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Introduction

This thesis consists of five chapters related to mechanism design theory. A brief introduction of the

chapters are provided below.

1.1 LocArL GLOBAL EQUIVALENCE IN VOTING MODELS: A CHARACTERIZATION AND AP-

PLICATIONS

This chapter considers a voting model where each voter’s type is her preference. The type graph for a voter
is a graph whose vertices are the possible types of the voter. Two vertices are connected by an edge in the
graph if the associated types are “neighbours”. A social choice function is locally strategy-proof if no type
of a voter can gain by misrepresentation to a type that is a neighbour of her true type. A social choice
function is strategy-proof if no type of a voter can gain by misrepresentation to an arbitrary type.
Local-Global equivalence (LGE) is satisfied if local strategy-proofness implies strategy-proofness. We
identify a condition on the graph that characterizes LGE. Our notion of “localness” is perfectly general -
we use this feature of our model to identify notions of localness according to which various models of
multi-dimensional voting satisfy LGE. Finally, we show that LGE for deterministic social choice functions

does not imply LGE for random social choice functions.



1.2 LocAL GLOBAL EQUIVALENCE IN VOTING MODELS ADMITTING INDIFFERENCES

This chapter considers the same voting framework as in the previous chapter, except that each agent’s type
is her weak preference, that is, preferences that can admit indifference. We provide a condition that is
sufficient for LGE and another condition that is necessary. Moreover, the “gap” between the two
conditions is small (in the sense that both conditions boil down to the single condition identified in
Chapter 1 that characterizes LGE for the case of strict preferences). We use the sufficiency result to
propose notions of localness according to which environments with the domain of single-plateaued

preferences and the domain of all weak preferences, satisfies LGE.

1.3 LocArL GLOBAL EQUIVALENCE FOR UNANIMOUS SocIAL CHOICE FUNCTIONS

In this chapter, we identify a condition on preference domains that ensures that every locally
strategy-proof and unanimous random social choice function is also strategy-proof. Furthermore every
unanimous, locally strategy-proof deterministic social choice function is also group strategy-proof. The
condition identified is significantly weaker than the characterization condition for local-global
equivalence without unanimity in Kumar et al. [33]. The condition is not necessary for equivalence with
unanimous random/deterministic social choice functions. However, we show the weaker condition of

connectedness remains necessary.

1.4 PoINTWISE LOoCAL INCENTIVE COMPATIBILITY IN NON-CONVEX TYPE-SPACES

In this chapter, we explore the equivalence of pointwise local incentive compatibility (PLIC) (Carroll
[12]) and incentive compatibility (IC) in non-convex type-spaces. We provide a sufficient condition on a
type-space called minimal richness for the said equivalence. Using this result, we show that PLIC and IC
are equivalent on large class of non-convex type-spaces such as type-spaces perturbed by modularity and
concave-modularity. The gross substitutes type-space and the generalized gross substitutes and
complements type-space are important examples of type-spaces perturbed by modularity and
concave-modularity, respectively. Finally, we provide a geometric property consisting of three conditions

for the equivalence of PLIC and IC, and show that all the conditions are indispensable.

1.5 LocAL INCENTIVE COMPATIBILITY IN ORDINAL TYPE-SPACES

This chapter explores the relation between different notions of local incentive compatibility (LIC) and

incentive compatibility (IC) on ordinal type-spaces. In this context, we introduce the notion of ordinal



local global equivalent (OLGE) and cardinal local global equivalent (CLGE) environments. First, we
establish the equivalence between the two environments on strict ordinal type-spaces. Next, we consider
ordinal type-spaces admitting indifference. We introduce the notion of almost everywhere IC and strong
LIC, and provide a necessary and sufficient condition on ordinal type spaces for their equivalence. Finally,
we provide results on how to (minimally) check the IC property of a given mechanism on any ordinal
type-space and show that local types along with the boundary types form a minimal set of incentive

constraints that imply full incentive compatibility.



Local Global Equivalence in Voting Models: A
Characterization and Applications

2.1 INTRODUCTION

Mechanism design theory is concerned with models where agents have private information (called a type)
which has to be elicited by the mechanism designer. The cornerstone of the theory is the collection of
strategy-proofness constraints which ensure that agents do not have incentives to misreport their types (or
manipulate). The standard assumption in the theory is that the proposed social choice function must be
immune to all possible misreports of agents. There is, however considerable experimental evidence that
agents do not always lie in an optimal payoff-maximizing way. For instance Fischbacher and Follmi-Heusi
[22] conduct an experiment where agents are paid money on the basis of a report of a privately observed
roll of a die. In their results, only 20 percent of the subjects lie optimally, 39 percent are fully honest while
the remaining lie “partially”. Agents often choose to lie credibly by only misreporting to types that are
“near” or “close to” their true types. We consider a model where an agent of a particular type can only
misreport to an arbitrary set of pre-specified “local” types. Our main contribution is a complete answer to

the following question: under what circumstances is immunity to misreporting via a “local” type (local



strategy-proofness) equivalent to immunity to misreporting via an arbitrary type (strategy-proofness)?

The equivalence issue has important conceptual and practical implications.! If it is not satisfied, the
mechanism designer can choose from a wider class of locally strategy-proof social choice functions. It
may enable her, in principle, to avoid negative results such as the Gibbard-Satterthwaite Theorem
(Gibbard [25], Satterthwaite [47]). On the other hand, suppose that the problem at hand satisfies
equivalence. In order to verify that a social choice function is strategy-proof, it suffices to check that it is
locally strategy-proof. The latter is a simpler task because it involves checking fewer constraints.

We consider a model where an agent’s type is a strict preference ordering over a finite set of alternatives.
There are no monetary tranfers. For convenience, we shall refer to this model as the voting model and to
the agent as a voter, even though the model could apply to other settings such as matching. For our
purpose, it will be sufficient to restrict attention to the case of a single voter.> The set of possible
preferences is called a domain. An environment is an undirected graph whose vertices are preferences in
the domain. The agent whose preference is specified by a particular vertex can only misreport to another
preference (or vertex) if the two vertices are connected by an edge in the environment. The set of vertices
connected by an edge to a vertex are its neighbours. A social choice function is locally strategy-proof if no
type of the agent can gain by manipulating to a neighbour; it is strategy-proof if the agent cannot gain by
manipulating to any vertex in the graph. An environment satisfies local-global equivalence or LGE if local
strategy-proofness implies strategy-proofness.

Section 4.2 of the paper contains some examples and observations that highlight the issues underlying
LGE. It serves to motivate our main result in Section 4.4, Theorem 2.3.2 which is a characterization of
environments that satisfy LGE. Section 2.4 contains discussion of the computational complexity of
Property L and its relationship with earlier results in the literature. Section 2.5 applies Theorem 2.3.2 to
multi-dimensional voting environments. Finally Section 2.6 uses Theorem 2.3.2 to construct an example
of an environment where LGE holds but equivalence fails for random social choice functions.

The LGE property depends on the existence of certain types of paths in the environment. For every
pair of preferences P and P’ in the domain and alternative g, there must exist a path from P to P’ satisfying
a monotonicity property with respect to all alternatives that are ranked worse than a according to P.
Specifically, the relative ranking of a and any alternative b ranked worse than a according to P, can change
at most once along the path. We call this condition, Property L. According to Theorem 2.3.2, Property L
is both necessary and sufficient for LGE.

One of the strengths of our approach is that our notion of neighbours in the definition of local

strategy-proofness, is perfectly general. The earlier literature (discussed below) used the Kemeny distance

"They have also been discussed extensively in Carroll [12] and Sato [46].
Our results can easily be interpreted in the multi-voter setting.
3The converse is of course, always true.



metric to define “localness”. Thus two preferences are neighbours if there is a single pair of consecutively
ranked alternatives that are switched between the two preferences. Preferences that are neighbours in this
sense will be referred to as being adjacent. A limitation of adjacency is that it excludes several
multi-dimensional voting models that are of interest. In these models, an alternative is an m-tuple (m > 1)
and preferences are typically assumed to satisfy some form of separability. Consequently, it is not always
possible to switch a consecutively ranked pair of alternatives without affecting the ranking of other
alternatives. We consider two such domains, separable domains and multi-dimensional single-peaked
domains and propose natural notions of neighbours such that the resulting environments satisfy LGE.
The question of local-global equivalence also arises naturally in the context of random social choice
functions. We follow the standard approach of comparing lotteries via stochastic dominance (see Gibbard
[26]). Earlier results (again discussed below) suggest that environments that satisfy LGE for deterministic
social choice functions also do so for random social choice functions. We use our characterization result
for the deterministic case to show that this is not true generally. We construct an environment that
satisfies Property L and therefore satisfies deterministic LGE. We also find a random social choice in the

same environment that satisfies local strategy-proofness but violates strategy-proofness.

2.1.1 RELATED LITERATURE

Two important papers on LGE in voting models are Carroll [ 12] and Sato [46]. Both papers use the
adjacency version of localness. Carroll [12] considers random social choice functions and shows that
specific preference domains, such as the set of all strict preferences, the set of all single-peaked preferences
and particular subsets of single-crossing preferences satisfy LGE. Sato [46] provides a necessary condition
and a stronger sufficiency condition for LGE in the context of deterministic social choice functions.
Section 2.4.2 describes the relationship between Sato’s results and ours in greater detail. As already
mentioned, there are two significant ways in which our main result extends and refines the earlier analysis.
The first is that our notion of neighbours is completely general and the second is that we have a complete
characterization. Both aspects of our result permit a wider range of applications than was earlier possible.

Cho [18] provides sufficient conditions for LGE with random social choice functions. The notion of
neighbours is once again, adjacency, but several notions of preference extensions to lotteries are
considered. In particular, it shows that a stronger version of the sufficient condition proposed in Sato [46]
(see Property U in Section 2.4.2) is sufficient for LGE if lotteries are compared via stochastic dominance.
We show in Section 2.6 that the condition which is necessary and sufficient for LGE with deterministic
social choice functions (using adjacency as the notion of localness), is not sufficient for LGE with random
social choice functions.

There are several papers that investigate LGE in models where monetary transfers to agents are



permitted and preferences are quasi-linear in the usual sense (see, for instance Carroll [ 12], Archer and
Kleinberg [ 1] and Mishra et al. [39]). Although the basic question is the same, the flavour of the analysis
and the results in the two models are very different from each other.

In a companion paper Kumar et al. [33 ], we consider a multi-voter model and address the following
question: under what conditions on the environment is it the case that every locally strategy-proof social
choice function that also satisfies the mild condition of unanimity,* is also strategy-proof? We show that a
condition much weaker than Property L is sufficient for LGE in this sense for both deterministic and

random social choice functions.

2.2 THE MODEL

Let A = {a,b, ...} denote afinite set of alternatives with |A| > 2. Throughout the paper, we shall
assume that there is a single voter. This assumption is without loss of generality as will soon be apparent.

A preference P is an antisymmetric, complete and transitive binary relation over A i.e. a linear order.
Givena, b € A, aPbis interpreted as “a is strictly preferred to b” according to P. Let P denote the set of all
preferences - the set P will be referred to as the universal domain. We shall refer to an arbitrary set D C P
as a domain.

An environment is an (undirected) graph G = (D, ). The set of vertices of the graph is a domain D.
The set of edges is the set £. If P, P’ € D and (P, P’) € &, the two preferences are said to be neighbours or
are local.

The notion of neighbours is perfectly general. One possible specification is the one used by Carroll
[12] and Sato [46]. Fix a pair of preferences P, P’ € D. Two alternatives a and b in A are reversed if aPb
and bP'a, or bPaand aP'b. Let P A P = {{a,b} C A : aand b are reversed in P and P’} be the set of all
reversed pairs of alternatives between P and P'. ° Two preferences P and P’ are called adjacent if
|P A P'| = 1.5 An environment where neighbours are defined by adjacency will be referred to as an
adjacency environment. Whenever the notion of neighbours is defined by adjacency, we shall denote the
set of edges by £9. An adjacency environment will typically be denoted by G = (D, £°%). In Section 2.5,

we shall provide an example of a non-adjacency environment.

Definition 2.2.1 A Social Choice Function (SCF) isamapf: D — A.

*A deterministic social choice function satisfies unanimity if it always picks an alternative in a profile where it is first-ranked
by all voters. In the case of a random social choice function such an alternative is picked with probability one.

SWe are guilty of abuse of notation here. Since a preference is an ordered pair, P A P’ should include both ordered pairs,
(a,b) and (b, a) if a and b are reversed in P and P’. In our notation, P A P’ will include only the unordered pair {a, b} in this
case.

®An alternative and equivalent statement would be that the Kemeny distance between P and P’ is exactly one.



Definition 2.2.2 Consider an environment G = (D, E). An SCFf : D — Ais locally manipulable at P if
there exists P' € D with (P, P') € & such that f(P')Pf(P). The SCF f is locally strategy-proof if it is not locally
manipulable at any P € D.

Consider a graph or an environment. An SCF labels each vertex of the graph with an alternative. It is
locally strategy-proof if the voter with preference of a particular vertex cannot gain by misrepresenting her
preference to one which is a neighbour of her true preference.

In contrast with local strategy-proofness, an SCF is strategy-proof if the voter cannot gain by an arbitrary

misrepresentation.

Definition 2.2.3 An SCFf: D — A is manipulable at P if there exists P € D such that f(P')Pf(P). The
SCF f is strategy-proof if it is not manipulable at any P € D.

A strategy-proof SCF is clearly locally strategy-proof. We investigate the structure of environment

when the converse is true.

Definition 2.2.4 The environment G = (D, E) satisfies local-global equivalence (LGE) if every locally
strategy-proof SCF f : D — A is strategy-proof.

The next subsection makes some important observations regarding LGE.

2.2.1 PRELIMINARY OBSERVATIONS

Our goal in this subsection is to illustrate the issues involved in LGE and to provide some intuition
behind our result. We begin with some standard concepts from graph theory.

Let G = (D, &) be an environment. A path w = (P', ..., P') is a sequence of distinct vertices in D
satisfying the property that consecutive vertices are neighbours, i.e. (P*, P*™*) € £ forall
k=1,...t—17 LetI1(P, P') denote the set of all paths from P to P’ in G. For any path
T=(P,..., P, P .. P'),welet |/ p| denote the sub-path (P, P°™, ... P'). We say G is connected
if there exists a path between every pair of vertices in G i.e. I1(P, P') # () forall P, P’ € D.

The example below highlights the reasons why LGE may fail.

Example 2.2.5 LetA = {a,b,c,z,u,v,w}. Consider the adjacency environment G = (D, £*Y) where

D = {P', P>, P}, P* P’} (Table 2.2.1). It will be convenient to represent G by Figure 2.2.1.

7In other words, repetitions of vertices in a path are ruled out.



p p p» p+ P

[a] [6] [b] [0] a
b a a a |[b
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wow u v v
u U w owow

Table 2.2.1: Domain D

P {a, b} P {w, u} s {v, u} p4 {b,a}

Figure 2.2.1: The Environment G = (D, £%) ¢

PS

The SCEf: D — Apicks aat P* and b at other preferences.” The SCF fis locally strategy-proof.

However, it is not strategy-proof since the voter with preference P* can manipulate via P'. a

The cause of the failure of strategy-proofness while maintaining local strategy-proofness can be clearly
identified from Example 2.2.5. Consider the path = = (PS5, P*, P, P>, P'). The outcome at P’ is b. Since b
“improves” at P* relative to P*, local strategy-proofness implies that the outcome at P* must be b;
otherwise the voter would manipulate locally to P5. Local strategy-proofness also implies that the
outcomes at P* and P> must be b. Note that b “declines” at P' with respect to a. There are two options at P*
that are consistent with the requirement of local strategy-proofness (with respect to P'). The outcome can
remain b, or it can switch to a. In the former case, we maintain strategy-proofness since the outcome is b
everywhere along the path 7. However, if the outcome is g, a problem with strategy-proofness arises since
a is preferred to b at P5.

The failure of LGE in G = (D, £*Y) arises from an inherent asymmetry in the “monotonicity”
requirement imposed by local strategy-proofness. If the outcome of an SCF at a preference improves'’
relative to a local preference, the same outcome continues to be chosen at the new neighbour preference.
However, if the outcome at a preference falls relative to a local preference, the new outcome can either
remain the same or switch to an alternative that has improved (relative to the original outcome) in the
new preference. Combining the latter option together with an improvement in the same path, can lead to

a failure of strategy-proofness without violating local strategy-proofness.

8Two vertices are connected by an edge in G if and only if the preferences represented by the vertices are adjacent. For
instance, P' and P* are adjacent; in particular aP'b and bP*a. The edge between P* and P* is labelled {a, b} in order to signify
that the only “difference” between the two preferences is the ranking of @ and b.
*This is indicated by the square brackets on the alternative chosen by fat each preference.
!%We are intentionally informal in this description. These notions will be made precise in due course.



A key feature of the path 7 in Example 2.2.5 is that a and b switch relative ranking more than once in the
path. Thus aP’b, bP*a and aP'b. The preceding discussion makes it clear that such paths may be
problematic for LGE.

Definition 2.2.6 Let G = (D, £) be an environment and let a, b € A. Apathw = (P',P*, ..., P') satisfies
no {a, b}-restoration if the relative ranking of a and b is reversed '* at most once along 7 i.e. there do not exist
integers q, r and swith1 < q < r < s < tsuch that either (i) aPlb, bP'a and aP*b or (ii) bPia, aP'b and
bP°a.?

LetP, P’ € Danda, b € Abe such that aPb. We say that b overtakes a in path = € TI(P, P') if bP'a for
some preference P! in the path 7. The notion of overtaking can be used to restate the definition of an
{a, b}-restoration in an obvious way. For instance in case (i) of Definition 2.2.6, b overtakes a in the path

7' = (P1,...,P") and a overtakes b in the path n* = (P', ... P*).

""Recall that a pair of alternatives a, b are reversed in the pair of preferences P and P’ if they are ranked differently in Pand P'.

It is worth emphasizing that in our definition of “{a, b}-restoration”, we are not referring to an ordered pair (a, b). Thus
{a, b}-restoration and {b, a}-restoration are the same in our definition. We use expressions such as “the path has no {a, b}-
restoration” and “the path has no restoration for the pair {a, b}” interchangeably.

10



S & = N 8 a
S = ¥ N S a
S =@ @ =N a9
S & @ =N a9
& £ < S« N a9
f S = N S a

Table 2.2.2: Preferences P° and P%, P7, P%, P?, P*°

R U SRR (") SRR (0 SRS (1) S

Figure 2.2.2: The Environment G = S“df
P1 {a7 b} Pz {W, u} P3 {V7 u} P4 {b7 a} PS
{c,a} {c,a}
PIO {b7 z} Pg {W, u} PS {V7 u} P7 {Z7 b} P6

Figure 2.2.3: The Environment G* = (D* &)

It will sometimes be useful to consider paths without restoration for a pair of alternatives. Let
P,P € Danda,b € Abesuch thataPb. Letw = (P', P*,. .., P") € TI(P, P’) be a path without
{a, b}-restoration. If aP'b, then aP'b for all preferences P" on the path #. Suppose bP’a instead. Then
there exists a unique preference P" on « such that aP°’b foralls = 1,...rand bP°'aforalls = r 4 1,... ¢
In order to further clarify the relationship between the LGE property and paths without restoration, we

make two modifications of Example 2.2.5.

Example 2.2.7 Asin Example 2.2.5,A = {a, b, ¢, z, u, v, w}. We consider six additional preferences
P°, PS, P7, P3P, P*° as shown in Table 2.2.2. Let D and D* be the domains D = D U {P°} and

D* =D U{P° P, P*, P° P"}. These domains are used to construct two adjacency environments
G= < D, E“dj> and G* = (D*, £*Y). These environments are shown in Figures 2.2.2 and 2.2.3.

Consider G and a locally strategy-proof SCE f : D — A such that f(P$) = b. Using the same
arguments as in Example 2.2.5, along the path 7 = (PS5, P*, P*, P>, P'), we can infer that local
strategy-proofness implies f(P¥) = b forall k = s, 4, 3, 2, and f(P") is either b or a. Due to the presence P°,
there is now another path 7 = (PS5, P°, P') from PS to P". This path has no {a, b}-restoration.

Furthermore, the path 7 has the following properties: (i) a and b are identically consecutively ranked, and

11



(ii) c always ranks above a, while z, u, v and w are all ranked below b. Clearly, b does not switch places with
any other alternative along 7. As a result, local strategy-proofness forces the outcome of f to be b
everywhere along 7 which rules out the manipulability of f.

Now consider G* and a locally strategy-proof SCE f* : D* — A such that f*(P*) = b. Once again, local
strategy-proofness along the path

7 = (P, P* P3, P> P'), implies that f*(P*) = b forall k = s, 4, 3, 2, and f*(P") is either b or a.
Consider the path 7* = (PS5, P°, P, P®, P°, P'°, P'). Observe that 7* has no restoration for a and any of
the alternatives in the set Z = {b, z, u, v, w} which are all ranked below a in P*. Alternatives of Z switch
places among themselves along 7* (see for example, the sub-path (P°, P7, P*, P°, P*°)). Consequently, the
local strategy-proofness of f* does not preclude the outcomes for preferences along #* from belonging to
Z. Suppose f*(P') = a. Since f*(P5) = b, local strategy-proofness implies that some alternative in Z must
“jump above” a and then “jump below” a (in order to conform with P*) along the path 7*."* However, this
is explicitly ruled out by the observation that 7* has no restoration for a and any of the alternatives in Z.
Therefore, it must be the case that f*(P') = b. In fact, only one of two possibilities can arise: (i)
f(P*) = bforallk =1,...,10,0r (ii) f*(P*) = bforallk = 1,2, 3, 4,5,6,10 and f*(P¥') = zforall
k' = 7,8, 9. In either case, f* is strategy-proof.

We conclude with an important observation. The alternative ¢ is always ranked above a along the path
7 in G. However, the path 7* in G* does not forbid restoration between a and alternatives better than a in

the initial preference PS. O

We summarize the insights of Examples 2.2.5 and 2.2.7. There is “potential” for the failure of LGE
whenever there is a path in an environment that has restoration for some pair of alternatives. However
LGE can be restored by the existence of certain “other” paths in the environment. As the argument
relating to 7™ in G* suggests, the existence of a path that satisfies no-restoration of an alternative with
respect to all alternatives that are worse at a preference, is sufficient to ensure strategy-proofness and
hence, LGE. In the next section, we show that this insight is general. In fact, this condition is also

necessary though the argument establishing necessity, is more subtle.

2.3 THE MAIN RESULT

The key condition for LGE is the Lower Contour Set no-restoration property which we define below.
Forany P € D and a € A, the lower contour set of a at P is the set of alternatives strictly worse than a

according to P, ie. L(a,P) = {b € A : aPb}.

13We can first easily rule out the possibility that c is chosen at some preference in the subpath (PS, P7, P, P, P*°). In that
case, local strategy-proofness forces the outcome of f* to be c everywhere in G*.

12



Definition 2.3.1 The environment G satisfies the Lower Contour Set no-restoration property (Property L) if,
forallP,P' € Danda € A, there exists a path = € I1(P, P') such that for allb € L(a, P) the path  satisfies

no {a, b}-restoration.

Pick an arbitrary pair of preferences P, P € D and an alternative a € A which is not ranked last in P.
Suppose L(a,P) = {b,, ..., b,}. If G satisfies Property L, there exists a path 7 from P to P’ such that for
allb; € {b,, ...,b,} the path 7 has no {a, b; } -restoration . More informally, if a lies above b; in P’ then it
lies above b; everywhere along the path 7. On the other hand, if the ranking of a and b; are reversed
between P and P’ there is a single reversal between a and b; along the path 7.

The environment G* in Example 2.2.7 satisfies Property L. In G*, there are exactly two paths between
any pair of vertices, one “clockwise” path and the other, “counterclockwise”. For instance, between P* and
Ps, the paths (P, P*, P}, P* PS) and (P, P'°, P°, P*, P7, P°, P%) are the clockwise and counterclockwise
paths respectively. These paths satisfy an important property. Fix an arbitrary pair of distinct preferences
Pand P'. If a path between P and P’ possesses a restoration, say an {x, y } -restoration, and x is better than y
in P, then the other path between P and P’ must have no restoration for x and any alternative of L(x, P).
For example, consider P' and P*. The clockwise path (P*, P>, P>, P* P5) has {a, b}-restoration and aP'b.
The counterclockwise path (P*, P'°, P°, P®, P7, P°, P5) has no {a, x }-restoration for allx € L(a, P'). The
counterclockwise path (P*, P'°, P, P® P7, P°  P%) has both {c, a}-restoration and {b, z}-restoration, cP'a
and bP'z. On the other hand, the clockwise path (P', P>, P>, P*, P) has no {c, x }-restoration for all
x € L(c, P') and no {b, x}-restoration for all x € L(b, P'). This property ensures that G* satisfies
Property L.

Theorem 2.3.2 An environment satisfies LGE if and only if it satisfies Property L.

Proof: Sufficiency: Suppose G = (D, £) satisfies Property L but fails LGE i.e. there exists a locally
strategy-proof SCF f : D — A that is not strategy-proof. Suppose fis manipulable at P. Define the
alternative x* as follows: x' = maxp{a € A : f(P) = a for some P € D}. In other words, «* is the
highest-ranked alternative in the range of faccording to P."* Let P’ be such that f(P') = . Since fis
manipulable at P, we have x* # f(P).

By Property L, there exists a path w = (P', P*, ..., P) € II(P, P’) such thatforallz € L(«", P) the
path 7 has no {x*, z}-restoration. Searching the path = backwards from P’ to P*, let P* be the first vertex
such that f(P°) = x* # «'i.e. f(P*) = & foralls < k < t. Note that P* always exists since f(P') # f(P'). It
follows from the definition of ' that 'P'x>. Since (P, P°™") € &, local strategy-proofness implies x* P«
and x*'P*"x>. We therefore have an {«', x* }-restoration on the path 7, contradicting our hypothesis.

Therefore, G = (D, &) satisfies LGE and completes the proof of the sufficiency part of Theorem 2.3.2.

*For later reference, maxp(B) refers to the P-maximal alternative in the set B C A.
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Necessity: We define a class of SCFs that we will employ repeatedly in the proof.

Definition 2.3.3 Fix an environment G = (D, E). Leta € A,P € D andletBbea non-empty set with
B C L(a, P). An SCEf: D — A is monotonic with respect to (a, B, P) if

(i) f(P) = aifthereis apathw € TI(P, P) such that B C L(a, P) for all P € =, and
(i) f(P) = maxp(B) otherwise.

Thus f(P) = a if there exists a path from P to P such that no alternative x € B overtakes a along the
path (note that aPx). Clearly f(P) = a. The next lemma shows that SCF f of Definition 2.3.3 is locally
strategy-proof.

Lemma 2.3.1 Supposef: D — A is monotonic with respect to (a, B, P). Then fis locally strategy-proof.

Proof: Pick an arbitrary pair P, P € D with (P, P') € £. We show either f(P) = f(P’), or f(P)Pf(P') and
f(P)P'f(P) establishing local strategy-proofness.
Let D, = {P € D : f(P) = a} denote the set of preferences which are associated to a at SCF f. There

are four cases to consider.
Case 1: P, P’ € D,. Thenf(P) = f(P') = a.

Case 2: P, P’ ¢ D,. Then f(P) = maxp(B) and f(P’) = maxp (B). Hence, either f(P) = f(P’) or
f(P)Pf(P’) and f(P') P'f(P) must hold.

Case 3: P € D,and P’ ¢ D,. Thus, f(P) = a # b = maxp/(B) = f(P’). Since P € D,,, there exists a path
n=(P',...,P") € II(P, P) such that B C L(a, P*) forall1 < k < # (recall Definition 2.3.3). Since

b € B, we have aPb. Next, suppose aP’b. Since b = maxp (B), it follows that B C L(a, P’). Observe that
P’ must be distinct from the vertices in the path 7; otherwise we would contradict the hypothesis that

P' ¢ D,. Since (P, P') € £ wenowhaveanewpath = (P',..., P*, P') € T1(P, P') such that

B C L(a,P) forall P € 7. Consequently, Definition 2.3.3 implies f(P') = a. This contradicts our initial
assumption that f(P’) = b. Therefore, bP’a.

Case 4: P ¢ D,and P’ € D,. This case is symmetric to Case 3 above and is omitted.
This completes the proof of the lemma. |

Lemma 2.3.1 and the LGE property implies that monotonic SCFs are also strategy-proof. This, in turn
imposes certain no-restoration conditions on the environment. The rest of the proof essentially shows
that Property L is the consequence of the strategy-proofness of monotonic SCFs.

Let G = (D, &) be an environment satisfying LGE. We show that G satisfies Property L. We begin

with an observation.
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Claim 2.3.1 G is connected.

Proof: Suppose the Claim is false. Then there exists a component G’ of G such that G’ # () and G'is a
strict subset of G."%, i.e. there does not exist a path from any vertex in G’ to any vertex not in G'. Denote
the set of vertices in G’ by D’. Pick an arbitrary vertex P* in D’ and let a, b € A be such that aP*b. Define
the SCF f as follows: f(P) = b for all vertices P € D’ and f(P) = aforall P ¢ D'

Clearly fis not strategy-proof because f(P*) = b while f(P') = a forany P’ ¢ D’. However fis locally
strategy-proof because the outcome does not change if the voter misrepresents via a neighbouring

preference. Thus LGE is violated. |

Suppose G violates Property L i.e. there exist P°, P' € D and a € A such that every path of I1(P°, P')
has an {a, x}-restoration for some x € L(a, P°). In view of Claim 2.3.1, this statement cannot hold
vacuously.

Let I be the set of alternatives in L(a, P°) that appear in some restoration with a on some path of
I(P°, P'):

I = {x € L(a, P°) : there exists = € I1(P°, P') with {a, x}-restoration} .

Then, the hypothesis for the contradiction can be restated as follows: each path of IT(P°, P') has an
{a, x}-restoration forsomex € T
For a specific path = € IT1(P°, P'),let I'* denote the set of alternatives in L(a, P°) that appear in some

restoration with a on the path 7, i.e.
I7 = {x € L(a,P°) : w has {a, x}-restoration}.

LetI" C [N L(a, P')] be the set of alternatives such that every path = € II1(P°, P') has
{a, x}-restoration for some x € I'". Note that either I'" # () or I = () holds, and every alternative in I"* (if
I is non-empty) is ranked below a in both preferences P° and P'. We show that each of the two possible

cases I'" # (Jand I" = () leads to a contradiction.

Case A: T" # ().

Letf: D — Abe the SCF which is monotonic with respect to (a, I'', P°). Note that fis well-defined
since () # I'" C L(a, P°). According to Lemma 2.3.1, fis locally strategy-proof. We show that fis not
strategy-proof.

According to Definition 2.3.3, f(P°) = a. Pick an arbitrary path = € I1(P°, P'). By definition, there

exists z € I" such that 7 has {a, z}-restoration, i.e. there exists P” € 7 such that zP"a. Hence

5We say that G’ is a component of G if G’ is a maximal connected subgraph of G.
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I'" ¢ L(a, P"). Since m was chosen arbitrarily, there does not exist # € IT(P°, P') such that I" C L(a, P¥)
forall P* € 7. Consequently, Definition 2.3.3 implies f(P') = maxp (I'") = b. Since I C L(a, P'), we
have f(P°) = aP'b = f(P'). Therefore, fis not strategy-proof and we have a contradiction to the
assumption that G satisfies LGE.

This argument establishes that Case A cannot occur.

Case B: T = ().

This case is more complicated than the earlier one. We begin with a series of claims.
Claim 2.3.2 There exists a path © € T1(P°, P') such thatT™ N L(a, P*) = (.

Proof: Suppose Claim 2.3.2 is false. This implies that in each path of IT(P°, P'), at least one alternative

involved in a restoration with a is ranked below a in P!, i.e. T” N L(a, P') # () forall # € T1(P°, P*). Let

I = engo . [[7 N L(a,P')]. Then ) # I' C L(a, P') and Case Aholds with I* = T. [
Following Claim 2.3.2, let 7' € TI(P°, P!) be the path such that T™ N L(a, P') = (). Thus, xP'a for all

x € T™. Note that path 7" has {a, x}-restoration only forall x € T'™, and aP°x for all x € I'™. Searching

the path ' from P' back to P°, let P> € 7'\ { P'} be the the first vertex such that a overtakes some

alternative of . Note that preference P* always exists since xP'a and aP°x for allx € ™. Let Z be the

(non-empty) subset of alternatives in I'™ that are overtaken by a in the reverse path from P' to P* i.e.

Z C T™ such that (i) aP*2 forallz € Z, (ii) yP*aforally € T™\Z (if Z # I'™ ), and (iii) xPa for allx € T™

and all P € 7'|(p: p1\ {P}. Thus, subpath 7'

P* = P°. Since 7' has {a, x}-restoration only for allx € T'™, path 7' must have no {a, y}-restoration for

anyy € T\T'™ (if ™ # T'). Therefore, subpath 7'

ip-,p] has no {a, x}-restoration for any x € I'", and hence,

i p] has no {a, x}-restoration forany x € T'.
Claim 2.3.3 ' N L(a, P') is a strict subset of I' N L(a, P*).

Proof: 1t follows from the definition of Z thatif I N L(a, P') C I' N L(a, P*), then ' N L(a, P') must be a
strict subset of I' N L(a, P*). Suppose it is not the case that ' N L(a, P') C T N L(a, P*) i.e. there exists

x € I' N L(a, P') such that xP*a. Then, we have aP°x, xP*a and aP'x which imply the {a, x }-restoration
onn'andx € T™ N L(a, P'). This contradicts the hypothesis " N L(a, P') = (. |

Claim 2.3.4 Forevery € I1(P°, P*), there exists x € T such that 7 has {a, x }-restoration.

Proof: Suppose there exists 7 € IT1(P°, P*) and 7 has no {a, x }-restoration for any x € I'. Clearly P*isa

vertex common to both 77 and #*

(p>,p]- Starting from P', proceed along the path which is the reverse of

7| (p>,p). Let P be the first vertex in this reverse path which also belongs to 7. From our earlier remark,
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such a vertex must exist (it could be P*). Now combine the sequences of vertices 7 po 5 and 7' | p,p] to
form the vertex sequence 7. By construction,  contains no repetition of vertices so that it is a path and
7 € II(P°, P).

For convenience, let 7 = (P', ..., P* ... P')where P* = P, 7

po,B] = (P,...,P*)and
7 pp) = (P, ..., P"). Since 7 € T1(P°, P'), the hypothesis for the contradiction of the necessity part of
Theorem 2.3.2 implies I’ # (). Therefore, there exists b € T such that 7 has {a, b}-restoration. Since

neither 7 nor #*
(P', ..., P*) and then a overtakes b on the path (P*, . .., P'). Thus we have i.e. bP*a and aP'b. Now refer

back to the path 7'. Since aP°b, bPa and aP'b, path 7* has {a, b}-restoration and hence, b € T N L(a, P').
This contradicts the hypothesis T™ N L(a, P') = . |

ip,p) have {a, b}-restoration and aP°b, it must be the case that b overtakes a on the path

We can now replace P' by P* in our earlier arguments and define I'* in the same way as we defined I".
Once again, there are two possibilities, [* # () and I'* = (). The former case leads to an immediate
contradiction using the arguments in Case A. In the latter case, we can apply Claims 2.3.2, 2.3.3 and 2.3.4
to infer the existence of P? such that (i) I' N L(a, P*) is a strict subset of I' N L(a, P?), and (ii) every path
7 € II(P°, P*) has {a, x}-restoration for some x € I'. Repeating the argument, it follows that the only

n

way to avoid a contradiction via Case A is to find an infinite sequence of vertices P', P*, ... P", .. . such

that
TNL(a,P)] C [TNL(a,P?)] C---C[TNL(a,P")]---. "¢
However this is impossible in view of the finiteness of G. Thus Case B cannot occur either and the
proof is complete. u

Property L can be simplified if an additional restriction is imposed on the domain.
For any preference P, r,(P) denotes the first-ranked alternative in P. A domain D satisfies minimal

richness if for all a € A, there exists P € D such that r,(P) = a.

16Each of the subset relations is strict.
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Definition 2.3.4 The environment G = (D, £) satisfies Property L' if the following two conditions hold:

1. ForallP,P' € Dwithr,(P) = r,(P") = a, there exists apathw = (P', ..., P") € II(P, P') such that
rn(P*) = aforallk =1,...,t.

2. Foralla € Aand P’ € D withr,(P') # a, there exists P € D withr,(P) = a and a path
n=(P,...,P") € II(P, P) such that for allb € A\{a} the path 7 has no {a, b}-restoration.

Property L' is easier to verify than Property L. In order to verify the latter, we have to find the existence
of a suitable path for all pairs of preferences and all alternatives not ranked last in one of the preferences.
For Part 1 of Property L', we only need to check for the existence of a path with a simple property for all
pairs of preferences with the same first-ranked alternative. For Part 2 of Property L', we only need to verify

the existence of appropriate paths for special pairs of preferences.

Proposition 2.3.1 Properties L and L’ are equivalent on all environments G = (D, £) where D is minimally

rich.

Proof: Let G = (D, £) be an environment where D is minimally rich. We first show that Property L
implies Property L.

Pick P, P’ € D such thatr,(P) = r,(P’) = a. Since G satisfies Property L, there exists a path 7 from P
to P’ such that forallb € L(a, P) = A\ {a} the path 7 has no {a, b}-restoration. Clearly, all preferences
on this path must have a as the first-ranked alternative. In order to show Part 2 of Property L, consider
a € Aand P’ € D wherer,(P') # a. By minimal richness, we can find P € D with r,(P) = a. Property L
implies the existence of a path 7 in I1(P, P') such that forallb € L(a,P) = A\ {a} the path 7 has no
{a, b}-restoration. This is precisely the path required to satisfy Part 2 of Property L'.

We now show that Property L’ implies Property L. Pick P, P € D and a € A. We have to show the
existence of a path 7 in I1(P, P') such that forall b € L(a, P) the path 7 has no {a, b}-restoration. There

are four cases to consider.

Case1: 1,(P) = r,(P') = a. Part1 of Property L’ guarantees the existence of a path which satisfies the

required condition.

Case 2: 7,(P) = aandr,(P") # a. According to Part 2 of Property L', there exist P’ € D withr,(P") = a
and a path 7’ € TI(P”, P’) such that 7’ has no {a, b}-restoration for any b # a. Let 7 € I1(P, P”) be the
path whose existence is guaranteed by Part 1 of Property L'. Let P be the first vertex in the path 7
(proceeding from P towards P”) which lies on 7’. Such a vertex must exist since P” belongs to both 7 and
7. Let 7 be the sequence of vertices obtained by concatenating the sub-paths 7|, 5 and 7| 5,p')- BY

construction, = does not contain any repetition of vertices. Therefore = € I1(P, P’). Since there is no
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{a, b}-restoration in 7’ for any b # g, there is no such restoration on its sub-path 7’| 5,»/] ither. Also ais

first-ranked everywhere on the sub-path 7|, 5. Therefore 7 has no {a, b}-restoration for all

be A\ {a} = L(a,P).

Case 3: 1,(P) # aandr,(P') = a. According to Case 2, there exists a path 7’ € II(P’, P) that has no
{a, b}-restoration for any b # a. Let 7 be the reverse of path 7’. Then = € II(P, P'), and 7 has no
{a, b}-restoration forallb € L(a, P).

Case 4: 1,(P) # aandr,(P') # a. By minimal richness, there exists P € D with r,(P) = a. Applying the
argument in Case 3, there exists a path 7 € I1(P, P) with no {a, b}-restoration for any b € L(a, P).
Applying Case 2, there exists a path 7 € II(P, P’) with no {a, b}-restoration forallb € A \ {a}.
Arguments similar to those in Case 2 can now be used to construct an appropriate path from P to P’. Let P
be the first vertex in the path 7 (proceeding from P to P ) that also lies on 7. Let 7 be the sequence of
vertices obtained by the concatenation of the sub-paths 7|, 7 and 7| i,p']- Clearly 7w € I1(P, P'). Since
satisfies no {a, b}-restoration for all b € L(a, P) and a = r,(P), it follows that no alternative in L(a, P)
overtakes a in 7| p 5, i.e. L(a, P) C L(a, P). The sub-path 7 satisfies no {a, b}-restoration for all b # a;
therefore the sub-path 7| (5,»'] Satisfles no {a, b}-restoration forall b € L(a, P). We can summarize the
argument thus far as follows. Pick an arbitrary b € L(a, P) and consider the path 7. If aP’b, then b lies
everywhere less preferred to a along . If bP'a, then b is less preferred to a in 7 till P and overtakes a once

from P to P'. In other words, = satisfies no {a, b}-restoration for all b € L(a, P). |

In Section 2.5, we apply Property L’ to various environments in order to show LGE.

2.4 DiscussioN

We comment on some aspects of our results.

2.4.1 CoMPUTATIONAL COMPLEXITY

The problem of determining whether an environment satisfies Property L, is not computationally hard.
The Depth First Search Algorithm '” for efficiently traversing graphs can be modified easily to construct an
algorithm that decides whether an environment satisfies Property L. The worst case time complexity of
the algorithm is O (|A|2 |D|(|D] + |5])) which is polynomial in the parameters of the problem. The

details of the argument can be found in Chatterjee [13].

17See Cormen et al. [19].
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2.4.2 RELATIONSHIP WITH EARLIER RESULTS

Carroll [ 12] proved that the the environments (P, £*Y) and (DS, £°%) satisfy LGE.'® Both these

environments satisfy a stronger version of Property L which we refer to as Property U.

Definition 2.4.1 The environment G = (D, E) satisfies the universal pairwise no-restoration property

(Property U) if for all P, P’ € D, there exists a path in I1(P, P') that satisfies no-restoration for all pairs {a, b}.

Let w € I1(P, P') be the path that satisfies no-restoration for all pairs of alternatives as required by
Property U. Then  also satisfies no {a, b}-restoration foranya € Aand b € L(a, P). Clearly, Property L
is satisfied. On the other hand, Property L does not imply Property U. In order to see this, consider the
environment G* in Example 2.2.7 which satisfies Property L. For the pair (P, P) the clockwise path has
{a, b}-restoration while the counterclockwise path has {c, a }-restoration. Clearly, Property U is violated.

Sato [46] showed that Property P below is necessary for LGE in adjacency environments.

Definition 2.4.2 The environment G = (D, E) satisfies the pairwise no-restoration property (Property P) if
forallP,P' € D,and a,b € A, there exists a path in I1(P, P') that satisfies no { a, b}-restoration.

Example 3.2 in Sato [46] shows that Property P is not sufficient for LGE. The difficulty is that Property
P does not specify the relationship between the no-restoration paths for different pairs of alternatives - the
path satisfying no-restoration between P and P’ for {a, b} could be distinct from the no-restoration path
between the same vertices for another pair {c, d}. Property L is clearly a strengthening of Property P.

Sato [46] also introduced a sufficient condition for LGE in adjacency environments (we refer to this

condition as Property S for convenience) which is weaker than Property U.

Definition 2.4.3 Let G = (D, £*Y) be an environment. Consider P, P € D. A path
n = (P, P, ..., P") € II(P, P) satisfies the antidote property with respect to the pair (P, P') if, for all pairs
a,b € A such that  is with { a, b}-restoration and aP'b, then for each h € {1, . .., t} such that bP"'a and
aP"b, there exists a path «' € T1(P, P") along which a does not overtake any alternative.

The environment G satisfies Property S if, for every P, P’ € D there exists a path satisfying the antidote
property with respect to (P, P’).

Environment G* in Example 2.2.7 violates Property S which establishes that Property S is stronger than
Property L. Consider the pair (P', P%). As noted earlier, the clockwise path from P to P has
{a, b}-restoration since aP'b, bP*a and aP’b. In order for it to satisfy the antidote property, a should not

18Recall that P is the set of all strict preferences. Also DS is the domain of single-peaked preferences. A formal definition of
single-peaked preferences can be found in Section 2.5.
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overtake any alternative in the counterclockwise path from P' to PS. However a does overtake ¢ on this
path. Property L is nevertheless satisfied since there is no restoration with a and any of the alternatives

ranked below a in P' along this path.

2.5 MULTI-DIMENSIONAL VOTING: THE SEPARABLE DOMAIN AND THE MULTI-DIMENSIONAL

SINGLE-PEAKED DOMAIN

In this section, we apply our results to a well-known voting model. The set of alternatives has a Cartesian
product structure, i.e. A = X cpA; where M = {1,2, ..., m} is a finite set of components with m > 2. For
eachj € M, the component set A; contains a finite number of elements with |A;| > 2. Foranyj € M,

A_j = X;4A,. Analternative a € Aisanm-tuplea = (a,, ..., a,). We shall sometimes write a in the
form (a;, a_;) where a; € Ajanda_; € A_;. A preference P is a linear order over A. A marginal preference
over component j is a linear order over A;.

A preference P is separable if, for all a;, b; € A;,c_;,d_; € A_;andj € M, (a;, c_;)P(b;, c_;) implies
(a;, d_;)P(b;, d_;). Thus every separable preference P induces an m-tuple of marginal preferences
(P,,...,P,)."”" Let Ds denote the set of all separable preferences. Note that for every component j and
any marginal preference P; over the component set Aj, there exists P € D such that P induces the
marginal preference P; over A;. There is a large literature on committee voting following Barbera et al. 5]
which assumes separable preferences.

Another domain of preferences that we shall consider is that of multi-dimensional single-peaked
preferences introduced by Barbera et al. [6]. (See also Le Breton and Sen [36]) This notion generalizes
the well-known class of single-peaked preferences (see Moulin [41]). For this purpose, additional
structure is introduced on each component set.

Let <; denote a linear order over A; for eachj € M. A grid is an m-tuple (<,, ..., <,,).** Let Pbea
preference over A whose first-ranked alternative is x. Then P is multi-dimensional single-peaked with
respect to the grid (<, .. ., <,,) if for all distinct a, b € A, we have

[%j =j a; <; b or b; <; a; <; x; forallj € Mwitha; # b;] = [aPb].>*

"The converse is not true however. Several preferences can induce the same tuple of marginal preferences. For instance,
consider additively separable preferences. Preferences over each component j have a utility representation u; : A; — . Utility
representations over A are obtained by summing utilities over components. By considering different affine transformations of ;,
one can obtain different preferences over A without changing marginal preferences. Details can be found in Le Breton and Sen
[36].

20A grid can be interpreted as a product of lines. The notion of multi-dimensional single-peakedness can be generalized on a
product of trees where our result still holds. For notational convenience, let a; =<; b; denote either a; <; b; or a; = b;.

*'In the case where m = 1, multi-dimensional single-peakedness reduces to single-peakedness. The definition of multi-
dimensional single-peakedness is silent regarding the comparison of some alternatives. For instance, suppose m = 2, < is
the < ordering on real numbers and A, = A, = {o,1}. Let (0, 0) be the highest-ranked alternative in the multi-dimensional
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P p? ps p+ Ps P° P’ Pt

(0,0) (0,0) (0,1) (0,1) (1,0) (1,0) (1,1) (1,1)
(0,1) (1,0) (0,0) (1,1) (0,0) (1,1) (0,1) (1,0)
(1,0)  (0,1)  (1,1)  (0,0) (1,1) (0,0) (1,0) (0,1
(k1) (L) (o) (10) (0,1) (0,1) (0,0) (0,0

Table 2.5.1: Domains Dg and Dysp

The domain Dysp contains preferences that are not separable (see Section 3 in Le Breton and Sen
[36]). However Ds N Dysp # . In order to see this, pick an arbitrary m-tuple of marginal preferences
(P,,...,P,) where each P}, j € Mis single-peaked with respect to <;. Construct P as follows. For all
distinct ¢, d € Awith ¢ # d, let j be the integer in M such that ¢; # d; and ¢, = d, for all r < j. Then cPd if
and only if ¢;P;d;. It is easy to verify that P € Ds. We also claim P € D)sp. Suppose x is the first-ranked
alternative in P. Pick distinct alternatives a, b € A. Clearly, a; # b; for some j € M.

Assume further that x; <; a; <; bjor b; <; a; = x; forall j € M with g #+ b;. Letk € M be the lowest
component such that a; # by. By virtue of the single-peakedness of Py, x; =i ar <y by or by <i ap = &
implies a;Pyby. Then, aPb follows directly from the construction of P.

We introduce a new notion of neighbours that applies to any domain which includes separable
preferences. Let P, P € Dg. We say that P and P’ are separably adjacent (denoted by (P, P') € £54) if
there existj € M and a;, b; € A; such that
[{x,y} € P A P') = [x; = a;,y; = b and x; = y; forall k # j]. Thus P and P’ are separably adjacent if
all pairs of alternatives that are reversed between P and P’ differ in the values of exactly one component.*?
We emphasize that separable adjacency applies only to separable preferences.

Separable adjacency does not cover the standard adjacency case. We therefore consider a strengthened
version of separable adjacency: P and P’ are adjacent-separably adjacent (denoted by (P, P') € £4%4)> if
either (P, P') € £ or (P, P') € £5* holds. Two separable preferences P and P’ are neighbours in the

ASA sense if one can be obtained from the other by a “minimal” change.

Example 2.5.1 LetA = A, x A, withA, = A, = {o,1}. In the special case |A;| = 2 forallj € M, we
have Ds = Dsp implying that the environments (Ds, E4%4) and (Dygp, £454) are the same. Table 2.5.1

lists the preferences in Dy and Dj,sp. Note that the domain satisfies minimal richness.

single-peaked preference P. We must have (o, 0)P(1, 0), (0,0)P(0,1), (0,0)P(1,1), (1,0)P(1,1) and (0, 1)P(1, 1) by definition.
*2Separably adjacency is based on a notion of Kemeny distance that applies to separable preferences. Two (separable) pref-
erences are separably adjacent if they disagree on the relative ranking of two alternatives that differ in the values of exactly one
component. Further analysis of separable adjacency can be found in Chatterji and Zeng [ 16].
23The acronym ASA stands for adjacent-separably adjacent.
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Figure 2.5.1: <D575ASA> and <DMSP,5ASA>

This environment is shown in Figure 2.5.1. The thicker lines in the figure show the environment
(Dg, E9),ie. £ = {(P', P*), (P*, P*), (P5, P°), (P, P*)}. The other edges in the figure belong to £54.
Note that (P*, P*) ¢ % since P' A P* = {{(o, 1), (1, o)}}. Also
P AP = {{(o, 0),(0,1)},{(1,0), (1, 1)}} Observe that the set of alternatives that are reversed
between P' and P? can be obtained by switching the value of component 2 from o to 1 at different values of
component 1. Clearly (P', P*) € £%. On the other hand (P, P*) ¢ &5 since {(o0,0), (1,1)} € P> A P*.
We will show later that the environment (Dygp, SASA> satisfies Property L. Clearly, Part 1 of Property
L’ is satisfied as indicated by the four thick edges in Figure 2.5.1. Now consider the preference P* and the
alternative (1, 1) which is not first-ranked in P'. We have (1, 1) first-ranked in preference Pg and the path
(P, P7, P* P3, P') has no restoration for (1, 1) and any other alternative. Consequently, the requirement

of Part 2 of Property L' is satisfied in this case. g

Example 2.5.1 and Figure 2.5.1 also lead to the conclusion that the environments (Ds, £ 4y,
(Dysp, E54), (Ds, E9) and (Dysp, £Y) fail LGE. The graphs in these environments are not connected
which can be verified by inspection and by our earlier remarks.

According to the main result in the section, combining the adjacency and separable adjacency notions

of neighbours with the separable and multi-dimensional single-peaked domains leads to LGE.
Proposition 2.5.1 The environments (Ds, E45) and (Dysp, E454) satisfy LGE.

The proof of Proposition 2.5.1 can be found in the Appendix.

2.6 LGE AND RANDOM SOCIAL CHOICE FUNCTIONS

In this section, we examine LGE in the context of random social choice functions. Our result is the
following: an environment that satisfies LGE for deterministic social choice functions may not satisfy
LGE for random social choice functions.

Let A(A) denote the set of probability distributions over A. An element A € A(A) will be referred to as
a lottery. We let A, denote the probability with which a € Ais selected by A. Thuso < A, < 1and

ZaEAA“ =1
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A Random Social Choice Function (or RSCF) isamap ¢ : D — A(A) that associates a lottery ¢ (P) with
eachPcD.

ForeveryP € D,andk = 1,2, ... |A|,let ri(P) € A denote the k" ranked alternative in Pi.e.

r.(P) = aimplies |[{b € A : bPa}| = k — 1. The lottery A stochastically dominates lottery 1’ at P € D
(denoted by APyA) if > Arp) = D, Al py forallt =1, |A].

Let G = (D, &) be an environment. ARSCF ¢ : D — A(A) is locally sd-strategy-proof if ¢ (P)Py¢(P’)
forall (P,P') € £.ARCSF ¢ : D — A(A) is sd-strategy-proof if ¢ (P) Py (P’) forall P, P’ € D.

The environment G = (D, £) satisfies random local-global equivalence or RLGE if every locally
sd-strategy-proof RSCF ¢ : D — A(A) is also sd-strategy-proof.

In the case where a RSCF is deterministic, local sd-strategy-proofness and sd-strategy-proofness
reduce to local strategy-proofness and strategy-proofness respectively. An immediate consequence of this
observation is an environment that satisfies RLGE also satisfies LGE. The results of Carroll [12] and Cho
[ 18] show that the converse is true for several special domains. The example below shows that LGE does

not imply RLGE.

Example 2.6.1 Let A = {a,b,c,v,w,x,y,z}. The domain D is described in Table 2.6.1. The
environment G = (25, E*Y) is shown in Figure 2.6.1.

By using arguments similar to those in Example 2.2.7, we can show that G satisfies Property L.
Therefore, Theorem 2.3.2 implies that G satisfies LGE. We construct a RSCF which satisfies local
sd-strategyproofness but not sd-strategy-proofness.

Forany d € A, we let ¢; denote the degenerate lottery that picks d with probability one. Consider the
RSCF ¢ : D — A(A):

Le, + Loy if k € {1,10},
(/)(Pk) — ieﬂ—’—ieh_'—iec ifk € {2737475}7
e+ e+ e ifk€{6,7,8,0}.

24



p p> p» p+ ps pS p7 p® p° pe
a a a a a b b b b b
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y Yy y =z =z z z y y Y
zZ z z y y y ¥y z z z

Table 2.6.1: Domain D

SR U0 SO (2 S 2 SR L
{a, b} {a,b}
{a,c} frwt  A{yz} {c.a}

pe P p P
Figure 2.6.1: G = (D, &)

In order to verify the local sd-strategy-proofness of ¢ it suffices to show that the voter cannot gain by
manipulation in each of the following cases: (i) from P' to P> and vice versa, (ii) from P’ to P® and vice
versa and (jii) from P? to P'° and vice versa. This can be verified easily in each of the cases. Consider (i),
for instance. Observe that clocally overtakes b from P' to P*. Correspondingly, probability - is transferred
from b to ¢, (keeping other probabilities fixed) as we move from ¢(P') to ¢(P*). Therefore, ¢(P*)P%¢(P")
and symmetrically, ¢(P')P!;¢(P?). The same argument can be made in cases (ii) and (iii).

However, it is not the case that ¢(P5)P%,¢(P') (in fact ¢ (P")P5,¢(P*)). Consequently ¢ is not
sd-strategy-proof.

We make two observations about Example 2.6.1.

Observation 2.6.1 As mentioned earlier, Carroll [ 12] and Cho [ 18] have established the equivalence of
local sd-strategy-proofness and sd-strategy-proofness in specific adjacency environments. These
environments all satisfy Property U. The environment G in Example 2.6.1 violates Property U since both

the clockwise and counterclockwise paths between P' and P have restorations.

Observation 2.6.2 The key feature of the example in Example 2.6.1 that makes the LGE and RLGE
results differ is that some lotteries under ¢ have support {a, b, c}, e.g. $(P*), k = 2, ..., 9. However, no
locally strategy-proof SCF can have a range that includes all three alternatives a, b and c. In order to see
this, let f : D — Abea locally strategy-proof SCF. Theorem 2.3.2 implies that fis strategy-proof. Suppose
{a,b,c} C Range(f) = {d € A : f(P) = d forsome P € f)} Thus, there exists a preference where f
takes value a and another preference where f takes value b. Strategy-proofness immediately implies

f(P*) = aforall1 < k < sand f(P') = bforall 6 < [ < 10. Hence, we have a contradiction.

25



A characterization for RLGE appears to be significantly more difficult than that for LGE. In our
companion paper Kumar et al. [ 33] we derive a weak sufficient condition for RLGE in multi-voter models

where RSCFs satisfy the additional property of unanimity.

APPENDIX: PROOF OF PROPOSITION 2.5.1

We begin by observing that both the separable domain Dg and the multi-dimensional single-peaked
domain D)p satisfy the minimal richness property. Applying Theorem 2.3.2 and Proposition 2.3.1, it
suffices to show that both domains satisfy Property L'. Furthermore both domains satisfy Part 1 of
Property L' as is shown in Appendices E.2 and E.5 of Chatterji and Zeng [ 16]. Therefore, we only verify
Part 2 of Property L'.>*

We first investigate the separable domain Ds. Next, we show Part 2 of Property L’ on the intersection of
the separable domain and the multi-dimensional single-peaked domain Dg M Dysp, and then extend the
result to the multi-dimensional single-peaked domain D)gp.

In the proofs, we shall occasionally employ a special type of separable preferences called lexicographic
separable preferences. Let (P,, . . ., P,) be an m-tuple of marginal preferences and let P, be strict order
over the set M. The preference P is lexicographically separable with respect to the (m + 1)-tuple
(P, P,,...P,)if foralla, b € A, [aijbj and a, = b, for all r such that rPoj} => [aPb]. In other words, a
is ranked strictly better than b according to P if g; is ranked higher than b; according to the marginal
preference P; and a, = b, for all components  that are ranked strictly higher than j according to the
component preference P,. We shall write a lexicographically separable preference P as
P=(P,P,...,P,).

We first prove two preliminary lemmas.

Lemma 2.6.1 Let distinct P, P’ € Dy induce the same marginal preferences. Then there exists a path from P to

P in (Ds, EY) such that there is no restoration for any pair of alternatives.

Proof: This lemma follows from Fact s of Chatterji and Zeng [ 16]. |

Lemma 2.6.2 Fix marginal preferences P,, . . ., P,,. Let a be an alternative such that a; is not the first-ranked
element in P; for some j € M. For each component k, let X, = {x € A : xpPrai} U {a;}. Let

X =X, X ... X X,,. Pick component j, and let b;, c; € X; or b;, ¢; € A;\X; be consecutively ranked elements in
P,. Then there exists a separable ordering P(j) satisfying the following properties:

*Part 1 of Property L' is the same as the interior+ property of Chatterji and Zeng [ 16]. Hence, we can directly apply their
result for this part. However, Part 2 of Property L' is stronger than their exterior+ property so we have to show this independently.
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1. P(j) induces the marginal preferences P,, . . . , P,,.
2. [xP(j)a] = [for each k € M, either x;Pray or x; = ay, ie x € X].
3. (bj,z_;) and (c;, z—;) are consecutively ranked in P(j) forallz_; € A_;.

Proof: We construct a partition of the set A. In order to do so, define the following sets: A_; = XAy,
X_]' = Xk#ij, Y} = A] \)(], and Y_] = A_] \X_] The sets X, B = )(} X Y_j, C == Yv] X X_} and
D =Y; x Y_; constitute a partition of the set A. The ordering P(j) is defined by the Conditions 1 and 2

below.

1. XP(j)BP(j)CP(j)D i.e. all alternatives in X are ranked above those in B which in turn are ranked

above those in C, while all alternatives in D are ranked below those in C.

2. P(j) over X is lexicographically separable according to (P,(j), P,, . . ., P,,) where j is ranked last in
the component preference P, (j) i.e. given x, y € X, [x;Pryr and x, = y, for all P, (j)k] = [xP(j)y].
Similarly, P(j) is lexicographically separable over alternatives respectively in B, C and D with
respect to (P,(j), P, ..., P,).

Observe that a; is the lowest ranked element in X} according to Py for all k € M. Therefore, by the
construction, a is the worst alternative in X according to P(j). As X is the highest-ranked block according
to P(j), it follows that all alternatives x that are ranked higher than a according to P(j) must satisfy x € X.
This establishes Part 2 of Lemma 2.6.2.

To show that P(j) is a separable preference and satisfies Part 1 of Lemma 2.6.2, it suffices to show that
for an arbitrary pair of alternatives that disagree in exactly one component, say x = (xy,z_;) and
¥ = (¥ z—), we have [(x, z_) P(j) (&, 2]

= [xPeyi]. If x and y both belong to one of the sets X, B, C or D, the result follows immediately.
Henceforth, assume that x and y belong to two different sets of X, B, C and D.

Suppose k = j. We know eitherz_; € X_jorz_; € Y_;. Ifz_; € X_j, (x, z_¢)P(j) (y, z_x) implies
x € Xandy € C. Similarly, if

ij c Y,j,

(%, 2—)P(j) (¥, z—x) implies x € Bandy € D. Consequently, in both cases, x; € X; and
yj € Y;, and hence x;P}y;.

Suppose k # j. Let z_j. denote the vector z_ with its element of component j deleted. Since xP(j)y,
and x and y agree on component j, we know eitherx € Xandy € B,orx € Candy € D, both of which
imply (%, z_j) € X_jand (y,z_j) € Y_;. Since X_; is a Cartesian product set, (x¢, z_j) € X_; implies
xp € Xpand z_j € X, X,. Last, since z_y € X, kX,, (y, z—jx) ¢ X_; implies y ¢ X;. Therefore,

kakyk-
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Hence P(j) is a separable preference, and induces marginal preferences P,, . . . , P,,.
Part 3 of Lemma 2.6.2 is an immediate consequence of the fact that P(j) over alternatives of X and B
respectively is lexicographically separable with respect to the component preference P, (j) where

component j is ranked last. |

We now show that the separable domain Ds satisfies Part 2 of Property L'.

Proof: Consider P’ € Dgand a € A such that a is not the first-ranked alternative in P. Let P/, ..., P/ be
the induced marginal preferences of P'. Without loss of generality, assume that a,, a,, . . ., a,, ¥ < m, are
not first-ranked in P/, P, . . ., P, respectively, while a, = r,(P)) forallv = r +1, ..., m. We will construct
a sequence of preferences which are edges in (Ds, £454) with the property that a keeps “rising” along the
sequence. The sequence will terminate in a preference P € Dg where a is first-ranked. Then, the reverse
path from P to P’ has no {a, b}-restoration for all b € A\{a}, as required by Part 2 of Property L'.

We start from P/. Let P, denote the set of all marginal preferences over A,. Pick a marginal ordering P,
such that g, is first-ranked. By Proposition 4.1 of Sato [46], we have a path 7' = (P!, ..., P!) from P! to P,
in (P,, £9) which has no restoration for any pair of elements of A,.2* Since L(a,, P!) C L(a,, P,), a, must
keep rising along the path 7' i.e. L(a,, P¥) C L(a,, P*™) forall1 < k < t. Therefore, forall1 < k < t,ifa,
is involved in the local switching elements across P’f and PfJ“ ,itis true that le’fa1 and alP’f“x1 for some
x, €EA,.

Foreachk =1,...,tletX* = {x, € A, : x,P*a,} U {a,}. Foreachk = 1,...,t — 1, consider
(P*, P and let Pk A P = {{bk, &} }. Since L(a,, PY) C L(a,, P*™), it must be the case that either
bk ke XForbk ¢k € A\X*. Next, foreachk =1, ..., t, by Lemma 3, let P*(1) € Ds be such that (i) it
induces the marginal preferences PY, P, . .., P}, (ii) if xP*(1)a, then for all j € M, either x; = aj, or x; is
strictly better than a; according to the j marginal ordering of P*(1), and (iii) (b*,z_,) and (cf,z_,) are
consecutively ranked in P*(1) forallz_, € A_,. Let P*(1) be the ordering obtained by switching all
alternatives of the type (b¥,z_,) and (c¥,z_,) forsome z_, € A_,. Itis clear that P*(1) is a separable
preference with the same marginal preferences as P*(1) for all components other than 1. For component 1,
c¥ is now ranked immediately above b¥, while the rankings of other elements are unchanged. Therefore,
there are three properties of jak< ) that are important: (i) (Pk (1), 131‘(1)) € &% and
P*(1) A Pr(1) {{ oz )iz, € A,l}, (ii) L(a, 13"(1)) C L(a, f)k(l)) where the strict
inclusion holds ifand only 1f a, = ¢, and (iii) P*(1) and P***(1) have the same marginal preferences, and

L(a,P*(1)) C L(a,P**'(1)) by Part 2 of Lemma 2.6.2 in the construction of P**!(1).

2*For instance, we generate P, by moving a, dlrectly to the top of P/ while keeping the rankings of other elements unchanged,
and then construct the path from P/ to P, in (P,, £9) by progressively moving a, to the top of P..
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Now, we have a sequence:

P = P'(1) = P(1) = P’1) = --- = P'(1) = P(1) — P'(a).

Note that P'(1) has marginal preference P, where g, is the first-ranked element. Since P’ and P'(1) have the
same marginal preferences P/, P., .. ., P/ , we know that either P = P'(1), or there exists a path 7° from P
to P'(1) in (Ds, £*¥) which has no restoration for any pair of alternatives (by Lemma 2.6.1). Similarly, for
all1 < k < t, we know that either P¥(1) = P***(1), or there exists a path 7* from P*(1) to P**'(1) in

(Ds, £49) which has no restoration for any pair of alternatives. Since (Pk(l), Pk(l)) € 5 forall
k=1,...,t— 1,we construct a concatenated path 7 = (7°, 7", ..., 7"") from P’ to P'(1) in

(D, £454) 26 Recall that L(a, P') C L(a, P'(1)), L(a, P*(1)) C L(a, P*(1)) and

L(a,P*(1)) C L(a,P*"'(1)) forallk = 1, ..., t — 1. Then, no restoration on subpaths 7°, 7', . .., 7"
implies that a keeps rising along the path 7.

We can clearly repeat this procedure, progressively moving 4, to the top in the marginal preference P,,
and then doing the same for a,, through till ,. The procedure generates a path in (D, £45) culminating
in a preference P € Ds where a is first-ranked. Moreover if a overtakes some x at some preference on the
path, it beats x at all preferences further along the path. It follows immediately that the reverse path from
Pto P’ satisfies no {a, b}-restoration forall b € A\{a}. This establishes Part 2 of Property L', and hence

proves Proposition 2.5.1 for the separable domain Ds. |

To show Part 2 of Property L’ in the multi-dimensional single-peaked domain D)gp, we first consider
the domain Dg N Dysp. We make several observations. Firstly, Dg N Dysp satisfies Part 1 of Property L'
by Appendix E.4 of Chatterji and Zeng [16]. Secondly, Lemma 2.6.1 remains valid in Dg N Dygp
according to Fact 11 of Chatterji and Zeng [ 16]. Thirdly, Lemma 2.6.2 holds when we set the marginal
preferences P,, .. ., P, to be single-peaked with respect to <,, . . ., <,, respectively, and change
preference P(j) to be both separable and multi-dimensional single-peaked. Finally, in the verification of
Part 2 of Property L’ in the separable domain, if we replace Dg with Dg N Dysp, P, with S, which is the
set of all single-peaked marginal preferences with respect to <,, and the reference to Proposition 4.1 of
Sato [46] with a reference to Proposition 4.2 of Sato [46], our earlier proof works for verifying Part 2 of
Property L' in Ds N Dysp. Therefore, Ds M Dyysp satisfies Property L.

To extend the result to the multi-dimensional single-peaked domain, we use the following lemma

26The concatenated path 7 has no repeated preference. Given two preferences Pand Pin 7, we know P € 7% and P € 7 for
someo < k, k' < t—1. Ifk = K, itis evident that P # P by the definition of the path 7*. Next, assume k < k. Note that
P¥ (1) and PX (1) induce the same marginal preference P¥ " and the path 7* connecting P*' (1) and P¥ ** (1) has no restoration
for any pair of alternatives. Then, P € at implies that P induces the marginal preference PIfI'H. Symmetrically, P induces the
marginal preference P***, which is distinct from Pfu“. Therefore, P and P must be distinct.

29



which follows from Lemma 8 of Chatterji and Zeng [15].

Lemma 2.6.3 Given distinct P, P’ € Dyp, let r,(P) = r,(P’). Then there exists a path from P to P’ in

(Dasp, £%Y) such that there is no restoration for any pair of alternatives.

We now show Part 2 of Property L’ in the multi-dimensional single-peaked domain Djgp.

Proof: Consider P’ € Dysp and a € A such that a is not the first-ranked alternative in P'. Let r,(P') = a.
Fixk € M. If a; = ai, we pick an arbitrary single-peaked marginal preference P; that has ay as the
first-ranked element. If a; # ay, we identify a particular single-peaked marginal preference P; which
satisfies the following condition: [x(Pjar] = [ar = xr <k ai or ap <i x¢ = a). The marginal
preferences P/, . .., P are single-peaked by construction. Applying the counterpart of Lemma 2.6.2, we
have P’ € Dg N Dysp such that P induces P, . .., P, , and
[xP'a] = [forall k € M, either x; = a; or xPja;]. Note that L(a, P') D L(a, P’). By Lemma 2.6.3,
since r,(P’') = r,(P'), we have a path 7 from P’ to P’ in (Dysp, £*Y) which has no restoration for any pair
of alternatives. Moreover, since Dg N Dysp satisfies Property L', we have P € Dg N Dyp that has a
first-ranked, and a path 7 from P to P’ in (Dg N Dysp, £454) that has no {a, b}-restoration for all b # a.
Now, we have a concatenated path 7 = (7, 7) from P to P’ in (Dysp, £454).2” We show that 7 has no
{a, b}-restoration for all b # a. Fix an arbitrary b # a. If b overtakes a on path 7, then no
{a, b}-restoration on 7 implies that b overtakes a on 7 exactly once, and bP'a. Then, L(a,P’) 2 L(a, P')
implies bP’a, and no restoration on 7 from P’ to P implies bPa for all P € #. Hence, the concatenated
path 7 has no {a, b}-restoration. If b does not overtake a on path 7, then no {a, b}-restoration on @
implies aPb for all P € 7, and hence aP’b. Furthermore, no restoration on 7 implies that b can overtake a
on 7 for at most once. Hence, the concatenated path 7 has no {a, b}-restoration. This establishes Part 2 of

Property L', and hence proves Proposition 2.5.1 for the multi-dimensional single-peaked domain Dsp. H

*"By an argument similar to the earlier one, the concatenated path 7 has no repeated preference.
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Local Global Equivalence in Voting Models Admitting

Indifferences

3.1 INTRODUCTION

We consider a finite set of alternatives and a society of agents where each agent has a preference over
alternatives.' The objective of the social planner is to construct social choice functions that aggregate the
preferences of the agents in a way that reporting true preference is a dominant strategy for each agent.
This property of a social choice function is called strategy-proofness. However, in reality, agents might be
comfortable to misreport to preferences that are “local” to their true preference.” In such situations, it is
sufficient for the social planner to consider social choice functions which ensure that the agents do not
benefit from misreporting to a preference that is local to their true preference. Such social choice
functions are called locally strategy-proof.

We consider a single agent model, which is without loss of generality in this setting. The set of

admissible preferences is called a domain.> An environment is an undirected graph where the vertex set is

"The preferences can be weak, that is, it can admit indifference.
*Local preferences can be any arbitrary pre-specified set of preferences.
*Here, we allow the preferences to have indifferences.
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the set of admissible preferences and two preference have an edge if and only if they are local. The agent
having her true preference at a particular vertex can misreport to only those preferences (vertices) that
have an edge with her true preference (vertex). A social choice function is called locally strategy-proof if
for every possible true preference of the agent, she cannot be better off by misreporting to a local
preference. A social choice function is strategy-proof if for every possible true preference of the agent, she
cannot be better off by misreporting to any other preference. The main question we ask is the following:
What are the environments where every locally strategy-proof social choice function is strategy-proof?
We investigate environments where preferences admit indifference. In this chapter, we extend Theorem
2.3.2 of Chapter 2 to preference domains with indifference. Unfortunately, a “clean” characterization
result appears to be difficult to obtain in this case. We show that our earlier arguments can be modified to
yield a condition that is sufficient for LGE and another condition that is necessary. Moreover the “gap”
between the conditions is small.* We also provide some applications of our result where we use the
sufficiency result to propose notions of neighbours according to which environments with the domain of

single-plateaued preferences and the domain of all weak preferences, satisfies LGE.

3.2 MODEL

Let A be a finite set of alternatives with |A| > 2. Without loss of generality, we consider a single agent
model as we did in the previous chapter. A weak preference denoted by R is a complete and transitive
binary relation on A. The antisymmetric and symmetric parts of R are denoted by P and I respectively. Let
‘R denote the set of all weak preferences on A. Recall that P is the set of all strict preferences on A. For
every weak preference R and alternative a, L(a, R) = {x € A : aPx} is the strict lower contour set of a at R.
Analogously, L(a,R) = {x € A : aRx} is the weak lower contour set of a at R.

A domain D is a set of weak preferences. An environment G is a graph G = (D, £) where D and £ are
the set of vertices and edges in G respectively.

Let G = (D, &) be an environment. An SCF f : D — A s locally strategy-proof if for all (R, R') € E, we
have f(R)Rf(R’). Furthermore, the SCEf: D — A is strategy-proof if for all R, R" € D, we have
A(R)RA(R'). The environment G satisfies local-global equivalence (LGE) if every locally strategy-proof SCF
is also strategy-proof.

These definitions are the natural counterparts of those in Chapter 2. The notion of a path with no
restoration requires reformulation in this setting. Recall thata path 7 = (R', ..., R) in Gis a sequence of
preference in D such that (R, R°"") € £ foralls = 1,...,t — 1. The set of paths between R and R’ where
R, R € Disdenoted by I[1(R, R').

*The “gap” is small in the sense that both conditions boil down to the single condition (Property L) obtained in the case of
preference domains without indifference (as discussed in Chapter 2).
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Fixa,b € A. Thepathw = (R', ..., R') has (a, b)-restoration if there exist1 < u < q < s < tsuch

that one of the following three cases occurs:
(i) aP“b, bR%a and aR°b;
(ii) aR“b,bPiaand aR°b;
(iii) aR“b, bRia and aP’b.

For an (a, b)-restoration, (weak) preferences over a and b reverse more than once along the path.
However, the preference over the pair at one of the preferences, where reversal takes place, must be strict.

We introduce two variants of Property L below.

Definition 3.2.1 The environment G = (D, £) satisfies Properties WL if, for all R, R' € D and a € A, there
exists a path 7 in IL(R, R') such that for allb € L(a, R) the path x has no (a, b)-restoration.

Definition 3.2.2 The environment G = (D, E) satisfies Property SLif, for all R, R € D and a € A, there
exists a path 7 in TI(R, R') such that for allb € L(a,R) \ {a} the path x has no (a, b)-restoration.

Pick R and R/, distinct preferences in D and a € A. Property WL guarantees the existence of a path =
from R to R’ such that for any x ranked strictly lower than a in R the path 7 has no (a, x)-restoration. On
the other hand, the path whose existence is guaranteed under Property SL also satisfies no-restoration
with respect to alternatives that are indifferent to a under R. Clearly, Property SL is a stronger property
than Property WL. If there are no alternatives indifferent to a at R, then the path specified under Property
WL satisfies the requirements of Property SL. Thus the two properties reduce to the Property L in the
absence of indifference.

Suppose b is indifferent to a under R and the environment satisfies Property SL. Let 7 € II(R, R’) be
the path specified by Property SL. Then the relative ranking of a and b along 7 must be one of the
following (i) a and b are indifferent everywhere along the path (ii) a and b are indifferent to each other till
some preference R'; then a is strictly preferred to b everywhere from R* till R’ (iii) a and b are indifferent
to each other till some preference R'; then b is strictly preferred to a everywhere from R* till R/

The example below highlights the two lower contour set properties.

Example 3.2.3 Let A = {a, b, x,y}. The domain D consists of three preferences specified in Table 3.2.1.
Note that the notation {a, b} in a preference of Table 3.2.1 denotes that a and b are indifferent. The
environmentis G = (D, £) where £ = {(R", R*), (R*, R*)}.
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R R R
X Y

y x
{a,b} {a,b}

S QR R

Table 3.2.1: The Domain D

It is clear from inspection that there is no restoration for any pair of alternatives where one is ranked
strictly higher than the other. Consider the pair (R', R*) and the alternative a. Note that II(R*, R®)
contains the unique path (R', R?, R?) where there is (a, b)-restoration. Hence G satisfies Property WL,
but fails Property SL. O

3.3 THE MAIN RESULT

We state the main result of this chapter.

Theorem 3.3.1 Let G = (D, £) be an environment. If G satisfies LGE, it satisfies Property WL. If G satisfies
Property SL, it satisfies LGE.

Proof: The proof of the necessity part of Theorem 3.3.1 is essentially the same as that of its counterpart in
Theorem 2.3.2 of Chapter 2. We therefore omit it and only provide the proof for the sufficiency part.
Suppose G satisfies Property SL but violates LGE. Therefore there exists f : D — A such that fis
locally strategy-proof but not strategy-proof. It follows that there exists R°, R’ € D such that
& = f(R)P°f(R°) = a°. Letx' € maxp.{x € A : f(R) = x forsome R € D} and f(R') = . Clearly
x'P°x° and R° # R'. By Property SL property, there exists a path 7 € I1(R°, R') such that for all
z € L(x*,R°) \ {x'} the path 7 has no («*, z)-restoration.
Starting from R' and proceeding backwards along the path =, let R* be the first vertex such that
f(R*) = &* # «. Let R* denote the second vertex in the path from R* to R* along 7. By construction,

f(R*) =«
Claim 3.3.1 x'Ix” for all vertices R on  between R° and i

Proof: Since (R*, R*) € &, local strategy-proofness implies x*R>x" and &' R*x*.
We first show x'I°x*. By the definition of ', we know x'R°x”. If x'P°x?, then path 7 has

(x*, x*)-restoration which contradicts our hypothesis regarding 7. Therefore, x'I°x>.
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We next show x'Ix>. Suppose not, i.e. x*P>x*. Thus, x'R°x*, x*R>x* and x'P*x* so that we have an
(x', x*)-restoration on 7. Hence, X,

We further show x'I*x>. Suppose not, i.e. x’P>x'. Once again, x'R°x*, x*P*x" and xR imply the
existence of an («', x*)-restoration on 7 - contradiction. Hence x'I*x*.

Last, pick an arbitrary vertex R distinct from R°, R* and R* on the path 7. We show «*Ix*. Note that R is
before R* and R* on path 7. Since #'R°x* and &' R*x*, no («*, x*)-restoration on 7 implies x'Rx>. Suppose
x'Px*. Then, we have x'Px?, x*R*x* and x'R*x* which implies (x*, x*)-restoration on 7 - contradiction.

Therefore, x'Ix” as required. |

Starting from R* and proceeding backwards along the path =, let R? be the first vertex such that
f(R?) = &3 # x. Also, let R® denote the second vertex in the path from R® to R* along 7. Repeating this
process, we can identify vertices R, Rionm, s =2,...,kandalternativesx*,s = 2, .. . , k — 1 such that (i)
f(R) =« s =2,...,k—1,and f(RF) = &° (ii) R® is the first vertex in the path from R*™* to R° such that
fR) # f(R™),s = 2,. ..,k and (jii) R’ is the second vertex on the path from R to R™',s = 2,.. ., k.
By construction, f(R°) = &*",s = 2,..., k. Foralls = 2,..., k — 1,since (R, R®) € &, local
strategy-proofness of fimplies x*R°x* ™ and " ' R'x’.

Claim 3.3.2 Foreachs = 2, ...,k —1,x'Lx’ for all vertices R on 7 from R° to R'.

Proof: We shall prove the claim by induction. Note that Claim 3.3.1 establishes the claim for the case
s = 2. We impose the following induction hypothesis:
Pick an arbitrary s such that 2 < s < k — 1. Forall2 <" < s, we have x'Ix* for all R on 7 from R° to R

We will show &' Ix* for all R on 7 from R° to R’.

We have already noted that #*R°x** and & 'R*x’. The induction hypothesis implies #'Fx*" and x'F'ax*".
Hence x*Rx" and x'Rx". From the definition of %, it follows that x'R°x°. Thus, x'R°%°, x*Réx* and x'R°.
Then, no («', x°)-restoration on 7 implies x'I°x*, x''x® and X T,

Finally pick an arbitrary R on the path 7 from R° to R’ distinct from R, R’ and R’. We show x'Ix‘. Note
that R is before R’ and R’ on path 7. Since #'I°4° and #'Tx%, no («*, °)-restoration on « implies x'R’.
Suppose x'Px". Then, we have x'Px’, x’R’x" and 'R°x’ which is an («*, x*)-restoration on 7 - contradiction.
Hence, x'Ix*, as required. |

Since (R¥, R¥) € £ and f(RF) = °, local strategy-proofness implies x°R*x*~* and x*'Rkx°. Claim
3.3.2 implies ' I*x*~* and x' T x*" so that x°R*x* and ' R*x°. Then, by the assumption x'P°x°, we have an
(x*, x°)-restoration on 7. Hence x"P°x° cannot hold and fis strategy-proof. This completes the proof of

sufficiency. |

Although Property SL is sufficient for LGE, it is not necessary. Consider the environment Gin
Example 3.2.3. We know that it violates Property SL - however it is an LGE environment. Observe that
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x x Yy
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{c,d} ¢ d
{a,b} d ¢
e a a

b b

e e

Table 3.4.1: a-straightenings of R

(R, R?) is the only pair of preferences that are not neighbours. In order for an SCF to satisfy local
strategy-proofness but fail strategy-proofness, there must be a manipulation from R to R® or vice versa.
The only alternatives that are candidates for the outcomes at R' and R® for a manipulation to occur, are a
and b. This is so because (a, b) is the only pair for which a restoration occurs between R' and R*. However

a and b are indifferent to each other in both preferences. Therefore a manipulation cannot occur.

3.4 FURTHER APPLICATIONS

In this section, we provide some applications of Theorem 3.3.1. Our main result in this section shows how
an LGE environment consisting of strict preferences can be embedded in an environment consisting of
weak preferences so that the larger environment also satisfies the LGE property.

Let D C R be a domainand Dp = D N P. We assume D; = D \ Dp # (), i.e. D contains some
preference with indifferences.

LetR € Dyand a € A. We say that the strict ordering P* € Dp is an “a-straightening” of R if, for all
b € Awehave (i) bPa < bP“a, and (ii) aRb = aP°b. Thus P*is a strict ordering in the domain D with
the property that alternatives ranked strictly above a and below a remain ranked above a and below a
respectively. In addition, the indifference class to which a belongs in R is “broken” into a strict order
where a is preferred to all other alternatives in the indifference class containing a. In Table 3.4.1 both P*
and P° are a-straightenings of R.

Let G* = (D, £*) be the environment where £* is defined as follows: forallR € Djand a € A, there
exists an a-straightening of R, P* such that (R, P*) € £*.

Before stating it formally, we provide an informal description of the main result of this subsection.
Consider an environment consisting of a domain with only strict preferences and an arbitrary set of edges.

A new environment is created by adding a set of weak preferences to the domain and a set of new edges
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satisfying the following property: for every new weak preference R added and for every alternative a,
there is an edge connecting R with a strict preference belonging to the original domain which is an
a-straightening of R. The original environment is thus a sub-environment of the new environment.
According to our result, the new environment satisfies LGE whenever the original environment satisfies
LGE.

Proposition 3.4.1 Let Gp = (Dp, E) be an LGE environment. The environment G = (D, £ U £*) is also

an LGE environment.

Proof: In view of Theorem 3.3.1, it suffices to show that G satisfies Property SL, i.e. forall R,, R, € D and
a € A, there exists a path in £ U £* from R, to R, having no (a, b)-restoration forallb € L(a,R,) \ {a}.
Let P? and P? be the a-straightenings of R, and R, respectively such that (R,, P*) € £* and (R,, P?) € £*.
If R;, for i = 1, 2,is a strict preference, then let R; = P¥. Since Gp is an LGE environment, it follows from
Theorem 2.3.2 (in Chapter 2) that Gp satisfies Property L, i.e. there exists a path#’ = (P?,...,P!)in G,
such that forall z € L(a, P?) the path 7’ has no (a, z)-restoration. By construction, (R,, P?) € £* and
(R,,P?) € £*. Therefore # = (R,, 7', R,) is a path in G. We will show that x has no (a, b)-restoration for
allb € L(a,R°) \ {a}.

Let b be an arbitrary alternative in L(a, R') \ {a}. By the definition of a-straightening, we must have
aP?b. Therefore ' has no (a, b)-restoration. There are two possibilities to consider here.

The first is that b does not overtake a on the path 7. Thus aP?b. Again by the definition of
a-straightening, aR*b. Therefore along the path 7, we have aR'b, a strictly preferred to b along the path #/
and aR*b. Clearly there is no (a, b)-restoration on 7.

The second case is that b overtakes a on the path 7’. Since there is no (a, b)-restoration on the path #/,
we have bP{a. By the definition of a-straightening, we must have bP*a. So along the path 7, we have aR'b,
b overtaking a exactly once along the path 7’ and remaining strictly preferred to a at R*. Once again there
isno (a, b)-restoration along the path 7.

This completes the proof. |

Proposition 3.4.1 can be interpreted as specifying a notion of localness that guarantees LGE in a
domain with weak preferences. The result can be applied quite generally with one caveat: for every weak
ordering R in the domain and alternative g, there must exist a strict preference in the original domain that
is an a-straightening of R. We provide a couple of examples where the result can be applied and one where
it cannot.

Let < be a strict ordering of the elements of A. Let a,a € A witha < @. An interval denoted by [a, d] is
asubset of Asuchthata,a € [a,d] and b € [a,d] whenevera < b < a. A weak ordering R is

single-plateaued if there exists an interval [a, @] such that the following properties hold:
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(i) bIcPzforallb,c € [a,a]andforallz ¢ [a,d],
(ii) bPcwheneverc < b < a,and
(iii) bPcwhenevera < b < c.

We let Dsp;, denote the set of all single-plateaued preferences over A (keeping the ordering < fixed).

Single-plateaued preferences have been extensively studied in the literature (See Berga [10] and
Barbera [4]). Alternatives in the interval [a, @] are the peaks or the maximal elements in A according to R.
On either side of the interval, preferences decline strictly as alternatives move further away from the
relevant end-point of the interval. No assumptions are made regarding the ranking of alternatives on
different sides of the interval [a, g|. In particular, we do not preclude the possibility that there exist
b,c € Asuchthatb < aanda < cand blc.

A single-peaked preference is a special case of a single-plateaued preference where the interval of peaks
consists of a single peak and the preference is strict. Let Dgp denote the set of such preferences. Clearly
Dgp C Dgpr.

Let R € Dgpr, \ Dsp and consider an arbitrary a € A. Suppose a belongs to a non-empty indifference
class, i.e. there exists another alternative b such that alb. Suppose a belongs to the interval of peaks [a, a].
Assume for notational convenience that [a, d| is the set {a,, a,, . . ., ar_,, ax, dx+, - - - , ar } where
a, <a, < <, < a < G, < - < ar,a=a, ap = aanda = ar. Let P? be a strict ordering
where alternatives in the set [g, a| are ranked above all other alternatives in the following way:
aP?a;_,P*- - - P°a,P’a;, . P? - - - P’ar. Alternatives ranked below those in [a, @] in R are ranked in the same
way in P“. If there are other indifference classes in R with more than one alternative, they must be of the
form {c, d} with c < a <@ < d. Then c and d are ranked consecutively in P* with cP?d. It is easy to verify
that P* € Dgp - therefore it is an a-straightening of R.

There are two other cases to consider regarding the ranking of a in R. The first is that a does not belong
to [, a) but to another indifference class containing one other alternative, say b. The procedure described
in the previous paragraph with some minor modifications can be used to construct an a-straightening of R.
The modifications are as follows: (i) an arbitrary alternative a; € [a, | is chosen to be the first-ranked
alternative in P* and (ii) aP*b where alb. The second case is that a belongs to a singleton indifference class
in R. The procedure used in the earlier case with only the first modification again yields P* which is an
a-straightening of R.

The arguments in the previous paragraphs establish that for each R € Dgp;, \ Dsp and a € A, there
exists P* € Dgp which is an a-straightening of R. Let £ be the set of edges in the environment (Dspr, £*)
where (R, P?) € £* foreachR € Dgp; \ Dgpanda € A.

Proposition 3.4.2 The environment (Dgp, E°9 U £*) satisfies LGE.
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Proof: We know from Carroll [12] and Sato [46] that the environment Ggp = (Dsp, E°Y) satisfies LGE.

The result follows by an immediate application of Proposition 3.4.1. |

There is a variant of the domain of single-plateaued preferences where Proposition 3.4.1 cannot be
applied. Suppose that part (i) of the definition of single plateaued preferences is retained but (ii) and (iii)
are modified as follows: (ii’) bRc whenever ¢ < b < a and (iii’) bRc whenever @ < b < c. Indifference is
now permitted on the same side of the interval of peaks. Let Dgp,; denote the set of all such preferences.

Consider an example where A = {a,, a,, a,, a, } where a, < a, < a; < a,. Let R be the preference
a,la,Pa,la, so that R € Dgp, . Let P* be a a,-straightening of R. We must have a,P*a,, a,P*a, and a,P*a,.
But then P* is not single-peaked with respect to <. Hence there does not exist a g,-straightening of R and
Proposition 3.4.1 cannot be applied.

Our second application of Proposition 3.4.1 concerns R, the domain of all weak preferences over A.
Recall that P is the domain of all strict preferences over A. Let R € R \ P and let a be an arbitrary
alternative. Let P* be a strict ordering such that (i) bPa < bP“a, and (ii) aRb = aP"b. By construction
P? is an a-straightening of R. Let £* be the set of edges in the environment (R, £*) where (R, P*) € £*
foreachR € R\ Panda € A.

Proposition 3.4.3 The environment (R, EY U £*) satisfies LGE.

Proof: We know from Carroll [ 12] and Sato [46] that the environment Gp = (P, £Y) satisfies LGE. The

result follows by an immediate application of Proposition 3.4.1. |

Sato [45] provides another notion of localness for R that ensures LGE. Let |A| = m. For any
k€ {1,...,m(m—1)},let E* be the set of edges in the environment (R, E*) where (R, R’) € EXif the
Kemeny distance between R and R’ does not exceed k. According to Theorem 3.1in Sato [45], (R, EF) is
LGEifand onlyifk > m — 1.

Proposition 3.4.3 is independent of Sato’s result. Comparing the set of edges in the two environments,
the set of edges in ours is sparser though their nature is different. In our environment, vertices in PP are
connected by an edge if only if they are adjacent - in terms of the notion of Kemeny distance used in Sato
[45], these vertices are connected by an edge if only if their Kemeny distance is 2. On the other hand,
each vertexin R \ P in our environment is only required to be connected to a vertex in PP by an edge.
This involves connecting a preference where all alternatives are indifferent to one where preferences are

@ which is strictly greater than m — 1if

strict. The Kemeny distance between these preferences is ™
m > 2. In the Sato environment where k = m — 1, these preferences would not be connected by an edge.
However, many vertices in P would be connected by an edge in his environment which are not connected

by an edge in ours.
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Local Global Equivalence for Unanimous Social

Choice Fun¢ions

4.1 INTRODUCTION

The theory of mechanism design investigates the objectives that can be achieved by a group of agents (or a
planner) when these objectives depend on information held privately by the agents. Agents must be
induced to reveal their private information truthfully: in more formal terms, the Random/Deterministic
Social Choice Function (RSCF/DSCF) representing the objectives of the planner must be incentive
compatible or strategy-proof. A RSCF/DSCEF is strategy-proof if no agent can gain by misrepresenting her
preferences irrespective of the preference announcements of the other agents. In particular, in the random
setting, we use the stochastic dominance notion for strategy-proofness. In many contexts, it is plausible to
assume that an agent can only misrepresent to a “local” preference. The class of locally strategy-proof
RSCFs should, in principle be larger than the class of strategy-proof RSCFs. However, Carroll [12] and
Sato [46] demonstrate that for many important preference domains and a natural notion of localness
(adjacency), the classes of locally strategy-proof and strategy-proof RSCFs/DSCFs coincide. We shall

refer to this property as local-global equivalence. This property has important theoretical and practical
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implications which are discussed in both papers.

Kumar et al. [32] formulate the local-global equivalence problem more generally, in the context of an
“environment”. An environment is a graph where the nodes represent admissible preferences and the
edges, the notion of localness. They characterize environments that satisfy local-global equivalence. The
necessary and sufficient condition for local-global equivalence requires the existence of certain kinds of
paths in the graph. An important aspect of the paper is that it considers a single-agent model. Our goal in
this paper is to show that in a multi-agent problem, a much weaker condition is sufficient, when the set of
RSCFs under consideration satisfy the familiar and mild efficiency property of unanimity. We note that
imposing unanimity in a single-agent model renders it trivial — it is an interesting requirement only in a
multi-agent problem.'

We consider a model with a finite number of alternatives. A preference domain is a collection of strict
orderings of the alternatives. A pair of preferences is local if there is a single pair of alternatives whose
ranking is reversed between the two preferences.” We consider RSCFs that satisfy unanimity, i.e. those
that respect consensus amongst agents. A domain satisfies equivalence if every unanimous locally
strategy-proof RSCF is also strategy-proof.

In this setting, we show that a condition first identified in Sato [46] (which we refer to as Property P)
has very important implications. This condition was shown to be necessary (but not sufficient) in the
single-agent problem by Sato [46]. Property P is a weak condition, which specifies for every pair of
alternatives, the existence of a path where preferences over this pair are not reversed more than once.? In
contrast, the necessary and sufficient condition in Kumar et al. [32] (which they call Property L) requires
the existence of a path that satisfies no-restoration with respect to all alternatives in an appropriate lower
contour set.*

We prove two main results using Property P. We show that it is sufficient for equivalence. In contrast,
Kumar et al. [32] show that the stronger Property L is not sufficient for local-global equivalence for
RSCFs in the single-agent model.® Furthermore, a stronger result in the deterministic setting is true:
every unanimous, locally strategy-proof DSCF on a domain satisfying Property P is also group
strategy-proof. Our result is independent of the results in the existing literature on domains where

strategy-proofness and group strategy-proofness are equivalent (see Section 4.4.1). Our overall

"Formally, the models in Kumar et al. [32], Carroll [ 12] and Sato [46] are also multi-agent models. Since they do notimpose
unanimity, the multi-agent model is indistinguishable from its single-agent counterpart. For this reason, we choose to refer to
the models in these papers as single-agent models.

*This is the “adjacency” notion of localness used in Carroll [ 12] and Sato [46].

*Further discussion of domains satisfying Property P can be found in Section 4.3.

*Sato [46] and Carroll [12] also provide stronger sufficient conditions for equivalence in the single-agent model.

*Cho [18] also considers the local-global equivalence issue for RSCFs in the single-agent model. The paper provides suffi-
cient conditions for a variety of lottery comparisons.
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conclusion is that imposing the requirement of unanimity leads to a considerable weakening of the
conditions required for equivalence in both random and deterministic settings.

As mentioned earlier, Property P is a weak condition. It is satisfied by several familiar domains such as
the universal domain and the single-peaked domain. However it is not a necessary condition for a domain
to satisfy equivalence of local strategy-proofness and strategy-proofness for unanimous RSCFs/DSCFs.
In Section 4.4.1, we construct an example demonstrating this fact. We also show that the weaker
condition of connectedness remains necessary for equivalence.

In recent work, Hong and Kim [28] independently derive a condition slightly weaker than our
Property P and show that it is sufficient for equivalence.’ They focus on ordinal Bayesian incentive
compatible DSCFs and dictatorial domains. In contrast, we study RSCFs and extend our result for DSCFs
to cover group strategy-proofness. We discuss their condition further in Section 4.4.1 where we also show
that it, like Property P, is not necessary for equivalence.

The paper is organized as follows. Section 4.2 describes the model. Section 4.3 introduces and
discusses Property P, which is the key condition for our results. The main results are in Section 4.4 while

Section 4.5 discusses issues regarding necessity.

4.2 THE MODEL

LetA = {a,b, ...} denote a finite set of alternatives with [A| > 3. Let N = {1,2, ..., n} denote a finite
set of voters with n > 2. A preference P; of voter i is an antisymmetric, complete and transitive binary
relation over A, i.e. a linear order. Given a, b € A, aP;b is interpreted as “a is strictly preferred to b”
according to P;. Let 7 (P;), k = 1, .. ., |A| denote the k™ ranked alternative in preference P,

ie. [n(P;) = a] & [ |{x cA: xP,a}| =k— 1}. Let P denote the set of all preferences - the set P will be
referred to as the universal domain. We shall refer to an arbitrary set D C P as a domain.” A preference
profile is an n-tuple P = (P,, P,, ..., P,).

Fix a pair of preferences P;, P, € D. Two alternatives a and b are reversed between P; and P; if aP;b and
bPa, or bP;a and aPb hold. Accordingly, two preferences P; and P, are adjacent/local, denoted by P; ~ P,,
if there exists exactly one pair of alternatives that are reversed between P; and P}; formally, there exists
1 < k < |A| such that r.(P;) = riy,(P)), r(P]) = rea(P;) and ry(P;) = ri(P)) foralll ¢ {k,k+1}. A
pathw = (P}, ..., P!)is asequence of non-repeated preferences in D satisfying the property that
consecutive preferences are adjacent, i.e. PX ~ P*™ forallk = 1, . . . t — 1. The set of all paths from P; to P/

where P;, P, € D is denoted by I1(P;, P,). The domain D is connected if there exists a path between every

The two conditions are equivalent if the domain satisfies the following richness property: for every alternative a, there exists
a preference in the domain whose first-ranked alternative is a.
"We assume that all voters have the same preference domain D.
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pair P, P, € D.

Our model is identical to the models in Sato [46] and Carroll [ 12]. It is a special case of the model in
Kumar et al. [32] where the notion of localness is completely general. On the other hand, we consider a
many-agent setting while Kumar et al. [32] only consider the single-agent problem.

Let A(A) denote the set of probability distributions over A. An element 2 € A(A) will be referred to as
a lottery. We let A, denote the probability with which a € A is selected by A. Thuso < A, < 1and
> . A, = 1. Given a preference P, the lottery A stochastically dominates lottery 1" according to P

acA a

(denoted by APYA) if 7 A, p) = Doy, Arypy foralls <t <[A].

i

Observation 4.2.1 FixP;and 1,1’ € A(A) such that AP}, Pick a, b € A such that aP;b. Let e A(A)
be such that (i) Ay > Ay, (ii) A < A’ and (i) A = A forallc ¢ {a,b}. Then le.di. The lottery Ais
obtained by transferring probability weight from an alternative a to a less preferred one b, in A" while
keeping all other probabilities unchanged. It is easy to verify that X’Pfdi from which ledi follows

immediately.
Definition 4.2.1 A Random Social Choice Function (RSCF) isamap ¢ : D" — A(A).

Givena € A, let ¢, (P) denote the probability with which a is selected at the profile P. A Deterministic
Social Choice Function (DSCF) f: D" — A(A) is a particular RSCF such that for each P € D",
fa(P) = 1forsome a € A. Henceforth, for ease of presentation, we writea DSCF as f : D" — A, where an
alternative is selected at each preference profile.

We require all RSCFs under consideration to satisfy the property of unanimity. This is a weak form of
efficiency where the RSCF selects a commonly first-ranked alternative with probability 1 whenever it

exists.

Definition 4.2.2 ARSCF ¢ : D" — A(A) is unanimous if for all P € D",
[r.(P;) = aforalli € N] = [¢ (P) =1].

Correspondingly, a DSCE f : D" — A is unanimous if for all P € D", we have
[r,(P;) = a forall i € N|] = [f(P) = a]. In order to avoid trivial considerations, we assume throughout
that D contains at least two preferences with distinct peaks.

A RSCF is locally strategy-proof if a voter cannot gain by a misrepresentation to an adjacent preference
(in other words, according to the sincere preference, the social lottery induced by any misrepresentation
to an adjacent preference is always stochastically dominated by the lottery delivered by truthtelling). On

the other hand, a RSCF is strategy-proof if a voter cannot gain by an arbitrary misrepresentation.
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Definition 4.2.3 ARSCF ¢ : D" — A is locally manipulable by an agent i € N at profile P = (P;, P_;) if
there exists P, € D with P; ~ P’ such that ¢(P;, P_;)P*¢(P., P_;) does not hold,

ie Y $,, ey (P, P—i) < S, $,,(py (Pi, P—i) for some 1 < t < |A|. The RSCF ¢ is locally strategy-proof
if it is not locally manipulable by any agent at any profile.

Definition 4.2.4 ARSCF ¢ : D" — Ais manipulable by an agenti € N at profile P = (P;, P_,;) if there
exists P, € D such that ¢(P;, P_;)P¢(P!, P_;) does not hold,

ie Y ‘Pyk(P;)(Pi’ P <>, </>yk(P[)(P,{, P_,) forsome1 < t < |A|. The RSCF ¢ is strategy-proof if it is
not manipulable by any agent at any profile.

A strategy-proof RSCF is clearly locally strategy-proof. We investigate the structure of domains where

the converse is true for all unanimous RSCFs.

Definition 4.2.5 The domain D satisfies local-global equivalence for unanimous RSCFs (uLGE) if every
unanimous and locally strategy-proof RSCF ¢ : D" — A(A), n > 2, is strategy-proof.

We can correspondingly define local-global equivalence for DSCFs. ADSCE f : D" — Ais locally
strategy-proof (respectively, strategy-proof ) if foralli € N, P;, P, € D with P; ~ P, (respectively,
PP, € D)and P_; € D", either f(P;, P_;) = f(P}, P_;) or f(P;, P_;)Pf(P;,, P_;) holds. The domain D
satisfies local-global equivalence for unanimous DSCFs if every unanimous and locally strategy-proof
DSCEf: D" — A, n > 2,is strategy-proof.

In the next section, we provide a sufficient condition for uLGE.

4.3 A SUFFICIENT CONDITION

In this section, we introduce Property P that is central to our results. Let D be a domainand a, b € Abea
pair of alternatives. A path w = (P}, ..., P!) satisfies no {a, b}-restoration if the relative ranking of a and b
is reversed at most once along 7, i.e. there does not exist integers g, rand s with1 < g < r < s < tsuch
that either (i) aP!b, bP/a and aP;b, or (ii) bP!a, aP;b and bPia.?

Sato [46] introduces the pairwise no-restoration property. This property requires that for every pair of
distinct preferences and a pair of alternatives, there exists a path between the preferences that satisfies

no-restoration with respect to the pair of alternatives.

Definition 4.3.1 The domain D satisfies the pairwise no-restoration property (Property P) if for all distinct
P, P, € D and distinct a, b € A, there exists a pathw = (P}, ..., P!) € I1(P;, P}) with no {a, b}-restoration.

81t is worth emphasizing that in our definition of “{a, b}-restoration”, we are not referring to an ordered pair {a, b}. Thus
{a, b}-restoration and {b, a}-restoration are the same in our definition.
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Property P is satisfied by the universal domain and the domain of single-peaked preferences.
Conversely, Chatterji et al. [ 17] show that any domain satisfying Property P and some additional
regularity conditions must either be a sub-domain of the domain of single-peaked preferences or a hybrid
domain which is a “perturbation” of the single-peaked domain. Alternatives are again ordered as in the
single-peaked domain. Alternatives are partitioned into three segments, left, middle and right. A hybrid
domain consists of all preferences satisfying the following property: preferences in the left and right
segments are single-peaked while being unrestricted in the middle segment. Hybrid domains cover the
universal domain and the single-peaked domain as special cases, the former in the case where the middle
segment is the entire set of alternatives and the latter where the middle segment is the null set.

Sato [46] shows that Property P is necessary but not sufficient for the equivalence of local
strategy-proofness and strategy-proofness for DSCFs (henceforth called LGE) in a single-agent model (or
equivalently without imposing unanimity). Kumar et al. [32] formulate the lower contour set no-restoration
property (Property L) that is necessary and sufficient condition for LGE in a more general model.
Property L is satisfied if for all P;, P, € D and a € A, there existsapath 7 = (P}, ..., P}) € I1(P;, P})
such thatforallb € L(a, P;) = {z € A : aP;z} the path 7 has no {a, b}-restoration.

Property P is a weaker than Property L. This is illustrated in the example below which is adapted from
Example 3.2 in Sato [46].

Example 4.3.2 Let A = {x,y,z,u,v, w}. The domain D is specified in Table 4.3.1 below. Figure 4.3.1
(below) shows all paths induced by the adjacent preferences in D.

P p P pt P ps pl p P pe
X x y y ¥y x x z z Zz
z y X X X y z X X X
y z z z z zZ y y y y
v v v v u u u u v v
w w w u v v 1% 1% u w
u u u w w w w w w u

Table 4.3.1: The Domain D

{z.0} {x,7} {woup  {vuj 9,2}

P P P P P P!
X,z w, u v, u zZ,x /
I 20 NP (27 SR ) R £

i i

Figure 4.3.1: Paths induced by the adjacent preferences in D
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Figure 4.3.1 highlights an important property of D — there are exactly two paths between any pair of
preferences. For example, between P! and P/, there is a path (P}, P2, P;, P}, P;, P, P7) and another path
(P}, Pi°, P}, P} P]). We shall refer to the former as the “clockwise” path and the latter as the “counter
clockwise” path between P} and P;. We shall in fact, refer to the clockwise and counter clockwise paths
between any pair of preferences in D. It can be verified that for any pair of distinct preferences and
alternatives, either the clockwise path or the counter clockwise path is a path without restoration for the
alternatives. Therefore, D satisfies Property P. However, it fails Property L, e.g. z,y € L(x, P!), and the
clockwise path from P! to P} has an {x, y }-restoration while the counter clockwise path from P} to P has
an {x, z}-restoration. We know there that LGE fails for D. For instance, let N = {1, 2} and consider the
following DSCEF:

z P, =P,
f(P,P,) =1 y P, =P and
r.(P,) otherwise.

It is easy to verify that fis locally strategy-proof but fails strategy-proofness, e.g. (P, P,) = x,
f(P!, P,) = zand xP'z.° It also violates unanimity, e.g. (P!, P*) = z # «. Our result implies that every
locally strategy-proof RSCEF that fails to be strategy-proof on this domain must violate unanimity.
Furthermore, every DSCF satisfying unanimity and local strategy-proofness is group strategy-proof. = O

4.4 MaAIN RESULTS

Kumar et al. [32] show that Property L does not guarantee that locally strategy-proof RSCFs are also
strategy-proof. In this section, we show that this equivalence holds for unanimous RSCFs defined over

domains satisfying the weaker Property P.
Theorem 4.4.1 If a domain satisfies Property P, it satisfies uLGE.

Proof: Pick a domain D that satisfies Property P. Consider an arbitrary locally strategy-proof RSCF
¢ : D" — A(A) that satisfies unanimity. We will show that ¢ is strategy-proof. We begin with an

observation.

Observation 4.4.1 Consider P;, P; € D such that P; ~ P;; in particular xP;y and yP;x. If
¢(P;,P_;) # </>(13,-, P_;) forsome P_; € D", then it must be the case that (i) <py(13,-, P> (/)y(Pi, P_y),

“Here, (P%, P, ) is a preference profile where agent 1’s preference is P’ and agent 2s preference is P, which is arbitrary. Simi-
larly, (P!, P,) is a profile where agent 1’s preference is P} and agent 2’s preference is P,.
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(ii) ¢ (P;,P_;) < ¢ (P;, P_;) and (iii) ¢_(P;,P_;) = ¢_(P;, P_;) forallz ¢ {x,y}. These properties are
well-known in the literature. Gibbard [26] refers to Parts (i) and (ii) as the property of being non-perverse
and Part (iii) as the property of being localized.

Lemma 4.4.1 Let P;, P; € D be such that P; ~ P; and r,(P;) = r,(P;). Then ¢(P;,P_;) = ¢(P;, P_;) for all
P_,eDr.

Proof: Assume w.l.o.g. thatiis agent 1. Let P,, P, € Dbesuchthat P, ~ P, and r,(P,) = r,(P,) = a. Let
x, y be the alternatives that are reversed between P, and P, with xP,y and yP,x.

LetP* = (P,,P,,..., P, P,,...,P,),ie Pristhe profile where agents 1and k + 1, . . . , n have the
preference P, while agents 2, . . ., k have preferences specified in the profile P_,. Here k € {1,...,n}
where P' = (P,,P,,...,P,)and P" = (P,,P,,...,P,).

LetP* = (P, P,,...,P,P,,...,P,),ie P*isthe profile where agent 1 has the preference P,, agents
k+1,...,nhave the preference P, and agents 2, . . . , k have preferences specified in the profile P_,. Again
ke {1,...,n} whereP = (P,P, ...,P,)and P" = (P,,P,,...,P,).

We will prove ¢(P") = ¢(P") by induction on k. Observe that ¢_(P') = ¢_(P') = 1since ¢ satisfies
unanimity. Assume that ¢(P¥™*) = ¢(P*™) for k — 1 < n. We will show that ¢(P*) = ¢(PF).

We assume w.l.o.g. xPy. Since D satisfies Property P, there exists a path (P}, ..., P{) € I1(P,, P})
such thatxPjy forallr € {1,..., T}.

LetP*" = (P, P,,... Py, P, P, ... ,P)and P*" = (P, P,, ... Py, P, P, ... P). The
induction hypothesis implies that ¢(P**) = ¢(P*'). Suppose ¢(P*T) # ¢(P*T). Let t be the smallest
integer in the set {1, ..., T} such that ¢(P**) = 1 # A = ¢(P*'). Clearly, t > 1. Observe that the
profiles P and P** differ only in the preferences of agent 1 with P, in the former profile and P, in the latter.
Thus, local strategy-proofness implies AP’ and then Observation 4.4.1 implies1, — 1, > 0,1, — 1, < o
and 1, = A, forallz ¢ {«, y}. By the induction hypothesis, let $(P“'~!) = ¢(P*~*) = 2’. Observe that
the profiles P**~* and P** (respectively, profiles P**~* and P**) differ only in the preferences of agent k
being P in the former profile and P} in the latter. Since P, " ~ P!, local strategy-proofness implies that
both 2 and A stochastically dominate A" according to P!, and A’ stochastically dominates both A and A
according to P, ", and moreover there must be exactly one pair of alternatives which are reversed between
P, and P!. This pair cannot be {x, y} because xPjy for all P belonging to the path 7. Suppose this pair is
{a, x} with a # y: in this case, by Part (iii) of Observation 4.4.1, l; = 1,and l;, = A, contradicting our
hypothesis that A, — A, > o. If the pair is {4, y} with a # x, we contradict our assumption A, — A, < o.
Similarly if the pairis {a, b} with a # xand y # b, we contradict both iy —A, > oand Ay — A, < o. This
completes the proof. |
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Lemma 4.4.2 LetP = (P, P_;) € D" be aprofileand a € A be an alternative. Let P; € D and suppose
there exists apath w = (P!, ..., PT) € TI(P,, P,) such that a # r,(P*) forallk € {1,..., T}. Then
(Pa(Pi?P*i) = (Pa(PiaP*i)'

Proof: Suppose the Lemma is false. Let t > 2 be the smallest integer in the set {1, . .., T} such that

¢ (P, P_;) # ¢_(Pi,P_;). Consider the preferences P, * and P!. If r,(P{"*) = r,(P!), we have an
immediate contradiction to Lemma 4.4.1. The remaining possibility is r,(P{ ") # r,(P!). Here, there must
be a reversal of the first and second ranked alternatives in P{~* to obtain P!. By assumption, a cannot be
first or second ranked in either P! or P!; otherwise a would be ranked first in either P{~" or P. Then, Part

(iii) of Observation 4.4.1 implies ¢_(P; ', P_;) = ¢_(P!, P_;) contradicting our initial assumption. [

We can now complete the proof of the result. Let P = (P;, P_;) be a profile and P; € D. We will show
¢(P;, P_;)P¥¢(P,, P_;). Pick an arbitrary path w = (P!, ..., P!, ..., P) € TI(P;, P;). We will prove the
result by induction on ¢.

The conclusion for the initial step (f = 2) follows from local strategy-proofness. Assume that
¢(P;, P_,)Pp(Pi* P_;) for some t > 2. We will show ¢(P;, P_,)P¥¢p (P!, P_,). If
¢(Pi7',P_;) = ¢(P, P_;), then the result follows immediately. Assume therefore
(P71 P_,) # ¢(P:, P_;). Immediately, since P;"' ~ P!, by Lemma 4.4.1, it must be the case that
r(P™") = a # b = r,(P!). Thus, we know that the only reversal between P! ~* and P! is of a and b, and
hence by Observation 4.4.1, ¢, (P, P_;) > ¢,(P;",P_;), ¢ (P!, P_;) < ¢ (P;*,P_;) and
¢.(P,P_;) = ¢ (P, P_;) forallc ¢ {a, b}. Consequently, if aP;b, the conclusion follows from
Observation 4.2.1. For the remainder of the argument, we assume bP;a.

Let b be the q"-ranked alternative in P, i.e. b = r,(P;) where1 < g < |A|. Pick an arbitrary integer K
between 1 and |A|. We will show "% . (P,, p)>3r . ( P_,) thereby establishing
¢(P;, P_,)P¢ (P!, P_;). We consider two cases.

Suppose 1 < K < gq. Then the alternatives ranked above the K*-ranked alternative in P; do not involve
either a or b. By virtue of Part (jii) of Observation 4.4.1, the total probability on these alternatives is
unchanged between ¢(P; ™", P_;) and ¢ (P!, P_;). In conjunction with the induction hypothesis, we have
Zﬁ; ¢ (p) (P, P—;) = Zﬁ; ¢ (p) (P, P—;) as required.

Suppose g < K < |A|. Pick an arbitrary ¢ € A such that bP;c. Since b = r,(P!), we must have bPc.
Property P implies the existence of a path 7 € TI(P;, P!) such that bP!c for all P/ along the path 7. Hence,
r.(P}) # cfor all P} along 7. Applying Lemma 4.4.2, we can conclude ¢_(P;, P_;) = ¢_(P},P_;).
Consequently the total probability of alternatives ranked strictly below the K"-ranked alternative in P is
the same in ¢(P;, P_;) and ¢(P%, P_;). Equivalently, the total probability of alternatives ranked above the
K™-ranked alternative in P, is the same in ¢(P;, P_;) and ¢(P!, P_,), i.e.

Zf; ¢,.p) (P,P_;) > Zf; ¢,.p) (P, P_;). This completes the proof. |
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Theorem 4.4.1 leads immediately to the following corollary.
Corollary 4.4.1 If a domain satisfies Property P, it satisfies local-global equivalence for unanimous DSCFs.

The arguments in the proof of Theorem 4.4.1 can be used to show that any locally strategy-proof and
unanimous RSCF defined on a domain satisfying Property P also satisfies the important property of

tops-onlyness.'®

Definition 4.4.2 ARSCF ¢ : D" — A(A) satisfies the tops-only property if for all P, P’ € D", we have
[r(P;) = r.(P)) foralli € N| = [¢(P) = ¢(P')].

Suppose a RSCEF satisfies the tops-only property. Then its value at any profile depends only on the
peaks of the agent preferences in the profile.

Corollary 4.4.2 If the domain D satisfies Property B, every unanimous and locally strategy-proof RSCF
¢ : D" — A(A) satisfies the tops-only property.

Proof: Fix a unanimous and locally strategy-proof RSCF ¢ : D" — A(A). To verify the tops-only
property, it suffices to show that foralli € N, P;, P, € DandP_; € D",
[r.(Py) = ru(P))] = [¢(P;, P—i) = ¢(P}, P_;)].

Picki € N,P;, P, € Dand P_; € D" 'such thatr,(P;) = r,(P)) = x. If P; ~ P}, Lemma 4.4.1
immediately implies ¢ (P;, P_;) = ¢(P, P_;). Suppose it is not the case that P; ~ P.. To show
¢(P;,P_;) = ¢(P},P_;), it suffices to show ¢_(P;, P_;) = ¢_(P;,P_;) foralla € A\{«x}. Picka € A\{«x}.
Since r,(P;) = r,(P]) = x # a, Property P implies the existence of a path = € I1(P;, P) such that xPa for
all P} along the path &. Thus, r,(P}) # a for all P} along the path 7. Then, Lemma 4.4.2 implies
¢, (P, P_;) = ¢ (P}, P_;). This also implies ¢ _(P;,P_;) = ¢ (P;, P_;) so that ¢(P;, P_;) = ¢(P;,P_;), as
required. |

Corollary 4.4.2 generalizes Theorem 1 of Chatterji and Zeng [ 15] on domains satisfying Property P.
Their strategy-proofness is weakened to local strategy-proofness, their Interior property becomes
redundant and the requirement of their Exterior property is met by Property P. For instance, the domain

in Example 4.3.2 violates the Interior property but satisfies Property P.

19See Chatterji and Sen [14] and Chatterji and Zeng [15] for a discussion of this property.
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4.4.1 GROUP STRATEGY-PROOFNESS

Our goal in this subsection is to show that when turning to the deterministic setting, any locally
strategy-proof, unanimous DSCF defined on a domain satisfying Property P also satisfies the stronger
property of group strategy-proofness, i.e. no coalition of agents can strictly improve by a joint
misrepresentation of their preferences.'’ We denote a coalition by S C N where S is non-empty. A
preference profile for the coalition S is denoted by Pg and a preference profile P € D" is written as
(Ps, P_g).

Definition 4.4.3 ADSCFf: D" — A is group manipulable by a coalition S C N at profile P = (Ps, P_g) if
there exists Py € DIl such that (P}, P_g)Pf(Ps, P_g) for all i € S. The DSCF is group strategy-proof if it is
not group manipulable by any coalition at any profile.

Our main result in this section is the following.

Theorem 4.4.4 If the domain D satisfies Property P, every unanimous and locally strategy-proof DSCF is
group strategy-proof.

Proof: Let A = {a € A : r,(P) = a for some P € D} be the set of alternatives that are first-ranked for
some preferences in D. Recall that D is assumed to contain at least two preferences with distinct peaks.
Hence, |A| > 2. Fix a unanimous and locally strategy-proof DSCF f : D" — A. The range of fis defined
asR(f) = {a € A : f(P) = a for some P € D"}. Unanimity implies A C R(f). Lemmas 4.4.1, 4.4.2 and
Corollary 4.4.1 hold for f, i.e. fis strategy-proof.

Lemma 4.4.3 R(f) = A.

Proof: Suppose not, i.e. there exists P = (P,, P,, ..., P,) € D" suchthatf(P) = a ¢ A. Letr,(P,) = x.
Thusx € A. LetP' = (P/, P, ..., P.) € D"beapreference profile such that P, = P, foralli € N. For
eachi € {2,...,n}, we pick an arbitrary path ; € T1(P;, P,)."* Since a ¢ A, there does not exist any
preference P} in the path ; with r,(P]) = a. We can move from P to P’ by changing P; to P; for each i
ranging from i = 2 to i = n. According to paths 7,, . . ., 7, by repeatedly applying Lemma 4.4.2, we have
f(P') = f(P) = a # xwhich contradicts unanimity. Therefore R(f) = A. |

In order to prove the theorem, we will prove the following equivalent reformulation of group
strategy-proofness: forall S C N, Ps, Pg € DSl and P_g € DINSI, either f(Ps, P_g) = f(P}, P_g) or
f(Ps, P_s)Pf(Pg, P_g) for somei € S.

"'In the random setting, the notion of group strategy-proofness is too demanding. For instance, Corollary 1 of Morimoto
[40] implies that “most” unanimous and strategy-proof RSCFs defined on the domain of single-peaked preferences, which of
course satisfies Property P, are group manipulable.

If P; = P!, m; is the null path that begins and terminates at P;.
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We will prove this by induction on the cardinality of S. The case where |S| = 1reduces to
strategy-proofness which is implied by Corollary 4.4.1. Assume that the statement above holds for all
S C Nsuch that [S| < t — 1 < n. We will show that the statement holds for all S C N where [S| = t.

Suppose not, i.e. there exists S C N (with |S| = t) such that f(P§, P_s) = b, f(Ps, P_s) = aand bP;a
foralli € S. Since b € R(f), Lemma 4.4.3 implies that there exists P/ € D such thatr,(P}) = b.
Furthermore, since f(P§, P_gs) = b, strategy-proofness implies f(P{, P_g) = b where every voter of S has
the preference P;.

Since f(Ps, P_g) = a # b = f(P§, P_s), we have a voter j € S such that P; # P;. By Property P, we
have apathw = (P}, ..., P}) € TI(P;, P}) with no {a, b}-restoration. Since bP;a and bP;a, no
{a, b}-restoration on 7 implies bP]’?a forallk =1,...,v. Hence, r, (P]k) # aforallk =1,...,v. Since
f(P;, Ps\j1, P—s) = a, Lemma 4.4.2 implies f(P}, P\ ;1, P—s) = a." Since f(P}", Pg\ (3, P—s) = aand
f(Pr, S\ P_g) = b, coalition S \ {j} can group manipulate at profile (P}, Ps\ 1, P—s), which
contradicts the induction hypothesis. This completes the proof. |

There are some papers that investigate preference domains on which equivalence of strategy-proofness
and group strategy-proofness holds. Barbera et al. [7] consider a more general setting than ours in the
following respects: (i) the alternative set is either finite or infinite, (ii) preferences can admit indifference,
(iii) preference domains can vary across different voters, and (iv) unanimity is not exogenously imposed
on DSCFs. On the other hand, our result has a weaker premise — local strategy-proofness rather than
strategy-proofness. In addition our Property P is far simpler (especially in the computational sense) than
their sequential inclusion condition."* The latter is a condition imposed on preference profiles while
Property P is a condition imposed only on preferences in a domain. Our result is not implied by theirs -
for example, the domain of single-peaked preferences on a tree introduced by Demange [20] is covered by
our condition but not by theirs.

Property P is also independent of the sufficient condition identified in Le Breton and Zaporozhets [37]
for the equivalence of strategy-proofness and group strategy-proofness. For instance, consider a domain
D consisting of the three preferences P} = (abcd), P> = (abdc) and P} = (badc)."® This domain
satisfies Property P but violates the richness condition of Le Breton and Zaporozhets [37] — though bP}c
and cP;d, there exists no preference P; € D such that r,(P;) = b and cP,d.

“Here agent j has the preference P} in the profile (P}, Ps\ (3, P—s).

*According to Section 4.1 of Kumar et al. [32], verifying whether Property L, which as mentioned is significantly stronger
than Property P, is satisfied is not computationally hard.

!SFor notational convenience, we specify preferences here horizontally. For instance, P} = (a b c d) represents that a is top-
ranked, b is second-ranked, c is third-ranked, and d is bottom-ranked.
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4.5 NECESSITY

We have already shown that Property P guarantees uLGE and ensures that in the deterministic setting,
local strategy-proofness implies group strategy-proofness. However, it is not a necessary condition for

uLGE as Example 4.5.1 shows.

Example 4.5.1 Let A = {a, b, c,d, x,y}. The domain D is specified in Table 4.5.1 and Figure 4.5.1
(below) illustrates the path induced by the adjacent preferences in D. Note that there is a single path
between P} and P¢ which has a {b, c}-restoration. It follows that D violates Property P.

PR PP PP
a a a a a b
b ¢ ¢ ¢ b a
CchZbcc
o oy 44

x X x x

=
=

Table 4.5.1: The Domain D

{b7 C} {x>y} p {dvy} pi {C7 b} ps {a, b} ps

P p; i i i
Figure 4.5.1: The path induced by the adjacent preferences in D

Let ¢ : D" — A(A) be an arbitrary unanimous and locally strategy-proof RSCE. Observe that the
first-ranked alternatives in each of the preferences in D is either a or b. In order for ¢ to satisfy unanimity,
it must be the case that a and b exhaust the whole probability at each preference profile, i.e.
¢_(P) 4+ ¢,(P) = 1forall P € D".'° Consequently, at profiles (P;, P_;) and (P,, P_;) such that P; ~ P},
zPZ,ZPizand {z,7'} # {a, b}, we have ¢(P;, P_;) = ¢(P,, P_;). Therefore, the {b, c}-restoration
alluded to earlier, is irrelevant. Finally, since the path of Figure 4.5.1 has no {a, b}-restoration, it is easy to

show that D satisfies uLGE following the proof of Theorem 4.4.1. O

Let D* = {P},P;,P;},P},P}} and D* = {P{}. Givenaprofile P € D",if P; € D" foralli € N, unanimity implies ¢ (P) =
1. Symmetrically, ¢, (P) = 1if P; € D*foralli € N. Suppose ¢_(P) > o for some z € A\{a, b} and some P € D". It must be
the case that P; € D" and P; € D* for some i,j € N. Assume for notational convenience that P; € D' foralli = 1,...,sand
P, = P{forallj = s+1,...,n,where1 < s < n.LetP,, =--- =P, = PlandP’ = (P,,... PP P Prgys o, Py)
forall ¢ = s+1,...,n Thus, P]( ~ Pjforallj = s+ 1,...,n, and unanimity implies ¢ ,(P") = 1and hence ¢_(P") = o.

Consequently, Observation 4.4.1 implieso = ¢_(P") = --- = ¢_(P***) = ¢_(P) > o. Contradiction.
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Hong and Kim [28] restrict attention to DSCFs, focus on ordinal Bayesian incentive compatibility, and
establish uLGE for domains satisfying a property called Sparsely Connected Domain without Restoration (or
SCD). This property requires the existence of paths without restoration for all pairs of alternatives such
that at least one of the two alternatives is first-ranked in some preference in the domain. This condition is
slightly weaker than Property P since the no-restoration requirement is imposed only on a subset of all
pairs of alternatives. However, SCD is not necessary for uLGE either. For instance, the domain in
Example 4.5.1 violates SCD because the path of Figure 4.5.1 has a {b, c}-restoration and b is first-ranked
in P¢.

A characterization of domains that satisfy uLGE remains an open problem. However, we are able to

show that uLGE implies connectedness of a domain.
Proposition 4.5.1 If a domain satisfies uLGE, it is connected.

Proof: Pick a domain D that satisfies uLGE. Suppose that domain D is not connected. We can then
partition D into two non-empty subsets D' and D? such that there does not exist any P; € D" and
P, € D*with P, ~ P..

There are several cases to consider. In each one, we find a set of agents and construct a unanimous,

locally strategy-proof and manipulable DSCE. We begin with an observation that we will use frequently.

Observation 4.5.1 We consider a particular class of DSCFs in this setting. We say that a DSCEF fis local if
foralli€ N,P_, € D" ,j € {1,2}and P, P, € D,

[f(P;, P) # f(P}, P_;)] = [f(P;, P_;) = r.(P:) and f(P], P_,) = r,(P})].

Suppose that agent i’s true preference is P; € D’ for some j € {1,2}. Alocal misrepresentation of P; is

some preference P/ that also belongs to 7. Thus local DSCFs are locally strategy-proof.

Case 1: There exist P, € D' and P, € D= such that r, (P) =r (13,)
Let N = {1,2}. Consider the following DSCF:

r.(P,) if P,,P, € D' or P,,P, € D*, and

r.(P,) otherwise.

f<P17P2> -

The outcome at each preference profile is the first-ranked alternative of some voter’s preference; it is

evident that fis unanimous. It is easy to verify that fis local.'” Then, Observation 4.5.1 implies local

"For agent 1, pick P,, P, € D’ forsomej € {1,2} and P, € D.Iff(P,,P,) # f(P., P,), we can deduce that P, € T/. Hence
f(P,,P,) = r,(P,) and f(P,,P,) = r,(P.). For agent 2, fix P,, P, € D’ forsomej € {1,2} and P, € D. Iff(P,,P,) # f(P,, P}),
we immediately deduce that P, ¢ DV. Hence f(P,, P,) = r,(P,) and f(P,, P.) = r,(P.). Therefore, fis local.
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strategy-proofness. However, fis not strategy-proof. Suppose ,(P;) = r,(P;) = x. Recall that D is
assumed to contain at least two preferences with distinct peaks. Therefore, there exists P, € D such that
r.(P,) = y # x. Suppose P, € D*. Then f(P;, P,) = yand f(P;, P,) = x.'® Agent 1 will then manipulate at
(P, P,) via P, IfP, € D', we have f(P;,P,) = xand f(f),-, P,) = y. Then, agent 1 will manipulate at (13,-, p,)
via P;. This contradicts the hypothesis that D satisfies uLGE.

Case 1 implies that all preferences with the same first-ranked alternative must belong to the same subset
of D,ie. [P, € Dandr,(P/) = r,(P))] = [P/ € D], forj = 1,2. Let
(D)) ={a € A: r,(P;) = aforsome P; € D'}, forj = 1,2. We consider two cases, labelled Case 2 and

3. In each case, we show the existence of a unanimous, locally strategy-proof and manipulable DSCF.

Case 2: |[1(DV)| > 1forsomej € {1,2}.
Assume wl.o.g. that |7(D?)| > 1. Letx,y € 7(D*) and P; € D'. Assume w.l.o.g. that xP}y. Let
N = {1,2}. Consider the following DSCF:

r.(P,) if P,,P, € D" or P,, P, € D*, and

y otherwise.

f(Plapz) = {

Let (P,, P,) be a profile such that r,(P,) = r,(P,). By virtue of our assumption, it must be the case that
P,,P, € D, forsomej € {1,2}. Since f picks an agent’s first-ranked alternative in such a profile, it is clear
that f satisfies unanimity. Again fis local.'® So Observation 4.5.1 implies that fis locally strategy-proof.
Finally, we show that fis not strategy-proof. Since x € 7(D*), there exists P, € D* withr,(P,) = «x. By
construction, f(P,, P}) = yandf(P,, P,) = x. Since xP}y, agent 2 manipulates at (P,, P}) via P,. Therefore

Case 2 cannot occur.
Case 3: [1(DY)| = |7(D*)| = v

Let 7(D") = {«} and 7(D*) = {y}. Recall that |A| > 3. Accordingly, we consider two subcases: (A)
there exists P € D such thatr4(P}) = z ¢ {«x,y},and (B) rjs(P;) € {x,y} forall P; € D.

Case 3A: Assume w.l.o.g. thatr,(P]) = x,i.e. P/ € D'. By assumption, yP;z. Let N = {1, 2} and consider

"8Here (P;, P,) is the profile where agent 1’s preference is P; and agent 2’s preference is P,. Similarly (P, P,) is the profile
where agent 1's preference is P, and agent 2s preference is P,.

!9 Arguing as we did in Footnote 17, by picking P,, P, € D for some j € {1,2} and P, € D, we can infer [(P,, P,) #
f(P!,P,)] = [f(P,,P,) = r,(P,) and f(P!,P,) = r,(P.)]. Next, fixing P,, P, € D’ forsomej € {1,2} and P, € D, we always
have f(P,, P,) = f(P,, P,) by the construction of f. Therefore, fis local.
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the following DSCEF:

x ifP, P, €D,
f(P,P)={y ifP,P, € D* and

z otherwise.

It is easy to verify that f satisfies unanimity. Local strategy-proofness follows again from Observation
4.5.1 as fis local.*® Again fis not strategy-proof. Pick P, € D*. By construction f(P}, P,) = zand
f(P,,P,) = y. Since yP; z, agent 1 manipulates at (P}, P,) via P,.

Case 3B: Since |A| > 3, there must exist z € A\{x, y} and P; € D such that zP,y or zP;x holds. We
assume w.l.o.g. that zlsiy. Thus P, € D". Let N = {1,2, 3} and consider the following DSCF.

X itP, P, P, €D,

y  ifP,P,, P, € D

y if P; € D* forsome i € {1,2,3} and P, € D" forall j # i, and
z if P; € D' forsome i € {1,2,3} and P; € D* forall j # i.

f<P17P27P3> =

In order to show unanimity, we need to only consider profiles where all agents have preferences
belonging to the same 7. In each of these cases, f picks the commonly first-ranked alternative. Also fis
local,*' and we can deduce that fis locally strategy-proof from Observation 4.5.1. Finally we show that fis
not strategy-proof. Consider the profile (P;, P;, P,) where voters 1 and 2 report the preference P;, and
voter 3 reports a preference P, € D*. By construction, f(P;, P;, P,) = y. Consider another profile
(P;, P,, P,) where voter 1 reports the preference P;, and voters 2 and 3 reports the preference P,. By
construction, f(f—"i, P,,P,) = z. Consequently agent 2 will manipulate at (151», 13,», P,) via P, since z13iy.

This concludes the proof of Proposition 4.5.1. |

2Fixing P,, P! € D’ for some j € {1,2} and P, € D, we always have f(P,, P,) = f(P/, P,) by the construction of . Symmet-
rically, fixing P,, P, € D’ forsomej € {1,2} and P, € D, we also have f(P,, P,) = f(P,, P,) by the construction of f. Therefore,
fislocal vacuously.

*'Fixing arbitrary i € N, P;, P, € D/ forsomej € {1,2} and P_; € D", it s easy to show that f(P;, P_;) = f(P/,P_;) by
the construction of f. Therefore, fis local vacuously.
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Pointwise Local Incentive Compatibility in

Non-Convex Type-Spaces

5.1 INTRODUCTION

We consider standard mechanism design problem where a set of agents have valuations for each
alternative in a finite set of alternatives. Based on these valuations, the planner has to select an alternative
to be shared by all the agents and some payment for each agent. Such a decision scheme is called a
mechanism. Agents evaluate their net utilities by means of quasilinear utility functions. A mechanism is
incentive compatible (IC) ifno agent can increase his/her net utility by misreporting his/her type.

An important problem in mechanism design is to characterize all IC mechanisms for a given
type-space. Except for the case when the type-space is R/, where A is the set of alternatives, this turns
out to be a hard problem. As an intermediate step, researchers have got interested in exploring if the
requirement of IC can be reduced considerably.! Pointwise local IC (PLIC) (Carroll [12]) turns out to be
a way. A mechanism is PLIC if no agent can increase his/her net utility by misreporting to a type that is

“close” to his/her sincere type.

"For the importance of identifying a minimal set of incentive constraints that will imply full incentive compatibility - see
discussions in Chapter 7 of Fudenberg and Tirole [23], Armstrong [2] and Chapter 6 in Vohra [50].
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The notion of close types varies from person to person and also depends on the behavioral aspect of
the agents. Often agents might not be willing to go for “large” lies (possibly due to the presence of a
monitoring technology that detects large lies and punishes them or due to social stigma, fear of loss of
reputation, etc.) and choose to lie credibly by only deviating to small neighborhoods of their true types.
Moreover, on type-spaces where the equivalence of PLIC and IC holds, poitwise local incentive
compatibility is a significantly simpler way to check whether a mechanism is IC or not.>

PLIC ensures that a mechanism is IC on the types that are sufficiently close (with respect to Euclidean
distance) to each other. More formally, PLIC requires that for every type ¢ there is a neighborhood of ¢
such that the mechanism is IC on both (¢, s) and (s, t) for every type s in that neighborhood.? Carroll [12]
showed that PLIC is equivalent to IC on any convex type-space. To the best of our knowledge, nothing is
known about the said equivalence on other type-spaces, despite the fact that there are several important
non-convex type-spaces such as the gross substitute one in combinatorial auction.*

The crucial fact about convex type-space is that the line joining any two types lie in the type-space. A
natural step to get out of the convex type-space would be to consider a type-space that is polygonally
connected: between every two types there is a (finite) sequence of lines in the type-space that join them.
However, polygonal connectedness alone cannot guarantee the equivalence of PLIC and IC (See
Examples 5.5.2, 5.5.3 and 5.5.4). We strengthen it by introducing a condition called minimal richness and
show that it is sufficient for the equivalence of PLIC and IC. As applications of our result, we show that
PLIC and IC are equivalent on large class of non-convex type-spaces such as type-spaces perturbed by
modularity and concave-modularity. Further, we show that the gross substitutes type-space and the
generalized gross substitutes and complements type-space are important examples of type-spaces
perturbed by modularity and concave-modularity, respectively.

The Gross substitutes type-space has been extensively studied in the literature in various contexts such
as matching, mechanism design, equilibrium and algorithms (see Ausubel and Milgrom [3], Gul and
Stacchetti [27], Paes Leme [43]). The gross-substitutability condition was first introduced by Kelso and
Crawford [30] in the context of two sided matching markets of workers and firms. They showed that
gross-substitutability is a sufficient condition for the existence of Walrasian equilibria. Later, Shioura and
Yang [ 48] generalized the gross-substitutability condition to generalized gross substitutes and
complements condition where they allow multiple objects of the same kind and also allow for some

complementarities across objects.

2See Carroll [ 12] for a detailed explanation on the importance of pointwise local incentive compatibility (PLIC).

*A mechanism is IC on a pair of types (t, s) if an agent with sincere type t cannot manipulate (that is, cannot increase his/her
net utility) by reporting the type ass.

*“Itis worth mentioning that characterizing all type-spaces where PLIC and IC are equivalent is a long standing open problem
and is considered as a hard problem as well.
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Recently Kushnir and Lokutsievskiy [34] proved that every monotone allocation function defined on
the gross-substitutes type space and the generalized gross substitutes and complements type-space is also
cyclically monotone.® Our paper complements their paper by establishing the equivalence of PLIC and
IC and thereby making the problem of designing mechanisms quite tractable on these domains (see
Section 5.6 for a detailed discussion on the connection between our paper and that of Kushnir and
Lokutsievskiy [34]).

Next, we provide a geometric condition on a type-space for the equivalence of PLIC and IC. We
identify three conditions and show that together these conditions ensure the equivalence of PLIC and IC.
Further, we show that these three conditions are indispensable, that is, if we drop any of the conditions,

then the equivalence of PLIC and IC is no longer guaranteed.

5.2 PRELIMINARIES

We consider a one-agent model in this paper. This is without loss of generality for our analysis.®

Let A be a finite set of alternatives with |A| = n. For any given subset X of R”, by O(X) we denote the
boundary of X. A type tis a mapping from A to R that represents the valuation of each alternative in A.
We view a type as an element of R” (with an arbitrary but fixed indexation of the alternatives). By relative
valuation of an alternative a with respect to another alternative b at a type t, we mean the number
t(a) — t(b). For two types tand ¢, we denote the line joining them by [t, '].” A subset T of R” is called a
type-space. A polygonal path from t to ' in T'is a finite collection of types (t = #, ..., ¢ = ) such that
[t #7"] liesin T foralll € {1,. ..,k — 1}. A type-space T is polygonally connected if for every t,t € T,
there exists a polygonal path from £ to ' in T. An allocation rule isamap f : T — A and a payment rule is

amapp : T — R. A (direct) mechanism y is a pair consisting of an allocation rule fand a payment rule p.
Definition s5.2.1 A mechanism (f, p) is incentive compatible (IC) on a pair of types (t, s) if

((f() = p(£) = H{f(s)) — p(s).
Itis IC on a type-space T if it is IC on every pair of types (t,s) € T x T.

The notion of pointwise local incentive compatibility (PLIC) is introduced in Carroll [12]. A

SAn allocation function f on a type-space T is monotone (or, 2-cycle monotone) if for all t,¢ € T,t(f(t)) — t(f(f)) +
' (f(t')) — ¢ (f(t)) > o, anditis cyclically monotone if for any integer r and any points t°, £, ... , ' = *in T, > ;" F(A(EF)) —
E(f(E) > o.

SAll the results of this paper can be generalized to the case of more than one agent in a systematic manner (see Carroll [12],
Mishra et al. [39], etc.).

"More formally, [t, ] = {at+ (1 — a)t' | a € [0,1]}.
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mechanism is PLIC on a type-space T if for every t € T, there exists an ¢ > o such thatitis IC on (£, s)
and (s, t) foreverys € T with ||t — s|| < &

5.3 RESULT ON MINIMALLY RICH TYPE-SPACES

We introduce the notion of minimally rich type-spaces in this section and show that PLIC and IC are
equivalent on such type-spaces. As an application in Section 5.4, we consider type-spaces that arise in the
context of combinatorial auctions and show that any type-space that is closed under scaling and closed
under modular/concave-modular perturbations is also minimally rich. Gross substitutes (GS) and the
generalized gross substitutes and complements (GGSC) type-spaces are important examples of such
type-spaces.

A type-space is minimally rich if for any two types t and ¢ in it and for each alternative g, there is a type
s satisfying the following two properties: (i) the lines joining s to both t and # lie in the type-space, and
(i) for every alternative z, if the relative valuation of a with respect to z (weakly) increases from s to ¢/,
then it will also (weakly) increase from from t to s. Notice that minimally rich type-spaces are polygonally

connected.

Definition s.3.1 A type-space T is minimally rich if for all distinctt,t € T and alla € A, there existss € T
such that

(i) [s,t] and [s,¥] liein T, and

(i) s(a) —s(z) > t(a) — t(z) forallz € Asuchthatt (a) —t(z) > s(a) — s(z).

We explain the implication of minimal richness with some figures for the case where there are
two-dimensions (that is, two objects). Let A = {a, b}. Suppose the valuation of a is represented on the
horizonal axis and the valuation of b is represented on the vertical axis. Consider two types tand .
Without loss of generality, assume t(a) — t(b) < #(a) — ¢ (b). See Figure 5.3.1 for such two types tand ¢’
Suppose that the line [t, #| does not lie in the type-space (this is not shown in the figure). To satisfy the
minimal richness condition for t and ¥, we need to find two types s and 5 (not necessarily distinct) for a
and b, respectively, such that the lines [s, £], [s, '], [s, t] and [s, ¢] lie in the type-space, s lies strictly below
the slope 1 line passing through ¢, and s lies strictly above the slope 1 line passing through ¢ In Figure
5.3.1, the shaded portions in red and blue are the feasible regions for s, and the shaded portions in grey
and blue are the feasible regions fors. It is worth noting that there are so many choices for s and s, which in

turn corroborates that the minimal richness condition is not much demanding. In Figure §.3.2, we have

8We denote the Euclidean norm of a vector t € R" by ||¢]|.
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Figure 5.3.1

Figure 5.3.2

provided two minimally rich type spaces (marked by the shaded region), one can verify in above

discussed way that they are indeed minimally rich.
Theorem §5.3.2 A mechanism on a minimally rich type-space is IC if and only if it is PLIC.

The proof of this Theorem is relegated to Appendix 5.7.2.
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S-4 APPLICATION TO COMBINATORIAL AUCTION MODEL

Combinatorial auctions are mechanisms where agents are asked to report valuations for combinations of
objects, often referred to as “bundles” or “packages”, instead of individual objects. Thus, agents are
allowed to express their preferences more fully which often leads to greater auction revenues and
improved economic efficiency. In what follows, we present two important classes of type-spaces that arise

in the context of combinatorial auction model.

5.4.1 TYPE-SPACES PERTURBED BY MODULARITY

LetE = {3,...,k} be the set of objects. The set of alternatives is A = 2%, that is, the set of all possible
subsets of E. For ease of presentation, let us denote the cardinality of A by 1, that is, n = 2*. Thus, a type is
an element of R".

We say that a type-space T C R" is closed under scaling if for any t € T and any scalar A > o, we have
A-t€ T Givent € Tandavectorm € R¥, we define a type t,, € R" where t,,(S) = t(S) + Y iesm(i)
for every S C E. We say that T is closed under modular perturbations if for any t € T and any vector
m € R, wehavet, € T.Atypetismodularift(S) = Y, t(i) forall § C E.

Proposition §.4.1 Let T C R" be a type-space that is closed under scaling and closed under modular

perturbations. Then, T is minimally rich.

The proof of this proposition is relegated to Appendix 5.7.3.

An important example of a type-space that is closed under scaling and closed under modular
perturbations is the gross substitutes type-space.'’

The gross substitutes type-space is well-studied in the literature in the context of matching, auction,
etc,, (see, e.g.,, Murota [42] and Paes Leme [43] for extensive surveys). This notion was introduced by
Kelso and Crawford [30] as a sufficient condition for the existence of Walrasian equilibrium. In what
follows, we define demand correspondence and gross substitutes type-space. These definitions are based
on the notion of a price vector.

A price p (vector) for individual objects in E is an element of R¥. The price of a bundle S is

p(S) = "5 p(i). The demand correspondence for a price p € R* and a type tis defined as

D(t, p) = argmax{(S) — p()}-

SCE

Foranytypet = (t,...,t,) € Tandanyscalard > 0,1 -t = (At,, ..., At,).
19The fact that gross substitutes type-space is closed under scaling and closed under modular perturbations is well known in
the literature.
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In other words, the demand correspondence for p and t contains those bundles whose net valuation
(valuation minus price) according to p and t is the maximum.

A type t satisfies the gross-substitutability condition if, roughly speaking, its demand correspondence
satisfies a (partial) independence property with respect to (increasing) price. This is in the sense that if we
increase the price of some objects (while keeping that unchanged for the others), then, in some sense, the
“demand” of the objects whose prices are not changed will not be affected. More formally, if we go from
one price vector to a higher price vector (that is, if we weakly increase the price of each object), then for
each demanded bundle S at the former price there will be a demanded bundle §' at the higher price that

contains all objects in S whose prices are not changed.

Definition s.4.1 (Kelso and Crawford [30]) A type t satisfies the gross-substitutability condition if for all
p,p € RFwithp' > p, we have S € D(t, p) implies there exists ' € D(t,p') with
{ies|pl)=p'@)}Cs.

Reijnierse et al. [44] and Fujishige and Yang [24] present a characterization of gross-substitutability
condition purely in terms of inequalities involving the agent’s valuations. For instance, if |E| = 2 (say
E = {i,j}), then any type t satisfies the gross-substitutability condition if and only if
t({i,j}) + t0) < e({i}) + t({j})-

A type-space is gross substitutes if it contains all types satisfying the gross-substitutability condition. It
is well-known that the gross substitutes type-space is not convex (see Example 3 in Kushnir and
Lokutsievskiy [34]).

The following corollary is obtained from Theorem §.3.2, Proposition §.4.1 and the fact that the gross

substitutes type-space is closed under scaling and closed under modular perturbations.

Corollary 5.4.1 A mechanism on the gross substitutes type-space is IC if and only if it is PLIC.

5.4.2 TYPE-SPACES PERTURBED BY CONCAVE-MODULARITY

As before, let the set of objects be E = {1, . .., k}. The number of units available for object j is a;. The set
of alternatives A is the set of all feasible object bundles which is defined as
A={(z,...,z) | z € Zand o < z; < g;forall i € E}.'* Letn = |A|. Thus, a type is an element of
R*.

As defined in the previous subsection, we say that a type-space T C R" is closed under scaling if for any
t € Tand any scalar A > o, we have A - t € T. Given concave functions g; : {o,1,...,a;} — R foreach
1< i< kwedefineg = (g,...,g). Foranyt € T, we define a type t; € R" where

""We denote by Z the set of all integers.
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ty(z) = t(z) + Zle gi(z;) forall z € A. We say that T is closed under concave-modular perturbations if
forany t € T and concave functions g : {0,1,...,a;} — Rforeach1 <i < k,wehavet; € T. A type
m : A — R modular-concave if there exists a concave functiong; : {0,1,...,a;} — Rforeach1 <i <k

such that m(z) = Y+ gi(z;) forallz € A.

Proposition §.4.2 Let T C R" be a type-space that is closed under scaling and closed under concave-modular

perturbations. Then, T is minimally rich.

The proof of this proposition is relegated to Appendix 5.7.4.

An important example of a type-space that is closed under scaling and closed under concave-modular
perturbations is the generalized gross substitutes and complements type-space (for details see the proof
of Theorem 3 in Kushnir and Lokutsievskiy [34]).

We introduce the notion of generalized gross substitutes and complements type-space. Shioura and
Yang [ 48] introduces the notion of generalized gross substitutes and complements (GGSC) type-space. A
set C C Z* is a integer convex set if it contains all integer vectors in its convex hull.!?

The objects are partitioned into two classes E, and E,, that is, E = E, U E, with E, N E, = (). The
objects are substitutes within classes and complements across the classes. For instance, in the problem of
allocation of spectrum licenses, radio spectrum licenses are substitutes within each region, but
complements across regions.'*> We denote the total number of units in a class E, € {E,, E,} in abundle
z € Abyz(E,), thatis, z(E,) = ). 2.

We now extend the notion of demand correspondence defined in Subsection 5.4.1. Note that the price
ofabundle z € Aisz - p, where p € R is the price vector of individual objects. Therefore, for a price

p € R*and a type t, we define demand correspondence as

D(p,t) = argmax{t(z) — p - z}.

zZ€EA

Forr € {1,2} andi € E,, abundle 2’ is an improvement of a bundle z with respect to E, except for i if
z] > zforalll € E, \ {i},and z] < z/foralll € E.. Letus denote by y, € R the vector whose i-th

component is 1 and other components are o. Let y_ = (0,...,0) € RFbe the null vector.

Definition §.4.2 A type t satisfies the generalized gross substitutes and complements condition if for each price

p € RS,

(i) D(p,t) is an integer convex set, and

>Shioura and Yang [48] use the term discrete convex set instead of integer convex set.
*This example is taken from Kushnir and Lokutsievskiy [34].

63



(ii) foreachz € D(p,t),eachr = 1,2, eachi € E,, and each § > o, there exists an improvement ' of z with
respect to E, except for i such thatz' € D(p + 8y, t) and

2(E,) — 2(E;) = 2(E,) — 2'(E,).

Similar to the characterization of gross-substitutability condition purely in terms of inequalities
involving agent’s valuations provided in Reijnierse et al. [44] and Fujishige and Yang [24], Shioura and
Yang [48] (Theorem 3.3) proves that any type ¢ satisfies the generalized gross substitutes and
complements condition if and only if it is GM-concave.

Let U = diag(1,...,1,—1,..., —1) be a diagonal k X k matrix that contains 1 in the first |E, | diagonal
entries and —1 in the remaining |E, | diagonal entries. Forz = (z,,...,z) € ZF, define
supp(z) = {i € E | z; > o}.

Atypet: A — Riscalled GM-concave ifforallz,z' € Aandalli € supp (U(z — z’)) , there exists
j € supp(U(z' — z)) U {o} such that

t(z) +t(z) <tz — Uy, — X;)) +t(2 + Uy, — x}.)). (5.1)

A type-space is generalized gross substitutes and complements if it contains all GM-concave types. It
can be verified that the gross substitutes type-space is a special case of the generalized gross substitutes
and complements type-space.

We obtain the following corollary from Theorem 5.3.2, Proposition 5.4.2 and the fact that the
generalized gross substitutes and complements type-space is closed under scaling and closed under

concave-modular perturbations.

Corollary 5.4.2 A mechanism on the generalized gross substitutes and complements type-space is IC if and
only if it is PLIC.

5.5 A SIMPLE GEOMETRIC STRUCTURE OF NON-CONVEX TYPE-SPACES FOR THE EQUIVA-

LENCE OF PLIC aAnD IC

In this section we present a simple geometric structure of non-convex type-spaces that guarantees the
equivalence of pointwise local incentive compatibilty (PLIC) and incentive compatibilty (IC). For ease
of presentation, we assume in this section that A = {1, ..., n}, that is, the alternatives are indexed by the
numbers 1, ..., n. Foratypet € R", we denote by

D(t) = {s € R" | there exists c € Rsuch thats(i) = t(i) + cforalli € {1,...,n}} the set of points that
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Figure 5.5.1

have the same relative difference between the alternatives asin t. Let C = [[\_ [a;, b;], where a;, b; € R
with a; < b;, be a setin R", and let J(C) denote the boundary of C. Suppose that T C Cis such that T'is
openin C,0(C) C T,and foreacht € T, thereiss € J(C) N D(t) such that the line [t, 5| liesin T In
Figure 5.5.1, we provide some examples of such a set T (marked by the shaded region) in two dimensions
to illustrate its structure, and in Figures 5.5.2, 5.5.3 and 5.5.4, we provide examples of a set (marked by the
shaded region) that does not satisfy the above mentioned property.'* The type-spaces marked by shaded
portion in Figures 5.5.1, 5.5.3 and 5.5.4 does not include the boundary of the inner shape(s) whereas the
type-space marked by shaded portion in Figure s.5.2 includes the boundary of the inner shape.

Theorem §.5.1 Let T C Cis such that
(i) T is open in C,
(i) 9(C) C T, and
(iii) for each t € T, thereiss € O(C) N D(t) such that the line [t, ] lies in T.
A mechanism on T is IC if and only if it is PLIC.

The proof of Theorem §5.5.1 is relegated to Appendix 5.7.5.

The equivalence between PLIC and IC in Theorem s.5.1 is guaranteed by the existence of a certain
kind of polygonal path between every two types lying in the type-space. The specified polygonal path
satisfies some monotonic condition over the relative valuation between alternatives.'®

As we have demonstrated by Figure 5.5.1, the main importance of Theorem §5.5.1 is that its conditions
are geometrically easy to check. Additionally, Theorem s.5.1 provides a geometric insight on the kind of
subsets of R" (say X) for which PLIC and IC are equivalent on the complement, that is, R" \ X. Note that
the geometric property identified in the above theorem is very different from the minimal richness

condition (Definition 5.3.1). For example, type-spaces identified in Figure 5.5.1 satisfy the geometric

*For more details, see Examples s.5.2, 5.5.3 and 5.5.4.
!3For details, see the proof of Theorem s.5.1.
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Figure 5.5.2

property proposed in Theorem 5.5.1 but do not satisfy the minimal richness condition. Also, type-spaces
identified in Figure §.3.2 satisfy the minimal richness condition but do not satisfy the geometric property
described in Theorem 5.5.1.

It is worth mentioning that conditions of Theorem s5.5.1 are indispensable, that is, if we drop any
condition of Theorem s.5.1, then the equivalence of PLIC and IC is no longer guaranteed. We provide
examples below to support this statement. For simplicity, let us assume A = {a, b}. The valuation of the
alternative a is represented on the horizontal axis and the valuation of the alternative b is represented on

the vertical axis.

Example s5.5.2 Suppose we drop Condition (i) of Theorem s.5.1. Consider the type-space T (marked by
shaded portion) in Figure 5.5.2 where T includes the boundary of the inner square. Notice that this figure satisfies
Conditions (ii) and (iii) of Theorem s.5.1. The inner square has sides of slopes 1 and —1. Note that T includes the
boundary of the inner square, and hence it is not open in C. Suppose that the side of the inner square containing
the point t marked in Figure §.5.2 lie on the line having slope 1 and passing through origin. Define a mechanism
u = (f,p) such that f(t) = a,f(f) = bforeveryt € T \ {t}, and p(t) = o for every t € T. Consider a
neighborhood of t such that it does not intersect with any type t with t(a) — t(b) > o, and similarly for any t
with t(a) — t(b) > o, consider its neighborhood such that it does not intersect t. It can be verified that y is PLIC
with such neighbourhoods. However, y violates IC on every pair (, t) with ¢ (a) — £ (b) > o.

Example s.5.3 Suppose we drop Condition (ii) of Theorem §.5.1. Consider the type-space T (marked by
shaded portion) in Figure 5.5.3 where T does not include the boundary of the cut out portion from the square.
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Figure 5.5.3

Clearly, T does not contain the boundary of the square. Notice that this figure satisfies Conditions (i) and (iii) of
Theorem §.5.1. The red line has slope 1 and the vertical intercept is o, i.e., slope 1 line passing through the origin.
The blue line also has slope 1 but the vertical intercept is 1. T,, T, and T, forms a partition of T as depicted in
Figure s.5.3. Define a mechanism y = (f, p) such that f(t) = aforeveryt € T, U T,, f(t') = b for every

t € T, p(t) =2foreveryt € T, U Ty, and p(')) = 1for everyt € T,. For any given type t € T, consider a
neighborhood of t such that it does not intersect with any type belonging to T,, and similarly for any type t € T,,
consider its neighborhood such that it does not intersect with any type belonging to T,. It can be verified that y is
PLIC with such neighbourhoods. However, u violates IC on every pair (t,t') witht € T, andt € T,.

Example s.5.4 Suppose we drop Condition (iii) of Theorem s.5.1. Consider the type-space T (marked by
shaded portion) in Figure 5.5.4. It does not include the boundary of inner shape. Notice that this figure satisfies
Conditions (i) and (ii) of Theorem 5.5.1. The red line has slope 1 and the vertical intercept is o, i.e., slope 1 line
passing through the origin. The blue line also has slope 1 but the vertical intercept is 1. The subsets T,, T, and T,
form a partition of T as depicted in Figure s.5.4. Notice that every type in T, violates Condition (iii) of Theorem
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Figure 5.5.4

5.5.1. Define the mechanism y = (f, p) such that f(t) = b foreveryt € T, U T, f(f') = aforeveryt € T,
p(t) = 2foreveryt € T, U T, and p(t') = 3 foreveryt € T,. For any given type t € T,, consider a
neighborhood of t such that it does not intersect with any type belonging to T,, and similarly for any typet € T,
consider its neighborhood such that it does not intersect with any type belonging to T,. It can be verified that y is
PLIC with such neighbourhoods. However, y violates IC on every pair (t,t') witht € T, andt' € T.,.

5.6 DISCUSSION: COMPARISON OF OUR RESULTS WITH KUSHNIR AND LOKUTSIEVSKIY

[34]

Kushnir and Lokutsievskiy [ 34] studies a research question that is conceptually different from ours. They
study type-spaces where monotonicity implies cyclical monotonicity for allocation rules. Let us first
formally introduce the main result of Kushnir and Lokutsievskiy [34].

An allocation rule f on a type-space T is monotone (or, 2-cycle monotone) if for all t, ¢ € T, we have
t(f(t)) —t(f(¢)) + £ (f(f)) — ¢ (f(t)) > o, and itis cyclically monotone if for any integer r and any points
.8, .., =inT,wehave Y ;' () — F(A(£)) > o.

Definition §.6.1 A type-space T is simply connected if
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(i) Tis path-connected, i.e,, any two types in T can be connected by a path lying entirely in T, and

(ii) any loop in T can be continuously contracted to a point.

A type-space being simply connected ensures that the type-space do not have certain kind of “holes”'® A
particular class of simply connected type-spaces are star-shaped type-spaces. Formally, a type-space T is
star-shaped if there exists a type m € T such that [m, t] C T forall t € T. We call such types m as a center
of the star-shaped type-space T.

For any allocation rule f : T — A and any ordered pair a, b € A, we define
lp = infier—o t(a) — t(b). Foreacha € A, we define T, = {t € T | t(a) — t(b) > I, forallb € A}.

Definition 5.6.2 An allocation rulef : T — A satisfies the local-to-global condition if for every a, b € f(T)
with T N TJ; = (), there exists a finite sequence of alternatives (a = a,, . . ., a, = b) such that
Ty;k NT #0k=o,....,r—1andly > Z;;lolak“k+x'

A1

The main result of Kushnir and Lokutsievskiy [34] is as follows.

Theorem 5.6.3 (Kushnir and Lokutsievskiy [34]) Let T C R be a type-space and f : T — A be an

allocation rule. Suppose that
(i) T issimply connected,
(i) Foreacha € A, T/ is either path-connected or empty, and
(iii) fsatisfies the local-to-global condition.

Then if f is monotone (or, 2-cycle monotone), it is also cyclically monotone.

It is important to note that Condition (ii) and Condition (iii) of Theorem 5.6.3 are defined for a given
allocation rule, and consequently, Theorem 5.6.3 does not present direct conditions on a type-space so
that monotonicity will imply cyclical monotonicity. Using Theorem 5.6.3 Kushnir and Lokutsievskiy [34]
proved that every monotone allocation rule defined on the gross substitutes type-space and the
generalized gross substitutes and complements type-space is also cyclically monotone. It is understood
from the proof that a direct condition on type-spaces for the equivalence of monotonicity and cyclical
monotonicity can be derived from Theorem 5.6.3. We state below these conditions as a corollary of

Theorem 5.6.3.

16See footnote 8 in Kushnir and Lokutsievskiy [34] for a formal definition of simply connectedness.
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Corollary 5.6.1 Let T be a star-shaped type-space and M C T be the collection of all centers of T. Suppose
that for every a € A and every t € T there exists m € M such that m(a) — m(b) > t(a) — t(b) for all

b € A\ {a}. Then every monotone (or, 2-cycle monotone) allocation rule on T is cyclically monotone.

Now we are ready to compare the results of our paper with Theorem 5.6.3 in Kushnir and Lokutsievskiy
[34] (along with Corollary 5.6.1). The main assumptions on type-spaces in Theorem 5.6.3 and Corollary
5.6.1 are simply connected and star-shaped, respectively. Our main assumption on type-spaces is minimal
richness (Definition 5.3.1). The notion of minimal richness is flexible enough to accomodate type-spaces
that are not simply connected (and hence not star-shaped). For example, let A = {a, b} and consider the
type-space R* \ {(o, 0)} where the valuation of a is represented on the horizontal axis and the valuation
of b is represented on the vertical axis.'” Note that R* \ {(o, 0)} is not simply connected because any
loop around origin cannot be contracted continuously to a point. However, R* \ {(o, 0)} is minimally
rich.'® This can be verified using similar arguments provided after the definition of minimal richness
(Definition 5.3.1) in Section 5.3. Moreover, minimal richness is a weaker condition than the conditions
identified in Corollary 5.6.1, that is, every type-space satisfying conditions of Corollary 5.6.1 is minimally
rich but the converse is not true. For instance, the examples of minimally rich type-spaces illustrated in
Figure 5.3.2 are star-shaped but violates the other condition stated in Corollary 5.6.1, i.e. there exists a
type t belonging to the type-space such that m(a) — m(b) < t(a) — t(b) for every type m that belongs to
the center of the type-space. Similarly, the type-spaces illustrated in Figure 5.5.1 satisfy our geometric
property provided in Theorem s5.5.1 but are not simply connected.

Summarizing, although both Kushnir and Lokutsievskiy [ 34] and we have used the same property of
the gross substitutes type-space (and the generalized gross substitutes and complements type-space) to
prove our respective results, there are some differences between the properties required in general for
these results. This is natural as the implications of our main result and that of Kushnir and Lokutsievskiy

[34] are quite different.

5.7 APPENDIX
5.7.1 A USEFUL LEMMA

In this subsection, we present a lemma that we will use in deriving the rest of the results of the paper. The

lemma provides a sufficient condition for a mechanism to be IC on a pair of types based on its IC

7The same arguments work if we consider the type-space where finitely many points are deleted from R?, but for simplicity
we just delete the origin.

!8For more than two alternatives, we can construct such examples that are not simply connected but satisfies the minimal
richness condition.
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property over a sequence of types. As we show in Sections 5.3 and 5.5, this simple lemma is quite

powerful in deducing a wide range of results.

Lemma §.7.1 A mechanism y = (f, p) on a type-space T is IC on a pair of types (t, 1) if there is a finite
sequence of types (t = ', ..., t* = t') in T such that for all | < k,

(i) wisICon (£, £1), and

() £ (7)) — £(f)) < EET)) — L))

The proof of this lemma is quite straightforward; we provide it here for the sake of completeness."?
Proof: Consider a mechanism y = (f, p) on a type-space T. Let (¢, ) be a pair of types in T for which
there is a finite sequence of types (t = ', ..., t* = ') in T such that forall | < k, (i) gis IC on (£, #),
and (i) £ (f(£1)) — £(A(#)) < £(AET)) — £(A(f)). We show that y is IC on the pair (¢, t').

We prove this by induction. By the assumption, y is IC on (#, £*). Suppose y is IC on (£, t') for some
I < k. This yields

£(f(E)) —p(t) = £(f(£)) — p(F). (5-2)

Since yis IC on (£, #1), we have

L)) — p(f) = £(E) — p(£7). (5:3)

Adding £ (f(f')) to both sides of (5.3) and doing some rearrangement, we obtain

P(f(E) — p(¢) = £(A(E) + £ (A(ET)) — £(fF)) — p(£7). (5-4)

Combining (5.4) and Part (ii) of the condition in the lemma, we have
£(f(H)) — p(£) > £(f(£)) — p(£). This, together with (s.2) gives
£(f(t)) — p(£) > £((£1)) — p(£™), which implies g is IC on (£, #7*). This completes the proof. ~ W

5.7.2 PROOF OF THEOREM 5.3.2

Proof: The “only if” part of the theorem follows from the definition. We proceed to prove the “if” part of
the theorem. Let (f, p) be an PLIC mechanism on a minimally rich type-space T C R". We will show that
foranyt, ¥ € T, (f,p) isIC on (£, ¥).

Fixanyt,t € T.If [t,#] C T, then by Carroll [12] it follows that (f, p) is IC on (¢, ¢).>° Suppose
[t,¢] € T.Letf(f) = a. Since T satisfies minimal richness, there exists s € T satisfying conditions (i)

"We prove this using a familiar idea in the mechanism design literature related to supermodularity/revealed preference argu-
ment (for example see Lemma 2 in 2 ], Theorem 1in ? ]).
20Carroll [ 12] shows that any PLIC mechanism on a type-space Tis IC on (t,¢') if [t, '] C T.
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and (ii) of Definition 5.3.1. Assume f(s) = b. By condition (i), the line [s, ¢] lies in T. Therefore, by
Carroll [12], (f, p) is IC on both (¥, s) and (s, ¥'). This implies  (a) — '(b) > s(a) — s(b).
Therefore, by condition (ii) we have that,

s(a) — s(b) > t(a) — t(b). (5.5)

By condition (i), both lines [¢, 5] and [s, #] lie in T Therefore, by Carroll [12], (f, p) is IC on both (¢, s)
and (s, t'). This, together with the facts that f(f) = a, f(s) = bands(a) — s(b) > t(a) — #(b), Lemma
6.7.3 implies that (f, p) is IC on (¢, ¢'). This completes the proof of the theorem. |

5.7.3 PROOF OF PROPOSITION §.4.1

Proof: Let T denote a type-space that is closed under scaling and closed under modular perturbations. Let
us denote the zero vector by o. Suppose M is the set of all modular types. First we show that M C T.
Since T is closed under scaling, o € T. Also, since T is closed under modular perturbations, o, € T for
every m € R, By definition, every modular type can be written as o,, for some m € R*. Hence, M C T.

Next we show that [t, m] liesin T forallt € Tandm € M. Takeanyt € Tand m € M. Pick any
0 < A < 1. Sincem € M, wehave (1 — 1) - m € M, and since T is closed under scaling, we have A - t € T.
These, together with the fact that T is closed under modular perturbations, imply that
A-t+(1—2)-m € T.Sinceo < A < 1is arbitrary, this implies that the line [t, m] C T.

Now we show that T satisfies minimal richness. Fixany t,# € Tand H C E. To prove minimal
richness we need to show that there exists a modular type m € T satisfying m(H) — m(F) > t(H) — t(F)
forall F C Esuch that#(H) — ¢ (F) > m(H) — m(F). We prove something even stronger: there exists a
modular type m € T such that m(H) — m(F) > t(H) — #(F) forall F C E.

Since A is finite, there exists ¢ > o such that ¢ > t(H) — t(F) forall F C E. Define a modular type
m € M such that m(()) = o, m(i) = cfori € H,andm(i) = —cfori € E\ H. Clearlym(H) — m(F) > ¢
forall F C E with F # H. Therefore, m(H) — m(F) > t(H) — t(F) forall F C E. Since m € M, both
[t,m] and [m, ¢] lie in T, and hence T is minimally rich. |

5.7.4 PROOF OF PROPOSITION §.4.2

Proof: Let T denote a type-space that is closed under scaling and closed under concave-modular
perturbations. Let M denote the set of all modular-concave types. Similar to the proof of Proposition

5.4.1, it follows that M C T and [t, m] liesin T forallm € Mandt € T.
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We show that T satisfies minimal richness. Fixany ¢,# € T and z € A. To prove minimal richness we
need to show that there exists a modular-concave type m € T satisfying m(z) — m(2) > t(z) — t(/) for
allz’ € Asuchthat?(z) — ¢ (2') > m(z) — m(z’). As we did in the case of proving Proposition 5.4.1, we
prove something stronger: there exists a modular-concave type m € T such that
m(z) — m(z') > t(z) — t(') forall 2’ € A.

Since A is finite, there exists ¢ > o such that ¢ > #(z) — (/) forallz’ € A. Foreachi =1,...,k,
define the concave function g such that gi(o) = oand g;(j) = —c|z; —j| forallj = 1,. .., a;. Consider
the modular-concave type m defined by m(z) = Zle g(z;) forallz € A. We have
m(z) —m(Z) = S8 (gi(z) — g(2) = ¢S5 |z — 2| > cforallZ € A\ {z}. Therefore,

m(z) —m(z') > t(z) — () forallz’ € A. Since m € M, both [t, m] and [m, ] lie in T, and hence T'is

minimally rich. |

5.7.5 PROOF OF THEOREM §.5.1

Proof: First we prove a claim that will be used in the proof of the Theorem 5.5.1. We use the following
terminologies in the proof. A polygonal path from ¢ to ¢’ in T'is a finite collection of types

(t=1¢,...,¢ = t*)such that [, 7] liesin T foralll € {1,. ..,k — 1}. An alternative i weakly (or
strictly) improves from a type f to another type t' if (i) — t(j) < (i) — ¢(j) forallj € A\ {i} (or,

t(i) — t(j) < ¢ (i) — ¢(j) forallj € A\ {i}). An alternative i weakly (or strictly) improves along a
polygonal path (£, . . . , £*) if i weakly (or strictly) improves from the type f to £+ foralll € {1,...,k—1}.
For any alternative i € A, leta; = inf{t(i) | t € C\ T} and B, = sup{t(i) | t € C\ T}. Since J(C) C T,
a; < a; <P, <b.LetU(i) = {t € T |t(i) € (B,,bi]} and L(i) = {t € T | t(i) € [a;, a;) }. For any

i € A, we will often refer to U(i) and L(i) as hollow faces of the cuboid.

Claim 5.7.1 Foreverys,s' € Tandi € A, there exist (not necessarily distinct) ', £*, € T such that
(i) £ € D(s),
(ii) iweakly improves from t' to £,
(iii) [s, ], [t', ], and [t, #] lie in T, and
(iv) there exists a polygonal path from s to £ along which i strictly improves.

Proof: Fixs,s' € Tandi € A. Weneed to find ', £, # € T satisfying conditions (i), (ii), (iii), and (iv).
LetL = {t € C| t(i) = b;, t(j) = a;forsomej € A\ {i}}. Notice that L C T. We distinguish the

following two cases:
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Case (i): Suppose s’ € L. Takeanys € T. Set # = 5. Hence condition (iv) is vacuously satisfied. By
the assumption on T, there is #* € 9(C) N D(s) such that the line [s, #'] lies in T.*' Since £ € D(s),
condition (i) is satisfied. Now we have to find #* € T such that the lines [t', £}], [*, 5’| lie in T and i weakly
improves from t' to *. Since t' € O(C), there exists j € A such that '(j) € {a;, b;}. We further distinguish
the following two subcases:

Case (i.a): Supposej # i. Define #* € T such that *(i) = b;and #*(I) = #'(I) foralll € A\ {i}.*
Note that for any type t lying on the line [t', ], (j) = #'(j) € {a;, b;}. Therefore, the line [¢', #] lies in
J(C). Since J(C) C T, it follows that the line [, £ lies in T. Since s'(i) = b; = (i), it follows by using a
similar logic that the line [#*, s'] lies in T. These, together with the fact that the line [s, #'] lies in T, implies
that condition (iii) is satisfied. By the construction of £, £2(i) — £*(I) > #(i) — #'(I) foralll € A\ {i}.
Hence condition (ii) is also satisfied, and thereby the proof for this subcase is complete.

Case (i.b): Supposej = i. Then #'(i) € {a;, b;}. Since s’ € L, there exists k € A \ {i} such that
s'(k) = ai. Define £ € T such that #*(i) = #'(i), £(k) = s'(k) = a;and £*(I) = #'(I) for all
1€ A\ {i,k}.”* Since (i) = #'(i) and (k) = s'(k) = a, by using a similar logic as in Case (i.a), it
follows that the lines [', £] and [t*, §'] lie in T. This, together with the fact that the line [s, '] lies in T,
implies that condition (iii) is satisfied. By the construction of £, t*(i) — #*(I) > #'(i) — #'(I) for all
1 € A\ {i}. Hence condition (ii) is also satisfied, and thereby the proof for the subcase is completed.
Case (ii): Supposes’ € T\ L. Take any s € T. Define £ € T such that £(i) = b, and £(I) = g, for all
1 € A\ {i}. Since by construction ## € L, by Case (i) there exist ', * € T such that conditions (i), (ii)
and (iii) are satisfied. Therefore, we only need to show that condition (iv) is also satisfied, i.e., there exists
a polygonal path from s’ to £ along which i strictly improves. By the assumption on T, there exists
t € J(C) N D(s’) such that the line [s/, #] lies in T. Since t € O(C), there exists j € A such that f belongs to
L(j) U U(j). Since [s', ] lies in T and € O(C), there exists a type t ¢ O(C) on the line [s', #] such that £
belongs to the same hollow face as . Since ¢ lies on the line [s', ], t € D(s’). Define
T={te T|Hi) < t(i), t(I) = {(I) forall] € A\ {i} and t belongs to the same hollow face as #}. Since
Tis open in C, there exists £ € T \ 3(C) such that the line [/, #] lies in T. Note that tbelongs to L(j) U U(j)
and s'(i) — s'(I) < t(i) — t(I) forall] € A\ {i}. We further distinguish the following two subcases:

Case (ii.a): Suppose j # i. Define t* € T such that t(i) = b, and t*(I) = #(]) forall] € A\ {i}. Since
t ¢ 0(C), wehave a; < t(I) < by foreveryl € A. Hence t(i) — t(I) < t*(i) — t*(I) foralll € A \ {i} and
t* ¢ L. Note that for any type t lying on the line [t, t*], t € L(j) U U(j). Therefore, the line [t, t*] lies in

2 f sitselfis a point in 9(C), then we can set s = .

*In R?, we can view £* as the foot of the perpendicular from #' to the face of the cuboid having b; as the valuation of the
alternative i for every type.

>3In IR3, we can view #* as the foot of the perpendicular from #' to the face of the cuboid having ay as the valuation of the
alternative k for every type.
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L(j) U U(j). Since L(j) U U(j) C T, it follows that the line [t, t*] lies in T. Since £(i) = b; = t*(i), it
follows by using a similar logic that the line [*, #] lies in T. Since t* ¢ L, we have

t+(i) — t+(I) < £(i) — £(I) foralll € A\ {i}. Therefore, (s', t, t*, ) is a polygonal path from s’ to £ along
which i strictly improves. Hence, condition (iv) is also satisfied, and thereby the proof for this subcase is
complete.

Case (ii.b): Suppose j = i. Define t* € T N (L(i) U U(i)) such that # (i) = t(i) + ¢ < b;, t*(k) = ar
and t*(I) = t(I) forsome e > o, k € A\ {i} andalll € A\ {i, k}. Note that such a type t* can always be
found since T'is openin Cand t* ¢ L. Since £(k) = a; = t*(k) and t* ¢ L, by using a similar logic as in
Case (ii.a), it follows that (s, , t*, £) is a polygonal path from s to £ along which i strictly improves.
Hence, condition (iv) is satisfied, and thereby the proof for this subcase is complete.

Since Cases (i) and (ii) are exhaustive, this completes the proof of the claim. [

Having proved Claim §.7.1, now we proceed towards the proof of Theorem s.5.1. Consider a PLIC
mechanism g = (f, p) on T and consider two arbitrary types s and s’ in T. We show that y is IC on (s, 5').
Letf(s') = i. By Claim 5.7.1, there exist #!, £, # € T such that (i), (i), (iii), and (iv) are satisfied. Suppose
(f =+',...,s" = ) beapolygonally connected path from s’ to £ satisfying (iv). By Carroll [12], it
follows that every PLIC mechanism is IC on a line. Hence, y is IC on both (s', s'**) and (s"™, s') for all
1 € {1,...,k —1}. This, together with the facts that f(s') = i and i strictly improves along
(¢ =5',...,s" = £),implies that f(s') = iforeveryl € {1,.. ., k}. Now consider the polygonally
connected path (s, #, £, = s*,... s =) from s tos'. Since this path is polygonally connected, y is IC
on every pair of consecutive typesin (s, !, 2, £ = s*, ... s' = §'), thereby satisfying condition (i) of
Lemma 6.7.3. We show that (s, £, 2, = s, ... | s' = §) satisfies condition (ii) of Lemma 6.7.3. By
condition (i), (i), and (iii) of Claim s.7.1 and the fact that f(s') = iforeveryl € {1, ..., k}, it follows
that condition (ii) of Lemma 6.7.3 is also satisfied. Therefore, by Lemma 6.7.3, we obtain that g is IC on
(s, s'). This completes the proof of the Theorem. [
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Local Incentive Compatibility in Ordinal Type-Spaces

6.1 INTRODUCTION

We consider standard mechanism design problems when agents have quasi linear utility function. There is
a finite set of alternatives and a finite set of agents. Agents’ types are their valuations for the alternatives. A
mechanism is incentive compatible (IC) if it is not possible for any agent to increase his/her (net) utility
by misreporting his/her sincere type in any way. It is locally IC (LIC) if it is not possible for an agent to
increase his/her (net) utility by misreporting to a type that lies in a small “neighborhood” of his/her
sincere type. In other words, LIC is a weakening of IC where IC is required to be satisfied for deviations
within a small neighborhood.

Characterizing all IC mechanisms on a given type-space is an important problem in mechanism design.
However, despite its importance, the structure of IC mechanisms is known only for the case when the
type-space is unrestricted (that is, RII where A is the set of alternatives) (see Lavi et al. [35] for details)
and finding this structure on other type-spaces seem to be a hard problem. As an intermediate step,
researchers have got interested in exploring if the requirement of IC can be reduced considerably." Local

IC (LIC) turns out to be a way.

'For the importance of identifying a minimal set of incentive constraints that imply full incentive compatibility - see discus-
sions in Chapter 7 of Fudenberg and Tirole [23], Armstrong [2] and Chapter 6 in Vohra [50].
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The notion of LIC depends on the notion of neighborhood one intends to consider. Carroll [12]
considered neighborhoods with respect to Euclidean distance. We refer to this notion as pointwise LIC
(PLIC). He showed that if the type-space is convex, then PLIC is equivalent to IC. To the best of our
knowledge, nothing is known about the equivalence of LIC and IC on other type-spaces.

An ordinal domain is a collection of ordinal preferences. In contrast to cardinal environments (that is,
for type-spaces), the relation between LIC and IC is well-explored for ordinal domains (see Kumar et al.
[32] for details). A type represents an ordinal preference if for any two alternatives a and b, a is preferred
to b implies the valuation of a will be higher than b. A type-space is called ordinal if it is induced by an
ordinal domain, that is, it contains all types representing some preference in an ordinal domain.> An
ordinal domain/type-space is strict if it does not admit indifference.

The mechanism design literature generally considers geometric restrictions such as connectedness and
convexity on type-spaces. While these are simplifying technical assumptions, they exclude ordinal
restrictions such as single-peaked or single-crossing or single-dipped preferences that arise in several
economic problems. For instance, in a problem where the location of a public good on a street needs to be
decided, subsidies can be given to the people who reside far away from the chosen location. Similarly, in
determining the budget for infrastructure, industrial development, etc., subsidies can be given to poor
people (or whoever derives relatively lesser externalities from a decision). Barzel [ 8], Stiglitz [49], and
Bearse et al. [9] consider the problem of setting the level of tax rates to provide public funding in the
education sector, and Ireland [29] and Epple and Romano [21] consider the same problem in the health
insurance market.> Our analysis enables one to analyze these problems as a mechanism design problem
with transfers. Mishra et al. [39] explains how single-peakedness arises in a private good scheduling
problem. Some other papers that deal with mechanism design in ordinal type-spaces are Mishra et al.
[38], Carbajal and Miiller [ 11], Mishra et al. [39], etc.

An ordinal domain satisfies ordinal local global equivalence (OLGE) if every locally incentive
compatible social choice function on that domain is incentive compatible. The notion of OLGE is defined
in Kumar et al. [32], where it is shown that a strict ordinal domain is OLGE if and only if it satisfies
“Property L”. Almost all well-known domains such as single-peaked, single-crossing, single-dipped, etc.,
satisfies OLGE. An ordinal type-space satisfies cardinal local global equivalence (CLGE) if every locally
incentive compatible mechanism on that type-space is incentive compatible. We characterize strict CLGE
type-spaces by showing that a strict ordinal domain is OLGE if and only if the corresponding strict
type-space is CLGE. It is worth mentioning that our result applies to type-spaces that are not necessarily

convex, not even connected. The relaxation of connectedness or convexity is not a trivial extension. For

2All the results of this paper also hold if we consider types that are bounded below or bounded above (for instance, non-
negative types).
*Individuals’ preferences are considered to be single-peaked in such scenarios.
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instance, the equivalence of PLIC and IC does not hold on non-connected type-spaces, consequently we
introduce the notion of uniform LIC (ULIC) and establish the equivalence of ULIC and IC on such
type-spaces.

Indifference occurs naturally in preferences, therefore we explore the equivalence of LIC and IC on
ordinal type-spaces admitting indifferences. We introduce the notion of almost everywhere IC. A
mechanism is almost everywhere IC if it is IC outside a set of (Lebesgue) measure zero (thus, such a
mechanism is IC except for some rare (measure zero) situations). We suitably define the notion of LIC to
take care of indifference. We call it strong LIC and provide a necessary and sufficient condition on an
ordinal type-space for the equivalence of strong LIC and almost everywhere IC. The closure of
single-peaked or single-crossing type-spaces, single-plateaued type-spaces, etc., are non-convex
type-spaces that satisfy the necessary and sufficient condition. As a corollary, we establish the equivalence
of PLIC and almost everywhere IC on these type-spaces. To see the novelty of our analysis, note that the
equivalence of PLIC and IC does not hold on such type-spaces (see Example 1 in Mishra et al. [39]), and
that is why it is important to see the extent to which IC can be ensured by PLIC on such non-convex
type-spaces. What our result says is that the said equivalence actually holds but only in an almost
everywhere sense. Mishra et al. [39] consider the same problem for a particular type of mechanisms,
called payments-only mechanisms and show that PLIC and IC are equivalent for such mechanisms. Our
result complements their result by showing that one can drop payment-onlyness by requiring almost
everywhere IC instead of IC.

Finally, we consider the problem of checking whether a given mechanism is IC or not on an arbitrary
ordinal type-space. We show that to ensure IC of a mechanism, apart from checking the local types, one
needs to check only the “boundary types”. Thus, local types and boundary types form a minimal set of
incentive constraints that imply full incentive compatibility. Since the boundary types have Lebesgue
measure zero, this result reduces the complexity of checking whether a mechanism is IC or notin a
considerable manner.

A salient feature of our result is that we deduce them for arbitrary notion of localness. To see the
importance of this framework, note that the notion of localness is very subjective and may vary from
person to person. Not only that, the standard notion of adjacent localness does not apply to
multi-dimensional ordinal domains (See Kumar et al. [32] for details). Our general framework enables

one to apply our results to any such scenario.
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6.2 AN EXAMPLE TO ILLUSTRATE OUR RESULTS

Let there be a finite set of alternatives A. For simplicity, assume A = {a, b, c}. We denote, for instance, by
abc an ordinal preference where a is preferred to b, and b is preferred to c. Consider the following set of
preferences: D = {abc, bac, bca, cba}.* A social choice function (SCF) fon D is a mapping from D to
A3 An SCF fis strategy-proof on a pair of preference (P, P') in D if, when an agent’s true preference is P,
it is not beneficial for him/her to misreport it as P/, that is, if f(P') is either equal to f(P) or worse than f(P)
according to the preference P. An SCF fis strategy-proof on D if it is strategy-proof on every pair of
preferences in D.

Question 1. How can we check if a given SCF f on D is strategy-proof or not?

Answer. Clearly, checking the definition of strategy-proofness for every pair of preferences is time
consuming (exponential in time). Kumar et al. [32] provides a simpler way (that works for arbitrary set of
preferences) to resolve the problem. Let us call two preferences local if they differ minimally, that is,
exactly one pair of alternatives change their relative ranking between the two preferences. For instance,
abc and bac are local, bac and bca are local, etc. We call an SCF local strategy-proof if it is strategy-proof on
every pair of local preferences.

Construct a graph, say G, with vertices as the elements of D where there is an edge between two
preferences if and only if they are local. Kumar et al. [32] shows that if the graph G satisfies a property
called Property L, then every local strategy-proof SCF on D will be strategy-proof.® It is known that the
graph G satisfies Property L and hence to check whether fis strategy-proof or not one needs to check if fis
strategy-proof on every pair of local preferences. This provides a significantly simpler way to check if an
SCF is strategy-proof or not. See Sato [46] and Kumar et al. [32] for more details on the importance of

strategy-proofness over pairs of local preferences. U

What we do in this paper is to consider the cardinal version of the problem. For a preference, say abc,
we denote by T, all utility functions (valuations) that represent the ordinal preference abc, that is, utility
of a is higher than utility of b and utility of b is higher than utility of c. Consider the type-space
T = Tape U Thae U They U Tipp. We will refer the elements of T as types. A mechanism on T'is a pair (f, p)
wheref: T — Aisan SCFand p : T — R is a payment function. A mechanism y = (f, p) is incentive
compatible (IC) on a pair of types (¢, ') in T X T if the net utility (after deducting the payment) at the
type t cannot be strictly increased by misreporting the type as ¢, that s, if t(f(t)) — p(t) > t(f(¢)) — p(¥).
A mechanism is IC on T if it is IC on every pair of typesin T x T.

Question 2. How can we check if a given mechanism y on T'is IC or not?

*Such a set of preferences is called single-peaked with respect to the prior order <:=a < b < con A.
SWe consider one agent model in this paper which is without loss of generality for the problem we deal here.
%See Definition 6.4.2 for the description of Property L.
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Answer. We answer this question by using the approach of local incentive compatibility (LIC). Let us call
two types t and t' local if they represent the same preference or two preferences that are local in D (as we
have defined in answering Question 1). We say that a mechanism y on Tis LIC if it is IC on every pair of
local types in T, that is, y is IC on every pair of types (¢, ') where t,# € Tp U Tp for some local
preferences P and P’ in D. We prove in this paper that if a mechanism on T is LIC, then it will be IC on T.
The novelty of our result is that it explores how the connection between local incentive compatibility
and incentive compatibility extends from ordinal domains to cardinal ones. For a slightly more formal
description of the result, let Dhbean arbitrary collection of preferences and let T be the set of all types

representing preferences in D. We prove that the following two statements are equivalent:
(a) Everylocal strategy-proof SCF (as defined in answering Question 1) on Dis strategy-proof.
(b) Every LIC mechanism (as defined in answering Question 2) on TisIC.

Summarizing, not only we provide a significantly simpler way to check if a mechanism is IC or not, we
establish the connection between ordinal domains and cardinal domains in the context of the implication

oflocal strategy-proofness/incentive compatibility. U

Note that the preferences we have considered so far are strict and consequently the types represented
by them are strict as well. In real life, preferences can be weak (that is, can have indifference), and hence
the types. Since T consists of all (strict) types representing the set of strict preferences D, a type
representing a weak preference compatible with D will lie in the closure of T, which we denote by cI(T).”
Question 3: How can we check if a given mechanism g on ¢l(T) is IC or not?

Answer. Once again we resort to the approach of local incentive compatibility (LIC). Since we need to
take care of the indifference, we mildly strengthen LIC by introducing strong LIC. The strengthening is
natural: we say that a mechanism on c/(T) is strong LIC if it is IC on every pair (¢, ') where

t,t' € cl(Tp U Tp ) for some local preferences P and P’ in D. Verbally speaking, for a strong LIC
mechanism g on cl(T), in addition to y being IC on every pair of local types (as defined in answering
Question 2), p is also IC on pairs of types admitting indifference that are arbitrarily close to some type
belonging to the set of types representing the two local preferences in D. Recall that the notion of LIC
only applies to types that do not admit indifference, hence this mild strengthening of LIC is necessary and
arises naturally.

Incidentally, strong LIC is not strong enough to imply IC. Mishra et al. [39] gives an example of a
strong LIC mechanism on c/(T) that fails to be IC (see Example 1 in Mishra et al. [39]). Therefore, we
proceed to find the extent to which strong LIC ensures IC on cI(T). Our finding is quite assuring: strong

7A weak preference is compatible with a strict preference if the former can be obtained by making some consecutively ranked
alternatives indifferent in the latter.
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LIC implies IC “almost everywhere”. More precisely, we show that if y is strong LIC then it is IC on every
pair (t,¢) where t € c/(T) and ¢ € T. Note that this implies if y is strong LIC then it may fail to be IC
only on pairs (¢, ') where ¢ admits indifference, thatis, ¢ € cI(T) \ T. Since the (Lebesgue) measure of
c(T) \ Tis zero, it justifies that y is indeed almost everywhere IC.

Next, we further push the implication of strong LIC by showing that if y is strong LIC, then it can only
violate IC on a pair (¢, ¢') where ¢, in addition to admitting indifference, belongs to the boundary of cI(T)
(see Remark 6.5.4 for details).

Finally, we provide a quite general result regarding the equivalence between strong LIC and almost

everywhere IC. We characterize all ordinal type-spaces admitting indifference where the said equivalence

holds. U

REMARK 6.2.1 It is worth mentioning that in this paper, we deal with arbitrary notions of localness that are
formulated by means of arbitrary graphs. It is for simplicity we have considered the particular notion of localness

(this is called adjacent localness in the literature) in this section.

6.3 MODEL

We consider a one-agent model in this paper. This is without loss of generality for our analysis.®

Let A be a finite set of alternatives with |A| = n. For any given subset X of R”, by c/(X) we denote the
closure of X. A type tis a mapping from A to R that represents the valuation of each alternative in A. We
view a type as an element of R” (with an arbitrary but fixed indexation of the alternatives). A type t is
strictif t(a) # t(b) foralla, b € A, otherwise it is a weak type.” By relative valuation of an alternative a
with respect to another alternative b at a type t, we mean the number t(a) — t(b). For two types tand ¢/,
we denote the line joining them by [t, #].'° A subset T of R" is called a type-space. An allocation rule is a
mapf: T — Aandapaymentruleisamapp : T — R. A (direct) mechanism y is a pair consisting of an

allocation rule fand a payment rule p.

Definition 6.3.1 A mechanism (f, p) is incentive compatible (IC) on a pair of types (t, s) if

t(f(6)) — p(t) = t(fls)) — p(s)-

It is IC on a type-space T if it is IC on every pair of types (t,s) € T X T.

8All the results of this paper can be generalized to the case of more than one agent in a systematic manner (see Carroll [12],
Mishra et al. [39], etc.).
®Note that strict types are not special cases of weak types.
"®More formally, [t,t] = {(1 — a)t + at’ | a € [0,1]}.
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The relation between LIC and IC is well-studied for social choice functions on ordinal domains (see
Kumar et al. [32] for details); in this paper we extend this study for cardinal environments. In line with
Kumar et al. [32], we consider a general notion of localness represented by means of a graph on an ordinal
domain.

A preference on A is a weak linear order, that is, a complete and transitive binary relation on A. If it is
additionally antisymmetric, it is called a strict preference, otherwise it is called a weak preference.* For a
weak preference R, we denote its strict part by P and the indifference part by I. We denote the set of all
preferences on A by P(A) and the set of all strict preferences on A by 73(A) An ordinal domain D is a
subset of P(A) and a strict ordinal domain D is a subset of 7/5(A)

We deal with type-spaces that have some additional structure. For a type t and a preference R, we say
that t represents R (or Rrepresents t) if forall a, b € A, aRbif and onlyift(a) > t(b). We denote the
preference that a type t represents by prfn(t), and the set of types that a preference R represents by
type(R)."> Similarly, for an ordinal domain D, we denote the set of all types that represent some
preference in the domain by type(D), that is, type(D) = {t € Rl | prfu(t) € D}, and for a type-space
T, the set of all preferences that are represented by some type in T by prfn(T). A type-space T is called
strictif t(a) # t(b) forallt € Tandalla, b € A. We say that T is an ordinal type-space if T = type(D) for
some D C P(A).

Let D be a domain. An ordinal environment is a pair (D, G), where D is an ordinal domain and
G = (D, E) is an (undirected) graph on D. Two preferences in D are called G-local if they form an edge
in G. Apath (P', ..., P") from P' to P is G-local if every two consecutive preferences in it are G-local. An
ordinal environment (D, G) is called strict if D is a collection of strict preferences.

We introduce the notion of cardinal environment in a natural way. A cardinal environment is a pair
(T, G), where T is a type-space and G is an undirected graph on prfn(T). Two types t and ¢’ in T are said
to be G-local if prfn(t) = prfn(¢') or prfn(t) and prfu(t') are G-local. A cardinal environment (T, G) is
called strict if T is a strict type-space.

A mechanism p on a cardinal environment (T, G) is LIC if it is IC on every pair of G-local types, that is,
uisIC on type({R,R'}) N T for all G-local preferences R and R’ in prfn(T).

A social choice function (SCF) on an ordinal domain D is a mapping g : D — A. Itis IC on a pair of
preferences (R, R') if g(R)Rg(R’). An SCF g : D — Ais LIC on an ordinal environment (D, G) if itis IC
on every pair of G-local preferences, and it is IC on D if it is IC on every pair of preferences in D.

An ordinal environment (D, G) is called ordinal local global equivalent (OLGE) if every LIC SCF on

"'Note that strict preferences are not special cases of weak preferences

12All the results of this paper also hold if we weaken the assumption on type(R) to be the set of types that are bounded below
(for instance, non-negative types) or bounded above. More formally, there exists a real number L such that type(R) = {t |
trepresents Rand #(x) > L foreveryx € A} or type(R) = {t | t represents R and t(x) < L foreveryx € A}.
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(D, G)isIC on D. Similarly, a cardinal environment (T, G) is called cardinal local global equivalent
(CLGE) if every LIC mechanism on (T, G) is IC on T.

6.4 A CHARACTERIZATION OF STRICT CLGE TYPE-SPACES

Kumar et al. [32] provide a necessary and sufficient condition for a strict ordinal environment to be
OLGE. We generalize their result for strict cardinal environments. We begin with defining some notions
that are provided in Kumar et al. [32]."

Definition 6.4.1 A pair of alternatives {a, b} has a restoration in a G-local path (P', . . ., P*) if there exist
1 < r <s < t< ksuchthat either [aP"b, bP°a, and aP'b] or [bP"a, aP°b, and bP'al.

Definition 6.4.2 Given a strict ordinal environment (23, G),forP,P' € Danda € A, we say that a G-local
path « from P to P’ satisfies the Lower Contour Set no-restoration property (Property L) with respect to a if for
allb € L(a, P) where L(a,P) = {z € A | aPz} the path = has no {a, b}-restoration.

The strict ordinal environment (D, G) satisfies Property L if for all distinct P, P’ € Dandalla € A, there
exists a G-local path from P to P’ satisfying Property L with respect to a.

The following theorem in Kumar et al. [32] provides a necessary and sufficient condition for a strict

ordinal environment to be OLGE.

Theorem 6.4.3 Kumar et al. [32] A strict ordinal environment (7/)\, G) is OLGE if and only if it satisfies
Property L.

Our next theorem generalizes Theorem 6.4.3 for strict cardinal environments.

Theorem 6.4.4 A strict ordinal environment (73, G) is OLGE if and only if the strict cardinal environment
(type(ﬁ), G) is CLGE.

The proof of this theorem is relegated to Appendix 6.7.1. It follows from Theorem 6.4.3 and Theorem
6.4.4 that a strict cardinal environment (type(ﬁ) , G) is CLGE if and only if ('ZS, G) satisfies Property L.

It is shown in Kumar et al. [ 32] that well-known multi-dimensional ordinal domains such as the
separable domain and the multi-dimensional single-peaked domain are OLGE. It follows from Theorem

6.4.4 that the cardinal environments of these domains are CLGE.

13See Kumar et al. [32] for verbal (and detailed) explanations of these notions.

33



6.4.1 'THE CASE OF ADJACENT LOCALNESS

The main objective of this paper is to characterize ordinal type-spaces so that a restricted version of IC,
called local IC (LIC), becomes equivalent to IC. Although we have presented results for a general notion
of localness by means of graphs, we specifically deal with two particular kinds of localness that are
practically important. A mechanism is point-wise LIC (PLIC) on a type-space T if for every t € T, there
exists an ¢ > o such thatitis IC on (t,s) and (s, t) for every s € T with ||t — s|| < &.'*'® For a given

¢ > o, amechanism on a type-space T'is called e-LIC if it is IC on every pair of types (t,s) € T X T
having (Euclidean) distance less than ¢, that is, forall t,s € T, ||t — s|| < ¢ implies the mechanism is IC
on (t,s). A mechanism is called uniformly LIC (ULIC) if it is e-locally IC for some & > o.

Fact 6.4.1 (Carroll [12]) If a type-space T is convex, then every PLIC mechanism on T is IC on T.

We explain the practical difference between PLIC and ULIC. According to PLIC, one has the freedom
to choose different ¢ for different types, whereas in ULIC one has to chose the same ¢ for all types. If the
infimum value of the ¢’s chosen for different types in case of PLIC is positive, then that value can be taken
as the choice of the ¢ in ULIC, and consequently, the two notions will become equivalent. On other hand,
if the said infimum is zero, then ULIC becomes slightly stronger than PLIC. This slight strengthening of
PLIC widens its applicability. To see this, consider the situation where there are just two alternatives, say
a and b, and the type-spaceis T = {t € R* | t(a) # t(b) }. Thus, T is disconnected and can be written as
a union of two disjoint open spaces T" = {t € R* | f(a) < t(b)} and T> = {t € R* | t(a) > t(b)}. In
such situations, one can define neighborhoods of the points in T" such that none of them intersects 17,
and those of the points in T* such that none of them intersects T". Thus, PLIC with such neighborhoods
does not put any constraint on a pair of types (s, t) where s € T" and t € T?, and consequently, cannot
imply IC on T. However, ULIC imposes IC on certain pairs of types (sufficiently close ones) that are on
the other sides of the boundary of T* and T%, and thereby retains the “possibility” of implying IC on T. In
fact, as we show in this paper, ULIC indeed implies IC on T.

It is worth mentioning that ULIC is as useful as PLIC for practical purposes. In reality, if one wants to
check (by means of a program/device) whether some mechanism is LIC or not, he/she can only check it
for some given neighborhood of each type, not for a sequence of neighborhoods whose size converges to
zero.

In this subsection, we deal with a specific case where the notion of localness for the ordinal
environment is “adjacency” and that for the cardinal environment is a weaker version of ULIC which we

call adjusted LIC.

“We denote the Euclidean norm of a vector t € R” by ||¢]|.
15The notion of PLIC is introduced in Carroll [12].
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For some 1 < k < n, we denote the k-th ranked alternative of a strict preference P by P(k). Two strict
preferences P and P’ are said to be adjacent local if they differ by the ranking of two consecutively ranked
alternatives, that is, there is1 < k < nsuch that P(k) = P'(k + 1), P(k + 1) = P/(k), and P(I) = P/(I) for
alll ¢ {k, k + 1}. We write G* when localness is defined by adjacency, that is, there is an edge between P
and P’ in G* if and only if P and P’ are adjacent.

A mechanism y is said to be adjusted LIC (ALIC) on a strict type-space Tif (i) for every type t in T,
there is a neighborhood around ¢ such that y is IC on both (¢, s) and (s, t) for all types s in that
neighborhood, and (ii) for every type ¢ that lies on the boundary of T (thatis,in cl(T) \ T), thereisa
neighborhood of £ such that y is IC on every pair of strict types in that neighborhood.

Part (i) of the definition of ALIC is the same as PLIC. As we have explained in the beginning of this
subsection, PLIC (with suitably chosen arbitrarily small neighborhoods) is unable to “spread” IC between
two components of a disconnected type-space. Part (ii) of the definition of ALIC ensures the said spread
in a natural way: it requires IC for types that are arbitrarily close but on the opposite sides of the boundary
of the strict type-space. It does this by considering an arbitrary neighborhood of a type that lies on the
boundary of T (and hence not in T') and requiring IC for all pairs of types of T in this neighborhood.

Definition 6.4.5 A mechanism y on a strict type-space T is said to adjusted locally IC (ALIC) if it is PLIC
and for every t € cl(T) \ T, there exists an open neighborhood N(t) C cl(T) of t such that for all
.t € N(t) T, wis ICon (¢, ).

The following corollary is obtained from Theorem 6.4.4.

Corollary 6.4.1 If a strict ordinal environment (7/)\, G*d) is OLGE, then a mechanism on type('ﬁ) is IC if and
only if it is ALIC.

The proof of this corollary is relegated to Appendix 6.7.2.
Since ULIC implies ALIC by definition, it follows from Corollary 6.4.1 that if a strict ordinal
environment satisfies OLGE with respect to adjacency localness, then ULIC and IC are equivalent on its

cardinal version.

Corollary 6.4.2 If a strict ordinal environment (ﬁ, G*?) is OLGE, then a mechanism on type(ﬁ) is IC if and
only if it is ULIC.

A large class of strict ordinal environments of practical importance, such as single-peaked,
single-dipped, single-crossing, etc., are OLGE with respect to the adjacency localness.'® Corollary 6.4.1
implies that ALIC (and hence, ULIC) and IC are equivalent on their corresponding type-spaces. It should

be noted that PLIC and IC are not equivalent on these type-spaces as the type-spaces are not connected.

16For the definition of these domains see Mishra et al. [39] and Carroll [12].

85



6.5 ORDINAL DOMAINS ADMITIING INDIFFERENCE

In this section, we consider ordinal environments admitting indifference where local structure is given by
means of a graph over the strict preferences. Since in such an environment, LIC does not impose any
restriction on weak preferences, it cannot ensure IC on the whole domain as well. So, we impose
additional requirements on weak preferences in order to ensure IC.

For an ordinal domain D, we denote its maximal strict ordinal subset by strict(D), that is,
strict(D) = {P € D | Pis a strict preference}.

In order to generalize Theorem 6.4.4 for ordinal domains allowing indifferences, we introduce the
notion of weak-compatibility. For a weak preference R, we say a strict preference P is compatible with R if
aPb implies aPb for all a, b € A. For instance, if R = [ab]c[delf, then the following preferences are
compatible with R: abcdef, abcedf, bacdef, and bacedf.'” Weak compatibility says that for every weak
preference R in D, there exists a strict preference in D that is compatible with R.

Let D be an ordinal domain. Let G be an (undirected) graph on strict(D). A mechanism y is strong
LIC on the cardinal environment (type(D), G) if it is LIC, and additionally IC on every pair of types (£, t)
such that there is P € strict(D) so that tis a strict type in type(P) and tis a weak type in
cl(type(P)) N type(D).

Now, we introduce the notion of almost everywhere IC. We use the following notation to ease the
presentation. For a type-space T, we denote its maximal strict subset by strict(T), that is,
strict(T) = {t € T | t(a) # t(b) forall distinct a,b € A}. A mechanism on a type-space T is almost
everywhere IC, if it is IC on every pair of types in T X strict(T). Thus, an almost everywhere IC
mechanism might fail to become IC on a pair of types (¢, f) only if  is a weak type that lies in T. Since the
(Lebesgue) measure of the set T \ strict(T) is zero, the measure (in the product space) of the set of pairs
on which an almost everywhere IC mechanism may fail to be IC is also zero, which justifies the name.
Note that almost everywhere IC implies strong LIC by definition.

As we have mentioned in Subsection 6.5.1, the equivalence between strong LIC and IC does not hold
on ordinal type-spaces admitting indifference. Our next theorem establishes the extent to which IC is

implied by strong LIC. It turns out that strong LIC implies IC “almost everywhere”.

Theorem 6.5.1 Let D be an ordinal domain. Then, the following two statements are equivalent.
(i) Every strong LIC mechanism on the environment (type(D), G) is almost everywhere IC.

(i) The domain D satisfies weak-compatibility and the environment (strict(D), G) is OLGE.

7By [ab]c, we denote a weak preference where a and b are indifferent, and are preferred to c. Similarly by abc, we denote a
strict preference where a is preferred b, and b is preferred to c.
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The proof of this theorem is relegated to Appendix 6.7.3.

6.5.1 CLOSURE OF TYPE-SPACES OF STRICT ORDINAL DOMAINS

Let D be a strict ordinal domain and let cl(type(ﬁ)) be the closure of type(ﬁ). Since cl(type(ﬁ)) is
closed, Part (ii) of Definition 6.4.5 is vacuously true, and consequently, the notion of ALIC boils down to
that of PLIC. However, Corollary 6.4.1 does not hold anymore, that is, PLIC does not imply IC on

cl (type(ﬁ)) (see Example 1 in Mishra et al. [39] for details). It is worth mentioning that PLIC implies
strong LIC in adjacency environments.'® Therefore the equivalence of strong LIC and IC cannot hold in
such environments. The following corollary, which is obtained from Theorem 6.5.1, says that a version of

Corollary 6.4.1 holds if we weaken IC by almost everywhere IC.

Corollary 6.5.1 If a strict ordinal environment (ﬁ, G*) is OLGE, then every PLIC mechanism on

~

cl(type(D)) is almost everywhere IC.

The proof of this corollary is relegated to Appendix 6.7.4.
Corollary 6.5.1 applies to closure of single-peaked or single-crossing type-spaces or single-plateaued

type-spaces.’® Corollary 6.5.1 also applies to closure of single-peaked domain on a tree (Demange [20]).

6.5.2 LICvs. IC FOR A GIVEN MECHANISM

Having a characterization of ordinal type-spaces such that the equivalence of strong LIC and almost
everywhere IC holds, the next natural step is to look at the extent to which we can push the almost
everywhere IC property on such type-spaces. As discussed earlier, an almost everywhere IC mechanism
might fail to be IC only on the pairs (¢, ) where f is a weak type in the type-space.”® We show that if tis a
weak type lying in the interior of the type-space, then such mechanisms are bound to be IC on pairs (t, £).
Hence, we establish the fact that an almost everywhere IC mechanism might fail to be IC only on the pairs
(t, ) where ¢ is a weak type lying on the boundary of the type-space, thereby modifying our previous
result. We further identify the possible outcomes of a given mechanism at such a weak type f (that is, we
identify possible values of f(f)) such that the mechanism is IC on pairs (¢, £).

Foraset T C R", by T’ we denote the interior of the set T, that is,
T° = {t € T | there exists ¢ > o such thats € T for everyswith d(t,s) < ¢}. By OT we denote the
points in T that lie on the boundary of T, that is, T =T \ T°.

!8For a formal proof, see the proof of Corollary 6.5.1.
!9For the definition of single-plateau domain see Berga [ 10].
2%We use t here to denote a generic element of the type-space.
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Theorem 6.5.2 Let a strict ordinal environment (ﬁ, G*) be OLGE and let T = cl(type(ﬁ)). Suppose p is
an arbitrary PLIC mechanism on T. Then,

(i) wisIConT X T° and

(i) wisICon T x {t} forallt € OT such that there exists P € D witht € cl (type(P)) and f(t) Pz for every

zwith t(f(t)) = t(z).
The proof of this theorem is relegated to Appendix 6.7.5.

REMARK 6.5.3 For simplicity we present Theorem 6.5.2 for adjacent localness and PLIC mechanisms but it

can be suitably formulated for arbitrary notion of localness and strong LIC mechanisms.

REMARK 6.5.4 Example 1 in Mishra et al. [39] presents a single-peaked type-space cl(T) (as described in
Section 6.2) where they construct a PLIC mechanism that fails to be IC. It follows from part (i) of Theorem 6.5.2
in our paper that a PLIC mechanism on such a type-space T can violate IC only on types lying in T X OT. For
such a violation on any pair of types (t, t'), it must be the case that t' lie in either type(c[ba]) or type(a[bc|).** It
further follows from part(ii) of Theorem 6.5.2 that the outcome at type t' must be either a if ' € type(c[ba]) or c
ift € type(albcl). Thus, the counter example (Example 1 in Mishra et al. [39]) was the only way (upto

symmetry) to construct a PLIC mechanism that violates IC.

6.6 DISCUSSION: A STRONGER VERSION OF THEOREM 6.4.4

The statement of Theorem 6.4.4 requires all types to be present for each ordinal preference. Since
requiring all types representing an ordinal preference might be restrictive for practical applications, we
extract out the types, the presence of which is sufficient for the proof of Theorem 6.4.4. The objective is to
emphasize that Theorem 6.4.4 holds for much weaker environments rather than just strict ordinal
type-spaces.

We introduce a property called L for a cardinal environment and show that any cardinal environment
satisfying this property is CLGE. Property L is a suitable adaptation of Property L for cardinal
environments. Thus, instead of providing a sufficient condition on an ordinal domain to ensure CLGE on
its corresponding type-space, we provide a sufficient condition on a strict type-space directly.

We say an alternative a overtakes another alternative b from a strict preference P to another strict
preference P’ if bPa and aP’b. Recall that Property L says that between any two strict preferences P and P’
and any alternative g, there exists a local path « from P to P’ such that forall b € L(a, P) the path 7 has no

{a, b}-restoration. Below, we introduce the cardinal version of Property L, which we call Property L.

*IRecall that by c[ba], we denote a weak preference where c is preferred to both a and b, and a and b are indifferent.
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Definition 6.6.1 A strict cardinal environment (T, G) satisfies Property L if forall t,f € T and alla € A,
there exists a G-local path (P', . . ., P*) in prfn(T) with P' € prfn(t) and P* € prfa(t') satisfying Property L
with respect to a such that for all | < k and all ' € type(P*") N T, there exists t' € type(P') N T such that

(i) t(a) — t(x) > 7 (a) — £ (x) for all x that a does not overtake from P' to P, and
(i) £(a) — t(y) > t(a) — t(y) for all y that a overtakes from P" to P,
Theorem 6.6.2 A strict cardinal environment (T, G) is CLGE if T satisfies Property L.

The proof of this theorem follows by using similar arguments as in the proof of Theorem 6.4.4.

6.7 APPENDIX

Before we begin the proofs, we note some facts below regarding the IC property. Facts 6.7.1 and 6.7.2
follow from the definition of IC property.

Fact 6.7.1 Suppose that a mechanism (f, p) is IC on both pairs of types (t,s) and (s, t). Suppose further that

f€) = f(s). Then, p(t) = p(s)-

Fact 6.7.2 Suppose that a mechanism (f, p) is IC on both pairs of types (t, s) and (s, t). Suppose further that

the relative valuation of f(t) with respect to some alternative a is increased from t to s, that is,

s(f(t)) = s(a) > t(f(t)) — t{a). Then, f(s) # a

Our next fact provides a sufficient condition for a mechanism to be IC on a pair of types based on its IC
property over a sequence of types. This fact was first used in Kumar and Roy [31]; see Appendix A.1 of

the paper for a formal proof.

Fact 6.7.3 A mechanism y = (f, p) on a type-space T is IC on a pair of types (t,t') if there is a finite sequence
of types (t = t', ..., t* = ') in T such that for all | < k,

(i) wisICon (£, £1), and

(i) £ (f(E4)) — £(f(£)) < £(f(ET)) — £(A(F)).

6.7.1 PROOF OF THEOREM 6.4.4

Proof: If part: The proof of the if part is rather straightforward; we provide it for the sake of completeness.
Let (type('ﬁ) , G) be a CLGE strict cardinal environment. We show that (ﬁ, G) is OLGE. Suppose not.
Then there exists an SCF ¢ : D — Athatis LIC on (75, G) but fails to be IC on D. Therefore, there exists
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P,P' € Dandx, y € Asuchthat ¢(P') = x,y = ¢(P), and xPy. We complete the proof of the if part by
constructing a mechanism (f, p) that is LIC on (type(ﬁ) , G) but fails to be IC on type(i)\) , which will
lead to a contradiction to the fact that (type(ﬁ) , G) is CLGE.

Define f(s) = ¢(prfn(s)) and p(s) = oforalls € type(ﬁ). The fact that (f, p) is LIC on (type(ﬁ), G)
follows straightforwardly from the definition of G-local types and the fact that ¢ is LIC on (ﬁ, G). Fixany
t € type(P) and ¢’ € type(P’). By the definition of f, f(t) = y and f(t') = «. This, together with the facts
that xPy and p(t) = o = p(t'), implies that £(f(t)) — p(t) < t(f(')) — p(¢), and hence, it follows that
(f,p) isnot IC on (¢, ), a contradiction. This completes the proof of the if part of the theorem.

Only if part: Let (i)\ G) be an OLGE strict ordinal environment. We show that the environment
(type('D) G) is CLGE. Let (f, p) be an LIC mechanism on (type(D) G). We need to show that (f, p) is
IC on type('D).

Consider arbitrary t, ¢ € type(ﬁ). By the definition of type(ﬁ) , there are P, P’ € D such that
t € type(P) and ¢’ € type(P’). Without loss of generality, let us assume that the alternatives in A are
indexed asa,, .. ., a, such that a,Pa,P . . . Pa,. Suppose f(') = a; for somej € {1,...,n}. We proceed to
show that (f, p) isIC on (¢, ).

If P = P/, then tand ¢ are G-local types, and hence the proof follows by the assumption of the theorem
that (f, p) is IC on every pair of G-local types. So, assume P # P'. Since (13, G) is OLGE, by Theorem
6.4.3, it satisfies Property L. This, together with the fact that (') = a;, implies that there exists a G-local
pathr = (P!, ..., P*) from P to P’ satisfying Property L with respect to a;. Since 7 has no

(a;, x)-restoration forall x € {aj4,, ..., a,}, it follows that
L(a;,P")\ {a,,...,a.} CL(a;,P)\ {a,,...,a_,}foralll € {1,... .k —1}.
Let], > 1be the minimum number with the property that foreach ! € {I, +1,.. ., k} there exist

t € type(P') such that f(#) = a;. Note that such an [, will always existas f(#) = a;and ¢’ € type(P*).
Claim 1. There exists ' € type(P"™*) such thatf(#) = f(f) = a;and p(#') = p(¥).
Proof of Claim 1. By the definition of I, foreachl € {I, +1,.. ., k} there exist € type(P') such that
f(#) = a;. Now we show that p(#) = p(¥) foreachl € {I, +1,. .., k}. First we show that p(£™*) = p(¥).
Since Pk and P*' are G-local preferences and (f, p) is LIC on (type( ) G), (f,p) isIC on
type({P*, P*7'}), and hence, is IC on (£, ') and (¥, £7*). Since f(*™*) = f(), the fact that
p(£71) = p(¥) now follows from Fact 6.7.1. By using this argument repeatedly, it follows that for all
le{l,+1,...,k},p(f) = p(f). Set "™ = £ This completes the proof of the claim. 0
Also note that since f(') = f(f') = a;and p(t') = p(t), by the definition of incentive compatibility it
follows that (f, p) is IC on (', ).
If ], = 1, then by Claim 1, there exists ' in type(P*) such that f(#') = f(f) = a;and p(#') = p(t'). Since
t € type(P), t € type(P*),and (f, p) is IC on type({P = P', P*}), it follows that
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t(f(t)) — p(t) > t(f(t')) — p(#). Since f(') = f(¢') and p(£') = p(t'), this implies
t(f(t)) — p(t) > t(f(f)) — p(¢), which shows that (f, p) is IC on (¢, ') thereby completing the proof of
the Theorem.

Suppose I, > 1. Then by Claim 1 there exists £* € type(P*™) such that f(#') = () = a;and
p(t) = p(¥). We proceed to Step 1.
Step 1. In this step, we show thatif [, > 1, then there exists £ € type(P") such that () € {a,,...,a;_,}
and 2(f(#)) — £(f(£)) = t(f(#)) — t(AF)).

Since [, > 1, by the definition of ],, we must have f(s) # a; forall s € type(P").22
Claim 2. L(a;, P"™*) & L(a;, P").
Proof of Claim 2. Assume for contradiction that L(a;, P***) C L(a;, P*). Consider a type t* € type(P")
such that t(a;) — t*(x) > '(a;) — £'(x) forallx € A\ {a;}. Such a type can be found since
L(aj, P***) C L(a;, P"). Since P" and P"** are G-local preferences, (f, p) is IC on type(P", P"**), and
hence,is IC on (#, #') and (#, t+). This, together with the facts that ' (a;) — t(x) > #(a;) — () forall
x € A\ {a;} andf(#') = aj, implies that f(th) = a;. This leads to a contradiction to the fact that
f(s) # ajforalls € type(P"). This completes the proof of the claim. [J

Since L(a;, P"™*) € L(a;, P"), it must be that a;P"a; and a;P"*'a; for some | € {1,...,n}. Let
B, = {a | aP"a;and a;P"™a;}. Note that since L(a;, P"*) \ {a,,...,a;_,} C L(a;,P") \ {a,,...,q_,},
we must have B, C {a,, ..., a;_,}. Choose £* € type(P") such that

(i) £(a) — £(x) > #(a;) — £'(x) forallx € A\ B, and
(i) £(a;) — £(y) > t(a;) — t(y) forally € B,.

We explain how such a choice of £ is possible. Note that (i) implies that the relative valuation of a; with
respect to each alternative in A \ B, is increased from £ to 2. This can be assured by the fact that there is
noz € A\ B, such that zP"q; and a;P"*'z. Similarly, (ii) can be assured by means of the fact that the
relative ordering of a; with any alternative in B, is the same in both P and P".

Since (f, p) is IC on type({P", P***}) and f(s) # a; for alls € type(P"), (i) implies that () € B,. This,
together with (ii) and the fact that a; = f(#'), implies that £ (f(£')) — £(f(£*)) > t(f(#')) — t(f(£)). This
completes Step 1. U

Note that since £ € type(P"), * € type(P"™*) and P" and P"** are G-local preferences, (f, p) is IC on
(£, ).

We now complete the proof of the Theorem by using Step 1 recursively. Let f(£) = b,, where
b, € {a,..., aj,l}. Since (23, G) is OLGE, by Theorem 6.4.3, it satisfies Property L. This, together with

22QOtherwise I, — 1 would satisfy the requirement of the definition of ], contradicting the fact that /, is the minimum number
satisfying this requirement.
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the fact that f(#*) = b,, implies there exists a G-local path (P', . . ., P") from P to P" satisfying Property L
with respect to b,.

Let I, > 1be the minimum number with the property that foreach ! € {I, 4+ 1,. .., r} there exist
t' € type(P") such that f(#) = b,. Note that such an L, will always exist as f(*) = b, and £ € type(P").

Using similar logic as in Claim 1, it follows that there exists £ € type(P>*") such that () = f(#) = b,
and p(£) = p(#). This, together with the definition of incentive compatibility implies that (f, p) is IC on
)

IfI, = 1, we have € type(P?) such that f(#) = f(£) = b, and p(#) = p(£). Since t € type(P),
B € type(P*),and (f, p) is IC on type({P = P*, P*}), it follows that t(f(t)) — p(t) > t(f(#)) — p(P).
Since f(£) = f(£) and p(£) = p(#), this implies t(f(t)) — p(t) > t(f(£)) — p(£), which shows that (f, p)
is IC on (¢, ). Hence we have a finite sequence of types (¢, £, #', ') such that (f, p) is IC on (t, #), (£, ')
and (£, ). Therefore the sequence of types (¢, £, ', ') satisfies condition (i) of Fact 6.7.3. Further note
that since f(t') = f(t'), the fact that £ ((t')) — £(f(£')) > t(f(t')) — t(f(f')) is trivially satisfied (both sides
being o). This, together with step 1 implies that we have

) £(f(#) — £(#)) = t(f(#)) — t(f(F)), and

(i) #(f(t)) — £ (f(#)) = Hf(t)) — OfE).

Hence the sequence of types (t, 2, £', ') satisfies condition (ii) of Fact 6.7.3. Therefore, by Fact 6.7.3, it
follows that (f, p) is IC on (¢, ') thereby completing the proof of the Theorem.

Suppose [, > 1. Then, by using similar logic as in Step 1, there exists #* € type(P") such that
f(#) € U(b,, P) where U(b,, P) = {z € A | zPb,} and #*(f(£) — t(f(#*)) > t{f(£)) — t{f(#*)).

Continuing in this manner, either we end up showing (f, p) is IC on (¢, ') or we can construct a finite
sequence (£, £47' ...t B, £, 1) such that

(i) ¥/ and 77" are G-local types forallj € {1,...,u},

(ii) f(#) = b, forallj € {1,...,u},

(iii) b, (j+.)Pb,; forallj € {1,...,u —1},

(iv) (™) = f(#) and p(£/T) = p(#/) forallj € {1,...,u —1},and

W) E(fE) — () > ) — t{f(#)) forallj € {1,...,u}.

Since b, (1, Pb,; forallj € {1,...,u — 1} and the process has not terminated, it must be that
f(F*) = a, = r,(P). Let £* € type(P) for some P" € D. Since (13, G) is OLGE and f(£*) = a,, by
Theorem 6.4.3, there must exist a G-local path w = (P', ..., P*) from P to P" satisfying Property L with
respect to a,. This means L(a,, P'"') C L(a,, P') foralll € {1,...,w —1}.
Claim 3. (f, p) is IC on (¢, £*).
Proof of Claim 3. Using similar logic as in the proof of Claim 2 (by using w in place of |, + 1, w — 1in

place of |, and g, in place of ;), it follow that there exists " € {(P*™") such that f(#'*) = a, = f(£*).
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The fact that p(#*~*) = p(£**) now follows from Fact 6.7.1.

By using this fact repeatedly, it follows that forall ] € {2,...,w — 2}, there exists € type(P') such
that f(¢) = a, = f(£*) and p(¢) = p(£*), which in particular means that there exists £* € type(P*) such
that f(£*) = f(#*) = a, and p(£) = p(£*). Since t € type(P), € type(P*),and (f, p) is IC on
type({P = P', P*}), it follows that t(f(t)) — p(t) > t(f(£)) — p(£). Since f(£*) = f(F*) = a, and
p(£) = p(£*), this implies t(f(t)) — p(t) > t((£*)) — p(£*), which shows that (f, p) is IC on (¢, £*) thus
proving the claim. O

Now we show that (f, p) is IC on (¢, #'). Consider the sequence of types (t, £, 7' ... B, £ £, 1).
By construction, (f, p) is IC on each pair of consecutive types, and hence, the sequence of types
(t, 4 8“7, ... ¢4 B, B 1) satisfies condition (i) of Fact 6.7.3. Moreover, since f(£) = f(#/) for all
j€{1,...,u—1},itfollows that /" (f(#)) — /T (A(FT)) = 0 > o = t{f(#)) — t(A(#'™)) forall
j € {1,...,u— 1}. Similarly, since f(#') = f(¢'), it follows that
£(f(Y)) — £(f(£)) = 0 > o = t(f(f)) — t(f(f')). These, together with the fact that
) — () > t((#F)) — t(f(F)) forallj € {1,...,u},imply that the sequence of types
(t, 8% 8“7 ...t B, 1, 1) satisfies condition (ii) of Fact 6.7.3. Hence, by Fact 6.7.3, it follows that
(f,p) isIC on (¢, '), which completes the proof of the only if part of Theorem.

6.7.2 PROOF OF COROLLARY 6.4.1

Proof: 1C implies ALIC by definition, we show the converse. Consider an ALIC mechanism y = (f, p) on
type(ﬁ). We show that y is IC. It follows from Theorem 6.4.4 that the cardinal environment

(type(ﬁ), G*?) is CLGE. Therefore, to show that g is IC, it is sufficient to show that it is IC on any pair of
G*@-local types. Consider two G*-local types t and ¢, and the line [t, ¢]. Let Pand P’ (not necessarily
distinct), respectively, be the adjacent preferences that t and ' represent. Since P and P’ are adjacent, there
will be at most one point in the line [t, #] that does not lie in type(ﬁ). Such a point (or type) will lie on the
boundary of type(P) and type(P’) and will represent some weak preference and hence outside the domain
D. Let t* be that point (if it exists). By means of ALIC, we can choose fand t in type(ﬁ) N [t, ] such that
wisIC on (£, t) and (£, f), and the lines [t, ] and [t, '] lie in type(@). These, together with Fact 6.4.1 and
the fact that implications of ALIC and PLIC are the same in the interior of a type-space, implies that y is
IC on any two types of the sequence (t,t, t, ¢'). Let us rename the sequence (¢, f,t, ) as
(t=1tt=1t,t=8,¢ = t*). Note that the sequence (£, £, £, t*) satisfies Condition (i) of Fact 6.7.3
because of the fact that y is IC on any two consecutive types of the sequence. Let f(#) = a' for each

i€ {1, 2,3, 4}.
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Claim. (#, £, £, t*) satisfies Condition (ii) of Fact 6.7.3.

Proof of the claim. Since y is IC on any two consecutive types of the sequence (t', £, £, t*),

t(a') — t(a™) > t7(d) — £(a') foreveryi € {1,2,3}. (6.1)

We need to show that #(a"™*) — #(a’) > #'(a'") — #'(a') foralli € {1, 2,3} which would then establish
that (', £, £, t*) satisfies Condition (ii) of Fact 6.7.3. Since (t = #', ..., t* = t) is a finite sequence of
typesin [t, ¢'], there existso = B, < , < B, < B, = 1suchthatt = (1— f)t' + Bt* foralli € {1,2,3}.

Fixanyi € {1,2,3}. By (6.1), we have
f(a) — £(a™) > #(d) — (). (6.2)

Substituting ' = (1 — B,)t' + Bt* and £ = (1 — B, )t' + B, t*in (6.2), we get

i

ta) — (@) + Bl(¢1(a) — (™)) — (£(a) — £(@™))]
i i+1 4 i 4( it i i+1 (6.3)
> #(a) =) + B, [(#(a) = (™)) = (F(a) = £(a™))].
Since B, < B, ,, from (6.3) we conclude that
(#(a) = #(a"™)) = (£(a) = £(a™)) <o (6.4)
Substituting ' = (1 — B,)t' + ,t*int'(a™) — £(a’), we get
t(a™) — () = (L= B)(£(a™) — £(a) + B(¢(a"™) — £*(a)). (6:5)
Since B, > o, (6.4) and (6.5) together imply t'(a’*") — t'(a’) < #(a™"") — #(a’). This implies that
(£, 8, £, t*) satisfies Condition (ii) of Fact 6.7.3 which completes the proof of the claim. U

Therefore, by applying Fact 6.7.3 to the sequence (', £*, £, *), we obtain that y is IC on (t, ¢’). This
completes the proof of the corollary. |

6.7.3 PROOF OF THEOREM 6.5.1

Proof:[Proof of (i) implies (ii) ] Suppose (i) holds but (ii) does not hold. Since (ii) does not hold, either
the domain D does not satisfy weak-compatibility or the environment (strict(D), G) is not OLGE. We
distinguish these two cases.

Case A. Suppose that the domain D does not satisfy weak-compatibility.
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Since D does not satisfy weak-compatibility, there exists a weak preference R € D for which there is no
strict preference in strict(D) that is compatible with R. First, note that R cannot be indifferent over all the
alternatives in A, that is, it is not possible that alb for all a, b € A. This is because, if R is so, then any strict
preference in strict(D) (recall that strict(D) # () by our assumption) is compatible with R. So, let us
assume that aPb for some a, b € A.

Consider the mechanism y = (f, p) such that f(t) = b forallt € type(R) and f(t) = a for all other
types, and p(t) = o forall t € type(D). We claim that this mechanism is strong LIC but not almost
everywhere IC.

Since both fand p are constant (equal to a and o, respectively) over all strict types in type(D), the
mechanism y is LIC. To see that g is strong LIC, consider any pair of types (£, t) where tis a strict type in
type(P*) and t is a weak type in cl(type(P*)) N type(D) for some P* € strict(D). Since there is no strict
preference in strict(D) that is compatible with R, we have ¢ type(R).

By the construction of f, this means f(f) = f(t) = a. This, together with the fact that the payment
function is constant everywhere (equal to o), implies that g is IC on (£, t). Therefore, y is strong LIC.
Finally, we show that g is not almost everywhere IC. Consider any type t in type(R) and any strict type tin
type(D). By the definition of f, we have f(f) = b and f(i) = a. Since aPb, we have t(a) > #(b). This,
together with the fact that p(£) = p(i) = o, implies t(f(t)) — p(t) < ?(f(i)) — p(i) , and hence, y is not IC
on the pair (£, ?f) Since s a strict type in type(D), this means y is not almost everywhere IC, which is a
contradiction to (i). This completes the proof for Case A.

Case B. Suppose that the environment (strict(D), G) is not OLGE.

Since the environment (strict(D), G) is not OLGE, there is an SCF g on strict(D) that is LIC on
(strict(D), G) but not IC. Let P and P’ be two preferences in strict(D) on which g fails to be IC, that is,
«(P)Pg(P).

In what follows, we construct a mechanism y = (f, p) that is strong LIC on (type(D), G) but not IC,
and thereby arrive at a contradiction to (i). Consider a strict type t € type(D). Define f(t) = g(prfa(t)).
This is well-defined as there is a unique prfn(t) in D for such strict types t. Next, consider a weak type
and consider the (strict) preferences in D that is compatible with the weak preference that represent £,
that is, the preferences P(t) = {P € strict(D) | P is compatible with prfn(f) }. Let P* € P (%) be such
that #(g(P*)) > #(g(P)) forall P € P(f). Define f(f) = g(P*). Take the payment function p to be
identically zero, that is, p(t) = o forall t € type(D).

Since gis not IC on (P, P'), by the definition, g is not IC on any pair of types (¢, ¢') such that
t € type(P) and t € type(P’). Therefore, y is not almost everywhere IC. We claim that the mechanism y is
strong LIC. The fact that y is LIC follows from the fact that g is LIC. To see that y is IC on every pair of
types (£, t) where ¢ is a strict type in type(P) and tis a weak type in cl(type(P)) N type(D) for some (strict)
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preference P € D, consider such a pair of types (£, £). We need to show #(f(£)) > #(f(t)). Since tis a strict
type, by the definition of f, f(t) = g(P). Moreover, since tis a weak type and P is compatible with the weak
preference that represent f, by the definition of f, we have £(f()) > #(g(P)). Combining these
observations, we obtain t(f(f)) > #(f(t)). This shows that the mechanism  is strong LIC, completing the

proof by contradicting (i).

Proof of (ii) implies (i): Consider an OLGE environment (strict(D), G) such that D satisfies
weak-compatibility. We show that every strong LIC mechanism on (type(D), G) is almost everywhere IC.
Consider a strong LIC mechanism y = (f, p). To show that it is almost everywhere IC, we need to show
that it is IC on every pair of types (¢, t) where tis a strict type in type(D). Fix any pair of types (t, t) such
that t is a strict type in type(D). We distinguish two cases based on the structure of t.

Case 1. Suppose tis a strict type.

Since (strict(D), G) OLGE, by Theorem 6.4.4, the environment (type(strict(D)), G) is CLGE. This
means every LIC mechanism on (type(strict(D)), G) is IC. Since strong LIC implies LIC, it follows that y
is IC on type(strict(D)), and in particular, IC on (t, t). This completes the proof for Case 1.

Case 2. Suppose tis a weak type.

For notational convenience, let us denote ¢ by . If t is such that £(x) = £(y) for every x,y € A, then
t € cl(type(prfn(t))) N type(D). Since y is strong LIC, u is IC on (£, t), which completes the proof of the
theorem. Now assume that f(x) # t(y) for some x,y € A.

Let P* be a strict preference in D that is compatible with the weak preference representing ¢. Such a
preference exists since D satisfies the weak-compatibility property. Let B be the set of alternatives that
have the same valuation as f(t) in t, and are preferred to f(t) in P*, that is,
B={be A|tb)=t(f(t) and bP*f(t) }. Notice that since {(x) # t(y) for some x,y € A,
A\ (BU()) # 0. Let T be the set of types ? representing the preference P* such that the relative
valuation of f(t) with respect to any alternative in A \ (B U f(t)) strictly increases from £ to £, that is,
T = {t € type(P*) | H(f(})) — {(z) > H(f(})) — t(z) forallz € A\ (BUf(1))}. Since P* is a strict
preference that is compatible with the weak preference representing fand A \ (B U f(t)) # (), we have
T # (). We distinguish two further subcases.
Case 2.1. Suppose that there exists t € T such that f(t) ¢ B.

Since f(t) ¢ B, by the definition T, we have

Hf(D) — €f(D) = (A1) — H(f(8). (6.6)

where the equality holds only when f(t) = f(t). Consider the sequence (£, t, ). We apply Fact 6.7.3 to this
sequence. Since t is a strict type in type(P*) and t is a weak type in cl(type(P*)) N type(D) and y is strong
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LIC, uis IC on (%, t). Moreover, since both t and t are strict types, by Case 1, it follows that y is IC on (£, t).
Thus, y is IC on both the pairs (%, t) and (£, t), and thereby satisfies the Condition (i) of Fact 6.7.3.
Furthermore, Condition (ii) of Fact 6.7.3 follows from (6.6). Therefore, the sequence (%, t, ) satisfies the
conditions of Fact 6.7.3 and hence y is IC on (£, t). This completes the proof for Case 2.1.

Case 2.2. Suppose that Case 2.1 does not hold, that s, for all € T, we have f(t) € B.

Let B be the set of outcomes of fon i that is, B= {f(f) | te T} Let b be the worst alternative in B
according to P*, that is, bP*b forall b € B\ {b}. Lett; € Tbe a type such that f(t;) = b. Let T; be the
set of strict types in type(D) such that the relative valuation of b with repect to any other alternative in Bis
greater than that in t;, that is,

T; = {? € type(D) | Fis a strict type and i‘(l;) — i(z) > tg(l;) — tj(z) forallz € B\ {l;}} Note that
since y is strong LIC and the types in Tj are strict, by Case 1, y is IC on any pair of types in Tj. By the
construction of the type-space Tj and Fact 6.7.2, this implies that the outcome of f at any type in Tj,
cannot be in the set B \ {E}

Consider the types in %5 =T; N T. Since there is no restriction on the types in T about the relative
valuation of b with respect to any other alternative in B \ {l;} , we have i; = (). Moreover, since both T
and T put no restriction on the relative valuation of b with respect to f(t) (except that the said relative
valuation is positive), the difference of the valuation of b and f(t) can be arbitrarily small in the types in f”@ )
that is, inf?eﬁ ?(l;) — f‘(f(%)) = 0. By the definition of Tj, the outcome of f at any type in T} cannot be in
the set B\ {b}. Moreover, by the assumption of Case 2.2, the outcome of fat any type in T has to be in
the set B, it follows that the outcome of any type in :.l:; is b.

Consider any type #; in T@. Since y is strong LIC and both f; and t are strict types, by Case 1, 4 must be
IC on (;, t). Therefore,

p(&) — p(8) < {(b) — H(f(E). (6.7)

Since f(t;) = b for all typest; € ?g and p is IC on T,;, by Fact 6.7.1 we have p(t;) must be the same for all
types in T@. Letp(t;) = cforallty € i; and for some ¢ € R. Taking infimum on both sides of (6.7) and

doing some rearrangement, we obtain

~

i) < (63)
Since £(f(2)) = #(b), adding £(f(#)) to the left side of (6.8) and #(b) to the right side of (6.8), we get

~ ~

Hf(5) — p(t) < t(b) — c.
Fixany #; € T;. Since f(f;) = b, this implies

~

(1) — p(t) < 1(f(§;)) — ¢ (6.9)
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Now; since y is strong LIC and t is a weak type in cl(type(P*)) N type(D) and t; is a strict type in type(P*),
uisIC on (£, £;). This implies

€(f(8) — p(6) = Hf(E;)) — ¢ (6.10)
By (6.9), this yields

1(f(5)) — p(6) = €f() — p(D), (6.11)

which concludes that y is IC on (%, t). |

6.7.4 PROOF OF COROLLARY 6.5.1

Proof: Let (13, G*?) be a strict ordinal OLGE environment and let 4 be a PLIC mechanism on

~

cl(type(D)). We show that y is almost everywhere IC. Let D be the set of all preferences representing the
typesin cl (type(ﬁ)) , thatis, D = prfn(cl (type(i)\))). By definition, D satisfies weak compatibility. Since
(13, G*!) is OLGE, by Theorem 6.5.1, this implies that every strong LIC mechanism on (¢l (type(ﬁ) ), G)
is almost everywhere IC. So, to show that y is almost everywhere IC on ¢! (type(ﬁ) ), itis sufficient to show
that y is strong LIC on (cl(type(ﬁ)), G*).

Consider any pair of G*-local preferences (P, P') in D. Since Pand P/ are adjacent local,
cl(type({P, P'})) is convex (see Fact 1 in Mishra et al. [39] for details). Because, y is PLIC, it follows from
Fact 6.4.1 that it is IC on cl(type({P, P'})). In particular, it is IC on (i) any pair of strict types (¢, ) in
type({P, P'}), and (ii) every pair of types (£, t) in cl(type(P)) where tis a weak type and t is a strict type.
Since P and P’ are arbitrary G*-local types, it follows that y is strong LIC. |

6.7.5 PROOF OF THEOREM 6.5.2

Proof: Let (15, G*?) be a strict ordinal OLGE environment and let T = cl(type(ﬁ)). Consider a PLIC

mechanism g on T. By Corollary 6.5.1, y is almost everywhere IC on T. We first prove a claim.

Claim 6.7.1 Let aweak typet € T \ strict(T) be such that there exists a strict type t € strict(T) with the
property that

(i) t{f(t)) — t(x) > t(f(t)) — t(x) forallx € A\ {f(t)}, and
(ii) wisICon (t,t).

Then, uisICon T x {t}.
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Proof of the claim: Since y is almost everywhere IC on T, it is IC on the pair (£, ). Moreover, by
Condition (ii) of the claim, g is IC on the pair (%, ). Thus, y is IC on both (£, £) and (%, ). By Condition (i)
of the claim, the relative valuation of f(£) with respect to any other alternative is increased from £ to .
Therefore, by Fact 6.7.2, we have f(f) = f(t). This, together with the fact that g is IC on both pairs (%, t)
and (¢, t), implies by Fact 6.7.1 that p() = p(%).

Now, since i is almost everywhere IC, it is IC on T x {t}. Because f(f) = f(t) and p(t) = p(t), it
follows that pis IC on T x {t}. This completes the proof of the claim. O

We are now ready to prove the theorem.

Proof of (i): We show that yis IC on T X T°. Since y is almost everywhere IC on T, by definition y is
ICon T X strict(T). Note that T° might contain weak types. So, we need to show that y is IC on
T x (T° \ strict(T)). Considerany t € T° \ strict(T). By the definition of T, there exists ¢, > o such that
{s € R" | d(t,s) < &} C T. Also, by the definition of a PLIC mechanism, there exists ¢, > o such that y
is IC on (£, s) and (s, f) for every s € Twith d(,s) < ¢,. Consider a type ¢ in strict(T) with
d(t,t) < min{e,, e, } such that ¢(f(t)) — t(x) > €(f(f)) — t(x) forallx € A\ {f(f)}. Such a type can be
constructed from t by lowering the valuation of each alternative other than f(f) by an arbitrarily small
amount. This, together with the facts that £ € T \ strict(T), y is almost everywhere IC on T, and y is IC
on (t, ), implies by Claim 6.7.1 that y is IC on T x {t}. Sincet € T° \ strict(T) is arbitrary, it follows that
pisICon T x (T° \ strict(T)). This completes the proof of Part (i) of the theorem.

Proof of (ii): Let f € OT such that there exists P € Dwith f € cl (type(P)) and f(t) Pz for every z with
t(f(t)) = t(z). Since y is PLIC and cl(type(P)) is convex, by Fact 6.4.1,  is IC on c(type(P)). Since f(f)Pz
for every z with t(f(f)) = #(z), starting from the type f, we can construct a type ¢ € type(P) by suitably
lowering the valuation of each alternative other than f(f) such that t(f(f)) — t(x) > #(f(f)) — t(x) for all
x € A\ {f(f)}. This, together with the facts that y is almost everywhere IC on T and g is IC on (%, f),
implies by Claim 6.7.1 that y is IC on T X {t}. This completes the proof of Part (ii) of the theorem. = W
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