden node zj, and bj is

the bias. Similarly, at any output node yk the outcome is

yk =
h∑

j=1

zjβjk, (3.4)

where, βjk is the weight from hidden node zj to output node yk. The above model is

compactly represented as

Y = Zβ, (3.5)

where, Y = {y1, y2, .., yC}, Z = {z1, z2, .., zh} and β is the h× C weight matrix between

the hidden layer and the output layer. The outputs from the hidden layer Z and the

output layer Y are already known. Thus, the hidden to output layer weight matrix β is

approximated as:

β = Z†Y, (3.6)

where, Z† is the Moore-Penrose inverse of Z [57, 70]. Once the weight matrix β is

obtained, the ELM model has completed its training phase and is ready for testing.

Class predictions for unknown samples are then performed like in any other feed-forward

network.

The architecture of a basic ELM model is quite simple and has similarities with older

neural network models. This has raised various doubts in the research community which

led to di�erence of opinions [86, 87]. In [30], the author of ELM explains their philosophy

and idea behind the proposed model. NN models like RVFL and RBF might be considered
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as predecessors of ELM, since they have similar architecture and approach. Despite their

similarities, these models are seen to work better than the other in some speci�c cases

that make each of the models unique in their own way. Keeping this in mind, here, the

architecture of ELM has been explored mainly for its simplicity and fast computation.

The concept of one-pass learning is quite intriguing and has worked moderately for ML

data. Hence, our focus is to utilize the strengths of this network to build a better model

for multi-label class�cation.

Along with the ELM-based techniques speci�cally tailored for multi-label classi�cation

(discussed in Section 2.1.2.1), other ELM-based single-label models can also be employed

as multi-label classi�ers. Since ELMs and neural networks, in general, do not require much

architectural modi�cation to switch from single-label to multi-label classi�cation, they

can be adapted to solve the multi-label classi�cation problem. In [66], a fast pruned ELM

was proposed that can automatically generate the number of hidden nodes. The relevance

of the initial large number of hidden nodes is measured and the irrelevant ones are pruned.

[64] developed an online sequential fuzzy ELM (OS-Fuzzy-ELM) which trains the ELM in

an online batch-wise mode. The initial training is done with a chunk of data and the later

chunks are used to update the parameters. In [65], an aircraft recognition system had

been built which extracts three moment-invariant features from the input aircraft images

and feeds them as inputs to three separate modules of neural networks. These modules

consist of ELMs which in turn perform classi�cation, and the outcome from the modules

are combined. [51] proposed a self-adjusting ELM (SA-ELM) which learns the input to

hidden layer weights using an ameliorated teaching learning based optimization instead of

using the random weights. Apart from these, many other methods also exist in literature

which can be adapted for multi-label classi�cation. Among the many applications of

ELM, one is being used as an auto-encoder (ELM-AE) [37, 106]. In general, ELM-AE

is a sparse autoencoder and the input data is expanded in the hidden layer due to the

presence of a large number of hidden nodes in ELM. The proposed method requires

feature reduction, hence it has opted for a stacked autoencoder instead of an ELM-
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AE. In [37], the authors built an ELM-AE as a part of a deep model called multi-layer

ELM speci�cally for image classi�cation. In the stacked ELM model [106], the authors

have divided a single large ELM network into multiple stacked serially connected smaller

ELMs. They have utilized ELM-AE in each iteration of the stacked-ELM algorithm to

improve performance.

However, unlike the above mentioned ELM-based techniques, the proposed methods aim

to improve the performance of ELMs while handling multi-label data speci�cally. In

general, multi-label data tends to have a large number of features, which in turn requires

the MLELM to use a larger number of hidden nodes. Not only does this increase the cost,

but it also degrades the performance of the network. Hence, it is not able to approximate

the weights for data with multiple outputs as e�ciently as it can do for single-label data.

Also, the decision space of multi-label data is inherently quite complex. A simple MLELM

is unable to map the input to the output space e�ciently and learn the separating decision

boundaries. The complex multi-label data prove to be bulky for the simple one-pass ELM

network. Thus, the proposed methods aim to handle these shortcomings with the use of a

cascade of networks, where an individual network is employed to handle separate issues.

3.3 Proposed Multi-label Classi�er with Stacked Au-

toencoder and Extreme Learning Machines

In this work, a cascade of stacked autoencoders and extreme learning machines has been

proposed for the classi�cation of multi-label data (MLSAEELM). In the �rst phase, a

stacked autoencoder network is used to reduce the dimension of the data. Stacked au-

toencoders (SAEs) are widely used for deep neural networks since they are capable of

e�ciently extracting underlying features from any given data. Although the proposed

classi�er isn't too deep, a reduced set of well-encoded features obtained from the SAE are

bene�cial to retain the underlying property of the data. Once the relevant features have
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been extracted, these are passed on to a multi-label ELM for soft label prediction. This

MLELM handles the multi-label data in a way similar to the simple ELM. To improve

the classi�cation performance of the MLELM, another MLELM is concatenated in the

�nal phase of the model. The task of this network is to learn the mapping of the soft

labels to hard labels. The �nal class scores predicted by the approximation MLELM are

then used to assign hard class labels to the data.

3.3.1 Model Description

A detailed description of the proposed model regarding its architecture, training and

testing phases are given in this section.

3.3.1.1 Architecture of the network

The architecture of the proposed model includes a stacked autoencoder followed by a

multi-label extreme learning machine for classi�cation. Figure 3.3 shows the overview of

the model.

Stacked autoencoder The stacked autoencoder part of the network contains individ-

ual autoencoders stacked sequentially. The �rst autoencoder AE1 takes the original input

Xi = {x1, x2, .., xd}, trains itself iteratively and encodes the data to a smaller number of

features (say, ai = {a1, a2, .., ad′}). These encoded features are then passed on to train

the next autoencoder AE2 and the features are further encoded to g which has d′′ number

of features and so on. The �nal set of encoded features from the autoencoder AEn is

used as input in the next phase. In Figure 3.3, only two layers have been shown in the

stacked autoencoder.

Multi-label ELM for soft classi�cation (MLELM-C) In this phase, a simple

MLELM network (referred here as MLELM-C) is used, which is an ELM network perform-

ing multi-label classi�cation. The encoded features obtained from the previous stacked
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autoencoder phase is taken as input and the class labels for the multi-label data are

provided as output. Thus, the MLELM-C maps d′′ number of input nodes to C out-

put nodes with h hidden nodes. The hidden layer output vector Z = {z1, z2, .., zh} is

computed using Equation 3.3. The MLELM-C model can thus be compactly represented

as

Y = Zβ, (3.7)

where, Y = {y1, y2, .., yC} is the actual output vector and β is the h × C weight matrix

between the hidden layer to the output layer. β is then determined using Equation 3.6.

A large number of hidden nodes are required in comparison to the number of input nodes

for the MLELM-C to be able to learn e�ciently from the data. Since the number of

features of the input data have been reduced, the input layer is not as large as a stand-

alone MLELM. Thus, the hidden layer does not need to be extremely large and the

weight matrix can be approximated comfortably. Once the weight matrix β has been

approximated, the soft label scores at the kth output node can be computed as

y′k =
h∑

j=1

zjβjk, (3.8)

where, βjk is the weight from the hidden node zj to output node yk. Each node in the

output layer now contains the soft classi�cation score for that particular class. These

scores are usually converted to hard labels in a regular MLELM using a threshold. In

the proposed method, these soft classi�cation scores are used in the next phase.

Multi-label ELM for score mapping (MLELM-D) The output generated from

the MLELM-C is a set of scores, one for each class. For single-label data, the class label

corresponding to the highest value is assigned to the sample. While labelling multi-label

data, several class labels may be assigned to one sample depending on the obtained score.

The general method of determining the hard multi-labels is by setting a threshold. If the

predicted value is higher than the threshold, the class is relevant, hence the label is 1,
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else the label is 0 for the irrelevant class. This threshold selection is very crucial for

multi-label data. A very low threshold can assign more labels than required and a very

high threshold might end up under-assigning labels to the data instances, both eventually

leading to misclassi�cation. Therefore, it is important that the model can predict correct

hard labels from the scores obtained from the classi�er. To improve the prediction ability

of the model, a modi�ed MLELM is proposed to be used in the third phase that learns the

mapping of the scores predicted by MLELM-C to the �nal class labels. This MLELM-

D takes the predicted output values Y′ from the MLELM-C as input and the original

target labels Y as output. The input weights and biases are randomly initialized and the

output at the hidden layer V is computed using Equation 3.3. The hidden weights α are

similarly learned from V and the original output labels Y as

α = V†Y. (3.9)

This MLELM-D helps to map the soft scores predicted by the previous network to the

hard labels instead of using a speci�c threshold like in traditional ELMs. The �nal

predictions made by this MLELM-D network is then converted to hard class labels using

a calibrated threshold.

3.3.1.2 Training Phase

In this phase, the training data is passed through three networks sequentially. Each of

these networks has a speci�c task and is trained iteratively.

Feature Extraction At the beginning of the training phase, the input data is fed to

the stacked autoencoder to perform feature extraction. The reduced number of features

and the number of layers in the autoencoder is predetermined. The SAE trains iteratively

till it learns the input thoroughly. Once the SAE has learnt from the training data, the

encoded features are obtained from the network. The extracted features of the training

data are then passed on to the second network.
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Soft Class Prediction The multi-label ELM allocated for soft class prediction (MLELM-

C) uses the reduced features from the previous network as input and the original multi-

label output in the output layer. The number of nodes in the hidden layer is determined

depending on the number of input nodes. This network works in batch mode, where it

takes all the input instances together and trains itself in one pass. Once the MLELM-C

has learned the hidden layer weights, the outputs need to be predicted. The MLELM-C

is again fed with the features encoded training data g, only to generate class scores. The

predicted score vector Y′ at the output layer are calculated as

Y′ = βϕ(γg +B), (3.10)

where, γ is the input-hidden weight matrix, B is the bias vector, ϕ is the activation

function and β is the hidden-output weight matrix computed by the MLELM-C. The

predicted outputs Y′ that is obtained from the MLELM-C are used to train the third

network MLELM-D.

Class Score Approximation Another MLELM (named MLELM-D) is used to im-

prove the predictions of MLELM-C by mapping the class scores to actual class labels.

The predicted values computed from MLELM-C are provided as input to the MLELM-D

and the original class labels are used as output. This MLELM-D network also learns the

hidden layer weights in one pass.

3.3.1.3 Testing Phase

Once the complete multi-label stacked encoder and ELMmodel (MLSAEELM) are trained,

it is ready for testing. In this phase, the test data is fed individually to the �rst SAE

network. The SAE generates a set of encoded features for the test data in an unsuper-

vised manner. The reduced input features are then passed on to the second phase. In the

soft classi�cation step, the trained MLELM-C computes the individual class scores for

each of the test patterns. These intermediate predicted values are then given as input to
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the �nal network MLELM-D which then maps the soft class scores to actual class labels.

This third network outputs the �nal predicted values which are then used to determine

the hard class labels for the test samples.

3.3.2 Experimental Analysis

To evaluate the e�ectiveness of the proposed MLSAEELM technique, it has been tested

on seven multi-label datasets using ten performance metrics. These outcomes have been

compared with eleven other relevant techniques to judge the overall performance of the

proposed model.

3.3.2.1 Setup

Seven well-known multi-label datasets have been used to evaluate the performance of the

proposed model. These datasets are Emotions (music), Scene (image), Flags (image),

Slashdot (text), Yeast (biology), Delicious (web text) and EUR-Lex (text).

Ten performance measuring indices [28] have been computed with k-fold cross-validation

on the above datasets. These metrics are namely, Hamming loss (HL), ranking loss (RL),

one error (OE ), subset accuracy (SA), average precision (AP), macro-F1 (MacF1 ), micro-

F1 (MicF1 ), accuracy (Acc) and average recall (AR).

The proposed model has been compared with eleven related models. The �rst method

of comparison is a multi-label adaptation of the original ELM (MLELM) with a global

threshold of 0.5. A bipolar MLELM [81] (B-MLELM) and ELM-ML [73] have been in-

cluded for comparison. Among non-ELM methods, binary relevance (BR) [24], classi�er

chains (CC) [62] and random k label-sets (RAKEL) [79] along with one of their modi-

�cations (BRq, CCq and RAKEL-d) have been used for comparison. Apart from these

existing techniques, partial structures of the proposed method have also been included

for evaluation. The method referred to as S-MLELM includes only the �rst and second

phase of the proposed model, i.e., an SAE followed by MLELM-C. Comparison with
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this model shows the utility of the MLELM-D network of the proposed work. Another

model MLELM+ which contains the second and the third phase of the proposed model

(MLELM-C + MLELM-D) has been used for comparison to show the importance of using

an SAE. A detailed analysis of the results is given in the following section.

3.3.2.2 Analysis of Results

The proposed classi�cation model (represented as MLSAEELM) has been compared with

eleven other relevant multi-label classi�cation methods (including some ELM based tech-

niques) from literature. The 5-fold cross-validation results corresponding to these algo-

rithms for seven datasets and ten performance measures are shown below. Tables 3.1�3.7

show the results for Emotions, Scene, Flags, Slashdot, Yeast, Delicious and EUR-lex

datasets respectively for nine measures.

Table 3.1: Comparative results for Emotions dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.4138 0.4039 0.5678 0.3960 0.6037 0.4774 0.6507 0.6505 0.3024
B-MLELM 0.4034 0.3943 0.5882 0.4272 0.5996 0.5322 0.6653 0.6615 0.3335
ELM-ML 0.4774 0.4683 0.6186 0.3757 0.5475 0.4972 0.6259 0.6250 0.2822
MLELM+ 0.3655 0.3601 0.5042 0.4541 0.6385 0.4552 0.6633 0.6594 0.3545
S-MLELM 0.2792 0.2608 0.3833 0.5267 0.7225 0.5625 0.6986 0.6976 0.4360
BR 0.2640 0.3270 0.4470 0.1720 0.6190 0.1654 0.2785 0.2825 0.4220
BRq 0.2830 0.3040 0.4820 0.1550 0.5400 0.1435 0.2885 0.2915 0.4460
CC 0.2610 0.2940 0.4200 0.2210 0.5790 0.2091 0.2865 0.2925 0.4670
CCq 0.2780 0.2970 0.4470 0.2140 0.5680 0.1879 0.2835 0.2870 0.4590
RAKEL 0.3450 0.2230 0.3170 0.0930 0.7100 0.0879 0.3051 0.3060 0.4710
RAKEL-d 0.2610 0.3060 0.4590 0.1650 0.5560 0.1376 0.2830 0.2855 0.4330
MLSAEELM 0.1852 0.1580 0.2735 0.5695 0.8065 0.5598 0.7245 0.7232 0.4957

Analysing the performance measures for all the methods in the above tables, it is seen that

they vary in a similar manner for all the datasets across all the metrics. The algorithms

MLELM and B-MLELM, both solo networks, are seen to perform quite close to each

other for all the datasets, whereas their performance is quite low compared to other

algorithms. Thus, it can be seen that using a stand-alone MLELM and its variations is

unable to predict multi-label classes well. The single network is not su�cient for learning

the intricacies that are present in the data.

61



3.3. MLSAEELM CHAPTER 3. AE & ELM BASED ML CLASSIFIER

Table 3.2: Comparative results for Scene dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.1819 0.4699 0.7713 0.0014 0.4430 0.0211 0.8181 0.8181 0.0010
B-MLELM 0.1778 0.4676 0.7672 0.0010 0.4471 0.0251 0.8225 0.8226 0.0007
ELM-ML 0.2763 0.4722 0.7905 0.1916 0.4339 0.1826 0.7721 0.801 0.1815
MLELM+ 0.1753 0.3895 0.7469 0.0145 0.4966 0.0166 0.8259 0.8259 0.0135
S-MLELM 0.1459 0.1340 0.3410 0.5773 0.7892 0.6112 0.8259 0.8267 0.5442
BR 0.1350 0.2320 0.3890 0.4230 0.6870 0.5426 0.3175 0.312 0.5340
BRq 0.1440 0.2070 0.3930 0.4020 0.6010 0.3981 0.3115 0.3185 0.5410
CC 0.1440 0.2200 0.3810 0.5310 0.6540 0.5571 0.3081 0.3010 0.5840
CCq 0.1430 0.2110 0.3650 0.5290 0.6590 0.4872 0.3115 0.3060 0.5930
RAKEL 0.2210 0.1510 0.3160 0.2290 0.7450 0.2765 0.3025 0.2930 0.5140
RAKEL-d 0.1440 0.2260 0.4080 0.4470 0.6050 0.4367 0.3025 0.2981 0.5320
MLSAEELM 0.0918 0.0760 0.2225 0.6126 0.8677 0.6351 0.8352 0.8355 0.6019

Table 3.3: Comparative results for Flags dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.4029 0.4162 0.4615 0.5242 0.6598 0.5406 0.5852 0.5602 0.4045
B-MLELM 0.3985 0.3754 0.3158 0.5889 0.7227 0.5921 0.5657 0.5481 0.4504
ELM-ML 0.5201 0.5256 0.6410 0.4476 0.5877 0.4547 0.5230 0.4907 0.3226
MLELM+ 0.3666 0.3537 0.3493 0.5846 0.7250 0.5444 0.5866 0.5669 0.4734
S-MLELM 0.3679 0.3013 0.2051 0.5807 0.7671 0.5682 0.5751 0.5637 0.4474
BR 0.2530 0.2690 0.3090 0.1750 0.7720 0.1862 0.3345 0.3735 0.6060
BRq 0.2540 0.2720 0.2110 0.1650 0.6710 0.1655 0.3541 0.3830 0.6270
CC 0.2720 0.2940 0.2320 0.2580 0.6800 0.2351 0.3285 0.3610 0.5860
CCq 0.2650 0.2960 0.2110 0.1600 0.6680 0.1462 0.3401 0.3750 0.6120
RAKEL 0.2830 0.2670 0.2680 0.1490 0.7490 0.1311 0.3482 0.3745 0.6070
RAKEL-d 0.2750 0.3140 0.2320 0.2110 0.6780 0.1892 0.3241 0.3605 0.5860
MLSAEELM 0.2612 0.1895 0.1429 0.6758 0.8420 0.6248 0.6221 0.6014 0.5503

Table 3.4: Comparative results for Slashdot dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.1803 0.2995 0.7530 0.2222 0.3855 0.4714 0.8441 0.9386 0.1571
B-MLELM 0.1750 0.3233 0.7701 0.2235 0.3713 0.459 0.8681 0.9392 0.1605
ELM-ML 0.1347 0.2308 0.6640 0.2837 0.4770 0.5007 0.8721 0.9417 0.2182
MLELM+ 0.2092 0.3269 0.7734 0.1994 0.3658 0.4357 0.8658 0.9365 0.1410
S-MLELM 0.0738 0.2165 0.5854 0.3143 0.5302 0.3603 0.8996 0.9453 0.2876
BR 0.0430 0.1440 0.5080 0.2990 0.5950 0.2891 0.1175 0.2301 0.3460
BRq 0.0450 0.3000 0.6170 0.2880 0.3820 0.2677 0.1245 0.2295 0.3480
CC 0.0560 0.3010 0.5390 0.3630 0.4540 0.3491 0.1245 0.2215 0.4230
CCq 0.0590 0.2970 0.5660 0.3450 0.4290 0.3167 0.1265 0.2085 0.3970
RAKEL 0.0490 0.3980 0.8070 0.1290 0.2000 0.1472 0.0745 0.1271 0.1540
RAKEL-d 0.0420 0.3030 0.6000 0.3110 0.3920 0.3418 0.1251 0.2365 0.3570
MLSAEELM 0.0412 0.1078 0.4276 0.3748 0.6768 0.3767 0.9024 0.9470 0.3593
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Table 3.5: Comparative results for Yeast dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.2177 0.1938 0.2541 0.5855 0.7419 0.5568 0.7332 0.7159 0.4751
B-MLELM 0.2178 0.1885 0.2464 0.5709 0.7412 0.5462 0.7372 0.7214 0.4595
ELM-ML 0.2228 0.1782 0.2583 0.6442 0.7424 0.7203 0.7395 0.7214 0.5292
MLELM+ 0.2091 0.1875 0.2611 0.5942 0.7429 0.5588 0.7409 0.7233 0.4891
S-MLELM 0.2129 0.1838 0.2333 0.5900 0.7480 0.576 0.7402 0.7230 0.4789
BR 0.2510 0.3150 0.4380 0.0620 0.5820 0.0632 0.1951 0.2841 0.4200
BRq 0.2610 0.2660 0.4940 0.0620 0.5310 0.0671 0.2095 0.3060 0.4690
CC 0.2660 0.3000 0.4820 0.1440 0.5330 0.1231 0.1985 0.2765 0.4250
CCq 0.2740 0.2830 0.5330 0.1250 0.5320 0.1253 0.2051 0.2945 0.4600
RAKEL 0.3200 0.2860 0.4140 0.0480 0.5510 0.0433 0.2120 0.2845 0.4250
RAKEL-d 0.2740 0.3120 0.4820 0.0640 0.4950 0.0598 0.1940 0.2725 0.3980
MLSAEELM 0.1943 0.1648 0.2222 0.6104 0.7649 0.5707 0.7444 0.7267 0.5021

Table 3.6: Comparative results for Delicious dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.0207 0.2073 0.4915 0.1552 0.2663 0.1246 0.9805 0.9805 0.0998
B-MLELM 0.0204 0.2074 0.4845 0.1532 0.2628 0.1253 0.9807 0.9808 0.0985
ELM-ML 0.0234 0.1588 0.4519 0.2629 0.2812 0.2388 0.9799 0.9806 0.1840
MLELM+ 0.1117 0.2765 0.5652 0.1276 0.2210 0.2204 0.9786 0.9787 0.1451
S-MLELM 0.0183 0.1392 0.3607 0.1747 0.3476 0.1211 0.9809 0.9807 0.1672
BR 0.0182 0.8824 0.3414 0.0118 0.2681 0.1218 0.0235 0.0967 0.1089
BRq 0.0215 0.8654 0.3541 0.0109 0.2542 0.1209 0.0231 0.0929 0.1310
CC 0.0187 0.1780 0.3059 0.0255 0.1641 0.0925 0.0617 0.1285 0.1467
CCq 0.0209 0.1654 0.3373 0.0256 0.1746 0.0875 0.0573 0.1256 0.1358
RAKEL 0.0182 0.2002 0.3426 0.0261 0.1881 0.0926 0.0507 0.1241 0.1429
RAKEL-d 0.0199 0.1823 0.3456 0.0271 0.1785 0.1013 0.0581 0.1131 0.1265
MLSAELM 0.0147 0.1499 0.3075 0.1855 0.3580 0.2242 0.9846 0.9809 0.1881

Table 3.7: Comparative results for EUR-Lex dataset

HL RL OE SA AP AR MacF1 MicF1 Acc
MLELM 0.0232 0.0886 0.4007 0.4267 0.6072 0.5995 0.9216 0.9889 0.4135
B-MLELM 0.0186 0.0450 0.2027 0.5340 0.7763 0.5868 0.9344 0.9890 0.4703
ELM-ML 0.0109 0.0397 0.2412 0.2108 0.7530 0.0000 0.9294 0.9891 0.4582
MLELM+ 0.0215 0.1112 0.4390 0.4009 0.5617 0.5086 0.9365 0.9889 0.3439
S-MLELM 0.0110 0.1319 0.1778 0.3862 0.2211 0.6154 0.9343 0.989 0.5162
BR 0.0153 0.9478 0.2200 0.2701 0.7631 0.3562 0.0977 0.2209 0.4515
BRq 0.0202 0.8751 0.2118 0.2618 0.7281 0.3721 0.0941 0.2178 0.4987
CC 0.0050 0.7735 0.1937 0.4796 0.7254 0.4567 0.2454 0.3819 0.5986
CCq 0.0166 0.7543 0.2032 0.4511 0.7203 0.4435 0.2681 0.3491 0.5672
RAKEL 0.0046 0.8107 0.1854 0.4982 0.7747 0.4873 0.2557 0.3905 0.5118
RAKEL-d 0.0199 0.7968 0.1955 0.5012 0.7683 0.4967 0.2526 0.3777 0.5098
MLSAELM 0.0031 0.0295 0.1677 0.4865 0.7773 0.6252 0.9393 0.9892 0.5208
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ELM-ML and MLELM+ both use two consecutive networks instead of one MLELM, and

their performance is better than that of the single MLELMs in most of the cases. ELM-

ML uses the second network for threshold approximation, whereas MLELM+ uses the

second MLELM to map class score (MLELM-D). Among these two, MLELM+ seems to

perform better than ELM-ML, which indicates the bene�t of using the proposed MLELM-

D network. Among MLELM, MLELM+, S-MLELM and MLSAEELM it is seen that the

proposed model has signi�cant improvement in performance by using SAE for feature

encoding and MLELM-D for class score approximation. The proposed method is also

seen to perform better than the other existing methods BR, BRq, CC, CCq, RAKEL and

RAKEL-d. These results have been further con�rmed by testing MLSAEELM against

these methods by varying the amount of training data as shown in Figures 3.4�3.10.

These box plots show the average precision of the methods for all the datasets over k-fold

cross-validation, ranging k from 2 to 10.
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Figure 3.4: Average Precision of all algorithms over k-fold cross-validation for Emotions
dataset

Among all the methods used for comparison, the proposed approach is seen to perform

signi�cantly better over the existing ones for all the seven datasets and all the performance

metrics. T-test statistics on the proposed approach against all the compared methods
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Figure 3.5: Average Precision of all algorithms over k-fold cross-validation for Scene
dataset
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Figure 3.6: Average Precision of all algorithms over k-fold cross-validation for Flags
dataset
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Figure 3.7: Average Precision of all algorithms over k-fold cross-validation for Slashdot
dataset
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Figure 3.8: Average Precision of all algorithms over k-fold cross-validation for Yeast
dataset
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Figure 3.9: Average Precision of all algorithms over k-fold cross-validation for Delicious
dataset
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Figure 3.10: Average Precision of all algorithms over k-fold cross-validation for EUR-Lex
dataset
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for the average precision metric is shown in Table 3.8. For t0.90 = 1.440 with degrees of

freedom = 6, the proposed method MLSAEELM outperforms all the other models.

Table 3.8: T-test statistics for all the algorithms against the proposed MLSAEELM

Method T-test value
MLELM 4.1996
B-MLELM 3.0272
ELM-ML 3.5019
MLELM+ 4.7244
S-MLELM 1.6514
BR 4.6123
BRq 5.7343
CC 4.3426
CCq 4.7881
RAKEL 2.4001
RAKEL-d 4.5857

To evaluate further, a non-parametric two-tailed Wilcoxon signed-rank test has been per-

formed on the accuracy metric for all the datasets against all other methods (Table 3.9).

It is seen that for alpha=0.20, TWilcoxon(7) = 5, the proposed MLSAEELM outperforms

the other algorithms for the accuracy metric.

The computational complexity of the proposed algorithm has been computed experimen-

tally and compared with the other existing methods and shown in Table 3.10. Both the

training times and testing times have been recorded separately. It is seen that the training

time for the proposed algorithm is higher compared to the other algorithms, especially

for the larger datasets. This is mainly due to the stacked autoencoder network which

is iteratively trained in the proposed algorithm, thus adding on some extra amount of

training time. Due to this reason, S-MLELM also has a large training time. Since the

training phase is performed o�ine, a larger training time does not quite a�ect the actual

testing speed of the algorithm. From the recorded testing times, it can be seen that the

proposed method is quite fast and its speed is comparable to the rest of the methods.

Moreover, its testing time for some datasets especially the larger ones is faster than most

of the other compared algorithms.
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Table 3.9: Two-tailed Wilcoxon signed-rank test statistics for all the methods vs proposed
MLSAEELM (based on accuracy)

Method p Value Value of sign rank
MLELM 0.015625 28
B-MLELM 0.015625 28
ELM-ML 0.046875 26
MLELM+ 0.015625 28
S-MLELM 0.015625 28
BR 0.046875 26
BRq 0.296875 21
CC 0.937501 13
CCq 0.937500 13
RAKEL 0.109375 24
RAKEL-d 0.078125 25

Table 3.10: Run-time (in seconds) of all the algorithms for all datasets

Emotions Scene Flags Slashdot Yeast EUR-Lex Delicious

MLELM
Train 0.1749 1.1105 0.0124 2.1116 1.5371 161.9306 215.9715
Test 0.0011 0.0088 0.0018 0.0629 0.0221 3.8547 0.1599

B-MLELM
Train 0.1778 1.1031 0.0194 2.1183 1.4245 181.0913 234.7683
Test 0.0013 0.0079 0.0011 0.0672 0.0034 3.7205 0.1713

ELM-ML
Train 0.1328 4.2526 0.0183 66.7521 1.6929 936.4543 755.9038
Test 0.0035 0.0416 0.0028 0.6456 0.0179 0.4021 0.3654

MLELM+
Train 0.0632 2.0992 0.0163 44.4069 0.7496 167.9387 405.1314
Test 0.0037 0.0242 0.0027 0.2026 0.0131 0.2066 0.1894

S-MLELM
Train 2.3339 24.9166 1.2771 338.0252 7.4861 12856.6601 528.0802
Test 0.0852 0.0637 0.0596 0.0763 0.0609 0.5123 0.0833

BR
Train 0.3346 0.6719 0.3063 0.6518 0.3785 47.5633 40.1136
Test 0.0151 0.0417 0.0405 0.1096 0.1362 3.7268 30.9803

BRq
Train 0.3202 0.6551 0.2917 0.6265 0.3905 49.1082 40.1021
Test 0.0145 0.0322 0.0336 0.1077 0.1159 3.0465 29.5411

CC
Train 0.3622 0.9818 0.3211 1.4761 0.7788 973.2005 40.2038
Test 0.0180 0.0348 0.0154 0.1085 0.0752 4.1138 33.1692

CCq
Train 0.3396 0.9481 0.3202 1.4655 0.7791 864.5708 39.2140
Test 0.0154 0.0301 0.0132 0.0998 0.0663 4.0213 32.9651

RAKEL
Train 0.6254 4.4748 0.3752 1.3193 4.0614 6467.4840 347.1959
Test 0.0211 0.1389 0.0185 0.1424 0.0872 3.9647 31.6542

RAKEL-d
Train 0.5889 4.4734 0.3776 1.3330 4.0544 6542.3890 347.9101
Test 0.0204 0.1134 0.0166 0.1326 0.0803 3.7465 30.2645

MLSAEELM
Train 2.5726 25.7914 1.2392 334.4661 8.2951 18353.8901 677.5598
Test 0.0801 0.0592 0.0575 0.0876 0.0741 0.8718 0.1609
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Thus, from all the results obtained, it can be said that the application of a stacked

encoder for feature extraction and additionally learning the soft class scores to hard

labels mapping in the proposed method signi�cantly improves the performance of the

MLELM compared to other algorithms.

3.4 Proposed Deep Multi-label Classi�er with Deep

Autoencoder and Extreme Learning Machine

In continuation of the above-proposed work, extension of the previous model has been

done to build a deep network for e�cient ML classi�cation. The main aim of this network

is to handle the large multi-label feature space by reducing it to a well-represented lower

dimension and then perform fast classi�cation while learning to map the input to the

output suitably. It is mainly a two-phase model. The �rst part of the network comprises

a DAE for the initial feature extraction. After that, these relevant features are fed through

a network of stacked MLELMs (St-MLELM) for multi-label classi�cation. Subsequent

addition of multiple networks of ELM has been done to improve the learning of the ML

data. The soft classi�cation scores from the �nal ELM output layer is passed through a

threshold limit in order to obtain a hard classi�cation of the predicted class labels.

3.4.1 Model Description

In this section, the components and the architecture of the proposed network are discussed

in detail.

3.4.1.1 Feature Reduction by DAE

The �rst component of this network model is feature extraction by DAE. It is a feed-

forward multi-layer neural network, where the output is mapped as the input itself for

reconstruction. The structure for the DAE network has been shown in Figure 3.11. x

represents the input features and x′ represents the reconstructed input in the network.
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The intermediate layer a generates the encoded version of the actual input x, which can

Figure 3.11: Structure of Deep Autoencoder

be considered as an unsupervised transformation of the features. In the training phase,

the DAE adjusts all its weights using the backpropagation mechanism. In this step of

the proposed algorithm, a DAE is preferred over SAE, since the latter greedily trains

and stacks AEs one after the other. Whereas, a DAE tries to optimize all the layers

simultaneously, thus improving the overall learning. While creating a deep network, it

is important to consider components that would enhance the performance of the overall

model. The performance of SAE vs DAE has been experimentally compared in Section

3.4.2.2. After training of the DAE is completed, the encoded input a generated from this

component is used in the next phase.

3.4.1.2 Sequential classi�cation by St-MLELM

The second part of the network is the ML classi�cation with the extracted features from

the encoded inputs of the DAE. This phase uses a network of stacked multi-label ELM

networks (St-MLELM) which are capable of e�cient input to output mapping. The
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individual components in this stack are MLELMs which are single-layer feed-forward

network (SLFN). The architecture and description of a single ELM (same as an MLELM)

network are given in Section 3.2.2. The St-MLELM component is built by stacking

multiple individual MLELM networks. Stacking the consecutive networks of MLELM

helps to observe the performance of the network and how it behaves with increasing

complexity being introduced. While looking closely into the architecture of the network,

it is seen that as the �rst layer of a simple ELM network initializes weights randomly,

there is no real learning involved in that part. The actual learning occurs in the second

section of the ELM network. Hence, if the classi�er architecture is restricted to just one

MLELM classi�er, the learning is restricted as well. When multiple ELM networks are

stacked for the same purpose, the learning considerably increases, which shows improved

performance. After the classi�cation is performed by the St-MLELM network, a soft-

class score approximation is generated at this stage. This soft class score is again passed

through a thresholding function to assign a hard classi�cation label for each of these

instances. This threshold has been considered as 0.5 for the experiments.

3.4.1.3 Architecture

The training and testing architectures of the proposed model are depicted below. They

are essentially the same model, but the working is di�erent in both phases, hence it is

depicted separately for ease of understanding.

Training phase The training phase of the network consists of both feature extraction

by DAE and multi-label classi�cation by stacked MLELMs. Figure 3.12 shows the entire

architecture of the training network. The training phase for the deep autoencoder involves

the encoder and decoder sections since the training is done on the entire network. Here a

six-layer DAE has been shown, however, the depth of the DAE can be varied as required.

After training of the DAE, the encoded input a is fed as input to the St-MLELM network.

Here a stack of 3 MLELMs has shown, which can also be increased as per requirement.
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Figure 3.12: Representation of the training architecture of the network

Each of the MLELM networks maps the input to the target output, denoted by Y . The

predicted outputs for each of these MLELM networks (MLELM-1, MLELM-2, MLELM-

3) are given by Y 1, Y 2 and Y 3 respectively. After training of MLELM-1, the predicted

output, Y 1, is fed to MLELM-2. Again, for the subsequent network, Y 2, is fed to

MLELM-3, and so on. This is done to improve the input to output mapping capability of

the network, while not increasing the learning time drastically. Here, the three MLELM

stack predicts the �nal soft-label classi�cation score as Y 3. This score is further passed

through a global threshold, which then determines the relevant and irrelevant hard label-

sets.

Testing phase The testing architecture can be thought of as a fully connected network

as depicted in Figure 3.13. It utilizes all the layers trained in the previous phase. First, it

only takes the encoder portion of the trained DAE which generates the encoded inputs.

Thus original input is pushed forward through the encoder layers to the St-MLELM layers

directly. The trained St-MLELM layers transform the encoded input further through the
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Figure 3.13: Representation of the testing architecture of the network

multiple layers which map the input to the output successfully. The stack of MLELMs

can now be thought of as a fully connected network since the output of one is used as an

input to the next. The testing network uses all the weights learned in the training phase.

The output layer predicts classi�cation scores for the test data which is then converted

to hard labels by a global threshold.

3.4.2 Experimental Analysis

The proposed deep ML classi�er based on deep autoencoders and stacked MLELM has

been tested on �ve benchmark ML datasets, namely, Scene, Flags, Emotions, Delicious

and Yeast. Eight performance measures have been used for the experiments, i.e., Ham-

ming loss (HL), one error (OE), ranking loss (RL), average precision (AP), accuracy

(A), subset accuracy (SA), macro-F1 (Mac-F1) and micro-F1 (Mic-F1) metrics. Exper-

iments have been conducted on the proposed model such that di�erent concerns can be

addressed. It is mainly divided into the following categories.
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3.4.2.1 Varying the depth of the entire network

To judge the performance of the entire network six di�erent con�gurations have been

tried. The proposed model has two components, namely, DAE and St-MLELM. For

testing purpose, one component is kept constant while the depth of the other component

is varied.

Figure 3.14: Macro-F1 across all datasets with increasing number of MLELM networks

Figure 3.15: Micro-F1 across all datasets with increasing number of MLELM networks

Varying St-MLELM depth - Here, the depth of the DAE has been kept constant

and the number of MLELMs in the stack has been increased from 1 to 3. A total of six

di�erent network con�gurations has been shown on the �ve datasets. Figure 3.14 shows

Macro-F1 results for DAE (4 layers). For the training network, DAE contributes 4 layers,

and one MLELM contributes 2 layers each. Thus, the size of the entire network is varied
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from 6, 8 and 10 layers. Figure 3.15 shows the Micro-F1 results for DAE (6 layers). The

size of the training network is varied from 8, 10 and 12. In most cases, the performance

is seen to improve with the increase in the number of MLELMs.

Figure 3.16: Accuracy score with increasing depth of DAE, keeping the number of ELM
network constant

Varying DAE depth - Figure 3.16 depicts the variation of accuracy measure when

the MLELM stack is �xed at 2, and the depth of DAE is changed from 4 to 6 layers. This

makes the train network depth 8 and 10 layers. Here, the performance of the network is

seen to improve with the increase in depth.

3.4.2.2 DAE vs SAE

To justify the use of DAE in the network for feature extraction, a comparison with SAE

has been done. Figure 3.17 shows that in all the cases, DAE performs better than SAE.

This is due to the greedy nature of learning for SAE, which learns one AE at a time and

stacks them. However, for DAE the entire network updates its weights simultaneously to

improve its learning.

3.4.2.3 Comparison with state-of-the-art methods

Finally, the results for the best model with respect to some state-of-the-art techniques

have been shown in Table 3.11 for six performance measures on �ve datasets. Com-
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Figure 3.17: Accuracy score of DAE vs SAE

parisons have been made with well-known ML classi�ers, MLELM, bipolar MLELM (B-

MLELM) [81], ELM-ML [73], BR [46], CC [62] and RAKEL [79]. MLELM and B-MLELM

are single ELM models, ELM-ML is a two ELM system and BR, CC, RAKEL are en-

semble models which use multiple classi�ers. Here, it is seen that the proposed model

performs comparatively better than the others for some metrics. The ensemble models,

RAKEL and CC are seen to perform close to the proposed method in few cases.

Additionally, from the T-test statistical analysis of the proposed method against the state-

of-the-art algorithms it is seen that MLDAEELM outperforms the others for t0.75 = 0.741

with degrees of freedom = 4 for the average precision metric. For the two-tailed Wilcoxon

signed-rank test on the accuracy metric, for alpha=0.20, TWilcoxon(5) = 2, MLDAEELM

also outperforms the other state-of-the-art methods.

3.5 Conclusion

This chapter proposed novel multi-label classi�ers that could handle large input dimen-

sion and complex decision space. For dimensionality reduction purpose, autoencoders

were used, whereas for enhanced input to output mapping multi-label extreme learning

machines were incorporated. ELMs are well-known for their one-pass fast classi�cation

capability that helped to make the proposed network less bulky. AEs have also gained
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Table 3.11: Comparison of proposed model with the state of the art networks for all the
datasets

Dataset Methods HL OE RL AP A SA
MLELM 0.1819 0.7713 0.4699 0.4430 0.0010 0.0014
B-MLELM 0.1778 0.7672 0.4676 0.4471 0.0007 0.0010
ELM-ML 0.2763 0.7905 0.4722 0.4339 0.1815 0.1916

Scene BR 0.1350 0.7469 0.2320 0.6870 0.5340 0.4236
CC 0.1440 0.3890 0.2200 0.6540 0.5840 0.5310
RAKEL 0.2210 0.3810 0.1710 0.7450 0.5140 0.2290
MLDAEELM 0.1339 0.3780 0.1667 0.7731 0.4356 0.3094

MLELM 0.4029 0.4165 0.4162 0.6598 0.4045 0.5242
B-MLELM 0.3985 0.3158 0.3754 0.7227 0.4504 0.5289
ELM-ML 0.5201 0.6410 0.5256 0.5877 0.3226 0.4476

Flags BR 0.2530 0.3090 0.2690 0.6710 0.6060 0.1750
CC 0.2720 0.2520 0.2940 0.7720 0.5860 0.2580
RAKEL 0.2830 0.2680 0.2670 0.7490 0.6120 0.1490
MLDAEELM 0.3308 0.2432 0.2432 0.7885 0.4308 0.5360

MLELM 0.4138 0.5678 0.4039 0.6037 0.3024 0.3960
B-MLELM 0.4034 0.5882 0.3943 0.5996 0.3335 0.4272
ELM-ML 0.4774 0.6186 0.4683 0.5475 0.2822 0.3757

Emotions BR 0.3640 0.4470 0.3270 0.6190 0.4220 0.1720
CC 0.3610 0.4200 0.2940 0.5790 0.4670 0.2210
RAKEL 0.3450 0.3170 0.3230 0.7100 0.4710 0.0930
MLDAEELM 0.3366 0.5248 0.2782 0.5567 0.3831 0.3421

MLELM 0.2577 0.2941 0.2938 0.6019 0.4751 0.5455
B-MLELM 0.2578 0.2964 0.2885 0.6012 0.4595 0.5309
ELM-ML 0.2528 0.2983 0.2782 0.6024 0.5292 0.4442

Yeast BR 0.2510 0.4380 0.3150 0.5820 0.4200 0.0620
CC 0.2660 0.4820 0.3000 0.5330 0.4250 0.1440
RAKEL 0.3200 0.4140 0.2860 0.5510 0.4250 0.0480
MLDAEELM 0.2462 0.2893 0.2686 0.6127 0.4135 0.1534

MLELM 0.0207 0.4915 0.2073 0.2663 0.2998 0.1552
B-MLELM 0.0204 0.4845 0.2074 0.2628 0.2985 0.1532
ELM-ML 0.0234 0.4519 0.1588 0.2512 0.3840 0.2629

Delicious BR 0.0182 0.3414 0.3824 0.2681 0.3089 0.0118
CC 0.0187 0.3459 0.1781 0.1641 0.3467 0.0255
RAKEL 0.0182 0.3426 0.2002 0.1881 0.3429 0.0261
MLDAEELM 0.0181 0.3196 0.1406 0.2841 0.6082 0.1931
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Table 3.12: T-test statistics for all the algorithms against MLDAEELM (based on average
precision)

Method T-test value
MLELM 1.3377
B-MLELM 1.2224
ELM-ML 1.9602
BR 1.2452
CC 1.6454
RAKEL 0.6951

Table 3.13: Two-tailed Wilcoxon signed-rank test statistics for all the methods vs pro-
posed MLDAEELM (based on accuracy)

Method p-value Value of sign rank
MLELM 0.1875 13
B-MLELM 0.3125 12
ELM-ML 0.3125 12
BR 0.6250 5
CC 0.6250 5
RAKEL 0.6250 5

popularity as great unsupervised feature extractors. Utilizing these concepts, �rst, a

three-phase model was developed including stacked AEs and two MLELMs. This model

was further enhanced to create a deeper network having a two-phase system that utilized

the same principles as above. Here, instead of SAE, a deep AE was used, that experi-

mentally seemed to be better at feature transformation and reduction. Then a stack of

MLELMs was created that would sequentially learn the input to output mapping thor-

oughly. Both the proposed models showed a good performance in comparison to various

existing models and were able to handle the intended drawbacks of ML data.

Once the approach of enhanced feature to class mapping has been done in this chapter, it

is seen that there might be some scope of improvement from the perspective of learning

the decision boundaries. The MLELMs employed here, for learning the feature to class

mapping better, have good generalization capability and are able to learn in one pass.

However, another approach of handling the decision space also needs to be explored. That

is to increase the separability of the decision boundaries in the output space. To explore

this idea further, a transformation based network has been explored in the next chapter.
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Chapter 4

Functional Link Arti�cial Neural

Network based Multi-label

Classi�ers

4.1 Introduction

Due to multiple classes being linked with each multi-label data, there is an increase in

the complexity of the decision space. The class boundaries are much more convoluted

and overlapping due to the increased generality of ML classi�cation. Focussing on the

overlapping boundaries of multi-label data, it would be bene�cial if the separability of

the decision space could be improved. In this context, while solving the problem of

classi�cation in general, various models are being developed and explored by researchers.

Among such methods, arti�cial neural networks have shown the capability of solving very

complex, non-linear data relationships [27]. As seen in the previous chapter, the �exibility

exhibited by neural networks (NNs) makes it capable of learning any type of pattern.

They are loosely inspired by how the human brain works; speci�cally, its interconnected
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neuron structure and its activation resembles the biological synaptic connections and its

�ring. This makes it capable of handling complex classi�cation tasks. Additionally, they

are quite capable of handling complexities without unnecessarily creating a bulky model.

They inherently bring non-linearity by increasing the number of layers in the model which

are able to follow disparate structures in the datasets.

In the ML domain, some of the existing NN models are computationally expensive due

to their complex architecture, while few of them are not able to e�ciently classify multi-

label data due to a very simplistic approach. Keeping these issues in mind, the aim is

to adopt a simple yet e�cient architecture for the class prediction of multi-label data.

A model which is simplistic like the extreme learning machine adopted in the previous

chapter, but has di�erent strengths which can be explored and enhanced to build a strong

classi�cation model for multi-label data. Among the various networks explored for single-

label classi�cation, functional link arti�cial neural network (FLANN) is one such network

that is compact yet e�cient. Multiple FLANN adaptations for single-label classi�cation

[14, 17, 48] exist in the literature, but it is yet to be su�ciently experimented with in the

multi-label domain. FLANNs are feed-forward networks where the use of a hidden layer is

omitted by non-linearly transforming the input features with some basis functions. The

expanded input layer portrays a higher dimension projection of the input with better

discriminating characteristics. Multi-label data is inherently quite complex, mostly due

to its multiple overlapping class boundaries. This calls for models that can handle this

bottleneck and improve on it. Therefore, FLANN is an apt choice in this scenario.

In this chapter, two speci�c drawbacks of ML data are to be handled. First is the complex

decision space with overlapping class boundaries. To overcome this issue, the FLANN

model is explored. Later in the chapter, AEs are incorporated with FLANN to perform

additional feature transformation and dimensionality reduction. The works are split into

three parts. First, a multi-label FLANN has been proposed. The model is structurally

quite simple, thus involving less computational complexity, but incorporates a higher di-
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mension projection of the features which make the output space more discriminated, thus

leading to e�cient classi�cation. In the second part, various models of FLANN has been

devised to analyse each of their importance as a multi-label classi�er and identify the op-

timal con�guration of the MLFLANN model. Three types of functional expansions viz.

trigonometric, Chebychev and power polynomial expansions and two weight optimiza-

tion techniques, namely, backpropagation and particle swarm optimization (PSO) have

been explored. The combination of one functional expansion and one weight optimization

technique has led to six FLANN models for multi-label classi�cation. These multi-label

FLANN models have been tested on four datasets and ten performance metrics to appre-

ciate the overall performance for each of them. Comparative analysis indicates optimal

performance from a few of the models over the others making them e�cient multi-label

classi�ers.

Finally, a novel two-layer transformation network is constructed that is adapted from

MLFLANN and the well-known autoencoders (AE). This AutoEncoder integrated MLFLANN

(AE-MLFLANN) network is capable of overcoming a few drawbacks faced in multi-label

classi�cation previously. In the �rst layer of the network, functional expansion of features

is performed that is inspired by MLFLANN. The input features are functionally expanded

to a higher dimension, thus giving rise to a decision space with increased separability. It

is an attempt to improve the input space, thereby, increasing the convergence. However,

the transformed data helps to improve the multi-label feature space only to some extent.

The expansion of input space might not always give rise to an optimal representation.

There is still some scope for further transforming the data which will lead to more im-

proved performance. Also, the functional expansion leads to an increase in the input

dimension, which poses a problem for multi-label data. To handle both these issues, a

second feature transformation-cum-reduction layer incorporating autoencoders is intro-

duced. The second layer is created from the encoder section of an AE, which is capable of

transforming the features to a comparatively reduced and improved space. Autoencoders

are widely known to implicitly extract features for classi�cation tasks, while successfully
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transforming the data. It is capable of generating a suitable representation through un-

supervised learning. To concisely describe the proposed network, it can be said that,

the input features are functionally expanded in the �rst layer. In the second layer, these

expanded features are passed through an AE which generates a favourable representation

in a reduced feature space. These reduced and transformed features are then mapped to

the output layer. This AE-MLFLANN model is capable of good multi-label classi�cation

as it can handle the complex decision space better by transforming the data through

two consecutive layers. The proposed work has highlighted the importance of the two

transformation layers, which can be extended further to build deeper networks in future.

AE-MLFLANN has been experimentally shown to perform better than six benchmark

methods over �ve multi-label datasets. The application of the proposed method has been

further explored from multi-label domain to traditional single-label domain as well. This

single-label version of the proposed model, named AutoEncoder integrated single-label

FLANN (AE-SLFLANN), has been separately tested on four relevant datasets to analyse

its success.

The contribution of this chapter can be highlighted as follows.

� Introducing a novel multi-label functional link arti�cial neural network (MLFLANN)

model that deals with the complex decision space of multi-label data by improving

separability among classes.

� Various combinations of basis functions and learning techniques are explored to

identify the optimal con�guration of MLFLANN.

� Introducing a novel two-layer network based on MLFLANN and AE speci�cally for

multi-label classi�cation.

� Improving separability in multi-label data by �rst applying functional expansion

layer, followed by additional transformation by autoencoder layer.

� The increased feature dimension caused by the �rst layer is reduced by consecutive
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AE in the second layer. This maintains a balance between the feature space and

sample size, which leads to a good training of the classi�er with limited data.

� Introducing the single-label variation of this novel two-layer network.

The rest of the chapter is organized as follows. Section 4.2, describes the traditional

FLANN model and some related works. In Section 4.3, 4.4 and 4.5 the proposed works

are discussed in details. Description of the proposed model and experimental result have

been included for the individual works. Section 4.6 concludes the chapter.

4.2 Preliminaries

In this section, the existing FLANN model is brie�y discussed.

4.2.1 Functional Link Arti�cial Neural Network (FLANN)

Neural networks are widely used to handle complex classi�cation problems. Various mod-

els of ANNs have been used in the past to solve di�erent types of problems. Functional

link arti�cial neural network (FLANN) is one such neural network model, which is simple

yet e�cient and has been used to solve classi�cation tasks. FLANN is a �at feed-forward

neural network with a functionally expanded input layer, no hidden layers and an output

layer with one neuron. It follows a simple learning rule and uses the single error gener-

ated by the network to train itself iteratively. Its low architectural complexity makes it

easier to train and helps to gain more insight into the classi�cation problem. FLANN

uses functionally expanded features to increase the dimensionality of the input data, thus

overcoming the non-linear nature of the given problem. From Cover's theorem [12], it is

known that given a set of training data that is not linearly separable, one can with high

probability transform it into a training set that is linearly separable by projecting it into

a higher-dimensional space via some non-linear transformation. Hence, the hyper-planes

that are generated by FLANN should be able to e�ciently discriminate between the input
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patterns.

In literature, it is seen that FLANN has been modelled for single-label data classi�ca-

tion. The initial idea of FLANN originated in [52] and [54], where it has been shown that

functional links neurons may be conveniently used for function approximation with lesser

computational load and faster convergence rate than multi-layer perceptron. Various

models like random vector functional link networks (RVFLN) [53] have been developed

alongside FLANN which might have certain similarities in the overall structure. However,

the functional expansion concept of FLANN makes it somewhat unique. Over the years,

FLANN has proven quite e�ective in classi�cation and has been combined with other

popular models from genetic algorithms in [15, 16] and PSO in [17] for enhancing the

classi�cation accuracy. Di�erent combination of basis functions and learning mechanisms

have been experimented with in the past. In [48], FLANN was used with backpropaga-

tion (BP) learning for training where a di�erent set of orthonormal basis function was

suggested for trigonometric feature expansion. The method developed in [17] also uses

expansion but instead of BP, particle swarm optimization (PSO) with Cauchy and Gaus-

sian mutation operator has been used for training of the weights. [14] used a Chebychev

expansion along with an adaptive version of PSO (aPSO) combined with BP as their

learning scheme for single-label classi�cation. The initial weights were �rst found using

aPSO and then this was used as a starting point for the BP learning for �ne-tuning.

4.3 Proposed Multi-label FLANN

Exploring the various domains and variations of FLANN, it was seen that this network has

proven to be quite e�cient in single-label classi�cation tasks, thus should be explored in

the multi-label domain as well. The major characteristic of FLANN by which it projects

the input vector e�ciently to a higher dimension to improve separability makes it quite

suitable for multi-label data. The class boundaries of multi-label datasets are inevitably

overlapped and the data eventually seems to be quite di�cult to classify. Projecting the
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input vectors to a higher dimension might make this problem comparatively simpler. In

this work, an adaptation of functional link arti�cial neural network has been proposed for

class prediction of multi-label data where the functional expansion of features helps to

generate hyperplanes that have a higher discrimination capability suitable for multi-label

data.

4.3.1 Model Description

The details of the proposed model describing the architecture, the training and the testing

phases are discussed here.

4.3.1.1 Architecture of the network

Figure 4.1: Architecture of MLFLANN

The architecture of the existing FLANN has been modi�ed in the proposed work to in-

corporate classi�cation of multi-label data (Figure 4.1). The basic feed-forward network

model has two layers, the expanded input layer and the output layer. The actual in-

put to the network has d features. Each input feature xij is functionally expanded as
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{f1(xij), f2(xij), ..., fP (xij)}, where P is the total number of basis functions used for each

input element. This increases the dimension of the input space from d to P ∗ d, by a set

of basis functions F applied on an input pattern Xi. F (Xi) can be expanded as,

F (Xi) = {f1(xi1), f2(xi1), .., fp(xi1),

f1(xi2), f2(xi2), .., fp(xi2), ..,

f1(xid), f2(xid), .., fp(xid)}. (4.1)

Once the new expanded features are obtained from the input data, they are then fed

to the network. Since there are no hidden layers, the other layer in the network is the

output layer. Unlike the existing FLANN which has only one output node, the proposed

MLFLANN has C output neurons, one for each class. Since the existing FLANN archi-

tecture generates only one global error, representation of multiple outputs and learning

multiple labels is not possible using the earlier network architecture. Hence, adaptation

is necessary. The proposed model is a feed-forward network, with d ∗ P ∗ C number of

connections between the input layer and the output layer.

4.3.1.2 Training Phase

In the proposed MLFLANN architecture, a set of basis functions F , and a �xed number of

weight parametersW have been used to represent the output Y⃗ . The output of multi-label

data can be represented as a vector of individual class outputs, i. e., Y⃗i = {yi1, yi2, ..., yic}.

With a speci�c set of basis functions F , the challenge is to �nd the weight parameters

W that provide the best possible approximation of Y⃗ on the given input-output samples.

This can be achieved by iteratively updating W .

At the beginning of the training phase, the network weights are initialized randomly.

Then, the input patterns X⃗i are fed to the MLFLANN one at a time. Each of the input

features is functionally expanded; some trigonometric basis functions have been used in
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the problem to expand an input feature xij:

F (Xi) = {sin π(xij), cos π(xij),

sin 2π(xij), cos 2π(xij),

...,

sinmπ(xij), cosmπ(xij)} (4.2)

A weighted sum of these non-linear outputs is computed through the network. The

induced local �elds for each class is obtained by adding a bias b to this sum. An activation

function ϕ is applied at each of the output nodes to obtain the estimated outcomes for

all the classes. The output vector Y⃗ ′
i can be written as,

Y⃗ ′
i = {y′i1, y′i2, ..., y′iC}. (4.3)

y′ic = ϕ

(
d∑

j=1

P∑
p=1

fp(xij).wjpc + b

)
, 1 ≤ c ≤ C. (4.4)

This actual output Y⃗ ′
i is compared to the corresponding desired output Y⃗i and the resul-

tant error vector E⃗ for the ith pattern is,

E⃗ = Y⃗i − Y⃗ ′
i

= {yi1 − y′i1, yi2 − y′i2, ..., yiC − y′iC}

= {e1, e2, ..., eC} (4.5)

At the t+1th iteration, the weight matrixW is updated depending on the error computed

at the tth iteration. The change in weight △W (t)
j given by,

△W (t)
j = µfj(x)

(t)δ(t), (4.6)

where, µ is the learning rate, fj(x)
(t) is the functionally expanded input at the tth iteration
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and the gradient is,

δ(t) = (Y⃗ ′)(1− Y⃗ ′)E⃗, (4.7)

where, Y⃗ ′ is the output vector and E⃗ error vector at the output layer. Then the connection

weights for the t+ 1th iteration can be updated as,

W
(t+1)
j = W

(t)
j +△W (t)

j , (4.8)

where, W
(t)
j is the jth weight at the tth iteration.

At the end of the training phase, the learned classi�er is able to generate a set of outputs

for a given pattern, but this output vector needs to be mapped to a label set. In the case

of multi-label data, a suitable threshold needs to be selected that will be able to correctly

map all the class labels. Instead of selecting a single threshold, a set of thresholds is

determined from the outputs obtained from the trained classi�er. A set of C thresholds

are computed by averaging the relevant and irrelevant scores obtained for each class.

4.3.1.3 Testing Phase

Once the MLFLANN is well trained, the validation/testing phase begins. In this phase,

each multi-label test pattern is taken at a time and fed to the trained MLFLANN. The

same set of basis functions are used to expand the features of the test pattern. The

trained network computes the output at each node which denote each class. Once the

outputs have been obtained, the heuristically determined threshold is applied to each of

the class outputs, which give the actual results.

4.3.2 Experimental Analysis

To assess the performance of the proposed approach, experiments have been conducted

on four multi-label datasets and has been compared to two other NN-based multi-label

classi�cation algorithms. One is a multi-label single-layer perceptron (MLSLP) model
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which works without modifying the input features. The other model used for comparison

is MLRBF [100], this technique modi�es the input features using radial basis functions.

Results corresponding to the above two techniques and the proposed work MLFLANN

have been shown in Table 4.1.

Table 4.1: Comparative results on four datasets

Dataset Method HL ↓ AP ↑ RL ↓ Cov ↓ OE↓
MLSLP 0.1638 0.5884 0.2941 1.5627 0.6149

Scene MLRBF 0.0771 0.8877 0.1678 0.4299 0.1834
MLFLANN 0.1185 0.8251 0.1106 0.6476 0.2794

MLSLP 0.2378 0.7076 0.2242 7.4033 0.2521
Yeast MLRBF 0.2361 0.7278 0.2228 7.1468 0.2105

MLFLANN 0.2246 0.73771 0.2129 7.0105 0.1898

MLSLP 0.2211 0.7873 0.1928 2.0169 0.2798
Emotions MLRBF 0.1936 0.7961 0.1616 1.8233 0.2583

MLFLANN 0.2031 0.7983 0.1607 1.8099 0.2677

MLSLP 0.2867 0.3297 0.4603 169.3410 0.2980
CAL500 MLRBF 0.3045 0.2435 0.4725 168.5221 0.3146

MLFLANN 0.1872 0.4152 0.2678 154.7961 0.1245

As performance measuring indices, Hamming loss, average precision, ranking loss, cover-

age and one error have been used [28]. To compute an average performance, the 5-fold

cross-validation results have been recorded. From the results obtained, it is seen that

the proposed method performs better than the single-layer perceptron model for all the

datasets. It is safe to say that the functional expansion in the proposed model has made

the multi-label data more discriminable. On the other hand, MLFLANN and MLRBF

have comparable performance. Both the techniques do not use the input features as it

is and perform some transformation of the input space to make the classi�cation task

simpler. MLFLANN performs better than MLRBF for Yeast and CAL500 datasets and

is a close competitor for the other two datasets. The results strengthen the fact that func-

tional expansion of features and iteratively adapting the network weights in MLFLANN

has proven to be bene�cial for the classi�cation of multi-label data.
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4.4 Proposed Optimization of MLFLANN

From Cover's theorem [12], it can be said that a higher dimensional transformation makes

the original data more separable, thus, simplifying the task of classi�cation. This is a

primary reason for exploring FLANN models to handle the complex multi-label data. The

work in this section is aimed to optimize the MLFLANN proposed in Section 4.3. Multiple

variations of single-label FLANNs exist in the literature, which also needs to be explored

to identify the optimal con�gurations in the multi-label domain. Thus, in the proposed

work, three basis functions, namely, trigonometric, Chebychev and power polynomial have

been focused upon, along with two learning approaches � backpropagation and particle

swarm optimization (PSO). The current work combines the basis functions and learning

mechanisms to build six models of FLANN for multi-label classi�cation. Details of the

approaches have been discussed in the following sections.

4.4.1 Model Description

The proposed variations of the MLFLANN are discussed in detail.

4.4.1.1 Architecture

The basic model of multi-label FLANN is shown in Figure 4.1. It contains an input layer

for d features xi1, ..., xid. These input features are expanded by the functional expansion

unit with the help of some basis functions which introduce non-linearity in the data.

Now, each input feature xij is expanded to p corresponding features which represent the

�nal ampli�ed input. There are various types of basis functions for traditional FLANN in

the literature that serve di�erent purposes. Few of them have been discussed in Section

4.4.1.2. After expansion, the features are directly mapped to the C nodes of the output

layer with the help of weighted connections. The nodes at the output layer compute

the predicted score for each class at the corresponding nodes. A weighted sum of the

expanded inputs is computed at the output layer. This predicted score is iteratively
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moved towards the target scores by updating the weights and reducing the error. These

weights W are learned iteratively during the training phase of the network. Researchers

have incorporated di�erent weight optimization mechanisms, two of which are discussed

in Section 4.4.1.3.

4.4.1.2 Basis functions

This section describes the three basis functions explored in this work.

Trigonometric The trigonometric expansion is one of the most popular basis func-

tions for FLANN. Trigonometric orthonormal basis, sin and cos functions are used for

this expansion. According to [14], a trigonometric basis function forms a more compact

representation than the other functions. For all the polynomials of the nth order with

respect to an orthogonal system φ(u)ni=1, the best approximation in the metric space of

L2 is given by the nth partial sum of its Fourier series with respect to the system. The

expansion representation with input feature Xi used for the current work is as follows:

X ′
i = {Xi, sin(πXi), cos(πXi), sin(2πXi), cos(2πXi), . . . , sin(qπXi), cos(qπXi)} (4.9)

This function was used for expansion in the proposed model in Section 4.3.

Chebychev This series is easier to calculate in comparison to the trigonometric func-

tions. As stated in [14], the non-linear approximation capacity of the Chebychev orthog-

onal polynomial is very powerful by the best approximation theory. Chebychev functions

are orthogonal for the range [−1, 1]. The �nite set of Chebychev polynomials can be

generated in the following recursive way for an input feature Xi:

X ′
i = {1, Xi, {2 ·Xi · f1(Xi)− f0(Xi)}, . . . , {2 ·Xi · fq−1(Xi)− fq−2(Xi)}} (4.10)
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Power Polynomial The use of power polynomial basis functions for expansion is quite

simple. Any polynomial functional form can be used for this approach. In the current

work the expansion has been carried out in the following way:

X ′
i = {1, Xi, X

2
i , . . . , X

q
i } (4.11)

4.4.1.3 Learning Mechanisms

The subsequent section gives a brief description of two learning techniques widely used

for FLANN.

Backpropagation The backpropagation mechanism is one of the most popular weight

optimization techniques for neural networks. FLANN models for single-label classi�cation

[48] are known to use this learning technique quite often. Gradient descent provides a

computationally e�cient method of changing the weights in a feed-forward network with

di�erentiable activation function units to learn a training set of input-output pairs. In

this work, the network weight matrix, W⃗ , is initialized randomly with values close to

zero. The input patterns, X⃗, are then fed to the network iteratively. A weighted sum

of the functionally expanded non-linear inputs, X ′, is added with a bias term, b. The

summed result is then subjected to an activation function ϕ(.) in the output neurons.

The output vector, Y ′
i = [y′i1, y

′
i2, ...., y

′
iC ] for the i

th pattern, representing the predicted

labels, is then obtained. For N data instances or patterns, the labels are obtained by

mapping the input to the C output dimensions as follows:

y′c = ϕ
( D′∑

k=1

X ′
k ·Wkc + b

)
, where 1 ≤ c ≤ C. (4.12)

The error Ei is the calculated using the original set of labels, for the ith pattern as:

Ei = Yi − Y
′

i (4.13)
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The weights are then updated using gradient descent. The change in weights, ∆W t,

which is a set of weight vectors, ∆W t
kc at t

th iteration is given as,

∆W t
kc = µ ·X ′t

k · δt, (4.14)

where, µ is the learning rate and the gradient δt at tth iteration is given as,

δt = Y
′ · (1− Y

′
) · E (4.15)

The updated connections weights, W at the (t+ 1)th iteration is given by,

W t+1 = W t +∆W t (4.16)

At the end of the learning phase, the model is able to generate class scores using Equation

(4.12) at the output nodes in the range [0, 1]. These scores are then converted to relevant

labels for each data instance by using a global threshold.

Particle Swarm Optimization (PSO) PSO [20] is a population-based search proce-

dure in which individuals called �particles� change their position with time, each particle

in the swarm represents a �solution� to the optimization problem. The particles �y around

in a multi-dimensional search space following the personal best and the global best particle

positions. As stated above, a particle referred to here is a potential solution to the opti-

mization problem. Thus, a particle k in the multi-label FLANN scenario is represented

with two parameters, its velocity and position. The velocity vk represents the movement

of the particle in space towards the optimal solution. Whereas, the position of a particle

is represented by the weight matrix of the FLANN, Wk, in the C-dimensional problem

space. The particle position is denoted as a vector W⃗k = (Wk1, Wk2, ...,WkC), for the k
th

particle out of all P randomly initialized ones in the problem space, i. e., the swarm. Each

kth particle maintains records of its personal best position, W⃗L
k = (WL

k1, W
L
k2, ...,W

L
kC),
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its current velocity, vk, and its current position, Wk. In each iteration a global best

W⃗g = (Wg1, Wg2, ...,WgC) is found based on the positions of all the members of the

swarm. Any particle in the swarm then changes or moves in the space according to the

information from the global best and its own personal best. In each iteration, WL
k and

Wg of the current swarm are combined with some weights γ1 and γ2, where γ1 is known as

the cognitive factor or the self-con�dence factor and γ2 is referred to as the social factor

or the swarm con�dence factor. This is done to adjust the velocities of the particles of

the swarm.

Figure 4.2 represents the movement of the particle. The particle moves in the direction

of the resultant vector, W⃗ ′
k, w.r.t the personal and global best positions. ω represents

the inertia factor, and it plays a key role in the process of providing a balance between

exploration and exploitation process in PSO. If the value of ω is large then PSO tends to

be in the global search mode, hence, providing little resistance to the velocity. Whereas,

if the value is less, then it provides greater resistance to the previous velocity of the

particle, hence, tending to be in a targeted search mode.

Figure 4.2: Vector Representation of PSO

Now, considering the multi-label classi�cation problem at hand, the mean squared error

(MSE) objective function has been selected for carrying out the PSO routine. Hence, the

task is to minimize the MSE between the target output and the generated output. With
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each particle position W⃗k represented as:

W⃗k = (W11,W12, ...,W1C ,

W21,W22, ...,W2C ...,

WD′1,WD′2, ...,WD′C). (4.17)

The objective function can be de�ned as:

J(W ) =
1

D′

D′∑
i=1

C∑
j=1

||ϕ(Wij ·X ′
ij + b)− Yij||2, (4.18)

where, ϕ(.) is the activation function. In the current work, the activation function ϕ(x)

is selected to be the sigmoid function. The velocity v⃗k and position W⃗k for each particle

k is updated in the tth iteration as,

v⃗k(t+ 1) = ω ⊙ v⃗k(t) + γ1 ⊙ r⃗1(t)⊙ (W⃗L
k (t)− W⃗k(t))

+ γ2 ⊙ r⃗2(t)⊙ (W⃗g(t)− W⃗k(t)),

(4.19)

W⃗k(t+ 1) = W⃗k(t) + v⃗k(t+ 1), (4.20)

where, ⊙ represents the Hadamard product, r⃗1 and r⃗2 are vectors of random numbers

which introduce randomness for search space exploitation and γ1, γ2 are acceleration

coe�cients. The personal best and global best positions for the (t + 1)th iteration are

computed as follows,

W⃗L
k (t+ 1) =


W⃗L

k (t) if J(W⃗k(t+ 1)) ≥ J(W⃗L
k (t))

W⃗k(t+ 1) otherwise

(4.21)
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W⃗g(t+ 1) =



W⃗g(t) if J(W⃗k(t+ 1)) ≥ J(W⃗g(t))

W⃗i(t+ 1) if for any i

J(W⃗i(t+ 1)) < J(W⃗g(t))

∀ i ∈ swarm

(4.22)

In the present work, the inertia factor, ω, has been changed in a linearly decreasing fashion

[95], to employ exploration in the initial iterations and slowly convert it to exploitation

when approaching the best particle. The linearly decreasing strategy for ω, that enhances

the e�ciency and performance of PSO, is de�ned as,

ω(t) = ωmax −
ωmax − ωmin

itrmax

× t (4.23)

where, itrmax, is the total number of iterations for the PSO routine. In addition, the

implemented PSO also uses the adaptive cognitive acceleration coe�cient (γ1) and the

social acceleration coe�cient (γ2) [14]. γ1 has been decreased from an initial value, γ1i, to

a �nal value, γ1f , and γ2 has been increased from γ2i to γ2f using the following equations,

γt1 = (γ1f − γ1i)
t

itrmax

+ γ1i (4.24)

γt2 = (γ2f − γ2i)
t

itrmax

+ γ2i (4.25)

Once the optimal weight matrix is obtained through the learning techniques, the �nal

classi�cation is done in the testing phase. The test data is functionally expanded and the

class scores are predicted through their weighted aggregation. These predicted scores are

�nally converted to crisp labels using a global threshold. The following section describes

the experimental �ndings for the di�erent multi-label FLANN models using the basis

functions and learning techniques discussed here.
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4.4.2 Experimental Analysis

To evaluate the e�ectiveness of all the six multi-label FLANN models proposed in this

section, they have been tested on four datasets with ten performance metrics. Comparison

among these six methods has been made to determine their e�ectiveness in the �eld of

multi-label classi�cation. Four datasets viz. Flags, Emotions, Yeast, and Scene were

used. Among the many metrics for multi-label classi�cation [28], average precision (AP),

precision (P), recall (R), hamming loss (HL), one error (OE), coverage (Cov), ranking

loss (RL), micro-F1 (MicF1), macro-F1 (MacF1) and subset accuracy (SA) metrics have

been used. Three basis functions � trigonometric, Chebychev and power polynomial, and

two learning techniques � backpropagation and PSO were used in combination to form

six FLANN models for multi-label classi�cation. Table 4.2 provides the acronyms along

with their corresponding basis function and learning mechanism.

Table 4.2: The six modelled multi-label FLANN with their corresponding basis functions
and learning mechanisms

Method Basis Function Learning Mechanism
ML-T-PSO Trigonometric PSO
ML-C-PSO Chebychev PSO
ML-P-PSO Polynomial PSO
ML-T-BP Trigonometric BP
ML-C-BP Chebychev BP
ML-P-BP Polynomial BP

4.4.2.1 Analysis of Results

The six models for multi-label FLANN have been tested on four datasets and ten perfor-

mance measures. 5-fold and 10-fold cross-validation results for the datasets are shown in

Tables 4.3 and 4.4 respectively. From the results throughout all the datasets and perfor-

mance metrics, ML-P-PSO is seen to outperform the other methods in most of the cases.

It is followed by ML-T-BP. These two combinations of power polynomial with PSO and

trigonometric with backpropagation seem to perform well for multi-label classi�cation.

Analysis of each category of FLANN models for multi-label classi�cation reaches a few
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Table 4.3: 5 fold CV results for multi-label datasets

FLAGS AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.7848 0.6319 0.6467 0.2807 0.2814 3.9290 0.2504 0.7101 0.6293 0.1594
ML-C-PSO 0.7632 0.5235 0.5946 0.2998 0.2448 4.2800 0.3280 0.6797 0.5252 0.0928
ML-P-PSO 0.7976 0.5906 0.6678 0.2851 0.2499 3.8057 0.2309 0.6992 0.6023 0.1390
ML-T-BP 0.7696 0.6228 0.6291 0.3051 0.2707 4.0323 0.2739 0.6836 0.6188 0.1286
ML-C-BP 0.6695 0.4960 0.4036 0.3754 0.2132 4.7457 0.5289 0.6151 0.4100 0.0874
ML-P-BP 0.7503 0.4641 0.5728 0.3106 0.2189 4.4834 0.3654 0.6536 0.4661 0.0930

EMOTIONS AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.7612 0.6547 0.5977 0.2392 0.3289 2.0153 0.2005 0.6305 0.6206 0.2075
ML-C-PSO 0.7553 0.5655 0.6336 0.2314 0.3458 2.0253 0.2109 0.6091 0.5912 0.2310
ML-P-PSO 0.7814 0.6034 0.6654 0.2130 0.2850 1.9156 0.1815 0.6437 0.6265 0.2463
ML-T-BP 0.7619 0.6205 0.6144 0.2381 0.3423 1.9678 0.1979 0.6188 0.6133 0.2124
ML-C-BP 0.6100 0.3144 0.4610 0.3210 0.5245 3.0389 0.4513 0.3897 0.3499 0.0877
ML-P-BP 0.7690 0.6262 0.6343 0.2265 0.3171 2.0170 0.2023 0.6356 0.6262 0.2294

SCENE AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.8320 0.6446 0.7055 0.1143 0.2759 0.5958 0.1015 0.6649 0.6715 0.4857
ML-C-PSO 0.7055 0.4306 0.6112 0.1515 0.4474 1.1836 0.2185 0.4995 0.5000 0.3212
ML-P-PSO 0.8012 0.5768 0.6868 0.1242 0.3149 0.7537 0.1320 0.6204 0.6237 0.4549
ML-T-BP 0.8451 0.7153 0.7377 0.1014 0.2534 0.5629 0.0942 0.7129 0.7250 0.5596
ML-C-BP 0.4391 0.0959 0.2134 0.2077 0.7852 2.5148 0.6799 0.1429 0.1180 0.0719
ML-P-BP 0.7808 0.5766 0.6612 0.1295 0.3390 0.8284 0.1527 0.6124 0.6129 0.4375

YEAST AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.6344 0.4375 0.3711 0.3144 0.3670 8.3231 0.2864 0.5222 0.3913 0.0463
ML-C-PSO 0.7069 0.3257 0.4105 0.2315 0.2822 7.3090 0.2155 0.5849 0.3454 0.0861
ML-P-PSO 0.7213 0.3490 0.4488 0.2240 0.2669 7.0632 0.2014 0.6016 0.3714 0.1026
ML-T-BP 0.6454 0.4406 0.3832 0.3073 0.3583 8.3078 0.2891 0.5286 0.4034 0.0501
ML-C-BP 0.6083 0.2396 0.3195 0.2492 0.4382 10.3469 0.4451 0.5191 0.2513 0.0203
ML-P-BP 0.7074 0.3745 0.4467 0.2238 0.2784 7.9258 0.2431 0.6099 0.3957 0.1117

conclusions. Results for trigonometric expansion indicates a close competition between

ML-T-PSO and ML-T-BP. This is very evident especially for the Scene dataset, where

ML-T-BP exceeds all other methods, closely followed by ML-T-PSO. This shows that

the trigonometric basis function improves the feature space for Scene data compared to

the other basis functions. It forms a more compact representation of the data, making it

easier to comprehend. Similarly, for power polynomial expansion, the ML-P-PSO model

displayed a good performance for Flags, Emotions and Yeast datasets. ML-P-PSO and

ML-P-BP have commendable results for the Emotions dataset, indicating polynomial ex-

pansion fruitful for this speci�c dataset. Also, from the results for Chebychev expansion,

ML-C-PSO is seen to perform signi�cantly better than gradient descent optimization,

ML-C-BP. However, the overall trend shows that Chebychev expansion models cannot
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Table 4.4: 10 fold CV results for multi-label datasets

FLAGS AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.7863 0.6462 0.6416 0.2834 0.2696 3.9326 0.2493 0.7129 0.6325 0.1450
ML-C-PSO 0.7681 0.4919 0.5307 0.3047 0.2343 4.1932 0.3241 0.6712 0.4855 0.0882
ML-P-PSO 0.7959 0.6155 0.6296 0.2766 0.2538 3.8174 0.2344 0.7132 0.6065 0.1137
ML-T-BP 0.7693 0.6169 0.6116 0.3136 0.2702 4.0061 0.2763 0.6773 0.6000 0.1342
ML-C-BP 0.7044 0.3880 0.3544 0.3738 0.2861 4.9176 0.5111 0.5616 0.3281 0.0413
ML-P-BP 0.7255 0.4918 0.5797 0.3120 0.2133 4.5521 0.3781 0.6604 0.4875 0.0671

EMOTIONS AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.7476 0.6188 0.5686 0.2556 0.3561 2.0279 0.2087 0.6034 0.5855 0.1801
ML-C-PSO 0.7543 0.5353 0.6072 0.2432 0.3491 2.0388 0.2116 0.5820 0.5575 0.1736
ML-P-PSO 0.7856 0.6164 0.6549 0.2136 0.2968 1.8734 0.1809 0.6450 0.6262 0.2581
ML-T-BP 0.7599 0.6216 0.5901 0.2496 0.3172 2.0328 0.2051 0.6088 0.5965 0.1838
ML-C-BP 0.6203 0.3138 0.5110 0.3153 0.5140 2.8734 0.4231 0.3945 0.3526 0.0828
ML-P-BP 0.7640 0.6219 0.6266 0.2305 0.3340 1.9344 0.1946 0.6305 0.6131 0.2379

SCENE AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.8285 0.6503 0.6941 0.1170 0.2771 0.6220 0.1060 0.6607 0.6685 0.4853
ML-C-PSO 0.7058 0.4281 0.6252 0.1491 0.4420 1.2002 0.2198 0.5013 0.5023 0.3299
ML-P-PSO 0.7893 0.5525 0.6933 0.1260 0.3361 0.7848 0.1390 0.6053 0.6096 0.4375
ML-T-BP 0.8448 0.7216 0.7360 0.1015 0.2538 0.5650 0.0943 0.7132 0.7256 0.5525
ML-C-BP 0.4332 0.1132 0.2768 0.2112 0.7956 2.5162 0.6890 0.1556 0.1373 0.0760
ML-P-BP 0.7903 0.5847 0.6784 0.1267 0.3294 0.8006 0.1467 0.6197 0.6231 0.4553

YEAST AP P R HL OE Cov RL MicF1 MacF1 SA
ML-T-PSO 0.6324 0.4410 0.3773 0.3137 0.3873 8.2594 0.2832 0.5230 0.3963 0.0443
ML-C-PSO 0.7069 0.3178 0.4057 0.2317 0.2759 7.3282 0.2154 0.5820 0.3421 0.0823
ML-P-PSO 0.7262 0.3422 0.4481 0.2219 0.2668 6.9045 0.1954 0.6023 0.3711 0.0985
ML-T-BP 0.6503 0.4405 0.3845 0.3032 0.3517 8.2581 0.2850 0.5335 0.4040 0.0567
ML-C-BP 0.6198 0.2524 0.3090 0.2429 0.4240 10.2136 0.4308 0.5383 0.2676 0.0310
ML-P-BP 0.7063 0.3831 0.4556 0.2226 0.2822 7.9551 0.2439 0.6131 0.4040 0.1187

compete with the trigonometric and power polynomial ones. The Chebychev functional

expansion seems to be somewhat inadequate to bring about separability in the data.

Thus, it is less suitable for multi-label classi�cation, making trigonometric and polyno-

mial expansions more favourable. Moving on to the learning techniques, overall, PSO

is seen to perform slightly better than its BP counterparts for multi-label classi�cation.

However, the choice of parameters plays a vital role in the performance of PSO. The

numbers of particles that make up the swarm in the current work, has been �xed after

trial and error. A larger number of particles corresponds to a much larger computa-

tion time. The optimal value to stop the PSO (itrmax) is also not known, hence, it was

experimentally set. Keeping in mind the drastic increase in the number of dimensions

after the functional expansion, which thereby increases the overall computation time.
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However, experimentally, BP was faster than PSO, while compensating slightly on its

performance. Thus, both BP and PSO can be used in multi-label FLANN depending on

the requirement of the problem.

4.5 Proposed Autoencoder Integrated Multi-label FLANN

In this �nal section, a two-layer transformation based neural network has been proposed

for multi-label classi�cation that incorporates MLFLANN and autoencoders. In the

basic model devised in Section 4.3, the data undergoes a single-level functional expansion

which improves the multi-label data separability to some extent. However, the single

transformation provided by the basis functions seems to improve the separability and

thus the classi�cation, only to a certain extent. It is a motivation to take it a step further

and introduce another layer of transformation that can further improve the classi�cation

capability of the network. It led to the conception of a two-layer network with the second

transformation credited to an autoencoder. It seemed suitable to use an AE in this

scenario since the aim is to transform as well as reduce the number of features. Without

having to manually select features, AEs are capable of generating a good representation

of the original data in a new space. Thus, the multi-label data in the proposed AE-

MLFLANN undergoes two feature transformations and reduction followed by learning

and �nal classi�cation.

4.5.1 Model Description

The section describes the training architecture and testing phase of the proposed model.

4.5.1.1 Architecture

The proposed model employs autoencoders (AEs) in coalition with MLFLANN (AE-

MLFLANN) to perform e�cient multi-label classi�cation. The architecture of the pro-

posed model has been shown in Figure 4.3. The model consists of three phases as follows.
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Figure 4.3: Proposed model AE-MLFLANN

Functional Expansion The �rst layer is inspired by a multi-label functional link arti-

�cial neural network (MLFLANN). Neural networks have been the most popular models

to solve complex classi�cation tasks. However, due to the varying complexities of prob-

lems, the number of hidden layers and neurons in the hidden layers need to be changed,

giving rise to a more and more complex model. To overcome the bottlenecks that are as-

sociated with multi-layer perceptrons, higher-order neural networks (HONNs) have been

considered as an alternative. It also has the ability to achieve convergence faster with a

lower training complexity.

The �rst layer of AE-MLFLANN takes the original input and functionally expands it using

some basis functions. The functional expansion acts on an element of a pattern or the

entire pattern by generating a set of linearly independent functions. Thereby, it e�ectively

increases the dimension of the input and brings a greater discriminating capability to the

feature space. It comprises of d input nodes corresponding to the original input features,

X = {x1, ..., xd}, each of which are expanded using p basis functions. This results in a
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d × p functionally expanded feature space. The input pattern X is enhanced with the

functional expansion block which results in the following pattern X ′.

X ′ = {f0(x1), f1(x1), ..., fp(x1),
...

f0(xd), f1(xd), ..., fp(xd)} (4.26)

Figure 4.3 shows the functional blocks, which transform each feature, xi, to its corre-

sponding higher-order representation. The functional expansion performed in the �rst

layer can be done using various basis functions, like, trigonometric, Chebychev, power

polynomials, etc. Keeping that in mind the results achieved in Section 4.4.2, trigonomet-

ric basis functions have been used for functional expansion in the �rst layer.

The functional expansion provided by an MLFLANN is capable of transforming the

data to a higher dimension but in a restricted way. The purpose of this expansion is

to bring about non-linearity in the data, which is otherwise impossible for a shallow

neural network to achieve. However, this expansion alone can only introduce a restricted

amount of separability in the complex decision space of multi-label data. If another level

of transformation can be introduced in the data, it might be even more separable. To

achieve this, an AE is to be used.

Autoencoder Transformation and Feature Reduction Once the new set of fea-

tures, X ′, are obtained through functional expansion, they are then fed to an autoencoder.

The AE brings about another level of implicit transformation in the network, which is

capable of encoding the input features into a new set of features A. The aim of using an

autoencoder is to learn an e�cient data representation or encoding in an unsupervised

manner, typically for dimensionality reduction. The structure of an AE has been dis-

cussed in Section 3.2.1. It is trained to reconstruct the input as closely as possible. The
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intermediate layer learns an encoded latent representation of the input in the course of

its training. It performs the task of an encoder, whereas, the decoding happens from the

intermediate layer to the output layer. The aim of such a network as mentioned earlier

is to minimize the error between the input vector and the output vector. If the number

of neurons in the encoding layers are lesser than the original number of features, the

autoencoder is said to be under-complete and if it is greater than the input it is said to

be over-complete. It manipulates the dimension of the encoded features, thus leading to

dimensionality reduction or expansion. The working of the AE is quite similar to that of

a multi-layer perceptron. The forward propagation which maps the input vector X ′ to

the latent representation A ∈ Rd′ and then maps A to the output X ′′ (reconstruction)

can be formulated as:

A = σ1(W1 ·X ′ + b1) (4.27)

X ′′ = σ2(W2 · A+ b2) (4.28)

Here, W1 and b1 represents the weight matrix and bias from input to hidden layer and

W2 and b2 represents the weight matrix from hidden layer to reconstruction layer. σ1, σ2

represents the activation functions which can be chosen from sigmoid activation, recti�ed

linear unit (ReLU), hyperbolic tangent function, etc. The AE iteratively modi�es the

weights in the network using backpropagation, to �nally learn to reconstruct the original

input in the output layer.

In the AE-MLFLANN model (Figure 4.3), the autoencoder transformation is incorpo-

rated by the use of the encoder weights, W1, b1, from the trained AE (Figure 3.1). These

weights are for the connections between the �rst transformation layer to the second. X ′

can be now modi�ed to A by using the autoencoder weights, just like it was done in the

standalone autoencoder.

Along with feature space transformation, dimensionality reduction is also performed with

the help of the AE. In general, AEs are known to extract good features from data. If
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the size of the intermediate layer of the AE is varied, it might result in feature expan-

sion or reduction. However, in the proposed scenario, to handle the already expanded

feature space by the basis functions, feature reduction by the AE is opted. This helps

with the additional bottleneck of increased input dimensionality in the previous layer.

This was a drawback of MLFLANN which is being overcome in AE-MLFLANN. This

feature encoding reduces the size of the network at this stage, thus in turn, having lesser

weights to learn. Once the data has been transformed completely, the encoded and re-

duced representation A = {a1, a2, ..., ad′}, is further connected to the output layer of the

network. These d′ nodes are fully connected to the C nodes of the output layer of the

AE-MLFLANN (Figure 4.3). The weights W, b connecting the AE transformation layer

to the output layer are learnt in the training phase.

Learning In the �nal phase of the network, the last layer weights are updated. These

are the connections between A and Y layers, which have been initialized randomly. In

AE-MLFLANN, backpropagation has been used as the learning mechanism to update

the weights in the training phase. First, the original input X is sequentially transformed

to X ′, then A in the transformation phase. Once the transformation is done, the output

in the last layer is computed as:

Y ′
j = ϕ

{∑
A ·Wj

}
, (4.29)

where ϕ is the activation function of the output layer. Thus, for each data instance, a

corresponding label-set is obtained as,

Y
′

i = [ y
′

i1, y
′

i2, ...., y
′

iC ], (4.30)
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If, Y is the target label, the error, E, calculated using the original set of labels is,

E = Yi − Y
′

i

= [ yi1 − y
′

i1, yi2 − y
′

i2, ...., yiC − y
′

iC ] (4.31)

The weights are updated using this error with the backpropagation technique discussed

in Section 4.4.1.3. The weights are updated iteratively throughout the training phase.

Once the training is complete, the trained network can now predict multi-label outputs

for any unknown data sample.

4.5.1.2 Testing AE-MLFLANN

In the testing phase, an unknown sample is fed to the AE-MLFLANN. This input is �rst

functional expanded from Xtest to X
′
test, then the autoencoder transformation-reduction

is processed.

Atest = σ1

{∑
W1 ·X ′ + b1

}
, (4.32)

where, σ1 is the activation function of the encoder. At the �nal output the classi�cation

scores are predicted as,

Y ′
test = ϕ

{∑
W · A+ b

}
. (4.33)

The scores are then converted to hard labels using a global threshold. This threshold has

been set to 0.5 as a midpoint of irrelevant class score 0 and relevant class score 1. Thus,

all classes with a score higher than the threshold are marked as relevant, while the rest

become irrelevant. In this way, the AE-MLFLANN is able to predict multi-label output

for any unseen data.

4.5.2 Experimental Analysis

Two phases of experiments have been performed on the proposed model. The �rst and the

more elaborate experimentation has been done on multi-label data, using the proposed
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AE-MLFLANN model, since it is the main focus of the work. The second, more concise,

set of experiments has been done using a single-label variation of the proposed model,

named, AE-SLFLANN, to evaluate its performance on single-label data. As per the

knowledge of the authors, this kind of two-layer network does not exist in the literature,

hence, its e�ciency has been tested on both types of data.

4.5.2.1 AE-MLFLANN for Multi-label data

The proposed AE-MLFLANN has been experimentally veri�ed on �ve standard multi-

label datasets and compared against six state-of-the-art multi-label classi�ers. Emotions,

Flags, Scene, CAL500 and Yeast datasets have been used for the experiments. Eight

standard multi-label performance metrics, namely, average precision (AP), Hamming

loss (HL), one error (OE), coverage (Cov), ranking loss (RL), micro F1 (MicF1), macro

F1 (MacF1) and subset accuracy (SA) have been used here with 5-fold and 10-fold cross-

validation over the above mentioned datasets. These metrics include example-based met-

rics (HL and SA), ranking-based metrics (AP, OE, Cov and RL), and label-based metrics

(MacF1 and MicF1).

Table 4.5 and 4.6 show the 5-fold and 10-fold cross-validation results respectively for AE-

MLFLANN on all datasets against the six other algorithms. These include three data

transformation methods, BR, CC and ECC, and three problem adaptation techniques,

ML-KNN, MLFLANN and BPMLL. From a general overview, the proposed method is

seen to perform substantially better than the other algorithms in comparison with all the

eight performance metrics. Delving deeper into speci�c comparisons, AE-MLFLANN is

outright better than its single layer version, MLFLANN, for all the datasets and metrics.

This indicates that the inclusion of the transformation layer has de�nitely proven to

be fruitful. It is now able to perform multi-label classi�cation more e�ciently than

before. BP-MLL is a two-layer MLP model, which performs more weight adjustments and

computations than AE-MLFLANN. However, AE-MLFLANN is seen to surpass BP-MLL

for all the datasets in almost all aspects. This shows that the simple transformations of
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Table 4.5: 5-fold CV results

Dataset Method AP HL OE Cov RL MicF1 MacF1 SA
BR 0.6190 0.2640 0.4470 0.4331 0.3270 0.5570 0.5650 0.1720
CC 0.5790 0.2610 0.4200 0.4163 0.2940 0.5730 0.5850 0.2210
ECC 0.6735 0.2409 0.4300 2.7559 0.6695 0.4761 0.4259 0.1517

Emotions ML-KNN 0.8101 0.1925 0.2581 1.7486 0.1565 0.6692 0.6321 0.2867
MLFLANN 0.7619 0.2381 0.3423 1.9678 0.1979 0.6188 0.6133 0.2124
BP-MLL 0.7982 0.2089 0.2969 1.7673 0.1622 0.6913 0.6624 0.2849
AE-MLFLANN 0.8217 0.1863 0.2395 1.6861 0.1420 0.6925 0.6769 0.3221

BR 0.7295 0.2764 0.2184 4.5837 0.4882 0.7153 0.6206 0.1547
CC 0.7212 0.2830 0.2289 4.6103 0.4840 0.7050 0.6053 0.1800
ECC 0.6803 0.3212 0.2340 4.5574 0.6015 0.7217 0.6706 0.1310

Flags ML-KNN 0.8117 0.2924 0.2138 3.7480 0.2128 0.7007 0.5183 0.1497
MLFLANN 0.7696 0.3051 0.2707 4.0323 0.2739 0.6836 0.6188 0.1286
BP-MLL 0.8003 0.3247 0.2134 3.9796 0.2338 0.6904 0.5054 0.1256
AE-MLFLANN 0.8235 0.2656 0.1867 3.7200 0.2025 0.7219 0.5802 0.1758

BR 0.7075 0.1131 0.4483 1.2746 0.5593 0.5785 0.5700 0.4067
CC 0.7092 0.1126 0.4437 1.2692 0.5546 0.5821 0.5748 0.4117
ECC 0.6648 0.1240 0.5056 1.4802 0.6440 0.5053 0.4879 0.3249

Scene ML-KNN 0.8717 0.0839 0.2181 0.4504 0.0731 0.7438 0.7476 0.6386
MLFLANN 0.8451 0.1014 0.2534 0.5629 0.0942 0.7129 0.7250 0.5596
BP-MLL 0.7461 0.1608 0.4163 0.8687 0.1562 0.5738 0.5776 0.3947
AE-MLFLANN 0.8752 0.0761 0.2119 0.4379 0.0707 0.7562 0.7702 0.6398

BR 0.2757 0.1414 0.3886 169.3485 0.7879 0.3085 0.0953 0.0000
CC 0.2769 0.1388 0.3866 169.3507 0.7913 0.3078 0.0838 0.0000
ECC 0.2742 0.1381 0.3667 169.2636 0.7954 0.3040 0.0760 0.0000

CAL500 ML-KNN 0.4904 0.1491 0.1216 129.7710 0.1832 0.3112 0.0867 0.0000
MLFLANN 0.3391 0.2147 0.4462 166.5194 0.3636 0.3436 0.1311 0.0000
BP-MLL 0.4891 0.1543 0.1156 128.5593 0.1755 0.3669 0.1227 0.0000
AE-MLFLANN 0.4996 0.1467 0.1070 130.1255 0.1623 0.3852 0.1473 0.0000

BR 0.6692 0.1952 0.3136 9.0016 0.4622 0.6375 0.3695 0.1684
CC 0.6710 0.1933 0.3049 8.9102 0.4576 0.6412 0.3723 0.1763
ECC 0.6684 0.1900 0.2685 8.9814 0.4646 0.6381 0.3523 0.1779

Yeast ML-KNN 0.7436 0.1943 0.2346 6.6215 0.1871 0.6441 0.3693 0.1771
MLFLANN 0.6454 0.3073 0.3583 8.3078 0.2891 0.5286 0.3590 0.0501
BP-MLL 0.7334 0.2312 0.2747 6.7463 0.1951 0.6322 0.4172 0.1220
AE-MLFLANN 0.7542 0.2071 0.2338 6.5337 0.1766 0.6325 0.4034 0.1541

MLP may not be as e�cient for multi-label data as the novel combination of functional

expansion and feature transformation. ML-KNN is a multi-label adaptation of KNN,

which is computationally expensive and is seen to surpass AE-MLFLANN in rare cases.

As a problem adaptation technique, AE-MLFLANN establishes its performance quite well

as compared to the above three methods. A similar performance situation occurs for the

three data transformation methods. BR uses multiple classi�ers (one for each class) but it

is seldom seen to perform the best for any of the metrics. CC also uses multiple classi�ers
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Table 4.6: 10-fold CV results

Dataset Method AP HL OE Cov RL MicF1 MacF1 SA
BR 0.6911 0.2308 0.3693 2.7446 0.6177 0.5146 0.4713 0.1737
CC 0.7019 0.2227 0.3609 2.7044 0.5887 0.5447 0.5032 0.1921
ECC 0.6759 0.2395 0.4298 2.7382 0.6619 0.4838 0.4302 0.1551

Emotions ML-KNN 0.8016 0.1906 0.2732 1.7773 0.1628 0.6703 0.6281 0.3070
MLFLANN 0.7599 0.2496 0.3172 2.0328 0.2051 0.6088 0.5965 0.1838
BP-MLL 0.7977 0.2159 0.2866 1.7722 0.1613 0.6818 0.6681 0.2511
AE-MLFLANN 0.8156 0.1962 0.2445 1.7320 0.1491 0.6747 0.6536 0.3068

BR 0.7466 0.2685 0.2227 4.5250 0.4773 0.7248 0.6457 0.1711
CC 0.7390 0.2639 0.2327 4.5042 0.4638 0.7247 0.6262 0.2174
ECC 0.6780 0.3265 0.2490 4.4987 0.6115 0.7241 0.6567 0.1261

Flags ML-KNN 0.8175 0.2764 0.2346 3.7221 0.2043 0.7242 0.5701 0.1145
MLFLANN 0.7693 0.3136 0.2702 4.0061 0.2763 0.6773 0.6000 0.1342
BP-MLL 0.7984 0.3225 0.2330 3.9437 0.2280 0.6975 0.5197 0.1258
AE-MLFLANN 0.8235 0.2656 0.1867 3.7200 0.2025 0.7249 0.5802 0.1758

BR 0.7175 0.1098 0.4375 1.2360 0.5402 0.5958 0.5903 0.4246
CC 0.7190 0.1096 0.4350 1.2314 0.5370 0.5977 0.5928 0.4275
ECC 0.6719 0.1228 0.4981 1.4449 0.6329 0.5155 0.4977 0.3328

Scene ML-KNN 0.8723 0.0893 0.2135 0.4587 0.0743 0.7415 0.7448 0.6335
MLFLANN 0.8448 0.1015 0.2538 0.5650 0.0943 0.7132 0.7256 0.5525
BP-MLL 0.7361 0.1605 0.4261 0.8675 0.1652 0.5534 0.5876 0.4147
AE-MLFLANN 0.8728 0.0881 0.2164 0.4417 0.0714 0.7506 0.7659 0.6215

BR 0.2756 0.1426 0.3844 169.2574 0.7892 0.3061 0.1766 0.0000
CC 0.2790 0.1391 0.3844 169.2872 0.7911 0.3083 0.1710 0.0000
ECC 0.2756 0.1384 0.3705 169.2458 0.7977 0.3016 0.1617 0.0000

CAL500 ML-KNN 0.4910 0.1393 0.1174 130.5269 0.1894 0.3148 0.1734 0.0000
MLFLANN 0.3326 0.2181 0.4916 167.4366 0.3735 0.3379 0.1745 0.0000
BP-MLL 0.4741 0.1633 0.1256 138.5593 0.1955 0.3369 0.1227 0.0000
AE-MLFLANN 0.4984 0.1373 0.1134 139.8022 0.1888 0.3142 0.1766 0.0000

BR 0.6689 0.1962 0.3165 8.9787 0.4613 0.6366 0.3780 0.1746
CC 0.6708 0.1944 0.3099 8.9183 0.4578 0.6400 0.3773 0.1804
ECC 0.6693 0.1903 0.2751 8.9211 0.4621 0.6390 0.3615 0.1783

Yeast ML-KNN 0.7518 0.1951 0.2356 6.3082 0.1795 0.6382 0.3768 0.1783
MLFLANN 0.6503 0.3032 0.3517 8.2581 0.2850 0.5335 0.4040 0.0567
BP-MLL 0.7326 0.2323 0.2714 6.7200 0.1945 0.6329 0.4180 0.1109
AE-MLFLANN 0.7545 0.2032 0.2341 6.5348 0.1747 0.6360 0.3668 0.1485

and performs very close to BR. However, very rarely does it outperform the proposed

model. The ensemble technique, ECC, performs better than BR and CC sometimes, but

AE-MLFLANN surpasses it in almost all cases.

Table 4.7 depicts the T-test values for average precision of all the six methods against the

proposed AE-MLFLANN. For t.90 = 1.533 with degrees of freedom = 4, AE-MLFLANN

outperforms all the other methods. Table 4.8 shows the two-tailed Wilcoxon signed-rank

test statistics for Hamming score metric where the proposed method surpasses the others
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Table 4.7: T-Test for all methods against AE-MLFLANN

Method T-Test Value
BR 3.8329
CC 4.1265
ML-KNN 5.4046
MLFLANN 2.3138
ECC 3.4028
BP-MLL 2.0090

Table 4.8: Two-tailed Wilcoxon signed-rank test statistics for all the methods vs proposed
AE-MLFLANN (based on Hamming Score)

Method p-Value Value of sign rank
BR 0.4375 11
CC 0.3125 12
ECC 0.3125 12
ML-KNN 0.4375 11
MLFLANN 0.0625 15
BP-MLL 0.0625 15

for α = 0.20, TWilcoxon = 2. Overall assessment of the results obtained shows that the

proposed AE-MLFLANN has proven to be quite e�cient in the domain of multi-label

classi�cation.

4.5.2.2 Comparison with the previous proposed works

Along with the state-of-the-art comparisons, the proposed AE-MLFLANN is compared

with the MLSAEELM algorithm proposed in the previous chapter (Table 4.9). Both

the proposed works handle similar problems of ML data, i.e., large input dimension and

complex decision space. This comparative analysis is aimed to identify the superior

method that can handle both these issues well. Both the proposed networks utilize

an autoencoder framework for dimensionality reduction to handle the feature dimension.

However, for the complex decision space problem, MLSAEELM uses stacked MLELMs for

improved input to output mapping and AE-MLFLANN transforms the data to increase

separability of the data. From the comparison in Table 4.9 for the four datasets it is seen

that the performance of both the algorithms is at par with each other. Speci�cally for the

Scene dataset AE-MLFLANN scores high, whereas for the other three data, MLSAEELM
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Table 4.9: Comparison of AE-MLFLANN with the previously proposed MLSAEELM
algorithm

Dataset Method HL RL OE AP MacF1 MicF1 SA

Scene
MLSAEELM 0.0918 0.0760 0.2225 0.8677 0.8352 0.8355 0.6126
AE-MLFLANN 0.0761 0.0707 0.2119 0.8752 0.7702 0.7562 0.6398

Emotions
MLSAEELM 0.1852 0.1580 0.2735 0.8065 0.7245 0.7232 0.5695
AE-MLFLANN 0.1863 0.1420 0.2395 0.8217 0.6769 0.6925 0.3221

Flags
MLSAEELM 0.2612 0.1895 0.1429 0.8420 0.6221 0.6014 0.6758
AE-MLFLANN 0.2656 0.2025 0.1867 0.8235 0.5802 0.7219 0.1758

Yeast
MLSAEELM 0.1943 0.1648 0.2222 0.7649 0.7444 0.7267 0.6104
AE-MLFLANN 0.2071 0.1766 0.2338 0.7542 0.4034 0.6325 0.1541

is seen to do slightly well. This can be due to the size of the network, MLSAEELM is

a deeper network with more number of layers, thus leading to more learning. The AE-

MLFLANN, on the other hand is a shallow network which might restrict the learning

capacity comparatively. This can be overcome by increasing the transformation layers in

future.

4.5.2.3 AE-SLFLANN for single-label data

Looking at the proposed AE-MLFLANN, it is seen to have various scopes of exploration

and improvement. Although AE-MLFLANN has been speci�cally developed for multi-

label classi�cation here, and this network does not exist in the single-label domain, its

single-label version AE-SLFLANN has been tested as well to analyse its e�ectiveness.

Table 4.10: Testing Accuracy for single-label data

Datasets MLP FLANN ELM AE-SLFLANN
Parkinson 0.8215 0.8717 0.8042 0.8757
Ionosphere 0.8632 0.9002 0.8776 0.9031
PIMA 0.7721 0.7501 0.7383 0.7618
Vertebral 2C 0.8323 0.8226 0.8419 0.8452

Table 4.10 shows the testing accuracy of AE-SLFLANN on four datasets from the UCI

repository. AE-SLFLANN works in a similar way as AE-MLFLANN, only the multi-

label output layer at the end is replaced by a single-label one. The �nal classi�cation
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is done by assigning a hard label to the class with the maximum classi�cation score,

instead of using a threshold like in multi-label. Here, when compared to a single-label

FLANN, the proposed AE-SLFLANN performs somewhat better than it. This happens

since the AE transformation used for AE-MLFLANN helps the multi-label data to be

more separable, whereas, for AE-SLFLANN non-linearity introduced by the functional

expansion was quite good, and the second layer contributes marginally but positively to

it. Additionally, AE-SLFLANN performs better than a two-layer MLP and an ELM in

all cases. This strengthens the claim of the proposed network that the two consecutive

layers performing expansion and transformation lead to an improved representation of

the data which eventually leads to improved classi�cation performance.

4.6 Conclusion

This chapter was �rst aimed at increasing the separability of classes in multi-label data.

For this, a compact but e�cient functional link NN was considered. It was successfully

adopted to classify multi-label data through functional expansion of the original features

to a higher dimension which helps to improve separability within the data. Six con�gu-

rations of the proposed MLFLANN model was then explored, which included three dif-

ferent basis functions and two weight learning techniques. It identi�ed two combinations,

namely trigonometric expansion with backpropagation learning and power polynomial

with PSO learning, to be quite e�ective. Due to the faster computational speed of the

former combination, it was used in the extended model, AE-MLFLANN. Along with in-

creasing separability, with AE-MLFLANN, additionally the aim was to reduce the feature

dimension that was getting increased by the functional expansion. This two-layer net-

work was proposed to further transform the features expanded by MLFLANN using AEs

while reducing their dimension. Additionally, a single-label version of the AE-MLFLANN

model was also developed, named AE-SLFLANN, and tested on few datasets. All of the

proposed models were experimentally tested and they display improved classi�cation per-
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formance.

Successfully transforming the data to a higher dimension leading to increased separability

and better classi�cation capability makes functional expansion quite suitable for multi-

label classi�cation. However, after pursuing this route, the next approach of simplifying

the decision space needs to be explored. Additionally, the other problems of multi-label

data, such as the class imbalance and label correlations need attention. The proposed

models in this chapter and the previous dealt with two issues only. The imbalanced

classes degrade the performance of the proposed classi�er and need to be handled. Simi-

larly, gaining some additional information from the underlying label correlations should

enhance the classi�cation performance. Thus the approach of simplifying decision space,

preserving class correlation and handling class imbalance is to be done in the next chapter.
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Chapter 5

Binary Tree of Classi�ers for

Multi-label Data

5.1 Introduction

Moving on to the other drawbacks of multi-label data, the imbalance among classes is

seen to be a major issue that exists in almost all ML datasets. The presence of imbal-

anced classes makes the classi�er biased towards the larger classes and is insu�ciently

trained for the smaller classes. This leads to inevitable misclassi�cations thus degrading

the performance of the ML classi�er. Hence, the class imbalance issue is to be handled

in this chapter. Additionally, it is seen that multi-label data also has some correlations

among classes that are not always taken into consideration. To improve the classi�ca-

tion capability of the developed classi�er, label correlations are to be incorporated while

predicting label-sets.

In this chapter, a tree-based hierarchical multi-label classi�er has been proposed, that

aims to handle the problem of class imbalance, complex decision space and label cor-

relations from a di�erent perspective. Here, an ML classi�cation model is built that
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will utilize the existing class correlations in the data to improve the classi�cation per-

formance. Instead of assuming the classes to be independent and learning one label at

a time, it aims to utilize and preserve the label associations as much as possible. This

will be done by localizing the data according to the class labels and then using multi-

ple small classi�ers for training instead of employing a massive complex classi�er. This

localization also leads to the simpli�cation of the multi-label decision space. The basic

hierarchical model of the proposed classi�er is inspired by decision trees, which contains

the entire training data at the root node. In the proposed Multi-Label Binary Tree of

Classi�ers (ML-BTC), this data is split into two discrete chunks every time as the levels

in the hierarchy increase, eventually forming a binary tree-like structure. Unlike other

models in literature [93, 94], here, speci�cally a binary tree structure has been adapted

instead of an n-ary tree with a variable number of children. It essentially means that at

each intermediate node, only one split is necessary; it focuses on the major partition in

the data. Subsequent child nodes look for further divisions in the partitioned subspace.

This step-wise division of the data simpli�es the decision space without having to learn

all the class boundaries together. Moreover, contrary to the decision tree approach of

exhaustively searching for the �best� split at each node, the proposed model seeks an

approximate split that strives to keep label dependencies unchanged. Thus, the proposed

model takes the data at a node and approximately splits it into two sets aiming to keep

the correlation among classes intact. This consistent correlation is achieved with a novel

approach to compute label-set proximity among the data. It forms subsets that contain

data instances whose label-sets are similar to each other. This helps in the preservation

of label correlations without computing class-wise correlations explicitly.

The motivation to opt for a decision-tree-like approach is to be able to manipulate, com-

bine or split the ML datasets conveniently to help deal with the class imbalance issue

[39, 40]. At the intermediate nodes of the tree, similar label-sets are grouped to form two

comparatively larger subsets which have increased sample size as compared to the individ-

ual label-sets. This makes the class imbalance issue less prominent. However, sometimes
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when the data is highly imbalanced, the class-based splitting at these nodes might lead to

uneven subsets. This issue is also handled in the proposed technique by utilizing di�erent

types of classi�ers and parameters for appropriate scenarios. Preliminary classi�cation

is performed at the intermediate nodes while the �nal classi�cation is done at the leaf

nodes. Unlike other tree-based models, the proposed tree is not built continuously until

each node consists of an individual class or label-set. Since in the worst case, imbalanced

classes might end up with a singleton training sample in a leaf node. To avoid unnecessary

partitioning of imbalanced classes, the expansion of the tree is restricted with the help of

parameters at a much earlier stage. Thus, suitable parameters and classi�ers have been

used to orchestrate a strategic yet e�cient formation of the hierarchical tree of classi�ers,

sometimes also referred to as the �classi�er tree� in this chapter. This name is apt since

it is an adaptation of the traditional decision tree approach with the �decision� at most

of the nodes being made by some classi�er. The overall goal of this work is to build a

decision-tree-based model that utilizes the underlying label correlations in the data and

simpli�es the decision space to perform e�cient ML classi�cation while handling the class

imbalance issue. The main contributions of this chapter can be highlighted as follows.

� Build a tree of classi�ers for multi-label classi�cation that utilizes suitable classi�ers

at the intermediate and leaf nodes to handle various bottlenecks.

� While building the tree, a novel label-space partitioning technique is applied to the

data to implicitly handle the underlying class correlations which otherwise might

get ignored.

� Approximate splitting of data is done to achieve faster convergence instead of follow-

ing the traditional exhaustive best split approach. ML data often have large input

and output dimensions which is overwhelming for an exhaustive search. Also, the

broad partition simpli�es the decision space and allocates more data with a group

than the imbalanced classes and label-sets, thus making the problem of complex

boundaries and class imbalance less prominent.

116



CHAPTER 5. ML-BTC 5.2. PROPOSED ML-BTC

� Explicitly handling imbalanced classes that cause uneven splitting of data at the

intermediate nodes. The use of appropriate classi�ers at the intermediate and leaf

nodes based on the data at hand ensures proper attention to the imbalanced data.

Also, the building of the tree is based on parameters that facilitate restrictions to

prevent its unnecessary branching for smaller imbalanced classes.

The proposed model has been tested on fourteen standard ML datasets, with nine perfor-

mance metrics, compared with fourteen relevant state-of-the-art techniques and it shows

signi�cant improvement with respect to most of the existing methods.

The organisation of the remainder of the chapter is as follows. Section 5.2 contains a

detailed description of the proposed work along with the architecture and methodology.

Experimental analysis has been included in this section. Finally, Section 5.3 concludes

the chapter.

5.2 Proposed Multi-label Binary Tree of Classi�ers

In this chapter, a novel binary tree of classi�ers for multi-label classi�cation (ML-BTC)

has been developed. This method attempts to overcome a few limitations that are faced

while handling multi-label data. In the literature, researchers are seen to approach the

problem of multi-label classi�cation from various perspectives. Among the existing ob-

stacles, utilizing and preserving the dependencies among classes are quite important.

Correlated classes that frequently occur together can be mapped simultaneously to val-

idate their occurrences and reduce misclassi�cation. Many of the existing methods may

not explicitly handle this problem. In the proposed method, the class dependencies that

exist within the data are being utilized by grouping the data that belong to a similar set

of classes. This helps the classi�er to identify the related classes and guide an unknown

data sample through the ML-BTC to its closest label-set. This grouping and splitting of

data occurs without having to learn the overlapping boundaries and leads to a simpler

representation of the decision space. Along with this, the problem of class imbalance
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that commonly occurs in multi-label data has also been handled in the proposed method.

Grouping of related label-sets at the intermediate steps help to increase the sample size in

comparison to that of individual label-sets, thus diminishing the magnitude of the imbal-

ance problem. However, the presence of highly imbalanced classes can still cause uneven

partitioning of data and unnecessary branching of the tree which have been handled ef-

fectively through the appropriate use of certain classi�ers and restricting the growth of

the tree with the help of some parameters.

5.2.1 Model Description

Details of the proposed approach have been discussed in the following sections.

5.2.1.1 Building of the tree

Starting from the root node, the tree is formed by successively splitting the available

data at every internal node. Initially, the root node contains all the training instances

Ntr, and the initial split at the root node separates the data into two subsets, say, Ntr1

and Ntr2, where Ntr = Ntr1

⋃
Ntr2 and Ntr1

⋂
Ntr2 = ϕ. This splitting of the data leads

to the creation of two child nodes that contain one subset of Ntr each. The data present

at any node is used as the training set of that particular node. In this way, the data

at each internal node is iteratively split into smaller partitions and the tree eventually

grows until the data cannot be split any further. The division at each internal node

represents a prominent split in that data, which simpli�es the boundaries while keeping

the correlation between labels intact. A novel proximity-based label-space partitioning

scheme has been employed to preserve the label correlations. Once an approximate split

has been determined at the current node, a classi�er is trained to learn the decision

boundary between the two subsets of data. In the subsequent steps, data chunks at the

nodes are further split and speci�c classi�ers are trained to learn the broad classi�cation.

The choice of the classi�er is based on the type of partition that is made at an internal

node. Researchers who developed similar tree-based multi-label classi�ers [93, 94] in the
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past, have preferred to use a single type of classi�er for the entire data. However, while

dealing with ML data, the class imbalance problem leads to irregular partitioning in the

intermediate steps. This, in turn, makes larger classi�ers quite impractical to be trained

on a smaller quantity of data. Keeping this in mind, di�erent classi�ers are incorporated

to suit the data at hand and improve e�ectiveness.

Every decision at any internal node is made depending on two parameters: ML entropy

and sample cardinality � which determine the status of the current data chunk. If the

parameters su�ce, the data at a node is split further, otherwise, the node is converted

to a leaf node. It is at these leaf nodes that the �nal multi-label class prediction is

performed. The data that is at a leaf node might belong to a single set of labels or

a varied set of labels. If there are di�erent combinations of labels among the data in

a leaf node, a suitable multi-label classi�er is used in that node. If there is a unique

label-set in a leaf node, no further classi�er is needed. The intuition behind developing

this model is that multi-label data is inherently imbalanced. It becomes expensive and

increases the number of nodes in a decision tree if the tree grows until each leaf node

contains a unique label-set. In this case, instances whose label-sets are quite similar to

each other may be found residing in a leaf node if the data size is not large enough to be

partitioned. Hence, a multi-label classi�er, that can be trained on smaller data, at that

leaf node performs e�cient classi�cation instead of the repetitive splitting of the data.

The actions associated with the building of the classi�er tree are discussed below in detail.

Splitting strategy Most decision tree-based algorithms split the data depending on

a single feature at a time [11] or the entire feature space [77, 94]. Although this seems

e�cient for single-label classi�cation, for multi-label classi�cation with the increase in

the input and output dimensions, the problem becomes more complex to handle. In

the proposed method, instead of using the feature space for partitioning the data, the

label information has been utilized in a novel way. For example, while dealing with
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multi-label images, a broad classi�cation would mean images with one or more labels like

�sea�, �sand�, �beach�, etc. would belong together whereas images with labels like �grass�,

�mountains�, etc. should be a part of another large group. To enable this type of broad

classi�cation, grouping of the data has been proposed in the label space instead of the

feature space. This means that data whose class labels are similar will belong to one

group and the classi�er will train itself based on this partition.

Figure 5.1: Representation of data in the feature space

Figure 5.1 shows an example of a synthetic multi-label dataset with three features and

three classes. Each of the label-sets is depicted in di�erent colours to visualize the com-

plexity of the data. For real multi-label data, with higher input and output dimensions,

the data is far more complex. To deal with this data more simply, the proposed method

visualizes the data in the label space and obtain a split that preserves label correlations

approximately.

Figure 5.2 represents the same dataset in the 3-dimensional output space, which appears

to be far simpler and organized. Thus, the data to be split at any node is partitioned into

two groups in the output dimension. Data with the same label-sets are represented with

the same point in the label space; hence, data having the same label-set always belong to

the same group. This simpli�es the classes and reduces the scope of misrepresentation of

data. This approach ensures that data of similar class labels will be closer in the decision

space and thus make the task of partitioning simpler. Figure 5.3 depicts the splitting
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Figure 5.2: Representation of data in the label space

strategy developed here. The decision space and the original class boundaries for the

three-class label-sets are shown in Figure 5.3a. Figure 5.3b shows that the entire data

(represented by the label-sets) available at a node is split into two subsets based on the

proximity of their label vectors. This proximity among any two data points is measured by

computing the Hamming distance among their respective label-sets. Hamming distance

is one of the easiest techniques to compute the di�erence between two label-sets which

are same-length vectors of 1s and 0s. The di�erence of bit values indicates dissimilarity.

Lower Hamming distance between two points indicates greater similarity among the label-

sets. In the proposed ML-BTC, to �nd co-occurring classes, the label-sets with low

Hamming distance are considered. Depending on these distances, the entire data is

consecutively split into two groups at each intermediate node. The consecutive splitting

of data at every node that leads to the formation of a tree-like structure calls for a divisive

hierarchical clustering algorithm that can partition the available data into two chunks

at every step. For this purpose, a hierarchical clustering algorithm, namely, bisecting

k-medoids, is employed step-wise on the proposed tree structure.

Bisecting k-Medoids This algorithm is a variation of the existing hierarchical clus-

tering technique, bisecting k-means. Bisecting k-medoids algorithm has been used in the

proposed method to split the data sequentially at each internal node. This results in the
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(a) Original multi-label class boundaries

(b) Data split at each node

Figure 5.3: Splitting strategy of ML-BTC
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formation of the binary tree-like structure. The bisecting k-medoids is as follows:

Step 1 Begin with the entire data in one cluster, say, Cl

Step 2 Use the well-known k-medoids clustering technique with k=2 on the current data

to generate 2 distinct clusters, say Cl1 and Cl2.

Step 3 Select one cluster at a time and repeat Step 2.

Step 4 Stop when the desired number of clusters has been reached. Each individual

cluster resides in a particular leaf node.

The proposed multi-label binary tree of classi�ers (ML-BTC) model incorporates the

bisecting k-medoids algorithm within the binary tree structure. Thus, each intermediate

node of the ML-BTC corresponds to the clustering tasks in the bisecting k-medoids

algorithm itself. The clustering algorithm has been employed in the label space of the

data to generate appropriate clusters among similar label-sets while preserving correlation

among them. Also, Hamming distance has been used as a similarity measure among label-

sets for the bisecting k-medoids in the proposed algorithm.

Figure 5.4: Approximate partition of the data as per the output space

Figure 5.4 represents the synthetic dataset after the application of bisecting k-medoids

with the approximate split generated in the output space of the data mapped to the input

space. After the splitting is done, data with similar label-sets are seen to belong to the
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same subset. The intuition behind this approach is that, while dealing with multi-label

data instances may be encountered whose features are similar but the label-sets are very

di�erent. Similarly, instances having similar label-sets may not have identical feature val-

ues. Hence, basing the decision at a node on feature values, may not be quite appropriate

while dealing with multi-label data. Using the label information in this way attempts

to preserve and utilize the underlying correlation between classes in a particular dataset.

If a set of labels were inter-related, i.e., they occur together frequently, they remain in-

tact in the same subset. On the other hand, using a method to split the data based

on each label or feature loses any label correlation information that was present in the

data. The proposed method aims to utilize this label correlation information and assign

the closely related labels to the relevant sample in turn improving the �nal classi�cation

performance. Here, the original overlapping class boundaries are not speci�cally used.

Instead the label-sets are utilized which have discrete boundaries. A major approximate

split is created from the label-sets which is discrete and non-overlapping. This making

the decision space much simpler. Additionally, this approximate splitting strategy helps

to handle the class imbalance issue to some extent. When two broad groups are created,

it contains a larger number of data points than the individual imbalanced classes or label-

sets. This helps to make the imbalance problem less prominent at this stage. However,

if still, the data splitting is uneven due to imbalanced classes, it is handled separately.

In this novel splitting strategy, the correlation among labels is not explicitly computed,

but it serves a similar purpose. Identical or similar label-sets end up in the same group,

whereas dissimilar label-sets will have a higher Hamming distance, thus, they are most

likely to be well separated. In the case of equidistant label-sets, depending on the param-

eters, initially, one approximate split is made in the current node. Later, in the children

nodes, further splits are made if necessary, eventually leading to few equidistant label-sets

in the same group or as individual leaf nodes. However, once a split has been determined,

it is the job of the binary classi�er to train itself to be able to classify future samples in

the same way.
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Classi�ers In the proposed model, di�erent classi�ers have been used to handle spe-

ci�c scenarios. Unlike existing tree-based multi-label classi�cation models, the proposed

hierarchical ML-BTC uses di�erent classi�ers depending on the data at a node that it

needs to handle. The intuition behind using di�erent classi�ers is that each splitting of

data at an intermediate node may not result in similar partitions. Existing techniques

[93, 94] use a single classi�er in the entire model. Since multi-label data inherently is

class imbalanced, few label-sets have insu�cient data and splitting up of this set may not

result in equal-sized partitions. If the split consists of a tiny and a large subset, using a

generic classi�er like an SVM might not prove to be quite useful. The uneven partition

might cause the selection of insu�cient support vectors thus leading to biased results. In

this scenario, a simpler classi�er is opted that can work with irregular as well as lesser

quantities of data. A classi�er like k-nearest neighbour (k-NN) generates a piece-wise

decision boundary based on a small number of data points. Thus, the uneven sizes of the

partitions do not a�ect the �nal classi�cation boundary [99]. Thus, if the data at hand is

split into two uneven partitions, a k-NN classi�er su�ces. On the other hand, if the split

results into two large-sized groups, an SVM classi�er is used. SVM has been chosen since

it is a strong classi�er that can e�ciently perform classi�cation for ML data [93, 94].

Apart from the intermediate nodes, the proposed model attempts to employ classi�ers

in some leaf nodes when needed. Due to the class imbalance problem, the subsequent

splitting of data might be quite irregular thus resulting in a node containing a smaller

number of data, but from various label-sets. At such a node, where the data cannot be

split any further, yet its entropy is on the higher side, a multi-label classi�er is employed

at that node. This ensures that the classi�er tree need not be expanded further, how-

ever, the data at that leaf node gets correctly classi�ed. Since this job is of a simpler

classi�er that can work well with a smaller number of data, a multi-label k-NN classi�er

is used. In a similar scenario with a larger amount of data that cannot be split further,
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a shallow multi-layer perceptron (MLP) is used. In this way, to determine which classi-

�er is suitable at the current node, few parameters have been used in the proposed model.

Parameters The proposed binary tree of classi�ers model for multi-label classi�cation

proceeds to split the available data at an internal node into two subsets. The data

available at each node may not be su�cient or suitable for further splitting. The decision

to be taken at any node is thus quite crucial and is based on the following two parameters.

a) Multi-label entropy: Entropy determines the degree of variation in the label-sets

of the data available at a node. If entropy = 0, the chunk of data in the node belongs

to a single label-set, i.e., all the instances at that node have the same set of labels.

With the increase in entropy, it can be said that the data available at a node has

increased variation. In other words, there are multiple instances whose label-sets are

quite di�erent. Entropy is de�ned as

H = −
∑
i

(pilogpi) (5.1)

where pi is the probability of an instance belonging to the i
th class. Multi-label entropy

can be described [11] as

H = −
∑
i

(pilogpi + qilogqi) (5.2)

where qi = 1 − pi. At every child node, the entropy should be lower than its parent

node. An entropy threshold, Hthreshold, is provided in the model, which is used to

determine the decision to be taken at any node. At the point where entropy cannot

be reduced further, the tree stops growing.

b) Sample Cardinality: This parameter, named SC, is used along with entropy to

make decisions at any node. It represents the number of data points present at the
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current node. This is essential since decisions cannot be made based only on the

variation in the data, the size of the available data also needs to be assessed. A

cardinality threshold, SCthreshold, determines if the amount of data at any node is

su�cient to be partitioned further or the process should be stopped to form a leaf

node. The importance of this parameter lies in the simple notion that there is no need

to unnecessarily keep on expanding the tree even if the data size becomes trivial.

A combination of the above two parameters helps to make a decision at any given node in

the training phase. Splitting of the data at every node follows a simple strategy; if there

is su�cient data at the node and the variation is high, the data needs to be split and

the tree can be expanded. Sometimes, even if the entropy is high, the amount of data at

a node may not be enough for splitting, i.e., since the sample cardinality is already low,

splitting it into further small groups serves no purpose and simply increases the number

of nodes for traversal in the testing phase. The aim of building this tree is not to have

unique label-sets at each leaf node, but to keep building the tree as long as it is necessary

to perform e�cient multi-label classi�cation. If a situation arises where every label-set

has one training sample each, it is pointless to keep on splitting to end up with leaf

nodes having singleton label-sets. Instead, the tree would �rst recognize prominent splits

and employ a smaller classi�er at a much earlier stage to do the same job and reduce

unnecessary branching out. Thus, the actions within the tree, at any internal node have

high importance.

5.2.1.2 Methodology

The main purpose of this contribution is to construct a tree-like structure step-wise

capable of performing multi-label classi�cation. When the test data is fed to the root

node of the trained tree, based on some decisions at the intermediate nodes, the data

traverses smoothly from the root node to a leaf node which eventually ends up classifying

the data sample to a speci�c label-set.
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Figure 5.5: Flow diagram for the creation of ML-BTC

Training Phase In the training phase, the hierarchical binary tree of classi�ers is cre-

ated in a step-wise fashion (Figure 5.5). Initially, the empty root node contains the entire

training dataset. The action-determining parameters (namely entropy and cardinality)

are computed at the current node (nodeCurr). Depending on these parameters, H and

SC, the next action is selected. The parameters (H & SC) are evaluated based on

threshold values, Hthreshold and SCthreshold. There are a few conditions that may arise

depending on the parameters:

� H > Hthreshold and SC > SCthreshold: This indicates the presence of a large number

of diverse data which should be split in order to expand the tree. Thus, a label
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space partition is performed using bisecting k-medoids at nodeCurr thereby creating

a strategic split in the data.

� If this splitting of data is uneven leading to one of the groups being too small,

a k-NN classi�er is used for this partition.

� If the data has been split into even proportions, an SVM is used to learn a

decision boundary between the two parts.

� SC < SCthreshold: If a node has a lesser amount of data and splitting it is not

possible, the node is converted to a leaf node and an MLKNN classi�er is used.

This ensures that any data that land up in this node while testing gets properly

classi�ed. Even though the amount of training data might be small, the label-sets

are not completely ignored. This ensures the handling of imbalanced classes that

have a fewer number of samples.

� H < Hthreshold and SC > SCthreshold: If there is enough data with lower variation,

it indicates a group of closely related label-sets. Splitting it further results in the

separation of correlated label-sets. The low entropy is further reduced as a result

of splitting, eventually leading to individual leaf nodes for each label-set. This

elongated procedure is stopped early by employing a shallow MLP on the su�cient

data available, to learn di�erent classes at that stage.

� H = 0, this indicates that the dataset present at the current node belongs to the

same label-set, hence no further action is required. This node also becomes a leaf

node with a �xed label-set.

The depth of the tree is not �xed beforehand. It grows till there is su�cient data to be

split at any intermediate node. If the conditions determine the data un�t to be split any

further, that node is converted to a leaf node. In this way, the entire tree grows to some

extent depending on the two parameters.
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Figure 5.6: Flow diagram for the testing phase of ML-BTC

Testing Phase After the hierarchical tree structure has been built in the training

phase, the validation/testing phase begins. There are a few varied scenarios that may

arise for the test data (Figure 5.6). The testing process begins with an unknown sample

at the root node. The binary classi�er at the root classi�es the test pattern to either the

left child or the right child of the current node. In this way, the data moves downwards

through the binary tree structure getting classi�ed by the designated classi�er at every

intermediate node. Finally, at some point, the test pattern reaches a leaf node which

performs the �nal multi-label classi�cation. There are 3 scenarios that a test pattern

may face at a leaf node:

� Fixed label-set: The leaf node has a �xed label-set and the test pattern is assigned

that particular set of labels without any further investigation.

� MLP: The test pattern is fed to the trained network to output its �nal label-set.

� ML-KNN: The ML-KNN classi�er �nalizes the label-set to be assigned to the test

pattern that reaches this leaf node.
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In this way, any unknown sample gets gradually classi�ed as it traverses through the

ML-BTC and receives its �nal label-set at the leaf nodes. In the case of test data that

belongs to a label-set unknown to the classi�er tree, it moves step-wise through the

intermediate nodes to reach a leaf node that assigns a label-set nearest to its actual, thus

minimizing the classi�cation error. However, in the case of a stark domain shift, i.e., the

addition of data from new domains/classes, the classi�er tree might need to be retrained

and restructured with the new information. This is especially because, in the multi-label

scenario, the addition of one new class indicates the possibility of twice the number of

existing label-sets. If there were C number of classes with the possibility of 2C label-sets,

adding one more class would change the number of possible label-sets to 2.2C or 2C+1.

Hence, this new class de�nitely needs to be included in the classi�er tree.

5.2.1.3 ML-BTC vs few tree-based multi-label classi�ers

Comparing the existing tree-based multi-label classi�ers with the proposed ML-BTC, the

methodologies are seen to di�er at a few elements. Firstly, the concept of label-space

partition of the data at each intermediate node is unique which implicitly preserves the

label correlations and simpli�es the decision space. Due to this practical approach, the

proposed method employs a maximum of one classi�er at every node (both, intermediate

and leaf nodes) and results in the generation of approximate splits. This is a major

improvement when compared to existing tree-based techniques, which looks for the best

split, i.e., best feature or best class partition, by exhaustively searching the entire space.

For example, ML-TREE [94] and ML-FOREST [93] use one-vs-all SVMs for every class

at each intermediate node resulting in the use of numerous classi�ers. G3P-kEMLC [50]

uses a pool of label-powerset classi�ers, each predicting a set of k labels. A tree structure

is built utilizing context-free grammar and an evolutionary algorithm. Another multi-

label decision tree model, MLC4.5 [11] �nds the best attribute that optimizes information

gain. Whereas, the HOMER algorithm [77] creates distinct subsets of classes at every

level of the tree and the �nal leaf nodes contain one class each. For a dataset with a huge
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number of classes, this would lead to the formation of a bulky tree with at least that

many branches.

Unlike these methods, the proposed ML-BTC prefers to reduce the burden of extensively

searching for the best, when it can produce similar results with a good approximation.

Unlike methods like ML-TREE, ML-FOREST, HOMER which use one classi�er per

class, ML-BTC chooses to handle one of the drawbacks of multi-label data, i.e., the

possibility of a large number of classes and a larger number of unique label-sets (sometimes

in the order of hundreds). In such a case, employing even a small classi�er for every

class/label-set would increase the size of the overall system. Another novelty in ML-BTC

is catering to the class imbalance problem which may lead to uneven class partitions

while building the tree. This mainly handled by using appropriate classi�ers at di�erent

nodes of the tree depending on the amount of available data. Existing tree-based ML

classi�ers [93, 94] use a single type of classi�er for the entire model, say SVM, which may

not be customisable for the data at hand. In some cases, even the ML-Forest may not

perform better than the tree of classi�ers model in all cases since it does not consider

the imbalanced classes. Also, since all the label-sets are not equally well-represented,

the ML-BTC tree is not expanded till all the leaf nodes correspond to a unique label-set.

Instead, the splitting is strategically stopped at an earlier stage to reduce the unnecessary

expansion and complexity of the system. Also, the class correlations are incorporated

into the ML-BTC algorithm which might otherwise get overlooked, to assemble the data

that have similar label-sets. Keeping these in mind, the proposed technique has drawn

inspiration from the existing algorithms and has aimed to handle the de�ciencies related

to the problem of multi-label classi�cation.

5.2.2 Experimental Analysis

Various experiments have been performed on the proposed hierarchical model and have

been compared with fourteen state-of-the-art algorithms in the domain of multi-label clas-
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si�cation. The details of the experiments performed have been discussed in the following

sections.

5.2.2.1 Setup

Fourteen ML datasets have been used for the experimental analysis of the proposed al-

gorithm, namely, Emotions, Flags, CAL500, CHD49, Scene, Yeast, Enron, Image, Water

Quality, Corel, Delicious, Bibtex, EUR-Lex, and Yelp datasets. The proposed work has

been executed with 6 runs of 5-fold cross-validation on the fourteen datasets for nine per-

formance measures [28], namely, Hamming loss (HL), ranking loss (RL), one error (OE),

subset accuracy (SA), F-measure (FM), macro F1 (MacF1), micro F1 (MicF1), accuracy

(Acc), G-mean (GM). Among these, HL, SA, FM, Acc and GM are example-based metrics

evaluated instance-wise. They need the crisp output label-set to compute correctness.

FM and GM metrics are used to assess algorithms based on the class imbalance problem.

RL and OE are ranking-based metrics which only require a ranking of classes and not the

actual labels for assessment. Finally, MacF1 and MicF1 are two label-based metrics that

compute class-wise performance instead of sample-wise. Results for fourteen well-known

multi-label classi�cation techniques have been included in the comparative analysis. Out

of these fourteen, four are tree-based algorithms, namely, ML-TREE (2015) [94], ML-

FOREST (2016) [93], MLTL-HOMER (2020) [55] and G3P-kEMLC (2020) [50] which

have been used for comparing the proposed tree-based ML-BTC. The MLTL-HOMER

technique also handles class imbalance problem of ML data, making it apt for compar-

ison. Next four methods are binary or ML ensemble classi�ers, CC (2011) [62], ECC

(2011) [62], LSF-CC (2020) [89] and RAKEL (2010) [78] which use multiple base clas-

si�ers (speci�cally SVMs) which seem �t for comparison with ML-BTC. Two methods

utilize label correlations, LIFT (2014) [102] and ML-LOC (2012) [33]. One is a data

transformation technique, BR (2018) [101] which also uses SVM as its base classi�er,

and the rest are well-known problem adaptation based ML classi�ers, namely, ML-KNN

(2007) [104], SC-RankSVM (2014) [83] and MLLEM (2016) [41]. Since ML-KNN and
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SVM are a part of the proposed method, the focus is to compare with existing works

based on these algorithms. Like ML-BTC, MLLEM and RAKEL also aim to preserve

label correlations, hence, has been considered for comparison.

5.2.2.2 Analysis of Results

To analyse the performance of the proposed algorithm, six runs of �ve-fold cross-validation

results for all the �fteen methods on fourteen datasets with nine performance measures

have been shown in Table 5.1 to Table 5.14 for the small (Emotions, CAL500, Flags,

CHD49), medium (Scene, Yeast, Enron, Image, Water quality) and large (Delicious,

Corel, Bibtex, EUR-Lex, Yelp) datasets respectively. The values of the threshold have

been �xed for all datasets, Hthreshold =
Hinitial

5
and SCthreshold =

Ntr

5
, where, Hinitial is the

ML entropy of the data at the root node and Ntr is the training sample size.

Table 5.1: Results for Emotions (small)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.3083 0.3323 0.5189 0.2428 0.3322 0.3479 0.4958 0.2763 0.4392
ML-FOREST 0.2755 0.3216 0.3129 0.3532 0.5011 0.4981 0.5124 0.3761 0.4892
MLTL-HOMER 0.2208 0.3425 0.3033 0.2834 0.6181 0.6598 0.6506 0.5217 0.6228
CC 0.2206 0.3852 0.2956 0.2464 0.5616 0.5964 0.5346 0.462 0.5072
ECC 0.2141 0.4029 0.2713 0.2651 0.5618 0.6092 0.5734 0.4819 0.5198
LSF-CC 0.2130 0.3542 0.2721 0.4176 0.6211 0.6398 0.5982 0.4982 0.5821
SC-RankSVM 0.2345 0.2181 0.2873 0.1944 0.4291 0.4342 0.4184 0.3125 0.4019
MLLEM 0.2712 0.2752 0.3679 0.1839 0.4319 0.4421 0.4377 0.3736 0.4229
MLKNN 0.2618 0.3009 0.3355 0.1816 0.4105 0.5257 0.4804 0.4017 0.4382
BR 0.2199 0.3421 0.2715 0.2867 0.6303 0.6579 0.6289 0.5438 0.5967
RAKEL 0.2369 0.3645 0.3052 0.2548 0.5686 0.6078 0.562 0.4837 0.2321
LIFT 0.2161 0.3776 0.2443 0.6034 0.6126 0.6331 0.6622 0.5099 0.6869
ML-LOC 0.2743 0.1895 0.3285 0.6241 0.6011 0.6180 0.6574 0.5264 0.1170
G3P-kEMLC 0.2291 0.3081 0.2902 0.3093 0.6261 0.6347 0.5831 0.4999 0.2566
ML-BTC 0.2126 0.2164 0.2639 0.6384 0.6352 0.6601 0.6704 0.5518 0.7018

At the �rst glance, the proposed ML-BTC is seen to perform better than the other

fourteen algorithms for all fourteen datasets in most of the cases. speci�cally the example-

based and the label-based metrics. Only for the ranking-based metrics, RL and OE, ML-

BTC does not score the highest in most cases but lies very close to the best performing

algorithm. Among all the performance metrics used for comparison, one, in particular,
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Table 5.2: Results for CAL500 (small)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.1424 0.3545 0.1508 0.0000 0.0465 0.0614 0.2181 0.0333 0.4506
ML-FOREST 0.1891 0.3412 0.1322 0.0639 0.1271 0.4305 0.2412 0.0521 0.4761
MLTL-HOMER 0.2166 0.5084 0.6832 0.0000 0.0641 0.3306 0.3255 0.2157 0.3281
CC 0.1581 0.3783 0.3721 0.0000 0.0638 0.329 0.3321 0.2032 0.4391
ECC 0.1583 0.5697 0.3256 0.0000 0.0821 0.192 0.3308 0.2033 0.4253
LSF-CC 0.1411 0.3872 0.3239 0.0000 0.0901 0.2011 0.3421 0.2098 0.4112
SC-RankSVM 0.1552 0.3619 0.2901 0.0000 0.2259 0.2879 0.3282 0.1023 0.3901
MLLEM 0.6253 0.5964 0.5583 0.0000 0.0675 0.3371 0.2862 0.1819 0.4182
MLKNN 0.1523 0.5796 0.1245 0.0000 0.0823 0.3092 0.3373 0.2052 0.4711
BR 0.1396 0.4995 0.3693 0.0000 0.0595 0.324 0.3483 0.2161 0.3901
RAKEL 0.1372 0.3549 0.2006 0.0000 0.0381 0.0662 0.3261 0.1991 0.2312
LIFT 0.1453 0.4706 0.1982 0.1997 0.1026 0.3248 0.3618 0.2022 0.4051
ML-LOC 0.1443 0.3509 0.2114 0.1988 0.0831 0.3043 0.3631 0.1861 0.4264
G3P-kEMLC 0.1992 0.3562 0.4236 0.0000 0.0982 0.1082 0.3372 0.2018 0.2516
ML-BTC 0.1931 0.3445 0.4195 0.2052 0.1343 0.2458 0.3639 0.2241 0.5089

Table 5.3: Results for Flags (small)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.4542 0.2524 0.2564 0.3165 0.3459 0.5187 0.6636 0.2043 0.5208
ML-FOREST 0.4051 0.2415 0.2411 0.3241 0.3928 0.5721 0.6518 0.2341 0.5312
MLTL-HOMER 0.3751 0.6164 0.2498 0.1341 0.6031 0.6136 0.6517 0.5035 0.4632
CC 0.3532 0.5181 0.2363 0.0927 0.4834 0.6909 0.6649 0.5409 0.4372
ECC 0.3683 0.2997 0.2414 0.1093 0.1638 0.6291 0.3308 0.2025 0.4891
LSF-CC 0.3527 0.3512 0.2301 0.1287 0.3213 0.6122 0.4322 0.3544 0.4992
SC-RankSVM 0.5542 0.4482 0.2259 0.1011 0.4882 0.5401 0.5199 0.3732 0.4561
MLLEM 0.4285 0.6104 0.3133 0.1125 0.4095 0.4448 0.4461 0.3211 0.3893
MLKNN 0.3592 0.6562 0.2263 0.0912 0.4795 0.6763 0.6619 0.5182 0.5981
BR 0.3529 0.5769 0.2185 0.1339 0.5051 0.6318 0.6017 0.5061 0.6015
RAKEL 0.3645 0.4632 0.2281 0.1236 0.4551 0.6739 0.6513 0.5104 0.5801
LIFT 0.3533 0.5551 0.2256 0.5291 0.4897 0.6513 0.6543 0.5068 0.6031
ML-LOC 0.3497 0.3709 0.3846 0.5221 0.5011 0.6457 0.6231 0.4965 0.6092
G3P-kEMLC 0.3731 0.3982 0.2315 0.2091 0.5009 0.6019 0.6511 0.4572 0.5982
ML-BTC 0.3438 0.3135 0.2158 0.5922 0.5085 0.6114 0.6697 0.5194 0.6115
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Table 5.4: Results for CHD49 (small)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.3562 0.2516 0.3831 0.5821 0.3627 0.6157 0.5941 0.4655 0.6156
ML-FOREST 0.3501 0.2981 0.3998 0.5901 0.3782 0.6102 0.5899 0.4561 0.5782
MLTL-HOMER 0.3245 0.3414 0.2924 0.1441 0.4214 0.6276 0.6042 0.4893 0.5688
CC 0.3325 0.4711 0.0831 0.1712 0.4102 0.6309 0.6117 0.4713 0.5794
ECC 0.3322 0.3928 0.0992 0.1712 0.3990 0.6333 0.6087 0.4773 0.5893
LSF-CC 0.3521 0.3092 0.3981 0.2091 0.4281 0.6009 0.5983 0.4664 0.5899
SC-RankSVM 0.4182 0.3708 0.4476 0.0306 0.4186 0.4912 0.4618 0.3498 0.5783
MLLEM 0.4301 0.2851 0.4152 0.0054 0.4092 0.5637 0.5763 0.3981 0.5711
MLKNN 0.3421 0.2308 0.2274 0.1459 0.4044 0.6391 0.6107 0.4819 0.6002
BR 0.3262 0.2563 0.2725 0.1748 0.4205 0.6288 0.6138 0.4803 0.6032
RAKEL 0.3484 0.3739 0.1606 0.1525 0.4161 0.6336 0.6058 0.4847 0.6109
LIFT 0.3303 0.5421 0.1412 0.5834 0.4066 0.6259 0.6006 0.4814 0.6152
ML-LOC 0.3438 0.2451 0.3194 0.5661 0.3152 0.5918 0.6102 0.4339 0.6167
G3P-kEMLC 0.3492 0.3569 0.3078 0.1892 0.4075 0.4933 0.5714 0.4557 0.6005
ML-BTC 0.3244 0.2659 0.3463 0.6054 0.4338 0.6398 0.6139 0.4901 0.6288

Table 5.5: Results for Scene (medium)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.1982 0.1377 0.2871 0.6618 0.5681 0.5784 0.7071 0.6067 0.6573
ML-FOREST 0.1872 0.1102 0.2701 0.6682 0.5743 0.5889 0.6632 0.6033 0.6392
MLTL-HOMER 0.1378 0.3036 0.3012 0.5933 0.6893 0.6797 0.6873 0.6634 0.6473
CC 0.1372 0.3537 0.3575 0.5526 0.6974 0.6898 0.6468 0.6231 0.6281
ECC 0.1452 0.3555 0.2712 0.5929 0.7029 0.7015 0.6941 0.6182 0.6709
LSF-CC 0.1324 0.2743 0.2572 0.5821 0.6352 0.6401 0.6478 0.6092 0.6382
SC-RankSVM 0.5629 0.3994 0.2846 0.1099 0.4107 0.4095 0.4186 0.3025 0.4089
MLLEM 0.1384 0.3535 0.2918 0.6143 0.7099 0.6762 0.6901 0.6102 0.6875
MLKNN 0.1452 0.2191 0.2411 0.6512 0.7217 0.7122 0.7219 0.6981 0.6901
BR 0.1343 0.3796 0.2671 0.6436 0.7161 0.7091 0.7133 0.6958 0.6877
RAKEL 0.1191 0.3707 0.2443 0.6568 0.7246 0.7126 0.7156 0.6808 0.6893
LIFT 0.1122 0.3198 0.1247 0.7166 0.7209 0.7116 0.7256 0.6796 0.6904
ML-LOC 0.2035 0.0576 0.1659 0.7163 0.6078 0.6088 0.7245 0.6878 0.6901
G3P-kEMLC 0.1342 0.2091 0.2691 0.6471 0.7082 0.7062 0.7162 0.6811 0.6782
ML-BTC 0.1291 0.1336 0.2658 0.7291 0.7248 0.7153 0.7268 0.7093 0.7175

136



CHAPTER 5. ML-BTC 5.2. PROPOSED ML-BTC

Table 5.6: Results for Yeast (medium)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.2994 0.2145 0.5021 0.2067 0.1912 0.1945 0.5062 0.1346 0.4341
ML-FOREST 0.2901 0.2119 0.4952 0.2198 0.1091 0.2098 0.5165 0.1472 0.5262
MLTL-HOMER 0.2817 0.4687 0.3128 0.1643 0.3303 0.6515 0.6407 0.4273 0.6397
CC 0.2611 0.3538 0.4034 0.1622 0.3364 0.6389 0.6145 0.4073 0.6045
ECC 0.2718 0.3637 0.3452 0.1849 0.3383 0.6376 0.6137 0.4152 0.6022
LSF-CC 0.3368 0.3526 0.3902 0.1772 0.3362 0.5261 0.6092 0.4242 0.5902
SC-RankSVM 0.3027 0.3334 0.2989 0.0008 0.3432 0.5264 0.5141 0.3728 0.5982
MLLEM 0.2452 0.3618 0.5006 0.0095 0.1716 0.1909 0.2031 0.1783 0.2381
MLKNN 0.2593 0.2882 0.2939 0.1899 0.3371 0.6432 0.6167 0.4182 0.6002
BR 0.2496 0.3827 0.2928 0.1506 0.3405 0.6363 0.6113 0.4027 0.5993
RAKEL 0.2981 0.4543 0.2889 0.1593 0.3446 0.6404 0.6189 0.4106 0.5912
LIFT 0.2322 0.4657 0.2974 0.5113 0.3177 0.6261 0.7182 0.3925 0.6445
ML-LOC 0.2493 0.1911 0.2989 0.5157 0.3149 0.5852 0.7125 0.4261 0.6374
G3P-kEMLC 0.2672 0.3051 0.3082 0.5083 0.3021 0.5463 0.6281 0.4096 0.6082
ML-BTC 0.2342 0.2671 0.2891 0.5275 0.3443 0.5605 0.6339 0.4319 0.6425

Table 5.7: Results for Enron (medium)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.0891 0.3438 0.6029 0.1218 0.0491 0.1363 0.2971 0.1784 0.2877
ML-FOREST 0.0921 0.3718 0.4582 0.1324 0.0535 0.1372 0.3092 0.1891 0.2983
MLTL-HOMER 0.0671 0.4985 0.4156 0.1017 0.1926 0.3662 0.4752 0.2707 0.4872
CC 0.0585 0.5142 0.1152 0.1211 0.2066 0.3694 0.5147 0.3058 0.5019
ECC 0.0584 0.5407 0.1382 0.1198 0.2099 0.3523 0.5192 0.3097 0.5008
LSF-CC 0.0899 0.5012 0.1109 0.1213 0.1672 0.3281 0.3872 0.2562 0.3982
SC-RankSVM 0.0971 0.4691 0.6921 0.0059 0.1448 0.2587 0.2209 0.1499 0.2432
MLLEM 0.8526 0.7816 0.8011 0.2018 0.1019 0.1306 0.129 0.0699 0.1625
MLKNN 0.0627 0.7791 0.5081 0.1141 0.0545 0.2807 0.3057 0.2461 0.3241
BR 0.0661 0.8417 0.3532 0.1251 0.1892 0.3692 0.5043 0.2962 0.5092
RAKEL 0.0562 0.6089 0.1852 0.1281 0.1941 0.3245 0.5206 0.3098 0.5021
LIFT 0.0461 0.5064 0.0924 0.3516 0.2077 0.3666 0.6952 0.3101 0.5179
ML-LOC 0.0531 0.3276 0.2324 0.3403 0.1763 0.3722 0.6705 0.3068 0.5181
G3P-kEMLC 0.0673 0.3569 0.4081 0.2081 0.1572 0.3298 0.4381 0.3022 0.5096
ML-BTC 0.0889 0.3257 0.3892 0.3622 0.1679 0.3724 0.4557 0.3119 0.5193
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Table 5.8: Results for Image (medium)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.4112 0.2007 0.3298 0.5423 0.4901 0.4843 0.5001 0.4595 0.4078
ML-FOREST 0.3701 0.3811 0.4421 0.4253 0.1899 0.4361 0.5002 0.2831 0.5435
MLTL-HOMER 0.3656 0.6228 0.3405 0.4545 0.5545 0.5526 0.6192 0.5071 0.5699
CC 0.2829 0.5362 0.2039 0.3979 0.5452 0.5436 0.5497 0.5108 0.4673
ECC 0.3501 0.6316 0.2705 0.4341 0.5552 0.5512 0.5937 0.5531 0.4891
LSF-CC 0.3527 0.3821 0.2531 0.0212 0.3982 0.4803 0.4577 0.3225 0.4903
SC-RankSVM 0.4044 0.8241 0.3491 0.1231 0.5457 0.5367 0.5393 0.4195 0.2549
MLLEM 0.4144 0.8043 0.3745 0.4555 0.5616 0.5595 0.5677 0.4993 0.1092
MLKNN 0.2848 0.7992 0.3297 0.4792 0.5483 0.5365 0.5951 0.5058 0.5226
BR 0.3031 0.8213 0.3281 0.4761 0.5406 0.5571 0.6226 0.5053 0.4539
RAKEL 0.3013 0.6842 0.3155 0.4951 0.5354 0.5613 0.6258 0.5124 0.4401
LIFT 0.2075 0.5077 0.1154 0.5583 0.5581 0.5474 0.6051 0.4817 0.5297
ML-LOC 0.3298 0.1432 0.2682 0.5657 0.5481 0.5494 0.6319 0.5035 0.6026
G3P-kEMLC 0.3271 0.4821 0.4102 0.5023 0.5493 0.5692 0.5825 0.5193 0.4983
ML-BTC 0.2189 0.2429 0.4008 0.5729 0.5637 0.5713 0.5979 0.5241 0.6089

Table 5.9: Results for Water Quality (medium)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.3729 0.3929 0.4545 0.4101 0.1868 0.4262 0.4919 0.2781 0.5301
ML-FOREST 0.3701 0.3883 0.4342 0.4198 0.2012 0.4311 0.5002 0.3019 0.5291
MLTL-HOMER 0.3656 0.6215 0.4151 0.0028 0.4026 0.5533 0.5281 0.3397 0.5699
CC 0.3992 0.3486 0.1809 0.0162 0.3822 0.4939 0.4549 0.3264 0.4762
ECC 0.3501 0.4269 0.1726 0.0171 0.3767 0.4838 0.4466 0.3187 0.4553
LSF-CC 0.3499 0.4362 0.1766 0.0391 0.3361 0.3221 0.3872 0.3021 0.3992
SC-RankSVM 0.4044 0.7015 0.3953 0.0047 0.2018 0.2105 0.1981 0.1421 0.2029
MLLEM 0.4144 0.6751 0.4566 0.0047 0.1036 0.1058 0.0987 0.0701 0.1034
MLKNN 0.3448 0.7283 0.2406 0.0217 0.4247 0.4521 0.5181 0.3218 0.5224
BR 0.3531 0.7326 0.3198 0.0094 0.3594 0.4786 0.4351 0.3099 0.4555
RAKEL 0.3513 0.4955 0.2019 0.0151 0.3581 0.4599 0.4151 0.2964 0.4198
LIFT 0.3458 0.7343 0.1141 0.3699 0.2408 0.4143 0.5215 0.2562 0.5297
ML-LOC 0.3501 0.2847 0.3711 0.4671 0.4012 0.5065 0.5348 0.3429 0.6326
G3P-kEMLC 0.3581 0.4838 0.4192 0.0921 0.3762 0.4689 0.4266 0.3201 0.4226
ML-BTC 0.3436 0.3177 0.4039 0.4796 0.4273 0.4955 0.5365 0.3431 0.5769
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Table 5.10: Results for Delicious (large)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.0213 0.7871 0.6786 0.0537 0.0538 0.0559 0.2065 0.0284 0.3333
ML-FOREST 0.0201 0.7628 0.4532 0.0673 0.0598 0.0582 0.2383 0.0293 0.3621
MLTL-HOMER 0.0308 0.3297 0.7291 0.0007 0.1045 0.2904 0.2345 0.1577 0.3092
CC 0.0287 0.1781 0.1459 0.0025 0.1023 0.2257 0.2243 0.1467 0.2561
ECC 0.0269 0.1864 0.1226 0.0025 0.1123 0.2466 0.2241 0.1466 0.2583
LSF-CC 0.0208 0.2034 0.2387 0.0031 0.1298 0.2473 0.2322 0.1372 0.2313
SC-RankSVM 0.0563 0.3721 0.6873 0.0032 0.0653 0.1982 0.1654 0.1221 0.1782
MLLEM 0.0292 0.5961 0.9757 0.0009 0.0126 0.0321 0.1326 0.0436 0.1028
MLKNN 0.0278 0.7371 0.3573 0.0019 0.0414 0.1829 0.1651 0.1051 0.1322
BR 0.0189 0.8824 0.3414 0.0012 0.0471 0.1933 0.1691 0.1089 0.1547
RAKEL 0.0182 0.2002 0.1426 0.0026 0.1013 0.2082 0.2181 0.1429 0.2093
LIFT 0.0489 0.3265 0.6632 0.0209 0.0782 0.0835 0.1782 0.1282 0.1872
ML-LOC 0.0193 0.1637 0.6034 0.0441 0.0533 0.0465 0.1963 0.0253 0.3925
G3P-kEMLC 0.0452 0.3082 0.6832 0.0018 0.0732 0.2109 0.2271 0.1342 0.2481
ML-BTC 0.0381 0.2816 0.6549 0.2152 0.0824 0.2488 0.2439 0.1609 0.4012

Table 5.11: Results for Corel (large)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.0344 0.2824 0.7633 0.1505 0.1495 0.1475 0.1015 0.0897 0.2457
ML-FOREST 0.0332 0.3281 0.7601 0.1023 0.1499 0.1501 0.1036 0.0901 0.2342
MLTL-HOMER 0.0227 0.3187 0.7636 0.0061 0.0464 0.1709 0.1074 0.1055 0.2231
CC 0.0225 0.3335 0.5130 0.0076 0.0476 0.1571 0.1024 0.0986 0.2291
ECC 0.0223 0.3454 0.5590 0.0072 0.0471 0.1691 0.1114 0.0998 0.2353
LSF-CC 0.0243 0.4326 0.5722 0.0083 0.0542 0.1503 0.1126 0.0953 0.2245
SC-RankSVM 0.0256 0.4692 0.5328 0.0091 0.0782 0.1461 0.1092 0.0896 0.2135
MLLEM 0.0951 0.6971 0.9738 0.0012 0.0177 0.0194 0.0194 0.0098 0.0162
MLKNN 0.0309 0.6165 0.7291 0.0004 0.0051 0.1076 0.1014 0.0656 0.1132
BR 0.0292 0.7519 0.6412 0.0066 0.0227 0.1701 0.1116 0.1053 0.1642
RAKEL 0.0316 0.3651 0.6458 0.0092 0.0454 0.1722 0.1077 0.1035 0.1527
LIFT 0.0228 0.9893 0.0153 0.0214 0.1493 0.0244 0.0449 0.0146 0.0451
ML-LOC 0.0432 0.3542 0.8721 0.0127 0.0321 0.0453 0.1064 0.0873 0.2099
G3P-kEMLC 0.0312 0.3581 0.8089 0.0032 0.1093 0.1321 0.1019 0.1071 0.1823
ML-BTC 0.0221 0.3101 0.7592 0.1566 0.1527 0.1521 0.1129 0.1096 0.2483
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Table 5.12: Results for Bibtex (large)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.0314 0.3784 0.4511 0.1567 0.1414 0.3257 0.2549 0.2367 0.3761
ML-FOREST 0.0301 0.3421 0.4982 0.2001 0.1231 0.3091 0.4021 0.2319 0.3533
MLTL-HOMER 0.0312 0.4037 0.5857 0.0949 0.1497 0.3186 0.3239 0.2139 0.3382
CC 0.0315 0.4131 0.2597 0.1532 0.1285 0.4331 0.4058 0.2247 0.3502
ECC 0.0309 0.4245 0.2504 0.1559 0.1259 0.4293 0.4065 0.2155 0.3609
LSF-CC 0.0308 0.4372 0.3092 0.1872 0.1099 0.4019 0.4122 0.2281 0.3521
SC-RankSVM 0.0391 0.5764 0.6972 0.1789 0.1088 0.1342 0.2002 0.1543 0.2091
MLLEM 0.0829 0.8182 0.7921 0.0871 0.0849 0.1223 0.1481 0.1292 0.1562
MLKNN 0.0762 0.5846 0.6531 0.0552 0.0562 0.1882 0.1837 0.1433 0.1892
BR 0.6823 0.3961 0.3602 0.2151 0.1504 0.4313 0.4519 0.2139 0.3728
RAKEL 0.0321 0.5261 0.3505 0.1813 0.1232 0.4378 0.4275 0.2283 0.3592
LIFT 0.0308 0.7466 0.3607 0.2734 0.1424 0.2885 0.4072 0.2295 0.3825
ML-LOC 0.0312 0.2858 0.7872 0.1201 0.0563 0.1264 0.2128 0.0961 0.2115
G3P-kEMLC 0.0304 0.5628 0.5879 0.2415 0.1035 0.2473 0.2891 0.2029 0.3741
ML-BTC 0.0299 0.5524 0.5736 0.2919 0.1586 0.2597 0.3014 0.2391 0.3911

Table 5.13: Results for EUR-Lex (large)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.2478 0.1378 0.7369 0.0489 0.2817 0.0493 0.0257 0.0254 0.1405
ML-FOREST 0.2082 0.13471 0.7223 0.0557 0.2899 0.0532 0.0281 0.0277 0.1498
MLTL-HOMER 0.0353 0.4985 0.5064 0.1147 0.2091 0.1407 0.1443 0.1787 0.1402
CC 0.0445 0.7851 0.5373 0.1479 0.2908 0.1376 0.2631 0.1786 0.1601
ECC 0.0405 0.7861 0.4433 0.1401 0.2914 0.1415 0.2634 0.1783 0.1608
LSF-CC 0.0392 0.7212 0.3981 0.1321 0.2739 0.1548 0.1621 0.1534 0.1512
SC-RankSVM 0.1028 0.7328 0.7621 0.1092 0.1087 0.1101 0.0081 0.0721 0.1024
MLLEM 0.1986 0.7736 0.7759 0.0021 0.0208 0.0218 0.0217 0.0112 0.0342
MLKNN 0.0367 0.9355 0.5332 0.1316 0.2154 0.1509 0.1115 0.1427 0.1526
BR 0.0353 0.8478 0.3221 0.1201 0.1953 0.1417 0.1132 0.1515 0.1526
RAKEL 0.0346 0.7107 0.3543 0.0982 0.2914 0.1281 0.1775 0.1718 0.1631
LIFT 0.0411 0.5628 0.3182 0.1834 0.2823 0.1521 0.1315 0.1026 0.1609
ML-LOC 0.0337 0.1312 0.7621 0.1316 0.2899 0.1575 0.2374 0.0943 0.1606
G3P-kEMLC 0.0423 0.6619 0.7732 0.1082 0.2781 0.1462 0.1247 0.0932 0.1622
ML-BTC 0.0315 0.6015 0.7689 0.1551 0.2968 0.1579 0.1334 0.1083 0.1699
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Table 5.14: Results for Yelp (large)

HL RL OE SA MacF1 MicF1 FM Acc GM
ML-TREE 0.2649 0.2028 0.2816 0.5364 0.3104 0.5198 0.7066 0.4639 0.6203
ML-FOREST 0.2561 0.2003 0.2781 0.5463 0.3201 0.5261 0.7098 0.4873 0.6571
MLTL-HOMER 0.1856 0.3269 0.2432 0.3789 0.6513 0.7076 0.658 0.5842 0.6753
CC 0.1805 0.3847 0.1432 0.3905 0.6511 0.7063 0.652 0.5821 0.6657
ECC 0.1804 0.3524 0.1583 0.3882 0.6513 0.7061 0.6503 0.5803 0.6601
LSF-CC 0.1782 0.3658 0.1408 0.3801 0.6572 0.6741 0.6577 0.5899 0.6709
SC-RankSVM 0.2584 0.2064 0.3254 0.2291 0.4526 0.4539 0.3919 0.3402 0.3892
MLLEM 0.3275 0.3236 0.5555 0.0745 0.4638 0.4766 0.4189 0.3902 0.4093
MLKNN 0.274 0.2626 0.3351 0.1904 0.1581 0.3299 0.2664 0.2281 0.2761
BR 0.1785 0.1556 0.2476 0.3899 0.6348 0.7035 0.6444 0.5757 0.6579
RAKEL 0.1663 0.2271 0.1872 0.4555 0.6855 0.7266 0.6908 0.6271 0.6866
LIFT 0.1951 0.3981 0.1641 0.6336 0.6203 0.6961 0.7037 0.5846 0.6749
ML-LOC 0.1095 0.1579 0.1425 0.6345 0.6735 0.7162 0.6988 0.6513 0.6844
G3P-kEMLC 0.2231 0.1629 0.1572 0.4781 0.5893 0.6521 0.6858 0.5538 0.6583
ML-BTC 0.2167 0.1461 0.1387 0.6436 0.5944 0.6602 0.7104 0.5619 0.6872

is quite di�cult to achieve. While the others base their outcome on partial correctness,

the �subset accuracy� metric determines the full correctness, i.e., the correct prediction

of the entire label-set. For multi-label data, this is a di�cult feat to achieve, even for a

small number of test instances. However, from the results, it is seen that the proposed

ML-BTC surpasses all the other methods by a signi�cant margin for SA. Especially for

the CAL500 dataset, where eleven of other methods have scored SA = 0. Similarly,

metrics F-Measure and G-Mean are used to better assess the class imbalance issue in ML

data. It is seen that for most datasets, ML-BTC has surpassed the others in terms of

FM and GM, indicating its ability to handle class imbalance.

From a dataset perspective, ML-BTC has performed equally well for datasets of small,

medium and large sizes. Only for the ranking-based metrics, ML-LOC is seen to have

a better RL, whereas, LIFT shows a better OE compared to the other methods. ML

datasets in general have the drawback of class imbalance, and all the fourteen datasets

used for experimentation are quite imbalanced (shown in Section 2.2.1). Out of the

fourteen datasets, CAL500, Delicious and Yelp, in particular have 1, 0.981 and 1 diversity

respectively, indicating a high ratio of distinct label-sets to the number of instances. This

makes the train set and test set completely di�erent and thus are likely to get misclassi�ed.
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Yet, the proposed ML-BTC performs substantially well compared to the other algorithms,

especially for SA, FM and GM metrics.

For datasets like CAL500, Delicious and Yelp, where the training set and test set will

have mostly distinct label-sets, the propagation of error from the root node to the leaf

nodes in a tree structure can be a major concern. Any misclassi�cation at an intermediate

node might propagate to the leaf nodes, a�ecting the �nal classi�cation results. However,

through the performance achieved by ML-BTC, it is clear that it has not succumbed to

the problem of error propagation. In the proposed ML-BTC, since there is a separate

binary classi�er at every intermediate node which learns di�erent decision boundaries,

any data point that is misclassi�ed at one level can be recti�ed in the later steps. At every

node, since an approximate partition is being estimated, some amount of misclassi�cation

is expected to occur. However, the novel approach of label-space partitioning ensures that

data from similar classes will belong to the same side of the partition. Since the �nal

classi�cation does not take place until the sample reaches some leaf node, even if some

data have been misclassi�ed at the intermediate nodes, it still has a chance to be correctly

classi�ed at the leaf nodes. Either an entire leaf node is allocated for that label-set, or

the ML classi�ers at the leaf nodes handle these anomalous points, thus preventing the

error from a�ecting the results.

To evaluate the sensitivity of ML-BTC to the two parameters, namely multi-label entropy,

H, and sample cardinality, SC, that orchestrate the building of the tree-like structure,

experiments have been performed for di�erent combinations of Hthreshold and SCthreshold.

Figure 5.7 depicts the G-Mean values (Y-axis) obtained for the fourteen datasets by con-

sidering three combinations of Hthreshold and SCthreshold. The thresholds have been set

to a fraction of the initial entropy, (Hinitial), and training sample size, Ntr. In each case,

Hthreshold = Hinitial

den
and SCthreshold = Ntr

den
. The X-axis represents three values for the

denominator of thresholds, den = 3, 5, 10. On the X-axis, when den = 3 it depicts results

from ML-BTC experimented with parameters, Hthreshold =
Hinitial

3
and SCthreshold =

Ntr

3
,

142



CHAPTER 5. ML-BTC 5.2. PROPOSED ML-BTC

Figure 5.7: E�ect of the two parameters Hthreshold and SCthreshold on G-Mean metric

and so on. Analysis of the performance of the proposed algorithms for the various com-

binations of thresholds on the datasets shows that the G-Mean does not vary drastically

with the variation of the thresholds. Within the range tested, the exact choice of thresh-

olds do not seem crucial. This shows that the proposed algorithm is not too dependent

on the thresholds and can perform e�ciently with any approximate value chosen within

the range.

Figure 5.8: Average Entropy at every depth of the ML-BTC tree for di�erent
(Hthreshold, SCthreshold) combination for Scene dataset

To investigate the tree structure built by ML-BTC algorithm, in Figure 5.8 and Figure 5.9
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Figure 5.9: Average Hamming distance at every depth of the ML-BTC tree for di�erent
(Hthreshold, SCthreshold) combination for Emotions dataset

plots of the average entropy and average Hamming distance at each depth of the trees

have been shown respectively. These results have been obtained from di�erent runs

with di�erent training sets. Three combinations of thresholds have been considered.

Hthreshold = Hinitial

den
and SCthreshold = Ntr

den
, where den = 3, 5, 10. From the graphs, it is

seen that the average entropy and Hamming distance at the nodes of a particular depth

of the tree keeps systematically decreasing. Entropy determines the diversity of the data,

while Hamming distance portrays the existing closeness and label dependencies. The tree

building is e�ectively stopped before all the nodes attain entropy and Hamming distance

0.

To evaluate the performance of the proposed method even further, T-test statistics have

been computed for the proposed ML-BTC against all the other algorithms for the subset

accuracy metric. It is seen that for t.95 = 0.771 with degrees of freedom = 13 the proposed

method outperforms the others. Additionally, the non-parametric two-tailed Wilcoxon

signed-rank test [3] (Table 5.16) has been performed on the accuracy metric for all datasets

against all the other methods. It indicates that with alpha=0.20, TWilcoxon(14)=31, the

proposed ML-BTC is statistically superior to all the other algorithms for the accuracy

metric.
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Table 5.15: T-Test for all methods against ML-BTC (based on subset accuracy)

Method T-test value
ML-TREE 4.0477
ML-FOREST 5.3618
MLTL-HOMER 6.3063
CC 6.0099
ECC 5.8155
LSF-CC 6.0655
SC-RankSVM 9.6692
MLLEM 7.7906
MLKNN 6.6234
BR 5.4556
RAKEL 5.7183
LIFT 1.7334
ML-LOC 2.1339
G3P-kEMLC 4.2790

Table 5.16: Two-tailed Wilcoxon signed-rank test statistics for all the methods vs pro-
posed ML-BTC (based on accuracy)

Method p Value Value of sign rank
ML-TREE 0.000122 105
ML-FOREST 0.000122 105
MLTL-HOMER 0.067627 82
CC 0.172607 75
ECC 0.135254 77
LSF-CC 0.019043 89
SC-RankSVM 0.000122 105
MLLEM 0.000122 105
MLKNN 0.003052 97
BR 0.040039 85
RAKEL 0.090576 80
LIFT 0.002319 98
ML-LOC 0.008545 93
G3P-kEMLC 0.000122 105
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5.2.2.3 Computational Analysis

For an overall computational analysis of the proposed algorithm in comparison with the

fourteen state-of-the-art techniques, Table 5.17 depicts the runtime for a single run of

the model comprised of the training and testing phase. For the proposed algorithm, both

the train time and the test time have been separately indicated. Train time is the time

elapsed to build and train the ML-BTC structure using the training set and the test

time is the total classi�cation time for the entire test set. From the noted computational

times, it is seen that the proposed algorithm maintains an average computational time

with respect to the other methods. However, methods like MLLOC, ML-FOREST, G3P-

kEMLC, SC-RankSVM, LSF-CC, ECC have a comparatively higher computational time

than ML-BTC. Comparing the train time and the test time of ML-BTC it is seen that

the test time is quite lower than the training time, thus if training is performed o�ine,

the model can perform e�ciently in the testing phase.

Thus, analysing the overall performance of the proposed method, it can be said that the

ML-BTC fares well above the other state-of-the-art algorithms for multi-label classi�ca-

tion. Signi�cant improvement in most cases when compared to the tree-based models,

ensemble classi�ers, data transformation techniques and other standard ML algorithms

can be observed.

5.2.2.4 Comparison with the previous proposed works

The proposed works in the previous chapters, namely MLSAEELM and AE-MLFLANN

were built to handle the large input dimension and the complex decision space. The

ML-BTC also deals with complex decision space, while handling class imbalance and

label correlations. Thus, the comparison with the previous methods can be made on the

grounds of handling the complex decision space problem. Each of the three proposed

methods handle the problem through di�erent approaches, hence, it is interesting to

analyse which approach performs the best among these three. From Table 5.18 it is
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Table 5.18: Comparison with the other proposed methods

Dataset Method HL RL OE MacF1 MicF1 SA
MLSAEELM 0.0918 0.0760 0.2225 0.8352 0.8355 0.6126

Scene AE-MLFLANN 0.0761 0.0707 0.2119 0.7702 0.7562 0.6398
ML-BTC 0.1291 0.1336 0.2658 0.7248 0.7153 0.7291

MLSAEELM 0.1852 0.1580 0.2735 0.7245 0.7232 0.5695
Emotions AE-MLFLANN 0.1863 0.1420 0.2395 0.6769 0.6925 0.3221

ML-BTC 0.2126 0.2164 0.2639 0.6352 0.6601 0.6384

MLSAEELM 0.2612 0.1895 0.1429 0.6221 0.6014 0.6758
Flags AE-MLFLANN 0.2656 0.2025 0.1867 0.5802 0.7219 0.1758

ML-BTC 0.3438 0.3135 0.2158 0.5085 0.6114 0.5922

MLSAEELM 0.1943 0.1648 0.2222 0.7444 0.7267 0.6104
Yeast AE-MLFLANN 0.2071 0.1766 0.2338 0.4034 0.6325 0.1541

ML-BTC 0.2342 0.2671 0.2891 0.3443 0.5605 0.5275

seen that MLSAEELM performs best in most cases for the four datasets compared. The

e�ectiveness of the network can be credited to the improved input to output mapping

approach that focussed on learning the data well. Intuitively, ML-BTC is aimed to

handle more issues of ML data, and is seen to perform well compared to the state-of-the-

art, but is underachieving than expected when compared to the other proposed models.

In this algorithm, an approximate approach has been opted to simplify the complex

decision space, handle the class imbalance issue of ML data and implicitly include label

correlations in the data. These have been handled to some extent in this model and can

be investigated further in the future.

5.3 Conclusion

In this chapter, the problem of class imbalance in multi-label data was aimed to be

handled. This would assure improved performance of the classi�er by reducing biased

training towards the larger classes. Additionally, the intention was to utilize the correla-

tions among ML classes that exist but are often ignored and simplify the decision space

while doing so. This would also help improve classi�cation by incorporating the depen-
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dencies that exist among labels. In this regard, a tree of classi�ers was proposed that

would handle these issues simultaneously. As the tree is built, the data is strategically

split at each intermediate node and speci�c classi�ers are trained. The imbalance is han-

dled by the use of di�erent classi�ers suitable for the data at a node. The novel approach

of label-space partitioning helps to retain label correlations and simplify class boundaries

without having to deal with the overlaps. Experimentally, the proposed algorithm has

shown good outcomes against various relevant methods.

Administering the solutions for complex decision space, class imbalance and label corre-

lations, the proposed model is seen to be quite capable of handling the di�erent issues.

However, the concept of class correlations were not completely utilized in this method

since they were used implicitly to preserve the correlations. To explore them in a better

way, and use them to improve classi�cation performance, the next chapter extracts class

correlations to use them explicitly to improve the performance of other classi�ers.
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Chapter 6

Improved Multi-label

Classi�cation with Frequent

Label-set Mining and Association

6.1 Introduction

After exploring the solutions to various problems of multi-label data in the previous

chapters, it is seen that the avenue of label correlations have not been utilized to its

full potential. Since, most existing multi-label algorithms do not focus on this aspect,

a dedicated method is to be developed here that incorporates class correlations to build

a strong classi�cation model. Due to the simultaneous occurrence of multiple classes

in multi-label data, some frequently co-occurring labels might have some dependencies

among them. However, in multi-label literature, usually every class is considered to be

independent and the predictions for each class is performed separately. This loses out

on any class correlation that might exist in the data. For example, while analysing

user movie choices it can have genre classes like 'action', 'comedy', 'thriller', 'romance',
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'science �ction (sci-�)' etc. Among these, users preferring 'action' movies are highly likely

to prefer 'thriller' as well. Movies genres are multi-label in nature hence not considering

'romantic-comedy', 'action-thriller' or 'action-sci-�' as correlated classes might be a lack

of judgement. This would eventually lose a lot of information, thus leading to deceiving

results. Similar issues might be seen in other types of multi-label data as well.

In this chapter, an approach has been proposed to incorporate class correlations that exist

in the multi-label data. This is done to improve the overall classi�cation performance

of any multi-label classi�er that otherwise might have ignored these dependencies. In

this regard, a concept named �frequent label-set mining� (FLM) has been introduced.

Here, the traditional concept of frequent itemset mining which �nds the relation among

frequently occurring itemsets has been utilized. Most researchers determine frequent

itemsets and association rules based on the feature space of the data. Authors in [75]

developed a multi-class, multi-label associative classi�cation (MMAC) approach, which

detects all frequent itemsets from sample features occurring in the data and the classes

associated with them. An application of the apriori algorithm has been done in [56].

Here, the label-sets have been searched for correlations and the compound labels that

have a strong association, have been replaced by single labels before classi�cation. ML-

KNN has been then used for multi-label classi�cation, after which the labels have been

reverted to their original form. However, unlike the common approach of considering

each feature as an item, the perspective is changed to a fresh angle, where the labels

are considered as items. Thus, turning the label-sets of multi-label data into itemsets.

This ensures that the class correlations are found among frequently co-occurring labels

when they are considered as frequent itemsets. FLM is performed on the training data

to extract the correlated classes. In this approach, concepts of co-presence (CP) and

co-absence (CA) of classes have been presented. These help to extract relevant and

irrelevant associations among classes in the form of association rules. This FLM approach

is then used in unison with a few benchmark ML classi�ers to improve their classi�cation

accuracy. The independent classi�er trains itself on the training set and generates the
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soft classi�cation scores. Depending on the ambiguity of the scores, they are marked

as certain or uncertain. The uncertain scores are then improved with the help of the

important CP-CA rules extracted from the classes with certain scores. The CP rules

include frequently co-occurring classes, while the CA rules discard those classes which

are frequently absent together. A novel score improvement formula has been de�ned

to modify the soft classi�cation scores. Once the soft scores are updated depending on

the class associations, they become more relevant or irrelevant and thus less ambiguous.

After this, a hard classi�cation is performed using a threshold function to generate the

�nal label-sets.

The contribution of the proposed work is as follows.

� Introduce the concept of �frequent label-set mining� for �nding class/label corre-

lations. This identi�es co-presence (CP) and co-absence (CA) among classes to

generate rules for relevant and irrelevant label-sets.

� De�ne a formula for the improvement of uncertain scores incorporating CP-CA

rules of certain classes.

� Improve classi�cation score for any classi�er by incorporating class correlations with

the help of frequent label-set mining.

The proposed algorithm, frequent label-set mining and association (FLMA), has been

tested in combination with three ML classi�ers to improve their performance on ten

benchmark datasets. Experimental analysis indicates substantial improvement with the

application of the proposed approach to incorporate class correlations on existing ML

classi�ers.

The rest of the chapter is organized as follows. Section 6.2 elaborates on the proposed

work, including the model description and all the experimental results done for this work.

Section 6.3 concludes the chapter.
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6.2 Proposed Multi-label Frequent Label-set Mining

and Association

The proposed system is designed to aid multi-label classi�ers with frequent label-set

mining to utilize class correlations. This aims to improve the classi�cation performance

achieved by a regular classi�er that does not consider existing relations among classes.

6.2.1 Model Description

In this section the major steps of the proposed method has been discussed in detail.

6.2.1.1 Frequent label-set mining

Itemset mining is done to �nd frequently occurring items in a given dataset. In the

scenario of multi-label data, each sample is associated with multiple classes at the same

time. This set of relevant classes constitute the label-set for a particular sample. Similarly,

the classes that are not associated with a particular sample, constitute its irrelevant label-

set. To map an ML dataset with itemset mining, each of the classes is considered as

individual items, the label-sets are itemsets and then mining is performed in the output

space. Frequent label-set mining would identify the classes that frequently occur together,

hence can be considered to be correlated. The aim of FLM is to generate positive rules for

classes occurring together and negative rules for classes that are always absent together.

This ensures that all grounds are covered for classes with a similar occurrence pattern.

Thus two concepts are introduced here:

a. Co-presence (CP) label-sets: These indicate classes that frequently occur together.

It helps to identify frequent relevant label-sets.

b. Co-absence (CA) label-sets: These indicate classes that are frequently missing to-

gether. It helps to identify frequent irrelevant label-sets.
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FLM generates both CP and CA rules in this step. However, if there are a large number

of classes, the number of CP-CA label-sets would be huge and their corresponding rule

generation might be computationally expensive. For C number of ML classes, the possible

relevant and irrelevant label-sets is 2C . ML data tend to have a large number of classes,

which in turn would create a large number of label-sets. Hence, to reduce the bulk of the

classes, some non-frequent classes are ignored at �rst to reduce the number of possible

label-sets to some extent. This is an optional step taken for larger datasets. All classes

with above-average occurrence frequency are considered for rule generation. The aim is to

primarily handle classes that have the highest probability of occurrence. From the reduced

set of classes, the frequent label-sets are identi�ed and their corresponding association

rules are generated using the well-known FP-growth algorithm [26]. FP-growth builds a

tree structure that is fast and can handle a large output dimension.

FP-Growth Algorithm FP-growth is a popular method of mining frequent patterns

(FP) in data that is speci�cally preferred over the Apriori algorithm since it can handle

larger dimensional data. This is typically used on transactions related to a set of items to

identify the frequently occurring itemsets from the entire list. The data can be accessed

in two formats; the horizontal format, where the data is represented through transaction

ids, and each id contains multiple items purchased in that transaction. The other is a

vertical format, where each item is listed along with all the corresponding transactions

in which they occur.

This algorithm has been adapted to be utilized in the proposed work to identify frequent

label-sets in multi-label data. The data at hand is represented in a horizontal format,

where each instance is associated with multiple classes which constitute its relevant label-

set. Similarly, the classes that are not relevant to the instance constitute its irrelevant

label-set. These relevant and irrelevant sets of classes are used to identify the frequent

label-sets that exist in the data. For this purpose, the FP-growth algorithm has been

employed on the label-sets of the multi-label data. The FP-growth algorithm �rst requires
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the building of the FP-Tree. The steps to construct the FP-Tree for relevant label-sets

are as follows:

a. Scan the data and compute the support count for every individual label. The

support of a class Y is computed as,

Support(Y ) =
Samples with label Y

N
. (6.1)

This can be done through one scan of the data.

b. Sort the labels in descending order of support count. min_sup is the minimum sup-

port threshold which determines the frequent label-sets with support count above

this threshold. All non-frequent labels can be eliminated.

c. Begin creating the FP-Tree by forming an empty root node. Any node that gets

added, has a support counter.

d. For each instance i,

i Sort its corresponding relevant labels in the order recorded in Step 2 and form

a list Reli.

ii Start at the root node, take labels from Reli sequentially and traverse the tree.

iii If a label exists in order of the sequence, increment its counter and traverse to

the next branch.

iv Add a branch to the tree, for every label in the sequence that does not exist

and set its counter to one.

e. Stop expanding the tree once all instances have been traversed.

Once the FP-tree has been created, frequent itemsets can be extracted by traversing

from the root node to the leaf nodes. The support counter at each node indicates the

frequency of that particular path from the root. Using a minimum support threshold, the
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paths with high support count can be selected, thus identifying the frequent co-presence

label-sets. The FP-Tree for irrelevant label-sets is built and frequent co-absent label-sets

are extracted in a similar way.

After the frequent label-sets have been identi�ed association rules are generated from

them. For every frequent label-set {Y1, Y2}, association rules {Y1} → {Y2} and {Y2} →

{Y1} can be formed. Each rule generated is of the form {Y1} → {Y2}, where {Y1} and

{Y2} can be single or multiple classes and the rule indicates an association between them.

Each of these rules has two parameters associated with them as follows.

Support({Y1} → {Y2}) =
Samples with label-set{Y1, Y2}

N
(6.2)

Confidence({Y1} → {Y2}) =
Samples with label-set{Y1, Y2}

Samples with labelY1
(6.3)

These parameters indicate the importance of the rules, depending on which they have

been used at a later stage. To select most important association rules, a minimum

con�dence threshold, min_conf is also set. All rules above the min_sup and min_conf

thresholds constitute the �nal set of rules. The min_sup and min_conf thresholds for

irrelevant label-sets is kept much higher since the frequency of 0's in the label space

is higher than the frequency of 1's. This causes the support and con�dence ranges for

irrelevant labels to be higher than the relevant labels. The rules generated from the

relevant label-sets are the co-presence rules and the ones generated from the irrelevant

label-sets are the co-absence rules.

Thus, the FLM step is performed in the training phase, and it helps to identify the rela-

tionship between sets of frequently occurring and frequently absent classes. It generates

two sets of rules, one for relevant and one for irrelevant label-sets some of which are

used later in the testing phase to improve the classi�cation performance of a multi-label

classi�er.
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6.2.1.2 Soft classi�cation

In this step, an existing multi-label classi�er is trained on the ML data in the training

phase of the method to get the classi�cation scores. Most classi�ers do not explicitly

consider class correlations or incorporate class information while training the classi�er.

Classi�ers like ML-KNN, ML-RBF, multi-layer perceptrons, etc. are standard methods

that can be improved using the proposed approach. Final or hard classi�cation is not

performed in this step. The soft classi�cation scores obtained from the ML classi�er will

be combined later with the rules generated in the FLM step. Since the MLC performs

the training phase separately, it can be done in parallel while performing FLM. In the

testing phase, the trained model is used to predict classi�cation scores, which are later

improved using the proposed approach.

6.2.1.3 Associative Correlation

This step combines the outputs generated from the FLM and soft classi�cation steps. The

soft scores obtained from the classi�er are aimed to be improved by correlating the CP-

CA label-set rules generated in the �rst step. The scores can lie within the range of 0 to

1 or -1 to 1; here, [0,1] is considered. As shown in Figure 6.1, 0 indicates irrelevance while

1 indicates relevance. The soft scores obtained can be segregated into two categories.

a. Certain scores - The scores lying close to the boundary values are the ones the

classi�er is most certain about. Thus, classes that have scores lying close to 0 are

surely irrelevant, and scores close to 1 are relevant.

b. Uncertain scores - On the other hand, the region around the mean of the score

range (in this case, 0.5) can be considered ambiguous. Thus, classi�cation scores

which lie close to the mean (0.5) are quite uncertain. A slight error by the classi�er

might lead to misclassi�cation.

Thus, it can be said that the certain scores do not need much intervention and can be

considered to be correct. Most misclassi�cations occur due to the scores that lie in the
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uncertainty region. In Figure 6.1, a �region of uncertainty� has been demarcated. Two

Figure 6.1: Region of Uncertainty

regions close to the boundaries (0 and 1) are considered to be certain, while the region

around the mean (here, 0.5) is uncertain. Boundary thresholds are determined which can

distinguish the certain regions from the uncertain region. Thrlower determines the lower

threshold closer to 0, separating the certain and uncertain region for irrelevant classes,

while Thrupper determines the upper threshold closer to 1, separating the uncertain and

certain scores for the relevant classes. These thresholds are computed by �tting an S-

membership function on the soft scores obtained from the classi�er. This work aims to

improve the uncertain scores with the help of the certain scores and the relevant-irrelevant

class correlations generated in the FLM step.

Steps of Associative Correlation This phase combines the soft classi�cation scores

with the CP and CA rules.

a. Assign hard labels to the certain scores, i.e score > Thrupper and score < Thrlower.

b. Clean the overlapping CP and CA rules for the same set of classes. Keep the rules

that have higher support and con�dence.

c. Sort the CP and CA rules in descending order of their con�dence and support.

Higher the con�dence, more important is the rule.

d. Sort the certain classes and uncertain classes based on their distance from the

boundary. The shorter the distance from either boundary, the more con�dent is

the score.

e. Take a certain class and �nd all the CP and CA rules involving that class.
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f. From the soft scores, �nd the most uncertain class and improve its score.

g. Score improvement: CP rule moves the score towards 1, CA rule moves the score

towards 0.

Improving Uncertain Scores Using the certain labels and the CP-CA rules, the

scores of the uncertain samples are improved. With the help of CP rules, scores are

increased to be closer to 1, and with CA rules, scores are moved towards 0. The chosen

rule {Y C} → {Y U} has {YC} as a certain label-set and {YU} as an uncertain label-set.

Equation 6.4 determines the change ∆ by which the uncertain scores will be improved.

∆ = Confidence({Y C} → {Y U}). |Y Uscore −NB|
|Y Cscore −NB|

, (6.4)

where, NB is the nearest boundary. The numerator incorporates the score of the un-

certain class (Y Uscore) and the con�dence of the rule in question. Higher the con�dence

of the rule and the distance of Y Uscore from the nearest boundary (i.e., a measure of

ambiguity), the more the impact. The denominator determines the distance of Y Cscore

(certain class) from the nearest boundary. Better the certain score, higher the impact.

∆ determines the shift from the original score to its desired score.

For CP rules, the scores are increased to move towards 1.

Y Uscore−new = Y Uscore−old +∆. (6.5)

For CA rules, the score is decreased to move towards 0.

Y Uscore−new = Y Uscore−old −∆. (6.6)

This computation weighs the con�dence of the rule vs the ambiguity of the score. For a

particular uncertain class, the new score is computed incorporating all relevant CP-CA
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rules. Addition and/or subtraction of ∆ might occur several times for each rule applied.

6.2.1.4 Multi-label classi�cation

This is the �nal step. Once the changes are made by associative correlation, the new

scores are recomputed from all the modi�cations that have been incorporated by the

previous step. These scores are then converted to hard labels using a global threshold

of 0.5. While predicting labels for unseen data, �rst the ML classi�er predicts scores

for the test data. From these scores, the certain and uncertain scores are separated.

The CP-CA rules from the training set are used for the certain classes to improve the

uncertain scores.

6.2.2 Experimental Analysis

Experimental analysis of the proposed work has been performed on ten standard ML

datasets namely, Emotions (music), Scene (image), Flags (image), Yeast (biology), Image

(image), CHD_49 (medicine), Yelp (web-text), Water quality (chemistry), Human_PseAAC

(biology) and GpositivePseAAC (biology). Seven performance metrics [28] have been

used for comparison, namely, Hamming loss (HL), ranking loss (RL), one error (OE),

subset accuracy (SA), macro F1 (MacF1), micro F1 (MicF1) and accuracy (Acc). The

results are aggregated from multiple runs of 5-fold cross-validation.

The proposed model has been applied to benchmark ML classi�ers to include label corre-

lations information alongside classi�cation. Figures 6.2 to 6.4 compare the performance

of three algorithms namely, MLP, MLKNN and MLRBF respectively with and without

the application of the proposed FLMA approach. The results for three metrics, macro

F1, micro F1 and accuracy have been shown in the form of a stacked column chart for

all ten datasets to analyse the impact of the proposed method. The coloured portions

separately indicate the performance of each method. From the results, it is seen that

the performances of the FLMA improved algorithms are signi�cantly better than their
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stand-alone versions.

Figure 6.2: Improvement of MLP on application of FLMA

Figure 6.3: Improvement of ML-KNN on application of FLMA

Figure 6.4: Improvement of ML-RBF on application of FLMA

Figure 6.5 shows the consolidated performance of the three FLMA improved algorithms

for ten datasets and six metrics in the form of radar plots. The boundary covering a larger

area on a radar plot depicts better performance. From the plots, it is seen that for all

the six metrics, FLMA+MLKNN and FLMA+MLRBF perform very closely. However,

the performance of FLMA+MLP is seen to falter for three metrics.

Table 6.1 to 6.10 compare the FLMA improved methods with four benchmark ML al-

gorithms, namely RAKEL, CC, ECC and MLLEM. These are few well-known ML algo-
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Figure 6.5: Comparison among the improved algorithms for ten datasets on six metrics

rithms that utilize label information during classi�cation. This makes these relevant to

the proposed work and are thus used for comparative analysis. From the results, at a

glance, it is seen that the FLMA improved algorithms perform better than the other ML

classi�ers in most cases. Looking into speci�c performance metrics, it is seen that for the

ranking-based one error metric, the outcome is lower than the other algorithms. How-

ever, the other ranking based metric, the ranking loss seems to achieve the best scores

for the proposed approach. Subset accuracy is a strict metric, which considers only those

results which have completely correct labels. The proposed FLMA is seen to improve the

SA metric quite well.The other metrics like HL, MacF1, MicF1, Acc show improvement

with the application of FLMA. Among the three improved algorithms, FLMA+MLRBF

achieves a majority of the highest scores, followed by FLMA+MLKNN. Overall, for all

the ten datasets, the proposed FLMA is seen to improve the performance of the standard

ML classi�ers by incorporating class correlations that might have been otherwise ignored.

To further analyse the data, T-test statistics have been computed for the proposed FLMA

model. Among the three FLMA enhanced algorithms, MLRBF seems to be the best per-
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Table 6.1: Comparison of methods for Emotions dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.2339 0.2116 0.3305 0.1871 0.4835 0.5333 0.4114
FLMA+MLKNN 0.1948 0.1615 0.2731 0.2969 0.6413 0.6717 0.5472
FLMA+MLRBF 0.1832 0.1479 0.2310 0.3306 0.6843 0.6964 0.5843
RAKEL 0.2369 0.6645 0.3052 0.2548 0.5686 0.6078 0.4837
CC 0.2206 0.4852 0.1956 0.2464 0.5616 0.5964 0.4620
ECC 0.2341 0.6290 0.2513 0.2649 0.5686 0.6149 0.4964
MLLEM 0.2712 0.7752 0.3793 0.1383 0.4231 0.4327 0.3573

Table 6.2: Comparison of methods for Scene dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.1107 0.1889 0.3436 0.5072 0.6187 0.6236 0.5308
FLMA+MLKNN 0.0872 0.0830 0.2414 0.6249 0.7401 0.7338 0.6665
FLMA+MLRBF 0.0886 0.0750 0.2135 0.5933 0.7276 0.7211 0.6353
RAKEL 0.0991 0.7701 0.2443 0.6068 0.7246 0.7176 0.7008
CC 0.1072 0.6537 0.2575 0.5526 0.6974 0.6898 0.6230
ECC 0.1062 0.7555 0.2202 0.5929 0.7135 0.7058 0.6685
MLLEM 0.1093 0.9035 0.2908 0.6052 0.6984 0.6838 0.6771

Table 6.3: Comparison of methods for Flags dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.3661 0.2413 0.2979 0.0617 0.2915 0.5035 0.3747
FLMA+MLKNN 0.2998 0.2527 0.3845 0.1184 0.5486 0.7004 0.5612
FLMA+MLRBF 0.2710 0.2257 0.2912 0.0876 0.6107 0.7294 0.5836
RAKEL 0.2945 0.6632 0.0781 0.1136 0.4551 0.6739 0.5304
CC 0.2932 0.5181 0.0382 0.0927 0.4834 0.6909 0.5409
ECC 0.2911 0.5672 0.0363 0.1134 0.4838 0.6908 0.5439
MLLEM 0.4685 0.7104 0.3073 0.0000 0.4095 0.4448 0.3211

Table 6.4: Comparison of methods for Yeast dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.2431 0.1876 0.2656 0.0372 0.1888 0.4021 0.2801
FLMA+MLKNN 0.2115 0.1909 0.4344 0.1498 0.3937 0.6545 0.5241
FLMA+MLRBF 0.2098 0.1925 0.3744 0.1351 0.4003 0.6458 0.5055
RAKEL 0.1996 0.6543 0.1489 0.1593 0.3644 0.6404 0.5106
CC 0.2017 0.5538 0.1034 0.1422 0.3664 0.6389 0.5073
ECC 0.2011 0.6371 0.1452 0.1447 0.3583 0.6376 0.5052
MLLEM 0.3027 0.6801 0.5006 0.0095 0.1716 0.1909 0.1338

Table 6.5: Comparison of methods for Image dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.2093 0.3126 0.4565 0.2369 0.3073 0.3549 0.2640
FLMA+MLKNN 0.1714 0.1814 0.3235 0.4015 0.5747 0.5768 0.4840
FLMA+MLRBF 0.1637 0.1595 0.2720 0.4429 0.6284 0.6274 0.5471
RAKEL 0.1789 0.6842 0.3155 0.4095 0.6254 0.6213 0.5924
CC 0.1829 0.5362 0.2903 0.3971 0.5952 0.5936 0.5108
ECC 0.1819 0.6316 0.2805 0.4034 0.6150 0.6112 0.5531
MLLEM 0.1975 0.8043 0.3745 0.4155 0.5616 0.5595 0.5393
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Table 6.6: Comparison of methods for CHD_49 dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.3180 0.2590 0.3117 0.1006 0.3298 0.5669 0.4182
FLMA+MLKNN 0.3158 0.2255 0.2754 0.1061 0.4933 0.6841 0.5354
FLMA+MLRBF 0.2941 0.2176 0.2862 0.1431 0.4969 0.6676 0.5233
RAKEL 0.3084 0.6261 0.1606 0.0952 0.4861 0.6436 0.5047
CC 0.2925 0.5289 0.0831 0.1112 0.4902 0.6609 0.5213
ECC 0.2922 0.6072 0.0992 0.1112 0.4791 0.6633 0.5273
MLLEM 0.4399 0.7159 0.4152 0.0054 0.0000 0.0000 0.0000

Table 6.7: Comparison of methods for Yelp dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.2723 0.2063 0.3519 0.2309 0.3147 0.5229 0.4285
FLMA+MLKNN 0.2430 0.1892 0.3449 0.2362 0.5453 0.6675 0.5527
FLMA+MLRBF 0.2193 0.1570 0.2731 0.2962 0.5569 0.6554 0.5272
RAKEL 0.1663 0.7729 0.1879 0.4555 0.5455 0.6566 0.5471
CC 0.1805 0.6153 0.1432 0.3905 0.5211 0.6463 0.5221
ECC 0.1804 0.6476 0.1583 0.3882 0.5213 0.6460 0.5203
MLLEM 0.3275 0.6764 0.5555 0.0745 0.0095 0.0071 0.0032

Table 6.8: Comparison of methods for Water Quality dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.3526 0.3120 0.3434 0.0019 0.0624 0.1141 0.0704
FLMA+MLKNN 0.3149 0.3001 0.4924 0.0152 0.4382 0.5649 0.3927
FLMA+MLRBF 0.3074 0.2668 0.3824 0.0104 0.4602 0.5309 0.3569
RAKEL 0.3113 0.4955 0.2019 0.0145 0.3581 0.4599 0.2964
CC 0.3192 0.3486 0.1009 0.0149 0.3822 0.4939 0.3264
ECC 0.3101 0.4269 0.1726 0.0150 0.3767 0.4838 0.3187
MLLEM 0.4144 0.6751 0.4566 0.0047 0.1036 0.1058 0.0701

Table 6.9: Comparison of methods for Human_PseAAC dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.0840 0.1780 0.6135 0.1224 0.0456 0.2013 0.1347
FLMA+MLKNN 0.0870 0.1839 0.6668 0.0888 0.0299 0.1604 0.1041
FLMA+MLRBF 0.0913 0.1779 0.6017 0.1674 0.1159 0.3431 0.2429
RAKEL 0.0993 0.3396 0.4674 0.1606 0.0935 0.3245 0.2326
CC 0.0996 0.2389 0.3267 0.1484 0.0853 0.2811 0.2050
ECC 0.1027 0.3071 0.4282 0.1555 0.0936 0.3015 0.2377
MLLEM 0.1182 0.7521 0.7349 0.2135 0.1069 0.2425 0.2384

Table 6.10: Comparison of methods for GPositivePseAAC dataset

Method HL RL OE SA MacF1 MicF1 Acc

FLMA+MLP 0.0926 0.1416 0.4030 0.4109 0.1557 0.5318 0.4184
FLMA+MLKNN 0.0979 0.1438 0.4303 0.3283 0.1662 0.4695 0.3384
FLMA+MLRBF 0.0826 0.1106 0.3326 0.4669 0.3316 0.6035 0.4847
RAKEL 0.0971 0.6898 0.3634 0.4297 0.3565 0.5905 0.4196
CC 0.1022 0.6059 0.3478 0.3928 0.3689 0.5513 0.3630
ECC 0.9979 0.0154 0.0134 0.0138 0.0080 0.0118 0.0134
MLLEM 0.0873 0.9068 0.3462 0.4501 0.4109 0.5887 0.4570
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forming one, hence the comparisons have been made based on FLMA+MLRBF. From

Table 6.11 it is seen that for t.90 = 1.383 with degrees of freedom = 9 the proposed

method outperforms the others. Additionally, the non-parametric two-tailed Wilcoxon

signed-rank test (Table 6.12) for the macro F1 metric indicates that with α = 0.20,

TWilcoxon(10) = 14, the proposed FLMA is statistically superior to all the other algo-

rithms.

Table 6.11: T-Test for all methods against FLMA (based on Macro F1)

Method T-test value
RAKEL 2.571410
CC 2.812371
ECC 1.656584
MLLEM 2.740044

Table 6.12: Two-tailed Wilcoxon signed-rank test statistics for all the methods vs pro-
posed FLMA (based on accuracy)

Method p Value Value of sign rank
RAKEL 0.431641 36
CC 0.003906 54
ECC 0.130859 43
MLLEM 0.013672 51

6.2.2.1 Comparison with the previous proposed works

To have a comparative analysis of the algorithm proposed in this chapter with the previ-

ously proposed works, the performance can be compared based on the problem they are

handling. The proposed FLMA is speci�cally dealing with the label dependency issue in

ML data. The only other work in this thesis that aims to do a similar job is the previously

proposed multi-label binary tree of classi�ers (ML-BTC) model. The class dependencies

were implicitly preserved in ML-BTC whereas in FLMA, the class associations are ex-

plicitly extracted and incorporated to improve a standard ML algorithm. In Table 6.13

the best version of proposed FLMA (FLMA+MLRBF) has been compared with ML-

BTC for eight ML datasets. From the comparison it is seen that the FLMA improved

algorithm performs better in most cases. Thus, the explicit approach of extracting class
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Table 6.13: Comparison with the other proposed method

Dataset Method HL RL OE SA MicF1 MacF1 Acc

Emotions
FLMA 0.1832 0.1479 0.2310 0.3306 0.6843 0.6964 0.5843
MLBTC 0.2126 0.2164 0.2639 0.6384 0.6601 0.6352 0.5518

Scene
FLMA 0.0886 0.0750 0.2135 0.5933 0.7276 0.7211 0.6353
MLBTC 0.1291 0.1336 0.2658 0.7291 0.7153 0.7248 0.7093

Flags
FLMA 0.2710 0.2257 0.2912 0.0876 0.6107 0.7294 0.5836
MLBTC 0.3438 0.3135 0.2158 0.5922 0.6114 0.5085 0.5194

Yeast
FLMA 0.2098 0.1925 0.3744 0.1351 0.4003 0.6458 0.5055
MLBTC 0.2342 0.2671 0.2891 0.5275 0.5605 0.3443 0.4319

Image
FLMA 0.1637 0.1595 0.2720 0.4429 0.6284 0.6274 0.5471
MLBTC 0.2189 0.2429 0.4008 0.5729 0.5713 0.5637 0.5241

CHD49
FLMA 0.2941 0.2176 0.2862 0.1431 0.4969 0.6676 0.5233
MLBTC 0.3244 0.2659 0.3463 0.6054 0.6398 0.4338 0.4901

Yelp
FLMA 0.2193 0.1570 0.2731 0.2962 0.5569 0.6554 0.5272
MLBTC 0.2167 0.1461 0.1387 0.6436 0.6602 0.5944 0.5619

WQ
FLMA 0.3074 0.2668 0.3824 0.0104 0.4602 0.5309 0.3569
MLBTC 0.3436 0.3177 0.4039 0.4796 0.4955 0.4273 0.3431

dependencies in the data seems to be quite e�cient in improving the overall classi�cation

performance.

6.3 Conclusion

In this chapter, the aim was to incorporate the label correlations that exist in multi-

label data and are often not taken into consideration for classi�cation. Here, a frequent

label-set mining concept has been introduced, which identi�es frequently co-present and

co-absent labels in the data. This information is further used to improve the classi�cation

scores of instances that have been ambiguously predicted by existing classi�ers. With the

help of certain con�dent scores, these ambiguous uncertain scores have been tactfully

improved. Using the proposed method in association with a few existing ML classi�ers

over ten ML datasets, it is seen that this additional class correlation information brings
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substantial improvement to the performance.

The various models developed across the previous chapters are capable of handling the

few problems identi�ed for multi-label data. However, there is still a vast scope of research

in this �eld that remains unexplored. A summary of the work done, limitations and scope

of future work has been discussed in the following concluding chapter.
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Chapter 7

Conclusion & Future Scope

7.1 Conclusions

This thesis is a comprehensive attempt to develop di�erent multi-label models that are

capable of handling the various bottlenecks that exist in this domain. Among the nu-

merous problems that exist, a few have been considered and worked around to create

models that can reduce the e�ect of these drawbacks on the multi-label classi�cation re-

sults. The issues handled in this thesis were mainly regarding the large input dimension,

complex decision space, class imbalance and label correlations of multi-label data. A

subset of these problems was handled in each of the chapters. Here, the summary of the

contributions along with their �ndings has been highlighted.

Chapter 3 proposed two novel models for multi-label classi�cation that can handle the

drawbacks of large input dimensions and complex output space in ML data. For the di-

mensionality reduction aspect, autoencoders have been used, whereas, for the fast learn-

ing of the complex output space and the feature to class mapping, multi-label extreme

learning machines (MLELMs) have been used. ELM is a compact neural network that

learns from the training data in one pass. Applications of this network have been made

in various domains, but its use is limited in the �eld of multi-label classi�cation. The
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network is innovative and unique but it is not able to handle multi-label data e�ciently

on its own. To explore the possibilities in the area of multi-label classi�cation, by uti-

lizing the strengths and coping with the challenges faced by ELM, cascaded network

models have been proposed here. The �rst work proposed a novel stacked autoencoder

and extreme learning machine network for multi-label classi�cation (MLSAEELM). It

uses stacked autoencoders for feature encoding, MLELM for soft classi�cation and a

novel class score approximation method, which �nally results in multi-label classi�cation.

Comparative analysis of the proposed algorithm on seven datasets with ten performance

metrics against eleven other algorithms has shown encouraging performance improve-

ment. The above model was further extended to create a deep multi-label classi�er based

on deep autoencoder (DAE) and multi-label extreme learning machines. DAE performed

feature extraction, while the stacked MLELMs improved the learning of the classi�er.

It is an improvement on the �rst approach from a deep learning perspective. In-depth

experimental analysis showed that increasing the depth of the model to some extent can

improve classi�cation performance in most cases. The proposed model also fares well

compared to a few state-of-the-art ML classi�ers. A comparison between SAE and DAE

shows that DAE can extract better features from larger datasets, whereas SAE worked

better for the smaller data. Thus, the individual components as well as the entire pro-

posed model has proven to be quite e�cient.

Chapter 4 was aimed to develop models that increase the separability of overlapping

multi-label class boundaries to improve the classi�cation. Alongside, dimensionality re-

duction and transformation of the large feature space has also been performed. The �rst

work presented a multi-label functional link arti�cial neural network (MLFLANN) for the

class prediction of multi-label datasets. The proposed MLFLANN model expands the in-

put data to a higher dimension which helps to classify the multi-label data well. This type

of data is quite complex and has overlapping class boundaries which make multi-label

classi�cation more challenging than single-label classi�cation tasks. The network learns

to map the functionally expanded features to the output nodes through weighted connec-
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tions that are updated through some learning techniques. The literature for single-label

FLANN shows the use of di�erent basis functions and learning methods. To have a simi-

lar understanding of the con�gurations that work best for ML data, six con�gurations of

MLFLANN had been evaluated to determine the optimal one. These models were created

by pairing three functional expansion units � trigonometric, Chebychev and power poly-

nomial, and two learning procedures � backpropagation and particle swarm optimization

(PSO). All the combination models have been tested on some multi-label datasets to

generate concluding results. It was found that few models that were successful in single-

label classi�cation, have not been able to handle multi-label classi�cation equally well.

Whereas, some techniques have surpassed the others in almost every scenario, making

them suitable multi-label classi�ers. Combinations of trigonometric function with back-

propagation learning and power polynomial function with PSO learning have performed

better than the other four models. Chebychev expansion does not increase separabil-

ity for ML data, hence is not usable. Among backpropagation and PSO, the latter is

computationally more expensive, especially if the population size is huge. While devel-

oping MLFLANN, although the functional expansion improved class separability it also

increased the feature dimension multiple folds. This is contradicting for the large input

dimension issue for multi-label data. Hence, a two-layer transformation network was pro-

posed, which performs functional expansion followed by reduction-cum-transformation

of features to handle the large input dimension as well as the complex decision space.

It is an amalgamation of a multi-label functional link arti�cial neural network and an

autoencoder that performs feature transformation in two stages. The �rst layer func-

tionally expands the original input, thus introducing non-linearity to it, while the second

layer performs feature extraction and transformation through autoencoders to improve

separability while reducing the bulk of the previously expanded input dimension. The

�nal network is more compatible to handle multi-label data while transforming it to a

further separable space. This network combines the strengths of FLANN and AE to

overcome the bottlenecks of multi-label classi�cation. A single-label version of the pro-
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posed model has also been built and evaluated. Experimental analysis of the proposed

two-layer AE-MLFLANN has proven to surpass some standard classi�ers. Overall, the

proposed model experimentally establishes that the novel two-layer functional expansion

and feature transformation is bene�cial for both multi-label and single-label classi�cation.

In Chapter 5, a binary tree of classi�ers had been proposed that handles the problem

of class imbalance, simpli�es decision boundaries and preserves label correlation in the

data. The unique binary tree structure is built in the training phase by approximately

partitioning the data into two discrete chunks without performing an exhaustive search.

This is achieved by a novel label-space partitioning approach that strives to preserve class

dependencies implicitly. A suitable classi�er is trained to learn the partitioned data. This

label-space splitting technique also helps to simplify the complex decision boundaries by

segregating them into compact groups. Moreover, the inherent problem of imbalanced

classes in multi-label data has been looked after by broadly partitioning the data if

possible, otherwise using di�erent classi�ers speci�cally suited for the unevenly split data

at an internal node and some proposed parameters. Two appropriate parameters have

been included to help the action-decision at every node of the tree. As the tree grows in the

training phase, restrictions are imposed strategically to avoid redundant and unnecessary

branches. Finally, the leaf nodes are capable of assigning the �nal labels to samples taking

the class dependencies and imbalance into consideration. In this way, once the binary tree

of classi�ers is formed it can be successfully used for e�cient multi-label classi�cation.

The experimental results for the proposed model in comparison to fourteen other state-of-

the-art algorithms display improvement in the majority of the scenarios thus establishing

the success of the proposed model.

Multi-label classi�ers mostly disregard the label correlations that might exist in the data.

However, to extract some information from these correlations, Chapter 6 proposes a

frequent label-set mining technique that can be associated with any existing multi-label

classi�er to include the correlation information from the data. For multi-label data,
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groups of co-occurring classes constitute frequent label-sets which indicates a correlation

between these labels. A novel approach of frequent label-set mining for ML data has

been proposed which generates co-present and co-absent rules. The proposed method

then improves the classi�cation scores from an existing ML classi�er by incorporating

these rules. The certain scores from the existing classi�er indicate con�dent predictions

that are used to select relevant rules. These rules are used to improve the uncertain and

ambiguous scores which enhances the overall classi�cation performance of the multi-label

classi�er. The results indicate substantial improvement in the application of the proposed

technique with respect to the existing ML classi�ers.

7.2 Findings

In the four contributory chapters, numerous ML models were built to achieve a good

classi�cation while aiming to handle the various problems of ML data focussed in this

thesis. While exploring the �eld, developing the models and performing experiments

there were various �ndings that are note-worthy.

� Unpredictability - The nature of ML data is not as predictable as single-

label/binary data. Due to the overlapping classes, the algorithms sometimes un-

derachieve than expected. The proposed methods have also behaved di�erently in

certain cases than their expected performance.

� Imbalance - The class imbalance in the data is so severe that algorithms might

not function as expected. It is better to handle the imbalance in the data before

applying the proposed work to achieve unbiased performance.

� Disproportion - Some of the benchmark ML datasets have large number of

features or classes compared to the number of available samples. That makes it quite

di�cult to train the algorithm, since the disproportionate sample to feature/class

size often leads to issues of over�tting or under�tting. In such cases, for complex
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algorithms, these unbalanced datasets were avoided.

Keeping these in mind, the next section states the limitations and future scope.

7.3 Limitations & Future Scope

Analyzing the proposed models individually and the thesis as whole, various limitations

and scope of future exploration has been identi�ed.

� Parameter tuning The models proposed in this thesis have certain parameters

that are determined experimentally. Although the parameters have been broadly

deduced from the data, �ne-tuning is needed to improve its impact on the classi-

�cation. The threshold parameters of H and C in the tree of classi�er ML-BTC,

bounding thresholds the region of certainty in FLMA, etc are broadly determined

from the data. Although a slight change of parameters does not drastically af-

fect the performance of the classi�ers, future studies can attempt to adapt these

parameters in a way that they are speci�cally tuned for the dataset at hand.

� Network con�gurations The proposed neural network models do not have any

speci�c con�guration regarding the number of layers in the network, or the number

of hidden nodes in an intermediate layer. The MLFLANN model was evaluated for

six con�gurations, however, it is not feasible to do the same for the larger networks.

Thus, the size of the intermediate layer for autoencoders and ELMs, the number of

functions for feature expansion in the MLFLANN, etc need to be speci�ed. These

have been experimentally determined and in future can be explored to �nd good

con�gurations with respect to the feature dimension, sample size and the number

of classes.

� Remove class imbalance The problem of class imbalance is quite prominent

in multi-label data. This thesis explores one possibility of accommodating the

classi�er to suit the imbalanced data. However, future possibilities include tackling
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the imbalance itself and removing its e�ect from the data before any classi�er is

applied. In such a scenario, the contributions in this thesis that do not consider

class imbalance speci�cally might be able to achieve superior performance.

� High output dimension and low sample size The limitations of multi-label

data include disproportionate feature, sample and class size. One problem of the

three, i.e., the large feature dimension has been handled in the thesis using several

autoencoders in di�erent scenarios. However, if the output dimension is too large

and/or the sample size low in comparison, the proposed classi�ers may not train

properly, leading to problems like over�tting or under�tting. In future, all the

three aspects of the data, i.e., the number of features, samples and classes should

be balanced with respect to each other such that the classi�er is not biased in

any way. The large output space needs to be reduced without losing out on the

multi-label information and the sample size should be tackled without introducing

redundancy.

� Explore other models In the limited scope of the thesis, it was not possible to

explore all the interesting models that exist in literature. There is always a scope of

improvement for the proposed works to take inspiration from models that are being

developed currently and might achieve a better performance. Various networks like

RVFL, etc that exist can be thoroughly explored in future.

� Application of multi-label data There were no speci�c application areas where

the proposed algorithms have been applied. There is a huge scope for applying

multi-label algorithms in a plethora of domains. The proposed methods can be

modi�ed to suit the application area and type of data being used. Domains like

geoscience and remote sensing, sentiment analysis from social media posts, etc, still

have a good scope of employing multi-label algorithms.

� Other branches of multi-label learning The focus of this thesis was towards

general multi-label classi�cation and handling speci�c drawbacks in the domain.
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However, this �eld is now being thoroughly explored which has opened up multiple

new avenues for research. One such branch is multi-instance multi-label learning

where each data sample is described by multiple instances and its corresponding

multiple labels. This type of representation helps to deal with more complex data

which hold multiple semantic meanings.

The future scopes discussed above range from minor modi�cations to exploring new

domains. This is because the �eld of multi-label learning is still being thoroughly explored

by researchers. Although a signi�cant amount of work has been done in this thesis, it

still leaves a huge scope to explore the �eld of multi-label learning.
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