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1
Introduction

This thesis consists of five chapters related to mechanism design theory. A brief introduction of the
chapters are provided below.

1.1 LocalGlobalEquivalence inVotingModels: ACharacterizationandAp-

plications

This chapter considers a voting model where each voter’s type is her preference. The type graph for a voter
is a graph whose vertices are the possible types of the voter. Two vertices are connected by an edge in the
graph if the associated types are “neighbours”. A social choice function is locally strategy-proof if no type
of a voter can gain by misrepresentation to a type that is a neighbour of her true type. A social choice
function is strategy-proof if no type of a voter can gain by misrepresentation to an arbitrary type.
Local-Global equivalence (LGE) is satisfied if local strategy-proofness implies strategy-proofness. We
identify a condition on the graph that characterizes LGE. Our notion of “localness” is perfectly general -
we use this feature of our model to identify notions of localness according to which various models of
multi-dimensional voting satisfy LGE. Finally, we show that LGE for deterministic social choice functions
does not imply LGE for random social choice functions.
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1.2 Local Global Equivalence in VotingModels Admitting Indifferences

This chapter considers the same voting framework as in the previous chapter, except that each agent’s type
is her weak preference, that is, preferences that can admit indifference. We provide a condition that is
sufficient for LGE and another condition that is necessary. Moreover, the “gap” between the two
conditions is small (in the sense that both conditions boil down to the single condition identified in
Chapter 1 that characterizes LGE for the case of strict preferences). We use the sufficiency result to
propose notions of localness according to which environments with the domain of single-plateaued
preferences and the domain of all weak preferences, satisfies LGE.

1.3 Local Global Equivalence forUnanimous Social Choice Functions

In this chapter, we identify a condition on preference domains that ensures that every locally
strategy-proof and unanimous random social choice function is also strategy-proof. Furthermore every
unanimous, locally strategy-proof deterministic social choice function is also group strategy-proof. The
condition identified is significantly weaker than the characterization condition for local-global
equivalence without unanimity in Kumar et al. [33]. The condition is not necessary for equivalence with
unanimous random/deterministic social choice functions. However, we show the weaker condition of
connectedness remains necessary.

1.4 Pointwise Local Incentive Compatibility inNon-Convex Type-Spaces

In this chapter, we explore the equivalence of pointwise local incentive compatibility (PLIC) (Carroll
[12]) and incentive compatibility (IC) in non-convex type-spaces. We provide a sufficient condition on a
type-space called minimal richness for the said equivalence. Using this result, we show that PLIC and IC
are equivalent on large class of non-convex type-spaces such as type-spaces perturbed by modularity and
concave-modularity. The gross substitutes type-space and the generalized gross substitutes and
complements type-space are important examples of type-spaces perturbed by modularity and
concave-modularity, respectively. Finally, we provide a geometric property consisting of three conditions
for the equivalence of PLIC and IC, and show that all the conditions are indispensable.

1.5 Local Incentive Compatibility inOrdinal Type-Spaces

This chapter explores the relation between different notions of local incentive compatibility (LIC) and
incentive compatibility (IC) on ordinal type-spaces. In this context, we introduce the notion of ordinal

2



local global equivalent (OLGE) and cardinal local global equivalent (CLGE) environments. First, we
establish the equivalence between the two environments on strict ordinal type-spaces. Next, we consider
ordinal type-spaces admitting indifference. We introduce the notion of almost everywhere IC and strong
LIC, and provide a necessary and sufficient condition on ordinal type spaces for their equivalence. Finally,
we provide results on how to (minimally) check the IC property of a given mechanism on any ordinal
type-space and show that local types along with the boundary types form a minimal set of incentive
constraints that imply full incentive compatibility.

3



2
Local Global Equivalence in VotingModels: A

Characterization and Applications

2.1 Introduction

Mechanism design theory is concerned with models where agents have private information (called a type)
which has to be elicited by the mechanism designer. The cornerstone of the theory is the collection of
strategy-proofness constraints which ensure that agents do not have incentives tomisreport their types (or
manipulate). The standard assumption in the theory is that the proposed social choice function must be
immune to all possible misreports of agents. There is, however considerable experimental evidence that
agents do not always lie in an optimal payoff-maximizing way. For instance Fischbacher and Föllmi-Heusi
[22] conduct an experiment where agents are paid money on the basis of a report of a privately observed
roll of a die. In their results, only 20 percent of the subjects lie optimally, 39 percent are fully honest while
the remaining lie “partially”. Agents often choose to lie credibly by only misreporting to types that are
“near” or “close to” their true types. We consider a model where an agent of a particular type can only
misreport to an arbitrary set of pre-specified “local” types. Our main contribution is a complete answer to
the following question: under what circumstances is immunity to misreporting via a “local” type (local
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strategy-proofness) equivalent to immunity to misreporting via an arbitrary type (strategy-proofness)?
The equivalence issue has important conceptual and practical implications.¹ If it is not satisfied, the

mechanism designer can choose from a wider class of locally strategy-proof social choice functions. It
may enable her, in principle, to avoid negative results such as the Gibbard-Satterthwaite Theorem
(Gibbard [25], Satterthwaite [47]). On the other hand, suppose that the problem at hand satisfies
equivalence. In order to verify that a social choice function is strategy-proof, it suffices to check that it is
locally strategy-proof. The latter is a simpler task because it involves checking fewer constraints.

We consider a model where an agent’s type is a strict preference ordering over a finite set of alternatives.
There are no monetary tranfers. For convenience, we shall refer to this model as the voting model and to
the agent as a voter, even though the model could apply to other settings such as matching. For our
purpose, it will be sufficient to restrict attention to the case of a single voter.² The set of possible
preferences is called a domain. An environment is an undirected graph whose vertices are preferences in
the domain. The agent whose preference is specified by a particular vertex can only misreport to another
preference (or vertex) if the two vertices are connected by an edge in the environment. The set of vertices
connected by an edge to a vertex are its neighbours. A social choice function is locally strategy-proof if no
type of the agent can gain by manipulating to a neighbour; it is strategy-proof if the agent cannot gain by
manipulating to any vertex in the graph. An environment satisfies local-global equivalence or LGE if local
strategy-proofness implies strategy-proofness.³

Section 4.2 of the paper contains some examples and observations that highlight the issues underlying
LGE. It serves to motivate our main result in Section 4.4, Theorem 2.3.2 which is a characterization of
environments that satisfy LGE. Section 2.4 contains discussion of the computational complexity of
Property L and its relationship with earlier results in the literature. Section 2.5 applies Theorem 2.3.2 to
multi-dimensional voting environments. Finally Section 2.6 uses Theorem 2.3.2 to construct an example
of an environment where LGE holds but equivalence fails for random social choice functions.

The LGE property depends on the existence of certain types of paths in the environment. For every
pair of preferences P and P′ in the domain and alternative a, there must exist a path from P to P′ satisfying
a monotonicity property with respect to all alternatives that are ranked worse than a according to P.
Specifically, the relative ranking of a and any alternative b ranked worse than a according to P, can change
at most once along the path. We call this condition, Property L. According to Theorem 2.3.2, Property L
is both necessary and sufficient for LGE.

One of the strengths of our approach is that our notion of neighbours in the definition of local
strategy-proofness, is perfectly general. The earlier literature (discussed below) used the Kemeny distance

¹They have also been discussed extensively in Carroll [12] and Sato [46].
²Our results can easily be interpreted in the multi-voter setting.
³The converse is of course, always true.
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metric to define “localness”. Thus two preferences are neighbours if there is a single pair of consecutively
ranked alternatives that are switched between the two preferences. Preferences that are neighbours in this
sense will be referred to as being adjacent. A limitation of adjacency is that it excludes several
multi-dimensional voting models that are of interest. In these models, an alternative is anm-tuple (m > 1)
and preferences are typically assumed to satisfy some form of separability. Consequently, it is not always
possible to switch a consecutively ranked pair of alternatives without affecting the ranking of other
alternatives. We consider two such domains, separable domains and multi-dimensional single-peaked
domains and propose natural notions of neighbours such that the resulting environments satisfy LGE.

The question of local-global equivalence also arises naturally in the context of random social choice
functions. We follow the standard approach of comparing lotteries via stochastic dominance (see Gibbard
[26]). Earlier results (again discussed below) suggest that environments that satisfy LGE for deterministic
social choice functions also do so for random social choice functions. We use our characterization result
for the deterministic case to show that this is not true generally. We construct an environment that
satisfies Property L and therefore satisfies deterministic LGE. We also find a random social choice in the
same environment that satisfies local strategy-proofness but violates strategy-proofness.

2.1.1 Related Literature

Two important papers on LGE in voting models are Carroll [12] and Sato [46]. Both papers use the
adjacency version of localness. Carroll [12] considers random social choice functions and shows that
specific preference domains, such as the set of all strict preferences, the set of all single-peaked preferences
and particular subsets of single-crossing preferences satisfy LGE. Sato [46] provides a necessary condition
and a stronger sufficiency condition for LGE in the context of deterministic social choice functions.
Section 2.4.2 describes the relationship between Sato’s results and ours in greater detail. As already
mentioned, there are two significant ways in which our main result extends and refines the earlier analysis.
The first is that our notion of neighbours is completely general and the second is that we have a complete
characterization. Both aspects of our result permit a wider range of applications than was earlier possible.

Cho [18] provides sufficient conditions for LGE with random social choice functions. The notion of
neighbours is once again, adjacency, but several notions of preference extensions to lotteries are
considered. In particular, it shows that a stronger version of the sufficient condition proposed in Sato [46]
(see PropertyU in Section 2.4.2) is sufficient for LGE if lotteries are compared via stochastic dominance.
We show in Section 2.6 that the condition which is necessary and sufficient for LGE with deterministic
social choice functions (using adjacency as the notion of localness), is not sufficient for LGE with random
social choice functions.

There are several papers that investigate LGE in models where monetary transfers to agents are
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permitted and preferences are quasi-linear in the usual sense (see, for instance Carroll [12], Archer and
Kleinberg [1] and Mishra et al. [39]). Although the basic question is the same, the flavour of the analysis
and the results in the two models are very different from each other.

In a companion paper Kumar et al. [33], we consider a multi-voter model and address the following
question: under what conditions on the environment is it the case that every locally strategy-proof social
choice function that also satisfies the mild condition of unanimity,⁴ is also strategy-proof? We show that a
condition much weaker than Property L is sufficient for LGE in this sense for both deterministic and
random social choice functions.

2.2 TheModel

Let A = {a, b, . . . } denote a finite set of alternatives with |A| ≥ 2. Throughout the paper, we shall
assume that there is a single voter. This assumption is without loss of generality as will soon be apparent.

A preference P is an antisymmetric, complete and transitive binary relation over A i.e. a linear order.
Given a, b ∈ A, aPb is interpreted as “a is strictly preferred to b” according to P. LetP denote the set of all
preferences - the setP will be referred to as the universal domain. We shall refer to an arbitrary setD ⊆ P
as a domain.

An environment is an (undirected) graphG = ⟨D, E⟩. The set of vertices of the graph is a domainD.
The set of edges is the set E . If P, P′ ∈ D and (P, P′) ∈ E , the two preferences are said to be neighbours or
are local.

The notion of neighbours is perfectly general. One possible specification is the one used by Carroll
[12] and Sato [46]. Fix a pair of preferences P, P′ ∈ D. Two alternatives a and b in A are reversed if aPb
and bP′a, or bPa and aP′b. Let P △ P′ = {{a, b} ⊆ A : a and b are reversed in P and P′} be the set of all
reversed pairs of alternatives between P and P′. ⁵ Two preferences P and P′ are called adjacent if
|P △ P′| = 1.⁶ An environment where neighbours are defined by adjacency will be referred to as an
adjacency environment. Whenever the notion of neighbours is defined by adjacency, we shall denote the
set of edges by E adj. An adjacency environment will typically be denoted byG = ⟨D, E adj⟩. In Section 2.5,
we shall provide an example of a non-adjacency environment.

Definition 2.2.1 A Social Choice Function (SCF) is a map f : D → A.

⁴A deterministic social choice function satisfies unanimity if it always picks an alternative in a profile where it is first-ranked
by all voters. In the case of a random social choice function such an alternative is picked with probability one.

⁵We are guilty of abuse of notation here. Since a preference is an ordered pair, P △ P′ should include both ordered pairs,
(a, b) and (b, a) if a and b are reversed in P and P′. In our notation, P △ P′ will include only the unordered pair {a, b} in this
case.

⁶An alternative and equivalent statement would be that the Kemeny distance between P and P′ is exactly one.
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Definition 2.2.2 Consider an environment G = ⟨D, E⟩. An SCF f : D → A is locally manipulable at P if
there exists P′ ∈ D with (P, P′) ∈ E such that f(P′)Pf(P). The SCF f is locally strategy-proof if it is not locally
manipulable at any P ∈ D.

Consider a graph or an environment. An SCF labels each vertex of the graph with an alternative. It is
locally strategy-proof if the voter with preference of a particular vertex cannot gain by misrepresenting her
preference to one which is a neighbour of her true preference.

In contrast with local strategy-proofness, an SCF is strategy-proof if the voter cannot gain by an arbitrary
misrepresentation.

Definition 2.2.3 An SCF f : D → A is manipulable at P if there exists P′ ∈ D such that f(P′)Pf(P). The
SCF f is strategy-proof if it is not manipulable at any P ∈ D.

A strategy-proof SCF is clearly locally strategy-proof. We investigate the structure of environment
when the converse is true.

Definition 2.2.4 The environment G = ⟨D, E⟩ satisfies local-global equivalence (LGE) if every locally
strategy-proof SCF f : D → A is strategy-proof.

The next subsection makes some important observations regarding LGE.

2.2.1 Preliminary observations

Our goal in this subsection is to illustrate the issues involved in LGE and to provide some intuition
behind our result. We begin with some standard concepts from graph theory.

LetG = ⟨D, E⟩ be an environment. A path π = (P1, . . . , Pt) is a sequence of distinct vertices inD
satisfying the property that consecutive vertices are neighbours, i.e. (Pk, Pk+1) ∈ E for all
k = 1, . . . t− 1.⁷ LetΠ(P, P′) denote the set of all paths from P to P′ inG. For any path
π = (P1, . . . , Ps, Ps+1, . . . , Pt), we let π|[Ps,Pt] denote the sub-path (Ps, Ps+1, . . . , Pt). We sayG is connected
if there exists a path between every pair of vertices inG i.e. Π(P, P′) ̸= ∅ for all P, P′ ∈ D.

The example below highlights the reasons why LGE may fail.

Example 2.2.5 Let A = {a, b, c, z, u, v,w}. Consider the adjacency environmentG = ⟨D, E adj⟩where
D = {P1, P2, P3, P4, P5} (Table 2.2.1). It will be convenient to representG by Figure 2.2.1.

⁷In other words, repetitions of vertices in a path are ruled out.

8



P1 P2 P3 P4 P5
c c c c c
[a] [b] [b] [b] a
b a a a [b]
z z z z z
v v v u u
w w u v v
u u w w w

Table 2.2.1: Domain D

P1
{a, b}

P2
{w, u}

P3
{v, u}

P4
{b, a}

P5

Figure 2.2.1: The Environment G = ⟨D, Eadj⟩ ⁸

The SCF f : D → A picks a at P1 and b at other preferences.⁹ The SCF f is locally strategy-proof.
However, it is not strategy-proof since the voter with preference P5 can manipulate via P1. 2

The cause of the failure of strategy-proofness while maintaining local strategy-proofness can be clearly
identified from Example 2.2.5. Consider the path π = (P5, P4, P3, P2, P1). The outcome at P5 is b. Since b
“improves” at P4 relative to P5, local strategy-proofness implies that the outcome at P4 must be b;
otherwise the voter would manipulate locally to P5. Local strategy-proofness also implies that the
outcomes at P3 and P2 must be b. Note that b “declines” at P1 with respect to a. There are two options at P1

that are consistent with the requirement of local strategy-proofness (with respect to P1). The outcome can
remain b, or it can switch to a. In the former case, we maintain strategy-proofness since the outcome is b
everywhere along the path π. However, if the outcome is a, a problem with strategy-proofness arises since
a is preferred to b at P5.

The failure of LGE inG = ⟨D, E adj⟩ arises from an inherent asymmetry in the “monotonicity”
requirement imposed by local strategy-proofness. If the outcome of an SCF at a preference improves¹⁰
relative to a local preference, the same outcome continues to be chosen at the new neighbour preference.
However, if the outcome at a preference falls relative to a local preference, the new outcome can either
remain the same or switch to an alternative that has improved (relative to the original outcome) in the
new preference. Combining the latter option together with an improvement in the same path, can lead to
a failure of strategy-proofness without violating local strategy-proofness.

⁸Two vertices are connected by an edge in G if and only if the preferences represented by the vertices are adjacent. For
instance, P1 and P2 are adjacent; in particular aP1b and bP2a. The edge between P1 and P2 is labelled {a, b} in order to signify
that the only “difference” between the two preferences is the ranking of a and b.

⁹This is indicated by the square brackets on the alternative chosen by f at each preference.
¹⁰We are intentionally informal in this description. These notions will be made precise in due course.
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A key feature of the path π in Example 2.2.5 is that a and b switch relative rankingmore than once in the
path. Thus aP5b, bP4a and aP1b. The preceding discussion makes it clear that such paths may be
problematic for LGE.

Definition 2.2.6 Let G = ⟨D, E⟩ be an environment and let a, b ∈ A. A path π = (P1, P2, . . . , Pt) satisfies
no {a, b}-restoration if the relative ranking of a and b is reversed ¹¹ at most once along π i.e. there do not exist
integers q, r and s with 1 ≤ q < r < s ≤ t such that either (i) aPqb, bPra and aPsb or (ii) bPqa, aPrb and
bPsa.¹²

Let P, P′ ∈ D and a, b ∈ A be such that aPb. We say that b overtakes a in path π ∈ Π(P, P′) if bPla for
some preference Pl in the path π. The notion of overtaking can be used to restate the definition of an
{a, b}-restoration in an obvious way. For instance in case (i) of Definition 2.2.6, b overtakes a in the path
π1 = (Pq, . . . , Pr) and a overtakes b in the path π2 = (Pr, . . . , Ps).

¹¹Recall that a pair of alternatives a, b are reversed in the pair of preferences P and P′ if they are ranked differently in P and P′.
¹²It is worth emphasizing that in our definition of “{a, b}-restoration”, we are not referring to an ordered pair (a, b). Thus

{a, b}-restoration and {b, a}-restoration are the same in our definition. We use expressions such as “the path has no {a, b}-
restoration” and “the path has no restoration for the pair {a, b}” interchangeably.
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P0 P6 P7 P8 P9 P10
c a a a a a
a c c c c c
b b z z z b
z z b b b z
v u u v v v
u v v u w w
w w w w u u

Table 2.2.2: Preferences P0 and P6, P7, P8, P9, P10

P1
{a, b}

P2
{w, u}

P3
{v, u}

P4
{b, a}

P5

P0

{b, a}{w, u} {u, v}

Figure 2.2.2: The Environment G =
〈
D, Eadj〉

P1
{a, b}

P2
{w, u}

P3
{v, u}

P4
{b, a}

P5

{c, a}

P10
{b, z}

P9
{w, u}

P8
{v, u}

P7
{z, b}

P6

{c, a}

Figure 2.2.3: The Environment G∗ = ⟨D∗, Eadj⟩

It will sometimes be useful to consider paths without restoration for a pair of alternatives. Let
P, P′ ∈ D and a, b ∈ A be such that aPb. Let π = (P1, P2, . . . , Pt) ∈ Π(P, P′) be a path without
{a, b}-restoration. If aP′b, then aPrb for all preferences Pr on the path π. Suppose bP′a instead. Then
there exists a unique preference Pr on π such that aPsb for all s = 1, . . . r and bPsa for all s = r+ 1, . . . , t.

In order to further clarify the relationship between the LGE property and paths without restoration, we
make two modifications of Example 2.2.5.

Example 2.2.7 As in Example 2.2.5, A = {a, b, c, z, u, v,w}. We consider six additional preferences
P0, P6, P7, P8, P9, P10 as shown in Table 2.2.2. LetD andD∗ be the domainsD = D ∪ {P0} and
D∗ = D ∪ {P6, P7, P8, P9, P10}. These domains are used to construct two adjacency environments
G =

〈
D, E adj

〉
andG∗ = ⟨D∗, E adj⟩. These environments are shown in Figures 2.2.2 and 2.2.3.

ConsiderG and a locally strategy-proof SCF f̄ : D → A such that f̄(P5) = b. Using the same
arguments as in Example 2.2.5, along the path π = (P5, P4, P3, P2, P1), we can infer that local
strategy-proofness implies f̄(Pk) = b for all k = 5, 4, 3, 2, and f̄(P1) is either b or a. Due to the presence P0,
there is now another path π̄ = (P5, P0, P1) from P5 to P1. This path has no {a, b}-restoration.
Furthermore, the path π̄ has the following properties: (i) a and b are identically consecutively ranked, and
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(ii) c always ranks above a, while z, u, v andw are all ranked below b. Clearly, b does not switch places with
any other alternative along π̄. As a result, local strategy-proofness forces the outcome of f̄ to be b
everywhere along π̄ which rules out the manipulability of f̄.

Now considerG∗ and a locally strategy-proof SCF f∗ : D∗ → A such that f∗(P5) = b. Once again, local
strategy-proofness along the path

π = (P5, P4, P3, P2, P1), implies that f∗(Pk) = b for all k = 5, 4, 3, 2, and f∗(P1) is either b or a.
Consider the path π∗ = (P5, P6, P7, P8, P9, P10, P1). Observe that π∗ has no restoration for a and any of
the alternatives in the set Z = {b, z, u, v,w}which are all ranked below a in P5. Alternatives of Z switch
places among themselves along π∗ (see for example, the sub-path (P6, P7, P8, P9, P10)). Consequently, the
local strategy-proofness of f∗ does not preclude the outcomes for preferences along π∗ from belonging to
Z. Suppose f∗(P1) = a. Since f∗(P5) = b, local strategy-proofness implies that some alternative in Zmust
“jump above” a and then “jump below” a (in order to conform with P1) along the path π∗.¹³ However, this
is explicitly ruled out by the observation that π∗ has no restoration for a and any of the alternatives in Z.
Therefore, it must be the case that f∗(P1) = b. In fact, only one of two possibilities can arise: (i)
f∗(Pk) = b for all k = 1, . . . , 10, or (ii) f∗(Pk) = b for all k = 1, 2, 3, 4, 5, 6, 10 and f∗(Pk′) = z for all
k′ = 7, 8, 9. In either case, f∗ is strategy-proof.

We conclude with an important observation. The alternative c is always ranked above a along the path
π̄ inG. However, the path π∗ inG∗ does not forbid restoration between a and alternatives better than a in
the initial preference P5. 2

We summarize the insights of Examples 2.2.5 and 2.2.7. There is “potential” for the failure of LGE
whenever there is a path in an environment that has restoration for some pair of alternatives. However
LGE can be restored by the existence of certain “other” paths in the environment. As the argument
relating to π∗ inG∗ suggests, the existence of a path that satisfies no-restoration of an alternative with
respect to all alternatives that are worse at a preference, is sufficient to ensure strategy-proofness and
hence, LGE. In the next section, we show that this insight is general. In fact, this condition is also
necessary though the argument establishing necessity, is more subtle.

2.3 TheMain Result

The key condition for LGE is the Lower Contour Set no-restoration property which we define below.
For any P ∈ D and a ∈ A, the lower contour set of a at P is the set of alternatives strictly worse than a

according to P, i.e. L(a, P) = {b ∈ A : aPb}.

¹³We can first easily rule out the possibility that c is chosen at some preference in the subpath (P6, P7, P8, P9, P10). In that
case, local strategy-proofness forces the outcome of f∗ to be c everywhere inG∗.
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Definition 2.3.1 The environment G satisfies the Lower Contour Set no-restoration property (Property L) if,
for all P, P′ ∈ D and a ∈ A, there exists a path π ∈ Π(P, P′) such that for all b ∈ L(a, P) the path π satisfies
no {a, b}-restoration.

Pick an arbitrary pair of preferences P, P′ ∈ D and an alternative a ∈ Awhich is not ranked last in P.
Suppose L(a, P) = {b1, . . . , bm}. IfG satisfies Property L, there exists a path π from P to P′ such that for
all bi ∈ {b1, . . . , bm} the path π has no {a, bi}-restoration . More informally, if a lies above bi in P′ then it
lies above bi everywhere along the path π. On the other hand, if the ranking of a and bi are reversed
between P and P′ there is a single reversal between a and bi along the path π.

The environmentG∗ in Example 2.2.7 satisfies Property L. InG∗, there are exactly two paths between
any pair of vertices, one “clockwise” path and the other, “counterclockwise”. For instance, between P1 and
P5, the paths (P1, P2, P3, P4, P5) and (P1, P10, P9, P8, P7, P6, P5) are the clockwise and counterclockwise
paths respectively. These paths satisfy an important property. Fix an arbitrary pair of distinct preferences
P and P′. If a path between P and P′ possesses a restoration, say an {x, y}-restoration, and x is better than y
in P, then the other path between P and P′ must have no restoration for x and any alternative of L(x, P).
For example, consider P1 and P5. The clockwise path (P1, P2, P3, P4, P5) has {a, b}-restoration and aP1b.
The counterclockwise path (P1, P10, P9, P8, P7, P6, P5) has no {a, x}-restoration for all x ∈ L(a, P1). The
counterclockwise path (P1, P10, P9, P8, P7, P6, P5) has both {c, a}-restoration and {b, z}-restoration, cP1a
and bP1z. On the other hand, the clockwise path (P1, P2, P3, P4, P5) has no {c, x}-restoration for all
x ∈ L(c, P1) and no {b, x}-restoration for all x ∈ L(b, P1). This property ensures thatG∗ satisfies
Property L.

Theorem 2.3.2 An environment satisfies LGE if and only if it satisfies Property L.

Proof: Sufficiency: SupposeG = ⟨D, E⟩ satisfies Property L but fails LGE i.e. there exists a locally
strategy-proof SCF f : D → A that is not strategy-proof. Suppose f is manipulable at P. Define the
alternative x1 as follows: x1 = maxP{a ∈ A : f(P̄) = a for some P̄ ∈ D}. In other words, x1 is the
highest-ranked alternative in the range of f according to P.¹⁴ Let P′ be such that f(P′) = x1. Since f is
manipulable at P, we have x1 ̸= f(P).

By Property L, there exists a path π = (P1, P2, . . . , Pt) ∈ Π(P, P′) such that for all z ∈ L(x1, P) the
path π has no {x1, z}-restoration. Searching the path π backwards from Pt to P1, let Ps be the first vertex
such that f(Ps) = x2 ̸= x1 i.e. f(Pk) = x1 for all s < k ≤ t. Note that Ps always exists since f(Pt) ̸= f(P1). It
follows from the definition of x1 that x1P1x2. Since (Ps, Ps+1) ∈ E , local strategy-proofness implies x2Psx1

and x1Ps+1x2. We therefore have an {x1, x2}-restoration on the path π, contradicting our hypothesis.
Therefore,G = ⟨D, E⟩ satisfies LGE and completes the proof of the sufficiency part of Theorem 2.3.2.

¹⁴For later reference,maxP(B) refers to the P-maximal alternative in the set B ⊆ A.
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Necessity: We define a class of SCFs that we will employ repeatedly in the proof.

Definition 2.3.3 Fix an environment G = ⟨D, E⟩. Let a ∈ A, P̂ ∈ D and let B be a non-empty set with
B ⊆ L(a, P̂). An SCF f : D → A is monotonic with respect to (a,B, P̂) if

(i) f(P) = a if there is a path π ∈ Π(P̂, P) such that B ⊆ L(a, P̄) for all P̄ ∈ π, and

(ii) f(P) = maxP(B) otherwise.

Thus f(P) = a if there exists a path from P̂ to P such that no alternative x ∈ B overtakes a along the
path (note that aP̂x). Clearly f(P̂) = a. The next lemma shows that SCF f of Definition 2.3.3 is locally
strategy-proof.

Lemma 2.3.1 Suppose f : D → A is monotonic with respect to (a,B, P̂). Then f is locally strategy-proof.

Proof: Pick an arbitrary pair P, P′ ∈ D with (P, P′) ∈ E . We show either f(P) = f(P′), or f(P)Pf(P′) and
f(P′)P′f(P) establishing local strategy-proofness.

LetDa = {P̄ ∈ D : f(P̄) = a} denote the set of preferences which are associated to a at SCF f. There
are four cases to consider.
Case 1: P, P′ ∈ Da. Then f(P) = f(P′) = a.

Case 2: P, P′ /∈ Da. Then f(P) = maxP(B) and f(P′) = maxP′(B). Hence, either f(P) = f(P′) or
f(P)Pf(P′) and f(P′)P′f(P)must hold.

Case 3: P ∈ Da and P′ /∈ Da. Thus, f(P) = a ̸= b = maxP′(B) = f(P′). Since P ∈ Da, there exists a path
π = (P1, . . . , Pt) ∈ Π(P̂, P) such that B ⊆ L(a, Pk) for all 1 ≤ k ≤ t (recall Definition 2.3.3). Since
b ∈ B, we have aPb. Next, suppose aP′b. Since b = maxP′(B), it follows that B ⊆ L(a, P′). Observe that
P′ must be distinct from the vertices in the path π; otherwise we would contradict the hypothesis that
P′ /∈ Da. Since (P, P′) ∈ E , we now have a new path π̄ = (P1, . . . , Pt, P′) ∈ Π(P̂, P′) such that
B ⊆ L(a, P̄) for all P̄ ∈ π̄. Consequently, Definition 2.3.3 implies f(P′) = a. This contradicts our initial
assumption that f(P′) = b. Therefore, bP′a.

Case 4: P /∈ Da and P′ ∈ Da. This case is symmetric to Case 3 above and is omitted.
This completes the proof of the lemma. ■

Lemma 2.3.1 and the LGE property implies that monotonic SCFs are also strategy-proof. This, in turn
imposes certain no-restoration conditions on the environment. The rest of the proof essentially shows
that Property L is the consequence of the strategy-proofness of monotonic SCFs.

LetG = ⟨D, E⟩ be an environment satisfying LGE. We show thatG satisfies Property L. We begin
with an observation.

14



Claim 2.3.1 G is connected.

Proof: Suppose the Claim is false. Then there exists a componentG′ ofG such thatG′ ̸= ∅ andG′ is a
strict subset ofG.¹⁵, i.e. there does not exist a path from any vertex inG′ to any vertex not inG′. Denote
the set of vertices inG′ byD′. Pick an arbitrary vertex P∗ inD′ and let a, b ∈ A be such that aP∗b. Define
the SCF f as follows: f(P) = b for all vertices P ∈ D′ and f(P) = a for all P /∈ D′.

Clearly f is not strategy-proof because f(P∗) = bwhile f(P′) = a for any P′ /∈ D′. However f is locally
strategy-proof because the outcome does not change if the voter misrepresents via a neighbouring
preference. Thus LGE is violated. ■

SupposeG violates Property L i.e. there exist P0, P1 ∈ D and a ∈ A such that every path ofΠ(P0, P1)
has an {a, x}-restoration for some x ∈ L(a, P0). In view of Claim 2.3.1, this statement cannot hold
vacuously.

Let Γ be the set of alternatives in L(a, P0) that appear in some restoration with a on some path of
Π(P0, P1):

Γ = {x ∈ L(a, P0) : there exists π ∈ Π(P0, P1) with {a, x}-restoration} .

Then, the hypothesis for the contradiction can be restated as follows: each path ofΠ(P0, P1) has an
{a, x}-restoration for some x ∈ Γ.

For a specific path π ∈ Π(P0, P1), let Γπ
1 denote the set of alternatives in L(a, P0) that appear in some

restoration with a on the path π, i.e.

Γπ
1 = {x ∈ L(a, P0) : π has {a, x}-restoration}.

Let Γ1 ⊆ [Γ ∩ L(a, P1)] be the set of alternatives such that every path π ∈ Π(P0, P1) has
{a, x}-restoration for some x ∈ Γ1. Note that either Γ1 ̸= ∅ or Γ1 = ∅ holds, and every alternative in Γ1 (if
Γ1 is non-empty) is ranked below a in both preferences P0 and P1. We show that each of the two possible
cases Γ1 ̸= ∅ and Γ1 = ∅ leads to a contradiction.

Case A: Γ1 ̸= ∅.
Let f : D → A be the SCF which is monotonic with respect to (a, Γ1, P0). Note that f is well-defined

since ∅ ̸= Γ1 ⊆ L(a, P0). According to Lemma 2.3.1, f is locally strategy-proof. We show that f is not
strategy-proof.

According to Definition 2.3.3, f(P0) = a. Pick an arbitrary path π ∈ Π(P0, P1). By definition, there
exists z ∈ Γ1 such that π has {a, z}-restoration, i.e. there exists Pr ∈ π such that zPra. Hence

¹⁵We say thatG′ is a component ofG ifG′ is a maximal connected subgraph ofG.
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Γ1 ⊈ L(a, Pr). Since π was chosen arbitrarily, there does not exist π̄ ∈ Π(P0, P1) such that Γ1 ⊆ L(a, Ps)
for all Ps ∈ π̄. Consequently, Definition 2.3.3 implies f(P1) = maxP1(Γ1) ≡ b. Since Γ1 ⊆ L(a, P1), we
have f(P0) = aP1b = f(P1). Therefore, f is not strategy-proof and we have a contradiction to the
assumption thatG satisfies LGE.

This argument establishes that Case A cannot occur.

Case B: Γ1 = ∅.
This case is more complicated than the earlier one. We begin with a series of claims.

Claim 2.3.2 There exists a path π ∈ Π(P0, P1) such that Γπ
1 ∩ L(a, P1) = ∅.

Proof: Suppose Claim 2.3.2 is false. This implies that in each path ofΠ(P0, P1), at least one alternative
involved in a restoration with a is ranked below a in P1, i.e. Γπ

1 ∩ L(a, P1) ̸= ∅ for all π ∈ Π(P0, P1). Let
Γ̂ = ∪

π∈Π(P0,P1)

[
Γπ
1 ∩ L(a, P1)

]
. Then ∅ ̸= Γ̂ ⊆ L(a, P1) and Case A holds with Γ1 = Γ̂. ■

Following Claim 2.3.2, let π1 ∈ Π(P0, P1) be the path such that Γπ1
1 ∩ L(a, P1) = ∅. Thus, xP1a for all

x ∈ Γπ1
1 . Note that path π1 has {a, x}-restoration only for all x ∈ Γπ1

1 , and aP0x for all x ∈ Γπ1
1 . Searching

the path π1 from P1 back to P0, let P2 ∈ π1\{P1} be the the first vertex such that a overtakes some
alternative of Γπ1

1 . Note that preference P2 always exists since xP1a and aP0x for all x ∈ Γπ1
1 . Let Z be the

(non-empty) subset of alternatives in Γπ1
1 that are overtaken by a in the reverse path from P1 to P2 i.e.

Z ⊆ Γπ1
1 such that (i) aP2z for all z ∈ Z, (ii) yP2a for all y ∈ Γπ1

1 \Z (if Z ̸= Γπ1
1 ), and (iii) xP̄a for all x ∈ Γπ1

1

and all P̄ ∈ π1|[P2,P1]\{P2}. Thus, subpath π1|[P2,P1] has no {a, x}-restoration for any x ∈ Γπ1
1 , and hence,

P2 ̸= P0. Since π1 has {a, x}-restoration only for all x ∈ Γπ1
1 , path π1 must have no {a, y}-restoration for

any y ∈ Γ\Γπ1
1 (if Γπ1

1 ̸= Γ). Therefore, subpath π1|[P2,P1] has no {a, x}-restoration for any x ∈ Γ.

Claim 2.3.3 Γ ∩ L(a, P1) is a strict subset of Γ ∩ L(a, P2).

Proof: It follows from the definition of Z that if Γ ∩ L(a, P1) ⊆ Γ ∩ L(a, P2), then Γ ∩ L(a, P1)must be a
strict subset of Γ ∩ L(a, P2). Suppose it is not the case that Γ ∩ L(a, P1) ⊆ Γ ∩ L(a, P2) i.e. there exists
x ∈ Γ ∩ L(a, P1) such that xP2a. Then, we have aP0x, xP2a and aP1xwhich imply the {a, x}-restoration
on π1 and x ∈ Γπ1

1 ∩ L(a, P1). This contradicts the hypothesis Γπ1
1 ∩ L(a, P1) = ∅. ■

Claim 2.3.4 For every π̂ ∈ Π(P0, P2), there exists x ∈ Γ such that π̂ has {a, x}-restoration.

Proof: Suppose there exists π̂ ∈ Π(P0, P2) and π̂ has no {a, x}-restoration for any x ∈ Γ. Clearly P2 is a
vertex common to both π̂ and π1|[P2,P1]. Starting from P1, proceed along the path which is the reverse of
π1|[P2,P1]. Let P̃ be the first vertex in this reverse path which also belongs to π̂. From our earlier remark,
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such a vertex must exist (it could be P2). Now combine the sequences of vertices π̂|[P0,P̃] and π1|[P̃,P1] to
form the vertex sequence π̄. By construction, π̄ contains no repetition of vertices so that it is a path and
π̄ ∈ Π(P0, P1).

For convenience, let π̄ = (P̄1, . . . , P̄k, . . . , P̄t)where P̄k = P̃, π̂|[P0,P̃] = (P̄1, . . . , P̄k) and
π1|[P̃,P1] = (P̄k, . . . , P̄t). Since π̄ ∈ Π(P0, P1), the hypothesis for the contradiction of the necessity part of
Theorem 2.3.2 implies Γπ̄

1 ̸= ∅. Therefore, there exists b ∈ Γ such that π̄ has {a, b}-restoration. Since
neither π̂ nor π1|[P2,P1] have {a, b}-restoration and aP0b, it must be the case that b overtakes a on the path
(P̄1, . . . , P̄k) and then a overtakes b on the path (P̄k, . . . , P̄t). Thus we have i.e. bP̄ka and aP̄tb. Now refer
back to the path π1. Since aP0b, bP̃a and aP1b, path π1 has {a, b}-restoration and hence, b ∈ Γπ1

1 ∩ L(a, P1).
This contradicts the hypothesis Γπ1

1 ∩ L(a, P1) = ∅. ■

We can now replace P1 by P2 in our earlier arguments and define Γ2 in the same way as we defined Γ1.
Once again, there are two possibilities, Γ2 ̸= ∅ and Γ2 = ∅. The former case leads to an immediate
contradiction using the arguments in Case A. In the latter case, we can apply Claims 2.3.2, 2.3.3 and 2.3.4
to infer the existence of P3 such that (i) Γ ∩ L(a, P2) is a strict subset of Γ ∩ L(a, P3), and (ii) every path
π ∈ Π(P0, P3) has {a, x}-restoration for some x ∈ Γ. Repeating the argument, it follows that the only
way to avoid a contradiction via Case A is to find an infinite sequence of vertices P1, P2, . . . Pn, . . . such
that

[Γ ∩ L(a, P1)] ⊂ [Γ ∩ L(a, P2)] ⊂ · · · ⊂ [Γ ∩ L(a, Pn)] · · · . ¹⁶

However this is impossible in view of the finiteness ofG. Thus Case B cannot occur either and the
proof is complete. ■

Property L can be simplified if an additional restriction is imposed on the domain.
For any preference P, r1(P) denotes the first-ranked alternative in P. A domainD satisfiesminimal

richness if for all a ∈ A, there exists P ∈ D such that r1(P) = a.

¹⁶Each of the subset relations is strict.
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Definition 2.3.4 The environment G = ⟨D, E⟩ satisfies Property L′ if the following two conditions hold:

1. For all P, P′ ∈ D with r1(P) = r1(P′) = a, there exists a path π = (P1, . . . , Pt) ∈ Π(P, P′) such that
r1(Pk) = a for all k = 1, . . . , t.

2. For all a ∈ A and P′ ∈ D with r1(P′) ̸= a, there exists P ∈ D with r1(P) = a and a path
π = (P1, . . . , Pt) ∈ Π(P, P′) such that for all b ∈ A\{a} the path π has no {a, b}-restoration.

Property L′ is easier to verify than Property L. In order to verify the latter, we have to find the existence
of a suitable path for all pairs of preferences and all alternatives not ranked last in one of the preferences.
For Part 1 of Property L′, we only need to check for the existence of a path with a simple property for all
pairs of preferences with the same first-ranked alternative. For Part 2 of Property L′, we only need to verify
the existence of appropriate paths for special pairs of preferences.

Proposition 2.3.1 Properties L and L′ are equivalent on all environments G = ⟨D, E⟩ whereD is minimally
rich.

Proof: LetG = ⟨D, E⟩ be an environment whereD is minimally rich. We first show that Property L
implies Property L′.

Pick P, P′ ∈ D such that r1(P) = r1(P′) = a. SinceG satisfies Property L, there exists a path π from P
to P′ such that for all b ∈ L(a, P) = A \ {a} the path π has no {a, b}-restoration. Clearly, all preferences
on this path must have a as the first-ranked alternative. In order to show Part 2 of Property L′, consider
a ∈ A and P′ ∈ D where r1(P′) ̸= a. By minimal richness, we can find P ∈ D with r1(P) = a. Property L
implies the existence of a path π inΠ(P, P′) such that for all b ∈ L(a, P) = A \ {a} the path π has no
{a, b}-restoration. This is precisely the path required to satisfy Part 2 of Property L′.

We now show that Property L′ implies Property L. Pick P, P′ ∈ D and a ∈ A. We have to show the
existence of a path π inΠ(P, P′) such that for all b ∈ L(a, P) the path π has no {a, b}-restoration. There
are four cases to consider.

Case 1: r1(P) = r1(P′) = a. Part 1 of Property L′ guarantees the existence of a path which satisfies the
required condition.

Case 2: r1(P) = a and r1(P′) ̸= a. According to Part 2 of Property L′, there exist P′′ ∈ D with r1(P′′) = a
and a path π′ ∈ Π(P′′, P′) such that π′ has no {a, b}-restoration for any b ̸= a. Let π̃ ∈ Π(P, P′′) be the
path whose existence is guaranteed by Part 1 of Property L′. Let P̃ be the first vertex in the path π̃
(proceeding from P towards P′′) which lies on π′. Such a vertex must exist since P′′ belongs to both π̃ and
π′. Let π be the sequence of vertices obtained by concatenating the sub-paths π̃|[P,P̃] and π′|[P̃,P′ ]. By
construction, π does not contain any repetition of vertices. Therefore π ∈ Π(P, P′). Since there is no
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{a, b}-restoration in π′ for any b ̸= a, there is no such restoration on its sub-path π′|[P̃,P′ ] either. Also a is
first-ranked everywhere on the sub-path π̃|[P,P̃]. Therefore π has no {a, b}-restoration for all
b ∈ A \ {a} = L(a, P).

Case 3: r1(P) ̸= a and r1(P′) = a. According to Case 2, there exists a path π′ ∈ Π(P′, P) that has no
{a, b}-restoration for any b ̸= a. Let π be the reverse of path π′. Then π ∈ Π(P, P′), and π has no
{a, b}-restoration for all b ∈ L(a, P).

Case 4: r1(P) ̸= a and r1(P′) ̸= a. By minimal richness, there exists P̄ ∈ D with r1(P̄) = a. Applying the
argument in Case 3, there exists a path π̃ ∈ Π(P, P̄)with no {a, b}-restoration for any b ∈ L(a, P).
Applying Case 2, there exists a path π̂ ∈ Π(P̄, P′)with no {a, b}-restoration for all b ∈ A \ {a}.
Arguments similar to those in Case 2 can now be used to construct an appropriate path from P to P′. Let P̃
be the first vertex in the path π̃ (proceeding from P to P̄ ) that also lies on π̂. Let π be the sequence of
vertices obtained by the concatenation of the sub-paths π̃|[P,P̃] and π̂|[P̃,P′ ]. Clearly π ∈ Π(P, P′). Since π̃
satisfies no {a, b}-restoration for all b ∈ L(a, P) and a = r1(P̄), it follows that no alternative in L(a, P)
overtakes a in π̃|[P,P̃], i.e. L(a, P) ⊂ L(a, P̃). The sub-path π̂ satisfies no {a, b}-restoration for all b ̸= a;
therefore the sub-path π̂|[P̃,P′ ] satisfies no {a, b}-restoration for all b ∈ L(a, P). We can summarize the
argument thus far as follows. Pick an arbitrary b ∈ L(a, P) and consider the path π. If aP′b, then b lies
everywhere less preferred to a along π. If bP′a, then b is less preferred to a in π till P̃ and overtakes a once
from P̃ to P′. In other words, π satisfies no {a, b}-restoration for all b ∈ L(a, P). ■

In Section 2.5, we apply Property L′ to various environments in order to show LGE.

2.4 Discussion

We comment on some aspects of our results.

2.4.1 Computational Complexity

The problem of determining whether an environment satisfies Property L, is not computationally hard.
TheDepth First Search Algorithm ¹⁷ for efficiently traversing graphs can be modified easily to construct an
algorithm that decides whether an environment satisfies Property L. The worst case time complexity of
the algorithm isO

(
|A|2|D|(|D|+ |E|)

)
which is polynomial in the parameters of the problem. The

details of the argument can be found in Chatterjee [13].

¹⁷See Cormen et al. [19].
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2.4.2 Relationship with Earlier Results

Carroll [12] proved that the the environments ⟨P , E adj⟩ and ⟨DSP, E adj⟩ satisfy LGE.¹⁸ Both these
environments satisfy a stronger version of Property Lwhich we refer to as PropertyU.

Definition 2.4.1 The environment G = ⟨D, E⟩ satisfies the universal pairwise no-restoration property
(Property U) if for all P, P′ ∈ D, there exists a path inΠ(P, P′) that satisfies no-restoration for all pairs {a, b}.

Let π ∈ Π(P, P′) be the path that satisfies no-restoration for all pairs of alternatives as required by
PropertyU. Then π also satisfies no {a, b}-restoration for any a ∈ A and b ∈ L(a, P). Clearly, Property L
is satisfied. On the other hand, Property L does not imply PropertyU. In order to see this, consider the
environmentG∗ in Example 2.2.7 which satisfies Property L. For the pair (P1, P5) the clockwise path has
{a, b}-restoration while the counterclockwise path has {c, a}-restoration. Clearly, PropertyU is violated.

Sato [46] showed that Property P below is necessary for LGE in adjacency environments.

Definition 2.4.2 The environment G = ⟨D, E⟩ satisfies the pairwise no-restoration property (Property P) if
for all P, P′ ∈ D, and a, b ∈ A, there exists a path inΠ(P, P′) that satisfies no {a, b}-restoration.

Example 3.2 in Sato [46] shows that Property P is not sufficient for LGE. The difficulty is that Property
P does not specify the relationship between the no-restoration paths for different pairs of alternatives - the
path satisfying no-restoration between P and P′ for {a, b} could be distinct from the no-restoration path
between the same vertices for another pair {c, d}. Property L is clearly a strengthening of Property P.

Sato [46] also introduced a sufficient condition for LGE in adjacency environments (we refer to this
condition as Property S for convenience) which is weaker than PropertyU.

Definition 2.4.3 Let G = ⟨D, E adj⟩ be an environment. Consider P, P′ ∈ D. A path
π = (P1, P2, . . . , Pt) ∈ Π(P, P′) satisfies the antidote property with respect to the pair (P, P′) if, for all pairs
a, b ∈ A such that π is with {a, b}-restoration and aP1b, then for each h ∈ {1, . . . , t} such that bPh−1a and
aPhb, there exists a path π′ ∈ Π(P, Ph) along which a does not overtake any alternative.

The environment G satisfies Property S if, for every P, P′ ∈ D there exists a path satisfying the antidote
property with respect to (P, P′).

EnvironmentG∗ in Example 2.2.7 violates Property Swhich establishes that Property S is stronger than
Property L. Consider the pair (P1, P5). As noted earlier, the clockwise path from P1 to P5 has
{a, b}-restoration since aP1b, bP4a and aP5b. In order for it to satisfy the antidote property, a should not

¹⁸Recall thatP is the set of all strict preferences. AlsoDSP is the domain of single-peaked preferences. A formal definition of
single-peaked preferences can be found in Section 2.5.
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overtake any alternative in the counterclockwise path from P1 to P5. However a does overtake c on this
path. Property L is nevertheless satisfied since there is no restoration with a and any of the alternatives
ranked below a in P1 along this path.

2.5 Multi-dimensionalVoting: theseparabledomainandthemulti-dimensional

single-peaked domain

In this section, we apply our results to a well-known voting model. The set of alternatives has a Cartesian
product structure, i.e. A = ×j∈MAj whereM = {1, 2, . . . ,m} is a finite set of componentswithm ≥ 2. For
each j ∈ M, the component set Aj contains a finite number of elements with |Aj| ≥ 2. For any j ∈ M,
A−j = ×i ̸=jAi. An alternative a ∈ A is anm-tuple a ≡ (a1, . . . , am). We shall sometimes write a in the
form (aj, a−j)where aj ∈ Aj and a−j ∈ A−j. A preference P is a linear order over A. Amarginal preference
over component j is a linear order over Aj.

A preference P is separable if, for all aj, bj ∈ Aj, c−j, d−j ∈ A−j and j ∈ M, (aj, c−j)P(bj, c−j) implies
(aj, d−j)P(bj, d−j). Thus every separable preference P induces anm-tuple of marginal preferences
(P1, . . . , Pm).¹⁹ LetDS denote the set of all separable preferences. Note that for every component j and
any marginal preference Pj over the component set Aj, there exists P ∈ DS such that P induces the
marginal preference Pj over Aj. There is a large literature on committee voting following Barberà et al. [5]
which assumes separable preferences.

Another domain of preferences that we shall consider is that of multi-dimensional single-peaked
preferences introduced by Barberà et al. [6]. (See also Le Breton and Sen [36]) This notion generalizes
the well-known class of single-peaked preferences (see Moulin [41]). For this purpose, additional
structure is introduced on each component set.

Let≺j denote a linear order over Aj for each j ∈ M. A grid is anm-tuple (≺1, . . . ,≺m).²⁰ Let P be a
preference over Awhose first-ranked alternative is x. Then P ismulti-dimensional single-peakedwith
respect to the grid (≺1, . . . ,≺m) if for all distinct a, b ∈ A, we have[
xj ⪯j aj ≺j bj or bj ≺j aj ⪯j xj for all j ∈ Mwith aj ̸= bj

]
⇒ [aPb].²¹

¹⁹The converse is not true however. Several preferences can induce the same tuple of marginal preferences. For instance,
consider additively separable preferences. Preferences over each component j have a utility representation uj : Aj → ℜ. Utility
representations overA are obtained by summing utilities over components. By considering different affine transformations of uj,
one can obtain different preferences over A without changing marginal preferences. Details can be found in Le Breton and Sen
[36].

²⁰A grid can be interpreted as a product of lines. The notion of multi-dimensional single-peakedness can be generalized on a
product of trees where our result still holds. For notational convenience, let aj ⪯j bj denote either aj ≺j bj or aj = bj.

²¹In the case where m = 1, multi-dimensional single-peakedness reduces to single-peakedness. The definition of multi-
dimensional single-peakedness is silent regarding the comparison of some alternatives. For instance, suppose m = 2, ≺ is
the < ordering on real numbers and A1 = A2 = {0, 1}. Let (0, 0) be the highest-ranked alternative in the multi-dimensional
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P1 P2 P3 P4 P5 P6 P7 P8
(0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (1, 0) (1, 1) (1, 1)
(0, 1) (1, 0) (0, 0) (1, 1) (0, 0) (1, 1) (0, 1) (1, 0)
(1, 0) (0, 1) (1, 1) (0, 0) (1, 1) (0, 0) (1, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 0) (0, 0)

Table 2.5.1: Domains DS and DMSP

The domainDMSP contains preferences that are not separable (see Section 3 in Le Breton and Sen
[36]). HoweverDS ∩ DMSP ̸= ∅. In order to see this, pick an arbitrarym-tuple of marginal preferences
(P1, . . . , Pm)where each Pj, j ∈ M is single-peaked with respect to≺j. Construct P as follows. For all
distinct c, d ∈ Awith c ̸= d, let j be the integer inM such that cj ̸= dj and cr = dr for all r < j. Then cPd if
and only if cjPjdj. It is easy to verify that P ∈ DS. We also claim P ∈ DMSP. Suppose x is the first-ranked
alternative in P. Pick distinct alternatives a, b ∈ A. Clearly, aj ̸= bj for some j ∈ M.
Assume further that xj ⪯j aj ≺j bj or bj ≺j aj ⪯j xj for all j ∈ Mwith aj ̸= bj. Let k ∈ M be the lowest
component such that ak ̸= bk. By virtue of the single-peakedness of Pk, xk ⪯k ak ≺k bk or bk ≺k ak ⪯k xk
implies akPkbk. Then, aPb follows directly from the construction of P.

We introduce a new notion of neighbours that applies to any domain which includes separable
preferences. Let P, P′ ∈ DS. We say that P and P′ are separably adjacent (denoted by (P, P′) ∈ ESA) if
there exist j ∈ M and aj, bj ∈ Aj such that
[{x, y} ∈ P △ P′] ⇒ [xj = aj, yj = bj and xk = yk for all k ̸= j]. Thus P and P′ are separably adjacent if
all pairs of alternatives that are reversed between P and P′ differ in the values of exactly one component.²²
We emphasize that separable adjacency applies only to separable preferences.

Separable adjacency does not cover the standard adjacency case. We therefore consider a strengthened
version of separable adjacency: P and P′ are adjacent-separably adjacent (denoted by (P, P′) ∈ EASA)²³ if
either (P, P′) ∈ E adj or (P, P′) ∈ ESA holds. Two separable preferences P and P′ are neighbours in the
ASA sense if one can be obtained from the other by a “minimal” change.

Example 2.5.1 Let A = A1 × A2 with A1 = A2 = {0, 1}. In the special case |Aj| = 2 for all j ∈ M, we
haveDS = DMSP implying that the environments ⟨DS, EASA⟩ and ⟨DMSP, EASA⟩ are the same. Table 2.5.1
lists the preferences inDS andDMSP. Note that the domain satisfies minimal richness.

single-peaked preference P̄. We must have (0, 0)P̄(1, 0), (0, 0)P̄(0, 1), (0, 0)P̄(1, 1), (1, 0)P̄(1, 1) and (0, 1)P̄(1, 1) by definition.
²²Separably adjacency is based on a notion of Kemeny distance that applies to separable preferences. Two (separable) pref-

erences are separably adjacent if they disagree on the relative ranking of two alternatives that differ in the values of exactly one
component. Further analysis of separable adjacency can be found in Chatterji and Zeng [16].

²³The acronym ASA stands for adjacent-separably adjacent.
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P1
P6

P5

P2

P3
P8

P7

P4

Figure 2.5.1: ⟨DS, EASA⟩ and ⟨DMSP, EASA⟩

This environment is shown in Figure 2.5.1. The thicker lines in the figure show the environment
⟨DS, E adj⟩, i.e. E adj = {(P1, P2), (P3, P4), (P5, P6), (P7, P8)}. The other edges in the figure belong to ESA.
Note that (P1, P2) /∈ ESA since P1 △ P2 =

{
{(0, 1), (1, 0)}

}
. Also

P1 △ P3 =
{
{(0, 0), (0, 1)}, {(1, 0), (1, 1)}

}
. Observe that the set of alternatives that are reversed

between P1 and P3 can be obtained by switching the value of component 2 from 0 to 1 at different values of
component 1. Clearly (P1, P3) ∈ ESA. On the other hand (P2, P4) /∈ ESA since {(0, 0), (1, 1)} ∈ P2 △ P4.

We will show later that the environment ⟨DMSP, EASA⟩ satisfies Property L′. Clearly, Part 1 of Property
L′ is satisfied as indicated by the four thick edges in Figure 2.5.1. Now consider the preference P1 and the
alternative (1, 1)which is not first-ranked in P1. We have (1, 1) first-ranked in preference P8 and the path
(P8, P7, P4, P3, P1) has no restoration for (1, 1) and any other alternative. Consequently, the requirement
of Part 2 of Property L′ is satisfied in this case. 2

Example 2.5.1 and Figure 2.5.1 also lead to the conclusion that the environments ⟨DS, ESA⟩,
⟨DMSP, ESA⟩, ⟨DS, E adj⟩ and ⟨DMSP, E adj⟩ fail LGE. The graphs in these environments are not connected
which can be verified by inspection and by our earlier remarks.

According to the main result in the section, combining the adjacency and separable adjacency notions
of neighbours with the separable and multi-dimensional single-peaked domains leads to LGE.

Proposition 2.5.1 The environments ⟨DS, EASA⟩ and ⟨DMSP, EASA⟩ satisfy LGE.

The proof of Proposition 2.5.1 can be found in the Appendix.

2.6 LGE and random social choice functions

In this section, we examine LGE in the context of random social choice functions. Our result is the
following: an environment that satisfies LGE for deterministic social choice functions may not satisfy
LGE for random social choice functions.

Let Δ(A) denote the set of probability distributions over A. An element λ ∈ Δ(A)will be referred to as
a lottery. We let λa denote the probability with which a ∈ A is selected by λ. Thus 0 ≤ λa ≤ 1 and∑

a∈A λa = 1.
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A Random Social Choice Function (or RSCF) is a map ϕ : D → Δ(A) that associates a lottery ϕ(P)with
each P ∈ D .

For every P ∈ D, and k = 1, 2, . . . |A|, let rk(P) ∈ A denote the kth ranked alternative in P i.e.
rk(P) = a implies |{b ∈ A : bPa}| = k− 1. The lottery λ stochastically dominates lottery λ′ at P ∈ D
(denoted by λPsdλ′) if

∑t
k=1 λrk(P) ≥

∑t
k=1 λ

′
rk(P) for all t = 1, . . . , |A|.

LetG = ⟨D, E⟩ be an environment. A RSCF ϕ : D → Δ(A) is locally sd-strategy-proof if ϕ(P)Psdϕ(P′)
for all (P, P′) ∈ E . A RCSF ϕ : D → Δ(A) is sd-strategy-proof if ϕ(P)Psdϕ(P′) for all P, P′ ∈ D.

The environmentG = ⟨D, E⟩ satisfies random local-global equivalence or RLGE if every locally
sd-strategy-proof RSCF ϕ : D → Δ(A) is also sd-strategy-proof.

In the case where a RSCF is deterministic, local sd-strategy-proofness and sd-strategy-proofness
reduce to local strategy-proofness and strategy-proofness respectively. An immediate consequence of this
observation is an environment that satisfies RLGE also satisfies LGE. The results of Carroll [12] and Cho
[18] show that the converse is true for several special domains. The example below shows that LGE does
not imply RLGE.

Example 2.6.1 Let A = {a, b, c, v,w, x, y, z}. The domain D̃ is described in Table 2.6.1. The
environment G̃ = ⟨D̃, E adj⟩ is shown in Figure 2.6.1.

By using arguments similar to those in Example 2.2.7, we can show that G̃ satisfies Property L.
Therefore, Theorem 2.3.2 implies that G̃ satisfies LGE. We construct a RSCF which satisfies local
sd-strategyproofness but not sd-strategy-proofness.

For any d ∈ A, we let ed denote the degenerate lottery that picks dwith probability one. Consider the
RSCF ϕ : D̃ → Δ(A):

ϕ(Pk) =


1
2ea +

1
2eb if k ∈ {1, 10},

1
2ea +

1
4eb +

1
4ec if k ∈ {2, 3, 4, 5},

1
4ea +

1
2eb +

1
4ec if k ∈ {6, 7, 8, 9}.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
a a a a a b b b b b
b c c c b a c c c a
c b b b c c a a a c
v v w w w w w w v v
w w v v v v v v w w
x x x x x x x x x x
y y y z z z z y y y
z z z y y y y z z z

Table 2.6.1: Domain D̃

P1 P2
{b, c}

P3
{v,w}

P4
{y, z}

P5
{c, b}

P10
{a, c}

P9 P8
{v,w}

P7
{y, z}

P6
{c, a}

{a, b} {a, b}

Figure 2.6.1: G̃ = ⟨D̃, Eadj⟩

In order to verify the local sd-strategy-proofness of ϕ it suffices to show that the voter cannot gain by
manipulation in each of the following cases: (i) from P1 to P2 and vice versa, (ii) from P5 to P6 and vice
versa and (iii) from P9 to P10 and vice versa. This can be verified easily in each of the cases. Consider (i),
for instance. Observe that c locally overtakes b from P1 to P2. Correspondingly, probability 1

4 is transferred
from b to c, (keeping other probabilities fixed) as we move from ϕ(P1) to ϕ(P2). Therefore, ϕ(P2)P2sdϕ(P1)
and symmetrically, ϕ(P1)P1sdϕ(P2). The same argument can be made in cases (ii) and (iii).

However, it is not the case that ϕ(P5)P5sdϕ(P
1) (in fact ϕ(P1)P5sdϕ(P

5)). Consequently ϕ is not
sd-strategy-proof. 2

We make two observations about Example 2.6.1.

Observation 2.6.1 As mentioned earlier, Carroll [12] and Cho [18] have established the equivalence of
local sd-strategy-proofness and sd-strategy-proofness in specific adjacency environments. These
environments all satisfy PropertyU. The environment G̃ in Example 2.6.1 violates PropertyU since both
the clockwise and counterclockwise paths between P1 and P5 have restorations.

Observation 2.6.2 The key feature of the example in Example 2.6.1 that makes the LGE and RLGE
results differ is that some lotteries under ϕ have support {a, b, c}, e.g. ϕ(Pk), k = 2, . . . , 9. However, no
locally strategy-proof SCF can have a range that includes all three alternatives a, b and c. In order to see
this, let f : D̃ → A be a locally strategy-proof SCF. Theorem 2.3.2 implies that f is strategy-proof. Suppose
{a, b, c} ⊆ Range(f) = {d ∈ A : f(P) = d for some P ∈ D̃}. Thus, there exists a preference where f
takes value a and another preference where f takes value b. Strategy-proofness immediately implies
f(Pk) = a for all 1 ≤ k ≤ 5 and f(Pl) = b for all 6 ≤ l ≤ 10. Hence, we have a contradiction.
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A characterization for RLGE appears to be significantly more difficult than that for LGE. In our
companion paper Kumar et al. [33] we derive a weak sufficient condition for RLGE in multi-voter models
where RSCFs satisfy the additional property of unanimity.

Appendix: Proof of Proposition 2.5.1

We begin by observing that both the separable domainDS and the multi-dimensional single-peaked
domainDMSP satisfy the minimal richness property. Applying Theorem 2.3.2 and Proposition 2.3.1, it
suffices to show that both domains satisfy Property L′. Furthermore both domains satisfy Part 1 of
Property L′ as is shown in Appendices E.2 and E.5 of Chatterji and Zeng [16]. Therefore, we only verify
Part 2 of Property L′.²⁴

We first investigate the separable domainDS. Next, we show Part 2 of Property L′ on the intersection of
the separable domain and the multi-dimensional single-peaked domainDS ∩ DMSP, and then extend the
result to the multi-dimensional single-peaked domainDMSP.

In the proofs, we shall occasionally employ a special type of separable preferences called lexicographic
separable preferences. Let (P1, . . . , Pm) be anm-tuple of marginal preferences and let P0 be strict order
over the setM. The preference P is lexicographically separablewith respect to the (m+ 1)-tuple
(P0, P1, . . . Pm) if, for all a, b ∈ A,

[
ajPjbj and ar = br for all r such that rP0j

]
⇒ [aPb]. In other words, a

is ranked strictly better than b according to P if aj is ranked higher than bj according to the marginal
preference Pj and ar = br for all components r that are ranked strictly higher than j according to the
component preference P0. We shall write a lexicographically separable preference P as
P ≡ (P0, P1, . . . , Pm).

We first prove two preliminary lemmas.

Lemma 2.6.1 Let distinct P, P′ ∈ DS induce the same marginal preferences. Then there exists a path from P to
P′ in ⟨DS, E adj⟩ such that there is no restoration for any pair of alternatives.

Proof: This lemma follows from Fact 5 of Chatterji and Zeng [16]. ■

Lemma 2.6.2 Fix marginal preferences P1, . . . , Pm. Let a be an alternative such that aj is not the first-ranked
element in Pj for some j ∈ M. For each component k, let Xk = {xk ∈ Ak : xkPkak} ∪ {ak}. Let
X = X1 × . . .× Xm. Pick component j, and let bj, cj ∈ Xj or bj, cj ∈ Aj\Xj be consecutively ranked elements in
Pj. Then there exists a separable ordering P̄(j) satisfying the following properties:

²⁴Part 1 of Property L′ is the same as the interior+ property of Chatterji and Zeng [16]. Hence, we can directly apply their
result for this part. However, Part 2 of PropertyL′ is stronger than their exterior+property sowehave to show this independently.
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1. P̄(j) induces the marginal preferences P1, . . . , Pm.

2. [xP̄(j)a] ⇒ [for each k ∈ M, either xkPkak or xk = ak, i.e. x ∈ X].

3. (bj, z−j) and (cj, z−j) are consecutively ranked in P̄(j) for all z−j ∈ A−j.

Proof: We construct a partition of the set A. In order to do so, define the following sets: A−j = ×k ̸=jAk,
X−j = ×k ̸=jXk, Yj = Aj \ Xj, and Y−j = A−j \ X−j. The sets X, B = Xj × Y−j, C = Yj × X−j and
D = Yj × Y−j constitute a partition of the set A. The ordering P̄(j) is defined by the Conditions 1 and 2
below.

1. XP̄(j)BP̄(j)CP̄(j)D i.e. all alternatives in X are ranked above those in Bwhich in turn are ranked
above those in C, while all alternatives inD are ranked below those in C.

2. P̄(j) over X is lexicographically separable according to (P0(j), P1, . . . , Pm)where j is ranked last in
the component preference P0(j) i.e. given x, y ∈ X, [xkPkyk and xr = yr for all rP0(j)k] ⇒ [xP̄(j)y].
Similarly, P̄(j) is lexicographically separable over alternatives respectively in B, C andDwith
respect to (P0(j), P1, . . . , Pm).

Observe that ak is the lowest ranked element in Xk according to Pk for all k ∈ M. Therefore, by the
construction, a is the worst alternative in X according to P̄(j). As X is the highest-ranked block according
to P̄(j), it follows that all alternatives x that are ranked higher than a according to P̄(j)must satisfy x ∈ X.
This establishes Part 2 of Lemma 2.6.2.

To show that P̄(j) is a separable preference and satisfies Part 1 of Lemma 2.6.2, it suffices to show that
for an arbitrary pair of alternatives that disagree in exactly one component, say x = (xk, z−k) and
y = (yk, z−k), we have [(xk, z−k)P̄(j)(yk, z−k)]

⇒ [xkPkyk]. If x and y both belong to one of the sets X, B, C orD, the result follows immediately.
Henceforth, assume that x and y belong to two different sets of X, B, C andD.

Suppose k = j. We know either z−j ∈ X−j or z−j ∈ Y−j. If z−j ∈ X−j, (xk, z−k)P̄(j)(yk, z−k) implies
x ∈ X and y ∈ C. Similarly, if

z−j ∈ Y−j, (xk, z−k)P̄(j)(yk, z−k) implies x ∈ B and y ∈ D. Consequently, in both cases, xj ∈ Xj and
yj ∈ Yj, and hence xjPjyj.

Suppose k ̸= j. Let z−jk denote the vector z−k with its element of component j deleted. Since xP̄(j)y,
and x and y agree on component j, we know either x ∈ X and y ∈ B, or x ∈ C and y ∈ D, both of which
imply (xk, z−jk) ∈ X−j and (yk, z−jk) ∈ Y−j. Since X−j is a Cartesian product set, (xk, z−jk) ∈ X−j implies
xk ∈ Xk and z−jk ∈ ×r̸=j,kXr. Last, since z−jk ∈ ×r̸=j,kXr, (yk, z−jk) /∈ X−j implies yk /∈ Xk. Therefore,
xkPkyk.
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Hence P̄(j) is a separable preference, and induces marginal preferences P1, . . . , Pm.
Part 3 of Lemma 2.6.2 is an immediate consequence of the fact that P̄(j) over alternatives of X and B

respectively is lexicographically separable with respect to the component preference P0(j)where
component j is ranked last. ■

We now show that the separable domainDS satisfies Part 2 of Property L′.

Proof: Consider P′ ∈ DS and a ∈ A such that a is not the first-ranked alternative in P′. Let P′1, . . . , P′m be
the induced marginal preferences of P′. Without loss of generality, assume that a1, a2, . . . , ar, r ≤ m, are
not first-ranked in P′1, P′2, . . . , P′r respectively, while av = r1(P′v) for all v = r+ 1, . . . ,m. We will construct
a sequence of preferences which are edges in ⟨DS, EASA⟩with the property that a keeps “rising” along the
sequence. The sequence will terminate in a preference P ∈ DS where a is first-ranked. Then, the reverse
path from P to P′ has no {a, b}-restoration for all b ∈ A\{a}, as required by Part 2 of Property L′.

We start from P′1. LetP1 denote the set of all marginal preferences over A1. Pick a marginal ordering P1
such that a1 is first-ranked. By Proposition 4.1 of Sato [46], we have a path π1 = (P11, . . . , Pt1) from P′1 to P1
in ⟨P1, E adj⟩which has no restoration for any pair of elements of A1.²⁵ Since L(a1, P′1) ⊂ L(a1, P1), a1 must
keep rising along the path π1 i.e. L(a1, Pk1 ) ⊆ L(a1, Pk+1

1 ) for all 1 ≤ k < t. Therefore, for all 1 ≤ k < t, if a1
is involved in the local switching elements across Pk1 and Pk+1

1 , it is true that x1Pk1a1 and a1Pk+1
1 x1 for some

x1 ∈ A1.
For each k = 1, . . . , t, let Xk

1 = {x1 ∈ A1 : x1Pki a1} ∪ {a1}. For each k = 1, . . . , t− 1, consider
(Pk1 , Pk+1

1 ) and let Pk1 △ Pk+1
1 =

{
{bk1 , ck1}

}
. Since L(a1, Pk1 ) ⊆ L(a1, Pk+1

1 ), it must be the case that either
bk1 , ck1 ∈ Xk

1 or bk1 , ck1 ∈ A1\Xk
1 . Next, for each k = 1, . . . , t, by Lemma 3, let P̄k(1) ∈ DS be such that (i) it

induces the marginal preferences Pk1 , P′2, . . . , P′m, (ii) if xP̄k(1)a, then for all j ∈ M, either xj = aj, or xj is
strictly better than aj according to the jth marginal ordering of P̄k(1), and (iii) (bk1 , z−1) and (ck1 , z−1) are
consecutively ranked in P̄k(1) for all z−1 ∈ A−1. Let P̂k(1) be the ordering obtained by switching all
alternatives of the type (bk1 , z−1) and (ck1 , z−1) for some z−1 ∈ A−1. It is clear that P̂k(1) is a separable
preference with the same marginal preferences as P̄k(1) for all components other than 1. For component 1,
ck1 is now ranked immediately above bk1 , while the rankings of other elements are unchanged. Therefore,
there are three properties of P̂k(1) that are important: (i)

(
P̄k(1), P̂k(1)

)
∈ ESA and

P̄k(1) △ P̂k(1) =
{
{(bk1 , z−1), (ck1 , z−1)} : z−1 ∈ A−1

}
, (ii) L

(
a, P̄k(1)

)
⊆ L

(
a, P̂k(1)

)
where the strict

inclusion holds if and only if a1 = ck1 , and (iii) P̂k(1) and P̄k+1(1) have the same marginal preferences, and
L
(
a, P̂k(1)

)
⊆ L

(
a, P̄k+1(1)

)
by Part 2 of Lemma 2.6.2 in the construction of P̄k+1(1).

²⁵For instance, we generate P1 bymoving a1 directly to the top of P′1 while keeping the rankings of other elements unchanged,
and then construct the path from P′1 to P1 in ⟨P1, Eadj⟩ by progressively moving a1 to the top of P′1 .
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Now, we have a sequence:

P′ → P̄1(1) → P̂1(1) → P̄2(1) → · · · → P̄t−1(1) → P̂t−1(1) → P̄t(1).

Note that P̄t(1) has marginal preference P1 where a1 is the first-ranked element. Since P′ and P̄1(1) have the
same marginal preferences P′1, P′2, . . . , P′m, we know that either P = P̄1(1), or there exists a path π̄0 from P
to P̄1(1) in ⟨DS, E adj⟩which has no restoration for any pair of alternatives (by Lemma 2.6.1). Similarly, for
all 1 ≤ k < t, we know that either P̂k(1) = P̄k+1(1), or there exists a path π̄k from P̂k(1) to P̄k+1(1) in
⟨DS, E adj⟩which has no restoration for any pair of alternatives. Since

(
P̄k(1), P̂k(1)

)
∈ ESA for all

k = 1, . . . , t− 1, we construct a concatenated path π̄ = (π̄0, π̄1, . . . , π̄t−1) from P′ to P̄t(1) in
⟨DS, EASA⟩.²⁶ Recall that L(a, P′) ⊆ L(a, P̄1(1)), L(a, P̄k(1)) ⊆ L(a, P̂k(1)) and
L(a, P̂k(1)) ⊆ L(a, P̄k+1(1)) for all k = 1, . . . , t− 1. Then, no restoration on subpaths π̄0, π̄1, . . . , π̄t−1

implies that a keeps rising along the path π̄.
We can clearly repeat this procedure, progressively moving a1 to the top in the marginal preference P1,

and then doing the same for a2, through till ar. The procedure generates a path in ⟨DS, EASA⟩ culminating
in a preference P ∈ DS where a is first-ranked. Moreover if a overtakes some x at some preference on the
path, it beats x at all preferences further along the path. It follows immediately that the reverse path from
P to P′ satisfies no {a, b}-restoration for all b ∈ A\{a}. This establishes Part 2 of Property L′, and hence
proves Proposition 2.5.1 for the separable domainDS. ■

To show Part 2 of Property L′ in the multi-dimensional single-peaked domainDMSP, we first consider
the domainDS ∩ DMSP. We make several observations. Firstly,DS ∩ DMSP satisfies Part 1 of Property L′

by Appendix E.4 of Chatterji and Zeng [16]. Secondly, Lemma 2.6.1 remains valid inDS ∩ DMSP

according to Fact 11 of Chatterji and Zeng [16]. Thirdly, Lemma 2.6.2 holds when we set the marginal
preferences P1, . . . , Pm to be single-peaked with respect to≺1, . . . ,≺m respectively, and change
preference P̄(j) to be both separable and multi-dimensional single-peaked. Finally, in the verification of
Part 2 of Property L′ in the separable domain, if we replaceDS withDS ∩ DMSP,P1 with S1 which is the
set of all single-peaked marginal preferences with respect to≺1, and the reference to Proposition 4.1 of
Sato [46] with a reference to Proposition 4.2 of Sato [46], our earlier proof works for verifying Part 2 of
Property L′ inDS ∩ DMSP. Therefore,DS ∩ DMSP satisfies Property L′.

To extend the result to the multi-dimensional single-peaked domain, we use the following lemma

²⁶The concatenated path π̄ has no repeated preference. Given two preferences P̂ and P̃ in π̄, we know P̂ ∈ π̄k and P̃ ∈ π̄k
′
for

some 0 ≤ k, k′ ≤ t − 1. If k = k′, it is evident that P̂ ̸= P̃ by the definition of the path π̄k. Next, assume k < k′. Note that
P̂k

′
(1) and P̄k

′+1(1) induce the samemarginal preferencePk
′+1
1 and the path π̄k

′
connecting P̂k

′
(1) and P̄k

′+1(1)has no restoration
for any pair of alternatives. Then, P̃ ∈ π̄k

′
implies that P̃ induces the marginal preference Pk

′+1
1 . Symmetrically, P̂ induces the

marginal preference Pk+1
1 , which is distinct from Pk

′+1
1 . Therefore, P̂ and P̃must be distinct.
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which follows from Lemma 8 of Chatterji and Zeng [15].

Lemma 2.6.3 Given distinct P, P′ ∈ DMSP, let r1(P) = r1(P′). Then there exists a path from P to P′ in
⟨DMSP, E adj⟩ such that there is no restoration for any pair of alternatives.

We now show Part 2 of Property L′ in the multi-dimensional single-peaked domainDMSP.

Proof: Consider P′ ∈ DMSP and a ∈ A such that a is not the first-ranked alternative in P′. Let r1(P′) = ā.
Fix k ∈ M. If ak = āk, we pick an arbitrary single-peaked marginal preference P′k that has ak as the
first-ranked element. If ak ̸= āk, we identify a particular single-peaked marginal preference P′k which
satisfies the following condition: [xkP′kak] ⇒ [āk ⪯k xk ≺k ak or ak ≺k xk ⪯k āk]. The marginal
preferences P′1, . . . , P′m are single-peaked by construction. Applying the counterpart of Lemma 2.6.2, we
have P̄′ ∈ DS ∩ DMSP such that P̄′ induces P′1, . . . , P′m, and
[xP̄′a] ⇒ [for all k ∈ M, either xk = ak or xkP′kak]. Note that L(a, P̄′) ⊇ L(a, P′). By Lemma 2.6.3,
since r1(P′) = r1(P̄′), we have a path π̂ from P̄′ to P′ in ⟨DMSP, E adj⟩which has no restoration for any pair
of alternatives. Moreover, sinceDS ∩ DMSP satisfies Property L′, we have P ∈ DS ∩ DMSP that has a
first-ranked, and a path π̄ from P to P̄′ in ⟨DS ∩ DMSP, EASA⟩ that has no {a, b}-restoration for all b ̸= a.

Now, we have a concatenated path π = (π̄, π̂) from P to P′ in ⟨DMSP, EASA⟩.²⁷ We show that π has no
{a, b}-restoration for all b ̸= a. Fix an arbitrary b ̸= a. If b overtakes a on path π̄, then no
{a, b}-restoration on π̄ implies that b overtakes a on π̄ exactly once, and bP̄′a. Then, L(a, P̄′) ⊇ L(a, P′)
implies bP′a, and no restoration on π̂ from P̄′ to P′ implies bP̂a for all P̂ ∈ π̂. Hence, the concatenated
path π has no {a, b}-restoration. If b does not overtake a on path π̄, then no {a, b}-restoration on π̄
implies aP̄b for all P̄ ∈ π̄, and hence aP̄′b. Furthermore, no restoration on π̂ implies that b can overtake a
on π̂ for at most once. Hence, the concatenated path π has no {a, b}-restoration. This establishes Part 2 of
Property L′, and hence proves Proposition 2.5.1 for themulti-dimensional single-peaked domainDMSP. ■

²⁷By an argument similar to the earlier one, the concatenated path π has no repeated preference.
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3
Local Global Equivalence in VotingModels Admitting

Indifferences

3.1 Introduction

We consider a finite set of alternatives and a society of agents where each agent has a preference over
alternatives.¹ The objective of the social planner is to construct social choice functions that aggregate the
preferences of the agents in a way that reporting true preference is a dominant strategy for each agent.
This property of a social choice function is called strategy-proofness. However, in reality, agents might be
comfortable to misreport to preferences that are “local” to their true preference.² In such situations, it is
sufficient for the social planner to consider social choice functions which ensure that the agents do not
benefit from misreporting to a preference that is local to their true preference. Such social choice
functions are called locally strategy-proof.

We consider a single agent model, which is without loss of generality in this setting. The set of
admissible preferences is called a domain.³ An environment is an undirected graph where the vertex set is

¹The preferences can be weak, that is, it can admit indifference.
²Local preferences can be any arbitrary pre-specified set of preferences.
³Here, we allow the preferences to have indifferences.
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the set of admissible preferences and two preference have an edge if and only if they are local. The agent
having her true preference at a particular vertex can misreport to only those preferences (vertices) that
have an edge with her true preference (vertex). A social choice function is called locally strategy-proof if
for every possible true preference of the agent, she cannot be better off by misreporting to a local
preference. A social choice function is strategy-proof if for every possible true preference of the agent, she
cannot be better off by misreporting to any other preference. The main question we ask is the following:
What are the environments where every locally strategy-proof social choice function is strategy-proof?

We investigate environments where preferences admit indifference. In this chapter, we extend Theorem
2.3.2 of Chapter 2 to preference domains with indifference. Unfortunately, a “clean” characterization
result appears to be difficult to obtain in this case. We show that our earlier arguments can be modified to
yield a condition that is sufficient for LGE and another condition that is necessary. Moreover the “gap”
between the conditions is small.⁴ We also provide some applications of our result where we use the
sufficiency result to propose notions of neighbours according to which environments with the domain of
single-plateaued preferences and the domain of all weak preferences, satisfies LGE.

3.2 Model

Let A be a finite set of alternatives with |A| ≥ 2. Without loss of generality, we consider a single agent
model as we did in the previous chapter. A weak preference denoted by R is a complete and transitive
binary relation on A. The antisymmetric and symmetric parts of R are denoted by P and I respectively. Let
R denote the set of all weak preferences on A. Recall thatP is the set of all strict preferences on A. For
every weak preference R and alternative a, L(a,R) = {x ∈ A : aPx} is the strict lower contour set of a at R.
Analogously, L̄(a,R) = {x ∈ A : aRx} is the weak lower contour set of a at R.

A domainD is a set of weak preferences. An environmentG is a graphG = ⟨D, E⟩ whereD and E are
the set of vertices and edges inG respectively.

LetG = ⟨D, E⟩ be an environment. An SCF f : D → A is locally strategy-proof if for all (R,R′) ∈ E, we
have f(R)Rf(R′). Furthermore, the SCF f : D → A is strategy-proof if for all R,R′ ∈ D, we have
f(R)Rf(R′). The environmentG satisfies local-global equivalence (LGE) if every locally strategy-proof SCF
is also strategy-proof.

These definitions are the natural counterparts of those in Chapter 2. The notion of a path with no
restoration requires reformulation in this setting. Recall that a path π ≡ (R1, . . . ,Rt) inG is a sequence of
preference inD such that (Rs,Rs+1) ∈ E for all s = 1, . . . , t− 1. The set of paths between R and R′ where
R,R′ ∈ D is denoted byΠ(R,R′).

⁴The “gap” is small in the sense that both conditions boil down to the single condition (Property L) obtained in the case of
preference domains without indifference (as discussed in Chapter 2).
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Fix a, b ∈ A. The path π ≡ (R1, . . . ,Rt) has (a, b)-restoration if there exist 1 ≤ u < q < s ≤ t such
that one of the following three cases occurs:

(i) aPub, bRqa and aRsb;

(ii) aRub, bPqa and aRsb;

(iii) aRub, bRqa and aPsb.

For an (a, b)-restoration, (weak) preferences over a and b reverse more than once along the path.
However, the preference over the pair at one of the preferences, where reversal takes place, must be strict.

We introduce two variants of Property L below.

Definition 3.2.1 The environment G = ⟨D, E⟩ satisfies Properties WL if, for all R,R′ ∈ D and a ∈ A, there
exists a path π inΠ(R,R′) such that for all b ∈ L(a,R) the path π has no (a, b)-restoration.

Definition 3.2.2 The environment G = ⟨D, E⟩ satisfies Property SL if, for all R,R′ ∈ D and a ∈ A, there
exists a path π inΠ(R,R′) such that for all b ∈ L̄(a,R) \ {a} the path π has no (a, b)-restoration.

Pick R and R′, distinct preferences inD and a ∈ A. PropertyWL guarantees the existence of a path π
from R to R′ such that for any x ranked strictly lower than a in R the path π has no (a, x)-restoration. On
the other hand, the path whose existence is guaranteed under Property SL also satisfies no-restoration
with respect to alternatives that are indifferent to a under R. Clearly, Property SL is a stronger property
than PropertyWL. If there are no alternatives indifferent to a at R, then the path specified under Property
WL satisfies the requirements of Property SL. Thus the two properties reduce to the Property L in the
absence of indifference.

Suppose b is indifferent to a under R and the environment satisfies Property SL. Let π ∈ Π(R,R′) be
the path specified by Property SL. Then the relative ranking of a and b along π must be one of the
following (i) a and b are indifferent everywhere along the path (ii) a and b are indifferent to each other till
some preference R1; then a is strictly preferred to b everywhere from R1 till R′ (iii) a and b are indifferent
to each other till some preference R1; then b is strictly preferred to a everywhere from R1 till R′

The example below highlights the two lower contour set properties.

Example 3.2.3 Let A = {a, b, x, y}. The domain D̂ consists of three preferences specified in Table 3.2.1.
Note that the notation {a, b} in a preference of Table 3.2.1 denotes that a and b are indifferent. The
environment is Ĝ = ⟨D̂, E⟩ where E = {(R1,R2), (R2,R3)}.
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R1 R2 R3

x x y
y y x

{a, b} a {a, b}
b

Table 3.2.1: The Domain D̂

It is clear from inspection that there is no restoration for any pair of alternatives where one is ranked
strictly higher than the other. Consider the pair (R1,R3) and the alternative a. Note thatΠ(R1,R3)

contains the unique path (R1,R2,R3)where there is (a, b)-restoration. Hence Ĝ satisfies PropertyWL,
but fails Property SL. 2

3.3 TheMain Result

We state the main result of this chapter.

Theorem 3.3.1 Let G = ⟨D, E⟩ be an environment. If G satisfies LGE, it satisfies Property WL. If G satisfies
Property SL, it satisfies LGE.

Proof: The proof of the necessity part of Theorem 3.3.1 is essentially the same as that of its counterpart in
Theorem 2.3.2 of Chapter 2. We therefore omit it and only provide the proof for the sufficiency part.

SupposeG satisfies Property SL but violates LGE. Therefore there exists f : D → A such that f is
locally strategy-proof but not strategy-proof. It follows that there exists R0,R′ ∈ D such that
x′ = f(R′)P0f(R0) = x0. Let x1 ∈ maxR0{x ∈ A : f(R) = x for some R ∈ D} and f(R1) = x1. Clearly
x1P0x0 and R0 ̸= R1. By Property SL property, there exists a path π ∈ Π(R0,R1) such that for all
z ∈ L̄(x1,R0) \ {x1} the path π has no (x1, z)-restoration.

Starting from R1 and proceeding backwards along the path π, let R2 be the first vertex such that
f(R2) ≡ x2 ̸= x1. Let R̂2 denote the second vertex in the path from R2 to R1 along π. By construction,
f(R̂2) = x1.

Claim 3.3.1 x1Ix2 for all vertices R on π between R0 and R̂2.

Proof: Since (R2, R̂2) ∈ E , local strategy-proofness implies x2R2x1 and x1R̂2x2.
We first show x1I0x2. By the definition of x1, we know x1R0x2. If x1P0x2, then path π has

(x1, x2)-restoration which contradicts our hypothesis regarding π. Therefore, x1I0x2.
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We next show x1̂I2x2. Suppose not, i.e. x1P̂2x2. Thus, x1R0x2, x2R2x1 and x1P̂2x2 so that we have an
(x1, x2)-restoration on π. Hence, x1̂I2x2.

We further show x1I2x2. Suppose not, i.e. x2P2x1. Once again, x1R0x2, x2P2x1 and x1R̂2x2 imply the
existence of an (x1, x2)-restoration on π - contradiction. Hence x1I2x2.

Last, pick an arbitrary vertex R distinct from R0, R2 and R̂2 on the path π. We show x1Ix2. Note that R is
before R2 and R̂2 on path π. Since x1R0x2 and x1R̂2x2, no (x1, x2)-restoration on π implies x1Rx2. Suppose
x1Px2. Then, we have x1Px2, x2R2x1 and x1R̂2x2 which implies (x1, x2)-restoration on π - contradiction.
Therefore, x1Ix2 as required. ■

Starting from R2 and proceeding backwards along the path π, let R3 be the first vertex such that
f(R3) ≡ x3 ̸= x2. Also, let R̂3 denote the second vertex in the path from R3 to R2 along π. Repeating this
process, we can identify verticesRs, R̂s on π, s = 2, . . . , k, and alternatives xs, s = 2, . . . , k− 1 such that (i)
f(Rs) = xs, s = 2, . . . , k− 1, and f(Rk) = x0 (ii) Rs is the first vertex in the path from Rs−1 to R0 such that
f(Rs) ̸= f(Rs−1), s = 2, . . . , k, and (iii) R̂s is the second vertex on the path from Rs to Rs−1, s = 2, . . . , k.

By construction, f(R̂s) = xs−1, s = 2, . . . , k. For all s = 2, . . . , k− 1, since (Rs, R̂s) ∈ E , local
strategy-proofness of f implies xsRsxs−1 and xs−1R̂sxs.

Claim 3.3.2 For each s = 2, . . . , k− 1, x1Ixs for all vertices R on π from R0 to R̂s.

Proof: We shall prove the claim by induction. Note that Claim 3.3.1 establishes the claim for the case
s = 2. We impose the following induction hypothesis:
Pick an arbitrary s such that 2 < s ≤ k− 1. For all 2 ≤ s′ < s, we have x1Ixs′ for all R on π from R0 to R̂s′ .

We will show x1Ixs for all R on π from R0 to R̂s.
We have already noted that xsRsxs−1 and xs−1R̂sxs. The induction hypothesis implies x1Isxs−1 and x1̂Isxs−1.

Hence xsRsx1 and x1R̂sxs. From the definition of x1, it follows that x1R0xs. Thus, x1R0xs, xsRsx1 and x1R̂sxs.
Then, no (x1, xs)-restoration on π implies x1I0xs, x1Isxs and x1̂Isxs.

Finally pick an arbitrary R on the path π from R0 to R̂s distinct from R0, Rs and R̂s. We show x1Ixs. Note
that R is before Rs and R̂s on path π. Since x1I0xs and x1̂Isxs, no (x1, xs)-restoration on π implies x1Rxs.
Suppose x1Pxs. Then, we have x1Pxs, xsRsx1 and x1R̂sx1 which is an (x1, xk)-restoration on π - contradiction.
Hence, x1Ixs, as required. ■

Since (Rk, R̂k) ∈ E and f(Rk) = x0, local strategy-proofness implies x0Rkxk−1 and xk−1R̂kx0. Claim
3.3.2 implies x1Ikxk−1 and x1̂Ikxk−1 so that x0Rkx1 and x1R̂kx0. Then, by the assumption x1P0x0, we have an
(x1, x0)-restoration on π. Hence x1P0x0 cannot hold and f is strategy-proof. This completes the proof of
sufficiency. ■

Although Property SL is sufficient for LGE, it is not necessary. Consider the environment Ĝ in
Example 3.2.3. We know that it violates Property SL - however it is an LGE environment. Observe that
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R Pa P̄a
x x y
y y x

{c, d} c d
{a, b} d c
e a a

b b
e e

Table 3.4.1: a-straightenings of R

(R1,R3) is the only pair of preferences that are not neighbours. In order for an SCF to satisfy local
strategy-proofness but fail strategy-proofness, there must be a manipulation from R1 to R3 or vice versa.
The only alternatives that are candidates for the outcomes at R1 and R3 for a manipulation to occur, are a
and b. This is so because (a, b) is the only pair for which a restoration occurs between R1 and R3. However
a and b are indifferent to each other in both preferences. Therefore a manipulation cannot occur.

3.4 Further Applications

In this section, we provide some applications of Theorem 3.3.1. Our main result in this section shows how
an LGE environment consisting of strict preferences can be embedded in an environment consisting of
weak preferences so that the larger environment also satisfies the LGE property.

LetD ⊆ R be a domain andDP = D ∩ P . We assumeDI = D \ DP ̸= ∅, i.e. D contains some
preference with indifferences.

Let R ∈ DI and a ∈ A. We say that the strict ordering Pa ∈ DP is an “a-straightening” of R if, for all
b ∈ Awe have (i) bPa ⇔ bPaa, and (ii) aRb ⇒ aPab. Thus Pa is a strict ordering in the domainD with
the property that alternatives ranked strictly above a and below a remain ranked above a and below a
respectively. In addition, the indifference class to which a belongs in R is “broken” into a strict order
where a is preferred to all other alternatives in the indifference class containing a. In Table 3.4.1 both Pa

and P̄a are a-straightenings of R.
LetG∗ = ⟨D, E∗⟩ be the environment where E∗ is defined as follows: for all R ∈ DI and a ∈ A, there

exists an a-straightening of R, Pa such that (R, Pa) ∈ E∗.
Before stating it formally, we provide an informal description of the main result of this subsection.

Consider an environment consisting of a domain with only strict preferences and an arbitrary set of edges.
A new environment is created by adding a set of weak preferences to the domain and a set of new edges
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satisfying the following property: for every new weak preference R added and for every alternative a,
there is an edge connecting Rwith a strict preference belonging to the original domain which is an
a-straightening of R. The original environment is thus a sub-environment of the new environment.
According to our result, the new environment satisfies LGE whenever the original environment satisfies
LGE.

Proposition 3.4.1 Let GP = ⟨DP, E⟩ be an LGE environment. The environment G = ⟨D, E ∪ E∗⟩ is also
an LGE environment.

Proof: In view of Theorem 3.3.1, it suffices to show thatG satisfies Property SL, i.e. for all R1,R2 ∈ D and
a ∈ A, there exists a path in E ∪ E∗ from R1 to R2 having no (a, b)-restoration for all b ∈ L̄(a,R1) \ {a}.
Let Pa1 and Pa2 be the a-straightenings of R1 and R2 respectively such that (R1, Pa1 ) ∈ E∗ and (R2, Pa2) ∈ E∗.
If Ri, for i = 1, 2, is a strict preference, then let Ri = Pai . SinceGP is an LGE environment, it follows from
Theorem 2.3.2 (in Chapter 2) thatGP satisfies Property L, i.e. there exists a path π′ ≡ (Pa1 , . . . , Pa2) inGp

such that for all z ∈ L(a, Pa1 ) the path π′ has no (a, z)-restoration. By construction, (R1, Pa1 ) ∈ E∗ and
(R2, Pa2) ∈ E∗. Therefore π ≡ (R1, π′,R2) is a path inG. We will show that π has no (a, b)-restoration for
all b ∈ L̄(a,R0) \ {a}.

Let b be an arbitrary alternative in L̄(a,R1) \ {a}. By the definition of a-straightening, we must have
aPa1b. Therefore π′ has no (a, b)-restoration. There are two possibilities to consider here.

The first is that b does not overtake a on the path π′. Thus aPa2b. Again by the definition of
a-straightening, aR2b. Therefore along the path π, we have aR1b, a strictly preferred to b along the path π′

and aR2b. Clearly there is no (a, b)-restoration on π.
The second case is that b overtakes a on the path π′. Since there is no (a, b)-restoration on the path π′,

we have bPa2a. By the definition of a-straightening, we must have bP2a. So along the path π, we have aR1b,
b overtaking a exactly once along the path π′ and remaining strictly preferred to a at R2. Once again there
is no (a, b)-restoration along the path π.

This completes the proof. ■

Proposition 3.4.1 can be interpreted as specifying a notion of localness that guarantees LGE in a
domain with weak preferences. The result can be applied quite generally with one caveat: for every weak
ordering R in the domain and alternative a, there must exist a strict preference in the original domain that
is an a-straightening of R. We provide a couple of examples where the result can be applied and one where
it cannot.

Let≺ be a strict ordering of the elements of A. Let a, a ∈ Awith a ⪯ a. An interval denoted by [a, a] is
a subset of A such that a, a ∈ [a, a] and b ∈ [a, a]whenever a ≺ b ≺ a. A weak ordering R is
single-plateaued if there exists an interval [a, a] such that the following properties hold:
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(i) bIcPz for all b, c ∈ [a, a] and for all z /∈ [a, a],

(ii) bPcwhenever c ≺ b ≺ a, and

(iii) bPcwhenever a ≺ b ≺ c.

We letDSPL denote the set of all single-plateaued preferences over A (keeping the ordering≺ fixed).
Single-plateaued preferences have been extensively studied in the literature (See Berga [10] and

Barberà [4]). Alternatives in the interval [a, a] are the peaks or the maximal elements in A according to R.
On either side of the interval, preferences decline strictly as alternatives move further away from the
relevant end-point of the interval. No assumptions are made regarding the ranking of alternatives on
different sides of the interval [a, a]. In particular, we do not preclude the possibility that there exist
b, c ∈ A such that b ≺ a and a ≺ c and bIc.

A single-peaked preference is a special case of a single-plateaued preference where the interval of peaks
consists of a single peak and the preference is strict. LetDSP denote the set of such preferences. Clearly
DSP ⊂ DSPL.

Let R ∈ DSPL \ DSP and consider an arbitrary a ∈ A. Suppose a belongs to a non-empty indifference
class, i.e. there exists another alternative b such that aIb. Suppose a belongs to the interval of peaks [a, a].
Assume for notational convenience that [a, a] is the set {a1, a2, . . . , ak−1, ak, ak+1 . . . , aT}where
a1 ≺ a2 ≺ · · · ≺ ak−1 ≺ ak ≺ ak+1 ≺ · · · ≺ aT, a = a1, ak = a and a = aT. Let Pa be a strict ordering
where alternatives in the set [a, a] are ranked above all other alternatives in the following way:
akPaak−1Pa · · · Paa1Paak+1Pa · · · PaaT. Alternatives ranked below those in [a, a] in R are ranked in the same
way in Pa. If there are other indifference classes in Rwith more than one alternative, they must be of the
form {c, d}with c ≺ a ⪯ a ≺ d. Then c and d are ranked consecutively in Pa with cPad. It is easy to verify
that Pa ∈ DSP - therefore it is an a-straightening of R.

There are two other cases to consider regarding the ranking of a in R. The first is that a does not belong
to [a, a] but to another indifference class containing one other alternative, say b. The procedure described
in the previous paragraph with someminor modifications can be used to construct an a-straightening of R.
The modifications are as follows: (i) an arbitrary alternative ak ∈ [a, a] is chosen to be the first-ranked
alternative in Pa and (ii) aPabwhere aIb. The second case is that a belongs to a singleton indifference class
in R. The procedure used in the earlier case with only the first modification again yields Pa which is an
a-straightening of R.

The arguments in the previous paragraphs establish that for each R ∈ DSPL \ DSP and a ∈ A, there
exists Pa ∈ DSP which is an a-straightening of R. Let E∗ be the set of edges in the environment ⟨DSPL, E∗⟩
where (R, Pa) ∈ E∗ for each R ∈ DSPL \ DSP and a ∈ A.

Proposition 3.4.2 The environment ⟨DSPL, E adj ∪ E∗⟩ satisfies LGE.
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Proof: We know from Carroll [12] and Sato [46] that the environmentGSP = ⟨DSP, E adj⟩ satisfies LGE.
The result follows by an immediate application of Proposition 3.4.1. ■

There is a variant of the domain of single-plateaued preferences where Proposition 3.4.1 cannot be
applied. Suppose that part (i) of the definition of single plateaued preferences is retained but (ii) and (iii)
are modified as follows: (ii’) bRcwhenever c ≺ b ≺ a and (iii’) bRcwhenever a ≺ b ≺ c. Indifference is
now permitted on the same side of the interval of peaks. LetD′

SPL denote the set of all such preferences.
Consider an example where A = {a1, a2, a3, a4}where a1 ≺ a2 ≺ a3 ≺ a4. Let R be the preference

a4Ia3Pa2Ia1 so that R ∈ D′
SPL. Let Pa1 be a a1-straightening of R. We must have a4Pa1a1, a3Pa1a1 and a1Pa1a2.

But then Pa1 is not single-peaked with respect to≺. Hence there does not exist a a1-straightening of R and
Proposition 3.4.1 cannot be applied.

Our second application of Proposition 3.4.1 concernsR, the domain of all weak preferences over A.
Recall thatP is the domain of all strict preferences over A. Let R ∈ R \ P and let a be an arbitrary
alternative. Let Pa be a strict ordering such that (i) bPa ⇔ bPaa, and (ii) aRb ⇒ aPab. By construction
Pa is an a-straightening of R. Let E∗ be the set of edges in the environment ⟨R, E∗⟩where (R, Pa) ∈ E∗

for each R ∈ R \ P and a ∈ A.

Proposition 3.4.3 The environment ⟨R, E adj ∪ E∗⟩ satisfies LGE.

Proof: We know from Carroll [12] and Sato [46] that the environmentGP = ⟨P , E adj⟩ satisfies LGE. The
result follows by an immediate application of Proposition 3.4.1. ■

Sato [45] provides another notion of localness forR that ensures LGE. Let |A| = m. For any
k ∈ {1, . . . ,m(m− 1)}, let E k be the set of edges in the environment ⟨R, E k⟩where (R,R′) ∈ E k if the
Kemeny distance between R and R′ does not exceed k. According to Theorem 3.1 in Sato [45], ⟨R, E k⟩ is
LGE if and only if k ≥ m− 1.

Proposition 3.4.3 is independent of Sato’s result. Comparing the set of edges in the two environments,
the set of edges in ours is sparser though their nature is different. In our environment, vertices inP are
connected by an edge if only if they are adjacent - in terms of the notion of Kemeny distance used in Sato
[45], these vertices are connected by an edge if only if their Kemeny distance is 2. On the other hand,
each vertex inR \ P in our environment is only required to be connected to a vertex inP by an edge.
This involves connecting a preference where all alternatives are indifferent to one where preferences are
strict. The Kemeny distance between these preferences is m(m−1)

2 which is strictly greater thanm− 1 if
m > 2. In the Sato environment where k = m− 1, these preferences would not be connected by an edge.
However, many vertices inP would be connected by an edge in his environment which are not connected
by an edge in ours.
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4
Local Global Equivalence for Unanimous Social

Choice Functions

4.1 Introduction

The theory of mechanism design investigates the objectives that can be achieved by a group of agents (or a
planner) when these objectives depend on information held privately by the agents. Agents must be
induced to reveal their private information truthfully: in more formal terms, the Random/Deterministic
Social Choice Function (RSCF/DSCF) representing the objectives of the planner must be incentive
compatible or strategy-proof. A RSCF/DSCF is strategy-proof if no agent can gain by misrepresenting her
preferences irrespective of the preference announcements of the other agents. In particular, in the random
setting, we use the stochastic dominance notion for strategy-proofness. In many contexts, it is plausible to
assume that an agent can only misrepresent to a “local” preference. The class of locally strategy-proof
RSCFs should, in principle be larger than the class of strategy-proof RSCFs. However, Carroll [12] and
Sato [46] demonstrate that for many important preference domains and a natural notion of localness
(adjacency), the classes of locally strategy-proof and strategy-proof RSCFs/DSCFs coincide. We shall
refer to this property as local-global equivalence. This property has important theoretical and practical
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implications which are discussed in both papers.
Kumar et al. [32] formulate the local-global equivalence problem more generally, in the context of an

“environment”. An environment is a graph where the nodes represent admissible preferences and the
edges, the notion of localness. They characterize environments that satisfy local-global equivalence. The
necessary and sufficient condition for local-global equivalence requires the existence of certain kinds of
paths in the graph. An important aspect of the paper is that it considers a single-agent model. Our goal in
this paper is to show that in a multi-agent problem, a much weaker condition is sufficient, when the set of
RSCFs under consideration satisfy the familiar and mild efficiency property of unanimity. We note that
imposing unanimity in a single-agent model renders it trivial — it is an interesting requirement only in a
multi-agent problem.¹

We consider a model with a finite number of alternatives. A preference domain is a collection of strict
orderings of the alternatives. A pair of preferences is local if there is a single pair of alternatives whose
ranking is reversed between the two preferences.² We consider RSCFs that satisfy unanimity, i.e. those
that respect consensus amongst agents. A domain satisfies equivalence if every unanimous locally
strategy-proof RSCF is also strategy-proof.

In this setting, we show that a condition first identified in Sato [46] (which we refer to as Property P)
has very important implications. This condition was shown to be necessary (but not sufficient) in the
single-agent problem by Sato [46]. Property P is a weak condition, which specifies for every pair of
alternatives, the existence of a path where preferences over this pair are not reversed more than once.³ In
contrast, the necessary and sufficient condition in Kumar et al. [32] (which they call Property L) requires
the existence of a path that satisfies no-restoration with respect to all alternatives in an appropriate lower
contour set.⁴

We prove two main results using Property P. We show that it is sufficient for equivalence. In contrast,
Kumar et al. [32] show that the stronger Property L is not sufficient for local-global equivalence for
RSCFs in the single-agent model.⁵ Furthermore, a stronger result in the deterministic setting is true:
every unanimous, locally strategy-proof DSCF on a domain satisfying Property P is also group
strategy-proof. Our result is independent of the results in the existing literature on domains where
strategy-proofness and group strategy-proofness are equivalent (see Section 4.4.1). Our overall

¹Formally, themodels inKumar et al. [32], Carroll [12] and Sato [46] are alsomulti-agentmodels. Since they do not impose
unanimity, the multi-agent model is indistinguishable from its single-agent counterpart. For this reason, we choose to refer to
the models in these papers as single-agent models.

²This is the “adjacency” notion of localness used in Carroll [12] and Sato [46].
³Further discussion of domains satisfying Property P can be found in Section 4.3.
⁴Sato [46] and Carroll [12] also provide stronger sufficient conditions for equivalence in the single-agent model.
⁵Cho [18] also considers the local-global equivalence issue for RSCFs in the single-agent model. The paper provides suffi-

cient conditions for a variety of lottery comparisons.
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conclusion is that imposing the requirement of unanimity leads to a considerable weakening of the
conditions required for equivalence in both random and deterministic settings.

As mentioned earlier, Property P is a weak condition. It is satisfied by several familiar domains such as
the universal domain and the single-peaked domain. However it is not a necessary condition for a domain
to satisfy equivalence of local strategy-proofness and strategy-proofness for unanimous RSCFs/DSCFs.
In Section 4.4.1, we construct an example demonstrating this fact. We also show that the weaker
condition of connectedness remains necessary for equivalence.

In recent work, Hong and Kim [28] independently derive a condition slightly weaker than our
Property P and show that it is sufficient for equivalence.⁶ They focus on ordinal Bayesian incentive
compatible DSCFs and dictatorial domains. In contrast, we study RSCFs and extend our result for DSCFs
to cover group strategy-proofness. We discuss their condition further in Section 4.4.1 where we also show
that it, like Property P, is not necessary for equivalence.

The paper is organized as follows. Section 4.2 describes the model. Section 4.3 introduces and
discusses Property P, which is the key condition for our results. The main results are in Section 4.4 while
Section 4.5 discusses issues regarding necessity.

4.2 TheModel

Let A = {a, b, . . . } denote a finite set of alternatives with |A| ≥ 3. LetN = {1, 2, . . . , n} denote a finite
set of voters with n ≥ 2. A preference Pi of voter i is an antisymmetric, complete and transitive binary
relation over A, i.e. a linear order. Given a, b ∈ A, aPib is interpreted as “a is strictly preferred to b”
according to Pi. Let rk(Pi), k = 1, . . . , |A| denote the kth ranked alternative in preference Pi,
i.e. [rk(Pi) = a] ⇔

[ ∣∣{x ∈ A : xPia}
∣∣ = k− 1

]
. LetP denote the set of all preferences - the setP will be

referred to as the universal domain. We shall refer to an arbitrary setD ⊆ P as a domain.⁷ A preference
profile is an n-tuple P = (P1, P2, . . . , Pn).

Fix a pair of preferences Pi, P′i ∈ D. Two alternatives a and b are reversed between Pi and P′i if aPib and
bP′ia, or bPia and aP′ib hold. Accordingly, two preferences Pi and P′i are adjacent/local, denoted by Pi ∼ P′i ,
if there exists exactly one pair of alternatives that are reversed between Pi and P′i; formally, there exists
1 ≤ k < |A| such that rk(Pi) = rk+1(P′i), rk(P′i) = rk+1(Pi) and rl(Pi) = rl(P′i) for all l /∈ {k, k+ 1}. A
path π ≡ (P1i , . . . , Pti) is a sequence of non-repeated preferences inD satisfying the property that
consecutive preferences are adjacent, i.e. Pki ∼ Pk+1

i for all k = 1, . . . t− 1. The set of all paths from Pi to P′i
where Pi, P′i ∈ D is denoted byΠ(Pi, P′i). The domainD is connected if there exists a path between every

⁶The two conditions are equivalent if the domain satisfies the following richness property: for every alternative a, there exists
a preference in the domain whose first-ranked alternative is a.

⁷We assume that all voters have the same preference domainD.
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pair Pi, P′i ∈ D.
Our model is identical to the models in Sato [46] and Carroll [12]. It is a special case of the model in

Kumar et al. [32] where the notion of localness is completely general. On the other hand, we consider a
many-agent setting while Kumar et al. [32] only consider the single-agent problem.

Let Δ(A) denote the set of probability distributions over A. An element λ ∈ Δ(A)will be referred to as
a lottery. We let λa denote the probability with which a ∈ A is selected by λ. Thus 0 ≤ λa ≤ 1 and∑

a∈A λa = 1. Given a preference Pi, the lottery λ stochastically dominates lottery λ′ according to Pi
(denoted by λPsdi λ

′) if
∑t

k=1 λrk(Pi) ≥
∑t

k=1 λ
′
rk(Pi) for all 1 ≤ t ≤ |A|.

Observation 4.2.1 Fix Pi and λ, λ′ ∈ Δ(A) such that λPsdi λ
′. Pick a, b ∈ A such that aPib. Let λ̂ ∈ Δ(A)

be such that (i) λ̂b > λ′b, (ii) λ̂a < λ′a and (iii) λ̂c = λ′c for all c /∈ {a, b}. Then λPsdi λ̂. The lottery λ̂ is
obtained by transferring probability weight from an alternative a to a less preferred one b, in λ′ while
keeping all other probabilities unchanged. It is easy to verify that λ′Psdi λ̂ from which λPsdi λ̂ follows
immediately.

Definition 4.2.1 A Random Social Choice Function (RSCF) is a map ϕ : Dn → Δ(A).

Given a ∈ A, let ϕa(P) denote the probability with which a is selected at the profile P. A Deterministic
Social Choice Function (DSCF) f : Dn → Δ(A) is a particular RSCF such that for each P ∈ Dn,
fa(P) = 1 for some a ∈ A. Henceforth, for ease of presentation, we write a DSCF as f : Dn → A, where an
alternative is selected at each preference profile.

We require all RSCFs under consideration to satisfy the property of unanimity. This is a weak form of
efficiency where the RSCF selects a commonly first-ranked alternative with probability 1 whenever it
exists.

Definition 4.2.2 A RSCF ϕ : Dn → Δ(A) is unanimous if for all P ∈ Dn,

[r1(Pi) = a for all i ∈ N] ⇒ [ϕa(P) = 1].

Correspondingly, a DSCF f : Dn → A is unanimous if for all P ∈ Dn, we have
[r1(Pi) = a for all i ∈ N] ⇒ [f(P) = a]. In order to avoid trivial considerations, we assume throughout
thatD contains at least two preferences with distinct peaks.

A RSCF is locally strategy-proof if a voter cannot gain by a misrepresentation to an adjacent preference
(in other words, according to the sincere preference, the social lottery induced by any misrepresentation
to an adjacent preference is always stochastically dominated by the lottery delivered by truthtelling). On
the other hand, a RSCF is strategy-proof if a voter cannot gain by an arbitrary misrepresentation.
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Definition 4.2.3 A RSCF ϕ : Dn → A is locally manipulable by an agent i ∈ N at profile P = (Pi, P−i) if
there exists P′i ∈ D with Pi ∼ P′i such that ϕ(Pi, P−i)Psdi ϕ(P′i, P−i) does not hold,
i.e.

∑t
k=1 ϕrk(Pi)

(Pi, P−i) <
∑t

k=1 ϕrk(Pi)
(P′i, P−i) for some 1 ≤ t < |A|. The RSCF ϕ is locally strategy-proof

if it is not locally manipulable by any agent at any profile.

Definition 4.2.4 A RSCF ϕ : Dn → A is manipulable by an agent i ∈ N at profile P = (Pi, P−i) if there
exists P′i ∈ D such that ϕ(Pi, P−i)Psdi ϕ(P′i, P−i) does not hold,
i.e.

∑t
k=1 ϕrk(Pi)

(Pi, P−i) <
∑t

k=1 ϕrk(Pi)
(P′i, P−i) for some 1 ≤ t < |A|. The RSCF ϕ is strategy-proof if it is

not manipulable by any agent at any profile.

A strategy-proof RSCF is clearly locally strategy-proof. We investigate the structure of domains where
the converse is true for all unanimous RSCFs.

Definition 4.2.5 The domainD satisfies local-global equivalence for unanimous RSCFs (uLGE) if every
unanimous and locally strategy-proof RSCF ϕ : Dn → Δ(A), n ≥ 2, is strategy-proof.

We can correspondingly define local-global equivalence for DSCFs. A DSCF f : Dn → A is locally
strategy-proof (respectively, strategy-proof ) if for all i ∈ N, Pi, P′i ∈ D with Pi ∼ P′i (respectively,
Pi, P′i ∈ D) and P−i ∈ Dn−1, either f(Pi, P−i) = f(P′i, P−i) or f(Pi, P−i)Pif(P′i, P−i) holds. The domainD
satisfies local-global equivalence for unanimous DSCFs if every unanimous and locally strategy-proof
DSCF f : Dn → A, n ≥ 2, is strategy-proof.

In the next section, we provide a sufficient condition for uLGE.

4.3 A Sufficient Condition

In this section, we introduce Property P that is central to our results. LetD be a domain and a, b ∈ A be a
pair of alternatives. A path π = (P1i , . . . , Pti) satisfies no {a, b}-restoration if the relative ranking of a and b
is reversed at most once along π, i.e. there does not exist integers q, r and swith 1 ≤ q < r < s ≤ t such
that either (i) aPqi b, bPria and aPsib, or (ii) bP

q
i a, aPrib and bPsia.⁸

Sato [46] introduces the pairwise no-restoration property. This property requires that for every pair of
distinct preferences and a pair of alternatives, there exists a path between the preferences that satisfies
no-restoration with respect to the pair of alternatives.

Definition 4.3.1 The domainD satisfies the pairwise no-restoration property (Property P) if for all distinct
Pi, P′i ∈ D and distinct a, b ∈ A, there exists a path π = (P1i , . . . , Pti) ∈ Π(Pi, P′i) with no {a, b}-restoration.

⁸It is worth emphasizing that in our definition of “{a, b}-restoration”, we are not referring to an ordered pair {a, b}. Thus
{a, b}-restoration and {b, a}-restoration are the same in our definition.
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Property P is satisfied by the universal domain and the domain of single-peaked preferences.
Conversely, Chatterji et al. [17] show that any domain satisfying Property P and some additional
regularity conditions must either be a sub-domain of the domain of single-peaked preferences or a hybrid
domain which is a “perturbation” of the single-peaked domain. Alternatives are again ordered as in the
single-peaked domain. Alternatives are partitioned into three segments, left, middle and right. A hybrid
domain consists of all preferences satisfying the following property: preferences in the left and right
segments are single-peaked while being unrestricted in the middle segment. Hybrid domains cover the
universal domain and the single-peaked domain as special cases, the former in the case where the middle
segment is the entire set of alternatives and the latter where the middle segment is the null set.

Sato [46] shows that Property P is necessary but not sufficient for the equivalence of local
strategy-proofness and strategy-proofness for DSCFs (henceforth called LGE) in a single-agent model (or
equivalently without imposing unanimity). Kumar et al. [32] formulate the lower contour set no-restoration
property (Property L) that is necessary and sufficient condition for LGE in a more general model.
Property L is satisfied if for all Pi, P′i ∈ D and a ∈ A, there exists a path π = (P1i , . . . , Pti) ∈ Π(Pi, P′i)
such that for all b ∈ L(a, Pi) = {z ∈ A : aPiz} the path π has no {a, b}-restoration.

Property P is a weaker than Property L. This is illustrated in the example below which is adapted from
Example 3.2 in Sato [46].

Example 4.3.2 Let A = {x, y, z, u, v,w}. The domainD is specified in Table 4.3.1 below. Figure 4.3.1
(below) shows all paths induced by the adjacent preferences inD.

P1i P2i P3i P4i P5i P6i P7i P8i P9i P10i
x x y y y x x z z z
z y x x x y z x x x
y z z z z z y y y y
v v v v u u u u v v
w w w u v v v v u w
u u u w w w w w w u

Table 4.3.1: The Domain D

P1i P2i
{z, y}

P3i
{x, y}

P4i
{w, u}

P5i
{v, u}

P6i
{y, x}

P10i P9i
{w, u}

P8i
{v, u}

P7i
{z, x}{x, z} {z, y}

Figure 4.3.1: Paths induced by the adjacent preferences in D
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Figure 4.3.1 highlights an important property ofD — there are exactly two paths between any pair of
preferences. For example, between P1i and P

7
i , there is a path (P1i , P2i , P

3
i , P

4
i , P

5
i , P6i , P

7
i ) and another path

(P1i , P10i , P
9
i , P8i , P

7
i ). We shall refer to the former as the “clockwise” path and the latter as the “counter

clockwise” path between P1i and P
7
i . We shall in fact, refer to the clockwise and counter clockwise paths

between any pair of preferences inD. It can be verified that for any pair of distinct preferences and
alternatives, either the clockwise path or the counter clockwise path is a path without restoration for the
alternatives. Therefore,D satisfies Property P. However, it fails Property L, e.g. z, y ∈ L(x, P1i), and the
clockwise path from P1i to P

7
i has an {x, y}-restoration while the counter clockwise path from P1i to P

7
i has

an {x, z}-restoration. We know there that LGE fails forD. For instance, letN = {1, 2} and consider the
following DSCF:

f(P1, P2) =


z P1 = P1i ,
y P1 = P2i , and
r1(P1) otherwise.

It is easy to verify that f is locally strategy-proof but fails strategy-proofness, e.g. f(P61 , P2) = x,
f(P11, P2) = z and xP11z.⁹ It also violates unanimity, e.g. f(P11, P22) = z ̸= x. Our result implies that every
locally strategy-proof RSCF that fails to be strategy-proof on this domain must violate unanimity.
Furthermore, every DSCF satisfying unanimity and local strategy-proofness is group strategy-proof. 2

4.4 Main Results

Kumar et al. [32] show that Property L does not guarantee that locally strategy-proof RSCFs are also
strategy-proof. In this section, we show that this equivalence holds for unanimous RSCFs defined over
domains satisfying the weaker Property P.

Theorem 4.4.1 If a domain satisfies Property P, it satisfies uLGE.

Proof: Pick a domainD that satisfies Property P. Consider an arbitrary locally strategy-proof RSCF
ϕ : Dn → Δ(A) that satisfies unanimity. We will show that ϕ is strategy-proof. We begin with an
observation.

Observation 4.4.1 Consider Pi, P̄i ∈ D such that Pi ∼ P̄i; in particular xPiy and yP̄ix. If
ϕ(Pi, P−i) ̸= ϕ(P̄i, P−i) for some P−i ∈ Dn−1, then it must be the case that (i) ϕy(P̄i, P−i) > ϕy(Pi, P−i),

⁹Here, (P61 , P2) is a preference profile where agent 1’s preference is P6i and agent 2’s preference is P2 which is arbitrary. Simi-
larly, (P11, P2) is a profile where agent 1’s preference is P1i and agent 2’s preference is P2.
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(ii) ϕx(P̄i, P−i) < ϕx(Pi, P−i) and (iii) ϕz(P̄i, P−i) = ϕz(Pi, P−i) for all z /∈ {x, y}. These properties are
well-known in the literature. Gibbard [26] refers to Parts (i) and (ii) as the property of being non-perverse
and Part (iii) as the property of being localized.

Lemma 4.4.1 Let Pi, P̄i ∈ D be such that Pi ∼ P̄i and r1(Pi) = r1(P̄i). Then ϕ(Pi, P−i) = ϕ(P̄i, P−i) for all
P−i ∈ Dn−1.

Proof: Assume w.l.o.g. that i is agent 1. Let P1, P̄1 ∈ D be such that P1 ∼ P̄1 and r1(P1) = r1(P̄1) = a. Let
x, y be the alternatives that are reversed between P1 and P̄1 with xP1y and yP̄1x.

Let Pk ≡ (P1, P2, . . . , Pk, P1, . . . , P1), i.e. Pk is the profile where agents 1 and k+ 1, . . . , n have the
preference P1 while agents 2, . . . , k have preferences specified in the profile P−1. Here k ∈ {1, . . . , n}
where P1 = (P1, P1, . . . , P1) and Pn = (P1, P2, . . . , Pn).

Let P̄k ≡ (P̄1, P2, . . . , Pk, P1, . . . , P1), i.e. P̄k is the profile where agent 1 has the preference P̄1, agents
k+ 1, . . . , n have the preference P1 and agents 2, . . . , k have preferences specified in the profile P−1. Again
k ∈ {1, . . . , n}where P̄1 = (P̄1, P1, . . . , P1) and P̄n = (P̄1, P2, . . . , Pn).

We will prove ϕ(Pn) = ϕ(P̄n) by induction on k. Observe that ϕa(P
1) = ϕa(P̄

1) = 1 since ϕ satisfies
unanimity. Assume that ϕ(Pk−1) = ϕ(P̄k−1) for k− 1 < n. We will show that ϕ(Pk) = ϕ(P̄k).

We assume w.l.o.g. xPky. SinceD satisfies Property P, there exists a path (P1k, . . . , PTk ) ∈ Π(P1, Pk)
such that xPrky for all r ∈ {1, . . . ,T}.

Let Pk,r ≡ (P1, P2, . . . , Pk−1, Prk, P1, . . . , P1) and P̄k,r ≡ (P̄1, P2, . . . , Pk−1, Prk, P1, . . . , P1). The
induction hypothesis implies that ϕ(Pk,1) = ϕ(P̄k,1). Suppose ϕ(Pk,T) ̸= ϕ(P̄k,T). Let t be the smallest
integer in the set {1, . . . ,T} such that ϕ(Pk,t) ≡ λ ̸= λ̄ ≡ ϕ(P̄k,t). Clearly, t > 1. Observe that the
profiles Pk,t and P̄k,t differ only in the preferences of agent 1with P1 in the former profile and P̄1 in the latter.
Thus, local strategy-proofness implies λPsd1 λ

′ and thenObservation 4.4.1 implies λ̄y − λy > 0, λ̄x − λx < 0
and λ̄z = λz for all z /∈ {x, y}. By the induction hypothesis, let ϕ(Pk,t−1) = ϕ(P̄k,t−1) ≡ λ′. Observe that
the profiles Pk,t−1 and Pk,t (respectively, profiles P̄k,t−1 and P̄k,t) differ only in the preferences of agent k
being Pt−1

k in the former profile and Ptk in the latter. Since Pt−1
k ∼ Ptk, local strategy-proofness implies that

both λ and λ̄ stochastically dominate λ′ according to Ptk, and λ′ stochastically dominates both λ and λ̄
according to Pt−1

k , and moreover there must be exactly one pair of alternatives which are reversed between
Pt−1
k and Ptk. This pair cannot be {x, y} because xPrky for all Prk belonging to the path π. Suppose this pair is

{a, x}with a ̸= y: in this case, by Part (iii) of Observation 4.4.1, λ′y = λy and λ′y = λ̄y contradicting our
hypothesis that λ̄y − λy > 0. If the pair is {a, y}with a ̸= x, we contradict our assumption λ̄x − λx < 0.
Similarly if the pair is {a, b}with a ̸= x and y ̸= b, we contradict both λ̄y − λy > 0 and λ̄x − λx < 0. This
completes the proof. ■
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Lemma 4.4.2 Let P ≡ (Pi, P−i) ∈ Dn be a profile and a ∈ A be an alternative. Let P̄i ∈ D and suppose
there exists a path π = (P1i , . . . , PTi ) ∈ Π(Pi, P̄i) such that a ̸= r1(Pki ) for all k ∈ {1, . . . ,T}. Then
ϕa(Pi, P−i) = ϕa(P̄i, P−i).

Proof: Suppose the Lemma is false. Let t ≥ 2 be the smallest integer in the set {1, . . . ,T} such that
ϕa(P

t−1
i , P−i) ̸= ϕa(P

t
i, P−i). Consider the preferences Pt−1

i and Pti . If r1(P
t−1
i ) = r1(Pti), we have an

immediate contradiction to Lemma 4.4.1. The remaining possibility is r1(Pt−1
i ) ̸= r1(Pti). Here, there must

be a reversal of the first and second ranked alternatives in Pt−1
i to obtain Pti . By assumption, a cannot be

first or second ranked in either Pt−1
i or Pti; otherwise awould be ranked first in either Pt−1

i or Pti . Then, Part
(iii) of Observation 4.4.1 implies ϕa(P

t−1
i , P−i) = ϕa(P

t
i, P−i) contradicting our initial assumption. ■

We can now complete the proof of the result. Let P = (Pi, P−i) be a profile and P̄i ∈ D. We will show
ϕ(Pi, P−i)Psdi ϕ(P̄i, P−i). Pick an arbitrary path π = (P1i , . . . , Pti, . . . , PTi ) ∈ Π(Pi, P̄i). We will prove the
result by induction on t.

The conclusion for the initial step (t = 2) follows from local strategy-proofness. Assume that
ϕ(Pi, P−i)Psdi ϕ(P

t−1
i , P−i) for some t > 2. We will show ϕ(Pi, P−i)Psdi ϕ(Pti, P−i). If

ϕ(Pt−1
i , P−i) = ϕ(Pti, P−i), then the result follows immediately. Assume therefore

ϕ(Pt−1
i , P−i) ̸= ϕ(Pti, P−i). Immediately, since Pt−1

i ∼ Pti , by Lemma 4.4.1, it must be the case that
r1(Pt−1

i ) ≡ a ̸= b ≡ r1(Pti). Thus, we know that the only reversal between Pt−1
i and Pti is of a and b, and

hence by Observation 4.4.1, ϕb(P
t
i, P−i) > ϕb(P

t−1
i , P−i), ϕa(P

t
i, P−i) < ϕa(P

t−1
i , P−i) and

ϕc(P
t
i, P−i) = ϕc(P

t−1
i , P−i) for all c /∈ {a, b}. Consequently, if aPib, the conclusion follows from

Observation 4.2.1. For the remainder of the argument, we assume bPia.
Let b be the qth-ranked alternative in Pi, i.e. b = rq(Pi)where 1 ≤ q < |A|. Pick an arbitrary integer K

between 1 and |A|. We will show
∑K

s=1 ϕrs(Pi)(Pi, P−i) ≥
∑K

s=1 ϕrs(Pi)(P
t
i, P−i) thereby establishing

ϕ(Pi, P−i)Psdi ϕ(Pti, P−i). We consider two cases.
Suppose 1 ≤ K < q. Then the alternatives ranked above the Kth-ranked alternative in Pi do not involve

either a or b. By virtue of Part (iii) of Observation 4.4.1, the total probability on these alternatives is
unchanged between ϕ(Pt−1

i , P−i) and ϕ(Pti, P−i). In conjunction with the induction hypothesis, we have∑K
s=1 ϕrs(Pi)(Pi, P−i) ≥

∑K
s=1 ϕrs(Pi)(P

t
i, P−i) as required.

Suppose q ≤ K ≤ |A|. Pick an arbitrary c ∈ A such that bPic. Since b = r1(Pti), we must have bPtic.
Property P implies the existence of a path π̄ ∈ Π(Pi, Pti) such that bP̄ri c for all P̄ri along the path π̄. Hence,
r1(P̄ri) ̸= c for all P̄ri along π̄. Applying Lemma 4.4.2, we can conclude ϕc(Pi, P−i) = ϕc(P

t
i, P−i).

Consequently the total probability of alternatives ranked strictly below the Kth-ranked alternative in Pi is
the same in ϕ(Pi, P−i) and ϕ(Pti, P−i). Equivalently, the total probability of alternatives ranked above the
Kth-ranked alternative in Pi is the same in ϕ(Pi, P−i) and ϕ(Pti, P−i), i.e.∑K

s=1 ϕrs(Pi)(Pi, P−i) ≥
∑K

s=1 ϕrs(Pi)(P
t
i, P−i). This completes the proof. ■
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Theorem 4.4.1 leads immediately to the following corollary.

Corollary 4.4.1 If a domain satisfies Property P, it satisfies local-global equivalence for unanimous DSCFs.

The arguments in the proof of Theorem 4.4.1 can be used to show that any locally strategy-proof and
unanimous RSCF defined on a domain satisfying Property P also satisfies the important property of
tops-onlyness.¹⁰

Definition 4.4.2 A RSCF ϕ : Dn → Δ(A) satisfies the tops-only property if for all P, P′ ∈ Dn, we have
[r1(Pi) = r1(P′i) for all i ∈ N] ⇒ [ϕ(P) = ϕ(P′)].

Suppose a RSCF satisfies the tops-only property. Then its value at any profile depends only on the
peaks of the agent preferences in the profile.

Corollary 4.4.2 If the domainD satisfies Property P, every unanimous and locally strategy-proof RSCF
ϕ : Dn → Δ(A) satisfies the tops-only property.

Proof: Fix a unanimous and locally strategy-proof RSCF ϕ : Dn → Δ(A). To verify the tops-only
property, it suffices to show that for all i ∈ N, Pi, P′i ∈ D and P−i ∈ Dn−1,
[r1(Pi) = r1(P′i)] ⇒ [ϕ(Pi, P−i) = ϕ(P′i, P−i)].

Pick i ∈ N, Pi, P′i ∈ D and P−i ∈ Dn−1 such that r1(Pi) = r1(P′i) ≡ x. If Pi ∼ P′i , Lemma 4.4.1
immediately implies ϕ(Pi, P−i) = ϕ(P′i, P−i). Suppose it is not the case that Pi ∼ P′i . To show
ϕ(Pi, P−i) = ϕ(P′i, P−i), it suffices to show ϕa(Pi, P−i) = ϕa(P

′
i, P−i) for all a ∈ A\{x}. Pick a ∈ A\{x}.

Since r1(Pi) = r1(P′i) = x ̸= a, Property P implies the existence of a path π ∈ Π(Pi, P′i) such that xPria for
all Pri along the path π. Thus, r1(Pri) ̸= a for all Pri along the path π. Then, Lemma 4.4.2 implies
ϕa(Pi, P−i) = ϕa(P

′
i, P−i). This also implies ϕx(Pi, P−i) = ϕx(P

′
i, P−i) so that ϕ(Pi, P−i) = ϕ(P′i, P−i), as

required. ■

Corollary 4.4.2 generalizes Theorem 1 of Chatterji and Zeng [15] on domains satisfying Property P.
Their strategy-proofness is weakened to local strategy-proofness, their Interior property becomes
redundant and the requirement of their Exterior property is met by Property P. For instance, the domain
in Example 4.3.2 violates the Interior property but satisfies Property P.

¹⁰See Chatterji and Sen [14] and Chatterji and Zeng [15] for a discussion of this property.
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4.4.1 Group Strategy-proofness

Our goal in this subsection is to show that when turning to the deterministic setting, any locally
strategy-proof, unanimous DSCF defined on a domain satisfying Property P also satisfies the stronger
property of group strategy-proofness, i.e. no coalition of agents can strictly improve by a joint
misrepresentation of their preferences.¹¹ We denote a coalition by S ⊆ Nwhere S is non-empty. A
preference profile for the coalition S is denoted by PS and a preference profile P ∈ Dn is written as
(PS, P−S).

Definition 4.4.3 ADSCF f : Dn → A is group manipulable by a coalition S ⊆ N at profile P = (PS, P−S) if
there exists P′S ∈ D|S| such that f(P′S, P−S)Pif(PS, P−S) for all i ∈ S. The DSCF is group strategy-proof if it is
not group manipulable by any coalition at any profile.

Our main result in this section is the following.

Theorem 4.4.4 If the domainD satisfies Property P, every unanimous and locally strategy-proof DSCF is
group strategy-proof.

Proof: Let A = {a ∈ A : r1(P) = a for some P ∈ D} be the set of alternatives that are first-ranked for
some preferences inD. Recall thatD is assumed to contain at least two preferences with distinct peaks.
Hence, |A| ≥ 2. Fix a unanimous and locally strategy-proof DSCF f : Dn → A. The range of f is defined
as R(f) = {a ∈ A : f(P) = a for some P ∈ Dn}. Unanimity implies A ⊆ R(f). Lemmas 4.4.1, 4.4.2 and
Corollary 4.4.1 hold for f, i.e. f is strategy-proof.

Lemma 4.4.3 R(f) = A.

Proof: Suppose not, i.e. there exists P = (P1, P2, . . . , Pn) ∈ Dn such that f(P) = a /∈ A. Let r1(P1) = x.
Thus x ∈ A. Let P′ = (P′1, P′2, . . . , P′n) ∈ Dn be a preference profile such that P′i = P1 for all i ∈ N. For
each i ∈ {2, . . . , n}, we pick an arbitrary path πi ∈ Π(Pi, P′i).¹² Since a /∈ A, there does not exist any
preference Pri in the path πi with r1(Pri) = a. We can move from P to P′ by changing Pi to P′i for each i
ranging from i = 2 to i = n. According to paths π2, . . . , πn, by repeatedly applying Lemma 4.4.2, we have
f(P′) = f(P) = a ̸= xwhich contradicts unanimity. Therefore R(f) = A. ■

In order to prove the theorem, we will prove the following equivalent reformulation of group
strategy-proofness: for all S ⊆ N, PS, P′S ∈ D|S| and P−S ∈ D|N\S|, either f(PS, P−S) = f(P′S, P−S) or
f(PS, P−S)Pif(P′S, P−S) for some i ∈ S.

¹¹In the random setting, the notion of group strategy-proofness is too demanding. For instance, Corollary 1 of Morimoto
[40] implies that “most” unanimous and strategy-proof RSCFs defined on the domain of single-peaked preferences, which of
course satisfies Property P, are group manipulable.

¹²If Pi = P′i , πi is the null path that begins and terminates at Pi.
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We will prove this by induction on the cardinality of S. The case where |S| = 1 reduces to
strategy-proofness which is implied by Corollary 4.4.1. Assume that the statement above holds for all
S ⊆ N such that |S| ≤ t− 1 < n. We will show that the statement holds for all S ⊆ Nwhere |S| = t.

Suppose not, i.e. there exists S ⊆ N (with |S| = t) such that f(P′S, P−S) = b, f(PS, P−S) = a and bPia
for all i ∈ S. Since b ∈ R(f), Lemma 4.4.3 implies that there exists P∗i ∈ D such that r1(P∗i ) = b.
Furthermore, since f(P′S, P−S) = b, strategy-proofness implies f(P∗S , P−S) = bwhere every voter of S has
the preference P∗i .

Since f(PS, P−S) = a ̸= b = f(P∗S , P−S), we have a voter j ∈ S such that Pj ̸= P∗i . By Property P, we
have a path π = (P1j , . . . , Pvj ) ∈ Π(Pj, P∗i )with no {a, b}-restoration. Since bPja and bP∗i a, no
{a, b}-restoration on π implies bPkj a for all k = 1, . . . , v. Hence, r1(Pkj ) ̸= a for all k = 1, . . . , v. Since
f(Pj, PS\{j}, P−S) = a, Lemma 4.4.2 implies f(P∗i , PS\{j}, P−S) = a.¹³ Since f(P∗i , PS\{j}, P−S) = a and
f(P∗i , P∗S\{j}, P−S) = b, coalition S \ {j} can group manipulate at profile (P∗i , PS\{j}, P−S), which
contradicts the induction hypothesis. This completes the proof. ■

There are some papers that investigate preference domains on which equivalence of strategy-proofness
and group strategy-proofness holds. Barberà et al. [7] consider a more general setting than ours in the
following respects: (i) the alternative set is either finite or infinite, (ii) preferences can admit indifference,
(iii) preference domains can vary across different voters, and (iv) unanimity is not exogenously imposed
on DSCFs. On the other hand, our result has a weaker premise — local strategy-proofness rather than
strategy-proofness. In addition our Property P is far simpler (especially in the computational sense) than
their sequential inclusion condition.¹⁴ The latter is a condition imposed on preference profiles while
Property P is a condition imposed only on preferences in a domain. Our result is not implied by theirs -
for example, the domain of single-peaked preferences on a tree introduced by Demange [20] is covered by
our condition but not by theirs.

Property P is also independent of the sufficient condition identified in Le Breton and Zaporozhets [37]
for the equivalence of strategy-proofness and group strategy-proofness. For instance, consider a domain
D consisting of the three preferences P1i = (a b c d), P2i = (a b d c) and P3i = (b a d c).¹⁵ This domain
satisfies Property P but violates the richness condition of Le Breton and Zaporozhets [37] — though bP1ic
and cP1id, there exists no preference Pi ∈ D such that r1(Pi) = b and cPid.

¹³Here agent j has the preference P∗i in the profile (P∗i , PS\{j}, P−S).
¹⁴According to Section 4.1 of Kumar et al. [32], verifying whether Property L, which as mentioned is significantly stronger

than Property P, is satisfied is not computationally hard.
¹⁵For notational convenience, we specify preferences here horizontally. For instance, P1i = (a b c d) represents that a is top-

ranked, b is second-ranked, c is third-ranked, and d is bottom-ranked.
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4.5 Necessity

We have already shown that Property P guarantees uLGE and ensures that in the deterministic setting,
local strategy-proofness implies group strategy-proofness. However, it is not a necessary condition for
uLGE as Example 4.5.1 shows.

Example 4.5.1 Let A = {a, b, c, d, x, y}. The domainD is specified in Table 4.5.1 and Figure 4.5.1
(below) illustrates the path induced by the adjacent preferences inD. Note that there is a single path
between P1i and P6i which has a {b, c}-restoration. It follows thatD violates Property P.

P1i P2i P3i P4i P5i P6i
a a a a a b
b c c c b a
c b b b c c
d d d y y y
x x y d d d
y y x x x x

Table 4.5.1: The Domain D

P1i P2i
{b, c}

P3i
{x, y}

P4i
{d, y}

P5i
{c, b}

P6i
{a, b}

Figure 4.5.1: The path induced by the adjacent preferences in D

Let ϕ : Dn → Δ(A) be an arbitrary unanimous and locally strategy-proof RSCF. Observe that the
first-ranked alternatives in each of the preferences inD is either a or b. In order for ϕ to satisfy unanimity,
it must be the case that a and b exhaust the whole probability at each preference profile, i.e.
ϕa(P) + ϕb(P) = 1 for all P ∈ Dn.¹⁶ Consequently, at profiles (Pi, P−i) and (P′i, P−i) such that Pi ∼ P′i ,
zPiz′, z′P′iz and {z, z′} ̸= {a, b}, we have ϕ(Pi, P−i) = ϕ(P′i, P−i). Therefore, the {b, c}-restoration
alluded to earlier, is irrelevant. Finally, since the path of Figure 4.5.1 has no {a, b}-restoration, it is easy to
show thatD satisfies uLGE following the proof of Theorem 4.4.1. 2

¹⁶LetD1 = {P1i , P2i , P
3
i , P

4
i , P

5
i} andD2 = {P6i }. Given a profile P ∈ Dn, if Pi ∈ D1 for all i ∈ N, unanimity implies ϕa(P) =

1. Symmetrically, ϕb(P) = 1 if Pi ∈ D2 for all i ∈ N. Suppose ϕz(P) > 0 for some z ∈ A\{a, b} and some P ∈ Dn. It must be
the case that Pi ∈ D1 and Pj ∈ D2 for some i, j ∈ N. Assume for notational convenience that Pi ∈ D1 for all i = 1, . . . , s and
Pj = P6i for all j = s+1, . . . , n, where 1 ≤ s < n. LetP′s+1 = · · · = P′n = P5i andPℓ = (P1, . . . , Ps, P′s+1, . . . , P′ℓ, Pℓ+1, . . . , Pn)
for all ℓ = s + 1, . . . , n. Thus, P′j ∼ Pj for all j = s + 1, . . . , n, and unanimity implies ϕa(P

n) = 1 and hence ϕz(P
n) = 0.

Consequently, Observation 4.4.1 implies 0 = ϕz(P
n) = · · · = ϕz(P

s+1) = ϕz(P) > 0. Contradiction.
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Hong and Kim [28] restrict attention to DSCFs, focus on ordinal Bayesian incentive compatibility, and
establish uLGE for domains satisfying a property called Sparsely Connected Domain without Restoration (or
SCD). This property requires the existence of paths without restoration for all pairs of alternatives such
that at least one of the two alternatives is first-ranked in some preference in the domain. This condition is
slightly weaker than Property P since the no-restoration requirement is imposed only on a subset of all
pairs of alternatives. However, SCD is not necessary for uLGE either. For instance, the domain in
Example 4.5.1 violates SCD because the path of Figure 4.5.1 has a {b, c}-restoration and b is first-ranked
in P6i .

A characterization of domains that satisfy uLGE remains an open problem. However, we are able to
show that uLGE implies connectedness of a domain.

Proposition 4.5.1 If a domain satisfies uLGE, it is connected.

Proof: Pick a domainD that satisfies uLGE. Suppose that domainD is not connected. We can then
partitionD into two non-empty subsetsD1 andD2 such that there does not exist any Pi ∈ D1 and
P′i ∈ D2 with Pi ∼ P′i .

There are several cases to consider. In each one, we find a set of agents and construct a unanimous,
locally strategy-proof and manipulable DSCF. We begin with an observation that we will use frequently.

Observation 4.5.1 We consider a particular class of DSCFs in this setting. We say that a DSCF f is local if
for all i ∈ N, P−i ∈ Dn−1, j ∈ {1, 2} and Pi, P′i ∈ Dj,

[f(Pi, P−i) ̸= f(P′i, P−i)] ⇒ [f(Pi, P−i) = r1(Pi) and f(P′i, P−i) = r1(P′i)].

Suppose that agent i’s true preference is Pi ∈ Dj for some j ∈ {1, 2}. A local misrepresentation of Pi is
some preference P′i that also belongs toDj. Thus local DSCFs are locally strategy-proof.

Case 1: There exist P̄i ∈ D1 and P̂i ∈ D2 such that r1(P̄i) = r1(P̂i).
LetN = {1, 2}. Consider the following DSCF:

f(P1, P2) =

{
r1(P1) if P1, P2 ∈ D1 or P1, P2 ∈ D2, and
r1(P2) otherwise.

The outcome at each preference profile is the first-ranked alternative of some voter’s preference; it is
evident that f is unanimous. It is easy to verify that f is local.¹⁷ Then, Observation 4.5.1 implies local

¹⁷For agent 1, pick P1, P′1 ∈ Dj for some j ∈ {1, 2} and P2 ∈ D. If f(P1, P2) ̸= f(P′1, P2), we can deduce that P2 ∈ Dj. Hence
f(P1, P2) = r1(P1) and f(P′1, P2) = r1(P′1). For agent 2, fix P2, P′2 ∈ Dj for some j ∈ {1, 2} and P1 ∈ D. If f(P1, P2) ̸= f(P1, P′2),
we immediately deduce that P1 /∈ Dj. Hence f(P1, P2) = r1(P2) and f(P1, P′2) = r1(P′2). Therefore, f is local.
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strategy-proofness. However, f is not strategy-proof. Suppose r1(P̄i) = r1(P̂i) = x. Recall thatD is
assumed to contain at least two preferences with distinct peaks. Therefore, there exists P2 ∈ D such that
r1(P2) = y ̸= x. Suppose P2 ∈ D2. Then f(P̄i, P2) = y and f(P̂i, P2) = x.¹⁸ Agent 1will then manipulate at
(P̄i, P2) via P̂i. If P2 ∈ D1, we have f(P̄i, P2) = x and f(P̂i, P2) = y. Then, agent 1will manipulate at (P̂i, P2)
via P̄i. This contradicts the hypothesis thatD satisfies uLGE.

Case 1 implies that all preferences with the same first-ranked alternative must belong to the same subset
ofD, i.e. [P′i ∈ Dj and r1(P′′i ) = r1(P′i)] ⇒ [P′′i ∈ Dj], for j = 1, 2. Let
τ(Dj) = {a ∈ A : r1(Pi) = a for some Pi ∈ Dj}, for j = 1, 2. We consider two cases, labelled Case 2 and
3. In each case, we show the existence of a unanimous, locally strategy-proof and manipulable DSCF.

Case 2: |τ(Dj)| > 1 for some j ∈ {1, 2}.
Assume w.l.o.g. that |τ(D2)| > 1. Let x, y ∈ τ(D2) and P∗i ∈ D1. Assume w.l.o.g. that xP∗i y. Let

N = {1, 2}. Consider the following DSCF:

f(P1, P2) =

{
r1(P1) if P1, P2 ∈ D1 or P1, P2 ∈ D2, and
y otherwise.

Let (P1, P2) be a profile such that r1(P1) = r1(P2). By virtue of our assumption, it must be the case that
P1, P2 ∈ Dj, for some j ∈ {1, 2}. Since f picks an agent’s first-ranked alternative in such a profile, it is clear
that f satisfies unanimity. Again f is local.¹⁹ So Observation 4.5.1 implies that f is locally strategy-proof.
Finally, we show that f is not strategy-proof. Since x ∈ τ(D2), there exists P1 ∈ D2 with r1(P1) = x. By
construction, f(P1, P∗i ) = y and f(P1, P1) = x. Since xP∗i y, agent 2manipulates at (P1, P∗i ) via P1. Therefore
Case 2 cannot occur.

Case 3: |τ(D1)| = |τ(D2)| = 1.
Let τ(D1) = {x} and τ(D2) = {y}. Recall that |A| ≥ 3. Accordingly, we consider two subcases: (A)

there exists P∗i ∈ D such that r|A|(P∗i ) = z /∈ {x, y}, and (B) r|A|(Pi) ∈ {x, y} for all Pi ∈ D.

Case 3A: Assume w.l.o.g. that r1(P∗i ) = x, i.e. P∗i ∈ D1. By assumption, yP∗i z. LetN = {1, 2} and consider

¹⁸Here (P̄i, P2) is the profile where agent 1’s preference is P̄i and agent 2’s preference is P2. Similarly (P̂i, P2) is the profile
where agent 1’s preference is P̂i and agent 2’s preference is P2.

¹⁹Arguing as we did in Footnote 17, by picking P1, P′1 ∈ Dj for some j ∈ {1, 2} and P2 ∈ D, we can infer [f(P1, P2) ̸=
f(P′1, P2)] ⇒ [f(P1, P2) = r1(P1) and f(P′1, P2) = r1(P′1)]. Next, fixing P2, P′2 ∈ Dj for some j ∈ {1, 2} and P1 ∈ D, we always
have f(P1, P2) = f(P1, P′2) by the construction of f. Therefore, f is local.
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the following DSCF:

f(P1, P2) =


x if P1, P2 ∈ D1,

y if P1, P2 ∈ D2, and
z otherwise.

It is easy to verify that f satisfies unanimity. Local strategy-proofness follows again from Observation
4.5.1 as f is local.²⁰ Again f is not strategy-proof. Pick P2 ∈ D2. By construction f(P∗i , P2) = z and
f(P2, P2) = y. Since yP∗i z, agent 1manipulates at (P∗i , P2) via P2.

Case 3B: Since |A| ≥ 3, there must exist z ∈ A\{x, y} and P̂i ∈ D such that zP̂iy or zP̂ix holds. We
assume w.l.o.g. that zP̂iy. Thus P̂i ∈ D1. LetN = {1, 2, 3} and consider the following DSCF.

f(P1, P2, P3) =


x if P1, P2, P3 ∈ D1,

y if P1, P2, P3 ∈ D2,

y if Pi ∈ D2 for some i ∈ {1, 2, 3} and Pj ∈ D1 for all j ̸= i, and
z if Pi ∈ D1 for some i ∈ {1, 2, 3} and Pj ∈ D2 for all j ̸= i.

In order to show unanimity, we need to only consider profiles where all agents have preferences
belonging to the sameDj. In each of these cases, f picks the commonly first-ranked alternative. Also f is
local,²¹ and we can deduce that f is locally strategy-proof from Observation 4.5.1. Finally we show that f is
not strategy-proof. Consider the profile (P̂i, P̂i, P3)where voters 1 and 2 report the preference P̂i, and
voter 3 reports a preference P3 ∈ D2. By construction, f(P̂i, P̂i, P3) = y. Consider another profile
(P̂i, P3, P3)where voter 1 reports the preference P̂i, and voters 2 and 3 reports the preference P3. By
construction, f(P̂i, P3, P3) = z. Consequently agent 2will manipulate at (P̂i, P̂i, P3) via P3 since zP̂iy.

This concludes the proof of Proposition 4.5.1. ■

²⁰Fixing P1, P′1 ∈ Dj for some j ∈ {1, 2} and P2 ∈ D, we always have f(P1, P2) = f(P′1, P2) by the construction of f. Symmet-
rically, fixing P2, P′2 ∈ Dj for some j ∈ {1, 2} and P1 ∈ D, we also have f(P1, P2) = f(P1, P′2) by the construction of f. Therefore,
f is local vacuously.

²¹Fixing arbitrary i ∈ N, Pi, P′i ∈ Dj for some j ∈ {1, 2} and P−i ∈ Dn−1, it is easy to show that f(Pi, P−i) = f(P′i , P−i) by
the construction of f. Therefore, f is local vacuously.
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5
Pointwise Local Incentive Compatibility in

Non-Convex Type-Spaces

5.1 Introduction

We consider standard mechanism design problem where a set of agents have valuations for each
alternative in a finite set of alternatives. Based on these valuations, the planner has to select an alternative
to be shared by all the agents and some payment for each agent. Such a decision scheme is called a
mechanism. Agents evaluate their net utilities by means of quasilinear utility functions. A mechanism is
incentive compatible (IC) if no agent can increase his/her net utility by misreporting his/her type.

An important problem in mechanism design is to characterize all IC mechanisms for a given
type-space. Except for the case when the type-space isR|A|, where A is the set of alternatives, this turns
out to be a hard problem. As an intermediate step, researchers have got interested in exploring if the
requirement of IC can be reduced considerably.¹ Pointwise local IC (PLIC) (Carroll [12]) turns out to be
a way. A mechanism is PLIC if no agent can increase his/her net utility by misreporting to a type that is
“close” to his/her sincere type.

¹For the importance of identifying a minimal set of incentive constraints that will imply full incentive compatibility - see
discussions in Chapter 7 of Fudenberg and Tirole [23], Armstrong [2] and Chapter 6 in Vohra [50].
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The notion of close types varies from person to person and also depends on the behavioral aspect of
the agents. Often agents might not be willing to go for “large” lies (possibly due to the presence of a
monitoring technology that detects large lies and punishes them or due to social stigma, fear of loss of
reputation, etc.) and choose to lie credibly by only deviating to small neighborhoods of their true types.
Moreover, on type-spaces where the equivalence of PLIC and IC holds, poitwise local incentive
compatibility is a significantly simpler way to check whether a mechanism is IC or not.²

PLIC ensures that a mechanism is IC on the types that are sufficiently close (with respect to Euclidean
distance) to each other. More formally, PLIC requires that for every type t there is a neighborhood of t
such that the mechanism is IC on both (t, s) and (s, t) for every type s in that neighborhood.³ Carroll [12]
showed that PLIC is equivalent to IC on any convex type-space. To the best of our knowledge, nothing is
known about the said equivalence on other type-spaces, despite the fact that there are several important
non-convex type-spaces such as the gross substitute one in combinatorial auction.⁴

The crucial fact about convex type-space is that the line joining any two types lie in the type-space. A
natural step to get out of the convex type-space would be to consider a type-space that is polygonally
connected: between every two types there is a (finite) sequence of lines in the type-space that join them.
However, polygonal connectedness alone cannot guarantee the equivalence of PLIC and IC (See
Examples 5.5.2, 5.5.3 and 5.5.4). We strengthen it by introducing a condition called minimal richness and
show that it is sufficient for the equivalence of PLIC and IC. As applications of our result, we show that
PLIC and IC are equivalent on large class of non-convex type-spaces such as type-spaces perturbed by
modularity and concave-modularity. Further, we show that the gross substitutes type-space and the
generalized gross substitutes and complements type-space are important examples of type-spaces
perturbed by modularity and concave-modularity, respectively.

The Gross substitutes type-space has been extensively studied in the literature in various contexts such
as matching, mechanism design, equilibrium and algorithms (see Ausubel and Milgrom [3], Gul and
Stacchetti [27], Paes Leme [43]). The gross-substitutability condition was first introduced by Kelso and
Crawford [30] in the context of two sided matching markets of workers and firms. They showed that
gross-substitutability is a sufficient condition for the existence of Walrasian equilibria. Later, Shioura and
Yang [48] generalized the gross-substitutability condition to generalized gross substitutes and
complements condition where they allow multiple objects of the same kind and also allow for some
complementarities across objects.

²See Carroll [12] for a detailed explanation on the importance of pointwise local incentive compatibility (PLIC).
³Amechanism is IC on a pair of types (t, s) if an agent with sincere type t cannotmanipulate (that is, cannot increase his/her

net utility) by reporting the type as s.
⁴It is worthmentioning that characterizing all type-spaceswherePLIC and IC are equivalent is a long standing openproblem

and is considered as a hard problem as well.
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Recently Kushnir and Lokutsievskiy [34] proved that every monotone allocation function defined on
the gross-substitutes type space and the generalized gross substitutes and complements type-space is also
cyclically monotone.⁵ Our paper complements their paper by establishing the equivalence of PLIC and
IC and thereby making the problem of designing mechanisms quite tractable on these domains (see
Section 5.6 for a detailed discussion on the connection between our paper and that of Kushnir and
Lokutsievskiy [34]).

Next, we provide a geometric condition on a type-space for the equivalence of PLIC and IC. We
identify three conditions and show that together these conditions ensure the equivalence of PLIC and IC.
Further, we show that these three conditions are indispensable, that is, if we drop any of the conditions,
then the equivalence of PLIC and IC is no longer guaranteed.

5.2 Preliminaries

We consider a one-agent model in this paper. This is without loss of generality for our analysis.⁶
Let A be a finite set of alternatives with |A| = n. For any given subset X ofRn, by ∂(X)we denote the

boundary of X. A type t is a mapping from A toR that represents the valuation of each alternative in A.
We view a type as an element ofRn (with an arbitrary but fixed indexation of the alternatives). By relative
valuation of an alternative awith respect to another alternative b at a type t, we mean the number
t(a)− t(b). For two types t and t′, we denote the line joining them by [t, t′].⁷ A subset T ofRn is called a
type-space. A polygonal path from t to t′ in T is a finite collection of types (t = t1, . . . , t′ = tk) such that
[tl, tl+1] lies in T for all l ∈ {1, . . . , k− 1}. A type-space T is polygonally connected if for every t, t′ ∈ T,
there exists a polygonal path from t to t′ in T. An allocation rule is a map f : T → A and a payment rule is
a map p : T → R. A (direct) mechanism μ is a pair consisting of an allocation rule f and a payment rule p.

Definition 5.2.1 Amechanism (f, p) is incentive compatible (IC) on a pair of types (t, s) if

t(f(t))− p(t) ≥ t(f(s))− p(s).

It is IC on a type-space T if it is IC on every pair of types (t, s) ∈ T× T.

The notion of pointwise local incentive compatibility (PLIC) is introduced in Carroll [12]. A

⁵An allocation function f on a type-space T is monotone (or, 2-cycle monotone) if for all t, t′ ∈ T, t(f(t)) − t(f(t′)) +
t′(f(t′))− t′(f(t)) ≥ 0, and it is cyclically monotone if for any integer r and any points t0, t1, . . . , tr = t0 inT,

∑r−1
k=0 t

k(f(tk))−
tk(f(tk+1)) ≥ 0.

⁶All the results of this paper can be generalized to the case of more than one agent in a systematic manner (see Carroll [12],
Mishra et al. [39], etc.).

⁷More formally, [t, t′] = {αt+ (1− α)t′ | α ∈ [0, 1]}.

58



mechanism is PLIC on a type-space T if for every t ∈ T, there exists an ε > 0 such that it is IC on (t, s)
and (s, t) for every s ∈ Twith ||t− s|| < ε.⁸

5.3 Result onminimally rich type-spaces

We introduce the notion of minimally rich type-spaces in this section and show that PLIC and IC are
equivalent on such type-spaces. As an application in Section 5.4, we consider type-spaces that arise in the
context of combinatorial auctions and show that any type-space that is closed under scaling and closed
under modular/concave-modular perturbations is also minimally rich. Gross substitutes (GS) and the
generalized gross substitutes and complements (GGSC) type-spaces are important examples of such
type-spaces.

A type-space is minimally rich if for any two types t and t′ in it and for each alternative a, there is a type
s satisfying the following two properties: (i) the lines joining s to both t and t′ lie in the type-space, and
(ii) for every alternative z, if the relative valuation of awith respect to z (weakly) increases from s to t′,
then it will also (weakly) increase from from t to s. Notice that minimally rich type-spaces are polygonally
connected.

Definition 5.3.1 A type-space T is minimally rich if for all distinct t, t′ ∈ T and all a ∈ A, there exists s ∈ T
such that

(i) [s, t] and [s, t′] lie in T, and

(ii) s(a)− s(z) ≥ t(a)− t(z) for all z ∈ A such that t′(a)− t′(z) ≥ s(a)− s(z).

We explain the implication of minimal richness with some figures for the case where there are
two-dimensions (that is, two objects). Let A = {a, b}. Suppose the valuation of a is represented on the
horizonal axis and the valuation of b is represented on the vertical axis. Consider two types t and t′.
Without loss of generality, assume t(a)− t(b) ≤ t′(a)− t′(b). See Figure 5.3.1 for such two types t and t′.
Suppose that the line [t, t′] does not lie in the type-space (this is not shown in the figure). To satisfy the
minimal richness condition for t and t′, we need to find two types s and s̄ (not necessarily distinct) for a
and b, respectively, such that the lines [s, t], [s, t′], [̄s, t] and [̄s, t′] lie in the type-space, s lies strictly below
the slope 1 line passing through t, and s̄ lies strictly above the slope 1 line passing through t′. In Figure
5.3.1, the shaded portions in red and blue are the feasible regions for s, and the shaded portions in grey
and blue are the feasible regions for s̄. It is worth noting that there are so many choices for s and s̄, which in
turn corroborates that the minimal richness condition is not much demanding. In Figure 5.3.2, we have

⁸We denote the Euclidean norm of a vector t ∈ Rn by ||t||.
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Figure 5.3.1

Figure 5.3.2

provided two minimally rich type spaces (marked by the shaded region), one can verify in above
discussed way that they are indeed minimally rich.

Theorem 5.3.2 Amechanism on a minimally rich type-space is IC if and only if it is PLIC.

The proof of this Theorem is relegated to Appendix 5.7.2.
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5.4 Application to combinatorial auctionmodel

Combinatorial auctions are mechanisms where agents are asked to report valuations for combinations of
objects, often referred to as “bundles” or “packages”, instead of individual objects. Thus, agents are
allowed to express their preferences more fully which often leads to greater auction revenues and
improved economic efficiency. In what follows, we present two important classes of type-spaces that arise
in the context of combinatorial auction model.

5.4.1 Type-spaces perturbed by modularity

Let E = {1, . . . , k} be the set of objects. The set of alternatives is A = 2E, that is, the set of all possible
subsets of E. For ease of presentation, let us denote the cardinality of A by n, that is, n = 2k. Thus, a type is
an element ofRn.

We say that a type-space T ⊆ Rn is closed under scaling if for any t ∈ T and any scalar λ ≥ 0, we have
λ · t ∈ T.⁹ Given t ∈ T and a vectorm ∈ Rk, we define a type tm ∈ Rn where tm(S) = t(S) +

∑
i∈S m(i)

for every S ⊆ E. We say that T is closed under modular perturbations if for any t ∈ T and any vector
m ∈ Rk, we have tm ∈ T. A type t is modular if t(S) =

∑
i∈S t(i) for all S ⊆ E.

Proposition 5.4.1 Let T ⊆ Rn be a type-space that is closed under scaling and closed under modular
perturbations. Then, T is minimally rich.

The proof of this proposition is relegated to Appendix 5.7.3.
An important example of a type-space that is closed under scaling and closed under modular

perturbations is the gross substitutes type-space.¹⁰
The gross substitutes type-space is well-studied in the literature in the context of matching, auction,

etc., (see, e.g., Murota [42] and Paes Leme [43] for extensive surveys). This notion was introduced by
Kelso and Crawford [30] as a sufficient condition for the existence of Walrasian equilibrium. In what
follows, we define demand correspondence and gross substitutes type-space. These definitions are based
on the notion of a price vector.

A price p (vector) for individual objects in E is an element ofRk. The price of a bundle S is
p(S) =

∑
i∈S p(i). The demand correspondence for a price p ∈ Rk and a type t is defined as

D(t, p) = argmax
S⊆E

{t(S)− p(S)}.

⁹For any type t = (t1, . . . , tn) ∈ T and any scalar λ ≥ 0, λ · t = (λt1, . . . , λtn).
¹⁰The fact that gross substitutes type-space is closed under scaling and closed under modular perturbations is well known in

the literature.
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In other words, the demand correspondence for p and t contains those bundles whose net valuation
(valuation minus price) according to p and t is the maximum.

A type t satisfies the gross-substitutability condition if, roughly speaking, its demand correspondence
satisfies a (partial) independence property with respect to (increasing) price. This is in the sense that if we
increase the price of some objects (while keeping that unchanged for the others), then, in some sense, the
“demand” of the objects whose prices are not changed will not be affected. More formally, if we go from
one price vector to a higher price vector (that is, if we weakly increase the price of each object), then for
each demanded bundle S at the former price there will be a demanded bundle S′ at the higher price that
contains all objects in Swhose prices are not changed.

Definition 5.4.1 (Kelso andCrawford [30]) A type t satisfies the gross-substitutability condition if for all
p, p′ ∈ Rk with p′ ≥ p, we have S ∈ D(t, p) implies there exists S′ ∈ D(t, p′) with
{i ∈ S | p(i) = p′(i)} ⊆ S′.

Reijnierse et al. [44] and Fujishige and Yang [24] present a characterization of gross-substitutability
condition purely in terms of inequalities involving the agent’s valuations. For instance, if |E| = 2 (say
E = {i, j}), then any type t satisfies the gross-substitutability condition if and only if
t({i, j}) + t(∅) ≤ t({i}) + t({j}).

A type-space is gross substitutes if it contains all types satisfying the gross-substitutability condition. It
is well-known that the gross substitutes type-space is not convex (see Example 3 in Kushnir and
Lokutsievskiy [34]).

The following corollary is obtained from Theorem 5.3.2, Proposition 5.4.1 and the fact that the gross
substitutes type-space is closed under scaling and closed under modular perturbations.

Corollary 5.4.1 Amechanism on the gross substitutes type-space is IC if and only if it is PLIC.

5.4.2 Type-spaces perturbed by concave-modularity

As before, let the set of objects be E = {1, . . . , k}. The number of units available for object j is aj. The set
of alternatives A is the set of all feasible object bundles which is defined as
A = {(z1, . . . , zk) | zi ∈ Z and 0 ≤ zi ≤ ai for all i ∈ E}.¹¹ Let n = |A|. Thus, a type is an element of
Rn.

As defined in the previous subsection, we say that a type-spaceT ⊆ Rn is closed under scaling if for any
t ∈ T and any scalar λ ≥ 0, we have λ · t ∈ T. Given concave functions gi : {0, 1, . . . , ai} → R for each
1 ≤ i ≤ k, we define g̃ = (g1, . . . , gk). For any t ∈ T, we define a type t̃g ∈ Rn where

¹¹We denote byZ the set of all integers.
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t̃g(z) = t(z) +
∑k

i=1 gi(zi) for all z ∈ A. We say that T is closed under concave-modular perturbations if
for any t ∈ T and concave functions gi : {0, 1, . . . , ai} → R for each 1 ≤ i ≤ k, we have t̃g ∈ T. A type
m : A → Rmodular-concave if there exists a concave function gi : {0, 1, . . . , ai} → R for each 1 ≤ i ≤ k
such thatm(z) =

∑k
i=1 gi(zi) for all z ∈ A.

Proposition 5.4.2 Let T ⊆ Rn be a type-space that is closed under scaling and closed under concave-modular
perturbations. Then, T is minimally rich.

The proof of this proposition is relegated to Appendix 5.7.4.
An important example of a type-space that is closed under scaling and closed under concave-modular

perturbations is the generalized gross substitutes and complements type-space (for details see the proof
of Theorem 3 in Kushnir and Lokutsievskiy [34]).

We introduce the notion of generalized gross substitutes and complements type-space. Shioura and
Yang [48] introduces the notion of generalized gross substitutes and complements (GGSC) type-space. A
set C ⊆ Zk is a integer convex set if it contains all integer vectors in its convex hull.¹²

The objects are partitioned into two classes E1 and E2, that is, E = E1 ∪ E2 with E1 ∩ E2 = ∅. The
objects are substitutes within classes and complements across the classes. For instance, in the problem of
allocation of spectrum licenses, radio spectrum licenses are substitutes within each region, but
complements across regions.¹³ We denote the total number of units in a class Er ∈ {E1, E2} in a bundle
z ∈ A by z(Er), that is, z(Er) =

∑
l∈Er zl.

We now extend the notion of demand correspondence defined in Subsection 5.4.1. Note that the price
of a bundle z ∈ A is z · p, where p ∈ Rk is the price vector of individual objects. Therefore, for a price
p ∈ Rk and a type t, we define demand correspondence as

D(p, t) = argmax
z∈A

{t(z)− p · z}.

For r ∈ {1, 2} and i ∈ Er, a bundle z′ is an improvement of a bundle zwith respect to Er except for i if
z′l ≥ zl for all l ∈ Er \ {i}, and z′l ≤ zl for all l ∈ Ec

r. Let us denote by χ i ∈ Rk the vector whose i-th
component is 1 and other components are 0. Let χ0 = (0, . . . , 0) ∈ Rk be the null vector.

Definition 5.4.2 A type t satisfies the generalized gross substitutes and complements condition if for each price
p ∈ Rk,

(i) D(p, t) is an integer convex set, and

¹²Shioura and Yang [48] use the term discrete convex set instead of integer convex set.
¹³This example is taken from Kushnir and Lokutsievskiy [34].
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(ii) for each z ∈ D(p, t), each r = 1, 2, each i ∈ Er, and each δ > 0, there exists an improvement z′ of z with
respect to Er except for i such that z′ ∈ D(p+ δχ i, t) and

z(Er)− z(Ec
r) ≥ z′(Er)− z′(Ec

r).

Similar to the characterization of gross-substitutability condition purely in terms of inequalities
involving agent’s valuations provided in Reijnierse et al. [44] and Fujishige and Yang [24], Shioura and
Yang [48] (Theorem 3.3) proves that any type t satisfies the generalized gross substitutes and
complements condition if and only if it isGM-concave.

LetU = diag(1, . . . , 1,−1, . . . ,−1) be a diagonal k× kmatrix that contains 1 in the first |E1| diagonal
entries and−1 in the remaining |E2| diagonal entries. For z = (z1, . . . , zk) ∈ Zk, define
supp(z) = {i ∈ E | zi > 0}.

A type t : A → R is calledGM-concave if for all z, z′ ∈ A and all i ∈ supp
(
U(z− z′)

)
, there exists

j ∈ supp
(
U(z′ − z)

)
∪ {0} such that

t(z) + t(z′) ≤ t
(
z− U(χ i − χ j)

)
+ t

(
z′ + U(χ i − χ j)

)
. (5.1)

A type-space is generalized gross substitutes and complements if it contains allGM-concave types. It
can be verified that the gross substitutes type-space is a special case of the generalized gross substitutes
and complements type-space.

We obtain the following corollary from Theorem 5.3.2, Proposition 5.4.2 and the fact that the
generalized gross substitutes and complements type-space is closed under scaling and closed under
concave-modular perturbations.

Corollary 5.4.2 Amechanism on the generalized gross substitutes and complements type-space is IC if and
only if it is PLIC.

5.5 A simple geometric structure of non-convex type-spaces for the equiva-

lence of PLIC and IC

In this section we present a simple geometric structure of non-convex type-spaces that guarantees the
equivalence of pointwise local incentive compatibilty (PLIC) and incentive compatibilty (IC). For ease
of presentation, we assume in this section that A = {1, . . . , n}, that is, the alternatives are indexed by the
numbers 1, . . . , n. For a type t ∈ Rn, we denote by
D(t) = {s ∈ Rn | there exists c ∈ R such that s(i) = t(i) + c for all i ∈ {1, . . . , n}} the set of points that
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Figure 5.5.1

have the same relative difference between the alternatives as in t. Let C =
∏n

i=1[ai, bi], where ai, bi ∈ R
with ai < bi, be a set inRn, and let ∂(C) denote the boundary of C. Suppose that T ⊆ C is such that T is
open in C, ∂(C) ⊆ T, and for each t ∈ T, there is s ∈ ∂(C) ∩ D(t) such that the line [t, s] lies in T. In
Figure 5.5.1, we provide some examples of such a set T (marked by the shaded region) in two dimensions
to illustrate its structure, and in Figures 5.5.2, 5.5.3 and 5.5.4, we provide examples of a set (marked by the
shaded region) that does not satisfy the above mentioned property.¹⁴ The type-spaces marked by shaded
portion in Figures 5.5.1, 5.5.3 and 5.5.4 does not include the boundary of the inner shape(s) whereas the
type-space marked by shaded portion in Figure 5.5.2 includes the boundary of the inner shape.

Theorem 5.5.1 Let T ⊆ C is such that
(i) T is open in C,
(ii) ∂(C) ⊆ T, and
(iii) for each t ∈ T, there is s ∈ ∂(C) ∩ D(t) such that the line [t, s] lies in T.
A mechanism on T is IC if and only if it is PLIC.

The proof of Theorem 5.5.1 is relegated to Appendix 5.7.5.
The equivalence between PLIC and IC in Theorem 5.5.1 is guaranteed by the existence of a certain

kind of polygonal path between every two types lying in the type-space. The specified polygonal path
satisfies some monotonic condition over the relative valuation between alternatives.¹⁵

As we have demonstrated by Figure 5.5.1, the main importance of Theorem 5.5.1 is that its conditions
are geometrically easy to check. Additionally, Theorem 5.5.1 provides a geometric insight on the kind of
subsets ofRn (say X) for which PLIC and IC are equivalent on the complement, that is,Rn \ X. Note that
the geometric property identified in the above theorem is very different from the minimal richness
condition (Definition 5.3.1). For example, type-spaces identified in Figure 5.5.1 satisfy the geometric

¹⁴For more details, see Examples 5.5.2, 5.5.3 and 5.5.4.
¹⁵For details, see the proof of Theorem 5.5.1.
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Figure 5.5.2

property proposed in Theorem 5.5.1 but do not satisfy the minimal richness condition. Also, type-spaces
identified in Figure 5.3.2 satisfy the minimal richness condition but do not satisfy the geometric property
described in Theorem 5.5.1.

It is worth mentioning that conditions of Theorem 5.5.1 are indispensable, that is, if we drop any
condition of Theorem 5.5.1, then the equivalence of PLIC and IC is no longer guaranteed. We provide
examples below to support this statement. For simplicity, let us assume A = {a, b}. The valuation of the
alternative a is represented on the horizontal axis and the valuation of the alternative b is represented on
the vertical axis.

Example 5.5.2 Suppose we drop Condition (i) ofTheorem 5.5.1. Consider the type-space T (marked by
shaded portion) in Figure 5.5.2 where T includes the boundary of the inner square. Notice that this figure satisfies
Conditions (ii) and (iii) ofTheorem 5.5.1. The inner square has sides of slopes 1 and−1. Note that T includes the
boundary of the inner square, and hence it is not open in C. Suppose that the side of the inner square containing
the point t marked in Figure 5.5.2 lie on the line having slope 1 and passing through origin. Define a mechanism
μ = (f, p) such that f(t) = a, f(t′) = b for every t′ ∈ T \ {t}, and p(̄t) = 0 for every t̄ ∈ T. Consider a
neighborhood of t such that it does not intersect with any type t̄ with t̄(a)− t̄(b) > 0, and similarly for any t̄
with t̄(a)− t̄(b) > 0, consider its neighborhood such that it does not intersect t. It can be verified that μ is PLIC
with such neighbourhoods. However, μ violates IC on every pair (t′, t) with t′(a)− t′(b) > 0.

Example 5.5.3 Suppose we drop Condition (ii) ofTheorem 5.5.1. Consider the type-space T (marked by
shaded portion) in Figure 5.5.3 where T does not include the boundary of the cut out portion from the square.
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Figure 5.5.3

Clearly, T does not contain the boundary of the square. Notice that this figure satisfies Conditions (i) and (iii) of
Theorem 5.5.1. The red line has slope 1 and the vertical intercept is 0, i.e., slope 1 line passing through the origin.
The blue line also has slope 1 but the vertical intercept is 1. T1,T2 and T3 forms a partition of T as depicted in
Figure 5.5.3. Define a mechanism μ = (f, p) such that f(t) = a for every t ∈ T1 ∪ T2, f(t′) = b for every
t′ ∈ T3, p(t) = 2 for every t ∈ T1 ∪ T3, and p(t′) = 1 for every t′ ∈ T2. For any given type t ∈ T1, consider a
neighborhood of t such that it does not intersect with any type belonging to T2, and similarly for any type t̄ ∈ T2,
consider its neighborhood such that it does not intersect with any type belonging to T1. It can be verified that μ is
PLIC with such neighbourhoods. However, μ violates IC on every pair (t, t′) with t ∈ T1 and t′ ∈ T2.

Example 5.5.4 Suppose we drop Condition (iii) of Theorem 5.5.1. Consider the type-space T (marked by
shaded portion) in Figure 5.5.4. It does not include the boundary of inner shape. Notice that this figure satisfies
Conditions (i) and (ii) ofTheorem 5.5.1. The red line has slope 1 and the vertical intercept is 0, i.e., slope 1 line
passing through the origin. The blue line also has slope 1 but the vertical intercept is 1. The subsets T1,T2 and T3

form a partition of T as depicted in Figure 5.5.4. Notice that every type in T1 violates Condition (iii) of Theorem
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Figure 5.5.4

5.5.1. Define the mechanism μ = (f, p) such that f(t) = b for every t ∈ T1 ∪ T3, f(t′) = a for every t′ ∈ T2,
p(t) = 2 for every t ∈ T1 ∪ T2, and p(t′) = 3 for every t′ ∈ T3. For any given type t ∈ T1, consider a
neighborhood of t such that it does not intersect with any type belonging to T3, and similarly for any type t̄ ∈ T3,
consider its neighborhood such that it does not intersect with any type belonging to T1. It can be verified that μ is
PLIC with such neighbourhoods. However, μ violates IC on every pair (t, t′) with t ∈ T3 and t′ ∈ T1.

5.6 Discussion: Comparison of our results with Kushnir and Lokutsievskiy

[34]

Kushnir and Lokutsievskiy [34] studies a research question that is conceptually different from ours. They
study type-spaces where monotonicity implies cyclical monotonicity for allocation rules. Let us first
formally introduce the main result of Kushnir and Lokutsievskiy [34].

An allocation rule f on a type-space T is monotone (or, 2-cycle monotone) if for all t, t′ ∈ T, we have
t(f(t))− t(f(t′)) + t′(f(t′))− t′(f(t)) ≥ 0, and it is cyclically monotone if for any integer r and any points
t0, t1, . . . , tr = t0 in T, we have

∑r−1
k=0 t

k(f(tk))− tk(f(tk+1)) ≥ 0.

Definition 5.6.1 A type-space T is simply connected if
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(i) T is path-connected, i.e., any two types in T can be connected by a path lying entirely in T, and

(ii) any loop in T can be continuously contracted to a point.

A type-space being simply connected ensures that the type-space do not have certain kind of “holes”.¹⁶ A
particular class of simply connected type-spaces are star-shaped type-spaces. Formally, a type-space T is
star-shaped if there exists a typem ∈ T such that [m, t] ⊆ T for all t ∈ T. We call such typesm as a center
of the star-shaped type-space T.

For any allocation rule f : T → A and any ordered pair a, b ∈ A, we define
lab = inft∈T:f(t)=a t(a)− t(b). For each a ∈ A, we define Tf

a = {t ∈ T | t(a)− t(b) ≥ lab for all b ∈ A}.

Definition 5.6.2 An allocation rule f : T → A satisfies the local-to-global condition if for every a, b ∈ f(T)
with Tf

a ∩ Tf
b = ∅, there exists a finite sequence of alternatives (a = a0, . . . , ar = b) such that

Tf
ak ∩ Tf

ak+1
̸= ∅, k = 0, . . . , r− 1, and lab ≥

∑r−1
k=0 lakak+1 .

The main result of Kushnir and Lokutsievskiy [34] is as follows.

Theorem 5.6.3 (Kushnir and Lokutsievskiy [34]) Let T ⊆ R|A| be a type-space and f : T → A be an
allocation rule. Suppose that

(i) T is simply connected,

(ii) For each a ∈ A,Tf
a is either path-connected or empty, and

(iii) f satisfies the local-to-global condition.

Then if f is monotone (or, 2-cycle monotone), it is also cyclically monotone.

It is important to note that Condition (ii) and Condition (iii) of Theorem 5.6.3 are defined for a given
allocation rule, and consequently, Theorem 5.6.3 does not present direct conditions on a type-space so
that monotonicity will imply cyclical monotonicity. Using Theorem 5.6.3 Kushnir and Lokutsievskiy [34]
proved that every monotone allocation rule defined on the gross substitutes type-space and the
generalized gross substitutes and complements type-space is also cyclically monotone. It is understood
from the proof that a direct condition on type-spaces for the equivalence of monotonicity and cyclical
monotonicity can be derived from Theorem 5.6.3. We state below these conditions as a corollary of
Theorem 5.6.3.

¹⁶See footnote 8 in Kushnir and Lokutsievskiy [34] for a formal definition of simply connectedness.
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Corollary 5.6.1 Let T be a star-shaped type-space and M ⊆ T be the collection of all centers of T. Suppose
that for every a ∈ A and every t ∈ T there exists m ∈ M such that m(a)− m(b) ≥ t(a)− t(b) for all
b ∈ A \ {a}. Then every monotone (or, 2-cycle monotone) allocation rule on T is cyclically monotone.

Nowwe are ready to compare the results of our paper withTheorem 5.6.3 in Kushnir and Lokutsievskiy
[34] (along with Corollary 5.6.1). The main assumptions on type-spaces in Theorem 5.6.3 and Corollary
5.6.1 are simply connected and star-shaped, respectively. Our main assumption on type-spaces is minimal
richness (Definition 5.3.1). The notion of minimal richness is flexible enough to accomodate type-spaces
that are not simply connected (and hence not star-shaped). For example, let A = {a, b} and consider the
type-spaceR2 \ {(0, 0)}where the valuation of a is represented on the horizontal axis and the valuation
of b is represented on the vertical axis.¹⁷ Note thatR2 \ {(0, 0)} is not simply connected because any
loop around origin cannot be contracted continuously to a point. However,R2 \ {(0, 0)} is minimally
rich.¹⁸ This can be verified using similar arguments provided after the definition of minimal richness
(Definition 5.3.1) in Section 5.3. Moreover, minimal richness is a weaker condition than the conditions
identified in Corollary 5.6.1, that is, every type-space satisfying conditions of Corollary 5.6.1 is minimally
rich but the converse is not true. For instance, the examples of minimally rich type-spaces illustrated in
Figure 5.3.2 are star-shaped but violates the other condition stated in Corollary 5.6.1, i.e. there exists a
type t belonging to the type-space such thatm(a)− m(b) < t(a)− t(b) for every typem that belongs to
the center of the type-space. Similarly, the type-spaces illustrated in Figure 5.5.1 satisfy our geometric
property provided in Theorem 5.5.1 but are not simply connected.

Summarizing, although both Kushnir and Lokutsievskiy [34] and we have used the same property of
the gross substitutes type-space (and the generalized gross substitutes and complements type-space) to
prove our respective results, there are some differences between the properties required in general for
these results. This is natural as the implications of our main result and that of Kushnir and Lokutsievskiy
[34] are quite different.

5.7 Appendix

5.7.1 A useful lemma

In this subsection, we present a lemma that we will use in deriving the rest of the results of the paper. The
lemma provides a sufficient condition for a mechanism to be IC on a pair of types based on its IC

¹⁷The same arguments work if we consider the type-space where finitely many points are deleted fromR2, but for simplicity
we just delete the origin.

¹⁸For more than two alternatives, we can construct such examples that are not simply connected but satisfies the minimal
richness condition.
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property over a sequence of types. As we show in Sections 5.3 and 5.5, this simple lemma is quite
powerful in deducing a wide range of results.

Lemma 5.7.1 Amechanism μ = (f, p) on a type-space T is IC on a pair of types (t, t′) if there is a finite
sequence of types (t = t1, . . . , tk = t′) in T such that for all l < k,

(i) μ is IC on (tl, tl+1), and
(ii) t1(f(tl+1))− t1(f(tl)) ≤ tl(f(tl+1))− tl(f(tl)).

The proof of this lemma is quite straightforward; we provide it here for the sake of completeness.¹⁹
Proof: Consider a mechanism μ = (f, p) on a type-space T. Let (t, t′) be a pair of types in T for which
there is a finite sequence of types (t = t1, . . . , tk = t′) in T such that for all l < k, (i) μ is IC on (tl, tl+1),
and (ii) t1(f(tl+1))− t1(f(tl)) ≤ tl(f(tl+1))− tl(f(tl)). We show that μ is IC on the pair (t, t′).

We prove this by induction. By the assumption, μ is IC on (t1, t2). Suppose μ is IC on (t1, tl) for some
l < k. This yields

t1(f(t1))− p(t1) ≥ t1(f(tl))− p(tl). (5.2)

Since μ is IC on (tl, tl+1), we have

tl(f(tl))− p(tl) ≥ tl(f(tl+1))− p(tl+1). (5.3)

Adding t1(f(tl)) to both sides of (5.3) and doing some rearrangement, we obtain

t1(f(tl))− p(tl) ≥ t1(f(tl)) + tl(f(tl+1))− tl(f(tl))− p(tl+1). (5.4)

Combining (5.4) and Part (ii) of the condition in the lemma, we have
t1(f(tl))− p(tl) ≥ t1(f(tl+1))− p(tl+1). This, together with (5.2) gives
t1(f(t1))− p(t1) ≥ t1(f(tl+1))− p(tl+1), which implies μ is IC on (t1, tl+1). This completes the proof. ■

5.7.2 Proof of Theorem 5.3.2

Proof: The “only if ” part of the theorem follows from the definition. We proceed to prove the “if ” part of
the theorem. Let (f, p) be an PLIC mechanism on a minimally rich type-spaceT ⊆ Rn. We will show that
for any t, t′ ∈ T, (f, p) is IC on (t, t′).

Fix any t, t′ ∈ T. If [t, t′] ⊆ T, then by Carroll [12] it follows that (f, p) is IC on (t, t′).²⁰ Suppose
[t, t′] ⊈ T. Let f(t′) = a. Since T satisfies minimal richness, there exists s ∈ T satisfying conditions (i)

¹⁹We prove this using a familiar idea in themechanism design literature related to supermodularity/revealed preference argu-
ment (for example see Lemma 2 in ? ], Theorem 1 in ? ]).

²⁰Carroll [12] shows that any PLIC mechanism on a type-space T is IC on (t, t′) if [t, t′] ⊆ T.
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and (ii) of Definition 5.3.1. Assume f(s) = b. By condition (i), the line [s, t′] lies in T. Therefore, by
Carroll [12], (f, p) is IC on both (t′, s) and (s, t′). This implies t′(a)− t′(b) ≥ s(a)− s(b).

Therefore, by condition (ii) we have that,

s(a)− s(b) ≥ t(a)− t(b). (5.5)

By condition (i), both lines [t, s] and [s, t′] lie in T. Therefore, by Carroll [12], (f, p) is IC on both (t, s)
and (s, t′). This, together with the facts that f(t′) = a, f(s) = b and s(a)− s(b) ≥ t(a)− t(b), Lemma
6.7.3 implies that (f, p) is IC on (t, t′). This completes the proof of the theorem. ■

5.7.3 Proof of Proposition 5.4.1

Proof: LetT denote a type-space that is closed under scaling and closed under modular perturbations. Let
us denote the zero vector by 0. SupposeM is the set of all modular types. First we show thatM ⊆ T.
Since T is closed under scaling, 0 ∈ T. Also, since T is closed under modular perturbations, 0m ∈ T for
everym ∈ Rk. By definition, every modular type can be written as 0m for somem ∈ Rk. Hence,M ⊆ T.

Next we show that [t,m] lies in T for all t ∈ T andm ∈ M. Take any t ∈ T andm ∈ M. Pick any
0 < λ < 1. Sincem ∈ M, we have (1− λ) · m ∈ M, and since T is closed under scaling, we have λ · t ∈ T.
These, together with the fact that T is closed under modular perturbations, imply that
λ · t+ (1− λ) · m ∈ T. Since 0 < λ < 1 is arbitrary, this implies that the line [t,m] ⊆ T.

Now we show that T satisfies minimal richness. Fix any t, t′ ∈ T andH ⊆ E. To prove minimal
richness we need to show that there exists a modular typem ∈ T satisfyingm(H)− m(F) ≥ t(H)− t(F)
for all F ⊆ E such that t′(H)− t′(F) ≥ m(H)− m(F). We prove something even stronger: there exists a
modular typem ∈ T such thatm(H)− m(F) ≥ t(H)− t(F) for all F ⊆ E.

Since A is finite, there exists c > 0 such that c ≥ t(H)− t(F) for all F ⊆ E. Define a modular type
m ∈ M such thatm(∅) = 0,m(i) = c for i ∈ H, andm(i) = −c for i ∈ E \H. Clearlym(H)−m(F) ≥ c
for all F ⊆ Ewith F ̸= H. Therefore,m(H)− m(F) ≥ t(H)− t(F) for all F ⊆ E. Sincem ∈ M, both
[t,m] and [m, t′] lie in T, and hence T is minimally rich. ■

5.7.4 Proof of Proposition 5.4.2

Proof: Let T denote a type-space that is closed under scaling and closed under concave-modular
perturbations. LetM denote the set of all modular-concave types. Similar to the proof of Proposition
5.4.1, it follows thatM ⊆ T and [t,m] lies in T for allm ∈ M and t ∈ T.
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We show that T satisfies minimal richness. Fix any t, t′ ∈ T and z ∈ A. To prove minimal richness we
need to show that there exists a modular-concave typem ∈ T satisfyingm(z)− m(z′) ≥ t(z)− t(z′) for
all z′ ∈ A such that t′(z)− t′(z′) ≥ m(z)− m(z′). As we did in the case of proving Proposition 5.4.1, we
prove something stronger: there exists a modular-concave typem ∈ T such that
m(z)− m(z′) ≥ t(z)− t(z′) for all z′ ∈ A.

Since A is finite, there exists c > 0 such that c ≥ t(z)− t(z′) for all z′ ∈ A. For each i = 1, . . . , k,
define the concave function gi such that gi(0) = 0 and gi(j) = −c|zi − j| for all j = 1, . . . , ai. Consider
the modular-concave typem defined bym(z̄) =

∑k
i=1 gi(z̄i) for all z̄ ∈ A. We have

m(z)− m(z′) =
∑k

i=1(gi(zi)− gi(z′i)) = c
∑k

i=1 |zi − z′i| ≥ c for all z′ ∈ A \ {z}. Therefore,
m(z)− m(z′) ≥ t(z)− t(z′) for all z′ ∈ A. Sincem ∈ M, both [t,m] and [m, t′] lie in T, and hence T is
minimally rich. ■

5.7.5 Proof of Theorem 5.5.1

Proof: First we prove a claim that will be used in the proof of the Theorem 5.5.1. We use the following
terminologies in the proof. A polygonal path from t to t′ in T is a finite collection of types
(t = t1, . . . , t′ = tk) such that [tl, tl+1] lies in T for all l ∈ {1, . . . , k− 1}. An alternative iweakly (or
strictly) improves from a type t to another type t′ if t(i)− t(j) ≤ t′(i)− t′(j) for all j ∈ A \ {i} (or,
t(i)− t(j) < t′(i)− t′(j) for all j ∈ A \ {i}). An alternative iweakly (or strictly) improves along a
polygonal path (t1, . . . , tk) if iweakly (or strictly) improves from the type tl to tl+1 for all l ∈ {1, . . . , k− 1}.
For any alternative i ∈ A, let αi = inf{t(i) | t ∈ C \ T} and βi = sup{t(i) | t ∈ C \ T}. Since ∂(C) ⊆ T,
ai < αi ≤ βi < bi. LetU(i) = {t ∈ T | t(i) ∈ (βi, bi]} and L(i) = {t ∈ T | t(i) ∈ [ai, αi)}. For any
i ∈ A, we will often refer toU(i) and L(i) as hollow faces of the cuboid.

Claim 5.7.1 For every s, s′ ∈ T and i ∈ A, there exist (not necessarily distinct) t1, t2, t3 ∈ T such that

(i) t1 ∈ D(s),

(ii) i weakly improves from t1 to t2,

(iii) [s, t1], [t1, t2], and [t2, t3] lie in T, and

(iv) there exists a polygonal path from s′ to t3 along which i strictly improves.

Proof: Fix s, s′ ∈ T and i ∈ A. We need to find t1, t2, t3 ∈ T satisfying conditions (i), (ii), (iii), and (iv).
Let L = {t ∈ C | t(i) = bi, t(j) = aj for some j ∈ A \ {i}}. Notice that L ⊆ T. We distinguish the
following two cases:
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Case (i): Suppose s′ ∈ L. Take any s ∈ T. Set t3 = s′. Hence condition (iv) is vacuously satisfied. By
the assumption on T, there is t1 ∈ ∂(C) ∩ D(s) such that the line [s, t1] lies in T.²¹ Since t1 ∈ D(s),
condition (i) is satisfied. Now we have to find t2 ∈ T such that the lines [t1, t2], [t2, s′] lie in T and iweakly
improves from t1 to t2. Since t1 ∈ ∂(C), there exists j ∈ A such that t1(j) ∈ {aj, bj}. We further distinguish
the following two subcases:

Case (i.a): Suppose j ̸= i. Define t2 ∈ T such that t2(i) = bi and t2(l) = t1(l) for all l ∈ A \ {i}.²²
Note that for any type t lying on the line [t1, t2], t(j) = t1(j) ∈ {aj, bj}. Therefore, the line [t1, t2] lies in
∂(C). Since ∂(C) ⊆ T, it follows that the line [t1, t2] lies in T. Since s′(i) = bi = t2(i), it follows by using a
similar logic that the line [t2, s′] lies in T. These, together with the fact that the line [s, t1] lies in T, implies
that condition (iii) is satisfied. By the construction of t2, t2(i)− t2(l) ≥ t1(i)− t1(l) for all l ∈ A \ {i}.
Hence condition (ii) is also satisfied, and thereby the proof for this subcase is complete.

Case (i.b): Suppose j = i. Then t1(i) ∈ {ai, bi}. Since s′ ∈ L, there exists k ∈ A \ {i} such that
s′(k) = ak. Define t2 ∈ T such that t2(i) = t1(i), t2(k) = s′(k) = ak and t2(l) = t1(l) for all
l ∈ A \ {i, k}.²³ Since t2(i) = t1(i) and t2(k) = s′(k) = ak, by using a similar logic as in Case (i.a), it
follows that the lines [t1, t2] and [t2, s′] lie in T. This, together with the fact that the line [s, t1] lies in T,
implies that condition (iii) is satisfied. By the construction of t2, t2(i)− t2(l) ≥ t1(i)− t1(l) for all
l ∈ A \ {i}. Hence condition (ii) is also satisfied, and thereby the proof for the subcase is completed.
Case (ii): Suppose s′ ∈ T \ L. Take any s ∈ T. Define t3 ∈ T such that t3(i) = bi and t3(l) = al for all
l ∈ A \ {i}. Since by construction t3 ∈ L, by Case (i) there exist t1, t2 ∈ T such that conditions (i), (ii)
and (iii) are satisfied. Therefore, we only need to show that condition (iv) is also satisfied, i.e., there exists
a polygonal path from s′ to t3 along which i strictly improves. By the assumption on T, there exists
t̄ ∈ ∂(C) ∩D(s′) such that the line [s′, t̄] lies in T. Since t̄ ∈ ∂(C), there exists j ∈ A such that t̄ belongs to
L(j) ∪ U(j). Since [s′, t̄] lies in T and t̄ ∈ ∂(C), there exists a type t̃ /∈ ∂(C) on the line [s′, t̄] such that t̃
belongs to the same hollow face as t̄. Since t̃ lies on the line [s′, t̄], t̃ ∈ D(s′). Define
T̂ = {t ∈ T | t̃(i) < t(i), t(l) = t̃(l) for all l ∈ A \ {i} and t belongs to the same hollow face as t̄}. Since
T is open inC, there exists t̂ ∈ T̂ \ ∂(C) such that the line [s′, t̂] lies inT. Note that t̂ belongs to L(j)∪U(j)
and s′(i)− s′(l) < t̂(i)− t̂(l) for all l ∈ A \ {i}. We further distinguish the following two subcases:

Case (ii.a): Suppose j ̸= i. Define t4 ∈ T such that t4(i) = bi and t4(l) = t̂(l) for all l ∈ A \ {i}. Since
t̂ /∈ ∂(C), we have al < t̂(l) < bl for every l ∈ A. Hence t̂(i)− t̂(l) < t4(i)− t4(l) for all l ∈ A \ {i} and
t4 /∈ L. Note that for any type t lying on the line [̂t, t4], t ∈ L(j) ∪ U(j). Therefore, the line [̂t, t4] lies in

²¹If s itself is a point in ∂(C), then we can set s = t1.
²²In R3, we can view t2 as the foot of the perpendicular from t1 to the face of the cuboid having bi as the valuation of the

alternative i for every type.
²³In R3, we can view t2 as the foot of the perpendicular from t1 to the face of the cuboid having ak as the valuation of the

alternative k for every type.
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L(j) ∪ U(j). Since L(j) ∪ U(j) ⊆ T, it follows that the line [̂t, t4] lies in T. Since t3(i) = bi = t4(i), it
follows by using a similar logic that the line [t4, t3] lies in T. Since t4 /∈ L, we have
t4(i)− t4(l) < t3(i)− t3(l) for all l ∈ A \ {i}. Therefore, (s′, t̂, t4, t3) is a polygonal path from s′ to t3 along
which i strictly improves. Hence, condition (iv) is also satisfied, and thereby the proof for this subcase is
complete.

Case (ii.b): Suppose j = i. Define t4 ∈ T ∩ (L(i) ∪ U(i)) such that t4(i) = t̂(i) + ε < bi, t4(k) = ak
and t4(l) = t̂(l) for some ε > 0, k ∈ A \ {i} and all l ∈ A \ {i, k}. Note that such a type t4 can always be
found since T is open in C and t4 /∈ L. Since t3(k) = ak = t4(k) and t4 /∈ L, by using a similar logic as in
Case (ii.a), it follows that (s′, t̂, t4, t3) is a polygonal path from s′ to t3 along which i strictly improves.
Hence, condition (iv) is satisfied, and thereby the proof for this subcase is complete.

Since Cases (i) and (ii) are exhaustive, this completes the proof of the claim. ■

Having proved Claim 5.7.1, now we proceed towards the proof of Theorem 5.5.1. Consider a PLIC
mechanism μ = (f, p) on T and consider two arbitrary types s and s′ in T. We show that μ is IC on (s, s′).
Let f(s′) = i. By Claim 5.7.1, there exist t1, t2, t3 ∈ T such that (i), (ii), (iii), and (iv) are satisfied. Suppose
(s′ = s1, . . . , sk = t3) be a polygonally connected path from s′ to t3 satisfying (iv). By Carroll [12], it
follows that every PLIC mechanism is IC on a line. Hence, μ is IC on both (sl, sl+1) and (sl+1, sl) for all
l ∈ {1, . . . , k− 1}. This, together with the facts that f(s′) = i and i strictly improves along
(s′ = s1, . . . , sk = t3), implies that f(sl) = i for every l ∈ {1, . . . , k}. Now consider the polygonally
connected path (s, t1, t2, t3 = sk, . . . , s1 = s′) from s to s′. Since this path is polygonally connected, μ is IC
on every pair of consecutive types in (s, t1, t2, t3 = sk, . . . , s1 = s′), thereby satisfying condition (i) of
Lemma 6.7.3. We show that (s, t1, t2, t3 = sk, . . . , s1 = s′) satisfies condition (ii) of Lemma 6.7.3. By
condition (i), (ii), and (iii) of Claim 5.7.1 and the fact that f(sl) = i for every l ∈ {1, . . . , k}, it follows
that condition (ii) of Lemma 6.7.3 is also satisfied. Therefore, by Lemma 6.7.3, we obtain that μ is IC on
(s, s′). This completes the proof of the Theorem. ■
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6
Local Incentive Compatibility inOrdinal Type-Spaces

6.1 Introduction

We consider standard mechanism design problems when agents have quasi linear utility function. There is
a finite set of alternatives and a finite set of agents. Agents’ types are their valuations for the alternatives. A
mechanism is incentive compatible (IC) if it is not possible for any agent to increase his/her (net) utility
by misreporting his/her sincere type in any way. It is locally IC (LIC) if it is not possible for an agent to
increase his/her (net) utility by misreporting to a type that lies in a small “neighborhood” of his/her
sincere type. In other words, LIC is a weakening of IC where IC is required to be satisfied for deviations
within a small neighborhood.

Characterizing all IC mechanisms on a given type-space is an important problem in mechanism design.
However, despite its importance, the structure of IC mechanisms is known only for the case when the
type-space is unrestricted (that is,R|A|, where A is the set of alternatives) (see Lavi et al. [35] for details)
and finding this structure on other type-spaces seem to be a hard problem. As an intermediate step,
researchers have got interested in exploring if the requirement of IC can be reduced considerably.¹ Local
IC (LIC) turns out to be a way.

¹For the importance of identifying a minimal set of incentive constraints that imply full incentive compatibility - see discus-
sions in Chapter 7 of Fudenberg and Tirole [23], Armstrong [2] and Chapter 6 in Vohra [50].
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The notion of LIC depends on the notion of neighborhood one intends to consider. Carroll [12]
considered neighborhoods with respect to Euclidean distance. We refer to this notion as pointwise LIC
(PLIC). He showed that if the type-space is convex, then PLIC is equivalent to IC. To the best of our
knowledge, nothing is known about the equivalence of LIC and IC on other type-spaces.

An ordinal domain is a collection of ordinal preferences. In contrast to cardinal environments (that is,
for type-spaces), the relation between LIC and IC is well-explored for ordinal domains (see Kumar et al.
[32] for details). A type represents an ordinal preference if for any two alternatives a and b, a is preferred
to b implies the valuation of awill be higher than b. A type-space is called ordinal if it is induced by an
ordinal domain, that is, it contains all types representing some preference in an ordinal domain.² An
ordinal domain/type-space is strict if it does not admit indifference.

The mechanism design literature generally considers geometric restrictions such as connectedness and
convexity on type-spaces. While these are simplifying technical assumptions, they exclude ordinal
restrictions such as single-peaked or single-crossing or single-dipped preferences that arise in several
economic problems. For instance, in a problem where the location of a public good on a street needs to be
decided, subsidies can be given to the people who reside far away from the chosen location. Similarly, in
determining the budget for infrastructure, industrial development, etc., subsidies can be given to poor
people (or whoever derives relatively lesser externalities from a decision). Barzel [8], Stiglitz [49], and
Bearse et al. [9] consider the problem of setting the level of tax rates to provide public funding in the
education sector, and Ireland [29] and Epple and Romano [21] consider the same problem in the health
insurance market.³ Our analysis enables one to analyze these problems as a mechanism design problem
with transfers. Mishra et al. [39] explains how single-peakedness arises in a private good scheduling
problem. Some other papers that deal with mechanism design in ordinal type-spaces are Mishra et al.
[38], Carbajal and Müller [11], Mishra et al. [39], etc.

An ordinal domain satisfies ordinal local global equivalence (OLGE) if every locally incentive
compatible social choice function on that domain is incentive compatible. The notion of OLGE is defined
in Kumar et al. [32], where it is shown that a strict ordinal domain is OLGE if and only if it satisfies
“Property L”. Almost all well-known domains such as single-peaked, single-crossing, single-dipped, etc.,
satisfies OLGE. An ordinal type-space satisfies cardinal local global equivalence (CLGE) if every locally
incentive compatible mechanism on that type-space is incentive compatible. We characterize strict CLGE
type-spaces by showing that a strict ordinal domain is OLGE if and only if the corresponding strict
type-space is CLGE. It is worth mentioning that our result applies to type-spaces that are not necessarily
convex, not even connected. The relaxation of connectedness or convexity is not a trivial extension. For

²All the results of this paper also hold if we consider types that are bounded below or bounded above (for instance, non-
negative types).

³Individuals’ preferences are considered to be single-peaked in such scenarios.
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instance, the equivalence of PLIC and IC does not hold on non-connected type-spaces, consequently we
introduce the notion of uniform LIC (ULIC) and establish the equivalence of ULIC and IC on such
type-spaces.

Indifference occurs naturally in preferences, therefore we explore the equivalence of LIC and IC on
ordinal type-spaces admitting indifferences. We introduce the notion of almost everywhere IC. A
mechanism is almost everywhere IC if it is IC outside a set of (Lebesgue) measure zero (thus, such a
mechanism is IC except for some rare (measure zero) situations). We suitably define the notion of LIC to
take care of indifference. We call it strong LIC and provide a necessary and sufficient condition on an
ordinal type-space for the equivalence of strong LIC and almost everywhere IC. The closure of
single-peaked or single-crossing type-spaces, single-plateaued type-spaces, etc., are non-convex
type-spaces that satisfy the necessary and sufficient condition. As a corollary, we establish the equivalence
of PLIC and almost everywhere IC on these type-spaces. To see the novelty of our analysis, note that the
equivalence of PLIC and IC does not hold on such type-spaces (see Example 1 in Mishra et al. [39]), and
that is why it is important to see the extent to which IC can be ensured by PLIC on such non-convex
type-spaces. What our result says is that the said equivalence actually holds but only in an almost
everywhere sense. Mishra et al. [39] consider the same problem for a particular type of mechanisms,
called payments-only mechanisms and show that PLIC and IC are equivalent for such mechanisms. Our
result complements their result by showing that one can drop payment-onlyness by requiring almost
everywhere IC instead of IC.

Finally, we consider the problem of checking whether a given mechanism is IC or not on an arbitrary
ordinal type-space. We show that to ensure IC of a mechanism, apart from checking the local types, one
needs to check only the “boundary types”. Thus, local types and boundary types form a minimal set of
incentive constraints that imply full incentive compatibility. Since the boundary types have Lebesgue
measure zero, this result reduces the complexity of checking whether a mechanism is IC or not in a
considerable manner.

A salient feature of our result is that we deduce them for arbitrary notion of localness. To see the
importance of this framework, note that the notion of localness is very subjective and may vary from
person to person. Not only that, the standard notion of adjacent localness does not apply to
multi-dimensional ordinal domains (See Kumar et al. [32] for details). Our general framework enables
one to apply our results to any such scenario.
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6.2 An example to illustrate our results

Let there be a finite set of alternatives A. For simplicity, assume A = {a, b, c}. We denote, for instance, by
abc an ordinal preference where a is preferred to b, and b is preferred to c. Consider the following set of
preferences: D = {abc, bac, bca, cba}.⁴ A social choice function (SCF) f onD is a mapping fromD to
A.⁵ An SCF f is strategy-proof on a pair of preference (P, P′) inD if, when an agent’s true preference is P,
it is not beneficial for him/her to misreport it as P′, that is, if f(P′) is either equal to f(P) or worse than f(P)
according to the preference P. An SCF f is strategy-proof onD if it is strategy-proof on every pair of
preferences inD.
Question 1. How can we check if a given SCF f onD is strategy-proof or not?
Answer. Clearly, checking the definition of strategy-proofness for every pair of preferences is time
consuming (exponential in time). Kumar et al. [32] provides a simpler way (that works for arbitrary set of
preferences) to resolve the problem. Let us call two preferences local if they differ minimally, that is,
exactly one pair of alternatives change their relative ranking between the two preferences. For instance,
abc and bac are local, bac and bca are local, etc. We call an SCF local strategy-proof if it is strategy-proof on
every pair of local preferences.

Construct a graph, sayG, with vertices as the elements ofD where there is an edge between two
preferences if and only if they are local. Kumar et al. [32] shows that if the graphG satisfies a property
called Property L, then every local strategy-proof SCF onD will be strategy-proof.⁶ It is known that the
graphG satisfies Property L and hence to check whether f is strategy-proof or not one needs to check if f is
strategy-proof on every pair of local preferences. This provides a significantly simpler way to check if an
SCF is strategy-proof or not. See Sato [46] and Kumar et al. [32] for more details on the importance of
strategy-proofness over pairs of local preferences. □

What we do in this paper is to consider the cardinal version of the problem. For a preference, say abc,
we denote by Tabc all utility functions (valuations) that represent the ordinal preference abc, that is, utility
of a is higher than utility of b and utility of b is higher than utility of c. Consider the type-space
T = Tabc ∪ Tbac ∪ Tbca ∪ Tcba. We will refer the elements of T as types. A mechanism on T is a pair (f, p)
where f : T → A is an SCF and p : T → R is a payment function. A mechanism μ = (f, p) is incentive
compatible (IC) on a pair of types (t, t′) in T× T if the net utility (after deducting the payment) at the
type t cannot be strictly increased by misreporting the type as t′, that is, if t(f(t))− p(t) ≥ t(f(t′))− p(t′).
A mechanism is IC on T if it is IC on every pair of types in T× T.
Question 2. How can we check if a given mechanism μ on T is IC or not?

⁴Such a set of preferences is called single-peaked with respect to the prior order≺:= a ≺ b ≺ c on A.
⁵We consider one agent model in this paper which is without loss of generality for the problem we deal here.
⁶See Definition 6.4.2 for the description of Property L.
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Answer. We answer this question by using the approach of local incentive compatibility (LIC). Let us call
two types t and t′ local if they represent the same preference or two preferences that are local inD (as we
have defined in answering Question 1). We say that a mechanism μ on T is LIC if it is IC on every pair of
local types in T, that is, μ is IC on every pair of types (t, t′)where t, t′ ∈ TP ∪ TP′ for some local
preferences P and P′ inD. We prove in this paper that if a mechanism on T is LIC, then it will be IC on T.

The novelty of our result is that it explores how the connection between local incentive compatibility
and incentive compatibility extends from ordinal domains to cardinal ones. For a slightly more formal
description of the result, let D̂ be an arbitrary collection of preferences and let T̂ be the set of all types
representing preferences in D̂. We prove that the following two statements are equivalent:

(a) Every local strategy-proof SCF (as defined in answering Question 1) on D̂ is strategy-proof.

(b) Every LIC mechanism (as defined in answering Question 2) on T̂ is IC.

Summarizing, not only we provide a significantly simpler way to check if a mechanism is IC or not, we
establish the connection between ordinal domains and cardinal domains in the context of the implication
of local strategy-proofness/incentive compatibility. □

Note that the preferences we have considered so far are strict and consequently the types represented
by them are strict as well. In real life, preferences can be weak (that is, can have indifference), and hence
the types. Since T consists of all (strict) types representing the set of strict preferencesD, a type
representing a weak preference compatible withD will lie in the closure of T, which we denote by cl(T).⁷
Question 3: How can we check if a given mechanism μ on cl(T) is IC or not?
Answer. Once again we resort to the approach of local incentive compatibility (LIC). Since we need to
take care of the indifference, we mildly strengthen LIC by introducing strong LIC. The strengthening is
natural: we say that a mechanism on cl(T) is strong LIC if it is IC on every pair (t, t′)where
t, t′ ∈ cl(TP ∪ TP′) for some local preferences P and P′ inD. Verbally speaking, for a strong LIC
mechanism μ on cl(T), in addition to μ being IC on every pair of local types (as defined in answering
Question 2), μ is also IC on pairs of types admitting indifference that are arbitrarily close to some type
belonging to the set of types representing the two local preferences inD. Recall that the notion of LIC
only applies to types that do not admit indifference, hence this mild strengthening of LIC is necessary and
arises naturally.

Incidentally, strong LIC is not strong enough to imply IC. Mishra et al. [39] gives an example of a
strong LIC mechanism on cl(T) that fails to be IC (see Example 1 in Mishra et al. [39]). Therefore, we
proceed to find the extent to which strong LIC ensures IC on cl(T). Our finding is quite assuring: strong

⁷Aweak preference is compatiblewith a strict preference if the former can be obtained bymaking some consecutively ranked
alternatives indifferent in the latter.
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LIC implies IC “almost everywhere”. More precisely, we show that if μ is strong LIC then it is IC on every
pair (t, t′)where t ∈ cl(T) and t′ ∈ T. Note that this implies if μ is strong LIC then it may fail to be IC
only on pairs (t, t′)where t′ admits indifference, that is, t′ ∈ cl(T) \ T. Since the (Lebesgue) measure of
cl(T) \ T is zero, it justifies that μ is indeed almost everywhere IC.

Next, we further push the implication of strong LIC by showing that if μ is strong LIC, then it can only
violate IC on a pair (t, t′)where t′, in addition to admitting indifference, belongs to the boundary of cl(T)
(see Remark 6.5.4 for details).

Finally, we provide a quite general result regarding the equivalence between strong LIC and almost
everywhere IC. We characterize all ordinal type-spaces admitting indifference where the said equivalence
holds. □

Remark 6.2.1 It is worth mentioning that in this paper, we deal with arbitrary notions of localness that are
formulated by means of arbitrary graphs. It is for simplicity we have considered the particular notion of localness
(this is called adjacent localness in the literature) in this section.

6.3 Model

We consider a one-agent model in this paper. This is without loss of generality for our analysis.⁸
Let A be a finite set of alternatives with |A| = n. For any given subset X ofRn, by cl(X)we denote the

closure of X. A type t is a mapping from A toR that represents the valuation of each alternative in A. We
view a type as an element ofRn (with an arbitrary but fixed indexation of the alternatives). A type t is
strict if t(a) ̸= t(b) for all a, b ∈ A, otherwise it is a weak type.⁹ By relative valuation of an alternative a
with respect to another alternative b at a type t, we mean the number t(a)− t(b). For two types t and t′,
we denote the line joining them by [t, t′].¹⁰ A subset T ofRn is called a type-space. An allocation rule is a
map f : T → A and a payment rule is a map p : T → R. A (direct) mechanism μ is a pair consisting of an
allocation rule f and a payment rule p.

Definition 6.3.1 Amechanism (f, p) is incentive compatible (IC) on a pair of types (t, s) if

t(f(t))− p(t) ≥ t(f(s))− p(s).

It is IC on a type-space T if it is IC on every pair of types (t, s) ∈ T× T.

⁸All the results of this paper can be generalized to the case of more than one agent in a systematic manner (see Carroll [12],
Mishra et al. [39], etc.).

⁹Note that strict types are not special cases of weak types.
¹⁰More formally, [t, t′] = {(1− α)t+ αt′ | α ∈ [0, 1]}.
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The relation between LIC and IC is well-studied for social choice functions on ordinal domains (see
Kumar et al. [32] for details); in this paper we extend this study for cardinal environments. In line with
Kumar et al. [32], we consider a general notion of localness represented by means of a graph on an ordinal
domain.

A preference on A is a weak linear order, that is, a complete and transitive binary relation on A. If it is
additionally antisymmetric, it is called a strict preference, otherwise it is called a weak preference.¹¹ For a
weak preference R, we denote its strict part by P and the indifference part by I. We denote the set of all
preferences on A byP(A) and the set of all strict preferences on A by P̂(A). An ordinal domainD is a
subset ofP(A) and a strict ordinal domain D̂ is a subset of P̂(A).

We deal with type-spaces that have some additional structure. For a type t and a preference R, we say
that t represents R (or R represents t) if for all a, b ∈ A, aRb if and only if t(a) ≥ t(b). We denote the
preference that a type t represents by prfn(t), and the set of types that a preference R represents by
type(R).¹² Similarly, for an ordinal domainD, we denote the set of all types that represent some
preference in the domain by type(D), that is, type(D) = {t ∈ R|A| | prfn(t) ∈ D}, and for a type-space
T, the set of all preferences that are represented by some type in T by prfn(T). A type-space T is called
strict if t(a) ̸= t(b) for all t ∈ T and all a, b ∈ A. We say thatT is an ordinal type-space ifT = type(D) for
someD ⊆ P(A).

LetD be a domain. An ordinal environment is a pair (D,G), whereD is an ordinal domain and
G = ⟨D, E⟩ is an (undirected) graph onD. Two preferences inD are calledG-local if they form an edge
inG. A path (P1, . . . , Pk) from P1 to Pk isG-local if every two consecutive preferences in it areG-local. An
ordinal environment (D,G) is called strict ifD is a collection of strict preferences.

We introduce the notion of cardinal environment in a natural way. A cardinal environment is a pair
(T,G), where T is a type-space andG is an undirected graph on prfn(T). Two types t and t′ in T are said
to beG-local if prfn(t) = prfn(t′) or prfn(t) and prfn(t′) areG-local. A cardinal environment (T,G) is
called strict if T is a strict type-space.

A mechanism μ on a cardinal environment (T,G) is LIC if it is IC on every pair ofG-local types, that is,
μ is IC on type({R,R′}) ∩ T for allG-local preferences R and R′ in prfn(T).

A social choice function (SCF) on an ordinal domainD is a mapping g : D → A. It is IC on a pair of
preferences (R,R′) if g(R)Rg(R′). An SCF g : D → A is LIC on an ordinal environment (D,G) if it is IC
on every pair ofG-local preferences, and it is IC onD if it is IC on every pair of preferences inD.

An ordinal environment (D,G) is called ordinal local global equivalent (OLGE) if every LIC SCF on

¹¹Note that strict preferences are not special cases of weak preferences
¹²All the results of this paper also hold if we weaken the assumption on type(R) to be the set of types that are bounded below

(for instance, non-negative types) or bounded above. More formally, there exists a real number L such that type(R) = {t |
t represents R and t(x) ≥ L for every x ∈ A} or type(R) = {t | t represents R and t(x) ≤ L for every x ∈ A}.
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(D,G) is IC onD. Similarly, a cardinal environment (T,G) is called cardinal local global equivalent
(CLGE) if every LIC mechanism on (T,G) is IC on T.

6.4 A characterization of strict CLGE type-spaces

Kumar et al. [32] provide a necessary and sufficient condition for a strict ordinal environment to be
OLGE. We generalize their result for strict cardinal environments. We begin with defining some notions
that are provided in Kumar et al. [32].¹³

Definition 6.4.1 A pair of alternatives {a, b} has a restoration in a G-local path (P1, . . . , Pk) if there exist
1 ≤ r < s < t ≤ k such that either [aPrb, bPsa, and aPtb] or [bPra, aPsb, and bPta].

Definition 6.4.2 Given a strict ordinal environment (D̂,G), for P, P′ ∈ D̂ and a ∈ A, we say that a G-local
path π from P to P′ satisfies the Lower Contour Set no-restoration property (Property L) with respect to a if for
all b ∈ L(a, P) where L(a, P) = {z ∈ A | aPz} the path π has no {a, b}-restoration.
The strict ordinal environment (D̂,G) satisfies Property L if for all distinct P, P′ ∈ D̂ and all a ∈ A, there

exists a G-local path from P to P′ satisfying Property L with respect to a.

The following theorem in Kumar et al. [32] provides a necessary and sufficient condition for a strict
ordinal environment to be OLGE.

Theorem 6.4.3 Kumar et al. [32] A strict ordinal environment (D̂,G) is OLGE if and only if it satisfies
Property L.

Our next theorem generalizes Theorem 6.4.3 for strict cardinal environments.

Theorem 6.4.4 A strict ordinal environment (D̂,G) is OLGE if and only if the strict cardinal environment(
type(D̂

)
,G) is CLGE.

The proof of this theorem is relegated to Appendix 6.7.1. It follows from Theorem 6.4.3 and Theorem
6.4.4 that a strict cardinal environment

(
type(D̂

)
,G) is CLGE if and only if (D̂,G) satisfies Property L.

It is shown in Kumar et al. [32] that well-known multi-dimensional ordinal domains such as the
separable domain and the multi-dimensional single-peaked domain are OLGE. It follows from Theorem
6.4.4 that the cardinal environments of these domains are CLGE.

¹³See Kumar et al. [32] for verbal (and detailed) explanations of these notions.
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6.4.1 The case of adjacent localness

The main objective of this paper is to characterize ordinal type-spaces so that a restricted version of IC,
called local IC (LIC), becomes equivalent to IC. Although we have presented results for a general notion
of localness by means of graphs, we specifically deal with two particular kinds of localness that are
practically important. A mechanism is point-wise LIC (PLIC) on a type-space T if for every t ∈ T, there
exists an ε > 0 such that it is IC on (t, s) and (s, t) for every s ∈ Twith ||t− s|| < ε.¹⁴,¹⁵ For a given
ε > 0, a mechanism on a type-space T is called ε-LIC if it is IC on every pair of types (t, s) ∈ T× T
having (Euclidean) distance less than ε, that is, for all t, s ∈ T, ||t− s|| < ε implies the mechanism is IC
on (t, s). A mechanism is called uniformly LIC (ULIC) if it is ε-locally IC for some ε > 0.

Fact 6.4.1 (Carroll [12]) If a type-space T is convex, then every PLIC mechanism on T is IC on T.

We explain the practical difference between PLIC and ULIC. According to PLIC, one has the freedom
to choose different ε for different types, whereas in ULIC one has to chose the same ε for all types. If the
infimum value of the ε’s chosen for different types in case of PLIC is positive, then that value can be taken
as the choice of the ε in ULIC, and consequently, the two notions will become equivalent. On other hand,
if the said infimum is zero, then ULIC becomes slightly stronger than PLIC. This slight strengthening of
PLIC widens its applicability. To see this, consider the situation where there are just two alternatives, say
a and b, and the type-space is T = {t ∈ R2 | t(a) ̸= t(b)}. Thus, T is disconnected and can be written as
a union of two disjoint open spaces T1 = {t ∈ R2 | t(a) < t(b)} and T2 = {t ∈ R2 | t(a) > t(b)}. In
such situations, one can define neighborhoods of the points in T1 such that none of them intersects T2,
and those of the points in T2 such that none of them intersects T1. Thus, PLIC with such neighborhoods
does not put any constraint on a pair of types (s, t)where s ∈ T1 and t ∈ T2, and consequently, cannot
imply IC on T. However, ULIC imposes IC on certain pairs of types (sufficiently close ones) that are on
the other sides of the boundary of T1 and T2, and thereby retains the “possibility” of implying IC on T. In
fact, as we show in this paper, ULIC indeed implies IC on T.

It is worth mentioning that ULIC is as useful as PLIC for practical purposes. In reality, if one wants to
check (by means of a program/device) whether some mechanism is LIC or not, he/she can only check it
for some given neighborhood of each type, not for a sequence of neighborhoods whose size converges to
zero.

In this subsection, we deal with a specific case where the notion of localness for the ordinal
environment is “adjacency” and that for the cardinal environment is a weaker version of ULIC which we
call adjusted LIC.

¹⁴We denote the Euclidean norm of a vector t ∈ Rn by ||t||.
¹⁵The notion of PLIC is introduced in Carroll [12].

84



For some 1 ≤ k ≤ n, we denote the k-th ranked alternative of a strict preference P by P(k). Two strict
preferences P and P′ are said to be adjacent local if they differ by the ranking of two consecutively ranked
alternatives, that is, there is 1 ≤ k < n such that P(k) = P′(k+ 1), P(k+ 1) = P′(k), and P(l) = P′(l) for
all l /∈ {k, k+ 1}. We writeGad when localness is defined by adjacency, that is, there is an edge between P
and P′ inGad if and only if P and P′ are adjacent.

A mechanism μ is said to be adjusted LIC (ALIC) on a strict type-space T̂ if (i) for every type t in T̂,
there is a neighborhood around t such that μ is IC on both (t, s) and (s, t) for all types s in that
neighborhood, and (ii) for every type t̄ that lies on the boundary of T̂ (that is, in cl(T̂) \ T̂), there is a
neighborhood of t̄ such that μ is IC on every pair of strict types in that neighborhood.

Part (i) of the definition of ALIC is the same as PLIC. As we have explained in the beginning of this
subsection, PLIC (with suitably chosen arbitrarily small neighborhoods) is unable to “spread” IC between
two components of a disconnected type-space. Part (ii) of the definition of ALIC ensures the said spread
in a natural way: it requires IC for types that are arbitrarily close but on the opposite sides of the boundary
of the strict type-space. It does this by considering an arbitrary neighborhood of a type that lies on the
boundary of T̂ (and hence not in T̂) and requiring IC for all pairs of types of T̂ in this neighborhood.

Definition 6.4.5 Amechanism μ on a strict type-space T̂ is said to adjusted locally IC (ALIC) if it is PLIC
and for every t̄ ∈ cl(T̂) \ T̂, there exists an open neighborhood N(̄t) ⊆ cl(T̂) of t̄ such that for all
t′, t′′ ∈ N(̄t) ∩ T̂, μ is IC on (t′, t′′).

The following corollary is obtained from Theorem 6.4.4.

Corollary 6.4.1 If a strict ordinal environment (D̂,Gad) is OLGE, then a mechanism on type(D̂) is IC if and
only if it is ALIC.

The proof of this corollary is relegated to Appendix 6.7.2.
Since ULIC implies ALIC by definition, it follows from Corollary 6.4.1 that if a strict ordinal

environment satisfies OLGE with respect to adjacency localness, then ULIC and IC are equivalent on its
cardinal version.

Corollary 6.4.2 If a strict ordinal environment (D̂,Gad) is OLGE, then a mechanism on type(D̂) is IC if and
only if it is ULIC.

A large class of strict ordinal environments of practical importance, such as single-peaked,
single-dipped, single-crossing, etc., are OLGE with respect to the adjacency localness.¹⁶ Corollary 6.4.1
implies that ALIC (and hence, ULIC) and IC are equivalent on their corresponding type-spaces. It should
be noted that PLIC and IC are not equivalent on these type-spaces as the type-spaces are not connected.

¹⁶For the definition of these domains see Mishra et al. [39] and Carroll [12].
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6.5 Ordinal domains admitting indifference

In this section, we consider ordinal environments admitting indifference where local structure is given by
means of a graph over the strict preferences. Since in such an environment, LIC does not impose any
restriction on weak preferences, it cannot ensure IC on the whole domain as well. So, we impose
additional requirements on weak preferences in order to ensure IC.

For an ordinal domainD, we denote its maximal strict ordinal subset by strict(D), that is,
strict(D) = {P ∈ D | P is a strict preference}.

In order to generalize Theorem 6.4.4 for ordinal domains allowing indifferences, we introduce the
notion of weak-compatibility. For a weak preference R, we say a strict preference P̂ is compatible with R if
aPb implies aP̂b for all a, b ∈ A. For instance, if R = [ab]c[de]f, then the following preferences are
compatible with R: abcdef, abcedf, bacdef, and bacedf.¹⁷ Weak compatibility says that for every weak
preference R inD, there exists a strict preference inD that is compatible with R.

LetD be an ordinal domain. LetG be an (undirected) graph on strict(D). A mechanism μ is strong
LIC on the cardinal environment (type(D),G) if it is LIC, and additionally IC on every pair of types (̄t, t̂)
such that there is P ∈ strict(D) so that t̂ is a strict type in type(P) and t̄ is a weak type in
cl(type(P)) ∩ type(D).

Now, we introduce the notion of almost everywhere IC. We use the following notation to ease the
presentation. For a type-space T, we denote its maximal strict subset by strict(T), that is,
strict(T) = {t ∈ T | t(a) ̸= t(b) for all distinct a, b ∈ A}. A mechanism on a type-space T is almost
everywhere IC, if it is IC on every pair of types in T× strict(T). Thus, an almost everywhere IC
mechanism might fail to become IC on a pair of types (t, t̄) only if t̄ is a weak type that lies in T. Since the
(Lebesgue) measure of the set T \ strict(T) is zero, the measure (in the product space) of the set of pairs
on which an almost everywhere IC mechanism may fail to be IC is also zero, which justifies the name.
Note that almost everywhere IC implies strong LIC by definition.

As we have mentioned in Subsection 6.5.1, the equivalence between strong LIC and IC does not hold
on ordinal type-spaces admitting indifference. Our next theorem establishes the extent to which IC is
implied by strong LIC. It turns out that strong LIC implies IC “almost everywhere”.

Theorem 6.5.1 LetD be an ordinal domain. Then, the following two statements are equivalent.

(i) Every strong LIC mechanism on the environment (type(D),G) is almost everywhere IC.

(ii) The domainD satisfies weak-compatibility and the environment (strict(D),G) is OLGE.

¹⁷By [ab]c, we denote a weak preference where a and b are indifferent, and are preferred to c. Similarly by abc, we denote a
strict preference where a is preferred b, and b is preferred to c.
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The proof of this theorem is relegated to Appendix 6.7.3.

6.5.1 Closure of type-spaces of strict ordinal domains

Let D̂ be a strict ordinal domain and let cl(type(D̂)) be the closure of type(D̂). Since cl(type(D̂)) is
closed, Part (ii) of Definition 6.4.5 is vacuously true, and consequently, the notion of ALIC boils down to
that of PLIC. However, Corollary 6.4.1 does not hold anymore, that is, PLIC does not imply IC on
cl(type(D̂)) (see Example 1 in Mishra et al. [39] for details). It is worth mentioning that PLIC implies
strong LIC in adjacency environments.¹⁸ Therefore the equivalence of strong LIC and IC cannot hold in
such environments. The following corollary, which is obtained from Theorem 6.5.1, says that a version of
Corollary 6.4.1 holds if we weaken IC by almost everywhere IC.

Corollary 6.5.1 If a strict ordinal environment (D̂,Gad) is OLGE, then every PLIC mechanism on
cl(type(D̂)) is almost everywhere IC.

The proof of this corollary is relegated to Appendix 6.7.4.
Corollary 6.5.1 applies to closure of single-peaked or single-crossing type-spaces or single-plateaued

type-spaces.¹⁹ Corollary 6.5.1 also applies to closure of single-peaked domain on a tree (Demange [20]).

6.5.2 LIC vs. IC for a given mechanism

Having a characterization of ordinal type-spaces such that the equivalence of strong LIC and almost
everywhere IC holds, the next natural step is to look at the extent to which we can push the almost
everywhere IC property on such type-spaces. As discussed earlier, an almost everywhere IC mechanism
might fail to be IC only on the pairs (t, t̄)where t̄ is a weak type in the type-space.²⁰ We show that if t̄ is a
weak type lying in the interior of the type-space, then such mechanisms are bound to be IC on pairs (t, t̄).
Hence, we establish the fact that an almost everywhere ICmechanismmight fail to be IC only on the pairs
(t, t̄)where t̄ is a weak type lying on the boundary of the type-space, thereby modifying our previous
result. We further identify the possible outcomes of a given mechanism at such a weak type t̄ (that is, we
identify possible values of f(̄t)) such that the mechanism is IC on pairs (t, t̄).

For a set T ⊆ Rn, by To we denote the interior of the set T, that is,
To = {t ∈ T | there exists ε > 0 such that s ∈ T for every swith d(t, s) < ε}. By ∂̂Twe denote the
points in T that lie on the boundary of T, that is, ∂̂T = T \ To.

¹⁸For a formal proof, see the proof of Corollary 6.5.1.
¹⁹For the definition of single-plateau domain see Berga [10].
²⁰We use t here to denote a generic element of the type-space.
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Theorem 6.5.2 Let a strict ordinal environment (D̂,Gad) be OLGE and let T = cl(type(D̂)). Suppose μ is
an arbitrary PLIC mechanism on T. Then,

(i) μ is IC on T× To, and

(ii) μ is IC on T× {̄t} for all t̄ ∈ ∂̂T such that there exists P ∈ D̂ with t̄ ∈ cl(type(P)) and f(̄t)Pz for every
z with t̄(f(̄t)) = t̄(z).

The proof of this theorem is relegated to Appendix 6.7.5.

Remark 6.5.3 For simplicity we presentTheorem 6.5.2 for adjacent localness and PLIC mechanisms but it
can be suitably formulated for arbitrary notion of localness and strong LIC mechanisms.

Remark 6.5.4 Example 1 in Mishra et al. [39] presents a single-peaked type-space cl(T) (as described in
Section 6.2) where they construct a PLIC mechanism that fails to be IC. It follows from part (i) ofTheorem 6.5.2
in our paper that a PLIC mechanism on such a type-space T can violate IC only on types lying in T× ∂̂T. For
such a violation on any pair of types (t, t′), it must be the case that t′ lie in either type(c[ba]) or type(a[bc]).²¹ It
further follows from part(ii) ofTheorem 6.5.2 that the outcome at type t′ must be either a if t′ ∈ type(c[ba]) or c
if t′ ∈ type(a[bc]). Thus, the counter example (Example 1 in Mishra et al. [39]) was the only way (upto
symmetry) to construct a PLIC mechanism that violates IC.

6.6 Discussion: a stronger version of Theorem 6.4.4

The statement of Theorem 6.4.4 requires all types to be present for each ordinal preference. Since
requiring all types representing an ordinal preference might be restrictive for practical applications, we
extract out the types, the presence of which is sufficient for the proof of Theorem 6.4.4. The objective is to
emphasize that Theorem 6.4.4 holds for much weaker environments rather than just strict ordinal
type-spaces.

We introduce a property called L̂ for a cardinal environment and show that any cardinal environment
satisfying this property is CLGE. Property L̂ is a suitable adaptation of Property L for cardinal
environments. Thus, instead of providing a sufficient condition on an ordinal domain to ensure CLGE on
its corresponding type-space, we provide a sufficient condition on a strict type-space directly.

We say an alternative a overtakes another alternative b from a strict preference P to another strict
preference P′ if bPa and aP′b. Recall that Property L says that between any two strict preferences P and P′

and any alternative a, there exists a local path π from P to P′ such that for all b ∈ L(a, P) the path π has no
{a, b}-restoration. Below, we introduce the cardinal version of Property L, which we call Property L̂.

²¹Recall that by c[ba], we denote a weak preference where c is preferred to both a and b, and a and b are indifferent.
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Definition 6.6.1 A strict cardinal environment (T̂,G) satisfies Property L̂ if for all t, t′ ∈ T̂ and all a ∈ A,
there exists a G-local path (P1, . . . , Pk) in prfn(T̂) with P1 ∈ prfn(t) and Pk ∈ prfn(t′) satisfying Property L
with respect to a such that for all l < k and all tl+1 ∈ type(Pl+1) ∩ T̂, there exists tl ∈ type(Pl) ∩ T̂ such that

(i) tl(a)− tl(x) > tl+1(a)− tl+1(x) for all x that a does not overtake from Pl to Pl+1, and

(ii) tl(a)− tl(y) ≥ t(a)− t(y) for all y that a overtakes from Pl to Pl+1.

Theorem 6.6.2 A strict cardinal environment (T̂,G) is CLGE if T̂ satisfies Property L̂.

The proof of this theorem follows by using similar arguments as in the proof of Theorem 6.4.4.

6.7 Appendix

Before we begin the proofs, we note some facts below regarding the IC property. Facts 6.7.1 and 6.7.2
follow from the definition of IC property.

Fact 6.7.1 Suppose that a mechanism (f, p) is IC on both pairs of types (t, s) and (s, t). Suppose further that
f(t) = f(s). Then, p(t) = p(s).

Fact 6.7.2 Suppose that a mechanism (f, p) is IC on both pairs of types (t, s) and (s, t). Suppose further that
the relative valuation of f(t) with respect to some alternative a is increased from t to s, that is,
s(f(t))− s(a) > t(f(t))− t(a). Then, f(s) ̸= a.

Our next fact provides a sufficient condition for a mechanism to be IC on a pair of types based on its IC
property over a sequence of types. This fact was first used in Kumar and Roy [31]; see Appendix A.1 of
the paper for a formal proof.

Fact 6.7.3 Amechanism μ = (f, p) on a type-space T is IC on a pair of types (t, t′) if there is a finite sequence
of types (t = t1, . . . , tk = t′) in T such that for all l < k,

(i) μ is IC on (tl, tl+1), and
(ii) t1(f(tl+1))− t1(f(tl)) ≤ tl(f(tl+1))− tl(f(tl)).

6.7.1 Proof of Theorem 6.4.4

Proof: If part: The proof of the if part is rather straightforward; we provide it for the sake of completeness.
Let

(
type(D̂

)
,G) be a CLGE strict cardinal environment. We show that (D̂,G) is OLGE. Suppose not.

Then there exists an SCF ϕ : D̂ → A that is LIC on (D̂,G) but fails to be IC on D̂. Therefore, there exists
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P, P′ ∈ D̂ and x, y ∈ A such that ϕ(P′) = x, y = ϕ(P), and xPy. We complete the proof of the if part by
constructing a mechanism (f, p) that is LIC on

(
type(D̂

)
,G) but fails to be IC on type(D̂), which will

lead to a contradiction to the fact that
(
type(D̂

)
,G) is CLGE.

Define f(s) = ϕ(prfn(s)) and p(s) = 0 for all s ∈ type(D̂). The fact that (f, p) is LIC on
(
type(D̂

)
,G)

follows straightforwardly from the definition ofG-local types and the fact that ϕ is LIC on (D̂,G). Fix any
t ∈ type(P) and t′ ∈ type(P′). By the definition of f, f(t) = y and f(t′) = x. This, together with the facts
that xPy and p(t) = 0 = p(t′), implies that t(f(t))− p(t) < t(f(t′))− p(t′), and hence, it follows that
(f, p) is not IC on (t, t′), a contradiction. This completes the proof of the if part of the theorem.

Only if part: Let (D̂,G) be an OLGE strict ordinal environment. We show that the environment(
type(D̂

)
,G) is CLGE. Let (f, p) be an LIC mechanism on

(
type(D̂

)
,G). We need to show that (f, p) is

IC on type(D̂).
Consider arbitrary t, t′ ∈ type(D̂). By the definition of type(D̂), there are P, P′ ∈ D̂ such that

t ∈ type(P) and t′ ∈ type(P′). Without loss of generality, let us assume that the alternatives in A are
indexed as a1, . . . , an such that a1Pa2P . . . Pan. Suppose f(t′) = aj for some j ∈ {1, . . . , n}. We proceed to
show that (f, p) is IC on (t, t′).

If P = P′, then t and t′ areG-local types, and hence the proof follows by the assumption of the theorem
that (f, p) is IC on every pair ofG-local types. So, assume P ̸= P′. Since (D̂,G) is OLGE, by Theorem
6.4.3, it satisfies Property L. This, together with the fact that f(t′) = aj, implies that there exists aG-local
path π = (P1, . . . , Pk) from P to P′ satisfying Property Lwith respect to aj. Since π has no
(aj, x)-restoration for all x ∈ {aj+1, . . . , an}, it follows that
L(aj, Pl+1) \ {a1, . . . , aj−1} ⊆ L(aj, Pl) \ {a1, . . . , aj−1} for all l ∈ {1, . . . , k− 1}.

Let l1 ≥ 1 be the minimum number with the property that for each l ∈ {l1 + 1, . . . , k} there exist
tl ∈ type(Pl) such that f(tl) = aj. Note that such an l1 will always exist as f(t′) = aj and t′ ∈ type(Pk).
Claim 1. There exists t̃1 ∈ type(Pl1+1) such that f(̃t1) = f(t′) = aj and p(̃t1) = p(t′).
Proof of Claim 1. By the definition of l1, for each l ∈ {l1 + 1, . . . , k} there exist tl ∈ type(Pl) such that
f(tl) = aj. Now we show that p(tl) = p(t′) for each l ∈ {l1 + 1, . . . , k}. First we show that p(tk−1) = p(t′).
Since Pk and Pk−1 areG-local preferences and (f, p) is LIC on

(
type(D̂

)
,G), (f, p) is IC on

type({Pk, Pk−1}), and hence, is IC on (tk−1, t′) and (t′, tk−1). Since f(tk−1) = f(t′), the fact that
p(tk−1) = p(t′) now follows from Fact 6.7.1. By using this argument repeatedly, it follows that for all
l ∈ {l1 + 1, . . . , k}, p(tl) = p(t′). Set tl1+1 = t̃1. This completes the proof of the claim. □

Also note that since f(̃t1) = f(t′) = aj and p(̃t1) = p(t′), by the definition of incentive compatibility it
follows that (f, p) is IC on (̃t1, t′).

If l1 = 1, then by Claim 1, there exists t̃1 in type(P2) such that f(̃t1) = f(t′) = aj and p(̃t1) = p(t′). Since
t ∈ type(P), t̃1 ∈ type(P2), and (f, p) is IC on type({P = P1, P2}), it follows that
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t(f(t))− p(t) ≥ t(f(̃t1))− p(̃t1). Since f(̃t1) = f(t′) and p(̃t1) = p(t′), this implies
t(f(t))− p(t) ≥ t(f(t′))− p(t′), which shows that (f, p) is IC on (t, t′) thereby completing the proof of
the Theorem.

Suppose l1 > 1. Then by Claim 1 there exists t̃1 ∈ type(Pl1+1) such that f(̃t1) = f(t′) = aj and
p(̃t1) = p(t′). We proceed to Step 1.
Step 1. In this step, we show that if l1 > 1, then there exists t̃2 ∈ type(Pl1) such that f(̃t2) ∈ {a1, . . . , aj−1}
and t̃2(f(̃t1))− t̃2(f(̃t2)) ≥ t(f(̃t1))− t(f(̃t2)).

Since l1 > 1, by the definition of l1, we must have f(s) ̸= aj for all s ∈ type(Pl1).²²
Claim 2. L(aj, Pl1+1) ⊈ L(aj, Pl1).
Proof of Claim 2. Assume for contradiction that L(aj, Pl1+1) ⊆ L(aj, Pl1). Consider a type tl1 ∈ type(Pl1)
such that tl1(aj)− tl1(x) > t̃1(aj)− t̃1(x) for all x ∈ A \ {aj}. Such a type can be found since
L(aj, Pl1+1) ⊆ L(aj, Pl1). Since Pl1 and Pl1+1 areG-local preferences, (f, p) is IC on type(Pl1 , Pl1+1), and
hence, is IC on (tl1 , t̃1) and (̃t1, tl1). This, together with the facts that tl1(aj)− tl1(x) > t̃1(aj)− t̃1(x) for all
x ∈ A \ {aj} and f(̃t1) = aj, implies that f(tl1) = aj. This leads to a contradiction to the fact that
f(s) ̸= aj for all s ∈ type(Pl1). This completes the proof of the claim. □

Since L(aj, Pl1+1) ⊈ L(aj, Pl1), it must be that alPl1aj and ajPl1+1al for some l ∈ {1, . . . , n}. Let
B1 = {al | alPl1aj and ajPl1+1al}. Note that since L(aj, Pl1+1) \ {a1, . . . , aj−1} ⊆ L(aj, Pl1) \ {a1, . . . , aj−1},
we must have B1 ⊆ {a1, . . . , aj−1}. Choose t̃2 ∈ type(Pl1) such that

(i) t̃2(aj)− t̃2(x) > t̃1(aj)− t̃1(x) for all x ∈ A \ B1, and

(ii) t̃2(aj)− t̃2(y) ≥ t(aj)− t(y) for all y ∈ B1.

We explain how such a choice of t̃2 is possible. Note that (i) implies that the relative valuation of aj with
respect to each alternative in A \ B1 is increased from t̃1 to t̃2. This can be assured by the fact that there is
no z ∈ A \ B1 such that zPl1aj and ajPl1+1z. Similarly, (ii) can be assured by means of the fact that the
relative ordering of aj with any alternative in B1 is the same in both P and Pl1 .

Since (f, p) is IC on type({Pl1 , Pl1+1}) and f(s) ̸= aj for all s ∈ type(Pl1), (i) implies that f(̃t2) ∈ B1. This,
together with (ii) and the fact that aj = f(̃t1), implies that t̃2(f(̃t1))− t̃2(f(̃t2)) ≥ t(f(̃t1))− t(f(̃t2)). This
completes Step 1. □

Note that since t̃2 ∈ type(Pl1), t̃1 ∈ type(Pl1+1) and Pl1 and Pl1+1 areG-local preferences, (f, p) is IC on
(̃t2, t̃1).

We now complete the proof of the Theorem by using Step 1 recursively. Let f(̃t2) = b2, where
b2 ∈ {a1, . . . , aj−1}. Since (D̂,G) is OLGE, by Theorem 6.4.3, it satisfies Property L. This, together with

²²Otherwise l1 − 1 would satisfy the requirement of the definition of l1 contradicting the fact that l1 is the minimum number
satisfying this requirement.
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the fact that f(̃t2) = b2, implies there exists aG-local path (P̂1, . . . , P̂r) from P to Pl1 satisfying Property L
with respect to b2.

Let l2 ≥ 1 be the minimum number with the property that for each l ∈ {l2 + 1, . . . , r} there exist
tl ∈ type(P̂l) such that f(tl) = b2. Note that such an l2 will always exist as f(̃t2) = b2 and t̃2 ∈ type(P̂r).

Using similar logic as in Claim 1, it follows that there exists t̃3 ∈ type(P̂l2+1) such that f(̃t3) = f(̃t2) = b2
and p(̃t3) = p(̃t2). This, together with the definition of incentive compatibility implies that (f, p) is IC on
(̃t3, t̃2).

If l2 = 1, we have t̃3 ∈ type(P̂2) such that f(̃t3) = f(̃t2) = b2 and p(̃t3) = p(̃t2). Since t ∈ type(P),
t̃3 ∈ type(P̂2), and (f, p) is IC on type({P = P̂1, P̂2}), it follows that t(f(t))− p(t) ≥ t(f(̃t3))− p(̃t3).
Since f(̃t3) = f(̃t2) and p(̃t3) = p(̃t2), this implies t(f(t))− p(t) ≥ t(f(̃t2))− p(̃t2), which shows that (f, p)
is IC on (t, t̃2). Hence we have a finite sequence of types (t, t̃2, t̃1, t′) such that (f, p) is IC on (t, t̃2), (̃t2, t̃1)
and (̃t1, t′). Therefore the sequence of types (t, t̃2, t̃1, t′) satisfies condition (i) of Fact 6.7.3. Further note
that since f(̃t1) = f(t′), the fact that t̃1(f(t′))− t̃1(f(̃t1)) ≥ t(f(t′))− t(f(̃t1)) is trivially satisfied (both sides
being 0). This, together with step 1 implies that we have

(i) t̃2(f(̃t1))− t̃2(f(̃t2)) ≥ t(f(̃t1))− t(f(̃t2)), and
(ii) t̃1(f(t′))− t̃1(f(̃t1)) ≥ t(f(t′))− t)f(̃t1).
Hence the sequence of types (t, t̃2, t̃1, t′) satisfies condition (ii) of Fact 6.7.3. Therefore, by Fact 6.7.3, it

follows that (f, p) is IC on (t, t′) thereby completing the proof of the Theorem.
Suppose l2 > 1. Then, by using similar logic as in Step 1, there exists t̃4 ∈ type(P̂l2) such that

f(̃t4) ∈ U(b2, P)whereU(b2, P) = {z ∈ A | zPb2} and t̃4(f(̃t3)− t̃4(f(̃t4)) ≥ t(f(̃t3))− t(f(̃t4)).
Continuing in this manner, either we end up showing (f, p) is IC on (t, t′) or we can construct a finite

sequence (̃t2u, t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1) such that
(i) t2j and t2j−1 areG-local types for all j ∈ {1, . . . , u},
(ii) f(̃t2j) = b2j for all j ∈ {1, . . . , u},
(iii) b2(j+1)Pb2j for all j ∈ {1, . . . , u− 1},
(iv) f(̃t2j+1) = f(̃t2j) and p(̃t2j+1) = p(̃t2j) for all j ∈ {1, . . . , u− 1}, and
(v) t̃2j(f(̃t2j−1))− t̃2j(f(̃t2j)) ≥ t(f(̃t2j−1))− t(f(̃t2j)) for all j ∈ {1, . . . , u}.
Since b2(j+1)Pb2j for all j ∈ {1, . . . , u− 1} and the process has not terminated, it must be that

f(̃t2u) = a1 = r1(P). Let t̃2u ∈ type(Plu) for some Plu ∈ D̂. Since (D̂,G) is OLGE and f(̃t2u) = a1, by
Theorem 6.4.3, there must exist aG-local path π = (P̄1, . . . , P̄w) from P to Plu satisfying Property Lwith
respect to a1. This means L(a1, P̄l+1) ⊆ L(a1, P̄l) for all l ∈ {1, . . . ,w− 1}.
Claim 3. (f, p) is IC on (t, t̃2u).
Proof of Claim 3. Using similar logic as in the proof of Claim 2 (by using w in place of l1 + 1, w− 1 in
place of l1 and a1 in place of aj), it follow that there exists tw−1 ∈ t(P̄w−1) such that f(tw−1) = a1 = f(̃t2u).
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The fact that p(tw−1) = p(̃t2u) now follows from Fact 6.7.1.
By using this fact repeatedly, it follows that for all l ∈ {2, . . . ,w− 2}, there exists tl ∈ type(P̄l) such

that f(tl) = a1 = f(̃t2u) and p(tl) = p(̃t2u), which in particular means that there exists t2 ∈ type(P̄2) such
that f(t2) = f(̃t2u) = a1 and p(t2) = p(̃t2u). Since t ∈ type(P), t2 ∈ type(P̄2), and (f, p) is IC on
type({P = P̄1, P̄2}), it follows that t(f(t))− p(t) ≥ t(f(t2))− p(t2). Since f(t2) = f(̃t2u) = a1 and
p(t2) = p(̃t2u), this implies t(f(t))− p(t) ≥ t(f(̃t2u))− p(̃t2u), which shows that (f, p) is IC on (t, t̃2u) thus
proving the claim. □

Now we show that (f, p) is IC on (t, t′). Consider the sequence of types (t, t̃2u, t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1, t′).
By construction, (f, p) is IC on each pair of consecutive types, and hence, the sequence of types
(t, t̃2u, t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1, t′) satisfies condition (i) of Fact 6.7.3. Moreover, since f(̃t2j+1) = f(̃t2j) for all
j ∈ {1, . . . , u− 1}, it follows that t̃2j+1(f(̃t2j))− t̃2j+1(f(̃t2j+1)) = 0 ≥ 0 = t(f(̃t2j))− t(f(̃t2j+1)) for all
j ∈ {1, . . . , u− 1}. Similarly, since f(̃t1) = f(t′), it follows that
t̃1(f(t′))− t̃1(f(̃t1)) = 0 ≥ 0 = t(f(t′))− t(f(̃t1)). These, together with the fact that
t̃2j(f(̃t2j−1))− t̃2j(f(̃t2j)) ≥ t(f(̃t2j−1))− t(f(̃t2j)) for all j ∈ {1, . . . , u}, imply that the sequence of types
(t, t̃2u, t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1, t′) satisfies condition (ii) of Fact 6.7.3. Hence, by Fact 6.7.3, it follows that
(f, p) is IC on (t, t′), which completes the proof of the only if part of Theorem.

■

6.7.2 Proof of Corollary 6.4.1

Proof: IC implies ALIC by definition, we show the converse. Consider an ALIC mechanism μ = (f, p) on
type(D̂). We show that μ is IC. It follows from Theorem 6.4.4 that the cardinal environment
(type(D̂),Gad) is CLGE. Therefore, to show that μ is IC, it is sufficient to show that it is IC on any pair of
Gad-local types. Consider twoGad-local types t and t′, and the line [t, t′]. Let P and P′ (not necessarily
distinct), respectively, be the adjacent preferences that t and t′ represent. Since P and P′ are adjacent, there
will be at most one point in the line [t, t′] that does not lie in type(D̂). Such a point (or type) will lie on the
boundary of type(P) and type(P′) and will represent some weak preference and hence outside the domain
D̂. Let t∗ be that point (if it exists). By means of ALIC, we can choose t̄ and t̂ in type(D̂) ∩ [t, t′] such that
μ is IC on (̄t, t̂) and (̂t, t̄), and the lines [t, t̄] and [̂t, t′] lie in type(D̂). These, together with Fact 6.4.1 and
the fact that implications of ALIC and PLIC are the same in the interior of a type-space, implies that μ is
IC on any two types of the sequence (t, t̄, t̂, t′). Let us rename the sequence (t, t̄, t̂, t′) as
(t = t1, t̄ = t2, t̂ = t3, t′ = t4). Note that the sequence (t1, t2, t3, t4) satisfies Condition (i) of Fact 6.7.3
because of the fact that μ is IC on any two consecutive types of the sequence. Let f(ti) = ai for each
i ∈ {1, 2, 3, 4}.
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Claim. (t1, t2, t3, t4) satisfies Condition (ii) of Fact 6.7.3.
Proof of the claim. Since μ is IC on any two consecutive types of the sequence (t1, t2, t3, t4),

ti(ai)− ti(ai+1) ≥ ti+1(ai)− ti+1(ai+1) for every i ∈ {1, 2, 3}. (6.1)

We need to show that ti(ai+1)− ti(ai) ≥ t1(ai+1)− t1(ai) for all i ∈ {1, 2, 3}which would then establish
that (t1, t2, t3, t4) satisfies Condition (ii) of Fact 6.7.3. Since (t = t1, . . . , t4 = t′) is a finite sequence of
types in [t, t′], there exists 0 = β1 < β2 < β3 < β4 = 1 such that ti = (1− βi)t

1 + βit
4 for all i ∈ {1, 2, 3}.

Fix any i ∈ {1, 2, 3}. By (6.1), we have

ti(ai)− ti(ai+1) ≥ ti+1(ai)− ti+1(ai+1). (6.2)

Substituting ti = (1− βi)t
1 + βit

4 and ti+1 = (1− βi+1)t
1 + βi+1t

4 in (6.2), we get

t1(ai)− t1(ai+1) + βi[(t
4(ai)− t4(ai+1))− (t1(ai)− t1(ai+1))]

≥ t1(ai)− t1(ai+1) + βi+1[(t
4(ai)− t4(ai+1))− (t1(ai)− t1(ai+1))].

(6.3)

Since βi < βi+1, from (6.3) we conclude that

(t4(ai)− t4(ai+1))− (t1(ai)− t1(ai+1)) ≤ 0. (6.4)

Substituting ti = (1− βi)t
1 + βit

4 in ti(ai+1)− ti(ai), we get

ti(ai+1)− ti(ai) = (1− βi)(t
1(ai+1)− t1(ai)) + βi(t

4(ai+1)− t4(ai)). (6.5)

Since βi ≥ 0, (6.4) and (6.5) together imply t1(ai+1)− t1(ai) ≤ ti(ai+1)− ti(ai). This implies that
(t1, t2, t3, t4) satisfies Condition (ii) of Fact 6.7.3 which completes the proof of the claim. □

Therefore, by applying Fact 6.7.3 to the sequence (t1, t2, t3, t4), we obtain that μ is IC on (t, t′). This
completes the proof of the corollary. ■

6.7.3 Proof of Theorem 6.5.1

Proof:[Proof of (i) implies (ii)] Suppose (i) holds but (ii) does not hold. Since (ii) does not hold, either
the domainD does not satisfy weak-compatibility or the environment (strict(D),G) is not OLGE. We
distinguish these two cases.
Case A. Suppose that the domainD does not satisfy weak-compatibility.
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SinceD does not satisfy weak-compatibility, there exists a weak preference R ∈ D for which there is no
strict preference in strict(D) that is compatible with R. First, note that R cannot be indifferent over all the
alternatives in A, that is, it is not possible that aIb for all a, b ∈ A. This is because, if R is so, then any strict
preference in strict(D) (recall that strict(D) ̸= ∅ by our assumption) is compatible with R. So, let us
assume that aPb for some a, b ∈ A.

Consider the mechanism μ = (f, p) such that f(t) = b for all t ∈ type(R) and f(t) = a for all other
types, and p(t) = 0 for all t ∈ type(D). We claim that this mechanism is strong LIC but not almost
everywhere IC.

Since both f and p are constant (equal to a and 0, respectively) over all strict types in type(D), the
mechanism μ is LIC. To see that μ is strong LIC, consider any pair of types (̄t, t̂)where t̂ is a strict type in
type(P∗) and t̄ is a weak type in cl(type(P∗)) ∩ type(D) for some P∗ ∈ strict(D). Since there is no strict
preference in strict(D) that is compatible with R, we have t̄ /∈ type(R).

By the construction of f, this means f(̄t) = f(̂t) = a. This, together with the fact that the payment
function is constant everywhere (equal to 0), implies that μ is IC on (̄t, t̂). Therefore, μ is strong LIC.
Finally, we show that μ is not almost everywhere IC. Consider any type ¯̄t in type(R) and any strict type ˆ̂t in
type(D). By the definition of f, we have f(̄̄t) = b and f(̂̂t) = a. Since aPb, we have ¯̄t(a) > ¯̄t(b). This,
together with the fact that p(̄̄t) = p(̂̂t) = 0, implies ¯̄t(f(̄̄t))− p(̄̄t) < ¯̄t(f(̂̂t))− p(̂̂t), and hence, μ is not IC
on the pair (̄̄t,ˆ̂t). Since ˆ̂t is a strict type in type(D), this means μ is not almost everywhere IC, which is a
contradiction to (i). This completes the proof for Case A.
Case B. Suppose that the environment (strict(D),G) is not OLGE.

Since the environment (strict(D),G) is not OLGE, there is an SCF g on strict(D) that is LIC on
(strict(D),G) but not IC. Let P and P′ be two preferences in strict(D) on which g fails to be IC, that is,
g(P′)Pg(P).

In what follows, we construct a mechanism μ = (f, p) that is strong LIC on (type(D),G) but not IC,
and thereby arrive at a contradiction to (i). Consider a strict type t̂ ∈ type(D). Define f(̂t) = g(prfn(̂t)).
This is well-defined as there is a unique prfn(̂t) inD for such strict types t̂. Next, consider a weak type t̄
and consider the (strict) preferences inD that is compatible with the weak preference that represent t̄,
that is, the preferencesP (̄t) = {P̂ ∈ strict(D) | P̂ is compatible with prfn(̄t)}. Let P∗ ∈ P (̄t) be such
that t̄(g(P∗)) ≥ t̄(g(P̂)) for all P̂ ∈ P (̄t). Define f(̄t) = g(P∗). Take the payment function p to be
identically zero, that is, p(t) = 0 for all t ∈ type(D).

Since g is not IC on (P, P′), by the definition, μ is not IC on any pair of types (t, t′) such that
t ∈ type(P) and t′ ∈ type(P′). Therefore, μ is not almost everywhere IC.We claim that the mechanism μ is
strong LIC. The fact that μ is LIC follows from the fact that g is LIC. To see that μ is IC on every pair of
types (̄t, t̂)where t̂ is a strict type in type(P̃) and t̄ is a weak type in cl(type(P̃)) ∩ type(D) for some (strict)
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preference P̃ ∈ D, consider such a pair of types (̄t, t̂). We need to show t̄(f(̄t)) ≥ t̄(f(̂t)). Since t̂ is a strict
type, by the definition of f, f(̂t) = g(P̃). Moreover, since t̄ is a weak type and P̃ is compatible with the weak
preference that represent t̄, by the definition of f, we have t̄(f(̄t)) ≥ t̄(g(P̃)). Combining these
observations, we obtain t̄(f(̄t)) ≥ t̄(f(̂t)). This shows that the mechanism μ is strong LIC, completing the
proof by contradicting (i).

Proof of (ii) implies (i): Consider an OLGE environment (strict(D),G) such thatD satisfies
weak-compatibility. We show that every strong LIC mechanism on (type(D),G) is almost everywhere IC.
Consider a strong LIC mechanism μ = (f, p). To show that it is almost everywhere IC, we need to show
that it is IC on every pair of types (t, t̂)where t̂ is a strict type in type(D). Fix any pair of types (t, t̂) such
that t̂ is a strict type in type(D). We distinguish two cases based on the structure of t.
Case 1. Suppose t is a strict type.

Since (strict(D),G)OLGE, by Theorem 6.4.4, the environment (type(strict(D)),G) is CLGE. This
means every LIC mechanism on (type(strict(D)),G) is IC. Since strong LIC implies LIC, it follows that μ
is IC on type(strict(D)), and in particular, IC on (t, t̂). This completes the proof for Case 1.
Case 2. Suppose t is a weak type.

For notational convenience, let us denote t by t̄. If t̄ is such that t̄(x) = t̄(y) for every x, y ∈ A, then
t̄ ∈ cl(type(prfn(̂t))) ∩ type(D). Since μ is strong LIC, μ is IC on (̄t, t̂), which completes the proof of the
theorem. Now assume that t̄(x) ̸= t̄(y) for some x, y ∈ A.

Let P∗ be a strict preference inD that is compatible with the weak preference representing t̄. Such a
preference exists sinceD satisfies the weak-compatibility property. Let B be the set of alternatives that
have the same valuation as f(̂t) in t̄, and are preferred to f(̂t) in P∗, that is,
B = {b ∈ A | t̄(b) = t̄(f(̂t)) and bP∗f(̂t)}. Notice that since t̄(x) ̸= t̄(y) for some x, y ∈ A,
A \ (B ∪ f(̂t)) ̸= ∅. Let T̃ be the set of types t̃ representing the preference P∗ such that the relative
valuation of f(̂t)with respect to any alternative in A \ (B ∪ f(̂t)) strictly increases from t̄ to t̃, that is,
T̃ = {̃t ∈ type(P∗) | t̃(f(̂t))− t̃(z) > t̄(f(̂t))− t̄(z) for all z ∈ A \ (B ∪ f(̂t))}. Since P∗ is a strict
preference that is compatible with the weak preference representing t̄ and A \ (B ∪ f(̂t)) ̸= ∅, we have
T̃ ̸= ∅. We distinguish two further subcases.
Case 2.1. Suppose that there exists t̃ ∈ T̃ such that f(̃t) /∈ B.

Since f(̃t) /∈ B, by the definition T̃, we have

t̃(f(̂t))− t̃(f(̃t)) ≥ t̄(f(̂t))− t̄(f(̃t)), (6.6)

where the equality holds only when f(̂t) = f(̃t). Consider the sequence (̄t, t̃, t̂). We apply Fact 6.7.3 to this
sequence. Since t̃ is a strict type in type(P∗) and t̄ is a weak type in cl(type(P∗)) ∩ type(D) and μ is strong
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LIC, μ is IC on (̄t, t̃). Moreover, since both t̃ and t̂ are strict types, by Case 1, it follows that μ is IC on (̃t, t̂).
Thus, μ is IC on both the pairs (̄t, t̃) and (̃t, t̂), and thereby satisfies the Condition (i) of Fact 6.7.3.
Furthermore, Condition (ii) of Fact 6.7.3 follows from (6.6). Therefore, the sequence (̄t, t̃, t̂) satisfies the
conditions of Fact 6.7.3 and hence μ is IC on (̄t, t̂). This completes the proof for Case 2.1.
Case 2.2. Suppose that Case 2.1 does not hold, that is, for all t̃ ∈ T̃, we have f(̃t) ∈ B.

Let B̃ be the set of outcomes of f on T̃, that is, B̃ = {f(̃t) | t̃ ∈ T̃}. Let b̃ be the worst alternative in B̃
according to P∗, that is, bP∗b̃ for all b ∈ B̃ \ {b̃}. Let tb̃ ∈ T̃ be a type such that f(tb̃) = b̃. Let Tb̃ be the
set of strict types in type(D) such that the relative valuation of b̃with repect to any other alternative in B̃ is
greater than that in tb̃, that is,
Tb̃ = {̃̃t ∈ type(D) | ˜̃t is a strict type and ˜̃t(b̃)− ˜̃t(z) > tb̃(b̃)− tb̃(z) for all z ∈ B̃ \ {b̃}}. Note that
since μ is strong LIC and the types in Tb̃ are strict, by Case 1, μ is IC on any pair of types in Tb̃. By the
construction of the type-space Tb̃ and Fact 6.7.2, this implies that the outcome of f at any type in Tb̃

cannot be in the set B̃ \ {b̃}.
Consider the types in T̃b̃ = Tb̃ ∩ T̃. Since there is no restriction on the types in T̃ about the relative

valuation of b̃with respect to any other alternative in B̃ \ {b̃} , we have T̃b̃ ̸= ∅. Moreover, since both T̃
and Tb̃ put no restriction on the relative valuation of b̃with respect to f(̂t) (except that the said relative
valuation is positive), the difference of the valuation of b̃ and f(̂t) can be arbitrarily small in the types in T̃b̃,
that is, inf̃̃t∈T̃b̃

˜̃t(b̃)− ˜̃t(f(̂t)) = 0. By the definition of Tb̃, the outcome of f at any type in Tb̃ cannot be in

the set B̃ \ {b̃}. Moreover, by the assumption of Case 2.2, the outcome of f at any type in T̃ has to be in
the set B̃, it follows that the outcome of any type in T̃b̃ is b̃.

Consider any type t̃b̃ in T̃b̃. Since μ is strong LIC and both t̃b̃ and t̂ are strict types, by Case 1, μmust be
IC on (̃tb̃, t̂). Therefore,

p(̃tb̃)− p(̂t) ≤ t̃b̃(b̃)− t̃b̃(f(̂t)). (6.7)

Since f(̃tb̃) = b̃ for all types t̃b̃ ∈ T̃b̃ and μ is IC on T̃b̃, by Fact 6.7.1 we have p(̃tb̃)must be the same for all
types in T̃b̃. Let p(̃tb̃) = c for all t̃b̃ ∈ T̃b̃ and for some c ∈ R. Taking infimum on both sides of (6.7) and
doing some rearrangement, we obtain

−p(̂t) ≤ −c (6.8)

Since t̄(f(̂t)) = t̄(b̃), adding t̄(f(̂t)) to the left side of (6.8) and t̄(b̃) to the right side of (6.8), we get

t̄(f(̂t))− p(̂t) ≤ t̄(b̃)− c.

Fix any t̃b̃ ∈ T̃b̃. Since f(̃tb̃) = b̃, this implies

t̄(f(̂t))− p(̂t) ≤ t̄(f(̃tb̃))− c (6.9)
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Now, since μ is strong LIC and t̄ is a weak type in cl(type(P∗)) ∩ type(D) and t̃b̃ is a strict type in type(P∗),
μ is IC on (̄t, t̃b̃). This implies

t̄(f(̄t))− p(̄t) ≥ t̄(f(̃tb̃))− c (6.10)

By (6.9), this yields
t̄(f(̄t))− p(̄t) ≥ t̄(f(̂t))− p(̂t), (6.11)

which concludes that μ is IC on (̄t, t̂). ■

6.7.4 Proof of Corollary 6.5.1

Proof: Let (D̂,Gad) be a strict ordinal OLGE environment and let μ be a PLIC mechanism on
cl(type(D̂)). We show that μ is almost everywhere IC. LetD be the set of all preferences representing the
types in cl(type(D̂)), that is,D = prfn(cl(type(D̂))). By definition,D satisfies weak compatibility. Since
(D̂,Gad) is OLGE, byTheorem 6.5.1, this implies that every strong LIC mechanism on (cl(type(D̂)),Gad)

is almost everywhere IC. So, to show that μ is almost everywhere IC on cl(type(D̂)), it is sufficient to show
that μ is strong LIC on (cl(type(D̂)),Gad).

Consider any pair ofGad-local preferences (P, P′) in D̂. Since P and P′ are adjacent local,
cl(type({P, P′})) is convex (see Fact 1 in Mishra et al. [39] for details). Because, μ is PLIC, it follows from
Fact 6.4.1 that it is IC on cl(type({P, P′})). In particular, it is IC on (i) any pair of strict types (t, t′) in
type({P, P′}), and (ii) every pair of types (̄t, t̂) in cl(type(P))where t̄ is a weak type and t̂ is a strict type.
Since P and P′ are arbitraryGad-local types, it follows that μ is strong LIC. ■

6.7.5 Proof of Theorem 6.5.2

Proof: Let (D̂,Gad) be a strict ordinal OLGE environment and let T = cl(type(D̂)). Consider a PLIC
mechanism μ on T. By Corollary 6.5.1, μ is almost everywhere IC on T. We first prove a claim.

Claim 6.7.1 Let a weak type t̄ ∈ T \ strict(T) be such that there exists a strict type t̂ ∈ strict(T) with the
property that

(i) t̂(f(̄t))− t̂(x) > t̄(f(̄t))− t̄(x) for all x ∈ A \ {f(̄t)}, and

(ii) μ is IC on (̂t, t̄).

Then, μ is IC on T× {̄t}.
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Proof of the claim: Since μ is almost everywhere IC on T, it is IC on the pair (̄t, t̂). Moreover, by
Condition (ii) of the claim, μ is IC on the pair (̂t, t̄). Thus, μ is IC on both (̄t, t̂) and (̂t, t̄). By Condition (i)
of the claim, the relative valuation of f(̄t)with respect to any other alternative is increased from t̄ to t̂.
Therefore, by Fact 6.7.2, we have f(̄t) = f(̂t). This, together with the fact that μ is IC on both pairs (̄t, t̂)
and (̂t, t̄), implies by Fact 6.7.1 that p(̄t) = p(̂t).

Now, since μ is almost everywhere IC, it is IC on T× {̂t}. Because f(̄t) = f(̂t) and p(̄t) = p(̂t), it
follows that μ is IC on T× {̄t}. This completes the proof of the claim. □

We are now ready to prove the theorem.
Proof of (i): We show that μ is IC on T× To. Since μ is almost everywhere IC on T, by definition μ is

IC on T× strict(T). Note that To might contain weak types. So, we need to show that μ is IC on
T× (To \ strict(T)). Consider any t̄ ∈ To \ strict(T). By the definition of To, there exists ε1 > 0 such that
{s ∈ Rn | d(̄t, s) < ε1} ⊂ T. Also, by the definition of a PLIC mechanism, there exists ε2 > 0 such that μ
is IC on (̄t, s) and (s, t̄) for every s ∈ Twith d(̄t, s) < ε2. Consider a type t̂ in strict(T)with
d(̄t, t̂) < min{ε1, ε2} such that t̂(f(̄t))− t̂(x) > t̄(f(̄t))− t̄(x) for all x ∈ A \ {f(̄t)}. Such a type can be
constructed from t̄ by lowering the valuation of each alternative other than f(̄t) by an arbitrarily small
amount. This, together with the facts that t̄ ∈ T \ strict(T), μ is almost everywhere IC on T, and μ is IC
on (̂t, t̄), implies by Claim 6.7.1 that μ is IC on T× {̄t}. Since t̄ ∈ To \ strict(T) is arbitrary, it follows that
μ is IC on T× (To \ strict(T)). This completes the proof of Part (i) of the theorem.

Proof of (ii): Let t̄ ∈ ∂̂T such that there exists P ∈ D̂ with t̄ ∈ cl(type(P)) and f(̄t)Pz for every zwith
t̄(f(̄t)) = t̄(z). Since μ is PLIC and cl(type(P)) is convex, by Fact 6.4.1, μ is IC on cl(type(P)). Since f(̄t)Pz
for every zwith t̄(f(̄t)) = t̄(z), starting from the type t̄, we can construct a type t̂ ∈ type(P) by suitably
lowering the valuation of each alternative other than f(̄t) such that t̂(f(̄t))− t̂(x) > t̄(f(̄t))− t̄(x) for all
x ∈ A \ {f(̄t)}. This, together with the facts that μ is almost everywhere IC on T and μ is IC on (̂t, t̄),
implies by Claim 6.7.1 that μ is IC on T× {̄t}. This completes the proof of Part (ii) of the theorem. ■
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