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Introduction

In this thesis we first study a stochastic heat equation driven by Lévy noise and understand the
well-posedness of the associated martingale problem. We use the method of duality to establish
the same. In the second part of the thesis we explore themethod of Algebraic duality and establish
weak-uniqueness for a class of infinite dimensional interacting diffusions. We conclude the thesis
with some preliminary observations on how to construct path wise stochastic integrals under a
Poisson random measure.

Since the publication of Walsh’s monograph [Wal86] and the book of Da Prato and Zabczyk
[DPZ14] the field of stochastic partial differential equations (SPDE) has seen rapid evolution.
Studies of many types of SPDEs can be found in the vast literature accrued since then. How-
ever, most of these works consider equations whose forcing term is the Gaussian white noise.
The primary reasons for this is that equations driven by Gaussian noise display many appealing
characteristics such as finite second moment and continuity of solutions. On the other hand,
many physical systems can be modeled with greater accuracy if one assumes that the noise in-
volved is non-Gaussian.

In probability theory Lévy processes are a natural generalization of the most well-known of
Gaussian processes, viz. the Brownian motion. Like the latter, the former have independent and
stationary increments. But unlike the Brownian motion, Lévy processes are not assumed to be
continuous. This attribute makes them particularly well-suited for various naturally occurring
systems which display discontinuous behavior. In the area of SPDEs therefore, a two-parameter
version of Lévy processes, which may be called the Lévy noise, are sometimes considered as a
natural generalization of the (Gaussian) space-time white noise. In the first part of this thesis,
we focus on a special type of Lévy noise which are derived from 𝛼-stable processes. Let us now
briefly describe the precise objectives of this thesis.

In the first chapter we give a brief overview of the theory of martingale measures and the
stochastic heat equation with (Gaussian) space-time white noise. Martingale measures give the
mathematically rigorous formalism of two-parameter stochastic forcing and are therefore crucial
to any theory of SPDE.

Chapter 2 is devoted to the main question addressed in this thesis, viz. does the stochastic
heat equation driven by a stable noise have a unique solution? For us, this will involve showing
that any two solutions of the aforementioned SPDE are equal in distribution. This is called weak
uniqueness of the solution. See Theorem 2.2.3 for the precise statement. In Chapter 3 we complete
the proof of this theorem. These two chapters are based on the preprint [Mai21].

The technique we will use to prove the weak uniqueness result mentioned above is known
as duality, which is another point of focus for this thesis. Stochastic duality seeks to establish
a relationship between a given process, say 𝑋 , with another, say 𝑌 , so that investigating some
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attribute of 𝑌 helps to shed light on that of 𝑋 . This is a well-known method and is regularly
used in statistical physics, population genetics and other areas of modern probability theory. But
due to the lack of any general theory of stochastic duality, it has been observed over the years
that, even though applying duality can yield remarkable results in certain situation, finding the
correct dual of a given process is not easy.

Using ideas from the theory of Lie algebras, a new and potentially unifying approach towards
this problem has recently been proposed. In a joint work with Aritra Mandal [MM22], we use
these ideas to obtain duality relations for somewell-knownMarkov processes. This is the content
of Chapter 4. The main results are recorded in Theorems 4.2.1 and 4.3.1.

Lastly we return to martingale measures (described in Chapter 1) and the theory of integra-
tion against them. It is important to observe here that, as will be discussed in Section 1.2, like
Itô integrals, we can only construct integrals w.r.t. martingale measures only in a weak sense.
Therefore it makes sense to ask the following question: Do the stochastic integrals with respect
to martingale measures have a pathwise meaning? Undoubtedly, the class of all possible martin-
gale measures is vast and we do not expect to answer this question in the most general form. But
fortunately the Poisson random measures constitute a particularly well-understood subclass of
martingale measures.

In Chapter 5 we thus ask the same question restricted only to PRMs. We present some pre-
liminary observations from an ongoing joint work with Siva Athreya and Atul Shekhar [AMS22].
Using some ideas from rough path theory we show that, when integrands are simple enough, it is
indeed possible to interpret stochastic integrals w.r.t. PRMs in a pathwise manner (see Theorem
5.4.4). This chapter also contains the basics of Young and rough integration theories which are
required for our analysis.
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Chapter 1

Overview of martingale measures and
SPDEs driven by Gaussian white noise

In the first part of this thesis we will investigate uniqueness of solutions to a certain SPDE. But
before this we give a brief overview of the subject of stochastic partial differential equations
(SPDE) for the benefit of the uninitiated reader. Those already familiar with this area of proba-
bility theory can start reading this thesis directly from Chapter 2.

At present there are two main approaches to this subject, the random field approach ini-
tiated by Walsh [Wal86] and the semigroup approach of Da Prato and Zabczyk [DPZ14]. Our
exposition follows the first one and we rely on the monographs of Walsh [Wal86] and Khosh-
nevisan [Kho09], [Kho14].

Many examples of interesting SPDEs arising out of a diverse range of disciplines can be found
in [DPZ14, Chapter 0], [Hai09, Chapter 2], [Wal86, Chapter 3]. Since our focus will be on the
stochastic heat equation on the real line, we start by considering the (ordinary) heat equation,

𝜕𝑢

𝜕𝑡
=

1
2
𝜕2𝑢

𝜕𝑥2 , 𝑢 (0, ·) = 𝑢0 (1.0.1)

This describes diffusion of heat content over time in an infinite rod starting from some initial
condition 𝑢0. Now suppose that these systems are under the influence of some external force or
noise and the noise is not dependent on the current state of the observed quantity. We can model
such a phenomenon with the following equation.

𝜕𝑢

𝜕𝑡
=

1
2
𝜕2𝑢

𝜕𝑥2 + 𝐹 (𝑡, 𝑥), 𝑢 (0, ·) = 𝑢0 (1.0.2)

Here 𝐹 (𝑡, 𝑥) stands for the influence of the forcing at time 𝑡 ≥ 0 and space 𝑥 ∈ R. When 𝐹 is
nice enough,1 we can apply the Duhamel’s principle (cf. [Eva10, Section 2.3]) to write down an
explicit solution for (1.0.2) as follows: for 𝑡 > 0 and 𝑥 ∈ R,

𝑢 (𝑡, 𝑥) =
∫
R
𝑝𝑡 (𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 +

∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)𝐹 (𝑠,𝑦) 𝑑𝑠 𝑑𝑦. (1.0.3)

Here 𝑝𝑡 (𝑥) := 1√
2𝜋𝑡 exp

(
−𝑥2

2𝑡

)
is the heat kernel.

1For instance, F can be taken to be smooth and compactly supported.
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Unfortunately, the random forcing terms that we shall consider in the sequel are rather irreg-
ular and thus, to obtain an expression such as the one above, we must first define them precisely.
This is done in the next section. In Section 1.2 we define integrals such as the second term in the
R.H.S. of (1.0.3).

1.1 White noise and martingale measures

This section is devoted towards understanding and defining the noise term in (1.0.2). The most
common type of noise that appear in the SPDE literature is known as Gaussian white noise, often
denoted by ¤𝑊 . To visualize such an object, it helps to consider a discrete grid inside our domain
[0,∞) × R, say the integer lattice N × Z. To each point (𝑡, 𝑥) in the grid we assign a 𝑁 (0, 1)-
distributed random variable, denoted by ¤𝑊𝑡,𝑥 and impose the property that the collection { ¤𝑊𝑡,𝑥 |
(𝑡, 𝑥) ∈ N × Z} be independent and identically distributed (i.i.d.). Formally we can write,

E[ ¤𝑊𝑡,𝑥
¤𝑊𝑠,𝑦] = 𝛿𝑡−𝑠𝛿𝑥−𝑦

where (𝑠,𝑦), (𝑡, 𝑥) ∈ N × Z and 𝛿 denotes the Dirac delta function. In practice this means that,
at each point on the lattice, the observed quantity gets a random kick and the intensity of kicks
are i.i.d.

Now we can ask how whether it is possible to implement the same idea in the continuous
setting, i.e. on the whole [0,∞) × R. This is indeed possible and we can think of this space-time
white noise on the real line as the derivative of Brownian motion. But due to Brownian motion’s
highly irregular nature, we must interpret its derivative in the sense of Schwartz distributions.
Although we shall work in standard Euclidean spaces, we define the white noise in the more
general setting of an abstract Polish space, a separable and completely metrizable topological
space.

Definition 1.1.1. Let (𝐸, E) be a measurable space with a 𝜎-finite measure `. Let Λ = {𝐴 ∈ E |
` (𝐴) < ∞}. A Gaussian white noise (or simply white noise)𝑊 on 𝐸 is a collection of random
variables {𝑊 (𝐴) | 𝐴 ∈ Λ} such that the following conditions hold.

• 𝑊 (𝐴) ∼ 𝑁 (0, ` (𝐴)) for each 𝐴 ∈ Λ.

• When 𝐴, 𝐵 ∈ Λ are disjoint,𝑊 (𝐴) and𝑊 (𝐵) independent and

𝑊 (𝐴 ∪ 𝐵) =𝑊 (𝐴) +𝑊 (𝐵) .

From this definition it is clear that {𝑊 (𝐴)}𝐴∈Λ is a Gaussian process, i.e. for every finite
collection of sets 𝐴1, . . . , 𝐴𝑘 ∈ Λ, the vector (𝑊 (𝐴1), . . . ,𝑊 (𝐴𝑘 )) follows a multi-variate normal
distribution. If we define 𝐶 to be the covariance functional, then for 𝐴, 𝐵 ∈ Λ

𝐶 (𝐴, 𝐵) = E[𝑊 (𝐴)𝑊 (𝐵)] = E[𝑊 (𝐴 ∩ 𝐵)2] = ` (𝐴 ∩ 𝐵)

using the definition above. 𝐶 is clearly symmetric. It is a known consequence of the Kolmogorov
extension theorem that when 𝐶 is non-negative definite, there is probability space (Ω,F, P) on
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which a Gaussian process 𝑊 exists with covariance 𝐶 . To see that 𝐶 is indeed non-negative
definite we take real numbers 𝑎1, . . . , 𝑎𝑘 and sets 𝐴1, . . . , 𝐴𝑘 ∈ Λ and observe that

𝑘∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑎𝑖𝑎 𝑗𝐶 (𝐴𝑖 , 𝐴 𝑗 ) =
𝑘∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑎𝑖𝑎 𝑗` (𝐴𝑖 ∩𝐴 𝑗 ) =
∫
𝐸

(
𝑘∑︁
𝑖=1

𝑎𝑖1𝐴𝑖

)2

𝑑` ≥ 0.

From now on we shall assume that there exists a probability space (Ω,F, P) on which𝑊 and all
other subsequent random objects are defined.

Some familiar processes can be recovered from the definition of the white noise. For example,
if𝑊 is a white noise on (R,B(R))2 (with the Lebesgue measure), the function 𝑡 ↦→ 𝑊 ( [0, 𝑡])
defines a standard Brownian motion. And if𝑊 is a white noise on (R2,B(R2)) (again with the
Lebesgue measure), the function 𝑡 ↦→𝑊 ( [0, 𝑒𝑡 ] × [0, 𝑒−𝑡 ]) is an Ornstein-Uhlenbeck process.

Before going further we take note of an important feature of the white noise𝑊 . While𝑊
is, by definition, a finitely additive measure, in general it is not countably additive almost surely.
Instead, if we take a countable collection of disjoint sets𝐴1, 𝐴2, . . . ∈ Λ such that𝐴 := ∪∞

𝑖=1𝐴𝑖 ∈ Λ,
as 𝑛 → ∞ by Definition 1.1.1 we have

E

�����𝑊
(
𝑛∑︁
𝑖=1

𝐴𝑖

)
−𝑊 (𝐴)

�����2 = E
�����𝑊

( ∞∑︁
𝑖=𝑛+1

𝐴𝑖

)�����2 = `
( ∞∑︁
𝑖=𝑛+1

𝐴𝑖

)
=

∞∑︁
𝑖=𝑛+1

` (𝐴𝑖) → 0,

since ` (𝐴) < ∞. This can be written concisely as
∞∑︁
𝑖=1

𝑊 (𝐴𝑖) =𝑊
( ∞⋃
𝑖=1

𝐴𝑖

)
in 𝐿2(Ω,F, P) .

Thus𝑊 is a 𝜎-finite 𝐿2(Ω)-valued measure. We now define this notion precisely. As usual, (𝐸, E)
is a Polish space.

Let 𝑈 : E × Ω → R ∪ {±∞} be a random set-function3 and let A ⊆ E be a set algebra, i.e. a
collection of sets that contains the empty set, complements of all its members and is closed under
finite unions and finite intersections. Assume that for all 𝐴 ∈ A, we have E[𝑈 (𝐴)2] < ∞ and
that𝑈 is almost surely finitely additive on A.

Definition 1.1.2. (a) The function 𝑈 is called 𝜎-finite if there is an increasing sequence {𝐸𝑛}𝑛
of E-measurable such that,

• 𝐸 = ∪∞
𝑛=1𝐸𝑛 ,

• for every 𝑛 ≥ 1, E𝑛 := {𝐴 ∩ 𝐸𝑛 | 𝐴 ∈ E} ⊆ A, and

• for every 𝑛 ≥ 1, sup{E[𝑈 (𝐴)2] | 𝐴 ∈ E𝑛} < ∞.

(b) Let 𝑈 be a 𝜎-finite finitely additive random set-function. Suppose for every decreasing
sequence {𝐴 𝑗 } 𝑗 in some fixed E𝑛 with 𝐴 𝑗 ↓ ∅, we have

lim
𝑗→∞
E[𝑈 (𝐴 𝑗 )2] = 0.

Then𝑈 will be called an 𝐿2(Ω)-valued measure.
2B(𝑆) will denote the Borel 𝜎-algebra on the non-empty set 𝑆 .
3A function that takes sets as its input.
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Note that the last condition ensures that𝑈 is countably additive on 𝐸𝑛 for every 𝑛.
We are ready to define one of the central objects in the theory of stochastic PDEs, namely a

martingale measure. This can easily be seen as a generalization of the space-time white noise on
[0,∞) × R𝑑 . Unlike the white noise however, we demand that in one special "time" co-ordinate
this new object behaves as a martingale. Recall that (Ω,F, (F𝑡 )𝑡 , P) is our underlying filtered
probability space.

Definition 1.1.3. The collection of processes {𝑀𝑡 (𝐴)}𝑡≥0, 𝐴 ∈ A, is called amartingale measure
if

(a) For each 𝐴 ∈ A,𝑀0(𝐴) = 0 a.s.

(b) For each 𝑡 > 0,𝑀𝑡 is a 𝜎-finite 𝐿2(Ω)-valued measure.

(c) For each 𝐴 ∈ A, the process {𝑀𝑡 (𝐴)}𝑡≥0 is an F𝑡 -martingale.

Asmentioned before the space-timewhite noise on [0,∞)×R𝑑 defined by𝑊𝑡 (𝐴) :=𝑊 ( [0, 𝑡]×
𝐴), 𝐴 ∈ B(R𝑑 ) is a martingale measure with respect to the natural filtration (F𝑡 )𝑡 generated by
the processes𝑊𝑡 (·). To check this first note that for 0 ≤ 𝑠 < 𝑡 and a fixed 𝐴 ∈ R𝑑 with finite
Lebesgue measure,𝑊𝑡 (𝐴) −𝑊𝑠 (𝐴) =𝑊 ((𝑠, 𝑡] ×𝐴) is independent of F𝑠 . Thus

E [𝑊𝑡 (𝐴) | F𝑠] =𝑊𝑠 (𝐴) + E [𝑊𝑡 (𝐴) −𝑊𝑠 (𝐴) | F𝑠] =𝑊𝑠 (𝐴) + E [𝑊𝑡 (𝐴) −𝑊𝑠 (𝐴)] =𝑊𝑠 (𝐴) .

Another important class of martingale measures comes from Poisson random measures. Al-
though they can be defined on any measure spaces, we shall define them on the Euclidean space
[0,∞) × R𝑑 .

Definition 1.1.4. Suppose ` is a 𝜎-finite measure on (R𝑑 ,B(R𝑑 )). On an appropriate probability
space let 𝑁 be a random measure on [0,∞) × R𝑑 having the following properties.

(i) Whenever 𝐸 ∈ B(R𝑑 ) with ` (𝐸) < ∞, 𝑡 ↦→ 𝑁 ( [0, 𝑡) × 𝐸) =: 𝑁𝑡 (𝐸) is a Poisson process
with intensity ` (𝐸) = E𝑁 (1, 𝐸).

(ii) If 𝐴1, . . . , 𝐴𝑘 ∈ B( [0,∞) × R𝑑 ) are disjoint, then the random variables 𝑁 (𝐴1), . . . , 𝑁 (𝐴𝑘 )
are independent.

Then 𝑁 will be called a Poisson random measure (PRM) on [0,∞) × R𝑑 with intensity measure
𝑑𝑡 × ` (𝑑𝑡 denotes the Lebesgue measure on R+).

It follows from the above that, for 0 ≤ 𝑎 < 𝑏 < ∞ and ` (𝐸) < ∞, then we have𝑁 ( [𝑎, 𝑏)×𝐸) ∼
Poisson((𝑏 − 𝑎)` (𝐸)). Now let us define the compensated PRM �̃� as follows. If 𝑎, 𝑏 and 𝐸 are as
above,

�̃� ((𝑎, 𝑏] × 𝐸) := 𝑁 ((𝑎, 𝑏] × 𝐸) − (𝑏 − 𝑎)` (𝐸) .

We claim that this is a martingale measure in the sense of Definition 1.1.3. Clearly, a.s �̃�0(𝐸) = 0.
As the Lebesgue measure on R+ and ` on R𝑑 are 𝜎-finite, the second condition also holds. Lastly,
as {𝑁𝑡 (𝐸)}𝑡≥0 is a Poisson process, it has independent increments. Thus, for 𝑠 < 𝑡 and 𝐸 ∈ B(R𝑑 )
with ` (𝐸) < ∞,

E[�̃�𝑡 (𝐸) | F𝑠] = E[𝑁𝑡 (𝐸) − 𝑁𝑠 (𝐸)] − (𝑡 − 𝑠)` (𝐸) + E[𝑁𝑠 (𝐸) − 𝑠` (𝐸) | F𝑠] = �̃�𝑠 (𝐸),

showing that {𝑁𝑡 (𝐸)}𝑡≥0 is an F𝑡 -martingale.
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1.2 Stochastic integration with respect martingale measures

Since the equations that are of interest to us are randomly forced, standard Lebesgue integration
theory is insufficient for giving meaning to their weak forms, such as the one in (1.0.3). The trick
to address this issue is to adapt the Itô integration in the setting of martingale measures. As with
Itô integrals, we start by first defining integration of elementary and simple functions.

Let (𝐸, E) be a Polish space as usual and (Ω,F, (F𝑡 )𝑡≥0, P) be a filtered probability space. An
elementary function 𝑓 : [0,𝑇 ] × 𝐸 × Ω → R is one having the form

𝑓 (𝑠, 𝑥, 𝜔) = 𝑋 (𝜔) · 1(𝑎,𝑏 ] (𝑠) · 1𝐴 (𝑥)

where 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇 , 𝐴 ∈ E and 𝑋 is a bounded F𝑠-measurable random variable. Finite sums of
elementary functions are called simple functions. Let S be the collection of all simple functions
and P denote the 𝜎-algebra on [0,𝑇 ] ×𝐸 ×Ω generated by S. We refer to P-measurable functions
or stochastic processes as predictable.

Given amartingalemeasure𝑀 on 𝐸, we can nowdefine the integral of an elementary function
𝑓 against𝑀 as follows.

Definition 1.2.1. For 𝑡 ∈ [0,𝑇 ] and 𝐵 ∈ E,

(𝑓 ·𝑀)𝑡 (𝐵,𝜔) =
(∫ 𝑡

0

∫
𝐵

𝑓 𝑑𝑀

)
(𝜔) := 𝑋 (𝜔) [𝑀𝑡∧𝑏 (𝐴 ∩ 𝐵) (𝜔) −𝑀𝑡∧𝑎 (𝐴 ∩ 𝐵) (𝜔)] . (1.2.1)

By linearity the same definition can be extended to simple functions.

We here observe that 𝑓 ·𝑀 is itself a martingale measure. This is because for elementary 𝑓 ,
𝐵 ∈ E and 𝑠 < 𝑡

E [(𝑓 ·𝑀)𝑡 (𝐵) | F𝑠] =𝑋 · E[𝑀𝑡∧𝑏 (𝐴 ∩ 𝐵) −𝑀𝑡∧𝑎 (𝐴 ∩ 𝐵) |F𝑠]
=𝑋 · [𝑀𝑠∧𝑏 (𝐴 ∩ 𝐵) −𝑀𝑠∧𝑎 (𝐴 ∩ 𝐵)] .

𝑓 ·𝑀 satisfies the other properties in Definition 1.1.3 trivially.
Before extending the integration defined above to a larger class of functions, we introduce

some concepts.

Definition 1.2.2. If 𝑀 is a martingale measure on 𝐸, then we define its covariance functional.
For 𝐴, 𝐵 ∈ E,

𝑄𝑡 (𝐴, 𝐵) := ⟨𝑀 (𝐴), 𝑀 (𝐵)⟩𝑡 , 𝑡 ∈ [0,𝑇 ],

where ⟨·, ·⟩ denotes the quadratic covariation. Also, for 𝐴, 𝐵 ∈ E and 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 , let

𝑄 (𝐴 × 𝐵 × (𝑠, 𝑡]) := 𝑄𝑡 (𝐴, 𝐵) −𝑄𝑠 (𝐴, 𝐵).

By [Pro05, Theorem II.22] we know that the process 𝑡 ↦→ 𝑄𝑡 (𝐴,𝐴) is increasing and that
𝑄𝑡 (·, ·) is bilinear4. 𝑄 is a measure-like functional on the collection of sets of the form𝐴×𝐵×(𝑠, 𝑡],

4Linear in both coordinates
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called rectangles. If 𝐴𝑖 × 𝐵𝑖 × (𝑠𝑖 , 𝑡𝑖], 𝑖 = 1, . . . , 𝑘 are disjoint rectangles, we can define 𝑄 on their
union by linearity,

𝑄

(
𝑘⋃
𝑖=1

𝐴𝑖 × 𝐵𝑖 × (𝑠𝑖 , 𝑡𝑖]
)

:=
𝑘∑︁
𝑖=1

𝑄 (𝐴𝑖 × 𝐵𝑖 × (𝑠𝑖 , 𝑡𝑖]) .

One can also check that the above is well-defined.
As demonstrated in [Wal86, Chapter 2, p. 305], not all martingale measures can serve as an

integrator for predictable functions. This lets us introduce the following special subclass. Recall
that in Definition 1.1.2 we have stipulated the existence of a nested collection {𝐸𝑛}𝑛≥1 in (𝐸, E)
satisfying certain properties.

Definition 1.2.3. A martingale measure 𝑀 on 𝐸 is called worthy if there is a random 𝜎-finite
measure 𝐾 (𝑑𝑠, 𝑑𝑦, 𝑑𝑡, 𝜔) on (𝐸 × 𝐸 × [0,𝑇 ], E × E × B( [0,𝑇 ])) such that,

(i) 𝐾 is symmetric in the first two "space" coordinates.

(ii) 𝐾 is positive definite in the sense that, for any bounded measurable function 𝑓 : 𝐸 ×
[0,∞) → R we have, ∫

𝐸

∫
𝐸

∫ ∞

0
𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑡)𝐾 (𝑑𝑥, 𝑑𝑦, 𝑑𝑡) ≥ 0,

whenever the above integral exists finitely.

(iii) For 𝐴, 𝐵 ∈ E and 𝑡 ≥ 0, the process {𝐾 (𝐴 × 𝐵 × (0, 𝑡])}𝑡≥0 is predictable.

(iv) For each 𝑛 ∈ N, E[𝐾 (𝐸𝑛 × 𝐸𝑛 × [0,𝑇 )] < ∞.

(v) For 𝐴, 𝐵 ∈ E and 𝑡 ≥ 0, we have

|𝑄 (𝐴 × 𝐵 × [0, 𝑡) | ≤ 𝐾 (𝐴 × 𝐵 × [0, 𝑡)) a.s.

where 𝑄 is as in Definition 1.2.2

We call 𝐾 the dominating measure of𝑀 .

Now we are in the position of extending Definition 1.2.1. We are going to assume that we
have a worthy martingale measure𝑀 dominated by 𝐾 . For a predictable 𝑓 and 𝑔, let

⟨𝑓 , 𝑔⟩𝐾 :=
∫
𝐸

∫
𝐸

∫ ∞

0
𝑓 (𝑥, 𝑡)𝑔(𝑦, 𝑡)𝐾 (𝑑𝑥, 𝑑𝑦, 𝑑𝑡)

and

∥ 𝑓 ∥𝑀 := (E⟨|𝑓 |, |𝑓 |⟩𝐾 )1/2. (1.2.2)

Let P𝑀 denote the collection of all predictable functions 𝑓 with the property that ∥ 𝑓 ∥𝑀 < ∞. It
is easy to check that that the above defines a norm on this space. We have the following results
whose proof can be found in [Wal86, Proposition 2.3].
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Proposition 1.2.4. (i) (P𝑀 , ∥·∥𝑀 ) is a Banach space.

(ii) The set S of all simple functions is dense in P𝑀 in the norm ∥·∥𝑀 .

Let us now define integrals 𝑓 ·𝑀 for all 𝑓 ∈ P𝑀 . Fix a 𝑓 ∈ P𝑀 . Then the first part of the above
proposition says that there exists a sequence of simple functions {𝑓𝑛}𝑛≥1 such that ∥ 𝑓𝑛− 𝑓 ∥𝑀 → 0
as 𝑛 → ∞. Now, for each 𝑛,𝑚 ≥ 1 and 𝐸 ∈ E,

E[((𝑓𝑛 ·𝑀)𝑡 (𝐸) − (𝑓𝑚 ·𝑀)𝑡 (𝐸))2] =E
[∫
𝐸

∫
𝐸

∫ 𝑡

0
𝑓𝑛,𝑚 (𝑥, 𝑠) 𝑓𝑛,𝑚 (𝑦, 𝑠)𝑄 (𝑑𝑥, 𝑑𝑦, 𝑑𝑠)

]
≤E

[∫
𝐸

∫
𝐸

∫ 𝑡

0
|𝑓𝑛,𝑚 (𝑥, 𝑠) 𝑓𝑛,𝑚 (𝑦, 𝑠) |𝐾 (𝑑𝑥, 𝑑𝑦, 𝑑𝑠)

]
=∥ 𝑓𝑛 − 𝑓𝑚 ∥2

𝑀 .

where we have used the notation 𝑓𝑛,𝑚 = 𝑓𝑛 − 𝑓𝑚 . This shows that the sequence {(𝑓𝑛 ·𝑀)𝑡 (𝐸)}𝑛≥1
is Cauchy in 𝐿2(Ω). By completeness of the 𝐿2(Ω), there exists a limit of this sequence. We
denote this by

(𝑓 ·𝑀)𝑡 (𝐸) =
∫ 𝑡

0

∫
𝐹

𝑓 (𝑠, 𝑥)𝑀 (𝑑𝑠, 𝑑𝑥),

and this is the required stochastic integral.
Finally, we state the a result which can be interpreted as a version of Itô isometry applied to

integrals against martingale measures.

Proposition 1.2.5. Suppose𝑀 is a worthy martingale measure with covariance 𝑄 and 𝑓 ∈ P𝑀 .

(i) Then (𝑓 ·𝑀) is itself a worthy martingale measure. The covariance functional corresponding
to (𝑓 ·𝑀) is given by

𝑄 𝑓 ·𝑀 (𝑑𝑥, 𝑑𝑦, 𝑑𝑡) = 𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑡)𝑄 (𝑑𝑥, 𝑑𝑦, 𝑑𝑡).

(ii) For all 𝐸 ∈ E and 𝑡 ≥ 0,

E[((𝑓 ·𝑀)𝑡 (𝐸))2] ≤ ∥ 𝑓 ∥2
𝑀 ,

where ∥ 𝑓 ∥𝑀 is defined in (1.2.2).

1.3 The stochastic heat equation

Let us now consider the non-linear stochastic heat equation (SHE) with a multiplicative Gaus-
sian space-time white noise𝑊 defined on a filtered probability space (Ω,F, {F𝑡 }𝑡≥0, P). In the
following ¤𝑊 will denote the distributional derivative of𝑊 . Let 𝑢0 : R → R be a non-random
function. Our object of attention in this section is the equation,

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) =1

2Δ𝑢 (𝑡, 𝑥) + 𝜎 (𝑢 (𝑡, 𝑥))
¤𝑊𝑡,𝑥 , 𝑡 ≥ 0, 𝑥 ∈ R

𝑢 (0, ·) =𝑢0, (1.3.1)
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where Δ = 𝜕2

𝜕𝑥2 . We shall assume that 𝜎 : R→ R is a bounded Lipschitz function, i.e. there exists
a finite constant 𝐾 > 0 such that

|𝜎 (𝑥) | ≤ 𝐾 and |𝜎 (𝑥) − 𝜎 (𝑦) | ≤ 𝐾 |𝑥 − 𝑦 |, (1.3.2)

for all 𝑥,𝑦 ∈ R.
The aim of this section is to prove the existence and uniqueness of the solution 𝑢 = 𝑢 (𝑡, 𝑥) to

(1.3.1). Observe that (1.3.1) is purely formal. This is because, since we cannot a priori guarantee
the smoothness of 𝑢 in either time or in space, the derivatives appearing in (1.3.1) make little
sense. Indeed, it is known that the 𝑢 has a continuous modification which is only ( 1

4 − 𝜖)-Hölder
in time and ( 1

4 − 𝜖)-Hölder in space, for any small 𝜖 > 0 (cf. [Kho09, Theorem 6.7]). Therefore
they must interpreted as (Schwartz) distributional derivatives. This gives rise to the so-called
mild formulation of (1.3.1), which we presently write down.

𝑢 (𝑡, 𝑥) =
∫
R
𝑝𝑡 (𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 +

∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)𝜎 (𝑢 (𝑠,𝑦))𝑊 (𝑑𝑠, 𝑑𝑦), 𝑡 ≥ 0, 𝑥 ∈ R, (1.3.3)

where as before 𝑝𝑡 (𝑥) = 1√
2𝜋𝑡 exp

(
−𝑥2

2𝑡

)
. Note that𝑊 is the (Gaussian) space-time white noise on

R+ + 𝑥R and that the stochastic integral in the r.h.s. of the above with respect to𝑊 was defined
in the previous section. We now state our main theorem precisely. Henceforth we shall treat
(1.3.3) as the main equation of interest. The proof follows that of [Kho09, Theorem 6.4].

Theorem 1.3.1. Assume that 𝑢0 is bounded and that 𝜎 is a bounded Lipschitz with constant 𝐾 (as
in (1.3.2)). Then the following holds.

(i) (1.3.3) has a solution.

(ii) If 𝑢 and 𝑣 are two solutions of (1.3.3) defined on the same probability space, then a.s.

𝑢 (𝑡, 𝑥) = 𝑣 (𝑡, 𝑥)

for all 𝑡 ≥ 0 and 𝑥 ∈ R. This condition is sometimes called pathwise uniqueness.

(iii) The solution 𝑢 has finite second moments. More precisely, for any 𝑇 > 0 we have

sup
𝑡 ∈[0,𝑇 ]

sup
𝑥∈R
E

(
|𝑢 (𝑡, 𝑥) |2

)
< ∞ (1.3.4)

The key tool for all these statements is the Grönwall lemma. This is the content of the next
result.

Lemma 1.3.2. Let 𝑇 > 0 and 𝑓 , 𝑔 and ℎ be non-negative integrable functions on [0,𝑇 ] satisfying
the following inequality for all 𝑡 ∈ [0,𝑇 ],

𝑓 (𝑡) ≤ 𝑔(𝑡) +
∫ 𝑡

0
ℎ(𝑠) 𝑓 (𝑠) 𝑑𝑠. (1.3.5)

Then for a.e. 𝑡 ∈ [0,𝑇 ] we have,

𝑓 (𝑡) ≤ 𝑔(𝑡) +
∫ 𝑡

0
𝑔(𝑠)ℎ(𝑠) exp

(∫ 𝑠

0
ℎ(𝑟 ) 𝑑𝑟

)
𝑑𝑠. (1.3.6)
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The proof is omitted as it is standard.

Proof of Theorem 1.3.1. Throughout the proof 𝐶 will be used as a generic constant whose value
may change from one line to the next. We start our proof with the last statement, assuming that
a (1.3.3) has a solution 𝑢. By Itô isometry for stochastic integrals against martingale measures
(see Proposition 1.2.5(ii) for a similar result) we have,

E

(����∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)𝜎 (𝑢 (𝑠,𝑦))𝑊 (𝑑𝑠, 𝑑𝑦)

����2) =

∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)2E

[
𝜎 (𝑢 (𝑠,𝑦))2] 𝑑𝑠𝑑𝑦

≤𝐶
∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)2E

[
𝑢 (𝑠,𝑦)2]2

𝑑𝑠𝑑𝑦,

by (1.3.2). Jensen’s inequality, on the other hand, gives,(∫
R
𝑝𝑡 (𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦

)2
≤

∫
R
𝑝𝑡 (𝑥 − 𝑦)𝑢0(𝑦)2 𝑑𝑦 ≤ 𝐶,

as 𝑢0 is assumed to be bounded. Therefore we get from (1.3.3),

E(𝑢 (𝑡, 𝑥)2) ≤ 𝐶 +𝐶
∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)2E

[
𝑢 (𝑠,𝑦)2]2

𝑑𝑠𝑑𝑦. (1.3.7)

If we define

𝑍𝑡 = sup
𝑠∈[0,𝑡 ]

sup
𝑥∈R
E(𝑢 (𝑠, 𝑥)2),

from (1.3.7) we obtain,

𝑍𝑡 ≤ 𝐶 +𝐶
∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)2𝑍𝑠 𝑑𝑠 𝑑𝑦 = 𝐶 +𝐶

∫ 𝑡

0

𝑍𝑠√
𝑡 − 𝑠

𝑑𝑠 (1.3.8)

Now let 𝑝 ∈ (1, 2) and 𝑞 > 1 be such that 1
𝑝
+ 1
𝑞
= 1. By Hölder’s inequality,∫ 𝑡

0

𝑍𝑠√
𝑡 − 𝑠

𝑑𝑠 ≤
(∫ 𝑡

0
(𝑡 − 𝑠)−

𝑝

2 𝑑𝑠

) 1
𝑝

·
(∫ 𝑡

0
𝑍
𝑞
𝑠 𝑑𝑠

) 1
𝑞

≤ 𝐶
(∫ 𝑡

0
𝑍
𝑞
𝑠 𝑑𝑠

) 1
𝑞

. (1.3.9)

From (1.3.8) we thus have,

𝑍
𝑞

𝑡 ≤ 𝐶 +𝐶
∫ 𝑡

0
𝑍
𝑞
𝑠 𝑑𝑠 (1.3.10)

We are now in a position to apply Grönwall’s inequality from Lemma 1.3.2. This shows that
𝑍𝑡 ≤ 𝐶 for some constant 𝐶 < ∞ and hence proves (1.3.4).

Now let us prove that (1.3.3) indeed has at least one solution. The key tool for proving ex-
istence is the Picard iteration scheme. We will define by induction a sequence {𝑢𝑛}𝑛≥1 of two-
parameter random fields as follows. Let 𝑢0(𝑥, 𝑡) = 𝑢0(𝑥) for all 𝑥 ∈ R and 𝑡 ≥ 0. Given 𝑢𝑛 ,
let

𝑢𝑛+1(𝑡, 𝑥) :=
∫
R
𝑝𝑡 (𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 +

∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)𝜎 (𝑢𝑛 (𝑠,𝑦))𝑊 (𝑑𝑠, 𝑑𝑦), 𝑡 ≥ 0, 𝑥 ∈ R.

(1.3.11)
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We will show that 𝑢𝑛 converges to a limit in 𝐿2(Ω,F, P). This limit will be the required solution.
For 𝑛 ≥ 1, let

𝐻𝑛 (𝑡) = sup
𝑠∈[0,𝑡 ]

sup
𝑥∈R
E

(
|𝑢𝑛+1(𝑠, 𝑥) − 𝑢𝑛 (𝑠, 𝑥) |2

)
.

From (1.3.11), Itô isometry and (1.3.2), we have

E
[
|𝑢𝑛+1(𝑡, 𝑥) − 𝑢𝑛 (𝑡, 𝑥) |2

]
≤E

(����∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦) [𝜎 (𝑢𝑛 (𝑠,𝑦)) − 𝜎 (𝑢𝑛−1(𝑠,𝑦))]𝑊 (𝑑𝑠, 𝑑𝑦)

����2)
≤

∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)2E

(
|𝜎 (𝑢𝑛 (𝑠,𝑦)) − 𝜎 (𝑢𝑛−1(𝑠,𝑦)) |2

)
𝑑𝑠 𝑑𝑦,

and therefore,

𝐻𝑛 (𝑡) ≤ 𝐶
∫ 𝑡

0

𝐻𝑛−1(𝑠)√
𝑡 − 𝑠

𝑑𝑠 (1.3.12)

for all 𝑡 ≥ 0 and 𝑛 ≥ 1. We can use the same argument from (1.3.9) to show,

𝐻𝑛 (𝑡)𝑞 ≤ 𝐶
∫ 𝑡

0
𝐻𝑛−1(𝑠)𝑞 𝑑𝑠 (1.3.13)

where 𝑞 > 1.
An easy calculation shows that, for all 𝑠 ∈ [0, 𝑡] and 𝑥 ∈ R, we have E

(
|𝑢1(𝑠, 𝑥) − 𝑢0(𝑥) |2

)
≤

𝐶
√
𝑠 and thus 𝐻0(𝑡) ≤ 𝐶

√
𝑡 . Using this as an initial condition, (1.3.12) gives us by induction,

𝐻𝑛 (𝑡)𝑞 ≤ 𝐶1(𝑇 )
𝐶𝑡𝑛−1

(𝑛 − 1)!

for all 𝑡 ∈ [0,𝑇 ] and 𝑛 ≥ 1. This also means that
∑
𝑛≥1𝐻𝑛 (𝑡) < ∞. Therefore, the sequence in

{𝑢𝑛 (𝑡, 𝑥)}𝑛≥1 is Cauchy in 𝐿2(Ω). Call its limit point 𝑢 (𝑡, 𝑥) and this is our required solution.
We now turn to the question of uniqueness of solutions to (1.3.3). The argument is very

similar to what we did before. Suppose 𝑢 and 𝑣 both satisfy (1.3.3). Denote

𝐻 (𝑡) = sup
𝑠∈[0,𝑡 ]

sup
𝑥∈R
E

(
|𝑢 (𝑠, 𝑥) − 𝑣 (𝑠, 𝑥) |2

)
, 𝑡 ≥ 0.

Similarly as in (1.3.8) we use the conditions on 𝜎 and Itô isometry to obtain,

𝐻 (𝑡) ≤ 𝐶
∫ 𝑡

0

𝐻 (𝑡)
√
𝑡 − 𝑠

𝑑𝑠.

From this we can also derive that, for some 𝑞 > 1

𝐻 (𝑡)𝑞 ≤ 𝐶
∫ 𝑡

0
𝐻 (𝑠)𝑞 𝑑𝑠.

Now Grönwall’s inequality shows that 𝐻 (𝑡) = 0. This shows that

P(𝑢 (𝑠, 𝑥) = 𝑣 (𝑠, 𝑥) for all 𝑠 ∈ [0, 𝑡] and 𝑥 ∈ R) = 1

which completes the proof. □
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As we have shown in the previous proof, when 𝜎 is Lipschitz, proving existence, uniqueness
and various other properties of the solutions to (1.3.1) is not difficult. However, when 𝜎 is non-
Lipschitz, there is no standard technique for answering these questions. Our main focus in this
thesis will be the SHE where the noise is Lévy and 𝜎 is only Hölder continuous. We end this
chapter by stating a weak existence result due to Mueller and Perkins [MP92] for the Gaussian
white noise case with 𝜎 being Hölder.

Theorem 1.3.3. Let 0 < 𝛾 < 1 and 𝑢0 be a compactly supported function on R. Then on some
probability space the equation

𝜕𝑢 (𝑡, 𝑥)
𝜕𝑡

=
1
2Δ𝑢 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)

𝛾 ¤𝑊𝑡,𝑥 , 𝑡 ≥ 0, 𝑥 ∈ R

𝑢 (0, 𝑥) =𝑢0(𝑥),

has a solution.

The authors show this result indirectly. They first construct a so-called historical process and
then show that the martingale problem associated with it has a solution. Lastly, they prove that
the density of the historical process satisfies the SHE displayed in the above theorem.
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Chapter 2

The stochastic heat equation driven
by stable noise

We now begin our study of the stochastic equation

𝜕𝑌𝑡 (𝑥)
𝜕𝑡

=
1
2Δ𝑌𝑡 (𝑥) + 𝑌𝑡− (𝑥)

𝛽 ¤𝐿𝛼𝑡,𝑥 , 𝑡 ≥ 0, 𝑥 ∈ R (2.0.1)

where 𝐿𝛼 is a stable noise of index 𝛼 without negative jumps. Here, as in the last chapter, Δ = 𝜕2

𝜕𝑥2 .
Our aim is to show that its solutions are unique in law when 1 < 𝛼 < 2, 0 < 𝛽 <

( 3
𝛼
− 1

)
∧ 1

and 1 < 𝛼𝛽 (see Theorem 2.2.3). Proving uniqueness in law, also called weak uniqueness, is
an important step for establishing that a model of an underlying system of interacting particles
converges to the limit. This chapter contains an overview of the literature related to this problem
and various preliminary concepts.

2.1 Literature

When 𝛼 = 2 the above equation is similar to the following SPDE

𝜕𝑌𝑡 (𝑥)
𝜕𝑡

=
1
2Δ𝑌𝑡 (𝑥) + 𝑌𝑡 (𝑥)

𝛽 ¤𝑊𝑡,𝑥 (2.1.1)

where ¤𝑊 is the Gaussian space-time white noise. When 𝛽 = 1
2 this describes evolution of the

density of the super-Brownian motion (SBM) in R. This measure-valued diffusion is obtained
as the scaling limit of interacting branching Brownian motions. The weak uniqueness of (2.1.1)
with 𝛽 = 1

2 follows from the martingale problem formulation of SBM using exponential duality
(see [Per02, Theorem II.5.1]). As mentioned before at the end of the previous chapter, in the
𝛽 ∈ ( 1

2 , 1) case, the weak existence of (2.1.1) was proved by Mueller, Perkins [MP92]. Weak
uniqueness was established by Mytnik [Myt98]. The question of path-wise uniqueness of (2.1.1)
for 𝛽 > 3

4 was settled by Mytnik and Perkins in 2011 [MP11]. Some negative results are also
known: [MMP14] proved path-wise non-uniqueness of solutions to (2.1.1) for 𝛽 ∈ (0, 3

4 ) and
[BMP10] showed path-wise non-uniqueness for 𝛽 ∈ (0, 1

2 ) with an added non-trivial drift.
Let us now consider (2.0.1) where 𝑥 ∈ R𝑑 . For 𝛼 ≠ 2, Mueller [Mue98] proved a certain short

time (strong) existence of solution to (2.0.1) under the relations 𝑑 <
2(1−𝛼 )

𝛼𝛽−(1−𝛼 ) , 𝛼 ∈ (0, 1). The
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weak existence was shown by [Myt02] under the relations 0 < 𝛼𝛽 < 2
𝑑
+1, 1 < 𝛼 < min(2, 2

𝑑
+1).

When 𝑑 = 1 and 𝛼𝛽 = 1 it is known that (2.0.1) describes the density of the super-Brownian
motion with 𝛼-stable branching mechanism; see [MP03] for more details. The weak uniqueness
for this case was proved in [Myt02] while the same for the general case was left open (see [Myt02,
Remark 5.9]). See Figure 2.2 for a graphical representation of the (𝛼, 𝛽)-parameter space.

As stated earlier in our main result we resolve the question for the case 𝑑 = 1, 1 < 𝛼 < 2,
0 < 𝛽 < 1 and 1 < 𝛼𝛽 . We note that the weak uniqueness for (2.0.1) when 𝑑 = 1, 1 < 𝛼 < 2,
𝛼𝛽 < 1 still remains open.

It is known that path-wise uniqueness implies weak uniqueness for (2.0.1). But as the coeffi-
cient of the noise term in (2.0.1) is not Lipschitz, standard techniques such as Grönwall’s inequal-
ity cannot be used to prove path-wise uniqueness of solutions. However, more recently Yang and
Zhou [YZ17] have established path-wise uniqueness for (2.0.1) in the regime 2(𝛼−1)

(2−𝛼 )2 < 𝛽 < 1
𝛼
+𝛼−1

2
and 𝑑 = 1. This region partially overlaps with that stated in Theorem 2.2.3 when 𝛽 > 1

𝛼
.

In the next subsection we precisely define our model and state the main theorem.

2.2 Model and main result

To define our model and state the main result we need to introduce the following notations. Let
∥ 𝑓 ∥∞ = sup𝑥∈R |𝑓 (𝑥) | and ∥ 𝑓 ∥𝑝 =

(∫
R
|𝑓 (𝑥) |𝑝 𝑑𝑥

)1/𝑝
for 𝑝 ≥ 1 be the norms of the spaces L∞(R)

and L𝑝 (R) respectively. The norms on L∞( [0,𝑇 ] × 𝑅) and L𝑝 ( [0,𝑇 ] × R) are defined similarly.
By L𝑝

𝑙𝑜𝑐
(R+ × R) we will mean the collection of (equivalence classes of) measurable functions

𝑓 : R+ × R→ R such that
∫ 𝑇

0

∫
R
|𝑓 (𝑠, 𝑥) |𝑝 𝑑𝑠 𝑑𝑥 < ∞ for all 𝑇 ∈ (0,∞). We also define S ≡ S(R)

to be the space

S(R) =
{
𝜑 ∈ C∞(R) | for all𝑚,𝑛 ∈ N, sup

𝑥∈R
|𝑥𝑚𝜑 (𝑛) (𝑥) | < ∞

}
of all smooth rapidly-decreasing functions defined on R whose derivatives of all orders are also
rapidly-decreasing. In the above, C∞(R) is the space of all infinitely differentiable real-valued
functions on R and 𝜑 (𝑛) stands for the 𝑛-th order derivative of 𝜑 . The subsets of L𝑝 (R) and S(R)
containing all non-negative functions are denoted by L𝑝 (R)+ and S+ ≡ S(R)+ respectively.

Let 𝑀𝐹 ≡ 𝑀𝐹 (R) be the set of all non-negative finite measures on the real line, R, equipped
with the topology of weak convergence. We denote the space of all cádlág paths in 𝑀𝐹 as 𝐷 ≡
𝐷 ( [0,∞), 𝑀𝐹 ). This space is equipped with the topology of weak convergence andB(𝐷) denotes
the Borel 𝜎-algebra on 𝐷 . Similarly, B(R) denotes the 𝜎-algebra of all Borel measurable subsets
of R and for 𝐸 ∈ B(R) we use |𝐸 | for the Lebesgue measure of 𝐴. For ` ∈ 𝑀𝐹 and 𝜑 ∈ S we
denote ⟨`, 𝜑⟩ =

∫
R
𝜑 𝑑`. We will often identify a measurable function 𝑓 : (R,B(R)) → R with

𝑓 (𝑥) 𝑑𝑥 , where 𝑑𝑥 denotes the Lebesgue measure. In this case, ⟨𝑓 , 𝜑⟩ :=
∫
R
𝑓 (𝑥)𝜑 (𝑥) 𝑑𝑥 .

Definition 2.2.1. Let 𝛼 ∈ (0, 2). Suppose for each 𝐸 ∈ B(R) with |𝐸 | < ∞, {𝐿𝛼𝑡 (𝐸)}𝑡≥0 is a
martingale defined on some filtered probability space (Ω,F, (F𝑡 )𝑡≥0, P) and

E exp (−_𝐿𝛼𝑡 (𝐸)) = exp (_𝛼𝑡 |𝐸 |), (2.2.1)

for all 𝑡 ≥ 0, _ ≥ 0. Then we call 𝐿𝛼 an 𝛼-stable martingale measure on [0,∞)×Rwithout negative
jumps.
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Observe that 𝐿𝛼 (𝐸 × [0, 𝑡]) := 𝐿𝛼𝑡 (𝐸) is indeed a martingale measure in the sense of Walsh
[Wal86, Chapter 2].

Definition 2.2.2. Let 𝑌0 ∈ 𝑀𝐹 . Given an 𝛼-stable martingale measure 𝐿𝛼 on (Ω,F, (F𝑡 )𝑡≥0, P)
without negative jumps, a two-parameter stochastic process {𝑌𝑡 (𝑥)}𝑡≥0,𝑥∈R defined on the same
probability space is said to solve (2.0.1) if the following hold.

(i) 𝑌 is adapted to (F𝑡 )𝑡≥0.

(ii) Themap 𝑡 ↦→ 𝑌𝑡 (𝑥) 𝑑𝑥 defines an𝑀𝐹 -valued cádlág process. In otherwords,𝑌 ∈ 𝐷 ( [0,∞), 𝑀𝐹 )
a.s..

(iii) For all𝜓 ∈ S(R) and 𝑡 ≥ 0,

⟨𝑌𝑡 ,𝜓 ⟩ = ⟨𝑌0,𝜓 ⟩ +
∫ 𝑡

0
⟨𝑌𝑠 ,

1
2Δ𝜓 ⟩ 𝑑𝑠 +

∫
𝑠∈[0,𝑡 ]

∫
𝑥∈R

(𝑌𝑠− (𝑥))𝛽𝜓 (𝑥)𝐿𝛼 (𝑑𝑥, 𝑑𝑠), (2.2.2)

Recall that [Myt02, Theorem 1.5] guarantees the weak existence of such a solution 𝑌 ≡
(𝑌𝑡 )𝑡≥0. Also, it was shown in [Myt02, Proposition 4.1] that

𝑌 ∈ 𝐷 ( [0,∞), 𝑀𝐹 ) ∩ L𝜌
𝑙𝑜𝑐

(R+ × R) (1 < 𝜌 < 3).

We need to recall some notions of existence and uniqueness for solutions to (2.0.1) that will
be used in this article.

• (2.0.1) is said to admit a weak solution with initial condition 𝑌0 if there exists a filtered
probability space (Ω,F, {F𝑡 }𝑡≥0, P) and an {F𝑡 }-adapted pair (𝑌, 𝐿𝛼 ) such that 𝐿𝛼 satisfies
(2.2.1) and (2.2.2) holds.

• Weak uniqueness holds for (2.0.1) if whenever the pairs (𝑌, 𝐿𝛼 ) and (�̃� , �̃�𝛼 ) satisfy (2.2.2)
with the same initial condition, they have the same finite dimensional distributions.

Our main result is the following.

Theorem 2.2.3 (Theorem 1.3 of [Mai21]). Assume that 1 < 𝛼 < 2 and 1
𝛼
< 𝛽 <

( 3
𝛼
− 1

)
∧ 1 and

𝑌0 ∈ 𝑀𝐹 . Then weak uniqueness holds for solutions to (2.2.2), i.e. if (𝑌, 𝐿𝛼 ) and (�̃� , 𝐿𝛼 ) are both
weak solutions of (2.2.2) and 𝑌0 = �̃�0, then 𝑌 and �̃� have the same finite dimensional distributions.

We will now describe our approach for proving this result.

2.3 Proof strategy

An approach for showing weak uniqueness of stochastic equations is the following. First, one
shows that solutions to (2.2.2) are equivalently also solutions of an appropriate martingale prob-
lem. Then it is enough to show that any two solutions to the martingale problem have the same
one-dimensional distributions (cf. [EK86, Theorem 4.4.2]). We may define the (local) martingale
problem as follows. For𝜓 ∈ S+ and 𝑡 ≥ 0 let

𝑀𝑌
𝑡 (𝜓 ) = 𝑒−⟨𝑌𝑡 ,𝜓 ⟩ − 𝑒−⟨𝑌0,𝜓 ⟩ −

∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓 ⟩

(
−⟨𝑌𝑠−,

1
2Δ𝜓 ⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼 ⟩

)
𝑑𝑠 (2.3.1)
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Figure 2.1: Mytnik proved weak uniqueness for of (2.0.1) when 𝛽 = 1
𝛼
(red line). Yang, Zhou

showed pathwise uniqueness of this equation when (𝛼, 𝛽) falls in the green region. Our main
result, Theorem 2.2.3, proves weak uniqueness for (2.0.1) when (𝛼, 𝛽) is in the blue region.

where (𝑌𝑡 )𝑡≥0 are the coordinate maps on 𝐷 , i.e. 𝑌𝑡 (𝜔) = 𝜔 (𝑡) for 𝜔 ∈ 𝐷 . A probability measure
P on (𝐷,B(𝐷)) is said to be a solution of the (local) martingale problem for (2.3.1) if for all𝜓 ∈ S+
we have that {𝑀𝑌

𝑡 (𝜓 )}𝑡 is a (local) martingale under P. We know from [Myt02, Proposition 4.1]
that a solution to the local martingale problem (2.3.1) exists with stopping times

𝛾𝑌 (𝑘) := inf
{
𝑠 ≥ 0

����∫ 𝑠

0
∥𝑌𝑟 ∥𝛼𝛽𝛼𝛽 𝑑𝑟 > 𝑘

}
, 𝑘 ∈ N. (2.3.2)

where ∥·∥𝛼𝛽 denotes the norm of the space L𝛼𝛽 (R). [Myt02, Proposition 4.1] also guarantees that,
when 𝑌0 ∈ 𝑀𝐹 , for all 𝑡 > 0 we have 𝑌𝑡 ∈ 𝑀𝐹 as well.

Since𝑌0 ∈ 𝑀𝐹 is chosen arbitrarily, in light of the above discussion we can rephrase Theorem
2.2.3 into the equivalent result concerning the martingale problem (2.3.1).

Theorem 2.3.1. Under the assumptions of Theorem 2.2.3, any two solutions of (2.3.1) have same
one-dimensional distributions.

Remark 2.3.2. When 𝛼 ∈ (1, 2), 𝛽 ∈ ( 1
𝛼
, 1) and 𝑌0 ∈ S+, the statement of Theorem 2.3.1 remains

valid. This can be shown by the same approximating duality idea discussed below and using
the improved moment bound (see Remark 3.1.2). In other words, under these conditions the
one-dimensional laws of (𝑌𝑡 )𝑡≥0 are uniquely determined. However, we cannot prove the more
general result of weak uniqueness (i.e. Theorem 2.2.3).

Motivated by [Myt98] we use an approximating duality argument and would like to show the
following.

Theorem 2.3.3. Let 𝜓 ∈ S+ and 𝑌 be a solution to (2.3.1) where 𝑌0 is as in Theorem 2.2.3. Then
there exists a sequence of processes {𝑍 (𝑛) }𝑛≥1, independent of 𝑌 , with 𝑍

(𝑛)
0 = 𝜓 for all 𝑛 ≥ 1 such

that for each 𝑡 ≥ 0

E exp(−⟨𝑌𝑡 ,𝜓 ⟩) = lim
𝑛→∞
E exp(−⟨𝑌0, 𝑍

(𝑛)
𝑡 ⟩). (2.3.3)
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By the virtue of [Myt96, Theorem 1.3] this will imply Theorem 2.3.1.
Now we shall discuss a formal strategy of how one would prove Theorem 2.3.3. Suppose 𝑌

solves (2.3.1) and 𝑍 solves SPDE given below

𝜕𝑍𝑡 (𝑥)
𝜕𝑡

=
1
2Δ𝑍𝑡 (𝑥) + 𝑍𝑡− (𝑥)

1
𝛽 ¤𝐿𝛼𝛽 , 𝑍0 = 𝜓 (2.3.4)

or equivalently the local martingale problem

𝑀𝑍
𝑡 (𝜑) = 𝑒−⟨𝜑,𝑍𝑡 ⟩ − 𝑒−⟨𝜑,𝑍0 ⟩ −

∫ 𝑡

0
𝑒−⟨𝜑,𝑍𝑠− ⟩

(
−⟨1

2Δ𝜑, 𝑍𝑠−⟩ + ⟨𝜑𝛼𝛽 , 𝑍𝛼𝑠−, ⟩
)
𝑑𝑠, 𝜑 ∈ S+ (2.3.5)

is an F𝑍𝑡 -local martingale. Then one could try to establish the following exponential duality
relation

E exp(−⟨𝑌𝑡 ,𝜓 ⟩) = E exp(−⟨𝜑, 𝑍𝑡 ⟩). (2.3.6)

Although this duality relationship holds, the required integrability conditions will fail to hold
(see [EK86, Theorem 4.4.11]). Thus one uses the approximate duality technique. In this approach
we construct an approximating sequence 𝑍 (𝑛) to 𝑍 using the framework of [Myt98] to prove the
Theorem 2.3.3.

However, there are two key difficulties to overcome. First, we require a moment estimate of
the solutions of (2.3.1) and the second difficulty is the fact that𝑀𝑌 (𝜓 ), as defined above, are only
local martingales. A moment estimate was shown in [YZ17, Lemma 2.4] for very general initial
condition but we prove an improved estimate in Proposition 3.1.1 when 𝑌0 ∈ S(R)+ and for the
range of 𝛼 and 𝛽 in Theorem 2.2.3. From this we can show that𝑀𝑌 (𝜓 ) is indeed a martingale.
Remark 2.3.4. Note that the condition 𝛼𝛽 > 1 is crucial for our argument and the technique of
approximate duality. Consequently, the case when 𝛼𝛽 < 1 is not covered by this method.

Throughout this chapter and the next we shall use the notations 𝑐 , 𝑐1, 𝐶 , 𝐶1 etc. to denote
constants whose value may change from one line to the next. They will usually depend on the
time horizon𝑇 and the initial condition𝑌0. Wherever necessary we will denote their dependence
on the relevant parameters.

2.4 Mild formulations of the SHE

This section contains notations that are used throughout the paper and some useful results re-
garding the mild forms of (2.2.2). Let 𝑝𝑡 (𝑥) = 1√

2𝜋𝑡 exp
(
−𝑥2

2𝑡

)
for all 𝑡 > 0, 𝑥 ∈ R. For any

function 𝑓 : R→ R and a measure ` ∈ 𝑀𝐹 , we will denote

𝑃𝑡 𝑓 (𝑥) =
∫
R
𝑝𝑡 (𝑥 − 𝑦) 𝑓 (𝑦) 𝑑𝑦 and 𝑃𝑡` (𝑥) =

∫
R
𝑝𝑡 (𝑥 − 𝑦) ` (𝑑𝑦).

As in [YZ17], define a measure on R,

𝑚0(𝑑𝑧) =
𝛼 (𝛼 − 1)
Γ(2 − 𝛼) 𝑧

−1−𝛼1{𝑧 > 0}𝑑𝑧. (2.4.1)

We first show that the solution 𝑌𝑡 in (2.2.2) of Definition 2.2.2 can be written in the following
equivalent mild forms.
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Proposition 2.4.1. Let 𝑌 be a solution as in Definition 2.2.2 and 𝑌0 ∈ 𝑀𝐹 . Then

(a) For 𝑡 ≥ 0, 𝑥 ∈ R,

𝑌𝑡 (𝑥) = 𝑃𝑡𝑌0(𝑥) +
∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)𝑌𝑠 (𝑦)𝛽 𝐿𝛼 (𝑑𝑦, 𝑑𝑠). (2.4.2)

(b) There exists a Poisson random measure (PRM) 𝑁 on (0,∞)2 × R with intensity 𝑑𝑠𝑚0(𝑑𝑧)𝑑𝑥
such that

𝑌𝑡 (𝑥) = 𝑃𝑡𝑌0(𝑥) +
∫ 𝑡

0

∫ ∞

0

∫
R
𝑧 𝑝𝑡−𝑠 (𝑥 − 𝑦)𝑌𝑠 (𝑦)𝛽 �̃� (𝑑𝑦, 𝑑𝑧, 𝑑𝑠), (2.4.3)

where �̃� (𝑑𝑦, 𝑑𝑧, 𝑑𝑠) = 𝑁 (𝑑𝑦, 𝑑𝑧, 𝑑𝑠) − 𝑑𝑦𝑚0(𝑑𝑧) 𝑑𝑠 .

(c) On an enlarged probability space there exists a PRM 𝑁0 on (0,∞)2 ×R× (0,∞) with intensity
𝑑𝑠𝑚0(𝑑𝑧) 𝑑𝑦 𝑑𝑣 such that, for all 𝑡 ≥ 0 and a.e. 𝑥 ∈ R,

𝑌𝑡 (𝑥) = 𝑃𝑡𝑌0(𝑥) +
∫ 𝑡

0

∫ ∞

0

∫
R

∫ 𝑌𝑠 (𝑦)𝛼𝛽

0
𝑧 𝑝𝑡−𝑠 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑠), (2.4.4)

where �̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑠) = 𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑠) − 𝑑𝑣 𝑑𝑦𝑚0(𝑑𝑧) 𝑑𝑠 .

Proof. (a) This can be shown by an argument similar to the one in the proof of Theorem 1.1(a)
in [MP03]. The only difference here is to show that for each 𝑡 > 0,∫ 𝑡

0

∫
R
(𝑡 − 𝑠)−𝛼/2𝑌𝑠 (𝑦)𝛼𝛽 𝑑𝑦 𝑑𝑠 ≤

(
sup
𝑠≤𝑡

∥𝑌𝑠 ∥𝛼𝛽𝛼𝛽

) ∫ 𝑡

0
(𝑡 − 𝑠)−𝛼/2 𝑑𝑠 < ∞ a.s. (2.4.5)

This follows from the facts that
∫ 𝑡

0 ∥𝑌𝑠 ∥𝛼𝛽𝛼𝛽 𝑑𝑠 < ∞ and 𝑠 ↦→ ∥𝑌𝑠 ∥𝛼𝛽 = ⟨𝑌𝛼𝛽𝑠 , 1⟩
1

𝛼𝛽 is a cadlag map.
The claim in part (b) follows from the above and [MP03, Theorem 1.1(a)]. Using a change

of variable type transformation as indicated in the proof of [YZ17, Proposition 2.1] we get part
(c). □

Remark 2.4.2. To show that the stochastic integral in (2.4.4) is well-defined Yang and Zhou
used the additional condition (see [YZ17, Assumption 1.4]) that there is a 𝑞 >

3𝛼𝛽
3−𝛼 such that∫ 𝑡

0

∫
R
𝑌𝑠 (𝑥)𝑞 𝑑𝑥 𝑑𝑠 < ∞ for all 𝑡 > 0 a.s.. We here observe that our proof of (2.4.4) above does not

require this assumption.

2.5 Construction of the approximating sequence

As mentioned before we need to construct an approximating sequence {𝑍 (𝑛) }𝑛≥1 to 𝑍 described
in (2.3.4). We shall use the construction given in [Myt02, §3]. For completeness we only present
the sketch below.

Define 𝑍 (𝑛)
0 ( 𝑑𝑥) = 𝜓 (𝑥) 𝑑𝑥 and let 𝑏𝑛 =

𝛼𝛽

Γ (2−𝛼𝛽 )𝑛
𝛼𝛽−1. We know from [Fle88, Proposition

A2] that given ` ∈ 𝑀𝐹 , there is a unique non-negative solution to the partial differential equation
(PDE)

𝑣𝑡 = 𝑃𝑡` −
∫ 𝑡

0
𝑃𝑡−𝑠 (𝑏𝑛𝑣𝛼𝑠 ) 𝑑𝑠 (2.5.1)
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where (𝑃𝑡`) (𝑥) =
∫
R
𝑝𝑡 (𝑥 − 𝑦)` ( 𝑑𝑦). Let us call this solution 𝑉𝑛· (`). See Section 2.6.2 for some

properties of the above PDE under nicer initial conditions.
The idea behind this 𝑍 (𝑛) is as follows. 𝑍 (𝑛) evolves according to the PDE (2.5.1), jumps after

a random time given by Dirac measures at specified mass and location (denoted in the following
by 𝛾𝑛 (𝑇𝑛

𝑘
), 𝑆𝑛𝑖 and𝑈 𝑛𝑖 respectively, see (2.5.3) for precise definition). More precisely, let

𝑇
𝑍,𝑛
𝑖

:= 𝑇𝑛𝑖 ∼ Exp
(
𝑛𝛼𝛽

(𝛼𝛽 − 1)
Γ(2 − 𝛼𝛽)

)
, 𝑖 ∈ N,

be i.i.d. random variables and 𝑇𝑛𝑖 :=
∑𝑖
𝑘=1𝑇

𝑛
𝑘
. The jump heights are given by i.i.d.random vari-

ables {𝑆𝑛𝑖 | 𝑖 ∈ N} taking values in [ 1
𝑛
,∞). These are defined by

P(𝑆𝑛𝑖 ≥ 𝑏) =

∫ ∞
𝑏∨(1/𝑛) _

−𝛼𝛽−1 𝑑_∫ ∞
1/𝑛 _

−𝛼𝛽−1 𝑑_
, 𝑏 ≥ 0.

We observe that E[𝑆𝑛𝑖 ] =
𝛼𝛽

𝑛 (𝛼𝛽−1) . Let

𝐴𝑛𝑡 :=
∞∑︁
𝑘=1

𝑆𝑛
𝑘

1(𝑇𝑛
𝑘
≤ 𝑡)

be the process that jumps by height 𝑆𝑛𝑖 at time 𝑇𝑛𝑖 for all 𝑖 ∈ N. By (F𝐴𝑛

𝑡 )𝑡≥0 we will denote the
filtration generated by 𝐴𝑛 . For 0 ≤ 𝑡 ≤ 𝑇𝑛1 define the time change

𝛾𝑛 (𝑡) = inf
{
𝑠 ≥ 0

����∫ 𝑠

0+
∥𝑉𝑛𝑟 (`)∥𝛼𝛼 𝑑𝑟 > 𝑡

}
.

We can define the approximating sequence 𝑍 (𝑛) on the (random) interval [0, 𝛾𝑛 (𝑇𝑛1 )) by

𝑍
(𝑛)
𝑡 = 𝑉𝑛𝑡 (𝑍

(𝑛)
0 ), 0 ≤ 𝑡 < 𝛾𝑛 (𝑇𝑛1 ), (2.5.2)

where𝑉𝑛 is the solution of the PDE (2.5.1). For defining 𝑍 (𝑛) at the time 𝑡 = 𝛾𝑛 (𝑇𝑛1 ), we proceed
as follows. For each 𝑓 ∈ L𝛼 (R)+ let 𝐺 (𝑓 , ·) be a probability measure on (R,B(R)) such that for
all 𝐸 ∈ B(R),

𝐺 (𝑓 , 𝐸) :=

∫
𝐸
𝑓 (𝑥)𝛼 𝑑𝑥
∥ 𝑓 ∥𝛼𝛼

.

Lastly, let𝑈 𝑛1 be a R-valued random variable defined by the relation

P(𝑈 𝑛1 ∈ 𝐸 | F𝐴𝑛

𝑇𝑛
1
) = 𝐺 (𝑍 (𝑛)

𝛾𝑛 (𝑇𝑛
1 )−, 𝐸), 𝐸 ∈ B(R) .

Then we can define

𝑍
(𝑛)
𝛾𝑛 (𝑇𝑛

1 ) = 𝑍
(𝑛)
𝛾𝑛 (𝑇𝑛

1 )− + 𝑆𝑛1𝛿𝑈𝑛
1
. (2.5.3)

Thus we have constructed 𝑍 (𝑛) on the interval [0, 𝛾𝑛 (𝑇𝑛1 )].
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When 𝑡 > 𝛾𝑛 (𝑇𝑛1 ), 𝑍 (𝑛) is defined inductively: for integers 𝑘 ≥ 1,

𝑍
(𝑛)
𝑡 :=


𝑉𝑛
𝑡−𝛾𝑛 (𝑇𝑛

𝑘
) (𝑍

(𝑛)
𝛾𝑛 (𝑇𝑛

𝑘
) ), 𝑡 ∈ [𝛾𝑛 (𝑇𝑛

𝑘
), 𝛾𝑛 (𝑇𝑛

𝑘+1)),
𝑍

(𝑛)
𝛾𝑛 (𝑇𝑛

𝑘
)− + 𝑆𝑛

𝑘+1𝛿𝑈𝑛
𝑘+1
, 𝑡 = 𝛾𝑛 (𝑇𝑛

𝑘+1),
(2.5.4)

where

𝛾𝑛 (𝑡) = inf
{
𝑠 ≥ 0

�����𝑇𝑛𝑘 +
∫ 𝑠−𝛾𝑛 (𝑇𝑛

𝑘
)

0+
∥𝑉𝑛𝑟 (𝑍

(𝑛)
𝑇𝑛
𝑘

)∥𝛼𝛼 𝑑𝑟 > 𝑡
}
, 𝑇𝑛

𝑘
≤ 𝑡 < 𝑇𝑛

𝑘+1,

and

P(𝑈 𝑛
𝑘+1 ∈ 𝐸 | F𝐴𝑛

𝑇𝑛
𝑘+1

) := 𝐺 (𝑍 (𝑛)
𝛾𝑛 (𝑇𝑛

𝑘+1 )−
, 𝐸), 𝐸 ∈ B(R) .

This completes the construction of 𝑍 (𝑛) . It is known that 𝑍 (𝑛) solves a local martingale
problem as described by the following lemma. As usual, F𝑍 (𝑛) denotes the filtration generated
by 𝑍 (𝑛) .

Lemma 2.5.1. Let [ := 𝛼𝛽 (𝛼𝛽−1)
Γ (2−𝛼𝛽 ) and

𝑔(𝑟,𝑦) :=
∫ 𝑟

0+
(𝑒−_𝑦 − 1 + _𝑦)_−𝛼𝛽−1 𝑑_. (2.5.5)

For all 𝜑 ∈ S+ and 𝑛 ≥ 1

𝑀
𝑍,𝑛
𝑡 (𝜑) = 𝑒−⟨𝜑,𝑍

(𝑛)
𝑡 ⟩ − 𝑒−⟨𝜑,𝑍

(𝑛)
0 ⟩ (2.5.6)

−
∫ 𝑡

0
𝑒−⟨𝜑,𝑍

(𝑛)
𝑠− ⟩

(
−⟨1

2Δ𝜑, 𝑍
(𝑛)
𝑠 ⟩ + ⟨𝜑 (·)𝛼𝛽 − [𝑔 (1/𝑛, 𝜑 (·)) , (𝑍 (𝑛)

𝑠− (·))𝛼 ⟩
)
𝑑𝑠

is an F𝑍
(𝑛)
-local martingale with stopping times

𝛾𝑍,𝑛 (𝑘) := 𝛾𝑛 (𝑘) = inf
{
𝑠 ≥ 0

����∫ 𝑠

0
∥𝑍 (𝑛)

𝑟 ∥𝛼𝛼 𝑑𝑟 > 𝑘
}
, 𝑘 ∈ N. (2.5.7)

Proof. See [Myt02, Lemma 3.7]. □

We conclude the section with a result describing the behavior of the compensator of N𝑍 (𝑛)
=

N𝑛 which is the counting measure tracking the jumps of 𝑍 (𝑛) .

Lemma 2.5.2. The compensator of N𝑛 is, for 𝐵1 ∈ B( [0,∞)), 𝐵2 ∈ B(R)

N̂𝑛 (𝑡, 𝐵1 × 𝐵2) = [
∫ 𝑡∧𝑇 ∗

𝑛

0
𝑑𝑟

∫
𝐵1

𝑑_

∫
𝐵2

𝑑𝑥

(
𝑍

(𝑛)
𝑟− (𝑥)

)𝛼
∥𝑍 (𝑛)

𝑟− ∥𝛼𝛼
1(_ > 1/𝑛)_−𝛼𝛽−1 (2.5.8)

where

𝑇 ∗
𝑛 = inf{𝑡 ≥ 0 | 𝛾𝑛 (𝑡) = ∞} = inf{𝑡 ≥ 0 | 𝐴𝑛𝑡 − 𝑏𝑛𝑡 = 0}. (2.5.9)

Proof. See [Myt02, Lemma 3.5]. □
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2.6 Some tools from analysis

2.6.1 A Grönwall-type lemma

We use the general Grönwall lemma (see Lemma 1.3.2) to prove the required estimate.

Lemma 2.6.1. Let 𝛾, \ ∈ (0, 1) and 𝑓 : (0,𝑇 ] → [0,∞) be an integrable function such that and for
all 𝑡 ∈ [0,𝑇 ]

𝑓 (𝑡) ≤ 𝑐𝑡−\ + 𝑐
∫ 𝑡

0
(𝑡 − 𝑟 )−𝛾 𝑓 (𝑟 ) 𝑑𝑟 (2.6.1)

for some constant 𝑐 > 0. Then there exists an integrable function 𝐶1 : (0,𝑇 ] → [0,∞) and a
constant 𝐶2 > 0 such that, for a.e. 𝑡 ∈ [0,𝑇 ],

𝑓 (𝑡) ≤ 𝐶1(𝑡) +
∫ 𝑡

0
𝐶1(𝑠) exp(𝐶2𝑠) 𝑑𝑠. (2.6.2)

Moreover 𝐶1,𝐶2 are independent of the function 𝑓 .

Proof. Let 𝑘 > 0 be the smallest integer such that 𝛾 < 𝑘
𝑘+1 and 𝑡 ∈ [0,𝑇 ]. We apply (2.6.1) and use

the substitutions𝑤 = 𝑟
𝑡
and 𝑣 = 𝑟−𝑢

𝑡−𝑢 for the first and second integrals in the RHS of the following
computation.

𝑓 (𝑡) ≤𝑐𝑡−\ + 𝑐2
∫ 𝑡

0
(𝑡 − 𝑟 )−𝛾𝑡−\ 𝑑𝑟 + 𝑐2

∫ 𝑡

0

∫ 𝑟

0
(𝑡 − 𝑟 )−𝛾 (𝑟 − 𝑢)−𝛾 𝑓 (𝑢) 𝑑𝑢 𝑑𝑟

=𝑐𝑡−\ + 𝑐2𝑡1−𝛾−\
∫ 1

0
(1 −𝑤)−𝛾𝑤−\ 𝑑𝑤 + 𝑐2

∫ 𝑡

0
𝑑𝑢𝑓 (𝑢)

∫ 𝑡

𝑢

𝑑𝑟 (𝑡 − 𝑟 )−𝛾 (𝑟 − 𝑢)−𝛾

=𝑐1(𝑡) + 𝑐2
∫ 𝑡

0
𝑓 (𝑢) (𝑡 − 𝑢)1−2𝛾 𝑑𝑢

∫ 1

0
𝑑𝑣 (1 − 𝑣)−𝛾𝑣−𝛾

=𝑐1(𝑡) + 𝑐′1
∫ 𝑡

0
𝑓 (𝑢) (𝑡 − 𝑢)1−2𝛾 𝑑𝑢 (2.6.3)

where 𝑐1(𝑡) = 𝑐𝑡−\ + 𝑐2𝐵(1 − 𝛾, 1 − \ ) 𝑡1−𝛾−\ and 𝑐′1 = 𝑐2𝐵(1 − 𝛾, 1 − 𝛾) with 𝐵 here denoting the
Beta function. Again applying (2.6.1) to (2.6.3) we have

𝑓 (𝑡) ≤𝑐2(𝑡) + 𝑐′2
∫ 𝑡

0
𝑓 (𝑢) (𝑡 − 𝑢)2−3𝛾 𝑑𝑢,

where 𝑐2(𝑡) = 𝑐1(𝑡) + 𝑐′1𝑐𝐵(2 − 2𝛾, 1 − \ ) 𝑡2−2𝛾−\ and 𝑐′2 = 𝑐′1𝑐𝐵(1 − 𝛾, 2 − 2𝛾). Continuing this
process for 𝑘 steps we get,

𝑓 (𝑡) ≤𝑐𝑘 (𝑡) + 𝑐′𝑘
∫ 𝑡

0
𝑓 (𝑢) (𝑡 − 𝑢)𝑘−(𝑘+1)𝛾 𝑑𝑢

≤𝑐𝑘 (𝑡) + 𝑐′𝑘𝑇
𝑘−(𝑘+1)𝛾

∫ 𝑡

0
𝑓 (𝑢) 𝑑𝑢. (2.6.4)
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where the last step is obtained by our assumption on 𝑘 . Also note that 𝑓 is non-negative and
integrable on [0,𝑇 ] by hypothesis. Therefore we can apply the standard Grönwall’s inequality
from Lemma 1.3.2 and have,

𝑓 (𝑡) ≤ 𝑐𝑘 (𝑡) +
∫ 𝑡

0
𝑐𝑘 (𝑠) exp(𝑐′

𝑘
𝑇𝑘−(𝑘+1)𝛾𝑠) 𝑑𝑠

for a.e. 𝑡 ∈ [0,𝑇 ]. We can thus define 𝐶1(𝑡) = 𝑐𝑘 (𝑡) and 𝐶2 = 𝑐′
𝑘
𝑇𝑘−(𝑘+1)𝛾 . Clearly these

are independent of 𝑓 . To see that 𝐶1 is integrable on (0,𝑇 ] we only note that each 𝑡𝑚−𝑚𝛾−\

(𝑚 = 0, . . . , 𝑘) is integrable. □

2.6.2 Norm estimates for solutions of the evolution equation (2.5.1)
This section contains some useful properties of the solutions to the PDE

𝜕

𝜕𝑡
𝑣 (𝑡, 𝑥) = 1

2
𝜕2

𝜕𝑥2 𝑣 (𝑡, 𝑥) − 𝑏𝑛𝑣 (𝑡, 𝑥)
𝛼 , 𝑥 ∈ R, 𝑡 ∈ [0,𝑇 ],

𝑣 (0, ·) = 𝜑. (2.6.5)

where𝑇 is arbitrary but finite. When𝜑 ∈ S(R)+, [Isc86, TheoremA] guarantees that this equation
admits a unique solution.

Lemma 2.6.2. If 𝑣 = 𝑣 (𝑡, 𝑥) solves the PDE (2.6.5) and 𝜑 ∈ S(R)+, then 𝑣 satisfies all the hypotheses
of Proposition 3.2.2.

Proof. (a) It follows from [Fle88, Proposition A2] and proof of [Myt02, Lemma 2.1(c)] that 𝑠 ↦→
𝑣 (𝑠) ∈ L[ (R) ∩ L𝜌 (R) is continuous.

(b) We first prove that

sup
𝑠≤𝑇

 𝜕2

𝜕𝑥2 𝑣 (𝑠)

∞
=

 𝜕2

𝜕𝑥2 𝑣


L∞ ( [0,𝑇 ]×R)

< ∞. (2.6.6)

Note that as 𝜑 ∈ S+, by [Isc86, Theorem A], the solution 𝑣 : [0,𝑇 ] → 𝐶0(R+)+ (continuous,
non-negative functions vanishing at infinity) is a continuous map. Therefore by (2.6.5), to show
(2.6.6) it is enough to prove that

sup
𝑠≤𝑡

∥𝑤 (𝑠)∥∞ < ∞ (2.6.7)

where we have used the notation𝑤 (𝑠) = ¤𝑣 (𝑠) = 𝜕
𝜕𝑠
𝑣 (𝑠).

From the proof of [Isc86, Theorem A] it follows that𝑤 must satisfy the PDE

𝑤 (𝑡) = 𝑃𝑡 (�̃�) − 𝛼𝑏𝑛
∫ 𝑡

0
𝑃𝑡−𝑠 (𝑣 (𝑠)𝛼−1𝑤 (𝑠)) 𝑑𝑠 (2.6.8)

where �̃� = 1
2
𝜕2

𝜕𝑥2𝜑 − 𝑏𝑛
2 𝜑

𝛼 . This gives us,

∥𝑤 (𝑡)∥∞ ≤ ∥�̃� ∥∞ + 𝛼𝑏𝑛
∫ 𝑡

0
∥(𝑣 (𝑠)𝛼−1∥∞∥𝑤 (𝑠)∥∞ 𝑑𝑠, (2.6.9)
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from which using Grönwall’s inequality (see [Eva10, Appendix B2]) we obtain

∥𝑤 (𝑡)∥∞ ≤ ∥�̃� ∥∞ exp
(
𝛼𝑏𝑛

∫ 𝑡

0
∥𝑣 (𝑠)𝛼−1∥∞ 𝑑𝑠

)
< ∞. (2.6.10)

As 𝑣 is continuously differentiable (see the proof of [Isc86, Theorem A]), 𝑠 ↦→ 𝑤 (𝑠, ·) is continu-
ous. This fact along with the above gives us (2.6.7).

Next we show that the map [0,𝑇 ] → L∞(R), 𝑡 ↦→ 𝜕2

𝜕𝑥2 𝑣 (𝑡) is continuous, i.e. 𝜕2

𝜕𝑥2 𝑣 (𝑠) −
𝜕2

𝜕𝑥2 𝑣 (𝑡)

∞
→ 0 as 𝑠 → 𝑡 in [0,𝑇 ] . (2.6.11)

Similarly as above, since 𝑣 ∈ 𝐶0(R)+, by (2.6.5) it is enough to show that

∥𝑤 (𝑡) −𝑤 (𝑠)∥∞ → 0 as 𝑠 → 𝑡 (2.6.12)

and we use (2.6.8) for this purpose.
Let 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 . Let 𝑓𝑟 = 𝑣 (𝑟 )𝛼−1𝑤 (𝑟 ). Then from (2.6.8)

𝑤 (𝑡) −𝑤 (𝑠) =𝑃𝑡 (�̃�) − 𝑃𝑠 (�̃�) − 𝛼𝑏𝑛
[∫ 𝑡

0
𝑃𝑡−𝑟 (𝑓𝑟 ) 𝑑𝑟 −

∫ 𝑠

0
𝑃𝑠−𝑟 (𝑓𝑟 ) 𝑑𝑟

]
=𝑃𝑡 (�̃�) − 𝑃𝑠 (�̃�) − 𝛼𝑏𝑛

[∫ 𝑡

𝑠

𝑃𝑡−𝑟 (𝑓𝑟 ) 𝑑𝑟 +
∫ 𝑠

0
(𝑃𝑡−𝑟 (𝑓𝑟 ) − 𝑃𝑠−𝑟 (𝑓𝑟 )) 𝑑𝑟

]
=𝑃𝑡 (�̃�) − 𝑃𝑠 (�̃�) − 𝛼𝑏𝑛

[∫ 𝑡

𝑠

𝑃𝑡−𝑟 (𝑓𝑟 ) 𝑑𝑟 +
∫ 𝑠

0
(𝑃𝑡−𝑠 (𝑃𝑠−𝑟 (𝑓𝑟 )) − 𝑃𝑠−𝑟 (𝑓𝑟 )) 𝑑𝑟

]
(2.6.13)

using that fact 𝑃𝑡−𝑟 𝑓𝑟 = 𝑃𝑡−𝑠 (𝑃𝑠−𝑟 𝑓𝑟 ).
As 𝜑 ∈ S(R)+, by our definition �̃� ∈ S(R). Therefore when 𝑠 → 𝑡 , ∥𝑃𝑡 �̃� − 𝑃𝑠�̃� ∥∞ → 0. For

the second term in (2.6.13), note that if we can prove that

sup
𝑟≤𝑡

∥𝑃𝑡−𝑟 (𝑓𝑟 )∥∞ < ∞,

it will follow that
∫ 𝑡
𝑠
𝑃𝑡−𝑟 (𝑓𝑟 ) 𝑑𝑟 → 0 in L∞(R) as 𝑠 → 𝑡 . We have, for 𝑥 ∈ R

|𝑃𝑡−𝑟 (𝑓𝑟 ) (𝑥) | ≤
����∫
R
𝑝𝑡−𝑟 (𝑥 − 𝑦) 𝑓𝑟 (𝑦) 𝑑𝑟

���� ≤ ∥ 𝑓𝑟 ∥∞ = ∥𝑣 (𝑟 )𝛼−1𝑤 (𝑟 )∥∞ < ∞.

since know 𝑣 (𝑟 ) ∈ 𝐶0(R) and we have already shown that sup𝑟≤𝑡 ∥𝑤 (𝑟 )∥∞ < ∞. Similarly, the
third term in (2.6.13) can be shown to be converging to 0 in L∞(R) as 𝑠 → 𝑡 . This proves (2.6.12)
and hence (2.6.11).

(c) Let 𝜌 =
𝛼𝛽

𝛼𝛽−1 . To show sup𝑠≤𝑡 ∥ ¤𝑣 (𝑠)∥𝜌 < ∞ we again use (2.6.8). Note that∫
R
|𝑤 (𝑡, 𝑥) |𝜌 𝑑𝑥 ≤ 𝐶

[∫
R
|𝑃𝑡 (�̃�) |𝜌 𝑑𝑥 + 𝛼𝑏𝑛

∫
R

����∫ 𝑡

0
𝑃𝑡−𝑠 (𝑣 (𝑠)𝛼−1𝑤 (𝑠)) 𝑑𝑠

����𝜌 𝑑𝑥 ] . (2.6.14)
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Using Jensen inequality, ∫
R
|𝑃𝑡 (�̃�) |𝜌 𝑑𝑥 =

∫
R

����∫
R
𝑝𝑡 (𝑥 − 𝑦)�̃� (𝑦) 𝑑𝑦

����𝜌 𝑑𝑥
≤

∫
R

∫
R
𝑝𝑡 (𝑥 − 𝑦) |�̃� (𝑦) |𝜌 𝑑𝑦 𝑑𝑥

=∥�̃� ∥𝜌∞ < ∞.

By definition of 𝑃𝑡−𝑠 and using Jensen’s inequality once more we have,∫
R

����∫ 𝑡

0
𝑃𝑡−𝑠 (𝑣 (𝑠)𝛼−1𝑤 (𝑠)) 𝑑𝑠

����𝜌 𝑑𝑥 =

∫
R

����∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦)𝑣 (𝑠,𝑦)𝛼−1𝑤 (𝑠,𝑦) 𝑑𝑦 𝑑𝑠

����𝜌 𝑑𝑥
≤𝑡𝜌−1

∫
R

∫ 𝑡

0

∫
R
𝑝𝑡−𝑠 (𝑥 − 𝑦) |𝑣 (𝑠,𝑦)𝛼−1𝑤 (𝑠,𝑦) |𝜌 𝑑𝑦 𝑑𝑠 𝑑𝑥 .

Using Fubini’s theorem, as all terms are non-negative, integrating out 𝑥 in the above we have∫
R

����∫ 𝑡

0
𝑃𝑡−𝑠 (𝑣 (𝑠)𝛼−1𝑤 (𝑠)) 𝑑𝑠

����𝜌 𝑑𝑥 ≤ 𝑡𝜌−1
∫ 𝑡

0

∫
R
|𝑣 (𝑠,𝑦)𝛼−1𝑤 (𝑠,𝑦) |𝜌 𝑑𝑦 𝑑𝑠

≤ 𝐶1

∫ 𝑡

0
∥𝑣 (𝑠)∥𝜌 (𝛼−1)

∞ ∥𝑤 (𝑠)∥𝜌𝜌 𝑑𝑠. (2.6.15)

Using (2.6.15) in (2.6.14) we have

∥𝑤 (𝑡)∥𝜌𝜌 ≤ 𝐶 ∥�̃� ∥𝜌∞ +𝐶
∫ 𝑡

0
∥𝑣 (𝑠)∥𝜌 (𝛼−1)

∞ ∥𝑤 (𝑠)∥𝜌𝜌 𝑑𝑠. (2.6.16)

Again by Grönwall’s inequality

∥𝑤 (𝑡)∥𝜌𝜌 ≤ 𝐶 ∥�̃� ∥𝜌∞ exp
(∫ 𝑡

0
∥𝑣 (𝑠)∥𝜌 (𝛼−1)

∞ 𝑑𝑠

)
< ∞ (2.6.17)

and the required result follows as in part (b). □
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Chapter 3

Proof of Theorem 2.3.3

In this chapter we will prove several key technical tools and finish the proof of our main theorem.
The first section establishes the key moment result for solutions 𝑌 of (2.2.2). Section 3.2 shows
that 𝑀𝑌 (𝜓 ) defined in (2.3.1) is a martingale for all 𝜓 ∈ S+. In Section 3.3 we give an overview
of the proof of Theorem 2.3.3 and the last section finishes the argument. The last section of this
chapter contains a proof of Proposition 3.2.2.

3.1 The moment estimate

The following is an alternative proof of the estimate presented in [YZ17, Lemma 2.4]. Recall from
the statement of Theorem 2.2.3 that 𝑌0 ∈ 𝑀𝐹 , the collection of all finite non-negative measures
on R.

Proposition 3.1.1. Let 1 ≤ 𝑞 < 𝛼 . Then for a.e. 𝑡 ∈ [0,𝑇 ] we have

sup
𝑥∈R
E(𝑌𝑡 (𝑥)𝑞) ≤ 𝐶 𝑡−

𝑞

2 +𝐶 (3.1.1)

where 𝐶 = 𝐶 (𝑇,𝑌0, 𝛼, 𝛽) > 0 is a constant.

Remark 3.1.2. We note in passing that when 𝑌0 is a bounded function on R, the above estimate
can be improved further. In this situation we will have,

sup
𝑥∈R
E(𝑌𝑡 (𝑥)𝑞) ≤ 𝐶′

1(𝑇,𝑌0)𝑒𝐶
′
2 (𝑇 )𝑡 , 𝑡 ∈ [0,𝑇 ],

where 𝐶′
1 and 𝐶′

2 are positive constants.

Proof of Proposition 3.1.1. From (2.4.4) we have, for 𝑡 ∈ [0,𝑇 ],

𝑌𝑡 (𝑥) = 𝑃𝑡𝑌0(𝑥) +
∫ 𝑡

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑝𝑡−𝑟 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 ) . (3.1.2)

Let us define

𝜏𝑁 = inf
{
𝑡 ≥ 0 |

∫ 𝑡

0
∥𝑌𝑟 ∥𝛼𝛽𝛼𝛽 𝑑𝑟 ≥ 𝑁

}
,
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when 𝑁 ∈ N and from [PZ07, Lemma 8.21] recall that the quadratic variation of∫ 𝑠

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑝𝑡−𝑟 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

equals ∫ 𝑠

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧2𝑝𝑡−𝑟 (𝑥 − 𝑦)2𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 ),

for 𝑠 ∈ [0,𝑇 ]. By the Burkholder-Davis-Gundy inequality and the fact that 𝑞 < 2 we have

𝐼 :=E
[�����∫ 𝑡

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑝𝑡−𝑟 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞 1(𝑡 ≤ 𝜏𝑁 )
]

=E

[�����∫ 𝑡

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑝𝑡−𝑟 (𝑥 − 𝑦)1(𝑟 ≤ 𝜏𝑁 )�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞
]

≤𝑐E

�����∫ 𝑡

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧2𝑝𝑡−𝑟 (𝑥 − 𝑦)21(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞/2
≤𝑐E


�����∫ 𝑡

0

∫ 1

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧2𝑝𝑡−𝑟 (𝑥 − 𝑦)21(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞/2
+ 𝑐E


�����∫ 𝑡

0

∫ ∞

1

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧2𝑝𝑡−𝑟 (𝑥 − 𝑦)21(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞/2 . (3.1.3)

Fix 𝑝 ∈ (𝛼, 2) such that 𝑝−1
2 + 𝛼𝛽

2 ≤ 1. This is possible because of our assumption that 𝛽 < 3
𝛼
− 1.

Applying Jensen’s inequality to the above (noting that 𝑝/𝑞 > 1) we have

𝐼 ≤𝑐E

�����∫ 𝑡

0

∫ 1

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧2𝑝𝑡−𝑟 (𝑥 − 𝑦)21(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑝/2
𝑞/𝑝

+ 𝑐E

�����∫ 𝑡

0

∫ ∞

1

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧2𝑝𝑡−𝑟 (𝑥 − 𝑦)21(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞/2
≤𝑐E

[∫ 𝑡

0

∫ 1

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑝𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝1(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

]𝑞/𝑝
+ 𝑐E

[∫ 𝑡

0

∫ ∞

1

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑞𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞1(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

]
, (3.1.4)

where the second inequality above is due a fact about random sums (see the proof of [PZ07,
Lemma 8.22]). Now we use the definition of the PRM 𝑁0, integrate out 𝑧 and use the inequality
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𝑢𝑞/𝑝 ≤ 𝑢 + 1 for 𝑢 ≥ 0.

𝐼 ≤𝑐 + 𝑐E
[∫ 𝑡

0

∫ 1

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑝𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝1(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

]
+ 𝑐E

[∫ 𝑡

0

∫ ∞

1

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧𝑞𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞1(𝑟 ≤ 𝜏𝑁 )𝑁0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

]
≤𝑐 + 𝑐E

[∫ 𝑡

0

∫
R
𝑌𝑟 (𝑦)𝛼𝛽𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝1(𝑟 ≤ 𝜏𝑁 ) 𝑑𝑦 𝑑𝑟

]
+ 𝑐E

[∫ 𝑡

0

∫
R
𝑌𝑟 (𝑦)𝛼𝛽𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞1(𝑟 ≤ 𝜏𝑁 ) 𝑑𝑦 𝑑𝑟

]
≤𝑐 + 𝑐E

∫ 𝑡

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞)𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 ≤ 𝜏𝑁 ) 𝑑𝑦 𝑑𝑟, (3.1.5)

as
∫ 1

0 𝑧𝑝𝑚0(𝑑𝑧) < ∞ and
∫ ∞

0 𝑧𝑞𝑚0(𝑑𝑧) < ∞. From (3.1.2) and (3.1.5) we have

E [𝑌𝑡 (𝑥)𝑞1(𝑡 < 𝜏𝑁 )]

≤𝑐 (𝑃𝑡𝑌0(𝑥))𝑞 + 𝑐 + 𝑐E
∫ 𝑡

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞)𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 < 𝜏𝑁 ) 𝑑𝑟 𝑑𝑦

=𝑐 (𝑃𝑡𝑌0(𝑥))𝑞 + 𝑐 + 𝑐
∫ 𝑡

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞)E

[
𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑟 𝑑𝑦. (3.1.6)

by applying Fubini’s theorem in the last line. Use the definition of 𝑝𝑡 (𝑥) to get

E [𝑌𝑡 (𝑥)𝑞1(𝑡 < 𝜏𝑁 )]

≤𝑐 (𝑃𝑡𝑌0(𝑥))𝑞 + 𝑐 + 𝑐
∫ 𝑡

0
𝑑𝑟 ((𝑡 − 𝑟 )−

𝑝−1
2 + (𝑡 − 𝑟 )−

𝑞−1
2 )

∫
R
𝑝𝑡−𝑟 (𝑥 − 𝑦)E

[
𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑦

≤𝑐 (𝑃𝑡𝑌0(𝑥))𝑞 + 𝑐 + 𝑐
∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2

∫
R
𝑝𝑡−𝑟 (𝑥 − 𝑦)E

[
𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑦 (3.1.7)

where in the last line we have used the fact that (𝑡 − 𝑟 )−
𝑞−1

2 ≤ 𝐶𝑇 (𝑡 − 𝑟 )−
𝑝−1

2 .
When 𝑞 = 𝛼𝛽 this becomes

E
[
𝑌𝑡 (𝑥)𝛼𝛽1(𝑡 < 𝜏𝑁 )

]
≤𝑐 (𝑃𝑡𝑌0(𝑥))𝛼𝛽 + 𝑐 + 𝑐

∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2

∫
R
𝑝𝑡−𝑟 (𝑥 − 𝑦)E

[
𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑦. (3.1.8)
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Let 𝑠 ∈ [0,𝑇 ] be such that 𝑠 ≥ 𝑡 . Apply 𝑃𝑠−𝑡 to both sides and use Fubini’s theorem,

E
[
𝑃𝑠−𝑡

(
𝑌
𝛼𝛽

𝑡

)
(𝑥)1(𝑡 < 𝜏𝑁 )

]
≤𝑐 (𝑃𝑠𝑌0(𝑥))𝛼𝛽 + 𝑐 + 𝑐

∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2

∫
R
𝑝𝑠−𝑡 (𝑥 − 𝑦)

∫
R
𝑝𝑡−𝑟 (𝑦 − 𝑧)E

[
𝑌𝑟 (𝑧)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑧 𝑑𝑦

≤𝑐 (𝑃𝑠𝑌0(𝑥))𝛼𝛽 + 𝑐 + 𝑐
∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2

∫
R
𝑝𝑠−𝑟 (𝑥 − 𝑧)E

[
𝑌𝑟 (𝑧)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑧

=𝑐 (𝑃𝑠𝑌0(𝑥))𝛼𝛽 + 𝑐 + 𝑐
∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2 E

[
𝑃𝑠−𝑟

(
𝑌
𝛼𝛽
𝑟

)
(𝑥)1(𝑟 < 𝜏𝑁 )

]
≤𝑐 (𝑌0)𝑠−

𝛼𝛽

2 + 𝑐 + 𝑐
∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2 E

[
𝑃𝑠−𝑟

(
𝑌
𝛼𝛽
𝑟

)
(𝑥)1(𝑟 < 𝜏𝑁 )

]
(3.1.9)

where we have used the assumption on 𝑌0 to obtain the bound on (𝑃𝑠𝑌0(𝑥))𝛼𝛽 . The constants
appearing hereafter all depend on 𝑌0. Since the above holds for every 𝑡 ∈ [0, 𝑠], by Lemma 2.6.1
there exists a function 𝐶1 on (0,𝑇 ] and a constant 𝐶2(𝑠) > 0 such that for a.e. 𝑡 ≤ 𝑠 ,

E
[
𝑃𝑠−𝑡

(
𝑌
𝛼𝛽

𝑡

)
(𝑥)1(𝑡 < 𝜏𝑁 )

]
≤ 𝐶1(𝑡) +

∫ 𝑡

0
𝐶1(𝑟 )𝑒𝐶2 (𝑠 )𝑟 𝑑𝑟 . (3.1.10)

Observe from the proof of Lemma 2.6.1 that

𝐶1(𝑡) = 𝑜 (𝑡−
𝛼𝛽

2 ) as 𝑡 ↓ 0

and that the constant 𝐶2(𝑠) is non-decreasing in 𝑠 . So we have 𝐶2(𝑠) ≤ 𝐶2(𝑇 ) and (3.1.10) gives

E
[
𝑃𝑠−𝑡

(
𝑌
𝛼𝛽

𝑡

)
(𝑥)1(𝑡 < 𝜏𝑁 )

]
≤ 𝐶3𝑡

− 𝛼𝛽

2 +𝐶3

∫ 𝑡

0
𝑟−

𝛼𝛽

2 𝑒𝐶2 (𝑇 )𝑟 𝑑𝑟 . (3.1.11)

for a.e. 𝑡 ≤ 𝑠 ≤ 𝑇 . Here 𝐶3 = 𝐶3(𝑇 ) > 0 is a constant. Now replace 𝑠 by 𝑡 in the above. We get,

E
[
(𝑌𝑡 (𝑥))𝛼𝛽 1(𝑡 < 𝜏𝑁 )

]
≤ 𝐶3𝑡

− 𝛼𝛽

2 +𝐶3

∫ 𝑡

0
𝑟−

𝛼𝛽

2 𝑒𝐶2 (𝑇 )𝑟 𝑑𝑟 . (3.1.12)

for a.e. 𝑡 ∈ [0,𝑇 ].
We now plug this into (3.1.7) to get,

E [𝑌𝑡 (𝑥)𝑞1(𝑡 < 𝜏𝑁 )]

≤𝑐 𝑡−
𝑞

2 + 𝑐 + 𝑐
∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2

∫
R
𝑝𝑡−𝑟 (𝑥 − 𝑦)E

[
𝑌𝑟 (𝑦)𝛼𝛽1(𝑟 < 𝜏𝑁 )

]
𝑑𝑦

≤𝑐 𝑡−
𝑞

2 + 𝑐 +𝐶4

∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2 𝑟−

𝛼𝛽

2 +𝐶4

∫ 𝑡

0
𝑑𝑟 (𝑡 − 𝑟 )−

𝑝−1
2 𝑟 1− 𝛼𝛽

2

=𝑐 𝑡−
𝑞

2 + 𝑐 +𝐶5𝑡
1− 𝑝−1

2 − 𝛼𝛽

2 +𝐶6𝑡
2− 𝑝−1

2 − 𝛼𝛽

2 (3.1.13)

where 𝐶4 = 𝐶4(𝑇 ) > 0 is a constant and 𝐶5 = 𝐶4 𝐵(1 − 𝑝−1
2 , 1 − 𝛼𝛽

2 ), 𝐶6 = 𝐶4 𝐵(1 − 𝑝−1
2 , 2 − 𝛼𝛽

2 )
with 𝐵 denoting the Beta function. By our assumption on 𝑝 , the second term in RHS of (3.1.13)
has non-negative exponent and clearly so does the third. Therefore, we can write,

E [𝑌𝑡 (𝑥)𝑞1(𝑡 < 𝜏𝑁 )] ≤ 𝐶 𝑡−
𝑞

2 +𝐶 (3.1.14)

where 𝐶 is constant depending on 𝑇 , 𝑌0 and the parameters 𝛼, 𝛽 .
Take 𝑁 → ∞ and we obtain the required result. □
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Wehere observe that the previousmoment estimate can be utilized to show that the stochastic
integrals appearing in (2.4.2), (2.4.3) and (2.4.4) are martingales. For this we recall the notion of
a class DL process (see [RY99, Definition IV.1.6]).

A real valued and adapted stochastic process 𝑋 is said to be of class DL if for every 𝑡 > 0, the
set

{𝑋𝜏 : 𝜏 ≤ 𝑡 is a stopping time}
is uniformly integrable. And we know from [RY99, Proposition IV.1.7] that a local martingale 𝑋
is a martingale if and only if it is of class DL. For practical purposes it is enough to show that
there is an 𝜖 > 0 such that

sup
𝜏≤𝑡
E( |𝑋𝜏 |1+𝜖 ) < ∞

where the supremum is taken over all stopping times 𝜏 ≤ 𝑡 .
Lemma 3.1.3. Let 𝑡 ∈ [0,𝑇 ] be fixed. Then for 𝑠 ∈ [0, 𝑡] the stochastic integrals∫ 𝑠

0

∫
R
𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑌𝑟 (𝑦)𝛽 𝐿𝛼 (𝑑𝑦, 𝑑𝑟 ) =

∫ 𝑠

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧 𝑝𝑡−𝑟 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

(3.1.15)

are martingales with respect to F𝑌 , the filtration generated by 𝑌 .

Proof. Since the integrals in (3.1.15) are stochastic integrals with respect to martingale measure
𝐿𝛼 and the compensated PRM �̃�0, they are clearly F𝑌 -local martingales. Therefore, we have to
show that ∫ 𝑠

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧 𝑝𝑡−𝑟 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 ) (3.1.16)

is of class DL.
Let 𝜏 ≤ 𝑡 be a stopping time. We omit some of the calculations since they are similar to the

ones found in the previous proof. Choose 𝑞 and 𝑝 such that 1 < 𝑞 < 𝛼 < 𝑝 < 2 and 𝑝−1
2 + 𝛼𝛽

2 ≥ 1.
Proceeding as in (3.1.3) and (3.1.4) we obtain,

E

[�����∫ 𝜏

0

∫ ∞

0

∫
R

∫ 𝑌𝑟 (𝑦)𝛼𝛽

0
𝑧 𝑝𝑡−𝑟 (𝑥 − 𝑦)�̃�0( 𝑑𝑣, 𝑑𝑦, 𝑑𝑧, 𝑑𝑟 )

�����𝑞
]

≤𝑐 + 𝑐E
∫ 𝜏

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞)𝑌𝑟 (𝑦)𝛼𝛽 𝑑𝑦 𝑑𝑟

≤𝑐 + 𝑐
∫ 𝑡

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞)E(𝑌𝑟 (𝑦)𝛼𝛽 ) 𝑑𝑦 𝑑𝑟

≤𝑐 + 𝑐1

∫ 𝑡

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞)𝑟−

𝛼𝛽

2 𝑑𝑦 𝑑𝑟 + 𝑐1

∫ 𝑡

0

∫
R
(𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑝 + 𝑝𝑡−𝑟 (𝑥 − 𝑦)𝑞) 𝑑𝑦 𝑑𝑟

≤𝑐 + 𝑐1

∫ 𝑡

0
(𝑡 − 𝑟 )−

𝑝−1
2 𝑟−

𝛼𝛽

2 𝑑𝑟 + 𝑐1

∫ 𝑡

0
(𝑡 − 𝑟 )−

𝑝−1
2 𝑑𝑟

≤𝑐 + 𝑐2𝑡
1− 𝑝−1

2 − 𝛼𝛽

2 + 𝑐3𝑡
1− 𝑝−1

2

applying (3.1.1) at the end. The RHS of the above is finite on [0,𝑇 ] by our assumptions on 𝑝 . Also,
it is independent of the stopping times 𝜏 . This shows that (3.1.16) is in class DL and is therefore
a martingale with respect to F𝑌 . □
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3.2 The martingale problem

Next we observe that𝑀𝑌
𝑡 (𝜓 ) defined in (2.3.1) is a martingale. This will be crucial for simplifying

our approximate duality argument in the proof of Proposition 3.3.1.

Proposition 3.2.1. For each 𝜓 ∈ S+, the local martingale 𝑀𝑌 (𝜓 ) is in fact a martingale with
respect to F𝑌 .

Proof. Recall that

𝑀𝑌
𝑡 (𝜓 ) = 𝑒−⟨𝑌𝑡 ,𝜓 ⟩ − 𝑒−⟨𝑌0,𝜓 ⟩ −

∫ 𝑡

0
𝐼 (𝑌𝑠−,𝜓 ) 𝑑𝑠

is an F𝑌𝑡 -local martingale, where

𝐼 (𝑌𝑠−,𝜓 ) = 𝑒−⟨𝑌𝑠−,𝜓 ⟩
(
−⟨𝑌𝑠−,

1
2Δ𝜓 ⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼 ⟩

)
To show that𝑀𝑌

𝑡 (𝜓 ) is a martingale we show that it is in class DL, i.e. for each 𝑡 > 0,

sup
𝜏≤𝑡
E

(
|𝑀𝑌

𝜏 (𝜓 ) |1+𝜖
)
< ∞ (3.2.1)

for some 𝜖 > 0. The supremum ranges over all F𝑌 -stopping times 𝜏 that are bounded by 𝑡 .
From the expression above it is enough to prove

sup
𝜏≤𝑡
E

(����∫ 𝜏

0
𝐼 (𝑌𝑠−,𝜓 ) 𝑑𝑠

����1+𝜖 ) < ∞. (3.2.2)

Fix a stopping time 𝜏 ≤ 𝑡 . By Jensen’s inequality����∫ 𝜏

0
𝐼 (𝑌𝑠−,𝜓 ) 𝑑𝑠

����1+𝜖 = ����∫ 𝜏

0
𝑒−⟨𝑌𝑠−,𝜓 ⟩

(
−⟨𝑌𝑠−,

1
2Δ𝜓 ⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼 ⟩

)
𝑑𝑠

����1+𝜖
=𝜏1+𝜖

����1𝜏 ∫ 𝜏

0
𝑒−⟨𝑌𝑠−,𝜓 ⟩

(
−⟨𝑌𝑠−,

1
2Δ𝜓 ⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼 ⟩

)
𝑑𝑠

����1+𝜖
≤𝜏𝜖

∫ 𝜏

0

����−⟨𝑌𝑠−, 1
2Δ𝜓 ⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼 ⟩

����1+𝜖 𝑑𝑠
≤𝐶𝜖𝑡𝜖

∫ 𝑡

0

(
|⟨𝑌𝑠−,

1
2Δ𝜓 ⟩|

1+𝜖 + |⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼 ⟩|1+𝜖
)
𝑑𝑠. (3.2.3)

Let 0 < 𝜖 < 1
𝛽
− 1 < 𝛼 − 1 < 1. Again apply Jensen’s inequality, Fubini’s Theorem and
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Proposition 3.1.1.

E

∫ 𝑡

0
|⟨𝑌𝑠−,

1
2Δ𝜓 ⟩|

1+𝜖 𝑑𝑠 =
1

21+𝜖 E

∫ 𝜏

0

����∫
R
𝑌𝑠− (𝑥)Δ𝜓 (𝑥) 𝑑𝑥

����1+𝜖 𝑑𝑠
≤
∥Δ𝜓 ∥1+𝜖

1
21+𝜖 E

∫ 𝑡

0

���� 1
∥Δ𝜓 ∥1

∫
R
𝑌𝑠− (𝑥) |Δ𝜓 (𝑥) | 𝑑𝑥

����1+𝜖 𝑑𝑠
≤
∥Δ𝜓 ∥𝜖1
21+𝜖

∫ 𝑡

0

∫
R
E𝑌𝑠− (𝑥)1+𝜖 |Δ𝜓 (𝑥) | 𝑑𝑥 𝑑𝑠

≤𝐶𝑇
∥Δ𝜓 ∥1+𝜖

1
21+𝜖

∫ 𝑡

0
𝑠−

1+𝜖
2 𝑑𝑠 +𝐶𝑇

∥Δ𝜓 ∥1+𝜖
1

21+𝜖

=𝐶𝑇
∥Δ𝜓 ∥1+𝜖

1
21+𝜖 (1 + 𝑡1− 1+𝜖

2 ) . (3.2.4)

Similarly,

E

∫ 𝑡

0
|⟨𝑌𝛼𝛽𝑠− ,

1
2Δ𝜓 ⟩|

1+𝜖 𝑑𝑠 ≤∥𝜓𝛼 ∥𝜖1
∫ 𝑡

0

∫
R
E𝑌𝑠− (𝑥)𝛼𝛽 (1+𝜖 )𝜓 (𝑥)𝛼 𝑑𝑥 𝑑𝑠

=𝐶𝑇
∥𝜓𝛼 ∥1+𝜖

1
21+𝜖

∫ 𝑡

0
𝑠−

𝛼𝛽 (1+𝜖 )
2 𝑑𝑠 +𝐶𝑇

∥𝜓𝛼 ∥1+𝜖
1

21+𝜖

=𝐶𝑇,𝜓,𝛼,𝛽,𝜖 (𝑡1− 𝛼𝛽 (1+𝜖 )
2 + 1) (3.2.5)

Note that 1 − 1+𝜖
2 ≥ 0 and 1 − 𝛼𝛽 (1+𝜖 )

2 ≥ 0 by our conditions on 𝛼 , 𝛽 and 𝜖 . Plugging (3.2.4)
and (3.2.5) in (3.2.3) we get,

E

(����∫ 𝜏

0
𝐼 (𝑌𝑠−,𝜓 ) 𝑑𝑠

����1+𝜖 ) ≤ 𝐶𝑇,𝜓,𝛼,𝛽,𝜖 (1 + 𝑡1− 𝛼𝛽 (1+𝜖 )
2 + 𝑡1− 1+𝜖

2 ) (3.2.6)

Taking supremum over all 𝜏 ≤ 𝑡 gives (3.2.2). □

We now show the above result holds for𝜓 : R+ × R→ R satisfying certain assumptions.
Proposition 3.2.2. Let 𝑇 ∈ (0,∞) If 𝑌 is a solution to the martingale problem (2.3.1) and 𝜓 :
[0,𝑇 ] × R→ R is such that

(i) The map [0,𝑇 ] ∋ 𝑠 ↦→ 𝜓𝑠 ∈ L[ (R) ∩ L𝜌 (R) is continuous, for some fixed [ ∈ ( 1
𝛽
, 𝛼) and

𝜌 ∈ (𝛼, 𝛼
𝛽
∧ 2). (Note that, as 1

𝛼
< 𝛽 < 1 and 𝛼 < 2, such [ and 𝜌 exist.)

(ii) sup𝑠≤𝑇
 𝜕
𝜕𝑠
𝜓𝑠


L

𝛼𝛽
𝛼𝛽−1 (R)

< ∞.

(iii) The map [0,𝑇 ] → L∞(R), 𝑠 ↦→ 𝜕2

𝜕𝑥2𝜓𝑠 is continuous.

Then,

�̃�𝑌
𝑡 (𝜓 ) = 𝑒−⟨𝑌𝑡 ,𝜓𝑡 ⟩ − 𝑒−⟨𝑌0,𝜓0 ⟩ −

∫ 𝑡

0
𝐼 (𝑌𝑠−,𝜓𝑠) 𝑑𝑠 (3.2.7)

is an F𝑌𝑡 martingale, where

𝐼 (𝑌𝑠−,𝜓𝑠) = 𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩
[
−⟨𝑌𝑠−,

1
2 𝜕

2
𝑥𝑥𝜓𝑠 + 𝜕𝑠𝜓𝑠⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩

]
. (3.2.8)

We present it in the last section of this chapter (Section 3.5).
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3.3 Overview of the proof

In this section we describe our plan for proving Theorem 2.3.3. Our proof follows the argument
in [Myt98] and will be split into various propositions which we state in the following. At the end
of this section we establish the theorem assuming these results.

The first proposition describes the behavior of 𝑌 when coupled with the solutions of the
evolution equations used to construct 𝑍 (𝑛) . In what follows we denote by E𝑌 the expectation
with respect to 𝑌 . In particular, under E𝑌 we treat all the random variables used to construct
𝑍 (𝑛) in Section 2.5 as non-random owing to our assumption of independence.

Proposition 3.3.1. Let 𝑌 be a solution to the martingale problem (2.3.1). Then for each 𝑡 ∈ [0,𝑇 ],
𝑛 ≥ 1 and ` ∈ 𝑀𝐹 ,

E𝑌

[
𝑒−⟨𝑌𝑇 −𝑡 ,𝑉𝑛

𝑡 (` ) ⟩
]
= E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑉

𝑛
0 (` ) ⟩

]
+ E𝑌

[∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−,𝑉𝑛𝑟 (`)) 𝑑𝑟

]
(3.3.1)

where

Ĩ(𝑌(𝑇−𝑟 )−,𝑉𝑛𝑟 (`)) = 𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑉
𝑛
𝑟 (` ) ⟩

{
−⟨𝑌𝛼𝛽(𝑇−𝑟 )−,

(
𝑉𝑛𝑟 (`)

)𝛼 ⟩ + ⟨𝑌(𝑇−𝑟 )−, 𝑏𝑛
(
𝑉𝑛𝑟 (`)

)𝛼 ⟩} ,
and 𝑉𝑛 is the solution of the PDE (2.5.1).

In the next proposition we describe the relationship between𝑌 and the jumps of𝑍 (𝑛) . Define

𝜏𝑛 (𝑡) :=
∫ 𝑡

0
∥𝑍 (𝑛)

𝑟− ∥𝛼𝛼 𝑑𝑟 (3.3.2)

and observe from (2.5.7) that 𝜏𝑛 is the inverse of 𝛾𝑛 : 𝜏𝑛 (𝛾𝑛 (𝑡)) = 𝑡 and vice-versa.

Proposition 3.3.2. If 𝑌 is a solution to the martingale problem (2.3.1), independent of 𝑍 (𝑛) ’s, then
for all 𝑡 ∈ [0,𝑇 ],

E𝑌

[
𝑒−⟨𝑌𝑇 −𝑡 ,𝑍

(𝑛)
𝑡 ⟩

]
=E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍 (𝑛)

𝑟− ) 𝑑𝑟 +
∫ 𝜏𝑛 (𝑡 )

0

∫
R

∫
R+

\𝑛 (𝑠, 𝑥, _)N𝑛 (𝑑_, 𝑑𝑥, 𝑑𝑠)
]

(3.3.3)

where

\𝑛 (𝑠, 𝑥, _) = 𝑒−⟨𝑌𝑇 −𝛾𝑛 (𝑠 ) ,𝑍
(𝑛)
𝛾𝑛 (𝑠 )− ⟩

(
𝑒−_𝑌𝑇 −𝛾𝑛 (𝑠 ) (𝑥 ) − 1

)
.

In the last proposition before we prove our main result we show that the previous result
holds at the stopping time Υ𝑛

𝑘
(𝑡) := 𝛾𝑛 (𝑘) ∧ 𝑡 . Recall the definitions of [ and 𝑔 from Lemma 2.5.1.

Proposition 3.3.3. If 𝑌 is a solution to the martingale problem (2.3.1), independent of 𝑍 (𝑛) ’s, then
for each𝑚 ∈ N and 𝑡 ∈ [0,𝑇 ],

E[exp(−⟨𝑌𝑇−Υ𝑛𝑚 (𝑡 ) , 𝑍Υ𝑛𝑚 (𝑡 )⟩)] =E[exp (−⟨𝑌𝑇 , 𝑍0⟩)]

− [

2E
[∫ Υ𝑛𝑚 (𝑡 )

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍

(𝑛)
𝑟− ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑟 )− (·)), (𝑍 (𝑛)

𝑟− )𝛼 ⟩ 𝑑𝑟
]
.

(3.3.4)
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We note that Propositions 3.3.1 and 3.3.2 are used to prove Proposition 3.3.3. Nowwe present
the proof of Theorem 2.3.3 assuming that the above propositions hold. We will prove them in
the next section.

Proof of Theorem 2.3.3. Let 𝑌 and 𝑍 (𝑛) be as in the statement of Theorem 2.3.3. Let

𝑘𝑛 = ln𝑛.

We will show that for a.e. 𝑡 ∈ [0,𝑇 ],

lim
𝑛→∞

|E[𝑒
−⟨𝑌0,𝑍

(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 ) ⟩] − E[𝑒−⟨𝑌𝑡 ,𝑍0 ⟩] | = 0. (3.3.5)

This will prove the theorem with the approximate dual processes being 𝑍 (𝑛)
𝑡 := 𝑍 (𝑛)

Υ𝑛
𝑘𝑛

(𝑡 ) .
Towards this, we are first going to show that����E exp

(
−⟨𝑌𝑇−Υ𝑛

𝑘𝑛
(𝑡 ) , 𝑍

(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩
)
− E𝑒−⟨𝑌𝑇 ,𝑍0 ⟩

���� ≤ 𝐶𝛼.𝛽,𝑇 ((𝑇 − 𝑡)−
𝑝

2 + 1)𝑛−
𝛼−𝛼𝛽

2 𝑘𝑛, (3.3.6)

when 0 ≤ 𝑡 < 𝑇 . Note that, as 𝑘𝑛 = ln𝑛, the RHS converges to 0 as 𝑛 → ∞.
Note that for all 1 < 𝑝 < 2 and _ ≥ 0,

𝑒−_ − 1 + _ ≤ _𝑝

𝑝
.

Also by our assumptions on 𝛼 and 𝛽 we have 1 <
𝛼 (𝛽+1)

2 < 𝛼 < 2. So,

𝑔

(
1
𝑛
,𝑌𝑇−𝑠 (𝑥)

)
=

∫ 1/𝑛

0+

(
𝑒−_𝑌𝑇 −𝑠 (𝑥 ) − 1 + _𝑌𝑇−𝑠 (𝑥)

)
_−𝛼𝛽−1 𝑑_

≤ 2
𝛼 (𝛽 + 1)

∫ 1/𝑛

0+
(_𝑌𝑇−𝑠 (𝑥))

𝛼 (𝛽+1)
2 _−𝛼𝛽−1 𝑑_

=
2

𝛼 (𝛽 + 1)𝑌𝑇−𝑠 (𝑥)
𝛼 (𝛽+1)

2

∫ 1/𝑛

0+
_

𝛼 (𝛽+1)
2 −𝛼𝛽−1 𝑑_

=
2

𝛼 (𝛽 + 1)𝑌𝑇−𝑠 (𝑥)
𝛼 (𝛽+1)

2
2

𝛼 − 𝛼𝛽𝑛
− 𝛼−𝛼𝛽

2 . (3.3.7)

Eq. (3.3.4) and the above calculation gives us����E exp
(
−⟨𝑌𝑇−Υ𝑛

𝑘𝑛
(𝑡 ) , 𝑍

(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩
)
− E𝑒−⟨𝑌𝑇 ,𝑍0 ⟩

����
=

�����[2E [∫ Υ𝑛
𝑘𝑛

(𝑡 )

0+
𝑒−⟨𝑌(𝑇 −𝑠 )−,𝑍

(𝑛)
𝑠 ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑠 )− (·)),

(
𝑍

(𝑛)
𝑠−

)𝛼
⟩ 𝑑𝑠

] �����
=
[

2E
[∫ Υ𝑛

𝑘𝑛
(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼𝑔(1/𝑛,𝑌𝑇−𝑠 (𝑥)) 𝑑𝑥 𝑑𝑠

]
≤[2

2
𝛼 (𝛽 + 1)

2
𝛼 − 𝛼𝛽𝑛

− 𝛼−𝛼𝛽

2 E

[∫ Υ𝑛
𝑘𝑛

(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼𝑌𝑇−𝑠 (𝑥)

𝛼 (𝛽+1)
2 𝑑𝑥 𝑑𝑠

]
(3.3.8)

40



using the fact that 𝑍 (𝑛)
𝑠− (·) ≥ 0 and 𝑌(𝑇−𝑠 )− (·) ≥ 0 for the second equality. Now use the estimate

from Proposition 3.1.1 with 𝑝 =
𝛼 (𝛽+1)

2 . We have by Fubini’s theorem

E

[∫ Υ𝑛
𝑘𝑛

(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼𝑌𝑇−𝑠 (𝑥)

𝛼 (𝛽+1)
2 𝑑𝑥 𝑑𝑠

]
=E𝑍E𝑌

[∫ Υ𝑛
𝑘𝑛

(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼𝑌𝑇−𝑠 (𝑥)𝑝 𝑑𝑥 𝑑𝑠

]
=E𝑍

[∫ Υ𝑛
𝑘𝑛

(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼E𝑌

(
𝑌𝑇−𝑠 (𝑥)𝑝

)
𝑑𝑥 𝑑𝑠

]
≤𝐶E𝑍

[∫ Υ𝑛
𝑘𝑛

(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼 (𝑇 − 𝑠)−

𝑝

2 𝑑𝑥 𝑑𝑠

]
+𝐶E𝑍

[∫ Υ𝑛
𝑘𝑛

(𝑡 )

0

∫
R
𝑍

(𝑛)
𝑠− (𝑥)𝛼 𝑑𝑥 𝑑𝑠

]
≤𝐶E𝑍

[
(𝑇 − Υ𝑛

𝑘𝑛
(𝑡))−

𝑝

2

∫ Υ𝑛
𝑘𝑛

(𝑡 )

0
∥𝑍 (𝑛)

𝑠− ∥𝛼𝛼 𝑑𝑠
]

+𝐶E𝑍
[∫ Υ𝑛

𝑘𝑛
(𝑡 )

0
∥𝑍 (𝑛)

𝑠− ∥𝛼𝛼 𝑑𝑠
]

≤𝐶 ((𝑇 − 𝑡)−
𝑝

2 + 1)E𝑍
[∫ Υ𝑛

𝑘𝑛
(𝑡 )

0
∥𝑍 (𝑛)

𝑠− ∥𝛼𝛼 𝑑𝑠
]

≤𝐶 ((𝑇 − 𝑡)−
𝑝

2 + 1)𝑘𝑛 . (3.3.9)

The third inequality is due to the fact that Υ𝑛
𝑘
(𝑡) = 𝛾𝑛 (𝑘) ∧ 𝑡 ≤ 𝑡 and the last inequality follows

from the definition of 𝛾𝑛 (see (2.5.7)). Plugging this in (3.3.8) gives (3.3.6).
Next we turn our attention to (3.3.5). We can write,

|E exp(−⟨𝑌0, 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩) − E exp(−⟨𝑌𝑡 , 𝑍0⟩) |

≤|E exp(−⟨𝑌0, 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩) − E exp(−⟨𝑌𝑡−Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

) , 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

)⟩) |

+ |E exp(−⟨𝑌𝑡−Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

) , 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

)⟩) − E exp(−⟨𝑌𝑡 , 𝑍0⟩) |. (3.3.10)

By (3.3.6) (with 𝑇 and 𝑡 replaced by 𝑡 and 𝑡 − 1
𝑘𝑛

respectively) we can bound the second term in
the RHS of the above as follows,����E exp

(
−⟨𝑌𝑡−Υ𝑛

𝑘𝑛
(𝑡− 1

𝑘𝑛
) , 𝑍

(𝑛)
Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

)⟩
)
− E𝑒−⟨𝑌𝑡𝑍0 ⟩

���� ≤ 𝐶𝛼.𝛽,𝑡 (𝑘 𝑝

2
𝑛 + 1)𝑛−

𝛼−𝛼𝛽

2 𝑘𝑛 .

We note that the RHS of the above converges to 0 as 𝑛 → ∞.
Let us now consider the first term in the RHS of (3.3.10). By definition of Υ𝑛 and 𝑇 ∗

𝑛 (see
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(2.5.9)) ,

|E exp(−⟨𝑌𝑡−Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

) , 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

)⟩) − E exp(−⟨𝑌0, 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩) |

=|E
[
exp(−⟨𝑌𝑡−Υ𝑛

𝑘𝑛
(𝑡− 1

𝑘𝑛
) , 𝑍

(𝑛)
Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

)⟩) − exp(−⟨𝑌0, 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩); Υ
𝑛
𝑘𝑛
(𝑡) < 𝑡 − 1

𝑘𝑛

]
|

+ |E
[
exp(−⟨𝑌𝑡−Υ𝑛

𝑘𝑛
(𝑡− 1

𝑘𝑛
) , 𝑍

(𝑛)
Υ𝑛
𝑘𝑛

(𝑡− 1
𝑘𝑛

)⟩) − exp(−⟨𝑌0, 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩); Υ
𝑛
𝑘𝑛
(𝑡) ≥ 𝑡 − 1

𝑘𝑛

]
|

≤P(Υ𝑛
𝑘𝑛
(𝑡) < 𝑡 − 1

𝑘𝑛
) + |E

[
exp(−⟨𝑌 1

𝑘𝑛

, 𝑍
(𝑛)
𝑡− 1

𝑘𝑛

⟩) − exp(−⟨𝑌0, 𝑍
(𝑛)
Υ𝑛
𝑘𝑛

(𝑡 )⟩); Υ
𝑛
𝑘𝑛
(𝑡) ≥ 𝑡 − 1

𝑘𝑛

]
|.

The second term above converges to 0 since 𝑌 is right-continuous and Υ𝑛
𝑘𝑛
(𝑡) = 𝛾𝑛 (𝑘𝑛) ∧ 𝑡 → 𝑡

as 𝑛 → ∞. Also as P(𝑇 ∗
𝑛 < ∞) = 1 (see [Myt02, eq. (3.14)]), we have

P(Υ𝑛
𝑘𝑛
(𝑡) < 𝑡 − 1

𝑘𝑛
) = P(𝛾𝑛 (𝑘𝑛) < 𝑡 −

1
𝑘𝑛

) ≤ P(𝑇 ∗
𝑛 > 𝑘𝑛) → 0 as 𝑛 → ∞.

This proves (3.3.5). □

3.4 Proof of key Propositions

We will prove the three propositions required for the proof of Theorem 2.3.3 in this section. For
Proposition 3.3.1 we start by verifying (3.3.1) for measures having densities and then prove it for
the case of general measures.

Proof of Proposition 3.3.1. Let 𝜑𝑙 ∈ S(R)+, 𝑙 ∈ N, be such that `𝑙 (𝑑𝑥) := 𝜑𝑙 (𝑥) 𝑑𝑥 =⇒ ` (𝑑𝑥) as
𝑙 → ∞. Since 𝑛 is fixed in this proof, let 𝑣𝑙 (·) = 𝑉𝑛· (`𝑙 ) solve

𝜕𝑡𝑣𝑙 (𝑡) =
1
2 𝜕

2
𝑥𝑥𝑣𝑙 (𝑡) − 𝑏𝑛𝑣𝑙 (𝑡)𝛼

𝑣𝑙 (0) = 𝜑𝑙 . (3.4.1)

Fix 𝑙, 𝑘 ∈ N. Let 𝜓 (𝑠, 𝑥) := 𝑣𝑙 (𝑇 − 𝑠, 𝑥) = 𝑉𝑛
𝑇−𝑠 (`𝑙 ) (𝑥). Lemma 2.6.2 says that 𝜓 satisfies the

conditions of Proposition 3.2.2.
From (3.2.8) recall that

𝐼 (𝑌𝑠−,𝜓𝑠) = 𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩
[
−⟨𝑌𝑠−,

1
2Δ𝜓𝑠⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩ − ⟨𝑌𝑠−,

𝜕

𝜕𝑠
𝜓𝑠⟩

]
.

Then by Proposition 3.2.2 for each 𝑘 ∈ N and 𝑡 ∈ [0,𝑇 ),

E𝑌
[
�̃�𝑌
𝑇−𝑡 (𝜓 )

]
= E𝑌

[
�̃�𝑌
𝑇 (𝜓 )

]
which implies,

E𝑌 exp (−⟨𝑌𝑇−𝑡 ,𝜓𝑇−𝑡 ⟩) = E𝑌
[
𝑒−⟨𝑌𝑇𝜓𝑇 ⟩ −

∫ 𝑇

𝑇−𝑡
𝐼 (𝑌𝑠−,𝜓𝑠)

]
. (3.4.2)
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From the above definition of 𝐼 (𝑌,𝜓 ) and (3.4.1) we get,∫ 𝑇

𝑇−𝑡
𝐼 (𝑌𝑠−,𝜓𝑠) 𝑑𝑠

=

∫ 𝑇

𝑇−𝑡
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

{
−⟨𝑌𝑠−,

1
2Δ𝜓𝑠⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩ − ⟨𝑌𝑠−,

𝜕

𝜕𝑠
𝜓𝑠⟩

}
𝑑𝑠

=

∫ 𝑇

𝑇−𝑡
𝑒−⟨𝑌𝑠−,𝑣𝑙 (𝑇−𝑠 ) ⟩

{
−⟨𝑌𝑠−,

1
2Δ𝑣𝑙 (𝑇 − 𝑠)⟩ + ⟨𝑌𝛼𝛽𝑠− , 𝑣𝑙 (𝑇 − 𝑠)𝛼 ⟩ − ⟨𝑌𝑠−,

𝜕

𝜕𝑠
𝑣𝑙 (𝑇 − 𝑠)⟩

}
𝑑𝑠

= −
∫ 0

𝑡

𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩
{
−⟨𝑌(𝑇−𝑟 )−,

1
2Δ𝑣𝑙 (𝑟 )⟩ + ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩ + ⟨𝑌(𝑇−𝑟 )−,
𝜕

𝜕𝑟
𝑣𝑙 (𝑟 )⟩

}
𝑑𝑟,

= −
∫ 0

𝑡

𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩
{
⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩ + ⟨𝑌(𝑇−𝑟 )−,
𝜕

𝜕𝑟
𝑣𝑙 (𝑟 ) −

1
2Δ𝑣𝑙 (𝑟 )⟩

}
𝑑𝑟

= −
∫ 0

𝑡

𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩
{
⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩ − ⟨𝑌(𝑇−𝑟 )−, 𝑏𝑛𝑣𝑙 (𝑟 )𝛼 ⟩
}
𝑑𝑟, (3.4.3)

using the substitution 𝑟 = 𝑇 − 𝑠 for the third equality.
By (3.4.2) and (3.4.3),

E𝑌 exp (−⟨𝑌𝑇−𝑡 , 𝑣𝑙 (𝑡)⟩) = E𝑌 exp (−⟨𝑌𝑇 , 𝑣𝑙 (0)⟩) + E𝑌
∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )) 𝑑𝑟 (3.4.4)

where

Ĩ(𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )) = 𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩ 1
2

(
⟨𝑌(𝑇−𝑟 )−, 𝑏𝑛 (𝑣𝑙 (𝑟 ))𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, (𝑣𝑙 (𝑟 ))

𝛼 ⟩
)

We now have to check whether this holds when ` := 𝑤 − lim𝑙→∞ `𝑙 .
Let 𝑣 (𝑟 ) = 𝑉𝑛𝑟 (`),

𝑅𝑙 := E𝑌
∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−,𝑉𝑛𝑟 (`𝑙 )) 𝑑𝑟 = E𝑌

∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 ))) 𝑑𝑟,

and

𝑅 := E𝑌
∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−,𝑉𝑛𝑟 (`)) 𝑑𝑟 = E𝑌

∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑣 (𝑟 )) 𝑑𝑟 .

We only have to prove 𝑅𝑙 → 𝑅 as 𝑙 → ∞. In 𝑅𝑙 − 𝑅 adding and subtracting the term

𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣 (𝑟 ) ⟩
(
𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩
)

we have

|𝑅𝑙 − 𝑅 | ≤
1
2 (𝐼

𝑙
1 + 𝐼 𝑙2),

where

𝐼 𝑙1 =E𝑌

����∫ 𝑡

0

(
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩ − 𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣 (𝑟 ) ⟩

) (
𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩
)
𝑑𝑟

����
𝐼 𝑙2 =E𝑌

����∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣 (𝑟 ) ⟩

(
𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 − 𝑣 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 − 𝑣 (𝑟 )𝛼 ⟩
)
𝑑𝑟

���� .
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To prove |𝑅𝑙 − 𝑅 | → 0 as 𝑙 → ∞ we need to show
(i): 𝐼 𝑙1 → 0; and
(ii): 𝐼 𝑙2 → 0,
as 𝑙 → ∞.

Proof of (i): Let 1 < 𝑞 < 1
𝛽
and 𝑝 > 1 be such that 1

𝑝
+ 1
𝑞
= 1. Note that

𝐼 𝑙1 ≤
∫ 𝑡

0
E𝑌

���(𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩ − 𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣 (𝑟 ) ⟩
) (
𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩
)��� 𝑑𝑟

≤
∫ 𝑡

0
E𝑌

(���𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣𝑙 (𝑟 ) ⟩ − 𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣 (𝑟 ) ⟩
���𝑝 )1/𝑝

E𝑌

(���𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )
𝛼 ⟩

���𝑞)1/𝑞
𝑑𝑟

=:
∫ 𝑡

0
𝐼 𝑙11(𝑟 )𝐼 𝑙12(𝑟 ) 𝑑𝑟 (3.4.5)

using Hölder’s inequality in the second line. Here 𝐼 𝑙11(𝑟 ) and 𝐼 𝑙12(𝑟 ) denote the first and second
terms of the integrand in the above.

Now let us use a notation from Fleischmann [Fle88]:

∥𝑣 ∥L𝛼,T := sup
0≤𝑡≤𝑇

∥𝑣 (𝑡)∥L𝛼 (R) .

By [Fle88, Proposition A2], we have 𝑣𝑙 → 𝑣 in L𝛼,T as 𝑙 → ∞. Thus there is a subsequence of 𝑣𝑙 ,
which we also denote as 𝑣𝑙 by a slight abuse of notation, such that 𝑣𝑙 (𝑡, 𝑥) → 𝑣 (𝑡, 𝑥) as 𝑙 → ∞
for a.e. 𝑡 ∈ [0,𝑇 ] and 𝑥 ∈ R. As the term inside the expectation of 𝐼 𝑙11(𝑟 ) is dominated by 2,
dominated convergence theorem this gives us

lim
𝑙→∞

𝐼 𝑙11(𝑟 ) = 0

for each 𝑟 ∈ [0, 𝑡]. Since |𝐼 𝑙11(𝑟 ) | ≤ 2 for all 𝑙 and 𝑟 , again by the dominated convergence theorem,
to prove (i) as above we only have to show that 𝐼 𝑙12(𝑟 ) ≤ 𝐶 < ∞ for some constant 𝐶 = 𝐶𝑡
independent of 𝑙 .

𝐼 𝑙12(𝑟 ) = E𝑌
(���𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩
���𝑞)1/𝑞

≤ 𝑏𝑛E𝑌
(��⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩��𝑞)1/𝑞

+ E𝑌
(
⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩𝑞
)1/𝑞

:= 𝑏𝑛𝐼 𝑙121(𝑟 ) + 𝐼 𝑙122(𝑟 ) (3.4.6)

using Minkowski’s inequality.
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For all 𝑟 < 𝑡 ,

𝐼 𝑙121(𝑟 ) =E𝑌
(��⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 ⟩��𝑞)1/𝑞

=∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R)E𝑌

[(∫
R

1
∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R)

𝑣𝑙 (𝑟, 𝑥)𝛼𝑌𝑇−𝑟 (𝑥) 𝑑𝑥
)𝑞]1/𝑞

≤∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R)

[
E𝑌

(
1

∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R)

∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼𝑌𝑇−𝑟 (𝑥)𝑞 𝑑𝑥

)]1/𝑞

=∥𝑣𝑙 (𝑟 )∥𝛼−𝛼/𝑞L𝛼 (R)

[∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼E𝑌 (𝑌𝑇−𝑟 (𝑥)𝑞) 𝑑𝑥

]1/𝑞

≤𝐶𝑇 ∥𝑣𝑙 (𝑟 )∥𝛼−𝛼/𝑞L𝛼 (R)

[∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼 (𝑇 − 𝑟 )−

𝑞

2 𝑑𝑥 +
∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼 𝑑𝑥

]1/𝑞

≤𝐶𝑇 ∥𝑣𝑙 (𝑟 )∥𝛼−𝛼/𝑞L𝛼 (R) ((𝑇 − 𝑡)−
𝑞

2 + 1)1/𝑞
[∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼 𝑑𝑥

]1/𝑞

=𝐶𝑇 ∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R) ((𝑇 − 𝑡)−
𝑞

2 + 1)1/𝑞 . (3.4.7)

Here we have used Jensen’s inequality and Proposition 3.1.1 (applicable by our assumption that
𝑞 < 𝛼) in the first and second inequalities respectively. [Fle88, Proposition A2] implies that for
large enough 𝑙 ∈ N, ∥𝑣𝑙 (𝑟 )∥L𝛼 (R) ≤ ∥𝑣 ∥L𝛼,T + 1 for all 𝑟 ∈ [0, 𝑡]. Therefore (3.4.7) gives us

𝐼 𝑙121(𝑟 ) ≤ 𝐶𝑇 (∥𝑣 ∥L𝛼,T + 1)𝛼 ((𝑇 − 𝑡)−
𝑞

2 + 1)1/𝑞, (3.4.8)

when 𝑙 is large.
For the term 𝐼 𝑙122 we again proceed as in the calculation (3.4.7). Note that, as 𝛼𝛽𝑞 < 𝛼 by our

assumption, we can again apply Proposition 3.1.1 in the following. Let 𝑟 < 𝑡 .

𝐼 𝑙122(𝑟 ) =E𝑌
(
⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 ⟩𝑞
)1/𝑞

≤∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R)

[
E𝐴𝑌

(
1

∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R)

∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼𝑌𝑇−𝑟 (𝑥)𝛼𝛽𝑞 𝑑𝑥

)]1/𝑞

=∥𝑣𝑙 (𝑟 )∥𝛼−𝛼/𝑞L𝛼 (R)

[∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼E𝑌 (𝑌𝑇−𝑟 (𝑥)𝛼𝛽𝑞) 𝑑𝑥

]1/𝑞

≤𝐶𝑇 ∥𝑣𝑙 (𝑟 )∥𝛼−𝛼/𝑞L𝛼 (R)

[∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼 (𝑇 − 𝑟 )−

𝛼𝛽𝑞

2 𝑑𝑥 +
∫
R
𝑣𝑙 (𝑟, 𝑥)𝛼 𝑑𝑥

]1/𝑞

≤𝐶𝑇 ∥𝑣𝑙 (𝑟 )∥𝛼L𝛼 (R) ((𝑇 − 𝑡)−
𝛼𝛽𝑞

2 + 1)1/𝑞 ≤ 𝐶𝑇 (∥𝑣 ∥L𝛼,T + 1)𝛼 ((𝑇 − 𝑡)−
𝛼𝛽𝑞

2 + 1)1/𝑞 (3.4.9)

for large 𝑙 . We can observe that (3.4.8) and (3.4.9) together show that 𝐼 𝑙12 ≤ 𝐶𝑡,𝑇 where 𝐶𝑡,𝑇 is
independent of 𝑙 . Thus (i) is proved.

Proof of (ii): First note that 𝑣𝑙 → 𝑣 in L𝛼,T implies the following almost everywhere con-
vergence along a sub-sequence: there exists a sequence (𝑙𝑖)𝑖 of natural numbers such that

𝑣𝑙𝑖 (𝑟, 𝑥) → 𝑣 (𝑟, 𝑥) as 𝑖 → ∞
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for a.e. (𝑟, 𝑥) ∈ [0,𝑇 ] ×R. We will abuse our notation again and use 𝑙 to denote this subsequence.
Also observe that since the stochastic integration part in (2.4.2) is a martingale (see Lemma

3.1.3) we have E𝑌𝑡 (𝑥) = 𝑃𝑡𝑌0(𝑥). By Proposition 3.1.1,

𝐼 𝑙2 =E𝑌

����∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑣 (𝑟 ) ⟩

(
𝑏𝑛 ⟨𝑌(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )𝛼 − 𝑣 (𝑟 )𝛼 ⟩ − ⟨𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑣𝑙 (𝑟 )

𝛼 − 𝑣 (𝑟 )𝛼 ⟩
)
𝑑𝑟

����
≤

∫ 𝑡

0

∫
R
|𝑣𝑙 (𝑟, 𝑥)𝛼 − 𝑣 (𝑟, 𝑥)𝛼 | · E𝑌

(
𝑏𝑛𝑌(𝑇−𝑟 )− (𝑥) + 𝑌𝛼𝛽(𝑇−𝑟 )− (𝑥)

)
𝑑𝑟 𝑑𝑥

≤𝐶𝑇
∫ 𝑡

0

∫
R

[
𝑏𝑛𝑃𝑇−𝑟𝑌0(𝑥) + (𝑇 − 𝑟 )−

𝛼𝛽

2 + 1
]
|𝑣𝑙 (𝑟, 𝑥)𝛼 − 𝑣 (𝑟, 𝑥)𝛼 | 𝑑𝑟 𝑑𝑥

≤𝐶𝑇 (𝑏𝑛 (𝑇 − 𝑡)− 1
2 + (𝑇 − 𝑡)−

𝛼𝛽

2 + 1)
∫ 𝑡

0

∫
R
|𝑣𝑙 (𝑟, 𝑥)𝛼 − 𝑣 (𝑟, 𝑥)𝛼 | 𝑑𝑟 𝑑𝑥 (3.4.10)

using the fact that 𝑃𝑇−𝑟𝑌0(𝑥) ≤ 𝐶 (𝑇 − 𝑟 )− 1
2 with𝐶 being independent of 𝑥 and 𝑙 . The right hand

side converges to 0 as 𝑙 → ∞ as 𝑣𝑙 → 𝑣 in L𝛼,T. This proves (ii) .
□

Next we prove Proposition 3.3.2. For the proof we will need to understand how 𝑌 behaves
when 𝑍 (𝑛) jumps. Since 𝑛 is fixed in this proof, we drop it to simplify the notations introduced in
Section 2.5. We shall write 𝑍 = 𝑍 (𝑛) , 𝑉 = 𝑉𝑛 , 𝑆 = 𝑆𝑛 , 𝑈 = 𝑈 𝑛 , 𝑇𝑙 = 𝑇𝑛𝑙 , 𝜏 = 𝜏𝑛 , N = N𝑛 , N̂ = N̂𝑛 ,
𝛾 (𝑠) := 𝛾𝑛 (𝑠) and 𝛾𝑙 := 𝛾𝑛 (𝑇𝑛

𝑙
) for 𝑙 ∈ N. Also recall the notation

\ (𝑠, 𝑥, _) := \𝑛 (𝑠, 𝑥, _) = 𝑒−⟨𝑌𝑇 −𝛾𝑛 (𝑠 ) ,𝑍
(𝑛)
𝛾𝑛 (𝑠 )− ⟩

(
𝑒−_𝑌𝑇 −𝛾𝑛 (𝑠 ) (𝑥 ) − 1

)
.

Proof of Proposition 3.3.2. Fix 𝑡 ∈ [0,𝑇 ) and let

\ 𝑗 := \ (𝑇𝑗 ,𝑈 𝑗 , 𝑆 𝑗 ) = 𝑒−⟨𝑌𝑇 −𝛾𝑗 ,𝑍𝛾𝑗 ⟩ − 𝑒−⟨𝑌𝑇 −𝛾𝑗 ,𝑍𝛾𝑗 − ⟩ = 𝑒−⟨𝑌𝑇 −𝛾𝑗 ,𝑍𝛾𝑗 − ⟩
(
𝑒
−𝑆 𝑗𝑌𝑇 −𝛾𝑗 (𝑈 𝑗 ) − 1

)
.

Suppose we show that on the event {𝛾𝑙 ≤ 𝑡 < 𝛾𝑙+1} we have,

E𝑌

[
𝑒−⟨𝑌𝑇 −𝑡 ,𝑍𝑡 ⟩

]
= E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

𝑙∑︁
𝑖=1

\𝑖

]
, (3.4.11)

then we can write
𝑙∑︁
𝑖=1

\𝑖 =

∫ 𝜏 (𝑡 )

0

∫
R

∫
R+

\ (𝑠, 𝑥, _)N( 𝑑_, 𝑑𝑥, 𝑑𝑠),

since for 𝛾𝑙 ≤ 𝑡 < 𝛾𝑙+1 by definition (see (2.5.7) and (3.3.2)) 𝜏 (𝑡) ∈ [𝑇𝑙 ,𝑇𝑙+1). Replace the above in
(3.4.11) and we obtain (3.3.3). So, to complete the proof of (3.3.3) we need to establish (3.4.11).

We will prove this by induction on 𝑙 = 0, 1, 2, . . . and use (3.3.1) repeatedly in the following.
Note that (3.4.11) for 𝑡 = 0 is trivial. When 0 = 𝛾0 < 𝑡 < 𝛾1, by our convention 𝑙 = 0. In this case
(3.4.11) is

E𝑌

[
𝑒−⟨𝑌𝑇 −𝑡 ,𝑍𝑡 ⟩

]
= E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟

]
(3.4.12)
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and this follows directly from (3.3.1).
Now assume that (3.4.11) holds on the event {𝛾𝑙 ≤ 𝑠 < 𝛾𝑙+1}. We first show that

E𝑌

[
𝑒−⟨𝑌𝑇 −𝛾𝑙+1 ,𝑍𝛾𝑙+1 ⟩

]
=E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝛾𝑙+1

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

𝑙+1∑︁
𝑖=1

\𝑖

]
. (3.4.13)

By definition of \𝑙+1 and induction hypothesis,

E𝑌

[
𝑒−⟨𝑌𝑇 −𝛾𝑙+1 ,𝑍𝛾𝑙+1 ⟩

]
= E𝑌 [\𝑙+1] + E𝑌

[
𝑒−⟨𝑌𝑇 −𝛾𝑙+1 ,𝑍𝛾𝑙+1− ⟩

]
=E𝑌 [\𝑙+1] + lim

𝑠↑𝛾𝑙+1
𝛾𝑙 ≤𝑠<𝛾𝑙+1

E𝑌𝑒
−⟨𝑌𝑇 −𝑠 ,𝑍𝑠 ⟩

=E𝑌 [\𝑙+1] + lim
𝑠↑𝛾𝑙+1

𝛾𝑙 ≤𝑠<𝛾𝑙+1

E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝑠

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

𝑙∑︁
𝑖=1

\𝑖

]

=E𝑌 [\𝑙+1] + E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝛾𝑙+1

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

𝑙∑︁
𝑖=1

\𝑖

]
=E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝛾𝑙+1

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

𝑙+1∑︁
𝑖=1

\𝑖

]
.

This proves (3.4.13).
The last step of the induction is to prove (3.4.11) when 𝑙 is replaced with 𝑙 + 1 and 𝛾𝑙+1 < 𝑡 <

𝛾𝑙+2. We use (3.3.1) with 𝑇 − 𝛾𝑙+1, 𝑡 − 𝛾𝑙+1 instead of 𝑇 , 𝑡 and then apply (3.4.13) to get,

E𝑌

[
𝑒−⟨𝑌𝑇 −𝑡 ,𝑍𝑡 ⟩

]
= E𝑌

[
exp

(
−⟨𝑌𝑇−𝑡 ,𝑉𝑡−𝛾𝑙+1 (𝑍𝛾𝑙+1)⟩

) ]
=E𝑌

[
exp

(
−⟨𝑌𝑇−𝛾𝑙+1,𝑉0(𝑍𝛾𝑙+1)⟩

) ]
+ E𝑌

[∫ 𝑡−𝛾𝑙+1

0
Ĩ(𝑌(𝑇−𝛾𝑙+1−𝑟 )−,𝑉𝑟 (𝑍𝛾𝑙+1)) 𝑑𝑟

]
=E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩ +

∫ 𝛾𝑙+1

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

𝑙+1∑︁
𝑖=1

\𝑖

]
+ E𝑌

[∫ 𝑡

𝛾𝑙+1

Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟
]
, (3.4.14)

which is the required expression. This completes the induction argument and proves (3.4.11).
□

For the proof of our final proposition, we continue to suppress 𝑛 and use the notations intro-
duced before the previous proof. Define

𝑀𝑠 =

∫ 𝑠

0

∫
R

∫ ∞

0
\ (𝑟, 𝑥, _) [N(𝑑_, 𝑑𝑥, 𝑑𝑟 ) − N̂(𝑑_, 𝑑𝑥, 𝑑𝑟 )] (3.4.15)

and note that𝑀 is an F𝑍
(𝑛) -martingale.
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Proof of Proposition 3.3.3. We recall that

[ =
𝛼𝛽 (𝛼𝛽 − 1)
Γ(2 − 𝛼𝛽) and 𝑔(𝑟,𝑦) =

∫ 𝑟

0+
(𝑒−_𝑦 − 1 + _𝑦)_−𝛼𝛽−1 𝑑_, 𝑟,𝑦 ≥ 0.

Since for all 𝑦 ≥ 0,

𝑦𝛼𝛽 = [

∫ ∞

0+
(𝑒−_𝑦 − 1 + _𝑦)_−𝛼𝛽−1 𝑑_ = [𝑔(1/𝑛,𝑦) + [

∫ ∞

1/𝑛
(𝑒−_𝑦 − 1)_−𝛼𝛽−1 𝑑_ + 𝑏𝑛𝑦,

we can write

E𝑌

[∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟

]
= E𝑌

[∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ 1

2 ⟨𝑏𝑛𝑌(𝑇−𝑟 )− − 𝑌𝛼𝛽(𝑇−𝑟 )−, 𝑍
𝛼
𝑟−⟩ 𝑑𝑟

]
= − [

2E𝑌
[∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑟 )− (·)), 𝑍𝛼𝑟−⟩ 𝑑𝑟

]
− [

2E𝑌
[∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨

∫ ∞

1/𝑛
(𝑒−_𝑌(𝑇 −𝑟 )− ( ·) − 1)_−𝛼𝛽−1 𝑑_, 𝑍𝛼𝑟−⟩ 𝑑𝑟

]
. (3.4.16)

Let

ℎ(𝑟 ) =𝑒−⟨𝑌𝑇 −𝑟 ,𝑍𝑟− ⟩
∫
R

(𝑍𝑟− (𝑥))𝛼

∥𝑍𝑟− ∥𝛼𝛼

∫ ∞

1/𝑛

(
𝑒−_𝑌𝑇 −𝑟 (𝑥 ) − 1

)
_−𝛼𝛽−1 𝑑_ 𝑑𝑥

𝛽 (𝑟 ) =1
2 ∥𝑍𝑟− ∥

𝛼
𝛼 .

Then by definition 𝛾 (𝑡) = inf{𝑠 ≥ 0 |
∫ 𝑠

0 𝛽 (𝑠) 𝑑𝑠 > 𝑡} and also recall from (3.3.2) that
𝛾 (𝜏 (𝑠)) = 𝑠 . Given 𝑌 , applying [EK86, Exercise 6.12], for any 𝑠 ≥ 0, we have

[

2

∫ 𝑠

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨

∫ ∞

1/𝑛
(𝑒−_𝑌(𝑇 −𝑟 )− ( ·) − 1)_−𝛼𝛽−1 𝑑_, 𝑍𝛼𝑟−⟩ 𝑑𝑟

=[

∫ 𝑠

0
ℎ(𝑟 )𝛽 (𝑟 ) 𝑑𝑟 = [

∫ 𝛾 (𝜏 (𝑠 ) )

0
ℎ(𝑟 )𝛽 (𝑟 ) 𝑑𝑟 = [

∫ 𝜏 (𝑠 )

0
ℎ(𝛾 (𝑟 )) 𝑑𝑟

=[

∫ 𝜏 (𝑠 )

0
𝑒−⟨𝑌𝑇 −𝛾 (𝑟 ) ,𝑍𝛾 (𝑟 )− ⟩

∫
R

(
𝑍𝛾 (𝑟 )− (𝑥)

)𝛼
∥𝑍𝛾 (𝑟 )− ∥𝛼𝛼

∫ ∞

1/𝑛

(
𝑒−_𝑌𝑇 −𝛾 (𝑟 ) (𝑥 ) − 1

)
_−𝛼𝛽−1 𝑑_ 𝑑𝑥 𝑑𝑟

=[

∫ 𝜏 (𝑠 )

0

∫
R

∫ ∞

0
\ (𝑟, 𝑥, _)

(
𝑍𝛾 (𝑟 )− (𝑥)

)𝛼
∥𝑍𝛾 (𝑟 )− ∥𝛼𝛼

1(_ > 1/𝑛)_−𝛼𝛽−1𝑑_ 𝑑𝑥 𝑑𝑟

=

∫ 𝜏 (𝑠 )

0

∫
R

∫ ∞

0
\ (𝑟, 𝑥, _)N̂(𝑑_, 𝑑𝑥, 𝑑𝑟 ) (3.4.17)

using Lemma 2.5.2 in the last line.
Combining (3.4.15) and the calculations in (3.4.16), (3.4.17) we get,

E𝑌

[∫ 𝑡

0
Ĩ(𝑌(𝑇−𝑟 )−, 𝑍𝑟−) 𝑑𝑟 +

∫ 𝜏 (𝑡 )

0

∫
R

∫
R+

\ (𝑠, 𝑥, _)N(𝑑_, 𝑑𝑥, 𝑑𝑠)
]

=E𝑌

[
𝑀𝜏 (𝑡 ) −

[

2

∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑟 )− (·)), 𝑍𝛼𝑟−⟩ 𝑑𝑟

]
(3.4.18)
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We can now use (3.4.18) to rewrite (3.3.3).

E𝑌

[
𝑒−⟨𝑌𝑇 −𝑡 ,𝑍𝑡 ⟩

]
= E𝑌

[
𝑀𝜏 (𝑡 )

]
− E𝑌

[
[

2

∫ 𝑡

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑟 )− (·)), 𝑍𝛼𝑟−⟩ 𝑑𝑟

]
(3.4.19)

Recall the notation Υ𝑚 (𝑡) = 𝛾 (𝑚) ∧ 𝑡 and observe that for any𝑚 ∈ N, 𝜏 (Υ𝑚 (𝑡)) = 𝜏 (𝑡) ∧𝑚. We
localize the above as follows.

E𝑌

[
𝑒−⟨𝑌𝑇 −Υ𝑚 (𝑡 ) ,𝑍Υ𝑚 (𝑡 ) ⟩

]
=E𝑌

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩

]
+ E𝑌

[
𝑀𝜏 (𝑡 )∧𝑚

]
− [

2E𝑌
[∫ Υ𝑚 (𝑡 )

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑟 )− (·)), 𝑍𝛼𝑟−⟩ 𝑑𝑟

]
(3.4.20)

Apply E𝑍 to the above. As

E𝑍E𝑌 (𝑀𝜏𝑍 (𝑡 )∧𝑚) = E𝑌E𝑍 (𝑀𝜏𝑍 (𝑡 )∧𝑚) = 0

we have,

E
[
𝑒−⟨𝑌𝑇 −Υ𝑚 (𝑡 ) ,𝑍Υ𝑚 (𝑡 ) ⟩

]
=E

[
𝑒−⟨𝑌𝑇 ,𝑍0 ⟩

]
− [

2E
[∫ Υ𝑚 (𝑡 )

0
𝑒−⟨𝑌(𝑇 −𝑟 )−,𝑍𝑟− ⟩ ⟨𝑔(1/𝑛,𝑌(𝑇−𝑟 )− (·)), 𝑍𝛼𝑟−⟩ 𝑑𝑟

]
. (3.4.21)

This is the required expression. □

3.5 Proof of Proposition 3.2.2

Since the proof is a little long, we carry it out in two steps. The first shows that a solution of
the weak form (2.2.2) also satisfies a time-dependent version as described in (3.5.1). The proof
follows the argument of [Shi94, Theorem 2.1].

Lemma 3.5.1. Let 𝑇 > 0 be fixed and assume that 𝑌 satisfies (2.2.2) and the following conditions
hold for𝜓 : [0,𝑇 ] × R→ [0,∞).

(i) The map [0,𝑇 ] ∋ 𝑠 ↦→ 𝜓𝑠 ∈ L[ (R) ∩ L𝜌 (R) is continuous, for some fixed [ ∈ ( 1
𝛽
, 𝛼) and

𝜌 ∈ (𝛼, 𝛼
𝛽
∧ 2).

(ii) sup𝑠≤𝑇 ∥ 𝜕𝜕𝑠𝜓𝑠 ∥ 𝛼𝛽

𝛼𝛽−1
< ∞, and

(iii) 𝑠 ↦→ 𝜕2

𝜕𝑥2𝜓𝑠 is continuous in L∞(R), i.e. ∥ 𝜕2

𝜕𝑥2𝜓𝑠 − 𝜕2

𝜕𝑥2𝜓𝑡 ∥∞ → 0 as |𝑠 − 𝑡 | → 0.

Then for each 𝑡 ∈ [0,𝑇 ], we have

⟨𝑌𝑡 ,𝜓𝑡 ⟩ = ⟨𝑌0,𝜓0⟩ +
∫ 𝑡

0
⟨𝑌𝑠 ,

(
1
2
𝜕2

𝜕𝑥2 + 𝜕

𝜕𝑠

)
𝜓𝑠⟩ 𝑑𝑠 +

∫ 𝑡

0

∫
R
(𝑌𝑠− (𝑥))𝛽𝜓𝑠 (𝑥)𝐿𝛼 (𝑑𝑥, 𝑑𝑠) . (3.5.1)
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Proof. Fix 0 ≤ 𝑡 ≤ 𝑇 and let Δ = {0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑡} be a partition of [0, 𝑡]. For all
𝑠 ∈ [𝑡𝑖−1, 𝑡𝑖], denote 𝜋Δ (𝑠) = 𝑡𝑖−1 and 𝜋Δ (𝑠) = 𝑡𝑖 . Then we have

⟨𝑌𝑡 ,𝜓𝑡 ⟩ − ⟨𝑌0,𝜓0⟩

=

𝑁∑︁
𝑖=1

(⟨𝑌𝑡𝑖 ,𝜓𝑡𝑖 −𝜓𝑡𝑖−1⟩ − ⟨𝑌𝑡𝑖 − 𝑌𝑡𝑖−1,𝜓𝑡𝑖−1⟩)

=

𝑁∑︁
𝑖=1

[∫ 𝑡𝑖

𝑡𝑖−1

⟨𝑌𝜋Δ (𝑠 ) , ¤𝜓𝑠⟩ 𝑑𝑠 +
∫ 𝑡𝑖

𝑡𝑖−1

⟨𝑌𝑠 ,
1
2
𝜕2

𝜕𝑥2𝜓𝜋Δ (𝑠 )⟩ 𝑑𝑠 +
∫ 𝑡𝑖

𝑡𝑖−1

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝜋Δ (𝑠 ) (𝑥)𝐿𝛼 (𝑑𝑥, 𝑑𝑠)

]
=

∫ 𝑡

0

(
⟨𝑌𝜋Δ (𝑠 ) , ¤𝜓𝑠⟩ + ⟨𝑌𝑠 ,

1
2
𝜕2

𝜕𝑥2𝜓𝜋Δ (𝑠 )⟩
)
𝑑𝑠 +

∫ 𝑡

0

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝜋Δ (𝑠 ) (𝑥)𝐿𝛼 (𝑑𝑥, 𝑑𝑠) (3.5.2)

To prove the lemma we have to show that, as |Δ| → 0

(a)
∫ 𝑡

0 ⟨𝑌𝜋Δ (𝑠 ) , ¤𝜓𝑠⟩ 𝑑𝑠 →
∫ 𝑡

0 ⟨𝑌𝑠 , ¤𝜓𝑠⟩ 𝑑𝑠 a.s. ,

(b)
∫ 𝑡

0 ⟨𝑌𝑠 , 1
2
𝜕2

𝜕𝑥2𝜓𝜋Δ (𝑠 )⟩ 𝑑𝑠 →
∫ 𝑡

0 ⟨𝑌𝑠 , 1
2
𝜕2

𝜕𝑥2𝜓𝑠⟩ 𝑑𝑠 a.s. , and

(c)
∫ 𝑡

0

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝜋Δ (𝑠 ) (𝑥)𝐿𝛼 ( 𝑑𝑠, 𝑑𝑥) →

∫ 𝑡
0

∫
R𝑑
(𝑌𝑠− (𝑥))𝛽𝜓𝑠 (𝑥)𝐿𝛼 (𝑑𝑥, 𝑑𝑠) in probability.

For (a) and (b), we need to show that the integrand converges pointwise (i.e. for each 𝑠) and
that the dominated convergence theorem (DCT) can be applied.

(a) Recall that 𝑠 ↦→ 𝑌𝑠 is right continuous measure-valued a.s. and by the definition of weak
convergence we have, for each 𝑠 ∈ [0, 𝑡]

|⟨𝑌𝜋Δ (𝑠 ) − 𝑌𝑠 , ¤𝜓𝑠⟩| → 0, a.s.

as ¤𝜓𝑠 is bounded and continuous (in the space variable).
By Hölder’s inequality, as 𝛼𝛽 > 1, we have a.s.

|⟨𝑌𝜋Δ (𝑠 ) − 𝑌𝑠 , ¤𝜓𝑠⟩| ≤
∫
R
|𝑌𝑠 (𝑥) | | ¤𝜓𝑠 (𝑥) | 𝑑𝑥 +

∫
R
|𝑌𝜋Δ (𝑠 ) (𝑥) | | ¤𝜓𝑠 (𝑥) | 𝑑𝑥

≤ ∥𝑌𝑠 ∥𝛼𝛽 ∥ ¤𝜓𝑠 ∥ 𝛼𝛽

𝛼𝛽−1
+ ∥𝑌𝜋Δ (𝑠 ) ∥𝛼𝛽 ∥ ¤𝜓𝑠 ∥ 𝛼𝛽

𝛼𝛽−1
.

Therefore, a.s.∫ 𝑡

0
|⟨𝑌𝜋Δ (𝑠 ) − 𝑌𝑠 , ¤𝜓𝑠⟩| 𝑑𝑠 ≤ (sup

𝑠≤𝑡
∥ ¤𝜓𝑠 ∥ 𝛼𝛽

𝛼𝛽−1
)
[∫ 𝑡

0
∥𝑌𝑠 ∥𝛼𝛽 𝑑𝑠 +

∫ 𝑡

0
∥𝑌𝜋Δ (𝑠 ) ∥𝛼𝛽 𝑑𝑠

]
= (sup

𝑠≤𝑡
∥ ¤𝜓𝑠 ∥ 𝛼𝛽

𝛼𝛽−1
)

(∫ 𝑡

0
∥𝑌𝑠 ∥𝛼𝛽 𝑑𝑠

) 𝛼𝛽

𝛼𝛽

+
(∫ 𝑡

0
∥𝑌𝜋Δ (𝑠 ) ∥𝛼𝛽 𝑑𝑠

) 𝛼𝛽

𝛼𝛽


≤ (sup
𝑠≤𝑡

∥ ¤𝜓𝑠 ∥ 𝛼𝛽

𝛼𝛽−1
)
[(
𝑡𝛼𝛽

1
𝑡

∫ 𝑡

0
∥𝑌𝑠 ∥𝛼𝛽𝛼𝛽 𝑑𝑠

) 1
𝛼𝛽

+
(
𝑡𝛼𝛽

1
𝑡

∫ 𝑡

0
∥𝑌𝜋Δ (𝑠 ) ∥

𝛼𝛽

𝛼𝛽
𝑑𝑠

) 1
𝛼𝛽

]
,

using Jensen in the last line. The quantity above is finite by assumption (ii) and the fact that
𝑌 ∈ 𝐿𝛼𝛽

𝑙𝑜𝑐
(R+ × R). This implies that 𝑠 ↦→ |⟨𝑌𝜋Δ (𝑠 ) − 𝑌𝑠 , ¤𝜓𝑠⟩| is a.s. integrable on [0, 𝑡].
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(b) Fix 𝑠 ∈ [0, 𝑡]. Then

|⟨𝑌𝑠 ,
𝜕2

𝜕𝑥2 (𝜓𝑠 −𝜓𝜋Δ (𝑠 ) )⟩| ≤
(
sup
𝑥∈R

| 𝜕
2

𝜕𝑥2 (𝜓𝑠 −𝜓𝜋Δ (𝑠 ) ) (𝑥) |
)
⟨𝑌𝑠 , 1⟩, a.s.

We know that 𝑌𝑠 is a finite measure, i.e. ⟨𝑌𝑠 , 1⟩ < ∞. Thus the RHS above converges to 0 by our
assumption (iii).

Let us introduce a new stopping time: for 𝑘 ∈ N,

𝜎𝑘 = inf{𝑠 ≥ 0 | ⟨𝑌𝑠 , 1⟩ > 𝑘}.

For 𝑠 ≤ 𝜎𝑘 ∧ 𝑡 we have, a.s.

|⟨𝑌𝑠 ,
𝜕2

𝜕𝑥2 (𝜓𝑠 −𝜓𝜋Δ (𝑠 ) )⟩| ≤
(
sup
𝑥∈R

| 𝜕
2

𝜕𝑥2 (𝜓𝑠 −𝜓𝜋Δ (𝑠 ) ) (𝑥) |
)
⟨𝑌𝑠 , 1⟩

≤ 2𝑘 ©«sup
𝑠≤𝑡
𝑥∈R

| 𝜕
2

𝜕𝑥2𝜓𝑠 (𝑥) |
ª®¬ < ∞

by hypothesis. As 𝜎𝑘 → ∞ as 𝑘 → ∞ the above is true for all 𝑠 ≤ 𝑡 . Thus we can apply DCT to
obtain (b).

(c) Recall the notations introduced in the beginning of Section 2.5. We have

𝐿𝛼 ( 𝑑𝑥, 𝑑𝑠) =
∫ ∞

0
𝑧�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠) (3.5.3)

where 𝑁 ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠) is a PRM on R × (0,∞)2 with intensity 𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠 .
Note that ∫ 𝑡

0

∫
R
𝑌𝑠− (𝑥)𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))𝐿𝛼 (𝑑𝑥, 𝑑𝑠)

=

∫ 𝑡

0

∫ 1

0

∫
R
𝑌𝑠− (𝑥)𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))𝑧�̃� (𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ ∞

1

∫
R
𝑌𝑠− (𝑥)𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))𝑧�̃� (𝑑𝑥, 𝑑𝑧, 𝑑𝑠) . (3.5.4)

Here we note that
∫ 1

0 𝑧𝜌𝑚0(𝑑𝑧) < ∞ as 𝜌 ≥ 𝛼 and
∫ ∞

1 𝑧[𝑚0(𝑑𝑧) < ∞ as [ < 𝛼 . Using the
Burkholder-Davis-Gundy inequality for the first term, Fubini’s theorem and Proposition 3.1.1
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we have

E

(����∫ 𝑡

0

∫ 1

0

∫
R
𝑌𝑠− (𝑥)𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))𝑧�̃� (𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

����𝜌 )
≤𝐶𝜌E

(����∫ 𝑡

0

∫ 1

0

∫
R
𝑌𝑠− (𝑥)2𝛽 |𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥) |2𝑧2𝑁 (𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

����𝜌/2)
≤𝐶𝜌E

(∫ 𝑡

0

∫ 1

0

∫
R
𝑌𝑠− (𝑥)𝜌𝛽 |𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥) |𝜌𝑧𝜌𝑁 (𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

)
≤𝐶𝜌

∫ 𝑡

0

∫
R

��𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥)��𝜌 E(𝑌𝑠− (𝑥)𝜌𝛽 )𝑑𝑥 𝑑𝑠
≤𝐶𝜌

(
sup
𝑠

∥𝜓𝜋Δ (𝑠 ) −𝜓𝑠 ∥𝜌
)𝜌 (∫ 𝑡

0
𝑠−𝜌𝛽/2 𝑑𝑠

)
=𝐶𝜌

(
sup
𝑠

∥𝜓𝜋Δ (𝑠 ) −𝜓𝑠 ∥𝜌
)𝜌
𝑡1−𝜌𝛽/2 → 0 (3.5.5)

as |Δ| → 0. The second inequality again uses the fact about random sums described in [PZ07,
Lemma 8.22] as 𝜌/2 < 1. The last line follows from our assumption (i) of continuity of the map
𝑠 ↦→ 𝜓𝑠 ∈ L𝜌 (R), which implies uniform continuity of the same on [0, 𝑡]. For the second term in
(3.5.4) we proceed as in the previous calculation. Observe that 1 < [𝛽 < 𝛼 by assumption and
thus Proposition 3.1.1 is applicable in the following.

E

(����∫ 𝑡

0

∫ ∞

1

∫
R
𝑌𝑠− (𝑥)𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))𝑧�̃� (𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

����[)
≤E

(����∫ 𝑡

0

∫ ∞

1

∫
R
𝑌𝑠− (𝑥)2𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))2𝑧2𝑁 (𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

����[/2)
≤E

∫ 𝑡

0

∫ ∞

1

∫
R

���𝑌𝑠− (𝑥)[𝛽 (𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥))[𝑧[ ���𝑁 ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

=E

∫ 𝑡

0

∫ ∞

1

∫
R
|𝑌𝑠− (𝑥) |[𝛽

��𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥)��[ 𝑧[ 𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠

≤𝐶[
∫ 𝑡

0

∫
R
E

(
|𝑌𝑠− (𝑥) |[𝛽

) ��𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥)��[ 𝑑𝑥 𝑑𝑠
≤𝐶[

∫ 𝑡

0

∫
R
𝑠[𝛽/2 ��𝜓𝜋Δ (𝑠 ) (𝑥) −𝜓𝑠 (𝑥)��[ 𝑑𝑥 𝑑𝑠

≤𝐶[
(
sup
𝑠

∥𝜓𝜋Δ (𝑠 ) −𝜓𝑠 ∥[
)[
𝑡1−[𝛽/2. (3.5.6)

By assumption (i) the RHS above converges to 0 as |Δ| → 0. The calculations (3.5.4), (3.5.5) and
(3.5.6) together prove (c). □

In the last lemma we show how to turn the time dependent weak form of our SPDE (3.5.1),
which was proved in the previous result, into a martingale. This will complete the proof of
Proposition 3.2.2.
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Lemma 3.5.2. If (3.5.1) holds for some smooth𝜓 : [0,𝑇 ] × 𝑅 → R and 0 ≤ 𝑡 ≤ 𝑇 , then

𝑀𝑌
𝑡 (𝜓 ) = 𝑒−⟨𝑌𝑡 ,𝜓𝑡 ⟩ − 𝑒−⟨𝑌0,𝜓0 ⟩ −

∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
−⟨𝑌𝑠−,

1
2Δ𝜓𝑠 +

𝜕

𝜕𝑠
𝜓𝑠⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩

)
𝑑𝑠 (3.5.7)

is an F𝑌 -martingale.

Proof. The proof is an application of Ito’s formula. Using the representation (3.5.3) and some
algebraic manipulations we have,

⟨𝑌𝑡 ,𝜓 ⟩ =⟨𝑌0,𝜓0⟩ +
∫ 𝑡

0
⟨𝑌𝑠 ,

1
2Δ𝜓𝑠 +

𝜕

𝜕𝑠
𝜓𝑠⟩ 𝑑𝑠 +

∫ 𝑡

0

∫ ∞

0

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

=⟨𝑌0,𝜓0⟩ +
∫ 𝑡

0
⟨𝑌𝑠 ,

1
2Δ𝜓𝑠 +

𝜕

𝜕𝑠
𝜓𝑠⟩ 𝑑𝑠 +

∫ 𝑡

0

∫ 1

0

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ ∞

1

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧𝑁 ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠) −

∫ 𝑡

0

∫ ∞

1

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧 𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠

=⟨𝑌0,𝜓0⟩ +
∫ 𝑡

0

[
⟨𝑌𝑠 ,

1
2Δ𝜓𝑠 +

𝜕

𝜕𝑠
𝜓𝑠⟩ −

∫ ∞

1
𝑧⟨𝑌𝑠− (·)𝛽 ,𝜓𝑠⟩𝑚0(𝑑𝑧)

]
𝑑𝑠

+
∫ 𝑡

0

∫ 1

0

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑡) +

∫ 𝑡

0

∫ ∞

1

∫
R
𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧𝑁 ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑡)

(3.5.8)

Since
∫ ∞

1 𝑧𝑚0(𝑑𝑧) = 𝛼
Γ (2−𝛼 ) the above can be written formally as

𝑑 ⟨𝑌𝑡 ,𝜓 ⟩ =
(
⟨𝑌𝑡 ,

Δ

2𝜓𝑡 +
𝜕

𝜕𝑡
𝜓𝑡 ⟩ −

𝛼

Γ(2 − 𝛼) ⟨𝑌
𝛽

𝑡−,𝜓𝑡 ⟩
)
𝑑𝑡

+
∫ 1

0

∫
R
𝑌𝑡− (𝑥)𝛽𝜓𝑡 (𝑥)𝑧�̃� ( 𝑑𝑡, 𝑑𝑧, 𝑑𝑥) +

∫ ∞

1

∫
R
𝑌𝑡− (𝑥)𝛽𝜓𝑡 (𝑥)𝑧𝑁 ( 𝑑𝑡, 𝑑𝑧, 𝑑𝑥) .

(3.5.9)

Ito’s formula as given in [App09, Theorem 4.4.7] can now be applied with 𝑓 (𝑥) = 𝑒−𝑥 and
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𝐺 (𝑡) =
(
⟨𝑌𝑡 , Δ2𝜓𝑡 +

𝜕
𝜕𝑡
𝜓𝑡 ⟩ − 𝛼

Γ (2−𝛼 ) ⟨𝑌
𝛽

𝑡−,𝜓𝑡 ⟩
)
. We have from (3.5.9),

𝑒−⟨𝑌𝑡 ,𝜓𝑡 ⟩ − 𝑒−⟨𝑌0,𝜓0 ⟩ = 𝑓 (⟨𝑌𝑡 ,𝜓𝑡 ⟩) − 𝑓 (⟨𝑌0,𝜓0⟩)

=

∫ 𝑡

0
𝑓 ′(⟨𝑌𝑠−,𝜓𝑠⟩)𝐺 (𝑠) 𝑑𝑠 +

∫ 𝑡

0

∫ ∞

1

∫
R

[
𝑓 (⟨𝑌𝑠−,𝜓𝑠⟩ + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧) − 𝑓 (⟨𝑌𝑠−,𝜓𝑠⟩)

]
𝑁 ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ 1

0

∫
R

[
𝑓 (⟨𝑌𝑠−,𝜓𝑠⟩ + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧) − 𝑓 (⟨𝑌𝑠−,𝜓𝑠⟩)

]
�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ 1

0

∫
R

[
𝑓 (⟨𝑌𝑠−,𝜓𝑠⟩ + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧) − 𝑓 (⟨𝑌𝑠−,𝜓𝑠⟩) − 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧𝑓 ′(⟨𝑌𝑠−,𝜓𝑠⟩)

]
𝑑𝑠𝑚0(𝑑𝑧) 𝑑𝑥

= −
∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
⟨𝑌𝑠−,

Δ

2𝜓𝑠 +
𝜕

𝜕𝑠
𝜓𝑠⟩ −

𝛼

Γ(2 − 𝛼) ⟨𝑌
𝛽
𝑠−,𝜓𝑠⟩

)
𝑑𝑠

+
∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
𝑁 ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ 1

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ 1

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠

= −
∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
⟨𝑌𝑠−,

Δ

2𝜓𝑠 +
𝜕

𝜕𝑠
𝜓𝑠⟩ −

𝛼

Γ(2 − 𝛼) ⟨𝑌
𝛽
𝑠−,𝜓𝑠⟩

)
𝑑𝑠

+
[∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

+
∫ 𝑡

0

∫ 1

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

]
+

∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠

+
∫ 𝑡

0

∫ 1

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠 (3.5.10)

adding and subtracting the term
∫ 𝑡

0

∫ ∞
1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
𝑑𝑠𝑚0(𝑑𝑧) 𝑑𝑥 in the last

line. Note that the term in the square bracket above is

𝑀𝑡 (𝜓 ) =
∫ 𝑡

0

∫ ∞

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
�̃� ( 𝑑𝑥, 𝑑𝑧, 𝑑𝑠)

and it is an F𝑌 -martingale. We consider the last term in the RHS of (3.5.10). Recall the definition
of𝑚0 from (2.4.1) and the fact that for 𝑦 ≥ 0,

𝛼 (𝛼 − 1)
Γ(2 − 𝛼)

∫ ∞

0+

(
𝑒−_𝑦 − 1 + _𝑦

)
_−𝛼−1 𝑑_ = 𝑦𝛼 .
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From these we can get,∫ 𝑡

0

∫ 1

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠

=

∫ 𝑡

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

[
𝛼 (𝛼 − 1)
Γ(2 − 𝛼)

∫ ∞

0

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑧−1−𝛼 𝑑𝑧

]
𝑑𝑥 𝑑𝑠

−
∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑑𝑠𝑚0(𝑑𝑧) 𝑑𝑠

=

∫ 𝑡

0

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩𝑌𝑠− (𝑥)𝛼𝛽𝜓𝑠 (𝑥)𝛼 𝑑𝑥 𝑑𝑠

−
∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠. (3.5.11)

To finish the proof use the result of (3.5.11) in (3.5.10). By algebraic manipulations we have,

𝑒−⟨𝑌𝑡 ,𝜓𝑡 ⟩ − 𝑒−⟨𝑌0,𝜓0 ⟩

= −
∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
⟨𝑌𝑠−,

Δ

2𝜓𝑠 +
𝜕

𝜕𝑠
𝜓𝑠⟩ −

𝛼

Γ(2 − 𝛼) ⟨𝑌
𝛽
𝑠−,𝜓𝑠⟩

)
𝑑𝑠 +𝑀𝑡 (𝜓 )

+
∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1
)
𝑑𝑠𝑚0(𝑑𝑧) 𝑑𝑥 +

∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩ ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩ 𝑑𝑠

−
∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
𝑒−𝑌𝑠− (𝑥 )

𝛽𝜓𝑠 (𝑥 )𝑧 − 1 + 𝑌𝑠− (𝑥)𝛽𝜓𝑠 (𝑥)𝑧
)
𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠,

= −
∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
⟨𝑌𝑠−,

Δ

2𝜓𝑠 +
𝜕

𝜕𝑠
𝜓𝑠⟩ −

𝛼

Γ(2 − 𝛼) ⟨𝑌
𝛽
𝑠−,𝜓𝑠⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩

)
𝑑𝑠 +𝑀𝑡 (𝜓 )

−
∫ 𝑡

0

∫ ∞

1

∫
R
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩𝑌𝑠− (𝑥)𝛽𝜓 (𝑥)𝑧 𝑑𝑥 𝑚0(𝑑𝑧) 𝑑𝑠,

= −
∫ 𝑡

0
𝑒−⟨𝑌𝑠−,𝜓𝑠 ⟩

(
⟨𝑌𝑠−,

Δ

2𝜓𝑠 +
𝜕

𝜕𝑠
𝜓𝑠⟩ + ⟨𝑌𝛼𝛽𝑠− ,𝜓𝛼𝑠 ⟩

)
𝑑𝑠 +𝑀𝑡 (𝜓 ) (3.5.12)

again using the fact that
∫ ∞

1 𝑧𝑚0(𝑑𝑧) = 𝛼
Γ (2−𝛼 ) . □
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Chapter 4

Lie algebraic duality for some Markov
processes

Two Markov processes 𝑋 and 𝑌 , taking values in state spaces 𝐸 and 𝐹 , are said to be dual to each
other if there exists a function 𝐷 : 𝐸 × 𝐹 → R such that for all 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 ,

E𝑥𝐷 (𝑋𝑡 , 𝑦) = E𝑦𝐷 (𝑥,𝑌𝑡 ) (4.0.1)

for each 𝑡 ≥ 0. 𝐷 is called the duality function. Here E𝑥 and E𝑦 denote the expectations taken
with respect to the law P𝑥 of the processes 𝑋 starting at 𝑥 ∈ 𝐸 and the law P𝑦 of 𝑌 starting at
𝑦 ∈ 𝐹 respectively.

This notion of stochastic duality between two Markov processes is a powerful tool used to
understandmany of their properties. These processes arise from different branches of probability
theory including statistical physics, population genetics, stochastic partial differential equations
etc. However, given an arbitrary Markov process, there does not exist a general technique to
obtain its dual and an associated duality function. See the survey article of Jansen and Kurt [JK14]
for a more detailed overview of the various types of duality found in the literature.

Our aim is to use the techniques from the theory of Lie algebra to establish duality relations
for some infinite dimensional Markov processes. The papers [GKRV09], [CGGR15] of Giardina,
Redig and others have successfully used these ideas to obtain dual processes of the finite di-
mensional Wright-Fisher diffusion, the Brownian momentum process, the symmetric exclusion
process etc. Their approach is based on viewingMarkov generators as sums and product of other,
simpler operators, such that the latter form a basis for a representation of a Lie algebra.

Following their initiative, in the present article we consider twomodels whose dual processes
have previously been obtained by classical methods, viz. the Feller diffusion process in dimension
one and the interacting Wright-Fisher diffusion in infinite dimensions.

This chapter is organized as follows. In Section 4.1 we have provided basic details related to
duality of Markov processes and the Lie algebraic method mentioned above. Section 4.2 contains
our result regarding the Feller diffusion and in Section 4.3 we discuss the interacting Wright-
Fisher diffusion. We end the chapter with some open questions in Section 4.4.
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4.1 Preliminaries

We start by giving a brief introduction to the classical duality theory of Markov processes and
the new algebraic method.

4.1.1 Duality of Markov processes

Let (Ω,F) be a measurable space and 𝐸, 𝐹 be Polish spaces endowed with their Borel 𝜎-algebra
B(𝐸) and B(𝐹 ) respectively. Let 𝑋 = (Ω,F, (𝑋𝑡 )𝑡≥0, {P𝑥 }𝑥∈𝐸) and 𝑌 = (Ω,F, (𝑌𝑡 )𝑡≥0, {P𝑦}𝑦∈𝐹 )
be two Markov processes taking values in 𝐸 and 𝐹 . See [JK14, p. 61] for this notation and the
definition of a Markov process. Recall that, in (4.0.1) we have already defined the meaning of
duality between 𝑋 and 𝑌 with respect to a function 𝐷 .

Let (𝑃𝑡 )𝑡≥0 and (𝑄𝑡 )𝑡≥0 denote the semi-groups of 𝑋 and 𝑌 , i.e. for measurable functions
𝑓 : 𝐸 → R, 𝑔 : 𝐹 → R and 𝑡 ≥ 0,

(𝑃𝑡 𝑓 ) (𝑥) = E𝑥 [𝑓 (𝑋𝑡 )] and (𝑄𝑡𝑔) (𝑦) = E𝑦 [𝑔(𝑌𝑡 )],

whenever the above exist. Assume now that 𝑋 and 𝑌 have infinitesimal generators L𝑋 and L𝑌

with domains D(L𝑋 ) and D(L𝑌 ) respectively.
The following result connects (4.0.1) with a definition of duality expressed through the gen-

erators L𝑋 and L𝑌 . Its proof can be found in [JK14, Proposition 1.2]. See also [SSV18, Lemma
1].

Proposition 4.1.1. Let 𝑋 and 𝑌 be as defined above and 𝐷 : 𝐸 × 𝐹 → R be a bounded and contin-
uous function. Moreover, assume that for each 𝑥 ∈ 𝐸,𝑦 ∈ 𝐹 and 𝑡 ≥ 0 we have 𝐷 (𝑥, ·), 𝑃𝑡𝐷 (𝑥, ·) ∈
D(L𝑌 ) and 𝐷 (·, 𝑦), 𝑃𝑡𝐷 (·, 𝑦) ∈ D(L𝑋 ). Then 𝑋 and 𝑌 are dual to each other with respect to 𝐷 if
and only if,

L𝑋𝐷 (·, 𝑦) (𝑥) = L𝑌𝐷 (𝑥, ·) (𝑦), (4.1.1)

for all 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 .

In the following we give three well-known examples of stochastic processes and their duals.
Example 4.1.2. Let 𝐵 = (𝐵𝑡 )𝑡≥0 be the Brownian motion in R starting from some 𝑥 > 0. Let
𝜏 = inf{𝑡 ≥ 0 | 𝐵𝑡 = 0} be the first hitting time of the Brownian motion at 0. Then

𝑋𝑡 = 𝐵𝜏∧𝑡 , 𝑡 ≥ 0

is called the absorbing Brownian motion with absorption at the origin. Also let us define the
process,

𝑌𝑡 = |𝐵𝑡 |, 𝑡 ≥ 0.

This is known as the reflected Brownian motion. See [Bre92, Section 16.3] for detailed discussions
regarding these processes. It is well-known that (cf. [Lig05, Section II.3]) 𝑋 and 𝑌 are dual to
each other with the following duality relation:

P𝑥 (𝑋𝑡 ≤ 𝑦) = P𝑦 (𝑌𝑡 ≤ 𝑥) for all 𝑥 > 0, 𝑦 > 0, 𝑡 ≥ 0.
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Example 4.1.3. The one-dimensional Wright-Fisher diffusion is defined to be the solutions of
the following SDE:

𝑑𝑋𝑡 =
√︁
𝑋𝑡 (1 − 𝑋𝑡 ) 𝑑𝐵𝑡

where 𝐵𝑡 is a standard Brownian motion on R. Clearly, the infinitesimal generator of 𝑋 is given
by

L𝑋 𝑓 (𝑥) = 1
2𝑥 (1 − 𝑥)

𝜕2 𝑓

𝜕𝑥2 , 𝑥 ∈ [0, 1] (4.1.2)

where 𝑓 ∈ C2
𝑏
(R), the space of all real-valued twice continuously differentiable function on R

with bounded derivatives. Then 𝑋 is dual to the process defined by the following generator,

L𝑌𝑔(𝑛) =
(
𝑛

2

)
(𝑔(𝑛 − 1) − 𝑔(𝑛)), 𝑛 ∈ N, (4.1.3)

defined for any function 𝑔 : N → R. The corresponding duality function is 𝐷 (𝑥, 𝑛) = 𝑥𝑛 . This
generator represents the process known as Kingman’s coalescent (see [Eth11, Section 2.1]).
Example 4.1.4. Our final example comes from the theory of superprocesses. Let (Ω,F, (F𝑡 )𝑡 , P)
be a filtered probability space and𝑀𝐹 be the collection of non-negative finite measures on R. For
a function 𝜑 on R and ` ∈ 𝑀𝐹 , recall that ⟨𝜑, `⟩ =

∫
𝜑 (𝑥) ` (𝑑𝑥).

We say that an a.s. continuous 𝑀𝐹 -valued process 𝑋 ≡ (𝑋𝑡 )𝑡≥0, starting from some non-
random 𝑋0 ∈ 𝑀𝐹 , is a super-Brownian motion if

𝑀𝑡 (𝜑) = ⟨𝜑,𝑋𝑡 ⟩ − ⟨𝜑,𝑋0⟩ −
∫ 𝑡

0
⟨1
2Δ𝜑,𝑋𝑡 ⟩ 𝑑𝑠

is a F𝑡–local martingale with ⟨𝑀 (𝜑)⟩𝑡 =
∫ 𝑡

0 𝑋𝑠 (𝜑
2) 𝑑𝑠 , for all 𝜑 ∈ C2

𝑏
(R)+. Here Δ is the one-

dimensional Laplacian and ⟨𝑀 (𝜑)⟩· denotes the quadratic variation of𝑀 (𝜑).
Now suppose 𝑉 ≡ 𝑉 (𝜑)𝑠 (𝑥) is the unique non-negative solution of the PDE:

𝜕𝑉𝑡 (𝑥)
𝜕𝑡

=
1
2Δ𝑉𝑡 (𝑥) −

1
2𝑉

2
𝑡 , 𝑉0 = 𝜑,

for 𝑡 ≥ 0, 𝑥 ∈ R and some 𝜑 ∈ C2
𝑏
(R)+. Then we know from [Per02, Eq. (II.5.7), p. 168] that 𝑋

and 𝑉 are dual to each other with respect to the exponential function. More precisely,

E𝛿𝑋0
exp (−⟨𝜑,𝑋𝑡 ⟩) = exp (−⟨𝑋0,𝑉 (𝜑)𝑡 ⟩) ,

for all 𝜑 ∈ C2
𝑏
(R)+.

4.1.2 Some Lie algebra preliminaries

Lie algebras and their representations are well studied and have vast literature. Here we give a
very brief exposition of the basics and direct the interested reader to the survey article of Sturm,
Swart and Völlering [SSV18] for a more detailed treatment of these topics. Let us first define a
Lie algebra and their homomorphism.
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Definition 4.1.5. A (complex) Lie algebra 𝔤 is a finite dimensional vector space over C endowed
with a bilinear map [·, ·] : 𝔤 × 𝔤 → 𝔤 satisfying the following relations. For all 𝑥,𝑦, 𝑧 ∈ 𝔤,

(i) [𝑥,𝑦] = −[𝑦, 𝑥] (skew-symmetry) and,

(ii) [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥,𝑦]] = 0 (Jacobi identity).
The map [·, ·] is called a Lie bracket.

From every Lie algebra 𝔤 we can obtain its conjugate Lie algebra �̄� := {𝑥 | 𝑥 ∈ 𝔤} defined via
a conjugate linear bijection 𝑥 ↦→ 𝑥 from 𝔤 onto �̄� such that [𝑥,𝑦] = [𝑦, 𝑥] holds for all 𝑥,𝑦 ∈ 𝔤.
Definition 4.1.6. Given two Lie algebras 𝔤 and 𝔥, a Lie algebra homomorphism is a linear map
𝜑 : 𝔤 → 𝔥 that preserves the Lie algebra structure, i.e. for all 𝑥,𝑦 ∈ 𝔤,

[𝜑 (𝑥), 𝜑 (𝑦)] = 𝜑 ( [𝑥,𝑦])

where the Lie brackets in the l.h.s and the r.h.s. are associated with 𝔥 and 𝔤 respectively.
A conjugate linear map 𝔤 → 𝔤, 𝑥 ↦→ 𝑥∗ will be called an adjoint if (𝑥∗)∗ = 𝑥 and [𝑥∗, 𝑦∗] =

[𝑦, 𝑥]∗ for every 𝑥,𝑦 ∈ 𝔤. When 𝔤 has a basis {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the Lie bracket on 𝔤 is completely
determined by the so-called commutation relations,

[𝑥𝑖 , 𝑥 𝑗 ] =
𝑛∑︁
𝑘=1

𝑐𝑖 𝑗𝑘𝑥𝑘 , 𝑖 < 𝑗 . (4.1.4)

Note that when 𝑉 is a finite dimensional complex vector space, the space of all linear maps
𝐿(𝑉 ,𝑉 ) from 𝑉 to itself is a Lie algebra with the Lie bracket given by

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴, 𝐴, 𝐵 ∈ 𝐿(𝑉 ,𝑉 ),

where 𝐴𝐵 denotes the composition of linear maps. We are now ready to define representations
of a Lie algebra 𝔤.
Definition 4.1.7. A representation of a complex Lie algebra 𝔤 is (Lie algebra) homomorphism
𝜋 : 𝔤 → 𝐿(𝑉 ,𝑉 ) where 𝑉 is a complex linear space.

Let 𝑉 be a complex vector space with dim(𝑉 ) ≥ 1 and suppose 𝑋1, ..., 𝑋𝑛 ∈ 𝐿(𝑉 ,𝑉 ) satisfy
commutation relations

[𝑋𝑖 , 𝑋 𝑗 ] =
𝑛∑︁
𝑘=1

𝑐𝑖 𝑗𝑘𝑋𝑘 , 𝑖 < 𝑗 .

Then the map defined by 𝑥𝑖 ↦→ 𝑋𝑖 , 𝑖 ∈ N, defines a representation of 𝔤 by virtue of (4.1.4).
As an example of a Lie algebra, we define theHeisenberg algebra, denoted by 𝔥. This is a three

dimensional complex Lie algebra with basis {𝑎0, 𝑎−, 𝑎+} and the following commutation relations
(see (4.1.4)),

[𝑎−, 𝑎+] = 𝑎0, [𝑎−, 𝑎0] = 0, [𝑎+, 𝑎0] = 0. (4.1.5)

One can check easily that the operators on 𝐿2(R),

𝐴+ 𝑓 (𝑥) = 𝑥 𝑓 (𝑥), 𝐴− 𝑓 (𝑥) = 𝜕

𝜕𝑥
𝑓 (𝑋 ) and 𝐴0 𝑓 (𝑥) = 𝑓 (𝑥) (4.1.6)

satisfy the commutation relations [𝐴−, 𝐴+] = 𝐴0, [𝐴±, 𝐴0] = 0. This is known as the Schrödinger
representation of 𝔥.
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4.1.3 Algebraic duality

For the purpose of studying duality between two processes, the notion of an intertwiner or ho-
momorphism between two representations of a Lie algebra is crucial.

Definition 4.1.8. Let 𝑉 and𝑊 be two vector spaces and 𝜋𝑉 : 𝔤 → 𝐿(𝑉 ,𝑉 ), 𝜋𝑊 : 𝔤 → 𝐿(𝑊,𝑊 )
be two representations of 𝔤. A linear map Φ :𝑊 → 𝑉 is called an intertwiner between these two
representations if

𝜋𝑉 (𝑥) ◦ Φ = Φ ◦ 𝜋𝑊 (𝑥) (4.1.7)

for all 𝑥 ∈ 𝔤. When Φ is an isomorphism, we say that the two representations are equivalent.

Suppose (Ω, `), (Ω̂, ˆ̀) are measure spaces and 𝑉 , 𝑊 are linear subspaces of 𝐿2(Ω, `) and
𝐿2(Ω̂, ˆ̀) respectively. 𝑉 and𝑊 inherit the natural (real) 𝐿2-inner products ⟨·, ·⟩` and ⟨·, ·⟩ ˆ̀ from
their parent spaces. Let 𝔤 be a Lie algebra having basis {𝑏𝑘 | 𝑘 ∈ 𝐼 } (𝐼 being a countable – finite
or infinite – index set). Also let 𝑇𝑘 , 𝑘 ∈ 𝐼 and 𝑆𝑘 , 𝑘 ∈ 𝐼 be operators on 𝑉 and𝑊 such that the
correspondences 𝑏𝑘 ↦→ 𝑇𝑘 and 𝑏𝑘 ↦→ 𝑆𝑘 define representations of 𝔤 and its conjugate Lie algebra
�̄�. Note that the operators 𝑆∗

𝑘
(adjoints of 𝑆𝑘 with respect to the inner product ⟨·, ·⟩ ˆ̀ on𝑊 ) define

a representation of 𝔤.
The idea behind algebraic duality is this: if we can express the generator 𝐿 of a Markov pro-

cess using the basis {𝑇𝑘 }𝑘∈𝐼 of a representation of a Lie algebra 𝔤, roughly speaking, a dual of the
Markov process can be obtained by replacing {𝑇𝑘 }𝑘∈𝐼 by those coming from the representation
{𝑆∗
𝑘
}𝑘∈𝐼 of 𝔤, provided that these two representations are related in a nice manner. The next result

makes this idea precise. This is the infinite dimensional version of [SSV18, Proposition 10] and
can be proved similarly. This will be used for calculating the duality function in the next section.

Proposition 4.1.9 (Intertwiners and duality functions). Let Φ :𝑊 → 𝑉 be a linear map having
the form

Φ𝑔(𝑥) =
∫
Ω̂
𝑔(𝑦)𝐷 (𝑥,𝑦) ˆ̀( 𝑑𝑦) (4.1.8)

for some measurable function 𝐷 : Ω × Ω̂ → R. Then the following are equivalent:

(a) Φ is an intertwiner between the representations {𝑇𝑘 | 𝑘 ∈ 𝐼 } and {𝑆∗
𝑘
| 𝑘 ∈ 𝐼 } of 𝔤; i.e. for all

𝑘 ∈ 𝐼 ,

𝑇𝑘Φ = Φ𝑆∗
𝑘
. (4.1.9)

(b) For all 𝑥 ∈ Ω, 𝑦 ∈ Ω̂ and 𝑘 ∈ 𝐼 ,

𝑇𝑘𝐷 (·, 𝑦) (𝑥) = 𝑆𝑘𝐷 (𝑥, ·) (𝑦). (4.1.10)

Proof. Assume statement (a) and fix 𝑘 ∈ 𝐼 . Note that, to prove (4.1.10), it is enough to show that
for all 𝑓 ∈ 𝑉 and 𝑔 ∈𝑊 , we have∫

Ω
` (𝑑𝑥) 𝑓 (𝑥)

∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦) 𝑆𝑘𝐷 (𝑥, ·) (𝑦) =
∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦)
∫
Ω
` (𝑑𝑥) 𝑓 (𝑥)𝑇𝑘𝐷 (·, 𝑦) (𝑥) . (4.1.11)
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Fix 𝑓 ∈ 𝑉 ,𝑔 ∈𝑊 . Then, by definition of Φ from (4.1.8) and Fubini’s theorem,

⟨𝑓 ,𝑇𝑘Φ𝑔⟩` =⟨𝑇 ∗
𝑘
𝑓 ,Φ𝑔⟩`

=

∫
Ω
` (𝑑𝑥)𝑇 ∗

𝑘
𝑓 (𝑥) (Φ𝑔) (𝑥)

=

∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦)
∫
Ω
` (𝑑𝑥)𝑇 ∗

𝑘
𝑓 (𝑥)𝐷 (𝑥,𝑦)

=

∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦) ⟨𝑇 ∗
𝑘
𝑓 , 𝐷 (·, 𝑦)⟩`

=

∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦) ⟨𝑓 ,𝑇𝑘𝐷 (·, 𝑦)⟩`

=

∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦)
∫
Ω
` (𝑑𝑥) 𝑓 (𝑥)𝑇𝑘𝐷 (·, 𝑦) (𝑥).

This is the r.h.s. of (4.1.11). Similarly one can show that

⟨𝑓 ,Φ𝑆∗
𝑘
𝑔⟩` =

∫
Ω
` (𝑑𝑥) 𝑓 (𝑥)

∫
Ω̂

ˆ̀(𝑑𝑦) 𝑔(𝑦) 𝑆𝑘𝐷 (𝑥, ·) (𝑦),

which is the l.h.s. of (4.1.11). Since ⟨𝑓 ,𝑇𝑘Φ𝑔⟩` = ⟨𝑓 ,Φ𝑆∗
𝑘
𝑔⟩` by our assumption, (4.1.11) holds and

we are done. The above computations also show that the converse is trivial. □

We show how to treat duality with this method in the simple instance of the Wright-Fisher
diffusion which was already introduced in Example 4.1.3.
Example 4.1.10. Recall the Schrödinger representations (4.1.6) of the three dimensional Heisen-
berg algebra 𝔥. With these we can write down the generator L𝑋 of the Wright-Fisher diffusion
defined in (4.1.2) as

L𝑋 =
1
2 [𝐴

+ − (𝐴+)2] (𝐴−)2. (4.1.12)

Now consider the operators

𝐵−𝑔(𝑛) = 𝑛𝑔(𝑛 − 1), 𝐵+𝑔(𝑛) = 𝑔(𝑛 + 1) and 𝐵0𝑔(𝑛) = 𝑔(𝑛), 𝑥 ∈ N,

where 𝑔 : N → R is any function. One can check easily that [𝐵−, 𝐵+] = −𝐵0. This there-
fore gives a representation of the conjugate Heisenberg algebra �̄�. Thus their adjoints, 𝐵∗ :=
{(𝐵−)∗, (𝐵+)∗, (𝐵0)∗} is a representation of 𝔥. Assume that the intertwiner Φ between the rep-
resentations 𝐴 and 𝐵∗ has the integral form given in (4.1.8). Then we can apply Proposition
4.1.9.

We have the intertwiner relations 𝐴−Φ = Φ(𝐵−)∗ and 𝐴+Φ = Φ(𝐵+)∗. Now composing L𝑋

with Φ from the right (4.1.12) gives us,

L𝑋Φ =
1
2

(
[𝐴+ − (𝐴+)2] (𝐴−)2) Φ

=
1
2Φ

(
[(𝐵+)∗ − ((𝐵+)∗)2] ((𝐵−)∗)2)

=
1
2Φ

(
(𝐵−)2 [𝐵+ − (𝐵+)2]

)∗
,
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using the fact that 𝑇 ∗𝑆∗ = (𝑆𝑇 )∗ for two operators 𝑆 and 𝑇 . The above definitions of 𝐵±, 𝐵0 and
some computations will show that

1
2

(
(𝐵−)2 [𝐵+ − (𝐵+)2]

)
𝑔(𝑛) =

(
𝑛

2

)
(𝑔(𝑛 − 1) − 𝑔(𝑛)),

which equals the generator of the Kingman’s coalescent L𝑌 defined in (4.1.3).
In Section 4.3 we are going to consider an infinite dimensional generalization of this model.

4.2 The one-dimensional Feller diffusion

The Feller diffusion is a real-valued process defined by the stochastic differential equation (SDE)

𝑋𝑡 = 𝑥 +
∫ 𝑡

0

√︁
𝑋𝑠 𝑑𝐵𝑠 , 𝑡 ≥ 0, (4.2.1)

where 𝑥 > 0 and 𝐵 is the Brownian Motion in R. It arises naturally as the weak limit of the
rescaled critical Galton-Watson branching process (cf. [EK86, Theorem 9.1.3]). The existence and
uniqueness of solution to this SDE follows from Theorem 2.3 and Theorem 3.2 of [IW89, Chapter
IV]

Theorem4.2.1 (Theorem 3.1 of [MM22]). Suppose𝑦 > 0 and let𝑌 be the solution𝑌 : [0,∞] → R+
of the ordinary differential equation,

𝑌𝑡 = 𝑦 − 2
∫ 𝑡

0
𝑌 2
𝑠 𝑑𝑠, 𝑡 ≥ 0. (4.2.2)

Then𝑋 , defined according to (4.2.1), and𝑌 are dual to each other with respect to the duality function
𝐷 (𝑥,𝑦) := exp(−2𝑥𝑦) defined on R2

+.

By an application of Proposition 4.1.1, the above claim can be checked easily once we note
that

L𝑋 𝑓 (𝑥) = 1
2𝑥
𝜕2 𝑓

𝜕𝑥2 and L𝑌𝑔(𝑦) = −2𝑦2 𝜕𝑔

𝜕𝑦2 (4.2.3)

(defined for all 𝑓 , 𝑔 ∈ 𝐶2
𝑐 (R)) are the generators of 𝑋 and 𝑌 respectively. We give a proof of this

fact using only the algebraic method discussed in the last section.

Proof of Theorem 4.2.1. The three dimensional Heisenberg algebra 𝔥 has the following (rescaled)
Schrödinger representation given by the operators

𝐴− 𝑓 (𝑥) := − 1
√

2
𝜕

𝜕𝑥
𝑓 (𝑥), 𝐴+ 𝑓 (𝑥) :=

√
2𝑥 𝑓 (𝑥), 𝐴0 𝑓 (𝑥) := −𝑓 (𝑥),

defined on a suitable subspace of 𝐿2(R). In terms of this representation of 𝔥 we can write L𝑋 as

𝐿 := L𝑋 =
1
√

2
𝐴+(𝐴−)2. (4.2.4)
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Now define

𝐵− := 𝐴+, 𝐵+ := 𝐴−, 𝐵0 := 𝐴0. (4.2.5)

Clearly [𝐵−, 𝐵+] = −𝐵0 and [𝐵±, 𝐵0] = 0. Therefore {𝐵+, 𝐵−, 𝐵0} defines a representation of
the conjugate Heisenberg algebra �̄�. Thus {(𝐵+)∗(𝐵−)∗, (𝐵0)∗} defines a representation of the
Heisenberg algebra 𝔥. It can be seen by the Stone-von Neumann’s theorem (see [SSV18, Section
2.5]) that𝐴 and 𝐵∗ define equivalent representations of 𝔥. In other words, there exists a bijective
intertwiner Φ such that

𝐴+Φ = Φ(𝐵+)∗, 𝐴−Φ = Φ(𝐵−)∗, 𝐴0Φ = Φ(𝐵0)∗. (4.2.6)

First, let us derive the generator �̂� of the dual Markov process. Applying Φ to 𝐿 (as defined
in (4.2.4)) from the right we get,

𝐿Φ =
1
√

2
[𝐴+(𝐴−)2]Φ = Φ( 1

√
2
(𝐵−)2𝐵+)∗. (4.2.7)

Using the relations (4.1.6) and (4.2.5) we can explicitly write down the (differential) form of �̂� :=
1√
2 (𝐵

−)2𝐵+. We note that this matches with the generator L𝑌 given in (4.2.3).
To obtain the duality function, let us assume that Φ has an integral kernel denoted by 𝐷 :

R2
+ → R+, i.e. it has the form given in (4.1.8), with ˆ̀ being the ordinary Lebesgue measure. By

Proposition 4.1.9 we can thus write

𝐴±𝐷 (., 𝑦) (𝑥) = 𝐵±𝐷 (𝑥, .) (𝑦). (4.2.8)

By (4.1.6) and (4.2.5), the above is a system of ODEs fromwhich we can compute𝐷 . Solving these
we find that, up to a multiplicative constant, the duality function is given by

𝐷 (𝑥,𝑦) = 𝑒−2𝑥𝑦, 𝑥,𝑦 > 0.

This completes our proof. □

4.3 Interacting Wright-Fisher diffusion on infinite sites

Let Λ be a countable set. Let X = (X· (𝑖))𝑖∈Λ be defined by the following systems of SDEs:

𝑑X𝑡 (𝑖) =
∑︁
𝑗∈Λ

𝑞𝑖 𝑗 (X𝑡 ( 𝑗) − X𝑡 (𝑖)) 𝑑𝑡 +
√︁

2X𝑡 (𝑖) (1 − X𝑡 (𝑖)) 𝑑𝐵𝑡 (𝑖), (4.3.1)

for 𝑡 ≥ 0, 𝑖 ∈ Λ, where {𝐵(𝑖) | 𝑖 ∈ Λ} are independent standard Brownian motions and 𝑞𝑖 𝑗 ≥ 0
(𝑖, 𝑗 ∈ Λ, 𝑖 ≠ 𝑗) denote the transition rates of a continuous time Markov process on Λ. 𝑞𝑖 𝑗 ’s are
assumed to satisfy the following properties.

(i) 𝑞𝑖𝑖 = 0 for all 𝑖 ∈ Λ.

(ii) sup𝑖∈Λ
∑
𝑗∈Λ 𝑞𝑖 𝑗 < ∞. (Summability)

(iii) 𝑄 = (𝑞𝑖 𝑗 )𝑖, 𝑗∈Λ is irreducible in the following sense. For every non-empty Δ ⊂ Λ there exist
𝑖 ∈ Δ and 𝑗 ∈ Λ \ Δ such that 𝑞𝑖 𝑗 > 0 or 𝑞 𝑗𝑖 > 0.

63



(iv)
∑
𝑗∈Λ 𝑞 𝑗𝑖 =

∑
𝑗∈Λ 𝑞𝑖 𝑗 for all 𝑖 ∈ Λ. (Weak-symmetry)

X describes a system of linearly interacting Wright-Fisher diffusions on Λ with resampling. In
the papers [AS05], [AS12] of Athreya and Swart, it was shown that the process X is a dual to the
system 𝑋 of jumping and coalescing particle given by the generator

𝐺𝜙 (𝑛) =
∑︁
𝑖, 𝑗∈Λ

𝑞𝑖 𝑗𝑛𝑖 (𝜙 (𝑛 + 𝛿 𝑗 − 𝛿𝑖) − 𝜙 (𝑛)) +
∑︁
𝑖∈Λ

𝑛𝑖 (𝑛𝑖 − 1) (𝜙 (𝑛 − 𝛿𝑖) − 𝜙 (𝑛)), (4.3.2)

where 𝑛 = (𝑛𝑖)𝑖 ∈ NΛ. The above is defined for every 𝜙 : NΛ → R 1 for which the sums exist
finitely. In this section we prove this only with the help of Proposition 4.1.9.

First, we set up some notations. Let Λ𝑘 (𝑘 ≥ 1) be finite subsets of Λ such that Λ𝑘 ⊆ Λ𝑘+1
and ∪𝑘∈NΛ𝑘 = Λ. We call a function 𝑓 : [0, 1]Λ → R cylindrical when it is determined by finitely
many co-ordinates. In other words, there exists a 𝑘 ≥ 1 and a function 𝑓 : [0, 1]Λ𝑘 → R such
that 𝑓 ((𝑥𝑖)𝑖∈Λ) = 𝑓 ((𝑥𝑖)𝑖∈Λ𝑘

) for all 𝑥 = (𝑥𝑖)𝑖∈Λ ∈ [0, 1]Λ. Define the space

𝐶2
𝑐𝑦𝑙

= 𝐶2
𝑐𝑦𝑙

( [0, 1]Λ) :=
{
𝑓 : [0, 1]Λ → R|𝑓 is cylindrical and 𝑓 is twice differentiable

}
. (4.3.3)

On 𝐶2
𝑐𝑦𝑙

( [0, 1]Λ) we define the following inner product: if 𝑓 , 𝑔 ∈ 𝐶2
𝑐𝑦𝑙

and 𝑘 ≥ 1 is the smallest
integer such that 𝑓 and 𝑔 can both be defined on Λ𝑘 , then

⟨𝑓 , 𝑔⟩𝐶2
𝑐𝑦𝑙

:=
∫
[0,1]Λ

𝑓 · 𝑔𝑑_Λ𝑘

where _Λ𝑘 = ⊗𝑖∈Λ𝑘
_𝑖 is the product of one-dimensional Lebesguemeasures on [0, 1]. The integral

above is always finite by the regularity conditions of 𝑓 and 𝑔 and the fact that [0, 1]Λ𝑘 is compact.
The bilinearity is obvious.

Also, let us define

𝑁 (Λ) := {𝑛 = (𝑛𝑖)𝑖∈Λ ∈ NΛ |𝑛𝑖 = 0 for all but finitely many 𝑖 ∈ Λ}.

For every 𝜙 : 𝑁 (Λ) → R, define the support supp𝜙 to be the collection of points 𝑛 ∈ 𝑁 (Λ) such
that 𝜙 (𝑛) ≠ 0. Let 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)) be the set of all finitely supported functions on 𝑁 (Λ).

We can define an inner product on 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)) as follows: for 𝜙,𝜓 ∈ 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)),

⟨𝜙,𝜓 ⟩𝑆𝑓 𝑖𝑛 (𝑁 (Λ) ) :=
∑︁

𝑛∈𝑁 (Λ)
𝜙 (𝑛)𝜓 (𝑛) . (4.3.4)

By definition of 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)), the above sum is always finite.2 We also note that it is enough to
define the generator 𝐺 in (4.3.2) for functions in 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)).

Theorem 4.3.1 (Proposition 1.1 of [AS12], Theorem 4.1 of [MM22]). The process X defined above
is a dual to 𝑋 with respect to the duality function

𝐷 (𝑥, 𝑛) = 𝑥𝑛 := Π𝑖∈Λ𝑥 (𝑖)𝑛 (𝑖 ) ,

where 𝑥 = (𝑥 (𝑖))𝑖∈Λ ∈ [0, 1]Λ and 𝑛 = (𝑛(𝑖))𝑖∈Λ ∈ NΛ.
1For us N = {0, 1, 2, . . .}
2The sum will be finite whenever the sequences (𝑔1 (𝑛))𝑛∈𝑁 (Λ) and (𝑔2 (𝑛))𝑛∈𝑁 (Λ) are in 𝑙2 (𝑁 (Λ)).

64



Remark 4.3.2. The dual process 𝑋 of X matches with the more general dual stated in Proposition
1.1 of [1]. But the duality function obtained by here is slightly different from the one found
in [AS12], which is (𝑥, 𝑛) → (1 − 𝑥)𝑛

Proof of Theorem 3.1. For our purpose, we will use representations of the Heisenberg algebra
having basis indexed by Λ,

𝔥(Λ) = span{𝑎0, 𝑎±𝑖 | 𝑖 ∈ Λ}.

where the following commutation relations hold:

[𝑎−𝑖 , 𝑎+𝑗 ] = 𝛿𝑖 𝑗𝑎0, [𝑎±𝑖 , 𝑎0] = 0.

Also throughout the proof we will let 𝑉 = 𝐶2
𝑐𝑦𝑙

( [0, 1]Λ) and𝑊 = 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)).
𝔥(Λ) has the Schrödinger representation given by

𝐴+
𝑖 𝑓 (𝑥) = 𝑥𝑖 𝑓 (𝑥), 𝐴−

𝑖 𝑓 (𝑥) =
𝜕𝑓

𝜕𝑥𝑖
(𝑥), 𝐴0 𝑓 (𝑥) = 𝑓 (𝑥),

where 𝑖 ∈ Λ , 𝑥 ∈ (0, 1)Λ and 𝑓 ∈ 𝐶2
𝑐𝑦𝑙

( [0, 1]Λ).
Also, for 𝜙 ∈ 𝑆 𝑓 𝑖𝑛 (𝑁 (Λ)), we define the following operators

𝐵+𝑖 𝜙 (𝑛) = 𝜙 (𝑛 + 𝛿𝑖), 𝐵−
𝑖 𝜙 (𝑛) = 1(𝑛𝑖≥1)𝑛𝑖𝜙 (𝑛 − 𝛿𝑖), 𝐵0𝜙 (𝑛) = 𝜙 (𝑛),

where 𝑛 ∈ 𝑁 (Λ). Note that these are the basis of a representation of 𝔥(Λ), i.e. [𝐵−
𝑖 , 𝐵

+
𝑗 ] = −𝛿𝑖 𝑗𝐵0

for 𝑖, 𝑗 ∈ Λ.
Denote by (𝐵±𝑖 )∗, (𝐵0)∗ the adjoints of𝐵±𝑖 , 𝐵0 with respect to the inner product ⟨·, ·⟩𝑆𝑓 𝑖𝑛 defined

above. It can be seen easily that

(𝐵+𝑖 )∗𝜙 (𝑛) = 1(𝑛𝑖≥1)𝜙 (𝑛 − 𝛿𝑖), (𝐵−
𝑖 )∗𝜙 (𝑛) = (𝑛𝑖 + 1)𝜙 (𝑛 + 𝛿𝑖), (𝐵0)∗ = 𝐵0

and that these give a representation of 𝔥(Λ). We first explicitly give a bijective intertwiner show-
ing that this representation is actually equivalent to the one given by {𝐴±

𝑖 , 𝐴
0
𝑖 | 𝑖 ∈ Λ}.

Define Φ : 𝑆 𝑓 𝑖𝑛 → 𝐶2
𝑐𝑦𝑙

by
(Φ𝜙) (𝑥) =

∑︁
𝑛∈𝑁 (Λ)

𝜙 (𝑛)𝑥𝑛

where 𝜙 ∈ 𝑆 𝑓 𝑖𝑛, 𝑥 = (𝑥𝑖)𝑖∈Λ ∈ [0, 1]Λ and 𝑥𝑛 =
∏
𝑖∈Λ 𝑥

𝑛𝑖
𝑖

if 𝑛 = (𝑛𝑖)Λ. Note that the function Φ𝜙
is cylindrical: only finitely many Λ-coordinates appear in each term as 𝑛𝑖 = 0 for all but finitely
many 𝑖 and there are finite such terms in the sum as 𝜙 has finite support.

It is also clear that Φ is injective and thus to prove that it is the required equivalence between
the two representations one only has to show that Φ is linear and Φ is homomorphism between
the representations, i.e.

Φ(𝐵±𝑖 )∗ = (𝐴±
𝑖 )Φ (4.3.5)

on 𝑆 𝑓 𝑖𝑛 . These are easy to check.
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To obtain a dual of G we only need to write it in terms of 𝐴𝑖 ’s and apply Φ from right. We
have

G =
∑︁
𝑖, 𝑗∈Λ

𝑞𝑖 𝑗 (𝐴+
𝑗 −𝐴+

𝑖 )𝐴−
𝑖 +

∑︁
𝑖∈Λ

[
𝐴+
𝑖 − (𝐴+

𝑖 )2] (𝐴−
𝑖 )2 (4.3.6)

and (4.3.5) gives

GΦ = Φ

( ∑︁
𝑖, 𝑗∈Λ

𝑞𝑖 𝑗𝐵
−
𝑖 (𝐵+𝑗 − 𝐵+𝑖 ) +

∑︁
𝑖∈Λ

(𝐵−
𝑖 )2𝐵+𝑖 (1 − 𝐵+𝑖 )

)∗
. (4.3.7)

If we call 𝐺 the expression inside the round bracket and write down the definitions of the oper-
ators 𝐵±𝑖 , we end up with the (4.3.2).

The only remaining part is to give the duality function 𝐷 such that G𝐷 = 𝐺𝐷 happens. For
this we use proposition 4.1.9. By this proposition, because of the relations (4.3.5), we have the
following

𝐴±
𝑖 𝐷 (𝑥, 𝑛) = 𝐵±𝑖 𝐷 (𝑥, 𝑛) (4.3.8)

for all 𝑥 ∈ [0, 1]Λ, 𝑛 ∈ 𝑁 (Λ), where 𝐷 (𝑥, 𝑛) := 𝑥𝑛 is the integral kernel of Φ. This directly shows
that G𝐷 = 𝐺𝐷 and thus 𝐷 (𝑥, 𝑛) = 𝑥𝑛 is the required duality function. □

4.4 Conclusion and some open questions

As we have seen in the previous sections, using algebraic method one can usually obtain the
dual process when the duality function is already known. Also, given a stochastic process with
a generator L, choosing the correct Lie algebra 𝔤 to express it in terms of its representation,
remains an ad hoc procedure. Moreover, one does not know a priori that the dual L̂, obtained
using Proposition 4.1.9 or [SSV18, Proposition 9], will be the generator of a Markov process.
Owing to these issues, we have faced some difficulties when trying to apply algebraic techniques
to stochastic processes whose duals have been well-studied. We list two such problems that are
currently outstanding.

(i) [AS12] considers a more general system of diffusion processes X than the one we studied
in Section 4.3. This system includes selection and mutation with rates 𝑠 and𝑚 respectively.
However, when trying to apply the Lie algebraic framework of using the Schrödinger rep-
resentation of the Heisenberg algebra, we end up with an error term in the required duality
relation G𝐷 = 𝐺𝐷 .

(ii) The Dawson-Watanabe superprocess is the high density weak limit of the critical branch-
ing Brownian motions. They can be seen as a spatial generalization of the Feller diffusion
that we considered in Section 4.2. See Example 4.1.4 for the dual relation of the super-
Brownian motion, a particular instance of duality involving superprocess. The ideas of
algebraic duality remain to be applied here.
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Chapter 5

Rough paths and integration with
respect to Poisson random measures

In the final chapter we shall aim to discuss the pathwise interpretation to the theory of stochastic
integrationwith respect to Poisson randommeasures (PRMs). Wewill present some initial results
and observations from an ongoing work. We begin with a description of the problem.

Let𝑇 > 0 and (Ω,F, (F𝑡 )𝑡≥0, P) be a complete probability space. Let 𝑌 : [0,𝑇 ] ×R𝑑 ×Ω → R
be a predictable function (cf. Section 1.2) and 𝑁 be a Poisson random measure on [0,∞) × R𝑑
with intensity 𝑑𝑡 × ` (𝑑𝑥) as in Definition 1.1.4. ` is assumed to be a Levy measure on R𝑑 , i.e. it
satisfies the condition ∫

R𝑑
(1 ∧ |𝑥 |2)` (𝑑𝑥) < ∞. (5.0.1)

Let �̃� (𝑑𝑡, 𝑑𝑥) := 𝑁 (𝑑𝑡, 𝑑𝑥) − 𝑑𝑡 ` (𝑑𝑥). We know that when∫ 𝑇

0

∫
R𝑑

|𝑌 (𝑡, 𝑥) |2 𝑑𝑡 ` (𝑑𝑥) < ∞ a.s., (5.0.2)

the stochastic integral ∫ 𝑡

0

∫
R𝑑
𝑌 (𝑠, 𝑥)�̃� (𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0, (5.0.3)

exists as a limit in probability (cf. [App09, p. 227]). We want to give pathwise meaning to the
integrals such as (5.0.3).

The pathwise interpretations of stochastic integrals with respect to one-parameter objects
(i.e. stochastic processes) are well understood by now and have found applications in the nu-
merical simulations of various SDEs. Here, on the other hand, we have a situation where our
integrands are functions of two variables – time and space. Further, it is worth observing that a
pathwise meaning of integrals such as (5.0.3) will help us solve the SDE (cf. [App09, Eq. (6.12)])

𝑑𝑌𝑡 = 𝑏 (𝑌𝑡−) 𝑑𝑡 + 𝜎 (𝑌𝑡−) 𝑑𝐵𝑡 +
∫
|𝑥 | ≥1

𝐺 (𝑌𝑡−, 𝑥)𝑁 (𝑑𝑡, 𝑑𝑥) +
∫
|𝑥 |<1

𝐹 (𝑌𝑡−, 𝑥)�̃� (𝑑𝑡, 𝑑𝑥) (5.0.4)

in a pathwise sense. Here 𝐵𝑡 is the Brownian motion and 𝑏, 𝜎 ,𝐺 and 𝐹 are appropriately defined
functions.
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We will need some basic techniques from the theory of rough paths. The theory of rough
paths was introduced by Lyons [Lyo98]. There are a number of excellent references for studying
this area, e.g. [LCL07] and [FV10]. We borrow our exposition mainly from the book of Friz
and Hairer [FH14], but instead of treating only Hölder continuous rough paths as these authors
have done, we deal with the more general case of possibly discontinuous paths having finite 𝑝-
variation. This is the approach adopted in the article by Friz and Shekhar [FS17]. We also note
that our discussion avoids the general algebraic theory, such as the one found in [FV10].

This chapter is structured as follows. Section 5.1 introduces the central notions of𝑝-variations
of a path and that of the control function. In Section 5.2 we take a close look at the theory of
Young integration. Section 5.3 introduces rough paths and their integration. We present our
observations on pathwise integrals against PRMs in the final section.

5.1 𝑝-variation of paths and control functions

We begin by precisely defining the notion of 𝑝-variation of a path in R𝑑 which is a quantitative
way of capturing the regularity (smoothness vs. roughness) of the path in question. By a partition
P of an interval [𝑎, 𝑏] we mean a finite collection of points 𝑎 = 𝑢0 < 𝑢1 < · · · < 𝑢𝑘−1 < 𝑢𝑘 = 𝑏.
Throughout the rest of this chapter and the next one we will use this term interchangeably to
mean a collection of sub-intervals arising out of the consecutive points in this list, i.e.

P = {[𝑎,𝑢1], [𝑢1, 𝑢2], . . . , [𝑢𝑘−2, 𝑢𝑘−1], [𝑢𝑘−1, 𝑏]}.

𝑃𝑃 [𝑎, 𝑏] denotes the collection of all partitions of [𝑎, 𝑏].

Definition 5.1.1. Let 𝑎 < 𝑏 be real numbers and 𝑝 > 0. The 𝑝-variation of a path𝑋 : [𝑎, 𝑏] → R𝑑
is defined to be

∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[𝑎,𝑏 ] :=
 sup
P∈𝑃𝑃 [𝑎,𝑏 ]

∑︁
[𝑢,𝑣 ]∈P

|𝑋𝑣 − 𝑋𝑢 |𝑝


1
𝑝

.

The above defines a semi-norm on the space of all R𝑑 -valued paths defined on [0,𝑇 ]. We
will sometimes denote 𝑋 (𝑡) = 𝑋𝑡 and shorten the notations for 𝑋𝑡 − 𝑋𝑠 by using 𝑋𝑠,𝑡 . Also the
𝑝-variation norm of 𝑋 will be denoted by ∥𝑋 ∥𝑝−𝑣𝑎𝑟 when the interval in question is clear from
the context. We next define oscillation of the path 𝑋 as follows,

Osc(𝑋 ; [0,𝑇 ]) = sup
𝑢,𝑣∈[0,𝑇 ]

|𝑋𝑣 − 𝑋𝑢 |.

It is a well-known fact that when 𝑋 is cádlág (right-continuous with left limits) or cáglád (left-
continuous with right limits), it has finite oscillation over [0,𝑇 ] (cf. [Bil99, Lemma 3.1]). This can
be used to show that when 0 < 𝑝 < 𝑝′, ∥𝑋 ∥𝑝−𝑣𝑎𝑟 < ∞ implies ∥𝑋 ∥𝑝′−𝑣𝑎𝑟 < ∞.

Now let us denote by Δ[0,𝑇 ] the two-dimensional simplex {(𝑠, 𝑡) ∈ R2 | 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 }.

Definition 5.1.2. A function 𝑤 : Δ[0,𝑇 ] → [0,∞) is called a control function if it satisfies the
following super-additive property: whenever 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇 , we have

𝑤 (𝑠,𝑢) +𝑤 (𝑢, 𝑡) ≤ 𝑤 (𝑠, 𝑡) .
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It is easy to see that if 𝑋 : [0,𝑇 ] → R𝑑 has finite 𝑝-variation then for 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇 and
any two partitions P1 ∈ 𝑃𝑃 [𝑠,𝑢] and P2 ∈ 𝑃𝑃 [𝑢, 𝑡] we have∑︁

[𝑎,𝑏 ]∈P1

|𝑋𝑎,𝑏 |𝑝 +
∑︁

[𝑎,𝑏 ]∈P2

|𝑋𝑎,𝑏 |𝑝 ≤ ∥𝑋 ∥𝑝
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ],

as P1 ∪ P2 is a partition of [𝑠, 𝑡]. Taking the supremum over all partitions of [𝑠, 𝑡] the above
relation gives,

∥𝑋 ∥𝑝
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑢 ] + ∥𝑋 ∥𝑝

𝑝−𝑣𝑎𝑟 ;[𝑢,𝑡 ] ≤ ∥𝑋 ∥𝑝
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] .

Thus𝑤 (𝑠, 𝑡) = ∥𝑋 ∥𝑝
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] defines a control. These will serve as the building blocks for all the

control functions to be defined in the sequel. Although we do not require our control functions
to be continuous for the most part, it is useful to observe that if the path 𝑋 is continuous, so is
the control𝑤 defined from it.

Lemma 5.1.3. Let 𝑋 : [0,𝑇 ] → R𝑑 be a continuous path of finite 𝑝-variation. Then the map
𝑡 ↦→ ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑡 ] is continuous.

Proof. See [FV10, Propositon 5.8]. □

The following two results are important properties of control function.

Lemma 5.1.4. Suppose𝑤1,𝑤2 : Δ[0,𝑇 ] → [0,∞) are control functions and 𝛼, 𝛽 ≥ 0with 𝛼+𝛽 ≥ 1.
Then𝑤 := 𝑤𝛼1𝑤

𝛽

2 is again a control function.

Proof. To prove the super-additivity of𝑤 it is enough to prove the following claim: if 𝑥,𝑦, 𝑎, 𝑏 ≥ 0
and 𝛼 + 𝛽 ≥ 1 then 𝑥𝛼𝑦𝛽 + 𝑎𝛼𝑏𝛽 ≤ (𝑥 + 𝑎)𝛼 (𝑦 + 𝑏)𝛽 . As this is equivalent to( 𝑥

𝑥 + 𝑎

)𝛼 (
𝑦

𝑦 + 𝑏

)𝛽
+

( 𝑎

𝑥 + 𝑎

)𝛼 (
𝑏

𝑦 + 𝑏

)𝛽
≤ 1 (5.1.1)

we can assume that 𝑥 +𝑎 = 𝑦 +𝑏 = 1. Using the fact 1
(𝛼+𝛽 )/𝛼 + 1

(𝛼+𝛽 )/𝛽 = 1, by Young’s inequality
for products we get

𝑥𝛼𝑦𝛽 ≤ 𝑥𝛼
𝛼+𝛽
𝛼

𝛼+𝛽
𝛼

+ 𝑦
𝛽
𝛼+𝛽
𝛽

𝛼+𝛽
𝛽

=
𝛼𝑥𝛼+𝛽 + 𝛽𝑦𝛼+𝛽

𝛼 + 𝛽 and 𝑎𝛼𝑏𝛽 ≤ 𝛼𝑎𝛼+𝛽 + 𝛽𝑏𝛼+𝛽
𝛼 + 𝛽 .

Hence

𝑥𝛼𝑦𝛽 + 𝑎𝛼𝑏𝛽 ≤ 𝛼 (𝑥 + 𝑎)𝛼+𝛽 + 𝛽 (𝑦 + 𝑏)𝛼+𝛽
𝛼 + 𝛽 =

𝛼 + 𝛽
𝛼 + 𝛽 = 1

using our assumptions 𝛼 + 𝛽 ≥ 1 and 𝑥 + 𝑎 = 𝑦 + 𝑏 = 1. This proves (5.1.1). □

Lemma 5.1.5. Suppose 𝑤 : Δ[0,𝑇 ] → [0,∞) is control function and P is a partition of some
interval [𝑠, 𝑡] ⊆ [0,𝑇 ] containing at least three points. Then there exist three consecutive points
𝑢− < 𝑢 < 𝑢+ in P such that

𝑤 (𝑢−, 𝑢+) ≤ 2
𝑟 − 1𝑤 (𝑠, 𝑡) (5.1.2)

where 𝑟 + 1 = #(P), the cardinality of P.
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Proof. If not, then there is a partition P = {𝑠 = 𝑢0 < 𝑢1 < · · · < 𝑢𝑟 = 𝑡} such that for all
𝑖 = 1, . . . , 𝑟 − 1,

𝑤 (𝑢𝑖−1, 𝑢𝑖+1) >
2

𝑟 − 1𝑤 (𝑠, 𝑡) .

Suppose 𝑟 is even. Then

2𝑤 (𝑠, 𝑡) <
𝑟−1∑︁
𝑖=1

𝑤 (𝑢𝑖−1, 𝑢𝑖+1)

=

𝑟−1∑︁
𝑖=1
𝑖 odd

𝑤 (𝑢𝑖−1, 𝑢𝑖+1) +
𝑟−1∑︁
𝑖=1
𝑖 even

𝑤 (𝑢𝑖−1, 𝑢𝑖+1)

=[𝑤 (𝑢0, 𝑢2) + · · · +𝑤 (𝑢𝑟−2, 𝑢𝑟 )] + [𝑤 (𝑢1, 𝑢3) + · · · +𝑤 (𝑢𝑟−3, 𝑢𝑟−1)]
≤𝑤 (𝑢0, 𝑢𝑟 ) +𝑤 (𝑢1, 𝑢𝑟−1) ≤ 2𝑤 (𝑢0, 𝑢𝑟 ) = 2𝑤 (𝑠, 𝑡),

which is a contradiction. Similar conclusion can be reached when 𝑟 is odd. □

5.2 The Young integral

In this section we present the theory of integration developed by Young [You36]. This provides
a blueprint for the theory of rough paths which will come in the next section. For a path 𝑋 :
[0,𝑇 ] → R𝑑 to be regulated we mean that the left and right hand limits of 𝑋 at each point
𝑡 ∈ [0,𝑇 ] exists.

Definition 5.2.1. Let 𝑋 : [0,𝑇 ] → R𝑑 and 𝑌 : [0,𝑇 ] → R𝑑 be regulated paths. We define the
Young integral of 𝑌 with respect to 𝑋 to be∫ 𝑇

0
𝑌𝑟 𝑑𝑋𝑟 = lim

|P |→0
P∈𝑃𝑃 [0,𝑇 ]

∑︁
[𝑠,𝑡 ]∈P

𝑌𝑠 (𝑋𝑡 − 𝑋𝑠) (5.2.1)

where |P| denotes the mesh size of the partition P.

The limit above is said to exist and equal to 𝐿 if for each 𝜖 > 0 there is a delta 𝛿 > 0 such
that whenever |P| < 𝛿 , we have |∑[𝑠,𝑡 ]∈P 𝑌𝑠 (𝑋𝑡 − 𝑋𝑠) − 𝐿 | < 𝜖 . This is sometimes called the
Mesh Riemann-Stieltjes convergence of Riemann sums (cf. [FS17, Definition 1]). The main result
concerning Young integrals is the following.

Theorem 5.2.2. Suppose𝑋 and 𝑌 are both regulated paths with finite 𝑝-variations for some 𝑝 < 2.
Moreover assume that 𝑋 is càdlàg. Then the Young integral

∫ 𝑇
0 𝑌𝑟 𝑑𝑋𝑟 , as defined in (5.2.1), exists.

Before the proof of this theorem we need a lemma that allows us to control the jumps of 𝑋
and 𝑌 together on small intervals.

Lemma 5.2.3. If𝑋,𝑌 : [0,𝑇 ] → R𝑑 are regulated paths and𝑋 is càdlàg, then for every 𝜖 > 0 there
is some 𝛿 > 0 such that

either |𝑌𝑎 − 𝑌𝑐 | < 𝜖 or |𝑋𝑐 − 𝑋𝑏 | < 𝜖
whenever 0 ≤ 𝑎 ≤ 𝑐 ≤ 𝑏 ≤ 𝑇 with 𝑏 − 𝑎 < 𝛿 .
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Proof. Suppose not. Then we can find an 𝜖 > 0 and sequences {𝑠𝑛}𝑛≥1, {𝑢𝑛}𝑛≥1, {𝑡𝑛}𝑛≥1 in [0,𝑇 ]
having the following properties: for all 𝑛 ∈ N, (i) 𝑠𝑛 < 𝑢𝑛 < 𝑡𝑛 , (ii) |𝑡𝑛 − 𝑠𝑛 | < 1

𝑛
and (iii)

|𝑌 (𝑠𝑛) − 𝑌 (𝑢𝑛) | ≥ 𝜖 and |𝑋 (𝑡𝑛) − 𝑋 (𝑢𝑛) | ≥ 𝜖 .
As {𝑢𝑛}𝑛 is a sequence in a compact set [0,𝑇 ], we can a find sub-sequence {𝑢𝑛𝑘 }𝑘≥1 of {𝑢𝑛}𝑛≥1

so that 𝑢𝑛𝑘 → 𝑢 as 𝑘 → ∞. The conditions on the other two sequences then imply that 𝑠𝑛𝑘 → 𝑢

and 𝑡𝑛𝑘 → 𝑢 as 𝑘 → ∞.
Now several situations arise. We split them in the following cases.
Case (a): (When 𝑢𝑛𝑘 = 𝑢 for all but finitely many 𝑘’s) By right continuity of 𝑋 , we know

𝑋 (𝑢+) = 𝑋 (𝑢). But this contradicts the conclusion that

𝜖 ≤ lim
𝑘→∞

|𝑋 (𝑡𝑛𝑘 ) − 𝑋 (𝑢) | = |𝑋 (𝑢+) − 𝑋 (𝑢) |.

Case (b): (When 𝑢𝑛𝑘 < 𝑢 for infinitely many 𝑘) Without loss of generality assume that
𝑢𝑛𝑘 < 𝑢 for all 𝑘 . As 𝑠𝑛𝑘 < 𝑢𝑛𝑘 , lim𝑘→∞ 𝑠𝑛𝑘 = lim𝑘→∞𝑢𝑛𝑘 = 𝑢 and 𝑌 (𝑢−) exists, we get

𝜖 ≤ lim
𝑘→∞

|𝑌 (𝑢𝑛𝑘 ) − 𝑌 (𝑠𝑛𝑘 ) | = |𝑌 (𝑢−) − 𝑌 (𝑢−)| = 0,

which is a contradiction.
Case (c): (When 𝑢𝑛𝑘 > 𝑢 for infinitely many 𝑘) Using the same argument as in the last case

and the fact that 𝑋 (𝑢+) exists we have,

𝜖 ≤ lim
𝑘→∞

|𝑋 (𝑢𝑛𝑘 ) − 𝑋 (𝑡𝑛𝑘 ) | = |𝑋 (𝑢+) − 𝑋 (𝑢+)| = 0,

we again arrive at a contradiction.
The above three cases together imply the statement of the lemma. □

Proof of Theorem 5.2.2. Fix a càdlàg path 𝑋 and a regulated path 𝑌 defined on [0,𝑇 ] and taking
values in R𝑑 . For each partition P of [0,𝑇 ], let us use the notation

𝑆 (P) =
∑︁

[𝑠,𝑡 ]∈P
𝑌𝑠 (𝑋𝑡 − 𝑋𝑠)

for the Riemann sum corresponding to P.
As per our definition of Young integrals we only have to show that the limit in RHS of (5.2.1)

converges. For this purpose it is enough to prove the following Cauchy criterion: For a given
𝜖 > 0, there is a 𝛿 > 0 such that whenever P1,P2 ∈ 𝑃𝑃 [0,𝑇 ] with |P1 |, |P2 | < 𝛿 we have
|𝑆 (P1) − 𝑆 (P2) | < 𝜖 .

So, fix an 𝜖 > 0. Let 𝛿 > 0 be such that Lemma 5.2.3 holds with 𝜖 . Let P1,P2 ∈ 𝑃𝑃 [0,𝑇 ]
be such that |P1 |, |P2 | < 𝛿 . We can safely assume that P2 is a refinement of P1, i.e. P1 ⊆ P2.
When 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 , we denote by P2 [𝑠, 𝑡] all the points in P2 (and hence their corresponding
sub-intervals) between 𝑠 and 𝑡 . We have,

𝑆 (P2) − 𝑆 (P1) =
∑︁

[𝑠,𝑡 ]∈P1

©«
∑︁

[𝑢,𝑣 ]∈P2 [𝑠,𝑡 ]
𝑌𝑢 (𝑋𝑣 − 𝑋𝑢) − 𝑌𝑠 (𝑋𝑡 − 𝑋𝑠)

ª®¬ (5.2.2)

Denote \𝑠,𝑡 :=
∑

[𝑢,𝑣 ]∈P2 [𝑠,𝑡 ] 𝑌𝑢 (𝑋𝑣 − 𝑋𝑢) − 𝑌𝑠 (𝑋𝑡 − 𝑋𝑠).
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Let[ ∈ [ 1
2 ,

1
𝑝
). As ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞ and ∥𝑌 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞ by our assumption, the function

𝑤 (𝑠, 𝑡) := ∥𝑋 ∥𝑝[
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] · ∥𝑌 ∥

𝑝[

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] (5.2.3)

for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 is a control by Lemma 5.1.4.
Now fix [𝑠, 𝑡] ∈ P1. For some 𝛼 ∈ (1, 1

𝑝[
) we have,

|𝑆 (P2 [𝑠, 𝑡]) − 𝑆 (P2 [𝑠, 𝑡] \ {𝑢}) |
= |𝑌𝑢− (𝑋𝑢 − 𝑋𝑢−) + 𝑌𝑢 (𝑋𝑢+ − 𝑋𝑢) − 𝑌𝑢− (𝑋𝑢+ − 𝑋𝑢−) |
=|𝑌𝑢 − 𝑌𝑢− | · |𝑋𝑢+ − 𝑋𝑢 |
=|𝑌𝑢 − 𝑌𝑢− |1−𝑝[𝛼 · |𝑋𝑢+ − 𝑋𝑢 |1−𝑝[𝛼 · |𝑌𝑢 − 𝑌𝑢− |𝑝[𝛼 · |𝑋𝑢+ − 𝑋𝑢 |𝑝[𝛼 . (5.2.4)

Note that, as 𝑋 and 𝑌 are both regulated, there is a finite constant 𝐶 > 0 such that

Osc(𝑋 ; [0,𝑇 ]) ≤ 𝐶,Osc(𝑌 ; [0,𝑇 ]) ≤ 𝐶.

From (5.2.4) therefore

|𝑆 (P2 [𝑠, 𝑡]) − 𝑆 (P2 [𝑠, 𝑡] \ {𝑢}) |
≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·

(
|𝑌𝑢 − 𝑌𝑢− |𝑝

)[𝛼 ·
(
|𝑋𝑢+ − 𝑋𝑢 |𝑝

)[𝛼
≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·

(
∥𝑌 ∥𝑝[

𝑝−𝑣𝑎𝑟 ;[𝑢−,𝑢 ] · ∥𝑋 ∥𝑝[
𝑝−𝑣𝑎𝑟 ;[𝑢,𝑢+]

)𝛼
≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·𝑤 (𝑢−, 𝑢+)𝛼 , (5.2.5)

where we have used Lemma 5.2.3 and our assumptions on the partitions P1, P2 for the first
inequality.

As P1 ⊆ P2, we must have #(P2 [𝑠, 𝑡]) ≥ 2. If #(P2 [𝑠, 𝑡]) = 2, clearly \𝑠,𝑡 = 0. So we can
assume that 𝑟 := #(P2 [𝑠, 𝑡]) ≥ 3. Therefore by Lemma 5.1.5, for the control function𝑤 , there are
three consecutive points 𝑢− < 𝑢 < 𝑢+ in P2 [𝑠, 𝑡] such that

𝑤 (𝑢−, 𝑢+) ≤ 2
(𝑟 − 1) − 1𝑤 (𝑠, 𝑡) . (5.2.6)

We can use this in the calculations (5.2.5) above to get,

|𝑆 (P2 [𝑠, 𝑡]) − 𝑆 (P2 [𝑠, 𝑡] \ {𝑢}) | ≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·𝑤 (𝑢−, 𝑢+)𝛼 ,

≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·
(

2
𝑟 − 2

)𝛼
𝑤 (𝑠, 𝑡)𝛼 . (5.2.7)

Recall that 𝑟 = #(P2 [𝑠, 𝑡]). Since Lemma 5.1.5 holds as long as the partition has at least
three points in it, we can estimate |𝑆 (P2 [𝑠, 𝑡]) −𝑌𝑠 (𝑋𝑡 −𝑋𝑠) | by inductively defining a decreasing
sequence of sub-partitions Q𝑘 (1 ≤ 𝑘 ≤ 𝑟 − 3) of P2 [𝑠, 𝑡] as follows: Let Q0 := P2 [𝑠, 𝑡],Q1 :=
P2 [𝑠, 𝑡] \ {𝑢} where 𝑢 satisfies (5.2.6). In Q𝑘 , again there are 𝑢− < 𝑢 < 𝑢+ (according to Lemma
5.1.5) such that (5.2.6) holds for 𝑟 − 𝑘 = #(Q𝑘 ) ≥ 3. Let Q𝑘+1 := Q𝑘 \ {𝑢}. For each 𝑘 , by the same
argument used to obtain (5.2.7), we can get

|𝑆 (Q𝑘 ) − 𝑆 (Q𝑘+1) | ≤ 𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·
(

2
𝑟 − 𝑘 − 2

)𝛼
𝑤 (𝑠, 𝑡)𝛼 , (5.2.8)
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with the same 𝛼 ∈ (1, 1
𝑝[
) and the control function defined by (5.2.3).

From the above computations we now have,

|\𝑠,𝑡 | ≤
𝑟−3∑︁
𝑘=0

|𝑆 (Q𝑘+1) − 𝑆 (Q𝑘 ) |

≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼 ·
𝑟−3∑︁
𝑘=0

(
2

𝑟 − 𝑘 − 2

)𝛼
𝑤 (𝑠, 𝑡)𝛼

≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼2𝛼
( ∞∑︁
𝑘=0

1
𝑘𝛼

)
𝑤 (𝑠, 𝑡)𝛼

=𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼2𝛼Z (𝛼)𝑤 (𝑠, 𝑡)𝛼 (5.2.9)

using (5.2.8) in the second inequality. Here Z denotes the Riemann zeta function. From this and
(5.2.2), it easily follows that

|𝑆 (P2) − 𝑆 (P1) | ≤
∑︁

[𝑠,𝑡 ]∈P1

|\𝑠,𝑡 |

≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼2𝛼Z (𝛼) ©«
∑︁

[𝑠,𝑡 ]∈P1

𝑤 (𝑠, 𝑡)𝛼ª®¬
≤𝜖1−𝑝[𝛼𝐶1−𝑝[𝛼2𝛼Z (𝛼)𝑤 (0,𝑇 )𝛼 , (5.2.10)

where we have used the super-additivity of the control function 𝑤 and the fact 𝛼 > 1 to get
the final inequality. Since (5.2.10) holds for any 𝜖 > 0, we have proved the required Cauchy
criterion. □

The technique of controlling the difference of Riemann sums for the purpose of proving the
existence of a certain integral will recur throughout this chapter. A more refined statement of
this, called the sewing lemma, can be found in the next section (cf. Proposition 5.3.6). Analogous
to the bound (5.2.9) on \𝑠,𝑡 obtained in the above proof, we have the following estimate, called
the Loeve-Young inequality. Let us recall from (5.2.1) that∫ 𝑇

0
𝑌𝑟 𝑑𝑋𝑟 = lim

|P |→0
P∈𝑃𝑃 [0,𝑇 ]

∑︁
[𝑠,𝑡 ]∈P

𝑌𝑠 (𝑋𝑡 − 𝑋𝑠),

and that the previous theorem guarantees the existence of the limit above.

Lemma 5.2.4 (Loeve-Young inequality). Under the hypotheses of the above theorem, for any 0 ≤
𝑠 ≤ 𝑡 ≤ 𝑇 , we can find a 𝛽 = 𝛽 (𝑝) ∈ (0, 1) such that����∫ 𝑡

𝑠

𝑌𝑟 𝑑𝑋𝑟 − 𝑌𝑠 (𝑋𝑡 − 𝑋𝑠)
���� ≤ 𝐶1𝜎

1−𝛽
𝑠,𝑡 ∥𝑋 ∥𝛽

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥𝑌 ∥
𝛽

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] (5.2.11)

where 𝜎𝑠,𝑡 = 𝜎𝑠,𝑡 (𝑋,𝑌 ) satisfies the condition that,

lim
𝛿↓0

©« sup
𝑠,𝑡 ∈[0,𝑇 ]
|𝑡−𝑠 | ≤𝛿

𝜎𝑠,𝑡 (𝑋,𝑌 )
ª®®¬ = 0. (5.2.12)
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Proof. We use the following notations, already used in the proof of Theorem 5.2.2. We have
1
2 ≤ [ < 1

𝑝
, 1 < 𝛼 < 1

𝑝𝛼
and 𝑤 is the control function defined in (5.2.3). Let P be an arbitrary

partition of [0,𝑇 ]. Suppose 𝑟 = #(P[𝑠, 𝑡]) ≥ 3. Then by Lemma 5.1.5 there are points𝑢− < 𝑢 < 𝑢+
in P[𝑠, 𝑡] such that (5.2.6) holds. We have,

|𝑆 (P[𝑠, 𝑡]) − 𝑆 (P[𝑠, 𝑡] \ {𝑢}) |
≤|𝑌𝑢 − 𝑌𝑢− |1−𝑝[𝛼 · |𝑋𝑢+ − 𝑋𝑢 |1−𝑝[𝛼 · |𝑌𝑢 − 𝑌𝑢− |𝑝[𝛼 · |𝑋𝑢+ − 𝑋𝑢 |𝑝[𝛼

≤|𝑌𝑢 − 𝑌𝑢− |1−𝑝[𝛼 · |𝑋𝑢+ − 𝑋𝑢 |1−𝑝[𝛼𝑤 (𝑢−, 𝑢+)𝛼

≤|𝑌𝑢 − 𝑌𝑢− |1−𝑝[𝛼 · |𝑋𝑢+ − 𝑋𝑢 |1−𝑝[𝛼
(

2
𝑟 − 2

)𝛼
𝑤 (𝑠, 𝑡)𝛼 , (5.2.13)

applying the definition of𝑤 in the second inequality and (5.2.6) for the third.
As before, we let 𝐶 > 0 be a finite constant bounding the oscillations of 𝑋 and 𝑌 on [0,𝑇 ].

For 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 define,

𝜎𝑠,𝑡 = 𝜎𝑠,𝑡 (𝑋,𝑌 ) := 𝐶 · sup
𝑠≤𝑎≤𝑐≤𝑏≤𝑡

|𝑌𝑐 − 𝑌𝑎 | ∧ |𝑋𝑏 − 𝑋𝑐 |. (5.2.14)

Clearly

|𝑌𝑢 − 𝑌𝑢− | · |𝑋𝑢+ − 𝑋𝑢 | ≤ 𝜎𝑠,𝑡 (𝑋,𝑌 )

for any 𝑠 ≤ 𝑢− < 𝑢 < 𝑢+ ≤ 𝑡 . Also observe that 𝜎 satisfies (5.2.12) by Lemma 5.2.3. Hence
(5.2.13) gives

|𝑆 (P[𝑠, 𝑡]) − 𝑆 (P[𝑠, 𝑡] \ {𝑢}) | ≤ 𝜎𝑠,𝑡 (𝑋,𝑌 )1−𝑝[𝛼
(

2
𝑟 − 1

)𝛼
𝑤 (𝑠, 𝑡)𝛼 .

Recall that \𝑠,𝑡 (P) = 𝑆 (P[𝑠, 𝑡]) − 𝑌𝑠 (𝑋𝑡 − 𝑋𝑠). Similarly as in (5.2.9) we have,

|\𝑠,𝑡 (P) | ≤ 𝜎𝑠,𝑡 (𝑋,𝑌 )1−𝑝[𝛼2𝛼Z (𝛼)𝑤 (𝑠, 𝑡)𝛼 = 𝐶1𝜎𝑠,𝑡 (𝑋,𝑌 )1−𝑝[𝛼 ∥𝑋 ∥𝑝[𝛼
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥𝑌 ∥

𝑝[𝛼

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] .

As the above is true for any P, we obtain����∫ 𝑡

𝑠

𝑌𝑟 𝑑𝑋𝑟 − 𝑌𝑠 (𝑋𝑡 − 𝑋𝑠)
���� = lim

|P |→0
|\𝑠,𝑡 (P) |

≤𝐶1𝜎𝑠,𝑡 (𝑋,𝑌 )1−𝑝[𝛼 ∥𝑋 ∥𝑝[𝛼
𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥𝑌 ∥

𝑝[𝛼

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] .

This proves the lemma with 𝛽 = 𝑝[𝛼 . □

5.3 Rough path and rough integral

We are now ready to introduce the notion of rough paths. For a two-parameter function, say
𝐺 : Δ[0,𝑇 ] →𝑊 (where (𝑊, | · |) is normed vector space), its 𝑝-variation is defined similarly as
in Definition 5.1.1.

∥𝐺 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] :=
 sup
P∈𝑃𝑃 [0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|𝐺 (𝑠, 𝑡) |𝑝
 .
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As is customary in the literature, we use tensor product notations in this section. By R𝑚 ⊗ R𝑛
we will denote the space R𝑚×𝑛 of𝑚 × 𝑛 matrices with real entries. Given two (column) vectors
𝑋,𝑌 ∈ R𝑚 , the notation 𝑋 ⊗ 𝑌 will denote the 𝑚 ×𝑚 matrix 𝑋𝑌𝑇 obtained by the method of
matrix multiplication.

Definition 5.3.1. Let 𝑝 ∈ [2, 3) and 𝑋 : [0,𝑇 ] → R𝑑 , X : Δ[0,𝑇 ] → R𝑑 ⊗ R𝑑 be functions such
that

(i) ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞, ∥X∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞.

(ii) The map 𝑡 ↦→ (𝑋0,𝑡 ,X0,𝑡 ) is cádlág.

(iii) For all 0 ≤ 𝑠 < 𝑢 < 𝑡 ≤ 𝑇 ,

X𝑠,𝑡 − X𝑠,𝑢 − X𝑢,𝑡 = 𝑋𝑠,𝑢 ⊗ 𝑋𝑢,𝑡 (Chen’s relation).

Then the pair X = (𝑋,X) is called a cádlág rough path of 𝑝-variation.

Since we are interested in doing integration against rough paths, we next introduce our in-
tegrands. Given two vector spaces 𝑉 and𝑊 , by L(𝑉 ,𝑊 ) we will denote the collection of all the
linear maps from 𝑉 to𝑊 .

Definition 5.3.2. Suppose (𝑋,𝑋 ′) is a 𝑝-variation cádlág rough path as defined above. Let 𝑌 :
[0,𝑇 ] → L(R𝑑 ,R𝑚) and 𝑌 ′ : [0,𝑇 ] → L(R𝑑 ,L(R𝑑 ,R𝑚)) � L(R𝑑 ⊗ R𝑑 ,R𝑚) be two paths. Then
the pair Y = (𝑌,𝑌 ′) is called an 𝑋 - controlled rough path if

(a) ∥𝑌 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] + ∥𝑌 ′∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞

(b) If 𝑅𝑌𝑠,𝑡 := 𝑌𝑠,𝑡 − 𝑌 ′
𝑠 (𝑋𝑠,𝑡 ) then ∥𝑅𝑌 ∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞. 𝑅𝑌 : Δ[0,𝑇 ] → R𝑑 is called the

remainder term.

When the maps 𝑡 ↦→ (𝑋𝑡 ,X0,𝑡 ) and 𝑡 ↦→ (𝑌𝑡 , 𝑌 ′
𝑡 ) are continuous instead of cádlág, their 𝑝-

variation (or 𝑝/2-variation) norms are equivalent to their 1/𝑝-Hölder (2/𝑝-Hölder) norms. In the
next section we will work with continuous rough paths.

Definition 5.3.3. Let Ξ(𝑠, 𝑡) := 𝑌𝑠 (𝑋𝑠,𝑡 ) + 𝑌 ′
𝑠 (X𝑠,𝑡 ) for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 . We define the rough

integral of Y = (𝑌,𝑌 ′) with respect to X = (𝑋,X) as∫ 𝑇

0
Y𝑟 𝑑X𝑟 := lim

|P |→0
P∈𝑃𝑃 [0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

Ξ(𝑢, 𝑣). (5.3.1)

The first step towards proving the existence of the limit in (5.3.1) is to prove a result similar
to Lemma 5.2.3, but this time for X and Y, instead of just 𝑋 and 𝑌 .

Lemma 5.3.4. Let X be a cádlág rough path and Y be an X-controlled rough path. Then for every
𝜖 > 0 there is a 𝛿 > 0 such that whenever |𝑡 − 𝑠 | < 𝛿 and 0 ≤ 𝑠 < 𝑢 < 𝑡 ≤ 𝑇 , we have

(a) |𝑅𝑌𝑠,𝑢 | < 𝜖 or |𝑋𝑢,𝑡 | < 𝜖 , and

(b) |𝑌 ′
𝑠,𝑢 | < 𝜖 or |X𝑢,𝑡 | < 𝜖.
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Proof. The statements can be proved,mutatis mutandis, with the same argument used in Lemma
5.2.3. □

Note that the conclusion of the above lemma is true if we replace |𝑅𝑌𝑠,𝑢 |, |𝑋𝑢,𝑡 |, |𝑌 ′
𝑠,𝑢 | and |X𝑢,𝑡 |

by |𝑅𝑌𝑠,𝑢 |[, . . . , |X𝑢,𝑡 |[ respectively, where [ > 0 is any number. And therefore, we can write the
statement of the lemma in the following compact form:

lim
𝛿↓0

[
sup
𝑡−𝑠≤𝛿

𝐶𝜎𝑠,𝑡 (X,Y)
]
= 0, (5.3.2)

where

𝜎𝑠,𝑡 (X,Y) = sup
𝑢∈[𝑠,𝑡 ]

( |𝑅𝑌𝑠,𝑢 |[ ∧ |𝑋𝑢,𝑡 |[ + |𝑌 ′
𝑠,𝑢 |[ ∧ |X𝑢,𝑡 |[) (5.3.3)

and 𝐶 is a constant that bounds ∥𝑅𝑌 ∥∞ := sup0≤𝑢≤𝑣≤𝑇 |𝑅𝑌𝑢,𝑣 |,Osc(𝑋 ; [0,𝑇 ]),Osc(𝑌 ′; [0,𝑇 ]) and
∥X∥∞ := sup0≤𝑢≤𝑣≤𝑇 |X𝑢,𝑣 |.

Proposition 5.3.5. Let X = (𝑋,X) be a cádlág 𝑝-variation rough path with 2 ≤ 𝑝 < 3 and Y =

(𝑌,𝑌 ′) is an 𝑋 -controlled rough path as in the previous definitions. Suppose for 0 ≤ 𝑠 < 𝑢 < 𝑡 ≤ 𝑇
we have Ξ(𝑠, 𝑡) := 𝑌𝑠 (𝑋𝑠,𝑡 ) + 𝑌 ′

𝑠 (X𝑠,𝑡 ) and

𝛿Ξ(𝑠,𝑢, 𝑡) = Ξ(𝑠, 𝑡) − Ξ(𝑠,𝑢) − Ξ(𝑢, 𝑡) .

Then there is a control function𝑤 on [0,𝑇 ] and 𝛽 > 1 such that

lim
𝛿↓0

 sup
0≤𝑠≤𝑡≤𝑇
𝑡−𝑠≤𝛿

(
sup
𝑢∈[𝑠,𝑡 ]

|𝛿Ξ(𝑠,𝑢, 𝑡) |
𝑤 (𝑠, 𝑡)𝛽

) = 0. (5.3.4)

Proof. Our approach here is similar to the first part of the proof of Theorem 5.2.2. For 𝑢 ∈ [𝑠, 𝑡],
by the definition of Ξ

𝛿Ξ(𝑠,𝑢, 𝑡) =Ξ(𝑠, 𝑡) − Ξ(𝑠,𝑢) − Ξ(𝑢, 𝑡)
=𝑌𝑠 (𝑋𝑠,𝑡 ) + 𝑌 ′

𝑠 (X𝑠,𝑡 ) − 𝑌𝑠 (𝑋𝑠,𝑢) − 𝑌 ′
𝑠 (X𝑠,𝑢) − 𝑌𝑢 (𝑋𝑢,𝑡 ) − 𝑌 ′

𝑢 (X𝑢,𝑡 )
=𝑌𝑠 (𝑋𝑢,𝑡 ) + 𝑌 ′

𝑠 (X𝑠,𝑡 − X𝑠,𝑢) − 𝑌𝑢 (𝑋𝑢,𝑡 ) − 𝑌 ′
𝑢 (X𝑢,𝑡 )

=(𝑌𝑠 − 𝑌𝑢) (𝑋𝑢,𝑡 ) + 𝑌 ′
𝑠 (X𝑠,𝑡 − X𝑠,𝑢 − X𝑢,𝑡 ) + 𝑌 ′

𝑠 (X𝑢,𝑡 ) − 𝑌 ′
𝑢 (X𝑢,𝑡 )

=(𝑌𝑠 − 𝑌𝑢) (𝑋𝑢,𝑡 ) + 𝑌 ′
𝑠 (𝑋𝑠,𝑢 ⊗ 𝑋𝑢,𝑡 ) + (𝑌 ′

𝑠 − 𝑌 ′
𝑢) (X𝑢,𝑡 ),

using algebraic manipulations and applying the Chen’s relation in the last line. As 𝑌 ′
𝑠 (𝑋𝑠,𝑢 ⊗

𝑋𝑢,𝑡 ) = 𝑌 ′
𝑠 (𝑋𝑠,𝑢) (𝑋𝑢,𝑡 ), we have

𝛿Ξ(𝑠,𝑢, 𝑡) = 𝑌𝑠,𝑢 (𝑋𝑢,𝑡 ) + 𝑌 ′
𝑠 (𝑋𝑠,𝑢) (𝑋𝑢,𝑡 ) + 𝑌 ′

𝑠,𝑢 (X𝑢,𝑡 ) = 𝑅𝑌𝑠,𝑢 (𝑋𝑢,𝑡 ) + 𝑌 ′
𝑠,𝑢 (X𝑢,𝑡 ) . (5.3.5)

Now choose parameters 𝛽 and [ such that 1 < 𝛽 < 3
𝑝
and 0 < [ < 1 − 𝑝𝛽

3 . Then

𝑤 (𝑠, 𝑡) := ∥𝑅𝑌 ∥
1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥𝑋 ∥
1−[
𝛽

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] + ∥𝑌 ′∥
1−[
𝛽

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥X∥
1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑡 ] (5.3.6)
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defines a control function by Lemma 5.1.4, as 1−[
𝛽

1
𝑝
+ 1−[

𝛽
2
𝑝
=

1−[
𝛽

3
𝑝
≥ 1.

Recall the definition of 𝜎𝑠,𝑡 (X,Y) from (5.3.3). Equation (5.3.5) gives,

|𝛿Ξ(𝑠,𝑢, 𝑡) | ≤|𝑅𝑌𝑠,𝑢 |[ |𝑋𝑢,𝑡 |[ |𝑅𝑌𝑠,𝑢 |1−[ |𝑋𝑢,𝑡 |1−[ + |𝑌 ′
𝑠,𝑢 |[ |X𝑢,𝑡 |[ |𝑌 ′

𝑠,𝑢 |1−[ |X𝑢,𝑡 |1−[

≤𝜎𝑠,𝑡 (X,Y)
(
|𝑅𝑌𝑠,𝑢 |1−[ |𝑋𝑢,𝑡 |1−[ + |𝑌 ′

𝑠,𝑢 |1−[ |X𝑢,𝑡 |1−[
)
.

As 𝛽 > 1 we can use the inequality (𝑥 + 𝑦)𝛽 ≥ 𝑥𝛽 + 𝑦𝛽 for 𝑥,𝑦 ≥ 0 to get

|𝑅𝑌𝑠,𝑢 |1−[ |𝑋𝑢,𝑡 |1−[ + |𝑌 ′
𝑠,𝑢 |1−[ |X𝑢,𝑡 |1−[

≤
(
∥𝑅𝑌 ∥

1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑢 ] ∥𝑋 ∥
1−[
𝛽

𝑝−𝑣𝑎𝑟 ;[𝑢,𝑡 ]

)𝛽
+

(
∥𝑌 ′∥

1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑢 ] ∥X∥
1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑢,𝑡 ]

)𝛽
≤

[(
∥𝑅𝑌 ∥

1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑢 ] ∥𝑋 ∥
1−[
𝛽

𝑝−𝑣𝑎𝑟 ;[𝑢,𝑡 ]

)
+

(
∥𝑌 ′∥

1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑢 ] ∥X∥
1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑢,𝑡 ]

)]𝛽
≤

[(
∥𝑅𝑌 ∥

1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥𝑋 ∥
1−[
𝛽

𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ]

)
+

(
∥𝑌 ′∥

1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑡 ] ∥X∥
1−[
𝛽

𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑡 ]

)]𝛽
=𝑤 (𝑠, 𝑡)𝛽 ,

using the facts that ∥𝑅𝑌 ∥𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑢 ] ≤ ∥𝑅𝑌 ∥𝑝/2−𝑣𝑎𝑟 ;[𝑠,𝑡 ] , ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[𝑢,𝑡 ] ≤ ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[𝑠,𝑡 ] etc. and
the definition of control function from (5.3.6). We can combine the above calculations to write,

|𝛿Ξ(𝑠,𝑢, 𝑡) | ≤ 𝜎𝑠,𝑡 (X,Y)𝑤 (𝑠, 𝑡)𝛽 .

Therefore,

|𝛿Ξ(𝑠,𝑢, 𝑡) |
𝑤 (𝑠, 𝑡)𝛽

≤ 𝜎𝑠,𝑡 (X,Y) .

The conclusion follows from (5.3.2). □

In the next theorem we prove that the integral defined in Definition 5.3.3 exists when X and
Y are as in the previous proposition. These types of results are often called sewing lemmas and
its proof is reminiscent of the last part of the proof of Theorem 5.2.2. Notice that the statement
below is quite abstract as it does not use the specific properties of X and Y. This will allow us to
re-use the statement in other contexts as well.

Proposition 5.3.6. Suppose 𝛽 > 1 and Ξ : Δ[0,𝑇 ] → R𝑑 satisfies (5.3.4) for some control function
𝑤 . Then for each 𝑠 ≤ 𝑡 in [0,𝑇 ],

lim
P∈𝑃𝑃 [𝑠,𝑡 ]
|P |→0

∑︁
[𝑢,𝑣 ]∈P

Ξ(𝑢, 𝑣) (5.3.7)

exists. Moreover, if we denote the limit to be 𝜑 (𝑠, 𝑡), the function 𝜑 : Δ[0,𝑇 ] → R𝑑 is additive in the
sense that 𝜑 (0, 𝑠) + 𝜑 (𝑠, 𝑡) = 𝜑 (0, 𝑡) for all 𝑠 ≤ 𝑡 .

Proof. We will use the notations

𝜎𝑠,𝑡 (Ξ) = sup
𝑢∈[𝑠,𝑡 ]

|𝛿Ξ(𝑠,𝑢, 𝑡) |
𝑤 (𝑠, 𝑡)𝛽

and ∥𝜎 (Ξ)∥∞,𝛿 = sup
0≤𝑡−𝑠≤𝛿

𝜎𝑠,𝑡 (Ξ),
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where 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 . Using these let us first rewrite (5.3.4) as follows: For each 𝜖 > 0 there is a
𝛿 > 0 such that whenever 𝑠 ≤ 𝑢 ≤ 𝑡 with |𝑡 − 𝑠 | ≤ 𝛿 , ∥𝜎 (Ξ)∥∞,𝛿 < 𝜖 .

We will use the Cauchy criterion to prove the existence of the desired limit. Let P be a
partition of [𝑠, 𝑡] ⊆ [0,𝑇 ] having 𝑟 ≥ 3 points and |P| < 𝛿 . Then there are three consecutive
points 𝑢− < 𝑢 < 𝑢+ in P having the property that 𝑤 (𝑢−, 𝑢+) ≤ 2

𝑟−1𝑤 (𝑠, 𝑡) by Lemma 5.1.5. If
𝑆 (Ξ,P) = ∑

[𝑢,𝑣 ]∈P Ξ(𝑢, 𝑣) then

|𝑆 (Ξ,P) − 𝑆 (Ξ,P \ {𝑢}) | =|𝛿Ξ(𝑢−, 𝑢,𝑢+) | ≤ ∥𝜎 (Ξ)∥∞,𝛿𝑤 (𝑢−, 𝑢+)𝛽

≤
2𝛽 ∥𝜎 (Ξ)∥∞,𝛿

(𝑟 − 1)𝛽
𝑤 (𝑠, 𝑡)𝛽 .

Hence by iterating this procedure as we did for Theorem 5.2.2 we arrive at the following:

|𝑆 (Ξ,P) − Ξ(𝑠, 𝑡) | ≤∥𝜎 (Ξ)∥∞,𝛿2𝛽
(
𝑟−1∑︁
𝑘=1

1
𝑘𝛽

)
𝑤 (𝑠, 𝑡)𝛽

≤∥𝜎 (Ξ)∥∞,𝛿2𝛽Z (𝛽)𝑤 (𝑠, 𝑡)𝛽 . (5.3.8)

Now for any two partitions in P and P′ of [0, 𝑟 ] ⊆ [0,𝑇 ], with P ⊂ P′ and |P′ | < 𝛿 , we can
write

|𝑆 (Ξ,P′) − 𝑆 (Ξ,P) | =

������ ∑︁
[𝑠,𝑡 ]∈P

(𝑆 (Ξ,P′ [𝑠, 𝑡]) − Ξ(𝑠, 𝑡))

������
≤∥𝜎 (Ξ)∥∞,𝛿2𝛽Z (𝛽)

∑︁
[𝑠,𝑡 ]∈P

𝑤 (𝑠, 𝑡)𝛽

≤∥𝜎 (Ξ)∥∞,𝛿2𝛼Z (𝛽)𝑤 (0,𝑇 )𝛽

=𝑂 (∥𝜎 (Ξ)∥∞,𝛿 ) = 𝑂 (𝜖),

where we used the super-additivity of 𝑤 and the fact that 𝛽 > 1 to get the second inequality.
This proves that

𝜑 (0, 𝑟 ) := lim
P∈𝑃𝑃 [0,𝑟 ]
|P |→0

∑︁
[𝑢,𝑣 ]∈P

Ξ(𝑢, 𝑣)

exists for each 𝑟 ∈ [0,𝑇 ]. Similarly one can show the existence of 𝜑 (𝑠, 𝑡) when 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 . It
is also easy to see that,

𝜑 (0, 𝑡) − 𝜑 (0, 𝑠) = lim
P∈𝑃𝑃 [𝑠,𝑡 ]
|P |→0

𝑆 (Ξ,P) = 𝜑 (𝑠, 𝑡),

proving the additivity of 𝜑 required by the statement of the proposition. □

Theorem 5.3.7. Suppose X is a 𝑝-variation cádlág rough path and Y is a 𝑝-variation 𝑋 -controlled
rough path for some 𝑝 ∈ [2, 3). Then rough integral

∫ 𝑡
0 Y𝑟 𝑑X𝑟 , as defined in (5.3.1), exists.

Proof. That the limit in (5.3.1) exists is a consequence of combining the propositions 5.3.5 and
5.3.6. By definition this is

∫ 𝑡
0 Y𝑟 𝑑X𝑟 . □
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To obtain an estimate of the type given in Lemma 5.2.4 in our present situation of integration
driven by a cádlág rough path, we do the following familiar analysis. Let Ξ(𝑢, 𝑣) = 𝑌𝑢 (𝑋𝑢,𝑣) +
𝑌 ′
𝑢 (X𝑢,𝑣) and𝑤 be the control defined in (5.3.6). Assume that in a partitionP of [𝑠, 𝑡],𝑢− < 𝑢 < 𝑢+
are three consecutive points satisfying𝑤 (𝑢 − .𝑢+) ≤ 2

𝑟−2𝑤 (𝑠, 𝑡) where 𝑟 = #(P) ≥ 3. Then,

|𝑆 (Ξ,P) − 𝑆 (Ξ,P \ {𝑢}) | = |𝛿Ξ(𝑢−, 𝑢,𝑢+)| = |𝛿Ξ(𝑢−, 𝑢,𝑢+)|
𝑤 (𝑢−, 𝑢+)𝛽

𝑤 (𝑢−, 𝑢+)𝛽

≤ 2𝛽

(𝑟 − 2)𝛽
𝜎𝑠,𝑡 (X,Y)𝑤 (𝑠, 𝑡)𝛽 .

Iterating, we get

|𝑆 (Ξ,P) − Ξ(𝑠, 𝑡) | ≤ 2𝛽Z (𝛽)𝜎𝑠,𝑡 (X,Y)𝑤 (𝑠, 𝑡)𝛽 .

Now take the limit of the LHS as |P| → 0. We record this in the following lemma, for the sake
of completeness.

Lemma 5.3.8 (Loeve-Young inequality). For X, Y as in Theorem 5.3.7 and 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , we have����∫ 𝑡

𝑠

Y𝑟 𝑑X𝑟 − 𝑌𝑠 (𝑋𝑠,𝑡 ) − 𝑌 ′
𝑠 (X𝑠,𝑡 )

���� ≤ 𝐶𝜎𝑠,𝑡 (X,Y)𝑤 (𝑠, 𝑡)𝛽

where𝑤 is the control function defined in (5.3.6).

The last two lemmas of this section give recipes for constructing new controlled rough paths
from a given one. To simplify notations let us use 𝑉 = R𝑑 and𝑊 = L(𝑅𝑑 ,R𝑚) � R𝑚×𝑑 where
𝑚 is a fixed natural number. Also, let C2

𝑏
(𝑊,L(𝑉 ,𝑊 )) be the collection of bounded and twice

continuously differentiable functions𝑊 → L(𝑉 ,𝑊 ) with bounded derivatives of all orders.

Lemma5.3.9. SupposeX is a rough path andY is an𝑋 -controlled rough path. If, for 𝑓 ∈ C2
𝑏
(𝑊,L(𝑉 ,𝑊 )),

𝑓 (𝑌 )𝑡 := 𝑓 (𝑌𝑡 ) ∈ L(𝑉 ,𝑊 ) and 𝑓 (𝑌 )′𝑡 := 𝐷𝑓 (𝑌𝑡 ) ◦ 𝑌 ′
𝑡 ∈ L(𝑉 ,L(𝑉 ,𝑊 )),

then the pair f (Y) := (𝑓 (𝑌 ), 𝑓 (𝑌 )′) defines an 𝑋 -controlled rough path.

Proof. We have to show that the f (Y) satisfies the conditions given in Definition 5.3.2. Let P be
a partition of [0,𝑇 ]. By the mean value theorem,∑︁

[𝑢,𝑣 ]∈P
|𝑓 (𝑌𝑣) − 𝑓 (𝑌𝑢) |𝑝 ≤

∑︁
[𝑢,𝑣 ]∈P

∥𝐷𝑓 (𝑌·)∥𝑝∞;[𝑢,𝑣 ] |𝑌𝑣 − 𝑌𝑢 |
𝑝

≤∥𝐷𝑓 ∥𝑝∞;[0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|𝑌𝑣 − 𝑌𝑢 |𝑝 ,

where ∥𝐷𝑓 (𝑌·)∥∞;[𝑢,𝑣 ] denotes the supremumof {|𝐷𝑓 (𝑌𝑠) | | 𝑠 ∈ [𝑢, 𝑣]}. Hence ∥ 𝑓 (𝑌 )∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] ≤
∥𝐷𝑓 ∥∞;[0,𝑇 ] ∥𝑌 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞. By Minkowski’s inequality,

∑︁
[𝑢,𝑣 ]∈P

|𝑓 (𝑌 )′𝑣 − 𝑓 (𝑌 )′𝑢 |𝑝


1
𝑝

=


∑︁

[𝑢,𝑣 ]∈P
|𝐷𝑓 (𝑌𝑣) ◦ 𝑌 ′

𝑣 − 𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′
𝑢 |𝑝


1
𝑝

≤


∑︁
[𝑢,𝑣 ]∈P

|𝐷𝑓 (𝑌𝑣) ◦ 𝑌 ′
𝑣 − 𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′

𝑣 |𝑝


1
𝑝

+


∑︁
[𝑢,𝑣 ]∈P

|𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′
𝑣 − 𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′

𝑢 |𝑝


1
𝑝

. (5.3.9)
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Since ∑︁
[𝑢,𝑣 ]∈P

|𝐷𝑓 (𝑌𝑣) ◦ 𝑌 ′
𝑣 − 𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′

𝑣 |𝑝 ≤
∑︁

[𝑢,𝑣 ]∈P
|𝐷𝑓 (𝑌𝑣) − 𝐷𝑓 (𝑌𝑢) |𝑝 |𝑌 ′

𝑣 |𝑝

≤∥𝑌 ′∥𝑝∞;[0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|𝐷𝑓 (𝑌𝑣) − 𝐷𝑓 (𝑌𝑢) |𝑝

≤∥𝑌 ′∥𝑝∞;[0,𝑇 ] ∥𝐷
2 𝑓 ∥𝑝∞;[0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|𝑌𝑣 − 𝑌𝑢 |𝑝

and ∑︁
[𝑢,𝑣 ]∈P

|𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′
𝑣 − 𝐷𝑓 (𝑌𝑢) ◦ 𝑌 ′

𝑢 |𝑝 ≤ ∥𝐷𝑓 ∥𝑝∞;[0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|𝑌 ′
𝑣 − 𝑌 ′

𝑢 |𝑝 ,

from (5.3.9) we have,

∥ 𝑓 (𝑌 )′∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] ≤ ∥𝑌 ′∥∞;[0,𝑇 ] ∥𝐷2 𝑓 ∥∞;[0,𝑇 ] ∥𝑌 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] + ∥𝐷𝑓 ∥∞;[0,𝑇 ] ∥𝑌 ′∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ],

which is finite by assumption. This proves the first part of Definition 5.3.2.
Nowby definition,𝑅 𝑓 (𝑌 )𝑠,𝑡 := 𝑓 (𝑌𝑡 )−𝑓 (𝑌𝑠)−𝑓 (𝑌 )′𝑠 (𝑋𝑠,𝑡 ) andwe have to show that ∥𝑅 𝑓 (𝑌 ) ∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ] <

∞. Let P be a partition of [0,𝑇 ] and recall that 𝑅𝑌𝑠,𝑡 = 𝑌𝑡 − 𝑌𝑠 − 𝑌 ′
𝑠 (𝑋𝑠,𝑡 ). We have,∑︁

[𝑢,𝑣 ]∈P
|𝑅 𝑓 (𝑌 )𝑢,𝑣 |

𝑝

2 =
∑︁

[𝑢,𝑣 ]∈P
|𝑓 (𝑌𝑣) − 𝑓 (𝑌𝑢) − 𝐷𝑓 (𝑌𝑢) (𝑌 ′

𝑢 (𝑋𝑢,𝑣)) |
𝑝

2

=
∑︁

[𝑢,𝑣 ]∈P
|𝑓 (𝑌𝑣) − 𝑓 (𝑌𝑢) − 𝐷𝑓 (𝑌𝑢) (𝑌𝑢,𝑣) + 𝐷𝑓 (𝑌𝑢) (𝑅𝑌𝑢,𝑣) |

𝑝

2

≤𝐶𝑝


∑︁
[𝑢,𝑣 ]∈P

|𝑓 (𝑌𝑣) − 𝑓 (𝑌𝑢) − 𝐷𝑓 (𝑌𝑢) (𝑌𝑢,𝑣) |
𝑝

2 +
∑︁

[𝑢,𝑣 ]∈P
|𝐷𝑓 (𝑌𝑢) (𝑅𝑌𝑢,𝑣) |

𝑝

2


≤𝐶𝑝


∑︁

[𝑢,𝑣 ]∈P

(
1
2 |𝐷

2 𝑓 (𝑌𝑢) | |𝑌𝑢,𝑣 |2
) 𝑝

2
+ ∥𝐷𝑓 ∥

𝑝

2
∞;[0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|𝑅𝑌𝑢,𝑣 |
𝑝

2


by using Taylor series expansion of 𝑓 . Hence,

∥𝑅 𝑓 (𝑌 ) ∥
𝑝

2
𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ]

≤𝐶𝑝
∥𝐷2 𝑓 ∥

𝑝

2
∞;[0,𝑇 ]

©«sup
P

∑︁
[𝑢,𝑣 ]∈P

|𝑌𝑢,𝑣 |𝑝
ª®¬ + ∥𝐷𝑓 ∥

𝑝

2
∞;[0,𝑇 ]

©«sup
P

∑︁
[𝑢,𝑣 ]∈P

|𝑅𝑌𝑢,𝑣 |
𝑝

2
ª®¬


=𝐶𝑝

[
∥𝐷2 𝑓 ∥

𝑝

2
∞;[0,𝑇 ] (∥𝑌 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ]) + ∥𝐷𝑓 ∥

𝑝

2
∞;[0,𝑇 ] (∥𝑅

𝑌 ∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ])
]
< ∞,

and this proves the second part of Definition 5.3.2. □

Lemma 5.3.10. If Y is an 𝑋 -controlled rough path, then

𝑡 ↦→
(∫ 𝑡

0
Y𝑟 𝑑X𝑟 , 𝑌𝑡

)
is also an 𝑋 -controlled rough path. Here the integral appearing in the definition above is a rough
integral in the sense of Definition 5.3.3.
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Proof. Denote by 𝐼𝑡 =
∫ 𝑡

0 Y𝑟 𝑑X𝑟 . Then for a partition P of [0,𝑇 ],∑︁
[𝑢,𝑣 ]∈P

��𝐼𝑢,𝑣 ��𝑝 =
∑︁

[𝑢,𝑣 ]∈P

����∫ 𝑣

𝑢

Y𝑟 𝑑X𝑟 − Ξ(𝑢, 𝑣) + Ξ(𝑢, 𝑣)
����𝑝

≤𝐶𝑝


∑︁
[𝑢,𝑣 ]∈P

����∫ 𝑣

𝑢

Y𝑑X − Ξ(𝑢, 𝑣)
����𝑝 + ∑︁

[𝑢,𝑣 ]∈P
|Ξ(𝑢, 𝑣) |𝑝

 (5.3.10)

By Lemma 5.3.8 we have∑︁
[𝑢,𝑣 ]∈P

����∫ 𝑣

𝑢

Y𝑑X − Ξ(𝑢, 𝑣)
����𝑝 ≤ 𝐶

∑︁
[𝑢,𝑣 ]∈P

𝜎𝑢,𝑣 (X,Y)𝑝𝑤 (𝑢, 𝑣)𝑝𝛽

≤ 𝐶
∑︁

[𝑢,𝑣 ]∈P
𝑤 (𝑢, 𝑣)𝑝𝛽

because 𝜎𝑠,𝑡 (X,Y) is bounded on [0,𝑇 ] by definition. As 𝑤 is super-additive and 𝑝𝛽 > 1, it now
follows that ∑︁

[𝑢,𝑣 ]∈P

����∫ 𝑣

𝑢

Y𝑑X − Ξ(𝑢, 𝑣)
����𝑝 ≤ 𝐶𝑤 (0,𝑇 )𝑝𝛽 .

The second term in (5.3.10) is also bounded because Ξ(𝑢, 𝑣) = 𝑌𝑢 (𝑋𝑢,𝑣) + 𝑌 ′
𝑢 (X𝑠,𝑡 ) and the paths

involved have finite 𝑝-variation (by hypothesis). These show that ∥𝐼 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞. As we
already know that ∥𝑌 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞, we have shown part (a) of Definition 5.3.2.

Now let 𝑅𝐼𝑠,𝑡 := 𝐼𝑠,𝑡 − 𝑌𝑠 (𝑋𝑠,𝑡 ). Again by Lemma 5.3.8,∑︁
[𝑢,𝑣 ]∈P

|𝑅𝐼𝑢,𝑣 |
𝑝

2 =
∑︁

[𝑢,𝑣 ]∈P

����∫ 𝑣

𝑢

Y𝑑X𝑟 − Ξ(𝑢, 𝑣) + 𝑌 ′
𝑢 (X𝑢,𝑣)

����𝑝2
≤𝐶


∑︁

[𝑢,𝑣 ]∈P

����∫ 𝑣

𝑢

Y𝑑X𝑟 − Ξ(𝑢, 𝑣)
����𝑝2 +

∑︁
[𝑢,𝑣 ]∈P

|𝑌 ′
𝑢 (X𝑢,𝑣) |

𝑝

2


≤𝐶


∑︁

[𝑢,𝑣 ]∈P
𝜎𝑢,𝑣 (X,Y)

𝑝

2𝑤 (𝑢, 𝑣)
𝑝𝛽

2 +
∑︁

[𝑢,𝑣 ]∈P
|𝑌 ′
𝑢 (X𝑢,𝑣) |

𝑝

2

 (5.3.11)

As 𝜎𝑠,𝑡 (X,Y) is bounded and 𝑝𝛽 ≥ 2 (recall that 𝑝 ≥ 2 and 𝛽 > 1), by super-additivity of𝑤 ,∑︁
[𝑢,𝑣 ]∈P

𝜎𝑢,𝑣 (X,Y)
𝑝

2𝑤 (𝑢, 𝑣)
𝑝𝛽

2 ≤ 𝐶
∑︁

[𝑢,𝑣 ]∈P
𝑤 (𝑢, 𝑣)

𝑝𝛽

2 ≤ 𝐶𝑤 (0,𝑇 )
𝑝𝛽

2 .

For the second term in (5.3.11), note that∑︁
[𝑢,𝑣 ]∈P

|𝑌 ′
𝑢 (X𝑢,𝑣) |

𝑝

2 ≤
∑︁

[𝑢,𝑣 ]∈P
|𝑌 ′
𝑢 |

𝑝

2 |X𝑢,𝑣 |
𝑝

2 ≤ ∥𝑌 ′∥
𝑝

2
∞;[0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈P

|X𝑢,𝑣 |
𝑝

2 .

We therefore have, from (5.3.11),

∥𝑅𝐼 ∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ] ≤ 𝐶
[
𝑤 (0,𝑇 )

𝑝𝛽

2 + ∥X∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ]
]
< ∞.

This proves that 𝑡 ↦→
(∫ 𝑡

0 Y𝑟 𝑑X𝑟 , 𝑌𝑡
)
is also an 𝑋 -controlled rough path. □
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5.4 Integration with respect to PRM

Let us now consider the stochastic integrals∫ 𝑡

0

∫
R𝑑
𝑌 (𝑠, 𝑥)�̃� (𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0, (5.4.1)

where the integrand 𝑌 is a predictable real-valued function defined on [0,𝑇 ] × R𝑑 × Ω and 𝑁 is
a Poisson random measure on [0,∞) × R𝑑 with intensity 𝑑𝑡 ` (𝑑𝑥).

Let us recall an important connection between PRM and Lévy process. Let

𝑋𝑡 =

∫ 𝑡

0

∫
R𝑑
𝑥�̃� (𝑑𝑠, 𝑑𝑥). (5.4.2)

It is well-known that𝑋 is a Levy process. As𝑋 is a cádlág, it has a.s. at most finitely many jumps
of size greater than 1 and therefore the integral∫ 𝑡

0

∫
|𝑥 | ≥1

𝑌 (𝑠, 𝑥)𝑁 (𝑑𝑠, 𝑑𝑥) =
∑︁

𝑠∈[0,𝑡 ]
𝑌 (𝑠,Δ𝑋𝑠)1 |𝑥 | ≥1(Δ𝑋𝑠) (5.4.3)

is only a random finite sum. Here Δ𝑋𝑠 = 𝑋𝑠 − 𝑋𝑠− denotes the size of the jump of 𝑋 at time 𝑠 .
Thus it is enough to pay our attention to the integral over "small jumps", i.e.

𝑍𝑡 :=
∫ 𝑡

0

∫
|𝑥 |<1

𝑌 (𝑠, 𝑥)�̃� (𝑑𝑠, 𝑑𝑥) . (5.4.4)

It is worth noting that, unlike (5.4.3), the above integral must be defined as a limit in probability.
At present we can only give a pathwise meaning to 𝑍𝑡 when the time and the space variables

in the integrand 𝑌 can be separated. In the following, we shall always assume that

𝑌 (𝑡, 𝑥) = ℎ(𝑥)𝑔(𝑊𝑡 ), 𝑡 ≥ 0, 𝑥 ∈ R𝑑 (5.4.5)

where 𝑔 ∈ C2
𝑏
(R𝑑 ,R) (twice differentiable with bounded derivatives of all orders),𝑊 is an R𝑑 -

valued cádlág adapted process and the functionℎ : R𝑑 → R ismeasurable satisfying the condition
that

𝑐𝑞 =

∫
|𝑥 |<1

|ℎ(𝑥) |𝑞` (𝑑𝑥) < ∞. (5.4.6)

for some 𝑞 ∈ (1, 2]. In this situation we have the following intuition.

𝑍𝑡 :=
∫ 𝑡

0

∫
|𝑥 |<1

𝑌 (𝑠, 𝑥)�̃� (𝑑𝑠, 𝑑𝑥) =
∫ 𝑡

0
𝑔(𝑊𝑠) 𝑑

(∫
|𝑥<1 |

ℎ(𝑥)�̃� (𝑠, 𝑑𝑥)
)
. (5.4.7)

Let us denote by 𝑋ℎ the process inside the round bracket above, i.e.

𝑋ℎ𝑠 :=
∫ 𝑠

0

∫
|𝑥 |<1

ℎ(𝑥)�̃� (𝑑𝑢,𝑑𝑥).

In the next section we briefly discuss the path properties of 𝑋ℎ .
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Properties of 𝑋ℎ

From [App09, p. 122] we recall that 𝑋ℎ is defined as the following 𝐿2(Ω) limit,

𝑋ℎ𝑡 = 𝐿2(Ω) − lim
𝑛→∞

∫
1
𝑛
< |𝑥 |<1

ℎ(𝑥)�̃� ((0, 𝑡], 𝑑𝑥) . (5.4.8)

Since for each 𝑛 ∈ N, 𝑡 ↦→
∫

1/𝑛< |𝑥 |<1 ℎ(𝑥)�̃� ((0, 𝑡], 𝑑𝑥) is a cádlág Levy process, [App09, Theorem
1.3.7] and the proof of [App09, Theorem 2.4.11] show that𝑋ℎ has the same properties. Moreover,
as 𝑋ℎ is the Itô integral with respect to a martingale measure, 𝑋ℎ is itself a martingale.

To understand the regularity properties of 𝑋ℎ , we state a result due to Manstavičius [Man04,
Theorem 1.3] that connects the 𝑝-variation (as in Definition 5.1.1) of a strong Markov process
(SMP) with its transition probabilities. Given a real-valued SMP {𝑋𝑡 }𝑡 ∈[0,𝑇 ] let us define the
quantity,

𝛼 ([, 𝑎) = sup{P( |𝑋𝑡 − 𝑧 | > 𝑎 | 𝑋𝑠 = 𝑧) | 0 ≤ 𝑠 < 𝑡 ≤ (𝑠 + [) ∧𝑇, 𝑧 ∈ R𝑑 } (5.4.9)

where [ ∈ [0,𝑇 ] and 𝑎 > 0. For 𝛽 ≥ 1 and 𝛾 > 0, let M(𝛽,𝛾) denote the class of all SMP 𝑋 for
which there exist constants 𝑎0 > 0 and 𝐾 > 0 such that

𝛼 ([, 𝑎) ≤ 𝐾
[𝛽

(𝑎 ∧ 𝑎0)𝛾

for all [ ∈ [0,𝑇 ] and 𝑎 > 0. Then we have the following result.

Theorem 5.4.1 ( [Man04]). Suppose 𝑋 is in M(𝛽,𝛾) for some 𝛽 ≥ 1, 𝛾 > 0. Then,

∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞ a.s.,

for every 𝑝 >
𝛾

𝛽
.

Although this result is quite technical, we can summarize the broad strategy of its proof as
follows. Given an SMP 𝑋 satisfying the above hypothesis one first notices that it is possible to
work with its cádlág modification, which we also denote by 𝑋 . This allows us to give a (random)
finite bound on the oscillations of its sample paths, say𝑀 = 𝑀 (𝜔). Now, the 𝑝-variation norm of
𝑋 can be bounded in the following manner. Given a partition P ∈ 𝑃𝑃 [0,𝑇 ] and 𝑟 ∈ N we define
the set 𝐾𝑟 (𝜔,P) containing those intervals of P on which the jump size of 𝑋 is in [2−𝑟−1, 2−𝑟 ),
i.e.

𝐾𝑟 (𝜔,P) = {[𝑢, 𝑣] ∈ P | |𝑋𝑣 (𝜔) − 𝑋𝑢 (𝜔) | ∈ [2−𝑟−1, 2−𝑟 )}.

Let 𝑟1 ∈ N be such that 2−𝑟+3 ≥ 𝑎0 (𝑎0 as above) for all 𝑟 ≤ 𝑟1. Then,

∥𝑋 (𝜔)∥𝑝𝑝−𝑣𝑎𝑟 ≤
∑︁
𝑟>𝑟1

sup
P∈𝑃𝑃 [0,𝑇 ]

∑︁
[𝑢,𝑣 ]∈𝐾𝑟 (𝜔,P)

|𝑋𝑣 (𝜔) − 𝑋𝑢 (𝜔) |𝑝

+ sup
P∈𝑃𝑃 [0,𝑇 ]

∑︁
𝑟≤𝑟1

∑︁
[𝑢,𝑣 ]∈𝐾𝑟 (𝜔,P)

|𝑋𝑣 (𝜔) − 𝑋𝑢 (𝜔) |𝑝 , (5.4.10)

where the second term can be obtained using the fact that the outer sum is finite. Also note
that the second term contains all the large jumps of the path 𝑋 (𝜔). Since there can only be a
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finite number of such jumps, say a0(𝜔), this term can be bounded by (2𝑀 (𝜔)a0(𝜔))𝑝 . On the
other hand, showing finiteness for the first term of (5.4.10) requires more careful considerations.
In [Man04], this is done by computing precise bounds toE supP∈𝑃𝑃 [0,𝑇 ] |𝐾𝑟 (𝜔,P) | and concluding
that the series ∑︁

𝑟>𝑟1

2−𝑟𝑝
(

sup
P∈𝑃𝑃 [0,𝑇 ]

|𝐾𝑟 (𝜔,P) |
)

is summable. Here |𝐾𝑟 | denotes the cardinality of 𝐾𝑟 . See [Man04, §3] for more details.
We can now use Theorem 5.4.1 to compute the 𝑝-variation norms for 𝑋ℎ . Recall the rela-

tionship between the function ℎ and the exponent 𝑞 ∈ (1, 2] from (5.4.6). By a slight abuse of
notations, we will denote 𝑋ℎ by 𝑋 when the corresponding ℎ (and 𝑞) is clear from the context.

Proposition 5.4.2. 𝑋ℎ has finite 𝑝-variation on [0,𝑇 ] for any 𝑝 > 𝑞, almost surely.

Proof. Since 𝑋𝑡 = 𝑋ℎ𝑡 is a martingale, we can apply Burkholder’s inequality. For all 𝑡 ∈ [0,𝑇 ]

E( |𝑋𝑡 |𝑞) ≤E
[����∫ 𝑡

0

∫
|𝑥 |<1

ℎ(𝑥)2𝑁 (𝑑𝑟, 𝑑𝑥)
����𝑞/2]

≤E
[����∫ 𝑡

0

∫
|𝑥 |<1

ℎ(𝑥)𝑞𝑁 (𝑑𝑟, 𝑑𝑥)
����] (𝑞/2 ≤ 1)

=E

∫ 𝑡

0

∫
|𝑥 |<1

|ℎ(𝑥) |𝑞𝑁 (𝑑𝑟, 𝑑𝑥)

=𝑡𝑐𝑞,

which is finite by our assumption on ℎ. Therefore for 𝑧 ∈ R𝑑 , [, 𝑎 > 0 and 0 < 𝑠 < 𝑡 ≤ (𝑠 +[) ∧𝑇 ,

P( |𝑋𝑡 − 𝑧 | > 𝑎 | 𝑋𝑠 = 𝑧) =P𝑧 ( |𝑋𝑡−𝑠 − 𝑧 | > 𝑎) = P( |𝑋𝑡−𝑠 | > 𝑎)

≤E( |𝑋𝑡−𝑠 |
𝑞)

𝑎𝑞
≤ 𝑐𝑞

(𝑡 − 𝑠)
𝑎𝑞

≤ 𝑐𝑞
[

𝑎𝑞
(5.4.11)

using the fact that𝑋 is a Levy process and Markov’s inequality. Since𝑋 is clearly strong Markov,
Theorem 5.4.1 implies that ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞ a.s. for all 𝑝 > 𝑞. □

Pathwise interpretation of 𝑍 in the case of separable variables

Let us recall our definition of𝑌 (𝑡, 𝑥) from (5.4.5). Depending on the𝑞 ∈ (1, 2] for whichℎ satisfies
(5.4.6) we will consider 𝑍𝑡 (defined in (5.4.4)) either as a Young integral or as a rough integral.

When 1 < 𝑞 < 2 and ∥𝑊 ∥𝑝−𝑣𝑎𝑟 < ∞ a.s. for some 1 ≤ 𝑝 < 2, by Lemma 5.4.2 we have
∥𝑋ℎ ∥𝑞′−𝑣𝑎𝑟 < ∞ a.s. for all 𝑞′ > 𝑞. Therefore, the integral

𝑍𝑡 =

∫ 𝑡

0
𝑔(𝑊𝑠) 𝑑𝑋ℎ𝑠

can be given a pathwise meaning in the Young sense by the virtue of Theorem 5.2.2.
Now suppose 𝑞 = 2. As the theory of Young integration is not available to us in this case, we

must look to rough integrals for a pathwise understanding of 𝑍 . Indeed [CF19, Section 4] shows
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that, since 𝑋 ≡ 𝑋ℎ is a martingale, 𝑋 has a rough-path lift X. Therefore, it is possible to define 𝑍
in a pathwise manner when𝑊 is controlled rough path with respect to 𝑋 .

For the sake of completeness let us explicitly define X and the controlled rough paths with
respect to 𝑋 . To keep our analysis simple we make the following assumption which is stronger
than (5.0.1).
Assumption 1. There is a 𝛾 ∈ (0, 1/2) such that,

𝑐1+𝛾 :=
∫
|𝑥 |<1

|ℎ(𝑥) |1+𝛾` (𝑑𝑥) < ∞. (5.4.12)

This condition holds for example, when ` is the Levy measure of an 𝛾-stable process with
𝛾 < 1/2 and ℎ(𝑥) = 𝑥 .

Now we define X and discuss some of its properties. For 𝑠 ≤ 𝑡 in [0,𝑇 ] let,

X𝑠,𝑡 :=
∫ 𝑡

𝑠

(𝑋𝑢− − 𝑋𝑠) 𝑑𝑋𝑢, (5.4.13)

where the above is a stochastic integral with respect to the martingale 𝑋 .

Lemma 5.4.3. We have the following properties,

(a) Chen’s relation holds for (𝑋,X), i.e. for 𝑠 < 𝑢 < 𝑡 ,

X𝑠,𝑡 − X𝑠,𝑢 − X𝑢,𝑡 = (𝑋𝑢 − 𝑋𝑠) (𝑋𝑡 − 𝑋𝑢) . (5.4.14)

(b) The maps 𝑡 ↦→ 𝑋𝑡 and 𝑡 ↦→ X0,𝑡 are cádlág.

(c) For any 𝑝 ∈ (2 + 2𝛾, 3) we have ∥𝑋 ∥𝑝−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞ and ∥X∥𝑝/2−𝑣𝑎𝑟 ;[0,𝑇 ] < ∞.

The first and second statements are trivial. The last statement follows from a calculation
similar to Proposition 5.4.2. We therefore have a cádlág rough path X = (𝑋,X) in the sense of
Definition 5.3.1.

Suppose W = (𝑊,𝑊 ′) is a controlled rough path associated with X as in Definition 5.3.2.
Then we record our observation from (5.4.7) in the form of the following result.

Theorem 5.4.4. Let 𝑌 (𝑡, 𝑥) = ℎ(𝑥)𝑔(𝑊𝑡 ) where ℎ : R𝑑 → R is a measurable function satisfying
(5.4.12), 𝑔 : R𝑑 → R is in C2

𝑏
and (𝑊,𝑊 ′) is as above. Then

𝑍𝑡 =

∫ 𝑡

0

∫
|𝑥 |<1

𝑌 (𝑢, 𝑥)�̃� (𝑑𝑢,𝑑𝑥) =
∫ 𝑡

0
𝑔(𝑊𝑢) 𝑑𝑋𝑢

exists a.s. as a rough integral in the sense of Definition 5.3.3.

The proof of this result follows directly from Lemma 5.3.9 and Theorem 5.3.7.
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