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Abstract

Joint analysis of longitudinal and event-time outcomes is a major research topic in

the last two decades, mainly due to its successful applications in various disciplines

including medical studies, biological studies, environmental studies, economics and

many others. When a group of individuals are followed for a period of time points

to study the progression of some event(s) of interest, some related variables (either

time-varying or time-invariant) are also measured over time from the subjects. By

jointly modeling the longitudinal outcomes and the time of occurrence of the event(s)

of interest, one can (i) study the progression of the outcomes over time, (ii) assess the

effects of the longitudinal outcomes on the event-time and (iii) assess the effects of

the covariates on the evolution of the longitudinal outcomes and the event-time. In

this thesis, we develop different Bayesian models and the computational algorithms

for jointly analysing three longitudinal biomarkers and one event-time. Our work is

motivated by a clinical experiment conducted by Tata Translational Cancer Research

Center, Kolkata, where a group of 236 children, detected as leukemia patients, were

treated with two standard drugs (6MP and MTx) nearly for the first two years, and

then were followed for the next three years to see if there is a relapse. In our first

work we develop a Bayesian joint model for simultaneously imputing the missing

biomarker values and for dynamically predicting the non-relapse probability for each

patient. In the second work, we develop a Bayesian quantile joint model to assess

the effects of the biomarkers on the relapse-time at different quantile levels of the

longitudinal biomarkers. Finally, in the third work, we develop a Bayesian latent class

joint model for identifying the latent classes with respect to one of the biomarkers and

to study the evolution of different biomarkers across different latent clusters. We also

dynamically predict the median non-relapse probabilities for different latent classes

based on the estimated model parameters. All our works are supported by extensive

simulation studies and real applications to leukemia maintenance study.
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1

Chapter 1

Introduction

1.1 Longitudinal Data

Longitudinal data (also known as panel data) are repeated observations of the same

variable(s) over different time points. In a balanced data all subjects are measured

at all time points with no missing observation. On the other hand, in an unbalanced

data (or, irregular setting) different individuals are measured at different time points,

and therefore, the number of measurements differ from one individual to the other.

Table 1.1 shows the data structure for irregular longitudinal response (Y ), that is

measured over m time points for n subjects, with “×” denoting a missing observa-

tion. Note that in the “Time” column the number of distinct time points is m, but

for “Subject 1” and “Subject 4” the total number of measurements are τ1 and τ4,

respectively, which are smaller than m. In a balanced setting all the columns for

subjects would look like the column for “Subject 2” with no missing value. Thus,

a general representation of longitudinal response Y , for the i-th subject is given by

Y i = (Yi1, Yi2, . . . , Yiτi)
T measured at time points (ti1, ti2, . . . , tiτi)

T , respectively, for

i = 1, . . . , n. Longitudinal data are widely observed in various disciplines, including

medical studies, biological experiments, agricultural studies, environmental studies,

marketing, finance and many others. In medical studies CD4 counts are measured

longitudinally for HIV infected people (Wang and Taylor, 2001 [96]); in econometric

studies variables measuring the financial health and the physical health of the older

individuals are measured longitudinally (Biswas and Das, 2021 [9]); in agricultural

studies yield of maize is measured longitudinally across different plots (Wang et al.,

2019 [95]); in market studies, ownership of financial products across households are

measured over time (Bassi, 2017 [7]); in environmental studies long-term effects of

air pollution levels on blood pressure are measured over time (Adar et al., 2018 [2]);

in biological experiments tumour growth is measured longitudinally for understand-

ing the dynamics of cancer in mice (Zavrakidis et al., 2020 [104]).

In longitudinal data it is quite common that the observations from the same sub-

ject are correlated across different time points, even though the subjects themselves

are independent. Thus it makes the traditional approach of modeling each outcome

with independent and identically distributed normal invalid. To alleviate this issue,
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TABLE 1.1: Longitudinal data structure for the irregular setting with n
subjects measured at m time points for a single response variable (Y ).

Index Time Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 · · · Subject n

1 t1 Y11 Y21 × × Y51 · · · Yn1

2 t2 × Y22 × × Y52 · · · Yn2

3 t3 Y12 Y23 × × Y53 · · · Yn3

4 t4 Y13 Y24 Y31 × Y54 · · · Yn4

5 t5 × Y25 Y32 Y41 Y55 · · · Yn5

6 t6 × Y26 Y33 Y42 Y56 · · · Yn6

7 t7 Y14 Y27 Y34 Y43 × · · · Yn7

8 t8 × Y28 Y35 Y44 × · · · Yn8

9 t9 Y15 Y29 Y36 Y45 × · · · Yn9

...
...

...
...

...
...

...
...

...

m tm Y1τ1 Y2m × Y4τ4 × · · · Ynm

one could assume Y i to be independent and identically distributed as Nτi(µi,Σ),

where µi is the τi × 1 mean vector and Σ is covariance matrix of dimension τi × τi.

Modeling the mean vector µi is a classical regression problem, where as complexity

arises when attempting to model the covariance matrix Σ for which the structure is

unknown. In that case the total number of parameters to be estimated is τi(τi+1)
2 .

Even in the balanced cased (i.e., τi = m), it is not uncommon to come across the

situation where n < m(m+1)
2 . This leads to “smaller sample larger parameter” in high-

dimensional Statistics literature. Laird and Ware (1982) [54] used random effects

model and developed a likelihood based estimation approach for modeling longi-

tudinal data. While this approach is handy but it could not explain the unknown

covariance structure of the variable(s) of interest. A more flexible approach was

proposed in Pourahmadi (1999, 2000) [66] [67], where the author used Cholesky

decomposition to ensure the positive definiteness of the estimated covariance matrix.

A non-parametric approach of estimating the large covariance matrices was shown

in Wu and Pourahmadi (2003) [99]. In Daniels and Pourahmadi (2002) [18], the

authors proposed prior distributions that shrink the underlying unknown covariance

matrices to some known structures. Pourahmadi’s approach was generalized in Pan

and Mackenzie (2003) [62] for univariate longitudinal data in irregular setting. Das

et al. (2013) [24] used Pan and Mackenzie’s (2003) [62] methods for modeling

longitudinal biomarkers in gene mapping problem.

For bivariate and/or multivariate setting, the problem is more severe since one

has to handle the longitudinal dependence as well as the inter-biomarker dependence

over time. A treatment for this issue was proposed in Sy, Taylor and Cumberland

(1997) [87] where they used a parametric stochastic model for CD4 T-cells and beta-2
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microglobulin in AIDS data. This approach can also handle unbalanced longitudinal

data. Theibaut et al. (2002) [88] proposed a linear mixed model for analysing

bivariate longitudinal data.

A bivariate autoregressive process was used for detecting prescribing change in

two drugs with correlated errors in Sithole and Jones (2007) [86] to model bivariate

longitudinal data in regular setting. Das et al. (2011) [22] generalized this approach

for the irregular sparse longitudinal data. Random effects models to capture longi-

tudinal dependence for multivariate longitudinal data were proposed in Bandyopad-

hyay et al. (2010) [6], Ghosh and Hanson (2010) [36] and the references therein.

In longitudinal studies it is not uncommon that the subjects enter the study at

different times and/or drop out of it prematurely. This yields unequal number of

measurements per subject due to missing values. Following Rubin (1976) [82] the

missingness of data is classified into three categories, i.e. (i) missing completely

at random (MCAR) (Ibrahim and Molenberghs, 2009 [44]) (ii) missing at random

(MAR) (Gabrio et al., 2021 [31]) and (iii) missing not at random (MNAR) (Wang and

Hall, 2010 [94]). For the first two cases the dropout is considered as non-informative

whereas for the third case it is informative. For handling the informative missing

values one has to use the methods proposed in Daniels and Hogan (2008) [17].

1.2 Event-time Data

Event-time data refer to variables that report whether an event of interest has oc-

curred or not, and in addition the time of the occurrence of the event (if any) for

each individual.

In event-time data, the event of interest might be observed for a subset of subjects

and for the others we will have no data on the event-times since the study ends at

some time point. The latter group of individuals are said to be censored at the time

point when the study ends. In event-time data we may come across the following

situations, (i) we have some dropouts for which we do not have the chance to observe

the event of interest (ii) event of interest did not occur for some subjects during the

period of study (iii) event has already occurred before the study for some individuals

but the exact time of occurrence is unknown (iv) event occurs in certain time interval

during the study but the exact time of the occurrence of event is not reported. The

first two cases are called right censoring (Lagakos, 1979 [53]), the third one is left

censoring (Gomez et al., 1992 [37]) and the last one is called interval censoring

(Rodrigues et al., 2018 [81]).
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FIGURE 1.1: Different types of censoring for subjects participating in
a longitudinal study (here, “stayed” means stayed event-less)

Let Ti and Ci, respectively, denote the actual event-time and the censoring time

of the i-th subject. If Ti < Ci then we define the indicator δi to be 1 (event-time is

observed), otherwise δi to be 0 (individual is censored). We define si = Ti ∧ Ci and

therefore event-time data typically consist of (δi, si).

Let the probability density function of the true event-time Ti be denoted by fTi(.).

Then Si(t) is the probability that the event of interest has not occurred until time

point t, and we will refer to this quantity as the survival probability as time t and is

given by equation (1.1).

Si(t) = Pr(Ti ≥ t) =

∞∫
t

fTi(x)dx; t > 0. (1.1)

The hazard function, denoted by λi(t), is defined as follows,

λi(t) = lim
∆t→∞

Si(t)− Si(t+∆t)

∆t Si(t)
; t > 0. (1.2)

This implies that Si(t) = exp
(
−

t∫
0

λi(x)dx
)
. =⇒ fTi(t) = Si(t)λi(t).

In Statistics literature there are several parametric and non-parametric approaches

to model hazard functions. The most commonly used approaches are (i) Cox Propor-

tional Hazards (PH) model (Cox, 1972 [16]) and (ii) Accelarated Failure Time (AFT)

model (Zeng and Lin, 2007 [106]); (Mustefa and Chen, 2021 [60]). In this thesis
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we consider the PH model since its fits well in our setting of jointly modeling the

longitudinal and event-time outcomes. In the following chapters we will perform our

analyses based on Cox PH model. A Cox PH model is given as follows:

λi(t) = λ0(t)× exp

( P∑
p=1

βpXip

)
, (1.3)

where λ0(t) denotes the baseline-hazard, usually modeled by Weibull hazard function

(Sahu et al., 1997 [83]), B-spline (Devarajan and Ebrahimi, 2011 [25]; Rizopoulos,

2012 [77]) or wavelets (Moundele et al., 2019 [59]). Here, Xips are p baseline co-

variates and βs are the corresponding regression coeffiecients. Both the covariates

and the coefficients can either be time-invariant (Verweij and Houwelingen, 1995

[93]) or time-varying (Zhang et al., 2018 [108]; Tian et al., 2005 [89]), as a gener-

alization of the Cox PH model.

1.3 Joint Modeling of longitudinal and event-time data

This thesis will focus on a particular class of models, known as the joint modeling

of longitudinal and event-time data. During the past two decades a vast literature

has been developed on this class of models mainly due to its practical usefulness and

successful applications in various disciplines(mainly in the medical studies). When a

group of individuals are followed over time for monitoring the progression of one (or

more) event(s) of interest, joint modeling is extremely useful for a powerful Statisti-

cal inference. The progression of event(s) typically depends on some outcomes mea-

sured longitudinally from the individuals, and therefore, it is of interest to measure

the effects of these outcomes on the event-time. In a classical framework, Prentice

(1982) used the longitudinal outcomes as time-varying covariates and used a Cox

PH model for modeling the event-time. However, since the longitudinal outcomes

are measured with some measurement errors this modeling approach results in the

biased estimates and hence provides inefficient inference. Moreover, for such setting

it is also important to model the trajectories of the biomarkers, and also to assess the

effects of the covariates on the progression of the longitudinal outcomes as well as on

the event-time. In a joint analysis of longitudinal and event-time data there are three

major research interests, i.e. (i) to model the evolution of the longitudinal outcomes,

(ii) to assess the effects of the longitudinal outcomes on the hazard function (measur-

ing the instantaneous risk of occurrence of the event), and (iii) to assess the effects of

the covariates on the evolution of the longitudinal and the event-time processes. The

effectiveness of joint modeling has been established and verified in various papers

published in the last two decades.

Joint modeling of a single longitudinal outcome and the time of occurrence of a

single event has been proposed in Henderson (2000) [40], Wang and Taylor (2001)
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[96], Guo and Carlin (2004) [39]. Models for jointly analysing multiple longitu-

dinal outcomes and a single event-time have been proposed in Lin et al. (2002)

[55], Brown et al. (2005) [13], Chi and Ibrahim (2006) [15], Rizopoulos and Ghosh

(2011) [79]. These models have also been extended to the occurrence of multiple

events (competing events) in Williamson et al. (2008) [97], Hu et al. (2009) [42],

Huang et al. (2011) [43]. Also based on such joint models personalized predic-

tive models have been proposed in Proust-Lima and Taylor (2009) [70], Rizopoulos

(2011) [76], Tomer et al. (2019) [90], Papageorgiou et al. (2018) [63]. We note

that although most of the joint models proposed in the literature are motivated by

some medical applications, there are some works where such models are used for

gene mapping (Das et al., 2012 [23]) or for some other biological research interests

(Das, 2016 [19]). For extensive reviews one may see the review articles by Hogan

and Laird (1997) [41], Tsiastis and Davidian (2004) [91], Gould et al. (2015) [38].

Consider a single outcome measured longitudinally at T different time points

from a set of N subjects, and let Yit denote the outcome from the i-th subject at the t-

th time point. In addition, there are p covariates x1, x2, . . . , xp, which are either time-

dependent or time-invariant. For modeling the longitudinal outcome traditionally a

linear mixed model is used as follows:

Yit = XT
itβ + ZT

itγi + ϵit, (1.4)

where Xit = (x1it, x2it, . . . , xpit)
T and β is the vector of regression coefficients. Also

Zit is the vector (similar to Xit) corresponding to the set of covariates with random

effects (this set is typically a subset of the set of all predictors) and γi is the vector of

random effects which capture the longitudinal dependence among the measurements

from the same subject collected at different time points. We assume that γi ∼ N(0,Σ),

and the random errors ϵits are iid N(0, σ2).

The hazard function is modeled using the Cox PH model as follows:

λi(t) = λ0(t)× exp

(
ψµit +

P∑
p=1

δpxip

)
, (1.5)

where λ0(t) is the baseline hazard function, and µit = XT
itβ + ZT

itγi. The coefficient

ψ measures the association between the longitudinal outcome and the hazard. In

the medical applications, equation (1.4) models the progression of a biomarker (CD4

count for HIV patients) and the time to an event (death or relapse) is modeled by

equation (1.5) which considers the dynamics of the biomarker appropriately. The

joint probability distribution of the longitudinal outcomes Y i = (Yi1, .., YiT )
T and the

event-time si is then given as follows:

f(Y i, si) =

(
T∏
t=1

P (Yit|β, γi)

)
×
[
{λi(si)}δi exp

(
−
∫ si

0
λi(t)dt

)]
, (1.6)
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where P denotes the probability distribution of the longitudinal outcome as specified

by the model given in equation (1.4). In Chapters 2, 3 and 4, we will introduce

different versions of this joint model depending on the problems on interest.

In this thesis, we develop Bayesian models for the joint analysis of multivariate

longitudinal outcomes and an event-time with an application to a clinical experiment

conducted for the children (from the eastern part of India) detected as leukemia

patients.

1.4 Acute Lymphocytic Leukemia

Acute Lymphocytic Leukemia (ALL), also known as Acute Lymphoblastic Leukemia,

is quite rare for adults, but it is possibly the most common type of cancer diagnosed

among children. It is usually developed from immature white blood cells (WBC) that

are the key components to our immune system. ALL is “acute” in the sense that it

progresses rapidly by creating immature blood cells. Although ALL is not inherited,

it is known that it occurs due to mutations in the DNA (Yokota and Kanakura, 2016

[102]). The most effective drugs used for the treatment of ALL were discovered in

the 1960s when the first multi-drug chemotherapy regimens increased its survival

rate quite significantly.

Globally, ALL is the main cause of death from cancer among children (Belson

et al., 2007 [8]). In 2015, a total of 876,000 confirmed cases of ALL resulting in

110,000 death were globally reported. Even for the developed countries (e.g. the

United States) the prevalence of ALL is quite alarming. In 2019, there were (an

estimated) 107,620 people living with ALL in the United States as reported by the

National Cancer Institute (NCI). Pui and Evans (2013) [71] reported that the survival

rate for ALL has increased from 0.10 (in 1960) to 0.90 (in 2010) in most of the

developed countries, in particular, in the United States. This is due to success in the

maintenance therapy used for treating leukemia patients. Patients are treated for

the first one or two years, and are then followed for a longer period (approximately

three years) with an expectation that a relapse should not occur after the follow-up

period. Pui et al. (2018) [72] reported that the survival rates for ALL are still less

than 0.60 in most of the African countries, and are less than 0.70 in most of the

Asian countries. More recently, Abdelmabood et al. (2020) [1] analyzed a dataset

from Egypt, and estimated the survival rate for ALL as 0.63. They recommend an

urgent need for the modification of the current chemotherapy regimens so that the

treatments are suitable for local conditions. In fact, they also recommend a better

government healthcare globally, and in particular, for Egypt.

Despite the fact that the survival rate for ALL is unsatisfactorily low in India,

there is a lack of consensus on its estimate. Approximately, 75,000 new cases of ALL

are diagnosed (among children) every year in India, and more than 80% of these
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cases occur in families with low income. Arora and Arora (2016) [4] mentioned

that a treatment abandonment (which typically occurs due to the lack of financial

support) may result in the lack of data for which the survival rate cannot be estimated

accurately in India. Varghese et al. (2018) [92] analyzed data from the Southern

part of India, and reported the overall survival rate for ALL as 0.40; with an event-

free survival rate as 0.28. Note that “event-free survival” refers to survival without a

relapse (recurrence of cancer) or other related complications.

Most of the existing works on joint modeling (with medical applications) focus

on the survival (no death) of the patients, which is of course an important event to

note. However, for assessing the effectiveness of the treatment it is equally important

to note the time-to-relapse (if any). Multiple recurrences definitely result in adverse

effects on the patients’ health conditions (and result in death eventually), and there-

fore it is extremely important to identify the biomarkers associated with the relapse

time, and also to assess the effects of the drugs on those biomarkers.

1.4.1 Motivating Dataset

Tata Translational Cancer Research Center (TTCRC) in Kolkata conducted a study in

which 236 children, suffering from ALL, were treated with advanced chemotherapy.

The study started in 2014 and ended in 2019. As a part of the Tata Medical Center

(TMC), TTCRC develops advanced treatments for the cancer patients in the eastern

part of India. In the current study, children (patients) were treated with two standard

drugs, i.e. 6-mercaptopurine (6MP) and methotrexate (MTx). The median duration

of the treatment was 92 weeks. Ethical approval was obtained from TMC-Institutional

Review Board.

The starting time and the end time of the study were fixed, but all the 236 children

did not join the program at the same time point, and the number of visits were

also different for different children. Based on the total WBC count (at presentation)

and the risk-group specified by the National Cancer Institute (NCI), patients were

treated with different drug doses at the beginning. After that the subjects were tested

for WBC count, ANC, and platelet count in the subsequent time points (bi-weekly,

or once in a month). The median number of visits was 41. After the end of the

treatment patients were followed at most for the next 178 weeks. If there was a

relapse either during treatment or in the follow-up period then the time-to-relapse

was noted; otherwise the subject was censored at the time when the follow-up ended

for that patient.

Among 236 patients, 36% were female and 64% were male; and the children

belonged to the age interval [1-17.5] with a median age of 4.7 years (at presentation).

Only 29% of the children had a bulky disease (i.e. the cancerous masses 10 cm or

larger in diameter), and 31% had a disease related to the central nervous system
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(CNS). Almost 71% of the patients did not show the sign of a relapse when the study

ended in May, 2019.

For our modeling, drug doses are the time-varying covariates with fixed effects.

Among the time-invariant covariates, we have (i) age at diagnosis, (ii) gender (M/F),

(iii) lineage (B cell/T cell), (iv) WBC count at presentation, (v) NCI risk group (high

risk/standard risk), (vi) presence of bulky disease (Y/N), (vii) presence of CNS dis-

ease (Y/N), (viii) risk at presentation, (ix) day 8 risk, (x) day 35 risk, (xi) morpholog-

ical remission (Y/N/Unknown), and (xii) minimal residual disease (MRD) status. We

note that NCI “high-risk” group refers to the children with WBC counts higher than

50,000 (cells/mm3), and “standard-risk” group refers to the group with counts lower

than 50,000 (cells/mm3), at presentation. By the end of the treatment phase, if ANC

and platelet count are in the normal range for a patient then the patient is considered

in morphological complete remission (CR). The MRD refers to the remaining cancer

cells after treatment. Table 1.2 provides the list of variables used in our modeling,

and their roles in our analysis. The summary statistics of the time-invariant covariates

are provided in Table 1.3.

In our dataset, there are some missing biomarker values for some patients. Over-

all percentage of missingness for WBC count, neutrophil count and platelet count

are 32.04, 4.83 and 4.80, respectively. We note that there is no withdrawal in the

study, and hence these missing values are not because of the dropouts. In fact, we

observe missingness only in the longitudinal biomarkers and not in the covariates.

As informed by TTCRC, these biomarker values are missing for no valid reason and

mostly because of the human error. Therefore, we need to improve our estimation

method without really worrying about why these responses are missing.

In Figure 1.2 we plot the longitudinal trajectories of the three biomarkers for four

randomly selected patients. We notice that for the patients with a relapse (in the

follow-up period) the biomarkers are mostly lower than the respective grand means

(shown by the solid lines) during the treatment. For the patients with no relapse,

the biomarkers are mostly above the respective grand means. This indicates that a

relapse is possibly associated with the observed values of the biomarkers.
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FIGURE 1.2: Longitudinal trajectories of the three biomarkers for four
randomly selected children. Solid lines represent trajectories for the
children with a relapse (in the follow-up period), and the dotted lines

are for those with no relapse in the follow-up period.
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TABLE 1.2: Variables used in the ALL data analysis. The role of each
variable in our model is also specified.

Name Type Role (in our model)

White blood cell count Continuous Outcome

Neutrophil count Continuous Outcome

Platelet count Continuous Outcome

Time to Relapse event-time Outcome

Dose of 6MP Continuous Time-varying covariate

Dose of MTx Continuous Time-varying covariate

Age at diagnosis Continuous Fixed Covariate

WBC count at presentation Continuous Fixed Covariate

Gender Binary Fixed Covariate

Lineage Categorical Fixed Covariate

NCI risk group Categorical Fixed Covariate

Bulky disease Binary Fixed Covariate

CNS disease Binary Fixed Covariate

Risk at presentation Categorical Fixed Covariate

Day 8 risk Categorical Fixed Covariate

Day 35 risk Categorical Fixed Covariate

Morphological Remission Categorical Fixed Covariate

MRD status Categorical Fixed Covariate

TABLE 1.3: Summary statistics for the time-invariant covariates in the
ALL dataset.

Variable Summary

Age at diagnosis Min= 1, Q1=3.091, Median=4.7, Q3=8.292, Max= 17.5

WBC count at presentation Min=100, Q1=7175, Median=15910, Q3= 42300, Max= 983500

Gender Female: 36%, Male: 64%

Lineage B cell: 85%, T cell: 15%

NCI risk group High Risk: 36%, Standard Risk: 64%

Bulky disease Yes: 29%, No: 69%, Unknown: 2%

CNS disease Yes: 31%, No: 64%, Unknown: 5%

Risk at presentation High Risk: 24%, Standard Risk: 46%, Intermediate Risk: 30%

Day 8 risk High Risk: 30%, Standard Risk: 38%, Intermediate Risk: 30%, Other: 2%

Day 35 risk High Risk: 43%, Standard Risk: 27%, Intermediate Risk: 23%, Other: 7%

Morphological Remission Yes: 94%, No: 3%, Unknown: 3%

MRD status Positive: 16%, Negative: 67%, T cell: 7%, Other: 10%
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1.4.2 Data Processing

In our analysis we have considered those subjects, with no missing value in the fixed

covariates and medicine doses. We have also removed data for the subjects with

less than 5 non-missing observations for longitudinal outcomes. We consider the

log transformed longitudinal biomarkers for stabilizing the variances and then were

centered with respect to the respective median values.

Variables corresponding to time (week, observed relapse-time and censoring time)

were brought to the same scale, and the continuous covariates such as the age at diag-

nosis and log transformed WBC count at presentation were normalized with respect

to their observed means and standard deviations. Figure 1.3 shows that the longitu-

dinal responses are variance-stabilized after being log transformed.

1.5 Major Contributions and Inferential Objectives

The dataset under consideration is quite challenging in the sense that there are signif-

icant percentage of missing outcomes. In a joint modeling imputation of the missing

outcomes is computationally demanding since the models are already quite complex.

We implement a simpler imputation technique that automatically imputes the miss-

ing outcomes within each iteration of MCMC algorithm by appropriately considering

the dependence within and between the outcomes. In addition, since the dataset is

not very large (which is usually the case in biomedical researches) we use posterior

predictive distributions for better inference. All these approaches are presented in

Chapter 2.

While there is a wealth of literature on joint modeling of longitudinal outcomes

and time-to-event there are limited works on quantile-based modeling, mainly due to

the computational complexities involved in such models. We develop a multivariate

quantile regression model for jointly modeling multiple longitudinal outcomes and

time-to-event. Since quantile-based inference is more accurate and provides a com-

plete picture of the effects of covariates on the outcomes, our model and analysis

reported in Chapter 3 is a real contribution to the existing literature.

In Chapter 4, we develop a latent class Bayesian joint model. While such mod-

els are routinely used for analyzing multivariate longitudinal data the interpretation

of the latent classes are less obvious for most of the existing works. We develop a

novel approach of clustering the most important outcome (in this case, the lympho-

cyte count) and then assessing the other outcomes with respect to these clusters.

This approach, although models multivariate outcomes, selects only one of those for

clustering, and thus the interpretation of the latent clusters are very clear. In ad-

dition, such approach is computationally faster than the other clustering algorithms

popularly used in multivariate analysis.
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1.6 Organization of the thesis

The work presented in this thesis is organized in different chapters, and is summa-

rized as follows:

In Chapter 2, we develop a Bayesian joint model in which a linear mixed model

is used to jointly model three biomarkers (i.e. white blood cell count, neutrophil

count, and platelet count) and a semi-parametric proportional hazards model is used

to model the relapse-time. Our proposed joint model can assess the effects of differ-

ent covariates on the progression of the biomarkers, and the effects of the biomarkers

(and the covariates) on relapse-time. In addition, the proposed joint model can im-

pute the missing longitudinal biomarkers efficiently. Our model can also dynamically

predict the non-relapse probabilities for each patient based on the historical data. Our

analysis shows that the white blood cell (WBC) count is not associated with relapse-

time, but the neutrophil count and the platelet count are significantly associated with

it. We also infer that a lower dose of 6MP and a higher dose of MTx jointly result

in a lower relapse probability in the follow-up period. Interestingly, we find that re-

lapse probability is the lowest for the patients classified into the “high-risk” group at

presentation. The effectiveness of the proposed joint model is assessed through the

extensive simulation studies.

Chapter 3 presents the importance of using quantiles over the mean in jointly

modeling the longitudinal biomarkers and the event-time. Linear mixed models

are traditionally used for jointly modeling longitudinal outcomes and event-time(s).

However, in the presence of some time-varying covariates it might be of interest to

see how the effects of different covariates vary from one quantile level (of outcomes)

to the other, and consequently how the event-time changes across different quantiles.

For such analyses linear quantile mixed models can be used into the joint model-

ing framework, and an efficient computational algoithm can be developed. Quantile

based analysis is also appropriate when the joint distribution of the biomarkers devi-

ates from a multivariate normal distribution. We consider an Asymmetric Laplace Dis-

tribution (ALD) for each outcome, and exploit the mixture representation of the ALD

for developing an efficient Gibbs sampler algorithm for the proposed linear quantile

joint regression model. A multivariate Brownian motion is considered for the subject-

specific random effects for higher flexibility. From our analysis we infer that a higher

lymphocyte count accelerates the chance of a relapse while a higher neutrophil count

and a higher platelet count (jointly) reduce it. Also, we infer that across (almost)

all quantiles 6MP reduces the lymphocyte count, while MTx increases the neutrophil

count. Simulation studies are performed to assess the effectiveness of the proposed

approach.

In Chapter 4, we present a Bayesian latent class joint model. In a joint modeling

framework we use a latent class model for the lymphocyte count since it is the most
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important biomarker associated to ALL. The other two biomarkers, i.e. the neutrophil

count and the platelet count are modeled using linear mixed models, and the event-

time is modeled by the semi-parametric proportional hazards model. The model

parameters are estimated by the Markov Chain Monte Carlo (MCMC) algorithm. Our

analysis detects two latent classes for the lymphocyte count, and we estimate the

Kaplan-Meier functions of the non-relapse for both these groups. Our simulation

studies illustrate the discriminating and the predictive power of the proposed ap-

proach compared to the usual mean regression based traditional joint models.

Finally in Chapter 5, we summarize the work presented in this thesis. We high-

light the major methodological contributions, and the interesting inferences based on

our data analysis. We also discuss some limitations of our work, and also discuss the

possibilities of further extending our work from some different perspectives.
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Chapter 2

A Bayesian joint model for
multivariate longitudinal and
event-time data

2.1 Preamble

There is a vast literature on the joint modeling of longitudinal outcomes and event-

time in the last two decades mainly due to the meaningful practical applications

of such models in biomedical studies. In the existing literature for joint modeling

we find several ways to jointly modeling these two types of responses, each with

their own advantages and disadvantages. One approach of joint modeling involves

in assuming the longitudinal responses to be measured without errors, so that the

responses can be used as time-varying covariates in the extended Cox PH model (An-

dersen and Gill, 1982 [3]) for modeling the event-time process. This method, while

simple, comes with its own problems i.e., (i) it is unrealistic for longitudinal measure-

ments to be measured without error. For example, the machine used for monitoring

say, the blood pressure of an individual over time, can be faulty, (ii) in many studies

the event of interest (relapse) is usually observed much later than the cessation of

the longitudinal study, in which case the longitudinal response at or near the event-

time points can be at best set as the last observations of the longitudinal response,

(iii) it is also quite common to notice dropouts in longitudinal study which are often

non-random (Wang and Taylor, 2001 [96]), thus the assumption of longitudinal re-

sponse being covariate in the Cox PH model prevents the model from acknowledging

its association to the underlying failure mechanism (Kalbfleisch and Prentice, 2002

[46]; Prentice, 1982 [68]). All of the above problems lead to an increased bias in

the estimated parameters. The last value carried forward approach which can han-

dle the second problem, is quite unrealistic since it is unlikely that the longitudinal

response remains unchanged for a long period after a certain time point. This issue

was discussed in Tsiatis and Davidian (2004) [91] where the authors suggested the

imputation of longitudinal responses by modeling them using a mixed effects model.

The authors focused particularly on joint models with shared random effects for the
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longitudinal and the event-time process. Another way of joint modeling would be to

model the longitudinal responses using the mixed effects model, and then separately

model the event-time process with an extended Cox PH model where expected part

of longitudinal responses would serve as time-varying covariates. This type of mod-

eling was referred to as separate models in Wang and Taylor (2001) [96]. This solves

the first two problems but does not solve the third one. In the context of separate

modeling, not accounting for the third problem, increases bias in the estimates of

the model parameters (for the longitudinal model), which when substituted later as

covariate in the extended Cox PH model increases the bias in the estimates. All of

the above reasons serve as motivation for the joint modeling shown in equation (1.4)

and (1.5) of Chapter 1.

Henderson et al. (2000) [40] proposed different likelihood based models for such

joint modeling. In a Bayesian setting, Wang and Taylor (2001) [96] developed a joint

model for the CD4 counts and time to progress into AIDS for HIV patients. Guo and

Carlin (2004) [39] considered similar Bayesian models for comparing efficacy of two

antiretroviral drugs. Fieuws and Verbeke (2004) [30], Chi and Ibrahim (2006) [15],

Rizopoulos and Ghosh (2011) [79], Zhu et al. (2011) [109], developed joint models

for multivariate longitudinal and survival data. Rizopoulos (2011) [76], Rizopoulos

et al. (2017) [80] developed flexible Bayesian joint models which can automatically

predict the subject-wise survival probability over time. All these authors considered

(generalized) linear mixed models for the longitudinal outcomes, and a proportional

hazards (PH) or an accelerated failure time (AFT) model for the time-to-event, and

then link the two models either by shared random effects or by correlated random

effects.

We build our work on the existing literature, and develop a Bayesian joint model

for jointly analyzing WBC count, absolute neutrophil count (ANC), platelet count;

and time-to-relapse. The motivation for developing a joint model for our dataset is

discussed in Section 1.4.1. We consider a number of joint stochastic models where

different Gaussian correlated random effects are used to capture the longitudinal and

the inter-biomarker dependence. By using some popular model selection criteria we

choose the “best fit” model for our dataset. The missing (correlated) biomarker values

are imputed multiple times within each iteration of the Markov Chain Monte Carlo

(MCMC) algorithm using the working joint model, and then probability of a relapse

is predicted for each subject for the follow-up period (after the end of treatment).

Our analysis addresses some clinically interesting research questions; for example,

how the trajectories of different biomarkers will be different (on the average) for the

patients receiving a lower dose of 6MP and a higher dose of MTx from the patients

receiving a median dose of each drug.

Based on the three types of available data (i.e. relapse-time, longitudinal biomark-

ers, and the covariates) it is of interest to study (i) the progression of the biomarkers

with time, and the effects of the covariates on it, (ii) effects of the biomarkers on
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time-to-relapse, and (iii) (direct) effects of the covariates on time-to-relapse. A joint

model for the longitudinal biomarkers and time-to-relapse is used here for such in-

ference. We also use the posterior predictive distribution for assessing the effects of

some important predictors (for example, gender, risk group, medicine dose etc.) on

the longitudinal process as well as on the event-time.

The rest of this chapter is organized as follows. In Section 2.2 of Chapter 1,

we describe the proposed Bayesian joint models. The computational details are also

discussed in this section. The results from the data analysis are summarized in Section

2.3. In Section 2.4, we report the results from simulation studies. Finally in Section

2.5, we summarise our work.

2.2 Proposed Model and Estimation Method

Recall that we have three biomarkers, i.e. (i) WBC count, (ii) neutrophil count (ANC),

and (iii) platelet count, which we consider as longitudinal outcomes. For stabilizing

the variances in the raw biomarker values, we consider log-transformed biomarker

values for our analysis (refer to Figure 2.1 ). Let Yijk be the (log transformed) k-th

biomarker (k = 1, 2, 3) from the i-th patient at time tij , for j = 1, 2, . . . , τi. Note that

the number of longitudinal measurements differs from one patient to the other, and

hence we use the notation τi to denote the number of measurements from the i-th

patient. For each patient we either observe the relapse time (Ti) when the cancer

returns (during treatment or in the follow-up), or the censoring time (Ci) when the

follow-up ends for the i-th patient. We define an indicator variable δi = 1, if Ti <

Ci; (and 0, otherwise), and define si =min(Ti, Ci) as the time-to-event for the i-th

patient.

2.2.1 Longitudinal Submodel

We propose the following multivariate linear mixed model for the longitudinal biomark-

ers. Our model is similar to the models proposed in Henderson et al. (2000) [40],

Rizopoulos and Ghosh (2011) [79], Das (2016) [19]:

Yijk = fk(tij) + βT
1kxij + βT

2kzi +Wik(tij) + eijk, (2.1)

where the continuous function fk(tij) is the general effect of time on the k-th biomarker,

and we model it as a polynomial function of time, i.e. we consider fk(tij) = ηk0 +

ηk1tij + ηk2t
2
ij + . . . + ηkrt

r
ij . We note that some unknown functions of time could

be used for modeling fk(tij), but the plots (in Figure 2.1 ) suggest that a polyno-

mial function should suffice for our dataset. For selecting the optimal order (r) of

the polynomial function, we use the deviance information criteria (DIC) for a linear

mixed model as proposed in Celeux et al. (2006) [14]. The vectors β1k and β2k,
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FIGURE 2.1: Longitudinal (log-transformed) biomarkers (WBC count,
ANC, and Platelet count) for four randomly selected subjects in ALL

dataset.

respectively, denote the (fixed) effects of the time-varying covariates (xij), and the

time-invariant covariates (zi) on the k-th biomarker. Recall that the doses of two

medicines are taken as time-varying covariates, while there are several other time-

invariant covariates as discussed in Table 1.2 in Chapter 1. The zero-mean Gaussian

random effects Wik(tij) capture the longitudinal dependence as well as the depen-

dence among the three biomarkers (Rizopoulos, 2016 [78]). Note that these random

effects are biomarker-specific since the between-patient variations might be different

for different biomarkers. The random errors eijk are assumed to be iid N(0,σ2ek), and

are independent to Wik(tij).

We consider two different specifications for Wik(tij) in our analysis, following

the existing literature. First, we consider model with random intercepts only, i.e.

Wik(tij) = aik, where ai = [ai1, ai2, ai3]
T ∼ N(0, D1), and D1 is a 3 × 3 covariance

matrix. This specification assumes that the dependence among the biomarkers and

the longitudinal dependence (for each biomarker) remain unchanged throughout the

study.

As an alternative specification, we consider model with random intercepts and

random slopes (of time), i.e. Wik(tij) = aik + biktij , where [aT
i ,b

T
i ]

T ∼ N(0, D2), and
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bi = [bi1, bi2, bi3]
T . Here D2 is a 6 × 6 covariance matrix, and this specification as-

sumes that the inter-biomarker dependence and the longitudinal dependence change

with time.

2.2.2 Time-to-Event Submodel

Since the time-to-relapse is (possibly) associated with the longitudinal biomarkers, a

joint model is meaningful in our analysis (refer to Figure 1.2). However, the nature

of this association can be complicated, and therefore many different specifications of

the joint model exist in the literature (Henderson et al., 2000 [40]; Rizopoulos and

Ghosh, 2011 [79]; Das, 2016 [19]; and the references therein). We consider Cox

proportional hazards (PH) model, which is the most commonly used model for time-

to-event data. We consider two alternative specifications of PH model for linking it to

the longitudinal submodel given in equation (2.1).

In our first choice, we use the expected longitudinal outcomes (conditional on

the random effects) as time-varying predictors in the PH model. Note that the model

in equation (2.1) can also be written as follows: Yijk = µik(tij) + eik(tij), where

µik(tij) = fk(tij) + βT
1kxij + βT

2kzi +Wik(tij). For a fixed time point, say t, we define

µi(t) = [µi1(t), µi2(t), µi3(t)]
T . Let λi(t) denote the hazard (instantaneous probability

of relapse) for the i-th patient at time t. Assuming that the expected biomarker

values (conditional on the Gaussian random effects) are associated with hazards, we

consider the following PH model:

λi(t) = λ0(t) exp
[
ΨT

1 µi(t) + θT
1 zi
]
, (2.2)

where the vector of coefficients Ψ1 measures the effects of the expected longitudinal

biomarkers on the hazards (Das, 2016 [19]). And θ1 denotes the effects of the fixed

covariates on hazards, λ0 denotes the baseline hazard. This specification assumes

that the time-to-relapse depends on the expected biomarker values, and on the fixed

covariates. The effects of the two drugs on the time-to-relapse are rather indirect, i.e.

only through the observed biomarkers.

As an alternative specification, we also consider the following PH model for the

time-to-relapse:

λi(t) = λ0(t) exp
[
ΨT

2 x
∗
i + θT

2 zi +W ∗
i (t)

]
, (2.3)

where x∗i is a 2 × 1 vector of the median dose (during the treatment) for 6MP and

MTx given to the i-th patient, and the vector Ψ2 measures the effect of the median

doses on time-to-relapse. Note that we consider the median dose as a covariate since

the median gives a robust summary of the patient’s dose distribution. This specifica-

tion assumes that the drugs and the time-invariant covariates directly affect the time-

to-relapse. Similar to the model in equation (2.2), θ2 denotes the effects of the fixed

covariates on hazards. Here W ∗
i (t) are zero-mean Gaussian random effects; different
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specifications for W ∗
i (t) are considered to select the “best fit” model for our data (dis-

cussed in Section 2.3.2). The dependence between the longitudinal biomarkers and

the time-to-relapse can be modeled by considering a joint distribution for Wik(tij)

and W ∗
i (t), as described in Section 2.3.2 (for Models III and IV).

For modeling the base-line hazard function λ0(t) in equations (2.2) and (2.3), we

use flexible cubic B-splines following the JMbayes package in R, which we use for

our computation. This package was written by Rizopoulos (2016) [78], and has been

used for Bayesian joint modeling by several authors (Balan and Putter, 2020 [5];

Papageorgiou et al., 2019 [64]). This package models λ0(t) as follows: logλ0(t) =

γλ0,0+
Q∑

q=1
γλ0,qBq(t, v), where Bq(t, v) denotes the q-th basis function of B-spline with

knots v1, v2, . . . , vQ. For detection of the optimal number (and the location) of knots

the JMbayes package considers a relatively large number of knots (15, 20, 30 etc.),

and then penalize the B-spline coefficients by considering suitable prior distributions

(e.g. Laplace prior, Horseshoe prior). The non-zero coefficients are finally considered

in the model.

2.2.3 Joint Likelihood and Estimation Method

For any specification of the submodels, let αi denote the vector of subject-specific

random effects. For example, if we specify Wik(tij) = aik + biktij , and consider

equation (2.2) as the submodel for the time-to-event data, then αi = [aT
i ,b

T
i ]

T , and

α denotes the vector of subject-specific random effects from all subjects. Additionally,

let Θ denote the set of all fixed model parameters, and β denotes the set of fixed

model parameters in the longitudinal submodel . The complete data likelihood is

expressed as follows:

L(Θ|Y, S,α) =

236∏
i=1

 τi∏
j=1

3∏
k=1

P (Yijk|β,αi)

×
[
{λi(si|Θ,αi)}δi exp

(
−
∫ si

0
λi(t)dt

)]
× π(αi),

(2.4)

where P denotes the probability distribution of the biomarker Yijk conditional on αi

from equation (2.1), and π(αi) denotes the probability distribution of αi. We use the

likelihood given in equation (2.4), and by considering appropriate prior distributions

for the model parameters we compute the joint posterior distribution. All our infer-

ences are based on the joint posterior distribution. We sample from the joint posterior

distribution using a hybrid combination of Gibbs sampler and Metropolis-Hastings al-

gorithm, and estimate the model parameters by their respective sample means. All

our computations are done using JMbayes package in R (Rizopoulos, 2016 [78]).

In our dataset, there are some missing biomarker values for some patients. Since

the missing observations (only in the biomarkers and not in the covariates) are purely
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due to human error (as reported by TTCRC), we assume an “ignorable” missingness.

Instead of considering only the complete data (data for the patients with no miss-

ing values) or the available data, we impute the missing outcomes within MCMC

iterations using the proposed joint model for improving the estimates of the model

parameters. This imputation inherently assumes “missing at random” (MAR) as the

missingness mechanism, and imputes the unobserved biomarkers as follows.

In the m-th iteration of MCMC, let Ω(m) denote the set of updated (estimated)

model parameters. Conditional on Ω(m), we first sample the subject-specific random

effects αi for the i-th patient. Then we sample the missing biomarker(s) from the

current step’s predictive distribution(s) conditional on the observed biomarkers, co-

variates, and the random effects. Since we have multivariate longitudinal biomarkers,

we need to condition on the random effects for sampling correlated data (Schafer and

Yucel, 2002 [84]). This is done for all the T time points, and thus we get a complete

dataset (with no missing biomarkers). This complete dataset is used for estimating

model parameters in the (m + 1)-th iteration. Thus, in each iteration we update the

parameters and the missing biomarkers simultaneously. By considering M iterations,

we thus get a set of M complete datasets based on which we get the final estimates

(as the average of the estimates from each dataset) of the model parameters.

2.2.4 Subject-wise Prediction of Relapse Probabilities

The proposed joint model is used for dynamic prediction of the subject-wise relapse

probability based on the historical longitudinal measurements and covariates (Ri-

zopoulos, 2016 [78]). Let Hi(t) denote historical measurements for the i-th sub-

ject who is event-free (no relapse) upto time point t, i.e. Hi(t) = {Yijk, xij , zi; 0 ≤
j ≤ t, k = 1, 2, 3}. Additionally, let Dn denote the training dataset, i.e. Dn =

{Yijk, xij , zi, si, δi; k = 1, 2, 3; j = 1, 2, . . . , τi; i = 1, .., 236}. Given that the sub-

ject is event-free (no relapse) until time t, the probability that it will be event-free

upto time u = t+∆t, for ∆t > 0, is given as follows:

πi(u|t) = Pr
(
Ti ≥ u|Ti > t,Dn, Hi(t)

)
=

∫
Pr
(
Ti ≥ u|Ti > t,Hi(t),Θ

)
Pr
(
Θ
∣∣Dn)dΘ,

(2.5)

where Θ denotes the set of all fixed model parameters in the joint model (equation

2.4). Additionally,

Pr
(
Ti ≥ u|Ti > t,Hi(t),Θ

)
=

∫
Si
[
u|H̃i(u,αi,Θ),Θ

]
Si
[
t|H̃i(t,αi,Θ),Θ

] Pr(αi|Ti > t,Hi(t),Θ) dαi,

(2.6)

where H̃i(u,αi,Θ) denotes the estimated subject-specific longitudinal trajectories

(with random effects) until time point u, and Si(.) is the event time function con-

ditional on H̃i. Here, Pr(αi|Ti > t,Hi(t),Θ) denotes the posterior distribution of the
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random effects, and Pr(αi|Ti > t,Hi(t),Θ) ∝ P (Ti > t|αi,Θ)P (Hi(t)|αi,Θ)P (αi|Θ).

A Monte Carlo estimate of πi(u|t) is obtained as follows. Sample Θ̃
l
, l = 1, 2, . . . , L;

from Pr(Θ|Dn) as post burn-in iterations. For a fixed Θ̃
l
, we sample α̃i

lq (lq =

1, 2, . . . , Lq) from Pr(αi|Ti > t,Hi(t), Θ̃
l
), and compute

π̂i
l(u|t) = 1

Lq

Lq∑
lq=1

Si
[
u|H̃i(u, α̃i

lq , Θ̃
l
), Θ̃

l]
Si
[
t|H̃i(t, α̃i

lq , Θ̃
l
), Θ̃

l] . (2.7)

And finally, we compute

π̂i(u|t) =
1

L

L∑
l=1

π̂i
l(u|t), (2.8)

based on all L samples, and plot the non-relapse probabilities over time.

2.3 Data Analysis

2.3.1 Prior specifications and computational details

We specify diffuse prior distributions for the model parameters following the existing

literature (Das, 2016 [19]; Rizopoulos, 2016 [78]). For β1k and β2k in equation

(2.1), we consider multivariate normal prior with mean vector=0, and diagonal co-

variance matrices with the diagonal element=1000. For the residual variances σ2ek we

specify an Inverse Gamma(0.01,0.01) prior. For the coefficients ηkl, ( l = 0, 1, . . . , r)

in the polynomial functions fk, we specify N(0, 100) prior distributions. In the time-

to-event submodel, for Ψ1 (and Ψ2) and θ1 (and also for θ2), we specify multivariate

normal prior with mean vector=0, and a diagonal covariance matrix with diagonal

element=1000. We perform a sensitivity analysis, and the results (for some parame-

ters) are summarized in Table 2.1. We notice that the hyperparameters have minimal

effects on the final estimates.

We use MCMC iterations (based on Gibbs sampler and Metropolis-Hastings algo-

rithm) for estimating the model parameters. We run 12,000 MCMC iterations, discard

the first 2,000 as “burn-in”, and use the remaining 10,000 iterations for estimating

the model parameters. The estimated posterior densities and trace plots for some

of the coefficients are provided in Figures 2.2-2.5. We note that these plots indicate

a good convergence of the chains. In addition, we compute scale reduction factors

(Brooks and Gelman, 1998 [12]) for assessing convergence of the chains, and all

the computed scale reduction factors are smaller than 1.2, indicating a good conver-

gence. We use sample means for estimating the respective model parameters. A 95%

Bayesian credible interval is also computed for each coefficient based on the MCMC

iterations.
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TABLE 2.1: Results from sensitivity analysis for a set of coefficients in
data analysis. IG, N, and Unif stand for the Inverse Gamma, Normal,

and Uniform distributions, respectively.

Parameters Prior distribution Estimate

σ2
e1 IG (0.01, 0.01) 0.47
- IG (0.001, 0.001) 0.49
- IG (1.2, 3.5) 0.43
σ2
e2 IG (0.01, 0.01) 0.52
- IG (0.001, 0.001) 0.55
- IG (1.2, 3.5) 0.57
σ2
e3 IG (0.01, 0.01) 0.38
- IG (0.001, 0.001) 0.37
- IG (1.2, 3.5) 0.41

Ψ11 N(0,1000) 0.636
- N(0,100) 0.633
- Unif(-100,100) 0.638

Ψ12 N(0,1000) -0.418
- N(0,100) -0.414
- Unif(-100,100) -0.419

Ψ13 N(0,1000) -1.313
- N(0,100) -1.314
- Unif(-100,100) -1.311
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FIGURE 2.2: Estimated posterior density and trace plots for the fixed
coefficients corresponding to the medicine 6MP in the data analysis.
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FIGURE 2.3: Estimated posterior density and trace plots for the fixed
coefficients corresponding to the NCI risk for the longitudinal sub-

model in the data analysis.

0

10

20

30

0.30 0.33 0.36 0.39

θ1,NCI

D
e
n
s
it
y

0.30

0.33

0.36

0.39

0 250 500 750 1000

Iterations

θ
1
,N

C
I

0

10

20

30

40

0.400 0.425 0.450 0.475 0.500

θ1,Gender

D
e
n
s
it
y

0.400

0.425

0.450

0.475

0.500

0 250 500 750 1000

Iterations

θ
1
,G

e
n
d
e
r

0

10

20

30

0.30 0.33 0.36 0.39

θ1,NCI

D
e
n
s
it
y

0.30

0.33

0.36

0.39

0 250 500 750 1000

Iterations

θ
1
,N

C
I

FIGURE 2.4: Estimated posterior density and trace plots for the fixed
coefficients corresponding to gender and NCI risk for the time-to-event

submodel in the data analysis.
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association parameters (Ψ) in the data analysis.

For obtaining the optimal order (r) of the polynomial functions fk (in equation

(2.1)) we consider the “complete DIC” (Celeux et al., 2006 [14]) which is computed

based on the observed and the imputed missing observations (based on MCMC itera-

tions), and is defined as DIC=−4E [logf(Y, S|α)] + 2logf(Y, S|α̂). Note that f(Y, S)

denotes the joint density of the longitudinal and the event-time data as given in

equation (2.4), and α̂ is the estimated random effects. We consider only two choices,

r = 2, 3; and we compute DIC values (shown in Table 2.2) for the four different speci-

fications of the joint model as discussed in Section 2.3.2. The smallest (complete) DIC

value is obtained for r = 2 across all different joint models, and hence we consider

r=2 for our analysis.

TABLE 2.2: DIC values for selecting the optimal order (r) of the poly-
nomials fk. Results are shown for the four different specifications of

the joint model as discussed in Section 2.3.2.

DIC

r Model I Model II Model III Model IV

2 512.7 371.5 490.6 382.3
3 546.2 387.3 497.5 416.1

All our computations for this analysis are performed in R. In a Windows 10, i5

processor machine it takes nearly 24 hours for the complete analysis (including the

posterior predictive inference in Section 2.3.4).
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2.3.2 Model Selection

We compare the performance of several competing models, and select the one which

provides the “best” fit and “best” prediction for our data. In the joint modeling litera-

ture, it is of great importance to evaluate the prediction accuracy and discriminative

power of a model. Hence, we also compute the prediction error (expected error

of predicting future events) and the area under the receiver operating characteristic

curve (AUC) for different models under consideration. Note that AUC measures how

effectively a joint model can discriminate the patients for which a relapse occurred

from the patients with no relapse. Both there measures are computed within JMbayes

package (Rizopoulos, 2016 [78]).

From equation (2.5) in Section 2.3.5, recall that πi(t + ∆t|t) denotes the prob-

ability that the i-th patient will be event-free (no relapse) upto time t + ∆t given

that it is event-free until time t. For a randomly chosen pair of patients [i, j] who are

event-free until time t, the discriminative power of a model is assessed by computing

AUC as given below:

AUC = P [πi(t+∆t|t) < πj(t+∆t|t)|(Ti ∈ (t, t+∆t]) ∩ (Tj > t+∆t)].

This means that in a fixed time interval (t, t +∆t) if a relapse occurs for the i-th

patient but the j-th patient is event-free upto time t+∆t, then the model must assign

a higher non-relapse probability to the j-th patient. We use this criterion to compare

different competing models along with the prediction error.

First, we consider random intercepts only in the longitudinal submodel, and

use the expected longitudinal outcomes as predictors in the survival submodel (as

shown in equation (2.2)). In other words, we specify Wik(tij) = aik, where ai =

[ai1, ai2, ai3]
T ∼ N(0, D1), as mentioned in Section 2.2.1, and specify the PH model

given in equation (2.2) for the time-to-event. For the covariance matrix D1, we con-

sider an Inverse Wishart (4, M1) prior, where M1 is a diagonal matrix whose diagonal

elements are generated from Gamma (0.5,0.01) distribution. We refer to this model

as Model I.

Second, we consider random intercepts and random slopes of time in the longi-

tudinal submodel. Specifically, we consider Wik(tij) = aik + biktij , where [aT
i ,b

T
i ]

T ∼
N(0, D2) (refer to Section 2.2.1), and the model given in equation (2.2) is used for

the time-to-event. For the covariance matrix D2, we consider an Inverse Wishart (7,

M2) prior, where M2 is a diagonal matrix whose diagonal elements are generated

from Gamma (0.5,0.01) distribution. We refer to this model as Model II.

Third, we specify Wik(tij) = aik in the longitudinal submodel given in equation

(2.1), and consider the PH model given in equation (2.3) for the time-to-event. We

specify W ∗
i (t) = ci, and assume that the vector of random effects [ai1, ai2, ai3, ci]

T ∼
N(0, D3). Note that the association between the time-to-event and the biomarkers is

captured by the covariance matrix D3. For D3 we consider an Inverse Wishart prior

similar to Models I and II. We refer to this model as Model III.
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Finally, we specify Wik(tij) = aik + biktij , in the longitudinal submodel given in

equation (2.1), and consider the PH model given in equation (2.3) for the time-

to-event assuming W ∗
i (t) = ci + dit. Thus, we consider patient-specific random

intercepts and random slopes of time in the PH model. Further, we assume that

[aT
i ,b

T
i , ci, di]

T ∼ N(0, D4), and the covariance matrix D4 captures the association

between the biomarkers and the time-to-event. This model is referred to as Model IV.

Table 2.3 shows prediction error (PE), and AUC values for the four competing

models (with r=2 for all specifications) for t=100 (duration of treatment) and for

three different choices of ∆t. We notice that Model II provides higher AUC values and

lower PE values than the other three models, consistently. Hence, we select Model II

as the “best model” for our dataset.

Next, we fit Model II to our data and compute the DIC as discussed in Section

2.3.1. Additionally, we fit two separate models. For the longitudinal biomarkers we

fit the linear mixed models given in equation (2.1), and for time-to-event we use

the PH model (similar to equation (2.2)) with the biomarkers (observed) and the

fixed covariates as predictors. We compute the DIC for these two models, and add

them to get the combined DIC. The DIC value for the joint model is 371.5, where

the combined DIC for the separate modeling is 493.8. Thus, we conclude that the

proposed joint model gives a better fit to our data.

TABLE 2.3: Model selection in ALL data analysis. Prediction Error
(PE), and AUC values (for t=100, and ∆t = 50, 100, 150) are given for

the four competing models, described in Section 2.3.2.

Model I Model II Model III Model IV

AUC(t=100,∆t=50) 0.33 0.71 0.43 0.44
AUC(t=100,∆t=100) 0.35 0.72 0.45 0.48
AUC(t=100,∆t=150) 0.37 0.75 0.51 0.55

PE(t=100,∆t=50) 0.11 0.04 0.09 0.07
PE(t=100,∆t=100) 0.13 0.06 0.10 0.08
PE(t=100,∆t=150) 0.15 0.08 0.11 0.10

2.3.3 Findings

In Table 2.4, we summarize the estimated coefficients and 95% Bayesian credible

intervals (based on MCMC iterations) for the longitudinal submodel. We consider a

covariate as “significant” if the corresponding estimated 95% CI does not contain a

zero (Das, 2016 [19]).

We notice that two medicines are significant for all the three biomarkers. We also

note that the effects of 6MP are negative and effects of MTx are positive for all the

three biomarkers. The NCI risk, presence of bulky disease, presence of CNS disease,

morphological remission, and Day 35 risk are significant for all the three biomarkers.

Age and gender are significant for ANC and platelet count. Risk at presentation is
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significant only for WBC count. Lineage (T/B cells) and risk at day 8 are significant

for WBC count and platelet count. MRD status is significant only for platelet count.

In Table 2.5, we summarize the effects of the time-invariant covariates, and the

biomarkers on the relapse time. Interestingly, we notice that ANC and platelet count

are significant for the relapse time but WBC count is not significant. Additionally,

the effects of ANC and platelet count are negative, indicating that a higher (mean)

ANC and a higher (mean) platelet count will result in a reduced hazard (i.e. a lower

probability of relapse). Note that in Table 2.4 we noticed that 6MP has negative

effects, and MTx has positive effects on the biomarkers. Combining the findings, we

infer that a lower dose of 6MP and a higher dose of MTx can be recommended for

reducing the relapse probability. Among the other covariates, except age, all the other

covariates are significant for the relapse time. Lineage, risk at day 8, MRD status,

and morphological remission have negative effects, and all the other covariates have

positive effects.

In Figure 2.6, we plot the (time-varying) correlations among the biomarkers. We

notice that the correlation between ANC and the platelet count is mostly higher than

the other two correlations. However, the correlation between any two biomarkers

decrease over time during treatment, possibly due to the effects of the medicine.

TABLE 2.4: Estimated coefficients and corresponding 95% CIs for the
covariates in the longitudinal submodel in ALL data analysis.

WBC count Neutrophil count Platelet count

Covariate Estimate 95% CI Estimate 95% CI Estimate 95% CI

6MP dose -0.187 (-0.227,-0.147) -0.132 (-0.137,-0.126) -0.032 (-0.035,-0.029)
MTx dose 0.075 (0.033,0.119) 0.065 (0.058,0.071) 0.015 (0.013,0.018)

Age at diagnosis 0 (-0.018,0.018) -0.016 (-0.022,-0.01) -0.111 (-0.117,-0.102)
WBC at presentation 0.003 (-0.005,0.01) -0.003 (-0.011,0.001) -0.018 (-0.022,-0.014)

Gender -0.012 (-0.03,0.008) -0.04 (-0.047,-0.031) -0.052 (-0.059,-0.041)
Lineage 0.07 (0.04,0.101) 0 (-0.013,0.021) -0.036 (-0.059,-0.022)

NCI risk group -0.041 (-0.068,-0.015) -0.1 (-0.109,-0.088) 0.067 (0.054,0.085)
Bulky disease -0.059 (-0.084,-0.038) -0.043 (-0.058,-0.032) -0.053 (-0.07,-0.043)
CNS disease -0.039 (-0.059,-0.015) 0.126 (0.114,0.147) -0.058 (-0.065,-0.045)

Risk at presentation 0.039 (0.021,0.057) 0.011 (-0.001,0.035) -0.019 (-0.028,0.001)
Day 8 risk 0.053 (0.032,0.074) 0.01 (-0.014,0.026) -0.028 (-0.042,-0.017)
Day 35 risk -0.06 (-0.071,-0.049) -0.039 (-0.044,-0.028) 0.013 (0.007,0.019)

Morphological remission 0.083 (0.049,0.125) 0.084 (0.069,0.127) 0.186 (0.172,0.209)
MRD status 0.001 (-0.013,0.014) 0.01 (-0.004,0.017) -0.075 (-0.084,-0.071)
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TABLE 2.5: Estimated coefficients and corresponding 95% CIs for the
covariates in the time-to-event submodel in ALL data analysis.

Covariate Estimate 95% CI

WBC count 0.636 (-0.075,1.29)
Neutrophil count -0.418 (-0.695,-0.131)

Platelet count -1.313 (-1.387,-1.241)
Age at diagnosis 0.013 (-0.012,0.043)

WBC at presentation -0.033 (-0.051,-0.015)
Gender 0.469 (0.443,0.488)
Lineage -0.531 (-0.606,-0.465)

NCI risk group 0.361 (0.338,0.393)
Bulky disease 0.07 (0.026,0.102)
CNS disease 0.375 (0.314,0.432)

Risk at presentation 0.297 (0.279,0.321)
Day 8 risk -0.269 (-0.307,-0.234)

Day 35 risk 0.364 (0.352,0.381)
Morphological remission -0.841 (-0.896,-0.771)

MRD status -0.246 (-0.267,-0.231)
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FIGURE 2.6: Estimated time-varying correlations among the three
biomarkers. Biomarkers 1, 2 and 3, respectively, refer to WBC count,

neutrophil count (ANC) and platelet count.
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2.3.4 Posterior Predictive Inference

Next, we investigate the specific effects of some significant covariates on the longi-

tudinal and the event time outcomes through posterior predictive distributions. Pos-

terior predictive checks are used for assessing the model fit with missing and latent

data (Gelman et al. 2005 [34]). Let (Y rep
i , Srep

i ) and (Y obs
i , Sobs

i ), respectively, denote

the replicated and the observed datasets for both the longitudinal and event time out-

comes, and let Θ denote the set of all model parameters (including random effects)

in the proposed joint model. The posterior predictive distribution of the replicated

data conditional on the observed dataset is given as follows:

P (Y rep
i , Srep

i |Y obs
i , Sobs

i ) =

∫
P (Y rep

i , Srep
i |Θ)P (Θ|Y obs

i , Sobs
i )dΘ. (2.9)

For our analysis, we first fix a specific covariate of interest (for example, fix gen-

der as male), and then sample the other covariates from their respective empirical

distributions (based on the given dataset). Model parameters are sampled from their

respective posterior densities. We sample data for 50,000 patients over 277 time

points, where the biomarkers are measured for the first 30 time points (the average

number of visits in the actual dataset). However, we consider a longer follow-up

period (than the data at hand) for a better prediction of relapse.

In Figure 2.7, we show the mean predicted (log transformed) ANC, and the mean

predicted platelet count for two genders. We also show the predicted (median) non-

relapse probabilities in this figure. We notice that the mean ANC and the mean

platelet count for females are consistently higher than those for males. The jumps

(for both these plots) at week 30 is due the fact that no treatment is given after

that week. Additionally, we observe that the non-relapse probabilities are higher for

females over time. This is consistent with the results shown in Table 2.5, where we

saw that the effects of (mean) ANC and (mean) platelet count are negative on hazard.

Next, we investigate the effect of NCI risk group on the biomarkers and the relapse

time. In Figure 2.8, we notice that ANC for “high-risk” (HR) group is uniformly higher

than “standard-risk” (SR) group, but the trend is the reverse for the platelet count.

Additionally, we see that the non-relapse probability for the HR group is higher than

the SR group. It is possibly because the patients in the HR group (at presentation) are

treated more carefully than those in the SR group. But this is indeed a very interesting

finding from our analysis.

Next, we focus on the two drugs which are found to be significant for the biomark-

ers. The doses are grouped into high, medium, and low; based on the 0.75 quantile

and the 0.40 quantile of their respective empirical distributions. We consider all the

nine different dose combinations (e.g. high-high, medium-low etc.), and plot the es-

timated mean curves for each group. The dose combination “high-low” was rarely

given (in the actual dataset), and hence we do not include it here. If a particular
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dose combination is given to a particular patient only for more than 15 weeks (i.e.

more than 50% of the times), then we assign the patient to that specific dose group.

The patients who are not treated with one specific dose combination at least for 15

weeks are discarded, and we end up getting nearly 38,000 patients who are given a

particular dose combination at least for 15 weeks. In Figure 2.9, we notice that a low

dose of 6MP and a high dose of MTx result in the highest ANC across the weeks. On

the other hand, high doses for both the medicines result in the lowest ANC. For the

platelet count, we notice a decreasing trend for all the groups. The curve for “low-

medium” group is consistently higher while that for “high-high” group is consistently

lower than the other groups. In Figure 2.9, it is noted that, in general, higher ANC

and higher platelet counts are observed for low (or medium) dose of 6MP and high

(or medium) dose of MTx. Thus, on the average, we recommend a lower dose of

6MP and a higher dose of MTx during treatment.

Finally, we focus on the risk-at-presentation which was found to be significant for

the relapse time (but not significant for ANC and platelet counts). There are three

groups, i.e. high risk (HR), standard risk (SR), and intermediate risk (IR) groups. In

Figure 2.10, we observe that the (median) non-relapse probability is higher for the

HR group, and it is the lowest for the IR group. A similar trend was observed for

NCI risk groups (in Figure 2.8), and this again reflects that the patients assigned to

the HR group (at presentation) show higher non-relapse probabilities in the follow-

up period. Rhein et al. (2011) [75] reported a similar inference based on their

analysis on ALL patients. This interesting (and counter-intuitive) inference needs

further investigation.

2.3.5 Subject-wise prediction of relapse probability

We compute the relapse probability for each patient (for which no relapse is ob-

served during treatment) at different time points in the follow-up period. This is

computed using JMbayes package in R. In Figure 2.11, we show the (predicted)

relapse probabilities for some randomly selected patients. For each patient, the tra-

jectory starts when the treatment (for that patient) ends. Conditional on the data

(on biomarkers and the predictors) available until the end of the treatment, we com-

pute the relapse probabilities for each patient. The relapse probability increases over

time, as expected, and we group the patients based on their maximum (predicted)

relapse probability corresponding to the last time point in the follow-up period. For

the “low-risk” group, the predicted relapse probabilities are all smaller than 0.10. For

the “moderate-risk” group, those are between 0.10 and 0.40. All the other patients

belong to the “high-risk” group. The thresholds (0.10 and 0.40) are chosen based

on doctors’ recommendation. We note that for 85% of the children belonging to the

“high-risk” group relapse occurred (during follow-up) in the actual dataset. For the

“moderate risk” group and the “low-risk” group, the occurrences are 25% and 7%,

respectively, indicating a good predictive power of our model.
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FIGURE 2.7: Estimated mean curves for the neutrophil count, platelet
count; and the estimated (median) non-relapse probabilities for the

two genders (M/F) in ALL data analysis.

2.4 Simulation Study

We perform a simulation study for assessing the effectiveness of Bayesian imputation

of the missing responses in joint modeling. We simulate a dataset which is quite

similar to the ALL dataset. We consider three biomarkers measured from a set of

200 subjects over twenty evenly spaced time points. We consider ten covariates, two

of them are time-varying. Biomarkers are simulated using equation (2.1). At time

T=20, the treatment phase is over, and the follow-up period starts. The details for

the simulation of the covariates and the longitudinal biomarkers are as follows:
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FIGURE 2.8: Estimated mean curves for the neutrophil count, platelet
count; and the estimated (median) non-relapse probabilities for the
two NCI risk groups [High-Risk (HR), and Standard-Risk (SR)] in ALL

data analysis.

The time-varying covariates, X1 and X2, are simulated from the following auto-

regressive model:

Xit = αXi,t−1 + ϵit, (2.10)

where ϵit are iid N(0,1), and α=0.85. For the first time point (t=1) we sample from

a standard normal distribution, and then use the above model for generating the

covariates. Among the eight fixed covariates, we consider four as binary, and they are

generated independently from a Bernoulli distribution with success probability=0.48.

The other four covariates are generated, respectively, from N(0,10), Gamma(1,3),

Uniform (2,5), and Beta (1.5, 2.5) distributions independently. The biomarkers are

sampled by using the model given in equation (1) of the main document with the
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FIGURE 2.9: Estimated mean curves for the neutrophil count and
platelet count for different medicine doses in ALL data analysis. The
curve with label (ij) refers to the i-th level of 6MP and the j-th level

of MTx, where i, j=high (H), medium (M) or low (L).

0 50 100 150 200 250

0
.7

0
.8

0
.9

1
.0

Week

1
−

P
(r

e
la

p
s
e

)

0
.7

5
0
.8

5
0
.9

5

HR

SR

IR

FIGURE 2.10: Estimated (median) non-relapse probabilities for the
three risk groups at presentation [High-Risk (HR), Standard-Risk

(SR), and Intermediate-Risk (IR)] in ALL data analysis.



2.4. Simulation Study 37

0.2

0.4

0.6

0.8

150 200 250

Week

P
(R

e
la

p
s
e

)

Child.Id

UPN_130

UPN_146

UPN_009

UPN_015

UPN_025

UPN_047

Risk

High

Low

Mod

FIGURE 2.11: Subject-wise predicted relapse probabilities for some
randomly selected patients in ALL dataset.

specification fk(t) = 1.5 + 2.3t. The residuals are independently generated from

N(0,1) distribution.

We consider, β11 = [0.95, 1.36]; β12 = [−1.45, 0.86]; β13 = [1.07, 0.75].

β21 = [−0.34, 0.93,−1.23, 1.45, 2.34,−0.57, 0.84, 1.05];

β22 = [0.64,−0.73,−1.03, 2.15, 1.34,−0.63, 0.24, 0.65];

β23 = [0.78,−0.57,−1.34, 1.05, 1.21,−0.61, 0.39, 0.88].

Finally, for simulating the event time using the PH model given in equation (2)

of the main document, we use Ψ11 = −0.15, Ψ12 = −1.46, Ψ13 = −2.09; θ11 =

0.05, θ12 = −0.68, θ13 = 1.15, θ14 = −2.33, θ15 = 0.21, θ16 = −0.29, θ17 =

1.36, θ18 = 1.89. These values are chosen based on some existing literature and also

in the same line as the estimates from ALL data analysis.

We simulate time-to-event for the subjects assuming that the subjects are censored

at T=50, when the study ends. Thus, the patients are followed for the next 30

time points after the end of treatment. We use equation (2.2) for generating the

time-to-event, the values of the model parameters as mentioned above. Once the

complete dataset is generated, we randomly create some missing values in the three

biomarkers. We consider 32% missing values in one biomarker, 5% missing values

in the second biomarker, and 4% missing values in the third one (similar to the ALL
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dataset). For each biomarker, we first randomly select some subjects for which we

create some missing observations again at some randomly selected time points. We

use missMethods library in R for creating missing biomarkers in a complete dataset.

We consider three alternative approaches. First, we consider only the subjects

with no missing values, and we refer to this approach as “Completers only”. Second,

we consider the available dataset where the missing observations are treated as miss-

ing values and we do not impute those. This approach is referred to as “Available

data only”. Finally, we consider the Bayesian imputation using the joint model. In

all the three approaches, the model parameters are estimated using 10,000 MCMC

iterations.

Next, based on 200 replications we compute the average absolute bias and av-

erage width of the 95% Bayesian credible intervals (and the coverage probabilities)

of the regression coefficients. In Table 2.6 we show the results for a selected set

of coefficients. We notice that the “Completers only” approach performs the worst

since it results in a larger average bias and a wider credible interval almost for all

the coefficients. Bayesian imputation of the missing biomarkers using the joint model

is worth since this approach results in the smallest average bias, and the shortest

credible intervals with reasonable coverage probabilities.

TABLE 2.6: Average absolute bias, width of 95% CIs, and the estimated
coverage probability (C.P.) for a set of regression coefficients for the

three competing approaches in the simulation study.

Completers only Available data only Bayesian Imputation

Coefficient Bias width(C.P.) Bias width (C.P.) Bias width (C.P.)

β111 0.93 2.42(0.96) 0.34 1.36(0.95) 0.11 1.02(0.95)
β112 0.88 2.17(0.96) 0.26 1.15(0.95) 0.13 0.97(0.94)
ψ11 0.76 1.03(0.96) 0.32 0.98(0.95) 0.08 0.83(0.95)
ψ12 0.79 1.18(0.95) 0.38 1.01(0.95) 0.11 0.78(0.95)
θ11 0.81 2.12(0.95) 0.55 1.21(0.96) 0.10 0.92(0.95)
θ12 0.86 2.04(0.95) 0.49 1.16(0.95) 0.12 1.10(0.94)

2.5 Summary

Despite the significant improvement in its survival rate over the years, ALL is still

globally considered as the main cause of death from cancer among children. ALL

typically occurs more often in Caucasians, Hispanics, and Latin Americans than in

Africans (Renbarger et al., 2008 [74]), and therefore, there exists a vast literature on

ALL for the United States and for the European countries. However, there is a lack of

similar significant work for India, and in general for most of the Asian and the African

countries. In this chapter we present a comprehensive study for the Indian children

(diagnosed as ALL patients) and address some interesting research questions. We de-

velop a Bayesian joint model which can impute the missing longitudinal data within
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each iteration of MCMC, and also can dynamically predict the non-relapse probabili-

ties for each subject.

We note that for the analysis presented in this chapter we used Bayesian hierar-

chical models for our joint modeling. Different parts of the model are proposed in

the literature before but our analysis needs to combine those systematically. How-

ever, the main novelty of our approach is its ability to impute the missing outcomes

within each iteration of MCMC by appropriately considering the dependence struc-

ture within and between the outcomes. Also, since we have limited patients in the

clinical trial we perform posterior predictive checks for consistent inference.

However, we note that our current analysis ignores the genetic factors associated

with the development and progression of ALL since such information was not avail-

able in the given dataset. Additionally, we assess the effects of the covariates on the

mean longitudinal outcomes, and also the effects of the mean longitudinal outcomes

on the event-time. Assessing the effects of different covariates at different quantile

levels (instead of the mean) of the biomarkers provides a better understanding of the

complex association among the biomarkers, covariates and event-time. Specifically,

when the joint distribution of the biomarkers deviates from a multivariate normal dis-

tribution quantile-based analysis is more meaningful due to its robustness. In Chapter

3 we develop a quantile-based joint model for ALL dataset.
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Chapter 3

A Bayesian quantile joint modeling
for multivariate longitudinal and
event-time data

3.1 Preamble

In Chapter 2, we present a Bayesian joint model for simultaneously modeling the

progression of the longitudinal biomarkers, and the time-to-event. While such mod-

els are quite effective, and provide some interesting insights they are based on the

multivariate Gaussian assumption for the joint distribution of the biomarkers. In ad-

dition, such models can model the evolution of the mean biomarkers, and can assess

the effects of the mean biomarkers on the event-time. In many real applications,

the biomarkers are non-Gaussian and/or the goal is to assess the effects of different

quantiles of the biomarkers on the event-time. The model we proposed in Chapter 2

fails to work under this setting.

Quantile regression (QR) model, originally developed by Koenker and Bassett

(1978) [49], models and predicts the quantiles of the outcome(s) and can assess the

effects of the covariates on the outcome(s) at different quantile levels. A Bayesian

version of the quantile regression model was first proposed in Yu and Moyeed (2001)

[103] who considered an Asymmetric Laplace Distribution (ALD) for the outcome.

Koenker (2004) [48], Geraci and Bottai (2007) [35] developed QR models for lon-

gitudinal outcomes. Kozumi and Kobayashi (2011) [50] showed that an ALD can be

expressed as a mixture of a normal and an exponential distribution, and they devel-

oped an efficient Gibbs sampler for estimating the regression coefficients. Although

the literature on QR is quite rich, there are limited works on QR for the joint mod-

eling of longitudinal and event-time data. Farcomeni and Viviani (2015) [28] first

proposed a linear quantile mixed model for such joint modeling, and they developed

a Monte Carlo Expectation Maximization (MCEM) algorithm for estimating the model

parameters. More recently, Yang et al. (2019) [101] developed a Bayesian quantile

regression joint model to predict the risk of developing Huntington’s disease. Their
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model can dynamically predict the subject-specific survival probabilities, and hence

can provide interesting clinical insights. Zhang and Huang (2020) [107] developed

a quantile regression based Bayesian joint model to analyze the Multicenter AIDS

Cohort Study data. However, they consider a univariate biomarker and developed

the computational algorithm for jointly modeling a longitudinal biomarker and an

event-time at different quantile levels of the biomarker.

In our application, we note that the neutrophil count is indeed a part of WBC

count, and the evolution of ALL is heavily influenced by the lymphocyte count which

is another major part of the WBC count. Therefore, instead of modeling WBC, neu-

trophil count and platelet count we focus on the joint modeling of lymphocyte count,

neutrophil count and platelet count. Similar to Chapter 2, the now develop Bayesian

joint model for analysing the biomarkers and the event-time at different quantile lev-

els of the biomarkers. We extend the work in Zhang and Huang (2020) [107] for a

multivariate setting, and consider a linear quantile mixed model for modeling three

longitudinal biomarkers (Kulkarni et al., 2019 [51]). The longitudinal dependence

and the dependence among the biomarkers are modeled by subject-specific random

effects for which we consider a multivariate Brownian motion for higher flexibility

(Picchini et al., 2010 [65]). We exploit the mixture representation of ALD (Biswas

and Das, 2021 [9]) for the computational ease, and develop an efficient Gibbs sam-

pler algorithm for our computation. For modeling the relapse-time, we use a semi-

parametric proportional hazards (PH) model where the baseline hazard function is

modeled using a B-spline (Rizopoulos, 2016 [78]). Our analysis shows that a relapse

is accelerated by a higher lymphocyte count. We also notice that the effects of the

fixed covariates on the outcomes differ across quantiles. Across all quantiles 6MP

reduces the lymphocyte counts, and MTx increases the neutrophil counts. Both the

drugs control the platelet count but the effects vary from one quantile level to the

other.

We compute the median estimated non-relapse probabilities for different quantile

levels, and also plot the estimated quantiles for each biomarker separately. We do not

come across a quantile crossing issue in our analysis. Additionally, we compute the

covariance structure for the three biomarkers at different quantile levels.

The rest of this Chapter is organized as follows. In Section 3.2, we discuss the

dataset in detail, and also discuss the motivation for our quantile-based joint model-

ing. In Section 3.3, we describe the proposed model and the joint posterior distribu-

tion. The findings from the data analysis are discussed in Section 3.4. In Section 3.5,

we perform a simulation study for evaluating the predictive power of the proposed

model. Finally Section 3.6 concludes.
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3.2 ALL Chemotherapy Dataset and Motivation

Our dataset for this analysis is the same as discussed in Section 1.4.1. However, since

neutrophil count is a part of WBC, and the progression of leukemia is majorly con-

trolled by the lymphocyte count (note that the disease is named as acute lymphocytic

leukemia), we consider the lymphocyte count as one of the biomarkers instead of

WBC. All the other variables are exactly the same as in Chapter 2. Table 3.1 provides

the list of all variables and their roles in our analysis. The summary statistics of the

fixed covariates are provided in Table 1.3 (in the Chapter 1).

TABLE 3.1: Variables used in the ALL data analysis. The role of each
variable in our model is also specified.

Name Type Role (in our model)
Lymphocyte count Continuous (longitudinal) Outcome
Neutrophil count Continuous (longitudinal) Outcome

Platelet count Continuous (longitudinal) Outcome
Relapse time time-to-event Outcome
Dose of 6MP Continuous (longitudinal) covariate
Dose of MTx Continuous (longitudinal) covariate

Age at diagnosis Continuous Fixed Covariate
WBC count at presentation Continuous Fixed Covariate

Gender Binary Fixed Covariate
Lineage Categorical Fixed Covariate

NCI risk group Categorical Fixed Covariate
Bulky disease Binary Fixed Covariate
CNS disease Binary Fixed Covariate

Risk at presentation Categorical Fixed Covariate
Day 8 risk Categorical Fixed Covariate

Day 35 risk Categorical Fixed Covariate
Morphological Remission Categorical Fixed Covariate

MRD status Categorical Fixed Covariate

We consider the lymphocyte count, neutrophil count (ANC) and platelet count as

our longitudinal biomarkers, and for stabilizing the variances we use the log trans-

formed values. Figure 3.1 shows the log transformed longitudinal trajectories for

three outcomes. The plot indicates that the log transformation stabilizes the vari-

ances of all the three biomarkers under consideration.



44 3.2. ALL Chemotherapy Dataset and Motivation

5

6

7

8

9

0 50 100 150 200

Week

lo
g

(L
y
m

p
h

)

6

8

10

0 50 100 150 200

Week

lo
g

(A
N

C
)

9

10

11

12

13

0 50 100 150 200

Week

lo
g

(P
L
T

)

FIGURE 3.1: Longitudinal (log-transformed) biomarkers (Lymphocyte
count, ANC, and Platelet count) in the ALL dataset.

In Figure 3.2 we show the longitudinal (raw) trajectories of the three biomarkers

for four randomly selected patients. The solid and the dotted curves are used, respec-

tively, for the patients with an event (relapse) and with no event. The solid horizontal

lines denote the average biomarker values. We observe a higher (than the average)

lymphocyte count, and a lower (than the average) ANC and a lower platelet count

for the patients for which the event occurred. This indicates that the event-time is
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possibly influenced by the observed biomarker values. Hence the research goal is (i)

to study the progression of biomarkers, (ii) to study the effects of the biomarkers on

the event-time, and (iii) effects of the covariates on the longitudinal process (for the

biomarkers) and on the event-time. Following Kundu et al. (2023) [52] we go for a

joint modeling of the biomarkers and event-time for powerful Statistical inference.

In Figure 3.3 we show the quantile plot for assessing multivariate normality of

the longitudinal biomarkers. We note that except for the first part, the quantiles

mostly deviate from the straight line indicating that the joint distribution of the three

biomarkers deviates from a trivariate normal distribution. Therefore, the model pro-

posed in Chapter 2 will not be appropriate in this setting.

In Figure 3.4, we show a bivariate contour plot for (log) ANC and (log) platelet

count as an illustration. We show the contour for some specific density levels (i.e,

0.25, 0.5, 1, 1.5 and 2). We use solid curves for patients with an event (during

treatment or in the follow-up), and the broken curves for the patients with no event

during the study period. Different colors are used for different density values. We

notice that except for the central part (with the higher density value) most of the

contours shift up and to the right for the patients with no event. This reflects that

ANC and platelet count are higher (in general) for the patients with no relapse. We

cannot comment on anything similar for the central part where both the responses are

observed at their median values. Along the black and the grey arrows we observe that

the solid contours dominate their broken counterparts indicating that in the regions

with lower values of both the responses a higher relapse rate is observed. Therefore,

it is meaningful to study the effects of different quantiles of the biomarkers on the

event-time instead of the effect of the mean biomarkers.

Figure 3.2, 3.3 and 3.4 jointly motivate us for a quantile-specific joint analysis

of the three biomarkers and the event-time. Such an analysis gives a complete un-

derstanding of the complex association among the covariates, biomarkers and the

event-time especially for our dataset where the joint distribution of the biomarkers

is non-Gaussian. Quantile regression is robust than the traditional mean regression,

and therefore, for the non-Gaussian setting quantile regression models are typically

used for a meaningful inference (Biswas and Das, 2021 [9]).

3.3 Proposed Joint Model

In our dataset we have three biomarkers, and we define a quantile level τ = (τ1, τ2, τ3),

where τk denotes the quantile level of the k-th biomarker, k=1,2,3. Note that our ap-

proach considers a joint quantile modeling where different biomarkers can be at dif-

ferent quantile levels. The quantile regression joint model (QRJM) has the following

two parts: (i) a longitudinal submodel at each quantile level, and (ii) an event-time

submodel which is a variant of the traditional Cox PH model. Let Yijk be the k-th
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FIGURE 3.2: Longitudinal trajectories of the three biomarkers for four
randomly selected children. Solid lines represent trajectories for the
patients with a relapse (in the follow-up period), and the dotted lines
are for those with no relapse during treatment or in the follow-up

period.
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FIGURE 3.3: Quantile plot for assessing multivariate normality of the
three biomarkers.

(log-transformed) biomarker (k = 1, 2, 3) from the i-th patient at the j-th time point,

where j = 1, 2, . . . , ti; and λ(τ )i (t) denotes the quantile-specific hazard for the i-th in-

dividual at time t. For each individual, we have information either on the event-time

(Ti) if a relapse occurs during the treatment (or in the follow-up); or on the censor-

ing time (Ci) when the follow-up ends for the i-th patient. We define the survival

time si=min(Ti, Ci), and also define an indicator variable δi=1, for Ti < Ci, and

δi=0, otherwise. For each fixed quantile level τ , we jointly model the longitudinal

biomarkers and the event-time as described below.

3.3.1 Longitudinal Submodel

For modeling quantiles of the longitudinal (log-transformed) biomarkers, denoted by

Q(τ )(Yijk), we consider the following multivariate linear mixed model:

Q(τ )(Yijk) = f
(τ )
k (tij) + β

(τ )T
1k xij + β

(τ )T
2k zi + W(τ )

ik (tij), (3.1)

where the general effect of time is modeled by a polynomial function (of order r) of

time, i.e. f (τ )k (t) =
r∑

l=0

η
(τ )
lk tl. Regression coefficients β

(τ )
1k and β

(τ )
2k are the quantile-

specific fixed effects of time-varying covariates (xij) and the fixed covariates (zi),
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tile of (log) ANC and (log) platelets, respectively.
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respectively. Subject-specific random effects, W(τ )
ik (tij), capture the longitudinal de-

pendence among the biomarkers at different time points and also the dependence

among the biomarkers over time.

We note that the model in equation (3.1) can also be expressed as follows:

Yijk = f
(τ )
k (tij) + β

(τ )T
1k xij + β

(τ )T
2k zi + W(τ )

ik (tij) + ϵijk, (3.2)

where the random errors ϵijk are independent observations from Asymmetric Laplace

Distributions (ALD) with location parameter 0, scale parameter σk, and skewness

parameter τk, for k = 1, 2, 3. This is similar to Geraci and Bottai (2007) [35], Kulkarni

et al. (2019) [51]; and in a Bayesian setting we exploit the mixture representation

of ALD as proposed in Kozumi and Kobayashi (2011) [50]. We write ϵijk = θ1keijk +

θ2k
√
σkeijkvijk, where θ1k = 1−2τk

τk(1−τk)
, and θ2k =

√
2

τk(1−τk)
, eijk

ind∼ Exp(1/σk), and

vijk
iid∼ N(0, 1), (Biswas and Das, 2021 [9]). Thus, conditional on W(τ )

ik (tij) and eijk,

the Yijk follows a normal distribution.

Subject-specific random effects W(τ )
ik (tij) are modeled by multivariate Brownian

motion which are approximated by the step functions for the computational ease. We

approximate W(τ )
ik (tij) by step functions as follows: W(τ )

ik (t) =
16∑
j=1

w(τk)
ijk 1(twi,j−1≤t<twij)

;

where twi0 = ti1, twi1, . . . t
w
i,15 are 15-point Gauss-Kronrod points in the interval (ti1,

si), and twi,16 > si. Additionally, [w(τ )
i11 ,w

(τ )
i12 ,w

(τ )
i13 ]

T = w(τ )
i1 ∼ N3(0, t

w
i,0Στ ), and

w(τ)
ij = w(τ)

i,j−1 +
√
twi,j−1 − twi,j−2U

(τ)
ij , where U

(τ)
ij

iid∼ N3(0,Στ ) , j = 2, . . . , 16.

An interesting feature of our model is that we do not impose any specification on

the subject-specific biomarker trajectories. A simpler model with subject-specific ran-

dom intercepts and random slopes (of time) could also capture the inter-biomarker

dependence and the biomarker-specific longitudinal dependence (Kulkarni et al.,

2019). However, that would allow the deviations of the subject-specific biomark-

ers from their mean to follow a straight line. But the proposed structure is quite

flexible since it considers a stochastic process (multivariate Brownian motion) for the

random effects. Finally, we note that for modeling the general effects of time f one

can use B-splines (Devarajan and Ebrahimi, 2011 [25]; Rizopoulos, 2012 [77]) or

wavelets (Moundele et al., 2019 [59]) for more flexibility. However, the raw data

plots in Figure 3.1 show that a polynomial function would suffice for our dataset

since the log-transformation stabilizes the variability in the biomarkers quite well.

3.3.2 Event-time Submodel

Since the relapse-time is possibly associated with the longitudinal biomarker values,

we consider a joint model for the multivariate biomarkers and the event-time. How-

ever, the association (between the biomarkers and the event-time) possibly differs
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from one quantile level to the other (as indicated by Figure 3.4), and hence we pro-

pose quantile-specific joint models. Yang et al. (2019) [101], Zhang and Huang

(2020) [107] proposed different specifications for the quantile-specific joint model-

ing of longitudinal and event-time data, and we build our work on these works.

We consider a Cox PH model for quantile-specific hazards, and assume that the

hazard rate for any individual at a specific time point is associated with the biomarker

values at that time point, and it also depends on the time-invariant covariates. It is

also assumed that the drug doses can only affect the biomarkers and not the event-

time directly. For ALL dataset such assumption is valid as shown in Kundu et al.

(2023) [52]. We consider the following Cox PH model for our quantile-specific joint

modeling:

λ
(τ )
i (t) = λ

(τ )
0 (t)exp

[
Ψ(τ )Tµ

(τ )
i (t) + γ(τ )T zi

]
, (3.3)

where µ
(τ )
i (t) = [µ

(τ )
i1 (t),µ

(τ )
i2 (t),µ

(τ )
i3 (t)]T , and µ

(τ )
ik (t) = f

(τ )
k (t)+β

(τ )T
1k xit+β

(τ )T
2k zi+

W(τ )
ik (t); for k = 1, 2, 3.

Note that the biomarkers (conditional on the random effects) and the fixed co-

variates are considered as the predictors of the event-time at each fixed quantile level.

The association parameters Ψ(τ ) measures the impacts of the longitudinal biomarkers

on the event time, and we need to test if these parameters are statistically significant.

The Baseline hazard function λ(τ )0 (t) can be modeled in many different ways, but we

follow the approach suggested in Rizopoulos (2016) [78]. We model the base-line

hazard using a B-Spline, and we write log(λ(τ )0 (t)) =
Q∑

q=1
γ
(τ )
0,q Bq(t, ν), where Bq(t, ν)

is the q-th basis function of B-splines with knots ν1, ν2, . . . , νQ (typically taken as equal

percentiles of the event-times). Finally, γ(τ ) measures the effects of the covariates zi
on the event-time.

3.3.3 Joint Likelihood and Bayesian Inference

Based on the longitudinal submodel, we get the following conditional distributions

based on which the joint likelihood function can be derived.

Yijk|eijk,W
(τ )
ik (tij) ∼ N

(
f
(τ )
k (tij) + β

(τ )T
1k xij + β

(τ )T
2k zi + W(τ )

ik (tij) + θ1keijk, θ
2
2kσkeijk

)
,

eijk|σk ∼ exp( 1
σk
).

Let W(τ )
i = {W(τ )

ik }, Y = {Yijk}, s = {si}, and Θ denotes the set of all model

parameters (from the longitudinal and the event-time submodels). Then the joint

likelihood can be written as follows:

L(Θ|Y, s,W(τ )
i ) =

N∏
i=1

 ni∏
j=1

3∏
k=1

(
{f1(Yijk|eijk,W

(τ )
ik (tij)} × {f2(eijk|σk)}

)
× l(W(τ)

i )× l(si|Θ)

 ,
(3.4)
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where f1 and f2, respectively, denote the (conditional) density of Yijk|eijk,W
(τ )
ik (tij);

and the conditional density of eijk|σk. Here, l(W(τ)
i ) = 1√

2π|ti1Στ |
×exp

(
−1

2wT
i1(ti1Στ )

−1wi1

)
×

16∏
j=2

1√
2π|Ωij |

× exp
(
− 1

2(wij −wi,j−1)
TΩ−1

ij (wij −wi,j−1)

)
is the likelihood contribu-

tion from the random effects, and l(si|Θ) =
(
λiτ (si)

)δi × exp
(
−

si∫
0

λiτ (t)dt

)
is the

likelihood contribution (for the i-th individual) from the event-time submodel. Note

that, Ωij is the 3 × 3 variance-covariance matrix for dependent Weiner process, i.e

wij , where Ωij = (twij − twi,j−1)Στ ; j = 1, . . . , 15.

We consider a Bayesian approach where some prior distributions are assumed for

Θ, and then we consider the joint posterior distribution π(Θ|Y, s) ∝ L(Θ|Y, s,W(τ )
i )×

π(Θ). Assuming independent prior distributions for different model parameters we

sample from the joint posterior distribution using Markov Chain Monte Carlo (MCMC)

algorithm, and the model parameters are estimated by their respective sample means.

All our computations are done in R using JAGS 4.3.0.

3.4 ALL Data Analysis

3.4.1 Prior Specification and Computational Details

We use a Bayesian approach for our computation and data analysis. We specify prior

distributions for the model parameters based on the existing literature (mostly the

flat priors). For each component of the vector β(τ )
1k and β

(τ )T
2k we specify a N(0, 1000)

prior. We specify the same prior (i.e. a N(0, 1000)) for η(τ )lk , l = 0, 1, . . . , r; and for

each component of the vector Ψ(τ ) we also specify a N(0, 1000) prior. The same prior

is used for γ(τ ). For the inverse of the covariance matrix Στ we specify a Wishart(I4,3)

prior, and for σk we specify an Inverse Gamma (0.01,0.01) prior. For modeling the

baseline hazard function λ(τ )0 (t) we use cubic B-splines as mentioned in Section 3.2.

However, for selecting the optimal number of knots we use the recommendation given

in Rizopoulos (2016). We use a large number of knots, and then specify (shrinkage)

priors for the (B spline) coefficients γ(τ)0,q . For our analysis, we consider 15 knots and

then specify a Laplace (0, κ) prior, and for κ we consider a Gamma (0.5,0.5) prior.

For estimating the model parameters, we implement MCMC algorithm. We run

20,000 MCMC iterations for each of the 5 independent chains, and the first 10,000

iterations are discarded as “burn-in” in each chain. Then we thin the chains by saving

every 5-th iteration which results in a total of 10,000 iterations from all 5 chains.

Model parameters are estimated by their respective sample means based on 10,000

MCMC iterations. Convergence of the Markov Chains are assessed by computing

scale reduction factors (Brooks and Gelman, 1998 [12]). For our computation, scale

reduction factors for all the model parameters are smaller than 1.1 (which indicates a

good convergence). Trace plots for some of the model parameters are given in Figure
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3.5. These trace plots and the computed scale reduction factors indicate that the

chains converge well. Similar results are obtained for the other model parameters as

well (results not shown).
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FIGURE 3.5: Estimated posterior density and trace plots for the three
association parameters in ALL data analysis.

In this analysis, we consider five different choices for τ , i.e. τ = (25, 25, 25),

(25, 75, 75), (50, 50, 50), (75, 25, 25), (75, 75, 75). Note that τ=(25,25,25), (75,75,75),

and (50,50,50) consider the cases where all three biomarkers are at lower levels,

upper levels, and at median levels, respectively. Two extreme cases are also consid-

ered, i.e. τ=(25,75,75) and (75,25,25), which represent a lower level of lymphocyte

count with upper levels of ANC and platelet count, and a upper level of lymphocyte

count with lower levels of ANC and platelet count. We avoid the extreme quantiles,

i.e. (10,10,10) or (90,90,90) since they result in the inconsistent estimates.

To determine the optimal order r of the polynomial function f (τ )k (tij) (in equation
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(3.2)) we consider a linear, a quadratic and a cubic function, and fit the model for

the five quantile levels. We compute three standard measures for model selection, i.e.

BIC, DIC and LPML. Table 3.2 summarizes the results where we report the average

values of different measures (averaged over the quantile levels). It is noted that the

smallest value of BIC and the largest value of LPML are obtained for r=2, and the

DIC value for r=1 is slightly smaller than that of r=2. Hence, we select r=2, and

perform our analysis accordingly.

TABLE 3.2: Average BIC, DIC and LPML values for selecting the opti-
mal order (r) in ALL data analysis.

r BIC DIC LPML

1 5821.39 27.18 -203.43
2 5427.15 28.36 -180.51
3 6328.46 39.72 -217.66

TABLE 3.3: BIC and DIC values for the proposed joint modeling and
separate modeling for five different quantile levels.

Quantile level Joint modeling Separate modeling

τ BIC DIC BIC DIC

(25,25,25) 5318.26 32.57 5816.29 39.72
(50,50,50) 5519.04 35.10 6115.41 46.13
(75,75,75) 5927.82 29.22 6327.33 37.44
(25,75,75) 5815.23 33.45 6514.17 52.38
(75,25,25) 6123.51 41.19 6552.04 55.19

3.4.2 Results

3.4.2.1 Model Comparison

We assess the effectiveness of the proposed joint modeling by comparing it with sep-

arate modeling of the longitudinal biomarkers and event-time. While considering

separate modeling, we first model three biomarkers jointly using the linear mixed

model given in equation (3.2) for each quantile level τ . Model parameters are esti-

mated based on the joint posterior distribution. Then, the PH model given in equation

(3.3) is used for modeling the event-time where µ
(τ )
i (t) is replaced with its estimated

value µ̂
(τ )
i (t) = f̂

(τ )
k (t) + β̂

(τ )T
1k xit + β̂

(τ )T
2k zi + Ŵ

(τ )

ik (t).

For each of the five quantile levels (as discussed in Section 3.4.1), we fit two

separate models, and the proposed joint model. We compute the BIC and the DIC

values for the joint and the separate models. DIC for our setting is similar to Das

and Daniels (2014) [20], and we use their approach for computing it for random

effects models. Note that for separate modeling the overall BIC (and DIC) values are

obtained by adding the BIC (and DIC) values from the corresponding longitudinal
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models and the event-time model. In Table 3.3 we report the BIC and the DIC values

for the joint and separate modeling for the five different quantile levels. We note

that across all quantiles we obtain smaller BIC and DIC values for the proposed joint

modeling. This indicates that the proposed joint model fits our data better than a

separate modeling.

3.4.2.2 Effects of different covariates

In Figure 3.6, we show the significant fixed covariates at different quantile levels

for three biomarkers and the event-time. Not that the significance of a covariate is

assessed by the estimated 95% credible interval of the corresponding regression coef-

ficients (whether it contains a zero or not). We see that age is a significant predictor

(with positive effects) for the lymphocyte count at all the five quantile levels, but

it is significant (with a negative effect) for the platelet count only at the level τ=

(75,25,25). Bulky disease is significant (with negative effects) at all the five levels

for ANC and platelet counts, but for the lymphocyte count it is significant (with a

negative effect) only at the median level. While gender is mostly significant (at four

quantile levels) with positive effects for the lymphocyte count and the event-time, for

ANC it is significant (positively) only at one level τ=(75,25,25), and at two levels

for the platelet counts. The interesting thing to note here is, no predictor is selected

as significant for all the three biomarkers (and the event-time) at all the five quan-

tile levels, and also there is no predictor which is not-significant (for all outcomes)

at all the five quantile levels. This illustrates that the set of covariates affecting the

biomarkers change from one quantile level to the other. This finding justifies the

necessity for a quantile-specific inference for the dataset under consideration.

In Figure 3.7, we show the estimated effects of the two drugs on three biomarkers

and also their 95% Bayesian credible intervals. We note that effects of 6MP are nega-

tive for the lymphocyte counts and the credible intervals do not contain a zero across

all quantile levels. This indicates that 6MP is indeed quite effective in reducing the

lymphocyte counts. Effects of MTx are close to zero for the lymphocyte counts, and

the credible intervals contain zero indicating that MTx does not help in reducing the

lymphocyte count across all quantiles. For the platelet count we note that the effects

of 6MP are all positive and the credible intervals do not contain zero at τ=(25,75,75),

and τ=(75,75,75). However, for MTx the corresponding credible intervals contain

zeros which again indicates that MTx does not affect the platelet count. On the other

hand, for ANC the estimated effects of MTx are all positive and the credible intervals

do not contain zeros. But the credible intervals for the effects of 6MP on ANC mostly

contain zeros (except at the level τ=(25,25,25)). This indicates that MTx is quite

effective in increasing the neutrophil counts, but 6MP is not effective for that. To

summarize, 6MP is not only effective in reducing the Lymphocyte count irrespective

of the levels of other two biomarkers, but is also responsible for further improving

the platelet counts for patients who have platelets counts relatively on a higher side.
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FIGURE 3.6: Quantile-specific significance of the fixed covariates for
different submodels
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FIGURE 3.7: Estimate and 95% credible interval for the quantile-
specific effects of the drugs on the three biomarkers.

MTx on the other hand plays an important role in increasing ANC across all quantile

combinations. Based on these results we conclude that the doses of 6MP and MTx

should be recommended based on the levels of the biomarkers at any time point.

In Tables 3.4-3.13, we report the estimated covariate effects, the respective Monte

Carlo Standard Errors (MCSE), and 95% estimated Bayesian credible intervals for the

three biomarkers at the five different quantile levels.
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TABLE 3.4: Estimated covariate effects (with the monte carlo stan-
dard errors (MCSE) and 95% Bayesian credible intervals) on the three

biomarkers at τ =(25,25,25).

Lymphocyte count Neutrophil count Platelet count

Covariate Est.(MCSE) 95% CI Est.(MCSE) 95% CI Est.(MCSE) 95% CI

6MP dose -0.295(0.026) (-0.351,-0.238) 0.052(0.026) (0.006,0.105) 0.014(0.021) (-0.027,0.051)

MTx dose 0.027(0.022) (-0.026,0.067) 0.077(0.019) (0.038,0.112) 0.007(0.014) (-0.026,0.031)

Age at diagnosis 0.104(0.036) (0.043,0.178) 0.078(0.05) (-0.037,0.152) 0.017(0.056) (-0.085,0.088)

WBC at presentation 0.04(0.032) (-0.012,0.101) 0.041(0.05) (-0.03,0.134) 0.058(0.046) (-0.023,0.12)

Gender 0.135(0.066) (0.038,0.272) 0.061(0.052) (-0.035,0.17) 0.109(0.034) (0.037,0.167)

Lineage -0.075(0.064) (-0.193,0.056) -0.047(0.078) (-0.173,0.134) -0.053(0.062) (-0.176,0.031)

NCI risk group 0.042(0.035) (-0.024,0.106) 0.176(0.091) (0.043,0.329) 0.238(0.087) (0.124,0.365)

Bulky disease -0.097(0.068) (-0.212,0.017) -0.246(0.04) (-0.323,-0.175) -0.166(0.024) (-0.203,-0.105)

CNS disease -0.087(0.061) (-0.181,-0.009) -0.008(0.109) (-0.168,0.151) -0.096(0.047) (-0.18,-0.019)

Risk at presentation -0.008(0.047) (-0.08,0.08) 0.092(0.047) (0.023,0.208) 0.017(0.016) (-0.007,0.056)

Day 8 risk 0.119(0.063) (0.024,0.253) 0.01(0.051) (-0.077,0.097) 0.054(0.035) (-0.007,0.112)

Day 35 risk -0.043(0.03) (-0.099,-0.002) -0.003(0.044) (-0.085,0.068) 0.028(0.036) (-0.031,0.092)

Morphological remission 0.08(0.065) (-0.012,0.216) 0.075(0.093) (-0.056,0.254) 0.035(0.03) (-0.016,0.088)

MRD status 0.06(0.046) (-0.017,0.126) 0.078(0.051) (-0.014,0.163) -0.033(0.042) (-0.105,0.03)

TABLE 3.5: Estimated covariate effects (with monte carlo standard
errors (MCSE) and 95% Bayesian credible intervals) on the event-time

at τ =(25,25,25).

Covariate Est.(MCSE) 95% CI

Lymphocyte count 1.534(0.506) (0.641,2.574)

Neutrophil count -2.625(0.654) (-3.954,-1.325)

Platelet count -0.847(0.46) (-1.706,0.024)

Age at diagnosis 0.23(0.221) (-0.192,0.663)

WBC at presentation 0.102(0.163) (-0.206,0.405)

Gender 0.752(0.334) (0.158,1.442)

Lineage -1.848(0.566) (-2.999,-0.767)

NCI risk group 0.384(0.385) (-0.393,1.13)

Bulky disease -0.162(0.267) (-0.713,0.365)

CNS disease 0.116(0.295) (-0.454,0.717)

Risk at presentation 0.107(0.265) (-0.389,0.626)

Day 8 risk -0.118(0.354) (-0.797,0.556)

Day 35 risk 0.152(0.169) (-0.172,0.492)

Morphological remission 0.271(0.581) (-0.863,1.408)

MRD status -0.282(0.295) (-0.829,0.313)
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TABLE 3.6: Estimated covariate effects (with the monte carlo stan-
dard errors (MCSE) and 95% Bayesian credible intervals) on the three

biomarkers at the median level, i.e. at τ=(50,50,50).

Lymphocyte count Neutrophil count Platelet count

Covariate Est.(MCSE) 95% CI Est.(MCSE) 95% CI Est.(MCSE) 95% CI

6MP dose -0.285(0.028) (-0.349,-0.238) -0.005(0.027) (-0.055,0.049) 0.021(0.013) (-0.006,0.043)
MTx dose -0.022(0.027) (-0.066,0.038) 0.086(0.021) (0.05,0.13) 0.013(0.01) (-0.006,0.032)

Age at diagnosis 0.115(0.034) (0.061,0.178) 0.036(0.037) (-0.033,0.103) -0.016(0.019) (-0.06,0.019)
WBC at presentation 0.047(0.015) (0.021,0.087) 0.026(0.016) (-0.004,0.056) 0.058(0.014) (0.03,0.081)

Gender 0.086(0.046) (0,0.172) -0.018(0.039) (-0.093,0.053) 0.067(0.046) (-0.009,0.146)
Lineage -0.065(0.045) (-0.134,0.034) -0.032(0.04) (-0.118,0.044) -0.071(0.03) (-0.129,-0.02)

NCI risk group 0.067(0.034) (0.004,0.117) 0.077(0.039) (0.022,0.165) 0.233(0.023) ((0.194,0.271)
Bulky disease -0.109(0.027) (-0.149,-0.05) -0.173(0.04) (-0.262,-0.106) -0.109(0.038) (-0.171,-0.048)
CNS disease -0.1(0.047) (-0.191,-0.034) 0.056(0.047) (-0.028,0.138) -0.039(0.039) (-0.112,0.018)

Risk at presentation -0.015(0.042) (-0.12,0.053) 0.066(0.054) (-0.015,0.151) -0.031(0.023) (-0.074,0.01)
Day 8 risk 0.049(0.047) (-0.057,0.113) -0.03(0.082) (-0.146,0.132) 0.021(0.032) (-0.03,0.072)

Day 35 risk -0.03(0.017) (-0.06,0.001) -0.002(0.035) (-0.074,0.054) 0.04(0.02) (0.006,0.073)
Morphological remission 0.164(0.106) (0.003,0.391) 0.138(0.047) (0.066,0.251) 0.096(0.035) (0.025,0.153)

MRD status 0.001(0.049) (-0.093,0.09) 0.001(0.029) (-0.05,0.059) -0.057(0.017) (-0.088,-0.019)

TABLE 3.7: Estimated covariate effects (with monte carlo standard
errors (MCSE) and 95% Bayesian credible intervals) on the event-time

at the median level, i.e. at τ=(50,50,50).

Covariate Est.(MCSE) 95% CI

Lymphocyte count 2.318(0.542) (1.353,3.286)

Neutrophil count -3.313(0.789) (-4.973,-1.9)

Platelet count -1.693(0.499) (-2.655,-0.691)

Age at diagnosis 0.189(0.218) (-0.231,0.62)

WBC at presentation 0.041(0.156) (-0.292,0.34)

Gender 0.625(0.355) (-0.044,1.308)

Lineage -1.507(0.554) (-2.722,-0.559)

NCI risk group 0.536(0.371) (-0.183,1.246)

Bulky disease -0.231(0.292) (-0.768,0.384)

CNS disease 0.235(0.309) (-0.33,0.876)

Risk at presentation 0.262(0.263) (-0.228,0.773)

Day 8 risk -0.344(0.368) (-1.022,0.354)

Day 35 risk 0.304(0.185) (-0.037,0.668)

Morphological remission 0.304(0.647) (-0.822,1.487)

MRD status -0.312(0.289) (-0.889,0.236)
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TABLE 3.8: Estimated covariate effects (with the monte carlo stan-
dard errors (MCSE) and 95% Bayesian credible intervals) on the three

biomarkers at τ =(25,75,75).

Lymphocyte count Neutrophil count Platelet count

Covariate Est.(MCSE) 95% CI Est.(MCSE) 95% CI Est.(MCSE) 95% CI

6MP dose -0.328(0.024) (-0.368,-0.281) -0.02(0.025) (-0.065,0.03) 0.041(0.013) (0.011,0.063)

MTx dose 0.023(0.021) (-0.015,0.063) 0.045(0.019) (0.005,0.083) 0.011(0.012) (-0.009,0.035)

Age at diagnosis 0.133(0.03) (0.084,0.194) 0.041(0.032) (-0.017,0.107) -0.022(0.033) (-0.08,0.033)

WBC at presentation 0.038(0.025) (-0.014,0.076) 0.01(0.017) (-0.019,0.046) 0.046(0.01) (0.025,0.066)

Gender 0.137(0.059) (0.005,0.22) -0.02(0.038) (-0.097,0.053) 0.019(0.033) (-0.06,0.086)

Lineage -0.088(0.08) (-0.207,0.034) 0(0.062) (-0.104,0.111) -0.081(0.027) (-0.125,-0.037)

NCI risk group 0.102(0.076) (-0.053,0.241) 0.072(0.071) (-0.034,0.199) 0.179(0.041) (0.097,0.228)

Bulky disease -0.066(0.054) (-0.161,0.006) -0.171(0.041) (-0.267,-0.105) -0.049(0.026) (-0.115,-0.009)

CNS disease -0.015(0.062) (-0.124,0.054) 0.055(0.038) (-0.018,0.116) -0.044(0.031) (-0.098,0.015)

Risk at presentation 0.028(0.035) (-0.047,0.082) 0.086(0.025) (0.033,0.132) -0.033(0.019) (-0.064,-0.002)

Day 8 risk 0.11(0.036) (0.055,0.193) 0.036(0.024) (-0.011,0.083) 0.071(0.048) (0.005,0.165)

Day 35 risk -0.057(0.025) (-0.123,-0.023) -0.054(0.024) (-0.113,-0.016) -0.007(0.023) (-0.045,0.032)

Morphological remission -0.026(0.057) (-0.135,0.079) 0.01(0.095) (-0.165,0.174) -0.011(0.055) (-0.121,0.092)

MRD status -0.019(0.02) (-0.058,0.017) -0.041(0.029) (-0.097,0.016) -0.049(0.02) (-0.101,-0.021)

TABLE 3.9: Estimated covariate effects (with monte carlo standard
errors (MCSE) and 95% Bayesian credible intervals) on the event-time

at τ =(25,75,75).

Covariate Est.(MCSE) 95% CI

Lymphocyte count 1.901(0.555) (0.781,3.019)

Neutrophil count -2.396(0.825) (-4.075,-0.886)

Platelet count -2.066(0.509) (-3.052,-1.046)

Age at diagnosis 0.238(0.228) (-0.208,0.654)

WBC at presentation 0.069(0.155) (-0.233,0.351)

Gender 0.743(0.325) (0.144,1.422)

Lineage -1.052(0.519) (-1.97,0.029)

NCI risk group 0.968(0.383) (0.257,1.813)

Bulky disease 0.206(0.284) (-0.385,0.759)

CNS disease 0.075(0.295) (-0.49,0.686)

Risk at presentation 0.229(0.281) (-0.308,0.753)

Day 8 risk -0.402(0.375) (-1.177,0.341)

Day 35 risk 0.48(0.205) (0.074,0.849)

Morphological remission 0.316(0.711) (-1.106,1.736)

MRD status -0.504(0.284) (-1.052,0.11)
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TABLE 3.10: Estimated covariate effects (with the monte carlo stan-
dard errors (MCSE) and 95% Bayesian credible intervals) on the three

biomarkers at τ =(75,25,25).

Lymphocyte count Neutrophil count Platelet count

Covariate Est.(MCSE) 95% CI Est.(MCSE) 95% CI Est.(MCSE) 95% CI

6MP dose -0.243(0.029) (-0.305,-0.188) 0.037(0.028) (-0.018,0.093) 0.01(0.018) (-0.018,0.052)

MTx dose -0.021(0.028) (-0.079,0.035) 0.076(0.02) (0.042,0.12) 0.008(0.011) (-0.018,0.025)

Age at diagnosis 0.126(0.027) (0.067,0.172) -0.019(0.045) (-0.095,0.071) -0.09(0.031) (-0.151,-0.025)

WBC at presentation 0.063(0.021) (0.024,0.106) -0.027(0.025) (-0.068,0.027) -0.019(0.018) (-0.05,0.014)

Gender 0.087(0.069) (-0.023,0.225) 0.1(0.048) (0.015,0.19) 0.156(0.042) (0.084,0.244)

Lineage -0.046(0.049) (-0.155,0.029) -0.023(0.061) (-0.142,0.088) 0.04(0.083) (-0.084,0.171)

NCI risk group 0.164(0.056) (0.104,0.288) -0.022(0.097) (-0.194,0.124) 0.017(0.049) (-0.071,0.097)

Bulky disease -0.056(0.036) (-0.107,0.011) -0.22(0.043) (-0.302,-0.152) -0.09(0.045) (-0.167,-0.016)

CNS disease -0.035(0.036) (-0.105,0.027) 0.065(0.038) (-0.012,0.127) -0.067(0.041) (-0.146,-0.006)

Risk at presentation 0(0.038) (-0.066,0.063) 0.084(0.045) (-0.008,0.165) 0.055(0.032) (-0.008,0.101)

Day 8 risk 0.053(0.074) (-0.05,0.173) -0.043(0.055) (-0.133,0.043) -0.017(0.051) (-0.1,0.059)

Day 35 risk -0.025(0.018) (-0.069,0.01) -0.024(0.032) (-0.086,0.028) 0.012(0.022) (-0.023,0.053)

Morphological remission 0.21(0.055) (0.096,0.305) 0.146(0.154) (-0.105,0.413) 0.055(0.064) (-0.034,0.176)

MRD status -0.023(0.036) (-0.089,0.046) 0.035(0.04) (-0.044,0.12) -0.047(0.025) (-0.089,0.006)

TABLE 3.11: Estimated covariate effects (with monte carlo standard
errors (MCSE) and 95% Bayesian credible intervals) on the event-time

at τ =(75,25,25).

Covariate Est.(MCSE) 95% CI

Lymphocyte count 1.524(0.546) (0.475,2.583)

Neutrophil count -1.957(0.63) (-3.219,-0.802)

Platelet count -0.949(0.466) (-1.809,-0.013)

Age at diagnosis 0.137(0.238) (-0.329,0.585)

WBC at presentation 0.018(0.165) (-0.292,0.35)

Gender 0.791(0.349) (0.149,1.454)

Lineage -1.685(0.578) (-2.753,-0.63)

NCI risk group 0.172(0.42) (-0.626,0.958)

Bulky disease -0.231(0.262) (-0.762,0.271)

CNS disease 0.097(0.295) (-0.463,0.69)

Risk at presentation 0.125(0.233) (-0.347,0.555)

Day 8 risk -0.035(0.349) (-0.769,0.654)

Day 35 risk 0.072(0.194) (-0.261,0.41)

Morphological remission 0.131(0.609) (-1.005,1.449)

MRD status -0.228(0.274) (-0.746,0.35)
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TABLE 3.12: Estimated covariate effects (with the monte carlo stan-
dard errors (MCSE) and 95% Bayesian credible intervals) on the three

biomarkers at τ =(75,75,75).

Lymphocyte count Neutrophil count Platelet count

Covariate Est.(MCSE) 95% CI Est.(MCSE) 95% CI Est.(MCSE) 95% CI

6MP dose -0.23(0.026) (-0.283,-0.176) -0.027(0.027) (-0.083,0.022) 0.038(0.015) (0.01,0.064)

MTx dose -0.034(0.026) (-0.086,0.013) 0.046(0.022) (0.007,0.09) 0.016(0.012) (-0.006,0.038)

Age at diagnosis 0.117(0.058) (0.037,0.228) 0.035(0.045) (-0.04,0.132) -0.023(0.041) (-0.09,0.044)

WBC at presentation 0.047(0.022) (-0.005,0.081) 0.004(0.018) (-0.038,0.039) 0.035(0.016) (0.003,0.064)

Gender 0.105(0.045) (0.009,0.179) -0.017(0.051) (-0.109,0.1) 0.035(0.029) (-0.024,0.094)

Lineage -0.03(0.123) (-0.236,0.181) -0.021(0.06) (-0.16,0.065) -0.045(0.05) (-0.119,0.033)

NCI risk group 0.117(0.061) (-0.012,0.21) 0.048(0.071) (-0.055,0.173) 0.185(0.067) (0.089,0.267)

Bulky disease -0.05(0.028) (-0.104,0) -0.17(0.034) (-0.228,-0.099) -0.059(0.025) (-0.097,-0.008)

CNS disease -0.173(0.049) (-0.264,-0.096) -0.028(0.037) (-0.101,0.043) -0.088(0.02) (-0.12,-0.055)

Risk at presentation -0.005(0.044) (-0.074,0.069) 0.077(0.039) (0.007,0.149) -0.033(0.019) (-0.061,0.004)

Day 8 risk 0.082(0.032) (0.044,0.154) 0.001(0.072) (-0.132,0.109) 0.037(0.052) (-0.04,0.111)

Day 35 risk -0.055(0.021) (-0.104,-0.021) -0.043(0.035) (-0.105,0.013) 0.011(0.021) (-0.022,0.062)

Morphological remission 0.168(0.053) (0.078,0.267) 0.085(0.061) (-0.023,0.237) 0.103(0.043) (0.012,0.166)

MRD status -0.002(0.023) (-0.044,0.04) -0.033(0.04) (-0.121,0.033) -0.084(0.028) (-0.131,-0.037)

TABLE 3.13: Estimated covariate effects (with monte carlo standard
errors (MCSE) and 95% Bayesian credible intervals) on the event-time

at τ =(75,75,75).

Covariate Est.(MCSE) 95% CI

Lymphocyte count 2.237(0.631) (1.171,3.576)
Neutrophil count -2.428(0.748) (-3.894,-1.009)

Platelet count -2.178(0.543) (-3.158,-1.115)
Age at diagnosis 0.175(0.226) (-0.262,0.63)

WBC at presentation 0.007(0.162) (-0.316,0.316)
Gender 0.702(0.319) (0.083,1.323)
Lineage -1.159(0.578) (-2.409,-0.042)

NCI risk group 0.697(0.378) (0,1.459)
Bulky disease 0.018(0.281) (-0.495,0.568)
CNS disease 0.238(0.312) (-0.37,0.867)

Risk at presentation 0.3(0.288) (-0.298,0.854)
Day 8 risk -0.331(0.387) (-1.089,0.414)

Day 35 risk 0.35(0.191) (-0.015,0.722)
Morphological remission 0.056(0.692) (-1.229,1.343)

MRD status -0.445(0.293) (-1.018,0.136)

3.4.2.3 Association parameters and non-relapse probabilities

In Figure 3.8, we show the estimated association parameters (measuring the effects

of the biomarkers on the hazard, the risk of an instantaneous relapse) at different

quantile levels. We note that at all five quantile levels the estimated association

parameter for the lymphocyte count is positive and their respective credible intervals
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FIGURE 3.8: Estimate and 95% credible interval for the quantile-
specific association coefficients of the three biomarkers to the event-

time.
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do not contain zeros. This indicates that an increase in the lymphocyte count results

in a higher risk of relapse, which is intuitive. We also note that the estimated effect

is the largest (in its absolute value) at the median level τ= (50,50,50).

The estimated association parameters for ANC and platelet count are all negative

and the corresponding credible intervals do not contain zeros. This indicates that

higher values of ANC and platelet count reduce the risk of relapse. The highest

(negative) effect of ANC is observed at the median level, and for the platelet count

the highest (negative) effect is observed at levels τ= (25,75,75) and τ= (75,75,75).

The estimated median non-relapse probabilities for the five quantile levels are

shown in Figure 3.9. In this plot, the covariates with fixed effects are set to the

median values, and the random effects (modeled as multivariate Brownian motion)

are averaged over the subjects. It is noted that the median non-relapse probabilities

are almost uniformly higher for τ= (25,75,75), i.e. when lower lymphocyte and

higher ANC and platelet count are observed. On the other hand, the median non-

relapse probabilities are almost uniformly lower for τ= (75,25,25), i.e. when a higher

lymphocyte count and a lower ANC and platelet count are observed. This reassures

that a higher lymphocyte count increases the relapse probability, and a higher ANC

and a higher platelet count reduce it.

We note that the curve for τ= (25,25,25) dominates the curve for τ= (75,25,25),

suggesting that a lower lymphocyte count improves the non-relapse probability. The

combination τ= (75,75,75) has comparable non-relapse probabilities to that of τ=

(25,75,75), suggesting that even if the lymphocyte counts are on the higher side,

non-relapse probabilities can still be increased by ensuring higher ANC and platelet

through medication. This is to say that no single model gives the best fit to this data

which again defends our choice of quantile-specific joint modeling.

It is also to be noted that the median non-relapse probability in the end of the

follow-up period for all quantile levels is at least 0.75. A relapse of ALL is always

alarming since most of the relapses result in death. The government might go for a

better healthcare system which can increase the non-relapse probability to 0.90 or

higher.
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TABLE 3.14: Estimated correlation matrices (for three biomarkers) at
different quantile levels. Lymp., ANC and Plt., respectively, denote

lymphocyte count, neutrophil count and platelet count.

τ=(25,25,25) τ=(50,50,50)
Outcome Lymp. ANC Plt. Lymp. ANC Plt.

Lymp. 1 0.682 0.588 1 0.590 0.432
ANC - 1 0.830 - 1 0.580
Plt. - - 1 - - 1

τ=(25,75,75) τ=(75,25,25)
Lymp. 1 0.636 0.484 1 -0.029 0.045
ANC - 1 0.562 - 1 0.808
Plt. - - 1 - - 1

τ=(75,75,75)
Lymp. 1 0.664 0.504
ANC - 1 0.577
Plt. - - 1

3.4.2.4 Other findings

In Table 3.14, we report the estimated correlation matrices for three longitudinal

biomarkers at different quantile levels. As expected the correlations vary from one

quantile level to the other. At the lower and upper levels, i.e. at τ= (25,25,25) and at
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τ= (75,75,75), and also at τ= (25,75,75) we observe moderate to high correlations

among the outcomes. At the median levels, the correlations are moderate (between

0.4 and 0.6). We observe that correlation between ANC and platelet is greater than

0.8 when both the response are at the lower quantiles (i.e. for τ =(25,25,25) and

τ= (75,25,25)). However, for τ = (75, 25, 25), the correlations between lymphocyte

count and the other biomarkers are close to zero.

In Figure 3.10, we plot the estimated (marginal) quantiles for each biomarker

separately at three different levels (i.e. 25, 50 and 75). We note that for all the

three biomarkers the plots show non-decreasing trends indicating that we do not

come across a quantile crossing issue in our analysis. However, this does not mean

that our proposed model will never suffer from this issue. Biswas et al. (2020) [10]

proposed a quantile smoothing method for handling the quantile crossing problem.

The method can be used in our joint modeling as well.
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FIGURE 3.10: Estimated marginal quantiles for three different
biomarkers for the ALL data analysis.

3.5 Simulation Study

We perform a simulation study for validating the proposed Bayesian quantile joint

modeling. We simulate the longitudinal traits (Yijk) from the model given in equation

(3.2), without the general effects of time. We consider two time-varying covariates,
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i.e. xij = [xij1, xij2], and three fixed covariates, i.e. zi = [zi1, zi2, zi3]. All the co-

variates are generated from a standard normal distribution, and the subject-specific

random effects are generated from a trivariate normal distribution with mean vec-

tor=0, and the covariance matrix Σ. The variance components in the matrix Σ are 2,

2.5,3; and the correlation between any two traits is fixed at 0.45. The random errors

are generated either from a standard normal distribution or from ALD with different

skewness parameters (τk).

For simulating the event-time, we use the model given in equation (3.3), with

a constant baseline hazard. We consider ten longitudinal measurements for each

subject, and then subjects are followed for the next fifteen time points. At T=25,

subjects are censored. We consider the following three cases.

Case I: Random errors are generated from ALD with τk=0.25, k = 1, 2, 3 (right-

skewed case).

Case II: Random errors are generated from ALD with τk=0.50, k = 1, 2, 3 (symmetric

with heavy tails).

Case III: Random errors are generated from a standard normal distribution (symmet-

ric).

For each of the three cases we simulate 100 datasets, and for each dataset we

take 200 subjects. We fit the proposed quantile regression joint model (QRJM) and

the traditional linear mixed joint model (LMJM) where the longitudinal process is

modeled with linear mixed models and the event-time is modeled by a dynamic Cox

PH model. We use MCMC for the parameter estimation.

For the joint modeling of longitudinal traits and event-time it is of interest to

evaluate the discriminative capability of a model. We compute the area under the

receiver operating characteristic curve (AUC) for different models. The AUC measures

how efficiently a joint model discriminates the subjects for which a relapse occurred

from the subjects with no relapse (Rizopoulos, 2016 [78]). Let πi(t + ∆t|t) be the

probability that for the i-th subject there is no relapse upto time t+∆t given that it is

event-free (no relapse) until time t. For any pair of subjects [i, j] who are event-free

until time t, the discriminative power of a model is assessed by computing AUC as

below:

AUC = P [πi(t+∆t|t) < πj(t+∆t|t)|(Ti ∈ (t, t+∆t]) ∩ (Tj > t+∆t)], where

Ti and Tj , respectively, denote the actual event-time for the i-th and the j-th sub-

ject. This means that for a fixed time-interval (t, t+∆t] if a relapse occurs for the i-th

subject but the j-th subject is event-free upto time t+∆t, then the model must assign

a higher non-relapse probability to the j-th subject. We use this criterion to compare

different models.

We consider t=10, and for three different values of ∆t (i.e. ∆t=5,8,12) we com-

pute the true AUC (based on the simulated dataset) and the predicted AUC for three

different models. Results (average AUC values from 100 datasets) are summarized
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TABLE 3.15: AUC values for different models under different settings
in the Simulation Study. Values are rounded upto two decimal places.

Predicted AUC(t,∆t)

Data Distribution t ∆t True AUC(t,∆t) QRJM(τ=(25,25,25) QRJM(τ=(50,50,50) LMJM

ALD(τk=0.25) 10 5 0.83 0.82 0.81 0.73
8 0.87 0.86 0.82 0.77

12 0.91 0.90 0.87 0.82

ALD(τk=0.50) 10 5 0.86 0.83 0.86 0.82
8 0.90 0.87 0.89 0.86

12 0.92 0.89 0.91 0.88

N(0, 1) 10 5 0.84 0.81 0.83 0.84
8 0.88 0.85 0.86 0.87

12 0.91 0.88 0.90 0.90

in Table 3.15. We note that when data are simulated from ALD with a specific skew-

ness parameter, then QRJM (for that specific quantile level) gives the best prediction

(highest AUC value). When we simulate data from a standard normal distribution,

then the AUC values for QRJM with τk=0.5 (for k = 1, 2, 3) are quite comparable

to those for LMJM. For all the other situations QRJM provides better prediction than

LMJM. This study illustrates the usefulness of the proposed QRJM for a non-Gaussian

setting.
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3.6 Summary

In this chapter, we develop a Bayesian quantile-based joint model for multivariate lon-

gitudinal outcomes and event-time data. When the joint distribution of the biomark-

ers deviate from a multivariate normal distribution then a quantile-based regression

model is used due to its robustness. Such models can also assess the evolution of dif-

ferent quantiles of the longitudinal outcomes, and their effects on the event-time. By

exploiting a mixture representation of ALD (following Kozumi and Kobayashi, 2011

[50]) we develop computationally efficient Gibbs sampler algorithm for the proposed

quantile-based joint model. Our analysis provides a complete picture on the covariate

effects, and the complex association among the biomarkers, event-time and covari-

ates. Our simulation studies also illustrate the effectiveness of the proposed model

for a powerful Statistical inference.

There are, however, some limitations of our current work. Note that the effects

of the drugs might differ from one age-group to the another, and therefore, an “age-

group based” analysis might reveal some insights in the functioning of the drugs.

Finally, there might be some latent classes in the dataset due to the difference in the

evolution of the biomarkers, and the covariate effects might differ from one class level

to the other. A latent-class joint model might be helpful for addressing this issue. In

Chapter 4, we develop a Bayesian latent class model for jointly analysing multivariate

longitudinal outcomes and event-time data.
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Chapter 4

A latent class Bayesian joint model
for multivariate longitudinal and
event-time data

4.1 Preamble

Joint analysis of univariate or multivariate longitudinal outcomes and the time to the

occurrence of one or more events of interest is an active research area over the last

two decades. Joint models are quite popular in biomedical studies where a group

of subjects are followed for a certain period of time, and the variables of interest are

measured longitudinally, in addition to the event-time (if any). In a joint analysis, one

can model the evolution of the longitudinal outcomes and the effects of those out-

comes on the event-time. Additionally, the effects of the covariates on the evolution

of the longitudinal process and the event-time can be assessed effectively in a joint

analysis (Wang and Taylor, 2001 [96]; Fieuws and Verbeke, 2004 [30]; Rizopoulos

and Ghosh, 2011 [79]; Das, 2016 [19]; Kundu et al., 2023 [52]).

Joint models are typically based on shared random effects or latent-class models.

In the shared random effects models the longitudinal biomarkers are first modeled

using (multivariate) linear mixed models, and then the event-times are modeled by

the semi-parametric Cox proportional hazards (PH) model where the same random

effects (used in modeling the longitudinal outcomes) are used as covariates in the

PH model. Shared random effects capture the dependence between the evolution of

the longitudinal outcomes and the event-time. Such models assume that the effects

of the covariates are same across all the subjects conditional on the random effects

(Henderson et al., 2000 [40]; Liu et al., 2008 [56]; Xu and Zeger, 2001 [100]; Zeng

and Cai, 2005 [105]; and the references therein).

Joint latent-class models, on the other hand, assume that there are several sub-

groups in the dataset under consideration, and the evolution of the longitudinal out-

comes and their effects on the event-time differ across different subgroups. Lin et



70 4.1. Preamble

al. (2002) [55] developed a latent-class joint model with an application to longitu-

dinal prostate-specific antigen readings and prostate cancer. Liu et al. (2015) [57]

used similar latent-class model with an application to CPCRA study. More recently,

Wong et al. (2022) [98] proposed a semi-parametric latent-class model for the joint

analysis of multivariate longitudinal and event-time data. Proust-Lima et al. (2014)

[69] gives a nice review on the recent developments on such latent-class joint model-

ing. Such models are based on finite mixture models for the longitudinal outcomes,

and assess the group-specific effects of the outcomes on the event-time. Since the

group information at the subject level is missing, expectation-maximization (EM)

type algorithms (or the similar models in a Bayesian framework) are typically used

for estimating the model parameters.

Our work in this chapter is motivated by the ALL dataset discussed in Section

1.4.1. However, similar to Chapter 3, we consider the lymphocyte count, the neu-

trophil count and the platelet count as the longitudinal biomarkers, and model them

jointly along with the time-to-relapse (or the censoring time).

In latent-class joint modeling, typically the subjects are clustered with respect to

their initial covariate values, and a multinomial logit model is used for such cluster-

ing (Wong et al., 2022 [98], and the references therein). Our approach in this work

is more in the line of Putter et al. (2008) [73] where the goal is to distinguish the

patients with distinct patterns in the longitudinal biomarkers. However, the results

of the clustering based on evolution of multiple longitudinal biomarker are difficult

to interpret, and computationally challenging as well. For our application, since the

lymphocyte count plays the major role in the development and evolution of acute

lymphocytic leukemia (ALL), we consider latent classes with different evolution pat-

terns for the lymphocyte count only. A finite mixture linear mixed model is used for

the lymphocyte count, whereas the neutrophil count and the platelet count are mod-

eled by the traditional multivariate linear mixed models. For modeling the event-time

using the Cox PH model we use the class-specific model, and the association among

the three biomarkers are effectively considered in the event-time submodels.

In a Bayesian framework we estimate the model parameters using Markov Chain

Monte Carlo (MCMC) algorithm, and compute the posterior probability for each in-

dividual to be assigned to each latent class. Our analysis finds two latent classes with

distinct patterns in the evolution of lymphocyte, and we also compute the average

non-relapse probability for each latent class. The trajectories for the neutrophil and

platelet count for the latent classes are also shown for understanding the association

among the three biomarkers.

The rest of the chapter is organized as follows. In Section 4.2 we provide a de-

scription of the dataset and specify the research goals. We also discuss the motivation

for a joint latent-class modeling for this dataset in this section. In Section 4.3, the

proposed models and the parameter estimation methods are discussed. The findings

from the data analysis are summarized and discussed in Section 4.4. In Section 4.5,
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we show the results from simulation studies which illustrates the effectiveness of the

proposed modeling. Finally, some concluding remarks are given in Section 4.6.

4.2 Dataset and Motivation

The dataset for this analysis is the same as the one in Chapter 3. In this analysis, we

consider the three longitudinal biomarkers, namely, lymphocyte count (LYM), neu-

trophil count (ANC) and platelet count (PLT) as response and the medicine dosage

6MP and MTx as time-varying covariates as before. In our dataset there were some

missing observations in the biomarker values for some patients. The overall percent-

age of missingness for WBC, ANC and PLT counts were 32.04%, 4.83% and 4.80% re-

spectively. In our analysis we deleted all the time-points with missing biomarker val-

ues and considered only those patients who had at least five non-missing biomarker

values. This resulted in the total number of patients as 184 in the dataset. In ad-

dition to this all the time-points for patients in the treatment phase and follow-up

phase were shifted to the same starting time for ease of comparison. The number

of observations in the treatment phase varied from 5 to 60, with median number of

visits being 28.

In the resulting data, 36% were females and the rest were males; the age range

of the children varied in the interval [1, 17.5] with the median age being 4.45 years

at presentation. About 28% of them have bulky disease (i.e., they have a cancerous

mass with 10 cm or larger diameter) and 36% were affected by disease related to

central nervous system (CNS). By the end of the study about 32% of the patients

experienced a relapse. In our analysis we had to exclude some of the covariates, such

as, Day 8 risk, Day 35 risk and MRD status from the list of fixed covariates as men-

tioned in Table 1.3, since these were measured at some fixed time point either during

the treatment or on completion of the treatment. Since the goal of our analysis is to

identify clusters based on the lymphocyte count in the presence of other responses,

only the covariates that were measured at the beginning are considered in this analy-

sis. Even though morphological remission for the subjects are measured at the end of

their treatment phase, it is based on just the neutrophil and platelet counts, which we

model for their respective mean trends later in our analysis. In addition to this, we

also include another fixed covariate “Risk” which is a stratification made by doctors

based on covariates observed before the treatment phase. All these time-invariant

covariates for the 184 subjects are presented in Table 4.1.
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TABLE 4.1: Summary statistics for the time-invariant covariates in the
ALL dataset for 184 subjects.

Variable Summary

Age at diagnosis Min= 1, Q1=3, Median=4.45, Q3=7.808, Max= 17.5

WBC count at presentation Min=100, Q1=5975, Median=17544, Q3= 46248, Max= 983500

Gender Female: 36%, Male: 64%

Lineage B cell: 85%, T cell: 15%

NCI risk group High Risk: 36%, Standard Risk: 64%

Bulky disease Yes: 28%, No: 69%, Unknown: 3%

CNS disease Yes: 36%, No: 60%, Unknown: 4%

Risk Good: 52%, Poor: 5%, T-cell: 2%, Other: 31%, Unknown: 10%

Risk at presentation High Risk: 21%, Standard Risk: 45%, Intermediate Risk: 34%

Morphological Remission Yes: 93%, No: 3%, Unknown: 4%

Figure 3.2 of Chapter 3 gives an idea that the relapse times might be affected by

the biomarkers. We want to analyse the data (i) to detect the predictors which simul-

taneously influence the biomarkers and the relapse times, (ii) to detect the underlying

subgroups exhibiting different patterns of the lymphocyte evolution over time, and

(iii) to find how the association of the biomarkers and effects of the medicines vary

across the latent subgroups. To answer these questions we implement a latent class

Bayesian model for jointly analysing the biomarkers and the event-time.

4.3 Model and Methods

In our dataset, we have three biomarkers, namely, the (i) lymphocyte count (LYM)

(ii) Neutrophil count (ANC) and (iii) Platelet count (PLT), which are longitudinal

in nature. For stabilizing the variances of the response biomarkers we consider the

log transformation (Kundu et al., 2023 [52]) and centered them at their respective

median values. Let Yijk denote the k-th biomarker measured from the i-th patient at

time tij , for j = 1, 2, . . . , τi, and k = 1, 2, 3. For the i-th patient we either observe

the actual relapse-time Ti, or the censoring time Ci. Define si=Ti ∧ Ci, and δi = 1, if

Ti < Ci; (and 0, otherwise) and we consider (si, δi) as our event-time data.

4.3.1 Longitudinal Sub-models

Since ALL is caused mainly due to an uncontrolled growth of the lymphocyte count,

it is of interest to distinguish the patients with significantly different patterns in the

evolution of the lymphocyte count. Therefore, we consider a Bayesian latent-class

model for the lymphocyte count, whereas for the neutrophil and the platelet count

we use the traditional multivariate linear mixed models (Kundu et al., 2023 [52])

used for modeling the longitudinal outcomes.
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4.3.1.1 Latent Class Model

Let Yij1 denote the lymphocyte count for the i-th patient observed at time tij , and let

Gi denote the latent subgroup the i-th patient belongs to. This is modeled as follows:

Yij1|(Gi = g) = µ
(g)
ij1 + ϵ

(g)
ij1;

µ
(g)
ij1 = f

(g)
1 (tij) + β

(g) T
1 xij + β

(g) T
2 zi + a

(g)
i + b

(g)
i tij .

(4.1)

In equation (4.1), the expected trajectory of lymphocyte for the g-th cluster at time

tij is given by µ(g)ij1, and f
(g)
1 (t) =

r∑
u=0

η
(g)
1u t

u represents the general effect of time as

r-th degree polynomial. The effect of medicines, xij = (xij1, xij2)
T is given by β

(g)
1 ,

whereas β
(g)
2 denotes the effect of fixed covariates zi = (zi1, . . . , zip)

T . Random ef-

fects α
(g)
i = (a

(g)
i , b

(g)
i )T , which contain the random intercepts a(g)i and the random

slopes b(g)i are jointly normally distributed, i.e. α(g)
i ∼ N2(0,Σ

(g)). These effects cap-

ture the longitudinal dependence among the measurements for the same biomarker

at different time points as well as the dependence among the biomarkers. Lastly, the

measurement error for the g-th class, denoted by ϵ(g)ij1, are assumed to be indepen-

dently distributed as N(0, σ21(g)).

4.3.1.2 Linear Mixed model for ANC and Platelet Counts

Let Yij2, Yij3 denote the neutrophil and platelet count for the i-th patient observed at

time tij ; j = 1, . . . , τi. We model these two outcomes as follows:

Yijk = µijk + ϵijk; k = 2, 3;

µijk = fk(tij) + βT
1kxij + βT

2kzi + cik + diktij .
(4.2)

Similar to equation (4.1), the expected trajectory of the k-th response at time tij is

given by µijk in equation (4.2). Here, fk(t) =
r∑

u=0
η1ukt

u serves similar purpose as

f
(g)
1 (t) and the value of r is selected based on some model selection criteria. The

effects of medicines and the fixed covariates on the k-th response are given by β1k

and β2k, respectively. Random effects γi = (ci2, ci3, di2, di3)
T capture dependence

between longitudinal measurements within and across the responses by assuming

that γi ∼ N4(0,Σ23). The random errors for the k-th response are given by ϵijk
iid∼

N(0, σ2k).

4.3.2 Event-time Sub-model

The relapse-time of a patient is possibly linked to the longitudinal outcomes, and the

fixed predictors. We use a Cox-PH model to study the association of the longitudinal

biomarkers to that of the observed relapse-times, si. It is intuitive that the hazard

rate of the subjects will be cluster-specific where the within cluster hazard model
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resemble largely as the hazard model in Rizopoulos (2016) [78].

The expected longitudinal trajectories of lymphocyte, neutrophil and platelet counts

at time t are given by µ(g)i1 (t), µi2(t) and µi3(t), respectively, where µ(g)i1 (t) = f
(g)
1 (t) +

β
(g) T
1 xi(t)+β

(g) T
2 zi+a

(g)
i +b

(g)
i t, and µik(t) = fk(t)+βT

1kxi(t)+βT
2kzi+cik+dikt; k =

2, 3. The symbols hold similar meaning as in equations (4.1) and (4.2), and xi(t) is

the quantity of 6MP and MTx administered at time t for the i-th patient. To serve our

inference goals we take the association of all 3 responses to be cluster-specific. Note

that ANC and platelet counts are not modeled at the (latent) cluster level, but might

have varied effects on the hazard rates across the clusters. Therefore, we consider

the cluster-specific PH model as follows:

λi(t)|(Gi = g) = λ
(g)
0 (t) exp

(
ψ
(g)
1 µ

(g)
i1 (t) +

3∑
k=2

ψ
(g)
k µik(t) + θ(g)T zi

)
. (4.3)

In equation (4.3), λ(g)0 (t) denotes the baseline hazard for the g-th class, which is mod-

eled by log(λ(g)0 (t)) = ν
(g)
0 +

Q∑
l=1

ν
(g)
l Bq(t, ζ), where, Bq(t, ζ) is q-th basis function of

B-splines with knots ζ = (ζ1, . . . , ζQ)
T . The knots are obtained by considering a large

number of evenly spaced quantiles of the observed relapse-times (as used in JMBayes

package) and then penalize the B-spline coefficients by considering suitable prior dis-

tributions (e.g., Laplace prior, Horseshoe prior etc.). The class-specific associations

of mean lymphocyte, ANC and platelet counts are given by ψ(g)
1 , ψ

(g)
2 and ψ(g)

3 respec-

tively. Lastly, the class-specific baseline coefficients for the baseline covariates zi is

given by θ(g).

4.3.3 Joint Likelihood and Bayesian Estimation

Let Θ(g) be the set of model parameters specific to cluster g; g = 1, . . . , G, and Θ23

be the set of model parameters from equation (4.2). Then the joint likelihood for the

set of parameters Θ = (Θ(1), . . . ,Θ(G),Θ23) is given as follows:

L(Θ|Y , s, δ) =
n∏

i=1

G∑
g=1

[ τi∏
j=1

f(Yij1|α(g)
i ,Θ(g))

×
(
λi(si|Gi = g,α

(g)
i )
)δi×

exp

(
−

si∫
0

λi(t|Gi = g,α
(g)
i )dt

)
f(α

(g)
i |Σ(g))P (Gi = g)

]
× Li(Θ23|Y i2,Y i3).

(4.4)

In equation (4.4), Li(Θ23|Y i2,Y i3) gives likelihood for equation (4.2), and

Li(Θ23|Y i2,Y i3) =

[
3∏

k=2

τi∏
j=1

f(Yijk|γi)

]
× f(γi|Σ23).
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The f(.) in equation (4.4) are the normal densities as in equations (4.1) and (4.2),

respectively. The g-th class specific hazard rate λi(.) in equation (4.4) consists of the

both class-specific parameters Θ(g), and global parameters Θ23.

We use the likelihood given by equation (4.4), and by considering appropriate

prior distributions on such parameters we draw samples from the joint posterior dis-

tribution. All our inferences are based on the joint posterior distribution. We imple-

ment MCMC algorithm for estimating the model parameters, all our computations

are performed using JAGS in R.

4.3.3.1 Prior and Joint Posterior Distribution

We mostly use the diffuse priors for the model parameters, similar to the priors used

in Kundu et al. (2023) [52], Rizopoulos (2016) [78]. The components of η and

β in equations (4.1) and (4.2) follow N(0, 1000). For the g-th class covariance ma-

trix for random effects of lymphocyte (Σ(g)) we consider an Inverse Wishart (I2, 3)

prior distribution, and for the covariance matrices corresponding to the random ef-

fects of neutrophil and platelet counts we also consider Inverse Wishart priors, i.e.

Σ23 ∼ IW (I4, 5). For the g-th class association coefficients ψ(g)
1 , ψ

(g)
2 , ψ

(g)
3 and for

elements of θ(g) we consider N(0,1000) prior distribution. For our analysis, a penal-

ized prior is applied on 15-knot cubic B-spline coefficients ν(g) = (ν
(g)
0 , . . . , ν

(g)
Q )T ,

similar to Rizopoulos (2016) [78]. For the g-th class error precision of lymphocyte

count and for the error precision of neutrophil and platelet count we consider Gamma

(0.001,0.001) prior distribution. Finally, for the class probabilities π = (π1, . . . , πG)
T

we consider a flat prior, that is π ∼ Dirichlet(1, 1, . . . , 1). Let π(Θ) be the joint prior

distribution for the complete set of parameters Θ. Then the joint posterior distribu-

tion is given as follows:

π(Θ|Y , s, δ) ∝ L(Θ|Y , s, δ)× π(Θ).

The posterior probability (pig) that the i-th patient will belong to class g, is given as

follows:

pig =
Li,g × πg[
G∑
c=1

Li,c × πc

] ,
(4.5)

with

Li,g =

[ τi∏
j=1

f(Yij1|α(g)
i ,Θ(g))

×
(
λi(si|Gi = g,α

(g)
i )
)δi×

exp

(
−

si∫
0

λi(t|Gi = g,α
(g)
i )dt

)
× f(α

(g)
i |Σ(g))

]
.



76 4.4. Data Analysis

It is interesting to note that Θ23 being the set of parameters that contributes to the

mean longitudinal trajectory of neutrophil and platelet count due to equation (4.2),

also influences the value of pig through their impact on the hazard rate and hence

the class specific non-relapse probabilities in conformity with equation (4.3). We can

use pig to identify the class in which the i-th patient is most likely to belong, i.e., the

posterior estimate of the class indicator is given by, Ĝi = argmax
g

p̂ig, where p̂ig is

obtained by plugging in the posterior estimates of Θ(g), Θ23 and π in equation (4.5).

4.4 Data Analysis

4.4.1 Computational Details

We use MCMC iterations (based on Gibbs sampler and Metropolis-Hastings Algo-

rithm) for estimating the model parameters. We run 20,000 iterations and discard

the first 5,000 iterations as “burn-in”, and thin the chains by saving every 10-th iter-

ation, for each of the 3 independent chains. The entire computation is done in JAGS
4.3.0. The trace plots, cumulative mean plots and density plots for the model param-

eters indicate the convergence of the chains. In addition, we compute scale reduction

factor (Brooks and Gelman, 1998 [12]) for assessing convergence in chains and the

computed scale reduction factors were all less then 1.2. Figure 4.1 - 4.3 shows the

plots for convergence for some of the model parameters.

While performing the computation we come across a problem with the Inverse

Wishart prior that was considered for the covariance matrices mentioned in equa-

tions (4.1) and (4.2). The error is “Unable to find appropriate sampler”. This hap-

pens because the determinant of the covariance matrices mentioned above gets small

enough and beyond the tolerance limit of JAGS which makes them not-invertible. To

evade this problem we consider
(
Σ(g)

)−1
=

3∑
u=1

∆
(g)
u

(
∆

(g)
u

)T
+0.001I2, and

(
Σ23

)−1
=

5∑
u=1

χu

(
χu

)T
+ 0.001I4, where, ∆(g)

u
iid∼ N2(0, I2) and χu

iid∼ N4(0, I4). Notice that

0.001 times the Identity matrices are there to ensure the positive definiteness of the

precision matrices. All computations were done in R, in a Windows 10, i7 processor

machine it takes nearly 36 hours for the complete analysis.
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FIGURE 4.1: Density plot, trace plot and cumulative trace plot for the
cluster-specific association parameters in the event-time sub model
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coefficients of medicine 6MP in equation (4.1) and (4.2)
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FIGURE 4.3: Density plot, trace plot and cumulative trace plot for the
coefficients of fixed covariate Age in the event-time model

4.4.2 Optimal Number of Latent classes

For selecting the optimal number of latent classes (G) a series of models for different

values G are to be tested. One can look at the size of the smallest cluster produced

by a model and if the “best fit” model results in G classes, and the size of its smallest

class is < 5, then the optimal number of classes is taken as G− 1.

We use the usual model selecting criteria such as AIC, BIC, DIC for selecting the

optimal number of latent classes. The main problem with using DIC is that if the size

of the smallest class is negligibly small (say < 5 subjects i.e., about 2.7%), then the

value of DIC does not change much for model with total class G − 1 than the model

with G classes. But the other criteria such as AIC and BIC, along with taking into

account the likelihood also penalize the total number of estimated parameters. Since

the total number of estimated parameters increase as we consider models with higher

number of total classes, we rely on the AIC and BIC values. The BIC criteria was also

used in Lin et al. (2002) [55], Liu et al. (2015) [57], Muthen and Shedden (1999)

[61] for selecting optimal number of latent classes.

In Table 4.2 we observe that the minimum class size is lower than the limit 2.7%

for G = 3, whereas, that for G = 2 is substantially bigger than the limit. Although

the DIC is the lowest for model with G = 3, in terms of AIC and BIC the model with

G = 2 gives lower values than the model with G = 3. Thus, we consider G=2 as the
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optimal number of classes in our analysis. Note that DIC reported in this Chapter is

not scaled by the number of subjects, n unlike in the Chapters 2 and 3.

TABLE 4.2: Model log-Likelihood, DIC, AIC, BIC and size of smallest
class based on Ĝi values for selecting the optimal value of G in ALL

data analysis.

G log-Likelihood DIC AIC BIC minimum cluster

2 -8232.647 18224.036 19709.293 24923.919 27.174%
3 -8186.962 18185.209 20455.924 27017.608 1.630%

4.4.3 Findings

In Tables 4.3 and 4.4, we summarise the estimated coefficients and 95% Bayesian

credible intervals (based on the MCMC iterations) for the longitudinal sub-model.

We consider a covariate to be significant if their 95% CI does not contain zero (Das,

2016 [19]). For the optimal degree of polynomial f in equations (4.1) and (4.2) we

compute the DIC values with r=1,2, and 3; and the smallest DIC value was obtained

for r=2. Thus, we consider a quadratic function of time for the general effect f .

We notice that effect of medicine 6MP is significant and negative for both the

classes (of lymphocyte), and also in overall trend for ANC and platelet count. On

the other hand, MTx is not significant for class 1 (of lymphocyte) but is negatively

significant for the class 2, and has significant positive effect for ANC whereas not

insignificant for the platelet count. Except for the covariate ‘Risk’, no fixed covariate

was significant in class 1 of lymphocyte, while in class 2 the covariates age, gender

and bulky disease are significant with negative effects. For the ANC, the covariates

lineage, bulky disease, risk at presentation and morphological remission are signifi-

cant, but for platelet count only morphological remission turned out to be significant.

In Table 4.5 we summarise the degree of association of the mean longitudinal

trends to the event-time, and class-wise effects of the time-invariant covariates on

the event-time. From this table we notice that the association effect of lymphocyte

count in class 1 is significant and positive, but in class 2 it is insignificant. In class 1

association of neutrophil count is insignificant, but for platelet count it is significant

and negative. But association of nuetrophil count in class 2 is significant and negative

with a much higher magnitude compared to the rest of association estimates, while

the platelet count association effect is marginally insignificant. This means that the

non-relapse probability of the subjects that fall in class 1 can be increased by lower-

ing lymphocyte count and increasing platelet count, but for subjects in class 2 only

neutrophil count is to be reduced to increase non-relapse probability. Even though by

increasing the 6MP dosage for the subjects in class 1 the platelet count is reduced, but

it will reduce the lymphocyte count at a much higher rate such that their combined

effect will reduce the hazard, and will increase the non-relapse probability. On the

other hand, change in the MTx dosage for subjects in class 1 does not alter the hazard
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rate much. Thus, we conclude that if the subjects in class 1 were given a high dosage

of 6MP, then they would have a higher chance of non-relapse. We further investigate

that due to the highly negative effect of neutrophil count on hazard for the subjects

in class 2, a lower dosage of 6MP and a high dosage of MTx will result in a higher

neutrophil count, and that increases the non-relapse probability.

Covariates such as lineage and bulky disease have significant effect negative ef-

fects for both classes in the event-time model, where as WBC at presentation has

significant but has opposite effects in the class. The effect of covariate ‘Risk’ is signifi-

cant and positive for class 1, but it is insignificant for class 2. In class 2, morphological

remission and risk at presentation are negatively and positively significant, but they

are insignificant for class 1.

In general it is observed from Table 4.5 that 95% CI of the fixed covariates and

association coefficients in class 2 is larger than their counterparts in class 1. This is

probably because the size of class 2 is much smaller than that of class 1. We observed

the size of class 2 to be 27.17%. In Figure 4.4 we plot p̂i1, the estimated value from

equation (4.5) for g = 1 where the i-th subject is assigned to class 1 if p̂i1 > 0.5. It is

clear from this plot that the subjects are well separated between two classes. Only 4

subjects lie very close to the 0.5 line, and in fact they lie with in the boundary lines

of 0.45 and 0.55 respectively.

It is clear from Figure 4.5 that the mean lymphocyte count in class 1 is higher and

grows more rapidly than that in class 2. The difference between these two curves

change much in the latter part of the treatment phase. Based on Figure 4.6, we

observe that subjects in class 1 have a lower (average) rate of non-relapse than class

2. For a better understanding, one needs to look at Figure 4.7, which shows the

class-specific mean longitudinal curves for the neutrophil and platelet count. Since

we did not consider the class-specific trajectories for these two biomarkers we get the

similar trends in the mean trajectories for the two latent classes. However, for the

neutrophil counts the curve for class 1 is consistently above the curve for class 2; and

for the platelet count we observe a reverse trend. Overall, a higher mean curve for

the lymphocyte and a lower mean curve for the platelet count reduce the average

non-relapse probability for this class.

We observed that the Kaplan-Meier (K-M) (Kaplan and Meier, 1958 [47]) non-

relapse probability curves for the latent classes in Figure 4.8 are similar to the es-

timated ones in Figure 4.6. However, one cannot expect the estimated non-relapse

probabilities to be just the smoothed out versions of the K-M plots, since the class-

specific non-relapse probabilities are heavily influenced by the expected longitudinal

responses through the hazard rates. In general, it easy to observe that two latent

classes are significantly different from each other with respect to the effects of the

medicines and other covariates, as well as the mean non-relapse probabilities. A sim-

ple joint model (without latent classes) would fail to provide the insights that the

proposed latent-class model provides us.
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TABLE 4.3: Estimated coefficients and 95% credible interval for the co-
variates in the latent classes of Lymphocyte in longitudinal sub-model.

Covariate
Lymphocyte Class 1 Lymphocyte Class 2

Estimate 95% CI Estimate 95% CI

6MP dose -0.300 (-0.354,-0.239) -0.101 (-0.181,-0.03)

MTx dose 0.027 (-0.039,0.097) -0.095 (-0.174,-0.019)

Age at diagnosis 0.037 (-0.031,0.105) 0.113 (0.021,0.2)

Gender 0.016 (-0.061,0.089) 0.132 (0.019,0.251)

Lineage -0.006 (-0.125,0.122) -0.087 (-0.243,0.093)

WBC at presentation -0.005 (-0.038,0.025) 0.051 (-0.002,0.106)

NCI Risk group -0.038 (-0.174,0.078) 0.096 (-0.071,0.237)

Bulky disease -0.036 (-0.116,0.041) 0.155 (0.044,0.262)

CNS disease 0.059 (-0.011,0.126) -0.041 (-0.139,0.076)

Risk -0.029 (-0.058,-0.003) 0.027 (-0.016,0.077)

Risk at presentation 0.006 (-0.044,0.059) -0.068 (-0.172,0.003)

Morphological remission 0.110 (-0.017,0.251) 0.046 (-0.222,0.274)

TABLE 4.4: Estimated coefficients and 95% credible interval for the
covariates for responses Neutrophil and Platelet counts in longitudinal

sub-model.

Covariate
Neutrophil count Platelet count

Estimate 95% CI Estimate 95% CI

6MP dose -0.121 (-0.196,-0.05) -0.059 (-0.104,-0.013)

MTx dose 0.184 (0.097,0.26) 0.039 (-0.003,0.086)

Age at diagnosis -0.023 (-0.075,0.028) -0.049 (-0.117,0.028)

Gender -0.017 (-0.091,0.06) -0.024 (-0.135,0.069)

Lineage 0.153 (0.037,0.286) 0.023 (-0.153,0.245)

WBC at presentation -0.019 (-0.053,0.014) -0.015 (-0.054,0.031)

NCI Risk group 0.005 (-0.073,0.099) 0.125 (-0.013,0.246)

Bulky disease -0.101 (-0.173,-0.038) -0.085 (-0.223,0.008)

CNS disease -0.006 (-0.088,0.063) -0.007 (-0.094,0.087)

Risk -0.008 (-0.034,0.015) -0.010 (-0.049,0.026)

Risk at presentation 0.068 (0.02,0.121) -0.034 (-0.113,0.044)

Morphological remission 0.300 (0.199,0.46) 0.301 (0.111,0.489)
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TABLE 4.5: Estimated coefficients and 95% credible interval for the
association parameters and baseline covariates in the latent classes in

event-time sub-model.

Covariate
Class 1 Class 2

Estimate 95% CI Estimate 95% CI

Lymphocyte count 2.670 (1.232,4.542) -4.411 (-29.583,20.664)
Neutrophil count -1.571 (-3.664,0.168) -84.529 (-113.07,-56.702)
Platelet count -2.778 (-4.001,-1.424) 12.497 (-1.967,28.032)

Age at diagnosis 0.176 (-0.329,0.668) -6.389 (-17.264,2.734)
Gender 0.424 (-0.41,1.213) 5.209 (-6.564,17.415)
Lineage -1.952 (-3.274,-0.821) -24.808 (-46.617,-9.036)
WBC at presentation 0.376 (0.005,0.759) -8.891 (-15.123,-2.078)
NCI Risk group 0.364 (-0.585,1.303) 0.941 (-10.413,13.983)
Bulky disease -0.882 (-1.522,-0.242) -23.543 (-36.591,-11.137)
CNS disease 0.457 (-0.272,1.223) 6.415 (-4.43,17.282)
Risk 0.425 (0.178,0.672) -0.855 (-6.235,4.866)
Risk at presentation -0.078 (-0.542,0.386) 17.161 (9.009,26.087)
Morphological remission -0.106 (-1.901,1.568) -34.601 (-55.497,-11.94)
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4.5 Simulation Studies

For assessing the practical usefulness and discriminative power of the proposed latent-

class model we perform a simulation study. We simulate data for 200 subjects similar

to ALL Chemotherapy dataset, for which we measure three longitudinal outcomes for

the first 10 time points, and then they are followed for the next 15 time points. At

time T=25, the subjects are censored. We measure two time-dependent covariates,

and three time-invariant covariates from each subject.

We consider two latent-clusters with respect to the first longitudinal outcome, and

generate data for that particular outcome using equation (4.1) with G=2. Then, we

use the models in equation (4.2) for simulating the two other longitudinal biomark-

ers. Regression coefficients are chosen based on the estimated coefficients from the

ALL data analysis. Finally, we use the class-based PH model (given in equation (4.3))

for simulating the event-time data. The regression coefficients for the PH model are

chosen such that we observe the event-time for nearly 30% subjects. We simulate 100

replicates of the dataset (each containing 200 patients).

Once the datasets are simulated, we use three competing models for assessing

their relative effectiveness. First, we consider a traditional joint model where we

use linear mixed models for modeling each longitudinal outcomes, and then use a

Cox PH model for the event-time with the mean longitudinal outcomes are taken as

covariates and the random effects are shared. Specifically, the longitudinal outcomes

are modeled as follows:

Yijk = µijk + ϵijk; k = 1, 2, 3;

µijk = fk(tij) + βT
1kxij + βT

2kzi + cik + diktij ,
(4.6)

where the symbols are similar to the model in equation (2). And then for modeling

the event-time we use the following Cox PH model:

λi(t) = λ0(t) exp

( 3∑
k=1

ψkµitk + θT zi

)
. (4.7)

We refer to this model as Model 1. Similar to the joint likelihood in equation (4.4),

we can write the joint likelihood for this model, and estimate the model parameters

using MCMC iterations.

Second, we consider separate modeling where in the first part we use linear mixed

models in equations (4.6), and estimate the model parameters. Then, we use the es-

timated longitudinal outcomes as covariates for modeling the event-time using equa-

tion (4.7), and estimate the correspond model parameters. We refer to this model as

Model 2.

Finally, we use the proposed latent-class model, and estimate the model param-

eters in a joint modeling framework using MCMC iterations. This is referred to as
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Model 3.

We fit all these three competing models to the simulated dataset, and then com-

pare their performances in terms of the goodness of fit and predictive power. We

compute average BIC values and the average mean squared error (AMSE) for three

biomarkers based on 100 replicates of the dataset as goodness of fit measures. For

Model 2 (separate modeling), we compute BIC from two models separately and add

them as the combined BIC value. For assessing the predictive power (corresponding

to the three biomarkers), we compute the log pseudo marginal likelihood (LPML)

following Gelfand and Dey (1994) [33]. In Table 4.6, we summarize the results. We

notice that Model 2 provides the largest BIC and AMSE values, and smallest LPML

value. On the other hand, Model 3 results in the smallest BIC and AMSE values, and

the largest LPML value. This illustrates that for datasets with a number of subgroups

the proposed model provides a more powerful inference.

For the joint modeling of longitudinal traits and event-time the discriminative

capability of a model is also evaluated. We use the area under the receiver operating

characteristic curve (AUC) for such comparison (Kundu et al., 2023 [52]). The AUC

measures how efficiently a joint model can discriminate the subjects with a relapse

from the subjects with no relapse (Rizopoulos, 2016 [78]). Let πi(t + ∆t|t) be the

probability that for the i-th subject there is no relapse up to time t+∆t given that it is

event-free (no relapse) until time t. For any pair of subjects [i, j] who are event-free

until time t, the discriminative power of a model is assessed by computing AUC as

below:

AUC = P [πi(t+∆t|t) < πj(t+∆t|t)|(Ti ∈ (t, t+∆t]) ∩ (Tj > t+∆t)], where

Ti and Tj , respectively, denote the actual event-time for the i-th and the j-th sub-

ject. This means that for a fixed time-interval (t, t + ∆t) if a relapse occurs for the

i-th subject but the j-th subject is event-free up to time t +∆t, then the model must

assign a higher non-relapse probability to the j-th subject. We use this criterion to

compare different models.

In Table 4.7, we show the AUC values for Model 1 and Model 3 for different

choices of ∆t, with t=10. We note that the AUC values are always higher for Model

3 than Model 1. This reflects the fact that the proposed latent-class joint model can

better discriminate the patients with relapse when there are several sub-populations

in the observed dataset. Thus, our simulation studies, in general, establish the use-

fulness of the proposed model in practice.

TABLE 4.6: BIC, Average MSE and LPML values for the three compet-
ing models in the simulation study.

Model 1 Model 2 Model 3

BIC 248.93 321.51 203.26
AMSE 169.57 223.84 116.39
LPML 286.51 228.33 342.43
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TABLE 4.7: AUC values (for t=10, and ∆t = 5, 10, 15) are given for
the two competing joint models in the simulation study.

Model 1 Model 3

AUC(t=10, ∆t=5) 0.54 0.73
AUC(t=10, ∆t=10) 0.60 0.69
AUC(t=10, ∆t=15) 0.58 0.71

4.6 Summary

In this chapter, we develop a Bayesian latent class model for the joint analysis of

multivariate longitudinal and event-time data. Traditionally, the fixed covariates de-

termine the latent classes, but we use the longitudinal trajectories (which are indeed

influenced by the fixed covariates) of the most important longitudinal outcomes for

finding the latent classes. The association between lymphocyte count and the other

two biomarkers (neutrophil count and platelet count) can be assessed by looking at

the class-specific trajectories of these biomarkers. Our simulation studies also illus-

trate the usefulness of the proposed modeling approach in the presence of certain

sub-groups with different evolution of the biomarkers.

We note that while there is a rich literature on Bayesian latent class modeling,

our proposed approach is quite innovative. The existing approaches mostly cluster

multiple outcomes altogether, and therefore the interpretation of the clusters is less

obvious. Also such approaches are computationally demanding, and sometimes suffer

from label switching problem severely. We model multiple outcomes using Bayesian

hierarchical models but clustering is done with respect to one of these. The trajecto-

ries of the other outcomes are assessed on these latent clusters to find the association

among the outcomes at different cluster levels. While this is computationally faster,

it also provides a clear understanding of the clusters. Our work, thus, is different

from most of the other clustering techniques proposed in the literature except the

one proposed in Putter et al. (2008).

There are several limitations of the proposed modeling approach. Our model fails

to handle missingness in the longitudinal biomarkers since the missing values will

affect the class-membership probabilities significantly. Developing latent class models

which can handle missing values in the longitudinal biomarkers and can impute them

simultaneously, can be a good research avenue to be explored. Additionally, the

latent classes can share some information in terms of the model parameters, and by

considering a Dirichlet Process prior (or some other variants of it) we can measure

such similarity among different classes. We leave this as an interesting future work.
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Chapter 5

Summary and Future Works

5.1 Joint Modeing with ALL dataset

In a longitudinal study where a group of individuals are followed for a certain period

of time for the occurrence of one or more events of interest, a joint analysis is highly

recommended. In a joint analysis we first model the progression of one or more

longitudinal outcomes, and then assess the effects of these outcomes on the event-

time through some popular Statistical models, e.g. Cox PH model, Accelerated Failure

Time model etc. The merits of a joint analysis of longitudinal outcomes and event-

time data over the separate modeling have already been established and discussed in

a series of papers (Henderson et al., 2000 [40]; Wang and Taylor, 2001 [96]; Brown

et al., 2005 [13]; Chi and Ibrahim, 2006 [15]; Rizopoulos and Ghosh, 2011 [79];

Das, 2016 [19]; Rizopoulos, 2017 [80], and the references therein).

Our work presented in this thesis is motivated by the clinical study mentioned in

Section 1.4.1. We note that although the survival rate for ALL is quite high in the

developed countries, it is still quite unsatisfactorily low in most of the Asian and the

African countries. Since the treatment phase is quite long (nearly two years), most of

the poor families in India cannot afford the treatment cost, and are forced to discon-

tinue the treatment. This is the major reason for which the true survival rate for ALL

could not be estimated properly in India. The study conducted by TTCRC considered

the patients who could complete the treatment, and could also be followed for the

next three years. Since a relapse is an indication of the failure of the treatment for

a particular patient, we focus on modeling the time to relapse in our analysis. Our

analysis provides several interesting insights and meaningful results which can be

further investigated for a better healthcare policy in India.

5.2 Contribution of this thesis

In Chapter 2 of this thesis, we develop a Bayesian model for the joint analysis of

three outcomes i.e. WBC, ANC and platelet count; and the relapse-time. Multivariate

linear mixed models with the Gaussian random effects are used for modeling the
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evolution of the biomarkers. A Cox PH model which considers the expected outcomes

conditional on the random effects as covariates is used for modeling the relapse-

time. For estimating the model parameters in a Bayesian framework, we need to

sample from the joint posterior distribution, and we use MCMC for this purpose.

Our proposed model can simultaneously impute the missing biomarker values within

each MCMC iteration, and can provide the patient-specific dynamic prediction of the

non-relapse probability during the treatment and in the follow-up period. We use

the posterior predictive distribution for assessing the effects of different doses of two

medicines (i.e. 6MP and MTx) on the evolution of the biomarkers and on the hazard

rate. Clinically, this analysis recommends a lower dose of 6MP and a higher dose

of MTx for a better non-relapse probability. In addition, it shows that the patients

classified as “high risk” in the beginning generally experience a lower relapse rate in

the follow-up period. Our findings are also validated by extensive simulation studies.

Chapter 3 is focused on developing a Bayesian joint model at the quantile levels

since the quantile-based analysis typically provides robust inference. In this chap-

ter, we consider the lymphocyte count as one of the biomarkers, and then observe

that the joint distribution of the three biomarkers deviate from a multivariate nor-

mal distribution. In addition, the contour plot also indicates that a quantile level

analysis is indeed appropriate for the dataset in hand. We develop Bayesian quantile

mixed models for the biomarkers, and consider the Brownian motion random effects

for better flexibility. We adopt the Bayesian quantile regression approach proposed

in Geraci and Bottai (2007) [35], and consider an Asymmetric Laplace Distribution

(ALD) for the random errors in the linear quantile mixed models. For the compu-

tational ease, we exploit the mixture representation of ALD following Kozumi and

Kobayashi (2011) [50], and develop a computationally efficient Gibbs Sampler algo-

rithm for estimating the model parameters. This analysis reflects that 6MP helps to

reduce the lymphocyte count, and MTx helps to increase the neutrophil count across

all quantiles. However, their effects on platelet count differ from one quantile level to

the other. Based on the estimated median non-relapse probability curves we conclude

that the patients with a higher lymphocyte count and a lower neutrophil and platelet

count experience more relapse than the patients belonging to the higher quantiles

for all three biomarkers. This indicates that a higher lymphocyte count itself is not

completely responsible for a faster relapse.

In Chapter 4, we consider a different approach, i.e. a latent class Bayesian anal-

ysis of the longitudinal outcomes and relapse-time. Here, our goal is to identify the

latent classes based on the longitudinal trajectory of the key biomarker, i.e. lym-

phocyte count. In other words, we distinguish the patients with different evolution

of the lymphocyte count. The trajectories for the neutrophil count and the platelet

count for these subgroups establish the association among the biomarkers. Based on

a joint model, we assess the class-specific effects of the covariates, and estimate the

class-specific median non-relapse probability curves. For our dataset the proposed
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approach detects two latent classes with distinct features in terms of the biomarkers

and their effects on the relapse-time. Practical usefulness of this approach is further

investigated through extensive simulation studies.

5.3 Limitations and Future Works

Remembering the well-known comment of Prof. G. Box, “All models are wrong, but

some are useful”, we mention some limitations of our work presented in this thesis.

First of all, progression of the biomarkers and the relapse-time of ALL are greatly

influenced by the genetic structure of the patients (see, Moriyama, Relling and Yang,

2015 [58]; Yakota and Kanakura, 2016 [102], and the references therein). Our

analysis completely ignores the genetic effects, and thus provides an incomplete in-

ference. However, this is due to the fact that the dataset in hand did not include the

genetic information of the children who participated in this study. Typically, huge

amount of genetic information is collected for each patient. Statistically, this brings

a high-dimensional covariates in the model (p > n). However, the models proposed

in Chapters 2, 3 and 4, can handle such setting by considering some shrinkage priors

(Lasso prior, local-global shrinkage prior, slab and spike prior etc.) for the regression

coefficients.

Second, for the quantile level analysis proposed in Chapter 3, it might be of in-

terest to measure the similarity of different quantile levels in terms of the estimated

model parameters. A non-parametric Bayesian approach could be used for such in-

ference considering different quantiles as distinct groups. Dunson et al. (2008) [27]

proposed Matrix Stick-Breaking Process (MSBP) prior for assessing such similarity.

Gaskins and Daniels (2013) [32], Das and Daniels (2014) [20] developed similar

priors for simultaneous estimation of the longitudinal outcomes. More recently, Das

et al. (2021) [21] developed a dynamic hierarchical Bayesian approach for model-

ing multiple time-varying groups. This approach can measure the similarity across

different groups where the size and the composition of the groups change with time.

Similar prior distribution can be used for our Bayesian quantile joint modeling for

more interesting results. However, the computational cost could be an issue.

Next, for the Bayesian latent class model proposed in Chapter 4 one can reduce

the number of distinct parameters to be estimated by considering an automated clus-

tering of the model parameters. Dirichlet Process (DP) priors are typically used for

shrinking the model parameters to a common value (Ferguson, 1973 [29]; Dunson,

2006 [26]; Blei and Jordan, 2006 [11]; Jensen and Shore, 2011 [45]). The stick-

breaking representation of DP, proposed in Sethuraman (1994) [85] is used for de-

veloping computationally efficient MCMC algorithms (Das et al., 2021 [21]) which

can handle complex models. A non-parametric Bayesian treatment of the proposed

joint models is definitely an exciting extension of our work.
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Finally, we must admit that the dataset provided by TTCRC is indeed an asset,

and similar studies are highly recommended for a better understanding of the pro-

gression of ALL. An analysis based only on 236 patients is definitely not adequate

for answering all clinical questions related to ALL, but similar studies conducted in a

larger scale will deepen our understanding on the effectiveness of the maintenance

therapy routinely used in India. Such studies will result in similar analyses presented

in this thesis, and that in one hand will help the medical experts to determine the

optimal drug doses; and on the other hand it will help the policy makers to imple-

ment certain change in the existing healthcare policy. We must conclude by noting

that even if ALL cannot be cured for all the patients, but the children can definitely

live longer with the advanced chemotherapy. Therefore, it is extremely important to

conduct similar studies and perform similar analyses presented in this thesis.
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