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SUMMARY. Nocessary and muflicient conditions aro obtained for a matrix A to havo a g-inverse
with rows and columas belonging to spooifiod lincar manifolls. For o square matrix A,  g-invorso, with
aolumas bolonging to the linoar mani fold gonorated by the columns of A, is denoted by Az Buch a g-inverse

oxista if and only if R(A) = R(:1%). Tho foliowing propostios of A ore ostablised : (a) Agwm ALN)"
(b) For any positive integor m.(Ag)= providos & rofloxivog-invorsoof A=, (c)1f x bo an oigra voctor corroa-
ponding to anonnulloigon value A of A, Z is also aa sigon veetor of Ay correrponding ta its oigen valuo 1/1.
Tho convorso of thia result is oleo truo. (d) A spocial choice of (A?) = (A°)°4 lcads to Ag = A(A)A
which is uniquo irronpoctive of tho choico of ()~ and i in fact sama as tho 8 roggs-Odell prcudoinvorse

(J. SIAM 1006} of 4. When R(A) = R(1%) thisindoed is a much simplor way of calculating the Srogga.
Quell psoudoinverso compared to the mothod indicated by ils authora. {r) A(1")=A belongs ta the
subalgobra gonerated by A-
1. Notatioxs

In this paper we consider matrices defined over the complex field. The fol-
lowing notations will be used throughout the paper. For a matrix A,

I(A) represents the rank of A,

AH(A) represents tho linear spaco generated by the columns of A4,

A~ represents a g-inverse as defined by Rao (1962, 1067), and

A7 is a refllexive g-inverso of A as defined by Rao (1067),

A is a symbol introduced in this paper to indicate a g-inverso of A
whose columns are in J/(A).

A7 indicates a g-inverse of A whoso rows belong to the linear manifold
generated by rows of A.

If B be a matrix,

B C #({(A) indicates that colurans of B belong to /(A). The symbol C in
other cases is used to denoto set inclusion.

2. A OLASS OF g-INVERSE OF SQUARE MATRIOES
While looking for a g-inverse of a mntrix .1 one sometimes enquires if A
hasa g-inverso G with belonging to a specificdd linear manifold JA(P), and
rows belonging to a manifold L#(Q"), that is a G of the form G = PCQ. Tho anawer
to this is contained in the following theorem.

323




SANKHYA : TI{E INDIAN JOURNAL OF STATISTICS : Sertes A
Theorem 2.1 : Given matrices P and Q, a nccessary and sufficient condition
Jor A lo have a g-inverse of the form G = PCQ is that
R(QAP) = R(A). . (20)

Proof : Necessity follows from the definition of a g-inverse as given by Rao
(1967) since, if G =PCQ bo a g-inverso of A, A = AGA = AGAGA. llenco
R(d) = RAGAGA) = RAPCQAPCQA). This implics I(QAP) > R(A). Trivially
R(QAP) € R(A). llenco RQAP) = ().

To prove sufliciency make repeated use of Corollary 1a.3 of Mitra (1968)
to check that under condition (2.1) QAP)Q is a g-inverso of A. In fact any
g-inverse of the form G = PCQ is always expressiblo as P(QAP)-Q. TFor

APCQA = A = QAPCOAP = QAP = C = (QAP)".

Corollary 2.1: Given @ malrix P, @ necessary and sufficient condition for A to

have a g-inverse of the form G = PC is that
R(AP) = R(A). . (22)

Proof : Take @ = I in Theorem 2.1.

Of special interest is the caso where (1 is square and P is A. By Corollary
2.1, A has o g-inverso belonging to _fd-) if and only if R(A?) = R(A). For the
convenicnce of futuro reference such a g-inverse whenever it exists will be indicated
by A3.

3. REFLEXIVITY AND A STRONGER PROPERTY

Obviously R(Ag) = R(A). Hence by Theorem 2a of Mitra (1968) Ajg is a re-
flexive inverso of /A, that is

Agddg = Ag, AAzA = A, e {(30)
The following theorems present some useful propertics of Ag.

Theorem 3.1: For any posilive integer m, (Ag5)™ is a reflexive inverse of A™,
that is, if G = A3,

AnGmAm = Am . (3.2)
GrAnGm = Gm e (3.3)

Proof : Sinco G = AC,
AG*=AGAC = AC = G. - (38

(3.2) and (3.3) follow onco tho left hand side expressions nro simplificd by repeated
uso of (3.4), using (3.1) in tho final step of simplification. A slightly more general
version 8 given below .
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Let ry, 7y ..., 7, bo & sequence of positive integers, 0 = ri+ryt.., e =1+
re+... . Thesummation inois taken over all r/'s in the scquenco with an odd subseript
i and similarly the summation in e is taken over all r, in the scquence with an even
subscript.

Theorem 3.2 (A partial law of indices) : Consider the following alalements.
Ifnisoddando > ¢

ANGAN .. GIA™ = Ao-e e (3.5)

G"A"G" .., AGT = G~ e (3.5
If n ts even and 0o << e

ANGA" .. AIG = G~ . (3.6)

G AG™ ... G IA™ = A, . (3.6)

(3.6), (3.5), (3.6) and (3.6') &= G = Aj3.

Proof : (&&= part). For n = 2, (3.0) follows from (3.4). To establish (3.8)

notico that G C /() and R(G) = R(A) impliecs 4 C JH{G). Henco from (3.1)
we have as in (3.4).

GAY= 4. o (347

(3.6") for n =2 follows from (3.4).

Similarly repcated application of (3.4) and (3.4°) establishes (3.5) and (3.5%)
for n = 3.

The general case both for even and odd n is proved by induction. The ==
part is trivial,

4. EIGEN VALUES AND VECTORS

Theorem 4.1: If & be an eigen veclor of A corresponding to a non-null eigen
value A, x is also an eigen vector of Ag corresponding to ils eigen value 1/A.  The converse
of this resull 1is also true.

Proof : Uso (3.4} to note that Ax = Az = G(A’r) = Ax =) Gx = A'x.
The converse similarly follows from (3.4)

g-inverses with this property are briefly discussed in Scetion 0 of Rao (1967)
where a reference is mado to tho method of construction given by Scroggs and Odell
(1966). Scroggs and Odell howover virtually require the explicit reduction of A to
ita Jordan canonical form, Ilence, their g-inverso is computationally more difficult
compared to Az which oxists whenever R(%) = R(A). In fact wo can claim for A5
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somo moro propertics, in addition to what is conveyed by Theorem 4.1, Starting with
an acbitrary vector x, let o), &y = (A—A@)x,, ..., 2x = (A—2AN)¥-'x,; be o chain of
generalised eigen vectors corresp g to tho Il cigen value A of A, where k is
the least integer for which ({1—AlI)*r, = 0. Consider tho subspaco JA{x,, Ty, ..., Tk}
spanncd by x,, &y, ..., Tr.

Xy, Ty, ..., Tx) is obviously invariant under A, that is, xe M), Xy, ..., Tx)
= Axc A(x), Xy, ..., Tx). We prove

Theorem 4.2: A, Ty, ..., Tx) 18 invariant under Ag.
Proof : Tho proof consists in showing that Azries((x;, Xy, ..., Tx) for each
i=1,2, ..,k for which ono uses (3.4') as in tho proof of Theorem 4.1, noting that

Ary =X +Ax, for = 1,2, ..., (k—1) and Axy = Ar. Q.E.D,

Consider now tho Jordan canonical representation of matrix A

¢, 0 . o

0 0 . Ck

whero C; is a lower Jordan matrix of order v corresponding to some eigen value A¢
of A. It is well known that €y is nonsingular if A; # 0 and if A= 0, R(C") = max
{0, ry—m) for every positive integer m.  Henco if R{A?) = R(.1) it is clear that each
Jordan matrix corresponding to a zero cigen value of /1 is of rank 0, therefore of order
1, that is the Segre charaoteristic of A correaponding to a zero eigen value is(l, 1,...,1)
implying thercby that the multiplicity of a zero root is equal to the nullity of (1. Let
us thereforo write

o
]

-
°
)

A=L| . A P - (81)
o o0 .. C. 0
te o .. o o

whero cach €, is now assumed to be nonsingular. Counsider tho corresponding parti-
tion of Las (L i L} +++ } Lyt L,,y) and of (L) as (M, M,: .. MM ,) and
uso (3.4°) to noto that
Al = LiCy == AGL(} = LCi= Azl = LC* (1=1,2,..,m).
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Also M AL = 0= M, A = 0= M, Az =0.
Henco
o0 0 J,

[} C;t
Ag=L . . . . L o (4.2)

0 0 .. C} J.

o 0 0 0

=

J,

whore J, are ccrtain matrices, possibly nonnull,

5. Tne Scroc63-ODELL PSEUDOINVERSE

In this scction we establish that the class of g-inverso introduced in Section
2 includes as o special caso tho Scroggs-Odell pscudoinverse. This indced i3 suggested
by (4.2) sinco A in this expression gives the Scroggs-Odell pseudoinverso if only the
Jj matrices turn out to Lo null. W prove

Theorem 5.1: If R(A?) = R(A), A(A3)~A is the Scroggs-Odell pseudoinverse
of A.

Proof: We need Lomma 6.1,

Lemma 5.1: R(A) = B(A?) & R(A) = R(A™) for every positive inleger
mp 3,

Proof of Lemma 6.1 1 R(A) = R(AY) & JA) = A(AY). Let A%z bo any
vector in JJ(A?).

Az e M(A) == AT e HA) = Ar = Aty == A%w = A% =) A're A1)
= HANC H(A3). Obviously (A% C (A%). Henco JH(AY) = J(A%). This
argument earried step by step will show o s(A?) = S(Am) == K(A?) = R(A™) for
any positive integer 2 3> 3 nand hence establish Lemma 5.1 since the ‘<" part of the
lemma is trivially true.

Lemma 6.1 together with Theorem 2.1 shows that A(A%)~1 is indeed a g-
inverso of /1. Rest of tho proof follows the same lines of argnment as in the derivation
of expression (4.2).

Observo that if R(A) = R(A?), Ap = (A%~ .1 is a g-inverso of A which has
propertics paralle]l to that of Ag = A(A%~. In particular, similar to (3.4) and (3.4°)
wo havo for A5 the following idontitics

Az = A, (A1 = A e (8.1)
Since Agg = A(A%~A is both Az and AG using (3.4) and (5.1) wo have
A(AjoPA = Aged = Al - (8.2)
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This shows .13, commutes with . Wo have thus arrived at a simpler proof of the
following result duo to Englefield (19066), tho nocessity part of which is trivially scen
to be true,

Theorem 5.2 : A necessary and sufficient condition for the existence of a com-
muling g-inverse of A is that

R(A) = RAY).

It may bo noted that Ajg is indeed the unique reflexive commuting inverse of A
which Engleficld donotes by Ag.

Wo shall now prove

Theorem 6.3 : <gg 18 a polynomial in A with scalar coefficients,

Proof : Let the polynomial equation of minimum degres (p) satisficd by A
be written in tho form

A" = @ A 8y AT+ 0,47 e (6.3)
where clearly r > 1. Multiplying both sides by (Azc)"t! we have

Azo = ary Adgetar,sd+...+a, 40771,
Honce
AAzy = a, A +a,,,A'+...+a,A"",
and
Ajg = (aryatol ) A HarsHar,0r,)A0
+{a,+ar,,a, YA a AP e (5.4)
This completes tho proof of Theorem 5.3, Incidentally,
A = A{Ap)A
ia a polynomial equation of degree p—r+ 1 satisfied by A, which contradicts our assump-

tion regarding the degree of the minimum equation for A unlessr = 1. Hence r =1
and one may rowTite tho minimum equation (5.3) in the form

A = A*P(A) . (5:5)
where P{A) = a,]+-a;A+...+a,A7-

Theorem 2 of Pearl (1966) shows that the Mooro-Penroso inverse A+ when it
commutes with A can bo oxpressed as & polynomial in . with scalar coeflicients.
That Pearl's result fullows as a corollary to Theorem 5.3 ia cloar onco it is recognised
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that, under tho assumed conditions, A+ is identical with Azg, the uniquo reflexive
commuting g-inverso of 1.

Let S(A) denoto the subalgcbra generated by A.  Woe shall prose

Tt b4: A y and sufficient dition for 8(A) to conlain o
g-inverse of A is that

R(A) = R(AY).
Proof : Since cach member of ${A) coramutes with /1 the necessity part is
acen to follow from Theorem §.2. Theorem 5.3 shows tho condition is suflicient,
The following result is ensy to establish,
Theorem 5.5: If R(A) = R(A?Y), cack g-inverse in S(A) can be expressed as

Ang+e[I—AP(A)]

where ¢ is a scalar and P(A) is as defined in (5.5).

6. SOME REMARKS ON CONDITIONS (3.2} AND (3.3)

It ia easily scen that G = (A%-A =5 satisfies Theorem 3.1. It also
satisfies Theorem 4.1 with A’ and G’ replacing [ and G of the theorem. It scems there-
fore interesting to speculate if (3.2) and (3.3) holding for all positive integers implies
that G is cither Az or Az. Tho following theorem provides only a partial answer.

Theorem 6.1: If (3.2) holds good for all posilive integers m, then the reciprocal
of every nonnull eigen value of A is an eigen value of G.
Proof : Let G*4a,G¥-1+4-...+ax] bo tho minimum polynomial for G.
Then
ANGE+a,GF ...+ a ) AF = 0,
Hence using (3.2) we have
A AP fa,d% = 0. o (6.)
Let & bo an cigen vector of 41 corresponding to its nonnull eigen value A, then
AKI4aA 4. 4@ ke =0 . (6.2)
which implies 14-a,A4...4a;A* = 0 since A% £ 0 and & 3 0. Ilence u = 1/A satis-
fics tho equation
A aydid oy = 0. . (8.3)
This suggests 1/A is an eigen voluo of G.  If (3.2) and (3.3) both hold good for all posi-

tive integers m, every nonnull cigen value of A ia tho reciprocal of an eigen value of G
and vico versa,
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