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Abstract

In the first chapter, a solution concept for two–person zero–sum
games is proposed with players’ preferences only assumed to satisfy
Independence. To each player, there is a set of admissible strategies
assuring him minimum guarantees. Moreover, rationality requires
players to reject non–admissible strategies from any further consider-
ation. Additional knowledge assumptions allow iterated elimination
of non–admissible strategies. This leads to a pair of strategy sets, one
for each player, whose cross product are the consideration equilibria.
Consideration equilibria always exist and include Nash equilibria if
any. Further, consideration equilibria and Nash equilibria (or, min-
imax strategies) coincide if players’ preferences additionally satisfy
Continuity. Three examples are analysed for illustration.

The second chapter investigates the implications of additivity
type axioms in economic theory. In several areas of microeconomic
theory, axiomatic characterizations have been provided for the re-
spective objects of study to possess lexicographic structures. We
introduce the concept called graded halfspace which is an abstrac-
tion of “lexicographic structures”. Then, we formulate and establish
a geometric result called the Decomposition Theorem. This result
characterizes graded halfspaces as the convex cones which are ele-
ments of some partition, of a given Euclidean space, consisting of
a pair of mutually reflecting convex cones and a subspace. Thus,
the Decomposition Theorem formalizes the following intuitive idea:
an “object” defined over a convex “domain” is additive, if and only
if, it has a lexicographic “structure”. To illustrate this geometric
approach, we present four applications ranging over decision theory,
social choice, convex analysis and linear algebra.

In the third chapter, we consider pre–norms on the Euclidean
space which are functions that satisfy the definition of a norm ex-
cept that a vector and and its reflection through the origin may have
different values. Then, we characterize those binary relations on the
Euclidean space which admit a pre–norm as a (utility) representa-
tion. The notion of the dual of such a binary relation is introduced.
For any such binary relation, its second dual — the dual of the dual
— is identical to itself. Further, such a binary relation is self dual
if and only if it is “spherical” — the Euclidean norm is a repre-
sentation. The duality theory allows us to generalize the Hölder’s
inequality to arbitrary pre–norms. Binary relations which admit a
norm as a representation are also characterized. We specialize our
theory to characterize binary relations which admit a p–norm as a
representation. Thus, the classical inequalities due to Minkowski
and Hölder follow as corollaries of the general theory.
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Chapter 0

Introduction

This thesis is on some aspects of individual and collective decision mak-
ing. Within the context of individual decision making, two particular
themes receive focus. First, the Independence axiom of expected util-
ity theory. Second, characterization of preferences—over the Euclidean
space—which admit norms as utility representations. Within the con-
text of collective decision making, one objective is to revisit the foun-
dations of two–person zero–sum games, and the second is to explore
the setting of Arrovian aggregation. Thus, the three chapters—in the
order of their appearance—are entitled as follows:

1. Two–Person Zero–Sum Games without Expected Utility Prefer-
ences: A Proposal.

2. Additivity over Convex Domains is Equivalent to Lexicographic
Structures.

3. Preferences with Norms as Representations.

At a methodological level, we investigate the implications of convexity
and linearity for decision making problems. A brief overview of each of
the three chapters follows.



an overview of chapter 1

Solutions concepts in game theory, such as Rationalizable Strategies
and Nash Equilibrium, depend in part for their existence on the as-
sumption that players’ preferences satisfy Continuity. They also require
some plausible behavioral assumption such as Independence. However,
the axiom of Continuity is at best a technical condition.

We consider two–player games, where players’ pure action sets are
finite but they may play any mixed strategy. We assume that the pref-
erence �i of each player i, on the set of lotteries over all pure strategy
tuples, satisfies Independence. In fact, we assume only a weaker version
of the Independence axiom of von Neuman & Morgenstern (1944)
which we propose in chapter 2. Then, we define a two–person game to
be zero–sum if, one player’s loss is another’s gain:

p �1 q ⇐⇒ q �2 p.

Next, we introduce the notion of “admissible set” of player i. A
subset of strategies Ai for player i is said to satisfy property B if, for
any strategy xi of player i which is not in Ai, the following holds:

(x′1, x
′
2) �i (x1, x2) for all x′1 ∈ A1 and all x′2,

where xj is any best response of player j to xi. Thus, playing from
Ai ensures some minimum guarantees to player i. Observe, this idea
of minimum guarantees is embodied in the Minimax Strategies of von
Neumann (1928). Note, the entire simplex of all mixed strategies of
player i satisfies property B vacuously. We show that all subsets of
the simplex which satisfy property B form a nest whose intersection is
nonempty and also satisfies property B. In other words, there exists a
unique smallest nonempty set of strategies which satisfies property B.
We call it the admissible set of player i and denote it by A1

i .
We place superscript of ‘1’ to indicate that we shall now treat the

admissible sets as if they are the simplices and obtain admissible sub-
sets A2

i thereof. This is possible because admissible sets are shown to
be convex and compact. Thus, to each player i there is a nested se-
quence A1

i ⊇ A2
i ⊇ . . . of compact convex sets obtained via the iterated

eliminiation of non–admissible strategies. The rectangle of surviving
strategy tuples A∞1 ×A∞2 are the consideration equilibria. Such equilib-
ria always exist and are interchangeable. Further, if Continuity holds
additionally, then they are precisely the Minimax Strategies (or, Nash
Equilibria) for which the Minimax Theorem holds.
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an overview of chapter 2

Additivity type axioms are commonplace in economic theory. For in-
stance, consider the axioms such as Independence in expected utility
theory, Cardinal Measurability & Unit Comparability in the theory of
interpersonal comparison of utilities in social choice and so on. These
axioms are of normative or ethical appeal depending upon the context
under consideration.

Often, in conjunction with some technical condition such as Conti-
nuity, additivity is shown to characterize some linear real–valued func-
tion. Some important examples are the Expected Utility Theorem of
von Neumann & Morgenstern (1944), Generalized Utilitarianism
of Harsanyi (1955) or d’Aspremont & Gevers (1977), and so on.
Our objective is to drop the supporting technical conditions such as
Continuity and to focus on the consequences of the additivity type ax-
iom(s) alone. We find that additivity, when the domain is convex, is
equivalent to a lexicographic structure.

As our first example, we revisit the classical result due to Hausner
(1954) which says that preferences that satisfy Independence are char-
acterized by the fact that they admit a lexicographic expected utility
representation. We weaken the classical Independence axiom. To state
our weakening, we first recall the original version. Suppose p, q and r
are any three lotteries, and α ∈ (0, 1). Then,

p � q ⇐⇒ α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r.

Then, our version of Independence can be stated as follows. Suppose
p, q and r are any three lotteries. Then,

p � q ⇐⇒
(
∀α ∈ (0, 1)

)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
.

Observe, the “ =⇒ ” part is the same. However, whereas the original
version declares p � q if α · p⊕ (1−α) · r �–dominates α · q⊕ (1−α) · r
for even one α ∈ (0, 1), our version does not. The latter requires
α · p⊕ (1−α) · r to �–dominate α · q⊕ (1−α) · r for every α ∈ (0, 1) in
order to conclude that p � q. Thus, our axiom is logically weaker than
the original Independence. However, we find that for binary relations
that satisfy transitivity and completeness, our version is also neces-
sary and sufficient for the existence of lexicographic expected utility
representations. Thus, we achieve a logical strengthening of Hausner’s
theorem. Moreover, it is normatively more appealing.

3



After expected utility theory, we consider social choice theory. Here
we obtain lexicographic extensions of Generalized Utilitarianism which
were characterized by Harsanyi (1955). We achieve this under the
key normative axiom which is Cardinal Measurability & Unit Com-
parability. Strengthening this axiom to Non–Comparability results in
the following two characterizations. First, the additional assumption
of Strong Pareto enforces serial dictatorships. Second, the milder ad-
ditional assumption of Weak Pareto enforces weak dictators — Ar-
row’s Impossibility Theorem. Of course, requiring Continuity and Weak
Pareto additionally under the Unit Comparability assumption charac-
terizes Generalized Utilitarianisms.

We next consider the problems of existence of linear representations
for weak orders on convex subsets of the Euclidean space. Thus, we
generalize Theorem 4.3.1 of Blackwell & Girshick (1954) to arbi-
trary convex subsets. Their axioms, namely Invariance and Continuity,
achieve the characterization of linearly representable weak orders over
arbitrary convex sets. However, Continuity and Invariance imply Con-
vexity — every upper and lower contour set of the weak order is convex.
Then, Invariance and Convexity characterize those weak orders which
admit lexicographic extensions of linear representations.

Our last application is to obtain a simple proof of the characteri-
zation of finite dimensional ordered vector spaces over the reals due to
Hausner & Wendel (1952). Before we close the overview of chap-
ter 2, we must point out that our approach to the applications is via
a common method. We introduce the notion of “graded halfspaces”.
Given any orthonormal collection of vectors, let the first “slice” be the
open halfspace generated by the first given vector such that the origin
is on the boundary of the halfspace. Then, the boundary is a subspace
of dimension one less and contains the remaining given orthonormal
vectors. Thus, we may recursively generate a list of slices with progres-
siveli collapsing dimensions. Then, the graded halfspace generated by
the given orthonormal vectors is the union of these slices.

Graded halfspaces are an abstraction of lexicographic structures.
For instance, the strict upper contour set of the standard lexicographic
order on the Euclidean plane is a graded halfspace. We provide a geo-
metric characterization of graded halfspaces which we call the Decom-
position Theorem. It is the application of the this result that allows us
to achieve the characterizations that we claimed in the above applica-
tion domains. This result formalizes the qualitative claim: additivity
over convex domains is equivalent to lexicographic structures.
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an overview of chapter 3

In this chapter, we are concerned with the characterization of those
weak orders on the Euclidean space which admit some norm as a util-
ity representation. Of particualar importance are the Minkowski norms
‖·‖p which further contain as a special case the Euclidean norm ‖·‖2.
Chambers & Echenique (2020) characterized preferences based on
the Euclidean norm — “spherical preferences”.

It is perhaps plausible to percieve their work as a response to the
question that has manifested owing to decades of work in political
economy and social choice in the context of spatial voting or voting
over multiple issues. For instance, consider McKelvey & Wendell
(1976). In these applications, it has been assumed that individuals of
the society have preferences which admit the Euclidean norm as a rep-
resentation.

However, many authors such as Wendell & Thorson (1974),
Border & Jordan (1983) and Zhou (1991) have correctly argued
that norms beyond the Euclidean are also equally important. Fur-
ther, it has been established (see Enelow et al. (1988) for instance)
that empirical testing of the voting model equibrium analysis strongly
depends on the correctness of specification of individuals’ preferences.
Thus, we find that obtaining decision theoretic foundation for arbitrary
norms, and p–norms, is essential.

As a starting point, we generalize our question by introducing ob-
jects called “pre–norms”. These are real–valued functions over the Eu-
clidean space which satisfy all defining properties of norms except for
the symmetry condition that a vector and its reflection through the ori-
gin must result in the same value. It is then immediate, if a weak order
admits a pre–norm as a representation, it must satisfy Homotheticity,
Convexity1, increasing marginal returns (we call this, “Scale Monoton-
icty”) and Continuity. Our first main result is that the converse is also
true. The key is that these axioms imply, the weak lower contour sets
are compact and contain the origin in their interior.

We obtain p–norms essentially by additionally requiring the axiom
of Separability due to Debreu (1959). We also develop a “duality
theory” which is analogous to the relation of the Utility Maximixation
Problem vs. Expenditure Minimization Problem in consumer choice.
One of the key findings of “duality” is that a preference is dual to itself
if and only if it is “spherical”.

1All weak lower contour sets are convex
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Chapter 1

Two–Person Zero–Sum Games without Expected

Utility Preferences: A Proposal

1. introduction

Two–person zero–sum games occupy a central position in game
theory as they model situations of bilateral conflict. von Neumann
(1928) published his Minimax Theorem which provides a basis for how
players should play. This foundational result was established assuming
existence of expected utility representations. However, expected utility
representations exist if and only if preferences of the players satisfy the
Independence axiom and the Archimedean property (or, Continuity)
as was shown by von Neumann & Morgenstern (1944).

While Independence is normatively appealing in decision theory,
Continuity is a technical condition needed for existence of numerical
representations. Hausner (1954) showed that if Independence holds,
then preferences admit lexicographic representations. Despite being
non–Archimedean, lexicographic preferences are natural in modeling
competing firms or bilateral trade—each party has multiple decision
criteria and a priority over these.2 For applications, see Chipman
(1960, pp. 221), Fishburn (1970, pp. 110) and Thrall (1954). The
Archimedean property is not applicable in such models.

2Concrete examples are presented in the subsection below which may be read at this stage.



Additionally, Thrall (1954) shows that the set of maximizers of
such a preference over any convex and compact set is a convex and
compact set. Using this, he argues, “This discussion illustrates the
fact that non–Archimedean utilities are perfectly satisfactory for game
theory”. Several later writings, such as Ferguson (1958, pp. 20–21)
and Luce & Raiffa (1957, pp. 27), indicate that this had become an
accepted fact in game theory. For instance, Aumann (1964, pp. 453)
writes, “It will still be possible to solve maximization problems and
games under exactly the same conditions as before”.

Unfortunately, Fishburn (1971) demonstrated that the Minimax
Theorem does not hold for non–Archimedean preferences. Therefore,
he concluded, “The impression remains that game theory without the
Archimedean axiom is rather barren”. Our contribution is to propose
a solution concept, which we call the consideration equilibrium, for the
class of all two–person zero–sum games. Its existence requires only the
Independence axiom of the players’ preferences. Further, consideration
equilibria are precisely the Minimax strategies, which are also the Nash
equilibria, when preferences additionally satisfy Continuity.

We briefly outline the solution concept. Let the two players be 1
and 2. Suppose, there is a set A1 of mixed strategies of player 1 with the
following property: if player 1 considers playing any x1 not in A1, then
there is some play x2 of his opponent such that playing any x′1 in A1

instead of x1, no matter what his opponent plays, is strictly preferred
by player 1. Thus, strategies in A1 assure some “minimum guarantee”
for player 1 against any play of his opponent. The smallest such set of
strategies, denoted A∗1, shall be called admissible. It extends the notion
of a minimum guarantee irrespective of the opponent’s play which is
the basis of the concept of value in the classical minimax theory due to
von Neumann (1928).

Instead of the defining property of A1 as above, we may consider
the following property: if player 1 considers playing any x1 not in A1

and x2 is player 2’s best response against x1, then player 1 strictly
prefers that he plays any x′1 in A1 where his opponent plays any best
response. These two properties are equivalent. The set A∗1 of admissible
strategies of player 1 is non–empty and unique. Likewise, there is a
unique non–empty set of admissible strategies, say A∗2, of player 2.

In order that A∗1×A∗2 be a solution concept, the following property is
desirable: for any (x1, x2) and (x′1, x

′
2) in A∗1×A∗2, players are indifferent

between (x1, x2) and (x′1, x
′
2). Otherwise, what should players play from

A∗1 × A∗2? Unfortunately, this property does not hold for A∗1 × A∗2.
However, iterated elimination of non–admissible strategies ensures that
this property holds. This elimination affords a justification along the
lines of Bernheim (1984) and Pearce (1984).
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We briefly outline the logic behind the elimination. First, A∗1 and
A∗2 are convex and compact sets. Moreover, suppose that it is common
knowledge between players 1 and 2 that each player i shall play from
A∗i . Then, it is as if the sets A∗1 and A∗2 are the simplices of all mixed
strategies of players 1 and 2. That is, the “context” of consideration
changes from all pairs of mixed strategies to those in (A∗1, A

∗
2). Thus,

to justify the elimination it remains to argue: it is common knowledge
between the players that each player i shall play from A∗i .

Let player 2’s conjecture about player 1’s play be x1. Suppose, x1

is not in A∗1. Thus, if player 1 knows that this is player 2’s conjecture
about player 1’s play, then player 1 knows that player 2 will play some
best response x2. However, playing any x′1 in A∗1 is strictly preferred
by player 1 when player 2 is to play x2. This is known to player 2.
Thus, if x1 is not in A∗1, then “player 1 shall play x1” is not a plausible
conjecture by player 2 about player 1’s play. Hence, the elimination of
non–admissible strategies is justified.

The context comprising ∆(S1) and ∆(S2)—mixed strategy spaces
of players 1 and 2—led to the admissible strategy sets A∗1 and A∗2. Now,
the context is the pair (A∗1, A

∗
2). Thus, there exist unique non–empty

sets of admissible strategies A∗∗1 and A∗∗2 , for players 1 and 2, with
respect to the context (A∗1, A

∗
2). Hence, a nest ∆(Si) ⊇ A∗i ⊇ A∗∗i ⊇ . . .

obtains for each player i. Denoting by A∞i the intersection of A∗i , A
∗∗
i ,

. . . etc., the set of consideration equilibria is A∞1 × A∞2 . The solution
concept thus embodies the following reasoning by the players.

“Starting with all of our mixed strategies as the context, if you
do not restrict your strategy considerations to your admissible
set with respect to this context, then so will I thereby making
you strictly worse than had you considered any strategy in your
admissible set. Thus, we both must restrict our considerations
to our admissible sets which, therefore, become the new context
with respect to which we look for admissible sets thereof . . . and
so on. Hence, we must not consider strategy tuples which are
not consideration equilibria. Further, each of us is indifferent
between any two consideration equilibria. Hence, we may play
any consideration equilibrium.”

Our solution concept generalizes the theory of von Neumann in
the following respects. First, consideration equilibria always exist and
form a convex and compact set. Second, each player is indifferent be-
tween any two consideration equilibria. Third, if the game has a Nash
equilibrium, it is also a consideration equilibrium. Fourth, if players’
preferences admit expected utility representations, then consideration
equilibria coincide with Nash equilibria.
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The admissible sets and consideration equilibria are shown to arise
as solutions to finite lists of linear programs. This is because a pref-
erence satisfies Independence if and only if it admits a lexicographic
expected utility representation as shown, for instance, in Hausner
(1954), Blume et al. (1989) and Chatterjee (2022).

The rest of the article is organised as follows. The framework is
in section 2. Sections 3 and 4 present the concepts of admissible sets
and consideration equilibria. Section 5 presents the applications. The
comparative statics are presented in section 6. The procedure for the
computation of admissible sets and consideration equilibria is described
in section 7. Proofs omitted from the main text are supplied in the
Appendix. We close this introduction by presenting some examples.
However, their “solution” will be deferred until section 5. This is be-
cause the general framework and our solution concept shall have to be
presented first as done in sections 2 to 4.

Some Examples

The objective of subsection is as follows. We substantiate the case,
stated in the second paragraph of the overview above, that it is natural
to write zero–sum games as models for situations of strategic inter-
action of agents whose preferences arise from a priority over multiple
criteria. We do so by presenting three examples as follows. Note, in
such games a single “numerical payoff” corresponding to an outcome
is insufficient. However, lexicographic expected utilities are a natural
choice to model such preferences of the players.

Example 1: Two firms 1 (“Player I”) and 2 (“Player II”) are about
to engage in a competition (Figure 1). Firm 1 has two strategies which
are “Execute a hostile price–cut” (T ) or “Poach top talent of firm 2”
(B). Also, firm 2 has two strategies which are “Counter firm 1’s move
to poach talent, if any” (L) or “Match firm 1’s hostile price–cut, if any”
(R). The firms may randomize over their respective pure strategies, or,
they may even jointly randomize.

Each firm strictly prefers a higher market share than less. However,
if two plays result in the same market share, then each firm is better
off with a larger pool of top talent. Thus, each firm has a lexicographic
preference. To describe such preferences over all joint randomizations,
it is enough to specify “lexicographic payoffs” to each player for every
possible play involving pure strategy tuples. Further, if the sum of
firms’ market shares and their total talent size can each be taken as a
constant, then the game is zero–sum. Thus, it is enough to only specify
to firm 1’s lexicographic payoff for pure strategy tuples.

12



The ordered pair in each cell of Figure 1 represents firm 1’s payoffs
with the order reflecting the priority over the two criteria: (1) market
share of the firm, and (2) if two plays lead to same market share of the
firm, then size of the firm’s top talent. Thus, the play (T, L) gives firm
1 an advantage in market share as T means “Execute hostile price–cut”
but L means “Counter firm 1’s move to poach talent, if any”. That is,
the first component of the ordered pair corresponding to the play (T, L)
is 1. However, if firm 1 chooses B which means “Poach top talent of firm
2” or firm 2 chooses R which means “Match firm 1’s hostile price–cut”,
then the first component of the corresponding ordered pair is 0 as firm
1 gains no advantage in market share.

(1, 0)

(0, 0)

(0, 0)

(0, 1)

T

B

L R

p

1− p

q 1− q

Player I

Player II

Figure 1: Two competing firms.

Moreover, the play (B,R) gives firm 1 an advantage in size of its top
talent as B means “Poach top talent of firm 2” but R means “Match
firm 1’s hostile price–cut”. Thus, the second component of the ordered
pair corresponding to (B,R) is 1. However, firm 1 chooses T which
means “Execute hostile price–cut” or firm 2 chooses L which means
“Counter firm 1’s move to poach talent, if any”, then firm 1 has no
advantage in its size of top talent. Thus, the second component of the
corresponding ordered pairs are 0.

Observe, when firm 2 considers “Match firm 1’s hostile price–put,
if any” (the strategy R), it does not consider “Counter firm 1’s move
to poach talent, if any” (the strategy L). Further, if firm 1 consid-
ers deploying the strategy “Execute hostile price–cut”, then it knows
that firm 2 has the option to play “Match firm 1’s hostile price–cut”.
Moreover, the strategies of the firms are such that whereas firm acts by
making a move, firm 2 only acts by being responsive.

Thus, we have the following questions. Is it the case that firm 1 ends
up playing the strategy “Poach top talent of firm 2” (that is, B) and
firm 2 ends up playing the strategy “Match firm 1’s hostile price–cut”
(that is, R)? In other words, is (B,R) an “equilibrium” of this game?
If yes, is the “equilibrium” unique? �
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Example 2: A financial institution (“Player I”) and the rest of the
financial market (“Player II”) interact as follows. There is an asset A1

about which the market is “Optimistic” (L) or “Pessimistic” (R), this
market sentiment determines whether the value of A1 will rise or fall.
The institution guesses what the market feels about this asset. Also,
there is another profitable asset A2 which the financial institution either
“acquires” or “does not acquire”. The rest of the market has no control
over the asset A2’s possession. Thus, the strategies of the financial
institution are “Buy A1 and buy A2” (T ) or “Short sell A1” (B), where
short selling is to bet against the asset A2.

(1, 1)

(0, 0)

(0, 1)

(1, 0)

T

B

L R

p

1− p

q 1− q

Player I

Player II

Figure 2: Betting against the market.

If market participants are “Optimistic” then “Buy A1 and buy A2”
pays off to the financial institution as A1 is then valuable. However,
if the other market participants are “Pessimistic”, then “Buy A1 and
buy A2” is worse for the financial institution as the asset A1’s valuation
drops. Moreover, a limited quantity of the asset A1 implies a loss to
the other market participants if and only if it is a gain to the financial
institution. Further, as regards asset A2, the financial institution gains
or not according as it plays “Buy A1 and buy A2” or “Short sell A2”,
respectively. Again, the financial institution gains if and only if the
rest of the market loses. Finally, both parties find profits or losses of
trading in asset A1 to be their top priority. The results of holdings
of asset A2 matter only when comparing two situations which lead to
indifference as regards their profits from trading in asset A1.

As in Example 1, each cell in Figure 2 represents the lexicographic
payoffs to the financial institution for the corrseponding play of pure
strategy tuples. Thus, if the financial institution plays “Buy A1 and
buy A2” and the market plays “Optimistic”, the payoffs to the finan-
cial institution are (1, 1) as A1 becomes valuable, and A2 is anyway
valuable. Likewise, if the financial institution plays “Short sell A1” and
the market plays “Pessimistic”, the payoffs to the financial institution
are (1, 0) as A1 loses value and A2 is not acquired. For the remaining
payoffs, note that the financial instution’s guess is wrong.
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Observe, the first components of the ordered pairs define a game
of “matching pennies” which is known to have (1

2T ⊕
1
2B,

1
2L⊕

1
2R) as

the unique Nash equilibrium. This raises the following questions. Does
the above game—as it is—have a Nash equilibrium? Is our solution
concept able to predict some play in this game? If yes, then is indeed
the prediction (1

2T ⊕
1
2B,

1
2L⊕

1
2R)? �

Example 3: The bilateral conflict between two nations 1 (“Player
I”) and 2 (“Player II”) are defined by their strategies, and the resulting
outcomes, as follows. There are three outcomes which, in the decreasing
order of priority to nation 1, are the following:

1. “Have nuclear technologies”.

2. “Surround 2 with allies”.

3. “Achieve international collaborations if 2 does”.

It is then plausible that nation 2’s preferences are such that we have
a zero–sum game. The strategy sets of nations 1 and 2 are {T,B} and
{L,M,R}, respectively. The description of each pure strategy is some
combination of sentences from the following list:

SI,1 := “Attempt to develop nuclear technologies”.

SI,2 := “Attempt to form allies that surround 2”.

SI,3 := “Do not make international collaborations”.

SI,4 := “Make international collaborations”.

SII,1 := “Trust that 1 will not develop nuclear technologies”.

SII,2 := “Enforce sanctions on 1”.

SII,3 := “Influence 1’s potential allies that surround 2”.

SII,4 := “Do not make international collaborations”.

SII,5 := “Make international collaborations”.

Then, the description of each pure strategy is as follows:

T := SI,1 and SI,2 and SI,3.

B := SI,2 and SI,4.

L := SII,1 and SII,3.

M := SII,4 and (if SI,1 then [SII,2 and SII,3]).

R := SII,5 and (if SI,1 then SII,2).

Thus, strategy B of 1 admits the interpretation, “Attempt to form al-
lies that surround 2, and, do not make international collaborations”.
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Now, we come to the question of lexicographic payoffs under vari-
ous plays by 1 and 2. For instance, consider the play (T, L). By the
description of T and L, we have a conjuction of sentences SI,1 and SII,1

as part of the outcome. Then, the definition of SI,1 and SII,1 imply that
1 will face no hindrance in its attempt to develop nuclear technologies
which is its top priority. As a result nation 1 gets a payoff of 1 as
is reflected by the first component of the ordered triple in the cell in
Figure 3 which corresponds to the pure strategy pair (T, L).

(1, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 1, 1)

(0, 1, 1)

(0, 1, 0)

T

B

L M R

p

1− p

q r 1− (q + r)

Player I

Player II

Figure 3: Bilateral conflict.

Moreover, since there is conjunction of sentences SI,2 and SII,3 as
well under the pair (T, L), it follows that though 1 attempts to form
allies that surround 2, it fails because 2 influences those potential allies
in this outcome. Since forming allies with those that surround 2 is 1’s
second priority, the second component of the ordered triple in the cell
corresponding to (T, L) is 0. Further, the play (T, L) also involves the
clause SI,3 which means that 1 does not form any international collab-
orations. As this is third in the priority of 1, we have 0 as the third
component of the ordered triple in the cell corresponding to to the
play (T, L). Having specified the lexicographic payoffs to 1 under the
play (T, L), we observe that as the game is zero–sum the lexicographic
payoffs to 2 thus stand specified in the obvious manner. Likewise, we
obtain the remaining ordered triples in Figure 3.

Now, consider the play (B,R). Since SI,1 is not part of the definition
of B, nation 1 will have no access to nuclear technologies. However,
since B has SI,2 and R does not have SII,3, nation 2 will end up being
surrounded by 1’s allies. Moreover, since SI,4 is a part of B and SII,5 is a
part of R, both the nations end up making international collaborations
under (B,R). In particular, even though 1 is able to surround 2 with
its allies, there is no further consequence of this to 2. Is it possible that
(B,R) is an “equilibrium” of this game? If yes, then is it unique? Does
this game admit some Nash equilibrium? �

We now proceed to the general framework and the abstract theory.

16



2. framework

Let the set of players be N := {1, 2}. Typically, we shall denote the
two players by i and j. Each player i has a non–empty and finite set
Si of pure strategies. Let ∆(Si) denote the set of all mixed strategies
of player i each of which is a lottery over the set Si. Also, ∆(S1 × S2)
is the set of all lotteries over S1 × S2.

On several occassions, we shall talk of “randomly choosing one out
of several lotteries”. Given lotteries p1, . . . , pK ∈ ∆(S1 × S2) and a
randomization device which randomly results in one out of K out-
comes, where the kth outcome obtains with probability αk, we have a
compound lottery over S1 × S2 by running the lottery pk if the ran-
domization device results in its kth outcome. This compound lottery
shall be denoted by α1 · p1 ⊕ α2 · p2 ⊕ . . . αK · pK or ⊕Kk=1αk · pk. We
assume this compound lottery to be equivalent to the unique (simple)
lottery which randomly selects a typical action pair (s1, s2) ∈ S1 × S2

with probability
∑K

k=1 αkpk(s1, s2).
If x1 ∈ ∆(S1) and x2 ∈ ∆(S2) are mixed strategies of players 1 and

2, then we denote by (x1, x2) the lottery over S1×S2 which selects any
(s1, s2) by independently selecting s1 and s2 according to x1 and x2,
respectively. Therefore, the probability that the pair (s1, s2) obtains
is x1(s1)x2(s2). Now, if player 2’s mixed strategy is x2 but player 1
ramdomly selects his mixed strategy to be either x∗1 or x∗∗1 , with the
probability of the former being α, then we essentially have the mixed
strategy tuple (α · x∗1 ⊕ [1− α] · x∗∗1 , x2).

Each player i has a preference %i which is a complete and transitive
binary relation over ∆(S1 × S2). Further, %i satisfies our weakening
(Theorem 2 of subsection 3.2 in Chatterjee [2022]) of Independence
due to von Neumann & Morgenstern (1944).

Independence: For any p, q, r ∈ ∆(S1 × S2), p �i q if and only if(
∀α ∈ (0, 1)

)[
α · p⊕ [1− α] · r �i α · q ⊕ [1− α] · r

]
.

A two–person zero–sum game is any tuple 〈N, (Si)i∈N , (%i)i∈N〉 such
that, for every p, q ∈ ∆(S1 × S2):

p %1 q ⇐⇒ q %2 p.

Thus, one player’s loss is the other’s gain. Further, if the preferences
%1, %2 admit expected utility representations u1, u2 : ∆(S1 × S2)→ R
respectively, then without loss of generality we have: u2 = −u1 if and
only if p %1 q ⇐⇒ q %2 p. Hence, we have a natural generalization of
the classical definition of two–person zero–sum games.
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3. admissible strategies

Admissible strategies shall be defined with respect to some context. A
context is a pair 〈C1, C2〉 where Ci is a non–empty and compact subset
of ∆(Si). Given a context 〈C1, C2〉, for each player i, let A G

i 〈C1, C2〉
be the class of non–empty closed Ai ⊆ Ci with the following property.

Property G: For every xi ∈ Ci \ Ai, there exists xj ∈ Cj such that

(x′i, x
′
j) �i (xi, xj) for any x′i ∈ Ai and any x′j ∈ Cj.

Here, �i denotes “strict preference”. Notice, Ci belongs to the class
A G
i 〈C1, C2〉 vacuously. For the interpretation of “Ai ∈ A G

i 〈C1, C2〉”,
Figure 4 shows a context where Ci = ∆(Si) for each player i.

•

x′1

A1

•
x1

C1 := ∆(S1)

•
x2

•

x′2

C2 := ∆(S2)

Figure 4: A set A1 in A G
1 〈∆(S1),∆(S2)〉.

The mixed strategy x1 of player 1 is not in A1 ⊆ ∆(S1). Also, x′1 is
an arbitrary strategy in A1. Thus, “A1 ∈ A G

1 〈∆(S1),∆(S2)〉” holds, if
and only if, there exists some mixed strategy x2 of player 2 such that
player 1 strictly prefers the play (x′1, x

′
2) to the play (x1, x2) for every

possbile strategy x′2 of player 2. Thus, player 1 has some “minimum
guarantees” if he considers playing strategies from A1 irrespective of
the strategy his opponent chooses to play.

This is on the lines of the minimax theory of von Neumann (1928).
In that theory, the maximin strategies assure players that they receive
at least the value irrespective of their opponents play. However, this
assured utility level is the highest that can be assured. To incorporate
this additional feature, we consider the following.

Definition 1: A set Ai ⊆ Ci is admissible with respect to the context
〈C1, C2〉 if Ai ∈ A G

i 〈C1, C2〉, and Ai ⊆ A′i for every A′i ∈ A G
i 〈C1, C2〉.

18



That is, an admissible set in a context is one which is minimal in the
sense of set–inclusion among all sets which satisfy property G in that
context. For instance, if A′i is a typical set that satisfies property G in
the context 〈C1, C2〉 and Ai is admissible, then the fact that Ai ⊆ A′i
implies the following: for any xi ∈ A′i \ Ai, there exists xj ∈ Cj such
that (x′i, x

′
j) �i (xi, xj) for all x′i ∈ Ai and all x′j ∈ Cj. Thus, the “min-

imum guarantee” assured to player i by playing mixed strategies from
his admissible set Ai is “as high as it can get”.

To see the justification for player i to consider playing from his
admissible set, we consider the following alternate perspective. For
strategy xi ∈ Ci by player i, let xj ∈ Cj be a best response in Cj of
player j if: (xi, xj) %i (xi, x

′
j) for every x′j ∈ Cj. Given the context

〈C1, C2〉, denote by A D
i 〈C1, C2〉 the class of all non–empty compact

sets Ai ⊆ Ci with the following property.

Property B: For every xi ∈ Ci \ Ai and any best response xj in Cj,
(x′i, x

′
j) �i (xi, xj) for any x′i ∈ Ai and any best response x′j in Cj to x′i.

In contrast to property G which considered arbitrary beliefs by a
player about his opponent, property D considers best responses in the
context under consideration. The first result is as follows.

Proposition 1: For any context 〈C1, C2〉, A G
i 〈C1, C2〉 = A B

i 〈C1, C2〉.

Proof: Fix Ai ∈ A G
i 〈C1, C2〉. Let xi ∈ Ci \ Ai and xj be a best

response in Cj of player j. For any arbitrary x′i ∈ Ai, let x′j be a best
response in Cj of player j. By property G, there exists x∗j ∈ Cj such
that (x′i, x

′
j) �i (xi, x

∗
j). Also, (xi, xj) %j (xi, x

∗
j) as xj is a best response

in Cj. By defintion of two–person zero–sum game, (xi, x
∗
j) %i (xi, xj).

By transitivity of %i, (x′i, x
′
j) �i (xi, xj). Thus, Ai ∈ A B

i 〈C1, C2〉.
Fix Ai ∈ A B

i 〈C1, C2〉. Let xi ∈ Ci \ Ai and xj be a best response
in Cj. Fix an arbitrary x′i ∈ Ai and x′j ∈ Cj. Thus, (x′i, x

∗
j) %j (x′i, x

′
j)

where x∗j is any best response in Cj to x′i. Since the game is zero–sum,
(x′i, x

′
j) %i (x′i, x

∗
j). By property B, (x′i, x

∗
j) �i (xi, xj). Transitivity of

%i implies (x′i, x
′
j) �i (xi, xj). That is, Ai ∈ A G

i 〈C1, C2〉. �

Just as Definition 1 defines “admissibility” based on property G, it
is possible to define an analogous notion based on property B. In light
of the proposition above, both the notions must coincide. Henceforth,
we shall write “Ai〈C1, C2〉” for both “A G

i 〈C1, C2〉” and “A B
i 〈C1, C2〉”.

The following lemma asserts convexity of elements in Ai〈C1, C2〉.
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Lemma 1: Let 〈C1, C2〉 be a context. For any i ∈ N , if Ci is convex
and Ai ∈ Ai〈C1, C2〉, then Ai is convex.

Proof: Assume A1 ∈ A1〈C1, C2〉 and suppose: A1 is not convex. Thus,
for some3 x∗1, x

∗∗
1 ∈ A1 and α ∈ (0, 1), xα1 := α · x∗1 ⊕ [1− α] · x∗∗1 /∈ A1.

Note, xα1 ∈ C1 as C1 is convex. Since A1 ∈ A1〈C1, C2〉, by property B
of A1 with respect to 〈C1, C2〉, there exists x∗2 ∈ C2 such that:

(x1, x2) �1 (xα1 , x
∗
2) for all (x1, x2) ∈ A1 × C2.

In particular, (x∗1, x
∗
2) �1 (xα1 , x

∗
2) and (x∗∗1 , x

∗
2) �1 (xα1 , x

∗
2) hold. By

Independence, (xα1 , x
∗
2) �1 (α·xα1⊕[1−α]·x∗∗1 , x∗2) as (x∗1, x

∗
2) �1 (xα1 , x2).

Similarly, (α ·xα1 ⊕ [1−α] ·x∗∗1 , x∗2) �1 (xα1 , x
∗
2) as (x∗∗1 , x

∗
2) �1 (xα1 , x

∗
2) by

Independence. Then, the transitivity of �1 implies (xα1 , x
∗
2) �1 (xα1 , x

∗
2).

However, �1 is asymmetric. Thus, we have a contradiction. Hence, our
supposition must be wrong. Therefore, A1 is convex. �

For existence of admissible sets, consider the following result.

Theorem 1: Let 〈C1, C2〉 be any context. If Ai, A
′
i ∈ Ai〈C1, C2〉, then

Ai ⊆ A′i or A′i ⊆ Ai. Further, admissible sets exist for each player
which are unique, non–empty and compact. If C1 and C2 are convex,
then so are the admissible sets.

Proof: Suppose, Ai, A
′
i ∈ Ai〈C1, C2〉 are such that Ai \ A′i 6= ∅ and

A′i \ Ai 6= ∅. Fix xi ∈ Ai \ A′i and x′i ∈ A′i \ Ai. Since x′i ∈ Ci \ Ai,
xi ∈ Ai and Ai ∈ Ai〈C1, C2〉, there exists x′j ∈ Cj such that:

(xi, x
∗
j) �i (x′i, x

′
j) for all x∗j ∈ Cj. (1)

Moreover, since xi ∈ Ci \ A′i, x′i ∈ A′i and A′i ∈ Ai〈C1, C2〉, there exists
xj ∈ Cj such that the following holds:

(x′i, x
∗
j) �i (xi, xj) for all x∗j ∈ Cj. (2)

In particular, (1) implies (xi, xj) �i (x′i, x
′
j). Likewise, (2) implies

(x′i, x
′
j) �i (xi, xj). Transitivity of %i then implies (xi, xj) �i (xi, xj)

which is a contradiction. Thus, we have established:

[Ai, A
′
i ∈ Ai〈C1, C2〉] =⇒ [Ai ⊆ A′i or A′ ⊆ Ai]. (3)

3For p, q ∈ ∆(Z) and α ∈ (0, 1), α · p⊕ [1−α] · q ∈ ∆(Z) is defined as the lottery over Z which
selects with propbability αp(z) + [1− α]q(z) any basic prize z ∈ Z.
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Let4 A∗i :=
⋂
{Ai : Ai ∈ Ai〈C1, C2〉}. Since each member of the class

Ai〈C1, C2〉 is non–empty, (3) implies that the intersection of finitely
many members of Ai〈C1, C2〉 is non–empty. Further, each element of
Ai〈C1, C2〉 is compact. Thus, the set A∗i is non–empty and compact.
Clearly, A∗i ⊆ Ai for every Ai ∈ Ai〈C1, C2〉. Hence, to conclude that
A∗i is the unique admissible set for player i, with respect to the context
〈C1, C2〉, it is enough to argue that A∗i satisfies property G.

For this, fix any xi ∈ Ci \ A∗i . Also, let x′i ∈ A∗i and x′j ∈ Cj be
arbitrary. Since xi ∈ Ci \ A∗i and A∗i is the intersection of all members
of Ai〈C1, C2〉, there exists Ai ∈ Ai〈C1, C2〉 with xi ∈ Ci \ Ai. Further,
x′i ∈ Ai as x′i ∈ A∗i ⊆ Ai. By definition of Ai〈C1, C2〉, there exists
xj ∈ Cj such that (x′i, x

′
j) �i (xi, xj). Thus, A∗i ∈ Ai〈C1, C2〉. This

proves: A∗i is admissible with respect to the context 〈C1, C2〉.
It remains to argue: A∗i is convex if C1 and C2 are convex. However,

Lemma 1 shows that every element of A1〈C1, C2〉 is convex. Further,
A∗1 is the intersection of all elements of A1〈C1, C2〉. Hence, A∗1 is convex.
Symmetric arguments work for the admissible set of player 2. �

That is, the collection Ai〈C1, C2〉 of sets satisfying property G (or
B), with respect to the context 〈C1, C2〉, form a nest of compact sets
whose intersection is the unique minimal element which also satisfies
property G (or B). Define for each player i the set:

A∗i 〈C1, C2〉 :=
⋂{

S : S ∈ Ai〈C1, C2〉
}

Therefore, A∗i 〈C1, C2〉 is the admissible set of player i. Thus, if players
consider playing from C1 × C2, then it makes sense for player i to
restrict consideration to within the set A∗i 〈C1, C2〉 as it is the minimal
set satisfying property G (or B) with respect to 〈C1, C2〉.

4. consideration equilibria

The definition of the term “context” and theorem 1 imply that the pair
of admissible sets with respect to a context form a context in its own
right. However, if it makes sense for players to restrict consideration
to admissible sets, then the pair of these admissible sets is as if the
new context. Thus, players may further restrict their consideration to
the resulting admissible sets with respect to this new context. That is,
starting with the pair of simplices of all mixed strategies, players may
consider eliminating non–admissible strategies iteratively.

4For any collection {Aα : α ∈ A } of sets,
⋂
{Aα : α ∈ A } is the intersection of its members.
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Definition 2: A sequence of contexts {〈C1,k, C2,k〉}k∈N is tight if,

1. Ci,1 = ∆(Si) for each i ∈ N , and

2. For every k ∈ N, Ci,k+1 = A∗i 〈C1,k, C2,k〉 for each i ∈ N .

If there exists a unique tight sequence of contexts {〈C∗1,k, C∗2,k〉}k∈N, then
define the following pair of sets :

A∞i :=
∞⋂
k=1

C∗i,k for each i ∈ N.

A consideration equilibrium is any strategy tuple from A∞1 × A∞2 .

“Tightness” means iterated elimination of non–admissible strategies
starting with the full simplices as the context. Thus, Figure 5 illustrates
admissible sets, with respect to the present context, forming the next
context as required by definition 2. Theorem 2 addresses questions of
existence and structure of consideration equilibria.

C1,k+1 := A∗1〈C1,k, C2,k〉 C2,k+1 := A∗2〈C1,k, C2,k〉

〈C1,k, C2,k〉

Figure 5: Next context as pair of admissible sets in present context.

Theorem 2: There exists a unique tight sequence of contexts and the
consideration equilibria form a unique, non–empty, compact and convex
set. Further, if x∗1, x

∗∗
1 ∈ A∞1 and x∗2, x

∗∗
2 ∈ A∞2 , then:

(x∗1, x
∗
2) ∼i (x∗∗1 , x

∗∗
2 ) for each player i.

Proof: A unique tight sequence of contexts exists by Theorem 1. Also,
C∗i,k+1 is a non–empty and compact subset of C∗i,k for each k ∈ N. Thus,
A∞i is non–empty and compact. Additionally, convexity of C∗i,k for each
k ∈ N, and the definition of A∞i , implies the convexity of A∞i .
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Thus, it remains to argue: if x∗1, x
∗∗
1 ∈ A∞1 and x∗2, x

∗∗
2 ∈ A∞1 , then

(x∗1, x
∗
2) ∼i (x∗∗1 , x

∗∗
2 ) for each player i ∈ N . This follows from Proposi-

tion 7 which is stated and proved in section 7. �

Theorem 2 generalizes the result of von Neumann (1928) that all
minimax strategies are interchangeable. In particular, the choice of one
out of all consideration equilibria is not an issue.

Our justification for the solution concept is based on the role of
property G or property B and minimality in the definition of admissible
sets. Thus, given any context, players should restrict further attention
to their admissible sets of strategies. The following result sharpens the
basis for not considering non–admissible strategies. For this, it will be
useful to keep figure 5 in perspective which illustrates a context and
the corresponding admissible sets of the players.

Theorem 3: Let 〈C1, C2〉 be any context. Assume i and j are the
distinct players. Consider x∗i ∈ Ci and suppose the following hold :

1. j conjectures i will play x∗i .

2. i knows j’s conjecture.

3. j knows that i knows j’s conjecture.

4. If x∗i /∈ A∗i 〈C1, C2〉, then:

(a) j will play a best response in Cj to j’s conjecture.

(b) i knows (a).

(c) i will play a best response in Ci to i’s conjecture.

(d) j knows (b) and (c).

Then, j knows that i and j know x∗i ∈ A∗i 〈C1, C2〉.

Proof: Let j conjecture that i plays x∗i . Suppose that x∗i /∈ A∗i 〈C1, C2〉.
By 4(a), j will play some best response Cj, say xj, which i knows as 4(b)
holds. However, (xi, xj) �i (x∗i , xj) for any xi ∈ A∗i 〈C1, C2〉 by property
B and Proposition 1. Hence, i shall play some x∗∗i ∈ A∗i 〈C1, C2〉 as 4(c)
holds. Since this is known to j as 4(d) holds, we have a contradiction to
the fact that j’s conjecture of i’s play is x∗i . Thus, x∗i ∈ A∗i 〈C1, C2〉. By
1, j knows x∗i ∈ A∗i 〈C1, C2〉. Also, i knows x∗i ∈ A∗i 〈C1, C2〉 by 2. By 3,
j knows that i knows x∗i ∈ A∗i 〈C1, C2〉. Since j knows x∗i ∈ A∗〈C1, C2〉,
we have: j knows that j knows x∗i ∈ A∗i 〈C1, C2〉. �
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A remark is in order. Suppose that x∗i is j’s conjecture about i’s
play. Further, let 〈C1, C2〉 be any context such that x∗i is in the corre-
sponding admissible set A∗i 〈C1, C2〉. Then, assumption 4 of Theorem 3
holds vacuously. Thus, no logical inconsistency arises from the use of
Theorem 3 to justify the proposed solution concept.

However, assumption 4 requires “maxmization” and its knowledge
in only a conditional sense. The solution concept requires that each
player takes the following stance about his strategic considerations with
regard to his opponent’s strategic considerations.

“If you do not restrict your considerations given the context,
then so will I. Then, if I think that your play will be outside
of your admissible set, I too will play my best response to it
within the context. Since I must then assume that your play is
your best response in the context, I find that your play must be
within your admissible set which is a contradiction.”

Moreover, any such reasoning by a player is irrelevant if his conjecture
lies in the admissible set, of his opponent, to begin with.

Thus, both players realize that their own conjecture about their
opponent’s play must be restricted to the admissible sets of their oppo-
nent. It is the implausibility of assuming maximization by the opponent
without first restricting consideration to admimssible sets is what drives
the iterated elimination in the solution concept. Pearce (1984) argues
that Nash equilibrium is not the only sensible way for the players to
behave based on rationality. Our point is that it makes sense for the
players to only consider plausible conjectures while maximization. The
following proposition asserts that if the game admits a Nash equilib-
rium, then it must be a consideration equilibrium.

Proposition 2: Any Nash equilibrium is a consideration equilibrium.

Proof: Let (x∗1, x
∗
2) be a Nash equilibrium. Clearly, for each i ∈ N ,

x∗i ∈ C∗i,1 as C∗i,1 = ∆(Si). Suppose, there exists k ∈ N such that
(x∗1, x

∗
2) ∈ C∗1,k × C∗2,k and (x∗1, x

∗
2) /∈ C∗1,k+1 × C∗2,k+1. Assume, without

loss of generality, x∗1 /∈ C∗1,k+1. Recall, C∗i,k+1 = A∗〈C∗1,k, C∗2,k〉 for each
i ∈ N . Thus, there exists x2 ∈ C∗2,k+1 such that: (x1, x

∗
2) �1 (x∗1, x2)

for any x1 ∈ C∗1,k+1. Further, (x∗1, x
∗
2) %2 (x∗1, x2) as (x∗1, x

∗
2) is a Nash

equilibrium. Then, (x∗1, x2) %1 (x∗1, x
∗
2) as the game is zero–sum. Thus,

(x1, x
∗
2) �1 (x∗1, x

∗
2) for all x1 ∈ C∗1,k+1. However, this contradicts that

fact that x∗1 is a best response in ∆(S1) to x∗2. Thus, x∗1 ∈ C∗1,k for every
k ∈ N. Hence, x∗1 ∈ A∞1 by definition of A∞1 . �
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The next proposition says that the proposed solution concept re-
duces exactly to the minimax strategies, which are also precisely the
Nash equilibria, when preferences that satisfy the Independence axiom
are additionally known to satisfy Continuity. Therefore, the concept of
consideration equilibria indeed generalizes the classical theory.

Proposition 3: Suppose, players’s preferences satisfy Independence
and Continuity. Then, a strategy tuple is a Nash equilibrium5, if and
only if, it is a consideration equilibrium.

Proof: Since %i satisfies Independence and Continuity, the Theorem
of von Neumann & Morgenstern (1944) on existence of expected
utility representations and the definition of two–person zero–sum game
allow us to conclude: there exists U1, U2 : ∆(S1 × S2) → R such that
U2 = −U1, and Ui is an expected utility6 that represents7 %i for each
i ∈ N . Further, by the Minimax Theorem of von Neumann (1928),
there exists a unique value v ∈ R such that the sets:

M1 := {x∗1 ∈ ∆(S1) : U1(x
∗
1, x2) ≥ +v for all x2 ∈ ∆(S2)}, and

M2 := {x∗2 ∈ ∆(S2) : U2(x1, x
∗
2) ≥ −v for all x1 ∈ ∆(S1)}

are the minimax strategies of the players 1 and 2, respectively. Note,
the above description of M1 and M2 is equivalent to the more familiar
one which is as follows: (x∗1, x

∗
2) ∈M1 ×M2 if and only if,

(x∗1, x2) %1 (x∗1, x
∗
2) %1 (x1, x

∗
2) for all (x1, x2) ∈ ∆(S1)×∆(S2)

Clearly, the set of all Nash equilibria is M1 ×M2. Without any loss of
generality, we shall argue: Mi = A∞i for each i ∈ N .

Let x1 ∈ ∆(S1) \ M1. Thus, there exists x2 ∈ ∆(S2) such that
v > U1(x1, x2). Fix any x′1 ∈M1 and x′2 ∈ ∆(S2). Then, U1(x

′
1, x
′
2) ≥ v

holds. Since U1 is a representation of %1, we have: (x′1, x
′
2) �1 (x1, x2).

That is, M1 satisfies property B with respect to 〈∆(S1),∆(S2)〉 as the
context. Further, M1 is convex. To see why, let x∗1, x

∗∗
1 ∈ M1. Fix an

arbitrary x2 ∈ ∆(S2). Then, U1(x
∗
1, x2) ≥ v and U1(x

∗∗
1 , x2) ≥ v. If α ∈

(0, 1), then8 U1(α ·x∗1⊕ [1−α] ·x∗∗1 , x2) = αU1(x
∗
1, x2)+[1−α]U1(x

∗∗
1 , x2)

as U1 is an expected utility. Hence, U1(α · x∗1 ⊕ [1 − α] · x∗∗1 , x2) ≥ v if
α ∈ (0, 1). Since x2 ∈ ∆(S2) is arbitrary, we have: α ·x∗1⊕ [1−α] ·x∗∗1 ∈
M1 for every α ∈ (0, 1). That is, M1 is convex.

5With Independence and Continuity, existence of a Nash equilibrium is guaranteed.
6The map U : ∆(Z)→ R is an expected utility if: U(p) =

∑
z∈Z p(z)U(z) for any p ∈ ∆(Z).

7The map U : ∆(Z)→ R represents the preference % over ∆(Z) if: p % q ⇐⇒ U(p) ≥ U(q).
8For p, q ∈ ∆(Z) and α ∈ (0, 1), α · p⊕ [1−α] · q ∈ ∆(Z) is defined as the lottery over Z which

selects with propbability αp(z) + [1− α]q(z) any basic prize z ∈ Z.
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Further, we have: M1 ⊆ ∆(S1) is closed. To see this, fix an arbitrary
x2 ∈ ∆(S2). Since the map U1 is an expected utility and the set S1 is
finite, the map x1 ∈ ∆(S1) 7→ U1(x1, x2) is continuous. Thus, the set
M1(x2, v) := {x1 ∈ ∆(S1) : U1(x1, x2) ≥ +v} is closed in ∆(S1). Also,
note that the following equality holds:

M1 =
⋂{

M1(x2, v) : x2 ∈ ∆(S2)
}
.

Thus, M1 ⊆ ∆(S1) is closed. Since ∆(S1) is compact, it follows that
M1 is compact. Thus, we have: M1 ∈ A1〈∆(S1),∆(S2)〉.

We now argue: M1 = A∗1〈∆(S1),∆(S2)〉. Suppose, not! Theorem 1
implies that there exists non–empty, convex and compact A1 ( M1

which satisfies property B. Let x1 ∈ M1 \ A1. Fix an arbitrary
x2 ∈ ∆(S2). Thus, U1(x1, x2) ≥ v by definition of M1. Let x′1 ∈ A1 and
x′2 ∈M2. Then, U1(x

′
1, x
′
2) ≥ v and U2(x

′
1, x
′
2) ≥ −v by definition of M1

and M2, respectively. However, U2 = −U1 and U2(x
′
1, x
′
2) ≥ −v implies

U1(x
′
1, x
′
2) ≤ v. That is, U1(x

′
1, x
′
2) = v. Thus, U1(x1, x2) ≥ U1(x

′
1, x
′
2).

Since U1 represents %1, we have: (x1, x2) %1 (x′1, x
′
2). Since x2 ∈ ∆(S2)

was arbitrary, we have a contradiction to property B of A1. Thus, we
have: M1 = A∗1〈∆(S1),∆(S2)〉. Similarly, M2 = A∗2〈∆(S1),∆(S2)〉.

By definition 2, C∗i,1 = ∆(Si) and C∗i,k+1 = A∗i 〈C∗1,k, C∗2,k〉 for all
k ∈ N. Thus, Mi = C∗i,2. Since U2 = −U1 and Ui represents %i, if
(x∗1, x

∗
2) and (x∗∗1 , x

∗∗
2 ) are in M1 × M2, then (x∗1, x

∗
2) ∼i (x∗∗1 , x

∗∗
2 ) for

each i ∈ N . Thus, C∗i,k = C∗i,2 for all k ≥ 2. To see why, assume
k ≥ 2 is such that C∗i,k = Mi for each i ∈ N . Suppose, A1 ( C∗1,k is
non–empty, compact, convex and satisfies property B with respect to
the context 〈C∗1,k, C∗2,k〉 = 〈M1,M2〉. Let x1 ∈ C∗1,k \ A1 and x′1 ∈ A1.
Fix x2, x

′
2 ∈ M2 arbitrarily. Since x1 ∈ M1 and x2 ∈ M2, we have:

U1(x1, x2) ≥ +v and U2(x1, x2) ≥ −v. As U2 = −U1, U(x1, x2) = v.
Similarly, U1(x

′
1, x
′
2) = v. That is, U1(x1, x2) = U1(x

′
1, x
′
2). Since U1

represents %1, we have (x1, x2) ∼1 (x′,x
′
2). This contradicts property B

of A1 with respect to the context 〈M1,M2〉. Thus, C∗1,k = A∗1〈C∗1,k, C∗2,k〉.
That is, C∗1,k+1 = C∗1,k which implies: C∗1,k+1 = M1. By a similar argu-
ment, C∗2,k+1 = M2 holds. As C∗i,k = Mi for all k ≥ 2, by definition 2
we obtain: Mi = A∞i for any player i ∈ N . �

We make one final remark. In the light of Proposition 3, Theorem 3
thus provides epistemic conditions for the classical solution concepts in
the setting with continuous preferences. Further, it makes explicit the
knowledge assumptions that are sufficient for consideration equilibria.
This exercise is in the spirit of Aumann & Brandenburger (1995)
and Polak (1999) for the Nash equilibrium. Ideas in the above proof
are generalized in section 6 without assuming Continuity.
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5. applications

We analyse the examples from subsection 1.1 to evaluate whether the
predictions of play as the consideration equilibria are reasonable.

Example 1: We revisit the example of two competing firms 1 and
2 which are labelled as “Player I” and “Player II”, respectively. We
briefly recall the setup which is represented in Figure 1. Firm 1 has
two strategies which are “Execute a hostile price–cut” (T ) or “Poach
top talent of firm 2” (B). Also, firm 2 has two strategies which are
“Counter firm 1’s move to poach talent, if any” (L) or “Match firm
1’s hostile price–cut, if any” (R). Each firm strictly prefers a higher
market share than less. However, if two plays result in the same market
share, then each firm is beter off with a larger pool of top talent. We
do not repeat the justification of the values in the ordered pairs.

(1, 0)

(0, 0)

(0, 0)

(0, 1)

T

B

L R

p

1− p

q 1− q

Player I

Player II

Figure 6: Two competing firms.

The first component of the ordered pair in each cell of Figure 6
specifies the value of the first Bernoullian u1

I of player I. Hence, for
mixed strategies p · T ⊕ (1− p) ·B and q · L⊕ (1− q) ·R (henceforth,
simply referred as p and q) of players I and II, the resulting expected
utility to player I is u1

I (p, q) = pq. Similarly, the expected utility to
player I according to the second Bernoullian is u2

I (p, q) = (1−p)(1−q).
As the game is zero–sum, the corresponding expected utilities to player
II are u1

II(p, q) = −pq and u2
II(p, q) = −(1− p)(1− q).

The initial context is 〈C∗I,1, C∗II,1〉 comprising of the full simplices

C∗I,1 := {p ∈ [0, 1]} and C∗II,1 := {q ∈ [0, 1]}. Based on u1
I , the best

response in C∗I,1 of player I to any q > 0 is p = 1 resulting in u1
II and u2

II
expected utilities −q and 0, respectively, to player II. Also, if q = 0 then
any p ∈ [0, 1] results in u1

II and u2
II expected utilities 0 and −(1 − p),

respectively, to player II. As (u1
II, u

2
II) is a lexicographic expected utility

representation of player II’s preference, he must restrict all his further
considerations to the singleton {q = 0}. Hence, player II’s admissible
set given the present context is: A∗II〈C∗I,1, C∗II,1〉 = {q = 0}.
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To compute player I’s admissible set A∗I 〈C∗I,1, C∗II,1〉, with respect to
the present context, we begin with the following observation. Suppose,
some 0 < p0 < 1 does not belong to A∗I 〈C∗I,1, C∗II,1〉. If p > p0 is in
A∗I 〈C∗I,1, C∗II,1〉 then the best response to p, of player II in C∗II,1, is q = 0

which results in u1
I and u2

I expected utilities of 0 and 1− p to player I.
Likewise, the u1

I and u2
I expected utilities to player I are 0 and 1 − p0

when player II plays his best response q = 0 in C∗II,1 to p0. As p > p0,

it follows that p cannot belong to A∗I 〈C∗I,1, C∗II,1〉 because (u1
I , u

2
I ) is a

lexicographic expected utility representation of player I’s preference.
That is, p ∈ A∗I 〈C∗I,1, C∗II,1〉 implies that p < p0. Since A∗I 〈C∗I,1, C∗II,1〉 is
a non–empty convex and compact subset of {p ∈ [0, 1]}, there exists
p∗ < p0 such that A∗I 〈C∗I,1, C∗II,1〉 = [0, p∗]. Now, consider the strategy

p = 0 of player I. Clearly, any q ∈ [0, 1] results in u1
I expected utility of 0

to player I. As u2
II(p, q) = (1−p)(1−q) and p = 0, player I’s u2

I expected
utility is 0 if player II plays q = 1. Since p0 < 1, it follows that p = 0
belonging to A∗I 〈C∗I,1, C∗II,1〉 = [0, p∗] and p0 /∈ A∗I 〈C∗I,1, C∗II,1〉 = [0, p∗]
contradicts the fact that A∗I 〈C∗I,1, C∗II,1〉 = [0, p∗] satifies property B as
required of the admissible set (this is Theorem 1). Thus, 0 < p < 1
implies that p ∈ A∗I 〈C∗I,1, C∗II,1〉 = [0, p∗]. As the admissible set must be
compact, we have: A∗I 〈C∗I,1, C∗II,1〉 = [0, p∗] = {p ∈ [0, 1]}.

According to definition 2, the pair of admissible sets with respect
to the present context serve as the next context. Hence, we must now
set C∗I,2 := {p ∈ [0, 1]} and C∗II,2 := {q = 0}. Since C∗II,2 is a singleton, it
follows that player II’s admissible set with respect to the new context
is C∗II,2; that is, A∗II〈C∗I,2, C∗II,2〉 = {q = 0}. Since C∗II,2 = {q = 0}, the u1

I

expected utility of player I is 0 for any p ∈ C∗I,2 = [0, 1]. Also, if p = 0

then player I’s u2
I expected utility is 1 because q = 0 is only strategy of

player II in C∗II,2. Further, if p > 0 then player I’s u2
I expected utility

is 1 − p which is strictly less than 1. Thus, the singleton {p = 0} is
the admissible set of player I with respect to the new context because
(u1

I , u
2
I ) is a lexicographic expected utility representation of player I’s

preference; that is, A∗I 〈C∗I,2, C∗II,2〉 = {p = 0}. Since both admissible sets
are singletons, further iterations as required by definition 2 shall not
lead to any elimination. Hence, the surviving sets are A∞I = {p = 0}
and A∞II = {q = 0}. That is, the strategy tuple (B,R) is the unique
consideration equilibrium of the game.

Thus, we find that the unique consideration equilibrium involves
firms 1 and 2 playing the strategies “Poach firm 2’s top talent” and
“Match firm 1’s hostile price–cut, if any”, respectively. Hence, firm
1 ends up poaching firm 2’s top talent but does not execute hostile
price–cuts ensuring that they equal market shares. Our observations,
in the Introduction, are therefore confirmed. �
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Now, the above game admits a unique consideration equilibrium.
Further, this equilibrium is arguably the obvious prediction one would
make about reasonable play in such a situation. However, this is the
first of a series of examples in Fishburn (1971) to illustrate that Nash
equilibrium may not exist in a game if the Archimedean property ceases
to hold. Thus, Fishburn made the following remark.9

“However, due to the lack of an equilibrium point,
we can still find ourselves going in circles, as in pure
strategy cycles of Archimedian zero–sum games with no
pure–strategy equilibrium.”

However, a consideration equilibrium exists and must therefore be
free from the problem of “going in circles”. This is because, in any
further consideration, those strategies of the previous context which
could have resulted in “going in circles” are eliminated because present
consideration is limited only to admissible strategies. Recall that the
admissible strategies of a player are those which serve him the best if
his opponent were to play a best response (property B). The basis for
restriction to only admissible strategies is mutual conditional threats of
playing best responses in case the opponent does not restrict himself.
We now proceed to analyse the second example.

Example 2: Consider the game between the financial institution and
the other participants of the financial market. The market is either
“Optimistic” (L) or “Pessimistic” (R) about asset A1 thereby deter-
mining its valuation as high or low. The financial institution guesses
this by playing “Buy A1 and buy A2” (T ) or “Short sell A1” (B), where
A2 is a valuable asset which can be acquired or not only by the financial
institution. Also, profits or losses from trades in A1 are valued before
that of A2 by both the parties.

The mixed strategies for players I and II, as indicated in Figure 7,
are p ·T ⊕ (1− p) ·B and q ·L⊕ (1− q) ·R. The first component of the
ordered pair in each cell specifies the value of player I’s first Bernoullian
for the corresponding outcome. Likewise, for the second components.
Thus, u1

I (p, q) = pq + (1 − p)(1 − q) and u2
I (p, q) = p are the first and

second expected utilities of player I defining a lexicographic expected
utility representation, (u1

I , u
2
I ), of player I’s preference. Because the

game is zero–sum, u1
II(p, q) = −[pq + (1− p)(1− q)] and u1

II(p, q) = −p
are the two expected utilities of player II.

9The first sentence of the last paragraph of section 3 of Fishburn (1971).
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(1, 1)

(0, 0)

(0, 1)

(1, 0)

T

B

L R

p

1− p

q 1− q

Player I

Player II

Figure 7: Betting against the market.

With C∗I,1 := {p ∈ [0, 1]} and C∗II,1 := {q ∈ [0, 1]}. defining the initial
context 〈C∗I,1, C∗II,1〉, we proceed to show that player I’s admissible set
with respect to this context is A∗I 〈C∗I,1, C∗II,1〉 = {p = 1/2}. For any
p ∈ [0, 1], let Q∗(p) be the set of best responses in C∗II,1 of player II.

Thus, Q∗(p) ⊆ Q∗1(p) := argminq∈[0,1]u
1
I (p, q). Noting that u1

I (p, q) =
2(p− 1/2)q + (1− p), we obtain:

Q∗1(p) =


0 if p > 1/2;

[0, 1] if p = 1/2;

1 if p < 1/2.

For every p ∈ [0, 1], evaluating u1
I (p, q) for any q ∈ Q∗1(p), we have:

min
q∈[0,1]

u1
I (p, q) =


1− p if p > 1/2;

1/2 if p = 1/2;

p if p < 1/2.

Since 1−p < 1/2, we have p∗ := 1/2 as the unique element in {p ∈ [0, 1]}
such that, for every p 6= p∗, there exists q ∈ Q∗(p) ⊆ C∗II,1 that satisfies:

u1
I (p∗, q

′) > u1
I (p, q) for all q′ ∈ C∗II,1.

Since (u1
I , u

2
II) is a lexicographic expected utility representation of player

I’s preference, the singleton {p = 1/2} satisfies property B (or, G). By
definition 1, it follows that A∗I 〈C∗I,1, C∗II,1〉 = {p = 1/2}.

To compute player II’s admissible set A∗II〈C∗I,1, C∗II,1〉, we begin with

the following observation. Define p′ := 1− p and q′q. Then, u1
II(p, q) =

p′q′ + (1 − p′)(1 − q′) − 1. That is, u1
II(p, q) = u1

I (p
′, q′) − 1. Also,

u1
I (p
′, q′) = u1

I (q
′, p′). Thus, u1

II(p, q) = u1
I (q
′, p′) − 1. Hence, by the

previous argument, we have: A∗II〈C∗I,1, C∗II,1〉 = {q = 1/2}. Note, in the

analysis thus far, no appeal has been made to u2
I or u2

II.
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Finally, as each of the two admissible sets is a singleton, further
iterations as required by definition 2 lead to no updation of these sets.
Thus, A∞I = {p = 1/2} and A∞II = {q = 1/2}. Therefore, the pair
(1

2T ⊕
1
2B,

1
2L⊕

1
2R) is the unique consideration equilibrium. Observe,

this analysis did not depend on the specification of u2
I or u2

II. Note, our
suspicions in the Introduction are indeed confirmed. �

The reader may have noted that the game defined only by the first
components of the ordered pairs of the cells in Figure 7 is the stan-
dard “chicken game”. It is well–known that (1

2T ⊕
1
2B, (

1
2L⊕

1
2R) is the

unique Nash equilibrium (or, Minimax strategy tuple) of the chicken
game. It seems plausible that if further levels in players’ lexicographic
expected utilities do not feature into the analysis of consideration equi-
libria of a game, then the consideration equilibria should coincide with
Nash equilibria.10 Such is indeed the case. Lastly, Example 2 does not
admit any Nash equilibria as shown in Fishburn (1971).

Example 3: We now revisit the game describing the bilateral conflict
of nations 1 and 2. Recall, 1 cares in decreasing order of priority about
(1) having nuclear technologies, (2) surrounding 2 with its allies, and
(3) making international collaborations. The situation is zero–sum and
thus lexicographic payoffs of 2 stand specified the moment the same are
specified for 1. Figure 8 is resulting matrix game indicating the payoff
triples of 1 for every play of pure strategy tuples.

The interpretation of the matrix game, for the game illustrated in
Figure 8, is the same as was in Examples 1 and 2 except for two dif-
ferences. First, player II now has the pure strategy M available in
addition to L and R. Second, each player has three expected utilities
representing lexicographically his preference. Thus, the mixed strate-
gies for players I and II, as illustrated in Figure 8, are p ·T ⊕ (1− p) ·B
and q · L ⊕ r ·M ⊕ (1 − [q + r]) · R, respectively, where p ∈ [0, 1] and
the pair (q, r) ∈ [0, 1]2 satisfies q + r ≤ 1. Hence, the three expected
utilities for player I, for this mixed strategy pair, are u1

I (p ; q, r) = pq,
u2

I (p ; q, r) = (1−p)r+[1−(q+r)] and u3
I (p ; q, r) = (1−p)r+p[1−(q+r)].

As the game is zero–sum, the three expected utilities for player II are
u1

II(p ; q, r) = −u1
I (p ; q, r), u2

II(p ; q, r) = −u2
I (p ; q, r) and u3

II(p ; q, r) =
−u3

I (p ; q, r). Hence, (u1
I , u

2
I , u

3
I ) and (u1

II, u
2
II, u

3
II) are a lexicographic

expected utility representations of the preferences of players I and II,
respectively. Now, we proceed to analyse this game.

10This is not the same as Proposition 3. The point of that proposition is that consideration
equilibria coincide with Nash equilibria if players’ preference satisfy Independence and Continuity.
Here, we are arguing that despite having discontinuous preferences, if players’ higher expected utility
levels do not feature in the analysis of the consideration equilibria, then the proposed solution concept
should reduce to the classical solution concept

31



(1, 0, 0)
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(0, 1, 1)
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T

B

L M R

p

1− p

q r 1− (q + r)

Player I

Player II

Figure 8: Bilateral conflict.

With C∗I,1 := {p ∈ [0, 1]} and C∗II,1 := {q ∈ [0, 1]}, the initial context
is 〈C∗I,1, C∗II,1〉. To compute players’ admissible sets with respect to the

this context, observe the following. If p = 0, then u1
I (p ; q, r) = 0 for all

(q, r) ∈ [0, 1]2 such that q + r ≤ 1. Also, if p > 0, then minimization
of the u1

I expected utility implies q = 0 resulting in the u1
I expected

utility to be 0. Hence, for any p > 0, we have u2
I (p ; q, r) = 1− pr and

u3
I (p ; q, r) = r + p(1− 2r) by the lexicographic process as q must be 0.

Likewise, for p = 0, we have u2
I (p ; q, r) = 1 − q and u3

I (p ; q, r) = r for
every (q, r) ∈ [0, 1]2 such that q + r ≤ 1.

Suppose, there exists 0 < p0 < 1 which does not belong to player
I’s admissible set A∗I 〈C∗I,1, C∗II,1〉. Then, we argue: p > p0 implies p /∈
A∗I 〈C∗I,1, C∗II,1〉. Note, the U 2

I expected utility is minimized at r = 1 for
both p and p0 thereby resulting in expected utilities 1 − p and 1 − p0,
respectively. As p > p0 implies 1 − p < 1 − p0, if p ∈ A∗I 〈C∗I,1, C∗II,1〉,
then we shall have a contradiction to the fact that admissible sets must
satisfy property B. Hence, p > p0 implies p /∈ A∗I 〈C∗I,1, C∗II,1〉.

Since admissible sets must be non–empty, convex and compact by
Theorem 1, it follows from the last conclusion: there exists a unique
0 ≤ p∗ < 1 such that A∗I 〈C∗I,1, C∗II,1〉 = {0 ≤ p ≤ p∗}. Now, the

minimum u2
I expected utility is 0 for the strategy p = 0 as is enforced

by q = 1 which as argued in the previous paragraph can be considered
for the case “p = 0” as per the lexicographic procedure. Thus, for any
p > p∗, the minimum u2

I expected utility, which is 1 − p, is strictly
greater. This contradicts the fact that the admissible set must satisfy
property B. Thus, our supposition that some 0 < p0 < 1 exists which
does not belong to player I’s admissible set must be wrong. Hence,
the admissible set must include {0 < p < 1}. As admissible sets are
compact, we have: A∗I 〈C∗I,1, C∗II,1〉 = {p ∈ [0, 1]}.

We now compute player II’s admissible set. Observe, for any (q, r) ∈
A∗II〈C∗I,1, C∗II,1〉, it must be that q = 0 because the minimum u1

II expected
utility is 0 if q = 0, as enforced by any p ∈ [0, 1], in comparison to the
minimum u1

II expected utility of −q if q > 0 enforced by p = 1.
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Having concluded that q = 0, recall that the u1
II expected utility

is 0 for all p ∈ [0, 1] and r ∈ [0, 1]. Also, u2
II(p ; q, r) = pr − 1 and

u3
II(p ; q, r) = 2p(r−1/2)−r for all (p, r) ∈ [0, 1]2 when q = 0. Then, the

minimum u2 expected utility is−1 for any r ∈ [0, 1] which is enforced by
every p ∈ [0, 1] if r = 0 and by p = 0 if r > 0. Hence, u3

II(p ; q, r) = −p
if (q, r) = (0, 0) and u3

II(p ; q, r) = −r if (q, r) ∈ {0} × (0, 1].
Suppose, 0 < r0 < 1 is such that (q, r) = (0, r0) /∈ A∗II〈C∗I,1, C∗II,1〉.

Then, r > r0 implies that the pair (0, r) is not in A∗II〈C∗I,1, C∗II,1〉. For

otherwise, u3
II(p ; q, r) = −r < r0 = u3

II(p ; q, r0) which would contradict
the fact that admissible sets satisfy property B. Since an admissible
set is also non–empty, compact and convex, it follows that 0 ≤ r∗ < 1
exists such that A∗II〈C∗I,1, C∗II,1〉 = {(q, r) : q = 0 ; 0 ≤ r ≤ r∗}. However,

the minimum u3
II expected utility for r = 0 is −1 enforced by p = 1

and the minimum u3
II expected utility for r = 1 is clearly −1. That

is, the pair (q = 0, r = 0) is in the admissible set and it is a strategy
of player II which together with the strategy p = 0 of player I is an
outcome which is indifferent, according to player II, to the outcome
consituting the strategy (q = 0, r = 1) by player II and the strategy
p = 1 by I. This contradicts the fact that the admissible set satisfies
property B. Hence, our supposition must be wrong. Thus, the set
{(q, r) : q = 0 ; 0 < r < 1} ⊆ A∗II〈C∗I,1, C∗II,1〉. Since an admissible set is
compact, we have: A∗II〈C∗I,1, C∗II,1〉 = {(q, r) : q = 0 ; 0 ≤ r ≤ 1}.

The new context is 〈C∗I,2, C∗II,2〉 where C∗I,2 := {p ∈ [0, 1]} and C∗II,2 :=
{(q, r) : q = 0 ; r ∈ [0, 1]}. Thus, the game reduces to that in Figure 9.

(0, 0)

(1, 1)

(1, 1)

(1, 0)

T

B

M R

p

1− p

r 1− r

Player I

Player II

Figure 9: Bilateral conflict — the reduced game.

In this reduced game, player I’s first and second expected utilities are
w1

I (p, r) = (1−p)r+ (1− r) = 1−pr and w2
I (p, r) = (1−p)r+p(1− r),

respectively. Since the game is zero–sum, player II’s first and second
expected utilities can be taken as w1

II(p, r) = −w1
II(p, r) and w2

II(p, r) =
−w2

II(p, r), respectively. Thus, preferences of players I and II admit
(w1

I (p, r), w2
I (p, r)) and (w1

II(p, r), w
2
II(p, r)) as lexicographic expected

utility representations, respectively.
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If p > 0, the minimum w1
I expected utility of player I is 1− p which

is enforced by r = 1. However, the minimum w1
I expected utility of

player I is 1 if p = 0 which is enforced by any r ∈ [0, 1]. Therefore,
the singleton {p = 0} satisfies property B with respect to the present
context. Hence, A∗I 〈C∗I,2, C∗II,2〉 = {p = 0}. Because this set is already a
singleton, there shall be no updation in further iterations as demanded
by definition 2. Hence, we conclude: A∞I = {p = 0}.

Next, w1
II(p, r) = pr − 1 and w2

II(p, r) = 2p(r − 1/2) − r where
(p, r) ∈ [0, 1]2. Thus, by an argument identical to that in paragraphs
0 and 0, we have: A∗II〈C∗I,2, C∗II,2〉 = {r ∈ [0, 1]}. That is, there is no
updation of player II’s admissible set in this iteration. We proceed to
the next iteration as follows.

Now, the context is 〈C∗I,3, C∗II,3〉 where C∗I,3 := {p = 0} and C∗II,3 :=
{r ∈ [0, 1]}. It only remains to compute player II’s admissible set
with respect to this context. With p = 0, we have w1

II(p, r) = −1 and
w2

II(p, r) = −r for all r ∈ [0, 1]. Thus, player II’s admissible set with
respect to this context is {r = 0} which is a singleton. Hence, we have:
A∞II = {r = 0}. Since we had already concluded that A∞I = {p = 0}, it
follows that the game has a unique consideration equilibrium which is
the strategy tuple (B,R).

To interpret the final prediction, which is (B,R), we recall that the
pure strategies B and R were defined as logical combinations of clauses
SI,1 to SI,4 and SII,1 to SII,5, respectively. For convenience, we reproduce
the descriptions of B and R as follows:

B := SI,2 and SI,4.

R := SII,5 and (if SI,1 then SII,2).

Further, the involved clauses are as follows:

SI,1 := “Attempt to develop nuclear technologies”.

SI,2 := “Attempt to form allies that surround 2”.

SI,4 := “Make international collaborations”.

SII,2 := “Enforce sanctions on 1”.

SII,5 := “Make international collaborations”.

Thus, in the unique consideration equilibrium, nation 1 does not
end up developing nuclear technologies but its allies surround nation 2.
Moreover, both nations do form international collaborations. �

As Fishburn (1971) shows, this game admits no Nash equilibrium.
Note that these are all the examples in that article. Moreover, observe
that lexicographic expected utilities have testable implications.
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6. comparative statics

In this section, we formalize and establish the following claim: consid-
eration equilibrium makes “sharper predictions” than Nash equilibrium
in the game obtained if agents’ preferences are the “finest continuous
coarsening” of their respective original preferences. In this statement,
we have introduced the term “finest continuous coarsening” of a given
preference which intuitively is the continuous preference which “best
approximates” the given preference. Recall that S is the set S1 × S2

of all pure strategy tuples in the two–person game. All preferences are
defined over ∆(S). We begin with the following definition.

Definition 3: The preference %∗∗ refines the preference %∗ if,

p �∗ q =⇒ p �∗∗ q.

For instance, consider %∗ and %∗∗ defined as follows. Fix K ∈ N
and let Uk : ∆(S)→ R be an expected utility for each k ∈ {1, . . . , K}.
Let %∗∗ be the preference defined by:

p %∗∗ q ⇐⇒ [U1(p), . . . , UK(p)] ≥L [U1(q), . . . , UK(q)],

where ≥L is the lexicographic order over RK . Also, let %∗ be defined
as: p %∗ q ⇐⇒ U1(p) ≥ U1(q). Then, the definition of ≥L implies
p �∗ q =⇒ p �∗∗ q; that is, %∗∗ refines %∗. Observe, “refines” is a
transitive binary relation over the class of all preferences on ∆(S).

Definition 4: Let P be any class of preferences over ∆(S). Then,
%∗∗ is the finest in P if %∗∗ is in P and refines %∗ for all %∗∈P.

Having defined the term “refines”, we say “%∗∗ is finer than %∗”
or “%∗ is coarser than %∗∗” if %∗∗ refines %∗. Assume that Γ∗ and Γ∗∗

are the two–person zero–sum games 〈N, (Si)i∈N , (%∗i )i∈N〉 and Γ∗∗ :=
〈N, (Si)i∈N , (%∗∗i )i∈N〉, respectively. Observe the following.

Proposition 4: %∗∗1 refines %∗1, if and only if, %∗∗2 refines %∗2.

Proof: Assume that %∗∗1 refines %∗1. Let p, q ∈ ∆(S) be such that
p �∗2 q. Since Γ∗ is a zero–sum game, it follows that q �∗1 p. As �∗∗1
refines �∗1, we have q �∗∗1 p. Since Γ∗∗ is a zero–sum game, it follows
from q �∗∗1 p that p �∗∗2 q. Thus, we have: p �∗2 q =⇒ p �∗∗2 q. That
is, %∗∗2 refines %∗2. Therefore, we have shown: if %∗∗1 refines %∗1, then
%∗∗2 refines %∗2. The converse follows by a symmetric argument. �
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The proposition justifies the use of the phrase “Γ∗∗ refines Γ∗” to
stand for the phrase “Γ∗ and Γ∗∗ are games where %∗∗i refines %∗i for
some player i”. Thus, we shall say “Γ∗∗ is finer than Γ∗” or “Γ∗ is
coarser than Γ∗∗” if Γ∗∗ refines Γ∗. Now, we are ready to state the
basic comparative static result which is as follows.

Theorem 4: Let Γ∗ and Γ∗∗ be two–person zero–sum games and
〈C1, C2〉 be any context. Suppose Γ∗∗ refines Γ∗. Then, for each i ∈ N :

A∗i,Γ∗∗〈C1, C2〉 ⊆ A∗i,Γ∗〈C1, C2〉,

where A∗i,Γ∗〈C1, C2〉 and A∗i,Γ∗∗〈C1, C2〉 are admissible sets of player i in
games Γ∗ and Γ∗∗, respectively.

Proof: Let i ∈ N and consider an arbitrary Ai ⊆ Ci such that Ai

satisfies property G when the preferences of players 1 and 2 are %∗1 and
%∗2, respectively. That is, fixing an arbitrary xi ∈ Ci, there exists a
xj ∈ Cj \ Ai such that: (x′i, x

′
j) �∗i (xi, xj) for all (x′i, x

′
j) ∈ Ai × Cj.

Since Γ∗∗ refines Γ∗, it must be that %∗∗i refines %∗i . Then, by definition
3, we have: (x′i, x

′
j) �∗i (xi, xj) implies (x′i, x

′
j) �∗∗i (xi, xj). Thus,

(x′i, x
′
j) �∗∗i (xi, xj) for all (x′i, x

′
j) ∈ Ai × cj.

That is, Ai satisfies property G with respect to the context 〈C1, C2〉
where the preferences of players 1 and 2 are %∗∗1 and %∗∗2 , respectively.
Hence, we have the following:

A G
i,Γ∗〈C1, C2〉 ⊆ A G

i,Γ∗∗〈C1, C2〉,

where A G
i,Γ∗〈C1, C2〉 and A G

i,Γ∗∗〈C1, C2〉 are the classes of sets satisfying
property G holds with respect to 〈C1, C2〉 corresponding to player i
when his preferences are %∗i and %∗∗i , respectively. Now, the definition
of admissible sets implies the following:

Ai,Γ∗ =
⋂{

Ai ∈ A G
i,Γ∗〈C1, C2〉

}
, and

Ai,Γ∗∗ =
⋂{

Ai ∈ A G
i,Γ∗∗〈C1, C2〉

}
.

Hence, the last set–inclusion implies: A∗i,Γ∗∗〈C1, C2〉 ⊆ A∗i,Γ∗〈C1, C2〉. �

Theorem 4 says the following: the finer are the players’ preferences,
the smaller11 are their admissible sets with respect to any context.

11This is in terms of set–inclusion. That is, a set U is “smaller than” another set V iff U ⊆ V .
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We return again to our discussion of an arbitrary preference %∗∗

which refines another preference %∗. Recall our terminology allows us
to state this equivalently as %∗ is coarser than %∗∗. If in addition %∗ is
continuous12, then %∗ is a continuous coarsening of %∗∗. For instance,
consider the example following definition 3 where %∗∗ is the preference
which admits the lexicographic expected utility representation via the
K–tuple of expected utilities U1, . . . , UK , and %∗ is the preference which
admits U1 as its expected utility representation. Since preferences that
admit expected utility representations must be continuous by the the
theorem due to von Neumann & Morgenstern (1944), it follows
that %∗ is a continuous coarsening of %∗∗.

Now, for the arbitrary given preference %∗∗, the preference which
declares any two alternatives to be indifferent is trivially a continuous
coarsening. Therefore, we want to formulate the notion of the “finest”
among all continuous coarsenings of %∗∗. Let C% be the class of all
continuous coarsenings of any preference % which is non–empty as it
contains the trivial preference. Also, recall the term “finest” from def-
inition 4. We now claim that there exists a unique “finest continuous
coarsening” of %. Define �c and ∼c over ∆(S) as follows:

�c :=
⋃{

�∗:%∗∈ C%
}

and ∼c :=
⋂{

∼∗:%∗∈ C%
}
.

Also, define %c := �c
⋃
∼c. The key result is as follows.

Theorem 5: %c is the unique finest continuous coarsening of %.

The proof is supplied in subsection A.1 of the Appendix.13 Consider
the example of lexicographic expected utility preferences.

Corollary 1: Suppose that %∗∗ admits a lexicographic expected utility
representation through U1, . . . , UK and assume U1 is non–trivial. If %∗

is the preference defined to have the expected utility U1 as one of its
representations, then %∗ is the finest continuous coarsening of %∗∗.

The proof is in subsection A.3 of the Appendix but the intuition is
as follows. The closure of any weak upper (lower) contour set of the
preference %∗∗ is a closed halfspace which is precisely the corresponding
weak upper (lower) contour set of the preference %∗.

12For any binary relation % over ∆(S), we shall follow the standard practice of denoting by �
and ∼ the strict and indifference components, respectively, of %. Formally, their definitions are as
follows: (1) p � q iff ( p % q ; not q % p ), and (2) p ∼ q iff ( p % q ; q % p ). A preference %
is continuous if, p � q implies that there exists ε > 0 such that p′ � q′ for every p′ ∈ B(p, ε) and
q ∈ B(q, ε). Here, B(p, ε) is the open ball in ∆(S) of radius ε centered at p.

13However, we believe that Theorem 5 and its proof are of independent interest.
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Notwithstanding the discussion of the above example, Theorem 5 is
applicable for any general preference % to begin with. In particular, %
may not satisfy Independence. The precise consequence of additionally
assuming Independence of % is captured by the following.

Proposition 5: If the preference % satisfies Independence, then its
finest continuous coarsening %c also satisfies Independence.

Proof: Since % satisfies Independence,14 for some K ∈ N there exists
expected utilities Uk : ∆(S)→ R for all k ∈ {1, . . . , K} such that:

p % q iff [U1(p), . . . , UK(p)] ≥L [U1(q), . . . , UK(q)].

Assume, without loss of generality, U1 is not trivial. Thus, %c admits
U1 as an expected utility representation. Therefore, %c satisfies the
Independence axiom. �

Theorem 5 and Proposition 5 allow us to naturally talk of the “finest
continuous coarsening” of any given two–person zero–sum game Γ in
which player i’s preference is %i that satisfies Independence. Thus, the
game Γc is the finest continuous coarsening of Γ if, each i’s preference
is %ci instead of %i. Then, we have the following.

Proposition 6: Suppose Γ is a two–person zero–sum game and let
Γc be its finest continuous coarsening. Then, the set of consideration
equilibria of Γ is a subset of the set of minimax strategies of Γc.

Proof: The set A∞1,Γ × A∞2,Γ of all consideration equilibria of Γ is
a subset of A∗1,Γ × A∗2,Γ where A∗i,Γ is the admissible set of player i
in the game Γ with respect to the context 〈∆(S1),∆(S2)〉. Further,
the game Γ is finer than its finest continuous coarsening Γc. Let
M1,Γc × M2,Γc be the set of all minimax strategy pairs of the game
Γc. Further, let A∗i,Γc be player i’s admissible set in the game Γc with
respect to the context 〈∆(S1),∆(S2)〉. Then, Proposition 3 implies that
A∗1,Γc × A∗2,Γc since players’ preferences in Γc satisfy Independence and
Continuity. Moreover, Theorem 4 implies A∗1,Γ × A∗2,Γ ⊆ A∗1,Γc × A∗2,Γc.
Thus, A∗1,Γ × A∗2,Γ ⊆M1,Γc ×M2,Γc which completes the proof. �

Thus, we have formalized the claim: consideration equilibria make
finer predictions than Nash equilibria when players’ preferences are the
finest continuous coarsening of their respective original preferences.

14The statement that “a preference admits a lexicographic expected utility (LEU) representation,
if and only if, it satisfies the Independence axiom” is provided in the next section.
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7. computing equilibria

The objective of this section is to characterize admissible sets with a
view towards computation. We begin with a representation theorem
for preferences which are assumed to satisfy only our Independence
axiom. Hausner (1954) characterized the existence of lexicographic
expected utility representations using the original Independence axiom;
also see Blume et al. (1989). Our axiom is weaker and the stronger
characterization is in Chatterjee (2022).

To state this theorem, we introduce some concepts. Let Z be a finite
non–empty set whose elements are the basic prizes. A lottery over Z
is any map p : Z → [0, 1] with

∑
z∈Z p(z) = 1. Let ∆(Z) be the set of

all lotteries. Any map U : ∆(Z) → R is an expected utility (EU) if,15

U(p) =
∑

z∈Z p(z)U(z) for all p ∈ ∆(Z). If % is a preference over ∆(Z),
then the list of some K ∈ N expected utilities 〈Uk : k = 1, . . . , K〉 is a
lexicographic expected utility (LEU) representation of % if:

p % q ⇐⇒ [U1(p), . . . , UK(p)] ≥L [U1(q), . . . , UK(q)]

where ≥L is the lexicographic order over RK . Then, Hausner’s theorem
as adapted to this setting16 can be stated as follows.

Theorem (Existence of LEU Representations): A preference satisfies
Independence, if and only if, it admits an LEU representation.

To apply the above theorem to our setting, we recall that basic
prizes are all pure strategy tuples which constitute the set S1 × S2.
Since players’ preferences %1 and %2 over ∆(S1 × S2) are assumed to
satisfy Independence, we obtain K ∈ N and an LEU representation
〈Ui,k : k = 1, . . . , K〉 of %i for each player i ∈ N such that:

U2,k = −U1,k for every k ∈ {1, . . . , K}.

Note, the same K is used for each player as must be because the
game is zero–sum. Further, the requirement that U2,k = −U1,k for each
k ∈ {1, . . . , K} is based on the fact that the game is zero–sum and
because of the observation that any positive affine transformation of
an expected utility is also an expected utility representing the same
preference. The characterization of player i’s admissible set A∗i 〈C1, C2〉
with respect to any context 〈C1, C2〉 shall be casted in terms of the
LEU representations of players’ preferences.

15For the degenrate lottery δz∗ ∈ ∆(Z) with support {z∗}, we write U(z∗) instead of U(δz∗).
16Hausner (1954) considered abstract mixture spaces.
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Before embarking on the characterization, we proceed to establish
an “indifference property” of admissible sets. The insights are then
generalized leading up to the desired characterization. Consider an
arbitrary context 〈C1, C2〉 such that C1 and C2 are convex. Also, let
k∗ ∈ {1, . . . , K} be the unique smallest element such that Ui,k∗ is not a
constant map over C1 × C2 for some player i. With A∗i 〈C1, C2〉 as the
admissible set of player i, consider the following definitions:

vi := max
xi∈Ci

min
xj∈Cj

Ui,k∗(xi, xj), (4)

vi∗ := max
xi∈A∗i 〈C1,C2〉

min
xj∈Cj

Ui,k∗(xi, xj), (5)

Bi :=
{
xi ∈ Ci : Ui,k∗(xi, xj) ≥ vi for all xj ∈ Cj

}
. (6)

With the above definitions in place, the basic result is as follows.

Proposition 7: For each player i, vi = vi∗, A
∗
i 〈C1, C2〉 ⊆ Bi and Ui,k∗

is constant over A∗1〈C1, C2〉 × A∗2〈C1, C2〉.

Proof: Note that both vi and vi∗ are well–defined real numbers. This
rests on two observations. First, each of the two sets A∗i 〈C1, C2〉 and
Ci is non–empty and compact. Second, the map:

xi ∈ ∆(Si) 7→ min
xj∈Cj

Ui,k∗(xi, xj)

is continuous. This follows from Berge’s Theorem of Maximum.17 To
see why, note (a) the map (xi, xj) ∈ ∆(Si) × ∆(Sj) 7→ Ui,k∗(xi, xj)
is continuous, and (b) the constant map xi ∈ ∆(Si) 7→ Cj is a com-
pact–valued and continuous correspondence.

Observe, (xi, xj) �i (x′i, x
′
j) if Ui,k∗(xi, xj) > Ui,k∗(x

′
i, x
′
j) by the def-

inition of k∗. Since A∗i 〈C1, C2〉 ⊆ Ci, it follows from (4) and (5) that
vi ≥ vi∗. We shall first argue: vi = vi∗. Suppose, vi > vi∗. By (4), there
exists xi ∈ Ci\A∗i 〈C1, C2〉 such that: Ui,k∗(xi, xj) ≥ vi for every xj ∈ Cj.
Further, (5) implies that there exists x′i ∈ A∗i 〈C1, C2〉 and x′j ∈ Cj such

that Ui,k∗(x
′
i, x
′
j) = vi∗. Thus, vi > vi∗ implies:

(xi, xj) �i (x′i, x
′
j) for every xj ∈ Cj.

Since xi ∈ Ci \ A∗i 〈C1, C2〉, the above conclusion is a contradiction to
the fact that A∗i 〈C1, C2〉 satisfies property G begin the admissible set
with respect to the context 〈C1, C2〉. Thus, we have: vi = vi∗.

17See, for instance, Proposition A4.7 on page 476 of Kreps [2013].
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Now, we shall show that A∗i 〈C1, C2〉 ⊆ Bi. Since A∗〈C1, C2〉 is the
smallest non–empty compact set that satisfies property G, it will be
enough to argue: Bi is a non–empty and compact set that satisfies
property G. From (6), observe that Bi =

⋂
{Bi(xj) : xj ∈ Cj} where

Bi(xj) := {xi ∈ Ci : Ui,k∗(xi, xj) ≥ vi}. By continuity of the map
xi ∈ Ci 7→ Ui,k∗(xi, xj), the set Bi(xj) is a closed subset of Cj. Thus,
the compactness of Cj implies: Bi is compact. The non–emptiness of
Bi follows from (4) and the following observation:

Bi = {xi ∈ Ci : min
xj∈Cj

Ui,k∗(xi, xj) ≥ vi}

We now argue: Bi satisfies property G. Fix an arbitrary xi ∈ Ci\Bi.
From (6), it follows that there exists xj ∈ Cj such that Ui,k∗(xi, xj) < vi.
Further, consider an arbitrary (x′i, x

′
j) ∈ Bi × Cj. Again, (6) implies

that Ui,k∗(x
′
i, x
′
j) ≥ vi. That is, Ui,k∗(x

′
i, x
′
j) > Ui,k∗(xi, xj). Hence,

(x′i, x
′
j) �i (xi, xj) for all (x′i, x

′
j) ∈ Bi×Cj. Thus, Bi satisfies property

G. Therefore, A∗i 〈C1, C2〉 ⊆ Bi holds.
Finally, we argue: Ui,k∗ is constant over A∗1〈C1, C2〉 × A∗2〈C1, C2〉.

We recall that U2,k∗ = −U1,k∗. Since C1 ⊆ RS1 and C2 ⊆ RS2 are convex
and compact, by the Minimax Theorem of von Neumann (1928):

max
x2∈C2

min
x1∈C1

U2,k∗(x1, x2) = min
x1∈C1

max
x2∈C2

U2,k∗(x1, x2), and

min
x1∈C1

max
x2∈C2

U2,k∗(x1, x2) = − max
x1∈C1

min
x2∈C2

U1,k∗(x1, x2)

where the latter follows trivially from U2,k∗ = −U1,k∗. Combining the
above with definitions of v1 and v2 as in (4), we obtain: v1 = −v2.
Now, let x1 ∈ A∗1〈C1, C2〉 and x2 ∈ A∗2〈C1, C2〉 be arbitrary. Since
A∗i 〈C1, C2〉 ⊆ Bi for each i, it follows that U1,k∗(x1, x2) ≥ v1 and
U2,k∗(x1, x2) ≥ v2. However, U2,k∗ = −U1,k∗ implies −v2 ≥ U1,k∗(x1, x2).
By v1 = −v2, v1 ≥ U1,k∗(x1, x2). Thus, U1,k∗(x1, x2) = v1. That is,
U1,k∗ is constant over A∗1〈C1, C2〉 × A∗2〈C1, C2〉. A symmetric argument
applies for U2,k∗. This completes the proof. �

To get some intuition, recall the definition of the admissible set.
The key idea is to obtain the minimal set for a player such that if some
strategy outside of that set is deployed then, for some play of the oppo-
nent, this player is strictly worse off than had he considered playing any
strategy from within the set irrespective of what his opponent played.
For an expected utility preference, this corresponds to von Neumann’s
value which is the best minimum guarantee to the player.
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Proposition 7 asserts the contancy of the first non–trivial Bernoul-
lian over the context in the resulting admissible set. However, to char-
acterize the admissible set in question, it is necessary to “trim” further
the resulting intermediate sets using the remaining Bernoullians in lex-
icographic expected utility representation. The description of these
further “trimmings” is follows.

Without loss of generality, let 〈C1, C2〉 be any context that admits a
unique smallest k∗ ∈ {1, . . . , K − 1} such that Ui,k∗+1 is not a constant
map over C1 × C2 for some player i. We associate the list M〈C1, C2〉
consisting of pairs 〈(Bj

k, v
j
k) : j ∈ N〉 for each 0 ≤ k ≤ K − k∗, where

Bj
k ⊆ Cj and vjk ∈ R, which is iteratively defined as follows. Fix an

arbitrary player i. Let Bi
0 := Ci and vi0 be constant value of the map

Ui,k∗ over C1 × C2. Now, suppose that, for some 1 ≤ k ≤ K − k∗, the

pairs 〈(Bj
l , v

j
l ) : j ∈ N〉 have already been defined for every 0 ≤ l < k.

Then, denote by vik the list 〈vil : 0 ≤ l < k〉 and define the set:

∆(xi,v
i
k) :=

{
xj ∈ Cj : Ui,k∗+l(xi, xj) = vil for all 0 ≤ l < k

}
(7)

for any xi ∈ Bi
k−1. Then, define vik ∈ R and Bi

k,ε ⊆ Bi
k−1 as follows:18

vik := sup
xi∈Bik−1

min
xj∈∆(xi,vik)

Ui,k∗+k(xi, xj), and (8)

Bi
k,ε :=

{
xi ∈ Bi

k−1 : min
xj∈∆(xi,vik)

Ui,k∗+k(xi, xj) ≥ vik − ε
}
. (9)

Also, define19 Bi
k :=

⋂
ε>0 cl(Bi

k,ε). Then, the following list:

M〈C1, C2〉 = 〈(Bi
k, v

i
k) : 0 ≤ k ≤ K − k∗ ; i ∈ N〉

is unique, if it exists, with a nest Ci = Bi
0 ⊇ Bi

1 ⊇ . . . ⊇ Bi
K−k∗ for each

player i. We call M〈C1, C2〉 the maxmin system associated with the
context 〈C1, C2〉. Admissible sets are characterized as follows.

Theorem 6: Let 〈C1, C2〉 be a context with C1 and C2 convex. Then,
the maxmin system M〈C1, C2〉 associated with 〈C1, C2〉 exists and is
unique. Further, Bi

K−k∗ = A∗i 〈C1, C2〉 for each i.

The proof of this result is technical and is, therefore, supplied in
subsection A.2 of the Appendix. This concludes our presentation.

18“Ui,k(xi, xj)” stands for U1,k(x1, x2) or U2,k(x1, x2) according as (i, j) is (1, 2) or (2, 1).
19For any subset A ⊆ ∆(Si), we shall indicate by cl(A) the closure of A relative to the topology

on ∆(Si) inherited from the standard topology of RSi .
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appendix

A.1 Proof of Theorem 5

To make this subsection self–contained, we briefly recall the definitions
and the claim. For any given preference % over ∆(S), let C% be the
class of all continuous coarsenings of %. Thus, a typlical element of
C% is any continuous preference %∗ such that % refines %∗; that is,
p �∗ q =⇒ p �∗ q. Then, the binary relation %c corresponding to %
was defined as %c := �c

⋃
∼c, where �c and ∼c were defined as:

�c :=
⋃{

�∗:%∗∈ C%
}

and ∼c :=
⋂{

∼∗:%∗∈ C%
}
.

The result we prove here is Theorem 5 from section 6 restated as follows.

Theorem 5: %c is the unique finest continuous coarsening of %.

We show that %c is a preference which is continuous and is refined
by %. Further, we argue %c refines every element in C%. Finally, we
prove that %c is the unique such preference.

Proof: The proof of Theorem 5 is organized via the following steps:

Step 1 : We argue: the relations �c and ∼c are asymmetric and
symmetric, respectively.20 First, we show: �c is asymmetric. Assume
p �c q holds. By definition of �c, there exists %∗∈ C% such that p �∗ q.
By definition of C% and %∗∈ C%, it follows that % refines %∗. Thus,
p �∗ q implies p � q. That is, p �c q implies p � q. Suppose q �c p
holds. Then, we have q � p. However, this contradicts the asymmetry
of � because % is a preference. Hence, p �c q =⇒ not q �c p. That
is, �c is asymmetric. Second, we observe: ∼c is symmetric. This is
because ∼c is the intersection of symmetric binary relations.

Step 2 : We argue: %c is complete. Suppose, p, q ∈ ∆(S) are such
that neither p %c q nor q %c p hold. Thus, the definition of %c implies
none of p �c q, q �c p or p ∼c q hold. Since p �c q does not hold,
the definition of �c implies p �∗ q fails for all %∗∈ C%. Also, since
p ∼c q does not hold, the definition of ∼c implies p ∼∗ q for all %∗∈ C%.
Hence, p %∗ q fails to hold for every %∗∈ C%. However, each %∗∈ C%
is a preference. Thus, failure of p %∗ q implies q �∗ p. Hence, the
definition of �c requires q �c p which is a contradiction. Thus, p %c q
or q %c p holds. That is, the relation %c is complete.

20Formally, we wish to establish (1) ( p �c q =⇒ not q �c p ), and (2) ( p ∼c q =⇒ q ∼c p ).
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Step 3 : We argue:21 if P and I are respectively the asymmetric and
symmetric components22 of %c, then P = �c and I = ∼c. We begin
with some observations. Note, P

⋂
I = ∅ by definition of P and I.

Also, P
⋃
I = %c because %c is complete as shown in step 2. Thus,

{P, I} partitions %c. Further, P and I are respectively asymmetric and
symmetric. Next, �c and ∼c are disjoint. To see why, suppose p �c q
and p ∼c q hold. By definition of �c, there exists %∗∈ C% such that
p �∗ q. Also, by definition of ∼c, p ∼c q holds. This contradicts the
fact that �∗ and ∼∗ are disjoint as %∗, being in C%, is a preference.
Also, %c = �c

⋃
∼c by definition of %c. Thus, {�c,∼c} partitions

%c. Moreover, �c and ∼c are respectively asymmetric and symmetric
from step 1. Hence, to complete the proof of the claim in this step it
is enough to establish the following general result:

Lemma: Let X be a non–empty set. Suppose that A1,A2 are two
asymmetric binary relations on X and S1,S2 are two symmetric
binary relations on X such that A1

⋂
S1 = ∅ = A2

⋂
S2 and

A1

⋃
S1 = A2

⋃
S2. Then, A1 = A2 and S1 = S2.

For proof, suppose x∗, x
∗ ∈ X satisfy (x∗, x

∗) ∈ A1 and (x∗, x
∗) /∈ A2.

Then, A1

⋃
S1 = A2

⋃
S2 implies that (x∗, x

∗) ∈ S2. Because S2 is
symmetric, we have (x∗, x∗) ∈ S2. Then, A1

⋃
S1 = A2

⋃
S2 implies

(x∗, x∗) ∈ A1

⋃
S1. However, (x∗, x∗) /∈ A1 because (x∗, x

∗) ∈ A1 and
A1 is asymmetric. Thus, we obtain (x∗, x∗) ∈ S1. Then, the symmetry
of S1 implies that (x∗, x

∗) ∈ S1. Hence, we have (x∗, x
∗) ∈ A1 and

(x∗, x
∗) ∈ S1. That is, A1

⋂
S1 6= ∅ which is a contradiction. Thus,

our supposition is wrong. That is, A1 ⊆ A2. By a symmetric argument,
we obtain A2 ⊆ A1. Hence, A1 = A2. Clearly, S1 = (A1

⋃
S1) \ A1 as

A1

⋂
S1 = ∅. Similarly, S1 = (A2

⋃
S2) \ A2. Thus, S1 = S2.

Step 4 : We argue: %c is transitive. Let p, q, r ∈ ∆(S) be such that
p %c q and q %c r. We are required to show that p %c r. From the
definition of %c, it is enough to prove each of the following:

1. Cross–transitivity of (�c,∼c) : ( p �c q ; q ∼c r ) =⇒ p �c r.

2. Cross–transitivity of (∼c,�c) : ( p ∼c q ; q �c r ) =⇒ p �c r.

3. Transitivity of ∼c : ( p ∼c q ; q ∼c r ) =⇒ p ∼c r.

4. Transitivity of �c : ( p �c q ; q �c r ) =⇒ p �c r.
21This step justfies, �c and ∼c are indeed the asymmetric and symmetric components of %c.
22That is, (1) pPq ⇐⇒ ( p %c q ; not q %c p ), and (2) pIq ⇐⇒ ( p %c q ; q %c p ).
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For 1., assume p �c q and q ∼c r. The definition of �c and p �c q
imply that there exists a preference %∗∈ C% such that p �∗ q. Also,
the definition of ∼c and q ∼c r imply q ∼∗ r. Since %∗ is a preference,
cross–transitivity of (�∗,∼∗) holds. Thus, p �∗ q and q ∼∗ r imply
p �∗ r. Since %∗∈ C%, the definition of �c and p �∗ r imply p �c r.
That is, ( p �c q ; q ∼c r ) =⇒ p �c r as required.

For 2., assume p ∼c q and q �c r. The definition of �c and q �c r
imply that there exists a preference %∗∈ C% such that q �∗ r. Also,
the definition of ∼c and p ∼c q imply p ∼∗ q. Since %∗ is a preference,
cross–transitivity of (∼∗,�∗) holds. Thus, p ∼∗ q and q �∗ r imply
p �∗ r. Since %∗∈ C%, the definition of �c and p �∗ r imply p �c r.
That is, ( p ∼c q ; q �c r ) =⇒ p �c r as required.

For 3., assume p ∼c q and q ∼c r. Let %∗∈ C% be arbitrary. By
definition of ∼c and p ∼c q, p ∼∗ q holds. Similarly, we have q ∼∗ r.
As %∗ is a preference, ∼∗ is transitive. Then, p ∼∗ q and q ∼∗ r imply
p ∼∗ r. As %∗∈ C% was arbitrary, we have p ∼c r by definition of ∼c.
That is, ( p ∼c q ; q ∼c r ) =⇒ p ∼c r as required.

For 4., assume p �c q and q �c r. Suppose p �c r does not hold.
Since %c = �c

⋃
∼c by definition and %c is complete as shown in step

2, the supposition that p �c r does not hold implies that at least one
p ∼c r, r ∼c p or r �c p holds. Since ∼c is symmetric from step 1, we
have: p ∼c r iff r ∼c p. Moreover, if r ∼c p holds, then q �c r and
cross–transitivity of (�c,∼c) imply q �c p. However, this contradicts
the asymmetry of �c as shown in step 1 because p �c q holds. Thus,
neither p ∼c r nor r ∼c p holds. Hence, r �c p must hold.

Now, p �c q and the definition of �c imply that there exists %∗∈ C%
such that p �∗ q. Also, by definition of C%, it must be that % refines
%∗. Thus, p �∗ q implies p � q. That is, p �c q implies p � q. Sim-
ilarly, q �c r implies q � r. But � is transitive as % is a preference.
Hence, p �q and q � r imply p � r. Now, recall we also have r �c p
from the last paragraph. Also, r �c p implies r � p. Moreover, �
is asymmetric as it is the asymmetric component of the preference %.
But p � r and r � p constitute a contradiction to the asymmetry of �.
Thus, our supposition that p �c r fails to hold must be wrong. Hence,
we obtain p �c r. That is, ( p �c q ; q �c r ) =⇒ p �c r as required.
This completes the argument for transitivity of %c.

Step 5 : We argue: %c is continuous. Assume p �c q holds. Then,
there exists %∗∈ C% such that p �∗ q. By definition of C%, %∗ is a con-
tinuous preference. Then, p �∗ q implies that there exists ε > 0 such
that: if p′ ∈ B(p, ε) and q′ ∈ B(q, ε), then p′ �∗ q′. Since %∗∈ C%, the
definition of �c implies: p′ �c q′ for every p′ ∈ B(p, ε) and q′ ∈ B(q, ε).
Hence, %c is a continuous preference.
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Step 6 : We argue: % refines %c. Assume p �c q holds. Then, by
definition of �c, there exists %∗ such that p �∗ q. Also, the definition
of C% implies that % refines %∗. Thus, p �∗ q implies p � q. Hence,
p �c q =⇒ p � q holds. That is, % refines %c as required.

Step 7 : We argue: if %∗∈ C%, then %c refines %∗. For this, assume
%∗∈ C% and p �∗ q. Then, the definition of �c implies p �q. Thus,
p �∗ q =⇒ p �c q holds if %∗∈ C%. Hence, from Definition 3, we
obtain: if %∗, then %c refines %∗.

Step 8 : We argue: %c is a finest continuous coarsening of %. From
steps 2 and 4, we have %c is complete and transitive. That is, %c is a
preference. Also, from step 5, we have %c is continuous. Moreover, step
6 shows that % refines the continuous preference %c. Thus, %c∈ C% by
the definition of the class C%. That is, %c is a continuous coarsening of
%. Finally, step 7 shows that %c refines every continuous coarsening of
%. That is, %c is finer than every continuous coarsening of %. Hence,
%c is a finest continuous coarsening of %.

Step 9 : We argue: if %1 and %2 are finest continuous coarsenings of
%, then %1 and %2 coincide. For this, assume that each of %1 and %2

is a finest continuous coarsening of %. Since %1 is a finest continuous
coarsening of %, it follows that %1∈ C%. Moreover, %2 being a finest
continuous coarsening of % must refine every element of C%. Thus, %2

refines %1. That is, p �1 q =⇒ p �2 q holds. Interchanging the
positions of the superscripts “1” and “2”, in this argument, leads to:
p �2 q =⇒ p �1 q. Hence, we obtain: p �1 q ⇐⇒ p �2 q.

Now, we argue: p %1 q ⇐⇒ p %2 q. Suppose p %1 q holds but
p %2 q does not hold. Since %2 is a preference, it follows that the
failure of p %2 q implies q �2 p holds. Further, q �2 p implies q �1 p.
However, by definition of �1, q �1 p implies p %1 q does not hold.
Since we have a contradiction, our supposition must be wrong. Thus,
p %1 q =⇒ p %2 q holds. Interchanging the superscripts “1” and “2”,
in this argument, allows us to conclude: p %2 q =⇒ p %1 q. Hence,
we obtain: p %1 q ⇐⇒ p %2 q. That is, %1 and %2 coincide.

Observe that step 8 shows that %c is one preference which is a
finest continuous coarsening of the given preference %. Moreover, step 9
shows that any two finest continuous coarsening of the given preference
% must be identical. Thus, we have established: the preference %c is
the unique finest continuous coarsening of the preference %. Thus, the
proof of Theorem 5 is complete. �
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A.2 Proof of Theorem 6

Proof: Consider an arbitrary 1 ≤ k ≤ K − k∗. By (8), each of
the sets Bi

k,ε is non–empty. Thus, {cl(Bi
k,ε) : ε > 0)} is a family of

compact non–empty sets and satisfy the finite intersection property.
Hence, Bi

k is a non–empty and compact subset of Bi
k−1 which is clearly

convex. Thus, to show that A∗i 〈C1, C2〉 ⊆ Bi
k, it is enough to show that

Bi
k is admissible with respect to the context 〈C1, C2〉. This is because

A∗i 〈C1, C2〉 is the smallest admissible set in the context 〈C1, C2〉. For
this, we must argue: Bi

k satisfies property B.
Assume, as part of the induction hypothesis, that Bi

k−1 satisfies
property23 G. Now, fix xi /∈ Bi

k, x
′
i ∈ Bi

k and x′j ∈ Cj arbitrarily. If

xi /∈ Bi
k−1, then from Bi

k ⊆ Bi
k−1 it follows that (x′i, x

′
j) �i (xi, xj) for

some xj ∈ Cj. Hence, assume xi ∈ Bi
k−1. Because xi ∈ Bi

k \Bi
k−1, there

exists ε > 0 such that xi ∈ Bi
k−1 \ cl(Bi

k,ε). Since Bi
k,ε ⊆ cl(Bi

k,ε), we

have: xi ∈ Bi
k−1 \ Bi

k,ε. By (9), minxj∈∆(xi,vik) Ui,k∗+k(xi, xj) < vik − ε.
Then, there exists xj ∈ ∆(xi,v

i
k) with Ui,k∗+k(xi, xj) < vik − ε.

We may assume that Ui,k∗+l(x
′
i, x
′
j) = vil for each 0 ≤ l < k; that

is, x′j ∈ ∆(x′i,v
i
k). For otherwise, there exists 0 ≤ l∗ < k such that

Ui,k∗+l(x
′
i, x
′
j) = vil for all 0 ≤ l < l∗ and Ui,k∗+l∗(x

′
i, x
′
j) > vil∗. This is so

as Bi
l satisfies property B for all 0 ≤ l < k by the induction hypothesis

and by definition (8). Then, (x′i, x
′
j) �i (xi, xj) anyway.

We argue: Ui,k∗+k(x
′
i, x
′
j) > Ui,k∗+k(xi, xj). Choose 0 < ε′ < ε. Since

x′i ∈ Bi
k, it follows that x′i ∈ Bi

k,ε′. Thus, (9) and x′j ∈ ∆(x′i,v
i
k) imply

Ui,k∗+k(x
′
i, x
′
j) ≥ vik − ε′. Since ε′ < ε, Ui,k∗+k(x

′
i, x
′
j) > Ui,k∗+k(xi, xj).

Since xj ∈ ∆(xi,v
i
k) and x′j ∈ vik, we have: (x′i, x

′
j) �i (xi, xj). That is,

Bi
k satisfies property G. Thus, A∗i 〈C1, C2〉 ⊆ Bi

k.
In particular, A∗i 〈C1, C2〉 ⊆ Bi

K−k∗ holds. However, we must also

establish: Bi
K−k∗ = A∗i 〈C1, C2〉. Because the list Ui,k∗+1, . . . , Ui,K is

a lexicographic expected utility representation of player i’s preference
over C1 × C2, by arguments as above it is enough to establish the
equality of the following two quantities:

vi∗ := sup
xi∈A∗i 〈C1,C2〉

min
xj∈∆(xi,viK−k∗)

Ui,K(xi, xj), and (10)

viK−k∗ := sup
xi∈BiK−k∗−1

min
xj∈∆(xi,viK−k∗)

Ui,K(xi, xj), (11)

where (11) is (9) of section (7) reproduced with k := K − k∗. However,
since A∗i 〈C1, C2〉 ⊆ Bi

K−k∗, (10) and (11) imply: viK−k∗ ≥ vi∗.

23Recall, property G is equivalent to property B as shown in Proposition 1.
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To show that viK−k∗ = vi∗ holds, suppose: viK−k∗ > vi∗. Then, from

definitions (10) and (11), there exists x∗i ∈ Bi
K−k∗−1 \ A∗i 〈C1, C2〉 such

that, for every xi ∈ A∗i 〈C1, C2〉, the following holds:

min
xj∈∆(x∗i ,v

i
K−k∗)

Ui,K(x∗i , xj) > min
xj∈∆(xi,viK−k∗)

Ui,K(xi, xj). (12)

Let x∗j ∈ ∆(x∗i ,v
i
K−k∗), xi ∈ A

∗
i 〈C1, C2〉 and xj ∈ ∆(xi,v

i
K−k∗) satisfy:

Ui,K(x∗i , x
∗
j) = min

xj∈∆(x∗i ,v
i
K−k∗)

Ui,K(x∗i , xj), and

Ui,K(xi, xj) = min
xj∈∆(xi,viK−k∗)

Ui,K(xi, xj).

Therefore, inequality (12) implies Ui,K(x∗i , x
∗
j) > Ui,K(xi, xj). Moreover,

Ui,k∗+l(x
∗
i , x
∗
j) = vil = Ui,k∗+l(xi, xj) for every 0 ≤ l < K − k∗ because

x∗j ∈ ∆(x∗i ,v
i
K−k∗) and xj ∈ ∆(xi,v

i
K−k∗) (see (7) in section 7). Also,

Ui,l(x
∗
i , x
∗
j) = Ui,l(xi, xj) for all 1 ≤ l ≤ k∗ because Ui,l is constant

over C1 × C2 for all l ≤ k∗ by the definition of k∗. Then, since the list
Ui,1, . . . , Ui,K is a lexicographic expected utility representation of player
i’s preference %i, we obtain: (x∗i , x

∗
j) �i (xi, xj). However, note that x∗j

is a best response of player j in Cj to x∗i . Thus, we have a contradiction
to the fact that A∗i 〈C1, C2〉 satisfies property B. �

A.3 Proof of Corollary 1

Proof: Let %∗∗ be a preference over ∆(S) that admits the following
lexicographic expected utility representation via the expected utility
functions U1, . . . , UK with U1 is non–constant. Also, let %∗ be the finest
continuous coarsening of %∗∗ which exists and is unique by Theorem
5. Fix an arbitrary p in the (relative) interior of ∆(S). Then, the
closure of weak upper contour set U%∗∗(p) of p according to %∗∗ is the
intersection of ∆(S) and the closed halfspace H(p, U1) passing through
p and orthogonal to U1. Since %∗ is the finest continuous coarsening
of %∗∗, it follows that ∆(S)

⋂
H(p, U1) is subset of the weak upper

contour set U%∗(p) of p according to %∗. A similar set–containment
must hold with respect to the weak lower contour sets of p. Thus, it
is a necessary condition on %∗ that it admits U1 as one of its expected
utility representations. For sufficiency, observe that %∗ if defined such
that U1 is one of its expected utility representations, then %∗ must be
continuous and it must be refined by %∗∗. �
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Chapter 2

Additivity over Convex Domains is Equivalent

to Lexicographic Structures

1. introduction

In a number of models covering disparate areas such as decision the-
ory, social choice theory and linear algebra, axioms variously labelled
additivity, independence and invariance are used. They are typically
deployed in conjunction with a continuity axiom in order to establish
fundamental results such as the Expected Utility Theorem and Utili-
tarianism. While the additivity or independence or invariance axioms
are restrictions on behavior and aggregation, continuity is a technical
assumption often with no independent justification.

Our goal is to investigate the consequences of dropping the con-
tinuity axiom entirely and to focus exclusively on the additivity type
axioms. We show that in convex domains, additivity is equivalent to
“lexicographic structures” — loosely speaking the application of the
lexicographic criterion. The key to our approach is a geometric result
which we call the Decomposition Theorem for Graded Halfspaces. By
applying this result to the aforementioned areas, we are able to refine
and extend existing results.



We briefly describe our findings for the application domains that we
consider. Our first application domain is expected utility theory. The
classical result due to von Neumann & Morgenstern (1944) is the
Expected Utility Theorem. They introduced the Independence axiom
which requires of any preference on lotteries, over a finite set of basic
prizes, the following: for any three lotteries p, q, r and any α ∈ (0, 1),
p � q holds if, and only if, the α–randomization of p and r is strictly
preferred according to � over the α–randomization of q and r. Then,
Independence and Continuity was shown to characterize preferences
which admit an expected utility representation.

However, Continuity is a technical assumption whereas Indepen-
dence is a plausible assumption on decision making behavior. Haus-
ner (1954) showed that Independence alone characterizes preferences
that admit a lexicographic expected utility representation. Moreover,
the lexicographic criterion is natural as a model of decision makers in
many contexts. For instances, applications in portfolio theory are dis-
cussed extensively in Fishburn (1969, 1974). Thus, Hausner’s result
is both sharp and useful for economic modelling.

However, notice the “if” implication of the Independence axiom. It
requires that the preference relation declares p � q even if one α ex-
ists such that the α–randomization over p and r dominates via � the
α–randomization over q and r. We weaken the Independence axiom,
stated above, as follows. The ranking between p and r will be con-
cluded to be p � r if every α–randomization over p and r dominates
the corresponding α–randomization over q and r. The “only if” part
of the original Independence is retained as such.

We believe our axiom to be normatively more appealing. Subsec-
tion 3.2 provides a full dicsussion. Further, our version of Independence
is logically weakly weaker. Moreover, we introduce affine local orders
in subsection 3.2 which are binary relations on the simplex. They sat-
isfy our Independence axiom but may not be complete. However, by
additionally requiring completeness, our axiom implies the existence of
lexicographic expected utilities (Theorem 2 of subsection 3.1) thereby
strengthening Hausner’s result. Blume et al. (1991a) use Hausner’s
theorem to extend Anscombe & Aumann (1963) to lexicographic
probabilities used in Blume et al. (1991b) for a theory of equilib-
rium selection in games via “higher order theories”.

Despite its normative appeal, the classical Independence axiom has
received criticisms in the decision theory literature due to the failure
of the Expected Utility Hypothesis to accommodate Allais type para-
doxes. However, Nielsen & Rehbeck (2022) experimentally find
that people learn to follow Independence. In section 3.3, we sharpen
the analysis of Segal (2023) in this direction.
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Our second application domain is social choice theory. In the wel-
farist approach, to arrive at a social ranking over alternatives from
individual preferences an aggregator considers only the vector of util-
ities associated with alternatives. One prominent class of such rules
is Generalized Utilitarianism. Any rule in this class is defined by a
system of weights—one for each individual—such that an alternative
a socially dominates another alternative b, if and only if, the weighted
sum of individual utilities from a is at least as high as the weighted sum
of individual utilities from b. For a social welfare functional to satisfy
Welfarism, the axioms of Binary Independence of Irrelevant Alterna-
tives and Pareto Indifference must hold. Moreover, ethical assumptions
such as Weak Pareto or Strong Pareto are also considered for the clas-
sification of various aggregators.

In addition to these Welfarism assumptions, the characterization of
various aggregators are in part based on assumptions about how the ag-
gregators process information inherent in the profile of individual utility
functions. In particular, the questions of interest are (1) “whether the
rule processes only the ordinal component or the cardinal component of
individual preferences?”, and (2) “to what degree does the rule assume
individuals’ utilities to be comparable?”.

One such assumption is Cardinal Measurability & Unit Compara-
blity (CMUC). The classical result of Harsanyi (1955) is that any
rule which satisfies the Welfarism axioms, Weak Pareto and CMUC, in
conjunction with Continuity, must be a Generalized Utilitarianism. Of
course, the converse also holds. Note that the assumptions in Harsanyi’s
characterization—except for Continuity—are principles of an ethical
and normative nature. We find that CMUC in conjunction with the
Welfarism axioms characterizes lexicographic extensions of Generalized
Utilitarianisms — there exists a list of weight systems which is used
according to the lexicographic criterion.

Lexicographic extensions fail to satisfy Continuity, if and only if, the
list of weight systems has more than one element. Thus, the additional
assumption of Continuity simply collapses the lexicographic extension
to almost a Generalized Utilitarianism. We say “almost” because ac-
cording to our definition of lexicographic extensions, weights may be
negative. Thus, Harsanyi’s result follows as a corollary when one just
additionally assumes Weak Pareto.

We next strengthen the measurability–comparability requirement to
Cardinal Measurability & Non–Comparability (CMNC). Our result is
that the Welfarism axioms, Strong Pareto and CMNC characterize Se-
rial Dictatorships. Moreover, weakening Strong Pareto to Weak Pareto
characterizes the weak dictatorships. Thus, we are able to recover the
Impossibility Theorem due to Arrow (1963).
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Our third application domain is linear representations. The prob-
lem considered by Blackwell & Girshick (1954) is as follows: what
subclass of complete and transitive binary relations on Rn admit some
“linear representation”? A linear representation is a mapping of all
vectors x in Rn to corresponding numbers λ · x, where λ is some fixed
vector and “u · v” is the standard inner product, such that:

x % y ⇐⇒ λ · x ≥ λ · y.

The fundamental result is Theorem 4.3.1 (in their book) which is
known as the Blackwell–Girshick Theorem. They introduce an axiom
called Invariance which says, x % y iff x + z % y + z. Further, they
consider the axiom of Monotonicity which requires: x >> y implies
x � y. Then, their result characterizes complete and transitive bi-
nary relations (orders) on Rn which admit linear representations with
positive λ as those which satisfy—in conjunction with Continuity—the
axioms of Monotonicity and Invariance.

We briefly indicate the role of this result in applications. The
result was developed in Blackwell & Girshick (1954) to study
two–person zero–sum games with obvious focus on the Minimax The-
orem. Moreover, this result was used in statistical decision theory to
study the class of minimax estimators from the point of view of a game
between a statistician and nature. However, since the publication of
this result, it has become a prominent tool in microeconomic theory.
For instance, d’Aspremont & Gevers (1977, 2002) and Roberts
(1980a–c) contain several characterization theorems in social choice the-
ory based on the Blackwell–Girshick Theorem.

Howover, the Blackwell–Girshick Theorem was originally developed
for orderings over the full Euclidean space and requires Monotonicity
in its proof in an essential way. One class of problems in the theory
of mechanism design that has called for generalizations of this theo-
rem to restricted domains is the characterization of dominant strategy
incentive compatible mechanisms which are positive affine maximizers.
The fundamental result of Roberts (1979) has been improved upon in
Mishra & Sen (2012) for which the latter authors extend the classical
result to any open convex subset of Rn.

Our contribution in the context of Blackwell–Girshick Theorem is
twofold. First, we provide a generalization of the theorem to arbitrary
convex subsets of Rn using only Invariance and Continuity. The only
price paid is that λ may be negative — additionally assuming Mono-
tonicity recovers non–negativity. Note, convex subsets may ail to be
open or closed, and their closure may have an empty interior. Also,
there are convex sets which are not Lebesgue measurable.
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Our second contribution is a generalization of the classical result
when Continuity is dropped. We consider Convexity as an assumption
on the ordering. Convexity of the ordering requires every weak upper
and lower contour set to be a convex subset of the ambient convex
space. Continuity and Invariance imply Covexity. However, the con-
verse does not hold. In fact, our characterization result shows that an
ordering satisfies Invariance and Convexity, if and only if, the ordering
admits a representation which is the lexicographic extension of linear
representations. Again, we develop this result in the setting where the
ambient space is an arbitrary convex subset of some Rn.

Our fourth, and last, application is to linear algebra. A finite di-
mensional ordered vector space V is a vector space which is isomorphic
to some Rn and has an order � defined over it such that � is “compat-
ible” with vector space operations. For instance, if x, y ∈ V are such
that x � y and the scalar α > 0 then αx � αy. Further, if x � y
then x + z � y + z. A lexicographic function space is the space of
all real–valued functions on [n] := {1, . . . , n} endowed with the linear
order �n which makes it an ordered vector space such that only those
functions on [n] dominate the constant function which is zero on [n]
whose first non–zero value is positive.

Hausner & Wendel (1952) showed that every n–dimensional or-
dered vector space V admits a an ordered basis which makes V linearly
isomorphic to Ln by preserving the order structure. This characteri-
zation of ordered vector spaces is often known as the Hausner–Wendel
Theorem, and it plays a fundamental role in mathematics. Moreover,
this result is the basis of the characterization of lexicographic expected
utilities in Hausner (1954). We are able to provide a short proof of
the Hausner–Wendel Theorem.

In each of the above applications, the “object” of study is defined
over a convex “domain” and it satisfies some “additivity” property.
While the “object” in all of these applications have been shown to pos-
sess a “lexicographic structure”, observe, the limited role of Continuity
type axioms when assumed additionally. Therefore, a natural conjec-
ture in qualitative terms is as follows:

Is “additivity” of an “object” over a convex “domain” equivalent
to the “object” possessing a “lexicographic structure”?

The answer is in the affirmative! Formally, we shall introduce the
concept of “graded halfspace” which is an abstract representation of
any “lexicographic structure”. Then, we state and prove what we call
the “Decomposition Theorem” which characterizes graded halfspaces.
This shall be a formal expression of the above statement.
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We briefly explain the concept of a “graded halfspace”. Consider
a finite dimensional vector space over the reals. Any open halfspace
whose boundary contains the origin shall be called a slice of this vector
space. Pick any slice of the given vector space. Then, the boundary
of this slice is a subspace with dimension one less. Pick any a slice
of this subspace. Thus, we have a halfspace, of the boundary of the
previous slice, which is open relative to the topology inherited by the
boundary of the first slice from the ambient vector space. The union
of the resulting subsets, with a prespecified number of iterations of this
procedure, is a graded halfspace. For instance, in the lexicographic order
on the two–dimensional Euclidean plane, the strict upper contour set
of the origin is a graded halfspace having two slices.

We now outline the statement of the Decomposition Theorem. For
this, we begin by observing that a graded halfpace is a convex cone
(not containing the origin). For any given subset of the ambient vector
space, let its reflection be the subset obtained by reflecting through the
origin every point of the set. Observe that the reflection of a graded
halfspace is also a graded space. For instance, in the example with
the lexicographic order over the two–dimensional Euclidean plane, the
strict lower contour set of the origin is also a graded halfspace and it is
the reflection of the strict upper contour set.

Mutually reflecting graded halfspaces must be disjoint. Moreover,
the deletion of these graded halfspaces, from the ambient space, leaves
a subspace. In the present example, the indifference set of the origin
remains after deletion of the strict upper and lower contour sets from
the two–dimensional Euclidean plane. Clearly, the indifference set of
the origin, according to the lexicographic order, is a subspace of the
ambient two–dimensional Euclidean plane.

That is, a graded halfspace and its reflection are a pair of mutually
reflecting convex cones which together with a subspace form a partition
of the ambient vector space. Our Decomposition theorem asserts that
the converse also holds. The statement is as follows:

Decomposition Theorem — The cones in any partition of
an Euclidean space, consisting of a pair of mutually reflecting
convex cones and a subspace, is a graded halfspace.

This statement formalizes our qualitative conjecture as follows. First,
graded halfspaces are an abstraction of “lexicographic structures” of
“objects”. Second, “additivity” yields the convex cones and subspaces
on which the Decomposition Theorem applies. Additional qualifica-
tions, which are “mutually reflecting” and “partition”, make the con-
nection tight enough as required by graded halfspaces.
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The rest of the article is organized as follows. Section 2 presents
the Decomposition Theorem and its proof sketch. Each of sections 3
to 6 consider one application domain. Proofs omitted from the main
text are presented in the Appendix. We close this section with some
coments about the background.

The Background

To characterize the “lexicographic structure”, the usual method is
to inductively invoke the Separating Hyperplane Theorem(s) because of
the two ingredients—the convex “domain” and the “additive” object to
be characterized. However, no precise connection beyond this is shared
by these characterizations. For instance, compare Krantz et al.
(1971), Blume et al. (1989) and Young (1975). Notwithstanding
this, some vague connection has been suggested. Consider the following
words24 from Fishburn (1970).

“The purpose of this section is to note an affinity between
additive utilities and lexicographic utilities.”

They exemplify the above intuition. In fact, in Fishburn (1969), the
expected utility theories of von Neumann & Morgenstern (1944)
and Anscombe & Aumann (1963) are extended to the multivariate
setup but not to a theory of lexicographic expected utilities. However,
the Decomposition Theorem makes the connection precise.

2. decomposition theorem

2.1 Framework and Main Result

To state the Decomposition Theorem, we must first define the con-
cept of “graded halfspaces”. We begin with some preliminaries. Any
C ⊆ Rm is a25 cone if, αx+βy ∈ C for any x,y ∈ C and α, β > 0. For
any subspace W∗ ⊆ Rm, let U∗ := 〈uk∗ ∈ W∗ : k = 1, . . . , K〉 be a list
of orthonormal vectors. For each k ∈ {1, . . . , K∗}, let Uk

∗ be the set of
w ∈ W∗ such that 〈ul∗,w〉 = 0 for all l < k and 〈uk∗,w〉 > 0. We call
Uk
∗ the kth slice generated by the vectors in U∗.

24See the opening line of section 4.3 on page 48.
25Notice, what we simply call a “cone” is often called a “convex cone”.
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Definition 1: The graded halfspace induced by U∗, denoted by HU∗,
is the union of slices generated by U∗.

That is, HU∗ =
⋃K
k=1 U

k
∗. For illustration, consider Figure 1 in

which we take R2 as the subspace W∗ (of, say R3). There is a list of
two orthonormal vectors U∗ = (u1

∗,u
2
∗). The shaded region U1

∗ is the
open halfspace, in W∗, of all vectors which make an acute angle with
respect to u1

∗. Thus, U1
∗ is the first slice generated by U∗.

1

2

0

u1
∗

u2
∗

U1
∗

U2
∗

HU∗ = U1
∗ ∪U2

∗

Figure 1: A Graded Halfspace.

The second slice U2
∗ is the set of all vectors which are orthogonal to

u1
∗ and make an acute angle with respect to u2

∗. That is, U2
∗ is the ray

without the origin along the direction of u2
∗. Observe, the second slice

is an open halfspace of the boundary of the first slice which in turn is
an open halfspace of the ambient subspace W∗. The number of vectors
in the list U∗ can be anything up to the dimension of W∗. Note, the
strict upper (or, lower) contour sets of the origin 0, with respect to any
lexicographic preference over R2, must be a graded halfspace.

Notice that any graded halfspace is (convex) cone. For any A ⊆ W∗,
let −A := {x ∈ W∗ : −x ∈ A}. That is, −A is the “reflection through
the origin” (henceforth, “reflection”) of the set A. Observe that the
reflection of the graded halfpsace HU∗, induced by the vectors in U∗,
is the graded halfspace H−U∗ induced by the list of reflected vectors
−U∗ := 〈uk∗ : k = 1, . . . , K〉. That is, H−U∗ = −HU∗. Thus, HU∗ and
H−U∗ are a pair of mutually reflecting cones and are disjoint.

As can be seen from Figure 1, since 0 /∈ HU∗ and H−U∗ = −HU∗,
we have 0 /∈ H−U∗. Moreover, 0 is the only point in W∗ which is not
in at least one of HU∗ or H−U∗. Note, {0} is a subspace of W∗. This
situation is perfectly general: W∗\(HU∗∪H−U∗) = OU∗ is the subspace
orthogonal to the given list of vectors U∗.
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In fact, in the above example, if U∗ = (u1
∗) instead, then the graded

halfspaces HU∗ and H−U∗ are the open halfspaces, in W∗ = R2, that
consist of all vectors which make an acute angle with the vectors u1

∗
and u2

∗, respectively. Then, W∗ \ (HU∗ ∪H−U∗) is the subspace OU∗ of
vectors perpendicular to u1

∗.
Thus, given any list of orthonormal vectors U∗ in the subspace

W∗ ⊆ Rm, the graded halfspaces HU∗ and H−U∗ are a pair of mutually
reflecting cones such that the triple (HU∗, H−U∗, OU∗), where OU∗ is the
subspace of W∗ orthogonal to U∗, is a partition of the ambient space
W∗. Our Decomposition Theorem asserts the converse.

Theorem 1: Let W∗ be a subspace of Rm. Let U∗, V∗ be nonempty
cones in W∗ and S∗ be a subspace of W∗ such that (U∗, V∗, S∗) form a
partition of W∗ and V∗ = −U∗. Then, with K := dim(W∗) − dim(S∗),
there exists a unique list U∗ ≡ 〈uk∗ : k = 1, 2, . . . , K〉 of orthonormal
vectors in W∗ such that U∗ = HU∗, V∗ = −HU∗ and S∗ = OU∗.

1

2

•

•

•
{0} = S∗ U∗

V∗ = −U∗

x

−x

Figure 2: A triple (U∗, V∗, S∗).

That is, each cone in the partition, via a subspace and a pair of
mutually reflecting convex cones, of a vector space must be a graded
halfspace. For intuition, consider Figure 2 which shows two cones, U∗
and V∗, not containing the origin. The cones U∗ and V∗ are reflections
of each other: x ∈ U∗ iff −x ∈ V∗. Notice, each of the cones has an
open ray as part of it but another closed ray which is not part of it.
Further, S∗ = {0} is a subspace such that (U∗, V∗, S∗) is a triple of
pairwise disjoint non–empty subsets of W∗ := R2. However, (U∗, V∗, S∗)
fails to be a partition of W∗. But one way to turn this triple into a
partition is to “expand” the cones U∗ and V∗ while maintaining the
property V∗ = −U∗ such that the “white spaces” in Figure 2 are “filled
out”. Then, U∗ becomes the graded halfspace shown in Figure 1!
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2.2 Sketch of the Proof

This subsection gives a technical overview of Theorem 1. The reader
interested in applications may skip it without any loss of continuity.
Theorem 1 rests on two geometric lemmas which are presented below.
However, some elementary mathematical preliminaries are needed for
their statement. We begin by stating these preliminaries.

Let TRm be the standard topology on Rm. For any W∗ ⊆ Rm, let
TW∗ := {W∗ ∩ A : A ∈ TRm} be the subspace topology on W∗. The
set BW∗

‖·‖ (w, ε) := {w′ ∈ W∗ : ‖w′ − w‖ < ε}, where w ∈ W∗ and

ε > 0, is the open ball relative to W∗ centered on w with radius ε. If
the “ambient space” (W∗,TW∗) is clear from the context, the qualifiers
“relative to W∗” or “relative to the subspace topology of W∗” shall be
often dropped. We shall also abuse some notation as specified next.
Let A ⊆ W∗. Ac := W∗ \ A is the complement of A relative to W∗.
Further, A◦, A, A′ and ∂A are the interior, closure, limit points and
boundary of A, respectively, relative to TW∗.

Lemma 1: Let W∗ be a subspace of Rm and T∗ be a proper subspace of
W∗. Then W∗ \ T∗ is path–connected, if and only if, the codimension of
T∗ in W∗ is higher than 1.

The intuition behind the above result is as follows. W∗ is isomorphic
to a Euclidean space of dimension at most n as it is a linear subspace
of Rm. Now, if a hyperplane is deleted from an Euclidean space, then
clearly the resulting set is not path connected as it is the union of two
disjoint open halfspaces. However, if the deleted proper linear subspace
is not a hyperplane then, for any two points in the resulting set, there
is a path joining them that “goes around” the deleted subspace. The
key result used to prove Theorem 1 is as follows.

Lemma 2: Let W∗ be a linear subspace of Rm. If U∗, V∗ are nonempty
cones in W∗ and S∗ a linear subspace of W∗, with (U∗, V∗, S∗) forming
a partition of W∗ and V∗ = −U∗, then there exists a unique u ∈ W∗
such that ‖u‖ = 1 and the following hold:

1. U ∗ ∩V ∗ = {w ∈ W∗ : 〈u,w〉 = 0}.

2. U ◦∗ = {w ∈ W∗ : 〈u,w〉 > 0} = −V ◦∗ .

3. ∂U∗ = U ∗ ∩V ∗ = ∂V∗.

4. S∗ ⊆U ∗ ∩V ∗.

5. ∂U∗ is a subspace of W∗ with codimension 1.
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The key insights underlying Lemma 2 are as follows. As U∗ and V∗
are (convex) cones, so must be U ◦∗ ,U ∗, V

◦
∗ andV ∗. Moreover, V∗ = −U∗

implies V ◦∗ = −U ◦∗ andV ∗ = −U ∗. Thus, T∗ :=U ∗ ∩V ∗ is a cone with
T∗ = −T∗. Hence, T∗ is a subspace of W∗. Since (U∗, V∗, S∗) partitions
W∗ and S∗ is a subspace of W∗, S∗ is a proper subspace of W∗ implying
that the cones U ◦∗ and V ◦∗ are non–empty. Further, T∗ = ∂U∗ = ∂V∗
and S∗ is a subspace of T∗. Then, (U ◦∗ , V

◦
∗ , T∗) partitions W∗. Since U ◦∗

and V ◦∗ are cones, they are path–connected.
However, U ◦∗ ∪ V ◦∗ = W∗ \ T∗ is not connected as T∗ = ∂U∗ = ∂V∗.

Then, lemma 2 implies that the codimension of the subspace T∗ in W∗
is 1. Thus, orthogonal projection of any vector from U ◦∗ onto T∗ when
normlized to unit length, say u, satisfies:

T∗ = I∗ := {w ∈ W∗ : 〈u,w〉 = 0}.

Also, P∗ := {w ∈ W∗ : 〈u,w〉 > 0} and N∗ := {w ∈ W∗ : 〈u,w〉 < 0}
are cones such that (P∗, N∗, I∗) partitions W∗. Since T∗ = I∗, it follows
that U ◦∗ ∪ V ◦∗ = P∗ ∪N∗. As each of U ◦∗ , V

◦
∗ , P∗ and N∗ is a cone with

U ◦∗ ∩ V ◦∗ = ∅ = P∗ ∩ N∗, P∗ ∩ U ◦∗ 6= ∅ implies U ◦∗ = P∗ and V ◦∗ = N∗.
Thus, U ◦∗ = {w ∈ W∗ : 〈u,w〉 > 0} = −V ◦∗ which is point 2 claimed by
the lemma. Also,U ∗∩V ∗ = T∗ = {w ∈ W∗ : 〈u,w〉 = 0} as claimed in 1
of the lemma. We have already seen that T∗ = ∂U∗ = ∂V∗ and S∗ ⊆ T∗
which are points 3 and 4, respectively. Since T∗ has codimension 1 in
W∗ and T∗ = ∂U∗, point 5 is established. That is, u is the vector which
must exist as claimed by Lemma 2.

Theorem 1 is proved via induction on the dimension of subspace W∗.
For this, we begin with a linear subspace W∗ ⊆ Rm and a partition of
it (U∗, V∗, S∗) as in the hypothesis of Theorem 1. Then, Lemma 2 gives
a vector u ∈ W∗ with ‖u‖ = 1 such that ∂U∗ = ∂V∗ is the subspace
of W∗ which is perpendicular to u. This follows from parts 1 and 3 of
Lemma 2. By parts 3 and 4, it follows that the subspace ∂U∗ contains
the subspace S∗. Then, the construction of the list U∗, and the graded
halfspace HU∗, proceeds as follows.

We set u1
∗ := u and take U ◦∗ as the first open halfspace of the graded

halfspace HU∗ as in the conclusion of Theorem 1. Notice, U ◦∗ is indeed
an open halfspace of W∗ is guaranteed by part 1 of Lemma 2. Now
take ∂U∗ as the next linear subspace whose dimension is exactly one
less than that of W∗ by part 5 of Lemma 2. With S∗ ⊆ ∂U∗ = ∂V∗
and that u1

∗ is perpendicular to ∂U∗, the induction proceeds until the
remaining set is the original linear subspace S∗ itself. The formal proofs
of the two lemmas and Theorem 1 are provided in subsections A.I.1–3 of
the Appendix. We must point out that these arguments do not appeal
to the “Separating Hyperplane Theorem(s)”.
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3. expected utility theory

3.1 Lexicographic Expected Utilities

We introduce a normatively appealing weakening of the Independence
axiom of von Neumann & Morgenstern (1944). In conjuction with
transitivity and completeness, it characterizes lexicographic expected
utilities (Theorem 2) strengthening the result of Hausner (1954). In
subsection 3.3, implications to decision theory are discussed.

Let Z be a finite and non–empty set whose elements are the basic
prizes. A lottery is any map p : Z → R+ such that

∑
z∈Z p(z) = 1.

Let L (Z) be the set of all lotteries. For p, q ∈ L (Z) and 0 ≤ α ≤ 1,
α · p ⊕ (1 − α) · q is the compound lottery that randomly results in
either p or q with probabilities α or 1−α, respectively. This compound
lottery shall be identified with the lottery over basic prizes that selects
any z ∈ Z randomly with probability αp(z) + (1− α)q(z).

A preference is any complete and transitive binary relation % over
L (Z). An expected utility (EU) is any map u : L (Z)→ R that satisfies
the following: if p, q ∈ L (Z) and α ∈ [0, 1] then,

u(α · p⊕ [1− α] · q) = αu(p) + (1− α)u(q).

Let E (Z) be the set of all EUs over L (Z). If % is a binary relation,
its expected utility (EU) representation is any u ∈ E (Z) such that:

p % q iff u(p) ≥ u(q).

Let the asymmetric and symmetric components of % be denoted by
� and ∼, respectively. The Independence axiom is as follows.

Independence–0: Let p, q, r ∈ L (Z) and α ∈ (0, 1). Then:

p � q iff α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r.

This axiom, and the following Archimedean property, hold for any
binary relation % which admits an EU representation.

Archimedean: If p, q, r ∈ L (Z) satisfy p � q � r then, there exists
α, β ∈ (0, 1) such that α · p⊕ (1− α) · r � q � α · p⊕ (1− α) · r.

The first milestone of expected utility theory is,

von Neumann–Morgenstern Theorem: A binary relation % is a
preference that satisfies Independence–0 and the Archimedean property,
if and only if, it admits an expected utility representation.
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In Herstein & Milnor (1953), the above theorem is generalized
in two ways. First, they introduced the abstract notion of a “mixture
set” over which the binary relation % is defined—the set of lotteries is
but one example. We shall restrict attention only to the set of lotteries.
Second, they relaxed Independence to the following.

Independence–1: Let p, q, r ∈ L (Z) and α ∈ (0, 1). Then:

p � q implies α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r.

Thus, the second milestone of expected utility is,

Herstein–Milnor Theorem: A binary relation % is a preference
that satisfies Independence–1 and the Archimedean property, if and only
if, it admits an expected utility representation.

Observe, this result is an improvement over the first because the
reverse implication required by Independence–0 has been dropped in
Independence–1. It is possible to see how this result improves upon the
first in another manner. For this, consider the following.

Independence–2: Let p, q, r ∈ L (Z) and α ∈ (0, 1). Then:

1. If p � q then α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r, and

2. If p ∼ q then α · p⊕ (1− α) · r ∼ α · q ⊕ (1− α) · r.

When the binary relation % is complete, Independence–2 turns out
to be equivalent to Independence–0. Also, Independence–1 is simply
obtained by dropping the second of the two implications assumed in
the statement of Independence–2.

The forms of “Independence” are regarded normatively appealing
from a decision theoretic point of view. However, the Archimedean
property (equivalently, Continuity) is harder to justify beyond serving
as a techinical condition. Of course, this axiom is accepted widely as a
technical condition without which there is no hope for any well–behaved
numerical representation. Notwithstanding the widespread use of the
Archimedean property, there is a class of preferences which does not
satisfy the Archimedean property and yet is perfectly natural as a model
of the decision maker. These preferences admit “lexicographic expected
utility” representations. It is natural when the decision maker can be
envisioned as one who decides using multiple criteria with a priority
over these criteria. We now define the concept of lexcigraphic expected
utility representations of preferences.
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A lexicographic expected utility (LEU) representation of the binary
relation % is any K–tuple of EUs 〈uk ∈ E (Z) : k = 1, . . . , K〉 satisfying:

p % q iff [u1(p), . . . , uK(p)] ≥L [u1(q), . . . , uK(q)],

where ≥L is lexicographic order over RK . A binary relation that admits
an LEU representation must be a preference that satisfies each of the
above versions of Independence. However, they may fail to satisfy the
Archimedean property. Thus, the third milestone in expected utility
theory is the following result from Hausner (1954).

Hausner’s Theorem: A preference % satisfies Independence–2, if
and only if, it admits a lexicographic expected utility representation.

Hausner proved this theorem in the setting of mixture spaces based
on the characterization by Hausner & Wendel (1952) of ordered
real linear spaces. Observe that just Independence–1, in addition to
the Archimedean property though, is sufficient for the existence of EU
representations according to the Herstein–Milnor Theorem. Thus, the
insight of Hausner that the strengthening as Independence–2 alone is
sufficient for existence of LEU representations is remarkable. As has
been observed26 by Peter C. Fisburn:

“In the major development in lexicographic expected utility,
Hausner [63] assumes . . . the following hold(s):

A2′. x ∼ y =⇒ λx+ (1− λ)z ∼ λy + (1− λ)z.”

With this background in place, we introduce the following axiom.

Independence–3: Let p, q, r ∈ L (Z). Then, p � q if and only if :(
∀α ∈ (0, 1)

)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
.

Then, our main result in this section is as follows.

Theorem 2: A preference % satisfies Independence–3, if and only if,
it admits a lexicographic expected utility representation.

In the next subsection, we argue that Independence–3 is normatively
appealing and it is logically strictly weaker than either Independence–0
or Independence–2. In subsections 3.4 and 3.5, we obtain Theorem 2
from the Decomposition Theorem (that is, Theorem 1).

26See paragraph 5 in page 1464 of Fishburn (1974).
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3.2 The Independence Hierarchy

We elaborate on the strength and normative appeal of Independence–3
as an axiom. For this, we begin with Independence–0. Consider the
lotteries p, q and r. Also, fix any α in (0, 1). Note, the interpretation
I0 of α · p⊕ (1− α) · r and α · q ⊕ (1− α) · r is as follows:

“The lottery α · p⊕ (1−α) · r results by tossing a coin, whose
probability of showing “heads” is α, to choose one of p or r
according as it shows “heads” or “tails”. Likewise, the lottery
α · q ⊕ (1− α) · r is implemented using the same coin.”

Then, the forward implication required by Independence–0 affords an
interpretation I1 which is as follows:

“If the coin toss leads to “heads”, comparing α · p⊕ (1−α) · r
with α · q ⊕ (1 − α) · r tantamounts to comparing p with q.
If the toss leads to “tails”, comparing α · p ⊕ (1 − α) · r with
α·q⊕(1−α)·r tantamounts to comparing r with itself. However,
the probability α of “heads” is strictly positive! Thus, if p is
strictly preferred to q then α · p ⊕ (1 − α) · r must be strictly
preferred to α · q ⊕ (1− α) · r.”

As I1 is plausible, the conditional with p � q as hypothesis in each
version of Independence has normative appeal. Thus, the normative
defense of Independence–1, in particular, is accomplished. However, the
comparison of the remaining implications remains. The interpretation
I2 of the reverse implication of Independence–0 is as follows:

“Pick an arbitrary coin with a given probability α of showing
up “head” in a toss. If the toss leads to “heads”, comparing
α ·p⊕ (1−α) ·r with α ·q⊕ (1−α) ·r tantamounts to comparing
p with q. If the toss leads to “tails”, comparing α · p⊕ (1−α) · r
with α · q ⊕ (1− α) · r tantamounts to comparing r with itself.
However, α is strictly positive! Thus, if α · p ⊕ (1 − α) · r is
strictly preferred to α · q ⊕ (1 − α) · r then p must be strictly
preferred to q.”

Observe, I2 requires that p be strictly preferred to q even if one
coin, with a given probability α of “heads”, results in α · p⊕ (1−α) · r
being strictly preferred to α · q ⊕ (1− α) · r. Now, consider the reverse
implication of Independence–3 whose interpretation I3 follows.
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“Suppose the lottery α · p⊕ (1− α) · r is strictly preferred to
α ·q⊕(1−α) ·r for every coin whose probability α of showing up
“heads” in a toss is strictly positive. Then, this strict preference
must be attributed to a strict preference for p over q.”

A comparison of I2 and I3 points out the following. First, I3 holds
whenever I0 holds. It follows that logically Independence–0 is at least
as strong as Independence–3. Second, Independence–3 is arguably more
appealing than Independence–0 to a decision maker from a normative
point of view. For comparing Independence–3 with Independence–0,
one approach involves the following observation.

Proposition 1: Assume that % is a complete binary relation. Then,
Independence–0 and Independence–2 are equivalent.

Proof: Let % be complete. With p, q, r ∈ L (Z) and α ∈ (0, 1), let
s := α · p ⊕ (1 − α) · r and t := α · q ⊕ (1 − α) · r. Assume p ∼ q. By
Independence–0, s � t implies p � q. As � and ∼ are disjoint, s � t is
false. Similarly, t � s does not hold. Since % is complete, s ∼ t holds.
Thus, Independence–0 implies Independence–2.

Assume s � t. By Independence–2, p ∼ q implies s ∼ t. As � and
∼ are disjoint, s � t implies p ∼ q does not hold. As % is complete,
either p � q or q � p holds. By Independence–2, if q � p then t � s.
Then, s � t contradicts the asymmetry of �. Hence, p � q holds.
Thus, Independence–2 implies Independence–0. �

Thus, if the binary relation % is complete, logically Independence–2
is at least as strong as Independence–3. Moreover, it is arguable, for
some decision makers, that the second implication in the statement of
Independence–2 is a strong assumption.

To see this, we may change the point of view by requiring that the
decision maker is modelled by an asymmetric binary relation � over
L (Z) as the primitive. Further, ∼ shall mean absence of �. Formally,
we now define ∼ over L (Z) as follows:

p ∼ q iff
(

not p � q ; not q � p
)
.

Notice, ∼ is symmetric. Then, % defined as � ∪ ∼ is complete.
This establishes the formal equivalence between the two approaches
where one has % as the primitive and the other has � as the primitive.
Also observe, % is transitive iff � is negatively–transitive.27

27Let R be a binary relation over X. Then, R is transitive if, (xRy ; yRz) =⇒ xRz. Also, R
is negatively–transitive if, (not xRy ; not yRz) =⇒ not xRz.
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From this point of view, consider a decision maker who is able to
rank lotteries p and q according to � if they are “close enough” but
not if they are “far part”. Then, the following may hold:

p � q =⇒
[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
for all α ∈ (0, 1) but the implication:

p ∼ q =⇒
[
α · p⊕ (1− α) · r ∼ α · q ⊕ (1− α) · r

]
will fail to hold if α ∈ (0, 1) is “small enough”. Thus, Independence–2
ceases to hold. However, note that the following implication may still
continue to hold for such a decision maker:(
∀α ∈ (0, 1)

)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
=⇒ p � q.

This is because if the hypothesis in the above conditional holds, the
lotteries p and q must be “close enough”. That is, Independence–3 has
appeal for such decision makers. Thus, a rigorous formulation of such
binary relations will imply that Independence–3 is (1) logically strictly
weaker and (2) more normatively appealing than Independence–0 and
Independence–2 under the assumption of completeness. To fix ideas,
we begin by presenting a simple example.

Example 1: Let Z = {z1, z2} have two basic prizes. Fix θ ∈ (0, 1/
√

2).
A lottery p ∈ L (Z) is any map p : Z → R+ such that p(z1)+p(z2) = 1.
Define28 the binary relations �θ and ∼θ over L (Z) as follows:

p �θ q iff
(
‖p− q‖2 ≤ θ ; p(z1) > q(z1)

)
, and

p ∼θ q iff
(

not p �θ q ; not q �θ p
)
.

Let %θ as �θ ∪ ∼θ. Observe, �θ is asymmetric and ∼θ is symmetric.
Note, %θ is complete. Also, notice the following:

p ∼θ q iff
(
‖p− q‖2 > θ or p = q

)
.

Let p∗, q∗, r∗ ∈ L (Z) satisfy p∗(z1) = 1, q∗(z1) = 0 and r∗(z1) = 1/2.
Note, ‖p∗ − q∗‖2 =

√
2 > θ. Thus, p∗ ∼θ q∗. Also, let α∗ := θ/

√
2 and

pick any α ∈ (0, α∗]. Let s∗ := α·p∗⊕(1−α)·r∗ and t∗ := α·q∗⊕(1−α)·r∗.
Thus, s∗(z1) = (1+α)/2 = t∗(z2) and s∗(z2) = (1−α)/2 = t∗(z1). Note,
s∗(z1) > t∗(z1) as α > 0. Also, ‖s∗− t∗‖2 = α

√
2 ≤ θ as α ≤ α∗. Hence,

s∗ �θ t∗. That is, α · p∗⊕ (1− α) · r∗ �θ α · q∗⊕ (1− α) · r∗. Therefore,
p∗ ∼θ q∗ implies: %θ does not satisfy Independence–2.

28We denote by ‖·‖2 the Euclidean norm over RZ . Thus, ‖p− q‖2 :=
(∑

z∈Z |p(z)− q(z)|2
)1/2

.
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However, %θ satisfies Independence–3. For this, consider arbitrary
lotteries p, q and r in L (Z) that satisfy the following:

α · p⊕ (1− α) · r �θ α · q ⊕ (1− α) · r for all α ∈ (0, 1).

Let sα := α ·p⊕(1−α) ·r and tα := α ·q⊕(1−α) ·r for any α ∈ [0, 1].
Note, sα �θ tα implies ‖sα− tα‖2 ≤ θ. Observe, ‖sα− tα‖2 = α‖p−q‖2.
As sα �θ tα for all α ∈ (0, 1), we have ‖p− q‖2 ≤ θ. Further, sα �θ tα
implies sα(z1) > tα(z1). Note, sα(z1) = αp(z1) + (1 − α)r(z1) and
tα(z1) = αq(z1) + (1−α)r(z1). Thus, if α ∈ (0, 1) then: sα(z1) > tα(z1)
iff p(z1) > q(z1). Since sα �θ tα for all α ∈ (0, 1), we have p(z1) > q(z1).
Then, ‖p− q‖2 ≤ θ and p(z1) > q(z1) imply p �θ q. That is,(
∀α ∈ (0, 1)

)[
α · p⊕ (1− α) · r �θ α · q ⊕ (1− α) · r

]
=⇒ p �θ q.

For the converse, let p, q and r be lotteries with p �θ q. Pick an
arbitrary α ∈ (0, 1). Let sα := α ·p⊕(1−α)·r and tα := α ·q⊕(1−α)·r.
Note, p �θ q implies ‖p−q‖2 ≤ θ. Since ‖sα−tα‖2 = α‖p−q‖2, we have:
‖sα − tα‖2 ≤ θ for all α ∈ (0, 1). Further, p �θ q implies p(z1) > q(z1).
Since sα(z1) = αp(z1) + (1−α)r(z1) and tα(z1) = αq(z1) + (1−α)r(z1),
we obtain: sα(z1) > tα(z1) for all α ∈ (0, 1). This proves the converse.
That is, %θ satisfies Independence–3. �

The binary relation %θ constructed in the above example satisfies
Independence–3 but not Independence–2. Further, note that%θ is com-
plete. Thus, by Proposition 1, %θ does not satisfy Independence–0.
Moreover, observe that the following holds.

Proposition 2: Assume that % is a binary relation over L (Z). Then,
Independence–0 implies Independence–3.

Proof: Let p, q, r ∈ L (Z) satisfy: α·p⊕(1−α)·r � α·q⊕(1−α)·r for
all α ∈ (0, 1). Fix an arbitrary α∗ ∈ (0, 1). Then, α∗ · p⊕ (1− α∗) · r �
α∗ · q ⊕ (1− α∗) · r holds. By Independence–0, p � q follows. That is,
the reverse implication of Independence–3 holds.

To establish the forward implication of Independence–3, let p � q
and α ∈ (0, 1) be arbitrary. Then, α · p⊕ (1−α) · r � α · q⊕ (1−α) · r
by Independence–0. Since α ∈ (0, 1) is arbitrary,(

∀α ∈ (0, 1)
)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
holds. That is, the forward implication of Independence–3 holds. Hence,
Independence–0 implies Independence–3. �
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Propositions 1 and 2 together establish that, under the assumption
of completeness, Independence–0 and Independence–2 are equivalent
to each other but are logically at least as strong as Independence–3.
However, Example 1 shows that Independence–0 and Independence–2
are in fact strictly stronger than Independence–3. While Example 1
has served its formal purpose, it is desirable to have a more general
class of such binary relations which are in addition plausible models of
decision makers. With this aim, we proceed as follows.

Definition 2: An affine screening criterion is any non–constant map
f : L (Z)→ R such that :

f(α · p⊕ [1− α] · q) = αf(p) + [1− α]f(q)

for any p, q ∈ L (Z) and α ∈ [0, 1].

The numerical value f(p) for the lottery p, by the screening function
f , is as if a psychological “cost” incurred by the decision maker due
to the contemplation necessary for comparing an arbitrary lottery to
a reference lottery. The additional requirement of an“affine structure”
on f captures “expected values” for random choice between lotteries.
Denote by F the set of all affine screening criteria.

Definition 3: A filter is any map ϑ : F → R++ such that :

f ′ = αf + β implies ϑ(f ′) = αϑ(f).

for any f, f ′ ∈ F and (α, β) ∈ R++ × R.

The answer to “Is f(q) ≤ f(p) + ϑ(f)?” dictates the feasibility of
contemplation about q given the reference p. Suppose f ′ = αf + β.
Note, “f ′(q) ≤ f ′(p) + ϑ(f ′)” is equivalent to “f(q) ≤ f(p) + ϑ(f)”, if
and only if, ϑ(f ′) = αϑ(f). Define Rϑ over L (Z) as:

pRϑq iff
(
∀f ∈ F

)[
f(p) ≤ f(q) + ϑ(f)

]
.

Also, let Sϑ be the relation on L (Z) defined as:

pSϑq iff
(
∃r ∈ L (Z)

)[
pRϑr ; qRϑr

]
.

Note, Sϑ is symmetric. An affine order is a total order �0 on L (Z)
such that %0 satisfies29 Independence–3.

29Note, p ∼0 q iff
(

not p �0 q ; not q �0 p
)
. Moreover, %0 is defined as �0 ∪ ∼0.
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Definition 4: The affine local preorder induced by the filter ϑ and the
affine order �0 is the binary relation �ϑ over L (Z) such that :

p �ϑ q iff
(
p 6= q ; pSϑq ; p �0 q

)
.

The affine local order induced by the affine preorder �ϑ is the binary
relation %ϑ which is �ϑ ∪ ∼ϑ where ∼ϑ is as follows :

p ∼ϑ q iff
(

not p �ϑ q ; not q �ϑ p
)
.

l∗r

lq
lr
lp

Sr,ϑ

ϑ(f)/‖f‖2

• •

•

p r

q

f

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 3: An affine local order.

Some remarks are in order. First, Theorem 2 implies that �0 is an
affine order, if and only if, there exists EU maps u1 . . . , u|Z| such that
(1) u1(z) = 1 for all z ∈ Z, (2) (u1, . . . , u|Z|) are linearly independent

as vectors in RZ , and (3) the following holds:

p �0 q iff [u1(p), . . . , u|Z|(p)] >L [u1(q), . . . , u|Z|(q)],

where >L is the strict component of the lexicographic order ≥L on R|Z|.
Observe, (2) is critical for �0 to be a total order.

Second, to see what definition 4 entails, consider Figure 3. Each
affine screening criterion f defines a family of parallel straight lines,
with f perpendicular to them, with f a constant on each. For instance,
lr and l∗r restricted to L (Z) are the sets {q′ ∈ L (Z) : f(q′) = f(r)}
and {q′ ∈ L (Z) : f(q′) = f(r) + ϑ(f)}, respectively. Let Sr,ϑ be the
subset of lotteries p which satisfy f(p) ≤ f(r)+ϑ(f) for every f . Thus,
pSϑq because p and q are in Sr,ϑ. Then, p �ϑ q iff p �0 q. Observe, �0

is a total order over L (Z) but �ϑ is local in nature.
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Notice, the set Sr,ϑ is shown to be compact in Figure 3. This need
not be so for an arbitrary filter ϑ. However, a “continuity” requirement
on ϑ is sufficient to ensure the compactness of the resulting set Sr,ϑ
for any lottery r. To formulate this notion of “continuity”, we begin
by specifying a natural notion of convergence for seuences of affine
screening criteria. For this, consider any F–valued sequence (fn) and
any f∗ in F . Then, we say that (fn) converges to f∗ if:

lim
n→∞

fn(p) = f∗(p) for every p ∈ L (Z).

We shall write “fn → f∗” for the phrase “fn converges to f∗”. Then,
a filter ϑ is continuous if, limn→∞ ϑ(fn) = ϑ(f∗) for every F–valued
sequence (fn) and f∗ in F satisfying fn → f∗. The set Sr,ϑ is compact,
for any lottery r, if ϑ is continuous. For any κ > 0 and any filter ϑ, let
the map κ · ϑ from L (Z) to R++ be defined as follows:

[κ · ϑ](f) := κϑ(f) for all f ∈ F .

Proposition 3: Let ϑ be a filter and �0 be an affine order on L (Z).
If %ϑ is the affine local order induced by ϑ and �0 then:

1. �ϑ is acyclic.

2. %ϑ satisfies Independence–3.

3. If ϑ is continuous then there exists κϑ > 0 such that %κ·ϑ violates
Independence–0 and Independence–2 for all κ ∈ (0, κϑ).

Propositions 1, 2 and 3 show that Independence–3 is indeed strictly
weaker, under completeness, than Independence–0 or Independence–2.
Thus, our characterization (that is, Theorem 2) of preferences which
admit lexicographic expected utility representations is stronger than
Hausner’s theorem. Moreover, affine local orders are not covered by the
class of binary relations which admit “coalitional expected multi–utility
representations”. The latter is the most general class of binary relations
satisfying Independence–2 as was shown in Hara et al. (2019). The
proof of Proposition 3 is in section A.II.1 of the Appendix.

We close this subsection with one remark. While our reason for
introducing the class of affine local orders has been to show that our
version of Independence is strictly weaker than the classical version, we
believe that they are natural as models of decision makers. The recent
work in choice via screening sets or attention filters, as considered in
Manzini & Mariotti (2007, 2014) and Masatlioglu et al. (2012)
for instance, motivates this point of view.
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3.3 Decision Theoretic Implications

The Independence axiom of von Neumann & Morgenstern (1944),
further investigated in Marschak (1950), Samuelson (1952) and
Herstein & Milnor (1953), is at the foundation of expected utility
theory. However, the Expected Utility Hypothesis has been criticised
due to the preference reversals as in Allais (1953). Therefore, some
authors have weakened Independence; see Chew (1953), Chew et al.
(1987), Chew et al. (1991), Dekel (1986) and Quiggin (1982) for
instance. Some authors such as Machina (1982) have abandoned it
altogether notwithstanding its normative appeal.

However, few authors have considered retaining Independence but
relaxing other axioms such as completeness, transitivity or Continu-
ity. For instance, Aumann (1962) relaxed completeness to characterize
“one–way” representations and Hausner (1954) relaxed Continuity.
More recently, completeness was relaxed by Dubra et al. (2004) to
obtain a sharper “two–way” characterization. Further, Hara et al.
(2019) considered adding these axioms progressively but their analysis
largely retains the completeness axiom.

Allais type paradoxes have highlighted the “preference reversal phe-
nomenon”; see Grether & Plott (1979), Holt (1986), Karni &
Safra (1987), Pommerehne et al. (1982), Slovic & Lichten-
stein (1983) and Tversky et al. (1990) for instance. Further,
violations of transitivity have been investigated by Tversky (1969),
Loomes et al. (1991) and Regenwetter et al. (2011) for in-
stance. The original findings of these two strands in the literature have
been questioned and re–examined later.

In Azrieli et al. (2018), a theoretical analysis has been provided
of how experiments must be conducted for testing the validity or vio-
lations of axioms such that incentive and other problems are properly
taken into account. Based on this analysis, Nielsen & Rehbeck
(2022) found in their experiments that violations of assumptions such
as transitivity or Independence are “mistakes” by individuals which
they correct once explained. This suggests that perhaps preference re-
versals and Allais type paradoxes should be re–examined by conducting
experiments designed along the above lines.

Even if Allais type paradoxes persist, then it is the Expected Utility
Hypothesis but not just the Independence axiom which comes under
question. This point has been emphasized by Uzi Segal for instance.
The Reduction Axiom was relaxed in Segal (1988, 1990). Moreover,
a weaker and non–testable version of Independence has been proposed
in Segal (2023) which together with Continuity (and Monotonicity)
is equivalent to the Expected Utility Hypothesis. In what follows, we
sharpen the analysis in Segal (2023) via our Theorem 2.
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Let us briefly recall Segal’s analysis. He considers a complete and
transitive binary relation %, with � and ∼ as its asymmetric and sym-
metric components, respectively. Further, he introduces the following
weakening of the classical Independence axiom.

Weak Independence–0: For every p, q, r ∈ L (Z), if p ∼ q then:(
∃α ∈ (0, 1)

)[
α · p⊕ (1− α) · r ∼ α · q ⊕ (1− α) · r

]
.

Observe, this axiom is non–testable. Further, Continuity is non–testable
but Monotonicity is testable. Segal proves the following.

Theorem (Segal, 2023): Let % satisfy completeness and transitivity.
Then, % satisfies Monotonicity, Continuity and Weak Independence–0,
if and only if, % admits an EU representation.

With this result in place, he argues that Allais type paradoxes imply
a violation of the Expected Utility Hypothesis. However, this does not
violate Weak Independence–0 but does falsify the combination of all the
assumptions in the above theorem. In particular, the non–testability of
Weak Independence–0 anyway makes it irrefutable. Furthermore, this
axiom retains the normative appeal of classical Independence.

However, Continuity is another non–testable axiom in the above
theorem and note that the conjunction of more than one non–testable
axioms can result in testable implications. Furthermore, Continuity
is an axiom which is not in the spirit of Independence — the latter
being a “cancellation” property whereas the former is a “regularity”
condition with technical motivations. Our objective will be to sharpen
Segal’s conclusion but based only on “cancellation” type axioms. To
this end, we begin by introducing the following axiom.

Weak Independence–1: For every p, q, r ∈ L (Z), if p � q then:(
∃α ∈ (0, 1)

)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
.

Three observations follow. First, this axiom is a Segal type version
of Independence. Second, it is non–testable. Third, the conjunction of
Weak Independence–0 and Weak Independence–1 (henceforth, “Weak
Independence”) is also non–testable. To see why, observe that the
asymmetry of � and the symmetry of ∼ implies that at most one of
p � q or p ∼ q holds for any p, q ∈ L (Z). Thus, there is no instance
where the antecedents in the implications of Weak Independence–0 and
Weak Independence–1 hold simultaneously. In other words, when one
axiom binds, the other does does not.
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Dropping Continuity necessitates some other axiom that retains its
flavor just enough so that lexicographic expected utility (LEU) repre-
sentations exist which also suffer from Allais type preference reversals.
Further, we constrain such axioms to be “cancellation” type statements.
One such axiom is as follows.

Global Monotonicity: For every p, q, r ∈ L (Z), if p � q then:(
∃α ∈ (0, 1)

)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
⇓(

∀α ∈ (0, 1)
)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
.

Observe, this axiom is testable. The result is as follows.

Theorem 3: Assume % satisfies completeness and transitivity. Then,
% satisfies Weak Independence and Global Monotonicity, if and only if,
% admits an LEU representation.

Proof: Necessity of the axioms is obvious. For sufficiency, assume %
satisfies Weak Independence and Global Monotonicity in addition to
completeness and transitivity. We argue: % satisifies Independence–3.
Then, Theorem 2 (subsection 3.1) completes the proof.

First, fix any p, q, r ∈ L (Z) such that p � q. Since p � q, Weak
Independence–1 implies α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r for some
α ∈ (0, 1). Then, p � q and Global Monotonicity implies:(

∀α ∈ (0, 1)
)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
.

To complete the proof, we now fix any p, q, r ∈ L (Z) such that
the above statement holds. We must argue: p � q. Suppose, not!
Thus, either q � p or p ∼ q holds by completeness. If q � p holds
then Weak Independence–1 implies, there exists α ∈ (0, 1) such that
α · q ⊕ (1− α) · r � α · p⊕ (1− α) · r. This contradicts the asymmetry
of �. Hence, p ∼ q must hold. Then, Weak Independence–0 implies,
there exists α ∈ (0, 1) such that α · p⊕ (1− α) · r ∼ α · q ⊕ (1− α) · r.
However, this is also a contradiction because � is asymmetric and ∼ is
symmetric. Thus, our supposition must be wrong. �

Observe, Global Monotonicity is testable and recall Weak Indepen-
dence is not. Further, both are “cancellation” properties inherited from
classical Independence. Then, Allais type paradoxes may refute Global
Monotonicity but not Weak Independence. Thus, Theorem 3 dissects
Independence into irrefutable and refutable components.
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However, this raises the following question: what aspect of Continu-
ity, together with Weak Independence and Monotonicity as in Segal
(2023), condenses Global Monotonicity? For an answer, two further
“cancellation” type axioms are introduced as follows.

Inward Monotonicity: For every p, q, r ∈ L (Z) and for every
α∗ ∈ (0, 1), if p � q then:[

α∗ · p⊕ (1− α∗) · r � α∗ · q ⊕ (1− α∗) · r
]

⇓(
∀α ∈ (α∗, 1)

)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
.

Consider the implication in the above axiom. The universal quantifier
is in its consequent (as opposed to its antecedent). Hence, this axiom
is testable. The second axiom is as follows.

Outward Monotonicity: For every p, q, r ∈ L (Z) and for every
α∗ ∈ (0, 1), if p � q then:(

∀α ∈ (α∗, 1)
)[
α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r

]
⇓[

α∗ · p⊕ (1− α∗) · r � α∗ · q ⊕ (1− α∗) · r
]
.

In contrast to the Inward Monotonicity, this axiom is non–testable as
the universal quantifier now is in the antecedent (as opposed to the
consequent) of the implication. The result is as follows.

Theorem 4: Assume % is complete and transitive. Then, % satisfies
Weak Independence, Inward Monotonicity and Outward Monotonicity,
if and only if, % admits an LEU representation.

Proof: Necessity of the axioms is obvious. For sufficiency, let %
be complete and transitive, and satisfies Weak Independence, Inward
Monotonicity and Ouward Monotonicity. We argue: % satisfies Global
Monotonicity. Then, Theorem 3 completes the proof.

Fix any p, q, r ∈ L (Z) such that p � q, and assume there exists
α1 ∈ (0, 1) such that α1 · p ⊕ (1 − α1) · r � α1 · q ⊕ (1 − α1) · r. That
is, A := {α ∈ (0, 1) : α · p ⊕ (1 − α) · r � α · q ⊕ (1 − α) · r} is
nonempty. Let α∗ := inf A. Suppose α∗ > 0. By Inward Monotonicity,
(α∗, 1) ⊆ A. Outward Monotonicity implies [α∗, 1) = A. Then, Weak
Independence–1 implies, α < α∗ for some α ∈ A which contradicts
α∗ = inf A. Thus, α∗ = 0 proving Global Monotonicity. �
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All the axiom systems we have considered thus far are only as strong
as the conjunction of classical Independence with completeness and
transitivity. Further, every axiom which has been introduced is of the
“cancellation” type which ensures that they retain the normative ap-
peal of Independence. However, Global Monotonicity is too strong to
be compatible with the Allais paradox. In particular, those nonlinear
expected utility preferences characterized in Dekel (1986) which are
consistent with the Allais paradox violate this axiom. Further, while
Inward Monotonicity is weaker than Global Monotonicty, it is also sub-
ject to the same criticism. Notice, no such axiom appears in Segal’s
theorem. Therefore, we introduce the following axiom.

Affine Continuity: For any p, q, r ∈ L (Z) and any α∗ ∈ (0, 1), if
p � q and α∗ · p ⊕ (1 − α∗) · r � α∗ · q ⊕ (1 − α∗) · r then there exists
ε > 0 such that the following holds :

α > 1− ε =⇒ α · p⊕ (1− α) · r � α · q ⊕ (1− α) · r.

Observe, this is a non–testable axiom and is weaker than standard
Continuity. Observe, it is satisfied by all preferences characterized in
Dekel (1986). In particular, it is not refuted by the Allais paradox.
Further, this axiom is compatible with LEU preferences but Continuity
is not. Then, we obtain the following result.

Theorem 5: Assume % is complete and transitive. Then, % satisfies
Weak Independence, Affine Continuity and Outward Monotonicity, if
and only if, % admits an LEU representation.

Proof: Necessity of the axioms is obvious. For sufficiency, it is enough
to show that Inward Monotonicity holds for then Theorem 4 implies the
claim. So, fix any p, q, r ∈ L (Z) and α∗ ∈ (0, 1) such that p � q and
α∗ · p ⊕ (1 − α∗) · r � α∗ ⊕ (1 − α∗) · r. Let A ⊆ [α∗, 1) be the set of
those α such that the following holds:

α′ > α =⇒ α′ · p⊕ (1− α′) · r � α′ · q ⊕ (1− α′) · r.

Affine Continuity implies A is nonempty. Let α∗∗ := inf A. Clearly,
α∗∗ ≥ α∗. The proof is complete if α∗∗ = α∗. Suppose, α∗∗ > α∗. Then,
Outward Monotonicity implies α∗∗ ·p⊕(1−α∗∗)·r � α∗∗ ·q⊕(1−α∗∗)·r.
By Weak Independence, α† · p ⊕ (1 − α†) · r � α† · q ⊕ (1 − α†) · r for
some α† ∈ (0, α∗∗). Thus, Affine Continuity implies the existence of
ε > 0 such that α∗∗−ε ∈ A. This contradicts the fact that α∗∗ = inf A.
Hence, α∗∗ = α∗ proving Inward Monotonicity. �
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Since LEU preferences are equivalent to classical Independence as
shown by Hausner (1954), it follows that the above system of ax-
ioms is not stronger that classical Independence. Note, each axiom
is non–testable and is a “cancellation” type statement. Further, all
axioms except Weak Independence are satisfied by every preference
characterised in Dekel (1986). However, preferences that admit LEU
representations are refuted by the Allais paradox.

Theorem 5 allows us to characterize preferences that admit expected
utility representations. In particular, we replace “monotonicty” as re-
quired by Segal (2023) with the following weaker axiom.

Exclusivity: For any p, q ∈ L (Z) and any α ∈ (0, 1),

¬
(
p ∼ q

)
=⇒ ¬

(
α · p⊕ (1− α) · q ∼ q ).

Notice that Exclusivity is testable. The result is as follows.

Theorem 6: A binary relation satisfies completeness, transitivity,
Weak Independence–0, Exclusivity and Continuity, if and only if, it
admits an expected utility representation.

Proof: Necessity of the axioms is obvious. Our strategy for sufficiency
will be as follows. We show that Weak Independence–1 is implied by
Exclusivity, Continuity and Weak Independence–0. Observe, Affine
Continuity follows from Continuity. If Outward Monotonicity is shown
to hold, then Theorem 5 implies that the preference admits an LEU
representation. Note, the only LEU preferences satisfying Continuity
are those which admit expected utility representations. Hence, it is
enough to argue that Outward Monotonicity follows from the axioms.
This shall be done through the following steps.

Step 1 — We shall show that Weak Independence–0 and Continuity
imply the following: for any p, q ∈ L (Z),

p ∼ q =⇒
(
∀α ∈ (0, 1)

)[
p � α · p⊕ (1− α) · q ∼ q

]
.

Suppose p ∼ q and α† ∈ (0, 1) satisfy α† · p ⊕ (1 − α†) · q � p. Let
I be the class of all intervals I ⊆ [0, 1] which contain α† and satisfy:
α ·p⊕(1−α) ·q � p for all α ∈ I. Let I∗ be the union of the intervals in
I . Thus, I∗ is the maximal element in I according to set–inclusion.
Continuity implies I∗ has a nonempty interior. Let α∗ := inf I∗ and
α∗ := sup I∗. Thus, α∗, α

∗ ∈ [0, 1] satisfy α∗ < α∗ and I∗ = [α∗, α
∗].

Define p∗ := α∗p ⊕ (1 − α∗) · q and q∗ := α∗p ⊕ (1 − α∗) · q. Note,
α · p∗ ⊕ (1− α) · q∗ � p for all α ∈ (0, 1).
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Continuity then implies p∗ % p and q∗ % p. If at least one of p∗ � p
or q∗ � p holds, then Continuity would imply a contradiction to the
maximality of I∗ in I . Hence, p∗ ∼ p and q∗ ∼ p. Transitivity implies
(1) p∗ ∼ q∗, and (2) α · p∗ ⊕ (1− α) · q∗ � p∗ for all α ∈ (0, 1). Since �
is asymmetric but ∼ is symmetric, p∗, q∗ ∈ L (Z) violate:

p∗ ∼ q∗ =⇒
(
∃α ∈ (0, 1)

)[
p∗ ∼ α · p∗ ⊕ (1− α) · q∗ ∼ q∗

]
.

However, this contradicts Weak Independence–0. showing that our sup-
position is impossible. Similarly, there does not exist p, q ∈ L (Z) and
α† ∈ (0, 1) such that p ∼ q and p � α† · p⊕ (1−α†) · q. Hence, we have
established the claim made in this step.

Step 2 — We shall show that Weak Independence–0, Exclusivity
and Continuity imply: for any p, q ∈ L (Z),

p � q =⇒
(
∀α ∈ (0, 1)

)[
p � α · p⊕ (1− α) · q � q

]
.

Notice, the claim is that Weak Independence–1 holds. Fix any p, q ∈
L (Z). Suppose α∗ · p ⊕ (1 − α∗) · q � p for some α∗ ∈ (0, 1). Then,
by Continuity, p � q implies the existence of α′ ∈ (0, α∗) such that
α′ · p ⊕ (1 − α′) · q ∼ p. By step 1, α · p ⊕ (1 − α) · q ∼ p for all
α ∈ [α′, 1]. Note, α∗ ∈ [α′, 1]. Thus, α∗ · p⊕ (1− α∗) · q ∼ p. But � is
asymmetric and ∼ is symmetric. Thus, we have a contradiction. Hence,
p % α · p⊕ (1− α) · q for all α ∈ (0, 1). Similarly, α · p⊕ (1− α) · q % q
for all α ∈ (0, 1). That is, the following holds:

p % α · p⊕ (1− α) · q % q for every α ∈ (0, 1).

Fix an arbitrary α ∈ (0, 1). Let r := α · p⊕ (1− α) · q. Note, p � q
implies p ∼ q fails. Then, Exclusivity implies r ∼ p fails. Since p % r,
we obtain: p � r. Further, p � q implies q ∼ p fails. Then, Exclusivity
implies r ∼ q fails. Since r % q, we obtain: r � q. Thus, we have:
p � r � q. Finally, note that α ∈ (0, 1) is arbitrary.

Step 3 — We establish Outward Monotonicity. Fix p, q, r ∈ L (Z)
and α∗ ∈ (0, 1). Assume α · p ⊕ (1 − α) · r � α · q ⊕ (1 − α) · r for all
α ∈ (α∗, 1]. Let p∗ := α∗ · p⊕ (1− α∗) · r and q∗ := α∗ · q ⊕ (1− α∗) · r.
Then, Continuity implies p∗ % q∗. We must argue: p∗ � q∗. Suppose
not! Thus, p∗ ∼ q∗ holds. First, we rule out some cases.

If p ∼ r and r � q, then steps 1 and 2 imply p∗ ∼ p and q∗ ∼ q.
Thus, p � q implies p∗ � q∗. Hence, the case p ∼ r � q is ruled out.
Similarly, the case p � r ∼ q is ruled out. Also, the case p � r � q is
ruled out by step 2 and transitivity.
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Thus, the cases that remain are (1) r � p � q and (2) p � q � r.
Henceforth, assume r � p � q (the other case is symmetric).

Suppose p = α† · r ⊕ (1− α†) · q for some α† ∈ (0, 1). Clearly, such
an α† is unique. Define α1 := α∗α

† + (1 − α∗). Notice, α1 ∈ (0, 1) as
α†, α∗ ∈ (0, 1). Observe that p∗ = α1 · r ⊕ (1 − α1) · q. Then, r � q
and step 2 imply p∗ � q. Define α2 := (1 − α∗)/[α∗α

† + (1 − α∗)].
Note, α†, α∗ ∈ (0, 1) implies α2 ∈ (0, 1). Further, observe that q∗ =
α2 · p∗ ⊕ (1− α2 · q. Since p∗ � q, step 2 implies p∗ � q∗ contradicting
p∗ ∼ q∗. Thus, p 6= α · r ⊕ (1− α) · q for all α ∈ (0, 1).

Suppose q = α† · p⊕ (1− α†) · r for some α† ∈ (0, 1). Clearly, α† is
unique. Recall, p∗ = α∗ · p ⊕ (1 − α∗) · r where α∗ ∈ (0, 1). By r � p
and step 2, we have r � p∗. Observe that q∗ = α† · p∗⊕ (1− α†) · r. By
r � p∗ and step 2, we obtain q∗ � p∗ which contradicts p∗ ∼ q∗. Thus,
we have: q = α · p⊕ (1− α) · r for every α ∈ (0, 1).

Now, suppose r = α† · p⊕ (1−α†) · q for some α† ∈ (0, 1). By p � q
and step 2, we have p � r which contradicts r � p. Thus, we have:
r 6= α · p ⊕ (1 − α) · q for all α ∈ (0, 1). Denote by ∆0 the simplex of
all lotteries α1 · p ⊕ α2 · q ⊕ α3 · r, where (α1, α2, α3) ∈ R+ such that
α1 + α2 + α3 = 1. Together with the conclusions of the previous two
paragraphs, we obtain: ∆0 is a 2–simplex.

For any s ∈ ∆0, let I(s) := {t ∈ ∆0 : t ∼ s}. Further, let F0, F1

and F2 be the “faces” of ∆0 defined by the respective pairs (r, q), (r, p)
and (p, q). Formally, F0, F1 and F2 are defined as follows:

FR := {α · r ⊕ (1− α) · q : α ∈ (0, 1)},
F1 := {α · r ⊕ (1− α) · p : α ∈ (0, 1)},
F2 := {α · p⊕ (1− α) · q : α ∈ (0, 1] }.

They are pairwise disjoint. Let FL := F1 ∪ F2. Fix any s ∈ ∆0 \ {q, r}.
Continuity and steps 1–2 imply: there exists a unique (sL, sR) ∈ FL×FR
such that I(s) = {α · sR ⊕ (1− α) · sL : α ∈ [0, 1]}.

Let d and d∗ be the “direction vectors” of I(p) and I(p∗). Since
r � p � q, Continuity implies p ∼ s for some s ∈ FR. Thus,
d 6= d∗. Pick (α1, α2, α3) ∈ R+ such that α1 + α2 + α3 = 1, and
let r∗ := α1 · p∗ ⊕ α2 · q∗ ⊕ α3 · r. Let d† be the “direction vector” of
I(r∗). By Weak Independence–0 and Continuity d† = d. Similarly,
d† = d∗. Thus, d = d∗ which contradicts d 6= d∗. �.

We close this subsection with one final remark. All testability claims
made in this subsection can be formalised in the sense of Chambers
et al. (2017). In particular, they outline all formal statements of a
particular form as testable by using the model theoretic framework as
proposed in Chambers et al. (2014).
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3.4 Geometry of LEU Representations

First, we “geometrize” the problem. Let φ : Z → N := {1, . . . , n} be
a bijection, where n := |Z|. Let 〈 · , · 〉 : Rn × Rn → R be the standard
inner–product over Rn, 1 be the “all ones” vector and ei be the ith
standard basis vector of Rn. Then, ∆ := {x ∈ Rn

+ : 〈x,1〉 = 1} is the
(n− 1)–dimensional unit simplex.

The enumeration φ induces the bijection p ∈ L (Z) 7→ p ∈ ∆,
where p =

∑n
i=1〈ei,p〉ei with 〈ei,p〉 := [p ◦ φ−1](i) for all i ∈ N .

Since the inner–product is bilinear, observe that the compound lottery
α ·p⊕ (1−α) · q is mapped to the vector αp+ (1−α)q. The preference
% over L (Z) induces a preference %∗ on ∆ as: p % q ⇐⇒ p %∗ q.
Then, Independence–3 of % translates to that of %∗ as follows:[

p �∗ q
]

iff
(
∀α ∈ (0, 1)

)[
αp + (1− α)r �∗ αq + (1− α)r

]
The enumeration φ also induces a bijection of EUs to vectors in

Rn as u ∈ E (Z) 7→ u ∈ Rn, where u =
∑n

i=1〈ei,u〉ei with 〈ei,u〉 :=
[u ◦ φ−1](i) for every i ∈ N . The bijections imply the crucial property:

u(p) = 〈u,p〉 for every u ∈ E (Z) and any p ∈ L (Z).

Let a := 1/n be the centroid of ∆, and O1 := {x ∈ Rn : 〈1,x〉 = 0} be
the orthogonal subspace in Rn to the vector 1. Let u⊥ be the orthogonal
projection of u ∈ Rn onto O1. Thus, 〈p−q,u〉 = 〈p−q,u⊥〉 if p,q ∈ ∆.
Further, p⊥ := p−a is the orthogonal projection of p onto O1 because
〈p,1〉 = 1 = 〈a,1〉. Then, 〈p− q,u⊥〉 = 〈p⊥ − q⊥,u⊥〉. Thus, for any
p,q ∈ ∆ and u ∈ Rn, the following holds:

〈p,u〉 ≥ 〈q,u〉 iff 〈p⊥ − q⊥,u⊥〉 ≥ 0.

The statement “ there exists an LEU representation for %” can then
be rephrased as follows: there exist a K–tuple 〈uk ∈ O1 : k = 1, . . . , K〉
of orthonormal vectors in O1 such that,

p �∗ q iff [〈p⊥ − q⊥,u1〉, . . . , 〈p⊥ − q⊥,uK〉] >L 0K ,

where 0K is the origin of RK and >L is the asymmetric component of
the lexicographic order ≥L over RK . Note, the subscript ⊥ has been
dropped as each uk is assumed to be in O1 from the outset.

Moreover, the uk’s are assumed to be orthonormal. To see why,
write uk = u⊥k +uk where u⊥k and uk, respectively, are the components
of uk perpendicular and parallel to the span of u1, . . . ,uk−1. Assume,
〈p⊥−q⊥,ul〉 = 0 for each 1 ≤ l ≤ k− 1. Then, 〈p⊥−q⊥,uk〉 = 0, and
〈p⊥ − q⊥,uk〉 = 〈p⊥ − q⊥,u

⊥
k 〉. Hence, we may assume uk = 0.
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Let the list 〈uk : k = 1, . . . , K〉 of orthonormal vectors in O1 be
denoted by U. Recall, from subsection 2.1, the graded halfspace induced
by U is HU :=

⋃K
k=1 U

k, where Uk is the kth slice defined as:

Uk :=
{
w ∈ O1 : 〈w,ul〉 = 0 for all l < k, and 〈w,uk〉 > 0

}
for all k = 1, . . . , K. Also, recall that the reflection of HU through the
origin, −HU, is the graded halfspace H−U. Also, let

OU := {w ∈ O1 : 〈w,uk〉 = 0 for all k = 1, . . . , K}

be the orthogonal subspace of U in O1. Observe, if x ∈ O1 then:

[〈x,u1〉, . . . , 〈x,uK〉] >L 0 iff x ∈ HU,

by the definition of ≥L. For any p ∈ ∆, define the sets:

U(p) := {q ∈ ∆ : q �∗ p}, (“strict upper contour set of p”)

I(p) := {q ∈ ∆ : q ∼∗ p}, (“indifference set of p”)

L(p) := {q ∈ ∆ : p �∗ q}. (“strict lower contour set of p”)

Then, %∗ admits an LEU representation via the vectors in U iff:

U(p) = ∆ ∩ (p +HU), I(p) = ∆ ∩ (p +OU), L(p) = ∆ ∩ (p +H−U).

Now, let W∗ := O1 and consider the following sets:

U∗ :=
{
w ∈ W∗ : a + tw �∗ a for some t > 0

}
,

V∗ :=
{
w ∈ W∗ : a �∗ a + tw for some t > 0

}
,

S∗ :=
{
w ∈ W∗ : a + tw ∼∗ a for some t > 0

}
.

Note, %∗ admits an LEU representation via U iff: U∗ = HU,
V∗ = H−U and S∗ = OU. Moreover, then the structure of the graded
halfspaces HU and H−U imply: (U∗, V∗, S∗) is a partition of W∗ where
U∗, V∗ are cones satisfying V∗ = −U∗ and S∗ is a subspace. Hence, to
prove Theorem 2, from Theorem 1 it is enough to establish,

Lemma 3: Suppose %∗ satisfies Independence–3. Then, (U∗, V∗, S∗) is
a partition of W∗ where U∗, V∗ are cones that satisfy V∗ = −U∗, and S∗
is a subspace. Further, U(p) = ∆ ∩ (p + U∗), I(p) = ∆ ∩ (p + S∗) and
L(p) = ∆ ∩ (p + V∗) for all p ∈ ∆.

The formal proof is in subsection A.II.2 of the Appendix. However,
a sketch is provided in the following subsection.
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3.5 Sketch of the Proof

We now present a geometric outline of the proof of Lemma 3. To begin,
consider Figure 4 which shows an embedding of the set of lotteries
L (Z), over a set Z of three basic prizes, in the three dimensional
Eucidean space. Thus, each point on the simplex ∆ corresponds to a
lottery. A typical lottery is p whereas a is the centroid of the simplex.
It corresponds to that lottery which randomly selects any basic prize
with the same probability for every prize to be selected.

1

2

3

l
•

(1, 0, 0)

•
(0, 1, 0)

•
(0, 1, 0)

•

a := 1/|Z| =
(

1
3 ,

1
3 ,

1
3

) •
p

•

1 := (1, 1, 1)

u

0

u⊥

Figure 4: The simplex ∆ and an expected utility vector u ∈ R|Z|.

Next, the vector u is a Bernoullian to be used in ascribing expected
utilities to various lotteries. For instance, the expected utility of the
lottery p according to the Bernoullian u is the inner product 〈u,p〉.
The collection of all vectors in R|Z| which are perpendicular to the
vector of “all ones” 1 form a subspace denoted by O1.

Of interest shall be the orthogonal projections, of the lotteries and
the Bernoullians, onto O1 because: 〈u,p〉 ≥ 〈u,q〉 iff 〈u,p − q〉 ≥ 0.
Note, p = a+p⊥ and q = a+q⊥ where p⊥ and q⊥ are the orthogonal
projections onto O1 of p and q. Thus, 〈u,p − q〉 = 〈u,p⊥ − q⊥〉.
Moreover, with u⊥ as the orthogonal projection of u onto O1, u−u⊥ is
perpendicular to p⊥ − q⊥. Thus, 〈u,p− q〉 = 〈u⊥,p⊥ − q⊥〉. Further,
note that the orthogonal projection of a onto O1 is the origin 0. Hence,
all the action essentially takes place in the translation by −a of the
simplex ∆ which is part of the hyperplane O1.
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Henceforth, the perspective is such that the eye is located at 1 and
looks in the direction of 0. Thus, the simplex ∆ appears as shown in
Figure 5. To illustrate Independence–3, let p, q and r be arbitrary
points in ∆. If α ∈ (0, 1) then the line segment joining sα := αp +
(1− α)r and tα := αq+ (1− α)r is parallel to the line segment joining
p and q. This is because sα divides the line segment joining r to p
in the ratio α : 1 − α which is the same ratio in which tα divides the
line segment joining the point r to q. Then, Independence–3 places
two requirements on the binary relation %∗ defined over ∆. First, if
p �∗ q then sα �∗ tα for each α ∈ (0, 1). Moreover, if sα �∗ tα for
every α ∈ (0, 1) then p �∗ q. Note, when using Independence–3 to
conclude p �∗ q, it is not enough that sα �∗ tα for some α ∈ (0, 1).

α

1− α•r

•
p

•
q

•
•

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

αp + (1− α)r

αq + (1− α)r

l0

lα

l1

Figure 5: The Independence axiom and “Similar Triangles”.

First, we shall argue that %∗ is “consistent along any ray”. For this,
consider Figure 6 which shows two lotteries p and q defining the ray l
which emanates from q and passes through p. First, assume p �∗ q.
By Independence–3, every point on the “open line segment” with end
points as p and q is strictly preferred to q.

Let r be on the ray l is such that p lies on the “open line segment”
whose end points are q and r. Suppose r ∼∗ q. Then, p �∗ q implies
p �∗ r. By Independence–3, every point on the “open line segment”
with end points as p and r is strictly preferred to r. Since r ∼∗ q, every
such point is strictly preferred to q. Then, every point on the “open
line segment” with q and r is strictly preferred to q. Thus, r �∗ q
by Independence–3 which contradicts r ∼∗ q. Thus, r ∼∗ q is not
possible. Further, by the argument in the previous paragraph, q �∗ r
implies q �∗ p. However, p �∗ q by assumption.
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Thus, if some lottery on the ray l is strictly preferred to q then each
lottery on the ray, which is distinct from q, is strictly preferred to q. A
similar argument shows, if q is strictly preferred to some lottery on the
ray l then q is strictly preferred to every lottery on the ray provided it
is distinct from q. Now, assume that some lottery, say p, on the ray
l is such that p ∼∗ q. Thus, neither p �∗ q nor q �∗ p holds. Then,
for any lottery r on the ray l, it must be the case that neither r �∗ q
nor q �∗ r holds. For instance, note that r �∗ q would imply p �∗ q
which is a contradiction. That is, if the decision maker is indifferent
between q and some lottery on the ray l which is distinct from q then
he is indifferent between q and every lottery on the ray. In other words,
any two lottery on the ray l which are distinct from q must be ranked
consistently with respect to q.

•
q

•
•
p

l

αp + (1− α)q

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 6: Consistency of %∗ along a ray.

We demonstrate “anti–consistency along reflected rays”. Consider
Figure 7 which shows p in ∆ and two rays l1 and l2 emanating from
p which contain the points q and r, respectively. First, assume that
q �∗ p. Let α ∈ (0, 1) be such that αq + (1 − α)r = p and define
s := αp + (1 − α)r. Thus, q �∗ p implies p �∗ s. Then, “consistency
along a ray” requires that if every point on the “open ray” l1 is strictly
preferred to p then p is strictly preferred to every point on the “open
ray” l2. The converse also holds by a similar argument.

Now, assume that q ∼∗ p. Suppose r �∗ p. Then, p �∗ q by
the previous paragraph. Thus, both p ∼∗ q and p �∗ q hold which
is impossible because ∼∗ and �∗ are disjoint. Thus, r �∗ p fails.
Similarly, p �∗ r fails. Hence, q ∼∗ p implies r ∼∗ p. We say, the rays
l1 and l2 are ranked anti–consistently with respect to p.
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Recall, U(p) and L(p) are the strict upper and lower contour sets
of any p in the simplex. By “consistency along a ray”, it follows that
U(p) and L(p) are made up of “open rays” which emanate from p
as the “origin”. Moreover, L(p) = −U(p) by “anti–consistency along
reflected rays”. Also, recall that I(p) is the indifference set of p. Then,
I(p) too is made up of rays emanating from p as the origin. However,
I(p) = −I(p) by “anti–consistency of reflected rays”. Because �∗ is
asymmetric and ∼∗ is symmetric, the sets U(p), L(p) and I(p) are
pairwise disjoint. Moreover, since the union of �∗ and ∼∗ is complete,
they form a partition of the simplex.

1− α α

1− α α

s := αp + (1− α)r

•

l1

l2•
p

•
r•

q

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 7: Anti–consistency of %∗ along reflected rays.

Since we wish to invoke the Decomposition Theorem, we shall now
proceed to argue that each of the sets U(p), L(p) and I(p) is convex.
Coupled with the observations as in the previous paragraph, this will
imply that U(p) and L(p) are a pair of mutually reflecting (convex)
cones while I(p) is a subspace. Further, they partition the simplex
which, essentially, can be thought of as the hyperplane O1.

First, we argue that U(p) and L(p) are convex. Consider Figure
8 which shows a point p of the simplex. Also, let q and r be two
arbitrary points in U(p). That is, both q �∗ p and r �∗ p hold.
Fix any α ∈ (0, 1). Let s := αq + (1 − α)r and t := αq + (1 − α)p.
Then, r �∗ p implies s �∗ t. Also, q �∗ p implies t �∗ p because
p = αp + (1 − α)p. Since �∗ is transitive, s �∗ t and t �∗ p imply
s �∗ p. Since s = αq + (1 − α)r where q, r ∈ U(p) and α ∈ (0, 1)
are arbitrary, we have: U(p) is convex. By a similar argument, L(p) is
convex. Thus, U(p) and L(p) are (convex) cones.
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It remains to argue that I(p) is convex. For this, let q and r in L(p).
That is, both q �∗ p and r ∼∗ p hold. Fix any α ∈ (0, 1) and let s :=
αq+ (1−α)r. Since q ∼∗ p and r ∼∗ p, the symmetry and transitivity
of ∼∗ implies q ∼∗ r. Then, r and s are two points on the “open ray”
emanating from q which passes through r. By “consistency along a
ray”, r ∼∗ q implies s ∼∗ q. Again, s ∼∗ q and q ∼∗ p imply s ∼∗ p
because ∼∗ is transitive. Since s = αq+(1−α)r where q, r ∈ I(p) and
α ∈ (0, 1) are arbitrary, we have: I(p) is convex. Recall, I(p) = −I(p)
by “anti–consistency along reflected rays”. Hence, “consistency along
a ray” and convexity of I(p) imply: I(p) is a subspace.

1− α

α•
q

•
p

•
r

•
•

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

αq + (1− α)p

αq + (1− α)r

q �∗ p ; r �∗ p

Figure 8: Convexity of U(p) := {q ∈ ∆ : q �∗ p}.

The conclusions thus far can be represented in a drawing such as
Figure 9. With the point p in the simplex as the “vertex”, two cones
have been drawn to represent the strict upper contour set U(p) and
the strict lower contour set L(p). Then, if a coordinate system is so
chosen that the vertex p becomes the “origin” then, the cones U(p)
and V (p) must satisfy L(p) = −U(p) which is the algebraic experssion
of the geometric fact that U(p) and L(p) are “reflections” of each other
through the origin (or, the vertex). Hence, to any ray emanating from
p which passes through a typical point q in U(p), the reflected ray
through p is part of L(p). Likewise, the converse holds. In particular,
consider the two rays shown in “bold” which are part of the boundaries
of U(p) and L(p), respectively. Then, the former belongs to U(p), if
and only if, the latter belongs to L(p). However, these rays may not
belong to U(p) and L(p). Then, both rays are part of I(p).
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Notice, the subspace I(p) is shown to be the singleton {p}. Observe,
the “white spaces” in the simplex. This is indicative of the possibiity
that there are lotteries which are not comparable to p according to
either �∗ or ∼∗. However, this is not possible because the relation ∼∗
satisfies the following:

p ∼∗ q iff
(

not p �∗ q ; not q �∗ p
)
.

That is, for any q in the simplex, if neither q ∈ U(p) nor q ∈ L(p)
hold then q ∈ I(p). Moreover, I(p) must be disjoint from the union
of U(p) and L(p). The asymmetry of �∗ forces the two cones U(p)
and L(p) to be disjoint. Thus, the claim that “U(p), L(p) and I(p)
partition the simplex” has been established.

•
p

•
r

•
q{p} = I(p)

q �∗ p �∗ r

U(p)

L(p)

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 9: The pair of cones and the subspace for p.

Thus, the cones U(p), L(p) and the subspace I(p) must “fan out”,
while maintaining L(p) = −U(p), to cover the whole simplex and must
do so without any “overlaps”. At this stage, recall Figure 2 which was
presented in section 2. Just as in Figure 9, the setting shown in Figure
2 involves two mutually reflecting cones and a subspace each pair of
which is disjoint. However, for them to “fan out” so as to cover the
whole plane implied that the cones must be graded halfspaces of the
form illustrated, for instance, in Figure 1. Moreover, the structure of
graded halfspaces then imply that the ranking of lotteries with respect
to p is according to lexicographic expected utilities.
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However, for this strategy to be complete, it must be ensured that
the expected utility maps that define the lexicographic expected utility
representations must not depend on the lottery p. That is, if p and
p′ are arbitrary lotteries then, the sets U(p′), L(p′) and I(p′) must
be translations of U(p), L(p) and I(p), respectively. Our strategy to
show this will be as follows. Recall, a is the centroid of the simplex.
For any arbitrary point p of the simplex, we shall argue that the sets
U(p), L(p) and I(p) are translations by the vector p − a of the sets
U(a), L(a) and I(a), respectively.

l3

l2 l1

•
q

•r

•
p

• •

αp + (1− α)r = a

αq + (1− α)r

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 10: U(p) is a subset of the translation of U(a).

For this, consider Figure 10 which shows the arbitrary lottery p
and the centroid a of the simplex. Also, let q be a lottery distinct from
p. Let l1 be a ray emanating from p and passing through a. Pick any
point in the simplex on the ray l1 such that a lies on the “open segment”
whose end points are p and r. That is, there exists an α ∈ (0, 1) such
that a = αp + (1 − α)r. Now, draw the ray l2 which emanates from
q and passes through r. Further, draw the ray l3 emanating from a
that is parallel to the segment with end points p and q. Observe, the
intersection of l3 with l2 is αq + (1− α)r by construction.

First, assume q �∗ p. Then, αq+ (1−α)r �∗ αp+ (1−α)r. That
is, αq+ (1−α)r �∗ a. Since q �∗ p, “consistency along a ray” ensures
that all points on the ray emanating from p and passing through q must
be strictly preferred to p. Also, since αq+ (1−α)r �∗ a, “consistency
along a ray” ensures that all points on the ray emanating from a and
is parallel to former. The argument thus far has shown that U(p) is
a subset of the translation, by the vector p − a, of U(a). To show
equality, we argue: αq + (1− α)r �∗ a implies q �∗ p.
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For this, consider Figure 11. Assume s := αq + (1 − α)r �∗ a.
For any arbitrary β ∈ (0, 1), tβ := βa + (1 − β)p is on the “open
segment” with end points p and a. The ray l4 emanates from tβ and is
parallel to l3. The intersection of l4 with the segment joining s and p
is vβ := βs + (1− β)p. Then, s �∗ a implies vβ �∗ tβ. Let l4 intersect
l2 at wβ. Since l4 is parallel to the segment joining p and q, we have
wβ = βs + (1 − β)q. Since vβ and wβ are on l4, “consistency along a
ray” forces vβ �∗ tβ to imply wβ �∗ tβ.

wβ := βs + (1− β)q

vβ := βs + (1− β)p

tβ := βa + (1− β)p • •• l4

l3

l2 l1

•
q

•r

•p

• •

a = αp + (1− α)r

s := αq + (1− α)r

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 11: U(p) is equal to the translation of U(a).

Observe, tβ = [1−β(1−α)]p+[β(1−α)]r because a = αp+(1−α)r
and tβ = βa+(1−β)p. Also, wβ = [1−β(1−α)]q+[β(1−α)r] because
s = αq + (1 − α)r and wβ = βs + (1 − β)q. That wβ �∗ tβ holds for
any arbitrary β ∈ (0, 1) is equivalent to:

γq + (1− γ)r �∗ γp + (1− γ)r for every γ ∈ (α, 1).

Of course, the above holds at γ = α because s �∗ a. To see why
it also holds for any γ ∈ (0, α), let mβ := βa + (1 − β)r and nβ :=
βs + (1 − β)r. Thus, s �∗ a implies mβ �∗ nβ for any β ∈ (0, 1).
Also, mβ = (αβ)p + (1 − αβ)r and nβ = (αβ)q + (1 − αβ)r because
a = αp + (1 − α)r and s = αq + (1 − α)r. Since αβ increases from
0 to α as β increases from 0 to 1, the above relation holds for every
γ ∈ (0, 1). Then, Indpendence–3 implies q �∗ p as was required. Thus,
U(p) is equal to the translation, by p− a, of the set U(a).
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A similar argument shows that L(p) is the translation, by the vector
p − a, of the set L(a). Let us reconsider Figure 10. We already have
(1) q �∗ p iff s �∗ a, and (2) p �∗ q iff a �∗ s. Thus, we must have:
q ∼∗ p iff s ∼∗ a. To see why, assume q ∼∗ p. Suppose s �∗ a. Then,
q �∗ p by (1) which is a contradiction. Thus, s �∗ a does not hold.
Similarly, (2) implies a �∗ s does not hold. Thus, s ∼∗ a must hold.
Hence, q ∼∗ p implies s ∼∗ a. A similar argument implies the converse.
Hence, I(p) is the translation, by p− a, of the set I(a).

•
p u2

u1

U(p)

•
q1

•
q2

•
(1, 0, 0)

•
(0, 1, 0)

•
(0, 0, 1)

Figure 12: Lexicographic expected utilities for %∗.

Thus, for any arbitrary lottery p, the sets U(p), L(p) and I(p)
are translations by p− a of the sets U(a), L(a) and I(a), respectively.
This is equivalent to asserting that there exists a pair of cones U∗, V∗
satisfying V∗ = −U∗, and a subspace S∗, where (U∗, V∗, S∗) partitions
O1 such that, for any p ∈ ∆, U(p) = ∆∩ (p+U∗), L(p) = ∆∩ (p+V∗)
and I(p) = ∆ ∩ (p + S∗). This proves Lemma 3.

To complete the picture, observe that the Decomposition Theorem
applies on the parition (U∗, V∗, S∗). That is, there exists a list U of
orthonormal vectors in O1 such that U∗ is the graded halfspace that is
generated by U. Recall, a typical graded halfspace appears as is shown
in Figure 1 of section 2. Importing such a structure for U∗, which
generates U(p) through translations by p, we obtain Figure 12 which
illustrates the strict upper contour set of the lottery p.

The list, shown here, consists of two orthonormal vectors u1 and u2.
Thus, lottery q1 satisfies q1 �∗ p because 〈u1,q1 − p〉 > 0. However,
note that 〈u1,q2 − p〉 = 0. But, observe that 〈u2,q2 − p〉 > 0. Thus,
q2 �∗ p. Equivalently, the maps p ∈ ∆ 7→ 〈u1,p〉 and p ∈ ∆ 7→ 〈u2,p〉
specify a lexicographic expected utility representation for %∗.

90



4. social choice theory

The second application is to the aggregation of individual preferences
into a social preference. The framework is as follows. Let A be the set
of alternatives; A is non–empty and |A| ≥ 3. Also, let N = {1, 2, . . . , n}
be the set of individuals. A utility profile u is a 〈ui ∈ RA : 1, . . . , n〉
where ui is the utility function representing individual i’s ranking over
A. Let U be the class of all utility functions for an individual. Let R
be the class of all preferences30 over A. A social welfare functional is a
map F : U n → R. For any u ∈ U n, let F̂ (u) and F̄ (u) be respectively
the strict and indifference components of F (u). For u ∈ U n and a ∈ A,
let u(a) := 〈ui(a) : i = 1, . . . , n〉. Also, for u ∈ U n and a, b ∈ A, let
F (u)|{a,b} be the restriction of F (u) to the set {a, b}.

Definition 5: A lexicographic generalized utilitarianism is a social
welfare functional F which admits some λ = 〈λk ∈ Rn : k = 1, . . . , K〉
such that λk 6= 0 and, for any u ∈ U n and a, b ∈ A:

aF (u)b ⇐⇒ [λ1 · u(a), . . . , λK · u(a)] ≥L [λ1 · u(b), . . . , λK · u(b)],

where λk·u(a) :=
∑n

i=1 λ
k
i ui(a) and ≥L is the lexicographic order on RK .

Additionally, if K is 1 and λ ∈ Rn
+, F is a generalised utilitarianism.

Consider the following two axioms that F may satisfy.

Binary Independence of Irrelevant Alternatives (BIIA):

[ u(a) = u′(a) ; u(b) = u′(b) ] =⇒ [ F (u)|{a,b} = F (u′)|{a,b} ].

Pareto Indifference (PI): [ u(a) = u(b) ] =⇒ [ aF̄ (u)b ].

Any social welfare functional that satisfies each of the above two
axioms is a welfarism. Another property is as follows.

Strong Neutrality (SN): If u, u′ ∈ U n and a, b, c, d ∈ A then:

[ u(a) = u′(c) ; u(b) = u′(d) ] =⇒ [ aF (u)b ⇐⇒ cF (u′)d ].

The key result characterizing strong neutrality is the following.

Theorem of Welfarism: A social choice functional satisfies strong
neutrality, if and only if, it is a welfarism.

30A binary relation over A is a preference if it is complete and transitive.
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This result is well–known in the literature. It appears as Theorem
2.1 in Blackorby et al. (1984) for instance. Strong Neutrality of
a social welfare function implies that it admits a description through
a single complete and transitive binary relation over the space Rn of
all utility n–tuples under any utility profile and any alternative. Thus,
information apart from individuals’ utility values to alternatives is not
relevant. The result appears in Blackorby et al. (1984) as Theo-
rem 2.2 and one formulation of this result is as follows.

Representation Lemma: Let F be a social welfare functional that
satisfies strong neutrality. Then, there exists a complete and transitive
binary relation % (an “ordering”) over Rn such that :

aF (u)b ⇐⇒ u(a) % u(b).

for any a, b ∈ A and any u ∈ U n.

At this stage, we point out a matter regarding the terminology. Both
the terms “preference” and “ordering” refer to complete and transitive
binary relations. However, the term “preference” shall apply when the
binary relation is defined over the set A of alternatives. On the other
hand, the term “ordering” shall be invoked when the binary relation is
defined over the space Rn of utility n–tuples.

We proceed to state some normative axioms that a given social
welfare functional may satisfy. For this, the notation for the standard
partial orders on n–vectors will be useful. Denote by ≥, > and � the
binary relations over Rn which are defined by:

x ≥ y ⇐⇒ (∀i ∈ N )[ xi ≥ yi ],

x > y ⇐⇒ ( x ≥ y ; x 6= y ),

x� y ⇐⇒ (∀i ∈ N )[ xi > yi ],

where x ≡ (x1, . . . , xn) and y ≡ (y1, . . . , yn) are arbitrary vectors in Rn.
Then, the axioms can be stated as follows.

Weak Pareto (WP): [ u(a)� u(b) ] =⇒ [ aF̂ (u)b ].

Strong Pareto (SP): [ u(a) > u(b) ] =⇒ [ aF̂ (u)b ].

Continuity: Suppose {uk}k∈N is U n–valued and u∗ ∈ U n such that
limk→∞ u

k(a) = u∗(a) for all a ∈ A. Then, for any a, b ∈ A,

(∀k ∈ N )[ aF (uk)b ] =⇒ [ aF (u∗)b ].
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We now come to the question: how “sensitive” is a social welfare
functional to the “informational content” of utility profiles? Formally,
we are interested in specifying the finest partition, given some social
welfare functional F , of the space of all U n of utility profiles such
that F is constant over partition elements. Since any such partition
is equivalently described by an equivalence relation over U n, we must
specify the nature of the equivalence relation given the question. Since
elements of an utility profile are utility representations of individual
preferences, the equivalence relation over U n will be defined through
classes of “monotone tranformations” of utility profiles.

Let Φ∗ the class of all n–tuples φ := (φ1, . . . , φn), where each φi is
a strictly increasing map on R. For any φ ∈ Φ∗ and u ∈ U n, let φ ◦ u
be the utility profile u′ ∈ U n, where u′i = φi ◦ ui for every i ∈ N . The
equivalence relations of interest are described as follows.

Definition 6: Suppose Φ ⊆ Φ∗ is a subclass of transformations and
F is a social welfare functional. Then, F is Φ–invariant if,

F (φ ◦ u) = F (u) for all u ∈ U n and φ ∈ Φ.

Suitable choices for Φ in the above definition allow formalization of
different notions of “comparability” of utility levels across individuals
and of “measurability” of utility levels for each individual. For instance,
let ΦCMUC ⊆ Φ consist of all φ = (φ1, . . . , φn) ∈ Φ corresponding to
which there exists α > 0 and (β1, . . . , βn) ∈ Rn such that,

φi(t) = αt+ βi for all t ∈ R,

for every i ∈ N . Now, consider the following definition.

Definition 7: A social welfare functional F is cardinally measurable
unit–comparable if, F is ΦCMUC–invariant.

Observe, each φi of φ in ΦCMUC is a positive affine transformation.
Further, across individuals, φi’s have a common “scale” α but possibly
differing “offsets” βi’s. Thus, ΦCMUC–invariance of F means that F
processes, at most, the “cardinal information” in each utility profile.
Moreover, the utility differences across individuals matter.

A social welfare functional F is null if aF (u)b for any a, b ∈ A and
every u ∈ U n. That is, F ranks every pair of alteratives indifferently
under every utility profile. In the rest of this section, we assume social
welfare functionals to be not–null. Then, our first main result regarding
social welfare functionals is the following.
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Theorem 7: A social welfare functional is a lexicographic generalized
utilitarianism, if and only if, it is a welfarism that satisfies Cardinal
Measurability Unit–Comparability and is non–null.

Proof: For “sufficiency”, let F be a ΦCMUC–invariant welfarism. The
Theorem of Welfarism and the Representation Lemma imply existence
of an ordering % such that, for any a, b ∈ A and any u ∈ U n:

aF (u)b ⇐⇒ u(a) % u(b).

We argue: there exists 〈λk ∈ Rn \ {0} : k = 1, . . . , K〉 such that

x % y ⇐⇒ [λ1 · x, . . . , λK · x] ≥L [λ1 · y, . . . , λK · y],

where ≥L is the lexicographic order over RK , and λk · x denotes the
standard inner product of the vectors λk and x in Rn. Then, substi-
tuting u(a) and u(b) for x and y, respectively, shows that F satisfies
definition 5 as is required.

Let us “translate” the ΦCMUC–invariance of F to %. For any φ in
ΦCMUC, u ∈ U n and a ∈ A, recall that φ ◦ u = (φ1 ◦ u1, . . . , φn ◦ un)
and u(a) = (u1(a), . . . , un(a)). Thus, we shall write:

[φ ◦ u](a) :=
(
[φ1 ◦ u1](a), . . . , [φn ◦ un](a)

)
.

Then, aF (φ◦u)b iff [φ◦u](a) % [φ◦u](b). Also, aF (u)b iff u(a) % u(b).
By ΦCMUC–invariance of F , aF (φ ◦ u)b iff aF (u)b. Thus:

u(a) % u(b) ⇐⇒ [φ ◦ u](a) % [φ ◦ u](b).

Now, pick any x, y and z in Rn. Also, let α > 0 be arbitrary. Define
βi := zi for every i ∈ N , where z = (z1, . . . , zn). Fix distinct a, b ∈ A
and construct an utility profile u ∈ U n as follows. Let u(a) := x,
u(b) := y, and u(c) := 0 for every c ∈ A \ {a, b}. Also, for each i ∈ N ,
let φi(t) := αt+βi for every t ∈ R. Then, φ := (φ1, . . . , φn) is in ΦCMUC.
Observe, [φ ◦ u](a) = αx + z and [φ ◦ u](b) = αy + z. Then, because φ
belongs to ΦCMUC, for any x,y, z ∈ Rn and α > 0:

x % y ⇐⇒ αx + z % αy + z. (1)

Consider, for any x ∈ Rn, the three sets U(x) := {y ∈ Rn : y � x},
L(x) := {y ∈ Rn : x � y} and I(x) := {y ∈ Rn : y ∼ x}. By (1), for
any x and y in Rn, we have: y % 0 iff x + y % x. Thus, y ∈ U(0) iff
x + y ∈ U(x). That is, U(x) = x + U(0). Similarly, L(x) = x + L(0)
and I(x) = x+ I(0). That is, for any x ∈ Rn, U(x), L(x) and I(x) are
translations by x of U(0), L(0) and I(0), respectively.
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By (1), if α > 0 and y ∈ U(0) then αy ∈ U(0). Also, y1,y2 ∈ U(0)
implies y1 +y2 ∈ U(0). Thus, U(0) is a (convex) cone. Similarly, L(0)
and I(0) are cones. Moreover, y � 0 iff 0 � −y. Thus, L(0) = −U(0).
Also, y ∼ 0 iff 0 ∼ −y. Thus, I(0) = −I(0). Since I(0) is a cone and
I(0) = −I(0), I(0) is a subspace. Finally, note that

(
U(0), L(0), I(0)

)
paritions Rn because (�,∼) partition % which is complete.

Thus, the Decomposition Theorem (Theorem 1 of section 2) applies.
Hence, there exists a list U ≡ (u1, . . . ,uK) of some K orthonormal
vectors such that U(0) = HU, L(0) = −HU and I(0) = OU, where HU

is the graded halfspace generated by U and OU is the subspace of Rn

orthogonal to U. Let y ∈ Rn be arbitrary. Since U(y) = y + U(0), we
have: U(y) = y +HU. Thus, by the definition of the graded halfspace
HU (that is, definition 1 of section 2) and because U(y) is the strict
upper contour set according to % of y, we have:

x � y ⇐⇒ [u1 · (x− y), . . . ,uK · (x− y)] >L 0K ,

where uk · x is the standard inner product of vectors in Rn, ≥L is
the lexicographic order over RK and 0K is the origin of RK . This is
equivalent to the following:

x % y ⇐⇒ [u1 · x, . . . ,uK · x] ≥L [u1 · y, . . . ,uK · y]. (2)

because: uk · (x− y) > 0 iff uk · x > uk · y. Then, defining λk := uk for
every k = 1, . . . , K completes the proof. �

Then, generalized utilitarianism admits a characterization, which
appears as Theorem 7.1 in Blackorby et al. (1984), which is seen
to be an immediate consequence of the above theorem.

Theorem 8: A social welfare functional is a generalized utilitarianism,
if and only if, it is a welfarism that satisfies Weak Pareto, Continuity
and Cardinal Measurability Unit–Comparability.

Proof: We build on the proof of Theorem 7. In particular, recall that
(2) holds where u1, . . . ,uK are orthogonal. Thus, the ordering % over
Rn is continuous iff K = 1. Further, the social welfare functional F
satisfies Continuity iff % is continuous. Hence, we must have K = 1.
Thus, it remains to argue that u1 ∈ Rn

+. Suppose u1 /∈ Rn
+. Let i∗ ∈ N

satisfy u1 · ei∗ < 0 where ei∗ be the i∗th standard basis vector. For any
ε ∈ (0, 1), let xε := (1 − ε)ei∗ +

∑
i∈N\{i∗} εei. Thus, u1 · xε < 0 for

all small enough ε > 0. Then, K = 1 and (2) implies 0 � xε which
contradicts Weak Pareto. Thus, u1 ∈ Rn

+. �
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As in the above proof, axioms on a welfarism F such as Weak Pareto
and Strong Pareto “translate” to properties of the ordering % which
represents F in the following manner:

x� y =⇒ x � y (Weak Pareto for %)

x > y =⇒ x � y (Strong Pareto for %)

To see why, let us assume F satisfies Weak Pareto. Let x,y ∈ Rn

be arbitrary such that x � y. Fix distinct a and b in A. Construct a
utility profile u ∈ U n as follows. Let u(a) := x, u(b) := y and u(c) := 0
for all c ∈ A\{a, b}. Thus, u(a)� u(b). Since F satisfies Weak Pareto,

we have aF̂ (u)b. Also, aF (u)b iff u(a) % u(b). Thus, aF̂ (u)b implies
u(a) � u(b). That is, x � y. This proves the “Weak Pareto for %”.
Similar considerations establish “Strong Pareto for %”.

Now, we consider the following strengthening of the “invariance”
requirement on F . Let ΦCMNC ⊆ Φ consist of all φ = (φ1, . . . , φn) ∈ Φ∗
corresponding to which there exists (αi, βi) ∈ R++ × R for each i ∈ N
such that, for every i ∈ N ,

φi(t) = αit+ βi for all t ∈ R,

Observe, in contrast to elements of ΦCMUC, now even the αi’s may
depend on the individuals’ identity. In fact, the subscript “CMNC”
(instead of the earlier “CMUC”) reflects “non–comparability” across
individuals. The following definition is in order.

Definition 8: A social welfare functional F is cardinally measurable
non–comparable if, F is ΦCMNC–invariant.

Note, ΦCMUC ( ΦCMNC. Thus, any F which is ΦCMNC–invariant
must also be ΦCMUC–invariant. Thus, our Theorem 7 will be useful in
investigating the effect of ΦCMNC–invariance on F . To that end, we
must introduce the following two definitions.

Definition 9: A social welfare functional F is a dictatorship if, there
exists i∗ ∈ N such that, for any a, b ∈ A and u ∈ U n,

ui∗(a) > ui∗(b) =⇒ aF̂ (u)b.

Definition 10: A social welfare functional F is a serial dictatorship
if, there exists a permutation i1, . . . , in of the individuals N such that,
for any a, b ∈ A and u ∈ U n,(
∃k ∈ N

)[
uil(a) = uil(b) if l < k ; uik(a) > uik(b)

]
⇐⇒ aF̂ (u)b.
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Two remarks are in order. “Dictatorship” as in definition 9 is a
weak notion: if the “dictator” i∗ exhibits a strict preference for an
alternative over another then the two alternatives are socially ranked
according to his preference. However, definition 9 does not require the
converse. Second, the idea underlying definition 10 is that individuals
have been prioritized such that i1 gets to be the “dictator” first but
if i1 exhibits indifference then i2 gets to be the “dictator” ... and so
on. Moreover, note that definition 10 requires a “two–way implication”
in contrast to just the “one–way implication” as in definition 9. We
provide a characterization of serial dictatorships as follows.

An inspection of definitions 5 and 10 reveals that serial dictatorships
form a specifc subclass of lexicographic generalized utilitarianisms. As
already noted, ΦCMNC–invariance is stronger than ΦCMUC–invariance
with the latter characterizing lexicographic generalized utilitarianisms.
Serial dictatorships are characterized by ΦCMNC–invariance.

Theorem 9: A social welfare functional is a serial dictatorship, if and
only if, it is a welfarism which satisfies Strong Pareto and Cardinal
Measurability Non–Comparability.

Proof: For “sufficiency”, let F be a welfarism that is ΦCMNC–invariant
and satisfies Strong Pareto. Then, the Theorem of Welfarism and the
Representation Lemma imply the existence of an ordering % over Rn

such that, for any a, b ∈ A and u ∈ U n,

aF (u)b ⇐⇒ u(a) % u(b).

As ΦCMUC ⊆ ΦCMNC, note % satisfies (2) as in the proof of Theorem
7. Thus, there exists K orthonormal u1, . . . ,uK ∈ Rn such that:

x % y ⇐⇒ [u1 · x, . . . ,uK · x] ≥L [u1 · y, . . . ,uK · y], (3)

where ≥L is lexicographic order over RK . Also, note that because F
satisfies Strong Pareto, it satisfies Weak Pareto. Observe, to show that
F is a serial dictatorship, it is enough to show: K = n, and there exists
a bijection σ : N → N such that uk = eσ(k) for all k = 1, . . . , n.

Step 1 : We argue: u1 ∈ Rn
+. Suppose i∗ ∈ N satisfies u1 · ei∗ < 0.

Let ε ∈ (0, 1) and define xε := (1− ε)ei∗ +
∑

i∈N\{i∗} εei. Note, xε � 0.
Then, as F satisfies Weak Pareto, we have: xε � 0. Also, u1 · ei∗ < 0
implies that u1 · xε < 0 for all small enough ε > 0. Then, 0 � xε by
(3). However, this is a contradiction to the asymmetry of �. Hence,
u1 · ei ≥ 0 for all i = 1, . . . , n. That is, u1 ∈ Rn

+.
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Step 2 : We argue: u1 = ei∗ for some i∗ ∈ N . By normality of
u1 and step 1, observe that it is enough to show: there does not exist
distinct i and j in N such that u1 · ei > 0 and u1 · ej > 0 hold. Thus,
suppose that i∗ and j∗ are distinct elements in N such that u1 · ei∗ > 0
and u1 · ej∗ > 0. For ε > 0, let xε := −εei∗ + ej∗ and yε := −ei∗ + εej∗.
Then, u1 · ej∗ > 0 and u1 · ei∗ > 0 imply, respectively, u1 · xε > 0 and
u1 · yε < 0 for all small enough ε > 0. Thus, (3) implies:

xε � 0 and 0 � yε. (4)

Thus far, we have not appealed to the fact that F is ΦCMNC–invariant.
Now, we proceed to do so as follows. For each i ∈ N , define the map
φ∗i : R→ R by the following rule:

φ∗i (t) := κit for all t ∈ R,

where κi is 1/ε or ε or 1 according as i is i∗ or j∗ or belongs to N\{i∗, j∗}.
Let φ∗ := (φ∗1, . . . , φ

∗
n). Since φ∗i is a positive affine transformation for

every i ∈ N , we have: φ∗ ∈ ΦCMNC. Recall, ΦCMNC–invariance of F
“translates” to an invariance property of % as follows:

x % y iff φ(x) % φ(y)

for all x,y ∈ Rn and any φ ∈ ΦCMNC. In particular, since φ∗ ∈ ΦCMNC

with xε and 0 in Rn, we obtain:

xε % 0 iff φ∗(xε) % φ∗(0). (5)

Now, observe that the definition of xε, yε and φ∗ imply: φ∗(0) = 0 and
φ∗(xε) = yε. Then, (5) implies the following:

xε % 0 iff yε % 0. (6)

However, (4) and (6) constitute a contradiction. Thus, there does
not exist distinct i and j in N such that u1 · ei > 0 and u1 · ej > 0.
Therefore, u1 = ei∗ for some i∗ ∈ N .

Step 3 : We argue: there is an injection σ : {1, . . . , K} → {1, . . . , n}
such that uk = eσ(k) for all k ∈ {1, . . . , K}. For this claim to hold, let
σ(1) := i∗ where i∗ is as in the claim proven in step 2. LetN ∗ := N\{i∗}.
Thus, |N ∗| = n− 1. Recall, F maps any u ∈ U n to some elment in R.
Define F ∗ : U n−1 → R as follows. For any u∗ ∈ U n−1, let u ∈ U n be
that utility profile where ui = u∗i for all i ∈ N ∗, and ui∗ : A → R be
defined as ui∗(a) := 0 for all a ∈ A. Define F ∗(u∗) := F (u). We next
show that F ∗ satisfies the axioms required in Theorem 9 of F .
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For Binary Independence of Irrelevant Alternatives of F ∗, let a, b ∈
A and u∗, v∗ ∈ U n−1 satisfy u∗(a) = v∗(a) and u∗(b) = v∗(b). Then, by
definition of the mapping u∗ ∈ U n−1 7→ u ∈ U n, we have u(a) = v(a)
and u(b) = v(b) because ui∗(c) = 0 = vi∗(c) for any c ∈ {a, b}. Since F
satisfies this axiom, we obtain: aF (u)b iff aF (v)b. However, F ∗(u∗) =
F (u) and F ∗(v∗) = F (v) by definition. Hence, aF ∗(u∗)b iff aF (v∗)b.
That is, F ∗ satisfies this axiom.

For Pareto Indifference, let a, b ∈ A and u∗ ∈ U n−1 be such that
u∗(a) = u∗(b). Then, by definition of the map u∗ ∈ U n−1 7→ u ∈ U n,
we have u(a) = u(b) as ui∗(a) = 0 = ui∗(b). Since F satisfies Pareto
Indifference, we have aF̄ (u)b. That is, aF (u)b and bF (u)a. Further,
F ∗(u∗) is F (u) by definition. Thus, aF ∗(u∗)b and bF ∗(u∗)a. That is,
aF̄ ∗(u∗)b. Hence, F ∗ satisfies Pareto Indifference.

For Strong Pareto, let a, b ∈ A and u∗ ∈ U n−1 satisfy u∗(a) > u∗(b).
That is, (i) u∗i (a) ≥ u∗i (b) for all i ∈ N ∗, and (ii) u∗i∗∗(a) > u∗i∗∗(b) for
some i∗∗ ∈ N ∗, where N ∗ = N \ {i∗}. Now, by definition of the map
u∗ ∈ U n−1 7→ u ∈ U n, we have ui∗(a) = 0 = ui∗(b). Thus, both (i)
ui(a) ≥ ui(b) for all i ∈ N , and (ii) ui∗∗(a) > ui∗∗(b) for some i∗∗ ∈ N ,
hold. That is, u(a) > u(b) holds. Since F satisfies Strong Pareto, we

have aF̂ (u)b. That is, aF (u)b holds but bF (u)a does not. As F ∗(u∗)
is F (u) by definition, it follows: aF ∗(u∗)b holds but bF ∗(u∗)a does not.

That is, aF̂ ∗(u∗)b holds. Hence, F ∗ satisfies Strong Pareto.
For Cardinal Measurability Non–Comparability, let a, b ∈ A and

u∗ ∈ U n−1. Denote by Φn−1
CMNC the collection of all (n − 1)–tuples

φ∗ ≡ 〈φ∗i : i ∈ N ∗〉 such that, for each i ∈ N ∗, φi(t) = αit + βi for
all t ∈ R with αi > 0 and βi ∈ R. Fix an arbitrary φ∗ ∈ Φn−1

CMNC. Let
φ∗ ◦u∗ := 〈φ∗i ◦u∗i : i ∈ N ∗〉. We must argue: aF ∗(u∗)b iff aF ∗(φ∗ ◦u∗)b.
With u ∈ U n corresponding to u∗, let the n–tuple φ := 〈φi : i ∈ N〉 be
defined by φi := φ∗i if i ∈ N ∗, and φi∗(t) := t for all t ∈ R. Now, observe
that φi ◦ui = φ∗i ◦u∗i for all i ∈ N ∗ as ui = u∗i and φi = φ∗i for all i ∈ n∗.
Moreover, φi∗ ◦ui∗ = ui∗ as φi∗ is the identity map on R. Since ui∗ is the
zero map on A, we have: φ◦u corresponds to φ∗◦u∗. Thus, aF ∗(φ∗◦u∗)b
iff aF (φ ◦ u). Also, aF ∗(u∗)b iff aF (u)b. Note, φ ∈ ΦCMNC. Since F is
ΦCMNC–invariant, we have: aF (u)b iff aF (φ ◦ u)b. Thus, aF ∗(u∗)b iff
aF ∗(φ∗ ◦ u∗)b. That is, F ∗ is Φn−1

CMNC–invariant.
Since F ∗ is a welfarism, let %∗ be an ordering over Rn−1 such that:

aF ∗(u∗)b iff u∗(a) %∗ u∗(b). With u ∈ U n corresponding to u∗ ∈ U n,
note that F ∗(u∗) is F (u) by definition. Also, aF (u)b iff u(a) % u(b).
Further, ui∗(a) = 0 = ui∗(b) and u1 = ei∗. Then, (3) implies:

x %∗ y ⇐⇒ [u2 · x, . . . ,u2 · x] ≥∗L [u2 · y, . . . ,u2 · y],

for any x,y ∈ Rn−1 with ≥∗L as the lexicographic order on RK−1.
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Hence, the arguments in steps 1 and 2 imply: u2 = ej∗ for some
j∗ ∈ N ∗ = N \ {i∗}. Again, we let σ(2) := j∗. Then, we iteratively
repeat the generation of (N ∗, F ∗,%∗,≥∗L) from (N,F,%,≥L), thereby,
assigning distinct values to σ(1), σ(2), ... up to σ(K). This results
in an injection σ : {1, . . . , K} → {1, . . . , n} with the property that
uk = eσ(k) for all k = 1, . . . , K.

Step 4 : We argue: K = n and σ is a bijection from N to N .
Since σ was already constructed to be an injection from {1, . . . , K} to
N = {1, . . . , n}, it is enough to show: K = n. Also, note that K ∈ N is
such that u1, . . . ,uK are orthonormal vectors in Rn. Since any system
of orthonormal vectors must be linearly independent and the dimension
of Rn is n, it follows that K ≤ n.

Suppose K < n. Consider any i∗∗ ∈ N \ σ
(
{1, . . . , K}

)
and define

x∗ := ei∗∗. Clearly, x∗ 6= 0 and x∗ ≥ 0. That is, x∗ > 0 holds. Since F
satisfies Strong Pareto, x∗ > 0 implies: x∗ � 0. Also, since uk = eσ(k)

for all k ∈ {1, . . . , K}, the fact that i∗∗ ∈ N \ σ
(
{1, . . . , K}

)
implies:

uk · x∗ = 0 for all k = 1, . . . , K. Then, x∗ ∼ 0 by (3). However, x∗ � 0
and x∗ ∼ 0 constitute a contradiction. Hence, K = n.

The proof of the theorem is complete. �

Observe, steps 1 and 2 in the proof of Theorem 9 do not require the
full force of the Strong Pareto axiom; Weak Pareto suffices. Also, steps
1 and 2 imply: u1 = ei∗ for some i∗ ∈ N . Then, representation (3) and
definition 9 immediately lead us to the following conclusion.

Corollary 1: Suppose a social welfare functional is a welfarism that
satisfies Weak Pareto and Cardinal Measurability Non–Comparability.
Then, it must be a dictatorship.

Obviously, the above conclusion continues to hold with any stronger
invariance requirement on F . Let ΦOMNC := Φ∗. Thus, φ ≡ (φ1, . . . , φn)
is in ΦOMNC iff φi is a strictly increasing for each i ∈ N (the φi’s may
differ across i’s). Consider the following definition.

Definition 11: A social welfare functional F is ordinally measurable
non–comparable if, F is ΦOMNC–invariant.

Strengthening the invariance requirement in corollary 1 according
to definition 11 implies Arrow’s Impossibility Theorem as a further
corollary to our Theorem 9. Arrow’s result appears in this form as
Theorem 4.1 in Blackorby et al. (1984).
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5. blackwell–girshick theorem

We consider a non–trivial binary relation % over a given non–empty
convex subset C of an Euclidean space Rn. We shall say that % admits
a linear representation if, there exists31 λ ∈ Rn \ {0} such that,

x % y ⇐⇒ λ · x ≥ λ · y for all x, y ∈ Rn. (7)

The binary relation % is a preference if it is complete and transitive.
Observe, if a linear representation exists then the binary relation must
be a preference. The asymmetric and symmetric components of % are
denoted by � and ∼. Existence of linear representations is the focus
of this section. We begin with some axioms on %.

Invariance–1: If x, y ∈ C and z ∈ Rn satisfy x+ z, y + z ∈ C then,

x % y ⇐⇒ x+ z % y + z.

Invariance–2: If x, y ∈ C and z ∈ Rn satisfy x+ z, y + z ∈ C then,

x � y =⇒ x+ z � y + z, and

x ∼ y =⇒ x+ z ∼ y + z.

Observe, if a linear representation exists then Invariance–1 holds.
Further, Invariance–1 and Invariance–2 are equivalent for a preference.
More specifically, observe the following.

Proposition 4: Let % be a binary relation over any C ⊆ Rn. Then,

1. Invariance–1 implies Invariance–2.

2. Invariance–2 and completeness imply Invariance–1.

Proof: Let % be a binary relation defined over a set C ⊆ Rn. Fix
any x, y ∈ C and z ∈ Rn such that x + z, y + z ∈ C. First, assume %
satisfies Invariance–1. Let x � y. Then, x % y by definition32 of �.
Thus, x + z % y + z by Invariance–1. Further, suppose y + z % x + z.
Then, y % x by Invariance–1. However, this is a contradiction to x � y
by the definition of �. Thus, y + z % x + z does not hold. Hence,
x + z � y + z by definition of �. That is, (x � y =⇒ x + z � y + z)
holds if % satisfies Invariance–1.

31Throughtout this section, by λ · x we shall denote λ1x1 + . . . + λnxn which is the standard
inner product of the vectors λ ≡ (λ1, . . . , λn) and x ≡ (x1, . . . , xn) in Rn.

32The asymmetric component � of % is defined as: x � y ⇐⇒ ( x % y ; not y % x ). Further,
the symmetric component ∼ of % is defined as: x ∼ y ⇐⇒ ( x % y ; y % x ).
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Now, let x ∼ y. Then, x % y by definition of ∼. Thus, x+z % y+z
by Invariance–1. Also, x ∼ y implies y % x by definition of ∼. Then,
y + z % x + z by definition of Invariance–1. Hence, x + z ∼ y + z by
definition of ∼. That is, (x ∼ y =⇒ x+ z ∼ y+ z) holds if % satisfies
Invariance–1. Hence, Invariance–1 implies Invariance–2.

Now, assume % satisfies Invariance–2 and completeness. Let x % y.
Then, completeness of % implies either x � y or x ∼ y holds by the
definitions of � and ∼. By Invariance–2, x � y implies x+ z � y + z.
Further, x+ z � y + z implies x+ z % y + z by definition of �. Thus,
x � y would imply x+z % y+z. Again, by Invariance–2, x ∼ y implies
x+ z ∼ y+ z. Further, x+ z ∼ y+ z implies x+ z % y+ z by definition
of ∼. Thus, x ∼ y would also imply x+z % y+z. Hence, x+z % y+z
holds. That is, (x % y =⇒ x+ z % y + z) holds.

Finally, let x + z % y + z. Suppose x % y does not hold. Then,
y % x by completeness of %. Hence, y � x by definition of �. By
Invariance–2, y � x implies y+ z � x+ z. Thus, x+ z % y+ z does not
hold by definition of �. Since this is a contradiction, we must conclude
that x % y holds. That is, (x + z % y + z =⇒ x % y) holds. Hence,
Invariance–1 follows from Invariance–2 and completeness. �

Since % shall be a preference throughout this section, we shall not
make any distinction between the two versions. Henceforth, we shall
simply refer to either statement as “Invariance”.

Resuming the discussion on necessary conditions, note u(x) := λ · x
defines a R–valued continuous utility representation % if (7) holds. Let
C be endowed with the restriction of the standard topology of Rn.
Then, the following axiom is also necessary.

Continuity: The sets {y ∈ C : y � x} and {y ∈ C : x � y} are open
subsets of C for every x ∈ C.

Invariance and Continuity are clearly necessary for the existence of
a linear representation of the preference % over C. It was shown in
Blackwell & Girshick (1954), which is their Theorem 4.3.1, if the
set C is equal to Rn then these axioms are also sufficient.

Blackwell–Girshick Theorem: Suppose % is a binary relation on
C = Rn. Then, % admits a linear representation, if and only if, % is a
preference that satisfies Invariance and Continuity.

It has been used extensively in microeconomic theory, for instance,
in the minimax theory of games, foundations of utilitarianism in social
choice and Roberts’ type characterizations in mechanism design.
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A closer inspection of its proof, which is based on the “Separating
Hyperplane Theorem” of convex sets, has allowed adaptation when the
set C is any open convex subset of Rn instead of the entire Euclidean
space Rn. It is the ability to adapt this result to more general domains
which has in large measure made the result ubiquitous in applications.
We shall generalize the Blackwell–Girshick Theorem to arbitrary con-
vex subsets C of Rn. However, to state our result, we need to formalize
the intuitive idea of “a vector in Rn whose direction is along a convex
set”. To that end, some preliminaries are in order.

Definition 12: Let C ⊆ Rn be non–empty. A subspace generated by
C is a linear subspace S0 of Rn that satisfies :

1. There exists x0 ∈ Rn such that C ⊆ x0 + S0, and

2. If x ∈ Rn and S is a linear subspace of Rn such that C ⊆ x+ S
then S0 is a linear subspace of S.

Some remarks are in order. Given any non–empty C ⊆ Rn, there is
the question of whether a subspace generated by C exists? Moreover,
if it exists then is it unique? The answers to both these questions is in
the affirmative which is formally stated as follows.

Proposition 5: Let C ⊆ Rn be non–empty. Then, there exists a
unique SC ⊆ Rn such that SC is the subspace generated by C. Moreover,
if x ∈ Rn and x0 ∈ C then the following holds :

C ⊆ x+ SC ⇐⇒ x− x0 ∈ S.

Note, all translations of SC which contain C has been characterized.
In terms of geometric intuition, SC is the linear span of all vectors in
C relative to some point in C chosen to be the origin. The proof is
supplied in section A.III.1 of the Appendix.

Definition 13: If x0 ∈ Rn and C ⊆ Rn non–empty, x0 is along C if
x0 ∈ SC where SC is the subspace generated by C.

When C as in the above definition is an abstract subset of Rn, the
notion of a vector x0 being “along” the set C is harder to intuitively
justify. However, if the set C is convex then the above notion makes
geometric sense. Moreover, observe that if C ⊆ Rn is non–empty and
open then SC = Rn. Then, the phrase “λ is along SC” is equivalent to
“λ is in Rn”. Our generalization of the Blackwell–Girshick Theorem to
arbitrary convex sets is as follows.
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Theorem 10: Suppose % is a binary relation over a convex C ⊆ Rn.
Then, there exists a unique λ ∈ Rn \ {0} along C such that :

x % y ⇐⇒ λ · x ≥ λ · y for all x, y ∈ C,

if and only if, % is a non–trivial preference that satisfies Continuity
and Invariance.

The proof of the above result is presented in section A.III.1 of the
Appendix. We introduce the following axiom, on the binary relation,
for the existence of lexicographic linear representations.

Convexity: Let C be convex. If x, y ∈ C and α ∈ (0, 1) then,

x � y =⇒ αx+ (1− α)y � y.

This axiom is one of the standard assumptions on a preference in
many settings. We now relax Continuity by replacing it in Theorem 10
with Convexity. This guarantees the existence of a unique lexicographic
linear representation for an arbitrary convex set. Our characterization,
proven in section A.III.2 of the Appendix, is as follows.

Theorem 11: Suppose % is a binary relation over a convex C ⊆ Rn.
Then, there exists a unique list (λ1, . . . , λK) of orthonormal vectors
along C such that, for any x, y ∈ C,

x % y ⇐⇒ [λ1 · x, . . . , λK · x] ≥L [λ1 · y, . . . , λK · y],

where ≥L is the lexicographic order over RK, if and only if, % is a
non–trivial preference that satisfies Invariance and Convexity.

The above axiom may be reminiscent of the “Independence” from
section 3. Then, why is Invariance additionally required for existence of
lexicographic linear representations? To see why, note that the clause
“α · p ⊕ (1 − α) · r � α · q ⊕ (1 − α) · r”, in “Independence”, allows r
to be arbitrary. However, in “Convexity”, r is equal to q which is more
restrictive—that is, weaker—than “Independence”.

To place Theorems 8 and 9 in context, three remarks are in order.
First, standard versions of the Blackwell–Girshick theorem also require
“monotonicity” to substantially simplify proofs. Second, the existence
of (lexicographic) linear representations is not assured under the said
axioms for non–convex domains. Third, convex subsets exist which are
both nowhere dense and are not Lebesgue measurable. Thus, additional
assumptions such as “open subset” are restrictive.
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6. ordered vector spaces

Our last application of the Decomposition Theorem is a characteri-
zation of ordered (real) vector spaces. The landmark result in this
direction is by Hausner & Wendel (1952) who considered arbitrary
vector spaces over the real numbers. We shall only consider finite di-
mensional vector spaces. So, let V be an n–dimensional vector space
over R and � be a linear order33 on V . Elements of V are denoted by
x, y, . . . and so on but the origin is denoted by 0. Scalars are denoted
by α, β, . . . and so on. Then, the pair (V,�) is an ordered vector space
if, the following properties are hold:

1. If x � 0 and λ > 0 then λx � 0.

2. If x � 0 and y � 0 then x+ y � 0.

3. x � y if and only if x− y � 0.

In addition to the above defining properties, three simple but useful
consequences are now stated and proved as follows.

Proposition 6: Let (V,�) be an ordered vector space over R. Then,

1. If x � y then x+ z � y + z.

2. If x � y and λ > 0 then λx � λy.

3. x � 0 if and only if 0 � −x.

Proof: For the first property, observe that x � y iff x − y � 0 iff
(x + z)− (y + z) � 0 iff x + z � y + z. Now, for the second property,
suppose λ > 0 and x � y. Then, x � y implies x − y � 0. Also,
x−y � 0 and λ > 0 implies λ(x−y) � 0. That is, λx−λy � 0. Thus,
we have λx � λy. Hence, x � y and λ > 0 implies λx � λy.

Next, suppose x � 0. Then, x+(−x) � 0+(−x). Since x+(−x) = 0
and 0 + (−x) = −x, we have 0 � −x. That is, x � 0 implies 0 � −x.
For the converse, suppose 0 � −x. Then, 0 + x � −x + x. Since
0 + x = x and −x + x = 0, it follows that x � 0. That is, 0 � −x
implies x � 0. Hence, x � 0 if and only if 0 � −x. �

In the rest of this section, we shall denote by [n] the set {1, . . . , n}.
Note that [n] is well–ordered by the restriction to [n] of the standard
order over R. The following definition is critical.

33A linear order on a set X is a binary relation over X which is weakly connected, asymmetric
and transitive. The standard order > on R is an example.
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Definition 14: The lexicographic function space on [n] is the ordered
vector space (Ln,�n), where Ln is the vector space of all R–valued
maps on [n] and �n is the linear order on Ln that satisfies :34

f �n 0n if and only if f(kf) > 0,

where kf := min{k ∈ [n] : f(k) 6= 0} for every f ∈ Ln.

Since any f ∈ Ln is naturally identifiable with a corresponding
unique n–tuple of real numbers, it is clear that Ln is an n–dimensional
vector space over R. That is, f ∈ Ln 7→ xf ∈ Rn is the linear bijection
such that 〈xf , ek〉 = f(k) for all k ∈ [n], where ek is the kth standard
basis vector in Rn. Observe, the linear order �n satisfies:

f �n g if and only if xf >L xg,

where >L is the strict component of the standard lexicographic order
≥L on Rn. Thus, definition 14 is justified.

For each k ∈ [n], let fk,n be the R–valued map over [n] defined
by: fk,n(i) := 1 if i = k; otherwise, 0. Clearly, the n–tuple of maps
(f1,n, . . . , fn,n) is an ordered basis of Ln. For an arbitrary n–dimensional
ordered vector space (V,�) and an ordered basis B ≡ (v1, . . . , vn) of
V , the linear bijection φB : V → Ln such that:

φB(vk) := fk,n for every k ∈ [n],

induces the linear order �B on Ln defined by:

x � y iff φB(x) �B φB(y).

Thus, the moment an ordered basis B of V is chosen, the map φB

implements a linear embedding of the vector space V into the vector
space Ln. Recall, Ln already has the linear order �n defined over it
which makes it an ordered vector space. Additionally, the linear order
�B induced by the embedding φB also makes Ln a (possibly different)
ordered vector space. A definition is in order.

Definition 15: Let (V,�) be an n–dimensional ordered vector space
and B be an ordered basis of V . Then, (V,�) is isomorphic to (Ln,�n)
via the ordered basis B if �B =�n.

Then, the fundamental result can be stated as follows.

34We denote by 0n the map on the set [n] which takes the value 0 for all k ∈ [n].
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Hausner–Wendel Theorem: Suppose (V,�) is an n–dimensional
order vector space. Then, there exists an ordered basis B of V such
that (V,�) is isomorphic to (Ln,�n) via B.

The lexicographic function space (Ln,�n) on [n] is one example
of an n–dimensional ordered vector space. It is a basic fact in linear
algebra that any n–dimensional vector space over R, by the choice of
an arbitrary ordered basis, is essentially Rn. The above theorem claims
that every n–dimensional ordered vector space over R is essentially the
lexicographic function space on [n] through the choice of some ordered
basis. The objective of this section is to show that the above theorem
is a consequence of our Decomposition Theorem.

Proof: Let (V,�) be an n–dimensional ordered vector space over R.
Fix an arbitrary ordered basis B0 ≡ (v1, . . . , vn) of V . Let φB0

be the
linear bijection from V to Rn that satisfies the following:

φB0
(vk) = ek for all k = 1, . . . , n

with ek being the kth standard basis vector of W∗ := Rn. Let �∗ be
the linear order on Rn induced by � under φB. That is,

x � y if and only if φB0
(x) �∗ φB0

(y).

Observe, (Rn,�∗) is an n–dimensional ordered vector space. Define
U∗ := {x ∈ W∗ : x �∗ 0}, V∗ := {x ∈ W∗ : 0 �∗ x} and S∗ := {0}.
By the definition and properties of ordered vector spaces, U∗ and V∗
are cones with V∗ = −U∗. Clearly, S∗ is a 0–dimensional subspace of
W∗. Moreover, (U∗, V∗, S∗) partition W∗. Then, by the Decomposition
Theorem (Theorem 1 in section 2), there exists a unique orthonormal
basis U ≡ (u1, . . . , un) of W∗ such that U∗ = HU and V∗ = −HU, where
HU is the graded halfspace generated by U. Now, define the ordered
basis B ≡ (w1, . . . , wn) of V as follows:

wk := φ−1
B0

(uk) for all k = 1, . . . , n.

Also, define the map ψ : Rn → Ln as follows. For each k ∈ [n] let
ψ(uk) be the function from [n] to R defined by: [ψ(uk)](i) := 1 if i = k;
otherwise, 0. Moreover, uniquely extend ψ linearly to all of Rn. Thus,
ψ is linear bijection from Rn to Ln. Hence, ψ ◦φB0

is a linear bijection
from V to Ln. Let �B be the linear order indcued by � under ψ ◦φB0

.
Then, the definitions of a graded halfspace (definition 1 in section 2)
implies that �B=�n. That is, (V,�) is isomorphic to (Ln,�n) via the
ordered basis B. This completes the proof. �
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appendix

A.I.1 The Decomposition Theorem

Proof of Theorem 1: We first prove “existence”. For any subspace
W∗ ⊆ Rm, with U∗, V∗ as cones in W∗ and S∗ ⊆ W∗ as a subspace,
such that (U∗, V∗, S∗) is a partition of W∗ and V∗ = −U∗, let K be the
codimension of S∗ in W∗. That is, K := dim(W∗)−dim(S∗). Let St[K]
be the name of the following statement:

If U∗ is nonempty then there exists a list of K orthonormal vectors
in W∗, U∗ ≡ 〈uk∗ : k = 1, . . . , K〉, such that U∗ =

⋃K
k=1 U

k
∗ , where:

Uk
∗ := {w ∈ W∗ : 〈ul∗,w〉 = 0 if l < k, and 〈uk∗,w〉 > 0}.

The proof that St[K] holds is by mathematical induction on K.

Basis — We argue that St[0] is true. Observe, with K = 0, we
have dim(S∗) = dim(W∗). This is because S∗ is a subspace of W∗ and
has codimension K which is 0. Thus, U∗ = ∅ = V∗ as (U∗, V∗, S∗) is a
partition of W∗. Thus, St[0] is vacuously true.

Induction Step — Assume St[K − 1] holds. If U∗ ∪ V∗ = ∅ then
St[K] holds vacuously. So, we assume U∗ ∪ V∗ 6= ∅. Since V∗ = −U∗,
both U∗ 6= ∅ and V∗ 6= ∅. Hence, by Lemma 2, there exists a unique
u∗∗ ∈ W∗ \ {0} such that each of the following holds:

1. S∗ ⊆ ∂U∗ = ∂V∗ =U ∗ ∩V ∗ = {w ∈ W∗ : 〈u∗∗,w〉 = 0}.

2. U ◦∗ = {w ∈ W∗ : 〈u∗∗,w〉 > 0}.

3. V ◦∗ = {w ∈ W∗ : 〈u∗∗,w〉 < 0}.

Define u1
∗ := u∗∗/‖u∗∗‖, S∗∗ := S∗ and W∗∗ := {w ∈ W∗ : 〈u1

∗,w〉 = 0}.
Also, let U∗∗ := U∗ ∩W∗∗ and V∗∗ := V∗ ∩W∗∗. Clearly, U∗∗ and V∗∗
are (convex) cones in W∗∗ and S∗∗ ⊆ W∗∗ is a subspace such that
V∗∗ = −U∗∗. Moreover, (U∗∗, V∗∗, S∗∗) is a partition of W∗∗.

If U∗∗∪V∗∗ = ∅ then W∗∗ = S∗. Also, W∗∗ = ∂U∗ implies ∂U∗ = S∗.
Since U ◦∗ ⊆ U∗ ⊆U ∗ and ∂U∗ =U ∗ \U ◦∗ , U∗ \U ◦∗ ⊆ ∂U∗. Also, S∗ = ∂U∗
and S∗∩U∗ = ∅ implies U∗ = U ◦∗ . Thus, U∗ = {w ∈ W∗ : 〈u1

∗,w〉 > 0}.
Since V∗ = −U∗, V∗ = {w ∈ W∗ : 〈u1

∗,w〉 < 0}. Moreover, S∗ = W∗∗
implies S∗ = {w ∈ W∗ : 〈u1

∗,w〉 = 0}. Thus, K = 1 and St[K] holds.
That is, if U∗∗ ∪ V∗∗ = ∅ then: St[K − 1] implies St[K]. Henceforth,
we shall assume that U∗∗ ∪ V∗∗ 6= ∅.
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As V∗∗ = −U∗∗, U∗∗ 6= ∅ and V∗∗ 6= ∅. Observe, W∗∗ is a subspace of
W∗ with codimension 1. Then, K ′ := dim(W∗∗)− dim(S∗∗) = K − 1 as
S∗ = S∗∗. By St[K − 1], there exists a list of K∗∗ orthonormal vectors

in W∗∗, U∗∗ ≡ 〈uk∗∗ : k = 1, . . . , K ′〉 such that U∗∗ =
⋃K ′

k=1 U
k
∗∗, where:

Uk
∗∗ := {w ∈ W∗∗ : 〈ul∗∗,w〉 = 0 if 1 ≤ l < k, and 〈uk∗∗,w〉 > 0}

for 1 ≤ k ≤ K ′. Let uk∗ := uk−1
∗∗ for 2 ≤ k ≤ K. Thus, Uk

∗∗ = Uk+1
∗ for

1 ≤ k ≤ K ′ because W∗∗ = {w ∈ W∗ : 〈u1
∗,w〉 = 0}, where:

Uk
∗ := {w ∈ W∗ : 〈ul∗,w〉 = 0 if 1 ≤ l < k, and 〈uk∗,w〉 > 0}

if 2 ≤ k ≤ K. Since U∗∗ =
⋃K ′

k=1 U
k
∗∗, and Uk

∗∗ = Uk+1
∗ if 1 ≤ k ≤ K ′,

from K = K ′ + 1 we obtain: U∗∗ =
⋃K
k=2 U

k
∗ . Let U 1

∗ := U ◦∗ . Recall,
U ◦∗ = {w ∈ W∗ : 〈u1

∗,w〉 > 0}. Thus, if we show U∗ = U ◦∗ ∪ U∗∗,
then U∗ =

⋃K
k=1 U

k
∗ follows. Now, U∗∗ = W∗∗ ∩ U∗ and W∗∗ = ∂U∗

imply U∗∗ = (∂U∗) ∩ U∗. Also, U∗ ⊆ U ∗ and ∂U∗ = U ∗ \ U ◦∗ imply
U∗ \U ◦∗ = (∂U∗)∩U∗. Thus, U∗∗ = U∗ \U ◦∗ . Then, U∗ = U ◦∗ ∪ (U∗ \U ◦∗ )
as U ◦∗ ⊆ U∗. Hence, U∗ = U ◦∗ ∪ U∗∗ as required. That is, St[K] holds.
This completes the induction step and the proof of “existence”.

We now prove “uniqueness”. Let U1
∗ = 〈u1,k

∗ ∈ W∗ : k = 1, . . . , K1〉
and U2

∗ = 〈u2,k
∗ ∈ W∗ : k = 1, . . . , K2〉 be two lists of orthonormal

vectors. For each l ∈ {1, 2} and 1 ≤ k ≤ Kl, define:

U l,k
∗ := {w ∈ W∗ : 〈ul,j∗ ,w〉 = 0 if 1 ≤ j < k, and 〈ul,k∗ ,w〉 > 0}.

Let U l
∗ :=

⋃K1

k=1 U
l,k
∗ for l = 1, 2. We argue: U 1

∗ = U 2
∗ implies U1

∗ = U2
∗.

Suppose, U 1
∗ = U 2

∗ and U1
∗ 6= U2

∗. Assume K1 ≤ K2. Since U1
∗ 6= U2

∗,
exactly one of the following cases must hold:

1. For some K ≤ K1, u
1,K
∗ 6= u2,K

∗ and u1,k
∗ = u2,k

∗ if k ≤ K − 1.

2. u1,k
∗ = u2,k

∗ for each k ∈ {1, . . . , K1
∗} and K1 < K2.

In case (1), 〈u1,K
∗ ,u2,K

∗ 〉 < 1; else, u1,K
∗ = u2,K

∗ by Cauchy–Schwarz.

Also, w := u1,K
∗ −u2,K

∗ implies 〈u1,K
∗ ,w〉 = 1−〈u1,K

∗ ,u2,K
∗ 〉 = −〈u2,K

∗ ,w〉.
Thus, 〈u1,K

∗ ,w〉 > 0 and 〈u2,K
∗ ,w〉 < 0. As 〈u2,K

∗ ,w〉 6= 0, w /∈ U 2,k
∗ if

K + 1 ≤ k ≤ K2. Also, 〈u2,k
∗ ,w〉 ≤ 0 if 1 ≤ k ≤ K implies w /∈ U 2,k

∗
if 1 ≤ k ≤ K. Thus, w /∈ U 2

∗ . By orthonormality of the vectors in

U1
∗, U

2
∗ and that u1,k

∗ = u2,k
∗ for 1 ≤ k < K, we have: 〈u1,k

∗ ,w〉 = 0

if 1 ≤ k < K. Thus, 〈u1,K
∗ ,w〉 > 0 implies w ∈ U 1,K

∗ ⊆ U 1
∗ . That is,

w ∈ U 1
∗ \U 2

∗ which is a contradiction to U 1
∗ = U 2

∗ . Thus, the first of the
two cases is ruled out.
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In case (2), let w := u2,K1+1. By orthonormality of U1
∗ and that

u1,k
∗ = u2,k

∗ if 1 ≤ k ≤ K1, 〈ul,k,w〉 = 0 for 1 ≤ k ≤ K1 and l ∈ {1, 2}.
Thus, w /∈ U l,k

∗ for 1 ≤ k ≤ K1 and 1 ≤ l ≤ 2. In particular, w /∈ U 1
∗ .

However, 〈u2,K1+1,w〉 = 1 > 0. Hence, together with 〈u2,k
∗ ,w〉 = 0 for

1 ≤ k ≤ K1, we have: w ∈ U 2,K1+1
∗ . That is, w ∈ U 2

∗ which contradicts
U 1
∗ = U 2

∗ . Thus, the second case is also ruled out. This completes the
proof of “uniqueness”. �

A.I.2 Proof of Lemma 1

Proof: Let T∗ ⊆ W∗ be a subspace of codimension at least 2. We
shall argue: W∗ \ T∗ is path connected. Let R∗ := OT∗ ⊆ W∗ be the
subspace orthogonal to T∗. Fix two arbitrary points x,y ∈ W∗\T∗. Let
PR∗(x) and PR∗(y) be the orthogonal projections of x and y onto R∗,
respectively. Define π1 : [0, 1]→ W∗ as: π1(t) := x + t(PR∗(x)− x) for
every t ∈ [0, 1]. Since x ∈ W∗ \ T∗, αx + (1 − α)PR∗(x) ∈ W∗ \ T∗ for
every α ∈ [0, 1]. Thus, π1([0, 1]) ⊆ W∗ \ T∗. Further, π1 is continuous
with π1(0) = x and π1(1) = PR∗(x). Likewise, π2 : [0, 1]→ W∗ defined
by, π2(t) := y + t(PR∗(y) − y) for all t ∈ [0, 1], is continuous, satisfies
π2([0, 1]) ⊆ W∗ \ T∗. Further, π2(0) = y and π2(1) = PR∗(y).

Let w1,w2 ∈ R∗ be linearly independent and define ψ : R2 → R∗
by: ψ(α1, α2) := α1w1 +α2w2 for every (α1, α2) ∈ R2. Thus, ψ is linear
homeomorphism. Then, the path connectedness of R2 \ {0} implies:
there exists a continuous map π0 : [0, 1]→ R∗ \ {0} such that π0(0) =
PR∗(x) and π0(1) = PR∗(y). Since T∗ ∩ R∗ = 0, π0([0, 1]) ⊆ W∗ \ T∗.
Now, consider the map π∗ : [0, 1]→ W∗ defined as follows:

π∗(t) =


π1(3t) ; if 0 ≤ t < 1/3.

π0(3t− 1) ; if 1/3 ≤ t < 2/3.

π2(3− 3t) ; if 2/3 ≤ t ≤ 1.

Clearly, π∗ is continuous, π∗([0, 1]) ⊆ W∗ \ T∗ with π∗(0) = x and
π∗(1) = y. Thus, W∗ \ T∗ is path connected.

Now, let T∗ ( W∗ be a subspace with W∗ \ T∗ path connected.
By W∗ \ T∗ 6= ∅, the codimension of T∗ in W∗ is at least 1. Suppose
the codimension is 1. Thus, T∗ is a hyperplane in W∗. Let w∗ be
satisfy ‖w∗‖ = 1 and 〈w∗,w〉 = 0 for all w ∈ T∗. Pick x,y ∈ W∗
such that 〈x,w∗〉 > 0 and 〈y,w∗〉 < 0. Let π : [0, 1] → W∗ \ T∗ be
continuous with π(0) = x and π(1) = y. Then, f : [0, 1] → R, defined
by f(t) := 〈π(t),w∗〉 for all t ∈ [0, 1], is continuous with f(0) > 0 and
f(1) < 0. By continuity of f , 〈π(t∗),w∗〉 = 0 for some t∗ ∈ (0, 1). Thus,
π(t∗) ∈ T∗ which contradicts π([0, 1]) ⊆ W∗ \ T∗. �
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A.I.3 Proof of Lemma 2

Proof: We write B(w, ε) for BW∗
‖·‖ (w, ε). First, we show “existence”.

Step 1 — We claim: (U ◦∗ )
c =V ∗ and (V ◦∗ )c =U ∗. For (U ◦∗ )

c ⊆V ∗,
suppose w ∈ (U ◦∗ )

c and w /∈ V ∗. As w ∈ (U ◦∗ )
c, for some ε1 > 0,

B(w, ε) 6⊆ U∗ if ε ∈ (0, ε1). By U∗∩(V∗∪S∗) = ∅, B(w, ε)∩(S∗∪V∗) 6= ∅
if ε ∈ (0, ε1). By w ∈ W∗ \V ∗, for some ε2 > 0, B(w, ε) ⊆ W∗ \V ∗ if
ε ∈ (0, ε2). As W∗ \V ∗ ⊆ V c

∗ , B(w, ε) ⊆ V c
∗ if ε ∈ (0, ε2). As (U∗, V∗, S∗)

partitions W∗, B(w, ε) ⊆ U∗ ∪ S∗ if ε ∈ (0, ε2).
Suppose w /∈ U∗. Let ε ∈ (0, ε2). Since w ∈ B(w, ε) ⊆ U∗ ∪ S∗,

w /∈ U∗ implies w ∈ S∗. Also, B(w, ε) 6⊆ S∗ because S∗ is a proper
subspace of W∗ as Sc∗ = U∗∪V∗ is non–empty. Then, B(w, ε)∩U∗ 6= ∅.
Let w1 ∈ B(w, ε) ∩ U∗, δw := w1 − w and w2 := w − δw. Note,
w2 ∈ B(w, ε). Observe, w2 /∈ S∗. Else, w,w2 ∈ S∗ implies δw ∈ S∗.
Then, w, δw ∈ S∗ implies w1 ∈ S∗ contradicting U∗ ∩ S∗ = ∅. Thus,
w2 ∈ B(w, ε) \ S∗. As w2 /∈ S∗ and w2 ∈ B(w, ε) ⊆ U∗ ∪ S∗, w2 ∈ U∗.
By w1,w2 ∈ U∗, w = (1/2)[w1 + w2] ∈ U∗. Thus, w ∈ U∗.

Let ε3 := inf{‖w′ −w‖ : w′ ∈ S∗}. Suppose, ε3 = 0. Let {w′m}m∈N
be S∗–valued with limm→∞ ‖w′m−w‖ = 0. As S∗ is closed, w ∈ S∗. But,
w ∈ U∗ and U∗∩S∗ = ∅ imply w /∈ S∗. Thus, ε∗ := min{ε1, ε2, ε3} > 0.
As ε∗ < ε3, B(w, ε∗) ∩ S∗ = ∅. By ε∗ < ε1 and B(w, ε∗) ∩ S∗ = ∅,
B(w, ε∗)∩V∗ 6= ∅. By ε∗ < ε2, B(w, ε∗)∩S∗ = ∅ impliesB(w, ε∗) ⊆ U∗.
Thus, U∗ ∩ V∗ 6= ∅—a contradiction. Hence, (U ◦∗ )

c ⊆V ∗.
ForV ∗ ⊆ (U ◦∗ )

c, let w ∈V ∗ and suppose w ∈ U ◦∗ . Then, −w ∈ V ◦∗
as U ◦∗ = −V ◦∗ by U∗ = −V∗. As w ∈V ∗, for some V∗–valued {wk}k∈N
with limk→∞ ‖wk − w‖ = 0. As U∗ = −V∗, {−wk}k∈N is U∗–valued
and converges to −w. Since −w ∈ V ◦∗ , there exists k∗ ∈ N such that
−wk ∈ V ◦∗ for all k ≥ k∗. As V ◦∗ ⊆ V∗, −wk ∈ V∗ if k ≥ k∗. Thus,
wk∗ ∈ V∗ and −wk∗ ∈ V∗. Then, 0 = wk∗ + (−wk∗) ∈ V∗ contradicting
V∗ ∩ S∗ 6= ∅ as 0 ∈ S∗. Thus,V ∗ ⊆ (V ◦∗ )c. Hence, (U ◦∗ )

c =V ∗.

Step 2 — We claim: T∗ := U ∗ ∩V ∗ is a subspace. Since U∗ and
V∗ are cones, U ∗ and V ∗ are closed cones. Then, αw ∈ T∗ if α ≥ 0
and w ∈ T∗. Also, T∗ = −T∗ as V∗ = −U∗ implies V ∗ = −U ∗. Thus,
αw ∈ T∗ if α ∈ R and w ∈ T∗. Now, let w1,w2 ∈ T∗ ⊆ U ∗. Get
U ∗–valued {w1

k}k∈N and {w2
k}k∈N with limk→∞ ‖w1

k − w1‖ = 0 and
limk→∞ ‖w2

k −w2‖ = 0. AsU ∗ is a cone, w1
k + w2

k ∈U ∗ if k ∈ N. Also,
limk→∞ ‖(w1

k + w2
k) − (w1 + w2)‖ = 0. AsU ∗ is closed, w1 + w2 ∈U ∗.

Similarly, w1 + w2 ∈V ∗. Thus, w1 + w2 ∈ T∗ if w1,w2 ∈ T∗.

Step 3 — We claim: ∂U∗ = ∂V∗ = T∗. As ∂U∗ =U \U ◦∗ =U ∩ (U ◦∗ )
c

and (U ◦∗ )
c =V ∗ by step 1, ∂U∗ = T∗. Similarly, ∂V∗ = T∗.
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Step 4 — We claim: S∗ is a subspace of T∗. As U ◦∗ ⊆ U∗ and
V ◦∗ ⊆ V∗, we obtain U ◦∗ ∪ V ◦∗ ⊆ U∗ ∪ V∗. Thus, (U∗ ∪ V∗)c ⊆ (U ◦∗ ∪ V ◦∗ )c.
As (U∗, V∗, S∗) partitions W∗, S∗ = (U∗ ∪ V∗)c. Hence, S∗ ⊆ (U ◦∗ ∪ V ◦∗ )c.
As (U ◦∗ ∪ V ◦∗ )c = (U ◦∗ )

c ∩ (V ◦∗ )c, step 1 implies S∗ ⊆U ∗ ∩V ∗ = T∗.

Step 5 — We claim: U ◦∗ 6= ∅ and V ◦∗ 6= ∅. Let the intersection
of all subspaces of W∗, which contain U∗, be Z∗. Clearly, Z∗ is the
smallest subspace of W∗ containing U∗. As V∗ = −U∗, V∗ ⊆ Z∗. Since
W∗ is finite dimensional, Z∗ is a closed subset of W∗. Thus,U ∗ andV ∗
are contained in Z∗. Hence, T∗ =U ∗ ∩V ∗ ⊆ Z∗. By step 4, S∗ ⊆ Z∗.
Since (U∗, V∗, S∗) partitions W∗, W∗ ⊆ Z∗. Hence, Z∗ = W∗. That is,
W∗ is the minimal subspace of W∗ which contains U∗.

Let P := {wk ∈ W∗ : k = 1, . . . , K} be a set of (distinct) vectors in
U∗ which is maximally linearly independent . Thus, U∗ is contained in
the linear span of P . However, W∗ is the minimal subspace of W∗ that
contains U∗. Hence, K = dim(W∗). Moreover, U∗ is a cone containing

P . Thus, the open set
{∑K

k=1 αkwk : (α1, . . . , αk) ∈ RK
++

}
is contained

in U∗. Hence, U ◦∗ 6= ∅. Similarly, V ◦∗ 6= ∅.

Step 6 — We claim: ∂U∗ = T∗ has codimension 1 in W∗. Observe,
U∗ ⊆U ∗ = ∂U∗ ∪U ◦∗ = T∗ ∪U ◦∗ . Similarly, V∗ ⊆ T∗ ∪ V ◦∗ . Also, S∗ ⊆ T∗.
As (U∗, V∗, S∗) partitions W∗, W∗ = T∗ ∪ (U ◦∗ ∪ V ◦∗ ). Also, T∗ = ∂U∗
implies T∗∩U ◦∗ = ∅. Similarly, T∗∩V ◦∗ = ∅. Thus, T∗∩ (U ◦∗ ∪V ◦∗ ) = ∅.
Hence, U ◦∗ ∪ V ◦∗ = W∗ \ T∗. Now, U ◦∗ ∩ V ◦∗ = ∅ as U∗ ∩ V∗ = ∅. Thus,
W∗ \ T∗ is not connected. Hence, W∗ \ T∗ is not path–connected. Also,
if ∂U∗ = W∗ then ∂U∗ = U ∗ \ U ◦∗ implies U ◦∗ = ∅. However, step 5
implies U ◦∗ 6= ∅. Thus, ∂U∗ is a proper subspace of W∗. Then, lemma
1 implies that T∗ has codimension 1 in W∗.

Step 7 — We claim: there exists u ∈ W∗ with ‖u‖ = 1 such that
∂U∗ = {w ∈ W∗ : 〈u,w〉 = 0} and U ◦∗ = {w ∈ W∗ : 〈u,w〉 > 0}. As
U ◦∗ 6= ∅, pick w0 ∈ U ◦∗ . Let w1 ∈ ∂U∗ be the orthogonal projection of
w onto the subspace ∂U∗. Note, w0 6= w1 as ∂U∗ ∩ U ◦∗ = ∅. Let u :=
(w0 −w1)/‖w0 −w1‖. Then, T∗ = ∂U∗ = I∗ := {w ∈ W∗ : 〈u,w〉 = 0}
by step 6. Consider the cones, P∗ := {w ∈ W∗ : 〈u,w〉 > 0} and
N∗ := {w ∈ W∗ : 〈u,w〉 < 0}. As (U ◦∗ , V

◦
∗ , T∗) and (P∗, N∗, I∗) partition

W∗, U
◦
∗ ∪ V ◦∗ = P∗ ∪N∗ with U ◦∗ ∩ V ◦∗ = ∅ and P∗ ∩N∗ = ∅. Also, U ◦∗ ,

V ◦∗ , P∗ and N∗ are each connected being cones. Observe, w0 ∈ U ◦∗ ∩P∗.
Thus, U ◦∗ = P∗ and V ◦∗ = N∗. This proves “existence”.

For “uniqueness”, observe: u1,u2 ∈ W∗ with ‖u1‖ = 1 = ‖u2‖ and
{w ∈ W∗ : 〈u1,w〉 > 0} = {w ∈ W∗ : 〈u2,w〉 > 0} implies u1 = u2. �
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A.II.1 Affine Local Orders

Our objective is to prove Proposition 3. However, we first “geometrize”
the problem as follows. Let n := |Z| and φ : Z → N := {1, . . . , n} be
an enumeration (i.e., a bijection with N) of the set of basic prizes. Let
ei be the ith standard basis vector of Rn. Then, L (Z) is in a bijection
with the (n− 1)–dimensional unit simplex ∆ := {x ∈ Rn

+ : 〈x,1〉 = 1},
where p ∈ L (Z) is mapped to p ∈ ∆ such that:

〈p, ei〉 = [p ◦ φ−1](i) for all i ∈ N.

Let O1 := {x ∈ Rn : 〈x,1〉 = 0} be the subspace of Rn orthogonal
to the “all–ones” vector 1. Also, define a := 1/n. Note, a ∈ ∆ and
∆ ⊆ a + O1. To each affine screening criterion f ∈ F associate the
corresponding vector f ∈ Rn such that:

〈f, ei〉 = [f ◦ φ−1](i) for all i ∈ N.

Now, the definition of “affine screening criterion” requires that, if
p, q ∈ L (Z) and α ∈ [0, 1] then f(α · p ⊕ [1 − α] · q) is must equal
αf(p) + [1 − α]f(q). Thus, by the definition of p ∈ L (Z) 7→ p ∈ ∆
and f ∈ F 7→ f ∈ Rn, the bilinearity of the standard inner product on
Rn implies the following the crucial property:

f(p) = 〈f,p〉 for all f ∈ F and p ∈ L (Z).

We begin by translation of the structure of an affine local order to
the “embedding space” Rn. For this, consider any filter ϑ. Define the
subset S ⊆ O1 corresponding to ϑ as:

S :=
⋂
f∈F

{
x ∈ O1 : 〈f,x〉 ≤ ϑ(f)

}
.

Being the intersection of closed halfspaces, S is a closed convex subset
of O1. Further, 0 ∈ S because ϑ(f) > 0 for every f ∈ F . However,
observe that S may fail to be compact.

Now, we characterize the relation Rϑ. First, let p, q ∈ L (Z) satisfy
pRϑq. That is, f(p) ≤ f(q) + ϑ(f) for all f ∈ F by the definition
of Rϑ. Hence, p ∈ ∆ ∩ (q + S). Second, assume p, q ∈ L (Z) satisfy
p ∈ ∆ ∩ (q + S). Fix any f ∈ F . Then, 〈f,p − q〉 ≤ ϑ(f). Thus,
f(p) ≤ f(q) + ϑ(f) for each f ∈ F . Hence, pRϑq. Thus, pRϑq iff
p ∈ ∆ ∩ (q + S). Then, the definition of Sϑ implies:

pSϑq iff
(
∃x ∈ ∆

)[
p,q ∈ ∆ ∩ (x + S)

]
.
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Let �0 be a total order on L (Z). Let �∗0 over ∆ be defined as:
p �∗0 q iff p �0 q. Define ∼∗0 over ∆ as: p ∼∗0 q iff p ∼0 q. Further,
assume %0 satisfies Independence–3. This is equivalent to:

p �∗0 q iff
(
∀α ∈ (0, 1)

)[
αp + (1− α)r �∗0 αq + (1− α)r

]
.

Now, let �ϑ be the affine local preorder on L (Z) induced by ϑ and �0.
Also, define �∗ϑ over ∆ as: p �∗ϑ q iff p �ϑ q. Further, define ∼∗ϑ over
∆ as: p ∼∗ϑ q iff p ∼ϑ q. Then, we have:

p �∗ϑ q iff
(
∃x ∈ ∆

)[
p 6= q ; p,q ∈ ∆ ∩ (x + S) ; p �∗0 q

]
.

Observe, p ∼∗ϑ q iff ( not p �∗ϑ q ; not q �∗ϑ p ). Let %∗ϑ be defined
as �∗ϑ ∪ ∼∗ϑ. Note, �∗ϑ and ∼∗ϑ are, respectively, the asymmetric and
symmetric components of %∗ϑ. Also, p %ϑ q iff p %∗ϑ q. Now, we present
a set of basic lemmas as follows.

Lemma A.II.1(a): The relation %∗ϑ satisfies Independence–3.

Proof: Assume p,q, r ∈ ∆ and p �∗ϑ q. Pick an arbitrary α ∈ (0, 1).
Let sα := αp+(1−α)r and tα := αq+(1−α)r. Note, sα 6= tα as p 6= q
because p �∗ϑ q. Also, p �∗ϑ q implies p �∗0 q. Further, p �∗0 q implies
sα �∗0 tα. Now, sα and tα are in ∆ because ∆ is convex. Note, p �∗ϑ q
requires, there exists x ∈ ∆ such that p and q are in ∆ ∩ (x + S). Let
xα := αx+ (1−α)r. Convexity of ∆ implies xα ∈ ∆. Since p ∈ x+ S,
let y ∈ S such that p = x + y. Recall, 0 ∈ S and S is convex. Thus,
yα := αy ∈ S. Since sα = xα + yα, we have: sα ∈ ∆ ∩ (xα + S).
Similarly, tα ∈ ∆ ∩ (xα + S). As xα ∈ ∆, we obtain: sα �∗ϑ tα. Since
α ∈ (0, 1) was arbitrary, we conclude:

p �∗ϑ q implies
(
∀α ∈ (0, 1)

)[
αp + (1− α)r �∗ϑ αq + (1− α)r

]
.

For the converse, let sα := αp + (1 − α)r and tα := αq + (1 − α)r
for each α ∈ (0, 1). Assume, sα �∗ϑ tα for every α ∈ (0, 1). Then,
sα �∗0 tα for every α ∈ (0, 1). Hence, p �∗0 q obtains. Further, p 6= q
because sα 6= tα as required by sα �∗ϑ tα. Fix a (0, 1)–valued sequence
(αn) such that limn→∞ αn = 1. Define sn := sαn and tn := tαn for all
n ∈ N. Then, for any n ∈ N, there exists xn ∈ ∆ such that sn and tn
belong to ∆ ∩ (xn + S). Since ∆ is compact and each sequence (xn),
(sn) and (tn) is ∆–valued, it is without loss of generality to assume
that there exists x∗, s∗ and t∗ in ∆ such that limn→∞‖xn − x∗‖2 = 0,
limn→∞‖sn− s∗‖2 = 0 and limn→∞‖tn− t∗‖2 = 0. Since limn→∞ αn = 1
and limn→∞‖sn − s∗‖2 = 0, the definition of sα implies s∗ = p. By a
similar argument, we obtain t∗ = q.
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We argue: s∗ ∈ ∆∩(x∗+S). Define y∗ := s∗−x∗, and yn := sn−xn
for each n ∈ N. Then, limn→∞‖sn−s∗‖2 = 0 and limn→∞‖xn−x∗‖2 = 0
imply limn→∞‖yn − y∗‖2 = 0. Now, the sequence (yn) is S–valued as
sn ∈ xn +S and yn = sn− xn for all n ∈ N. Then, y∗ ∈ S because S is
a closed set. As s∗ = x∗+y∗ by definition of y∗, we obtain: s∗ ∈ x∗+S.
Since s∗ ∈ ∆, we have s∗ ∈ ∆ ∩ (x∗ + S). Likewise, t∗ ∈ ∆ ∩ (x∗ + S).
Thus, p,q ∈ ∆ ∩ (x∗ + S) because s∗ = p and t∗ = q. Then, p 6= q
and p �∗0 q imply p �∗ϑ q. The converse has been proven. �

Lemma A.II.1(b): �∗ϑ is acyclic.

Proof: Suppose p,q, r ∈ ∆ satisfy p �∗ϑ q, q �∗ϑ r and r �∗ϑ p. Then,
the definition of �∗ϑ and p �∗ϑ q imply p �∗0 q. Similarly, we obtain
q �∗0 r and r �∗0 p. However, p �∗0 q and q �∗0 r imply p �∗0 r because
�∗0 being a total order, over ∆, is transitive. Thus, both p �∗0 r and
r �∗0 p hold. However, this contradicts the asymmetry of �∗0. Hence,
( p �∗ϑ q ; q �∗ϑ r ) implies ( not r �∗ϑ p ). �

Let Θ be the class of all filters and Θc be the subclass of continuous
filters. Also, let F := {x ∈ O1 : ‖x‖2 = 1}. Recall, a filter ϑ ∈ Θ is a
map ϑ : F → R++ that satisfies:

f ′ = αf + β implies ϑ(f ′) = αϑ(f)

if f, f ′ ∈ F and (α, β) ∈ R++ × R. Thus, the map f ∈ F 7→ f ∈ Rn

induces a correspondence ϑ ∈ Θ 7→ θ, where θ corresponding to ϑ ∈ Θ
is a map from F to R++ defined as follows:

θ(f) := ϑ(f) for every f ∈ F.

Note, ϑ ∈ Θc iff θ is a continuous map, where F inherits from the
standard topology on Rn. Observe, for any ϑ ∈ Θ, the set S defined as⋂
f∈F{x ∈ O1 : 〈f,x〉 ≤ ϑ(f)} can also be expressed as:

S =
⋂
f∈F

{
x ∈ O1 : 〈f,x〉 ≤ θ(f)

}
.

Since ‖·‖2 is continuous, the set F is closed; it is obviously bounded.
Thus, F is compact. Then, θ achieves both a minimum and a maximum
over F by continuity. For any ϑ ∈ Θc, define κϑ as:

κϑ :=
[√
n ·max

f∈F
θ(f)

]−1
.
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Define κ · S := {κx : x ∈ S}. Then, observe that:

κ · S =
⋂
f∈F

{
x ∈ O1 : 〈f,x〉 ≤ [κ · θ](f)

}
.

Lemma A.II.1(c): If κ ∈ (0, κϑ) then %∗κ·ϑ violates Independence–2.

Proof: Let M be a non–empty proper subset of N and set m := |M |.
Consider the following two vectors in Rn.

p :=
1

m

∑
j∈M

ej and q :=
1

n−m
∑

j∈N\M

ej.

Note, 〈p,1〉 = 1 and 〈p, ei〉 ≥ 0 for every i ∈ N . That is, p ∈ ∆.
Likewise, q ∈ ∆. Fix any κ ∈ (0, κϑ). Suppose, there exists x0 ∈ ∆ such
that p and q belong to ∆∩(x0+κ·S). Let f0 := (p−q)/‖p−q‖2. Thus,
f0 ∈ F . Further, ‖p−q‖2

2 = m · [1/m2]+(n−m) · [1/(n−m)2]. That is,
‖p−q‖2 = n1/2/[m(n−m)]1/2. Since f0 ∈ F and p ∈ x0+κ·S, we have:
〈f0,p − x0〉 ≤ [κ · θ](f0). Also, f0 ∈ F and the definition of F implies
−f0 ∈ F . Then, q ∈ x0 +κ ·S implies 〈−f0,q−x0〉 ≤ [κ · θ](−f0). That
is, 〈f0,x0−q〉 ≤ [κ·θ](−f0). Note, 〈f0,p−x0〉+〈f0,x0−q〉 = 〈f0,p−q〉.
Thus, 〈f0,p−q〉 ≤ [κ ·θ](f0)+[κ ·θ](−f0) ≤ 2κ ·maxf∈F θ(f). Then, κ ∈
(0, κϑ) implies 〈f0,p− q〉 < 2κϑ ·maxf∈F θ(f) ≤ 2/n1/2 by definition of
κϑ. Observe, 〈f0,p−q〉 = ‖p−q‖2. Hence, n1/2/[m(n−m)]1/2 < 2/n1/2.
That is, [m(n−m)]1/2 > (n/2). However, by the Arithmetic–Geometric
Mean Inequality, we have: (n/2) = [m + (n −m)]/2 ≥ [m(n −m)]1/2.
Thus, we have a contradiction. Hence, there does not exist x0 ∈ ∆
such that p and q belong to ∆ ∩ (x0 + κ · S). Thus, neither p �∗κ·ϑ q
nor q �∗κ·ϑ p holds. That is, p ∼∗κ·ϑ q holds.

Recall, a := 1/n. Now, m ∈ {1, . . . , n − 1} implies ‖p − a‖2 > 0
and ‖q−a‖2 > 0. Note, θ achieves a minimum over F by continuity as
F is compact. Clearly, minf∈F θ(f) > 0. Let ε∗ := min{1, µp, µq} where
µp := κ ·minf∈F θ(f)/‖p−a‖2 and µq := κ ·minf∈F θ(f)/‖q−a‖2. Thus,
ε ∈ (0, 1]. Consider any ε ∈ (0, ε∗). Let pε := εp + (1− ε)a and fix an
arbitrary f ∈ F . Since ‖f‖2 = 1 and pε−a = ε(p−a), Cauchy–Schwarz
Inequality implies |〈f,pε−a〉| ≤ ε‖f‖2 · ‖p−a‖2. Then, from ε ∈ (0, ε∗)
we obtain: 〈f,pε − a〉 ≤ [κ · θ](f). Thus, pε ∈ ∆ ∩ (a + κ · S) as f ∈ F
is arbitrary. Similarly, qε := εq+ (1− ε)a satisfies qε ∈ ∆∩ (a+κ ·S).
Further, p 6= q implies pε 6= qε as ε > 0. Moreover, pε �∗0 qε or
qε �∗0 pε as �∗0 is a total order over ∆. Hence, pε �∗κ·ϑ qε or qε �∗κ·ϑ pε
holds. Since p ∼∗κ·ϑ q, Independence–2 is violated. �

Thus, each claim in proposition 3 has been established.
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A.II.2 Proof of Lemma 3

Let us recall from subsection 3.4, %∗ is a complete and transitive binary
relation over the (n − 1)–dimensional unit simplex in Rn satisfying
Independence–3 (henceforth, simply “Independence”):[

p �∗ q
]

iff
(
∀α ∈ (0, 1)

)[
αp + (1− α)r �∗ αq + (1− α)r

]
Moreover, W∗ := O1 is the subspace of Rn orthogonal to 1 and we

have its subsets U∗, V∗ and S∗ whose definitions are as follows:

U∗ :=
{
w ∈ W∗ : a + tw �∗ a for some t > 0

}
,

V∗ :=
{
w ∈ W∗ : a �∗ a + tw for some t > 0

}
,

S∗ :=
{
w ∈ W∗ : a + tw ∼∗ a for some t > 0

}
.

Further, U(p), L(p) and I(p) are, respectively, the strict upper
contour set, the strict lower contour set and the indifference set of an
arbitrary p ∈ ∆. Now, we proceed to establish Lemma 3.

Proof: The argument involves the following steps.

Step 1 — We claim: for any p ∈ ∆, if t1, t2 > 0 and w ∈ W∗ satisfy
p + t1w ∈ ∆ and p + t2w ∈ ∆, then

(
p + t1w �∗ p iff p + t2w �∗ p

)
.

Let w ∈ W∗ and assume 0 < t1 < t2 such that p + t1w ∈ ∆ and
p + t2w ∈ ∆. First, assume p + t2w �∗ p. Define α := t1/t2. By
Independence, p+ t1w = α(p+ t2w) + (1−α)p �∗ αp+ (1−α)p = p.
That is, p + t2w �∗ p implies p + t1w �∗ p.

Assume p + t1w �∗ p. Suppose p �∗ p + t2w. Let α := t1/t2. By
Independence, p = αp+ (1−α)p �∗ α(p+ t2w) + (1−α)p = a+ t1w
contradicting p + t1w �∗ p. Thus, p �∗ p + t2w is not possible.

Suppose p + t2w ∼∗ p. Then, p + t1w �∗ p implies p + t1w �∗
p + t2w. Fix an arbitrary t ∈ (t1, t2) and let α := (t − t1)/(t2 − t1).
Note, α ∈ (0, 1). Further, αt2 + (1 − α)t1 = t. Thus, α(p + t2w) +
(1 − α)(p + t1w) = p + tw. By Independence, p + t1w �∗ p + t2w
implies p + tw �∗ p + t2w. Then, p + t2w ∼∗ p implies p + tw �∗ p.
As t ∈ (t1, t2) was arbitrary, p + tw �∗ p for all t ∈ (t1, t2). Further,
p + t1w �∗ implies: p + tw �∗ w for all t ∈ (0, t1]. Thus, p + tw �∗ p
for all t ∈ (0, t2). That is, α(p + t2w) + (1 − α)p �∗ αp + (1 − α)p
for all α ∈ (0, 1). By Independence, p + t2w �∗ p which contradicts
p + t2w ∼∗ p. Thus, p + t2w ∼∗ p is also not possible. Since %∗ is
complete, we have p+ t2w �∗ p. That is, p+ t1w implies p+ t2w. The
converse was already established. Thus, p+ t1w �∗ p iff p+ t2w �∗ p.
Note, the assumption that t1 < t2 is without loss of generality.
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Step 2 — We claim: for any p ∈ ∆, if t1, t2 > 0 and w ∈ W∗ satisfy
p + t1w ∈ ∆ and p + t2w ∈ ∆, then

(
p �∗ p + t1w iff p �∗ p + t2w

)
.

Define the binary relation %∗∗ over ∆ as follows: q %∗∗ r iff r %∗∗ q.
Observe that %∗∗ is complete, transitive and satisfies Independence.
Moreover, its asymmetric component �∗∗ satisfies: q �∗∗ r iff r �∗ q.
Thus, the argument in step 1 implies the claim.

Step 3 — We claim: for any p ∈ ∆, if t1, t2 > 0 and w ∈ W∗ satisfy
p + t1w ∈ ∆ and p + t2w ∈ ∆, then

(
p + t1w ∼∗ p iff p + t2w ∼∗ p

)
.

Let t1, t2 > 0 and w ∈ W∗ satisfy p + t1w ∈ ∆ and p + t2w ∈ ∆.
Assume, p+ t1w ∼∗ p. Suppose p+ t2w �∗ p. By step 1, p+ t1w �∗ p
which is a contradiction. Now, suppose p �∗ p + t2w. By step 2,
p + t1w �∗ p which is also a contradiction. Then, the completeness of
%∗ implies p + t2w ∼∗ p. That is, p + t1w ∼∗ p implies p + t2w ∼∗ p.
Interchanging the roles of t1 and t2 implies the converse.

Step 4 — We claim: for any w ∈ W∗, there exists ε > 0 such that
t ∈ (0, ε) implies a + tw ∈ ∆◦. Note, if w = 0 then every ε > 0 works.

So, assume w 6= 0. Let ε :=
(
n·max

{
|〈ei,w〉| : i = 1, . . . , n

})−1
, where

n = |Z|. Thus, ε > 0. Pick an arbitrary t ∈ (0, ε) and let p := a + tw.
Since a = 1/n, 〈ei,p〉 > 0 for all i = 1, . . . , n. That is, p ∈ Rn

++. Also,
〈p,1〉 = 1 as a ∈ ∆ and w ∈ W∗ = O1. Thus, p ∈ ∆◦.

Step 5 — We claim: (U∗, V∗, S∗) partitions W∗. Note, each of U∗,
V∗ and S∗ are subsets of W∗ by their definitions. Let w ∈ W∗. By step
4, a + tw ∈ ∆ for some t > 0. Since %∗ is complete, exactly one of
a+ tw �∗ a, a �∗ a+ tw or a+ tw ∼∗ a holds. Accordingly, w belongs
to exactly one of U∗, V∗ or S∗. Thus, (U∗, V∗, S∗) partitions W∗.

Step 6 — We claim: if w ∈ Rn and t > 0 such that a + tw ∈ ∆
then w ∈ W∗. Note, 〈a+ tw,1〉 = 1 = 〈a,1〉 as a+ tw and a are in ∆.
Since t 6= 0, 〈w,1〉 = 0. That is, w ∈ O1. Recall, W∗ = O1.

Step 7 — We claim: U∗ and V∗ are (convex) cones. Let w ∈ U∗
and α > 0. Since w ∈ U∗, there exists t > 0 such that a + tw �∗ a.
Define t∗ := t/α. Then, a + t∗(αw) = a + tw �∗ a. Thus, αw ∈ U∗.
Hence, if w ∈ U∗ and α > 0 then αw ∈ U∗. Now, assume w1,w2 ∈ U∗.
Then, a + t1w1 �∗ a and a + t2w2 �∗ a for some t1, t2 > 0. Let
α := t2/(t1 + t2). Thus, α ∈ (0, 1) and αt1 = (1 − α)t2. Let t∗ := αt1
and note t∗ > 0. By Independence, α(a+t1w1)+(1−α)(a+t2w2) �∗ a;
that is, a + t∗(w1 + w2) �∗ αa + (1− α)a = a. That is, w1 + w2 ∈ U∗.
Thus, w1,w2 ∈ U∗ implies w1 + w2 ∈ U∗. Hence, U∗ is a cone.
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Step 9 — We claim: for any p ∈ ∆ and w ∈ W∗, if t1, t2 > 0 satisfy
p + t1w ∈ ∆ and a + t2w ∈ ∆ then each of the following hold.

p + t1w �∗ p iff a + t2w �∗ a, (8)

p �∗ p + t1w iff a �∗ a + t2w, (9)

p + t1w ∼∗ p iff a + t2w ∼∗ a. (10)

For a proof, assume throughout this step that p ∈ ∆, w ∈ W∗ and
t1, t2 > 0 satisfy p + t1w ∈ ∆ and a + t2w ∈ ∆. Moreover, assume
w 6= 0 and p 6= a. Otherwise, steps 1–3 imply the claim.

To show (8), let q ∈ ∆ satisfy a = θ1p+(1−θ1)q for some θ1 ∈ (0, 1).
This is possible by step 4 and because ∆ is convex. Let t3 := θ1t1 and
note t3 > 0. Then, a + t3w = θ1(p + t1w) + (1− θ1)q.

Assume p + t1w �∗ p. Since θ1 ∈ (0, 1), Independence implies
θ1(p+ t1w) + (1− θ1)q �∗ θ1p+ (1− θ1)q. As a = θ1p+ (1− θ1)q and
a + t3w = θ1(p + t1w) + (1− θ1)q, we have: a + t3w �∗ a. By step 1,
a + t2w �∗ a. Since t1 and t2 are arbitrary, we obtain:

p + t1p �∗ p implies a + t2w �∗ a.

Assume a + t2w �∗ a. Then, a + t3w �∗ a. Consider an arbitrary
θ ∈ (0, 1) such that θ(p+t1w)+(1−θ)q �∗ θp+(1−θ)q. Then, for any
θ′ ∈ (0, θ), Independence implies θ′(p+t1w)+(1−θ′)q �∗ θ′p+(1−θ′)q.
Also, by Independence: if θ′(p+ t1w) + (1− θ′)q �∗ θ′p+ (1− θ′)q for
every θ′ ∈ (0, θ), then θ(p+ t1w) + (1− θ)q �∗ θp+ (1− θ)q. That is,
if the set Θ ⊆ (0, 1], defined as follows:

Θ :=
{
θ ∈ (0, 1] : θ(p + t1w) + (1− θ)q �∗ θp + (1− θ)q

}
,

is non–empty then: Θ = (0, θ∗] for some unique θ∗ ∈ (0, 1]. Observe,
θ1 ∈ Θ ∩ (0, 1) because a + t3w �∗ a. Hence, there exists a unique
θ∗ ∈ (0, 1] such that Θ = (0, θ∗].

Suppose θ∗ 6= 1. That is, (θ∗, 1) 6= ∅ and Θ ∩ (θ∗, 1) = ∅. Pick an
arbitrary θ ∈ (θ∗, 1). Let s := α∗[θ∗(p + t1w) + (1 − θ∗)q] + (1 − α∗)p
and r := θp + (1 − θ)q, where α∗ := (1 − θ)/(1 − θ∗). As θ ∈ (θ∗, 1),
note α∗ ∈ (0, 1). Further, s = r + t4w where t4 = α∗t1. Note, r =
α∗[θ∗p + (1− θ∗)q] + (1− α∗)p by the definition of α∗. As θ∗ ∈ Θ and
α∗ ∈ (0, 1), Independence implies s �∗ r. That is, r + t4w �∗ r. Let
t5 := θt1. Then, r + t5w = θ(p + t1w) + (1− θ)q as r = θp + (1− θ)q.
Since t4, t5 > 0 and r + t4w �∗ r, step 1 implies r + t5w �∗ r. That is,
θ(p+t1w)+(1−θ)q �∗ θp+(1−θ)q. Hence, θ ∈ Θ by the definition of
Θ. This contradicts Θ ∩ (θ∗, 1) = ∅. Thus, θ∗ = 1. That is, Θ = (0, 1].
Hence, p + t1w �∗ p. Since t1 and t2 are arbitrary, the converse is
established. This completes the proof of (8).
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To show (9), define %∗∗ over ∆ by: q %∗∗ r iff r %∗∗ q. Observe,
%∗∗ is complete, transitive and satisfies Independence. Moreover, its
asymmetric component �∗∗ satisfies: q �∗∗ r iff r �∗ q. Thus, the
argument for (8) establishes (9).

To show (10), first assume p + t1w ∼∗ p. Suppose a + t2w �∗ a.
Then, (8) implies p+ t1w �∗ p. However, ∼∗ and �∗ are disjoint. This
contradicts p+t1w ∼∗ p. Thus, a+t2w �∗ a is not possible. Similarly,
(9) implies a �∗ a+ t2w is not possible. However, the union of �∗ and
∼∗ is %∗. Moreover, %∗ is a complete binary relation over ∆. Thus,
a + t2w ∼∗ a. Since t1 and t2 are arbitrary, we have:

p + t1w ∼∗ p implies a + t2w ∼∗ a.

For the converse, interchange the role of p with a, and t1 with t2. This
completes the proof of (10) and the step.

Step 10 — We claim: S∗ is a cone. Pick an arbitrary w ∈ S∗ and
any α > 0. Since w ∈ U∗, there exists t > 0 such that a + tw ∼∗ a.
Define t∗ := t/α. Then, a + t∗(αw) = a + tw ∼∗ a. Thus, αw ∈ S∗.
Hence, if w ∈ S∗ and α > 0 then αw ∈ S∗.

Now, assume w1,w2 ∈ S∗. Then, there exists t1, t2 > 0 such that
p1 := a+ t1w1 ∼∗ a and p2 := a+ t2w2 ∼∗ a. Let α∗ := t2/(t1 + t2) and
t∗ := 2t1t2/(t1 + t2). Note, α∗ ∈ (0, 1), t∗ > 0 and α∗t1 = (1 − α∗)t2 =
t∗/2. Define p := a + t∗(w1 + w2). Observe, α∗p1 + (1 − α∗)p2 = p.
Define t∗∗ := min{t1, t2, t∗}. Clearly, t∗∗ > 0. Define q1 := a + t∗∗w1,
q2 := a + t∗∗w2 and q := a + t∗∗(w1 + w2).

Suppose w1 + w2 ∈ U∗. Then, q �∗ a by step 1. As p1 ∼∗ a, step
9 implies q1 ∼∗ a. Thus, q1 + t∗∗w2 = q �∗ q1. Then, a + t∗∗w2 �∗ a
by step 9. By step 1, p2 �∗ a. However, p2 ∼∗ a. This contradicts
the fact that �∗ and ∼∗ are disjoint. Hence, w1 + w2 /∈ U∗. Similarly,
w1 + w2 /∈ V∗. That is, w1 + w2 /∈ U∗ ∪ V∗.

Since w1,w2 ∈ S∗ and S∗ ⊆ W∗, that W∗ is a subspace implies
w1 + w2 ∈ W∗. Moreover, (U∗, V∗, S∗) is a partition of W∗ by step 5.
However, w1 +w2 /∈ U∗∪V∗. Thus, w1 +w2 ∈ S∗. Hence, if w1,w2 ∈ S∗
then w1 + w2 ∈ S∗. Moreover, we have already shown: if α > 0 and
w ∈ S∗ then αw ∈ S∗. Hence, S∗ is a cone.

Step 11 — We claim: S∗ is a subspace. Since S∗ has been shown
to be cone, it is enough to argue: S∗ = −S∗. Assume w ∈ S∗. Thus,
a + t1w ∼∗ a for some t1 > 0. Also, by step 4, let t2 > 0 be such
that a − t2w ∈ ∆. Let t := min{t1, t2} and note that t > 0. Further,
a + tw ∈ ∆ and a − tw ∈ ∆. Since a + t1w ∼∗ a and t > 0, step 3
implies: a + tw ∼∗ a. We shall now argue: −w ∈ S∗.
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Suppose a− tw �∗ a. Then, a+ tw ∼∗ a implies a− tw �∗ a+ tw.
As α ∈ (0, 1), Independence implies α(a − tw) + (1 − α)(a + tw) �∗
α(a + tw) + (1 − α)(a + tw). As α = 1/2, we have: a �∗ a. This
is a contradiction to the asymmetry of �∗. Thus, a − tw �∗ a is not
possible. Similarly, a �∗ a − tw is not possible. However, %∗ is a
complete binary relation. Then, a− tw ∼∗ a. Thus, −w ∈ S∗. Hence,
w ∈ S∗ implies −w ∈ S∗. Note that −(−w) = w for any w ∈ W∗.
Thus, −w ∈ S∗ implies w ∈ S∗. Hence, w ∈ S∗ iff −w ∈ S∗. Then,
−S∗ =

{
w ∈ W∗ : −w ∈ S∗

}
implies: S∗ = −S∗.

Step 12 — We claim: V∗ = −U∗. First, we argue: −U∗ ⊆ V∗. Let
w ∈ −U∗. That is, −w ∈ U∗. Thus, a + t1(−w) �∗ a for some t1 > 0.
By step 4, pick t2 > 0 such that a + t2w ∈ ∆. Let t := min{t1, t2} and
note that t > 0. By step 1, a + t1(−w) �∗ a implies a + t(−w) �∗ a.
That is, a − tw �∗ a. Also, a + t2w ∈ ∆ implies a + tw ∈ ∆.
With α := 1/2, Independence implies α(a− tw) + (1− α)(a + tw) �∗
αa + (1− α)(a + tw). That is, a �∗ a + t∗w where t∗ := (1− α)t > 0.
Thus, w ∈ V∗. Hence, we have: −U∗ ⊆ V∗.

Second, we argue: V∗ ⊆ −U∗. Let w ∈ V∗. Thus, a �∗ a + t1w
for some t1 > 0. By step 4, pick t2 > 0 such that a + t2(−w) ∈ ∆.
Let t := min{t1, t2}. and note that t > 0. Then, a + t(−w) ∈ ∆.
That is, a − tw ∈ ∆. Also, a �∗ a + t1w implies a �∗ a + tw
by step 2. Let α := 1/2. By Independence, a �∗ a + tw implies
αa + (1 − α)(a − tw) �∗ α(a + tw) + (1 − α)(a − tw). That is,
a + t∗(−w) �∗ a where t∗ := (1 − α)t > 0. Thus, −w ∈ U∗. That
is, w ∈ −U∗. Hence, V∗ ⊆ −U∗ holds. Thus, V∗ = −U∗.

Step 13 — We claim: U(p) = ∆ ∩ (p + U∗), L(p) = ∆ ∩ (p + V∗)
and I(p) = ∆∩ (p+S∗) for any p ∈ ∆. First, assume q ∈ U(p). That
is, q ∈ ∆ and q �∗ p. Let w := q− p and t := 1. Clearly, q = p + tp
where t > 0. Also, w ∈ W∗ = O1 as 〈p,1〉 = 1 = 〈q,1〉. Thus, w ∈ U∗
by definition of U∗. Further, q = p + w by definition of w. Hence,
p ∈ p + U∗. Since q ∈ ∆, we have q ∈ ∆ ∩ (p + U∗). Hence, q ∈ U(p)
implies q ∈ ∆ ∩ (p + U∗). That is, U(p) ⊆ ∆ ∩ (p + U∗).

Now, assume q ∈ ∆∩(p+U∗). Thus, q = p+t1w where t1 := 1 > 0
and w ∈ U∗. Since w ∈ U∗, a + t2w �∗ a for some t2 > 0. By (8)
of step 9, we have: p + t1w �∗ p. That is, q �∗ p. Thus, q ∈ U(p).
Since q ∈ ∆∩ (p +U∗) is arbitrary, we have: q ∈ ∆∩ (p +U∗) implies
q ∈ U(p). Hence, ∆∩(p+U∗) ⊆ U(p). Since U(p) ⊆ ∆∩(p+U∗) also
holds, we obtain: U(p) = ∆ ∩ (p + U∗). The remaining two equalities
follow by similar arguments using (9) and (10) of step 9.

This completes the proof of the lemma. �
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A.III.1 Blackwell–Girshick Theorem for Convex Sets

We prove Theorem 10 from section 5, and associated results, general-
izing the Blackwell–Girshick Theorem to arbitrary convex domains.

Proof of Proposition 5: Let C be a non–empty subset of Rn. Let
S be the collection of every linear subspace S of Rn for which there
exists a corresponding x ∈ Rn such that C ⊆ x + S. Note, Rn ∈ S as
C ⊆ 0 + Rn. Also, if S ∈ S then dim(S) ≤ n.

Fix x0 ∈ C and S∗ ∈ S . Also, let x∗ ∈ Rn be such that C ⊆ x∗+S∗.
Then, C ⊆ x0 + S∗. To see why, let x ∈ C be arbitrary. Define
y0 := x0 − x∗. Also, let y := x − x∗. Since C ⊆ x∗ + S∗, both y0 ∈ S∗
and y ∈ S∗. Then, y − y0 ∈ S∗ because S∗ is a subspace. Since
y − y0 = x− x0, we have x− x0 ∈ S∗. Thus, x ∈ x0 + S∗. Since x ∈ C
is arbitrary, we have: C ⊆ x0 + S∗.

Let SC be the intersection of all elements in S . Since each element
of S is a linear subspace of Rn, so must be SC . Further, fix any x0 ∈ C.
Then, C ⊆ x0 + S for all S ∈ S . Then, C ⊆ x0 + SC as well. Thus,
SC ∈ S . Of course, SC ⊆ S for any S ∈ S by definition of SC . That
is, SC is the unique subspace generated by C.

Now, let x0 ∈ C and x∗ ∈ Rn such that C ⊆ x∗ + SC . Then,
x0 = x∗ + y∗ for some y∗ ∈ SC . That is, x0 − x∗ ∈ SC . Since SC is a
subspace, we have x∗ − x0 ∈ SC . Finally, assume x0 ∈ C and x∗ ∈ Rn

such that x∗−x0 ∈ SC . Let y∗ := x0−x∗. Then, x0 = x∗+y∗. Further,
since SC ∈ S , we know: C ⊆ x0 + SC . That is, C ⊆ (x∗ + y∗) + SC .
Since y∗ ∈ SC and SC is a linear subspace, it follows that y∗+SC = SC .
Thus, (x∗ + y∗) + SC = x∗ + SC . Hence, C ⊆ x∗ + SC . �

For Theorem 10, we begin with some preliminaries. Fix a non–empty
C ⊆ Rn. For any (m + 1)–tuple (x1, . . . , xm+1) of vectors in C, define
x0 :=

∑m+1
k=1 xk/(m+1) to be the centroid and the vectors (p1, . . . , pm+1),

where pk := xk − x0, to be the vertices.

Lemma A.III.1(a): Let x0 be the centroid and (p1, . . . , pm+1) be the
vertices defined by any (m+ 1)–tuple (x1, . . . , xm+1) of points in C. If
some m of the vertices are linearly independent, then every collection of
m vertices is linearly independent. Moreover, the collection of (m+ 1)
vertices is linearly dependent.

Proof: Fix any (m + 1)–tuple (x1, . . . , xm+1) of vectors in C. Let x0

be the centroid and the (m+1) vertices be (p1, . . . , pm+1). Without any
loss of generality, we assume that (p1, . . . , pm) are linearly independent
and argue: (p2, . . . , pm+1) are linearly independent.

122



First, note that
∑m+1

k=1 pk = 0 by the definition of x0 and the pk’s.
In particular, the (m+ 1) vertices are linearly independent. Moreover,
pm+1 = −

∑m
k=1 pk. Suppose there exists α2, . . . , αm+1 in R, not all equal

to 0, such that
∑m+1

k=2 αkpk = 0. Let β1 := −αm+1, and βk := αk−αm+1

for all k = 2, . . . ,m. Then,
∑m

k=1 βkpk = 0. Since (p1, . . . , pm) are
linearly independent, we have: βk = 0 for all k = 1, . . . ,m. That is,
αm+1 = 0 and αk = αm+1 for all k = 2, . . . ,m. This contradicts the
supposition that not all αk’s are 0. Hence, (p2, . . . , pm+1) is linearly
independent. This completes the proof. �

For the set C, let M∗ denote the set of all m ∈ N for which some
(x1, . . . , xm+1) in C induces a centroid and m+1 vertices such that any
m of the vertices are linearly independent but all the m+ 1 vertices are
linearly dependent. Since C ⊆ Rn, the set M∗ ⊆ N is non–empty and
bounded above by n. Define m∗ := maxM∗.

Definition A.III.1(b): Let C ⊆ Rn be non–empty. Any (m∗+1)–tuple
(x1, . . . , xm∗+1) of vectors in C is a coordinate system for C if, every
collection of its m∗ vertices is linearly independent.

By definition, m∗ is the largest m such that any (m+ 1)–tuple in C
induces vertices such that any proper subcollection, but not the whole,
of it can be linearly independent. The above definition calls any such
(m∗+ 1)–tuple a “coordinate system” for C. The reason for this choice
of terminology is the following basic result about the representability
of any arbitrary element x of the set C.

Lemma A.III.1(c): Let X ≡ (x1, . . . , xm∗+1) be a coordinate system
for C. Suppose x0 is the centroid and (p1, . . . , pm∗+1) are the m∗ + 1
vertices induced by X . Then, for any x ∈ C, there exists ν1, . . . , νm∗+1

in R such that x = x0 +
∑m∗+1

k=1 νkpk.

Proof: Fix a coordinate system X ≡ (x1, . . . , xm∗+1) for C. Let x ∈ C
be arbitrary. Let Y ≡ (y1, . . . , ym∗+2) be defined as (1) ym∗+2 := x, and

(2) yk := xk for every k = 1, . . . ,m∗+1. Let y0 :=
∑m∗+2

k=1 yk/(m∗+2) be
the centroid and (q1, . . . , qm∗+2), with qk := yk−y0 for k = 1, . . . ,m∗+2,
be the vertices induced by Y . Then, the m∗+ 1 vertices (q1, . . . , qm∗+1)
are linearly dependent. For otherwise, lemma A.III.1(a) would imply
that every m∗ + 1 of the vertices are linearly independent with all the
m∗+2 being linearly dependent. This would contradict the maximality
of m∗ in in the set M∗. That is, there exists α1, . . . , αm∗+1 in R, not all

equal to 0, such that
∑m∗+1

k=1 αkqk = 0.
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Let X induce the centroid x0 :=
∑m∗+1

k=1 xk/(m∗ + 1) and vertices
(p1, . . . , pm∗+1), where pk := xk − x0 for every k = 1, . . . ,m∗ + 1. Then,
the following algebraic equality holds:

m∗+1∑
k=1

αkqk =

m∗+1∑
k=1

αkpk −
θ

m∗ + 2
(x− x0), (11)

where θ :=
∑m∗+1

k=1 αk. Suppose θ = 0. Then,
∑m∗+1

k=1 αkqk = 0 and (11)

imply
∑m∗+1

k=1 αkpk = 0. Observe, pm∗+1 = −
∑m∗

k=1 pk by definition of
x0 and the pk’s. Thus, we obtain:

∑m∗
k=1(αk − αm∗+1)pk = 0. Since

X is a coordinate system, the vectors in (p1, . . . , pm∗+1) are linearly
independent. Hence, α1 = . . . = αm∗+1. Since θ = 0, we obtain: αk = 0
for all k = 1, . . . ,m∗ + 1. However, recall that not all of α1, . . . , αm∗+1

are 0. Hence, we have a contradiction. Thus, θ 6= 0. Then, (11) and∑m∗+1
k=1 αkqk = 0 imply the following:

x = x0 +

m∗+1∑
k=1

(m∗ + 2)αk
θ

pk.

Define νk := (m∗ + 2)αk/θ for every k = 1, . . . ,m∗ + 1 to complete the
proof of the Lemma. �

Henceforth, we fix a coordinate system X ≡ (x1, . . . , xm∗+1) for the
set C. Also, let x0 be the centroid and (p1, . . . , pm∗+1) be the vertices
induced by X . Denote by W∗ the linear span of (p1, . . . , pm∗+1). Also,
recall that SC is the subspace generated by C.

Lemma A.III.1(d): W∗ = SC .

Proof: SinceW∗ is the linear span of (p1, . . . , pm∗+1), LemmaA.III.1(c)
implies that x ∈ x0 +W∗ for every x ∈ C. That is, C ⊆ x0 +S∗. Hence,
SC ⊆ S∗ because SC is the subspace generated by C (see Definition
12 in section 5). Also, note that the dimension of W∗ is m∗. This is
because any m∗ elements from {p1, . . . , pm∗+1} are linearly independent
but the set of all the m∗ + 1 elements is linearly dependent.

Now, consider any pk where k ∈ {1, . . . ,m∗}. Since x0 + pk = xk
and xk ∈ C, we have pk ∈ SC because C ⊆ x0 + SC . Thus, SC is a
linear subspace of Rn containing the m∗ linearly independent vectors
(p1, . . . , pm∗). Hence, dimension of SC is at least m∗. That is, SC is a
linear subspace of the linear subspace W∗ with the dimension of SC at
least as much as the dimension of W∗. Thus, W∗ = SC . �
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Recall, the notion of “subspace generated by C” was defined as the
intersection of those linear subspaces S such that C ⊆ x+S for some x
in Rn. This is an “extrinsic” description. The above lemma provides an
“intrinsic” description of the same concept in terms of the (arbitrary)
coordinate system X for the set C. The following lemma, which builds
on the previous ones, shall be critical in the proof of Theorem 10.

Lemma A.III.1(e): Let X ≡ (x1, . . . , xm∗+1) be a coordinate system
for C and x0 be the centroid induced by X . Then, for any x ∈ C, there
exists λ ∈ (0, 1) and λ1, . . . , λm∗+1 in R++ which satisfy

∑m∗+1
k=1 λk = 1

such that the following holds :

x0 = λx+ (1− λ)

m∗+1∑
k=1

λkxk.

Proof: Let the centroid and the vertices induced by the coordinate
system X be x0 and (p1, . . . , pm∗+1), respectively. Fix an arbitrary
x ∈ C. Then, by Lemma A.III.1(c), there exists ν1, . . . , νm∗+1 in R
such that x = x0 +

∑m∗+1
k=1 νkpk. For any λ ∈ (0, 1), define:

µk(λ) :=
1

1− λ

( 1

m∗ + 1

[
1 + λ

(m∗+1∑
k=1

νk − 1
)]
− λνk

)
(12)

for every k = 1, . . . ,m∗ + 1. Note, limk→0 µk(λ) = 1/(m∗ + 1) > 0.
Further, the map λ ∈ [0, 1) 7→ µk(λ) ∈ R is continuous. Thus, there
exists λ∗ ∈ (0, 1) such that, for any λ ∈ (0, λ∗], µk(λ) > 0 for all
k = 1, . . . ,m∗ + 1. Define λ∗k := µk(λ∗) for all k = 1, . . . ,m∗ + 1. Since

x0 =
∑m∗+1

k=1 xk/(m∗ + 1) and pk = xk − x0, from x = x0 +
∑m∗+1

k=1 νkpk
and (12) we find that the following equality holds:

x0 = λ∗x+ (1− λ∗)
m∗+1∑
k=1

λ∗kxk.

Moreover, from (12) we obtain:
∑m∗+1

k=1 µk(λ) = 1 for any λ ∈ (0, 1). In

particular,
∑m∗+1

k=1 λ∗k = 1 holds. �

Geometrically, for every x ∈ C, there exists a “weighted average”
yx :=

∑m∗+1
k=1 λkxk of the coordinate system X such that the centroid

x0 is some “weighted average” λx + (1 − λ)yx of the points x and yx.
Finally, we shall also need the following technical result.
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Lemma A.III.1(f): Let L ⊆ R be an interval of the form (0.θ) or (0, θ]
for some θ > 0. Suppose τ ⊆ L satisfies the following :

1.
(
q ∈ Q++ ; t ∈ τ ; qt ∈ L

)
=⇒ qt ∈ τ , and

2.
(
∃ t∗ > 0

)(
∃ ε > 0

)[
(t∗ − ε, t∗ + ε) ⊆ τ

]
.

Then, τ = L.

Proof: Let L be the interval (0, θ) or (0, θ] for some θ > 0. It will
be enough to argue, L ⊆ τ . Assume t∗ > 0 and ε > 0 are such that
(t∗ − ε, t∗ + ε) ⊆ τ . First, let s ∈ (0, θ) be arbitrary.

Define α∗ := s/(t∗+ε) and β∗ := min{β1, β2}, where β1 := s/(t∗−ε)
and β2 := θ/(t∗ + ε). Note, α∗ < β1 as s > 0 and t∗ + ε > t∗ − ε > 0.
Also, s < θ and t∗ + ε > 0 imply α < β2. Thus, α∗ < β∗. Since Q is
dense in R, there exists q ∈ Q such that α∗ < q∗ < β∗. Note, α∗ > 0 by
definition. Thus, α∗ < q∗ < β∗ implies q∗ ∈ Q++.

Let γ∗ := q∗(t∗ − ε) and δ∗ := q∗(t∗ + ε). Pick an arbitrary t0 ∈ L
such that γ∗ < t0 < δ∗. Define t1 := t0/q∗. Thus, t1 ∈ τ because
(t∗ − ε, t∗ + ε) ⊆ τ . Note, q∗t1 = t0 ∈ L. Since q∗ ∈ Q++, t1 ∈ τ and
q∗t1 ∈ L, we obtain q∗t1 ∈ τ . Then, t0 = q∗t1 implies t0 ∈ τ . Since
t0 ∈ L ∩ (γ∗, δ∗) was arbitrary, we obtain: L ∩ (γ∗, δ∗) ⊆ τ .

Note that β∗ ≤ β1 by definition of β∗. Then, α∗ < q∗ < β∗ implies
α∗ < q∗ < β1. Since α∗ = s/(t∗ + ε), β1 = s/(t∗ − ε) and α∗ < q∗ < β1,
it follows that q∗(t∗ − ε) < s < q∗(t∗ + ε). That is, s ∈ (γ∗, δ∗). Also,
s ∈ L as s ∈ (0, θ) and (0, θ) ⊆ L. Thus, s ∈ L ∩ (γ∗, δ∗). As we
have already shown that L ∩ (γ∗, δ∗) ⊆ τ , it follows that s ∈ τ . Since
s ∈ (0, θ) was arbitrary, we have: (0, θ) ⊆ τ .

Recall, L is either (0, θ) or (0, θ]. If L is indeed the interval (0, θ)
then we already have L ⊆ τ . So, we assume that L is the interval (0, θ].
Of course, since we have already established (0, θ) ⊆ τ , it remains to
show that θ ∈ τ . Let t2 := θ/2. Since (0, θ) ⊆ τ , we have t2 ∈ τ . Also,
let q := 2. Thus, q ∈ Q++ and qt2 = θ. Then, θ ∈ L implies qt2 ∈ L.
Since q ∈ Q++, t2 ∈ τ and qt2 ∈ L, it follows that qt2 ∈ τ . As qt2 = θ,
we obtain θ ∈ τ . Thus, L ⊆ τ if L is the interval (0, θ]. �

Roughly, the import of the above lemma can be described as follows.
The ambient space L is the interval (0, θ) or (0, θ]. Now, depending on
the problem at hand, suppose that a particular subset τ ⊆ L has been
defined. If τ has a non–empty interior then, for any arbitrary x ∈ τ ,
there exists a neighborhood of x which is contained in τ . This is because
τ is closed under the “multiplication from left” action of the subgroup
Q++ which is dense in the group R++. With these lemmas stated and
established, we are now ready to prove Theorem 10.
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Proof of Theorem 10: We establish “sufficiency”. Let C be a
non–empty convex subset of Rn and % be a non–trivial preference on
C. Since % is a non–trivial, it follows that � is non–empty. Further,
∼ is non–empty by Reflexivity of %. Fix X ≡ (x1, . . . , xm∗+1) as the

coordinate system for C. Then, x0 :=
∑m∗+1

k=1 xk/(m∗+1) is the centroid
and (p1, . . . , pm∗+1), where pk := xk − x0 for all k = 1, . . . ,m∗ + 1, are
the vertices induced by X . For x ∈ C, let U(x) := {y ∈ C : y � x},
L(x) := {y ∈ C : x � y} and I(x) := {y ∈ C : y ∼ x}. Recall, W∗ is the
m∗–dimensional linear span of the vectors in (p1, . . . , pm∗+1). Consider
the subsets U∗, V∗ and S∗ of W∗ defined as follows:

U∗ :=
{
w ∈ W∗ : x0 + tw � x0 for some t > 0

}
,

V∗ :=
{
w ∈ W∗ : x0 � x0 + tw for some t > 0

}
,

S∗ :=
{
w ∈ W∗ : x0 + tw ∼ x0 for some t > 0

}
.

We assume that % satisfies Continuity and Invariance. The argument
proceeds through the following steps.

Step 1 — We argue: if x ∈ C, w ∈ W∗ and t1, t2 > 0 are such that
x+ t1w and x+ t2w are in C then the following hold:

x+ t1w � x iff x+ t2w � x (13)

x � x+ t1w iff x � x+ t2w (14)

x+ t1w ∼ x iff x+ t2w ∼ x (15)

To prove (13), fix x ∈ C, w ∈ W∗ and t1 > 0 such that x+ t1w ∈ C.
Consider an arbitrary t2 > 0 such that x + t2w ∈ C. Observe, it is
enough to show: x+ t1w � x implies x+ t2w � x. So, let x+ t1w � x.
First, assume t2 = at1 for some a ∈ N. We have nothing to argue if
a = 1. So, assume a > 1. By convexity of C, x + bt1w ∈ C for every
b = 1, . . . , a. By Invariance, x + t1w � x implies x + 2t1w � x + t1w.
Similarly, x+ bt1w � x+ (b− 1)t1w for all b = 1, . . . , a. Transitivity of
� implies x+ at1w � x. That is, x+ t2w � x holds.

Now, assume t2 = t1/a for some a ∈ N. By an argument as above,
if x � x+ t2w then x � x+ t1w. However, this contradicts x+ t1w � x.
Thus, x � x+t2w is not possible. Similarly, x+t2w ∼ x is not possible.
However, % is complete. Thus, x+ t2w � x holds.

Next, assume t2 = bt1/a for some a, b ∈ N with a 6= 1. Let t3 := t1/a.
Then, x + t1w � x implies x + t3w � x. Also, t2 = bt3 where b ∈ N.
Then, x+ t3w � x implies x+ t2w � x. Thus, x+ t2w � x holds. Let
τ := {t > 0 : x + tw � x} and Lx,w := {t > 0 : x + tw ∈ C}. Thus, we
have shown: ( q ∈ Q++ ; t ∈ τ ; qt ∈ Lx,w ) =⇒ qt ∈ τ . Also, note
that Lx,w is (0, θ) or (0, θ] for some θ > 0 as C is convex.
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Now, we also show: (t∗ − ε, t∗ + ε) ⊆ τ for some t∗ > 0 and ε > 0.
Then, Lemma A.III.1(f) will imply τ = Lx,w which is equivalent to:
x+ t2w � x for all t2 > 0 such that x+ t2w ∈ C. Let t∗ := t1/2. Thus,
y∗ := x+t∗w � x. By Continuity of %, let ε > 0 be such that the ε–ball
Bε(y∗) in Rn satisfies: z ∈ C ∩Bε(y∗) =⇒ z � x. Since x, x+ t1w ∈ C
and C is convex, (t∗ − ε, t∗ + ε) ⊆ τ . This proves (13).

To prove (14), define %∗ over C by: u %∗ v iff v % u. Observe,
%∗ saisfies the axioms on %. Further, the strict component �∗ of %∗

satisfies: u �∗ v iff v � u. Moreover, by the argument for (13), we
have the equivalence: x + t1w �∗ x iff x + t2w �∗ x. Thus, we obtain:
x � x+ t1w iff x � x+ t2w. This proves (14).

To prove (15), assume x + t1w ∼ x. Suppose x + t2w � x. Then,
x + t2w � x by (13) which is a contradiction. Thus, x + t2w � x is
not possible. Similarly, (14) implies that x � x + t2w is not possible.
However, % is complete. Thus, x+ t2w ∼ x holds. That is, x+ t1w ∼ x
implies x + t2w ∼ x. The converse also holds because t1 and t2 are
arbitrary. This proves (15). The step is complete.

Step 2 — We argue: if x ∈ C, w ∈ W∗ and t1, t2 > 0 are such that
x+ t1w and x0 + t2w are in C then the following hold:

x+ t1w � x iff x0 + t2w � x0 (16)

x � x+ t1w iff x0 � x0 + t2w (17)

x+ t1w ∼ x iff x0 + t2w ∼ x0 (18)

Let x ∈ C, w ∈ W∗ and t1, t2 > 0 be such that x+ t1w and x0 + t2w
are in C. If w = 0 then the claim is trivial. If x = x0 then step 1
implies the claim. Thus, we assume w 6= 0 and x 6= x0.

To prove (16), note that since x ∈ C, Lemma A.III.1(e) implies the
existence of λ ∈ (0, 1) and λ1, . . . , λm∗+1 in R++ such that

∑m∗+1
k=1 λk = 1

and x0 = λx+(1−λ)y1, where y1 :=
∑m∗+1

k=1 λkxk. As x1, . . . , xm∗+1 ∈ C,
the convexity of C implies y1 ∈ C. Let y2 := x0 + λt1w. Thus,
y2 = λ(x + t1w) + (1− λ)y1. Since x + t1w, y1 ∈ C and λ ∈ (0, 1), the
convexity of C implies y2 ∈ C. Also, let z1 := x0 − x and y3 := y2 − z1.
Thus, y3 = x+λt1w. Since x, x+ t1w ∈ C and λ ∈ (0, 1), the convexity
of C implies y3 ∈ C. Since x + t1w � x implies x + λt1w � x by step
1, we have: y3 � x. Moreover, x + z1 = x0 and y3 + z1 = y2. Then,
y3 � x implies y2 � x0 by Invariance. That is, x0 + λt1w � x0. Hence,
x0 + t2w � x0 by step 1. This proves the forward implication claimed
in (16). For the reverse implication, let z2 := −z1. Then, observe that
x0 + z2 = x and y2 + z2 = y3. By step 1, x0 + t2w � x0 implies x0 � y2

because y2 = x0 + λt1w. Then, y3 � x by Invariance. By step 1,
x+ t1w � x because y3 = x+ λt1w. This proves (16).
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To prove (17), define %∗ over C by: u %∗ v iff v % u. Observe,
%∗ satisfies the axioms on %. Further, the strict component �∗ of %∗

satisfies: u �∗ v iff v � u. Moreover, by the argument for (16), we
have the equivalence: x+ t1w �∗ x iff x0 + t2w �∗ x0. Thus, we obtain:
x � x+ t1w iff x0 � x0 + t2w. This proves (17).

To prove (18), assume x+ t1w ∼ x. Suppose x0 + t2w � x0. Then,
x0 + t2w � x0 by (16) which is a contradiction. Thus, x0 + t2w � x0 is
not possible. Similarly, x0 � x0 + t2w is not possible by (17). However,
% is complete. Thus, x0 + t2w ∼ x0 holds. That is, x+ t1w ∼ x implies
x0 + t2w ∼ x0. Interchanging the role of x with x0 and t1 with t2, in
this argument, implies the converse. This proves (18).

Step 3 — We claim: U(x) = C ∩ (x + U∗), L(x) = C ∩ (x + V∗)
and I(x) = C ∩ (x + S∗) for every x ∈ C. We shall only argue that
U(x) = C ∩ (x + U∗). To show U(x) ⊆ C ∩ (x) + U∗, let y0 ∈ U(x)
be arbitrary. That is, y0 ∈ C and y � x. Let w := y0 − x and
t1 := 1. By Lemma A.III.1(e), there exists λ ∈ (0, 1) and λ1, . . . , λm∗+1

in R++ such that
∑m∗+1

k=1 λk = 1 and x0 = λx + (1 − λ)y1, where

y1 :=
∑m∗+1

k=1 λkxk. As x1, . . . , xm∗+1 ∈ C, the convexity of C implies
y1 ∈ C. Let y2 := λy0 + (1 − λ)y1. Thus, y2 ∈ C by convexity of C.
Also, y2 = x0 + λt1w. Note, y0 � x is equivalent to x + t1w � x by
the definition of w and t1. Also, x + t1w � x implies x0 + λt1w � x0

by step 2. Then, if we show that w ∈ W∗ then w ∈ U∗. By Lemma
A.III.1(c), y2 ∈ C implies there exists ν1, . . . , νm∗+1 in R such that

y2 = x0 +
∑m∗+1

k=1 νkpk. Thus, w ∈ W∗ because w = (y2 − x0)/(λt1) and
W∗ is the linear span of (p1, . . . , pm∗+1). Hence, w ∈ U∗ and y0 = x+w.
Since y0 ∈ C already, we obtain: y0 ∈ C ∩ (x+ U∗). As y0 ∈ U(x) was
arbitrary, it follows: U(x) ⊆ C ∩ (x+ U∗).

For the converse, let y0 ∈ C ∩ (x + U∗) be arbitrary. Then, y0 ∈ C
and there exists w ∈ U∗ such that y0 = x + w. Let t1 := 1. By lemma
A.III.1(e), there exists λ ∈ (0, 1) and λ1, . . . , λm∗+1 in R++ such that∑m∗+1

k=1 λk = 1 and x0 = λx + (1 − λ)y1, where y1 :=
∑m∗+1

k=1 λkxk. As
x1, . . . , xm∗+1 ∈ C, y1 ∈ C by convexity of C. Let y2 := λy0 + (1−λ)y1.
Thus, y2 ∈ C by convexity of C. Also, y2 = x0 + λt1w. Since w ∈ W∗
and x0 + λt1w ∈ C, we have x0 + λt1w � x0. By step 2, x + t1w � x
follows. Since t1 = 1 and y0 = x + w, we obtain y0 ∈ U(x). As
y0 ∈ C ∩ (x+ U∗) was arbitrary, we have: C ∩ (x+ U∗) ⊆ U(x). Thus,
we have shown: U(x) = C ∩ (x+ U∗) for every x ∈ C. The arguments
for L(x) = C ∩ (x+ V∗) and I(x) = C ∩ (x+ S∗) are similar.

Step 4 — We claim: (U∗, V∗, S∗) is a partition of W∗. First, we shall
argue, if w ∈ W∗, there exists t > 0 such that x0 + tw ∈ C. Because %
is complete, this will imply W∗ = U∗ ∪ V∗ ∪ S∗.
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Fix an arbitrary w ∈ W∗. Since W∗ is the linear span of the vertices
(p1, . . . , pm∗+1) induced by X , there exists µ1, . . . , µm∗+1 in R such that

w =
∑m∗+1

k=1 µkpk. For every k ∈ {1, . . . ,m∗+1}, consider the R–valued
map ψk on R+ which is defined as follows:

ψk(t) := µkt+
1

m∗ + 1

(
1− t

m∗+1∑
l=1

µl

)
for all t ∈ R+.

Since each ψk is continuous and limt→0 ψk(t) = 1/(m∗+1) > 0, there
exists t∗ > 0 such that ψk(t∗) > 0 for all k. Let λk := ψk(t∗) for every
k. Thus, λk > 0 for every k. Note,

∑m∗+1
k=1 ψk(t) = 1 for any t ∈ R+.

Thus,
∑m∗+1

k=1 λk = 1. Recall, x0 =
∑m∗+1

k=1 xk/(m∗+1) and pk = xk−x0

for every k = 1, . . . ,m∗ + 1. Then, by definition of the ψk’s:

x0 + tw =

m∗+1∑
k=1

ψk(t)xk for any t ∈ R+.

In particular, x0 + t∗w =
∑m∗+1

k=1 λkxk. Since X ≡ (x1, . . . , xm∗+1)
is a coordinate system for C, the points x1, . . . , xm∗+1 are in C. Then,

because λ1, . . . , λm∗+1 are in R+ and
∑m∗+1

k=1 λk = 1, the convexity of C

implies that
∑m∗+1

k=1 λkxk ∈ C. That is, x0+t∗w ∈ C. Since x0+t∗w ∈ C
and % is complete, at least one of x0 + t∗w � x0 or x0 � x0 + t∗w or
x0 + t∗w ∼ x0 must hold. Then, w ∈ W∗ and t∗ > 0 imply that w
belongs to at least of U∗, V∗ or S∗. Since w ∈ W∗ was arbitrary, we
have: W∗ ⊆ U∗ ∪ V∗ ∪ S∗. Moreover, each of U∗, V∗ and S∗ is a subset
of W∗ by definition. Thus, W∗ = U∗ ∪ V∗ ∪ S∗.

We now argue: U∗, V∗ and S∗ are pairwise disjoint. First, suppose
w ∈ U∗ ∩ V∗. Since w ∈ U∗, there exists t1 > 0 such that x0 + t1w � x0.
Since w ∈ V∗, there exists t2 > 0 such that x0 � x0 + t2w. As t1 and
t2 are positive, x0 + t1w � x0 implies x0 + t2w � x0 by step 1. That
is, both x0 + t2w � x0 and x0 � x0 + t2w hold. This contradicts the
asymmetry of �. Hence, U∗ ∩ V∗ = ∅.

Now, suppose w ∈ U∗∩S∗. As w ∈ U∗, there exists t1 > 0 such that
x0 + t1w � x0. As w ∈ S∗, there exists t2 > 0 such that x0 + t2 ∼ x0.
As t1 and t2 are positive, x0 + t1w � x0 implies x0 + t2 � x0 by step 1.
That is, both x0 + t2w � x0 and x0 + t2w ∼ x0 hold. However, � and
∼ are disjoint. Thus, U∗ ∩ S∗ = ∅. Similarly, V∗ ∩ S∗ = ∅.

As% is non–trivial, let y0, y1 ∈ C satisfy y1 � y0 and set w := y1−y0.
Thus, y0 +w ∈ U(y0). Then, y0 +w ∈ C ∩ (y0 + U∗) by step 3. Hence,
w ∈ U∗. Thus, U∗ 6= ∅. Similarly, V∗ 6= ∅. Observe, 0 ∈ S∗.

130



Step 5 — We claim: U∗, V∗ and S∗ are (convex) cones. We only
argue: U∗ is a cone. First, let w ∈ U∗ and λ > 0. Since w ∈ U∗ ⊆ W∗
and W∗ is a linear subspace, we have w′ := λw ∈ W∗. Also, there
exists t > 0 such that x0 + tw � x0 as w ∈ U∗. Let t′ := t/λ. Thus,
x0 + t′w′ � x0 as t′w′ = tw. Hence, w′ ∈ U∗. Since w ∈ U∗ and λ > 0
are arbitrary, we have:

(
w ∈ U∗ ; λ > 0

)
=⇒ λw ∈ U∗.

Now, fix any w1, w2 ∈ U∗ and let w := w1 +w2. Since U∗ ⊆ W∗ and
W∗ is a linear subspace, we have w ∈ W∗. Also, w1, w2 ∈ U∗ imply the
existence of t1, t2 > 0 such that x0 + t1w1 � x0 and x0 + t2w2 � x0.
Let t∗ := min{t1, t2} and t∗∗ := t∗/2. Note, x0 + t1w1 � x0 implies
x0 + t1w1 ∈ C. Further, x0 ∈ C and x0 + t1w1 ∈ C imply x0 + t∗∗w1 ∈ C
because C is convex. By step 1, x0 + t1w1 � x0 implies x0 + t∗∗w1 � x0.
Similarly, x0 + t∗∗w2 ∈ C and x0 + t∗∗w2 � x0. Moreover, x0 + t∗w1 ∈ C
and x0 + t∗w2 ∈ C by convexity of C. Observe,

x0 + t∗∗w =
1

2
(x0 + t∗w1) +

1

2
(x0 + t∗w2)

because t∗∗ = t∗/2 and w = w1 +w2 by definition. Hence, x0 +t∗∗w ∈ C
by convexity of C. Also, note that x0 + t∗∗w = (x0 + t∗∗w1) + t∗∗w2.
Then, x0 + t∗∗w1 � x0 implies x0 + t∗∗w � x0 + t∗∗w2 by Invariance.
Recall, x0 + t∗∗w2 � x0. Transitivity of � implies x0 + t∗∗w � x0. Then,
w ∈ W∗ and t∗∗ > 0 imply w ∈ U∗. As w = w1 + w2 where w1, w2 ∈ U∗
are arbitrary, we have:

(
w1 ∈ U∗ ; w2 ∈ U∗

)
=⇒ w1 + w2 ∈ U∗.

Thus, U∗ is a cone. Similarly, V∗ and S∗ are cones.

Step 6 — We argue: V∗ = −U∗ and S∗ is a subspace. First, let us
show that V∗ = −U∗. Let w ∈ U∗. Thus, w ∈ W∗ and there exists t1 > 0
such that x0 + t1w � x0. Let x := x0 + t1w. Note, x0 + t1w � x0 implies
x ∈ C in particular. Then, by Lemma A.III.1(e), there exists λ ∈ (0, 1)
and λ1, . . . , λm∗+1 such that

∑m∗+1
k=1 λk = 1 and x0 = λx + (1 − λ)y,

where y :=
∑m∗+1

k=1 λkxk. Since x1, . . . , xm∗+1 are in C, y ∈ C as C is
convex. Observe, y = x0 + t2(−w), where t2 := λt1/(1 − λ), because
x = x0 + t1w and x0 = λx+ (1− λ)y. Note, t2 > 0.

Let t∗ := min{t1, t2}. Then, x0 + t∗w and x0 + t∗(−w) are in
C because x0, x, y, y ∈ C and C is convex. Also, x0 + t∗w � x0

as x0 + t1w � x0 by step 1. Since (x0 + t∗w) + t∗(−w) = x0 and
x0 + t∗w � x0, Invariance implies x0 � x0 + t∗(−w). Also, w ∈ W∗
implies −w ∈ W∗ as W∗ is a linear subspace. Hence, −w ∈ V∗. That is,
−U∗ ⊆ V∗. Similarly, −V∗ ⊆ U∗. Hence, V∗ ⊆ −U∗. Thus, V∗ = −U∗.
By a similar argument, S∗ = −S∗. Moreover, S∗ is a cone by step 5.
Hence, S∗ must be a subspace.
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Step 7 — We argue: there exists K ∈ N and a list (λ1, . . . , λK) of
K orthonormal vectors in W∗ such that:

x � y ⇐⇒ [λ1 · x, . . . , λK · x] >L [λ1 · y, . . . , λK · y], (19)

for any x, y ∈ C, where >L is the strict component of the standard
lexicographic order ≥L over RK .

By steps 4–6, (U∗, V∗, S∗) is a partition of the linear space W∗ such
that U∗, V∗ are cones satisfying V∗ = −U∗ and S∗ is a subspace. Then,
by the Decomposition Theorem (Theorem 1 of section 2), there exists K
and a list U := (λ1, . . . , λK) of K orthonormal vectors in W∗ such that
U∗ = HU, V∗ = −HU and S∗ = OU, where HU is the graded halfspace
(Definition 1 of section 2) generated by U and OU is the subspace of
W∗ which is orthogonal to the vectors in the list U.

Fix an arbitrary x, y ∈ C. Then, x � y iff x ∈ U(y). By step 3,
U(y) = C ∩ (y+U∗). Then, x � y iff, x = y+w for some w ∈ HU. By
definition of HU, w ∈ W∗ is equivalent to:

[λ1 · (x− y), . . . , λK · (x− y)] >L 0K ,

where 0K is the origin of RK . Note, λk · (x − y) > 0 iff λk · x > λk · y
for every k = 1, . . . , K. Hence, (19) follows from the definition of ≥L.
Since x, y ∈ C are arbitrary, the step is complete.

Step 8 — We claim: if (λ1, . . . , λK1
) and (µ1, . . . , µK2

) are two lists
of K1 and K2 orthonormal vectors in W∗ such that:

x � y ⇐⇒ [λ1 · x, . . . , λK1
· x] >1

L [λ1 · y, . . . , λK1
· y], and (20)

x � y ⇐⇒ [µ1 · x, . . . , µK2
· x] >2

L [µ1 · y, . . . , µK2
· y], (21)

for every x, y ∈ C, where �1
L and �2

L denote the strict components of
the standard lexicographic orders over RK1 and RK2, then it must be
that K1 = K2 =: K0 and λk = µk for all k = 1, . . . , K0.

Let K0 := min{K1, K2}. Denote the set {1, . . . , K0} by [K0]. Now,
suppose λk 6= µk for some k ∈ [K0]. Then, define:

k∗ := min
{
k ∈ [K0] : λk 6= µk

}
.

We claim the existence of w1, w2 ∈ W∗ with the following properties:

(a) λk∗ · w1 > 0 and λk∗ · w2 < 0.

(b) µk∗ · w1 < 0 and µk∗ · w2 > 0.

(c) For any j ∈ {1, 2}, λk · wj = 0 and µk · wj = 0 if 1 ≤ k < k∗.
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By the Cauchy–Schwarz inequality, |λk∗ · µk∗| ≤ ‖λk∗‖2 · ‖µk∗‖2 = 1
with equality iff λk∗ = ±µk∗. First, consider the case when |λk∗ ·µk∗| = 1.
Since λk∗ 6= µk∗, we have λk∗ = −µk∗. Define w1 := λk∗ and w2 := µk∗.
Clearly, properties (a) and (b) hold. Moreover, (c) holds as the vectors
λ1, . . . , λk∗ are orthogonal and λk = µk if 1 ≤ k < k∗.

Now, we assume |λk∗ · µk∗| < 1. That is, 1− (λk∗ · µk∗)2 > 0. Then,
fix any θ and ψ in R++. Also, let w1 := αλk∗ + βµk∗ and w2 := −w1,
where α, β ∈ R are defined as follows:

α :=
[
θ + ψ(λk∗ · µk∗)

]
/
[
1− (λk∗ · µk∗)2

]
, and

β := −
[
ψ + θ(λk∗ · µk∗)

]
/
[
1− (λk∗ · µk∗)2

]
Observe, λk∗ · w1 = θ and µk∗ · w1 = −ψ. As θ and ψ are in R++ and
w2 = −w1, properties (a) and (b) obtain. Since λk = µk if 1 ≤ k < k∗
and λ1, . . . , λk∗ are orthogonal, property (c) obtains because w2 = −w1

where w1 is a linear combination of only λk∗ and µ∗. Thus, we have
demonstrated the existence of w1, w2 ∈ W∗ as claimed.

In step 4, recall that we argued: if w ∈ W∗ then there exists t > 0
such that x0 + tw ∈ C. Then, as w1, w2 ∈ C, there exists t1, t2 > 0 such
that x0 + t1w1 and x0 + t2w2 are in C. Thus, properties (a)–(c) imply
x0 + t1w1 � x0 + t2w2 and x0 + t2w2 � x0 + t1w1 by representations (20)
and (21), respectively. However, the relation � is asymmetric. Hence,
our supposition that there exists k ∈ [K0] such that λk 6= µk must be
wrong. That is, λk = µk for all k ∈ [K0].

It remains to argue: K1 = K2. Suppose K1 < K2. Let w := µK1+1.
Clearly, w ∈ W∗ as the vectors µ1, . . . , µK2

are in W∗. Thus, there
exists t > 0 such that x0 + tw ∈ C. Note, since (µ1, . . . , µK1+1) are
orthogonal and λk = µk for all k ∈ [K0], representations (20) and (21)
imply x0 + tw ∼ x0 and x0 + tw � x0, respectively. This contradicts the
fact that � and ∼ are disjoint. Hence, the supposition that K1 < K2

must be wrong. That is, K1 < K2 is not possible. Similarly, K2 < K1

is not possible. Thus, K1 = K2. This step is complete.

Step 9 — By steps 7 and 8, there exists a unique K ∈ N and a
unique list (λ1, . . . , λK) of orthonormal vectors in W∗ such that:

x % y ⇐⇒ [λ1 · x, . . . , λK · x] ≥L [λ1 · y, . . . , λK · y],

for any x, y ∈ C, where ≥L is the standard lexicographic order over RK .
By Lemma A.III.1(d), W∗ = SC where SC is the subspace generated by
the set C. Thus, the vectors λ1, . . . , λK are in SC .

To complete the proof, observe that K = 1 by Continuity of %. �
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A.III.2 Lexicographic Linear Representations

Proof of Theorem 11: Consider the existence claim in the state-
ment of Theorem 11 and step 9 in the proof of Theorem 10 (see section
A.III.1). Note, both Theorems 10 and 11 assume the Invariance axiom.
Thus, if step 9 continues to hold under the additional assumption of
Convexity of the binary relation, instead of Continuity as in the proof
of Theorem 10, then Theorem 11 is proven.

Observe, Continuity was referred to only in step 1 of the proof of
Theorem 10, in paragraph 4, to establish only the following:(

∃ t∗ > 0
)(
∃ ε > 0

)[
(t∗ − ε, t∗ + ε) ⊆ τ

]
. (22)

Of course, in addition to Continuity, (22) was established under the
additional assumption that C ⊆ Rn is convex and t1 > 0 exists such
that x+ t1 � x. We shall now argue that (22) continues to hold when
Continuity is replaced by Convexity.

Recall, τ = {t > 0 : x + tw � x}. Clearly, t1 ∈ τ and x + t1w ∈ C.
Moreover, since C is a convex subset of Rn, it follows that x+ tw ∈ C
for every t ∈ (0, t1). Let y := x+ t1w. Since y � x, by Convexity of %
we have the following:

αx+ (1− α)y � x for every α ∈ (0, 1).

Since y = x + t1w, note that αx + (1 − α)y = x + [(1 − α)t1]w
for every α ∈ (0, 1). Thus, {t ∈ (0, t1) : x + tw � x} = (0, t1). Let
t∗ := t1/2 and ε := t∗. Hence, (t∗ − ε, t∗ + ε) = (0, t1). That is,

(t∗ − ε, t∗ + ε) = {t ∈ (0, t1) : x+ tw � x}.

Therefore, (t∗ − ε, t∗ + ε) ⊆ τ which proves (22).
Having established (22), we note that the other clause that had to

be established in step 1 of Theorem 10 was the following:(
q ∈ Q++ ; t ∈ τ ; qt ∈ Lx,w

)
=⇒ qt ∈ τ, (23)

where Lx,w = {t > 0 : x+ tw ∈ C}. However, observe that the proof of
(23) relied only the convexity of C and the axiom of Invariance. Since
Invariance has been assumed in Theorem 11 as well, while maintaining
that C is convex, (23) also continues to hold.

We now come to one final observation. To complete the proof of step
1 (and Theorem 11), it is enough to show that, for any x, y ∈ C and
α ∈ (0, 1), x � y implies x � αx+ (1−α)y. For this, let z := α(x− y).
Note, Convexity implies x′ := (1 − α)x + αy � y. As x′ + z = x and
y + z = αx+ (1− α)y, Invariance implies x � αx+ (1− α)y. �
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Chapter 3

Preferences with Norms as Representations

1. introduction

1.1 An Overview

Norms over Euclidean spaces define natural weak orderings over the
vectors. We consider continuous weak orders on any given Euclidean
space and ask the following question: what axioms characterize those
weak orders which admit some norm as a representation? Of particu-
lar interest is the subclass of p–norms. To place our question in proper
perspective, we now describe the background comprising of applications
involving preferences which admit norms as representations in various
aspects of economic theory.

Over a span of several decades, such preferences have been assumed
as the model of individuals comprising of the society in the theory
of strategic voting in spatial models or multiple issues. For instance,
McKelvey & Wendell (1976) generalize the results, on the major-
ity rule admitting voting equilibria, due to Plott (1967) and Davis
et al. (1972) by assuming individuals to have arbitrary “quadratic”
preferences which subsume Euclidean preferences.



However, Wendell & Thorson (1974) already recognized that
preferences other than the “quadratic” preferences are at least as im-
portant. They assume individual preferences admit some norm as a
representation and proceed to analyse the consequences in voting and
its equilibria. Similarly, Border & Jordan (1983) recognize the need
to allow into consideration preferences that are more general than the
Euclidean preferences. They show that under strategy–proofness con-
sidertions, voting rules in spatial models must be driven by only “ideal
points” of individuals whose preferences are “star–shaped and separa-
ble”. As we shall observe at the end of section 4, these preferences
admit representations which are essentialy the p–norms except that
their “balls” may not be convex.

Further, Zhou (1991) showed that Gibbard’s theorem on dictator-
ships holds in public goods problem for multidimensional Euclidean
spaces with quasi–concave preferences. More recently, Gershkov et
al. (2019, 2022) have considered the problem of voting on multiple is-
sues. They emphasize the need to consider general norms as preferences
and show that dominant strategy incentive compatibility is equivalent
to the geometric property of “orthant monotonicity”.

Moreover, Enelow & Hinch (1982, 1984) and Enelow et al.
(1986, 1988) show that empirical testing, via regression analysis, of pre-
dictions made by the theory on spatial voting heavily depends on the
correctness of the specification of the norm representing individual pref-
erences. For further examples of norms considered in strategic voting
for settings with spatial models, one may consider Barberà et al.
(1993) and Peters et al. (1993) for instance. Also, for “quadratic”
functionals that generalize the classical utilitarianism, one may con-
sider Epstein & Segal (1992).

More recently, applications in matching theory have considered the
Euclidean norm such as the school choice functions generated by “ideal
points” as in Echenique & Yenmez (2015). Just as Wendell
& Thorson (1974), Border & Jordan (1983) and Zhou (1991)
have argued—in strategic voting over multiple issues—for consider-
ing individual preferences that admit arbitrary norm like representa-
tions, a similar argument applies for matching probems as considered
in Echenique & Yenmez (2015) for instance.

Two further applications are as follows. Measurement theory con-
cerns itself with specific functional forms as representations for weak
orders. For instance, Machina & Müller (1987) characterize weak
orders that admit polynomial representations up to some moments.
Second, Fields & Ok (1996) and Mitra & Ok (1996) characterize
real–valued measures of income mobility as p–norms. Perhaps, such
problems can be based on orders as primitives.
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The many applications which assume general norms as primitives
make it imperative to supply a decision theoretic foundation for prefer-
ences which admit norms as representations. However, Kanai (1977),
Bogomolnaia & Laslier (2007) and Eguia (2011) show existence
of some “embeddings” in normed Euclidean spaces. Similarly, charac-
terizing those real–valued maps which are the Euclidean norm, as in
D’Agostino & Dardanoni (2009) for instance, does not accomplish
the task set forth by the applications.

For Euclidean preferences, a decision theoretic foundation has been
provided in Chambers & Echenique (2020). In measurement theory,
Tversky & Krantz (1970) give a foundation for the metric induced
by the Euclidean norm. However, they do so by considering a weak
order on Rn × Rn as the primitives, whereas, we must consider a weak
order on Rn as the primitive. Thus, it is not possible to adapt their
foundation for our primitive as otherwise the axioms would involve dif-
ferences of vectors which are harder to justify normatively. Moreover,
axioms must involve only the universal quantifier from both the nor-
mative and falsifiability perspectives — see Dekel & Lipman (2010)
and Chambers et al. (2014) for instance.

We first generalize the notion of a norm to “pre–norm” and ex-
tend the scope of our question of existence of representations from
norms to pre–norms. For concreteness, we state the definition. A
pre–norm is any map f : Rn → R+ that satisfies (1) f(x) = 0 iff
x = 0, (2) f(α · x) = α · f(x) for every α > 0 and x ∈ Rn, and (3)
f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rn.

Thus, a pre–norm satisfies the definition of norms except for the
“symmetry” requirement: f(x) = f(−x) for all x ∈ Rn. Property (2)
says that a pre–norm is a function which is homogenous of degree one.
Property (3) is the “Triangle Inequality”. One key element in our anal-
ysis is the following observation: any homogenous function satisfies the
Triangle Inequality if and only if it is a convex function.

Homotheticity requires that x � y implies α · x � α · y. Further,
Convexity requires all weak lower contour sets to be convex.35 More-
over, we introduce an axiom, which we call Scale Monotonicity, that
requires the weak order to exhibit increasing returns to scale. Denote
by P the class of all binary relations over Rn which are weak orders that
satisfy Continuity, Homotheticity, Convexity and Scale Monotonicity.
Our first result is that P is precisely the class of binary relations which
admit some pre–norm as a representation.

35We observe that in many standard settings, such as consumer choice theory, the axiom of
Convexity requires the weak upper contour sets to be convex. However, many problems in social
choice and othe settings involving geospatial preferences often require the weak lower contour set
to be convex. It is the latter axiom that we call Convexity.
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By definition, f is a pre–norm if it is homogenous function of degree
one which evaluates to 0 only at the origin, and satisfies the Triangle
Inequality. Thus, any pre–norm uniquely identifies a compact convex
subset Cf of Rn which contains the origin in its interior. Here, Cf is
the set of all vectors whose f–value is atmost 1. Geometrically, the
pre–norm generates “open balls” which are all the scalings and trans-
lations of the interior of Cf .

Any pre–norm is a continuous map. If a binary relation � admits a
pre–norm as a represeentation, then �must be a weak order and satisfy
Continuity. Further, the weak lower contour sets of � must be convex
as Cf is convex. Also, Scale Monotonicity and Homotheticity should
obviously hold. Thus, binary relations which admit some pre–norm as
a representation must be in the class P . However, for “existence” of
pre–norms as representations, it must be shown that the weak lower
contour sets of � satisfy (1) compactness, and (2) the origin is in the
interior. Obtaining these properties from the axioms are the major
challenges in establishing our main result.

As a corollary to our main representation theorem, we obtain a
characterization of norms as representations. Within P , the subclass
of those binary relations which admit some norm as a representation
are characterized by an additional axiom called Reflection Symmetry
which requires −x to be indifferent to x. This is so as a norm f is a
pre–that also satisfies f(x) = f(−x) for any vector x.

We then move on to the characterization of p–norms. For this, we
consider any n–tuple θ ≡ (θ1, . . . , θn) of positive numbers and p ≥ 1 to
define a map ‖·‖(θ, p) : Rn → R+ as follows:

‖x‖(θ, p) :=
( n∑

i=1

θi|xi|p
)1/p

for all x ≡ (x1, . . . , xn) ∈ Rn.

We call ‖·‖(θ, p) the (θ, p)–norm a special case of which is the p–norm,
denoted by ‖·‖p, when all the θi’s are equal to unity. Since the map
ξ ∈ R+ 7→ ξp is monotone, a binary relation � which admits some
(θ, p)–norm as a representation must satisfy the Separability axiom(s)
due to Debreu (1959). Now, consider � which admits some norm as
a representation. Our second main result is, if � satisfies Separability
then � admits some (θ, p)–norm as a representation. Thus, we have a
characterization of those binary relations which admit some (θ, p)–norm
as a representation.

Note, Debreu’s theorem on the existence of additive representations
does not alone characterize the particular functional form as required
by the definition of the (θ, p)–norm. We arrive at the suitable functional
equation from the combination of the axioms.
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To pin down those binary relation which are represented by some
p–norm, we additionally impose Permutation Symmetry which requires
an vector x to be indifferent to the vector xσ obtained by permuting
the components of x. This completes the high–level description of our
results on the existence of representations.

We also develop a “duality theory” for binary relations represented
via pre–norms. This is possible because maximization of the support
function of a compact convex set is a homogenous functional which is
convex. Essentially, this duality theory is analogous to the relationship
of the Utility Maximization Problem and the Expenditure Minimization
Problem as in the classical theory of consumer choice.

Suppose � admits the pre–norm f as a representations. As we have
outlined above, there is a compact convex set Cf with the origin in its
interior that is naturally associated to �. All weak lower contour sets
of � are scalings of Cf . Then, the support function T (f) of Cf is also
pre–norm. Then, the weak order induced by T (f), which we denote by
�∗, is the dual of �.

Thus, to each � in P the dual �∗ is also in P . Hence, every �
in P admits a second dual �∗∗ which, by definition, is the dual of the
dual of �. Our first main result on duality is that the second dual
of any binary relation in P must be itself. That is, “take dual” is
an idempotent operator on P . Further, we define a binary relation to
be self–dual if its dual is identical to itself. Our second main result
is: a weak order is self–dual iff it admits the Euclidean norm as a
representation — “spherical preferences”. Our third result is: dual of
the p–norm is the q–norm, where 1/p+ 1/q = 1.

In functional analysis, any pair (p, q) such that 1/p + 1/q = 1 are
called conjugate indices. They feature, for instance, in the statement of
Hölder’s inequality which generalizes the Cauchy–Schwarz Inequality.
Hölder’s inequality claims the following:

|x · y| ≤ ‖x‖p · ‖y‖q,

where (p, q) are any pair of conjugate indices and x · y is the standard
inner product on Rn. Since the notion of conjugate index is seen to be
intimately related to the notion of dual of a weak order, we ask: does
the Hölder’s inequality generalize to arbitrary pre–norms? We show
that the answer to this question is in the affirmative.

The rest of the article is organized as follows. Section 2 presents the
framework. Results for general pre–norms are presented in section 3.
The theory is specialized to (θ, p)–norms in section 4 which also obtains
the classical inequalities due to Minkowski and Hölder as corollaries.
Proofs ommitted from the text are supplied in the Appendix.
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2. framework

Of interest shall be binary relations over Rn, with n ∈ N fixed, which
shall be typically denoted by �. For any given � over Rn, we define
the corresponding binary relation ∼ over Rn as follows:

x ∼ y ⇐⇒
(

not x � y ; not y � x
)
.

From the definition of ∼, it is clear that ∼ is symmetric.36 Then, define
the binary relation % over Rn as follows:

x % y ⇐⇒
(
x � y or x ∼ y

)
Note, if � is asymmetric37 then % admits � and ∼ as its asymmetric

and symmetric components, respectively. We say, � is a weak order if
� is asymmetric and negatively transitive.38 The binary relation % is
called a preference if % is complete39 and transitive.40 Then, observe
that � is weak order if and only if % is a preference.

Let U be a given subclass of the collection of all maps from Rn to
R. Then, a U–representation of � is any u ∈ U such that

x � y ⇐⇒ u(x) > u(y).

Our primary objective is to axiomatically characterize binary relations
over Rn which admit a U–representation, where U is the class of objects
which we call “pre–norms”. Let 0 denote the “origin” of Rn.

Definition 1: Any map f : Rn → R is a pre–norm on Rn if f satisfies
each of the following properties :

1. f(x) ≥ 0 for all x ∈ Rn.

2. f(x) = 0 iff x = 0.

3. f(α · x) = α · f(x) for all α > 0 and x ∈ Rn.

4. f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rn.

A pre–norm f is a norm on Rn if condition 3 is strengthened as follows:

f(α · x) = |α| · f(x) for all α ∈ R and x ∈ Rn.

36A binary relation R over X is symmetric if: xRy =⇒ yRx.
37A binary relation R over X is asymmetric if: xRy =⇒ not yRx.
38A binary relation R over X is negatively transitive if:

(
not xRy ; not yRz

)
=⇒ not xRz.

39A binary relation R over X is complete if:
(
xRy or yRx

)
.

40A binary relation R over X is transitive if:
(
xRy ; yRz

)
=⇒ xRz.
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Let the classes of all pre–norms and norms over Rn be denoted by
N∗ and N , respectively. By definition of the terms “pre–norm” and
“norm”, it follows that N ⊆ N∗. In fact, this set–inclusion is proper
as there exists pre–norms on Rn which are not norms—examples are
provided in section 3.

We now consider the standard notion of a “p–norm” over Rn. For
any 1 ≤ p <∞, let the map ‖·‖p : Rn → R be defined as follows:

‖x‖p :=
( n∑
i=1

|xi|p
)1/p

for all x ≡ (x1, . . . , xn) ∈ Rn.

It is a non–trivial result in the theory of normed linear spaces that
Minkowski’s inequality holds which states that, for any 1 ≤ p <∞ and
any x, y ∈ Rn, the following holds:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Thus, Minkowski’s inequality asserts that the map ‖·‖p, for any
1 ≤ p <∞, satisfies condition 4 as in Definition 1. That the map ‖·‖p
satisfies the other conditions in the definition of the term “norm” hold
is easy to observe from the definition of ‖·‖p. Thus, ‖·‖p is a norm over
Rn if 1 ≤ p <∞. The maps ‖·‖p are called p–norms. Denote by Nπ the
set
{
‖·‖p : 1 < p <∞

}
. Observe, Nπ ⊆ N . In fact, this set–inclusion is

also proper. We shall demonstrate in section 4 that there exists norms
over Rn which are not p–norms.

We must note that though here we have appealed to the fact that
Minkowski’s inequality holds, in order to conclude that p–norms are
indeed norms, our development in sections 3 and 4 will in fact lead to
Minkowski’s inequality as a corollary.

Another remark is in order. The standard proof that Minkowski’s
inequality holds rests on another non–trivial fact from the theory of
normed linear spaces which is the Hölder’s inequality that generlaizes
the well–known Cauchy–Schwarz Inequality. For any 1 < p < ∞, the
unique number 1 < q < ∞ such that 1/p + 1/q = 1 is called the
conjugate of p. Then, Hölder’s inequality states that, if 1 < p <∞ and
q is the conjugate of p then, for any x, y ∈ Rn:

|x · y| ≤ ‖x‖p‖y‖q,

where x · y :=
∑n

i=1 xiyi is the standard inner product on Rn.
In sections 3 and 4, we generalize the Hölder’s inequality to any

pre–norm. Moreover, our conlcusion that the Minkowski’s inequality
holds will not rely on the fact that Hölder’s inequality holds.
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3. general theory

3.1 The Basic Representation Theorem

Our basic result is a characterization of those binary relations � over
Rn for which some pre–norm on Rn is a representation. A function
f : Rn → R is homogenous (of degree one) if,

f(α · x) = α · f(x) for all α > 0 and x ∈ Rn.

Any pre–norm is a homogenous function. Let H be the class of all
homogenous functions on Rn. Recall, N∗ and N denote the class of all
pre–norms and norms on Rn, respectively. Thus, N ⊆ N∗ ⊆ H holds.
We begin with the following preliminary result.

Proposition 1: Suppose f : Rn → R+ is an H–representation of the
binary relation � over Rn. Then, g : Rn → R is an H–representation
of � if and only if, there exists α > 0 such that g = α · f .

The primary content of the above proposition broadly is as follows:
homogenous maps of degree one that represent a given binary relation
are unique up to a positive multiplicative constant. However, there is
one caveat. Homogenous maps of degree one can possibly have a range
which includes both positive and negative real numbers. In fact, the
definition of H–representations does not exclude such possibilities. The
above proposition claims that uniqueness of H–representations up to a
positive multiplicative factor holds if at least one of the homogenous
maps has a non–negative (or, non–positive) range.

The proof of Proposition 1 is in section A.I.1 of the Appendix. We
come to the question of “existence” pre–norms as representations. The
following notation shall be used. For any binary relation � and x ∈ Rn,
the sets U�(x) := {y ∈ Rn : y � x} and L�(x) := {y ∈ Rn : x � y} are
the strict upper and strict lower contour sets of x.

Weak Order: � over Rn is asymmetric and negatively transitive.

Continuity: The sets U�(x) and L�(x) are open in Rn.

Homotheticity:
(
x � y ; α > 0

)
=⇒ α · x � α · y.

Convexity:
(
x % y ; 0 < α < 1

)
=⇒ x % α · x+ (1− α) · y.

Scale Monotonicity:
(
x 6= 0 ; α > 1

)
=⇒ α · x � x.
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Of the five axioms stated above, the first two are standard necessary
and sufficient conditions on the binary relation � to admit a continuous
R–valued representation. Recall that N∗ is the class of all pre–norms
over Rn and N∗ ⊆ H, where H is the class of all homogenous functions
of degree one. Thus, the Homotheticity of � is a necessary condition
for � to admit some pre–norm as a representation. Then, our basic
representation theorem can be stated as follows.

Theorem 1: A binary relation � on Rn admits an N∗–representation,
if and only if, � is a weak order satisfying Continuity, Homotheticity,
Convexity and Scale Monotonicity.

Thus, the additional axioms of Convexity and Scale Monotonicity
characterize those binary relations which admit some pre–norm as their
representation. The “uniqueness” result is as follows.

Proposition 2: Suppose the binary relation � over Rn admits the map
f as an N∗–representation and g : Rn → R as an H–representation.
Then, g = α · f for some unique α > 0.

Note, if f is an N∗–representation of � then f is a pre–norm on
Rn. In particular, f must be an R+–valued map which is homogenous
of degree one (see Definition 1 of section 2). Now, consider g : Rn → R
to be any H–representation of �. Thus, g is a homogenous function
of degree one possibly with a range comprising of both positive and
negative real numbers. However, Proposition 1 requires g = α · f for
some α > 0. Thus, the only additional claim in Proposition 2 is that α
is unique. This follows from the facts that (1) f(x) > 0 if x 6= 0, and (2)
both f and g are homogenous maps representing the same underlying
weak order. In particular, (1) is true as f is a pre–norm.

Thus, the only non–trivial claim in Theorem 2 is the “uniqueness”
of the multiplicative constant. The proof of this part of Proposition
2, and the proof of Theorem 1, is in section A.I.1 of the Appendix.
However, we indicate the proof strategy of Theorem 1.

Let � over Rn satisfy the axioms in Theorem 1. Fix an arbitrary
x0 ∈ Rn \{0}. Define C to be the closure of L�(x0). The axioms imply
that C is convex and compact with 0 in the interior of C. Then, the
map ‖·‖� : Rn → R+ is defined as follows:

‖x‖� := inf
{
κ > 0 : x ∈ κ · C

}
for all x ∈ Rn,

where κ · C := {κ · y : y ∈ C}. Then, ‖·‖� is shown to be a pre–norm
that represents �. That is, ‖·‖� is an N∗–representation of �.
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The foregoing discussion suggests a geometric structure induced by
any arbitrary pre–norm. It is of interest to formalize this geometric
interpretation for two reasons. First, it serves to provide examples of
binary relations which admit pre–norms as representations. Second, it
shall aid in the organization of the proof of Theorem 1. We cast this
presentation as the following characterization.

Theorem 2: Let C be convex and compact subset of Rn such that 0
is in the interior of C. Then, the map ‖·‖C : Rn → R+ defined as :

‖x‖C := inf
{
κ > 0 : x ∈ κ · C

}
for all x ∈ Rn,

where κ · C := {κ · y : y ∈ C}, is a pre–norm on Rn and satisfies :

C =
{
x ∈ Rn : ‖x‖C ≤ 1

}
.

Moreover, suppose f : Rn → R+ be any pre–norm on Rn and define:

Cf :=
{
x ∈ Rn : f(x) ≤ 1

}
.

Then, Cf is a convex and compact subset of Rn with 0 in its interior.
Further, the map ‖·‖Cf is identical to f .

That is, there is a one–to–one correspondence between pre–norms
and convex compact sets with the origin in their interior. Next, we come
to the characterization of those binary relations which admit some norm
as a representation. Recall, a norm is a pre–norm f on Rn that satisfies
the following stronger property than condition 3 in Definition 1:

f(α · x) = |α| · f(x) for all α ∈ R and x ∈ Rn.

It turns out that the following symmetry axiom, in addition to those
listed in Theorem 1, achieves the desired characterization.

Reflection Symmetry: x ∼ −x.

Recall, the symbol N denotes the class of all norms over Rn. Thus,
the phrase “the norm f is a representation of �” is equivalent to the
phrase “f is an N –representation of �”. The result is as follows.

Proposition 3: The binary relation � admits an N –representation,
iff, � admits an N∗–representation and satisfies Reflection Symmetry.

A “uniqueness” claim analogous to Proposition 2 clearly holds.
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3.2 Duality

In this section, we shall investigate the consequence of maximization
of any linear numerical objective over feasible sets which are the weak
lower contour set of those binary relations on Rn which admit some
pre–norm as a representation.

Let P be the class of all binary relations over Rn which admit some
pre–norm as a representation. Fix any x0 ∈ Rn \ {0}. Then, associate
with any � in P , the map f� : Rn → R defined as follows:

f�(y) := max
x0%x

x · y for all y ∈ Rn.

We begin with the following observation.

Proposition 4: If � is in P then f� is a pre–norm.

The proof is almost obvious but is supplied, for completeness, in
section A.I.2 of the Appendix. However, one may compare f� with the
profit function of a price–taking competitive firm whose objective is to
maximize profits. It is a standard exercise in microeconomic theory
that the profit function is a non–negative homogenous map of degree
one which is convex. Observe, these properties are almost equivalent
to asserting that the map is a pre–norm.

Since Proposition 4 says that to each � in P the corresponding map
f� is a pre–norm, we may now define a map ( · )∗ : P → P which shall
assosiate to each � in P a “dual” (�)∗ in P . For notational brevity,
we shall write �∗ for (�)∗. The definition of ( · )∗ : P → P is as:

x �∗ y ⇐⇒ f�(x) > f�(y)

Note, the definition of the map f� rested on the choice of some x0

in Rn \ {0}. Thus, before proceeding further, there is a need to argue
that �∗ is well–defined in the sense that its definition does not depend
on the choice of the x0 from Rn \ {0}. That such is indeed the case is
an immediate consequence of the Homotheticity of � which holds as �
admits a pre–norm as a representation.

We shall call �∗ the dual of �. We shall also write (�∗)∗ as �∗∗.
We shall call �∗∗ the second dual of �. With these preliminaries in
place, our first key result regarding duals is as follows.

Theorem 3: If � is in P then �∗∗ is equal to �.

That is, ( · )∗ is an unary operator on P such that its composition
with itself is the identity map on P . Thus, ( · )∗ is an involution.
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In words, for any binary relation on Rn that admits some pre–norm
as a representation, its second dual is itself. We say that � in P is
self–dual if �∗ is equal to �. Our second key result is as follows.

Theorem 4: Let � be a binary relation in P. Then, �∗ equals �, if
and only if, � admits ‖·‖2 as a representation.

That is, among all binary relations on Rn that admit some pre–norm
as a representation, the one which is self–dual is unique and it admits
the Euclidean norm as its representation.

Theorems 3 and 4 may remind the reader of the Hölder’s inequality
from the theory of normed linear spaces. It generalizes the well–known
Cauchy–Schwarz Inequality. It claims that the absolute value of the
inner product of any two vectors is bounded above by the product of
the p–norm of one vector with the q–norm of the other, where p, q > 1
are “conjugates” in the sense that 1/p+ 1/q = 1. Thus, the conjugate
of the conjugate of p is p itself for any arbitrary p > 1. Moreover, the
conjugate of p > q is itself iff p = 2. We show that this “parallel” is in
fact tight by generalizing the Hölder’s inequality.

Recall, N∗ is the class of all pre–norms on Rn. To each f : Rn → R+

on Rn, associate the map gf : Rn → R+ ∪ {∞} defined as:

gf(y) := max
f(x)≤1

x · y for all y ∈ Rn.

We say gf is the conjugate of f . The key result is as follows.

Theorem 5: Suppose f is a pre–norm. Then, its conjugate gf is also
a pre–norm, and the map T : N∗ → N∗ defined as :

T (f) := gf for every f ∈ N∗,

satisfies : [T ◦ T ](f) = f for every f ∈ N∗. Further, for every f ∈ N∗,
T (f) = f if, and only if, f = ‖·‖2. Moreover, the following holds :

x · y ≤ f(x) · [T ◦ f ](y) for all x, y ∈ Rn.

The consequence of assuming f to be a norm is as follows.

Corollary 1: Suppose f is a norm on Rn and T is as defined in the
statement of Theorem 5. Then, the following inequality holds :

|x · y| ≤ f(x) · [T ◦ f ](y) for all x, y ∈ Rn.

Thus, Hölder’s inequality is generalized to any norm and its conjugate.
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Now that the notions of “dual” and “conjugate” for preferences in
P and pre–norms respectively stand formulated, we are in position to
explicitly describe the connection between the dual and the conjugate.
This is essential as preferences in P are precisely those which admit
some pre–norm as a representation. The result is as follows.

Theorem 6: Suppose � is in P and �∗ is its dual. Let f be an
N∗–representation of �. Then, g is an N∗–representation of �∗, if
and only if, there exists α > 0 such that g = α · T (f).

We conclude this subsection with some remarks. Three classes of
objects have been under consideration. First, the class of all compact
convex subsets of Rn which have the origin in their interior. Second,
the class of all pre–norms over Rn. Third, the class of all continuous
weak orders over Rn which satisfy Homotheticity, Convexity and Scale
Monotonicity. Theorems 1 and 2, of subsection 3.1, establish natural
correspondences between objects across these classes.

Subsection 3.2 defines the notion of “dual” for such weak orders and
“conjugate” for pre–norms. Theorems 3 claims that the second dual
of a weak order is equal to the weak order itself. Theorem 5 claims
that the conjugate of a pre–norm is equal to the pre–norm. Thus, the
“dualization” operator defined over the class of such weak orders and
the “conjugation” operator defined over the class of all pre–norms are
involutions. Moreover, Theorem 5 also claims that a pre–norm is equal
to its conjugate iff it is the Euclidean norm. Thus, Theorem 4 claims
that a weak order is self–dual iff it is “spherical” — the indifference
curves are spherical in shape.

The precise connection of a weak order and its dual through a
pre–norm that represents the former and the conjugate of that pre–norm
is formulated in Theorem 6. Finally, we note that, within the larger
class of weak orders which admit some pre–norm as a representation,
the additional requirement of the axiom called Reflection Symmetry
pins down the class of those weak orders which admit some norm as a
representation. This is our theory for general pre–norms.

4. standard norms

The aim in the previous section was to characterize weak orders that
admit pre–norms, of which norms are special case, as representations.
Further, a duality theory was presented which culminated in three key
results. First, the second dual of any such weak order is itself. Second,
if a weak order is self–dual, it must be “spherical”. Third, the Hölder’s
inequality generalizes to any pre–norm.
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The purpose of this section is to specialize to the case of p–norms
and a natural generaliztion of them. Such objects are important in
the theory of normed linear spaces and its various applications. Our
first set of results are characterizations of weak orders that admits such
norms as representations.

As the reader may know, the definition of the p–norm does not
make it immediate that they are indeed norms. In particular, it re-
quires proof that “Triangle Inequality” holds — this is the well–known
Minkowski’s inequality. Moreover, the Hölder’s inequality is funda-
mental to the theory of normed linear spaces since it generalizes the
Cauchy–Schwarz Inequality for p–norms. In the two subsections that
follow, we shall derive these inequalities based on the geometry of the
general theory in section 3 adapted to the special case of p–norms.

With this background in place, we now proceed to define the class
of objects called “p–norms” and a class of its generalization called
“(θ, p)–norms”. However, we first begin with some comments on the
notation. Throughout this section, we shall denote vectors in Rn by
symbols such as x, y, . . . and so on. Further, we shall often write x as
(x1, . . . , xn) to indicate the vector x as an n–tuple in Rn, where xi is
the ith component of x. A definition41 follows.

Definition 2: Suppose θ ≡ (θ1, . . . , θn) ∈ Rn
++ and p ≥ 1. Then, the

(θ, p)–norm on Rn is the map ‖·‖(θ, p) : Rn → R+ defined as :

‖x‖(θ, p) :=
( n∑

i=1

θi|xi|p
)1/p

for every x ∈ Rn.

Further, the p–norm is the map ‖·‖p := ‖·‖(θ, p) when θ = 1n.

Since our interest is to characterize binary relations � over Rn which
admit some (θ, p)–norm as representation, we begin by observing that
such a binary relation must be “separable” due to Debreu (1960). To
see why, note that ξ ∈ R+ 7→ ξp ∈ R+ is stricly increasing. Thus, if
‖·‖(θ, p) represents � then so does ‖·‖p(θ, p). Also, note that:

‖x‖p(θ, p) :=
n∑
i=1

hi(xi) for every x ∈ Rn,

where hi : R→ R is defined as: hi(ξ) := θi|ξ|p for all ξ ∈ R. That is, �
admits an “additive” representation. Therefore, Hence, � must satisfy
“separability” if it admits a (θ, p)–norm as a representation.

41We denote by 1n the n–tuple in Rn whose every component is 1.
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To state this axiom, we use the following notation. We denote by N
the set {1, . . . , n} and indicate by I any typical subset of N . Now, any
x ≡ (x1, . . . , xn) and y ≡ (y1, . . . , yn) in Rn, we shall write (xI , yN\I) for
that vector in Rn whose kth component is xk or yk according as k ∈ I
or k ∈ N \ I. Then, “separability” is as follows.

Separability: (xI , xN\I) � (x′I , xN\I) ⇐⇒ (xI , x
′
N\I) � (x′I , x

′
N\I).

All free variables are universally quantified over their respective
range. For instance, the above statement must hold for every I ⊆ N .
Next, observe that for � to admit some p–norm as a representation,
it is necessary that � exhibits indifference between any vector and the
one obtained by “permuting” its components. Denote by σ : N → N a
typical bijection — that is, a permutation of N . Also, for any vector
x ≡ (x1, . . . , xn) in Rn and any permutation of N , let xσ denote that
vector in Rn whose ith component is xσ(i) for every i ∈ N .

Permutation Symmetry: xσ ∼ x.

Since the key result in this section is on the existence of (θ, p)–norms
as representations, it must logically be demonstrated first that any
(θ, p)–norm is indeed a norm if p ≥ 1. However, we defer the proof of
this claim until later in order to arrive at the statement of the main
result. For now, we assume that n ≥ 3.

Theorem 7: The binary relation � on Rn admits a (θ, p)–norm as
a representation, if and only if, � satisfies separability and admits a
norm as a representation. Further, a norm f represents � iff, there
exists α > 0 such that f = α‖·‖(θ, p).

Some remarks are in order regarding the claim of “existence” in
the above theorem. Observe, the characterization of � which admits a
norm as a representation has been provided, in subsection 3.1, via The-
orem 1 and Proposition 3. Thus, the non–trivial part is to pin down
those binary relations which admit a (θ, p)–norm as a representation.
The point of Theorem 7 is that the only additional axiom needed to
characterize such binary relations is separability.

Corollary 2: The binary relation � on Rn admits a p–norm as a
representation, if and only if, � satisfies permutation symmetry and
the (θ, p)–norm represents � for some θ ∈ Rn

++. Further, a norm f
represents � iff, there exists α > 0 such that f = α‖·‖(θ, p).
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The proof of the “existence” claim in the above corollary is easy
because � is assumed to satisfy permutation symmetry. Our proof of
Theorem 7 is involves reducing the problem, via application of Theorem
1 and separability, to the problem of solving a particular functional
equation. Concretely, we are interested in the characterization of all
continuous functions h : R++ → R++ which satisfy:

h(ξη) = h(ξ)h(η) for every ξ, η > 0.

The complete proof of Theorem 7 is provided in section A.II.1 of
the Appendix where we also the above problem. It is shown that a map
h : R++ → R++ satisfies the above functional equation, if and only if,
there exists p > 0 such that h(ξ) = ξp for all p > 0. While it is possible
to obtain this characterization from first principles, our approach is
to transform this problem to one of characterzing all solutions to the
well–known Cauchy functional equation.

We make two final remarks with regard to Theorem 7 and Corollary
2. In stating these two results we have relied on the assumption that
n ≥ 3. This is because in Debreu’s charcaterization of weak orders that
admits addtively separable representations, the separability axiom is
sufficient for the case when n ≥ 3. However, Debreu also provides a
charcaterization for the case of n = 2 by using a stronger axiom which
later authors have called “strong separability”. Our proof of Theorem
7 works under the assumption of “strong separability” for existence
when n = 2. Lastly, we point out that the only role of Convexity in
the proof is to conclude that p ≥ 1. Otherwise, the function ‖·‖p is a a
representation of � for some unique p > 0. This is precisely the class
of “star–shaped preferences” as in Border & Jordan (1983).

4.1 Minkowski’s inequality

We had deferred the proof of the claim that (θ, p)–norms are indeed
norms on Rn. The only non–trivial part of the claim is to show that
the “Triangle Inequality” holds. We establish this claim in the present
subsection. However, before that we prove some general elementary
results which shall be of use in the final argument. For this, we need
the following definition.

Definition 3: A map f : Rn → R is subadditive if,

1. f(α · x) = α · f(x) for all α > 0 and x ∈ Rn,

2. f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rn.
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Lemma 1: A function is subadditive, if and only if, it is convex and
homogenous of degree one.

Proof: Suppose f : Rn → R is convex and homogenous of degree one.
We argue: f is subadditive. It is enough to show: f(x+y) ≤ f(x)+f(y)
for all x, y ∈ Rn. Fix any x, y ∈ Rn. Let α := 1/2 and µ := 1/α. Also,
let x∗ := µ ·x and y∗ := µ · y. Clearly, x+ y = α ·x∗+ (1−α) · y∗. Since
f is homogenous of degree one, α · f(x∗) = f(α · x∗) = f(x). Similarly,
(1− α) · f(y∗) = f(y). Since f is convex:

f(α · x∗ + (1− α) · y∗) ≤ α · f(x∗) + (1− α) · f(y∗).

That is, f(x+ y) ≤ f(x) + f(y). Hence, f is subadditive.
For the converse, assume f is subaddtive. Then, it is homogenous

of degree one by definition. To show convexity of f , let x, y ∈ Rn and
α ∈ (0, 1). Define x∗ := α · x and y∗ := (1 − α) · y. Because f is
subadditive, f(x∗+ y∗) ≤ f(x∗) + f(y∗). As x∗+ y∗ = α ·x+ (1−α) · y,
it follows that f is convex. This completes the proof. �

Lemma 2: Suppose f : Rn → R+ is quasiconvex, homogenous of degree
one, and f(x) = 0 iff x = 0. Then, f is convex function.

Proof: Let x, y ∈ Rn and α ∈ (0, 1). Let z := α · x + (1 − α) · y.
Assume, without loss of any generality, f(x) ≥ f(y). Note, if f(y) = 0
then y = 0 which implies f(z) = α · f(x) as f is homogenous of degree
one. Then, f(y) = 0 implies f(z) ≤ α · f(x) + (1− α) · f(y). Further,
if f(x) = f(y) then f(z) ≤ αf(x) + (1 − α)f(y) as f is quasiconvex.
Henceforth, we assume 0 < f(y) < f(x).

Observe, f(µ · x) = f(y) for some unique µ ∈ (0, 1). To see why,
note that α ∈ [0, 1] 7→ α · f(x) ∈ [0, f(x)] is a continous bijection,
and 0 < f(y) < f(x). Let x∗ := (1/µ) · y and y∗ := µ · x. Then,
f(µ · x) = f(y) implies f(y∗) = f(y). Moreover, f(µ · x) = f(y) implies
f(x∗) = f(x) as f is homogenous of degree one.

Let λ1 := α/[α + (1 − α)µ] and λ2 := µ(1 − α)/[α + (1 − α)µ].
Note, λ1, λ2 ∈ (0, 1) as α, µ > 0. Let x∗∗ := λ1 · x + (1 − λ1) · x∗
and y∗∗ := λ2 · y + (1 − λ2) · y∗. Then, x∗∗ = θ1 · z and y∗∗ = θ2 · z,
where θ1 := 1/[α + (1 − α)µ] and θ2 := µ/[α + (1 − α)µ]. To see this,
recall that x∗ = (1/µ) · y, y∗ = µ · x and z = α · x + (1 − α) · y.
Note, z = α · x∗∗ + (1− α) · y∗∗. Since f is homogenous of degree one,
f(z) = α · f(x∗∗) + (1 − α) · f(y∗∗) as (1) x∗∗ = θ1 · z, (2) y∗∗ = θ2 · z
and (3) z = α · x∗∗ + (1− α) · y∗∗. As f is quasiconvex, f(x∗∗) ≤ f(x)
and f(y∗∗) ≤ f(y) as f(x) = f(x∗) and f(y) = f(y∗). �
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Theorem 8: If θ ∈ Rn
++ and p ≥ 1, then ‖·‖(θ, p) is a norm on Rn.

Proof: Observe, it is enough to argue: ‖·‖(θ, p) is subadditive. Note,
‖·‖(θ, p) is clearly homogenous of degree one by definition. Thus, it is
enough to show that ‖·‖(θ, p) is convex by Lemma 1. For this, we appeal
to Lemma 2. That is, we argue: ‖·‖(θ, p) is quasiconvex.

Define the map f : Rn → R+ by: f(x) :=
∑n

i=1 θi|xi|p for all x ∈ Rn.
Note, | · | : R → R+ is a convex function. Further, p ≥ 1 implies
ξ ∈ R+ 7→ ξp is also a convex function. Since the composition of con-
vex functions is convex, it follows that ξ ∈ R 7→ θi|ξ|p is a convex
function for every i = 1, . . . , n.

Let πi : Rn → R be ith projection map. Since πi is a linear func-
tional, we have: x ∈ Rn 7→ θi|xi|p is a convex function. Thus, f being
the sum of convex functions is convex. Since the map ξ ∈ R+ 7→ ξ1/p

is strictly increasing, it follows that x ∈ Rn 7→ [f(x)]1/p is quasiconvex.
Observe, [f(x)]1/p = ‖x‖(θ, p) for every x ∈ Rn. That is, the function
‖·‖(θ, p) is quasiconvex. This completes the proof. �

Corollary 3: Suppose θ ∈ Rn
++ and p ≥ 1. Then, for any x, y ∈ Rn,

‖x+ y‖(θ, p) ≤ ‖x‖(θ, p) + ‖y‖(θ, p).

This completes our presentation of Minkowski’s inequality.

4.2 Hölder’s inequality

In the subsection on duality, we introduced the notion of “conjugate”
of any arbitrary pre–norm on Rn. To recall, let f : Rn → R+ be a
pre–norm. Then, its dual is the function T (f) : Rn → R+ which is also
a pre–norm and is defined as follows:

[T (f)](x) := max
f(y)≤1

x · y for every x ∈ Rn.

Theorem 8 of the previous subsection shows that the function ‖·‖p
is a norm if p ≥ 1. Our immediate objective is to compute the dual of
the norm ‖·‖p for any p ≥ 1. We conduct this analysis into two parts.
First, we analyse those p–norms where p > 1. Then, we consider the
1–norm. For any p > 1, the conjugate index of p is the unique q such
that 1/p+ 1/q = 1. Note, p > 1 implies q > 1. The first main result in
this direction is as follows.
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Theorem 9: Suppose p > 1 and let q be its conjugate index. Then,
the conjugate of the norm ‖·‖p is the norm ‖·‖q.

Proof: Fix any x ∈ Rn. We argue: max‖y‖p≤1 x ·y = ‖x‖q. It is trivial
if x = 0. Further, observe that the norms ‖·‖p and ‖·‖q evaluate to the
same value for any vector x and (−xI , xN\I), where (xI , xN\I) is the
vector obtained from x by inverting the sign of xk for each k ∈ I. Hence,
without loss of generality, let x ∈ Rn

+ \ {0}, and suppose y∗ ∈ Rn
+ \ {0}

satisfies (1) ‖y∗‖p = 1, and (2) x · y∗ = max‖y‖p≤1 x · y. Define the
Lagrangian L : Rn × R→ R as:

L(y ;λ) := x · y + λ(1− ‖y‖p) for all y ∈ Rn and λ ∈ R.

Note, ‖·‖p is smooth over Rn
+ as p > 1. Thus, the “first–order

necessary conditions” hold. Also, we have:

∂

∂yi
L(y ;λ) = xi −

λ

‖y‖(p−1)
p

yp−1
i for all i = 1, . . . , n.

Thus, there exists λ∗ > 0 such that the following holds:

∂

∂yi

∣∣∣
y=y∗ ; λ=λ∗

L(y ;λ) = 0 for all i = 1, . . . , n.

Thus, µ∗ := λ∗/‖y∗‖(p−1)
p implies: xi = µ∗(y∗i )

p−1 for all i = 1, . . . , n.
Fix any i ≥ 2. Then, y∗i = y∗1(xi/x1)

1/(p−1). Thus, (y∗i )
p = (y∗1)p(xi/x1)

q

as q = p/(p− 1). Hence, ‖y∗‖pp =
∑n

i=1(y
∗
i )
p implies:

‖y∗‖pp = (y∗1)p +
n∑
i=2

(y∗i )
p(xi/x1)

q.

That is, ‖y∗‖pp = (y∗1)p‖x‖qq/x
q
1. By ‖y∗‖p = 1, y∗1 = (x1/‖x‖q)q/p.

Note, q/p = 1/(p − 1) as q = p/(p − 1). Recall, y∗i = y∗1(xi/x1)
1/(p−1)

for all i ≥ 2. Thus, y∗i = (xi/‖x‖q)1/(p−1) for every i = 1, . . . , n. Then,
x · y∗ =

∑n
i=1 xiy

∗
i implies the following:

x · y∗ = (1/‖x‖q)1/(p−1)
n∑
i=1

x
1+1/(p−1)
i = (1/‖x‖q)1/(p−1)‖x‖qq.

As q = p/(p − 1), (1/‖x‖q)1/(p−1)‖x‖qq = ‖x‖p/(p−1)−1/(p−1)
q = ‖x‖q.

Thus, x · y∗ = ‖x‖q. Recall, x · y∗ = max‖y‖p≤1 x · y. �
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We remark that the concept of conjugate of a pre–norm, as defined
in the previous section, is rooted in the geometry as represented by
duality. However, the the definition of the conjugate index lacks any
motivation. Theorem 9 shows that the q–norm is the conjugate of the
p–norm, if and only if, q is the conjugate index of p. However, this
result comes with one caveat that p > 1. Notwithstanding this caveat,
we note that the generalized Hölder inequality, presented as Corollary
1 in subsection 3.2, now implies the classical version.

Corollary 4: Suppose p, q > 1 satisfy 1/p+ 1/q = 1. Then,

|x · y| ≤ ‖x‖p · ‖x‖q for every x, y ∈ Rn.

For the case when p = 1, the standard approach is to show that (a)
limp ↓ 1 ‖x‖p = ‖x‖1 and (b) ‖x‖∞ := limq ↑ ∞ ‖x‖q exists. Thus, (b) and
Minkowski’s inequality imply that ‖·‖∞ is a norm. Further, Hölder’s
inequality then implies the following:

|x · y| ≤ ‖x‖1 · ‖y‖∞ for every x, y ∈ Rn. (1)

Moreover, (b) implies that ‖·‖∞ : Rn → R+ satisfies:

‖x‖∞ = max
{
|xi| : i = 1, . . . , n

}
for every x ∈ Rn. (2)

Our approach will be to establish (1) directly. The strategy will be
to take (2) as the definition of ‖·‖∞. We shall demonstrate, by direct
computation, that ‖·‖∞ is the conjugate of ‖·‖1. Then, the generalized
Hölder’s inequality (Corollary 1) will deliver (1).

Theorem 10: The norms ‖·‖1 are ‖·‖∞ are conjugates of each other.

Proof: We will argue: max‖y‖1≤1 x · y = ‖x‖∞ for any x ∈ Rn. It is
trivial if x = 0. Consider any x ∈ Rn \{0}. Let y∗ ∈ argmax‖y‖1≤1 x · y.
Define I+ := {i ∈ N : xi > 0} and I− := {i ∈ N : xi < 0}. Then, we
have: ‖·‖1 implies (i) y∗i ≥ 0 if i ∈ I+, and (ii) y∗i ≤ 0 if i ∈ I−. To see
why, assume i0 ∈ I+ and suppose y∗i0 < 0. Let y+ := (y+

1 , . . . , y
+
n ) such

that y+
i0

:= −y∗io and y+
i := y∗i otherwise. Note, ‖y+‖1 = ‖y∗‖1 implying

‖y+‖1 ≤ 1. Also, x · y+ > x · y∗ as xi0y
+
i0
> 0 > xi0y

∗
i0

. This contradicts
y∗ ∈ argmax‖y‖1 x ·y. Thus, y∗i ≥ 0 if i ∈ I+. A similar argument proves
y∗i ≤ 0 if i ∈ I−. Thus, (i) and (ii) hold.

Now, consider x∗ := (|x1|, . . . , |xn|) and y∗∗ := (|y∗1|, . . . , |y∗n|). Thus,
x∗ · y∗∗ = x · y∗ by (i) and (ii). That is, x∗ · y∗∗ = max‖y‖1≤1 x · y. Note,
‖y∗‖1 = ‖y∗∗‖1 implying ‖y∗∗‖1 ≤ 1. Thus, x∗ · y∗∗ ≤ max‖y‖1≤1 x

∗ · y.
Hence, we have: max‖y‖1≤1 x · y ≤ max‖y‖1≤1 x

∗ · y.
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Let y++ ∈ argmax‖y‖1≤1 x
∗ · y. As x∗ ∈ Rn

+, y++
i ≥ 0 for all i ∈ N .

Define y− := (y−1 , . . . , y
−
n ), where y−i := −y++

i if i ∈ I− and y−i := y++
i

otherwise. Thus, x · y− = x∗ · y++ = max‖y‖1≤1 x
∗ · y. Also, ‖y−‖1 =

‖y++‖1 implying ‖y−‖1 ≤ 1. Thus, max‖y‖1≤1 x · y ≥ x · y−. Hence,
max‖y‖1≤1 x · y ≥ max‖y‖1≤1 x

∗ · y. That is, we have:

max
‖y‖1≤1

x · y = max
‖y‖1≤1

x∗ · y.

Clearly, ‖x‖∞ = ‖x∗‖∞. Hence, if max‖y‖1≤1 x
∗ · y = ‖x∗‖∞ then

max‖y‖1≤1 x · y = ‖x‖∞. Thus, we may assume x ∈ Rn
+ \ {0} without

any loss of generality. Henceforth, let x ∈ Rn \ {0}.
Let y∗ ∈ argmax‖y‖1≤1 x·y. Then, without loss of generality, we may

assume that y∗ ∈ Rn
+. To see why, define y+ := (y+

1 , . . . , y
+
n ) as: y+

i := y∗i
if y∗i ≥ 0, and y+

i := −y∗i otherwise. Clearly, ‖y+‖1 = ‖y∗‖1 implying
‖y∗‖1 ≤ 1. Further, x ·y+ ≥ x ·y∗ as x ∈ Rn

+. Then, x ·y∗ = max‖y‖1 x ·y
implies: y+ ∈ argmax‖y‖1≤1 x · y. Also, note that y+ ∈ Rn

+.
Henceforth, we assume y∗ ∈ argmax‖y‖1≤1 x · y such that y∗ ∈ Rn

+.
Now, x 6= 0 implies ‖x‖1 > 0. Let α := 1/‖x‖1. Thus, yα := α·x implies
‖yα‖1 = 1 and x · yα = (x · x)/‖x‖1 = ‖x‖2

2/‖x‖1. Thus, x · yα > x · 0
holds. Then, ‖yα‖1 = 1 implies y∗ 6= 0. Further, max‖y‖1≤1 x ·y ≥ x ·yα.
Thus, y∗ ∈ Rn

+ \ {0} and max‖y‖1≤1 x · y > 0.
Observe, ‖y∗‖1 = 1. To see why, suppose ‖y∗‖1 < 1. Let yα :=

α · y∗/‖y∗‖1. Then, ‖yα‖1 = 1 and x · yα = (x · y∗)/‖y∗‖1. Since x · y∗ =
max‖y‖1≤1 x · y > 0 and ‖y∗‖1 ∈ (0, 1), we have: (x · y∗)/‖y∗‖1 > x · y∗.
That is, x · yα > max‖y‖1≤1 x · y, where ‖yα‖1 = 1. Clearly, this is a
contradiction. Thus, we have: ‖y∗‖1 = 1.

Note, y∗ ∈ Rn
+ implies ‖y∗‖1 =

∑n
i=1 y

∗
i . Then, ‖y∗‖1 = 1 implies∑n

i=1 y
∗
i = 1. Clearly, y∗ =

∑n
i=1 y

∗
i · ei, where ei is the ith standard

basis vector of Rn. Thus, y∗ ∈ V , where V ⊆ Rn is the convex hull of
{e1, . . . , en}. Let θ := max{x · ei : i = 1, . . . , n}. Thus, x · y ≤ θ for all
y ∈ V . Hence, x · y∗ ≤ θ implying: max‖y‖1 x · y ≤ θ.

Also, note that ‖ei‖1 = 1 for every i = 1, . . . , n. Thus, x · ei ≤
max‖y‖1≤1 x · y for all i = 1, . . . , n. Hence, θ ≤ max‖y‖1≤1 x · y because
θ = max{x · ei : i = 1, . . . , n}. Thus, θ = max‖y‖1≤1 x · y. Observe,
θ = ‖x‖∞. Hence, max‖y‖1≤1 x · y = ‖x‖∞ if x ∈ Rn

+ \ {0}. Thus, ‖·‖∞
is the conjugate of ‖‖1. By Theorem 5, ‖·‖∞ is a norm and it is the
conjugate of ‖·‖1. This completes the proof. �.

Then, the generalized Hölder inequality (Corollary 1) implies:

|x · y| ≤ ‖x‖1 · ‖y‖∞ for all x, y ∈ Rn.
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appendix

A.I.1 The Basic Representation Theorem

Lemma A.I.1(a): Let the map f : Rn → R be an H–representation of
the binary relation � over Rn. Then, f(0) = 0.

Proof: Let f : Rn → R be an H–representation of � on Rn. Pick an
α > 0 such that α 6= 1. Since f is a homogenous map and 0 = α · 0,
we have: f(0) = α · f(0). Then, f(0) = 0 because α 6= 1. �

Proof of Proposition 1: Suppose that the map f : Rn → R+ is an
H–representation of the binary relation � over Rn. Consider the map
g : Rn → R. Then, if there exists α > 0 such that g = α · f then g is
also an H–representation of �. This is because as (1) α ·f(x) > α ·f(y)
iff f(x) > f(y), (2) f(x) > f(y) iff x � y, and (3) g is homogenous of
degree one. To see this, note that (1) holds because α > 0, (2) holds
because f is an H–representation of �, and (3) holds because g = α · f
and f is homogenous of degree one.

For the converse, assume that g : Rn → R is an H–representation
of �. There are two cases. First, assume f(x) = 0 for all x ∈ Rn.
Then, x ∼ y for all x, y ∈ Rn as f is an H–representation of �. As
g is an H–representation of �, there exists θ ∈ R such that g(x) = θ
for all x ∈ Rn. Fix any x0 ∈ Rn and α0 > 1. Let x1 := α0 · x0.
Then, g(x1) = α0 · g(x0) as g is homogenous of degree one because
g is an H–representation. That is, θ = α0 · θ which is equivalent to
(1 − α0)θ = 0. Since α0 6= 1, we have θ = 0. Hence, g(x) = 0 for all
x ∈ Rn. Let α := 1. Thus, α > 0 and g = α · f as required.

Note, f(0) = 0 = g(0) by Lemma A.I.1(a). Now, assume x0 ∈ Rn

satisfies f(x0) > 0. Note, f(x0) > 0 = f(0) implies x0 � 0. Since g
is an H–representation of �, we have g(x0) > g(0). Then, g(0) = 0
implies g(x0) > 0. Observe that by this argument, for any x ∈ Rn, we
have: f(x) > 0 iff g(x) > 0. In particular, the map f being R+–valued
implies that the map g is R+–valued.

Let α0 := g(x0)/f(x0). Then, α0 > 0 since f(x0) > 0. Now, we
argue: g(x) = α0 · f(x) for all x ∈ Rn. Fix an arbitrary x ∈ Rn.
Then, f(x) > 0 iff g(x) > 0 implies: g(x) = α0 · f(x) if f(x) = 0.
Henceforth, we assume f(x) > 0. Note, R++ = {α · f(x0) : α > 0} as
f(x0) > 0. Hence, f(x) ∈ R++ implies, there exists αx > 0 such that
f(x) = αx · f(x0). Then, x ∼ αx · x0 because f is an H–representation
of �. Hence, g(x) = αx · g(x0) as g is an H–representation of �. Thus,
g(x)/g(x0) = αx = f(x)/f(x0). That is, g(x) = α0 · f(x). The proof is
complete as x ∈ Rn is arbitrary. �
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In the rest of the development, we adopt two standard notational
devices. First, if A and B are subsets of Rn then A + B is the name
of the set {x + y : x ∈ A and y ∈ B}. Second, if A is a subset of Rn

and α ∈ R then α · A is the name of the set {α · x : x ∈ A}. Thus,
if A,B ⊆ Rn and α, β ∈ R then α · A + β · B is the name of the set
{α · x + β · y : x ∈ A and y ∈ B}. Before proceeding to the proofs of
Theorems 1 and 2, we establish some preliminary results.

Lemma A.I.1(b): Let κ1, κ2 > 0 and C ⊆ Rn be convex. Then,

κ1 · C + κ2 · C = (κ1 + κ2) · C.

Proof: First, we argue: (κ1 + κ2) · C ⊆ κ1 · C + κ2 · C. For this, pick
an arbitrary x ∈ C. Then, κ1 · x ∈ κ1 · C and κ2 · x ∈ κ2 · C. Then,
κ1 · x + κ2 · x ∈ κ1 · C + κ2 · C. Since κ1 · x + κ2 · x = (κ1 + κ2) · x, it
follows that (κ1 + κ2) · x ∈ κ1 ·C + κ2 ·C. Since x ∈ C is arbitrary, we
have: if z ∈ (κ1 + κ2) · C then z ∈ κ1 · C + κ2 · C. That is,

(κ1 + κ2) · C ⊆ κ1 · C + κ2 · C.

Thus far, we have not appealed to the fact that κ1, κ2 > 0 or the
convexity of C. Now, we proceed to establish the reverse set–inclusion.
So, let z1 ∈ κ1 · C and z2 ∈ κ2 · C be arbitrary. Thus, z1 = κ1 · x1 and
z2 = κ2 ·x2 for some x1, x2 ∈ C. Let α := κ1/(κ1 +κ2). Since κ1, κ2 > 0,
we have α ∈ (0, 1). Define x∗ := α · x1 + (1 − α) · x2. Then, x∗ ∈ C
because x1, x2 ∈ C and the set C is convex. Observe, the definition of
α and that x∗ ∈ C implies: (κ1 · x1 + κ2 · x2)/(κ1 + κ2) ∈ C. Thus,
(κ1 + κ2) · x∗ = κ1 · x1 + κ2 · x2. Also, since x∗ ∈ C, it follows that
(κ1 + κ2) · x∗ ∈ (κ1 + κ2) · C. That is, κ1 · x1 + κ2 · x2 ∈ (κ1 + κ2) · C.
Hence, z1 + z2 ∈ (κ1 + κ2) · C. Since z1 ∈ κ1 · C and z2 ∈ κ2 · C are
arbitrary, z ∈ κ1 · C + κ2 · C implies z ∈ (κ1 + κ2) · C. That is,

κ1 · C + κ2 · C ⊆ (κ1 + κ2) · C.

This completes the proof of the lemma. �

Proof of Theorem 2: Let C be a convex and compact subset of Rn

with 0 in the interior of C. Also, define ‖·‖C : Rn → R+ as:

‖x‖C := inf
{
κ > 0 : x ∈ κ · C

}
for all x ∈ Rn,

where κ · C := {κ · y : y ∈ C}. First, we show that ‖·‖C is a pre–norm
on Rn. For this, we must argue that conditions 1 to 4 in Definition 1
(of section 2) hold for the map ‖·‖C .
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To see why condition 1 holds, let x ∈ Rn. Since 0 is in the interior
of C, there exists κ > 0 such that x ∈ κ · C. Thus, ‖x‖C ≥ 0. To see
why condition 2 holds, we begin by observing that ‖0‖C = 0 because
0 ∈ κ · C for every κ > 0 as 0 ∈ C. Moreover, if x 6= 0 then, there
exists a corresponding κx > 0 such that x /∈ κ · C for any 0 < κ < κx.
This is so as C being a compact subset of Rn must be bounded, say,
with respect to the norm ‖·‖1. Thus, x 6= 0 implies ‖x‖C > 0. This
shows that condition 2 holds. Condition 3 follows from the following
observation. If x ∈ Rn and α > 0 then,

x ∈ κ · C ⇐⇒ α · x ∈ (ακ) · C for every κ > 0.

Thus, to establish the claim that ‖·‖C is a pre–norm, it remains to
argue that ‖·‖C satisfies condition 4. Consider any x1 and x2 in Rn.
Pick any arbitrary κ1, κ2 > 0 such that x1 ∈ κ1 ·C and x2 ∈ κ2 ·C. Let
x∗ := x1 + x2. Thus, x∗ ∈ κ1 · C + κ2 · C. Since C is convex, lemma
A.I.1(b) implies: κ1 ·C+κ2 ·C = (κ1 +κ2) ·C. Hence, x∗ ∈ (κ1 +κ2) ·C.
Thus, inf{κ > 0 : x∗ ∈ κ · C} ≤ κ1 + κ2. That is, ‖x∗‖C ≤ κ1 + κ2

holds. Since κ1, κ2 > 0 are arbitrary subject to satisfying x1 ∈ κ1 · C
and x2 ∈ κ2 · C, the following obtains:

‖x∗‖C ≤ inf
{
κ1 > 0 : x1 ∈ κ1 · C

}
+ inf

{
κ2 > 0 : x2 ∈ κ2 · C

}
.

That is, ‖x1 +x2‖C = ‖x∗‖C ≤ ‖x1‖C +‖x2‖C (recall, x∗ = x1 +x2).
Hence, condition 4 of Definition 1 is established. Therefore, we have
shown: ‖·‖C is a pre–norm on Rn.

Now, we argue: C = {x ∈ Rn : ‖x‖C ≤ 1}. First, assume x ∈ C.
Then, 1 ∈ {κ > 0 : x ∈ κ · C}. Hence, it follows that ‖x‖C ≤ 1 as
‖x‖C = inf{κ > 0 : x ∈ κ · C} by definition. That is,

C ⊆ {x ∈ Rn : ‖x‖C ≤ 1}.

For the reverse set–inclusion, assume x0 ∈ Rn satisfies ‖x0‖C ≤ 1.
Suppose x0 /∈ C. As {x0} and C are disjoint and convex compact sets,
the Separating Hyperplane Theorem implies that there exists p ∈ Rn

and α ∈ R such that the following hold:

1. p · x0 > α, and

2. p · x < α for all x ∈ C.

First, note that α > 0. To see why, observe that 0 ∈ C. Thus,
p · x0 < α must hold by (2). Since p · 0 = 0, it follows that α > 0.
Moreover, p 6= 0. To see why, suppose p = 0. Then, p ·x0 = 0 implying
α < 0 by (1). Hence, p 6= 0 and α > 0.
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Consider an arbitrary κ > 0 such that x0 ∈ κ ·C. Thus, there exists
y0 ∈ C such that x0 = κ · y0. Then, (2) implies p · y0 < α because
y0 ∈ C. Since x0 = κ · y0, it follows that p · x0 = p · (κ · y0) < κα.
That is, κ > κ∗ := (p · x0)/α. Also, (1) implies κ∗ > 1. Hence, we have
shown that the set {κ > 0 : x0 ∈ κ · C} is bounded below by κ∗ with
κ∗ being strictly greater than 1. Since ‖x0‖C = inf{κ > 0 : x0 ∈ κ ·C},
it follows that ‖x0‖C > 1 which is a contradiction. Thus, if x ∈ Rn

satisfies ‖x‖C ≤ 1 then x ∈ C. That is,{
x ∈ Rn : ‖x‖C ≤ 1

}
⊆ C.

This proves the reverse set–inclusion. Thus, we have established
the first of the two parts of Theorem 2. Now, we proceed to prove the
second part of Theorem 2. For this, consider a pre–norm f : Rn → R+

and let Cf ⊆ Rn be defined as follows:

Cf := {x ∈ Rn : f(x) ≤ 1}.

First, we show that Cf is a convex and compact set with 0 in the
interior of Cf . To show that Cf is convex, let x1, x2 ∈ Cf and α ∈ (0, 1).
Let y1 := α ·x1 and y2 := (1−α) ·x2. Since f is a pre–norm, f(α ·x1) =
α · f(x1) by condition 3 in Definition 1. Also, f(x1) ≤ 1 as x1 ∈ Cf .
Thus, f(α · x1) ≤ α. That is, f(y1) ≤ α. Similarly, f(y2) ≤ 1− α. Let
x∗ := α · x1 + (1 − α) · x2 and note that x∗ = y1 + y2. Then, as f is a
pre–norm, we have f(x∗) ≤ f(y1) + f(y2) by condition 4 in Definition
1. Since f(y1) ≤ α and f(y2) ≤ 1 − α, we have f(x∗) ≤ 1. That is,
x∗ ∈ Cf . Recall, x∗ = α · x1 + (1 − α) · x2, where x1, x2 ∈ Cf and
α ∈ (0, 1) are arbitrary. Thus, Cf is convex.

To show that Cf is compact and has 0 is in the interior of C, we
shall use proposition 0 of subsection 5.2 according to which f being
a pre–norm on Rn is continuous with respect to ‖·‖1. Then, since Cf
is the pullback under f of the closed set (−∞, 1], it follows that Cf
is a closed subset of Rn. Further, Cf is bounded according to ‖·‖1 as
it is clearly bounded according to f with f being equivalent to ‖·‖1.
Thus, Cf is compact by the Heine–Borel Theorem. Moreover, note that
Bf(0, 1) := {x ∈ Rn : f(x) < 1} is an open set with 0 ∈ Bf(0, 1) ⊆ Cf .
Since the topologies generated by f and ‖·‖1 are identical, it follows
that 0 is in the interior of Cf .

To complete the proof of the theorem, it remains to argue that the
function ‖·‖Cf : Rn → R+ defined as:

‖x‖C := inf
{
κ > 0 : x ∈ κ · Cf

}
for all x ∈ Rn,

satisfies: ‖x‖C = f(x) for all x ∈ Rn. We proceed as follows.
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Observe, by the previous part of the claim of this theorem, the map
‖·‖C is a pre–norm on Rn. This is because Cf is a convex compact set
with 0 in the interior of Cf . Moreover, ‖·‖C satisfies:

Cf =
{
x ∈ Rn : ‖x‖C ≤ 1

}
.

Define, for any θ > 0, the sets Df(0, θ) := {x ∈ Rn : f(x) ≤ θ} and
D‖·‖Cf (0, θ) := {x ∈ Rn : ‖x‖Cf ≤ θ}. Thus, Df(0, 1) = D‖·‖Cf (0, 1) as

each is equal to Cf . Since both ‖·‖Cf and f are pre–norms,

D‖·‖Cf (0, θ) = Df(0, θ) for all θ > 0.

To see why, fix any θ > 0 and let x ∈ D‖·‖Cf (0, θ) be arbitrary.

Thus, ‖x‖Cf ≤ θ. Let xθ := (1/θ) · x. Since ‖·‖Cf is a pre–norm, we
have ‖xθ‖Cf = (1/θ) · ‖x‖Cf ≤ 1. That is, xθ ∈ D‖·‖Cf (0, 1). Hence,

xθ ∈ Df(0, 1). That is, f(xθ) ≤ 1. Also, x = θ · xθ. Since f is a
pre–norm, we have f(x) = θ · f(xθ) ≤ θ. Thus, x ∈ Df(0, θ). Since
x ∈ D‖·‖Cf (0, θ) is arbitrary, it follows that:

D‖·‖Cf (0, θ) ⊆ Df(0, θ).

The argument to establish the above set–inclusion relied only on the
following two facts. First, the sets D‖·|Cf (0, θ) and Df(0, θ) are equal.

Second, both ‖·‖Cf and f are pre–norms. Hence, a symmetric argument
implies the reverse set–inclusion. Therefore, the two sets Df(0, θ) and
D‖·‖Cf (0, θ) are equal for all θ > 0.

Let B‖·‖Cf (0, 1) be the set {x ∈ Rn : ‖x‖Cf < 1}. Then, it is obvious

that B‖·‖Cf (0, 1) =
⋃

0<θ<1D‖·‖Cf (0, θ). Moreover, recall that Bf(0, 1) is

the set {x ∈ Rn : f(x) < 1}. Hence, Bf(0, 1) =
⋃

0<θ<1Df(0, θ). Since
D‖·‖Cf (0, θ) = Df(0, θ) for all θ > 0, we have: B‖·‖Cf (0, 1) = Bf(0, 1).

Then, D‖·‖Cf (0, 1) = Df(0, 1) implies that the following holds:

D‖·‖Cf (0, 1) \B‖·‖Cf (0, 1) = Df(0, 1) \Bf(0, 1).

That is, {x ∈ Rn : ‖x‖Cf = 1} = {x ∈ Rn : f(x) = 1}. Thus,
‖x‖Cf = 1 iff f(x) = 1. Then, for any θ > 0, ‖x‖Cf = θ iff f(x) = θ.
To see why, let x ∈ Rn satisfies ‖x|Cf = θ for some θ > 0. Then,
xθ := (1/θ) ·x satisfies ‖xθ‖Cf = (1/θ) · ‖x‖Cf = 1. Thus, f(xθ) = 1. As
x = θ · xθ, f(x) = θ · f(xθ) = θ. That is, ‖x‖Cf = θ implies f(x) = θ.
Similarly, the converse obtains. Also, ‖x‖Cf = 0 iff x = 0 iff f(x) = 0.
As ‖·‖Cf and f are R+–valued, ‖x‖Cf = f(x) for all x ∈ Rn. �
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Proof of Theorem 1: There are two parts. First, we establish the
existence of N∗–representations. So, let � be weak order over Rn which
satisfies Continuity, Homotheticity, Convexity and Scale Monotonicity.
Since N∗ is the class of all pre–norms on Rn, we argue: there exists a
pre–norm f on Rn such that f is a representation of �.

Throughout the rest of the proof, let x0 ∈ Rn \{0} be arbitrary but
fixed. Based on this chosen x0, we define the set C ⊆ Rn as:

C :=
{
x ∈ Rn : x0 % x

}
.

Moreover, we define the map ‖·‖C : Rn → R+ ∪ {∞} as follows:

‖x‖C := inf
{
κ > 0 : x ∈ κ · C

}
for all x ∈ Rn.

The strategy of our proof of existence entails showing that ‖·‖C is
a norm and that ‖·‖C is a representation of �. To show that ‖·‖C is a
norm, we shall make use of Theorem 2 of section 3. For is, we shall have
to argue that the set C is convex and compact with 0 in its interior.
This is where the major force of all the axioms is required. The proof
is organised via the following steps.

Step 1 : We argue: C is convex. Let x, y ∈ C and α ∈ (0, 1). Since
% is complete, at least one of x % y or y % x holds. Without loss of
generality, assume x % y. Let z := α · x+ (1− α) · y. Since � satisfies
Convexity, we have x % z. Also, x0 % x as x ∈ C. Hence, x0 % z by
transitivity of %. That is, z ∈ C. Thus, C is convex.

Step 2 : We argue: if x ∈ Rn\{0} then x � 0. Fix any x ∈ Rn\{0}.
First, suppose x ∼ 0. Pick an arbitrary α > 1. Then, α · x � x by
Scale Monotonicity. By cross transitivity of � and ∼, α · x � x and
x ∼ 0 imply α ·x � 0. Also, α ·x ∼ α ·0 = 0. Thus, both α ·x ∼ 0 and
α · x � 0 hold. However, this is a contradiction since � is asymmetric
and ∼ is symmetric. Hence, the supposition that x ∼ 0 holds must be
wrong. That is, x ∼ 0 does not hold.

Now, suppose 0 � x. Since � satisfies Continuity, there exists ε > 0
such that (1) ε < 2‖x‖1, and42 (2) y ∈ B‖·‖1(0, ε) implies y � x. Let
y0 := (ε/2‖x‖1) · x. Then, ‖y0‖1 = ε/2. Thus, y0 ∈ B‖·‖1(0, ε). Hence,
y0 � x. Let α0 := 2‖x‖1/ε. Then, x = α0 · y0. Since α0 > 1 and y0 6= 0,
Scale Monotonicity implies x � y0. Thus, both x � y0 and y0 � x hold
which is a contradiction as � is asymmetric. Thus, 0 � x does not
hold. Since % is complete, we obtain: x � 0.

42For any x ∈ Rn and r > 0, let B‖·‖1(x, r) := {y ∈ Rn : ‖y − x‖1 < r}.
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Step 3 : We argue: C is closed in Rn, and 0 is in the interior of C.
Recall, x0 ∈ Rn \ {0} and C = {x ∈ Rn : x0 � x}. Now, observe that
{x ∈ Rn : x0 � x} = Rn \ U�(x0) by completeness of %, where U�(x0)
is the set {x ∈ Rn : x � x0}. By Continuity of �, U�(x0) is an open
subset of Rn. Thus, C is a closed subset of Rn.

Moreover, x0 ∈ Rn\{0} implies x0 � 0 by step 2. Thus, 0 ∈ L�(x0),
where L�(x0) is the set {x ∈ Rn : x0 � x}. By Continuity of �, the set
L�(x0) is open in Rn. Further, L�(x0) ⊆ C since x0 � x =⇒ x0 % x.
Thus, 0 is in the interior of C.

Step 4 : We argue: C is compact. Note, C is a closed subset of Rn in
step 3. It is enough to show that C is bounded. Thus, suppose C is not
bounded. Thus, there exists a C–valued sequence {xk}k∈N such that
‖xk‖1 > k for all k ∈ N. Define yk := xk/‖xk‖1 for every k ∈ N. Let
K be the set {x ∈ N : ‖x‖1 = 1}. Thus, yk ∈ K for any k ∈ N. Note,
K is a closed set as ‖·‖1 is a continuous map being a norm. Clearly, K
is bounded. Then, by the Heine–Borel Theorem, K is a compact set.
Thus, there exists a subsequence l ∈ N 7→ kl ∈ N (that is, kl < kl+1 for
all l ∈ N) and y∗ ∈ K such that liml→∞‖ykl − y∗‖1 = 0.

Consider L := {λ · y∗ : λ > 0}. Fix an arbitrary x∗ ∈ L. That is,
x∗ = [λ∗/(1 + ε∗)] ·y∗ for some λ∗ > 0 and ε∗ > 0. Note, ‖λ∗ ·y∗‖1 = λ∗.
Let l0 ∈ N satisfy kl0 > λ∗. Since ‖xk‖1 > k for all k ∈ N and
l ∈ N 7→ kl ∈ N is strictly increasing, it follows from kl0 > λ∗ that
‖xkl‖1 > λ∗ for all l ≥ l0. Now, fix any l ≥ l0. Define λl := λ∗/‖xkl‖1.
Note that λl < 1 and recall ykl = xkl/‖xkl‖1. By Scale Monotonicity,
xkl � λl · xkl. Thus, xkl � λ∗ · ykl. Now, x0 % xkl as xkl ∈ C. If x0 � xkl
then x0 � λ∗ · ykl by the transitivity of �. If x0 ∼ xkl then x0 � λ∗ · ykl
by the cross transitivity of ∼ and �. That is, x0 � λ∗ · ykl for all
l ≥ l0. Recall, liml→∞‖ykl−y∗‖1 = 0. Thus, liml→∞‖λ∗ ·ykl−λ∗ ·y∗‖1 =
0. Since � satisfies Continuity and x0 � λ∗ · ykl for all l ≥ l0, from
liml→∞‖λ∗ ·ykl−λ∗ ·y∗‖1 = 0 we have x0 % λ∗ ·y∗. As λ∗ ·y∗ = (1+ε∗)·x∗
and ε∗ > 0, λ∗ · y∗ � x∗ by Scale Monotonicity. Then, x0 % λ∗ · y∗ and
λ∗ · y∗ � x∗ imply x0 � x∗. As x∗ ∈ L is arbitrary, we have:

x ∈ L =⇒ x0 � x.

Fix an arbitrary x∗ ∈ L. Thus, x∗ 6= 0 implying x∗ � 0 by step 2.
Also, x0 � x∗. By Continuity of �, there exists α∗ ∈ (0, 1) such that
x∗ ∼ α∗ · x0 + (1 − α∗) · 0 = α∗ · x0. By Homotheticity of �, we have
x0 ∼ (1/α∗) · x∗. Observe, since x∗ ∈ L and α∗ > 0, it follows that
(1/α∗) · x∗ ∈ L. Then, x0 � (1/α∗) · x∗ which is a contradiction. Thus,
C is bounded. Hence, C is compact.

166



Step 5 : We argue: ‖x‖C · x0 ∼ x for any x ∈ Rn \ {0}. So, fix any
x ∈ Rn \ {0}. Since x0 6= 0, step 2 implies x0 � 0. By Continuity of
�, there exists ε > 0 such that:

y ∈ B‖·‖1(0, ε) =⇒ x0 � y.

Let yx := (ε/2‖x‖1) · x. Then, ‖yx‖1 = ε/2. Thus, yx ∈ B‖·‖1(0, ε).
Hence, x0 � yx. Moreover, yx 6= 0 as ‖yx‖1 > 0. Thus, yx � 0 by
step 2. Hence, we have x0 � yx � 0. By Continuity of �, there exists
θ ∈ (0, 1) such that θ · x0 = θ · x0 + (1− θ) · 0 ∼ yx. Scale Monotonicity
implies that this θ corresponding to yx is unique. Now, observe that
x = (2‖x‖1/ε) · yx. Thus, (2θ‖x‖1/ε) · x0 ∼ x by Homotheticity of �.
Define αx := 2θ‖x‖1/ε. Therefore, αx is the unique element in R++

such that αx · x0 ∼ x. We shall now argue: αx = ‖x‖C .
Recall, C = {y ∈ Rn : x0 % y}. Thus, α · C = {y ∈ Rn : α · x0 % y}

for any α > 0 because � satisfies Homotheticity. Since αx · x0 ∼ x,
Scale Monotonicity implies the following:

1. x ∈ α · C for all α > αx, and

2. x /∈ α · C for all 0 < α < αx.

Thus, inf{α > 0 : x ∈ α·C} = αx. Hence, αx = ‖x‖C . Thus, αx ·x0 ∼ x
implies ‖x‖C · x0 ∼ x as required.

Step 6 : We argue: ‖·‖C is an N∗–representation of �. Note, C is
a compact convex set with 0 in its interior by steps 1, 3 and 4. Then,
‖·‖C is a pre–norm by Theorem 2. It remains to argue:

x � y ⇐⇒ ‖x‖C > ‖y‖C .

Fix any x, y ∈ Rn. If atleast one of x or y is 0 then the above
equivalence is trivial. This is because, for any z ∈ Rn, we have:

1. ‖z‖C = 0 iff z = 0,

2. ‖z‖C > 0 iff z ∈ Rn \ {0}, and

3. z � 0 if z ∈ Rn \ {0}.

Henceforth, we assume x, y ∈ Rn \ {0}. By step 5, ‖x‖C · x0 ∼ x
and ‖y‖C · x0 ∼ y. Thus, x � y iff ‖x‖C · x0 > ‖y‖C · x0. Further, Scale
Montonicity implies: ‖x‖C · x0 > ‖y‖C · x0 iff ‖x‖C > ‖y‖C . Hence, we
obtain

(
x � y ⇐⇒ ‖x‖C > ‖y‖C

)
as required.
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With the proof of existence complete, we now proceed to show the
necessity of the axioms. So, assume � is a binary relation over Rn and
f : Rn → R+ is a pre–norm such that:

x � y ⇐⇒ f(x) > f(y).

Clearly, � satisfies asymmetry and negative transitivity. That is, �
is a weak order over Rn. Moreover, f being a pre–norm is a continuous
map. Thus, � must satisfy Continuity. It remains to show that �
satisfies Homotheticity, Convexity and Scale Monotonicity.

That � satisfies Homotheticity is an immediate consequence of the
fact that f being a pre–norm is a homogenous function of degree
one. Further, Scale Monotonicity of � follows from (1) f(x) > 0 iff
x ∈ Rn \ {0}, and (2) f(α · x) = α · f(x) for all α > 0 and x ∈ Rn. We
now show that � satisfies Convexity.

Assume x % y and α ∈ (0, 1). Let z := α · x+ (1− α) · y. We must
show that x % z. Equivalently, we shall argue: f(x) ≥ f(z). Note that
x % y implies f(x) ≥ f(y). Let u := α · x and v := (1 − α) · y. Now,
f being a pre–norm is a homogenous function of degree one. Thus,
f(u) = α ·f(x) and f(v) = (1−α) ·f(y). Since α < 1 and f(x) ≥ f(y),
we have (1−α) ·f(y) ≤ (1−α) ·f(x). Thus, f(u)+f(v) ≤ f(x). Note,
z = u + v holds. Since f is a pre–norm, we have: f(z) ≤ f(u) + f(v).
Then, f(z) ≤ f(x) as required. Thus, � satisfies Convexity. Hence,
the necessity of the axioms has been demonstrated. �

Proof of Proposition 3: Let � be a binary relation over Rn and
suppose f : Rn → R+ is a representation of �. That is,

x � y ⇐⇒ f(x) > f(y).

First, assume f is a norm. Then, f is a pre–norm as every norm
is a pre–norm by definition. Further, f satisfies f(−x) = f(x) for all
x ∈ Rn. Thus, x ∼ −x holds for all x ∈ Rn. That is, � satisfies
Reflection Symmetry. Hence, if f is an N –representation of � then
f is an N∗–representation of �. Moreover, � must satisfy Reflection
Symmetry if it admits an N –representation.

Now, assume f is a pre–norm and � satisfies Reflection Symmetry.
Thus, f(x) = f(−x) for all x ∈ Rn. Fix any x ∈ Rn and α < 0. Then,
f(α · x) = f([−α] · x). Further, f([−α] · x) = [−α] · f(x) as α < 0 and
f is a pre–norm. Thus, f(α · x) = [−α] · f(x) if α < 0. Of course,
f(α · x) = α · f(x) if α > 0. That is, f(α · x) = |α| · f(x) for all α ∈ R.
Hence, f is a norm. Thus, if f is an N∗–representation and � satisfies
Reflection Symmetry, then f is an N –representation. �
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A.I.2 Duality

The proofs of the results stated in subsection 3.2 are supplied in this
subsection of the Appendix. The organization is as follows. First, we
prove Theorem 5. Then, this result and Theorem 1 from subsection
3.1, which asserts the existence of pre–norms as representations, will
be used to prove the remaining results of subsection 3.2. Throughout,
we shall use Theorem 2 from subsection 3.1 which asserts the connec-
tions between pre–norms and compact convex sets that have the origin
in their interior. However, we need four geometric results.

Lemma A.I.2(a): Suppose K is a non–empty compact subset of Rn.
Then, the map fK : Rn → R+ defined as :

fK(x) := max
y∈K

x · y for every x ∈ Rn

is a convex function which is homogenous of degree one. Additionally,
if 0 is in the interior of K then fK is a pre–norm.

Proof: We note, at the outset, the map fK is indeed R–valued as
K is compact and, for any x ∈ Rn, the map y ∈ Rn 7→ x · y ∈ R is
continuous. Further, the map fK is R+–valued as 0 ∈ K implying:
fK(x) ≥ x · 0 = 0 for all x ∈ Rn.

We now show: fK is a convex function. Let x0, x1 ∈ Rn and α ∈
[0, 1] be arbitrary. Let xα := α · x1 + [1 − α] · x0. Pick any y ∈ K.
Then, xα · y = α(x1 · y) + [1 − α](x0 · y). Now, x1 · y ≤ fK(x1) and
x0 · y ≤ fK(x0) by definition of the map fK . Thus, we have:

xα · y ≤ α · fK(x1) + [1− α] · fK(x0) for all y ∈ K.

Hence, fK(xα) ≤ α · fK(x1) + [1 − α] · fK(x0). Since x0, x1 ∈ Rn and
α ∈ [0, 1] are arbitrary, fK is a convex function.

Now, fix any α > 0 and x ∈ Rn. Let xα := α · x. Let y∗, y∗∗ ∈ K be
such that fK(x) = x · y∗ and fK(xα) = xα · y∗∗. Observe, x · y∗ ≥ x · y∗∗
and xα · y∗∗ ≥ xα · y∗. Also, note that xα · y∗∗ ≥ xα · y∗ is equivalent to
x · y∗∗ ≥ x · y∗ because xα = α ·x and α > 0. Thus, x · y∗ = x · y∗∗ where
xα · y∗∗ = α(x · y∗∗). Hence, fK(xα) = α · fK(x). That is:

fK(α · x) = α · fK(x) for all α > 0 and x ∈ Rn.

Hence, fK is a homogenous function of degree one. To show that
fK is a pre–norm, it remains to verify that fK satsifies condition 2 and
4 of Definition 1 (section 2). For this, we shall make the additional
assumption that 0 is in the interior of K.
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Of course, fK(0) = 0 by definition of fK . Let x ∈ Rn \ {0}. Since
0 is in the interior of K, there exists ε > 0 such that B‖·‖2(0, ε) ⊆ K.
Note, ‖x‖2 > 0 as ‖·‖2 is a norm and x 6= 0. Define xε := (ε/2‖x‖2) · x.
Clearly, ‖xε‖2 = ε/2. Thus, xε ∈ B‖·‖2(0, ε). Since B‖·‖2(0, ε) ⊆ K, it
follows xε ∈ K. Hence, fK(x) ≥ x · xε. Now, x · xε = ε‖x‖2/2 > 0.
Thus, fK(x) > 0 if x ∈ Rn \ {0}. Thus we have established:

fK(x) = 0 iff x = 0.

That is, condition 2 of Definition 1 has been verified.
Let x, y ∈ Rn, α := 1/2, µ := 1/α and x∗ := µ ·x and y∗ := µ · y. By

condition 3, fK(x∗) = µ · fK(x) and fK(y∗) = µ · fK(y). Note, α · µ =
(1− α) · µ = 1. Thus, α · fK(x∗) ≤ fK(x) and [1− α] · fK(y∗) = fK(y).
Also, α · x∗ + [1− α] · y∗ = x+ y. As fK is convex,

fK(α · x∗ + [1− α] · y∗) ≤ α · fK(x∗) + [1− α] · fK(y∗).

Thus, f(x + y) ≤ f(x) + f(y) for all x, y ∈ Rn. That is, fK satisfies
condition 4 of Definition 1 as well. Hence, fK is a pre–norm. �

Lemma A.I.2(b): Let K ⊆ Rn be compact with 0 in the interior of K.
Then, for any λ > 0, the set LK,λ defined as :

LK,λ :=
{
x ∈ Rn : max

y∈K
x · y ≤ λ

}
is compact and convex with 0 in the interior of LK,λ.

Proof: Fix any λ > 0. Define the map fK : Rn → R+ as follows:

fK(x) := max
y∈K

x · y for every x ∈ Rn.

By Lemma A.I.2(a), fK is a pre–norm and is a convex function.
Let Dλ ⊆ R and Bλ ⊆ R be the intervals [0, λ] and [0, λ), respec-
tively. Note, LK,λ = f−1

K (Dλ). Since fK is a pre–norm, Proposition
6 (subsection 5.1) implies that fK is continuous. Thus, f−1

K (Dλ) is a
closed subset of Rn. Further, by the euqivalence of pre–norms accord-
ing to Proposition 6, it follows that f−1

K (Dλ) is bounded. Then, by
the Heine–Borel Theorem, LK,λ is a compact subset of Rn. Further,
f−1
K (Bλ) is an open subset of Rn. Clearly, 0 ∈ f−1

K (Bλ) ⊆ f−1
K (Dλ).

Thus, there exists an ε > 0 such that B‖·‖1(0, ε) ⊆ f−1
K (Dλ). Hence, 0

is in the interior of LK,λ. The convexity of LK,λ is an immediate con-
sequence of the fact that fK being a convex function is quasi–convex. �
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Lemma A.I.2(c): Let K ⊆ Rn be compact and K∗ be the closure of the
convex hull of K. Then, for any x ∈ Rn, the following holds :

max
y∈K

x · y = max
y∈K∗

x · y.

Proof: Fix an x ∈ Rn. Let θ := maxy∈K x · y and θ∗ := maxy∈K∗ x · y.
Since K∗ is the closure of the convex hull of K, it follows that K ⊆ K∗.
Hence, θ ≤ θ∗ holds. It remains to argue: θ ≥ θ∗.

Since K is compact, it is bounded. Thus, the convex hull of K is
bounded. Since the closure of a bounded set must be bounded, K∗ is
bounded. Moreover, K∗ is a closed set. Then, K∗ is compact by the
Heine–Borel Theorem. Also, the map y ∈ Rn 7→ x ·y ∈ R is continuous.
Thus, there exists y∗ ∈ K∗ such that x ·y∗ = θ∗. Let (ym) be a sequence
in the convex hull of K which converges to y∗. That is, the sequence
(ym) satisfies the following properties:

1. limm→∞‖y∗ − ym‖1 = 0, and

2. For each m ∈ N, there exists:

(a) Jm ∈ N (we define [Jm] := {1, . . . , Jm}),
(b) yjm ∈ K for each j ∈ [Jm], and

(c)
〈
αjm ∈ R+ : j ∈ [Jm]

〉
such that

∑
j∈[Jm] αjm = 1

such that: ym =
∑

j∈[Jm] αjm · yjm for all m ∈ N.

Fix an arbitrary m ∈ N. By 2(b) and the definition of θ, we have:
θ ≥ x · yjm for all j ∈ [Jm]. Then, θ ≥ x ·

(∑
j∈[Jm] αjm · yjm

)
as 2(c)

holds. Thus, θ ≥ x · ym. Since m ∈ N is arbitrary, we have:

x · ym − θ ≤ 0 for every m ∈ N.

Because limm→∞‖y∗ − ym‖1 = 0 (property 1 above) and the map
y ∈ Rn 7→ x · y − θ ∈ R is continuous, we obtain: x · y∗ ≤ θ. That is,
θ ≥ x · y∗. Recall, x · y∗ = θ∗. Thus, θ ≥ θ∗. Since it has already been
argued that θ ≤ θ∗, we have: θ = θ∗. Now, recall that by definition
θ = maxy∈K x · y and θ∗ = maxy∈K∗ x · y. Therefore, θ = θ∗ implies that
the following equality is true:

max
y∈K

x · y = max
y∈K∗

x · y.

This completes the proof of the lemma. �
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Lemma A.I.2(d): Let K ⊆ Rn be compact, and K∗ be the closure of
the convex hull of K. Suppose x0 ∈ K satisfies :

θ := max
y∈K

x0 · y ≥ max
y∈K

x · y for every x ∈ K.

Then, K∗ is compact convex with x0 ∈ K∗ and the following holds :

θ∗ := max
y∈K∗

x0 · y ≥ max
y∈K∗

x · y for every x ∈ K∗.

Moreover, θ = θ∗ with the common value being ‖x0‖2
2.

Proof: The compactness ofK∗ follows from the Heine–Borel Theorem.
This is because (1) the convex hull of a bounded set is bounded, and
(2) the closure of a bounded set is bounded. Thus, K∗ is compact as
K is compact. Also, K ⊆ K∗ and x0 ∈ K imply x0 ∈ K∗. Since the
closure of a convex set is convex, it follows that K∗ is convex. Consider
the map fK∗ : Rn → R defined as follows:

fK∗(x) := max
y∈K∗

x · y for every x ∈ Rn.

Fix any x ∈ K∗. Since K∗ is the closure of the convex hull of K,
there exists a K∗–valued sequence (xm) satisfying:

1. limm→∞‖x− xm‖1 = 0, and

2. For each m ∈ N, there exists:

(a) Jm ∈ N (we define [Jm] := {1, . . . , Jm}),
(b) xjm ∈ K for each j ∈ [Jm], and

(c)
〈
αjm ∈ R+ : j ∈ [Jm]

〉
such that

∑
j∈[Jm] αjm = 1

such that: xm =
∑

j∈[Jm] αjm · xjm for all m ∈ N.

Fix an arbitrary m ∈ N. Then, fK∗(xjm) = maxy∈K xjm · y for all
j ∈ [Jm] by Lemma A.I.2(c). Thus, fK∗(xjm) ≤ θ for all j ∈ [Jm]. By
Lemma A.I.2(a), fK∗ is a convex function. Thus, we have:

fK∗(xm)− θ ≤ 0 for every m ∈ N.

Further, fK being a convex function is continuous. Hence, the map
x ∈ Rn 7→ fK∗(x)− θ ∈ R is continuous. Thus, limm→∞‖x− xm‖1 = 0
implies fK∗(x) − θ ≤ 0. Also, θ = θ∗ by Lemma A.I.2(c). Hence,
maxy∈K∗ x0 · y ≥ maxy∈K∗ x · y. Therefore, to complete the proof, it
remains to demonstrate that θ = ‖x0‖2

2.
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Note, x0 ∈ K implies θ ≥ x0 · x0 = ‖x0‖2
2. Suppose θ > ‖x0‖2

2. Let
y∗ ∈ K be such that θ = x0 · y∗. Clearly, θ > 0 implies x0 · y∗ = |x0 · y∗|.
Thus, θ = |x0 · y∗|. Then, θ > ‖x0‖2

2 implies |x0 · y∗| > ‖x0‖2
2. Also, by

the Cauchy–Schwarz Inequality, we have:

|x0 · y∗| ≤ ‖x0‖2 · ‖y∗‖2.

Hence, ‖x0‖2 · ‖y∗‖2 > ‖x0‖2
2 which implies ‖y∗‖2

2 > ‖x0‖2 · ‖y∗‖2.
Observe, y∗ ∈ K implies θ ≥ y∗ · y∗ = ‖y∗‖2

2. Then, θ = |x0 · y∗| and
‖y∗‖2

2 > ‖x0‖2 · ‖y∗‖2 imply |x0 · y∗| > ‖x0‖2 · ‖y∗‖2. This contradicts
the Cauchy–Schwarz Inequality. Hence, our supposition that θ > ‖x0‖2

2

must be wrong. Therefore, θ = ‖x0‖2
2 as required. �

Lemma A.I.2(e): Suppose C is a compact subset of Rn with 0 in the
interior of C. Let x0 ∈ Rn be such that :

max
y∈C

x0 · y ≥ max
y∈C

x · y for every x ∈ C.

Then, the sets C∗ and C∗∗ defined as :

C∗ :=
{
x ∈ Rn : max

y∈C
x · y ≤ ‖x0‖2

2

}
, and

C∗∗ :=
{
x ∈ Rn : max

y∈C∗
x · y ≤ ‖x0‖2

2

}
are compact convex subsets of Rn with 0 in their interiors. Moreover,
C∗∗ is the closure of the convex hull of C.

Proof: Let C ⊆ Rn be compact with 0 in the interior of C. Also,
let x0 ∈ Rn and C∗, C∗∗ ⊆ Rn be as in the statement of the lemma.
By Lemma A.I.2(b), C∗ and C∗∗ are compact convex with 0 in each of
their interiors. Therefore, it remains to argue: if C† is the closure of
the convex hull of C then C∗∗ = C†.

We begin with the following reduction. Observe, Lemma A.I.2(d)
implies that x0 ∈ C† and satisfies the following:

max
y∈C†

x0 · y ≥ max
y∈C†

x · y for every x ∈ C†.

Further, consider the sets C†∗ := {x ∈ Rn : maxy∈C† x · y ≤ ‖x0‖2
2} and

C†∗∗ := {x ∈ Rn : maxy∈C†∗ x · y ≤ ‖x0‖2
2}. Then, C†∗ = C∗ and C†∗∗ = C∗∗

by Lemma A.I.2(c). Thus, the claim of the lemma under consideration
will be established if it is proven that C = C∗∗ under the additional
assumption that C is convex. Henceforth, we assume C ⊆ Rn to be
compact convex with 0 in its interior. We argue: C = C∗∗.
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First, we argue: C ⊆ C∗∗. Pick an arbitrary x ∈ C. Observe, if
y ∈ C∗ then x · y ≤ ‖x0‖2

2. This follows from the definition of C∗ and
that x ∈ C. Thus, maxy∈C∗ x · y ≤ ‖x0‖2

2. Hence, x ∈ C∗∗ by definition
of C∗∗. Since x ∈ C is arbitrary, we have: C ⊆ C∗∗.

Now, we argue: C∗∗ = C. Suppose C∗∗ \ C 6= ∅. Pick any x1 ∈ C∗∗
such that x1 /∈ C. As {x1} and C∗ are disjoint and convex compact
sets, the Separating Hyperplane Theorem asserts that there exists some
p ∈ Rn \ {0} and α ∈ R such that:

1. p · x1 > α, and

2. p · x < α for all x ∈ C.

Since 0 is in the interior of the set C, there exists ε > 0 such that
B‖·‖2(0, ε) ⊆ C. Let pε := (ε/2‖p‖2) · p. Clearly, ‖pε‖2 = ε/2. Thus,
pε ∈ B‖·‖2(0, ε) implying pε ∈ C. Note, p · pε = ε‖p‖2/2. As p 6= 0, it
follows p · pε > 0. Let θ := maxx∈C p · x. Then, θ < α by (2). Also,
pε ∈ C implies θ ≥ p · pε. Thus, θ > 0 and λ∗ := ‖x0‖2

2/θ > 0.
Consider p∗ := λ∗ · p and α∗ := λ∗ · α. Clearly, θ < α and λ∗ > 0

imply λ∗ · θ < α∗. That is, ‖x0‖2
2 < α∗. Also, λ∗ > 0 and (1) imply

p∗ · x1 > α∗. Thus, ‖x1‖2
2 < p∗ · x1. Since x1 ∈ C∗∗, it follows: p∗ /∈ C∗.

Now, maxx∈C p∗ ·x = λ∗ ·
(

maxx∈C p ·x
)

= λ ·θ and λ∗ ·θ = ‖x0‖2
2 imply

maxx∈C p∗ ·x = ‖x0‖2
2. By definition of C∗, we have: p∗ ∈ C∗. However,

p∗ /∈ C∗ and p∗ ∈ C∗ is a contradiction. Thus, C∗∗ \ C = ∅. Observe,
C ⊆ C∗∗ and C∗∗ \ C = ∅ imply C = C∗∗. �

Lemma A.I.2(f): Let C ⊆ Rn be compact with 0 in the interior of C.
Also, let x0 ∈ Rn be such that :

max
y∈C

x0 · y ≥ max
y∈C

x · y for every x ∈ C.

Let D‖·‖2(0, ‖x0‖2) :=
{
x ∈ Rn : ‖x‖2 ≤ ‖x0‖2

}
and C∗ be defined as :

C∗ :=
{
x ∈ Rn : max

y∈C
x · y ≤ ‖x0‖2

2

}
Then, C = C∗ if and only if C = D‖·‖2(0, ‖x0‖2).

Proof: First, we argue: if C = C∗ then C = D‖·‖2(0, ‖x0‖2). So,
assume C = C∗. By Lemma A.I.2(b), C∗ is compact convex with 0 in
its interior. Then, C = C∗ implies C is convex. Let θ := maxy∈C x0 · y.
Then, θ = ‖x0‖2

2 by Lemma A.I.2(d).
Let x ∈ C be arbitrary. Then, θ ≥ x · y for all y ∈ C. In particular,

θ ≥ x · x = ‖x‖2
2. Thus, ‖x0‖2 ≥ ‖x0‖2. Hence, x ∈ D‖·‖2(0, ‖x0‖2).

Since x ∈ C is arbitrary, we have: C ⊆ D‖·‖2(0, ‖x0‖2).
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We now argue: D‖·‖2(0, ‖x0‖2) ⊆ C. Pick an arbitrary u ∈ Rn such
that ‖u‖2 = 1. For any λ ∈ R, let Hλ := {x ∈ Rn : u · x = λ}. Define
Λ := {λ ∈ R : Hλ∩C 6= ∅}. Let λ∗ := sup Λ. Let us first show: λ∗ ∈ R.
For this, it is enough to argue that Λ is non–empty and bounded above
in R. We shall do so by using the compactness of C.

Since 0 ∈ C and u · 0 = 0, we have 0 ∈ H0 ∩C. Then, H0 ∩C 6= ∅
implies 0 ∈ Λ. Thus, we have: Λ 6= ∅. Suppose Λ is not bounded above
in R. Thus, get a Λ–valued sequence (λk) such that limk→∞ λk = +∞.
Then, the definition of Λ implies, there exists a C–valued sequence (xk)
such that u · xk = λk for all k ∈ N. Since C is compact, there exists
x∗ ∈ C and a subsequence l ∈ N 7→ kl ∈ N such that (1) kl < kl+1

for all l ∈ N, and (2) liml→∞‖xkl − x∗‖2 = 0. By continuity of the
map x ∈ Rn 7→ u · x ∈ R, we have liml→∞ u · xkl = u · x∗. However,
u · x∗ ∈ R and liml→∞ u · xkl = +∞ as (1) u · xk = λk for all k ∈ N,
and (2) limk→∞ λk = +∞. Thus, we have a contradiction. Hence, Λ is
bounded above in R. Therefore, we have: λ∗ ∈ R.

Now, consider any arbitrary y ∈ C and let λy := u · y. Clearly,
y ∈ Hλy . Thus, y ∈ Hλy ∩ C implying Hλy ∩ C = ∅. Hence, λy ∈ Λ.
Then, λ∗ = sup Λ implies λ∗ ≥ λy. That is, λ∗ ≥ u · y. Since y ∈ C is
arbitrary, we have established the following:

y ∈ C =⇒ u · y ≤ λ∗.

We claim: λ∗ ≥ ‖x0‖2. Suppose λ∗ < ‖x0‖2. Let ε := ‖x0‖ − λ∗.
Thus, ε > 0 by our supposition. Also, λ∗ + ε = ‖x0‖2 by the definition
of ε. Let xε := (λ∗+ε) ·u. Then, u ·xε = (λ∗+ε) ·‖u‖2

2. Since ‖u‖2 = 1,
we have u · xε = λ∗+ ε. Then, ε > 0 implies u · xε > λ∗. Thus, xε /∈ C.
Now, fix an arbitrary y ∈ C. Then, xε · y = (λ∗ + ε)(u · y). Also,
u · y ≤ λ∗ as y ∈ C. Thus, xε · y ≤ (λ∗ + ε) · λ∗. Since λ∗ + ε = ‖x0‖2

and λ∗ < ‖x0‖2, we obtain xε · y ≤ ‖x0‖2
2. Since y ∈ C is arbitrary, it

follows: maxy∈C xε · y ≤ ‖x0‖2
2. Thus, xε ∈ C∗ by the definition of C∗.

Since C∗ = C, we have: xε ∈ C. However, we have already concluded
that xε /∈ C. Thus, we have a contradiction implying our supposition
that λ∗ < ‖x0‖2 is wrong. Hence, we have: λ∗ ≥ ‖x0‖2.

We now claim: there exists x∗ ∈ C such that u · x∗ = λ∗. Since
λ∗ is sup Λ, let (λk) be a Λ–valued sequence such that limk→∞ λk =
+∞. Thus, there exists a C–valued sequence (xk) such that: u · xk =
λk for all k ∈ N. Since C is compact, there exists x∗ ∈ C and a
subsequence l ∈ N 7→ kl ∈ N such that (1) kl < kl+1 for all l ∈ N, and
(2) liml→∞‖xkl−x∗‖2 = 0. By continuity of the map x ∈ Rn 7→ u·x ∈ R,
we have liml→∞ u · xk = u · x∗. Since u · xk = λk for all k ∈ N, from
limk→∞ λk = λ∗ we have u · x∗ = λ∗. Since x∗ ∈ C, we have shown:
there exists x∗ ∈ C such that u · x∗ = λ∗.
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Henceforth, let x∗ ∈ C be such that u · x∗ = λ∗. Then, λ∗ ≥ ‖x0‖2

implies u ·x∗ ≥ ‖x0‖2. Since x∗ ∈ C, note that Lemma A.I.2(d) implies
‖x0‖2

2 ≥ maxy∈C x∗ · y. In particular, ‖x0‖2
2 ≥ x∗ · x∗ = ‖x∗‖2

2 which
implies ‖x0‖2 ≥ ‖x∗‖2. Then, u · x∗ ≥ ‖x∗‖2 as ‖x0‖2 ≥ ‖x∗‖2. Since
‖u‖2 = 1, it follows: u · x∗ ≥ ‖u‖2 · ‖x∗‖2. Note, u · x∗ = |u · x∗| as
‖·‖2 is R+–valued. Thus, we have: |u · x∗| ≥ ‖u‖2 · ‖x∗‖2. However, the
Cauchy–Schwarz Inequality asserts:

|u · x∗| ≤ ‖u‖2 · ‖x∗‖2,

with equality iff x∗ = λ · u for some λ 6= 0. Thus, |u · x∗| ≥ ‖u‖2 · ‖x∗‖2

implies, there exists λ† 6= 0 such that x∗ = λ† · u. Then, u · x∗ =
λ†(u·u) = λ†‖u‖2

2. As ‖u‖2 = 1, we have u·x∗ = λ†. Since u·x∗ ≥ ‖x0‖2,
we obtain: λ† ≥ ‖x0‖2. As x∗ ∈ C and x∗ = λ† · u, we have:(

∃λ ∈ R
)[
λ† ≥ ‖x0‖2 ; λ† · u ∈ C

]
.

Henceforth, assume λ† ∈ R is such that λ† ≥ ‖x0‖2 and λ† · u ∈ C.
Let α := ‖x0‖2/λ

†. Thus, α ∈ (0, 1). Define xα := α(λ† ·u) + (1−α) ·0.
Since λ† · u and 0 are in C, the convexity of C implies xα ∈ C. Also,
xα = ‖x0‖2 · u by definition of α and xα. Thus, ‖x0‖2 · u ∈ C. Since
u ∈ Rn is arbitrary such that ‖u‖2 = 1, we have established:(

∀u ∈ Rn
)[
‖u‖2 = 1 =⇒ ‖x0‖2 · u ∈ C

]
.

Now, pick an arbitrary x ∈ D‖·‖2(0, ‖x0‖2). That is, ‖x‖2 ≤ ‖x0‖2.
If ‖x‖2 = 0 then x = 0. Then, 0 ∈ C, we have: if ‖x‖2 = 0 then x ∈ C.
Henceforth, assume ‖x‖2 > 0. Let u := x/‖x‖2. Clearly, ‖u‖2 = 1.
Thus, ‖x0‖2 · u ∈ C. Let α := ‖x‖2/‖x0‖2. Clearly, α ∈ (0, 1). Define
xα := α(‖x0‖2 · u) + (1 − α) · 0. Since ‖x0‖2 · u and 0 are in C, the
convexity of C implies xα ∈ C. Also, xα = ‖x‖2 · u by definition of α
and xα. Thus, ‖x‖2 · u ∈ C. Since ‖x‖2 · u = x, we obtain: x ∈ C.
That is, D‖·‖2(0, ‖x0‖2) ⊆ C. Hence, we have established:[

C = C∗
]

=⇒
[
C = D‖·‖2(0, ‖x0‖2)

]
.

For the converse, assume C = D‖·‖2(0, ‖x0‖2). First, we shall argue:
C∗ ⊆ C. For this, suppose x ∈ C∗ and x /∈ C. Then, ‖x‖2 > ‖x0‖2.
Let yx := (‖x0‖2/‖x‖2) · x. Clearly, ‖yx‖2 = ‖x0‖2. Thus, yx ∈ C.
Then, x · yx ≤ maxy∈C x · y. However, maxy∈C x · y ≤ ‖x0‖2

2 by the
definition of C∗ and that x ∈ C∗. Thus, x · yx ≤ ‖x0‖2

2. Now, note
that x · yx = (‖x0‖2/‖x‖2)(x · x). That is, x · yx = ‖x0‖2 · ‖x‖2. Also,
‖x‖2 > ‖x0‖2 implies ‖x0‖2 · ‖x‖2 > ‖x0‖2

2. Thus, x · yx > ‖x0‖2
2 which

contradicts to x · yx ≤ ‖x0‖2
2. Thus, we have: C∗ ⊆ C.
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It remains to argue: C ⊆ C∗. Pick an arbitrary x ∈ C. Since
C = D‖·‖2(0, ‖x0‖2), we have ‖x‖2 ≤ ‖x0‖2. Consider an arbitrary
y ∈ C. Again, ‖y‖2 ≤ ‖x0‖2. Thus, ‖x‖2 · ‖y‖2 ≤ ‖x0‖2

2. Further,
the Cauchy–Schwarz Inequality implies |x · y| ≤ ‖x‖2 · ‖y‖2. Thus,
|x · y| ≤ ‖‖2

2. Clearly, x · y ≤ |x · y| which implies x · y ≤ ‖x0‖2
2. Since

y ∈ C is arbitrary, we have maxy∈C x · y ≤ ‖x0‖2
2. By definition of C∗,

we obtain: x ∈ C∗. Since x ∈ C is arbitrary, we have: C ⊆ C∗. Thus,
the converse has been established. �

Proof of Theorem 5: A pre–norm f on Rn is said to be regular if,

max
f(x)≤1

‖x‖2 = 1.

Regularity of a pre–norm on Rn is a “normalization” requirement.
Consider an arbitrary pre–norm f . Let α := maxf(x)≤1 ‖x‖2 and the
map f∗ : Rn → R+ be defined as f∗ := α·f . Define α∗ := maxf∗(x)≤1 ‖x‖2.
Observe, α∗ = maxf(α·x)≤1 ‖x‖2 = 1 as f and ‖·‖2 are homogenous.
Thus, f∗ is regular. The rest of the proof is as follows.

Step 1 : We argue: if f ∈ N∗ then gf ∈ N∗. So, let f be a pre–norm
on Rn. Consider the set Cf :=

{
x ∈ Rn : f(x) ≤ 1

}
. Theorem 2 implies

that Cf is compact with 0 in its interior. Then, Lemma A.I.2(a) implies
that the map fCf : Rn → R+ ∪ {∞} defined as:

fCf (x) := max
y∈Cf

x · y for every x ∈ Rn

is a pre–norm over Rn. However, observe that gf = fCf by definition of
the map gf and the set Cf . Hence, gf is a pre–norm over Rn.

Step 2 : Suppose f is a regular pre–norm on Rn, and consider the
set Cf := {x ∈ Rn : f(x) ≤ 1}. Let x0 ∈ Cf be such that:

θf := max
y∈Cf

x0 · y ≥ max
y∈Cf

x · y for all x ∈ Cf .

We argue: ‖x0‖2 = 1 = θf . Fix an arbitrary x ∈ Cf . As ‖x‖2
2 = x·x,

it follows that ‖x‖2
2 ≤ maxy∈Cf x · y ≤ θf . However, x is an arbitrary

element in Cf . Thus, we obtain: maxx∈Cf‖x‖2
2 ≤ θf . Now, Lemma

A.I.2(d) implies that θf = ‖x0‖2
2. Hence, maxx∈Cf‖x‖2

2 ≤ ‖x0‖2
2 holds.

However, x0 ∈ Cf implies maxx∈Cf‖x‖2
2 ≥ ‖x0‖2

2. Therefore, we obtain:
maxx∈Cf‖x‖2

2 = ‖x0‖2
2. Since f is regular, we have: maxx∈Cf‖x‖2

2 = 1.
Thus, ‖x0‖2 = 1 which also implies θf = 1 as θf = ‖x0‖2

2.
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Step 3 : We argue: if f is a regular pre–norm, then [T ◦ T ](f) = f .
Recall, the map T : N∗ → N∗ is defined as follows:

T (f) := gf for every f ∈ N∗,

where gf ∈ N∗ satisfies, gf(x) := maxf(y)≤1 x · y for all x ∈ Rn.
Suppose f is a regular pre–norm, and let Cf := {x ∈ Rn : f(x) ≤ 1}.

Further, let x0 ∈ Cf satisfy the following:

θf := max
y∈Cf

x0 · y ≥ max
y∈Cf

x · y for all x ∈ Cf .

Let f∗ := gf and f∗∗ := gf∗. Since f is a regular pre–norm, step 2
implies ‖x0‖2 = 1 = θf . Define C∗f := {x ∈ Rn : maxy∈Cf x ·y ≤ ‖x0‖2

2}.
Then, the definition of Cf and gf implies C∗f = x ∈ Rn : gf(x) ≤ ‖x0‖2

2.
As gf = f∗ and ‖x0‖2 = 1, we have: C∗f = {x ∈ Rn : f∗(x) ≤ 1}. Also,

define C∗∗f := {x ∈ Rn : maxy∈C∗f x · y ≤ ‖x0‖2
2} and observe:

C∗∗f = {x ∈ Rn : f∗∗(x) ≤ 1}.

Since f is a pre–norm, the set Cf is compact and convex with 0 in
its interior. In particular, the convexity of Cf ensures that the convex
hull of Cf is the set Cf . Then, Lemma A.I.2(e) implies: Cf = C∗∗f .
That is, {x ∈ Rn : f(x) ≤ 1} = {x ∈ Rn : f∗∗(x) ≤ 1}. Define
Af,ξ := {x ∈ Rn : f(x) ≤ ξ} and Af∗∗,ξ := {x ∈ Rn : f∗∗(x) ≤ ξ} for
every ξ > 0. As f and f∗∗ are homogenous, we obtain:

Af,ξ = Af∗∗,ξ for all ξ > 0.

Hence, {x ∈ Rn : f(x) = ξ} = {x ∈ Rn : f∗∗(x) = ξ} for every
ξ > 0. Thus, f(x) = f∗∗(x) for all x ∈ Rn. That is, f∗∗ = f . Observe,
f∗∗ = [T ◦ T ](f) by definition. Thus, [T ◦ T ](f) = f .

Step 4 : We argue: T (α ·f) = (1/α) ·T (f) for all α > 0 and f ∈ N∗.
Let f be a pre–norm and α > 0. Fix an arbitrary x ∈ Rn. Then,
[T (α · f)](x) = maxα·f(y)≤1 x · y. Also, f is homogenous of degree one.
Further, y ∈ Rn 7→ x · y ∈ R is a linear map. Thus, we have:

max
α·f(y)≤1

x · y = (1/α) max
f(y)≤1

x · y.

Thus, [T (α · f)](x) = (1/α) maxf(y)≤1 x · y. Since maxf(y)≤1 x · y =
[T (f)](x), we have: [T (α ·f)](x) = (1/α) · [T (f)](x) = [(1/α) ·T (f)](x).
Since x ∈ Rn is arbitrary, we have: T (α · f) = (1/α) · T (f).
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Step 5 : We argue: [T ◦ T ](f) = f for every f ∈ N∗. Let f be any
pre–norm and α := maxf(x)≤1‖x‖2. Define f∗ := α · f . Then, f∗ is a
pre–norm which is regular. By step 4, T (f∗) = (1/α) · T (f). Define
f∗∗ := (1/α) · T (f). Thus, T (f∗) = f∗∗. Also, let α∗ := 1/α. Thus,
f∗∗ = α∗ · T (f). By step 4, T (f∗∗) = (1/α∗) · T (f). Since α∗ = 1/α, we
have: T (f∗∗) = α · [T ◦ T ](f). Moreover, T (f∗∗) = [T ◦ T ](f∗) because
f∗∗ = T (f∗). Hence, α · [T ◦T ](f) = [T ◦T ](f∗). Since f∗ is regular, step
3 implies [T ◦ T ](f∗) = f∗. Thus, α · [T ◦ T ](f) = f∗. Recall, f∗ = α · f .
Since α > 0, we obtain: [T ◦ T ](f) = f .

Step 6 : We argue: if f ∈ N∗ then, T (f) = f implies f is regular.
So, assume f is a pre–norm on Rn that satisfies T (f) = f . Also, let
Cf := {x ∈ Rn : f(x) ≤ 1}. Further, let x0 ∈ Cf satisfy:

θf := max
y∈Cf

x0 · y ≥ max
y∈Cf

x · y for every x ∈ Cf .

First, we show: maxx∈Cf ‖x‖2
2 = ‖x0‖2

2 = θf . Consider an arbitrary
x ∈ Cf . Since ‖x‖2

2 = x · x, we have: ‖x‖2
2 ≤ maxy∈Cf x · y. Thus,

‖x‖2
2 ≤ θf . As x ∈ Cf is arbitrary, it follows: maxx∈Cf‖x‖2

2 ≤ θf . Now,
Cf is a compact set with 0 in its interior because f is a pre–norm. This
is due to Theorem 2 (subsection 3.1). Hence, Lemma A.I.2(d) implies:
θf = ‖x0‖2

2. However, ‖x0‖2
2 ≤ maxx∈Cf‖x‖2

2 because x0 ∈ Cf . Thus,
θf ≤ maxx∈Cf‖x‖2

2. Hence, we obtain: maxx∈Cf ‖x‖2
2 = θf .

It remains to argue: ‖x0‖2 = 1. Note, [T (f)](x0) = maxy∈Cf x0 ·y by
definition of the map T . That is, [T (f)](x0) = θf . Since T (f) = f and
θf = ‖x0‖2

2, it follows: f(x0) = ‖x0‖2
2. Now, x0 ∈ Cf implies f(x0) ≤ 1

by definition of Cf . Thus, ‖x0‖2
2 ≤ 1.

Suppose ‖x0‖2
2 < 1. That is, f(x0) < 1. Since 0 is in the interior

of Cf , maxx∈Cf‖x‖2
2 = ‖x0‖2

2 implies x0 6= 0. Define u0 := x0/‖x0‖2

and x1 := x0/‖x0‖2
2. Then, f(x1) = (1/‖x0‖2

2) · f(x0) = 1 because
f is homogenous map and f(x0) = ‖x0‖2

2. Thus, x1 ∈ Cf . Further,
‖x1‖2 = 1/‖x0‖2. Since ‖x0‖2 < 1, we have ‖x1‖2 > 1 ≥ ‖x0‖2. Thus,
‖x1‖2

2 > maxx∈Cf‖x‖2
2. However, x1 is in Cf resulting in a contradiction.

Hence, our supposition. Thus, ‖x0‖2 ≥ 1. Then, ‖x0‖2 ≤ 1 implies:
‖x0‖2 = 1. Hence, maxx∈Cf‖x‖2. That is, f is regular.

Step 7 : We shall argue: if f ∈ N∗ then, T (f) = f implies f = ‖·‖2
2.

Let f be a pre–norm on Rn such that T (f) = f . Consider the set
Cf := {x ∈ Rn : f(x) ≤ 1}, and let x0 ∈ Cf satisfy:

θf := max
y∈Cf

x0 · y ≥ max
y∈Cf

x · y for every x ∈ Cf .
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Now, define C∗f := {x ∈ Rn : maxy∈Cf x · y ≤ ‖x0‖2
2} and note

that C∗f = {x ∈ Rn : [T (f)](x) ≤ ‖x0‖2
2} by definition of the map T .

Then, T (f) = f implies C∗f = {x ∈ Rn : f(x) ≤ ‖x0‖2
2}. Further,

T (f) = f and step 6 implies f is regular. As was shown in step 6, this
is equivalent to asserting ‖x0‖2 = 1. Thus, C∗f = {x ∈ Rn : f(x) ≤ 1}.
That is, Cf = C∗f . By Lemma A.I.2(f), we have: Cf = D‖·‖2(0, ‖x0‖2).
Since ‖x0‖2 = 1, we obtain the following:{

x ∈ Rn : f(x) ≤ 1
}

=
{
x ∈ Rn : ‖x‖2 ≤ 1

}
.

Let Af,ξ := {x ∈ Rn : f(x) ≤ ξ} and A‖·‖2,ξ := {x ∈ Rn : ‖·‖2(x) ≤ ξ}
for all ξ > 0. As f and ‖·‖2 are homogenous, we obtain:

Af,ξ = A‖·‖2,ξ for every ξ > 0.

Thus, {x ∈ Rn : f(x) = ξ} = {x ∈ Rn : ‖x‖2 = ξ} for all ξ > 0. That
is, f(x) = ‖x‖2 for all x ∈ Rn. Hence, f = ‖·‖2 as required.

Step 8 : We argue: if f ∈ N∗ then the following inequality holds:

x · y ≤ f(x) · [T ◦ f ](y) for all x, y ∈ Rn.

Let x, y ∈ Rn be arbitrary such that x 6= 0. Note, f(x) > 0 and
let u := x/f(x). Then, f(u) = 1 as f is homogenous of degree one.
Consider the set Cf := {z ∈ Rn : f(z) ≤ 1}. The definition of the map
T implies: [T ◦ f ](y) = maxz∈Cf y · z. Note, u ∈ Cf as f(u) = 1. Thus,
maxz∈Cf y · z ≥ y · u. Since y · u = u · y, we have: u · y ≤ [T ◦ f ](y).
Now, x = f(x) · u and f(x) > 0. Thus, we obtain:

x · y ≤ f(x) · [T ◦ f ](y) for all x ∈ Rn \ {0} and y ∈ Rn.

Thus, the inequality holds if x 6= 0. However, when x = 0, it holds
trivially as then both x · y and f(x) are 0.

This completes the proof of the theorem. �

Proof of Corollary 1: Suppose f is a norm and x, y ∈ Rn. Two
cases arise. First, suppose x · y ≥ 0. Then, |x · y| = x · y. Since
x ·y ≤ f(x) · [T ◦f ](y) by Theorem 5, we have: |x ·y| ≤ f(x) · [T ◦f ](y).
Now, suppose x ·y < 0. Then, |x ·y| = −(x ·y) = (−x) ·y. By Theorem
5, (−x)·y ≤ f(−x)·[T ◦f ](y). This implies |x·y| ≤ f(−x)·[T ◦f ](y). As
f is a norm f(−x) = f(x) which then implies: |x ·y| ≤ f(x) · [T ◦f ](y).
Since the cases are exhaustive, the proof is complete. �
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Proof of Proposition 4: Suppose � is in P . Thus, there exists a
pre–norm g on Rn such that g represents �. Recall, f� : Rn → R is
defined, by the choice of an x0 ∈ Rn \ {0}, as follows:

f�(y) := max
x0%x

x · y for every y ∈ Rn.

Let C := {x ∈ Rn : x0 � x}. Since g is a representation of �, we
have C = {x ∈ Rn : g(x) ≤ g(x0)}. Also, x0 6= 0 implies g(x0) > 0 as g
is a pre–norm. Then, the map g∗ : Rn → R defined by g∗ := g/g(x0) is
also pre–norm as g is homogenous. Clearly, g∗ represents �. Observe,
C = {x ∈ Rn : g∗(x) ≤ 1}. As g∗ is a pre–norm, Theorem 2 implies C
is compact convex set with 0 in its interior. Now, observe:

f�(x) = max
y∈C

x · y for every x ∈ Rn.

Then, Lemma A.I.2(a) implies that f� is a pre–norm. This completes
the proof of the proposition. �

Proof of Theorem 6: Suppose � is in P and �∗ is its dual. Recall,
f� : Rn → R represents �∗, where f� is defined as:

f�(y) := max
x0%x

x · y for every y ∈ Rn.

Note, x0 ∈ Rn \ {0} in the above definition. Now, let f be a pre–norm
that represents �. First, we argue: T (f) represents �∗.

Let C1 := {x ∈ Rn : f(x) ≤ f(x0)}, and fix an arbitrary y ∈ Rn. By
definition of the map f� and that f is a representation of �∗, we have:
f�(y) = maxx∈C1

x · y. Moreover, [T (f)](y) = maxx∈C0
x · y, where

C0 := {x ∈ Rn : f(x) ≤ 1}. Since f is a pre–norm, x0 6= 0 implies
f(x0) > 0. Let κ := f(x0). Now, being a pre–norm, the map f is
homogenous of degree one. Hence, we have: C1 = κ · C0. Further, the
map x ∈ Rn 7→ x · y ∈ R is linear. Hence, f�(y) = κ · [T (f)](y). Since
y ∈ Rn is arbitrary, we obtain: f� = κ · T (f). Since f� represents �∗,
it follows from κ > 0 that: T (f) represents �∗.

Now, we shall argue: a pre–norm g represents �∗, if and only if,
g = α · T (f) for a unique α > 0. Let g be an arbitrary pre–norm.
First, suppose g represents �∗. Then, Proposition 2 (subsection 3.1)
implies that g = α · T (f) for some unique α > 0. Thus, we have: if
g is an N∗–representation of �∗ then g = α · T (f) for some unique
α > 0. Moreover, if g = α · T (f) to being with, then g is a clearly a
representation of �∗. This proves the converse. �
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With Theorems 5 and 6 proven, the proofs of Theorems 3 and 4 follow.

Proof of Theorem 3: Suppose� is in P . Let�∗ and�∗∗ be the dual
and the second dual of �. Since � is in P , there exists a pre–norm f
which represents �. Then, Theorem 6 implies that the pre–norm T (f)
represents �∗. Further, �∗∗ is the dual of �∗. Thus, Theorem 6 implies
that T (T (f)) is a representation of �∗∗. That is, [T ◦ T ](f) represents
�∗∗. However, [T ◦ T ](f) = f by Theorem 5. Hence, f represents both
� and �∗∗. Thus, �∗∗ is equal to �. �

Proof of Theorem 4: Let � be in P and �∗ be its dual. Suppose
�∗ is equal to �. We must argue: ‖·‖2 represents �. However, we first
show: T (β · g) = (1/β) · T (g) for any pre–norm g and β > 0.

Let g be a pre–norm and β > 0. Fix an arbitrary x ∈ Rn. Then,
[T (β · g)](x) = maxβ·g(y)≤1 x · y. Also, g is homogenous of degree one.
Further, y ∈ Rn 7→ x · y ∈ R is a linear map. Thus, we have:

max
β·g(y)≤1

x · y = (1/β) max
g(y)≤1

x · y.

Now, g is homogenous of degree one. Then, as y ∈ Rn 7→ β · y ∈ Rn

is a bijection, we have: [T (β · g)](x) = (1/β) maxg(y)≤1 x · y. Since
maxg(y)≤1 x · y = [T (g)](x), if follows:

[T (β · g)](x) = (1/β) · [T (g)](x) = [(1/β) · T (g)](x).

As x ∈ Rn is arbitrary, we have: T (β · f) = (1/β) · T (g). Now, we are
ready to establish: ‖·‖2 represents �.

Let f be a pre–norm which represents �. Then, Theorem 6 implies
that T (f) represents �∗. Since �∗ is equal to �, it follows that T (f)
represents �. Note, T (f) is a pre–norm. Since both f and T (f) are
pre–norms which represent �, Proposition 2 implies: T (f) = α · f for
some α > 0. Let β := α1/2 and f† := β · f . Thus, T (f†) = (1/β) · T (f).
Then, T (f) = α ·f implies T (f†) = (α/β)·f . That is, T (f†) = β ·f = f†
as β = α1/2 by definition. Note, f† is a pre–norm which represents �
as f† = β · f where β > 0. Since f† is a pre–norm such that T (f†) = f†,
Theorem 5 implies: f† = ‖·‖2. Since f† is a representation of �, we
obtain: ‖·‖2 is a representation of �.

For the converse, assume � admits ‖·‖2 as a representation. Let
f := ‖·‖2. Then, Theorem 5 implies T (f) = f . That is, T (f) = ‖·‖2.
Further, Theorem 6 implies that T (f) represents �∗. Thus, ‖·‖2 is a
representation of �∗. Since ‖·‖2 represents both � and �∗, it follows
that �∗ equals �. This completes the proof. �.
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A.II.1 Standard Norms

We prove the “existence” claim in Theorem 7 which is as follows: if �
admits a norm as a representation and satisfies separability, then there
exists θ ∈ Rn

++ and p ≥ 1 such that ‖·‖(θ,p) represents �. So, assume
� admits a norm as representation and satisfies separability. Since
� admits a norm as a representation, Theorem 1 and Proposition 3
(subsection 3.1) imply that � also satisfies:

1. Weak order.

2. Continuity.

3. Homotheticity.

4. Convexity.

5. Scale Monotonicity.

6. Reflection Symmetry.

Also, recall that N := {1, . . . , n}. We now proceed to the proof.

Proof of Theorem 7: Since n ≥ 3 and � satisfies separability,
Debreu’s theorem (see Theorem 5.3 of Fishburn [1970]) asserts the
existence of an n–tuple of continuous functions h1, . . . , hn : R → R
such that the map u : Rn → R defined as:

u(x) :=
n∑
i=1

hi(xi) for all x ≡ (x1, . . . , xn) ∈ Rn, (3)

is a representation of �. Moreover, Scale Monotonicity implies that
� is non–trivial. Thus, all such “additive” representations of � are
unique up to similar positive affine transformations. Formally, if there
exists maps h′1, . . . , h

′
n : R→ R such that v : Rn → R defined as:

v(x) :=
n∑
i=1

h′i(xi) for all x ≡ (x1, . . . , xn) ∈ Rn,

also represents �, then there exists α > 0 and β1, . . . , βn ∈ R such that:

h′i(x) = αhi(x) + βi for all x ∈ Rn and all i ∈ N. (4)

Note, the choice of α := 1 and βi := hi(0) for all i ∈ N implies:
h′i := αhi + βi satisfies h′i(0) = 0 for every i ∈ N . Therefore, we shall
henceforth assume: hi(0) = 0 for all i ∈ N .
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For any i ∈ N , we argue: hi(−ξ) = hi(ξ) for all ξ ∈ R. Fix an
arbitrary ξ ∈ R. Let x ≡ (x1, . . . , xn) ∈ Rn satisfy (a) xi := ξ, and
(b) xj := 0 for all j ∈ N \ {i}. Then, u(x) = hi(ξ) +

∑
j∈N\{i} hj(0).

Similarly, u(−x) = hi(−ξ)+
∑

j∈N\{i} hj(0). Now, −x ∼ x as � satisfies

reflection symmetry. Since u represents �, −x ∼ x implies u(−x) =
u(x). Then, u(−x) = u(x) implies hi(−ξ) = hi(ξ). Since ξ ∈ R is
arbitrary, we obtain: hi(−ξ) = hi(ξ) for all ξ ∈ R.

For each i ∈ N , let fi : R+ → R be defined as: fi(ξ) := hi(ξ) for
all ξ ∈ R+. Observe, hi(ξ) = fi(|ξ|) for all ξ ∈ R. For any i ∈ N ,
we argue: fi is increasing. Pick arbitrary ξ, η ∈ R++ such that ξ > η.
Consider x ≡ (x1, . . . , xn) such that (a) xi := η, and (b) xj := 0 for all
j ∈ N \ {i}. Clearly, x 6= 0. Define α := ξ/η. Then, ξ > η implies
α > 1. Since � satisfies Scale Monotonicity, x 6= 0 and α > 1 imply
α · x � x. Since u represents �, we have: u(α · x) > u(x). Observe,
u(α · x) = hi(αη) +

∑
j∈N\{i} hj(0) and u(x) = hi(η) +

∑
j∈N\{i} hj(0).

Hence, u(α ·x) > u(x) implies: hi(αη) > hi(η). Then, α = ξ/η implies:
hi(ξ) > hi(η). Thus, we obtain the following:

ξ > η > 0 =⇒ hi(ξ) > hi(η). (5)

We now argue: hi(ξ) > hi(0) if ξ > 0. Consider x ≡ (x1, . . . , xn)
that satisfies (a) xi := ξ, and (b) xj := 0 for all j ∈ N \ {i}. Since �
admits a norm as representation and x 6= 0, we have: x � 0. Then,
u(x) > u(0) as u represents�. Again, u(x) = hi(ξ)+

∑
j∈N\{i} hj(0) and

u(0) = hi(0)+
∑

j∈N\{i} hj(0). Thus, u(x) > u(0) implies hi(ξ) > hi(0).

With (5), we obtain: hi(ξ) > hi(η) for all ξ > η ≥ 0. Now, recall that
the domain of fi is R+ and, for any ξ ∈ R+, fi(ξ) = hi(ξ) by definition.
Thus, for each i ∈ N , fi is a continuous and increasing function such
that fi(0) = 0. Further, the representation u satisfies:

u(x) =
n∑
i=1

fi(|xi|) for all x ≡ (x1, . . . , xn) ∈ Rn. (6)

Now, for any i ∈ N , define gi : R++ → R++ as: gi(ξ) := fi(ξ)/fi(1)
for all ξ ∈ R++. Then, gi(ξη) = gi(ξ)gi(η) for all ξ, η ∈ R++. To see
why, note κ > 0 implies

(
x � y ⇐⇒ κ · x � κ · y

)
as � satisfies

Homotheticity. Thus, the map v : Rn → R defined as:

v(x) :=
n∑
i=1

fi(κ|xi|) for all x ≡ (x1, . . . , xn) ∈ Rn,

is also a representation of �. Note, u and v are additive.
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Thus, there exists α > 0 and β1, . . . , βn ∈ R such that, for every
i ∈ N , fi(κ|ξ|) = αfi(|ξ|) + βi for all ξ ∈ R. Fix any i ∈ N . Then,
fi(0) = 0 implies βi = 0. Thus, fi(κξ) = αfi(ξ) for all ξ ≥ 0. In
particular, evaluation at ξ = 1 implies αfi(1) = fi(κ). Thus, we obtain
fi(κξ) = fi(κ)fi(ξ)/fi(1). Then, κ equal to η implies:

gi(ξη) = gi(ξ)gi(η) for all ξ, η ∈ R++. (7)

The continuity of fi implies the continuity of gi. Moreover, gi is
increasing because fi is increasing. That is, the map gi : R++ → R++ is
a continuous, increasing and satisfies (7). Consider the map Γi : R→ R
which is defined as follows:

Γi(µ) := log
(
gi[exp(µ)]

)
for all µ ∈ R. (8)

Being a composition of continuous maps, Γi is continuous. Further,
being the composition of increasing maps, Γi is increasing. Note that
ξ ∈ R++ 7→ log ξ ∈ R is a homeomorphism. Thus, observe:

Γi
(

log ξ
)

= log
(
gi(ξ)

)
for all ξ ∈ R++. (9)

Now, (7) and (9) imply: Γi(µ+ ν) = Γi(µ) + Γi(ν) for all µ, ν ∈ R.
That is, Γi is a continuous and increasing map which satisfies the
Cauchy functional equation. Then, by Corollary 2 of chapter 4 in
Aczél & Dhombres (1989), there exists πi ∈ R such that:

Γi(µ) = πiµ for every µ ∈ R. (10)

Since Γi is increasing, it must be that πi > 0. Further, (9) and
(10) imply: gi(ξ) = ξπi for all ξ ∈ R++. Define θi := fi(1). Since
fi(0) = 0 and fi is increasing, we have fi(1) > 0. That is, θi > 0. Thus,
fi(ξ) = θiξ

πi for all ξ ∈ R++. Since πi > 0 and fi(0) = 0, it follows
that: fi(ξ) = θiξ

πi for all ξ ∈ R+. We now argue: πi = πj for all
i, j ∈ N . Observe, the argument to establish (7) involved showing: for
any κ > 0, there exists α > 0 such that αfi(1) = fi(κ) for all i ∈ N .
Since fi(ξ) = θiξ

πi for all ξ ∈ R++, we obtain: πi = (1/κ) logα for all
i ∈ N . Thus, πi = πj for every i, j ∈ N . Now, pick any i∗ ∈ N and let
p := πi∗. Since πi = πj for all i, j ∈ N , (6) implies:

u(x) =
n∑
i=1

θi|xi|p for all x ≡ (x1, . . . , xn) ∈ Rn.

Recall, from definition 2, the map ‖·‖(θ, p) : Rn → R+ is defined as:

‖x‖(θ, p) :=
(∑n

i=1 θi|xi|p
)1/p

for all x ∈ Rn.
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Now, p > 0 implies ξ ∈ R+ 7→ ξ1/p is increasing. Then, the map
x ∈ Rn 7→ [u(x)]1/p represents � because u represents �. Also, note
that [u(x)] = ‖x‖(θ, p) for all x ∈ Rn. Hence, ‖·‖(θ, p) represents �.
Recall, we have already obtained that θi > 0 for all i ∈ N . This is
because θi = fi(1) by definition, where fi(0) = 0 and fi is increasing.
Hence, it only remains to argue: p ≥ 1.

Suppose p < 1. Let ei be the ith standard basis vector of Rn, and

C := {x ∈ Rn : u(x) ≤ 1}. Define x(i) := (1/θ
1/p
i ) · ei for all i ∈ N .

Also, let x∗ := (1/n) ·
∑

i∈N x
(i). Note, u(x(i)) = 1 for every i ∈ N .

Thus, x(i) ∈ C for each i ∈ N . Further, u(x∗) = (1/np)
∑

i∈N 1 = n1−p.
Then, p < 1 implies u(x∗) > 1. Thus, x∗ /∈ C. Hence, C is not convex.
However, u represents � which satisfies Convexity. Thus, we have a
contradiction. Hence, p ≥ 1 as required. �
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