Profanity Detection in Online Club Game
Names

By Ankit Gupta

Profanity Detection in Online Gaming Club
Names

By Ankit Gupta

Abstract

The increasing popularity of multiplayer online games along with the fact that active
users comprise mostly of teenagers and adults, is making the gaming platforms vul-
nerable to toxicity, be it in the form of visuals: obscenity via video game streaming,
vulgar images as profile pictures; audio: verbal abuse, bullying via voice messages;
text: bullying during live chats, vulgarity or racist terms in user or club names. The
highly competitive nature of games along with the age group of users make the usage
of cuss words in the form of offensive, bullying, racist remarks, referring to pornogra-
phy quite common. This makes it difficult for users at the receiving end to continue
with their accounts and ultimately hampers the revenue of gaming companies. As
a result, handling of toxicity has become a crucial problem to solve for such indus-
tries. Unlike the traditional profanity detection problems in which there exists a clear
distinction between toxic and non-toxic datapoints, this problem has an additional
difficulty due to the constraint that a certain degree of profanity needs to be allowed
considering the discourteous nature of users’ age group. This constraint makes the
problem quite difficult even for powerful machine learning algorithms and leaves la-
borious manual reviewing as the only option available. In this research paper, we
focused on handling profanity in text data and attempt to bring down the manual
efforts by catching most of the very obvious and possibly some less obvious toxic club
names using deep learning models while forwarding for manual review only those club
names having reasonable doubt as per the model’s score. Using LSTMS, we managed
to get a recall of 80% at a false positive rate 0.04.

Contents

1 Introduction

Profanity in online gamingo o000

@ Problem Statemento
1.3 Challenges
3.1 High imbalance indata L.

?3.2 Natureof data
1.3.3 Diversity inthedata

1.3.4 Context

1.3.5 Subjective Labelling

Related Work

3 he Dataset

él Introduction

3.2 Data Preparation

3.3 Data Description Lo

3.4 Data Preprocessingo

Experiments and Results

4.1 Training and Testingo L.

4.2 Models
4.2.1 chatBert: BERT model pretrained on chats data
4.2.2 Canine: pretrained transformer model
4.2.3 Sequential Models

4.3 Results

11
11
11
12
12

CONTENTS

5 Future Work and Conclusion

20

Chapter 1

Introduction

1.1 Profanity in online gaming

Based on the estimate of 5.6% annual growth forecast, the Inber of video game
players worldwide will rise from 2.69 billion in 2020 to 3.07 billion in 2023 [21]. The
multiplayer online games apart from the providing a common gaming platform, also
provides a social environment to users from different parts of the world to interact,
chat, discuss gaming tactics or about recent updates in any particular game etc. At
the same time, the difference in the race, ethnicity, color, gender and opinions of users
often triggers these interactions to turn hostile and become an arena of abusive and
vulgar exchanges resulting in the mental harassment of either parties. While some of
these unfortunate events may be accidental, there does exists a section of users who
harass and bully others just for fun not realising that users at the receiving end may
suffer from high anxiety and depression on continued exposure to such toxicity [45].

The highly competitive nature of multiplayer online games [31] along with the fact
that majority of online gamers being adults and teenagers [28], results in toxicity
creeping into the gaming environments in various forms such as videos, images, audio
and text. Of these forms, the one that we studied in this research work, is the text
where toxicity appears in chats among users during live gaming sessions and in club
names. Toxicity as text is found in words or sentences that are offensive to a specific
community, racist, hurting religious sentiments, indicating violence of some nature
as in suicide and rape threats, containing pornographic terms, sexually abusive etc.
Here our focus is on the problem of toxicity detection in club names. A club name is
a name for a gaming team framed by a set of users forming the team.

Although, unlike chats where toxic comments are directly targeted to users on the
other side, toxicity and abusiveness in club names, that are vulgar, racist, or offensive
to a specific community, indirectly impact all other users who come across it. In
other words, club names have higher blast radius (visibility) compared to toxicity

4

1.2. Problem Statement 5

in chats. Leaving these offensive club names undetected tarnishes the image of the
corresponding gaming company, leading not only to existing users but also newcomers,
quitting and thus impacting revenue. Thus, it is crucial for any reputed gaming
organisation to keep their environment clean by detecting such offensive club names
and taking appropriate actions against the offenders.

Given the enormous amount of data generated per day, labelling the data manually
by hand is not possible. At the same time, if we consider the subjective nature of
toxicity in texts, and the fact that a certain degree of toxicity needs to be allowed
given the roughness in the language of adults, building a machine learning model that
can completely replace manual interventigis not a trivial task. Hence, in this thesis
we followed an intermediary approach of building a machine learning model that can
take the load off the manual reviewers by correctly labelling the very obvious club
names and passing on only those names with reasonable doubt for manual review
stag

The remainder of this thesis is structured as follows. Section 1.2 defines the problem
statement; In Section 1. e discusses various challenges associated with the prob-
lem; Chapter 2 reviews related works existing in the field of hate speech detection;
In Chapter 3 we talk about the associated dataset, preparing the data for model
training and data preprocessing strategies.; Chapter 4 demonstrates the experiments
conducted taking different models and the corresponding results; finally, Chapter 5
is a conclusion and discussion about future scope of this work.

1.2 Problem Statement

The club names data that is manually reviewed has a high proportion of non-toxic
club names and thus in order to identify the extremely low percentage of toxic club
names from the data, a major portion of time is unnecessarily spent in reviewing the
non-toxic ones. Our problem is thus to make data for manually review, toxic rich by
reducing the percentage of non-toxicity.

We used machine learning techniques to solve the problem which is to design a ma-
chine learning model that can be trained on labelled club names data and learn to
give a score between () and 1 indicative of the probability of a given club name being
toxic. These probability scores can then be used to classify club names as toxic and
non-toxic by setting appropg#te threshold. The performance metrics of the model
are chosen to be recall and false positive rate (FPR). While recall is the percentage
of toxic (positive) cases correctly detected by the model, FPR on the other hand is
the fraction of non-toxic (negative) names incorrectly labelled as toxic. The reason
for choosing recall as a performance metric is to detect as much toxic club names as
possible and the purpose behind choosing FPR is to have very less number of false
positives by the model, so that the time and efforts spent during manual review pro-

6 1. Introduction

cess could be significantly reduced by enriching the proportion of toxic club names in
the data sent for manual reviewing. Thus, a high recall of toxic club names at a very
low false positive rate is desired from the trained model.

1.3 Challenges

Qe problem as discussed in the Section 1.2 belongs to the category of binary text
classification problem with the two classes, toxic and non-toxic. Although this is
a very commonly encountered problem in machine learning field, the data of club
names associated with the problem, entails several complications which turns it into
a not-so-trivial problem. In this section, we discuss many challenges due to the data
that makes it difficult to apply any of the well-known existing solutions onto this
problem.

1.3.1 High imbalance in data

15
Although, size of data m terms of number of club names is large, the percentage of

club names that are actually labelled as offensive and liable to be taken action against,
after manually review is extremely less compared to the non-offensive names. The
club names data we used to train our model had only 0.67% of club names labelled
as toxic.

?.3.2 Nature of data

Firstly, unlike the chats data where each record consists of several sentences exchanged
among the users as long as gaming session continues, the club names which are names
that a group of users set as their team or club name, are quite short-length ranging
between 1 — 5 words or between 3 — 30 characters as a whole. This leaves very less
room for the deep learning models to dev@®p contextual understanding from the data,
which is one of the strengths of BERT &directional Encoder Representations from
Transformers) [16] models.

Secondly, with the advent of increasing smartness among users in the sense of beating
the automated models in detecting their toxic club names, these users come up with
different tricks in framing club names that include: 1. usage of leetcodes, 2. digits
as alphabets, 3. abbreviations, 4. offensive numeric codes, 5. special symbols, 6.
punctuation symbols for alphabets or digits, 7. unnecessary repeated characters etc.
The roughness of texts in club names to the extent as described above makes it nearly
impossible to design an effective tokenizer that can generalise well over the entire data.

1.3. Challenges 7

1.3.3 Diversity in the data

Unlike, chats where the text is composed of sentences that are meaningful even though
the individual words may be incorrectly spelled, in case of club names, users get the
liberty to frame anything they like, be it digits between let ters, multiple words without
spaces, random casing, punctuation symbols, abbreviations and numeric codes with
hidden meaning, digits and symbols resembling alphabets, repeated characters and
even chunk of characters being placed in the beginning, middle and end, that does
not have any sense of its own. This leads to umpteen different forms of appearance
for one particular word and thus accounts for vast variety in the data.

1.3.4 Context

Context gays a significant role in determining the toxicity of a club name. A club
name cannot be termed as toxic by the mere presence of toxic words in it, unless,
it is seriously insulting or posing a threat to others. For instance, a club name can
contain self-humiliating remarks, e.g. “WeAreMorons™. Apart from the meaning
that is seemingly implied by the club name, one also needs to consider the nature of
the respective game for which the club name has been set. A club name that depicts
violence or some kind of a threat in the general sense may be considered completely
normal and accepting when the concerned game is taken into context, reason being
the violent terms present in the club name, are quite commonly used in the game.
This factor sometimes makes it difficult even for human annotators to interpret and
decide on the toxicity of some club names.

1.3.5 Subjective Labelling

Two ol the many factors that attribute to the success of any machine learning classifier
are 1. size of data and 2. quality of data. For popular gaming organisations, scarcity
of data is never a problem given the huge active participation of users from all over
the world. The real issue is the later one i.e. quality of labelled data. Since, labelling
the data is done manually, consistency in labelling becomes an important factor in
determining the data’s quality when multiple persons are involved in data labelling.
In spite of a well framed policy on determining toxicity in club names, there can exist
club names, for which it becomes quite subjective to decide if it fulfils the criteria of
being labelled as toxic.

Chapter 2

Related Work

Besides gaming platforms, there exists abundant availability of online discussion fo-
rums where users virtually interact by sharing and exchanging their views, e.g. blog
posts, comments on social media channels. Depending on the sensitivity of the topic,
these online conversations often turns inappropriate and becomes the battleground
of verbal abuses, personal attacks etc. resulting in degraded user experiences. Thus,
toxicity detection and handling of hate speeches have been a wide area of research in
order to sa.l'ﬁ,l.lard the user experiences and thus the revenue from getting hampered.
t Ie

In the last few years, a large number of researches hagggbeen conducted in the field
of toxicity detection in gpline content. A cmnbinatimlagqalatural language processing
(NLP) techniques and traditional machine learning (M/L) models have been used to
detect hate speeches in social media. These traditional ML techniques require features
to be manually prepared along with statistical algorithms to build classifiers. Effective
feature extraction and engineering are critical to the performance of any classification
algorithm. Some of the common features that can be conside for hate speech
detection are bag of words, n-grams [19, 25, 14, 41], TF-IDF, sentiment analysis,
important linguistic features, knowledge-based features and meta-information of hate
speech [8].

Along with the techniques mentioned above, different conventional ML algorithms
can be employed to solve hate speech classification problemggSuch ML algorithms can
be Logistic Regression [3, 5, 15, 39, 40], Naive Bayes [3], Support Vector Machines
(SVM) [40, 3, 15| and Random Forest [24].

With the advent of deep learning, people are since shifting from using conventional
ML models to deep learning architectures to exploit the automatic extraction of multi-
?ered features from the data, offered by the deep learning models. TwoggEry popular

eep learning models which have most commonly been used for toxicity gassiﬁcation
are Convolutional Neural Network (CNN) [32] and Recurrent Neural Network (RNN)
[37] models.

As one of the starting works on this field using deep learning models, Djuric et al.

[17] suggested a two-step approach which involves learning a low dimensional text
embedding by using ggCBOW model in order to extract paragraph2vec [26] embed-
dings and then using a binary classifier which is trained along with the embeddings to
detect toxicity. Badjatiya et al. [7] used word embeddings for feature representations
of tweets. They experimented with three deep learning models, LSTM, FastText and
CNN, where for each of these models, either GloVe [35] or random word embeddings
were used.

Park et al. [33] applied CNN models to detect abusive languages in English Twitter
corpus of 20K tweets belonging to sexist and racist classes. They followed two ap-
proaches namely two-step approach which involves detecting abusive language first
and then classifying it into its appropriate type; and one-step approach involving one
multi-class classification. Based on the input features being characters, words or both,
they designed three different types of CNN-based models: CharCNN [9], WordCNN
[43], and HybridCNN. The third model i.e. Hybri N, designed by them was found
to give the best performance. Gambick et al. [20] trained four different CNN models
respectively on character 4-grams, word vectors using word2vec [29], word vectors
randomly generated and combination of word vectors and character 4-grams.

Tundis et al. [38] applied optical character recognition(OCR) technology using CNN
to detect hidden propaganda in mixed coded texts. The text is first split into words
from which mixed coded words are identified and then for each such mixed coded word
different subsets are created, and then for each such subset, the symbols are converted
to images followed by replacing the symbols with the nearest alphabet character, the
symbols resemble, using a pretrained CNN model. After all symbols are converted to
alphabets, the resulting words are checked for its existence in dictionary and removed
if not found. Finally, among the resulting words, the invalid words having no existence
in dictionary are filtered out and the remaining valid words are combined to check if
the resulting sentence is meaningful and of the multiple meaningful sentences in the
end, the maximum toxicity score of all sentences is recorded as the final score for the
original mixed coded input.

Besides NN models, a number of solutions for toxicity detection have employed
sequential models t is RNN. Pitsilis et al. [36] detected hate speech in tweets
depending ogythe user’s history of past tweets and the given tweet itself using an
ensemble of Long short term memory networks LSTM (23], a special kind of RNN
model.

There also exist deep learning models that are combination of CNN and RNN ar-
chitectures as Zhang et al. [44] introduced CNN + LSTM model for toxic speech
detection in tweets. Yer et al. [42] applied deep learning models to detect and fi-
ter inappropriate query sugggions in search engines and toxic conversations by users
in messengers. For detecting inappropriate query suggestions, they developed a novel
deep learning architecture Convolutional Bi-Directional LSTM (C-BiLSTM) which
is a combination of CNN and Bi-Directional LSTM (BiLSTM) [18]. For detecting

10 2. Related Work

toxic conversations, they used a combination of LSTM and BiLSTM networks.

Lees et al. [27] from Google Jigsaw gave deep learning solutions to the “Toxic
Comment Classification Challenge” problem launched on Kaggle [2]. The problem
was to predict toxicity of a given comment and dataset comprising comments from
Wikipedia’s talk page edits. They fine-tuned a BERT model pretrained on comment
domain that achieved scores beyond 90%.

Mozafari et al. [30] applied transfer learning approach by using a pretrained %RT
model trained on English Wikipedia and BookCorpus for toxicity detection in tweets
data. They used many fine-tuning techniques including the BERT-based fine-tuning,
inserting non-linear layers, inserting BiLSTM layer and inserting a CNN layer.

Although majority of the works in toxicity detection exists for English language,
there exists abundant literature on hate speech problems on other languages as well.
Alshalan et al. [4] applied deep learning apprggghes to detect toxicity in Arabic
tweets. They evaluated four different models: gated recurrent units (GRU) [10],
CNN, CNN + GRU, and BERT. Of the four models, CNN was found to give best
performance. Vigna et al. [15] used SVM [13] and (LSTM) models to detect toxicity
in manually annotated Italian comments on Facebook. They realised that LSTMs,
capable of capturing long term dependencies in texts very well, outperform traditional
classifiers like SVM. Ishmam1 et al. [24] evaluated Random Forest and GRU models
for detecting toxic speeches in public Facebook pages in Bengali language.

Profanity detection methods are also tightly bougs to the underlying the language of
the corpus and thus different models are designed to solve the same problem of profan-
ity detection in texts but over different languages. rding to Corazza et al. [12],
who evaluated and compared multiple RNN modeﬂacross different languages which
include English, Italian and German, although the KNN models generally performed
quite well for all these languages but the best performing is found to be different for
different languages. Further, Aluru et al. [5] evaluated various conventional ML mod-
els and deep learning models on nine languages: English, Spanish, Italian, French,
German, Arabic, Indonesian, Polish and Portuguese. Their findings showed that it is
the specific language that determines the best performing model.

Of all the challenges encountered in toxicity detection, the major challenge faced is
the generalizability of the models. Models that are best performing when trained and
tested for hate speech classification on one corpus may become an average performer
for the same problem on other corpora [6, 22, 34]. Although the solutions discussed
so far are powerful and well suited for their regctive domains and datasets, none of
them proved to be significantly helpful when ~%ﬁ'ned and tested on the club names
data, the reason being the corpus of club names differ significantly from that of texts,
comments, tweets or search engines queries. The challenges as mentioned in Section
1.2 make the results even worse.

Chapter 3

The Dataset

3.1 Introduction

The data consisted of club names from a popular shooting game having users from all
over the world. After every two or three months of time, the existing club names are
collected and sent for review to a third party company (TPC'). Based on the review
results, some non-toxic club names are closed (labelled as non-toxic). The rest of the
names are then sent for manual review process. This manual review process is carried
out in two stages namely 77 and T2. Names for which labels are not decided in stage
T1 are then finally decided in stage T2. The entire review process is termed as one
wave. Till date, a total of 10 waves have heen conducted.

Results of each wave were available in the form of a single spreadsheet containing
the labels by both TPC and combined labels of T1 and T2. Based on the labels,
it is found that the labels by TPC were very oversensitive in the sense that more
than 90% of the club names labelled by TPC as toxic were found to be non-toxic
when reviewed manually by 71 and T2. Thus, the labels by TPC could not be relied
upon for training any model as the final decision will be of the manual reviewers
ounly. TP(results were helpful only to minimise the number of non-toxic club names
getting forwarded for manual review, thus relieving the burden of laborious manual
review process but only by a small extent of up to 10%.

3.2 Data Preparation

Data from all the waves from wave 1 to 10 are merged into one single dataframe. Few
rows with club names field blank, were detected and cleaned. Since subsequent waves
will have many names from the previous waves, there were many duplicate club names
found in the final combined data. These duplicates were removed by considering the
label of the most recent wave, the corresponding club names belonged to. Since our

11

12 3. The Dataset

focus was mainly on the English language club names, we filtered out all the foreign
language names from the data which contributed only up to 3% of the whole data.

3.3 Data Description

The final merged data of ten waves with foreign language names removed contained
around 5.5 million unique club names. Club names labelled as toxic contributed to
mere (.67% of the entire data. Thus, for every 10K non-toxic club names, there were
only 67 names labelled as toxic, a case of extremely skewed class labels.

Although the data had a total of 15 columns, most of these columns were provided by
TPC which were not of much importance and thus were not considered for training
models. In fact, none of TPC results was used for training. These results were used
only during model evaluation to gauge the effectiveness of the model over TPC' and
whether the model can replace TPC altogether.

3.4 Data Preprocessing

The data preprocessing strategy employed, was different for different models we ex-
perimented with. For BERT and Transformer models, no preprocessing was done on
the club names. The club names were just fed to these model’s respective tokenizer
and the resulting tokenized data is used for training.

For pure sequential models, the club names were tokenized into bigrams. The idea
behind using bigrams and not going for higher length grams was that, because club
names were short lengthed and highly different from each other, higher lengthed grams
will have less frequencies compared to bigrams, making the resulting trained models
more prone to overfitting and thus having poor generalisation over unseen data, .

Initially we only used these tokenized names for model training and testing. But
later, after going through the club names and analysing them, we designed a pre-
processing pipeline with a series of stages based on patterns identified during the
analysis. The stages of the pipeline discussed below are in order of its execution
during preprocessing.

e removal of symbols: a large number of toxic club names were found to contain
punctuation symbols with an intention to add noise in order to beat the models
from getting detected. Such symbols were replaced by spaces.

e removal of extra spaces at boundaries: this is done to clean the club names of
any extra spaces left out after removal of symbols in the previous stage.

e remove extra spaces in between: some toxic club names had the individual
letters separated by multiple spaces just to avoid getting caught.

3.4. Data Preprocessing 13

removal of pin codes: around 15 K club names were found to contain pin codes.
These pin codes do not serve any purpose in toxicity detection, hence removed.

replacing 3 or more repetitions of alphabets to 2: unnecessary repetitions of
characters is quite natural in club names like these. These repetitions will only
serve as noise contaminating the resulting bigrams formed after tokenization.
Such repetitions were reduced to 2 repetitions

removal of stopwords: We curated a list of words that we believe would not
serve any purpose in distinguishing between toxic and non-toxic club names. In
this stage, such words if found in the club name will be removed.

removal of digits with no meaningful context

normalisation of mixed coded text: this is the most powerful stage of the entire
preprocessing pipeline. This is an attempt to handle the mixed coded text
in club names. We first implemented a spell correction module to correct all
misspelled words to its nearest correct word by two edit distances. For this,
we started with a small database of commonly used toxic terms created after
analysing the club names. But later, we realised it was causing more damage
than good by wrongly correcting many misspelled non-toxic club names to toxic
terms. We later resorted to using regular expressions in order to handle not only
misspelled words but also the digits, symbols, abbreviations etc. We finally got
rid of the spell correction module and resorted completely to regular expressions
through which we had more control over the raw club names data.

The club names are first passed through the preprocessing pipe#e and then tokenized
into bigrams. After preprocessing, 70% of club names are then used for model training
while the remaining 30% is reserved for model evaluation.

Chapter 4

Experiments and Results

4.1 Training and Testing

g’e used Binary Cross Entropy Loss (BCE) as the loss function during training. But
during the initial stages of our experiments with different models, we found that due
to imbalance in the class labels being extreme, the models ignored the toxic club
names completely during training by simply labelling all the club names as non-toxic
to get high accuracy. In order to attract the model’s attention towards the toxic club
names, we used weighted BCE loss function in which for any mislabelled toxic club
name by the model, we penalized the model by some weight greater than 1. Different
values of weight ranging from 10 to 10000 were tried but to no effect.

We then defined a custom loss function which was probabilistic version of 3—F1 Loss.
Even with different values of 3, the models continued to ignore the toxic cases.

Finally, we solved the problem, by taking random samples from both toxic and non-
toxic classes to form a balanced data for every epoch, instead of training models on
the entire data. That is, before each epoch, we took a randomly sampled subset from
toxic club names and from non-toxic club names, we sampled k (k > 1) times the
size of the toxic sample. The value of k once chosen remained fixed throughout the
training process.

4.2 Models

4.2.1 chatBert: BERT model pretrained on chats data
To start with, we used BERT model pretrained on toxic comments of Wikipedia [27]

and trained it on chats data of same game. The model was trained perfectly, giving
acceptable results on test data. We then trained this pretrained model on the club

14

4.2. Models 15

names data. Even after rigorous model hyperparameter tuning, and trying both relu
and sigmoid as the activation functions, the model gave poor results. (see Table 4.1)

One of the reasons possible for the model’s inability to fit well to the club names
data is the model’s inbuilt tokenizer. This tokenizer, designed keeping the chats data
in mind, may have proved ineffective for the club names data. The tokenization as
mentioned in Section 1.3.2, is a major challenge for club names data.

The training time was very slow. It took more than 12 hours to train just 10 epochs
of training on high powered GPU processor, Tesla V100. The slow training time left
very less room for experimentation with the model.

4.2.2 Canine: pretrained transformer model

Canine [11] is a pretrained transformer model offered by Hugging Face [1] developers.
The speciality of the model and the reason we went for this model is that there was no
explicit tokenization step employed by this model. It just tokenizes the entire data
at character level and converts each character to its Unicode representation. The
unicode conversion was also a motivating factor for choosing this model as it can be
used to fit to foreign language names as well, provided it fits to the English language
names.

However, during training, the model turned out to be a poor fit to club names data.
The model’s architecture contains a deep transformer stack comprising of 12 Trans-
former layers stacked in series. Even after rigorous hyperparameter tuning with the
model, including unlocking the model up to 5 transformer layers of the deep trans-
former stack component, the model gave poor results only.

One of the reasons we hypothesise for the model’s inability to fit well to the club
names data is the difference of the club names data from the corpus on which the
model was pretrained. Because the texts are broken to characters, the dependence
between the corpus and the initial embedding layers is huge, causing the pretrained
embedding layers to poorly represent the input club names and transmitting almost
noise to the subsequent layers.

The training time was very slow. It took more than 15 hours to train just 10 epochs
of training. The slow training time left very less room for experimentation with the
model.

4.2.3 Sequential Models

Getting failures with advanced BERT and Transformer models, we went down to
try comparatively simpler models, the sequential models. We believed that the club
names being very short lengthed (mostly ranging between one to five words), there

is not much room for any contextual learning whereas the advanced models such as

16 4. Experiments and Results

BERT and transformer models are specially used for getting contextual understanding
of the data. Further, if any pretrained model is used, then it will have its own tokenizer
which may not be suitable for the club names. On the other hand, if we go for building
our own tokenizer then we have to train such models from scratch which is inefficient
with respect to both time and cost.

Henceforth, for each sequential models, the club names were first tokenized into bi-
grams and then each club name was converted to a sequence of 3000 dimensional
one-hot coded representation based on each individual bigram. Finally, using padding
and truncation, these sequences of different lengths were each converted to the same
length of 15 as 95% of the sequences were found to be less than 15.

Also, for all the sequential models, we used self-learning embedding by adding an
embedding layer of dimension 300. The decision about the dimension is taken after
experimenting with different embedding dimensions ranging from 150 to 600.

Recurrent Neural Networks (RINN)

We experimented with several architectures of RNNs using hyperparameter tuning
during training and found the best performing RNN model to have embedding size 50,
hidden layer dimension of 32 and followed by two feedforward layers of dimension 32
and 8 respectively. Dropout layers with dropout value 0.1 are added after each layer.
Activation functions are chosen to be relu and sigmoud 1'esptively after RNN and
the final feedforward layer. Training was carried out for 600 epochs using Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 0.01. The purpose for
choosing SGD as the optimizer during training was that all models were found to
converge better compared to other optimizers we experimented with.

The results were much better than the previous models. For the first time, the
underfitting problem we had been experiencing with previous models got resolved.
But still, RNNs had overfitging issues. The test error though way lesser than the
previous models was not up to the mark.

Long Short Term Memory Networks (LSTMs)

Although the club names were short lengthed, but when tokenized into bigrams, the
length increases by a considerable extent. LSTMs are better than RNNsin processing
longer length sequences.

We experimented with different versions of LSTMs and hypertuned each of them.
The models along with their architecture for which we found best results are listed
below.

e LSTM: embedding size 300, number of neurons in hidden layer 64, two feedfor-
ward layers of sizes 64 and 32 respectively.

4.3. Results 17

e BiLSTM: embedding size 200, number of neurons in hidden layer 64, one feed-
forward layer of size 64.

e Multi-layered LSTMs stacked in series

— Layer 2 LSTM (LSTM-L2): embedding size 300, number of neurons in
hidden layer 64, two feedforward layers of sizes 64 and 32 respectively.

— Layer 3 LSTM (LSTM-L3): embedding size 300, number of neurons in
hidden layer 64, two feedforward layers of sizes 64 and 32 respectively.

— Layer 4 LSTM (LSTM-L}): embedding size 300, number of neurons in
hidden layer 64, two feedforward layers of sizes 64 and 32 respectively.

For each of the above LSTMs, optimizer SGD is used with learning rate of 0.001 for
the same reason as for RNNs.

The best part about sequential models was that the training process was very fast. It
only took a maximum of 2 hours to training 1000 epochs of the data. This was a huge
advantage for us as it gave us the freedom to experiment with different architectures
such as the number of LSTM layers, feed forward layers, dropout values, choice of
activation functions, optimizers, learning rate etc.

Sequential models on preprocessed data

The preprocessing pipeline (see Section 3.4) was developed only after getting satisfac-
tory results with LSTM models. The idea behind developing preprocessing pipeline
was to further improve the results of these models by having cleaner bigrams after
tokenization.

So we preprocessed the data through the pipeline, and retrained the best performing
LSTMs on it. The results though improved only by 1 — 2%, but the preprocessing
pipeline is not the final one, will continue to be part of the model’s maintenance in the
long run and will adjust the model dynamics by accounting for the changing trends
in the newer club names.

4.3 Results

Results of all models we experimented with, are compiled into two tables as shown
below. In Table 4.1, we list the results without the preprocessing pipeline (see Section
3.4) being applied in the data preprocessing stage. Table 4.2 shows the results after
the preprocessing pipeline was designed and applied on the data before model training.
Since we did not see any significant results with BERT and Transformer models as
shown in Table 4.1, we didegpt apply any preprocessing with these models and thus
only the sequential models results are listed in Table 4.2. Although, the performances

18 4. Experiments and Results

are shown in terms of recall, FPR and precision, precision is not a major concern given
the huge proportion of non-toxic club names compared to that of toxic club names.

Model Type|| Model |Recall| FPR |Precision

chatBert | 30% 0.17 11%

BERT
Canine 41% 0.13 %
RNN 64% 0.05 24%
LSTM 78% 0.05 27%
) BILSTM | 80% 0.05 27%
Sequential

LSTM-L2| 82% 0.05 33%
LSTM-L3| 81% 0.04 31%
LSTM-L4| 82% 0.03 38%

Table 4.1: Results without preprocessing pipeline

Model Recall FPR Precision
RNN 69% 0.05 29%
LSTM 80% 0.05 31%
BiLSTM 81% 0.05 32%
LSTM-L2 82% 0.04 38%
LSTM-L3 83% 0.04 35%
LSTM-L4 84% 0.035 42%

Table 4.2: Results of sequential models with preprocessing pipeline

In Table 4.1, it can be seen that the sequential models fitted to the club names much
better compared to the pretrained BERT and transformer models. Both types of
BERT models, chatBERT and Canine have recall only near 40% with high FPR
of 17% and 13% respectively, whereas each of the sequential models have FPR lower
than 5% with high recall percentage reaching beyond 80s. Of all the sequential models
tried, the best performing model is found to be LSTM-L} having 82% recall with FPR
as low as 3%.

4.3. Results 19

Further, in Table 4.2, it can be seen that the preprocessing pipeline improved the
performance of sequential models. For each sequential model, the recall went up by
1 —2% at nearly the same FPR. The recall of the best performing model LSTM-L/
went up from 82% to 84% at the cost of just 0.5% increase in FPR. Although the
performance improvement due to the preprocessing pipeline may not seem high at this
stage but with more and more data from the subsequent waves in future, along with
the respective upgradation of the pipeline, we expect these margins of improvement
to go higher.

Chapter 5

Future Work and Conclusion

We experimented with deep learning models of different architectures ranging from
BERT to deep transformers to finally the sequential models i.e. the RNNs, LSTMs
and BiLSTMs and realized that the sequential models outperformed the former ones,
possibly because of the nature of the club names data.

We managed to tackle the extreme imbalancedness of the class labels in the data,
by training the models on taking balanced number random samples from both class
labels at every epoch. Finally, we handled the roughness of text in club names by
designing a preprocessing pipeline in which we defined various methods to clean the
club names of noisy texts that are of no help in classification.

We continue to work with LSTM architecture models and work on the preprocessing
pipeline to further improve it. The impact of the pipeline though seems low at this
stage but we believe that it is going to come handy in the long run in the sense
that it can be adjusted to cater to the changing trends in the club names in future.
Further, considering the fact that different games though differing in its respective
gaming vocabularies, but don’t differ significantly enough when it comes to the usage
of toxicity; we aim to analyse the generalizability of these models on club names of
other games. Lastly, after having developed these models on English language names
to an acceptable performance, we will proceed towards handling toxicity in foreign
language names as well.

20

Bibliography

1]

2]

[3]

4]

51

(6]

(7]

(8]

(9]

[10)

Hugging face. Available online: https://huggingface.co/

kaggle/toxic comment classification challenge. Available online: https://www.
kaggle.com/c/jigsaw-toxic-comment-classificationchallenge

Alfina, 1., Mulia, R., Fanany, M.I., Ekanata, Y.: Hate speech detection in the
indonesian language: A dataset and preliminary study. In: 2017 International
Conference on Advanced Computer Science and Information Systems (ICACSIS).
pp. 233-238. IEEE (2017)

Alshalan, R., Al-Khalifa, H.: A deep learning approach for automatic hate speech
detection in the saudi twittersphere. Applied Sciences 10(23), 8614 (2020)

Aluru, S.S., Mathew, B., Saha, P., Mukherjee, A.: Deep learning models for
multilingual hate speech detection. arXiv preprint arXiv:2004.06465 (2020)

Arango, A., Pérez, J., Poblete, B.: Hate speech detection is not as easy as you
may think: A closer look at model validation (extended version). Information
Systems p. 101584 (2020)

Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech
detection in tweets. In: Proceedings of the 26th international conference on World
Wide Web companion. pp. 759-760 (2017)

Biere, S., Bhulai, S., Analytics, M.B.: Hate speech detection using natural lan-
guage processing techniques. Master Business AnalyticsDepartment of Mathe-
matics Faculty of Science (2018)

Chen, Y.: Convolutional neural network for sentence classification. Master’s the-
sis, University of Waterloo (2015)

Cho, K., Van Merriénboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

21

22

BIBLIOGRAPHY

1]

[12]

13]

[14]

15

16]

[17]

18

[19]

[20]

[21]

[22]

Clark, J.H., Garrette, D., Turc, 1., Wieting, J.: Canine: Pre-training an effi-
cient tokenization-free encoder for language representation. Transactions of the
Association for Computational Linguistics 10, 73-91 (2022)

Corazza, M., Menini, S., Cabrio, E., Tonelli, S., Villata, S.: A multilingual evalu-
ation for online hate speech detection. ACM Transactions on Internet Technology
(TOIT) 20(2), 1-22 (2020)

Cristianini, N., Ricci, E.: Support Vector Machines, pp. 928-932. Springer US,
Boston, MA (2008), https://doi.org/10.1007/978-0-387-30162-4_415

Davidson, T., Warmsley, D., Macy, M., Weber, 1.. Automated hate speech detec-
tion and the problem of offensive language. In: Proceedings of the international
AAAT conference on web and social media. vol. 11, pp. 512-515 (2017)

Del Vignal2, F., Cimino23, A., Dell'Orletta, F., Petrocchi, M., Tesconi, M.:
Hate me, hate me not: Hate speech detection on facebook. In: Proceedings of
the First Italian Conference on Cybersecurity (ITASECL7). pp. 86-95 (2017)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati,
N.: Hate speech detection with comment embeddings. In: Proceedings of the
24th international conference on world wide web. pp. 29-30 (2015)

Fei, H., Tan, F.: Bidirectional grid long short-term memory (bigridlstm): A
method to address context-sensitivity and vanishing gradient. Algorithms 11(11)
172 (2018)

1

Fortuna, P., Nunes, S.: A survey on automatic detection of hate speech in text.
ACM Computing Surveys (CSUR) 51(4), 1-30 (2018)

Gamback, B., Sikdar, U.K.: Using convolutional neural networks to classify
hate-speech. In: Proceedings of the first workshop on abusive language online.
pp. 85-90 (2017)

Gilbert, N.: Number of Gamers Worldwide 2022/2023: Demographics,
Statistics, and Predictions. Available online: https://financesonline.com/
number-of-gamers-worldwide/

Grondahl, T., Pajola, L., Juuti, M., Conti, M., Asokan, N.: All you need is“ love”
evading hate speech detection. In: Proceedings of the 11th ACM workshop on
artificial intelligence and security. pp. 2-12 (2018)

BIBLIOGRAPHY 23

23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735-1780 (1997)

Ishmam, A. M., Sharmin, S.: Hateful speech detection in public facebook pages
for the bengali language. In: 2019 18th IEEE international conference on machine
learning and applications (ICMLA). pp. 555-560. IEEE (2019)

Jaki, S., De Smedt, T.: Right-wing german hate speech on twitter: Analysis and
automatic detection. arXiv preprint arXiv:1910.07518 (2019)

Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International conference on machine learning. pp. 1188-1196. PMLR (2014)

Lees, A., Sorensen, J., Kivlichan, I.: Jigsaw@ ami and haspeede2: Fine-tuning a
pre-trained comment-domain bert model. In: EVALITA (2020)

Lenhart, A., Jones, S., Macgill, A.: Adults and video games (2008)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Mozafari, M., Farahbakhsh, R., Crespi, N.: A bert-based transfer learning ap-
proach for hate speech detection in online social media. In: International Con-
ference on Complex Networks and Their Applications. pp. 928-940. Springer
(2019)

of Nerds, T.G. Increasing competition in online multiplaye
games. Available online: https://thegameofnerds.com/2022/02/22/
increasing-competition-in-online-multplayer-games/ (2022)

O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458 (2015)

Park, J.H., Fung, P.: One-step and two-step classification for abusive language
detection on twitter. arXiv preprint arXiv:1706.01206 (2017)

Park, J.H., Shin, J., Fung, P.: Reducing gender bias in abusive language detec-
tion. arXiv preprint arXiv:1808.07231 (2018)

Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word
representation. In: Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP). pp. 1532-1543 (2014)

Pitsilis, G.K., Ramampiaro, H., Langseth, H.: Effective hate-speech detection in
twitter data using recurrent neural networks. Applied Intelligence 48(12), 4730
4742 (2018)

24

BIBLIOGRAPHY

37]

[38]

[39]

[40]

[41]

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representa-
tions by error propagation. Tech. rep., California Univ San Diego La Jolla Inst
for Cognitive Science (1985)

Tundis, A., Mukherjee, G., Miihlhauser, M.: An algorithm for the detection of
hidden propaganda in mixed-code text over the internet. Applied Sciences 11(5)
2196 (2021)

1

Unsvag, E.F., Gamback, B.: The effects of user features on twitter hate speech
detection. In: Proceedings of the 2nd workshop on abusive language online
(ALW?2). pp. 75-85 (2018)

Vijayaraghavan, P., Larochelle, H., Roy, D.: Interpretable multi-modal hate
speech detection. arXiv preprint arXiv:2103.01616 (2021)

Waseem, Z., Hovy, D.: Hateful symbols or hateful people? predictive features
for hate speech detection on twitter. In: Proceedings of the NAACL student
research workshop. pp. 88-93 (2016)

[42] Yenala, H., Jhanwar, A., Chinnakotla, M.K., Goyal, J.: Deep learning for de-

[43]

[44]

45

tecting inappropriate content in text. International Journal of Data Science and
Analytics 6(4), 273-286 (2018)

Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. Advances in neural information processing systems 28 (2015)

Zhang, 7., Robinson, D., Tepper, J.: Detecting hate speech on twitter using a
convolution-gru based deep neural network. In: European semantic web confer-
ence. pp. 745-760. Springer (2018)

Zsila, A Shabahang, R., Aruguete, M.S., Orosz, G.: Toxic behaviors in online
multiplayer games: Prevalence, perception, risk factors of vietimization, and
psychological consequences. Aggressive Behavior 48(3), 356-364 (2022)

Profanity Detection in Online Club Game Names

ORIGINALITY REPORT

Su

SIMILARITY INDEX

PRIMARY SOURCES

H B O 0 BB

" ; i 0
A.d\./ances in Knowlgdge D|scover¥ and Data. 36 words — ’] /()
Mining", Springer Science and Business Media LLC,
2017
Crossref
. 0
ﬂﬂg-mdp"com 34 words — | %0
. 0
deepai.org 26 words — < 1%0
. : 0
IIn|2r|§.ef.pr|nger.com 21 words — < '] /0
. 0
www.slideshare.net 18 words — <] o
0
dokumen.pub 17 words — < 1 /0

Internet

n .) . 0
Deep .Learnlr?g Basegl Approaches for Sentlm.ent 15 words — < 1 /0

Analysis", Springer Science and Business Media

LLC, 2020

Crossref

www.webology.org 12 words — < 1 %

Internet

o

—_ —_ RN
Ul EN w

— —
~ (@)

. . 0
Lecture Notes in Computer Science, 2015. 11 words — < ’] /0

Crossref

" H . n . 0
N.eural InformaFlon Proce;smg , Springer 10 words — < 1 /0
Science and Business Media LLC, 2017

Crossref

Boyu Qiu, Yanrong'IChen, Xu He, Ting Liu, Sixian 10 words — < 1 %
Wang, Wei Zhang. "Short-Term Touch-Screen

Video Game Playing Improves the Inhibition Ability",

International Journal of Environmental Research and Public

Health, 2021

Crossref

H H n O
Prashant Kapil, Asif I?kbal. A dgep neural 10 words — < 1 A)
network based multi-task learning approach to
hate speech detection", Knowledge-Based Systems, 2020

Crossref

ebin.pub 10 words — < 1 %

Internet

0
www.stat.ucla.edu 10 words — < 1 /0

Internet

A 1% B . ire . . " 0
Al .IA 2018 Advance's in Artificial Intelligence", 9 words — < 1 /0
Springer Nature America, Inc, 2018

Crossref

n 1 i " i 0
2|3$gra| Information Processing", Springer Nature, 9 words — < ’| /0

Crossref

n M . 0
Proceedings of the Future Techn"ologlgs 9 words — < ’I /0

Conference (FTC) 2020, Volume 1", Springer

Science and Business Media LLC, 2021

Crossref

N —
o O

1

N N
N

23

Ha'rish Yenala, Ashisth”anwar, I\/Ian.oj K. 9 words — < 1 %
Chinnakotla, Jay Goyal. "Deep learning for

detecting inappropriate content in text", International Journal of

Data Science and Analytics, 2017

Crossref

" . . . n . 0
Aglvances in CornputanngI Intelligence", Sprlnger8 words — < 1 /0
Science and Business Media LLC, 2019

Crossref

" . . . " . 0
Afjvances in Infgrmatlon Retrleval , Springer 3 words — < 'I /0
Science and Business Media LLC, 2019

Crossref

n H H H n H O
Afjvances in Infgrmatlon Retrleval , Springer 3 words — < 1 A)
Science and Business Media LLC, 2020

Crossref

n H H n O
Da'ta I\/Ianqgement, Analytlcs and Ipnovatlon , 3 words — < 1 /0
Springer Science and Business Media LLC, 2020

Crossref

Jan Kocon, Alicja Flgas,. Marcm Gruza, Daria 3 words — < ’I %
Puchalska, Tomasz Kajdanowicz, Przemystaw

Kazienko. "Offensive, aggressive, and hate speech analysis:

From data-centric to human-centered approach”, Information
Processing & Management, 2021

Crossref

Michele Corazza, Stef{:\no I\/I”enini, E!gna Cabrio, 3 words — < 1 %
Sara Tonelli, Serena Villata. "A Multilingual

Evaluation for Online Hate Speech Detection", ACM

Transactions on Internet Technology, 2020

Crossref

ucilnica2021.fri.uni-lj.si s words — <] 0

Internet

T L P 0
Digital L'|brar|es at the Cr(?'ssrogds of Dl'gltal 7 words — < 1 /0
Information for the Future", Springer Science and

Business Media LLC, 2019

Crossref

n . . . n . 0
IQtelllgent Systgms and Appllcauons , Springer 6 words — < 1 /0
Science and Business Media LLC, 2019

Crossref

" H H . . 0
Machine Learnlhg and Knoyvledge Dlsclzlovery in 6 words — < '] /0
Databases. Applied Data Science Track", Springer

Science and Business Media LLC, 2021

Crossref

n . . O
Nat.uraI' Lan:guagg Understanding and Intelligent 6 words — < 1 /0
Applications", Springer Nature, 2016

Crossref

n H H H n 0
Ste?tlstlcal I._anguage and.Speech Pr'ocessmg , 6 words — < 1 A)
Springer Science and Business Media LLC, 2019

Crossref

ON OFF
ON OFF

