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Abstract

In this thesis, we focus on studying MDS and Near-MDS (NMDS) matrices and

explore their construction in both recursive and nonrecursive settings. We present

several theoretical results and analyze the hardware efficiency of MDS and NMDS

matrix constructions. We begin by providing a comprehensive study of MDS matrices

over finite fields. This study not only summarizes existing results but also reveals deep

and nontrivial connections among various constructions of MDS matrices.

Next, we delve into the study of various sparse matrix structures for the construc-

tion of both MDS and NMDS matrices in recursive settings. Additionally, we explore

various structures for the nonrecursive construction of NMDS matrices, including cir-

culant and left-circulant matrices, as well as their generalizations such as Toeplitz and

Hankel matrices. Whenever possible, we also make comparisons between the results

of NMDS and MDS matrices.

Next, we present various techniques for direct constructions of MDS and NMDS

matrices in both recursive and nonrecursive approaches. In the recursive approach,

we derive recursive MDS and NMDS matrices from companion matrices, while direct

constructions of nonrecursive MDS and NMDS matrices are obtained by using two

generalized Vandermonde matrices. Furthermore, we propose a direct method for

constructing involutory MDS and NMDS matrices.

Finally, we introduce FUTURE, a new SPN-based lightweight block cipher de-

signed with minimal latency and low hardware implementation cost in mind. To

achieve the best diffusion in the linear layer, FUTURE incorporates an MDS matrix

in its round function. While the use of MDS matrices in lightweight block ciphers

is typically avoided due to their high implementation cost. The MDS matrix in FU-

TURE is composed of four sparse matrices, striking a balance between diffusion prop-

erty and implementation cost. In addition, FUTURE adopts a lightweight yet cryp-

tographically significant Sbox, which is formed by combining four different Sboxes.

By combining these design choices, FUTURE successfully combines lightweight im-

plementation with the desirable properties of MDS matrices, offering an effective

solution for designing lightweight block ciphers.
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1
Introduction

Contents

1.1 Diffusion Layer . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aims and Contributions . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . 7

With the increasing adoption of interconnected devices, a significant volume of

data is being transmitted through the Internet of Things (IoT). This data often con-

tains sensitive and personal information, necessitating protection against unautho-

rized access. To achieve various security objectives, such as confidentiality and au-

thenticity, symmetric cryptographic algorithms play a crucial role. These algorithms

include block ciphers, stream ciphers, hash functions, and message authentication

codes. Among these, block ciphers hold particular significance as fundamental com-

ponents of symmetric cryptography. They not only provide essential security features

but also serve as the foundation for other cryptographic primitives. For example, a

secure block cipher can be used as a building block for creating secure hash functions

or message authentication codes. To that end, the availability of a secure block cipher

is one of the fundamental criteria in the design of many cryptographic primitives 1.

A block cipher is formally defined as a collection of permutations within a finite

message space parametrized by a key from a finite key space. Ideally, each of these

permutations should be indistinguishable from a randomly chosen permutation from

the entire set of permutations within the message space. Due to the complexity of

achieving this ideal security goal, a more practical security notion has emerged. In this

1An alternative approach is to utilize cryptographic permutations, such as Keccak [BDPA11]
and ASCON [DEMS21], to construct symmetric key cryptographic primitives without depending on
block ciphers.
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context, a cryptographic primitive is considered secure if no significant vulnerabilities

have been discovered over an extended period, typically spanning several years. In the

present day, we possess highly efficient and versatile block ciphers of this type. The

foremost example is the Advanced Encryption Standard (AES) [DR02], which is the

standardized version of the block cipher Rijndael [DR99]. It is widely regarded as the

most comprehensively understood construction in this field, and since its publication,

no significant vulnerabilities have been identified. Its elegant design, along with its

adaptability for numerous applications, positions it as the current state-of-the-art

cipher.

Nevertheless, with the expanding range of smaller, more cost-effective connected

devices, there may arise scenarios where a cryptographic solution specifically designed

to meet highly restrictive demands for performance and efficiency is necessary. Conse-

quently, there is a need for new designs optimized across various lightweight metrics,

including hardware cost, power consumption, and latency. Over time, a multitude of

these lightweight primitives has emerged. For a comprehensive list, we refer to [BP17].

Most block ciphers are classified as iterated ciphers, where the output is generated

by repeatedly applying a fixed key-dependent function r times to the input. This

function, referred to as the round function, and the block cipher is referred to as a

r-round iterated (block) cipher [DR02, Section 2.4.1]. The round function typically

consists of a simple combination of a nonlinear operation and a linear operation,

often referred to as a linear layer. This design paradigm has been extensively studied

and includes ciphers like AES [DR02]. However, it is noteworthy that the hash

function Cellhash [DGV91] by Daemen et al. introduced the dedicated mixing layers

in symmetric key cryptography. The mixing layer in Cellhash needs two XORs for

each state bit, and reversing them needs many XORs. It is worth noting that the hash

function KECCAK [BDPA11] and the permutation Xoodoo [DHAK18] use mixing

layers with a similar feature. The block cipher 3-Way [DGV93] employed a mixing

layer inspired by error-correcting codes. Additionally, in many design choices for

lightweight cryptographic primitives, established algorithms such as AES are adapted

by modifying their components to meet specific lightweight requirements.

1.1 Diffusion Layer

Claude Shannon, in his paper “Communication Theory of Secrecy Systems” [Sha49],

introduced the concepts of confusion and diffusion, which play a significant role in

the design of symmetric key cryptographic primitives. The concept of confusion
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aims to create a statistical relationship between the ciphertext and message that is

too intricate for an attacker to exploit. In general, confusion is achieved through the

interaction between nonlinear Sboxes and mixing and shuffling processes over multiple

rounds. Diffusion means that if we change a single bit of the plaintext, then about

half of the bits in the ciphertext should change, and similarly, if we change one bit of

the ciphertext, then about half of the plaintext bits should change. This is equivalent

to the expectation that encryption schemes exhibit an avalanche effect [WT86]. The

purpose of diffusion is to hide the statistical relationship between the ciphertext and

the plaintext. In many block ciphers and hash functions, the diffusion property is

attained through the use of a linear layer, which can be represented as a matrix. This

matrix is designed to produce a significant alteration in the output for a small change

in the input.

It is worth noting that the exact meaning of the term diffusion strongly depends

on the context in which it is used [DR02]. In this thesis, we will use the term diffusion

to refer to the diffusion effect of a linear transformation T , unless explicitly stated

otherwise. This effect can be studied by analyzing the pairs (x, T (x)). Additionally,

in this thesis, we will utilize the term perfect diffusion [Vau95], which pertains to

the concept of a linear transformation such that changing i components to the vector

x results in changing at least (n − i + 1) components to the vector T (x), where n

represents the number of components in the vector T (x). The concept of perfect

diffusion in cryptography can be formalized in various ways. One approach involves

the use of multipermutations, introduced in [SV95, Vau95]. Another method employs

branch numbers, introduced by Joan Daemen in his doctoral thesis [Dae95], and

Maximum Distance Separable (MDS) matrices [MS77].

Heys and Tavares [HT94, HT95, HT96] showed that replacing the permutation

layer of Substitution Permutation Networks (SPNs) with a diffusive linear transfor-

mation can improve the avalanche characteristics of a block cipher, thereby increasing

its resistance to differential and linear cryptanalysis. MDS matrices are important

components of modern ciphers and hash functions as they offer diffusion properties

that enhance security against these types of attacks. Hence, MDS matrices find sig-

nificant applications in the design of block ciphers and hash functions.

A great deal of research on MDS matrices with cryptography in mind has been

done during the period 1994 to 1998. In 1994, Schnorr and Vaudenay [SV95] intro-

duced the concept of multipermutations as a way to formalize diffusion layers. The

usefulness of multipermutations in designing cryptographic primitives was demon-

strated by Vaudenay [Vau95] in 1995. Between 1994 and 1996, Heys and Tavares
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[HT94, HT95, HT96] conducted research on Substitution Permutation Networks

(SPNs) and found that replacing the permutation layer with a diffusive linear trans-

formation could improve the avalanche characteristics of the block cipher, making it

more resistant to differential and linear cryptanalysis. In 1996, Rijmen et al. were

the first to incorporate MDS matrices into the cipher called SHARK [RDP+96]. The

utilization of MDS matrices continued in 1997 when Daemen et al. incorporated them

into the cipher SQUARE [DKR97]. In 1998, Daemen and Rijmen incorporated a cir-

culant MDS matrix in the design of the widely used cipher AES [DR02]. Schneier et

al. then incorporated MDS matrices into the block cipher Twofish [SKW+98, Sch98]

between 1998 and 1999. As a result, the effectiveness of MDS matrices in diffusion lay-

ers is now widely recognized. The stream cipher MUGI [WFY+02] employs AES MDS

matrices in its linear transformations. Additionally, MDS matrices have been utilized

in the development of various hash functions, including Whirlpool [BR00c, SS03],

SPN-Hash [CYK+12], Maelstrom [FBR06], Grϕstl [GKM+08], and the PHOTON

family of lightweight hash functions [GPP11].

The diffusion power of a linear transformation, as defined by a matrix, is measured

through its branch numbers [Dae95]. While a linear transformation with strong diffu-

sion power, particularly one with an optimal branch number, is crucial for security, it

often involves a high hardware implementation cost 2. To address this challenge, re-

cursive MDS matrices have been proposed. A matrix B is defined as a recursive MDS

matrix if its exponentiation Bk is an MDS matrix, where k is a positive integer. The

implementation of Bk can be achieved by recursively executing the implementation

of B, which necessitates k clock cycles. The design of the PHOTON family of hash

functions [GPP11] and the LED block cipher [GPPR11] has incorporated recursive

MDS matrices based on companion matrices, which can be efficiently implemented

using a simple LFSR. Subsequently, researchers have focused on designing recursive

MDS matrices, producing a significant number of results [AF15, Ber13, GPV17a,

GPV17b, GPV19, SDMS12, TTKS18, WWW13, XTL14].

Therefore, we can categorize the approaches of constructing MDS matrices in

two ways: nonrecursive and recursive. The nonrecursive and recursive techniques

can be further classified based on whether the matrix is constructed directly or by a

search method by enumerating a search space. Nonrecursive direct constructions are

mainly obtained from Cauchy and Vandermonde based constructions, while recursive

2Note that security can be achieved even without using a linear transformation with a high branch
number. However, in such cases, achieving security requires a greater number of rounds compared
to the primitives that utilize a linear transformation with a high branch number.
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direct constructions use some coding theoretic techniques. For instance, Augot et

al. [AF15] employed shortened BCH codes, while Berger [Ber13] utilized Gabidulin

codes in their method. Following that, a series of works [GPV17a, GPV17b, GPV19]

proposed multiple approaches for the direct construction of recursive MDS matrices

from the companion matrices over finite fields. More recently, in [KPSV21], the

authors introduced several direct constructions of recursive MDS matrices over finite

commutative rings.

While direct construction methods provide the feasibility of obtaining MDS matri-

ces of any order, there is no guarantee of achieving a matrix with the optimal hardware

area. This holds true even for smaller sizes. Exhaustive search is currently the only

known method that can provide an optimal MDS matrix in terms of area. However,

this approach is feasible only when the matrix size is small and the field size is not

too large. In the context of nonrecursive approaches, search techniques have been ap-

plied to various matrix structures, including circulant, left-circulant, Hadamard, and

Toeplitz matrices. Significant work has been done in this direction, as demonstrated

in [GR15, LS16, PSA+18, SKOP15, SS16, SS17]. On the other hand, many sparse ma-

trix structures, such as companion, Generalized-Feistel-Structure (GFS) [WWW13],

Diagonal-Serial-Invertible (DSI) [TTKS18], sparse DSI [TTKS18] have been pro-

posed for the construction of recursive MDS matrices.

However, the trade-off between security and efficiency may not be optimal with

MDS and recursive MDS matrices. Near-MDS (NMDS) matrices have sub-optimal

branch numbers, leading to a slower diffusion speed compared to MDS matrices. How-

ever, studies such as [ABI+18, BBI+15] have indicated that the use of NMDS matri-

ces, in combination with a well-selected permutation, can enhance security against

differential and linear cryptanalysis. Some recent lightweight block ciphers, such

as PRIDE [ADK+14], Midori [BBI+15], MANTIS [BJK+16], FIDES [BBK+13] and

PRINCE [BCG+12] have utilized NMDS matrices due to their better balance between

security and efficiency. As the importance of lightweight symmetric key primitives

grows, NMDS matrices are becoming increasingly common in the construction of

lightweight block ciphers. However, the study of NMDS matrices has been relatively

limited in the literature. In 2017, Li et al. [LW17] studied the construction of NMDS

matrices from circulant and Hadamard matrices. In [LW21], the focus is on studying

the recursive NMDS matrices with the goal of achieving the lowest possible hard-

ware cost. Also, recent studies such as [HYNL21, SYLH22] have presented direct

constructions of NMDS codes, which can be utilized to derive nonrecursive NMDS

matrices.
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1.2 Aims and Contributions

The purpose of this thesis is to expand knowledge on designing diffusion layers for

cryptographic primitives. Specifically, we study MDS and Near-MDS matrices and

explore their construction in both recursive and nonrecursive settings using various

matrix structures. This thesis has five major contributions:

1. A brief survey and some generalized results on MDS matrices. This contribution

involves a brief survey on MDS matrices. It includes not only a summary of existing

results but also the revelation of deep and nontrivial connections among various

constructions of MDS matrices. For instance, it reveals that all Vandermonde

constructions are equivalent to Cauchy constructions. This contribution includes

proof of some folklore results that are used in MDS matrix literature and offers

simpler alternative proofs wherever possible. The results of this contribution are

given in Chapter 3.

2. Study of sparse matrices for the construction of recursive MDS and Near-MDS ma-

trices. This contribution first presents a systematic study of constructing recursive

MDS matrices using sparse matrices with low fixed XOR (see Section 2.6.1). It

presents new mathematical results and rediscoveries of some existing results on

sparse matrices, such as DSI and sparse DSI matrices, and provides some im-

possibility results. The results of this investigation are presented in Chapter 4.

Following this, this contribution introduces a new class of sparse matrices called

Diagonal-like sparse (DLS) matrices, where the DSI matrix is a special case of

DLS matrix. Then it provides some theoretical results on DLS matrices for the

construction of MDS and Near-MDS matrices. To address the impracticality of

an exhaustive search for higher order recursive MDS or Near-MDS matrices using

DLS matrices, this study introduces some equivalence classes of DLS matrices that

help to constrain the search space to a smaller domain. The new class of sparse

matrices is thoroughly examined in Chapter 5 and Chapter 6.

3. Study of constructing Near-MDS matrices from various matrix structures. The

optimal branch number of MDS matrices makes them a preferred choice for de-

signing diffusion layers in many block ciphers and hash functions. However, in

lightweight cryptography, Near-MDS matrices with sub-optimal branch numbers

offer a better balance between security and efficiency as a diffusion layer, compared

to MDS matrices. This contribution delves into the study of Near-MDS matrices,
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investigating their construction in both recursive and nonrecursive scenarios. It

investigates the theoretical aspects of constructing Near-MDS matrices and evalu-

ates their hardware efficiency. Furthermore, this contribution draws comparisons

between the results of Near-MDS and MDS matrices, wherever possible. Chap-

ter 6 thoroughly investigates the construction of Near-MDS matrices from various

matrix structures.

4. Direct constructions of MDS and Near-MDS matrices. Although an exhaustive

search may be suitable for finding small order MDS and Near-MDS matrices,

direct constructions are preferred for larger orders, mainly because of the vast

search space involved. This contribution introduces new direct constructions of

nonrecursive MDS and Near-MDS matrices using generalized Vandermonde ma-

trices. Additionally, it presents some direct constructions of recursive MDS and

Near-MDS matrices derived from companion matrices. These constructions are

discussed in Chapter 7.

5. Proposal of a new 64-bit lightweight block cipher with MDS matrix. While security

is the primary concern for cryptographic primitives, efficient implementation in

hardware and software is also crucial for lightweight primitives. The high imple-

mentation cost of MDS matrices in the round function of lightweight block ciphers

poses a challenge. This has led to many lightweight block ciphers avoiding the

use of MDS matrices in their design, resulting in the need for a large number of

rounds in encryption. To address this challenge, this contribution introduces FU-

TURE, a new 64-bit lightweight SPN-based block cipher. FUTURE tackles this

challenge by carefully selecting a lightweight MDS matrix, which is a composition

of four sparse matrices. The specification, design rationale, and security analysis

of FUTURE are thoroughly discussed in Chapter 8.

1.3 Outline of this Thesis

This thesis is based on five published papers [GPRS19, GPS19, GPS22a, GPS22b,

GPS23a] and one more paper [GPS23b] which are communicated. Chapter 1 presents

an overview of the thesis, while Chapter 2 covers the essential preliminary materials

needed for the subsequent chapters.

In Chapter 3, we provide a brief survey on MDS matrices over finite fields. While

most of the results in this chapter are already known, some results and insights

are new. We provide a nontrivial and deep interconnection between all the known
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Cauchy based constructions and their corresponding Vandermonde based construc-

tions. In [GR15], the authors established the impossibility of involutory or orthogonal

Type-I circulant-like MDS matrices with even order, but the case of odd orders was

left unexplored. In this chapter, we address this gap and present Lemma 3.19 and

Lemma 3.21, demonstrating the non-existence of involutory or orthogonal Type-I

circulant-like MDS matrices with odd order. In Lemma 1 of [LS16], the authors pro-

vided a necessary and sufficient condition for the equivalence between two circulant

matrices. In Lemma 3.24, we provide a simpler alternative proof for the equivalence.

It also explores interconnections between left-circulant and circulant matrices, as

well as between Hankel and Toeplitz matrices. In [LS16] it was proved that left-

circulant matrices of order 2n are not involutory. In Theorem 3.9, we show that this

result can easily be derived from the interconnections and known results on circu-

lant matrices. Also, we prove some folklore results that are often used in literature,

mostly without formal proofs. The chapter also fills a gap in [AF15, Lemma 1], and

provides a corrected version in Lemma 3.26. This chapter is based on the collabora-

tive work [GPRS19] with Kishan Chand Gupta, Sumit Kumar Pandey, and Indranil

Ghosh Ray.

The next two chapters discuss the construction of recursive MDS matrices from

sparse matrices with low fixed XOR. A brief overview of each chapter is provided

below.

In Chapter 4, we formalize matrices with low fixed XOR (see Section 2.6.1) and

study their properties systematically. Our study starts with a matrix with the min-

imum number of fixed XOR required, which is one, to construct any recursive MDS

matrix. We call such matrices 1-XOR matrices. We provide upper bounds on the

number of nonzero elements of 1-XOR matrices of order n when raised to power

n. Next, we move on to 2-XOR matrices and provide some impossibility results for

matrices of order 5 and 6 for constructing recursive MDS matrices. Finally, in this

chapter, we demonstrate the non-existence of an 8-MDS sparse DSI matrix of order

8 over F28 . This result was previously unsolved in [TTKS18] due to the large search

space. However, we are able to drastically reduce the search space by providing some

nontrivial theoretical results on sparse DSI matrices. The results of this chapter are

derived from the collaborative work [GPS19] with Kishan Chand Gupta and Sumit

Kumar Pandey.

In Chapter 5, we introduce a new type of sparse matrix called the Diagonal-like

sparse (DLS) matrix, which includes the DSI matrix as a specific type. We prove

that the value of fixed XOR should be at least
⌈
n
2

⌉
for an n-MDS DLS matrix of
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order n. The exhaustive search using a naive way of finding a higher order recursive

MDS matrix using DLS matrices is impractical. In this regard, we present some

theoretical results that are used to narrow the search space to a small domain. We

also show that an n-MDS DLS matrix with fixed XOR =
⌈
n
2

⌉
is a permutation

similar to some n-MDS sparse DSI matrix over F2r . Then we generalize the structure

of DLS matrices and provide another class of sparse matrices called generalized DLS

(GDLS) matrices. Using these matrices, we introduce some lightweight recursive

MDS matrices of orders 4, 5, 6, and 7 that can be implemented with 22, 30, 31, and 45

XORs over F28 , respectively. The results match the best known lightweight recursive

MDS matrices of orders 4 and 6 and beat the best known matrices of orders 5 and

7. Besides searching over F24 and F28 , we also provide some efficient n-MDS GDLS

matrices over GL(8,F2) for various orders. The contents of this chapter are based

on the collaborative work [GPS22a] with Kishan Chand Gupta and Sumit Kumar

Pandey.

In Chapter 6, we study the properties of Near-MDS matrices, examining their

construction in both recursive and nonrecursive approaches. We provide several the-

oretical results and explore the hardware efficiency of the construction of Near-MDS

matrices. Additionally, we make comparisons between the results of Near-MDS and

MDS matrices whenever possible. For the recursive approach, we study the DLS

matrices and provide some theoretical results on their use. Some of the results are

used to restrict the search space of the DLS matrices. We also show that over a

field of characteristic 2, any sparse matrix of order n ≥ 4 with fixed XOR of 1 can-

not be an Near-MDS when raised to a power of k ≤ n. Following that, we use the

GDLS matrices to provide some lightweight recursive Near-MDS matrices of several

orders that perform better than the existing matrices in terms of hardware cost or the

number of iterations. We examine different structures for the nonrecursive construc-

tion of Near-MDS matrices, including circulant and left-circulant matrices, as well as

their generalizations such as Toeplitz and Hankel matrices. Proposition 3 in [LW17]

demonstrates that circulant matrices of order n > 4 cannot be both Near-MDS and

involutory over F2r . In Theorem 6.7, we prove that this result also holds for Toeplitz

matrices. Finally, we use GDLS matrices to provide some lightweight Near-MDS ma-

trices that can be computed in one clock cycle. The proposed nonrecursive Near-MDS

matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108

XORs over F24 , respectively. The contents presented in this chapter are based on the

collaborative work [GPS23a] conducted with Kishan Chand Gupta and Sumit Kumar

Pandey.
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In Chapter 7, we present various techniques for direct construction of MDS and

Near-MDS matrices over finite fields, in both recursive and nonrecursive approach.

In the recursive approach, we begin by establishing a criterion for determining the

similarity between a companion matrix and a diagonal matrix. From there, we can

represent the companion matrix in terms of a Vandermonde matrix and the diagonal

matrix. With the help of determinant expressions for generalized Vandermonde ma-

trices, we present various techniques for constructing recursive MDS and Near-MDS

matrices that are derived from the companion matrices. Furthermore, we present di-

rect constructions of nonrecursive MDS and Near-MDS matrices, which are based on

two generalized Vandermonde matrices. The results of this chapter are based on the

collaborative work [GPS23b] with Kishan Chand Gupta and Sumit Kumar Pandey.

In Chapter 8, we present a new 64-bit SPN-based lightweight block cipher, FU-

TURE, that is designed for minimal latency with low hardware implementation cost.

To achieve the best diffusion in the linear layer, FUTURE incorporates an MDS ma-

trix in its round function. The cost of the MDS matrix in FUTURE is optimized

by utilizing a specific type of MDS matrix construction. Additionally, by carefully

selecting the FUTURE Sbox as a combination of four lightweight Sboxes, we have sig-

nificantly reduced the implementation cost. Furthermore, FUTURE demonstrates its

resistance to various fundamental attacks. This chapter is based on the collaborative

work [GPS22b] with Kishan Chand Gupta and Sumit Kumar Pandey.
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2.1 Finite Field

Let Fq be the finite field containing q elements, where q = pr for some prime p and a

positive integer r. The set of vectors of length n with entries from the finite field Fq

is denoted by Fn
q . The polynomial ring over Fq in the variable x is denoted as Fq[x].

The algebraic closure of Fq is denoted as F̄q, and the multiplicative group is denoted

as F∗
q. It is a well established fact that elements of a finite field with characteristic

p can be represented as vectors with coefficients in Fp. In other words, there exists

a vector space isomorphism from Fpr to Fr
p defined by x = (x1α1 + x2α2 + · · · +

xrαr) 7→ (x1, x2, . . . , xr), where {α1, α2, . . . , αr} is a basis of Fpr . If α is a primitive

element of Fpr , every nonzero element of Fpr can be expressed as a power of α i.e.,
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F∗
pr =

{
1, α, α2, α3, . . . , αpr−1

}
. When q = 2r, we use a compact notation to denote

the finite field F2r by adopting a hexadecimal representation. For instance, F24/0x13

represents the finite field F24 constructed by the irreducible polynomial x4 + x + 1

over F2.

The characteristic of a field is defined as the smallest positive integer p for which

pβ = 0 holds for every nonzero element β in the field. If there is no such integer, the

field is said to have characteristic 0. It is also known that if a field has characteristic

p, then p must be a prime number. Therefore, for a finite field Fq, its characteristic

must be a prime number p. Also, it is a well-known result that if Fq is a finite field

of characteristic p, then q = pr for some positive integer r.

We denote Mk×n(Fq) as the set of all matrices with size k × n over the field Fq.

For convenience, we denote the ring of square matrices of order n (matrix of size

n × n) over Fq as Mn(Fq). The identity matrix of Mn(Fq) is represented as In. The

determinant of a matrix A in Mn(Fq) is denoted by det(A). A square matrix A is

considered nonsingular if its determinant is nonzero, or equivalently, if its rows (or

columns) are linearly independent over Fq. The general linear group, consisting of

nonsingular n × n matrices over Fq, is denoted by GL(n,Fq). We now recall some

concepts from coding theory.

2.2 Linear Code

An [n, k] linear code C over the finite field Fq is a nonempty set C ⊂ Fn
q that forms a

k-dimensional linear subspace of Fn
q . The dual code of C, denoted as C⊥, consists of

vectors that are orthogonal to all codewords in C:

C⊥ =
{
x ∈ Fn

q : x · c = 0 for all c ∈ C
}
.

As a linear code forms a vector space, all its elements can be expressed in terms of a

basis. By knowing the basis of a linear code, we can explicitly describe its codewords.

In practice, a generator matrix represents a basis of a linear code. Conversely, a

parity check matrix represents a basis for the dual code. Both generator and parity

check matrices play crucial roles in coding theory.

Definition 2.1. Let C be an [n, k] linear code over Fq. A generator matrix of C over

Fq is defined as a k×n matrix G whose rows form a basis for C. On the other hand, a

parity check matrix of C over Fq is a (n−k)×n matrix H such that for every c ∈ Fn
q ,

c ∈ C ⇐⇒ HcT = 0.

12



In other words, the code C is the kernel of H in Fn
q .

Remark 2.1. If an [n, k] linear code C has a generator matrix G and a parity check

matrix H, then the dual code C⊥ is characterized by having a generator matrix H and

a parity check matrix G. Consequently, C⊥ represents an n − k dimensional linear

subspace of Fn
q over the field Fq.

As the choice of a basis in a vector space is not unique, a code can have multi-

ple generator matrices that can be transformed into one another by elementary row

operations. A generator matrix G is considered to be in standard form if it follows

the specific structure G = [Ik | A]. Here, Ik represents the k × k identity matrix,

and A represents a k × (n − k) matrix. If we have a generator matrix in the form

G = [Ik | A], then the corresponding parity check matrix for the linear code C can be

defined as H = [−AT | In−k].

The (Hamming) distance between two vectors x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn), denoted as d(x,y), is defined as the number of coordinates where

they differ. For a linear code C, the minimum distance d is defined as the smallest

Hamming distance between distinct codewords in C, i.e.,

d = min
x,y∈C,x ̸=y

d(x,y) = min
x,y∈C,x ̸=y

w(x− y),

where w(x) represents the (Hamming) weight of the vector x i.e. the number of

nonzero components in x.

Since C is a linear code, an alternative definition for d would be the minimum

weight among the nonzero codewords in C. A code with parameters [n, k, d] indicates

an [n, k] code with minimum distance d.

The following lemma establishes a connection between the properties of a parity check

matrix and the minimum distance d of a linear code C.

Lemma 2.1. [MS77, Page 33] Let H be a parity check matrix of a code C. Then the

code has minimum distance d if and only if the following conditions hold:

(i) Every set of d− 1 columns of H is linearly independent.

(ii) There exists a set of d columns of H that are linearly dependent.

Constructing a linear code with large values of k
n
and d is desirable in coding theory.

However, there is a trade-off between the parameters n, k, and d. For instance, the

well-known Singleton bound gives an upper bound on the minimum distance for a

code.
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Theorem 2.1. (The Singleton bound)[MS77, Page 33] For an [n, k, d] code C, the
minimum distance d of the code satisfies the inequality d ≤ n− k + 1.

Definition 2.2. (MDS code) An [n, k, d] code with d = n− k + 1 is referred to as a

maximum distance separable code or MDS code for short.

Remark 2.2. An [n, k] MDS code is defined as having minimum distance of n−k+1.

Therefore, it follows that every set of n− k columns of the parity check matrix of an

[n, k] MDS code is linearly independent.

Remark 2.3. It is known that the dual of an MDS code is also an MDS code [MS77,

Page 318]. As a consequence, every set of k columns in the generator matrix of an

[n, k] MDS code is linearly independent.

Theorem 2.2. [MS77, Page 321] For an [n, k, d] code C with a generator matrix

G = [I | A], where A is a k × (n − k) matrix, the code C is MDS if and only if

every square submatrix formed from any i rows and any i columns, for any i =

1, 2, . . . ,min{k, n− k}, of the matrix A is nonsingular.

Now we briefly record the MDS conjecture in the following fact.

Fact 2.1. (MDS Conjecture)[Hir95][MS77, Page 328] Let C be an [n, k, d] linear

MDS code over Fq. Then

n ≤
{

q + 1, 2 ≤ k ≤ q

k + 1, q < k

except for k ∈ {3, q − 1} and q is even, in which case it has length at most q + 2.

We also like to mention that [n, 1, n], [n, n − 1, 2] and [n, n, 1] are called trivial

MDS codes, other MDS codes are called nontrivial.

Now we will briefly discuss another important class of linear code that has many

applications in cryptography. In [DL95], the concept of Near-MDS codes is introduced

as a relaxation of some constraints of the MDS code. The widely used approach to

defining Near-MDS codes is through generalized Hamming weights [Wei91].

Definition 2.3. [Wei91] Let C be an [n, k] code with D ⊂ C as a subcode of C.
The support of D, denoted by χ(D), is the set of coordinate positions, where not all

codewords of D have zero i.e.

χ(D) = {i : ∃(x1, x2, . . . , xn) ∈ D and xi ̸= 0}.
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Using the terminology, an [n, k] code is a linear code of rank k and support size

at most n. The rank of a vector space is its dimension, and we may use the terms

rank and dimension interchangeably.

Example 2.1. Let C be the linear code with a generator matrix

G =



1 0 0 0 1 0

0 1 0 0 1 1

0 0 1 0 0 1


.

Then χ(C) = {1, 2, 3, 5, 6} and χ(D) = {2, 3, 5, 6} for the subcode D generated by the

second and third rows of G.

Definition 2.4. [Wei91] For a linear code C, the r-th generalized Hamming weight,

denoted as dr(C), is defined as the cardinality of the minimal support of an r-

dimensional subcode of C, where 1 ≤ r ≤ k, i.e.

dr(C) = min{|χ(D)| : D is a subcode of C with rank r}.

Note that d1(C) = d is the minimum distance of C.

Example 2.2. Consider the linear code C in Example 2.1. It is easy to check that

d1(C) = 2. By determining the minimal support of all two-dimensional subspaces

D ⊂ C, we get d2(C) = 4. Also, there is at least one codeword in C with a 1 in each

position except the fourth position, which implies that d3(C) = 5.

Theorem 2.3. (Monotonicity) [Wei91] For every [n, k, d] linear code, we have

1 ≤ d1(C) = d < d2(C) < d3(C) · · · < dk(C) ≤ n.

Corollary 2.1. (Generalized Singleton bound) [Wei91] For an [n, k] linear code C,
dr(C) ≤ n− k + r. (When r = 1, this is the Singleton bound.)

Theorem 2.4 provides another method to compute the generalized Hamming

weight of linear code. Let H be a parity check matrix of C and let Hi, 1 ≤ i ≤ n,

be its i-th column vector. Let < Hi : i ∈ I > be the space generated by the column

vectors Hi for i ∈ I.

Theorem 2.4. [Wei91] For all r ≤ k,

dr(C) = min{|I| : |I| − rank(< Hi : i ∈ I >) ≥ r}.
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The following Theorem establishes a connection between the properties of a parity

check matrix and the generalized Hamming weight of a linear code C. Although this

theorem is well-known, we have not found its proof, so we are providing it below.

Theorem 2.5. [Wei91, DL95] Let H be a parity check matrix for a linear code C.
Then dr(C) = δ if and only if the following conditions hold:

(i) Any δ − 1 columns of H have rank greater or equal to δ − r.

(ii) There exist δ columns in H of rank δ − r.

Proof. For any I ⊂ {1, 2, . . . , n}, let S(I) =< Hi : i ∈ I > be the space spanned by

the vectors Hi for i ∈ I, where Hi denotes the i-th column of the parity check matrix

H of C. Let

S⊥(I) =

{
x ∈ C : xi = 0 for i ̸∈ I and

∑

i∈I

xiHi = 0

}
.

Then rank(S(I))+rank(S⊥(I)) = |I|.

Let dr(C) = δ, and we will prove that both conditions hold. To do so, let us

assume for the sake of contradiction that there exist some δ − 1 columns of H, say

Hi1 , Hi2 , . . . , Hiδ−1
, with rank ≤ δ − r − 1.

Now let I = {i1, i2, . . . , iδ−1} ⊂ {1, 2, . . . , n}. Then rank(S(I)) ≤ δ− r− 1. Thus,

we have

rank(S⊥(I)) = |I| − rank(S(I))

≥ δ − 1− (δ − r − 1) = r.

Therefore, we have rank(S⊥(I)) ≥ r. Also, by the construction, S⊥(I) is a subcode

of C and |χ(S⊥(I))| ≤ δ−1. This leads to a contradiction since dr(C) = δ. Therefore,

we can conclude that any δ − 1 columns of H have rank greater or equal to δ − r.

Since dr(C) = δ, there exist a subcodeD of C with rank(D) = r and |χ(D)| = dr(δ).

Let I = χ(D). Now we will show that D = S⊥(I).

Let c = (c1, c2, . . . , cn) ∈ D be a codeword. Then we have
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n∑

i=1

ciHi = 0

=⇒
∑

i∈I

ciHi +
∑

i ̸∈I

ciHi = 0

=⇒
∑

i∈I

ciHi = 0 [Since ci = 0 ∀i ̸∈ I = χ(D)]

=⇒ c ∈ S⊥(I)

=⇒ D ⊂ S⊥(I).

If possible, let rank(S⊥(I)) = r′ > r. Now since rank(S(I))+rank(S⊥(I)) = |I|,
we have

|I| − rank(S(I)) = r′ > r

=⇒ dr′(C) ≤ |I| = δ [By Theorem 2.4].

But by the monotonicity of generalized Hamming weights we must have

δ = dr(C) < dr′(C) ≤ δ,

which is a contradiction. Hence, we must have rank(D) = rank(S⊥(I)) and D =

S⊥(I). Thus,

rank(S(I)) = |I| − r = δ − r.

Therefore, there exist δ columns in H of rank δ − r.

For the converse part, assume that both the conditions hold. From Condition (ii),

we know that there exist some I ⊂ {1, 2, . . . , n} with |I| = δ such that rank(S(I)) =

δ − r. This implies that

rank(S⊥(I)) = |I|−rank(S(I)) = r.

Since |I|−rank(S(I)) = r, by Theorem 2.4, we have dr(C) ≤ δ.

If possible, let dr(C) = δ − t for some t ≥ 1. Now by Theorem 2.4, there exist

some I ′ ⊂ {1, 2, . . . , n} with |I ′| = δ − t such that

|I ′| − rank(S(I)) ≥ r

=⇒ rank(S(I)) ≤ |I ′| − r

=⇒ rank(S(I)) ≤ δ − t− r.

Therefore, there exist |I ′| = δ − t many columns, say Hi1 , Hi2 , . . . , Hiδ−t
, of H of
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rank ≤ δ − t − r. Now by adding any other t − 1 columns of H to that δ − t

columns we have δ − 1 columns, say Hi1 , Hi2 , . . . , Hiδ−t
, Hiδ−t+1

, . . . , Hiδ−1
, of H of

rank ≤ (δ − t − r) + (t − 1) = δ − r − 1 < δ − r. This leads to a contradiction to

condition (i). Hence, we must have dr(C) = δ.

Definition 2.5. (NMDS code)[DL95] A linear [n, k] code C is said to be Near-MDS

or NMDS if

d1(C) = n− k and di(C) = n− k + i, for i = 2, 3, . . . , k.

Remark 2.4. From the monotonicity of generalized Hamming weights, we can say

that an [n, k] linear code is NMDS if and only if d1(C) = n−k and d2(C) = n−k+2.

Theorem 2.5 provides the following useful result on the NMDS code.

Lemma 2.2. [DL95] For an [n, k] code C with a parity check matrix H, the code C
is NMDS if and only if the matrix H satisfies the following conditions:

(i) Every set of n− k − 1 columns of H is linearly independent.

(ii) There exists a set of n− k columns of H that are linearly dependent.

(iii) Any set of n− k + 1 columns of H is of full rank.

Proof. Let C be an NMDS code. Therefore, we have d1 = n− k and d2 = n− k + 2.

Since d1 is the minimum distance of C, from Lemma 2.1, we can say that d1 = n− k

if and only if any n − k − 1 columns of H are linearly independent and there exist

some n − k columns that are linearly dependent. Moreover, Theorem 2.5 implies

that d2 = n − k + 2 if and only if any n − k + 1 columns of H have rank greater or

equal to (n − k + 2) − 2 = n − k and there exist n − k + 2 columns of H of rank

(n−k+2)−2 = n−k. Since H is a parity check matrix of C, we have rank(H) = n−k.
Therefore, we can conclude that d2 = n− k + 2 if and only if any n− k + 1 columns

of H are of full rank. Hence, the lemma.

It can be deduced from the properties of the generalized Hamming weights that the

dual of an NMDS code is also an NMDS code.

Lemma 2.3. [DL95] If a linear [n, k] code is NMDS, then its dual code is also NMDS.

Corollary 2.2. [DL95] A linear [n, k] code C is NMDS if and only if d(C)+d(C⊥) = n,

where d(C) and d(C⊥) denote the minimum distance of the code C and its dual C⊥,
respectively.
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One can infer from Lemma 2.3 that a generator matrix of a linear [n, k] NMDS code

must satisfy conditions similar to those in Lemma 2.2.

Lemma 2.4. [DL95] For an [n, k] code C with a generator matrix G, the code C is

NMDS if and only if the matrix G satisfies the following conditions:

(i) Every set of k − 1 columns of G is linearly independent.

(ii) There exists a set of k columns of G that are linearly dependent.

(iii) Any set of k + 1 columns of G is of full rank.

Remark 2.5. It is worth noting that not all [n, k, n− k] codes are necessarily NMDS

codes. For example, consider the linear code C with generator matrix

G =



1 0 0 α2 α 0

0 1 0 α α 0

0 0 1 α 0 α




over the finite field F22, where α is a root of the constructing polynomial x2 + x+ 1.

Then it can be checked that C is an [6, 3, 3] code. Also, by determining the minimal

support of all two-dimensional subspaces D ⊂ C, we get d2(C) = 4 < 5. This value

is achieved by the subspace spanned by the first two rows of the generator matrix G.

Hence, C is not an NMDS code.

Almost-MDS codes, introduced in [DB96], are closely related to NMDS codes.

Definition 2.6. (AMDS code)[DB96] An [n, k, d] code C is said to be Almost-MDS

or AMDS code if d = n− k.

As pointed out in Remark 2.5, not every AMDS code is NMDS, but for large n

both notions coincide.

Theorem 2.6. [DL95] If n > k + q, every [n, k, n− k] code over Fq is NMDS.

From Corollary 2.2, we have the following fact, which serves as an alternative

definition of an NMDS code.

Fact 2.2. A linear [n, k] code C is NMDS if and only if both the code C and its dual

C⊥ are AMDS codes.

We close this section by presenting Lemma 2.5, which will be useful in this thesis. To

prove this lemma, we need the following result from linear algebra.
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Theorem 2.7. [RB00, Theorem 3.5.4] Let A be a k × k matrix and B be a k × l

matrix. If A is nonsingular, then the rank of AB is equal to the rank of B.

Lemma 2.5. Let A be a k × k nonsingular matrix and G be a generator matrix of

an [n, k] linear code C. Then AG is also a generator matrix of the code C.

Proof. We know that the rows of the generator matrix G form a basis for the linear

code C and rank(G) = k. Also, since A is nonsingular, according to Theorem 2.7, we

have rank(AG) = rank(G) = k. Therefore, all k rows of AG are linearly independent.

Note that each row of AG is a linear combination of the rows of G. Therefore,

each row of AG represents a codeword of C, and these rows are linearly independent.

Consequently, the rows of AG form a basis for C. Therefore, AG is also a generator

matrix of the code C.

2.3 MDS and Near-MDS matrices

We will now explore MDS and NMDS matrices, which have notable cryptographic

applications. The concept of MDS and NMDS matrices is derived from the MDS and

NMDS codes, respectively.

Remark 2.6. Generally, the matrix A in the generator matrix G = [I | A] of an
[n, k] code C is considered an MDS or NMDS matrix depending on whether the code

C is MDS or NMDS. Since square matrices are typically used in practice, for the sake

of simplicity, we will consider the [2n, n] code instead of the generic form of the [n, k]

code throughout the rest of this thesis.

Definition 2.7. [RDP+96] Consider a finite field Fq and an integer n. Let x→ A×x
be a mapping from Fn

q to Fn
q , where A is an n × n matrix. We define A as an MDS

matrix if the set of all pairs (x,A × x) forms an MDS code i.e. a linear code of

dimension n, length 2n and minimum distance n+ 1.

Therefore, from Theorem 2.2, we have another characterization of an MDS matrix.

Fact 2.3. A square matrix A is considered an MDS matrix if and only if all of its

square submatrices are nonsingular.

The diffusion power of a linear transformation, as specified by a matrix, is quantified

by its branch numbers [Dae95].
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Definition 2.8. [Dae95] The differential branch number, βd(A), of a matrix A of

order n over the finite field F2r is defined as the smallest number of nonzero compo-

nents in both the input vector x and the output vector Ax, as we consider all nonzero

x in Fn
2r i.e.

βd(A) = min
x ̸=0

(w(x) + w(Ax)),

where w(x) represents the number of nonzero components in the vector x.

Definition 2.9. [Dae95] The linear branch number, βl(A), of a matrix A of order

n over the finite field F2r is defined as the smallest number of nonzero components in

both the input vector x and the output vector ATx, as we consider all nonzero x in

Fn
2r i.e.

βl(A) = min
x ̸=0

(w(x) + w(ATx)),

where w(x) represents the number of nonzero components in the vector x.

Remark 2.7. [DR02, Page 144] The differential branch number βd(A) of a matrix A

is equal to the minimum distance of the linear code C generated by the matrix [I | A].
Furthermore, βl(A) is equivalent to the minimum distance of the dual code C⊥ of C.

Remark 2.8. [DR02, Page 132] It is important to note that the maximum value for

both βd(A) and βl(A) is n+1. While βd(A) and βl(A) are not always equal, a matrix

with the highest possible differential or linear branch number will have the same value

for both.

Therefore, the following fact is another characterization of MDS matrix.

Fact 2.4. A square matrix A of order n is MDS if βd(A) = βl(A) = n+ 1.

The goal of lightweight cryptography is to design ciphers that can be implemented

efficiently, in addition to ensuring security. Efficiency is assessed through various

parameters, including the gate complexity of its hardware implementation, time taken

(measured in clock cycles), and power consumption. The cost of implementation, in

terms of space, is directly correlated with gate complexity, while throughput is linked

to the time taken. Achieving MDS matrices that demonstrate efficiency across all

parameters is nearly impossible, leading to a trade-off between different factors in the

quest for suitable matrices. When space is not a limitation, the focus is on matrices

that demand fewer clock cycles and consume less energy. In contrast, when space is
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a constraint, the search is directed towards matrices that require fewer gates. One

proposed method for reducing gate complexity is the use of recursive MDS matrices.

Definition 2.10. Consider a positive integer k. A matrix B is defined as a recursive

MDS or k-MDS matrix if the matrix A = Bk is MDS. If B is k-MDS, we can say

that B yields an MDS matrix.

Example 2.3. For example, the matrix

B =




0 1 0 0

0 0 1 0

0 0 0 1

1 α 0 0




is 22-MDS, where α is a primitive element of the field F24 with α4 + α + 1 = 0.

We will now discuss NMDS matrices, which have numerous uses in lightweight cryp-

tographic primitives. The concept originates from coding theory, specifically from the

NMDS codes.

Definition 2.11. A matrix A of order n is said to be an NMDS matrix if [I | A] is
a generator matrix of some [2n, n] linear NMDS code.

By Remark 2.7, we know that the differential branch number βd(A) of a matrix A is

equal to the minimum distance of the linear code C with the generator matrix [I | A].
Likewise, βl(A) is equivalent to the minimum distance of C⊥. As a result, we can

characterize an NMDS matrix as follows.

Fact 2.5. [LW17] A matrix A of order n is called a NMDS matrix if βd(A) = βl(A) =

n.

The following lemma is another way to characterize an NMDS matrix.

Lemma 2.6. [LW17, VR06] For n ≥ 2, a non-MDS matrix A of order n is classified

as NMDS if and only if, for every 1 ≤ g ≤ n − 1, all g × (g + 1) and (g + 1) × g

submatrices of A contain at least one nonsingular g × g submatrix.

In Lemma 2.6, if we assume g = 1, we can deduce that there is at most one zero

in each row and each column of a NMDS matrix. Hence, we have the corollary as

follows.
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Corollary 2.3. A NMDS matrix A of order n must contain at least n2 − n nonzero

elements.

Definition 2.12. Consider a positive integer k. A matrix B is defined as a recursive

NMDS or k-NMDS matrix if the matrix A = Bk is NMDS. If B is k-NMDS, we can

say that B yields an NMDS matrix.

Example 2.4. The matrix in Example 2.3 is a recursive NMDS matrix with k = 10.

MDS matrices are widely employed in modern block ciphers to enhance the diffusion

property. Typically, separate modules are utilized for encryption and decryption

operations. However, in [YTH96], Youssef et al. introduced a specific class of SPNs,

which utilizes the same network for both encryption and decryption. The innovative

approach involved the utilization of involutory MDS matrices to incorporate diffusion.

Definition 2.13. An involutory matrix is defined as a square matrix A that satisfies

the condition A2 = I, or equivalently, A = A−1.

In the context of lightweight cryptographic primitives, employing an involutory or

orthogonal matrix permits both encryption and decryption operations using identical

or nearly identical circuitry, resulting in an equivalent implementation cost for both

processes.

Definition 2.14. An orthogonal matrix is defined as a square matrix A that satisfies

the condition AAT = I.

In Chapter 3 and Chapter 6, we will delve into the detailed discussion of the involutory

and orthogonal properties of MDS and NMDS matrices constructed from various

matrix structures.

2.4 Structural Properties of MDS and NMDS ma-

trices

Definition 2.15. A matrix D of order n is said to be diagonal if (D)i,j = 0 for i ̸= j.

Using the notation di = (D)i,i, the diagonal matrix D can be represented as

diag(d1, d2, . . . , dn). It is evident that the determinant of D is given by det(D) =∏n
i=1 di. Therefore, the diagonal matrix D is nonsingular if and only if di ̸= 0 for

1 ≤ i ≤ n.
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The multiplication of a row of a matrix by a nonzero scalar is one of the elemen-

tary row operations. It is worth noting that both the MDS and NMDS properties

are preserved under these operations. Consequently, we can establish the following

lemmas.

Lemma 2.7. If A is an MDS matrix over F2r , then A′, obtained by multiplying a

row (or column) of A by any element c ∈ F∗
2r , will also be an MDS matrix.

Proof. Take an arbitrary square submatrix B′ of A′. Suppose B is the corresponding

submatrix of A. If the submatrix contains the row (column) in which c has multiplied,

then det(B′) = c · det(B) otherwise det(B′) = det(B). Since A is an MDS matrix, we

have det(B′) ̸= 0. Therefore, A′ is MDS.

Lemma 2.8. If A is an NMDS matrix over F2r , then A′, obtained by multiplying a

row (or column) of A by any element c ∈ F∗
2r , will also be an NMDS matrix.

Proof. Take B′ be an arbitrary g× (g+1) (or (g+1)× g) submatrix of A′. Suppose

B is the corresponding submatrix of A. Since A is an NMDS matrix, B must have

a nonsingular g × g submatrix I. Let I ′ be the corresponding submatrix of B′.

If the submatrix I ′ contains the row (or column) in which c has multiplied, then

det(I ′) = c · det(I) otherwise det(I ′) = det(I). Thus, B′ contains a nonsingular g× g

submatrix I ′. Therefore, by Lemma 2.6, A′ is also a NMDS matrix.

Let D = diag(c1, c2, . . . , cn) be a diagonal matrix. Then by the multiplication DA

(or AD) it means multiply the i-th row (or i-th column) of A by ci for 1 ≤ i ≤ n.

Hence, we can generalize the Lemma 2.7 and Lemma 2.8 as follows.

Corollary 2.4. Let A be an MDS (NMDS) matrix, then for any nonsingular diagonal

matrices D1 and D2, D1AD2 will also be an MDS (NMDS) matrix.

It is worth noting that the converse of Corollary 2.4 holds true as well.

Corollary 2.5. Let B be a recursive MDS (NMDS) matrix, then for any nonsingular

diagonal matrix D, DBD−1 will also be a recursive MDS (NMDS) matrix.

Proof. Suppose D is a nonsingular diagonal matrix and B is k-MDS (k-NMDS) i.e.

Bk is an MDS (NMDS) matrix. Then we have

(DBD−1)k = DBD−1 ·DBD−1 · . . . ·DBD−1

︸ ︷︷ ︸
k-times

= DBqD−1
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Now since D is a nonsingular diagonal matrix and Bk is an MDS (NMDS) matrix,

from Corollary 2.4, we can say that DBkD−1 is again an MDS (NMDS) matrix.

Hence, DBD−1 is a recursive MDS (NMDS) matrix. More specifically DBD−1 is

k-MDS (k-NMDS).

In the following corollary, we mention an important property of MDS and NMDS

matrices.

Corollary 2.6. If A is an MDS (NMDS) matrix, then its transpose AT is also an

MDS (NMDS) matrix.

Proof. Consider an arbitrary submatrix of order k from AT by choosing say i1, i2, i3,

. . . , ik-th rows and j1, j2, j3, . . . , jk-th columns. Denote this submatrix as AT (i1, i2,

. . . , ik|j1, j2, . . . , jk).
It is easy to check that

AT (i1, i2, . . . , ik|j1, j2, . . . , jk) = A(j1, j2, . . . , jk|i1, i2, . . . , ik)T .

Now

det(AT (i1, i2, . . . , ik|j1, j2, . . . , jk)) = det(A(j1, j2, . . . , jk|i1, i2, . . . , ik)T )
= det(A(j1, j2, . . . , jk|i1, i2, . . . , ik)).

Therefore, det(A(j1, j2, . . . , jk|i1, i2, . . . , ik)) ̸= 0 =⇒ det(AT (i1, i2, . . . , ik|j1, j2, . . . ,
jk)) ̸= 0. Hence, the result.

Since each square submatrix of an MDS matrix is nonsingular, we have the following

result for MDS matrices.

Fact 2.6. Every square submatrix of an MDS matrix is also an MDS matrix.

Remark 2.9. It should be noted that a square submatrix of an NMDS matrix may

not be an NMDS matrix. For example, consider the matrix

A =




0 α 1 α + 1

α + 1 0 α 1

1 α + 1 0 α

α 1 α + 1 0




over F24, where α is a root of the constructing polynomial x4 + x+ 1. Then it can be

checked that A is an NMDS matrix. However, the 2× 2 submatrix

[
1 α + 1

α 1

]
of A

is an MDS matrix.
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Corollary 2.7. The inverse of an MDS matrix is MDS.

Proof. Suppose G = [I | A] is a generator matrix of an MDS code. Elementary row

operation change G = [I | A] to G′ = [A−1 | I]. As elementary row operations do

not change the code, G′ is also generator matrix of the MDS code. Consequently, the

code defined by the matrix [I | A−1] possesses the same minimum distance. Hence,

it can be concluded that A−1 is also an MDS matrix.

Remark 2.10. Note that an NMDS matrix can be singular. For example, the NMDS

matrix A in Remark 2.9 is singular.

If the matrix A is nonsingular, we can apply the proof of Corollary 2.7 to NMDS

matrices. Therefore, we obtain the following result regarding NMDS matrices.

Lemma 2.9. For a nonsingular NMDS matrix A, its inverse A−1 is also an NMDS

matrix.

Definition 2.16. Let ρ be an element of the symmetric group Sn (set of all permuta-

tions over the set {1, 2, . . . , n} ). Then by ρ = [i1, i2, i3, . . . , in], where 1 ≤ ij ≤ n

for j = 1, 2, 3, . . . , n, we mean ρ =

(
1 2 3 . . . n

i1 i2 i3 . . . in

)
i.e. 1 → i1, 2 → i2, . . .,

n→ in.

Then the product of two permutations ρ1 = [i1, i2, i3, . . . , in] and ρ2 = [j1,

j2, j3, . . . , jn] is given by ρ1 · ρ2 = [ij1 , ij2 , ij3 , . . . , ijn ] and the inverse of a

permutation ρ = [i1, i2, i3, . . . , in] is the permutation δ = [j1, j2, j3, . . . , jn]

such that ρ · δ = δ · ρ = [1, 2, 3, . . . , n].

Example 2.5. For the two permutations ρ1 = [2, 3, 4, 5, 1, 6] and ρ2 = [1, 4, 3, 2, 6, 5]

over S6, their product is given by

ρ1 · ρ2 = [2, 5, 4, 3, 6, 1] and ρ2 · ρ1 = [4, 3, 2, 6, 1, 5].

The inverse of the permutation ρ1 = [2, 3, 4, 5, 1, 6] is given by δ = [5, 1, 2, 3, 4, 6].

Definition 2.17. [LS16] An index permutation σ of an ordered set {c1, c2, . . . , cn} is
a permutation that rearranges the indices of the elements.

Consider an index permutation σ on the ordered set {c1, c2, c3, c4, c5}, where σ(i) =
6− i. Then the resulting ordered set with respect to σ will be {c5, c4, c3, c2, c1}.
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Definition 2.18. A permutation matrix P of order n related to a permutation

ρ = [i1, i2, i3, . . . , in] is the binary matrix obtained by rearranging the

rows (or columns) of the identity matrix of order n according to the permutation ρ.

In this thesis, we will use the row permuted identity matrix to represent permu-

tation matrices. For instance, the permutation matrix P related to the permutation

[4, 2, 3, 1] is given by

P =




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0



.

Note that a permutation matrix is invertible and the inverse of P is the transpose of

P , i.e. P−1 = P T . The product of two permutation matrices results in a permutation

matrix.

Definition 2.19. Let ρ be an element of the symmetric group Sn. Then ρ is called a

k length cycle or k-cycle, written (j1 j2 j3 . . . jk), if ρ =

(
j1 j2 j3 . . . jk

j2 j3 j4 . . . j1

)
i.e.

j1 → j2, j2 → j3, . . ., jk → j1.

For example, the permutation ρ = [3, 2, 4, 1, 5] can be written as (1 3 4). So ρ is

a 3-cycle in S5.

Now, we will discuss the following result which will be beneficial in the subsequent

chapters.

Lemma 2.10. For any permutation matrix P related to some permutation ρ and any

diagonal matrix D, we have DP = PD1 for some diagonal matrix D1.

Proof. Let P be a permutation matrix related to the permutation ρ = [i1, i2, i3,

. . . , in] and D = diag(d1, d2, . . . , dn). By the multiplication PD, the rows of D are

permuted according to the permutation ρ. Similarly, with DP , the columns of D are

permuted.

Since P is obtained from the identity matrix of order n by permuting the rows

according to ρ, the j-th column of P is the ij-th column of the identity matrix for

j = 1, 2, . . . , n. Thus, we have (DP )ij ,j = dij for j = 1, 2, . . . , n and (DP )i,j = 0 for

others i, j. Also, for j = 1, 2, . . . , n, we have (PD)ij ,j = dj and (PD)i,j = 0 for others

i, j. Therefore, we have DP = PD1 where D1 = diag(di1 , di2 , . . . , din).

Permuting rows (or columns) does not change the branch number of a matrix. So

we have the following result from [LS16] with a different proof. In this thesis, our
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focus is mainly on MDS and NMDS matrices, which have equal differential and linear

branch numbers. For convenience, we will refer βd(A) and βl(A) simply as the branch

number, denoted as βA.

Lemma 2.11. The branch numbers of the matrices A and PAQ are identical for any

permutation matrices P and Q.

Proof. Suppose that x is the nonzero vector such that

w(x) + w(Ax) = βA.

Note that the inverse of a permutation matrix and product of two permutation

matrices is again a permutation matrix. Also, multiplication with a permutation

matrix does not change the weight of a vector. Therefore, for y = Q−1x we have

w(y) + w(PAQy) = w(Q−1x) + w(PAx)

= w(x) + w(Ax) = βA.

Since βPAQ = miny ̸=0 (w(y) + w(PAQy)), we have βPAQ ≤ βA.

Again, suppose that x is the nonzero vector such that w(x) +w(PAQx) = βPAQ.

Let y = Qx. Now

w(y) + w(Ay) = w(Qx) + w(AQx)

= w(x) + w(PAQx) = βPAQ.

Therefore, βA ≤ βPAQ. Hence, βA = βPAQ.

Definition 2.20. Two matrices A and B are said to be permutation equivalent, de-

noted by A ∼ B, if there exist two permutation matrices P and Q such that B = PAQ.

It can be verified that the relation ∼ satisfies the properties of an equivalence

relation. Also, based on Fact 2.11, it is evident that permutation equivalent matrices

possess identical branch numbers. Consequently, we can derive the following result

concerning MDS and NMDS matrices.

Corollary 2.8. If A is an MDS (NMDS) matrix, then for any permutation matrices

P and Q, PAQ is an MDS (NMDS) matrix.

Corollary 2.9. Let B be a recursive MDS (NMDS) matrix, then for any permutation

matrix P , PBP−1 will also be a recursive MDS (NMDS) matrix.

Definition 2.21. We will call a matrix A1 to be diagonal (permutation) similar to

a matrix A2 if A1 = DA2D
−1 (A1 = PA2P

−1) for some nonsingular diagonal matrix

D (permutation matrix P ).
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Fact 2.7. Diagonal (permutation) similar to a k-MDS (k-NMDS) matrix is again a

k-MDS (k-NMDS) matrix.

2.5 Various Matrix Structures for the Construc-

tion of MDS and NMDS Matrices

Various techniques have been introduced for designing MDS and NMDS matrices,

which can be primarily classified into nonrecursive and recursive approaches. In the

nonrecursive approach, the matrix itself is MDS or NMDS, whereas in the recursive

approach, a sparse matrix B is considered such that the k-th power of B, where

k is a positive integer, results in an MDS or NMDS matrix. We will now discuss

some matrix structures that are utilized in constructing an MDS or NMDS matrix in

nonrecursive setting.

2.5.1 Matrix structures for nonrecursive approaches

Definition 2.22. (Cauchy matrix) Given {x1, x2, ..., xn} ⊆ F2r and {y1, y2, ..., yn} ⊆
F2r such that xi+yj ̸= 0 for all 1 ≤ i, j ≤ n, then the matrix A = (ai,j), 1 ≤ i, j ≤ n,

where ai,j =
1

xi+yj
is called a Cauchy matrix.

It is known that [MS77, Page 323]

det(A) =

∏

1≤i<j≤n

(xj − xi)(yj − yi)

∏

1≤i,j≤n

(xi + yj)
.

If the values xi and yj are distinct, and xi + yj ̸= 0 for all 1 ≤ i, j ≤ n, it can be

concluded that the determinant of matrix A is nonzero i.e. A is nonsingular. This is

formalized in [GR13a] as follows.

Fact 2.8. [GR13a] Consider distinct elements x1, x2, . . . , xn ∈ F2r and distinct ele-

ments y1, y2, . . . , yn ∈ F2r , satisfying the condition that xi+yj ̸= 0 for all 1 ≤ i, j ≤ n.

Then the Cauchy matrix A = (ai,j), where 1 ≤ i, j ≤ n and ai,j =
1

xi+yj
, is nonsingu-

lar.

Fact 2.9. [GR13a] Any square submatrix of a Cauchy matrix is again a Cauchy

matrix.
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Definition 2.23. (Vandermonde matrix) The matrix

A = vand(x1, x2, x3, . . . , xn) =




1 1 1 . . . 1

x1 x2 x3 . . . xn

x2
1 x2

2 x2
3 . . . x2

n
...

...
...

...
...

xn−1
1 xn−1

2 xn−1
3 . . . xn−1

n




is called a Vandermonde matrix, where xi’s are elements of a finite or infinite field.

We sometimes use the notation vand(x) to represent the Vandermonde matrix

vand(x1, x2, x3, . . . , xn), where x = (x1, x2, x3, . . . , xn).

It is known that

det(vand(x)) =
∏

1≤i<j≤n

(xj − xi),

which is nonzero if and only if the xi’s are distinct.

Fact 2.10. [MS77, Page 323] Any square submatrix of a Vandermonde matrix with

real, positive entries is nonsingular, but this is not true over finite fields. For an

example, consider

vand(1, α, α4, α5) =




1 1 1 1

1 α α4 α5

1 α2 α8 α10

1 α3 α12 α15




where α is a primitive element of F24 constructed by the irreducible polynomial x4 +

x+ 1. Consider the 2× 2 submatrix
[
1 1

1 α15

]

which is singular as α15 = 1.

Consequently, these matrices themselves need not be MDS over a finite field. To

address this, Lacan and Fimes [LF04a, LF04b] used two Vandermonde matrices to

build an MDS matrix. We will provide a comprehensive discussion of Vandermonde

based constructions in Chapter 3.

There are several generalizations of the Vandermonde matrices in the literature, as

documented in [EM03, GKR78, KLK09, Pow67, Shp05, Van77] and the references

therein. Our focus is on the variant presented in [KLK09], due to its applications in

cryptography and error correcting codes. The definition of this variant is as follows.
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Definition 2.24. (Generalized Vandermonde matrix) Let x = (x1, . . . , xn) ∈ Fn
q and

T = {t1, t2, . . . , tn} ⊂ Z with 0 ≤ t1 < t2 < . . . < tn. Then the matrix

V (x, T ) =




xt1
1 xt1

2 . . . xt1
n

xt2
1 xt2

2 . . . xt2
n

...
...

...

xtn
1 xtn

2 . . . xtn
n




is said to be a generalized Vandermonde matrix with respect to T .

Remark 2.11. It can be observed that when T = {0, 1, . . . , n−1}, the matrix V (x, T )

corresponds to the Vandermonde matrix vand(x).

Let I denote the set of discontinuities in T , i.e., I = {0, 1, . . . , tn} \ T . Clearly,

0 ≤ t1 < t2 < . . . < tn = n+ |I| − 1. Throughout the rest of the thesis, the notation

V⊥(x; I) is used interchangeably with V (x;T ).

Now we will see how the determinant of V (x;T ) can be computed with the help

of the determinant of a Vandermonde matrix when T has discontinuities. To do so,

we require the following definition.

Definition 2.25. The elementary symmetric polynomial of degree d can be expressed

as:

σd(x1, x2, . . . , xn) =
∑

w(e)=d

xe1
1 xe2

2 · · ·xen
n ,

where e = (e1, e2, . . . , en) ∈ Fn
2 .

Theorem 2.8. [KLK09, Theorem 1] If I = {l1, l2, . . . , ls}, we have

det(V⊥(x; I)) = det(vand(x)) det(S(x)),

where S(x) = (σn−li+j−1(x))
s
i,j=1.

Lemma 2.12. [KLK09, Lemma 1] If I = {l}, we have

det(V⊥(x; I)) = det(vand(x))σn−l(x).

By substituting I = {n− 1} and I = {1} into Lemma 2.12, we can derive the

Corollaries 2.10 and 2.11, respectively.

Corollary 2.10. Let I = {n− 1}, then det(V⊥(x; I)) = det(vand(x))(
∑n

i=1 xi).

Corollary 2.11. Let I = {1} and each xi be a nonzero element of a field. Then we

can express the determinant of V⊥(x; I) as

31



det(V⊥(x; I)) = (
∏n

i=1 xi) det(vand(x))(
∑n

i=1 x
−1
i ).

Now, we will consider the case when T has more than one discontinuity, specifically,

we will explore how to compute the determinant of V⊥(x; I) when I = {1, n}.

Corollary 2.12. Let I = {1, n} and each xi be a nonzero element of a field. Then

we can express the determinant of V⊥(x; I) as

det(V⊥(x; I)) = det(vand(x))

(
n∏

i=1

xi

)[
(

n∑

i=1

xi)(
n∑

i=1

x−1
i )− 1

]
.

Proof. From Theorem 2.8, we know that

det(V⊥(x; I)) = det(vand(x)) det(S(x)),

where S(x) =

[
σn−1(x) σn(x)

σ0(x) σ1(x)

]
. Thus, we have

det(S(x)) = σn−1(x)σ1(x)− σn(x)σ0(x)

=

[
(

n∏

i=1

xi

n∑

i=1

x−1
i )(

n∑

i=1

xi)

]
−

n∏

i=1

xi

=
n∏

i=1

xi

[
(

n∑

i=1

xi)(
n∑

i=1

x−1
i )− 1

]
.

Therefore, det(V⊥(x; I)) = det(vand(x)) (
∏n

i=1 xi)
[
(
∑n

i=1 xi)(
∑n

i=1 x
−1
i )− 1

]
.

Cauchy matrices are always MDS, meaning that it is not possible to obtain NMDS

matrices directly from them. Furthermore, there is currently no known construction

method for NMDS matrices using Vandermonde matrices. However, NMDS matrices

can be constructed using generalized Vandermonde matrices. Other matrix struc-

tures, such as Hadamard, circulant, left-circulant, Toeplitz, and Hankel matrices, can

also be utilized to construct both nonrecursive MDS and NMDS matrices. The ben-

efit of using circulant, left-circulant, and Hadamard matrices is that they contain at

most n distinct elements for an n × n matrix, which reduces the search space when

employing these matrices in the search methods for finding MDS or NMDS matrices.

Definition 2.26. (Circulant matrix) An n×n matrix A is said to be a right circulant

(or circulant) matrix if its elements are determined by the elements of its first row
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x1, x2, . . . , xn as

A = Circ(x1, x2, . . . , xn) =




x1 x2 . . . xn

xn x1 . . . xn−1

...
...

...
...

x2 x3 . . . x1



.

In AES [DR02], the circulant MDS matrix used is Circ(α, 1 + α, 1, 1), where α

is the root of x8 + x4 + x3 + x + 1. The cipher WIDEA [JM09] employs an 8 × 8

circulant MDS matrix, Circ(1, 1, α2, 1, α3, 1 + α2, α, 1 + α3), where α is the root of

x16+x5+x3+x2+1. On the other hand, the lightweight block ciphers Midori [BBI+15]

and MANTIS [BJK+16] use a circulant NMDS matrix of order 4, Circ(0, 1, 1, 1).

Such matrices find their applications in cryptography mainly due to the repeti-

tion of entries. For example, the AES diffusion matrix has two 1’s in its first row,

and since 1 is the multiplicative identity, it has implementation advantages as mul-

tiplication by 1 requires no implementation cost. Also, circulant matrices offer the

advantage of being adaptable for implementation in both round-based and serialized

implementations [DR02].

However, to the best of our knowledge, till date there is no known method to

provide circulant matrix of arbitrary order which is MDS or NMDS by construction

itself. Circulant MDS (or NMDS) matrices are obtained by search technique. Though

search methods provide efficient MDS (or NMDS) matrices of moderate order over

moderate size search space, it fails for higher order and large search space.

It is worth noting that the circulant MDS matrix Circ(α, 1 + α, 1, 1) used in the

AES MixColumn operation has elements with low Hamming weights. However, this

matrix contains a total number of 8 ones. In the paper [JV05b] by Junod et al., it

was demonstrated that the maximum number of ones in a 4 × 4 MDS matrix is 9.

To achieve this maximum, they introduced a new class of efficient MDS matrices,

where the submatrices are circulant matrices. In another study by Gupta et al.

[GR15], these newly discovered matrices were formally defined as Type-I circulant-

like matrices. They conducted an extensive study of such matrices in the context of

constructing efficient and perfect diffusion layers. Here, we present the definition of

Type-I circulant-like matrices as provided in the works of [GR15, JV05b].

Definition 2.27. (Type-I circulant-like matrix)[GR15, JV05b] The n × n matrix
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given by [
a 1

1T A

]

is referred to as a Type-I circulant-like matrix, where A = Circ(1, x2, . . . , xn−1), 1 =

(1, . . . , 1)︸ ︷︷ ︸
n-1 times

, 1 is the unit element and xi’s and a are any nonzero elements of the un-

derlying field other than 1. This matrix is denoted as TypeI(a, Circ(1, x2, . . . , xn−1)).

The inverse of an MDS matrix is of particular importance in the context of SPN

networks. In [GR15], it was noted that the inverses of matrices belonging to the class

of Type-I circulant-like matrices exhibit a similar structure. With this observation in

mind, the following definition is introduced.

Definition 2.28. (AlmostType-I circulant-like matrix)[GR15] The n×n matrix given

by [
a b

bT A

]

is referred to as an AlmostType-I circulant-like matrix, where A = Circ(x1, x2, . . . ,

xn−1), b = (b, . . . , b)︸ ︷︷ ︸
n-1 times

and a, b and xi’s can be any elements from the underlying field.

This matrix is denoted as AlmostTypeI(a, b, Circ(x1, . . . , xn−1)).

Example 2.6. Consider the Type-I circulant-like matrix A = TypeI(α,Circ(1, 1+

α+α−1, α)) over F28 whose constructing polynomial is x8+x7+x6+x5+x4+x3+1 and

α is a root of that polynomial. Then the inverse of A is a AlmostType-I circulant-like

matrix, where A−1 = AlmostTypeI(α7 + α6 + α5 + α4 + α3 + α2 + 1, α, Circ(1, α7 +

α6 + α4, α7 + α6 + α4 + α2 + 1)).

It is worth noting that in the context of SPN networks, involutory or orthogonal

MDS matrices are highly desirable. It will be shown in Lemma 3.17 that circulant

matrices cannot be both involutory and MDS. In Lemma 3.14 it will also be shown

that 2n×2n circulant matrix cannot be both MDS and orthogonal. Again Lemma 3.18

to Lemma 3.21 shows that Type-I circulant-like matrices are neither involutory nor

orthogonal. In order to address this, a novel class of involutory circulant-like MDS

matrices was introduced in [GR15]. This construction was derived from a scheme

proposed in a previous work [YMT97], where the authors focused on constructing

involutory MDS matrices of size 2n × 2n based on an initial MDS submatrix of size

n×n. In the study [GR15], the MDS submatrices were chosen to be circulant matrices,
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resulting in the establishment of a new type of circulant-like matrices. The following

definition captures this construction.

Definition 2.29. (Type-II circulant-like matrix)[GR15] The 2n×2n matrix given by

[
A A−1

A3 + A A

]

is referred to as Type-II circulant-like matrix, where A = Circ(x1, . . . , xn). This

matrix is denoted as TypeII(Circ(x1, . . . , xn)).

In [LS16], the authors suggest a new category of matrices known as left-circulant

matrices. These matrices retain the advantages of circulant matrices.

Definition 2.30. (Left-circulant matrix) An n × n matrix A is said to be a left-

circulant matrix if each successive row is obtained by a left shift of the previous row

i.e.

A = l-Circ(x1, x2, . . . , xn) =




x1 x2 . . . xn

x2 x3 . . . x1

...
...

...
...

xn x1 . . . xn−1



.

It is important to note that a left-circulant matrix is symmetric. Therefore, if the

matrix is orthogonal, it is also involutory, and vice versa.

Remark 2.12. It is worth noting that a left-circulant matrix is a row-permuted circu-

lant matrix. More specifically, for A = Circ(x1, x2, . . . , xn), we have PA = l-Circ(x1,

x2, . . . , xn), where P is the permutation matrix given by

P =




1 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 0
...

...
... . . .

...
...

...

0 1 0 . . . 0 0 0



. (2.1)

Further discussion of constructing MDS and NMDS matrices from circulant and

left-circulant matrices will be presented later.

The authors in [SDMO12] introduced a particular type of matrices over F2r referred to

as Finite Field Hadamard (FFHadamard) matrices. In [BR00a, PSA+18, SKOP15],

authors call the FFHadamard matrix as the Hadamard matrix. In this thesis, we also

call it Hadamard.
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Definition 2.31. (Hadamard matrix) A 2n × 2n matrix H is Hadamard matrix in

F2r if it can be expressed in the form:

[
U V

V U

]

where the submatrices U and V are also Hadamard matrices.

For example a 22 × 22 Hadamard matrix is:

H =




x1 x2 x3 x4

x2 x1 x4 x3

x3 x4 x1 x2

x4 x3 x2 x1



.

Remark 2.13. Noting that Hadamard matrices commute and since we are working

in a field of characteristic 2, it is easy to check by induction that H2 = c2I, where c

is the sum of the elements of the first row. Therefore, if the sum of the elements of

the first row is equal to 1, then it will be an involutory matrix.

It is worth noting that the Anubis block cipher [BR00a] uses a Hadamard involutory

MDS matrix, whose first row is (1, α, α2, α+α2), where α is the root of the primitive

polynomial x8 + x4 + x3 + x2 + 1. Also, the block ciphers Khazad [BR00b] and

CLEFIA [SSA+07] also use Hadamard involutory MDS matrices in their diffusion

layers.

Toeplitz matrices have a deep interconnection with circulant matrices, and the inter-

ested reader may consult [Gra06, GKPS04] for more information about the connec-

tion.

Definition 2.32. (Toeplitz matrix) The n× n matrix

A =




x1 x2 x3 . . . xn−1 xn

y1 x1 x2 . . . xn−2 xn−1

y2 y1 x1 . . . xn−3 xn−2

...
...

...
...

...
...

yn−1 yn−2 yn−3 . . . y1 x1




is called a Toeplitz matrix of order n.
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A Toeplitz matrix is a special kind of matrix in which every descending diagonal

from left to right is constant. Also, it is easy to check that circulant matrices are a

special type of Toeplitz matrices.

A Toeplitz matrix can be defined based on the elements in its first row and first

column. For instance {x1, x2, . . . , xn, y1, y2, . . . , yn−1} defines the Toeplitz matrix A

of Definition 2.32 and in this thesis we will use the notation Toep(x1, x2, . . . , xn; y1,

y2, . . . , yn−1) for describing A.

Hankel matrices, introduced in [GPRS19] for MDS matrix construction, are similar to

Toeplitz matrices in that each ascending skew diagonal from left to right is constant.

Definition 2.33. (Hankel matrix) The n× n matrix

A =




x1 x2 x3 . . . xn−1 xn

x2 x3 x4 . . . xn y1

x3 x4 x5 . . . y1 y2
...

...
...

...
...

...

xn y1 y2 . . . yn−2 yn−1




is called a Hankel matrix.

Note that a left-circulant matrix is a special case of a Hankel matrix. A Hankel

matrix is symmetric and is defined by its first row and last column. For instance {x1,

x2, . . . , xn, y1, y2, . . . , yn−1} defines the Hankel matrix A of Definition 2.33 and in this

thesis we will use the notation Hank(x1, x2, . . . , xn; y1, y2, . . . , yn−1) for describing

A. Also note that since the Hankel matrix is symmetric, an involutory (orthogonal)

Hankel matrix is orthogonal (involutory).

Till now, we have presented matrix structures that are used to construct nonrecursive

MDS or NMDS matrices. Now we will mention some sparse matrix structures that

are used in the recursive approach.

2.5.2 Matrix structures for recursive approaches

The advantage of using recursive MDS or NMDS matrices is their suitability for

lightweight implementations. The implementation of the diffusion layer can be

achieved through the recursive execution of sparse matrices, which typically requires

a small number of clock cycles. This approach, based on companion matrices, has
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been utilized in the PHOTON family of hash functions [GPP11] and the LED block

cipher [GPPR11] due to their simplicity in implementation using a simple LFSR.

Definition 2.34. (Companion matrix) Consider a monic polynomial g(x) = a1 +

a2x+ . . .+anx
n−1+xn ∈ Fq[x] of degree n. Then, the companion matrix Cg ∈Mn(Fq)

corresponding to the polynomial g is defined as follows:

Cg =




0 1 0 . . . 0
...

. . .
...

0 0 . . . . . . 1

−a1 −a2 . . . . . . −an



.

We sometimes use the notation Companion(−a1,−a2, . . . ,−an) to represent the

companion matrix Cg. Observe that if a1 ̸= 0 then the matrix Cg is nonsingular and

its inverse is given by

C−1
g =




−a2
a1

−a3
a1

. . . −an
a1

−1
a1

1 0 . . . 0 0
...

. . .
...

...

0 0 . . . 1 0



.

It should be noted that when a1 = 1, the elements in the first row of C−1
g are

equal to the elements in the last row of Cg. In fact, in this case, we have

C−1
g = PCgP, (2.2)

where

P =




0 0 . . . 0 1

1 0 . . . 0 0
...

...
. . .

...

0 0 . . . 1 0




is a permutation matrix.

Definition 2.35. A square matrix M ∈ Mn(Fq) is said to be diagonalizable if M is

similar to a diagonal matrix. This means M = PDP−1 for some diagonal matrix D

and a nonsingular matrix P .

Now, we will consider some results related to diagonalizable companion matrices.

Lemma 2.13. [GPV15] Let Cg ∈Mn(Fq) be a nonsingular companion matrix which

is diagonalizable, say Cg = PDP−1 where P is a nonsingular matrix of order n and
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D = diag(λ1, λ2, . . . , λn). Then all entries of P will be nonzero. Moreover, Cg can be

expressed as Cg = V DV −1, where V = vand(λ1, λ2, . . . , λn).

Corollary 2.13. [GPV15] A companion matrix Cg is nonsingular and diagonalizable

if and only if all eigenvalues of Cg are distinct and nonzero.

Lemma 2.14. [RB00] If M is an n× n matrix with n distinct eigenvalues, then M

is diagonalizable.

Theorem 2.9. [RB00] The characteristic polynomial of Cg, as defined in Defini-

tion 2.34, is the polynomial g(x) = a1 + a2x+ . . .+ anx
n−1 + xn.

Since the roots of a characteristic polynomial are the eigenvalues, based on

Lemma 2.13, Lemma 2.14 and Theorem 2.9, we can conclude the following result

for a companion matrix.

Theorem 2.10. If the monic polynomial g(x) = a1 + a2x + . . . + anx
n−1 + xn has

n distinct roots λ1, λ2, . . . , λn, then Cg can be expressed as Cg = V DV −1, where

V = vand(λ1, λ2, . . . , λn) and D = diag(λ1, λ2, . . . , λn).

In [TTKS18], authors introduce a new kind of sparse matrices known as DSI matrices

for the construction of recursive MDS matrices.

Definition 2.36. (DSI matrix)[TTKS18] Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . ,

bn−1) where ai, bj ∈ F2r for 1 ≤ i ≤ n and 1 ≤ j ≤ n−1. A Diagonal-Serial-Invertible

(DSI) matrix M is determined by two vectors a and b defined as follows:

(M)i,j =





a1, i = 1, j = n

ai, i = j + 1

bi, i = j ≤ n− 1

0 otherwise.

Definition 2.37. (Sparse DSI matrix)[TTKS18] A DSI matrix M = DSI(a1, a2,

. . . , an; b1, b2, . . . , bn−1) of order n is sparse if it satisfies:

{
b2 = b4 = . . . = bn−2 = 0, if n is even

b2 = b4 = . . . = bn−3 = 0, if n is odd.

Example 2.7. An example of a sparse DSI matrix of order 4 and 5 are given below:
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


b1 0 0 a1

a2 0 0 0

0 a3 b3 0

0 0 a4 0



,




b1 0 0 0 a1

a2 0 0 0 0

0 a3 b3 0 0

0 0 a4 b4 0

0 0 0 a5 0



.

2.6 Hardware Cost of a Diffusion matrix

The efficiency of hardware implementation in a given operation can be measured in

terms of the amount of area required. The area is a critical factor in hardware design,

and optimizing it can lead to more compact and cost-effective implementations. This

metric is particularly important in fields such as integrated circuit design, where

minimizing the physical footprint of the hardware can have significant implications

for performance and cost.

In the past, it was widely believed that implementing the multiplication of finite

field elements with low Hamming weights incurred lower hardware costs. As of 2014,

the authors of [KPPY14] proposed an approach to estimate implementation costs

by counting the number of XOR gates (d-XOR gates) required to implement the

field element based on the multiplicative matrix of the element. According to them,

higher Hamming weight elements can be implemented at a lower cost than previ-

ously thought. To better estimate the cost of hardware implementation, the authors

of [JPST17] suggested a metric called s-XOR.

2.6.1 XOR count

It is important to emphasize that the diffusion matrix can solely be implemented

utilizing XOR gates, which leads to the subsequent definition.

Definition 2.38. [Köl19] The d-XOR count (direct XOR count) of a matrix A ∈
GL(r,F2), represented as d-XOR(A), is determined by

d-XOR(A) = wt(A)− r,

where wt(A) represents the number of ones in the matrix A.

Remark 2.14. It is important to emphasize that the d-XOR count of an invertible

matrix is always non-negative, as every row of an invertible matrix must contain at
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least one nonzero element. Also, d-XOR(A) is zero if and only if A is a permutation

matrix.

Example 2.8. Consider the matrix

A =




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1



∈ GL(4,F2).

Then we have




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1



·




v1

v2

v3

v4



=




v1

v1 + v2

(v1 + v2) + v3

((v1 + v2) + v3) + v4



.

Thus, d-XOR(A) = 10− 4 = 6.

It can be easily verified that the multiplication with A can be performed using

only 3 XOR operations, as the outputs from the previous steps can be reused. This

is facilitated by a metric known as s-XOR, which is introduced in [JPST17].

Definition 2.39. [Köl19] The s-XOR count (sequential XOR count) of a matrix

A ∈ GL(r,F2), denoted by s-XOR(A), refers to the minimum non-negative integer t

for which A can be expressed as

A = P
t∏

k=1

(Ir + Eik,jk),

where P is a permutation matrix and Eik,jk , with ik ̸= jk for all k, is a binary matrix

with 1 as (ik, jk)-th entry and 0 elsewhere.

Example 2.9. In Example 2.8, it is straightforward to identify an s-XOR represen-

tation that requires only 3 XOR operations.




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1



= I4(I4 + E4,3)(I4 + E3,2)(I4 + E2,1).
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We can observe that we require a minimum of three addition matrices (i.e. Ir+Eik,jk)

because all rows except the first one require at least one update. Thus, the s-XOR

representation presented earlier is optimal, and it has s-XOR(A) = 3.

When a basis of F2r is given, the multiplication of α ∈ F2r given by x → αx can be

expressed as the multiplication of a matrix in GL(r,F2). The matrix depends not

only on α, but also on the choice of basis of F2r over F2. Let Mα,B be the matrix

representation of the mapping x→ αx with respect to the basis B.

Definition 2.40. [Köl19] Let α ∈ F2r . Then the d-XOR count and s-XOR count of

α, denoted by d-XOR(α) and s-XOR(α) respectively, are given by

d-XOR(α) = min
B

d-XOR(Mα,B) and s-XOR(α) = min
B

s-XOR(Mα,B),

where the minimum is taken over all bases of F2r over F2.

The d-XOR count (s-XOR count) of Mα,B generally differs from the d-XOR count

(s-XOR count) of Mα,B′ for different bases B and B′. Generally, it is not easy to de-

termine the s-XOR count of a given field element. An exhaustive search is conducted

in [BKL16] to find matrices that optimize the s-XOR count metric. As a result, the

s-XOR count and an optimal matrix representation for every element α ∈ F2r for

r ≤ 8 are found. For more details about the two XOR count metrics, see [Köl19] and

the related references therein.

Throughout the thesis, we denote the XOR count of α ∈ F2r as XOR(α), which

can either be the d-XOR count or the s-XOR count, unless specified otherwise.

Fixed XOR of a matrix: The cost of implementing a diffusion matrix can be

determined by adding up the XOR counts of each entry in the matrix. If a row has

ki nonzero elements from the field F2r , these ki elements must be combined, which

incurs a fixed XOR cost of (ki−1)r. Therefore, if an n order matrix has k1, k2, . . . , kn

nonzero elements in its n rows, the matrix incurs a fixed XOR cost of
∑n

i=1(ki − 1)r

in F2r .

The sum, K =
∑n

i=1(ki − 1), is referred to as the fixed XOR of the matrix. For

example, an MDS matrix of order n has a fixed XOR of K = n(n − 1), while for a

companion and DSI matrix of order n, it is n − 1, and for a sparse DSI matrix of

order n, it is ⌈n/2⌉.

XOR count of a matrix: The XOR count of an n order matrix M , denoted

by XOR(M), over the field F2r is calculated as
∑n

i,j=1 XOR((M)i,j) + K · r, where
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XOR((M)i,j) is the XOR count of the entry (M)i,j in M .

Global optimization: It is worth mentioning that recently a lot of attention

has been paid to the search for efficiently implementable MDS matrices by global

optimization techniques. For instance see [BFI19, DL18, KLSW17, LSL+19, YZW21].

So we can categorize the search methods into two categories: local optimization and

global optimization.

In local optimizations, designers mainly focus on the selection of matrix entries

with low d-XOR or s-XOR counts. Whereas in global optimizations, given a matrix A,

we can obtain an estimation of its hardware cost by finding a good linear straight-line

program corresponding to A with state-of-the-art automatic tools based on a certain

SLP heuristic [BMP12]. A globally optimized implementation can be significantly

cheaper than the local optimization because common intermediate values can be

computed once and reused. However, this thesis focuses on the local optimization

technique to calculate the implementation cost of the matrices.

So far, we have discussed various matrix structures used as diffusion matrices. Next,

we will explore nonlinear functions, such as Sboxes and Boolean functions, as they

play a vital role in achieving the confusion property.

2.7 Boolean Functions and Sboxes

A Boolean function g with n variables is a mapping from Fn
2 to F2. The support of

a Boolean function g, denoted by Sup(g), is defined as the set of inputs x for which

g(x) = 1 i.e., Sup(g) = {x : g(x) = 1}.
The weight of a Boolean function g, denoted by w(g), is the cardinality of its

support, i.e., the number of inputs x such that g(x) = 1. A function g is considered

balanced if its weight is equal to 2n−1.

A Boolean function can be represented by its binary output vector containing

2n elements, referred to as the truth table. Another way of representing g is by its

algebraic normal form:

g(x) =
⊕

(αn,αn−1,...,α2,α1)∈Fn
2

Ag(αn, αn−1, . . . , α2, α1)x
αn
n x

αn−1

n−1 . . . xα2
2 xα1

1

where x = (xn, xn−1, . . . , x2, x1) ∈ Fn
2 and Ag is a Boolean function on Fn

2 .
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The nonlinearity of a Boolean function is a key parameter in cryptography. It mea-

sures the Hamming distance1 of an n-variable Boolean function from the set of all

affine functions. Let An be the set of all n-variable affine functions. Then, the non-

linearity of the Boolean function g is defined as

nl(g) = min
l∈An

d(g, l).

The maximum achievable nonlinearity for an n-variable Boolean function is given

by 2n−1 − 2(n−2)/2. Boolean functions that attain this maximum nonlinearity are

referred to as bent functions. It is important to note that bent functions can only

exist when n is an even number [Rot76].

Definition 2.41. An n×m Sbox is a mapping S : Fn
2 → Fm

2 .

Then, to each x = (xn, xn−1, . . . , x2, x1) ∈ Fn
2 some y = (ym, ym−1, . . . , y2, y1) ∈ Fm

2

is assigned by S(x) = y. The n×m Sbox S can be considered as a vectorial Boolean

function comprising m individual Boolean functions fm, fm−1, . . . , f2, f1 : Fn
2 → F2,

where fi(x) = yi for i = 1, 2, . . . ,m. These functions are referred to as the coordinate

Boolean functions of the Sbox. Thus, we can write

S(x) = (fm(x), fm−1(x), . . . , f2(x), f1(x)).

It is well-known that most of the desirable cryptographic properties of the Sbox

can also be defined in terms of all nontrivial linear combinations of the coordinate

functions, referred to as the Sbox component Boolean functions gc : Fn
2 → F2, where

gc = cmfm ⊕ . . .⊕ c2f2 ⊕ c1f1 and c = (cm, . . . , c2, c1) ∈ Fm
2 \ {0}.

To avoid trivial statistical attacks, an Sbox should be regular (balanced). An n×m

Sbox S with n ≥ m is said to be regular if, for each its output y ∈ Fm
2 , there are

exactly 2n−m inputs that are mapped to y. Clearly, each bijective n × n Sbox S is

always regular since it represents a permutation. It is well-known that an n × m

Sbox with n ≥ m is regular if and only if all its component Boolean functions are

balanced [SZZ94].

The nonlinearity of an Sbox is a fundamental parameter in cryptography. It is de-

termined by considering the minimum nonlinearity among the nonlinearities of its

1The Hamming distance d(f, g) between two functions f and g, defined on a same set A, is defined
to be the size of {x ∈ A : f(x) ̸= g(x)}.

44



component Boolean functions. The nonlinearity of the Sbox S is expressed as:

nl(S) = min
c∈Fm

2 \{0}
nl(gc).

The best known nonlinearity of a 4-variable balanced Boolean function is 4 [Car21,

Table 3.2]. Thus, the maximum nonlinearity of an 4× 4 bijective Sbox is 4.

In this thesis, we are discussing about n× n bijective Sboxes, and we will call these

as n-bit Sboxes.

Differential cryptanalysis [BS91a] is a method that analyzes the impact of specific

differences in plaintext pairs on the resulting differences in ciphertexts. Suppose that

two values x and x′, with a difference ∆x (i.e. ∆x = x ⊕ x′) are processed by a

function F . Let ∆y be the output difference i.e. ∆y = F (x)⊕F (x′). In this context,

we say that ∆x propagates to ∆y through the function F , denoted by ∆x
F−→ ∆y.

The pair (∆x,∆y) is then referred to as a differential over F .

Definition 2.42. For a vectorial function F : Fn
2 7→ Fn

2 and any two vectors a, b ∈ Fn
2 ,

let us define

δF (a, b) = #{x ∈ Fn
2 : F (x⊕ a)⊕ F (x) = b}.

Then, the differential probability of the differential (a, b) over F is defined by

Pr[a
F−→ b] =

δF (a, b)

2n
.

Definition 2.43. For an n-bit Sbox S, the difference distribution table (DDT) of

S is the table of size 2n × 2n, with rows and columns indexed by input and output

differences respectively. The corresponding entries are equal to the integers δS(a, b)

for the particular differential (a, b).

The differential uniformity of S, denoted by δS, is the highest value in the DDT,

i.e. δS = max
a,b∈Fn

2 ,a ̸=0
δS(a, b) and δS

2n
is called the maximal differential probability of

the Sbox S. In Section 2.8.4, we will see that an Sbox should have low differential

uniformity to increase block cipher immunity to differential cryptanalysis

In the realm of linear cryptanalysis [Mat94], a linear approximation is commonly

expressed in terms of vectors (also known as masks) a, b.

Definition 2.44. For a vectorial function F : Fn
2 7→ Fn

2 , a linear approximation is

defined as a tuple (a, b) with a, b ∈ Fn
2 . Let us define
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LF (a, b) = #{x ∈ Fn
2 : x · a⊕ F (x) · b = 0} − 2n−1,

where ‘·’ denotes the bitwise logical AND. Then the bias of the linear approximation

(a, b) is defined as

ϵF (a, b) =
LF (a, b)

2n

and its correlation is defined as

Cor(a
F−→ b) = 2 · ϵF (a, b).

Definition 2.45. For an n-bit Sbox S, the linear approximation table (LAT) of S

is the table of size 2n × 2n, with rows and columns indexed by input and output

masks respectively. The corresponding entries are equal to the integers LS(a, b) for

the particular linear approximation (a, b).

The maximal absolute bias of a linear approximation of an Sbox is given by LS

2n
,

where LS = max
a,b∈Fn

2 ,a̸=0
|LS(a, b)|. In Section 2.8.4, we will see that, like the differential

uniformity, a lower value of LS is needed to enhance the block cipher’s resistance to

linear cryptanalysis [Mat94].

2.8 Block cipher

Since modern ciphers are designed to operate on computers, it is generally assumed

that messages and keys are encoded as binary vectors. A block cipher converts plain-

text blocks with a fixed length of n and transforms them into ciphertext blocks with

the same length, using a secret key K.

Definition 2.46. A block cipher E(P,K) is a function from Fn
2 × Fk

2 to Fn
2 with the

property that, for each key K ∈ Fk
2, E(P,K) is a permutation on Fn

2 .

We refer to the parameter n as its block length and to k as its key length. For

P ∈ Fn
2 and C = E(P,K), we call P the message or plaintext, and C the ciphertext

corresponding to encryption under the key K. Decrypting a ciphertext C ∈ Fn
2 back

to the plaintext P is done through P = E−1(C,K). Modern ciphers commonly

employ a block length of n = 64, 128, or 256 bits. In order to encrypt messages of

arbitrary lengths, block ciphers are combined with a mode of operation such as CBC,

CFB, OFB [Dwo01], etc.

A block cipher with a key size of k has 2k possible keys, and each key defines

a permutation of 2n inputs. There are (2n)! different permutations on n-bit input
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blocks which, by using Stirling’s approximation, is approximately 2(n−1)2n . Although

for typical values of n and k a block cipher covers only a small portion of all possible

permutations, a secure block cipher is expected to hide this fact. In simpler terms,

when we randomly choose a key, it should appear as if the permutation is selected

randomly from the vast number of possibilities.

In the design of block ciphers, a crucial aspect is the design of a round function.

Broadly, there are two main frameworks for this purpose: the substitution-permutation

network and the feistel network.

2.8.1 Substitution-Permutation Network (SPN)

A substitution-permutation network (SPN) defines a unique structure for the round

functions in an iterative cipher. In this configuration, each round involves two main

operations: a nonlinear operation (substitution layer), represented by a parallel appli-

cation of smaller nonlinear functions, and a linear transformation (permutation layer

or linear layer).

The SPN structure was introduced in [FNS75], where the linear layer, defined

as a bit permutation- a matrix associated with L is a permutation matrix over F2.

Nowadays, most SPN ciphers follow the concept of a key-alternating cipher, where the

unkeyed round functions can be broken down into an invertible nonlinear layer and

an invertible linear layer. It is crucial to note that both the linear and nonlinear layer

must be invertible because the decryption process in SPN cipher involves reversing

both the substitution and permutation layer. The structure is depicted in Figure 2-1.

In a more formal way, the nonlinear substitution layer N : Fn
2 7→ Fn

2 is defined

by applying a b-bit Sbox S in parallel nb times, where n = nb · b. It is important

to note that since n = nb · b, Fn
2 is isomorphic to Fb

2 × Fb
2 × · · · × Fb

2︸ ︷︷ ︸
nb times

. Therefore,

N : Fb
2 × Fb

2 × · · · × Fb
2 → Fb

2 × Fb
2 × · · · × Fb

2 given by

N (x1, x2, . . . , xnb
) = (S(x1), S(x2), · · · , S(xnb

)).

Generally, a small value is chosen for b. Common choices include b = 4 or b = 8. It

is important to note that, in the substitution layer, one can use a different Sbox for

each position. However, for simplicity in implementation, it is common to use the

same Sbox in parallel.

The linear layer (L), can be characterized by a matrix M ∈ GL(n,F2). Nowadays,
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in an SPN cipher, L is permitted to be any invertible linear transformation, not

necessarily a bit permutation. The adoption of a general linear layer over a bit

permutation was largely influenced by the wide-trail strategy [Dae95]. While a bit

permutation might offer a simpler implementation, the wide-trail strategy proposed

that employing a somewhat more intricate linear layer could yield improved balance

between security and efficiency. We provide a more detailed explanation of the wide-

trail strategy in Section 2.8.5.

· · ·

P

⊕
K0

SSS S

Permutation Layer

· · ·

⊕
K1

SSS S

⊕
K2

C

Permutation Layer

Figure 2-1: 2-round SPN

F

F

K1

K2

P1 P2

C1 C2

P = P1||P2

C = C1||C2

Figure 2-2: 2-round Feistel Network

2.8.2 Feistel Network

Feistel networks are named after Horst Feistel, a member of the IBM team that created

the first commercial encryption standard, Data Encryption Standard (DES) [PUB77].

A notable feature of Feistel networks is that encryption and decryption are essentially

the same, except for reversing the order of the round functions. This similarity is

helpful in hardware implementations because it allows using the same circuit for both

encryption and decryption. Figure 2-2 depicts two rounds of a Feistel network.

Its round function divides the internal state into two parts. It alternately uses

one part as input for an F -function and inserts the F -function’s output into the other
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part. Unlike SPN, a key difference is that the F -function doesn’t have to be invertible

because the decryption process uses it in the same forward direction. However, the

F -function’s design can still follow SPN principles.

2.8.3 Security Notions

In the most severe scenario, a cryptanalyst aims to retrieve the user’s secret key.

However, an attacker might settle for less. With this consideration, it becomes feasible

to create a hierarchy of potential attacks [Knu94].

(i) Total Break: The attacker recovers the user’s secret key K.

(ii) Global Deduction: The attacker discovers an algorithm A that is functionally

equivalent to either E or E−1.

(iii) Local Deduction: The attacker has the ability to produce a message (or cipher-

text) corresponding to a previously unseen ciphertext (or message).

(iv) Distinguishing Algorithm: The attacker can proficiently differentiate between

two black boxes; one contains the block cipher with a randomly chosen encryp-

tion key, while the other contains a randomly chosen permutation.

We also need to consider the type of attackers we aim to safeguard against. Specif-

ically, various assumptions can be made regarding the kind of data in the possession

of the attackers.

(i) Ciphertext-Only Attack (COA): The attacker can only observe the ciphertexts.

(ii) Known-Plaintext Attack (KPA): The attacker can observe a limited number of

plaintexts along with their corresponding ciphertexts.

(iii) Chosen-plaintext attack (CPA): The attacker temporarily has access to the en-

cryption algorithm, enabling them to choose the plaintexts and request their

corresponding ciphertexts.

(iv) Adaptive chosen-plaintext attack (CPA2): Apart from having temporary access

to the encryption oracle, the attacker can analyze the responses from previous

queries before selecting the next plaintext to query.

(v) Chosen-ciphertext attack (CCA): The attacker temporarily has access to the

decryption oracle, enabling them to select ciphertexts and inquire about their

corresponding plaintexts.
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(vi) Adaptive chosen-ciphertext attack (CCA2): Besides having temporary access to

the decryption oracle, the adversary can analyze the responses from previous

queries before selecting the next ciphertext to query.

We have already provided some intuition on the requirements of a secure block cipher.

Now, we will present a formal security definition for a block cipher.

Adversaries and Oracles: A cryptographic adversary A is a randomized

algorithm with access to an oracle O. The oracle O is itself an algorithm that provides

cryptographic functionality or information for analysis and security assessment within

a cryptographic scheme. The interaction between the adversary A and the oracle O
results in a set of pairs {(x1, y1), (x2, y2), . . . , (xq, yq)}. Here, x1, x2, . . . , xq represent

the q queries made by the adversary A to the oracle O, and y1, y2, . . . , yq are the

corresponding responses from the oracle O. The adversary is considered adaptive,

meaning that the i-th query made by the adversary depends on the previous i − 1

responses.

Distinguishing Advantage: We consider two systems S and R along with

a distinguishing adversary A. The adversary A is granted access to either S or R.

Following the interaction with an oracle O, A outputs 1, represented as AO ⇒ 1.

This type of adversary is referred to as a distinguisher, and the activity is termed a

distinguishing game.

The objective of the distinguishing adversary, or distinguisher, is to differentiate

between the two systems S and R within a distinguishing game. The distinguishing

advantage of the distinguisher is defined as:

AdvS
R(A) =

∣∣ Pr[AS ⇒ 1]− Pr[AR ⇒ 1]
∣∣ ,

where the above probability refers to the probability computed over the probability

spaces of the adversary A and the oracle O. By considering the maximum advantages

obtained from all potential distinguishersAmaking q queries, we define this maximum

advantage as:

max
A

AdvS
R(A).

Adversary Resources: In the provided definition of the distinguishing advan-

tage of the adversary A, the resources employed by the distinguisher to differentiate
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between algorithms S and R are not explicitly specified. Generally, adversaries com-

monly consider two primary resources: time complexity and query complexity.

The time complexity (t) of an adversary A encompasses the time needed for both

interacting with the oracle and performing local computations. Query complexity (q)

is defined as the count of queries made by A to the oracle. The maximum advantage

in distinguishing S and R, considering a class of adversaries with a maximum time

complexity of t and a maximum query complexity of q is defined as follows:

AdvS
R(q, t) = max

A
AdvS

R(A),

where the maximum is determined across all adversaries making up to q queries with

a maximum running time of t.

Pseudorandom Permutation and Strong Pseudorandom Per-
mutation: Let E : Fn

2 × Fk
2 7→ Fn

2 be a block cipher, which is denoted by E(P,K)

or EK(P ). For each key K ∈ Fk
2, the map EK() is a permutation over the domain

space Fn
2 . Now consider a distinguisher A, who has oracle access to either EK where

K is chosen uniformly from Fk
2 or a permutation chosen uniformly from Perm(Fn

2 ),

where Perm(Fn
2 ) denotes the set of all permutations over Fn

2 . Suppose A makes at

most q queries and runs for the time at most t.

The task of A is to distinguish EK from a random permutation. We consider the

pseudorandom permutation (PRP) advantage of A as

AdvPRP
E (A) = | Pr[AEK ⇒ 1]− Pr[Aρ ⇒ 1] |,

where K
$← Fk

2 and ρ
$← Perm(Fn

2 ). E is said to be a (q, t, ϵ) secure PRP, if

AdvPRP
E (q, t) = max

A
AdvPRP

E (A) ≤ ϵ,

where the maximum is taken over all adversaries with maximum running time t that

asks at most q queries.

Now, we define the security against those adversaries who have access to the block

cipher as well as their inverse. Consider a distinguisher A, who has oracle access

to a permutation and its inverse over Fn
2 . Suppose A makes at most q queries with

maximum running time t. The task of the distinguisher is to distinguish EK from

a random permutation. We consider the strong pseudorandom permutation (SPRP)
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advantage of A as

AdvSPRP
E (A) = | Pr[AEK ,E−1

K ⇒ 1]− Pr[Aρ,ρ−1 ⇒ 1] |,

where K
$← Fk

2 and ρ
$← Perm(Fn

2 ). E is said to be a (q, t, ϵ) secure SPRP, if

AdvSPRP
E (q, t) = max

A
AdvSPRP

E (A) ≤ ϵ,

where the maximum is taken over all adversaries that make at most q queries with

maximum running time t.

The concepts of a pseudorandom permutation and a strong pseudorandom permu-

tation formalize the idea of security against chosen-plaintext and chosen-ciphertext

attacks, respectively. However, these concepts can only define security up to a cer-

tain threshold (ϵ) and solely against adversaries with limited resources (q, t). Con-

sequently, in practical scenarios, it is necessary to assess realistic assumptions about

the adversary and determine the specific level of security one aims to achieve.

2.8.4 Classical Cryptanalysis Techniques

Here, we provide a brief introduction to the two most widely employed cryptanalysis

techniques for block ciphers- differential cryptanalysis and linear cryptanalysis.

Differential Cryptanalysis: Biham and Shamir introduced the technique

of differential cryptanalysis in 1990 [BS91a, BS91b] as an attack on DES [PUB77].

Here, we primarily outline the most important concepts from the literature. For a

comprehensive study, we refer to [Bei18, DR02, Eic18, Hey02].

Differential cryptanalysis is a chosen-plaintext attack that exploits a differential

α
EK−−→ β over EK with high probability i.e. Pr[α

EK−−→ β] > 2−n. The adversary can

differentiate EK from a random permutation by making multiple queries to the oracle

O with randomly chosen input pairs (x, x⊕ α) and verifying if the output difference

O(x)⊕O(x⊕ α) matches β as frequently as expected based on the given differential

probability.

Since the block cipher is a set of permutations determined by a key, it is necessary

to distinguish between the fixed-key probability of a differential (α, β) and the expected

differential probability when averaged across all possible keys. Formally, for a block

cipher E : Fn
2 ×Fk

2 7→ Fn
2 , the expected differential probability of a differential (α, β) is
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defined as follows:

EDPE(α, β) =
1

2k

∑

K∈Fk
2

Pr[α
EK−−→ β].

The next three paragraphs delve into the concept of a differential characteristic

and the estimation of the probability of a differential characteristic in a practical

scenario. It is noteworthy that the content in these paragraphs has been primarily

influenced by Section 1 and Section 2.1 of the paper [BR22].

For functions expressed as a composition of simple operations, the conventional

approach involves examining sequences of intermediate differences or characteristics.

The probability of a characteristic is then estimated heuristically by multiplying the

probabilities of the intermediate differentials. In the realm of block ciphers, Lai,

Massey, and Murphy [LMM91] demonstrated that this method accurately calculates

the key-averaged probability for Markov ciphers.

However, during a differential attack, as the key remains constant, computing the

average data-complexity becomes challenging solely based on the average probability

of differentials . Therefore, Lai et al. [LMM91] introduced an additional assumption

known as the Hypothesis of Stochastic Equivalence.

Hypothesis of Stochastic Equivalence: Given a block cipher E and a differential (α, β),

EDPE(α, β) ≈ Pr[α
EK−−→ β],

for almost all keys K.

In practice, it turns out that the probability can vary significantly between keys.

Hence, standard assumptions may lead to incorrect conclusions. Furthermore, aver-

ages may hide weak key attacks that can considerably degrade security. Finally, the

same formalism is used even when there is no key, such as for cryptographic permu-

tations, or when the cryptanalyst has full control over the key, such as in many hash

functions.

Differential cryptanalysis is commonly employed on functions F : Fn
2 7→ Fn

2 struc-

tured as F = Fr ◦ · · · ◦F1, where the individual functions Fi exhibit differentials with

relatively high probabilities and are usually easier to analyze. In such instances, the

probability of a differential (a1, ar+1) can be approximated using characteristics. A dif-

ferential characteristic (also known as differential trail) is a sequence (a1, a2, . . . , ar+1)

consisting of compatible intermediate input and output differences for each of the

functions Fi. It holds that
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Pr[F (x)⊕ F (x⊕ a1) = ar+1] =
∑

a2,...,ar∈Fn
2

Pr[∧r
i=1Fi(xi)⊕ Fi(xi ⊕ ai) = ai+1],

with x1 uniformly random on Fn
2 and xi = Fi−1(xi−1) for i = 2, . . . , r. The prob-

ability of a characteristic is often estimated using the assumption that intermediate

differentials are independent. Thus,

Pr[∧ri=1Fi(xi)⊕ Fi(xi ⊕ ai) = ai+1] =
r∏

i=1

Pr[Fi(xi)⊕ Fi(xi ⊕ ai) = ai+1].

Therefore, the expected differential probability of a differential (a1, ar+1) can be

given as

EDPE(a1, ar+1) ≈
∑

a2,...,ar∈Fn
2

r∏

i=1

Pr[Fi(xi)⊕ Fi(xi ⊕ ai) = ai+1]. (2.3)

In the context of differential cryptanalysis, the Sboxes that are involved in a char-

acteristic and exhibit a nonzero input difference (and consequently a nonzero output

difference) are called active Sboxes. Generally, if the active Sboxes have higher dif-

ferential probabilities, the overall characteristic probability for the entire cipher is

larger. Also, a larger characteristic probability is achieved when there are fewer

active Sboxes. The estimated number of plaintext pairs required for a differential

attack is ND = cp−1
D [Hey02], where c is a small constant, and pD is the differential

characteristic probability for the r − 1 rounds of the r-round cipher.

To mount a differential cryptanalysis on an n-bit block cipher, there needs to

be a differential probability higher than 2−n. A common approach to assess the

resistance of a block cipher to differential cryptanalysis is to determine a lower bound

for the number of active Sboxes, NS, in any r-round differential characteristic. The

differential probability of any r-round differential characteristic is upper bounded

by (∆S)
Ns , where ∆S is maximum differential probability of the Sbox in the cipher.

Therefore, if a substantially reduced-round version with (∆S)
Ns < 2−n, it is considered

that the cipher is resistant to differential cryptanalysis.

Linear Cryptanalysis: In 1993, Matsui [Mat94] introduced the linear crypt-

analysis as a new known-plaintext attack on DES. It is based on probabilistic linear

relations or linear approximations, a concept that was first used in [TCG92]. Here,
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we primarily outline the most important concepts from the literature. For a compre-

hensive study, we refer to [Dae95, DR02, Hey02].

According to [Mat94], around c·|Cor(α EK−−→ β)|2 known plaintexts are necessary for

a distinguisher of EK to have a reasonably high advantage, where c is a small constant.

So, if the absolute correlation is less than 2−n/2, there would not be sufficient plaintexts

available. In other words, to mount linear cryptanalysis on EK an adversary must

have a linear approximation (α, β) for EK , which has a high absolute correlation,

i.e., |Cor(α EK−−→ β)| > 2−n/2. The adversary can now distinguish EK from a random

permutation by queries to the oracle O about various inputs x and verifying if x ·α⊕
O(x) · β = 0 holds as frequently as expected based on the correlation of the linear

approximation.

A linear approximation (a1, ar+1) for an iterative function EK = R
(r)
K ◦· · ·◦R

(2)
K ◦R

(1)
K ,

can be analyzed using linear trails. A linear trail is a sequence (a1, a2, . . . , ar+1) of

compatible intermediate input and output masks for each of the functions R
(i)
K . The

correlation of the linear approximation (a1, ar+1) can be expressed as the sum of the

correlations of all the linear trails it contains [DGV95] i.e.,

Cor(a1
EK−−→ ar+1) =

∑

a2,...,ar∈Fn
2

r∏

i=1

Cor(ai
R

(i)
K−−→ ai+1).

If the cipher operates as a key-alternating cipher 2 [DR02] with independent round

keys, the correlation of the keyed round function can be described in relation to the

correlation of the unkeyed round function:

Cor(a1
EK−−→ ar+1) =

∑

a2,...,ar∈Fn
2

(−1)⊕r
i=1Ki·ai

r∏

i=1

Cor(ai
R(i)

−−→ ai+1),

where (K1, . . . , Kr) denote the round keys that are derived fromK by the key schedul-

ing algorithm.

In [Nyb95], Nyberg introduced the concept of the expected linear potential as

the average value of the squared correlation for a randomly chosen key. It is also

demonstrated that this expected linear potential is equal to the sum of the squared

correlations over all linear trails, under the assumption of a key-alternating cipher

with independent keys:

2This type of cipher exactly describes the way the particular round keys are introduced within
the rounds. The key-scheduling function has to generate the round key Ki ∈ Fn

2 for each round
function Ri and the round function Ri is defined as Ri : Fn

2 × Fn
2 7→ Fn

2 .
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ELP(a1
EK−−→ ar+1) = ExpK(Cor(a1

EK−−→ ar+1)
2)

=
∑

a2,...,ar∈Fn
2

r∏

i=1

Cor(ai
R(i)

−−→ ai+1)
2.

Similar to the rationale for resistance against differential cryptanalysis, the stan-

dard argument for a designer ensuring resistance against linear cryptanalysis relies

on a single linear trail. The objective is specifically to secure a low upper bound (i.e.,

< 2−n/2) on the absolute correlation of any nonzero linear trail over a reduced-round

version of the cipher. The bound can be determined by the number of active Sboxes,

NS, in any r-round linear trail. An Sbox of a specific round is said to be active with

respect to a linear trail if its output selection vector is nonzero for that linear trail.

By the Piling Up Lemma, the bias of a linear approximation is upper bounded by

2NS−1(ES)Ns , where ES is the maximal absolute bias of a linear approximation of the

Sbox in the cipher. Thus, the absolute correlation of any r round is upper bounded by

2NS(ES)Ns . Therefore, if a substantially reduced-round version with (2ES)Ns < 2−n/2,

it is considered that the cipher is resistant to linear cryptanalysis 3.

2.8.5 The Wide-Trail Strategy and AES-like Ciphers:

In this section, we briefly discuss the wide-trail strategy introduced by Daemen

in [Dae95]. For a more detailed overview, we refer to [Dae95, DR02]. It suggests

a design approach for key-alternating block ciphers that facilitates simple arguments

about their resistance to differential and linear attacks. The main starting point is to

express the round functions Ri of the cipher as Ri = L◦N , where N is an Sbox layer

composed of parallel applications of b-bit Sbox S, and L is a linear layer represented

by M ∈ GL(n,F2) as x 7→ Mx. Instead of using a bit permutation for L, the wide-

trail strategy explains how the linear layer could be chosen in a more general way to

avoid the existence of differential (or linear) trails with high probability (or absolute

correlation).

In [Dae95], Daemen introduced the concept of the branch number of a linear

transformation as a measure of its diffusion. Essentially, it provides the minimum

number of active Sboxes we can expect in any valid differential (or linear) trail over

two rounds. Specifically, for any two-round differential (or linear) trail, the number

of active Sboxes is lower bounded by βd(L) (or βl(L)).

3CorS = 2ES is called the maximum absolute correlation of a linear approximation of the Sbox
S. Thus, the absolute correlation of any r round is upper bounded by (CorS)

NS .
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AES-like Ciphers: Now, we will describe a block cipher structure specifi-

cally designed using the wide-trail strategy. Originally, the structure was introduced

with the block cipher SQUARE [DKR97], a precursor to the Rijndael [DR99] cipher

adopted as the Advanced Encryption Standard (AES) in 2001 [PUB01]. Since AES

has inspired many other designs, such as ANUBIS [BR00a], LED [GPPR11], Mi-

dori [BBI+15], Prince [BCG+12], QARMA [Ava17], Skinny and Mantis [BJK+16] let

us start with a more general definition. We refer to ciphers designed based on this

general notion as AES-like ciphers [Bei18].

An AES-like cipher aligns with the concept of an SPN cipher. Specifically, it

functions as a key-alternating block cipher with a block length of n = b ·nb, where nb

is further factored into two positive integers nr and nc, i.e., nb = nr · nc. To enhance

representation, the cipher’s input, output, and internal states Fbnrnc
2 are typically

expressed as an nr × nc-dimensional array with b-bit words. Thus,

x =




x1 xnr+1 . . . x(nc−1)nr+1

x2 xnr+2 . . . x(nc−1)nr+2

...
...

. . .
...

xnr x2nr . . . xncnr



, where xi ∈ Fb

2.

Note that since F2b
∼= Fb

2 as a vector space over F2, we can represent a b-bit word

xi as an element of the finite field with 2b elements.

An AES-like cipher is defined by using a specific type of round function, as de-

scribed in Definition 2.9. After applying this round function (unkeyed), a round key

K(r) ∈ Fbnrnc
2 , is added to the internal state of the cipher. This addition of a round

key is a common feature in key-alternating ciphers. Importantly, the concept of an

AES-like cipher does not specify any particular requirements for the key-scheduling

algorithm. For simplicity, we will not consider it in the following discussions.

Definition 2.47. [Bei18] An AES-like round is defined as a permutation

RS,ρ,M : Fnrnc

2b
→ Fnrnc

2b
,

which is parametrized by the word length b, the state dimensions nr × nc, a b-bit

Sbox S, a permutation ρ ∈ Snrnc and M ∈ GL(nr,F2b). In particular, the round

function RS,ρ,M is composed of the bijective transformations SubCellS, Permuteρ and

MixColumnM operating on an nr × nc state, such that RS,ρ,M = MixColumnM ◦
Permuteρ ◦ SubCellS:
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(i) SubCellS is a parallel application of the Sbox S to all nr×nc words of the state.

SubCellS : Fnrnc

2b
→ Fnrnc

2b

for 0 ≤ i < nr, 0 ≤ j < nc : xnrj+i+1 7→ S(xnrj+i+1).

(ii) Permuteρ permutes the permutation according to the permutation ρ, i.e.,

Permuteρ : Fnrnc

2b
→ Fnrnc

2b

for 0 ≤ i < nr, 0 ≤ j < nc : xnrj+i+1 7→ xρ(nrj+i+1).

(iii) MixColumnM applies a multiplication by the nr × nr matrix M to all columns

of the state, i.e.,

MixColumnM : Fnrnc

2b
→ Fnrnc

2b

for 0 ≤ j < nc : [xnrj+1, . . . , xnrj+nr ]
T 7→M · [xnrj+1, . . . , xnrj+nr ]

T .

The AES-like design has a simple structure, and if the permutation ρ is chosen care-

fully, a strong lower bound on the number of active Sboxes of any valid four-round

trail can be proven. Specifically, the minimum number of active Sboxes in any valid

four-round trail is guaranteed to be at least the square of the branch number of the

linear transformation x 7→Mx.

Theorem 2.11. [Bei18, DR02] Let RS,ρ,M be an AES-like round with nc ≥ nr such

that, for each column of the state, Permuteρ distributes the word of a column to all

different columns. Then, the minimum number of active Sboxes of any four-round

differential (or linear) trail is lower bounded by βd(M)2 (or βl(M)2).

Since an MDS matrix M of order n has branch number βd(M) = βl(M) = n + 1,

the above theorem asserts that in an AES-like cipher with a round function RS,ρ,M , if

the matrix M is an MDS matrix, then the minimum number of active Sboxes in any

four-round differential (or linear) trail is lower bounded by (n+ 1)2. In AES [DR02],

we know that M is an MDS matrix of order 4. Consequently, the minimum number

of active Sboxes in any four-round differential (or linear) trail is lower bounded by 25.

Since the Sbox in AES has a maximum differential probability (or maximum absolute

correlation) of 2−6 (or 2−3), the differential probability (or absolute correlation) of

any differential (or linear) trail is upper bounded by 2−150 (or 2−75).
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3
MDS Matrix Construction over Finite Fields: A

Comprehensive Study of Various Matrix Structures
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3.1 Introduction

The optimal branch number of MDS matrices has made them a preferred choice

for designing diffusion layers in many block ciphers and hash functions. As a result,

several methods have been proposed for designing MDS matrices. There are two main

approaches to constructing MDS matrices: nonrecursive and recursive. In recursive

constructions, a sparse matrix B of order n is generally chosen, and the elements

of the matrix are selected in such a way that Bn becomes an MDS matrix. In
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nonrecursive constructions, the constructed matrices themselves are MDS. Another

way to classify the techniques used to find MDS matrices is based on whether the

matrix is constructed directly or a search method is employed by enumerating a search

space. Direct constructions use algebraic properties to provide an MDS matrix, while

in search methods, elements of the matrix are judiciously selected, and it is checked

whether the matrix is MDS or not. It should be noted that the problem of verifying

whether a matrix is MDS or not is NP-complete. Therefore, the search technique is

useful only for finding MDS matrices of small orders.

There are two main direct methods for constructing nonrecursive MDS matrices:

one is from a Cauchy matrix and the other is from two Vandermonde matrices. These

methods provide MDS matrices of any order, but these matrices are generally not effi-

cient for implementation. So, we use the search method in nonrecursive constructions

that output efficiently implementable MDS matrices.

One popular technique for such constructions is to search for elements of a cir-

culant matrix. It is worth noting that the circulant MDS matrix used in AES

has been found using a search method. There are several circulant-like matrices

[GR15] and generalized circulant matrices [LS16] which are also used in such con-

structions. Toeplitz matrices and Hankel matrices are deeply interconnected with

circulant matrices. Recently, Toeplitz matrices have been used to construct MDS

matrices [SS16, SS17]. Similar to circulant, circulant-like and generalized circulant

MDS matrices, search methods are used to construct Toeplitz MDS matrices.

As in nonrecursive constructions, there are several direct recursive constructions

as well. However, as before, they are not so efficient for implementation and search

methods provide efficient MDS matrices of low order.

In the general context of implementation of block ciphers, we note that if an

efficient MDS matrix M used in encryption, happens to be involutory or orthogonal,

then its inverse M−1 applied for decryption will also be efficient. So, it is of special

interest to find efficient MDS matrices that are also involutory or orthogonal.

In this chapter, we provide a brief survey on MDS matrices. In addition to pro-

viding a summary of existing results, we make several contributions. We exhibit some

deep and nontrivial interconnections between different constructions of MDS matri-

ces. For example, we prove that all known Vandermonde constructions are basically

equivalent to Cauchy constructions. We prove some folklore results which are used

in MDS matrix literature. Wherever possible, we provide some simpler alternative

proofs. We do not discuss efficiency issues or hardware implementations; however,

the theory accumulated and discussed here should provide an easy guide towards
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efficient implementations. We find a gap in one of the lemmas in the paper [AF15,

Lemma 1] and then provide the correct statement in Subsection 3.7.2. The result is

stated in Lemma 3.26 followed by an example that shows the existence of a gap in

the statement of Lemma 1 of the paper [AF15].

Outline: The rest of this chapter is structured as follows: In Section 3.2, we

discuss various constructions of MDS matrices from Cauchy matrices. Section 3.3

covers the various constructions of MDS matrices from Vandermonde matrices. The

interconnection and equivalence between these two constructions are highlighted in

Section 3.4. To overcome the inefficiencies of direct constructions, we move on to

constructions using the search method in Sections 3.5 and 3.6. Section 3.5 discusses

the constructions of MDS matrices from circulant matrices and their variants while

Section 3.6 covers the constructions of MDS matrices from Toeplitz and Hankel ma-

trices. In Section 3.7, we describe direct constructions of recursive MDS matrices.

Finally, the chapter concludes in Section 3.8.

Other Notations: In this chapter, we assume that the row and column indices

of a matrix start from 0 for the purpose of simplifying the proofs of some results.

Thus, for an n × n matrix A, (A)i,j denotes the element at the (i, j)-th position of

the matrix, where 0 ≤ i, j ≤ n− 1.

3.2 Constructing MDS Matrices from Cauchy Ma-

trices

Application of Cauchy matrices for constructing MDS codes are widely available in

literature [CJK15, GR13a, MS77, MRS12, RS85, RL89, SKOP15, YMT97]. Youssef

et al. used Cauchy matrix for constructing MDS matrices with efficient cryptographic

applications in mind [YMT97]. Gupta et al. [GR13a] used similar methods in a more

formal setup. Cui et al. [CJK15] define compact Cauchy matrix and provide several

interesting results. Mattoussi et al. [MRS12] used triangular array to construct MDS

codes, which is related with Cauchy matrices [MRS12, RS85]. We will mainly discuss

[CJK15, GR13a, MRS12, RS85, RL89, YMT97] in this section.

From Fact 2.8, we know that Cauchy matrices are nonsingular and from Fact 2.9,

we know that any square submatrix of a Cauchy matrix is again a Cauchy matrix.

This property enables us to construct MDS matrices and the following lemma sum-

marizes these observations.
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Lemma 3.1. [GR13a, Lemma 1][MS77, Page 323][YMT97] Let x0, x1, . . . , xn−1 and

y0, y1, . . . , yn−1 be distinct elements such that xi + yj ̸= 0 for all 0 ≤ i, j ≤ n − 1.

Then, the matrix A = (ai,j), where ai,j =
1

xi+yj
, forms an MDS matrix.

We will call this construction as Cauchy based construction of type 1. Depending

on the nature of xi’s and yi’s there are basically four types of constructions available

in the literature. We will call this type 1, type 2, type 3 and type 4 constructions

and we will come back to it whenever we discuss them.

Remark 3.1. One special case of Lemma 3.1 is that yi is of the form l + xi, where

l is an arbitrary nonzero element in F2r . We will call this construction as Cauchy

based construction of type 2.

The following lemma and its corollary studies the number of distinct entries in

the construction using Lemma 3.1 which is crucial for studying the construction of

efficient MDS matrices from Cauchy matrices.

Lemma 3.2. [GR13a, Lemma 2] In the n× n MDS matrix A constructed using the

method in Lemma 3.1, each row (or column) consists of n distinct elements.

Proof. For the i-th row of A, if possible, let (A)i,j1 = (A)i,j2 , for any two j1, j2 ∈
{0, . . . , n − 1} such that j1 ̸= j2. Then, we have 1

xi+yj1
= 1

xi+yj2
which implies that

yj1 = yj2 . This observation contradicts the assumption that the elements yj are

distinct. Since the choice of i was arbitrary, this result applies to all rows of matrix

A. The proof for the columns follows a similar argument.

Since each row (or column) of the matrix constructed by Lemma 3.1 has n distinct

elements, we have the following corollary.

Corollary 3.1. [GR13a, Corollary 1] The n×n MDS matrix A, constructed according

to Lemma 3.1, possesses a minimum of n distinct elements.

Example 3.1. Let α be the primitive element of F24 whose constructing polynomial

is x4 + x+ 1. Let x0 = 0, x1 = α4, x2 = α8 and y0 = 1, y1 = α3, y2 = α5. Then the

matrix A using the Lemma 3.1 is given by A

=




1 1
α3

1
α5

1
(1+α4)

1
(α3+α4)

1
(α4+α5)

1
(1+α8)

1
(α3+α8)

1
(α4+α8)


 =




1 α3 + α2 + α + 1 α2 + α + 1

α3 + 1 α2 + 1 α3 + α + 1

α3 + α2 + 1 α2 α3 + α2 + α




is MDS but not involutory. Note that each row (and column) has n = 3 distinct

elements and total number of distinct element is 9.
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The following is an example of the special case of Lemma 3.1.

Example 3.2. Let x0 = α, x1 = α2, x2 = α3 and yi = l + xi for 0 ≤ i ≤ 2, where

l = 1. Therefore,

A =




1 1
(1+α+α2)

1
(1+α+α3)

1
(1+α+α2)

1 1
(1+α2+α3)

1
(1+α+α3)

1
(1+α2+α3)

1


 =




1 α2 + α α2 + 1

α2 + α 1 α2

α2 + 1 α2 1




is MDS but not involutory. Note that here each row (and column) has n = 3 distinct

elements and total number of distinct elements is 4.

According to Corollary 3.1, a square matrix of order n constructed using Lemma 3.1

will have a minimum of n distinct elements. In [GR13a], the authors constructed

MDS matrices of order n that contain exactly n distinct elements. This approach

offers a twofold advantage. Firstly, it allows for the selection of only n suitable and

efficient elements, which can be chosen based on low implementation cost. Secondly,

this enables the construction of MDS matrices using the Cauchy construction method.

It is worth noting that, in order to construct efficient MDS matrices, it is advanta-

geous to minimize the number of distinct elements to reduce the implementation

overheads [JV05b].

In [CJK15] authors called such MDS Cauchy matrices having exactly n elements as

compact Cauchy matrices. Formally, let an n×n matrix AX = (ai,j) be a Cauchy ma-

trix generated by the vector X = (x0, x1, . . . , xn−1, xn, . . . , x2n−1) i.e. ai,j =
1

xi+xn+j
.

Then AX is called a compact Cauchy matrix if AX precisely has n distinct entries.

Remark 3.2. We will call an MDS matrix A of order n as compact MDS matrix if

the number of distinct elements in A is ≤ n.

Lemma 3.3. [GR13a, Lemma 6] Let G = {x0, x1, . . . , xn−1} be an additive subgroup

of F2r . Consider the coset l+G, where l ̸∈ G, with elements yj = l+xj, where xj ∈ G

and 0 ≤ j ≤ n − 1. Then the n × n matrix A = (ai,j), where ai,j = 1
xi+yj

, for all

0 ≤ i, j ≤ n− 1 is an MDS matrix.

Proof. To establish the proof, we first demonstrate that xi + yj ̸= 0 holds for all

0 ≤ i, j ≤ n− 1. Consider xi + yj = xi + l+ xj = l+ xi + xj ∈ l+G. However, since

0 /∈ l+G (due to l /∈ G and 0 ∈ G), it follows that xi+ yj ̸= 0 for all 0 ≤ i, j ≤ n− 1.

Also, all xi are distinct elements of the group G, while yj are distinct elements of the

coset l +G. Consequently, based on Lemma 3.1, we can conclude that the matrix A

is an MDS matrix.
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We will call this construction as Cauchy based construction of type 3.

Remark 3.3. Lemma 3.3 provides the construction of MDS matrices of order n when

n is a power of 2. However, when n is not a power of 2 and n < 2r−1, the construction

of an n × n MDS matrix over F2r is carried out in two steps. Firstly, we utilize

Lemma 3.3 to construct an 2m× 2m MDS matrix A′ over F2r , where 2m−1 < n < 2m.

Subsequently, in the second step, we select an n × n submatrix A of our preference

from A′ by choosing n rows and n columns.

Remark 3.4. Lemma 3.3 is a particular case of Lemma 3.1.

Lemma 3.4. [GR13a, Lemma 7] The n × n matrix A mentioned in Lemma 3.3 is

characterized by having precisely n distinct entries.

Proof. The i-th row of the matrix has elements given by ai,j = 1
l+xi+xj

for j =

0, 1, . . . , n − 1. It is worth noting that the elements xj form an additive group G,

and when xi + xj is computed for j = 0, 1, . . . , n − 1 with a fixed i, it produces all

n distinct elements of G. Consequently, l + xi + xj for j = 0, 1, . . . , n − 1 generates

all n distinct elements of l + G. As i is arbitrary, each row of matrix A contains n

distinct elements. Also, these elements represent the multiplicative inverses of the

elements in l + G within the field F2r . Thus, the matrix A consists of precisely n

distinct elements.

Corollary 3.2. [GR13a, Corollary 3] The matrix A of Lemma 3.3 is symmetric and

all rows are the permutations of the first row.

Proof. ai,j = aj,i =
1

xi+yj
= 1

l+xi+xj
for all 0 ≤ i, j ≤ n−1. Therefore, A is symmetric.

The second part is directly follows from Lemma 3.2 and Lemma 3.4.

In [GR13a], authors provided a sufficient condition (Lemma 3.3 of this chapter)

for a Cauchy MDS matrix to be a compact Cauchy but did not discuss about the

converse part. Later in [CJK15], authors provided a necessary and sufficient condition

for the Cauchy matrix of order n to have exactly n distinct elements.

Theorem 3.1. [CJK15, Theorem 1] AX is an n×n compact Cauchy matrix over F2r

generated by a vector X = (x0, . . . , xn−1, xn, . . . , x2n−1) if and only if there exists a ad-

ditive subgroup H of F2r and a, b ∈ F2r such that a+b ̸∈ H, a+H = {x0, x1, . . . , xn−1},
b+H = {xn, xn+1, . . . , x2n−1}.

Proof. If AX = (ai,j) is a compact Cauchy matrix, then for all i ∈ Zn, we have

{ai,0, ai,1, . . . , ai,n−1} = {a0,0, a0,1, . . . , a0,n−1}.
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Since the set {ai,0, ai,1, . . . , ai,n−1} contains distinct entries, we may define a permu-

tation πi : Zn → Zn such that a−1
i,πi(t)

= a−1
0,t = a−1

j,πj(t)
.

Note that a−1
i1,i2

= xi1 + xn+i2 for all i1, i2 ∈ Zn. We have for any i, j, t ∈ Zn

a−1
i,πi(t)

= xi + xn+πi(t) = x0 + xn+t = xj + xn+πj(t) = a−1
j,πj(t)

. (3.1)

Moreover, if i ̸= j, then xn+πi(t) + xn+πj(t) = xi + xj ̸= 0 (from Equation 3.1) which

is followed by πi(t) ̸= πj(t). Hence, for any t ∈ Zn, it holds {πi(t) : i ∈ Zn} = Zn. In

other words,

{(k, s) : k, s ∈ Zn} = {(k, πi(k)) : k, i ∈ Zn}. (3.2)

Now we define

Hx = {x0 + xs : s ∈ Zn}, H ′
x = {xk + xs : k, s ∈ Zn},

Gx = {xn + xn+s : s ∈ Zn}, G′
x = {xn+k + xn+s : k, s ∈ Zn}.

Therefore, Hx ⊆ H ′
x and Gx ⊆ G′

x.

As G′
x = {xn+k + xn+πi(k) : k, i ∈ Zn} from Equation 3.2 and xn+k + xn+πi(k) =

x0 + xi from Equation 3.1, we have G′
x = {x0 + xi : i ∈ Zn} = Hx. Since AT

X (the

transpose of AX) is also a compact Cauchy matrix generated by the vector X ′ = (xn,

xn+1, . . . , x2n−1, x0, . . . , xn−1), therefore for the same reason H ′
x = Gx. Thus, we have

G′
x = Hx ⊆ H ′

x = Gx ⊆ G′
x.

So Hx = H ′
x, which implies that Hx is closed under addition. Since Hx is finite,

Hx is a subgroup of F2r . Let H = Hx, by the definition of Hx and Gx, we arrive that

{x0, x1, . . . , xn−1} = x0+H and {xn, xn+1, . . . , x2n−1} = xn+Gx = xn+Hx = xn+H.

Since AX is a Cauchy matrix, we have x0 ̸∈ xn+H. Therefore, x0+xn ̸∈ H. Here

x0 and xn are playing the role of a and b respectively

For the converse part, we can proceed as Lemma 3.3.

Lemma 3.3 presents a construction method for generating MDS matrices. It is

important to note that these matrices may not be involutory. In the context of SPN,

the decryption process typically requires the inverse of matrix A. If an efficient MDS

matrix A used in encryption, happens to be involutory, then its inverse A−1 applied

for decryption will also be efficient. In order to construct an involutory MDS matrix,

we will consider the following lemma, which is also presented in [YMT97], but in a

slightly different setting.

Lemma 3.5. [GR13a, Lemma 8] Let A = (ai,j) be an n×n matrix formed by Lemma
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3.3. Then, A2 = c2I where c =
∑n−1

j=0
1

l+xj
.

Proof. Let A2 = B = (bi,j). Since A is a symmetric matrix, we have bi,j = Arow(i) ·
Arow(j). Therefore,

bi,i =
n−1∑

k=0

1

(l + xi + xk)2
=

n−1∑

j=0

1

(l + xj)2
= c2

Similarly, for i ̸= j,

bi,j =
n−1∑

k=0

1

(l + xi + xk)(l + xj + xk)
=

1

xi + xj

n−1∑

k=0

(
1

l + xi + xk

+
1

l + xj + xk

) = 0.

Thus, A2 = c2I.

Corollary 3.3. [GR13a, Corollary 5] If an n×n MDS matrix A is constructed from

Lemma 3.3, c−1A is an involutory MDS matrix, where c is the sum of all elements of

any row.

Therefore, if the sum of the elements of any row of the matrix A of Lemma 3.3 is

1, A will be involutory.

Remark 3.5. In [CJK15], authors proposed construction of involutory compact

Cauchy matrix which directly follows from Corollary 3.3.

The following is a example of a compact Cauchy matrix constructed using Lemma

3.3.

Example 3.3. Let α be the primitive element of F24 whose constructing polynomial

is x4 + x+ 1. Let G = {0, α, α3, α+ α3} and l = α2. Therefore,

l +G =
{
α2, α+ α2, α3 + α2, α+ α3 + α2

}
.

Then the matrix

A =




1
(α2)

1
(α+α2)

1
(α3+α2)

1
(α+α3+α2)

1
(α+α2)

1
(α2)

1
(α+α3+α2)

1
(α3+α2)

1
(α3+α2)

1
(α+α3+α2)

1
(α2)

1
(α+α2)

1
(α+α3+α2)

1
(α3+α2)

1
(α+α2)

1
(α2)



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=




α3 + α2 + 1 α2 + α + 1 α3 + α α+ 1

α2 + α + 1 α3 + α2 + 1 α + 1 α3 + α

α3 + α α+ 1 α3 + α2 + 1 α2 + α + 1

α + 1 α3 + α α2 + α + 1 α3 + α2 + 1




is MDS matrix with exactly 4 distinct elements but not involutory. Sum of any

row is α3 + α2 + 1 + α2 + α+ 1 + α3 + α+ α+ 1 = α+ 1 and 1
(α+1)2

A2 = I. Hence,
1

(α+1)
A is an involutory MDS matrix.

Remark 3.6. To ensure implementation-friendly designs in block ciphers and hash

functions, it is desirable to maximize the number of ones in MDS matrices. In the

construction of an n× n matrix A based on Lemma 3.3, each element occurs exactly

n times (as stated in Lemma 3.4). Thus, the maximum number of ones that can

appear in A is n. It should be noted that by multiplying A by the inverse of one of its

entries, we can convert it to have the maximum number of ones without affecting the

MDS property. However, this technique only guarantees ones in every row and does

not provide control over the other n − 1 elements. Also, if A is an involutory MDS

matrix, this conversion will disrupt its involutory property.

Remark 3.7. In the paper [JV05b], the authors proposed a method to construct ef-

ficient MDS matrices by maximizing the number of occurrences of the element 1 and

minimizing the number of occurrences of other distinct elements from the set F∗
2r . It

is worth noting that by multiplying each row of an n×n MDS matrix A by the inverse

of the first element of the respective row, we obtain a new MDS matrix A′ with all 1’s

in the first column (refer to Lemma 2.7). Similarly, by multiplying each column of

the resulting A′ matrix (starting from the second column) by the inverse of the first

element of the respective column, we obtain a new MDS matrix A′′ with all 1’s in the

first row and first column. Consequently, the number of 1’s in this matrix A′′ is 2n−1.
However, it should be noted that although A′′ contains the maximum possible number

of 1’s achievable starting from the MDS matrix A, the number of other distinct terms

in A′′ may exceed n− 1. Moreover, in the case where the order of the matrix is even,

the resulting matrix A′′ will never be involutory.

Now, we will discuss how to construct a Hadamard MDS matrix using Cauchy ma-

trices. To do this, we require the following results.

Fact 3.1. A 2n×2n matrix H = (hi,j) is Hadamard in F2r if and only if hi,j = hi+k,j+k

and hi,j+k = hj+k,i for 0 ≤ i, j ≤ 2m−1 − 1 and k = 2m−1 where 1 ≤ m ≤ n.
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Lemma 3.6. Let H = (hi,j) be a 2n×2n matrix whose first row is (h0, h1, . . . , h2n−1),

then H is Hadamard if and only if hi,j = hi⊕j, where in i ⊕ j, i and j are the n-bit

binary representation of i and j respectively.

Proof. If part: Suppose that hi,j = hi⊕j. Then for 1 ≤ m ≤ n, 0 ≤ i, j ≤ 2m−1 − 1

and k = 2m−1, we have (i+k)⊕(j+k) = i⊕j. Therefore, hi,j = hi⊕j = h(i+k)⊕(j+k) =

hi+k,j+k. Again hi,(j+k) = hi⊕(j+k) = h(j+k)⊕i = h(j+k),i. Therefore, by Fact 3.1, H is a

Hadamard matrix.

Only if part: Suppose that H is a Hadamard matrix of order 2n. We have to show

that hi,j = hi⊕j for 0 ≤ i, j ≤ 2n − 1. We will prove this by using the principle of

mathematical induction. For n = 1,

H =

[
h0 h1

h1 h0

]
.

Here h0,0 = h0 = h0⊕0, h1,1 = h0 = h1⊕1, h0,1 = h1 = h0⊕1 and h1,0 = h1 =

h1⊕0. Therefore, the result is true for n = 1. Suppose that the result is true for

n = l. Now suppose that H is a Hadamard matrix of order 2l+1 with the first row

(h0, h1, . . . , h2l+1−1). Since H is Hadamard, H =

[
U V

V U

]
, where U = (ui,j) and V =

(vi,j) are the Hadamard matrices of order 2l with the first row (h0, h1, . . . , h2l−1) and

(h2l , h2l+1, . . . , h2l+1−1) respectively. Now for 0 ≤ i, j ≤ 2l − 1 and k = 2l, hi,j = ui,j

and hi,j+k = vi,j. Now by induction hypothesis as U is Hadamard, hi,j = hi⊕j for

0 ≤ i, j ≤ 2l− 1. Since k = 2l and 0 ≤ i, j ≤ 2l− 1, we have i⊕ j = (i+ k)⊕ (j + k).

Therefore, from Fact 3.1, we have hi+k,j+k = hi,j = hi⊕j = h(i+k)⊕(j+k). Similarly, for

V , it can be checked by applying induction hypothesis that hi,j+k = hi⊕(j+k). From

Fact 3.1 we have, h(j+k),i = hi,(j+k) = hi⊕(j+k) = h(j+k)⊕i. Therefore, hi,j = hi⊕j for

0 ≤ i, j ≤ 2l+1 − 1. Therefore, by induction the result is true for all n.

Note that a Hadamard matrix can be represented by its first row. We will denote

the Hadamard matrix with its first row (h0, h1, . . . , h2n−1) as had(h0, h1, . . . , h2n−1).

Because of the structure of Hadamard matrices the following fact is easy to verify.

Fact 3.2. Let H = (hi,j) be a square matrix of order 2n and f be a bijection such that

f(hi,j) = h′
i,j. Then H is Hadamard if and only if H ′ = (h′

i,j) is Hadamard.

Lemma 3.7. Let G = {x0, x1, . . . , x2n−1} be an additive subgroup of F2r which is a

linear span of n linearly independent elements {x1, x2, x22 , . . . , x2n−1} such that xi =∑n−1
k=0 ikx2k where (in−1, . . . , i1, i0) is the binary representation of i. Then xi + xj =

xi⊕j.
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Proof. Suppose (in−1, . . . , i1, i0) and (jn−1, . . . , j1, j0) are the binary representation

of i and j respectively. Therefore, xi = i0x1 + i1x2 + i2x22 + . . . + in−1x2n−1 and

xj = j0x1 + j1x2 + j2x22 + . . . + jn−1x2n−1 . Therefore, xi + xj = (i0 + j0)x1 + (i1 +

j1)x2 + (i2 + j2)x22 + . . .+ (in−1 + jn−1)x2n−1 = xi⊕j.

Remark 3.8. The additive subgroup G = {x0, . . . , x2n−1} in Lemma 3.7 is constructed

by the linear combination of n linearly independent elements labeled x1, x2, x22 , . . . ,

x2n−1. Once x1, x2, x22 , . . . , x2n−1 have been fixed every other element xi ∈ G will be

fixed to satisfy xi + xj = xi⊕j.

Now we are ready to provide the following corollary from [GR13a].

Corollary 3.4. [GR13a, Fact 9] Let G = {x0, x1, . . . , x2n−1} be an additive subgroup

of F2r with xi + xj = xi⊕j, where in i⊕ j, i and j are the n-bit binary representation

of i and j respectively. Then for l ∈ F2r \ G, the matrix H ′ = (h′
i,j) = ( 1

l+xi⊕j
) is

Hadamard.

Proof. Consider the matrix H = (hi,j) of order 2n, where hi,j = xi⊕j for 0 ≤ i, j ≤
2n − 1. Therefore, the first row of H is (x0, x1, . . . , x2n−1). Then from Lemma 3.6,

H = had(x0, x1, x2, . . . , x2n−1). Since 0 ̸∈ l +G, we have l + xi⊕j = l + xi + xj ̸= 0.

Now consider the bijection f(hi,j) =
1

l+hi,j
. Therefore, by Fact 3.2, H ′ is a Hadamard

matrix.

Lemma 3.8. [GR13a, Theorem 4] Let G = {x0, x1, . . . , x2n−1} be an additive sub-

group of F2r which is a linear span of n linearly independent elements {x1, x2, x22 , . . . ,

x2n−1} such that xi =
∑n−1

k=0 ikx2k where (in−1, . . . , i1, i0) is the binary representation

of i. Let yi = l+ xi for 0 ≤ i ≤ 2n− 1 where l ∈ F2r \G. Then the matrix A = (ai,j),

where ai,j =
1

(xi+yj)
is a Hadamard MDS matrix.

Proof. Consider the matrix H = (hi,j) = (xi + xj). Then hi,j = xi⊕j. Therefore,

by Lemma 3.6, H is Hadamard. Now ai,j = 1
(xi+yj)

= 1
(l+xi+xj)

= 1
l+xi⊕j

. Thus,

from Corollary 3.4, A is Hadamard. Again by Lemma 3.3, A is MDS. Hence, A is a

Hadamard MDS matrix.

Remark 3.9. We will call this construction as Cauchy based construction of type 4.

Also note that the matrix constructed using Lemma 3.8 may not be an involutory.

Whereas 1
c
A is a Hadamard involutory MDS matrix, where c is the sum of the el-

ements of any row. ANUBIS [BR00a] uses Hadamard involutory matrix which was

constructed by exhaustive search and not by Lemma 3.8.
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Example 3.4. Let α be the primitive element of F24 whose constructing polynomial

is x4 + x+1. Let G = {x0 = 0, x1 = α, x2 = α3, x3 = α + α3} be the additive group

spanned by {x1 = α, x2 = α3} and let l = α2. Therefore,

y0 = α2, y1 = α + α2, y2 = α3 + α2 and y3 = α + α3 + α2.

Then the matrix

A =




1
(α2)

1
(α+α2)

1
(α3+α2)

1
(α+α3+α2)

1
(α+α2)

1
(α2)

1
(α+α3+α2)

1
(α3+α2)

1
(α3+α2)

1
(α+α3+α2)

1
(α2)

1
(α+α2)

1
(α+α3+α2)

1
(α3+α2)

1
(α+α2)

1
(α2)




=




α3 + α2 + 1 α2 + α + 1 α3 + α α+ 1

α2 + α + 1 α3 + α2 + 1 α + 1 α3 + α

α3 + α α+ 1 α3 + α2 + 1 α2 + α + 1

α + 1 α3 + α α2 + α + 1 α3 + α2 + 1




is a Hadamard MDS matrix but not involutory. Sum of the elements of any row is

α + 1 and hence 1
α+1

A is involutory.

Remark 3.10. So far we have type 1, type 2, type 3 and type 4 Cauchy based construc-

tions by Lemma 3.1, Remark 3.1, Lemma 3.3 and Lemma 3.8 respectively. Similarly,

in the next section, we will discuss type 1, type 2, type 3 and type 4 Vandermonde

based constructions to construct MDS matrices.

Remark 3.11. If A = (ai,j) is a Cauchy matrix, where ai,j =
1

xi+yj
and xi + yj ̸= 0

for 0 ≤ i, j ≤ n − 1 then for any two nonsingular diagonal matrices D1 =

diag(c0, c1, . . . , cn−1) and D2 = diag(d0, d1, . . . , dn−1), the matrix D1AD2 = (
cidj
xi+yj

)

is called generalized Cauchy matrix. We know from Corollary 2.4 that if A is MDS

then D1AD2 is MDS. Also note that even if a Cauchy matrix is not involutory, its

corresponding generalized Cauchy matrix can be made involutory for a suitable choice

of D1 and D2. We will discuss it later in Section 3.4.

We provide another construction of an MDS matrix, which is slightly modified version

of [MRS12, RS85] and is closely related to Cauchy based construction.

Theorem 3.2. [RS85, Theorem 3] Suppose q = 2r and γ is an arbitrary primitive

element of the field Fq. Let Sq be a triangular array whose coefficients are constants

along skew diagonal in a Hankel matrix fashion defined as
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Sq=

a1 a2 a3 ... aq−3 aq−2

a2 a3 a4 ... aq−2

a3 a4 ... aq−2

a4 ...
...

...

aq−3 aq−2

aq−2

where ai = (1 − γi)−1 for 1 ≤ i ≤ q − 2. Then every square submatrix of Sq is

nonsingular and hence MDS.

Proof. For 1 ≤ i ≤ q − 2 and 1 ≤ j ≤ q − i− 1, let si,j be the entries of Sq. Thus,

si,j = ai+j−1 =
1

1− γi+j−1 , for 1 ≤ i ≤ q − 2 and 1 ≤ j ≤ q − i− 1

=
1

1− γj

γ−(i−1)

.

Consider the vector x = (x1, x2, ..., xq−2) and y = (y1, y2, ..., yq−2) defined by

xi = −γ−(i−1), yj = γj, for 1 ≤ i ≤ q − 2 and 1 ≤ j ≤ q − 2.

It is easy to check that xi’s and yj’s are distinct and xi + yj ̸= 0 for i+ j ≤ q − 1. It

can be readily verified that

si,j =
xi

xi + yj
, for 1 ≤ i ≤ q − 2 and 1 ≤ j ≤ q − i− 1.

Since all the xi’s are distinct and nonzero, all the yj’s are distinct and xi + yj ̸= 0

for i and j in the defined ranges, we conclude that every square submatrix of Sq is a

nonsingular generalized Cauchy matrix.

We close this section by providing an interconnection between Reed-Solomon code

and generalized Cauchy matrix [RS85, Theorem 1].

Theorem 3.3. [RS85, RL89] A matrix of the form G = [I | A] over a finite field Fq

generates a generalized Reed-Solomon code if and only if A = (ai,j) is a generalized

Cauchy matrix i.e. ai,j =
cidj
xi+yj

for 0 ≤ i, j ≤ n− 1, where the xi, yj’s are 2n distinct

elements of Fq, such that xi + yj ̸= 0 for all i and j and ci, dj ̸= 0.
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3.3 Constructing MDS Matrices from Vander-

monde Matrices

Application of Vandermonde matrices for constructing MDS codes is widely available

in the literature [GR13a, LF04a, LF04b, MRS12, SDMO12]. Vandermonde matrices

over a finite field can have singular square submatrices (see Fact 2.10). Consequently,

these matrices by themselves need not be MDS over a finite field. Lacan and Fimes

[LF04a, LF04b] used two Vandermonde matrices to build an MDS matrix. Later,

Sajadieh et al. [SDMO12] used similar method to find an MDS matrix that is also

involutory. We will mainly discuss [GR13a, LF04b, PSA+18, SDMO12] in this section.

Theorem 3.4. [LF04b, Theorem 2] Let V1 = vand(a0, a1, . . . , an−1) and V2 =

vand(b0, b1, . . . , bn−1) be two Vandermonde matrices such that ai, bj are 2n dis-

tinct elements from some field. Then the matrices V −1
1 V2 and V −1

2 V1 are such that

any square submatrix of them is nonsingular and hence MDS matrices.

Proof. Let us denote by U the n × 2n matrix [V1 | V2]. Consider the product W =

V −1
1 U = [I | A] where A = V −1

1 V2. Now, we prove that A does not contain any

singular submatrix.

Every n×n submatrix of U is nonsingular because it is also a Vandermonde matrix

built from n distinct elements. Then any n × n submatrix of W is also nonsingular

for it is the product of V −1
1 and the corresponding nonsingular n × n submatrix of

U . Now from Remark 3.12 (written below), the code defined by the generator matrix

[I | A] is an MDS code. Thus, V −1
1 V2 is an MDS matrix. For V −1

2 V1 the proof is

identical.

Remark 3.12. In the above theorem we have used Corollary 3 of [MS77, Page 319]:

A generator matrix G = [I | A] generates an [2n, n, n + 1] MDS code if and only if

every set of n columns of G is linearly independent.

Remark 3.13. We will call the construction using Theorem 3.4 as Vandermonde

based construction of type 1. Note that in Cauchy based construction of type 1 (see

Lemma 3.1), a extra condition xi + yj ̸= 0 for 0 ≤ i, j ≤ n− 1 is needed.

Remark 3.14. Some authors [GR13a, SDMO12] use notation vand(a0, a1, a2, . . . ,

an−1) = AT , where A is as defined in Definition 2.23. With this notation V1V
−1
2 and

V2V
−1
1 will be MDS.
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Example 3.5. Let α be the primitive element of F24 whose constructing polynomial

is x4 + x + 1. Consider the Vandermonde matrices V1 = vand(0, α4, α8) and V2 =

vand(1, α3, α5). Then the matrix

V −1
1 V2 =



α3 + α2 α2 + 1 1

α2 + 1 α3 + α + 1 1

α3 α3 + α2 + α + 1 1




is MDS but not involutory.

In [SDMO12], the authors showed that for two Vandermonde matrices V1 =

vand(a0, a1, . . . , an−1) and V2 = vand(b0, b1, . . . , bn−1) = vand(l + a0, l + a1, . . . , l +

an−1), where l is an arbitrary nonzero element in F2r , the matrix V −1
1 V2 is involutory

(see also Remark 3.15). Again if ai’s and bi’s are 2n different values, then by Theorem

3.4, V −1
1 V2 will be involutory MDS matrix. Corollary 3.5 states this result formally

which is a direct consequence of Theorem 3.4 and Theorem 3.6. Theorem 3.5 is an

intermediate result for proving Theorem 3.6.

Remark 3.15. V −1
1 V2 is involutory if and only if V −1

1 V2 = V −1
2 V1

Theorem 3.5. [SDMO12, Theorem 3] If V1 = vand(a0, a1, . . . , an−1) and V2 =

vand(b0, b1, . . . , bn−1) are two invertible Vandermonde matrices such that bi = l + ai,

then V2V1
−1 is lower triangular matrix whose nonzero elements are determined by

powers of l.

Proof. Let V −1
1 = (ti,j) and V = (vi,j) = V2 · V −1

1 , 0 ≤ i, j ≤ n− 1.

As V1 · V −1
1 = I, we have

V1row(0)
.V −1

1column(0)
=

n−1∑

i=0

ti,0 = 1 and

V1row(k)
.V −1

1column(0)
=

n−1∑

i=0

aki · ti,0 = 0 for 1 ≤ k ≤ n− 1.

It can be checked that

v0,0 = V2row(0)
.V −1

1column(0)
=

n−1∑

i=0

ti,0 = 1,
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vk,0 = V2row(k)
.V −1

1column(0)
=

n−1∑

i=0

bki · ti,0 =
n−1∑

i=0

(l + ai)
k · ti,0

=
n−1∑

i=0

(kC0a
k
i +

kC1a
k−1
i · l + . . .

+kCk−1ai · lk−1 + kCkl
k) · ti,0

=
n−1∑

i=0

lk · ti,0 = lk for 1 ≤ k ≤ n− 1.

So we have computed the 0-th column of V.

Again as V1 · V −1
1 = I,

V1row(0)
.V −1

1column(1)
=

n−1∑

i=0

ti,1 = 0,

V1row(1)
.V −1

1column(1)
=

n−1∑

i=0

ai · ti,1 = 1 and

V1row(k)
.V −1

1column(1)
=

n−1∑

i=0

aki · ti,1 = 0 for 2 ≤ k ≤ n− 1.

Again it can be checked that

v0,1 = V2row(0)
.V −1

1column(1)
=

n−1∑

i=0

ti,1 = 0,

v1,1 = V2row(1)
.V −1

1column(1)
=

n−1∑

i=0

bi · ti,1 =
n−1∑

i=0

(l + ai) · ti,1 =
n−1∑

i=0

ai · ti,1 = 1 and

vk,1 = V1row(k)
.V −1

1column(1)
=

n−1∑

i=0

bki · ti,1 =
n−1∑

i=0

(l + ai)
k · ti,1

=
n−1∑

i=0

(kC0a
k
i +

kC1a
k−1
i · l + . . .

+ kCk−1ai · lk−1 + kCkl
k) · ti,1

=
n−1∑

i=0

kCk−1ai · lk−1 · ti,1

= kCk−1 · lk−1 = kC1 · lk−1 for 2 ≤ k ≤ n− 1.

So we have computed the 1-st column of V. Similarly,

v0,2 = v1,2 = 0, v2,2 = 1 and vk,2 =
kC2 · lk−2 for 3 ≤ k ≤ n− 1,

74



v0,3 = v1,3 = v2,3 = 0, v3,3 = 1 and vk,3 =
kC3 · lk−3 for 4 ≤ k ≤ n− 1,

and so on. Therefore, V = V2 · V −1
1

=




1 0 0 0 . . . . . . 0 0

l 1 0 0 . . . . . . 0 0

l2 2C1 · l 1 0 . . . . . . 0 0

l3 3C1 · l2 3C2 · l 1 . . . . . . 0 0

l4 4C1 · l3 4C2 · l2 4C3 · l . . . . . . 0 0
...

...
...

... . . . . . .
...

...

ln−1 n−1C1 · ln−2 n−1C2 · ln−3 n−1C3 · ln−4 . . . . . . l 1




.

Thus, V2V
−1
1 is a lower triangular matrix.

Theorem 3.6. [SDMO12, Theorem 4] If V1 = vand(a0, a1, . . . , an−1) and V2 =

vand(b0, b1, . . . , bn−1) are two invertible Vandermonde matrices such that ai = l + bi,

then V2V
−1
1 V2 = V1.

Proof. Let V = (vi,j) = V2 · V −1
1 . Note that (V1)i,j = aij and (V2)i,j = bij. Therefore,

(V · V2)i,j = Vrow(i) · V2column(j)

= li + iC1l
i−1 · bj + iC2l

i−2 · b2j + . . .+ iCi−1b
i−1
j + bij

= (l + bj)
i = aij.

Therefore, V2V
−1
1 V2 = V1.

Remark 3.16. V2V
−1
1 V2 = V1 implies that (V −1

1 V2)
2 = I i.e. V −1

1 V2 is involutory.

Corollary 3.5. [SDMO12, Corollary 1] If V1 = vand(a0, a1, . . . , an−1) and V2 =

vand(b0, b1, . . . , bn−1) are two invertible Vandermonde matrices in the field F2r

satisfying the two properties ai = l + bi and ai ̸= bj, for 0 ≤ i, j ≤ n− 1, then V −1
1 V2

is involutory MDS matrix.

We will call this construction as Vandermonde based construction of type 2. This

construction gives involutory MDS matrices. Whereas in Cauchy based construction

of type 2 (see Remark 3.1) the constructed MDS matrix need not be involutory.

Example 3.6. Let α be the primitive element of F24 whose constructing polynomial

is x4 + x + 1. Let l = 1, x0 = α, x1 = α2, x2 = α3 and y0 = 1 + α, y1 =
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1 + α2, y2 = 1 + α3. Consider the Vandermonde matrices V1 = vand(α, α2, α3) and

V2 = vand(1 + α, 1 + α2, 1 + α3). Then the matrix

V −1
1 V2 =




α3 α3 + 1 α3 + 1

α3 + α2 + α α3 + α2 + α + 1 α3 + α2 + α

α2 + α + 1 α2 + α + 1 α2 + α




is involutory MDS and

V2V
−1
1 =



1 0 0

1 1 0

1 0 1




is a lower triangular matrix.

Remark 3.17. Let G = {x0, x1, . . . , xn−1} be an additive subgroup of F2r . Let us

consider the coset l + G, l /∈ G having elements yj = l + xj, j = 0, . . . , n − 1.

If V1 = vand(x0, x1, . . . , xn−1) and V2 = vand(l + x0, l + x1, . . . , l + xn−1), then

V −1
1 V2 is involutory MDS matrix by Corollary 3.5. We will call this construction

as Vandermonde based construction of type 3. Note its similarity of xi’s and yj’s of

Cauchy based construction of type 3 using Lemma 3.3.

In [SDMO12], authors defined Special Vandermonde matrix, which was restated dif-

ferently but equivalently in [GR13a] as follows.

Definition 3.1. [GR13a] Let G be an additive subgroup {x0, x1, . . . , x2n−1} of F2r of

order 2n which is a linear span of n linearly independent elements {x1, x2, x22 , . . . ,

x2n−1} such that xi =
∑n−1

i=0 bix2i where (bn−1, . . . , b1, b0) is the binary representation

of i. A Vandermonde matrix vand(y0, y1, . . . , y2n−1) is called Special Vandermonde

matrix if yi = l + xi.

In [SDMO12, Corollary 2], authors provided a construction of Hadamard invo-

lutory MDS matrices using Special Vandermonde matrices which was generalized in

[GR13a, Lemma 5]. We restate it in the following lemma.

Lemma 3.9. [GR13a, Lemma 5] Let V1 = vand(x0, x1, . . . , x2n−1) and V2 = vand(y0,

y1, . . . , y2n−1) be Special Vandermonde matrices in F2r where yi = x0 + y0 + xi and

y0 ̸∈ {x0, x1, . . . , x2n−1}, then V −1
1 V2 is involutory Hadamard MDS matrix.

The proof of Corollary 2 in [SDMO12] spanned multiple pages. The au-

thors of [GR13a] proposed an alternative and much simpler proof of the above
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lemma [GR13a, Corollary 8] and we will provide another proof in Section 3.4, Corol-

lary 3.7.

We will call the construction of Lemma 3.9 as Vandermonde based construction

of type 4. Note that the Cauchy based construction of type 4 using Lemma 3.8 also

provides Hadamard MDS matrix but it may not be involutory.

Example 3.7. Let α be the primitive element of F24 with α4 + α + 1 = 0. Let

G = {0, α, α3, α+ α3} and let y0 = α2. Therefore, x0+y0 = α2. Consider the matrices

V1 = vand(0, α, α3, α+α3) and V2 = vand(α2, α+α2, α3+α2, α+α3+α2). The

matrix

V −1
1 V2 =




α3 + α α3 + α2 α2 + α 1

α3 + α2 α3 + α 1 α2 + α

α2 + α 1 α3 + α α3 + α2

1 α2 + α α3 + α2 α3 + α




is Hadamard involutory MDS matrix.

Remark 3.18. Lemma 3.8 provides Hadamard MDS matrix, Lemma 3.9 provides

Hadamard MDS matrix which is also involutory. For the sake of efficiency, the

Hadamard involutory MDS matrix used in ANUBIS block cipher [BR00a] was con-

structed by search method. The authors of [SKOP15] discussed the constructions of

Hadamard MDS matrices by search methods in details. To reduce the search space

they defined an equivalence classes of Hadamard matrices in terms of branch number.

In [LS16], authors discussed the similarity between equivalence classes of Hadamard

matrices and equivalence classes of circulant matrices. We will discuss equivalence

classes of circulant matrices in Section 3.5.

Theorem 3.7. Let M be an MDS matrix and D be a nonsingular diagonal matrix.

Then, DMD−1 will also be an MDS matrix. If M2 = cI for some constant c, then

(DMD−1)2 = cI.

Proof. From Corollary 2.4, DMD−1 is MDS. Let B = DMD−1, then

B2 = DMD−1DMD−1 = DM2D−1 = D(cI)D−1 = cI.

In [PSA+18], authors proposed a new form of matrix, which they called generalized

Hadamard matrix (GHadamard matrix) and provided several efficient MDS matrices.

If H is a Hadamard matrix then DHD−1 is called a GHadamard matrix, where D

is a nonsingular matrix. The underline idea of their construction is provided in

Theorem 3.7. Note, H is involutory if and only if DHD−1 is involutory.
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Remark 3.19. In this section we discussed type 1, type 2, type 3 and type 4 Vander-

monde based construction by Theorem 3.4, Corollary 3.5, Remark 3.17 and Lemma

3.9. Recall Remark 3.10 for type 1, type 2, type 3 and type 4 Cauchy based construc-

tion.

Let M and V represent the MDS matrices obtained from the Cauchy based con-

struction and Vandermonde based construction, respectively. In the next section we

will show that they are related by D1MD2 = V , where D1 and D2 are nonsingular

diagonal matrices.

3.4 Interconnection between Vandermonde Based

Construction and Cauchy Based Construction

Till now, we discussed four types of MDS matrix constructions using Cauchy and

Vandermonde matrices. In this section we provide a nontrivial interconnection

between Cauchy based constructions and Vandermonde based constructions. Let

x0, x1, x2, . . . , xn−1 and y0, y1, y2, . . . , yn−1 be 2n distinct elements from F2r with xi +

yj ̸= 0 for all 0 ≤ i, j ≤ n− 1. Consider the matrices V1 = vand(x0, x1, x2, . . . , xn−1),

V2 = vand(y0, y1, y2, . . . , yn−1) and M = (mi,j), where mi,j = 1
xi+yj

. Then we know

that V −1
1 V2, V −1

2 V1 and M are MDS matrices.

Now we will prove that the type 1 Vandermonde based construction is equivalent

to type 1 Cauchy based construction. Type 2, type 3 and type 4 are just the special

cases. Note that Gupta et al. [GR13a, Theorem 5] proved the equivalence for type 4

construction which is a particular case of Theorem 3.8.

Theorem 3.8. Suppose V1, V2 and M are as defined above and V −1
1 = (bi,j), 0 ≤

i, j ≤ n− 1, then D1MD2 = V −1
1 V2, where

D1 = diag(b0,n−1, b1,n−1, b2,n−1, . . . , bn−1,n−1) and

D2 = diag(
n−1∏

k=0

(xk + y0),
n−1∏

k=0

(xk + y1),
n−1∏

k=0

(xk + y2), . . . ,
n−1∏

k=0

(xk + yn−1)).

Proof. Consider the polynomial

Pi(x) = bi,0 + bi,1x+ bi,2x
2 + . . .+ bi,n−1x

n−1 =
n−1∑

k=0

bi,kx
k
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whose coefficients are the elements of the i-th row of V −1
1 . Consider the (i, j)-th

element of V −1
1 V2,

(V −1
1 V2)i,j =

n−1∑

k=0

bi,k · (V2)k,j =
n−1∑

k=0

bi,k · ykj = Pi(yj). (3.3)

We will prove that (D1MD2)i,j = (V −1
1 V2)i,j. Now

(D1MD2)i,j = (D1)i,i ·mi,j · (D2)j,j

= bi,n−1 ·
1

xi + yj
· (

n−1∏

k=0

(xk + yj))

= bi,n−1(x0 + yj)(x1 + yj) . . . (xi−1 + yj)(xi+1 + yj) . . . (xn−1 + yj).

(3.4)

The i-th row of V −1
1 V1

=
[
bi,0 bi,1 . . . bi,n−1

]
· V1

=
[∑n−1

k=0 bi,kx
k
0

∑n−1
k=0 bi,kx

k
1 . . .

∑n−1
k=0 bi,kx

k
n−1

]

=
[
Pi(x0) Pi(x1) . . . Pi(xn−1)

]
.

As V −1
1 V1 = I, we have Pi(xi) = 1 and Pi(xj) = 0 for i ̸= j i.e. x0, x1, . . . , xi−1, xi+1,

. . . , xn−1 are the roots of Pi(x). Therefore,

Pi(x) = bi,n−1(x+ x0)(x+ x1) . . . (x+ xi−1)(x+ xi+1) . . . (x+ xn−1). (3.5)

From Equation 3.4 and Equation 3.5, we have (D1MD2)i,j = Pi(yj) and from Equa-

tion 3.3 we have (V −1
1 V2)i,j = Pi(yj). Therefore, (D1MD2)i,j = (V −1

1 V2)i,j.

Remark 3.20. In type 2 construction, V −1
1 V2 is involutory but M is not involutory.

But we can make it involutory by D1MD2, where D1 and D2 are the two nonsingular

diagonal matrices as defined in Theorem 3.8. For example consider x0 = 0, x1 =

α4, x2 = α8 and yi = α + xi, over F24 whose constructing polynomial is x4 + x + 1

with α a primitive element. Then

V −1
1 V2 =



α3 + α2 + 1 α3 + α2 α3 + α2

α2 α2 + 1 α2

α3 α3 α3 + 1



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is an involutory MDS matrix. But the Cauchy matrix

M =




1
α

1
α+α4

1
α+α8

1
α+α4

1
α

1
α+α4+α8

1
α+α8

1
α+α4+α8

1
α


 =



α3 + 1 1 α2 + α

1 α3 + 1 α3 + α2 + 1

α2 + α α3 + α2 + 1 α3 + 1




is not involutory. Now

V −1
1 =



1 α2 + 1 α3

0 α3 + 1 α3 + α2

0 α3 + α2 α2


 .

Therefore, D1 = diag(c0, c1, c2) and D2 = diag(d0, d1, d2) where c0 = α3, c1 = α3+

α2, c2 = α2, d0 = α·(α+α4)·(α+α8) = α3+α2+α, d1 = (α+α4)·α·(α+α4+α8) = α3

and d2 = (α + α8) · (α + α4 + α8) · α = α3 + α2 + 1. Now it is easy to check that

D1MD2 = V −1
1 V2. Therefore, the generalized Cauchy matrix D1MD2 is involutory.

Cauchy based construction of type 3 provides compact MDS matrix (see Lemma

3.4). In Corollary 3.6 we will show that Vandermonde based construction of type 3

also provides compact MDS matrix. To prove this we need the following lemmas.

Let {x0, x1, . . . , xn−1} be an additive subgroup G of F2r where x0 = 0, V1 =

vand(x0, x1, . . . , xn−1) and

V −1
1 =




b0,0 b0,1 . . . b0,n−1

b1,0 b1,1 . . . b1,n−1

...
...

...
...

bn−1,0 bn−1,1 . . . bn−1,n−1



, where bi,j ∈ F2r

and let γ be the product of all nonzero elements in G i.e. γ =
∏n−1

i=1 xi.

Lemma 3.10. Let V1 and γ are as defined above, then det(V1) = γ
n
2 .

Proof. We have det(V1) =
∏

k<l(xk + xl) = (
∏

k ̸=l(xk + xl))
1
2 . In the prod-

uct
∏

k ̸=l(xk + xl), each of the terms x1, . . . , xn−1 occurs n times. Therefore,∏
k ̸=l(xk + xl) =

∏n−1
i=1 xn

i = γn. Hence, det(V1) = γ
n
2 .

The following lemma shows that the elements in the last column of V −1
1 , i.e. b′i,n−1s

for i = 0, . . . , n− 1, are same. The proof technique is similar to [GR13a, Lemma 10].

Lemma 3.11. bi,n−1 =
1
γ
for i = 0, . . . , n− 1.
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Proof. Let i ∈ {0, 1, . . . , n− 1} be arbitrary. So, bi,n−1 =
det(V ′

1)

det(V1)
, where

V ′
1 =




1 1 1 . . . 1 1 . . . 1

x0 x1 x2 . . . xi−1 xi+1 . . . xn−1

x2
0 x2

1 x2
2 . . . x2

i−1 x2
i+1 . . . x2

n−1
...

...
...

...
...

xn−2
0 xn−2

1 xn−2
2 . . . xn−2

i−1 xn−2
i+1 . . . xn−2

n−1




= vand(x0, x1, . . . , xi−1, xi+1, . . . , xn−1).

Therefore, det(V ′
1) =

∏
k<l
k,l ̸=i

(xk + xl) = (
∏

k ̸=l
k,l ̸=i

(xk + xl))
1
2 .

Now
∏

k ̸=l
k,l ̸=i

(xk + xl) =
∏

k ̸=l(xk+xl)∏
k ̸=i(xk+xi)·

∏
l̸=i(xl+xi)

=
∏

k ̸=l(xk+xl)∏n−1
k=1 xk·

∏n−1
k=1 xk

= γn

γ2 = γn−2.

Therefore, bi,n−1 =
γ

n−2
2

γ
n
2

= γ−1.

Corollary 3.6. Let {x0, x1, . . . , xn−1} be an additive subgroup G of F2r of order n

where x0 = 0 and let yi = l + xi for 0 ≤ i ≤ n − 1, where l ̸∈ G. Let V1 =

vand(x0, x1, . . . , xn−1) and V2 = vand(y0, y1, . . . , yn−1). Then V −1
1 V2 is a compact

involutory MDS matrix.

Proof. From Theorem 3.8, we know V −1
1 V2 = D1MD2, where D1 and D2 are the

nonsingular diagonal matrices defined in Theorem 3.8. From Lemma 3.11, we have

D1 = diag( 1
γ
, 1
γ
, . . . , 1

γ
). As the elements xj form the additive subgroup G, the values

xi + xj, for i = 0, 1, . . . , n− 1, includes all the n distinct elements of G for a given j.

Consequently, xi+yj = l+xi+xj, for i = 0, 1, . . . , n−1, gives all n distinct elements of

l+G. Thus,
∏n−1

k=0 (xk + y0) =
∏n−1

k=0 (xk + y1) = . . . =
∏n−1

k=0 (xk + yn−1) = d for some

d i.e. D2 = diag(d, d, . . . , d). Since M is a compact MDS, D1MD2 is compact MDS

matrix. Again by Corollary 3.5, V −1
1 V2 is involutory. Therefore, V −1

1 V2 is compact

involutory MDS matrix.

Note that in [GR13a] it was proved that the constructed MDS matrices from

Vandermonde based construction of type 4 are involutory and Hadamard. In the

following corollary we prove it in a different way.

Corollary 3.7. Suppose {x0, x1, . . . , xn−1} is an additive subgroup G of F2r of order

n such that xi + xj = xi⊕j and let yi = l + xi for 0 ≤ i ≤ n − 1, where l ̸∈ G.

Let V1 = vand(x0, x1, . . . , xn−1) and V2 = vand(y0, y1, . . . , yn−1). Then V −1
1 V2 is a

Hadamard involutory MDS matrix.
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Proof. As in the proof of Corollary 3.6, we obtain D1 = diag( 1
γ
, 1
γ
, . . . , 1

γ
) and D2 =

diag(d, d, . . . , d). Since the constructed matrix M in Cauchy based construction of

type 4 is MDS and Hadamard, D1MD2 will remain MDS and Hadamard. Again by

Corollary 3.5, V −1
1 V2 is involutory. Therefore, V −1

1 V2 is Hadamard involutory MDS

matrix.

Now we are comparing all the known Vandermonde based constructions with their

corresponding Cauchy based constructions in Table 3.1. Let x0, x1, x2, . . . , xn−1 and

y0, y1, y2, . . . , yn−1 are 2n distinct elements from F2r such that xi + yj ̸= 0 for all

0 ≤ i, j ≤ n− 1. Then the matrices V −1
1 V2, V −1

2 V1 and M are MDS matrices, where

V1 = vand(x0, x1, x2, . . . , xn−1), V2 = vand(y0, y1, y2, . . . , yn−1) and M = (mi,j),

where mi,j =
1

xi+yj
.

Till now, we have discussed Cauchy and Vandermonde based constructions. In these

methods the constructed matrices are MDS so they are direct nonrecursive construc-

tions. An objective in designing MDS matrices is to maximize the number of 1’s

and minimizing the number of distinct elements [JV05b]. The minimum number of

distinct elements in Vandermonde and Cauchy based construction is the dimension of

the matrix. Next we consider circulant matrix where the number of distinct elements

can be even smaller.

3.5 Constructing MDS Matrices from Circulant

Matrices and its Variants

To the best of our knowledge, there is currently no known method to provide circulant

matrix of arbitrary order which is MDS by construction itself. However, there are

constructions of circulant MDS matrices based on search. Though search methods

provide efficient MDS matrices of moderate order over moderate size search space,

it fails for higher order and large search space. Note, the 4 × 4 MDS matrix in

AES [DR02] has been found by search method. In this section we mainly discuss

ideas from [CL19, DR02, GR14, GR15, LS16].

Remark 3.21. Because of the positional structure of left-circulant matrix, it can be

checked that the (i, j)-th entry of the circulant matrix A = Circ(x0, . . . , xn−1) can be

expressed as (A)i,j = x(j−i)mod n.

The given lemma highlights a significant property of circulant matrices.
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Table 3.1: Comparison between Vandermonde and Cauchy based constructions of
MDS matrices over a finite field.

Construction Type Vandermonde based
Construction
V −1
1 V2 and V −1

2 V1

Cauchy based Construc-
tion
M

Type 1: No extra
condition

1. Need not be involutory
2. Need not be Hadamard
3. Need not be compact

1. Need not be involutory
2. Need not be Hadamard
3. Need not be compact

Type 2: yi = l + xi,
where l is an arbitrary
nonzero element in F2r

1. Involutory and equal
2. Need not be Hadamard
3. Need not be compact

1. Need not be involutory,
whereas D1MD2 is involu-
tory for some nonsingular
diagonal matrices D1 and
D2 (see Remark 3.20)
2. Need not be Hadamard
3. Need not be compact

Type 3: xi’s are the
elements of an addi-
tive subgroup G =
{x0, x1, x2, . . . , xn−1}
of order n of F2r and
l ̸∈ G

1. Involutory and equal
2. Need not be Hadamard
3. compact

1. Need not be involutory,
whereas 1

c
M is involutory,

where c is the sum of the el-
ements of any row
2. Need not be Hadamard
3. compact

Type 4: xi’s are the
elements of an addi-
tive subgroup G =
{x0, x1, x2, . . . , xn−1}
of order n of F2r such
that xi + xj = xi⊕j

and l ̸∈ G

1. Involutory and equal
2. Hadamard
3. compact

1. Need not be involutory,
whereas 1

c
M is involutory,

where c is the sum of the el-
ements of any row
2. Hadamard
3. compact

Lemma 3.12. [RB00] The product of two circulant matrices is also a circulant ma-

trix. Also, the inverse and transpose of a circulant matrix are circulant.

Circulant matrices can be expressed as polynomials in a suitable permutation matrix.

Therefore, we can state the following proposition.

Proposition 3.1. [RB00, Page 290] A n×n circulant matrix A = Circ(x0, . . . , xn−1)

can be written in the form A = x0I + x1P + x2P
2 + . . . + xn−1P

n−1, where P =

Circ(0, 1, 0, . . . , 0).

MDS matrices of dimension 2n × 2n hold significant cryptographic relevance. It is

worth mentioning that in the Advanced Encryption Standard (AES), a 22 × 22 MDS
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matrix is utilized. In the MDS-AES scheme proposed by Jorge et al. [NA09], the

matrix employed has a dimension of 24× 24. In Lemma 3.14 it is proved that 2n× 2n

circulant matrix cannot be both MDS and orthogonal. In Lemma 3.13 and Corollary

3.8, we study two important properties of 2n × 2n circulant MDS matrices and using

these results we prove Lemma 3.14.

Lemma 3.13. [GR15, Lemma 4] Circ(x0, x1, . . . , x2n−1)
2n = (

∑2n−1
i=0 x2n

i )I, where

x0, . . . , x2n−1 ∈ F2r .

Proof. From Proposition 3.1, Circ(x0, x1, . . . , x2n−1) = x0I + x1P + x2P
2 + . . . +

x2n−1P
2n−1, where P = Circ(0, 1, 0, . . . , 0) is a 2n × 2n matrix. So,

Circ(x0, x1, . . . , x2n−1)
2n = (x0I + x1P + x2P

2 + . . .+ x2n−1P
2n−1)2

n

= x2n

0 I2
n

+ x2n

1 P 2n + x2n

2 (P 2n)2 + . . .+ x2n

2n−1(P
2n)2

n−1

= (x2n

0 + x2n

1 + x2n

2 + . . .+ x2n

2n−1)I.

Remark 3.22. If
∑2n−1

i=0 xi = 1, then Circ(x0, x1, . . . , x2n−1)
2n = I.

Corollary 3.8. [GR15, Corollary 1] det(Circ(x0, x1, . . . , x2n−1)) =
∑2n−1

i=0 x2n

i , where

x0, x1, . . . , x2n−1 ∈ F2r .

Proof. Let A = Circ(x0, x1, . . . , x2n−1) and det(A) = δ. So δ2
n
= (det(A))2

n
=

det(A2n). From Lemma 3.13, A2n = (
∑2n−1

i=0 x2n

i )I. So, δ2
n
= det((

∑2n−1
i=0 x2n

i )I) =

(
∑2n−1

i=0 x2n

i )
2n

. Therefore, δ =
∑2n−1

i=0 x2n

i .

Lemma 3.14. [GR15, Lemma 5] For n ≥ 2, a 2n × 2n circulant orthogonal matrix

over the finite field F2r cannot be an MDS matrix.

Proof. Consider A = Circ(a0, a1, . . . , a2n−1) to be an orthogonal matrix, where the

elements a0, a1, . . . , a2n−1 belong to the finite field F2r . Let the row vectors of A be

denoted as R0, R1, . . . , R2n−1, where R0 = (a0, a1, . . . , a2n−1), and Ri can be obtained

by cyclically rotating Ri−1 one element to the right. As A is an orthogonal matrix,

Ri · Rj = 0 for i ̸= j. Now, let us focus on the cases where R0 · Rj = 0 for j =

2k + 1 : k = 0, . . . , 2n−2 − 1. This leads to a system of 2n−2 equations given by:
2n−1∑

i=0

aiai+1 = 0,
2n−1∑

i=0

aiai+3 = 0,
2n−1∑

i=0

aiai+5 = 0, . . . ,
2n−1∑

i=0

aiai+2n−1−1 = 0,

where suffixes are computed modulo 2n. Adding these equations, we obtain:
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∑

i,j

a2ia2j+1 = (a0 + a2 + a4 + . . .+ a2n−2)(a1 + a3 + a5 + . . .+ a2n−1) = 0. (3.6)

It can be observed that matrix A has a 2n−1×2n−1 submatrix A′ = Circ(a0, a2, a4,

. . . , a2n−2). This submatrix is formed by selecting rows indexed by 0, 2, 4, . . . , 2n − 2

and columns indexed by 0, 2, 4, . . . , 2n−2. According to Corollary 3.8, the determinant

of this submatrix is given by:

det(Circ(a0, a2, a4, . . . , a2n−2)) = a2
n−1

0 + a2
n−1

2 + a2
n−1

4 + . . .+ a2
n−1

2n−2

= (a0 + a2 + a4 + . . .+ a2n−2)
2n−1

.

It can also be checked that A has another 2n−1 × 2n−1 submatrix A′′ = Circ(a1,

a3, a5, . . . , a2n−1) which is formed by selecting rows indexed by 0, 2, 4, . . . , 2n − 2 and

columns indexed by 1, 3, 5, . . . , 2n−1. The determinant of this submatrix is given by:

det(Circ(a1, a3, a5, . . . , a2n−1)) = a2
n−1

1 + a2
n−1

3 + a2
n−1

5 + . . .+ a2
n−1

2n−1

= (a1 + a3 + a5 + . . .+ a2n−1)
2n−1

.

Now, based on Equation 3.6, it can be concluded that at least one of the subma-

trices A′ and A′′ is singular. Therefore, it can be deduced that the matrix A is not

an MDS matrix.

Remark 3.23. Lemma 3.14 is a slightly modified version of [GR15, Lemma 5]. They

did not mention that n should be ≥ 2. We observe that the result is not true for the

matrices of order 2 . For example, consider the matrix A =

[
α 1 + α

1 + α α

]
, where

α is a primitive element of F24 whose constructing polynomial is x4 + x+1. It can be

easily verified that the matrix A is both circulant MDS and orthogonal. With the above

example it may be checked that similar errors were present in the original version of

Lemma 3.17, Theorem 3.9, Theorem 3.10 Theorem 3.11.

Remark 3.24. While the circulant MDS matrices of size 2n×2n are not orthogonal, it

is possible for circulant MDS matrices of other orders to be orthogonal. For instance,

consider the 3×3 matrix A′ = Circ(α, 1+α2+α3+α4+α6, α+α2+α3+α4+α6) and

the 6×6 matrix A′′ = Circ(1, 1, α, 1+α2+α3+α5+α6+α7, α+α5, α2+α3+α6+α7),

where α is a root of the polynomial x8 + x4 + x3 + x + 1, which is the constructing

polynomial of F28. It can be verified that both A′ and A′′ are orthogonal MDS matrices.

In Lemma 3.17 we show that circulant matrices cannot be both involutory and MDS.

Prior to that, we analyze two beneficial properties in Lemma 3.15 and Lemma 3.16.
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Lemma 3.15. [GR15, Lemma 7] Let A = Circ(x0, x1, . . . , x2n−1) be a 2n × 2n cir-

culant matrix, where x0, . . . , x2n−1 ∈ F2r . Then

A2 = Circ(x2
0 + x2

n, 0, x
2
1 + x2

n+1, 0, . . . , x
2
n−1 + x2

2n−1, 0).

Proof. From Proposition 3.1,

A = x0I + x1P + x2P
2 + . . .+ x2n−1P

2n−1,

where P is a 2n× 2n matrix given by P = Circ(0, 1, 0, . . . , 0). So

A2 = x2
0I + x2

1P
2 + x2

2P
4 + . . .+ x2

2n−1P
2(2n−1)

= (x2
0I + x2

nP
2n) + (x2

1P
2 + x2

n+1P
2n+2) + . . .+ (x2

n−1P
2(d−1) + x2

2n−1P
2(2n−1))

= (x2
0 + x2

n)I + (x2
1 + x2

n+1)P
2 + . . .+ (x2

n−1 + x2
2n−1)P

(2n−2)

= Circ(x2
0 + x2

n, 0, x
2
1 + x2

n+1, 0, . . . , x
2
n−1 + x2

2n−1, 0).

Lemma 3.16. [GR15, Lemma 8] Let A = Circ(x0, x1, . . . , x2n) be a (2n+1)×(2n+1)

circulant matrix, where x0, . . . , x2n ∈ F2r . Then

A2 = Circ(x2
0, x

2
n+1, x

2
1, x

2
n+2, . . . , x

2
n−1, x

2
2n, x

2
n).

Proof. From Proposition 3.1, A can be written as

A = x0I + x1P + x2P
2 + . . .+ x2nP

2n,

where P = Circ(0, 1, 0, . . . , 0) is a (2n+ 1)× (2n+ 1) matrix. So

A2 = x2
0I + x2

1P
2 + x2

2P
4 + . . .+ x2

2nP
2(2n)

= x2
0I + x2

n+1P
(2n+1+1) + x2

1P
2 + x2

n+2P
(2n+1+3) + x2

2P
4 + . . .

+ x2
n−1P

2n−2 + x2
2nP

(2n+1+2n−1) + x2
nP

2n

= x2
0I + x2

n+1P + x2
1P

2 + x2
n+2P

3 + . . .+ x2
n−1P

(2n−2) + x2
2nP

(2n−1) + x2
nP

2n

= Circ(x2
0, x

2
n+1, x

2
1, x

2
n+2, . . . , x

2
n−1, x

2
2n, x

2
n).

Remark 3.25. If we consider the matrix A = Circ(a0, . . . , a2n−1) with
∑2n−1

i=0 ai = 1,

then, according to Remark 3.22, we have A2n = I. Therefore, the inverse of A can be

computed as A−1 = A2n−1 =
∏n−1

k=0 A
2k . It is worth noting that matrices of the form

A2k for k > 0 are computationally efficient, as they contain mostly zero elements.
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Consequently, the InvMixColumn operation can be implemented by preprocessing the

multiplication of the input matrix by A2×A4× . . .×A2n−1
, followed by the MixColumn

step. For instance, in the case of n = 2, the inverse of A can be computed as A−1 =

A× A2.

Remark 3.26. In AES [DR02], the MixColumn operation utilizes an MDS matrix

M = Circ(α, 1 + α, 1, 1), where α is a root of the polynomial x8 + x4 + x3 + x + 1.

Barreto observed that in the InvMixColumn operation [DR02] of decryption, using

M ×M2 = Circ(α, 1 + α, 1, 1) × Circ(1 + α2, 0, α2, 0) instead of M−1 can lead to

a more efficient implementation. This observation is a consequence of Lemma 3.13,

Lemma 3.15, and Remark 3.25.

Lemma 3.17. [GR15, Lemma 9] Circulant involutory matrices of order n ≥ 3 over

F2r are not an MDS matrix.

Proof. Consider a 2n × 2n involutory circulant matrix A = Circ(x0, x1, . . . , x2n−1).

It follows that A2 = I. However, applying Lemma 3.15, we have A2 = Circ(x2
0 +

x2
n, 0, x

2
1+x2

n+1, 0, . . . , x
2
n−1+x2

2n−1, 0). From this, we can observe that x2
1+x2

n+1 = 0.

Also, by considering the 2× 2 submatrix Circ(x1, xn+1) of A, obtained from the 0-th

and n-th rows and the 1-st and (n+1)-th columns, we find that det(Circ(x1, xn+1)) =

x2
1 + x2

n+1 = 0. Consequently, A is not an MDS matrix.

Similarly, for the (2n+1)× (2n+1) involutory circulant matrix A = Circ(x0, x1,

. . . , x2n), using Lemma 3.16, we find that A2 = Circ(x2
0, x

2
n+1, x

2
1, x

2
n+2, . . . , x

2
2n, x

2
n).

However, since A is involutory, we have A2 = I. From this, it becomes evident that

xi = 0 for all i ∈ {1, 2, . . . , 2n}. Therefore, matrix A is not an MDS matrix.

Remark 3.27. Over a field of odd characteristic, even order involutory circulant

matrix is not MDS whereas odd order involutory circulant matrix may be MDS [CL19].

In [GR15], it was established that Type-I circulant-like MDS matrices of even order

cannot be involutory or orthogonal. However, the discussion did not cover the case of

matrices with odd order. In this section, we aim to prove that Type-I circulant-like

MDS matrices of odd order also cannot be involutory or orthogonal.

Lemma 3.18. [GR15, Lemma 6] A Type-I circulant-like MDS matrix of size 2n×2n

over F2r is not orthogonal.

Proof. Let M =

[
a 1

1T A

]
, where A = Circ(1, x1, . . . , x2n−2). Now M × MT =

[
a2 + 1 c

cT B

]
, where c = (c, . . . , c)︸ ︷︷ ︸

2n-1 times

, c = a + 1 +
∑2n−2

i=1 xi, B = U + A × AT and
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U = (ui,j), where ui,j = 1 for 0 ≤ i, j ≤ 2n− 2. Suppose M is orthogonal. Then we

have M ×MT = I. This implies that a2 + 1 = 1, which leads to the conclusion that

a = 0. Therefore, we can deduce that M is not an MDS matrix.

In the following lemma we prove that there is no orthogonal Type-I circulant-like

matrix of odd order as well.

Lemma 3.19. A Type-I circulant-like matrix of size (2n+ 1)× (2n+ 1) over F2r is

not orthogonal.

Proof. Let M =

[
a 1

1T A

]
, where A = Circ(1, x1, . . . , x2n−1). Now M × MT =

[
a2 c

cT B

]
, where c = (c, . . . , c)︸ ︷︷ ︸

2n times

, c = a+1+
∑2n−1

i=1 xi, B = U +A×AT and U = (ui,j)

is a 2n × 2n matrix with ui,j = 1. Suppose M is orthogonal, M ×MT = I, which

gives a2 = 1 and hence a = 1.

Now c = a + 1 +
∑2n−1

i=1 xi =
∑2n−1

i=1 xi. Again as M is orthogonal, we have c = 0

which implies that
∑2n−1

i=1 xi = 0. Therefore,
∑2n−1

i=1 x2
i = 0 =⇒ 1 +

∑2n−1
i=1 x2

i = 1.

So, (AAT )i,i = 1 +
∑2n−1

i=1 x2
i = 1. Thus, (MMT )1,1 = (B)0,0 = (U)0,0 + (AAT )0,0 =

1 + 1 = 0, Which is a contradiction. Hence, M cannot be orthogonal.

In [GR15], it was proved that there is no involutory Type-I circulant-like matrix of

even order. Therefore, we have the following lemma from [GR15].

Lemma 3.20. [GR15, Lemma 10] A Type-I circulant-like matrix of size 2n×2n over

F2r cannot be involutory.

Proof. Let M =

[
a 1

1T A

]
, where A = Circ(1, x1, . . . , x2n−2). Now,

M2 =

[
a2 + 1 c

cT B

]
, where c = (c, . . . , c)︸ ︷︷ ︸

2n-1 times

, c = a + 1 +
∑2n−2

i=1 xi, B = U + A2 and

U = (ui,j) is the (2n− 1)× (2n− 1) matrix with ui,j = 1. (A2)0,0 = 1, consequently

(M2)1,1 = (B)0,0 = (U)0,0 + (A2)0,0 = 1 + 1 = 0 and so M2 ̸= I. Hence, we can

conclude that M cannot be involutory.

Remark 3.28. In Lemma 3.20, if n = 2 and A = Circ(1, b, a),

M2 =




a2 + 1 (b+ 1) (b+ 1) (b+ 1)

(b+ 1) 0 (1 + a2) (1 + b2)

(b+ 1) (1 + b2) 0 (1 + a2)

(b+ 1) (1 + a2) (1 + b2) 0



̸= I.
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Hence, the matrix M is not involutory. In the case where a = α and b = 1 + α−1,

where α is a root of the constructing polynomial x8 + x7 + x6 + x5 + x4 + x3 + 1 of

F28, we obtain the matrix M which is utilized in the block cipher FOX64 [JV05a].

In the following lemma we also prove that there is no involutory Type-I circulant-like

matrix of odd order.

Lemma 3.21. A Type-I circulant-like matrix of size (2n + 1) × (2n + 1) over F2r

cannot be involutory.

Proof. Let M =

[
a 1

1T A

]
, where A = Circ(1, x1, . . . , x2n−1). Now, M2 =

[
a2 c

cT B

]
, where c = (c, . . . , c)︸ ︷︷ ︸

2n times

, c = a + 1 +
∑2n−1

i=1 xi, B = U + A2 and U = (ui,j) is

the 2n×2n matrix with ui,j = 1. Since A is even circulant matrix by Lemma 3.15, we

have (A2)0,1 = 0. Therefore, (M2)1,2 = (B)0,1 = (U)0,1 + (A2)0,1 = 1. Thus, M2 ̸= I.

Hence, M is not involutory.

In order to explore the construction of involutory MDS matrices using Type-II

circulant-like matrices, Gupta et al. [GR15] demonstrated that Type-II circulant-

like matrices are inherently involutory.

Lemma 3.22. [GR15, Lemma 11] Over F2r , Type-II circulant-like matrices are in-

volutory.

Proof. Consider a n × n circulant matrix A and M =

[
A A−1

A3 + A A

]
be a Type-II

circulant-like matrix. Now,

M2 =

[
A2 + A−1(A3 + A) AA−1 + A−1A

(A3 + A)A+ A(A3 + A) (A3 + A)A−1 + A2

]

=

[
A2 + A2 + In×n 0

0 A2 + In×n + A2

]
= I2n×2n.

Hence, M is involutory.

Example 3.8. Consider the Type-II circulant-like matrix A = TypeII(Circ(α, 1, 1+

α2)) over F28 with constructing polynomial is x8 + x4 + x3 + x+ 1, where α is a root

of the constructing polynomial. Then A is an involutory MDS matrix.
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In [YMT97], the authors explored the construction of 2n × 2n MDS matrices using

a random n × n MDS matrix as a submatrix. However, their attempts to find an

MDS matrix through random search for n = 4 were unsuccessful. In a separate

study [GR15], it was proven that if the n × n submatrix is a circulant MDS matrix

and n is even, then the corresponding 2n× 2n matrix is not an MDS matrix. Based

on this result, we state the following lemma from [GR15].

Lemma 3.23. [GR15, Lemma 12] For even values of n, any 2n×2n Type-II circulant-

like matrix over F2r is not an MDS matrix.

Remark 3.29. It is important to highlight that circulant and Type-I circulant MDS

matrices do not possess the properties of being involutory and orthogonal. Therefore,

our attention is directed towards constructing matrices that exhibit these properties

while still allowing for efficient implementation of their inverses. It should be noted

that Type-II circulant-like matrices are always involutory; however, when the dimen-

sions are in the form of 2(2n) × 2(2n), they are not MDS. For further information,

we refer to Table 3.2.

Now we briefly discuss left-circulant matrices for the construction of MDS matrices.

Remark 3.30. Because of the positional structure of left-circulant matrix, it can be

checked that the (i, j)-th entry of the left-circulant matrix A = l-Circ(x0, . . . , xn−1)

can be expressed as (A)i,j = x(i+j)mod n.

Many properties of left-circulant matrices are similar to circulant matrices, in this

context we provide a few properties through Proposition 3.2 and Proposition 3.3.

In [LS16], these propositions were used to prove Theorem 3.9, but here we provide

an alternative proof.

Proposition 3.2. [LS16, Proposition 4] The multiplication of two left-circulant ma-

trices results in a circulant matrix.

Proof. Let A = l-Circ(x0, x1, ..., xn−1) and B = l-Circ(y0, y1, ..., yn−1) be two left-

circulant matrices. Then the (i, j)-th entry of their product is

n−1∑

k=0

(A)i,k · (B)k,j =
n−1∑

k=0

xi+k · yk+j =
n−1∑

k=0

xk · yk+(j−i).

This shows that AB is a circulant matrix.

Proposition 3.3. [LS16, Proposition 5] For 2n × 2n left-circulant matrix L = l-

Circ(x0, x1, ..., x2n−1) over F2r , L
2n+1

= (
∑2n−1

i=0 xi)
2n+1

I and det(L) = (
∑2n−1

i=0 xi)
2n.
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Proof. By Proposition 3.2, L2 is circulant with (i, j)-th entry
∑2n−1

k=0 xk · xk+(j−i) and

hence

(L2)2
n

= (
2n−1∑

i=0

2n−1∑

k=0

xk · xk+i)
2nI = ((

2n−1∑

k=0

xk)
2)2

n

I = (
2n−1∑

k=0

xk)
2n+1

I,

which also implies that det(L) = (
∑2n−1

i=0 xk)
2n .

Remark 3.31. From Lemma 2.11, we know that if A is MDS matrix then for

any permutation matrix P , PA is also MDS matrix. Also from Remark 3.24, we

know that there may exists circulant MDS matrix A= Circ(x0, x1, ..., xn−1) over F2r

which is orthogonal, where n is not the power of 2. Considering Remark 2.12, we

establish that PA = l-Circ(x0, x1, . . . , xn−1), where P corresponds to the permuta-

tion matrix mentioned in Remark 2.12. Also, MDS property and orthogonality of A

will not be disturbed by pre-multiplying with P . Consequently, the matrix PA =l-

Circ(x0, x1, ..., xn−1) is an orthogonal MDS matrix and, thus, an involutory MDS

matrix.

In [GR15], it was demonstrated that a circulant matrix cannot possess both involutory

and MDS properties. Additionally, it was shown that a 2n × 2n circulant matrix

cannot cannot be both MDS and orthogonal. Similarly, in [LS16, Theorem 4], it

was proven that a 2n × 2n left-circulant matrix cannot simultaneously be MDS and

involutory (orthogonal). In the subsequent theorem, we present an alternative and

simpler proof of Theorem 4 in [LS16]. For the original proof, readers are advised to

go through [LS16].

Theorem 3.9. [LS16, Theorem 4] For n ≥ 2, if L is a 2n × 2n left-circulant MDS

matrix over F2r , then L is not involutory (orthogonal).

Proof. Assume that L= l-Circ(x0, x1, ..., x2n−1) is an involutory MDS matrix over

F2r . As L is symmetric it is also an orthogonal MDS matrix. It is easy to check that

PL= Circ(x0, x1, ..., x2n−1), where P is the permutation matrix as in Remark 3.31.

Since P is a permutation matrix, the matrix PL = Circ(x0, x1, ..., x2n−1) will also

be orthogonal and MDS. By Lemma 3.14 it is a contradiction.

Remark 3.32. While the 2n×2n left-circulant MDS matrices are not involutory, it is

possible for left-circulant MDS matrices of other orders to exhibit involutory property.

For instance, over F28 with constructing polynomial x8 + x6 + x5 + x2 + 1, the 5× 5

matrix l-Circ(1, α, α7 + α5 + α4 + α + 1, α7 + α5 + α4 + α3 + α + 1, α3 + α) and the
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6× 6 matrix l-Circ(1, 1, α7 + α5 + α4 + α+ 1, α5 + α3 + α2, α2, α7 + α4 + α3 + α) are

MDS and involutory, where α8 + α6 + α5 + α2 + 1 = 0.

We will finish this section by discussing an equivalence relation between circulant

matrices. In [LS16], authors provided an equivalence relation by which we can parti-

tion the n! possible circulant matrices of order n into (n−1)!
ϕ(n)

equivalence classes each

containing nϕ(n) circulant matrices having the same branch number. Here ϕ is the

Euler’s totient function.

In [LS16], Liu and Sim provided a necessary and sufficient condition for two cir-

culant matrices to be permutation equivalent. In this chapter, we record the lemma

without its original proof. We will provide an alternative proof for this which is more

basic. For the original proof, reader are requested to go through Lemma 1 of [LS16].

Lemma 3.24. [LS16, Lemma 1] Given two circulant matrices C = Circ(x0, x1,

. . . , xn−1) and Cσ = Circ(xσ(0), xσ(1), . . . , xσ(n−1)), we have C ∼ Cσ, where

∼ is the equivalence relation defined in Definition 2.20, if and only if σ is an index

permutation that satisfies σ(i) = (bi+a) mod n, ∀i ∈ {0, 1, . . . , n− 1}, with a, b ∈ Zn

and gcd(b, n) = 1.

Proof. If part: Suppose that σ(i) = bi + a such that gcd(b, n) = 1. We have to

show that for some permutation matrices P and Q, PCQ = Cσ. We will construct

three permutation matrix P1, P2, Q1 such that Cσ = P1P2CQ1. Note that the inverse

of a permutation matrix Q is QT and product of two permutation matrices is a

permutation matrix. Construct the permutation matrix Q1 whose i-th column has

1 at i.b-th position for 0 ≤ i ≤ n − 1. Let P1 = QT
1 = Q−1

1 . Note that Q1 is a

permutation matrix as gcd(b, n) = 1. Now

P1CQ1 = c0P1Q1 + c1P1PQ1 + c2P1P
2Q+ . . .+ cn−1P1P

n−1Q1

= c0Q
T
1Q1 + c1Q

T
1 PQ1 + c2Q

T
1 P

2Q1 + . . .+ cn−1Q
T
1 P

n−1Q1

= c0I + c1Q
T
1 PQ1 + c2(Q

T
1 PQ1)

2 + . . .+ cn−1(Q
T
1 PQ1)

n−1.

Since Q1 and QT
1 are two permutation matrices, it is easy to check that QT

1 PQ1 = P j

for some j. Therefore,

P1CQ1 = c0I + c1P
j + c2P

2j + . . .+ cn−1P
(n−1)j.

So P1CQ1 is a circulant matrix.

In another direction it is easy to check that the first row of P1CQ1 =(c0, cb, c2b,
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. . . , c(n−1)b). Now consider the permutation matrix P2 =Circ(0, 0, . . . , 1︸︷︷︸
(n-a)-th position

,

. . . , 0). It is easy to check that P2C = Circ(ca, ca+1, ca+2, . . . , ca+n−1) and

P1P2CQ1 = Circ(ca, ca+b, ca+2b, . . . , ca+(n−1)b).

Only if part: Suppose that C and Cσ are two circulant matrices such that C ∼ Cσ.

Therefore, there exists two permutation matrix Q1 and Q2 such that Cσ = Q1CQ2.

Since C is a circulant matrix, by Proposition 3.1 we have

C = c0I + c1P + c2P
2 + . . .+ cn−1P

n−1,

where (c0, c1, c2, . . . , cn−1) is the first row of C. Therefore,

Q1CQ2 = Q1c0Q2 +Q1c1PQ2 +Q1c2P
2Q2 + . . .+Q1cn−1P

n−1Q2. (3.7)

Comparing the positions of ci in both L.H.S. and R.H.S. of Equation 3.7 and since

Q1CQ2 is circulant, Q1ciP
iQ2 = ciP

di for some di ≥ 0. So from Q1c0Q2 = c0P
d0 , we

have

Q1Q2 = P d0 =⇒ Q1 = P d0Q−1
2 .

Again

Q1PQ2 = P d1 =⇒ P d0Q−1
2 PQ2 = P d1 =⇒ Q−1

2 PQ2 = P d1−d0 .

Let b = (d1 − d0) mod n, so Q−1
2 PQ2 = P b. Therefore,

Q1P
iQ2 = P d0Q−1

2 P iQ2

= P d0(Q−1
2 PQ2)

i

= P d0P bi = P d0+bi.

Therefore, Cσ = Q1CQ2 =
∑n−1

i=0 ciP
d0+bi =⇒ σ(i) = bi + d0. Take d0 = a,

we have σ(i) = bi + a. As σ is a permutation on {0, 1, . . . , n− 1}, we must have

gcd(b, n) = 1.

Remark 3.33. In an equivalence class defined by the relation ∼ all the circulant

matrices have same branch number. But it may be noted that different equivalence

classes can have same branch number. In [LS16], authors proved that these equiva-

lence classes, defined by the relation ∼, represent the most compact form for circulant

matrices in terms of their equivalence classes. It seems interesting, but difficult to de-

fine an equivalence class such that different equivalence classes will have different
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branch numbers and all MDS circulant matrices will be in one equivalence class.

3.6 Constructing MDS Matrices from Toeplitz

and Hankel Matrices

Toeplitz matrices are used to construct MDS matrices using search technique. It has

similarity to the constructions of circulant MDS matrices discussed in [GR15]. In this

section, we mainly discuss the results from [SS16, SS17].

Theorem 3.10. [SS16, Theorem 1] Toeplitz matrices of order n ≥ 3 over F2r cannot

be both MDS and involutory.

Proof. Let A = Toep(a0, a1, . . . , an−1; a−1, a−2, . . . , a−(n−1)) be a n×n Toeplitz matrix

which is both involutory and MDS, where n ≥ 3. It can be checked that the (i, j)-th

entry of A can be expressed as (A)i,j = a(j−i).

Case 1. When n is odd.

The (n− 2)-th element in the 0-th row of A2 is

(A2)0,n−2 = Arow(0) · Acolumn(n−2)

= a0an−2 + a1an−3 + . . .+ an−1
2
an−3

2
+ . . .+ an−2a0 + an−1a−1

= an−1a−1.

Since A is involutory then

an−1a−1 = 0,

which implies that an−1 = 0 or a−1 = 0. This contradicts that A is MDS.

Case 2. When n is even.

(A2)0,n−2 = Arow(0) · Acolumn(n−2)

= a0an−2 + a1an−3 + . . .+ an−2
2
an−2

2
+ . . .+ an−2a0 + an−1a−1

= a2n−2
2

+ an−1a−1.

Therefore, as A is an involution, we have

a2n−2
2

+ an−1a−1 = 0.

Consider the 2× 2 submatrix of A formed by the 0-th and n
2
-th row and n−2

2
-th and
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(n− 1)-th column,

T =

[
an−2

2
an−1

a−1 an−2
2

]

which is singular. Therefore, A is not MDS.

Like circulant matrices, Toeplitz matrices of order 2n cannot be both orthogonal and

MDS.

Theorem 3.11. [SS16, Theorem 2] For n ≥ 2, any 2n×2n Toeplitz orthogonal matrix

over F2r is not an MDS matrix.

Proof. Suppose that A = Toep(a0, a1, . . . , a2n−1; a−1, a−2, . . . , a−(2n−1)) be a Toeplitz

matrix of order 2n which is both orthogonal and MDS. It can be checked that the

(i, j)-th entry of A can be expressed as (A)i,j = a(j−i). Let δi be the diagonal element

of AAT for i = 0, 1, . . . , 2n − 1. Then

δi =
2n−1∑

j=0

a2j−i = 1 for i = 0, 1, . . . , 2n − 1.

Considering the pair of equations (δi and δi+1), we get

a−i = a2n−i for i = 0, 1, . . . , 2n − 1.

Therefore, A is indeed a circulant matrix. Therefore, from Lemma 3.14, A cannot be

MDS.

Remark 3.34. Circulant matrices are a particular type of Toeplitz matrices, and

thus, from Remark 3.24, we can say that Toeplitz orthogonal MDS matrices of orders

other than 2n may exist over F2r .

Now we introduce Hankel matrices which are closely related to the Toeplitz matrices

in which each ascending skew diagonal from left to right is constant.

Remark 3.35. From Lemma 2.11, we know that if T is MDS matrix then for any

permutation matrix P , PT is also MDS matrix. Also, from Remark 3.34, we know

that there may exists Toeplitz MDS matrix T = Toep(a0, a1, . . . , an−2, an−1; a−1, a−2,

. . . , a−(n−1)) over F2r which is orthogonal, where n is not a power of 2. Consider the

permutation matrix
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P =




0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 0
...

...
... . . .

...
...

...

1 0 0 . . . 0 0 0



.

Now it is easy to check that PT = H, where H = Hank(a−(n−1), a−(n−2), . . . , a−1,

a0; a1, a2, . . . , an−1). But MDS property and orthogonality of T will not be disturbed

by the multiplication with P . Therefore, the matrix H = Hank(a−(n−1), a−(n−2), . . . ,

a−1, a0; a1, a2, . . . , an−1) will be an orthogonal MDS matrix and so an involutory

MDS matrix.

It is established that a Toeplitz matrix of order n ≥ 3 is not an involutory MDS

and an orthogonal Toeplitz matrix of size 2n × 2n is not an MDS. Similarly, we

demonstrate that an involutory (orthogonal) Hankel matrix of size 2n × 2n is also

not an MDS. Similar results can be found in Remark 3.31 and Theorem 3.9, which

highlight analogous results between circulant and left-circulant matrices.

Theorem 3.12. For n ≥ 2, if H is a 2n × 2n Hankel MDS matrix over F2r , then H

is not involutory (orthogonal).

Proof. Let H = Hank(a0, a1, . . . , a2n−1; a2n , a2n+1, . . . , a2n+1−2) be a 2n × 2n Hankel

matrix. It can be checked that (H)i,j = ai+j. Assume that H is an involutory MDS

matrix over F2r . Therefore, H is an orthogonal MDS matrix. It is easy to check

that PH = T , where P is the permutation matrix as defined in Remark 3.35 and

T = Toep(a2n−1, a2n , a2n+1, . . . , a2n+1−2; a2n−2, a2n−3, . . . , a1, a0). Since P is a

permutation matrix and H is an orthogonal MDS matrix, T = PH is an orthogonal

MDS matrix. Therefore, T is an orthogonal MDS matrix of order 2n, which is a

contradiction by Theorem 3.11. Hence, H cannot be an involutory.

Remark 3.36. Left-circulant matrices are a particular type of Hankel matrices, and

thus, from Remark 3.32, we can say that Hankel involutory MDS matrices of orders

other than 2n may exist over F2r .

Obtaining involutory MDS matrices is of particular interest. However, circulant

and Toeplitz matrices cannot generate involutory MDS matrices, as demonstrated in

Lemma 3.17 and Theorem 3.10, respectively. On the other hand, left-circulant matri-

ces, Hankel matrices, Hadamard matrices, GHadamard matrices [PSA+18, PSAS22,

TSP+23], and subfield construction methods [Ota22, PSAS23, SKOP15] have the
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capability to do so. Apart from these specialized matrix types and methods, an

additional approach outlined in [SAAR20] provides an easy means to generate new

isomorphic involutory or non-involutory MDS matrices.

Till now, we have discussed nonrecursive constructions by direct methods as well as

search methods. From the next section onward we discuss recursive constructions

by direct methods. We close this section by providing Table 3.2, which summarize

the involutory and orthogonal properties of circulant, circulant-like, left-circulant,

Toeplitz and Hankel matrices.

Table 3.2: Several results of Circulant, Circulant-like, left-circulant, Toeplitz and
Hankel matrices over a finite field (“DNE” stands for does not exist).

Type Dimension Involutory
MDS

Orthogonal
MDS

Circulant
2n × 2n DNE DNE
2n× 2n DNE may exist
(2n+ 1)× (2n+ 1) DNE may exist

Type-I
2n× 2n DNE DNE
(2n+ 1)× (2n+ 1) DNE DNE

Type-II
2(2n)× 2(2n) DNE DNE
2(2n+1)×2(2n+1) may exist may exist

left-Circulant
2n × 2n DNE DNE
2n× 2n may exist may exist
(2n+ 1)× (2n+ 1) may exist may exist

Toeplitz
2n × 2n DNE DNE
2n× 2n DNE may exist
(2n+ 1)× (2n+ 1) DNE may exist

Hankel
2n × 2n DNE DNE
2n× 2n may exist may exist
(2n+ 1)× (2n+ 1) may exist may exist

Remark 3.37. There was an error in [GR15, Table 1] where it was given that Type-

II circulant-like orthogonal MDS matrix of order 2(2n)× 2(2n) may exist. We have

corrected here in Table 3.2.

97



3.7 Recursive MDS Matrices

Before discussing the constructions of recursive MDS matrices, let us recall some

definitions and notations that will be used in this section, which mainly focuses on

coding theoretic techniques.

Given a polynomial g(x) = a0+a1x+ . . .+ak−1x
k−1+akx

k ∈ Fq[x], where ak ̸= 0,

the degree of g(x) is denoted as deg(g) and is equal to k. We say that g(x) is monic if

its leading coefficient ak is equal to 1. The weight of a polynomial corresponds to the

number of its nonzero coefficients. The order of a polynomial g(x), where g(0) ̸= 0,

denoted as ord(g), is the smallest positive integer n for which g(x) divides xn − 1.

Definition 3.2. Let γ be an element in an extension of Fq. The minimal polynomial

of γ over Fq, denoted as MinFq(γ), is defined as the monic polynomial µ(x) ∈ Fq[x]

with the lowest degree such that µ(γ) = 0.

Let Γ be an [n, ℓ] linear code of length n and dimension ℓ over Fq. A generator

matrix G of the [n, ℓ] code Γ, which has dimensions ℓ× n, is said to be in systematic

form if it contains the ℓ×ℓ identity matrix Iℓ in its leftmost positions. The remaining

part of G, is a matrix of dimension ℓ × (n − ℓ). In this section, for convenience, we

deviate from the conventional notation and place the identity matrix on the right side

in our discussion. Now, we present several useful structural results regarding cyclic

codes and MDS codes.

Cyclic codes: An [n, ℓ] code is considered to be cyclic code if every cyclic shift of

any codeword remains within the code. From an algebraic perspective, cyclic codes

can be viewed as ideals of the ring Fq[x]/(x
n − 1). In other words, each cyclic code

Γ of length n can be represented as Γ = ⟨g(x)⟩, where g(x) is a monic polynomial in

Fq[x] that divides xn − 1. Moreover, g(x) is the unique monic polynomial with the

minimum degree within Γ and is referred to as the generator polynomial of Γ. The

codewords in Γ are multiples of g(x) with degree less than n, which can be expressed

as polynomials f(x) ∈ Fq[x]/(x
n − 1) satisfying the condition that g(x) divides f(x).

The dimension of the code Γ is determined by ℓ = n− deg(g).

To construct a generator matrix for the code Γ, we can use the following matrix

representation:
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G1 =




g(x)

xg(x)
...

xn−deg(g)−1g(x)︸ ︷︷ ︸
size n



.

Here, the polynomials xig(x) are treated as vectors of length n formed by their

coefficients in increasing order of exponents. By applying the division algorithm, we

have xi = q(x)g(x) + (xi mod g(x)). Therefore, xi − (xi mod g(x)) is divisible by

g(x), making it a codeword in Γ. Let

G =




−xdeg(g) mod g(x) 1 0 0 . . . 0

−xdeg(g)+1 mod g(x) 0 1 0 . . . 0
...

. . .

−xn−1 mod g(x)︸ ︷︷ ︸
size deg(g)

0 0 0 . . . 1︸ ︷︷ ︸
size n−deg(g)



. (3.8)

It can be observed that matrix G serves as a generator matrix for code Γ since its

rows correspond to linearly independent codewords of code Γ.

Remark 3.38. If gcd(q, n) = 1, then xn − 1 and its derivative nxn−1 are relatively

prime and thus has no repeated roots in xn−1. Therefore, any polynomial g(x) which

divides xn − 1 must have distinct roots if gcd(q, n) = 1.

Now, we state the following result, which will be beneficial in the subsequent

subsections.

Lemma 3.25. [LN97, Theorem 9.42] Theorem: Consider a monic polynomial g(x) ∈
Fq[x] of degree k with ord(g) = n ≥ 2. Assume that g has distinct roots, say

λ1, . . . , λk ∈ F̄q. Then, a polynomial f(x) =
∑n−1

i=0 fix
i ∈ Fq[x]/(x

n − 1) is a code-

word of the cyclic code Γ = ⟨g(x)⟩ if and only if its coefficient vector (f0, f1, . . . , fn−1)

belongs to the null space of the matrix

H =




1 λ1 λ2
1 . . . λn−1

1
...

...
. . .

...

1 λk λ2
k . . . λn−1

k


 .

Thus, we can say that H serves as a parity check matrix for the cyclic code Γ.
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Proof. If f(x) is the codeword, g(x) divides f(x). Therefore, f(λi) = 0, that is

f0 + f1λi + f2λ
2
i + . . .+ fn−1λ

n−1
i = 0 for 1 ≤ i ≤ k. Thus, H · [f0 f1 . . . fn−1]

T = 0.

Conversely, let f(x) = q(x)g(x) + r(x) where deg(r) < deg(g) = k. Since f(λi) =

g(λi) = 0, therefore r(λi) = 0 for 1 ≤ i ≤ k. As deg(r) < k, it cannot have k roots.

Thus, r(x) = 0 and g(x) divides f(x) which implies f(x) is a codeword.

3.7.1 Characterization of polynomials that yield recursive

MDS matrices

A monic polynomial g(x) ∈ Fq[x] of degree k is said to yield a recursive MDS matrix

if Cm
g is an MDS matrix for some integer m ≥ k. This concept is particularly relevant

when the size of the diffusion matrix (MDS) is greater than 1. Therefore, we focus

on considering polynomials g(x) ∈ Fq[x] of degree k = deg(g) ≥ 2 when seeking to

obtain recursive MDS matrices.

Note that the companion matrix Cg can be interpreted as

Cg=




x

x2

...

xk−1

xk mod g(x)︸ ︷︷ ︸
size k



.

Now one can see that

C2
g =




x2

x3

...

xk mod g(x)

xk+1 mod g(x)︸ ︷︷ ︸
size k



, . . . , Cm

g =




xm mod g(x)

xm+1 mod g(x)
...

xm+k−2 mod g(x)

xm+k−1 mod g(x)︸ ︷︷ ︸
size k



.

According to Remark 2.3, the matrix Cm
g is considered MDS if and only if any set

of k columns of the matrix Ḡ = [Cm
g | I] is linearly independent over Fq. Alternatively,

the matrix Cm
g is MDS if and only if any set of k columns of the matrix G′ = [−Cm

g | I]
is linearly independent over Fq. The matrix G′ can be interpreted in the following

way.
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G′ =




−xm mod g(x) 1 0 0 . . . 0

−xm+1 mod g(x) 0 1 0 . . . 0
...

. . .

−xm+k−1 mod g(x)︸ ︷︷ ︸
size deg(g)

0 0 0 . . . 1︸ ︷︷ ︸
size k



.

We now prove the folklore result.

Cm
g =




xm mod g(x)

xm+1 mod g(x)
...

xm+k−2 mod g(x)

xm+k−1 mod g(x)



.

We prove it by induction. For m = 1,

Cg=




x

x2

...

xk−1

xk mod g(x)



=




x mod g(x)

x2 mod g(x)
...

xk−1 mod g(x)

xk mod g(x)



.

Assume it is true for m = l ≥ 1. Now, we show that it is true for m = l + 1.

C l+1
g = CgC

l
g=




0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
...

0 0 . . . . . . 1

−a0 −a1 . . . . . . −ak−1







xl mod g(x)

xl+1 mod g(x)
...

xl+k−2 mod g(x)

xl+k−1 mod g(x)




=




xl+1 mod g(x)

xl+2 mod g(x)
...

xl+k−1 mod g(x)∑k−1
i=0 −a0xl+i mod g(x)



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Now, we show that
∑k−1

i=0 −a0xl+i mod g(x) = xl+k mod g(x).

k−1∑

i=0

−aixl+i mod g(x) =

(
xl

(
k−1∑

i=0

−aixi

))
mod g(x)

= (xlxk) mod g(x) = xl+k mod g(x).

Ck
g is an MDS matrix if g(x) yields MDS code and ord(g) = 2k. Assume g(x) ∈

F2s [x] has no repeated roots (Subsection 3.7.4 deals when g(x) has repeated roots). If

g(x) divides x2k− 1, then g(x) divides xk− 1 and hence ord(g) ̸= 2k, a contradiction.

Therefore, in a field of characteristic 2, if the polynomial g(x) has no repeated roots,

then it cannot divide x2k − 1 for deg(g) = k ≥ 2 which means the length of the

code cannot be equal to 2k. But g(x) will divide x2k+z − 1 for some z > 0. In

such cases, if g(x) yields [2k + z, k + z, d] MDS code, then the distance d will be

2k+ z− (k+ z)+1 = k+1. To obtain a [2k, k, k+1] code, the code can be shortened

at z positions in such a manner that the recursive structure does not get disturbed.

The same idea was proposed by Augot et al. [AF15]. They constructed recursive

MDS matrices using the shortened BCH code which we are going to discuss in the

next subsection.

3.7.2 Construction of recursive MDS matrices using short-

ened BCH codes

Definition 3.3. [GPV17a, Definition 6][MS77, Pages 29, 194, 592] For an [n, ℓ, d]

code Γ and a set R consisting of z indices {i1, . . . , iz}, the shortened code ΓR is

defined as the subset of words from Γ that are zero at positions i1, . . . , iz, and where

the zero coordinates are removed. In other words, the shortened code ΓR is obtained

by effectively shortening the original codewords by z positions.

As a result, the length of ΓR is reduced to n − z and the dimension of ΓR is

at least ℓ − z. Also, the minimal distance of ΓR is at least d. Observe that the

dimension can be greater than ℓ− z. Consider the code Γ = {0000, 1011, 0101, 1110}.
If code is shortened at z = 2 positions, 1 and 3 (index starts from 0), the shortened

code is ΓR = {00, 11}. Note that the length, dimension and the distance of ΓR is

n− z = 4− 2 = 2, 1 ≥ ℓ− z = 2− 2 = 0 and 2 ≥ d = 2 respectively.

Consider a monic polynomial g(x) ∈ Fq[x] of degree k with ord(g) = n ≥ 2k.

Let S be a code with generator matrix G′ = [−Cm
g | I]. It is worth noting that

Cm
g is an MDS matrix if and only if −Cm

g is an MDS matrix. By examining (3.8),
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we can observe that G′ can be viewed as a submatrix of the generator matrix G of

the cyclic code Γ = ⟨g(x)⟩. Specifically, G′ is obtained by selecting the k rows with

indices {m− k,m− k+ 1, . . . ,m− 1} and the 2k columns with indices {0, 1, . . . , k−
1,m,m + 1, . . . ,m + k − 1} from G (indices start from 0). Therefore, the code S
can be considered as a shortened code of the cyclic code Γ, obtained by omitting the

n− 2k positions {k, k+1, . . . ,m− 1,m+ k,m+ k+1, . . . , n− 1} from Γ while using

G as the generator matrix. It should be noted that S may not necessarily be a cyclic

code.

In the work by Augot et al. [AF15], a technique is proposed for constructing recur-

sive MDS matrices through the proper shortening of appropriate BCH codes. BCH

codes belong to a specific class of cyclic codes that offer a guaranteed minimum dis-

tance (as defined below). For a more comprehensive understanding of this technique,

we recommend referring to Section 3 of [AF15]. Additionally, for further related

concepts and background in coding theory, refer to [MS77].

Definition 3.4. [GPV17a, Definition 7][MS77, Page 202] A BCH code over Fq is

constructed by utilizing an element β from an extension field of Fq. Let ord(β) = n

be the order of β. To define a BCH code, we start by selecting integers ℓ and d and

consider the (d− 1) consecutive powers of β: βℓ, βℓ+1, . . . , βℓ+d−2. Next, we compute

the polynomial

g(x) = lcm
(
MinFq(β

ℓ), . . . ,MinFq(β
ℓ+d−2)

)
,

where MinFq(γ) represents the minimal polynomial of γ over Fq. The cyclic code,

defined by g(x) over Fq, is known as a BCH code. This code has a length of n, a

dimension of n− deg(g), and a minimum distance of at least d.

It is worth emphasizing that when all the conjugates of the elements in the set {βℓ+i :

i = 0, 1, . . . , d−2} are included within the set itself, the degree of the polynomial g(x)

is precisely d − 1. Consequently, g(x) does not possess any additional roots beyond

βℓ, . . . , βℓ+d−2. In such scenarios, the BCH code defined by g(x) transforms into an

MDS code. We can formally state this outcome as a lemma, as follows.

Lemma 3.26. Suppose we have a BCH code Γ over Fq defined by k roots

[βℓ, . . . , βℓ+k−1] and has actual distance of k + 1, then the code Γ is MDS if and

only if the polynomial P (x) =
∏k−1

j=0(x− βℓ+j) belongs to Fq[x]. In this scenario, the

generator polynomial g(x) = lcm
(
MinFq(β

ℓ), . . . ,MinFq(β
ℓ+k−1)

)
is equal to P (x).

Proof. If part: Let P (x) =
∏k−1

j=0(x − βℓ+j). If P (x) ∈ Fq[x], then P (x) contains all

conjugates of its roots and so g(x) = P (x). The degree of g(x) is k, the dimension of
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the code is n− k and the actual distance is ≥ k + 1. But from the Singleton bound,

the actual distance is ≤ n − (n − k) + 1 = k + 1. Therefore, the actual distance is

k + 1 and achieves the Singleton bound. Hence, it is MDS.

Only if part: Let

g(x) = lcm
(
MinFq(β

ℓ), . . . ,MinFq(β
ℓ+k−1)

)

generates the MDS BCH code. The dimension of the code is n− deg(g) and the

actual distance is k + 1 which is equal to n − (n − deg(g)) + 1 (from the Singleton

bound). Therefore, k = deg(g) which implies the set of k roots [βℓ,. . ., βℓ+k−1] contains

all its conjugates. Thus, P (x) =
∏k−1

j=0(x− βℓ+j) ∈ Fq[x].

In Lemma 3.26, the BCH code Γ must have the condition that the actual distance

is k + 1, otherwise it may not satisfy the sufficient condition. We show it by one

example. Consider q = 23. Take β ∈ Fq2 such that ord(β) = 9. Let

g(x) = lcm
(
MinFq(β

3),MinFq(β
4),MinFq(β

5)).

The cyclotomic coset mod n over Fq is C0 = {0}, C1 = {1, 8}, C2 = {2, 7}, C3 =

{3, 6}, C4 = {4, 5}. Therefore,

g(x) = MinFq(β
3) ·MinFq(β

4).

Let

g′(x) = lcm
(
MinFq(β

3),MinFq(β
4),MinFq(β

5),MinFq(β
6)).

The degree of g(x) is 4 which yields [n = 9, ℓ = 5, d ≥ 5]8 code. The distance is ≥ 5

because g(x) and g′(x) yield the same code and the designed distance of g′(x) is 5.

By the Singleton bound, d ≤ n− l+1 = 9−5+1 = 5. Thus, g(x) yields [9, 5, 5]8 code

which is MDS. But P (x) =
∏5

j=3(x− βj) is not in Fq[x] because the actual distance

is 5, not k + 1 = 4.

The example above demonstrates the necessity of the actual distance k + 1 in

Lemma 3.26. The lemma mentioned in ([AF15, Lemma 1]) does not make assump-

tion on the distance of the BCH code and thus suffers a gap in the statement. We

investigated that lemma again and provide the correct statement in Lemma 3.26.

It is important to emphasize that in a BCH code, the roots of its generating polyno-

mial may not always be consecutive powers of an element. For example, consider the
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BCH code generated by the polynomial g(x) ∈ Fq[x] where q = 23 defined by

g(x) = lcm
(
MinFq(β

2),MinFq(β
3)).

Roots of g(x) are β2, β3, β6, β7 which are not consecutive in powers of β.

In [AF15, GPV17a], authors considered a particular kind of BCH codes, called

c-BCH codes, where all the roots of its generating polynomial are consecutive powers

of some element in some field. It is worth to point out that the authors in [AF15]

also used c-BCH code without mentioning it explicitly.

Definition 3.5. [GPV17a, Definition 8] A c-BCH code over Fq is defined as a BCH

code whose generating polynomial has roots that can be expressed as consecutive powers

of an element β in an extension field of Fq. Based on Lemma 3.26, it is evident that a

c-BCH code over Fq is an MDS code. Therefore, we use the term MDS c-BCH codes

to refer to such codes.

It is worth noting that the MDS c-BCH code over Fq defined by g(x) has a length of

n = ord(g) and a dimension of k = n − deg(g). Therefore, the corresponding MDS

matrix would have a size of k × deg(g). However, using such an MDS matrix as a

diffusion layer may not be ideal unless deg(g) = k, as the input and output sizes of a

diffusion layer are typically the same, resulting in n = 2k. Also, it is not possible to

have ord(β) = 2k since elements of even order do not exist in extensions of F2. To

address this issue, Augot et al.[AF15] suggest using a shortened MDS c-BCH code

(see Definition 3.3) instead of a full length MDS c-BCH code with n > 2k. Based on

the earlier discussion, we can observe that the generating polynomial of an MDS c-

BCH code yields a recursive MDS matrix. In the following discussion, we will explore

the technique proposed in [AF15] for obtaining recursive MDS matrices of size k by

appropriately shortening MDS c-BCH codes.

The approach involves searching for [n = 2k + z,m = k + z, d = k + 1] MDS c-

BCH codes and then shortening them on z positions to obtain the desired [2k, k, k+1]

MDS codes, where z is an odd integer. The first step is to construct a c-BCH code

of length n = 2k + z (which is limited by q + 1 according to the assumption that the

MDS conjecture holds, as stated in Fact 2.1). A suitable β of order n in an extension

field of Fq is selected, along with ℓ where 0 ≤ ℓ < n. Then, the polynomial P (x) =∏k−1
j=0(x−βℓ+j) is computed. The lemma mentioned earlier provides a condition under

which the polynomial P (x) generates an MDS c-BCH code. The next step is to verify

whether this condition is satisfied. If it is, we can obtain a recursive MDS matrix from

the generating polynomial. Therefore, the crucial aspect is to check the condition:
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P (x) =
k−1∏

j=0

(x− βℓ+j) ∈ Fq[x]. (3.9)

If this condition holds true, it implies that our choice of n, β, and ℓ yields an MDS

c-BCH code, and its generating polynomial is precisely equal to P (x).

In subsequent observations (as described in the paragraph following Theorem

3.15), it is noted that if there exists a choice of n along with β and ℓ, such that

an MDS c-BCH code (with length n and dimension n− k) is obtained, then for any

βi where gcd(i, n) = 1, we can also obtain an MDS c-BCH code. This implies that if

there exists an ℓ satisfying Equation 3.9 for a particular choice of n, then we consider

n as a successful choice. Similarly, we call the pair (n, ℓ) a successful choice. To

enumerate all MDS c-BCH codes over Fq that can be constructed using this method,

Augot et al. developed an algorithm (refer to [AF15, Section 4.2]) that verifies the

condition by computing the polynomial P (x) for all candidate values within the spec-

ified ranges given by n = 2k + z ≤ (q + 1) with z being odd, β having order n, and

0 ≤ ℓ < n− 1.

Efficient Approach for Identifying All MDS c-BCH Codes

The main limitation of the algorithm proposed by Augot et al. is the potential

occurrence of unsuccessful choices for the parameters n and ℓ within the specified

ranges. In some cases, it is not possible to find an MDS c-BCH code (of length

n = 2k + z and dimension n − k = k + z over Fq) for any ℓ in the range 0 ≤ ℓ <

n − 1. Consequently, computing and verifying the polynomial P (x) for such choices

becomes unnecessary. Additionally, for unsuccessful choices of n, the computation

must be performed in extension fields of Fq, which can be computationally intensive.

Additionally, the algorithm may compute the same polynomials twice for certain

successful choices of n.

In [GPV17a], Gupta et al. discussed the values of n and the corresponding values

of ℓ that yield generating polynomials for MDS c-BCH codes. The most significant

result was Theorem 3.13 which gives a nice relation between n and q. By getting so, a

lot of unnecessary choices of n could be omitted and finally we get a set of only those

possible values of n which would definitely yield MDS c-BCH codes. This theorem

was significant not only because it would directly give the possible values of n, but at

the same time the value of l could also be determined. To obtain all possible values

of n and l was a remarkable improvement as it drastically reduces the running time of
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finding all MDS c-BCH of length n over Fq which was not possible from the algorithm

proposed by Augot et al. in [AF15].

We make the assumption that k ≥ 2 and n = 2k + z (≤ q + 1) for a odd integer

z (see Fact 2.1).

Theorem 3.13. [GPV17a, Theorem 2] For integers k and n satisfying k ≥ 2 and

n > 2k, an MDS c-BCH code with length n and dimension (n − k) over Fq exists if

and only if q ≡ ±1 modulo n.

In [AF15], the algorithm would search for all candidate values of n by choosing z

from 1 to q + 1 − 2k. As Theorem 3.13 suggests, many of these values of z were

definitely wrong choices and hence these values would increase the running time of

the algorithm. Moreover, one could obtain the exact values of l depending upon

whether n | q− 1 or n | q+1 from the proof of Theorem 3.13. When n divides q− 1,

l can take any value between 0 and n− 1. On the other hand, when n divides q + 1,

the value of l depends on whether k is even or odd. If k is even, then l is equal to

(n− k + 1)/2. If k is odd, then l is equal to n− (k − 1)/2. These conditions lead to

a formula for determining the number of such MDS c-BCH codes.

Theorem 3.14. [GPV17a, Theorem 3] When n divides (q − 1), the count of MDS

c-BCH codes with a length of n and a dimension of (n−k) over Fq is given by n · ϕ(n)
2
,

where ϕ(n) represents Euler’s totient function.

Theorem 3.15. [GPV17a, Theorem 4] When n divides (q + 1), the count of MDS

c-BCH codes with a length of n and a dimension of (n− k) over Fq is given by
ϕ(n)

2
.

For proofs of Theorems 3.14 and 3.15, see [GPV17a]. Nevertheless, we present a

brief discussion on the number of MDS c-BCH codes obtained in these theorems. In

Theorem 3.14, the number of MDS c-BCH codes is n · ϕ(n)
2

. The term n appears

due to the choices of l which varies from 0 to n− 1, i.e. n choices, whereas the term

ϕ(n)/2 appears because of the number of choices of β (see Equation 3.9) whose order

must be exactly n. There are ϕ(n) choices of such β. But β and β−1 yield the same

code, that’s why the number of choices of β becomes ϕ(n)/2. In Theorem 3.15, there

is only one choice of l (see the paragraph after Theorem 3.13) and ϕ(n)/2 choices of

β (similar argument as for Theorem 3.14).

3.7.3 Recursive MDS matrices using the parity check matrix

Lemma 3.27. [GPV17b, Lemma 4] Consider a monic polynomial g(x) ∈ Fq[x]

of degree k with ord(g) = n. Let the polynomial g have k distinct roots de-
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noted as λ1, . . . , λk ∈ F̄q. Now, let S be the code with generator matrix G′ =

[−Cm
g | I] for some value of m where k ≤ m ≤ n − k. In this case, a vector

(f0, f1, . . . , fk−1, fm, fm+1, . . . , fm+k−1) ∈ F2k
q belongs to the code S if and only if it

belongs to the null space of the matrix H ′ defined by

H ′ =




1 λ1 . . . λk−1
1 λm

1 λm+1
1 . . . λm+k−1

1
...

...
. . .

...
...

...
. . .

...

1 λk . . . λk−1
k λm

k λm+1
k . . . λm+k−1

k


 . (3.10)

Proof. The code generated by the matrix G′ is the shortened code S of the code

Γ = ⟨g(x)⟩ shortened at positions R = {k, k+1, . . . ,m−1,m+k,m+k+1, . . . , n−1}.
Therefore, (f0, f1, . . . , fk−1, fm, fm+1, . . . , fm+k−1) is an element of S if and only

if (f0, f1, f2, . . . , fn−1) is in Γ where (fk, fk+1, . . . , fm−1, fm+k, fm+k+1, . . . , fn−1) =

(0, 0, . . . , 0, 0, 0, . . . , 0). From Lemma 3.25, (f0, f1, f2, . . . , fn−1) is a codeword of

Γ = ⟨g(x)⟩ if and only if
∑n−1

j=0 fjλ
j
i = 0 for 1 ≤ i ≤ k. Suppose (f0, f1, f2, . . . , fn−1)

is shortened at positions R. Let I = {1, 2, . . . , n}. Then∑j∈I\R fjλ
j
i = 0 if and only

if
∑n−1

j=0 fjλ
j
i = 0 for 1 ≤ i ≤ k. Hence, (f0, f1, . . . , fk−1, fm, fm+1, . . . , fm+k−1) is in

the null space of the matrix H ′ if and only if (f0, f1, f2, . . . , fn−1) is in Γ or (f0, f1,

. . . , fk−1, fm, fm+1, . . . , fm+k−1) is in S.

Consider the code S and the matrix H ′ as defined in the previous lemma. It is

important to note that the code S has a dimension of k. The code S is classified as

an MDS code, with a minimum distance of k + 1, if and only if the null space of the

matrix H ′ in F2k
q does not contain a nonzero vector of weight k or less. This means

that every set of k columns from the matrix H ′ must be linearly independent over

Fq [MS77]. To summarize this result, we state the following theorem.

Theorem 3.16. [GPV17b, Theorem 2] Consider a monic polynomial g(x) ∈ Fq[x] of

degree k with ord(g) = n. Let λ1, . . . , λk ∈ F̄q be the k distinct roots of g. Let m be

an integer satisfying k ≤ m ≤ n− k. The matrix M = Cm
g is an MDS matrix if and

only if any set of k columns of the matrix H ′, as defined in Equation 3.10, is linearly

independent over Fq.

Theorem 3.16 can be proved alternatively as shown in [GPV15]. Suppose g(x) has

k distinct roots λ1, . . . , λk. The idea is to use the fact that Cg = V DV −1 or CT
g =

(V T )−1DV T where V = vand[λ1, λ2, . . . , λk] and D = diag[λ1, λ2, . . . , λk]. If Cm
g is

MDS, then (Cm
g )T = (CT

g )
m is MDS and thus any k columns of [I | (CT

g )
m] are linearly
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independent. Now,

[I | (CT
g )

m] = [I | (V T )−1DmV T ] = (V T )−1[V T | DmV T ] = (V T )−1H ′

where H ′ = [V T | DmV T ]. As a result, (CT
g )

m is MDS and so Cm
g if and only if any

set of k columns of H ′ is linearly independent.

Lemma 3.28. [GPV17b, Corollary 1] If the polynomial g(x) = xk +ak−1x
k−1+ . . .+

a1x + a0 ∈ Fq[x] (where a0 ̸= 0) yields a recursive MDS matrix, then its (monic)

reciprocal polynomial

g∗(x) =
xk

a0
g

(
1

x

)
= xk +

a1
a0

xk−1 + . . .+
ak−1

a0
x+

1

a0

also yields a recursive MDS matrix.

Proof. The matrix Cg∗ = R(Cg)
−1R where

R =




0 0 . . . 0 1

0 0 . . . 1 0

. . .

0 1 . . . 0 0

1 0 . . . 0 0




and R2 = Ik. The matrix Cm
g∗ = R(C−1

g )mR is MDS if and only if (C−1
g )m is MDS

and it is true because (C−1
g )m is MDS if and only if Cm

g is MDS.

Observe that if λ is the root of g, then λ−1 is the root of g∗ provided λ ̸= 0.

Lemma 3.29. [GPV17b, Corollary 2] Let us consider a polynomial g(x) =
∏k

i=1(x−
λi) ∈ Fq[x] that yields a recursive MDS matrix. Then, for any nonzero element

c ∈ Fq, the polynomial ckg
(x
c

)
=

k∏

i=1

(x− cλi) also yields a recursive MDS matrix.
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Proof. Let g∗(x) = ckg
(x
c

)
. The matrix Cg∗ = cDCgD

−1 where

D =




1 0 0 . . . 0 0

0 c 0 . . . 0 0

0 0 c2 . . . 0 0

. . .

0 0 0 . . . ck−2 0

0 0 0 . . . 0 ck−1




The matrix Cm
g∗ = cmDCm

g D−1 is MDS if and only if Cm
g is MDS.

By applying the two previous lemmas, we can generate additional polynomials that

yield recursive MDS matrices from an initial polynomial. However, it is worth ex-

ploring other techniques that can provide us with more polynomials yielding recursive

MDS matrices based on the initial polynomial.

Now, we will discuss five methods for constructing polynomials that yield recursive

MDS matrices. These methods ensure that the constructed polynomials have distinct

roots. The key tool in these methods is Theorem 3.16, where we carefully choose

values of λi for 1 ≤ i ≤ k and verify that the polynomial g(x) =
∏k

i=1(x−λi) ∈ Fq[x]

satisfies the condition stated in Theorem 3.16. To demonstrate this, we need to show

that any k-column submatrix of H ′ obtained from (3.10) is nonsingular. In other

words, we aim to prove that the determinant of the matrix

H ′[R] =




λr1
1 λr2

1 . . . λrk
1

λr1
2 λr2

2 . . . λrk
2

...
...

. . .
...

λr1
k λr2

k . . . λrk
k



, (3.11)

is nonzero for any subset R = {r1, r2, . . . , rk} ⊂ E = {0, 1, . . . , k−1,m,m+1, . . . ,m+

k − 1} of cardinality k.

Construction I(a)
In this method, we exploit the use of consecutive powers of an element, or a fixed

multiple of them, to construct a polynomial that yields a recursive MDS matrix. It is

interesting to note that this approach shares similarities with BCH codes. However,

this method allows us to obtain a larger set of recursive MDS matrices compared to

the approach utilizing shortened BCH codes proposed by Augot et al. [AF15].
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Theorem 3.17. [GPV17b, Theorem 3] Consider the polynomial g(x) =
∏k

i=1(x−λi),

where λi = θi−1 for 1 ≤ i ≤ k for some θ ∈ F∗
q. For an integer m ≥ k, the matrix Cm

g

is MDS if and only if θi ̸= θj for all i, j ∈ E, where E = {0, 1, . . . , k − 1, m, m + 1,

. . . ,m+ k − 1} with i ̸= j.

Proof. As mentioned earlier, the matrix Cm
g is an MDS matrix if and only if the

determinant of H ′[R] is nonzero for all subsets R = {r1, r2, . . . , rk} ⊂ E. We have

λi = θi−1 for 1 ≤ i ≤ k, and so we get

H ′[R] =




1 1 . . . 1

θr1 θr2 . . . θrk

...
...

. . .
...

(θk−1)r1 (θk−1)r2 . . . (θk−1)rk



=




1 1 . . . 1

θr1 θr2 . . . θrk

...
...

. . .
...

(θr1)k−1 (θr2)k−1 . . . (θrk)k−1



.

Let yri = θri for 1 ≤ i ≤ k. Therefore, we have det(H ′[R]) = det(V ), where

V =




1 1 . . . 1

yr1 yr2 . . . yrk
...

...
. . .

...

yk−1
r1

yk−1
r2

. . . yk−1
rk



.

Here, V is a Vandermonde matrix, and det(V ) ̸= 0 if and only if the values

yri = θri , where 1 ≤ i ≤ k, are distinct and nonzero. Therefore, the matrix Cm
g

is MDS if and only if the values θri , where 1 ≤ i ≤ k, are distinct for all R =

{r1, r2, . . . , rk} ⊂ E. This condition is equivalent to θi ̸= θj for all i, j ∈ E =

{0, 1, . . . , k − 1,m,m+ 1, . . . ,m+ k − 1} with i ̸= j. Thus, the theorem holds.

Note that if θ satisfies the condition in Theorem 3.17, it is necessary for the order of

θ to be greater than or equal to 2k. Moreover, this condition is also sufficient when

m = k.

Example 3.9. Let α be a primitive element of F28 with α8+α4+α3+α2+1 = 0. If we

consider θ = α in Theorem 3.17, then we have λ1 = 1, λ2 = α, λ3 = α2, and λ4 = α3.

We get g1(x) = (x + 1)(x + α)(x + α2)(x + α3) = x4 + α75x3 + α249x2 + α78x + α6.

Then the companion matrix of g1 is Cg1 = Companion(α6, α78, α249, α75) and
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C4
g1

=




α6 α78 α249 α75

α81 α59 α189 α163

α169 α162 α198 α131

α137 α253 α49 α143




is an MDS matrix.

We can obtain many more polynomials using Theorem 3.17 and Lemma 3.29. In

the previous example, if we multiply c = α with λi for 1 ≤ i ≤ 4, we get λ1 =

α, λ2 = α2, λ3 = α3 and λ4 = α4. Then we get g1(x) = (x + α)(x + α2)(x + α3)(x +

α4) = x4 + α76x3 + α251x2 + α81x + α10. Then the companion matrix of g1 is Cg1 =

Companion(α10, α81, α251, α76) and

C4
g1

=




α10 α81 α251 α76

α86 α63 α192 α165

α175 α167 α202 α134

α144 α4 α54 α147




which is again an MDS matrix.

In the design of the PHOTON family of hash functions, the following matrices

(see [GPP11, Table 1]) over F24 can be derived from the construction described above.

The field F24 is constructed using the polynomial x4 + x + 1 and α is a root of this

polynomial.

1. The polynomial f5(x) = x5 + αx4 + (α3 + 1)x3 + (α3 + 1)x2 + αx + 1 yields a

recursive MDS matrix of order 5 over F24 . It can be observed that the roots

of f5 are the consecutive powers of β: {β13, β14, β0, β1, β2}, where β = α4.

The polynomial f5(x) can be obtained by choosing θ = β and c = β13 in

Theorem 3.17.

2. The polynomial f6(x) = x6 + αx5 + α3x4 + (α2 + 1)x3 + α3x2 + αx+ 1 yields a

recursive MDS matrix of order 6 over F24 . It can be checked that the roots of f6

are the consecutive powers of γ : {γ6, γ7, γ8, γ9, γ10, γ11}, where γ = (β+1)45, β

is a root of the irreducible polynomial x8+x4+x3+x+1, α = β7+β6+β5+1,

and the order of γ is equal to 17. By selecting θ = γ and c = γ6 in Theorem 3.17,

the polynomial f6(x) can be obtained.

3. The polynomial f7(x) = x7+α2x6+(α2+α)x5+x4+x3+(α2+α)x2+α2x+1 yields

a recursive MDS matrix of order 7 over F24 . It can be observed that the roots
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of f7 correspond to the consecutive powers of α : {α12, α13, α14, α0, α1, α2, α3}.
By selecting θ = α and c = α12 in Theorem 3.17, the polynomial f7(x) can be

obtained.

4. The polynomial f8(x) = x8 + (α2 + α)x7 + (α2 + 1)x6 + α3x5 + αx4 + (α3 +

α + 1)x3 + αx2 + α2x + α yields a recursive MDS matrix of order 8 over F24 .

It can be verified that the roots λi’s of f8 belong to F28 and follow the pattern

λi = θi−1c, 1 ≤ i ≤ 8, where θ = (β + 1)15 and c = (β + 1)109 are determined

based on β being a root of the irreducible polynomial x8 + x4 + x3 + x+ 1 and

α = β7 + β6 + β5 + 1. The order of θ is equal to 17. By selecting these specific

values of λi in Theorem 3.17, the polynomial f8(x) can be obtained.

Relationship with [AF15]: Augot et al. introduced a method for constructing re-

cursive MDS matrices using shortened BCH codes. The method involves computing

a polynomial g(x) by selecting a suitable element β in an extension field of Fq. The

roots of g(x) are consecutive powers of β, denoted as βi, βi+1, . . . , βi+k−1 for some

integer i. When the roots of g(x) are conjugate to each other, the polynomial g(x)

belongs to Fq[x], ensuring that the corresponding BCH code with generator polyno-

mial g(x) is MDS. Consequently, g(x) yields a recursive MDS matrix. By selecting

θ = β and c = βi in Theorem 3.17, we can further establish that g(x) generates a

recursive MDS matrix.

Remark 3.39. It is important to note that if λ1 = c is not a power of θ in Theo-

rem 3.17, then the resulting polynomial may not be a generator polynomial of a BCH

code. An example of such a polynomial is f8(x) mentioned in Item 4 above. In that

case, the roots of f8(x) are given by λi = α2θ4+i for 1 ≤ i ≤ 8. It can be veri-

fied that these roots cannot be expressed as consecutive powers of an element in F28.

Consequently, this method yields a larger set of polynomials that generate recursive

MDS matrices compared to the method using shortened BCH codes. These additional

polynomials can be considered as those obtained by applying Lemma 3.29.

In the following, we present two additional methods for constructing polynomials that

yield recursive MDS matrices. These constructions bear some resemblance to the first

method, but they are distinct and will be denoted as I(b) and I(c), respectively.

Construction I(b)

Theorem 3.18. [GPV19, Theorem 3] Consider the polynomial g(x) =
∏k

i=1(x−λi),

where λi = θi−1 for 1 ≤ i ≤ k − 1 and λk = θk for some θ ∈ F∗
q. For an integer
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m ≥ k, the matrix Cm
g is MDS if and only if θr ̸= θr

′
for r, r′ ∈ E and

∑k
i=1 θ

ri ̸= 0

for all R = {r1, r2, . . . , rk} ⊂ E, where E = {0, 1, . . . , k− 1,m,m+1, . . . ,m+ k− 1}.

Proof. The matrix Cm
g is MDS if and only if the determinant of the matrix H ′[R] (as

defined in (3.11)) is nonzero for all subsets R = {r1, r2, . . . , rk} of the set E. We have

λi = θi−1 for 1 ≤ i ≤ k − 1 and λk = θk. So we have H ′[R] =




1 1 . . . 1

θr1 θr2 . . . θrk

...
...

. . .
...

(θk−2)r1 (θk−2)r2 . . . (θk−2)rk

(θk)r1 (θk)r2 . . . (θk)rk



=




1 1 . . . 1

θr1 θr2 . . . θrk

...
...

. . .
...

(θr1)k−2 (θr2)k−2 . . . (θrk)k−2

(θr1)k (θr2)k . . . (θrk)k



.

Let yri = θri for 1 ≤ i ≤ k. Thus, we can express the determinant of H ′[R] as the

determinant of V ′, which is given by:

V ′ =




1 1 . . . 1

yr1 yr2 . . . yrk
...

...
. . .

...

yk−2
r1

yk−2
r2

. . . yk−2
rk

ykr1 ykr2 . . . ykrk




Now observe that the matrix V ′ is a generalized Vandermonde matrix of the form

V⊥(y; I) with I = {1}. By applying Corollary 2.10, we can conclude that det(V ′) ̸=
0 if and only if the values yri are distinct and

∑k
i=1 yri ̸= 0. This completes the

proof.

Remark 3.40. It can be observed that the condition on θ in Theorem 3.18 remains

applicable even if we choose λi = θi−1c for 1 ≤ i ≤ k−1 and λk = θkc for some c ∈ F∗
q.

By considering the roots in this manner, the resulting polynomials are equivalent to

those obtained by applying Lemma 3.29.

Construction I(c)

Corollary 3.9. [GPV19, Corollary 1] Consider the polynomial g(x) =
∏k

i=1(x−λi),

where λ1 = 1, and λi = θi, 2 ≤ i ≤ k for some θ ∈ F∗
q. For an integer m ≥ k, the

matrix Cm
g is MDS if and only if θr ̸= θr

′
for r, r′ ∈ E and

∑k
i=1 θ

−ri ̸= 0 for all

R = {r1, r2, . . . , rk} ⊂ E, where E = {0, 1, . . . , k − 1,m,m+ 1, . . . ,m+ k − 1}.
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Proof. Consider γi = λk−i+1 = (θ−1)i−1c for 1 ≤ i ≤ k − 1 and γk = λ1 = (θ−1)kc,

where c = θk. By Theorem 3.18 and the previous remark, the matrix Cm
g is MDS

if and only if θ−ri , for 1 ≤ i ≤ k, are distinct, and
∑k

i=1 θ
−ri ̸= 0 for all R =

{r1, r2, . . . , rk} ⊂ E. This completes the proof.

Remark 3.41. The proof of the above corollary can also be seen similarly to the proof

of Theorem 3.18 derived using Corollary 2.11.

Remark 3.42. As a consequence of the previous results, we can derive an infinite

class of polynomials that yield recursive MDS matrices. Consider s ≥ 2k and α

as a root of an irreducible polynomial of degree s over F2. For any c ∈ F̄∗
2s, the

polynomial g(x) = (x − cαk) ·∏k−2
i=0 (x − cαi) yields recursive MDS matrices Cm

g for

m ∈ {k, . . . , s− k}.

In the following examples, the constructing polynomial for F28 is given by x8 + x7 +

x6 + x+ 1, and α is one of its roots.

Example 3.10. We observe that β = α15 is a primitive 17th root of unity, and the

degree of its minimal polynomial is 8. Based on the previous remark, the polynomial

g(x) = (x − 1)(x − β)(x − β2)(x − β4) yields a recursive MDS matrix of order 4. It

can be observed that Cm
g is MDS for 4 ≤ m ≤ 13. Interestingly, this polynomial can

also be obtained using construction II(b) for recursive MDS matrices.

Example 3.11. Consider the polynomial g(x) = (x−1)(x−β)(x−β2)(x−β3)(x−β5),

where β = α15 is a primitive 17th root of unity. It has been verified that this polynomial

satisfies the condition in Theorem 3.18, and thus it yields a recursive MDS matrix of

order 5. It can be checked that C5
g is an MDS matrix. Furthermore, it can also be

verified that this polynomial cannot be obtained using the other known constructions

such as I(a), II(a), and II(b).

Next, we present two additional methods, denoted as II(a) and II(b), for the con-

struction of polynomials that yield recursive MDS matrices. These constructions

share similarities but are not identical.

Construction II(a)
The recursive MDS matrices obtained using the method that utilizes Gabidulin codes

(described in Section 3.4 of [Ber13]) can also be obtained using the following alterna-

tive method. Consider a subfield Fq1 of Fq, where q1 = ps
′
and s′ divides s.
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Theorem 3.19. [GPV17b, Theorem 4] Consider the polynomial g(x) =
∏k

i=1(x −
λi), where λi = θq

i−1
1 for 1 ≤ i ≤ k, and θ ∈ F∗

q. Let E =

{0, 1, . . . , k − 1,m,m+ 1, . . . ,m+ k − 1} for some integer m ≥ k. The matrix Cm
g

is MDS if and only if any subset B of θi : i ∈ E with |B| = k is linearly independent

over Fq1.

Remark 3.43. We can observe that the condition on θ in Theorem 3.19 is applicable

even if we choose λi = θq
i−1
1 c for some c ∈ F∗

q. By considering the roots in this manner,

we obtain the same set of polynomials as those obtained by applying Lemma 3.29.

Additionally, it can be seen, as mentioned in Remark 3.39, that it is not always

possible to represent λi = θq
i−1
1 c, 1 ≤ i ≤ k, in the form θ′q

j−1
1 , 1 ≤ j ≤ k, for some

θ′. Therefore, this method allows us to obtain a larger set of polynomials compared to

the method that utilizes Gabidulin codes (as described in [Ber13, Section 3.4]).

Example 3.12. Let the field F28 = F2[x]/⟨µ(x)⟩, where µ(x) = x8 + x4 + x3 + x2 + 1

is a primitive polynomial over F2. Let α ∈ F28 be a root of µ(x), i.e. a primitive

element of F28. Let us consider q1 = 2,m = k = 4 and θ = α in Theorem 3.19,

then λ1 = α, λ2 = α2, λ3 = α4 and λ4 = α8. Then we get g2(x) = (x + α)(x +

α2)(x+α4)(x+α8) = x4+α238x3+α235x2+α168x+α15. Thus, the companion matrix

Cg2 = Companion(α15, α168, α235, α238) and

C4
g2

=




α15 α168 α235 α238

α253 α49 α170 α190

α205 α246 α92 α138

α153 α252 α3 α18




is an MDS matrix.

Relationship with [Ber13]: It has been observed in [Ber13] that MDS matrices

can be constructed using Gabidulin codes [BO04] by appropriately selecting certain

parameters. Furthermore, it was established that such an MDS matrix can be trans-

formed into a recursive MDS matrix by choosing a polynomial basis. We will now

demonstrate that Berger’s method is a specific case of Theorem 3.19. Let q = 2s with

s = 2k. The generator matrix, as described in [Ber13, Section 3.4], can be represented
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as

G = [V | V̂ ] =




1 α . . . αk−1 αk αk+1 . . . α2k−1

1 α2 . . . α2(k−1) α2k α2(k+1) . . . α2(2k−1)

1 α4 . . . α4(k−1) α4k α4(k+1) . . . α4(2k−1)

...
...

. . .
...

...
...

. . .
...

1 α2k−1
. . . α2k−1(k−1) α2k−1k α2k−1(k+1) . . . α2k−1(2k−1)



,

where {1, α, α2, . . . , α2k−1} is a polynomial basis of Fq. Subsequently, the matrix G

can be transformed into systematic form [I | A] by applying elementary row opera-

tions: V −1G = V −1[V | V̂ ] = [I | A]. It has been demonstrated that the first column

of matrix A = V −1V̂ provides the coefficients of the polynomial g. Notably, Ck
g = A

represents an MDS matrix.

It is worth noting that when m ≥ k and deg(MinFq1
(θ)) ≥ m+k, where MinFq1

(θ)

denotes the minimal polynomial of θ over Fq1 , the elements θri for 1 ≤ i ≤ k

are linearly independent over Fq1 for any subset R = {r1, r2, . . . , rk} ⊂ E =

{0, 1, 2, . . . , k−1,m,m+1, . . . ,m+k−1}. By choosing θ as a primitive element in F2s

with 2k ≤ s and setting m = k and q1 = 2, we satisfy the condition of Theorem 3.19.

The polynomials obtained using these choices in Theorem 3.19 are equivalent to those

obtained by the method discussed in [Ber13, Section 3.4]. Therefore, we can generate

an infinite class of polynomials that yield recursive MDS matrices. Furthermore, the

codes associated with matrices of this type possess the additional property of max-

imum rank distance. As mentioned in Remark 3.43, there are many other choices

that can be accommodated in Theorem 3.19, resulting in a larger set of polynomi-

als compared to the method discussed in [Ber13, Section 3.4]. It is important to

note that the condition deg(MinFq1
(θ)) ≥ m + k is not necessary. We will now pro-

vide an example where an element θ satisfies the condition in Theorem 3.19, but

deg(MinFq1
(θ)) < m+ k.

Example 3.13. Let the field F26 = F2[x]/⟨µ(x)⟩, where µ(x) = x6 + x4 + x3 + x+ 1

is a primitive polynomial over F2. Let α ∈ F26 be a root of µ(x), i.e. a primitive

element of F26. Let us consider q1 = 2,m = k = 4, θ = α in Theorem 3.19, then

λ1 = α, λ2 = α2, λ3 = α4 and λ4 = α8. Then we get g3(x) = (x + α)(x + α2)(x +

α4)(x + α8) = x4 + α30x3 + α43x2 + α51x + α15. Thus, the companion matrix Cg3 =
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Companion(α15, α51, α43, α30) and

C4
g3

=




α15 α51 α43 α30

α45 α28 α34 α19

α34 α40 α43 α5

α20 α17 α47 α42




is an MDS matrix. It can be observed that deg(MinF2(α)) = 6 < m+ k = 8.

Construction II(b)
We now introduce an alternative approach that bears resemblance to the previous

method. However, the key distinction lies in the fact that the roots of the polynomial

g(x) discussed below may not conform to the format described in Theorem 3.19 (also

refer to Remark 3.44). By employing this technique, we can generate a fresh set

of infinite polynomials that result in recursive Maximum Distance Separable (MDS)

matrices. Here, we consider Fq1 as a subfield of Fq, which implies that q1 = ps
′
for

some s′ dividing s.

Theorem 3.20. [GPV17b, Theorem 5] Given λ1 = 1 and λi = θq
i−2
1 , 2 ≤ i ≤ k,

consider the polynomial g(x) =
∏k

i=1(x − λi), where θ is an element in F∗
q. Let

E = {0, 1, . . . , k−1,m,m+1, . . . ,m+k−1}, where m is an integer such that m ≥ k.

Then the matrix Cm
g is MDS if and only if for any subset B = {b1, b2, . . . , bk} of

{θi : i ∈ E}, where |B| = k, there is no nontrivial linear combination over Fq1 that

satisfies
∑k

j=1 αjbj = 0 and
∑k

j=1 αj = 0.

Remark 3.44. It is worth noting that the condition on θ in Theorem 3.20 remains

valid even when we set λ1 = c and λi = θq
i−2
1 c for 2 ≤ i ≤ k, where c ∈ F∗

q. By

considering the roots in this manner, the resulting polynomials are identical to those

obtained by applying Lemma 3.29.

Example 3.14. Let the field F28 = F2[x]/⟨µ(x)⟩, where µ(x) = x8 + x4 + x3 + x2 + 1

is a primitive polynomial over F2. Let α ∈ F28 be a root of µ(x), i.e. a primitive

element of F28. Let us consider q1 = 2,m = k = 4, θ = α in Theorem 3.20, then

λ1 = 1, λ2 = α, λ3 = α2 and λ4 = α4. Then we get g4(x) = (x + 1)(x + α)(x +

α2)(x+ α4) = x4 + α129x3 + α167x2 + α11x+ α7. Thus, the companion matrix Cg4 =
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Companion(α7, α11, α167, α129) and

C4
g4

=




α7 α11 α167 α129

α136 α2 α77 α121

α128 α232 α47 α54

α61 α120 α211 α81




is an MDS matrix.

Remark 3.45. It has been verified that the roots λ1 = 1, λ2 = α, λ3 = α2 and λ4 = α4

of g4(x) mentioned in the previous example cannot be represented as θ′q
i−1
1 c′ for any

θ′, c′ ∈ F28 (see Remark 3.43). As a result, it is not possible to derive the polynomial

g4(x) using Theorem 3.19 and Lemma 3.29.

It is worth noting that if an element θ ∈ F̄∗
q satisfies the condition specified in Theo-

rem 3.19, then it also satisfies the condition outlined in Theorem 3.20. Consequently,

if we have a polynomial g(x) =
∏k

i=1(x− cθq
i−1
1 ) obtained through the Theorem 3.19

and Remark 3.43, we can observe that the polynomial g′(x) = (x−c)
∏k

i=2(x−cθq
i−2
1 )

also yields a recursive MDS matrix. This can be achieved by employing Theorem 3.20

and Remark 3.44. As a result, using the choices presented in [Ber13, Section 3.4],

we obtain a new infinite class of recursive MDS matrices through the utilization of

Theorem 3.20.

3.7.4 Repeated-root cyclic codes

We were interested to find g(x) which would yield MDS code and ord(g) = 2k (recall

Subsection 3.7.1) so that Ck
g becomes MDS matrix. For the case when g(x) has no

repeated root in the field of characteristic 2, the idea was to generate a [2k+z, k+z, d]

MDS code and then shorten the code at z positions to get a [2k, k, d] code. The

reason for shortening was due to the fact that g(x) cannot have order 2k in the field

of characteristic 2. But g(x) may have the order 2k when it has some repeated roots.

We show it by one example.

Suppose q = 2 and k = 7. Consider g(x) = (x3 + x2 + 1)2(x + 1). It is easy to

check that g(x) divides x14+1 because x7+1 = (x+1)(x3+x2+1)(x3+x+1). Now

we show that g(x) does not divide xi + 1 for 1 ≤ i ≤ 13. For 1 ≤ i ≤ 6, it is obvious

because deg(g) = 7. Moreover g(x) does not divide x7+1 (look at the factors). Now,

if g(x) divides xi + 1 for 8 ≤ i ≤ 13, then g(x) divides x14−i + 1, a contradiction.

Thus, ord(g) = 14 = 2k. Note that g(x) has repeated roots, otherwise it would not

be possible.
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This subsection discusses the case when g(x) has multiple roots. One of the most

important results of this subsection is Corollary 3.10 which states that if g(x) ∈ F2[x]

has any repeated root and deg(g) ≥ 2, it is not possible to get a recursive MDS matrix

M = Cm
g for any m ≥ 0. As a result, it can be concluded that there does not exist

any involutory recursive MDS matrix of order k ≥ 2 over the field of characteristic 2.

Now we define some basic notions and discuss some existing results which are going to

be used in this subsection. We present only those results on repeated-root cyclic codes

which are relevant to this chapter. For more details, please see [CMSvS91, VL91].

Definition 3.6. [GPV17b, Definition 1] Consider a polynomial g(x) =
∑k

i=0 aix
i ∈

Fq[x]. For some non-negative integer d, we define the dth Hasse derivative g[d](x) of

g as follows:

g[d](x) =
k∑

i=0

(
i

d

)
aix

i−d,

where we assume

(
i

d

)
= 0 if i < d.

The lemma presented below is of significant importance.

Lemma 3.30. [CMSvS91, Section II] Consider an irreducible polynomial µ(x) ∈
Fq[x] and a positive integer e. Then µ(x)e divides a polynomial g(x) ∈ Fq[x] if and

only if µ(x) divides g(x) as well as its first e − 1 Hasse derivatives. In other words,

µ(x) divides g[d](x) for all d satisfying 0 ≤ d ≤ e− 1.

When the generator polynomial g(x) ∈ Fq[x] possesses a repeated root (i.e. a root

with multiplicity greater than 1), the resulting code Γ = ⟨g(x)⟩ derived from g is

referred to as a repeated-root cyclic code. The comprehensive theory of such codes

was introduced in [CMSvS91, VL91]. By referring to Lemma 3.30, one can observe

that an equivalent result to the aforementioned lemma, in the case of repeated-root

cyclic codes, is stated below (also see [CMSvS91, Section II]).

Lemma 3.31. [GPV17b, Lemma 3] Consider a monic polynomial g(x) ∈ Fq[x] of

degree k and ord(g) = n ≥ 2. Let g have t distinct roots, denoted as λ1, . . . , λt ∈ F̄q,

with respective multiplicities e1, e2, . . . , et. Then f(x) =
∑n−1

i=0 fix
i ∈ Fq[x]/(x

n − 1)

is a codeword of Γ = ⟨g(x)⟩ if and only if the coefficient vector (f0, f1, . . . , fn−1) of f

belongs to the null space of the matrix

H =




He1(λ1)
...

Het(λt)


 ,
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where the matrix Hei(λi) is of size ei × n and its rows are the n-tuples

((
0
j

)
,
(
1
j

)
λ1−j
i ,

(
2
j

)
λ2−j
i , . . . ,

(
n−1
j

)
λn−j−1
i

)
(3.12)

for 0 ≤ j ≤ ei − 1. Or, in other words, H is a parity check matrix of Γ.

The n-tuples referenced in the previous lemma correspond to the jth Hasse deriva-

tives of the vector (1, λi, λ
2
i , . . . , λ

n−1
i ) treating λi as a variable (see Definition 3.6).

Lemma 3.32. [GPV17b, Lemma 4] Consider a monic polynomial g(x) ∈ Fq[x] of

degree k, where ord(g) = n. Let g have t distinct roots denoted as λ1, . . . , λt ∈ F̄q, with

respective multiplicities e1, e2, . . . , et. Consider the code S with a generator matrix

G′ = [−Cm
g | I], where m is an integer such that k ≤ m ≤ n − k. Then a vector

(f0, f1, . . . , fk−1, fm, fm+1, . . . , fm+k−1) ∈ F2k
q belongs to the code S if and only if it

belongs to the null space of the matrix H ′ given by

H ′ =




H ′
e1
(λ1)
...

H ′
et(λt)


 , (3.13)

where the matrix H ′
ei
(λi) is of size ei × 2k and its rows are the 2k-tuples

((
0
j

)
,
(
1
j

)
λ1−j
i , . . . ,

(
k−1
j

)
λk−1−j
i ,

(
m
j

)
λm−j
i ,

(
m+1
j

)
λm+1−j
i , . . . ,

(
m+k−1

j

)
λm+k−j−1
i

)

for 0 ≤ j < ei. Specifically, when the polynomial g(x) has no repeated roots (i.e.

ei = 1 for 1 ≤ i ≤ t = k), the matrix H ′ can be expressed as follows:

H ′ =




1 λ1 . . . λk−1
1 λm

1 λm+1
1 . . . λm+k−1

1
...

...
. . .

...
...

...
. . .

...

1 λk . . . λk−1
k λm

k λm+1
k . . . λm+k−1

k


 . (3.14)

Consider S and H ′ as defined in the aforementioned lemma. It is worth noting

that the code S has dimension of k. Based on Lemma 3.32, it becomes evident that

the code S is MDS, indicating that it has a minimum distance of k+1, if and only if

the null space of the matrix H ′ in F2k
q does not contain any nonzero vector of weight

k or lower. In other words, this condition can be equivalently expressed as the linear

independence of any k columns of the matrix H ′ over Fq. For the sake of convenience,

we summarize this result as follows.

Theorem 3.21. [GPV17b, Theorem 2] Consider a monic polynomial g(x) ∈ Fq[x]
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of degree k and ord(g) = n. Let g have t distinct roots denoted as λ1, . . . , λt ∈ F̄q,

with respective multiplicities e1, e2, . . . , et. Suppose we have an integer m such that

k ≤ m ≤ n − k. The matrix M = Cm
g is an MDS matrix if and only if any set of k

columns of the matrix H ′, as defined in Equation 3.13, is linearly independent over

Fq.

Corollary 3.10. [GPV17b, Corollary 3] Assume that char(Fq) = p, and let g(x) ∈
Fq[x] be a monic polynomial of degree k. Suppose g(0) ̸= 0 and ord(g) = n. If the

polynomial g(x) possesses a root λ ∈ F̄q with a multiplicity e ≥ p, then it can be

concluded that the matrix M = Cm
g is not MDS for any non-negative integer m.

Remark 3.46. A notable consequence of the above corollary is that if char(Fq) = 2,

then a polynomial g(x) ∈ Fq[x] that possesses a repeated root cannot yields a recursive

MDS matrix. Consequently, recursive MDS matrices over fields with characteristic 2,

which hold significant importance in cryptographic applications, can only be obtained

from polynomials without repeated roots. However, if char(Fq) = p where p is an odd

prime, it is possible to find polynomials g(x) ∈ Fq[x] with repeated roots that yield

recursive MDS matrices. An illustrative example is provided below.

Example 3.15. Suppose q = p = 7. Let’s consider the polynomial g(x) = (x− 1)3 =

x3 − 3x2 − 4x− 1 ∈ F7[x]. The matrix C3
g derived from Cg = Companion(1, 4, 3) of g

is indeed an MDS matrix

Cg =




0 1 0

0 0 1

1 4 3


 and C3

g =




1 4 3

3 6 6

6 6 3


 .

Involutory Recursive MDS matrices

Recall that a square matrix M is said to be involutory if M2 = I. An involutory

recursive MDS matrix M is an MDS matrix which is involutory and equal to Cm
g for

some companion matrix Cg and some m ≥ k.

Theorem 3.22. [GPV19, Theorem 2] Over fields of characteristic 2, there exists no

involutory recursive MDS matrix M , except in the trivial case where M = [1].

Proof. LetM = Cm
g be a recursive MDS matrix for some polynomial over Fq of degree

k and m ≥ k. Let l be the smallest positive integer such that C l
g = Ik. Then, from the

discussion in the above section if M is MDS then g cannot have a repeated root. In

that case l = ord(g) is odd since char(Fq) = 2 (see the first paragraph of Subsection
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3.7.4). If suppose M2 = C2m
g = I then l must divide m. Therefore, M = Cm

g = I

which is a contradiction as Ik cannot be MDS unless Ik = [1].

3.7.5 Search vs. direct construction method

In the year 2011, in order to reduce the hardware area of the proposed hash function

family PHOTON [GPP11], Guo et al. came out with an idea of reducing the diffusion

layer area by choosing a sparse non-MDS matrix and then used it recursively to finally

obtain an MDS one. The proposed sparse matrix was a companion matrix. The

PHOTON family has different sizes of companion matrices ranging from 4 × 4 upto

8 × 8. These matrices were obtained through exhaustive search and the search was

possible because the order of the matrix was limited to 8 and the field size was limited

to 28.

Authors of [GPP11] defined Serial(z0, . . . , zk−1) (Companion(z0, . . . , zk−1)), which

is the companion matrix of z0+z1x+z2x
2+ . . .+zk−1x

k−1+xk. Their objective was to

find suitable candidates so that Companion(z0, . . . , zk−1)
k forms an MDS matrix. In

[GPP11], authors proposed the MDS matrix Companion(1, α, 1, α2)4 over F28 , where

α represents a root of the irreducible polynomial x8 + x4 + x3 + x + 1, for AES

MixColumn operation, offering a compact design and improved hardware efficiency

[GPP11]. It is worth noting that the MixColumn operation described in [GPP11]

consists of applying the matrix Companion(z0, . . . , zk−1) to the input column vector

k times. More formally, let W = (w0, . . . , wk−1)
T denote the input column vector

for MixColumn, and let Y = (y0, . . . , yk−1)
T be the corresponding output. We can

express this operation as

Y = Ak ×W = (A× (A× . . .× (A︸ ︷︷ ︸
k times

×W ))),

where A = Companion(z0, . . . , zk−1). Consequently, the hardware circuitry will rely

on the companion matrix A rather than the MDS matrix Ak. Note that authors

of [GPP11] employed MAGMA [BCP97] to exhaustively test all possible values of

z0, z1, z2 and z3 and found Companion(1, α, 1, α2) to be the right candidate, which

gives an MDS matrix when raised to the power 4. Authors of [SDMS12, WWW13]

proposed new k×k recursive MDS matrices based on companion matrices for smaller

values of k.

To conquer the quest of getting recursive MDS matrices of bigger size, a more

concrete theory was required and that appeared from the realm of coding theory.
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Though it seems an obvious choice, the initial few works following the work of Guo

et al. lacked this direction. In the year 2013, Berger [Ber13] showed how to use the

Gabidulin codes [BO04] to obtain infinite class of recursive MDS matrices. Then

next year, in 2014, Augot et al. [AF15] showed how to use shortened BCH codes

to obtain recursive MDS matrices. These two methods were enough to provide re-

cursive MDS matrix of any order, nevertheless a more generic construction criterion

appeared in [GPV17b] using the roots of the characteristic polynomial of the com-

panion matrix. In fact, any recursive MDS matrix obtained using the shortened BCH

or the Gabidulin code could also be obtained from the generic construction method

discussed in [GPV17b]. Now, we have enough construction methods for larger matrix

size also.

Though the generic construction methods open the feasibility of obtaining recur-

sive MDS matrices of any order, there is no guarantee of getting a matrix of the

optimal hardware area; even for the smaller size, it is not guaranteed. The only

known method, so far, which could produce the optimal matrix in terms of area is

the exhaustive search which is feasible when the matrix size is small (for example, say

upto 8) and the field size is not too large (say upto F28). Of course, the exhaustive

search is never a solution for matrices of larger order or bigger field size.

Broadly, there are two different ways to do exhaustive search: (a) try with all

possible field elements or (b) try with only a subset of the field elements which re-

quire less hardware area. The search method (a) is naive and obvious and it works

for matrices of only small orders (say upto 8). But this method always produces

the optimal matrices. Whereas the second method (b) may work for larger order

matrices but its feasibility depends upon the cardinality and choice of the subset of

field elements which will be used for searching. Smaller the cardinality, less chance

to obtain required matrices, even though they exist in that field. The main reason is

that there may not exist any recursive MDS matrix with the entries chosen from the

subset, but could exist if constructed from elements other than subset elements.

A lot of work has been done in this direction. We are not going to discuss the

search methods for constructing recursive MDS matrices in this chapter, however,

they are particularly interesting in the context of lightweight cryptography. In Chap-

ter 5, we will explore a search method for providing recursive MDS matrices from a

newly proposed sparse matrix. For additional constructions by search method, we

recommend referring to [GPP11, GR13b, SDMS12, TTKS18, WWW13].
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3.8 Conclusion

In this chapter, we have studied the properties of MDS matrices and its various con-

structions from Cauchy, Vandermonde, circulant, left-circulant, Toeplitz, Hankel and

companion matrices. We find a nontrivial equivalence between the Cauchy based con-

structions and its corresponding Vandermonde based constructions. We also observe

a interconnection that a left-circulant matrix is nothing but a row-permutated circu-

lant matrix and a similar connection between Hankel and Toeplitz matrices. Using

the interconnection we provide an alternative proof that left-circulant and Hankel

matrices of order 2n are not both MDS and involutory. We do not discuss efficiency

issues but the theory accumulated and discussed here should provide an idea towards

efficiency. We revisit the results discussed in [AF15] and find a gap in one of the

lemmas in that paper. In Subsection 3.7.2, we show the existence of gap by providing

an example and then provide the proof of the lemma after rephrasing it correctly.

In Subsection 3.7.3, we describe five approaches for constructing polynomials that

yield recursive MDS matrices. The key components utilized in these approaches are

Theorem 3.16 and determinant of a matrix as defined in (3.11). We believe that more

constructions are possible using Theorem 3.16 and (3.11) and so it may be taken as

a future research.
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4
A Study of Recursive MDS Matrix Construction

Using Low Fixed XOR Matrices
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4.1 Introduction

The advantage of recursive MDS matrices is their suitability for lightweight implemen-

tations, as the diffusion layer can be implemented efficiently by recursively executing

the implementation of the sparse matrices, which requires a small number of clock

cycles.

To yield a recursive MDS matrix, a matrix must have at least one nonzero element

in each row and each column. So, we consider an n × n matrix M of the form

P (D+A′) = PD+A, where P represents a permutation matrix, D is a nonsingular

diagonal matrix and A′ contains t (t ≥ 1) nonzero elements in some non-diagonal

position. Thus, fixed XOR (see Section 2.6.1) of M is t. We will call such matrix as

t-XOR matrix.

Some known t-XOR matrices are companion, DSI and sparse DSI matrices. For

an n × n companion and DSI matrix, t is n − 1 whereas for sparse DSI matrix, t is

126



⌈n/2⌉. Since a sparse DSI matrix has the least t value among companion, DSI and

sparse DSI, that is why it is more suited for the lightweight diffusion layer.

In this chapter, we systematically study low fixed XOR matrices. We begin by ex-

amining 1-XOR matrices and provide an upper limit on the count of nonzero elements

in an n×n 1-XOR matrix when it is raised to the power of n. We then shift our focus

to 2-XOR matrices and present results that demonstrate the non-existence of 2-XOR

matrices of order 5 and 6 that are 5-MDS and 6-MDS, respectively. These results are

significant because they provide lower bounds on the number of fixed XORs needed

for n-MDS lower XOR matrices of order n for n ≤ 6. Additionally, this chapter

introduces some new mathematical results while also rediscovering existing results on

DSI and sparse DSI matrices. Finally, we prove that an 8-MDS sparse DSI matrix of

order 8 over the field F28 does not exist. This result remained unsolved in [TTKS18]

due to the extensive search space.

Outline: The rest of this chapter is structured as follows: In Section 4.2, we

study t-XOR matrices for constructing recursive MDS matrices with t = 1 and t = 2.

In Section 4.3, we present new mathematical results and rediscover some existing

results on DSI and sparse DSI matrices. Additionally, this section demonstrates the

non-existence of an 8-MDS sparse DSI matrix of order 8 over the field F28 . Finally,

in Section 4.4, we conclude the chapter and discuss possible directions for future

research.

4.2 t-XOR Matrices

Companion matrices, which are t-XOR matrices with t = n−1, have been thoroughly

studied for constructing recursive MDS matrices using both search methods [GPP11,

GPPR11, GR13b, TTKS18] and direct methods [AF15, GPV17b, GPV17a, GPV19,

KPSV21]. However, less attention has been given to the study of t-XOR matrices

with t < n − 1. In this section, we will focus on the study of t-XOR matrices with

t = 1 and t = 2.

In the following lemma, we study an equivalence relation between the t-XOR matrices.

Lemma 4.1. Let M1 be a t-XOR matrix of order n ≥ 2. Then M1 is permutation

equivalent to some t-XOR matrix M2 = QD′ +A′, where Q is a permutation matrix,

D′ is a nonsingular diagonal matrix and A′ has t nonzero elements in its first t rows.

Proof. Let M1 = PD + A be a t-XOR matrix, where A has r1, r2, . . . , rk nonzero
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elements in the i1, i2, . . . , ik-th row respectively such that r1 + r2 + · · · + rk = t and

k ≤ t.

Now consider the permutation matrix P1 obtained from the identity matrix by

permuting the row i1 to row 1, row i2 to row 2, . . ., row ik to row k. Now

P1M1P
−1
1 = P1(PD + A)P−1

1

= P1PDP−1
1 + P1AP

−1
1 .

Since DP−1
1 = P−1

1 D′ for some diagonal matrix D′, we have

P1M1P
−1
1 = P1PP−1

1 D′ + P1AP
−1
1

= QD′ + A′,

where Q = P1PP−1
1 and A′ = P1AP

−1
1 . Also note that A′ has altogether t nonzero

elements in its 1st, 2nd, . . ., k-th row. Let M2 = QD′ + A′. Therefore, M1 is

permutation equivalent to M2.

Example 4.1. For example, consider a 1-XOR matrix of order 4

M1 =




b 0 0 0

0 c d 0

0 0 e 0

0 0 0 f




and P1 =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



.

Then P1M1P
−1
1 = M2, where M2 is a 1-XOR matrix given by

M2 =




c 0 d 0

0 b 0 0

0 0 e 0

0 0 0 f



.

Remark 4.1. To construct MDS matrices from t-XOR matrices, we need to check

only for t-XOR matrices whose nonzero elements (for A) are in the first t rows.

This reduces the search space. For example, to construct recursive MDS matrices

from 2-XOR matrices of order 5 and 6, we need to check only 5 ! × 8C2 = 3360 and

6 !× 10C2 = 32400 2-XOR matrices respectively.

4.2.1 1-XOR matrices

We aim to minimize the number of nonzero elements in a matrix to obtain a recursive

MDS matrix. It is important to note that to yield a recursive MDS matrix, an n× n

matrix should have at least n+ 1 nonzero elements. Therefore, we begin by focusing
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on the 1-XOR matrices. Because of Lemma 4.1, we are considering those matrices

whose first row has exactly two nonzero elements.

In Theorem 4.1, we prove that for n ≥ 3, there exists no n × n 1-XOR matrix

which is n-MDS. To proceed, we require the subsequent lemma.

Lemma 4.2. Let M = (P + A) be a 1-XOR matrix. Then, there exists some Ai’s

such that M r ≦ P r + P r−1A1 + P r−2A2 + P r−3A3 + · · ·+ PAr−1 +Ar for 1 ≤ r ≤ n,

where Ai are the matrices whose first row contain exactly i nonzero elements and rest

rows zero.

Proof. We will prove this result by mathematical induction. When r = 1, M ≦

P + A1 = P + PA0 + A1. Hence, the statement holds for r = 1. Let us now assume

that the statement is true for r = k < n. Next, we will show that the result is true

for r = k + 1. Now Mk+1 = (P + A1)
k(P + A1). Therefore,

Mk+1 ≦ (P k + P k−1A1 + P k−2A2 + P k−3A3 + · · ·+ PAk−1 + Ak)(P + A1)

= (P k+1 + P k−1A1P + P k−2A2P + P k−3A3P + · · ·+ PAk−1P + AkP )+

(P kA1 + P k−1A2
1 + P k−2A2A1 + P k−3A3A1 + · · ·+ PAk−1A1 + AkA1).

Note that AiA1 ≦ A1 and AiP = A′
i for some A′

i, where A′
i are the matrices whose

first row contain exactly i nonzero elements and rest rows zero. Therefore,

Mk+1 ≦ (P k+1 + P k−1A′
1 + P k−2A′

2 + P k−3A′
3 + · · ·+ PA′

k−1 + A′
k)+

(P kA1 + P k−1A1 + P k−2A1 + P k−3A1 + · · ·+ PAk−1A1 + A1)

≦ P k+1 + P kA1 + P k−1(A′
1 + A1) + P k−2(A′

2 + A1)

+ · · ·+ P (A′
k−1 + A1) + (A′

k + A1).

Note that A′
i +A1 ≦ A

′′
i+1, where A

′′
i are the matrices whose first row contain exactly

i nonzero elements and rest rows zero. Therefore,

Mk+1 ≦ P k+1 + P kA
′′

1 + P k−1A
′′

2 + P k−2A
′′

3 + · · ·+ PA
′′

k + A
′′

k+1.

Hence, the result.

Theorem 4.1. For n ≥ 3, there does not exist any 1-XOR matrix of order n which

is n-MDS.
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Proof. From Lemma 4.2, we have

Mn ≦ (P + A)n

≦ P n + P n−1A1 + P n−2A2 + P n−3A3 + · · ·+ PAn−1 + An.

Thus,

|Mn| ≤ |P n|+ |P n−1A1|+ |P n−2A2|+ |P n−3A3|+ · · ·+ |PAn−1|+ |An|
= |P n|+ |A1|+ |A2|+ |A3|+ · · ·+ |An−1|+ |An|.

Note that P n and An have a common element. Thus,

|Mn| ≤ n+ (1 + 2 + 3 + · · ·+ n)− 1 =
n(n+ 3)

2
− 1.

Therefore, for n ≥ 3, |Mn| < n2. Hence, the theorem.

In the following theorem, we prove that some specific type of 1-XOR matrices of order

n are not k-MDS for k ≤ 3n− 5.

Theorem 4.2. For n ≥ 4, let M = PD+A be an n×n 1-XOR matrix over a field of

characteristic 2, where P is a permutation matrix corresponding to an n length cycle

permutation and A has a nonzero entry in (1, 1)-th position. Then M is not k-MDS

for k ≤ 3n− 5.

Proof. Let Pi be the permutation matrix corresponding to the n length cycle permu-

tation σi of the symmetric group Sn for i=1, 2, . . . , (n−1)!. Suppose Pi and Pj be two

permutation matrices corresponding to the n length cycle σi = (i1 = 1 i2 i3 . . . in)

and σj = (j1 = 1 j2 j3 . . . jn) respectively. Now consider the permutation

λ =

(
j1 j2 j3 . . . jn

i1 i2 i3 . . . in

)
. Therefore, λσjλ

−1 = (λ(j1) λ(j2) λ(j3) . . . λ(jn)) =

(i1 i2 i3 . . . in) = σi. Let Q be the permutation matrix corresponding to λ. There-

fore, we have QPjQ
−1 = Pi. Hence, all Pi’s for i = 1, 2, . . . , (n− 1)! are permutation

equivalent to each other. Therefore, for all i, j ∈ {1, 2, . . . , (n− 1)!}, Pi = QPjQ
−1

for some permutation matrix Q, where the first row of Q is the first row the identity

matrix.

By Lemma 2.10, we have DQ−1 = Q−1D′, for some diagonal matrix D′. Also,

since A has the nonzero entry in (1, 1)-th position, we have

Q(PjD + A)Q−1 = QPjQ
−1D′ + A

= PiD
′ + A.

Hence, all PiD + A for i ∈ {1, 2, . . . , (n− 1)!} are permutation equivalent. There-

fore, to check whether all such matrix M = PD + A, P is the permutation matrix

corresponding to a full length cycle permutation and A has the nonzero entry in the
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(1, 1)-th position, is k-MDS, we only need to check for one such matrix M . Consider

the matrix

M =




a 0 0 . . . 0 xn

x1 0 0 . . . 0 0

0 x2 0 . . . 0 0

0 0 x3 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . xn−1 0




.

Now consider the input vector (0, 1, y, 0, . . . , 0)T . The resultant vector after each

iteration is



0

1

y

0

0

0

.

.

.

0

0



−−−→
i=1



0

0

x2

x3y

0

0

.

.

.

0

0



−−−→
i=2



0

0

0

x3x2

x4x3y

0

.

.

.

0

0



−−−→
i=3



0

0

0

0

x4x3x2

x5x4x3y

.

.

.

0

0



−−−→
i=4

. . . −−−−→
i=n-5



0

0

0

0

.

.

.

xn−4xn−5 . . . x4x3x2

xn−3xn−4xn−3 . . . x4x3y

0

0



−−−−→
i=n-4



0

0

0

0

0

.

.

.

xn−3xn−4 . . . x4x3x2

xn−2xn−3 . . . x4x3y

0



−−−−→
i=n-3



0

0

0

0

0

0

.

.

.

xn−2xn−3 . . . x4x3x2

xn−1xn−2xn−3 . . . x4x3y



−−−−→
i=n-2



xnxn−1xn−2xn−3 . . . x4x3y

0

0

0

0

0

.

.

.

0

xn−1xn−2xn−3 . . . x4x3x2



−−−−→
i=n-1



axnxn−1xn−2xn−3 . . . x4x3y+

xnxn−1xn−2xn−3 . . . x4x3x2

∗
0

0

0

0

.

.

.

0

0



=



0

∗
0

0

0

0

.

.

.

0

0



Let y = a−1x2−−−−−−−−−−−−−→
i=n



0

0

∗
0

0

0

.

.

.

0

0



. . . −−−−−→
i=2n-3



0

0

0

0

0

0

.

.

.

0

∗



−−−−−→
i=2n-2



∗
0

0

0

0

0

.

.

.

0

0



−−−−−→
i=2n-1



∗
∗
0

0

0

0

.

.

.

0

0



−−−−→
i=2n



∗
∗
∗
0

0

0

.

.

.

0

0



. . . −−−−−−−−−−−−−→
i=2n+(n-5)=3n-5



∗
∗
∗
∗
∗
∗
.
.
.

∗
0

0



,

where ∗ denotes some entry may or may not be zero. The sum of nonzero elements

of input vector and output vector in each iteration is < n + 1. Therefore, M is not

k-MDS, where k ≤ 3n− 5.

Remark 4.2. For n = 3, choose the input vector y = (0, ax−1
2 , 1)T , and it can be

easily checked that the sum of nonzero elements of input vector and output vector in

i = 2, 3 and 4 is less than n + 1. Also, for the input vector (0, 1, 0)T , the sum of

nonzero elements of input vector and output vector in iteration i = 1 is less than

n + 1. Therefore, the above result is also true for n = 3. Again for n = 2, the result
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is trivially true. Therefore, Theorem 4.2 is true for n ≥ 2.

Remark 4.3. For n = 3 and the input vector y = (1, a2x−1
2 x−1

3 , 0) it is easy to check

that the above result holds for i = 5, 6. Therefore, for n = 3, Theorem 4.2 holds true

for k ≤ 6.

Remark 4.4. For n = 4 and the input vector y = (0, a2x−1
2 x−1

3 , 0, 1) it is easy

check that the above result holds for i = 1, 3, 4, 5, 6, 7, 8, 9, 10. Therefore, for n = 4,

Theorem 4.2 holds true for k ≤ 10.

Experimental observation: We have also observed that if in a 1-XORmatrix

M = PD+A of order n (for n ≤ 8), if P is not a permutation matrix corresponding

to a n length cycle permutation or A has a nonzero entry in some different position

other than (1, 1)-th position, then Mk contains at least one zero entry for k ≤ 3n−5.

Therefore, by Theorem 4.2, 1-XOR matrices of order n (for n ≤ 8) are not k-MDS

for k ≤ 3n− 5 over a field of characteristic 2.

1-XOR matrix of order 2: There exists a 1-XOR matrix of order 2 which is

2-MDS. For example, consider the matrix

M =

[
0 1

1 0

][
α 0

0 1

]
+

[
1 0

0 0

]
=

[
1 1

α 0

]

over the field F24 , where α is a primitive element with α4 + α + 1 = 0. It can be

verified that M2 is an MDS matrix.

4.2.2 2-XOR matrices

Now we are considering two nonzero elements in A for the study of recursive MDS

matrices.

2-XOR matrix of order 3: There exists a 2-XOR matrix of order 3 which is

3-MDS. For example, consider the matrix

M =



1 0 1

1 α 0

0 α3 + 1 0



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over the field F24 , where α is a primitive element with α4 + α + 1 = 0. It is easy to

check that M3 is an MDS matrix.

2-XOR matrix of order 4: There exists a 2-XOR matrix of order 4 which is

4-MDS. For example, consider the matrix

M =




0 1 α3 + 1 0

0 0 α 0

1 0 0 1

1 0 0 0




over the field F24 , where α is a primitive element with α4 + α + 1 = 0. It is easy to

check that M4 is an MDS matrix.

2-XOR matrix of order 5: We have observed that among 3360 2-XOR

matrices of order 5 (see Remark 4.1), 12 matrices provide all nonzero element, when

raised to power 5 but in a ring of characteristic 2 these matrices have zero elements

when it raised to power 5. Therefore, over a ring of characteristic 2, there exist no

5-MDS 2-XOR matrix of order 5. Consequently, there are no 5-MDS 2-XOR matrices

of order 5 over a ring of characteristic 2.

Thus, for 5× 5 matrices, the minimum fixed XOR is 3 to obtain a 5-MDS matrix.

In other words, to achieve a 5-MDS matrix, a minimum of 8 nonzero elements are

needed in a 5× 5 matrix.

2-XOR matrix of order 6: We have observed that among the 32400 2-XOR

matrix of order 6, there exist no such matrix that gives all nonzero element when

raised to power 6. Thus, for 6 × 6 matrices, the minimum fixed XOR is 3 to obtain

a 6-MDS matrix. In other words for being 6-MDS, the minimum number of nonzero

elements in a 6× 6 matrix is 6 + 3 = 9.

4.3 Study of DSI Matrices for the Construction of

Recursive MDS Matrices

In the structure M = PD1 +D2, if
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P =




0 0 0 . . . 0 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0
. . . 1 0



, D2 =




b1 0 0 . . . 0 0

0 b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . bn−1 0

0 0 0
. . . 0 0




(4.1)

and D1 is a nonsingular diagonal matrix, then M is called a DSI matrix (see Defini-

tion 2.36).

In [TTKS18, Theorem 2], authors proved that given a DSI matrix M of order n,

Mk contains at least one zero for 0 ≤ k < n and n ≥ 2. In Theorem 4.3, we prove this

by providing a combinatorial argument. To proceed, we require the following lemma.

Lemma 4.3. Let M = P + D2 be an n × n matrix, where D2 is a diagonal matrix

having zero in the n-th diagonal position and P is the permutation matrix defined

in 4.1. Then M r ≦ P r + P r−1D + P r−2D + · · · + PD + Dn=0 for r ≥ 2, where D

denotes some nonsingular diagonal matrix and Dj=0 be some diagonal matrix with a

0 at the j-th diagonal position.

Proof. We will prove this result using mathematical induction. We have

M2 = (P +D2)(P +D2)

= P 2 + PD2 +D2P +D2
2

≦ P 2 + PDn=0 +Dn=0P +Dn=0

≦ P 2 + PDn=0 + PDn−1=0 +Dn=0

Therefore,

M2 ≦ P 2 + PD +Dn=0.

Hence, the statement holds for r = 2. Let us assume that the statement holds for

r = k. Now, Mk+1 = Mk(P +D2). Therefore, we have

Mk+1 ≦ (P k + P k−1D + P k−2D + · · ·+ PD +Dn=0)(P +Dn=0)

≦ P k+1 + P kDDn=0 + P k−1DP + P k−1DDn=0 + P k−2DP+

P k−2DDn=0 + · · ·+ PDP + PDn=0 +Dn=0P +Dn=0

≦ P k+1 + P kDn=0 + P kD + P k−1Dn=0 + P k−1D + · · ·+
+ P 2D + PDn=0 + PDn−1=0 +Dn=0

= P k+1 + P k(Dn=0 +D) + P k−1(Dn=0 +D) + · · ·+ P (Dn=0 +Dn−1=0)

+Dn=0

≦ P k+1 + P kD + P k−1D + · · ·+ PD +Dn=0.
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Thus, the lemma.

Theorem 4.3. Given a DSI matrix M of order n ≥ 2, Mk is not MDS when k < n.

Proof. From Lemma 4.3, we have

|Mk| ≤ |P kD + P k−1D + · · ·+ PD +Dn=0|
≤ |P kD|+ |P k−1D|+ · · ·+ |PD|+ |Dn=0|.

Therefore, |Mk| ≤ |D|+ |D|+ · · ·+ |D|︸ ︷︷ ︸
k times

+|Dn=0| ≤ kn+ n− 1.

Now for k ≤ n−1, we have |Mk| ≤ (n−1)n+n−1 = n2−1. Hence, the result.

Recall that in the DSI matrix structure M = PD1 +D2 of order n, if D2 = diag(b1,

0, b3, . . . , 0, bn−1, 0) (when n is even) or D2 = diag(b1, 0, b3, . . . , bn−2, bn−1, 0) (when n

is odd), then M is called a sparse DSI matrix of order n.

Lemma 4.4. Suppose n ≥ 2. Let M = P +D2 be an n × n matrix, where D2 have

zeros in the i-th and (i mod n + 1)-th diagonal position and P is the permutation

matrix defined in 4.1. Then M r ≦ P r + P r−1D + P r−2D + · · · + PDi=0 + Di,i+1=0

for r ≥ 2, where D denotes some nonsingular diagonal matrix and Dj,k=0 be some

diagonal matrix with 0 at the j-th and k-th diagonal positions.

Proof. We will prove this result using mathematical induction. We simply denote

(i+ 1) for (i mod n+ 1). We have

M2 = (P +D2)(P +D2)

= P 2 + PD2 +D2P +D2
2

≦ P 2 + PDi,i+1=0 + PDi−1,i=0 +Di,i+1=0

= P 2 + P (Di,i+1=0 +Di−1,i=0) +Di,i+1=0.

Therefore,

M2 ≦ P 2 + PDi=0 +Di,i+1=0.

Hence, the statement is valid for r = 2. Let us assume that the statement holds for

r = k.

Now, Mk+1 = Mk(P +D2). Therefore, we obtain the following:

Mk+1 ≦ (P k + P k−1D + P k−2D + · · ·+ PDi=0 +Di,i+1=0)(P +Di,i+1=0)

≦ P k+1 + P kDi,i+1=0 + P k−1DP + P k−1DDi,i+1=0 + · · ·+
+ PDi=0P + PDi=0Di,i+1=0 +Di,i+1=0P +Di,i+1=0

≦ P k+1 + P kDi,i+1=0 + P kD + P k−1Di,i+1=0 + · · ·+
+ P 2Di−1=0 + PDi,i+1=0 + PDi−1,i=0 +Di,i+1=0
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= P k+1 + P k(Di,i+1=0 +D) + · · ·+ P (Di,i+1=0 +Di−1,i=0) +Di,i+1=0

≦ P k+1 + P kD + · · ·+ PDi=0 +Di,i+1=0.

Thus, the lemma.

Theorem 4.4. Let M = PD1 +D2 be an n× n matrix, where P be the permutation

matrix defined in 4.1, D1 is a nonsingular diagonal matrix and D2 has any two con-

secutive zero entries in the diagonal position, then Mk must contain a zero entry for

2 ≤ k ≤ n.

Proof. From Lemma 4.4, we have

Mk ≦ (P +D2)
k

≦ P k + P k−1D + P k−2D + · · ·+ PDi=0 +Di,i+1=0.

Therefore, we have

|Mk| ≤ |P k + P k−1D + P k−2D + · · ·+ PDi=0 +Di,i+1=0|
≤ |P k|+ |P k−1D|+ |P k−2D|+ · · ·+ |PDi=0|+ |Di,i+1=0|
≤ (k − 1)n+ (n− 1) + (n− 2)

= (k − 1)n+ 2n− 3.

When k ≤ n− 1, we have |Mk| ≤ (n− 2)n+ 2n− 3 = n2 − 3 < n2. It is easy to

check that P n = I, where I is the identity matrix. Thus, for k = n, we have

|Mn| ≤ |I + P n−1D + P n−2D + · · ·+ PDi=0 +Di,i+1=0|
≤ |I +Di,i+1=0|+ |P n−1D|+ |P n−2D|+ · · ·+ |PDi=0|.

Note that |I +Di,i+1=0| = n and |PDi=0| = n− 1. Hence,

|Mn| ≤ n+ n+ · · ·+ n︸ ︷︷ ︸
n− 1 times

+n− 1 = (n− 1)n+ (n− 1) = n2 − 1 < n2.

Hence, the result.

The authors in [TTKS18], could not find a sparse DSI matrix of order 8 which is

8-MDS, over the field F28 due to large search space. In the following lemma and

theorem, we have provided an equivalence criteria for checking a n × n sparse DSI

matrix to be a n-MDS. Through these results, we reduce the large search space into

a small search space and show that there exists no 8× 8 sparse DSI matrix over F28

which is 8-MDS.
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Lemma 4.5. Let a ∈ F∗
q and P is an n × n permutation matrix. Given any n × n

diagonal matrix D, there exists an n × n diagonal matrix D′ such that (P + D)k is

MDS if and only if (aP +D′)k is MDS for k ≥ 1.

Proof. Note that (P +D)k is MDS if and only if ak(P +D)k because a ̸= 0. Now we

have

ak(P +D)k = (a(P +D))k

= (aP + aD)k = (aP +D′)k,

where D′ = aD.

Note that in the above lemma as D′ = aD, D and D′ have nonzeros in the same

position.

Theorem 4.5. Let a1, a2, . . . , an ∈ F∗
q, D1 = diag(a1, a2, . . . , an) and

P =




0 0 0 . . . 0 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0
. . . 1 0



.

Given any diagonal matrix D2, there exists a ∈ F̄q satisfying an = a1a2 . . . an such

that (PD1 +D2)
k is MDS if and only if (aP +D′)k is MDS for r ≥ 1.

Proof. Consider a nonsingular diagonal matrix Dd = diag(d1, d2, . . . , dn). Let

Dd,a = diag(ad−1
2 , ad−1

3 , . . . , ad−1
n , ad−1

1 ). Then, we have

aP +D2 = aDdD
−1
d PDdD

−1
d +DdD2D

−1
d

= Dd(aD
−1
d PDd +D2)D

−1
d

= Dd(PDd,aDd +D2)D
−1
d

= Dd(PD1 +D2)D
−1
d ,

(4.2)

where D1 = Dd,aDd.

Now we will show that there exists Dd,a such that D1 = Dd,aDd. If D1 = Dd,aDd,
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we have

a1 = ad−1
2 d1

a2 = ad−1
3 d2

a3 = ad−1
4 d3

. . .

an−1 = ad−1
n dn−1

an = ad−1
1 dn.

Therefore, we have

d2 = aa−1
1 d1

d3 = a2a−1
1 a−1

2 d1

d4 = a3a−1
1 a−1

2 a−1
3 d1

. . .

dn−1 = an−2a−1
1 a−1

2 a−1
3 . . . a−1

n−2d1

dn = an−1a−1
1 a−1

2 a−1
3 . . . a−1

n−2a
−1
n−1d1

d1 = an(a−1
1 a−1

2 a−1
3 . . . a−1

n−2a
−1
n )d1.

Thus, an = a1a2a3 . . . an, for a1, a2, . . . , an ∈ F∗
q and such a exists in F̄q. Therefore,

from Equation 4.2, we can say that (PD1 +D2)
k is MDS if and only if (aP +D2)

k is

MDS.

Corollary 4.1. Let ai ∈ F∗
q for 1 ≤ i ≤ n and a ∈ F̄q satisfying an = a1a2 . . . an.

Let bj ∈ Fq and b′j = a−1bj for 1 ≤ j ≤ n − 1. Suppose M = DSI(a1, a2, . . . ,

an; b1, b2, . . . , bn−1) and M1 = DSI(1, 1, . . . , 1; b′1, b
′
2, . . . , b

′
n−1). Then the matrix Mk

is MDS if and only if the matrix Mk
1 is MDS for r ≥ 1.

Proof. Let M2 = DSI(a, a, . . . , a; b1, b2, . . . , bn−1). From Theorem 4.5, Mk is MDS if

and only if Mk
2 is MDS for r ≥ 1. From Lemma 4.5, Mk

2 is MDS if and only if Mk
1 is

MDS. Hence, the corollary.

4.3.1 Non-existence of 8-MDS sparse DSI matrix of order 8

over F28

We will now prove that there does not exist any 8-MDS sparse DSI matrix of order

8 over the field F28 . From Corollary 4.1, any sparse DSI matrix M1 = DSI(a1, a2,

a3, a4, a5, a6, a7, a8; b
′
1, 0, b

′
3, 0, b

′
5, 0, b

′
7, 0) over F28 is permutation equivalent to a

sparse DSI matrix M = DSI(1, 1, 1, 1, 1, 1, 1, 1; b1, 0, b3, 0, b5, 0, b7, 0) where bi = a−1b′i

for i = 1, 3, 5, 7 and an = a1a2 . . . a8.
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Since x → x8 is an isomorphism over F28 , such a exists in the field F28 . There-

fore, it is sufficient to check only those M whose bi’s belong to F28 which has

(28)4 = 232 choices. Otherwise, the total choices would be (28)12 = 296 consider-

ing a1, a2, · · · , a8, b′1, b′3, b′5, b′7 all belong to F28 . This was perhaps the reason why

the authors in [TTKS18] could not provide the answer for either the possibility or

impossibility of 8-MDS sparse DSI matrix of order 8 over F28 .

After reducing the search space from 296 candidates to 232 candidates only, we

experimentally observed that M8 over a field of characteristic 2 will not be MDS if

the following conditions are satisfied.

1. If b1 + b3 + b5 + b7 = 0

2. If b1b3 + b1b5 + b1b7 + b3b5 + b3b7 + b5b7 = 0

3. If b1b3b5 + b1b3b7 + b1b5b7 + b3b5b7 = 0

4. If b1b3b5b7 = 0

5. If b1 = b3 or b1 = b7 or b3 = b5 or b5 = b7.

One can get the above conditions by (i) looking at some of the entries of M8 and

M−8 and (ii) computing the determinants of some of the 2 × 2 matrices in M8 and

M−8. We want to emphasize that these are not the only conditions we got from (i)

and (ii); these are only a few. One can get many more such conditions and can further

enhance the search time. We considered only five because the first four conditions

are symmetric in b1, b3, b5 and b7 and the fifth one appears very simple.

We ran an experiment over all choices of b1, b3, b5, b7 ∈ F28 except which satisfy

at least one of the above five conditions. Our experiment could not find any 8-MDS

matrix of order 8. Thus, we conclude that there does not exist any sparse DSI matrix

of order 8 over the field F28 which is 8-MDS.

Remark 4.5. An 8-MDS sparse DSI matrix of order 8 exists over the higher order

field. For example, consider the matrix

M =




1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 α 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 α12 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 α30 0

0 0 0 0 0 0 α30 0



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over F210, where α is a root of the constructing polynomial x10 + x3 + 1. It can be

verified that M8 is MDS.

4.4 Conclusion

This chapter provides a systematic study of low fixed XOR matrices, including DSI

and sparse DSI matrices, and provides some impossibility results on the construction

of recursive MDS matrices from them. Our investigations in this chapter open up

possibilities for future work, such as:

1. Although we have provided an upper bound on the number of nonzero elements

in 1-XOR matrices of order n when raised to power n, we have not found similar

results for t-XOR matrices with t > 1. Therefore, future work can explore

finding an upper bound on the number of nonzero elements in t-XOR matrices

of order n when raised to power n.

2. There are many direct constructions of recursive MDS matrices from companion

matrices. So it can be a problem for further research to find a direct construction

of recursive MDS matrices from sparse DSI matrices.
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5
Design and Analysis of Recursive MDS Matrices

Using DLS Matrices

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Construction of Recursive MDS Matrices from DLS Ma-

trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Construction of Recursive MDS Matrices from GDLS

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1 Introduction

Efficient implementation is crucial for lightweight cryptographic primitives, but strong

diffusion power is also essential for security. This often means a trade-off between

the two. To address this challenge, recursive MDS matrices have been proposed. A

matrix B is considered a recursive MDS matrix if the matrix Bq is MDS for some

positive integer q. The implementation of Bq can be accomplished by iteratively

executing the implementation of B, necessitating q clock cycles. One advantageous

aspect of such matrices is their suitability for lightweight implementations, as the

hardware cost relies on the matrix B rather than the MDS matrix Bq.

The utilization of such matrices derived from companion matrices has been

observed in the PHOTON hash function family [GPP11] and the LED block ci-

pher [GPPR11]. Later on, several sparse matrix structures are proposed, in-
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cluding Generalized-Feistel-Structure (GFS) [WWW13], Diagonal-Serial-Invertible

(DSI) [TTKS18] and sparse DSI [TTKS18] matrices.

This chapter introduces a new class of sparse matrices called Diagonal-like sparse

(DLS) matrices. It establishes that an n-MDS DLS matrix of order n requires a fixed

XOR value (K) of at least
⌈
n
2

⌉
. Furthermore, it demonstrates that an n-MDS DLS

matrix over F2r with K =
⌈
n
2

⌉
is a permutation similar to some n-MDS sparse DSI

matrix. This implies that the existence of n-MDS DLS matrices with the lowest fixed

XOR value is equivalent to the existence of n-MDS sparse DSI matrices over F2r and

vice versa.

In addition, this chapter introduces another class of sparse matrices called gen-

eralized DLS (GDLS) matrices that generalize the structure of DLS matrices. Using

these matrices, the chapter proposes some lightweight recursive MDS matrices of or-

ders 4, 5, 6, and 7, which can be implemented with 22, 30, 31, and 45 XORs over F28 ,

respectively. The results match the best known lightweight recursive MDS matrices

for orders 4 and 6, and outperform the best known matrices for orders 5 and 7. Addi-

tionally, a 4-MDS GDLS matrix over F24 with a XOR count of 10 is proposed, which

meets the best known result. In addition to searching over F24 and F28 , the chapter

provides some efficient n-MDS GDLS matrices over GL(8,F2) for orders n = 4, 5, and

6. Table 5.1 compares the presented results with the known results.

Outline: The rest of this chapter is structured as follows: Section 5.2 discusses

DLS matrices and provides theoretical results to limit the search space for finding n-

MDS DLS matrices of order n. Section 5.3 proposes some lightweight recursive MDS

matrices of orders 4, 5, 6, and 7 using GDLS matrices. Finally, Section 5.4 concludes

the chapter and explores potential avenues for future research.

5.2 Construction of Recursive MDS Matrices from

DLS Matrices

An MDS matrix must have all its entries nonzero. Therefore, any n×n matrix cannot

be MDS if the number of nonzero entries is less than n2. In this section, we are using

this fact to obtain some interesting results.
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Table 5.1: Comparison of n-MDS matrices of order n.

Order n Input Matrix Type Field/Ring XOR References
4 4-bit Sparse DSI F24/0x13 10 [TTKS18]
4 4-bit GFS GL(4,F2) 10 [WWW13]
4 4-bit Companion F24/0x13 15 [KPPY14]
4 4-bit Companion GL(4,F2) 15 [WWW13]
4 4-bit GDLS F24/0x13 10 Section 5.3.1
4 8-bit Sparse DSI [F24/0x13]

2 2× 10 [TTKS18]
4 8-bit GFS GL(8,F2) 18 [WWW13]
4 8-bit Companion F24/0x11d 33 [KPPY14]
4 8-bit Companion GL(8,F2) 27 [WWW13]
4 8-bit Sparse DSI GL(8,F2) 18 [LSS+20]
4 8-bit GDLS F28/0x1c3 22 Remark 5.10
4 8-bit GDLS GL(8,F2) 18 Example 5.2
5 4-bit Companion GL(4,F2) 19 [WWW13]
5 4-bit Companion F24/0x13 18 [GPP11]
5 4-bit Companion F24/0x13 18 [TTKS18]
5 4-bit GDLS F24/0x13 26 Section 5.3.2
5 8-bit Companion GL(8,F2) 35 [WWW13]
5 8-bit Sparse DSI F28/0x1c3 31 [TTKS18]
5 8-bit Sparse DSI GL(8,F2) 30 [LSS+20]
5 8-bit GDLS F28/0x1c3 30 Section 5.3.2
5 8-bit GDLS GL(8,F2) 28 Remark 5.12
6 4-bit Companion GL(4,F2) 25 [WWW13]
6 4-bit Companion F24/0x13 28 [GPP11]
6 4-bit Companion F24/0x13 25 [TTKS18]
6 8-bit Companion GL(8,F2) 45 [WWW13]
6 8-bit Companion F28/0x11b 57 [GPP11]
6 8-bit Sparse DSI F28/0x1c3 31 [TTKS18]
6 8-bit GDLS F28/0x1c3 31 Section 5.3.3
6 8-bit GDLS GL(8,F2) 30 Remark 5.13
7 4-bit Companion GL(4,F2) 30 [WWW13]
7 4-bit Companion F24/0x13 31 [GPP11]
7 4-bit Companion F24/0x13 30 [TTKS18]
7 8-bit Companion GL(8,F2) 54 [WWW13]
7 8-bit Sparse DSI F28/0x1c3 54 [TTKS18]
7 8-bit Sparse DSI F28/0x1c3 47 [KSV19]
7 8-bit GDLS F28/0x1c3 45 Section 5.3.4
8 4-bit Companion GL(4,F2) 37 [WWW13]
8 4-bit Companion F24/0x13 47 [GPP11]
8 4-bit Companion F24/0x13 36 [TTKS18]
8 4-bit Companion F24/0x13 41 [KPPY14]
8 8-bit Companion GL(8,F2) 65 [WWW13]
8 8-bit Companion [F24/0x13]

2 2× 36 [TTKS18]
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Definition 5.1. (DLS matrix) Let ρ = [i1, i2, i3, . . . , in] be a permutation such

that ik ̸= k for k = 1, 2, . . . , n, D1 be a nonsingular diagonal matrix and D2 be a

diagonal matrix (may be singular). Then we will call the matrix

B = PD1 +D2

as the diagonal-like sparse (DLS) matrix, where P is the permutation matrix of order

n related to the permutation ρ. The matrices denoted as DLS(ρ;D1, D2).

Example 5.1. An example of a DLS matrix of order 4 is given by

DLS(ρ;D1, D2) = PD1 +D2 =




0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0



·




a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d



+




e 0 0 0

0 0 0 0

0 0 f 0

0 0 0 0




=




e 0 0 d

0 0 c 0

a 0 f 0

0 b 0 0



,

where P is the permutation matrix related to ρ = [3, 4, 2, 1] and D1=diag(a, b, c, d)

and D2 = diag(e, 0, f, 0).

Remark 5.1. Note that the DSI matrix, as defined in Definition 2.36, is a particular

type of DLS matrix. More specifically, for ρ = [2, 3, 4, . . . , n−1, n, 1] and a nonsingular

diagonal matrix D1, if D2 = diag(b1, b2, . . . , bn−1, 0) then we call DLS(ρ;D1, D2) a

DSI matrix and if D2 = diag(b1, 0, b3, . . . , 0, bn−1, 0) (when n is even) or

D2 = diag(b1, 0, b3, . . . , bn−2, bn−1, 0) (when n is odd), then DLS(ρ;D1, D2) is called

a sparse DSI matrix of order n.

In Theorem 5.1, we discuss the minimum power required for a DLS matrix of order

n to be an MDS. To establish this result, we require the following lemma. The proof

of the lemma will follow a similar approach to the proof of Lemma 4.3. For brevity,

we state the result without providing a proof.

Lemma 5.1. Let M = P + D2 be an n × n matrix, where D2 is a diagonal matrix

(may be singular) and P is a permutation matrix. Then

M r ≦ P r + P r−1D + P r−2D + . . .+ PD +D2
2
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for r ≥ 2, where D denotes some nonsingular diagonal matrix.

Theorem 5.1. Given a DLS matrix M = DLS(ρ;D1, D2) of order n ≥ 2, for k <

n − 1, the number of nonzero elements in Mk is less than n2 and hence Mk is not

MDS.

Proof. We have M = DLS(ρ;D1, D2) ≦ P +D2, where P is the permutation matrix

corresponding to ρ. From Lemma 5.1, we have

|Mk| ≤ |P k + P k−1D + . . .+ PD +D2
2|

≤ |P kD|+ |P k−1D|+ . . .+ |PD|+D2
2|.

(5.1)

Since power of a permutation matrix is again a permutation matrix, we have

|Mk| ≤ |D|+ |D|+ . . .+ |D|︸ ︷︷ ︸
k times

+|D2
2| ≤ kn+ n. (5.2)

Now for k < n− 1, we have

|Mk| < (n− 1)n+ n = n2 =⇒ |Mk| < n2.

Hence, Mk is not MDS for k < n− 1.

Remark 5.2. From the above theorem, we know that for a DLS matrix M =

DLS(ρ;D1, D2) of order n ≥ 2, Mk is not an MDS for k < n − 1. However, there

exist k-MDS DLS matrix for k = n − 1. For example, consider the DLS matrix

M = DLS(ρ;D1, D2) of order 4 with ρ = [4, 1, 2, 3], D1 = diag(α2, α2, α2, 1) and

D2 = diag(α2, 1, α2, 1), where α is a primitive element of F24 with α4 + α+ 1 = 0. It

can be checked that the matrix

M = DLS(ρ;D1, D2)

=




α2 α2 0 0

0 1 α2 0

0 0 α2 1

α2 0 0 1




is 3-MDS.

We will now examine the influence of the permutation ρ on a DLS matrix

DLS(ρ;D1, D2) in the construction of recursive MDS matrices. To accomplish this,

we will utilize the following lemma.
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Lemma 5.2. If ρ is not an n-cycle for a DLS matrix M = DLS(ρ;D1, D2) of order

n ≥ 2, then Mn−1 and Mn contain at most n2− 2n and n2− n− 2 nonzero elements

respectively.

Proof. If ρ is not an n-cycle, then it is a product of disjoint cycles in Sn. Suppose that

ρ = ρ1ρ2 . . . ρv, where ρi is a ri-cycle in Sn for i = 1, 2, . . . , v and v ∈
{
2, 3, . . . ,

⌊
n
2

⌋}
.

But by the definition of the DLS matrix, ρ has no fixed points, we have 2 ≤ ri ≤ n−2

and r1 + r2 + · · ·+ rv = n.

Now from Equation 6.2, we have |Mn−1| ≤ n2 and |Mn| ≤ n2 + n. However, we

can eliminate some counting of nonzero elements based on the following conditions:

1. For the permutation matrix P related to ρ, P riD has ri nonzero elements in the

diagonal. Also, D has n nonzero elements in the diagonal.

2. P ri+1D and PD have ri nonzero elements in the same positions.

3. Since v ≤
⌊
n
2

⌋
, at least two multiples of some ri occurs in the set {2, 3, · · · , n}.

Thus, P riD and P 2riD have at least ri nonzero elements in the same diagonal

position.

Therefore, we have

|Mn−1| ≤ n2 − 2 · (r1 + r2 + · · ·+ rv) ≤ n2 − 2n

and |Mn| ≤ n2 + n− 2 · (r1 + r2 + · · ·+ rv)− ri ≤ n2 − n− 2.

Hence, the result.

Corollary 5.1. For a DLS matrix M = DLS(ρ;D1, D2) of order n ≥ 2, if ρ is not

an n-cycle, then Mk is not MDS for k ≤ n.

Remark 5.3. If ρ is not an n-cycle, then by the Condition 1 of the above proof and

Equation 5.1, we can say |Mn−2| < n2 − n.

To this point, we have ignored the possibility that the diagonal of D2 contains zero

entries. We now look at the case in which D2 is singular, i.e., its diagonal contains at

least one zero.

Lemma 5.3. In a DLS matrix M = DLS(ρ1;D1, D2) of order n ≥ 2, if D2 is

singular, then Mk cannot be MDS for k ≤ n− 1, even if ρ is n-cycle.
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Proof. If D2 is singular, having at least one zero in the diagonal then from Equa-

tion 5.1 we have,

|Mk| ≤ |P kD|+ |P k−1D|+ . . .+ |PD|+ |Di=0|
≤ n+ n+ . . .+ n︸ ︷︷ ︸

k times

+(n− 1) = kn+ n− 1.

Where Di=0 be some diagonal matrix with a zero at the i-th diagonal position for

some i ∈ {1, 2, . . . , n}. Thus, for k ≤ n− 1, we have |Mk| ≤ n2 − 1. Therefore, if D2

is singular, a DLS matrix of order n ≥ 2, cannot be k-MDS for k ≤ n− 1.

Remark 5.4. When D2 is singular, a DLS matrix M = DLS(ρ;D1, D2) of order

n ≥ 2, can be a k-MDS for k = n. For example, consider the DLS matrix M =

DLS(ρ;D1, D2) of order 4 with ρ = [4, 1, 2, 3], D1 = diag(α2, α2, α2, 1) and D2 =

diag(1, 0, α, 0), where α is a primitive element of F24 with α4 + α + 1 = 0. It can be

verified that the matrix

M = DLS(ρ;D1, D2)

=




1 α2 0 0

0 0 α2 0

0 0 α 1

α2 0 0 0




is 4-MDS.

If D2 is nonsingular, then the fixed XOR count (see Section 2.6.1) for a DLS matrix is

n. Whereas for the companion matrix, DSI matrix and sparse DSI matrix, the fixed

XOR is n − 1, n − 1, and
⌈
n
2

⌉
respectively. However, we can reduce the number of

nonzero elements for D2 in the DLS matrices to get a recursive MDS matrix from

this. In this context, we have proved in Theorem 5.2 that in an n-MDS DLS matrix

DLS(ρ;D1, D2) of order n, D2 must have at least
⌈
n
2

⌉
nonzero elements. Thus, for

an n-MDS DLS matrix of order n, the fixed XOR can be reduced to
⌈
n
2

⌉
.

Lemma 5.4. Let M = P + D2 be an n × n matrix, where D2 is a diagonal matrix

having at most t =
⌈
n
2

⌉
− 1 nonzero elements and P is permutation matrix. Then

M r ≦ P r + P r−1D + P r−2D + . . .+ PDi=0 +D{t}=0

for r ≥ 2, where D denotes some nonsingular diagonal matrix, Di=0 be some diagonal

matrix with a zero at the i-th diagonal position for some i ∈ {1, 2, . . . , n} and D{t}=0

be some diagonal matrix with t many zeros in the diagonal.
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Proof. We will prove this result using mathematical induction. We have

M2 = (P +D2)(P +D2) = P 2 + PD2 +D2P +D2
2.

By Lemma 2.10, we have D{t}=0P = PD
′

{t}=0 for some diagonal matrix D
′

{t}=0 with

t many zeros in the diagonal and so D{t}=0 + D
′

{t}=0 has at least one zero in the

diagonal. Therefore,

M2 ≦ P 2 + PD{t}=0 + PD
′

{t}=0 +D{t}=0 ≦ P 2 + PDi=0 +D{t}=0.

Therefore, the statement holds for r = 2. Let us assume that the statement is true

for r = k.

Now, Mk+1 = Mk(P +D2). Therefore, we have

Mk+1 ≦ (P k + P k−1D + P k−2D + . . .+ PDi=0 +D{t}=0)(P +D{t}=0)

≦ P k+1 + P kD{t}=0 + P k−1DP + P k−1DD{t}=0 + . . .+

+ PDi=0P + PDi=0D{t}=0 +D{t}=0P +D{t}=0

≦ P k+1 + P kD{t}=0 + P kD + P k−1D{t}=0 + . . .+ P 2D′
j=0

+ PD{t}=0 + PD
′

{t}=0 +D{t}=0,

where Di=0P = PD′
j=0 for some D′

j=0 and D{t}=0P = PD
′

{t}=0 for some diagonal

matrix D
′

{t}=0 with t many zeros in the diagonal. Thus, we have

Mk+1 ≦ P k+1 + P k(D{t}=0 +D) + . . .+ P (D{t}=0 +D
′

{t}=0) +D{t}=0

≦ P k+1 + P kD + . . .+ PDi=0 +D{t}=0.

This completes the proof of the lemma.

Remark 5.5. If D2 has t =
⌈
n
2

⌉
nonzero elements then D{t}=0 + D

′

{t}=0 may be

nonsingular. For example, let ρ = [2, 4, 1, 3] and D = diag(a1, 0, 0, a4), where a1, a4 ∈
F∗
2r . Then we have DP = PD

′
, where D

′
= diag(0, a4, a1, 0). Thus, D + D

′
=

diag(a1, a4, a1, a4), which is nonsingular. Hence, if D2 has t =
⌈
n
2

⌉
nonzero elements,

then Lemma 5.4 will be modified as follows:

M r ≦ P r + P r−1D + P r−2D + . . .+ PD +D{t}=0

for r ≥ 2, where D denotes some nonsingular diagonal matrix.
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Theorem 5.2. For an n-MDS DLS matrix DLS(ρ;D1, D2) of order n, D2 must have

at least
⌈
n
2

⌉
nonzero elements and ρ will be an n-cycle.

Proof. Let M = DLS(ρ;D1, D2) and D2 has at most t =
⌈
n
2

⌉
− 1 nonzero elements.

We have M ≦ P +D2, where P is the permutation matrix corresponding to ρ. From

Lemma 5.4, we have

Mn ≦ (P +D2)
n ≦ P n + P n−1D + P n−2D + . . .+ PDi=0 +D{t}=0.

Therefore, we obtain

|Mn| ≤ |P n + P n−1D + P n−2D + . . .+ PDi=0 +D{t}=0|
≤ |P n|+ |P n−1D|+ |P n−2D|+ . . .+ |PDi=0|+ |D{t}=0|.

Case 1: ρ is an n-cycle of Sn.

Then we have P n = I, where I is the identity matrix of order n. Consequently, we

have

|Mn| ≤ |I + P n−1D + P n−2D + . . .+ PDi=0 +D{t}=0|
≤ |I +D{t}=0|+ |P n−1D|+ |P n−2D|+ . . .+ |PDi=0|.

Note that |I +D{t}=0| = n and |PDi=0| = n− 1. Hence,

|Mn| ≤ n+ n+ . . .+ n︸ ︷︷ ︸
n− 1 times

+(n− 1)

= (n− 1)n+ (n− 1) = n2 − 1 < n2.

Now, if D2 has
⌈
n
2

⌉
nonzero elements, then by Remark 5.5, we have

|Mn| ≤ |I + P n−1D + P n−2D + . . .+ PD +D{t}=0|
≤ |I +D{t}=0|+ |P n−1D|+ |P n−2D|+ . . .+ |PD|
= n · n = n2.

Thus, if D2 has
⌈
n
2

⌉
nonzero elements, then DLS(ρ;D1, D2) of order n can poten-

tially be n-MDS.

Case 2: ρ is not an n-cycle.

Then, from Corollary 5.1, we know that M cannot be k-MDS for k ≤ n, even if D2

has all n nonzero elements in its diagonal.

Therefore, DLS(ρ;D1, D2) of order n can be n-MDS only when D2 has at least⌈
n
2

⌉
nonzero elements and ρ is an n-cycle.
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5.2.1 Equivalence classes of DLS matrices to construct re-

cursive MDS matrices

If the DLS matrix DLS(ρ;D1, D2) of order n has fixed XOR K = l, the diagonal

of D2 has l nonzero elements. Therefore, there are nCl possible arrangements for

distributing these l nonzero elements along the diagonal of D2.

Also, in a DLS matrix DLS(ρ;D1, D2), the permutation ρ = [i1, i2, . . . , in] must

satisfy ik ̸= k for k = 1, 2, . . . , n. In other words, ρ represents a derangement of a

set of n elements. Therefore, there are D(n)1 possible choices for ρ in a DLS matrix,

where D(n) denotes the number of derangements of a set of n elements [RT09].

As a result, the search space for finding a recursive MDS matrix from the DLS

matrices over the field F2r is given by D(n) · nCl · (2r)(n+l). For example, the search

space for finding a 6-MDS matrix from a DLS matrix of order 6, with K = 3, over

the field F24 is 265 · 20 · 236 ≈ 248.

However, we have reduced the search space drastically by defining some equiv-

alence classes of DLS matrices to construct recursive MDS matrices. Finally, we

show that the existence of n-MDS DLS matrices over F2r with K =
⌈
n
2

⌉
implies the

existence of n-MDS sparse DSI matrices over F2r , and vice versa.

Theorem 5.3. For a1, a2, . . . , an, a
′
1, a

′
2, . . . , a

′
n ∈ F∗

2r let a =
n∏

i=1

ai =
n∏

i=1

a′i for

some a ∈ F∗
2r . Then for any diagonal matrix D2 over F2r , the DLS matrix

M = DLS(ρ;D1, D2) of order n is n-MDS if and only if M ′ = DLS(ρ;D′
1, D2)

is n-MDS, where D1 = diag(a1, a2, . . . , an) and D′
1 = diag(a′1, a

′
2, . . . , a

′
n).

Proof. Suppose ρ = [i1, i2, i3, . . . , in] and P is the permutation matrix corre-

sponding to ρ. Now for any nonsingular diagonal matrix D = diag(d1, d2, . . . , dn), we

have

DMD−1 = D(PD1 +D2)D
−1 = DPD1D

−1 +D2.

Now by Lemma 2.10, we have DP = PD′ where D′ = diag(di1 , di2 , . . . , din). Thus,

we have

DMD−1 = P (D′D1D
−1) +D2.

If D′D1D
−1 = D′

1, then we have

DMD−1 = PD′
1 +D2 = M ′. (5.3)

1The formula for Dn is given by Dn = (n− 1)[Dn−1 +Dn−2] with initial conditions D1 = 1 and
D0 = 0. For example, the values of D(n) are 1, 2, 9, 44, and 265 for n = 2, 3, 4, 5, and 6, respectively.
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Now if D′D1D
−1 = D′

1, we have D′D1 = D′
1D. Therefore, we have

a1di1 = a′1d1

a2di2 = a′2d2
...

andin = a′ndn





=⇒





d1 = a1di1(a
′
1)

−1

d2 = a2di2(a
′
2)

−1

...

dn = andin(a
′
n)

−1.

(5.4)

From Corollary 5.1, we know that a DLS matrix of order n can be n-MDS only

when ρ is n-cycle. Thus, from above, we have

a1a2 . . . an = a′1a
′
2 . . . a

′
n = a.

Now choosing d1 = 1, from Equation 5.4, we get the values of other dj’s in terms

of ai’s and a′i’s for j = 2, 3, . . . , n. Also, from Equation 5.3, we can say that M is

n-MDS if and only if M
′
is n-MDS.

Corollary 5.2. For a1, a2, . . . , an ∈ F∗
2r let a =

n∏
i=1

ai for some a ∈ F∗
2r . Then for any

diagonal matrix D2 over F2r , the DLS matrix M = DLS(ρ;D1, D2) of order n is n-

MDS if and only if M
′
= DLS(ρ;D

′
1, D2) is n-MDS, where D1 = diag(a1, a2, . . . , an)

and D
′
1 = diag(a, 1, 1, . . . , 1).

Remark 5.6. For any c ∈ F∗
2r , M is n-MDS implies cM is also n-MDS. Thus,

if ρ is an n-cycle permutation, M = DLS(ρ;D1, D2) is diagonal similar to M ′ =

DLS(ρ;D′
1, D

′
2), where D1 = diag(a1, a2, . . . , an), D

′
1 = diag(cna, 1, 1, . . . , 1), D′

2 =

c ·D2 and a =
∏n

i=1 ai. We know that x→ x2l is an isomorphism over F2r . So when

n = 2l, there exist an element c = a−1/n ∈ F∗
2r . Hence, when n = 2l, we can say

that M is diagonal similar to M ′′ = DLS(ρ;D′′
1 , D

′′
2), where D′′

1 = diag(1, 1, 1, . . . , 1)

and D′′
2 is some diagonal matrix. Therefore, M is n-MDS if and only if M ′′ is also

n-MDS.

In [KSV19, Theorem 8], authors proved the same result as Theorem 5.3 and Corol-

lary 5.2 for a fixed permutation ρ = [2, 3, 4, . . . , n − 1, n, 1]. However, we have seen

that the result holds for any n-cycle permutation.

Lemma 5.5. Let M1 = DLS(ρ1;D1, D2) be a DLS matrix of order n and ρ2 ∈ Sn is

conjugate with ρ1, then M1 is n-MDS if and only if M2 = DLS(ρ2;D
′
1, D

′
2) is n-MDS,

where D
′
1 and D

′
2 are some diagonal matrices.

Proof. Since ρ1 and ρ2 are conjugate, we have σρ1σ
−1 = ρ2, for some σ ∈ Sn. Let

P1, P2 and P be the permutation matrices related to ρ1, ρ2 and σ respectively. Then
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we have

PM1P
−1 = P (P1D1 +D2)P

−1 = PP1D1P
−1 + PD2P

−1

= PP1P
−1D

′

1 + PP−1D
′

2,

where D1P
−1 = P−1D

′
1 and D2P

−1 = P−1D
′
2 for some diagonal matrices D

′
1 and D

′
2.

Thus, we have PM1P
−1 = P2D

′
1+D

′
2 = M2. Since PM1P

−1 = M2, from Corollary 2.9

we can say that M1 is n-MDS if and only if M2 is n-MDS.

Remark 5.7. We know that a DLS matrix DLS(ρ1;D1, D2) can be n-MDS only

when ρ is an n-cycle. Also, the n-cycles in Sn are conjugate to each other. Thus, for

finding the n-MDS DLS matrices, we need to check only for the DLS matrices related

to a particular n-cycle ρ.

Now consider D(n,F2r) to be the set of all DLS matrices DLS(ρ;D1, D2) of order n,

with fixed XOR of k, over the field F2r and define

D′
(n,F2r) = {B ∈ D(n,F2r) : B = P

′
D

′

1 +D
′

2},

where P
′
is the permutation matrix related to the n length cycle [2, 3, 4, . . . , n −

1, n, 1]2, D
′
1 = diag(a, 1, 1, . . . , 1) and D

′
2 is a diagonal matrix containing k nonzero

elements.

5.2.2 Equivalence of DLS matrices with sparse DSI matrices

In this section, we establish that the existence of n-MDS DLS matrices with K = ⌈n
2
⌉

over F2r is equivalent to the existence of n-MDS sparse DSI matrices over F2r .

Based on Corollary 5.2 and Remark 5.7, we can conclude that searching for n-

MDS matrices within the set D(n,F2r), it suffices to focus on searching n-MDS ma-

trices within the set D′(n,F2r). For the fixed XOR k, D2 has nCk many choices

of arrangements of the k nonzero elements. However, from Theorem 4.4, we know

that if ρ = [2, 3, 4, . . . , n − 1, n, 1] and D2 has any two consecutive zero entries 3,

B = PD1 + D2 must contain a zero element when raised to power n i.e. B cannot

be n-MDS, where P is the permutation matrix of order n related to the permutation

ρ and D1 is a nonsingular matrix. For the n-MDS DLS matrix DLS(ρ;D1, D2) with

ρ = [2, 3, 4, . . . , n − 1, n, 1] and K =
⌈
n
2

⌉
, there are n and 2 eligible arrangements

2By Remark 5.7, any n length cycle can be chosen for the set D′
(n,F2r ).

3Note that here the first and n-th diagonal elements are also considered as consecutive entries.
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Table 5.2: n-MDS DLS matrix of order n over the field F2r with K =
⌈
n
2

⌉

(“DNE” stands for does not exist).

Order n over F24 over F25 over F26 over F27 over F28 over F29

4 Exists Exists Exists Exists Exists Exists
5 DNE Exists Exists Exists Exists Exists
6 DNE DNE DNE Exists Exists Exists
7 DNE DNE DNE DNE Exists Exists
8 DNE DNE DNE DNE DNE Exists

of the nonzero elements in D2 when n is odd and even respectively. However, we

show that for all such eligible arrangements, DLS(ρ;D1, D2) is permutation similar

to some sparse DSI matrix.

Consider D′′
be the set of all DLS matrices DLS(ρ;D1, D2) with ρ = [2, 3, 4, . . . ,

n − 1, n, 1], K =
⌈
n
2

⌉
, and the eligible arrangements of nonzero elements in D2. It

can be observed that any DLS matrix B ∈ D′′
are permutation similar to some sparse

DSI matrix of order n. More specifically, we have

Q ·DLS(ρ;D1, D2) ·Q−1 = Ds,

where Q is the permutation matrix of order n related to the permutation σ = ρk for

some k = 1, 2, . . . , n and Ds denotes some sparse DSI matrix of order n.

Therefore, any DLS matrices B ∈ D′′
is n-MDS over F2r implies that there is an

n-MDS sparse DSI matrix over F2r . Hence, by Remark 5.7 and Table 4 of [KSV19], we

have the results for the existence of n-MDS DLS matrices over F2r for n = 4, 5, 6, 7, 8

listed in Table 5.2.

Non-existence of n-MDS DLS matrices over F24 for⌈
n
2

⌉
< K ≤ n − 1: Companion matrices of order n have K = n − 1, whereas

DLS matrices can be n-MDS if K =
⌈
n
2

⌉
. In [TTKS18], the authors have provided

some examples of efficient companion matrices that are n-MDS over the field F24 for

n = 5, 6, 7, and 8. But from Table 5.2, we can see that there are no n-MDS DLS

matrices with K =
⌈
n
2

⌉
over the field F24 for n = 5, 6, 7, and 8. Next, we increase

the value of K from
⌈
n
2

⌉
to n − 1, to check whether there are n-MDS DLS matrices

over the field F24 . For this, we reduce the search space using Corollary 5.2 and Re-

mark 5.7 and then perform an exhaustive search in the restricted domain. We observe

that there are no n-MDS DLS matrices over the field F24 for n = 5, 6, 7, and 8 with

K =
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, . . . , n− 1.
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5.3 Construction of Recursive MDS Matrices from

GDLS Matrices

In this section, we extend the Definition 5.1 to propose a class of sparse matrices

called as GDLS matrices. Then we propose some lightweight recursive MDS matrices

of orders 4, 5, 6, and 7, using GDLS matrices.

Definition 5.2. (GDLS matrix) Consider two permutations ρ1 = [i1, i2, i3, . . . , in]

and ρ2 = [j1, j2, j3, . . . , jn] such that ik ̸= jk for k = 1, 2, . . . , n. Let D1 be

a nonsingular diagonal matrix and D2 be a diagonal matrix (may be singular). Then

we will call the matrix

B = P1D1 + P2D2

as the generalized DLS (GDLS) matrix, where P1 and P2 are the permutation matrices

of order n related to the permutation ρ1 and ρ2 respectively. We will denote these

matrices as GDLS(ρ1, ρ2;D1, D2).

Remark 5.8. Note that GDLS matrix is row permuted matrix of DLS matrix. More

specifically, we have

GDLS(ρ1, ρ2;D1, D2) = P2(P
−1
2 P1D1 +D2) = P2 ·DLS(ρ;D1, D2)

where P = P−1
2 P1 is the permutation matrix of order n related to the permutation

ρ = ρ−1
2 ρ1. Thus, GDLS(ρ1, ρ2;D1, D2) is row permuted DLS(ρ−1

2 ρ1;D1, D2).

Remark 5.9. However, a GDLS(ρ1, ρ2;D1, D2) matrix of order n is n-MDS does

not imply that DLS(ρ−1
2 ρ1;D1, D2) is n-MDS. For ρ1 = [2, 3, 4, 1], ρ2 = [3, 2, 1, 4] and

D1 = diag(1, 1, 1, α2), D2 = diag(α−1, 0, α−1, 0), we have the 4-MDS GDLS matrix

M = GDLS(ρ1, ρ2;D1, D2) = P1D1 + P2D2

=




0 0 α−1 α2

1 0 0 0

α−1 1 0 0

0 0 1 0



=




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1







α−1 1 0 0

1 0 0 0

0 0 α−1 α2

0 0 1 0




= P2DLS(ρ−1
2 ρ1;D1, D2),

where ρ−1
2 ρ1 = [2, 1, 4, 3], α is a primitive element of F24 with α4 + α + 1 = 0. But

the DLS matrix DLS(ρ−1
2 ρ1;D1, D2) is not 4-MDS.

154



From the definition of GDLS matrices, it can be observed that the size of the set of

all GDLS matrices with K = l over the field F2r is n! ·D(n) ·nCl ·(2r)(n+l), where D(n)

represents the number of derangements for n distinct objects. This size is extremely

large, making an exhaustive search impractical for obtaining a n-MDS matrix of order

n ≥ 5 from the GDLS matrices.

To minimize the search space, in most cases, we arbitrarily select ρ1 as the n-cycle

[n, 1, 2, . . . , n − 1]. However, it is important to note that there is no inherent

advantage in choosing ρ1 = [n, 1, 2, . . . , n− 1] for obtaining a recursive MDS matrix.

If we change ρ1 = [n, 1, 2, . . . , n − 1] to any permutation from Sn, there is still a

possibility of obtaining a recursive MDS matrix.

Also to find lightweight recursive MDS matrices, we looked through the GDLS

matrices of order n whose entries are from the set {1, α, α−1, α2, α−2, α3, α−3}, where
α is a primitive element of the field F2r . First, we start with K =

⌈
n
2

⌉
and if we

do not find any n-MDS GDLS matrix, then we increase the value of K. Even with

the set {1, α, α−1, α2, α−2, α3, α−3}, the search space for finding n-MDS matrices of

order n ≥ 5 is large. Hence, we perform a random search to obtain n-MDS matrices of

order n = 5, 6, 7, 8. But, the proposed 4-MDS matrix of order 4 is found by exhaustive

search. Although we could not obtain n-MDS matrices from F24 for n = 6, 7, 8, and

8-MDS matrix over F28 , there is still hope of getting such n-MDS matrices.

Note that the implementation costs of the matrices presented in this section over

a field are calculated by referring to the s-XOR count value of the corresponding field

elements as provided in table of [TTKS18, App. B].

5.3.1 Construction of 4× 4 Recursive MDS Matrices

In this section, we propose a GDLS matrix of order 4 that yields a recursive MDS ma-

trix. The proposed GDLS matrix is constructed by the permutations ρ1 = [4, 3, 1, 2],

ρ2 = [2, 1, 4, 3] and with the value of K = 2.

For ρ1 = [4, 3, 1, 2], ρ2 = [2, 1, 4, 3] and diagonal matrices D1 = diag(α, 1, 1, 1),

D2 = diag(1, α, 0, 0), we have the GDLS matrix of order 4 over F24 as follows

B = GDLS(ρ1, ρ2;D1, D2) =




0 α 1 0

1 0 0 1

0 1 0 0

α 0 0 0



,
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where α a primitive element of F24 with α4+α+1 = 0. The matrix B is a 4-MDS

matrix with a XOR count of (1 + 1) + 2 · 4 = 10.

Remark 5.10. If we consider α to be a root of x8 + x7 + x6 + x + 1 which is the

constructing polynomial of F28, then B is 4-MDS over the field F28 and its XOR count

will be (3 + 3) + 2 · 8 = 22.

Remark 5.11. Due to the absence of trinomial irreducible polynomial of degree 8 over

F2, elements with XOR count 1 in F28 are not possible (see [BKL16, Theorem 2]).

But over rings, we can have elements with a XOR count of 1.

Example 5.2. Consider the GDLS matrix B4,8 = GDLS(ρ1, ρ2;D1, D2) over F2[L],

where ρ1 = [4, 3, 1, 2], ρ2 = [2, 1, 4, 3], D1 = diag(L, 1, 1, 1), D2 = diag(1, L, 0, 0).

Then it is easy to verify that B4
4,8 is MDS over F2[L]. The set of minors of B4

4,8 are

{1, L, L2, L2 + 1, L2 + L,L3, L3 + 1, L3 + L,L3 + L2, L3 + L2 + L,L4, L4 + L2, L4 + L3 + 1,

L4 + L3 + L,L4 + L3 + L2, L4 + L3 + L2 + 1, L5, L5 + L2, L5 + L3, L5 + L3 + L,L5 + L4,

L5 + L4 + L,L5 + L4 + L2, L5 + L4 + L3 + L,L6, L6 + L4 + L2, L6 + L5, L7, L8 + L3}

whose factors are

{1, L, L2, L+1, L2+L+1, L3+L+1, L3+L2+1, L4+L3+1, L4+L3+L2+L+1}. (5.5)

Now, consider the binary matrix C4,8 = [[2], [3], [4], [5], [6], [7], [8], [1, 3]] which is the

companion matrix of x8 + x2 + 1 over F2. Then using L = C4,8, the given elements

in 5.5 are nonsingular matrices over F2. In addition, the implementation cost of C4,8

is 1 XOR. Hence, B4,8 is 4-MDS over GL(8,F2) and the implementation cost of B4,8

is (1 + 1) + 2 · 8 = 18 XORs.

5.3.2 Construction of 5× 5 Recursive MDS Matrices

In this section, we propose a GDLS matrix of order 5 that yields a recursive MDS

matrix over F28 . This GDLS matrix exhibits the minimum XOR count when com-

pared to the existing recursive MDS matrices of order 5 over F28 . Also, we provide

an example of a 5-MDS GDLS matrix over F24 .

For ρ1 = [3, 4, 5, 1, 2], ρ2 = [5, 3, 1, 2, 4] and diagonal matrices D1 = diag(1, 1, α−1,

1, 1), D2 = diag(α, 0, 1, 0, 1), we have the GDLS matrix of order 5 over F28 as follows
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B = GDLS(ρ1, ρ2;D1, D2) =




0 0 1 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 1

α 0 α−1 0 0



,

where α is a primitive element of F28 with α8 + α7 + α6 + α + 1 = 0.

It can be observed that the matrix B is a 5-MDS matrix with a XOR count of

(3 + 3) + 3 · 8 = 30, outperforming the best known results for a 5-MDS matrix over

F28 .

It has been observed that there does not exist a 5-MDS DLS matrix of order 5 over

the field F24 with K = 3 and K = 4. However, we have 5-MDS GDLS matrix of order

5 over the field F24 with K = 4. For example for ρ1 = [4, 2, 3, 5, 1], ρ2 = [2, 4, 1, 3, 5]

and diagonal matrices D1 = diag(α, α3, 1, α2, α3), D2 = diag(1, 1, α−1, 1, 0), we have

the GDLS matrix of order 5 over F24 as follows

B =




0 0 α−1 0 α3

1 α3 0 0 0

0 0 1 1 0

α 1 0 0 0

0 0 0 α2 0



,

where α is a primitive element of F24 with α4 + α+ 1 = 0. It can be verified that

B is 5-MDS over F24 with XOR count of (1 + 1 + 2 + 3 + 3) + 4 · 4 = 26.

Remark 5.12. Consider the GDLS matrix B5,8 = GDLS(ρ1, ρ2;D1, D2) over F2[L],

where ρ1 = [3, 4, 5, 1, 2], ρ2 = [5, 3, 1, 2, 4], D1 = diag(1, 1, L−1, 1, 1) and D2 = diag(L,

0, 1, 0, 1). Then it can be verified that B5,8 is 5-MDS over F2[L]. Let S5 be the set of

factors of the minors of B5
5,8. It is easy to check that the polynomial L8 + L7 + L2 +

L+ 1 ̸∈ S5.

Now, consider the binary matrix C5,8 = [[8], [1, 2], [2, 8], [3], [4], [5], [6], [7]] whose

minimal polynomial is x8 + x7 + x2 + x + 1. Then using L = C5,8, the elements in

S5 are nonsingular matrices over F2. In addition, the implementation cost of C5,8 is

2 XORs. Also, C−1
5,8 can be implemented with 2 XORs. Hence, B5,8 is 5-MDS over

GL(8,F2) and the implementation cost of B5,8 is (2 + 2) + 3 · 8 = 28 XORs.
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5.3.3 Construction of 6× 6 Recursive MDS Matrices

In this section, we propose a GDLS matrix of order 6 that yields a recursive MDS

matrix over F28 .

For ρ1 = [6, 1, 2, 3, 4, 5], ρ2 = [5, 6, 1, 2, 3, 4] and diagonal matrices D1 = diag(1, 1,

α, 1, 1, 1), D2 = diag(1, 0, 1, 0, α2, 0), we have the GDLS matrix of order 6 over F28

as follows

B = GDLS(ρ1, ρ2;D1, D2) =




0 1 1 0 0 0

0 0 α 0 0 0

0 0 0 1 α2 0

0 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0




,

where α is a primitive element of F28 with α8 + α7 + α6 + α + 1 = 0.

It can be observed that the matrix B is a 6-MDS matrix with a XOR count of

(3+4)+3 ·8 = 31, which corresponds to the best result for a 6-MDS matrix over F28 .

Remark 5.13. Consider the GDLS matrix B6,8 = GDLS(ρ1, ρ2;D1, D2) over F2[L],

where ρ1 = [6, 1, 2, 3, 4, 5], ρ2 = [5, 6, 1, 2, 3, 4] and D1 = diag(1, 1, L, 1, 1, 1), D2 =

diag(1, 0, 1, 0, L2, 0). Then it can be verified that B6,8 is 6-MDS over F2[L]. Let S6

be the set of factors of the minors of B6
6,8. It is easy to check that the polynomial

L8+L7+L2+L+1 ̸∈ S6. Then using L = C5,8 from Remark 5.12 the elements in S6

are nonsingular matrices over F2. The binary matrix C2
5,8 can be implemented with 4

XORs. Hence, B6,8 is 6-MDS over GL(8,F2) and the implementation cost of B6,8 is

(2 + 4) + 3 · 8 = 30 XORs.

Following that, we looked for a 6-MDS GDLS matrix over F24 , but we could not find

a 6-MDS matrix of order 6 in F24 .

5.3.4 Construction of 7× 7 Recursive MDS Matrices

Here, we propose a GDLS matrix of order 7 that yields a recursive MDS matrix over

F28 .

For ρ1 = [7, 1, 2, 3, 4, 5, 6], ρ2 = [3, 2, 5, 4, 7, 6, 1] and diagonal matrices D1 =

diag(1, α−2, α−2, 1, α3, 1, 1), D2 = diag(1, 0, 1, 0, 1, 0, 1), we have the GDLS

matrix of order 7 over F28 as follows
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B = GDLS(ρ1, ρ2;D1, D2) =




0 α−2 0 0 0 0 1

0 0 α−2 0 0 0 0

1 0 0 1 0 0 0

0 0 0 0 α3 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 1 0 0




,

where α is a primitive element of F28 with α8 + α7 + α6 + α + 1 = 0.

It can be observed that the matrix B is a 7-MDS matrix with a XOR count of

(5 + 4 + 4) + 4 · 8 = 45, outperforming the best known results for a 7-MDS matrix

over F28 .

Afterwards, we attempted to find a 7-MDS GDLS matrix over F24 , but we were unable

to obtain a 7-MDS matrix of order 7 in F24 .

As 4 and 8 are the most commonly used diffusion layer matrix sizes, we look for an

8-MDS GDLS matrix of order 8 over F24 and F28 . However, our search did not yield

a GDLS matrix of order 8 that corresponds to an 8-MDS matrix.

5.3.5 Importance of GDLS Matrices

In this section, we look at the importance of GDLS matrices for the construction of

recursive MDS matrices.

1. The popular DSI matrix is a particular type of GDLS matrix. Addition-

ally, the GFS matrix structure utilized in [WWW13] can be seen as a par-

ticular type of GDLS matrix. Specifically, for ρ1 = [n, 1, 2, 3, . . . , n − 1],

ρ2 = [1, n, 3, 2, 5, 4, 7, . . . , n − 1, n − 2], a nonsingular diagonal matrix D1 =

diag(L1, 1, L3, 1, . . . , Ln−1, 1) and D2 = diag(0, L2, 0, L4, 0, . . . , 0, Ln) we have

GDLS(ρ1, ρ2;D1, D2) as the GFS matrix in [WWW13]. Furthermore, each

GFS matrix structure used in [SM21] to construct MDS matrices can be viewed

as a GDLS matrix.

2. The GDLS matrix structure is not limited to even orders, unlike the GFS matrix

structure used in [SM21, WWW13]. The GDLS matrix structure is applicable

to matrices of all orders, enabling improvements in several parameters that were

not achievable with the GFS matrix structure.
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3. From Table 5.2 and subsequent discussions, we observe that there are no n-

MDS DLS matrices over F24 for n = 5, 6, 7, 8 with K = ⌈n
2
⌉, ⌈n

2
⌉+ 1, . . . , n− 1.

However, we do have 5-MDS GDLS matrices over F24 with a fixed XOR of 4.

Additionally, the diagonal or permutation similar matrix of a DLS matrix is

again a DLS matrix. Hence, the structure of GDLS matrices is crucial for the

construction of recursive MDS matrices.

4. From Theorem 4.1, we know that there are no n-MDS matrices of order n with

fixed XOR of 1 for n ≥ 3. Thus, the example of the 4-MDS GDLS matrix in

Section 5.3.1 possesses the lowest possible fixed XOR. Given that the diffusion

matrix of order 4 is commonly utilized in the diffusion layer, the 4-MDS GDLS

matrix becomes an excellent choice for designing lightweight ciphers.

5. Using GDLS matrices, we provide some lightweight recursive MDS matrices

of orders 5, 6, and 7 over F28 . The results match those of the best known

lightweight recursive MDS matrices of order 6 and outperform those of orders

5 and 7.

5.4 Conclusion

This chapter comprehensively studies DLS matrices for constructing recursive MDS

matrices. To address the impracticality of exhaustive searches, several theoretical

results are presented that reduce the search space to a smaller domain. It is shown

that for n = 5, 6, 7, 8 and K =
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, . . . , n − 1, there are no n-MDS DLS

matrices of order n over the field F24 . Additionally, it is demonstrated that an n-MDS

DLS matrix over F2r with K =
⌈
n
2

⌉
is a permutation similar to some n-MDS sparse

DSI matrix. Moreover, the importance of GDLS matrices for constructing recursive

MDS matrices is discussed, and efficient recursive MDS matrices are provided for

various orders.

Our investigations in this chapter open up many possibilities for future work.

1. We see that 8-MDS DLS matrices do not exist over F28 with the lowest fixed

XOR of 4. This leads to a potential future investigation to determine if there

exists an 8-MDS DLS matrix of order 8 with a higher fixed XOR over F28 .

2. Theoretical results for DLS matrices have been presented in order to narrow

the search space for the finding n-MDS DLS matrices over F2r . It could be a

future research direction to provide theoretical results on GDLS matrices for a

similar purpose. Since 4 and 8 are the most commonly used sizes for diffusion
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layer matrices, we searched for an 8-MDS GDLS matrix of order 8 over F24 and

F28 , but our search did not yield any success. Therefore, it might be a potential

future work to find or prove the non-existence of 8-MDS GDLS matrices of order

8 over F24 and F28 .

3. By utilizing a composition of different GFS matrices, lightweight MDS matrices

of even orders (4, 6, and 8) have been constructed by the authors in [SM21].

Since the GDLS matrix structure exists for all orders, it could be a potential area

of future research to explore the use of GDLS matrices in these constructions

and find lightweight MDS matrices of any order.

4. Many direct constructions of recursive MDS matrices from companion matrices

are known. Thus, a potential research problem is to find a direct construction

method for recursive MDS matrices from the DLS or GDLS matrices.
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6
Near-MDS Matrices: A Comprehensive Study of

Properties and Designs
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6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Construction of Recursive NMDS Matrices from DLS

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Construction of Recursive NMDS Matrices from GDLS

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.4 Construction of Nonrecursive NMDS Matrices . . . . . 177

6.5 Construction of Nonrecursive NMDS Matrices from

GDLS Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.1 Introduction

Due to their optimal branch number, MDS matrices are widely preferred for the

construction of diffusion layers in block ciphers and hash functions. However, in

lightweight cryptography, the balance between security and efficiency may not be

optimal when using MDS matrices. Near-MDS (NMDS) matrices, on the other hand,

have sub-optimal branch numbers, resulting in slower diffusion speed and a smaller

minimum number of active Sboxes per round compared to ciphers that utilize MDS

matrices.

Nevertheless, studies such as [ABI+18, BBI+15] have demonstrated that the in-

corporation of NMDS matrices, combined with a carefully selected permutation, can
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enhance security against differential and linear cryptanalysis. This makes NMDS ma-

trices a better choice for achieving a balance between security and efficiency in the

diffusion layer of lightweight cryptographic primitives. Several recent lightweight

block ciphers, such as PRIDE [ADK+14], Midori [BBI+15], MANTIS [BJK+16],

FIDES [BBK+13], and PRINCE [BCG+12], have employed NMDS matrices in their

diffusion layer. With the increasing importance of lightweight symmetric key prim-

itives that prioritize low power consumption, energy efficiency, or low latency, the

utilization of NMDS matrices in the construction of lightweight block ciphers has be-

come more prevalent. However, the existing literature has limited studies on NMDS

and recursive NMDS matrices. This serves as our motivation to present new results

on NMDS matrices.

In this chapter, our focus is on studying NMDS matrices and exploring their con-

struction in both recursive and nonrecursive settings. We present several theoretical

results and analyze the hardware efficiency of NMDS matrix construction. Through-

out the study, we make comparisons between NMDS matrices and MDS matrices

whenever feasible.

Regarding the recursive approach, we investigate the DLS matrices and establish

some theoretical results that aid in restricting the search space of the DLS matrices.

Furthermore, we demonstrate that any sparse matrix of order n ≥ 4 with fixed XOR

value of 1 over a field of characteristic 2 cannot be an NMDS when raised to a power

of k ≤ n. We then employ the GDLS matrices to construct some lightweight recursive

NMDS matrices of different orders that perform better than the existing matrices in

terms of hardware cost or number of iterations.

For the nonrecursive construction of NMDS matrices, we examine various struc-

tures such as circulant and left-circulant matrices, as well as their generalizations

such as Toeplitz and Hankel matrices. We also prove that Toeplitz matrices of order

n > 4 cannot be both NMDS and involutory over a field of characteristic 2. Finally,

we utilize GDLS matrices to construct some lightweight NMDS matrices that can

be computed in a single clock cycle. The nonrecursive NMDS matrices proposed for

orders 4, 5, 6, 7, and 8 can be implemented using 24, 50, 65, 96, and 108 XORs over

F24 , respectively.

Outline: The rest of this chapter is structured as follows: Section 6.2 delves into

the discussion of DLS matrices for constructing recursive NMDS matrices. In Sec-

tion 6.3, we present several lightweight recursive NMDS matrices of various orders

by utilizing GDLS matrices. Section 6.4 explores the utilization of circulant, left-
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circulant, Toeplitz, and Hankel matrices in the construction of nonrecursive NMDS

matrices. Furthermore, in Section 6.5, we present lightweight nonrecursive NMDS

matrices constructed from GDLS matrices. Finally, Section 6.6 concludes the chap-

ter.

6.2 Construction of Recursive NMDS Matrices

from DLS Matrices

The construction of recursive MDS matrices has received considerable attention in

the literature, as demonstrated by various works [AF15, Ber13, GPP11, GPPR11,

GPV17a, GPV17b, GPV19, KPSV21, TTKS18, WWW13]. However, there has been

limited research on the construction of NMDS and recursive NMDS matrices. In

this section, we focus on utilizing DLS matrices for constructing recursive NMDS

matrices.

In a recent work [LW21], the authors presented some lightweight recursive NMDS

matrices with the lowest fixed XOR value (i.e., K = 1). However, these matrices

require a large number of iterations, making them unsuitable for low-latency applica-

tions. In this chapter, we consider the case of checking whether Bk is NMDS or not

for k ≤ n.

From Corollary 2.3, we know that any matrix of order n cannot be NMDS if the

number of nonzero entries is less than n2 − n. We are using this fact for the proof of

the following theorem.

Theorem 6.1. Given a DLS matrix M = DLS(ρ;D1, D2) of order n ≥ 2, Mk is not

NMDS for k < n− 2.

Proof. We have M = DLS(ρ;D1, D2) ≦ P +D2, where P is the permutation matrix

corresponding to ρ. From Lemma 5.1, we have

|Mk| ≤ |P k + P k−1D + · · ·+ PD +D2
2|

≤ |P kD|+ |P k−1D|+ · · ·+ |PD|+ |D2
2|.

(6.1)

Since power of a permutation matrix is again a permutation matrix, we have

|Mk| ≤ |D|+ |D|+ · · ·+ |D|︸ ︷︷ ︸
k times

+|D2
2| ≤ kn+ n. (6.2)
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Now for k < n− 2, we have

|Mk| < (n− 2)n+ n = n2 − n =⇒ |Mk| < n2 − n.

Hence, Mk is not NMDS for k < n− 2.

Remark 6.1. For comparison with recursive MDS matrices, it can be observed that

a DLS matrix of order n requires a minimum power of n− 2 to be an NMDS matrix

and a minimum power of n− 1 to be an MDS matrix.

Remark 6.2. From Theorem 6.1, we know that for a DLS matrix M =

DLS(ρ;D1, D2) of order n ≥ 2, Mk is not an NMDS for k < n − 2. However,

there exist k-NMDS DLS matrix for k = n− 2. For example, consider the DLS ma-

trix M = DLS(ρ;D1, D2) of order 4 with ρ = [4, 1, 2, 3], D1 = diag(α2, α2, α2, α2)

and D2 = diag(α2, 1, α2, 1), where α is a primitive element of F24 with α4+α+1 = 0.

It can be checked that the matrix

M = DLS(ρ;D1, D2)

=




α2 α2 0 0

0 1 α2 0

0 0 α2 α2

α2 0 0 1




is 2-NMDS.

Based on Lemma 5.2 and Remark 5.3, we can derive the following result regarding the

influence of the permutation ρ in a DLS matrix DLS(ρ;D1, D2) on the construction

of recursive NMDS matrices.

Corollary 6.1. For a DLS matrix M = DLS(ρ;D1, D2) of order n ≥ 2, if ρ is not

an n-cycle, then Mk is not NMDS for k ≤ n.

So far, we have not considered the presence of zero entries in the diagonal of D2.

Now, let us examine the scenario where D2 is singular.

Lemma 6.1. In a DLS matrix M = DLS(ρ1;D1, D2) of order n ≥ 2, if D2 is

singular, then Mk cannot be NMDS for k ≤ n− 2, even if ρ is n-cycle.

Proof. If D2 is singular, having at least one zero in the diagonal then from Equa-
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tion 6.1 we have,

|Mk| ≤ |P kD|+ |P k−1D|+ · · ·+ |PD|+ |Di=0|
≤ n+ n+ · · ·+ n︸ ︷︷ ︸

k times

+(n− 1) = kn+ n− 1. (6.3)

Where Di=0 be some diagonal matrix with a zero at the i-th diagonal position for

some i ∈ {1, 2, . . . , n}. Thus, for k ≤ n−2, we have |Mk| < n2−n. Hence, M cannot

be k-NMDS for k ≤ n− 2.

Remark 6.3. When comparing with recursive MDS matrices, it can be observed that

for a DLS matrix B = DLS(ρ;D1, D2) of order n, if ρ is not an n-cycle, then Bk is

neither MDS nor NMDS for k ≤ n. Additionally, if D2 is singular, then B requires

a minimum power of n− 1 to be an NMDS matrix and a minimum power of n to be

an MDS matrix.

Remark 6.4. Based on the Theorem 6.1, it is established that for a DLS matrix

M = DLS(ρ;D1, D2) of order n ≥ 2, Mk is not an NMDS matrix when k < n − 2.

However, there exists a DLS matrix that is a k-NMDS matrix when k = n − 2. For

example, consider the DLS matrix M = DLS(ρ;D1, D2) of order 4 with ρ = [4, 1, 2, 3],

D1 = diag(α2, α2, α2, α2) and D2 = diag(α2, 1, α2, 1), where α is a primitive element

of F24 with α4 + α + 1 = 0. It can be checked that the matrix

M = DLS(ρ;D1, D2)

=




α2 α2 0 0

0 1 α2 0

0 0 α2 α2

α2 0 0 1




is 2-NMDS.

Discussion: From Theorem 5.2, we know that for an n-MDS DLS matrix of

order n, we must have K ≥
⌈
n
2

⌉
. However, the minimum value of K may be less

than
⌈
n
2

⌉
for having at least n2 − n nonzero elements when it is raised to power

n − 1. For example, consider the DLS matrix B = DLS(ρ;D1, D2) of order 5 over

F24/0x13, where ρ = [5, 1, 2, 3, 4], D1 = diag(α4, α4, 1, 1, 1), D2 = diag(α, 0, 0, 1, 0)

and α4 + α + 1 = 0. Then B4 have 21 nonzero elements. However, B4 is not an

NMDS matrix.
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For NMDS matrices, we could not find the minimum value of K like we have for

MDS matrices. In the next section, we will provide some theoretical results about

NMDS matrices that will help us in determining the minimum value of K for DLS

matrices of order n that are k-NMDS with k = n− 1 and k = n.

Remark 6.5. From Theorem 4.1, we know that any matrix M of order n with K = 1

can have at most n(n+3)
2
− 1 nonzero elements when it raised to the power n. Hence,

for n ≥ 5, we have |Mn| < n2 − n. Thus, for n ≥ 5, any matrix of order n with

K = 1 cannot be n-NMDS.

For n = 4, we have n(n+3)
2
− 1 > n2 − n. So it may seem that a matrix of order 4

with K = 1 can be 4-NMDS. However, in the following theorem, we will see that to

be 4-NMDS, a matrix of order 4 must have K = 2.

Theorem 6.2. There does not exist any 4-NMDS matrix of order 4 with K = 1 over

a field of characteristic 2.

Proof. A matrix M of order n can never be recursive NMDS if its one row or column

has all zero entries 1. Also, if M contains n nonzero elements in such a way that no

column or row has all zero entries, thenM is of the formM = PD, where P represents

a permutation matrix and D represents a diagonal matrix. Then by Lemma 2.10, any

power of M is again of the form P ′D′, for some permutation matrix P ′ and diagonal

matrix D′. Hence, M cannot be recursive NMDS.

Let S be the set of all matrices M that contain n+1 nonzero elements with K = 1

and in such a way that no column or row has all zero entries. Then each M ∈ S can

be written as M = PD+A, where A has only one nonzero element. Let the nonzero

element lies in the i-th row of A.

Now consider the permutation matrix P1 obtained from the identity matrix by

permuting the row i to row 1. Now

P1MP−1
1 = P1(PD + A)P−1

1

= P1PDP−1
1 + P1AP

−1
1

By Lemma 2.10, we have DP−1
1 = P−1

1 D′ for some diagonal matrix D′. Thus, we

1The theorem states about the matrices of order n = 4 and the first part of the proof holds for
any matrix of order n.
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have

P1MP−1
1 = P1PP−1

1 D′ + P1AP
−1
1

= QD′ + A′,

where Q = P1PP−1
1 , A′ = P1AP

−1
1 and A′ has the nonzero element in its first row.

Therefore, M is permutation similar to QD′ + A′. Now let S ′ ⊂ S be the set of all

matrices with two nonzero elements in the first row.

Since from Fact 2.7, we know that a permutation similar to a recursive NMDS

matrix is also a recursive NMDS matrix, we simply need to check from the set S ′ for

finding all recursive NMDS matrices with K = 1.

It can be checked that there are only six2 matrix structures (See (6.4)) of order

n = 4 from the set S ′ that can potentially be NMDS (i.e. number of nonzero elements

> 12) when they are raised to power 4. However, all the six structures

∗ ∗ 0 0

0 0 ∗ 0

0 0 0 ∗
∗ 0 0 0

 ,


∗ 0 0 ∗
∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

 ,


∗ ∗ 0 0

0 0 0 ∗
∗ 0 0 0

0 0 ∗ 0

 ,


∗ 0 ∗ 0

∗ 0 0 0

0 0 0 ∗
0 ∗ 0 0

 ,


∗ 0 0 ∗
0 0 ∗ 0

∗ 0 0 0

0 ∗ 0 0

 and


∗ 0 ∗ 0

0 0 0 ∗
0 ∗ 0 0

∗ 0 0 0

 (6.4)

are also permutation similar. Now consider the first matrix structure and let

M =




a x1 0 0

0 0 x2 0

0 0 0 x3

x4 0 0 0



,

where a, x1, x2, x3 and x4 are some nonzero elements in the field. Now consider the

input vector of M as [1, ax−1
1 , 0, 0]T . The resultant vector after each iteration is




1

ax−1
1

0

0



−−→
i=1




0

0

0

x4



−−→
i=2




0

0

x3x4

0



−−→
i=3




0

x2x3x4

0

0



−−→
i=4




x1x2x3x4

0

0

0




The sum of nonzero elements of input vector and output vector in each iteration is

less than 4 i.e. branch number of M < 4. Therefore, M is not k-NMDS for k ≤ 4.

Hence, there does not exist any 4-NMDS matrix of order 4 with K = 1 over a field of

2For n = 4, there are a total of 72 elements in S ′, and by running a computer search, we have
observed that there are only 6 matrix structures that have at least 12 nonzero elements when raised
to the power 4.
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characteristic 2.

From Lemma 4.2, we can easily check that for a matrix of order n ≥ 4 with K = 1,

|Mk| < n2 − n for k ≤ n − 1. Thus, by using Remark 6.5 and Theorem 6.2, we can

conclude the following theorem.

Theorem 6.3. For n ≥ 4, there does not exist any k-NMDS matrix of order n with

K = 1 and k ≤ n over a field of characteristic 2.

Remark 6.6. For n < 4, there may exist a k-NMDS matrix of order n with K = 1

and k ≤ n. For example, the matrix

B =



0 1 0

0 0 1

1 1 0




is a 3-NMDS matrix.

Fact 6.1. Over a field of characteristic 2, a DLS matrix of order n with K = 1 cannot

be k-NMDS for n ≥ 4 and k ≤ n.

Now we will discuss some equivalence classes of DLS matrices for the construction of

recursive NMDS matrices.

6.2.1 Equivalence classes of DLS matrices

If the DLS matrix DLS(ρ;D1, D2) of order n has a fixed XOR of l, the diagonal of D2

has l nonzero elements. Since there are nCl arrangements for the l nonzero elements

in the diagonal of D2, the search space for finding a recursive NMDS matrix from the

DLS matrices over the field F2r is D(n) · nCl · (2r)(n+l), where D(n) is the number of

derangements for n different objects (see Section 5.2.1). However, we have drastically

reduced the search space by defining some equivalence classes of DLS matrices.

From Fact 2.7 we know that diagonal similar of a NMDS matrix is again a NMDS

matrix. Hence, we can apply the results of Theorem 5.3 and Corollary 5.2 to also the

NMDS matrices.

Corollary 6.2. Let a =
∏n

i=1 ai for some a1, a2, . . . , an ∈ F∗
2r . Then for any di-

agonal matrix D2 over F2r , the DLS matrix M = DLS(ρ;D1, D2) of order n is

k-NMDS if and only if M
′
= DLS(ρ;D

′
1, D2) is k-NMDS, where k ∈ {n− 1, n},

D1 = diag(a1, a2, . . . , an) and D
′
1 = diag(a, 1, 1, . . . , 1).
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Remark 6.7. For any c ∈ F∗
2r , M is k-NMDS implies cM is also k-NMDS. Thus,

if ρ is an n-cycle permutation, M = DLS(ρ;D1, D2) is diagonal similar to M ′ =

DLS(ρ;D′
1, D

′
2), where D1 = diag(a1, a2, . . . , an), D

′
1 = diag(cna, 1, 1, . . . , 1), D′

2 =

c ·D2 and a =
∏n

i=1 ai. We know that x→ x2l is an isomorphism over F2r . So when

n = 2l, there exist an element c = a−1/n ∈ F∗
2r . Hence, when n = 2l, we can say that

M is diagonal similar to M ′′ = DLS(ρ;D′′
1 , D

′′
2), where D′′

1 = diag(1, 1, 1, . . . , 1) and

D′′
2 is some diagonal matrix. Therefore, for k ∈ {n− 1, n}, M is k-NMDS if and

only if M ′′ is also k-NMDS.

We know that a permutation similar to an NMDS matrix is again an NMDS matrix.

Thus, we can reduce the search space further by eliminating the permutation similar

matrices from the search space. To accomplish this, we require the lemma provided

below.

Lemma 6.2. Let M1 = DLS(ρ1;D1, D2) be a DLS matrix of order n and ρ2 ∈ Sn

is conjugate with ρ1, then M1 is k-NMDS if and only if M2 = DLS(ρ2;D
′
1, D

′
2) is

k-NMDS, where D
′
1 and D

′
2 are some diagonal matrices.

Proof. Since ρ1 and ρ2 are conjugate, we have σρ1σ
−1 = ρ2, for some σ ∈ Sn. Let

P1, P2 and P be the permutation matrices related to ρ1, ρ2 and σ respectively. Then

we have

PM1P
−1 = P (P1D1 +D2)P

−1 = PP1D1P
−1 + PD2P

−1

= PP1P
−1D

′

1 + PP−1D
′

2,

where D1P
−1 = P−1D

′
1 and D2P

−1 = P−1D
′
2 for some diagonal matrices D

′
1 and D

′
2.

Thus, we have PM1P
−1 = P2D

′
1+D

′
2 = M2. Since PM1P

−1 = M2, from Corollary 2.9

we can say that M1 is k-NMDS if and only if M2 is k-NMDS.

Remark 6.8. If D2 is singular, a DLS matrix M = DLS(ρ1;D1, D2) of order n

cannot be k-NMDS for k ≤ n− 2. Also, ρ must be an n-cycle for M to be k-NMDS

with k = n − 1 or k = n. In addition, the n-cycles in Sn are conjugate with each

other. Therefore, to find the k-NMDS (with k = n− 1 and k = n) DLS matrices, we

need to check only for the DLS matrices associated with one fixed n-cycle ρ.

Now consider D(n,F2r) to be the set of all DLS matrices DLS(ρ;D1, D2) of order n,

with K =
⌈
n
2

⌉
, over the field F2r and define

D′
(n,F2r) = {B ∈ D(n,F2r) : B = P

′
D

′

1 +D
′

2},
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where P
′
is the permutation matrix related to the n length cycle [2, 3, 4, . . . , n−1, n, 1]3

and D
′
1 = diag(a, 1, 1, . . . , 1).

Thus, to find the k-NMDS (with k = n− 1 and k = n) DLS matrices over F2r , we

need to check only for the DLS matrices in the set D′
(n,F2r).

From the discussion of Section 5.2.2, we know that if ρ = [2, 3, 4, . . . , n− 1, n, 1]

and D2 has any two consecutive zero entries, then the DLS matrix of order n cannot

be n-MDS. However, this result is not true for NMDS matrices. For example, consider

the DLS matrix B = DLS(ρ;D1, D2) of order 4 over F24/0x13, where ρ = [2, 3, 4, 1],

D1 = diag(1, 1, 1, 1), D2 = diag(1, α, 0, 0) and α4+α+1 = 0. Then it can be checked

that B is 4-NMDS.

Thus, for finding k-NMDS DLS matrices with k ∈ {n− 1, n} and K = l, we need

to check for all the nCl arrangements for the l nonzero elements in the diagonal of

D2. Thus, the search space for finding k-NMDS DLS matrices, with k ∈ {n− 1, n},
over the field F2r has been reduced from D(n) · nCl · (2r)(n+l) to nCl · (2r)(1+l). Then,

by exhaustive search in the restricted domain, we have the results for the existence

of k-NMDS DLS matrices over F24 and F28 for n = 4, 5, 6, 7, 8 listed in Table 6.1.

Table 6.1: k-NMDS DLS matrix of order n over the field F2r with k = n − 1 and
k = n (“DNE” stands for does not exist).

K = 2 K = 3 K = 4
Order n k over F24 over F28 over F24 over F28 over F24 over F28

4 3 Exists Exists – – – –
4 Exists Exists – – – –

5 4 DNE DNE Exists Exists – –
5 DNE DNE Exists Exists – –

6 5 DNE DNE Exists Exists – –
6 DNE DNE Exists Exists – –

7 6 DNE DNE DNE ⋆a Exists Exists
7 DNE DNE DNE ⋆ Exists Exists

8 7 DNE DNE DNE DNE DNE Exists
8 DNE DNE DNE DNE DNE Exists

aOver F28 , we are unable to make a decision for n = 7 with K = 3 since we were unable to
perform an exhaustive search even in the restricted domain.

3By Remark 6.8, any n length cycle can be chosen for the set D′
(n,F2r ).
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6.3 Construction of Recursive NMDS Matrices

from GDLS Matrices

In this section, we present some lightweight recursive NMDS matrices of orders

4, 5, 6, 7, and 8 from the GDLS matrices, introduced in Section 5.3.

From Lemma 6.1, we know that if D2 is singular, a DLS matrix DLS(ρ;D1, D2)

can never be k-NMDS for k ≤ n− 2. However, this result is not applicable to GDLS

matrices. For instance, the GDLS matrix M = GDLS(ρ1, ρ2;D1, D2) of order 7 with

ρ1 = [6, 7, 4, 5, 2, 3, 1], ρ2 = [3, 2, 1, 4, 7, 6, 5], D1 = diag(1, 1, 1, 1, 1, 1, α) and

D2 = diag(1, 0, α2, 0, α, 0, α2) is 5-NMDS, where α is a primitive element of the field

F24 with α4 + α + 1 = 0.

Since GDLS matrices have the potential to generate NMDS matrices with fewer

iterations, we select them for constructing recursive NMDS matrices. To find recursive

NMDS matrix, we begin with k = n−2, and if this does not yield a result, we increase

the value of k.

From the definition of GDLS matrices, it can be observed that the size of the

set of all GDLS matrices with K = l over the field F2r is n! · D(n) · nCl · (2r)(n+l),

where D(n) represents the number of derangements for n distinct objects. This size

is extremely large, making an exhaustive search impractical for obtaining a k-NMDS

matrix of order n ≥ 5 from the GDLS matrices.

To minimize the search space, in most cases, we arbitrarily select ρ1 as the n-cycle

[n, 1, 2, . . . , n−1]. However, it is important to note that there is no inherent advantage

in choosing ρ1 = [n, 1, 2, . . . , n − 1] for obtaining a recursive NMDS matrix. If we

change ρ1 = [n, 1, 2, . . . , n− 1] to any permutation from Sn, there is still a possibility

of obtaining a recursive NMDS matrix.

Also, to find lightweight recursive NMDS matrices, we looked through the GDLS

matrices of order n with K =
⌈
n
2

⌉
whose entries are from the set {1, α, α−1, α2, α−2},

where α is a primitive element and a root of the constructing polynomial of the field

F2r . The search space for finding k-NMDS matrices of order n ≥ 5 remains large,

even when considering the set {1, α, α−1, α2, α−2}. Therefore, to obtain k-NMDS

matrices of order n = 5, 6, 7, 8, we conduct a random search.

Also note that the implementation costs of the matrices presented in this section

over a field are calculated by referring to the s-XOR count value of the corresponding

field elements as provided in table of [TTKS18, App. B].
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6.3.1 Construction of 4× 4 Recursive NMDS matrices

In this section, we propose a GDLS matrix B of order 4 that yields a recursive NMDS

matrix over the field F2r for r ≥ 1. Based on Theorem 6.3, it is known that there are

no k-NMDS matrices of order 4 with K = 1 and k ≤ 4 over a field of characteristic 2.

Therefore, to obtain recursive NMDS matrices of order 4, we must choose K ≥ 2.

The proposed GDLS matrix is constructed by the permutations ρ1 = [2, 3, 4, 1], ρ2 =

[1, 2, 3, 4] and diagonal matrices D1 = diag(1, 1, 1, 1), D2 = diag(0, 1, 0, 1).

B = GDLS(ρ1, ρ2;D1, D2) =




0 0 0 1

1 1 0 0

0 1 0 0

0 0 1 1




(6.5)

The matrix B is a 3-NMDS matrix with a XOR count of 2 · r = 2r over the field F2r .

Lemma 6.3. For k-NMDS matrix of orders 4 with k ≤ 4, the lowest XOR count is

2r over the field F2r .

Proof. From Remark 6.5 and Theorem 6.2, we know that any matrix M of order 4

with K = 1 cannot be k-NMDS for k ≤ 4. Hence, we must have K ≥ 2. Therefore,

we have XOR(M) ≥ 2 · r over the field F2r .

Remark 6.9. For k ≤ 4, the proposed matrix B in (6.5) has the lowest XOR count

among the k-NMDS matrices of order 4 over the field F2r for r ≥ 1.

6.3.2 Construction of 5× 5 Recursive NMDS matrices

This section presents two GDLS matrices, A1 and A2, of order 5 that give NMDS

matrices when raised to power 4 and 5, respectively, over the field F24 . We also looked

for GDLS matrices M of order 5 such that Mk is NMDS for k ≤ 3 and K = 3, but we

were unable to find any over F24 . Consider the GDLS matrices A1 and A2 of order 5

which are constructed as follows:

(i) A1: ρ1 = [5, 1, 2, 3, 4], ρ2 = [3, 2, 5, 4, 1], D1 = diag(1, 1, 1, 1, 1) and D2 =

diag(0, α, 0, 1, α−1)

(ii) A2: ρ1 = [5, 1, 2, 3, 4], ρ2 = [3, 4, 5, 1, 2], D1 = diag(1, 1, 1, 1, 1) and D2 =

diag(0, 1, 0, 1, α)
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A1 =




0 1 0 0 α−1

0 α 1 0 0

0 0 0 1 0

0 0 0 1 1

1 0 0 0 0




A2 =




0 1 0 1 0

0 0 1 0 α

0 0 0 1 0

0 1 0 0 1

1 0 0 0 0



, (6.6)

where α is a primitive element of F24 with α4 + α + 1 = 0. It is easy to verify that

the matrix A1 is a 4-NMDS matrix with a XOR count of (1 + 1) + 3 · 4 = 14 and A2

is a 5-NMDS matrix with a XOR count of 1 + 3 · 4 = 13.

In Lemma 6.4, we discuss the lowest XOR count of recursive NMDS matrices of order

n ≥ 5. For this, we need the following result from [CK08].

Theorem 6.4. [CK08] A matrix of order n, with 0 and 1 as entries, has a maximum

branch number of 2n+4
3

.

Lemma 6.4. Given a recursive NMDS matrix B of orders n ≥ 5, with K = l, the

lowest XOR count of B is XOR(β)+l ·r over the field F2r , where β (̸= 1) is a nonzero

element in F2r with the lowest XOR count value in that field.

Proof. An NMDS matrix of order n has branch number of n. Therefore, based on

Theorem 6.4, it can be concluded that a matrix of order n, containing elements from

the set {0, 1} ⊆ F2r , cannot be NMDS when n ≥ 5. If we take a matrix B with

entries of 0 or 1, then the entries of Bk will remain in the set {0, 1} for any power

k. So B must have an element γ ̸∈ {0, 1}. Therefore, XOR(B) ≥ XOR(β) + l · r,
where β (̸= 1) is a nonzero element in F2r with the lowest XOR count value in that

field.

Remark 6.10. Over the field F24, the matrix A2 in (6.6) has the lowest XOR count

among the 5-NMDS matrices of order 5 and K = 3.

6.3.3 Construction of 6× 6 Recursive NMDS matrices

In this section, we introduce two lightweight GDLS matrices, B1 and B2, of order

6 with K = 3. These matrices can be implemented with 14 and 13 XORs over the

field F24 , respectively, and yield NMDS matrices when raised to the power of 5 and

6, respectively. The matrices B1 and B2 of order 6 are constructed as follows:

(i) B1: ρ1 = [6, 1, 2, 3, 4, 5], ρ2 = [1, 2, 3, 4, 5, 6], D1 = diag(1, 1, 1, 1, 1, 1) and D2 =

diag(0, α, 0, α−1, 0, 1)
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(ii) B2: ρ1 = [6, 1, 2, 3, 4, 5], ρ2 = [3, 4, 5, 2, 6, 1], D1 = diag(1, 1, 1, 1, 1, 1) and D2 =

diag(0, α, 0, 1, 0, 1)

B1 =




0 1 0 0 0 0

0 α 1 0 0 0

0 0 0 1 0 0

0 0 0 α−1 1 0

0 0 0 0 0 1

1 0 0 0 0 1




B2 =




0 1 0 0 0 1

0 0 1 1 0 0

0 0 0 1 0 0

0 α 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0




, (6.7)

where α is a primitive element of F24 with α4+α+1 = 0. It can be checked that the

matrix B1 is a 5-NMDS matrix with a XOR count of (1 + 1) + 3 · 4 = 14 and B2 is a

6-NMDS matrix with a XOR count of 1 + 3 · 4 = 13.

We also searched for GDLS matrices M of order 6 such that Mk is NMDS for

k ≤ 4 and K = 3, but we could not find such matrices over F24 .

Remark 6.11. It is not possible to have elements with XOR count 1 in F28 due to the

absence of trinomial irreducible polynomial of degree 8 over F2 [BKL16, Theorem 2].

However, it is possible to have elements with XOR count of 1 over rings.

Consider the binary matrix C = [[2], [3], [4], [5], [6], [7], [8], [1, 3]] which is the com-

panion matrix of x8 + x2 + 1 over F2. If we replace α by C, then the matrices A1

and A2 in (6.6) and B1 and B2 in (6.7) will be 4-NMDS, 5-NMDS, 5-NMDS, and

6-NMDS over GL(8,F2), respectively. In addition, the implementation cost of C and

C−1 is 1 XOR. Hence, the implementation cost of A1, A2, B1 and B2 over GL(8,F2)

are 26, 25, 26 and 25 XORs, respectively.

Remark 6.12. Over the field F24, the matrix B2 in (6.7) has the lowest XOR count

among the 6-NMDS matrices of order 6 and K = 3.

6.3.4 Construction of 7× 7 Recursive NMDS matrices

Now, we propose three GDLS matrices of order 7 that yield NMDS matrices over the

field F24 for K = 4. Consider the GDLS matrices B1, B2 and B3 of order 7 which are

constructed as follows:

(i) B1: ρ1 = [6, 7, 4, 5, 2, 3, 1], ρ2 = [3, 2, 1, 4, 7, 6, 5], D1 = diag(1, 1, 1, 1, 1, 1, α)

and D2 = diag(1, 0, α2, 0, α, 0, α2)

(ii) B2: ρ1 = [7, 1, 2, 3, 4, 5, 6], ρ2 = [6, 7, 5, 4, 1, 3, 2], D1 = diag(1, α−1, α, 1, α, α, 1)

and D2 = diag(0, 1, 0, 1, 0, 1, 1)
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(iii) B3: ρ1 = [7, 1, 2, 3, 4, 5, 6], ρ2 = [5, 2, 6, 7, 3, 1, 4], D1 = diag(1, 1, 1, 1, 1, 1, 1)

and D2 = diag(0, α−1, 0, 1, 0, α−1, 1)

B1 =



0 0 α2 0 0 0 α

0 0 0 0 1 0 0

1 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 α2

1 0 0 0 0 0 0

0 1 0 0 α 0 0


B2 =



0 α−1 0 0 0 0 0

0 0 α 0 0 0 1

0 0 0 1 0 1 0

0 0 0 1 α 0 0

0 0 0 0 0 α 0

0 0 0 0 0 0 1

1 1 0 0 0 0 0


B3 =



0 1 0 0 0 α−1 0

0 α−1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 1 0 0 0


, (6.8)

where α is a primitive element of F24 with α4 + α+ 1 = 0. It can be verified that

matrix B1 is a 5-NMDS matrix with an XOR count of (1+ 2+ 1+ 2)+ 4 · 4 = 22, B2

is a 6-NMDS matrix with an XOR count of (1 + 1 + 1 + 1) + 4 · 4 = 20, and B3 is a

7-NMDS matrix with an XOR count of (1 + 1) + 4 · 4 = 18.

Remark 6.13. If we replace α by C (the binary matrix in Remark 6.11), then the ma-

trices B1, B2 and B3 in (6.8) will be 5-NMDS, 6-NMDS and 7-NMDS over GL(8,F2),

respectively. The binary matrix C2 can be implemented with 2 XORs. Hence, B1, B2

and B3 can be implemented with 38, 36 and 34 XORs, respectively, over GL(8,F2).

Remark 6.14. We know that in a DLS matrix M = DLS(ρ1;D1, D2) of order n ≥ 2,

if D2 is singular, then Mk cannot be NMDS for k ≤ n− 2. However, the result is not

true for GDLS matrices. For example the matrix B1 of order 7 in (6.8) is 5-NMDS.

6.3.5 Construction of 8× 8 Recursive NMDS matrices

As 4 and 8 are the most commonly used diffusion layer matrix sizes, we look for a

k-NMDS GDLS matrix of order 8 over F24 . However, we were unable to find a GDLS

matrix of order 8, which corresponds to 7-NMDS or 8-NMDS over F24 . Nonetheless,

we have proposed two GDLS matrices of order 8 that yield NMDS matrices over the

field F28 with K = 4. Consider the GDLS matrices B1 and B2 of order 8 which are

constructed as follows:

(i) B1 : ρ1 = [2, 3, 4, 5, 6, 7, 8, 1], ρ2 = [3, 8, 5, 2, 1, 4, 6, 7], D1 = diag(1, 1, 1, 1, 1,

α−2, 1, 1) and D2 = diag(1, 0, α, 0, 1, 0, α−1, 0)

(ii) B2 : ρ1 = [2, 3, 4, 5, 6, 7, 8, 1], ρ2 = [3, 8, 5, 2, 1, 4, 6, 7], D1 = diag(1, 1, 1, α2, 1,

1, 1, 1) and D2 = diag(α, 0, 1, 0, 1, 0, 1, 0)
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B1 =




0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 α 1 0 0 0 0

0 0 0 0 1 0 α−1 0

0 0 0 0 0 α−2 0 0

0 0 0 0 0 0 1 0




B2 =




0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0

α 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 α2 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0




, (6.9)

where α is a primitive element of F28 with α8+α7+α6+α+1 = 0. The matrix B1 is

a 7-NMDS matrix with a XOR count of (4 + 3 + 3) + 4 · 8 = 42 and B2 is a 8-NMDS

matrix with a XOR count of (3 + 4) + 4 · 8 = 39.

Remark 6.15. Consider the binary matrix C8 = [[8], [1, 2], [2, 8], [3], [4], [5], [6], [7]]

whose minimal polynomial is x8 + x7 + x2 + x + 1. Then by replacing α by C8, the

matrices B1, and B2 in (6.9) will be 7-NMDS and 8-NMDS over GL(8,F2), respec-

tively. In addition, the implementation cost of C8 is 2 XORs. Also, C−1
8 , C2

8 and

C−2
8 can be implemented with 2, 4 and 4 XORs respectively. Hence, B1 and B2 can

be implemented with 40 and 38 XORs, respectively, over GL(8,F2).

Until now, we have discussed NMDS matrices in a recursive setup. While these ma-

trices have a low hardware cost, they do require some clock cycles. To use recursive

NMDS (say, k-NMDS) matrices in an unrolled implementation, we have to add k

copies of the matrix to the circuit in sequence, which may increase the cost of the

diffusion layer. This makes recursive NMDS matrices less suitable for block ciphers

that operate within a single clock cycle, such as PRINCE [BCG+12] and MAN-

TIS [BJK+16]. From the next section on, we will discuss nonrecursive constructions

of NMDS matrices.

6.4 Construction of Nonrecursive NMDS Matrices

The construction of nonrecursive MDS matrices is typically based on specific matrix

types such as circulant matrices, Hadamard matrices, Cauchy matrices, Vandermonde

matrices, and Toeplitz matrices. A brief summary of such constructions is presented

in Chapter 3. Circulant and Hadamard matrices of order n can have at most n distinct

elements; thus, these matrices are used to reduce the search space. Furthermore, it is
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Table 6.2: Comparison of recursive NMDS matrices of order n.

Order n Input Iterations Field/Ring XOR count References
4 4-bit 34 M4(F2) 1 [LW21]
4 4-bit 16 M4(F2) 2 [LW21]
4 4-bit 10 M4(F2) 3 [LW21]
4 4-bit 7 M4(F2) 4 [LW21]
4 4-bit 5 M4(F2) 7 [LW21]
4 4-bit 3 M4(F2) 8 [LW21]
4 4-bit 3 F24 8 Section 6.3.1
4 4-bit 2 M4(F2) 12 [LW21]
4 8-bit 66 M8(F2) 1 [LW21]
4 8-bit 34 M8(F2) 2 [LW21]
4 8-bit 16 M8(F2) 4 [LW21]
4 8-bit 10 M8(F2) 6 [LW21]
4 8-bit 7 M8(F2) 8 [LW21]
4 8-bit 3 M8(F2) 16 [LW21]
4 8-bit 3 F28 16 Section 6.3.1
4 8-bit 2 M4(F2) 24 [LW21]

5 4-bit 86 M8(F2) 1 [LW21]
5 4-bit 46 M8(F2) 2 [LW21]
5 4-bit 20 M8(F2) 3 [LW21]
5 4-bit 15 M8(F2) 4 [LW21]
5 4-bit 8 M8(F2) 8 [LW21]
5 4-bit 5 F24/0x13 13 Section 6.3.2
5 4-bit 4 F24/0x13 14 Section 6.3.2
5 8-bit 120 M8(F2) 1 [LW21]
5 8-bit 86 M8(F2) 2 [LW21]
5 8-bit 46 M8(F2) 4 [LW21]
5 8-bit 20 M8(F2) 6 [LW21]
5 8-bit 15 M8(F2) 8 [LW21]
5 8-bit 8 M8(F2) 16 [LW21]
5 8-bit 5 GL(8,F2) 25 Remark 6.11
5 8-bit 4 GL(8,F2) 26 Remark 6.11

6 4-bit 6 F24/0x13 13 Section 6.3.3
6 4-bit 5 F24/0x13 14 Section 6.3.3
6 8-bit 6 GL(8,F2) 25 Remark 6.11
6 8-bit 5 GL(8,F2) 26 Remark 6.11

7 4-bit 7 F24/0x13 18 Section 6.3.4
7 4-bit 6 F24/0x13 20 Section 6.3.4
7 4-bit 5 F24/0x13 22 Section 6.3.4
7 8-bit 7 GL(8,F2) 34 Remark 6.13
7 8-bit 6 GL(8,F2) 36 Remark 6.13
7 8-bit 5 GL(8,F2) 38 Remark 6.13

8 8-bit 8 F28/0x1c3 39 Section 6.3.5
8 8-bit 8 GL(8,F2) 38 Section 6.3.5
8 8-bit 7 F28/0x1c3 42 Section 6.3.5
8 8-bit 7 GL(8,F2) 40 Section 6.3.5
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worth noting that circulant matrices offer the advantage of being adaptable for im-

plementation in both round-based and serialized implementations [LS16]. In [LW17],

the authors have studied the construction of NMDS matrices using circulant and

Hadamard matrices and present some generic NMDS matrices of order n for the

range of 5 ≤ n ≤ 9.

In the context of implementing block ciphers, we know that if an efficient matrix M

used in encryption is involutory, then its inverse M−1 = M applied for decryption

will also be efficient. Therefore, it is particularly important to locate NMDS matrices

that are also involutory. In this regard, Li et al. [LW17] show that for n > 4, no

circulant matrices of order n over F2r can simultaneously be involutory and NMDS.

We recall it in the following theorem.

Theorem 6.5. [LW17] Over the field F2r , circulant involutory matrices of order n > 4

are not NMDS.

Remark 6.16. For n < 4, there may exist circulant involutory NMDS matrices over

F2r . For example, the circulant matrix Circ(0, 1, 1, 1) of order 4 is both involutory

and NMDS over the field F2r .

Remark 6.17. According to Lemma 3.17, the above result is also true for circulant

MDS matrices of order n with a modified lower bound of n ≥ 3.

For symmetric cryptography, having an orthogonal matrix as the linear diffusion

layer simplifies decryption because the transpose of an orthogonal matrix is its in-

verse. This makes orthogonal matrices ideal for constructing the linear diffusion layer.

Matrices of order 2n are particularly important in cryptography. However, as stated

in Lemma 3.14, for n ≥ 2, we know that any orthogonal circulant matrix of order 2n

over the field F2r is not MDS. But circulant MDS matrices of different orders may be

orthogonal over F2r (see Remark 3.24).

Remark 6.18. NMDS circulant orthogonal matrices of any order may exist over

the field F2r . For example, consider the circulant matrices Circ(0, α3 + α + 1, α3 +

α2 + α, α3 + 1, α3 + α2 + 1), Circ(0, 1, α, α2 + α + 1, α3 + α + 1, α3 + α2 + α), and

Circ(0, 1, α, α+1, α+1, α3 +α2 +α+1, 1, α3 +α2) of order 5, 6, and 8, respectively,

where α is a primitive element of F24 with α4 + α + 1 = 0. It can be checked that

these matrices are both orthogonal and NMDS.

Note that a left-circulant matrix is symmetric; consequently, if the matrix is orthog-

onal, then it is involutory, and vice versa.
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Remark 6.19. From Lemma 2.11, we know that if M is an NMDS matrix, then for

any permutation matrix P , PM is also an NMDS matrix. Additionally, as per Re-

mark 6.18, it is possible to obtain a circulant NMDS matrix M = Circ(x1, x2, . . . , xn)

of any order n over F2r that is orthogonal. Now, we know that PM = l-

Circ(x1, x2, . . . , xn), where P is the permutation matrix given in (2.1). Also, since

M is orthogonal and P is a permutation matrix, it follows that

(PM)T = MTP T = M−1P−1 = (PM)−1.

Thus, by the multiplication PM will not alter NMDS and orthogonality property for

NMDS matrices. Consequently, the resulting matrix PM = l-Circ(x1, x2, . . . , xn) will

be both orthogonal and NMDS, making it an involutory NMDS matrix. Therefore,

NMDS left-circulant involutory (orthogonal) matrices of any order may exist over the

field F2r .

The absence of any zero entries is a necessary condition for matrices such as

Hadamard, circulant and left-circulant matrices to be MDS. Therefore, these ma-

trices result in a high implementation cost due to K = n(n− 1). Having zero entries

(with a maximum of one zero per row or column) does not affect the NMDS property

of these matrices, leading to a low implementation cost with K = n(n − 2). Taking

advantage of this, the authors in [LW17] provided some generic lightweight involutory

NMDS matrices of order 8 from Hadamard matrices.

Theorem 6.6. For a Hadamard, circulant, or left-circulant NMDS matrix of order

n over F2r with n ≥ 5, the XOR count is at least XOR(β) · n+ n(n− 2) · r over the

field F2r , where β (̸= 1) is a nonzero element in F2r with the lowest XOR count value

in that field.

Proof. An NMDS matrix B of order n has branch number of n. Therefore, based

on Theorem 6.4, it can be concluded that a matrix of order n, containing elements

from the set {0, 1} ⊆ F2r , cannot be NMDS when n ≥ 5. This means that B must

contain an element γ ̸∈ {0, 1}. Additionally, for an NMDS matrix, we must have

K ≥ n(n− 2). Also, each row in a Hadamard, circulant, or left-circulant matrix is a

rearrangement of the first row. Hence, for these matrices to be NMDS over the field

F2r , the minimum XOR count must be XOR(β) · n+ n(n− 2) · r.

The lowest XOR count value (of an element) in the field F24 is one, which allows

us to obtain the lowest possible XOR count of Hadamard, circulant, or left-circulant

NMDS matrices of various orders over F24 as shown in Table 6.3.
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Table 6.3: Lowest possible XOR count of Hadamard, circulant, or left-circulant
NMDS matrices of order n over F24 .

order n 5 6 7 8
Lowest XOR count 65 102 147 200

The use of Toeplitz matrices for the construction of MDS matrices has been explored

in the literature [SS16, SS17], and we will discuss them for the construction of NMDS

matrices.

Theorem 6.7. Over the field F2r , Toeplitz involutory matrices of order n > 4 are

not NMDS.

Proof. Let M = Toep(x1, x2, . . . , xn; y1, y2, . . . , yn−1) be a Toeplitz matrix (as in

Definition 2.32) of order n which is both involutory and NMDS over the field F2r ,

where n > 4. We will examine two scenarios: when n is even and when n is odd.

Case 1: n is even.

In an NMDS matrix, there may be a zero entry. So this case splits into two subcases:

xn ̸= 0 and xn = 0.

Case 1.1: When xn ̸= 0.

The (n− 1)-th element in the 1st row of M2 is

(M2)1,n−1 = Mrow(1) ·Mcolumn(n−1)

= x1xn−1 + x2xn−2 + · · ·+ xn
2
xn

2
+ · · ·+ xn−1x1 + xny1

= x2
n
2
+ xny1.

Since M is involutory, we have (M2)1,n−1 = 0. Therefore, from above we have

x2
n
2
+ xny1 = 0 (6.10)

=⇒ y1 = x2
n
2
x−1
n . (6.11)

We have
(M2)1,n−2 = Mrow(1) ·Mcolumn(n−2)

= x1xn−2 + x2xn−3 + · · ·+ xn−2
2
xn

2
+ xn

2
xn−2

2
+ · · ·

+ xn−3x2 + xn−2x1 + xn−1y1 + xny2

= xn−1y1 + xny2.

Also, (M2)1,n−2 = 0, which results in

xn−1y1 + xny2 = 0 (6.12)
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Now, from Equation 6.11 and Equation 6.12, we have

y2 = x2
n
2
xn−1x

−2
n . (6.13)

Also, from (M2)3,n−1 = 0, we have

x2
n−2
2

+ xn−1y2 = 0

=⇒ x2
n−2
2

+ xn−1 · x2
n
2
xn−1x

−2
n = 0 [From Equation 6.13]

=⇒ x2
n−2
2
x2
n = x2

n
2
x2
n−1

=⇒ xn−2
2
xn = xn

2
xn−1 [Since characteristic of F2r is 2] (6.14)

Now consider the input vector v = [0, 0, . . . , xn︸︷︷︸
n
2
-th

, 0, . . . , xn
2
]T of M . Therefore, we

have
M · v = [xn

2
xn + xnxn

2
, xn−2

2
xn + xn−1xn

2
, ∗, . . . , ∗, y1xn + x2

n
2︸ ︷︷ ︸

(n
2
+ 1)-th

, ∗, . . . , ∗]T

= [0, 0, ∗, . . . , 0︸︷︷︸
(n
2
+ 1)-th

, ∗, . . . , ∗]T ,

where ∗ denotes some entry may or may not be zero. Here the second and (n
2
+1)-

th coordinates of M · v are zero by Equation 6.14 and Equation 6.10, respectively.

Thus, the sum of nonzero elements of input vector (v) and output vector (M · v) is
≤ 2 + (n− 3) < n i.e. branch number of M < n. This contradicts that M is NMDS.

Case 1.2: When xn = 0.

If xn = 0, then from Equation 6.10, we conclude that x2
n
2
= 0 which implies xn

2
=

0. Therefore, the Toeplitz matrix M has two zero entries in its first row, which

contradicts the fact that M is NMDS.

Case 2: n is odd.

The n-th element in the 1st row of M2 is

(M2)1,n = Mrow(1) ·Mcolumn(n)

= x1xn + x2xn−1 + · · ·+ xn+1
2
xn+1

2
+ · · ·+ xn−1x2 + xnx1

= x2
n+1
2
.

Also, we have (M2)2,n−1 = x2
n−1
2

. Therefore, since M is involutory, it follows that

(M2)1,n = (M2)2,n−1 = 0, implying that xn−1
2

= xn+1
2

= 0. This means that M has

two zero entries in its first row, which contradicts that M is an NMDS matrix. Hence,

the proof.

Remark 6.20. Circulant matrices are a particular type of Toeplitz matrices, and
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thus, from Remark 6.16, we can say that for n < 4, there may exist Toeplitz involutory

NMDS matrices over F2r .

Remark 6.21. From Theorem 3.11, we know that for n ≥ 2, any orthogonal Toeplitz

matrix of order 2n over the field F2r is not MDS. However, this result does not hold

for NMDS matrices. Circulant matrices are a particular type of Toeplitz matrices,

and thus, from Remark 6.18, we can say that Toeplitz orthogonal NMDS matrices of

any order may exist over the field F2r .

Hankel matrices are symmetric and may be described by their first row and last

column. Thus, an involutory (orthogonal) Hankel matrix is orthogonal (involutory).

Remark 6.22. From Theorem 3.12, we know that for n ≥ 2, any involutory (or-

thogonal) Hankel matrix of order 2n over the field F2r is not MDS. However, this

result does not hold for NMDS matrices. Left-circulant matrices are a particular type

of Hankel matrices, and thus, from Remark 6.19, we can say that Hankel involutory

(orthogonal) NMDS matrices of any order may exist over the field F2r .

We close this section by presenting Table 6.4, which compares the involutory and

orthogonal properties of MDS and NMDS matrices constructed from the circulant,

left-circulant, Toeplitz and Hankel families.

Table 6.4: Comparison of involutory and orthogonal properties of MDS and NMDS
matrices over a finite field F2r (“DNE” stands for does not exist).

Type Property Dimension MDS NMDS

Circulant

Involutory n× n DNE DNE

Orthogonal
2n × 2n DNE may exist
2n× 2n may exist may exist
(2n+1)×(2n+1) may exist may exist

left-CirculantInvolutory
2n × 2n DNE may exist
2n× 2n may exist may exist
(2n+1)×(2n+1) may exist may exist

Toeplitz

Involutory n× n DNE DNE

Orthogonal
2n × 2n DNE may exist
2n× 2n may exist may exist
(2n+1)×(2n+1) may exist may exist

Hankel Involutory
2n × 2n DNE may exist
2n× 2n may exist may exist
(2n+1)×(2n+1) may exist may exist
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6.5 Construction of Nonrecursive NMDS Matrices

from GDLS Matrices

Constructing NMDS matrices from circulant, left-circulant, Hadamard, Toeplitz or

Hankel matrices of order n may result in a high implementation cost due to the

requirement of having K ≥ n(n − 2). To address this issue, in this section, we

present some lightweight nonrecursive NMDS matrices through the composition of

various GDLS matrices, similar to the method used by the authors in [SM21] for

constructing MDS matrices.

To minimize the search space, in most cases, we arbitrarily select ρ1 as the n-cycle

[n, 1, 2, . . . , n − 1]. However, it is important to note that there is no inherent

advantage in choosing ρ1 = [n, 1, 2, . . . , n− 1] for obtaining an NMDS matrix. If we

change ρ1 = [n, 1, 2, . . . , n− 1] to any permutation from Sn, there is still a possibility

of obtaining an NMDS matrix.

To search for lightweight nonrecursive NMDS matrices, we examine GDLS matri-

ces of order n with K =
⌈
n
2

⌉
and entries from the set {1, α, α−1, α2, α−2}, where α is

a primitive element and a root of the constructing polynomial of the field F2r . The

search space for finding nonrecursive NMDS matrices of order n ≥ 5 remains large,

even when considering the set {1, α, α−1, α2, α−2}. Therefore, to obtain nonrecursive

NMDS matrices of order n = 5, 6, 7, 8, we conduct a random search. In addition, to

construct nonrecursive NMDS matrices of order n, we typically chose n − 2 GDLS

matrices of the same structure. If this does not yield result, we use n − 1 matrices

instead.

Also note that the implementation costs of the matrices presented in this section

over a field are calculated by referring to the s-XOR count value of the corresponding

field elements as provided in table of [TTKS18, App. B]. In Table 6.5, we compare

our results for nonrecursive NMDS matrices with the existing results.

6.5.1 Construction of 4× 4 nonrecursive NMDS matrices

From Remark 6.9, we know that the matrix B given in 6.5 has the lowest XOR count

among all k-NMDS matrices with k ≤ 4 over F2r . The proposed GDLS matrix is

3-NMDS over a field F2r . Therefore, we can obtain a nonrecursive NMDS matrix

of order 4 by composing the matrix B with itself three times. This results in an

implementation cost of 3 · (2 · r) = 6r over a field F2r .

184



Table 6.5: Comparison of nonrecursive NMDS matrices of order n.

Order n Input Field/Ring XOR count References
4 4-bit F24 24 [SM21]
4 4-bit F24 24 Section 6.5.1
4 8-bit F28 48 [SM21]
4 8-bit F28 48 Section 6.5.1
5 4-bit F24/0x13 65 [LW17]
5 4-bit F24/0x13 50 Section 6.5.2
5 8-bit F28/0x11b 130 [LW17]
5 8-bit GL(8,F2) 98 Remark 6.23
6 4-bit F24/0x13 108 [LW17]
6 4-bit F24/0x13 65 Section 6.5.3
6 8-bit F28/0x11b 216 [LW17]
6 8-bit GL(8,F2) 125 Remark 6.24
7 4-bit F24/0x13 154 [LW17]
7 4-bit F24/0x13 96 Section 6.5.4
7 8-bit F28/0x11b 308 [LW17]
7 8-bit GL(8,F2) 176 Remark 6.25
8 4-bit F24/0x13 216 [LW17]
8 4-bit F24/0x13 108 [SM21]
8 4-bit F24/0x13 108 Section 6.5.5
8 8-bit F28/0x11b 432 [LW17]
8 8-bit GL(8,F2) 204 [SM21]
8 8-bit GL(8,F2) 204 Remark 6.26

6.5.2 Construction of 5× 5 nonrecursive NMDS matrices

In this section, we propose three GDLS matrices, B1, B2 and B3, which are con-

structed by the permutations ρ1 = [5, 1, 2, 3, 4], ρ2 = [3, 2, 5, 4, 1] and the following

diagonal matrices.

(i) B1: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1) and D2 = diag(0, α, 0, 1, 1)

(ii) B2: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1) and D2 = diag(0, 1, 0, 1, 1)

(iii) B3: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1) and D2 = diag(0, 1, 0, α, 1),

where α is a primitive element of F24 with α4 + α + 1 = 0. Using these three GDLS

matrices, we propose a 5× 5 NMDS matrix as follows:
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M = B2B3B1B2 =


0 1 0 0 1

0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

1 0 0 0 0




0 1 0 0 1

0 1 1 0 0

0 0 0 1 0

0 0 0 α 1

1 0 0 0 0




0 1 0 0 1

0 α 1 0 0

0 0 0 1 0

0 0 0 1 1

1 0 0 0 0




0 1 0 0 1

0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

1 0 0 0 0



=


1 α + 1 α + 1 0 1

1 α α 1 0

α 1 0 α α + 1

α + 1 0 1 α α + 1

0 α + 1 α 1 1

 .

(6.15)

Now, XOR(M) = XOR(B1) + 2 ·XOR(B2) +XOR(B3). Therefore, M can be

implemented with (1 + 3 · 4) + 2 · (0 + 3 · 4) + (1 + 3 · 4) = 50 XORs over the field

F24/0x13.

Remark 6.23. As discussed in Remark 6.11, if α is replaced with C, the matrix M

from (6.15) will be NMDS over GL(8,F2), with an implementation cost of (1 + 3 ·
8) + 2 · (0 + 3 · 8) + (1 + 3 · 8) = 98 XORs.

6.5.3 Construction of 6× 6 nonrecursive NMDS matrices

In this section, we propose a lightweight 6 × 6 NMDS matrix M that can be imple-

mented with 65 XORs over the field F24 . The matrix M is constructed from three

GDLS matrices, B1, B2, and B3, of order 6, as M = B2
2B1B3B2. These GDLS matri-

ces are constructed using the permutations ρ1 = [6, 1, 2, 3, 4, 5] and ρ2 = [5, 6, 1, 2, 3, 4]

and by the following diagonal matrices as follows:

(i) B1: ρ1, ρ2, D1 = diag(1, 1, 1, α, 1, α) and D2 = diag(0, α, 0, 1, 0, 1)

(ii) B2: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1, 1) and D2 = diag(0, 1, 0, 1, 0, 1)

(iii) B3: ρ1, ρ2, D1 = diag(α, 1, 1, α−1, 1, 1) and D2 = diag(0, 1, 0, 1, 0, 1)

B1 =



0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 α 0 0

0 0 0 0 1 1

0 0 0 0 0 α

1 α 0 0 0 0


B2 =



0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1

0 0 0 0 0 1

1 1 0 0 0 0


B3 =



0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 α−1 0 0

0 0 0 0 1 1

0 0 0 0 0 1

α 1 0 0 0 0


, (6.16)

where α is a primitive element of F24 with α4 +α+1 = 0. Now it can be checked

that M is NMDS over F24/0x13 with an implementation cost of 65 XORs, calculated

as XOR(M) = XOR(B1) + 3 ·XOR(B2) +XOR(B3) = (1 + 1 + 1 + 3 · 4) + 3 · (0 +
3 · 4) + (1 + 1 + 3 · 4) = 65.

Remark 6.24. As discussed in Remark 6.11, if α is replaced with C, the matrix

M constructed from B1, B2 and B3 in (6.16) will be NMDS over GL(8,F2), with an

implementation cost of 125 XORs.

186



6.5.4 Construction of 7× 7 nonrecursive NMDS matrices

This section presents three GDLS matrices, B1, B2, and B3, of order 7. These

matrices are constructed using the permutations ρ1 = [6, 7, 4, 5, 2, 3, 1] and ρ2 =

[3, 2, 1, 4, 7, 6, 5], along with specific diagonal matrices as follows:

(i) B1: ρ1, ρ2, D1 = diag(1, α−1, 1, α−2, 1, α2, 1) and D2 = diag(1, 0, 1, 0, 1, 0, 1)

(ii) B2: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1, 1, 1) and D2 = diag(1, 0, 1, 0, 1, 0, 1)

(iii) B3: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1, 1, α−1) and D2 = diag(1, 0, 1, 0, α−2, 0, 1)

B1 =



0 0 1 0 0 0 1

0 0 0 0 1 0 0

1 0 0 0 0 α2 0

0 0 1 0 0 0 0

0 0 0 α−2 0 0 1

1 0 0 0 0 0 0

0 α−1 0 0 1 0 0


B2 =



0 0 1 0 0 0 1

0 0 0 0 1 0 0

1 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 1

1 0 0 0 0 0 0

0 1 0 0 1 0 0


B3 =



0 0 1 0 0 0 α−1

0 0 0 0 1 0 0

1 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 1

1 0 0 0 0 0 0

0 1 0 0 α−2 0 0


,

(6.17)

where α is a primitive element in F24 with α4+α+1 = 0. Using these three GDLS

matrices, we propose a 7× 7 matrix M given by M = B3B
2
1B3B2. It can be verified

that M is an NMDS matrix over F24/0x13 with an implementation cost of 96 XORs,

which is calculated as XOR(M) = 2·(1+2+2+4·4)+(0+4·4)+2·(1+2+4·4) = 96.

Remark 6.25. By replacing α with C, as discussed in Remark 6.11, the matrix

M constructed from B1, B2 and B3 in (6.17) becomes an NMDS over GL(8,F2).

Furthermore, the binary matrices C2 and C−2 can be implemented with 2 XORs.

Consequently, the implementation cost of the matrix M is 176 XORs over GL(8,F2).

6.5.5 Construction of 8× 8 nonrecursive NMDS matrices

In this section, we present a lightweight 8 × 8 matrix M over the field F24 that

can be implemented with 108 XORs, which meets the best known result. To con-

struct the matrix M , we use three GDLS matrices, B1, B2, and B3, of order 8,

by M = B2B1B3B
3
2 . These GDLS matrices are generated using the permutations

ρ1 = [4, 5, 2, 3, 8, 1, 6, 7] and ρ2 = [5, 4, 3, 6, 1, 8, 7, 2], along with the following diago-

nal matrices.

(i) B1: ρ1, ρ2, D1 = diag(1, α, 1, α, 1, α, 1, α) and D2 = diag(1, 0, 1, 0, 1, 0, 1, 0)

(ii) B2: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1, 1, 1, 1), D2 = diag(1, 0, 1, 0, 1, 0, 1, 0)

(iii) B3: ρ1, ρ2, D1 = diag(1, 1, 1, 1, 1, 1, 1, 1) and D2 = diag(α−2, 0, α−2, 0, α−2, 0,

α−2, 0)
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Table 6.6: A summary of results on NMDS matrices of this chapter.

Order n Input Type Iterations XOR count

4 4-bit recursive 3 8

4 4-bit nonrecursive - 24

4 8-bit recursive 3 16

4 8-bit nonrecursive - 48

5 4-bit recursive 4 14

5 4-bit recursive 5 13

5 4-bit nonrecursive - 50

5 8-bit recursive 4 26

5 8-bit recursive 5 25

5 8-bit nonrecursive - 98

6 4-bit recursive 5 14

6 4-bit recursive 6 13

6 4-bit nonrecursive - 65

6 8-bit recursive 4 26

6 8-bit recursive 5 25

6 8-bit nonrecursive - 125

7 4-bit recursive 5 22

7 4-bit recursive 6 20

7 4-bit recursive 7 18

7 4-bit nonrecursive - 96

7 8-bit recursive 5 38

7 8-bit recursive 6 36

7 8-bit recursive 7 34

7 8-bit nonrecursive - 176

8 4-bit nonrecursive - 108

8 8-bit recursive 7 40

8 8-bit recursive 8 38

8 8-bit nonrecursive - 204
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B1=



0 0 0 0 1 α 0 0

0 0 1 0 0 0 0 0

0 0 1 α 0 0 0 0

1 0 0 0 0 0 0 0

1 α 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 α

0 0 0 0 1 0 0 0


B2=



0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0


B3=



0 0 0 0 α−2 1 0 0

0 0 1 0 0 0 0 0

0 0 α−2 1 0 0 0 0

1 0 0 0 0 0 0 0

α−2 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 α−2 1

0 0 0 0 1 0 0 0


,

(6.18)

where α is a primitive element of F24 with α4 + α + 1 = 0. Therefore, M can be

implemented with (1 + 1+ 1+ 1+ 4 · 4) + 4 · (0 + 4 · 4) + (2 + 2+ 2+ 2+ 4 · 4) = 108

XORs.

Remark 6.26. As discussed in Remark 6.11, if we substitute α with C, the ma-

trix M that is formed from B1, B2, and B3 in (6.18) becomes an NMDS matrix over

GL(8,F2). Also, the binary matrix C−2 can be implemented with only 2 XORs. There-

fore, the implementation cost of the matrix M becomes 204 XORs over GL(8,F2).

6.6 Conclusion

In this chapter, we have explored the construction of NMDS matrices using both

recursive and nonrecursive approaches. We have presented various theoretical results

and introduced lightweight NMDS matrices of different orders in both recursive and

nonrecursive approaches. Table 6.6 provides an overview of the implementation cost

of the NMDS matrices presented in this chapter. Furthermore, to compare with MDS

matrices, we examine some well-known results of MDS matrices and apply them to

NMDS matrices. For instance, Table 6.4 compares the involutory and orthogonal

properties of MDS and NMDS matrices constructed from circulant, left-circulant,

Toeplitz, and Hankel matrices.
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7.1 Introduction

The optimal branch number of MDS matrices makes them a preferred choice for

designing diffusion layers in many block ciphers and hash functions. Consequently,

various methods have been proposed for designing MDS matrices, including search

and direct methods. While exhaustive search is suitable for small order MDS matri-

ces, direct constructions are preferred for larger orders due to the vast search space

involved. In the literature, there has been extensive research on the direct construc-

tion of MDS matrices using both recursive and nonrecursive methods. On the other

hand, in lightweight cryptography, NMDS matrices with sub-optimal branch numbers

offer a better balance between security and efficiency as a diffusion layer compared

to MDS matrices. Despite their potential benefits, research on NMDS matrices has

been limited in the literature, and there is currently no direct construction method

available for them in a recursive approach.
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This chapter aims to bridge the gap by presenting direct constructions of NMDS

matrices in the recursive setting. It also introduces a new direct construction tech-

nique for recursive MDS matrices. Furthermore, the chapter introduces generalized

Vandermonde matrices for direct constructions of nonrecursive MDS and NMDS ma-

trices. Additionally, a method for constructing involutory MDS and NMDS matrices

is proposed.

Outline: The rest of this chapter is structured as follows: Section 7.2 presents

direct constructions of nonrecursive MDS and NMDS matrices. Section 7.3 focuses on

direct constructions of NMDS matrices in recursive approaches, including a new direct

construction of recursive MDS matrices. Lastly, Section 7.4 concludes the chapter.

7.2 Direct Construction of Nonrecursive MDS and

NMDS Matrices

The application of Vandermonde matrices for constructing MDS codes is well doc-

umented in literature [GR13a, LF04a, LF04b, MRS12, SDMO12]. In this section,

we explore the use of generalized Vandermonde matrices for the construction of both

MDS and NMDS matrices. Specifically, we focus on the generalized Vandermonde

matrices V⊥(x; I), where I is a subset of {1, n− 1, n}.
Generalized Vandermonde matrices, with these parameters, defined over a finite

field can contain singular submatrices (see Example 7.1). Consequently, these matri-

ces by itself need not be MDS over a finite field. However, like Vandermonde based

constructions, we can use two generalized Vandermonde matrices for constructing

MDS matrices.

Example 7.1. Consider the generalized Vandermonde matrix V⊥(x; I) with x =

(1, α, α2, α5) and I = {3}

V⊥(x; I) =




1 1 1 1

1 α α2 α5

1 α2 α4 α10

1 α4 α8 α20



,

where α is a primitive element of the finite field F24 constructed by the polynomial

x4 + x+ 1. Consider the 2× 2 submatrix[
1 α5

1 α20

]
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which is singular as α20 = α5.

Theorem 7.1. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vander-

monde matrices with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n) and I = {n− 1}.
The elements xi are 2n distinct elements from Fq, and

∑n
i=1 xri ̸= 0 for all R =

{r1, r2, . . . , rn} ⊂ E, where E = {1, 2, . . . , 2n}. Then the matrices V −1
1 V2 and V −1

2 V1

are such that any square submatrix of them is nonsingular and hence MDS matrices.

Proof. Let U be the n× 2n matrix [V1 | V2]. By Corollary 2.10, we can conclude that

both V1 and V2 are nonsingular matrices. Consider the product G = V −1
1 U = [I | A],

where A = V −1
1 V2. We will now prove that A does not contain any singular submatrix.

Now, since U = V1G, from Lemma 2.5, we can say that U is also a generator

matrix for the linear code C generated by matrix G = [I | A]. From Remark 2.3, we

know that a generator matrix U generates an [2n, n, n + 1] MDS code if and only if

any n columns of U is linearly independent.

Now we can observe that any n columns of U form a generalized Vandermonde

matrix of the same form as V1 and V2. Since each xi are distinct and
∑n

i=1 xri ̸= 0 for

all R = {r1, r2, . . . , rn} ⊂ E, form Corollary 2.10, we can say that every n columns of

U are linearly independent. Hence, we can say that the code C is an MDS code.

Therefore, G generates an [2n, n, n + 1] MDS code and hence A = V −1
1 V2 is an

MDS matrix. For V −1
2 V1, the proof is identical.

Remark 7.1. We know that the inverse of an MDS matrix is again MDS (See Corol-

lary 2.7), therefore, if V −1
1 V2 is MDS, then V −1

2 V1 is also MDS and vice versa.

Example 7.2. Consider the generalized Vandermonde matrices V1 = V⊥(x; I) and

V2 = V⊥(y; I) with x = (1, α, α2, α3), y = (α4, α5, α6, α7) and I = {3}, where α is a

primitive element of F28 with α8 +α7 +α6 +α+1 = 0. It can be verified that V1 and

V2 satisfy the conditions in Theorem 7.1. Therefore, the matrices

V −1
1 V2 =




α7 α234 α57 α156

α37 α66 α55 α211

α205 α100 α30 α86

α227 α50 α149 α40




and V −1
2 V1 =




α136 α49 α235 α30

α210 α77 α201 α198

α144 α72 α52 α220

α42 α228 α23 α248




are MDS matrices.

Similar to MDS matrices, generalized Vandermonde matrices with I = {n− 1} them-

selves may not be NMDS over a finite field (see Example 7.3). As a consequence, we

use two generalized Vandermonde matrices for constructing NMDS matrices.
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Example 7.3. Consider the generalized Vandermonde matrix A = V⊥(x; I) with

x = (1, α, α3, α7) and I = {3}.

A =




1 1 1 1

1 α α3 α7

1 α2 α6 α14

1 α4 α12 α28



,

where α is a primitive element of F24 with α4+α+1 = 0. Now consider the generator

matrix
G = [I | A]

=




1 0 0 0 1 1 1 1

0 1 0 0 1 α α3 α7

0 0 1 0 1 α2 α6 α14

0 0 0 1 1 α4 α12 α28



.

Now consider matrix

M =




0 1 1 1 1

0 1 α α3 α7

1 1 α2 α6 α14

0 1 α4 α12 α28



,

which is constructed by the five columns: the third, fifth, sixth, seventh, and eighth

columns of G. It can be observed that rank(M) = 3 < 4, which violates the condi-

tion (iii) in Lemma 2.4. Therefore, A is not an NMDS matrix.

Theorem 7.2. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n) and I = {n− 1}. The

elements xi are 2n distinct elements from Fq such that
∑n

i=1 xi ̸= 0,
∑n

i=1 xn+i ̸= 0

and
∑n

i=1 xri = 0 for some other R = {r1, r2, . . . , rn} ⊂ E, where E = {1, 2, . . . , 2n}.
Then the matrices V −1

1 V2 and V −1
2 V1 are NMDS matrices.

Proof. Let U be the n× 2n matrix [V1 | V2]. By Corollary 2.10, we can conclude that

both V1 and V2 are nonsingular matrices. Consider the product G = V −1
1 U = [I | A],

where A = V −1
1 V2. To show, A = V −1

1 V2 is an NMDS matrix, we need to prove that

the [2n, n] linear code C generated by G = [I | A] is an NMDS code.

Now, since U = V1G, from Lemma 2.5, we can say that U is also a generator

matrix for the linear code C. Therefore, we can conclude that A = V −1
1 V2 is an

NMDS matrix if and only if U meets the three conditions mentioned in Lemma 2.4.

A submatrix U [R], constructed from any t columns of U , is given by
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U [R] =




1 1 . . . 1

xr1 xr2 . . . xrt

x2
r1

x2
r2

. . . x2
rt

...
...

. . .
...

xn−2
r1

xn−2
r2

. . . xn−2
rt

xn
r1

xn
r2

. . . xn
rt




, (7.1)

where R denotes a set {r1, r2, . . . , rt} ⊂ E = {1, 2, . . . , 2n} of t elements.

So for R = {r1, r2, . . . , rn−1} ⊂ E we have

U [R] =




1 1 . . . 1

xr1 xr2 . . . xrn−1

...
...

. . .
...

xn−2
r1

xn−2
r2

. . . xn−2
rn−1

xn
r1

xn
r2

. . . xn
rn−1



.

Now, we consider the (n− 1)× (n− 1) submatrix U ′[R] of U [R], which is constructed

from the first n− 1 rows of U [R]. Therefore, we have

U ′[R] =




1 1 . . . 1

xr1 xr2 . . . xrn−1

...
...

. . .
...

xn−3
r1

xn−3
r2

. . . xn−3
rn−1

xn−2
r1

xn−2
r2

. . . xn−2
rn−1




= vand(xr1 , xr2 , . . . , xrn−1),

which is nonsingular since each xi is a distinct element. Therefore, any submatrix of

U constructed from any n− 1 columns has a nonsingular (n− 1)× (n− 1) submatrix,

implying that any n− 1 columns of U are linearly independent.

Now suppose
∑n

i=1 xr′i
= 0 for some R′ = {r′1, r′2, . . . , r′n} ⊂ E. Then for R′, we

have

U [R′] =




1 1 . . . 1

xr′1
xr′2

. . . xr′n
...

...
. . .

...

xn−2
r′1

xn−2
r′2

. . . xn−2
rn′

xn
r′1

xn
r′2

. . . xn
r′n



,
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which is a generalized Vandermonde matrix V⊥(x; I) with x = (xr′1
, xr′2

, . . . , xr′n) and

I = {n− 1}. Thus, from Corollary 2.10, we have

det(U [R′]) =

[ ∏

1≤i<j≤n

(xr′j
− xr′i

)

](
n∑

i=1

x′
ri

)
.

Since
∑n

i=1 xr′i
= 0, we have det(U [R′]) = 0 i.e. the columns of U [R′] are linearly

dependent. Hence, there exist n columns (depends upon R′) that are linearly depen-

dent.

Now we need to show that the third condition of Lemma 2.4 is also satisfied by

U . To prove this, we will use a contradiction argument. Suppose, for the sake

of contradiction, that each set of n + 1 columns of U is not of full rank. Let

R′′ = {r1, r2, . . . , rn, rn+1} ⊂ E be a set of n + 1 elements such that the corre-

sponding submatrix U [R′′] of U is not of full rank i.e., rank(U [R′′]) < n. Now by

our assumption, each n × n submatrix of U [R′′] is singular. Since each xr ̸= xr′ for

r, r′ ∈ E, from Corollary 2.10, it follows that

xr2 + xr3 + xr4 + xr5 + · · ·+ xrn+1 = 0

xr1 + xr3 + xr4 + xr5 + · · ·+ xrn+1 = 0

xr1 + xr2 + xr3 + xr5 + · · ·+ xrn+1 = 0

...

xr1 + xr2 + xr3 + xr4 + · · ·+ xrn = 0.

This system of equations can be written as MX = 0, where M is a (n+1)×(n+1)

matrix given by

M =




0 1 1 1 . . . 1

1 0 1 1 . . . 1

1 1 0 1 . . . 1
...

...
...

...
. . .

...

1 1 1 1 . . . 0




and X = [xr1 , xr2 , xr3 , . . . , xrn+1 ]
T .

Note that det(M)=(−1)nn. Suppose p is the characteristic of the field Fq. We

will now examine two scenarios: first, when p does not divide n; and second, when p

divides n.

Case 1: p ∤ n.
In this case, we have det(M) ̸= 0. Therefore, MX = 0 has a unique solution X =
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[0, 0, . . . , 0]T . This means xri = 0 for i = 1, 2, . . . , n + 1 which is a contradiction

because each xi is distinct.

Case 2: p|n.
If p|n, M is a singular matrix. Consider the n×n submatrixM ′ obtained by excluding

the first row and first column of M . The determinant of M ′ is given by det(M ′) =

(−1)n−1(n − 1). Since p is a prime and p|n, we must have p ∤ (n − 1). Therefore,

det(M ′) ̸= 0. From this, we conclude that the rank of M is n and so the solution

space of MX = 0 has dimension 1.

Since p|n, it is easy to verify that [1, 1, . . . , 1]T is a solution of MX = 0. As this

vector is nonzero, we deduce that the solution space of MX = 0 is given by

X =
{
c · [1, 1, . . . , 1]T : c ∈ Fq

}
.

Therefore, we have

[xr1 , xr2 , xr3 , . . . , xrn+1 ]
T = c · [1, 1, . . . , 1]T

for some c ∈ Fq, which contradicts the fact that each xr ̸= xr′ for r, r
′ ∈ E.

Thus, we can conclude that U , and hence G = [I | A], generates an [2n, n] linear

NMDS code. Therefore, according to Definition 2.11, A = V −1
1 V2 is an NMDS matrix.

For V −1
2 V1, the proof is identical.

Remark 7.2. In Theorem 7.2, it is assumed that
∑n

i=1 xi ̸= 0 and
∑n

i=1 xn+i ̸= 0.

This assumption is made based on Corollary 2.10, which states that det(V⊥(x; I)) =

det(vand(x))(
∑n

i=1 xi) and det(V⊥(y; I)) = det(vand(y))(
∑n

i=1 xn+i). If either of

these sums is zero, it would result in the determinant of either V1 or V2 being zero,

making them singular. Hence, the assumption is necessary to ensure the nonsingu-

larity of V1 and V2.

Example 7.4. Consider the generalized Vandermonde matrices V1 = V⊥(x; I) and

V2 = V⊥(y; I) with x = (1, α, α2, α3), y = (α4, α5, α6, α7) and I = {3}, where α is

a primitive element of F24 with α4 + α + 1 = 0. It is easy to check that each xi are

distinct and 1 + α + α3 + α7 = 0. Therefore, the matrices

V −1
1 V2 =




α7 α9 α9 1

α14 α14 α3 1

α10 α5 α5 0

α2 α2 α8 1




and V −1
2 V1 =




0 α7 1 α7

1 α14 0 α3

1 α5 1 α10

1 α8 1 α8



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are NMDS matrices.

Remark 7.3. Based on the conditions of Theorem 7.2, both V1 and V2 are nonsingular

matrices. As both V1 and V2 are nonsingular, from Lemma 2.9, we can conclude that

if V −1
1 V2 is an NMDS matrix, then V −1

2 V1 is also an NMDS matrix, and vice versa.

In the context of implementing block ciphers, we know that if an efficient matrix

M used in encryption is involutory, then its inverse M−1 = M applied for decryption

will also be efficient. Hence, it is important to find MDS or NMDS matrices that

are also involutory. In the following theorem, we prove a result for obtaining invo-

lutory matrices from the generalized Vandermonde matrices with I = {n− 1}. The

proof technique used in this theorem follows a similar approach to the proof of the

Theorem 3.5 for Vandermonde matrices.

Theorem 7.3. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices of even order over F2r with x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and

I = {n− 1}. If yi = l + xi for i = 1, 2, . . . , n, for some l ∈ F⋆
2r then V2V1

−1 is a

lower triangular matrix whose nonzero elements are determined by powers of l. Also,

V −1
1 V2 (= V −1

2 V1) is an involutory matrix.

Proof. Let V −1
1 = (ti,j)n,n and V = V2V

−1
1 = (vi,j)n,n. As V1V

−1
1 = I, we have

V1row(1)
· V −1

1column(1)
=

n∑

i=1

ti,1 = 1 (7.2)

V1row(k)
· V −1

1column(1)
=

n∑

i=1

xk−1
i · ti,1 = 0 for 2 ≤ k ≤ n− 1 and (7.3)

V1row(n)
· V −1

1column(1)
=

n∑

i=1

xn
i · ti,1 = 0. (7.4)

Therefore, from Equation 7.2, we have v1,1 = V2row(1)
· V −1

1column(1)
= 1.

Now for 2 ≤ k ≤ n− 1, we have

vk,1 = V2row(k)
· V −1

1column(1)

=
n∑

i=1

yk−1
i · ti,1 =

n∑

i=1

(l + xi)
k−1 · ti,1

=
n∑

i=1

(k−1C0x
k−1
i + k−1C1x

k−2
i · l + . . .

+k−1Ck−2xi · lk−2 + k−1Ck−1l
k−1) · ti,1

=
n∑

i=1

lk−1 · ti,1 = lk−1 [By Equation 7.3].
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Also, we have

vn,1 = V2row(n)
· V −1

1column(1)

=
n∑

i=1

yni · ti,1 =
n∑

i=1

(l + xi)
n · ti,1

=
n∑

i=1

(nC0x
n
i +

nC1x
n−1
i · l + . . .+ nCn−1xi · ln−1 + nCnl

n) · ti,1

=
n∑

i=1

nC1x
n−1
i l · ti,1 +

n∑

i=1

ln · ti,1 [By Equations 7.3 and 7.4]

= ln [Since n is even, nC1 = 0 in F2r and by Equation 7.2].

So we have computed the 1st column of V = V2V
−1
1 .

Again since V1V
−1
1 = I, we have

V1row(1)
· V −1

1column(2)
=

n∑

i=1

ti,2 = 0, l (7.5)

V1row(2)
· V −1

1column(2)
=

n∑

i=1

xi · ti,2 = 1, (7.6)

V1row(k)
· V −1

1column(2)
=

n∑

i=1

xk−1
i · ti,2 = 0 for 3 ≤ k ≤ n− 1 and (7.7)

V1row(n)
· V −1

1column(2)
=

n∑

i=1

xn
i · ti,2 = 0. (7.8)

Therefore, from Equation 7.5, we have v1,2 = V2row(1)
· V −1

1column(2)
= 0.

Also, we have

v2,2 = V2row(2)
· V −1

1column(2)
=

n∑

i=1

yi · ti,2

=
n∑

i=1

(l + xi) · ti,2 =
n∑

i=1

l · ti,2 +
n∑

i=1

xi · ti,2 = 1 [By Equations 7.5 and 7.6]

Now for 3 ≤ k ≤ n− 1, we have

vk,2 = V2row(k)
· V −1

1column(2)

=
n∑

i=1

yk−1
i · ti,2 =

n∑

i=1

(l + xi)
k−1 · ti,2

=
n∑

i=1

(k−1C0x
k−1
i + k−1C1x

k−2
i · l + . . .

+k−1Ck−2xi · lk−2 + k−1Ck−1l
k−1) · ti,2
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=
n∑

i=1

k−1Ck−2xil
k−2 · ti,2 +

n∑

i=1

lk−1 · ti,2 [By Equation 7.7]

= k−1C1l
k−2 [By Equations 7.5 and 7.6 and since k−1Ck−2 =

k−1C1].

Also, we have

vn,2 = V2row(n)
· V −1

1column(2)

=
n∑

i=1

yni · ti,2 =
n∑

i=1

(l + xi)
n · ti,2

=
n∑

i=1

(nC0x
n
i +

nC1x
n−1
i · l + . . .+ nCn−1xi · ln−1 + nCnl

n) · ti,2

=
n∑

i=1

nC1x
n−1
i l · ti,2 +

n∑

i=1

nCn−1xil
n−1 · ti,2 [By Equations 7.5, 7.7 and 7.8]

= nC1l
n−1 = 0 [Since n is even, nC1 = 0 in F2r and by Equation 7.6].

So we have computed the 2nd column of V = V2V
−1
1 . Similarly,

v1,3 = v2,3 = 0, v3,3 = 1, vk,3 =
k−1C2l

k−3 for 4 ≤ k ≤ n− 1 and

vn,3 =
nC2l

n−2

v1,4 = v2,4 = v3,4 = 0, v4,4 = 1, vk,4 =
k−1C3l

k−4 for 5 ≤ k ≤ n− 1 and

vn,4 =
nC3l

n−3 and so on.

Therefore, V = V2V
−1
1

=




1 0 0 0 . . . . . . 0 0

l 1 0 0 . . . . . . 0 0

l2 2C1l 1 0 . . . . . . 0 0

l3 3C1l
2 3C2l 1 . . . . . . 0 0

l4 4C1l
3 4C2l

2 4C3l . . . . . . 0 0
...

...
...

... . . . . . .
...

...

ln−2 n−2C1l
n−3 n−2C2l

n−4 n−2C3l
n−5 . . . . . . 1 0

ln nC1l
n−1 nC2l

n−2 nC3l
n−3 . . . . . . nCn−2l

2 1




.

Thus, V2V
−1
1 is a lower triangular matrix. Therefore, for 1 ≤ i ≤ n − 1 and

1 ≤ j ≤ n, we have

(V V2)i,j = Vrow(i) · V2column(j)

= li−1 + i−1C1l
i−2 · yj + i−1C2l

i−3 · y2j + . . .+ i−1Ci−2l · yi−2
j + yi−1

j

= (l + yj)
i−1 = xi−1

j = (V1)i,j.
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Now for 1 ≤ j ≤ n, we have

(V V2)n,j = Vrow(n) · V2column(j)

= ln + nC1l
n−1 · yj + nC2l

n−2 · y2j + . . .+ nCn−2l
2 · yn−2

j + ynj

= ln + nC1l
n−1 · yj + nC2l

n−2 · y2j + . . .+ nCn−2l
2 · yn−2

j

+ nCn−1l · yn−1
j + ynj [Since nCn−1 = 0 in F2r ]

= (l + yj)
n = xn

j = (V1)n,j.

Thus, we have V2V
−1
1 V2 = V1 which implies that (V −1

1 V2)
2 = I i.e. V −1

1 V2 = V −1
2 V1 is

involutory.

Now by applying Theorem 7.1 and Theorem 7.3, we can find involutory MDS matrices

over F2r , as follows.

Corollary 7.1. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices of even order over F2r with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n)

and I = {n− 1}. If V1 and V2 satisfying the three properties:

(i) xn+i = l + xi for i = 1, 2, . . . , n, for some l ∈ F⋆
2r ,

(ii) xi ̸= xj for i ̸= j where 1 ≤ i, j ≤ 2n, and

(iii)
∑n

i=1 xri ̸= 0 for all R = {r1, r2, . . . , rn} ⊂ E, where E = {1, 2, . . . , 2n},

then V −1
1 V2 is an involutory MDS matrix.

Example 7.5. Let α be a primitive element of F28 with α8+α7+α6+α+1 = 0. Let

l = α, x = (1, α, α2, α3, α4, α5), and y = (α + 1, 0, α2 + α, α3 + α, α4 + α, α5 + α).

Consider the generalized Vandermonde matrices V1 = V⊥(x; I) and V2 = V⊥(y; I) with

I = {5}. Then it can be checked that both matrices V1 and V2 satisfy the conditions

of Corollary 7.1. Therefore, the matrix

V −1
1 V2 =




α113 α33 α227 α93 α16 α174

α63 α107 α186 α149 α175 α10

α105 α34 α116 α97 α198 α197

α40 α66 α166 α43 α213 α52

α136 α10 α185 α131 α5 α136

α211 α17 α101 α142 α53 α56




is an involutory MDS matrix.
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Remark 7.4. It is worth mentioning that the above result is not true for odd order

matrices. For example, consider the 3 × 3 generalized Vandermonde matrices V1 =

V⊥(x; I) and V2 = V⊥(y; I) with I = {2}, x = (1, α, α2) and y = (1+α3, α+α3, α2+

α3), where α is a primitive element of F24 with α4 + α + 1 = 0. Then it can be

checked that the matrices V1 and V2 satisfy the conditions in Corollary 7.1. However,

the matrix

V −1
1 V2 =



α10 α13 α1

α3 α11 α11

α11 α1 α13




is not an involutory matrix.

Also, by using Theorem 7.2 and Theorem 7.3, we can obtain involutory NMDS ma-

trices over F2r with the following approach.

Corollary 7.2. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices of even order over F2r with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n)

and I = {n− 1}. If V1 and V2 satisfying the three properties:

(i) xn+i = l + xi for i = 1, 2, . . . , n, for some l ∈ F⋆
2r ,

(ii) xi ̸= xj for i ̸= j where 1 ≤ i, j ≤ 2n, and

(iii)
∑n

i=1 xi ̸= 0,
∑n

i=1 xn+i ̸= 0 and
∑n

i=1 xri = 0 for some other R =

{r1, r2, . . . , rn} ⊂ E, where E = {1, 2, . . . , 2n},

then V −1
1 V2 is an involutory NMDS matrix.

Example 7.6. Let l = 1, x = (1, α, α2, α3), and y = (0, 1 + α, 1 + α2, 1 + α3),

where α is a primitive element of F24 with α4 + α + 1 = 0. Consider the generalized

Vandermonde matrices V1 = V⊥(x; I) and V2 = V⊥(y; I) with I = {3}. Then it

can be checked that both matrices V1 and V2 satisfy the conditions of Corollary 7.2.

Therefore, the matrix

V −1
1 V2 =




α9 α7 α7 α7

α3 α14 α3 α3

α10 α10 α5 α10

α2 α2 α2 α8




is an involutory NMDS matrix.
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We will now focus on using the generalized Vandermonde matrices V⊥(x; I) with

I = {1} for constructing MDS and NMDS matrices. Similar to the case of generalized

Vandermonde matrices with I = {n − 1}, these matrices alone may not be MDS

or NMDS (as shown in Example 7.7). Therefore, we will consider two generalized

Vandermonde matrices for the construction of MDS and NMDS matrices.

Example 7.7. Consider the generalized Vandermonde matrix V⊥(x; I) with x =

(1, α, α5, α10) and I = {1}

V⊥(x; I) =




1 1 1 1

1 α2 α10 α20

1 α3 α15 α30

1 α4 α20 α40



,

where α is a primitive element of F24 with α4 +α+1 = 0. But it contains a singular

2× 2 submatrix

[
1 1

α15 α30

]
. Hence, V⊥(x; I) is not an MDS matrix. Also, it can be

checked that V⊥(x; I) is not an NMDS matrix.

By utilizing Corollary 2.11, we can establish the following theorem, resembling the

proof technique employed in Theorem 7.1. In the interest of conciseness, we state the

result without providing a proof.

Theorem 7.4. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n) and I = {1}. Suppose

that the elements xi are 2n distinct nonzero elements from Fq, and
∑n

i=1 x
−1
ri
̸= 0 for

all R = {r1, r2, . . . , rn} ⊂ E, where E = {1, 2, . . . , 2n}. Then the matrices V −1
1 V2 and

V −1
2 V1 are such that any square submatrix of them is nonsingular and hence MDS

matrices.

Example 7.8. Consider the generalized Vandermonde matrices V1 = V⊥(x; I) and

V2 = V⊥(y; I) with x = (1, α, α2, α3), y = (α4, α5, α6, α7) and I = {1}, where α is a

primitive element of F28 with α8 +α7 +α6 +α+1 = 0. It can be verified that V1 and

V2 satisfy the conditions in Theorem 7.4. Therefore, the matrices

V −1
1 V2 =




α9 α43 α252 α70

α232 α68 α92 α168

α206 α213 α93 α230

α34 α243 α61 α152




and V −1
2 V1 =




α24 α137 α42 α223

α66 α14 α88 α197

α187 α35 α50 α25

α128 α33 α214 α246




are MDS matrices.
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In the following theorem we discuss a new construction of NMDS matrices from the

generalized Vandermonde matrices with I = {1}. The proof can be derived using

Corollary 2.11, following a similar approach to that of Theorem 7.2. We state the

result without providing a proof.

Theorem 7.5. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n) and I = {1}. Assume

that the elements xi are 2n distinct nonzero elements from Fq such that
∑n

i=1 x
−1
i ̸= 0,∑n

i=1 x
−1
n+i ̸= 0 and

∑n
i=1 x

−1
ri

= 0 for some other R = {r1, r2, . . . , rn} ⊂ E, where

E = {1, 2, . . . , 2n}. Then the matrices V −1
1 V2 and V −1

2 V1 are NMDS matrices.

Remark 7.5. Similar to Theorem 7.2, according to the Corollary 2.11, the assump-

tion
∑n

i=1 x
−1
i ̸= 0 and

∑n
i=1 x

−1
n+i ̸= 0 in Theorem 7.5 is necessary to ensure the

nonsingularity of V1 and V2.

Example 7.9. Consider the generalized Vandermonde matrices V1 = V⊥(x; I) and

V2 = V⊥(y; I) with x = (1, α, α2, α3), y = (α4, α5, α6, α7) and I = {1}, where α is

a primitive element of F24 with α4 + α + 1 = 0. It is easy to check that each xi are

distinct and 1 + α−1 + α−2 + α−7 = 0. Therefore, the matrices

V −1
1 V2 =




α9 α5 α2 α13

α7 α α10 α9

α11 0 1 α5

α11 α8 α4 0




and V −1
2 V1 =




α14 α11 α9 α13

0 α4 α8 α2

α6 α13 α13 α2

α2 1 α4 α6




are NMDS matrices.

Now we consider generalized Vandermonde matrices V (x;T ), where T has more than

one discontinuity, specifically, we consider V⊥(x; I) with I = {1, n} for providing a

new direct construction for MDS matrices. The proof follows a similar approach to

that of Theorem 7.1 and can be derived using Corollary 2.12. For brevity, we state

the result without presenting a proof.

Theorem 7.6. Let V1 = V⊥(x; I) and V2 = V⊥(y; I) be two generalized Vandermonde

matrices with x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n) and I = {1, n}. The

elements xi are 2n distinct nonzero elements from Fq, and (
∑n

i=1 xri)(
∑n

i=1 x
−1
ri
)−1 ̸=

0 for all R = {r1, r2, . . . , rn} ⊂ E, where E = {1, 2, . . . , 2n}. Then the matrices

V −1
1 V2 and V −1

2 V1 are such that any square submatrix of them is nonsingular and

hence MDS matrices.
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Example 7.10. Consider the generalized Vandermonde matrices V1 = V⊥(x; I) and

V2 = V⊥(y; I) with x = (1, α, α2, α3), y = (α4, α5, α6, α7) and I = {1, 4}, where α

is a primitive element of F24 with α4 + α + 1 = 0. It can be verified that V1 and V2

satisfy the conditions in Theorem 7.6. Therefore, the matrices

V −1
1 V2 =




α10 α2 α2 α14

α12 α2 α10 α5

α α9 1 1

α7 α7 α4 α12




and V −1
2 V1 =




α7 α4 α12 α2

α5 α10 α9 α6

α5 1 α12 α12

α9 α2 α7 α5




are MDS matrices.

Remark 7.6. It is important to note that in Theorem 7.1 and Theorem 7.2, at

most one xi may be zero for V −1
1 V2 and V −1

2 V1 to be MDS or NMDS. However, in

Theorem 7.4, Theorem 7.5, and Theorem 7.6, each xi needs to be nonzero; otherwise,

the term x−1
i in the conditions will not be defined.

Remark 7.7. We have presented a method for constructing involutory MDS and

NMDS matrices using generalized Vandermonde matrices V⊥(x; I) with I = {n− 1}.
However, we have not been able to determine the conditions for constructing involutory

MDS and NMDS matrices from generalized Vandermonde matrices with I = {1} and
I = {1, n}.

Remark 7.8. This chapter does not consider the generalized Vandermonde matrices

V (x;T ) with discontinuities other than {1}, {n− 1}, or {1, n}, or those with more

than two discontinuities. This is because the conditions for being MDS or NMDS

matrices become more complicated. However, it is possible to find additional direct

constructions of MDS and NMDS matrices by using Theorem 2.8.

Till now, we have discussed nonrecursive constructions of MDS and NMDS matrices.

In the next section, we will explore the recursive constructions of MDS and NMDS

matrices using the direct method.

7.3 Direct Construction of Recursive MDS and

NMDS Matrices

This section introduces several techniques for the direct construction of MDS and

NMDS matrices over finite fields using recursive approach. To the best of our knowl-

edge, we are the first to provide a direct construction method for recursive NMDS
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matrices. We begin by establishing a criterion for determining the similarity between

a companion matrix and a diagonal matrix. Using this condition, we can represent

the companion matrix as a combination of a Vandermonde matrix and a diagonal

matrix. We utilize determinant expressions for generalized Vandermonde matrices to

present several techniques for constructing recursive NMDS matrices that are derived

from companion matrices. Furthermore, a new direct construction for recursive MDS

matrices is introduced.

Lemma 7.1. Consider a monic polynomial g(x) ∈ Fq[x] of degree n with n distinct

roots denoted as λ1, . . . , λn ∈ F̄q. Then the matrix

G′ =




1 λ1 . . . λn−1
1 λm

1 λm+1
1 . . . λm+n−1

1
...

...
. . .

...
...

...
. . .

...

1 λn . . . λn−1
n λm

n λm+1
n . . . λm+n−1

n


 (7.9)

is also a generator matrix for the [2n, n] linear code C with generator matrix G =

[I | (CT
g )

m].

Proof. From Theorem 2.10, we know that if a polynomial g(x) has n distinct roots

λ1, . . . , λn, then the companion matrix Cg associated to g(x) can be written as Cg =

V DV −1, where

V = vand(λ1, λ2, . . . , λn)

=




1 1 . . . 1

λ1 λ2 . . . λn

λ2
1 λ2

2 . . . λ2
n

...
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n




and D = diag(λ1, . . . , λn).

Consider an [2n, n] linear code C, with generator matrix G = [I | (CT
g )

m]. Now

G = [I | (CT
g )

m] = [I | ((V T )−1DV T )m]

= [I | (V T )−1DmV T ]

= (V T )−1[V T | DmV T ]

= (V T )−1G′,

(7.10)

where G′ = [V T | DmV T ]. Therefore, we have
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G′ = [V T | DmV T ]

=




1 λ1 . . . λn−1
1 λm

1 λm+1
1 . . . λm+n−1

1
...

...
. . .

...
...

...
. . .

...

1 λn . . . λn−1
n λm

n λm+1
n . . . λm+n−1

n


 .

Also, from (7.10), we have G′ = V TG. Hence, according to Lemma 2.5, we can

conclude that G′ is also a generator matrix for the linear code C.

Let Cg be the companion matrix associated with a monic polynomial g(x) of

degree n ≥ 3. Then for m < n, it can be observed that the first row of Cm
g is a unit

vector. Hence, the linear code generated by [I | Cm
g ] has minimum distance < n.

Therefore, for m < n, Cm
g cannot be an MDS or NMDS matrix.

Theorem 7.7. Consider a monic polynomial g(x) ∈ Fq[x] of degree n with n distinct

roots, say λ1, . . . , λn ∈ F̄q. Let m be an integer satisfying m ≥ n. Then, the matrix

M = Cm
g is MDS if and only if any set of n columns of the matrix G′ defined in (7.9)

is linearly independent.

Proof. Based on Corollary 2.6, we can conclude that Cm
g is an MDS matrix if and

only if its transpose (Cm
g )T = (CT

g )
m is also an MDS matrix. Also, according to

Definition 2.7, (CT
g )

m is MDS if and only if the [2n, n] linear code C, with generator

matrix G = [I | (CT
g )

m], is an MDS code.

Now since λ1, . . . , λn are n distinct roots of g(x), from Lemma 7.1, we can say

that the matrix G′ in (7.9) is also a generator matrix for the code C. Therefore, by

Remark 2.3, we can establish that (Cm
g )T is MDS, and hence Cm

g , if and only if any

set of n columns of G′ is linearly independent.

Theorem 7.8. Consider a monic polynomial g(x) ∈ Fq[x] of degree n with n distinct

roots denoted as λ1, . . . , λn ∈ F̄q. Let m be an integer satisfying m ≥ n. Then, the

matrix M = Cm
g is NMDS if and only if the matrix G′ defined in (7.9) satisfies the

three conditions specified in Lemma 2.4.

Proof. From Corollary 2.6, we know that Cm
g is an NMDS matrix if and only if

its transpose (Cm
g )T = (CT

g )
m is also an NMDS matrix. Also, by Definition 2.11,

(CT
g )

m is NMDS matrix if and only if the [2n, n] linear code C, with generator matrix

G = [I | (CT
g )

m], is an NMDS code.

As λ1, . . . , λn are n distinct roots of g(x), we can infer from Lemma 7.1 that the

matrix G′ defined in (7.9) is also a generator matrix for the code C. Consequently,
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we can conclude that (Cm
g )T is NMDS, and therefore Cm

g is NMDS, if and only if the

matrix G′ satisfy the three conditions outlined in Lemma 2.4.

Lemma 7.2. Suppose that g(x) =
∏n

i=1(x − λi) ∈ Fq[x] yields a recursive MDS

(NMDS) matrix. Then, for any c ∈ F∗
q, the polynomial cng

(x
c

)
=

n∏

i=1

(x− cλi) also

yields a recursive MDS (NMDS) matrix.

Proof. Let g∗(x) = cng
(x
c

)
. The matrix Cg∗ = cDCgD

−1 where

D =




1 0 0 . . . 0 0

0 c 0 . . . 0 0

0 0 c2 . . . 0 0

. . .

0 0 0 . . . cn−2 0

0 0 0 . . . 0 cn−1




The matrix Cm
g∗ = cmDCm

g D−1 is MDS (NMDS) if and only if Cm
g is MDS (NMDS).

Using the above lemma, it is possible to obtain more polynomials that produce re-

cursive MDS or NMDS matrices from an initial polynomial.

Now, we introduce two approaches for constructing polynomials that yield recur-

sive NMDS matrices. These polynomials are designed to have distinct roots. The

underlying idea behind these techniques is based on Theorem 7.8: we carefully

select suitable values for λi, for 1 ≤ i ≤ n, and validate that the polynomial

g(x) =
∏n

i=1(x − λi) ∈ Fq[x] satisfies the conditions outlined in Theorem 7.8. To

do so, we must examine the rank of the submatrices of G′ constructed from any t

columns (here we examine t = n − 1, n, n + 1) of G′ corresponding to λi’s as given

in (7.9). A submatrix G′[R], constructed from any t columns of G′, is given by

G′[R] =




λr1
1 λr2

1 . . . λrt
1

λr1
2 λr2

2 . . . λrt
2

...
...

. . .
...

λr1
n λr2

n . . . λrt
n



, (7.11)

where R denotes a set {r1, r2, . . . , rt} ⊂ E = {0, 1, . . . , n−1,m,m+1, . . . ,m+n−1}
of t elements.
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Theorem 7.9. Consider the polynomial g(x) =
∏k

i=1(x−λi), where λi = θi−1 for 1 ≤
i ≤ n−1 and λn = θn for some θ ∈ F∗

q. Let E = {0, 1, . . . , n−1,m,m+1, . . . ,m+n−1}
for some integer m ≥ n. The matrix Cm

g is NMDS if and only if θr ̸= θr
′
for r, r′ ∈ E

and
∑n

i=1 θ
ri = 0 for some R = {r1, r2, . . . , rn} ⊂ E.

Proof. We have λi = θi−1 for 1 ≤ i ≤ n−1 and λn = θn. So for R = {r1, r2, . . . , rt} ⊂
E we have

G′[R] =




1 1 . . . 1

θr1 θr2 . . . θrt

...
...

. . .
...

(θn−2)r1 (θn−2)r2 . . . (θn−2)rt

(θn)r1 (θn)r2 . . . (θn)rt




=




1 1 . . . 1

θr1 θr2 . . . θrt

...
...

. . .
...

(θr1)n−2 (θr2)n−2 . . . (θrt)n−2

(θr1)n (θr2)n . . . (θrt)n



.

Now to prove the theorem, we can assume xri = θri for 1 ≤ i ≤ t and apply

Theorem 7.2.

Example 7.11. Consider the field F24 with the constructing polynomial x4 + x + 1

and let α be a root of it. Let θ = α. We can verify that θ0+θ1+θ3+θ7 = 0. Now, let

us consider the polynomial g(x) = (x− 1)(x− α)(x− α2)(x− α4). It can be verified

that Cm
g is an NMDS matrix for 4 ≤ m ≤ 11.

Remark 7.9. The above theorem assumes that
∑n

i=1 θ
ri = 0 for some R = {r1, r2,

. . . , rn} ⊂ E. However, to ensure MDS property, the condition needs to be changed

to
∑n

i=1 θ
ri ̸= 0 for all R = {r1, r2, . . . , rn} ⊂ E (refer to Theorem 3.18).

Remark 7.10. It can be observed that the condition imposed on θ in Theorem 7.9

remains valid when the values of λi are selected as λi = θi−1c, 1 ≤ i ≤ n − 1, and

λn = θnc for a nonzero element c belonging to the field Fq. By adopting this approach,

the resulting polynomials are equivalent to those derived from the Lemma 7.2.

Lemma 7.3. Consider the polynomial g(x) =
∏k

i=1(x − λi), where λ1 = 1, and

λi = θi, 2 ≤ i ≤ n, for some θ ∈ F∗
q. Let E = {0, 1, . . . , n−1,m,m+1, . . . ,m+n−1}

for some integer m ≥ n. The matrix Cm
g is NMDS if and only if θr ̸= θr

′
for r, r′ ∈ E

and
∑n

i=1 θ
−ri = 0 for some R = {r1, r2, . . . , rn} ⊂ E.
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Proof. Consider γi = λn−i+1 = (θ−1)i−1c, 1 ≤ i ≤ n − 1 and γn = λ1 = (θ−1)nc for

c = θn. Then by Theorem 7.9 and the above remark, the matrix Cm
g is NMDS if and

only if θ−ri , 1 ≤ i ≤ n, are distinct and
∑n

i=1 θ
−ri = 0 for some R = {r1, r2, . . . , rn} ⊂

E. Hence, the proof.

Example 7.12. Consider the field F24 with the constructing polynomial x4 + x + 1

and let α be a root of it. Let θ = α. We can verify that θ0 + θ−1 + θ−2 + θ−7 = 0.

Now, let us consider the polynomial g(x) = (x − 1)(x − α2)(x − α3)(x − α4). It can

be verified that Cm
g is an NMDS matrix for 4 ≤ m ≤ 11.

Remark 7.11. The proof of the above lemma can also be seen similarly as in the

proof of Theorem 7.9 by using Theorem 7.4.

Remark 7.12. The above lemma assumes that
∑n

i=1 θ
−ri = 0 for some R = {r1, r2,

. . . , rn} ⊂ E. However, to ensure MDS property, the condition needs to be changed

to
∑n

i=1 θ
−ri ̸= 0 for all R = {r1, r2, . . . , rn} ⊂ E (See Corollary 3.9).

Now, we will present a direct construction of polynomial that yield recursive MDS

matrix.

Theorem 7.10. Consider the polynomial g(x) =
∏k

i=1(x−λi), where λ1 = 1, λi = θi,

for 2 ≤ i ≤ n− 1, and λn = θn+1 for some θ ∈ F∗
q. Let E = {0, 1, . . . , n− 1,m,m +

1, . . . ,m + n − 1} for some integer m ≥ n. The matrix Cm
g is NMDS if and only if

θr ̸= θr
′
for r, r′ ∈ E and (

∑n
i=1 θ

ri)(
∑n

i=1 θ
−ri)− 1 ̸= 0 for all R = {r1, r2, . . . , rn} ⊂

E.

Proof. We have λ1 = 1, and λi = θi for 2 ≤ i ≤ n − 1 and λn = θn+1. From

Theorem 7.7, we know that the matrix Cm
g is MDS if and only if any n columns of

G′ are linearly independent. So for any R = {r1, r2, . . . , rn} ⊂ E we have

G′[R] =




1 1 . . . 1

(θ2)r1 (θ2)r2 . . . (θ2)rn

...
...

. . .
...

(θn−1)r1 (θn−1)r2 . . . (θn−1)rn

(θn+1)r1 (θn+1)r2 . . . (θn+1)rn



=




1 1 . . . 1

(θr1)2 (θr2)2 . . . (θrn)2

...
...

. . .
...

(θr1)n−1 (θr2)n−2 . . . (θrn−1)n−2

(θr1)n+1 (θr2)n+1 . . . (θrn)n+1



.
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Let yri = θri for 1 ≤ i ≤ n. Therefore, we have

G′[R] =




1 1 . . . 1

y2r1 y2r2 . . . y2rn
...

...
. . .

...

yn−1
r1

yn−1
r2

. . . yn−1
rn

yn+1
r1

yn+1
r2

. . . yn+1
rn



,

which is a generalized Vandermonde matrix of the form V⊥(y; I) with I = {1, n}.
Therefore, from Corollary 2.12 det(G′[R]) ̸= 0 if and only if yri are distinct and

(
∑n

i=1 yri)(
∑n

i=1 y
−1
ri
)− 1 ̸= 0. Hence, the proof.

Example 7.13. Consider the field F24 with the constructing polynomial x4 + x + 1

and let α be a root of it. Let θ = α and consider the polynomial g(x) = (x − 1)(x −
α2)(x−α3)(x−α5). It can be checked that the polynomial g(x) satisfies the condition

in Theorem 7.10, so it yields a recursive MDS matrix of order 4. It can be verified

that C4
g is an MDS matrix.

7.4 Conclusion

There has been significant research in the literature on the direct construction of

MDS matrices using both recursive and nonrecursive methods. However, research on

NMDS matrices has been limited in the literature, and there is currently no direct con-

struction method available for them in a recursive approach. This chapter addresses

this gap by presenting novel direct construction techniques for NMDS matrices in the

recursive setting. By employing generalized Vandermonde matrices, we provide a new

approach for constructing MDS and NMDS matrices. We also propose a method for

constructing involutory MDS and NMDS matrices using generalized Vandermonde

matrices. These direct constructions offer an efficient way of designing MDS and

NMDS matrices, particularly for larger orders. Moreover, the chapter provides proof

for some commonly referenced results related to the NMDS code. Overall, this work

provides valuable tools for constructing MDS and NMDS matrices and advances the

current state of research in this area.
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8
FUTURE: A Lightweight Block Cipher with an

Optimal Diffusion Matrix

Contents
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8.5 Hardware Implementations, Performance and Comparison232

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.1 Introduction

AES [DR02], SHA-256 [PUB15] and RSA [RSA78] are some of the most widely used

cryptographic primitives, and they work well on systems with reasonable processing

power and memory capabilities. But these primitives are not suitable in constrained

environments such as RFID tags, sensor networks, contactless smart cards, medi-

cal services gadgets, etc. For this purpose in the recent decade, a large number of

lightweight cryptographic primitives have been suggested and deployed on resource-

constrained devices. Although there is no exact definition of lightweight cryptography,

it is generally understood as a form of cryptography that places a strong emphasis on

efficiency. Efficiency can be evaluated using various criteria such as hardware cost,

power consumption, latency.

A block cipher converts plaintext blocks of a fixed length n (for the most part n=

64 or 128) to ciphertext blocks with the length n under the influence of a secret key k.
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More specifically, a block cipher E is a function from Fn
2 ×Fk

2 to Fn
2 with the property

that, for each key K ∈ Fk
2, EK = E(·, K) acts as a permutation on the elements

of Fn
2 . Broadly, block ciphers can be arranged into two sorts: Feistel structure and

substitution-permutation network (SPN) structure.

Both SPN and Feistel structures come with their own sets of advantages and dis-

advantages. Feistel structures (e.g. TWINE [SMMK13], Piccolo [SIH+11]) generally

apply a round function to just one half of the block due to which they may be im-

plemented in hardware with minimal cost. Additionally, implementing the inverse

of Feistel constructions is not very challenging. This means that a circuit that han-

dles both encryption and decryption functions can be designed with minimal extra

complexity. However, as Feistel structures inject nonlinearity in just one half of the

block in every round, such designs require more executions of round functions than

SPN structures in order to preserve the security margins 1. It is essential to note that

these comparisons between SPN and Feistel entirely depends on the diffusion matrices

(linear layer) and Sboxes utilized in the round function. For instance, DES [PUB77],

which follows a Feistel structure, requires fewer rounds (DES has 16 rounds, whereas

PRESENT has 31 rounds) than the SPN-based block cipher PRESENT [BKL+07].

However, when considering the same Sboxes and diffusion matrices in the round func-

tion, a Feistel structure requires more rounds than an SPN structure to achieve the

desired security margin.

Due to the large deployment of low-resource devices and expanding need to provide

security among such devices, lightweight cryptography has become a popular topic.

Thus, research on designing and analyzing lightweight block ciphers has got a great

deal of attention. Initial lightweight block ciphers such as NOEKEON [DPAR00],

PRESENT [BKL+07] and KATAN [DCDK09] primarily emphasized minimizing the

chip area and utilized simple round functions as their primary components.

With the advent of lightweight block ciphers, this field expanded dramatically

in terms of possibilities. At this point, we have specialized ciphers that are op-

timized for code size, latency, energy and power. For example we have SIMON

and SPECK [BSS+15] for code size, PRINCE [BCG+12] and MANTIS [BJK+16]

for latency and MIDORI [BBI+15] and GIFT [BPP+17] for energy. Notably,

NOEKEON [DPAR00] was designed with a hardware-oriented focus even before the

term lightweight cryptography was coined.

1In terms of security, we often talk about a cipher’s security margin. If a cipher has n rounds,
and there is a cryptanalytic attack against the round-reduced version with n− k rounds, the cipher
has an absolute security margin of k rounds or a relative security margin of k/n [DR02].
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Moreover, some block ciphers have optimized the cost of implementing decryption

alongside encryption. For example, in MIDORI and NOEKEON, all components are

involutory, and PRINCE exhibits the α-reflection property. Several lightweight block

ciphers, including LED [GPPR11], MIDORI, and SKINNY [BJK+16], incorporate

the overall structure of the AES round function and modify its elements to enhance

their performance.

There have also been attempts to develop lightweight tweakable block ciphers, a

block cipher equipped with an additional input known as a tweak. This feature enables

enhanced encryption modes and facilitates the construction of efficient authenticated

encryption. SKINNY, MANTIS, CRAFT [BLMR19], QARMA [Ava17] are some

examples of such primitives. Also for CRAFT, design considerations were made to

ensure that its implementations were resistant to Differential Fault Analysis (DFA)

attacks.

In cryptography, confidentiality and integrity are two fundamental security goals.

Confidentiality ensures that information is kept private and protected from unautho-

rized access. Encryption schemes provide this functionality: given a secret key, they

convert plaintext into ciphertext. Decrypting the ciphertext to recover the original

message should be infeasible unless the secret key is known. Whereas, integrity en-

sures that data remains unaltered during storage, transmission, or processing. To

address the integrity problem, message authenticated codes (MACs) can be used.

With a secret key, a MAC function produces a tag. Making a tag without the key

(called forgery) should be practically impossible. MACs, similar to encryption meth-

ods, can be built using permutations, block ciphers, or tweakable block ciphers.

Confidentiality and integrity are often combined into a single security notion:

authenticated encryption. This can be done by using a MAC to the plaintext and then

encrypt them together (MAC-then-encrypt), encrypt the plaintext to get a ciphertext

and append a MAC of the ciphertext (Encrypt-then-MAC) or by encrypt the plaintext

and append a MAC of the plaintext (Encrypt-and-MAC). However, among these three

composition methods, only Encrypt-then-MAC is considered as secure. There are also

specific methods for this. In August 2018, the United States National Institute of

Standards and Technology (NIST) issued a call for submissions to a standardization

project focused on lightweight authenticated encryption.

In February 2019, NIST received 57 submissions for consideration. Out of these,

56 were accepted as first-round candidates in April 2019. After four months, NIST

chose 32 candidates for the second round. In March 2021, NIST revealed 10 fi-

nalists, including ASCON [DEMS21], Elephant [BCDM21], GIFT-COFB [BCI+21],
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Grain-128AEAD [HJM+21], ISAP [DEM+21], PHOTON-Beetle [BCD+21], Romu-

lus [GIK+21], SPARKLE [BBS+21], TinyJAMBU [WH21], and Xoodyak [DHM+21],

to advance to the final round of the selection process. On February 7, 2023, NIST

declared the decision to standardize the ASCON family for lightweight cryptography

applications. For a comprehensive overview of the evaluation criteria and selection

process we refer to [TMC+23].

Permutation Based Cryptography: Cryptographic permutations, unlike

block ciphers, are keyless public permutations designed to behave like random permu-

tations. In recent years, they have gaining popularity alongside block ciphers. The

keyless nature of cryptographic permutations eliminates the need for separate pro-

cessing of the key and data input, making them more efficient in certain situations

compared to block ciphers. This efficiency became particularly evident during the

SHA-3 competition, where many proposed schemes were built on cryptographic per-

mutations. The selection of the permutation-based Keccak sponge function [BDPA11]

as the SHA-3 standard further reinforced the community’s confidence in the advan-

tages of this approach.

In 2007, Bertoni and colleagues introduced a cryptographic permutation-based

sponge function [BDPA07], originally intended for hashing. Soon after, various ef-

fective methods for encryption, authentication, and authenticated encryption were

created [MRV15, BDH+17, BDPVA10]. Today, constructions based on permutations

have become a successful and fully established alternative to methods relying on

block ciphers. Notably, Ascon [DEMS21], the winner in the NIST lightweight com-

petition [TMC+23], is also permutation-based.

Tweakable Block Cipher: Tweakable block ciphers extend the concept of

block ciphers by introducing an extra public input known as the tweak. The concept

was formally introduced by Liskov et al. [LRW02, LRW11].

Definition 8.1. A n-bit tweakable block cipher with k-bit key and t-bit tweak is a

function

Ẽ : Fn
2 × Fk

2 × Ft
2 → Fn

2 ,

(P,K, T ) 7→ C,

which maps an n-bit plaintext P to the n-bit ciphertext C using the secret key K ∈ Fk
2

and tweak T ∈ Ft
2.

The definition of a tweakable block cipher with parameters (n, k, t) and a classical
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block cipher with parameters (n, k+ t) seems to have no significant difference. This is

because a key-tweak pair (K,T ) can be regarded simply as one element K||T ∈ Fk+t
2 ,

serving as the key. The main reason for distinguishing between tweakable block

ciphers and classical block ciphers lies in keeping the key secret while assuming the

tweak is public information, serving as a parameter to introduce variability to the

actual instance.

The idea behind allowing this additional variability, as explained in [LRW11], is

the need for variability at the mode of operation level. For example, in the CTR

mode [Dwo01], a counter is used to vary the encryption functions in each block.

The suggestion from the authors of [LRW11] is to directly incorporate the source of

variability into the block cipher itself. As an illustration of a mode of operation, each

block could be encrypted with the same tweakable block cipher, and different counters

are incorporated as the tweaks. Such a tweakable block cipher should be designed to

allow more efficient changes to the tweak than to the key.

Importance of Block Length in a Block Cipher: Modern ciphers

commonly employ block size of n = 64, 128, or 256 bits. However, it should be noted

that the block size n also serves as a crucial security parameter, determining the

amount of data that can be securely encrypted using the same key. We typically

expect block ciphers to be secure with up to 2n queries. However, in many modes

of operation (such as CBC, CFB, OFB [Dwo01], etc.), security diminishes signifi-

cantly beyond σ = 2n/2 blocks of message, a limit known as the birthday bound.

Consequently, while birthday bound attacks are of minimal concern when using block

ciphers with a block size of n = 128 bits, they pose a serious concern when employing

a block cipher with n = 64 bits, requiring relatively frequent rekeying to keep σ ≪ 232

[Rog11, Section 4.5]. This attack scenario is not purely theoretical, as highlighted by

the authors in [BL16].

A Challenge in Lightweight Block Cipher: MDS matrices are widely

recognized for their ability to provide maximum diffusion in block ciphers. However, in

the context of lightweight block ciphers, MDS matrices are often avoided in the round

function due to their high implementation cost. As a result, lightweight block ciphers

typically require more rounds to achieve a desired level of security against well-known

attacks such as differential [BS91a, BS91b], impossible differential [BBS99, BBS05],

and linear attacks [Mat94]. Therefore, incorporating MDS matrices into a lightweight

block cipher poses a significant challenge.
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To address this challenge, this chapter introduces a new block cipher called FU-

TURE. FUTURE overcomes this challenge by judiciously choosing a very lightweight

MDS matrix, which is constructed as a composition of four sparse matrices. Further-

more, FUTURE utilizes a lightweight yet cryptographically significant Sbox, which

is formed by combining four different Sboxes.

Outline: The rest of this chapter is structured as follows: Section 8.2 provides

a detailed discussion on the specification of FUTURE. Section 8.3 examines the de-

sign decisions made in selecting the components of FUTURE. Section 8.4 presents

a security analysis of FUTURE. Section 8.5 delves into the implementation cost of

FUTURE. Lastly, Section 8.6 concludes the chapter.

8.2 Structure of FUTURE

FUTURE is a new SPN-based block cipher and consists of 10 rounds. It accepts

128-bit keys and has a block size of 64-bit. FUTURE has been designed with a

specific focus on minimizing latency and reducing hardware implementation costs

when implemented in fully unrolled setting, where the entire encryption is performed

in a single clock cycle.

8.2.1 Round Function

The encryption round of FUTURE consists of four distinct transformations applied in

the following sequence: SubCell (SubByte), MixColumn, ShiftRow, and AddRound-

Key (as depicted in Figure 8-1). It is worth mentioning that the terms SubCell,

MixColumn, ShiftRow, and AddRoundKey were first introduced in the block cipher

AES [DR02], and nowadays, they have become so standard for describing their func-

tionalities. We also adopt these terms from AES for the round function of FUTURE.

The final round of FUTURE is slightly different from the other nine rounds, Mix-

Column operation is removed here. Since FUTURE is an AES-like cipher and, as

mentioned in [DR02, Section 10.2.3], the addition of a MixColumn operation in the

last round does not enhance the security, we have opted to remove the MixColumn

operation in the last round.

The cipher receives a 64-bit plaintext P = b0b1b2 . . . b62b63 as the cipher state I,

where b0 is the most significant bit 2. The cipher state can be represented as 16 4-bit

2In a binary number, each bit holds a value that is a power of 2. The most significant bit (MSB)
represents the highest power of 2 in the number. For example, in a 4-bit binary number x0x1x2x3

where x3 is the MSB, the corresponding decimal value is calculated as x0 ·23+x1 ·22+x2 ·21+x3 ·20.
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Table 8.1: Specifications of FUTURE Sbox.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4(x) 0 1 2 3 4 5 6 7 8 9 e f c d a b
S3(x) 0 1 2 3 4 d 6 f 8 9 a b c 5 e 7
S2(x) 1 3 0 2 5 7 4 6 9 a 8 b d e c f
S1(x) 0 1 2 3 4 7 6 5 8 9 a b c f e d

S(x) 1 3 0 2 7 e 4 d 9 a c 6 f 5 8 b

cells as follows:

I =




s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15



,

i.e. si = b4ib4i+1b4i+2b4i+3 ∈ {0, 1}4 for 0 ≤ i ≤ 15. The input state for the i-th round,

denoted as Ii, is defined such that I0 = P .

Nonlinear Transformation SubCell: SubCell is a nonlinear transforma-

tion that applies a 4-bit Sbox S to each cell of the internal state of the cipher.

si ← S(si) for i = 0, 1, . . . , 15.

The Sbox S is a composition of four low hardware cost Sboxes S1, S2, S3 and S4

i.e. S(sj) = S1 ◦ S2 ◦ S3 ◦ S4(sj) for j = 0, 1, . . . , 15.

The Sboxes in hexadecimal notation are given by the following Table 8.1.

Linear Transformation MixColumn: The MixColumn is a linear oper-

ation that operates separately on each of the four columns of the state. FUTURE

uses an MDS matrix M for the MixColumns operation. We have

(si, si+1, si+2, si+3)
T ←M · (si, si+1, si+2, si+3)

T

for i = 0, 4, 8, 12.

Where M is an MDS matrix given by

M =




α3 α3 + 1 1 α3

α + 1 α α3 + 1 α3 + 1

α α + 1 α3 α3 + 1

α3 + 1 α3 + 1 α3 1



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which is constructed by composition of 4 sparse matrices M1,M2,M3 and M4 of

order 4 i.e. M = M1M2M3M4, where

M1 =




0 0 1 1

1 0 0 0

1 1 0 0

0 0 1 0



,M2 =




0 0 1 α

1 0 0 0

α3 + 1 1 0 0

0 0 1 0



,M3 =




0 0 1 1

1 0 0 0

α3 + 1 1 0 0

0 0 1 0




andM4 = M1

(8.1)

The multiplications between matrices and vectors are performed over F24 defined by

the primitive polynomial x4 + x+ 1 and α is a root of this polynomial.

Cell Permutation ShiftRow: ShiftRow rotates row i of the array state i

cell positions to the right for i = 0, 1, 2, 3. We have,




s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15



←




s0 s4 s8 s12

s13 s1 s5 s9

s10 s14 s2 s6

s7 s11 s15 s3



.

i.e. si ← 13 · si (mod 16) for i = 0, 1, . . . , 15.

Note that in the ShiftRow operation of AES [DR02] and LED [GPPR11], the row

i of the array state is rotated i cell positions to the left, for i = 0, 1, 2, 3.

AddRoundKey: The i-th round key RKi for 1 ≤ i ≤ 10 is XORed with the

state I.

Data Processing: The encryption process of FUTURE involves data processing

through a total of 10 rounds. The encryption function F takes a 64-bit data X ∈
{0, 1}64, whitening keys WK ∈ {0, 1}64 and 10 round keys RKi ∈ {0, 1}64 (1 ≤ i ≤
10) as the inputs and outputs a 64-bit data Y ∈ {0, 1}64 . F is defined as follows:

F =

{
{0, 1}64 × {0, 1}64 ×

{
{0, 1}64

}10 → {0, 1}64

(X,WK,RK1, RK2, . . . , RK10)→ Y.
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ALGORITHM 1: Encryption Function of FUTURE.

Input: X and WK,RK1, RK2, . . . , RK10

Initialization: S ← KeyAdd(X,WK) ;
for i← 1 to 9 do

S ← SubCell(S);
S ← MixColumn(S);
S ← ShiftRows(S);
S ← AddRoundKey(S,RKi);

end
S ← SubCell(S);
S ← ShiftRows(S);
Y ← AddRoundKey(S,RK10);
Output: Y

Figure 8-1: The round function applies four different transformations: SubCell (SC),

MixColumn (MC), ShiftRow and AddRoundKey (ARK).

The Round Key Evolution and round constants: FUTURE uses a

128-bit secret key K = k0k1 . . . k127. It splits K in two equal parts K0 and K1 for the

round key and whitening key generation i.e. K = K0||K1, where K0 = k0k1 . . . k63

and K1 = k64k65 . . . k127 are two 64-bit keys. It uses K0 as whitening key and the

round key RKi (1 ≤ i ≤ 10) generation is as follows (see Figure 8-2):

RKi =

{
K0 ← K0 ≪ (5 · i

2
) if 2 | i

K1 ← K1 ≪ (5 ·
⌊
i
2

⌋
) if 2 ∤ i

where Ki ≪ j means the 64-bit word obtained by a j-bit left rotation (left cyclic

shift) of Ki.

For FUTURE a single bit “1” is XORed into each 4-bit cell (in different positions)

of every round except the 5th and 10th round. The round constants are defined as

shown in Table 8.2.

More specifically, we are adding a NOT gate in each cell except 5th and 10th

round.

In the following section we justify the decisions we took during the design of FUTURE.
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Table 8.2: The round constants (in hexadecimal) for the N -th round of FUTURE.

Rounds (N) Round constant
1, 6 0x1248248148128124
2, 7 0x2481481281241248
3, 8 0x4812812412482481
4, 9 0x8124124824814812
5, 10 0x0000000000000000

Figure 8-2: Round Key Generation.

k0k1 · · · k62k63

Round 1
k64k65 · · · k126k127

k5k6 · · · k63k0 · · · k4

Round 3
k69k70 · · · k127k64 · · · k68

Pre-round

Round 2

64-bit plaintext

64-bit ciphertext

Round 10
k25k26 · · · k63k0 · · · k24

8.3 Design Decision

The design choice of round function for FUTURE has been inspired by the existing

block ciphers, however all the components of FUTURE are new. Sometimes it is

preferred to use an SPN-based block cipher over a Feistel-based one, as round function

in Feistel-based block ciphers operates on just half of the state, which results in more

rounds for encryption. Moreover, since the AES-like design has a simple structure

and is specifically designed using the wide-trail strategy, we have chosen FUTURE

to be an AES-like cipher (Definition 2.47). However, it is essential to note that the

operations in the round function of FUTURE do not follow the sequence found in the

round function of a AES-like cipher. Specifically, in FUTURE, MixColumn occurs
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before ShiftRow in the round function.

Also, an unrolled implementation offers the best performance due to the com-

putation of full encryption within one clock cycle. It does have the disadvantage

of extending the critical path since the encryption or decryption operation is imple-

mented as a combinatorial circuit in its entirety. However, in this implementation,

there is no requirement for registers to hold the intermediate states. This means a

low implementation cost with a small delay for block ciphers with a small number of

rounds. Since FUTURE requires only 10 rounds for full encryption, we have deemed

it more suitable for implementation in a fully unrolled circuit, though it can also be

implemented in a rolled fashion.

8.3.1 SubCell

As the only nonlinear operation in the FUTURE, Sbox plays a significant role against

various attacks. To increase the cipher’s resistance to linear cryptanalysis [Mat94] and

differential cryptanalysis [BS91b], any n-bit Sbox should have small magnitude entries

in the linear approximation table (LAT) and difference distribution table (DDT)

respectively, excluding the first entry in the first row. In other words, the maximal

absolute bias of a linear approximation and the maximal probability of a differential

of an Sbox should be low. Also, the cost of the Sbox, including its area and critical

path, constitutes a substantial portion of the overall cost. Therefore, the selection of

an Sbox that optimizes these expenses is crucial in the design of a lightweight block

cipher.

For the SubCell operation, we use a 4-bit Sbox that is extremely efficient in terms

of hardware and also meets the following criteria:

1. Nonlinearity of the Sbox is 4 (which is optimal).

2. The maximal probability of a differential is 2−2 and there are exactly 24 differ-

entials with probability 2−2.

3. The maximal absolute bias of a linear approximation is 2−2 and there are exactly

36 linear approximations with absolute bias 2−2.

4. There is no fixed point.

FUTURE Sbox S is a composition of four Sboxes S1, S2, S3 and S4 (See Table 8.1).

The algebraic normal form of the coordinate Boolean functions of S is given by
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l3(x) = x0x1x3 ⊕ x0x2 ⊕ x3

l2(x) = x1x3 ⊕ x2

l1(x) = x0x2x3 ⊕ x0x2 ⊕ x0 ⊕ x1x2 ⊕ x2

l0(x) = x0x1x3 ⊕ x0x2 ⊕ x0x3 ⊕ x1 ⊕ 1.

Thus, we can see that the maximal and minimal algebraic degree of S are 3 and

2 respectively.

To find lightweight 4-bit Sboxes, we chose to explore circuits systematically from

the bottom-up approach, starting with the identity function’s circuit (or by bit wiring

of the circuit) and adding gates sequentially. We have decided to choose only NAND,

XOR, and XNOR gates as some popular block ciphers like SKINNY [BJK+16] and

Piccolo [SIH+11] use lightweight 4-bit Sboxes that can be implemented by a minimum

number of these logic gates. First, we have searched for the circuits representing a 4-

bit Sbox that can be implemented by (i) one XOR/XNOR gate or by (ii) one NAND

gate followed by one XOR/XNOR gate. As a result, we have the two sets of 4-bit

Sboxes, T1 and T2
3, where T1 contains the Sboxes implemented by one XOR/XNOR

gate and T2 contains the Sboxes implemented by one NAND and one XOR/XNOR

gate. Next, we search for the Sboxes with low hardware cost and good cryptographic

properties by composition of 2, 3 or 4 different Sboxes from the set T1∪T2. We obtain

the FUTURE Sbox which is a composition of 4 Sboxes with 4 NAND, 3 XNOR and

1 XOR gates with is the lowest hardware cost for our search of 4-bit Sboxes with the

optimal nonlinearity of 4.

During the search of an Sbox for FUTURE with this composition method, we only

concentrate on the nonlinearity of the resulting Sbox. The nonlinearity of the Sboxes

S1, S2, S3 and S4 are zero, whereas the resulting Sbox S has 4, which is the maximum

value for a balanced 4-bit Sbox. The main concern for choosing such a composition

method was to reduce implementation cost for the Sbox S. The hardware cost for

S1, S2, S3 and S4 are very low. More specifically, they can be implemented with 4

NAND, 3 XNOR, and 1 XOR gates only (see Figure: 8-4,8-5,8-6 and 8-7), resulting

in a low hardware cost (12 GE in UMC 180nm 1.8 V [UMC04]) for the Sbox S.

With this method, the implementation cost of an Sbox with the standard Sbox

criteria (like balancedness, maximum nonlinearity, small value of δS and LS etc.) may

3Some Sboxes of the sets T1 and T2 are given in Appendix A.4 and A.5. Also, note that we are
not doing an exhaustive search to find all such Sboxes. More specifically, we have taken only 24 such
elements from both T1 and T2, and the Sboxes S1, S2, S3, and S4, used to construct the FUTURE
Sbox, are taken from the 48 Sboxes.
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be reduced significantly. We believe that this is the first time to use this composition

type Sbox with maximum nonlinearity and some useful cryptographic properties.

Also, it is worth mentioning that the 4-bit Sboxes used in SKINNY and Piccolo

have the same nonlinearity and hardware cost as the FUTURE Sbox. But FUTURE

Sbox is the new one and it is constructed by the composition of four lightweight

Sboxes with zero nonlinearity. Also, it is not always trivial to get an Sbox with good

cryptographic properties by the composition of four such lightweight Sboxes. We

decided to use the newly constructed Sbox.

8.3.2 MixColumn

An NMDS matrix or a matrix with an even lower branch number (see Definitions 2.8

and 2.9) offers efficient implementation characteristics as compared to MDS matrices.

However, due to their incorporation, the diffusion speed in the block cipher may

be slower. The diffusion speed is determined by the number of rounds required

to achieve full diffusion. Here, by full diffusion in a block cipher, we refer to the

property that every state bit depends on all state bits two rounds ago, or a change

in one state bit is likely to affect half of the state bits after two rounds [DR02,

Section 3.5]. For a detailed overview of full diffusion in block cipher we refer to [Bei18,

DR02]. Note that FUTURE requires only 2 rounds for the full diffusion (See Figure 8-

3). Also, it is noteworthy that achieving full diffusion after 2 rounds is possible

even when considering a matrix of order 4 with all nonzero entries. However, the

selection of the MDS matrix in FUTURE is not solely based on the criterion of

full diffusion. It also accounts for resistance against fundamental attacks, such as

differential cryptanalysis [BS91a, BS91b] and linear cryptanalysis [Mat94]. This is

because the minimum number of active Sboxes in a block cipher (designed based on

the wide-trail strategy) with an MDS matrix in each round is higher compared to

ciphers that utilize a matrix with a low branch number as part of MixColumn.

Figure 8-3: Full diffusion of FUTURE.

SC MC SR ARK SC MC

1 active cell

P =

4 active cell all active cell

MDS matrices are not sparse. But they can be constructed from sparse matrices

by recursive method. However, the MDS matrix in FUTURE is a composition of 4
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different lightweight sparse matrices M1, M2, M3 and M4 (see 8.1 of Section 8.2.1).

These matrices are of the form



0 0 m1 m2

m3 0 0 0

m4 m5 0 0

0 0 m6 0



,

where mi ∈ F24 for i = 1, 2, . . . , 6.

It is worth mentioning that these matrices correspond to the GDLS matri-

ces as defined in Definition 5.2. Specifically, these matrices can be expressed as

GDLS(ρ1, ρ2;D1, D2), where ρ1 = [2, 3, 4, 1], ρ2 = [3, 2, 1, 4], D1 = diag(m3, m5, m6,

m2), and D2 = diag(m4, 0,m1, 0).

The idea of constructing MDS matrices in such a fashion was first introduced

in [SM21] and we are the first to take advantage of this method in the design of

FUTURE. In order to narrow down the search space for finding an MDS matrix

using this approach, we set m1 = m3 = m6 = 1 and conduct an exhaustive search

(512 ≈ 228 choices) over the set {1, α, α2, α−1, α−2} to obtain M = M1M2M3M4 as an

MDS matrix.

The implementation cost for the MDS matrix M is minimized due to the low

implementation cost of M1, M2, M3 and M4. Note that to construct MDS matrix in

this method, the implementation cost is calculated by the sum of the implementation

cost of M1, M2, M3 and M4.

We will now demonstrate how selecting specific elements from a finite field constructed

by a specific irreducible polynomial improves multiplication efficiency.

The Primitive Polynomial x4 + x + 1: The multiplications between the

matrices M1, M2, M3 and M4 and vectors are performed over the field F24 constructed

by the primitive polynomial x4+x+1. The entries of these matrices are from the set

{0, 1, α, α3 + 1 = α−1}, where α is the primitive element of the field and α4+α+1 = 0.

In F24 , any element b can be expressed as b = b0 + b1 · α + b2 · α2 + b3 · α3. Then

by the multiplication of b by α3 + 1 we have

(b0 + b1 · α + b2 · α2 + b3 · α3) · (α3 + 1) = (b0 + b1) + b2 · α + b3 · α2 + b0 · α3.

Thus, in vector form the above product looks like (b0⊕ b1, b2, b3, b0), in which there

is 1 XOR. Therefore, the XOR count of α3 + 1 is 1.

Similarly, we have b · α = (b3, b0 ⊕ b3, b1, b2). Hence, the XOR count of α is 1.

Also, the XOR count of 1 is 0 and there is no other nonzero element in the field with

an XOR count of ≤ 1.
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Thus, for the suitable choice of the constructing polynomial and entries of the

matrices, the implementation cost of the MDS matrix M is reduced significantly.

More specifically, FUTURE requires 35 XORs for the implementation of the MDS

matrix (See Section 8.5.2).

The following table provides a comparison of the cost of the FUTURE MDS matrix

with the matrices 4 used in the linear layer of some popular block ciphers.

Table 8.3: Comparison of cost of the Linear layers.

Block Cipher Linear Layer Cost

AES MDS matrix 108 XORs
LED Recursive MDS matrix 14 XORs
FUTURE MDS matrix 35 XORs
Piccolo MDS matrix 52 XORs

PRINCE (M (0), M (1)) NMDS matrix 24 XORs
MIDORI NMDS matrix 24 XORs
SKINNY Binary matrix with branch number 2 12 XORs
CRAFT Binary matrix with branch number 2 12 XORs
PRESENT Bit permutation 0
GIFT Bit permutation 0

From Table 8.3, we can see that PRINCE and MIDORI use an NMDS matrix with

a low implementational cost of 24 XORs. But for achieving security against various

attacks they need more rounds than FUTURE. The linear layers in PRESENT and

GIFT are a bit permutation of the state. As a result, the linear layer is created with

simple wire shuffling and requires no hardware. But for resisting some fundamental

attacks like linear cryptanalysis, differential cryptanalysis etc., they need a larger

number of rounds than MIDORI and PRINCE. For the case of SKINNY and CRAFT,

the binary matrix is of branch number 2 and needs only 12 XORs for implementation.

For this, they attain full diffusion after 6th and 7th rounds respectively, which is 2

for FUTURE. While the cost of implementing the MDS matrix in LED is relatively

low, it is worth noting that the companion matrix needs to be applied four times,

resulting in a requirement of four clock cycles to obtain the MDS matrix. On the

other hand, the FUTURE MDS matrix M is implemented in a single clock cycle with

35 XORs gates. Since FUTURE is designed to be more suitable for a fully unrolled

implementation, M is preferred over the others in terms of XOR gates and security

4Each matrix in the Table 8.3 has an input size of 16 bits, except for the AES, which has an
input size of 32 bits.
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Table 8.4: The minimum number of active Sbox for N rounds of FUTURE.

Rounds (N) 1 2 3 4 5
Differential cryptanalysis 1 5 9 25 26

Linear cryptanalysis 1 5 9 25 26

parameters.

8.3.3 Round Key

For the key scheduling, we are mainly concerned about reducing hardware costs. Note

that the key scheduling function in FUTURE is implemented as a bit permutation

of the master key. It is, therefore, possible to create this module through simple wire

shuffling and it takes up no hardware cost.

8.4 Security Analysis

The security of FUTURE against various cryptanalysis techniques is discussed in this

section.

8.4.1 Differential and Linear Cryptanalysis

The most frequent and fundamental security analysis of a block cipher is to determine

a cipher’s resistance to differential and linear cryptanalysis (see Section 2.8.4). In this

study, we utilized Mixed Integer Linear Programming (MILP) to determine lower

limits for the minimum number of active Sboxes involved in differential and linear

characteristics for different numbers of rounds. The obtained results 5, presented

in Table 8.4. However, it is worth mentioning that in [DR02, Theorem 9.5.1], it is

proven that in a four-round trail of AES, there will be at least 25 active Sboxes.

This proof also holds for FUTURE. Nevertheless, in our analysis, we employed the

bit-based MILP to precisely determine the differential and linear trail, enabling us to

determine the actual differential probability and correlation potential from the DDT

(Table A.1) and LAT (Table A.2) of FUTURE Sbox respectively.

Differential cryptanalysis: If 2−δ be the maximum probability of the dif-

ferential propagation in a single Sbox and Ns be the number of active Sboxes in a

5Here we have done the bit-based MILP and we could not find any solution for the higher number
of rounds (n ≥ 6) by the MILP model due to its long-running time.
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differential characteristic, then attack with the differential characteristic of a block ci-

pher becomes infeasible if Ns satisfies the following condition [SSL15, Section 4.2.12]:

2δ·Ns > 2b ⇐⇒ δ ·Ns > b.

where b is the bit-length of the block size of the block cipher. For FUTURE, b = 64

and δ = 2 and hence we must have Ns > 32. This is obtained by at most 7 rounds6

for FUTURE.

However, for the 4-round FUTURE, we have searched 50 different single char-

acteristics with the minimum number of active Sboxes (which is 25) with no Sbox

activity pattern. Here we have observed that among these 50 characteristics the high-

est probability is 2−62. Next we have fixed the input and output differences of the

characteristic with highest probability and search for different single characteristics

with the same Sbox activity pattern. Here we have found that only 2 characteristics

are possible and the highest probability is also 2−62. Also, from Table A.1, we can

observe that there are only 24 differentials with probability 2−2 and whereas there

are 72 differentials with probability 2−3. Hence, we expect that the probability of any

possible differential characteristic will be less than 2−63 when employing 5 rounds of

FUTURE. Thus, we believe that full rounds of FUTURE are strong enough to resist

differential cryptanalysis.

Linear cryptanalysis: Given a linear characteristic with a bias ϵ, 4ϵ2 is defined

as the correlation potential. For an adversary to perform linear cryptanalysis on an

n-bit block cipher, the correlation potential must be more than 2−n.

Similar to the differential, for the 4th round of FUTURE, we have searched 50

different single linear characteristics with the minimum number of active Sboxes with

no Sbox activity pattern. Among which, the highest correlation potential is 2−74.

Next, with the same input and output masking of the highest correlation potential,

we proceed to explore an additional set of 10 distinct single characteristics that exhibit

the same Sbox activity pattern. We observe that it has a linear hull effect (average

correlation potential) of 2−73.66. Also, from Table A.2, we can observe that there

are exactly 36 linear approximations with absolute bias 2−2 and whereas there are

96 linear approximations with absolute bias 2−3. So we expect that for 5-round

FUTURE, the correlation potential will be lower than 2−64. Hence, we believe that

10-round FUTURE provides adequate resistance against linear cryptanalysis.

6Since the minimum number of active Sboxes in round 3 and round 4 are 9 and 25 respectively,
for 7th round FUTURE there will be at least 34 active Sboxes.
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8.4.2 Impossible Differential Attacks

In classical differential cryptanalysis, the focus is on finding a differential with a

notably high probability. The suggested key candidate is the one with the highest

observed occurrence of the output difference. Impossible differential cryptanalysis,

introduced by Knudsen [Knu98] and Biham et al. [BBS99, BBS05], works in the

opposite way. It discards any potential keys that would result in an output difference

that is already known to be impossible.

An impossible differential in an encryption function F is defined by a differential

(∆x,∆y), where for all plaintexts x, the equation F (x)+F (x+∆x) ̸= ∆y holds. By

exploiting such a difference in a reduced round version of the cipher, it is possible to

launch a key recovery attack on the cipher in some more rounds. The attack involves

selecting an adequate number of plaintexts with input differences that align with the

impossible differential and gathering the corresponding ciphertexts. Subsequently,

through the partial decryption of additional rounds using all potential subkeys, we

can eliminate those subkeys that lead to impossible differentials.

FUTURE requires 2 rounds to achieve full diffusion after 2 rounds in both forward

and backward. So we expect that there is no certain impossible differential charac-

teristic over 4 rounds. To find the actual impossible differential characteristics, we

employ the MILP method proposed in [CCJ+16, ST17] while taking into account the

DDT of the Sbox in the FUTURE. Specifically, we thoroughly test input and output

differences that meet the following criteria similar to [BPP+17]:

1. The input difference activates only one of the first 4 Sboxes.

2. The output difference activates only one of the 16 Sboxes.

In the first case, there are a total of 4× 15 = 60 possible input differences meet-

ing these conditions. In the second case, there are 16 × 15 = 240 possible output

differences. Consequently, we examined a total of 14, 400 pairs of input and output

differences.

The results of our search revealed that for a 4-round implementation of FUTURE,

only 267 out of the 14, 400 pairs exhibited impossible differentials. We then extended

this search to 5 rounds and found that there were no impossible differentials among

the 14, 400 pairs. So we expect that full rounds of FUTURE are strong enough to

resist the impossible differential attack.
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8.4.3 Boomerang Attack

The boomerang attack [Wag99] is a type of differential attack in which the attacker

does not attempt to cover the entire block cipher with a single differential character-

istic with high probability. Instead, the boomerang attack strategy involves dividing

the cipher into two sub-ciphers and focusing on finding a boomerang quartet with

high probability. The probability of constructing a boomerang quartet is denoted as

p̂2q̂2, where

p̂ =

√∑

β

Pr2[α→ β]

and α and β are input and output differences for the first sub-cipher and q̂ for the

second sub-cipher. This attack is effective when an n-bit cipher satisfies p̂2q̂2 ≤ 2−n.

The value of p̂2 is bounded by the maximum differential characteristic probability,

i.e., p̂2 ≤ max
β

Pr[α→ β]. The same bound applies to q̂2 as well. Let p and q denote

the maximum differential trail probabilities for the first and second sub-ciphers, re-

spectively. It is known that p and q are bounded by 2−2·Ns , where Ns is the minimum

number of active Sboxes in each sub-cipher. By referring to Table 8.4, we observe that

any combination of two sub-ciphers in an 8-round FUTURE has at least 32 active

Sboxes in total. Hence, we conclude that the full round of FUTURE is secure against

boomerang attacks.

8.4.4 Integral Attack

We first search for integral distinguishers for the round reduced versions of FUTURE

by using the (bit-based) division property [TM16] and using the Mixed-Integer Linear

Programming approach described in [SWW20, XZBL16]. We first evaluate the prop-

agation of the division property for the Sbox. The algebraic normal form of FUTURE

Sbox is given by

y3 = x0x1x3 ⊕ x0x2 ⊕ x3

y2 = x1x3 ⊕ x2

y1 = x0x2x3 ⊕ x0x2 ⊕ x0 ⊕ x1x2 ⊕ x2

y0 = x0x1x3 ⊕ x0x2 ⊕ x0x3 ⊕ x1 ⊕ 1.

and the propagation of the division property is summarized as Table 8.5.

Here, let u and v be the input and output division property, respectively. The

propagation from u to v labeled × is possible. Otherwise, the propagation is impos-

sible.
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Table 8.5: The possible propagation of the division property for FUTURE Sbox.

v
u 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 × × × × × × × × × × × × × × × ×
1 × × × × × × × × × × × × × ×
2 × × × × × × × × × × × × × × ×
3 × × × × × × × × × × × × ×
4 × × × × × × × × × × × × × × ×
5 × × × × × × × × × × × × × ×
6 × × × × × × × × × × ×
7 × × × × × × ×
8 × × × × × × × × × × × × × × ×
9 × × × × × × × × × × × × × ×
a × × × × × × × × × × × × × ×
b × × × × × × × × × × × × ×
c × × × × × × × × × × ×
d × × × × × × × × × ×
e × × × × ×
f ×

Taking into account the effect of MixColumn, we evaluated the propagation of the

division property on the reduced-round FUTURE. To search for the longest integral

distinguisher, we choose only one bit in plaintext as constant and the others are

active. For example, in the 6th round we have a distinguisher ACA62 → B64. But

we could not find any distinguisher for the 7th round by MILP model due to its long

running time. So we cannot conclude whether there is an integral distinguisher in the

7th round or not. We also checked that there is no distinguisher from the 8th round
7. So we are expecting that full rounds of FUTURE is secure against integral attack.

8.4.5 Invariant Subspace Attacks

The invariant subspace attack [LAAZ11, LMR15] exploits a subspace A and constants

u, v such that F (u⊕A) = v⊕A, where F is a round transformation of a block cipher.

For the round key rk ∈ A⊕u⊕v, F ⊕rk maps the subspace u⊕A onto itself, because

F (u⊕A)⊕ rk = v ⊕A⊕ rk = u⊕A. However, we can avoid this invariant subspace

by using appropriate round constants.

7For finding an r round division trail (a00, a
0
1, . . . , a

0
63) → . . . → (ar0, a

r
1, . . . , a

r
63) by the MILP

technique, we fixed the output (ar0, a
r
1, . . . , a

r
63) of the rth round by the unit vectors (64 cases) and

check whether the MILP model is feasible or not.
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By Section 3.3 of [LR18], if RC be the constants on a single cell over all rounds,

then the designer can choose RC such that there is no 2-dimensional subspace V of

F24 satisfying RC ⊆ V for the resistance of invariant subspace attack on AES-like

ciphers with MDS MixColumn layer.

Recall that FUTURE is an AES-like ciphers with MDS MixColumn layer which

uses round constants 0, 1, 2, 4, 8 in each output of a cell. Also, there is no 2-

dimensional subspace V such {0, 1, 2, 4, 8} ⊆ V. Hence, in FUTURE, the invariant

subspace attack cannot be found for an arbitrary number of rounds.

8.4.6 Meet-in-the-Middle Attacks

This section shows the security of FUTURE against the meet-in-the-middle attacks.

We have used an approach which is similar to the methods used in the block ciphers

MIDORI [BBI+15] and SKINNY [BJK+16]. The maximum number of rounds that

can be attacked can be evaluated by considering the maximum length of three features:

partial-matching, initial structure, and splice-and-cut.

a. Partial-matching: Partial-matching cannot work if the number of rounds reaches

full diffusion in each of the forward and backward directions. In FUTURE, full

diffusion is achieved after 2 rounds forwards and backwards. Thus, the number of

rounds used for partial-matching is upper bounded by (2− 1) + (2− 1) + 1 = 3.

b. Initial structure: The condition for the initial structure is that key differential

trails in the forward direction and those in the backward direction do not share

active Sboxes. For FUTURE, since any key differential affects all 16 Sboxes after

at least 4 rounds in the forward and the backward directions, there is no such

differential which shares active Sbox in more than 4 rounds. Thus, the number of

rounds used for the initial structure is upper bounded by (4− 1) = 3.

c. Splice-and-cut: Splice-and-cut may extend the number of attack rounds up to

the smaller number of full diffusion rounds minus one, which is (2− 1) = 1.

Therefore, we can conclude that the meet-in-the-middle attack may work up to

3 + 3 + 1 = 7 rounds. Hence, full round FUTURE is sufficient to resist meet-in-the-

middle attacks.

8.4.7 Algebraic Attacks

FUTURE Sbox has algebraic degree 3 and from Table 8.4 we see that for 4-round

differential characteristic, there are at least 25 active Sboxes. So we have 3 × 25 ×
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⌊10
4
⌋ = 150 > 64, where 64 is the block size and 10 is the number of rounds in

FUTURE. Also, the FUTURE Sbox is described by 21 quadratic equations in the

8 input/output-bit variables over F2. The key schedule of FUTURE does not need

any Sbox. Thus, the 10-round cipher is described by 10× 16× 21 = 3360 quadratic

equations in 10× 16× 8 = 1280 variables.

The general problem of solving a system of multivariate quadratic equations is

NP-hard. However the systems derived for block ciphers are very sparse since they

are composed of a small number of nonlinear systems connected by linear layers.

Nevertheless, it is unclear whether this fact can be exploited in a so-called algebraic

attack. Some specialized techniques such as XL [CKPS00] and XSL [CP02] have

been proposed, though flaws in both techniques have been discovered [CL05, Die04].

Instead the practical results on the algebraic cryptanalysis of block ciphers have

been obtained by applying the Buchberger and F4 algorithms within Magma. Also,

recently there are some practical results [YLK21] on algebraic cryptanalysis by using

ElimLin [CB07, CSSV12] and SAT solver techniques [BCJ07, SNC09].

Now note that the entire system for a fixed-key AES permutation consists of 6400

equations in 2560 variables and whereas in FUTURE these numbers are roughly half

of that in AES. Simulations on small-scale variants of the AES showed that except

for very small versions, one quickly encounters difficulties with time and memory

complexity [CMR05]. So we believe that algebraic attacks do not threaten FUTURE.

8.5 Hardware Implementations, Performance and

Comparison

In this section, we will discuss the hardware implementation cost of FUTURE in both

FPGA and ASIC design.

8.5.1 FPGA Implementation

In recent times, there has been a growing trend of utilizing FPGAs in a wide range

of applications, including security and cryptographic domains, due to their high per-

formance capabilities. Given the availability of numerous FPGA vendors, we made

the decision to implement our designs on different FPGA boards provided by Xil-

inx. The hardware implementation of FUTURE is written in VHDL and is im-

plemented on both Virtex-6 and Virtex-7. More specifically, the FPGA results are

obtained after place-and-route (PAR) on the Xilinx Virtex-6 (xc6vlx240t-2ff1156)
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and Virtex-7 (xc7vx415t-2ffg1157) in Xilinx ISE. In Table 8.6 the implementation

results are given. Note that for the comparison of FUTURE with other block ci-

phers (in fully unrolled implementations), we used the VHDL codes available at

https://github.com/KULeuven-COSIC/UnrolledBlockCiphers.

Table 8.6: Results are obtained after PAR for Virtex-6 and Virtex-7.

Cipher

Virtex-6 Virtex-7
Size
(Slices)

Critical
Path
(ns)

Throughput
(Gbit/s)

Size
(Slices)

Critical
Path
(ns)

Throughput
(Gbit/s)

KATAN
64/80

2550 47.33 1.35 2550 42.11 1.52

PRESENT
64/80

2089 29.21 2.19 2089 26.27 2.44

PRESENT
64/128

2203 32.55 1.97 2203 29.03 2.20

SIMON
64/128

2688 27.31 2.34 2688 25.30 2.53

SPECK
64/128

3594 50.29 1.27 3594 48.31 1.32

PRINCE 1244 16.38 3.91 1244 14.79 4.33
FUTURE 1240 15.94 4.01 1241 14.53 4.40

8.5.2 ASIC implementation

In order to estimate the hardware cost for an ASIC platform, we will consider the use

of the Synopsys Design Compiler using the UMCL18G212T3 [UMC04] ASIC standard

cell library, i.e. UMC 0.18µm. In Table 8.7 we describe the area requirements and

corresponding gate count in this library (for details, check [Pos09]). Also, note that

Gate equivalent (GE) is a measure of the area requirements of integrated circuits

(IC). It is derived by dividing the area of the IC by the area of a two-input NAND

gate with the lowest driving strength.

However, as mentioned in [SIH+11], certain libraries offer specialized gates that

offer additional area savings. Specifically, in this library, 4-input AND-NOR and 4-

input OR-NAND gates with two inverted inputs can be utilized to directly compute

XOR or XNOR operations. Since both cells cost 2 GE instead of 2.67 GE required for

XOR or XNOR, we can save 0.67 GE per XOR or XNOR gate. Now we will discuss
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Table 8.7: Area requirements and corresponding gate count.

Standard cell Area in µm2 GE

NAND 9.677 1
NOR 9.677 1
AND/OR 12.902 1.33
XOR/XNOR 25.805 2.67
NOT 6.451 0.67

the cost for each module of a single round FUTURE using the above mentioned

implementation techniques.

Cost of FUTURE Sbox: Recall that the FUTURE Sbox S is formed by

composing four Sboxes S1, S2, S3, and S4. Specifically, the Sbox S can be represented

as S(x) = S1 ◦S2 ◦S3 ◦S4(x). The algebraic normal forms of these individual Sboxes

are as follows:

S4 :

y3 = x3

y2 = x1x3 ⊕ x2

y1 = x1

y0 = x0

S3 :

y3 = x0x2 ⊕ x3

y2 = x2

y1 = x1

y0 = x0

S2 :

y3 = x3

y2 = x2

y1 = x0

y0 = x0x3 ⊕ x1 ⊕ 1

S1 :

y3 = x3

y2 = x2

y1 = x0x2 ⊕ x1

y0 = x0

Here y3y2y1y0 and x3x2x1x0 denotes the 4-bit output and input respectively of the

Sboxes.

From Figures 8-4, 8-5, 8-6 and 8-7, we can observe that the implementation of

the FUTURE Sbox requires 4 NAND gates, 3 XNOR gates, and 1 XOR gate. Con-

sequently, FUTURE Sbox can be implemented with (4 × 1 + 3 × 2 + 1 × 2) = 12

GE.

Therefore, SubCell operation for a single round FUTURE takes 16 × 12 = 192

GE for implementation.
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Figure 8-4: Sbox S4.
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Figure 8-5: Sbox S3.
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Figure 8-6: Sbox S2.
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Figure 8-7: Sbox S1.
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Cost of FUTURE MDS matrix: The MDS matrix in FUTURE is a

composition of 4 different lightweight sparse matrices M1, M2, M3 and M4 (see 8.1 of

Section 8.2.1).

These matrices are of the form




0 0 m1 m2

m3 0 0 0

m4 m5 0 0

0 0 m6 0



= GDLS(ρ1, ρ2;D1, D2),

where ρ1 = [2, 3, 4, 1], ρ2 = [3, 2, 1, 4], D1 = diag(m3,m5,m6,m2), D2 =

diag(m4, 0,m1, 0) and mi ∈ F24 for 1 ≤ i ≤ 6. Also, each of the matrices has

fixed XOR K = 2 (as discussed in Section 2.6.1). Therefore, for 1 ≤ i ≤ 4, we have

XOR(Mi) =
4∑

s,t=1

XOR((Mi)s,t) + 2 · 4

=
6∑

s=1

XOR(ms) + 8.

Thus, the cost for implementation of the matrices are given below:

(a) cost for implementing M4 = 8 XORs.
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(b) cost for implementing M3 = 1+ 8 = 9 XORs (the multiplication cost of α3 + 1 is

1 XOR).

(c) cost for implementing M2 = 1 + 1 + 8 = 10 XORs (the multiplication cost of

α3 + 1 and α is 1 XOR).

(d) cost for implementing M1 = 8 XORs.

Therefore, MDS matrix for FUTURE needs 35 XOR gates. As a result, it can be

implemented with 35 × 2 = 70 GE and MixColumn operation for a single round

FUTURE takes 4× 70 = 280 GE for implementation.

Cost of ShiftRow: Since the ShiftRow operation is essentially a permutation

of the entire state, this module can be implemented using a simple wire shuffle and

incurs no additional area overhead.

Cost of Key schedule and round constants: Since the round keys are

obtained by only bit wiring of the master key, it needs no cost in hardware. Whereas,

for the full encryption FUTURE uses 128 NOT gates for the round constants. There-

fore, it takes 128 × 0.67 = 85.76 GE. Also the 64-bit round key is XORed with the

entire state in each round (also for whitening key) resulting in a 64 × 2 = 128 GE

cost for this operation in each single round.

Cost for the full encryption of FUTURE: Since FUTURE is imple-

mented in a fully unrolled fashion, it does not need any extra logic and state register.

Therefore, we have the details cost estimations of FUTURE below:

(i) cost for one single round= 192 + 280 + 128 = 600 GE. So for 9 full rounds, it

will cost 9× 600 = 5400 GE.

(ii) cost for the last round= 192 + 128 = 320 GE.

(iii) cost for round constant= 85.76 GE and key whitening needs 128 GE.

Thus, FUTURE can be implemented with 5400+ 320+ 85.76+ 128 = 5933.76 GE

only. Of course, these numbers depend on the library used, but we expect that it will

take less area than our estimations.

In Table 8.8, we list the hardware cost of unrolled implementations for FUTURE

and compare it to other block ciphers taken from the literature.

The above table contains the cost estimations of FUTURE along with the cost of

other ciphers obtained from Table 12 and Table 24 of [BJK+16]. It should be pointed
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Table 8.8: Comparison of the hardware cost of unrolled implementations for FUTURE
and other 64-bit ciphers with 128 bit key.

Ciphers Area (GE)

LED-64-128 111496

PRESENT-64-128 56722

PICCOLO-64-128 25668

SKINNY-64-128 17454

MANTIS5 8544

PRINCE 8512

FUTURE 5934

out that SKINNY and MANTIS are tweakable block ciphers, whereas the others are

not.

It will be inappropriate to compare the hardware cost of the unrolled version of

a rolled block cipher with a large number of rounds because the hardware cost of

making the rolled version into the unrolled version will be very high. That’s why we

are not comparing the hardware cost of FUTURE with the recent block ciphers like

GIFT [BPP+17] and CRAFT [BLMR19].

In Table 8.6, we compare FUTURE with some block ciphers in the FPGA plat-

form and Table 8.8 compares its hardware cost with some block ciphers in the ASIC

platform. A better approach would be to compare our block cipher with other block

ciphers in both FPGA and ASIC implementations. But we are comparing some block

ciphers in FPGA and other block ciphers in ASIC because of the unavailability of

their hardware codes in the literature.

8.6 Conclusion

One of the fundamental primitives for cryptographic applications is block ciphers. In

this chapter, we have proposed a new SPN-based lightweight block cipher, FUTURE,

that is designed for minimal latency with low hardware implementation cost. For the

best diffusion in the linear layer, it employs an MDS matrix in the round function.

Whereas, due to the high cost of MDS matrices, most lightweight block ciphers do not

use such matrices in their round function. FUTURE tackles the issue by strategically

selecting a highly efficient MDS matrix, which is composed of four sparse matrices.

Additionally, FUTURE employs a lightweight yet cryptographically significant Sbox,

which is a composition of four different Sboxes. Also, FUTURE shows its resistance
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to fundamental attacks. Therefore, by incorporating these design choices, FUTURE

successfully combines lightweight implementation with the desirable properties of

MDS matrices, offering an effective solution for designing lightweight block ciphers.

238



Bibliography

[ABI+18] Gianira N. Alfarano, Christof Beierle, Takanori Isobe, Stefan Kölbl, and

Gregor Leander. Shiftrows Alternatives for AES-like Ciphers and Op-

timal Cell Permutations for Midori and Skinny. IACR Transactions on

Symmetric Cryptology, 2018(2):20–47, Jun. 2018.

[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Le-

ander, Christof Paar, and Tolga Yalçın. Block Ciphers – Focus on the
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A
Appendix

A.1 Differential Distribution Table of FUTURE

Sbox

Table A.1: Differential Distribution Table (DDT) of FUTURE Sbox.

∆O
∆I 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 4 0 0 0 0 0 4 4 0 0 0 0 0
2 0 4 0 4 0 2 0 2 0 0 0 0 2 0 2 0
3 0 0 0 4 2 0 2 0 0 0 4 0 0 2 0 2
4 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4
5 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
6 0 4 0 4 0 2 0 2 0 0 0 0 2 0 2 0
7 0 0 4 0 0 2 0 2 0 4 0 0 2 0 2 0
8 0 0 0 0 2 0 2 0 4 2 0 2 4 0 0 0
9 0 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2
a 0 0 0 0 0 4 0 0 4 2 0 2 0 2 0 2
b 0 2 2 0 0 0 2 2 0 0 2 2 2 0 0 2
c 0 0 0 0 2 0 2 0 4 2 0 2 0 0 4 0
d 0 2 2 0 2 0 0 2 0 0 2 2 2 2 0 0
e 0 0 0 0 0 0 0 4 4 2 0 2 0 2 0 2
f 0 2 2 0 2 2 0 0 0 0 2 2 0 2 2 0
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A.2 Linear Approximation Table of FUTURE

Sbox

Table A.2: Linear Approximation Table (LAT) of FUTURE Sbox. Each entry rep-
resents #{x ∈ F24 : x · α⊕ S(x) · β = 0} − 8.

β
α 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 4 0 0 4 -4 0 0 0 0 0 0 0 0
2 0 -4 -2 -2 0 0 2 -2 0 -4 2 2 0 0 -2 2
3 0 -4 -2 -2 0 0 2 -2 0 4 -2 -2 0 0 2 -2
4 0 2 0 -2 4 -2 0 -2 2 0 -2 0 2 0 2 4
5 0 -2 4 -2 0 -2 0 2 -2 0 2 0 2 4 2 0
6 0 -2 2 0 4 -2 -2 0 -2 0 0 2 -2 -4 0 -2
7 0 2 2 -4 0 -2 2 0 2 0 0 -2 -2 0 -4 -2
8 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 -4
9 0 0 0 0 0 0 0 0 4 0 4 0 -4 0 4 0
a 0 0 -2 2 0 -4 2 2 0 -4 -2 -2 0 0 2 -2
b 0 0 2 -2 0 4 -2 -2 0 -4 -2 -2 0 0 2 -2
c 0 -2 0 2 4 2 0 2 2 0 2 -4 2 0 -2 0
d 0 2 0 -2 0 2 4 2 -2 0 2 0 2 -4 2 0
e 0 -2 2 0 -4 -2 -2 0 2 0 0 -2 2 -4 0 2
f 0 2 -2 0 0 -2 -2 -4 -2 0 4 -2 2 0 0 -2

A.3 Test Vectors for FUTURE

Plaintext Key (K = K0||K1) Ciphertext

0x0000000000000000 0x00000000000000000000000000000000 0x298650c13199cdec

0x0000000000000000 0x00000000000000001111111111111111 0x4aa41b330751b83d

0xffffffffffffffff 0x00102030405060708090a0b0c0d0e0f 0x68e030733fe73b8a

0xffffffffffffffff 0xffffffffffffffffffffffffffffffff 0x333ba4b7646e09f2

0x6162636465666768 0x00000000000000000000000000000000 0xcc5ba5e52038b6df

0x5353414d414e5441 0x05192832010913645029387763948871 0x5ce1b8d8d01a9310
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A.4 T1 : 4-bit Sboxes implemented by 1 XOR or

XNOR gates

Table A.3: 4-bit Sboxes implemented by 1 XOR or XNOR gates (Here y3y2y1y0 and

x3x2x1x0 denotes the 4-bit output and input respectively of the Sboxes).

Sbox ANF

0123456798badcfe y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x3

0123547689abdcfe y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x2

0132457689bacdfe y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x1

1023546798abdcef y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x1 ⊕ 1

1032456798bacdef y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x2 ⊕ 1

1032547689abcdef y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x3 ⊕ 1

01234567ab89efcd y3 = x3, y2 = x2, y1 = x1 ⊕ x3, y0 = x0

0123674589abefcd y3 = x3, y2 = x2, y1 = x1 ⊕ x2, y0 = x0

031247568b9acfde y3 = x3, y2 = x2, y1 = x0, y0 = x0 ⊕ x1

120356479a8bdecf y3 = x3, y2 = x2, y1 = x0, y0 = x0 ⊕ x1 ⊕ 1

130246579b8acedf y3 = x3, y2 = x2, y1 = x0, y0 = x1 ⊕ x2 ⊕ 1

130257468a9bcedf y3 = x3, y2 = x2, y1 = x0, y0 = x1 ⊕ x3 ⊕ 1

01234567cdef89ab y3 = x3, y2 = x2 ⊕ x3, y1 = x1, y0 = x0

0167234589efabcd y3 = x3, y2 = x1, y1 = x1 ⊕ x2, y0 = x0

034712568bcf9ade y3 = x3, y2 = x1, y1 = x0, y0 = x0 ⊕ x2

125603479ade8bcf y3 = x3, y2 = x1, y1 = x0, y0 = x0 ⊕ x2 ⊕ 1

134602579bce8adf y3 = x3, y2 = x1, y1 = x0, y0 = x1 ⊕ x2 ⊕ 1

135702468ace9bdf y3 = x3, y2 = x1, y1 = x0, y0 = x2 ⊕ x3 ⊕ 1

0123cdef456789ab y3 = x2, y2 = x2 ⊕ x3, y1 = x1, y0 = x0

016789ef2345abcd y3 = x2, y2 = x1, y1 = x1 ⊕ x3, y0 = x0

03478bcf12569ade y3 = x2, y2 = x1, y1 = x0, y0 = x0 ⊕ x3

12569ade03478bcf y3 = x2, y2 = x1, y1 = x0, y0 = x0 ⊕ x3 ⊕ 1

13469bce02578adf y3 = x2, y2 = x1, y1 = x0, y0 = x1 ⊕ x3 ⊕ 1

13578ace02469bdf y3 = x2, y2 = x1, y1 = x0, y0 = x2 ⊕ x3 ⊕ 1
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A.5 T2 : 4-bit Sboxes implemented by 1 NAND

and 1 XOR/XNOR gates

Table A.4: 4-bit Sboxes implemented by 1 NAND and 1 XOR/XNOR gates (Here

y3y2y1y0 and x3x2x1x0 denotes the 4-bit output and input respectively of the Sboxes).

Sbox ANF

0123456789abdcfe y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x2x3 [x0 ⊕
x2x3=XNOR((x0,NAND(x2, x3)))]

0123456789bacdfe y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x1x3

0123457689abcdfe y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x1x2

1032546798badcef y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x1x2 ⊕ 1

1032547698abdcef y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x1x3 ⊕ 1

[x0 ⊕ x1x3 ⊕ 1=XOR((x0,NAND(x1, x3)))]

1032547698bacdef y3 = x3, y2 = x2, y1 = x1, y0 = x0 ⊕ x2x3 ⊕ 1

0123456789abefcd y3 = x3, y2 = x2, y1 = x1 ⊕ x2x3, y0 = x0

012345678ba9cfed y3 = x3, y2 = x2, y1 = x0x3 ⊕ x1, y0 = x0

0123476589abcfed y3 = x3, y2 = x2, y1 = x0x2 ⊕ x1, y0 = x0

130256479b8adecf y3 = x3, y2 = x2, y1 = x0, y0 = x0x2 ⊕ x1 ⊕ 1

130257469a8bdecf y3 = x3, y2 = x2, y1 = x0, y0 = x0x3 ⊕ x1 ⊕ 1

130257469b8acedf y3 = x3, y2 = x2, y1 = x0, y0 = x1 ⊕ x2x3 ⊕ 1

0123456789efcdab y3 = x3, y2 = x1x3 ⊕ x2, y1 = x1, y0 = x0

012345678dafc9eb y3 = x3, y2 = x0x3 ⊕ x2, y1 = x1, y0 = x0

0127456389afcdeb y3 = x3, y2 = x0x1 ⊕ x2, y1 = x1, y0 = x0

135602479bde8acf y3 = x3, y2 = x1, y1 = x0, y0 = x0x1 ⊕ x2 ⊕ 1

135702469ade8bcf y3 = x3, y2 = x1, y1 = x0, y0 = x0x3 ⊕ x2 ⊕ 1

135702469bce8adf y3 = x3, y2 = x1, y1 = x0, y0 = x1x3 ⊕ x2 ⊕ 1

012345ef89abcd67 y3 = x1x2 ⊕ x3, y2 = x2, y1 = x1, y0 = x0

01234d6f89abc5e7 y3 = x0x2 ⊕ x3, y2 = x2, y1 = x1, y0 = x0

012789af4563cdeb y3 = x2, y2 = x0x1 ⊕ x3, y1 = x1, y0 = x0

13569bde02478acf y3 = x2, y2 = x1, y1 = x0, y0 = x0x1 ⊕ x3 ⊕ 1

13579ade02468bcf y3 = x2, y2 = x1, y1 = x0, y0 = x0x2 ⊕ x3 ⊕ 1

13579bce02468adf y3 = x2, y2 = x1, y1 = x0, y0 = x1x2 ⊕ x3 ⊕ 1
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