
Aspects of Quantum Entanglement
and Indistinguishability

by

Soumya Das
Cryptology and Security Research Unit (CSRU)

Indian Statistical Institute (ISI), Kolkata
203 B.T. Road, Kolkata-700108.

Supervised by
Goutam Paul

Cryptology and Security Research Unit
R. C. Bose Centre for Cryptology and Security

Indian Statistical Institute, Kolkata
203 B.T. Road, Kolkata - 700108, India

A dissertation submitted to Indian Statistical Institute
for the partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

August, 2022



I dedicate this thesis to
My Parents

2





Acknowledgements

First and foremost I am extremely grateful to my supervisor Dr. Goutam Paul for

his invaluable advice, continuous support, and patience from the first day when I have

decided to start preparation for the entrance of my Ph. D. His immense knowledge

and plentiful experience have encouraged me throughout my academic research and

in my daily life.

Most importantly, none of this could have happened without my family. I am

deeply grateful to my parents Subrata Das and Swapna Das and my wife Sam-

purna Das for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing this

thesis. I would also like to thank my sister, my other family members and all the

relatives, friends and well wishers for their continuous support throughout my life.

Without their tremendous understanding and encouragement in the past few years,

it would be impossible for me to complete my study.

I would like to thank my collaborators Dr. Anindya Banerji and Dr. Rita-

brata Sengupta for their support and tutelage in my research papers. I would like

to thank my junior collaborator Adarsh Chandrashekar for his work.

Getting through my dissertation required more than academic support, and I

have many, many people to thank for listening to and, at times, having to tolerate me

over the past three years. I would like to thank Dr. Manas Mukherjee and Dr.

Alexander Ling for hosting my internship in Centre for Quantum Technologies,

Singapore. I would like to extend my sincere thanks to Dr. Ravindra Pratap

Singh of Physical Research Laboratory for a visit to his lab of quantum optics.

I would like to thank all the faculty members, specially Prof. Bimal Kumar

Roy and Prof. Subhamoy Maitra, and all the other staffs of our institute who

have helped me for all the academic as well as non-academic issues.

I express my gratitude and appreciation to thank my colleagues Mostafizur Ra-

haman, Probal Banerjee, Avishek Majumder, Samir Kundu, Laltu Sardar,

Diptendu Chatterjee, Pritam Chattopadhyay, Amit Jana, Snehalika Lall,

3



Nayana Das, Bikash Santra and others for their support, company and healthy

discussions.

Finally, I want to thank my Master’s guide Dr. Tamaghna Acharya and my

colleagues Dr. Surajit Basak, Dr. Aritra Roy, Dr. Amartya Banerjee and

Dr. Avijit Dutta and others who help be during the entrance exam and interview

of this institute. Also I would like to thanks my school tuition teacher Dr. Indraniv

Ray for his constant support throughout this journey.

4



Abstract

Entanglement of distinguishable and indistinguishable particles under different sce-

narios and related properties and results constitute the core component of this thesis.

We propose a new error-modeling for Hardy’s test and also perform experimental

verification of it in superconducting qubits. Further, we point out the difficulties

associated with the practical implementation of quantum protocols based on Hardy’s

test and propose possible remedies. We also propose two performance measures for

any two qubits of any quantum computer based on superconducting qubits.

Next, we prove that if quantum particles (either distinguishable or indistinguish-

able) can simultaneously produce and perform hyper-hybrid entangled state and unit

fidelity quantum teleportation respectively then using that cloning of any arbitrary

quantum state is possible. This theorem results two no-go theorems: (1) hyper-hybrid

entangled state is not possible for distinguishable particles and (2) unit fidelity quan-

tum teleportation is not possible for indistinguishable particles. These theorems

establish that there exists some quantum correlation or application unique to in-

distinguishable particles only and yet some unique to distinguishable particles only,

giving a separation between the two domains. We also establish that the hyper-hybrid

entangled state is possible using two indistinguishable fermions and we generalize it

for bosons and fermions.

We establish a generalized degree of freedom trace-out rule that covers single or

multiple degree of freedom scenarios for both distinguishable and indistinguishable

systems. Using this, we propose generalized expressions for teleportation fidelity and

singlet fraction and derive their relations, applicable for both distinguishable and in-

distinguishable particles with single or multiple degrees of freedom. We also derive

an upper bound for the generalized singlet fraction for distinguishable and indistin-

guishable particles. We further show how our relation helps to characterize different

types of composite states in terms of their distinguishability, separability, presence

of maximally entangled structure and the number of degrees of freedom. Finally, we
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demonstrate an optical circuit to generate entanglement for distinguishable particles

each having two degrees of freedom and characterize it using our relation.

Further, using generalized degree of freedom trace-out rule, we show that, for

two indistinguishable particles each having more than one degree of freedom, the

monogamy of entanglement can be violated maximally using the measures that are

monogamous for distinguishable particles. This results the following theorem that

“In qubit systems, indistinguishability is a necessary criterion for maximum viola-

tion of monogamy of entanglement by the same measures that are monogamous for

distinguishable particles".

For three indistinguishable particles each having multiple degree of freedom, we

show that monogamy of entanglement is obeyed using squared concurrence as an

entanglement measure. We also establish that the monogamy inequality becomes

equality for all pure indistinguishable states, but the inequality remains for mixed

indistinguishable states. This can be used as a one-sided test of distinguishability for

particles in pure states

We show that the cost of adding an ancilla particle can be bypassed by using

an additional degrees of freedom and creating multi-degree of freedom entanglement.

Next, we show that entangled indistinguishable particles may alter certain important

parameters in cryptographic protocols, in particular, we demonstrate how indistin-

guishability can change Hardy’s probability Finally we propose a novel entanglement

swapping protocol without Bell state measurement using only two indistinguishable

particles that will be very useful in quantum networks specially in quantum repeaters.
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Chapter 1

Introduction

Max Planck, the father of quantum physics, was advised by his supervisor Philipp

von Jolly not to study theoretical physics as it was probably not a great idea, since

there was not much left to do when he was about to start his journey with physics

in 1874. A similar quotation is also found in 1900 when William Thomson, a British

mathematician, physicist and engineer, (better known as Lord Kelvin) addressed the

British Association for the Advancement of Science that “There is nothing new to be

discovered in physics now. All that remains is more and more precise measurement.”

Coincidentally in that same year, quantum physics was born when Max Planck ex-

plained the black body radiation using the quantized formulation of electromagnetic

energy.

1.1 Quantum physics

At the beginning of the 20th century, there were a number of experimental obser-

vations that cannot be explained by the existing theories, often considered classical

physics. This includes black-body radiation [2, 3], photo-electric effect [4], Stern-

Gerlach experiment [5], Mach-Zehnder interferometer [6, 7], etc. To solve these

shortcomings of physics, a new theory came out with the hands of Max Planck,

Albert Einstein, etc., and later formulated by Max Born, Werner Heisenberg, Wolf-

gang Pauli, Erwin Schrödinger, etc. They have revolutionized the history of physics
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by their theories which are later verified by experimental results.

Quantum theory is a mathematical tool to model and understand how physi-

cal phenomenons are happening and to predict what will happen next. It basically

describes the behavior of the atomic and the subatomic particles using the wave func-

tion. The evolution of this wave function is governed by the Schrödinger equation [8].

When a measurement is performed, how this wave function collapses is the most im-

portant problem in quantum theory and is known as the measurement problem [9].

Different solutions are proposed to solve this problem known as the interpretations of

quantum theory [10]. These theories mainly concerned about whether quantum me-

chanics is deterministic or stochastic, the description about the nature of reality, the

process of measurement, etc. Most popular interpretation of quantum mechanics is

Copenhagen interpretation [11]. Other interpretations includes many world interpre-

tation [12], QBism [13], consistent histories [14], Bohm theory [15, 16], Transactional

interpretation [17, 18, 19], etc. This thesis is based on the Copenhagen interpretation

which can be explained by the four postulates of quantum mechanics [20].

Postulate 1 describes the basic building block of quantum physics, i.e., the state

of an isolated quantum system.

Postulate 2 concerned about the dynamics of closed quantum systems. This is

governed by the Schrödinger equation, i.e., by the unitary evolution.

Postulate 3 explains the most interesting phenomenon of quantum mechanics, i.e.,

measurement, which is a process of extracting information from quantum systems.

Postulate 4 deals with the description of the composite system, i.e., a combination

of different quantum systems. The rest of quantum mechanics is just the derivation

and applications of these postulates.

Till now, quantum theory can be used to mathematically model all the natural

events (that cannot be explained using classical theory as said above) other than grav-

ity. Most of the present-day technologies are successful applications of this quantum

theory, for example in the electronics industry, chemical industry, communication

industry, and most important in the cryptographic industry.
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1.2 Quantum information

Quantum information theory deals with how quantum messages can be sent over

quantum communication channels. More specifically how information can be com-

pressed as a quantum message and transmitted reliably from the sender to receiver

in the presence of noise. The measure of quantum information is von-Neumann en-

tropy [21], like Shannon entropy [22] in classical communication. Since the aim of

quantum communication is to compress the information as much as possible by the

sender keeping in mind that it should be decoded at the receiving end. The amount of

compression is given by the Schumacher’s quantum noiseless coding theorem [23, 24]

that states that von-Neumann entropy is the optimal compression factor for quantum

information. The basic fact for quantum information transfer is that the communi-

cated quantum messages are not generally orthogonal in nature and thus cannot be

decoded properly. The limits to which information can be accessible to the receiver

is given by the Holevo bound [25].

The basic unit of quantum information is qubit, a two-state system that can

be realized using any physical two-level device. Normally, quantum information are

encoded in quantum particles degree of freedom (DoF). For example, spin DoF of

an electron where up-spin and down-spin is taken as the two level system. Similarly,

polarization of a photon can be used as a qubit with horizontal polarization and

vertical polarization are used as two levels. Unlike classical bit, qubit can be present

as a superposition of the two levels.

Mathematically, qubits are described by a two-dimensional complex Hilbert space.

The two levels are represented as a normalized and mutually orthogonal vectors in

that space. The notations are used for this representation was given by Paul Dirac

which is known as the Dirac-notation [26]. In this notation, two levels are commonly

represented as |0⟩ and |1⟩ which is called ket vector. These ket vectors are commonly

corresponds to column vectors such as |0⟩ = ( 1
0 ) and |1⟩ = ( 0

1 ). Another representa-

tion of qubits are as a point in a sphere of unit radius, known as the block sphere.

The azimuth and elevation angles are the two parameters of the sphere that define
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the quantum state. Block sphere representation is very much useful to visualize the

qubits in the three-dimensional space.

The state vector representations are useful for a single quantum systems. The

sub-system of a a composite quantum systems cannot be represented by the state

vector. Thus the density matrix formalisms are introduced by von Neumann and

Lev Landau. In the block sphere representation, the pure states are those which are

represented at the circumference of the sphere. Mixed states are those who reside

inside the sphere.

The journey of quantum mechanics was not like a dream one. Some of the sci-

entists were doubtful about it due to its counter-intuitive nature. One of them was

famous Albert Einstein, who in 1935, with Boris Podolsky and Nathan Rosen, using

a thought experiment [27] questioned the completeness of quantum theory which is

known as Einstein-Podolsky-Rosen (EPR) paradox. It states that any physical the-

ory should be complete, i.e., they should respect two conditions: locality and reality.

Since the quantum theory does not satisfy these conditions, it should no longer be a

complete theory. The founders and followers of quantum theory argued and debated

with this theory for almost two decades but none came up with a complete answer.

In 1964, John Bell came up with an elegant and experimentally testable solution to

the EPR paradox. He showed that in quantum theory there exist some correlations

which are not compatible with the two assumptions of the EPR paradox which is

known as Bell’s Theorem [28]. The legacy of Bell’s work is that he showed he has

designed an experiment to test this theorem in lab by using an inequality. If some

correlation violates this inequality, then that correlation would not be compatible

with locality and reality. This theorem proves that quantum theory is the ultimate

theory, however, if some ultimate theory exists, it would not be the complete theory

as defined by EPR paradox.

In 1969, four scientists John Clauser, Michael Horne, Abner Shimony, and Richard

Holt came up with the most famous Bell inequality known as CHSH inequality [29].

This experiment consists of two people, Alice and Bob who have shared a set of

pair of particles where each pair has some specific correlation. Now Alice and Bob
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performed some measurements in their pairs and note down the results. Now after

a series of calculations, they check whether their result is greater than some specific

value or not? if so then it violated the CHSH inequality else not. This experiment

has been performed a lot of time since its mathematical discovery and it supports

that quantum correlation indeed violated the CHSH inequality.

Rather than using the statistical inequalities, the contradiction between quantum

theory and any Local hidden variable theory (LHV) theory can also be demonstrated

by a simple and elegant way, which is known as all-versus-nothing (AVN) proof of

Bell’s nonlocality [30]. In this method, a logical paradox is formed in such a way

that while doing experiments, in principle, only a single event can be used to reveal

the non-locality. Among several AVN proofs, in [31], the authors have demonstrated

non-locality without using inequalities which is known as the Greenberger-Horne-

Zeilinger (GHZ) paradox. It has been verified experimentally in [32]. However, this

paradox applies to three [31] or more qubits [33], but not for two qubits. In 1992,

through a thought experiment, Hardy constructed the test of local realism without

using inequalities for two qubits, which is called Hardy’s test [34, 35]. It is known as

the “Best version of Bell’s theorem" as indicated by Mermin [36]. This test provides a

direct contradiction between the predictions of quantum theory and any LHV theory

for two qubits [34, 35] and also for multi-qubits [37]. The applications of Hardy’s

paradox includes device-independent randomness [38], device-independent quantum

key distribution [39], quantum Byzantine agreement (QBA) [40], etc.

1.2.1 Quantum entanglement

One of the most interesting features of quantum physics is quantum entanglement [41].

This counterintuitive property suggest the presence of global states of a composite

system which cannot be represented as a product of the states of separate subsystems.

Although quantum entanglement itself does not carry useful information, but using

it some of the classically impossible tasks can be performed like dense coding [42],

teleportation [43], Entanglement swapping [44], quantum key distribution [45], etc.

One of the non-intuitive features of quantum physics is the presence of certain

28



types of correlation in the composite systems which are not possible using classical

particles. The strongest of quantum correlation is Bell non-locality [33]. One of the

important applications of it in device-independent quantum cryptography [46]. The

next one is quantum steering [47] which is mainly used for subchannel discrimina-

tion [48]. The most popular quantum correlation is quantum entanglement [41] which

is used for quantum teleportation [43], entanglement swapping [44], quantum key dis-

tribution etc [45]. The properties of mixed states can be better explained by quantum

Figure 1-1: Schematic description of classical and all the quantum correlations. Here
coherence ⊇ Discord ⊇ Entanglement ⊇ Steerable ⊇ Bell non-local where 𝐴 ⊇ 𝐵
represents 𝐴 is the superset of 𝐵.

discord [49] when entanglement fails to capture the necessary information. Although

quantum coherence [50] is the weakest of all quantum correlations, still it is useful for

quantum thermodynamics, quantum metrology, quantum phase transitions, etc. All

these correlations are shown by set-theoretic notions in Fig. 1-1.

There are some unique properties and applications of quantum entanglement

which are absent in other correlations. These applications are the main reason why

modern industries are also exploring this unique feature.
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Quantum teleportation

Quantum teleportation is a process to transfer quantum information from one lo-

cation to another distant location. In this method, the sender may not know the

location of the receiver and does know about the information being transferred. This

process was first proposed in the seminal paper by Bennett et al. in 1993 [43] and

first experimentally realized in [51] in 1997. The quality of teleportation is measured

by teleportation fidelity which measures the overlap between the initial quantum

state before teleporation at the sender and the final teleported state at the receiver.

Quantum teleportation has applications in entanglement swapping, quantum com-

munication network, etc.

Singlet fraction

Singlet fraction [52] of any quantum state signifies the amount of overlap between

a maximally entangled state with it. Singlet fraction is very useful to measure the

quantum teleportation fidelity.

Entanglement swapping

Entanglement swapping [44] is the process of transferring quantum entanglement

from one place to another distant place. In this method, four particles are required

as resource and Bell state measurements (BSM) and local operations and classical

communications (LOCC) are required as tools. Better versions with only three dis-

tinguishable particles were proposed in two subsequent works, one [53] with BSM

and another [54] without BSM. Entanglement swapping is widely applied in quantum

repeaters.

Trace-out operation

When two particles are entangled then it is not possible to know the state of the

individual particles, rather the information about the global state of the two particles

is available. Now the mathematical representation of the partial state of the individual
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particles can be known by the trace-out operation [20]. If suppose two particles 𝐴

and 𝐵 are entangled, then if trace-out operation is performed over 𝐴, then the partial

information about the state of the particle 𝐵 is known. Trace-out operation is very

useful to detect, measure and quantify entanglement.

Entanglement measures

For various quantum information processing protocols, it is required to know how

much entanglement is contained in a quantum state. The basic properties of an en-

tanglement measure [55, 56] that it should vanish for non-entangled state, should

give a positive value for entangled state and should give maximum value for maxi-

mally entangled states. There are other properties of entanglement measures like it

should be invariant under local unitary transformations, it should not increase under

LOCC, etc. Some commonly used entanglement measures are the entanglement of

formation [57], log-negativity [58, 59], Tsallis-q entropy [60, 61], Rényi-𝛼 entangle-

ment [62, 63], Unified-(q, s) entropy [64, 65], etc.

Monogamy of entanglement

The most interesting feature of quantum entanglement is it’s restriction upon the

shareability among composite systems which is known as monogamy [66]. Qualita-

tively, it states that if two particles share a maximally entangled state, then they

cannot share entanglement or even classical correlations with any other particles.

Intuitively, it may seem that monogamy feature reduces the usefulness and the possi-

ble applications of quantum entanglement in quantum information processing tasks,

but surprisingly it has applications on the security of quantum key distribution [67],

quantum games [68, 69], quantum state classification [70], interconvertibility be-

tween asymptotic quantum cloning and state estimation [71, 72], condensed-matter

physics [73, 74], quantum-to-classical transition [75], frustrated spin systems [76],

black-hole physics [77], etc.
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No Cloning theorem

One of most counter-intuitive feature of quantum physics that it forbids the creation

of independent and identical copy of any arbitrary unknown quantum state known as

no-cloning theorem [78, 79, 80]. It is derived from the linearity of quantum mechan-

ics. Fundamentally, this theorem preserves the Heisenberg’s uncertainty principle

(HUP) [81] in quantum physics. If one could make copies of any unknown quantum

states, then using those many copies, one can measure position and momentum pre-

cisely. That will violate the Heisenberg’s uncertainty principle . No cloning theorem

has applications in the security of quantum cryptographic protocols [67], quantum

error correcting codes [82], etc.

1.2.2 Quantum indistinguishability

Figure 1-2: Schematic description of all the particles based on their identity and
distinguishability.

All particles in the world can be divided into two categories based on their identity:

(a) identical particles and (b) non-identical particles. If two particles cannot be

distinguished by all of their intrinsic properties like mass, color, shape, charge etc.

is known as non-identical particles. All the electrons, positrons, photons, protons,

neutrons, up quarks, neutrino, hydrogen atom etc have the same intrinsic properties

and they behave the same ways. Classical particles can also be identified if two

classical particles have same properties like same shape, color, weight, smell etc.

Non-identical particles are always distinguishable in nature but identical particles

may become distinguishable by some specific method [83, 84]. This division is shown

schematically in Fig. 1-2.
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Two identical particles can be made indistinguishable using spatial measurements.

When two identical particles are spatially separated and measured by their individual

degrees of freedom, then they are distinguishable. However, when two identical parti-

cles have all degrees of freedom equal and their wave functions are spatially overlapped

(partial or full), then they are indistinguishable. The concept of indistinguishability

is related to the measurement process and to the eye of a detector [85, 86]. Some of

these aspects are better described in Sec. 2.6.1.

1.3 Quantum computation

Classical computers perform computation using the laws of classical mechanics. How-

ever, according to Moore’s law [87], the device fabrication technology will saturate to

reduce its size in the first two decades of the twenty-first century. Thus as an alter-

nate solution, quantum computation comes into the picture. Quantum computation

is the method to perform computation using quantum mechanical phenomenons like

superpositions, entanglement, etc. The theory of quantum computation suggests that

there is a huge advantage of performing a task in quantum computers rather than

currently available best classical computers in terms of computing time. It can be

shown theoretically that any task that the classical computers take years to complete,

quantum computers can do it within a few days.

The abstract notion of computation was developed by the famous mathematician

Alan Turing [88]. He proposed the first prototype of modern day computer known as

Turing machine. He showed that any algorithmic task cam be emulated by the Turing

machine The equivalence between physical concept of computation and the practical

implementation in to some physical device was asserted in the famous Church-Turing

thesis. It states that If any task can be performed in any physical device, then there is

an equivalent algorithm that can be performed in a Turing machine. In 1980, famous

physicist Richard. P. Feynman proposed that quantum systems can be effectively

simulated using a quantum computer, rather than a classical one [89].
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1.3.1 Quantum computing technologies

The most important question to make a physical quantum computer is how to make

the hardware. There are different kind of technologies are available such as photons,

electrons, trapped ions, semiconductors, etc. But there are no consensus among

scientists that which technology will be most useful for future quantum computers.

However, there are some properties that must be present in any quantum computer.

(i) Isolated system: The quantum computers must be isolated from the rest of the

universe, otherwise a small amount of noise will interfere the internal operations and

may alter the output.

(ii) Small decoherence time: An ideal noise-free quantum computer is not prac-

tically possible. A negligible amount of noise will destroy the quantum mechanical

arrangements over time. The time taken this phenomenon is known as decoherence

time. An effective quantum computer should have large decoherence time.

(iii) Fault-tolerence: How much error in the quantum computer can be corrected is

known as its fault-tolerance capability. The requirement for a fault-tolerant quantum

computer was proposed by DiVincenzo, known as DiVincenzo’s criteria [90]. All the

quantum computers much obey this criteria.

(iv) Scalability: The quantum computer much be scalable enough so that when the

dimension of the Hilbert space grows, the cost of operation much not be exponentially

increasing.

(v) Universal set of logic: The quantum computer much operate by a finite set of

logical control operations.

Here, we briefly review some of the major quantum computing platforms and

corresponding quantum processors based on the above mentioned properties as shown

in Fig. 1-3.

Nuclear magnetic resonance (NMR)

The spin of the nuclei of the molecules can be used as a qubit for quantum computing.

The spin states can be directly controlled using the radio frequency known as nuclear
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Figure 1-3: A schematic of major quantum computing technologies with correspond-
ing quantum processors available.

magnetic resonance [91, 92, 93] and acts as a single qubit. Two-qubit interactions can

be performed by the indirect coupling of the molecular electrons. The measurement of

a qubit can be done by observing the current induced in a coil. The major drawback

of the NMR technology is the preparation of the pure states. As large number of

molecules should be gathers to output a reasonable amount of signal, thus a single

qubit is represented by an ensemble of the molecules.

Trapped ion

The spin states of atoms and nuclei can be use as a qubit by trapping them in an

electromagnetic cavity known as Ion trapped quantum computers [94, 95]. Once these

atoms are trapped, then they are cooled until their spin energy is more than their

kinetic energy. Then these atoms are controlled effectively using monochromatic light

source. Ion trapped systems have very large decoherence time than other technologies.

However controlling large number of atoms and performing joint state operations such

as CNOT gates are difficult using ion trap quantum computer.
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Superconducting qubits

The benefit of using a superconducting circuit for quantum computing is to control a

large number of qubits [96, 97]. Josephson junctions are normally used as a qubit be-

cause of its longer coherence time. In a superconductor, a single super-fluid is formed

by electron condensate in the cooper pairs that moves without any resistance. There

are two types of superconducting qubits, the charge qubit and the flux qubit that are

related to the amplitude and the phase of the circuit respectively. However, super-

conducting qubits have relatively shorter decoherence time than the other quantum

technologies. Also, very low temperature have to be created to use it effectively.

Optical systems

For optical systems [98, 99], photons can be used as a qubit due to negligible amount

of decoherence time which is a major advantage compare to other technologies. Differ-

ent degrees of freedom of photons can be used for encoding the quantum information,

such as polarization, orbital angular momentum, path, etc. However, the major draw-

back for optical quantum computer is efficient control of multi-qubit systems due to

non-availability of the required optical non-linearities. Although, with the inven-

tion of Knill-Laflamme-Milburn scheme [100], optical quantum computing becomes a

possibility with required scalability.

Other technologies

Many other quantum computing technologies have been proposed based on the dif-

ferent technologies. Semiconductor based quantum computer known as quantum

dots [101, 102, 103] are one of them where single atom in vacuum is used a qubit

after cooling and trapping them. Also, single ballistic electrons [104] in very low

temperature can be used as qubit instead of photons. Another example is of using

rare-earth ions in crystalline hosts [105] which has long coherence time.
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1.3.2 Quantum processors and simulators

Several quantum computing platforms with different archetypes as discussed above

are available now, i.e., the way qubits are represented and manipulated. Here, we

briefly review some of the major quantum processors available today.

IBM

IBM has given access to its quantum computer that uses superconducting qubits

in the cloud and this opens a new door for testing quantum phenomena to the re-

searchers [106]. Till now, there are over 20 devices are made my IBM, from five

qubit to 53 qubits, six of which are available online for free for the students and the

researchers. Various algorithms and experiments can be performed via cloud access

using these simulators.

As there are researchers accessing these real processors, then there can be a long

queue to perform experiments. So, IBM came up with quantum simulators that can

provide an output like a real quantum computer with used defined noise models for

the quantum gates.

The CHSH inequality and the GHZ paradox are already performed in the IBM

quantum computer [106]. In [107], the author has implemented some protocols in

quantum error correction, quantum arithmetic, quantum graph theory, and fault-

tolerant quantum computation in the IBM quantum computer. In [108], the au-

thors have tested the theoretical predictions of entropic uncertainty relation with

quantum side information (EUR-QSI) in the IBM quantum computer. Leggett-

Garg test [109], compressed quantum computation [110], fault-tolerant state prepa-

ration [111], fault-tolerant logical gates [112], quantum cheque [113], quantum per-

mutation algorithm [114], Deutsch-Jozsa-like algorithm [115], Shor’s factoring algo-

rithm [116], hybrid quantum linear equation algorithm [117] are also recently per-

formed in the IBM quantum computer.
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Gooogle

Google has build a 54 transmon qbit quantum computer named Sycamore based on

nonlinear superconducting resonators which was released in 2019 [118]. It is pro-

grammable quantum computer capable of performing various quantum algorithms.

This is not available for public. Only Google has access for this quantum processor

and the are currently research topics are near-term applications such as quantum

physics simulation, quantum chemistry and generative machine learning.

Intel

Intel has manufactured a 17 qubits superconducting quantum processor, named Tan-

gle Lake which can incorporate upto 49 qubits [119]. Their research interests are to

simulate and analyze natural phenomena, quick answers to phenomenological ques-

tions that would take excessive amounts of time on available computers, etc, They

are also interests in medicine, astrophysics and weather predictions.

Xanadu

Xanadu is a quantum computer company which provides hardware and softwares for

various quantum experiments based on photonic quantum computers [120] which can

be accessed via cloud. Their hardware technology uses programmable Gaussian Boson

Sampling (GBS) devices. They also provide some open-source quantum software for

simulation of quantum algorithms.

Rigetti

Rigetti builds multi-chip quantum processors using superconducting systems which

can be accessible via cloud [121]. Their processors incorporates with existing com-

puting infrastructure which aim to solve scaling challenges of fault-tolerant quantum

computers. Their mission is to build a 80-qubit quantum computing chip which can

be accessible via cloud service.
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D-Wave

D-Wave has build a 2000 qubit quantum computer based on quantum annealing

technology [122]. It may be noted that although the number of qubits in D-Wave is

more than the above quantum computer, that does not mean it is the best among

them. D-Wave search solutions to a problem using large number of quits. Thus D-

Wave’s qubits are can be affected by noise and their quantum states are also more

fragile, and their manipulation are less precise.

Other processors and simulators

Other than the above mentioned quantum processors, there are also other quantum

computers such as IonQ [123], Microsoft [124], Toshiba [125], Alibaba [126], Amazon

web services [127], 1QBit [128], etc.

1.4 Motivation of current work

Now we will briefly describe the open questions associated with the above topics and

the motivation of the current works.

There are several tests of non-locality which has been performed in various quan-

tum technologies. For example, Mermin inequalities [30] have been tested experimen-

tally using photons and ion traps [129, 130], subsequently the authors of [131] have

tested Mermin polynomial of three, four and five qubits in the IBM quantum com-

puter based on superconducting qubits. Hardy’s experiment is the only method to

test non-locality for two qubits without using inequalities. Several experiments have

been performed to demonstrate Hardy’s paradox using polarization, energy-time and

orbital angular momentum of photons, entangled qubits, classical light, and two-level

quantum states [132, 133, 134, 135, 136, 137, 138, 139, 140, 141], but none in su-

perconducting qubits. However, none of the experimental verifications of Hardy’s

non-locality have used superconducting qubits. This motivates us to test Hardy’s

paradox for two qubits in a quantum computer using superconducting qubits. This is

the motivation behind Chapter 3.
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In the last century, physicists were puzzled about whether “the characteristic trait

of Quantum Mechanics" [142], i.e., entanglement [27], is real and, if so, whether it

can show some nontrivial advantages over classical information processing tasks. The

answers to both are positive. In the current century, entanglement of indistinguish-

able particles and its similarity with as well as difference from that of distinguishable

ones have been extensively studied [143, 144, 145, 146, 147, 148, 149, 150, 151, 152,

153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163]. However, the entanglement be-

tween distinguishable and indistinguishable particles raises several non-trivial open

questions:

(i) Hyper-hybrid entangled state (HHES) was created by two indistinguishable bosons [1].

Is it also possible for two indistinguishable fermions?

(ii) Is the scheme for HHES, as proposed by Li et al. [1], applicable for two distin-

guishable particles?

(iii) If the scheme for HHES, as proposed by Li et al. [1], is not possible applicable for

two distinguishable particles, the can distinguishable particles exhibit HHES through

some other scheme?

(iv) Is there exist some quantum correlations and applications which unique in the

case of distinguishable particles and indistinguishable particles?

These open problems are the motivations behind Chapter 4.

Partial trace-out operation [41, 20] is a typical method of finding the reduced

density matrix of a subsystem which can be either one whole particle or a single

DoF for distinguishable systems. However, for indistinguishable systems, applying

the above method results in a contradiction in identifying entanglement [149, 164].

Experimental works on such systems [165, 166, 167, 168, 169, 170, 171] existed earlier,

but a common mathematical framework for a consistent theoretical interpretation

was first attempted in [161, 163], by providing a method of partial trace-out for a

whole indistinguishable particle. One may be tempted to think that the same rule

can trace out a single DoF also. However, this is not so straightforward. When

particles become indistinguishable, performing the partial trace-out of a particular

DoF is challenging, because a DoF cannot be associated with a specific particle.

40



This motivates to search for a DoF trace-out rule which can be applicable to both

distinguishable and indistinguishable particles when each particle have multiple DoFs.

This is the basic motivation for Chapter 5.

Thus quantum teleportation fidelity [172] plays an important role in quantum

information both for distinguishable and indistinguishable particles. One way to

measure the teleportation fidelity is by using the singlet fraction [52] of the quantum

channel used for teleportation. Singlet fraction for any state is defined as the maxi-

mum overlap of that state with the maximally entangled state. The relation between

teleportation fidelity and singlet fraction was proposed by Horodecki et al. [52]. This

relation is only applicable for distinguishable particle with a single degrees of freedom

(DoF). However, for indistinguishable particles with multiple DoF, this relation no

longer holds. This motivated us to find a new relation between teleportation fidelity

and singlet fraction applicable both for distinguishable and indistinguishable parti-

cles where each particle have multiple DoFs. This is the basic motivation behind

Chapter 6

One important feature of quantum entanglement of distinguishable particles [41]

is its restriction upon the shareability among composite systems (consisting of par-

ticles or degrees of freedom (DoFs)), known as monogamy of entanglement (MoE).

Monogamy of entanglement is widely regarded as one of the basic principles of quan-

tum physics [173]. Qualitatively, it is always expected to hold, as a maximal violation

will have consequences for the no-cloning theorem. However, it was an open prob-

lem that monogamy of entanglement can be violated maximally using indistinguish-

able particles and using the DoFs of the indistinguishable particles? The problem of

monogamy of entanglement using DoFs of indistinguishable particles for two-qubits

and more that two qubits are discussed in Chapter 7 and Chapter 8 respectively.

The main motivation of Chapter 9 is to find some new applications of indistin-

guishable particles. Security and efficiency are two major criteria of a cryptographic

protocols. If two cryptographic systems with different resource requirements provide

the same level of security, the one with less resources becomes the natural choice. The

motivation behind the first application is to find how to reduce resources in the cryp-
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tographic protocols without compromising the security. There are several types of

attacks such as intercept and resend attack, man-in-the-middle attack, Trojan-horse

attack, etc. The motivation of our second application is to find a new attack for

quantum cryptographic protocols. The standard Entanglement swapping (ES) [44]

required four distinguishable particles as a resource along with Bell state measure-

ment (BSM) [174] and local operations and classical communications (LOCC) [175]

as tools. Better versions with only three distinguishable particles were proposed in

two subsequent works, one [53] with BSM and another [54] without BSM. Recently,

Castellini et al. [176] have shown that ES for the indistinguishable case is also pos-

sible with four particles (with BSM for bosons and without BSM for fermions). The

motivation of our final application is reduce the number of particles further in entan-

glement swapping protocol using distinguishable or indistinguishable particles?

1.5 Thesis organization

This thesis is organized as follow:

• In Chapter 2, we present the necessary background studies, mathematical for-

mulation, and applications needed to understand our proposed works in rest of

the thesis.

• In Chapter 3, We experimentally verify Hardy’s paradox for two qubits on

a quantum computer based on superconducting circuits. We argue that for

practical verification of Hardy’s test, the error-modeling used for optical circuits

cannot be used for superconducting qubits in 3.2. We propose a new error-

modeling and a new method to estimate the lower bound on Hardy’s probability

for superconducting qubits. We also point out that the earlier tests performed

in optical circuits and in the IBM quantum computer have not analyzed the

test results in a statistically correct and coherent way in 3.4. We analyze our

data using Student’s t-distribution [177] which is the statistically correct way to

represent the test results. Our statistical analysis leads to the conclusion that
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any two-qubit non-maximally entangled state (NMES) gives a nonzero value of

Hardy’s probability, whereas any two-qubit maximally entangled state (MES)

as well as any product state (PS) yields a zero value of Hardy’s probability. We

identify the difficulties associated with the practical implementation of quantum

protocols based on Hardy’s paradox and discuss how to overcome them in 3.4.3.

We propose two performance measures for any two qubits of any quantum

computer based on superconducting qubits. Finally, we discuss benchmarking

of superconducting quantum devices using Hardy’s paradox in 3.4.6.

• In Chapter 4, some of the open questions related to distinguishable and indis-

tinguishable particles and their properties and applications. Using systematic

calculations we establish that hyper-hybrid entangled state is possible using

two indistinguishable fermions in Chapter 4.1 and also presented a generalized

version for hyper-hybrid entangled state applicable for bosons and fermions

in Chapter 4.1.1. Next, we show that the scheme of Li et al. [1] for produc-

ing hyper-hybrid entanglement using two indistinguishable particles does not

work for distinguishable particles in Chapter 4.2. After that, in Chapter 4.3,

we prove that If quantum particles (either distinguishable or indistinguishable)

can simultaneously produce and perform hyper hybrid entangled state and unit

fidelity quantum teleportation respectively then using that cloning of any arbi-

trary quantum state is possible.. Next, in Chapter 4.4, we establish the first

no-go result: HHES is not possible for distinguishable particles; otherwise, ex-

ploiting it, signaling can be achieved. In Chapter 4.5, we prove our second no-go

result that unit fidelity quantum teleportation is not possible for indistinguish-

able particles. Using the above two no-go theorem, we establish a separation

result using quantum properties and applications between distinguishable and

indistinguishable particles in Chapter 4.6.

• In Chapter 5, we have proposed a new degrees of freedom trace-out rule ap-

plicable for both distinguishable and indistinguishable particles, each having

multiple degrees of freedom. First we represent two indistinguishable particles
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each having two DoFs in 5.1.1 and 𝑛 DoFs in 5.1.2. Then we generalize it for 𝑝

indistinguishable particles, each having 𝑛 DoFs in 5.1.3. Next, We establish a

generalized DoF trace-out rule for two indistinguishable particles each having

two DoFs in 5.2.1 and 𝑛 DoFs in 5.2.2. This rule is generalized for 𝑝 indistin-

guishable particles, each having 𝑛 DoFs in 5.2.3. Finally we present the physical

significance of our DoF trace-out rule in 5.3.

• In Chapter 6, we establish a generalized relation between teleportation fidelity [172]

and singlet fraction [52] for both distinguishable and indistinguishable particles

with where each particle has multiple DoFs. First we have defined the gener-

alized teleportation fidelity in 6.1 and generalized singlet fraction in 6.2. After

generalizing the relation between above two in 6.3, we prove an upper bound

for generalized singlet fraction for distinguishable and indistinguishable parti-

cles in 6.6. Finally, we state the physical significance of our new generalized

relation in 6.7.

• In Chapter 7, using this generalized DoF trace-out, we show that monogamy of

entanglement can be violated maximally by indistinguishable particles in qubit

systems for measures (such as squared concurrence, log-negativity, etc.) that

are monogamous for distinguishable particles. First, we describe the condition

for violation of no-cloning theorem using the maximum violation of monogamy

of entanglement in 7.1. Then we give an example of an apparent violation of

particle-based monogamy of entanglement in 7.2. To remove this ambiguity,

we generalized the monogamy relation from particle view to degree of freedom

view in 7.3. Then we prove the following theorem that In qubit systems, in-

distinguishability is a necessary criterion for maximum violation of monogamy

of entanglement by the same measures that are monogamous for distinguishable

particles in 7.4. Finally, we discuss the physical significance of the maximum

violation of monogamy in 7.5.

• In Chapter 8, we have shown that monogamy of entanglement using three indis-

tinguishable particles is obeyed using squared concurrence as an entanglement
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measure. First, we show how to calculate the concurrence between two spatial

regions between any DoFs in 8.1. Then we present the proof of monogamy in-

equality for three or more indistinguishable particles becomes equality for pure

states in 8.2 and for mixed states it remains an inequality in 8.2.3. At last, we

discuss the physical significance of our results in 8.3.

• In Chapter 9, we present some applications of indistinguishable particles. First,

we show We show that for device independent test such as quantum pseudo-

telepathy game [178, 179], the cost of adding an ancilla particle can be bypassed

by using an additional degrees of freedom and creating multi-DoF entanglement

in quantum private query protocol where the success probability remains the

same but the generalized singlet fraction changes in 9.1. Next we show how

indistinguishability can change Hardy’s probability which can be used as an at-

tack in quantum cryptographic protocols in 9.2. Finally, in Section 9.3, we have

proposed an Entanglement Swapping protocol using only two indistinguishable

particles without using Bell state measurement.

• In Chapter 10, we summarize each of the contributing chapters, discuss the

open problems related to those chapter, and our future plans.
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Chapter 2

Background

In this section, all the technical backgrounds to understand the rest of the thesis is

presented.

2.1 Statistical interpretation of experimental re-

sults

Here, we discuss how any experimental analysis should be performed using some

basics of statistics.

2.1.1 Standard normal distribution vs. Students t-distribution

It is known from the central limit theorem [177] that if {𝑋1, 𝑋2, . . . , 𝑋𝑛} are inde-

pendent and identically distributed random samples drawn from any population with

mean 𝜇 and variance 𝜎2 and if 𝑛 is large, then the sample mean

�̄� = 1
𝑛

𝑛∑︁
𝑖

𝑋𝑖 (2.1)

follows a normal distribution with mean 𝜇 and variance 𝜎2/𝑛, i.e., �̄� v 𝑁(𝜇, 𝜎2/𝑛).

It follows that the variable

𝑍 = �̄� − 𝜇√︁
𝜎2/𝑛

,
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follows the standard normal distribution, i.e., 𝑍 v 𝑁(0, 1). If the population variance

𝜎2 is unknown, it is replaced by its closest approximation, i.e., the sample variance

𝑆2. Then the quantity follows a Students t-distribution [177] described as

𝑇 = �̄� − 𝜇√︁
𝑆2/𝑛

, where 𝑆2 = 1
𝑛− 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − �̄�)2.

Moreover, while normal approximation works only for very large 𝑛 (ideally infinite),

the Students t-distribution holds for small 𝑛 as well. This distribution is a function

of the degrees of freedom, which is one less than the number of times the experiment

is repeated. As the number of degrees of freedom tends to infinite, the Student’s

t-distribution converges to the normal distribution.

2.1.2 Hypothesis testing and confidence interval

We know that it is impossible to conduct any experiment without any error. So,

when the conclusion is drawn from an experimental result, it is not appropriate to

claim that the results are 100% correct. Statistically speaking, we can only test

a hypothesis and conclude the test based on our experimental results with some

percentage of confidence in our conclusion. In hypothesis testing [177], we turn a

question of interest into a hypothesis about the value of a parameter or a set of

parameters. In our case, suppose we want to test whether a given state is NMES or

not. Then, according to the notion of hypothesis testing, we can have the following

formulation from Equation (3.9).

Test the null hypothesis

ℋ0 : 𝑞 = 0 (The unknown state is not an NMES)

against the alternative hypothesis

ℋ1 : 𝑞 > 0 (The unknown state is an NMES).
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So it is evident that our test will be a one-sided test3 as 𝑞 is a non-negative

quantity. The significance level 𝛼 is equal to the false-positive error or Type I error

which is defined by the probability Pr(reject ℋ0 | ℋ0 is correct) where 0 ≤ 𝛼 ≤ 1.

The level of confidence is defined by (1 − 𝛼) or 100(1 − 𝛼)%. Let us assume that an

experiment is repeated 𝑛 number of times, where 𝜇, �̄�, 𝜎, and 𝑆 are the population

mean, sample mean, population standard deviation and sample standard deviation

respectively. Again, let 100(1 − 𝛼)% confidence interval (CI) of �̄� be the interval

[𝑋𝑙𝑏, 𝑋𝑢𝑏]. This means that we have 100(1−𝛼)% confidence that 𝜇 will lie in between

𝑋𝑙𝑏 and 𝑋𝑢𝑏.

For the standard normal distribution, the expression for 100(1 − 𝛼)% confidence

interval for the mean in the above situation is
(︁
�̄� ± 𝑧𝛼

2
𝜎√
𝑛

)︁
, where 𝑧𝛼

2
is the value of

the standard normal variable 𝑍 such that

Pr(−𝑧𝛼
2
< 𝑍 < 𝑧𝛼

2
) = (1 − 𝛼).

For this case, 𝑋𝑙𝑏 =
(︁
�̄� − 𝑧𝛼

2
𝜎√
𝑛

)︁
and 𝑋𝑢𝑏 =

(︁
�̄� + 𝑧𝛼

2
𝜎√
𝑛

)︁
. Here, 𝑧𝛼

2
depends only

on the value of 𝛼. For the Student’s t-distribution, the expression for 100(1 − 𝛼)%

confidence interval is given by �̄�± 𝑡𝛼
2
𝑆√
𝑛

where 𝑡𝛼
2

is given by the following expression

Pr(−𝑡𝛼
2
< 𝑇 < 𝑡𝛼

2
) = (1 − 𝛼).

For this case, 𝑋𝑙𝑏 =
(︁
�̄� − 𝑡𝛼

2
𝑆√
𝑛

)︁
and 𝑋𝑢𝑏 =

(︁
�̄� + 𝑡𝛼

2
𝑆√
𝑛

)︁
. Here, 𝑡𝛼

2
depends on the

value of 𝛼 and the degrees of freedom 𝜈 = (𝑛− 1), where 𝑛 is the number of samples

used for the experiment. As 𝜈 → ∞, we have 𝑡𝛼
2

→ 𝑧𝛼
2
.

2.2 Quantum non-locality

Quantum non-locality as shown in Fig. 1-1 is the strongest form of quantum corre-

lations. The existence of this type of correlations was first proved by the violations
3Two-sided test typically applies to ℋ0 : 𝑋 = 𝑝 vs ℋ1 : 𝑋 ̸= 𝑝 and one-sided test ℋ0 : 𝑋 = 𝑝 vs

ℋ1 : 𝑋 > 𝑝 or ℋ1 : 𝑋 < 𝑝 where 𝑋 is the chosen parameter under test and 𝑝 is a specific value.
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of Clauser-Horne-Shimony-Holt (CHSH) inequality. Later, non-locality was proved

without using inequality. For, two-qubits, Hardy’s test is used to verify non-locality.

2.2.1 Clauser-Horne-Shimony-Holt (CHSH) inequality

The verifications of Bell’s theorem can be experimentally performed using CHSH

inequality. Let us assume, two parties, Alice and Bob are sharing a physical system

which they can measure and see the outcome. They us denote the the measurements

of Alice are 𝐴1 and 𝐴2. Similarly, the measurements of Bob are denoted by 𝐵1 and

𝐵2. The measurements outputs are denoted by +1 or −1. Now let us calculate the

quantity

CHSH = 𝐴1𝐵1 + 𝐴1𝐵2 + 𝐴2𝐵1 − 𝐴2𝐵2. (2.2)

Clearly, from the basic algebra, it can be shown that the maximum and the minimum

value of Eq. (2.2) is +2 and −2 respectively. Let, 𝐸(∙) denote the exception value of

a quantity then we can write

𝐸(CHSH) = 𝐸(𝐴1𝐵1) + 𝐸(𝐴1𝐵2) + 𝐸(𝐴2𝐵1) − 𝐸(𝐴2𝐵2) ≤ 2 (2.3)

This is known as the CHSH inequality. It can be shown that for some quantum

systems this inequality can be violated which supports the existence of non-locality.

2.2.2 Hardy’s test of non-locality

Hardy’s test of non-locality for two qubits involves two non-communicating distant

parties, Alice and Bob. A physical system consisting of two subsystems is shared

between them. Alice and Bob can freely measure and observe the measurement

results of their own subsystems. Alice can perform the measurement on her own

subsystem by choosing freely one of the two {+1,−1}-valued random variables 𝐴1

and 𝐴2. Similarly, Bob can also choose freely one of the two {+1,−1}-valued random

variables 𝐵1 and 𝐵2 for measuring the subsystem in his possession.

Hardy’s test of non-locality starts with the following set of joint probability equa-
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tions.

𝑃 (+1,+1|𝐴1, 𝐵1) =0, (2.4)

𝑃 (+1,−1|𝐴2, 𝐵1) =0, (2.5)

𝑃 (−1,+1|𝐴1, 𝐵2) =0, (2.6)

𝑃 (+1,+1|𝐴2, 𝐵2) =𝑞, where

⎧⎪⎪⎨⎪⎪⎩
𝑞 = 0 for LHV theory,

𝑞 > 0 for non-locality.
(2.7)

Here 𝑃 (𝑥, 𝑦|𝐴𝑖, 𝐵𝑗) denotes the joint probability of obtaining outcomes 𝑥, 𝑦 ∈ {+1,−1}

given that 𝐴𝑖 and 𝐵𝑗 were the experimental choices made where 𝑖, 𝑗 ∈ {1, 2}. If an ex-

periment is designed in such a way that Equations (2.4), (2.5), and (2.6) are satisfied,

then for any LHV theory, the right-hand side of Equation (2.7) becomes zero. But

if this value is found to be greater than zero for some values of 𝑞, then non-locality

is established. The set of Equations (2.4)-(2.7) are called Hardy’s equations and 𝑞 is

called Hardy’s probability.

It can be easily shown that a greater than zero value of Equation (2.7) implies non-

locality under the assumptions of Equations (2.4)-(2.6). Let us assume that, when 𝐴2

and 𝐵2 are measured simultaneously, an event with 𝐴2 = 𝐵2 = +1 is detected. It can

be seen from Equation (2.5) that the measurement of 𝐵1 must yield the output +1,

as 𝐴2 = 1 can never occur with 𝐵1 = −1, the only option left is 𝐵1 = +1. Following

the same logic, from Equation (2.6), it can be concluded that 𝐴1 = +1 must occur, as

the value of 𝐵2 = 1 can never be detected with 𝐴1 = −1. Also, because of the locality

assumption, the value of 𝐵1 must be independent of whether Alice measures 𝐴1 or

𝐴2. Similarly, the value of 𝐴1 must be independent of whether Bob measures 𝐵1 or

𝐵2. So, it can be concluded from LHV theory that the values of 𝐴1 and 𝐵1 must be

+1. But this is not possible as shown in Equation (2.4). So, given Equations (2.4)-

(2.6) are satisfied, a single occurrence of the event 𝐴2 = 𝐵2 = +1 can rule out all

possibilities that experiment can be described by an LHV theory.

The maximum value of Hardy’s probability 𝑞 is found to be 𝑞𝑚𝑎𝑥 = 5
√

5−11
2 ≈

0.09017 for two qubits [35, 180]. For the two-qubit system, no MES as well as no PS
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obey Hardy’s non-locality, but all NMES exhibit Hardy’s non-locality [181]. This is

the specialty of Hardy’s test that only a single event can discard all LHV theories. The

motivation of this work is to validate this statement for the quantum computer using

superconducting qubits. As every MES of three or higher qubits exhibits Hardy’s

non-locality, we restrict our discussion for two qubits only.

2.2.3 Equivalence between CHSH inequality and Hardy’s equa-

tions

Using simple set-theoretic arguments, one can show that Hardy’s equations are a

special case of the famous CHSH inequality [182]. The CHSH version of Hardy’s

Equations [183] is described as

𝑃 (+1,+1|𝐴2, 𝐵2) − 𝑃 (+1,+1|𝐴1, 𝐵1) − 𝑃 (+1,−1|𝐴2, 𝐵1) − 𝑃 (−1,+1|𝐴1, 𝐵2) ≤ 0.
(2.8)

A violation of Equation (4.5) means a violation of local realism, which supports non-

locality. Putting the ideal values of the probabilities from Equations (2.4)-(2.7) into

Equation (4.5), we get 𝑞 ≤ 0. So, 𝑞 = 0 supports LHV theory and 𝑞 > 0 supports

non-locality.

2.2.4 Revisiting known experimental results on Hardy’s test

and their statistics

In this section, first we revisit important experimental works on Hardy’s test in op-

tical set-up. Next, we look into significant experiments performed in IBM quantum

computer.

Prior works on Hardy’s test in optical set-up

In this section, we will survey the major experiments performed for Hardy’s test using

optical circuits so far. Their set-up and the results are summarized in Table 2.1.
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Authors Year Distribution
of data

number of
samples
mentioned?

Form:
mean ±
SD

CI
Repre-
senta-
tion

Irvine et al. [133] 2005 Not specified Not specified Yes No
Lundeen et al. [134] 2009 Poissonian Not specified Yes No
Yokota et al. [135] 2009 Poissonian Not specified Yes No
Fedrizzi et al. [184] 2011 Not specified Not specified Yes No
Vallone et al. [136] 2011 Not specified Not specified Yes No
Chen et al. [137] 2012 Not specified Not specified Yes No
karimi et al. [138] 2014 Poissonian Not specified Yes No
Zhang et al. [139] 2016 Not specified Not specified Yes No
Fan et al. [140] 2017 Poissonian Not specified Yes No
Chen et al. [141] 2017 Not specified Not specified Yes No
Luo et al. [185] 2018 Poissonian Not specified Yes No
Yang et al. [186] 2019 Poissonian Not specified Yes No

Table 2.1: Summary of prior works on Hardy’s test in optical set-up where
SD=standard deviation and CI=confidence interval.

In [133, 184, 136, 137, 139, 141], the authors have represented their coincidence

count in mean ± standard deviation form but they did not specify the distribution of

the sample data and the number of samples taken. They also did not represent the

confidence on their data.

In [134, 135, 138, 140, 185, 186], the authors have mentioned that they have

assumed that all the error bars follow the Poissonian statistics for the coincidence

count and they have represented their data in mean ± standard deviation form. But

again, they did not mention the distribution of samples and number of samples they

have used and confidence on their data.

Significant experiments performed in superconducting qubits

We present a survey of the other experiments done in the IBM quantum computer

and their statistical representation of the results which are summarized in Table 2.2.

In [107, 108, 131], the authors have represented the error in their experiments by

the standard formula
√︁
𝑝(1 − 𝑝)/8192, where 𝑝 is the estimate of the probability of

a given measurement outcome in a given experiment. However, some authors [131,

52



Authors Year 𝑛 𝑠 Form:
mean ±
SD

CI Repre-
sentation

S. J. Devitt [107] 2016 1 8192 No No
Alsina et al. [131] 2016 1 8192 Yes No
Berta et al. [108] 2016 1 8192 No No
Huffman et al. [109] 2017 10 8192 Yes No
Hebenstreit et al. [110] 2017 1 8192 No No
Behara et al. [113] 2017 1 1024,

4096,
8192

No No

Yalçınkaya et al. [114] 2017 5 8192 Yes No
W. Hu [187] 2018 1 8192 No No
Gangopadhyay et al. [115] 2018 10 8192 Yes No
Lee et al. [117] 2019 1 1024 No No

Table 2.2: Significant experiments performed in IBM five-qubit quantum computer
and their error statistics where 𝑛= number of times the experiment has been per-
formed, 𝑠=number of shots in each time, SD=standard deviation, and CI=confidence
interval.

109, 114, 115] have represented their data in the form of mean ± standard deviation

but none of them have represented their data in confidence interval form.

2.3 Quantum entanglement

Here, we discuss the definition of entanglement of distinguishable and indistinguish-

able particles as proposed in [188, 189, 190] and followed in the rest of the thesis.

2.3.1 Definition of entanglement

Let us consider a many-body system which is represented by the Hilbert space ℋ. The

algebra of all bounded operators, which includes all the observables, is represented

by 𝒵(ℋ). In this algebraic framework, the standard notions of states and the tensor

product partitioning of ℋ are changed into the observables and local structures of

𝒵(ℋ). Now before defining entanglement, we define algebraic bipartition and local

operators.
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Algebraic bipartition

An algebraic bipartition of operator algebra 𝒵(ℋ) is any pair (𝒜, ℬ) of commuting

subalgebras of 𝒵(ℋ) such that 𝒜, ℬ ∈ 𝒵(ℋ). If any element of 𝒜 commutes with

any element of ℬ, then [𝒜,ℬ] = 0.

Local operators

For any algebraic bipartition (𝒜,ℬ), an operator is called a local operator if it can

be represented as the product 𝐴𝐵, where 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ.

Entangled states

For any algebraic bipartition (𝒜,ℬ), a state 𝜌 on the algebra 𝒵(ℋ) is called separable

if the expectation of any local operator 𝐴𝐵 can be decomposed into a linear convex

combination of products of local expectations, as follows

𝑇𝑟(𝜌𝐴𝐵) =
∑︁
𝑘

𝜆𝑘𝑇𝑟(𝜌(1)
𝑘 𝐴)𝑇𝑟(𝜌(2)

𝑘 𝐵),

𝜆𝑘 ≥ 0,
∑︁
𝑘

𝜆𝑘 = 1,
(2.9)

where 𝜌
(1)
𝑘 and 𝜌

(2)
𝑘 are given states on 𝒵(ℋ); otherwise the state 𝜌 is said to be

entangled with respect to the algebraic bipartition (𝒜,ℬ). Note that, this algebraic

bipartition can also be spatial modes like distinct laboratories each controlled by Alice

and Bob. If any state cannot be written in the above form, then it would certainly

violate the CHSH inequality. Therefore, we use the violation of the CHSH inequality

as an indicator of entanglement.

2.3.2 Types of entanglement

Quantum entanglement is encoded in the particle’s degrees of freedom (DOFs) like

spin, polarization, path, angular momentum, etc. Based on the arrangement en-

tanglement in the DOFs of particles, we have the following types of entanglement

structures

54



Figure 2-1: From left to right: (a) hyper-entanglement (solid lines), (b) hybrid-
entanglement (dotted lines), and (c) hyper-hybrid entangled state of two qubits with
two degrees of freedom.

Hyper entanglement

Suppose two particles 𝐴 and 𝐵, each having two DoFs, are with the possession of Alice

and Bob. Hyper-entanglement [191] means the simultaneous presence of entanglement

in similar kind of multiple DOFs as shown in Fig. 2-1 (a) where 𝐴1 is entangled with

𝐵1, and 𝐴2 is entangled with 𝐵2. It is useful for some tasks like complete Bell state

analysis [192], entanglement concentration [193], purification [194], etc. [195].

Hybrid entanglement

If the entanglement is present between different DoFs, then it is known as hybrid

entanglement [196, 197]. In the Fig. 2-1 (b), 𝐴1 is entangled with 𝐵2 and similarly

𝐴2 is entangled with 𝐵1. Hybrid entanglement is useful in quantum repeaters [198],

quantum erasers [199], quantum cryptography [200], etc. [201, 202, 203].

Hyper-hybrid entanglement

Hyper-Hybrid entanglement means the the simultaneous presence of these two above

types of entanglements. In the Fig. 2-1 (c), every DoF of one particle is entangled with

all other DoFs of the other particle. Hyper-hybrid entanglement is useful for Complete

Bell-state analysis [1]. Although hyper-entanglement and hybrid entanglement were

separately known for more than two decades, interestingly, the simultaneous presence
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of these twohas been proposed very recently by Li et al. [1] in 2018 using using spin and

momentum DoF. The above three types of entanglements are shown schematically in

Fig. 2-1.

2.3.3 Representation and degrees of freedom trace-out rule

for two distinguishable particles each having 𝑛 DoFs

Trace-out operation is very useful tool to represent the reduced density matrix of any

density matrix. In this section, we will represent the general state, density matrix

and the degree of freedom (DoF) trace-out rule for two distinguishable particles.

Let two distinguishable particles 𝐴 and 𝐵 each having 𝑛 DoFs. The 𝑖-th and the

𝑗-th DoF of 𝐴 and 𝐵 are represented by 𝑎𝑖 and 𝑏𝑗 respectively where 𝑖, 𝑗 ∈ N𝑛 :=

{1, 2, . . . , 𝑛}. Suppose each DoF is 𝑑-dimensional whose eigenvalues are denoted by

D𝑘 := {𝐷𝑘1 , 𝐷𝑘2 , . . . , 𝐷𝑘𝑑
} where 𝑘 ∈ N𝑛. The general state of 𝐴 and 𝐵 is denoted

by
|Ψ(2,𝑛)⟩𝐴𝐵 =

∑︁
𝑎1,𝑎2,...,𝑎𝑛,𝑏1,𝑏2,...,𝑏𝑛

𝜅𝑎1𝑎2...𝑎𝑛
𝑏1𝑏2...𝑏𝑛

|𝑎1𝑎2 . . . 𝑎𝑛⟩ ⊗ |𝑏1𝑏2 . . . 𝑏𝑛⟩ , (2.10)

where 𝑎𝑖 ∈ D𝑖, 𝑏𝑗 ∈ D𝑗, and 𝑖, 𝑗 ∈ N𝑛.

The general density matrix can be represented as

𝜌
(2,𝑛)
𝐴𝐵 =

∑︁
𝑎1,𝑎2,...,𝑎𝑛,
𝑢1,𝑢2,...,𝑢𝑛
𝑏1,𝑏2,...,𝑏𝑛,
𝑣1,𝑣2,...,𝑣𝑛

𝜅𝑎1𝑎2...𝑎𝑛𝑢1𝑢2...𝑢𝑛
𝑏1𝑏2...𝑏𝑛𝑣1𝑣2...𝑣𝑛

|𝑎1𝑎2 . . . 𝑎𝑛⟩ |𝑏1𝑏2 . . . 𝑏𝑛⟩ ⊗ ⟨𝑢1𝑢2 . . . 𝑢𝑛| ⟨𝑣1𝑣2 . . . 𝑣𝑛| ,

(2.11)

where 𝑎𝑖, 𝑢𝑖 ∈ D𝑖, 𝑏𝑗, 𝑣𝑗 ∈ D𝑗, and 𝑖, 𝑗 ∈ N𝑛.

If 𝜌(2,𝑛)
𝐴𝐵 = |Ψ(2,𝑛)⟩𝐴𝐵 ⟨Ψ(2,𝑛)|𝐴𝐵 then Eq. (2.11) is represented as

𝜌
(2,𝑛)
𝐴𝐵 =

∑︁
𝑎1,𝑎2,...,𝑎𝑛,
𝑢1,𝑢2,...,𝑢𝑛
𝑏1,𝑏2,...,𝑏𝑛,
𝑣1,𝑣2,...,𝑣𝑛

𝜅𝑎1𝑎2...𝑎𝑛
𝑏1𝑏2...𝑏𝑛

𝜅𝑢1𝑢2...𝑢𝑛*
𝑣1𝑣2...𝑣𝑛

|𝑎1𝑎2 . . . 𝑎𝑛⟩ |𝑏1𝑏2 . . . 𝑏𝑛⟩ ⊗ ⟨𝑢1𝑢2 . . . 𝑢𝑛| ⟨𝑣1𝑣2 . . . 𝑣𝑛| ,

(2.12)

where * denotes complex conjugate.

If we want to trace-out the 𝑖-th DoF of particle 𝐴, then from Eq. (2.11), the
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reduced density matrix can be written as

𝜌𝑎�̄�
≡Tr𝑎𝑖

(︁
𝜌

(2,𝑛)
𝐴𝐵

)︁
:=

∑︁
𝑎𝑖,𝑎�̄�,𝑢𝑖𝑢�̄�,
𝑏1,𝑏2,...,𝑏𝑛,
𝑣1,𝑣2,...,𝑣𝑛

𝜅
𝑎�̄�𝑢�̄�
𝑏1𝑏2...𝑏𝑛𝑣1𝑣2...𝑣𝑛

|𝑎�̄�⟩ |𝑏1𝑏2 . . . 𝑏𝑛⟩ ⟨𝑢�̄�| ⟨𝑣1𝑣2 . . . 𝑣𝑛| {⟨𝑎𝑖|𝑐𝑖⟩} ,

(2.13)

where 𝑎�̄� = 𝑎1𝑎2 . . . 𝑎𝑖−1𝑎𝑖+1 . . . 𝑎𝑛 and similar meaning for 𝑢�̄�. One can show that

when the DoF trace-out rule in Eq. (2.13) is applied to the same particle for 𝑛 times,

it becomes equivalent to our familiar particle trace-out rule [20, Eq. 2.178].

2.4 Measures of entanglement

There are various methods to measure quantum entanglement [55]. Let us denote an

entanglement measure by E and a density matrix by 𝜌, then the following properties

which any entanglement measure should follow.

1. The value of 𝜌 is zero if 𝜌 is a separable state.

2. The entanglement measure should be invariant under local local unitary trans-

formations, i.e., for any unitary operator 𝑈1 and 𝑈2

E(𝜌) = E(𝑈1 ⊗ 𝑈2 𝜌 𝑈†1 ⊗ 𝑈 †
2). (2.14)

3. Entanglement cannot be increased by local operations and classical communi-

cations.

4. The convexity property should be obeyed by the entanglement measure, i.e., for

any two density matrix 𝜌1 and 𝜌2

E(𝜖𝜌1 + (1 − 𝜖)𝜌2) ≤ 𝜖E(𝜌1) + (1 − 𝜖)E(𝜌2) (2.15)

for all 𝜖 ∈ [0.1].
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5. They should follow the additivity property, i.e., for 𝑛 copies of 𝜌 then

E(𝜌⊗𝑛) = 𝑛E. (2.16)

Now, we will briefly review some of the entanglement measures used in this thesis.

2.4.1 Concurrence

For any density matrix 𝜌, the concurrence 𝒞 [204] of 𝜌 can be calculated as

𝒞(𝜌) = max 0,
√︁
𝜆4 −

√︁
𝜆3 −

√︁
𝜆2 −

√︁
𝜆1 (2.17)

where 𝜆𝑖 are the eigenvalues of the matrix

R = 𝜌 (𝜎𝑦 ⊗ 𝜎𝑦𝜌
*𝜎𝑦 ⊗ 𝜎𝑦) (2.18)

in the decreasing order, * denotes complex conjugation and 𝜎𝑦 is Pauli matrix. This

concurrence measure is very useful for pure and mixed stated in two dimensions.

Moreover, concurrence is not additive.

2.4.2 Negativity

The Negativity 𝒩 [58, 59] of any density matrix 𝜌 is defined as

𝒩 (𝜌) = || 𝜌TB ||1 −1
2 (2.19)

where || . . . ||1 denotes the trace-norm, i.e., the sum of all the singular values of the

partially transposed reduced density matrix. It can be proved that the negatively is

convex in nature. Also it is easy to compute. However, like concurrence, it is also not

additive. To achieve additivity, let us define logarithmic negativity as

E𝒩 (𝜌) = log2 || 𝜌TB ||1 . (2.20)
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However, log-negativity is not convex [205].

2.4.3 Other measures of entanglement

Some other commonly used entanglement measures are entanglement of formation [57],

Tsallis-q entropy [60, 61], Rényi-𝛼 entanglement [62, 63], Unified-(q, s) entropy [64,

65], etc. [55, 56], one-way distillable entanglement [206], squashed entanglement [207,

208], etc. Most of the measures works in two-qubit systems but not applicable in

higher dimensions, specially on the mixed states. A universal measure of entan-

glement which obeys all the features is the “Holy Grail" of quantum entanglement

theory.

2.5 Monogamy of entanglement

Monogamy of entanglement (MoE) is an unique feature of quantum correlations which

is absent in classical correlations. A bipartite entanglement measure E that obeys

the relation

E𝐴|𝐵(𝜌𝐴𝐵) + E𝐴|𝐶(𝜌𝐴𝐶) ≤ E𝐴|𝐵𝐶(𝜌𝐴𝐵𝐶), (2.21)

for all 𝜌𝐴𝐵𝐶 where 𝜌𝐴𝐵 = Tr𝐶 (𝜌𝐴𝐵𝐶), 𝜌𝐴𝐶 = Tr𝐵 (𝜌𝐴𝐵𝐶), E𝑋|𝑌 measures the en-

tanglement between the systems 𝑋 and 𝑌 of the composite system 𝑋𝑌 , and the

vertical bar represents bipartite splitting, is called monogamous. Such inequality was

first shown for squared concurrence (𝒞) [204, 209] by Coffman, Kundu and Wootters

(CKW) for three parties [66] and later generalized for 𝑛 parties [210].

Equation (2.21) states that, the sum of the pairwise entanglement between 𝐴 and

the other particles, i.e., 𝐵 and 𝐶 cannot exceed the entanglement between 𝐴 and the

remaining particles are taken together as a whole system. From Eq. (2.21), it follows

that if E𝐴|𝐵(𝜌𝐴𝐵) = E𝑚𝑎𝑥, then necessarily E𝐴|𝐵(𝜌𝐴𝐵) = E𝐴|𝐵𝐶(𝜌𝐴𝐵𝐶) for any 𝜌𝐴𝐵𝐶

and E𝐴|𝐶(𝜌𝐴𝐶) = 0 which leads to the qualitative description of monogamy as stated

earlier.

Not all entanglement measures follow Eq. (2.21). Those who follow for all 𝜌𝐴𝐵𝐶 is
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known to be monogamous in nature. Some commonly used monogamous entan-

glement measures for qubit systems are the entanglement of formation [57], log-

negativity [58, 59], Tsallis-q entropy [60, 61], Rényi-𝛼 entanglement [62, 63], Unified-

(q, s) entropy [64, 65], etc. [55, 56]. For higher dimensional systems, squared con-

currence is known to violate [211] Eq. (2.21), and only a few entanglement measures

are monogamous like one-way distillable entanglement [206] and squashed entangle-

ment [207, 208].

2.5.1 Coffman, Kundu, and Wootters (CKW) monogamy in-

equality

Figure 2-2: CKW inequality for distinguishable particles using square of the concur-
rence as entanglement measure.

Monogamy of entanglement was first introduced by Coffman, Kundu, and Woot-

ters (CKW) [66] in terms of an inequality which is famously known as CKW inequality

for arbitrary states of three qubits using squared concurrence [204, 209] as entangle-

ment measure [55]. Let 𝐴, 𝐵, and 𝐶 are three particles whose joint density matrix

is 𝜌𝐴𝐵𝐶 . The concurrence between any two particles, let 𝐴 and 𝐵, whose reduced

density matrix is 𝜌𝐴𝐵 = Tr𝐶 (𝜌𝐴𝐵𝐶), can be calculated as

𝒞𝐴|𝐵 (𝜌𝐴𝐵) = max{𝜆1 − 𝜆2 − 𝜆3 − 𝜆4, 0}, (2.22)

where 𝜆𝑖’s (𝑖 ∈ {1, 2, 3, 4}) are the square root of the eigenvalues of the non-hermitian

matrix R = 𝜌𝐴𝐵𝜌𝐴𝐵 in decreasing order, 𝜌𝐴𝐵 = (𝜎𝑦 ⊗ 𝜎𝑦𝜌
*
𝐴𝐵𝜎𝑦 ⊗ 𝜎𝑦), 𝜎𝑦 is Pauli

60



matrix, the asterisk denotes complex conjugation and the vertical represents bipartite

splitting. Similarly, 𝒞𝐴|𝐶 (𝜌𝐴𝐶) can be calculated. Now the CKW inequality can be

written as

𝒞2
𝐴𝐵 (𝜌𝐴𝐵) + 𝒞2

𝐴𝐶 (𝜌𝐴𝐶) ≤ 𝒞2
𝐴|𝐵𝐶 (𝜌𝐴𝐵𝐶) . (2.23)

This inequality states that sum of the square of the pairwise concurrence between 𝐴

and the other particles, i.e., 𝐵 and 𝐶 cannot exceed the square of the concurrence

between 𝐴 and the remaining particles taken together as a whole system. Equa-

tion (2.23) was originally proved for for arbitrary states of three qubits. Later it

was generalized for multi-qubit systems in [210]. All bipartite qubit systems obey

Eq. (2.23).

2.5.2 Equivalence of the monogamy of entanglement and the

no-cloning theorem for distinguishable particles

Figure 2-3: Circuit to get violation of the no-cloning theorem from the maximum
violation of MoE.

To show that no-cloning implies monogamy of entanglement (MoE), let us prove

its contrapositive. When MoE is violated maximally, one can achieve quantum

cloning [79, 80] of any unknown quantum state using standard teleportation pro-

tocol [43, 212] as follows. Assume a particle 𝐴 is maximally entangled with the
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particles 𝐵 and 𝐶 and their joint state is denoted by |𝜓⟩𝐴𝐵𝐶 and the particle 𝑋 is

in unknown quantum state |𝜑⟩𝐶 . To achieve cloning of the state |𝜑⟩, one has to per-

form Bell state measurements (BSM) [174] jointly on the particles 𝐴 and 𝑋. Based

on the measurement result denoted by 𝑦, suitable unitary operations 𝑈𝑦 have to be

performed on the particles 𝐵 and 𝐶 so that the state |𝜑⟩ appears on each of them,

where 𝑈𝑦 ∈ {ℐ, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}, ℐ being the identity operation and 𝜎𝑖’s (𝑖 = 𝑥, 𝑦, 𝑧) the

Pauli matrices. Thus we can have two copies of the unknown state |𝜑⟩ as |𝜑⟩𝐵 and

|𝜑⟩𝐶 .

Next, to show that MoE implies no-cloning, again we prove its contrapositive. Let

two particles 𝐴 and 𝐵 share a maximally entangled state |𝜓⟩𝐴𝐵. If possible, suppose

one of them, say, 𝐵 is cloned and we get a copy 𝐵1 of 𝐵, then in the tripartite state

|𝜓⟩𝐴𝐵𝐵1
, 𝐴 is maximally entangled with both 𝐵 and 𝐵1 simultaneously, thus violating

the MoE maximally.

2.6 Indistinguishability

In the last century, physicists were puzzled about whether “the characteristic trait

of Quantum Mechanics" [142], i.e., entanglement [27], is real and, if so, whether it

can show some nontrivial advantages over classical information processing tasks. The

answers to both are positive, thanks to several experimentally verified quantum pro-

tocols like teleportation [43], dense coding [42], quantum cryptography, [45] etc. [41].

In the current century, entanglement of indistinguishable particles and its similar-

ity with as well as difference from that of distinguishable ones have been extensively

studied [143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,

158, 159, 160, 161, 162, 163]. Here, indistinguishable particles means independently

prepared identical particles like bosons or fermions [83, 84], where each particle can-

not be addressed individually, i.e., a label cannot be assigned to each. Experiments

on quantum dots [168, 170], Bose-Einstein condensates [213, 214], ultracold atomic

gases [215], etc., support the existence of entanglement of indistinguishable particles.
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2.6.1 How to distinguish two identical particles?

The interesting question comes that if two particles are identical, then can we dis-

tinguish them? Let us start with two classical identical particles. Although it is

not possible to differentiate them by any of their properties, it is always possible to

assign them two different labels, like 𝐴 and 𝐵, and using that it is possible, at least

in principle, to always keep track their trajectories. In this way, we can in principle,

always distinguish two classical identical particles.

Figure 2-4: Creation of indistinguishable particles from initially separated identical
particles. Here 𝑠1, 𝑠2, and 𝑠3 are three distinct spatial locations. (a) Initially, two
identical particles with are present in 𝑠1 and 𝑠2 in such a way that their wave-functions
do not overlap. We label the particles at 𝑠1 and 𝑠2 as 𝐴 and 𝐵 respectively. Thus
the particles are identical but are distinguishable via their spatial locations. (b) The
particles are brought close to each other so that their wave-functions overlap and they
become indistinguishable. Now, they cannot be identified by their spatial locations.
If the measurement is done in the overlapped region, i.e., 𝑠3, then it is not possible to
detect which particle is measured. Even if the particles are again moved apart, they
can no longer be labeled. The information about which of 𝐴 and 𝐵 appears at 𝑠1 or
𝑠2 is lost and they remain indistinguishable until they are measured again.

But, unfortunately this method is not possible due to Heisenberg’s uncertainty

principle [81] which states that it is not possible to uniquely determine the position

and momentum exactly at the same time. Thus to distinguish two identical quantum

particle, we need to use their spatial locations. Suppose two identical quantum parti-

cles 𝐴 and 𝐵 are present in distinct spatial locations 𝑠1 and 𝑠2 in such a way that their

wave-functions do not overlap. Thus it is possible to keep tract those two particles

by their spatial locations as long as their wave functions do not overlap as shown in

Fig. 2-4 (a). Now if they are brought close enough that their wave functions overlap,

in spatial region 𝑠3 in Fig. 2-4 (b). If the measurement is done in the overlapped
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region, i.e., 𝑠3, then it is not possible to detect which particle is measured. Even if

the particles are again moved apart, they can no longer be labeled. The information

about which of 𝐴 and 𝐵 appears at 𝑠1 or 𝑠2 is lost and they remain indistinguishable

until they are measured again. However, this method does not applicable for classical

particles as their wave functions are so small that they cannot overlap.

Particle exchange phase is an intrinsic property for states of indistinguishable par-

ticles when swapping single-particle states [216, 217]. This is a basic scenario based

on no-which way information is preserved. The direct measurement of the parti-

cle exchange phase (for photons, also including simulations for the case of fermions

and anyons) is demonstrated for the first time in [218, 219, 220]. This method is

extended and demonstrated more recently where one can use independent identical

particles and make them entangled by making them spatially overlapped in sepa-

rated sites [161, 163]. This has been demonstrated experimentally in [221, 222, 223].

In [221], the authors have designed an experiment where they tuned the remote spa-

tial indistinguishability of two independent photons. This is done by individually

controlling their spatial distribution in two distant regions. This results polarization

entanglement from uncorrelated photons. In [222], the authors investigate the en-

tanglement between two indistinguishable bosons that is created by spatial overlap.

In [223], the authors show that it is possible to activate and distribute of entangle-

ment between two photons in their polarization DoFs that does not require a pair of

entangled photons and the Bell-state measurements.

2.7 Entanglement of indistinguishable particles

Experiments on quantum dots [168, 170], Bose-Einstein condensates [213, 214], ul-

tracold atomic gases [215], etc., support the existence of entanglement of indistin-

guishable particles. The notion of entanglement for distinguishable particles is well

studied in the literature [41], where the standard bipartite entanglement is measured

by Schmidt coefficients [20], von Neumann entropy [57], concurrence [66], log nega-

tivity [59], etc. [55]. Indistinguishability, on the other hand, is represented and ana-
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lyzed via particle-based first quantization approach [143, 144, 145, 146, 147, 148, 149]

or mode-based second-quantization approach [150, 151, 152, 153]. Entanglement in

such a scenario requires measures [155, 156, 157, 158, 159, 160, 161] different from

those of distinguishable particles, but there is no consensus on this in the scientific

community [162, Sec. III], particularly on the issues of physicality [146, 151], acces-

sibility [214, 155], and usefulness [158, 159] of such entanglement. Very recently, the

resource theory of indistinguishable particles [161, 163] has been proposed aiming to

settle this debate.

2.7.1 Lo Franco et al.’s approach to represent indistinguish-

able particles

If the state vector of two indistinguishable particles are labeled by 𝜑 and 𝜓, then the

two-particle state is represented by a single entity |𝜑, 𝜓⟩. The two-particle probability

amplitudes is represented by

⟨𝜙, 𝜁|𝜑, 𝜓⟩ := ⟨𝜙|𝜑⟩ ⟨𝜁|𝜓⟩ + 𝜂 ⟨𝜙|𝜓⟩ ⟨𝜁|𝜑⟩ , (2.24)

where 𝜙, 𝜁 are one-particle states of another global two-particle state vector and

𝜂 = 1 for bosons and 𝜂 = −1 for fermions. The right hand side of Eq. (2.24) is

symmetric if one-particle state position is swapped with another, i.e., |𝜑, 𝜓⟩ = 𝜂 |𝜓, 𝜑⟩.

From Eq. (2.24), the probability of finding two particles in the same state |𝜙⟩ is

⟨𝜙, 𝜙|𝜑, 𝜓⟩ = (1 + 𝜂) ⟨𝜙|𝜑⟩ ⟨𝜙|𝜓⟩ which is zero for fermions due to Pauli exclusion

principle [224] and maximum for bosons. As Eq. (2.24) follows symmetry and linearity

property, the symmetric inner product of states with spaces of different dimensionality

is defined as

⟨𝜓𝑘| · |𝜙1, 𝜙2⟩ ≡ ⟨𝜓𝑘 | 𝜙1, 𝜙2⟩ = ⟨𝜓𝑘|𝜙1⟩ |𝜙2⟩ + 𝜂 ⟨𝜓𝑘|𝜙2⟩ |𝜙1⟩ , (2.25)

where |Φ̃⟩ = |𝜙1, 𝜙2⟩ is the un-normalized state of two indistinguishable particles

and |𝜓𝑘⟩ is a single-particle state. Equation (2.25) can be interpreted as a projective
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measurement where the two-particle un-normalized state |Φ̃⟩ is projected into a single

particle state |𝜓𝑘⟩. Thus, the resulting normalized pure-state of a single particle after

the projective measurement can be written as

|𝜑𝑘⟩ = ⟨𝜓𝑘|Φ⟩√︁
⟨Π(1)

𝑘 ⟩Φ

, (2.26)

where |Φ⟩ := 1√
N |Φ̃⟩ with N = 1 + 𝜂 | ⟨𝜙1|𝜙2⟩ |2 and Π(1)

𝑘 = |𝜓𝑘⟩ ⟨𝜓𝑘| is the one-

particle projection operator. The one-particle identity operator can be defined as

I(1) := ∑︀
𝑘 Π(1)

𝑘 . So, using the linearity property of projection operators, one can write

similar to Eq. (2.25):

|𝜓𝑘⟩ ⟨𝜓𝑘| · |𝜙1, 𝜙2⟩ = ⟨𝜓𝑘|𝜙1⟩ |𝜓𝑘, 𝜙2⟩ + 𝜂 ⟨𝜓𝑘|𝜙2⟩ |𝜙1, 𝜓𝑘⟩ . (2.27)

Note that

I(1) |Φ⟩ = 2 |Φ⟩ , (2.28)

where the probability of resulting the state |𝜓𝑘⟩ is 𝑝𝑘 = ⟨Π(1)
𝑘 ⟩Φ /2. The partial trace

in this method is can be written as

𝜌(1) =1
2Tr(1) |Φ⟩ ⟨Φ|

=1
2
∑︁
𝑘

⟨𝜓𝑘|Φ⟩ ⟨Φ|𝜓𝑘⟩

=
∑︁
𝑘

𝑝𝑘 |𝜑𝑘⟩ ⟨𝜑𝑘| ,

(2.29)

where the factor 1/2 comes from Eq. (2.28).

Another useful concept that of localized partial trace [161], which means that local

measurements are being performed on a region of space 𝑀 where the particle has a

non-zero probability of being found. So, performing the localized partial trace on a

region 𝑀 , we get

𝜌
(1)
𝑀 = 1

N𝑀

Tr(1)
𝑀 |Φ⟩ ⟨Φ| , (2.30)

where N𝑀 is a normalization constant such that Tr(1)𝜌
(1)
𝑀 = 1. The entanglement

66



entropy can be calculated as

𝐸𝑀(|Φ⟩) := 𝑆(𝜌(1)
𝑀 ) = −

∑︁
𝑖

𝜆𝑖ln𝜆𝑖, (2.31)

where 𝑆(𝜌) = −Tr(𝜌ln𝜌) is the von Neumann entropy and 𝜆𝑖 are the eigenvalues of

𝜌
(1)
𝑀 . We will call the state as entangled state if we get a non-zero value of Eq. (2.31).

2.7.2 Hyper-hybrid entanglement using indistinguishable par-

ticles

The circuit of Yurke et al. [216, 217] to generate quantum entanglement between the

same DoFs of two indistinguishable particles (bosons and fermions) is extended by Li

et al. [1] to generate inter-DoF entanglement between two indistinguishable bosons.

Details of their generation scheme are as follows.

For bosons, the second quantization formulation deals with bosonic operators 𝑏𝑖,p
with |𝑖,p⟩ = 𝑏†

𝑖,p |0⟩, where |0⟩ is the vacuum and |𝑖,p⟩ describes a particle with spin

|𝑖⟩ and momentum p. These operators satisfy the canonical commutation relations:

[︁
𝑏𝑖,p𝑖

, 𝑏𝑗,p𝑗

]︁
= 0,

[︁
𝑏𝑖,p𝑖

, 𝑏†
𝑗,p𝑗

]︁
= 𝛿(p𝑖 − p𝑗)𝛿𝑖𝑗. (2.32)

Analysis of the circuit of Li et al. [1] for bosons involves an array of hybrid beam

splitters (HBS) [1, Fig. 3], phase shifts, four orthogonal external modes 𝐿, 𝐷, 𝑅 and

𝑈 and two orthogonal internal modes ↑ and ↓ as shown in Fig. 2-5. Here, particles

exiting through the modes 𝐿 and 𝐷 are received by Alice (A) who can control the

phases 𝜙𝐿 and 𝜙𝐷, whereas particles exiting through the modes 𝑅 and 𝑈 are received

by Bob (B) who can control the phases 𝜙𝑅 and 𝜙𝑈 .

In this circuit, two particles, each with spin |↓⟩, enter the set up in the mode

𝑅 and 𝐿 for Alice and Bob respectively. The initial state of the two particles is

|Ψ0⟩ = 𝑏†
↓,𝑅𝑏

†
↓,𝐿 |0⟩. Now, the particles are sent to HBS such that one output port

of HBS is sent to other party (𝑅 or 𝐿) and the other port remains locally accessible

(𝐷 or 𝑈). Next, each party applies state-dependent (or spin-dependent) phase shifts.
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Figure 2-5: Circuit to generate hyper-hybrid entangled state as proposed by Li et
al. [1]. Here the bi-directional arrow represents the measurement is done either in
spin DoF or in Path DoF.

Lastly, the output of local mode and that received from the other party is mixed with

HBS and then the measurement is performed in either external or internal modes.

The final state can be written as

|Ψ⟩ =1
4
[︁
𝑒𝑖𝜙𝑅

(︁
𝑏†

↓,𝑅 + 𝑖𝑏†
↑,𝑈

)︁
+ 𝑖𝑒𝑖𝜙𝐷

(︁
𝑏†

↑,𝐷 + 𝑖𝑏†
↓,𝐿

)︁]︁
⊗
[︁
𝑒𝑖𝜙𝐿

(︁
𝑏†

↓,𝐿 + 𝑖𝑏†
↑,𝐷

)︁
+ 𝑖𝑒𝑖𝜙𝑈

(︁
𝑏†

↑,𝑈 + 𝑖𝑏†
↓,𝑅

)︁]︁
|0⟩ .

(2.33)

2.8 Quantum teleportation

The verbal description of quantum teleportation is presented in Section 1.2.1. In this

section, we present the details mathematics of the teleportation process.

2.8.1 Teleportation using distinguishable particles

One of the major breakthrough application of quantum theory is teleportation of

unknown quantum state of a particle [43, 212]. The brief description of quantum

teleportation protocol is as follows:

1. Alice possess a particle 𝑋 with an unknown quantum state |𝜑⟩𝑋 which as to
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Figure 2-6: Standard teleportation protocol

be teleported to Bob who is at distant from Alice. Also Alice and Bob shares a

maximally entangled state |𝜓⟩𝐴𝐵 where particle 𝐴 is with Alice and particle 𝐵

is with Bob.

2. Alice performs Bell state measurements (BSM) [43] jointly in her particles 𝐴

and 𝑋 and sends the measurement result to Bob via classical communication

channels.

3. Based on the measurement result of Alice, Bob performs some unitary operation

on his particle 𝐵. Now the unknown state is teleported from the particle 𝑋 to

𝐵.

One may argue that we get a cloned version of the state |𝜑⟩ but after BSM, the

original particle is destroyed so that we can have only one copy of the state |𝜑⟩𝐵 at

Bob’s side. This process is shown schematically in Fig. 2-6.

Fidelity calculation

The fidelity of quantum teleportation (𝑓) [225] is the overlap between the initial

quantum state before teleportation denoted by the density matrix 𝜌𝑖𝑛 and the density

matrix obtain after teleportation denoted by 𝜌𝑜𝑢𝑡 which is defined as

𝑓 := Tr
√︁√

𝜌in𝜌out
√
𝜌in. (2.34)
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If the shared entanglement between Alice and Bob is maximally entangled then we get

unit fidelity quantum teleportation (UFQT) and if the entanglement is non-maximal

then we get the fidelity in between 0 and 2
3 . If there is no entanglement between Alice

and Bob, i.e., for separable states, the fidelity is 2
3 .

2.8.2 Relation between teleportation fidelity and singlet frac-

tion

Let us assume Alice will teleport an unknown state to Bob. They share a singlet

state of two spin-𝑠 particles denoted by

𝑃+ = |𝜓+⟩ ⟨𝜓+| , |𝜓+⟩ = 1√
𝑑

𝑑∑︁
𝑖=0

|𝑖⟩ |𝑖⟩ , 𝑑 = 𝑠2 + 1. (2.35)

Teleportation fidelity [172] measures the closeness between the initial state 𝜌𝑖𝑛

that we want to teleport and the final state 𝜌𝑜𝑢𝑡 obtained after the teleportation

protocol. It is given by

𝑓 := Tr
√︂√︁

𝜌𝑖𝑛𝜌𝑜𝑢𝑡
√︁
𝜌𝑖𝑛. (2.36)

On the other hand, singlet fraction [52] of a state 𝜌 measures the maximum overlap

of 𝜌 with maximally entangled states. It is given by

𝐹 := max
𝜓

⟨𝜓 | 𝜌 | 𝜓⟩ , (2.37)

where |𝜓⟩ varies over all maximally entangled states.

Now we will derive the relation between teleportation fidelity and singlet fraction

for the one-parameter family of states as given in [52] which is given by

𝜌𝑝 = 𝑝𝑃+ + (1 − 𝑝)𝐼 ⊗ 𝐼

𝑑2 , 0 ≤ 𝑝 ≤ 1 (2.38)

This is called noisy singlets which is the most natural generalizations of the 2𝑋2

Werner states. Now we will calculate teleportation fidelity and singlet fraction for

the state given in Eq. (2.38).
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For standard teleportation protocol [43], the fidelity is 1 for singlet state. For a

completely random noise represented by the second term of the right hand side of

Eq. (2.38), i.e., 𝐼 ⊗ 𝐼

𝑑2 as the average final state after teleportation will be 𝐼

𝑑
at the

receiver the final state after teleportation will not depend on the initial state before

teleportation. Thus the fidelity will be 𝐼

𝑑
. Thus for the state in Eq. (2.38), the

teleportation fidelity is given by

𝑓 = 𝑝+ (1 − 𝑝)1
𝑑
,

1
𝑑

≤ 𝑝 ≤ 1. (2.39)

The singlet fraction for the state in Eq. (2.38) can be calculated using Eq. (2.37).

Clearly, for singlet state, the value of 𝐹 is 1 and for the completely random noise, the

value of 𝐹 is 1
𝑑2 . Thus the value of 𝐹 for the state in Eq. (2.38) is given by

𝐹 = 𝑝+ (1) − 𝑝) 1
𝑑2 ,

1
𝑑2 ≤ 𝑝 ≤ 1. (2.40)

Thus for Eq. (2.39) and (2.40), we get

𝑓 = 𝐹𝑑+ 1
𝑑+ 1 . (2.41)

We can now formate that the state 𝜌𝑝 in Eq (2.38) is separable if and only if

0 ≤ 𝑝 ≤ 1
(𝑑+ 1) , or 1

𝑑2 ≤ 𝑝 ≤ 1
𝑑
, or 1

𝑑
≤ 𝑓 ≤ 2

(𝑑+ 1) . (2.42)

2.9 Entanglement swapping

A brief overview of entanglement swapping process is described in Section 1.2.1. In

this section, we present the details mathematical background of the entanglement

swapping process.
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2.9.1 Entanglement swapping using distinguishable particles

Entanglement swapping is the process of creating entanglement between two particles

who have never interacted before. The entanglement swapping protocol is as follows:

Figure 2-7: Standard Entanglement Swapping protocol

1. Suppose two pair of particles 𝐴 and 𝐵 is maximally entangled and similarly

another pair of particles 𝐶 and 𝐷 is also maximally entangled. Now the particles

𝐴 and 𝐷 is never interacted before. Our aim is to create entanglement between

the particles 𝐴 and 𝐷.

2. Particles 𝐵 and 𝐶 are brought to a lab and BSM is performed jointly in the

particles𝐵 and 𝐶 and the measurement result is send to the labs having particles

𝐴 and 𝐷 via classical communication channels.

3. Now based on the measurement result, suitable unitary operation is performed

to the particles 𝐴 and 𝐷. After that, the particles 𝐴 and 𝐷 becomes entangled.

This process is shown schematically in Fig. 2-7. This is very useful for quantum

repeaters.
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2.10 Some quantum cryptographic protocols

In this section, we discuss three cryptographic protocols, namely, Quantum private

query [226, 227], Local Clauser-Horne-Shimony-Holt (CHSH) protocol [228], and

Quantum pseudo-telepathy protocol [178, 179].

2.10.1 Quantum private query protocol

Quantum private query (QPQ) is a cryptographic protocol which deals with the

communication between a database owner and its clients. Registered client can query

about required entry in the database and the server returns appropriate answer to

that query. The security in this protocol depends upon two things:

1. The server should not reveal any extra information to the clients other than

their queries.

2. The server should not gain any extra information about the queries of the clients.

Conventionally, it is assumed Bob as the database owner or the server and Alice as

the client. Like other cryptographic protocols, the communication will start with the

key establishment part. But there is a major difference with normal quantum key

distribution protocols where the whole key is shared between Alice and Bob. Here,

the key is distributed between Alice and Bob such that

1. Bob, the database owner knows the whole key.

2. Alice, the client knows only a part of the key or the value of some specific

positions of the key.

3. The database owner has no information about the positions of the key known

to the clients.

As a result, unlike normal quantum key distribution protocols, there is no need for

any external advisories. Here, Alice and Bob both may work like adversary to each

other. The motivation of Alice will be to gain more information about the database
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whereas Bob will try to know the position of the bits of the key known to Alice and

hence gain information about her queries.

Here, we will discuss the QPQ protocol as proposed in [226, 227] which is based

on B92 quantum key distribution [229] scheme. There are two phases

1. Key generation: in this phase, a secure key is established between Bob and

Alice. This can be done in two ways:

(a) The source shares entangled pair of particles to Bob and Alice in the

specific form

|𝜓⟩𝐵𝐴 = 1√
2

(|0⟩𝐵 |𝜑0⟩𝐴 + |1⟩𝐵 |𝜑1⟩𝐴) (2.43)

where

|𝜑0⟩𝐴 = cos
(︁
𝜃
2

)︁
|0⟩ + sin

(︁
𝜃
2

)︁
|1⟩

|𝜑1⟩𝐴 = cos
(︁
𝜃
2

)︁
|0⟩ − sin

(︁
𝜃
2

)︁
|1⟩

and 0 < 𝜃 < 𝜋
2 .

(b) Now, after sharing Bob measures his qubits in {|0⟩𝐵 , |1⟩𝐵} basis and Alice

measures her qubits in either
{︁
|𝜑0⟩𝐴 , |𝜑⊥

0 ⟩𝐴
}︁

basis or
{︁
|𝜑1⟩𝐴 , |𝜑⊥

1 ⟩𝐴
}︁

basis.

By simple calculations, it can be concluded if Alice’s measurement output is

|𝜑⊥
0 ⟩ or |𝜑⊥

1 ⟩, then Bob’s measurement output must be 1 or 0 respectively. After

classical post-processing, by this way, a key can be established between Alice

and Bob such a way that Alice can get only one or more bits of information of

the whole key whereas Bob has the knowledge of the whole key but Bob has no

information about the bit or bits of the key is known to Alice.

2. Private query: After the key is established let 𝐾, then let us assume Alice knows

the 𝑗 th bit of key and she make a query about the 𝑖th element of the database.

Then she calculated an inter 𝑠 = (𝑗 − 𝑖). Alice sends 𝑠 to Bob. He then shifts

the key 𝐾 by 𝑠 amount and generates a new key, say �̄�. Using this new key �̄�,
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Bob encrypts his database using a one-time pad. Bob then transmits the whole

database to Alice. Alice can easily get the 𝑗th bit by decrypting the database.

Device independent tests

The security of the above protocol lies in the fact that the source share the specific

state to the Bob as given in Eq. (2.43) for a specific value of 𝜃. It can be shown that

if the state is not exactly the same, i.e., for some value 𝜃 + 𝜖 where 𝜖 ̸= 0, the Alice

can always generate more information [227]. To mitigate this problem, Bob has to

has to remove the trust on the source and her should test the correctness of the state

given to him at his end. There are several tests to check the correctness of the given

state. The test is chooses which gives the maximum success probability.

2.10.2 Local Clauser-Horne-Shimony-Holt (CHSH) test

Bob has to perform this local CHSH test on some of the randomly chosen 𝑛 pairs.

The main steps are

1. Bob choose two random bit strings 𝑥𝑖, 𝑦𝑖 ∈ {0, 1} where 𝑖 ∈ {1, 2, . . . , 𝑛}.

2. If 𝑥𝑖 = 0, the Bob measures the first particle in {|0⟩ , |1⟩} basis, else in {|+⟩ , |−⟩}

basis.

3. Similarly, if 𝑦𝑖 = 0, the the Bob measures the first particle in {|𝜓1⟩ , |𝜓⊥
1 ⟩} basis,

else in {|𝜓2⟩ , |𝜓⊥
2 ⟩} basis where

|𝜓1⟩ =cos
(︃
𝜓1

2

)︃
|0⟩ + sin

(︃
𝜓1

2

)︃
|1⟩ ,

|𝜓2⟩ =cos
(︃
𝜓2

2

)︃
|0⟩ + sin

(︃
𝜓2

2

)︃
|1⟩ .

(2.44)

4. The measurement result is stored in another bit stings 𝑎𝑖, 𝑏𝑖 ∈ {0, 1} such that

if the measurement result of fist particle is |0⟩ or |+⟩, then 𝑎𝑖 = 0, else 𝑎𝑖 = 1.

5. Similarly, if the measurement result of second particle is |𝜓1⟩ or |𝜓2⟩, then

𝑎𝑖 = 0, else 𝑎𝑖 = 1.
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6. The test is called successful if 𝑎𝑖 ⊗ 𝑏𝑖 = 𝑥𝑖 ∧ 𝑦𝑖.

The success probability of this test is

𝑃𝑠 = 1
8 (sin𝜃 (sin𝜓1 + sin𝜓2) + cos𝜓1 − cos𝜓2) + 1

2 (2.45)

which is dependent on the values of 𝜃, 𝜓1, and 𝜓2. The maximum value of 𝑃𝑠 is 0.85.

2.10.3 Quantum pseudo-telepathy test

Using Quantum pseudo-telepathy test [178, 179] the success probability can reach

upto unity. The steps of this tests are given below

1. With the help of an ancilla qubit 𝑋, the state in Eq. (2.43) can be transformed
into the following state

|𝜓⟩𝐵𝐴𝑋 = 1√
2

(︂
cos𝜃2 |000⟩𝐵𝐴𝑋 + sin𝜃2 |010⟩𝐵𝐴𝑋 + cos𝜃2 |111⟩𝐵𝐴𝑋 − sin𝜃2 |100⟩𝐵𝐴𝑋

)︂
.

(2.46)

2. Now Bob will randomly select a three bit numbers such that there is an even

number of 1’s in the string. Now based of the input, he performs some specific

measurements in the state in Eq. 2.46. Based on the outputs, he has to produce

output that contains an even number of 1‘s if and only if the number of 1‘s in

the input is divisible by 4.

Now using some specific measurements as given in [179] it can be shown that the

success probability is

𝑃𝑠 = 1
4 (3 + cos𝜃) . (2.47)

This value goes to 1 asymptomatically.
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Chapter 3

Hardy’s non-locality in

superconducting qubits

In this chapter, we will introduce a new error-modeling for superconducting qubits

and its experimental verification in IBM quantum experience. Here, we argue that

for practical verification of Hardy’s test, the error-modeling used for optical circuits

cannot be used for superconducting qubits. So, we propose a new error-modeling and

a new method to estimate the lower bound on Hardy’s probability for superconducting

qubits. We also point out that the earlier tests performed in optical circuits and in the

IBM quantum computer have not analyzed the test results in a statistically correct

and coherent way. We analyze our data using Student’s t-distribution [177] which is

the statistically correct way to represent the test results. We experimentally verify

Hardy’s paradox for two qubits on a quantum computer based on superconducting

circuits. Our statistical analysis leads to the conclusion that any two-qubit non-

maximally entangled state (NMES) gives a nonzero value of Hardy’s probability,

whereas any two-qubit maximally entangled state (MES) as well as any product state

(PS) yields a zero value of Hardy’s probability. We identify the difficulties associated

with the practical implementation of quantum protocols based on Hardy’s paradox

and discuss how to overcome them. We propose two performance measures for any

two qubits of any quantum computer based on superconducting qubits.

This chapter is based on the work in [230].
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3.1 Practical verification of Hardy’s test

In the section 2.2.2 of Chapter 2, we have discussed the standard Hardy’s paradox.

In this section, we will discuss how Hardy’s paradox can be verified practically.

For any experimental set-up, it is quite obvious that the joint probabilities de-

scribed in Equations (2.4)-(2.7) in the section 2.2.2 of Chapter 2 of may not be

zero due to errors caused by any external environment or internal device or both.

So, Equations (2.4)-(2.7) can be written with some error parameter 𝜖 [231]. Here

we present the error-model in a slightly different manner so that the result of the

practical experiment on an unknown state can be interpreted in a statistically correct

and coherent way.

𝑃 (+1,+1|𝐴1, 𝐵1) =𝜖1, (3.1)

𝑃 (+1,−1|𝐴2, 𝐵1) =𝜖2, (3.2)

𝑃 (−1,+1|𝐴1, 𝐵2) =𝜖3, (3.3)

𝑃 (+1,+1|𝐴2, 𝐵2) =𝜖5 = 𝜖4 + 𝑞, where

⎧⎪⎪⎨⎪⎪⎩
𝑞 = 0 for LHV theory,

𝑞 > 0 for non-locality,
(3.4)

and 0 ≤ 𝜖𝑖 ≤ 1, ∀ 𝑖 ∈ {1, 2, 3, 5}. The bounds of 𝜖4 become 0 ≤ (𝜖4 + 𝑞) ≤ 1 or

−𝑞 ≤ 𝜖4 ≤ (1 − 𝑞). For every MES and every PS of two qubits, the right-hand side

of Equation (3.4) is 𝜖5 = 𝜖4, i.e., 𝑞 = 0, which supports LHV theory. But for every

NMES, it is 𝜖5 = 𝜖4 +𝑞 where 𝑞 > 0, which supports non-locality. Thus, by inspecting

the values of 𝑞 in an experiment, it may be possible to infer whether the underlying

state is MES/PS or NMES.

3.1.1 Connection to the CHSH inequality

Using simple set-theoretic arguments, one can show that Hardy’s equations are a

special case of the famous CHSH inequality [182]. The CHSH version of Hardy’s
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Equations [183] is described as

𝑃 (+1,+1|𝐴2, 𝐵2) − 𝑃 (+1,+1|𝐴1, 𝐵1) − 𝑃 (+1,−1|𝐴2, 𝐵1) − 𝑃 (−1,+1|𝐴1, 𝐵2) ≤ 0.
(3.5)

A violation of Equation (3.5) means a violation of local realism, which supports non-

locality. Putting the ideal values of the probabilities from Equations (2.4)-(2.7) into

Equation (3.5), we get 𝑞 ≤ 0. So, 𝑞 = 0 supports LHV theory and 𝑞 > 0 supports non-

locality. But when the practical values of the probabilities from Equations (3.1)-(3.4)

are put into Equation (3.5), we get

𝜖5 − 𝜖1 − 𝜖2 − 𝜖3 ≤ 0, or 𝜖5 ≤ 𝜖1 + 𝜖2 + 𝜖3. (3.6)

i.e.,

𝜖5 ≤ 𝜖1 + 𝜖2 + 𝜖3. (3.7)

3.2 Our proposed error modeling in superconduct-

ing qubits

In this section, we have first elaborated the difference between the error distribution

in optical and superconducting qubits. Then we have proposed a new error modeling

for superconducting qubits. Finally, we have discussed bounds in errors in optical

circuits vs superconducting qubits.

3.2.1 Error distributions in optical circuits vs superconduct-

ing qubits

If we perform Hardy’s experiment in optical set-up [132, 133, 134, 135, 136, 137, 138,

139, 140, 141, 185, 186], errors can occur in many different ways, such as: (i) the

preparation of the ideal quantum state, (ii) in the construction of the measurement

operators 𝐴𝑖 and 𝐵𝑗 where 𝑖, 𝑗 ∈ {1, 2} (as defined in Section 2.2.2 in Chapter 2),
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(iii) due to the detection problems of the particles (this includes particle loss), etc.

Introducing an error in Equation (2.4) due to the above-mentioned reasons has a direct

impact on Equation (2.7), i.e., the logic of Hardy’s argument ceases to work. Similarly,

when Equation (2.5) and Equation (2.6) are non-zero, they make a contribution to

the right-hand side of Equation (2.7). So, in an optical set-up, if Equation (3.7) is

violated, it leads to the violation of local realism. No estimation of 𝑞 is required. The

work [133] does exactly this check of Equation (3.7) in its optical circuits.

But in the case of superconducting qubits, there are three types of errors, namely

gate error, readout error, and multi-qubit gate error [106]. Unlike in optical circuits,

these errors are common to all superconducting qubits circuit and not specific to the

circuits to test Hardy’s paradox. So, having an error in Equation (2.4) does not have

any impact on the right-hand side of Equation (2.7) and Hardy’s argument still works

with this error. Similar reason applies when Equation (2.5) and Equation (2.6) are

not zero. So, in this case, to test the violation of local realism, we will estimate the

value of 𝑞 in Equation (3.4) by a new method which will be described in the next

section.

3.2.2 Our proposed model for verifying whether Hardy’s prob-

ability greater than zero in superconducting qubits

We recall from Equation (3.4) that 𝜖5 = 𝜖4 + 𝑞. While doing the experiment, we can

observe only the values of 𝜖5. To estimate the value of 𝑞, we need to get the values of

𝜖4. Now, the values of 𝜖4 can be observed from the experiment directly for every MES

as well as PS of two qubits as 𝑞 = 0, but it cannot be observed directly for NMES as

𝑞 > 0.

However, because of the nature of errors in superconducting qubits as explained

in Section 3.2.1, the values of 𝜖4 in both the cases (for 𝑞 = 0 & 𝑞 > 0) will follow

the same distribution. So, its maximum value, say Σ4, can be estimated from a large

number of known MES and PS (with 𝑞 = 0), and then this estimate can be used in
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Equation (3.4) to infer about 𝑞 for any unknown state as follows:

𝜖5 ≤ Σ4 + 𝑞, or 𝑞 ≥ 𝜖5 − Σ4. (3.8)

or

𝑞 ≥ 𝜖5 − Σ4. (3.9)

From Equation (3.9), we can define the lower bound on 𝑞 as

𝑞𝑙𝑏 = 𝜖5 − Σ4. (3.10)

If 𝑞𝑙𝑏 > 0, then Equation (3.9) implies that Hardy’s probability 𝑞 > 0.

3.2.3 Bounds in errors in optical circuits vs superconducting

qubits

For Hardy’s test in optical circuits, if 𝜖1 = 𝜖2 = 𝜖3 = 𝜖, then from Equation (3.7), we

can get the bounds in errors, i.e., 0 ≤ 𝜖 < 1
3 [180]. But if 𝜖1 ̸= 𝜖2 ̸= 𝜖3, then these

bounds are not valid because there may be a case where any of 𝜖1, 𝜖2, 𝜖3 can be close

to one and the rest close to zero. Then theoretically the bounds in errors are between

zero and one.

For Hardy’s test in superconducting qubits, as explained in Section 3.2.1, all

the error parameters 𝜖1, 𝜖2, 𝜖3, 𝜖4, 𝜖5 follow the same distribution. So, the bounds in

𝜖1, 𝜖2, 𝜖3, 𝜖4, 𝜖5 will also be the same, i.e., in between zero and one. But to verify

Hardy’s circuit, the maximum value of 𝜖4, i.e., Σ4 needs to be bounded. From Equa-

tion (3.9), the theoretical bound of Σ4 is (1 − 𝑞𝑚𝑎𝑥) = (1 − 0.09017) ≈ 0.90983. So,

this bound is also valid for 𝜖1, 𝜖2, 𝜖3. In the case of optical circuits, when 𝜖1 ̸= 𝜖2 ̸= 𝜖3,

the bounds are trivial, but for the case of superconducting qubits, the error bounds

are defined independently, i.e., whether all of them takes the same value or not. It

may be noted that if we get a value of any of 𝜖1, 𝜖2, 𝜖3 greater than 0.90983, then that

circuit cannot be used for Hardy’s test using superconducting qubits. But in optical

circuits, in theory, if we get one of the values of 𝜖1, 𝜖2, 𝜖3 greater than 0.90983 and the
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rest zero, we still can perform Hardy’s test.

The basic motivation for performing Hardy’s test in superconducting qubits is

to show the violation of local realism in superconducting qubits. Though Hardy’s

paradox is already tested in optical circuits [132, 133, 134, 135, 184, 136, 137, 138,

139, 140, 141, 185, 186], none of them have been able to estimate the lower bound

on Hardy’s probability, i.e., 𝑞𝑙𝑏 from their experiments. The advantage of performing

Hardy’s test in superconducting qubits is that we can estimate the lower bound on

of Hardy’s probability 𝑞𝑙𝑏 as discussed in Section 3.2.2.

3.3 Circuits for Hardy’s test using superconduct-

ing qubits

We perform a series of experiments to check Hardy’s non-locality for two qubits in the

IBM quantum computer [106]. For simplicity, we use the ibmqx4 1 chip which is five-

qubit, as we only need two qubits for our experiment. This experiment can also be

done using other chips consisting of any other number of qubits (more than or equal

to two). It uses a particular physical type of qubit called a superconducting transmon

qubit made from superconducting materials niobium and aluminum, patterned on a

silicon substrate. During all the experiments, the fridge temperature is maintained

at 0.021 K. Any experiment in the IBM quantum computer can be performed for 1

shot, 1024 shots, 4096 shots or 8192 shots in every run.

In the current IBM ibmqx4 chip topology [106], for using multi-qubit gates like

𝐶𝑁𝑂𝑇 , there is a restriction, i.e., not all pairs of qubits can be used for circuit

implementation. The list of possible combinations are given in details in the IBM

website [106] and it is also discussed in Section 3.4.2 in details. It should be noted that

all the qubits are subject to different types of errors as given in the IBM website [106].

Initially, we implement our circuit by choosing any possible pair of qubits and then
1IBM has several chips and a subset of those becomes available for experiments from time to time.

Currently, the ibmqx4 chip is under maintenance, while the available chips are ibmqx2, ibmq_vigo,
ibmq_ourense and ibm_16_melbourne.

82



validate the results for the rest of the possible combinations of qubits.

In [183], a circuit consisting of two coupled electronic Mach-Zehnder (MZ) inter-

ferometers has been proposed for Hardy’s test which is similar to the Hardy’s original

thought experiment [34]. We implement this circuit in the IBM quantum computer.

As described in [183], there are three important parameters of this experiment: beam

splitters 𝑈𝐵(𝜃) =
(︁ cos𝜃 −sin𝜃

sin𝜃 cos𝜃
)︁
, phase shifter 𝑈𝑃 (𝜑) =

(︁
1 0
0 𝑒𝑖𝜑

)︁
, and the coupling

𝑈𝐶(𝜑) =
(︃

1
1

1
𝑒𝑖2𝜑

)︃
which can be expressed as

𝑈𝐵(𝜃) =𝑈3(2𝜃, 0, 0),

𝑈𝑃 (𝜑) =𝑈1(𝜆),

𝑈𝐶(𝜑) =𝑀3 · 𝐶𝑁𝑂𝑇 ·𝑀2 · 𝐶𝑁𝑂𝑇 ·𝑀1,

(3.11)

where

𝑈1(𝜆) =

⎛⎜⎝1 0

0 𝑒𝜆𝑖

⎞⎟⎠ ,

𝑈3(𝜃, 𝜆, 𝜑) =

⎛⎜⎝ cos 𝜃2 −𝑒−𝜆𝑖sin 𝜃2
𝑒−𝜆𝑖sin𝜑2 𝑒𝑖(𝜑+𝜆) cos 𝜃2

⎞⎟⎠ ,
𝑀1 =𝐼𝑑⊗ 𝑈1(−𝜆),

𝑀2 =𝑈1(𝜆) ⊗ 𝑈1(−𝜆),

𝑀3 =𝐼𝑑⊗ 𝑈1(2𝜆).

(3.12)

𝐶𝑁𝑂𝑇 is a controlled-NOT gate and 𝐼𝑑 is the identity gate. Here 𝑈1(𝜆), 𝑈3(𝜃, 𝜆, 𝜑),

𝐶𝑁𝑂𝑇 , and 𝐼𝑑 are available as standard gates provided by the IBM quantum com-

puter [106]. We decompose the coupling 𝑈𝐶(𝜑) by the standard IBM gates is shown

in Equation (3.11). But it can also be decomposed in different ways such that the

total number of gates are reduced further and that is left as future work.
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𝜃 𝜑 state |𝜓⟩
0 any

value
PS 1√

2
(|0⟩ + |1⟩) ⊗ |0⟩

any
value

0 PS 1√
2

(|0⟩ +
|1⟩)⊗(cos𝜃|0⟩+sin𝜃|1⟩)

90 any
value

PS 1√
2

(|0⟩ + 𝑒𝑖2𝜑|1⟩) ⊗ |1⟩

45 90 MES 1
2(|00⟩ + |01⟩ + |10⟩ − |11⟩)

Table 3.1: Maximally entangled states (MES) and product states (PS) based on
different values of 𝜃 and 𝜑 in between 0 to 90 degrees.

For Hardy’s test, the state |𝜓⟩ for Alice and Bob is considered in [183] as

|𝜓⟩ = 𝑉0(𝑉1 ⊗ 𝑉2)|00⟩ = cos𝜃√
2

(|00⟩) + |10⟩) + sin𝜃√
2

(|01⟩) + 𝑒𝑖2𝜑|11⟩), (3.13)

where 𝑉0 = 𝑈𝐶(𝜑), 𝑉1 = 𝑈𝐵

(︂
𝜋

4

)︂
, and 𝑉2 = 𝑈𝐵(𝜃). The state |𝜓⟩ is expressed by the

IBM gates is shown in Figure 3-1 where 𝑄𝐴 and 𝑄𝐵 are the qubits for Alice and Bob

respectively. The values of 𝜃 and 𝜑 in between 0 to 90 degrees for which |𝜓⟩ is found

to be MES as well as PS are given in Table 3.1. The measurements for Alice and Bob

are described as follows.

𝐴1 =𝑈𝐵
(︂
𝜋

4

)︂
= 𝑈3

(︂
𝜋

2 , 0, 0
)︂
,

𝐵1 =𝑈𝐵 (0) = 𝑈3 (0, 0, 0) ,

𝐴2 =𝑈𝑃 (2𝜑)𝑈𝐵
(︂
𝜋

4

)︂
𝑈𝑃 (−2𝜑) = 𝑈1(2𝜆)𝑈3

(︂
𝜋

2 , 0, 0
)︂
𝑈1(−2𝜆),

𝐵2 =𝑈𝑃 (𝜑)𝑈𝐵(𝜒)𝑈𝑃 (−𝜑) = 𝑈1(𝜆)𝑈3 (2𝜒, 0, 0)𝑈1(−𝜆),

(3.14)

where cot𝜒 = tan𝜃cos𝜑. The measurements are done in 𝜎𝑧 basis. The experimental

circuits of Equations (2.4), (2.5), (2.6), and (2.7) for the state |𝜓⟩ using the above

measurements in the IBM quantum computer are given in Figures 3-2, 3-3, 3-4, and 3-

5 respectively. The theoretical value of 𝑃 (+1,+1|𝐴2, 𝐵2) is given by |⟨𝜓|𝐴2 ⊗𝐵2|𝜓⟩|2,
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which using Equation (3.13) and Equation (3.14) becomes

𝑞 =
⃒⃒⃒⃒1
2cos𝜃cos𝜒

(︁
1 − 𝑒−2𝑖𝜑

)︁⃒⃒⃒⃒2
. (3.15)

Figure 3-1: The state |𝜓⟩ for Equation (3.13).

Figure 3-2: Quantum circuit and measurement for 𝑃 (+1,+1|𝐴1, 𝐵1) for Equa-
tion (3.1).

The maximum value of 𝑞, i.e., 𝑞𝑚𝑎𝑥 is found from Equation (3.15) when

cos(2𝜃) = cos(2𝜑) = 2 −
√

5. (3.16)

If the variation of 𝜃 and 𝜑 are carried out in between 0 to 90 degrees, then 𝑞𝑚𝑎𝑥 occurs

at 𝜃 = 𝜑 = 51.827 degrees approximately. But in general similar analysis can be done

for any values of 𝜃 and 𝜑. In Figure 3-6, we plot2 the values of 𝑞 from Equation (3.15)
2We use MATLAB® to get these values.
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Figure 3-3: Quantum circuit and measurement for 𝑃 (+1,−1|𝐴2, 𝐵1) for Equa-
tion (3.2).

Figure 3-4: Quantum circuit and measurement for 𝑃 (−1,+1|𝐴1, 𝐵2) for Equa-
tion (3.3).

by varying 𝜃 and 𝜑 from 0 to 360 degrees. In this figure, we can see that 𝑞𝑚𝑎𝑥 is

achieved for 𝜃 = 𝜑 = 51.827 degrees and also for other values of 𝜃 and 𝜑 such that

Equation (3.16) is satisfied.

For 𝜑 = 90 and 𝜃 ̸= {0, 45, 90} degrees, from Equation (3.13), we get |𝜓⟩ as NMES.

This means, if we perform Hardy’s test, a non-zero value of 𝑞 in Equation (2.7) has to

be found. But when 𝜑 = 90 degree, we get 𝜒 = 90 degree which means the right-hand

side of Equation (3.15) is zero. So, in this experimental set-up, Hardy’s test fails for

all NMES for the values of 𝜑 = 90 and 𝜃 ̸= {0, 45, 90} degrees.
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Figure 3-5: Quantum circuit and measurement for 𝑃 (+1,+1|𝐴2, 𝐵2) for Equa-
tion (3.4).

Figure 3-6: The variation of 𝜃 and 𝜑 in degrees vs the values of 𝑞 from Equation (3.15).

Boundary values of 𝜒

In Section 3.3, 𝜒 is defined as cot𝜒 = tan𝜃cos𝜑. When 𝜃 = 90 degree and 𝜑 = 90

degree, we get tan𝜃 = ∞ and cos𝜑 = 0, which leads to cot𝜒 = ∞ · 0. This is an

indeterminate form.

When 𝜃 → 90+ and 𝜑 → 90+, the value of 𝜒 is positive. When 𝜃 → 90+ and

𝜑 → 90−, the value of 𝜒 is negative. When 𝜃 → 90− and 𝜑 → 90+, the value of 𝜒 is

negative. When 𝜃 → 90− and 𝜑 → 90−, the value of 𝜒 is positive.
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So, the limit does not exist. More formally,

lim
(𝜃,𝜑)→(𝜋

2 ,
𝜋
2 )

tan𝜃cos𝜑

= lim
(𝑥,𝑦)→(0,0)

tan
(︂
𝑥+ 𝜋

2

)︂
cos

(︂
𝑦 + 𝜋

2

)︂
= lim

(𝑥,𝑦)→(0,0)
cot𝑥sin𝑦,

(3.17)

where 𝑥 =
(︁
𝜃 − 𝜋

2

)︁
and 𝑦 =

(︁
𝜑− 𝜋

2

)︁
. Now changing the co-ordinate system from

rectangular to polar co-ordinate system and substituting 𝑥 = 𝑟 cos𝜙 and 𝑦 = 𝑟 sin𝜙,

we can write the above expression as

lim
𝑟→0

cot (𝑟cos𝜙) sin (𝑟sin𝜙)

= lim
𝑟→0

cos (𝑟cos𝜙)
sin (𝑟cos𝜙) sin (𝑟sin𝜙)

= lim
𝑟→0

(︁
1 − (𝑟cos𝜙)2 + · · ·

)︁
(︁
𝑟cos𝜙− (𝑟cos𝜙3)

3! + · · ·
)︁(︃𝑟sin𝜙− (𝑟sin𝜙3)

3! + · · ·
)︃

= lim
𝑟→0

(︁
1 − (𝑟cos𝜙)2 + · · ·

)︁
𝑟
(︁
cos𝜙− 𝑟2(cos𝜙3)

3! + · · ·
)︁𝑟(︃sin𝜙− 𝑟2 (sin𝜙3)

3! + · · ·
)︃

= sin𝜙
cos𝜙 = tan𝜙.

(3.18)

So, 𝜒 doesn’t have any definite value, but it depends on 𝜙.

3.3.1 How to calculate the difference between two Student’s

t-distributed variables?

In the section 2.1 of Chapter 2, we have discussed how to perform analysis of any

experimental results. Using that we will now calculate 𝑞𝑙𝑏.

To calculate 𝑞𝑙𝑏 from Equation (3.10), we need to calculate the statistics for the

difference of two random variables 𝑋 and 𝑌 corresponding to the experimental values

of 𝜖5 and Σ4 respectively. Here both 𝑋 and 𝑌 are assumed to follow standard normal

distributions. Also, for 𝑛 number of samples, let the sample means of 𝑋 and 𝑌 be �̄�

and 𝑌 respectively and the sample standard deviations be 𝑆𝑋 and 𝑆𝑌 respectively.
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Then for some value of 𝛼, let
(︁
�̄� ± 𝑡𝑋

)︁
where 𝑡𝑋 = 𝑡𝛼

2
𝑆𝑋√
𝑛

represents the (1 − 𝛼)%

confidence interval around the mean of 𝑋. Similarly, let
(︁
𝑌 ± 𝑡𝑌

)︁
where 𝑡𝑌 = 𝑡𝛼

2
𝑆𝑌√
𝑛

represents the same for the random variable 𝑌 . Now if we want to calculate the value

of another Student’s t-distributed random variable 𝑊 such that 𝑊 = 𝑋−𝑌 , then the

sample mean �̄� of 𝑊 is given by �̄� =
(︁
�̄� − 𝑌

)︁
and the sample standard deviation

is given by 𝑆𝑊 =
√︁
𝑆2
𝑋 + 𝑆2

𝑌 . Then the (1 − 𝛼)% confidence interval around mean of

𝑊 is
(︁
�̄� ± 𝑡𝑊

)︁
where 𝑡𝑊 = 𝑡𝛼

2
𝑆𝑊√
𝑛

. Now the value of 𝑊𝑙𝑏 will be

𝑊𝑙𝑏 =
(︁
�̄� − 𝑡𝑊

)︁
=
⎛⎝�̄� − 𝑌 − 𝑡𝛼

2

√︁
𝑆2
𝑋 + 𝑆2

𝑌√
𝑛

⎞⎠ . (3.19)

We can use Equation (3.19) to estimate 𝑞𝑙𝑏 of 𝑞𝑙𝑏 as defined in Equation (3.10) as

𝑞𝑙𝑏 =
(︁
𝜖5 − Σ̄4 − Δ

)︁
where Δ = 𝑡𝛼

2

√︁
𝑆2
𝜖5 + 𝑆2

Σ4√
𝑛

. (3.20)

Here 𝜖5 and 𝑆𝜖5 are the sample mean and sample standard deviation of 𝜖5 respectively

over 𝑛 number of samples. Similarly, Σ̄4 and 𝑆Σ4 are the corresponding quantities

for Σ4. When the value of 𝛼 increases, the confidence in data (1 − 𝛼) decreases. So,

the value of 𝑡𝑊 increases because the value of 𝑡𝛼
2

is computed from the minimum side

of the distribution and as per Equation (3.19), the value of 𝑊𝑙𝑏 decreases. Thus, in

Equation (3.20), as 𝛼 increases, Δ increases, and so 𝑞𝑙𝑏 decreases. Note that, all the

statistical analysis is done for certain fixed data [177].

Given an unknown state, to find whether that state is NMES or not, create an

experimental set-up where Equations (2.4)-(2.6) are satisfied theoretically and Equa-

tions (3.1)-(3.3) are validated experimentally. Then we use a two-phase procedure as

presented in Algorithm 1.

In this way, we can identify whether an unknown state is NMES or not with some

confidence. If it is NMES, then we can estimate a lower bound on Hardy’s probability

of that NMES. The two-phase process is similar to the scenario of classical error-

control coding [232] wherein off-line phase channel noise is estimated using known

messages and subsequently that estimation is used in the on-line phase to correct the
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OFF-LINE PHASE (Estimation of Σ̄4 from unknown MES & PS):
1 Do the experiment for Equation (3.4) for 𝑘 numbers of known MES as well as

PS to get the values of 𝜖4.
2 Then from that data, calculate the values of Σ̄4 = max{𝜖4} and 𝑆Σ4 .

ON-LINE PHASE (Estimation of 𝑞𝑙𝑏 from the unknown state):
3 Do the experiment for Equation (3.4) to calculate 𝜖5 and 𝑆𝜖5 for the unknown

state.
4 Calculate the value of Δ from Equation (3.20).
5 Plug-in the values of 𝜖5, Σ̄4 and Δ in Equation (3.20) to get an estimate 𝑞𝑙𝑏 of

the lower bound 𝑞𝑙𝑏 on 𝑞.
6 if 𝑞𝑙𝑏 > 0 (i.e., if 𝜖5 > Σ̄4 + Δ ) then

the unknown state is NMES and the value of Hardy’s probability 𝑞 of that
unknown state is greater than or equals to the value of 𝑞𝑙𝑏, i.e., 𝑞 ≥ 𝑞𝑙𝑏

end
else

no decision can be made about the unknown state.
end

Algorithm 1: Estimation for the lower bound 𝑞𝑙𝑏 on 𝑞, i.e., 𝑞𝑙𝑏 for supercon-
ducting qubits.

transmission error of unknown messages.

3.4 Our experimental results and discussion

The confidence interval around the mean for Student’s t-distribution depends upon

two quantities.

1. The degrees of freedom for Student’s t-distribution which is one less than the

number of samples taken for the experiment.

2. The percentage of confidence we need on our data.

Based on these two quantities, we get the confidence interval around the mean for

any data.

In the IBM five-qubit quantum computer, any experiment can be performed for

1 shot or one of 1024, 4096 and 8192 (which is the maximum available) shots. It

means that these many number of times the experiment is performed internally and
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Figure 3-7: The variation of the confidence interval size
(︁
2𝑡𝛼

2

𝑆𝜖5√
𝑛

)︁
with the percentage

of confidence (1 − 𝛼) % with varying number of samples is 𝑛 ∈ {10, 30, 50}.

the average of that is reported as output. But if we repeat any experiment with 8192

shots for a few times, we may see a significant deviation among each of the average

values. Further, if we perform any experiment for 8192 shots, then the IBM quantum

experience does not provide us with all the samples of those shots, rather it only

provides the mean value. So if we perform any experiment only once with 8192 shots

and make a conclusion based on the result, then that is not a statistically correct way.

Instead, if someone does the experiment 𝑛 number of times with 8192 shots/time and

then estimates the mean and the standard deviation assuming Student’s t-distribution

with required confidence interval, then that would be statistically more accurate.

We will show the variation of the same result by varying 𝑛 and the percentage of

confidence interval for Hardy’s experiment.

In Figure 3-7, we show the variation of the confidence interval size 2𝑡𝛼
2

𝑆𝜖5√
𝑛

with the
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percentage of confidence (1 − 𝛼) % with varying number of samples 𝑛 ∈ {10, 30, 50}.

Each of the samples is the mean of Hardy’s experiment run for 8192 shots. It can be

seen that the confidence interval size increases with a decreasing number of samples.

Also, for a fixed number of samples, the interval size increases with an increasing

percentage of confidence in data. From this result, it can be concluded that if an

experiment in the IBM quantum computer is done only on one sample for 8192 shots,

then that would not be a statistically correct way of representation since each of the

samples can deviate from the mean significantly. As we have limited access to the

IBM quantum computer, we take 𝑛 = 10 and the experiments are run for MES, PS,

and NMES for some values of 𝜃 and 𝜑 in between 0 to 90 degrees as shown in Table 3.2

and Table 3.3.

We perform experiments with different combinations of qubits for Alice and Bob

and discuss the results below.

3.4.1 Experiments for Hardy’s non-locality using two specific

qubits for Alice and Bob

In this section, we check Hardy’s non-locality by taking a specific combination of

qubits from all available combinations in the IBM quantum computer. Later we will

discuss rest of the possible combinations.

Experimental validation of the circuit for Hardy’s test

We perform the experiments for Equations (3.1), (3.2), and (3.3) (Figures 3-2, 3-3

and 3-4 respectively) for the values of 𝜃 and 𝜑 in degrees. The values of 𝜖1, 𝜖2 and

𝜖3 in each of the experiments are found to be less than 0.1, implying that Equa-

tions (3.1), (3.2) and (3.3) are satisfied. These results indicate that this experimen-

tal set-up is now valid for Hardy’s test. As discussed in Section 3.1, for practical

verification of Hardy’s test using superconducting qubits, only one experiment for

Equation (3.4) (Figure 3-5) has to be performed to establish non-locality, that is why

the details of the results for 𝜖1, 𝜖2 and 𝜖3 are not presented. The experimental results
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State 𝜃, 𝜑 𝜖4 SD 𝑡𝛼
2

𝑆𝜖4√
𝑛

for different CIs
(𝑞 =
0)

(𝑆𝜖4) 99% 95% 90% 80%

MES 45,
90

0.0807 0.0037 0.003802 0.002647 0.002145 0.001618

PS 0, 0 0.0193 0.0014 0.001439 0.001001 0.000812 0.000612
PS 90, 0 0.0209 0.0015 0.001542 0.001073 0.00087 0.000656
PS 45, 0 0.0217 0.0019 0.001953 0.001359 0.001101 0.000831
PS 90,

45
0.0282 0.0013 0.001336 0.00093 0.000754 0.000569

Table 3.2: Results of 𝜖4, standard deviations (SD) and the values of 𝑡𝛼
2

𝑆𝜖4√
𝑛

for different
confidence intervals (CIs) with 𝑛 = 10 for some values of 𝜃 and 𝜑 for which MES as
well as PS are created for the pair of qubits (𝑄3, 𝑄4).

of Equation (3.4) are presented in Table 3.2 and Table 3.3 for some selected values of

𝜃 and 𝜑.

Test of non-locality when 𝑞 = 𝑞𝑚𝑎𝑥

From Table 3.2, for the MES, i.e., 𝜃 = 45 and 𝜑 = 90 degrees, we get 𝜖4 = 0.0807,

𝑆𝜖4 = 0.0037, and the values of 𝑡𝛼
2

𝑆𝜖4√
𝑛

for different confidence intervals. We take four

possible confidence intervals: 99%, 95%, 90%, and 80%. Similarly, for the PS, we

get 𝜖4 to be less than 0.03 (there are only one MES possible but ideally an infinite

number of PS possible as shown in Table 3.1. But due to limited access to the IBM

quantum computer, we take 𝑘 = 50 number of PS as indicated in Algorithm 1. As

for all the PS, we get 𝜖4 to be less than 0.03, we present some of the values of the PS

in Table 3.2). As stated earlier, when 𝜃 = 𝜑 = 51.827 degrees, we get 𝑞 = 𝑞𝑚𝑎𝑥 for

NMES. So, to test the non-locality when 𝑞 = 𝑞𝑚𝑎𝑥, we have to check whether 𝑞𝑙𝑏 > 0

as given in Equation (3.20). From Table 3.2, we get Σ̄4 = 0.0807 and 𝑆Σ4 = 0.0037

which is value we get from the off-line phase as stated in Algorithm 1. This value is

constant for the pair of qubits (𝑄3, 𝑄4) and will be different for other pairs. Now we

will calculate the value of 𝑞𝑙𝑏.

From the experiment, we get 𝜖5 = 0.1281 with 𝑆𝜖5 = 0.0039 and the values of

confidence intervals are given for (1 − 𝛼) ∈ {0.99, 0.95, 0.90, 0.80}. To calculate 𝑞𝑙𝑏
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State 𝜃, 𝜑 𝜖5 SD 𝑡𝛼
2

𝑆𝜖5√
𝑛

for different CIs
(𝑞 > 0) (𝑆𝜖5) 99% 95% 90% 80%

NMES 51.827,
51.827

0.1281 0.0039 0.004008 0.00279 0.002261 0.001706

NMES 55, 55 0.1273 0.0045 0.004625 0.003219 0.002609 0.001968
NMES 45, 45 0.1041 0.0044 0.004522 0.003148 0.002551 0.001924
NMES 30, 60 0.0832 0.0052 0.005344 0.00372 0.003014 0.002274
NMES 60, 30 0.0553 0.0028 0.002878 0.00200 0.001623 0.001225
NMES 10, 80 0.067 0.0038 0.00391 0.00272 0.0022 0.00166
NMES 80, 10 0.0241 0.0016 0.001644 0.001145 0.000927 0.0007

Table 3.3: Results of 𝜖5, standard deviations (SD) and the values of 𝑡𝛼
2

𝑆𝜖5√
𝑛

for different
confidence intervals (CIs) with 𝑛 = 10 for some values of 𝜃 and 𝜑 for which NMES
are created for the pair of qubits (𝑄3, 𝑄4).

with different confidence intervals, we will use Equation (3.20). From Table 3.4, when

𝜃 = 𝜑 = 51.827 degrees, we get 𝑞𝑙𝑏 > 0 for different confidence intervals. The error

in estimating the value of 𝑞𝑙𝑏 is approximately 52%. If we increase the number of

samples in the experiment, i.e., the value of 𝑛, then 𝑞𝑙𝑏 will also increase as seen in

Figure 3-7. But despite the errors in the experiment, when 𝑞 = 𝑞𝑚𝑎𝑥, we get the lower

bound on Hardy’s probability greater than zero with 99% confidence on the data.

Test of non-locality when 𝑞 < 𝑞𝑚𝑎𝑥

From Table 3.4, when 𝜃 = 𝜑 = 55 degrees (𝑞 = 0.0886), by a similar analysis, we get

𝑞𝑙𝑏 to be around 0.042, for different confidence intervals, i.e., 𝑞𝑙𝑏 > 0. The error in

estimating the value of 𝑞𝑙𝑏, in this case, is around 52.5%. Similarly, when 𝜃 = 𝜑 = 45

(𝑞 = 0.0833), the value of 𝑞𝑙𝑏 is around 0.02. But the error in this case in estimating 𝑞𝑙𝑏
is around 76%. Clearly these results support a non-zero value of Hardy’s probability.

But when 𝜃 = 30 and 𝜑 = 60 (𝑞 = 0.0433), we estimate 𝑞𝑙𝑏 < 0. Similar result

is obtained when 𝜃 = 60 and 𝜑 = 30 (𝑞 = 0.0433). So, form these results we cannot

conclude that the state is really an NMES or not when 𝑞 = 0.0433.

When the value of 𝑞 is decreased further, when 𝑞 = 0.00088, the values of 𝑞𝑙𝑏 again

become less than zero. So, form these results, we cannot conclude about the state as

discussed above.
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State 𝜃, 𝜑 𝑞 𝑞𝑙𝑏 for different CIs
99% 95% 90% 80%

NMES 51.827,
51.827

0.09017 0.041876 0.043554 0.044283 0.045049

NMES 55, 55 0.0886 0.040613 0.042432 0.043222 0.044052
NMES 45, 45 0.0833 0.017492 0.019287 0.020067 0.020886
NMES 30, 60 0.0433 -0.004058 -0.002066 -0.001199 -0.000290
NMES 60, 30 0.0433 -0.030168 -0.028718 -0.02809 -0.027429
NMES 10, 80 0.00088 -0.019154 -0.017495 -0.016773 -0.016018
NMES 80, 10 0.00088 -0.060742 -0.059484 -0.058937 -0.058363

Table 3.4: Comparison of the results of 𝑞 and 𝑞𝑙𝑏 for some values of 𝜃 and 𝜑 for which
NMES is created for different confidence interval (CIs) for the pair of qubits (𝑄3, 𝑄4)

Summary of the above two experiments

We know that in Hardy’s test, we should get Hardy’s probability 𝑞 > 0 for all NMES.

But, from the above experimental data, we get for some NMES, the estimated lower

bound on Hardy’s probability 𝑞𝑙𝑏 ≤ 0. The mismatch between theoretical value and

the estimated value from the experiments can be explained with respect to Equa-

tion (3.9) as follows:

• for those NMES when 𝑞 is larger than Σ̄4, the distinction between 𝜖5 and Σ̄4 is

clear and 𝑞𝑙𝑏 > 0.

• But for those NMES when 𝑞 is less than Σ̄4, it is hard to distinguish between

𝜖5 and Σ̄4, and we have 𝑞𝑙𝑏 ≤ 0.

we can observe that for those NMES when 𝑞 is larger than Σ̄4, the distinction between

𝜖5 for those NMES and Σ̄4 for all MES as well as PS is clear, i.e., 𝑞𝑙𝑏 > 0. But for

those NMES when the value of 𝑞 is less than Σ̄4 for all MES as well as PS, it is hard

to distinguish between 𝜖5 for those NMES and Σ̄4 for all MES as well as PS, i.e.,

𝑞𝑙𝑏 ≤ 0.
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Figure 3-8: The variation of 𝑞, 𝜖5 and 𝑞𝑙𝑏 against 𝜃 = 𝜑 for CI=99% and 𝑛 = 10 with
𝑄3 as control qubit and 𝑄4 as target qubit.

Consistency check

The above summary indicates that as 𝑞 decreases, so does 𝜖5. Thus it is a natural

question to ask, whether at 𝑞 = 𝑞𝑚𝑎𝑥, we get 𝜖5 = 𝜖𝑚𝑎𝑥5 or not, where

𝜖𝑚𝑎𝑥5 = max
0≤𝜃=𝜑≤90

{𝜖5𝜃=𝜑
}. (3.21)

We conduct another set of experiments to investigate this. If we take 𝜃 = 𝜑 and vary

it from 0 to 90 degrees, a bell-shaped curve is obtained with a peak at 𝜃 = 𝜑 = 51.827

degrees for 𝑞 as shown in Figure 3-8 (a). For limited control of the IBM quantum

computer, we plot 𝜖5, 𝑞 and 𝑞𝑙𝑏 with (1 − 𝛼) = 0.99 for 𝜃 = 𝜑 varying from 0 to 90

degrees with an increment of 5 degrees, i.e., 𝜃 = 𝜑 = 5𝑖, where 𝑖 ∈ {0, 1, . . . , 18}

(when 𝑖 = 18 we get 𝜃 = 𝜑 = 90, then the value of 𝜒 is undefined as shown in the
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Section 3.3. So we take 𝜃 = 𝜑 = 89.99 for this case).

From Figure 3-8 (a), we observe 𝜖𝑚𝑎𝑥5 , as defined in Equation (3.21), is shifted

right where 𝜃 = 𝜑 = 65 degrees, instead of 𝜃 = 𝜑 = 51.827 degrees. To get a more

accurate result of 𝜖𝑚𝑎𝑥5 , we repeat this experiment for 75 ≥ 𝜃 = 𝜑 ≥ 55 degrees with

an increment of one degree. The result shows that 𝜖𝑚𝑎𝑥5 occurs where 𝜃 = 𝜑 = 62

degrees (not shown in Figure 3-8 (a)). This procedure can be repeated again if

the more precise occurrence of 𝜖𝑚𝑎𝑥5 is needed. We also observe that 𝑞𝑙𝑏 > 0 when

85 ≥ 𝜃 = 𝜑 ≥ 40 degrees and zero elsewhere, whereas 𝑞 > 0 for 90 > 𝜃 = 𝜑 > 0

degrees. This mismatch happens because of the reasons stated in Section 3.4.1. From

these results it can be concluded that although in the IBM quantum computer, we

get a non-zero value of the lower bound on Hardy’s probability for NMES, but the

errors occurred in the computer need to be more stable.

Summary

In summary, for the parameters 𝜃 and 𝜑 that lead to 𝑞 = 0, our experimental outcome

gives us 𝜖4 for MES and PS. For the parameters (𝜃 and 𝜑) that lead to 𝑞 > 0, our

experimental outcome gives us 𝜖5 for NMES. From Equation (3.20), the value of 𝜖5

for NMES is greater than
(︁
Σ̄4 + Δ

)︁
implying 𝑞𝑙𝑏 > 0. But when the value of 𝜖5 is in

the same range or less than 𝜖𝑚𝑎𝑥4 , then it implies 𝑞𝑙𝑏 ≤ 0.

3.4.2 Other possible combinations of multi-qubit gate

In this section, we check Hardy’s non-locality for the rest of the available combinations

of qubits in the IBM quantum computer.

Check for non-locality

There are currently six combinations of multi-qubit gate implementation available in

ibmqx4 [106]. For the multi-qubit 𝐶𝑁𝑂𝑇 gate that we use, the possible control qubit

and target qubit pairs other than (𝑄3, 𝑄4), are summarized in Table 3.5. We measure

𝜖5 for 𝜃 = 𝜑 ∈ {45, 51.827, 55} degrees with all combinations of pairs of qubits. It
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Control Target values of 𝜖5 for 𝑛 = 10 for 𝜃 = 𝜑
qubit qubit 45 51.827 55
𝑄2 𝑄0 0.101022 0.111367 0.116217
𝑄3 𝑄2 0.094067 0.112275 0.114400
𝑄1 𝑄0 0.099931 0.119311 0.119497
𝑄2 𝑄1 0.138400 0.136175 0.134289
𝑄2 𝑄4 0.138505 0.150186 0.157253

Table 3.5: The values of 𝜖5 for 𝑛 = 10 for all possible pairs of qubits other than
(𝑄3, 𝑄4) when 𝜃 = 𝜑 ∈ {45, 51.827, 55} in degrees.

can be seen, when 𝜃 = 𝜑 = 51.827 degrees, the value of 𝜖5 is minimum for the pair

(𝑄2, 𝑄0) and maximum for the pair (𝑄2, 𝑄4). All the experiments described earlier

have been performed using all combinations of these pair of qubits as described in

Table 3.5 and similar conclusions of the non-locality are obtained as we get for the

pair (𝑄3, 𝑄4).

Consistency check and shift of the peaks

We want to see, for other possible two-qubit pairs, whether 𝜖𝑚𝑎𝑥5 (as defined in Equa-

tion (3.21)) occurs when 𝑞 = 𝑞𝑚𝑎𝑥 or not. We also want to see, in case there is any

shift, whether it is in the same direction as shown in Figure 3-8 for the pair (𝑄3, 𝑄4)

or not.

From Table 3.5, it can be seen for the pair (𝑄2, 𝑄1), when 𝜃 = 𝜑 = 51.827 degrees,

the value of 𝜖5 is less than the value when 𝜃 = 𝜑 = 45 degrees and greater than the

value when 𝜃 = 𝜑 = 55 degrees, i.e., 𝜖5𝜃=𝜑=45 > 𝜖5𝜃=𝜑=51.827 > 𝜖5𝜃=𝜑=55 . To verify this

result, we perform a similar experiment for the pair (𝑄2, 𝑄1) as we did for the pair

(𝑄3, 𝑄4) (as shown in Figure 3-8). Results are shown in Figure 3-9 which indicates

that there is a shift of the value of 𝜖𝑚𝑎𝑥5 to the left for the pair (𝑄2, 𝑄1) and it occurs

when 𝜃 = 𝜑 = 40 degrees. For the rest of the pairs, we find that 𝜖𝑚𝑎𝑥5 is shifted to the

right, i.e., 𝜖5𝜃=𝜑=55 > 𝜖5𝜃=𝜑=51.827 > 𝜖5𝜃=𝜑=45 as shown in Table 3.5. So, we can conclude

that 𝜖𝑚𝑎𝑥5 did not occur at 𝑞 = 𝑞𝑚𝑎𝑥, rather it is shifted to the right or to the left due

to the errors.
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Figure 3-9: The variation of 𝑞, 𝜖5 and 𝑞𝑙𝑏 against 𝜃 = 𝜑 for CI=99% and 𝑛 = 10 with
𝑄2 as control qubit and 𝑄1 as target qubit.

3.4.3 Application of the shift of the peaks in quantum pro-

tocols using Hardy’s test

For some of the protocols like quantum Byzantine agreement [40], it is necessary to

check whether Hardy’s state (the state for which Equations (2.4)-(2.7) are satisfied)

is actually prepared or not. Suppose, theoretically 𝑞 = 𝑞𝑚𝑎𝑥 is achieved for a specific

value 𝜌 of the relevant parameter (of which 𝑞 is a function, like 𝜃 and 𝜑 in our

experiment). Because of the peak shifts as described in Section 3.4.1 and 3.4.2, in

practical experiments, 𝑞𝑚𝑎𝑥 should not be estimated corresponding to the exact value

of 𝜌, but in an interval around 𝜌.

During the experiment, let the value of 𝑞𝑚𝑎𝑥 with the addition of errors be 𝑄𝑚𝑎𝑥

(like 𝜖𝑚𝑎𝑥5 in our experiment). Now if the errors in the experiment are not stable, it
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is expected that 𝑄𝑚𝑎𝑥 will lie in an interval around 𝜌, i.e., {𝜌− 𝛿, 𝜌+ 𝛿} for some

𝛿 > 0. For example, in our experimental set-up, 𝛿 is found to be 12 degrees when

𝜌 = (51.827, 51.827) in degrees of the parameter (𝜃, 𝜑).

3.4.4 Verifying whether reducing the number of gates re-

duces the error in the circuit

(a) Quantum circuit for the PS |𝜓⟩ = 1√
2 (|0⟩+|1⟩)⊗|0⟩ when 𝜃 = 𝜑 = 0

degrees.

(b) Quantum circuit for the PS |𝜓⟩ = 1√
2 (|0⟩ + |1⟩) ⊗ |1⟩ when 𝜃 = 90

and 𝜑 = 0 degrees.

Figure 3-10: Quantum circuit and measurement for 𝑃 (+1,+1|𝐴1, 𝐵2) when number
of gates are reduced significantly.

To verify whether reducing the number of gates in the circuit reduces the error

or not, we perform another series of experiments for (𝑄3, 𝑄4) pair of qubits. For
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𝜃 = 𝜑 = 0, we get a PS, i.e., |𝜓⟩ = 1√
2(|0⟩ + |1⟩) ⊗ |0⟩. This state can be created

easily by using a Hadamard gate 𝐻 in Alice’s qubit and 𝑈1 and 𝑈3 used in Figure 3-5,

becomes the identity (𝐼𝑑) gate. So, the number of gates is reduced significantly. For

the modified circuit as shown in Figure 3-10 (a), the value of 𝜖4 = 0.0084 for 𝑛 = 10

is less than the previous value (as shown in Table 3.2), i.e., 0.0193

Also, for 𝜃 = 90, 𝜑 = 0, we get a PS |𝜓⟩ = 1√
2(|0⟩ + |1⟩) ⊗ |1⟩. For this state, a

Hadamard gate on Alice’s qubit and a bit flip gate 𝑋 on Bob’s qubit is required as

shown in Figure 3-10 (b). Experimental results show that 𝜖4 = 0.0079 for 𝑛 = 10 is

again less than the previous value (as shown in Table 3.2), i.e., 0.0209.

These experiments are repeated for the rest of the pairs of qubits and similar

results are obtained. We can conclude that reducing the number of gates reduces the

error in the circuit of the IBM quantum computer.

3.4.5 Study of change of errors with respect to time in su-

perconducting qubits

Time 𝜖5 SD 𝑡𝛼
2

𝑆𝜖5√
𝑛

for different CIs
line (𝑆𝜖5) 99% 95% 90% 80%
Before 0.16254 0.0078 0.154524 0.15696 0.158018 0.159129
After 0.1281 0.0039 0.124092 0.12531 0.125839 0.126394

Table 3.6: The values of 𝜖5 for 𝑛 = 10 for the pair (𝑄3, 𝑄4) before and after one
month when 𝜃 = 𝜑 = 51.827 in degrees, SD=standard deviation, and CI=confidence
interval.

During the experiments, the IBM quantum computer has undergone maintenance

for nearly one month when some of the experiments were done. To present all the

results in the same time-line, we repeat all the previous experiments. When we

compare the data of one month earlier experiments, we find a significant change of

values, similar to what was reported in [131]. For the pair (𝑄3, 𝑄4) when 𝜃 = 𝜑 =

51.827 degrees, one month earlier, we got the value of 𝜖5 = 0.16254, 𝑆𝜖5 = 0.0078 and

the values of 𝑡𝛼
2

𝑆𝜖5√
𝑛

for different values of confidence intervals are given in Table 3.6.

From this, we can see that the value of 𝜖5 one month earlier is greater than the values
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of what we get one month later. A similar trend is noticed for the rest of the data.

3.4.6 Benchmarking of superconducting quantum devices us-

ing Hardy’s paradox

Benchmarking is the process by which the performance of any computing device is

evaluated. In the current era of Noisy Intermediate-Scale Quantum (NISQ) [233],

choosing a universal metric for benchmarking is extremely difficult, because comput-

ing can be performed using various quantum technologies such as superconducting

qubits [234, 235], ion trap [236], optical lattices [237], quantum dots [238], nuclear

magnetic resonance (NMR) [93], etc. Also, how the noise affects the devices and their

characterization are not well-understood.

Researchers have proposed different metrics for benchmarking, for instance, fi-

delity [239], unitarity [240], quantum volume [241], quantum chemistry [242], etc.,

each having their own drawbacks [243]. In [131], the authors have also demonstrated

non-locality in the case of Mermin polynomials for three, four and five qubits. They

have concluded that the fidelity of the quantum computer decreases when the num-

ber of qubits is increased from three. However, they do not mention anything for

two qubits. From the experimental test of Hardy’s paradox, we propose two metrics

for benchmarking of two qubits of any superconducting quantum device as discussed

below.

First, from Section 3.4.1 and 3.4.1, it can be seen that, for those states where

𝑞 > Σ̄4, we get 𝑞𝑙𝑏 > 0 which supports a non-zero value of Hardy’s probability.

When 𝜖𝑚𝑎𝑥4 < 𝑞 < 𝑞𝑚𝑎𝑥, the previous conclusion is still valid. But for those states

where 𝑞 < Σ̄4, no conclusion can be drawn about the value of Hardy’s probability

as 𝑞𝑙𝑏 ≤ 0. So, the minimum value of 𝑞 from which we get 𝑞𝑙𝑏 > 0 (as illustrated in

Table 3.4), can be the performance measure of a quantum computer. Lesser the value

of 𝑞 which supports 𝑞𝑙𝑏 > 0, the better the performance of the quantum computer.

This parameter measures how well the device realizes NMES states.

Second, although we get 𝑞𝑚𝑎𝑥 at 𝜃 = 𝜑 = 51.827 degrees, during the experiment,
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due to unstable errors, the value of 𝜖𝑚𝑎𝑥5 may be shifted to any nearby value, as shown

in Section 3.4.1 and 3.4.2. In our case, it shifted to the left for the pair (𝑄2, 𝑄1) and

to the right for the rest of the pairs of qubits. For our experiment when 𝜃 = 𝜑,

the amount of shift is 12 degrees. So, the amount of shift can be considered as a

performance measure of a quantum computer. The smaller the shift, the better is the

performance. This parameter measures the precision of the quantum device.
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Chapter 4

Quantum teleportation and

hyper-hybrid entangled state

In this Section, we show that some properties and applications of distinguishable and

indistinguishable entanglement. First, we show that hyper-hybrid entanglement can

exists for two indistinguishable fermions. Then I have generalized it for both bosons

and fermions. Next, we prove that quantum particles (either distinguishable or in-

distinguishable) can simultaneously produce and perform hyper hybrid entangled state

and unit fidelity quantum teleportation respectively then using that cloning of any

arbitrary quantum state is possible. As the no-cloning theorem cannot be violated

using in quantum theory, the logical conclusion from this statement can be written

in the form of two no-go theorems; (i) no-hyper hybrid entangled state for distin-

guishable particles and (ii) no-unit fidelity quantum teleportation for indistinguishable

particles. Finally we show the overall picture of the properties and applications of

distinguishable and indistinguishable particles.

This chapter is based on the work in [244].
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4.1 Hyper-hybrid entangled state for two indistin-

guishable fermions

Yurke and Stolar [216, 217] had proposed an optical circuit to generate quantum en-

tanglement between the same DoFs of two identical particles (bosons and fermions)

from initially separated independent sources. Some recent experiments realizing en-

tanglement between the same DoFs of identical particles whose degree of spatial in-

distinguishability can be arbitrarily harnessed [221, 245, 223, 220]. The experiments

are realized not only with photons but also simulating fermions. Recently, the above

method has been extended by Li et al. [1] to generate hyper-hybrid entangled state

between two independent bosons among their internal (e.g., spin) DoFs, external (e.g.,

momentum) DoFs, and across. We show that their circuit can also be used for in-

dependent fermions obeying the Pauli exclusion principle [224], albeit with different

detection probabilities.

For fermions, the second quantization formulation deals with fermionic creation

operators 𝑓𝑖,p with |𝑖,p⟩ = 𝑓 †
𝑖,p |0⟩, where |0⟩ is the vacuum and |𝑖,p⟩ describes

a particle with spin |𝑖⟩ and momentum p. These operators satisfy the canonical

anticommutation relations:

{︁
𝑓𝑖,p𝑖

, 𝑓𝑗,p𝑗

}︁
= 0,

{︁
𝑓𝑖,p𝑖

, 𝑓 †
𝑗,p𝑗

}︁
= 𝛿

(︁
p𝑖 − p𝑗

)︁
𝛿𝑖𝑗. (4.1)

Analysis of the circuit of Li et al. [1, Fig. 2] as shown in Fig. 2-5 for fermions

involves an array of hybrid beam splitters (HBSs) [1, Fig. 3]; phase shifter; four

orthogonal external modes 𝐿, 𝐷, 𝑅, and 𝑈 ; and two orthogonal internal modes ↑ and

↓. Here, particles exiting through the modes 𝐿 and 𝐷 are received by Alice (A), who

can control the phases 𝜑𝐿 and 𝜑𝐷, whereas particles exiting through the modes 𝑅

and 𝑈 are received by Bob (B), who can control the phases 𝜑𝑅 and 𝜑𝑈 .

In this circuit [1, Fig. 2] as shown in Fig. 2-5, two particles, each with spin |↓⟩,

enter the setup in the mode 𝑅 and 𝐿 for Alice and Bob, respectively. The initial state

of the two particles is |Ψ0⟩ = 𝑓 †
↓,𝑅𝑓

†
↓,𝐿 |0⟩. Now, the particles are sent to the HBS such
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that one output port of the HBS is sent to the other party (𝑅 or 𝐿) and the other port

remains locally accessible (𝐷 or 𝑈). Next, each party applies path-dependent phase

shifts. Lastly, the output of the local mode and that received from the other party

are mixed with the HBS and then the measurement is performed in either external

or internal modes. The final state can be written as

|Ψ⟩ = 1
4
[︁
𝑒𝑖𝜑𝑅

(︁
𝑓 †

↓,𝑅 + 𝑖𝑓 †
↑,𝑈

)︁
+ 𝑖𝑒𝑖𝜑𝐷

(︁
𝑓 †

↑,𝐷 + 𝑖𝑓 †
↓,𝐿

)︁]︁
⊗
[︁
𝑒𝑖𝜑𝐿

(︁
𝑓 †

↓,𝐿 + 𝑖𝑓 †
↑,𝐷

)︁
+ 𝑖𝑒𝑖𝜑𝑈

(︁
𝑓 †

↑,𝑈 + 𝑖𝑓 †
↓,𝑅

)︁]︁
|0⟩ .

(4.2)

Alice and Bob can perform coincidence measurements both in external DoFs or both

in internal DoFs or with one party in the internal DoF and the other in the external

DoF. Now from Eq. (4.2), the detection probabilities when each party gets exactly

one particle where both Alice and Bob measure in external DoFs are given by

𝐵 : 𝑅 𝐵 : 𝑈

𝐴 : 𝐷 1
4cos2𝜑 1

4sin2𝜑

𝐴 : 𝐿 1
4sin2𝜑 1

4cos2𝜑

, (4.3)

where 𝜑 = (𝜑𝐷 − 𝜑𝐿 − 𝜑𝑅 + 𝜑𝑈) /2.

Now we assign dichotomic variables +1 and −1 for the detection events {𝐿,𝑈}

and {𝐷,𝑅}, respectively. Let 𝑃𝑟𝑚𝑛 denote the probabilities of the coincidence events

for Alice and Bob obtaining 𝑚 = ±1 and 𝑛 = ±1, respectively. The normalized

expectation value is then given by

𝐸 (𝜑𝐴, 𝜑𝐵) =𝑃𝑟++ − 𝑃𝑟−+ − 𝑃𝑟+− + 𝑃𝑟−−

𝑃𝑟++ + 𝑃𝑟−+ + 𝑃𝑟+− + 𝑃𝑟−−

=cos (𝜑𝐴 − 𝜑𝐵) , (4.4)

where 𝜑𝐴 = (𝜑𝐷 − 𝜑𝐿) and 𝜑𝐵 = (𝜑𝑈 − 𝜑𝑅). Now the CHSH [29] inequality can be

written as

|𝐸
(︁
𝜑0
𝐴, 𝜑

0
𝐵

)︁
+ 𝐸

(︁
𝜑1
𝐴, 𝜑

0
𝐵

)︁
+ 𝐸

(︁
𝜑0
𝐴, 𝜑

1
𝐵

)︁
− 𝐸

(︁
𝜑1
𝐴, 𝜑

1
𝐵

)︁
| ≤ 2, (4.5)
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where the superscripts 0 and 1 stand for two detector settings for each particles. Now

for 𝜑0
𝐴 = 0, 𝜑1

𝐴 = 𝜋, 𝜑0
𝐵 = 𝜋

4 , and 𝜑1
𝐵 = −𝜋

4 , Eq. (4.5) can be violated maximally by

obtaining Tsirelson’s bound 2
√

2 [246].

Now if Alice and Bob both measure in internal DoFs, then the detection proba-

bilities can be written as

𝐵 : ↓ 𝐵 : ↑

𝐴 : ↓ 1
4sin2𝜑 1

4cos2𝜑

𝐴 : ↑ 1
4cos2𝜑 1

4sin2𝜑

. (4.6)

If Alice measures in the internal DoF and Bob measures in the external DoF, then

the detection probabilities can be written as

𝐵 : 𝑅 𝐵 : 𝑈

𝐴 : ↓ 1
4sin2𝜑 1

4cos2𝜑

𝐴 : ↑ 1
4cos2𝜑 1

4sin2𝜑

. (4.7)

If Alice measures in the external DoF and Bob measures in the internal DoF, then

the detection probabilities can be written as

𝐵 : ↓ 𝐵 : ↑

𝐴 : 𝐷 1
4cos2𝜑 1

4sin2𝜑

𝐴 : 𝐿 1
4sin2𝜑 1

4cos2𝜑

. (4.8)

Now by applying similar analysis for Eqs. (4.6), (4.7), and (4.8) as performed for

Eqs. (4.4) and (4.5), one can show maximal violation of Bell’s inequality.

4.1.1 Generalized Hyper-Hybrid entangled state

Interestingly, following the approach by Yurke and Stolar [216], we can generalize the

detection probabilities of hyper-hybrid entangled state for indistinguishable bosons
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and fermions into a single formulation as shown below. Let

𝜑1 =𝜑𝐷 − 𝜑𝐿,

𝜑2 =

⎧⎪⎪⎨⎪⎪⎩
− (𝜑𝑅 − 𝜑𝑈) for bosons

− (𝜑𝑅 − 𝜑𝑈) + 𝜋
2 for fermions.

(4.9)

The generalized detection probabilities of Eqs. (4.3), (4.6), (4.7), and (4.8) are, re-

spectively, given by

𝐵 : 𝑅 𝐵 : 𝑈

𝐴 : 𝐷 1
4cos2(𝜑1 − 𝜑2) 1

4sin2(𝜑1 − 𝜑2)

𝐴 : 𝐿 1
4sin2(𝜑1 − 𝜑2) 1

4cos2(𝜑1 − 𝜑2)

, (4.10)

𝐵 : ↓ 𝐵 : ↑

𝐴 : ↓ 1
4sin2(𝜑1 − 𝜑2) 1

4cos2(𝜑1 − 𝜑2)

𝐴 : ↑ 1
4cos2(𝜑1 − 𝜑2) 1

4sin2(𝜑1 − 𝜑2)

, (4.11)

𝐵 : 𝑅 𝐵 : 𝑈

𝐴 : ↓ 1
4sin2(𝜑1 − 𝜑2) 1

4cos2(𝜑1 − 𝜑2)

𝐴 : ↑ 1
4cos2(𝜑1 − 𝜑2) 1

4sin2(𝜑1 − 𝜑2)

, (4.12)

𝐵 : ↓ 𝐵 : ↑

𝐴 : 𝐷 1
4cos2(𝜑1 − 𝜑2) 1

4sin2(𝜑1 − 𝜑2)

𝐴 : 𝐿 1
4sin2(𝜑1 − 𝜑2) 1

4cos2(𝜑1 − 𝜑2)

. (4.13)

Computations, following Eqs. (4.4) and (4.5), lead to the maximum violation of

Bell’s inequality.

4.2 Does the scheme of Li et al. [1] work for dis-

tinguishable particles?

We are interested to see whether the circuit of Li et al. [1, Fig. 2] as shown in Fig. 2-5

gives the same results for two distinguishable particles. Let us calculate the term in
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the first row and first column of Eq. (4.3) for fermions. It says that the probability

of Alice detecting a particle in detector 𝐷 and Bob detecting a particle in detector 𝑅

is given by ⃒⃒⃒⃒1
4
[︁
𝑒𝑖(𝜑𝑅+𝜑𝐿) + 𝑒𝑖(𝜑𝐷+𝜑𝑈 )

]︁⃒⃒⃒⃒2
= 1

4cos2𝜑. (4.14)

If the particles are made distinguishable, this probability is calculated as

⃒⃒⃒⃒1
4𝑒

𝑖(𝜑𝑅+𝜑𝐿)
⃒⃒⃒⃒2

+
⃒⃒⃒⃒1
4𝑒

𝑖(𝜑𝐷+𝜑𝑈 )
⃒⃒⃒⃒2

= 1
8 . (4.15)

As for other terms of Eq. (4.3), each term of Eqs (4.6), (4.7), and (4.8) reduces to
1
8 . From that, one can easily show that the right hand side of Eq. (4.4) becomes

zero. Thus the Bell violation is not possible by the CHSH test. Similar calculations

for the bosons lead to the same conclusion. So, the circuit of [1] would not work for

distinguishable particles.

4.3 Signaling using unit fidelity quantum telepor-

tation and hyper-hybrid entangled state

In this section we will prove out main theorem and also derive two corollaries from

that theorem.

Theorem 1. If quantum particles (either distinguishable or indistinguishable) can

simultaneously produce and perform hyper hybrid entangled state and unit fidelity

quantum teleportation respectively then using that cloning of any arbitrary quantum

state is possible.

It is well-known that unit fidelity quantum teleportation [225] for distinguishable

particles is possible using BSM and LOCC. Here, we show that if hyper-hybrid entan-

gled state for distinguishable particles could exist, then one could construct a universal

quantum cloning machine (UQCM) [79, 80] using unit fidelity quantum teleportation

and hyper-hybrid entangled state, and further, use that UQCM to achieve signal-

ing. Throughout this thesis, by signaling we mean faster-than-light or superluminal
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communication across spacelike separated regions.

Proof. Now we give a details proof of the Theorem 1.

4.3.1 Description of the protocol

Our signaling protocol works in three phases, as follows.

Figure 4-1: The singlet state |𝜓⟩𝐴1𝐵1
is shared between DoF 1 of Alice and that of

Bob, whereas hyper-hybrid entangled state |𝜒⟩𝑃𝑄 is kept by Bob.

First phase: initial set-up.

Suppose there are four particles 𝐴, 𝐵, 𝑃 , and 𝑄 each having two DoFs 1 and 2.

The particle 𝐴 is with Alice and the remaining three are with Bob, who is spacelike

separated from Alice. The pair {𝐴,𝐵} is in the singlet state in DoF 1 denoted by

|𝜓⟩𝐴1𝐵1
and the pair {𝑃,𝑄} is in hyper-hybrid entangled state using both the DoFs 1

and 2 denoted by |𝜒⟩𝑃𝑄. To access the DoF 𝑖 of particle 𝑋, we use the notation 𝑋𝑖,

110



where 𝑋 ∈ {𝐴,𝐵, 𝑃,𝑄} and 𝑖 ∈ {1, 2}. The situation is depicted in Fig. 4-1. Note

that |𝜓⟩𝐴1𝐵1
can be expressed in any orthogonal basis. We have taken only 𝑍 basis or

computational basis {|0⟩ , |1⟩} and 𝑋 basis or Hadamard basis {|+⟩ , |−⟩} such that

|𝜓⟩𝐴1𝐵1
= 1√

2
(︁
|01⟩𝐴1𝐵1

−|10⟩𝐴1𝐵1

)︁
= 1√

2
(︁
|+−⟩𝐴1𝐵1

−|−+⟩𝐴1𝐵1

)︁
.

(4.16)

Alice wants to transfer binary information instantaneously to Bob. Before going

apart, Alice and Bob agree on the following convention.

1. If Alice wants to send zero to Bob, then she would measure in 𝑍 basis on the

DoF 1 of her particle so that the state of the DoF 1 of the particle at Bob’s side

would be either |0⟩ or |1⟩.

2. If Alice wants to send 1 to Bob, then she would measure in 𝑋 basis on the DoF

1 of her particle so that the state of the DoF 1 of the particle at Bob’s side

would be either |+⟩ or |−⟩.

Second phase: cloning of any unknown state.

There are two steps of our proposed UQCM as follows.

1. Alice does measurement on DoF 1 of her particle 𝐴, i.e., 𝐴1 in either 𝑍 basis

or 𝑋 basis. After this measurement, the state on DoF 1 of particle 𝐵, i.e., 𝐵1

on Bob’s side, is in an unknown state |𝜑⟩∈{|0⟩ , |1⟩ , |+⟩ , |−⟩} and it is denoted

by |𝜑⟩𝐵1
.

2. After Alice’s measurement, Bob performs BSM on DoF 1 of particles 𝐵 and 𝑃 ,

i.e., on 𝐵1 and 𝑃1. This results in an output 𝑘 as one of the four possible Bell

states (as seen in standard teleportation protocol [43]). Based on this output 𝑘,

suitable unitary operations 𝑈𝑘 are applied on both the DoFs of 𝑄, i.e., 𝑄1 and

𝑄2, where 𝑈𝑘∈{ℐ,𝜎𝑥,𝜎𝑦,𝜎𝑧}, ℐ being the identity operation and 𝜎𝑖’s (𝑖=𝑥,𝑦,𝑧)

the Pauli matrices. As the first DoF of particle 𝑃 , 𝑃1 is maximally entangled
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Figure 4-2: Our proposed universal quantum cloning machine to demonstrate the
impossibility of hyper-hybrid entangled state using distinguishable particles. Inputs
to this cloning machine are the unknown quantum state |𝜑⟩ of DoF 1 of the particle 𝐵
(denoted by |𝜑⟩𝐵1

) and the hyper-hybrid entangled state |𝜒⟩𝑃𝑄, as shown in Fig. 4-1.
More specifically, |𝜑⟩𝐵1

is the state unknown to Bob generated on Bob’s side after
Alice does measurement on 𝐴1 in either 𝑍 basis or 𝑋 basis. After that, Bob performs
BSM on 𝐵1 and 𝑃1, resulting in one of the four possible Bell states as output, denoted
by 𝑘. Based on this output 𝑘, suitable unitary operations 𝑈𝑘 are applied on both the
DoFs of 𝑄, i.e., 𝑄1 and 𝑄2, where 𝑈𝑘∈{ℐ,𝜎𝑥,𝜎𝑦,𝜎𝑧}, ℐ being the identity operation
and 𝜎𝑖’s (𝑖=𝑥,𝑦,𝑧) the Pauli matrices. As a result, the unknown state |𝜑⟩ of 𝐵1 is
copied to both 𝑄1 and 𝑄2.

with both the DoFs of 𝑄, i.e., 𝑄1 and 𝑄2; thus, using BSM on DoFs 𝐵1 and 𝑃1

and suitable unitary operations on DoFs 𝑄1 and 𝑄2, the unknown state |𝜑⟩ on

DoF 𝐵1 is copied to both the DoFs 𝑄1 and 𝑄2. This part of the circuit, shown

in Fig. 4-2, acts as a UQCM.

Third phase: decoding Alice’s measurement basis.

Now from the two copies of the unknown state |𝜑⟩ on the two DoFs of 𝑄, i.e., |𝜑⟩𝑄1

and |𝜑⟩𝑄2
, Bob tries to discriminate the measurement bases of Alice, so that he can

decode the information sent to him. For that, Bob measures both the DoFs of 𝑄 in 𝑍
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basis, resulting in either 0 or 1 in each of the DoFs. Now there are two possibilities.

1. If Alice has measured in 𝑍 basis, then Bob’s possible measurement results on

the two DoFs of 𝑄 are {00,11}.

2. On the other hand, if Alice has measured in 𝑋 basis, then Bob’s possible mea-

surement results on the two DoFs of 𝑄 are {00,01,10,11}.

Suppose, Bob adopts the following strategy. Whenever his measurement results are

all zero or all one (i.e., 00 or 11), then he concludes that Alice has sent a zero, and

whenever he measures otherwise (i.e., 01 or 10) then he concludes that Alice has sent

a 1.

4.3.2 Computation of the signaling probability

Let the random variables 𝑋𝐴 and 𝑋𝐵 denote the bit sent by Alice and the bit decoded

by Bob, respectively. Hence, under the above strategy, Bob’s success probability of

decoding, which is also the probability of signaling, is given by

𝑃𝑠𝑖𝑔=Pr(𝑋𝐴=0∧𝑋𝐵 =0)+Pr(𝑋𝐴=1∧𝑋𝐵=1)

=Pr(𝑋𝐴=0) ·Pr(𝑋𝐵 =0 |𝑋𝐴=0)

+Pr(𝑋𝐴=1) ·Pr(𝑋𝐵 =1 |𝑋𝐴=1)

=1
2 ·1+ 1

2 · 2
4 =0.75.

(4.17)

To increase 𝑃𝑠𝑖𝑔 further, Bob can use hyper-hybrid entangled state involving 𝑁

DoFs of 𝑃 and 𝑄, with 𝑁≥3. Then he can make 𝑁 copies of the unknown state |𝜑⟩

into the DoFs of 𝑄. Analogous, to the strategy above for the case 𝑁=2, here also

if all the measurement results of Bob in the 𝑁 DoFs of 𝑄 in 𝑍 basis are the same,

i.e., all-zero case or the all-one case, then Bob concludes that Alice has sent a zero;

otherwise, he concludes that Alice has sent a 1. Thus, the above expression of 𝑃𝑠𝑖𝑔
changes to

1
2 ·1+ 1

2 · 2𝑁 −2
2𝑁 .
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Figure 4-3: Bob’s circuit for distinguishing between 𝑍 and 𝑋 bases using two types of
DoF sorters, i.e., a spin sorter (SS) and a path sorter (PS), and four detectors. Here
the output of Fig. 4-2 is used as an input in this circuit. Here, |↓⟩ and |↑⟩ denote the
down- and the up-spin states of the particles, respectively. Further, |𝑇 ⟩ denotes the
transverse mode and |𝑅⟩ denotes the reflected modes of a PS.

In other words,

𝑃𝑠𝑖𝑔=1− 1
2𝑁 . (4.18)

By making 𝑁 larger and larger, 𝑃𝑠𝑖𝑔 can be made arbitrarily close to 1.

4.3.3 Experimental realization using optical circuits

For the experimental realization of the above protocol, we propose a circuit with

DoF sorters, such as a spin sorter (SS), path sorter (PS), etc. (A spin sorter can

be realized in an optical system using a polarizing beam splitter for sorting between

the horizontal |𝐻⟩ and the vertical |𝑉 ⟩ polarizations of a photon. For an alternative

implementation in atomic systems using Raman process, one can see [1, Fig. 3].)

Suppose DoFs 1 and 2 are spin and path, respectively, with the two output states

{|↓⟩ , |↑⟩} and {|𝑇 ⟩ , |𝑅⟩}. Here, |↓⟩ and |↑⟩ denote the down and the up spin states

of the particles and |𝑇 ⟩ and |𝑅⟩ denote the transverse and the reflected modes of a

114



PS, respectively. Without loss of generality, we take

|0⟩ = |↓⟩ = |𝑇 ⟩ , |1⟩ = |↑⟩ = |𝑅⟩ ,

|+⟩ = 1√
2

(|↓⟩ + |↑⟩) = 1√
2

(|𝑇 ⟩ + |𝑅⟩) ,

|−⟩ = 1√
2

(|↓⟩ − |↑⟩) = 1√
2

(|𝑇 ⟩ − |𝑅⟩) .

(4.19)

The circuit, shown in Fig. 4-3, takes as input particle 𝑄 with DoFs 1 and 2, each

having the cloned state |𝜑⟩ from the output of the circuit in Fig. 4-2. Bob places a

path sorter 𝑃𝑆 followed by two spin sorters 𝑆𝑆1 and 𝑆𝑆2 on two output modes of

𝑃𝑆. Let 𝐷1 (𝐷3) and 𝐷2 (𝐷4) be the detectors at the two output ports of 𝑆𝑆1 (𝑆𝑆2).

If Alice measures in 𝑍 basis, Bob detects the particles in {𝐷1, 𝐷4} with unit

probability. On the other hand, if she measures in 𝑋 basis, the particles would be

detected in each of the detector sets {𝐷1, 𝐷4} and {𝐷2, 𝐷3} with a probability of 0.5.

When Bob detects the particles in either 𝐷2 or 𝐷3, he instantaneously knows that

the measurement basis of Alice is 𝑋. In this case, the signaling probability is 0.75,

which can be obtained by putting 𝑁 = 2 in Eq. (4.18).

For better signaling probability, one can use three DoFs 1, 2, and 3, instead of

two, in the joint state |𝜒⟩𝑃𝑄. The scheme for three DoFs is shown in Fig. 4-4, where

𝑆𝑖 represents the sorter for DoF 𝑖, for 𝑖 ∈ {1, 2, 3}. Now, if Alice measures in 𝑍

basis, Bob detects the particles in {𝐷1, 𝐷8} with probability 1. But if she measures

in 𝑋 basis, the particles would be detected in {𝐷1, 𝐷8} with probability 2
23 and in

{𝐷2, · · · , 𝐷7} with probability 23−2
23 = 0.75. In this case, the signaling probability is

0.875, which can be obtained by putting 𝑁 = 3 in Eq. (4.18).

We can generalize the above schematic as follows. Suppose, each of 𝑃 and 𝑄

has 𝑁 DoFs (each degree having two eigenstates), numbered 1 to 𝑁 , in hyper-hybrid

entangled state |𝜒⟩𝑃𝑄. We also need to use 𝑁 corresponding types of DoF sorters.

Now, if Alice measures in 𝑍 basis, Bob detects the particles in {𝐷1, 𝐷2𝑁 } with prob-

ability 1. But if she measures in 𝑋 basis, the particles are detected in {𝐷1, 𝐷2𝑁 }

with probability 2
2𝑁 and in detectors {𝐷2, · · · , 𝐷2𝑁 −1} with probability 2𝑁 −2

2𝑁 . For 𝑁

DoFs, the signaling probability is given in Eq. (4.18).
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Figure 4-4: Bob’s circuit for distinguishing between 𝑍 and 𝑋 bases using three types
of DoF sorters, i.e., 𝑆1, 𝑆2, and 𝑆3, and eight detectors. Here the output of Fig. 4-2
is used as an input in this circuit.

Increasing signaling probability without increasing the number of DoFs

From Eq. (4.18), it is clear that the signaling is possible only when 𝑁 is infinitely

large. The existence of such a huge number of accessible DoFs may be questionable.

Interestingly, we devise an alternative schematic that can drive the asymptotic success

probability to 1 with only two DoFs but using many copies of the singlet state shared

between Alice and Bob and the same number of copies of hyper-hybrid entangled

state at Bob’s disposal.

Suppose, Alice and Bob share 𝑀 copies of the singlet state{︁
|𝜓(1)⟩𝐴1𝐵1

, |𝜓(2)⟩𝐴1𝐵1
, · · · , |𝜓(𝑀)⟩𝐴1𝐵1

}︁
and Bob also has an equal number of copies

of hyper-hybrid entangled states
{︁
|𝜒(1)⟩𝑃𝑄 , |𝜒(2)⟩𝑃𝑄 , · · · , |𝜒(𝑀)⟩𝑃𝑄

}︁
(a single copy of

the singlet state and hyper-hybrid entangled state is shown in Fig. 4-1). Now the
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cloning can be performed in the following two steps.

1. Alice performs measurement in her preferred basis on each DoF 1 of her 𝑀

particles so that on the DoF 1 of each of the 𝑀 particles on Bob’s side, a copy

of the unknown state |𝜑⟩ is obtained.

2. After that, Bob performs BSM on each of the 𝑀 pairs of {𝐵1, 𝑃1} and suitable

unitary operations so that the unknown state |𝜑⟩ is copied to each of the 𝑀

pairs of {𝑄1, 𝑄2}.

Now Bob passes each of the 𝑀 copies of 𝑄 as shown in Fig. 4-3 and adopts the

following strategy. If Bob receives each of the 𝑀 particles in 𝐷1 or 𝐷4, then he

concludes that Alice has measured in 𝑍 basis. On the other hand, if Bob observes

any one of the 𝑀 particles in 𝐷2 or 𝐷3, then he concludes that Alice has measured

in 𝑋 basis. Under this strategy, Bob encounters a decoding error whenever Alice has

measured in 𝑋 basis, but he receives all the 𝑀 particles in 𝐷1 or 𝐷4. In this case,

the probability that a single particle is detected in the detector set {𝐷1, 𝐷4} is 1
2 and

hence the probability that all the 𝑀 particles are detected in the above set is 1
2𝑀 .

Hence, the corresponding success probability of signaling is given by

𝑃𝑠𝑖𝑔 = 1 − 1
2𝑀 , (4.20)

which also asymptotically goes to 1.

Thus we have the following logical version of Theorem 1

HHES ∧ UFQT ⇒ Signaling. (4.21)

4.4 First no-go theorem: no hyper-hybrid entan-

gled state for distinguishable particles

Proof. Unit fidelity quantum teleportation can be performed by distinguishable par-

ticles [43]. Thus if hyper-hybrid entangled state is also possible for distinguishable
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particles, it would lead to signaling as shown in Section 4.3. Thus a logical conclu-

sion is that in a world where special relativity holds barring signaling, hyper-hybrid

entangled state is not possible using distinguishable particles. Thus we can write this

no-go theorem logically as

No-signaling ⇒ no-HHES ∧ UFQT. (4.22)

4.5 Second no-go theorem: no unit fidelity quan-

tum teleportation for indistinguishable parti-

cles

Proof. Earlier, we have shown that signaling for distinguishable particles can be

achieved using unit fidelity quantum teleportation and hyper-hybrid entangled state

as black-boxes. unit fidelity quantum teleportation for distinguishable particles is

already known [43], and so we have concluded that hyper-hybrid entangled state for

distinguishable particles must be an impossibility.

Using massive identical particles, Marzolino and Buchleitner [247] have shown that

unit fidelity quantum teleportation is not possible using a finite and fixed number of

indistinguishable particles, due to the particle number conservation superselection

rule (SSR) [248, 249]. Interestingly, several independent works [249, 250, 251] have

already established that this superselection rule can be bypassed. So, an obvious

question is: whether it is possible to perform unit fidelity quantum teleportation for

indistinguishable particles bypassing the superselection rule. This question is also

answered in the negative in [247].

Very recently, for indistinguishable particles, Lo Franco and Compagno [163] have

achieved a quantum teleportation fidelity of 5/6, overcoming the classical teleporta-

tion fidelity bound 2/3 [252]. But they have not proved whether this value is optimal
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or whether unit fidelity can be achieved or not.

Systematic calculations show that our earlier scheme of quantum cloning and sig-

naling (Figs. 4-1 and Fig. 4-2) would still work, even if one replaces the unit fidelity

quantum teleportation and hyper-hybrid entangled state tools for distinguishable par-

ticles with those of the indistinguishable ones (assuming that such tools exist). As

signaling is not possible in quantum theory, we have concluded that hyper-hybrid en-

tangled state for distinguishable particles is not possible. But, for indistinguishable

particles, the creation of hyper-hybrid entangled state is possible [1]. Thus, a logical

conclusion is that, to prevent signaling, unit fidelity quantum teleportation must not

be possible for indistinguishable particles. So, this no-go theorem can be represented

logically as

No-signaling ⇒ HHES ∧ no-UFQT. (4.23)

4.6 Physical significance of the two no-go theo-

rems

From the above two no-go results, we can establish a separation result between distin-

guishable and indistinguishable particles. Let 𝑄𝑑𝑖𝑠 and 𝑄𝑖𝑛𝑑𝑖𝑠 be the two sets consist-

ing of quantum properties and applications of distinguishable and indistinguishable

particles, respectively, as shown in Fig. 4-5.

Several earlier works have attempted extending many results on one of these two

sets to the other. For example, quantum teleportation was originally proposed for

distinguishable particles [43, 212]. But recent works [163, 247] have extended it for

indistinguishable particles. Similarly, duality of entanglement as proposed in [253]

was thought to be a unique property of indistinguishable particles. But later its

existence for distinguishable particle was shown in [254]. Another unique property of

quantum correlation is quantum coherence, which was proposed for distinguishable

particles in [255] and later for indistinguishable particles in [256]. Einstein-Podolsky-
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Figure 4-5: The two sets 𝑄𝑑𝑖𝑠 (consisting of quantum properties and applications of
distinguishable particles), 𝑄𝑖𝑛𝑑𝑖𝑠 (consisting of quantum properties and applications
of indistinguishable particles), and their intersection (UFQT, HHES, and ES stand for
unit fidelity quantum teleportation, hyper-hybrid entangled state, and entanglement
swapping, respectively).

Rosen steering [142] was extended from distinguishable particles to a special class

of indistinguishable particles called Bose-Einstein condensates [257]. Entanglement

swapping, originally proposed for distinguishable particles in [44, 53, 54], was also

shown for indistinguishable particles in [176].

To the best of our knowledge, there is no known quantum correlation or applica-

tion that is unique for distinguishable particles only and does not hold for indistin-

guishable particles, and vice versa. In Section 4.4 of this paper, we have shown that

hyper-hybrid entangled state is unique to the set 𝑄𝑖𝑛𝑑𝑖𝑠, and in Section 4.5 we have

established that unit fidelity quantum teleportation is unique to the set 𝑄𝑑𝑖𝑠. Thus,

we demonstrate a clear separation between these two sets.
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Chapter 5

Degree of freedom trace-out rule

for indistinguishable particles

The representation and the trace-out rule of the state of two indistinguishable parti-

cles each having single DoF is discussed in Chapter 2.7.1. In this Chapter, we first

discuss the representation of the general state of indistinguishable particles each hav-

ing multiple DoFs using the notions of [161, 163]. Next, we discuss our proposed DoF

trace-out operation of indistinguishable particles when each particle have multiple

DoFs. Finally we discuss the physical significance of the proposed DoF trace-out

rule.

This chapter is based on the work in [258, 259].

5.1 Representation of the general state of indistin-

guishable particles

Lo Franco et al. [161, 163] have defined the partial trace-out rule for indistinguishable

particles where each particle has a spatial label and a single DoF. But as the notions

of [161, 163] for indistinguishable particles is not readily applicable for particles having

multiple DoFs, we have extended their notions to overcome this problem.

121



5.1.1 Two indistinguishable particles each having two DoFs

Assume two indistinguishable particles each having two DoFs are associated with two

spatial labels 𝛼1 and 𝛼2. Here 𝑎𝑖𝑗 ranges over D𝑗 := {𝐷𝑗1 , 𝐷𝑗2 , · · · , 𝐷𝑗𝑘𝑗
}, represents

the eigenvalue of the 𝑗-th DoF of the particle in the 𝛼𝑖-th localized region where

𝑖, 𝑗 ∈ N2 = {1, 2} and 𝑘𝑗 ≥ 2, since each DoF must have at least two distinct

eigenvalues. The general state of such a system is written as

|Ψ(2,2)⟩ :=
∑︁

𝛼1,𝛼2,𝑎1
1,𝑎

1
2,𝑎

2
1,𝑎

2
2

𝜂𝑢𝜅𝛼
1,𝛼2

𝑎1
1,𝑎

1
2,𝑎

2
1,𝑎

2
2
|𝛼1𝑎1

1𝑎
1
2, 𝛼

2𝑎2
1𝑎

2
2⟩ , (5.1)

where 𝛼1, 𝛼2 ranges over S𝑃 := {𝑠1, 𝑠2, · · · , 𝑠𝑃} which refers to distinct spatial modes

with 𝑃 ≥ 2. Here 𝑢 represents the summation of parity of the cyclic permutations of

all the 𝑛 DoFs. Thus 𝑢 can be represented as 𝑢 = 𝑢1 + 𝑢2 + . . . + 𝑢𝑛 = ∑︀
𝑖 𝑢𝑗 where

𝑢𝑗 is the parity of 𝑗-th DoF. The value of 𝜂 is +1 for bosons and −1 for fermions. If

we have the following condition that

(︁
𝛼𝑖 = 𝛼𝑖

′)︁ ∧
(︁
𝑎𝑖𝑗 = 𝑎𝑖

′

𝑗

)︁
(5.2)

for any 𝑖 ̸= 𝑖′ where 𝛼𝑖, 𝛼𝑖′ ∈ S𝑃 and 𝑗 ∈ N2, then we get 𝜂 = 0 for fermions due to

Pauli exclusion principle [224].

The value of 𝑘𝑗 may vary with 𝑗. For example, consider two DoFs: polarization

and optical orbital angular momentum (OAM), associated with a system of indistin-

guishable photons. Generally, the polarization belongs to a two-dimensional Hilbert

space, whereas the orbital angular momentum lies in an infinite-dimensional Hilbert

space governed by the azimuthal index 𝑙. In practical implementations, this mismatch

in Hilbert space dimensions between the two DoFs is taken care of by mapping the

larger dimensional space to the lower dimensional one [260, 261]. For orbital angular

momentum , the infinite-dimensional Hilbert space is generally mapped into a two-

dimensional one with the eigenvalues {2𝑙, 2𝑙+ 1} or {+𝑙,−𝑙}. Also, the Hilbert space

is sometimes restricted to smaller dimensions by proper state engineering in which

case only certain chosen values of 𝑙 are allowed.
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Following the above notations, the general density matrix of two indistinguishable

particles each having two DoFs is expressed as

𝜌(2,2) :=
∑︁

𝛼𝑖,𝛽𝑖,𝑎𝑖
𝑗 ,𝑏

𝑖
𝑗

𝜂(𝑢+�̄�)𝜅𝛼
1,𝛼2,𝛽1,𝛽2

𝑎1
1𝑎

1
2,𝑎

2
1𝑎

2
2,𝑏

1
1𝑏

1
2,𝑏

2
1𝑏

2
2
|𝛼1𝑎1

1𝑎
1
2, 𝛼

2𝑎2
1𝑎

2
2⟩ ⟨𝛽1𝑏1

1𝑏
1
2, 𝛽

2𝑏2
1𝑏

2
2| , (5.3)

where 𝛼𝑖, 𝛽𝑖 ranges over S𝑃 , 𝑎𝑖𝑗, 𝑏𝑖𝑗 ranges over D𝑗, and 𝑖, 𝑗 ∈ N2. Here 𝑢 is as defined

in Eq. (5.1) and �̄� comes due to density matrix. If we have the following condition

that {︁(︁
𝛼𝑖 = 𝛼𝑖

′)︁ ∧
(︁
𝑎𝑖𝑗 = 𝑎𝑖

′

𝑗

)︁}︁
∨
{︁(︁
𝛽𝑖 = 𝛽𝑖

′)︁ ∧
(︁
𝑏𝑖𝑗 = 𝑏𝑖

′

𝑗

)︁}︁
(5.4)

for any 𝑖 ̸= 𝑖′ where 𝑖, 𝑖′ ∈ N2 and 𝑗 ∈ N2, then we get 𝜂 = 0 for fermions due to Pauli

exclusion principle [224].

The general density matrix of the state in Eq. (5.1) is represented as

𝜌(2,2) :=
∑︁

𝛼𝑖,𝛽𝑖,𝑎𝑖
𝑗 ,𝑏

𝑖
𝑗

𝜂(𝑢+�̄�)𝜅𝛼
1,𝛼2

𝑎1
1𝑎

1
2,𝑎

2
1𝑎

2
2
𝜅𝛽

1,𝛽2*
𝑏1

1𝑏
1
2,𝑏

2
1𝑏

2
2
|𝛼1𝑎1

1𝑎
1
2, 𝛼

2𝑎2
1𝑎

2
2⟩ ⟨𝛽1𝑏1

1𝑏
1
2, 𝛽

2𝑏2
1𝑏

2
2| , (5.5)

where the notations are same as Eq. (5.3).

In the next section, we extend this notions to two indistinguishable particles each

having 𝑛 DoFs.

5.1.2 Two indistinguishable particles each having 𝑛 DoFs

Lets us consider two indistinguishable particles each having 𝑛 DoFs. Following the

same notations of Eq. (5.1), the general state of Eq. (5.1) of two particles from two

DoFs to 𝑛 DoFs can be represented as

|Ψ(2,𝑛)⟩ :=
∑︁
𝛼𝑖,𝑎𝑖

𝑗

𝜂𝑢𝜅𝛼
1,𝛼2

𝑎1
1𝑎

1
2···𝑎1

𝑛,𝑎
2
1𝑎

2
2···𝑎2

𝑛
|𝛼1𝑎1

1𝑎
1
2 · · · 𝑎1

𝑛, 𝛼
2𝑎2

1𝑎
2
2 · · · 𝑎2

𝑛⟩ , (5.6)

where 𝑎𝑖𝑗 ranges over D𝑗, 𝑖 ∈ N2 = {1, 2}, and 𝑗 ∈ N𝑛 = {1, 2, . . . , 𝑛}.
The general density matrix of two indistinguishable particles each having 𝑛 DoFs
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following Eq. (5.3) can be described as

𝜌(2,𝑛):=
∑︁

𝛼𝑖,𝛽𝑖,𝑎𝑖
𝑗 ,𝑏𝑖

𝑗

𝜂(𝑢+�̄�)𝜅𝛼1,𝛼2,𝛽1,𝛽2

𝑎1
1𝑎1

2···𝑎1
𝑛,𝑎2

1𝑎2
2···𝑎2

𝑛,𝑏1
1𝑏1

2···𝑏1
𝑛,𝑏2

1𝑏2
2···𝑏2

𝑛
|𝛼1𝑎1

1𝑎
1
2···𝑎1

𝑛,𝛼
2𝑎2

1𝑎
2
2···𝑎2

𝑛,⟩⟨𝛽1𝑏1
1𝑏

1
2···𝑏1

𝑛,𝛽
2𝑏2

1𝑏
2
2···𝑏2

𝑛|,

(5.7)

where where 𝑎𝑖𝑗, 𝑏𝑖𝑗, ranges over D𝑗, 𝑖∈N2 ={1,2}, and 𝑗∈N𝑛={1,2, . . . ,𝑛}.

In the next section, we describe the most general state of 𝑝 indistinguishable

particles each having 𝑛 DoFs.

5.1.3 𝑝 indistinguishable particles each having 𝑛 DoFs

In this section, we describe the most general state of 𝑝 indistinguishable particles each

having 𝑛 DoF. For better understanding, we are describing the notations once again.

The 𝑃 spatial labels are represented by 𝛼𝑖 where 𝛼𝑖 ranges over S𝑃 :={𝑠1, 𝑠2, · · · , 𝑠𝑃}.

We write the set {1,2, . . . ,𝑛} as N𝑛. Here 𝑎𝑖𝑗 ranges over D𝑗 :={𝐷𝑗1 ,𝐷𝑗2 , · · · ,𝐷𝑗𝑘𝑗
},

represents the eigenvalue of the 𝑗-th DoF of the particle in the 𝛼𝑖-th localized region

where 𝑗∈N𝑛. Thus the general state of 𝑝 indistinguishable particles each having 𝑛

DoFs is defined as

|Ψ(𝑝,𝑛)⟩ :=
∑︁
𝛼𝑖,𝑎𝑖

𝑗

𝜂𝑢𝜅𝛼
1,𝛼2,··· ,𝛼𝑝

𝑎1
1𝑎

1
2···𝑎1

𝑛,𝑎
2
1𝑎

2
2···𝑎2

𝑛,··· ,𝑎
𝑝
1𝑎

𝑝
2···𝑎𝑝

𝑛
|𝛼1𝑎1

1𝑎
1
2 · · ·𝑎1

𝑛,𝛼
2𝑎2

1𝑎
2
2 · · ·𝑎2

𝑛, · · · ,𝛼𝑝𝑎
𝑝
1𝑎
𝑝
2 · · ·𝑎𝑝𝑛⟩ .

(5.8)

Here 𝑢 represents the summation of parity of the cyclic permutations of all the 𝑛 DoFs.

Thus 𝑢 can be represented as 𝑢=𝑢1 +𝑢2 + . . .+𝑢𝑛=∑︀𝑖𝑢𝑗 where 𝑢𝑗 is the parity of 𝑗-

th DoF. The value of 𝜂 is +1 for bosons and −1 for fermions. If we have the following

condition that if (︁
𝛼𝑖=𝛼𝑖

′)︁∧
(︁
𝑎𝑖𝑗 =𝑎𝑖

′

𝑗

)︁
(5.9)

for any 𝑖 ̸= 𝑖′ where 𝛼𝑖,𝛼𝑖′ ∈S𝑃 and 𝑗∈N𝑛, then we get 𝜂=0 for fermions due to Pauli

exclusion principle [224].
Following the above notations, the general density matrix of 𝑝 indistinguishable

124



particles each having 𝑛 DoFs is defined as

𝜌(𝑝,𝑛):=
∑︁

𝛼𝑖,𝛽𝑖,𝑎𝑖
𝑗 ,𝑏𝑖

𝑗

𝜂(𝑢+�̄�)𝜅𝛼(𝑝),𝛽(𝑝)

𝑎(𝑛),𝑏(𝑛)
|𝛼1𝑎1

1𝑎
1
2···𝑎1

𝑛,𝛼
2𝑎2

1𝑎
2
2···𝑎2

𝑛,···,𝛼𝑝𝑎𝑝
1𝑎

𝑝
2···𝑎𝑝

𝑛⟩⟨𝛽1𝑏1
1𝑏

1
2···𝑏1

𝑛,𝛽
2𝑏2

1𝑏
2
2···𝑏2

𝑛,···,𝛽𝑝𝑏𝑝
1𝑏

𝑝
2···𝑏𝑝

𝑛|,

(5.10)

where

𝜅𝛼
(𝑝),𝛽(𝑝)

𝑎(𝑛),𝑏(𝑛)
=𝜅𝛼

1,𝛼2,··· ,𝛼𝑝,𝛽1,𝛽2,...,𝛽𝑝

𝑎1
1𝑎

1
2···𝑎1

𝑛,𝑎
2
1𝑎

2
2···𝑎2

𝑛,··· ,𝑎
𝑝
1𝑎

𝑝
2···𝑎𝑝

𝑛,𝑏
1
1𝑏

1
2...𝑏

1
𝑛,𝑏

2
1𝑏

2
2...𝑏

2
𝑛,...,𝑏

𝑝
1𝑏

𝑝
2...𝑏

𝑝
𝑛

(5.11)

and 𝛼𝑖,𝛽𝑖 ranges over S𝑝, 𝑎𝑖𝑗, 𝑏𝑖𝑗 ranges over D𝑗, 𝑖∈N𝑃 and 𝑗∈N𝑛. Here 𝑢 is as defined

in Eq. (5.8) and �̄� comes due to density matrix. If we have the following condition

that {︁(︁
𝛼𝑖=𝛼𝑖

′)︁∨
(︁
𝛽𝑖=𝛽𝑖

′)︁}︁∧
{︁(︁
𝑎𝑖𝑗 =𝑎𝑖

′

𝑗

)︁
∨
(︁
𝑏𝑖𝑗 =𝑏𝑖

′

𝑗

)︁}︁
(5.12)

for any 𝑖 ̸= 𝑖′ where 𝑖, 𝑖′ ∈N𝑃 and 𝑗∈N𝑛, then we get 𝜂=0 for fermions due to Pauli

exclusion principle [224].
The density matrix of Eq. (5.8) is described as

𝜌(𝑝,𝑛):=
∑︁

𝛼𝑖,𝛽𝑖,𝑎𝑖
𝑗 ,𝑏𝑖

𝑗

𝜂(𝑢+�̄�)𝜅𝛼(𝑝)
𝑎(𝑛)

𝜅𝛽(𝑝)*
𝑏(𝑛)

|𝛼1𝑎1
1𝑎

1
2···𝑎1

𝑛,𝛼
2𝑎2

1𝑎
2
2···𝑎2

𝑛,···,𝛼𝑝𝑎𝑝
1𝑎

𝑝
2···𝑎𝑝

𝑛⟩⟨𝛽1𝑏1
1𝑏

1
2···𝑏1

𝑛,𝛽
2𝑏2

1𝑏
2
2···𝑏2

𝑛,···,𝛽𝑝𝑏𝑝
1𝑏

𝑝
2···𝑏𝑝

𝑛|,

(5.13)

where
𝜅𝛼

(𝑝)

𝑎(𝑛)
=𝜅𝛼

1,𝛼2,··· ,𝛼𝑝

𝑎1
1𝑎

1
2···𝑎1

𝑛,𝑎
2
1𝑎

2
2···𝑎2

𝑛,··· ,𝑎
𝑝
1𝑎

𝑝
2···𝑎𝑝

𝑛
,

𝜅𝛽
(𝑝)

𝑏(𝑛)
=𝜅𝛽

1,𝛽2,...,𝛽𝑝

𝑏1
1𝑏

1
2...𝑏

1
𝑛,𝑏

2
1𝑏

2
2...𝑏

2
𝑛,...,𝑏

𝑝
1𝑏

𝑝
2...𝑏

𝑝
𝑛
,

(5.14)

and rest of the notations are the same as Eq. (5.10).

5.2 DoF trace-out for indistinguishable particles

In this section, we propose a DoF trace-out rule for indistinguishable particles where

each particle has more than one DoF. In [161, 163], they propose the trace-out rule

for indistinguishable particles having single DoF. One may be tempted to think that

the same rule can trace-out a single DoF for indistinguishable particles having single

DoF, will work for indistinguishable particles having multiple DoFs. However, this is

not so straightforward. When particles become indistinguishable with multiple DoFs,

performing the partial trace-out of a particular DoF is challenging, because a DoF
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cannot be associated with a specific particle. To trace out DoFs of such particles,

particularly when the particles are entangled in multiple DoFs, we have proposed a

solution. Also, our DoF trace-out rule can treat the cases of both distinguishable and

indistinguishable particles under a uniform mathematical framework.

5.2.1 Two indistinguishable particles each having two DoFs

If we want to perform partial trace in only one region, say 𝑠𝑥∈SP, then the non-

normalized density matrix can be written as

𝜌
(1)
𝑀 =Tr𝑀

(︁
𝜌(2,2)

)︁
=

∑︁
𝑚1,𝑚2,··· ,𝑚𝑛

⟨𝑠𝑥𝑚1𝑚2 · · ·𝑚𝑛|𝜌(2,2)|𝑠𝑥𝑚1𝑚2 · · ·𝑚𝑛⟩ , (5.15)

where 𝑚𝑗 span D𝑗, where 𝑗∈N2.

To perform DoF trace-out of the 𝑗-th DoF, 𝑗∈N2, of spatial region 𝑠𝑥∈S𝑃 , we

define the reduced density matrix of Eq. (5.3) as

𝜌𝑠𝑥
�̄�
≡Tr𝑠𝑥

𝑗

(︁
𝜌(2,2)

)︁
≡
∑︁

𝑚𝑗∈D𝑗

⟨𝑠𝑥𝑚𝑗|𝜌(2,2)|𝑠𝑥𝑚𝑗⟩

:=𝜂(𝑢+�̄�)∑︁
𝑚𝑗

{︃ ∑︁
𝛼1,𝛼2,𝑎1

𝑗 ,𝑎
1
�̄�
,𝑎2

1,𝑎
2
2,

𝛽1,𝛽2,𝑏1
𝑗 ,𝑏

1
�̄�
,𝑏2

1,𝑏
2
2

𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
𝑗 ,𝑎

1
�̄�
,𝑎2

1,𝑎
2
2,𝑏

1
𝑗 ,𝑏

1
�̄�
,𝑏2

1,𝑏
2
2
⟨𝑠𝑥𝑚𝑗|𝛼1𝑎1

𝑗⟩⟨𝛽1𝑏1
𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1

�̄� ,𝛼
2𝑎2

1𝑎
2
2⟩⟨𝛽1𝑏1

�̄� ,𝛽
2𝑏2

1𝑏
2
2|

+𝜂
∑︁

𝛼1,𝛼2,𝑎1
1,𝑎

1
2,𝑎

2
𝑗 ,𝑎

2
�̄�
,

𝛽1,𝛽2,𝑏1
𝑗 ,𝑏

1
�̄�
,𝑏2

1,𝑏
2
2

𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
1,𝑎

1
2,𝑎

2
𝑗 ,𝑎

2
�̄�
,𝑏1

𝑗 ,𝑏
1
�̄�
,𝑏2

1,𝑏
2
2
⟨𝑠𝑥𝑚𝑗|𝛼2𝑎2

𝑗⟩⟨𝛽1𝑏1
𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1

1𝑎
1
2,𝛼

2𝑎2
�̄�⟩⟨𝛽

1𝑏1
�̄� ,𝛽

2𝑏2
1𝑏

2
2|

+𝜂
∑︁

𝛼1,𝛼2,𝑎1
𝑗 ,𝑎

1
�̄�
,𝑎2

1,𝑎
2
2,

𝛽1,𝛽2,𝑏1
1,𝑏

1
2,𝑏

2
𝑗 ,𝑏

2
�̄�

𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
𝑗 ,𝑎

1
�̄�
,𝑎2

1,𝑎
2
2,𝑏

1
1,𝑏

1
2,𝑏

2
𝑗 ,𝑏

2
�̄�

⟨𝑠𝑥𝑚𝑗|𝛼1𝑎1
𝑗⟩⟨𝛽2𝑏2

𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1
�̄� ,𝛼

2𝑎2
1𝑎

2
2⟩⟨𝛽1𝑏1

1𝑏
1
2,𝛽

2𝑏2
�̄� |

+
∑︁

𝛼1,𝛼2,𝑎1
1,𝑎

1
2,𝑎

2
𝑗 ,𝑎

2
�̄�
,

𝛽1,𝛽2,𝑏1
1,𝑏

1
2,𝑏

2
𝑗 ,𝑏

2
�̄�

𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
1,𝑎

1
2,𝑎

2
𝑗 ,𝑎

2
�̄�
,𝑏1

1,𝑏
1
2,𝑏

2
𝑗 ,𝑏

2
�̄�

⟨𝑠𝑥𝑚𝑗|𝛼2𝑎2
𝑗⟩⟨𝛽2𝑏2

𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1
1𝑎

1
2,𝛼

2𝑎2
�̄�⟩⟨𝛽

1𝑏1
1𝑏

1
2,𝛽

2𝑏2
�̄� |
}︃
,

(5.16)

where �̄� :=(3−𝑗). The parameter 𝜂 is +1 (−1) for bosons (fermions). Similarly, the
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trace-out operation of the state in Eq. (5.5) using the above rule.

Equation (5.16) can be generalized for 𝑛 DoFs and it includes particle trace-out as

a special case for 𝑛=1 as shown in the next section. Similarly, to get the description

of the reduced system 𝜌𝑠𝑥
𝑖

consisting of a single DoF, we have to apply our trace-out

rule (𝑛−1) times.

5.2.2 Two indistinguishable particles each having 𝑛 DoFs

Next we define DoF trace-out rule for indistinguishable particles from the general

density matrix of two particles as defined in Eq. (5.7). Suppose we want to trace-out

the 𝑗-th DoF of location 𝑠𝑥∈S𝑃 . Then the DoF reduced density matrix is

𝜌𝑠𝑥
�̄�
≡Tr𝑠𝑥

𝑗

(︁
𝜌(2,𝑛)

)︁
≡
∑︁

𝑚𝑗∈D𝑗

⟨𝑠𝑥𝑚𝑗|𝜌(2,𝑛)|𝑠𝑥𝑚𝑗⟩

:=
∑︁
𝑚𝑗

{︃ ∑︁
𝛼1,𝛼2,𝑎1

𝑗 ,𝑎
1
�̄�
,𝑎2

1,𝑎
2
2,...,𝑎

2
𝑛

𝛽1,𝛽2,𝑏1
𝑗 ,𝑏

1
�̄�
,𝑏2

1,𝑏
2
2,...,𝑏

2
𝑛

𝜅𝑝⟨𝑠𝑥𝑚𝑗|𝛼1𝑎1
𝑗⟩⟨𝛽1𝑏1

𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1
�̄� ,𝛼

2𝑎2
1𝑎

2
2...𝑎

2
𝑛⟩⟨𝛽1𝑏1

�̄� ,𝛽
2𝑏2

1𝑏
2
2...𝑏

2
𝑛|

+𝜂
∑︁

𝛼1,𝛼2,𝑎1
1,𝑎

1
2,...,𝑏

1
𝑛𝑎

2
𝑗 ,𝑎

2
�̄�
,

𝛽1,𝛽2,𝑏1
𝑗 ,𝑏

1
�̄�
,𝑏2

1,𝑏
2
2

,...,𝑏2
𝑛

⟨𝑠𝑥𝑚𝑗|𝛼2𝑎2
𝑗⟩⟨𝛽1𝑏1

𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1
1𝑎

1
2...𝑎

1
𝑛𝛼

2𝑎2
�̄�⟩⟨𝛽

1𝑏1
�̄� ,𝛽

2𝑏2
1𝑏

2
2...𝑏

2
𝑛|

+𝜂
∑︁

𝛼1,𝛼2,𝑎1
𝑗 ,𝑎

1
�̄�
,𝑎2

1,𝑎
2
2,...,𝑎

2
𝑛

𝛽1,𝛽2,𝑏1
1,𝑏

1
2,...,𝑏

1
𝑛𝑏

2
𝑗 ,𝑏

2
�̄�

⟨𝑠𝑥𝑚𝑗|𝛼1𝑎1
𝑗⟩⟨𝛽2𝑏2

𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1
�̄� ,𝛼

2𝑎2
1𝑎

2
2...𝑎

2
𝑛⟩⟨𝛽1𝑏1

1𝑏
1
2...𝑏

1
𝑛,𝛽

2𝑏2
�̄� |

+
∑︁

𝛼1,𝛼2,𝑎1
1,𝑎

1
2,...,𝑎

1
𝑛,𝑎

2
𝑗 ,𝑎

2
�̄�
,

𝛽1,𝛽2,𝑏1
1,𝑏

1
2,...,𝑏

1
𝑛𝑏

2
𝑗 ,𝑏

2
�̄�

⟨𝑠𝑥𝑚𝑗|𝛼2𝑎2
𝑗⟩⟨𝛽2𝑏2

𝑗 |𝑠𝑥𝑚𝑗⟩|𝛼1𝑎1
1𝑎

1
2...𝑎

1
𝑛,𝛼

2𝑎2
�̄�⟩⟨𝛽

1𝑏1
1𝑏

1
2...𝑏

1
𝑛𝛽

2𝑏2
�̄� |
}︃
,

(5.17)

where
𝜅𝑝=𝜅𝛼

1𝛼2,𝛽1,𝛽2

𝑎1
𝑗 ,𝑎

1
�̄�
,𝑎2

1,𝑎
2
2,...,𝑎

2
𝑛,𝑏

1
𝑗 ,𝑏

1
�̄�
,𝑏2

1,𝑏
2
2,...,𝑏

2
𝑛
,

𝜅𝑞=𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
1,𝑎

1
2,...,𝑏

1
𝑛𝑎

2
𝑗 ,𝑎

2
�̄�
,𝑏1

𝑗 ,𝑏
1
�̄�
,𝑏2

1,𝑏
2
2,...,𝑏

2
𝑛
,

𝜅𝑟=𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
𝑗 ,𝑎

1
�̄�
,𝑎2

1,𝑎
2
2,...,𝑎

2
𝑛,𝑏

1
1,𝑏

1
2,...,𝑏

1
𝑛,𝑏

2
𝑗 ,𝑏

2
�̄�

,

𝜅𝑠=𝜅𝛼
1𝛼2,𝛽1,𝛽2

𝑎1
1,𝑎

1
2,...,𝑎

1
𝑛,𝑎

2
𝑗 ,𝑎

2
�̄�
,𝑏1

1,𝑏
1
2,...,𝑏

1
𝑛,𝑏

2
𝑗 ,𝑏

2
�̄�

,

(5.18)

It may be noted that for 𝑛=2, the DoF trace-out rule defined in Eq. (5.17) reduces
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to Eq. (5.16). For 𝑛=1, this becomes equivalent to the particle trace-out rule as defined

Eq. (2.29). On the other hand, for 𝑛>1, if we apply DoF trace-out rule of Eq. (5.16)

𝑛 times, the effect will not be the same as the particle trace-out in Eq. (2.29). The

reason behind this is as follows. For indistinguishable particles, the particle trace-

out operation vanishes all the DoFs together for one particle; whereas each DoF

trace-out operation leaves an expression with many terms each of which vanishes the

corresponding DoF from one particle at a time and retains the same DoF in the

remaining particles.

5.2.3 𝑝 indistinguishable particles each having 𝑛 DoFs

Finally, we define DoF trace-out rule for 𝑝 indistinguishable particles each having 𝑛

DoFs from the general density matrix Eq. (5.10). Suppose we want to trace-out the

𝑗-th DoF of location 𝑠𝑥∈S𝑃 , then the DoF reduced density matrix is

𝜌𝑠𝑥
�̄�
≡Tr𝑠𝑥

𝑗

(︁
𝜌(𝑝,𝑛)

)︁
≡
∑︁

𝑚𝑗∈D𝑗

⟨𝑠𝑥𝑚𝑗|𝜌(𝑝,𝑛)|𝑠𝑥𝑚𝑗⟩. (5.19)

This can be expanded similarly as shown in Eq. (5.17).

5.3 Physical significance of the proposed DoF trace-

out rule

Our DoF trace-out rule plays a very critical role with respect to the recently intro-

duced complex systems with inter-DoF entanglements [1, 262, 263]. When such en-

tanglement exists, measuring or non-measuring one of the participating DoFs would

influence the measurement results of the other participating DoFs. In an experiment

involving such systems, the DoF trace-out can operationally be implemented simply

by choosing to measure a particular DoF in a particular spatial location while ig-

noring the others. However, the statistics so obtained cannot be predicted using the

existing trace-out rules in either the first or the second quantization notations.
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The physical meaning of the term 𝜌𝑠𝑥
�̄� in Eq. (5.16) is that it represents the

description of the reduced system after measuring the whole system in the 𝑗-th DoF in

the spatial region 𝑠𝑥. On the other hand, the physical interpretation of the term 𝜌𝑠𝑥𝑗 is

that if someone measures only the 𝑖-th DoF in the spatial region 𝑠𝑥, then the measure

statistics would be equivalent to the system 𝜌𝑠𝑥𝑖
. It can be noted that our DoF trace-

out rule in Eq. (5.16) is order independent. Our framework expressed in Eq. (5.16) can

deal with all such systems with inter-DoF correlations in indistinguishable particles,

leading to the prediction of perfect measurement statistics.

Further, it generalizes the standard existing trace-out rule and is therefore suitable

for such entanglement structures of distinguishable particles as well. More specifically,

for distinguishable particles, tracing out a single DoF of a particle is analogous to

tracing out a whole particle; for indistinguishable particles, on the other hand, tracing

out a single DoF is performed for a specific spatial location where wave-functions of

multiple particles might be overlapping. These overlaps are taken care of in the inner-

product terms in the expression of Eq. (5.16).

In short, the physical significance of our result is that it extends the standard den-

sity matrix approach of quantum information to systems of indistinguishable particles

entangled in multiple degrees of freedom.
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Chapter 6

Generalized relation between

teleportation fidelity and singlet

fraction

In this chapter, we generalize the existing relation between teleportation fidelity and

singlet fraction for both distinguishable and indistinguishable particles where each

particle have multiple DoFs. We also describe the physical significance of the pro-

posed generalized relation. Then we propose an optical scheme to generate inter-DoF

entangled state for distinguishable particles where the non-triviality of the above

relation is explained.

This chapter is based on the work in [264].

6.1 Generalized teleportation fidelity

For particles having a single DoF, there is only one teleportation channel. But, when

multiple DoFs, say 𝑛, are available for each particle, then up to 𝑛2 teleportation

channels are possible. So the previous definition of teleportation fidelity will not work

for distinguishable particles and indistinguishable particles each having multiple DoFs.

For any teleportation protocol, the motivation is to maximize the information transfer.

So we define the generalized teleportation fidelity in such a way that it captures the
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Figure 6-1: Teleportation operation using (a) two distinguishable particles and (b)
two indistinguishable particles, each having 𝑛 DoFs.

maximum fidelity over all possible channels.

Suppose 𝜌(2,𝑛)
𝐴𝐵 denotes the joint state of two distinguishable particles 𝐴 and 𝐵,

each having 𝑛 DoFs following Eq. (2.11). Another particle 𝐶 having 𝑛 DoFs nearby

to 𝐴, has an unknown state in any DoF denoted by 𝜌𝑖𝑛 which has to be teleported

to 𝐵. For teleportation operation, Bell state measurement (BSM) is performed with

the DoF of 𝐶 having the unknown state 𝜌𝑖𝑛 and the 𝑖-th DoF of particle 𝐴. After

BSM, the unknown state is teleported to all the DoFs of 𝐵 as shown in Fig. 6-1

(a). We denote the teleported state on the 𝑗-th DoF of the particle 𝐵 by 𝜌𝑜𝑢𝑡𝑗 where

𝑗∈N𝑛=1,2,...,𝑛}. The teleportation fidelity between the 𝑖-th DoF of 𝐴 and the 𝑗-th

DoF of 𝐵 is given by

𝑓 𝑖𝑗 :=Tr
√︂√︁

𝜌𝑖𝑛𝜌𝑜𝑢𝑡𝑗

√︁
𝜌𝑖𝑛. (6.1)

As the goal of any teleportation protocol is to maximize the fidelity, so we define the
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generalized teleportation fidelity for the state 𝜌(2,𝑛)
𝐴𝐵 as

𝑓𝑔:= max
𝑖,𝑗∈N𝑛

{︁
𝑓 𝑖𝑗
}︁
. (6.2)

The teleportation operation using indistinguishable particles [247, 163] is almost

the same as that of using distinguishable particles. Consider two indistinguishable

particles with density matrix 𝜌(2,𝑛) as defined in Eq. (5.7), located in the spatial

regions 𝑠𝑥 and 𝑠𝑦 where 𝑠𝑥,𝑠𝑦∈S𝑃 . The particle 𝐶, distinguishable from them, is

located in the spatial region 𝑠𝑥′∈S𝑃 nearby to 𝑠𝑥, having an unknown state 𝜌𝑖𝑛 in one

of its DoF. This unknown state has to be teleported in the spatial region 𝑠𝑦. Now

Bell state measurement is performed on the 𝑖-th DoF of the spatial region 𝑠𝑥 and

the DoF of 𝐶 having the unknown state 𝜌𝑖𝑛. After this operation, 𝜌𝑖𝑛 is teleported

(probabilistically) to all the DoFs of the spatial region 𝑠𝑦 as shown in Fig. 6-1 (b). We

denote the teleported state of the 𝑗-th DoF of the spatial region 𝑠𝑦 by 𝜌𝑜𝑢𝑡𝑗 and the

teleportation fidelity between the 𝑖-th DoF of spatial location 𝑠𝑥 and the 𝑗-th DoF

of the spatial region 𝑠𝑦 is denoted by 𝑓 𝑖𝑗 :=Tr
√︁√

𝜌𝑖𝑛𝜌𝑜𝑢𝑡𝑗

√
𝜌𝑖𝑛. With this notation in

the case of indistinguishable particles, the generalized teleportation fidelity for any

arbitrary 𝜌(2,𝑛) is calculated in the same way as Eq. (6.2).

6.2 Generalized singlet fraction

For two distinguishable particles, say 𝐴 and 𝐵, each having 𝑛 DoFs as in Eq. (2.11),

if 𝑎𝑖 is maximally entangled with 𝑏𝑗, then all the other pairs of the form {𝑎𝑖,𝑏𝑘},

𝑘 ̸=𝑗, as well as {𝑎𝑙,𝑏𝑗}, 𝑙 ̸=𝑖, become separable due to monogamy of entanglement

between DoFs [262, 263]. For two indistinguishable particles each having 𝑛 DoFs as

in Eq. (5.7), it is possible to have all {𝑎𝑖,𝑏𝑗} pairs are maximally entangled as shown

in [258]. The current definition of singlet fraction does not capture all such scenarios

for distinguishable particles and indistinguishable particles. So the motivation behind

our generalized singlet fraction is to capture all the entangled or separable struc-

tures between two distinguishable particles or indistinguishable particles. So we take
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the summation of all the singlet fraction possible for any particular DoF. Then we

maximized that value for all DoFs of the both particles.

For two distinguishable particles 𝐴 and 𝐵 with the joint state 𝜌
(2,𝑛)
𝐴𝐵 as shown

in (2.11), we define the generalized singlet fraction as

𝐹 (𝑛)
𝑔 :=max

{︂
max
𝑖

{𝐹 (𝑖)},max
𝑗

{𝐹 (𝑗)}
}︂
, (6.3)

where
𝐹 (𝑖) :=max

𝜓𝑎𝑖𝑏𝑗

𝑛∑︁
𝑗=1

𝑃𝑎𝑖𝑏𝑗
,

𝐹 (𝑗) :=max
𝜓𝑎𝑖𝑏𝑗

𝑛∑︁
𝑖=1

𝑃𝑎𝑖𝑏𝑗
,

𝑃𝑎𝑖𝑏𝑗
:=⟨𝜓𝑎𝑖𝑏𝑗

|𝜌𝑎𝑖𝑏𝑗
|𝜓𝑎𝑖𝑏𝑗

⟩ ,

𝜌𝑎𝑖𝑏𝑗
:=Tr𝑎�̄�𝑏�̄�

(𝜌(2,𝑛)
𝐴𝐵 ).

(6.4)

Here 𝑎�̄�=𝑎1𝑎2 · · ·𝑎𝑖−1𝑎𝑖+1 · · ·𝑎𝑛 and similar meaning for 𝑏�̄�. In the terms

max𝜓𝑎𝑖𝑏𝑗

{︁∑︀𝑛
𝑗=1𝑃𝑎𝑖𝑏𝑗

}︁
, the 𝑖-th DoF of 𝐴 is kept fixed and |𝜓𝑎𝑖𝑏𝑗

⟩ spans all possi-

ble maximally entangled states between the 𝑖-th DoF of 𝐴 and the 𝑗-th DoF of 𝐵.

Similarly for the other term, the 𝑗-th DoF of 𝐵 is kept fixed.

Next consider two indistinguishable particles with joint state 𝜌(2,𝑛) as in (5.7), each

having 𝑛 DoFs. The generalized singlet fraction for two spatial regions 𝑠𝑥, 𝑠𝑦∈S𝑃 as

shown in Fig. 6-1 (b) can be calculated similarly using Eq. (6.3) where

𝐹 (𝑖)=max
𝜓

𝑠𝑥
𝑖

𝑠
𝑦
𝑗

𝑛∑︁
𝑗=1

𝑃𝑠𝑥
𝑖 𝑠

𝑦
𝑗
,

𝐹 (𝑗)=max
𝜓

𝑠𝑥
𝑖

𝑠
𝑦
𝑗

𝑛∑︁
𝑖=1

𝑃𝑠𝑥
𝑖 𝑠

𝑦
𝑗
,

𝑃𝑠𝑥
𝑖 𝑠

𝑦
𝑗
:=⟨𝜓𝑠𝑥

𝑖 𝑠
𝑦
𝑗
|𝜌𝑠𝑥

𝑖 𝑠
𝑦
𝑗
|𝜓𝑠𝑥

𝑖 𝑠
𝑦
𝑗
⟩ ,

𝜌𝑠𝑥
𝑖 𝑠

𝑦
𝑗
:=Tr𝑠𝑥

�̄�
𝑠𝑦

�̄�
(𝜌(2,𝑛))

(6.5)

Here |𝜓𝑠𝑥
𝑖 𝑠

𝑦
𝑗
⟩ spans all possible maximally entangled states between the 𝑖-th DoF of 𝑠𝑥

and the 𝑗-th DoF of 𝑠𝑦 and 𝑠𝑥, 𝑠𝑦∈S𝑃 , following the DoF trace-out rule in Chapter 5.
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6.3 Relation between the generalized teleportation

fidelity and the generalized singlet fraction

Consider a two-parameter family of states for two particles each having 𝑛 DoFs as

𝜌(2,𝑛)
𝑝 :=𝑝P(2,𝑛) +(1−𝑝)I

𝑛⊗I𝑛

𝑑2𝑛 , 0≤𝑝≤1. (6.6)

This equation is applicable for both distinguishable and indistinguishable particles.

For two distinguishable particles 𝐴 and 𝐵, the state 𝜌(2,𝑛)
𝑝 is an arbitrary 𝜌(2,𝑛)

𝐴𝐵 as

in Eq. (2.11) and P(2,𝑛) is a special form of 𝜌(2,𝑛)
𝐴𝐵 such that for every 𝑎𝑖, there exists

atleast one 𝑏𝑗 with P𝑎𝑖𝑏𝑗
=Tr𝑎�̄�𝑏�̄�

(︁
P(2,𝑛)

)︁
is 𝑑-dimensional maximally entangled where

𝑖, 𝑗∈N𝑛.

For two indistinguishable particles, 𝜌(2,𝑛)
𝑝 is an arbitrary state 𝜌(2,𝑛) of Eq. (5.7),

and P(2,𝑛) is a special form of 𝜌(2,𝑛) such that P𝑠𝑥
𝑖 𝑠

𝑦
𝑗
=Tr𝑠𝑥

�̄�
𝑠𝑦

�̄�

(︁
P(2,𝑛)

)︁
is maximally en-

tangled for all 𝑖, 𝑗∈N𝑛. This type of state is possible using indistinguishable parti-

cle [258]. But for distinguishable particles, such type of state is not possible as they

obey monogamy of entanglement [262].

First, we calculate the generalized teleportation fidelity for the state 𝜌(2,𝑛)
𝑝 of

Eq. (6.6) and for that we have to calculate the same separately for both P(2,𝑛) and com-

pletely random noise I𝑛⊗I𝑛

𝑑2𝑛 . We denote 𝑓𝑚𝑎𝑥 to be the value of 𝑓𝑔 for the state P(2,𝑛).

Note that, the difference between 𝑓𝑔 and 𝑓𝑚𝑎𝑥 is that the first one is the maximum

value of 𝑓 𝑖𝑗 for an arbitrary state 𝜌(2,𝑛)
𝐴𝐵 or 𝜌(2,𝑛) but the second one is the maximum

value of 𝑓 𝑖𝑗 for the special state P(2,𝑛).

For distinguishable particles, max(𝑖,𝑗){𝑓 𝑖𝑗}=1 occurs for the pair (𝑖, 𝑗) such that

P𝑎𝑖𝑏𝑗
is maximally entangled. For indistinguishable particles, 𝑓𝑚𝑎𝑥<1 due to the no-

go theorem of [244]. The value of 𝑓𝑔 for I𝑛⊗I𝑛

𝑑2𝑛 is the same for both distinguishable

particles and indistinguishable particles which is 1
𝑑

as 𝜌𝑜𝑢𝑡= I
𝑑

independent of the

initial state 𝜌𝑖𝑛 before teleportation. Thus the value of 𝑓𝑔 for Eq. (6.6) is Thus we

calculate the generalized teleportation fidelity applicable for both distinguishable and

134



indistinguishable particles for the state in Eq. (6.6) as

𝑓𝑔=𝑝𝑓𝑚𝑎𝑥+(1−𝑝)1
𝑑
, (6.7)

where 𝑓𝑚𝑎𝑥=1 for distinguishable particles and 𝑓𝑚𝑎𝑥<1 for indistinguishable parti-

cles.

Next, we calculate the generalized singlet fraction for the state 𝜌(2,𝑛)
𝑝 of Eq. (6.6).

We denote 𝐹 (𝑛)
𝑚𝑎𝑥 be the value of 𝐹 (𝑛)

𝑔 for the state P(2,𝑛). We know that distinguish-

able particles obey monogamy of entanglement. So, let us fix a particular 𝑖, then

𝑃𝑎𝑖𝑏𝑗
=⟨𝜓𝑎𝑖𝑏𝑗

|P(2,𝑛)
𝑎𝑖𝑏𝑗

|𝜓𝑎𝑖𝑏𝑗
⟩ would be 1 for a particular 𝑗, say 𝑗′, as P(2,𝑛)

𝑎𝑖𝑏𝑗′ is maximally

entangled. When 𝑗 ̸=𝑗′, we get 𝑃𝑎𝑖𝑏𝑗
= 1

𝑑
as P(2,𝑛)

𝑎𝑖𝑏𝑗
is separable, where 𝑖, 𝑗, 𝑗′ ∈N𝑛. So, for

the rest of the (𝑛−1) DoFs, we get 𝑃𝑎𝑖𝑏𝑗
= 1

𝑑
. Thus the value of 𝐹 (𝑛)

𝑚𝑎𝑥 for distinguishable

particles is
(︁
1+ 𝑛−1

𝑑

)︁
.

It is proved in [258] that indistinguishable particles does not obey monogamy. So,

if we fix any particular 𝑖, then the value of 𝑃𝑠𝑥
𝑖 𝑠

𝑦
𝑗

can be 1 for all the values of 𝑗, as P𝑠𝑥
𝑖 𝑠

𝑦
𝑗

can be maximally entangled for all the values of 𝑗. So, for indistinguishable particles

the value of max
𝑖

{𝐹 (𝑖)} is 𝑛, and similarly the value of max
𝑗

{𝐹 (𝑗)}=𝑛, leading to

𝐹 (𝑛)
𝑚𝑎𝑥=𝑛. For I𝑛⊗I𝑛

𝑑2𝑛 , we get 𝑃𝑎𝑖𝑏𝑗
=𝑃𝑠𝑥

𝑖 𝑠
𝑦
𝑗
= 1

𝑑2 for all 𝑖 and 𝑗. So, the value of 𝐹 (𝑛)
𝑔 is 𝑛

𝑑2

which is the same for distinguishable particles and indistinguishable particles. Thus,

the value of 𝐹 (𝑛)
𝑔 in Eq. (6.6) is

𝐹 (𝑛)
𝑔 =𝑝𝐹 (𝑛)

𝑚𝑎𝑥+(1−𝑝) 𝑛
𝑑2 . (6.8)

Using Eq. (6.7) and Eq. (6.8), we get the relation between the generalized tele-

portation fidelity and the generalized singlet fraction as

𝑓𝑔=

(︁
𝐹 (𝑛)
𝑔 − 𝑛

𝑑2

)︁(︁
𝑓𝑚𝑎𝑥− 1

𝑑

)︁
(︁
𝐹

(𝑛)
𝑚𝑎𝑥− 𝑛

𝑑2

)︁ + 1
𝑑
, (6.9)

where 𝑓𝑔∈
[︁

1
𝑑
,𝑓𝑚𝑎𝑥

]︁
and 𝐹 (𝑛)

𝑔 ∈
[︁
𝑛
𝑑2 ,𝐹

(𝑛)
𝑚𝑎𝑥

]︁
. Whether the particles are distinguishable or

indistinguishable, the same Eq. (6.9) holds, only the values of 𝑓𝑚𝑎𝑥 and 𝐹 (𝑛)
𝑚𝑎𝑥 varies.
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For particles having single DoF, i.e., 𝑛=1, Eq. (6.9), reduces to the standard particle

version of Eq. (2.41).

6.4 Illustration of the proposed generalized rela-

tion to some special states for distinguishable

and indistinguishable particles

If two particles each having a single DoF are maximally entangled, then the value of

generalized singlet fraction is one. However, the converse is not necessarily true which

we illustrate by proposing an optical circuit using two distinguishable particles each

having two DoFs, polarization and orbital angular momentum (OAM).

Figure 6-2: Optical set up to the generation of entangled state between polarization
and OAM DoF for distinguishable particles. NLC: nonlinear crystal, DM: dichroic
mirror, BD: beam dump, PBS: polarizing beam spliters, SPP: spiral phase plates, M:
mirrors, IF: interference filters, DS: detection setup and C.C.: coincidence counter.
The detection setups could be made up of spatial light modulators and single-mode
fibers coupled to avalanche photo detectors if measuring in OAM or half-wave plates
and PBS if measuring in polarization.

In Fig. 6-2, a nonlinear crystal (𝛽 barium borate, periodically poled potassium

triphosphate etc.) is pumped by a pulsed laser from which a pump photon is absorbed

and two photons are generated governed by the phase-matching conditions:

𝜔𝑝=𝜔𝑠+𝜔𝑖, k𝑝=k𝑠+k𝑖 (6.10)
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where ~𝜔𝑗 is the energy and ~k𝑗 is the momentum of the j-th photon. The indices

p, s and i stand for pump, signal and idler respectively. The signal and idler photon

pair produced in this method under non-degenerate type II spontaneous parametric

down conversion are correlated in polarization. It is represented in the most general

form as

|Ψ𝑖⟩=cos𝜃|𝐻⟩𝜔𝑠|𝑉 ⟩𝜔𝑖
+𝑒𝑖𝜑 sin𝜃|𝑉 ⟩𝜔𝑠|𝐻⟩𝜔𝑖

, (6.11)

where |𝐻⟩ and |𝑉 ⟩ denotes horizontal and vertical polarization, 𝜃 controls the normal-

ization factor and 𝜑 is a phase term that arises from birefringence in the nonlinear

crystal. Since 𝜔𝑠 ̸=𝜔𝑖 (under non-degenerate phase matching) this leads to distin-

guishability between the signal and idler photons. Let this state be now incident on a

broadband polarizing beam splitter (PBS) which allows |𝐻⟩ photons to pas through

to the transmitted path, while |𝑉 ⟩ photons are directed to the reflected path. Each of

the paths contains a spiral phase plate (SPP) of equal topological charge l which can

take any value from −∞ to +∞ through 0. SPP are optical devices with continuously

varying thickness. photons pick up OAM 𝑙 on passing through them. This results in

the output wavefront possessing a helical nature corresponding to the topological

charge. The two paths are again combined at another broadband PBS resulting in

the state

|Ψ𝑓⟩=cos𝜃|𝐻,+𝑙⟩𝜔𝑠|𝑉,−𝑙⟩𝜔𝑖
+𝑒𝑖𝜑 sin𝜃|𝑉,−𝑙⟩𝜔𝑠|𝐻,+𝑙⟩𝜔𝑖

. (6.12)

The handedness of l is sensitive to reflections and changes by exp(𝑖𝜋) under each

reflection. The difference in the handedness of l arises in the above equation due to

an unequal number of reflections between the transmitted and reflected arms.

The generalized singlet fraction of the above state is 1 as shown in Section 6.5. Sim-

ilar conclusion can be drawn for two indistinguishable particles as proposed in [261].

Note that, our proposed state in Eq. (6.13) is different from [261] as we use non-

degenerate phase-matching to make use of distinguishable photons. Thus, the singlet

fraction alone might not be the best quantifier for the presence of maximal entangle-

ment.
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Another special state is hyper-hybrid entangled state [1] with two particles each

having two DoFs. The maximum value of 𝐹 (2)
𝑔 =2 for this state is achieved as each

DoF of one particles is maximally entangled with all the other DoFs of other particle

as shown in [258].

Figure 6-3: Characterization of the different kinds of states based on their separa-
bility, indistinguishability and number of DoFs present using the number of DoFs 𝑛,
generalized Singlet fraction 𝐹 (𝑛)

𝑔 and generalized telepotation fidelity 𝑓𝑔.

6.5 Generalized singlet fraction for our proposed

state

Here, we will calculate the value of generalized singlet fraction for the state proposed

in Eq. (10) of the main text. The state is written as

|Ψ𝑓⟩=cos𝜃|𝐻,+𝑙⟩𝜔𝑠|𝑉,−𝑙⟩𝜔𝑖
+𝑒𝑖𝜑 sin𝜃|𝑉,−𝑙⟩𝜔𝑠|𝐻,+𝑙⟩𝜔𝑖

. (6.13)
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The density matrix of this state is

𝜌𝑓 = |Ψ𝑓⟩⟨Ψ𝑓 |=cos2 𝜃|𝐻,+𝑙⟩𝜔𝑠|𝑉,−𝑙⟩𝜔𝑖
⟨𝐻,+𝑙|𝜔𝑠

⟨𝑉,−𝑙|𝜔𝑖

+𝑒−𝑖𝜑 cos𝜃 sin𝜃|𝐻,+𝑙⟩𝜔𝑠|𝑉,−𝑙⟩𝜔𝑖
⟨𝑉,−𝑙|𝜔𝑠

⟨𝐻,+𝑙|𝜔𝑖

+𝑒𝑖𝜑 cos𝜃 sin𝜃 |𝑉,−𝑙⟩𝜔𝑠
|𝐻,+𝑙⟩𝜔𝑖

⟨𝐻,+𝑙|𝜔𝑠
⟨𝑉,−𝑙|𝜔𝑖

+sin2 𝜃 |𝑉,−𝑙⟩𝜔𝑠
|𝐻,+𝑙⟩𝜔𝑖

⟨𝑉,−𝑙|𝜔𝑠
⟨𝐻,+𝑙|𝜔𝑖

.

(6.14)

Now tracing out both the OAM DoFs from the density matrix 𝜌𝑓 using Eq. (2.13),

we get

𝜌=cos2 𝜃|𝐻⟩𝜔𝑠 |𝑉 ⟩𝜔𝑖
⟨𝐻|𝜔𝑠

⟨𝑉 |𝜔𝑖
+sin2 𝜃 |𝑉 ⟩𝜔𝑠

|𝐻⟩𝜔𝑖
⟨𝑉 |𝜔𝑠

⟨𝐻|𝜔𝑖
. (6.15)

Now the singlet fraction for Eq. (6.15) is

max
𝜓

⟨𝜓|𝜌|𝜓⟩= 1
2(cos2 𝜃+sin2 𝜃)= 1

2 . (6.16)

where |𝜓⟩ varies over all maximally entangled states. So, the singlet fraction of the

above state is 1
2 . If we calculate singlet fraction of the other entanglement connections

by the similar way, it will also be 1
2 . So, the generalized singlet fraction of the state

|Ψ𝑓⟩ using the Eq.(8) of main text is 𝐹 (2)
𝑔 =1.

6.6 Derivation of the upper bound of generalized

singlet fraction

It is already shown in Section 6.3 that the maximum value of the generalized singlet

fraction for indistinguishable particles having 𝑛 DoFs is 𝑛. Now we will derive for the

maximum value of the generalized singlet fraction for distinguishable particles.

Suppose a particle 𝐴 is entangled with 𝑛 other distinguishable particles labeled as

𝐵1,𝐵2, . . . ,𝐵𝑛, each having a single DoF with dimention 𝑑. Its joint state is represented

as 𝜌(1)
𝐴𝐵1𝐵1...𝐵𝑛

. Now we can calculate the singlet fraction between 𝐴 and 𝐵𝑗 for 𝑖∈N𝑛=
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{1,2, . . . ,𝑛} as

𝐹𝐴𝐵𝑗
=max

𝜓
⟨𝜓 |𝜌(1)

𝐴𝐵𝑗
|𝜓⟩ , (6.17)

where 𝜌(1)
𝐴𝐵𝑗

=Tr𝐵�̄�
(𝜌(1)
𝐴𝐵1𝐵1...𝐵𝑛

) and 𝐵�̄� =𝐵1𝐵2 . . .𝐵𝑗−1𝐵𝑗+1 . . .𝐵𝑛. Here, |𝜓⟩ varies over

all maximally entangled states.

The monogamy relation with respect to 𝐴 is given in [265] as

𝑛∑︁
𝑗=1

𝐹𝐴𝐵𝑗
≤ 𝑑−1

𝑑
+ 1
𝑛+𝑑−1

⎛⎝ 𝑛∑︁
𝑗=1

√︁
𝐹𝐴𝐵𝑗

⎞⎠2

. (6.18)

This relation is valid if 𝐵1,𝐵2, . . . ,𝐵𝑛 are the 𝑛 DoFs of the particle 𝐵. Then we

want to the bound of 𝐹 (𝑛)
𝑔 for the state 𝜌(𝑛)

𝐴𝐵 as defined in Eq. (2.11).

We take any 𝑛 numbers of random variable 𝑥1,𝑥2 . . .𝑥𝑛 such that any 0≤𝑥𝑗 ≤1

for 𝑗∈N𝑛. Then we have

⎛⎝ 𝑛∑︁
𝑗=1

√
𝑥𝑖

⎞⎠2

=(√𝑥1 +√
𝑥2 + . . .+√

𝑥𝑛)2

=
𝑛∑︁
𝑗=1

𝑥𝑖+2
𝑛∑︁

𝑖,𝑗=1
𝑖>𝑗

√
𝑥𝑖𝑥𝑗

≤𝑛

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑖

⎞⎠ [using A.M. ≥ G.M. inequality, i.e., (𝑥𝑖+𝑥𝑗)≥2√
𝑥𝑖𝑥𝑗].

(6.19)

Using Eq. (6.19), we have

⎛⎝ 𝑛∑︁
𝑗=1

√︁
𝐹𝐴𝑖𝐵𝑗

⎞⎠2

≤𝑛

⎛⎝ 𝑛∑︁
𝑗=1

𝐹𝐴𝑖𝐵𝑗

⎞⎠ (6.20)

for any 𝑖∈N𝑛. Now, substituting Eq. (6.20) in Eq. (6.18), we can write

𝑛∑︁
𝑗=1

𝐹𝐴𝑖𝐵𝑗
≤
(︂

1+ 𝑛−1
𝑑

)︂
. (6.21)
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This bound is valid over all the DoFs of 𝐴, i.e.,

max
𝑖

⎧⎨⎩
𝑛∑︁
𝑗=1

𝐹𝐴𝑖𝐵𝑗

⎫⎬⎭≤
(︂

1+ 𝑛−1
𝑑

)︂
. (6.22)

Similarly, we can write

max
𝑗

{︃
𝑛∑︁
𝑖=1

𝐹𝐴𝑖𝐵𝑗

}︃
≤
(︂

1+ 𝑛−1
𝑑

)︂
. (6.23)

From Eq. (6.22) and Eq. (6.23), we can write

max

⎧⎨⎩max
𝑖

⎧⎨⎩
𝑛∑︁
𝑗=1

𝐹𝐴𝑖𝐵𝑗

⎫⎬⎭ ,max
𝑗

{︃
𝑛∑︁
𝑖=1

𝐹𝐴𝑖𝐵𝑗

}︃⎫⎬⎭≤
(︂

1+ 𝑛−1
𝑑

)︂
. (6.24)

From the main text of Eq. (5), we have the bound as

𝐹 (𝑛)
𝑔 =max

⎧⎨⎩max
𝑖

⎧⎨⎩
𝑛∑︁
𝑗=1

𝐹𝐴𝑖𝐵𝑗

⎫⎬⎭ ,max
𝑗

{︃
𝑛∑︁
𝑖=1

𝐹𝐴𝑖𝐵𝑗

}︃⎫⎬⎭≤
(︂

1+ 𝑛−1
𝑑

)︂
. (6.25)

for 𝑖, 𝑗∈N𝑛.

6.7 Physical significance of the proposed general-

ized relation

We investigate the answers to the following questions about any arbitrary two-particle

state 𝜌.

(i) The number of DoFs 𝑛 in each particle?

Using 𝐹 (𝑛)
𝑔 : If 𝐹 (𝑛)

𝑔 >1, then 𝑛>1, because 𝐹 (1)
𝑔 ≤1 from Eq. (2.41).

(ii) The particles are distinguishable or indistinguishable?

For distinguishable particles the bound for generalized singlet fraction is (1+(𝑛−

1)/𝑑) that can be proved using the monogamy of singlet fraction [265] as shown in

Section 6.6. Thus if 𝐹 (𝑛)
𝑔 >(1+(𝑛−1)/𝑑), then the particles are indistinguishable, else

no conclusion can be drawn.
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If 𝑓𝑔=1, then the particles are distinguishable because unit fidelity teleportation

is not possible for indistinguishable particles [244], else no conclusion can be drawn.

(iii) Is any entanglement is present in 𝜌?

If 𝑓𝑔>2/(𝑑+1) or 𝐹 (𝑛)
𝑔 >𝑛/𝑑, then atleast one entanglement structure is present

between any pair of DoFs.

(iv) How many maximally entangled state is present?

If 𝐹 (𝑛)
𝑔 =𝑛, then 𝑛 number of maximally entangled structure is present for any

DoF.

If 𝑓𝑔=1, then the particles are distinguishable, so only one maximally entangled

structure is present.

All these answers are pictorially represented in Fig. 6-3. For 𝑑=2, the relation

between 𝑛, 𝐹 (𝑛)
𝑔 , and 𝑓𝑔 are plotted in Fig. 6-4 where 1≤𝑛≤100 using Eq. (6.9).

Figure 6-4: The variation of generalized teleportation fidelity 𝑓𝑔 and generalized sin-
glet fraction 𝐹 (𝑛)

𝑔 with varying the number of DoFs 𝑛 where the dimension of each
DoF is 𝑑=2.
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Chapter 7

Violation of monogamy of

entanglement for two

indistinguishable particles

In this Section, we show that Maximum Violation of monogamy of Entanglement for

two indistinguishable particles, each particles having two degrees of freedom is possible

using measures which are monogamous for distinguishable particles. To show that,

we first derives the condition for maximum violation of monogamy of entanglement.

Then we re-write the standard inequality of monogamy of entanglement from particle

view to DoF view. Finally we have shown the maximum violation of monogamy of

entanglement using an optical circuit.

This chapter is based on the work in [258].

7.1 Violation of no-cloning theorem using the max-

imum violation of monogamy of entanglement

In this section, we briefly overview the monogamy inequality for any general entangle-

ment measure. Then we discuss the condition for the violation of no-cloning theorem

using the maximum violation of monogamy of entanglement.
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Figure 7-1: Consider three particles 𝐴, 𝐵, 𝐶, and a bipartite entanglement measure
E where E𝑋|𝑌 measures the entanglement between the subsystems 𝑋 and 𝑌 of the
composite system 𝑋𝑌 and E𝑚𝑎𝑥 denotes its maximum value. Using these notations,
we show the particle-based monogamy of entanglement obeying Eq. (7.1).

A bipartite entanglement measure E that obeys the relation

E𝐴|𝐵(𝜌𝐴𝐵)+E𝐴|𝐶(𝜌𝐴𝐶)≤E𝐴|𝐵𝐶(𝜌𝐴𝐵𝐶), (7.1)

for all 𝜌𝐴𝐵𝐶 where 𝜌𝐴𝐵=Tr𝐶 (𝜌𝐴𝐵𝐶), 𝜌𝐴𝐶 =Tr𝐵 (𝜌𝐴𝐵𝐶), E𝑋|𝑌 measures the entangle-

ment between the systems 𝑋 and 𝑌 of the composite system 𝑋𝑌 , and the vertical

bar represents bipartite splitting, is called monogamous as shown in Fig. 7-1. Such

inequality was first shown for squared concurrence (𝒞) [204, 209] by Coffman, Kundu

and Wootters (CKW) for three parties [66] and later generalized for 𝑛 parties [210].

Suppose a bipartite entanglement measure E attains the maximum value E𝑚𝑎𝑥 for

maximally entangled states. Consider a situation when

E𝐴|𝐵(𝜌𝐴𝐵)<E𝑚𝑎𝑥,

E𝐴|𝐶(𝜌𝐴𝐶)<E𝑚𝑎𝑥,

E𝐴|𝐵(𝜌𝐴𝐵)+E𝐴|𝐶(𝜌𝐴𝐶)>E𝑚𝑎𝑥.

(7.2)

Obviously, this causes a violation of monogamy of entanglement which we call a non-

maximal violation. Consider another situation, when

E𝐴|𝐵(𝜌𝐴𝐵)=E𝑚𝑎𝑥,

E𝐴|𝐶(𝜌𝐴𝐶)=E𝑚𝑎𝑥,
(7.3)
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i.e., when 𝐴 is maximally entangled with both 𝐵 and 𝐶, we call the corresponding

violation as the maximal violation of monogamy of entanglement. For qubit systems

with distinguishable particles, the first situation above would not lead to a violation of

the no-cloning theorem [79, 80], but the second situation would do as shown in 2.5.2.

7.2 Apparent violation of particle-based monogamy

of entanglement

When two particles are entangled, they share correlations in well-defined DoFs such

as spin, path, orbital angular momentum (OAM), etc. Particle-based monogamy of

entanglement however sometimes is misleading and incomplete. For example, suppose

𝐴 is maximally entangled in polarization DoF with 𝐵 and in OAM DoF with 𝐶 [266]

as shown in Fig. 7-2.

Figure 7-2: Consider three particles 𝐴, 𝐵, 𝐶, and a bipartite entanglement measure E
where E𝑋|𝑌 measures the entanglement between the subsystems 𝑋. Using these no-
tations, we show that 𝐴 is maximally entangled with 𝐵 in DoF 1 (i.e., E𝐴1|𝐵1 =E𝑚𝑎𝑥)
and with 𝐶 in DoF 2 (i.e., E𝐴2|𝐶2 =E𝑚𝑎𝑥). In particle view, apparently monogamy of
entanglement is violated; but in DoF view, it is not.

This situation apparently violates Eq. (7.1) and satisfies Eq. (7.3). But using this

state along with the standard teleportation protocol does not lead to cloning. This

contradiction motivates us to re-consider the monogamy with respect to DoFs of each

particle.
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7.3 Inter-DoF monogamy of Entanglement

Figure 7-3: Consider three particles 𝐴, 𝐵, 𝐶, and a bipartite entanglement measure
E where E𝑋|𝑌 measures the entanglement between the subsystems 𝑋 and 𝑌 of the
composite system 𝑋𝑌 and E𝑚𝑎𝑥 denotes its maximum value. Using this notations, we
generalize the Eq. (7.1) from particle view to inter-DoF monogamy of entanglement
as proposed in Eq. (7.4) which resolves the previous apparent violation in Fig. 7-2.

The above result holds irrespective of whether 𝐴, 𝐵 and 𝐶 are single-DoF particles

or DoFs of the same/different particles as shown in Fig. 7-1 and 7-2. The entanglement

measures which are monogamous for distinguishable particles are also so for systems

of indistinguishable particles, where 𝐴, 𝐵, and 𝐶 are distinct spatial locations [150,

148, 253] with one particle each. However, interesting scenarios might arise when the

involved particles are entangled in multiple DoFs which we investigate here.

Here we reformulate Eq. (7.1) in a more general framework to include multiple

DoFs of the same/different particles/entities. Although this is not a contribution, we

include it here to establish the background for subsequent analysis.

Consider three entities 𝐴, 𝐵, and 𝐶, each with 𝑛 DoFs, numbered 1 to 𝑛. If the

joint state of the 𝑖-th, 𝑗-th and 𝑘-th DoFs of 𝐴, 𝐵, and 𝐶 respectively is represented
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by 𝜌𝐴𝑖𝐵𝑗𝐶𝑘
, then the inter-DoF monogamy of entanglement can be formulated as

E𝐴𝑖|𝐵𝑗
(𝜌𝐴𝑖𝐵𝑗

)+E𝐴𝑖|𝐶𝑘
(𝜌𝐴𝑖𝐶𝑘

)≤E𝐴𝑖|𝐵𝑗𝐶𝑘
(𝜌𝐴𝑖𝐵𝑗𝐶𝑘

), (7.4)

where 𝜌𝐴𝑖𝐵𝑗
=Tr𝐶𝑘

(𝜌𝐴𝑖𝐵𝑗𝐶𝑘
), 𝜌𝐴𝑖𝐶𝑘

=Tr𝐵𝑗
(𝜌𝐴𝑖𝐵𝑗𝐶𝑘

), and E𝑋𝑖|𝑌𝑗
measures the entangle-

ment between subsystems 𝑋𝑖 and 𝑌𝑗 of the composite system 𝑋𝑖𝑌𝑗 as is shown in

Fig. 2-2 (c). It means that if the 𝑖-th DoF of 𝐴 is maximally entangled with the 𝑗-th

DoF of 𝐵, then it cannot share any correlation with the 𝑘-th DoF of 𝐶.

The inter-DoF monogamy of entanglement of Eq. (7.4) is more general than the

particle-based monogamy of entanglement of Eq. (7.1). The former includes the latter

when the three DoFs 𝑖, 𝑗, and 𝑘 belong to three different particles 𝐴, 𝐵, and 𝐶

respectively. However, the inter-DoF monogamy of entanglement can capture many

other scenarios that are illustrated in Fig. 7-4 (a) and (b). Two interesting types of

Figure 7-4: Consider three particles 𝐴, 𝐵, 𝐶, and a bipartite entanglement measure
E where E𝑋|𝑌 measures the entanglement between the subsystems 𝑋 and 𝑌 of the
composite system 𝑋𝑌 and E𝑚𝑎𝑥 denotes its maximum value. Now consider the fol-
lowing two scenarios: (a) Two-particle inter-DoF monogamy of entanglement, where
E𝐴1|𝐴2 measures entanglement between the two DoFs 𝐴1, 𝐴2 of 𝐴 and E𝐴1|𝐵1 between
𝐴1, 𝐵1 ; and (b) E𝐴1|𝐵𝑗

between 𝐴1 of 𝐴 and 𝐵𝑗 of 𝐵, 𝑗∈{1,2}.
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monogamy of entanglement involving only two particles can also be explained using

the inter-DoF formulation.

(i) Type I : Here, monogamy of entanglement is calculated using E𝐴𝑖|𝐴𝑗
and E𝐴𝑖|𝐵𝑘

,

as shown in Fig. 7-4 (a). Equation (7.4) can capture this scenario by setting 𝐴=𝐵.

The recent analysis for distinguishable particles in [262, 263] is a specific example of

this type.

(ii) Type II : Here, monogamy of entanglement is calculated using E𝐴𝑖|𝐵𝑗
and

E𝐴𝑖|𝐵𝑘
, as shown in Fig. 7-4 (b). Equation (7.4) can capture this scenario by set-

ting 𝐵=𝐶.

This formulation also includes the case of single-particle entanglement [146, 260,

267], when all the three DoFs come from a single particle. Equation (7.4) can capture

this scenario by setting 𝐴=𝐵=𝐶. Further, inter-DoF monogamy of entanglement is

also valid for indistinguishable particles where the labels 𝐴, 𝐵, and 𝐶 denote spatial

locations with each mode containing exactly one particle and 𝑖, 𝑗, and 𝑘 represents

the DoFs at each spatial mode.

7.4 Violation of monogamy of entanglement by in-

distinguishable particles

The inter-DoF monogamy of entanglement is not absolute and can be violated maxi-

mally by indistinguishable particles. For illustration, consider two-particle inter-DoF

entanglement [1, Eq. (4)] between spin and path as shown in Eq. (2.33). It can

be represented as |Ψ(2,2)⟩ of Eq. (5.1) with the parameters 𝛼1,𝛼2 ∈{𝑠1, 𝑠2}, 𝑎1
1,𝑎

2
1 ∈

{𝐿,𝐷,𝑅,𝑈}, 𝑎1
2,𝑎

2
2 ∈{↑,↓}. The coefficients

𝜅𝑠
1𝐿↓
𝑠2𝑅↓ =−𝜅𝑠

1𝐷↑
𝑠2𝑈↑ = 1

4 (𝜅1 +𝜅2) ,

𝜅𝑠
1𝐷↑
𝑠2𝑅↓ =𝜅𝑠

1𝐿↓
𝑠2𝑈↑ = 𝑖

4 (𝜅1 −𝜅2) ,

𝜅𝑠
2𝑅↓
𝑠2𝑅↓ =𝜅𝑠

2𝑈↑
𝑠2𝑈↑ = 𝑖𝜅1

4 ,

𝜅𝑠
1𝐷↑
𝑠1𝐷↑ =𝜅𝑠

1𝐿↓
𝑠1𝐿↓ = 𝑖𝜅2

4 ,

(7.5)

148



and the rest are 0, where
𝜅1 =𝑒𝑖(𝜑𝑅+𝜑𝐿),

𝜅2 =𝑒𝑖(𝜑𝐷+𝜑𝑈 ).
(7.6)

Next we show maximal violation of monogamy of entanglement through squared

concurrence measure as follows.

First, we calculate concurrence of the state |Ψ(2,2)⟩ as described in Eq. (7.5).

Projecting 𝜌(2,2) = |Ψ(2,2)⟩⟨Ψ(2,2)| onto the (operational) subspace spanned by the

computational basis

Ω𝑠1𝑠2 ={|𝑠1𝐿↓, 𝑠2𝑅↓⟩ , |𝑠1𝐿↓, 𝑠2𝑈 ↓⟩ , |𝑠1𝐿↓, 𝑠2𝑅↑⟩ , |𝑠1𝐿↓, 𝑠2𝑈 ↑⟩ , |𝑠1𝐿↑, 𝑠2𝑅↓⟩ ,

|𝑠1𝐿↑, 𝑠2𝑈 ↓⟩ , |𝑠1𝐿↑, 𝑠2𝑅↑⟩ , |𝑠1𝐿↑, 𝑠2𝑈 ↑⟩ , |𝑠1𝐷↓, 𝑠2𝑅↓⟩ , |𝑠1𝐷↓, 𝑠2𝑈 ↓⟩ ,

|𝑠1𝐷↓, 𝑠2𝑅↑⟩ , |𝑠1𝐷↓, 𝑠2𝑈 ↑⟩ , |𝑠1𝐷↑, 𝑠2𝑅↓⟩ , |𝑠1𝐷↑, 𝑠2𝑈 ↓⟩ , |𝑠1𝐷↑, 𝑠2𝑅↑⟩ ,

|𝑠1𝐷↑, 𝑠2𝑈 ↑⟩},
(7.7)

by the projector

Π𝑠1𝑠2 =
∑︁

𝜎,𝜏={↑,↓},𝜍={𝐿,𝐷},𝜐={𝑅,𝑈}
|𝑠1𝜍𝜎,𝑠2𝜐𝜏⟩⟨𝑠1𝜍𝜎,𝑠2𝜐𝜏 | , (7.8)

one gets the distributed resource state where each localized region 𝑠1 and 𝑠2 have

exactly one particle as

|Ψ(2,2)⟩𝑠1𝑠2 = Π𝑠1𝑠2 |Ψ(2,2)⟩√︁
⟨Ψ(2,2)|Π𝑠1𝑠2 |Ψ(2,2)⟩

=
∑︁

𝑎1
1∈{𝐿,𝐷},𝑎2

1∈{𝑅,𝑈},𝑎1
2,𝑎

2
2∈{↑,↓}

𝜅
𝑠1𝑎1

1𝑎
1
2

𝑠2𝑎2
1𝑎

2
2
|𝑠1𝑎1

1𝑎
1
2, 𝑠

2𝑎2
1𝑎

2
2⟩ ,

(7.9)

where the non-zero coefficients are

𝜅𝑠
1𝐿↓
𝑠2𝑅↓ =−𝜅𝑠

1𝐷↑
𝑠2𝑈↑ = 1

2
√

2
(𝜅1 +𝜅2) ,

𝜅𝑠
1𝐷↑
𝑠2𝑅↓ =𝜅𝑠

1𝐿↓
𝑠2𝑈↑ = 𝑖

2
√

2
(𝜅1 −𝜅2) .

(7.10)
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The density matrix 𝜌(2,2)
𝑠1𝑠2 = |Ψ(2,2)⟩𝑠1𝑠2 ⟨Ψ(2,2)| can also be calculated as

𝜌
(2,2)
𝑠1𝑠2 = Π𝑠1𝑠2𝜌(2,2)Π𝑠1𝑠2

Tr(Π𝑠1𝑠2𝜌(2,2)) , (7.11)

where 𝜌(2,2) = |Ψ(2,2)⟩⟨Ψ(2,2)|.

Now from Eq. (7.11), if we trace-out the path DoFs of location 𝑠1 and 𝑠2 using

Eq. (5.16) (the order does not matter), we get the reduced density matrix as

𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

=Tr𝑠1
𝑎1

1
𝑠2

𝑎2
1

(︁
𝜌

(2,2)
𝑠1𝑠2

)︁
=

∑︁
𝑎1

2,𝑎
2
2,𝑏

1
2,𝑏

2
2∈{↑,↓}

𝜅
𝑠1𝑎1

2
𝑠2𝑎2

2
𝜅
𝑠1𝑏1

2*
𝑠2𝑏2

2
|𝑠1𝑎1

2, 𝑠
2𝑎2

2⟩⟨𝑠1𝑏1
2, 𝑠

2𝑏2
2| ,

(7.12)

where
𝜅𝑠

1↓
𝑠2↓ =−𝜅𝑠

1↑
𝑠2↑ = 1

2
√

2
(𝜅1 +𝜅2) ,

𝜅𝑠
1↑
𝑠2↓ =𝜅𝑠

1↓
𝑠2↑ = 𝑖

2
√

2
(𝜅1 −𝜅2) ,

(7.13)

and rest are zero where complex conjugates are calculated accordingly.

The physical significance of the reduced density matrix 𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

can be explained

as follows: if we measure only the spin DoFs in the spatial regions 𝑠1 and 𝑠2, then

the measurement statistics would be equivalent to the reduced density matrix 𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

.

This can be obtained by applying our DoF trace-out rule two times by taking the

spatial regions first as 𝑠𝑥=𝑠1 and then 𝑠𝑥=𝑠2 (or taking first as 𝑠𝑥=𝑠2 and then

𝑠𝑥=𝑠1, as the order does not matter) in Eq. (5.16) where 𝑚𝑖∈{𝐿,𝐷,𝑅,𝑈}. On the

other hand, when we measure the path DoF in the spatial region 𝑠1 and the spin

DoF in the spatial region 𝑠2, then the measurement statistics would be equivalent

to the reduced density matrix 𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
1

. This can be obtained by performing our DoF

trace-out rule by taking first 𝑠𝑥=𝑠1 where 𝑚𝑖∈{𝐿,𝐷,𝑅,𝑈} and then 𝑠𝑥=𝑠2 where

𝑚𝑖∈{↑,↓} or vice-versa in Eq. (5.16).

To calculate the maximum violation using squared concurrence, first we calculate

the following:
̃︀𝜌𝑠1

𝑎1
2
𝑠2

𝑎2
2

=𝜎𝑠
1

𝑦 ⊗𝜎𝑠
2

𝑦 𝜌
*
𝑠1

𝑎1
2
𝑠2

𝑎2
2

𝜎𝑠
1

𝑦 ⊗𝜎𝑠
2

𝑦 , (7.14)
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where 𝜎𝑋𝑦 = |𝑋⟩⟨𝑋|⊗𝜎𝑦, 𝑋∈{𝑠1, 𝑠2}, 𝜎𝑦 is Pauli matrix and the asterisk denotes

complex conjugation. So, the expression becomes

̃︀𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

=
∑︁

𝑎1
2,𝑎

2
2,𝑏

1
2,𝑏

2
2∈{↑,↓}

�̃�
𝑠1𝑎1

2
𝑠2𝑎2

2
�̃�
𝑠1𝑏1

2*
𝑠2𝑏2

2
|𝑠1𝑎1

2, 𝑠
2𝑎2

2⟩⟨𝑠1𝑏1
2, 𝑠

2𝑏2
2| , (7.15)

where
�̃�𝑠

1↓
𝑠2↓�̃�

𝑠1↓*
𝑠2↓ =−�̃�𝑠

1↓
𝑠2↓�̃�

𝑠1↑*
𝑠2↑ =−�̃�𝑠

1↑
𝑠2↑�̃�

𝑠1↓*
𝑠2↓ = �̃�𝑠

1↑
𝑠2↑�̃�

𝑠1↑*
𝑠2↑ =1

2 cos2𝜑,

�̃�𝑠
1↓
𝑠2↓�̃�

𝑠1↑*
𝑠2↓ = �̃�𝑠

1↓
𝑠2↓�̃�

𝑠1↓*
𝑠2↑ =−�̃�𝑠

1↑
𝑠2↑�̃�

𝑠1↑*
𝑠2↓ =−�̃�𝑠

1↑
𝑠2↑�̃�

𝑠1↓*
𝑠2↑ =1

2 cos𝜑sin𝜑,

�̃�𝑠
1↑
𝑠2↓�̃�

𝑠1↓*
𝑠2↓ = �̃�𝑠

1↓
𝑠2↑�̃�

𝑠1↓*
𝑠2↓ = �̃�𝑠

1↑
𝑠2↓�̃�

𝑠1↑*
𝑠2↑ = �̃�𝑠

1↓
𝑠2↑�̃�

𝑠1↑*
𝑠2↑ =1

2 cos𝜑sin𝜑,

�̃�𝑠
1↑
𝑠2↓�̃�

𝑠1↑*
𝑠2↓ = �̃�𝑠

1↑
𝑠2↓�̃�

𝑠1↓*
𝑠2↑ = �̃�𝑠

1↓
𝑠2↑�̃�

𝑠1↑*
𝑠2↓ = �̃�𝑠

1↓
𝑠2↑�̃�

𝑠1↓*
𝑠2↑ =1

2 sin2𝜑,

(7.16)

with 𝜑= 1
2{𝜑𝐷+𝜑𝑈 −𝜑𝑅−𝜑𝐿}. Now we calculate concurrence as

𝒞𝑠1
𝑎1

2
𝑠2

𝑎2
2

(︃
𝜌𝑠1

𝑎1
2
𝑠2

𝑎2
2

)︃
=max

{︂
0,
√︁
𝜆4 −

√︁
𝜆3 −

√︁
𝜆2 −

√︁
𝜆1

}︂
, (7.17)

where 𝜆𝑖 are the eigenvalues, in decreasing order, of the non-Hermitian matrix

R=𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

̃︀𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

=
∑︁

𝑎1
2,𝑎

2
2,𝑏

1
2,𝑏

2
2∈{↑,↓}

�̄�
𝑠1𝑎1

2
𝑠2𝑎2

2
�̄�
𝑠1𝑏1

2*
𝑠2𝑏2

2
|𝑠1𝑎1

2, 𝑠
2𝑎2

2⟩⟨𝑠1𝑏1
2, 𝑠

2𝑏2
2| , (7.18)

where
�̄�𝑠

1↓
𝑠2↓�̄�

𝑠1↓*
𝑠2↓ =−�̄�𝑠

1↓
𝑠2↓�̄�

𝑠1↑*
𝑠2↑ =−�̄�𝑠

1↑
𝑠2↑�̄�

𝑠1↓*
𝑠2↓ = �̄�𝑠

1↑
𝑠2↑�̄�

𝑠1↑*
𝑠2↑ =1

4 cos2𝜑,

�̄�𝑠
1↓
𝑠2↓�̄�

𝑠1↑*
𝑠2↓ = �̄�𝑠

1↓
𝑠2↓�̄�

𝑠1↓*
𝑠2↑ =−�̄�𝑠

1↑
𝑠2↑�̄�

𝑠1↑*
𝑠2↓ =−�̄�𝑠

1↑
𝑠2↑�̄�

𝑠1↓*
𝑠2↑ =1

4 cos𝜑sin𝜑

�̄�𝑠
1↑
𝑠2↓�̄�

𝑠1↓*
𝑠2↓ = �̄�𝑠

1↓
↑ �̄�↓*

↓ = �̄�↑
𝑠2↓�̄�

𝑠1↑*
𝑠2↑ = �̄�𝑠

1↓
𝑠2↑�̄�

𝑠1↑*
𝑠2↑ =1

4 cos𝜑sin𝜑,

�̄�𝑠
1↑
𝑠2↓�̄�

𝑠1↑*
𝑠2↓ = �̄�𝑠

1↑
𝑠2↓�̄�

𝑠1↓*
𝑠2↑ = �̄�𝑠

1↓
𝑠2↑�̄�

𝑠1↑*
𝑠2↓ = �̄�𝑠

1↓
𝑠2↑�̄�

𝑠1↓*
𝑠2↑ =1

4 sin2𝜑.

(7.19)

So, the eigenvalues of R are {1,0,0,0}. Thus

𝒞𝑠1
𝑎1

2
|𝑠2

𝑏2
2

(︃
𝜌𝑠1

𝑎1
2

|𝑠2
𝑏2
2

)︃
=1. (7.20)

Similar calculations follows that, 𝒞𝑠1
𝑎1

2
|𝑠2

𝑏2
1

(︃
𝜌𝑠1

𝑎1
2

|𝑠2
𝑏2
1

)︃
=1.

Likewise, we can also calculate the log-negativity [58, 59] for the density matrix
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𝜌𝑠1
𝑎1

2
𝑠2

𝑎2
2

in Eq. (7.12). For that, we need the eigenvalues of the density matrix 𝜌𝑠1
𝑎1

2

after taking the partial transpose with respect to 𝑠2
𝑎2

2
. The eigenvalues are found to

be {−1
2 ,

1
2 ,

1
2 ,

1
2}. Thus the value of negativity is 1

2 and so the log-negativity is given

by

𝐸𝒩

(︃
𝜌𝑠1

𝑎1
2
𝑠2

𝑎2
2

)︃
=1. (7.21)

Similar calculations give 𝐸𝒩

(︃
𝜌𝑠1

𝑎1
2
𝑠2

𝑎2
1

)︃
=1.

All other monogamous measures of entanglement for qubit systems such as entan-

glement of formation [57], log-negativity [58, 59], Tsallis-q entropy [60, 61], Rényi-𝛼

entanglement [62, 63], Unified-(q, s) entropy [64, 65], one-way distillable entangle-

ment [206], squashed entanglement [207, 208] etc. [55] are calculable from the reduced

density matrix. If one starts with the same reduced density matrix as in Eq. (7.12), one

can easily show that all the above measures attain their respective maximum value

for both the subsystems {𝑠1
𝑎1

2
, 𝑠2
𝑎2

2
} and {𝑠1

𝑎1
2
, 𝑠2
𝑎2

1
} simultaneously, thereby violating

the monogamy of entanglement. Thus, for any bipartite monogamous entanglement

measure E, we get

E𝑠1
𝑎1

2
|𝑠2

𝑎2
2

(︃
𝜌𝑠1

𝑎1
2
𝑠2

𝑎2
2

)︃
=E𝑠1

𝑎1
2

|𝑠2
𝑎2

1

(︃
𝜌𝑠1

𝑎1
2
𝑠2

𝑎2
1

)︃
=1. (7.22)

Interestingly, this violation is irrespective of any particular entanglement measure

like squared concurrence. It can be shown that such a violation happens in indis-

tinguishable particles by any monogamous bipartite entanglement measure for qubit

systems. This leads to the following result.

Theorem 2. In qubit systems, indistinguishability is a necessary criterion for maxi-

mum violation of monogamy of entanglement by the same measures that are monog-

amous for distinguishable particles.
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7.5 Physical significance of the maximum violation

of monogamy

Monogamy of entanglement is widely regarded as one of the basic principles of quan-

tum physics [173]. Qualitatively, it is always expected to hold, as a maximal violation

will have consequences for the no-cloning theorem. So much so, that a quantitative

violation is interpreted as the non-monogamistic nature of the entanglement mea-

sure and not of the system of particles itself [268]. Some of those non-monogamous

measures can be elevated to be monogamous through convex roof extension [269].

Through Theorem 2, we establish a qualitative violation of monogamy of entan-

glement which was hitherto unheard of. We show that using quantum indistinguisha-

bility, it is possible to maximally violate the monogamy of entanglement for all such

entanglement measures which are known to be monogamous for distinguishable sys-

tems. To establish this theorem, we first needed to modify the qualitative definition of

monogamy of entanglement itself, transiting from the particle-view to the DoF-view

and had to introduce the DoF trace-out rule for indistinguishable particles. Thus, this

is a non-trivial extension of the well-known monogamy of entanglement.

Further, our framework also takes into account the recently introduced inter-DoF

entanglement [1]. Quantum physics dictates the measurement results of a particular

DoF when it is correlated with another DoF. Taking a partial trace while keeping the

rule of quantum physics intact is extremely non-trivial and requires a rigorous math-

ematical treatment. Our framework, therefore, captures these nuances of quantum

physics better than any other existing framework.

Theorem 2 unveils a non-trivial difference between distinguishable and indistin-

guishable systems. For distinguishable systems, monogamy of entanglement and no-

cloning theorem imply one another as shown in 2.5.2. The significance of our result

is that for indistinguishable systems, the no-cloning theorem remains more funda-

mental than monogamy of entanglement and the former does not necessarily imply

the latter. In fact, no-cloning is derived from the linearity of quantum mechanics [78]

and hence even indistinguishable particles are also bound to follow it. It appears that
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the only way to reconcile the co-existence of monogamy of entanglement violation

and no-cloning for indistinguishable particles is to consider that such particles do not

yield unit fidelity in quantum teleportation [247, 163, 244]

Moreover, indistinguishability is not a sufficient condition for violation of monogamy

of entanglement. There can be scenarios where indistinguishable subsystems may be

maximally entangled, respecting monogamy. Only specific entanglement structures

(such as the circuit discussed in this work) can lead to a maximum violation of

monogamy of entanglement. That is why we call indistinguishability a necessary cri-

terion for maximum violation of monogamy of entanglement.

Theorem 2 raises a few fundamental questions on the properties of entanglement

for indistinguishable particles.

(i) There are several applications of monogamy of entanglement for distinguishable

particles such as [67, 68, 69, 70, 71, 72, 77]. In particular, for cryptographic applica-

tions [67, 68, 69], monogamy of entanglement provides security in the distinguishable

scenario. What happens to such applications in the indistinguishable case?

(ii) Can there be a new application of sharability of maximal entanglement among

indistinguishable particles that are not possible for distinguishable ones?

(iii) Do indistinguishable particles also exhibit maximum violation of monogamy

for general quantum correlations [270] such as discord [271, 272, 273, 274], coher-

ence [275, 276], steering [277, 278, 279], etc.
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Chapter 8

Monogamy of entanglement for

three or more indistinguishable

particles

For distinguishable particles, MoE is known to hold, irrespective of whether the DoFs

involved come from two particles [262, 263, 258] or more [66, 210]. For two indistin-

guishable particles, it has been shown that monogamy does not necessarily hold and

can be violated maximally [258] as shown in Chapter 7. So a natural question arises,

whether MoE always holds for three or more indistinguishable particles or not?

There are fundamental difference between the physicality of entanglement of dis-

tinguishable particles and that of indistinguishable ones. For example, two distin-

guishable particles with orthogonal eigenstates in one of the DoFs are separable as

they can be written in tensor product. However, two indistinguishable particles can

become entangled even under the conditions of orthogonal eigenstates, differently

from two distinguishable particles which remain in a product state [161, Methods].

So, if three or more particles becomes indistinguishable in the same/different local-

ized regions in their same/different eigenstates of same/different DoFs in an arbitrary

manner, whether MoE holds or not is not immediately obvious and needs non-trivial

analysis. This is the motivation behind this chapter. Here, we use concurrence as

entanglement measure to calculate the monogamy of entanglement.
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This chapter is based on the work in [259].

8.1 Calculation of concurrence between two spa-

tial regions between any DoFs

In the general state given in Eq. (5.10), it is possible that each localized region have

more than one particle. To calculate the concurrence, we have to ensure that each of

the localized regions 𝑠1, 𝑠2, . . . , 𝑠𝑝 has only one particle. For that we have to apply a

projector as following.

Projecting 𝜌(𝑝,𝑛) onto the operational subspace spanned by the basis

ℬ𝑠1𝑠2...𝑠𝑝

={|𝑠1𝐷1
11 . . .𝐷

1
𝑛1 , 𝑠

2𝐷2
11 . . .𝐷

2
𝑛1 , . . . 𝑠

𝑝𝐷𝑝
11 . . .𝐷

𝑝
𝑛1⟩ ,

|𝑠1𝐷1
12 . . .𝐷

1
𝑛1 , 𝑠

2𝐷2
11 . . .𝐷

2
𝑛1 , . . . 𝑠

𝑝𝐷𝑝
11 . . .𝐷

𝑝
𝑛1⟩ ,

...

|𝑠1𝐷1
1𝑘1
. . .𝐷1

𝑛𝑘𝑛
, 𝑠2𝐷2

1𝑘1
, . . . 𝑠𝑝𝐷𝑝

1𝑘1
𝐷𝑝

2𝑘2
. . .𝐷𝑝

𝑛𝑘𝑛
⟩}

(8.1)

by the projector

𝒫𝑠1𝑠2...𝑠𝑝=
∑︁

𝑥𝑖
𝑗
∈D𝑗 ,𝑖∈N𝑝,𝑗∈N𝑛

|𝑠1𝑥1
1𝑥

1
2...𝑥

1
𝑛,𝑠

2𝑥2
1𝑥

2
2...𝑥

2
𝑛,...,𝑠

𝑝𝑥𝑝
1𝑥

𝑝
2...𝑥

𝑝
𝑛⟩⟨𝑠1𝑥1

1𝑥
1
2...𝑥

1
𝑛,𝑠

2𝑥2
1𝑥

2
2...𝑥

2
𝑛,...,𝑠

𝑝𝑥𝑝
1𝑥

𝑝
2...𝑥

𝑝
𝑛|

(8.2)

results in

𝜌
(𝑝,𝑛)
𝑠1𝑠2...𝑠𝑝 = 𝒫𝑠1𝑠2...𝑠𝑝𝜌(𝑝,𝑛)𝒫𝑠1𝑠2...𝑠𝑝

Tr(𝒫𝑠1𝑠2...𝑠𝑝𝜌(𝑝,𝑛)) . (8.3)

To calculate the concurrence between two spatial regions, we have to trace out

other (𝑝−2) regions using the method described in [258]. The trace out rule for tracing

out say 𝑠ℎ∈S𝑝 region can be described as

𝜌
(𝑝−1,𝑛)
(S𝑝−{𝑠ℎ}) =Tr𝑠ℎ

(︁
𝜌(𝑝,𝑛)

)︁
=

∑︁
𝑚ℎ

1 ,𝑚
ℎ
2 ,...,𝑚

ℎ
𝑛

⟨𝑠ℎ𝑚ℎ
1𝑚

ℎ
2 . . .𝑚

ℎ
𝑛 |𝜌(𝑝,𝑛) |𝑠ℎ𝑚ℎ

1𝑚
ℎ
2 . . .𝑚

ℎ
𝑛⟩ , (8.4)
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where 𝑚ℎ
𝑗 span D𝑗 for 𝑗∈N𝑛.

This if we trace out 𝑘 number of particles from the localized regions 𝑠ℎ1 , 𝑠ℎ1 , . . . , 𝑠ℎ𝑘 ,
then the reduced density matrix is be represented as

𝜌
(𝑝−ℎ,𝑛)
(S𝑝−{𝑠ℎ1 ,𝑠ℎ1 ,...,𝑠ℎ𝑘 })=Tr𝑠ℎ1 ,𝑠ℎ2 ,...,𝑠ℎ𝑘

(︁
𝜌(𝑝,𝑛)

)︁
=

∑︁
𝑠ℎ𝑖 ∈S𝑝,𝑚

ℎ𝑖
𝑗

∈D𝑗

⟨𝑠ℎ1𝑚ℎ1
1 𝑚ℎ1

2 ...𝑚ℎ1
𝑛 ,...,𝑠ℎ𝑘𝑚ℎ𝑘

1 𝑚ℎ𝑘
2 ...𝑚ℎ𝑘

𝑛 |𝜌(𝑝,𝑛)|𝑠ℎ1𝑚ℎ1
1 𝑚ℎ1

2 ...𝑚ℎ1
𝑛 ,...,𝑠ℎ𝑘𝑚ℎ𝑘

1 𝑚ℎ𝑘
2 ...𝑚ℎ𝑘

𝑛 ⟩.

(8.5)

Suppose we want to calculate the concurrence between the particle in the location

𝑠𝑟 and the particle in the location 𝑠𝑡 where 𝑠𝑟, 𝑠𝑡∈S𝑝, we apply the DoF trace-out

rule as defined in [258]. Thus the reduced density matrix is

𝜌
(2,𝑛)
𝑠𝑟,𝑠𝑡 =Tr(S−{𝑠𝑟,𝑠𝑡})

(︁
𝜌(𝑝,𝑛)

)︁
. (8.6)

To calculate the concurrence between the 𝑣-th DoF of the particle in the location

𝑠𝑟 and the 𝑤-th DoF of the particle in the location 𝑠𝑡 where 1≤𝑣,𝑤≤𝑛, we have to

trace-out all the other non-contributing DoFs from these two locations using the DoF

trace-out rule as defined in [258]. So, the reduced density matrix of the 𝑣-th and 𝑤-th

DoF of the locations 𝑠𝑟 and 𝑠𝑡 respectively is given by

𝜌
(2,1)
𝑠𝑟

𝑣 ,𝑠
𝑡
𝑤

=Tr(𝑠𝑟
𝑣 ,𝑠

𝑡
�̄�)
(︁
𝜌

(2,𝑛)
𝑠𝑟,𝑠𝑡

)︁
=

∑︁
𝑚𝑟

𝑗 ,𝑚
𝑡
𝑗∈D𝑗

⟨𝜓𝑠𝑟

𝑚𝑣
,𝜓𝑠

𝑡

𝑚�̄�
|𝜌(2,𝑛)
𝑠𝑟,𝑠𝑡 |𝜓𝑠𝑟

𝑚𝑣
,𝜓𝑠

𝑡

𝑚�̄�
⟩ , (8.7)

where |𝜓𝑠𝑟

𝑚𝑣
⟩= |𝑠𝑟𝑚𝑟

1𝑚
𝑟
2 . . .𝑚

𝑟
(𝑣−1)𝑚

𝑟
(𝑣+1) . . .𝑚

𝑟
𝑛⟩ and

|𝜓𝑠𝑡

𝑚�̄�
⟩=|𝑠𝑡𝑚𝑡

1𝑚
𝑡
2 . . .𝑚

𝑡
(𝑤−1)𝑚

𝑡
(𝑤+1) . . .𝑚

𝑡
𝑛⟩.

To calculate the concurrence of 𝜌(2,1)
𝑠𝑟

𝑣 ,𝑠
𝑡
𝑤
, i.e., 𝒞𝑠𝑟

𝑣 |𝑠𝑡
𝑤
, we have to calculate the following

̃︀𝜌𝑠𝑟
𝑣 ,𝑠

𝑡
𝑤

=𝜎𝑠
𝑟

𝑦 ⊗𝜎𝑠
𝑡

𝑦 𝜌
*
𝑠𝑟

𝑣 ,𝑠
𝑡
𝑤
𝜎𝑠

𝑟

𝑦 ⊗𝜎𝑠
𝑡

𝑦 . (8.8)

where 𝜎𝑠𝑟

𝑦 = |𝑠𝑟⟩⟨𝑠𝑟|⊗𝜎𝑦, and similarly 𝜎𝑠𝑡

𝑦 = |𝑠𝑡⟩⟨𝑠𝑡|⊗𝜎𝑦, and 𝜎𝑦 is Pauli matrix and

the asterisk denotes complex conjugation.
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Now we have to calculate the eigenvalues of the non-hermitian matrix

ℛ𝑠𝑟
𝑣 ,𝑠

𝑡
𝑤

=𝜌𝑠𝑟
𝑣 ,𝑠

𝑡
𝑤
̃︀𝜌𝑠𝑟

𝑣 ,𝑠
𝑡
𝑤
. (8.9)

Finally the concurrence is calculated as the

𝒞𝑠𝑟
𝑣 |𝑠𝑡

𝑤
=max

{︂
0,
√︁
𝜆4 −

√︁
𝜆3 −

√︁
𝜆2 −

√︁
𝜆1

}︂
, (8.10)

where 𝜆𝑖’s are the eigenvalues of ℛ𝑠𝑟
𝑣 ,𝑠

𝑡
𝑤

in decreasing order.

8.2 Monogamy of 𝑝 indistinguishable particles each

having 𝑛 DoFs

As the state-space structure of distinguishable and indistinguishable particles are

completely different and so the proof for MoE shown for distinguishable particles

in [66] is not applicable for indistinguishable particles. So, we calculate the MoE

for all the possible ways in which indistinguishability can occur. First, we calculate

it for three particles each having three DoFs, for example spin, OAM, and path

DoF having eigenstates {|↑⟩ , |↓⟩}, {|+𝑙⟩ , |−𝑙⟩}, and {|𝑅⟩ , |𝐿⟩} respectively in three

localized regions S3. We describe the first five cases where one of the eigenstates of

the DoFs contributed for entanglement, and the other non-contributing DoFs can

take arbitrary values. Then we consider the other cases where contributing DoFs

for entanglement can be in arbitrary superposition of their eigenstates. Finally, we

generalize it for 𝑝 indistinguishable particles each having 𝑛 DoFs.

Suppose there are 𝑝 number of indistinguishable particles, each having 𝑛 DoFs.

Recall that, the 𝑘-th eigenvalue of the 𝑗th DoF of a particle is represented by 𝒟𝑗𝑘 ∈D𝑗

(the set of eigenvalues of the 𝑗th DoF). As we are considering squared concurrence

measure, so we take only two eigenstates of each DoF. For any eigenvalue 𝜆, we use

the notion |𝜆⟩ for the corresponding eigenstate. In Table 8.2, we summarize the list

of possible combinations to create indistinguishability using three indistinguishable

158



particles, each having three DoFs denoted by 𝑗, 𝑗′, and 𝑗′′, localized in three regions

𝑠1, 𝑠2, and 𝑠3. Calculations for concurrences are done using the method described in

Section 8.1. These cases can be extended for 𝑝 number of indistinguishable particles

as shown below.

Case 1: Entanglement is calculated in the same DoF of all particles. Each particle

is in the eigenstate |𝒟⟩𝑗𝑘 of the 𝑗th DoF. Then after calculation, we get 𝒞2
𝑠1|𝑠2 =0,

𝒞2
𝑠1|𝑠3 =0, and 𝒞2

𝑠1|𝑠2𝑠3 =0. Similar result holds for 𝑝 indistinguishable particles having

the eigenstate |𝒟⟩𝑗𝑘 of the 𝑗th DoF.

Case 2: Entanglement is calculated in the same DoF for all particles. For three

indistinguishable particles, if two of them are in the eigenstate |𝒟⟩𝑗𝑘 and one is in

the eigenstate |𝒟⟩𝑗𝑘′ where |𝒟⟩𝑗𝑘′ = |𝒟⟩⊥
𝑗𝑘

, then 𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 ≥0, and 𝒞2
𝑠1|𝑠2𝑠3 ≥0 as

shown in Section 8.2.1. Similar result holds for 𝑝 indistinguishable particles in S𝑝

locations with each particle having 𝑛 DoFs where (𝑞+𝑟) number of particles are in

the eigenstate |𝒟⟩𝑗𝑘 and rest of (𝑝−𝑞−𝑟) number of particles are in the eigenstate

|𝒟⟩𝑗𝑘′ .

8.2.1 Monogamy of three indistinguishable particles in spin

DoF where two particles are in |↑⟩ eigenstate and one

particles in |↓⟩ eigenstate

In this section, we calculate the monogamy of entanglement using three indistinguish-

able particles each having two DoFs, are localized in three spatial regions 𝑠1, 𝑠2, and

𝑠3 which we denote as S3 as shown in Fig. 8-1. We consider two particles with |↑⟩

eigenstate and one particles with |↓⟩ eigenstate in their spin DoF as we calculate en-

tanglement with only spin DoF. The other DoF of each particle can take any arbitrary
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Figure 8-1: Overlapping of the wave-function of three indistinguishable particles in
the localized regions 𝑠1, 𝑠2, and 𝑠3 where two of them have |↑⟩ eigenstate and one
having |↓⟩ eigenstate in spin degrees of freedom.

eigenvalues. Thus the general state can be written as

|Ψ(3,2)⟩=
∑︁

𝛼𝑖∈S3,𝑖∈N3

𝜂𝑢𝜅𝛼
1,𝛼2,𝛼3

𝑎1
1𝑎

1
2,𝑎

2
1𝑎

2
2,𝑎

3
1𝑎

3
2
|𝛼1𝑎1

1𝑎
1
2,𝛼

2𝑎2
1𝑎

2
2,𝛼

3𝑎3
1𝑎

3
2⟩

=
∑︁
𝑎𝑖

2∈D2

𝜂𝑢2𝜅𝛼
1,𝛼2,𝛼3

↑𝑎1
2,↑𝑎

2
2,↓𝑎

3
2
|𝛼1 ↑𝑎1

2,𝛼
2 ↑𝑎2

2,𝛼
3 ↓𝑎3

2⟩

+
∑︁
𝑎𝑖

2∈D2

𝜂(1+𝑢2)𝜅𝛼
1,𝛼2,𝛼3

↑𝑎1
2,↓𝑎

2
2,↑𝑎

3
2
|𝛼1 ↑𝑎1

2,𝛼
2 ↓𝑎2

2,𝛼
3 ↑𝑎3

2⟩

+
∑︁
𝑎𝑖

2∈D2

𝜂𝑢2𝜅𝛼
1,𝛼2,𝛼3

↓𝑎1
2,↑𝑎

2
2,↑𝑎

3
2
|𝛼1 ↓𝑎1

2,𝛼
2 ↑𝑎2

2,𝛼
3 ↑𝑎3

2⟩ .

(8.11)

Here 𝑎𝑖1 ∈{|↑⟩ , |↓⟩}, 𝑎𝑖2 ∈D2 for 𝑖∈{1,2,3} such that 𝑎𝑖1 ̸=𝑎𝑖
′

1 for all 𝑖 ̸= 𝑖′ and if |↑⟩=

−1
2 , |↓⟩=+1

2 then ∑︀
𝑎𝑖1 =−1

2 . The value of 𝜂=0 if (𝛼𝑖=𝛼′)∧
(︁
𝑎𝑖𝑗 =𝑎𝑖

′
𝑗

)︁
for all 𝑖= 𝑖′
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where 𝑗∈N2.
The density matrix of Equation (8.11) can be written as

𝜌(3,2) =
∑︁

𝛼𝑖,𝛽𝑖∈S3&𝑖∈N3

𝜂(𝑢+�̄�)𝜅𝛼1,𝛼2,𝛼3

𝑎1
1𝑎1

2,𝑎2
1𝑎2

2,𝑎3
1𝑎3

2
𝜅𝛽1,𝛽2,𝛽3*

𝑏1
1𝑏1

2,𝑏2
1𝑏2

2,𝑏3
1𝑏3

2
|𝛼1𝑎1

1𝑎
1
2,𝛼

2𝑎2
1𝑎

2
2,𝛼

3𝑎3
1𝑎

3
2⟩⟨𝛽1𝑏1

1𝑏
1
2,𝛽

2𝑏2
1𝑏

2
2,𝛽

3𝑏3
1𝑏

3
2| .

(8.12)

Here 𝑎𝑖1, 𝑏𝑖1 ∈{|↑⟩ , |↓⟩}, 𝑎𝑖2, 𝑏𝑖2 ∈D2 for 𝑖∈{1,2,3} such that 𝑎𝑖1 ̸=𝑎𝑖
′

1 and 𝑏𝑖1 ̸=𝑏𝑖
′

1 for

all 𝑖 ̸= 𝑖′. Also if we take |↑⟩=−1
2 , |↓⟩=+1

2 then ∑︀𝑎𝑖1 =∑︀𝑏𝑖1 =−1
2 . The value of 𝜂=0 if

{︁(︁
𝛼𝑖=𝛼′

)︁
∨
(︁
𝛽𝑖=𝛽′

)︁}︁
}∧

{︁(︁
𝑎𝑖𝑗 =𝑎𝑖

′

𝑗

)︁
∨
(︁
𝑏𝑖𝑗 =𝑏𝑖

′

𝑗

)︁}︁

for all 𝑖= 𝑖′ where 𝑗∈N2. Here the normalization condition is

∑︁
𝛼𝑖,𝛽𝑖∈S3,𝑎𝑖

1,𝑏
𝑖
1∈{↑,↓},𝑎𝑖

2,𝑏
𝑖
2∈D2

𝜅𝛼
1,𝛼2,𝛼3

𝑎1
1𝑎

1
2,𝑎

2
1𝑎

2
2,𝑎

3
1𝑎

3
2
𝜅𝛽

1,𝛽2,𝛽3*
𝑏1

1𝑏
1
2,𝑏

2
1𝑏

2
2,𝑏

3
1𝑏

3
2
=1, (8.13)

where 𝛼𝑖=𝛽𝑖, 𝑎𝑖𝑗 =𝑏𝑖𝑗 for all 𝑖∈{1,2,3} and 𝑗∈{1,2}.

Next step, we have to apply the projector 𝒫𝑠1𝑠2𝑠3 so that in each of the location

𝑠1, 𝑠2, and 𝑠3 have exactly one particle which is defined as

𝒫𝑠1𝑠2𝑠3 =
∑︁

𝑥𝑖
1∈{↑,↓},𝑥𝑖

2∈D2

|𝑠1𝑥1
1𝑥

1
2, 𝑠

2𝑥2
1𝑥

2
2, 𝑠

3𝑥3
1𝑥

3
2⟩⟨𝑠1𝑥1

1𝑥
1
2, 𝑠

2𝑥2
1𝑥

2
2, 𝑠

3𝑥3
1𝑥

3
2| . (8.14)

Thus after applying the projector, we get the density matrix as

𝜌
(3,2)
𝑠1𝑠2𝑠3 =𝒫𝑠1𝑠2𝑠3𝜌(3,2)𝒫𝑠1𝑠2𝑠3

Tr(𝒫𝑠1𝑠2𝑠3𝜌(3,2))

=
∑︁

𝑎𝑖
2,𝑏

𝑖
2,𝑥

𝑖
2∈D2

∑︀
ℎ,𝑘∈{1,2,3} 𝜂

(𝑘+𝑢2+𝑢2−1)𝑧ℎ𝑧
*
𝑘𝜌

(3,2)
ℎ𝑘∑︀

ℎ∈{1,2,3} 𝑧ℎ𝑧
*
ℎ

,

(8.15)
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where 𝑎𝑖2 =𝑏𝑖2 =𝑥𝑖2. The values of

𝑧1 =𝜅𝑠
1,𝑠2,𝑠3

↑𝑎1
2,↑𝑎

2
2,↓𝑎

3
2
,

𝑧2 =𝜅𝑠
1,𝑠2,𝑠3

↑𝑎1
2,↓𝑎

2
2,↑𝑎

3
2
,

𝑧3 =𝜅𝑠
1,𝑠2,𝑠3

↓𝑎1
2,↑𝑎

2
2,↑𝑎

3
2
,

(8.16)

and the complex conjugates of 𝑧𝑗 for 𝑗∈{1,2,3} can be calculated accordingly.

Also 𝜌(3,2)
ℎ𝑘 = |𝜓⟩(3,2)

ℎ ⟨𝜓|(3,2)
𝑘 where

|𝜓⟩(3,2)
1 = |𝑠1 ↑𝑥1

2, 𝑠
2 ↑𝑥2

2, 𝑠
3 ↓𝑥3

2⟩ ,

|𝜓⟩(3,2)
2 = |𝑠1 ↑𝑥1

2, 𝑠
2 ↓𝑥2

2, 𝑠
3 ↑𝑥3

2⟩ ,

|𝜓⟩(3,2)
3 = |𝑠1 ↓𝑥1

2, 𝑠
2 ↑𝑥2

2, 𝑠
3 ↑𝑥3

2⟩ ,

(8.17)

and the complex conjugates of |𝜓⟩(3,2)
𝑗 for 𝑗∈{1,2,3} can be calculated accordingly.

Now we have to trace out the particle at the region 𝑠3. So, we get the reduced

density matrix as

𝜌
(2,2)
𝑠1𝑠2 =Tr𝑠3

(︁
𝜌

(3,2)
𝑠1𝑠2𝑠3

)︁
=

∑︁
𝑚3

1,𝑚
3
1∈{↑,↓},𝑚3

2∈D2

⟨𝑠3𝑚3
1𝑚

3
2 |𝜌(3,2)

𝑠1𝑠2𝑠3 |𝑠3𝑚3
1𝑚

3
2⟩

=
∑︁

𝑎𝑖
2,𝑏

𝑖
2,𝑥

𝑖
2∈D2

∑︀
ℎ,𝑘∈{1,2,3} 𝜂

(𝑘+𝑢2+𝑢2−1)𝑧ℎ𝑧
*
𝑘𝜌

(2,2)
ℎ𝑘∑︀

ℎ∈{1,2,3} 𝑧ℎ𝑧
*
ℎ

,

(8.18)

where 𝑎𝑖2 =𝑏𝑖2 =𝑥𝑖2, and 𝑚3
2 =𝑥3

2. The values of 𝜌(2,2)
ℎ𝑘 = |𝜓⟩(2,2)

ℎ ⟨𝜓|(2,2)
𝑘 where

|𝜓⟩(2,2)
1 = |𝑠1 ↑𝑥1

2, 𝑠
2 ↑𝑥2

2⟩ ,

|𝜓⟩(2,2)
2 = |𝑠1 ↑𝑥1

2, 𝑠
2 ↓𝑥2

2,⟩ ,

|𝜓⟩(2,2)
3 = |𝑠1 ↓𝑥1

2, 𝑠
2 ↑𝑥2

2⟩ ,

𝜌
(2,2)
12 =𝜌(2,2)

13 =𝜌
(2,2)
21 =𝜌

(2,2)
31 =0,

(8.19)

and the complex conjugates of |𝜓⟩(2,2)
𝑗 for 𝑗∈{1,2,3} can be calculated accordingly.

Finally Tracing out the second DoF of each particle we have
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𝜌
(2,1)
𝑠1

1,𝑠
2
1
=

∑︁
𝑚1

2,𝑚
2
2∈D2

⟨𝑠1𝑚1
2, 𝑠

2𝑚2
2 |𝜌(2,2)

𝑠1𝑠2 |𝑠1𝑚1
2, 𝑠

2𝑚2
2⟩

=
∑︁

𝑎𝑖
2,𝑏

𝑖
2,𝑥

𝑖
2∈D2

∑︀
ℎ,𝑘∈{1,2,3} 𝜂

(𝑘+𝑢2+𝑢2−1)𝑧ℎ𝑧
*
𝑘𝜌

(2,1)
ℎ𝑘∑︀

ℎ∈{1,2,3} 𝑧ℎ𝑧
*
ℎ

,

(8.20)

where 𝑎𝑖2 =𝑏𝑖2 =𝑥𝑖2 =𝑚𝑖
2. The values of 𝜌(2,1)

ℎ𝑘 = |𝜓⟩(2,1)
ℎ ⟨𝜓|(2,1)

𝑘 where

|𝜓⟩(2,1)
1 = |𝑠1 ↑, 𝑠2 ↑⟩ ,

|𝜓⟩(2,1)
2 = |𝑠1 ↑, 𝑠2 ↓⟩ ,

|𝜓⟩(2,1)
3 = |𝑠1 ↓, 𝑠2 ↑⟩ ,

𝜌
(2,1)
12 =𝜌(2,1)

13 =𝜌
(2,1)
21 =𝜌

(2,1)
31 =0,

(8.21)

and the complex conjugates of |𝜓⟩(2,1)
𝑗 for 𝑗∈{1,2,3} can be calculated accordingly.

To calculate concurrence for 𝜌(2,1)
𝑠1

1,𝑠
2
1
, we have to calculate the following

̃︀𝜌(2,1)
𝑠1

1,𝑠
2
1

= 𝜎𝑠
1

𝑦 ⊗𝜎𝑠
2

𝑦 𝜌
(2,1)*
𝑠1

1,𝑠
2
1
𝜎𝑠

1

𝑦 ⊗𝜎𝑠
2

𝑦 , (8.22)

where 𝜎𝑠1
𝑦 = |𝑠1⟩⟨𝑠1|⊗𝜎𝑦, 𝜎𝑠

2
𝑦 = |𝑠2⟩⟨𝑠2|⊗𝜎𝑦. Here 𝜎𝑦 is the Pauli matrix and the as-

terisk denotes complex conjugation. Finally, we have to calculate the eigenvalues of

ℛ=𝜌
(2,1)
𝑠1

1,𝑠
2
1
̃︀𝜌(2,1)
𝑠1

1,𝑠
2
1
.

So, the value of square of the concurrence 𝒞2
𝑠1|𝑠2 is

𝒞2
𝑠1|𝑠2 = 2|𝑧2𝑧3|2 +𝑧2

2𝑧
*2
3 +𝑧*2

2 𝑧
2
3 −2|𝑧2𝑧

*
3𝑧

*
2𝑧3 −𝑧2

2𝑧
2
3 |2. (8.23)

Similarly, to calculate the squared concurrence 𝒞2
𝑠1𝑠3 , first step is to trace out the

particle at the region 𝑠2 from 𝜌
(3,2)
𝑠1𝑠2𝑠3 as shown in Eq. (8.15). So, we get the reduced
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density matrix as

𝜌
(2,2)
𝑠1𝑠3 =Tr𝑠2

(︁
𝜌

(3,2)
𝑠1𝑠2𝑠3

)︁
=

∑︁
𝑚2

1∈{↑,↓},
𝑚2

2∈D2

⟨𝑠2𝑚2
1𝑚

2
2 |𝜌(3,2)

𝑠1𝑠2𝑠3 |𝑠2𝑚2
1𝑚

2
2⟩

=
∑︁

𝑎𝑖
2,𝑏

𝑖
2,𝑥

𝑖
2∈D2

∑︀
ℎ,𝑘∈{1,2,3} 𝜂

(𝑘+𝑢2+𝑢2−1)𝑧ℎ𝑧
*
𝑘𝜌

(2,2)
ℎ𝑘∑︀

ℎ∈{1,2,3} 𝑧ℎ𝑧
*
ℎ

,

(8.24)

where 𝑎𝑖2 =𝑏𝑖2 =𝑥𝑖2, and 𝑚2
2 =𝑥2

2. The values of 𝜌(2,2)
ℎ𝑘 = |𝜓⟩(2,2)

ℎ ⟨𝜓|(2,2)
𝑘 where

|𝜓⟩(2,2)
1 = |𝑠1 ↑𝑥1

2, 𝑠
3 ↑𝑥3

2⟩ ,

|𝜓⟩(2,2)
2 = |𝑠1 ↑𝑥1

2, 𝑠
3 ↓𝑥3

2,⟩ ,

|𝜓⟩(2,2)
3 = |𝑠1 ↓𝑥1

2, 𝑠
3 ↑𝑥3

2⟩ ,

𝜌
(2,2)
12 =𝜌(2,2)

21 =𝜌
(2,2)
23 =𝜌

(2,2)
32 =0,

(8.25)

and the complex conjugates of |𝜓⟩(2,2)
𝑗 for 𝑗∈{1,2,3} can be calculated accordingly.

Now following similar calculations as above we get square of the concurrence

between 𝑠1 and 𝑠3 is

𝒞2
𝑠1|𝑠3 = 2|𝑧1𝑧3|2 +𝑧2

1𝑧
*2
3 +𝑧*2

1 𝑧
2
3 −2|𝑧1𝑧

*
3𝑧

*
1𝑧3 −𝑧2

1𝑧
2
3 |2. (8.26)

Thus the monogamy relation is

𝒞2
𝑠1|𝑠2 +𝒞2

𝑠1|𝑠3 = 4(1−|𝑧3|2)|𝑧3|2 ≤1. (8.27)

.

If we further trace-out the particle at 𝑠2 from Eq. (8.20), we get

𝜌
(1,1)
𝑠1

1
=

∑︁
𝑚2

1∈D2

⟨𝑠2𝑚2
1 |𝜌(2,1)

𝑠1
1,𝑠

2
1
|𝑠2𝑚2

1⟩

=
(︁
|𝑧1 |2 +|𝑧2|2

)︁
|𝑠1 ↑⟩⟨𝑠1 ↑|+ |𝑧1|3 |𝑠1 ↓⟩⟨𝑠1 ↓| .

(8.28)
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Thus, as Eq. (8.11) is a pure state so, we have

𝒞2
𝑠1|𝑠2𝑠3 =4det(𝜌(1,1)

𝑠1
1

)=4(1−|𝑧3|2)|𝑧3|2 ≤1. (8.29)

So, we get

𝒞2
𝑠1|𝑠2 +𝒞2

𝑠1|𝑠3 = 𝒞2
𝑠1|𝑠2𝑠3 . (8.30)

Case 3: Entanglement is calculated between two different DoFs. Here, if two

particles are in the eigenstate |𝒟⟩𝑗𝑘 of the 𝑗th DoF and one particle is in the eigenstate

|𝒟⟩𝑗′
𝑙

of the 𝑗′th DoF where 𝑗 ̸=𝑗′, then 𝒞2
𝑠1|𝑠2 =0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 =0. Similar

result holds for 𝑝 indistinguishable particles in S𝑝 locations with each particle having

𝑛 DoFs where (𝑞+𝑟) number of particles are in the eigenstate |𝒟⟩𝑗𝑘 of the 𝑗th DoF

and rest of (𝑝−𝑞−𝑟) number of particles are in the eigenstate |𝒟⟩𝑗′
𝑙

of the 𝑗′th DoF.

Case 4: Entanglement is calculated between two different DoFs. Here, if two

particles are in the eigenstate |𝒟⟩𝑗𝑘 and |𝒟⟩𝑗𝑘′ of the 𝑗th DoF respectively and one

particle is in the eigenstate |𝒟⟩𝑗′
𝑙

of the 𝑗′th DoF where 𝑗 ̸=𝑗′ and |𝒟⟩𝑗𝑘′ = |𝒟⟩⊥
𝑗𝑘

, then

𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 ≥0 as shown in the Section 8.2.2. Similar result holds

for 𝑝 indistinguishable particles in S𝑝 locations with each particle having 𝑛 DoFs

where 𝑞 and 𝑟 number of particles are in the eigenstate |𝒟⟩𝑗𝑘 and |𝒟⟩𝑗𝑘′ respectively

of the 𝑗th DoF and rest of (𝑝−𝑞−𝑟) number of particles are in the eigenstate |𝒟⟩𝑗′
𝑙

of the 𝑗′th DoF.

8.2.2 Monogamy of three indistinguishable particles where

two particles are in |↑⟩ and |↓⟩ eigenstate respectively

in spin DoF and one particle is in |+𝑙⟩ eigenstate in

OAM DoF.

Consider two particles with spin DoF having |↑⟩ and |↓⟩ eigenstates respectively

and one particle with orbital angular momentum DoF with |+𝑙⟩ eigenstate. The

eigenvalues of spin DoF and OAM DoF are represented by 𝑎𝑖1 ∈D1 ={|↑⟩ , |↓⟩} and

𝑎𝑖2 ∈D2 ={|+𝑙⟩ , |−𝑙⟩} respectively where 𝑖∈{1,2,3}. The other non-contributing DoFs
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in entanglement of each particle can take any arbitrary eigenvalues. Thus the general

state can be written as

|Ψ(3,2)⟩=
∑︁

𝑎3
1∈D1,𝑎1

2,𝑎
2
2∈D2

𝜂0𝜅𝛼
1,𝛼2,𝛼3

↑𝑎1
2,↓𝑎

2
2,𝑎

3
1+𝑙 |𝛼

1 ↑𝑎1
2,𝛼

2 ↓𝑎2
2,𝛼

3𝑎3
1 + 𝑙⟩

+
∑︁

𝑎2
1∈D1,𝑎1

2,𝑎
3
2∈D2

𝜂1𝜅𝛼
1,𝛼2,𝛼3

↑𝑎1
2,𝑎

2
1+𝑙,↓𝑎3

2
|𝛼1 ↑𝑎1

2,𝛼
2𝑎2

1 + 𝑙,𝛼3 ↓𝑎3
2⟩

+
∑︁

𝑎3
1∈D1,𝑎1

2,𝑎
2
2∈D2

𝜂2𝜅𝛼
1,𝛼2,𝛼3

↓𝑎1
2,↑𝑎

2
2,𝑎

3
1+𝑙 |𝛼

1 ↓𝑎1
2,𝛼

2 ↑𝑎2
2,𝛼

3𝑎3
1 + 𝑙⟩

+
∑︁

𝑎2
1∈D1,𝑎3

2,𝑎
1
2∈D2

𝜂3𝜅𝛼
1,𝛼2,𝛼3

↓𝑎1
2,𝑎

2
1+𝑙,↑𝑎3

2
|𝛼1 ↓𝑎1

2,𝛼
2𝑎2

1 + 𝑙,𝛼3 ↑𝑎3
2⟩

+
∑︁

𝑎1
1∈D1,𝑎2

2,𝑎
3
2∈D2

𝜂4𝜅𝛼
1,𝛼2,𝛼3

𝑎1
1+𝑙,↑𝑎2

2,↓𝑎
3
2
|𝛼1𝑎1

1 + 𝑙,𝛼2 ↑𝑎2
2,𝛼

3 ↓𝑎3
2⟩

+
∑︁

𝑎1
1∈D1,𝑎2

2,𝑎
3
2∈D2

𝜂5𝜅𝛼
1,𝛼2,𝛼3

𝑎1
1+𝑙,↓𝑎2

2,↑𝑎
3
2
|𝛼1𝑎1

1 + 𝑙,𝛼2 ↓𝑎2
2,𝛼

3 ↑𝑎3
2⟩

(8.31)

where 𝛼𝑖∈S3 for 𝑖∈N3. After projecting the state by the suitable projector so that in

each location 𝑠1, 𝑠2, and 𝑠3 have exactly one particle. Finally, we calculate entangle-

ment with 𝑠1 and 𝑠2 in spin DoF and between 𝑠1 and 𝑠3 in spin DoF and OAM DoF

respectively. Following the above steps, we have

𝒞2
𝑠1|𝑠2 =4

(︁
𝜅𝑠

1,𝑠2,𝑠3

↑𝑎1
2,↓𝑎

2
2,𝑎

3
1+𝑙

)︁2 (︁
𝜅𝑠

1,𝑠2,𝑠3

↓𝑎1
2,↑𝑎

2
2,𝑎

3
1+𝑙

)︁2
,

𝒞2
𝑠1|𝑠3 =0,

𝒞2
𝑠1|𝑠2𝑠3 =4

(︁
𝜅𝑠

1,𝑠2,𝑠3

↑𝑎1
2,↓𝑎

2
2,𝑎

3
1+𝑙

)︁2 (︁
𝜅𝑠

1,𝑠2,𝑠3

↓𝑎1
2,↑𝑎

2
2,𝑎

3
1+𝑙

)︁2
.

(8.32)

So, we get

𝒞2
𝑠1|𝑠2 +𝒞2

𝑠1|𝑠3 =𝒞2
𝑠1|𝑠2𝑠3 . (8.33)

Case 5: Entanglement is calculated between three different DoFs of three parti-

cles. If three particles are in the eigenstate |𝒟⟩𝑗𝑘 of the 𝑗th DoF, |𝒟⟩𝑗′′
ℎ

of the 𝑗′′th DoF,

and |𝒟⟩𝑗′
𝑙

of the 𝑗′th DoF where 𝑗 ̸=𝑗′ ̸=𝑗′′, then 𝒞2
𝑠1|𝑠2 =0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 =0.

Similar result holds for 𝑝 indistinguishable particles in S𝑝 locations with each particle

having 𝑛 DoFs where 𝑞 number of particles are in the the eigenstate |𝒟⟩𝑗𝑘 of 𝑗th DoF,

𝑟 number of particles are in the eigenstate |𝒟⟩𝑗′′
ℎ

of 𝑗′′th DoF and rest of (𝑝−𝑞−𝑟)
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number of particles are in the eigenstate |𝒟⟩𝑗′
𝑙

of the 𝑗′th DoF.

Case 6: Entanglement is calculated in the same DoF of all particles. If two par-

ticles are in |𝒟⟩𝑗𝑘 and one particle is in the superpositions of its eigenstate, i.e.,

𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ where 𝜅2

𝑗𝑘
+𝜅2

𝑗𝑘′ =1, then 𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 ≥0, and 𝒞2
𝑠1|𝑠2𝑠3 ≥0.

The calculations are similar as for case 2. Similar result holds for 𝑝 indistinguishable

particles in S𝑝 locations with each particle having 𝑛 DoFs where (𝑞+𝑟) particles are

in |𝒟⟩𝑗𝑘 and rest of (𝑝−𝑞−𝑟) particles are in the superpositions of its eigenstate, i.e.,

𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ .

Case 7: Entanglement is calculated in the same DoF of all particles. If two par-

ticles are in the eigenstate |𝒟⟩𝑗𝑘 and |𝒟⟩𝑗𝑘′ and one particle is in superpositions of

its eigenstate, i.e., 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ where 𝜅2

𝑗𝑘
+𝜅2

𝑗𝑘′ =1 of the 𝑗th DoF, then

𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 ≥0, and 𝒞2
𝑠1|𝑠2𝑠3 ≥0. The calculations are similar as for case 2. Similar

result holds for 𝑝 indistinguishable particles in S𝑝 locations with each particle having

𝑛 DoFs where 𝑞 number of particles are in |𝒟⟩𝑗𝑘 , 𝑟 number of particles are in |𝒟⟩𝑗𝑘′

and rest of (𝑝−𝑞−𝑟) number of particles are in superpositions of its eigenstate, i.e.,

𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ where 𝜅2

𝑗𝑘
+𝜅2

𝑗𝑘′ =1.

Case 8: Entanglement is calculated in the same DoF of all particles. Each particles

are in the superpositions of its eigenstate, i.e., 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ where 𝜅2

𝑗𝑘
+

𝜅2
𝑗𝑘′ =1. Now calculations show that 𝒞2

𝑠1|𝑠2 =0, 𝒞2
𝑠1|𝑠3 =0, and 𝒞2

𝑠1|𝑠2𝑠3 =0. This case is

similar as case 1 if we take a rotated basis to redefine the eigenstates as {|�̃�⟩𝑗𝑘 , |�̃�⟩⊥
𝑗𝑘

}

where |�̃�⟩𝑗𝑘 =𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ .

Case 9: Entanglement is calculated in the same DoF of all particles. Each particles

are in different superpositions of its eigenstate, i.e., three particles are in the eigen-

states 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑1 |𝒟⟩𝑗𝑘′ , 𝜅

′
𝑗𝑘

|𝒟⟩𝑗𝑘 +𝜅′
𝑗𝑘′𝑒

𝑖𝜑2 |𝒟⟩𝑗𝑘′ , and 𝜅′′
𝑗𝑘

|𝒟⟩𝑗𝑘 +𝜅′′
𝑗𝑘′𝑒

𝑖𝜑3 |𝒟⟩𝑗𝑘′

of the 𝑗th DoF where 𝜅2
𝑗𝑘

+𝜅2
𝑗𝑘′ =1 , 𝜅2

𝑗′′
ℎ

+𝜅2
𝑗′′

ℎ′
=1, 𝜅2

𝑗′
𝑙
+𝜅2

𝑗′
𝑙′

=1 , 𝜑1 ̸=𝜑2 ̸=𝜑3, 𝜅𝑗𝑘 ̸=

𝜅′
𝑗𝑘

̸=𝜅′′
𝑗𝑘

, and 𝜅𝑗𝑘′ ̸=𝜅′
𝑗𝑘′ ̸=𝜅′′

𝑗𝑘′ . Now calculations show that 𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 ≥0, and

𝒞2
𝑠1|𝑠2𝑠3 ≥0. The calculations are similar as for case 8. Similar result holds for 𝑝 in-

distinguishable particles in S𝑝 locations with each particle having 𝑛 DoFs where 𝑞

number particles are in 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑1 |𝒟⟩𝑗𝑘′ eigenstate, 𝑟 number particles are in

𝜅′
𝑗𝑘

|𝒟⟩𝑗𝑘 +𝜅′
𝑗𝑘′𝑒

𝑖𝜑2 |𝒟⟩𝑗𝑘′ eigenstate and (𝑝−𝑞−𝑟) number of particles are in 𝜅′′
𝑗𝑘

|𝒟⟩𝑗𝑘 +
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𝜅′′
𝑗𝑘′𝑒

𝑖𝜑3 |𝒟⟩𝑗𝑘′ eigenstate.

Case 10: Here entanglement is calculated among two different DoFs where two

particles are in |𝒟⟩𝑗𝑘 eigenstate of the 𝑗th DoF and one particle is in 𝜅𝑗′
𝑙
|𝒟⟩𝑗′

𝑙
+

𝜅𝑗′
𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
eigenstate in the 𝑗′th DoF. Here 𝑗,𝑗′ ∈N𝑛 and 𝜅2

𝑗′
𝑙
+𝜅2

𝑗′
𝑙′

=1. Now calcula-

tions show 𝒞2
𝑠1|𝑠2 =0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 =0. This calculations is easier if we take a

rotated basis as shown in case 8. Similar result holds for 𝑝 indistinguishable particles

in S𝑝 locations with each particle having 𝑛 DoFs where (𝑞+𝑟) number of particles

are in |𝒟⟩𝑗𝑘 eigenstate of the 𝑗th DoF and rest of (𝑝−𝑞−𝑟) number of particles are

in 𝜅𝑗′
𝑙
|𝒟⟩𝑗′

𝑙
+𝜅𝑗′

𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
eigenstate in the 𝑗′th DoF.

Case 11: Here entanglement is calculated among two different DoFs where two

particles are in |𝒟⟩𝑗𝑘 and |𝒟⟩𝑗𝑘′ eigenstate of the 𝑗th DoF and one particle is in

𝜅𝑗′
𝑙
|𝒟⟩𝑗′

𝑙
+𝜅𝑗′

𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
eigenstate in the 𝑗′th DoF. Here 𝑗,𝑗′ ∈N𝑛 and 𝜅2

𝑗′
𝑙
+𝜅2

𝑗′
𝑙′

=1.

Now calculations show that 𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 ≥0. If we consider a ro-

tated basis in 𝑗′ DoF as {|�̃�⟩𝑗′
𝑙
, |�̃�⟩⊥

𝑗′
𝑙
} where |�̃�⟩𝑗′

𝑙
=𝜅𝑗′

𝑙
|𝒟⟩𝑗′

𝑙
+𝜅𝑗′

𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
, then the

calculations is similar as case 3. Similar result holds for 𝑝 indistinguishable particles

in S𝑝 locations with each particle having 𝑛 DoFs where 𝑞 and 𝑟 number of particles

are in |𝒟⟩𝑗𝑘 and |𝒟⟩𝑗𝑘′ eigenstate respectively of the 𝑗th DoF and rest of (𝑝−𝑞−𝑟)

number of particles are in 𝜅𝑗′
𝑙
|𝒟⟩𝑗′

𝑙
+𝜅𝑗′

𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
eigenstate in 𝑗′th DoF.

Case 12: Here entanglement is calculated among two different DoFs two particles

are in the |𝒟⟩𝑗𝑘 eigenstate and 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ eigenstate in the 𝑗th DoF,

one particle is in the superposition, i.e., 𝜅𝑗′
𝑙
|𝒟𝑗′

𝑙
⟩+𝜅𝑗′

𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
eigenstate in the 𝑗′th

DoF. Now calculations show 𝒞2
𝑠1|𝑠2 ≥0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 ≥0. Using appropriate

rotated basis of the 𝑗th and 𝑗′th DoF, the calculations is similar as previous case.

Similar result holds for 𝑝 indistinguishable particles in S𝑝 locations with each particle

having 𝑛 DoFs where 𝑞 number of particles are in |𝒟⟩𝑗𝑘 eigenstate of the 𝑗th DoF,

𝑟 number of particles are in the superposition, i.e., 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ eigenstate

in the 𝑗th DoF, and rest of (𝑝−𝑞−𝑟) number of particles are in the superposition,

i.e., 𝜅𝑗′
𝑙
|𝒟𝑗′

𝑙
⟩+𝜅𝑗′

𝑙′
𝑒𝑖𝜑 |𝒟⟩𝑗′

𝑙′
eigenstate in the 𝑗′th DoF.

Case 13: Entanglement is calculated between three different DoFs. Here, three

particles are in the superpositions of its eigenstate, i.e., 𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ where
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𝜅2
𝑗𝑘

+𝜅2
𝑗𝑘′ =1 of the 𝑗th DoF; 𝜅𝑗′′

ℎ
|𝒟⟩𝑗′′

ℎ
+𝜅𝑗′′

ℎ′
𝑒𝑖𝜑

′′ |𝒟⟩𝑗′′
ℎ′

where 𝜅2
𝑗′′

ℎ
+𝜅2

𝑗′′
ℎ′

=1 of the 𝑗′′th

DoF; and 𝜅𝑗′
𝑙
|𝒟⟩𝑗′

𝑙
+𝜅𝑗′

𝑙′
𝑒𝑖𝜑

′ |𝒟⟩𝑗′
𝑙′

where 𝜅2
𝑗′

𝑙
+𝜅2

𝑗′
𝑙′

=1 of the 𝑗′th DoF where 𝑗 ̸=𝑗′ ̸=𝑗′′.

Using appropriate rotated basis of the 𝑗th, 𝑗′th, and 𝑗′′th DoF, the calculations is

similar as shown in case 5. Now calculations show 𝒞2
𝑠1|𝑠2 =0, 𝒞2

𝑠1|𝑠3 =0, and 𝒞2
𝑠1|𝑠2𝑠3 =0.

Similar result holds for 𝑝 indistinguishable particles in S𝑝 locations with each particle

having 𝑛 DoFs where 𝑞 number of particles are in superpositions of its eigenstate, i.e.,

𝜅𝑗𝑘 |𝒟⟩𝑗𝑘 +𝜅𝑗𝑘′𝑒
𝑖𝜑 |𝒟⟩𝑗𝑘′ of the 𝑗th DoF, Here, 𝑟 number of particles are in superposi-

tions of its eigenstate, i.e., 𝜅𝑗′′
ℎ

|𝒟⟩𝑗′′
ℎ

+𝜅𝑗′′
ℎ′
𝑒𝑖𝜑

′′ |𝒟⟩𝑗′′
ℎ′

of 𝑗′′th DoF and rest of (𝑝−𝑞−𝑟)

number of particles are in superpositions of its eigenstate, i.e., 𝜅𝑗′
𝑙
|𝒟⟩𝑗′

𝑙
+𝜅𝑗′

𝑙′
𝑒𝑖𝜑

′ |𝒟⟩𝑗′
𝑙′

of 𝑗′th DoF.

One may think that there might be more cases. Upon careful inspection, it can be

concluded that all those cases is equivalent with any of the above mentioned cases.

From all the above cases we can see that the monogamy holds for pure states with

an equality relation. On the other hand, for mixed states, we use the convexity of the

concurrence function to prove the monogamy relation. Since any mixed state can be

expressed as an ensemble of the pure states, we can apply the concurrence function

on those ensembles, i.e., the convex combinations for pure states and minimize it to

get the required inequality for any arbitrary mixed states as shown in next section.

8.2.3 Monogamy of indistinguishable particles for mixed states

In this section, we generalize the relation for monogamy of entanglement of indistin-

guishable particles for mixed states. We have proved in Corollary 1.1 the the main

text that for all pure states 𝜌𝛼𝑖𝛽𝑗𝛾𝑘

𝒞2
𝛼𝑖|𝛽𝑗

(︁
𝜌𝛼𝑖𝛽𝑗

)︁
+𝒞2

𝛼𝑖|𝛾𝑘

(︁
𝜌𝛼𝑖|𝛾𝑘

)︁
=𝒞2

𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
𝜌𝛼𝑖𝛽𝑗𝛾𝑘

)︁
. (8.34)

But this relation is not valid for mixed states as the right hand side is not defined

for mixed states. Since all mixed states are convex combination some pure states, we
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can write 𝜌𝛼𝑖𝛽𝑗𝛾𝑘
as a convex combination of pure states, as

𝜌𝛼𝑖𝛽𝑗𝛾𝑘
=
∑︁
𝑚

Pr𝑚 |𝜓𝑚⟩𝛼𝑖𝛽𝑗𝛾𝑘
⟨𝜓𝑚|𝛼𝑖𝛽𝑗𝛾𝑘

, (8.35)

where Pr𝑚 denotes the probability of |𝜓𝑚⟩𝛼𝑖𝛽𝑗𝛾𝑘
. For each 𝑚, we can write from

Eq. (8.34) as

𝒞2
𝛼𝑖|𝛽𝑗

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗

⟨𝜓𝑚|𝛼𝑖𝛽𝑗

)︁
+𝒞2

𝛼𝑖|𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛾𝑘

)︁
=𝒞2

𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛽𝑗𝛾𝑘

)︁
.

(8.36)

Multiplying both sides with Pr𝑚, we get

Pr𝑚𝒞2
𝛼𝑖|𝛽𝑗

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗

⟨𝜓𝑚|𝛼𝑖𝛽𝑗

)︁
+Pr𝑚𝒞2

𝛼𝑖|𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛾𝑘

)︁
=Pr𝑚𝒞2

𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛽𝑗𝛾𝑘

)︁
.

(8.37)

Summing up for all the pure constituents,

∑︁
𝑚

Pr𝑚𝒞2
𝛼𝑖|𝛽𝑗

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗

⟨𝜓𝑚|𝛼𝑖𝛽𝑗

)︁
+
∑︁
𝑚

Pr𝑚𝒞2
𝛼𝑖|𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛾𝑘

)︁
=
∑︁
𝑚

Pr𝑚𝒞2
𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛽𝑗𝛾𝑘

)︁
.

(8.38)

Now consider the decomposition, say
{︁(︁

Pr*
𝑚, |𝜓𝑚⟩*

𝛼𝑖𝛽𝑗𝛾𝑘

)︁}︁
, that minimizes the right

hand side of Eq. (8.38) and denote it by

(︁
𝒞2
𝛼𝑖|𝛽𝑗𝛾𝑘

)︁min
:= min{︁(︁

Pr𝑚,|𝜓𝑚⟩𝛼𝑖𝛽𝑗 𝛾𝑘

)︁}︁∑︁
𝑚

Pr𝑚𝒞2
𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
|𝜓𝑚⟩𝛼𝑖𝛽𝑗𝛾𝑘

⟨𝜓𝑚|𝛼𝑖𝛽𝑗𝛾𝑘

)︁
. (8.39)

Now expressing 𝜌𝛼𝑖𝛽𝑗𝛾𝑘
by the above minimizing decomposition as in Eq. (8.39),
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we have

𝒞2
𝛼𝑖|𝛽𝑗

(︁
𝜌𝛼𝑖𝛽𝑗

)︁
+𝒞2

𝛼𝑖|𝛾𝑘

(︁
𝜌𝛼𝑖|𝛾𝑘

)︁
=𝒞2

𝛼𝑖|𝛽𝑗

(︃∑︁
𝑚

Pr*
𝑚 |𝜓𝑚⟩*

𝛼𝑖𝛽𝑗
⟨𝜓𝑚|*𝛼𝑖𝛽𝑗

)︃
+𝒞2

𝛼𝑖|𝛾𝑘

(︃∑︁
𝑚

Pr*
𝑚 |𝜓𝑚⟩*

𝛼𝑖𝛾𝑘
⟨𝜓𝑚|*𝛼𝑖𝛾𝑘

)︃

≤
∑︁
𝑚

Pr*
𝑚𝒞2

𝛼𝑖|𝛽𝑗

(︁
|𝜓𝑚⟩*

𝛼𝑖𝛽𝑗
⟨𝜓𝑚|*𝛼𝑖𝛽𝑗

)︁
+
∑︁
𝑚

Pr*
𝑚𝒞2

𝛼𝑖|𝛾𝑘

(︁
|𝜓𝑚⟩*

𝛼𝑖𝛾𝑘
⟨𝜓𝑚|*𝛼𝑖𝛾𝑘

)︁
(by the convexity of 𝒞2 [209])

=
∑︁
𝑚

Pr*
𝑚

{︁
𝒞2
𝛼𝑖|𝛽𝑗

(︁
|𝜓𝑚⟩*

𝛼𝑖𝛽𝑗
⟨𝜓𝑚|*𝛼𝑖𝛽𝑗

)︁
+𝒞2

𝛼𝑖|𝛾𝑘

(︁
|𝜓𝑚⟩*

𝛼𝑖𝛾𝑘
⟨𝜓𝑚|*𝛼𝑖𝛾𝑘

)︁}︁
=
∑︁
𝑚

Pr*
𝑚𝒞2

𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
|𝜓𝑚⟩*

𝛼𝑖𝛽𝑗𝛾𝑘
⟨𝜓𝑚|*𝛼𝑖𝛽𝑗𝛾𝑘

)︁
(from Eq. (8.36))

=
(︁
𝒞2
𝛼𝑖|𝛽𝑗𝛾𝑘

)︁min
(from Eq. (8.39)) .

(8.40)

Thus we have for mixed states

𝒞2
𝛼𝑖|𝛽𝑗

(︁
𝜌𝛼𝑖𝛽𝑗

)︁
+𝒞2

𝛼𝑖|𝛾𝑘

(︁
𝜌𝛼𝑖|𝛾𝑘

)︁
≤𝒞2

𝛼𝑖|𝛽𝑗𝛾𝑘

(︁
𝜌𝛼𝑖𝛽𝑗𝛾𝑘

)︁
. (8.41)

8.3 Physical significance of monogamy of entan-

glement for indistinguishable particles having

multiple DoFs

Existence of indistinguishable particles is a special feature of quantum mechanics.

There has been substantial interest in the community to use indistinguishable par-

ticles as a resource [280] for many quantum information processing tasks such as

teleportation [247, 163], entanglement swapping [176] etc., that are commonly imple-

mented using distinguishable particles. Recently a class of results have been published

which explicitly demonstrate that certain properties and applications are exclusive to

indistinguishable (or distinguishable) particles. We call such results as the separation

results between these two domains. Das et al. [244] showed that unit fidelity quantum

teleportation can only be performed using distinguishable particles, and on the other

hand, hyper-hybrid entangled state can only be produced using indistinguishable par-
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ticles. Further, if a quantum protocol can be performed using both distinguishable and

indistinguishable particles, one of them may give some advantages over the other. For

example entanglement swapping can be performed using minimum two indistinguish-

able particles [244], whereas atleast three particles are required for the distinguishable

case [53, 54]. Another separation result between these two domains is given by Paul et

al. [258]. They show that using two indistinguishable particles each having multiple

degrees of freedom, it is possible to violate monogamy of entanglement maximally,

which is not feasible for distinguishable particles [262].

In continuation of these separation results, this chapter contributes one property

of indistinguishable particles that are different from distinguishable particles. The

inequality of monogamy of entanglement using squared concurrence for three or more

distinguishable particles as shown in [66] becomes equality for pure indistinguishable

states, whereas the inequality may hold only for mixed indistinguishable states. The

physical significance of this result is that for all pure states, if MoE is calculated for

three or more indistinguishable particle, then the residual entanglement in the whole

state is zero, i.e., entanglement is distributed among all its bipartitions. Note that, this

equality is different from the one proposed in [281]. This result is extremely helpful to

calculate the entanglement in the scenarios where particles are indistinguishable like

quantum dots [168, 170], ultracold atomic gases [215], Bose-Einstein condensates [213,

214], quantum meteorology [282, 283], etc.
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Chapter 9

Applications of entangled

distinguishable and

indistinguishable particles

In this section, we discuss some applications of distinguishable and indistinguishable

particles. First we show an application using extra degrees of freedom as an ancilla

qubit to reduce the resource in some cryptographic protocols based on our work

in [264]. Next, we show an how using indistinguishability can create an attack in some

cryptographic protocols based on our work in [259]. Finally, we show an entanglement

swapping protocol using only two indistinguishable particles and without using Bell

state measurement based on our work in [244].

This chapter is based on the works in [244, 264, 259].

9.1 Reducing the resource requirement in crypto-

graphic protocols

Security and efficiency are two major criteria of a cryptographic protocols. If two

cryptographic systems with different resource requirements provide the same level of

security, the one with less resources becomes the natural choice. Here, we present a
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generic scheme to reduce the number of particles used in device-independent [284]

(DI) quantum private query [226, 227] (QPQ) without affecting the security that can

be used for both distinguishable and indistinguishable particles.

In quantum cryptography, DI tests [284] are required to establish secure key be-

tween two parties when the devices are not trustworthy. In QPQ, a user queries a

database about some specific entry and gets back only the corresponding data without

revealing the query to the server. To achieve this, a secure key must be established

between the database owner and the user such that the database owner knows the

full key but the user knows a fraction of that key. In DI-QPQ [227] using Clauser-

Horne-Shimony-Holt test [29], the maximum success probability is cos2 𝜋
8 ≈85% using

two qubits. With an ancilla particle, this success probability can be increased asymp-

totically to unity using quantum pseudo-telepathy game [178, 179].

The cost of adding an ancilla particle can be bypassed by using an additional DoF

and creating multi-DoF entanglement. In doing so, the success probability remains

the same but the generalized SF changes.

In Section 2.10.3, it is shown that the success probability of a quantum private

query protocol as described in 2.10.1 can be increased asymptotically to unity using

an ancilla particle 𝑋 as an extra qubit. Now instead of choosing the ancilla as another

particle, if another DoF of 𝐴 is used as the ancilla, then we can reduce the number

of particles used in the quantum pseudo-telepathy test. Then the state in Eq. (2.46)

can be written as

|𝜓⟩𝐵𝐴1𝐴2
= 1√

2

(︃
cos𝜃2 |000⟩𝐵𝐴1𝐴2

+sin𝜃2 |010⟩𝐵𝐴1𝐴2
+cos𝜃2 |111⟩𝐵𝐴1𝐴2

−sin𝜃2 |100⟩𝐵𝐴1𝐴2

)︃
.

(9.1)

Assuming each particle have two DoFs, i.e., 𝑛=2, the generalized singlet fraction

for the state in Eq. (2.46) is

𝐹 (2)
𝑔 =max

⎧⎨⎩max
𝑖

⎧⎨⎩max
𝜓𝑎𝑖𝑏𝑗

⎧⎨⎩
2∑︁
𝑗=1

⟨𝜓𝑎𝑖𝑏𝑗
|𝜌𝑎𝑖𝑏𝑗

|𝜓𝑎𝑖𝑏𝑗
⟩

⎫⎬⎭
⎫⎬⎭ ,max

𝑗

{︃
max
𝜓𝑎𝑖𝑏𝑗

{︃ 2∑︁
𝑖=1

⟨𝜓𝑎𝑖𝑏𝑗
|𝜌𝑎𝑖𝑏𝑗

|𝜓𝑎𝑖𝑏𝑗
⟩
}︃}︃⎫⎬⎭

= 1
2 +cos2 𝜃

2
(9.2)
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Figure 9-1: The variation of generalized SF 𝐹 (𝑛)
𝑔 for the quantum pseudo-telepathy

test using ancilla as particle and using ancilla as degrees of freedom with varying 𝜃
in degrees.

where 𝜌𝑎𝑖𝑏𝑗
:=Tr𝑎�̄�𝑏�̄�

(𝜌(2)
𝐴𝐵) and 𝜌

(2)
𝐴𝐵 =Tr𝑋 (|𝜓⟩𝐵𝐴𝑋 ⟨𝜓|𝐵𝐴𝑋).

Similarly if we calculate the generalized singled fraction for the state in Eq. (9.1),

we get 1
2 +cos2 𝜃

2 +2cos 𝜃2 sin 𝜃
2 . The values of generalized singlet fraction for the states

in Eq. (2.46) and Eq. (9.1) are shown in Fig. 9-1

Thus in many ancilla assisted quantum processing protocols like quantum process

tomography [285], entanglement stabilization [286], quantum secret sharing [287],

quantum error correction [288], quantum measurement [289], weak value amplifica-

tion [290], quantum channel discrimination [291], coherent-state superposition gener-

ation [292], etc., where the resource can be reduced by using additional DoF as ancilla

instead of a particle.
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9.2 Attacks on the security of cryptographic pro-

tocols.

There are scenarios where particles are indistinguishable like quantum dots [168, 170],

ultracold atomic gases [215], Bose-Einstein condensates [213, 214], our method will be

extremely helpful to calculate the entanglement and monogamy in those situations.

Indistinguishability can be created manually by particle exchange [216, 217], using

which we present a generic one-step indistinguishablity module as a plug-in to many

protocols. This may have an effect in modifying their output.

Suppose 𝐴 is sending a pair of particles to 𝐵 and 𝐶 whose joint state is |𝜓⟩𝐵𝐶 .

After 𝐵 and 𝐶 perform some local operations 𝑈𝐵 and 𝑈𝐶 respectively, the joint state

becomes |𝜑⟩𝐵𝐶 as shown in Fig. 9-2 (a).

If the particles sent by 𝐴 become indistinguishable so that the particle intended

solely for 𝐵 now goes to 𝐵 and 𝐶 with probability 𝛼 and (1−𝛼) respectively. Similarly,

the particle intended solely for 𝐶 now goes to 𝐶 and 𝐵 with probability 𝛽 and (1−𝛽)

respectively. So the output becomes |𝜑′⟩𝐵𝐶 as shown in Fig. 9-2 (b). If 𝑈𝐵=𝑈𝐶 and

the state |𝜓⟩𝐵𝐶 is symmetric with respect to 𝐵 and 𝐶, then |𝜑′⟩𝐵𝐶 = |𝜑⟩𝐵𝐶 . However,

if 𝑈𝐵 ̸=𝑈𝐶 , or the state |𝜓⟩𝐵𝐶 is asymmetric with respect to 𝐵 and 𝐶, or both, then

due to indistinguishability the output can be changed, i.e., |𝜑′⟩𝐵𝐶 ̸= |𝜑⟩𝐵𝐶 .

For example, the output of Hardy’s test as shown in Section 2.2.2 which is used

in quantum byzantine agreement [40], random number generation [38], quantum key

distribution [293] etc., can be different due to indistinguishability as follows. Assume

Alice and Bob share an entangled state as [230]

|𝜓⟩𝐴𝐵 = cos𝜃√
2

(|00⟩)+ |10⟩)+ sin𝜃√
2

(|01⟩)+𝑒𝑖2𝜑|11⟩), (9.3)

where 0<𝜃,𝜑<90∘. The Hardy’s probability for this state for the measurements stated

in [230] is

𝑞=
⃒⃒⃒⃒1
2 cos𝜃 cos𝜒

(︁
1−𝑒−2𝑖𝜑

)︁⃒⃒⃒⃒2
(9.4)
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Figure 9-2: A general protocol with 𝐴 as the sender and 𝐵 and 𝐶 are the receivers.
|𝜓⟩𝐵𝐶 is the initial state at 𝐴 that has to be shared between 𝐵 and 𝐶. Here 𝑈𝐵 and
𝑈𝐶 are the unitary operations performed by 𝐵 and 𝐶 on their respective particles.
(a) The final state after the unitary operations performed by 𝐵 and 𝐶 is |𝜑⟩𝐵𝐶 . (b)
If an indistinguishability module is present on the path from 𝐴 to 𝐵 and 𝐶, then the
final state is |𝜑′⟩𝐵𝐶 .

where

cot𝜒=tan 𝜃 cos𝜑 (9.5)

The maximum value of Hardy’s probability, i.e., 𝑞max ≈0.09017 occurs when 𝜃=𝜑=

51.827∘. If the particle intended for Alice goes to Bob and vice-versa, the modified
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Figure 9-3: Effects of indistinguishability on Hardy’s probability with 𝜃=𝜑 in de-
grees. (a) The variation of Hardy’s probability 𝑞 and modified Hardy’s probability
due to indistinguishability 𝑞′ where 𝛼=𝛽= 1

2 . (b) The variation of modified Hardy’s
probability 𝑞𝛼 with 𝛼 where 𝛼=𝛽 and 𝜃=𝜑=51.827∘.
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probability becomes

𝑞′ =| 1
2 cos𝜒

(︁
cos𝜃−sin𝜃𝑒2𝑖𝜑

)︁
−sin𝜒𝑒−𝑖𝜑 (cos𝜃−sin𝜃) |2 . (9.6)

If 𝛼=𝛽 (as in Fig. 9-2), then the final Hardy’s probability due to indistinguisha-

bility is

𝑞𝛼=𝛼2𝑞+(1−𝛼)2𝑞′ (9.7)

In Fig. 9-3 (a), we compare the values 𝑞 and 𝑞′. The horizontal axis represents

the value of 𝜃 where 0≤𝜃(=𝜑)≤90∘. We see that the Hardy’s probability 𝑞′ increases

significantly in the presence of the indistinguishabily module. In Fig. 9-3 (b), we plot

the variation of 𝑞max for 𝜃=𝜑=51.827∘ with the value of 𝛼 vs. 𝑞𝛼 which shows that

the values of 𝑞𝛼 decreases with increasing 𝛼. Similar result holds if Hardy’s paradox

is performed between more than to parties.

9.3 Entanglement Swapping using only two indis-

tinguishable particles

The seminal work [44] on Entanglement Swapping (ES) required four distinguishable

particles as a resource along with Bell state measurement (BSM) and local operations

and classical communications (LOCC) as tools. Better versions with only three dis-

tinguishable particles were proposed in two subsequent works, one [53] with BSM and

another [54] without BSM. Recently, Castellini et al. [176] have shown that ES for

the indistinguishable case is also possible with four particles (with BSM for bosons

and without BSM for fermions). This has experimentally realized in [223]. Thus, in

terms of resource requirement, the existing best distinguishable versions outperform

the indistinguishable one. We turn around this view, by proposing an ES protocol

without BSM using only two indistinguishable particles.

Here we present an ES protocol using two indistinguishable particles, say, 𝐴 and

𝐵, without BSM by suitably modifying the circuit of Li et al. [1] as described in
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Figure 9-4: Entanglement swapping with only two indistinguishable particles without
Bell state measurements.

Section 2.7.2. The basic idea is to use any method that destroys the identity of

the individual particles, like particle exchange [216, 217] or measurement induced

entanglement [294]. Such methods added with suitable unitary operations transfer the

intraparticle hybrid entanglement in 𝐴 (or 𝐵) to inter-particle hybrid-entanglement

between 𝐴 and 𝐵.

Next, we present an optical realization using particle exchange method. Suppose

Alice and Bob have two horizontally polarized photons 𝐴 and 𝐵, entering into the two

modes 𝑅 and 𝐿 of a HBS [1] and a BS, respectively. In second quantization notation,

the initial joint state is given by |Ψ𝑖⟩=𝑏†
𝐻,𝑅𝑏

†
𝐻,𝐿 |0⟩, where |𝐻⟩ and |𝑉 ⟩ denote hori-
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zontal and vertical polarization, respectively, and 𝑏𝐻,𝑅 and 𝑏𝐻,𝐿 are the corresponding

bosonic creation operators satisfying the canonical commutation relations:

[︁
𝑏𝑖,p𝑖

, 𝑏𝑗,p𝑗

]︁
=0,

[︁
𝑏𝑖,p𝑖

, 𝑏†
𝑗,p𝑗

]︁
=𝛿(p𝑖−p𝑗)𝛿𝑖𝑗. (9.8)

After passing through HBS1, Alice’s photon is converted into intraparticle hybrid-

entangled state 1√
2

(︁
𝑏†
𝐻,𝑅+ 𝑖𝑏†

𝑉,𝐷

)︁
. The particle exchange operation is performed be-

tween Alice and Bob, such that the photons coming from 𝐷 (𝑈) and 𝐿 (𝑅) mode

go into Alice’s (Bob’s) side. Next, Alice applies path dependent (or polarization de-

pendent) phase shifts 𝜙𝐷 and 𝜙𝐿 on the photons coming from her and Bob’s parts,

respectively, which go into HBS2. Similarly, Bob applies path-dependent phase shifts

𝜙𝑈 and 𝜙𝑅 on the photons coming from his and Alice’s parts, respectively, which go

into BS2 as shown in Fig. 9-4. The final state is given by

|Ψ𝑓⟩= 1
4
[︁
𝑒𝑖𝜙𝑅

(︁
𝑏†
𝐻,𝑅+ 𝑖𝑏†

𝐻,𝑈

)︁
+ 𝑖𝑒𝑖𝜙𝐷

(︁
𝑏†
𝑉,𝐷+ 𝑖𝑏†

𝐻,𝐿

)︁]︁
⊗
[︁
𝑒𝑖𝜙𝐿

(︁
𝑏†
𝐻,𝐿+ 𝑖𝑏†

𝑉,𝐷

)︁
+ 𝑖𝑒𝑖𝜙𝑈

(︁
𝑏†
𝐻,𝑈 + 𝑖𝑏†

𝐻,𝑅

)︁]︁
|0⟩ .

(9.9)

If Alice measures in the polarization DOF and Bob measures in the path DOF, from

Eq. (9.9) the probabilities that both of them detect one particle are given by

B : R B : U

A : H 1
4cos2𝜙 1

4sin2𝜙

A : V 1
4sin2𝜙 1

4cos2𝜙

, (9.10)

where 𝜙=(𝜙𝐷−𝜙𝐿−𝜙𝑅+𝜙𝑈)/2. With suitable values of the phase shifts, one can

get the Bell violation in the CHSH [29] test up to Tsirelson’s bound [246]. It can be

easily verified that after particle exchange, the particle received at Alice’s side (or

Bob’s side) has no hybrid entanglement, because it is transferred between them.

Note that the difference between the circuit of Li et al. [1, Fig. 2] and Fig. 9-4

is that both the HBSs in Bob’s side in the former circuit are replaced by BSs in the

latter. Thus, the intra particle hybrid entanglement of one particle is transferred into
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the inter-particle hybrid-entanglement of two particles.
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Chapter 10

Conclusion

In this chapter, we discuss the summary, open problems, and future work of each of

the previous contributory chapters.

As quantum non-locality is the subset and the strongest form of quantum en-

tanglement, we have performed an experimental verification of Hardy’s paradox of

non-locality for the first time in superconducting circuits in Chapter 3. Our initial

motivation was to check it for two qubits in the ibmqx4 five-qubit chip, by choosing

any two from the five qubits. When Σ4<𝑞≤𝑞𝑚𝑎𝑥, the estimated lower bound 𝑞𝑙𝑏 on

Hardy’s probability is found to be greater than zero, supporting non-locality. But

when 𝑞≤Σ4, we get 𝑞𝑙𝑏≤0, because then the errors become of the same order as 𝑞.

Interestingly, though 𝜖𝑚𝑎𝑥5 decreases with 𝑞, experimental results show that 𝜖𝑚𝑎𝑥5 does

not occur at 𝑞=𝑞𝑚𝑎𝑥, rather we get a shift of 𝜖𝑚𝑎𝑥5 to the right for the (𝑄3,𝑄4) pair of

qubits. We also show that the shift direction is not constant, whether it is to the right

or left depends on the pair of qubits. Moreover, we have shown that the above type

of shift can occur during the practical implementation of any Hardy’s paradox based

quantum protocols like quantum Byzantine agreement and we have also discussed

possible remedies. Based on the results of our experiments, we have proposed two

performance measures of any quantum computer for two qubits. First, the minimum

value of 𝑞 above which non-locality is established. Second, the amount of shift needed

to get the experimental maximum value of 𝜖𝑚𝑎𝑥5 of Hardy’s probability. Further, we

have performed experiments to show how decreasing the number of gates in the cir-
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cuits decreases the errors in the circuit for all possible pairs of qubits. We have also

studied the change of errors in IBM quantum computer over time and concluded that

errors are decreasing over time. From the theoretical analysis of the Hardy’s exper-

imental set-up, we have found that this test fails for all non-maximally entangled

states, where the value of 𝜑=90 and 𝜃 ̸={0,45,90} degrees. The possibility of a new

test for Hardy’s paradox for two qubits, so that it does not fail for any non-maximally

entangled states is an open problem. Also, the verification of Hardy’s test for more

than two qubits will be also an interesting work. Further, the comparison between

different quantum computers using Hardy’s test will be a good research work. We,

plan to execute this survey in near future.

Next, in Chapter 4 we settle several important open questions that arise due to the

recent work on hyper-hybrid entanglement for two indistinguishable bosons by Li et

al. [1]. In particular, we have shown that such entanglement can also exist for two in-

distinguishable fermions. Further, we have argued that, if in their circuit the particles

are made distinguishable, such type of entanglement vanishes. We have also proved

the following two no-go results (A) no hyper-hybrid entangled state for distinguish-

able particles and (B) no unit fidelity quantum teleportation for indistinguishable

particles, as in either case the no-signaling principle is violated. Our results establish

that there exists some quantum correlation or application unique to indistinguishable

particles only and yet some unique to distinguishable particles only, giving a separa-

tion between the two domains. The present results can motivate researchers to find

more quantum correlations and applications that are either unique to distinguishable

or indistinguishable particles or applicable to both. For the latter case, a compara-

tive analysis of the resource requirements and the efficiency or fidelity can also be a

potential future work. We plan to find new quantum applications unique for either

distinguishable aor indistinguishable particles.

Hereafter, we focus to the most important tool to analysis entangled systems,

i.e., the partial trace-out operation in Chapter 5. The normal trace-out rule for dis-

tinguishable particles was not useful for indistinguishable particles. So, Lo Franco et

al. [161, 163] have proposed a trace-out rule that is applicable only when each particles
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has a single degree of freedom. Thus, we have proposed a trace-out rule applicable for

both distinguishable and indistinguishable particles where each particle have single or

multiple degree of freedom. How the new trace-out rule can be applicable to different

quantum applications using multiple DoFs is an open area of research. Also, some

more tools for indistinguishable particles need to be develop in future to complete

the theory of indistinguishability. In future, we will try to develop new applications

of this trace-out rule.

In Chapter 6, we found that the relation between teleportation fidelity and singlet

fraction is only applicable to distinguishable particles having single degree of freedom.

So we established generalized expressions for teleportation fidelity and singlet fraction

and derive their relations, applicable for both distinguishable and indistinguishable

particles with single or multiple degrees of freedom. We further derive an upper bound

for the generalized singlet fraction for distinguishable particles and indistinguishable

particles. Our new relation finds application in characterizing different types of com-

posite states in terms of their distinguishability, separability, presence of maximally

entangled structure and the number of degrees of freedom. Also we have proposed an

an optical circuit to illustrate the non-triviality of our relation. In future, how this

relation will be applicable to different quantum information processing protocols will

be an interesting research work. Also, one can find new relations for distinguishable

particles having single DoF and try to generalized it for both distinguishable and

indistinguishable particles having single or multiple DoFs will also be potential future

works. We will try to find new applications of the generalized teleportation fidelity

and generalized singlet fraction for cryptographic applications.

Monogamy of entanglement, in essence, is a no-go theorem that is a restriction on

the shareability of entanglement. We have established the following counter-intuitive

result in Chapter 7: monogamy of entanglement can be violated maximally for in-

distinguishable particles by any bipartite entanglement measure that is known to be

monogamous for distinguishable particles. Our result lifts this restriction for indis-

tinguishable particles. It also opens up a new area where researchers can investigate

whether the applications of monogamy of entanglement using distinguishable particles

186



are also applicable using indistinguishable ones and their advantages and disadvan-

tages. Also, what happens to the monogamy relation for indistinguishable particles

for more than two-qubits is also an open problem. We try to solve the monogamy

relation for more than three qubits for indistinguishable particles having single or

multiple DoFs.

Recently, a class of results have been published which explicitly demonstrate that

certain properties and applications are exclusive to indistinguishable (or distinguish-

able) particles. In continuation of these separation results, the Chapter 8 contributes

one property of indistinguishable particles that are different from distinguishable par-

ticles. The inequality of monogamy of entanglement using squared concurrence for

three or more distinguishable particles as shown in [66] becomes equality for pure in-

distinguishable states, whereas the inequality may hold only for mixed indistinguish-

able states. Note that, this equality is different from the one proposed in [281]. This

result is extremely helpful to calculate the entanglement in the scenarios where par-

ticles are indistinguishable like quantum dots [168, 170], ultracold atomic gases [215],

Bose-Einstein condensates [213, 214], quantum meteorology [282, 283], etc.

Finally, we propose two new applications useful for quantum cryptography and

one for application useful for quantum networks by entangled distinguishable and

indistinguishable particles using the above properties, tools, theorems, relations, and

results in Chapter 9. If two cryptographic systems with different resource requirements

provide the same level of security, the one with less resources becomes the natural

choice. First, we present a generic scheme to reduce the number of particles used in

device-independent quantum private query without affecting the security that can be

used for both distinguishable and indistinguishable particles. In doing so, the success

probability remains the same but the generalized singlet fraction changes. Thus in

many ancilla assisted quantum processing protocols like quantum process tomogra-

phy [285], entanglement stabilization [286], quantum secret sharing [287], quantum

error correction [288], quantum measurement [289], weak value amplification [290],

quantum channel discrimination [291], coherent-state superposition generation [292],

etc., where the resource can be reduced by using additional DoF as ancilla instead of a
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particle. Further, we show that entangled indistinguishable particles may alter certain

important parameters in cryptographic protocols. In particular, we demonstrate how

indistinguishability can change Hardy’s probability which is used in quantum byzan-

tine agreement [40], random number generation [38], quantum key distribution [293]

etc. Similar attacks can be performed on other quantum cryptographic protocols such

as quantum private query [226, 227], quantum secure direct communication [295, 296],

quantum secret sharing [297, 298], quantum state splitting [299, 300] etc. that use

asymmetric entangled states. How these attacks can be neutralized and where our

monogamy result can be utilized can be interesting research works. Finally we show

a novel entanglement swapping protocol without Bell state measurement using only

two indistinguishable particles. Thus, these applications will be very useful in the

security and reducing the resource requirements of many quantum protocols.
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