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Abstract

Quantum secure direct communication (QSDC) is an important branch of quantum cryptog-

raphy, where one can transmit a secret message securely without encrypting it by a prior

key. Quantum dialogue (QD) is a process of two way secure and simultaneous communication

using a single channel and quantum conference (Q.Conf) is a process of securely exchanging

messages between three or more parties, using quantum resources. Deterministic secure quan-

tum communication (DSQC) is another class of quantum secure communication protocol, to

transmit secret message without any shared key, where at-least one classical bit is required to

decrypt the secret message. In the practical scenario, an adversary can apply detector-side-

channel attacks to get some non-negligible amount of information about the secret message.

Measurement-device-independent (MDI) quantum protocols can remove this kind of detector-

side-channel attack, by introducing an untrusted third party (UTP), who performs all the

measurements in the protocol with imperfect measurement devices. For secure communica-

tion, identity authentication is always important as it prevents an eavesdropper to impersonate

a legitimate party. The celebrated Clauser, Horne, Shimony, and Holt (CHSH) game model

helps to perform the security analysis of many two-player quantum protocols.

In this thesis, we perform analysis of several existing QSDC and QD protocols, and also

design some new efficient protocols. We present new approaches of QSDC, QD and DSQC

protocols with user authentication, some of them are MDI protocols. We analyze the security

of a QSDC protocol, an MDI-QSDC protocol, and an MDI-QD protocol. We improve the

previous protocols and propose some modifications of the above protocols. We also present

a Q.Conf protocol by generalizing the previous MDI-QD protocol and using the algorithm of

the Q.Conf protocol, we propose a quantum multi-party computation protocol to calculate

the XOR value of multiple secret numbers. Next, we generalize the CHSH game, and we

demonstrate how to distinguish between dimensions two and three for some special form of

maximally entangled states using the generalized version of the CHSH game.
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Throughout the thesis, we use some notations and we describe those common notations here.

∙ 𝑍 basis = {|0⟩ , |1⟩} basis.

∙ |+⟩ = 1√
2(|0⟩+ |1⟩), |−⟩ = 1√

2(|0⟩ − |1⟩).

∙ 𝑋 basis = {|+⟩ , |−⟩} basis.

∙ |𝜓⟩⊥ = orthogonal to |𝜓⟩.

∙ ⟨𝜓| = conjugate transpose of |𝜓⟩.

∙ The following four unitary operators are called the Pauli operators [6]:

1. 𝑈0 = 𝐼 = |0⟩ ⟨0|+ |1⟩ ⟨1|.

2. 𝑈1 = 𝜎𝑧 = |0⟩ ⟨0| − |1⟩ ⟨1|.

3. 𝑈2 = 𝜎𝑥 = |0⟩ ⟨1|+ |1⟩ ⟨0|.

4. 𝑈3 = 𝑖𝜎𝑦 = |0⟩ ⟨1| − |1⟩ ⟨0|.

∙ 𝑈𝑇 = Transpose of 𝑈 .

∙ 𝑈 † = conjugate transpose of 𝑈 .

∙ 𝐻 = 1√
2(𝜎𝑥 + 𝜎𝑧) is the Hadamard operator.

∙ |Φ+⟩ = 1√
2(|00⟩+ |11⟩) = 1√

2(|++⟩+ |−−⟩).

∙ |Φ−⟩ = 1√
2(|00⟩ − |11⟩) = 1√

2(|+−⟩+ |−+⟩).

∙ |Ψ+⟩ = 1√
2(|01⟩+ |10⟩) = 1√

2(|++⟩ − |−−⟩).

∙ |Ψ−⟩ = 1√
2(|01⟩ − |10⟩) = 1√

2(|+−⟩ − |−+⟩).

∙ The states |Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩ are called Bell states or EPR pairs.

∙ ℬ = {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩} is called Bell basis.
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∙ The eight Greenberger–Horne–Zeilinger (GHZ) states are:
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2 ⟩ = 1√
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2(|010⟩ ± |101⟩), |𝐺±
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±
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±
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∙ {𝑆[𝑖]}𝑚
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∙ 𝑎⊙ 𝑏 = 𝑎 XNOR 𝑏.
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∙ 𝑤𝑡(𝑣) = number of 1’s in a binary vector 𝑣.
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∙ Pr(𝐴|𝐵) = Probability of occurrence of an event 𝐴 given that the event 𝐵 has already
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Chapter 1

Introduction

In this chapter, we will give a brief overview of the basics of quantum mechanics, quantum

algorithms and quantum information theory, and then discuss one of its subfields that this

thesis will focus on, which is quantum cryptography. Except where otherwise referenced,

the following is based on information that can be found in [6, 7, 8, 9, 10], which provide a

comprehensive summary for the less-experienced reader.

1.1 Quantum mechanics

Quantum mechanics is a fundamental theory in physics, which allows the calculation of prop-

erties and behavior of physical systems. We now move to cover the principles of quantum

mechanics that underlie the work of this thesis and discuss the effect of quantum computers

on modern cryptography. We also provide a summary of the most popular approaches for

encoding information on quantum states of light.

1.1.1 Quantum states

A quantum state (specifically, a “pure state”) is a unit vector of C𝑛, a space of 𝑛-tuples

(𝑧1, 𝑧2, . . . , 𝑧𝑛) where each 𝑧𝑖 ∈ C. Theoretically, the dimension 𝑛 can be infinite (e.g., for

position or momentum state), but we consider only finite dimensional spaces.

A qubit is a two dimensional quantum state |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ , where |0⟩ =

⎛⎜⎝1

0

⎞⎟⎠ ,
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|1⟩ =

⎛⎜⎝0

1

⎞⎟⎠ , and thus |𝜓⟩ =

⎛⎜⎝𝑎
𝑏

⎞⎟⎠ . Since |𝜓⟩ is a unit vector of C2, we must have 𝑎, 𝑏 ∈ C

and |𝑎|2 + |𝑏|2 = 1. The set {|0⟩ , |1⟩} is called the computational basis or 𝑍-basis, and the set

{|+⟩ , |−⟩} is called the diagonal basis or 𝑋-basis, where |+⟩ = 1√
2(|0⟩+|1⟩), |−⟩ = 1√

2(|0⟩−|1⟩).

The conjugate transpose of |𝜓⟩ is ⟨𝜓| = 𝑎* ⟨0|+ 𝑏* ⟨1| = (𝑎* 𝑏*) and the general represen-

tation of |𝜓⟩ is cos 𝜃 |0⟩+ 𝑒𝑖𝛾 sin 𝜃 |1⟩ , where 𝜃, 𝛾 ∈ R.

Let us now consider the two qubits |𝜑⟩ = 𝑎1 |0⟩+ 𝑏1 |1⟩ and |𝜓⟩ = 𝑎2 |0⟩+ 𝑏2 |1⟩. Then the

inner product of |𝜑⟩ and |𝜓⟩ is defined as ⟨𝜑|𝜓⟩ = 𝑎*
1𝑏1 + 𝑎*

2𝑏2. The two states |𝜑⟩ and |𝜓⟩ are

orthogonal (|𝜑⟩ = |𝜓⟩⊥) if ⟨𝜑, 𝜓⟩ = 0. Thus for any state |𝜓⟩ of C2, the set {|𝜓⟩ , |𝜓⟩⊥} forms

an orthonormal basis of C2.

We now talk about multiple qubits state. The two-qubit state |𝜑⟩ |𝜓⟩ or |𝜑𝜓⟩ is the tensor

product of the states |𝜑⟩ and |𝜓⟩, and it is defined as

|𝜑⟩ ⊗ |𝜓⟩ := 𝑎1𝑎2 |00⟩+ 𝑎1𝑏2 |01⟩+ 𝑏1𝑎2 |10⟩+ 𝑏1𝑏2 |11⟩ ,

where |𝑎1𝑎2|2 + |𝑎1𝑏2|2 + |𝑏1𝑎2|2 + |𝑏1𝑏2|2 = 1. Thus the space of all two-qubit states has

dimension 4 and therefore any element of this space can be expressed as a linear combination

of 22 orthonormal vectors of C22 . We can say a two-qubit state 𝑎 |00⟩ + 𝑏 |01⟩ is valid if

|𝑎|2 + |𝑏|2 = 1 holds.

Similarly, an 𝑛-qubit state is the tensor product of 𝑛 single-qubit states, which can be

expressed as a linear combination of 2𝑛 orthonormal vectors of C2𝑛 .

A qutrit is a three dimensional quantum state |𝜓⟩ = 𝑎 |0⟩+𝑏 |1⟩+𝑐 |2⟩, where |0⟩ = (1, 0, 0)𝑇 ,

|1⟩ = (0, 1, 0)𝑇 , |2⟩ = (0, 0, 1)𝑇 are three orthonormal states of C3 and thus |𝜓⟩ = (𝑎, 𝑏, 𝑐)𝑇 .

Since |𝜓⟩ is an unit vector of C3, we must have |𝑎|2 + |𝑏|2 + |𝑐|2 = 1. An 𝑛-qutrit state is the

tensor product of 𝑛 single-qutrit states, which can be expressed as a linear combination of 3𝑛

orthonormal vectors of C3𝑛 .

A qudit is a 𝑑-dimensional quantum state described by a vector of C𝑑. The space is spanned

by a set of orthonormal basis vectors {|0⟩ , |1⟩ , |2⟩ , . . . , |𝑑− 1⟩} and the state of a qudit has

the general form |𝜓⟩ = 𝛼0 |0⟩+𝛼1 |1⟩+𝛼2 |2⟩+ . . .+𝛼𝑑−1 |𝑑− 1⟩ = (𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝑑−1)𝑇 ∈ C𝑑

with |𝛼0|2 + |𝛼1|2 + |𝛼2|2 + . . . + |𝛼𝑑−1|2 = 1 [11]. Due to the multi-level nature of a qudit,
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it provides a larger state space to store and process information. It can able to do multiple

control operations simultaneously, which play an important role in the reduction of the circuit

complexity, the simplification of the experimental setup and the enhancement of the algorithm

efficiency [12, 13, 14, 15]. The advantage of the qudit also applies to adiabatic quantum

computing devices [16, 17]; topological quantum systems [18, 19, 20] and more. The qudit-

based quantum computing system can be implemented on various physical platforms such as

photonic systems [21, 13]; continuous spin systems [22, 23] etc.

1.1.2 Unitary operators

A linear operator 𝑈 is called unitary if 𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 holds, where 𝑈 † denotes the conjugate

transpose of 𝑈 and 𝐼 is the identity operator. Let us discuss some important unitary operators.

• Pauli operators:

Consider the following four unitary operators

𝐼 =

⎛⎜⎝1 0

0 1

⎞⎟⎠ = |0⟩ ⟨0|+ |1⟩ ⟨1| , 𝜎𝑧 =

⎛⎜⎝1 0

0 −1

⎞⎟⎠ = |0⟩ ⟨0| − |1⟩ ⟨1| ,

𝜎𝑥 =

⎛⎜⎝0 1

1 0

⎞⎟⎠ = |0⟩ ⟨1|+ |1⟩ ⟨0| , 𝜎𝑦 =

⎛⎜⎝0 −𝑖

𝑖 0

⎞⎟⎠ = 𝑖(|1⟩ ⟨0| − |0⟩ ⟨1|).

These four operators form a basis of the space of all 2× 2 unitary matrices and they are

called the Pauli operators.

• Hadamard operator:

𝐻 = 1√
2

(𝜎𝑧 + 𝜎𝑥) = 1√
2

⎛⎜⎝1 1

1 −1

⎞⎟⎠ = 1√
2

(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|).

This unitary operator is called the Hadamard operator, and it is used to create super-

position of all possible states.

These are all one-qubit unitary operators, act on single-qubit states.
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• 𝐶𝑁𝑂𝑇 operator:

It is an example of two-qubit unitary operator, where the input qubits are control qubit

and target qubit and

𝐶𝑁𝑂𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= |00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨11|+ |11⟩ ⟨10| .

This 𝐶𝑁𝑂𝑇 operator is used to create entanglement, which we discuss later.

1.1.3 Measurement

Let |𝜓⟩ = 𝑎 |0⟩+𝑏 |1⟩ be a quantum state, then measuring |𝜓⟩ in 𝑍-basis gives the measurement

result |0⟩ with probability |𝑎|2 and |1⟩ with probability |𝑏|2. More generally, if {|𝛼⟩ , |𝛽⟩} is an

orthonormal basis of C2, and |𝜓⟩ = 𝑎1 |𝛼⟩+ 𝑏1 |𝛽⟩, then measuring |𝜓⟩ in {|𝛼⟩ , |𝛽⟩} basis gives

the measurement result |𝛼⟩ with probability |𝑎1|2 and |𝛽⟩ with probability |𝑏1|2. Thus, if we

measure |𝜓⟩ in {|𝜓⟩ , |𝜓⟩⊥} basis, then we get the result |𝜓⟩ with probability 1.

Born rule [24]: Let 𝐵 = {|𝑏1⟩ , |𝑏2⟩ , . . . , |𝑏2𝑛⟩} be a orthonormal basis of C𝑛, and |𝜓⟩ be an

𝑛-qubit state. Then measuring the state |𝜓⟩ in the orthonormal basis 𝐵 gives the measurement

result |𝑏𝑖⟩ with probability | ⟨𝑏𝑖|𝜓⟩ |2, where 1 ≤ 𝑖 ≤ 2𝑛.

Let us consider the two-qubit state |𝜓⟩ = 𝑎00 |00⟩ + 𝑎01 |01⟩ + 𝑎10 |10⟩ + 𝑎11 |11⟩. If we

measure |𝜓⟩ in computational basis 𝑍 ⊗ 𝑍, then we get

Pr(|00⟩) = |𝑎00|2, Pr(|01⟩) = |𝑎01|2, Pr(|10⟩) = |𝑎10|2 and Pr(|11⟩) = |𝑎11|2.

Suppose we measure only the first qubit in 𝑍-basis. We can write |𝜓⟩ = |0⟩ (𝑎00 |0⟩+𝑎01 |1⟩) +

|1⟩ (𝑎10 |0⟩+𝑎11 |1⟩). Then we have the outcome |0⟩ with probability |𝑎00|2 +|𝑎01|2 and the state

becomes |0⟩ ⊗ 𝑎00|0⟩+𝑎01|1⟩√
|𝑎00|2+|𝑎01|2

. Similarly we get the outcome |1⟩ with probability |𝑎10|2 + |𝑎11|2

and the state becomes |1⟩ ⊗ 𝑎10|0⟩+𝑎11|1⟩√
|𝑎10|2+|𝑎11|2

. This is called the partial measurement rule.

28



General form of measurement and POVM: Let {𝑀𝑚} be a collection of measurement

operators, such that ∑︀
𝑚 𝑀

†
𝑚𝑀𝑚 = 𝐼, and |𝜓⟩ be the state of the quantum system being

measured. Then the probability of getting outcome 𝑚 is given by

𝑝(𝑚) = ⟨𝜓|𝑀 †
𝑚𝑀𝑚 |𝜓⟩ ,

and the state becomes
𝑀𝑚 |𝜓⟩√︁

⟨𝜓|𝑀 †
𝑚𝑀𝑚 |𝜓⟩

.

Then measuring the state |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ in 𝑍-basis means, there are two measurement

operators 𝑀0 = |0⟩ ⟨0|, 𝑀1 = |1⟩ ⟨1|, and 𝑝(0) = ⟨𝜓|𝑀 †
0𝑀0 |𝜓⟩ = ⟨𝜓|𝑀0 |𝜓⟩ = |𝑎|2, 𝑝(1) =

⟨𝜓|𝑀 †
1𝑀1 |𝜓⟩ = ⟨𝜓|𝑀1 |𝜓⟩ = |𝑏|2.

Denoting 𝐸𝑚 = 𝑀 †
𝑚𝑀𝑚, we see that each 𝐸𝑚 is a positive operator with ∑︀

𝑚 𝐸𝑚 = 𝐼 and

𝑝(𝑚) = ⟨𝜓|𝐸𝑚 |𝜓⟩. The set of operators {𝐸𝑚} is called Positive Operator-Valued Measure

(POVM).

1.1.4 Entanglement

Consider the two-qubit state |𝜓⟩ = 𝑎 |00⟩ + 𝑏 |11⟩, where |𝑎|2 + |𝑏|2 = 1. Then what is the

representation of each individual state? Let us assume it can be written in the form |𝛼⟩ ⊗ |𝛽⟩

in 𝑍-basis. So |𝛼⟩ , |𝛽⟩ can be written as |𝛼⟩ = 𝑚 |0⟩+ 𝑛 |1⟩ and |𝛽⟩ = 𝑝 |0⟩+ 𝑞 |1⟩. Therefore

|𝛼⟩ ⊗ |𝛽⟩ = 𝑚𝑝 |0⟩ |0⟩+𝑚𝑞 |0⟩ |1⟩+ 𝑛𝑝 |1⟩ |0⟩+ 𝑛𝑞 |1⟩ |1⟩. If 𝑎, 𝑏 ̸= 0, then it is not possible to

write in this form. That is, this state has the property that, there exist no single qubit states

|𝛼⟩ and |𝛽⟩ such that |𝜓⟩ = |𝛼⟩⊗ |𝛽⟩. This property is called entanglement property quantum

states. A state of a composite system having the property, that it can not be factored into a

tensor product of it’s component systems, is called entangled state.

In quantum entanglement, two or more quantum particles (maybe space-like separated)

share their states in such a way that the state of each of the particles cannot be fully described

without considering the other(s). If we change the quantum state of one particle through local

unitary operations, the state of the rest of the particles changes automatically to maintain the

entanglement.
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Four important two-qubit entangled states are

|Φ±⟩ = 1√
2

(|00⟩ ± |11⟩), |Ψ±⟩ = 1√
2

(|01⟩ ± |10⟩).

These states |Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩ are called Bell states or EPR pairs and the set {|Φ+⟩ , |Φ−⟩ ,

|Ψ+⟩ , |Ψ−⟩} is called the Bell basis.

The eight three-qubit entangled states (Greenberger–Horne–Zeilinger or GHZ states [25])

are:

|𝐺±
1 ⟩ = 1√

2
(|000⟩ ± |111⟩), |𝐺±

2 ⟩ = 1√
2

(|001⟩ ± |110⟩),

|𝐺±
3 ⟩ = 1√

2
(|010⟩ ± |101⟩), |𝐺±

4 ⟩ = 1√
2

(|011⟩ ± |100⟩),

and the set {𝐺±
1 , 𝐺

±
2 , 𝐺

±
3 , 𝐺

±
4 } is called the GHZ basis.

Many modern quantum protocols are based on entanglement theory, such as, super-dense

coding [26], quantum teleportation [27], entanglement swapping [28] etc.

1.1.5 Density matrix

Consider the two-qubit pure state |Ψ+⟩𝐴𝐵 = 1√
2(|01⟩ + |10⟩). It can be easily shown that

|Ψ+⟩𝐴𝐵 is an entangled state and thus can not be expressible as a tensor product of two single-

qubit states. Then how to calculate the state of each subsystem 𝐴 and 𝐵? To answer this

question, we now introduce the concept of the density matrix.

Let |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ be a quantum state, then another way of representing this state is

𝜌 = |𝜓⟩ ⟨𝜓|. This is called density matrix representation. Then we have

𝜌 =

⎛⎜⎝𝑎
𝑏

⎞⎟⎠ (𝑎* 𝑏*) =

⎛⎜⎝𝑎𝑎* 𝑎𝑏*

𝑎*𝑏 𝑏𝑏*

⎞⎟⎠ =

⎛⎜⎝|𝑎|2 𝑎𝑏*

𝑎*𝑏 |𝑏|2

⎞⎟⎠ .

Let |𝜓⟩ be a unit vector of C𝑛, then it is called a pure state and the density matrix (or

density operator) |𝜓⟩ ⟨𝜓| describes that pure state.

Now we consider a mixture of pure states |𝜓𝑖⟩, where 𝑖 is an index and 𝑝𝑖 is the probability

of the state |𝜓𝑖⟩ with ∑︀
𝑖 𝑝𝑖 = 1. Then the density matrix for the system is 𝜌 = ∑︀

𝑖 𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖|.
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It represents the perfect description of the state of a quantum system, and we call 𝜌 as a mixed

state.

Suppose there are two mixed states 𝜌1 = 1
2(|0⟩ ⟨0|+ |1⟩ ⟨1|) and 𝜌2 = 1

2(|+⟩ ⟨+|+ |−⟩ ⟨−|).

Then

𝜌1 =

⎛⎜⎝1
2 0

0 1
2

⎞⎟⎠ = 𝐼

2 , 𝜌2 =

⎛⎜⎝1
2

1
2

1
2

1
2

⎞⎟⎠ +

⎛⎜⎝ 1
2 −1

2

−1
2

1
2

⎞⎟⎠ =

⎛⎜⎝1
2 0

0 1
2

⎞⎟⎠ = 𝐼

2 .

That is, the mixed states 𝜌1 and 𝜌2 are the same. The density matrix 𝐼
2 is called the maximally

mixed state.

We now calculate the density matrices of the subsystems 𝐴 and 𝐵 of the two-qubit state

|Ψ+⟩𝐴𝐵. The density matrix of the joint state is

𝜌𝐴𝐵 = |Ψ+⟩ ⟨Ψ+|𝐴𝐵 = 1
2(|01⟩ ⟨01|+ |01⟩ ⟨10|+ |10⟩ ⟨01|+ |10⟩ ⟨10|).

By tracing out the subsystem 𝐵 (take partial trace over 𝐵), we get the reduced density

matrix 𝜌𝐴 of the subsystem 𝐴. Then

𝜌𝐴 = 𝑡𝑟𝐵(|Ψ+⟩ ⟨Ψ+|) = 1
2(|0⟩ ⟨0| ⟨1|1⟩+ |0⟩ ⟨1| ⟨1|0⟩+ |1⟩ ⟨0| ⟨0|1⟩+ |1⟩ ⟨1| ⟨0|0⟩)

= 1
2(|0⟩ ⟨0|+ |1⟩ ⟨1|) = 𝐼

2 .

Similarly, we can calculate 𝜌𝐵 = 𝐼
2 by tracing out subsystem 𝐴 from 𝜌𝐴𝐵.

1.1.6 Maximally entangled state

Let us consider a Hilbert space 𝐻 (for now, 𝐻 = C2). There are infinitely many maximally

entangled states in 𝐻×𝐻 and all are connected by a unitary. A pure bipartite state in C2×C2

is maximally entangled if the reduced density matrix is 𝐼
2 for both subsystems. Bell states are

examples of two-qubit maximally entangled states.

Let |𝜑⟩ = cos𝛼 |0⟩+ sin𝛼 |1⟩ and |𝜃⟩ = cos 𝛽 |0⟩+ sin 𝛽 |1⟩. Then

|Ψ⟩𝐴𝐵 = 1√
2

[|𝜑𝜃⟩+|𝜑⊥𝜃⊥⟩] = 1√
2

[|0⟩ |𝜙⟩+|1⟩ |𝜙⊥⟩], where |𝜙⟩ = cos(𝛼− 𝛽) |0⟩−sin(𝛼− 𝛽) |1⟩

is maximally entangled as 𝜌𝐴 = 𝜌𝐵 = 𝐼

2 where 𝜌𝐴 and 𝜌𝐵 are reduced density matrix of sub-

system A and B respectively.
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Again let |𝜒⟩𝐴𝐵 = 1√
2

[|0⟩ |𝜎⟩+ |1⟩ |𝜚⟩], where |𝜎⟩ = cos 𝛾 |0⟩+ sin 𝛾 |1⟩ and |𝜚⟩ = cos 𝛿 |0⟩+

sin 𝛿 |1⟩. To make 𝜌𝐴 = 𝜌𝐵 = 𝐼

2, we must have |𝜚⟩ = |𝜎⊥⟩.

Thus a general form of maximally entangled state in C2 is 1√
2

[|𝜑𝜃⟩ + |𝜑⊥𝜃⊥⟩] (we are

considering real coefficients only).

A bipartite maximally entangled (pure) state in a d-dimensional Hilbert space has the

Schmidt decomposition ∑︀𝑑
𝑖=1

1√
𝑑
|𝑖⟩ ⊗ |𝑖⟩ is an appropriate basis [29]. And in Hilbert space

C𝑚⊗C𝑛 (where 𝑚 < 𝑛), a maximally entangled (pure) state is the same as that in C𝑚⊗C𝑚.

1.1.7 Bell inequality

In 1935, Einstein, Podolsky and Rosen (EPR) showed that quantum mechanics is not complete

[30]. They also claimed that there may exist some local hidden variable 𝜆 still unknown.

Knowing 𝜆, one can explain entanglement without the spooky action at a distance. In 1964,

Bell proposed a test for the existence of these hidden variables and developed an inequality

[31]. He showed that if the inequality were not satisfied, then a local hidden variable theory

would not be possible. Inspired by Bell’s paper, Clauser, Horne, Shimony and Holt (CHSH)

formed a correlation inequality and Bell’s theorem can be proved by using that inequality [32].

CHSH inequality gives a bound on any local hidden variable model (LHVM). A simple setting

for showing the usefulness of entanglement involves a two-player game known as the CHSH

game.

1.1.8 The CHSH game

In this game there are two players, namely, Alice and Bob , and a referee. Let us assume that

Alice and Bob are far away from each other and not able to communicate during the game.

Before the game begins, they can communicate freely to discuss their strategy. During the

game, they only communicate with the referee in the following way:

• The referee chooses two independent random bits 𝑥 and 𝑦 uniformly (also called “ques-

tions”) and sends 𝑥 to Alice and 𝑦 to Bob, i.e., for all 𝑠 ∈ {0, 1}, 𝑡 ∈ {0, 1}, Pr(𝑥 =

𝑠, 𝑦 = 𝑡) = Pr𝑥𝑦(𝑠, 𝑡) = 1
4.
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• Alice and Bob reply to referee with bits 𝑎 and 𝑏 respectively.

• Referee calculates 𝑥 ∧ 𝑦 and 𝑎⊕ 𝑏.

• Alice and Bob win if 𝑥 ∧ 𝑦 = 𝑎⊕ 𝑏.

Their goal is to achieve the highest winning probability together. Classically, the winning

probability is 0.75. But in the quantum world, this probability is 0.85 if they follow the

following strategy.

Quantum strategy: The strategy to win the game with maximum probability is to share

a maximally entangled state (e.g, Bell state) between Alice and Bob. According to the referee’s

questions, they choose measurement bases to measure their qubits and send their answers to

the referee. Details are given in the Algorithm 1.

Algorithm 1: Quantum strategy for CHSH game

1. Before the game starts, Alice and Bob share |Ψ𝐴𝐵⟩ = 1√
2

(|0⟩𝐴 ⊗ |0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵)

2. Alice takes the first qubit and Bob takes the second qubit

3. Alice chooses:

• Standard basis {|0⟩ , |1⟩} if 𝑥 = 0
• Hadamard basis {|+⟩ , |−⟩} if 𝑥 = 1.

4. Bob chooses:
Basis {|𝜈0(𝜃𝑦)⟩ , |𝜈1(𝜃𝑦)⟩} corresponding to 𝑦 = 0, 1, where
|𝜈0(𝜃𝑦)⟩ = cos 𝜃𝑦 |0⟩+ sin 𝜃𝑦 |1⟩ , |𝜈1(𝜃𝑦)⟩ = sin 𝜃𝑦 |0⟩ − cos 𝜃𝑦 |1⟩, and 𝜃0 = 𝜋

8 , 𝜃1 = −𝜋8 .

5. Alice sends:

• 𝑎 = 0 if |0⟩ or |0𝑥⟩
• 𝑎 = 1 otherwise

6. Bob sends:

• 𝑏 = 0 if Bob gets |𝜈0(𝜃0)⟩ or |𝜈0(𝜃1)⟩
• 𝑏 = 1 otherwise

Winning probability: Let 𝑤𝑖𝑛 be the event that Alice and Bob win, i.e., 𝑥 ∧ 𝑦 = 𝑎⊕ 𝑏.

Now the winning probability of the CHSH game can be written as:
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Pr(𝑤𝑖𝑛) =
∑︁
𝑠,𝑡

Pr𝑥𝑦(𝑠, 𝑡) Pr (𝑤𝑖𝑛|𝑥 = 𝑠, 𝑦 = 𝑡) (1.1)

Which again implies that for 𝑢, 𝑣, 𝑠, 𝑡 ∈ {0, 1},

Pr(𝑤𝑖𝑛) =
∑︁

𝑠,𝑡,𝑢,𝑣

Pr𝑥𝑦(𝑠, 𝑡)(𝑠 ∧ 𝑡 = 𝑢⊕ 𝑣)Pr𝑎𝑏|𝑥𝑦(𝑎 = 𝑢, 𝑏 = 𝑣|𝑥 = 𝑠, 𝑦 = 𝑡)

If the referee sends questions 𝑥 = 0, 𝑦 = 0, Alice and Bob win if they answer identically

𝑎 = 0, 𝑏 = 0 or 𝑎 = 1, 𝑏 = 1.

Then from Algorithm 1, the corresponding probability of winning (given 𝑥 = 0, 𝑦 = 0) is:

Pr(𝑤𝑖𝑛|𝑥 = 0, 𝑦 = 0) = | ⟨0| ⊗ ⟨𝜈0(𝜃0)|Ψ𝐴𝐵⟩|2 + | ⟨1| ⊗ ⟨𝜈1(𝜃0)|Ψ𝐴𝐵⟩|2 = cos2 𝜃0

Similarly we have,

Pr(𝑤𝑖𝑛|𝑥 = 0, 𝑦 = 1) = | ⟨0| ⊗ ⟨𝜈0(𝜃1)|Ψ𝐴𝐵⟩|2 + | ⟨1| ⊗ ⟨𝜈1(𝜃1)|Ψ𝐴𝐵⟩|2 = cos2 𝜃1

Pr(𝑤𝑖𝑛|𝑥 = 1, 𝑦 = 0) = | ⟨0𝑥| ⊗ ⟨𝜈0(𝜃0)|Ψ𝐴𝐵⟩|2 + | ⟨1𝑥| ⊗ ⟨𝜈1(𝜃0)|Ψ𝐴𝐵⟩|2 = 1
2(1 + sin 2𝜃0)

Pr(𝑤𝑖𝑛|𝑥 = 1, 𝑦 = 1) = | ⟨0𝑥| ⊗ ⟨𝜈1(𝜃1)|Ψ𝐴𝐵⟩|2 + | ⟨1𝑥| ⊗ ⟨𝜈0(𝜃1)|Ψ𝐴𝐵⟩|2 = 1
2(1− sin 2𝜃1)

Hence from equation 1.1,

𝑃 (𝑤𝑖𝑛) = 1
4(𝑃 (𝑤𝑖𝑛|𝑥 = 0, 𝑦 = 0) + 𝑃 (𝑤𝑖𝑛|𝑥 = 0, 𝑦 = 1) + 𝑃 (𝑤𝑖𝑛|𝑥 = 1, 𝑦 = 0) + 𝑃 (𝑤𝑖𝑛|𝑥 = 1, 𝑦 = 1))

= 1
4[cos2 𝜃0 + cos2 𝜃1 + 1

2(1 + sin 2𝜃0) + 1
2(1− sin 2𝜃1)]

This probability is maximum at (𝜃0 = 𝜋

8 , 𝜃1 = 15𝜋
8 ) and the maximum value is approximately

0.85355. This conclusively proves that the quantum correlation is different from the classical

correlation.

1.1.9 No-cloning theorem

Let us consider the Hilbert space C𝑛 and |𝑏⟩ be an ancillary state of C𝑛. Then there does not

exist any unitary operator 𝒰 such that 𝒰(|𝜓⟩ ⊗ |𝑏⟩) = |𝜓⟩ ⊗ |𝜓⟩ holds, for all arbitrary state

|𝜓⟩ ∈ C𝑛. That is, it is not possible to clone an arbitrary quantum state [33].

Let us assume that there exists a unitary operator 𝒰 which can clone two different states
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|𝜑⟩ and |𝜓⟩. Let |𝑏⟩ be a fixed state. Then we must have

𝒰(|𝜑⟩ |𝑏⟩) = |𝜑⟩ |𝜑⟩ and 𝒰(|𝜓⟩ |𝑏⟩) = |𝜓⟩ |𝜓⟩ .

By taking the scaler product we have,

⟨𝑏| ⟨𝜑| 𝒰 †𝒰 |𝜓⟩ |𝑏⟩ = ⟨𝜑|𝜓⟩ ⟨𝜑|𝜓⟩

⇒ ⟨𝑏|𝑏⟩ ⟨𝜑|𝜓⟩ = ⟨𝜑|𝜓⟩2

⇒ ⟨𝜑|𝜓⟩ = ⟨𝜑|𝜓⟩2 .

This equation holds if |𝜑⟩ = |𝜓⟩ or ⟨𝜑| |𝜓⟩ = 0. That is, two different states can be cloned

only if they are orthogonal (Note that, the 𝐶𝑁𝑂𝑇 operator can clone the states |0⟩ and |1⟩).

This also implies that two non-orthogonal states are not distinguishable. This indistinguisha-

bility property of non-orthogonal quantum states plays a key role in quantum algorithms and

quantum cryptography.

1.1.10 Superdense coding

Suppose Alice wishes to send Bob two classical bits of information to Bob. Superdense coding

can achieve this task by sending only one qubit over a quantum channel. To initiate this task,

Alice and Bob must initially share the Bell state |Φ+
𝐴𝐵⟩. Alice has the first qubit and Bob has

the second qubit. Then the process is as follows:

1. Alice applies 𝑈0, 𝑈1, 𝑈2, 𝑈3 on her qubit to encode the classical information 00, 01, 10, 11

respectively.

2. Alice sends her qubit to Bob.

3. Bob measures the two qubit state 𝐴𝐵 in Bell basis and from the measurement result

he gets the two classical bits from Alice. If the resultant Bell states are |Φ+
𝐴𝐵⟩, |Φ−

𝐴𝐵⟩,

|Ψ+
𝐴𝐵⟩ and |Ψ−

𝐴𝐵⟩, then the decoded classical bits are 00, 01, 10 and 11 respectively.
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1.1.11 Quantum teleportation

Suppose Alice has a qubit |𝛼⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ with |𝑎|2 + |𝑏|2 = 1, and she wants to send

this qubit to Bob, who is fer apart from her. To send the |𝛼⟩, it would seem that Alice

would either have to send the physical qubit itself, or she would have to communicate the

two complex amplitudes with infinite precision. Quantum teleportation is a technique for

moving quantum states around, even in the absence of a quantum communications channel

linking the sender of the quantum state to the recipient. To date, the expected means of

reliably transmitting a qubit is via quantum teleportation, which requires one Bell pair and

two classical bit transmissions. To initiate this task, Alice and Bob must initially share the

Bell state |Φ+
𝐴𝐵⟩. Alice has the first qubit and Bob has the second qubit. Then the process is

as follows:

1. The 3-qubit state possessed jointly by Alice and Bob is initially |𝛼⟩ |Φ+
𝐴𝐵⟩. It can be

written as

|𝛼⟩ |Φ+
𝐴𝐵⟩ = 1

2 |Φ
+⟩ |𝛼⟩+ 1

2 |Φ
−⟩𝑈1(|𝛼⟩) + 1

2 |Ψ
+⟩𝑈2(|𝛼⟩) + 1

2 |Ψ
−⟩𝑈3(|𝛼⟩).

2. Alice measures the first two qubits in Bell basis.

3. Based on the measurement result Alice sends two classical bits to Bob. If the resultant

states are |Φ+⟩ , |Φ−⟩ , |Ψ+⟩ and |Ψ−⟩ then she sends 00, 01, 10 and 11 respectively.

4. Bob applies unitary operator 𝑈0, 𝑈1, 𝑈2 and 𝑈3 on his qubit corresponding to the classical

bits 00, 01, 10 and 11 respectively. Since 𝑈2
𝑖 = 𝐼 for 0 ≤ 𝑖 ≤ 3, he gets back the state |𝛼⟩.

1.2 Quantum algorithms

In this section, we discuss some quantum algorithms, which can establish that quantum com-

puters offer an advantage over classical computers.
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1.2.1 Deutsch algorithm

Let 𝑓 : {0, 1} → {0, 1} be an unknown 1-bit function. Suppose we have a black box, which can

compute the value of 𝑓 . Now the problem is to find the value of 𝑓(0)⊕ 𝑓(1), i.e., to know that

𝑓 is balanced or constant. Classically it takes 2 queries to solve this problem. But Deutsch

algorithm [34] can determine the value by making a single query to the quantum oracle for 𝑓 .

1.2.2 Deutsch–Jozsa algorithm

It is a generalization of the Deutsch algorithm. Consider the unknown function 𝑓 : {0, 1}𝑛 →

{0, 1} with a promise that 𝑓 is either balanced or constant, where 𝑓 is balanced means 𝑓(𝑥) = 0

for half of the input strings 𝑥, and 𝑓(𝑥) = 1 for the other half of the inputs. The problem is

to determine whether 𝑓 is constant or balanced. Classically it takes 2𝑛−1 + 1 queries to solve

this problem, whereas Deutsch–Jozsa algorithm [35] makes only one query to determine this,

by using the advantage of quantum superposition.

1.2.3 Simon’s algorithm

Consider the unknown function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 with a promise that there exists an

element 𝑎 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 𝑓(𝑥 ⊕ 𝑎) holds for all 𝑥 ∈ {0, 1}𝑛. The problem is to

find the value of 𝑎 by making queries to 𝑓 . Classically, it is an exponentially hard problem. In

1994, Simon [36] exhibited a quantum algorithm that can solve this problem in linear time.

1.2.4 Grover’s algorithm

Given an unknown function 𝑓 : {0, 1}𝑛 → {0, 1}, the search problem is to find an input

𝑥 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 1. Grover’s quantum search algorithm [37] provides a polynomial

speed-up over the best-known classical algorithms.

1.2.5 Shor’s algorithm

In the classical domain, the factorization problem is assumed to be a hard problem, as any

classical computer takes exponential time to find the prime factors of a given integer. In 1994,
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Peter Shor [38] formulated a quantum algorithm that can calculate the prime factors of a large

number in only polynomial time. That is, Shor’s algorithm is exponentially faster than any

classical algorithm for factorization. Shor’s factoring algorithm uses a quantum computer to

determine the period 𝑟 of the function 𝑓(𝑥) = 𝑎𝑥 mod 𝑁 (i.e., 𝑟 is the smallest positive integer

such that 𝑓(𝑥+𝑟) = 𝑓(𝑥)), where 𝑁 is a 𝑙 digit integer whose factors we want to calculate and

𝑎 is a small random integer co-prime to 𝑁 . Now from the knowledge of 𝑟, 𝑁 can be factorized

with high probability by applying number theoretic techniques.

1.3 Quantum information theory

Information theory studies the transmission, processing, extraction, and utilization of informa-

tion. In 1948, Shannon [39] first proposed the basic concept of the communication of classical

information over a noisy channel. The fundamental results of Shannon are “the noiseless chan-

nel coding theorem” and “the noisy channel coding theorem”. Quantum information theory

is a natural generalization of the classical information theory, where the classical or quantum

information is transmitted using quantum states as the medium. It includes all the static and

dynamic elements of classical information theory.

Any communication system consists of an information source, an encoder, a channel (clas-

sical or quantum) and a decoder. A communication channel is a mapping from an input

set {𝑥𝑖} to an output set {𝑦𝑖}. More precisely, a quantum channel is a completely positive,

trace-preserving, convex linear map on the set of states.

1.3.1 Shannon entropy

It is the key concept of classical information theory. The Shannon entropy of a random variable

𝑋 measures the amount of uncertainty about 𝑋 before knowing its value. Let 𝑋 can take

𝑛 distinct values and 𝑝1, 𝑝2, . . . , 𝑝𝑛 be the probability distribution of 𝑋, then the Shannon

entropy of 𝑋 is defined as

𝐻(𝑋) = −
𝑛∑︁

𝑥=1
𝑝𝑥 log 𝑝𝑥.
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If 𝑛 = 2, i.e., 𝑋 has two outcomes 0 and 1 with probability 𝑝 and 1− 𝑝, then

𝐻(𝑋) = ℎ(𝑝) = −𝑝 log 𝑝− (1− 𝑝) log(1− 𝑝)

is called the binary entropy function.

For two random variables 𝑋 and 𝑌 , with probability distribution 𝑝𝑥 and 𝑝𝑦 respectively,

and the joint distribution 𝑝𝑥𝑦, we have the joint entropy function 𝐻(𝑋, 𝑌 ) as

𝐻(𝑋, 𝑌 ) = −
∑︁
𝑥,𝑦

𝑝𝑥𝑦 log 𝑝𝑥𝑦,

and the conditional entropy 𝐻(𝑋|𝑌 ) as

𝐻(𝑋|𝑌 ) = −
∑︁
𝑥,𝑦

𝑝𝑥𝑦 log 𝑝𝑥𝑦

𝑝𝑦

.

The mutual information 𝐼(𝑋;𝑌 ) between two random variables 𝑋 and 𝑌 is defined as

𝐼(𝑋;𝑌 ) = 𝐻(𝑋) +𝐻(𝑌 )−𝐻(𝑋, 𝑌 ).

1.3.2 Von Neumann entropy

This is the quantum analogue of Shannon entropy. Let 𝜌 be the density matrix of a quantum

state, then the Von Neumann entropy is defined as

𝑆(𝜌) = −𝑡𝑟(𝜌 log 𝜌),

where 𝑡𝑟 denotes the trace function. Equivalently, we can say that, if the eigenvalues of 𝜌 are

𝜂1, 𝜂2, . . . , 𝜂𝑘, then

𝑆(𝜌) = −
𝑘∑︁

𝑖=1
𝜂𝑖 log 𝜂𝑖.

Let 𝐴 and 𝐵 are two quantum systems with respective density matrix 𝜌𝐴 and 𝜌𝐵. Also let the

density matrix of the joint state 𝐴𝐵 be 𝜌𝐴𝐵. Then the quantum mutual information between
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the systems 𝐴 and 𝐵 is defined as

𝐼(𝐴;𝐵) = 𝐼(𝜌𝐴, 𝜌𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵)− 𝑆(𝜌𝐴𝐵).

1.3.3 Holevo bound

In 1973, Holevo [40] gave an useful upper bound on the quantum accessible information.

Suppose ℰ = {𝜌1, 𝜌2, . . . , 𝜌𝑛} be an ensemble of density matrices and each 𝜌𝑥 is prepared with

some probability 𝑝𝑥. Then for any POVM {𝐸𝑦} performed on 𝜌 = ∑︀
𝑥 𝑝𝑥𝜌𝑥, the amount of

accessible information about 𝑋 with measurement outcome 𝑌 is bounded above by

𝐼(𝑋;𝑌 ) ≤ 𝑆(𝜌)−
∑︁

𝑥

𝑝𝑥𝑆(𝜌𝑥).

1.4 Quantum cryptography

Nowadays security is one of the basic requirements in our daily life and cryptography is a

method of secure communication of our secret information over a public channel. In classical

cryptography, there are two types, symmetric or private key cryptography and asymmetric or

public-key cryptography. Symmetric key cryptographic algorithms use a shared secret key to

encrypt (or decrypt) the plain-text (or cipher-text), whereas, in asymmetric key cryptography,

a public-private key pair is used for encryption and decryption. Some famous examples of

symmetric key cryptographic algorithms are One Time Pad (OTP) [41], Data Encryption

Standard (DES) [42], Advanced Encryption Standard (AES) [43] etc, and some asymmetric

key cryptographic algorithms are Diffie–Hellman key exchange [44], ElGamal [45], RSA [46],

Elliptic-curve cryptography [47, 48, 49, 50] etc.

In the symmetric key cryptosystem, a major challenge is that the legitimate parties have

to share a secret key before the information exchange process. Usually, one party generates

the secret key and distributes it to the other party in a secure manner. Now the challenge is,

how to distribute a secret key with perfect secrecy or without leaking any information? To

solve this problem classically, asymmetric key cryptographic algorithms can be used. That

is, one party, say, Alice, generates a public-private key pair (𝑘1, 𝑘2) and announces the public
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key 𝑘1, and the other party, say, Bob, generates the secret key 𝑘 for future communication.

Then Bob encrypts 𝑘 with 𝑘1 and sends it to Alice, who decrypts 𝑘 with her private key 𝑘2.

However, the security of the asymmetric key cryptosystem is based on some mathematical

hardness assumptions, such as integer factorization problem, discrete log problem, etc. But

due to Shor’s algorithm [38], which can factorize an integer in polynomial-time, the quantum

computer becomes a threat for asymmetric key cryptography. Thus we can say that the key

distribution problem can not be solvable classically without assuming some mathematically

hard problem.

Quantum key distribution (QKD): Quantum cryptography provides unconditional se-

curity based on the fundamental principles of quantum mechanics, such as the Heisenberg

uncertainty principle [51], quantum no-cloning theory [33]. The first-ever quantum crypto-

graphic protocol is BB84 QKD [52], proposed by Bennett and Brassard in 1984. The BB84

QKD is based on the idea of quantum conjugate coding proposed by Wiesner [53]. QKD allows

two or more remote users to establish a shared secret key between themselves and the secu-

rity only depends on the laws of quantum physics. In the BB84 protocol, two users, namely,

Alice and Bob, use a sequence of single photons randomly prepared in the rectilinear basis

(𝑍-basis), and the diagonal basis (𝑋-basis) to produce a random secret key. In 2000, Shor

and Preskill [54] showed that this protocol is secure and they gave a simple proof of security

of the BB84 protocol. In 1991, Ekert [55] proposed another QKD protocol using entangled

states. Till now, there are many variants of QKD protocols proposed by many researchers, for

example, BBM92 [56], B92 [57] and many others [58, 59, 60, 61, 62, 63, 64, 65].

Quantum secure direct communication (QSDC): In classical cryptography, sending

a message from Alice to Bob always requires a key. In particular, one shared secret key is

required for any symmetric key protocol, and a pair of keys (one public key and one private

key of the receiver Bob) is required for any asymmetric or public key protocol. Interestingly,

in the quantum domain there exist some protocols for secure message transmission that does

not explicitly require any key. QSDC is one such protocol. That is, in QSDC, the secret

message can be transmitted directly from the sender to the receiver without any classical

communication of ciphertext, or in other words, the QKD and the classical communication of

the ciphertext are condensed into one single quantum communication. QSDC is fully quantum
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mechanicalhas and thus it has a great potential in future. Since QSDC sends secret message

directly over quantum channel, it demands more security than any QKD protocol. It must

satisfy the following requirements, first the secret messages should be read out directly by the

legitimate user, when he receives the quantum states, and no additional classical information

is needed after the transmission of qubits. Secondly the secret messages which have been

encoded already in the quantum states should not leak even though an eavesdropper may get

hold of channel. That is to say, the eavesdropper can not only be detected but also obtains

blind results. The intuitive idea of QSDC was first proposed by Long et al. [58] in 2002. In

2003, Deng et al. generalized the previous idea of Long et al. [58] and proposed a new QSDC

protocol [66], where the sender (Alice) and the receiver (Bob) first share two-particle entangled

states (namely, one of the Bell state) and each of them takes one particle from each pair. After

that, Alice encodes her state with one of the four unitary operations, which are called Pauli

matrices [6], 𝐼, 𝜎𝑧, 𝜎𝑥, and 𝑖𝜎𝑦 to encode the information 00, 01, 10, and 11 respectively and

sends it to Bob. Then Bob measures the two-particle state (one from Alice and another from

his own) in Bell basis to decode Alice’s message. One of the famous QSDC protocols is Ping-

Pong Protocol (PPP) [67], where the receiver first prepares two-qubit entangled states and

ping the sender with one qubit. Then sender encodes her information by performing 𝐼 or 𝜎𝑧

on that qubit and pong it to the receiver. Many other QSDC protocols have been proposed and

analyzed in several works using different approaches [68, 69, 70, 71, 72, 73, 74]. In recent years,

QSDC has gone through rapid developments [75, 76, 77, 78, 79, 2, 80, 5]. The experimental

demonstration of QSDC are given in [75, 76, 77]. A practical QSDC prototype has been

constructed recently [78]. QSDC is the explicit realization of Wyner’s wiretap theory [79]. In

particular, the measurement-device-independent QSDC have been proposed in [2, 80, 5].

Quantum Dialogue (QD): It can be thought of as a two-way QSDC protocol. Nowadays

it is a very important research topic in quantum cryptography. In QD, Alice and Bob can

send messages to each other simultaneously in the same channel. Quantum dialogue was first

proposed by Nguyen [81] in 2004, he first found out some drawbacks in the so-called PPP [67]

and improved it. Then he extended the PPP to a QD protocol such that Alice and Bob

can exchange their secret message directly. At the same time, Zhang [82] also gave the idea of

secure direct bidirectional communication. In 2005 Xiao et al. [83] showed that the QD protocol
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proposed by Nguyen was insecure against intercept and resend attack strategy. They modified

the protocol in such a way that intercept and resend attack can be detected. After that, Xia

et al. [84] proposed a QD protocol using the GHZ state, which is also a modified version of

Nguyen’s protocol. In 2006, Xin et al. [85] proposed a QD protocol based on single-photon.

Recently various research work have been done in this area [86, 87, 88, 89, 90, 91, 92, 93, 3].

QSDC protocols for more than two parties are discussed in [94, 71, 95, 96, 97, 98].

Deterministic secure quantum communication (DSQC): This is another class of

quantum secure communication protocol, which is a variant of deterministic QKD plus classical

communication. This can also transmit messages securely and deterministically through a

quantum channel. In usual QKD, the key is agreed first quantum mechanically and then used

to encrypt the message into ciphertext, which is then communicated classically. The difference

between QSDC and DSQC is that in the former no additional classical information (except

those for eavesdropping detection) is required for decoding the secret message, whereas in

the latter, after assuring the security of the transmission of qubits, at least one bit of classical

information is required to decode each qubit. The first DSQC was proposed by Beige et al. [99],

where the sender first chooses a key, encrypts the message with the key using a one-time-pad

into ciphertext, and then sends the ciphertext deterministically through the quantum channel

to the receiver. After assuring the security of the transmission, she sends the key via a classical

communication. Various DSQC protocols are proposed and discussed in [100, 101, 102, 72, 103].

Quantum key agreement (QKA): Key agreement is one of the basic requirements of

cryptography, which allows two or more parties to agree on the same secret key by exchanging

their information over public channels. The difference between key distribution and key agree-

ment protocol is as follows: in key distribution protocol, one party can determine a key and

distribute it to the other legitimate parties. But in a key agreement protocol, all the parties in-

volved in the protocol contribute their information equally in order to generate a shared secret

key. In 1976, Diffie and Hellman first proposed a classical key agreement protocol [44], whose

security is based on the assumption that the discrete logarithm problem is computationally

hard. But, in 1999, Shor proposed a quantum algorithm, which can solve the discrete loga-

rithm problem in polynomial time [104]. Thus some key agreement protocol was in need, such

that, the security of that protocol does not depend on the computation complexity of some
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mathematical problem. The first two-party QKA protocol was proposed by Zhou et al. [105],

who used quantum teleportation [27] protocol without the classical communication in order to

generate the key bit string between the two parties. However, in 2009, Tsai et al. pointed out

that the above QKA protocol [105] is not a fair key agreement protocol [106]. Also in 2020,

Das et al.[107] showed that the QKA protocol [105] is not consistent with allowed physical

operation in quantum mechanics. The first secure two-party QKA protocol was proposed by

Chong et al. in 2010 [108] and after that many other QKA protocols have been proposed by

different groups of researchers [109, 110, 111, 112].

Quantum multi-party computation (QMPC): In multi-party computation (MPC),

two or more parties exchange messages over a public channel and perform some local computa-

tion to jointly compute the value of a function on their private data as inputs. The requirement

is that, after the end of the computation, each party will have the output of the function, but

no party will have access to the input of any other party. QMPC is an interesting research area

in quantum cryptography, where the parties possess some quantum states as inputs. Quantum

secret sharing (QSS) [113, 97, 114, 115, 116], QMPC protocol for summation and multipli-

cation [117, 118], quantum private comparison [119, 120, 121] are some examples of QMPC

protocols.

Device independent (DI) protocols: Security of any quantum cryptographic protocol

relies on two basic assumptions. The first one is that any eavesdropper must obey the laws of

quantum physics, and the second one is that there is no unwanted information leakage from

the laboratories of the legitimate parties. Moreover, the security proofs also assume that the

devices used in the protocols are perfect, i.e., the authorized parties have full control of the

state preparation and measurement devices. In 2007, Acín et al. first proposed the DI security

proof for a QKD protocol [122], where they relax the assumption about using the perfect

devices. DI protocols are based on the non-local correlation properties of entanglement and

use the Bell inequality to establish the security analysis. Thereafter, a lot of DI protocols are

proposed by many researchers [123, 124, 125, 126, 127, 128]. In 2019, Zhou et al. proposed

the first DI-QSDC protocol [129] inspired by the DI-QKD protocols. They treat the quantum

apparatuses as black boxes and perform the CHSH game to check the non-locality of the

entangled particles.
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Measurement device independent (MDI) protocols: However in practice, due to lack

of perfect measurement devices, an adversary (Eve) can take advantage of this loophole of an

imperfect measurement device and tries to steal information without being detected. In order

to solve this problem, Lo et al. first proposed the concept of MDI-QKD protocol [63]. In MDI

protocols, a UTP performs all the measurements during the protocol using imperfect devices,

and thus it removes all the detector side-channel attacks introduced by Eve [130, 131, 132, 133].

Using the same technique as MDI-QKD, Zhou et al. proposed the first MDI-QSDC protocol [5],

and some other MDI-QSDC and MDI-QD protocols also proposed recently [2, 134, 135, 136,

80, 137, 3, 138]. Similar to MDI-QKD, in 2021 Yang et al. proposed the first MDI-DSQC

protocol [139] based on the polarization-spatial-mode hyperencoded qudits.

Authentication: For secure communication, authentication is always important as it pre-

vents an eavesdropper to impersonate a legitimate party. There are two types of authentication

in cryptography, one is user or identity authentication, and another is message authentication.

The first process is used to check the authenticity of the users of the protocol, and the second

process is to check the integrity of the transmitted information. Here in the thesis, we use

both classical and quantum channels and assume that the classical channel is authenticated.

That means, both user and message authentications are assumed for the classical channel, or

in other words, we can say that an eavesdropper can eavesdrop on the information but can

not modify it. Here the concept of public announcement [52] is used throughout the thesis. In

1995, Crépeau et al. [140] proposed the first quantum identification scheme based on quantum

oblivious transfer [141]. QSDC with user authentication was first proposed by Lee et al. in

2006 based on Greenberger-Horne-Zeilinger (GHZ) states [4]. However, Zhang et al. showed

that this protocol is not secure against the intercept-and-resend attack and proposed a re-

vised version of the original protocol [142]. Later on, a number of new QSDC protocols with

authentication are presented [143, 144, 145, 146].

In this thesis, we specially focus on various types of QSDC protocols. We present a QSDC

protocol and some MDI-QSDC, MDI-QD, MDI-DSQC protocols with user authentication. We

analyze the security of a QSDC protocol, an MDI-QSDC protocol, and an MDI-QD protocol.

We present these protocols using block diagrams and explain in our own language. We improve

the previous protocols and propose some modifications of the above protocols. We also present
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a Q.Conf protocol by generalizing the previous MDI-QD protocol and using the algorithm of

the Q.Conf protocol, we propose a quantum multi-party computation protocol to calculate the

XOR value of 𝑛 secret numbers. There are standard algorithm available for noisy quantum

channel, quantum error correction, post-processing etc. If someone wants, he/ she can add

those algorithm as wrapper/ layer. Here in this thesis, we do not focus on that part. Then we

generalize the CHSH game, and we demonstrate how to distinguish between dimensions 2 and

3 for a special form of maximally entangled state using the generalized version of the CHSH

game.

1.5 Thesis outline

This thesis is structured as follows:

■ Chapter 1 contains the general introduction of quantum information theory, quantum

algorithms, quantum communication, and quantum cryptography.

■ Chapter 2 presents the background of our works. It contains some well-known QKD

protocols, a survey of QSDC, QD, Q.Conf protocols and the idea of dimensionality

testing. We give a brief description of each of the protocols we have improved in the

Ph.D. tenure.

■ Chapter 3 justifies a security loophole of Yan et al.’s QSDC protocol with authentica-

tion [1]. We show that the QSDC protocol is not secure against intercept-and-resend

attack and impersonation attack, an eavesdropper can get the full secret message by

applying these attacks. We propose a modification of this protocol, which defeats the

above attacks along with all the familiar attacks.

■ Chapter 4 contains a new theoretical scheme for QSDC with user authentication. Dif-

ferent from the previous QSDC protocols, the new protocol uses only one orthogonal

basis of single-qubit states to encode the secret message. Moreover, this is a one-time

and one-way communication protocol, which uses qubits prepared in a randomly chosen

arbitrary basis, to transmit the secret message. We discuss the security of the proposed
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protocol against some common attacks and show that no eavesdropper can get any infor-

mation from the quantum and classical channels. We have also studied the performance

of this protocol under realistic device noise. We have executed the protocol in the IBMQ

Armonk device and proposed a repetition code-based protection scheme that requires

minimal overhead.

■ Chapter 5 explores information leakage problems in the MDI-QSDC and MDI-QD

protocols proposed by Niu et al. [2]. By analyzing these protocols we find some security

issues in both these protocols. We show that a third party can get half of the secret

information without any active attack. We also propose suitable modifications of these

protocols to improve security.

■ Chapter 6 contains a new MDI-QSDC protocol with user authentication, where both

the sender and the receiver first check the authenticity of the other party and then

exchange the secret message. Then we extend this to an MDI quantum dialogue (QD)

protocol, where both the parties can send their respective secret messages after verifying

the identity of the other party. Along with this, we also report a new MDI-DSQC

protocol with user identity authentication. Theoretical analyses prove the security of

our proposed protocols against common attacks.

■ Chapter 7 contains two efficient MDI-QD protocols, which are improved versions of

Maitra’s MDI-QD protocol [3]. In the original work [3], to make the protocol secure

against information leakage, the authors have discarded almost half of the qubits re-

maining after the error estimation phase, whereas we propose two modified versions of

the MDI-QD protocol such that the number of discarded qubits is reduced to almost

one-fourth of the remaining qubits after the error estimation phase. We use almost half

of their discarded qubits along with their used qubits to make our protocol more effi-

cient in qubits count. We show that both of our protocols are secure under the same

adversarial model given in the MDI-QD protocol.

■ Chapter 8 contains a Q.Conf protocol, which is a process of securely exchanging mes-

sages between three or more parties, using quantum resources. In this chapter, we show
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that the MDI-QD protocol [3] is insecure against intercept-and-resend attack strategy.

We first modify this protocol and generalize this MDI-QD to a three-party quantum con-

ference and then to a multi-party quantum conference. We also propose a protocol for

quantum multi-party XOR computation. None of these three protocols proposed here

use entanglement as a resource and we prove the correctness and security of our proposed

protocols.

■ Chapter 9 generalizes the CHSH game by considering all possible non-constant Boolean

functions and all possible measurement bases (up to certain precision). Based on the

success probability computation, we construct several equivalence classes and show how

they can be used to generate three classes of dimension distinguishers. In particular,

we demonstrate how to distinguish between dimensions 2 and 3 for a special form of

maximally entangled state.

■ Chapter 10 closes this thesis with a summary of the work and a discussion on possible

future works.
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Chapter 2

Background

In the last chapter, we gave a brief introduction to quantum information theory, quantum

algorithms, quantum communication and quantum cryptography. In this chapter, we describe

some important quantum cryptographic protocols.

2.1 Quantum key distribution protocols

QKD enables two or more parties to produce a shared random secret key in a secure manner

using the tools of quantum mechanics and cryptography. The shared secret key then can be

used to encrypt and decrypt secret messages. There are mainly two types of QKD schemes,

one is the prepare-and-measure scheme, such as BB84 [52], B92 [57] etc. The other is the

entanglement-based QKD, such as Ekert91 [55], BBM92 [56]. All the QKD protocols need

quantum channels and an authenticated classical channel [147, 148], such that Eve can not

modify the classical information at the time of communication. We now discuss some well-

known QKD protocols. Also we estimate the resources for each protocol in tabular form in

Table (2.1). For that part, we consider the resources only for key generation, and we ignore

the security check process, since user can decide the number of qubits which they can use for

the security checking. The classical information transmission is required in every protocol and

the method is pubic announcement.
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2.1.1 BB84 Protocol

In 1984, Bennett and Brassard proposed the first quantum cryptographic protocol [52, 6] to

share a secret key between two parties, which is called the BB84 protocol. Let the parties be

Alice and Bob, who want to share a secret key among themselves. The BB84 protocol is as

follows:

1. Alice randomly chooses two 4𝑛-bit strings 𝑎 and 𝑏. She prepares a finite sequence of 4𝑛

qubits 𝑄 from the bit strings 𝑎 and 𝑏 by using the following strategy. For 1 ≤ 𝑖 ≤ 4𝑛,

(a) if 𝑎𝑖 = 0, 𝑏𝑖 = 0, she prepares 𝑄𝑖 = |0⟩,

(b) if 𝑎𝑖 = 1, 𝑏𝑖 = 0, she prepares 𝑄𝑖 = |1⟩,

(c) if 𝑎𝑖 = 0, 𝑏𝑖 = 1, she prepares 𝑄𝑖 = |+⟩,

(d) if 𝑎𝑖 = 1, 𝑏𝑖 = 1, she prepares 𝑄𝑖 = |−⟩.

2. Alice sends 𝑄 to Bob, who measures each qubits of 𝑄 in the 𝑍 or 𝑋 basis at random.

He makes a 4𝑛-bit string 𝑎′, if the 𝑖-th measurement result is |0⟩ or |+⟩ (|1⟩ or |−⟩), then

𝑎′
𝑖 = 0 (1).

3. Alice publicly announces 𝑏. After a public discussion of the choice of bases, they discard

the bits of 𝑎 and 𝑎′, where Bob chooses a different basis than Alice. It happens with

probability 1
2 and thus they have 2𝑛 bit strings approximately. If the case is not so, then

they abort the protocol.

4. Alice randomly chooses 𝑛 bits from the remaining 2𝑛 bits of 𝑎 and tells the chosen

positions to Bob. To check on Eve’s interference, they publicly compare the values of

those 𝑛 check bits and calculate the error rate. If the error rate is not in the acceptable

range, they abort the protocol.

5. Alice and Bob perform information reconciliation and privacy amplification process [149]

to extract an 𝑚-bit (𝑚 < 𝑛) secret key from the remaining 𝑛 bits.
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2.1.2 B92 Protocol

This is a modified version of the BB84 protocol [57, 6], proposed by Bennett in 1992, which

uses only two polarization states (conventionally, |0⟩ and |+⟩). The B92 protocol can be

summarized in the following steps.

1. Alice randomly chooses an 𝑛-bit strings 𝑎 and prepares a sequence 𝑄 of 𝑛 qubits corre-

sponding to 𝑎. The 𝑖-th qubit 𝑄𝑖 = |0⟩ (|+⟩) if 𝑎𝑖 = 0 (1). She sends 𝑄 to Bob.

2. Bob randomly chooses an 𝑛-bit strings 𝑎′ and measures the qubits of 𝑄 according to 𝑎′,

i.e., if 𝑎′
𝑖 = 0 (1), he choses the 𝑍 (𝑋) basis to measure the 𝑖-th qubit 𝑄𝑖.

3. From the measurement result, he obtains an 𝑛-bit strings 𝑏, i.e., 𝑏𝑖 = 0 (1), if the 𝑖-th

measurement result is |0⟩ or |+⟩ (|1⟩ or |−⟩).

4. Bob announces the bit strings 𝑏 but keeps 𝑎′ secret.

5. Alice and Bob discard the 𝑖-th bits of 𝑎 and 𝑎′ if 𝑏𝑖 = 0, i.e., the cases where 𝑎𝑖 = 𝑎′
𝑖.

The remaining bits are corresponding to the value 𝑏𝑖 = 1, for which 𝑎𝑖 = 𝑎′
𝑖 ⊕ 1.

6. Then the shared secret key of Alice and Bob is 𝑎 = 𝑎′ ⊕ 1.

2.1.3 Ekert’s Protocol

Ekert’s QKD Protocol [55, 150], also known as E91 protocol, which uses entangled pairs of

photons, is a nice application of the Bell inequality for the generation of a secret key by two

parties. Let us first describe the basis 𝑍𝜃, which is the 𝑍 basis rotated by angle 𝜃. For this

QKD protocol, Alice and Bob have three choices of basis and their basis sets are {𝑍0, 𝑍𝜋
4
, 𝑍𝜋

2
}

and {𝑍𝜋
4
, 𝑍𝜋

2
, 𝑍 3𝜋

4
} respectively. Then the QKD protocol is as follows:

1. Alice and Bob share EPR pairs in |Φ−⟩𝐴𝐵 state. Alice has particle 𝐴 and Bob has particle

𝐵.

2. They measure their respective qubits by choosing a random basis, out of the three possible

bases.
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3. After that, Alice and Bob announce the basis for each measurement. They use the

instances, where their chosen bases are different, to check the presence of Eve. Then

calculate the CHSH quantity [32]

𝐸 = ⟨𝜃1, 𝜑1⟩ − ⟨𝜃1, 𝜑3⟩+ ⟨𝜃3, 𝜑1⟩+ ⟨𝜃3, 𝜑3⟩ ,

where 𝜃𝑖s and 𝜑𝑖s are Alice’s and Bob’s choice of bases, and ⟨𝜃𝑖, 𝜑𝑗⟩ is the expectation

value when Alice measures using 𝑍𝜃𝑖
basis and Bob measures using 𝑍𝜑𝑗

basis.

4. If |𝐸| ≤ 2, then it indicates the presence of some Eve, and in that case, Alice and Bob

abort the protocol. For a perfectly secure channel, |𝐸| = 2
√

2, which is the maximal

violation of Bell inequality.

5. Alice and Bob consider the instances, where they chose the same bases, to generate their

shared secret key. As their measurement results are anti-correlated, thus for each bit of

the secret key is 𝑎 = 1⊕ 𝑏, where 𝑎 and 𝑏 are the respective measurement result of Alice

and Bob.

2.1.4 BBM92 Protocol

In 1992, Bennett et al. proposed this protocol [56, 150], which is aimed as a critic to the

Ekert’s protocol’s reliance on entanglement for security. In the BBM92 protocol, Alice and

Bob use two measuring basis instead of three bases of the previous protocol. Here the two

bases are the same as the BB84 protocol, i.e., they use only 𝑍 and 𝑋 basis to measure the

qubits. The QKD protocol is as follows:

1. Alice and Bob share 𝑛 EPR pairs in |Φ+⟩𝐴𝐵 state. Alice has particle 𝐴 and Bob has

particle 𝐵.

2. Alice and Bob randomly select two 𝑛-bit string 𝑏 and 𝑏′ respectively. They measure their

respective particles corresponding to 𝑏 and 𝑏′. If the 𝑖-th bit of 𝑏 (𝑏′) is 0, then Alice

(Bob) measures her (his) qubit in 𝑍-basis, otherwise in 𝑋-basis.
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3. Alice obtains a 𝑛-bit string 𝑎, if the 𝑖-th measurement result is |0⟩ or |+⟩ (|1⟩ or |−⟩),

then 𝑎𝑖 = 0 (1). Similarly Bob obtains 𝑎′.

4. They compare the bit strings 𝑏 and 𝑏′ over public classical channel and discard the bits

of 𝑎 and 𝑎′ for which the corresponding bits of 𝑏 and 𝑏′ are not equal. Then the shared

secret key is the remaining bits of 𝑎 and 𝑎′ (for this case 𝑎 = 𝑎′).

Note that in this protocol, the secret key is generated by both parties, and it is undetermined

until at least one party performs a measurement on its particle.

2.1.5 SARG04 Protocol

Currently, the perfect single-photon sources are not available, and this causes photon number

splitting attack [151]. In this attack model, when the sender Alice sends some photons to the

receiver Bob through a quantum channel, then Eve measures the number of photons in the

optical pulse. If it contains more than one photon, then Eve stole one photon and keeps it

until post-processing, to listen to the communication between Alice and Bob, and thus she

can learn all the information about the key without being detected. In 2004, Scarani et al.

proposed a different kind of QKD protocol [152], called SARG04, to defeat the photon number

splitting attack. Let us now describe this protocol.

1. Alice randomly chooses two 𝑛-bit strings 𝑎 and 𝑏. She prepares a finite sequence of 𝑛

qubits 𝑄 from the bit strings 𝑎 and 𝑏 by using the following strategy. For 1 ≤ 𝑖 ≤ 𝑛,

(a) if 𝑎𝑖 = 0, 𝑏𝑖 = 0, she prepares 𝑄𝑖 = |0⟩,

(b) if 𝑎𝑖 = 1, 𝑏𝑖 = 0, she prepares 𝑄𝑖 = |1⟩,

(c) if 𝑎𝑖 = 0, 𝑏𝑖 = 1, she prepares 𝑄𝑖 = |+⟩,

(d) if 𝑎𝑖 = 0, 𝑏𝑖 = 1, she prepares 𝑄𝑖 = |−⟩.

2. Alice sends 𝑄 to Bob, who measures each qubits of 𝑄 in the 𝑍 or 𝑋 basis at random. For

each 𝑖, he notes down the the 𝑖-th measurement basis and result as 𝑏′
𝑖 andℳ𝑖 respectively.

3. Bob publicly announces that he has received and measured the qubits of 𝑄.
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4. For each 𝑖, Alice publicly announces the pair of states (𝑄1
𝑖 , 𝑄

2
𝑖 ), where 𝑄1

𝑖 ∈ {|0⟩ , |1⟩},

𝑄2
𝑖 ∈ {|+⟩ , |−⟩} and 𝑄𝑖 ∈ {𝑄1

𝑖 , 𝑄
2
𝑖 }.

5. If ℳ𝑖 ∈ {𝑄1
𝑖 , 𝑄

2
𝑖 }, then Bob can not distinguish between the two candidate states, and

thus he announces the 𝑖-th bit is invalid.

6. Ifℳ𝑖 /∈ {𝑄1
𝑖 , 𝑄

2
𝑖 }, then Bob surely knows that he has chosen the wrong basis and he can

guess the correct state of 𝑄𝑖. In this case the he announces the 𝑖-th bit is valid and the

corresponding secret bit is 𝑏𝑖 = 𝑏′
𝑖 ⊕ 1.

2.1.6 QKD with user authentication

User identity authentication is one of the basic tasks of cryptography that can defeat the

impersonation attack. In 2000, Ljunggren et al. proposed some QKD schemes with user

identity authentication with the help of a trusted third party Trent [153]. Here we present one

of those schemes, where Alice and Bob want to share a secret key using quantum methods.

1. Trent and Alice (BOB) use the BB84 protocol [52] to generate a secret key 𝐾𝐴 (𝐾𝐵).

2. Trent sends the key 𝐾 to Alice (Bob) encrypted with the secret key 𝐾𝐴 (𝐾𝐵).

3. Alice and Bob can send each other the secret message encrypted with the key 𝐾.

Note that, since Trent knows the shared secret key 𝐾, he can also listen to the encrypted

communication. In the same paper, the authors also propose some QKD with authentication

using entangled particles.

In 2001, Shi et al. [154] proposed a scheme that allows the simultaneous realization of QKD

and quantum authentication based on entangled states. However, Wei et al. [155] points out

a weakness in Shi et al.’s scheme [154], in which a malicious user can impersonate a legitimate

participant without being detected. Furthermore, they proposed an improved scheme to avoid

this weakness. There are many other protocols in this domain, and some of them are discussed

in [156, 157, 158, 159, 160, 161]
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2.1.7 Device independent QKD

Quantum cryptography promises unconditional security based on the law of physics. Security

proofs of the QKD protocols assume that the legitimate parties have perfect control of the state

preparation and of the measurement devices, which is difficult to follow in practical life. In

actual implementations, if a QKD protocol does not follow one of the above two assumptions,

then it compromises the security, and Eve can get the secret key without introducing any error

in the channel. These types of attacks are called side-channel attacks [162, 163, 164, 165].

Now the question is, can this security be guaranteed to the users, who may not trust the

quantum devices used to implement the protocol? In 1998, Mayers et al. [166] approach to this

question in the form of a new security paradigm called device independence. The term “device

independence” (DI) was only introduced much later, in 2007 by Acín et al., who proposed a

DI security proof [122] of the protocol [167] based on CHSH inequality. The protocol [122] is

as follows.

1. Alice and Bob share EPR pairs in |Φ+⟩𝐴𝐵 state.

2. Alice measures her qubits randomly in basis ℬ𝐴0 , ℬ𝐴1 and ℬ𝐴2 , where ℬ𝐴𝑗
= {|0⟩ +

𝑒𝑖𝐴𝑗 |1⟩ , |0⟩ − 𝑒𝑖𝐴𝑗 |1⟩} and 𝑗 ∈ {0, 1, 2} with 𝐴0 = 𝜋
4 , 𝐴1 = 0, 𝐴2 = 𝜋

2 . Bob measures

his qubits randomly in basis ℬ𝐵1 and ℬ𝐵2 , where ℬ𝐵𝑗
= {|0⟩ + 𝑒𝑖𝐵𝑗 |1⟩ , |0⟩ − 𝑒𝑖𝐵𝑗 |1⟩}

and 𝑗 ∈ {1, 2} with 𝐵1 = 𝜋
4 , 𝐵2 = −𝜋

4 . All the measurement results 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2 have

binary outcomes labeled by ±1.

3. Alice and Bob reveal their measurement basis and calculate the value of the CHSH

polynomial 𝑆 = ⟨𝑎1𝑏1⟩+ ⟨𝑎2𝑏1⟩+ ⟨𝑎1𝑏2⟩ − ⟨𝑎2𝑏2⟩, where ⟨𝑎𝑖𝑏𝑗⟩ = Pr(𝑎 = 𝑏 | 𝑖𝑗)− Pr(𝑎 ̸=

𝑏 | 𝑖𝑗).

4. If 𝑆 > 2, then they consider the measurement outcomes corresponding to the bases ℬ𝐴0

and ℬ𝐵1 as the secret key.

Some other DI-QKD protocols are discussed in [125, 127, 168, 169, 126, 128, 170].
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2.1.8 Measurement device independent QKD

This approach of DI-QKD is conceptually very powerful, but unfortunately, it is difficult to

implement with current technology. In 2012, Lo et al. [63] first proposed the idea of MDI-

QKD to solve the problem of all detector side-channel attacks [132, 171, 163, 162]. In MDI-

QKD protocol, both legitimate parties, namely, Alice and Bob send quantum signals to an

untrusted third party (UTP), with the assumption that Alice and Bob have almost perfect

state preparation. The detail protocol [63] is as follows.

1. Alice (Bob) randomly chooses two 𝑛-bit strings 𝑎 and 𝑎′ (𝑏 and 𝑏′). She (he) prepares a

finite sequence of 𝑛 qubits 𝑄𝐴 (𝑄𝐵) from the bit strings 𝑎 and 𝑎′ (𝑏 and 𝑏′) by using the

strategy of BB84 protocol. For 1 ≤ 𝑖 ≤ 𝑛,

(a) if 𝑎𝑖 (𝑏𝑖) = 0, 𝑎′
𝑖 (𝑏′

𝑖) = 0, she (he) prepares 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |0⟩,

(b) if 𝑎𝑖 (𝑏𝑖) = 1, 𝑎′
𝑖 (𝑏′

𝑖) = 0, she (he) prepares 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |1⟩,

(c) if 𝑎𝑖 (𝑏𝑖) = 0, 𝑎′
𝑖 (𝑏′

𝑖) = 1, she (he) prepares 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |+⟩,

(d) if 𝑎𝑖 (𝑏𝑖) = 0, 𝑎′
𝑖 (𝑏′

𝑖) = 1, she (he) prepares 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |−⟩.

2. They send their sequences 𝑄𝐴 and 𝑄𝐵 to an UTP.

3. Alice and Bob randomly chose some qubits, and apply decoy state techniques [61, 62, 172]

to estimate the gain and quantum bit error rate (QBER) for this transmission.

4. The UTP measures each pair of qubits (𝑄𝐴𝑖, 𝑄𝐵𝑖) in Bell basis and announces the result

ℳ𝑖, where 1 ≤ 𝑖 ≤ 𝑛.

5. Alice and Bob announce the bit strings 𝑎′ and 𝑏′ respectively, i.e., the preparation bases

corresponding to their qubits. They keep the 𝑖-th measurement resultℳ𝑖 only when the

bases are same, i.e., 𝑎′
𝑖 = 𝑏′

𝑖, and otherwise they discard ℳ𝑖.

6. They get the shared secret key from the remaining measurement results and the bases

as follows:

∙ 𝑎′
𝑖 = 𝑏′

𝑖 = 𝑍:
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– ℳ𝑖 = |Φ+⟩ or |Φ−⟩ ⇒ 𝑎𝑖 = 𝑏𝑖.

– ℳ𝑖 = |Ψ+⟩ or |Ψ−⟩ ⇒ 𝑎𝑖 = 𝑏𝑖 ⊕ 1.

∙ 𝑎′
𝑖 = 𝑏′

𝑖 = 𝑋:

– ℳ𝑖 = |Φ+⟩ or |Ψ+⟩ ⇒ 𝑎𝑖 = 𝑏𝑖.

– ℳ𝑖 = |Φ−⟩ or |Ψ−⟩ ⇒ 𝑎𝑖 = 𝑏𝑖 ⊕ 1.

After that many MDI-QKD protocols were proposed by different group of researchers [173,

174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188].

2.1.9 Multi-party QKD

In 2007, Matsumoto proposed the first multi-party QKD protocol [189] without using entan-

glement and we now discuss the protocol. Let Alice, Bob and Charlie be the three legitimate

parties who want to generate a shared secret key among themselves.

1. Alice prepares two identical sequences 𝑄1 and 𝑄2 of single qubits states, where the qubits

are randomly chosen from 𝑍 and 𝑋 bases. She sends the 𝑄1 (𝑄2) to Bob (Charlie).

2. Bob (Charlie) measures each received qubit in 𝑍 or 𝑋 basis randomly.

3. Alice publicly announces the preparation bases of the qubits, and Bob, Charlie announces

the measurement bases of the qubits. They keep the qubits only when these three basis

are equal and otherwise discard these.

4. Among the remaining qubits, let there be 2𝑛 number of qubits prepared in 𝑍-basis.

Define three 2𝑛-bit strings 𝑎, 𝑏, 𝑐, and for 1 ≤ 𝑖 ≤ 2𝑛,

• 𝑎𝑖 = 0 (1) if Alice prepared the 𝑖-th qubit as |0⟩ (|1⟩),

• 𝑏𝑖 = 0 (1) if Bob’s measurement outcome for the 𝑖-th qubit is |0⟩ (|1⟩),

• 𝑐𝑖 = 0 (1) if Charlie’s measurement outcome for the 𝑖-th qubit is |0⟩ (|1⟩).

5. Also let there be 2𝑛′ number of qubits prepared in 𝑋-basis. Define three 2𝑛′-bit strings

𝛼, 𝛽, 𝛾, and for 1 ≤ 𝑖 ≤ 2𝑛′,
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• 𝛼𝑖 = 0 (1) if Alice prepared the 𝑖-th qubit as |+⟩ (|−⟩),

• 𝛽𝑖 = 0 (1) if Bob’s measurement outcome for the 𝑖-th qubit is |+⟩ (|−⟩),

• 𝛾𝑖 = 0 (1) if Charlie’s measurement outcome for the 𝑖-th qubit is |+⟩ (|−⟩).

6. Alice randomly chooses a subset 𝑆 of {1, 2, . . . , 2𝑛} such that |𝑆| = cardinality of the set

𝑆 = 𝑛. She announces the subset 𝑆, and for each 𝑖 ∈ 𝑆, they publicly compare the bits

𝑎𝑖, 𝑏𝑖, 𝑐𝑖 to compute the error rate 𝑞1, where

𝑞1 = max
{︃
|{𝑖 ∈ 𝑆 : 𝑎𝑖 ̸= 𝑏𝑖}|

|𝑆|
,
|{𝑖 ∈ 𝑆 : 𝑎𝑖 ̸= 𝑐𝑖}|

|𝑆|

}︃
.

7. Alice randomly chooses a subset 𝑆 ′ of {1, 2, . . . , 2𝑛′} such that |𝑆 ′| = 𝑛′. She announces

the subset 𝑆 ′, and for each 𝑖 ∈ 𝑆 ′, they publicly compare the bits 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 to compute

the error rate 𝑞2, where

𝑞2 = |{𝑖 ∈ 𝑆
′ : 𝛼𝑖 = 𝛽𝑖 ̸= 𝛾𝑖 or 𝛼𝑖 = 𝛾𝑖 ̸= 𝛽𝑖}|

|𝑆 ′|
.

8. Alice, Bob and Charlie decide a linear code 𝐶1 of length 𝑛 and parity check matrix 𝐻,

such that the decoding error probability of 𝐶1 is sufficiently small over all the binary

symmetric channel whose crossover probability is close to 𝑞1.

9. For 𝑖 ∈ 𝑆, they discard the 𝑖-th bit from 𝑎, 𝑏, 𝑐 and relabel the bit strings. Then each bit

string contains 𝑛 bits.

10. Alice chooses a subspace 𝐶2 of 𝐶1 of dimension 𝑛ℎ(𝑞2), where ℎ is the binary entropy

function.

11. Alice publicly announces the syndrome 𝐻𝑎 of the linear code 𝐶1 and subspace 𝐶2. The

final shared secret key is the coset 𝑎+ 𝐶2.

Other multi-party QKD protocols are discussed in [190, 191, 192].
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Table 2.1: Resource estimation of the discussed QKD protocols

Protocol
No. of
Single
Qubit

No. of
Entangled
Qubit

Measurement
Basis

Qubit
Transmission

Length
of the
Key

BB84 [52] 2𝑛 0 𝑍,𝑋 2𝑛 𝑛
B92 [57] 2𝑛 0 𝑍,𝑋 2𝑛 𝑛
E91 [55] 0 𝑛 EPR pairs 𝑍0, 𝑍𝜋

4
, 𝑍𝜋

2
, 𝑍 3𝜋

4
No 2𝑛/9

BBM92 [56] 0 𝑛 EPR pairs 𝑍,𝑋 No 𝑛/2
SARG04 [152] 𝑛 0 𝑍,𝑋 𝑛 𝑛/2
DI-QKD [122] 0 𝑛 ℬ𝜋

4
,ℬ0,ℬ𝜋

2
,ℬ− 𝜋

4
No 𝑛/6

MDI-QKD [63] 2𝑛 0 Bell basis 2𝑛 𝑛/2
3-Party QKD [189] 2𝑛 0 𝑍,𝑋 2𝑛 𝑛/8

2.2 Quantum secure direct communication protocols

QSDC can send a secret message through a quantum channel, without any previously shared

key. Each of the legitimate parties encodes and decodes the message using some predefined

encoding and decoding rules. Now we discuss some QSDC protocols. Also we estimate the

resources for those protocols in tabular form in Table (2.4). For that part, we consider the re-

sources only for message transmission, and we ignore the security and integrity check processes,

since user can decide the number of qubits which they can use for those checking. The classical

information transmission is required in every protocol and the method is pubic announcement.

2.2.1 The first QSDC protocol

In 2002, Long and Liu [58] proposed a theoretical QKD scheme using EPR pairs. Although

it was designed for key distribution, but in this protocol, the key was prepared before it was

sent, which is a clear indication that it is a QSDC protocol.

The protocol is as follows.

1. The message bits are encoded in EPR pairs by using the following rule: 00 → |Φ+⟩,

01→ |Φ−⟩, 10→ |Ψ+⟩ and 11→ |Ψ−⟩.

2. Alice prepares EPR pairs corresponding to her message bits and she takes one qubit from

each EPR pair to form a sequence 𝑄𝐴. The remaining partner qubit of each EPR pair

forms another sequence 𝑄𝐵 and she sends it to Bob.
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3. Bob chooses some qubits of 𝑄𝐵 and measures those qubits randomly in 𝑍 basis or 𝑋

basis. Then he tells the positions and the measurement bases of those qubits to Alice, who

measures the partner qubits from 𝑄𝐴 in proper bases. They compare the measurement

results publicly to check eavesdropping.

4. If there is no eavesdropper, then Alice sends 𝑄𝐴 to Bob and he measures each pair of

qubits (one from 𝑄𝐴 and another from 𝑄𝐵) in Bell basis. From the measurement result,

Bob gets the message.

5. They choose some random positions of the message bits to check the integrity of the

message.

2.2.2 Two-step QSDC protocol using EPR pair

The two-step QSDC scheme [66] generalizes the basic idea of the previous QKD protocol [58].

It is the first secure model for quantum direct communication and can be described in brief as

follows.

1. Alice and Bob agree on the message encoding rule as: 11→ |Φ+⟩, 10→ |Φ−⟩, 01→ |Ψ+⟩

and 00→ |Ψ−⟩.

2. Alice prepares 𝑁 EPR pairs in |𝜓−⟩ states and she takes one qubit from each EPR pair

to form a sequence 𝑄𝐴. The remaining partner qubit of each EPR pair forms another

sequence 𝑄𝐵 and she sends it to Bob.

3. Bob chooses some qubits of 𝑄𝐵 and measures those qubits randomly in 𝑍 basis or 𝑋

basis. Then he tells the positions and the measurement bases of those qubits to Alice, who

measures the partner qubits from 𝑄𝐴 in proper bases. They compare the measurement

results publicly to check eavesdropping.

4. If there is no eavesdropper, then Alice encodes her message bits by applying the Pauli

operators on the qubits of 𝑄𝐴. She applies the unitary 𝑈0, 𝑈1, 𝑈2, 𝑈3 to encode the bits

00, 01, 10, 11 respectively.
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5. Alice sends 𝑄𝐴 to Bob and he measures each pair of qubits (one from 𝑄𝐴 and another

from 𝑄𝐵) in Bell basis. From the measurement result, Bob gets the message.

6. They choose some random positions of the message bits to check the integrity of the

message.

2.2.3 Ping-pong protocol

In 2002, Boström and Felbinger [67] proposed a quasi-secure direct communication scheme

based on entangled pair of qubits, i.e, an eavesdropper may be able to gain a small amount

of secret information before her presence is detected. Let Alice be the sender and Bob be the

receiver of the secret message 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑥𝑖 ∈ {0, 1} for 1 ≤ 𝑖 ≤ 𝑛. Then the

protocol is as follows:

1. Protocol is initialized and 𝑖 = 0.

2. 𝑖 = 𝑖 + 1. Bob first prepares an EPR pair 𝐴𝐵 in |Ψ+⟩ state and sends the qubit 𝐴 to

Alice.

3. After receiving the qubit, Alice chooses either control mode or message mode with prob-

abilities 𝑐 and 1− 𝑐 respectively.

(a) Control mode: Alice measures the qubit 𝐴 in 𝑍-basis and sends the measurement

result to Bob classically. Then Bob measure his qubit 𝐵 in 𝑍-basis and compares

the measurement result with Alice’s measurement result. If both the measurement

results are same, then presence of Eve is detected and they abort the protocol. Else

𝑖 = 𝑖− 1 and go to the step 2.

(b) Message mode: Alice encodes her 𝑖-th message bit on qubit 𝐴 by applying the

unitary 𝑈0 and 𝑈1 corresponding to the value 0 and 1 respectively. She sends it

back to Bob and he measures the two-qubit state 𝐴𝐵 in Bell basis. Bob decodes

the message bit from the measurement result. The final state |Ψ+⟩ (|Ψ−⟩) implies

the message bit is 0 (1).

4. If 𝑖 < 𝑛, goto step 2, else the message is transmitted successfully.
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But in 2003, Wójcik [193] analyzed the security of the ping-pong protocol and showed that

this is not secure in the case of considerable quantum channel losses. Also in 2004, Cai [194]

showed that an eavesdropper can apply the denial of service attack on the ping-pong protocol,

which causes transmission of a random string instead of a useful message. In the same year,

Nguyen [81] pointed out a drawback of the ping-pong protocol and then improved it towards a

quantum dialogue (QD) protocol, where both the legitimate parties can exchange their secret

message simultaneously.

In 2004, Cai and Li [195] improved the capacity of the ping-pong protocol by introducing

two additional unitary operations 𝑈2 and 𝑈3 to encode two bits of information in each message

mode. They proved the security of their protocol against Wójcik [193] eavesdropping scheme

by using two conjugate bases for measurement in the control mode. Also, they discussed

that a message authentication method can protect their protocol against the denial of service

attack [194].

Again in 2007, Deng et al. [196] showed that if there is a non-zero error rate introduced

due to channel noise, then the ping-pong protocol can eavesdrop freely.

2.2.4 QSDC with quantum teleportation

In 2004, Yan et. al. [100] proposed a QSDC scheme based on EPR pairs and teleportation [27]

between the legitimate parties. The protocol is described below where Bob wants to send a

message to Alice.

1. Alice and Bob share a set of EPR pairs in |Φ+⟩𝐴𝐵 states.

2. Bob prepares a qubit |Ψ⟩𝐶 in the state |+⟩ or |−⟩ corresponding to 0 or 1 respectively.

3. Bob measures the particles 𝐵 and 𝐶 in Bell basis and announces the measurement

outcome. Then the state of Alice’s particle becomes |Ψ⟩𝐴 after applying a fixed unitary

transformation to complete the teleportation process [27].

4. Alice measures |Ψ⟩𝐴 in 𝑋-basis and gets the secret message of Bob.
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2.2.5 Controlled quantum teleportation and QSDC

In 2004, Gao et. al. [197] proposed controlled QSDC based on controlled quantum teleportation

protocol. In this protocol, Alice, the sender of the secret message, encodes her message by

preparing qubits in 𝑋-basis (|+⟩ and |−⟩ for 0 and 1 respectively) and transmits them to Bob

supervised by the controller Charlie. The controlled QSDC scheme works as follows.

1. Alice, Bob and Charlie share a set of triplets of qubits in |𝜉⟩𝐴𝐵𝐶 states, where

|𝜉⟩𝐴𝐵𝐶 = 1
2(|000⟩+ |110⟩+ |101⟩+ |011⟩). (2.1)

2. Alice wants to teleport the state |𝜑⟩𝑀 = 1√
2(|0⟩+𝑏 |1⟩), where 𝑏 = 1 and−1 corresponding

to message bit 0 and 1. The quantum state of the whole system

|𝜑⟩𝑀 |𝜉⟩𝐴𝐵𝐶 = 1√
2

(|0⟩+ 𝑏 |1⟩)⊗ 1
2(|000⟩+ |110⟩+ |101⟩+ |011⟩). (2.2)

3. If Charlie allows the communication, then he measures the 𝐶-particle in 𝑍-basis and

publicly announces the result.

4. Alice measures her particles 𝑀 and 𝐴 in Bell basis and announces the result.

5. Bob recovers the signal state |𝜑⟩𝐵 = 1√
2(|0⟩+ 𝑏 |1⟩) by applying appropriate unitary. He

measures the 𝐵-particle in 𝑋-basis and reads out Alice’s messages.

Another controlled qsdc scheme was proposed by Gao [198] by using GHZ state and con-

trolled teleportation [199]. In 2007, Xia et. al. proposed a controlled QSDC protocol [200]

by using a 2-dimensional GHZ entangled state and a 3-dimensional Bell-basis state via high-

dimension quantum superdense coding [201, 27, 202], local collective unitary operations and

entanglement swapping.

2.2.6 QSDC using entanglement swapping

In 2004, Gao et. al. [203] proposed a QSDC scheme based on entanglement swapping [204] of

EPR pairs and GHZ basis measurement. Here, Alice, is the sender and Bob is the receiver
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of the secret message. The unitary operators used to encode the secret message are 𝜎00 =

𝑈0, 𝜎01 = 𝑈2, 𝜎10 = 𝑈3, 𝜎11 = 𝑈1 and 𝜎0 = 𝑈0, 𝜎1 = 𝑈2. The steps of the protocol are as

follows.

1. Alice and Bob share enough number of EPR pairs to initiate the protocol. They ran-

domly divide all the EPR pairs into 𝑁 ordered groups {𝜉(1)12, 𝜂(1)34, 𝜁(1)56},

{𝜉(2)12, 𝜂(2)34, 𝜁(2)56}, . . . , {𝜉(𝑁)12, 𝜂(𝑁)34, 𝜁(𝑁)56}, where 𝜉(𝑛)12, 𝜂(𝑛)34, 𝜁(𝑛)56 (1 ≤ 𝑛 ≤

𝑁) are EPR pairs and Alice (Bob) has the 1st, 3rd and 5th (2nd, 4th and 6th) particles.

2. Alice applies 𝜎𝑖𝑗 and 𝜎𝑘 on her 1st and 3rd particles to encode the message bits 𝑖𝑗 and

𝑘 respectively.

3. Alice jointly measures her three qubits in the GHZ basis and informs Bob that she has

made the measurement.

4. Bob measures his three qubits in GHZ basis and from his measurement outcome he infers

Alice’s outcome.

5. Alice announces her measurement result publicly and from the result, Bob gets the secret

message.

2.2.7 QSDC with quantum one-time-pad

In 2003, Deng and Long [68] proposed the first QSDC protocol using single qubits and claimed

that their scheme is unconditionally secure even in a noisy channel. Here the message receiver,

namely Bob, first initiates the communication by preparing single-qubit states randomly in 𝑍

and 𝑋 bases, and then sends these states to the sender Alice. The details of the protocol are

as follows:

1. Bob prepares a sequence 𝑄 of single-qubit states, where each 𝑄𝑖 is randomly chosen from

{|0⟩ , |1⟩ , |+⟩ , |−⟩} and sends the sequence 𝑄 to Alice.

2. Alice chooses some qubits of 𝑄 and randomly measures in 𝑍 and 𝑋 bases. Then they

publicly discuss the positions and the measurement results to calculate the error rate in

the channel. A higher error rate implies the presence of some eavesdroppers and then
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they abort. Otherwise, Alice applies the unitary 𝑈0 and 𝑈3, on the remaining qubits, to

encode her message bit 0 and 1 respectively. Note that 𝑈0 does not change the states

and 𝑈3 flips the states, i.e., 𝑈3 |0⟩ = |1⟩, 𝑈3 |1⟩ = |0⟩, 𝑈3 |+⟩ = |−⟩ and 𝑈3 |−⟩ = |+⟩.

3. Alice sends those encoded qubits to Bob, who measures those qubits in proper bases and

gets the secret message.

In 2005, Hoffmann et. al. [205] showed that the above QSDC protocol [68] is not uncon-

ditionally secure for the case of a noisy channel by giving an undetectable attack scheme. As

a reply to the comment of Hoffmann et. al. [205], the authors of [68] showed that the QSDC

protocol is secure against the attack strategy described in [205] by using quantum privacy

amplification directly [206, 207].

2.2.8 QSDC using multi-particle GHZ state

In 2005, Wang et.al [70] proposed a multi-step QSDC protocol using blocks of maximally

entangled three-particle GHZ states. Before describing the protocol, let us first relabel the

eight independent GHZ-states as:

|𝜓1⟩ = |𝐺+
1 ⟩ ; |𝜓2⟩ = |𝐺−

1 ⟩ ; |𝜓3⟩ = |𝐺+
4 ⟩ ; |𝜓4⟩ = |𝐺−

4 ⟩ ;

|𝜓5⟩ = |𝐺+
3 ⟩ ; |𝜓6⟩ = |𝐺−

3 ⟩ ; |𝜓7⟩ = |𝐺−
2 ⟩ ; |𝜓8⟩ = |𝐺−

2 ⟩ .

Next, eight unitary operations, which are used to encode the secret message are:

𝑂1 = 𝑈1 ⊗ 𝑈1; 𝑂2 = 𝑈0 ⊗ 𝑈1; 𝑂3 = 𝑈3 ⊗ 𝑈1; 𝑂4 = 𝑈2 ⊗ 𝑈1;

𝑂5 = 𝑈0 ⊗ 𝑈2; 𝑂6 = 𝑈1 ⊗ 𝑈2; 𝑂7 = 𝑈2 ⊗ 𝑈2; 𝑂8 = 𝑈3 ⊗ 𝑈2,

where for 1 ≤ 𝑘 ≤ 8, 𝑂𝑘 |𝜓1⟩ = |𝜓𝑘⟩.

Now, each of the states |𝜓𝑘⟩ represents a three-bit binary number corresponding to the

decimal number (𝑘 − 1). The protocol is as follows:

1. Alice prepares 𝑁 GHZ states, each of them is in state |𝜓1⟩𝐴𝐵𝐶 . Alice takes the 𝐶-particle

from each GHZ state and sends the 𝐶-sequence to Bob.

2. After Bob receives the 𝐶-sequence, then Alice and Bob check the security of the channel

by measuring the particles.
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3. Alice encodes her message on the 𝐴𝐵-particles by applying the above unitary operators

and sends the sequence of 𝐵-particles to Bob. Again they do a security check, and if the

channel is secure then Alice sends the 𝐴-sequence to Bob.

4. Bob measures 𝐴𝐵𝐶-particles in GHZ basis and reads Alice’s message.

2.2.9 QSDC with 𝑊 state

In 2006, Jing et. al. [208] proposed a theoretical QSDC scheme based on four-qubit 𝑊 states

and Bell measurements. The four-qubit symmetric 𝑊 state can be written as

|𝑊4⟩ = 1
2(|1000⟩+ |0100⟩+ |0010⟩+ |0001⟩)1234

= 1
2[|Ψ+⟩12 (|Φ+⟩+ |Φ−⟩)34 + (|Φ+⟩+ |Φ−⟩)12 |Ψ+⟩34].

(2.3)

Suppose Alice wants to transmit a message to Bob, then the steps of the protocol are as follows:

1. Alice prepares 𝑁 number of symmetric 𝑊 state |𝑊4⟩. She makes two sequences of qubits

𝐴 and 𝐵, where 𝐴 contains the 1st and 2nd particles of each 𝑊 state, whereas 𝐵 contains

the 3rd and 4th particles of each 𝑊 state, and sends the 𝐵 sequence to Bob.

2. After Bob receives the 𝐵 sequence, they check the security of the channel by measuring

some randomly chosen qubits in 𝑍 or 𝑋 bases randomly.

3. If the channel is secure, Alice measures the 1st and 2nd particles of each 𝑊 state in

Bell basis. She encodes her message by using the following rule: |Ψ+⟩ → 0, |Φ±⟩ → 1.

If the measurement result is the same as her message bit, then she sends the classical

information 0 to Bob, and otherwise sends 1.

4. Bob performs Bell measurement on 3rd and 4th particles, and from the result and the

classical information of Alice, Bob reads the secret message of Alice.

However, Jun et. al. [209] pointed out a security loophole of the above QSDC protocol [208]

and showed that an eavesdropper can get the full secret message by applying the intercept-

and-resend attack strategy. They also proposed an improvement to fix this security issue.
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2.2.10 QSDC with quantum encryption

In 2007, Han et.al [73] presented a QSDC scheme with quantum encryption using controlled-

not (CNot) gate. Here Alice has a secret message, which she wants to send to Bob. The

two-qubit pure entangled states |Ψ⟩𝐴𝐵 = 1√
2(𝑎 |0⟩ |0⟩ + 𝑏 |1⟩ |1⟩) and |Φ⟩𝐴𝐵 = 𝑈𝐴

2 ⊗ 𝑈𝐵
2 |Ψ⟩𝐴𝐵

are used in this protocol. Now, let us describe the QSDC scheme in detail as follows.

1. Bob prepares 𝑛 two-qubit entangled pairs randomly from {|Ψ⟩𝐴𝐵 , |Φ⟩𝐴𝐵} and sends

the sequence of 𝐴-particles, with some decoy qubits in some random positions of the

sequence, to Alice. They use those decoy photons to check the security of the channel.

2. Alice prepares a sequence of qubits 𝑆𝑇 = {𝛾𝑖}𝑛
𝑖=1, where 𝛾𝑖 = |0⟩ or |1⟩ according to her

secret message bit 0 or 1 respectively.

3. For 1 ≤ 𝑖 ≤ 𝑛, Alice applies a 𝐶𝑁𝑂𝑇 gate with control qubit 𝐴𝑖 and target qubit 𝛾𝑖.

Alice sends 𝑆𝑇 , with some decoy photon inserted in some random positions, to Bob.

4. After ensuring the security of the channel, Bob applies a 𝐶𝑁𝑂𝑇 gate with control qubit

𝐵𝑖 and target qubit 𝛾𝑖 (1 ≤ 𝑖 ≤ 𝑛). Then he measures each 𝛾𝑖 in 𝑍-basis and gets the

secret message of Alice.

2.2.11 QSDC with 𝜒-type entangled states

In 2008, Lin et. al. [74] proposed an efficient QSDC protocol based on four-qubit 𝜒-type

entangled state [210, 211], where

|𝜒00⟩3214 = 1
2
√

2
(|0000⟩−|0011⟩−|0101⟩+ |0110⟩+ |1001⟩+ |1010⟩+ |1100⟩+ |1111⟩)3214, (2.4)

where the subscripts denote different qubits. The sender Alice applies the unitary 𝑈0, 𝑈1, 𝑈2, 𝑈3

to encode the 2-bit classical information 00, 11, 01, 10 respectively. An explicit description of

the protocol is as follows.

1. Alice prepares 𝑛 number of 𝜒-type four-particle entangled states |𝜒00⟩3214 and she makes

four sequences 𝑆1 = {𝑃 1
1 , 𝑃

2
1 , . . . , 𝑃

𝑛
1 }, 𝑆2 = {𝑃 1

2 , 𝑃
2
2 , . . . , 𝑃

𝑛
2 }, 𝑆3 = {𝑃 1

3 , 𝑃
2
3 , . . . , 𝑃

𝑛
3 }
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and 𝑆4 = {𝑃 1
4 , 𝑃

2
4 , . . . , 𝑃

𝑛
4 }. Here, the subscripts 1, 2, 3, 4 represent four different particles

in each 𝜒-type state |𝜒00⟩𝑖3214, for 1 ≤ 𝑖 ≤ 𝑛. She keeps sequences 𝑆1 and 𝑆3, and sends

the sequences 𝑆2 and 𝑆4 to Bob.

2. After Bob receives the sequences, they measure some randomly chosen qubits to check

the security of the channel.

3. Alice applies the unitary operators on her remaining particles corresponding to her mes-

sage. Then she sends 𝑆1 and 𝑆3 to Bob.

4. Bob measures each four-particle state in the basis {|𝜒𝑖𝑗⟩3214 = 𝑈 𝑖
1𝑈

𝑗
2 |𝜒00⟩3214 | 𝑖, 𝑗 =

0, 1, 2, 3} and gets the secret message of Alice.

2.2.12 QSDC with user authentication

In 2005, Lee et al. [4] proposed the first QSDC protocol with user authentication using GHZ

states and one-way hash functions. A one-way hash function ℎ is defined as ℎ : {0, 1}* ×

{0, 1}𝑐 → {0, 1}𝑙, where * denotes an arbitrary length, 𝑐 is a counter and 𝑙 is a fixed number.

Let the users Alice and Bob have their secret identities and one-way hash functions 𝐼𝑑𝐴, ℎ𝐴

and 𝐼𝑑𝐵, ℎ𝐵 respectively. Before sending the secret message, the users authenticate each other

with the help of a trusted third party Trent, who knows 𝐼𝑑𝐴, ℎ𝐴 and 𝐼𝑑𝐵, ℎ𝐵. Suppose Alice

wants to send a message to Bob, then the protocol is as follows.

1. Trent generates 𝑁 GHZ tripartite states |Ψ⟩ = |𝜓1⟩ . . . |𝜓𝑁⟩ where |𝜓𝑖⟩ = 1√
2(|000⟩ +

|111⟩)𝐴𝑇 𝐵 for 1 ≤ 𝑖 ≤ 𝑁 and the subscripts 𝐴, 𝑇 and 𝐵 correspond to Alice, Trent, and

Bob, respectively.

2. Trent encodes Alice’s and Bob’s particles with their authentication keys ℎ𝐴(𝐼𝑑𝐴, 𝑐𝐴) and

ℎ𝐵(𝐼𝑑𝐵, 𝑐𝐵) respectively, where 𝑐𝐴(𝑐𝐵) is the counter call of Alice’s (Bob’s) hash function.

If the 𝑖-th bit of ℎ𝐴(𝐼𝑑𝐴, 𝑐𝐴) (ℎ𝐵(𝐼𝑑𝐵, 𝑐𝐵)) is 0, then Trent applies 𝐼, and otherwise he

applies 𝐻 on Alice’s (Bob’s) particle.

3. Trent sends the 𝐴-particles to Alice and the 𝐵-particles to Bob. He keeps the 𝑇 -particles.
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4. Alice and Bob apply the same unitary operators as Trent on the received qubits corre-

sponding to their authentication keys.

5. Alice and Bob measure some randomly chosen qubits and compare the results publicly.

If the error rate is high, then they abort the protocol. Otherwise, they can confirm that

the other party is legitimate and the channel is secure.

6. Alice inserts some check bits on random positions of the secret message 𝑚. Then she

encodes the new bit-string 𝑚′ on the qubits which are not measured in the previous step.

Alice applies 𝐻 if the corresponding bit of 𝑚′ is 0. Otherwise, she first applies 𝜎𝑥 and

then 𝐻.

7. Alice sends the encoded 𝐴-particles to Bob, who makes Bell measurements on the pair

of particles 𝐴𝐵.

8. Trent measures his particles in 𝑋-basis and announces the results. From Bob’s measure-

ment results, and the announced results by Trent, Bob decodes the secret message of

Alice using Table 2.2.

Table 2.2: Decoding rule of the QSDC protocol [4]

Secret bit
of Alice

Encoding
operation

Measurement
result of Trent

Measurement
result of Bob

Decoded
bit

0 𝐻
|+⟩ |Φ−⟩ 0

|Ψ+⟩ 0

|−⟩ |Φ+⟩ 0
|Ψ−⟩ 0

1 𝐻𝑋
|+⟩ |Φ+⟩ 1

|Ψ−⟩ 1

|−⟩ |Φ−⟩ 1
|Ψ+⟩ 1

The authors also proposed another protocol [4], where Alice sends the encoded qubits to

Trent, who makes Bell measurements on the 𝐴𝑇 -particles pairs and announces the results.

Bob measures his 𝐵-particles in 𝑋-basis and decodes the secret message bits of Alice.

However, Zhang et al. showed that these protocols are not secure against the intercept-

and-resend attack and proposed revised versions of the original protocols [142]. Later on, a
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number of new QSDC protocols with authentication are presented [212, 213, 214, 215, 143,

216, 217, 218, 219, 220, 144, 145, 146, 221].

2.2.13 Device independent QSDC

In 2019, Zhou et. al. [129] proposed the first device-independent quantum secure direct com-

munication (DI-QSDC) protocol, where the legitimate parties, namely, Alice and Bob require

to perform the Bell CHSH test [31, 32] to check the security of the protocol. The violation of

the Bell CHSH inequality proves that the device-independent protocol is secure. The encoding

rule for this DI-QSDC is: the Bell states |Φ+⟩, |Φ−⟩, |Ψ+⟩, |Ψ−⟩ represents the two-bits classical

information 00, 01, 10, 11 respectively. The DI-QSDC protocol is described as follows.

1. Alice prepares 𝑁 EPR pairs in |Φ+⟩ state and makes two sequences of single qubits 𝐶,

𝑀 containing the partner qubits of those EPR pairs. She sends the 𝐶 sequence to Bob

through the quantum channel.

2. To check the security of the channel, Alice announces some random positions of the 𝑀

sequence. She measures the selected qubits randomly in basis ℬ𝐴0 , ℬ𝐴1 and ℬ𝐴2 , where

ℬ𝐴𝑗
= {|0⟩ + 𝑒𝑖𝐴𝑗 |1⟩ , |0⟩ − 𝑒𝑖𝐴𝑗 |1⟩} and 𝑗 ∈ {0, 1, 2} with 𝐴0 = 𝜋

4 , 𝐴1 = 0, 𝐴2 = 𝜋
2 .

Bob measures the corresponding partner qubits from the 𝐶 sequence randomly in basis

ℬ𝐵1 and ℬ𝐵2 , where ℬ𝐵𝑗
= {|0⟩ + 𝑒𝑖𝐵𝑗 |1⟩ , |0⟩ − 𝑒𝑖𝐵𝑗 |1⟩} and 𝑗 ∈ {1, 2} with 𝐵1 =

𝜋
4 , 𝐵2 = −𝜋

4 . All the measurement results 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2 have binary outcomes labeled

by ±1. They reveal their measurement basis and results and calculate the value of the

CHSH polynomial [32] 𝑆1 = ⟨𝑎1𝑏1⟩ + ⟨𝑎2𝑏1⟩ + ⟨𝑎1𝑏2⟩ − ⟨𝑎2𝑏2⟩, where ⟨𝑎𝑖𝑏𝑗⟩ = Pr(𝑎 =

𝑏 | 𝑖𝑗)− Pr(𝑎 ̸= 𝑏 | 𝑖𝑗). If 𝑆1 ≤ 2, then they abort the protocol and else continue it.

3. They discard the measured qubits from the sequences 𝑀 and 𝐶. Then Alice encodes her

message by applying the Pauli operators on the remaining qubits of 𝑀 and sends the

encoded qubits to Bob. She applies 𝑈0, 𝑈1, 𝑈2, 𝑈3 to encode the message bits 00, 01, 10, 11

respectively.

4. Bob checks the security of the channel by estimating the value of the CHSH polynomial,

and if he finds the value less or equal to 2, then abort the protocol.
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5. Bob measures the qubit pairs of (𝑀,𝐶) in Bell basis and reads out the secret message

of Alice.

2.2.14 Measurement device independent QSDC

In 2018 Zhou et. al. [5] proposed a MDI-QSDC protocol based on single photons and EPR

pairs. Let Alice be the message sender and Bob be the receiver and Charlie is an untrusted

third party (UTP), who performs all the measurements. The protocol is as follows.

1. Alice prepares (𝑛+ 𝑡0) EPR pairs in |Ψ−⟩ state and makes two sequences of single qubits

𝑆𝐴ℎ, 𝑆𝐴𝑡 containing the partner qubits of those EPR pairs. She also prepares 𝑡1 number

of decoy qubits randomly from {|0⟩ , |1⟩ , |+⟩ , |−⟩} and inserts these qubits in random

positions of 𝑆𝐴𝑡. Let the new sequence be 𝑃𝐴 which contains (𝑛 + 𝑡0 + 𝑡1) single qubit

states. She sends 𝑃𝐴 to Charlie.

2. Bob prepares a sequence 𝑃𝐵 which contains (𝑛 + 𝑡0 + 𝑡1) single qubit states randomly

from {|0⟩ , |1⟩ , |+⟩ , |−⟩} and sends it to Charlie.

3. For 1 ≤ 𝑖 ≤ (𝑛+𝑡0+𝑡1), Charlie measures each pair (𝑃𝐴𝑖
, 𝑃𝐵𝑖

) in Bell basis and announces

the result ℳ𝑖. If 𝑃𝐴𝑖
∈ 𝑆𝐴𝑡, then due to this measurement 𝑃𝐵𝑖

is almost teleported to

Alice, apart from a unitary operation 𝑢𝑇𝑖
. They check the security of the channel from

the other measurement results where 𝑃𝐴𝑖
/∈ 𝑆𝐴𝑡, this security check process is identical

to that in the MDI-QKD [63].

4. If the channel is secure, Bob announces the preparing bases of the states of 𝑃𝐵. Then

Alice encodes her message by applying the unitary operator 𝑈 = 𝑢𝑚𝑢𝑇 on the qubits

of 𝑆𝐴ℎ and sends those to Charlie, where 𝑢𝑚 = 𝑈0 (𝑈3) if the message bit is 0 (1) and

𝑢𝑇 = 𝑈0, 𝑈1, 𝑈3 depending on basis announced by Bob and the Bell measurement results

(see Table 2.3).

5. Charlie measures the qubits of 𝑆𝐴ℎ in 𝑍 or 𝑋 basis depending upon the basis information

of Bob and announces the results. From these measurement results, Bob gets the secret

message of Alice.
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Table 2.3: Alice’s unitary operators [5]

Bob’s basis Measurement result ℳ𝑖 Unitary 𝑢𝑇𝑖

𝑍
|Φ±⟩ 𝑈3
|Ψ±⟩ 𝑈0

𝑋
|Φ+⟩ , |Ψ+⟩ 𝑈1
|Φ−⟩ , |Ψ−⟩ 𝑈0

2.2.15 Quantum dialogue using EPR pairs

In 2004, Nguyen [81] proposed an entanglement-based QSDC protocol for two people to simul-

taneously exchange their messages. They first pointed out a loophole of ping-pong-protocol [67]

and then improve it towards a quantum dialogue protocol.

Suppose Alice and Bob have their 2𝑁 -bit secret messages 𝑎 and 𝑏 respectively, where

𝑎 = {(𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖𝑁 , 𝑗𝑁)}, 𝑏 = {(𝑘1, 𝑙1), (𝑘2, 𝑙2), . . . , (𝑘𝑁 , 𝑙𝑁)} and 𝑖𝑛, 𝑗𝑛, 𝑘𝑛, 𝑙𝑛 ∈ {0, 1}

for 1 ≤ 𝑛 ≤ 𝑁 . To securely exchange their messages, Bob first prepares a large number of

entangled pairs in |Ψ+⟩ℎ𝑡 state. Then Bob and Alice proceed as follows.

1. Set 𝑛 = 0.

2. Set 𝑛 = 𝑛+ 1. Bob encodes his bits (𝑘𝑛, 𝑙𝑛) by applying the unitary 𝐶𝑡
𝑘𝑛,𝑙𝑛 on the 𝑡 qubit

of |Ψ+⟩ℎ𝑛𝑡𝑛
, where 𝐶𝑡

0,0, 𝐶𝑡
0,1, 𝐶𝑡

1,0, 𝐶𝑡
1,1 denote 𝑈0, 𝑈2, 𝑈3, 𝑈1 respectively. He sends the

qubit 𝑡𝑛 to Alice and keeps ℎ𝑛 with him.

3. Alice encodes her secret (𝑖𝑛, 𝑗𝑛) by applying the unitary 𝐶𝑡
𝑖𝑛,𝑗𝑛

on the 𝑡𝑛 and sends it

back to Bob.

4. Bob measures the two qubit ℎ𝑛, 𝑡𝑛 jointly on Bell basis and gets the result |Ψ𝑥𝑛𝑦𝑛⟩, where

|Ψ𝑥𝑛𝑦𝑛⟩ = 𝐶𝑡
𝑥𝑛𝑦𝑛
|Ψ+⟩ℎ𝑛𝑡𝑛

and 𝑥𝑛, 𝑦𝑛 ∈ {0, 1}.

5. Alice tells Bob that the run is message mode (MM) or control mode (CM).

(a) If it is a MM run, then Bob publicly announces the value of (𝑥𝑛, 𝑦𝑛). Both the

parties decode the secret bits from the relations 𝑥𝑛 = 𝑖𝑛 ⊕ 𝑘𝑛 and 𝑦𝑛 = 𝑗𝑛 ⊕ 𝑙𝑛. If

𝑛 < 𝑁 , then they goto the Step 2 and else goto the Step 6.

(b) If it is a CM run, then Alice publicly reveals the value of (𝑖𝑛, 𝑗𝑛) for Bob to check the

eavesdropping by using the relation same as MM mode. If there is no eavesdropper,
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they Bob sets 𝑛 = 𝑛 − 1 and goes to the Step 2. Otherwise he reinitializes the

process by going Step 2.

6. This completes the protocol.

In 2005, Zhong-Xiao et. al. first showed that the above QD protocol [81] is insecure

against intercept and resend attack strategy and then they proposed a modified version of the

protocol [83]. Also in 2006, Xia et. al. proposed a QD protocol using the GHZ state [84]

by modifying Nguyen’s QD protocol [81]. Nguyen proposed another QD protocol [222] by

introducing two control modes for the security check process, where one relies on single-qubit

measurements [67], and the other relies on two-qubit Bell analyses [81].

At that time, Cai [223] pointed out that all the deterministic and direct two-way quantum

communication protocols, also known as ping-pong (PP) type protocols, are insecure against

invisible photon eavesdropping scheme, and proposed a possible improvement as a remedy.

2.2.16 Quantum dialogue based on single-photon

Xin et. al. [85] proposed a QD protocol in 2006 by using 𝑁 batches of single photons. The

legitimate parties, namely, Alice and Bob agree that the two unitary operations 𝑈0 and 𝑈3 are

apply to encode the information 0 and 1 respectively. Suppose Alice and Bob have 𝑛-bit secret

messages to share. The protocol is as follows.

1. Bob prepares 𝑁 batches of single photons, where each batch contains 𝑛 photons randomly

from {|0⟩ , |1⟩ , |+⟩ , |−⟩}. Bob encodes the same message on 𝑁 batches by applying 𝑈0

and 𝑈3 and sends them to Alice.

2. Then Alice and Bob choose (𝑁 − 1) batches randomly to check the security of quantum

channels by measuring them randomly in 𝑍 or 𝑋 bases.

3. If the channel is secure, then Alice encodes her message on the remaining batch of

photons. Bob announces the initial states and preparation bases of the photons. Alice

measures those photons and gets Bob’s message. She announces the measurement results

and from those Bob gets the message of Alice.
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In 2008, Gao et. al. [90] analyzed the security of the QSDC and QD protocols [81, 83,

85, 224, 225, 84, 71, 226, 227] and showed that the transmitted secret information is partially

leaked out from the public annunciations of the legal users. Also, Tan et. al. [88] independently

pointed out the insecurity of QD protocol [81] and showed that fifty percent of the secret

information is leaked through the classical channel. In 2010, shi et. al. proposed some QD

protocols via single photons, which can overcome the drawback of information leakage [92, 228].

In the same year, Shi also proposed another QD protocol by introducing the auxiliary particle

and utilizing the special character of Bell state, “correlation extractability” [229]. A QD

protocol by using a non-symmetric quantum channel was proposed by Bang et. al. [230]. Gan

et. al. [231] proposed a QD protocol by using the idea of the entanglement swapping of genuine

four-particle entangled states, the “two-step” transmission and the block transmission.

2.2.17 Multi-party QSDC using quantum entanglement-swapping

In 2005, Gao et. al. [94] presented a simultaneous QSDC scheme between a central party

Charlie, and other two parties Alice and Bob, where Alice and Bob send their secret message

to Charlie by using entanglement swapping. Alice applies the unitary operators 𝑈0, 𝑈1, 𝑈2, 𝑈3

to encode her message bits 00, 11, 01, 10 respectively, and Bob applies 𝑈0, 𝑈2 to encode message

bit 0, 1 respectively. The protocol is as follows:

1. Alice, Bob and Charlie share 𝑁 ordered pairs of GHZ triplets {𝜉(1)123, 𝜂(1)456},

{𝜉(2)123, 𝜂(2)456}, . . . , {𝜉(𝑁)123, 𝜂(𝑁)456}, where Alice has the 1st and 4th particles, Bob

has the 2nd and 5th particles, and Charlie has 3rd and 6th particles of each pair of GHZ

state {𝜉(𝑖)123, 𝜂(𝑖)456}, 1 ≤ 𝑖 ≤ 𝑁 .

2. Alice and Bob encode their message bits by applying corresponding unitary operators

on the 1st and 2nd particles respectively.

3. Alice (Bob) measures the 1st and 4th (2nd and 5th) particles in the Bell basis and they

inform Charlie that the Bell measurement is done.

4. Charlie measures the 3rd and 6th particles in Bell basis and deduces the two possible

outcomes of Alice and Bob’s measurements.
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5. Alice and Bob announce their measurement results publicly and from those information

and Charlie’s measurement results, he can read the secret messages.

In 2005, Ting et. al. [95] generalize the QSDC scheme [94] and proposed a simultaneous

QSDC scheme between the central party and other 𝑀 parties by using (𝑀 + 1)-particle GHZ

states and entanglement swapping between communicating parties. In 2006, Xiao et. al. [232]

proposed a QSDC scheme with one sender and𝑁 receivers by using (𝑁+1)-particle GHZ states.

However, Fei et. al. [233] analyse the security of the QSDC protocol [232] and showed that

an eavesdropper can utilize a special property of GHZ states to get the whole secret message

without being detected. They also proposed an improved version of this QSDC protocol, which

can resist this kind of attack.

2.2.18 Three-party QSDC based on GHZ states

In 2006, Jin et. al. [71] presented a three-party simultaneous QSDC scheme by using GHZ

states, where the three parties Alice, Bob and Charlie can exchange their secret messages

among them. This QSDC protocol can be directly generalized to multi-party QSDC by using

𝑛-particle GHZ states.

For the three-party QSDC scheme, the encoding rules and are as follows:

• Alice encodes her two-bits message 00, 01, 10, 11 by applying the unitary 𝑈0, 𝑈2, 𝑈3, 𝑈1

respectively.

• Bob and Charlie perform the unitary operations 𝑈0, 𝑈3 to encode their one-bit message

0, 1 respectively.

The protocol is described below.

1. Alice prepares 𝑁 groups three-particle GHZ states randomly from {𝐺±
1 , 𝐺

±
2 , 𝐺

±
3 , 𝐺

±
4 } and

send the sequence of 2nd particles to Bob and the sequence of 3rd particles to Charlie.

2. They choose some particles to check the security of the channel. If there is a negligi-

ble error rate then they continue the protocol and encode their message bits on their

remaining particles by applying the corresponding unitary.
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3. Bob and Charlie send their qubits to Alice, who measures each 3-qubit state in the GHZ

basis 𝒢. She publicly announces the measurement result and the initial GHZ state, and

from this information, each of them gets others’ secret messages.

In 2007 Zhong et. al. [226] pointed out a security loophole of the above three-party QSDC

protocol [71] and showed that one bit of Alice’s message is always leaked out without any

active attack. They also proposed an improved version of the same. However, in 2008, Gao

et. al. [234] analyzed the security of the QSDC protocols [71, 226] and showed that both the

protocols have an information leakage problem.

2.2.19 Three-party QSDC with EPR pairs

In 2007, Wang et. al. [235] presented a three-party simultaneous QSDC scheme by using EPR

pairs, where each party can obtain the 𝑁 -bit secret messages of the other two parties. Let the

secret message of Alice, Bob and Charlie be {𝑖1, 𝑖2, . . . , 𝑖𝑁}, {𝑗1, 𝑗2, . . . , 𝑗𝑁} and {𝑘1, 𝑘2, . . . , 𝑘𝑁}

respectively. Bob and Charlie apply the unitary operators 𝐶𝑗𝑛 and 𝐶 ′
𝑘𝑛

to encode their message

bits 𝑗𝑛 and 𝑘𝑛 respectively, where

𝐶𝑗𝑛 =

⎧⎪⎪⎨⎪⎪⎩
𝑈0, if 𝑗𝑛 = 0,

𝑈2, if 𝑗𝑛 = 1; and 𝐶 ′
𝑗𝑛

=

⎧⎪⎪⎨⎪⎪⎩
𝑈0, if 𝑘𝑛 = 0,

𝑈1, if 𝑘𝑛 = 1.

To initiate the QSDC protocol, Alice first prepares enough number of EPR pairs all in the

|Ψ+⟩ℎ𝑡 state, where the ℎ and 𝑡 denote home particle and travel particle respectively. Then

Alice, Bob and Charlie proceed as follows:

1. Set 𝑛 = 0.

2. Set 𝑛 = 𝑛+ 1. Alice sends the qubit 𝑡𝑛 to Bob and keeps ℎ𝑛 with her.

3. Bob either measures the received qubit to check eavesdropping or encodes it.

76



(a) Eavesdropping check: Bob measures the qubit 𝑡𝑛 in 𝑍 or 𝑋 basis randomly and

ask Alice to measure the qubit ℎ𝑛 in the same basis. They compare the results to

calculate the error rate.

(b) If Bob wants to encode the qubit 𝑡𝑛, he chooses either message mode(MM) or control

mode (CM). In MM he applies 𝐶𝑗𝑛 on 𝑡𝑛 and in CM he does nothing. Then Bob

sends 𝑡𝑛 to Charlie.

4. When Charlie received the qubit, Bob announces the running mode MM or CM.

(a) If it was a CM, then Alice and Charlie check the security of the channel as procedure

in Step 3a.

(b) If it was a MM, then Charlie choose a running mode either MM or CM for himself.

In MM, he encodes the qubit 𝑡𝑛 by applying 𝐶 ′
𝑘𝑛

and sends it to Alice. In CM, he

prepares a decoy qubit randomly from {|0⟩ , |1⟩ , |+⟩ , |−⟩} and sends it to Alice.

5. After Alice receives the qubit, Charlie announces the mode of communication.

(a) If it was CM, then he announces the state of the decoy qubit and Alice measures

the qubit to check the security of the channel.

(b) If it was MM, then Alice measures (ℎ𝑛, 𝑡𝑛) in Bell basis and gets the value of 𝑗𝑛 and

𝑘𝑛. Then she announces the values 𝑖𝑛⊕ 𝑗𝑛 and 𝑖𝑛⊕ 𝑘𝑛, and from these information

Bob and Charlie get other two messages.

6. If 𝑛 < 𝑁 , then goto Step 2, else the protocol is completed.

In 2010, Chong et al. [236] proposed an enhancement on Wang et al.’s scheme [235] such

that the communications process changes from sequential to parallel. In this protocol, Alice

sends ℎ𝑛 (𝑡𝑛) qubit of each EPR pair to Bob (Charlie), then they encode their message bits

and send back those qubits to Alice.

However, in 2011, Wang et al. [237] pointed out that both of the above schemes [235, 236]

have the information leakage problem and any eavesdropper can directly get some information

about the secret messages without any active attack.
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Table 2.4: Resource estimation of the discussed QSDC protocols

Protocol
No. of
Single
Qubit

No. of
Entangled
Qubit

Measurement
Basis

Qubit
Transmission

Encoding,
Decoding
Operators

Length
of the
message

Ref [58] 0 𝑛 EPR pairs 𝑍,𝑋, Bell basis 2𝑛 0 2𝑛
Ref [66] 0 𝑛 EPR pairs 𝑍,𝑋, Bell basis 2𝑛 𝑈0, 𝑈1, 𝑈2, 𝑈3 2𝑛
Ref [67] 0 𝑛 EPR pairs 𝑍, Bell basis 2𝑛 𝑈0, 𝑈1 𝑛
Ref [100] 𝑛 𝑛 EPR pairs 𝑋, Bell basis No 𝑈0, 𝑈1, 𝑈2, 𝑈3 𝑛
Ref [197] 𝑛 𝑛 triplets 𝑍,𝑋, Bell basis No 𝑈0, 𝑈1, 𝑈2, 𝑈3 𝑛
Ref [203] 0 3𝑛 EPR pairs GHZ basis No 𝑈0, 𝑈1, 𝑈2, 𝑈3 3𝑛
Ref [68] 𝑛 0 𝑍,𝑋 2𝑛 𝑈0, 𝑈3 𝑛

Ref [70] 0 𝑛 GHZ states 𝑍,𝑋, GHZ basis 3𝑛

𝑈1 ⊗ 𝑈1, 𝑈0 ⊗ 𝑈1,
𝑈3 ⊗ 𝑈1, 𝑈2 ⊗ 𝑈1,
𝑈0 ⊗ 𝑈2, 𝑈1 ⊗ 𝑈2,
𝑈2 ⊗ 𝑈2, 𝑈3 ⊗ 𝑈2

3𝑛

Ref [208] 0 𝑛 𝑊 states 𝑍,𝑋, Bell basis 2𝑛 − 𝑛

Ref [73] 𝑛
𝑛 two-qubit
entangled pairs 𝑍 2𝑛 CNot 𝑛

Ref [74] 0 𝑛 four qubit
𝜒- type states 𝑍,𝑋, Bell, 𝜒-basis 4𝑛 𝑈0, 𝑈1, 𝑈2, 𝑈3 2𝑛

Ref [129] 0 𝑛 EPR pairs ℬ𝜃 (𝜃 = 0,±𝜋
4 ,

𝜋
2 ), Bell basis 2𝑛 𝑈0, 𝑈1, 𝑈2, 𝑈3 2𝑛

Ref [5] 𝑛 𝑛 EPR pairs 𝑍,𝑋, Bell basis 3𝑛 𝑈0, 𝑈1, 𝑈3 𝑛
Ref [81] 0 𝑛 EPR pairs Bell basis 2𝑛 𝑈0, 𝑈1, 𝑈2, 𝑈3 4𝑛
Ref [85] 𝑛 0 𝑍,𝑋 𝑛 𝑈0, 𝑈3 2𝑛
Ref [94] 0 2𝑛 GHZ states Bell basis No 𝑈0, 𝑈1, 𝑈2, 𝑈3 3𝑛
Ref [71] 0 𝑛 GHZ states GHZ basis 4𝑛 𝑈0, 𝑈1, 𝑈2, 𝑈3 3𝑛
Ref [235] 0 𝑛 EPR pairs Bell basis 3𝑛 𝑈0, 𝑈1, 𝑈2 3𝑛

2.3 Details of the QSDC and QD protocols which we

improved

In this section, we briefly describe all the protocols which we analyzed. First, we discuss a

QSDC protocol with user authentication [1], then an MDI-QSDC protocol [2], thereafter an

MDI-QD protocol [3].

2.3.1 Yan et al.’s QSDC protocol with mutual authentication [1]

In 2020, Yan et al. proposed a QSDC protocol with mutual authentication. For simplicity,

we call this protocol as YZCSS protocol. There are two parties, namely, Alice and Bob

with their corresponding pre-shared 𝑁 -bit secret identities 𝐼𝐷𝐴 and 𝐼𝐷𝐵 respectively, where

𝐼𝐷𝐴, 𝐼𝐷𝐵 ∈ {0, 1}𝑁 . Alice wants to send a secret message 𝑀 ∈ {0, 1}𝑁 to Bob by using

single photons and Bell states. The steps of the protocol are as follows:

78



1. Alice and Bob have their previously shared identities 𝐼𝐷𝐴 and 𝐼𝐷𝐵, they used some

QKD to exchange 𝐼𝐷𝐴 and 𝐼𝐷𝐵. Alice prepares two ordered sets of two-qubit states

𝑆𝑀 and 𝑆𝐴 corresponding to the message 𝑀 and her own identity 𝐼𝐷𝐴, each ordered set

contains 𝑁 qubit pairs. For 1 ≤ 𝑖 ≤ 𝑁 , let the 𝑖-th bit of 𝑀 (or 𝐼𝐷𝐴 or 𝐼𝐷𝐵) be 𝑀𝑖

(or 𝐼𝐷𝐴,𝑖 or 𝐼𝐷𝐵,𝑖) and the 𝑖-th qubit of 𝑆𝑀 (or 𝑆𝐴) be 𝑆𝑀,𝑖 (or 𝑆𝐴,𝑖). She prepares the

qubits by using the following rule:

(a) if 𝑀𝑖 (or 𝐼𝐷𝐴,𝑖) = 0, then 𝑆𝑀,𝑖 (or 𝑆𝐴,𝑖) = |01⟩ or |10⟩ with equal probability,

(b) if 𝑀𝑖 (or 𝐼𝐷𝐴,𝑖) = 1, then 𝑆𝑀,𝑖 (or 𝑆𝐴,𝑖) = |Φ+⟩ or |Φ−⟩ with equal probability.

The qubit pairs of the ordered set 𝑆𝐴 are called decoy states. Now Alice inserts these

decoy states into the ordered set 𝑆𝑀 according to the following rule:

(a) if 𝐼𝐷𝐵,𝑖 = 0, then she inserts 𝑆𝐴,𝑖 before 𝑆𝑀,𝑖, and

(b) if 𝐼𝐷𝐵,𝑖 = 1, then she inserts 𝑆𝐴,𝑖 after 𝑆𝑀,𝑖.

Let the new ordered set be 𝑆 containing 2𝑁 qubit pairs. Then Alice sends 𝑆 to bob

using a quantum channel. Let us take an example.

Example 1. Let 𝑀 = 10110, 𝐼𝐷𝐴 = 01101 and 𝐼𝐷𝐵 = 01001.

Then 𝑆𝑀 = {|Φ+⟩ , |01⟩ , |Φ+⟩ , |Φ−⟩ , |01⟩}, 𝑆𝐴 = {|10⟩ , |Φ−⟩ , |Φ−⟩ , |01⟩ , |Φ+⟩} and

𝑆 = {|10⟩ , |Φ+⟩ , |01⟩ , |Φ−⟩ , |Φ−⟩ , |Φ+⟩ , |01⟩ , |Φ−⟩ , |01⟩ , |Φ+⟩}.

2. After Bob receives 𝑆, he knows the exact positions of the decoy photons correspond-

ing to his identity 𝐼𝐷𝐵. Bob measures those decoy photons in proper bases accord-

ing to 𝐼𝐷𝐴. If 𝐼𝐷𝐴,𝑖 = 0, then he chooses 𝑍 × 𝑍 basis, where 𝑍 = {|0⟩ , |1⟩}, thus

𝑍 × 𝑍 = {|00⟩ , |01⟩ , |10⟩ , |11⟩}, and if 𝐼𝐷𝐴,𝑖 = 1, then he chooses the Bell basis

= {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩} to measure 𝑆𝐴,𝑖. Bob also measures the qubit pairs of 𝑆𝑀

in 𝑍 × 𝑍 basis or Bell basis randomly. He notes the measurement results.

3. Bob asks Alice to announce the initial states of the qubit pairs of 𝑆𝐴 for security check.

They compare the initial states and the measurement results of the decoy photons, and

calculate the error rate. If the error rate exceeds some pre-defined threshold value, then

they terminate the protocol, else they continue.
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Figure 2-1: Block diagram of the Yan et al.’s QSDC protocol with mutual authentication [1]
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Table 2.5: Different cases of the YZCSS protocol [1]

Secret message Encoded Basis chosen measurement Decoded
bit of Alice Mi qubit SM,i by Bob result of Bob secret bit

0
|01⟩ 𝑍 × 𝑍 basis |01⟩ 0

Bell basis |Ψ+⟩ or |Ψ−⟩ 0

|10⟩ 𝑍 × 𝑍 basis |10⟩ 0
Bell basis |Ψ+⟩ or |Ψ−⟩ 0

1
|Φ+⟩ 𝑍 × 𝑍 basis |00⟩ or |11⟩ 1

Bell basis |Φ+⟩ 1

|Φ−⟩ 𝑍 × 𝑍 basis |00⟩ or |11⟩ 1
Bell basis |Φ−⟩ 1

4. Bob gets all the secret message bits from the measurement results of the qubit pairs

of 𝑆𝑀 . The relation between the measurement results and the secret message bits are

given in Table 2.5. To check the integrity of the secret message Alice and Bob publicly

compare some parts of the message.

The authors of [1] have shown that the YZCSS protocol is secure against various kinds of

attacks, such as the impersonation attack, the intercept-and-resend attack, man-in-the-middle

attack, entangle-measure attack.

2.3.2 Niu et al.’s MDI-QSDC Protocol [2]

In this section, we briefly describe the MDI-QSDC and MDI-QD protocols proposed by Niu

et al. in 2018.

MDI-QSDC protocol

There are three parties in this protocol, namely, Alice, Bob and Charlie, where Alice wants

to send some message to Bob, and Charlie is an untrusted third party, who performs all the

measurements. They use the EPR pairs |Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩ for sending the message bits.

The steps of the protocol are as follows:

1. Alice prepares 𝑛 EPR pairs randomly in |Ψ+⟩ and |Ψ−⟩ states and creates two sequences

𝑆𝐴1 and 𝑆𝐴2 of single photons, such that for 1 ≤ 𝑖 ≤ 𝑛, the 𝑖-th qubits of 𝑆𝐴1 and 𝑆𝐴2 are

partners of each other in the 𝑖-th EPR pair. Similarly, Bob also prepares 𝑆𝐵1 and 𝑆𝐵2
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Figure 2-2: Block diagram of Niu et al.’s MDI-QSDC Protocol [2]
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from his 𝑛 EPR pairs randomly chosen from |Ψ+⟩ and |Ψ−⟩. Alice (Bob) also chooses

𝑚 single qubit states randomly from {|0⟩ , |1⟩ , |+⟩ = 1√
2(|0⟩ + |1⟩), |−⟩ = 1√

2(|0⟩ − |1⟩)}

and inserts these qubits in random positions of 𝑆𝐴2 (𝑆𝐵2), and let the new sequence be

𝐶𝐴2 (𝐶𝐵2) containing (𝑛+𝑚) single qubit states.

2. Alice (Bob) sends the sequence 𝐶𝐴2 (𝐶𝐵2) to Charlie and keeps 𝑆𝐴1 (𝑆𝐵1) in her (his)

lab.

3. Charlie makes Bell measurement on each pair of 𝐶𝐴2 and 𝐶𝐵2 (i.e., the 𝑖-th Bell measure-

ment on the 𝑖-th qubit of 𝐶𝐴2 and the 𝑖-th qubit of 𝐶𝐵2 , 1 ≤ 𝑖 ≤ 𝑛+𝑚) and announces

the results.

4. Alice and Bob announce the positions of the single qubit states in the sequences 𝐶𝐴2 and

𝐶𝐵2 respectively. For 1 ≤ 𝑖 ≤ 𝑛+𝑚, four cases may arise.

(a) If the 𝑖-th qubit of 𝐶𝐴2 and the 𝑖-th qubit of 𝐶𝐵2 are from 𝑆𝐴2 and 𝑆𝐵2 respectively,

then as a result of quantum entanglement swapping [204], the Bell measurement

causes the corresponding partner qubits of 𝑆𝐴1 and 𝑆𝐵1 become an EPR pair, which

is shown in Equation (2.5).

|Ψ+⟩𝐴1𝐴2
|Ψ+⟩𝐵1𝐵2

= 1
2(|Ψ+⟩𝐴1𝐵1

|Ψ+⟩𝐴2𝐵2
− |Ψ−⟩𝐴1𝐵1

|Ψ−⟩𝐴2𝐵2
+

|Φ+⟩𝐴1𝐵1
|Φ+⟩𝐴2𝐵2

− |Φ−⟩𝐴1𝐵1
|Φ−⟩𝐴2𝐵2

),

|Ψ−⟩𝐴1𝐴2
|Ψ+⟩𝐵1𝐵2

= 1
2(|Ψ−⟩𝐴1𝐵1

|Ψ+⟩𝐴2𝐵2
− |Ψ+⟩𝐴1𝐵1

|Ψ−⟩𝐴2𝐵2
+

|Φ−⟩𝐴1𝐵1
|Φ+⟩𝐴2𝐵2

− |Φ+⟩𝐴1𝐵1
|Φ−⟩𝐴2𝐵2

),

|Ψ+⟩𝐴1𝐴2
|Ψ−⟩𝐵1𝐵2

= 1
2(|Ψ+⟩𝐴1𝐵1

|Ψ−⟩𝐴2𝐵2
− |Ψ−⟩𝐴1𝐵1

|Ψ+⟩𝐴2𝐵2
+

|Φ−⟩𝐴1𝐵1
|Φ+⟩𝐴2𝐵2

− |Φ+⟩𝐴1𝐵1
|Φ−⟩𝐴2𝐵2

),

|Ψ−⟩𝐴1𝐴2
|Ψ−⟩𝐵1𝐵2

= 1
2(|Ψ−⟩𝐴1𝐵1

|Ψ−⟩𝐴2𝐵2
− |Ψ+⟩𝐴1𝐵1

|Ψ+⟩𝐴2𝐵2
+

|Φ+⟩𝐴1𝐵1
|Φ+⟩𝐴2𝐵2

− |Φ−⟩𝐴1𝐵1
|Φ−⟩𝐴2𝐵2

).

(2.5)

(b) If the 𝑖-th qubit of 𝐶𝐴2 is from 𝑆𝐴2 and the 𝑖-th qubit of 𝐶𝐵2 is any single qubit from

the set {|0⟩ , |1⟩ , |+⟩ , |−⟩}, then Alice and Bob discard the 𝑖-th Bell measurement
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result.

(c) If the 𝑖-th qubit of 𝐶𝐴2 is a single qubit from the set {|0⟩ , |1⟩ , |+⟩ , |−⟩} and the 𝑖-th

qubit of 𝐶𝐵2 is from 𝑆𝐵2 , then also Alice and Bob discard the 𝑖-th Bell measurement

result.

(d) If both the 𝑖-th qubits of 𝐶𝐴2 and 𝐶𝐵2 are from the set {|0⟩ , |1⟩ , |+⟩ , |−⟩}, then

Alice and Bob exchange the basis information of their single qubits. If the bases

are different, then they discard the 𝑖-th Bell measurement result. Else it is used for

security checking. A pair of single qubits with identical bases can be written as:

|0⟩𝐴2
|0⟩𝐵2

= 1√
2

(|Φ+⟩𝐴2𝐵2
+ |Φ−⟩𝐴2𝐵2

),

|1⟩𝐴2
|1⟩𝐵2

= 1√
2

(|Φ+⟩𝐴2𝐵2
− |Φ−⟩𝐴2𝐵2

),

|0⟩𝐴2
|1⟩𝐵2

= 1√
2

(|Ψ+⟩𝐴2𝐵2
+ |Ψ−⟩𝐴2𝐵2

),

|1⟩𝐴2
|0⟩𝐵2

= 1√
2

(|Ψ+⟩𝐴2𝐵2
− |Ψ−⟩𝐴2𝐵2

);

(2.6)

and
|+⟩𝐴2

|+⟩𝐵2
= 1√

2
(|Φ+⟩𝐴2𝐵2

+ |Ψ+⟩𝐴2𝐵2
),

|−⟩𝐴2
|−⟩𝐵2

= 1√
2

(|Φ+⟩𝐴2𝐵2
− |Ψ+⟩𝐴2𝐵2

).

|+⟩𝐴2
|−⟩𝐵2

= 1√
2

(|Φ−⟩𝐴2𝐵2
− |Ψ−⟩𝐴2𝐵2

),

|−⟩𝐴2
|+⟩𝐵2

= 1√
2

(|Φ−⟩𝐴2𝐵2
+ |Ψ−⟩𝐴2𝐵2

).

(2.7)

Using the relations (2.6) and (2.7), Alice and Bob estimate the error in the channel

and decide to continue the protocol or not.

5. Alice and Bob discard the qubits, which are not entangled, from their sequences 𝑆𝐴1 and

𝑆𝐵1 , and make the new sequences 𝑀𝐴 and 𝑀𝐵 respectively. Let the number of discarded

qubits from each set be 𝛿, and then each new sequence contains (𝑛 − 𝛿) single qubits.

Alice performs the unitary operation 𝜎𝑧 [6], on the qubits of 𝑀𝐴, whose initial states

were |Ψ+⟩. This process is equivalent to the fact that Alice prepared all the initial EPR

pairs in |Ψ−⟩ state. Now, only Bob knows the actual state of the qubit pairs (𝑀𝐴𝑖,𝑀𝐵𝑖)
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for 1 ≤ 𝑖 ≤ 𝑛− 𝛿, where 𝑀𝐴𝑖 and 𝑀𝐵𝑖 are the 𝑖-th qubits of the sequences 𝑀𝐴 and 𝑀𝐵

respectively. Due to quantum entanglement swapping, (𝑀𝐴𝑖,𝑀𝐵𝑖) is in a Bell state (see

Equation (2.5)).

6. Message encoding: Alice puts some random checking bits on random positions of her

message. She applies one of the four unitary operators (Pauli matrices [6]), 𝐼, 𝜎𝑥, 𝑖𝜎𝑦

and 𝜎𝑧, on the qubits of 𝑀𝐴, to encode the information 00, 01, 10, and 11 respectively. To

make the protocol secure against the intercept-and-resend attack, Bob randomly applies

𝐼 or 𝜎𝑧 on the qubits of 𝑀𝐵.

7. Alice (Bob) sends the sequence 𝑀𝐴 (𝑀𝐵) to Charlie, who measures each pair of qubits

of 𝑀𝐴 and 𝑀𝐵 on Bell basis and announces the results. From the measurement results,

Bob decodes the message of Alice. Then Alice announces the positions and value of

the random checking bits, and from this information, they can check the integrity of

the message. A non-negligible error implies the existence of some eavesdropper in the

channel.

MDI-QD protocol

This is a simple generalization of the previous MDI-QSDC protocol. The first five steps are the

same as above. To encode their messages, Alice and Bob divide the pair of sequence (𝑀𝐴,𝑀𝐵)

into two disjoint parts (𝑀1
𝐴,𝑀

1
𝐵) and (𝑀2

𝐴,𝑀
2
𝐵). One part is used for sending the message

from Alice to Bob and another part is used for sending a message from Bob to Alice.

2.3.3 Maitra’s MDI-QD Protocol [3]

In this section, we shortly describe the MDI-QD protocol proposed in [3], where two legitimate

parties, namely Alice and Bob, can simultaneously exchange their messages. The proposal in [3]

is a composition of two different protocols, one is the BB84 QKD protocol [52] and another

is a modified version of Lo et al.’s MDI-QKD protocol [63]. In the first part, Alice and Bob

perform BB84 QKD [52] to generate a shared key 𝑘 between themselves. In the second part,

they prepare their sets of qubits 𝑄𝐴 and 𝑄𝐵, corresponding to 𝑘 and their respective messages

𝑎 and 𝑏. The qubits preparation procedure is given in Algorithm 2.
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Algorithm 2: Algorithm for encoding
Let the key be 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛, Alice’s message be 𝑎 = 𝑎1𝑎2 . . . 𝑎𝑛 and Bob’s message
be 𝑏 = 𝑏1𝑏2 . . . 𝑏𝑛.

Then for 1 ≤ 𝑖 ≤ 𝑛, Alice and Bob prepare their qubits according to the following
strategy:

1. if 𝑎𝑖 (𝑏𝑖)= 0 and 𝑘𝑖 = 0, prepares |0⟩.

2. if 𝑎𝑖 (𝑏𝑖)= 1 and 𝑘𝑖 = 0, prepares |1⟩.

3. if 𝑎𝑖 (𝑏𝑖)= 0 and 𝑘𝑖 = 1, prepares |+⟩.

4. if 𝑎𝑖 (𝑏𝑖)= 1 and 𝑘𝑖 = 1, prepares |−⟩.

Alice and Bob send 𝑄𝐴 and 𝑄𝐵 to an untrusted third party or UTP (who may be an

Eavesdropper, Eve). Then the UTP measures the two-qubit states in Bell basis (i.e, ℬ2) and

announces the result. From the result, Alice and Bob decode the messages of each other (see

Table 2.6). Details are given in Figure 3.

Table 2.6: Different cases in MDI QD [3]

Bits to communicate by Qubits prepared by Probabilities of measurement
results at UTP’s end

Alice Bob Alice (𝑄𝐴𝑖) Bob (𝑄𝐵𝑖) |Φ+⟩ |Φ−⟩ |Ψ+⟩ |Ψ−⟩
0 0 |0⟩ |0⟩ 1/2 1/2 0 0
0 1 |0⟩ |1⟩ 0 0 1/2 1/2
1 0 |1⟩ |0⟩ 0 0 1/2 1/2
1 1 |1⟩ |1⟩ 1/2 1/2 0 0
0 0 |+⟩ |+⟩ 1/2 0 1/2 0
0 1 |+⟩ |−⟩ 0 1/2 0 1/2
1 0 |−⟩ |+⟩ 0 1/2 0 1/2
1 1 |−⟩ |−⟩ 1/2 0 1/2 0

It is clear from Table 2.6 that,

• if the prepared qubit of Alice is |0⟩(|1⟩), then Alice guesses message bit of Bob with

probability 1 as follows:

Measurement result =

⎧⎪⎪⎨⎪⎪⎩
|𝜑+⟩ or |𝜑−⟩ ⇒ message bit of Bob is 0 (1),

|𝜓+⟩ or |𝜓−⟩ ⇒ message bit of Bob is 1 (0),
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Figure 2-3: Block diagram of the Maitra’s MDI-QD Protocol [3]
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Algorithm 3: Maitra’s MDI-QD Protocol [3]

1. Alice and Bob share an 𝑛-bit key stream (𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛) between themselves using
BB84 protocol.

2. Let the 𝑛-bit message of Alice (Bob) be 𝑎 = 𝑎1𝑎2 . . . 𝑎𝑛 (𝑏 = 𝑏1𝑏2 . . . 𝑏𝑛).

3. For 1 ≤ 𝑖 ≤ 𝑛, Alice (Bob) prepares the qubits
𝑄𝐴 = 𝑄𝐴1𝑄𝐴2 . . . 𝑄𝐴𝑛 (𝑄𝐵 = 𝑄𝐵1𝑄𝐵2 . . . 𝑄𝐵𝑛) at her (his) end according to
Algorithm 2.

4. Alice (Bob) sends her (his) prepared qubits 𝑄𝐴 (𝑄𝐵) to an untrusted third party
(UTP).

5. For 1 ≤ 𝑖 ≤ 𝑛, the UTP measures each two qubits 𝑄𝐴𝑖 and 𝑄𝐵𝑖 in Bell basis (i.e.,
ℬ2 = {|Φ+⟩ |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}) and announces the measurement result
ℳ𝑖 ∈ {|Φ+⟩ |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩} publicly. Table 2.6 shows the possible measurements
results with their occurring probabilities.

6. For 1 ≤ 𝑖 ≤ 𝑛, Alice and Bob consider the 𝑖-th measurement result ℳ𝑖, if ℳ𝑖 = |Φ−⟩
or |Ψ+⟩ and discard the other cases.

7. They randomly choose 𝛿𝑛 number of measurement results to estimate the error,
where 𝛿 ≪ 1 is a small fraction.

8. Alice and Bob guess the message bits of other, corresponding to their chosen 𝛿𝑛
number of measurement results using Table 2.7 and Table 2.8.

9. For the above-mentioned 𝛿𝑛 rounds, they disclose their respective guesses.

10. If the estimated error is greater than some predefined threshold value, then they abort.
Else they continue and go to the next step.

11. For the remaining measurement results, Alice and Bob guess the message bits of
each other, using Table 2.7 and Table 2.8.

• if the prepared qubit of Alice is |+⟩(|−⟩), then Alice guesses message bit of Bob with

probability 1 as follows:

Measurement result =

⎧⎪⎪⎨⎪⎪⎩
|𝜑+⟩ or |𝜓+⟩ ⇒ message bit of Bob is 0 (1),

|𝜑−⟩ or |𝜓−⟩ ⇒ message bit of Bob is 1 (0).

From the above discussion and Table 2.6, let us construct two more tables, namely Table 2.7
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and Table 2.8, containing the information of Alice’s guess and Bob’s guess about other’s

message bits for different cases.

Table 2.7: Alice’s guess about Bob’s message bit for different cases of MDI-QD [3]

Key Alice’s Alice’s Alice’s guess about 𝑏𝑖 when ℳ𝑖

bit 𝑘𝑖 bit 𝑎𝑖 qubit 𝑄𝐴𝑖 |𝜑+⟩ |𝜑−⟩ |𝜓+⟩ |𝜓−⟩
0 0 |0⟩ 0 0 1 1
0 1 |1⟩ 1 1 0 0
1 0 |+⟩ 0 1 0 1
1 1 |−⟩ 1 0 1 0

Table 2.8: Bob’s guess about Alice’s message bit for different casesof MDI-QD [3]

Key Bob’s Bob’s Bob’s guess about 𝑎𝑖 when ℳ𝑖

bit 𝑘𝑖 bit 𝑏𝑖 qubit 𝑄𝐵𝑖 |𝜑+⟩ |𝜑−⟩ |𝜓+⟩ |𝜓−⟩
0 0 |0⟩ 0 0 1 1
0 1 |1⟩ 1 1 0 0
1 0 |+⟩ 0 1 0 1
1 1 |−⟩ 1 0 1 0

Hence from Table 2.7 and Table 2.8, we can say that both Alice and Bob can exchange

their message simultaneously.

Now we can see from Table 2.6, if the measurement result is |𝜑+⟩ or |𝜓−⟩, then Eve

knows the XOR of the communicated bits between Alice and Bob. In that case, Eve has 1

bit information among 2 bits. To avoid the information leakage, Alice and Bob discard the

measurement result when it is |𝜑+⟩ or |𝜓−⟩.

After that, Alice and Bob estimate the error between the channel. If the UTP cheats,

that can also be detected from this checking. If the error lies between a tolerable range they

continue the protocol, else they abort.

2.4 Deterministic secure quantum communication

DSQC is a type of quantum communication, in which the parties need to exchange classical

information to decode the secret message after the security check process. Since the classical

resource is much cheaper than a quantum resource, secure DSQC protocols have attracted
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continuous attention. In 1999, Shimizu et al. [238] proposed the first DSQC protocol, where

the cipher-texts are encoded using entangled photon pairs. The sender Alice sends the encoded

qubits through a quantum channel to the receiver Bob. After the security checking process,

Bob measures the entangled pairs in Bell bases and Alice announces the classical information

about the encoding bases. From this announcement and his measurement results, Bob decodes

the secret message of Alice.

In 2002, Beige et al. [239] proposed the first DSQC scheme using single photons, but the

authors themselves pointed out that the scheme is insecure against teleportation attack in

erratum.

After that, Yan et al. [100] and Man et al. [240] proposed several DSQC schemes based

on quantum teleportation [241] and entanglement swapping [242]. Lucamarini et al. [243]

presented a protocol for DSQC without using entanglement. Cai et al. [244] proposed a DSQC

protocol using single qubit in a mixed state. Li et al. [102] proposed two DSQC schemes

using non- maximally entangled states and single-photon measurements, the protocols are

based on pure entangled states and 𝑑-dimensional single-photon states respectively. Yuan et

al. [245] proposed a novel efficient DSQC scheme with cluster state [246]. Liu et al. [247]

proposed a universal and general DSQC protocol in which unitary operations are not required.

Subsequently, various DSQC protocols have been proposed [248, 249, 250, 251, 252, 139],

based on the symmetric W state [248], multi-particle GHZ states [249, 250, 251], photons’

polarization-spatial-mode DOFs [139], and so on.

2.5 Dimensionality testing

For a physical system, we generally assume that it has a particular dimension. Any practical

application that uses entangled quantum systems has some predefined dimensional entan-

gled states. In information theory, the dimensionality of quantum systems is a resource. In

cryptographic applications, the security level scheme depends on the dimension. So testing

dimensionality or distinguishing dimensionality of the underlying state-space are important

pre-processing tasks before executing the actual protocol.

A higher dimension implies more degrees of freedom. For example, consider QKD protocol
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with the qubit. In this case, the legitimate parties use only the polarization of a photon for

encoding. However, they have to fix the values for the other degrees of freedom such as spectral

line, spatial mode or temporal mode, etc. Lack of knowledge of any of these parameters may

cause a security back-door. Recently, Maitra et al. [253] showed that if the honest party

measures only the polarization of a photon and remains ignorant about the Orbital Angular

Momentum (OAM), then by changing the value of OAM one can steal more information than

what he/she is entitled to in a certain type of QKD protocol. This strengthens the motivation

of dimensionality testing.

The dimension witness gives a bound on the dimension of an unknown system based on

measurement statistics. It was first introduced for quantum systems in the context of non-local

correlations by Brunner et al. [254] and further developed in [255, 256, 257, 258, 259, 260, 261,

123, 262]. Various experiments have been recently proposed about the implementation of such

witnesses [124, 263].

Some theory of dimensional detection of an unknown quantum system is based on the set

of conditional probabilities. It is based on the analysis of the probabilities of observing an

outcome after creating and measuring the system for a given set of possibilities. It has become

a prominent research area in recent times [261, 123, 262]. Experimental tests for testing the

dimension of a quantum system have been explored [263, 124] and it has produced successful

results. A simple and general dimension witnesses for quantum systems of arbitrary Hilbert

space dimension was proposed by Brunner (2013) [264]. Their proposed work can distinguish

between classical and quantum systems of the same dimension. A simple method for generating

nonlinear dimension witnesses for systems of arbitrary dimension has been proposed by Bowles

(2014) [265]. It has been shown in this paper that this witness can be used to certify the

presence of randomness.
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Chapter 3

Analysis and Design of QSDC Protocol

Yan et al. proposed a QSDC protocol with authentication using single photons and EPR

pairs (YZCSS protocol) [1], which we discussed in Chapter 2. Here, in this chapter, we show

that the YZCSS protocol is secure neither against intercept-and-resend attack, nor against

impersonation attack. If an eavesdropper applies any one of these attacks, then it can get

the complete secret message, i.e., not only a portion of the message is revealed, but also the

entire message is compromised. Moreover, for impersonation attack, the legitimate parties can

not detect the presence of the eavesdropper. Here we present a modification of the YZCSS

protocol to improve its security, where we assume that the classical channel is authenticated,

and we achieve authentication of the quantum channel within our protocol [146].

3.1 Security loophole of the YZCSS protocol

We now show that the YZCSS protocol discussed in Section 2.3.1 of the previous chapter, is not

secure against intercept-and-resend attack and impersonation attack, an eavesdropper (𝐸𝑣𝑒)

can get the whole secret message 𝑀 and Alice’s authentication identity 𝐼𝐷𝐴 by adopting these

attacks.
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3.1.1 Intercept-and-resend attack

In this attack strategy, when Alice sends the quantum states to Bob, 𝐸𝑣𝑒 intercepts those

from the quantum channel, she measures the states and resend those to Bob. However, to

attack the YZCSS protocol, 𝐸𝑣𝑒 follows a special strategy while resending the quantum states

to Bob. The process of the attack is as follows.

1. 𝐸𝑣𝑒 intercepts the ordered set 𝑆 and measures each two-qubit state randomly in 𝑍 × 𝑍

basis or Bell basis and note down the measurement results. For 1 ≤ 𝑖 ≤ 2𝑁 , if she

chooses 𝑍 × 𝑍 basis to measure the 𝑖-th qubit pair of 𝑆 and the measurement result

is either |01⟩ or |10⟩, then she simply sends this state to Bob. But if the measurement

result is either |00⟩ or |11⟩, 𝐸𝑣𝑒 definitely knows that she chooses wrong basis and the

initial state was either |Φ+⟩ or |Φ−⟩. Then she randomly prepares |Φ+⟩ or |Φ−⟩ and

sends it to Bob. Similarly if 𝐸𝑣𝑒 chooses Bell basis and gets |Φ+⟩ or |Φ−⟩, then sends

them. Otherwise she randomly sends |01⟩ or |10⟩ to Bob.

2. 𝐸𝑣𝑒 constructs a 2𝑁 -bit string 𝑚 from the measurement results by using Table 3.1.

Table 3.1: Rule of construction of 𝑚 by 𝐸𝑣𝑒

Basis chosen by 𝐸𝑣𝑒 𝐸𝑣𝑒’s measurement result Corresponding bit of 𝑚

𝑍 × 𝑍 basis |01⟩ or |10⟩ 0
|00⟩ or |11⟩ 1

Bell basis |Ψ+⟩ or |Ψ−⟩ 0
|Φ+⟩ or |Φ−⟩ 1

3. 𝐸𝑣𝑒 splits the 2𝑁 -bit string 𝑚 = 𝑚1𝑚2 . . .𝑚2𝑁 into 𝑁 number of 2-bit stringsℳ1,ℳ2,

. . . ,ℳ𝑁 , and for 1 ≤ 𝑖 ≤ 𝑁 , ℳ𝑖 = 𝑚2𝑖−1𝑚2𝑖. Now from the construction procedure of

the ordered set 𝑆, 𝐸𝑣𝑒 exactly knows that eachℳ𝑖 contains the 𝑖-th bit of secret message

𝑀 and the 𝑖-th bit of Alice’s authentication identity 𝐼𝐷𝐴. If both the bits of ℳ𝑖 are

equal, i.e., ℳ𝑖 = 𝑏𝑏, where 𝑏 ∈ {0, 1}, then she concludes 𝑀𝑖 = 𝑏 and 𝐼𝐷𝐴,𝑖 = 𝑏. Again

if ℳ𝑖 = 𝑏𝑏̄, where 𝑏̄ = bit complement of 𝑏, then she waits for Alice’s announcement

about the initial states of the decoy photons. If Alice announces |01⟩ or |10⟩, then 𝐸𝑣𝑒

concludes 𝐼𝐷𝐴,𝑖 = 0 and 𝑀𝑖 = 1, otherwise she concludes 𝐼𝐷𝐴,𝑖 = 1 and 𝑀𝑖 = 0. Thus

𝐸𝑣𝑒 can successfully attack the protocol and gets the complete secret message.
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Now Alice and Bob can detect this intercept-and-resend attack at the time of security check,

but it has no impact on the attack result as one of the main requirement of a QSDC protocol

is: “the secret messages which have been encoded already in the quantum states should not

leak even though an eavesdropper may get hold of channel" [66].

3.1.2 Impersonation attack

By analyzing the YZCSS protocol, we find that the authentication procedure of this QSDC

protocol is unidirectional, i.e., only Bob can verify Alice’s identity. Here we show that how

𝐸𝑣𝑒 impersonate Bob to acquire the secret message of Alice. The process is as follows:

1. Alice prepares the ordered set 𝑆 and sends it to 𝐸𝑣𝑒.

2. After receiving 𝑆, 𝐸𝑣𝑒 measures all the qubit pairs randomly in 𝑍 ×𝑍 or Bell basis and

generates a 2𝑁 -bit string 𝑚 from the measurement results by using Table 3.1.

3. 𝐸𝑣𝑒 asks Alice to declare the initial state of the decoy photons and from this information,

she gets the whole secret message (by using the same process as in Step 3 of the intercept-

and-resend attack).

In this case, Alice can not detect 𝐸𝑣𝑒, or in other words, only one-way authentication is

possible in the YZCSS protocol. Moreover, without knowing the exact position of the decoy

photons, 𝐸𝑣𝑒 can get the whole secret message.

Let us take an example of this attack.

Example 2. Let 𝑀 = 10110, 𝐼𝐷𝐴 = 01101 and 𝐼𝐷𝐵 = 01001.

Then 𝑆𝑀 = {|Φ+⟩ , |01⟩ , |Φ+⟩ , |Φ−⟩ , |01⟩}, 𝑆𝐴 = {|10⟩ , |Φ−⟩ , |Φ−⟩ , |01⟩ , |Φ+⟩} and

𝑆 = {|10⟩ , |Φ+⟩ , |01⟩ , |Φ−⟩ , |Φ−⟩ , |Φ+⟩ , |01⟩ , |Φ−⟩ , |01⟩ , |Φ+⟩}.

1. 𝐸𝑣𝑒 has the ordered set 𝑆.

2. Let ℬ = {𝑍,𝑍,Bell, 𝑍,Bell,Bell,Bell, 𝑍, 𝑍,Bell} be a sequence of bases which 𝐸𝑣𝑒 choses

to measure the qubit pairs of 𝑆.

3. Let the ordered set of measurement results be

{|10⟩ , |00⟩ , |Ψ−⟩ , |11⟩ , |Φ−⟩ , |Φ+⟩ , |Ψ+⟩ , |11⟩ , |01⟩ , |Φ+⟩}.
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4. Then 𝑚 = 0101110101 and ℳ1 = 01, ℳ2 = 01, ℳ3 = 11, ℳ4 = 01, ℳ5 = 01. 𝐸𝑣𝑒

concludes 𝑀3 = 1 and 𝐼𝐷𝐴,3 = 1.

5. Alice announces 𝑆𝐴 = {|10⟩ , |Φ−⟩ , |Φ−⟩ , |01⟩ , |Φ+⟩} and then 𝐸𝑣𝑒 concludes

• 𝐼𝐷𝐴,1 = 0 and 𝑀1 = 1,

• 𝐼𝐷𝐴,2 = 1 and 𝑀2 = 0,

• 𝐼𝐷𝐴,4 = 0 and 𝑀4 = 1,

• 𝐼𝐷𝐴,5 = 1 and 𝑀5 = 0.

Thus 𝐸𝑣𝑒 gets the whole secret message 𝑀 = 10110.

In the next section we propose a remedy to these security problems of the YZCSS protocol.

3.2 Proposed modification

In this section, first we describe how authentication is perform, and then our modified protocol,

followed by its security analysis.

For the quantum channel we do not assume any authentication, but both the user authenti-

cation and message authentication are incorporated with the modified protocol (see Table 3.2

for more details).

Table 3.2: Channel authentication (assumptions and achievements)

Type of User authentication Message authentication
the channel Protocol assumes Protocol achieves Protocol assumes Protocol achieves

Classical Yes − Yes −
Quantum No Yes No Yes

Now we discuss how to modify this YZCSS protocol so that it can provide mutual au-

thentication and stand against the intercept-and-resend attack. In the original protocol, the

length of 𝐼𝐷𝐴 and 𝐼𝐷𝐵 are equal to the length of the message, which may vary. However, in

our improved version, we fix the length of 𝐼𝐷𝐴 and 𝐼𝐷𝐵, and the fixed-length is 𝑘. Here we

use some techniques of the authentication protocol proposed by Fei et al. [266]. Our modified

protocol is given below:
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1. Qubits preparation to encode secret message:

(a) Alice and Bob have their previously shared 𝑘-bit identities 𝐼𝐷𝐴 and 𝐼𝐷𝐵, where

𝐼𝐷𝐴 and 𝐼𝐷𝐵 are unknown to everybody other than Alice and Bob.

(b) Suppose Alice has an 𝑛-bit secret message𝑚 which she wants to send to Bob through

a quantum channel. She chooses 𝑐 random check bits and inserts those in random

positions of 𝑚. Let the new message string be 𝑀 of length 𝑁 = 𝑛+ 𝑐.

(c) Alice prepares a sequence of 𝑁 qubit pairs 𝑆𝑀 corresponding to her 𝑁 -bit message

𝑀 . For 1 ≤ 𝑖 ≤ 𝑁 , let the 𝑖-th pair of 𝑆𝑀 be 𝑆𝑀,𝑖 = (𝑆1
𝑀,𝑖, 𝑆

2
𝑀,𝑖) and she prepares

𝑆𝑀,𝑖 by using the following rule:

𝑆𝑀,𝑖 =

⎧⎪⎪⎨⎪⎪⎩
|01⟩ or |10⟩ with equal probability, if 𝑀𝑖 = 0,

|Φ+⟩ or |Φ−⟩ with equal probability, if 𝑀𝑖 = 1.
(3.1)

(d) Alice takes one qubit from each qubit pair 𝑆𝑀,𝑖 to form an ordered qubit sequence

𝑄1
𝑀 = {𝑆1

𝑀,1, 𝑆
1
𝑀,2, . . . , 𝑆

1
𝑀,𝑁}. The remaining partner qubits of 𝑆𝑀,𝑖 compose an-

other qubit sequence 𝑄2
𝑀 = {𝑆2

𝑀,1, 𝑆
2
𝑀,2, . . . , 𝑆

2
𝑀,𝑁}.

(e) Alice prepares the first sequence of decoy photons 𝑆𝐴, for authentication, corre-

sponding to her own identity 𝐼𝐷𝐴 as follows: for 1 ≤ 𝑖 ≤ 𝑘,

𝑆𝐴,𝑖 =

⎧⎪⎪⎨⎪⎪⎩
|0⟩ or |1⟩ with equal probability, if 𝐼𝐷𝐴,𝑖 = 0,

|+⟩ or |−⟩ with equal probability, if 𝐼𝐷𝐴,𝑖 = 1,
(3.2)

where |+⟩ = 1√
2(|0⟩ + |1⟩) and |−⟩ = 1√

2(|0⟩ − |1⟩). Now she inserts these decoy

states into the first sequence 𝑄1
𝑀 according to the following rule: for 1 ≤ 𝑖 ≤ 𝑘,

i. if 𝐼𝐷𝐵,𝑖 = 0, then she inserts 𝑆𝐴,𝑖 before 𝑄1
𝑀,𝜆𝑖−𝜆+1,

ii. if 𝐼𝐷𝐵,𝑖 = 1, then she inserts 𝑆𝐴,𝑖 after 𝑄1
𝑀,𝜆𝑖,

where 𝜆 = [𝑁/𝑘], [𝑥] = greatest integer not greater than 𝑥 and 𝑘 ≤ 𝑁 . Let the first

sequence become 𝑆 containing 𝑁 + 𝑘 qubits. For better understanding, let us take

an example,
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Example 3. Let 𝑀 = 1011010, 𝐼𝐷𝐴 = 011 and 𝐼𝐷𝐵 = 010.

i. 𝑆𝑀 = {|Φ+⟩ , |01⟩ , |Φ+⟩ , |Φ−⟩ , |01⟩ , |Φ+⟩ , |10⟩} and let the 𝑖-th pair of 𝑆𝑀 be

(𝑆1
𝑀,𝑖, 𝑆

2
𝑀,𝑖).

ii. 𝑄1
𝑀 = {𝑆1

𝑀,1, 𝑆
1
𝑀,2, . . . 𝑆

1
𝑀,7}, 𝑄2

𝑀 = {𝑆2
𝑀,1, 𝑆

2
𝑀,2, . . . 𝑆

2
𝑀,7}.

iii. 𝑆𝐴 = {|0⟩ , |−⟩ , |−⟩}.

iv. 𝜆 = [7/3] = 2.

v. 𝑆 = {|0⟩ , 𝑆1
𝑀,1, 𝑆

1
𝑀,2, 𝑆

1
𝑀,3, 𝑆

1
𝑀,4, |−⟩ , |−⟩ , 𝑆1

𝑀,5, 𝑆
1
𝑀,6, 𝑆

1
𝑀,7}.

(f) She also prepares a second set of decoy photons𝐷𝐴 randomly from {|0⟩ , |1⟩ , |+⟩ , |−⟩}

and inserts them in random positions of 𝑆. Let the new sequence be 𝑆 ′.

2. First sequence of qubits transmission: Alice sends the new sequence 𝑆 ′ to Bob using a

quantum channel. She keeps the sequence 𝑄2
𝑀 with her.

3. Security check: After Bob receives 𝑆 ′, Alice announces the positions and the bases of the

second set of decoy photons. Bob measures those decoy photons and they calculate the

error rate in the channel by comparing the measurement results with the initial states.

If the error rate is low, then they continue the protocol, otherwise they terminate this.

4. Authentication procedure:

(a) Bob knows the exact positions of the decoy photons of 𝑆𝐴 corresponding to his

identity 𝐼𝐷𝐵. He measures those decoy photons in proper bases according to 𝐼𝐷𝐴.

If 𝐼𝐷𝐴,𝑖 = 0, then he chooses the 𝑍 basis and if 𝐼𝐷𝐴,𝑖 = 1, then he chooses the

𝑋 = {|+⟩ , |−⟩} basis to measure 𝑆𝐴,𝑖.

(b) For 1 ≤ 𝑖 ≤ 𝑘, Alice and Bob construct an 𝑘-bit string 𝑖𝑛𝑓𝑜(𝑆𝐴) such that, if

𝑆𝐴,𝑖 = |0⟩ or |+⟩, then 𝑖𝑛𝑓𝑜(𝑆𝐴,𝑖) = 0, else 𝑖𝑛𝑓𝑜(𝑆𝐴,𝑖) = 1.

(c) They randomly choose 𝑘/2 (approximate) positions and Alice announces the val-

ues of the corresponding bits of 𝑖𝑛𝑓𝑜(𝑆𝐴). Bob compares these values with his

corresponding measurement results to authenticate Alice’s identity. Similarly Bob

announces the remaining bits of 𝑖𝑛𝑓𝑜(𝑆𝐴) for his identity authentication. If any of

them finds intolerable error rate, then he or she aborts this protocol.
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5. Second sequence of qubits transmission: Alice prepares a third set of decoy photons 𝐷′
𝐴

randomly from {|0⟩ , |1⟩ , |+⟩ , |−⟩} and inserts them in random positions of 𝑄2
𝑀 . Let the

new sequence be 𝑆 ′′ and she sends the new sequence 𝑆 ′′ to Bob using a quantum channel.

6. Security check: After Bob receives 𝑆 ′′, Alice announces the positions and the bases of

the third set of decoy photons. Bob measures those decoy photon and they calculate the

error rate in the channel by comparing the measurement results with the initial states.

If the error rate is low, then they continue the protocol, otherwise they terminate this

protocol.

7. Message decoding:

(a) Bob discards all the decoy photons and gets back the sequences 𝑄1
𝑀 and 𝑄2

𝑀 .

(b) He measures the qubit pairs of 𝑆𝑀 in 𝑍 ×𝑍 basis or Bell basis randomly and notes

the measurement results.

(c) Bob gets all the secret message bits from the measurement results of the qubit pairs

of 𝑆𝑀 . The relation between the measurement results and the secret message bits

are given in Table 2.5.

(d) To check the integrity of the secret message, Alice and Bob publicly compare values

of the random check bits. Bob discards these check bits from 𝑀 and gets back 𝑚.

Note that, though quantum memories are still at the early development stage, many states of

the art quantum communication protocols use quantum memory [58, 66, 68, 71, 2, 137, 267].

Here in this work we also follow a similar approach. The possible realizations of quantum

memory are discussed in [268, 269, 76, 270, 271].

3.3 Security analysis of the modified protocol

We now show that our modified protocol is secure against some common attacks. First, we

discuss the intercept-and-resend attack and the impersonation attack as the original YZCSS

protocol was proven to be insecure against these two attacks. Then we also discuss Denial-of-
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Alice (Identity 𝐼𝑑𝐴) Bob (Identity 𝐼𝑑𝐵)
1. Message Encoding
Message: 𝑀 of length 𝑁 .
∙ Prepares qubit pairs seq. 𝑆𝑀 .
* 𝑀𝑖 = 0⇒ 𝑆𝑀,𝑖 = |01⟩ or |10⟩,
* 𝑀𝑖 = 1⇒ 𝑆𝑀,𝑖 = |Φ+⟩ or |Φ−⟩.
∙ Devides 𝑆𝑀 , makes 𝑄1

𝑀 , 𝑄2
𝑀 .

∙ Prepares 𝑆𝐴 from 𝐼𝐷𝐴.
* 𝐼𝐷𝐴,𝑖 = 0⇒ 𝑆𝐴,𝑖 = |0⟩ or |1⟩,
* 𝐼𝐷𝐴,𝑖 = 1⇒ 𝑆𝐴,𝑖 = |+⟩ or |−⟩,
∙ Inserts 𝑆𝐴 in 𝑄1

𝑀 according to 𝐼𝐷𝐵.
∙ Inserts decoy 𝐷𝐴, new seq.𝑆 ′. Sends 𝑆 ′

2. Security check Position and Measures qubits of 𝐷𝐴.
bases of 𝐷𝐴

Checks eavesdropping. Announces
states of 𝐷𝐴

3. Authentication process Measures qubits of 𝑆𝐴

Construct 𝑖𝑛𝑓𝑜(𝑆𝐴) from 𝑆𝐴.
Checks 𝐼𝐷𝐵 from 𝑖𝑛𝑓𝑜(𝑆𝐴). 𝑖𝑛𝑓𝑜(𝑆𝐴) Checks 𝐼𝐷𝐴 from 𝑖𝑛𝑓𝑜(𝑆𝐴).

2. Security check

Inserts decoy photons 𝐷′
𝐴 in 𝑄2

𝑀 . Sends 𝑄2
𝑀

Position and Measures qubits of 𝐷𝐴.
bases of 𝐷𝐴

Checks eavesdropping. Announces
states of 𝐷𝐴

4. Decoding process
Measures qubits of 𝑆𝑀 in 𝑍 × 𝑍
or Bell basis.
Decodes message using Table 2.5.

99K denotes quantum channel
−→ denotes classical channel

Figure 3-1: Modified QSDC with authentication based on single photons and Bell states
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Service attack, man-in-the-middle attack, entangle-measure attack and Trojan horse attack.

We assume that 𝐸𝑣𝑒 has infinite resources and unbounded computation power.

1. Intercept-and-resend attack: Let 𝐸𝑣𝑒 intercept the sequence 𝑆 ′ from the quantum

channel. Since 𝑆 ′ contains only the first qubit of each pair of qubits corresponding to the

secret message bits, it is impossible for 𝐸𝑣𝑒 to gain any information by measuring those

qubits. At most 𝐸𝑣𝑒 can do is to measure the qubits of 𝑆 ′ in 𝑍 or 𝑋 basis and resend

those measured qubits to Bob. In that case, she does not get any useful information

about the secret message, and also Alice and Bob detect her and terminate the protocol

at the time of security checking (Step 3 of the modified protocol). Let the second set of

decoy photons 𝐷𝐴 contain 𝑙 number of qubits.

We now calculate the probability that Alice and Bob can detect 𝐸𝑣𝑒. Let the 𝑖-th qubit

of 𝐷𝐴 be 𝑑𝑖 prepared in basis ℬ𝑖 ∈ {𝑍,𝑋}, and suppose 𝐸𝑣𝑒 chooses the basis ℬ′
𝑖 to

measure 𝑑𝑖 and gets 𝑑′
𝑖. At the time of security checking, Bob measures 𝑑′

𝑖 in ℬ𝑖 and gets

the result 𝑑′′
𝑖 . Thus the winning probability of 𝐸𝑣𝑒 for the 𝑖-th decoy qubit is

Pr(𝑑′′
𝑖 = 𝑑𝑖)

= Pr(𝑑′′
𝑖 = 𝑑𝑖| ℬ𝑖 = ℬ′

𝑖) Pr(ℬ𝑖 = ℬ′
𝑖) + Pr(𝑑′′

𝑖 = 𝑑𝑖| ℬ𝑖 ̸= ℬ′
𝑖) Pr(ℬ𝑖 ̸= ℬ′

𝑖)

= 1
2{Pr(𝑑′′

𝑖 = 𝑑𝑖| ℬ𝑖 = ℬ′
𝑖) + Pr(𝑑′′

𝑖 = 𝑑𝑖| ℬ𝑖 ̸= ℬ′
𝑖)}

= 1
4

(︂
1 + 1

2

)︂
= 3

4 .

Thus the probability that Alice and Bob can detect the existence of 𝐸𝑣𝑒 is 1−
(︁

3
4

)︁𝑙
> 0.

Again if 𝐸𝑣𝑒 intercept the sequence 𝑆 ′′ from the quantum channel in the second phase

of transmission, then also she can not get any information about 𝑀 as 𝑆 ′′ contains only

one qubit of each qubit pair. In this case, also Alice and Bob detect her with probability

1 −
(︁

3
4

)︁𝑙′

> 0, where 𝑙′ is the number of decoy qubits in the set 𝐷′
𝐴, and terminate the

protocol at the time of second security checking (Step 6 of the modified protocol).

2. Impersonation attack: In the YZCSS protocol, only Alice announces the exact states

of the decoy photons corresponding to 𝐼𝐷𝐴 and Bob compares them with his measure-

ment results to check the authenticity of Alice. In the modified version, both Alice and
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Bob have to announce the information about the initial states of the decoy photons of 𝑆𝐴,

they do not announce the exact states to keep 𝐼𝐷𝐴 secret. If 𝐸𝑣𝑒 impersonating any one

of Alice and Bob, then the other one can detect her and aborts this protocol. Let 𝐸𝑣𝑒

impersonate Alice, then in the authentication procedure (Step 4) 𝐸𝑣𝑒 has to construct

a 𝑘-bit string as 𝑖𝑛𝑓𝑜′(𝑆𝐴). Then she needs to announce the bit values of 𝑖𝑛𝑓𝑜′(𝑆𝐴) for

𝑘/2 random positions jointly chosen by Bob and her. Since 𝐸𝑣𝑒 does not know the value

𝑘 and the positions of the qubits corresponding to 𝐼𝐷𝐴, she just randomly guesses the

bit values of 𝑖𝑛𝑓𝑜′(𝑆𝐴). Thus the winning probability of 𝐸𝑣𝑒 is (1/2)𝑘/2 and hence Bob

can detect her with probability 1− (1/2)𝑘/2 > 0. Similarly, when 𝐸𝑣𝑒 impersonates Bob,

Alice can detect her with probability 1− (1/2)𝑘/2 > 0.

3. Denial-of-Service (DoS) attack: The motivation of 𝐸𝑣𝑒, for adopting the DoS attack,

is to tamper the secret message [194]. Let 𝐸𝑣𝑒 capture the sequence 𝑆 ′ (or 𝑆 ′′) and make

a certain operation 𝒰 to every qubit of 𝑆 ′. However, this action will be detected by the

legitimate parties at the security checking procedure in Step 3 and as a result, Alice and

Bob terminate this protocol. Since the Pauli matrices 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 form a basis for

the space of all 2× 2 Hermitian matrices [6], 𝒰 can be expressed as a linear combination

of these basis vectors. Let 𝒰 = 𝑤1𝐼 + 𝑤2𝜎𝑥 + 𝑤3𝑖𝜎𝑦 + 𝑤4𝜎𝑧 where ∑︀4
𝑗=1 𝑤

2
𝑗 = 1 as 𝒰 is

unitary.

Now we calculate the winning probability of 𝐸𝑣𝑒 for each decoy qubit 𝑑 ∈ 𝐷𝐴 (or

𝑑 ∈ 𝐷′
𝐴). First we individually calculate the winning probabilities 𝑝1, 𝑝2, 𝑝3 and 𝑝4 of

𝐸𝑣𝑒 if she applies the Pauli matrices 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 respectively. We obtain 𝑝1 = 1,

as 𝐼 applied on 𝑑 does not change its state; 𝑝2 = 1/2, as 𝜎𝑥 changes the state of a decoy

qubit 𝑑 only if 𝑑 ∈ {|0⟩ , |1⟩}; 𝑝3 = 0, as 𝑖𝜎𝑦 always changes the state of a decoy qubit;

and 𝑝4 = 1/2, as 𝜎𝑧 changes the states in 𝑋-basis. Therefore the winning probability

of 𝐸𝑣𝑒 is 𝑝 = ∑︀4
𝑗=1 𝑝𝑗𝑤

2
𝑗 < 1, unless 𝒰 = 𝐼 (which is equivalent to no attack by Eve).

Hence in the security check processes (Step 3 and Step 6 of the modified protocol) Alice

and Bob find this eavesdropping with probability 1− 𝑝𝑙 > 0 (or with 1− 𝑝𝑙′ > 0).

4. Man-in-the-middle attack: When Alice sends the sequence 𝑆 ′ (or 𝑆 ′′) to Bob, 𝐸𝑣𝑒

intercepts 𝑆 ′ (or 𝑆 ′′) and keep this with her. She prepares another set of qubits 𝑇 ′ (or
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𝑇 ′′) and sends it to Bob. In this case, also Alice and Bob can realize the existence of

𝐸𝑣𝑒 and abort the protocol in Step 3 (or Step 6) and terminate the protocol. We now

calculate the detection probability of 𝐸𝑣𝑒 when she intercepts 𝑆 ′. Let the 𝑖-th decoy

qubit of 𝐷𝐴 be 𝑑𝑖 and suppose it is the 𝑗-th qubit of 𝑆 ′. Also let 𝐸𝑣𝑒 prepare 𝑡𝑗 as the

𝑗-th qubit of 𝑇 ′. Let the preparation bases of 𝑑𝑖 and 𝑡𝑗 be ℬ1 and ℬ2 respectively. In

the security check process, Bob measures 𝑡𝑗 in basis ℬ1 and gets 𝑡′𝑗. Thus the winning

probability of 𝐸𝑣𝑒 for the 𝑖-th decoy qubit is as follows:

Pr(𝑡′𝑗 = 𝑑𝑖)

= Pr(𝑡′𝑗 = 𝑑𝑖| ℬ1 = ℬ2) Pr(ℬ1 = ℬ2) + Pr(𝑡′𝑗 = 𝑑𝑖| ℬ1 ̸= ℬ2) Pr(ℬ1 ̸= ℬ2)

= 1
2{Pr(𝑡′𝑗 = 𝑑𝑖| ℬ1 = ℬ2) + Pr(𝑡′𝑗 = 𝑑𝑖| ℬ1 ̸= ℬ2)}

= 1
2[Pr(𝑡′𝑗 = 𝑑𝑖| ℬ1 = ℬ2, 𝑡𝑗 = 𝑑𝑖) Pr(𝑡𝑗 = 𝑑𝑖)+

Pr(𝑡′𝑗 = 𝑑𝑖| ℬ1 = ℬ2, 𝑡𝑗 ̸= 𝑑𝑖) Pr(𝑡𝑗 ̸= 𝑑𝑖) + 1/2]

= 1
2

[︂
1× 1

2 + 0× 1
2 + 1

2

]︂
= 1

2 .

Hence Alice and Bob detect 𝐸𝑣𝑒 with probability 1 − (1/2)𝑙 > 0. Similar argument

follows for the second transmission phase also.

5. Entangle-measure attack:

In order to steal partial information, 𝐸𝑣𝑒 may apply this attack [151]. She first intercepts

the qubits of the sequence 𝑆 ′ and prepares some ancillary state |𝐸⟩, then applies an

unitary 𝑈𝐸 to the joint states of qubits of 𝑆 ′ and |𝐸⟩ such that the composite system

become entangled. Let the 𝑖-th decoy state in 𝐷𝐴 be 𝑑𝑖 and after applying 𝑈𝐸 suppose it

becomes 𝑑′
𝑖. However, the effect of the unitary operation 𝑈𝐸 on the second set of decoy

photons are as follows:

𝑈𝐸 |0⟩ |𝐸⟩ = 𝛼0 |0⟩ |𝐸00⟩+ 𝛽0 |1⟩ |𝐸01⟩ ,

𝑈𝐸 |1⟩ |𝐸⟩ = 𝛼1 |0⟩ |𝐸10⟩+ 𝛽1 |1⟩ |𝐸11⟩ .
(3.3)
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Since 𝑈𝐸 is unitary, we must have

|𝛼0|2 + |𝛽0|2 = 1,

|𝛼1|2 + |𝛽1|2 = 1,

𝛼0𝛼
*
1 + 𝛽0𝛽

*
1 = 0.

(3.4)

Thus when the decoy state 𝑑𝑖 is prepared in 𝑍 basis, the error rate is 𝑒 = |𝛽0|2 = |𝛼1|2.

Further, we get
𝑈𝐸 |+⟩ |𝐸⟩ = 1√

2
(|+⟩ |𝐸++⟩+ |−⟩ |𝐸+−⟩),

𝑈𝐸 |−⟩ |𝐸⟩ = 1√
2

(|+⟩ |𝐸−+⟩+ |−⟩ |𝐸−−⟩),
(3.5)

where

|𝐸++⟩ = 1√
2(𝛼0 |𝐸00⟩+ 𝛽0 |𝐸01⟩+ 𝛼1 |𝐸10⟩+ 𝛽1 |𝐸11⟩),

|𝐸+−⟩ = 1√
2(𝛼0 |𝐸00⟩ − 𝛽0 |𝐸01⟩+ 𝛼1 |𝐸10⟩ − 𝛽1 |𝐸11⟩),

|𝐸−+⟩ = 1√
2(𝛼0 |𝐸00⟩+ 𝛽0 |𝐸01⟩ − 𝛼1 |𝐸10⟩ − 𝛽1 |𝐸11⟩),

|𝐸−−⟩ = 1√
2(𝛼0 |𝐸00⟩ − 𝛽0 |𝐸01⟩ − 𝛼1 |𝐸10⟩+ 𝛽1 |𝐸11⟩).

Thus if the decoy state 𝑑𝑖 is prepared in 𝑋 basis, then Bob measures the first qubit

𝑑′
𝑖 of the entangled state 𝑈𝐸 |+⟩ |𝐸⟩ or 𝑈𝐸 |−⟩ |𝐸⟩ in 𝑋 basis. Therefore he gets the

correct result with probability 1/2, and hence the error rate is 1/2. Hence from the

error rate introduced by 𝐸𝑣𝑒 in the communication process, Alice and Bob detect this

eavesdropping in Step 3. Furthermore, if 𝐸𝑣𝑒 applies this attack on the second stage of

transmission, then also in a similar way Alice and Bob can detect her.

6. Trojan horse attack: Both the YZCSS protocol and its modified version are one-way

quantum communication protocols, i.e., only Alice prepares qubits and sends them to

Bob. Thus these protocols have immunity to the Trojan horse attack.
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3.4 Discussion

In this chapter, we analyze the security of a QSDC protocols with authentication (YZCSS

protocol) and demonstrate that this protocol is vulnerable to two specific attacks, namely,

intercept-and-resend attack and impersonation attack. An eavesdropper adopting any one of

these two attacks gets the whole secret message. The authentication process in the YZCSS

protocol is unidirectional, which causes the impersonation attack. To address these concerns,

we propose a modification of the YZCSS protocol, where a mutual authentication process is

suggested, and the modified protocol resists the intercept-and-resend attack. We also prove

that it is secure against several familiar attack strategies.
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Chapter 4

A New Approach of QSDC Design

using a Single Basis

Almost every quantum cryptographic protocol uses either entangled states or single qubit

states randomly prepared in a pair of orthogonal bases, to transmit information securely. This

chapter is based on the work [221], where for the first time, we propose a QSDC protocol, which

also provides mutual identity authentication of the participants by using only one orthogonal

basis, chosen randomly from a predefined finite set of bases, of single qubit states for encoding

the secret message. In the present protocol, the message sender Alice prepares a sequence

of single-qubit states corresponding to her message in a randomly chosen arbitrary basis and

sends it to the receiver Bob through a quantum channel. Then Alice publicly announces some

classical information and they check the security of the channel. If they find any eavesdropper

in the channel, then they terminate the protocol. However, in this case the eavesdropper can

not get any information about the secret message. After the security check process is passed,

then Bob uses the information of Alice to measure the received qubits and to get the secret

message. Furthermore, in this protocol, we use only one orthogonal basis to encode all the

secret information. But since the basis is chosen arbitrarily, any eavesdropper can not guess the

basis of the encoded qubits and therefore the protocol remains secure. Although this protocol

requires hardware that can operate a gate 𝑈(𝜃) for any 𝜃 ∈ Z360, modern quantum hardware

such as the IBM Quantum Device allows the creation of such operators using the parameterized

𝑈1 and 𝑈2 gates [272]. Furthermore, as described later in detail, the measurement is always
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in {|0⟩ , |1⟩} basis only, and does not require hardware ability to measure in arbitrary bases.

Therefore, it is possible to execute this protocol in available quantum hardware, and we have

shown the results of such execution in Section 4.

Execution of the protocol in real devices makes them susceptible to the channel noise - in

particular decoherence, calibration and readout error. We have executed this protocol in the

IBMQ Armonk Device [273] to study the behaviour of it in the presence of noise. We show

that the effect of noise is equivalent to a bit-flip error in the case of this protocol. We further

show from our execution results that the effect of noise does not depend on the choice of basis.

In order to account for the non-instantaneous nature of any quantum channel, we model an

ideal quantum channel as a series of identity gates without any Eavesdropper. However, in a

realistic scenario, these gates are susceptible to noise, and the channel no longer behaves as

identity. Our execution results show that a minimal overhead of a 3-qubit repetition code is

sufficient to protect this protocol against noise as long as the number of identity gates (i.e. the

length of the quantum channel) is below a certain threshold.

4.1 QSDC protocol with mutual authentication

In this section, we propose the new QSDC protocol with a mutual identity authentication

process. We use the basic idea of quantum identity authentication scheme [274] to verify the

identity of the message sender.

Without loss of generality, let Alice be the sender and Bob be the receiver. Also, let

Alice and Bob have their previously shared 𝑘-bit authentication identities (we assume 𝑘 is

even) 𝐼𝑑𝐴 and 𝐼𝑑𝐵 respectively (using some secured QKD). Alice wants to send a message

𝑀 = 𝑀1𝑀2 . . .𝑀𝑛 to Bob. Let Θ be a predefined ordered set of angles with finite cardinality

𝑁 . For each 𝜃 ∈ Θ, the unitary matrix 𝑈𝜃 is defined as

𝑈𝜃 =

⎛⎜⎝cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

⎞⎟⎠ .

Then 𝑈𝜃 |0⟩ = cos 𝜃 |0⟩+ sin 𝜃 |1⟩ = |𝑥⟩ (say), and 𝑈𝜃 |1⟩ = − sin 𝜃 |0⟩+ cos 𝜃 |1⟩ = |𝑦⟩ (say).

For simplicity, in our protocol, we take Θ = {𝑥∘ : 𝑥 is an integer and 1 ≤ 𝑥 ≤ 360}. Thus
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here, 𝑁 = 360. Note that, one can use an ordered set of real angles instead of integer angles,

i.e., Θ = {𝑥∘
1, 𝑥

∘
2, . . . , 𝑥

∘
𝑁}, where each 𝑥𝑖 ∈ R for 1 ≤ 𝑖 ≤ 𝑁 . In either case, to encode 𝜃 = 𝑥∘

𝑖 ,

Alice just encodes the ⌈𝑙𝑜𝑔2𝑁⌉ bit binary representation of 𝑖 in Step (1f) of the following

protocol, where ⌈𝑙𝑜𝑔2𝑁⌉ denotes the smallest integer no smaller than 𝑙𝑜𝑔2𝑁 .

1. Encoding process:

(a) Alice puts some random check bits in random positions of her 𝑛-bit message 𝑀 .

Let the new bit string be 𝑀 ′, which contains 𝑛′ = 𝑛+ 𝑐 bits, where 𝑐 is the number

of check bits.

(b) She prepares a sequence 𝑄1
𝐴 containing 𝑛′ number of single qubits in {|0⟩ , |1⟩} basis

corresponding to 𝑀 ′. She prepares |0⟩ and |1⟩ corresponding to message bit 0 and

1 respectively.

(c) Alice randomly chooses an angle 𝜃 ∈ Θ and applies the unitary operator 𝑈𝜃 on all

the qubits of 𝑄1
𝐴. Thus all the qubits of 𝑄1

𝐴 are now in {|𝑥⟩ , |𝑦⟩} basis.

(d) She prepares a sequence of single qubits 𝐼𝐴 corresponding to her authentication

identity 𝐼𝑑𝐴. For 1 ≤ 𝑖 ≤ 𝑘/2 (as 𝑘 is even), she chooses the 𝑖-th qubit of 𝐼𝐴

as |0⟩ , |1⟩ , |+⟩ = 1√
2(|0⟩ + |1⟩) and |−⟩ = 1√

2(|0⟩ − |1⟩), according to the values

00, 01, 10 and 11 of the (2𝑖− 1)-th and the 2𝑖-th bits of 𝐼𝑑𝐴. She randomly inserts

the qubits of 𝐼𝐴 into 𝑄1
𝐴 and let the new sequence be 𝑄2

𝐴 containing 𝑛′ +𝑘/2 number

of qubits.

(e) Alice chooses a 𝑘-bit random number 𝑟 and prepares a sequence of single qubits 𝐼𝐵

corresponding to the bit strings 𝐼𝑑1
𝐵 = 𝐼𝑑𝐵 ⊕ 𝑟 and 𝐼𝑑𝐵. For 1 ≤ 𝑖 ≤ 𝑘, let the 𝑖-th

bit of 𝐼𝑑𝐵 (𝐼𝑑1
𝐵) be 𝐼𝑑𝐵,𝑖 (𝐼𝑑1

𝐵,𝑖),

i. if 𝐼𝑑1
𝐵,𝑖 = 0 (1) and 𝐼𝑑𝐵,𝑖 = 0, then the 𝑖-th qubit of 𝐼𝐵 is |0⟩ (|1⟩),

ii. if 𝐼𝑑1
𝐵,𝑖 = 0 (1) and 𝐼𝑑𝐵,𝑖 = 1, then the 𝑖-th qubit of 𝐼𝐵 is |+⟩ (|−⟩).

She randomly inserts the qubits of 𝐼𝐵 into 𝑄2
𝐴 and let the new sequence be 𝑄3

𝐴

containing 𝑛′ + 3𝑘/2 number of qubits.

(f) She also encodes the value of 𝜃 by preparing a sequence of single qubits 𝑄𝜃 corre-

sponding to the binary representation of 𝜃 = 𝜃1𝜃2 . . . 𝜃𝑘′ containing 𝑘′ bits. Note
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that since 𝜃 is an integer, whose value lies between 0 to 360, 𝑘′ ≤ 9. We assume

𝑘 ≥ 𝑘′ and then the encoding strategy, for 1 ≤ 𝑖 ≤ 𝑘′, is:

i. if 𝜃𝑖 = 0 (1) and 𝐼𝑑𝐵,𝑖 = 0, then prepares |0⟩ (|1⟩),

ii. if 𝜃𝑖 = 0 (1) and 𝐼𝑑𝐵,𝑖 = 1, then prepares |+⟩ (|−⟩).

She puts these single qubits in random positions of 𝑄3
𝐴 and let the new sequence be

𝑄4
𝐴 containing 𝑛′ + 3𝑘/2 + 𝑘′ number of qubits.

(g) Finally she chooses a sequence 𝐷𝐴 of 𝑚 number of decoy photons randomly from

{|0⟩ , |1⟩ ,

|+⟩ , |−⟩} and inserts them in random positions of 𝑄4
𝐴. Let the new sequence be

𝑄5
𝐴 containing 𝑙 = 𝑛′ + 3𝑘/2 + 𝑘′ +𝑚 single qubits. Alice sends 𝑄5

𝐴 to Bob through

a quantum channel.

2. Security check: After Bob receives 𝑄5
𝐴, they check if there is any eavesdropper in the

channel. Alice announces the positions and bases of the decoy photons. Bob measures

the decoy photons and announces the results. By comparing these measurement results

and the initial states of the decoy photons, Alice calculates the error in the channel. If

the estimated error is greater than some threshold value, then it proves the existence

of some eavesdropper in the channel. In that case, they abort the task; otherwise, they

continue the protocol.

3. Authentication procedure:

(a) Alice tells the positions of the single qubits of 𝐼𝐴 and Bob measures those qubits

in the proper bases corresponding to 𝐼𝑑𝐴, i.e., he chooses {|0⟩ , |1⟩} basis if the

corresponding bits of 𝐼𝑑𝐴 are 00 or 01; otherwise he chooses {|+⟩ , |−⟩} basis if

the corresponding bits of 𝐼𝑑𝐴 are 10 or 11. Bob compares his measurement results

with the bits of 𝐼𝑑𝐴 and calculates the error rate. Low error rate implies that there

is no eavesdropper impersonating Alice, then he continues the process, otherwise

terminates it.

(b) Alice tells the positions of the single qubits of 𝐼𝐵 and Bob measures those qubits in

the proper bases corresponding to 𝐼𝑑𝐵, i.e., he chooses {|0⟩ , |1⟩} ({|+⟩ , |−⟩}) basis
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if the corresponding bit of 𝐼𝑑𝐵 is 0 (1). Then from the measurement results, Bob

gets 𝐼𝑑1
𝐵 and announces 𝑟 = 𝐼𝑑𝐵⊕𝐼𝑑1

𝐵. Alice checks the value of 𝑟 to confirm Bob’s

authenticity and decides to continue or abort the communication.

4. Decoding process:

(a) Alice tells Bob the positions of the qubits of 𝑄𝜃 and Bob measures those qubits on

proper bases corresponding to 𝐼𝑑𝐵, i.e., if the 𝑖-th bit 𝐼𝑑𝐵 is 0 (1), then he chooses

{|0⟩ , |1⟩} ({|+⟩ , |−⟩}) basis to measure the 𝑖-th qubit of 𝑄𝜃. After measuring all

the qubits of 𝑄𝜃, he gets the value of 𝜃𝑖, for 1 ≤ 𝑖 ≤ 𝑘′. Bob calculates the decimal

representation of 𝜃1𝜃2 . . . 𝜃𝑘′ to get the actual value of 𝜃. One can note that, since

𝐼𝑑𝐵 is a secret key, nobody except Bob can decode the value of 𝜃.

(b) Bob discards all the measured qubits and gets back the sequence 𝑄1
𝐴 (since all the

qubits of the set (𝑄5
𝐴 ∖ 𝑄1

𝐴) are already measured in the previous steps). As Bob

knows the value of 𝜃, he applies the unitary operator 𝑈𝜃
−1 to all the qubits of 𝑄1

𝐴.

Thus all the qubits of 𝑄1
𝐴 are now in {|0⟩ , |1⟩} basis. Now Bob measures these

qubits in {|0⟩ , |1⟩} basis. If the 𝑖-th measurement result is |0⟩, then Bob concludes

𝑀 ′
𝑖 = 0, else 𝑀 ′

𝑖 = 1, i.e., he decodes the classical bit 𝑀 ′
𝑖 of the string 𝑀 ′.

(c) To check the integrity of the secret message, they publicly compare the random

check bits and calculate the error rate. If it is negligible, then by discarding the

check bits from 𝑀 ′, Bob gets 𝑀 . Otherwise, they abort the protocol.

Example 4. Let us take an example of the above discussed QSDC protocol.

Θ = {𝑥∘ : 𝑥 is an integer and 1 ≤ 𝑥 ≤ 8}, 𝐼𝑑𝐴 = 1100, 𝐼𝑑𝐵 = 0111 and the secret message

𝑀 = 011101.

1. Encoding process:

(a) Alice inserts check bits 1 and 0 after the 1st and 3rd bits of 𝑀 , i.e., 𝑀 ′ = 01110101.

(Bold numbers are check bits.)

(b) 𝑄1
𝐴 = |0⟩ |1⟩ |1⟩ |1⟩ |0⟩ |1⟩ |0⟩ |1⟩.
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Alice (Identity 𝐼𝑑𝐴) Bob (Identity 𝐼𝑑𝐵)
1. Message Encoding

Message 𝑀 , chooses 𝜃 and 𝑟.
∙ Inserts check bits in 𝑀 .

∙ Encodes: 0→ 𝑈𝜃 |0⟩ , 1→ 𝑈𝜃 |1⟩.

∙ Prepares sequence 𝑄1
𝐴

∙ Inserts 𝐼𝐴, 𝐼𝐵, 𝑄𝜃, 𝐷𝐴 in 𝑄1
𝐴.

Prepared sequence 𝑄5
𝐴 Sends 𝑄5

𝐴

2. Security check

Position and Measures qubits of 𝐷𝐴.
bases of 𝐷𝐴

Checks eavesdropping. Announces
states of 𝐷𝐴

3. Authentication process

Positions of 𝐼𝐴 Measures qubits of 𝐼𝐴

Checks 𝐼𝑑𝐴

Positions of 𝐼𝐵 Calculates 𝑟 = 𝐼𝑑𝐵 ⊕ 𝐼𝑑1
𝐵.

Checks 𝐼𝑑𝐵 Sends 𝑟

4. Decoding process

Positions of 𝑄𝜃 ∙ Measures qubits of 𝑄𝜃, gets 𝜃
∙ Discards measured qubits.

∙ Applies 𝑈𝜃
−1.

∙ Measures in {|0⟩ , |1⟩}.

Check bits Checks eavesdropping and Get 𝑀 .

99K denotes quantum channel
−→ denotes classical channel

Notations: 𝜃 ∈ Θ, 𝑟 ∈ {0, 1}𝑘, 𝑄𝜃 : qubits corresponding to 𝜃, 𝐷𝐴 : decoy qubits,
𝐼𝐴 : qubits corresponding to 𝐼𝑑𝐴 and 𝐼𝐵 : qubits corresponding to 𝐼𝑑1

𝐵 , 𝐼𝑑1
𝐵 = 𝐼𝑑𝐵 ⊕ 𝑟.

Figure 4-1: Proposed QSDC protocol with mutual authentication
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(c) Alice chooses 𝜃 = 7∘ and applies 𝑈𝜃 on the qubits of 𝑄1
𝐴. Then 𝑄1

𝐴 = |𝑥⟩ |𝑦⟩ |𝑦⟩ |𝑦⟩ |𝑥⟩ |𝑦⟩ |𝑥⟩ |𝑦⟩,

where |𝑥⟩ = 𝑈𝜃 |0⟩, |𝑦⟩ = 𝑈𝜃 |1⟩.

(d) 𝐼𝐴 = |−⟩ |0⟩ and 𝑄2
𝐴 = |𝑥⟩ |𝑦⟩ |−⟩ |𝑦⟩ |0⟩ |𝑦⟩ |𝑥⟩ |𝑦⟩ |𝑥⟩ |𝑦⟩, where the boxed qubits

are randomly added from 𝐼𝐴.

(e) Alice chooses 𝑟 = 1001, then 𝐼𝑑1
𝐵 = 𝐼𝑑𝐵 ⊕ 𝑟 = 0111 ⊕ 1001 = 1110, 𝐼𝐵 =

|1⟩ |−⟩ |−⟩ |+⟩ and 𝑄3
𝐴 = |𝑥⟩ |1⟩ |𝑦⟩ |−⟩ |−⟩ |𝑦⟩ |0⟩ |𝑦⟩ |−⟩ |𝑥⟩ |𝑦⟩ |𝑥⟩ |+⟩ |𝑦⟩,

where the boxed qubits are randomly added from 𝐼𝐵.

(f) 𝑄𝜃 = |1⟩ |−⟩ |−⟩ and 𝑄4
𝐴 = |𝑥⟩ |1⟩ |𝑦⟩ |−⟩ |−⟩ |𝑦⟩ |1⟩ |0⟩ |−⟩ |𝑦⟩ |−⟩ |𝑥⟩ |𝑦⟩ |−⟩

|𝑥⟩ |+⟩ |𝑦⟩, where the boxed qubits are randomly added from 𝑄𝜃.

(g) Decoy photons 𝐷𝐴 = |0⟩ |1⟩ |+⟩ |0⟩ and 𝑄5
𝐴 = |𝑥⟩ |0⟩ |1⟩ |1⟩ |𝑦⟩ |−⟩ |−⟩ |𝑦⟩

|1⟩ |0⟩ |−⟩ |𝑦⟩ |−⟩ |𝑥⟩ |+⟩ |𝑦⟩ |−⟩ |𝑥⟩ |0⟩ |+⟩ |𝑦⟩, where the boxed qubits are ran-

domly added from 𝐷𝐴.

(h) Alice sends 𝑄5
𝐴 = |𝑥⟩ |0⟩ |1⟩ |1⟩ |𝑦⟩ |−⟩ |−⟩ |𝑦⟩ |1⟩ |0⟩ |−⟩ |𝑦⟩ |−⟩ |𝑥⟩ |+⟩ |𝑦⟩ |−⟩ |𝑥⟩ |0⟩ |+⟩ |𝑦⟩

to Bob.

2. Security check: After Bob receives 𝑄5
𝐴, Alice announces the positions (2nd, 4th, 15th and

19th) and bases ({|0⟩ , |1⟩}, {|0⟩ , |1⟩}, {|+⟩ , |−⟩}, {|0⟩ , |1⟩}) of the decoy photons. Bob

measures the decoy photons and announces the results (|0⟩ , |1⟩ , |+⟩ , |0⟩). Alice calculates

the error in the channel. Here, we assume a noiseless channel. Hence, Bob discards all

the measured qubits and gets back the sequence 𝑄4
𝐴.

3. Authentication procedure:

(a) Alice announces the positions (4th and 8th ) of the qubits of 𝐼𝐴 and Bob chooses

the bases ({|+⟩ , |−⟩}, {|0⟩ , |1⟩} to measure those qubits and gets |−⟩ |0⟩, which is

equivalent to 𝐼𝑑𝐴.

(b) Alice tells the positions (2nd, 5th, 11th and 16th) of the single qubits of 𝐼𝐵 and Bob

chooses the bases ({|0⟩ , |1⟩}, {|+⟩ , |−⟩}, {|+⟩ , |−⟩}) and {|+⟩ , |−⟩}) to measure

those qubits and gets |1⟩ |−⟩ |−⟩ |+⟩. He gets 𝐼𝑑1
𝐵 = 1110 announces 𝑟 = 1110 ⊕

0111 = 1001. Alice confirms Bob’s identity.
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4. Decoding process:

(a) Alice tells Bob the positions (7th, 9th and 14th) of the qubits of 𝑄𝜃 and Bob chooses

the bases ({|0⟩ , |1⟩}, {|+⟩ , |−⟩}, {|+⟩ , |−⟩}) to measure those qubits and obtains 𝜃.

(b) He discards all the measured qubits to get 𝑄1
𝐴 and applies 𝑈𝜃

−1 to all the qubits of

𝑄1
𝐴. Bob measures these qubits in {|0⟩ , |1⟩} basis and gets 𝑀 ′ = 01110101.

(c) They publicly compare the random check bits (2nd and 5th bit of 𝑀 ′) and Bob

discards those bits to obtain 𝑀 = 011101.

This completes the QSDC protocol.

4.2 Security analysis

We now discuss the security of the proposed protocol against some familiar attack strategies

such as the impersonation attack, intercept-and-resend attack, entangle-and-measure attack,

DoS attack, man-in-the-middle attack, information leakage attack, and Trojan horse attack.

We assume that 𝐸𝑣𝑒 has infinite resources and unbounded computation power.

1. Impersonation attack: Let us first discuss this attack model, where an eavesdropper

(𝐸𝑣𝑒) is impersonating a legitimate party. First, we assume 𝐸𝑣𝑒 impersonates Alice to

send a wrong message to Bob. Since 𝐸𝑣𝑒 has no knowledge about 𝐼𝑑𝐴, she prepares

the qubits of 𝐼 ′
𝐴 randomly from {|0⟩ , |1⟩ , |+⟩ , |−⟩}. As Bob knows 𝐼𝑑𝐴, he chooses the

corresponding bases to measure the qubits of 𝐼 ′
𝐴. According to the value of the bits

𝐼𝑑𝐴,(2𝑖−1)𝐼𝑑𝐴,2𝑖, let the 𝑖-th qubit of 𝐼𝐴 be 𝐼𝐴,𝑖 prepared in basis ℬ, where ℬ = {|0⟩ , |1⟩}

or {|+⟩ , |−⟩}. Also let 𝐸𝑣𝑒 prepare the 𝑖-th qubit 𝐼 ′
𝐴,𝑖 in ℬ′ basis. Since Bob knows the

exact state of 𝐼𝐴,𝑖, he measures 𝐼 ′
𝐴,𝑖 in ℬ basis and let the measurement result be 𝐼 ′′

𝐴,𝑖.

Now the probability that Bob can not find this eavesdropping is Pr(𝐼 ′′
𝐴,𝑖 = 𝐼𝐴,𝑖). Now,

• If ℬ = ℬ′ and 𝐼𝐴,𝑖 = 𝐼 ′
𝐴,𝑖, then 𝐼 ′′

𝐴,𝑖 = 𝐼𝐴,𝑖 with probability 1.

• If ℬ = ℬ′ and 𝐼𝐴,𝑖 ̸= 𝐼 ′
𝐴,𝑖, then 𝐼 ′′

𝐴,𝑖 = 𝐼𝐴,𝑖 with probability 0.

• If ℬ ̸= ℬ′, then 𝐼 ′′
𝐴,𝑖 = 𝐼𝐴,𝑖 with probability 1/2.
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Thus for each qubit of 𝐼 ′
𝐴 the winning probability of 𝐸𝑣𝑒 is

Pr(𝐼 ′′
𝐴,𝑖 = 𝐼𝐴,𝑖)

= Pr(𝐼 ′′
𝐴,𝑖 = 𝐼𝐴,𝑖| ℬ = ℬ′) Pr(ℬ = ℬ′) + Pr(𝐼 ′′

𝐴,𝑖 = 𝐼𝐴,𝑖| ℬ ≠ ℬ′) Pr(ℬ ̸= ℬ′)

= 1
2[Pr(𝐼 ′′

𝐴,𝑖 = 𝐼𝐴,𝑖| ℬ = ℬ′) + Pr(𝐼 ′′
𝐴,𝑖 = 𝐼𝐴,𝑖| ℬ ≠ ℬ′)]

= 1
2[Pr(𝐼 ′′

𝐴,𝑖 = 𝐼𝐴,𝑖| ℬ = ℬ′, 𝐼𝐴,𝑖 = 𝐼 ′
𝐴,𝑖) Pr(𝐼𝐴,𝑖 = 𝐼 ′

𝐴,𝑖)+

Pr(𝐼 ′′
𝐴,𝑖 = 𝐼𝐴,𝑖| ℬ = ℬ′, 𝐼𝐴,𝑖 ̸= 𝐼 ′

𝐴,𝑖) Pr(𝐼𝐴,𝑖 ̸= 𝐼 ′
𝐴,𝑖) + 1/2]

= 1
2

[︂
1× 1

2 + 0× 1
2 + 1

2

]︂
= 1

2 .

Hence in the authentication process, Bob can detect 𝐸𝑣𝑒 with probability 1− (1/2)𝑘/2.

On the other hand, now let 𝐸𝑣𝑒 impersonate Bob to get the secret message from Alice.

Then 𝐸𝑣𝑒 has no idea about the preparation bases of the qubits of 𝐼𝐵 and thus she

randomly chooses basis {|0⟩ , |1⟩} or {|+⟩ , |−⟩} to measure those qubits. From the mea-

surement results, she correctly guesses the value of 𝐼𝑑1
𝐵 with probability (3/4)𝑘. Since

𝐼𝑑1
𝐵 = 𝐼𝑑𝐵 ⊕ 𝑟 and 𝐼𝑑𝐵 is unknown to Eve, from the security notion of “One-Time-

Pad”, 𝑟 is completely random to her and she correctly guesses 𝑟 with probability (1/2)𝑘.

Therefore, when 𝐸𝑣𝑒 announces the random number 𝑟, Alice detects her with probability

1− (1/2)𝑘.

So for both cases, the legitimate party can detect the eavesdropping with a high proba-

bility.

2. Intercept-and-resend attack: In this attack model, 𝐸𝑣𝑒 intercepts the qubits from

the quantum channel from Alice to Bob, then she measures those qubits and resends to

Bob. In our proposed protocol, let 𝐸𝑣𝑒 intercept the sequence 𝑄5
𝐴 from the quantum

channel. Note that the qubits corresponding to 𝑀 ′ are encoded in an arbitrary basis

{|𝑥⟩ , |𝑦⟩} and those are in random positions of 𝑄5
𝐴. Let 𝐸𝑣𝑒 choose a random 𝜃0 ∈ Θ

and measure all the qubits in {|𝑥0⟩ , |𝑦0⟩} basis, where,
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|𝑥0⟩ = 𝑈𝜃0 |0⟩ = cos 𝜃0 |0⟩+ sin 𝜃0 |1⟩

= 1√
2

[(cos 𝜃0 + sin 𝜃0) |+⟩+ (cos 𝜃0 − sin 𝜃0) |−⟩]
(4.1)

and

|𝑦0⟩ = 𝑈𝜃0 |1⟩ = − sin 𝜃0 |0⟩+ cos 𝜃0 |1⟩

= 1√
2

[(cos 𝜃0 − sin 𝜃0) |+⟩ − (cos 𝜃0 + sin 𝜃0) |−⟩].
(4.2)

Then,

|0⟩ = cos 𝜃0 |𝑥⟩ − sin 𝜃0 |𝑦⟩ ,

|1⟩ = sin 𝜃0 |𝑥⟩+ cos 𝜃0 |𝑦⟩
(4.3)

and

|+⟩ = 1√
2

[(cos 𝜃0 + sin 𝜃0) |𝑥⟩+ (cos 𝜃0 − sin 𝜃0) |𝑦⟩],

|−⟩ = 1√
2

[(cos 𝜃0 − sin 𝜃0) |𝑥⟩ − (cos 𝜃0 + sin 𝜃0) |𝑦⟩].
(4.4)

Table 4.1: Effects of Eve’s measurement on decoy photons

After Eve’s
measurement: 𝐷′

𝐴,𝑖

After Bob’s
measurement: 𝐷′′

𝐴,𝑖Original
state 𝐷𝐴,𝑖 State Probability State Probability

|𝑥0⟩ cos2 𝜃0 cos2 𝜃0|0⟩ |𝑦0⟩ sin2 𝜃0
|0⟩ sin2 𝜃0

|𝑥0⟩ sin2 𝜃0 sin2 𝜃0|1⟩ |𝑦0⟩ cos2 𝜃0
|1⟩ cos2 𝜃0

|𝑥0⟩ 1
2(cos 𝜃0 + sin 𝜃0)2 1

2(cos 𝜃0 + sin 𝜃0)2
|+⟩ |𝑦0⟩ 1

2(cos 𝜃0 − sin 𝜃0)2 |+⟩ 1
2(cos 𝜃0 − sin 𝜃0)2

|𝑥0⟩ 1
2(cos 𝜃0 − sin 𝜃0)2 1

2(cos 𝜃0 − sin 𝜃0)2
|−⟩ |𝑦0⟩ 1

2(cos 𝜃0 + sin 𝜃0)2 |−⟩ 1
2(cos 𝜃0 + sin 𝜃0)2

Eve’s measurement affects the decoy photons as well. Let the 𝑖-th decoy photon be

𝐷𝐴,𝑖 prepared in basis ℬ, where ℬ = {|0⟩ , |1⟩} or {|+⟩ , |−⟩}, and after 𝐸𝑣𝑒 measures in
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{|𝑥0⟩ , |𝑦0⟩} basis the state becomes 𝐷′
𝐴,𝑖. When Alice announces the preparation basis of

𝐷𝐴,𝑖, then Bob measures 𝐷′
𝐴,𝑖 in basis ℬ and gets 𝐷′′

𝐴,𝑖. We now calculate the probability

that 𝐷𝐴,𝑖 = 𝐷′′
𝐴,𝑖. From Table 4.1 we get,

Pr(𝐷′′
𝐴,𝑖 = 𝐷𝐴,𝑖)

=
∑︁

|𝑏⟩∈{|0⟩,|1⟩}
Pr(𝐷′′

𝐴,𝑖 = |𝑏⟩ , 𝐷𝐴,𝑖 = |𝑏⟩) +
∑︁

|𝑏⟩∈{|+⟩,|−⟩}
Pr(𝐷′′

𝐴,𝑖 = |𝑏⟩ , 𝐷𝐴,𝑖 = |𝑏⟩)

=
∑︁

|𝑏⟩∈{|0⟩,|1⟩}
Pr(𝐷′′

𝐴,𝑖 = |𝑏⟩ | 𝐷𝐴,𝑖 = |𝑏⟩) Pr(𝐷𝐴,𝑖 = |𝑏⟩)+

∑︁
|𝑏⟩∈{|+⟩,|−⟩}

Pr(𝐷𝐴,𝑖 = |𝑏⟩ | 𝐷′′
𝐴,𝑖 = |𝑏⟩) Pr(𝐷𝐴,𝑖 = |𝑏⟩)

= 1
4

⎡⎣ ∑︁
|𝑏⟩∈{|0⟩,|1⟩}

Pr(𝐷′′
𝐴,𝑖 = |𝑏⟩ | 𝐷𝐴,𝑖 = |𝑏⟩) +

∑︁
|𝑏⟩∈{|+⟩,|−⟩}

Pr(𝐷′′
𝐴,𝑖 = |𝑏⟩ | 𝐷𝐴,𝑖 = |𝑏⟩)

⎤⎦
= 1

4

[︂
2

(︁
cos4 𝜃0 + sin4 𝜃0

)︁
+ 2

{︂1
4 (cos 𝜃0 + sin 𝜃0)4 + 1

4 (cos 𝜃0 − sin 𝜃0)4
}︂]︂

= 1
2

[︂(︁
cos4 𝜃0 + sin4 𝜃0

)︁
+ 1

2
(︁
1 + 𝑠𝑖𝑛22𝜃0

)︁]︂
= 1

2
(︁
𝑠𝑖𝑛2𝜃0 + 𝑐𝑜𝑠2𝜃0

)︁2
+ 1

4 = 3
4 .

Thus the probability that Alice and Bob can realize the existence of 𝐸𝑣𝑒 is 1 −
(︁

3
4

)︁𝑚
,

where 𝑚 is the number of decoy photons. However, in this case the legitimate parties

detect her and terminates the protocol.

Now, let us calculate the probability 𝑝𝑐𝑜𝑟𝑟, that 𝐸𝑣𝑒 guesses the original 𝑛-bit message

𝑀 of Alice correctly. If 𝐸𝑣𝑒 chooses 𝜃0 = 𝜃 and measures the qubits of the sequence 𝑄5
𝐴

in {|𝑥⟩ , |𝑦⟩} basis, then she have to choose the correct 𝑛 positions corresponding to the

message bits among 𝑙 = 𝑛′ + 3𝑘/2 + 𝑘′ + 𝑚 positions. Thus the winning probability of

𝐸𝑣𝑒 is:

𝑝𝑐𝑜𝑟𝑟 = 1
𝑁 ×

(︁
𝑙
𝑛

)︁ .
For positive integers 𝑛 and 𝑙 with 1 ≤ 𝑛 ≤ 𝑙, we know that,

(︁
𝑙
𝑛

)︁𝑛
≤

(︁
𝑙
𝑛

)︁
, which implies

𝑝𝑐𝑜𝑟𝑟 ≤
1
𝑁

(︂
𝑛

𝑙

)︂𝑛

≤
(︂1

2

)︂⌊𝑙𝑜𝑔2𝑁⌋
×

(︂
𝑛

𝑙

)︂𝑛

≤
(︂1

2

)︂𝑛

, if 𝑙 ≥ 2𝑛
(︂1

2

)︂⌊𝑙𝑜𝑔2𝑁⌋/𝑛

,
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where ⌊𝑙𝑜𝑔2𝑁⌋ denotes the greatest integer less than or equal to 𝑙𝑜𝑔2𝑁 . So for our case

𝑝𝑐𝑜𝑟𝑟 ≤
(︁

1
2

)︁𝑛
, if 𝑙 ≥ 2𝑛

(︁
1
2

)︁8/𝑛
. Since 𝑝𝑐𝑜𝑟𝑟 is negligible, our protocol is secure against this

attack strategy.

3. Entangle-and-measure attack: In addition to the above discussed attacks, there is a

different kind of attack, called entangle-and-measure attack, which 𝐸𝑣𝑒 can apply to get

a partial information about 𝑀 . For this purpose, 𝐸𝑣𝑒 prepares a set of ancilla qubits

whose initial states are |𝜒⟩𝑒. When Alice sends 𝑄5
𝐴 to Bob, 𝐸𝑣𝑒 performs a unitary

operation 𝒰𝑒 on the qubits of 𝑄5
𝐴 and |𝜒⟩𝑒 to make them entangled, where 𝒰𝑒 is defined

as [151]:
𝒰𝑒 |0⟩ |𝜒⟩𝑒 = 𝛼0 |0⟩ |𝜒00⟩𝑒 + 𝛽0 |1⟩ |𝜒01⟩𝑒 ,

𝒰𝑒 |1⟩ |𝜒⟩𝑒 = 𝛼1 |0⟩ |𝜒10⟩𝑒 + 𝛽1 |1⟩ |𝜒11⟩𝑒 ,
(4.5)

where the four pure states |𝜒00⟩𝑒 , |𝜒01⟩𝑒 , |𝜒10⟩𝑒 and |𝜒11⟩𝑒 are orthonormal and they

belong to Eve’s Hilbert space. They are uniquely determined by the unitary operation

𝒰𝑒 and the following conditions hold,

|𝛼0|2 + |𝛽0|2 = 1, |𝛼1|2 + |𝛽1|2 = 1,

|𝛼0|2 = |𝛽1|2 = ℱ , |𝛼1|2 = |𝛽0|2 = 𝒟.
(4.6)

If Alice sends |𝑏⟩, 𝑏 ∈ {0, 1}, then after measurement Bob gets the correct result with

probability ℱ . Here ℱ is the fidelity and 𝒟 is the quantum bit error rate (QBER).

Further, we get

𝒰𝑒 |+⟩ |𝜒⟩𝑒 = 1√
2

(𝒰𝑒 |0⟩ |𝜒⟩𝑒 + 𝒰𝑒 |1⟩ |𝜒⟩𝑒)

= 1√
2

[𝛼0 |0⟩ |𝜒00⟩𝑒 + 𝛽0 |1⟩ |𝜒01⟩𝑒 + 𝛼1 |0⟩ |𝜒10⟩𝑒 + 𝛽1 |1⟩ |𝜒11⟩𝑒]

= 1√
2

[ |+⟩ (𝛼0 |𝜒00⟩𝑒 + 𝛽0 |𝜒01⟩𝑒 + 𝛼1 |𝜒10⟩𝑒 + 𝛽1 |𝜒11⟩𝑒)/
√

2 +

|−⟩ (𝛼0 |𝜒00⟩𝑒 − 𝛽0 |𝜒01⟩𝑒 + 𝛼1 |𝜒10⟩𝑒 − 𝛽1 |𝜒11⟩𝑒)/
√

2 ]

= 1√
2

(|+⟩ |𝜒++⟩𝑒 + |−⟩ |𝜒+−⟩𝑒)

(4.7)

118



and

𝒰𝑒 |−⟩ |𝜒⟩𝑒 = 1√
2

(𝒰𝑒 |0⟩ |𝜒⟩𝑒 − 𝒰𝑒 |1⟩ |𝜒⟩𝑒)

= 1√
2

[𝛼0 |0⟩ |𝜒00⟩𝑒 + 𝛽0 |1⟩ |𝜒01⟩𝑒 − 𝛼1 |0⟩ |𝜒10⟩𝑒 − 𝛽1 |1⟩ |𝜒11⟩𝑒]

= 1√
2

[ |+⟩ (𝛼0 |𝜒00⟩𝑒 + 𝛽0 |𝜒01⟩𝑒 − 𝛼1 |𝜒10⟩𝑒 − 𝛽1 |𝜒11⟩𝑒)/
√

2 +

|−⟩ (𝛼0 |𝜒00⟩𝑒 − 𝛽0 |𝜒01⟩𝑒 − 𝛼1 |𝜒10⟩𝑒 + 𝛽1 |𝜒11⟩𝑒)/
√

2 ]

= 1√
2

(|+⟩ |𝜒−+⟩𝑒 + |−⟩ |𝜒−−⟩𝑒).

(4.8)

If Alice sends |𝑏⟩, 𝑏 ∈ {+,−}, then after measurement Bob gets the correct result with

probability 1/2.

Now in the present protocol Alice prepares decoy states randomly from {|0⟩ , |1⟩ , |+⟩ , |−⟩}.

So for a particular decoy state |𝑏⟩, Bob gets the correct state with probability 𝑝 =
1
2(ℱ + 1/2), where ℱ is the fidelity when the decoy state is in {|0⟩ , |1⟩} and 1/2 is the

fidelity when the decoy state is in {|+⟩ , |−⟩}. Moreover, both of these cases occur with

probability 1/2. Hence in security check Alice and Bob can detect 𝐸𝑣𝑒 with probability

1− 𝑝𝑚, where 𝑚 is the number of decoy states.

However we now show that, by applying this attack strategy, 𝐸𝑣𝑒 gets no information

about the secret message. From Equation (4.5) we have,

𝒰𝑒 |𝑥⟩ |𝜒⟩𝑒 = 𝒰𝑒(𝑐𝑜𝑠𝜃 |0⟩+ sin 𝜃 |1⟩) |𝜒⟩𝑒

= |0⟩ (𝛼0 cos 𝜃 |𝜒00⟩𝑒 + 𝛼1 sin 𝜃 |𝜒10⟩𝑒) + |1⟩ (𝛽0 cos 𝜃 |𝜒01⟩𝑒 + 𝛽1 sin 𝜃 |𝜒11⟩𝑒)

= (cos 𝜃 |𝑥⟩ − sin 𝜃 |𝑦⟩)(𝛼0 cos 𝜃 |𝜒00⟩𝑒 + 𝛼1 sin 𝜃 |𝜒10⟩𝑒)+

(sin 𝜃 |𝑥⟩+ cos 𝜃 |𝑦⟩)(𝛽0 cos 𝜃 |𝜒01⟩𝑒 + 𝛽1 sin 𝜃 |𝜒11⟩𝑒)

(4.9)
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and

𝒰𝑒 |𝑦⟩ |𝜒⟩𝑒 = 𝒰𝑒(− sin 𝜃 |0⟩+ cos 𝜃 |1⟩) |𝜒⟩𝑒

= |0⟩ (−𝛼0 sin 𝜃 |𝜒00⟩𝑒 + 𝛼1 cos 𝜃 |𝜒10⟩𝑒) + |1⟩ (−𝛽0 sin 𝜃 |𝜒01⟩𝑒 + 𝛽1 cos 𝜃 |𝜒11⟩𝑒)

= (cos 𝜃 |𝑥⟩ − sin 𝜃 |𝑦⟩)(−𝛼0 sin 𝜃 |𝜒00⟩𝑒 + 𝛼1 cos 𝜃 |𝜒10⟩𝑒)+

(sin 𝜃 |𝑥⟩+ cos 𝜃 |𝑦⟩)(−𝛽0 sin 𝜃 |𝜒01⟩𝑒 + 𝛽1 cos 𝜃 |𝜒11⟩𝑒).

(4.10)

From Equation (4.9) and (4.10) it follows that, 𝐸𝑣𝑒 gains no useful information by

measuring the ancilla qubit |𝜒⟩𝑒 entangled with the qubits corresponding to the secret

message.

4. DoS attack: In this attack model, Eve’s aim is not to get secret information but to

tamper with the original message [194]. To execute this attack strategy, 𝐸𝑣𝑒 intercepts

the qubits from the quantum channel and randomly applies 𝐼 and 𝑈 with probability

1/2, where 𝑈 is a random unitary operator. Since 𝐸𝑣𝑒 does not know the positions of

the decoy state, the unitary operation also affects those qubits.

As the Pauli matrices [6] 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 form a basis for the space of all 2×2 Hermitian

matrices, thus the unitary matrix 𝑈 can be represented as a linear combination of the

Pauli matrices. Let

𝑈 = 𝑤1𝐼 + 𝑤2𝜎𝑥 + 𝑖𝑤3𝜎𝑦 + 𝑤4𝜎𝑧,

since 𝑈 is unitary, we must have ∑︀4
𝑖=1 𝑤

2
𝑖 = 1, we consider only real coefficients. To

calculate the winning probability of Eve, let us first discuss the effects of the Pauli

operators on the decoy qubits.

𝐼 is the identity operator, so it does not change the state of any qubit. Hence if 𝐸𝑣𝑒

applies 𝐼 on a decoy state, then after measurement Bob gets the correct result with

probability 𝑝1 = 1.

𝜎𝑥 |0⟩ = |1⟩ , 𝜎𝑥 |1⟩ = |0⟩ , 𝜎𝑥 |+⟩ = |+⟩ , 𝜎𝑥 |−⟩ = − |−⟩ , (4.11)
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i.e., if 𝐸𝑣𝑒 applies 𝜎𝑥 on a decoy state, then after measurement Bob gets the correct

result with probability 𝑝2 = 1/2, as 𝜎𝑥 changes the state of a decoy qubit |𝑑⟩ only if

|𝑑⟩ ∈ {|0⟩ , |1⟩}.

Similarly,

𝑖𝜎𝑦 |0⟩ = − |1⟩ , 𝑖𝜎𝑦 |1⟩ = |0⟩ , 𝑖𝜎𝑦 |+⟩ = |−⟩ , 𝑖𝜎𝑦 |−⟩ = − |+⟩ , (4.12)

and

𝜎𝑧 |0⟩ = |0⟩ , 𝜎𝑧 |1⟩ = − |1⟩ , 𝜎𝑧 |+⟩ = |−⟩ , 𝜎𝑧 |−⟩ = |+⟩ , (4.13)

i.e., if 𝐸𝑣𝑒 applies 𝑖𝜎𝑦 (or 𝜎𝑧) on a decoy state, then after measurement Bob gets the

correct result with probability 𝑝3 = 0 (or 𝑝4 = 1/2). Thus when 𝐸𝑣𝑒 applies 𝑈 on the

decoy qubits, then the winning probability of 𝐸𝑣𝑒 is

𝑝′ =
4∑︁

𝑖=1
𝑝𝑖𝑤

2
𝑖 < 1 as 𝑈 ̸= 𝐼.

Now 𝐸𝑣𝑒 chooses 𝐼 and 𝑈 with probability 1/2 and thus the probability that Bob gets

the correct result is 𝑝′′ = (1 + 𝑝′)/2. Hence in the security check process Alice and Bob

find this eavesdropping with probability 1 − 𝑝′′𝑚 > 0, where 𝑚 is the number of decoy

states. Moreover, this attack can also be found when they publicly compare the random

check bits to check the integrity of the message.

5. Man-in-the-middle attack: When 𝐸𝑣𝑒 follows this attack strategy, she intercepts the

sequence 𝑄5
𝐴 from the quantum channel and keeps this. She prepares another set 𝑄𝐸

of single qubit states and sends 𝑄𝐸 to Bob instead of 𝑄5
𝐴. Since 𝐸𝑣𝑒 does not know

the position and exact states of the decoy qubits, she prepares all the single qubits in

{|0⟩ , |1⟩} and {|+⟩ , |−⟩} bases to reduce the detection probability in the security check

process. Let the 𝑖-th decoy photon be 𝐷𝐴,𝑖, which is the 𝑗-th qubit of the sequence

𝑄5
𝐴, prepared in basis ℬ. Also let the 𝑗-th qubit of 𝑄𝐸 be 𝐷′

𝐴,𝑖 prepared in basis ℬ′,

where ℬ and ℬ′ are {|0⟩ , |1⟩} or {|+⟩ , |−⟩}. In the security check process when Alice
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announces the preparation basis of 𝐷𝐴,𝑖, then Bob measures 𝐷′
𝐴,𝑖 in basis ℬ and gets

𝐷′′
𝐴,𝑖. We now calculate the probability that 𝐷′′

𝐴,𝑖 = 𝐷𝐴,𝑖.

• If ℬ = ℬ′ and 𝐷𝐴,𝑖 = 𝐷′
𝐴,𝑖, then 𝐷′′

𝐴,𝑖 = 𝐷𝐴,𝑖 with probability 1.

• If ℬ = ℬ′ and 𝐷𝐴,𝑖 ̸= 𝐷′
𝐴,𝑖, then 𝐷′′

𝐴,𝑖 = 𝐷𝐴,𝑖 with probability 0.

• If ℬ ̸= ℬ′, then 𝐷′′
𝐴,𝑖 = 𝐷𝐴,𝑖 with probability 1/2.

Thus for each decoy qubit, the winning probability of 𝐸𝑣𝑒 is

Pr(𝐷′′
𝐴,𝑖 = 𝐷𝐴,𝑖)

= Pr(𝐷′′
𝐴,𝑖 = 𝐷𝐴,𝑖| ℬ = ℬ′) Pr(ℬ = ℬ′) + Pr(𝐷′′

𝐴,𝑖 = 𝐷𝐴,𝑖| ℬ ≠ ℬ′) Pr(ℬ ̸= ℬ′)

= 1
2[Pr(𝐷′′

𝐴,𝑖 = 𝐷𝐴,𝑖| ℬ = ℬ′) + Pr(𝐷′′
𝐴,𝑖 = 𝐷𝐴,𝑖| ℬ ≠ ℬ′)]

= 1
2[Pr(𝐷′′

𝐴,𝑖 = 𝐷𝐴,𝑖| ℬ = ℬ′, 𝐷𝐴,𝑖 = 𝐷′
𝐴,𝑖) Pr(𝐷𝐴,𝑖 = 𝐷′

𝐴,𝑖)+

Pr(𝐷′′
𝐴,𝑖 = 𝐷𝐴,𝑖| ℬ = ℬ′, 𝐷𝐴,𝑖 ̸= 𝐷′

𝐴,𝑖) Pr(𝐷𝐴,𝑖 ̸= 𝐷′
𝐴,𝑖) + 1/2]

= 1
2

[︂
1× 1

2 + 0× 1
2 + 1

2

]︂
= 1

2 .

Hence Alice and Bob can detect this eavesdropping and terminate the protocol with

probability 1 − 2−𝑚, where 𝑚 is the number of decoy states. Furthermore, since 𝐸𝑣𝑒

has no idea about the value of the parameter 𝜃 and the exact position of the qubits

corresponding to the secret message 𝑀 , so without the classical information from Alice,

𝐸𝑣𝑒 can not get any useful information by measuring the qubits of 𝑄5
𝐴 in some random

basis.

6. Information leakage attack: It refers to the information about the secret message

obtained by analyzing the classical channels by Eve. In other words, it is a measure of the

information which 𝐸𝑣𝑒 can get from the classical channel. Since in the present protocol,

no measurement outcome corresponding to the secret bits is discussed by the classical

channel, therefore 𝐸𝑣𝑒 can not get any secret information from the communications in

the classical channel.

7. Trojan horse attack: In the present protocol, only Alice prepares all the qubits required

for secure communication, and then she sends these qubits to Bob at once. Therefore this
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protocol is a one-way quantum communication protocol and hence 𝐸𝑣𝑒 can not adopt

the Trojan horse attack strategy to get any information about 𝑀 .

We have shown that our proposed protocol is secure against all the above-discussed attacks as in

each case the legitimate parties can detect the presence of 𝐸𝑣𝑒 with non-negligible probability.

In the following section, we study the performance of this protocol in a realistic noisy

quantum computer and illustrate results from IBM Quantum Computer.

4.3 Implementation in a noisy quantum device

The operations in our proposed protocol can be broadly represented as 𝑈𝐵𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈𝐴 where

𝑈𝐴 and 𝑈𝐵 are the operations at the two ends (Alice and Bob respectively), and 𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙

captures the action of the channel. Since Bob should receive the exact bit sent by Alice, if |𝑞⟩

is the qubit sent by Alice, we expect that in an ideal (noiseless and absence of eavesdropper)

scenario

𝑈𝐵𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈𝐴 |𝑞⟩ = |𝑞⟩ . (4.14)

Now in an ideal scenario our protocol requires 𝑈𝐵 = 𝑈−1
𝐴 . If 𝑈𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∝ 𝐼, then this

requirement suffices. Without loss of generality, we consider 𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑛𝐼, where 𝑛 ∈ Z+.

The scalar 𝑛 also captures the finite time duration of the channel.

In reality, the channel is usually noisy and is no longer ∝ 𝐼. If 𝑝𝑒𝑟𝑟𝑜𝑟 is the probability of

error, then the noisy channel can be represented as

𝑈𝑛𝑜𝑖𝑠𝑦
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = (1− 𝑝𝑒𝑟𝑟𝑜𝑟)𝑛𝐼 + 𝑝𝑒𝑟𝑟𝑜𝑟

𝑛∑︁
𝑖=1

𝐼𝑒𝑖
, (4.15)

where 𝐼𝑒𝑖
is some noisy version of the 𝑖𝑡ℎ identity gate. Note that 𝐼𝑒𝑖

may not be equal to

𝐼𝑒𝑗
for 𝑖 ̸= 𝑗, and it is possible that for some 𝑖, 𝐼𝑒𝑖

= 𝐼, i.e., some of the 𝑛 identity gates may

be noise-free as well.

In such a scenario, the ideal operation of Bob should be 𝑈𝐵 = (𝑈𝑛𝑜𝑖𝑠𝑦
𝐶ℎ𝑎𝑛𝑛𝑒𝑙)−1𝑈−1

𝐴 . However,

since the action of the noise is unknown, it is not possible for Bob to apply this required

operation in a realistic scenario. Furthermore, our protocol requires the preparation of 𝑈𝜃 gate
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for 𝜃 ∈ Θ. In near-term devices, which are noisy, this technique can be a victim of calibration

error, i.e., the applied operation maybe 𝑈(𝜃+𝛿𝜃) for some small 𝛿𝜃 ∈ R.

Let us assume that the density matrix of the original state to be transmitted is |𝑞⟩ ⟨𝑞|,

𝑞 ∈ {0, 1}. Let 𝑈𝐴 and 𝑈𝐵 be the actual operations of Alice and Bob respectively, where

𝑈𝐵 = 𝑈−1
𝐴 . However, due to noise, the operators 𝑈𝐴 and 𝑈𝐵 may change to 𝑈 ′

𝐴 and 𝑈 ′
𝐵 with

probabilities 𝑝𝐴 and 𝑝𝐵 respectively. Therefore, the density matrix of the transmitted qubit is

(1− 𝑝𝐴)(1− 𝑝𝐵)𝑈𝐵 · 𝑈𝐴 |𝑞⟩ ⟨𝑞|𝑈𝐴 · 𝑈𝐵 + 𝑝𝐴(1− 𝑝𝐵)𝑈𝐵 · 𝑈 ′
𝐴 |𝑞⟩ ⟨𝑞|𝑈

′†
𝐴 · 𝑈

†
𝐵

+(1− 𝑝𝐴)𝑝𝐵𝑈
′
𝐵 · 𝑈𝐴 |𝑞⟩ ⟨𝑞|𝑈 †

𝐴 · 𝑈
′†
𝐵 + 𝑝𝐴𝑝𝐵𝑈

′
𝐵 · 𝑈 ′

𝐴 |𝑞⟩ ⟨𝑞|𝑈
′†
𝐴 · 𝑈

′†
𝐵

Now, both 𝑈𝐴 and 𝑈𝐵 are single qubit gates, and can be implemented using a single 𝑈3 gate

in IBM Quantum devices (as discussed in detail in subsections henceforth). The probability

of error of a single qubit gate in IBM Quantum devices is 𝒪(10−2). Therefore, from the above

form, the probability of correction transmission is ∼ 0.98. Furthermore, even when a qubit is

affected by noise due to incorrect gate operations, post measurement, Bob will receive either

𝑞 or 𝑞 ⊕ 1 as the measurement outcome. Therefore, it doesn’t hamper the protocol if Bob

received the correct outcome 𝑞 even when the gate operations may have incorporated some

errors on the system. Therefore, the probability of correct transmission post gate error only

is greater than 98%. However, gate error is not the only error acting on the qubits. Other

errors, such as relaxation, measurement etc. also affect the outcome. So, in real scenario, we

expect to have a lower success probability (as shown in later subsections).

Here, we execute this protocol on the IBM Quantum Computer (Armonk device). We

assume different lengths of the quantum channel (i.e., various values of the scalar 𝑛). As

discussed before, noise in this device deviates the realization of the quantum channel from

𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙 to 𝑈𝑛𝑜𝑖𝑠𝑦
𝐶ℎ𝑎𝑛𝑛𝑒𝑙. We execute this protocol for different values of 𝜃 as well and show that

the protocol is robust against various sources of errors and the integrity of the protocol can

be guaranteed with minimum overhead in a noisy scenario as long as the time duration of the

ideal channel (i.e., the value of 𝑛) is below a certain threshold.
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4.3.1 Equivalence with Bit Flip Channel

Prior to further discussion on errors, we want to mention explicitly a property of this QSDC

protocol. Unlike general error correction scheme, in this protocol, it is not of urgency to

preserve the exact state that is being sent from Alice to Bob. The ultimate goal is to ensure

that Bob receives the exact bit that Alice has sent him with high probability. In other words,

suppose Alice wants to send a qubit |𝑞⟩ to Bob corresponding to a classical bit 𝑞. However, in a

realistic scenario, if the noisy operations of Alice, Bob and the channel are 𝑈 ′
𝐴, 𝑈 ′

𝐵 and 𝑈 ′
𝑐ℎ𝑎𝑛𝑛𝑒𝑙

respectively, then instead of the required 𝑈𝐵𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈𝐴 |𝑞⟩, we obtain 𝑈 ′
𝐵𝑈

′
𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈

′
𝐴 |𝑞⟩. We

do not care how the transmitted state |𝑞⟩ is being tampered with by the errors as long as

⟨𝑞|𝑈 ′
𝐵𝑈

′
𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈

′
𝐴 |𝑞⟩ > 1− 𝜖 for some small 𝜖 > 0.

Furthermore, let |𝑞⟩ be the original qubit transmitted by Alice, whereas Bob received |𝑞′⟩

which may not be the same as the original transmitted message. However, since 𝑞 ∈ {0, 1},

when Bob measures |𝑞′⟩ in the {|0⟩ , |1⟩} basis, he either receives 𝑞 or 𝑞⊕1. Therefore, although

the underlying channel may incorporate any error to the transmitted qubit, it is eventually

equivalent to a single bit flip. Therefore, the overhead required for the error induced by the

channel is the overhead to correct bit-flip errors.

4.3.2 Simulation of the protocol in IBM quantum device

In this subsection, we compute our protocol in the IBM Quantum Computer. However, for

this computation, we have ignored the authentication portion. Rather we have only computed

the communication portion, i.e., for each message qubit |𝑞⟩, we have computed the operation

𝑈𝐵𝑈𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑈𝐴 |𝑞⟩, and shown the action of noise on it. The effect of noise can be mitigated

using error correction. We aim to use the minimum overhead for error correction, which we

discuss in the following subsection, followed by the computation results henceforth.

Overhead for error correction

To account for the imperfection of the channel, it is necessary to introduce error correction.

However, for this protocol, we intend to introduce the minimum possible resource for error

correction. Classically, a 3-bit repetition code is sufficient to correct a single bit flip error. The
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repetition code is, in general, not extendable to the quantum domain, since (i) errors on qubits

are not simple bit flips [275], and (ii) No Cloning Theorem prohibits cloning of any arbitrary

quantum state [33]. However, we have already argued that the effective error on this protocol

is indeed a simple bit flip. Furthermore, the qubits transmitted by Alice are either |0⟩ or |1⟩.

Therefore, No Cloning Theorem does not restrict the use of repetition code in this scenario.

The use of a distance 3 repetition code ensures that to send 𝑁 qubits through a noisy channel,

a total of 3𝑁 qubits are sufficient for error-free transmission as long as the error probability is

below a particular threshold, which we now elaborate.

A distance-3 repetition code fails when at least two errors occur on the codeword. Therefore,

if 𝑝𝑒𝑟𝑟 is the probability of error, then we should have⎛⎜⎝3

2

⎞⎟⎠ 𝑝2
𝑒𝑟𝑟 < 𝑝𝑒𝑟𝑟,

which yields 𝑝𝑒𝑟𝑟 <
1
3 .

In the following subsection, we show empirically that the action of noise is similarly for

any angle 𝜃 selected for this protocol. However, the time duration of the channel restricts the

distance of the code. We have represented a noisy quantum channel as 𝑈𝑛𝑜𝑖𝑠𝑦
𝐶ℎ𝑎𝑛𝑛𝑒𝑙. We show that

for the usual time duration of an identity gate in the IBMQ device, a distance 3 repetition

code can protect this protocol from error as long as 𝑛 < 350. For higher values of 𝑛, the noise

in the device will lead to more than one error on expectation, and larger distance codes will

be required for error-free transmission.

Results of simulation in IBM Quantum Device

In our protocol, once a 𝜃 is decided upon, each bit is encoded independently and sequentially

by Alice. Similarly each qubit is decoded and measured independently and sequentially by

Bob. Therefore, a single qubit quantum computer is sufficient to perform these operations.

We have computed the encoding by Alice and the decoding by Bob, followed by measurement

in the IBMQ Armonk device [273] for various values of 𝜃 and various lengths (𝑛) of the channel.

IBMQ Armonk is a single qubit quantum computer with specifications shown in Fig. 4-2.

Computation on this device exposes our protocol to various device noise. Calibration error

signifies the inaccuracy in the gate operation (denoted as H error rate in Fig. 4-2). Readout
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Figure 4-2: Specifications of the IBMQ Armonk quantum device as provided by IBM

error, on the other hand, encapsulates the inaccuracy in measurement. If the measurement

device is noisy, then it is possible that although the original output was 𝑚, due to measurement

inaccuracy, it was noted down as 𝑚⊕ 1. Readout error is one of the most dominating sources

of errors in current quantum devices (as shown in Fig. 4-2 where the readout error rate is

6.7% as compared to calibration error rate of 0.04%). We shall discuss about the channel noise

(particularly the 𝑇1 error) later.

Qiskit [272] has its own gate sets which are computed on their device. Such a gate is the

𝑈3(𝜃, 𝜑, 𝜆) gate whose matrix form is

𝑈3(𝜃, 𝜑, 𝜆) =

⎛⎜⎝ 𝑐𝑜𝑠( 𝜃
2) 𝑒−𝑖𝜆𝑠𝑖𝑛( 𝜃

2)

𝑒𝑖𝜑𝑠𝑖𝑛( 𝜃
2) 𝑒𝑖(𝜑+𝜆)𝑐𝑜𝑠( 𝜃

2)

⎞⎟⎠,

where 0 ≤ 𝜃, 𝜑, 𝜆 < 2𝜋 are the parameters. Different quantum gates can be generated by

varying this parameter. Note that our required operation 𝑈𝜃 = 𝑈3(2𝜃, 0, 0).

Effect of choice of angle

First, we show the effect of the angle 𝜃 on the performance of the protocol in a realistic noisy

scenario. For this portion, we do not consider the presence of channel. We have executed

our protocol on the quantum device of Fig. 4-2 for 20 equally spaced values of 𝜃 ranging

from 0∘ to 360∘. We show the circuit for one such 𝜃 in Fig. 4-3. This figure shows the exact
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circuit that is being executed on the IBMQ Armonk device. The two gates are respectively

the 𝑈𝜃 applied by Alice, and the 𝑈−1
𝜃 applied by Bob. Qiskit tends to optimize their circuit

to reduce the execution overhead. Since we are applying two inverse operations sequentially,

the optimization module of qiskit would lead to an identity operation. Therefore, we have

forcefully introduced the barrier between the two gates which ensures that both the operations

are executed as they are.

Figure 4-3: Circuit diagram of the QSDC protocol executed on the IBMQ Armonk device

(a) Performance when Alice sends 0 (b) Performance when Alice sends 1

Figure 4-4: Action of noise in real quantum device

We have executed the protocol for the two scenarios - when the original bit is 0 or 1.

Fig 4-4a and Fig. 4-4b shows the action of noise in real quantum device on the performance of

the protocol. We see that Bob no longer obtains the original bit sent by Alice with certainty.

However, it is evident from the figures that the choice of angle does not have any significant

effect on the performance of the noisy protocol. For each value of the angle, we have taken

an average over 20 random instances. In Table 4.2 we show how the standard deviation of the

average values from the mean tends to 0 as the number of trials is increased from 5-20. The
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Figure 4-5: Average success probability for different bit values

mean more or less remains same. Therefore, it is evident that if the averaging is done over

even larger trials, whatever little jaggedness is still observable in 20 trials, will be removed

as well. Furthermore, we see that the average success probability for |0⟩ and |1⟩ are ∼ 0.93

and ∼ 0.91 respectively. We argued earlier that the presence of gate error alone leads to a

success probability of ∼ 0.98. These results from real IBMQ hardware reconfirms it, since

these values are lower than the theoretical value obtained using only gate error (here other

errors are present as well), but not significantly apart.

Table 4.2: Variation in Standard Deviation (SD) with the number of trials

Number of
Transmitted bit 0 Transmitted bit 1

trials Mean SD Mean SD

5 0.9343 0.00539 0.9116 0.00498

10 0.9354 0.00444 0.9122 0.00477

15 0.9345 0.00358 0.9123 0.00353

20 0.9337 0.00317 0.9118 0.00308

We note from Fig. 4-5 that the average performance is better when the qubit is |0⟩ than

when the qubit is |1⟩. This can be explained by the 𝑇1 error. The natural tendency of any
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quantum state is to retain its lowest energy state (|0⟩), or ground state. When a qubit is

elevated to its excited state (|1⟩), it has a natural tendency to release the excess energy to

return to its ground state. This noise model [6] is parameterized by 𝑇1. In general, the

probability that a qubit, prepared in the state |1⟩, remains in that state after a certain time 𝑡

is given by

Prob(|1⟩) = 𝑒𝑥𝑝(− 𝑡
𝑇1

),

The qubits which are prepared in the state |1⟩ are exposed to this error along with the

other device noise. Therefore, naturally, the average probability of observing |1⟩ is lower than

that of |0⟩. However, we note that for no value of 𝜃, the probability of correct transmission

goes below 0.9.

Effect of the length of the channel

Now, we incorporate the presence of a quantum channel. A quantum channel is not instanta-

neous. In order this simulate the finite time duration, we execute the circuit of Fig. 4-3, with

100 ≤ 𝑛 ≤ 400 identity gates in between the two 𝑈3 operators. Each identity gate in the IBMQ

Armonk device requires 142 ns to execute, and the error probability of each identity gate is

𝑝𝑒𝑟𝑟𝑜𝑟 = 0.001. The probability that the channel remains error-free is (1 − 𝑝𝑒𝑟𝑟𝑜𝑟)𝑛. However,

when we execute this circuit, it is subjected to other sources of errors apart from the channel

noise only (e.g. calibration error, readout error). In order to account for these, we hypothesize

that the probability of no error is

(1− 𝑝𝑒𝑟𝑟𝑜𝑟)𝛾𝑛, (4.16)

for some scalar 𝛾. In Fig. 4-6a and 4-6b, we show the probability of correct transmission as

a function of the length of the channel. We estimate the value of 𝛾 in each case through curve

fitting and observe 𝛾 = 0.18 for the transmission of bit 0, and 𝛾 = 0.21 for the transmission of

bit 1. The estimated functions are plotted in Fig. 4-7 to show a comparison of the variation

in probability for the bits 0 and 1. We see that, similar to Fig. 4-5, the transmission of 1 is

more prone to error than that of 0. This can be similarly explained as before via the 𝑇1 error.

This is, in fact, the reason for obtaining two different values of 𝛾 for the two bits.
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(a) Performance variation with channel length
when Alice sends 0

(b) Performance variation with channel length
when Alice sends 1

Figure 4-6: Action of noise in real quantum device for different channel length

We have already argued that a distance 3 repetition code is applicable for correcting errors

only when the probability of no error is ≥ 2
3 = 0.66. We note from Fig. 4-7 that when the

number of identity gates is ∼ 350, the estimated success probability of both 0 and 1 goes below

the required threshold. Therefore, in order to use the minimum overhead of 3 qubit repetitions,

it is necessary that the channel length is < 350 identity gates. Nevertheless, in case the channel

length is greater, then higher distance repetition codes can be used for error-free transmission.

4.4 Discussion

In this chapter, we propose a QSDC protocol with user authentication using single qubits

prepared on a randomly chosen arbitrary basis. In this protocol, before starting the com-

munication process, Alice and Bob share their secret identities through a secure QKD to

authenticate each other. In the proposed QSDC protocol, Alice, the message sender, prepares

all the single qubits and sends them to the receiver Bob, i.e., this is a one-step one-way quan-

tum communication protocol. After receiving the qubits, Bob only performs measurement and

applies unitary operations to the received particles to get the secret message of Alice. More-

over, the present protocol does not use entanglement as a resource. We discuss the security

of the protocol and show that our proposed protocol defeats all the familiar attack strategy
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Figure 4-7: Estimated functions for success probability for varying channel length

and the eavesdropper could not get on any information about the secret message. The curse

of executing such protocols in near-term devices is that they become susceptible to noise in

the device. We have computed the protocol in the IBMQ Armonk device which is a single

qubit device, and therefore perfectly captures the sequential structure of the protocol. We find

that our protocol is quite robust to error, and a simple distance 3 repetition code is sufficient

for reliable transmission as long as the length of the quantum channel is less than 350 iden-

tity gates. Therefore, in order to transmit 𝑁 qubits in such a noisy scenario, 3𝑁 qubits are

sufficient, and it does not require any complex gate operations for preparing logical qubits as

well.
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Chapter 5

Analysis and Design of MDI-QSDC

Recently, Niu et al. [2] proposed a measurement-device-independent (MDI) QSDC protocol us-

ing Einstein-Podolsky-Rosen (EPR) pairs. Then they generalized this one-way communication

to a bidirectional one and proposed an MDI-QD protocol. In their protocols, the two legiti-

mate parties prepare two sets of EPR pairs in their place, and send the partner qubits of their

EPR pairs to an untrusted third party, since the condition for being an MDI protocol is that,

all the measurements during the communication process should be performed by an untrusted

third party (who may be an eavesdropper). Here we analyze these protocols and point out that

the secret messages are not transmitted securely for both the protocols. We show that fifty

percent of the information about the secret message bits is leaked out in both the protocols.

In other words, in the perspective of information theory and cryptography, these protocols are

not secure. This type of security loophole of information leakage in various QSDC and QD

protocols are discussed in [226, 234, 90, 88, 276, 237, 277, 146]. We also propose modifications

of these protocols to improve their security. This work presented in the paper [137].

5.1 Security loophole of the MDI-QSDC protocol [2]

In this section, we explicitly analyze the MDI-QSDC protocol of [2] discussed in Section 2.3.2.

After Charlie has done the first set of Bell measurements of the qubits pairs of 𝑆𝐴2 and 𝑆𝐵2

in Step 3, the qubits pairs of 𝑆𝐴1 and 𝑆𝐵1 become entangled due to entanglement swapping

(Step 4a). Now from Equation (2.5), we can see that, if the Bell measurement results of the
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qubits pairs of 𝑆𝐴2 and 𝑆𝐵2 are |Φ+⟩𝐴2𝐵2
or |Φ−⟩𝐴2𝐵2

, then also the states of the qubit pairs

of 𝑆𝐴1 and 𝑆𝐵1 are |Φ+⟩𝐴1𝐵1
or |Φ−⟩𝐴1𝐵1

. Similarly, the state of the qubit pair (𝐴2, 𝐵2) =

|Ψ±⟩𝐴2𝐵2
implies the state of the qubit pair (𝐴1, 𝐵1) = |Ψ±⟩𝐴1𝐵1

or |Ψ∓⟩𝐴1𝐵1
.

After security checking, Alice and Bob discard the qubits, which are not entangled, from

their sequences 𝑆𝐴1 and 𝑆𝐵1 , and make the new sequences 𝑀𝐴 and 𝑀𝐵 respectively. So, from

the Bell measurement results of the qubit pairs (𝐴2, 𝐵2), Charlie knows the states of the qubit

pairs (𝐴1, 𝐵1), are either |Φ±⟩𝐴1𝐵1
or |Ψ±⟩𝐴1𝐵1

. That is, for 1 ≤ 𝑖 ≤ 𝑛 − 𝛿, Charlie exactly

knows that the qubit pairs (𝑀𝐴𝑖,𝑀𝐵𝑖) are in set 𝛷 = {|Φ+⟩ , |Φ−⟩} or in set 𝛹 = {|Ψ+⟩ , |Ψ−⟩}.

Now Alice applies 𝜎𝑧 on the qubits of 𝑀𝐴, whose corresponding initial states were |Ψ+⟩.

It is easy to check that, if Alice applies 𝜎𝑧 on 𝑀𝐴𝑖
for some 𝑖, then the state of the qubit

pair (𝑀𝐴𝑖,𝑀𝐵𝑖) changes from either |Φ±⟩ to |Φ∓⟩ or |Ψ±⟩ to |Ψ∓⟩. Thus Charlie’s knowledge

about the state of (𝑀𝐴𝑖,𝑀𝐵𝑖) remains same.

Then Alice encodes her message on the qubits of 𝑀𝐴 by using the unitary operations 𝐼,

𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 corresponding the message bits 00, 01, 10, and 11 respectively. That is, the

unitary operators 𝐼 and 𝜎𝑧 are used to encode the message bits 𝑏𝑏, and the unitary operators

𝜎𝑥 and 𝑖𝜎𝑦 are used to encode the message bits 𝑏𝑏̄, where 𝑏 ∈ {0, 1} and 𝑏̄ = bit complement of

𝑏. Bob also randomly applies 𝐼 or 𝜎𝑧 on the qubits of 𝑀𝐵. They send 𝑀𝐴 and 𝑀𝐵 to Charlie,

who measures each pair of qubits (𝑀𝐴𝑖,𝑀𝐵𝑖) in Bell basis, and announces the results. All the

different cases are given in Table 5.1.

We now show that, in the MDI-QSDC protocol [2], the untrusted third party Charlie (or

any eavesdropper) can get partial information about the secret without any active attack. For

this, we need to discuss the effects of the encoding rules in this MDI-QSDC protocol. Without

loss of generality, suppose the joint state of 𝑀𝐴𝑖, 𝑀𝐵𝑖 before encoding is |Φ+⟩, then Charlie

knows that the joint state is in the set 𝛷.

After Charlie measures (𝑀𝐴𝑖,𝑀𝐵𝑖) in Bell basis, if the measurement result is in the set 𝛷,

then from Table 5.1, Charlie concludes that, the secret information is either 00 or 11. Again if

the measurement result is in the set 𝛹 , then from Table 5.1, Charlie concludes that, the secret

information is either 01 or 10. Similarly, for the other cases, Charlie exactly knows that the

secret information is 𝑏𝑏 or 𝑏𝑏̄. For both the cases, Charlie can get the exact secret information

with probability 1/2, thus the Shannon entropy, which measures the amount of uncertainty, is
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Table 5.1: Different cases of MDI-QSDC [2].

State of (MAi ,MBi) Message bits Alice’s unitary Bob’s unitary State of (MAi ,MBi)

before encoding of Alice operation on MAi operation on MBi after encoding

|Φ+⟩

00 𝐼
𝐼 |Φ+⟩

𝜎𝑧 |Φ−⟩

01 𝜎𝑥

𝐼 |Ψ+⟩

𝜎𝑧 |Ψ−⟩

10 𝑖𝜎𝑦

𝐼 |Ψ−⟩

𝜎𝑧 |Ψ+⟩

11 𝜎𝑧

𝐼 |Φ−⟩

𝜎𝑧 |Φ+⟩

|Φ−⟩

00 𝐼
𝐼 |Φ−⟩

𝜎𝑧 |Φ+⟩

01 𝜎𝑥

𝐼 |Ψ−⟩

𝜎𝑧 |Ψ+⟩

10 𝑖𝜎𝑦

𝐼 |Ψ+⟩

𝜎𝑧 |Ψ−⟩

11 𝜎𝑧

𝐼 |Φ+⟩

𝜎𝑧 |Φ−⟩

|Ψ+⟩

00 𝐼
𝐼 |Ψ+⟩

𝜎𝑧 |Ψ−⟩

01 𝜎𝑥

𝐼 |Φ+⟩

𝜎𝑧 |Φ−⟩

10 𝑖𝜎𝑦

𝐼 |Φ−⟩

𝜎𝑧 |Φ+⟩

11 𝜎𝑧

𝐼 |Ψ−⟩

𝜎𝑧 |Ψ+⟩

|Ψ−⟩

00 𝐼
𝐼 |Ψ−⟩

𝜎𝑧 |Ψ+⟩

01 𝜎𝑥

𝐼 |Φ−⟩

𝜎𝑧 |Φ+⟩

10 𝑖𝜎𝑦

𝐼 |Φ+⟩

𝜎𝑧 |Φ−⟩

11 𝜎𝑧

𝐼 |Ψ+⟩

𝜎𝑧 |Ψ−⟩
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equal to −∑︀2
𝑗=1

1
2 log 1

2 = 1 bit. That means, only one bit among two bits of secret information

is unknown to Charlie. One may note that, from the viewpoint of information theory, this is

equivalent to the event that, among two bits of secret information, Charlie knows the exact

value of one bit and does not have any knowledge about the other bit. Thus we can say

that, here in this MDI-QSDC protocol, only fifty percent of the secret message communicated

securely.

By the same argument, we can say that the MDI-QD protocol proposed in [2] is also

not secure against information leakage, and in this protocol, only fifty percent of the secret

messages communicated securely.

Now, we find the root of this information leakage problem in these protocols. Let for some 𝑖,

𝑀𝐴𝑖
∈ 𝑀𝐴 and 𝑀𝐵𝑖

∈ 𝑀𝐵, and after Alice and Bob apply their unitary operators, the states

𝑀𝐴𝑖
and 𝑀𝐵𝑖

become 𝑁𝐴𝑖
and 𝑁𝐵𝑖

respectively. If the joint state (𝑀𝐴𝑖
,𝑀𝐵𝑖

) ∈ 𝛷 or 𝛹 , then

after applying 𝐼 or 𝜎𝑧 on 𝑀𝐴𝑖
(or 𝑀𝐵𝑖

), the joint state (𝑁𝐴𝑖
,𝑀𝐵𝑖

) (or (𝑀𝐴𝑖
, 𝑁𝐵𝑖

)) remains in

the same set 𝛷 or 𝛹 respectively. In other words, both 𝐼 and 𝜎𝑧 are applied on 𝑀𝐴𝑖
or 𝑀𝐵𝑖

or both 𝑀𝐴𝑖
and 𝑀𝐵𝑖

, map the set 𝛷 to 𝛷, and 𝛹 to 𝛹 . That is, for both the mappings, the

domain and the range sets are same, and if both the joint states (𝑀𝐴𝑖
,𝑀𝐵𝑖

) and (𝑁𝐴𝑖
, 𝑁𝐵𝑖

)

belong to the same subset of the Bell states 𝛷 or 𝛹 , then Charlie concludes that the message

bits are 𝑏𝑏. Otherwise, when (𝑀𝐴𝑖
,𝑀𝐵𝑖

) and (𝑁𝐴𝑖
, 𝑁𝐵𝑖

) belong to two different subsets 𝛷 or

𝛹 , then Charlie concludes that the message bits are 𝑏𝑏̄ (i.e., Alice applies 𝜎𝑥 or 𝑖𝜎𝑦 on 𝑀𝐴𝑖
).

So, the main problem in this encoding rule is, Bob’s random unitary operations can not lower

down the information of Charlie about the secret message. In the next section, we propose a

remedy to overcome this security flaw.

5.2 Proposed modification of MDI-QSDC protocol

In this section, we modify the MDI-QSDC protocol, to make it secure against information

leakage. To resolve the problem discussed in Section 5.1, Bob needs to apply some random

unitary operators on 𝑀𝐵𝑖
such that the the union of the range sets, of his unitary operators,

becomes the whole set of Bell states, i.e., for each (𝑀𝐴𝑖
,𝑀𝐵𝑖

) ∈ 𝛷 or 𝛹 and (𝑁𝐴𝑖
, 𝑁𝐵𝑖

) ∈ 𝛷∪𝛹 ,

there exist all the four possibilities of Alice’s two bits message 𝑏1𝑏2 (𝑏1, 𝑏2 ∈ {0, 1}).
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The modified protocol is almost same as the original one. In our modified MDI-QSDC

protocol, Step 1 to Step 5 and Step 7 are same as the MDI-QSDC protocol discussed in

Section 2.3.2. In Step 6, the encoding process of Alice is the same as the previous one, and

Bob randomly applies 𝜎𝑥 and 𝐼 on the qubits of 𝑀𝐵 (instead of 𝜎𝑧 and 𝐼 in the original one).

All the different cases, of the states of the qubit pairs of 𝑀𝐴 and 𝑀𝐵, before and after encoding

are given in Table 5.2.

We will now show that this modified protocol is secure against information leakage. Again

without loss of generality, suppose the joint state of 𝑀𝐴𝑖, 𝑀𝐵𝑖 before encoding is |Φ+⟩, then

Charlie knows that the joint state is either |Φ+⟩ or |Φ−⟩. From Table 5.2, it is easy to check

that, before encoding, if the joint state is |Φ±⟩, then all the four Bell states can arise after

encoding any two message bits 𝑏1𝑏2. Thus Charlie’s knowledge, about the joint state before

encoding, does not help him to extract any information about the secret bits. Similarly for

the other cases also Charlie can not get any secret information about the message bits.

We can also modify the MDI-QD protocol of [2], with a similar approach, i.e., the receiver

applies the unitary 𝐼 and 𝜎𝑥 randomly on his (her) state at the time of encoding.

5.2.1 Other Pauli operators to fix the issue

One can ask, what happen if Bob chooses any other pair of Pauli matrices as his random unitary

operators. To check this, we consider two sets of linear transformations ℱ1 = {𝐼, 𝜎𝑧} and

ℱ2 = {𝜎𝑥, 𝑖𝜎𝑦} (note that, every matrix is a linear transformation), where both the domain and

range of these linear transformations are 𝛷 and 𝛹 . Then, 𝑓 ∈ ℱ1 implies that 𝑓 maps the set

𝛷 to 𝛷 and the set 𝛹 to 𝛹 (ignoring the global phase of the Bell states). Again, 𝑓 ∈ ℱ2 implies

that 𝑓 maps the set 𝛷 to 𝛹 and the set 𝛹 to 𝛷. Let for any mapping 𝑓 , 𝒟(𝑓) and ℛ(𝑓) be the

domain and range of 𝑓 respectively. If Bob uses both his unitary operators from the same set ℱ1

or ℱ2 (i.e., Bob’s unitary operator 𝑓1, 𝑓2 =⇒ 𝒟(𝑓1) = 𝒟(𝑓2) = 𝒟 (say) andℛ(𝑓1) = ℛ(𝑓2) = ℛ

(say), where both 𝒟 and ℛ are either 𝛷 or 𝛹), then (𝑁𝐴𝑖
, 𝑁𝐵𝑖

) ∈ ℛ =⇒ (𝑁𝐴𝑖
,𝑀𝐵𝑖

) ∈ 𝒟.

As Charlie knows exactly the set 𝛷 or 𝛹 in which the state (𝑀𝐴𝑖
,𝑀𝐵𝑖

) belongs, thus from the

knowledge that (𝑁𝐴𝑖
,𝑀𝐵𝑖

) ∈ 𝒟, Charlie gets the information that “both the bits of Alice’s

two bits message are equal or not".

Now let the two unitary operators of Bob be 𝑓1 and 𝑓2, where 𝑓1 ∈ ℱ1 and 𝑓2 ∈ ℱ2.
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Alice UTP Bob

Prepares 𝑛 EPR pairs randomly in |Ψ+⟩, |Ψ−⟩. Prepares 𝑛 EPR pairs randomly in |Ψ+⟩, |Ψ−⟩.

Creates two sequences 𝑆𝐴1 and 𝑆𝐴2 . Creates two sequences 𝑆𝐵1 and 𝑆𝐵2 .

Qubits of 𝑆𝐴1 , 𝑆𝐴2 are partner in EPR pair. Qubits of 𝑆𝐵1 , 𝑆𝐵2 are partner in EPR pair.

Randomly choose decoy qubits, insert in 𝑆𝐴2 . Randomly choose decoy qubits, insert in 𝑆𝐵2 .

New sequence 𝐶𝐴2 containing (𝑛+𝑚) qubits. New sequence 𝐶𝐵2 containing (𝑛+𝑚) qubits.

Keeps 𝑆𝐴1
𝐶𝐴2 Measures qubits pairs of 𝐶𝐵2 Keeps 𝑆𝐵1

(𝐶𝐴2 , 𝐶𝐵2) in Bell basis

and announces results.

∙ When UTP measures the qubit pairs of (𝑆𝐴2, 𝑆𝐵2), then the qubit pairs of (𝑆𝐴1, 𝑆𝐵1) became entangled due to entanglement swapping.

Security Check Positions and states of the decoy qubits←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Security Check

Discards qubits of 𝑆𝐴1 , if not entangled Discards qubits of 𝑆𝐵1 , if not entangled

with the corresponding qubit of 𝑆𝐵1 . with the corresponding qubit of 𝑆𝐴1 .

New Sequence 𝑀𝐴. New Sequence 𝑀𝐵.

Applies 𝜎𝑧 on qubits of 𝑀𝐴 if the

initial state of the qubit was |Ψ+⟩.

Randomly inserts check bits in secret

message 𝑚 and the new message 𝑚′.

Applies 𝐼, 𝜎𝑥, 𝑖𝜎𝑦, 𝜎𝑧 on qubits of Applies cover operations 𝐼, 𝜎𝑥 on qubits of 𝑀𝐵

𝑀𝐴 to encode 00, 01, 10, 11.

𝑀𝐴 Measures qubits pairs of 𝑀𝐵

(𝐶𝐴2 , 𝐶𝐵2) in Bell basis

and announces results. Decodes 𝑚′.

Compare the check bits←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Extract 𝑚 from 𝑚′.

99K denotes quantum channel,

−→ denotes classical channel.

Figure 5-1: Modified MDI-QSDC protocol
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Table 5.2: Different cases of modified MDI-QSDC.

State of (MAi ,MBi) Message bits Alice’s unitary Bob’s unitary State of (MAi ,MBi)

before encoding of Alice operation on MAi operation on MBi after encoding

|Φ+⟩

00 𝐼
𝐼 |Φ+⟩

𝜎𝑥 |Ψ+⟩

01 𝜎𝑥

𝐼 |Ψ+⟩

𝜎𝑥 |Φ+⟩

10 𝑖𝜎𝑦

𝐼 |Ψ−⟩

𝜎𝑥 |Φ−⟩

11 𝜎𝑧

𝐼 |Φ−⟩

𝜎𝑥 |Ψ−⟩

|Φ−⟩

00 𝐼
𝐼 |Φ−⟩

𝜎𝑥 |Ψ−⟩

01 𝜎𝑥

𝐼 |Ψ−⟩

𝜎𝑥 |Φ−⟩

10 𝑖𝜎𝑦

𝐼 |Ψ+⟩

𝜎𝑥 |Φ+⟩

11 𝜎𝑧

𝐼 |Φ+⟩

𝜎𝑥 |Ψ+⟩

|Ψ+⟩

00 𝐼
𝐼 |Ψ+⟩

𝜎𝑥 |Φ+⟩

01 𝜎𝑥

𝐼 |Φ+⟩

𝜎𝑥 |Ψ+⟩

10 𝑖𝜎𝑦

𝐼 |Φ−⟩

𝜎𝑥 |Ψ−⟩

11 𝜎𝑧

𝐼 |Ψ−⟩

𝜎𝑥 |Φ−⟩

|Ψ−⟩

00 𝐼
𝐼 |Ψ−⟩

𝜎𝑥 |Φ−⟩

01 𝜎𝑥

𝐼 |Φ−⟩

𝜎𝑥 |Ψ−⟩

10 𝑖𝜎𝑦

𝐼 |Φ+⟩

𝜎𝑥 |Ψ+⟩

11 𝜎𝑧

𝐼 |Ψ+⟩

𝜎𝑥 |Φ+⟩
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Then 𝒟(𝑓1) = 𝒟(𝑓2) = 𝒟 (say) implies ℛ(𝑓1) and ℛ(𝑓2) are disjoint. Since 𝛷 and 𝛹 make

a partition of the set of all the two qubits Bell states, thus ℛ(𝑓1) ∪ ℛ(𝑓2) contains all the

Bell states. As Bob randomly chooses between 𝑓1 and 𝑓2, therefore from the exact state of

(𝑁𝐴𝑖
, 𝑁𝐵𝑖

), Charlie does not know the exact set of the state (𝑁𝐴𝑖
,𝑀𝐵𝑖

). For example, if Charlie

knows (𝑀𝐴𝑖
,𝑀𝐵𝑖

) ∈ 𝛷, then for Alice’s message 𝑏1𝑏2, all the four Bell state can occur as the

state of (𝑁𝐴𝑖
, 𝑁𝐵𝑖

). So in this case, the protocol is secure against information leakage.

Hence the collection of all possible choices of Bob’s random unitary operators pairs, from

the set of Pauli matrices, is {(𝑓1, 𝑓2) : 𝑓1 ∈ ℱ1 and 𝑓2 ∈ ℱ2}, i.e., there are four options for

Bob to choose his pair of unitary operators and they are: 𝐼 and 𝜎𝑥; 𝐼 and 𝑖𝜎𝑦; 𝜎𝑧 and 𝜎𝑥; 𝜎𝑧

and 𝑖𝜎𝑦. One can easily check that, if Bob uses any one pair from the above set as his random

unitary operators, then both the protocols prevent the information leakage problem.

5.3 Discussion

In this chapter, we analyze Niu et al.’s MDI quantum communication protocols and observe

some security issues in both the protocols. We show that these protocols are not secure against

information leakage, and one bit among two bits of information is always leaked without any

active attack. Then we propose a modification of these protocols, which are secure against

such information leakage problem. We also characterize the set of Pauli operators, which can

alternatively be used to bypass the security flaws.
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Chapter 6

A New Approach of MDI-QSDC

Design with User Authentication

In this chapter, we put forward an MDI-QSDC protocol with user identity authentication,

where both the sender and the receiver first check the authenticity of the other party and

then exchange the secret message. Then we extend this to an MDI quantum dialogue (QD)

protocol, where both the parties can send their respective secret messages after verifying the

identity of the other party. Along with this, we also report an MDI-DSQC protocol with

user identity authentication. Theoretical analyses prove the security of our proposed protocols

against common attacks.

6.1 Proposed MDI-QSDC protocol with user authenti-

cation

In this section, we propose our new MDI-QSDC protocol with user identity authentication

process.

Suppose Alice has an 𝑛-bit secret message 𝑚, which she wants to send Bob through a

quantum channel with the help of some untrusted third-party (UTP), who performs all the

measurements during the protocol. Alice and Bob have their secret user identities 𝐼𝑑𝐴 and

𝐼𝑑𝐵 (each of 2𝑘 bits) respectively, which they have shared previously by using some secured
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QKD. The protocol is as follows:

1. Alice chooses 𝑐 check bits and inserts those bits in random positions of 𝑚. Let the new

bit string be 𝑚′ of length 𝑛+ 𝑐. We assume this length to be even, i.e., 𝑛+ 𝑐 = 2𝑁 for

some integer 𝑁 .

2. Bob:

(a) Prepares (𝑁 + 𝑘) EPR pairs randomly in |Φ+⟩, |Φ−⟩, |Ψ+⟩ and |Ψ−⟩ states. He

separates the entangled qubit pairs into two particle sequences 𝑆𝐴 and 𝑆𝐵 each of

length (𝑁 +𝑘), where 𝑆𝐴 is formed by taking out one qubit from each pair, and the

remaining partner qubits form 𝑆𝐵.

(b) He also prepares 𝑘 EPR pairs according to his identity 𝐼𝑑𝐵. For 1 ≤ 𝑖 ≤ 𝑘, the

𝑖-th qubit pair 𝐼𝑖 is prepared as one of |Φ+⟩, |Φ−⟩, |Ψ+⟩ and |Ψ−⟩, if the value of

𝐼𝑑𝐵,(2𝑖−1)𝐼𝑑𝐵,2𝑖 is one of 00, 01, 10 and 11 respectively. He creates two sequences 𝐼𝐴

and 𝐼𝐵 of single photons, such that for 1 ≤ 𝑖 ≤ 𝑘, the 𝑖-th qubits of 𝐼𝐴 and 𝐼𝐵 are

partners of each other in the 𝑖-th EPR pair 𝐼𝑖.

(c) Bob chooses two sets 𝐷𝐴 and 𝐷𝐵, each of 𝑑 many decoy photons randomly prepared

in 𝑍-basis or 𝑋-basis. Then he randomly interleaves the qubits of 𝐼𝐴(𝐼𝐵) and

𝐷𝐴(𝐷𝐵) and 𝑆𝐴(𝑆𝐵) (maintaining the relative ordering of each set) to get a new

sequence of single qubits 𝑄𝐴(𝑄𝐵) (i.e., 𝑄𝑃 = 𝑆𝑃 ∪ 𝐼𝑃 ∪𝐷𝑃 , 𝑃 = 𝐴,𝐵).

(d) Bob retains the𝑄𝐵-sequence and sends the𝑄𝐴-sequence to Alice through a quantum

channel.

(e) After Alice receives 𝑄𝐴-sequence, Bob announces the positions of the qubits of 𝐼𝐴

and 𝐷𝐴.

3. Alice:

(a) She separates the qubits of 𝑆𝐴, 𝐼𝐴 and 𝐷𝐴 from 𝑄𝐴. Then from the sequence 𝑆𝐴, she

randomly chooses 𝑁 qubits to encode the secret message and the remaining 𝑘 qubits

(say, the set 𝐶𝐴) are used to encode her secret identity 𝐼𝑑𝐴. The encoding processes

for 𝑚′ and 𝐼𝑑𝐴 are the same. Alice encodes two bits of classical information into
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one qubit by applying an unitary operator. To encode 00, 01, 10 and 11, she applies

the Pauli operators [6] 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 respectively. After encoding the classical

information, let 𝑆𝐴 become 𝑆 ′
𝐴.

(b) Alice randomly applies 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 on the qubits of 𝐼𝐴 and resulting in a new

sequence 𝐼 ′
𝐴. She randomly inserts the qubits of 𝐼 ′

𝐴 into random positions of 𝑆 ′
𝐴 and

the new sequence be 𝑄′
𝐴.

(c) She randomly applies cover operations from {𝐼, 𝑖𝜎𝑦, 𝐻, 𝑖𝜎𝑦𝐻} on the qubits of 𝐷𝐴,

resulting in a new new sequence 𝐷1
𝐴.

(d) Alice sends 𝐷1
𝐴 sequence to UTP to check the security of the channel from Bob to

Alice.

4. After the UTP receives the sequence 𝐷1
𝐴, Bob announces the preparation bases of the

qubits of 𝐷𝐴 and Alice announces the corresponding cover operations which she applies

on those qubits.

5. UTP measures the qubits of 𝐷1
𝐴 in proper bases and announces the measurement result.

Note that if the cover operation belongs to the set {𝐻, 𝑖𝜎𝑦𝐻}, then UTP changes the

basis to measure the corresponding qubit. For example, let the 𝑖-th qubit of 𝐷𝐴 be

prepared in 𝑍-basis and the 𝑖-th cover operation be 𝑖𝜎𝑦𝐻, then UTP measures the 𝑖th

qubit of 𝐷1
𝐴 in 𝑋-basis. From the measurement results, Alice and Bob calculate the error

in the channel from Bob to Alice, and decide to continue or abort the protocol.

6. Alice inserts a new set of 𝑑′ decoy photons 𝐷′
𝐴 into random positions of 𝑄′

𝐴, resulting in

a new sequence 𝑄′′
𝐴. Alice sends 𝑄′′

𝐴-sequence to UTP.

7. Alice announces the positions and the preparation bases of the decoy qubits of 𝐷′
𝐴. UTP

measures the decoy qubits and publishes the measurement results, and from that Alice

calculates the error in the quantum channel between Alice and UTP. If the estimated

error is greater than some threshold value, then they terminate the protocol and otherwise

go to the next step.

8. Bob sends the sequence 𝑄𝐵 to UTP and when all the qubits of 𝑄𝐵 are reached to UTP,

Bob announces the positions and the preparation bases of the decoy qubits of 𝐷𝐵. UTP
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measures those qubits in proper bases and discloses the measurement results, and Bob

calculates the error in the quantum channel between Bob and UTP. If the estimated error

is greater than some threshold value, then they terminate the protocol and otherwise go

to the next step.

9. Authentication process:

(a) Alice announces the positions of the qubits of 𝐼 ′
𝐴 and Bob announces the positions of

the qubits of 𝐼𝐵. For 1 ≤ 𝑖 ≤ 𝑘, UTP measures the 𝑖-th qubit pair (𝐼 ′
𝐴,𝑖, 𝐼𝑏,𝑖) in Bell

basis and announces the result. As Alice knows 𝐼𝑑𝐵, she knows the exact state of

each 𝐼𝑖, which is the joint state 𝐼𝐴,𝑖𝐼𝐵,𝑖. Since she randomly applies Pauli operators

on 𝐼𝐴,𝑖, the joint state changes to 𝐼 ′
𝐴,𝑖𝐼𝐵,𝑖. Alice compares the measurement result

with 𝐼 ′
𝐴,𝑖𝐼𝐵,𝑖 to confirm Bob’s identity. If she finds a non-negligible error then she

aborts the protocol.

(b) Alice announces the positions of the qubits of 𝐶𝐴 corresponding to her identity 𝐼𝑑𝐴

and UTP measures those qubits with their partner qubits from 𝑆𝐵 (say, the set

𝐶𝐵) in Bell bases and announces the measurement result. Since Bob knows 𝐼𝑑𝐴,

he compares the measurement results with 𝐼𝑑𝐴 and checks if Alice is a legitimate

party or not. If he finds a non-negligible error, he aborts the protocol.

10. The UTP measures each qubit pair from (𝑆 ′
𝐴, 𝑆𝐵) in Bell basis and announces the mea-

surement result. From the knowledge of (𝑆𝐴, 𝑆𝐵) and (𝑆 ′
𝐴, 𝑆𝐵), Bob decodes the classical

bit string 𝑚′ using Table (6.1).

11. Alice and Bob publicly compare the random check bits to check the integrity of the

messages. If they find an acceptable error rate then Bob gets the secret message 𝑚 and

the communication process is completed.

Figure 6-1 represents the block diagram of the proposed MDI-QSDC with user authentica-

tion protocol. We also present it in the form of an algorithm in figure 6-2, where we use the

following notations.

∙ 𝑋 → 𝑌 : 𝑋 changes to 𝑌 .

144



Table 6.1: Encoding and decoding rules of our proposed MDI-QSDC.

Bob prepares Secret message Alice’s unitary Final joint Decoded
(𝑆𝐴, 𝑆𝐵) bits of Alice 𝑆𝐴 to 𝑆 ′

𝐴 state (𝑆 ′
𝐴, 𝑆𝐵) message bits

00 𝐼 |Φ+⟩ 00
01 𝜎𝑥 |Ψ+⟩ 01
10 𝑖𝜎𝑦 |Ψ−⟩ 10

|Φ+⟩

11 𝜎𝑧 |Φ−⟩ 11
00 𝐼 |Φ−⟩ 00
01 𝜎𝑥 |Ψ−⟩ 01
10 𝑖𝜎𝑦 |Ψ+⟩ 10

|Φ−⟩

11 𝜎𝑧 |Φ+⟩ 11
00 𝐼 |Ψ+⟩ 00
01 𝜎𝑥 |Φ+⟩ 01
10 𝑖𝜎𝑦 |Φ−⟩ 10

|Ψ+⟩

11 𝜎𝑧 |Ψ−⟩ 11
00 𝐼 |Ψ−⟩ 00
01 𝜎𝑥 |Φ−⟩ 01
10 𝑖𝜎𝑦 |Φ+⟩ 10

|Ψ−⟩

11 𝜎𝑧 |Ψ+⟩ 11

∙ 𝒫(𝑄): Positions of the qubits of 𝑄.

∙ 𝒞(𝑄): Cover operations on the qubits of 𝑄.

∙ ℬ(𝑄): Bases of the qubits of 𝑄.

∙ ℳ(𝑄) & 𝒜: Measures the qubits of 𝑄 in proper bases and announces the results.

∙ ℬℳ(𝑄1, 𝑄2) & 𝒜: Measures the qubit pairs of (𝑄1, 𝑄2) in Bell bases and announces the

results.

∙ Sec.chk (A, B): Checks the security of the channel from A to B.

∙ Cov. op.: Cover operation.

∙ Ins.: Inserts.
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Figure 6-1: Block diagram of the proposed MDI-QSDC with user authentication protocol
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Figure 6-2: Proposed MDI-QSDC with user authentication protocol

Alice (Identity 𝐼𝑑𝐴) UTP Bob (Identity 𝐼𝑑𝐵)

1. Ins. 𝑐 check bits into the

secret message 𝑚 and 𝑚→ 𝑚′.

2(d). 𝑄𝐴 2(a)-(c). Prepares 𝑄𝐴 = 𝑆𝐴 ∪ 𝐼𝐴 ∪𝐷𝐴

and 𝑄𝐵 = 𝑆𝐵 ∪ 𝐼𝐵 ∪𝐷𝐵, where qubits

2(e). 𝒫(𝐼𝐴), 𝒫(𝐷𝐴)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− pair of (𝑆𝐴, 𝑆𝐵), (𝐼𝐴, 𝐼𝐵) are entangled,

and qubits of 𝐷𝐴, 𝐷𝐵 are decoy states.

3(a). Separates 𝑆𝐴, 𝐼𝐴, 𝐷𝐴 from 𝑄𝐴.

Encodes 𝑚′, 𝐼𝑑𝐴 on 𝑆𝐴, 𝑆𝐴 → 𝑆 ′
𝐴.

𝐶𝐴: qubits corresponding to 𝐼𝑑𝐴. 𝐶𝐵: partner qubits of 𝐶𝐴

3(b). Random unitaries on 𝐼𝐴, 𝐼𝐴 → 𝐼 ′
𝐴.

Ins. 𝐼 ′
𝐴 into 𝑆 ′

𝐴 and 𝑄′
𝐴 = 𝑆 ′

𝐴 ∪ 𝐼 ′
𝐴.

3(c). Cov. op. on 𝐷𝐴 and 𝐷𝐴 → 𝐷1
𝐴. 3(d). 𝐷1

𝐴

4′. 𝒞(𝐷𝐴)−−−−−−−−−−−→ 5. ℳ(𝐷1
𝐴) & 𝒜 4′. ℬ(𝐷𝐴)←−−−−−−−−−−− 5′. Sec.chk (Bob, Alice)

6. Ins. 𝐷′
𝐴 into 𝑄′

𝐴, 𝑄′
𝐴 → 𝑄′′

𝐴.

𝐷′
𝐴: set of new decoy states. 6′. 𝑄′′

𝐴

7′′. Sec.chk (Alice,UTP) 7. 𝒫(𝐷′
𝐴), ℬ(𝐷′

𝐴)
−−−−−−−−−−→ 7′. ℳ(𝐷′

𝐴) & 𝒜

8. 𝑄𝐵

8′′. ℳ(𝐷𝐵) & 𝒜 8′. 𝒫(𝐷𝐵), ℬ(𝐷𝐵)←−−−−−−−−−−− 8′′′. Sec.chk (Bob, UTP)

9(a)′′′. Verifies Bob’s identity. 9(a). 𝒫(𝐼′
𝐴)

−−−−−−−−−−→ 9(a)′′. ℬℳ(𝐼 ′
𝐴, 𝐼𝐵) & 𝒜 9(a)′. 𝒫(𝐼𝐵),←−−−−−−−−−−

9(b). 𝒫(𝐶𝐴)−−−−−−−−−−→ 9(b)′. ℬℳ(𝐶𝐴, 𝐶𝐵) & 𝒜 9(b)′′. Verifies Alice’s identity.

10. ℬℳ(𝑆𝐴 − 𝐶𝐴, 𝑆𝐵 − 𝐶𝐵) & 𝒜 10′. Decodes 𝑚′.

11. Compare the check bits←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 11′. Extract 𝑚 from 𝑚′.

99K denotes quantum channel,

−→ denotes classical channel.

Step (i)′ happens just after Step (i).
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6.1.1 Example of our MDI-QSDC protocol

Let us now take an example of the above discussed MDI-QSDC with user authentication

protocol, where we assume all channels are noiseless.

Suppose Alice has a 6-bit secret message 𝑚 = 011010 and the secret identities of Alice and

Bob are 𝐼𝑑𝐴 = 1011 and 𝐼𝑑𝐵 = 0111 respectively, i.e., 𝑛 = 6 and 𝑘 = 2. Then the protocol is

as follows.

1. Alice chooses 𝑐 = 4 check bits 1001 and inserts those bits in random positions of 𝑚. Let

the new bit string be 𝑚′ = 0101100110 (bold numbers are check bits, i.e., the 2nd, 3rd,

7th and 9th bits) of length 𝑛+ 𝑐 = 10 = 2𝑁 , i.e., 𝑁 = 5.

2. Bob:

(a) Randomly prepares 𝑁 + 𝑘 = 7 EPR pairs

|Ψ+⟩𝑎1𝑏1
, |Φ+⟩𝑎2𝑏2

, |Φ+⟩𝑎3𝑏3
, |Ψ−⟩𝑎4𝑏4

|Φ−⟩𝑎5𝑏5
, |Ψ−⟩𝑎6𝑏6

, and |Ψ+⟩𝑎7𝑏7
.

He separates the entangled qubit pairs into two particle sequences

𝑆𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7} and 𝑆𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7},

each of length 7.

(b) He also prepares 2 EPR pairs 𝐼1 = |Φ−⟩𝑎′
1𝑏′

1
and 𝐼2 = |Ψ−⟩′𝑎2𝑏′

2
corresponding to

his identity 𝐼𝑑𝐵 = 0111, and creates two single-qubit sequences 𝐼𝐴 = {𝑎′
1, 𝑎

′
2} and

𝐼𝐵 = {𝑏′
1, 𝑏

′
2} by separating the EPR pairs.

(c) Bob chooses two sets 𝐷𝐴 = {|+⟩ , |1⟩ , |0⟩ , |+⟩} and 𝐷𝐵 = {|−⟩ , |0⟩ , |1⟩ , |0⟩}, each

of 𝑑 = 4 many decoy photons randomly prepared in 𝑍-basis or 𝑋-basis. Then he

randomly interleaves the qubits of 𝐼𝐴(𝐼𝐵) and 𝐷𝐴(𝐷𝐵) and 𝑆𝐴(𝑆𝐵) (maintaining

the relative ordering of each set) to get a new sequences of single qubits 𝑄𝐴(𝑄𝐵).

Let

𝑄𝐴 = {𝑎1, 𝑎2, 𝑎
′
1, |+⟩ , 𝑎3, |1⟩ , 𝑎′

2, 𝑎4, 𝑎5, |0⟩ , 𝑎6, 𝑎7, |+⟩}
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and 𝑄𝐵 = {𝑏1, 𝑏
′
1, 𝑏2, 𝑏3, 𝑏4, |−⟩ , |0⟩ , 𝑏′

2, 𝑏5, |1⟩ , 𝑏6, 𝑏7, |0⟩}.

(d) Bob retains the𝑄𝐵-sequence and sends the𝑄𝐴-sequence to Alice through a quantum

channel.

(e) After Alice receives 𝑄𝐴-sequence, Bob announces the positions of the qubits of 𝐼𝐴

(3rd and 7th) and 𝐷𝐴 (4th, 6th, 10th and 13th).

3. Alice:

(a) She separates the qubits of 𝑆𝐴, 𝐼𝐴 and 𝐷𝐴 from 𝑄𝐴, i.e., she has

𝑆𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7}, 𝐼𝐴 = {𝑎′
1, 𝑎

′
2} and 𝐷𝐴 = {|+⟩ , |1⟩ , |0⟩ , |+⟩}.

She randomly chooses 5 qubits 𝑎1, 𝑎3, 𝑎4, 𝑎6 and 𝑎7 from 𝑆𝐴 to encode𝑚′ = 0101100110

and the remaining 2 qubits 𝑎2 and 𝑎5 (say, the set 𝐶𝐴 = {𝑎2, 𝑎5}) are used to encode

𝐼𝑑𝐴 = 1011. After encoding the classical information, let 𝑆𝐴 become 𝑆 ′
𝐴, then

𝑆 ′
𝐴 = {𝜎𝑥(𝑎1), 𝑖𝜎𝑦(𝑎2), 𝜎𝑥(𝑎3), 𝑖𝜎𝑦(𝑎4), 𝜎𝑧(𝑎5), 𝜎𝑥(𝑎6), 𝑖𝜎𝑦(𝑎7)}.

(b) Alice randomly applies 𝜎𝑧 and 𝐼 on the qubits of 𝐼𝐴 and the resulting new sequence

is 𝐼 ′
𝐴 = {𝜎𝑧(𝑎′

1), 𝐼(𝑎′
2)}. She randomly inserts the qubits of 𝐼 ′

𝐴 into random positions

of 𝑆 ′
𝐴 and the new sequence is

𝑄′
𝐴 = {𝜎𝑥(𝑎1), 𝜎𝑧(𝑎′

1), 𝑖𝜎𝑦(𝑎2), 𝜎𝑥(𝑎3), 𝐼(𝑎′
2), 𝑖𝜎𝑦(𝑎4), 𝜎𝑧(𝑎5), 𝜎𝑥(𝑎6), 𝑖𝜎𝑦(𝑎7)}.

(c) She randomly applies cover operations from {𝐼, 𝑖𝜎𝑦, 𝐻, 𝑖𝜎𝑦𝐻} on the qubits of 𝐷𝐴

and the resulting new sequence is

𝐷1
𝐴 = {𝐻(|+⟩), 𝑖𝜎𝑦𝐻(|1⟩), 𝑖𝜎𝑦(|0⟩), 𝐼(|+⟩)} = {|0⟩ , |+⟩ , |1⟩ , |+⟩}.
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(d) Alice sends 𝐷1
𝐴 to UTP to check the security of the channel from Bob to Alice.

4. After the UTP receives the sequence 𝐷1
𝐴, Bob announces the preparation bases (𝑋,𝑍, 𝑍

and 𝑋) of the qubits of 𝐷𝐴 and Alice announces the corresponding cover operations

(𝐻, 𝑖𝜎𝑦𝐻, 𝑖𝜎𝑦 and 𝐼).

5. UTP measures the qubits of 𝐷1
𝐴 in proper bases (𝑍,𝑋,𝑍 and 𝑋) and announces the

measurement results |0⟩ , |+⟩ , |1⟩ , |+⟩. Since there is no error, Alice and Bob continue

the protocol.

6. Alice prepares a new set of 𝑑′ = 4 decoy photons 𝐷′
𝐴 = {|0⟩ , |+⟩ , |−⟩ , |1⟩}. She inserts

the decoy qubits into random positions of 𝑄′
𝐴 and sends the resulting new sequence 𝑄′′

𝐴

to UTP, where

𝑄′′
𝐴 = {𝜎𝑥(𝑎1), 𝜎𝑧(𝑎′

1), 𝑖𝜎𝑦(𝑎2), |0⟩ , 𝜎𝑥(𝑎3), 𝐼(𝑎′
2), |+⟩ , 𝑖𝜎𝑦(𝑎4), |−⟩ , 𝜎𝑧(𝑎5), 𝜎𝑥(𝑎6), |1⟩ , 𝑖𝜎𝑦(𝑎7)}.

7. Alice announces the positions (4th, 7th, 9th and 12th) and the preparation bases (𝑍,𝑋,𝑋

and 𝑍) of the decoy qubits of 𝐷′
𝐴. UTP measures the decoy qubits and publishes the

measurement results |0⟩ , |+⟩ , |−⟩ , |1⟩. Since there is no error, Alice and Bob continue

the protocol.

8. Bob sends the sequence 𝑄𝐵 to UTP and when all the qubits of 𝑄𝐵 are reached to

UTP, Bob announces the positions (6th, 7th, 10th and 13th) and the preparation bases

(𝑋,𝑍, 𝑍 and 𝑍) of the decoy qubits of 𝐷𝐵. UTP measures those qubits in proper bases

and discloses the measurement results |−⟩ , |0⟩ , |1⟩ , |0⟩. Then Bob calculates the error

rate (which is zero for this example) in the quantum channel between Bob and UTP and

goes to the next step.

9. Authentication process:
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(a) Alice announces the positions (2nd and 6th) of the qubits of 𝐼 ′
𝐴 in the sequence 𝑄′′

𝐴

and Bob announces the positions (2nd and 8th) of the qubits of 𝐼𝐵 in the sequence

𝑄𝐵. UTP measures the 𝑖-th qubit pairs (𝜎𝑧(𝑎′
1), 𝑏′

1) and (𝐼(𝑎′
2), 𝑏′

2) in Bell basis

and announces the results |Φ+⟩ and |Ψ−⟩. As Alice knows 𝐼𝑑𝐵 = 0111, she knows

the exact states of 𝐼1 = |Φ−⟩ and 𝐼2 = |Ψ−⟩. Since she randomly applied Pauli

operators 𝜎𝑧, 𝐼 on 𝑎′
1, 𝑎

′
2 respectively, the joint state changes to |Φ+⟩ , |Ψ−⟩. Alice

confirms Bob’s identity and continues the protocol.

(b) Alice announces the positions (2nd and 5th) of the qubits of 𝐶𝐴 in the sequence

𝑆 ′
𝐴 and UTP measures those qubits with their partner qubits from 𝑆𝐵 (say, the

set 𝐶𝐵 = (𝑏2, 𝑏5)) in Bell bases and announces the measurement results |Ψ−⟩ , |Φ+⟩.

Since the initial states of the EPR pairs are |Φ+⟩ , |Φ−⟩, Bob decodes the identity

of Alice as 𝐼𝑑𝐴 = 1011 and confirms Alice as a legitimate party and continues the

protocol.

10. The UTP measures each qubit pair from (𝑆 ′
𝐴, 𝑆𝐵) in Bell basis and announces the mea-

surement result |Φ+⟩ , |Ψ+⟩ , |Φ+⟩ , |Φ−⟩ , |Φ−⟩. From these results, Bob decodes the clas-

sical bit string 𝑚′ = 0101100110.

11. Alice and Bob publicly compare the random check bits (2nd, 3rd, 7th and 9th bits of

𝑚′) to check the integrity of the messages. Bob discards those bits to obtain the secret

message 𝑚 = 011010 and the communication process is completed.

6.1.2 Security analysis of our MDI-QSDC protocol

In our proposed MDI-QSDC with user authentication, the secret message is transmitted be-

tween two legitimate parties, and the potential adversary is kept ignorant of the content.

There are also broadcast channels between Alice, Bob and UTP, for the necessary classical

information, to execute the protocol. First, we show the security of our proposed MDI-QSDC

protocol for user authentication by establishing the security against impersonation attack.

Then we prove the security of the message transmission part. We assume that 𝐸𝑣𝑒 has infinite

resources and unbounded computation power.
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Security for user authentication

Let us now discuss the security of our proposed MDI-QSDC protocol against impersonation

attacks. An eavesdropper, 𝐸𝑣𝑒, may try to impersonate Alice in order to send a fake message

to Bob. But since 𝐸𝑣𝑒 does not know the pre-shared key 𝐼𝑑𝐴, Bob can easily detect 𝐸𝑣𝑒 with

a very high probability. In the proposed MDI-QSDC protocol, suppose 𝐸𝑣𝑒 may intercept the

sequence 𝑄𝐴 sent from Bob to Alice in Step 2d. However, without knowing the pre-shared key

𝐼𝑑𝐴, 𝐸𝑣𝑒 applies Pauli operators randomly on 𝑘 qubits of 𝐶𝐴, instead of performing the correct

unitary to encode 𝐼𝑑𝐴. She sends it to UTP, who measures these qubits with their partner

qubits from 𝐶𝐵 on the Bell basis and announces the results. Since Bob knows the initial state

of those 𝑘 EPR pairs (𝐶𝐴, 𝐶𝐵) and the value of 𝐼𝑑𝐴, he compares the measurement results

with the expected EPR pairs and detects Eve. Since 𝐸𝑣𝑒 applies Pauli operators randomly on

each qubit, she applies correct unitary with probability 1
4 and hence the detection probability

of Bob is 1− (1
4)𝑘.

On the other hand, 𝐸𝑣𝑒 may try to impersonate Bob to get the secret message from

Alice. In the proposed MDI-QSDC protocol, suppose 𝐸𝑣𝑒 initiates the protocol and generates

the sequences of qubits 𝑄𝐴 and 𝑄𝐵, which contain the sequences 𝐼𝐴 and 𝐼𝐵 respectively, by

following the process described in Step 2. Now, since 𝐸𝑣𝑒 does not know the value of 𝐼𝑑𝐵,

she prepares each 𝐼𝑖 (1 ≤ 𝑖 ≤ 𝑘) as one of the EPR pairs randomly with probability 1
4 . After

Alice applies cover operations on the qubits of 𝐼𝐴, the set becomes 𝐼 ′
𝐴. In the authentication

process (Step 9a), UTP measures the joint states of (𝐼 ′
𝐴, 𝐼𝐵) in proper bases and announces

the results. As Alice knows the value of 𝐼𝑑𝐵, she compares the measurement results with the

expected results and detects 𝐸𝑣𝑒 with probability 1− (1
4)𝑘.

Security for message transmission

In our MDI-QSDC protocol, we are ignorant of the measurement process and strategy that

an adversary may exploit, hence we focus on the system after Bob sends the sequence 𝑄𝐴 to

Alice, where a joint state 𝜌𝑗𝑛𝑡
𝐴𝐵, consisting of maximally entangled photon pairs shared between

Alice and Bob. We consider a situation where an adversary 𝐸𝑣𝑒 attacks the system with an

auxiliary system and performs a coherent attack. Here, in our protocol, Alice and Bob use
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decoy states to obtain the gain and quantum bit error rate (QBER) after each transmission of

qubits sequences where both of them send single qubits to the UTP. Now we use the concept

of virtual qubits [278, 63] and the proof technique of [135] to establish the security of our

protocol against this type of attack. The idea of virtual qubit is that, instead of preparing

a single qubit decoy state from {|0⟩ , |1⟩ , |+⟩ |−⟩}, Alice (Bob) prepares EPR pair, which is

a combined system of her (his) virtual qubit and the qubit she (he) is sending to the UTP.

Subsequently, they measure their virtual qubits to decide to continue or abort the protocol.

For simplicity, let us assume that initially Bob prepares all the EPR pairs in |Φ+⟩ and he

applies the cover operations 𝐼, 𝜎𝑧, 𝜎𝑥, 𝑖𝜎𝑦 on the qubits of 𝑆𝐵 while sending this sequence 𝑄𝐵

to the UTP. Note that this step is equivalent to the fact that Bob prepares EPR pairs randomly

from the set of all Bell states.

Let the system of Alice, Bob and 𝐸𝑣𝑒 be𝐴, 𝐵 and 𝐸 respectively. Then from Csiszár–Körner

theory [279], the secrecy capacity between Alice and Bob is 𝐶𝑆,

𝐶𝑆 = max[𝐼(𝐴 : 𝐵)− 𝐼(𝐴 : 𝐸)], (6.1)

where 𝐼(𝑋 : 𝑌 ) stands for mutual information of two random variables 𝑋 and 𝑌 . Now if

𝐶𝑆 > 0, then there is a forward encoding scheme with a capacity less than 𝐶𝑆, which can be

used to transmit the message reliably and securely from Alice to Bob.

According to quantum De Finetti representation theorem [280], the joint state 𝜌𝑗𝑛𝑡
𝐴𝐵 can be

asymptotically approximated as a direct product of independent and identically distributed

(i.i.d.) subsystems 𝜌⊗𝑁
𝐴𝐵 , if a randomized permutation is applied to the system. Thus 𝐸𝑣𝑒

attacks each qubit separately by using a separate probe |𝐸⟩ and then the coherent attack

model can be considered as the collective attack by Eve.

According to [281], 𝜌𝐴𝐵 can be written as a linear combination of the Bell states as follows,

𝜌𝐴𝐵 = 𝛿1 |Φ+⟩ ⟨Φ+|+ 𝛿2 |Φ−⟩ ⟨Φ−|+ 𝛿3 |Ψ+⟩ ⟨Ψ+|+ 𝛿4 |Ψ−⟩ ⟨Ψ−| , (6.2)

where ∑︀4
𝑖=1 𝛿𝑖 = 1. Let |Φ𝐴𝐵𝐸⟩ be a purification of the mixed state 𝜌𝐴𝐵. Then it can be written
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as

|Φ𝐴𝐵𝐸⟩ =
4∑︁

𝑖=1

√︁
𝛿𝑖 |Ψ𝑖⟩ |𝐸𝑖⟩ , (6.3)

where |Ψ1⟩ = |Φ+⟩, |Ψ2⟩ = |Φ−⟩, |Ψ3⟩ = |Ψ+⟩, |Ψ4⟩ = |Ψ−⟩ are the entangled pairs shared by

Alice and Bob, and |𝐸𝑖⟩, 1 ≤ 𝑖 ≤ 4, are the orthonormal states of the system |𝐸⟩.

After Bob sends the sequence 𝑄𝐴 to Alice, they calculate the bit error rate 𝜖𝑧 and phase

error rate 𝜖𝑥 by measuring the virtual qubits by Bob and their partner qubits by Alice. They

choose the same bases, either (𝑍,𝑍) or (𝑋,𝑋) with probability 1
2 , and measure their respective

qubits. If no error occurs, then they should get the same outcomes as |Φ+⟩ = 1√
2(|00⟩+ |11⟩) =

1√
2(|++⟩ + |−−⟩). If they get different outcomes while measuring in 𝑍-basis, i.e., the shared

entangled state is either |Ψ+⟩ or |Ψ−⟩, then bit flip error occurs and thus 𝜖𝑧 = 𝛿3 + 𝛿4.

Similarly, when they measure in 𝑋-basis and get different outcomes, phase error occurs and

thus 𝜖𝑥 = 𝛿2 + 𝛿4. If both the error rates are less than some predefined threshold value, then

they continue the process and Alice encodes her message by applying proper unitary operators

𝑈𝜁 ’s on the qubits of 𝑆𝐴 and Bob applies random cover operations from the set of all Pauli

operators on the qubits of 𝑆𝐵, and send their respective sequences to the UTP. Then the shared

state becomes

𝜌𝜁
𝐴𝐵𝐸 = 1

4𝑈𝜁(|Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|+ 𝜎𝐵
𝑧 |Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|𝜎𝐵

𝑧

+ 𝜎𝐵
𝑥 |Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|𝜎𝐵

𝑥 − 𝜎𝐵
𝑦 |Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|𝜎𝐵

𝑦 )𝑈 †
𝜁

= 𝑈𝜁𝜌
𝑐
𝐴𝐵𝐸𝑈

†
𝜁 ,

(6.4)

where 𝜁 ∈ {00, 01, 10, 11} and 𝑈00 = 𝐼, 𝑈01 = 𝜎𝑥, 𝑈10 = 𝑖𝜎𝑦, 𝑈11 = 𝜎𝑧 are the mes-

sage encoding operations of Alice, and 𝜌𝑐
𝐴𝐵𝐸 = 1

4(|Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸| + 𝜎𝐵
𝑧 |Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|𝜎𝐵

𝑧 +

𝜎𝐵
𝑥 |Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|𝜎𝐵

𝑥 − 𝜎𝐵
𝑦 |Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|𝜎𝐵

𝑦 ).

Let the 2𝑁 -bit message of Alice be 𝑚′ = 𝜁1𝜁2 . . . 𝜁𝑁 , where for 1 ≤ 𝑖 ≤ 𝑁 , 𝜁𝑖 is a two-bit

binary number randomly chosen from ℬ = {00, 01, 10, 11} and the probability distribution of

each 𝜁𝑖 is 1
4 . For 1 ≤ 𝑖 ≤ 𝑁 , Alice encodes 𝜁𝑖 by applying 𝑈𝜁𝑖

on 𝜌𝑐
𝐴𝐵𝐸 and the state becomes

𝜌𝜁𝑖
𝐴𝐵𝐸. We now calculate the maximum amount of accessible information of 𝐸𝑣𝑒 about 𝜁𝑖.

Then from Holevo theorem [40], we see the mutual information 𝐼(𝐴 : 𝐸) is bounded above as,
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𝐼(𝐴 : 𝐸) ≤ 𝑆

⎛⎝∑︁
𝜁∈ℬ

𝑝𝜁𝜌
𝜁
𝐴𝐵𝐸

⎞⎠−∑︁
𝜁∈ℬ

𝑝𝜁𝑆(𝜌𝜁
𝐴𝐵𝐸) (6.5)

where 𝑝𝜁 = 1
4 , the probability of randomly selecting one element from ℬ, and 𝑆(·) is the Von

Neumann entropy.

One can see that Alice’s encoding and Bob’s cover operations make a maximal mixture of

the subsystems 𝐴 and 𝐵. Thus we have 𝑆(𝜌𝜁
𝐴𝐵𝐸) = 2 for 𝜁 ∈ ℬ, and

𝐼(𝐴 : 𝐸) ≤ 𝑆

⎛⎝∑︁
𝜁

𝑝𝜁𝜌
𝜁
𝐴𝐵𝐸

⎞⎠− 2, (6.6)

and

∑︁
𝜁

𝑝𝜁𝜌
𝜁
𝐴𝐵𝐸 = 𝜌𝑚𝑖𝑥

𝐴𝐵 ⊗ 𝑇𝑟𝐴𝐵(|Φ𝐴𝐵𝐸⟩ ⟨Φ𝐴𝐵𝐸|)

= 𝜌𝑚𝑖𝑥
𝐴𝐵 ⊗

4∑︁
𝑗=1

𝛿𝑗 |𝐸𝑗⟩ ⟨𝐸𝑗| ,
(6.7)

where 𝜌𝑚𝑖𝑥
𝐴𝐵 = 𝐼

4 is the maximally mixed state of the system 𝐴𝐵. Now we have from Equa-

tion (6.7),

𝑆

⎛⎝∑︁
𝜁

𝑝𝜁𝜌
𝜁
𝐴𝐵𝐸

⎞⎠ = 𝑆

⎛⎝𝜌𝑚𝑖𝑥
𝐴𝐵 ⊗

4∑︁
𝑗=1

𝛿𝑗 |𝐸𝑗⟩ ⟨𝐸𝑗|

⎞⎠
= 𝑆(𝜌𝑚𝑖𝑥

𝐴𝐵 ) + 𝑆

⎛⎝ 4∑︁
𝑗=1

𝛿𝑗 |𝐸𝑗⟩ ⟨𝐸𝑗|

⎞⎠
= 𝑆

(︂
𝐼

4

)︂
+

4∑︁
𝑗=1

𝛿𝑗 log 1
𝛿𝑗

= 2 +𝐻(𝛿𝑗),

(6.8)

where 𝐻(·) represents the Shannon entropy function.

Lemma 1: For a probability distribution {𝛿𝑖, 1 ≤ 𝑖 ≤ 4}, −∑︀4
𝑖=1 𝛿𝑖𝑙𝑜𝑔𝛿𝑖 ≤ ℎ(𝛿2 + 𝛿4) +

ℎ(𝛿3 + 𝛿4), where ℎ(·) represents the binary entropy function. (See appendix for proof.)
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Then from Equation (6.6) and Equation (6.8),

𝐼(𝐴 : 𝐸) ≤ 𝐻(𝛿𝑗) =
4∑︁

𝑗=1
𝛿𝑗 log 1

𝛿𝑗

≤ ℎ(𝛿3 + 𝛿4) + ℎ(𝛿2 + 𝛿4) (by Lemma 1)

= ℎ(𝜖𝑧) + ℎ(𝜖𝑥),

(6.9)

Let 𝜖𝑒 be the error rate calculated after message decoding step, and if there is a discrete

symmetric channel between Alice and Bob, then the secrecy capacity is

𝐶𝑆 ≥ 𝐼(𝐴 : 𝐵)− 𝐼(𝐴 : 𝐸)

≥ 𝐻(𝐴)−𝐻(𝐴|𝐵)− ℎ(𝜖𝑧)− ℎ(𝜖𝑥)

= 2− ℎ(𝜖𝑒)− ℎ(𝜖𝑧)− ℎ(𝜖𝑥).

For our protocol to be secure, we need 𝐶𝑆 > 0, i.e., 2− ℎ(𝜖𝑒) > ℎ(𝜖𝑧) + ℎ(𝜖𝑥).

6.1.3 Comparison with existing works

We compare the efficiency of our proposed MDI-QSDC protocol with the existing works (see

Table 6.2). In [5], authors proposed an MDI-QSDC protocol based on the idea of quantum

teleportation, where the sender prepares a Bell state and the receiver prepares a single qubit

state. First, they do a Bell measurement, by UTP, to teleport the receiver’s qubit to the

sender, and then the sender encodes its secret message. To decode the secret message they do

a single qubit measurement on 𝑍 basis by UTP. Therefore the protocol [5] requires three qubits

and two measurements to communicate a single-bit message. In [2], the authors proposed an

MDI-QSDC protocol using entanglement swapping. To share a two-bit secret message, both

the sender and the receiver prepare Bell states and perform entanglement swapping with the

help of a third party. After that, the sender encodes the secret message. This protocol requires

two Bell states and two Bell measurements for sending a two-bit message. In [137], authors

found a security loophole in [2] and proposed a modification over that. The modified version

also requires the same resource as before. In [80], the authors proposed a long-distance MDI-
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QSDC protocol by using ancillary entangled photon-pair sources and relay nodes. To transmit

a single-bit message, they use two Bell states and a single qubit state. The protocol also

requires two Bell measurements and a 𝑍-basis measurement. Here in our present protocol,

to send a two-bit message, we only use a Bell state and a Bell measurement. Therefore, on

average it requires a qubit and half measurement to transfer a single-bit message. Also, none of

the above existing works provide the user authentication feature before transferring the secret

information.

Table 6.2: Comparison between existing MDI-QSDC and our work

Paper No. of qubits No. of Bell Meas. No. of S.B. Meas. User
per message bit per message bit per message bit authentication

Zhou et al. [5] 3 1 1 No
Neu et al. [2] 2 1 0 No
Gao et al. [80] 5 2 1 No
Das et al. [137] 2 1 0 No

Present protocol 1 1/2 0 Yes

*Bell Meas.: Bell basis measurement, S.B. Meas.: Single basis measurement.

In the next two sections, we propose MDI-QD and MDI-DSQC protocols with mutual

identity authentication respectively.

6.2 Proposed MDI-QD protocol with user authentica-

tion

In this section, we generalize the MDI-QSDC protocol into an MDI-QD protocol, which also

provides mutual user authentication. Here, both Alice and Bob send their 𝑛-bit secret message

to each other simultaneously after confirming the authenticity of the other user. They use one

EPR pair to exchange one-bit messages from each other. Bob randomly prepares (𝑛+ 𝑐) EPR

pairs |Φ+⟩ or |Ψ+⟩ (|Φ−⟩ or |Ψ−⟩) corresponding to his secret message bit 0 (1), where 𝑐 is the

number of check bits. He also randomly prepares 𝑘 EPR pairs from {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}

for encoding the secret identity of Alice and inserts these into the previously prepared EPR

sequence. After Alice receives the qubit sequence, he announces the positions of randomly

prepared EPR pairs. Alice randomly applies Pauli operator 𝐼 or 𝜎𝑧 (𝜎𝑥 or 𝑖𝜎𝑦) to encode
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her message bit 0 (1) (see Table (6.3)). The rest of the procedure is the same as the above

MDI-QSDC protocol described in Section 4.1. The security of this protocol directly follows

from the above MDI-QSDC protocol.

Table 6.3: Encoding rules of our proposed MDI-QD.

Message bit Bob prepares Alice’s unitary Final joint state
Alice Bob (𝑆𝐴, 𝑆𝐵) 𝑆𝐴 to 𝑆 ′

𝐴 (𝑆 ′
𝐴, 𝑆𝐵)

0 0
|Φ+⟩ 𝐼 |Φ+⟩

𝜎𝑧 |Φ−⟩

|Ψ+⟩ 𝐼 |Ψ+⟩
𝜎𝑧 |Ψ−⟩

0 1
|Φ−⟩ 𝐼 |Φ−⟩

𝜎𝑧 |Φ+⟩

|Ψ−⟩ 𝐼 |Ψ−⟩
𝜎𝑧 |Ψ+⟩

1 0
|Φ+⟩ 𝜎𝑥 |Ψ+⟩

𝑖𝜎𝑦 |Ψ−⟩

|Ψ+⟩ 𝜎𝑥 |Φ+⟩
𝑖𝜎𝑦 |Φ−⟩

1 1
|Φ−⟩ 𝜎𝑥 |Ψ−⟩

𝑖𝜎𝑦 |Ψ+⟩

|Ψ−⟩ 𝜎𝑥 |Φ−⟩
𝑖𝜎𝑦 |Φ+⟩

6.2.1 Example of our MDI-QD protocol

Let us now take an example of the above discussed MDI-QD with user authentication protocol,

where we assume all channels are noiseless.

Suppose Alice (Bob) has the 3-bit secret message 𝑚𝑎 = 011 (𝑚𝑏 = 100) and 4-bit secret

identity 𝐼𝑑𝐴 = 1011 (𝐼𝑑𝐵 = 0111), i.e., 𝑛 = 3 and 𝑘 = 2. Then the protocol is as follows.

1. Alice (Bob) chooses 𝑐 = 2 check bits 10 (01) and inserts those bits in random positions
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of 𝑚𝑎 (𝑚𝑏). Let the new bit string be 𝑚′
𝑎 = 10101 (𝑚′

𝑏 = 10010) of length 5, where the

bold numbers represent the check bits.

2. Bob:

(a) Prepares 5 EPR pairs corresponding to 𝑚′
𝑏 and those are

|Ψ−⟩𝑎1𝑏1
, |Φ+⟩𝑎3𝑏3

, |Ψ+⟩𝑎4𝑏4
, |Φ−⟩𝑎6𝑏6

, and |Φ+⟩𝑎7𝑏7
.

He separates the entangled qubit pairs into two particle sequences

𝑆𝐴 = {𝑎1, 𝑎3, 𝑎4, 𝑎6, 𝑎7} and 𝑆𝐵 = {𝑏1, 𝑏3, 𝑏4, 𝑏6, 𝑏7},

each of length 5.

(b) He also randomly prepares 2 EPR pairs |Φ+⟩𝑎2𝑏2
and |Φ−⟩𝑎5𝑏5

and separates into

two particle sequences 𝐶𝐴 = {𝑎2, 𝑎5} and 𝐶𝐵 = {𝑏2, 𝑏5}. He inserts the qubits of

𝐶𝐴 and 𝐶𝐵 into the sequences 𝑆𝐴 and 𝑆𝐵 to form two new sequences

𝑆 ′
𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7} and 𝑆 ′

𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7}

respectively.

(c) Then he prepares 2 EPR pairs 𝐼1 = |Φ−⟩𝑎′
1𝑏′

1
and 𝐼2 = |Ψ−⟩′𝑎2𝑏′

2
corresponding to

his identity 𝐼𝑑𝐵 = 0111, and creates two single-qubit sequences 𝐼𝐴 = {𝑎′
1, 𝑎

′
2} and

𝐼𝐵 = {𝑏′
1, 𝑏

′
2} by separating the EPR pairs.

(d) Bob chooses two sets 𝐷𝐴 = {|+⟩ , |1⟩ , |0⟩ , |+⟩} and 𝐷𝐵 = {|−⟩ , |0⟩ , |1⟩ , |0⟩}, each

of 𝑑 = 4 many decoy photons randomly prepared in 𝑍-basis or 𝑋-basis. Then he

randomly interleaves the qubits of 𝐼𝐴(𝐼𝐵) and 𝐷𝐴(𝐷𝐵) and 𝑆 ′
𝐴(𝑆 ′

𝐵) (maintaining

the relative ordering of each set) to get a new sequences of single qubits 𝑄𝐴(𝑄𝐵).

Let

𝑄𝐴 = {𝑎1, 𝑎2, 𝑎
′
1, |+⟩ , 𝑎3, |1⟩ , 𝑎′

2, 𝑎4, 𝑎5, |0⟩ , 𝑎6, 𝑎7, |+⟩}

and 𝑄𝐵 = {𝑏1, 𝑏
′
1, 𝑏2, 𝑏3, 𝑏4, |−⟩ , |0⟩ , 𝑏′

2, 𝑏5, |1⟩ , 𝑏6, 𝑏7, |0⟩}.
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(e) Bob retains the𝑄𝐵-sequence and sends the𝑄𝐴-sequence to Alice through a quantum

channel.

(f) After Alice receives 𝑄𝐴-sequence, Bob announces the positions of the qubits of 𝐶𝐴

(2nd and 9th), 𝐼𝐴 (3rd and 7th) and 𝐷𝐴 (4th, 6th, 10th and 13th).

3. Alice:

(a) She separates the qubits of 𝑆𝐴, 𝐶𝐴, 𝐼𝐴 and 𝐷𝐴 from 𝑄𝐴, i.e., she has

𝑆𝐴 = {𝑎1, 𝑎3, 𝑎4, 𝑎6, 𝑎7}, 𝐶𝐴 = {𝑎2, 𝑎5}, 𝐼𝐴 = {𝑎′
1, 𝑎

′
2} and 𝐷𝐴 = {|+⟩ , |1⟩ , |0⟩ , |+⟩}.

She encodes 𝑚′
𝑎 = 10101 and 𝐼𝑑𝐴 = 1011 on the qubits of 𝑆𝐴 and 𝐶𝐴 respec-

tively. After encoding the classical information, let 𝑆𝐴 and 𝐶𝐴 become 𝑆1
𝐴 and 𝐶1

𝐴

respectively. Then

𝑆1
𝐴 = {𝜎𝑥(𝑎1), 𝜎𝑧(𝑎3), 𝑖𝜎𝑦(𝑎4), 𝐼(𝑎6), 𝑖𝜎𝑦(𝑎7)}

and

𝐶1
𝐴 = {𝑖𝜎𝑦(𝑎2), 𝜎𝑧(𝑎5)}.

Then she randomly inserts the qubits of 𝐶1
𝐴 into the 𝑆1

𝐴 and let the new sequence

be

𝑆 ′′
𝐴 = {𝜎𝑥(𝑎1), 𝑖𝜎𝑦(𝑎2), 𝜎𝑧(𝑎3), 𝑖𝜎𝑦(𝑎4), 𝜎𝑧(𝑎5), 𝐼(𝑎6), 𝑖𝜎𝑦(𝑎7)}.

(b) Alice randomly applies 𝜎𝑧 and 𝐼 on the qubits of 𝐼𝐴 and the resulting new sequence

is 𝐼 ′
𝐴 = {𝜎𝑧(𝑎′

1), 𝐼(𝑎′
2)}. She randomly inserts the qubits of 𝐼 ′

𝐴 into random positions

of 𝑆 ′′
𝐴 and the new sequence is

𝑄′
𝐴 = {𝜎𝑥(𝑎1), 𝜎𝑧(𝑎′

1), 𝑖𝜎𝑦(𝑎2), 𝜎𝑧(𝑎3), 𝐼(𝑎′
2), 𝑖𝜎𝑦(𝑎4), 𝜎𝑧(𝑎5), 𝐼(𝑎6), 𝑖𝜎𝑦(𝑎7)}.
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(c) She randomly applies cover operations from {𝐼, 𝑖𝜎𝑦, 𝐻, 𝑖𝜎𝑦𝐻} on the qubits of 𝐷𝐴

and the resulting new sequence is

𝐷1
𝐴 = {𝐻(|+⟩), 𝑖𝜎𝑦𝐻(|1⟩), 𝑖𝜎𝑦(|0⟩), 𝐼(|+⟩)} = {|0⟩ , |+⟩ , |1⟩ , |+⟩}.

(d) Alice sends 𝐷1
𝐴 to UTP to check the security of the channel from Bob to Alice.

4. After the UTP receives the sequence 𝐷1
𝐴, Bob announces the preparation bases (𝑋,𝑍, 𝑍

and 𝑋) of the qubits of 𝐷𝐴 and Alice announces the corresponding cover operations

(𝐻, 𝑖𝜎𝑦𝐻, 𝑖𝜎𝑦 and 𝐼).

5. UTP measures the qubits of 𝐷1
𝐴 in proper bases (𝑍,𝑋,𝑍 and 𝑋) and announces the

measurement results |0⟩ , |+⟩ , |1⟩ , |+⟩. Since there is no error, Alice and Bob continue

the protocol.

6. Alice prepares a new set of 𝑑′ = 4 decoy photons 𝐷′
𝐴 = {|0⟩ , |+⟩ , |−⟩ , |1⟩}. She inserts

the decoy qubits into random positions of 𝑄′
𝐴 and sends the resulting new sequence 𝑄′′

𝐴

to UTP, where

𝑄′′
𝐴 = {𝜎𝑥(𝑎1), 𝜎𝑧(𝑎′

1), 𝑖𝜎𝑦(𝑎2), |0⟩ , 𝜎𝑧(𝑎3), 𝐼(𝑎′
2), |+⟩ , 𝑖𝜎𝑦(𝑎4), |−⟩ , 𝜎𝑧(𝑎5), 𝐼(𝑎6), |1⟩ , 𝑖𝜎𝑦(𝑎7)}.

7. Alice announces the positions (4th, 7th, 9th and 12th) and the preparation bases (𝑍,𝑋,𝑋

and 𝑍) of the decoy qubits of 𝐷′
𝐴. UTP measures the decoy qubits and publishes the

measurement results |0⟩ , |+⟩ , |−⟩ , |1⟩. Since there is no error, Alice and Bob continue

the protocol.

8. Bob sends the sequence 𝑄𝐵 to UTP and when all the qubits of 𝑄𝐵 are reached to

UTP, Bob announces the positions (6th, 7th, 10th and 13th) and the preparation bases

(𝑋,𝑍, 𝑍 and 𝑍) of the decoy qubits of 𝐷𝐵. UTP measures those qubits in proper bases

and discloses the measurement results |−⟩ , |0⟩ , |1⟩ , |0⟩. Then Bob calculates the error
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rate (which is zero for this example) in the quantum channel between Bob and UTP and

goes to the next step.

9. Authentication process:

(a) Alice announces the positions (2nd and 6th) of the qubits of 𝐼 ′
𝐴 in the sequence 𝑄′′

𝐴

and Bob announces the positions (2nd and 8th) of the qubits of 𝐼𝐵 in the sequence

𝑄𝐵. UTP measures the 𝑖-th qubit pairs (𝜎𝑧(𝑎′
1), 𝑏′

1) and (𝐼(𝑎′
2), 𝑏′

2) in Bell basis

and announces the results |Φ+⟩ and |Ψ−⟩. As Alice knows 𝐼𝑑𝐵 = 0111, she knows

the exact states of 𝐼1 = |Φ−⟩ and 𝐼2 = |Ψ−⟩. Since she randomly applied Pauli

operators 𝜎𝑧, 𝐼 on 𝑎′
1, 𝑎

′
2 respectively, the joint state changes to |Φ+⟩ , |Ψ−⟩. Alice

confirms Bob’s identity and continues the protocol.

(b) Alice announces the positions (2nd and 5th) of the qubits of 𝐶 ′
𝐴 in the sequence 𝑆 ′′

𝐴

and UTP measures those qubits with their partner qubits from 𝐶𝐵 = (𝑏2, 𝑏5) in Bell

bases and announces the measurement results |Ψ−⟩ , |Φ+⟩. Since the initial states

of the EPR pairs are |Φ+⟩ , |Φ−⟩, Bob decodes the identity of Alice as 𝐼𝑑𝐴 = 1011

and confirms Alice as a legitimate party and continues the protocol.

10. The UTP measures each qubit pair from (𝑆 ′
𝐴, 𝑆𝐵) in Bell basis and announces the mea-

surement result |Φ−⟩ , |Φ−⟩ , |Φ−⟩ , |Φ−⟩ , |Ψ−⟩. From these results, Alice (Bob) decodes

the classical bit string 𝑚′
𝑏 = 10010 (𝑚′

𝑎 = 10101).

11. Alice and Bob publicly compare the random check bits to check the integrity of the

messages. They discard those bits to obtain the secret message 𝑚𝑎 = 011 and 𝑚𝑏 = 100.

This completes the communication process.

6.3 Proposed MDI-DSQC Protocol with user authenti-

cation

In this section, we propose our new MDI-DSQC protocol with user identity authentication

process.
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Let Alice has an 𝑛-bit secret message 𝑚, which she wants to send Bob through a quantum

channel with the help of some UTP, who performs all the measurements during the protocol.

Alice and Bob have their 2𝑘-bit secret user identities 𝐼𝑑𝐴 and 𝐼𝑑𝐵 respectively which they

have shared previously by using some secured QKD. The protocol is as follows:

Steps 1, 2, 3(a) are the same as before in the MDI-DSQC protocol of Section 4.1.

3. Alice:

(a) She separates the qubits of 𝑆𝐴, 𝐼𝐴 and 𝐷𝐴 from 𝑄𝐴. Then from the sequence 𝑆𝐴

she randomly chooses 𝑁 qubits to encode the secret message and the remaining 𝑘

qubits are used to encode her secret identity 𝐼𝑑𝐴. The encoding processes for 𝑚′

and 𝐼𝑑𝐴 are the same. Alice encodes two bits of classical information into one qubit

by applying an unitary operator. To encode 00, 01, 10 and 11 she applies the Pauli

operators [6] 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 respectively. After encoding the classical information,

suppose 𝑆𝐴 becomes 𝑆 ′
𝐴.

(b) Alice randomly applies 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 on the qubits of 𝐼𝐴 to get, say, 𝐼 ′
𝐴. She

randomly inserts the qubits of 𝐼 ′
𝐴 and 𝐷𝐴 into random positions of 𝑆 ′

𝐴 and let the

new sequence be 𝑄′
𝐴.

(c) She randomly applies cover operations from {𝐼, 𝑖𝜎𝑦, 𝐻, 𝑖𝜎𝑦𝐻} on the qubits of 𝑄′
𝐴

and inserts a new set of 𝑑′ decoy photons 𝐷′
𝐴 into random positions of 𝑄′

𝐴, to obtain,

say, 𝑄′′
𝐴, which Alice sends to UTP.

4. After UTP receives the sequence 𝑄′′
𝐴, Alice announces the positions and the preparation

bases of the decoy qubits of 𝐷′
𝐴. UTP measures the decoy qubits and publishes the

measurement results, and Alice calculates the error in the quantum channel between

Alice and UTP. If the estimated error is greater than some threshold value, then they

terminate the protocol and otherwise go to the next step.

5. Bob sends the sequence 𝑄𝐵 to UTP and when all the qubits of 𝑄𝐵 are reached to UTP,

Bob announces the positions and the preparation bases of the decoy qubits of 𝐷𝐵. UTP

measures those qubits in proper bases and discloses the measurement results, and Bob

calculates the error in the quantum channel between Bob and UTP. If the estimated error
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is greater than some threshold value, then they terminate the protocol and otherwise go

to the next step.

6. To check the security of the quantum channel from Bob to Alice, Bob announces the

preparation bases of the qubits of 𝐷𝐴 and Alice announces the corresponding positions

and the cover operations which she applies on those qubits. UTP measures those qubits,

from the announced measurement results Alice and Bob calculate the error in the channel

and decide to continue or stop the protocol.

7. UTP discards all the measured qubits and Alice announces all cover operations for the

remaining qubits.

8. Authentication process: Same as before in the MDI-DSQC protocol of Section 4.1.

9. UTP measures each qubit pair from (𝑆 ′
𝐴, 𝑆𝐵) in Bell basis and announces the measure-

ment result. From the knowledge of (𝑆𝐴, 𝑆𝐵) and (𝑆 ′
𝐴, 𝑆𝐵), Bob decodes the classical bit

string 𝑚′.

10. Alice and Bob publicly compare the random check bits to check the integrity of the

messages. If they find an acceptable error rate then Bob gets the secret message 𝑚 and

the communication process is completed.

Using similar arguments as in Section 6.1.2, we can prove the security of our proposed

MDI-DSQC Protocol with user authentication.

6.3.1 Example of our MDI-DSQC protocol

Let us now take an example of the above discussed MDI-DSQC with user authentication

protocol, where we assume all channels are noiseless.

Suppose Alice has a 6-bit secret message 𝑚 = 011010 and the secret identities of Alice and

Bob are 𝐼𝑑𝐴 = 1011 and 𝐼𝑑𝐵 = 0111 respectively, i.e., 𝑛 = 6 and 𝑘 = 2. Then the protocol is

as follows.
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1. Alice chooses 𝑐 = 4 check bits 1001 and inserts those bits in random positions of 𝑚. Let

the new bit string be 𝑚′ = 0101100110 (bold numbers are check bits, i.e., the 2nd, 3rd,

7th and 9th bits) of length 𝑛+ 𝑐 = 10 = 2𝑁 , i.e., 𝑁 = 5.

2. Bob:

(a) Randomly prepares 𝑁 + 𝑘 = 7 EPR pairs

|Ψ+⟩𝑎1𝑏1
, |Φ+⟩𝑎2𝑏2

, |Φ+⟩𝑎3𝑏3
, |Ψ−⟩𝑎4𝑏4

|Φ−⟩𝑎5𝑏5
, |Ψ−⟩𝑎6𝑏6

, and |Ψ+⟩𝑎7𝑏7
.

He separates the entangled qubit pairs into two particle sequences

𝑆𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7} and 𝑆𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7},

each of length 7.

(b) He also prepares 2 EPR pairs 𝐼1 = |Φ−⟩𝑎′
1𝑏′

1
and 𝐼2 = |Ψ−⟩′𝑎2𝑏′

2
corresponding to

his identity 𝐼𝑑𝐵 = 0111, and creates two single-qubit sequences 𝐼𝐴 = {𝑎′
1, 𝑎

′
2} and

𝐼𝐵 = {𝑏′
1, 𝑏

′
2} by separating the EPR pairs.

(c) Bob chooses two sets 𝐷𝐴 = {|+⟩ , |1⟩ , |0⟩ , |+⟩} and 𝐷𝐵 = {|−⟩ , |0⟩ , |1⟩ , |0⟩}, each

of 𝑑 = 4 many decoy photons randomly prepared in 𝑍-basis or 𝑋-basis. Then he

randomly interleaves the qubits of 𝐼𝐴(𝐼𝐵) and 𝐷𝐴(𝐷𝐵) and 𝑆𝐴(𝑆𝐵) (maintaining

the relative ordering of each set) to get a new sequences of single qubits 𝑄𝐴(𝑄𝐵).

Let

𝑄𝐴 = {𝑎1, 𝑎2, 𝑎
′
1, |+⟩ , 𝑎3, |1⟩ , 𝑎′

2, 𝑎4, 𝑎5, |0⟩ , 𝑎6, 𝑎7, |+⟩}

and 𝑄𝐵 = {𝑏1, 𝑏
′
1, 𝑏2, 𝑏3, 𝑏4, |−⟩ , |0⟩ , 𝑏′

2, 𝑏5, |1⟩ , 𝑏6, 𝑏7, |0⟩}.

(d) Bob retains the𝑄𝐵-sequence and sends the𝑄𝐴-sequence to Alice through a quantum

channel.

(e) After Alice receives 𝑄𝐴-sequence, Bob announces the positions of the qubits of 𝐼𝐴

(3rd and 7th) and 𝐷𝐴 (4th, 6th, 10th and 13th).
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3. Alice:

(a) She separates the qubits of 𝑆𝐴, 𝐼𝐴 and 𝐷𝐴 from 𝑄𝐴, i.e., she has

𝑆𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7}, 𝐼𝐴 = {𝑎′
1, 𝑎

′
2} and 𝐷𝐴 = {|+⟩ , |1⟩ , |0⟩ , |+⟩}.

She randomly chooses 5 qubits 𝑎1, 𝑎3, 𝑎4, 𝑎6 and 𝑎7 from 𝑆𝐴 to encode𝑚′ = 0101100110

and the remaining 2 qubits 𝑎2 and 𝑎5 (say, the set 𝐶𝐴 = {𝑎2, 𝑎5}) are used to encode

𝐼𝑑𝐴 = 1011. After encoding the classical information, let 𝑆𝐴 become 𝑆 ′
𝐴, then

𝑆 ′
𝐴 = {𝜎𝑥(𝑎1), 𝑖𝜎𝑦(𝑎2), 𝜎𝑥(𝑎3), 𝑖𝜎𝑦(𝑎4), 𝜎𝑧(𝑎5), 𝜎𝑥(𝑎6), 𝑖𝜎𝑦(𝑎7)}.

(b) Alice randomly applies 𝜎𝑧 and 𝐼 on the qubits of 𝐼𝐴 and the resulting new sequence

is 𝐼 ′
𝐴 = {𝜎𝑧(𝑎′

1), 𝐼(𝑎′
2)}. She randomly inserts the qubits of 𝐼 ′

𝐴 and 𝐷𝐴 into random

positions of 𝑆 ′
𝐴 and the new sequence is

𝑄′
𝐴 = {𝜎𝑥(𝑎1), |+⟩ , 𝜎𝑧(𝑎′

1), 𝑖𝜎𝑦(𝑎2), |1⟩ , |0⟩ , 𝜎𝑥(𝑎3), 𝐼(𝑎′
2), 𝑖𝜎𝑦(𝑎4), |+⟩ , 𝜎𝑧(𝑎5), 𝜎𝑥(𝑎6), 𝑖𝜎𝑦(𝑎7)}.

(c) She randomly applies cover operations from {𝐼, 𝑖𝜎𝑦, 𝐻, 𝑖𝜎𝑦𝐻} on the qubits of 𝑄′
𝐴

and the resulting new sequence is

𝑄′
𝐴

1 = {𝑖𝜎𝑦𝐻𝜎𝑥(𝑎1), 𝐻(|+⟩), 𝐼𝜎𝑧(𝑎′
1), 𝐻𝑖𝜎𝑦(𝑎2), 𝐼(|1⟩), 𝑖𝜎𝑦(|0⟩), 𝐻𝜎𝑥(𝑎3),

𝐻𝐼(𝑎′
2), 𝑖𝜎𝑦𝐻𝑖𝜎𝑦(𝑎4), 𝐼(|+⟩), 𝑖𝜎𝑦𝜎𝑧(𝑎5), 𝑖𝜎𝑦𝐻𝜎𝑥(𝑎6), 𝐻𝑖𝜎𝑦(𝑎7)}.

Alice choses a set 𝐷′
𝐴 = {|−⟩ , |1⟩ , |0⟩} of 𝑑′ = 3 decoy qubits randomly prepared in

𝑍-basis or 𝑋-basis. Then she inserts those decoy qubits into some random positions
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of 𝑄′
𝐴 and the resulting new sequence is

𝑄′′
𝐴 = {|−⟩ , 𝑖𝜎𝑦𝐻𝜎𝑥(𝑎1), 𝐻(|+⟩), 𝐼𝜎𝑧(𝑎′

1), 𝐻𝑖𝜎𝑦(𝑎2), 𝐼(|1⟩), |1⟩ , 𝑖𝜎𝑦(|0⟩), 𝐻𝜎𝑥(𝑎3),

𝐻𝐼(𝑎′
2), 𝑖𝜎𝑦𝐻𝑖𝜎𝑦(𝑎4), 𝐼(|+⟩), 𝑖𝜎𝑦𝜎𝑧(𝑎5), 𝑖𝜎𝑦𝐻𝜎𝑥(𝑎6), |0⟩ , 𝐻𝑖𝜎𝑦(𝑎7)}.

Alice sends 𝑄′′
𝐴 to UTP.

4. After the UTP receives the sequence 𝑄′′
𝐴, Alice announces the positions (1st, 7th and

15th) and the preparation bases (𝑋,𝑍 and 𝑍) of the decoy qubits of 𝐷′
𝐴. UTP measures

the decoy qubits and publishes the measurement results |−⟩ , |1⟩ , |0⟩. Since there is no

error, the quantum channel between Alice and UTP is secure and they continue the

protocol.

5. Bob sends the sequence 𝑄𝐵 to UTP and when all the qubits of 𝑄𝐵 are reached to

UTP, Bob announces the positions (6th, 7th, 10th and 13th) and the preparation bases

(𝑋,𝑍, 𝑍 and 𝑍) of the decoy qubits of 𝐷𝐵. UTP measures those qubits in proper bases

and discloses the measurement results |−⟩ , |0⟩ , |1⟩ , |0⟩. Then Bob calculates the error

rate (which is zero for this example) in the quantum channel between Bob and UTP and

goes to the next step.

6. Bob announces the preparation bases (𝑋,𝑍, 𝑍 and 𝑋) of the qubits of 𝐷𝐴 and Alice

announces the corresponding positions (3rd, 6th, 8th and 12th) in the sequence 𝑄′′
𝐴

and the cover operations (𝐻, 𝐼, 𝑖𝜎𝑦 and 𝐼) which she applies on those qubits. UTP

measures those qubits and from the announced measurement results, Alice and Bob find

the channel is secure. They decide to continue the protocol.

7. UTP discards all the measured qubits from 𝑄′′
𝐴 and 𝑄𝐵, then UTP has the following

sequences

𝑄1
𝐴 = {𝑖𝜎𝑦𝐻𝜎𝑥(𝑎1), 𝐼𝜎𝑧(𝑎′

1), 𝐻𝑖𝜎𝑦(𝑎2), 𝐻𝜎𝑥(𝑎3), 𝐻𝐼(𝑎′
2), 𝑖𝜎𝑦𝐻𝑖𝜎𝑦(𝑎4),

𝑖𝜎𝑦𝜎𝑧(𝑎5), 𝑖𝜎𝑦𝐻𝜎𝑥(𝑎6), 𝐻𝑖𝜎𝑦(𝑎7)}
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and

𝑄1
𝐵 = {𝑏1, 𝑏

′
1, 𝑏2, 𝑏3, 𝑏4, 𝑏

′
2, 𝑏5, 𝑏6, 𝑏7}.

Alice announces all cover operations (𝑖𝜎𝑦𝐻, 𝐼,𝐻,𝐻,𝐻, 𝑖𝜎𝑦𝐻, 𝑖𝜎𝑦, 𝑖𝜎𝑦𝐻 and 𝐻) for the

qubits of 𝑄1
𝐴. Then UTP applies the inverse of the cover operation on the corresponding

qubits and gets back

𝑄2
𝐴 = {𝜎𝑥(𝑎1), 𝜎𝑧(𝑎′

1), 𝑖𝜎𝑦(𝑎2), 𝜎𝑥(𝑎3), 𝐼(𝑎′
2), 𝑖𝜎𝑦(𝑎4), 𝜎𝑧(𝑎5), 𝜎𝑥(𝑎6), 𝑖𝜎𝑦(𝑎7)}.

8. Authentication process:

(a) Alice announces the positions (2nd and 5th) of the qubits of 𝐼 ′
𝐴 in the sequence 𝑄2

𝐴

and Bob announces the positions (2nd and 6th) of the qubits of 𝐼𝐵 in the sequence

𝑄1
𝐵. UTP measures the qubit pairs (𝜎𝑧(𝑎′

1), 𝑏′
1) and (𝐼(𝑎′

2), 𝑏′
2) in Bell basis and

announces the results |Φ+⟩ and |Ψ−⟩. As Alice knows 𝐼𝑑𝐵 = 0111, she knows

the exact states of 𝐼1 = |Φ−⟩ and 𝐼2 = |Ψ−⟩. Since she randomly applied Pauli

operators 𝜎𝑧, 𝐼 on 𝑎′
1, 𝑎

′
2 respectively, the joint state changes to |Φ+⟩ , |Ψ−⟩. Alice

confirms Bob’s identity and continues the protocol.

(b) Alice announces the positions (2nd and 5th) of the qubits of 𝐶𝐴 in the sequence

𝑆 ′
𝐴 and UTP measures those qubits with their partner qubits from 𝑆𝐵 (say, the

set 𝐶𝐵 = (𝑏2, 𝑏5)) in Bell bases and announces the measurement results |Ψ−⟩ , |Φ+⟩.

Since the initial states of the EPR pairs are |Φ+⟩ , |Φ−⟩, Bob decodes the identity

of Alice as 𝐼𝑑𝐴 = 1011 and confirms Alice as a legitimate party and continues the

protocol.

9. The UTP discards the measured qubits and measures the remaining qubit pairs from

(𝑆 ′
𝐴, 𝑆𝐵) in Bell basis and announces the measurement result |Φ+⟩ , |Ψ+⟩ , |Φ+⟩ , |Φ−⟩ , |Φ−⟩.

From these results, Bob decodes the classical bit string 𝑚′ = 0101100110.

10. Alice and Bob publicly compare the random check bits (2nd, 3rd, 7th and 9th bits of
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𝑚′) to check the integrity of the messages. Bob discards those bits to obtain the secret

message 𝑚 = 011010 and the communication process is completed.

6.4 Discussion

In this chapter, we discuss an MDI-QSDC which provides mutual identity authentication of

the users. Here, both the parties have their previously shared secret identity keys, and the

sender first verify the authenticity of the receiver and then sends the secret message with the

help of a UTP, who performs all the measurements. Similarly, the receiver also verify the

sender’s identity before receiving the message. Then we extend it to an MDI-QD protocol,

where both the parties check the authenticity of the other party before exchanging their secret

messages. Next we also present an MDI-DSQC protocol with user authentication and analyses

the security of these protocols
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Chapter 7

Analysis and Design of MDI Quantum

Dialogue Protocols

This chapter is based on the paper [138], where we propose two efficient MDI-QD protocols

which are modifications of [3]. In our protocols, after the key generation step as [3], let the

shared key between two legitimate parties Alice and Bob be 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛. They calculate

the bit 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑛. Then both of our protocols are the same as [3] up-to the step

where the UTP announces the measurement results. In the next step, Alice and Bob estimate

the error in the channel (process is also same as [3]). If the estimated error lies between a

tolerable range they continue the protocol, else they abort. In the original protocol [3], Alice

and Bob discard almost half of the measurement results to avoid information leakage problem.

We reduce the number of discarded measurement results by generating some sequences and

computing some functions of the sequences.

7.1 Our first efficient MDI-QD protocol

After the error estimation phase, let the number of remaining measurement results be 𝑛′,

Alice and Bob make a finite sequence {𝑀 [𝑖]}𝑛′
𝑖=1 containing the measurement results. i.e.,

𝑀 [𝑖] is the 𝑖-th measurement result announced by the UTP, for 1 ⩽ 𝑖 ⩽ 𝑛′ and 𝑀 [𝑖] ∈

{|𝜑+⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜓−⟩}. They keep all the measurement results𝑀 [𝑖]s where𝑀 [𝑖] ∈ {|𝜑−⟩ , |𝜓+⟩}.

Among the remaining measurement results, they choose some of them to keep and discard the
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others. For 1 ≤ 𝑖 ≤ 𝑛′, if 𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜓−⟩} and 𝑘𝑖 = 𝑐, then Alice and Bob keep that 𝑀 [𝑖].

Else they discard that 𝑀 [𝑖]. Using Table 2.7 and Table 2.8, they guess the message bit of each

other corresponding to all the measurement results 𝑀 [𝑖] which they kept. Details are given in

the following section.

7.1.1 Proposed protocol

1. Alice and Bob share a 𝑛-bit key stream (𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛) between themselves using BB84

protocol.

2. They calculate 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑛.

3. Let 𝑛-bit message of Alice and Bob be 𝑎 = 𝑎1𝑎2 . . . 𝑎𝑛 and 𝑏 = 𝑏1𝑏2 . . . 𝑏𝑛 respectively.

4. For 1 ≤ 𝑖 ≤ 𝑛, Alice (Bob) prepares the qubits 𝑄𝐴 (𝑄𝐵) at her (his) end according to

the following strategy:

(a) if 𝑎𝑖 (𝑏𝑖)= 0 and 𝑘𝑖 = 0, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |0⟩;

(b) if 𝑎𝑖 (𝑏𝑖)= 1 and 𝑘𝑖 = 0, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |1⟩;

(c) if 𝑎𝑖 (𝑏𝑖)= 0 and 𝑘𝑖 = 1, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |+⟩;

(d) if 𝑎𝑖 (𝑏𝑖)= 1 and 𝑘𝑖 = 1, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |−⟩.

5. Alice (Bob) sends 𝑄𝐴 (𝑄𝐵) to the third party (TP).

6. For 1 ≤ 𝑖 ≤ 𝑛, the UTP measures the two qubits 𝑄𝐴𝑖 and 𝑄𝐵𝑖 in Bell basis and announces

the result.

7. Alice and Bob make a finite sequence {𝑀 [𝑖]}𝑛
𝑖=1 containing the measurement results,

i.e., for 1 ⩽ 𝑖 ⩽ 𝑛, 𝑀 [𝑖] is the 𝑖-th measurement result announced by the UTP, where

𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜓−⟩}.

8. They randomly choose 𝛾𝑛 number of measurement results𝑀 [𝑖] from the sequence {𝑀 [𝑖]}𝑛
𝑖=1

to estimate the error, where 𝛾 < 1 is a small fraction.
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9. Alice and Bob guess the message bit of other, corresponding to their chosen 𝛾𝑛 number

of measurement results using Table 2.7 and Table 2.8.

10. They reveal their respective guesses for these rounds.

11. If estimated error is greater than some predefined threshold value, then they abort. Else

continue and goto next step.

12. Their remaining sequence of measurement results is relabeled as {𝑀 [𝑖]}𝑛′
𝑖=1, where 𝑛′ =

(1− 𝛾)𝑛.

13. They update their 𝑛-bit key to an 𝑛′-bit key by discarding 𝛾𝑛 number of key bits corre-

sponding to above 𝛾𝑛 rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛′ .

14. They generate a finite sequence {𝑋[𝑖]}𝑛′
𝑖=1 such that

𝑋[𝑖] =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑀𝑖 = |𝜑−⟩ or |𝜓+⟩;

0, otherwise.

15. Then they generate another finite sequence {𝑌 [𝑖]}𝑛′
𝑖=1 such that

𝑌 [𝑖] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑋[𝑖] = 1;

𝑘𝑗, if 𝑐 = 1 and 𝑋[𝑖] is the 𝑗-th zero of the sequence {𝑋[𝑞]}𝑛′
𝑞=1;

𝑘𝑗, if 𝑐 = 0 and 𝑋[𝑖] is the 𝑗-th zero of the sequence {𝑋[𝑞]}𝑛′
𝑞=1.

16. For 1 ≤ 𝑖 ≤ 𝑛′:

• if 𝑋[𝑖] ⊕ 𝑌 [𝑖] = 1, then Alice and Bob consider the 𝑖-th measurement result 𝑀 [𝑖]

and guess others message bit using Table 2.7 and Table 2.8.

• Else they discard 𝑀 [𝑖].

This completes the protocol.
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Alice UTP Bob

Calculates 𝑐 = ⊕𝑖𝑘𝑖
Share a secret key 𝑘 = 𝑘1𝑘2. . . 𝑘𝑛 through a QKD←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Calculates 𝑐 = ⊕𝑖𝑘𝑖

Secret message 𝑎 Secret message 𝑏

Prepares 𝑄𝐴
𝑄𝐴 𝑄𝐵 Prepares 𝑄𝐵

Measures (𝑄𝐴𝑖
, 𝑄𝐵𝑖

)

in Bell basis

Announces 𝑀 [𝑖]

Decode 𝑏 from 𝑀 Decode 𝑎 from 𝑀

Randomly choose some positions←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Security check Reveal 𝑎𝑖, 𝑏𝑖 for those popsitions←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Security check

Generate sequences 𝑋, 𝑌 Generate sequences 𝑋, 𝑌

Keeps 𝑏𝑖 if 𝑋[𝑖]⊕ 𝑌 [𝑖] = 1 Keeps 𝑎𝑖 if 𝑋[𝑖]⊕ 𝑌 [𝑖] = 1

Else discard 𝑏𝑖 Else discard 𝑎𝑖

99K denotes quantum channel,

−→ denotes classical channel.

Figure 7-1: Proposed MDI-QD (first protocol)
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Example 5. Let us take an example to understand the protocol more clearly. Here we skip

the error estimation phase.

1. Let 𝑘 = 10011101101001010010 be the shared key between Alice and Bob, then 𝑐 = ⊕𝑘𝑖 =

0.

2. Let Alice’s message be 𝑎 = 10110100111010110011,

3. Let Bob’s message be 𝑏 = 01101000101001101011.

4. Alice’s encrypted message

𝑄𝐴 = |−⟩ |0⟩ |1⟩ |−⟩ |+⟩ |−⟩ |0⟩ |+⟩ |−⟩ |1⟩ |−⟩ |0⟩ |1⟩ |+⟩ |1⟩ |−⟩ |0⟩ |0⟩ |−⟩ |1⟩.

5. Bob’s encrypted message

𝑄𝐵 = |+⟩ |1⟩ |1⟩ |+⟩ |−⟩ |+⟩ |0⟩ |+⟩ |−⟩ |0⟩ |−⟩ |0⟩ |0⟩ |−⟩ |1⟩ |+⟩ |1⟩ |0⟩ |−⟩ |1⟩.

6. Alice and Bob send their respective sequences of qubits 𝑄𝐴 and 𝑄𝐵 to the UTP and

the UTP measures the two qubits (one from Alice and one from Bob) in Bell basis and

announces the results.

7. Let 𝑀 be the sequence

|𝜑−⟩ , |𝜓+⟩ , |𝜑+⟩ , |𝜓−⟩ , |𝜓−⟩ , |𝜑−⟩ , |𝜑−⟩ , |𝜑+⟩ , |𝜓+⟩ , |𝜓−⟩ , |𝜑+⟩ , |𝜑+⟩ , |𝜓−⟩ ,

|𝜑−⟩ , |𝜑−⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜑−⟩ , |𝜑+⟩ , |𝜑−⟩

8. 𝑋 is the sequence 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1.

9. 𝑌 is the sequence 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.

10. Then 𝑋 ⊕ 𝑌 is the sequence 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1.

11. Alice and Bob consider the 𝑖-th message bit pair (𝑎𝑖, 𝑏𝑖) if 𝑋[𝑖]⊕ 𝑌 [𝑖] = 1. That is, they

consider 𝑎′ = 10101010011001 as Alice’s message and 𝑏′ = 01010010110101 as Bob’s

message.
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7.1.2 Correctness of our proposed protocol

In our proposed protocol, Alice and Bob first prepare qubits corresponding to their messages

and shared key and then send those qubits to the UTP. After that, the UTP measures each

two qubit state (one from Alice and one from Bob) in Bell basis and announces the result.

Now, there may arise four cases and from help of Table 2.6 we can say the followings:

• if the prepared qubit of Alice is |0⟩(|1⟩), then Alice guesses message bit of Bob with

probability 1 as follows:

Measurement result =

⎧⎪⎪⎨⎪⎪⎩
|𝜑+⟩ or |𝜑−⟩ ⇒ message bit of Bob is 0 (1)

|𝜓+⟩ or |𝜓−⟩ ⇒ message bit of Bob is 1 (0)

• if the prepared qubit of Alice is |+⟩(|−⟩), then Alice guesses message bit of Bob with

probability 1 as follows:

Measurement result =

⎧⎪⎪⎨⎪⎪⎩
|𝜑+⟩ or |𝜓+⟩ ⇒ message bit of Bob is 0 (1)

|𝜑−⟩ or |𝜓−⟩ ⇒ message bit of Bob is 1 (0)

From the above knowledge, we construct Table 2.7, which contents the information of

Alice’s guess about Bob’s message for different cases.

Similar thing happens for Bob too. So we construct Table 2.8, which contents the infor-

mation of Bob’s guess about Alice’s message for different cases.

From Table 2.7 and Table 2.8, we see that for all cases Alice and Bob can conclude the

communicated bit of the other party with probability 1. That is, always they can guess the

correct message bit of the other party with probability 1. Hence our proposed protocol is

giving the correct results.

7.1.3 Security analysis of our proposed protocol

The proposed MDI-QD protocol is a modification of the MDI-QD protocol given in [3]. In

their protocol they have considered only the cases where the measurement results were |𝜑−⟩ or
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|𝜓+⟩ and discard the cases for |𝜑+⟩ and |𝜓−⟩. But in our protocols, we have used all the cases

where the measurement results are |𝜑−⟩, |𝜓+⟩ and also some cases where the measurement

results are |𝜑+⟩, |𝜓−⟩. We have done some classical computation to choose which results to

take. Since in [3], the authors had done the security analysis of the protocol for the cases where

the measurement results were |𝜑−⟩ or |𝜓+⟩, so it is sufficient for us to analyze the security of

rest of the part of the protocols.

Before we proceed, let us first define the advantage of an adversary. It measures the success

of an attack by an adversary on a cryptographic scheme. The advantage distinguishes the

output of a cryptographic algorithm from that of a uniformly random source. If the advantage

of an adversary for an algorithm is negligible, i.e., it is less than some predefined threshold

value, then the algorithm is said to be secure. The word “negligible" usually means “within

𝑂(2−𝑝)" where 𝑝 is a security parameter associated with the algorithm.

Definition 1. (Advantage): For our purpose, the advantage of an adversary A is the absolute

value of the differences between the probabilities of the events 𝐴0 and 𝐴1, where 𝐴0 = Guessing

a random message “𝑚" from the message space, and 𝐴1 = Guessing the same message “𝑚"

from the message space using our algorithm. That is, 𝐴𝑑𝑣(𝐴) = |Pr(𝐴0)− Pr(𝐴1)|.

Our protocol is said to be secure if 𝐴𝑑𝑣(𝐴) < 𝜖, where 𝜖 is the security parameter.

We have an 𝑛 bit key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛 and 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑛. Alice’s 𝑛 bit message is 𝑎

and Bob’s 𝑛 bits message is 𝑏. Let there be 𝑙 number of zeros in the finite sequence {𝑋[𝑞]}𝑛
𝑞=1.

The UTP knows the value of 𝑎𝑗 ⊕ 𝑏𝑗 if 𝑋[𝑗] = 0 (when 𝑋[𝑗] = 0, the UTP knows that the

communicated bits of Alice and Bob are same or different). Let us consider the following.

• 𝑘′ = 𝑘′
1𝑘

′
2 . . . 𝑘

′
𝑙, where 𝑘′

𝑖 = 𝑘𝑗 if 𝑋[𝑗] is 𝑖-th zero in the finite sequence {𝑋[𝑞]}𝑛
𝑞=1.

• 𝑒 = 𝑙 bit substring of 𝑎, where 𝑒𝑖 = 𝑎𝑗, if 𝑋[𝑗] is the 𝑖-th zero of the sequence {𝑋[𝑞]}𝑛
𝑞=1.

• 𝑓 = 𝑙 bit substring of 𝑏, where 𝑓𝑖 = 𝑏𝑗, if 𝑋[𝑗] is the 𝑖-th zero of the sequence {𝑋[𝑞]}𝑛
𝑞=1.

• The UTP knows 𝑒⊕ 𝑓 .

We keep the 𝑖-th (1 ⩽ 𝑖 ⩽ 𝑙) message pair (𝑒𝑖, 𝑓𝑖) if 𝑘′
𝑖 = 𝑐 and discard the others. Let 𝑐1 =

Number of cases where 𝑘′
𝑖 = 𝑐, 1 ⩽ 𝑖 ⩽ 𝑙. Let us define some events first.
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• 𝐸0 = Keeping the 𝑖-th message bit pair (𝑒𝑖, 𝑓𝑖).

• 𝐸1 = Knowing our new message pair.

• 𝐸2 = Guessing a random message pair (𝑒, 𝑓) of length 𝑐1.

So, Pr(𝐸0) = 1
2 , Pr((𝑒𝑖, 𝑓𝑖)|𝑒𝑖 ⊕ 𝑓𝑖) = 1

2 .

Thus, Pr(𝐸1) =
(︁

1
2

)︁𝑙 (︁
1
2

)︁𝑐1 . Again, Pr(𝐸2) =
(︁

1
4

)︁𝑐1 .

Now the expected value of 𝑐1 = 𝑙
2 . Substituting this in the above expression, we get

Pr(𝐸1) ≈
(︁

1
2

)︁ 3𝑙
2 and Pr(𝐸2) ≈

(︁
1
4

)︁ 𝑙
2 .

Hence the advantage is, 𝐴𝑑𝑣(𝐴) = |Pr(𝐸2)− Pr(𝐸1)| ≈ |
(︁

1
4

)︁ 𝑙
2 −

(︁
1
2

)︁ 3𝑙
2 | =

(︁
1
2

)︁𝑙
[︂
1−

(︁
1
2

)︁ 𝑙
2
]︂
.

Now 𝐴𝑑𝑣(𝐴) < 𝜖

⇔
(︁

1
2

)︁𝑙
[︂
1−

(︁
1
2

)︁ 𝑙
2
]︂
< 𝜖

⇒
(︁

1
2

)︁ 3𝑙
2 ⩽

(︁
1
2

)︁𝑙
[︂
1−

(︁
1
2

)︁ 𝑙
2
]︂
< 𝜖 (assuming that

(︁
1
2

)︁ 𝑙
2 < 1 −

(︁
1
2

)︁ 𝑙
2 ⇔

(︁
1
2

)︁ 𝑙
2 −1

< 1 ⇔ 𝑙
2 − 1 >

0⇔ 𝑙 > 2.)

⇒
(︁

1
2

)︁ 3𝑙
2 < 𝜖⇔ −3𝑙

2 < 𝑙𝑜𝑔(𝜖)⇔ 𝑙 > 2
3 𝑙𝑜𝑔(

1
𝜖
).

So for a predefined security parameter 𝜖, if 𝑙 >max{2, 2
3 𝑙𝑜𝑔(

1
𝜖
)}, then 𝐴𝑑𝑣(𝐴) < 𝜖, i.e., our

protocol is secure. We can also adjust the value of 𝑙 by padding some random message bits.

7.2 Our second efficient MDI-QD protocol

After the error estimation phase, let the number of remaining measurement results be 𝑛′,

Alice and Bob make a finite sequence {𝑀 [𝑖]}𝑛′
𝑖=1 containing the measurement results. i.e.,

𝑀 [𝑖] is the 𝑖-th measurement result announced by the UTP, for 1 ⩽ 𝑖 ⩽ 𝑛′ and 𝑀 [𝑖] ∈

{|𝜑+⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜓−⟩}. They keep all the measurement results𝑀 [𝑖]s where𝑀 [𝑖] ∈ {|𝜑−⟩ , |𝜓+⟩}.

Among the remaining measurement results, they choose some to keep and discard other.

To choose the measurement results for Alice’s message, they will do the following:

for 1 ≤ 𝑖 ≤ 𝑛′, if 𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜓−⟩} and 𝑘𝑖 = 𝑐, then Alice and Bob keep that 𝑀 [𝑖]. Else

they discard that 𝑀 [𝑖]. Using Table 2.8, Bob guesses the message bit of Alice corresponding

to all the measurement results 𝑀 [𝑖] which they kept.

To choose the measurement results for Bob’s message, they will do the following:

for 1 ≤ 𝑖 ≤ 𝑛′, if 𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜓−⟩} and 𝑘𝑖 = 𝑐, then Alice and Bob keep that 𝑀 [𝑖]. Else
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they discard that 𝑀 [𝑖]. Using Table 2.7, Alice guesses the message bit of Bob corresponding

to all the measurement results 𝑀 [𝑖] which they kept. In this case the length of final messages

of Alice and Bob may differ. Details are given in the following section.

7.2.1 Proposed protocol

1. Alice and Bob share a 𝑛-bit key stream (𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛) between themselves using BB84

protocol.

2. They calculate 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑛.

3. Let 𝑛 bit message of Alice and Bob be 𝑎 = 𝑎1𝑎2 . . . 𝑎𝑛 and 𝑏 = 𝑏1𝑏2 . . . 𝑏𝑛 respectively.

4. For 1 ≤ 𝑖 ≤ 𝑛, Alice (Bob) prepares the qubits 𝑄𝐴 (𝑄𝐵) at her (his) end according to

the following strategy:

(a) if 𝑎𝑖 (𝑏𝑖)= 0 and 𝑘𝑖 = 0, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |0⟩;

(b) if 𝑎𝑖 (𝑏𝑖)= 1 and 𝑘𝑖 = 0, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |1⟩;

(c) if 𝑎𝑖 (𝑏𝑖)= 0 and 𝑘𝑖 = 1, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |+⟩;

(d) if 𝑎𝑖 (𝑏𝑖)= 1 and 𝑘𝑖 = 1, set 𝑄𝐴𝑖 (𝑄𝐵𝑖) = |−⟩.

5. Alice (Bob) sends 𝑄𝐴 (𝑄𝐵) to the third party (TP).

6. For 1 ≤ 𝑖 ≤ 𝑛, the UTP measures the two qubits 𝑄𝐴𝑖 and 𝑄𝐵𝑖 in Bell basis and announces

the result.

7. Alice and Bob make a finite sequence {𝑀 [𝑖]}𝑛
𝑖=1 containing the measurement results,

i.e., for 1 ⩽ 𝑖 ⩽ 𝑛, 𝑀 [𝑖] is the 𝑖-th measurement result announced by the UTP, where

𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜓−⟩}.

8. They randomly choose 𝛾𝑛 number of measurement results𝑀 [𝑖] from the sequence {𝑀 [𝑖]}𝑛
𝑖=1

to estimate the error, where 𝛾 < 1 is a small fraction.

9. Alice and Bob guess the message bit of other, corresponding to their chosen 𝛾𝑛 number

of measurement results using Table 2.7 and Table 2.8.
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10. They reveal their respective guesses for these rounds.

11. If estimated error is greater than some predefined threshold value, then they abort. Else

continue and goto next step.

12. Their remaining sequence of measurement results is relabeled as {𝑀 [𝑖]}𝑛′
𝑖=1, where 𝑛′ =

(1− 𝛾)𝑛.

13. They update their 𝑛-bit key to an 𝑛′-bit key by discarding 𝛾𝑛 number of key bits corre-

sponding to above 𝛾𝑛 rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛′ .

14. They generate a finite sequence {𝑋[𝑖]}𝑛′
𝑖=1 such that

𝑋[𝑖] =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑀𝑖 = |𝜑−⟩ or |𝜓+⟩;

0, otherwise.

15. Then they generate another two finite sequence {𝑌 [𝑖]}𝑛′
𝑖=1 and {𝑍[𝑖]}𝑛′

𝑖=1 such that

𝑌 [𝑖] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑋[𝑖] = 1;

𝑘𝑗, if 𝑐 = 1 and 𝑋[𝑖] is the 𝑗-th zero of the sequence {𝑋[𝑞]}𝑛′
𝑞=1;

𝑘𝑗, if 𝑐 = 0 and 𝑋[𝑖] is the 𝑗-th zero of the sequence {𝑋[𝑞]}𝑛′
𝑞=1.

𝑍[𝑖] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑋[𝑖] = 1;

𝑘𝑗, if 𝑐 = 0 and 𝑋[𝑖] is the 𝑗-th zero of the sequence {𝑋[𝑞]}𝑛′
𝑞=1;

𝑘𝑗, if 𝑐 = 1 and 𝑋[𝑖] is the 𝑗-th zero of the sequence {𝑋[𝑞]}𝑛′
𝑞=1.

16. For Alice’s message (1 ≤ 𝑖 ≤ 𝑛′):

• if 𝑋[𝑖] ⊕ 𝑌 [𝑖] = 1, then Alice and Bob consider the 𝑖-th measurement result 𝑀 [𝑖].

Bob guesses Alice’s message bit 𝑎𝑖 using Table 2.8.

• Else they discard 𝑀 [𝑖].

17. For Bob’s message (1 ≤ 𝑖 ≤ 𝑛′):
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• if 𝑋[𝑖] ⊕ 𝑍[𝑖] = 1, then Alice and Bob consider the 𝑖-th measurement result 𝑀 [𝑖].

Alice guesses Bob’s message bit 𝑏𝑖 using Table 2.7

• Else they discard 𝑀 [𝑖].

This completes the protocol.

Alice UTP Bob

Calculates 𝑐 = ⊕𝑖𝑘𝑖
Share a secret key 𝑘 = 𝑘1𝑘2. . . 𝑘𝑛 through a QKD←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Calculates 𝑐 = ⊕𝑖𝑘𝑖

Secret message 𝑎 Secret message 𝑏

Prepares 𝑄𝐴
𝑄𝐴 𝑄𝐵 Prepares 𝑄𝐵

Measures (𝑄𝐴𝑖
, 𝑄𝐵𝑖

)

in Bell basis

Announces 𝑀 [𝑖]

Decode 𝑏 from 𝑀 Decode 𝑎 from 𝑀

Randomly choose some positions←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Security check Reveal 𝑎𝑖, 𝑏𝑖 for those popsitions←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Security check

Generate sequences 𝑋, 𝑌, 𝑍 Generate sequences 𝑋, 𝑌, 𝑍

Keeps 𝑏𝑖 if 𝑋[𝑖]⊕ 𝑌 [𝑖] = 1 Keeps 𝑎𝑖 if 𝑋[𝑖]⊕ 𝑍[𝑖] = 1

Else discard 𝑏𝑖 Else discard 𝑎𝑖

99K denotes quantum channel,

−→ denotes classical channel.

Figure 7-2: Proposed MDI-QD (second protocol)

Example 6. Let us take an example to understand our protocol more clearly. Here we skip

the error estimation phase.

1. Let 𝑘 = 10011101101001010010 be the shared key between Alice and Bob, then 𝑐 = ⊕𝑘𝑖 =

0.

2. Let Alice’s message be 𝑎 = 10110100111010110011,
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3. Let Bob’s message be 𝑏 = 01101000101001101011.

4. Alice’s encrypted message

𝑄𝐴 = |−⟩ |0⟩ |1⟩ |−⟩ |+⟩ |−⟩ |0⟩ |+⟩ |−⟩ |1⟩ |−⟩ |0⟩ |1⟩ |+⟩ |1⟩ |−⟩ |0⟩ |0⟩ |−⟩ |1⟩.

5. Bob’s encrypted message

𝑄𝐵 = |+⟩ |1⟩ |1⟩ |+⟩ |−⟩ |+⟩ |0⟩ |+⟩ |−⟩ |0⟩ |−⟩ |0⟩ |0⟩ |−⟩ |1⟩ |+⟩ |1⟩ |0⟩ |−⟩ |1⟩.

6. Alice and Bob send their respective sequences of qubits 𝑄𝐴 and 𝑄𝐵 to the UTP and

the UTP measures the two qubits (one from Alice and one from Bob) in Bell basis and

announces the results.

7. Let 𝑀 be the sequence

|𝜑−⟩ , |𝜓+⟩ , |𝜑+⟩ , |𝜓−⟩ , |𝜓−⟩ , |𝜑−⟩ , |𝜑−⟩ , |𝜑+⟩ , |𝜓+⟩ , |𝜓−⟩ , |𝜑+⟩ , |𝜑+⟩ , |𝜓−⟩ ,

|𝜑−⟩ , |𝜑−⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜑−⟩ , |𝜑+⟩ , |𝜑−⟩

8. 𝑋 is the sequence 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1.

9. 𝑌 is the sequence 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.

10. 𝑍 is the sequence 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0.

11. Then 𝑋 ⊕ 𝑌 is the sequence 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1 and

12. 𝑋 ⊕ 𝑍 is the sequence 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1.

13. For Alice’s message, Alice and Bob consider the 𝑖-th (1 ≤ 𝑖 ≤ 20) measurement result

𝑀 [𝑖] only when 𝑋[𝑖] ⊕ 𝑌 [𝑖] = 1 and discard other cases. That is, they consider 𝑎′ =

10101010011001 as Alice’s message.

14. For Bob’s message, Alice and Bob consider the 𝑖-th (1 ≤ 𝑖 ≤ 20) measurement result

𝑀 [𝑖] only when 𝑋[𝑖] ⊕ 𝑍[𝑖] = 1 and discard other cases. That is, they consider 𝑏′ =

01100010101101011 as Bob’s message.
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7.2.2 Correctness of our proposed protocol

Using the similar argument as the first protocol in Section 7.1.2, we can say that our second

protocol also gives the correct results.

7.2.3 Security analysis of our proposed protocol

Our protocol is said to be secure if 𝐴𝑑𝑣(𝐴) < 𝜖, where 𝜖 is the security parameter.

We have an 𝑛 bit key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛 and 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑛. Alice’s 𝑛 bit message is 𝑎

and Bob’s 𝑛 bits message is 𝑏. Let there be 𝑙 number of zeros in the finite sequence {𝑋[𝑞]}𝑛
𝑞=1.

The UTP knows the value of 𝑎𝑗 ⊕ 𝑏𝑗 if 𝑋[𝑗] = 0 (when 𝑋[𝑗] = 0, the UTP knows that the

communicated bits of Alice and Bob are same or different). Let us consider the following.

• 𝑘′ = 𝑘′
1𝑘

′
2 . . . 𝑘

′
𝑙, where 𝑘′

𝑖 = 𝑘𝑗 if 𝑋[𝑗] is 𝑖-th zero in the finite sequence {𝑋[𝑞]}𝑛
𝑞=1.

• 𝑒 = 𝑙 bit substring of 𝑎, where 𝑒𝑖 = 𝑎𝑗, if 𝑋[𝑗] is the 𝑖-th zero of the sequence {𝑋[𝑞]}𝑛
𝑞=1.

• 𝑓 = 𝑙 bit substring of 𝑏, where 𝑓𝑖 = 𝑏𝑗, if 𝑋[𝑗] is the 𝑖-th zero of the sequence {𝑋[𝑞]}𝑛
𝑞=1.

• The UTP knows 𝑒⊕ 𝑓 .

In our second protocol, we keep the 𝑖-th bit of Alice’s message 𝑒𝑖 if 𝑘′
𝑖 = 𝑐, the 𝑖-th bit of

Bob’s message 𝑓𝑖 if 𝑘′
𝑖 = 𝑐, 1 ⩽ 𝑖 ⩽ 𝑙 and discard the rest.

Let 𝑐1 = Number of cases where 𝑘′
𝑖 = 𝑐, 1 ⩽ 𝑖 ⩽ 𝑙. Let us define some events first.

• 𝐸0 = Keeping 𝑒𝑖, the 𝑖-th message bit of Alice.

• 𝐸1 = Keeping 𝑓𝑖, the 𝑖-th message bit of Bob.

• 𝐸2 = Knowing Alice’s and Bob’s new message 𝑒′ and 𝑓 ′ respectively.

• 𝐸4 = Guessing two random message 𝑒 and 𝑓 of length 𝑐1 and 𝑙 − 𝑐1 respectively.

So, Pr(𝐸0) = 1
2 and Pr(𝐸1) = 1

2 .

Using the expectation of 𝑐1 calculated earlier, we have Pr(𝐸3) =
(︁

1
2

)︁𝑙 (︁
1
2

)︁𝑐1 (︁
1
2

)︁𝑙−𝑐1 ≈
(︁

1
2

)︁2𝑙
.

Again, Pr(𝐸4) =
(︁

1
2

)︁𝑐1 (︁
1
2

)︁𝑙−𝑐1 ≈
(︁

1
2

)︁𝑙
.
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Thus, the advantage of the UTP is, 𝐴𝑑𝑣(𝐴) = |Pr(𝐸4) − Pr(𝐸3)| ≈ |
(︁

1
2

)︁𝑙
−

(︁
1
2

)︁2𝑙
| =(︁

1
2

)︁𝑙
[︂
1−

(︁
1
2

)︁𝑙
]︂
.

Now 𝐴𝑑𝑣(𝐴) < 𝜖

⇔
(︁

1
2

)︁𝑙
[︂
1−

(︁
1
2

)︁𝑙
]︂
< 𝜖

⇒
(︁

1
2

)︁2𝑙
<

(︁
1
2

)︁𝑙
[︂
1−

(︁
1
2

)︁𝑙
]︂
< 𝜖 (assuming that

(︁
1
2

)︁𝑙
< 1−

(︁
1
2

)︁𝑙
⇔

(︁
1
2

)︁𝑙−1
< 1⇔ 𝑙 > 1.)

⇒
(︁

1
2

)︁2𝑙
< 𝜖⇔ −2𝑙 < 𝑙𝑜𝑔(𝜖)⇔ 𝑙 > 1

2 𝑙𝑜𝑔(
1
𝜖
).

So for a predefined security parameter 𝜖, if 𝑙 >max{1, 1
2 𝑙𝑜𝑔(

1
𝜖
)}, then 𝐴𝑑𝑣(𝐴) < 𝜖, i.e., our

protocol is secure. We can also adjust the value of 𝑙 by padding some random message bits.

7.2.4 Difference with the first protocol

Both of our proposed protocols for quantum dialogue are modifications of the quantum dialogue

protocol given in [3]. In these protocols, the UTP measures each two qubit state (one from

Alice and one from Bob) in Bell basis and announces the result. Alice and Bob make a finite

sequence {𝑀 [𝑖]}𝑛
𝑖=1 containing the measurement results. That is, 𝑀 [𝑖] is the 𝑖-th (1 ⩽ 𝑖 ⩽

𝑛) measurement result announced by the UTP and 𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜑−⟩ , |𝜓+⟩ , |𝜓−⟩}. After

the error estimation phase, the remaining sequence of measurement results is relabeled as

{𝑀 [𝑖]}𝑛′
𝑖=1. For 1 ⩽ 𝑖 ⩽ 𝑛, if 𝑀 [𝑖] ∈ {|𝜑−⟩ , |𝜓+⟩}, then we keep those results for both the

protocols. But if 𝑀 [𝑖] ∈ {|𝜑+⟩ , |𝜓−⟩}, then we use some technique to decide whether we keep

those results or discard them.

The basic difference between our two protocols is the technique of choosing 𝑀 [𝑖] when

𝑀 [𝑖] = |𝜑+⟩ or |𝜓−⟩, 1 ≤ 𝑖 ≤ 𝑛′. From our first protocol, we get a synchronized message pair

of Alice and Bob. Here by synchronized message, we mean that if we keep the 𝑖-th message bit

of Alice, then we also keep the 𝑖-th message bit of Bob. For this protocol, we consider the 𝑖-th

message bit pair (𝑎𝑖, 𝑏𝑖), if 𝑋[𝑖] ⊕ 𝑌 [𝑖] = 1 holds (1 ≤ 𝑖 ≤ 𝑛′), where {𝑋[𝑖]}𝑛′
𝑖=1 and {𝑌 [𝑖]}𝑛′

𝑖=1

are defined in Algorithm 1.

But for the second protocol, we do not get any synchronized message pair of Alice and

Bob. In this protocol, if 𝑀 [𝑖] = |𝜑+⟩ or |𝜓−⟩, then, for some cases we keep the corresponding

message bit of Alice and discard Bob’s message bit, or the converse. For 1 ≤ 𝑖 ≤ 𝑛′, the

condition for keeping Alice’s message bit 𝑎𝑖 is 𝑋[𝑖] ⊕ 𝑌 [𝑖] = 1, i.e., when 𝑋[𝑖] ⊕ 𝑌 [𝑖] = 1, we
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keep 𝑎𝑖 and discard 𝑏𝑖. Also for 1 ≤ 𝑖 ≤ 𝑛′, the condition for keeping Bob’s message bit 𝑏𝑖 is

𝑋[𝑖]⊕𝑍[𝑖] = 1, i.e., when 𝑋[𝑖]⊕𝑍[𝑖] = 1, we keep 𝑏𝑖 and discard 𝑎𝑖, where {𝑋[𝑖]}𝑛′
𝑖=1, {𝑌 [𝑖]}𝑛′

𝑖=1

and {𝑍[𝑖]}𝑛′
𝑖=1 are defined in Algorithm 2.

So for each 𝑖, we are keeping 𝑎𝑖 or 𝑏𝑖 or both. The performance of our second protocol is

better, when 𝑐1 <
𝑙
2 (these are defined in Section 7.1.3). In that case, we can keep more message

bits using our second protocol than the first one. One may note that synchronization is not

an issue if only message transmission is considered. But if Alice and Bob use the synchronized

messages to define something else, then our second protocol cannot be used (as the length

of their final message may differ from each other). For this case, they have to use our first

protocol.

7.3 Discussion

In this chapter, we propose two protocols for quantum dialogue such that two legitimate parties

Alice and Bob can securely communicate their messages simultaneously. Both of our proposed

protocols are modifications of MDI-QD [3] protocol. In their protocol they have used only half

of the qubits. But in our protocols we have used almost three fourth of the qubits. So our

protocols are more efficient than the previous one in terms of number of qubits. We show that

our QD protocols are secure as advantages of adversary are negligible for both the cases. Also

we have discussed about the difference between our two protocols.
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Chapter 8

Analysis and Design of Quantum

Conference Protocols

Quantum conference is a process of securely exchanging messages between three or more par-

ties, using quantum resources. In this chapter, we first generalize the MDI-QD protocol [3] to

a three-party Q.Conf protocol with the help of an untrusted fourth party. Next, we generalize

our three-party Q.Conf protocol to a multi-party version. We show that both these conference

protocols are correct and secure against intercept-and-resend attack, entangle-and-measure

attack, DoS attack and man-in-the-middle attack. As the fourth and final contribution, we

show how to use part of our multi-party Q.Conf protocol to compute multi-party XOR func-

tion, and establish it’s correctness and security. None of these three protocols proposed here

use entanglement as a resource and we prove the correctness and security of our proposed

protocols [282].

Before describing our protocol, let us first define the basis ℬ𝑁 for the Hilbert space C𝑁 .

ℬ𝑁 = {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , . . . , |Φ+
2(𝑁−1)−1⟩ , |Φ

−
2(𝑁−1)−1⟩},

where |Φ±
𝑖 ⟩ = 1√

2(|𝑖⟩ ± |2𝑁 − 1− 𝑖⟩) for 𝑖 ∈ {0, 1, . . . , 2(𝑁−1) − 1}. For example :

1. ℬ2 = {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩} is called Bell basis; where

∙ |Φ+
0 ⟩ = 1√

2(|00⟩+ |11⟩) = |Φ+⟩, |Φ−
0 ⟩ = 1√

2(|00⟩ − |11⟩) = |Φ−⟩
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∙ |Φ+
1 ⟩ = 1√

2(|01⟩+ |10⟩) = |Ψ+⟩, |Φ−
1 ⟩ = 1√

2(|01⟩ − |10⟩) = |Ψ−⟩

2. ℬ3 = {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , |Φ+
2 ⟩ , |Φ−

2 ⟩ , |Φ+
3 ⟩ , |Φ−

3 ⟩} basis; where

• |Φ+
0 ⟩ = 1√

2(|000⟩+ |111⟩), |Φ−
0 ⟩ = 1√

2(|000⟩ − |111⟩)

• |Φ+
1 ⟩ = 1√

2(|001⟩+ |110⟩), |Φ−
1 ⟩ = 1√

2(|001⟩ − |110⟩)

• |Φ+
2 ⟩ = 1√

2(|010⟩+ |101⟩), |Φ−
2 ⟩ = 1√

2(|010⟩ − |101⟩)

• |Φ+
3 ⟩ = 1√

2(|011⟩+ |100⟩), |Φ−
3 ⟩ = 1√

2(|011⟩ − |100⟩);

8.1 Three party Q.Conf

We extend the QD protocol of [3] from two to three parties, thus leading to a protocol of

Q.Conf. Our proposed conference protocol is divided into two parts. Let Alice, Bob and

Charlie be three participants of the conference. Also let Alice’s, Bob’s and Charlie’s 𝑚 bit

messages be 𝑎, 𝑏 and 𝑐 respectively, where 𝑎 = 𝑎1𝑎2 . . . 𝑎𝑚, 𝑏 = 𝑏1𝑏2 . . . 𝑏𝑚 and 𝑐 = 𝑐1𝑐2 . . . 𝑐𝑚.

In the first part, Alice, Bob, and Charlie perform a Multi-party QKD protocol [189] to

establish a secret key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚 of 𝑚 bits between themselves. Then each of them uses

the key to encode one’s own message 𝑀 into the corresponding state 𝑄, according to Subrou-

tine 1. The details of the three party Q.Conf protocol are given in Protocol 1.
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Subroutine 1 Message Encoding Strategy for Three Party Q.Conf

Inputs: Own message 𝑀 = 𝑀1𝑀2 . . .𝑀𝑚; key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚.

Output: Sequence of qubits 𝑄 = 𝑄1𝑄2 . . . 𝑄𝑚.

The subroutine:

For 1 ⩽ 𝑖 ⩽ 𝑚,

1. if 𝑀𝑖 = 0 and 𝑘𝑖 = 0, prepares 𝑄𝑖 = |0⟩.

2. if 𝑀𝑖 = 1 and 𝑘𝑖 = 0, prepares 𝑄𝑖 = |1⟩.

3. if 𝑀𝑖 = 0 and 𝑘𝑖 = 1, prepares 𝑄𝑖 = |+⟩.

4. if 𝑀𝑖 = 1 and 𝑘𝑖 = 1, prepares 𝑄𝑖 = |−⟩.

8.1.1 Protocol 1: Three party Q.Conf

The steps of the protocol is as follows:

1. Alice, Bob and Charlie perform any multi-party QKD protocol (e.g., [189]) to establish

an 𝑚-bit secret key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚 between themselves.

2. Let the 𝑚-bit messages of Alice, Bob and Charlie be 𝑎, 𝑏 and 𝑐 respectively, where

𝑎 = 𝑎1𝑎2 . . . 𝑎𝑚, 𝑏 = 𝑏1𝑏2 . . . 𝑏𝑚 and 𝑐 = 𝑐1𝑐2 . . . 𝑐𝑚.

3. For 1 ⩽ 𝑖 ⩽ 𝑚, Alice, Bob and Charlie prepare the sequences of qubits𝑄𝐴 = {𝑄𝐴[𝑖]}𝑚
𝑖=1 =

(𝑄𝐴1, 𝑄𝐴2, . . . , 𝑄𝐴𝑚), 𝑄𝐵 = {𝑄𝐵[𝑖]}𝑚
𝑖=1 = (𝑄𝐵1, 𝑄𝐵2, . . . , 𝑄𝐵𝑚) and 𝑄𝐶 = {𝑄𝐶 [𝑖]}𝑚

𝑖=1 =

(𝑄𝐶1, 𝑄𝐶2, . . . , 𝑄𝐶𝑚) respectively at their end by using Subroutine 1.

4. Alice, Bob, and Charlie choose some random permutation and apply those on their

respective sequences of qubits 𝑄𝐴, 𝑄𝐵, and 𝑄𝐶 and get new sequences of qubits 𝑞𝐴, 𝑞𝐵

and 𝑞𝐶 .
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5. They send the prepared sequences of qubits 𝑞𝐴, 𝑞𝐵, and 𝑞𝐶 to an untrusted fourth party

(UFP).

6. Alice, Bob, and Charlie randomly choose 𝛿𝑚 number of common positions on sequences

𝑄𝐴, 𝑄𝐵 and 𝑄𝐶 to estimate the error in the channel, where 𝛿 ≪ 1 is a small fraction.

Corresponding to these 𝛿𝑚 rounds, they do the following:

(a) Each participant tells the positions and preparation bases of those qubits for those

rounds to the UFP.

(b) The UFP measures each single-qubit state in proper basis and announces the results.

(c) They reveal their respective qubits for these rounds and compare them with the

results announced by the UFP.

(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

7. The UFP asks Alice, Bob, and Charlie to tell the permutations which they have applied

to their sequences.

8. The UFP applies the inverse permutations, corresponding to the permutations chosen

by Alice, Bob, and Charlie, on 𝑞𝐴, 𝑞𝐵, and 𝑞𝐶 to get 𝑄𝐴, 𝑄𝐵 and 𝑄𝐶 respectively.

9. They discard the qubits corresponding to the above 𝛿𝑚 positions. Their remaining

sequence of prepared qubits are relabeled as 𝑄𝐴 = {𝑄𝐴[𝑖]}𝑚′
𝑖=1, 𝑄𝐵 = {𝑄𝐵[𝑖]}𝑚′

𝑖=1 and

𝑄𝐶 = {𝑄𝐶 [𝑖]}𝑚′
𝑖=1, where 𝑚′ = (1− 𝛿)𝑚.

10. They update their 𝑚-bit key to an 𝑚′-bit key by discarding 𝛿𝑚 number of key bits

corresponding to the above 𝛿𝑚 rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚′ .

11. For 1 ⩽ 𝑖 ⩽ 𝑚′, the UFP measures the each three qubits state (𝑄𝐴𝑖
, 𝑄𝐵𝑖

, 𝑄𝐶𝑖
) in basis

ℬ3 and announces the result.

12. Alice, Bob and Charlie make a finite sequence {ℳ[𝑖]}𝑚′
𝑖=1 containing the measurement

results, i.e., for 1 ⩽ 𝑖 ⩽ 𝑚′, ℳ[𝑖] ∈ {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , |Φ+
2 ⟩ , |Φ−

2 ⟩ , |Φ+
3 ⟩ , |Φ−

3 ⟩} is

the 𝑖-th measurement result announced by the UFP .
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13. They randomly choose 𝛾𝑚′ number of measurement results ℳ[𝑖] from the sequence

{ℳ[𝑖]}𝑚′
𝑖=1 to estimate the error (may be introduced by the UFP ), where 𝛾 ≪ 1 is a

small fraction.

(a) They reveal their respective message bits for these rounds.

(b) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

14. Their remaining sequence of measurement results is relabeled as {ℳ[𝑖]}𝑛
𝑖=1, where 𝑛 =

(1− 𝛾)𝑚′.

15. They update their 𝑚′-bit key to an 𝑛-bit key by discarding 𝛾𝑚′ number of key bits

corresponding to the above 𝛾𝑚′ rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛.

16. Each of Alice, Bob, and Charlie applies Algorithm 4 to get others’ messages.

Note that in this protocol, there are two error estimation phases. The first one checks if there

is any adversary (other than the UFP ) in the channel who tries to get some information about

the messages or change the messages. In this case, if the 1st error estimation phase does not

pass, then Alice, Bob, and Charlie abort the protocol. Thus, in this step, the motivation of

the UFP being correct is that there is no information gain for him/her if the parties abort the

protocol. The next error estimation phase is to check if there is any error introduced by the

UFP .

8.1.2 Correctness of three party Q.Conf protocol

In our proposed protocol, Alice, Bob and Charlie first prepare qubits corresponding to their

messages and shared key and then send those qubits to the fourth party (UFP). After that,

UFP measures each of the three qubits state (one from Alice, one from Bob and one from

Charlie) in basis ℬ3 = {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , |Φ+
2 ⟩ , |Φ−

2 ⟩ , |Φ+
3 ⟩ , |Φ−

3 ⟩} and announces the

result. Now, we can say the following from Table 8.1:

• If the prepared qubit of Alice is |0⟩(|1⟩), then Alice guesses message bit of Bob and
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Algorithm 4: Three Party Message Reconstruction Algorithm.
Input: Own message , measurement results {ℳ[𝑖]}𝑛

𝑖=1, key 𝑘.
Output: Others’ messages.

1. For 1 ⩽ 𝑖 ⩽ 𝑛, if 𝑘𝑖 = 0, then each participant can learn the 𝑖-th bit of others’ messages
from the measurement result ℳ[𝑖] and their own message (see Table-8.1).

2. For 1 ⩽ 𝑖 ⩽ 𝑛, if 𝑘𝑖 = 1, then from the measurement result ℳ[𝑖] and their own message
each participant can learn the 𝑖-th bit of others messages are same or different (see
Table-8.1). Let 𝑐 = 𝑤𝑡(𝑘).

(a) Alice, Bob and Charlie prepare ordered sets of qubits 𝑆𝐴, 𝑆𝐵 and 𝑆𝐶 respectively,
corresponding to their message bit where the key bit is 1. They prepare the qubits
at their end according to the following strategy. Each of 𝑆𝐴, 𝑆𝐵 and 𝑆𝐶 contain 𝑐
number of qubits. For 1 ⩽ 𝑗 ⩽ 𝑐 and if 𝑘𝑖 = 1 is the 𝑗-th 1 in 𝑘, then

• if 𝑎𝑖 (𝑏𝑖, 𝑐𝑖)= 0 and 𝑖 is even, prepares 𝑆𝐴[𝑗] (𝑆𝐵[𝑗], 𝑆𝐶 [𝑗]) = |0⟩.
• if 𝑎𝑖 (𝑏𝑖, 𝑐𝑖)= 1 and 𝑖 is even, prepares 𝑆𝐴[𝑗] (𝑆𝐵[𝑗], 𝑆𝐶 [𝑗]) = |1⟩.
• if 𝑎𝑖 (𝑏𝑖, 𝑐𝑖)= 0 and 𝑖 is odd, prepares 𝑆𝐴[𝑗] (𝑆𝐵[𝑗], 𝑆𝐶 [𝑗]) = |+⟩.
• if 𝑎𝑖 (𝑏𝑖, 𝑐𝑖)= 1 and 𝑖 is odd, prepares 𝑆𝐴[𝑗] (𝑆𝐵[𝑗], 𝑆𝐶 [𝑗]) = |−⟩.

(b) Alice, Bob and Charlie prepare sets of 𝑑 decoy photons 𝐷𝐴, 𝐷𝐵 and 𝐷𝐶

respectively, where the decoy photons are randomly chosen from
{|0⟩ , |1⟩ , |+⟩ , |−⟩}. They randomly insert their decoy photons into their prepared
qubits sets and make new ordered sets 𝑆 ′

𝐴, 𝑆 ′
𝐵 and 𝑆 ′

𝐶 . They also choose random
permutations 𝑅𝐴, 𝑅𝐵, 𝑅𝐶 and apply those on their respective sets 𝑆 ′

𝐴, 𝑆 ′
𝐵, 𝑆 ′

𝐶 to
get the sets 𝑆 ′′

𝐴, 𝑆 ′′
𝐵, 𝑆 ′′

𝐶 respectively.
(c) Each of them sends its set to the next participant in a circular way. That is, Alice

sends 𝑆 ′′
𝐴 to Bob, who sends 𝑆 ′′

𝐵 to Charlie, who in turn sends 𝑆 ′′
𝐶 to Alice.

(d) After receiving the qubits from the previous participant, each of them announces
the random permutations and the positions, states of their decoy photons.

(e) They apply the inverse permutations and verify the decoy photons to check
eavesdropping. If there exists any eavesdropper in the quantum channel, they
abort the protocol, else they go to the next step.

(f) Now everyone knows the basis of the qubits of 𝑆𝐴, 𝑆𝐵 and 𝑆𝐶 . So they can
measure those qubits to get the exact message bits of the previous participant
from whom they got those qubits.
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Charlie (𝑏𝑖 and 𝑐𝑖) with probability 1 as follows:

Measurement result =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Φ+
0 ⟩ or |Φ−

0 ⟩ ⇒ 𝑏𝑖 = 0(1) and 𝑐𝑖 = 0(1);

|Φ+
1 ⟩ or |Φ−

1 ⟩ ⇒ 𝑏𝑖 = 0(1) and 𝑐𝑖 = 1(0);

|Φ+
2 ⟩ or |Φ−

2 ⟩ ⇒ 𝑏𝑖 = 1(0) and 𝑐𝑖 = 0(1);

|Φ+
3 ⟩ or |Φ−

3 ⟩ ⇒ 𝑏𝑖 = 1(0) and 𝑐𝑖 = 1(0).

• If the prepared qubit of Alice is |+⟩(|−⟩), then Alice guesses the XOR function of message

bits of Bob and Charlie with probability 1 as follows:

Measurement result =

⎧⎪⎪⎨⎪⎪⎩
|Φ+

0 ⟩ or |Φ+
1 ⟩ or |Φ+

2 ⟩ or |Φ+
3 ⟩ ⇒ 𝑏𝑖 ⊕ 𝑐𝑖 = 0(1);

|Φ−
0 ⟩ or |Φ−

1 ⟩ or |Φ−
2 ⟩ or |Φ−

3 ⟩ ⇒ 𝑏𝑖 ⊕ 𝑐𝑖 = 1(0).

In this case, Charlie sends her encoded qubit to Alice (the encoding process is given in

Step 2a of Algorithm 4). Since Alice knows the basis of the received qubit from Charlie,

by measuring the qubit in the proper basis, Alice can know the message bit 𝑐𝑖 of Charlie.

Then from 𝑏𝑖 ⊕ 𝑐𝑖, she can get 𝑏𝑖 also.

A similar thing happens for Bob and Charlie too. From the above discussion, we see that

for all the cases Alice, Bob, and Charlie can conclude the communicated bit of the other parties

with probability 1. Hence our protocol is giving the correct result.

8.1.3 Security analysis of the three party Q.Conf protocol

In this section, we discuss the security of our proposed three-party Q.Conf protocol against

the common known attacks which 𝒜 can adopt. If there exists some adversary in the channel

and the legitimate parties can detect her with a non-negligible probability, then we call our

protocol as secure. We assume that 𝒜 has infinite resources and unbounded computation

power.

We first show that if the UFP does some cheating, it can be detected by the players at

the error estimation phase of the protocol (Step 13 of Protocol 1). Let UFP measure each
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of the three qubits 𝑄𝐴𝑖
, 𝑄𝐵𝑖

, 𝑄𝐶𝑖
in a randomly chosen basis (𝑍 or 𝑋) instead of measuring

(𝑄𝐴𝑖
, 𝑄𝐵𝑖

, 𝑄𝐶𝑖
) in ℬ3 basis. Now UFP checks the individual measurement results and decides

to announce an ℳ′[𝑖] ∈ {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , |Φ+
2 ⟩ , |Φ−

2 ⟩ , |Φ+
3 ⟩ , |Φ−

3 ⟩} corresponding to

the states which can arrive if he measures in the correct basis (see Table 8.2). For example,

if UFP measures in 𝑍-basis and gets the result |0⟩ |0⟩ |1⟩ then he announces ℳ′[𝑖] from the

set {|Φ+
1 ⟩ , |Φ−

1 ⟩}. Again if he measures in 𝑋-basis and gets the result |−⟩ |+⟩ |+⟩ then he

announces ℳ′[𝑖] from the set {|Φ−
0 ⟩ , |Φ−

1 ⟩ , |Φ−
2 ⟩ , |Φ−

3 ⟩}.

We now calculate the winning probability 𝑝 of UFP for correctly guessing the 𝑖-th measurement

resultℳ[𝑖]. Let the preparation basis for the initial qubits𝑄𝐴𝑖
, 𝑄𝐵𝑖

, 𝑄𝐶𝑖
be ℬ and UFP chooses

the basis ℬ′. Then we have,

𝑝 = Pr(ℳ′[𝑖] =ℳ[𝑖])

= Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ = ℬ′) Pr(ℬ = ℬ′) + Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ ≠ ℬ′) Pr(ℬ ̸= ℬ′)

= 1
2{Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ = ℬ′) + Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ ≠ ℬ′)}

= 1
2{Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ = ℬ′) + Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ = 𝑋,ℬ′ = 𝑍)+

Pr(ℳ′[𝑖] =ℳ[𝑖]| ℬ = 𝑍,ℬ′ = 𝑋)}

= 1
2

(︂
1 + 1

2 + 1
4

)︂
= 7

8 .

Therefore the legitimate parties can detect this eavesdropping with probability 1−𝑝𝛾𝑚′ , which

is a non-negligible probability for large 𝛾𝑚′.

Next, we consider four types of attacks (intercept-and-resend attack, entangle-and-measure

attack, DoS attack, man-in-the-middle attack) and show that our protocol is secure against

these attacks.

1. Intercept-and-resend attack

Here we consider the intercept-and-resend attack by an adversary 𝒜 (other than the

UFP). In this attack model, 𝒜 intercepts the qubits from the quantum channel, then

she measures those qubits and resends to the receiver. First let us assume that 𝒜

intercepts 𝑞𝐴, measures the qubits in randomly chosen bases (𝑍 or 𝑋) and notes down

the measurement results. Due to the measurements by 𝒜, let the sequence 𝑞𝐴 changes
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to 𝑞′
𝐴 and she resends 𝑞′

𝐴 to UFP. After receiving the sequence 𝑞′
𝐴, Alice tells UFP some

random positions of the sent qubits and their preparation bases, then UFP measures

those qubits and announces the results. Let the 𝑖-th qubit 𝑞𝐴𝑖
prepared in basis ℬ𝐴𝑖

, and

𝒜 chooses basis ℬ′
𝐴𝑖

to measure 𝑞𝐴𝑖
. At the time of security checking, UFP measures 𝑞′

𝐴𝑖

in ℬ𝐴𝑖
and gets the result 𝑞′′

𝐴𝑖
.

Thus the winning probability of 𝒜 is

𝑝1 = Pr(𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
)

= Pr(𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
| ℬ𝐴𝑖

= ℬ′
𝐴𝑖

) Pr(ℬ𝐴𝑖
= ℬ′

𝐴𝑖
) + Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ𝐴𝑖
̸= ℬ′

𝐴𝑖
) Pr(ℬ𝐴𝑖

̸= ℬ′
𝐴𝑖

)

= 1
2{Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ𝐴𝑖
= ℬ′

𝐴𝑖
) + Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ𝐴𝑖
̸= ℬ′

𝐴𝑖
)}

= 1
4

(︂
1 + 1

2

)︂
= 3

4 .

Similarly, when 𝒜 intercepts 𝑞𝐵 and 𝑞𝐶 , then the winning probability of 𝒜 is 𝑝2 = 3
4 and

𝑝3 = 3
4 respectively. Note that Alice, Bob, and Charlie apply random permutations on

their respective sequences of qubits, and those permutations are announced only if the

error estimation phase is passed after the qubits arrive at their destinations. So at the

time of sending those sequences, 𝒜 can not just guess a key bit and measure the qubits

in the corresponding bases. Even if she gets some of the key bits, she can not guess the

corresponding bases for sequences of qubits 𝑞𝐴, 𝑞𝐵, 𝑞𝐶 . Therefore measuring the qubits

of 𝑞𝐴, 𝑞𝐵, 𝑞𝐶 are independent events to 𝒜 and thus the winning probability of 𝒜 for this

attack is 𝑝1𝑝2𝑝3 = (3
4)3. Alice, Bob, and Charlie randomly choose 𝛿𝑚 number of rounds

to estimate the error in the channel (Step 6 of Protocol 1), where 𝛿 ≪ 1 is a small

fraction. Corresponding to these rounds, they tell the positions and preparation bases of

the qubits to the UFP . Next, the UFP measures each single qubit state in proper basis

and announces the result. Alice, Bob, and Charlie reveal their respective qubits for these

rounds and compare them with the results announced by UFP and calculate the error

rate in the quantum channel. Thus the probability that they can detect the existence of

𝒜 is 1−
(︁

3
4

)︁3𝛿𝑚
, and in this case the legitimate parties terminate the protocol.

Next we consider 𝒜 tries to eavesdrop in the second phase of transmission of qubits

(Step 2 of Algorithm 4). Suppose 𝒜 intercepts the sequences 𝑆 ′′
𝐴, 𝑆

′′
𝐵, 𝑆

′′
𝐶 from the quan-
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tum channel, measures them in 𝑍 or 𝑋 basis and then resends those sequences to the

receivers. Since each of 𝑆 ′′
𝐴, 𝑆

′′
𝐵, 𝑆

′′
𝐶 contains 𝑑 decoy photons, then these intermediate

measurements change the states of those decoy photons. Let the 𝑖-th decoy photon of

Alice be 𝐷𝐴𝑖
prepared in basis ℬ, where ℬ = 𝑍 or 𝑋, and after 𝒜 measures in ℬ′ basis

the state becomes 𝐷′
𝐴𝑖

. When Alice announces the preparation basis of 𝐷𝐴𝑖
, then Bob

measures 𝐷′
𝐴𝑖

in basis ℬ and gets 𝐷′′
𝐴𝑖

. We now calculate the probability that 𝐷𝐴𝑖
= 𝐷′′

𝐴𝑖

as follows,

Pr(𝐷′′
𝐴𝑖

= 𝐷𝐴𝑖
)

= Pr(𝐷′′
𝐴𝑖

= 𝐷𝐴𝑖
| ℬ = ℬ′) Pr(ℬ = ℬ′) + Pr(𝐷′′

𝐴𝑖
= 𝐷𝐴𝑖

| ℬ ≠ ℬ′) Pr(ℬ ̸= ℬ′)

= 1
2[Pr(𝐷′′

𝐴𝑖
= 𝐷𝐴𝑖

| ℬ = ℬ′) + Pr(𝐷′′
𝐴𝑖

= 𝐷𝐴𝑖
| ℬ ≠ ℬ′)]

= 1
2

[︂
1 + 1

2

]︂
= 3

4 .

Thus the probability that Alice and Bob can detect the existence of 𝒜 is 1−
(︁

3
4

)︁𝑑
, where

𝑑 is the number of decoy photon. Similarly for the other sequences of qubits.

2. Entangle-and-measure attack

Let us discuss another attack, called entangle-and-measure attack, by an adversary 𝒜.

For this attack, 𝒜 does the following: when Alice sends her sequence of qubits 𝑞𝐴 to

the UFP , then 𝒜 takes each qubit 𝑞𝐴𝑖
, 1 ⩽ 𝑖 ⩽ 𝑚, from the channel and takes an

ancillary qubit |𝑏⟩, which is in state |0⟩, from her own. 𝒜 applies a CNOT gate with

control 𝑞𝐴𝑖
and target |𝑏⟩, and then she sends 𝑞𝐴𝑖

to the UFP . The joint state becomes

|00⟩, |11⟩, |Φ+⟩ and |Φ−⟩, corresponding to the state of 𝑞𝐴𝑖
, which are |0⟩, |1⟩, |+⟩ and

|−⟩ respectively. Also 𝒜 does the same thing with the qubits of Bob and Charlie. After

the UFP receives all the qubits, Alice, Bob and Charlie randomly choose 𝛿𝑚 number of

rounds to estimate the error in channel (Step 6 of Protocol 1), where 𝛿 ≪ 1 is a small

fraction. Corresponding to these rounds, they tell the positions and preparation bases

of the qubits to the UFP , who then measures each of the single qubit state in proper

basis and announces the result. Alice, Bob and Charlie reveal their respective qubits for

these rounds and compare with the results announced by the UFP.
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Let UFP get the measurement result 𝑞′
𝐴𝑖

by measuring the state 𝑞𝐴𝑖
prepared in basis

ℬ. Now if the original state of 𝑞𝐴𝑖
is |0⟩ or |1⟩, then no error occurs. But if the original

state of 𝑞𝐴𝑖
is |+⟩ or |−⟩, then an error will occur with probability 1/2, as |Φ+⟩ =

1√
2(|00⟩ + |11⟩) = 1√

2(|++⟩ + |−−⟩) and |Φ−⟩ = 1√
2(|00⟩ − |11⟩) = 1√

2(|++⟩ − |−−⟩).

Thus Alice, Bob and Charlie abort the protocol. Let us calculate the probability of the

event 𝑞′
𝐴𝑖

= 𝑞𝐴𝑖
.

𝑝1 = Pr(𝑞′
𝐴𝑖

= 𝑞𝐴𝑖
)

= Pr(𝑞′
𝐴𝑖

= 𝑞𝐴𝑖
| ℬ = 𝑍) Pr(ℬ = 𝑍) + Pr(𝑞′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ = 𝑋) Pr(ℬ = 𝑋)

= 1
2[𝑞′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ = 𝑍) + Pr(𝑞′
𝐴𝑖

= 𝑞𝐴𝑖
| ℬ = 𝑋)]

= 1
2

[︂
1 + 1

2

]︂
= 3

4 .

Similarly we can calculate 𝑝′
2 = Pr(𝑞′

𝐵𝑖
= 𝑞𝐵𝑖

) = 3
4 , 𝑝′

3 = Pr(𝑞′
𝐶𝑖

= 𝑞𝐶𝑖
) = 3

4 . Thus for

1 ⩽ 𝑖 ⩽ 𝑚, the winning probability of 𝒜 is 𝑝′
1𝑝

′
2𝑝

′
3 =

(︁
3
4

)︁3
and the legitimate party can

detect him at the time of security checking with probability 1−
(︁

3
4

)︁3𝛿𝑚
. Similar argument

follows for the second round of communication.

3. DoS attack

In this attack model, 𝒜 applies a random unitary operator 𝒰 ̸= 𝐼 on the qubits to

tamper the original message and introduce noise in the channel. This attack can also

be detected in the same way as discussed above. Let 𝒰 = ∑︀4
𝑗=1 𝑤𝑗𝑃𝑗, where 𝑃𝑗s are the

Pauli matrices 𝐼, 𝜎𝑥, 𝑖𝜎𝑦 and 𝜎𝑧 for 1 ≤ 𝑗 ≤ 4 respectively [6], and they form a basis

for the space of all 2× 2 Hermitian matrices. Since 𝒰 is unitary, ∑︀4
𝑗=1 𝑤

2
𝑗 = 1. Now the

winning probability of 𝒜 is 𝑝4 = ∑︀4
𝑗=1 ℎ𝑗𝑤

2
𝑗 , where ℎ𝑗s are the winning probabilities of 𝒜

when she applies 𝑃𝑗s respectively. Thus ℎ1 = 1, ℎ2 = 1/2, ℎ3 = 0 and ℎ4 = 1/2 as 𝐼 does

not change any state, 𝜎𝑥 changes the states in 𝑍-basis, 𝑖𝜎𝑦 changes the states in both

𝑍-basis and 𝑋-basis, and 𝜎𝑧 changes the states in 𝑋-basis. Hence in the security check

process Alice, Bob and Charlie find this eavesdropping with probability 1 − 𝑝4
3𝛿𝑚 > 0.

Similarly for the second phase of communication, the legitimate parties can detect 𝒜

with probability 1− 𝑝4
3𝑑 > 0, where 𝑑 is the number of decoy states.
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4. Man-in-the-middle attack

For this attack, 𝒜 prepares three finite sequences of length 𝑚, of single qubit states 𝑞′
𝐴, 𝑞

′
𝐵

and 𝑞′
𝐶 , whose elements are randomly selected between |0⟩ , |1⟩ , |+⟩ and |−⟩. When Alice,

Bob, and Charlie send their prepared sequences of qubits 𝑞𝐴, 𝑞𝐵 and 𝑞𝐶 to the UFP ,

then 𝒜 intercepts 𝑞𝐴, 𝑞𝐵, 𝑞𝐶 and keeps those with her. Instead of 𝑞𝐴, 𝑞𝐵 and 𝑞𝐶 , she sends

𝑞′
𝐴, 𝑞

′
𝐵 and 𝑞′

𝐶 to the UFP . Note that Alice, Bob, and Charlie apply random permutations

on their respective sequences of qubits, and those permutations are announced only if the

error estimation phase is passed after the qubits arrive at their destinations. So at the

time of sending those sequences, 𝒜 can not just guess a key bit and prepare her qubits.

Even if she gets some of the key bits, she can not guess the corresponding bases for the

sequences of qubits 𝑞𝐴, 𝑞𝐵, 𝑞𝐶 . Alice, Bob, and Charlie randomly choose 𝛿𝑚 number of

rounds to estimate the error in channel (Step 6 of Protocol 1), where 𝛿 ≪ 1 is a small

fraction. Corresponding to these rounds, they tell the positions and preparation bases of

the qubits to the UFP. Next, the UFP measures each single qubit state in proper basis

and announces the result. Alice, Bob, and Charlie reveal their respective qubits for these

rounds and compare them with the results announced by UFP. Since the elements of

𝑞′
𝐴, 𝑞

′
𝐵, and 𝑞′

𝐶 are randomly chosen by 𝒜, thus they introduce error in the channel. Let

us calculate the probability that Alice, Bob and Charlie can detect this eavesdropping

and so they abort the protocol.

For each 𝑖, let the 𝑖-th qubit of Alice be 𝑞𝐴𝑖
prepared in basis ℬ𝐴𝑖

, and 𝒜 prepare 𝑞′
𝐴𝑖

in

basis ℬ′
𝐴𝑖

. At the time of security checking, UFP measures 𝑞′
𝐴𝑖

in ℬ𝐴𝑖
and gets the result

𝑞′′
𝐴𝑖

. Now three cases may arise,

• If ℬ𝐴𝑖
= ℬ′

𝐴𝑖
and 𝑞𝐴𝑖

= 𝑞′
𝐴𝑖

, then 𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
with probability 1.

• If ℬ𝐴𝑖
= ℬ′

𝐴𝑖
and 𝑞𝐴𝑖

̸= 𝑞′
𝐴𝑖

, then 𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
with probability 0.

• If ℬ𝐴𝑖
̸= ℬ′

𝐴𝑖
, then 𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

with probability 1/2.
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Thus the winning probability of 𝒜 is

Pr(𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
)

= Pr(𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
| ℬ𝐴𝑖

= ℬ′
𝐴𝑖

) Pr(ℬ𝐴𝑖
= ℬ′

𝐴𝑖
) + Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ𝐴𝑖
̸= ℬ′

𝐴𝑖
) Pr(ℬ𝐴𝑖

̸= ℬ′
𝐴𝑖

)

= 1
2{Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ𝐴𝑖
= ℬ′

𝐴𝑖
) + Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ𝐴𝑖
̸= ℬ′

𝐴𝑖
)}

= 1
2[Pr(𝑞′′

𝐴𝑖
= 𝑞𝐴𝑖

| ℬ = ℬ′, 𝑞𝐴𝑖
= 𝑞′

𝐴𝑖
) Pr(𝑞𝐴𝑖

= 𝑞′
𝐴𝑖

)+

Pr(𝑞′′
𝐴𝑖

= 𝑞𝐴𝑖
| ℬ = ℬ′, 𝑞𝐴𝑖

̸= 𝑞′
𝐴𝑖

) Pr(𝑞𝐴𝑖
̸= 𝑞′

𝐴𝑖
) + 1/2]

= 1
2

[︂
1× 1

2 + 0× 1
2 + 1

2

]︂
= 1

2 .

We can calculate the winning probabilities for 𝑞𝐵𝑖
and 𝑞𝐶𝑖

in a similar way. Hence

Alice, Bob and Charlie can detect this eavesdropping with probability 1 −
(︁

1
2

)︁3𝛿𝑚
> 0.

Again, if 𝒜 tries to eavesdrop in the second phase of transmission of qubits (Step 2 of

Algorithm 4), Alice, Bob and Charlie can detect it in the error estimation phase (Step 2e

of Algorithm 4) and abort the protocol.

Hence our protocol is secure against a dishonest UFP , intercept-and-resend attack, entangle-

and-measure attack, DoS attack and man-in-the-middle attack.

8.2 Multi-party Q.Conf

In this section, we generalize our three-party Q.Conf protocol to a multi-party Q.Conf protocol.

Suppose there are 𝑁 (⩾ 3) parties 𝒫1,𝒫2, . . . ,𝒫𝑁 ; each of them wants to send one’s message to

the other 𝑁−1 parties by taking help from an untrusted (𝑁+1)-th party 𝒫(𝑁+1), who may be

an eavesdropper. Let the 𝑚-bit messages of 𝒫1,𝒫2, . . . ,𝒫𝑁 be 𝑀1 = 𝑀1,1𝑀1,2 . . .𝑀1,𝑚; 𝑀2 =

𝑀2,1𝑀2,2 . . .𝑀2,𝑚; . . . ; 𝑀𝑁 = 𝑀𝑁,1𝑀𝑁,2 . . .𝑀𝑁,𝑚 respectively, where 𝑀𝑖,𝑗 is the 𝑗-th message

bit of the 𝑖-th party 𝒫𝑖. To do this task, first, they have to share an 𝑚-bit key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚

and according to the key, they prepare their sequence of qubits to encode their message bits.

The encoding algorithm is the same as the three-party case, i.e., Subroutine 1. Then they send

their qubit sequences to 𝒫(𝑁+1), who measures each 𝑁 -qubit states in ℬ𝑁 basis and announces

the result publicly. Depending on the measurement results, one’s message bits and key bits,
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each of them prepares another sequence of qubits, which contains some encoded message bits

and some decoy photons, and sends it to the next party circularly. By measuring these qubits

on appropriate bases, each of them gets the message bits of the previous party, but the states of

the qubits corresponding to the message bits remain the same. Each adds some decoy photons

to the message qubits sequence of the previous party and send it to their next party circularly

and repeat this process for 𝑁 − 2 times. From the previous measurement results announced

by 𝒫(𝑁+1), each can get other 𝑁 − 1 messages from the other 𝑁 − 1 parties. Details are given

in Section 8.2.1. Note that for 𝑁 = 3, the protocol is given in Section 8.2.1 reduces to the

three-party protocol of Section 8.1.1.

8.2.1 Protocol 2: 𝑁-party Q.Conf

The steps of the protocol are as follows:

1. 𝒫1,𝒫2, . . . ,𝒫𝑁 perform a Multi-party QKD protocol (e.g., [109]) to establish an 𝑚 bit

secret key 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚 between themselves.

2. Let the 𝑚-bit message of 𝒫𝑖 be 𝑀𝑖 = 𝑀𝑖,1𝑀𝑖,2 . . .𝑀𝑖,𝑚 for 𝑖 = 1, 2, . . . , 𝑁 .

3. For 𝑖 = 1, 2, . . . , 𝑁 , the 𝑖-th party 𝒫𝑖 prepares the sequence of qubits 𝑄𝑖 = {𝑄𝑖[𝑗]}𝑚
𝑗=1 =

(𝑄𝑖,1, 𝑄𝑖,2, . . . , 𝑄𝑖,𝑚) at its end by using the Subroutine 1.

4. 𝒫𝑖 chooses some random permutation and applies on its respective sequence of qubits 𝑄𝑖

and get new sequence of qubits 𝑞𝑖, for 𝑖 = 1, 2, . . . , 𝑁 .

5. They send the prepared qubits 𝑞1, 𝑞2, . . . , 𝑞𝑁 to 𝒫(𝑁+1).

6. 𝒫1,𝒫2, . . . ,𝒫𝑁 randomly choose 𝛿𝑚 number of common positions on the sequences

𝑄1, 𝑄2, . . . , 𝑄𝑁 to estimate the error in the channel, where 𝛿 ≪ 1 is a small fraction.

Corresponding to these rounds, they do the followings:

(a) Each participant tells the positions and the preparation bases of those qubits for

those rounds to 𝒫(𝑁+1).

(b) 𝒫(𝑁+1) measures each single qubit states in proper bases and announces the results.
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(c) 𝒫1,𝒫2, . . . ,𝒫𝑁 reveal their respective qubits for these rounds and compare with the

results announced by 𝒫(𝑁+1).

(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

7. 𝒫(𝑁+1) asks 𝒫1,𝒫2, . . . ,𝒫𝑁 to tell the permutations which they have applied to their

sequences.

8. 𝒫(𝑁+1) applies the inverse permutations, corresponding to the permutations chosen by

𝒫1,𝒫2, . . . ,𝒫𝑁 , on 𝑞1, 𝑞2, . . . , 𝑞𝑁 to get 𝑄1, 𝑄2, . . . , 𝑄𝑁 respectively.

9. They discard the qubits corresponding to the above 𝛿𝑚 positions. Their remaining

sequences of prepared qubits are relabeled as 𝑄1 = {𝑄1[𝑖]}𝑚′
𝑖=1, 𝑄2 = {𝑄2[𝑖]}𝑚′

𝑖=1, . . .,

𝑄𝑁 = {𝑄𝑁 [𝑖]}𝑚′
𝑖=1, where 𝑚′ = (1− 𝛿)𝑚.

10. They update their 𝑚-bit key to an 𝑚′-bit key by discarding 𝛿𝑚 number of key bits

corresponding to the above 𝛿𝑚 rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑚′ .

11. For 1 ⩽ 𝑖 ⩽ 𝑚′, 𝒫(𝑁+1) measures each 𝑁 qubit states 𝑄1,𝑖, 𝑄2,𝑖, . . . , 𝑄𝑁,𝑖 in basis ℬ𝑁 and

announces the result.

12. 𝒫1,𝒫2, . . . ,𝒫𝑁 make a finite sequence {ℳ[𝑖]}𝑚′
𝑖=1 containing the measurement results,

i.e., for 1 ⩽ 𝑖 ⩽ 𝑚′, ℳ[𝑖] ∈ {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , . . . , |Φ+
2(𝑁−1)−1⟩ , |Φ

−
2(𝑁−1)−1⟩} is the

𝑖-th measurement result announced by 𝒫(𝑁+1).

13. They randomly choose 𝛾𝑚′ number of measurement results ℳ[𝑖] from the sequence

{ℳ[𝑖]}𝑚′
𝑖=1 to estimate the error, where 𝛾 ≪ 1 is a small fraction.

(a) They reveal their respective message bits for these rounds.

(b) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

14. Their remaining sequence of measurement results is relabeled as {ℳ[𝑖]}𝑛
𝑖=1, where 𝑛 =

(1− 𝛾)𝑚′.
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15. They update their 𝑚′-bit key to an 𝑛-bit key by discarding 𝛾𝑚′ number of key bits

corresponding to the above 𝛾𝑚′ rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘𝑛.

16. For 1 ⩽ 𝛼 ⩽ 𝑁 , 𝒫𝛼 uses the Algorithm 5 to recover others’ messages.

Note that in this protocol, there are two error estimation phases. The first one checks if

there is any adversary (other than 𝒫(𝑁+1)) in the channel, who tries to get some information

about the messages or change the messages. In this case, if the 1st error estimation phase does

not pass, then the participants abort the protocol. Thus in this step, the motivation of 𝒫(𝑁+1)

being correct is, there is no information gain if the parties abort the protocol. The next error

estimation phase is to check, if there is any error introduced by 𝒫(𝑁+1).

8.2.2 Correctness and security analysis of 𝑁-party Q.Conf protocol

In our proposed protocol, for 1 ⩽ 𝛼 ⩽ 𝑁 , each 𝒫𝛼 first prepares qubits corresponding to

his (her) message and shared key and then send those qubits to 𝒫(𝑁+1). After that, 𝒫(𝑁+1)

measures each 𝑁 -qubit state (one from each 𝒫𝛼) in basis ℬ𝑁 = {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , . . . ,

|Φ+
2(𝑁−1)−1⟩ , |Φ

−
2(𝑁−1)−1⟩} and announces the result.

Now for 1 ⩽ 𝑖 ⩽ 𝑚, if 𝑘𝑖 = 0 (i.e preparation basis of each 𝑄𝛼
𝑖 is {|0⟩ , |1⟩}) and the

𝑁 -qubit state is |𝑗⟩ = |𝑗1⟩ |𝑗2⟩ . . . |𝑗𝑁⟩ or |2𝑁 − 1− 𝑗⟩ = |𝑗′⟩ = |𝑗′
1⟩ |𝑗′

2⟩ . . . |𝑗′
𝑁⟩, then after

measurement, 𝒫(𝑁+1) will get |Φ+
𝑗 ⟩ and |Φ−

𝑗 ⟩ with probability 1/2.

Again if 𝑘𝑖 = 1 (i.e., the preparation basis of each 𝑄𝛼
𝑖 is {|+⟩ , |−⟩}) and there are even

number of 𝛼, such that 𝑄𝛼,𝑖 = |−⟩, then 𝒫(𝑁+1) will get |Φ+
𝑗 ⟩ (𝑗 ∈ {0, 1, . . . , 2(𝑁−1) − 1}) with

probability 1/2(𝑁−1).

Else if 𝑘𝑖 = 1 (i.e., preparation basis of each 𝑄𝛼
𝑖 is {|+⟩ , |−⟩}) and there are odd number of

𝛼, such that 𝑄𝛼,𝑖 = |−⟩, then 𝒫(𝑁+1) will get |Φ−
𝑗 ⟩ (𝑗 ∈ {0, 1, . . . , 2(𝑁−1)− 1}) with probability

1/2(𝑁−1).

For better understanding, we write the table for 𝑁 = 4 (Table 8.3 in Appendix A).

Now for 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝛼 ⩽ 𝑁 , if 𝑘𝑖 = 0, we can say the following: if the prepared qubit

of 𝒫𝛼 is |0⟩ or |1⟩, then 𝒫𝛼 guesses message bit of other parties with probability 1 as follows:

ℳ[𝑖] = |Φ+
𝑗 ⟩ or |Φ−

𝑗 ⟩ ⇒ the 𝑁 -qubit state was |𝑗⟩ or |2𝑁 − 1− 𝑗⟩. Since |2𝑁 − 1− 𝑗⟩ =

|𝑗1⟩ |𝑗2⟩ . . . |𝑗𝑁⟩, from his/her own message bit, 𝒫𝛼 can get the others’ message bits.

204



If the prepared qubit of 𝒫𝛼 is |+⟩ or |−⟩, then 𝒫𝛼 guesses the XOR function of message

bits of all parties with probability 1 as follows:

Measurement result =

⎧⎪⎪⎨⎪⎪⎩
|Φ+

𝑗 ⟩ ⇒ 𝑀1,𝑖 ⊕𝑀2,𝑖 ⊕ . . .⊕𝑀𝑁,𝑖 = 0;

|Φ−
𝑗 ⟩ ⇒ 𝑀1,𝑖 ⊕𝑀2,𝑖 ⊕ . . .⊕𝑀𝑁,𝑖 = 1.

for some 𝑗 ∈ {0, 1, . . . , 2(𝑁−1) − 1}.

In this case, 𝒫1,𝒫2, . . . ,𝒫(𝛼−1),𝒫(𝛼+2), . . . ,𝒫(𝑁−1),𝒫𝑁 send their encoded qubits to 𝒫𝛼 (en-

coding algorithm is given in Step 2a of Algorithm 5). Since 𝒫𝛼 knows the basis of the re-

ceived qubits, by measuring the qubits in the proper basis, 𝒫𝛼 can know the message bits

𝑀1,𝑖,𝑀2,𝑖, . . . ,𝑀(𝛼−1),𝑖,𝑀(𝛼+2),𝑖, . . . ,𝑀𝑁,𝑖. Then from the XOR value, 𝒫𝛼 can get 𝑀(𝛼+1),𝑖

also.

From the above discussion, we see that for all cases, all parties can conclude the commu-

nicated bits of the other parties with probability 1. Hence our protocol is giving the correct

result.

The security analysis is the same as the three-party Q.Conf protocol and so we will not

repeat it here.

8.3 Multi-party XOR computation

In this section, we present a protocol for multi-party XOR computation. Suppose there are 𝑁

parties 𝒫1,𝒫2, . . . ,𝒫𝑁 ; each of them has an𝑚-bit number. Let𝑚-bit numbers of 𝒫1,𝒫2, . . . ,𝒫𝑁

be 𝑀1 = 𝑀1,1𝑀1,2 . . .𝑀1,𝑚; 𝑀2 = 𝑀2,1𝑀2,2 . . .𝑀2,𝑚; . . . ; 𝑀𝑁 = 𝑀𝑁,1𝑀𝑁,2 . . . 𝑀𝑁,𝑚 respec-

tively, where 𝑀𝑖,𝑗 is the 𝑗-th bit of the 𝑖-th party 𝒫𝑖’s message. They want to compute

𝑀1⊕𝑀2⊕ . . .⊕𝑀𝑁 securely, such that their numbers remain private. To execute this proto-

col, they will take help from an untrusted (𝑁 + 1)-th party (or 𝒫(𝑁+1)). Also, one participant

among 𝒫1,𝒫2, . . . ,𝒫𝑁 , must be semi-honest (i.e., it follows the protocol properly), who have

to play a vital role in this computation. Let 𝒫1 be the semi-honest participant. Other partici-

pants are only allowed to prepare and send the states corresponding to their numbers. If other

participants do not follow the protocol properly (i.e., they will prepare states corresponding
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Algorithm 5: 𝑁 -Party Message Reconstruction Algorithm for 𝒫𝛼.
Input: Own message 𝑀𝛼, key 𝑘, joint measurement results {ℳ[𝑖]}𝑛

𝑖=1 announced by 𝒫(𝑁+1).
Output: Others’ messages 𝑀1, 𝑀2, . . . , 𝑀(𝛼−1), 𝑀(𝛼+1), . . . , 𝑀𝑁 .

1. For 1 ⩽ 𝑖 ⩽ 𝑛, if 𝑘𝑖 = 0,
𝒫𝛼 can learn the 𝑖-th bit of others’ messages from the measurement result ℳ[𝑖] and his(her) own
message (same as three party Q.Conf, e.g., see Table 8.3 for 𝑁 = 4).

2. For 1 ⩽ 𝑖 ⩽ 𝑛, if 𝑘𝑖 = 1,
from the measurement result ℳ[𝑖] and his (her) own message, 𝒫𝛼 can learn the XOR value of the 𝑖-th
bit of all 𝑁 messages. If ℳ[𝑖] = |Φ+

𝑙 ⟩ for some 𝑙 ∈ {0, 1, . . . , 2(𝑁−1) − 1}, then the value of
𝜒𝑖 = 𝑀1,𝑖 ⊕𝑀2,𝑖 ⊕ . . .⊕𝑀𝑁,𝑖 becomes 0, else 𝜒𝑖 = 1. Let 𝑐 = 𝑤𝑡(𝑘).

(a) 𝒫𝛼 prepares an ordered set of 𝑐 qubits 𝑆𝛼, corresponding to his (her) message bit where the key
bit is 1. He (she) prepares the qubits at his (her) end according to the following strategy. For
1 ⩽ 𝑗 ⩽ 𝑐 and if 𝑘𝑖 = 1 is the 𝑗-th 1 in 𝑘, then

• if 𝑀𝛼,𝑖 = 0 and 𝑖 is even, prepares 𝑆𝛼[𝑗] = |0⟩.
• if 𝑀𝛼,𝑖 = 1 and 𝑖 is even, prepares 𝑆𝛼[𝑗] = |1⟩.
• if 𝑀𝛼,𝑖 = 0 and 𝑖 is odd, prepares 𝑆𝛼[𝑗] = |+⟩.
• if 𝑀𝛼,𝑖 = 1 and 𝑖 is odd, prepares 𝑆𝛼[𝑗] = |−⟩.

(b) There are 𝑁 − 2 rounds.
• 1st round:

1-1. 𝒫𝛼 prepares a set of decoy photons 𝐷𝛼,1, where the decoy photons are randomly chosen
from {|0⟩ , |1⟩ , |+⟩ , |−⟩}. He (she) randomly inserts his (her) decoy photons into 𝑆𝛼

and makes new ordered sets 𝑆𝛼
1. 𝒫𝛼 sends 𝑆𝛼

1 to 𝒫(𝛼+1)(𝑀𝑜𝑑 𝑁) and receives
𝑆1

(𝛼−1)(𝑀𝑜𝑑 𝑁) from 𝒫(𝛼−1)(𝑀𝑜𝑑 𝑁).
1-2. After 𝒫(𝛼+1)(𝑀𝑜𝑑 𝑁) receives 𝑆𝛼

1, 𝒫𝛼 sends the positions and states of 𝐷𝛼,1 to
𝒫(𝛼+1)(𝑀𝑜𝑑 𝑁) through a public channel. Also 𝒫𝛼 receives the positions and states of
𝐷(𝛼−1)(𝑀𝑜𝑑 𝑁),1.

1-3. Then 𝒫𝛼 verifies the decoy photons to check eavesdropping. If there exists any
eavesdropper in the quantum channel it aborts the protocol, else it goes to the next
step.

1-4. 𝒫𝛼 measures the qubits of 𝑆(𝛼−1)(𝑀𝑜𝑑 𝑁) in proper bases and knows the corresponding
message bits of 𝒫(𝛼−1)(𝑀𝑜𝑑 𝑁). Also after measurements in the proper bases, the states
of the qubits of 𝑆(𝛼−1)(𝑀𝑜𝑑 𝑁) remain unchanged.

• 𝑙-th round (2 ⩽ 𝑙 ⩽ 𝑁 − 2):
l-1. 𝒫𝛼 prepares a set of decoy photons 𝐷𝛼,𝑙, where the decoy photons are randomly chosen

from {|0⟩ , |1⟩ , |+⟩ , |−⟩}. He (she) randomly inserts his (her) decoy photons into
𝑆(𝛼−𝑙+1)(𝑀𝑜𝑑 𝑁) and makes new ordered sets 𝑆𝛼

𝑙. 𝒫𝛼 sends 𝑆𝛼
𝑙 to 𝒫(𝛼+1)(𝑀𝑜𝑑 𝑁) and

receives 𝑆(𝛼−1)(𝑀𝑜𝑑 𝑁)
𝑙 from 𝒫(𝛼−1)(𝑀𝑜𝑑 𝑁).

l-2. After 𝒫(𝛼+1)(𝑀𝑜𝑑 𝑁) receives 𝑆𝛼
𝑙, 𝒫𝛼 sends the positions and states of 𝐷𝛼,𝑙 to

𝒫(𝛼+1)(𝑀𝑜𝑑 𝑁) through a public channel. Also 𝒫𝛼 receives the positions and states of
𝐷(𝛼−1)(𝑀𝑜𝑑 𝑁),𝑙.

l-3. Then 𝒫𝛼 verifies the decoy photons to check eavesdropping. If there exists any
eavesdropper in the quantum channel, it aborts the protocol. Else it goes to the next
step.

l-4. 𝒫𝛼 measures the qubits of 𝑆(𝛼−𝑙+1)(𝑀𝑜𝑑 𝑁) in proper bases and knows the
corresponding message bits of 𝒫(𝛼−𝑙+1)(𝑀𝑜𝑑 𝑁). Also after measurements in the proper
bases, the states of the qubits of 𝑆(𝛼−𝑙+1)(𝑀𝑜𝑑 𝑁) remain unchanged.

(c) 𝒫𝛼 gets all the message bits of previous 𝑁 − 2 participants. As 𝒫𝛼 knows 𝜒𝑖 and its own
message bit, it gets all the other 𝑁 − 1 message bits.
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to a number other than their own numbers), then the computed value will be incorrect, which

they definitely do not want.

To compute 𝑀1 ⊕𝑀2 ⊕ . . . ⊕𝑀𝑁 , first 𝒫1,𝒫2, . . . ,𝒫𝑁 have to share an 2𝑚-bit key 𝑘 =

𝑘1𝑘2 . . . 𝑘2𝑚 and according to the key they prepare their sequence of qubits to encode their

numbers. The encoding algorithm is almost similar to conference cases. Then they send their

qubit sequences to 𝒫(𝑁+1), who measures each 𝑁 -qubit states in ℬ𝑁 basis and announces the

result publicly. Then from this announcement and the key, they get the XOR value of their

numbers. Details of this protocol are given in Section 8.3.1.

8.3.1 Protocol 3: Multi-party XOR computation

Input: The 𝑚-bit numbers 𝑀1 = 𝑀1,1𝑀1,2 . . .𝑀1,𝑚; 𝑀2 = 𝑀2,1𝑀2,2 . . .𝑀2,𝑚; . . . ; 𝑀𝑁 = 𝑀𝑁,1

𝑀𝑁,2 . . .𝑀𝑁,𝑚 of 𝑁 parties 𝒫1,𝒫2, . . . ,𝒫𝑁 respectively.

Output: 𝑀1 ⊕𝑀2 ⊕ . . .⊕𝑀𝑁 .

The steps of the protocol are as follows:

1. 𝒫1,𝒫2, . . . ,𝒫𝑁 perform a Multi-party QKD protocol [109] to establish an 2𝑚 bit secret

key 𝑘 = 𝑘1𝑘2 . . . 𝑘2𝑚 between themselves.

2. (a) If 𝑤𝑡(𝑘) = 𝑚, then calculate 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 2𝑚.

(b) Else if 𝑤𝑡(𝑘) > 𝑚, then 𝑐 = 1.

(c) Else 𝑐 = 0.

3. 𝒫1 prepares an 𝑚-bit random number 𝑘′ = 𝑘′
1𝑘

′
2 . . . 𝑘

′
𝑚 and sends it to 𝒫2, . . . ,𝒫𝑁 by

using Algorithm 6 with the inputs 𝑘′ and 𝑘.

4. 𝒫1 calculates 𝑀1Δ = 𝑀1 ⊕ 𝑘′ and uses 𝑀1Δ as his/her number.

5. 𝒫1 generates a 2𝑚 bit string 𝑀 ′
1 from his/her number and the key in such a way that,

for 1 ≤ 𝑖 ≤ 2𝑚 and 1 ≤ 𝑗 ≤ 𝑚:

(a) if 𝑘𝑖 = 𝑐 and 𝑗 < 𝑚, then 𝑀 ′
1,𝑖 = 𝑀1Δ,𝑗, 𝑖 = 𝑖+ 1, 𝑗 = 𝑗 + 1;

(b) else, 𝑀 ′
1,𝑖 = 𝑥, where 𝑥 ∈ {0, 1} is random and 𝑖 = 𝑖+ 1.

207



6. For 2 ⩽ 𝛼 ⩽ 𝑁 : 𝒫𝛼 generates 2𝑚 bit string 𝑀 ′
𝛼 from his/her own number as follows.

For 1 ≤ 𝑖 ≤ 2𝑚 and 1 ≤ 𝑗 ≤ 𝑚:

(a) if 𝑘𝑖 = 𝑐 and 𝑗 < 𝑚, then 𝑀 ′
𝛼,𝑖 = 𝑀𝛼,𝑗, 𝑖 = 𝑖+ 1, 𝑗 = 𝑗 + 1;

(b) else, 𝑀 ′
𝛼,𝑖 = 𝑥, where 𝑥 ∈ {0, 1} is random and 𝑖 = 𝑖+ 1.

7. Each 𝒫1,𝒫2, . . . ,𝒫𝑁 prepares the sequence of qubits 𝑄1 = {𝑄1[𝑖]}2𝑚
𝑖=1 = (𝑄1,1, 𝑄1,2, . . . ,

𝑄1,2𝑚); 𝑄2 = {𝑄2[𝑖]}2𝑚
𝑖=1 = (𝑄2,1, 𝑄2,2, . . . , 𝑄2,2𝑚); . . . ; 𝑄𝑁 = {𝑄𝑁 [𝑖]}2𝑚

𝑖=1 = (𝑄𝑁,1, 𝑄𝑁,2,

. . . , 𝑄𝑁,2𝑚) at their end by using Algorithm 7.

8. 𝒫1,𝒫2, . . . ,𝒫𝑁 choose some random permutations and apply those on their respective

sequences of qubits 𝑄1, 𝑄2, . . . , 𝑄𝑁 and get new sequences of qubits 𝑞1, 𝑞2, . . . , 𝑞𝑁 . They

send their prepared sequences of qubits 𝑞1, 𝑞2, . . . , 𝑞𝑁 to 𝒫(𝑁+1).

9. 𝒫1,𝒫2, . . . ,𝒫𝑁 randomly choose 2𝛿𝑚 number of common positions on sequences𝑄1, 𝑄2, . . . ,

𝑄𝑁 to estimate the error in the channel, where 𝛿 ≪ 1 is a small fraction. Corresponding

to these rounds, they do the followings:

(a) Each participant tells the positions and preparation bases of those qubits for those

rounds to 𝒫(𝑁+1).

(b) 𝒫(𝑁+1) measures each single qubit states in proper bases and announces the results.

(c) 𝒫1,𝒫2, . . . ,𝒫𝑁 reveal their respective qubits for these rounds and compare with the

results announced by 𝒫(𝑁+1).

(d) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

10. 𝒫(𝑁+1) asks 𝒫1,𝒫2, . . . ,𝒫𝑁 to tell the permutations which they have applied to their

sequences.

11. 𝒫(𝑁+1) applies the inverse permutations, corresponding to the permutations chosen by

𝒫1,𝒫2, . . . ,𝒫𝑁 , on 𝑞1, 𝑞2, . . . , 𝑞𝑁 to get 𝑄1, 𝑄2, . . . , 𝑄𝑁 respectively.
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12. They discard the qubits corresponding to the above 2𝛿𝑚 positions. Their remaining

sequences of prepared qubits are relabeled as 𝑄1 = {𝑄1[𝑖]}2𝑚′
𝑖=1 , 𝑄2 = {𝑄2[𝑖]}2𝑚′

𝑖=1 , . . .,

𝑄𝑁 = {𝑄𝑁 [𝑖]}2𝑚′
𝑖=1 where 𝑚′ = (1− 𝛿)𝑚.

13. They update their 2𝑚-bit key to an 2𝑚′-bit key by discarding 2𝛿𝑚 number of key bits cor-

responding to the above 2𝛿𝑚 rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘2𝑚′ .

14. For 1 ⩽ 𝑖 ⩽ 2𝑚′, 𝒫(𝑁+1) measures each 𝑁 qubit states 𝑄1,𝑖, 𝑄2,𝑖, . . . , 𝑄𝑁,𝑖 in basis ℬ𝑁

and announces the result.

15. 𝒫1,𝒫2, . . . ,𝒫𝑁 make a finite sequence {ℳ[𝑖]}2𝑚′
𝑖=1 containing the measurement results,

i.e., for 1 ⩽ 𝑖 ⩽ 2𝑚′,ℳ[𝑖] ∈ {|Φ+
0 ⟩ , |Φ−

0 ⟩ , |Φ+
1 ⟩ , |Φ−

1 ⟩ , . . . , |Φ+
2(𝑁−1)−1⟩ , |Φ

−
2(𝑁−1)−1⟩} is the

𝑖-th measurement result announced by 𝒫(𝑁+1).

16. They randomly choose 2𝛾𝑚′ number of measurement results ℳ[𝑖] from the sequence

{ℳ[𝑖]}2𝑚′
𝑖=1 to estimate the error, where 𝛾 ≪ 1 is a small fraction.

(a) For these rounds, they reveal respective bits of their numbers.

(b) If the estimated error is greater than some predefined threshold value, then they

abort. Else they continue and go to the next step.

17. Their remaining sequence of measurement results is relabeled as {ℳ[𝑖]}2𝑛
𝑖=1, where 𝑛 =

(1− 𝛾)𝑚′.

18. They update their 2𝑚′-bit key to an 2𝑛-bit key by discarding 2𝛾𝑚′ number of key bits

corresponding to the above 2𝛾𝑚′ rounds. The updated key is relabeled as 𝑘 = 𝑘1𝑘2 . . . 𝑘2𝑛.

19. For 1 ⩽ 𝑖 ⩽ 2𝑛,

(a) if 𝑘𝑖 = 𝑐, then each participant can learn 𝑖-th bit of others’ number from the

measurement result ℳ[𝑖] and their own number (see Algorithm 8.2.1).

(b) Else, from the measurement resultℳ[𝑖], each participant can learn the XOR value

of the 𝑖-th bit of all 𝑁 numbers. Ifℳ[𝑖] = |Φ+
𝑙 ⟩ for some 𝑙 ∈ {0, 1, . . . , 2(𝑁−1)− 1},

then the value of 𝜒𝑖 = 𝑀1Δ,𝑖 ⊕𝑀2,𝑖 ⊕ . . .⊕𝑀𝑁,𝑖 becomes 0, else 𝜒𝑖 = 1.
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20. Combining the knowledges from Step-19b and the key, they can get 𝑀1Δ⊕𝑀2⊕. . .⊕𝑀𝑁 .

21. 𝒫1,𝒫2, . . . ,𝒫𝑁 calculate 𝑀1 ⊕𝑀2 ⊕ . . .⊕𝑀𝑁 = 𝑘′ ⊕𝑀1Δ ⊕𝑀2 ⊕ . . .⊕𝑀𝑁 .

Algorithm 6: Algorithm for Sending a Number to (𝑁 − 1)-Participant.
Input: Random number 𝑘′ = 𝑘′

1𝑘
′
2 . . . 𝑘

′
𝑚 chosen by 𝒫1, key 𝑘 = 𝑘1𝑘2 . . . 𝑘2𝑚.

Output: For 2 ⩽ 𝛼 ⩽ 𝑁 , 𝒫𝛼 has 𝑘′.
1. To encode random number 𝑘′, 𝒫1 prepares 𝑁 − 1 sets of qubits 𝑄𝛼 = 𝑄𝛼,1𝑄𝛼,2 . . . 𝑄𝛼,𝑚

for 𝒫𝛼 (2 ⩽ 𝛼 ⩽ 𝑁), by using the following strategy: for 1 ⩽ 𝑖 ⩽ 𝑚 and 2 ⩽ 𝛼 ⩽ 𝑁 ,

(a) if 𝑘′
𝑖 = 0 and 𝑘𝑖 = 0⇒ 𝑄𝛼,𝑖 = |0⟩

(b) if 𝑘′
𝑖 = 1 and 𝑘𝑖 = 0⇒ 𝑄𝛼,𝑖 = |1⟩

(c) if 𝑘′
𝑖 = 0 and 𝑘𝑖 = 1⇒ 𝑄𝛼,𝑖 = |+⟩

(d) if 𝑘′
𝑖 = 1 and 𝑘𝑖 = 1⇒ 𝑄𝛼,𝑖 = |−⟩

2. For 2 ⩽ 𝛼 ⩽ 𝑁 , 𝒫1 chooses a set of decoy photons 𝐷𝛼 and randomly inserts those decoy
photons into 𝑄𝛼 and gets new set of qubits 𝑞𝛼.

3. 𝒫1 sends 𝑞𝛼 to 𝒫𝛼.

4. All 𝒫𝛼 inform 𝒫1 that they receive 𝑞𝛼.

5. 𝒫1 announces the positions and states of the decoy photons.

6. Each 𝒫𝛼 measures the decoy photons in their appropriate bases and calculate the error
in the channel (or check that if there is any eavesdropper).

7. If the error rate is in a tolerable range, then 𝒫𝛼 measures the qubits of 𝑄𝛼 in their
appropriate bases (determined by the key) and get 𝑘′.

8.3.2 Correctness and security analysis of the quantum protocol for

multi-party XOR computation

The correctness of this protocol directly follows from the previous one (i.e., multi-party Q.Conf

protocol). Also, we can say this protocol is secure against intercept-and-resend attack, dis-

turbance attack, entangle-and-measure attack, and dishonest 𝒫(𝑁+1), as this is a part of the

previous protocol discussed in the last section.

Now, we only have to prove that, no one can get the computed XOR-value other than the

legitimate parties.
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Algorithm 7: Message Encoding Algorithm for Multi-party XOR Computation.
Input: 𝑀 ′

𝛼 = 2𝑚-bit message of 𝒫𝛼, key 𝑘 = 𝑘1𝑘2 . . . 𝑘2𝑚.
Output: Sequence of qubits 𝑄𝛼 = {𝑄𝛼[𝑖]}2𝑚

𝑖=1 = (𝑄𝛼,1, 𝑄𝛼,2, . . . , 𝑄𝛼,2𝑚).
1.

1. (a) If 𝑤𝑡(𝑘) = 𝑚, then calculate 𝑐 = ⊕𝑘𝑖, 1 ≤ 𝑖 ≤ 2𝑚.
(b) Else if 𝑤𝑡(𝑘) > 𝑚, then 𝑐 = 1.
(c) Else 𝑐 = 0.

2. For 1 ⩽ 𝑖 ⩽ 2𝑚,

(a) if 𝑀 ′
𝛼,𝑖 = 0 and 𝑘𝑖 = 𝑐, set 𝑄1,𝑖 (or 𝑄2,𝑖 . . . or 𝑄𝑁,𝑖 = |0⟩;

(b) if 𝑀 ′
𝛼,𝑖 = 1 and 𝑘𝑖 = 𝑐, set 𝑄1,𝑖 (or 𝑄2,𝑖 . . . or 𝑄𝑁,𝑖 = |1⟩;

(c) if 𝑀 ′
𝛼,𝑖 = 0 and 𝑘𝑖 = 𝑐, set 𝑄1,𝑖 (or 𝑄2,𝑖 . . . or 𝑄𝑁,𝑖 = |+⟩;

(d) if 𝑀 ′
𝛼,𝑖 = 1 and 𝑘𝑖 = 𝑐, set 𝑄1,𝑖 (or 𝑄2,𝑖 . . . or 𝑄𝑁,𝑖 = |−⟩.

Let an adversary A constructs a 2𝑚-bit string 𝜏 = 𝜏1𝜏2 . . . 𝜏2𝑚, from the measurement

results in such a way that, if ℳ[𝑖] = |Φ+
𝑙 ⟩ for some 𝑙 ∈ {0, 1, . . . , 2(𝑁−1) − 1}, then 𝜏𝑖 = 0,

else if ℳ[𝑖] = |Φ−
𝑙 ⟩ for some 𝑙 ∈ {0, 1, . . . , 2(𝑁−1) − 1}, then 𝜏𝑖 = 1. Now 𝑚-bit string

𝜂 = 𝑀1Δ ⊕𝑀2 ⊕ . . . ⊕𝑀𝑁 is a subsequence of 𝜏 . If A can guess 𝜂 from 𝜏 with some low

probability, then also it can not get any information about 𝜇 = 𝑀1 ⊕ 𝑀2 ⊕ . . . ⊕ 𝑀𝑁 as

𝜇 = 𝜂 ⊕ 𝑘′, where 𝑘′ is unknown to him/her. Then from the notion of security of the famous

“one time pad” protocol [283], we can say that our proposed protocol is secure.

It is to be noted that, if 𝒫1 is dishonest, then he/she can cheat and get the exact XOR

value, whereas the other participants get some random value instead of the exact XOR value.

This thing happens in the following way: 𝒫1 calculates 𝑀1Δ = 𝑀1 ⊕ 𝑅, where 𝑅 ̸= 𝑘′ is a

random 𝑚-bit number and it is used instead of 𝑘′. Then 𝒫1 follows all the next steps of the

protocol. At the end of the protocol, everyone get 𝑀1Δ ⊕𝑀2 ⊕ . . . ⊕𝑀𝑁 . Then 𝒫2, . . . ,𝒫𝑁

calculate 𝑀1⊕𝑀2⊕ . . .⊕𝑀𝑁 = 𝑘′⊕𝑀1Δ ⊕𝑀2⊕ . . .⊕𝑀𝑁 , which is not true as 𝑅 ̸= 𝑘′. But,

𝒫1 calculates 𝑀1⊕𝑀2⊕ . . .⊕𝑀𝑁 = 𝑅⊕𝑀1Δ⊕𝑀2⊕ . . .⊕𝑀𝑁 , which is correct. That is, after

executing the protocol, 𝒫1 has the exact value of 𝑀1 ⊕𝑀2 ⊕ . . .⊕𝑀𝑁 and other participants

have the value of 𝑘′ ⊕𝑅⊕𝑀1 ⊕𝑀2 ⊕ . . .⊕𝑀𝑁 , which is nothing but a random number.

Thus here we are assuming that 𝒫1 is semi-honest, that is, follows the protocol properly.
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Hence each participant gets the computed XOR-value exactly, but no other party can not get

any information about the value.

8.4 Discussion

In this chapter, first we present three protocols, two of them for the Q.Conf, i.e., securely and

simultaneously exchanging secret messages between the participants. The first protocol is for

three parties and then we generalize it to a multi-party scenario, i.e., for 𝑁 -parties (where

𝑁 ⩾ 3). Another protocol presented in this paper is for multi-party XOR computation, where

𝑁 -parties can compute the XOR function of their own numbers, but their numbers remain

private. All the protocols discussed above are proven to be correct and secure.
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Chapter 9

Dimensionality Distinguisher

In this chapter, we present the work [284], where we generalize the CHSH game and define

two classes of new games which are similar to the CHSH game. The first one is for 2-variables

and the second one is for 3-variables. In this class of new games we change the winning

condition of CHSH game. Instead of a particular Boolean function in CHSH game, we use

all Boolean functions and find equivalence class for functions pair and bases such that, all the

elements of the same class have the same winning probability of the game. We also consider

all possible measurements subject to a precision parameter. For both the games, we optimize

the winning probabilities. Finally, we show how our results can be used to devise three classes

of dimensionality distinguishers, particularly between dimensions 2 and 3.

The efficiency of a distinguisher depends on the number of samples (for a given success

probability) and that in turn depends on the gap between the probabilities. This issue has

been discussed in detail in [285]. Moreover, there are some works [286] on how to deal with

finite number of samples. For the time being, we are not focusing on these types of analysis.

Rather, our main goal is to identify the distinguishing events with a significant probability gap

and that is what we report here.

9.1 Generalized version of CHSH game

We generalize the well known CHSH game to produce two types of new games. The first type

of games are for 2-variables (i.e., each question has 2 options to answer). The other type of
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games are for 3-variables (i.e., each question has 3 options to answer).

Here also we assume that Alice and Bob are far away from each other and not able to

communicate during the game. Before the game begins, they can communicate freely to

discuss their strategy. During the game, they only communicate with the referee.

9.1.1 New games for 2-variables (Game-1)

Our new games are similar to the CHSH game. The only exception is in the winning condition.

Here the winning condition is 𝑓(𝑥, 𝑦) = 𝑔2(𝑎, 𝑏), where 𝑓 and 𝑔2 are any two variable Boolean

functions other than the constant functions (the subscript 2 in 𝑔2 is for 2-variables). For

2 variables, there are (22)2 = 16 possible Boolean functions. Among them 2 are constant

functions. So we are playing this game with 14× 14 = 196 pairs of functions where in CHSH

game there is only one pair.

Rules of Game-1

For a fixed pair of two variable Boolean functions (𝑓, 𝑔2) we define Game-1 as follows:

∙ The referee chooses two independent random bits 𝑥 and 𝑦 uniformly (also called “questions”)

and sends 𝑥 to Alice and 𝑦 to Bob, i.e., for all 𝑠 ∈ {0, 1}, 𝑡 ∈ {0, 1}, Pr(𝑥 = 𝑠, 𝑦 = 𝑡) =

Pr𝑥𝑦(𝑠, 𝑡) = 1
4.

∙ Alice and Bob reply to referee with bits 𝑎 and 𝑏 respectively.

∙ Referee calculates 𝑓(𝑥, 𝑦) and 𝑔2(𝑎, 𝑏).

∙ Alice and Bob win if 𝑓(𝑥, 𝑦) = 𝑔2(𝑎, 𝑏).

Quantum strategy for Game-1

Alice and Bob follow the following strategy Algorithm 8 to play Game-1. Here also they share a

maximally entangled state and choose measurement bases according to the referee’s questions.

They measure their qubits and send their answers to the referee. Alice’s choice of measurement

basis is only depends on referee’s question. But for each pair (𝑓, 𝑔2), Bob chooses the basis
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for which they can achieve maximum winning probability. Bob’s bases are dependent on the

parameters 𝜃0 and 𝜃1. So for different pairs of functions (𝑓, 𝑔2), the values of 𝜃0 and 𝜃1 change.

For example, CHSH game is a special case of Game-1, where 𝑓 = 𝐴𝑁𝐷, 𝑔2 = 𝑋𝑂𝑅, and Bob

chooses 𝜃0 = 𝜋
8 and 𝜃1 = 15𝜋

8 .
Algorithm 8: Quantum strategy for Game-1

1. Before the game starts, Alice and Bob share |Ψ𝐴𝐵⟩ = 1√
2

(|0⟩𝐴 ⊗ |0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵)

2. Alice takes the first qubit and Bob takes the second qubit

3. Alice chooses:

• Standard basis {|0⟩ , |1⟩} if 𝑥 = 0

• Hadamard basis {|0𝑥⟩ , |1𝑥⟩} if 𝑥 = 1, where

|0𝑥⟩ = 1√
2

(|0⟩+ |1⟩) and |1𝑥⟩ = 1√
2

(|0⟩ − |1⟩)

4. Bob chooses:

Basis {|𝜈0(𝜃𝑦)⟩ , |𝜈1(𝜃𝑦)⟩} corresponding to 𝑦 = 0, 1,

where |𝜈0(𝜃𝑦)⟩ = cos 𝜃𝑦 |0⟩+ sin 𝜃𝑦 |1⟩ , |𝜈1(𝜃𝑦)⟩ = sin 𝜃𝑦 |0⟩ − cos 𝜃𝑦 |1⟩, 0 ⩽ 𝜃0, 𝜃1 ⩽ 2𝜋

5. Alice sends:

• 𝑎 = 0 if |0⟩ or |0𝑥⟩

• 𝑎 = 1 otherwise

6. Bob sends:

• 𝑏 = 0 if Bob gets |𝜈0(𝜃0)⟩ or |𝜈0(𝜃1)⟩

• 𝑏 = 1 otherwise

Success probabilities of Game-1

We find the success probability of the game for each 𝑓 and 𝑔2 by using Equation (1.1), when

the players follow the above strategy with changes in the chosen bases of Bob. Here Bob does

not fix the value of 𝜃0 and 𝜃1. For different pairs of function (𝑓, 𝑔2) the value of the pair (𝜃0 ,
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𝜃1) changes as the expression of the winning probability changes.

For simplicity, we write an 𝑛-variable Boolean function as a 2𝑛-length binary vector con-

sisting of the last column of the truth table in lexicographical order, e.g., for a two variable

function, we write

𝑓(𝑥, 𝑦) = [𝑓(0, 0), 𝑓(0, 1), 𝑓(1, 0), 𝑓(1, 1)] and 𝑔2(𝑎, 𝑏) = [𝑔2(0, 0), 𝑔2(0, 1), 𝑔2(1, 0), 𝑔2(1, 1)].

The results are in the following Table 9.1. The first two columns of Table 9.1 represent

the functions of inputs and outputs (i.e., 𝑓(𝑥, 𝑦) and 𝑔2(𝑎, 𝑏) )respectively, and corresponding

success probabilities are given in third column. The number of such function pair (𝑓, 𝑔2) having

same success probabilities are in the last column.

Table 9.1: Success probabilities of Game-1 with any non-constant 2 variables Boolean functions
𝑓 and 𝑔

LHS of winning RHS of winning Success Number of such
condition 𝑓(𝑥, 𝑦) condition 𝑔2(𝑎, 𝑏) probability function pair (𝑓, 𝑔2)

any non constant 𝑓 XOR, XNOR 0.85 28
𝑓(𝑥, 𝑦) contains one 0 𝑔2(𝑎, 𝑏) contains one 0 0.80 32
𝑓(𝑥, 𝑦) contains one 1 𝑔2(𝑎, 𝑏) contains one 1 0.80 32
𝑓(𝑥, 𝑦) contains two 0 𝑔2(𝑎, 𝑏) contains either 0.67 48

exactly one 1 or 0
𝑓(𝑥, 𝑦) contains one 1 𝑔2(𝑎, 𝑏) contains one 0 0.55 16
𝑓(𝑥, 𝑦) contains one 0 𝑔2(𝑎, 𝑏) contains one 1 0.55 6
Any non-constant 𝑓 𝑔2(𝑎, 𝑏) = 𝑎, 𝑏, 𝑎̄, 𝑏̄ 0.5 56

Observation

From Table 9.1, we observe that the winning probability is maximum when 𝑔2(𝑎, 𝑏) = 𝑎⊕𝑏 and

𝑎⊙ 𝑏, i.e., for any non-constant 2 variables Boolean function 𝑓 , if 𝑔2 = 𝑋𝑂𝑅 or 𝑔2 = 𝑋𝑁𝑂𝑅

then by playing the Game-1 we can win the game with probability 0.85.

The reason behind this is that the probability graph of these 28 cases are almost similar.

To illustrate this, we show some probability graphs in Figure 9-1. In these graphs we plot 𝜃0

(𝑥-axis) vs. 𝜃1(𝑦-axis) vs. success probability expression (𝑧-axis). From these graphs we can

see that for each case the success probabilities are periodic functions of (𝜃0, 𝜃1) and achieve
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(a) 𝑓 = 𝐴𝑁𝐷, 𝑔2 = 𝑋𝑂𝑅. (b) 𝑓 = 𝑂𝑅, 𝑔2 = 𝑋𝑂𝑅.

(c) 𝑓 = 𝑥, 𝑔2 = 𝑋𝑂𝑅. (d) 𝑓 = 𝑦, 𝑔2 = 𝑋𝑂𝑅.

Figure 9-1: Success probability graphs for 4 different cases of Game-1 with non-constant 2
variables Boolean functions 𝑓 and 𝑔2.

maximum value 0.85 at more than one points.

∙ The first graph in Figure 9-1(a) represents the success probability 1
4 [1 + 𝑐𝑜𝑠2𝜃0 + 𝑐𝑜𝑠2𝜃1 +

1
2𝑠𝑖𝑛2𝜃0 − 1

2𝑠𝑖𝑛2𝜃1] corresponding to the function pair (𝑓 = 𝐴𝑁𝐷, 𝑔2 = 𝑋𝑂𝑅) and one of its

maximum point is at
(︂
𝜃0 = 𝜋

8 , 𝜃1 = 15𝜋
8

)︂
.

∙ The second graph in Figure 9-1(b) represents the success probability 1
4 [1 + 𝑐𝑜𝑠2𝜃0 +

𝑠𝑖𝑛2𝜃1− 1
2𝑠𝑖𝑛2𝜃0− 1

2𝑠𝑖𝑛2𝜃1] corresponding to the function pair (𝑓 = 𝑂𝑅, 𝑔2 = 𝑋𝑂𝑅) and one

of its maximum point is at
(︂
𝜃0 = 7𝜋

8 , 𝜃1 = 5𝜋
8

)︂
.

∙ The third graph in Figure 9-1(c) represents the success probability 1
4 [1+𝑐𝑜𝑠2𝜃0 +𝑐𝑜𝑠2𝜃1−

1
2𝑠𝑖𝑛2𝜃0− 1

2𝑠𝑖𝑛2𝜃1] corresponding to the function pair (𝑓 = 𝑥, 𝑔2 = 𝑋𝑂𝑅), where 𝑓 = 𝑥 means

𝑓(𝑥, 𝑦) = 𝑥 ∀ 𝑥, 𝑦 ∈ {0, 1}, and one of its maximum point is at
(︂
𝜃0 = 7𝜋

8 , 𝜃1 = 7𝜋
8

)︂
.

∙ The fourth graph in Figure 9-1(d) represents the success probability 1
4 [1+𝑐𝑜𝑠2𝜃0+𝑠𝑖𝑛2𝜃1+
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1
2𝑠𝑖𝑛2𝜃0− 1

2𝑠𝑖𝑛2𝜃1] corresponding to the function pair (𝑓 = 𝑦, 𝑔2 = 𝑋𝑂𝑅), where 𝑓 = 𝑦 means

𝑓(𝑥, 𝑦) = 𝑦 ∀ 𝑥, 𝑦 ∈ {0, 1}, and one of its maximum point is at
(︂
𝜃0 = 9𝜋

8 , 𝜃1 = 5𝜋
8

)︂
.

9.1.2 New games for 3-variables (Game-2)

In this game there are two players, namely, Alice and Bob (they are far away from each

other and not able to communicate) and a referee. Let us define the sets 𝑆 = {0, 1, 2},

𝒢 = {𝑔 : 𝑆 × 𝑆 → {0, 1}} and ℱ = {𝑓 : 𝑓 𝑖𝑠 𝑎 2 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛}.

Rules of Game-2

For a particular pair (𝑓, 𝑔3), where 𝑓 ∈ ℱ and 𝑔3 ∈ 𝒢 (the subscript 3 in 𝑔3 is for 3-variables),

we define Game-2 as follows:

∙ The referee chooses two independent random bits 𝑥 and 𝑦 uniformly (also called “questions”)

and sends 𝑥 to Alice and 𝑦 to Bob. That is, for all 𝑠 ∈ {0, 1}, 𝑡 ∈ {0, 1}, 𝑃 𝑟(𝑥 = 𝑠, 𝑦 = 𝑡) =

𝑃𝑥𝑦(𝑠, 𝑡) = 1
4.

∙ Alice and Bob send their answers 𝑎 and 𝑏 (𝑎, 𝑏 ∈ {0, 1, 2}) to the referee.

∙ Referee calculates 𝑓(𝑥, 𝑦) and 𝑔3(𝑎, 𝑏).

∙ Alice and Bob win if 𝑓(𝑥, 𝑦) = 𝑔3(𝑎, 𝑏).

Quantum strategy for Game-2

Now let Alice and Bob play the game with the following strategy given in Algorithm 9. Before

the game starts, they share a maximally entangled bipartite state: |Ψ𝐴𝐵⟩ = 1√
3(|0⟩𝐴 ⊗ |0⟩𝐵 +

|1⟩𝐴 ⊗ |1⟩𝐵 + |2⟩𝐴 ⊗ |2⟩𝐵) in the Hilbert space C3 ⊗ C3. According to the referee’s questions,

they choose measurement bases to measure their qubits and send their answers to the referee.

Alice’s choice of measurement basis is only depends on referee’s question. But for each pair

(𝑓, 𝑔3), Bob choose the basis for which they can achieve maximum winning probability. Bob’s

bases are dependent on the parameters 𝜃0 and 𝜃1.
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Algorithm 9: Quantum strategy for Game-2
1. Before the game starts, Alice and Bob share
|Ψ𝐴𝐵⟩ = 1√

3
(|0⟩𝐴 ⊗ |0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵 + |2⟩𝐴 ⊗ |2⟩𝐵)

2. Alice takes the first qubit and Bob takes the second qubit

3. Alice chooses:

• Standard basis {|0⟩ , |1⟩ , |2⟩} if 𝑥 = 0
• Fourier basis {|0𝑥⟩ , |1𝑥⟩ , |2𝑥⟩} if 𝑥 = 1, where
|0𝑥⟩ = 1√

3
(|0⟩+ |1⟩+ |2⟩), |1𝑥⟩ = 1√

3
(|0⟩+ 𝜔 |1⟩+ 𝜔2 |2⟩),

|2𝑥⟩ = 1√
3

(|0⟩+ 𝜔2 |1⟩+ 𝜔 |2⟩) and 𝜔 = 𝑒2𝜋𝑖/3

4. Bob chooses:

• Basis {|𝜓0⟩ , |𝜓1⟩ , |𝜓2⟩} if 𝑦 = 0,
|𝜓0⟩ = cos 𝜃0 |0⟩+ sin 𝜃0 cos 𝜃1 |1⟩+ sin 𝜃0 sin 𝜃1 |2⟩
|𝜓1⟩ = sin 𝜃0 |0⟩ − cos 𝜃0 cos 𝜃1 |1⟩ − cos 𝜃0 sin 𝜃1 |2⟩
|𝜓2⟩ = sin 𝜃1 |1⟩+ cos 𝜃1 |2⟩ and
0 ⩽ 𝜃0, 𝜃1 ⩽ 2𝜋

• Basis {|𝜑0⟩ , |𝜑1⟩ , |𝜑2⟩} if 𝑦 = 1,
|𝜑0⟩ = cos 𝜃1 |0⟩+ sin 𝜃1 cos 𝜃0 |1⟩+ sin 𝜃1 sin 𝜃0 |2⟩
|𝜑1⟩ = sin 𝜃1 |0⟩ − cos 𝜃1 cos 𝜃0 |1⟩ − cos 𝜃1 sin 𝜃0 |2⟩
|𝜑2⟩ = sin 𝜃0 |1⟩+ cos 𝜃0 |2⟩ and
0 ⩽ 𝜃0, 𝜃1 ⩽ 2𝜋

5. Alice sends:

• 𝑎 = 0 if Alice gets |0⟩ or |0𝑥⟩
• 𝑎 = 1 if she gets |1⟩ or |1𝑥⟩
• 𝑎 = 2 otherwise

6. Bob sends:

• 𝑏 = 0 if Bob gets |𝜓0⟩ or |𝜑0⟩
• 𝑏 = 1 if he gets |𝜓1⟩ or |𝜑1⟩
• 𝑏 = 2 otherwise
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Example of Game-2

Let us take an example. Let 𝑓(𝑥, 𝑦) = 𝑥 ∧ 𝑦 and 𝑔3(𝑎, 𝑏) = 𝑎 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑋𝑂𝑅 𝑏 (i.e.,

𝑔3(𝑎, 𝑏) = 0 𝑖𝑓 𝑎 = 𝑏 𝑎𝑛𝑑 𝑔3(𝑎, 𝑏) = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒). If we play the above game with these 𝑓 and

𝑔3 then the success probability is 0.76 at 𝜃0 = 17𝜋
16 , 𝜃1 = 𝜋

16.

9.1.3 Maximum winning probability

In this Game-2 the maximum winning probability is 0.86 only for 8 pair of functions (𝑓, 𝑔3).

Now the functions pairs, with the highest winning probability and corresponding bases are

shown in Table 9.2.

Table 9.2: Functions pairs with maximum success probabilities of Game-2

𝑓 𝑔3 𝜃0 𝜃1
[0, 1, 0, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 33𝜋/32 19𝜋/32
[0, 1, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 29𝜋/32 29𝜋/32
[0, 1, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 29𝜋/32 15𝜋/32
[0, 1, 1, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 19𝜋/32 33𝜋/32
[1, 0, 0, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 19𝜋/32 33𝜋/32
[1, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 29𝜋/32 15𝜋/32
[1, 0, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 15𝜋/32 29𝜋/32
[1, 0, 1, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 33𝜋/32 19𝜋/32

9.1.4 Equivalence classes

From the results of these two games we observe that, if we introduce some equivalence relations

to make partition of the set of data in each game result, then we will take only one element

of each equivalence class to play these games. It will reduce the time and space complexity of

these games. Also if some measurement setup will be unavailable then we can use any other

setup from the same class to continue the games. Here we take three equivalence relations to

make three different types of partitions of the results.

1. We can make an equivalence class of the bases of Bob for a fixed function pair (𝑓, 𝑔𝑖),

(𝑖 = 2, 3), such that all elements of the same class give the same success probability.
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For simplicity, we only write the value of the pair (𝜃1, 𝜃2) as a basis (i.e., we represent

a basis as a point (𝜃1, 𝜃2) in R2 ) in a class and we take the values in 𝑟𝑎𝑑𝑖𝑎𝑛 (i.e.,

0 ⩽ 𝜃1, 𝜃2 ⩽ 2𝜋) and as a multiple of 𝜋

32.

For example, if we fix 𝑓 = 𝐴𝑁𝐷 and 𝑔2 = 𝑋𝑂𝑅 in Game-1, then there are 8 equivalence

classes of bases (up to 1 significant digit). Now in the previous example, if we consider

the success probabilities up to 2 significant digits, then there are 4 elements in the class

of highest winning probability 0.85 and the class is

{︂(︂
𝜋

8 ,
7𝜋
8

)︂
,

(︂
𝜋

8 ,−
𝜋

8

)︂
,

(︂
−7𝜋

8 ,
7𝜋
8

)︂
,

(︂
−7𝜋

8 ,−𝜋8

)︂}︂
.

Again in Game-2, let 𝑓 = 𝐴𝑁𝐷 and 𝑔3 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑋𝑂𝑅 (i.e. 𝑔3(𝑎, 𝑏) = 0 𝑖𝑓 𝑎 =

𝑏 𝑎𝑛𝑑 𝑔3(𝑎, 𝑏) = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) , then there are 7 equivalence classes of bases (up to 1

significant digit). Now in the previous example, if we consider the success probabilities up

to 2 significant digits, then there are 4 elements in the class of highest winning probability

0.76 and the class is

{︂(︂33𝜋
32 ,

𝜋

32

)︂
,
(︂33𝜋

32 ,
2𝜋
32

)︂
,
(︂34𝜋

32 ,
𝜋

32

)︂
,
(︂34𝜋

32 ,
2𝜋
32

)︂}︂
.

2. Secondly, we fix the bases of Bob and vary the function pairs to make the equivalence

classes. Here also all the elements of the same class have the same winning probability.

For example, in Game-1, if we fix
(︂
𝜃1 = 𝜋

8 , 𝜃2 = −𝜋8

)︂
, then (𝑓 = [0, 0, 0, 1], 𝑔2 =

[0, 1, 0, 1]), (𝑓 = [0, 0, 1, 0], 𝑔2 = [0, 1, 0, 1]), (𝑓 = [0, 0, 1, 1], 𝑔2 = [0, 1, 0, 1]), (𝑓 =

[0, 1, 1, 1], 𝑔2 = [0, 1, 0, 1]) etc. are all belong to the same class with success probability

0.5.

3. At last, we vary both functions pairs and Bob’s bases and the tuples which have the same

winning probability are belong to the same class. E.g., in Game-2, each row of Table 9.2

have the same success probability 0.86 and thus they belong to the same class.
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9.2 Dimensionality testing

We observe the winning probabilities of various cases in Game-1 and Game-2.

By using the above two games we can make device independent dimension distinguisher to

distinguish between the states |Ψ𝐴𝐵⟩ = 1√
2(|0⟩𝐴 ⊗ |0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵) and |Φ𝐴𝐵⟩ = 1√

3(|0⟩𝐴 ⊗

|0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵 + |2⟩𝐴 ⊗ |2⟩𝐵). For example:

∙ In Game-1, if we take 𝑓(𝑥, 𝑦) = 𝑥 ∧ 𝑦 and 𝑔2(𝑎, 𝑏) = 𝑎 ⊕ 𝑏 and 𝜃0 = 𝜋

8 , 𝜃1 = −𝜋8 , then

the winning probability of this game is 0.85.

∙ In Game-2, if we take 𝑓(𝑥, 𝑦) = 𝑥 ∧ 𝑦 and 𝑔3 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑋𝑂𝑅 and 𝜃0 = 𝜋

8 , 𝜃1 = −𝜋8 ,

then winning probability of this game is 0.76.

So by playing these games and observing winning probabilities we can easily distinguish

between |Ψ𝐴𝐵⟩ and |Φ𝐴𝐵⟩. In other words, we can say the dimension of the given maximally

state is two or three.

We can think this whole process as a union of two black boxes. An initial black box is the

state preparatory which prepares states of form either |Ψ𝐴𝐵⟩ or |Φ𝐴𝐵⟩. the prepared state is

then sent to a second black box, the measurement device. In this box, if the states are |Ψ𝐴𝐵⟩,

it will follow the process of Game-1 and if the states are |Φ𝐴𝐵⟩, it will follow the process of

Game-2.

From the outputs of this measurement device we will calculate the winning probability of

the game played in this box and compare this probability with the success probabilities of

Game-1 and Game-2. So we have a dimension distinguisher. The protocol is described in

Algorithm 10.

Following the above process and by changing the functions pairs in the games we can

devise many distinguishers (for each, we use the function pair (𝑓, 𝑔3) in Game-2 and the func-

tion pair (𝑓, 𝑔′
2) in Game-1 (where, 𝑔′

2 is the restriction of 𝑔3 in 2 variables, i.e., 𝑔′
2(𝑎, 𝑏) =

[𝑔3(0, 0), 𝑔3(0, 1), 𝑔3(1, 0), 𝑔3(1, 1)] ). We divide the set of all distinguisher into 3 classes accord-

ing to the winning probabilities of the games.
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Algorithm 10: Dimension distinguisher of maximally entangled state
Input: 𝑛 number of maximally entangled bipartite state |Ψ𝐴𝐵⟩ in an Hilbert space

C𝑑 × C𝑑 which is of the form ∑︀𝑑
𝑖=1

1√
𝑑
|𝑖⟩ ⊗ |𝑖⟩, where {|𝑖⟩} is the standard

basis of C𝑑 and 𝑑 ∈ {2, 3} is fixed but unknown.
Output: The value of 𝑑.

1. For rounds 𝑖 ∈ {1, . . . , 𝑛}

(a) Referee chooses 𝑥𝑖 ∈ {0, 1} and 𝑦𝑖 ∈ {0, 1} uniformly at random.
(b) ∙ If 𝑥𝑖 = 0, Alice measures the first particle of the entangled state in the standard

basis {|0⟩ , |1⟩ , |2⟩}
∙ If 𝑥𝑖 = 1, she measures that in the Fourier basis {|0𝑥⟩ , |1𝑥⟩ , |2𝑥⟩}, where
|0𝑥⟩ = 1√

3
(|0⟩+ |1⟩+ |2⟩),

|1𝑥⟩ = 1√
3

(|0⟩+ 𝜔 |1⟩+ 𝜔2 |2⟩),

|2𝑥⟩ = 1√
3

(|0⟩+ 𝜔2 |1⟩+ 𝜔 |2⟩)

and 𝜔 = 𝑒2𝜋𝑖/3. (if 𝑑 = 2 it will be the Hadamard basis).
(c) Similarly,
∙ if 𝑦𝑖 = 0, Bob measures the second particle of the entangled state in
{|𝜓0⟩ , |𝜓1⟩ , |𝜓2⟩} basis , where
|𝜓0⟩ = cos 𝜃0 |0⟩+ sin 𝜃0 cos 𝜃1 |1⟩+ sin 𝜃0 sin 𝜃1 |2⟩
|𝜓1⟩ = sin 𝜃0 |0⟩ − cos 𝜃0 cos 𝜃1 |1⟩ − cos 𝜃0 sin 𝜃1 |2⟩ and
|𝜓2⟩ = sin 𝜃1 |1⟩+ cos 𝜃1 |2⟩.
If 𝑑 = 2, 𝜃0 = 𝜋

8 , 𝜃1 = 0 and if 𝑑 = 3, 𝜃0 = 𝜋

8 , 𝜃1 = −𝜋8 .
∙ And if 𝑦𝑖 = 1, he measures that in {|𝜑0⟩ , |𝜑1⟩ , |𝜑2⟩} basis, where
|𝜑0⟩ = cos 𝜃1 |0⟩+ sin 𝜃1 cos 𝜃0 |1⟩+ sin 𝜃1 sin 𝜃0 |2⟩
|𝜑1⟩ = sin 𝜃1 |0⟩ − cos 𝜃1 cos 𝜃0 |1⟩ − cos 𝜃1 sin 𝜃0 |2⟩ and
|𝜑2⟩ = sin 𝜃0 |1⟩+ cos 𝜃0 |2⟩.
If 𝑑 = 2, 𝜃0 = 0, 𝜃1 = 𝜋

8 and if 𝑑 = 3, 𝜃0 = 𝜋

8 , 𝜃1 = −𝜋8 .

(d) The output is recorded as 𝑎𝑖(𝑏𝑖) ∈ {0, 1, 2} for the first (second) particle. The
encoding for 𝑎𝑖(𝑏𝑖) is as follows.
∙ For the first particle of each pair, 𝑎𝑖 = 𝑖 if the measurement result is |𝑖⟩ or |𝑖𝑥⟩.
∙ For the second particle of each pair, 𝑏𝑖 = 0 if the measurement result is |𝜓0⟩ or
|𝜑0⟩ ;
𝑏𝑖 = 1 if the measurement result is |𝜓1⟩ or |𝜑1⟩;
and 𝑏𝑖 = 2 if the measurement result is |𝜓2⟩ or |𝜑2⟩.

(e) For the test round 𝑖, define
𝑌𝑖 =

{︁
1 if 𝑥𝑖 ∧ 𝑦𝑖 = 𝑔(𝑎𝑖, 𝑏𝑖) where g=Embedded XOR
0 if otherwise

2. Referee calculates 𝑆 = 1
𝑛

∑︀
𝑌𝑖.

3. If 𝑆 ≈ 0.85 return 𝑑 = 2 and if 𝑆 ≈ 0.76 return 𝑑 = 3.
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9.2.1 First class of distinguishers (𝐷1)

In this set, we put all the distinguishers where we choose functions pairs (𝑓, 𝑔3) such that the

functions pair (𝑓, 𝑔′
2) has the highest winning probability in Game-1 (i.e., 0.85) which is greater

than the winning probability of corresponding Game-2.

If we choose 𝑓 = [0, 1, 0, 0], 𝑔3 = [0, 1, 1, 1, 0, 1, 1, 1, 0], thus 𝑔′
2 = [0, 1, 1, 0] (or 𝑓 =

[0, 1, 1, 1], 𝑔3 = [1, 0, 0, 0, 1, 0, 0, 0, 1], thus 𝑔′
2 = [0, 1, 1, 0]), then the winning probabilities of

the Game-1 and Game-2 are 0.85 and 0.58. Therefore the difference of these probabilities is

0.27, which is quite good.

There are many distinguishers in this class. We put some of them into the following

Table 9.3. Here we take the winning probability for 𝑑 = 3 at that point where the corresponding

winning probability for 𝑑 = 2 is maximum.

Table 9.3: Table for 𝐷1

𝑓 𝑔′
2 𝑔3 W.P. if 𝑑 = 2 W.P. if 𝑑 = 3 Difference

[0, 0, 0, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 1, 1] 0.85 0.53 0.32
[0, 0, 0, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 1, 1, 1] 0.85 0.51 0.34
[0, 0, 0, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 1] 0.85 0.45 0.4
[0, 0, 1, 0] [1, 0, 0, 1] [1, 0, 0, 0, 1, 1, 1, 0, 1] 0.85 0.41 0.44
[0, 0, 1, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 0.85 0.39 0.46
[0, 1, 0, 0] [0, 1, 1, 0] [0, 1, 1, 1, 0, 1, 1, 1, 1] 0.85 0.42 0.43
[0, 1, 0, 1] [0, 1, 1, 0] [0, 1, 1, 1, 0, 1, 0, 1, 0] 0.85 0.46 0.39
[0, 1, 1, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 1, 0, 1, 0] 0.85 0.45 0.4
[1, 0, 0, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 0, 1, 0, 1] 0.85 0.53 0.32
[1, 0, 1, 0] [1, 0, 0, 1] [1, 0, 0, 0, 1, 0, 1, 0, 1] 0.85 0.46 0.39
[1, 0, 1, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 1, 0, 0, 0] 0.85 0.44 0.41
[1, 1, 0, 0] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 0.85 0.39 0.46
[1, 1, 1, 0] [0, 1, 1, 0] [0, 1, 1, 1, 0, 0, 0, 0, 0] 0.85 0.41 0.44

*W.P denotes winning probability.

9.2.2 Second class of distinguishers (𝐷2)

In this set, we put all the distinguishers where we choose functions pairs (𝑓, 𝑔3) such that it

has the highest winning probability in Game-2 (i.e., 0.86) which is greater than the winning

probability of corresponding Game-1 with functions pair (𝑓, 𝑔′
2). Here we take the winning

probability for 𝑑 = 2 at that point where the corresponding winning probability for 𝑑 = 3 is
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maximum.

For example, let 𝑓 = [0, 1, 0, 0], 𝑔3 = [1, 0, 0, 0, 0, 1, 0, 1, 0] then if 𝑑 = 2 success probability

is 0.80 and if 𝑑 = 3 success probability is 0.86. We put all distinguishers in Table 9.4.

Table 9.4: Table for 𝐷2

𝑓 𝑔′
2 𝑔3 W.P. if 𝑑 = 2 W.P. if 𝑑 = 3 Difference

[0, 1, 0, 0] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 0.46 0.86 0.4
[0, 1, 0, 0] [1, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 0.64 0.86 0.22
[0, 1, 1, 1] [0, 1, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 0.63 0.86 0.23
[0, 1, 1, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 0.48 0.86 0.38
[1, 0, 0, 0] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 0.48 0.86 0.38
[1, 0, 0, 0] [1, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 0.63 0.86 0.23
[1, 0, 1, 1] [0, 1, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 0.64 0.86 0.22
[1, 0, 1, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 0.46 0.86 0.4

*W.P denotes winning probability.

9.2.3 Third class of distinguishers (𝐷3)

Similarly, we can make dimension distinguisher using other functions pairs for which the dif-

ference between the optimal winning probabilities of the two games is non-negligible. Here

we take functions pair (𝑓, 𝑔3) and corresponding pair (𝑓, 𝑔′
2) such that both the games with

respective pairs do not achieve the highest winning probabilities. we put all these distinguish-

ers in this set. The cardinality of this set depends on the difference value between winning

probabilities.

Let (𝑓, 𝑔3) be a function pair and the highest winning probability of Game-2 with (𝑓, 𝑔3)

being 𝑝2 at point (𝑠2, 𝑡2) and the same of Game-1 with (𝑓, 𝑔′
2) is 𝑝1 at point (𝑠1, 𝑡1). We compare

𝑝1, 𝑝2 and take the best (say, 𝑝1 > 𝑝2). Then we find the winning probability 𝑝 of Game-2

at (𝑠1, 𝑡1) and difference value 𝑝1 − 𝑝. We make a list of these distinguishers for which the

difference value is greater than 0.44 in Table 9.5.

9.3 Discussion

Dimensionality of the states act as a resource in quantum information processing tasks. For

many protocols, the performance as well as security depends on the particular value of the
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dimension. For this reason, dimensionality testing is very important. There have been several

works on dimension witness. We take a different route by constructing dimension distinguishers

based on our generalized version of the CHSH game. We demonstrate several classes of practical

distinguishers between 2 and 3 dimensions.
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Table 9.5: Table for 𝐷3

𝑓 𝑔′
2 𝑔3 W.P. if 𝑑 = 2 W.P. if 𝑑 = 3 Difference

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 0] 0.29 0.76 0.47
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 1] 0.29 0.77 0.48
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 0] 0.29 0.77 0.48
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 1] 0.29 0.77 0.48
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 0, 0] 0.29 0.76 0.47
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 0, 1] 0.29 0.75 0.46
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 0] 0.29 0.77 0.48
[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 1] 0.29 0.76 0.47
[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 0] 0.21 0.76 0.55
[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 1] 0.21 0.77 0.56
[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 0] 0.21 0.77 0.56
[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 1] 0.21 0.77 0.56
[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 1] 0.21 0.76 0.55
[0, 0, 1, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 1] 0.36 0.81 0.45
[0, 0, 1, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 1] 0.36 0.84 0.48
[1, 1, 0, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 0] 0.36 0.84 0.48
[1, 1, 0, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 0] 0.36 0.81 0.45
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 0] 0.21 0.76 0.55
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 1] 0.21 0.77 0.56
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 0] 0.21 0.75 0.54
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 1] 0.21 0.76 0.55
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 0] 0.21 0.77 0.56
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 1] 0.21 0.77 0.56
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 0] 0.21 0.77 0.56
[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 1] 0.21 0.76 0.55
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 0] 0.29 0.76 0.47
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 1] 0.29 0.77 0.48
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 0] 0.29 0.75 0.46
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 1] 0.29 0.76 0.47
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 0] 0.29 0.77 0.48
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 1] 0.29 0.77 0.48
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 0] 0.29 0.77 0.48
[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 1] 0.29 0.76 0.47

*W.P. denotes winning probability.

229



230



Chapter 10

Conclusion

The major topic in this thesis is QSDC protocols. The main results are presented in Chapters 3,

4, 5, 6, 7, 8, and 9.

10.1 Summary of work done

Our contributory works start with a simple security analysis of the YZCSS QSDC protocol [1]

and we have shown that the protocol is insecure and an adversary can get the full secret

message by applying intercept-and-resend or impersonation attack strategy. We have proposed

a modified version of this protocol, which is secure against all the common attacks.

Then we have presented a new QSDC protocol with user authentication using single qubits

prepared on a randomly chosen arbitrary basis from a pre-defined set of bases and established

its security. We also have executed the protocol in the IBMQ Armonk device and shown that

a simple distance 3 repetition code is sufficient for reliable transmission using this protocol.

We have also analyzed an MDI-QSDC protocol [2] and shown that half of the information

is always leaked without any active attack. Then we have proposed a modification of these

protocols, which are secure against such information leakage problems.

Next, we have proposed a new MDI-QSDC protocol with user authentication and proved

its security. Then we extend it to an MDI-QD protocol and an MDI-DSQC protocol with user

authentication.

After that, we have proposed two MDI-QD protocols, which are modified versions of the
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MDI-QD protocol by Maitra [3]. Without compromising the security, our protocols are more

efficient in the qubit counts than the previous one. Next, we have generalized the two-party

MDI-QD protocol [3] to a three-party Q.Conf and 𝑁 -party Q.Conf protocols and used the part

of the 𝑁 -party Q.Conf protocol to produce a QMPC protocol for 𝑋𝑂𝑅 computation.

In our last contributory Chapter, we have generalized the CHSH game and used the new

games to construct the dimensionality distinguisher to distinguish between 2 and 3 dimensional

maximally entangled states.

10.2 Open problems and future work

In the future, we want to analyze the security of our proposed protocols and other protocols

from the viewpoint of quantum information theory. We have given the theoretical analyses of

these protocols. In contrast, the practical implementations of these protocols will be exciting,

and the theoretical thresholds may differ in those cases due to unavoidable channel noise. Also,

the security analyses of the protocols with a realistic noise model will be interesting extensions

of our work.

In chapter 9, we have shown that the maximum winning probability of Game-1 is 0.85,

which occurs in 28 cases. These probabilities were calculated through simulation. In that

case, it looks like to be a mathematically provable result, but the proof remains open. A

similar argument holds for the results of Game-2 also. Also, in the future, we want to use

dimensionality testing in other quantum information tasks.

Till now, there is no DI-QSDC with user authentication protocol and we will try to propose

it in the recent future. Another interesting open problem is, whether it is possible to have a

generic reduction from arbitrary QKD protocol to a suitable QSDC protocol. Also, we want

to explore the other directions of quantum cryptography, like authenticated QKD, QSS, QKA,

and so on.
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Appendix A

Proof of Lemma 1

Lemma 1: For a probability distribution {𝛿𝑖, 1 ≤ 𝑖 ≤ 4}, −∑︀4
𝑖=1 𝛿𝑖𝑙𝑜𝑔𝛿𝑖 ≤ ℎ(𝛿2+𝛿4)+ℎ(𝛿3+𝛿4),

where ℎ(·) represents the binary entropy function.

Proof: Let 𝑋 be a random variable such that

𝑋 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

00 with probability 𝛿1,

01 with probability 𝛿2,

10 with probability 𝛿3,

11 with probability 𝛿4.

Let 𝑌 and 𝑍 be the following events,

𝑌 =

⎧⎪⎪⎨⎪⎪⎩
1, if the least significant bit of 𝑋 = 1 ,

0, otherwise.

𝑍 =

⎧⎪⎪⎨⎪⎪⎩
1, if the most significant bit of 𝑋 = 1 ,

0, otherwise.

In other words,

𝑌 =

⎧⎪⎪⎨⎪⎪⎩
1 with probability 𝛿2 + 𝛿4 ,

0 with probability 𝛿1 + 𝛿3.
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and

𝑍 =

⎧⎪⎪⎨⎪⎪⎩
1 with probability 𝛿3 + 𝛿4 ,

0 with probability 𝛿1 + 𝛿2.

(A.1)

Then the entropy of the events 𝑌 and 𝑍 are as follows

𝐻(𝑌 ) = −
∑︁

𝑦∈{0,1}
Pr(𝑌 = 𝑦)𝑙𝑜𝑔[Pr(𝑌 = 𝑦)] = ℎ(𝛿2 + 𝛿4).

𝐻(𝑍) = −
∑︁

𝑧∈{0,1}
Pr(𝑍 = 𝑧)𝑙𝑜𝑔[Pr(𝑍 = 𝑧)] = ℎ(𝛿3 + 𝛿4).

The joint entropy 𝐻(𝑌, 𝑍) of the events 𝑌 and 𝑍 is

𝐻(𝑌, 𝑍) = −
∑︁

𝑦∈{0,1}

∑︁
𝑧∈{0,1}

Pr(𝑌 = 𝑦, 𝑍 = 𝑧)𝑙𝑜𝑔[Pr(𝑌 = 𝑦, 𝑍 = 𝑧)]

= −
∑︁

𝑥∈{00,01,10,11}
Pr(𝑋 = 𝑥)𝑙𝑜𝑔[Pr(𝑋 = 𝑥)]

= −
4∑︁

𝑖=1
𝛿𝑖𝑙𝑜𝑔𝛿𝑖.

Now using sub-additivity property of entropy, i.e., the fact that the joint entropy of a set

of variables is less than or equal to the sum of the individual entropies of the variables in the

set. Therefore,

𝐻(𝑌, 𝑍) ≤ 𝐻(𝑌 ) +𝐻(𝑍)

or, −
4∑︁

𝑖=1
𝛿𝑖𝑙𝑜𝑔𝛿𝑖 ≤ ℎ(𝛿2 + 𝛿4) + ℎ(𝛿3 + 𝛿4).
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