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Abstract. In this dissertation, we will prove subconvex bounds for GL(3)×GL(2)
L-functions in the GL(2) spectral aspect.

1. Introduction

Let ζ be the Riemann zeta function defined by the following Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1.

This function was extensively studied by B. Riemann in his famous memoir in
1860. It is well-known that this function has a meromorphic continuation with a
simple pole at s = 1. In his memoir, Riemann proposed a conjucture, famously
known as the Riemann hypothesis, about the ‘non-trivial’ zeros of ζ. It asserts
that all the ‘non-trivial’ zeros lie on the ‘critical’ line Re(s) = 1/2. It has many
remarkable applications in number theory. One of the main consequences of the
Riemann hypothesis is the Lindelöf hypothesis which asserts that

ζ(1/2 + it)�ε (1 + |t|)ε,
for any ε > 0, where the symbol A �ε B means |A| ≤ C(ε)B, for some constant
C(ε) depending on ε only. We will keep using this convention throughtout the
synopsis.

A similar phenomenon occurs for the Dirichlet L-functions L(s, χ), where χ is
a Dirichlet character or more generally for any higher degree ‘automorphic’ L-
functions L(s, F ), where F is some higher degree automorphic form. In fact, ζ(s)
and L(s, χ) can be thought of as degree one automorphic L-function. It is one
of the important and sought after problem to understand the size of L(s, f) on
the critical line Re(s) = 1/2. Using the ‘functional equation’ and the Phragmen
Lindelöf convexity principle, it follows that

L(1/2 + it, F )�ε C|1/4+ε, ε > 0,(1)

where C is a function of t and other parameters (level, spectral parameters etc.)
of the form f , known as the analytic conductor. The above bound is known as
‘Convexity’ bound. We expect (1) to be of the form (the generalized Lindelöf
hypothesis)

L(1/2 + it, F )�ε |C|ε.
However even getting an exponent of the form 1/4− δ for some δ > 0, known as
subconvexity exponent, is very challanging and out of reach (in most scenarios).
Moreover, as the ‘degree’ of the L-function gets higher and higher, getting these
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bounds become more difficult. Mostly, in applications, one seeks subconvexity
estimates with respect to some subfamily (i.e. only one of the parameters t, level
or spectral parameters varies). If t varies (F is fixed), we call it t-aspect, if level
varies, we call it level aspect and if spectral parameters vary, we call it spectral
aspect.

For degree one L-functions subconvexity bounds were proved by H. Weyl, Hardy-
Littlewood in the t-aspect and by Burgess in the level aspect. For degree two
L-functions, these bounds are due to A. Good in the t-aspect, Duke-Friedlander-
Iwaniec in level aspect and by Michel-Venkatesh in all aspects. For degree three
L-functions, first t-aspect subconvex bounds were proved by Li [3] for self-dual
forms. This result was generalised by Munshi to any GL(3) form using the delta
symbol approach. In the spectral aspect, Blomer-Buttcane [1] resolved the subcon-
vexity problem for those GL(3) forms whose spectral parameters are in ‘generic’
positions. For degree four onwards, sub-convexity problem is mostly open (except
the Rankin-Selberg L-functions). We give a more detailed history in the introduc-
tion chapter, Chapter 0, of the thesis. For degree six L-functions (Rankin-Selberg
L-functions associated to GL(3) and GL(2) forms), the first subconvex bound was
proved by Li [3] in the GL(2) spectral aspect (for self-dual GL(3) forms) and by
Munshi [5] in the t-aspect. In this thesis, we consider the subconvexity problem
for GL(3)×GL(2) L-functions in the GL(2) spectral aspect.

2. Statement of results

Let π be a Hecke-Maass cusp form of type (ν1, ν2) for SL(3,Z) with the Lang-
lands parameters (α1, α2, α3) and f be a holomorphic cusp form with weight kf
or a Hecke-Maass cusp form corresponding to the Laplacian eigenvalue 1/4 + ν2f ,
νf ≥ 1, for SL(2,Z). The associated Rankin–Selberg L-series is given by

L(s, π × f) =
∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)s
, <(s) > 1.(2)

2.1. GL(2) spectral aspect. As a first result, we prove the following theorem
in this thesis, which gives the GL(2) spectral aspect subconvexity bound for the
Rankin-Selberg L-functions associated to π and f .

Theorem 1. Let π and f be as above. Let νf � kf . Then we have

L (1/2, π × f)�π,ε k
3/2−1/51+ε
f ,(3)

for any ε > 0.

The above theorem generalises Li’s GL(2) spectral aspect result [3] to all GL(3)
forms.

3. Discussion on proof

The method of proofs of all the above results is motivatived by Munshi’s t-aspect
result [5], which we discuss briefly.
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3.1. Munshi’s approach. Munshi applied the delta method approach, which he
developed in a series of articles, along with the conductor lowering trick which he
introduced in [4]. More specifically, he used the delta method of Duke, Friedlan-
der and Iwaniec (DFI) to separate the oscillatory factors. The key input in this
paper was his observation that the character sum, emerging after the summation
formulae, essentially boils down to an additive character, which is very specific to
Rankin–Selberg convolutions of the type GL(n + 1)×GL(n).

We recall from (??) that Munshi proves the following result

L (1/2 + it, π × f)�ε,f,π (1 + |t|)3/2−1/51+ε,
for any ε > 0. Upon using the functional equation, the problem boils down to
getting some cancellations in the following sum∑

n∼N

λπ(n, 1)λf (n)n−it, N � t3.

He initiates the proof by applying the DFI delta method (to separate λπ(n, 1) and
λf (n)n−it ) along with the conductor lowering trick (to reduce the modulus in the
DFI). Thus he ends up into∫ 2K

K

∑
q∼Q

∑?

amod q

∑
n∼N

λπ(n, 1)nive

(
an

q

) ∑
m∼N

λf (m)m−i(t+v)e

(
−am
q

)
dv,

where K is a parameter K < t which he chooses optimally later and Q = t3/2/K.
Here the situation seems to be worse a priori, as we have lost N in the above
sum. However he gains structurely and he manages to gain it back later. In
the second step he applies summation formulae to the sum over n and m, and
he saves

√
NK/t in the m-sum and N1/4/K3/4 in the n-sum. Then he analyses

the v-integral in which he gets square-root cancellations, in other words, he saves√
K. The analysis of the a-sum also gives square-root cancellations and he saves√
q from it. Hence in total he saves N/t so far and he is left with the following

sum ∑
q∼Q

∑
n∼K3/2N1/2

λπ(1, n)
∑

m∼t2/K

λf (m)CI,

in which he needs to save t and a bit more, say, tη. Here I is an integral transform
which oscillates like niK with respect to n, and the character sum C is given by

C =
∑∗

amod q

S (ā, n; q) e

(
ām

q

)
≈ qe

(
−m̄n

q

)
.

Next he applies Cauchy to break the involution and arrives at∑
n∼K3/2N1/2

∣∣∣∣∣∑
q∼Q

∑
m∼t2/K

λf (m)e

(
−m̄n

q

)
I

∣∣∣∣∣
2

,

in which t2 (plus extra) is needed to be saved. In the end game strategy, we applies
the Poisson summation formula to the sum over n. In the zero frequency he saves
t2Q/K which is more then t2 provided K < t. In the non-zero frequencies, he saves

K3/2N1/2/(
√
Q2K)×Q, which is good enough if K > t1/2. Thus he succeeds by

chosing K between
√
t and t. Notice that there is an extra Q in the saving of the
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non-zero frequencies. It is a crucial factor which he obtains due to the additive
(with respect to n) character e (−m̄n/q), which comes due to the GL(3)×GL(2)
structure. This is the key input in this paper.

3.2. Our approach. On applying the functional equation, our problem boils
down to getting cancellations in

S(N) =
∑
n∼N

λπ(n, 1)λf (n),

where N � k3f in Theorem 1 and N � T 3 in Theorem ?? and Theorem ??.
To prove Theorem 1, following Munshi, we apply DFI delta method to separate
λπ(n, 1) and λf (n) along with the conductor lower trick. Then applications of
summation formulae followed by Cauchy and Poisson gives us the result. We also
get the structural advantage of the GL(3) × GL(2) type and hence we are able
to save more (then the usual) in the Poisson. The main technical input of this
theorem is to get square-root cancellations in the integral transforms. Indeed,
after summation formule, the integral transform (for f hololomorphic) looks like

I =

∫
U(y)e(ay1/3)Jkf−1(b

√
y) dy,

where a � t, for some t < kf to be chosen later, b � kf and U is a smooth bump
function supported on [1/2, 5/2]. Here the argument by1/2 of the Bessel function
is in ‘transitional range’ ( b � kf ), in which case, a ‘nice’ asymptotic expansion
(uniform in kf ) is not known. We get desired cancellations (I � 1/kf ) using the
integral representation

Jk−1(x) =
1

2π

∫ π

−π
e

(
(k − 1)τ − x sin τ

2π

)
dτ,

followed by a chain of stationary phase analysis. We discuss full details of the
proof in Chapter 2.
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