Bu SUJIT KUMAR MITRA

Indian Statistical Institute

SUMMARY. Nocessary and sufficient conditions are obtained for a matrix A to have a gaincreswith rows and columns belonging to specified linear manifolds. For a square matrix A, a gaincress, with columns ablonging to the linear manifold generated by the columns of A, is denoted by A_G^- . Such a gaincress exist if and only if $R(A) = R(A^*)$. The following properties of A_G^- are established: (a) $A_G^- = A(A^*)^-$. (b) For any positive integer $m_i(A_G^-)^+$ provides a reflexive gainverse of A_G^- . (c) If E be an eigen vector corresponding to a nonnulleigen value A of A, E is also an eigen vector of A_G^- corresponding to its eigen value 1|A. The converse of this result is also true. (d) A special choice of $(A^*)^- = (A^*)^+ A$ leads to $A_G^- = A(A^*)^- A$ which is unique irrespective of the choice of $(A^*)^-$ and is in fact same as the E regge-Odell pseudoinverse $(A,E)^+ = (A^*)^+ A$ belongs to the subelgebra generated by A.

1. NOTATIONS

In this paper we consider matrices defined over the complex field. The following notations will be used throughout the paper. For a matrix A,

- R(A) represents the rank of A,
- $\mathcal{M}(\Lambda)$ represents the linear space generated by the columns of Λ ,
- A- represents a g-inverse as defined by Rao (1962, 1967), and
- A. is a reflexive g-inverse of A as defined by Rao (1967),
- $A_{\overline{o}}$ is a symbol introduced in this paper to indicate a g-inverse of A whose columns are in $\mathcal{M}(A)$.
- A_R indicates a g-inverse of A whose rows belong to the linear manifold generated by rows of A.
- If B be a matrix,
- $B \subset \mathcal{M}(A)$ indicates that columns of B belong to $\mathcal{M}(A)$. The symbol \subset in other cases is used to denote set inclusion.

2. A CLASS OF g-INVERSE OF SQUARE MATRICES

While looking for a g-inverse of a matrix A one sometimes enquires if A has a g-inverse G with columns belonging to a specified linear manifold $\mathcal{M}(P)$, and rows belonging to a manifold $\mathcal{M}(Q')$, that is a G of the form G = PCQ. The answer to this is contained in the following theorem.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: Series A

Theorem 2.1: Given matrices P and Q, a necessary and sufficient condition for A to have a g-inverse of the form G = PCQ is that

$$R(\mathbf{OAP}) = R(\mathbf{A}). \tag{2.1}$$

Proof: Necessity follows from the definition of a g-inverse as given by Rao (1967) since, if G = PCQ be a g-inverse of A, A = AGA = AGAGA. Hence R(A) = R(AGAGA) = R(APCQAP). This implies $R(QAP) \geqslant R(A)$. Trivially $R(QAP) \leqslant R(A)$. Hence R(QAP) = R(A).

To prove sufficiency make repeated use of Corollary 1a.3 of Mitra (1968) to check that under condition (2.1) $P(QAP)^{-}Q$ is a g-inverse of A. In fact any g-inverse of the form G = PCQ is always expressible as $P(QAP)^{-}Q$. For

$$APCQA = A \Longrightarrow QAPCQAP = QAP \Longrightarrow C = (QAP)^{-}$$
.

Corollary 2.1: Given a matrix P, a necessary and sufficient condition for A to have a g-inverse of the form G = PC is that

$$R(\mathbf{AP}) = R(\mathbf{A}). \tag{2.2}$$

Proof: Take Q = I in Theorem 2.1.

Of special interest is the case where A is square and P is A. By Corollary 2.1, A has a g-inverse belonging to $\mathcal{M}(A)$ if and only if $R(A^2) = R(A)$. For the convenience of future reference such a g-inverse whenever it exists will be indicated by $A\bar{\alpha}$.

3. REFLEXIVITY AND A STRONGER PROPERTY

Obviously $R(A_{\widetilde{G}}) = R(A)$. Hence by Theorem 2a of Mitra (1968) $A_{\widetilde{G}}$ is a reflexive inverse of A, that is

$$A\bar{c}AA\bar{c} = A\bar{c}, \quad AA\bar{c}A = A, \quad ... \quad (3.1)$$

The following theorems present some useful properties of Ac.

Theorem 3.1: For any positive integer m, $(A_0^-)^m$ is a reflexive inverse of A^m , that is, if $G = A_0^-$,

$$\Lambda^m G^m \Lambda^m = \Lambda^m \qquad \dots \tag{3.2}$$

$$G^m A^m G^m = G^m \qquad \dots (3.3)$$

Proof: Since G = AC,

(3.2) and (3.3) follow once the left hand side expressions are simplified by repeated use of (3.4), using (3.1) in the final step of simplification. A slightly more general version is given below.

Let $r_1, r_2, ..., r_n$ be a sequence of positive integers, $o = r_1 + r_3 + ..., \epsilon = r_2 + r_4 + ...$. The summation in o is taken over all r_i in the sequence with an odd subscript i and similarly the summation in e is taken over all r_i in the sequence with an even subscript.

Theorem 3.2 (A partial law of indices): Consider the following statements. If n is odd and o > e

$$A^{r_1}G^{r_2}A^{r_3}...G^{r_{n-1}}A^{r_n} = A^{o-s}$$
 ... (3.5)

$$G^{\prime_1}A^{\prime_2}G^{\prime_2}...A^{\prime_{n-1}}G^{\prime_n} = G^{o-a}$$
 ... (3.5')

If n is even and o < e

$$A^{\prime 1}G^{\prime 2}A^{\prime 3}...A^{\prime n-1}G^{\prime n}=G^{\epsilon - \epsilon}$$
 ... (3.6)

$$G^{\prime 1}A^{\prime 3}G^{\prime 3}\dots G^{\prime n-1}A^{\prime n}=A_{t=0}.$$
 ... (3.6')

$$(3.5), (3.5'), (3.6) \text{ and } (3.6') \iff G = A_{\overline{G}}.$$

Proof: (\Leftarrow part). For n=2, (3.0) follows from (3.4). To establish (3.6') notice that $G \subset \mathcal{M}(A)$ and R(G) = R(A) implies $A \subset \mathcal{M}(G)$. Hence from (3.1) we have as in (3.4).

$$GA^3 = A$$
. ... (3.4')

(3.6') for n = 2 follows from (3.4').

Similarly repeated application of (3.4) and (3.4') establishes (3.5) and (3.5') for n=3.

The general case both for even and odd n is proved by induction. The \Longrightarrow part is trivial.

4. EIGEN VALUES AND VECTORS

Theorem 4.1: If x be an eigen vector of A corresponding to a non-null eigen value λ , x is also an eigen vector of A_0^2 corresponding to its eigen value $1/\lambda$. The converse of this result is also true.

Proof: Use (3.4') to note that $Ax = \lambda x \Longrightarrow G(\lambda^2 x) = \lambda x \Longrightarrow Gx = \lambda^{-1}x$. The converse similarly follows from (3.4)

g-inverses with this property are briefly discussed in Section 9 of Rao (1967) where a reference is made to the method of construction given by Scroggs and Odell (1966). Scroggs and Odell however virtually require the explicit reduction of A to its Jordan canonical form. Hence, their g-inverse is computationally more difficult compared to $A_{\overline{o}}$ which exists whenever R(A) = R(A). In fact we can claim for $A_{\overline{o}}$

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

some more properties, in addition to what is conveyed by Theorem 4.1. Starting with an arbitrary vector x_1 let $x_1, x_2 = (A - \lambda I)x_1, ..., x_k = (A - \lambda I)^{k-1}x_1$ be a chain of generalised eigen vectors corresponding to the nonnull eigen value λ of A, where k is the least integer for which $(A - \lambda I)^k x_1 = 0$. Consider the subspace $\mathcal{M}(x_1, x_2, ..., x_k)$ spanned by $x_1, x_2, ..., x_k$.

 $\mathcal{M}(x_1, x_2, ..., x_k)$ is obviously invariant under A, that is, $x \in \mathcal{M}(x_1, x_2, ..., x_k) = Ax \in \mathcal{M}(x_1, x_2, ..., x_k)$. We prove

Theorem 4.2: $\mathcal{M}(x_1, x_2, ..., x_k)$ is invariant under $\Lambda_{\overline{G}}$.

Proof: The proof consists in showing that $A_{\overline{c}}x_i \in \mathcal{A}(x_1, x_2, ..., x_k)$ for each i = 1, 2, ..., k, for which one uses (3.4') as in the proof of Theorem 4.1, noting that

$$Ax_i = x_{i+1} + \lambda x_i$$
 for $i = 1, 2, ..., (k-1)$ and $Ax_k = \lambda x_k$. Q.E.D.

Consider now the Jordan canonical representation of matrix A

$$A = L$$

$$\begin{pmatrix} C_1 & 0 & \dots & 0 \\ 0 & C_4 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & C_k \end{pmatrix} L^{-1}$$

where C_t is a lower Jordan matrix of order r_t corresponding to some eigen value λ_t of A. It is well known that C_t is nonsingular if $\lambda_t \neq 0$ and if $\lambda_t = 0$, $R(C_t^n) = \max$ $\{0, r_t - m\}$ for every positive integer m. Hence if $R(A^1) = R(A^1)$ it is clear that each Jordan matrix corresponding to a zero eigen value of A is of rank 0, therefore of order 1, that is the Segre characteristic of A corresponding to a zero eigen value is $\{1, 1, ..., 1\}$ implying thereby that the multiplicity of a zero root is equal to the nullity of A. Let us therefore write

$$A = L \begin{bmatrix} C_1 & 0 & \dots & 0 & 0 \\ 0 & C_1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & C_m & 0 \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix} L^{-1} \qquad \dots (4.1)$$

where each C_i is now assumed to be nonsingular. Consider the corresponding partition of L as $(L_1 : L_2 : \cdots : L_m : L_{m+1})$ and of $(L^{-1})'$ as $(M_1 : M_2 : \cdots : M_m : M_{m+1})$ and use (3.4') to note that

$$AL_{\ell} = L_{\ell}C_{\ell} \Longrightarrow A_{\bar{c}}L_{\ell}C_{\ell}^{2} = L_{\ell}C_{\ell} \Longrightarrow A_{\bar{c}}L_{\ell} = L_{\ell}C_{\ell}^{-1} \quad (i = 1, 2, ..., m).$$

Also Henco

$$M_{m+1}'AL=0 \Longrightarrow M_{m+1}'A=0 \Longrightarrow M_{m+1}'A_{\tilde{G}}=0.$$

$$A_{0} = L$$

$$\begin{bmatrix}
C_{1}^{-1} & 0 & \dots & 0 & J_{1} \\
0 & C_{2}^{-1} & \dots & 0 & J_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & C_{m}^{-1} & J_{m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0
\end{bmatrix}$$
 L^{-1}
... (4.2)

where J, are certain matrices, possibly nonnull.

5. THE SCROOGS-ODELL PSEUDOINVERSE

In this section we establish that the class of g-inverse introduced in Section 2 includes as a special case the Scroggs-Odell pseudoinverse. This indeed is suggested by (4.2) since A_0 in this expression gives the Scroggs-Odell pseudoinverse if only the J_f matrices turn out to be null. We prove

Theorem 5.1 : If $R(A^2)=R(A)$, $A(A^2)^{-}A$ is the Scroggs-Odell pseudoinverse of A,

Proof: We need Lemma 5.1.

Lemma 5.1: $R(A) = R(A^2) \iff R(A) = R(A^m)$ for every positive integer m > 3.

Proof of Lemma 5.1: $R(A) = R(A^2) \iff \mathcal{M}(A) = \mathcal{M}(A^3)$. Let A^2x be any vector in $\mathcal{M}(A^2)$.

 $Ax \in \mathcal{M}(A) \Longrightarrow Ax \in \mathcal{M}(A^2) \Longrightarrow Ax = A^2y \Longrightarrow A^2x \in \mathcal{M}(A^3) \Longrightarrow \mathcal{M}(A^2) \subset \mathcal{M}(A^2)$. Obviously $\mathcal{M}(A^2) \subset \mathcal{M}(A^2)$. Hence $\mathcal{M}(A^2) = \mathcal{M}(A^2)$. This argument carried step by step will show $\mathcal{M}(A^2) = \mathcal{M}(A^m) \Longrightarrow R(A^2) = R(A^m)$ for any positive integer $m \ge 3$ and hence establish Lemma 5.1 since the ' \Longleftrightarrow ' part of the lemma is trivially true.

Lemma 5.1 together with Theorem 2.1 shows that $A(A^3)^{-1}A$ is indeed a ginverse of A. Rest of the proof follows the same lines of argument as in the derivation of expression (4.2).

Observe that if $R(A) = R(A^2)$, $A_R = (A^2)^- A$ is a g-inverse of A which has properties parallel to that of $A_G^- = A(A^2)^-$. In particular, similar to (3.4) and (3.4') we have for A_R^- the following identities

$$A^{\dagger}A_{R} = A, (A_{R})^{\dagger}A = A.$$
 ... (5.1)

Since

 $A_{BB} = A(A^3)^-A$ is both A_B and A_B using (3.4) and (5.1) we have

$$A(A_{RG}^*)^{\dagger}A = A_{RG}^*A = AA_{RG}^*$$
 ... (5.2)

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

This shows A_{RO} commutes with A. We have thus arrived at a simpler proof of the following result due to Engletichl (1966), the necessity part of which is trivially seen to be true.

Theorem 5.2: A necessary and sufficient condition for the existence of a commuting g-inverse of A is that

$$R(A) = R(A^2).$$

It may be noted that A_{RG}^* is indeed the unique reflexive commuting inverse of A which Englefield denotes by A_R .

We shall now prove

Theorem 5.3: And is a polynomial in A with scalar coefficients.

Proof: Let the polynomial equation of minimum degree (p) satisfied by A be written in the form

$$\Lambda' = a_{r+1}\Lambda^{r+1} + a_{r+2}\Lambda^{r+2} + ... + a_{n}\Lambda^{p}$$
 ... (5.3)

where clearly $r \ge 1$. Multiplying both sides by $(A_{RC})^{r+1}$ we have

$$A_{RO}^- = a_{r+1} A A_{RC}^- + a_{r+1} A + ... + a_p A^{p-r-1}$$
.

Honce

$$AA_{R0}^{-} = a_{r+1}A + a_{r+2}A^{2} + ... + a_{r}A^{r-r}$$

and

$$A_{RO}^- = (a_{r+1} + a_{r+1}^2)A + (a_{r+3} + a_{r+1}a_{r+2})A^2 + (a_s + a_{r+1}a_{s-1})A^{s-r-1} + a_sA^{s-r}.$$
 (5.4)

This completes the proof of Theorem 5.3. Incidentally,

$$A = A(A_{\bar{p}c})A$$

is a polynomial equation of degree p-r+1 satisfied by Λ , which contradicts our assumption regarding the degree of the minimum equation for Λ unless r=1. Hence r=1 and one may rewrite the minimum equation (5.3) in the form

$$A = A^2 P(A) \qquad ... (5.5)$$

where $P(A) = a_1I + a_2A + ... + a_nA^{p-1}$.

Theorem 2 of Pearl (1966) shows that the Moore-Penrose inverse A* when it commutes with A can be oxpressed as a polynomial in A with scalar coefficients. That Pearl's result follows as a corollary to Theorem 5.3 is clear once it is recognised.

that, under the assumed conditions, A^+ is identical with A_{R0}^- , the unique reflexive commuting g-inverse of A.

Let S(A) denote the subalgebra generated by A. We shall prove

Theorem 5.4: A necessary and sufficient condition for S(A) to contain a g-inverse of A is that

$$R(A) = R(A^2).$$

Proof: Since each member of S(A) commutes with A the necessity part is seen to follow from Theorem 5.2. Theorem 5.3 shows the condition is sufficient.

The following result is easy to establish.

Theorem 5.5: If $R(A) = R(A^2)$, each g-inverse in S(A) can be expressed as

$$A_{RC}^{-}+c[I-AP(A)]$$

where c is a scalar and P(A) is as defined in (5.5).

6. Some remarks on conditions (3.2) and (3.3)

It is easily seen that $G = (A^1)^-A = A_A^-$ satisfies Theorem 3.1. It also satisfies Theorem 4.1 with A' and G' replacing A and G of the theorem. It seems therefore interesting to speculate if (3.2) and (3.3) holding for all positive integers implies that G is either A_A^+ or A_C^+ . The following theorem provides only a partial answer.

Theorem 6.1: If (3.2) holds good for all positive integers m, then the reciprocal of every nonnull eigen value of Λ is an eigen value of G.

Proof: Let $G^k+a_1G^{k-1}+...+a_kI$ be the minimum polynomial for G.

Then

$$A^{k}(G^{k}+a,G^{k-1}+...+a,I)A^{k}=0.$$

Hence using (3.2) we have

$$A^{k+a}A^{k+1}+...+aA^{2k}=0. ... (6.1)$$

Let x be an eigen vector of A corresponding to its nonnull eigen value λ , then

$$\lambda^{k}(1+a_{1}\lambda+...+a_{k}\lambda^{k})x=0 \qquad ... (6.2)$$

which implies $1+a_1\lambda+...+a_k\lambda^k=0$ since $\lambda^k\neq 0$ and $x\neq 0$. Hence $\mu=1/\lambda$ satisfies the equation

$$\mu^{k} + a_1 \mu^{k-1} + ... + a_k = 0.$$
 ... (6.3)

This suggests $1/\lambda$ is an eigen value of G. If (3.2) and (3.3) both hold good for all positive integers m, every nonnull eigen value of A is the reciprocal of an eigen value of G and vice versa.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

REFERENCES

- ENGLEFIELD, M. J. (1990): The commuting inverses of a square matrix. Proc. Camb. Phil. Soc., 62, 607-671,
- MITEA, S. K. (1908): On a generalised inverse of a matrix and applications. Sankhya, Series A, 30, 107-114
- PEARL, M. H. (1966): On generalised inverse of matrices. Proc. Camb. Phil. Soc., 62, 673-677.
- Rao, C. R. (1962): A note on a generalized inverse of a matrix with applications to problems in mathematical statistics. J. Roy. Stat. Soc., B, 24, 162-168.
- ——— (1967): Calculus of generalized inverse of matrices, Part I: General theory. Sankhyā, Series A, 29, 317-342.
- Schools, J. E. and Odell, P. L. (1966): An alternative definition to the pseudoinverse of a matrix, J. SIAM, 14, 798-810.

Paper received : April, 1968.