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SUMMARY. It is proved that under certuin ptions thoro exists a stationary optimsl plan
for tho di d dynamic p iug problem with conti stuto und action spaces.

1. INTRODUCTION

A dynamio programming problem is specified by four objects : S, 4, ¢, r, where
8 is a non-empty Borel subset of a Polish (i.e. complete, scparable, metric) space, the
st of states of some system, 4 is a non-empty Borel subset of a Polish space, the set of
actions available to you, ¢ is the law of motion of the system—it associates (Borel
measurably) with each pair (s, a) a probability measure g (.|s, a) on the Borel subsets
of S : when the system is in state s and action a is chosen, the system moves to the
state &' according to the distribution g(.|s, a); and r is & bounded Borel measurable
function on Sx 4, the immediate return—when the system is in stato 8, choose action
a,and receiveanincomer(s, a). A plan  is a sequence my, ,, ..., where m, tells you how
to select an action on the n-th day, as a function of the previous history & = (s;, a,,
vees @p_y, 8,) Of the system, by associating with each h (Borel measurably) a probability
distribution m,(.|k) on the Borel subsets of 4.

A Borel function f from § into 4 definesa plan. When in state s, chooso action
f(s) (independently of when and how you have arrived at state s). Denoto the cor-
responding plan by f**).  Such plans will be called stationary.

A plan 7 associates with each initial state & a corresponding n-th day expected
return r,(m)(s) and an expected discounted total return

Ienke) = & 1= ryfr).

where f is a fixed discount factor, 0 < £ < 1.

A plan #* will bo called optimal if I(n*)(s) > I(n)(s) for all plans 7 and seS.
The problem, then, is to find a n optimal plan.

Blackwell (1965) and Strauch (1966) have studicd this problem extensivoly.
Blackwell (1965) has given an example in which not even g-optimal plans exist.
In this paper, wo are going to mako additional assumptions about A, ¢ and r.
Throughout the puper, the following assumptions will remain operative : (a) 4 isa
compact metric space; (b) r is & bounded upper semi-continuous function on Sx4;
and (c) if 85— 8, ay— a, then ¢(:| sn, a,) converges weakly to g(.|s, a). Wo shall show
that under theso restrictions thero will always exist o stationary optimal plan.

211



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Szries A

The proof of the existence of an optimal plan rests on a Selection theorem
due to Dubins and Savage (1965, sce Chapter 2.16). In Section 3 of this paper, we
give & proof of the Dubins-Savage theorem, which is rather technical in nature (Sec-
tion 3 is, therefore, expository. It scems worthwhile to include a detailed proof here).

Section 2 is d. d to an exposition of certain topological notions needed for the
Sclection theorem. In Section 4, we establish the exi of an optimal stati 'y
plan.

2. ToOPOLOGIOAL PREREQUISITES

Let A be a compact metric space with metric p. Denote by 2 the collection
of all non-empty closed subsets of A. We introduce a metric d on 23—the Hausdorff
metric—as follows : for any 4, Be24,

d(4, B) = mox ( sup piz, B), sup ply, 4)
where, for zéA and D C A, p(z, D) = i'nl‘p Pz, 2).

Proposition 2.1: (2%,d) is a compact melric space.
The proof may be found in Kuratowski (1950, page 21).
Let us now study convergence in the Hausdorff metric d. For any sequence

{4pn=1,2,..} C 2%, define lim A, = {peA : there exists an increasing sequence &,
< kg < ... < of natural numbers such that p, €4, and P, — p}; define lim 4, =
n n n -

{peA : there exists a sequence p,, such such that p,e 4, and p,—> p}. It is clear that
Iim 4,, lim 4, are closed. In case lim 4, = lim 4, we say that tho limit exists and
denote it by lim 4,. As A is compact, it is clear that lim 4, € 23,

The next proposition connects convergenco in the metrio d with convergence
defined above.

Proposition 2.2: Let A, n=1,2,... be a sequence of clements of 2. Then
d(4,, 4)- 0 if and only if im 4, = 4.

Sce Kuratowski (1950), page 21, for a proof.

Let X be a metrio space and let F be a map from X into 23, We shall say that
F is upper semi-continuous in the sense of Kuratowski (abbreviated, hereafter, by u.s.c.

(K)) if 2,— z implics lim F(z,) C F(z).
Wo shall need the following fact about u.s.c. (K) maps.

Proposition 2.3: If F is us.c. (K) from a motrio spaco X into 2%, then F'
is Borel measurable.

Soco Kuratowski (1950), page 38, for a proof.
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3. SELECTION THEOREM
In thisscction, we prove the Selection theorem of Dubins and Savage. Through-
out this section, 4 will be a compact metric space, S a Borel subset of a Polish spaceand
val led, upper i i (abbreviated, hereafter, by u.s.c.) function on 4
(that is, @,— a implics lim sup v(a,) < ©(a)). Assume that |v(a)| < M for all acA.
We need some preliminary lemmas for the proof of the Selection theorem.
Lemma 3.1: Define v* on 24 into R by v*(K) = max v(a). Thenv®is u.s.c.
a

Proof: As v is us.c., and K compact, it follows from a well-known result
that there exists a,eK such that v* (K) = 1(a,).

Now suppose Kn—» K and assume that for some aneKn, v(Kn) = t(a,).
Choose a subsequence {v(a,.)} such that v{a,.)—» lim sup v*(K,). As A is compact,
there exists a subsequence {a,.} of {a,} such that a,-— a. It follows that acKk and,
since v is u.s.c., lim sup v*(K,) = lir_n v(ap) < v{a) < v°(K), which proves that
v* is us.c. "

Lemma 3.2: For each Ke24 and ze[—J, M), define i’(l\’, z) ={aeK :v{a)
> z}. Denote by dom V the set {(K,z)e 24X [—M, M]: V(K,2) #¢}. Then dom 1%
8 closed in 24X[—M, M) and so a compact melric space. Furthermore, V is wa.ec.
(K) from dom V into 24.

Proof: v being u.s.c., for any real ¢, {v > ¢} is closed in A. Hence I"(l\', z),
if non-empty, is an clement of 24. Next, let us show that dom V is closed. Let
(Kn, za)edom ¥, n=1,2,... and suppose (K, 2a)— (K, z). Let aneV(K,, z,),
n=12,..,. Sinco A is compact, there exists a subsequence {ant) of {a,} such that
ant—b a. Consequently, aeK and z =lim :r'k < lim sup t'(a"k) < v(a), so that

ael"(K, z). Hence (K, z)e dom i’, which is, therefore, closed.

Finally, in order to prove that V is us.c. (K), we have to show that (K, z,)
(K, 2), a,eV(Kn zq), n=1,2
aeK. Consequently, since z = lim x, < lim sup v(a,) < t(a), nef(l\', z). This com-
pletes the proof of Lemma 3.2.

Lemma 3.3: Define V on 24 by V(K) = {aeK : v(a) = v(K)}. Then V is
a Borel measurable map from 24 inlo 24,

vy @ —>a imply that aeV.(l\'. z). Since K,» K,

Proof: As v is us.c., V(K) is non-empty. Let us show that it is closed.
Let aueV(K), n = 1, 2, and suppose that a,—» a. Then, since v is u.s.c. v*(K) = lim
sup (a,) < v(a) and as K is closed, ae K. Conscquently, ae F(K). Henco ¥ maps

24 into 24,
Let K be a Borel subset of 24. Note that V(K) = F(K, v*(K)). Conscquently

{Ke24 : V(K)eK} = proj A[(K, z)edom V: l;(l\', 2)elK)N((K, z) : v*(K) = 2]
2
(U]
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As v* is us.c. (by Lemma 3.1), it is a Borel function from 24 into [—M, M] and hence
its graph is a Borel set in 24x[—2, M] (cf. Kuratowski, 1952, page 291). Also V
is ws.c. (K) (by Lemma 3.2) and so it is a Borel map from dom V into 24 (sce Pro-
position 2.3). Consequently, {(K, x)e dom V : V(K,z) ek} is a Borel subset of dom
l.’, which being closed in 24 X [— A1, M), the former set is a Borel subset of 24 x[— 3, M)
as well.  Thus, the set within square brackets on the right-hand side of (1) is a Borel
subset of 24 x[—JM, M]. Finally, projection being a continuous map and, morcover,
1—1 in this case, it follows by a well-known theorem of Lusin (cf. Kuratowski, 1952,

page 396) that {Ke24: V(K)ek} is a Borel subset of 24. Hence V is a Borel map.
This completes the proof of Lemma 3.3.

Lemma 3.4: Let u be @ bounded u.s.c. function on SXA. Define u®:S— R
by u*(8) = max u(s,a). Then u* is u.s.c.
aed

Proof: Aswuisus.c., for fixed a, u(s, .) is u.s.c. in @, so that u*(s)is well defined.
Let s,— s and suppose 1%(s,) = u(s,, a,), n = 1,2, .... Choose a subsequence {u'(s,.)}
such that «*(s,.)— lim sup u*(s,). Morcover, as 4 is pact, there isa g
{a,} of {a,} such that a,.—a. Since u is us.c., it follows that lim sup u'(s,) =
Ii"le U8,y @) < u(s, a) < u%(s). llence u® is u.s.c.

Lemma 3.5: Let u be a bounded u.s.c. function on SXA. Define U:S—24
by U(s) = {aed : u(s,a) = mazx u(s,a’)}. Then U is a Borel map.
a'ed

The proof of Lemma 3.5 is omitted as it is similar to that of Lemma 3.3.

Sclection Theorem : Let u be a bounded w.s.c. funclion on SxA. Then
there exists a Borel measurable map f from S into A such that u(s, f(s)) = max u(s, a)
a

Jor all seS.

Proof : Choose a sequence {v,,n = 1,2,...} of continuous real-valued func-
tions on A, which separate points in A (for instance, one may choose a sequence of
functions dense in C(A)). For each v, define, for Ke24, V(K) = {aeK : vi(a) =
max ty(a’)}. Then by Lemma 3.3, each V; is a Borel map from 24 into 24, Let U be
a’ek
as in Lemma 3.5, Define Uy(s) = Vy(U(s)) and U(s) = V(Up_y(9)), # > 2. By
virtue of Lemma 3.5 it follows that each V, is a Borel map from S into 24. Moreover,
for each 8, U(s) D Uy() D Uy(s) D ... Conscquently, the family {U,(s) :n =1, 2,...}
of closed subsets of A has the finite intersection property, so that, as A is compact,
ﬁ U (s) # ¢ for every s€ S. Suppose now that for some s¢ S, a, a’s q U,(s) and

a #a'. Then, for every n, as a, a’eU(s), it follows that v,(a) = v,(a"), which contra-
dicts tho scparating property of tho scquenco {v,}. Ilenco a = a’ and for each s,

ﬁn U () is a singleton say, {f(s)}.
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Next, let us show that for every sS, {f(s)} = lim U,(s) in the Hausdorfl
Ao

metric of 24 (sce Scction 2). Fix s and suppose that ae Tim U,(s). Then there exists
a sequence (a-k) with a"keU'k(a) and a.k-» a. As cach Up(s) is closed and a”‘eU,,.(a)

for all ng > m, it follows that acUpn(s) and, consequently, aeﬁl/,(a), Hence
n=l

iim U(s) C {/(s)}. Also it is clear that {f(s)}Clim U(s). Hence, by Proposition 2.2,
{f(8)} = lim U (s) for cach seS. As each U, is a Borel map from S into 24, it now
follows that ¢ : s— {f(s)} is a Borel mcasurable map from § into 24.

Finally, it is casy to check that the class of all singletons belonging to 24 is iso-
metric to A. It follows that f is a Borel measurable map from S into A. Moreover,
a8 f(8)eU(s) for each s€$S, we get : u(s, f(s)) = max u(s, a) for every seS. This completes

acd

the proof of the Selection theorem.

4. EXISTENCE OF OPTIMAL PLANS

Let us return to the dynamic programming problem posed in Section 1. We
shall assume that § is a Borel subsct of a Polish space, A4 a compact metric space, r
a bounded u.s.c. function on $x A and g is continuous, that is, (s,, @,)=» (s, a) implics
q(.]s,, a,) converges weakly to g(.|s, a).

Lemma 4.1: Lel w: S— R be a bounded u.s.c. function. Then g:SxA
=R defined by g(s, a) = [ u(.)dq(.|s.a) is u.s.c.

Proof : If wis continuous, then clearly g is continuous. Now if w is bounded
and u.s.c. there exists a sequence of bounded continuous functions w, | w. Let g,(s, a)
= [w,(.)dg(.|s,a), (5,a) e SxA. Each g, is continuous and, moreover, by the domi-
nated convergence theorem, g, }g. MHence g isus.c. This terminates the proof of
Lemma 4.1

Denote by C(S) the class of all bounded u.s.c. functions on S. For u, veCy(8),
define dy(u, v) = [[u—v)| = quv |u(s)—v(s)|. d, is a metric on Cy(S).

€S

Lemma 4.2: The melric space (C(S), d,) is complete.

Proof : It suffices to show that Cy(S) is closed under uniform convergence.
Let v,6Cy(S), n = 1, 2, ... and suppose v, converges uniformly to v on S. Let 8,—> 3.
Given € > 0, choose N, such such that » > N, implics |v,(s)—(s)| < ¢ for all scS.
Hence we have os,) <v, (8,)+¢ for all # and v i (3) < v(s)+e. Consequently,

e G
lim sup »(s,) < lim sup v, (sn)+e<g v, (80)+€ < v(s,)+2. As ¢ is arbitrary, this
g

proves that veC\y(S).

For every weCy(8), let Tw : S— R bo tho function defined by :

(Tw)(s) = max [f(r(s, a)+pu{.)) dy(. |, @) e (2)
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Note that, by virtue of Lemma 4.1, the expression within square brackets on
the right-hand side of (2) is u.s.c. in s and @, and, consequently, the maximum is assumed
for every s. Morcover, Lemma 3.4 implies that Tw is u.s.c. and, sinco it is obviously
bounded, Twe Cy(S). Thus T maps Cy(S) into Cy(S).

Lemma 4.3: T is a conlraction mapping on C((S) and, consequently, has a
unique fixed point.

Proof : Let wy, wy 6 Cy(S). Clearly 1w, € wy+|wy—w,|l. Since; as is easy
to check, T is monotone, Tuw, < T(wy+|lw,—wy|) = Tw,+f|lw,—w,|. Conse-
quently, Tw,—Tw, £ flw,—w,. Interchanging w, and w, we get Tw,—Tw,
Pley—wy. Hence [|Tw,—Tw,|| < fllw,—1w,||, which proves that 7' is a contraction
mapping, as # < 1. Since C\(S) is a complete metric space (Lemma 4.2), it follows
from the Banach Fixed Point theorem that 7' has a unique fixed point in Cy(S). This
completes the proof.

Theorem : There exisls a slalionary oplimal plan and the optimal return
(= sup I(m)) is u.s.c. on 8.

*

Proof : With each Borel map g : S—4, associate the operator L(g) on J/(S)

(= the collection of all L ded Borel ble functions on S) which sends
ueM(S) into L(g)ue M(S), where L{g)u is defined by :
(Lghu)(s) = [lr(s, g(s))+Bu(.)}dq(. |5, g(s)),e€ S. v (3)

It is known that I(g)) is the unique fixed point of the operator L(g) (see Theorem
5.1 (b) in Strauch (1965).

Now let T be as above and let w®e Cy(S) be its unique fixed point (Lemma 4.3),
ie, Tw® =w". It now follows from the Selection Theorem (of Scction 3) that there
exists a Borel map f from § into A such that Tw* = L(f)w*. Consequently L(f)w® = u*
80 that by the remark made in the preceding paragraph, w* = I(f'=)). Hence Tw® = w*
can be rewritten as :

I(f))(s) = max [f(r{s, a)+AHf=)(Ddgl. |, a)lse S.
Thus I(f=)) satisfies the optimality equation, so that by a theorem of Blackwell

(1965, Theorem 6(f)) ft*) is an optimal plan. Moreover, as w* = I(f')) and w*eCy(S),
it follows that the optimal return is u.s.c. This completes the proof of the theorem.
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