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ABSTRACT

This thesis consists of three independent essays. The first chapter introduces a model of
decision-making that is based on the procedure of rejection. Departing from the standard
model of choice via preference maximization, the decision maker (DM) rejects minimal
alternatives from a menu according to a preference relation. We axiomatically study the
correspondence of non-rejected alternatives which we call the acceptable correspondence
with different rationality conditions on the underlying preference relation. We also gen-
eralize our model to acceptable correspondences that are generated by the successive
elimination of minimal alternatives. We find that the rejection approach developed in
this chapter can offer explanations for various anomalies observed in decision theory,

such as the two-decoy effect or the two-compromise effect (Tserenjigmid (2019)).

The second chapter proposes a sequential model of the college admissions problem.
The selection criteria of institutions are formulated via choice rules that admit slot-
specific priorities introduced by Kominers and Sénmez (2016). We show that the appli-
cants can not be worse off in the subsequent stages when the candidates update their
preferences that adhere to their assignment in the previous stage. Moreover, the mech-
anism that sequentially implements individual-proposing deferred acceptance is stable
with respect to a generalized version of a sequential stability notion provided in this
chapter. These results generalize the findings presented in Haeringer and Iehlé (2021).
We use our results to analyze recently reformed admission procedures for engineering
colleges in India (Baswana et al. (2019)), where applicants are provided various options

to update their preferences in additional stages.

In the third chapter, we study the welfare consequences of merging Shapley—Scarf
housing markets (Shapley and Scarf (1974)). We show that in the worst-case scenario,
market integration can lead to large welfare losses and make the vast majority of agents
worse off. However, on average, the integration is welfare enhancing and makes all agents
better off ex-ante. The number of agents harmed by integration is a minority when all

markets are small or the agent’s preferences are highly correlated.
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Chapter 0O

INTRODUCTION

This thesis consists of three independent essays that span topics in Choice and Matching
theory. Chapter 1 (co-authored with Bhavook Bhardwaj) studies the rejection behaviour
of a decision-maker. Chapter 2 (co-authored with Bertan Turhan) proposes a sequential
college admissions (two-sided matching) model that applies to engineering college admis-
sions in India. Chapter 3 (co-authored with Josué Ortega and Rajnish Kumar) studies

the consequences of merging Shapley—Scarf (one-sided matching) markets.

We provide a brief description of each chapter below.
CHAPTER 1. REJECTION AND ACCEPTABLE CORRESPONDENCES

This chapter introduces a model of decision-making based on the procedure of rejec-
tion. The decision maker (DM) is endowed with an asymmetric binary relation, which
we call a rationale. Departing from the standard model of choice via preference max-
imization, the DM rejects at least the “worst” alternatives according to the rationale.
For any menu, the worst alternative, referred to as the minimal alternative (i) does not
“dominate” any alternative, and (ii) is “dominated” by at least one alternative according

to the rationale.

We axiomatically study the correspondence of non-rejected alternatives which we
call the acceptable correspondence with different rationality conditions on the underlying
rationale. The various classes of acceptable correspondences are characterized using
modified versions of Contraction Consistency and Fxpansion Consistency, which are
central to the characterization of maximal-element rationalizable (MR) correspondence
(see Sen (1971), Bossert et al. (2005)). An important implication of our results is that

selection by rejection does not follow from appropriate versions of selecting maximals.



In other words, the procedure of rejection is substantively different from selection by

maximizing procedures.

The second part of our analysis considers a more general procedure where the DM
rejects the k—minimal set that is obtained by successively rejecting the worst alternatives
according to the underlying rationale. The DM is now represented by a pair (R, k), where
R is the underlying transitive rationale and k is a threshold function. The threshold
captures the idea of “satisficing” behaviour of Simon (1955), where the DM selects the
alternatives above a threshold. It also provides a measure of the degree of rationality
as discussed in Barbera et al. (2019), where a higher threshold indicates that the DM
is closer to the benchmark of the maximal set. We present the characterization of
two variants of the correspondence that rejects the k—minimal set, which we call the
threshold-acceptable (T'A) correspondence. The first is when the threshold is fixed across
menus. The second is when the threshold can depend on the menu and accommodate
phenomena like choice overload (Frick (2016)). Both variants of this correspondence

have MR correspondence as a special case.

We find that the rejection approach developed in this chapter can offer explanations
for various anomalies observed in decision theory. It includes behaviour like cyclic choices,
choice reversals via the decoy effect and the compromise effect (see Huber et al. (1982),
Simonson (1989)). Threshold acceptability on the other hand explains phenomenon like
two-decoy effect and two-compromise effect (Tserenjigmid (2019)) (Teppan and Felfernig
(2009) and Manzini and Mariotti (2010)). As k increases, the TA correspondence merges
with the MR correspondence.

CHAPTER 2. SEQUENTIAL MATCHING WITH AFFIRMATIVE ACTION

In this chapter, we propose a sequential model of the college admissions problem. At
each stage, applicants can decide whether to finalize their assignments or participate in
the next stage by updating their submitted preferences. We assume that the selection
criteria of institutions are formulated via choice rules that admit slot-specific priorities
introduced by Kominers and Sénmez (2016). Each institution has a set of positions
(slots) that can be assigned to different individuals. Positions have their own (potentially
independent) rankings for individuals. Within each institution, a linear order — referred

to as the precedence order — determines the sequence in which positions are filled.

We investigate the restrictions on the preferences of individuals across different rounds

that result in monotone outcomes. We refer to a matching outcome as monotone when



each individual is matched to an institution that is weakly higher than the match of
previous rounds. The proof of this result utilizes ideas in Kojima and Manea (2010). It
enables us to compare their static problem with our sequential model. We introduce a
“backward-looking” notion of stability for sequential matching mechanisms that takes
into consideration individual rationality, non-wastefulness and justified envy of individ-
uals across different rounds. We establish a relationship between this notion of stability,

which we refer to as sequential stability, and monotone outcomes.

We apply our theoretical findings to analyze the admissions problem in engineering
colleges in India. Admissions to engineering colleges in India are based on a multi-
period semi-centralized matching process and are subject to sophisticated affirmative
action constraints. Baswana et al. (2019) claim that the welfare of candidates improves
in every round of their mechanism, but do not provide a rigorous theoretical justification
for their claim. We do that by adopting the model in Haeringer and Iehlé (2021).

3. ON THE INTEGRATION OF SHAPLEY-SCARF MARKETS

In this chapter, we investigate the welfare effects of integrating disjoint Shapley—Scarf
markets (Shapley and Scarf (1974)). We assume that the core allocation is implemented
before and after the merge occurs. The gains/losses from integration are assessed by
(i) the number of agents who obtain a better allocation, and (ii) the size of the welfare
gains, measured by the rank of the assigned house. We present worst- and average-case

results.

In the worst-case scenario, we show that when & communities with n; agents each
merge with n agents in total, it may harm a majority of agents (up to, but no more than,
n—k agents). Furthermore, the average rank of an agent’s house can decrease asymptot-
ically by, but not more than, 50% of the length of their preference list. These results are
substantially worse than those for Gale-Shapley markets Ortega (2018, 2019). On the

other side, the average-case results are more optimistic. We prove that the expected gains
(n+D)[(nj+1)Hn; =53] (n+1)H,—n
nj(nj+1)n B n2 ’

where H,, is the n-th harmonic number. Our computation shows that the expected

from integration in random housing markets are equal to

welfare gains from integration are positive for all agents and larger for agents that are
initially in smaller markets. We also provide an upper bound on the expected number
of agents harmed by integration. This allows us to guarantee that a majority of agents

benefit from integration when all the markets are of equal size. The average case results



rely on the previous probabilistic analysis of Shapley-Scarf markets in the computer

science literature (see Frieze and Pittel (1995); Knuth (1996)).

To guarantee that no more than half of the agents in any individual market are
harmed by integration, we identify a preference domain, which we call the sequential
dual dictatorship, that enforces a particular correlation among agent’s preferences. This
property is equivalent to assigning the title of the dictator to at most two agents at each
step of the top trading cycle algorithm, thereby bounding the length of cycles that can

occur.



Chapter 1

REJECTION AND ACCEPTABLE

CORRESPONDENCES!

1.1 Introduction

The standard theory of decision-making is founded on the principle of maximizing be-
haviour of the decision-maker, henceforth a DM. In the classical model, first developed
in Samuelson (1938), the DM selects from subsets of a given set of alternatives, called
menus. The DM chooses the set of maximal alternatives with respect to her underlying
preference ordering over the set”. A recent strand in the literature refines this procedure
to explain non-standard choice behaviour. The DM first forms a “consideration set”
by means of some procedure® and in a subsequent stage, chooses a maximal alternative
from the remaining set using the underlying preference ordering. Significantly, this initial
stage involves some form of maximizing behaviour on the part of the DM, resulting in
the elimination of non-maximal alternatives. In this chapter, we develop an alternative
approach to consideration set formation where the DM, instead of maximizing, rejects a
set of “worst” alternatives. We axiomatically study this set of non-rejected alternatives;

referred to as the acceptable set.

Extensive research in consumer psychology and decision-making suggests that selec-
tion by choice and selection by rejection typically do not lead to the same outcome. In the

experiments, Huber et al. (1987) found that rejection behaviour typically generates larger

!Co-authored with Bhavook Bhardwaj (Indian Statistical Institute, Delhi Centre).

2The early literature in choice theory has a thorough treatment of decision-making via preference
maximization (see Houthakker (1950), Chernoff (1954) Arrow (1959), Sen (1971)).

3This includes “Shortlisting” (Manzini and Mariotti (2007)), “Categorization” (Manzini and Mar-
iotti (2012)) and “Rationalization” (Cherepanov et al. (2013)). Lleras et al. (2017) provides a list of
these procedures to illustrate that the formation of consideration sets varies significantly.



consideration sets compared to choice behaviour. Several explanations may account for
the observed phenomenon. According to Shafir (1993), individuals tend to direct their
focus towards positive attributes while choosing, and towards negative attributes while
rejecting. Yaniv and Schul (2000) provide a theoretical framework suggesting that choice
and rejection procedures imply different types of status quo for the alternatives, thereby
invoking a different selection criterion for each procedure. Laran and Wilcox (2011) find
(in their Study 4) that cognitive load affects rejection more than choice, suggesting that

rejection might involve more deliberative processing®.

In certain situations, we wish to consider, rejection seems more appealing and plau-
sible than selection by choice. Consider a hiring process for a company looking to fill a
managerial position. The DM (hiring manager) has received several applications from
candidates. Before making the final selection through the interview, the process involves
screening the candidates. The DM compares the candidates with either a Finance or En-
gineering degree based on years of managerial experience. The DM then narrows down
the candidate pool by eliminating those with the lowest years of experience in each cate-
gory of qualification. Similarly, consider a case where a Ph.D. candidate has a GRE score
of X and research interests in Macroeconomics and Labour Economics. While applying,
the DM rejects all universities that require a GRE score of more than X and do not have
outstanding faculty in either of her research interests. There are situations —such as
wishlisting, adding items in a cart, saving articles to read later, etc —where the selection
is more appropriately described by rejection rather than by maximization. The process

of selection may involve the approval of several alternatives such as described in Manzini
et al. (2019).

We consider a model where the DM is endowed with an asymmetric® binary relation,
which we call a rationale®. For any menu, the set of worst alternatives with respect to
the rationale is referred to as the minimal set. An alternative is minimal if (i) it does
not “strictly dominate” any alternative and (ii) is strictly dominated by at least one
alternative. In the earlier example, suppose candidates {a, b, ¢, d, e} have applied for the

position. Candidates a,b and d have Finance degrees while ¢ and e have Engineering

4See Sokolova and Krishna (2016) for detailed empirical evidence suggesting that choice and rejection
procedures result in different outcomes.

SWhen the underlying preference relation is not complete, Eliaz and Ok (2006) show that one
can distinguish between indifference and indecisiveness of an agent by observing her choice behaviour.
To avoid technical complications, we assume the underlying relation to be asymmetric. For further
discussion on this issue, see Eliaz and Ok (2006).

SWe follow the terminology of Manzini and Mariotti (2007)



degrees. Based on years of experience, the DM ranks a better than b and b better than
d. Also, c is ranked better than e. The DM cannot compare candidates with different

degrees. The minimal alternatives in this case are d and e.

Using the notion of minimal alternatives, we define the acceptable set for a given
menu. An acceptable set is a subset of a menu that satisfies two properties. The first is
that the minimal alternatives are rejected from the menu. Secondly, maximal alternatives
are not rejected from the menu. In the earlier example, the acceptable sets are {a, ¢} and
{a,b,c}. An acceptable correspondence is a mapping that associates an acceptable set
for every menu. Within the class of acceptable correspondences, we mainly focus on two
subclasses. The first one, referred to as maximal acceptable (M A) correspondence, selects
the largest acceptable set for every menu. In other words, the DM selects all alternatives
except the minimal set in the menu. In the example above, the MA correspondence
selects {a, b, c} from the menu {a,b,c,d,e}. We explore refinements of this subclass of
correspondences with additional restrictions imposed on the underlying rationale. These

restrictions include acyclicity, completeness, transitivity, and linearity.

We provide characterization results of these classes of acceptable correspondences.
The axioms we use are a modified version of Contraction Consistency and a modified
version of Ezpansion Consistency, which are central to the characterization of maximal-
element rationalizable (MR) correspondences (see Sen (1971), Bossert et al. (2005)).
Acceptable correspondences are characterized by a weakening of both axioms, restricting
to binary menus (see Theorem 1.1). Theorem 1.2 provides characterization results for
MA correspondences, where the first one is a weakening of Contraction Consistency and
the second one is a mild strengthening of Expansion Consistency. Theorem 1.3 and 1.4
characterize MA correspondences with added restrictions on the underlying rationale.
An important implication of our results is that selection by rejection does not follow from
appropriate versions of selecting maximals. In other words, the procedure of rejection is

substantively different from selection by maximizing procedures (see discussion in Section
1.4.2).

The second part of our analysis considers a more general procedure where the DM
rejects a larger set of worst alternatives using the underlying rationale. For convenience,
we assume that the rationale satisfies transitivity. The DM is now represented by a pair
(R, k), where R is the underlying transitive rationale and k is the threshold function.
Such a DM rejects the “worst” k layers of minimal alternatives with respect to R. We call

this rejected set as k—minimal set. The set of non-rejected alternatives is referred to as



a threshold-acceptable set and the associated correspondence to be threshold-acceptable
(TA) correspondence. The TA correspondence is a natural generalization of MA corre-
spondences. The threshold captures the idea of “satisficing” behaviour of Simon (1955),
where the DM selects the alternatives above a threshold. It also provides a measure of
the degree of rationality (as discussed in Barbera et al. (2019)) where a higher threshold

indicates that the DM is closer to the benchmark of the maximal set.

We consider two variants of TA correspondences. The first is when the threshold
is fixed across menus. The second is when the threshold can depend on the menu and
accommodate phenomena like choice overload (Frick (2016), Kovach and Ulkii (2020)).
Both variants of this correspondence have MR correspondences as a special case. We
provide a characterization result for both these models as Theorem 1.5 and 1.6 respec-

tively.

Maximal acceptability can explain a wide variety of empirically observed choice be-
haviour that cannot be rationalized by preference maximization. This includes behaviour
like cyclic choices, choice reversals via the decoy effect and the compromise effect (see
Huber et al. (1982), Simonson (1989)). Threshold acceptability on the other hand ex-
plains phenomena like two-decoy effect and two-compromise effect (Tserenjigmid (2019),
Teppan and Felfernig (2009) and Manzini and Mariotti (2010)). This can be done via low
values of k. As k increases, the TA correspondence merges with the MR correspondence.

These issues are discussed in detail in Section 1.6.

The layout of this chapter is as follows: the next subsection provides a brief litera-
ture review. Section 1.2 introduces the model formally and reviews MR correspondences.
Section 1.3 introduces the concept of minimal sets and provides a characterization of ac-
ceptable correspondences. Section 1.4 and 1.5 characterize MA and TA correspondences

respectively. Section 1.6 provides an application of the model.

1.1.1 Related Literature

There is a vast literature that studies various sequential models of elimination. Tversky
(1972) provides a probabilistic theory of choice based on the sequential elimination of
alternatives. Fach alternative consists of a set of attributes. At each stage, an attribute is
selected with some probability, and all the alternatives that do not include the attribute
are eliminated. The model assumes no fixed ordering over the attributes. Mandler et al.

(2012) presents a simplified (deterministic) version of Tversky (1972). They show that

8



the two approaches of utility maximization and choosing by sequential elimination are
nearly equivalent. Manzini and Mariotti (2007) looks at sequentially rationalizable choice
functions where the DM eliminates non-maximal alternatives according to rationales until
only one alternative remains as the final choice. The order in which the DM applies the
rationales is fixed. In our model, the DM rejects a set of alternatives non-sequentially.

The set of remaining alternatives is not necessarily a singleton set.

More recently, Masatlioglu and Nakajima (2007) introduced a deterministic theory
of choice that is based on the elimination of alternatives. In their model, an alternative
is eliminated only if it is dominated by another alternative in its “comparable” set. The
decision procedure is characterized by a single property called the “axiom of choice by
elimination”. According to it, there is at least one alternative from each menu that is
always chosen (not necessarily unique) if it is available in a sub-menu. This condition is

necessary but not sufficient in our model.

Another paper closely related to ours is Barbera et al. (2019). In their model, the
DM is endowed with a linear order and the assumption of perfect optimization is relaxed
in favour of “Order—k rationality”. The DM chooses from one of the top-k alternatives
according to the linear order. This concept is not equivalent to rejecting the bottom
m — k alternatives (m is the number of alternatives) in our framework for a number of
reasons. First is that we do not restrict ourselves to linear orders. So, the concept of the
worst k alternatives is not well defined in our framework. Secondly, we do not restrict to
singleton-valued selections. As a result, our characterization results differ considerably

from theirs.

Salant and Rubinstein (2008) develop a framework for modeling choice in the presence
of framing effects. A frame includes observable information that is irrelevant in the
assessment of the alternatives but affects choice. Our model can be regarded as an

attempt to formalize a frame that is based on the rejection of alternatives.

There is substantial empirical evidence in the literature that the DM does not consider
the entire menu when making a choice, restricting attention instead, to a subset of
alternatives. This has been referred to as a consideration set of a menu and has been
formalized in a variety of ways. Masatlioglu et al. (2012)) formalize this on the grounds
of “limited attention” while Manzini and Mariotti (2007) do so in terms of “shortlisting”

according to some criterion.

The concept of partial dominance proposed in Gerasimou (2016) is related to the



notion of minimal alternatives introduced in this chapter. The partially dominant cor-
respondence selects alternatives that are not dominated by any other alternative in the
menu and dominates some alternatives according to a rationale. All alternatives are
selected if none of the pair of alternatives are comparable in the menu. The correspon-
dence that selects the minimal set from each menu differs from the partially dominant

correspondence—this is discussed further in Section 1.4.2.

There are several two-stage models of choice (Manzini and Mariotti (2007), Manzini
and Mariotti (2012), Cherepanov et al. (2013), Masatlioglu et al. (2016), Bajraj and
Ulkii (2015)) where the first stage shortlisted set has different properties. Our analysis
can also be interpreted as a contribution to this strand of literature. There are several
differences between our model and these two-stage models. Firstly, we do not look at
the second stage of final selection, and secondly, our shortlisted set allows for a much
richer structure than their set of surviving alternatives. A shortlisting model close to
ours is Bhardwaj and Manocha (2021). This paper studies a choice procedure where
the set of minimal alternatives according to a transitive rationale are rejected in the first
stage. In the second stage, a unique maximal alternative is chosen from the remaining set
according to a possibly different rationale. The recent version Bhardwaj and Manocha
(2023) introduces a simple model of stochastic choice along the lines of Echenique and
Saito (2019). In this model, the DM first rejects the worst alternatives using a binary
relation and then follows a Luce procedure to assign probabilities to the non-rejected

alternatives.

There are other models that consider more general selections rather than final choices.
For instance, in situations like wishlisting, the DM expresses a positive interest in an item
by “approving” it. Manzini et al. (2019) provides a probabilistic model of this approval
behaviour using a stochastic choice function from lists framework (Rubinstein and Salant

(2006)). Instead, we work with a deterministic model of selection from menus.

1.2 Model

1.2.1 Preliminaries

Let X be a finite set of alternatives and P(X) be the set of all menus, that is, non-empty

subsets of X. A DM makes non-empty selections from every menu by rejecting certain

10



alternatives. A decision correspondence d : P(X) — P(X) is a mapping that satisfies
the following properties (i) d(A) # 0 and (ii) d(A) C A for all A € P(X).

A binary relation R over X is a subset of X x X. We will denote by zRy if (z,y) € R
and -~z Ry if (z,y) ¢ R. The DM in our model is endowed with a strict binary relation
R (henceforth, a rationale), that is, an asymmetric relation where R is asymmetric (x Ry

implies —yRx). If Ry, we shall interpret it as “y is dominated by z”.

A rationale is (i) complete (C) if for any xz,y € X and x # y, if —xRy, then yRz
(ii) acyclic (Y) if for any xy, ... xy, if 1 RxaR . .. xy, then —xpRxy (iii) transitive (T) if
for any x1, xo, w3, if 1 Rrs and xoRx3, then x1 Rxrs. Note that acyclicity is equivalent to
transitivity under completeness. The implication does not hold without completeness.
We will refer to a complete rationale as a tournament and a transitive rationale as a
partial order. A rationale satisfying acyclicity (transitivity) along with completeness
is a linear order, henceforth abbreviated as (TC). We work with rationales with the
interpretation that if DM is not able to rank z and y, she must be indecisive between

the two alternatives’.

1.2.2 Maximal Element Rationalizability Revisited

A decision correspondence is mazimal-element rationalizable (Bossert et al. (2005)) if
it selects just the set of maximal alternatives with respect to an underlying preference
relation. The existence of a maximal set is guaranteed with a mild restriction of acyclicity
on the preference relation. For a menu A and rationale R, the set of maximal alternatives

is defined as
M(A,R) = {x € A| ~yRx Yy € A}

DEFINITION 1.1. A decision correspondence d : P(X) — P(X) is maximal element

rationalizable (MR) if there exists an acyclic rationale R, such that for all menus A,

d(A) = M(A, R)

Two simple consistency conditions characterize this behaviour, namely Contraction

Consistency (CC) and Expansion (Exp) (see Sen (1971)). Also referred to as the Chernoff

"The assumption of asymmetry is a mild one. One can alternatively allow for indifferences and
develop our model of rejection. However, without a richness assumption on the binary relation (reg-
ularity), one encounters the problem of distinguishing between indifference and incompleteness in the
identification exercise (see Eliaz and Ok (2006))

11



axiom or Condition «, the CC condition states that if an alternative is selected in a menu,

then it will still be selected if the alternative belongs to the sub-menu. Formally,

Axiom 1(a) (Contraction Consistency (CC)). For all menus A and x € A, we have

€ d(A)] = [z edA)V {z} C A C A

The second axiom requires consistency in selection as the set expands.

Axiom 2(a) (Expansion (Exp)). For all menus A, B and x € AN B, we have

[z € d(A)Nd(B)] = [ € d(AUB)|

According to the axiom, an alternative that is selected in two menus must be selected

in their union as well. It is also referred to as Condition 7 in the literature.

LEMMA 1.1 (Sen (1971)). A decision correspondence is an MR correspondence if and
only if satisfies CC and Fxp.

The analysis of necessary and sufficient conditions for maximal-element rationaliz-
ability by a binary relation has been explored thoroughly. We refer the reader to Moulin
(1985) and Bossert et al. (2005) for a comprehensive treatment of this issue for choice

correspondences.

1.3 Acceptable Correspondences

In this section, we first introduce the notion of a minimal alternative. Further, we
formally define and characterize acceptable correspondences using the set of minimal

alternatives of a menu.

DEFINITION 1.2. For a menu A and rationale R, the set of minimal alternatives m(A, R)

is defined as

m(A, R) = {z € A| xRy Vy € A and yRx for some y € A}

An alternative is minimal if it is dominated by some alternative of the menu and does

not dominate any alternative. We illustrate the notion of minimal set with an example.
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Example 1.1. Let A = {a,b,¢,d, e}. Rationales Ry, Ry, R3 and R, are depicted in Panel
(i), (ii), (iii), and (iv) respectively of Figure 1.1. Arrow from x to y depicts xRy. Else, x

and y are non-comparable. In Panel (i), the set of minimal alternatives is {c¢,d}. This is

+<Maximal set 0 ~---------=-= P T «—Maximal set

<Minimal set

(i) (ii)
R
+Minimal set :L U S i

(iii) (iv)

Figure 1.1: Rationales Ry, Ro, R3, and Ry.

because both ¢ and d are dominated by b, and do not dominate any other alternative in
the set. Note that b is neither maximal nor minimal as it is dominated by a and dominate
c and d. Alternative e is not minimal as it is not dominated by any other alternative.
In Panel (ii), there are no minimal alternatives since each of the alternatives is either
“isolated” or dominates at least one alternative in the set. The maximal set exists and is
equal to {a, e}. In Panel (iii), there are no maximal alternatives, but the set of minimal
alternatives is {a}. Lastly, in Panel (iv), there are no maximal or minimal alternatives

as every alternative is both dominated and dominates some alternative in the menu.

This example illustrates that the set of maximal and minimal alternatives may be
null in a menu. Observe that by definition, the set of minimal alternatives does not

include any maximal alternative for a given rationale, that is, M (A, R) N m(A, R)=0°.

For a menu A and rationale R, an alternative that does not belong to m(A, R)

is referred to as an acceptable alternative. We say that a decision correspondence is

80ur definition of minimal alternatives differs from the commonly known definition of minimality
which states that an alternative is minimal if it does not strictly dominate any alternative. In that
case, an alternative that is “isolated” in the menu is both a maximal as well as a minimal alternative.
Therefore, we do not include such alternatives in our definition of minimal set. We thank Yves Sprumont
for pointing this out to us.
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acceptable if from each menu, (i) it selects a set of acceptable alternatives and (ii) it

includes the maximal set if it exists. Formally,

DEFINITION 1.3. A decision correspondence d is an acceptable correspondence if there

exists a rationale R such that for all menus A,

M(A, R) C d(A) € A\ m(A, R)

If d is an acceptable correspondence and the underlying rationale is R, we say that

“R generates d”. The following observation is important.

Observation 1.1. Let d be an acceptable correspondence generated by a rationale R.
Then, R = R? where (i) d({z,y}) = {z} if and only if xR% and (i) d({z,y}) = {z,y}
iff ~xR% and —yR%z.

The observation above says that if a rationale R generates an acceptable correspon-
dence, then it must be unique. Also, it must be equal to the rationale revealed from the
selection in binary menus of d. An example of a correspondence that is not acceptable

is given below.

Example 1.2. Consider a decision correspondence d over the set A = {a, b, ¢} as follows.

d({a,0}) ={a}  d({a,c}) ={a}  d{b,c}) ={b}  d({a,b,c})={a,c}

We claim that d is not an acceptable correspondence. Suppose it is generated by rationale
R. By Observation 1.1, we have aRRb, bRc and aRc. Therefore, ¢ is a minimal alternative

according to R in the menu {a, b, ¢}, contradicting ¢ € d({a, b, c}).

We now provide a characterization of acceptable correspondences. Our first axiom
is a weakening of the CC condition. It places restrictions only on selection in binary

menus.

Axiom 1(b) (Binary Contraction Consistency (BCC)). For all menus A and x € A, we

have
[z € d(A)] = [zed{z,y})Vye A\{z}] v [Fyec A\ {z}, d{z,y}) = {z}]

This property has the following interpretation: if an alternative is selected in a menu,

it must be either selected in every binary sub-menu, or it must be uniquely selected in
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some binary sub-menu. In the case of single-valued choice correspondences, this condition
translates to a property called Never Chosen’, which requires that if an alternative is not
selected in every binary menu from a collection, then it must be rejected in their union.
Such restriction on binary menus enables us to derive a rationale R that generates d such
that for every menu A, d(A) C A\ m(A, R) for some rationale R.

Our second axiom is a weakening of the Expansion condition. It requires that if an
alternative is not rejected (is acceptable) in every binary menu from a collection, then it
must be selected in their union as well. This property appears in Ehlers and Sprumont

(2008) and is also known as Always Chosen'®. The condition is formally defined below.

Axiom 2(b) (Binary Dominance Consistency (BDC)). For all menus A and = € A, we
have
[z € d({z,y}) Vy e A\{z}] = [z € d(A)]

This condition guarantees the existence of a rationale R that ensures M (A, R) C
d(A) for every menu A. Such a correspondence that contains an MR correspondence
is referred to as subrationalizable (see Moulin (1985) and Echenique et al. (2011)). The
independence of BCC and BDC is illustrated in the Example 1.3 below.

Example 1.3. Consider decision correspondences d over the set X = {a,b,c} as follows

d({a,0}) ={a}  d({a,c}) ={a,c}  d({b,c}) ={b}  d({a,b,c}) = {b}

This correspondence satisfies BCC but violates BDC as alternative a is selected in both
{a,b} and {a,c}. However, it is not selected in their union {a, b, c}. Now consider d in
Example 1.2. Tt satisfies BDC, but not BCC as ¢ € d(A) is not selected in {a,c} and is

also not selected uniquely in any other sub-menu.

The following straightforward result summarizes our discussion of this subsection.

Theorem 1.1. A decision correspondence is an acceptable correspondence if and only

if it satisfies BCC and BDC.

Unlike MR correspondences, we do not need acyclicity of the rationale to guarantee
the existence of an acceptable correspondence. The proof of this result is provided in
Appendix 1.A.1.

9This property is used in characterizing two-stage model of Bhardwaj and Manocha (2021)
10Tt is the choice-rule formulation of what is sometimes called the Condorcet winner principle.
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Note that MR correspondences, by definition, are a subclass of acceptable correspon-
dences. However, not every sub-rationalizable!! correspondence is acceptable. A trivial
example of such a correspondence is the identity mapping d! : P(X) — P(X) such that
for all menus A, d’(A) = A. Thus, the concept of acceptability strengthens the idea of

sub-rationalizability to accommodate the rejection behaviour of the DM.

An important distinction between MR and acceptable correspondences is that the

former satisfies a property of stability while the latter does not.

DEFINITION 1.4. A correspondence d is stable if for all menus A,

Proposition 1.1. MR correspondences are stable while acceptable correspondences are

not.

Stability of MR correspondences follows from the property of maximality. To show
that acceptable correspondences are not stable, consider the example depicted in Figure
1.1 (Panel (i)). In the menu A = {a,b,c,d,e}, the set of acceptable alternatives is
{a,b,e}. However, b is not an acceptable alternative in the smaller set {a,b,e}. Thus,
d(d(A)) S d(A).

Note that, in this example d(d(A)) = {a,e} = d(d(d(A))). In fact, an acceptable
set is stable after a finite number of applications of the d operator. We will further

investigate this behaviour of acceptable correspondences in Section 1.5.

1.4 Maximal Acceptable Correspondences

In this section, we characterize a natural class of acceptable correspondences that is,
maximal acceptable correspondences. It selects the largest set of acceptable alternatives

in the menu. We now formally define maximal acceptable correspondence.

DEFINITION 1.5. A decision correspondence d is a maximal acceptable (MA) corre-

spondence if there exists a rationale R such that for all menus A

d(A) = A\ m(R, A)

A correspondence that contains a maximal-element rationalizable correspondence is referred to as
a sub-rationalizable correspondence as defined in Moulin (1985).
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We proceed to characterize the class of MA correspondences. Our first axiom is a
mild weakening of the CC condition and a strengthening of the BCC condition. Unlike

BCC, this puts restrictions on all the sub-menus considered. Formally,

Axiom 1(c) (Partial Contraction Consistency (PCC)). For all menus A and = € A, we

have

[z €d(Ad)] = [zedA)V{z}cAcA] v ByeA\{z}, d{z,y}) = {z}]

According to the axiom, an alternative that is selected in a menu must be selected
in all the sub-menus to which it belongs. Otherwise, it must be a unique choice in some

binary menu.
The second axiom we propose is a strengthening of Expansion Consistency. Formally,

Axiom 2(c) (Strong Expansion (S-Exp)). For all menus A, B and z € AU B, we have

[z €d(A)nd(B)] v [d(A)={z}] = [z €d(AUB)]

The axiom has the following interpretation: consider two menus and an alternative x
that belongs to the union of the two menus. If this alternative is selected in both menus,

or uniquely selected in one of them, it must be selected in their union.
Our main result of this subsection is the following

Theorem 1.2. A decision correspondence is an MA correspondence if and only if it
satisfies PCC and S-Ezp.

The proof of the theorem can be found in Appendix 1.A.2.

1.4.1 Refinements of Maximal Acceptable Correspondences

In this subsection, we provide characterization results for M A correspondences obtained
by imposing more structure on the rationale generating the correspondence. Note that
no assumptions are made on the rationale in Theorem 1.2. Completeness and transitivity
are standard rationality assumptions in the context of individual decision-making. In
group decision-making, the Pareto relation is transitive (or quasi-transitive) but not
complete. On the other hand, group decision-making via majority relations leading to

tournaments is complete but not transitive.
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We refer to an M A correspondence generated by an acyclic rationale as a Y —MA
correspondence. Similarly, a correspondence generated by a transitive rationale is re-
ferred to as a T—MA correspondence, one generated by a complete rationale, a C—MA
correspondence, and one generated by a linear order, a TC'—MA correspondence. We
introduce several axioms which in conjunction with the axioms deployed in Theorem 1.2
characterize Y —MA, T—MA, C—MA and TC'—MA correspondences.

Axiom 3(a) (No Rejection Consistency (NRC)). For all menus A, we have

[d(A) = A] = [d(A) = A" VA' C A

According to NRC' if everything is acceptable in a menu, then everything must be
acceptable in all its’ sub-menus. This condition is necessary for the generating rationale

to be acyclic and together with PCC and S-Exp is also sufficient.

Axiom 3(b) (No Binary Cycles (NBC)). For all z,y,z € X, we have
[d{z,y}) ={=}] A [d{y, 2}) ={y}] = [d({z,z}) = {=}]
The NBC axiom is well known in the literature (see Manzini and Mariotti (2007)). It

is a straightforward restriction that guarantees that the generating rationale is transitive.

Axiom 3(c) (Resoluteness). For all menus A with |A| = 2, we have d(A) C A.

The resoluteness axiom is introduced in Ehlers and Sprumont (2008). It requires the

DM to be decisive in binary menus.

The following straightforward result characterizes Y —MA, T—MA, C—MA and
TC—MA correspondences.

Theorem 1.3. A decision correspondence is
1. Y—MA if and only if it satisfies PCC, S-Ezp, and NRC.

2. T—MA if and only if it satisfies PCC, S-Exp, and NBC.

12Sen (1971) introduces a property called § which requires that if two alternatives are best in a menu
S, then neither of them can be uniquely best in a larger menu 7" where S C T. Similarly, this says
that if all the alternatives are best in a menu, then it cannot be that some alternatives are not the best
in a smaller menu. A condition called Aizerman discussed in Moulin (1985) is in a similar vein and
characterizes quasi-transitive rationalizability along with Contraction and Expansion Consistency.
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3. C—MA if and only if it satisfies PCC, S-Exp, and Resoluteness".

Finally, we turn to M A correspondences that are generated by complete and acyclic
rationales. Note that transitivity is implied by acyclicity in the presence of completeness
and asymmetry. According to Theorem 1.3, the linearity of the generating rationale
is guaranteed if the MA correspondence is both resolute and satisfies NRC (or NBC).
Resoluteness along with NRC is equivalent to a stricter form of resoluteness, we call

strong resoluteness™.

Axiom 3(d) (Strong Resoluteness). For all menus A, we have d(A) C A.

An alternate characterization can be provided using strong resoluteness and a CC

condition for rejected alternatives.

Axiom 2(d) (Rejection Contraction Consistency (RCC)). For all menus A and x € A,

[ ¢ d(A)] = [z ¢d(A) VA CA

This condition is very restrictive as an alternative that is selected in at least one
of a collection of menus must be selected in their union as well'>. Observe that if the
generating rationale is a linear order, the set of rejected alternatives is unique. The RCC
condition can therefore be regarded as a counterpart of the CC condition for singleton-

valued correspondence of rejected alternatives.

The relationship between Axioms 3(a), 3(b), 3(c) and 3(d) is established in Figure
1.2.

NBC [3(b)]

Strongly Resolute [3(d)]

NRC [3(a)] Resolute [3(c)]

Figure 1.2: Relationship between Axioms 3(a), 3(b), 3(c) and 3(d).

13A similar refinement result can be provided for acceptable correspondences, that follows from
Observation 1.1. The implications of that result are subsumed in this result.

14This condition is introduced in Gerasimou (2016) under the name of Choice implies Rejection.

15The contrapositive of this statement suggests that it is a strengthening of Axiom 2(c).
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Our final result in this subsection is stated below.
Theorem 1.4. The following statements are equivalent. The correspondence d is
1. TC-MA
2. resolute and satisfies PCC, S-FExp, and NRC
3. resolute and satisfies PCC, S-Fxp, and NBC
4. strongly resolute and satisfies PCC and S-FExp

5. strongly resolute and satisfies RCC

The proof of Theorem 1.4 is provided in Appendix 1.A.2.

1.4.2 The Non-Equivalence of MR and M A Correspondences

It may be tempting to conclude that selection by maximization and selection by minimal
rejection are “essentially” the same because one is the dual of the other. We argue in

this section that it is not the case.

One possible interpretation of the equivalence claim is that an MA correspondence
is an MR correspondence - what we obtain by rejecting minimal alternatives is precisely
what we can obtain by maximizing, possibly different rationale. This claim is false which

can be confirmed by referring to Example 1.4.

Example 1.4. Consider decision correspondences d over the set X = {a, b, ¢} as follows
d({a,b}) ={a}  d({a,c}) ={a} d({b,c}) = {b} d({a,b,c}) = {a, b}

The correspondence d is an MA correspondence generated by a linear order R :
aRbRc. However, d violates CC since b € d({a,b,c}) and b ¢ {a,b}. Therefore, it is
not an MR correspondence. The falsity of the equivalence claim also follows the fact
that the conditions that characterize MA and MR correspondences are distinct. The
former is characterized by PCC and S-Exp and the latter by CC and Exp (Lemma 1.3
and Theorem 1.2). There is a special case when the equivalence holds. This is when MA

correspondence is generated by a dichotomous rationale.
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DEFINITION 1.6. A rationale R is dichotomous if there exists a partition {G, B} of X
such that for all z,y € X, xRy implies x € G and y € B.

The equivalence result is stated below.

Proposition 1.2. A decision correspondence d is an MA correspondence generated by

a rationale R. Then the following statements are equivalent.

1. d is an MR correspondence.

2. R is dichotomous.

Observation 1.1 provides an intuition of the result. A formal proof appears in Ap-
pendix 1.A.1.

An alternative interpretation of equivalence is that rejected alternatives are obtained
by a maximizing procedure. In other words, the set of minimal alternatives according
to a rationale is an MR correspondence for a possibly different rationale. Let d be an
arbitrary correspondence and let r¢(A) = A\ d(A) be the set of alternatives that are
rejected while selecting d(A). According to this notion of equivalence, there exists a
rationale R such that r4(A) = M(A, R') for every menu A. This claim is false as shown

in Example 1.5 below.

Example 1.5. Consider decision correspondences d over the set X = {a, b, c} as follows
d({a,0}) = {a}  d{a,e}) ={a,c}  d{bch) = {bc}  d{abe}) = {a,c}

We note that d above is an MR correspondence generated by rationale R: aRb. Since
r4(A) is empty for the menus {a,c} and {b,c}, the equivalence does not hold. For r¢
to be a decision correspondence, the condition of strong resoluteness is necessary. The

unique case when equivalence in this sense holds is when d is a TC'—MA correspondence.

Proposition 1.3. A decision correspondence d is an MA correspondence generated by

a rationale R. Then the following statements are equivalent.

1. v%is an MR correspondence.

2. R is a linear order.
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The intuition of this result is the following: an alternative that is minimal in a menu
A with respect to linear order R is the unique maximal alternative with respect to the

linear order R~!.

The notion of minimal alternatives defined in this chapter mirrors the concept of a
partially dominant correspondence d*'P of Gerasimou (2016). Their correspondence is a
refinement of MR correspondences. For every menu A and acyclic rationale R, d"P(A, R)
consists of alternatives not dominated by any other alternative in A and dominate some
alternatives according to R. If all alternatives are non-comparable in A, d"P(A, R) =
A. Example 1.5 also indicates that r? associated with an MA correspondence is not
a PD correspondence. However, the equivalence holds when the rationale is a linear
order. This is reflected in Proposition 2 of Gerasimou (2016) that characterizes an MR

correspondence using strong resoluteness and CC.

1.5 Threshold Acceptable Correspondences

In this section, we refine the class of acceptable correspondences by allowing the DM to

reject more than the worst alternatives according to a rationale.

DEFINITION 1.7. For all k € N, menus A and rationales R, the k—minimal set m*(A, R)

is defined recursively as follows:

1. m°(A,R) = 0.

2. Given mF~1(A, R),

mP(A, R) == mF (A, R) Um(A\ m" (A, R),R)

The k—minimal set is obtained by successively removing the worst alternatives ac-
cording to R. In the first step, the DM eliminates the worst alternatives, that is, the
minimal set according to R. Then she removes the minimal set from the “survivor” set

and so on for k steps. The example below illustrates the k-minimal set.

Example 1.6. Let A = {a,b,c,d,e, f,g} and let R be a rationale shown in Figure 1.3.

An arrow from x to y signifies xRy. The rationale R is assumed to be transitive.
For k = 1, the m'(A, R) is the set of minimal alternatives m(A, R) = {b}. For k = 2,
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Figure 1.3: The rationale R

m2(A, R) is {b,d,e, f} as this is the minimal set of the survivor set {a,c,d, e, f,g}. For
k>3, mF"(A R)is A\ {a}.

The integer k is referred to as a threshold. Note that in general, the threshold can
depend on the menu and is specified by threshold function & : P(X) — N. Here k(A) is
the threshold for menu A.

It follows from the definition of k—minimal sets that for any menu A and rationale
R, mF(A, R) = m*(A, R) for some large enough k. In particular, this bound on & is
less than |A|. We can therefore assume W.L.O.G that k(A) < |A] for every menu A. We

also assume that k(A) > 1 for all menus A to exclude consideration of trivial cases.

An important observation that follows immediately from the Definition 1.7 is that
for any menu A and rationale R, m*(A, R) N M(A, R) = () for every k > 1.

DEFINITION 1.8. A decision correspondence d is a threshold acceptable (TA) corre-
spondence if there exists a transitive rationale R and a threshold function k : P(X) — N

such that for all menus A,
d(A) = A\ m"Y(A, R)

We assume transitivity on the generating rationale R for analytical simplicity. Our
results can be extended to the acyclic case without generating any new significant insight.
In view of our discussion, a DM can now be represented by a pair (R, k) where R is the

rationale and & is the threshold function.
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1.5.1 Fixed-TA Correspondences: Characterization

In this section we introduce and characterize TA correspondences where the threshold
is menu-independent, that is, the threshold function is a constant function. This is
consistent with a situation where the DM has a fixed processing capacity. Note that
an MA correspondence discussed earlier is a special case of TA correspondence where
k(A) =1 for all the menus A. We will refer to such correspondences as Fized Threshold

Correspondences or fixed-TA correspondences.

The axioms that characterize fixed-TA correspondences are Independence of Undom-
inated Alternatives (IUA), Ezpansion, NBC, Weakened CC (WnCC) and Neutrality. We
have already introduced Expansion and NBC in Sections 1.2.2 and 1.4.1 respectively.

We proceed to formally introduce and discuss the other axioms.

Axiom 1(d) (Independence of Undominated Alternatives (IUA)). For all menus A and
x,y € A such that y € d({z,y}), we have

[z € d(A)] = [z € d(A\ {y})]

Axiom 1(e) (Weakened Contraction Consistency (WnCC)). For all menus A and z, y1, y2 €
A such that d({y1,y2}) = {y1, 92}, we have

[z € d(A)] = [x € d(A\{y;}) for some i€ {1,2}]

The conditions IUA and WnCC are weakening of CC'% condition that relates selec-
tions in larger menus and selections in appropriate sub-menus. Suppose alternative x is
selected in menu A and y is “at least as strong as” = in the sense that y is selected in
the binary menu {z, y}. Then the removal of y from the menu should make = “stronger”
in the sub-menu. The ITUA axiom requires x should continue to be selected in this

sub-menu. However, this condition is stronger than PCC condition'” (see Section 1.4).

The WnCC axiom considers a similar situation. Suppose there exist two alternatives

16The CC condition is also stated as Independence of Irrelevant Alternatives (ITA) in the literature.
ITA says that for all menus A and z,y € A such that x # y, we have z € d(4) = =z € d(A\ {y}).
Axioms 1(d) and 1(e) are similar in spirit.

1"Let d be correspondence and X = {a,b,c,d} such that selections in binary menus are depicted
in Figure 1.1, Panel (i). Let d(X) = {a,b,c}, d({a,b,c}) = {a,b} = d({a,b,d}), d({a,c,d}) = {a,c}
and d({b,c,d}) = {b}. This satisfies PCC but violates IUA. This is so because d(X) = {a,b,c} and
¢ ¢ d({b, c,d}) = {b}, when d({a, c}) = {a}.
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y1 and 7, in the menu which is equally strong relative to each other, that is, d({y1, y2}) =
{y1,y2}. Then the selection from the original menu must continue to be selected in one
of the sub-menus where either y; or y, is removed. This condition does not require the x
to be distinct from either y; or yo. If x = y; for some i € {1,2}, then WnCC is implied by
IUA. However, in the case when x,yy, y» are distinct and d({z,11}) = d({z,y2}) = {z},
then WnCC cannot be deduced from IUA. The relationship between the various CC

axioms is discussed in Appendix 1.C.

The WnCC axiom is a modification of the Weak Contraction Consistency (WCC)
condition that appears in Lahiri (2001), Ehlers and Sprumont (2008). According to
WCC, a selection in a menu of size T' > 3 must be the selection in at least one sub-menu

of cardinality T" — 1.

In order to define our last axiom, we introduce the concept of isomorphism between

two menus for a given correspondence.

DEFINITION 1.9 (Isomorphic sets). Let d be a correspondence. Menus A and B are
isomorphic with respect to d if there exists a bijection ¢ : A — B such that for all

x,y € A, we have
[d{z,y} ={2}] <= [d({o(2),0(y)}) = {o(2)}]

The notion of isomorphism only involves selections in binary menus. Consider a
correspondence d and the menus A = {a,b,¢,d} and B = {b,c,e, f} in Figure 1.4.
Arrows depict selections in binary menus of the decision correspondence and dotted
lines depict non-comparable pairs. For instance, d({a,b}) = {a,b} and d({b,c}) = {b}.
The menus A = {a,b,c,d} and B = {b, c,e, f} in Figure 1.4 are isomorphic with respect

to the decision correspondence d for o as,

ola)="0, a(b)=e, o(c)=f, o(d)=c

Axiom 4 (Neutrality (N)). For all menus A, B and € A such that A and B are

isomorphic with respect to d with bijection o, we have

[z € d(A)] = [o(z) € d(B)]

The Neutrality axiom extends the selection behaviour of binary menus to the menus
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Figure 1.4: The Rationale R restricted to menus A and B.

themselves. This axiom requires that if a DM displays the same selection behaviour in
the binary sub-menus of two menus, then she must display the same selection behaviour

in the menus as well. Therefore, this precludes certain menu-dependent behaviour.

The independence of these axioms is illustrated in Appendix 1.B.1. Our main result

in this section is the following:

Theorem 1.5. A decision correspondence is a fized-TA correspondence if and only if
it satisfies IUA, WnCC, Exp, NBC, and N.

The proof of Theorem 1.5 can be found in Appendix 1.A.2. Here, we provide a sketch

of the proof which heavily relies on the notion of a chain. A chain is defined below.

DEFINITION 1.10 (Chain). Let d be a decision correspondence. Then, (xy,xa,...,x,)
is a chain of length n if, Vi € {1,....n — 1}, d({z;, zix1}) = {x:} and d({z;, x;}) =
{z;} implies i < j.

In Figure 1.4, (b,c,d) is a chain in menu {a,b,c,d} of length 3 and (e, f,b,c,d) is
a chain in menu {a,b,c,d, e, f} of length 5. A menu is a chain if it comprises of all
alternatives in the menu. Let R? be a transitive rationale. We say that a “chain of
length n below z” exists in menu A if for some {xy,...,2,} C A, (x,21,29,...,2,) is a

chain.

Sketch of the proof: In the necessity part of the proof of Theorem 1.5, the generating
rationale R is recovered from the strict relation derived by selections in binary menus.
In particular, R = R?. It will be transitive due to NBC. In order to recover the threshold
k, we identify the smallest cardinality menu, say A*, such that there exists x € d(A*)
but z is not selected in some sub-menu to which it belongs. In other words, a violation
of CC is observed. If such a set does not exist, then the threshold is set equal to | X|. In

this case, d is actually an MR correspondence.

26



Suppose a menu A* exists. By hypothesis, maximal alternatives with respect to
R are selected for menus of cardinality smaller than |A*|. This is proved using the
characterization of MR correspondence (see Sen (1971)) since all the menus of cardinality
lesser than |A*| satisfy Exp and CC conditions. In the next step, we prove that A* is
a chain. This is proved using IUA and WnCC, which together guarantee that only the
largest chain below an alternative is relevant while selecting a non-maximal alternative.
The threshold £ is defined to be the cardinality of A* minus the number of alternatives
selected in this menu. In fact we show that this cardinality is equal to |A*| — 2. This
is so because exactly one non-maximal alternative is selected in this set. Since A* is a

chain, there is a chain of length |A*| — 2 below it.

The result for general menus is established using induction on the cardinality of
menus. The base case for menus with cardinality |A*| relies on an application of Neu-
trality. For larger menus A, the IUA condition ensures k(A) > k. On the other hand,
the Exp condition ensures k(A) < k. Thus, k is fixed across all menus. ]

The characterization result in Theorem 1.5 is built on the characterization result of
acceptable correspondences. Both the axioms, IUA and Exp are strengthening of BCC
and BDC respectively (see Theorem 1.1). NBC ensures that the rationale generating d
is transitive. (see Observation 1.1). Axioms WnCC and Neutrality impose restrictions

on the correspondence so that the threshold in each menu is fixed.

This result is also related to the characterization result in Theorem 1.2 as T—MA
correspondence is a special case of fixed-TA correspondence, with threshold £ = 1. A

Corollary of Theorem 1.5 gives an alternate characterization of T—MA correspondence.

Corollary 1.1. A decision correspondence is a T—MA correspondence if and only if it
satisfies IUA, S-Exp, and NBC.

The S-Exp condition ensures |A*| = 3. This is so for the following reason: for all
z,y € X, if d({z,y}) = {x}, then for all z € X \ {z,y} it is true that z € d({z,y, z}).
The other two axioms are redundant in this case.

1.5.2 TA Correspondences: Characterization

In this section, we characterize TA correspondences when the threshold may vary across

menus. This includes situations where the threshold depends on factors like the size
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Figure 1.5: Violation of Monotonicity with d(A) = {a,c,d, g}

of the menu, complexity (in terms of selections in binary menus), number of desired

selections from a menu, etc.

The characterization of TA correspondences is built on the characterization of ac-
ceptable correspondences (see Theorem 1.1.). In addition to BDC and BCC, we require
a monotonicity axiom that gives a threshold structure to the correspondence. The intu-
ition behind the monotonicity condition is the following: if an alternative is “stronger”
than the other alternative in a menu, then rejection of the former implies rejection of
the latter. The strength of an alternative is defined in terms of the length of the largest
chain below the alternative. All maximal alternatives are the best alternatives in a menu.

Thus, our monotonicity condition only compares the non-maximal alternatives.

For a decision correspondence d, let £(x, A) denote the set of chains below z in menu
A with respect to d. For each menu A, we define a menu-specific revealed relation > 4

using L(z, A) for every z € A.

DEFINITION 1.11. Let d be a decision correspondence. For all menus A and =,y € A,

we have

[zBay] < [|L(z, A) = |L(y, A ]

where |L£(x, A)| is the length of the longest chain in this collection.

The asymmetric and symmetric components of >4 are denoted by >4 and ~4 re-
spectively. It can be observed that >4 is complete and both >4 and ~4 are transitive
for any menu A. Thus, >4 is a menu-dependent weak order over the set of alternatives.
A correspondence d with the strict relation derived by selections in binary sub-menus of
the menu A = {a, b, c,d, e, f, g} is depicted in Figure 1.3. The corresponding > 4 is equal

to the weak relation derived from selections in binary menus.
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In view of the transitivity of R, it is legitimate to regard z being stronger than y if
x and y belong to a chain and z is above y in the chain. If they do not belong to the
same chain, then x ~ 4 y indicates that x and y are equivalent in terms of their strength.
Likewise, x >4 y indicates that there is an alternative z below x in the chain, and y is
equivalent to z in terms of their strength. Note that the strength of an alternative in
a menu is not proportional to the number of alternatives, or the number of chains that
are below it. This is illustrated in Figure 1.6. Arrow from x to y depicts xRy. All other
relations xRy are deduced by the transitivity of R. In Panel (i), there are 3 alternatives
below b, and in Panel (ii), there are only 2 alternatives below it. Yet, b is stronger in
Panel (ii) than in Panel (i).

Figure 1.6: The Rationales Ry and Rj.

The monotonicity axiom reflects a natural requirement: if a “weak” alternative y is

selected in a menu, then a “stronger” alternative in the same menu must also be selected.

Axiom 5 (Monotonicity (MON)). For all menus A and z,y € A such that d({y,z2}) =

{z} for some z € A and = >4 y, we have

ly € d(A)] =[x e d(A)]

This condition has an important implication: if d({z,y}) = {z}, then y € d(4) =
x € d(A)'S. If R? is transitive, the axiom ensures that every chain in the menu has
an associated chain-specific threshold: all alternatives that are above the threshold are

selected. This is illustrated in Figure 1.5.

For the case when x and y are not a part of any chain, MON ensures that an “internal

neutrality” condition is satisfied. This is violated in the example in Figure 1.5.

The relationship between all the Contraction and Expansion Consistency axioms is

18This condition is referred to as Condorcet Transitivity in Moulin (1986) for a given tournament.
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presented in Appendix 1.C.1. The following result is a characterization result of TA

correspondences. The proof of this result is in Appendix 1.A.2.

Theorem 1.6. A decision correspondence is a TA correspondence if and only if it

satisfies BCC, BDC, NBC, and MON.

1.6 Applications

The rejection approach developed in this chapter can offer explanations for various
anomalies observed in decision theory. These anomalies include some common boundedly
rational behaviours, such as the attraction effect and compromise effect'®. Understand-
ing these effects is essential for accurately predicting shifts in market shares resulting

from the introduction or removal of products.

A succinct way to think about these phenomena is in terms of choice reversals. A
decision correspondence d displays a reversal with respect to an alternative z € X if, for
some {z} C B C A, we have x ¢ d(B) and = € d(A). The classical model of selection
does not allow for any reversal and is characterized by the CC and Expansion conditions.
However, in our model, we relax the assumption of the CC condition while still satisfying

the Expansion condition, thereby accommodating reversals.

It should be noted that there exist several other models that offer explanations
for such behaviour, including Manzini and Mariotti (2007), Masatlioglu and Nakajima
(2007), Gerasimou (2016), Lleras et al. (2017), and many others. However, it is im-
portant to highlight that these models allow for at most one reversal with respect to a
particular alternative. A decision correspondence d displays a single reversal with re-
spect to an alternative x € X if, for some {xr} C BC A C A, x € d(B) and z ¢ d(A),
then x ¢ d(A’).

In contrast, certain empirically observed phenomena, such as the two-decoy effect
or the two-compromise effect, involve what can be described as a double reversal (see
Tserenjigmid (2019); Manzini and Mariotti (2010); Teppan and Felfernig (2009)). This
behaviour can also be accommodated in our model. To better understand this concept,

consider the following example:

O These effects, also referred to as the asymmetric dominance effect or the decoy effect, were initially
identified in experimental studies conducted by Simonson (1989) and Huber et al. (1982).
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Example 1.7. Let X = {a, b, c}. Selections in all the menus is as follows:

d({a7 b}) = {a} d({a7 b, C}) = {a’ b}

d({a,c}) ={a}  d({a,c,d}) = {a,d}
d({b,c}) ={b}  d({b,c,d}) = {b,d}
d({a,d}) = {a}
d({c,d}) = {d}

The correspondence presented above is an M A correspondence generated by the rationale
R : aRbRc, aRdRc. Tt exhibits more than two reversals with respect to the alternative
‘d’ as the menus expand from {b,d} to {a,b,d} and then to {a,b,c, d}.

Interestingly, our model allows for more than two reversals. In general, a decision
correspondence exhibits a t-reversal with respect to an alternative x € X if there exist
subsets Sy, S2,...,Sks1 such that {x} C S; C Sy C ... C Sky1, and it satisfies the
following conditions: = ¢ d(S;), and for all i € 2,... k+ 1, z € d(5;) if and only if
x ¢ d(S;—1). The models in the papers cited previously are not able to accommodate
this general behaviour. Example 1.8 illustrates that acceptable correspondences can

allow for up to |X| — 2 reversals with respect to an alternative.

Example 1.8. Consider a TA correspondence d and X = {zy,29,23,...,2,}. Let
the generating rationale R be a strict linear order such that x; Rx; ;1 holds for all i =
1,...,n — 1. The threshold function k(.) is the following:

k({z1,22}) = k({z1, 72, 13}) = 1
k({1 22, 23, 24}) = k({21, w2, 23, 24, 25 }) = 3
k({1 w2, w3, w4, @5, 26}) = k({21, 22, 23, 24, w5, 76, ¥7}) =5

and so on..
This results in a t-reversal with respect to xo where t = | X| — 2.

It may be tempting to conclude that every non-standard behaviour can be explained
by TA correspondences. However, this is not the case, as indicated by the characteri-
zation of TA correspondences (see Theorem 1.6). A smaller number of reversals can be

accommodated as the threshold k increases in the case of fixed-TA correspondences.
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Appendix 1.A

1.A.1 Proof of Proposition 1.2

Proof. Let d be an MA correspondence and rationale R be such that for all menus A,
d(A) = A\ m(A,R).

First, we show that if d be an MR correspondence, that is, for all menus A, d(A) =
M (A, R') for some acyclic rationale R, then R is dichotomous. Consider some z,y € X.
If d{x,y}) = {z} = M(A, R'), then 2Ry holds. Also, by Observation 1.1, d({z,y}) =
{z} implies x Ry. Therefore, R = R’ and for all menus A, d(A) = M(A, R) = A\m(A, R).
Consider a partition of X, {G, B} where G = M(X,R) and B = A\ M(X,R). By
definition, if xRy then y € B. It remains to show that x € G. If possible, let zRx holds
for some z € X\ {z,y}, that is, z ¢ M (X, R). Then, it must be that x € m(X, R), which

is a contradiction as xRy is true. We conclude that z € GG and thus, R is dichotomous.

Now, we prove that if R is dichotomous, then d is an M R correspondence. By
hypothesis, for all menus A, d(A) = A\m(A, R) for some dichotomous rationale R. That
is, there exists a partition of X, {G, B} where xRy implies x € G and y € B. We now
show that for all menus A, d(A) = M (A, R). Since R is acyclic, M(A, R) C A\ m(A, R)
by definition, it remains to A\ m(A4,R) C M(A, R). Consider z € A\ m(A, R) and
suppose © ¢ M(A, R). Then, there exists y,z € X \ {z} such that yRxRz holds. By
definition of the partition, x € G N B which is a contradiction. Thus, d is an MR

correspondence. O]

1.A.2 Proofs of Theorems

Proof of Theorem 1.1

Proof. Let us first prove the necessity of axioms. Let d be an acceptable correspondence
generated by a rationale R. By Observation 1.1, R = R%. BDC follows from M (A, R) C
d(A) and BCC follows from d(A) C A\ m(A, R).

To prove the “if” part, let R = R%. Note that, R is asymmetric by definition.
Consider any arbitrary A € P(X). Suppose © € M(A, R). Then z € d({x,y}) for all
y € A and by BDC, we have z € d(A). Therefore, M(A, R) C d(A). Now, suppose
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that x € m(A, R), that is, yRz for some y € A\ {z} and —~zRy for all y € A. Since
x ¢ d({z,y}) for all y € A\ and y = d({z,y}) for some y € A\ {z}, by BCC, we have
x ¢ d(A) and we are done. O

Proof of Theorem 1.2

Proof. Let us first prove the necessity of axioms. Let d be an M A correspondence gen-
erated by a rationale R. By Observation 1.1, R = R%.

— PCC: Consider a menu A and =z € A such that x € d(A). As d is generated by
R, x ¢ m(A, R). There are two possible cases: (i) x € M (A, R), then x € M(A’, R) for
all A" C A. This implies x € d(A") (ii) v € A\ (M (A, R)Um(A, R)). By definition, there
exists ay € A\ {x} such that xRy is true. This implies, d(A") = {x} for for A’ = {z,y}.

— S-Exp: Consider menus A, B and x € AU B such that (i) z € d(A) Nd(B). As
d is generated by R, x ¢ m(A, R)Um(B, R). Therefore, v ¢ m(AU B, R), which further
implies that € d(AU B). Now consider the case (ii) d(A) = {z}. As d is generated
by R, for every y € A\ {z}, xRy holds. Therefore, x ¢ m(A U B, R), further implying
r € d(AUB).

Now we prove the “if” part. Suppose d satisfies PCC and S-Exp. Define R = R%.
Note that, R is asymmetric by definition. Define dg as dr(A) = A\ m(A, R) for all
A. 1t is clear that dp is well defined. Now, we show that d = di. It is immediate
that d(A) = dgr(A) for all A such that |A] < 2. Consider an arbitrary A € P(X)
and x € dg(A). There are two possible cases: (i) ~yRx for all y € A\ {z}, that is,
x € d({x,y}) for all y € A\ {z}. By repeated application of PCC, we have x € d(A).
(ii)yRx for some y € A\ {z}. Since z ¢ m(A, R), we have xRy for some y € A\ {z},
that is, d({z,y}) = x. By the second part of S-Exp, again we get x € d(A). Therefore,
we conclude that dr(A) C d(A) . Now, suppose that x € d(A). By PCC, there are
possible two cases: (i) z € d(A’) for all {z} C A" C A which implies z € d({z,y}) for
all y € A\ {z} and by definition of R, we have —yRz for all y € A\ {z}. Therefore
r ¢ m(A, R), implying = € dg(A). (ii) {z} = d(A’) for some A" C A. If |A’| = 2, then
we have zRy for y € A C A, implying * ¢ m(A, R) and hence z € dr(A). Suppose
|A'| > 3. Let A" = {x,y1,...,yx} for some k > 2. Observe that d({v;,v;}) = {vi,y;}
for all 4,5 € {1,...,k} (suppose not, then S-Exp would imply d(A) # {z}). Consider
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any arbitrary y; € A’. Suppose y; € d({z,y;}). Then S-Exp implies that y € d(4’), a
contradiction. Therefore, {z} = d({z,y;}) implying xRy. Hence = ¢ m(A, R) which
implies © € dr(A). So, we have d(A) = dr(A). Since A was arbitrary, we have shown
that d = dp . O

Proof of Theorem 1.3

Proof. We only prove (1.). Proofs of (2.) and (3.) are straightforward.

Following the proof of Theorem 1.2, it remains to prove that R? is acyclic. We first
show necessity the of NRC.

— NRC: Consider a menu A € P(X) such that d(A) = A. As d is generated by an
acyclic R, x ¢ m(A, R) for every x € A. Now there are two possible cases (i) for every
z,y € A, mxRy. In this case, A = M (A, R). Thus, A’ = M(A’, R) for every A’ C A. In
case (ii) there exists a x,y € A such that xRy holds. Suppose A = {x1,xs,...,x,} such
that z1 Rz is true. If n = 2, then there is a contradiction as x5 € m(A, R). Thus, the
only case possible is (i). If n > 2, then given that xo ¢ m(A, R), thereisay € A\{x1,z2}
such that x5 Ry is true. This is because if y = z1, then R is not a rationale. W.L.O.G,
let this y be x3. If n = 3, then by the argument above, we have a contradiction. Suppose
then n > 3. By similar argument, there is a y € A\ {z2, 23} such that z3Ry holds.
Observe that if y = x1, then there is a cycle in R, again leading to a contradiction as R
is acyclic. By repeated application of these arguments and finiteness of A, we reach a

contradiction as there would exist at least one alternative belonging to the minimal set

of A.

To prove the “if” part, let R = R?. Suppose d satisfies PCC, S-Exp, and NRC.
By PCC and S-Exp, dg = d where dr(A) = A\ m(A,R) for all A" € P(X). As-
sume for contradiction that R is not acyclic. So, there exists xi,...,x, such that
r1RxoR ... x,Rx; for some n > 3 (the case n = 2 is ruled out by asymmetry of R).
Consider A = {z1,...,z,}. We have dr(A) = d(A) = A and d(A") = A’ forall AC A
by S-Exp. However d({x1,22}) = 1, a contradiction. Therefore, R is acyclic. O
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Proof of Theorem 1.4

Proof. (1.) = (2.) follows from Theorem 1.3.
(2.) = (3.) follows from the equivalence of acyclicity and transitivity under the
completeness of a rationale.

To prove (3.) = (4.), it is sufficient to prove the following lemma:

LEMMA 1.2. A decision correspondence satisfies resoluteness and NRC' if and only if it

satisfies strong resoluteness

Proof. The “if” part is straightforward. Let us now prove the “only if” part. Consider
a correspondence d that satisfies resoluteness and NRC. For the sake of contradiction,
there exists a A € P(X) such that d(A) = A. By resoluteness, |A| > 2. Now by
NRC, for every A" C A, d(A") = A’. Thus, there exists a pair {z,y} C A such that
d({z,y}) = {z,y} which contradicts resoluteness. O

To prove (4.) = (5.), it is sufficient to prove that if a correspondence d is strongly
resolute, then PCC and S-Exp imply RCC. Consider an arbitrary A € P(X) and some
x € d(A). To show the contra-positive of RCC, we need to prove that x € d(A’) for all
A" D A. As d satisfies PCC and S-Exp, by arguments in the proof of Theorem 1.2, d is an
MA and underlying rationale R is defined as xRy iff d({x, y}) = {z}. Strong resoluteness
implies d({z,y}) # {x,y} for all x,y € X. Thus, we have R that is complete. Now, as
x € d(A), it must be that © ¢ m(A, R). By completeness of R, there exists ay € A\ {z}
such that xRy holds. Thus, we get = ¢ m(A’, R) for all A” D A. As d is generated by R,
this completes the proof.

Now we prove (5.) = (1.).
Suppose d is strongly resolute and satisfies RCC. Let R = R? By definition, R is
asymmetric. Since d is strongly resolute, it is complete as well. Assume for contradiction
that it is not transitive. Then there exists x,y, z such that z RyRzRxz. Note, however
that d(A) € A for A = {x,y,z}. W.L.O.G. assume that z ¢ d(A). Then by RCC,
we must have z ¢ d({z, z}) a contradiction to zRxz. Therefore, R is transitive. Now,
let dr be defined as in the proof of Theorem 1.2. Note that, since R is a strict linear
order |dr(A)| = |A] — 1 for all A € P(X). We will show that |d(A)| = |A| — 1 for all
A € P(X). Suppose not, then there exists A such that |d(A)| < |A| — 2, that is, there
exists z,y € A such that z ¢ d(A) and y ¢ d(A). However, RCC implies = ¢ d({z,y})
and y ¢ d({z,y}), a contradiction to the assumption that d is non-empty valued. Note
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that dgr(A) = d(A) for all A with |A| = 2. Now, consider any arbitrary A and assume
for contradiction that dr(A) # d(A). Suppose z ¢ d(A) and = € dr(A). RCC implies
that © ¢ d({z,y}) for all y € A\ {z}. However, since x € dr(A), we have xRy for some
y € A\ {z}, that is, d({z,y}) = x, which is contradiction. Therefore dp = d. O

Proof of Theorem 1.5
Proof. We begin with the “only if” part.

Necessity: Let d be a fixed-TA correspondence generated by a partial order R and a
constant threshold & € N. By Observation 1.1, R = R?. We now prove the necessity of

the axioms.

— IUA: Consider a menu A € P(X) and z € A such that x € d(A). As d is rep-
resented by (R, k), v ¢ m*(A, R). If for some y € A\ {z} (i) d({x,y}) = {y}, then
there exists a k length chain (z,x1,2s,...,2,) in menu A. As R is transitive, y # x;
for all i < k. As this chain also belongs to A\ {y}, z ¢ m*(A\ {y}, R). Consider (ii)
d({z,y}) = {z,y}. If x € M(A, R), then we are done. If not, then there is a chain as in
case (i). By transitivity of R, (z,x1, %2, ..., zx) is a linear order, that is, d({z, x;}) = {z}
for all # < k. This implies y # x; for all i < k, further implying x ¢ m*(A\ {y}, R). As
d(A) = A\ mF(A, R), x € d(A\ {y}) holds.

— FEzp: Let A,B € P(X) and © € A be such that x € d(A) Nd(B). This im-
plies * ¢ m*(A,R) and x ¢ m*(B,R). If v € M(A,R) and x € M(B,R), then
r € M(AU B,R) and we are done. If z is not the maximal alternative in either of
the menu, say x ¢ M (A, R), then there is a chain (z, 1, %o, ..., ;) in menu A. As this
chain exists in AU B as well, z ¢ m*(A U B, R) holds which implies z € d(AU B, R).

— NBC: This condition follows directly from transitivity of R.

— WnCC: Consider a menu A € P(X) and = € A such that x € d(A). Let y1,y2 € A

be such that d({y1,y2}) = {v1,v2}. If 2 € {y1,y2} or y; € d({x,y;}) for some i € {1,2},
then we are done by the arguments in proving the necessity of IUA. Let = ¢ {y1,y2}

and x = d({z,y;}) for all i. If x € M(A, R), then x € M(A\ {y;, R}) and we are done.

Consider the case when x ¢ M (A, R). This implies there is a chain (x,z1,z9,...,2%) in
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menu A. As d({y1,y2}) = {v1,y2}, atmost one of them belongs to this chain. If y;, ys
both do not belong to this chain, then the removal of any y; assures the existence of this
chain and hence x € d(A\ {vy;}, R). Let y; W.L.O.G belong to this chain. Then removal
of y, assures the existence of this chain and as argued above, z € d(A\ {y2}, R).

— N: As m*(A, R) is a the function of R restricted to a menu, N is satisfied. ]
We now prove the “if” part in several steps.

Sufficiency: Consider d satisfying our axioms.

Step 1. First we define R and k. Let R = R%. Note that R is asymmetric by
construction and transitive by NBC. We need to prove that d(A) = A\ m*(4, R) for
some k > 1. Before we define k, let us prove an intermediate lemma. We say a menu
A € P(X) satisfies property P if da satisfies property P, where dy : P(A) — P(A) is
restriction of d on P(A).

LeEMMA 1.3. Consider a menu A € P(X) that satisfies CC and Exp, then d(A) =
M(A, R).

Proof. By [T9] of Sen (1971), d 4 is normal as A satisfies CC and Exp.”". Hence, da(A) =
M (A, Ry) where R, is the relation R? restricted to a menu A. As d(B) = d(B) for all
B € P(A), this concludes, d(A) = M (A, R). O

Let A* € P(X) be the smallest cardinality menu such that there exists x € d(A*)
and x ¢ d(A) for some {z} C A C A*, that is, there is a violation of CC. If there is
no such A*, then d satisfies CC and Exp, and by Lemma 1.3, d(A) = M (A, R) for all
A € P(X). Note that for all A € P(X) and ¥' > 1, M(A,R) C A\ m* (A, R). Let
k = |X| in this case. Then, M (A, R) = A\ m/*I(A, R) holds.

Suppose such A* exists. There may be multiple such menus. Pick anyone arbitrarily.

Note that CC is satisfied for all A € P(X) such that |A| = 2 and therefore |A*| > 2.
Define k = |A*| — 2.

20Here a correspondence d is normal if for all A € P(X), d(A) = {x € A | Vy € A,3B, €
P(X) such that z € d(By) and y € By}. Condition [T9] is as follows: A correspondence is normal
if and only if it satisfies CC and Exp.
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Now, we show that for all A € P(X) such that |A| < |A*|, we have d(A) = M (A, R) =
A\m*(A, R). We consider two cases: (i) |A*| = 3. In this case, since k = 1, it is straight-
forward to see that d(A) = A\ mF(A, R) = M(A, R). (i) |A*| > 3. In this case, CC and
Exp is satisfied for all A € P(X) such that |A| < |A*|. By Lemma 1.3, it is true that
d(A) = M(A, R). Since at most |A| — 1 steps are required in successive elimination to
reach the maximal set for any A and k = |A*| — 2, we have M (A, R) = A\ m*(A, R) .

Step 2. Before showing d(A) = A\ m*(A, R) for all A, we will first show that [UA
and Exp imply WCC which is formally stated as follows.

DEFINITION 1.12 (Weak Contraction Consistency(WCC)). For all menus A and

x € A, we have
re€d(A) = xze€d(A\{y}) forsomeye A\ {z}
LEMMA 1.4. A decision correspondence d satisfies IUA and EXP, then d satisfies WCC.

Proof. Consider any arbitrary A € P(X) and « € d(A). We have two cases possible cases:
(i) Suppose y € d({z,y}) for some y € A\ {x}. Then by IUA, we have z € d(A \ {y}).
(i) y ¢ d({x,y}) for all y € A\ {z}, that is, {z} = d({z,y}). By Exp, we have z € d(B)
for all {z} C B C A and therefore d satisties WCC. [

Now, we prove the following important lemma.

LEMMA 1.5. A* is a chain.

Proof. Let A* ={z,y1,...,yps1} (recall |A*| = k+2) such that x € d(A*) and = ¢ d(B)
for some B C A*. Now, since d satisfies WCC, there exists y; € A* \ {z} such that
x € d(A*\ {y;}). By the previous step, we know that x € M(A*\ {y;}, R) implying
—y;Rx for all j # i. As x ¢ d(B) for some B C A*, by the previous step, we have
x ¢ M(B, R), that is, y,Rx for some [ € {1,...,k+1}. Also, ~y;Rx for all j # i implies
| =i. Since y; Rz, x ¢ M(A*\ {y,}, R) for all j # i and by our previous step, we have
z ¢ d(A* \ {y;}). By IUA, we must have y; ¢ d({z,y;}), that is, {z} = d({z,y,}) for
all j # 4. Therefore, by definition of R, we have xRy; for all j # 7. Now, consider
any y; and y; with 7,1 # i. Suppose d({y;,vi}) = {y;,yi}. Then, by WnCC, we must
have z € d(A* \ {y;}) or x € d(A* \ {ui}), a contradiction. Therefore, we must have
d({y;,yx}) # {y;, v} implying y,; Ry, or y,Ry;. We have shown that R is complete on
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A*\ {y;}. Since y; Rz, NBC implies that R is complete and transitive on A*, that is, A*

is a chain. n

Remark. Observe that since z was arbitrary, we have shown that only the top two
alternatives will be selected in A*. To see this, suppose y; € d(A*) for some j # 4, then
IUA implies that y; € d(A* \ {y;}) which is a contradiction since y; ¢ M(A* \ {y;}, R).
Further, we have {y;} = d({yi,y;}) for all j # i and {y;} = d({v;, #}) implying y € d(A*)
by Exp. Therefore d(A) = {x,y;}.

Step 3. To show d(A) = A\ mF(A, R) for all A such that |A| > |A*|, we use
strong induction on |A| with the base case, ¥’ = |A*| = k+2. All A € P(X) with
cardinality k + 2 are of two types: (i) A satisfies CC, then by argument in Step 1,
d(A) = M(A,R) C A\ mF(A, R). If Ais a chain, given that k = |A*| — 2, A\ m*(4, R)
consists of top two alternatives of R. By Neutrality, d(4) = A\ m*(A, R) and thus
CC is violated at A. Since A is not a chain, d(A4) = M(A, R) = A\ m*(A, R) as each
non-maximal alternative will have a chain less than size k below it (ii) A violates CC.
Note that by Lemma 1.5, A is a chain of length k + 2. Neutrality implies that the top
two alternatives of A will be selected in A, therefore we get d(A) = A\ m*(4, R)

For the inductive step, consider any k' > |A*| and suppose that d(A) = A\ m*(4, R)
for all A such that |A| < k’. Now, we will show that d(A) = A\ m*(4, R) for all A such
that |A] =& + 1.

Consider an arbitrary A such that |A] = k£’ 4+ 1 and suppose = € d(A). Then WCC
implies that © € d(A \ {y}) for some y € A\ {z}. By our inductive hypothesis, = ¢
mF(A\ {y}). There are two possible cases: (i) z ¢ M(A\ {y}, R), that is, there exists
z € A\ {y} such that zRx and there exists a chain of length at least k below x implying
x ¢ m*(A,R). (ii) v € M(A\ {y}, R). Suppose ~yRz, that is, z € d({z,y}), then, z €
M (A, R) and implying = ¢ m*(A, R). Now, suppose yRx. If there exist 2,2 € A\ {z,y}
such that d({z, z'}) = {z, 2'}, then by WnCC, we must have € d(A\ {z})Ud(A\{z'}).
W.L.O.G, let x € d(A\{z}). Since yRx, by our inductive hypothesis, we know that there
exists a chain of length k below z and hence x ¢ m*(A, R). Therefore, d({z, 2'}) # {z, %'}
for all z,2" € A\ {z,y} which implies A \ {z,y} is a chain by NBC. If possible, there
exists some z € A\ {z,y} such that z € d({x, z}). IUA then implies that € d(A\ {z})
and hence by our inductive hypothesis, since yRx, there exists a k length chain below x.
Therefore, {z} = d({z, z}) for all z € A\ {x,y}. Since A\ {z,y} is a chain, we have a
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k long chain below z implying ¢ m*(A, R).

Now, to show the other direction, suppose = ¢ m*(A, R) and assume for contradiction
that « ¢ d(A). Note that |A| > k + 3 (since |A*| = k+2) and let A = {z,y1,...,yp}
where p > k + 2. Suppose, z € d(A\ {y;}) Nd(A\ {y;}) for some y; # y;, then by Exp,
we have z € d(A). Therefore x € d(A\ {y;}) for at most one y; € {y1,...,y,}. W.L.O.G,
let i = 1. Then we must have x ¢ d(A \ {y;}) for all j € {2,...,p}. By our inductive
hypothesis, z € mF(A\ {y;}) for all j € {2,...,p}. Since x & m*(A, R), we have xRy;
for all j € {2,...,p} and there is a k length chain below z. W.L.O.G, let the chain be
(T, Y2, ..., Yps1). Since p > k + 2, there exists y; with j € {k+2,...,p} such that this
chain is below z in A\ {y;}. Thus, z ¢ m"(A\ {y;}, R). By our induction hypothesis,
x € d(A\{y;}) and since j # 1, we have a contradiction. Therefore, we have established
that x € d(A) and the proof is complete. O

]

Proof of Theorem 1.6

Proof. The “only if” is straightforward. Condition BCC and BDC hold true as cor-
respondence d is an acceptable correspondence (Theorem 1.1). NBC follows from the

arguments in proof of Theorem 1.5. Let us now prove MON.

— MON: Consider amenu A € P(X) and =,y € A such that x >4 y and d({y, z}) = {z}
for some z € A. As d is a TA correspondence, there exists threshold function k(.) and
partial order R such that d(A) = A\ m*@ (A R). z ¢ m*(A,R). If y € d(A), then
y & m* (A, R). As d({y,z}) = {2} for some z € A, by definition of R, it is true that
zRy. This implies there exists at least k(A) length chain below y in menu A. As the
longest chain below z is larger than the longest chain below z in A, it must be that there
also exists at least k(A) length chain below x in menu A. Thus, x ¢ m*“ (A, R), further
implying = € d(A).

We now show the “if” part. Define R as xRy if and only if {z} = d({z,y}) and
k:P(X)— N as

k(A) = min{maz ca|L(z, A)|, 1}

where max,c|L(x, A)| denotes the length of the largest chain in A. If the largest chain

is empty, then k is considered equal to 1. Relation R is asymmetric by construction
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and transitive by NBC. Now, we show that d(A) = A\ m*“) (S, R). There are two
possible cases: (i) d(A) = A. By BCC and NBC, it must be that d({z,y}) = {z,y}
for all 7,y € A. It is straightforward to see that d(A) = m*“W (A, R) for all k(A). (ii)
d(A) # A. Suppose z € d(A) and assume for contradiction that € m*“4) (A, R). Then
there exists a y € A\ d(A) such that y >4 = and by MON, we must have y € d(A),
a contradiction. Therefore d(A) C A\ m* Y (A, R). Now, suppose x ¢ m*Y (A, R). If
—yRz for all y € A, then z € d(A) by BDC. Suppose yRz for some y € A. Assume
for contradiction that x ¢ d(A). Then by the definition of k(A), z € mFA (R, A), a

contradiction. O

Appendix 1.B

1.B.1 Independence of axioms in Theorem 1.5

Example 1.9. (Exp, NBC, WnCC, N is satisfied, but IUA is violated)

Let X = {a,b,c}. Selections in all the menus is as follows:

d({a,0}) ={a}  d({a,c}) ={a}  d{b,c}) ={b}  d({a,b,c})={a,c}

Condition IUA is violated as ¢ € d({a,b,c}) and b € d({b, c}), but ¢ ¢ d({a,c}).

Example 1.10. (IUA, NBC, WnCC, N is satisfied, but Exp is violated)
Let X = {a,b,c}. Selections in all the menus is as follows:
d({a,b}) = {a}  d({a,c}) ={a}  d({b;c})={b}  d({a,b,c}) = {b}
Condition Exp is violated as a € d({a,b}) Nd({a,c}), but a ¢ d({a,b,c}).
Example 1.11. (IUA, Exp, WnCC, N is satisfied, but NBC is violated)
Let X = {a,b,c}. Selections in all the menus is as follows:
d({a,0}) ={a}  d({a,c}) ={c}  d({b,c}) ={b}  d({a,b,c}) = {a, b}
Condition NBC is violated as d({a,b}) = {a} and d({b,c}) = {b}, but d({a, c}) # {a}.
Example 1.12. (IUA, Exp, NBC, N is satisfied, but WnCC is violated)
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Let X = {a,b,c}. Selections in all the menus is as follows:

d({a,0}) ={a}  d({a,c}) = {a} d({b,c}) = {b} d({a,b,c}) = {a}
d({a,d}) ={a}  d({b,d}) = {b} d({c,d}) = {c,d}  d({b,c,d}) = {b}
d({a,c,d}) ={a} d({a,b,d}) ={a} d({a,b,c,d}) = {a,b}
Condition WnCC is violated as b € d({a,b,c,d}) and d({c,d}) = {c,d}, but b ¢
d({a,b,c})Ud({a,b,d}).
Example 1.13. (IUA, Exp, NBC, WnCC is satisfied, but N is violated)

Let X = {a,b,c}. Selections in all the menus is as follows:

d({a,b}) ={a}  d({a,c}) ={a} d({b,c}) = {b} d({a,b,c}) ={a,b}
d({a,d}) ={a}  d({b,d}) = {b} d({c,d}) ={c.d}  d({b,c,d}) = {b}
d({a’7 Gy d}) = {a} d({a7 b, d}> = {CL} d({a7 b, c, d}) = {CL, b}

Condition WnCC is violated as b € d({a,b,c,d}) and d({c,d}) = {c,d}, but b ¢
d({a,b,¢}) Ud({a, b, d}).

Appendix 1.C

1.C.1 Relationship between classes of acceptable correspondences

We denote the class of acceptable correspondences by A (acceptable), AF (TA), AF
(fixed-TA), A' (MA) and A* (MR). Figure 1.7 illustrates the set-inclusion property of

all sub-classes of acceptable correspondences.

Figure 1.7
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We summarize the characterization results presented in this chapter (for a transitive

rationale) in the Table below. The condition NBC is satisfied for all the sub-classes.

A Al AF AP A
Modified CC axioms || CC PCC IUA+WnCC| BCC BCC
Modified Exp axioms || Exp S-Exp Exp BDC BDC
Other axioms Neutrality Mon

The relationship between the properties characterizing these sub-classes is presented

below. Arrow from Property X to Y indicates that X is a strengthening of Y.

(I) Relationship between modified Contraction Consistency axioms

//,"}WHCC [1(e)]

CC [1(a)]
T 1UA [1(d)] ——PCC [1(c)] ——BCC [1(b)]

(IT) Relationship between modified Expansion Consistency axioms

RCC [2(d)]—— S-Exp [2(c)] —— Exp [2(a)] ———BDC [2(b)]
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Chapter 2

SEQUENTIAL MATCHING WITH AFFIRMATIVE

ACTION!

2.1 Introduction

Recently, there has been a great deal of discussion on multi-round assignment procedures
in college admissions in countries such as India, Brazil, China, France, and Germany.
Baswana et al. (2019) proposed a semi-centralized, multi-round matching mechanism
for engineering college admissions in India. They claim that the welfare of candidates

improves in every round of the mechanism.

“New semi-centralized, multi-period matching mechanism enjoys monotonic-
ity across runs. The options available to candidates are only enhanced in

going from one period to the next....”

However, they did not provide a rigorous theoretical justification for their claim. In this

chapter, we provide one in the context of a general sequential college admissions problem.

The admission process for engineering colleges in India matches approximately 1.3
million students to 34,000 university positions. The Indian Institute of Technologies
(henceforth, II1Ts) and the non-IIT Centrally Funded Technical Institutes (henceforth,
non-II1Ts) have implemented the mechanism developed by Baswana et al. (2019). Before
that, both types of institutions conducted their admission processes separately and inde-
pendently. Each applicant received an offer from both types of institutions, resulting in a
vacancy in one set of institutions when the candidate chose a program. These vacant seats

were either left unfilled or allocated in an ad-hoc and decentralized manner, which caused

LCo-authored with Bertan Turhan (Department of Economics, Iowa State University, USA).
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inefficiency and/or unfairness. Under this new combined seat allocation procedure, stu-
dents are required to rank all programs (including both IITs and non-IITs) according
to their preferences and submit a single ranking. Both types of colleges, IITs, and non-
[ITs, independently run the individual-proposing deferred acceptance (DA) mechanism
introduced by Gale and Shapley (1962) to find a match. The assignment of students is
determined based on their complete ranking. In the subsequent rounds of the admissions
process, students are given various options to update their preferences. These options
include “withdraw”, “reject”, “freeze”, “slide”, and “float”. Depending on the option
chosen, the student may either exit the procedure with or without an assignment or
choose to participate in the subsequent rounds. After the completion of a fixed number

of rounds, each student is then assigned to their finalized program.

This process is subject to a comprehensive affirmative action program, which has
been implemented via a reservation system. There are two types of reservations: wvertical
and horizontal. Each institution reserves a certain percentage of its slots for students
from a vertical reserved category—Scheduled Castes (SC), Scheduled Tribes (ST), Other
Backward Classes (OBC), and Economically Weaker Sections (EWS). Specifically, 15%,
7.5%, 27%, and 10% of the slots are reserved for SC, ST, OBC, and EWS students,
respectively. Applicants who do not belong to any of these vertical reserved categories
are referred to as General Category (GC) and positions that are not reserved are referred
to as open-category positions. They are available to all applicants, including those
from reserved categories who do not declare their membership. A minimum number of
positions within each vertical category are earmarked for women students as horizontal
reservations. Vertical reservations are implemented “over-and-above” by filling open-
category positions before vertically reserved categories, while horizontal reservations are
implemented as a minimum guarantees by filling horizontally reserved positions before

unreserved positions.

Situations such as the one described earlier can be modeled using gradual matching
mechanisms, introduced in Haeringer and Iehlé (2021) (henceforth, H&I). They introduce
a multi-round college admissions problem where individuals are offered repeated oppor-
tunities to participate in the mechanism, using updated preferences. The final matching
is constructed gradually over several rounds. An important assumption made in the H&I

model is that each institution has a responsive? choice rule. However, the underlying

2 An institution has a responsive choice rule if it can be generated by a strict preference order that
always selects the g—best alternatives whenever available. Here ¢ is the capacity of the institution (see
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assumption of responsiveness does not accommodate affirmative action considerations.

Motivated by engineering college admissions in India, we adopt the gradual matching
problem of H&I. We assume that institutions implement affirmative action policies via
the slot-specific priorities approach Kominers and Sénmez (2016). The latter is a model
of the individual-institution matching model where each institution has a set of positions
(slots) that can be assigned to different individuals. Positions have their own (potentially
independent) rankings for contracts (here individuals). Within each institution, a linear
order — referred to as the precedence order — determines the sequence in which positions
are filled.

In this chapter, we investigate the restrictions on the preferences of individuals across
different rounds that result in monotone outcomes. We refer to a matching outcome as
monotone when each individual is matched to an institution that is weakly higher than
the match of previous rounds (see Theorem 2.1). Further, we introduce a “backward-
looking” notion of stability for sequential matching mechanisms that take into consid-
eration individual rationality, non-wastefulness and justified envy of individuals across
different rounds. Theorem 2.2 establishes a relationship between this notion of stability,
we refer to as sequential stability, and monotone outcomes. These results generalize the
findings presented in H&I. However, we do not rely on the proof of H&I to validate our

first result.

We apply our theoretical findings to analyze the multi-run multi-stage DA mechanism
that has been implemented in engineering college admissions in India since 2016. We
also relate our findings to the to the characterization result of Kojima and Manea (2010)

for the DA mechanism.

The layout of the chapter is as follows: the next subsection provides a brief literature
review. Section 2.2 formally introduces the framework of thematching problem at each
stage. Section 2.3 introduces a multi-round matching problem and Section 2.4 considers
a class of multi-round matching problems, referred to as sequential matching problems.
Section 2.5 introduces the stability notion for sequential matching problems. Section 2.6

provides an application of the model.

Chambers and Yenmez (2018)).
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2.1.1 Related Literature

There is a vast literature dedicated to the study of dynamic matching problems. Bo and
Hakimov (2022) introduce a family of iterative deferred acceptance mechanism, where
the students are asked to sequentially make choices or submit partial rankings from sets
of colleges. These are used to produce a tentative allocation at each step. If a student is
unacceptable to their previous choice in some round, she is asked to make another choice
among colleges that would tentatively accept her. Kesten (2010) study dynamic structure
of deferred-acceptance algorithm in the form of rejection-cyles. The closest sequential
model to ours is that of Haeringer and lehlé (2021). We extend their framework to a
more generalized setting where institutions’ choice rules that have slot-specific priorities
(SSP) choice rules. They offer a comprehensive review of dynamic matching models and
emphasize how their sequential matching problem? differs from other dynamic models.
While our results are broader in scope, they align closely with the findings presented in

their work.

The SSP framework of Kominers and Sénmez (2016) provides a tool for market
designers to handle diversity and affirmative action constraints in two-sided matching
models. Aygiin and B6 (2021) design SSP choice rules for the Brazilian college admission
problem. More recently, Pathak et al. (2021) use the SSP framework to design a triage
protocol for ventilator rationing. Avataneo and Turhan (2021) extend the framework to
a more general one by defining SSP choice rules that allow transfers as in many real-world

applications.

Our paper also contributes to the recently active literature on affirmative action in
India from a market design perspective. Aygiin and Turhan (2017) and Aygiin and
Turhan (2020) focus on IIT admissions and transferring vacant OBC positions to open-
category. Similarly, Aygiin and Turhan (2022) introduce a new transfer scheme with
superior theoretical and practical properties. Aygiin and Turhan (2023) offers another
choice rule to implement affirmative action constraints and transfer vacant seats. This
chapter discusses the joint implementation of vertical and horizontal reservations in
engineering college admissions in India via position-specific priorities choice rules in a
setting where applicants can update their preferences for additional rounds. Another
related paper is Sonmez and Yenmez (2022), in which the authors study the allocation

of government jobs in India and relate matching theory to Indian law. Unlike their

3They refer to such matching problems as gradual matching problem.
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work, our chapter considers engineering college admissions in India. None of the above
papers study the sequential implementation of individual-proposing deferred acceptance
in a setting where individuals can update their preferences. Other papers studying
affirmative action implementations include Echenique and Yenmez (2015), Kamada and
Kojima (2015), Correa et al. (2021) among others.

This chapter is also related to the characterization results for the DA mechanism of
Kojima and Manea (2010), Morrill (2013). Their main axiom is built on individually
rational monotonic transformations (i.r.m.t) of a preference relation. A preference profile
R’ is an i.r.m.t of a preference profile R at an allocation, if for every individual, any object
that is acceptable and preferred to this allocation under R’ is preferred to the allocation
under R. An outcome satisfies IR, monotonicity if every individual weakly prefers the
new allocation with respect to R’ over the earlier allocation whenever R’ is i.r.m.t of
R. They show that the DA mechanism satisfies IR monotonicity when the choice rules
are substitutable and acceptant. We utilize this condition in the sequential framework by
referring to i.r.m.t of preference profile of active individuals in the sequential framework
as proposal-adhering rules*. We prove that when the mechanism in each round is DA,

then the outcome will be monotone.

Our sequential stability notion is the generalization of gradual stability introduced
in H&I. When institutions’ choice rules are responsive, our sequential stability reduces
to gradual stability. A related stability concept was introduced in Pereyra (2013) in
the context of seniority-based allocation rules. Feigenbaum et al. (2020) study the two-
stage dynamic matching problem where a main round of admission is followed by a

reassignment stage to fill vacancies.

2.2 Model

There is a finite set of institutions S = {s1, ..., $;,} and a finite set of individuals I =
{i1, ..., }. Fach individual i € I has an asymmetric and transitive preference relation
P; over SU {0}, where () denotes remaining unmatched (henceforth a preference order).
We write sP;) to mean that institution s is acceptable for individual 7. Similarly, @ P;s
means institution s is unacceptable for individual ;. We denote the profile of individual

preferences by P = (P;),.;. We let P denote the set of all strict preferences over SUQ. We

4H&I refers to this property of preference update rule as regularity. However, they do not mention
this comparison with Kojima and Manea (2010).
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denote by R; the weak preference relation associated with the strict preference relation

P; and by R = (R;),c; the profile weak preferences.

Institution s has g, positions, and its selection criterion is summarized by a choice

rule Cs, which selects a subset from any given set of individuals. That is, Cs (I) C 1.

We let = = (I, S, (P,)icr, (Cs,Gs)ses) denote a stage problem. A stage matching
in a stage problem Z is a mapping 1 : I US — 2/ U S such that, for each i € I and
se S, (1) u(i) e SU{D}, (i) u(s) C I, and (iii) (i) = s if and only if i € u(s). A stage
matching is feasible if |u(s)| < g, for all s € S.

DEFINITION 2.1. A feasible stage matching p is stage stable if for all i € [ and s € S,

1. Individual rationality for individuals: (i) R;0,
2. Individual rationality for institutions: Cs(u(s)) = p(s), and
3. Unblockedness: sP;u(i) implies i ¢ Cs(u(s) U {i}).

The first condition, individual rationality for individuals, guarantees that no individ-
ual is assigned to an institution they find unacceptable. The second condition, individual
rationality for institutions, ensures that institutions’ selection procedures are respected.
This condition guarantees the implementation of affirmative action constraints when
they are encoded into institutions’ choice rules.” The last condition is the standard no

blocking pair condition.

A stage matching mechanism ¢ maps every stage problem = to a feasible stage

matching p. The mechanism ¢ is stable if ¢(Z) is stable for every stage problem.

2.2.1 Institutions’ Choice Rules

We model institutions’ selection criterion to accommodate affirmative action consid-
erations via choice rules that have slot (position)-specific priorities (SSP) structure
(Kominers and Sonmez (2016)). Institution s has a set of g, positions denoted by
B, = {p},...,pl}. Each position pJ € B, has a linear priority order =7 over elements of
TU{0,}, where (), represents remaining unassigned and can be assigned to at most one in-
dividual. We denote the positions’ priority order profile by >,= (%é)zjs The positions
in B, are ordered according to a linear order of precedence >, with the interpretation

that if pr, p/, whenever possible, institution s fills position p before filling p’.

5See Alva and Dogan (2021) for in depth discussion of this point.
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Given the priority order profile >, and the precedence order >y, the choice of insti-

tution s from a given set of individuals A C I, Cs(A, =4,>s), is given as follows:

e First, position p! is assigned to the individual who is >!-maximal among the

individuals in A. Call this individual ;.

e Then, position p? is assigned to the individual who is =%-maximal among the

remaining individuals in A\ {i;}. Call this individual i,.

e This process continues with each position p* is being assigned to the individual

who is =*-maximal among the remaining individuals in A\ {i1, ..., 4,1 }.

If no individual is assigned to a position p, € By, then pl is assigned (),. We say
that a choice rule has an SSP structure if it is “generated” by a (>-4,>s). A special case
when =‘=>7J for all positions p’,p? € B is referred to as responsive preferences in the
literature (see Chambers and Yenmez (2018)). This structure accommodates a variety
of other constraints, including admission criteria in engineering colleges in India (see
Section 2.6).

We deal with choice rules of institutions that have SSP structures. A stage problem

can now be alternatively represented as

E= (I, S= (Pi)i617 (>57 Dsaqs)ses)

where (>, >, q,) encapsulates the choice structure of an institution s.

The SSP structure of the choice rule Cs enables us to define an associated matching
of a feasible stage matching p. The associated matching f maps each individual to an
institution-position pair. For a given (-, >,), the choice rule C; assigns a position pJ € B,
to each individual ¢ € u(s). We denote this derived matching® as i : TUS — 27U (S x B)
where B = (J,.4{B,} is the collection of all the positions in the set of institutions S.

DEFINITION 2.2. Slot-specific matching (SSM) of a stage matching p is a mapping /i
TuS — 27U (S x B) such that for all s € S and i € I,

1. i € a(s) if and only if i € pu(s).
2. (i) = (s,p) for some p € By if and only if pu(i) = s.

5The matching function fi is different from the matching outcome /i of the associated one-to-one
matching problem defined in Kominers and Sénmez (2016).
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We illustrate with the example below that not every feasible matching p can be

associated with an SSM.

Example 2.1. Let I = {a,b,c¢,d} and S = {s1, s2} with capacities §, = g, = 2. Each
institution with By, = {pi,p?} and B, = {p3, p3} has priority structure == (>1, >%)

and =,= (=3, =2) respectively. The precedence order is pi >y, p? and pi >, p3.

la—b—c—d =5 c—b—10,,

=2 b—c—a—0, =5d—c—b—a

Consider a feasible matching p such that u(s1) = {b,c} and p(s2) = {a,d}. For s,
there is no associated /i as the first position p finds a and d unacceptable. Also, the
second position p3 prefers d over a. Thus, a cannot be associated with a position for this

matching. However, the associated ji for s; assigns b to pi and ¢ to p?.

Proposition 2.1. Let o be a stage matching of a stage problem = = (I, S,(P;)ier, (>
D, Gs)ses). Then p has an associated SSM i if and only if p is individually rational for

institutions. Moreover, [i 1S unique.

For a matching p such that Cs(u(s)) = ps, each individual i € p(s) can be associated
with a position in s. This is because each position finds the maximal individual of the

surviving set acceptable. It can therefore be concluded that every stage stable matching
i has an SSM /.

2.3 Multi-Period Matching with Preference and Pri-
ority Updates

We study a multi-period matching problem that consists of a sequence of stage problems
(EN)1<t<r where EF = (I', S* (P})icr, (=%,0%,G%)ses) is the stage problem at stage t. The

choice rule of an institution s has an SSP structure associated with the set of positions

B, profile of linear order > and the precedence order bt.

DEFINITION 2.3. A sequence of T stage problems =!, Z2..... ZT is nested if for all

t=1,....,T—1and s € S,
1. Ittt crt
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2. St=51 =39
3. BtJrl g Bt

An individual ¢ € I'* means that 4 is active at stage ¢. Individual ¢ € I'\ "™ (t < T)
means that ¢ finalize her assignment at stage ¢ before the final stage. We denote by
t; == argmax;<<7{i € I'}, the stage at which individual i finalizes her assignment. In
this round, the individual 7 is last active. Once the individual finalizes her assignment,

she can not be active in further stages.

2.3.1 Updating Institutions’ Choice Rules

For a feasible matching p! of stage problem Z! at stage ¢, the institutions update their
choice rule to accommodate the reduction in their capacity. The profile of linear order
and precedence order (=%, >%) is updated by removing “positions that are assigned to
individuals” who finalize their assignments’. The idea is that when an individual finalizes
her assignment, she leaves with the position she is assigned to. No other positions are
added or removed in this process. The relative precedence order between two positions

and the priority order over the set of active individuals remains unchanged.

DEFINITION 2.4. A choice update rule is consistent if foralls € Sand ¢t =1,...,7T—1,
given ',
1. ottt =pt,

2. For all p € B! and 4,5 € 't i(=F)j implies i(>?)"15.
3. if7 € It \ It—i-l and Iat(@) = (8,]9) for some pE Bé, then P ¢ B?_l.

Let us illustrate this choice update rule with an example.

Example 2.2. Consider an institution s with three positions p;, ps, and ps at stage
(t —1). That is, BY' = {p1,p2, ps}. The precedence order is such that p; bs ps >s p3.
The set of active individuals at (t — 1) stage is denoted by I'™! = {iy, 4y, i3,44}. Priority

"Based on the discussion in Section 2.2, u! is individually rational for institutions to guarantee that
each individual matched to an institution is assigned a position at the institution. When we are referring
to a feasible matching generated by the SSP structure, this condition is assumed in the background.
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orderings of the positions at stage (¢t — 1) are as follows:

(=D i) — iy — iy — iy — 0
(=2)1 iy — iy — 0,

(=3 iy — i3 — 0

Let the assigment at stage (t — 1) be the following: 71, is, and i3 are assigned to py,
P2, and ps respectively. Suppose that iy finalizes her assignment, but ¢; and i3 decide to

participate in the next stage. That is, I = {iy, i3,i4}.

Then the choice rule is updated such that, at stage t, two positions are available: p;

and p3 with the precedence order p; >¢ p3. The priority orders are updated as follows:

(%i)t . ’il —ig —i4—®5

(=3 14y — i3 — 0,

It can be observed that if the choice rule of the institution is responsive, that is,
the choice rule is generated by a preference order P;, then updating the choice rule
consistently reduces to the following: P! = P!|;: where = P}|j: is the restriction of P!
to the set of active individuals I*. As all the positions are homogenous, the updating

rule is not dependent on the matching outcome of the previous period.

The second observation is that this rule implicitly puts a restriction on the rela-
tionship between the capacity of the institutions at every stage. The capacity of an
institution is the number of unassigned seats plus the number of active individuals from

the previous period. That is, for all t < T — 1,

7.7 = (@ - () + i€ I pl (i) = s}
This relationship between the capacities across stages is assumed explicitly in H&I. Thus,
our choice update rule is more general than their preference-capacity update rule.

2.3.2 Updating Individual Preferences

A preference update rule maps a preference order P; of individual 7 and an institution

s € S that is assigned to her at stage t, to a set of permissible preference orders she can
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submit at stage ¢ + 1. In general, T : P x (SU{0}) — P is a selection correspondence
that maps a preference order and an institution s to a set of preference orders. Formally,
for each (P,s) € P x (SU{0}),

o If s € Ap, then Ap/ # () for some P’ € T'(P, s);

e For each P’ € I'(P, s), we have Ap: C Ap.

Both conditions require that an institution unacceptable at previous stages can not
be expressed as acceptable via preference update. There is a wider class of preference
update rules that satisfy these mild conditions, including identity mapping®, truncation
mapping” and others. H&I provides a detailed discussion on this mapping, referred to
as refitting rules. In the subsequent section, we discuss a practical application where the

preference update rule of institutions satisfies these restrictions.

2.4 Sequential Matching Mechanisms

The multi-period matching problem that we are interested in has the following properties
(i) the sequence of stage problems (Z');<;<r is nested, and (ii) choice rule of institutions
is updated consistently. We refer to this class of multi-period matching problems as

sequential matching problems'’.

Note that the nestedness of problems and consistency of institutions enables us
to reduce this sequential problem to a simpler centralized framework. Instead of de-
centralized decisions of individuals to continue or finalize the match, it requires only
the first stage problem Z! of the sequence (Z');<;<7 and a list of preference orders
(P!, P?,.... P}) for every i € I' denoted by P; = (P});<;,. We denote this reduced form

by = (1", S, (Pi)icr, (=4,>1, T8 ses)-

An outcome of a sequential matching problem is a sequence (=, u*);<7 that associates
a feasible matching to every stage problem at every t = 1,...,T. This outcome implicitly
defines a matching v : T U S — 2/ U S such that v(i) = p'i(i) for all i € I'. We refer to

this sequence as a sequential outcome.

8 An identity mapping is a singleton-valued selection correspondence such that for all (P,s) € P x
(SU{0}), L(P,s) = {P}.

9A truncation mapping is a singleton-valued selection correspondence discussed in Manjunath and
Turhan (2016a) such that I'(P, s) = {P’} where sPs’ = (JP’s’ and s'Ps"Ps = s'P's"P's

OH&I refer to this class of multi-round matching problems as gradual matching problems.
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For a given preference update rule I' and a stage mechanism ¢, a sequential match-
ing mechanism, denoted by M, maps every sequential matching problem to a sequen-

tial outcome ME(E) = (ZF, u);<r such that
o =pEHforallt=1,...,T

o Pl=T(P" 1) foralli € ["and t =2,...,T

)

We restrict our attention to stable stage mechanisms, that play a key role in the

matching literature.

A desirable property of a sequential matching outcome is that for each period when
an individual is active, she is assigned to an institution that is ranked weakly higher than
the previous assignment. In effect, the current assignment is acceptable for individuals
with respect to the outside option—assignment proposed in the previous period. We

refer to such outcomes as monotone outcomes.

DEFINITION 2.5. A sequential outcomes (Z*, u');< is monotone if, for each 2 <t < T
and 7 € I,
p () Rip' = (0).

A mechanism M7 is monotone if for every sequential matching problem =, the se-
quential outcome (Z¢, u*),<r is monotone. We illustrate the monotonicity of sequential

outcome by Example 2.3 below.

Example 2.3. Consider a sequential matching problem with 7" = 2. For ¢t = 1, let
I' = {1,2,3,4,5,6} and S = {sy,s2}. Capacity of institutions is ¢} = 3, ¢}, = 2.
Preference profile of individuals, P! is as follows:

pl P Pl Pl P P

S1 S1 S1 59 59 59

s9 0 s 51 0 s

0 ) 0

Suppose running a mechanism ¢ at stage one results in a matching u' such that
pl(s1) = {2,3,4} and p'(sy) = {1,5}. The assignment is depicted in the preference
profile above.

Now, let ¢+ = 2 finalize its allocation at ¢ = 1 and other individuals participate

in the next period. The choice rule of institution s; is updated consistently. Thus,
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I* ={1,3,4,5,6} and ¢2, = 2, ¢, = 2. Preference profile is updated to P*> = I'(P', u')
as follows:
P P? P} P P}

S1 S2 52 52 S1

Ve

S2 S1 1 0 S2

00 0 0

Now suppose running the mechanism ¢ at stage two results in the matching ;2 such that
p?(s1) = {4,6} and p?(sy) = {1,5} as underlined above. Note that for i = 3, outcome is
not monotone as s; = p'(3)Piu?(3) = (). However, for i = 6, the assignment is strictly

better in the second period with respect to Py.

The notion of monotonicity of the outcome defined above has a parallel interpretation
in the static setting where the preference profile in the current period is a transformation
of the previous period’s preference profile''. Kojima and Manea (2010) introduce a
notion of individually rational monotonic transformation (i.r.m.t) of a preference profile
that guarantees the outcome to be monotone when the stage mechanism ¢ is the DA
algorithm. A preference profile R is an i.r.m.t of R at s € SU {0} if for every individual
i, any institution that is ranked above both s and () under R] is ranked above s under
R;. In other words, each individual’s set of acceptable institutions that are preferred
to institution s shrinks. In the sequential matching setting, we refer to this property of

preference update rule for an arbitrary proposal v as proposal-adhering. Formally,

DEFINITION 2.6. The preference update rule I' is proposal-adhering if for all (P,v) €
P x (SU{0}) and s € S\ {v}, if P' € T'(P,v) then,

sP'v and sP') = sPv

Example 2.4. In Example 2.3, T" is not proposal-adhering with respect to assignment
at stage one. That is because for i = 3, s3P?u'(3) = s; and s, P*(). But, s;P?%sy. A

proposal adhering preference profile P2 is presented below.

1 The monotonicity of sequential outcome is not identical to the static interpretation as the underlying
stage problems in both the periods is not the same.
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P2 P2 P2 PP

Our first main result of this chapter is the following

Theorem 2.1. Let MY be the sequential mechanism where ¢ is indiwvidually-optimal
stage stable mechanism (I0OSSM) and I' is preference-update rule. Then the following

statements are equivalent:

1. M{ is monotone.

2. T 1s proposal-adhering.

Theorem 2.1 generalizes Theorem 1 of H&I. However, our proof does not depend on
their result. Instead, we establish a connection of our result with the characterization
result of the DA mechanism in Kojima and Manea (2010). This provides an alternative
proof for Theorem 1 of H&I (see Appendix 2.A.1 ). A Corollary of Theorem 1 in Kojima
and Manea (2010) is stated below.

Proposition 2.2. Let ¢ be the deferred acceptance mechanism and Cs be an acceptant,
substitutable choice rule. Then, ¢ satisfies IR monotonicity. That is, for all Z and

proposal-adhering T,

P el (P,pu(i)) = W(@Pu@) Viel

Note that the existence of an IOSSM is not guaranteed in the case of a general choice
rule. To address this, we rely on the results presented in Hatfield and Milgrom (2005)
and Aygtn and Sénmez (2013) to show the existence of such mechanisms when the choice

rule has an SSP structure. Refer to Appendix 2.A.1 for the proof.

2.5 Sequential Stability

In this section, we introduce a stability notion for sequential matching problems. Our
definition of sequential stability generalizes the notion of gradual stability introduced in

H&I. When institutions’ choice rules are responsive, our definition reduces to theirs.

o7



DEFINITION 2.7. A sequential outcome (Z¢, u');<7 is sequentially stable if for all ¢ € ',
#<t<t,

1. Individual Rationality: p*(i) R0 and p(i) Rt (i),

2. Non-wastefulness: if |u’ (s)| < @ for some s € S, then sP!u*(i) implies (), =2 i

where p € Bﬁl is unassigned at t/,

3. No justified envy: for all j € I' \ 1"+ if 4¥(j) = (s,p) for some s € S, p € BY,
then sP!u'(i) implies j =2 4.

The stability of the stage matching mechanism considers only the final assignments
of the individuals and institutions. However, in the sequential matching mechanism,
individuals finalize their matchings at different stages. As a result, the definition above
extends the notion of stage stability to also include the claims by individuals across

stages as long as they are active.

The first condition requires that each individual’s assignment must be individually
rational for each individual at every stage. Here, individual rationality is defined by
comparing an assignment with the “outside option”. In the case of a stage problem, this
outside option corresponds to being unmatched or having an empty matching. In the

sequential problem, proposals from previous periods also serve as an outside option.

The second condition is a sequential version of non-wastefulness. If an individual ¢
prefers institution s to her stage ¢ assignment, this condition ensures that all positions
in s that are deemed acceptable by individual 7, must be assigned to someone else in the

current period and all of the previous periods.

Finally, the last condition is a no justified envy condition adapted to our sequential
environment with an SSP structure. Consider two individuals 7 and j such that j finalizes
her assignment before i. Then, justified envy by 7 against j is checked for all periods
t; <t < t; using the preference order of the position that is assigned to j when she

finalizes her assignment.

A sequential mechanism is sequentially stable if the outcome for each sequential
problem is stable. The theorem we propose in this section shows a relationship between

sequential stability, stage stability, and the monotonicity of sequential outcomes.

Theorem 2.2. Let I be a proposal-adhering preference update rule and ¢ be a stage

mechanism. Then the following statements are equivalent:
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1. MY is sequentially stable.

2. M{ is monotone and ¢ is stage stable.

This result generalizes Theorem 2 in H&I to a more general setup where the choice

rules have an SSP structure. The proof of this theorem can be found in Appendix 2.A.2.

2.6 Admissions to Engineering Colleges in India

The admission process in engineering colleges in India is subject to a comprehensive
affirmative action program, which has been implemented via a reservation system. The
reservation scheme at an institution s partitions the set of positions B, in various cat-
egories R and the set of individuals in categories C. It consists of the following key

components:

e R = {SC,ST,OBC, EWS} denote the set of reserved categories. The students
that belong to no reserved category are in General Category (GC).

e C = {0,SC,ST,OBC, EW S} denote the set of all position categories (o is the

open category).

e The vector ¢, = (2, ¢3¢, ¢57, ¢9P%, ¢F¥) describes the initial distribution of posi-

tions over reserved categories where ¢° = g, — ¢°¢ — ¢°7 — ¢9B¢ —¢FWS. The profile
of vectors for the initial distribution of positions over categories at institutions is

denoted by q = (¢s)cs-

e The function t : I — R U {GC} denotes the category membership of individuals.
For every individual i € I, ¢(i), or t;, denotes the category individual i belongs to.

We denote a profile of reserved category membership by T' = (¢;) and let T be

€T
the set of all possible reserved category membership profiles.

Merit scores induce strict meritorious ranking of individuals at each institution s,
denoted by =, which is a linear order over Z U {(}}. i >, j means that applicant i has
a higher priority (higher merit score) than applicant j at institution s. We write i > ()
to say that applicant i is acceptable for institution s. Similarly, we write () =, 7 to say
that applicant 7 is unacceptable for institution s. The profile of institutions’ priorities is

denoted >= (>, ..., >s,.)-
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For each institution s € S, the merit ordering for individuals of type r € R, denoted

by >, is obtained from > in a straightforward manner as follows:

e fori,j € Zsuchthatt;=r, t;#r, i>,0,and j =, 0, we have i =7 0 =7 j, where

() =7 j means individual j is unacceptable for category r at institution s.

e for any other 7,5 € Z, ¢ > j if and only if ¢ >4 7.

The over-and-above implementation requires filling open-category positions before
the reserved categories. Formally, given an initial distribution of positions ¢,, a set of
applicants A C I, and a category membership profile T" € T for the members of A, the

set of chosen applicants CR* (A, ¢,), is computed as follows:

Step 1: Unreserved positions are considered first. Individuals are chosen one at a

time following > up to the capacity ¢°. Let us call the set of chosen applicants C? (A, ¢2).

Step 2: Among the remaining applicants A" = A\C? (A, ¢°), for each reserve cate-
gory r € R, applicants are chosen one at a time following >7 up to the capacity ¢,. Let

us call the set of chosen applicants for reserve category r as C7 (A, q7).

Then, CF (A, g,) is defined as the union of the set of applicants chosen in Steps 1
and Step 2. That is,

Cles(A,q,) = C2 (A, ) U | CL (A ql)

teR

This leads to our first lemma of this section, which we state formally below.

LEMMA 2.1. The selection rule of engineering colleges in India can be modeled via choice
rule, CT°* that admits SSP structure.

2.6.1 The Multi-round Deferred Acceptance Mechanism

Admissions to engineering colleges in India implement a multi-round matching proce-
dure. Each individual submits a preference list over all programs, including I1Ts and

non-II'Ts. Each program provides the number of available positions and a merit list of
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eligible individuals. After collecting this information, the individual-proposing Deferred
Acceptance mechanism is run in each round for IITs and non-IITs separately'?. Some
individuals may finalize their assignments, while others may want to participate in fu-
ture rounds. In each round, the inputs of individual-proposing DA are modified. The
options available to individuals at the end of each round are freeze, float, slide, reject,

and withdraw (see Baswana et al. (2019)).

LEMMA 2.2. The permitted preference update rule is proposal-adhering.

This lemma is validated by the description of the options available to the individuals.

Reject. If a candidate rejects an assigned program, then the candidate is completely
removed from the assignment process by setting his/her rank-ordered list to an empty

set.
['(P,s) = P', where §P's' for all ' € S.

Freeze. Individuals who choose this option accept the assigned program. Their
preferences are modified so the assigned program and all other programs ranked below

it are kept while the rest are removed. Formally,
L(P,s)="P

where OP's for all s € S such that s'Ps, and P and P’ agree for the rest.

Float. Preferences of the individuals who choose the float option remain unchanged.
These candidates are willing to participate in future rounds in the hopes of getting

assigned to a better program in their rank-ordered lists.

I'(P,s)=P.

Slide. Individuals who choose the slide option want to participate the future rounds
but be considered only for the programs in the same university as the assigned program.
In this case, programs in all other universities above the assigned program are removed.
The assigned program and other programs below it remain unchanged. Let U(s) be the

set of programs that are in the same university as program s.

I'(Ps)=P

12akin to the algorithm proposed by Manjunath and Turhan (2016a).
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where O P’s for all s’ ¢ U(s) such that s'Ps , and P and P’ agree for the rest.

Withdraw. Individuals who choose this option are removed from the problem. The

preferences of these applicants are set to an empty set.
I'(P,s)="P

where OP’s for all s € S.

Note that the ‘reject’ and ‘withdraw’ options have the same effect on the rank-ordered
lists. Their difference is about the timing. A candidate who previously accepts an offered

program may withdraw in later stages.

Lemmas 2.1 and 2.2 suggest that we can use Theorems 2.1 and 2.2 to state our final

result.

Proposition 2.3. Multi-round deferred acceptance mechanism implemented in engineer-

ing colleges in India is monotone and sequentially stable.

2.7 Conclusion

This chapter studies a special class of multi-round matching mechanisms. By generalizing
the framework of H&I, we can explain a wider range of applications, including the college
admissions process in engineering colleges in India. The French college admission system

(studied in H&I) is another application that can be explained by our model.

One possible approach to understanding our results is to consider an associated one-
to-one matching market that corresponds to the original many-to-one matching market.
This technique is utilized in Kominers and Sénmez (2016), where positions, rather than
institutions, compete for individuals. In the one-to-one market with unit capacity, the
priority structure of institutions is responsive. Therefore, the results of H&I can be
employed to understand the one-to-one market. However, these results do not straight-
forwardly extend to the original many-to-one market. In our study, we take an alternate
approach to comprehend our results. Our first result to a great extent relies on the proof
of the first characterization result of DA by Kojima and Manea (2010). This enables us

to draw a comparison of their static problem with our sequential model.
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Appendix 2.A

Before we begin the proof of Theorem 2.1, let us establish some properties of choice rules

with an SSP structure.

DEFINITION 2.8. A choice rule C satisfies Irrelevance of Rejected Alternatives if for every
set A, B C I such that C(B) C AC B, C(A) = C(B).

DEFINITION 2.9. A choice rule C satisfies substitutability if for every set A, B C I,
ac€ ACB,ae(C(B) = acC(A).

LEMMA 2.3. If C% has an SSP structure, then it satisfies substitutability and IRA.

The bilateral substitutes condition of Hatfield and Milgrom (2005) is equivalent to
the substitutability condition defined above. As Kominers and Sénmez (2016) prove
that SSP choice rules satisfy bilateral substitutes condition, this implies C? satisfies

substitutability. TRA is proved in Aygiin and Sénmez (2013) for contracts setting.

LEMMA 2.4. If C! has an SSP structure and the choice update rule is consistent, then
for all A,B C I,
ACCYB) = AnIt cco*(BnI™

Proof. Let C! be a choice rule that is generated by (=f,>!) and C'™ is updated as per
Definition 2.4. Let i € AN I'™ such that 4'(i) = (s,p!) for some p! € BL. As i is
active at stage ¢t + 1, pJ € BLT. Since i is >7 maximal at stage ¢ of the surviving set of
individuals at Step j, it must be that 7 is =7 maximal at stage ¢ + 1 as no individual is
added to the set. Thus, a'*1(i) = (s, p¥) for some k < j. This completes the proof. [

2.A.1 Proof of Theorem 2.1

Proof. Let 2 = (I', S, (P)icr, (=1,01,7!)ses) be a sequential matching problem with the
outcome MIOSSM(E) = (ZF, u') <y<7. We first prove that IOSSM exists when the choice

rule has an SSP structure.

LEMMA 2.5 (Hatfield and Milgrom (2005), Aygiin and Sénmez (2013)). When Cs sat-
isfies substitutability and IRA, then IOSSM exists, and it is unique. Moreover, it is the

outcome of the deferred acceptance algorithm.
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Lemma 2.3 and 2.5 prove the existence of [OSSM.

To prove that (1.) = (2.), let MLO9M he monotone and T' be not proposal-
adhering. That is, there exists a 2 such that for some t < T — 1, and i € I, P/™' ¢
(P!, (7). The counter-example provided in Proposition 1 of H&I suffices as responsive
choice rules are a special case of choice rules with SSP structure where each institution

is decomposed to identical multiple copies with unit demand.

LEMMA 2.6 (Proposition 1, H&I). Let M7 be a sequential matching mechanism such that

=P=»V" for all s € S and p,p’ € B,. If M¢F is monotone, then I' is proposal-adhering.

Following the methodology used in Kojima and Manea (2010), we now show (2.)
—> (1.). Let I" be a proposal-adhering preference update rule. Consider =" for some
t > 2. Let ! = p(E71) and ' = ¢(Z!) be stage matchings at period ¢t — 1 and ¢
respectively. We need to prove that for all ¢ € I', (i) R~ (i). We prove this with the
steps below.

Step 1: Define x¢ as the allocation p'~! restricted to I*. That is, zo(s) = u'~'(s)N I

Define for all 7 € I,

. Io(i), lf Io(i)PitQ),
(i) =
0, otherwise.

If z; is a stable matching at (P}, (C%)ses), then using the fact that ¢ generates

individual optimal stable matching, u'(7) Ria1 (i) for all ¢ € I' holds and we are done.

Let us define a sequence (xy)g>1 as follows:

DEFINITION 2.10 (Step-wise unblocking process). Define for all k > 1 and i € I*,

s i€ C (m(i)U{j e Tt | spPlag()}),

x(i), otherwise.

Tr41(i) =

where s is an arbitrary institution that is part of a blocking pair if z; can be blocked
at (P}, (C%)ses). If ) cannot be blocked, then zy1 = xy.

We now prove the following lemma.

LEMMA 2.7. The sequence (xx)r>0 satisfies for every k > 1:
(I) xy, is a feasible stage matching.
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(II) xy(i)Rixy_1(i) for alli € I'.
(1) w(s) C CL (x(s)U{j € I' | sPlaw(j)}) forall s € S.

As 241 (1) Rlzy(7) for all i € I', the step-wise unblocking process generates a sequence
(x)k>o0 that converges to a matching xx in finite number of steps K. Each iteration
results in a different allocation if the initial matching within the iteration is not stable.
Hence, g is stable at (P, (C?)ses).

Because x g (1) Rixq (i) Ri) for all i € I*, the matching xx is individually rational for
agents. Also, as the outcome M37?M(Z) at time period ¢ is the individual optimal

among all the stable outcomes at t, we get for all 7 € I,
pH (i) Rizge (1) Ry~ (0)
It remains to prove Lemma 2.7.

Proof. We prove the lemma by induction with the base case £ = 1. (I) and (II) hold
for k = 1 by definition of z;. Consider any s € S. We now prove that z;(s) C
Ct(x1(s)U{j € I' | sPlx1(j)}). By definition of x;(i), we have

w1(s) € wo(s) C p' ' (s)
As T is proposal-adhering,
{7 €I sPlai(j)} C{j € I' | sP] xo(j)}-
Together we get
zi(s)U{j € I' [ sPjai ()} C ao(s) U{j € I' [ sP{ " ao(5)} (2.1)

As the period ¢ — 1 outcome is stable at (P}, "}, (C1™!),es), we have
1. CHp1(s)) = pt~1(s) for all s € S, and
2.0 ¢ CoN !~ (s) U {i}), for all i € {j € I' | sP ™ ao(j)}-

By consistency of C'™! we have

CH (W™ s) U g € I | sP wo(5)}) = 17 (s).
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In order to state the set-inclusion property at stage t, we state our next lemma, which

is straightforward to prove. Using Lemma 2.4, we have
wo(s) C Cilwo(s) U{j € I' | sP"ao(4)})

By substitutability of choice fuction C? derived by updating structure of choice function,
21(s) C CL(zi(s)U{je "] stxl(j)}) :

This concludes our proof for the base case.

Assuming the conclusions of step £ > 1 hold, we now prove it for k+ 1 (the only case

to prove is when xy # xj41).

Let us prove (I) first. Consider s # s;. Observe that zx11(s) C xx(s) by construction.

As 1z}, is an allocation, by the inductive hypothesis we get |z411(s)| < |zr(s)] < ¢

For institution s, zx(sk) € CL (wx(sk) U {j € I'| sePlx(j)}) holds by inductive
hypothesis at k. Then using definition of x (%),

Tre1(se) = CF, (zu(sk) U{j € I' | spPla(4) })

Feasibility of choice rule C! thus guarantees that |x441(sk)| < ¢, .

We now prove (II). Observe that
e (sk)\zk(sk) € {j € I' | siPjar(s) } (2.2)
Thus, for j € xp1(sk)\zk(sk), we get
sk = 211 (J) Py () (2.3)

Each agent outside of . 1(sk)\xk(sk) is assigned the same institution under z;,; and

xy,. Therefore, zy1 (i) Rixy(2) for all ¢ € I'.

We now show (III) for all s # s;. By construction, we have xx41(s) C zx(s). By
Equation 2.3, we have {j € I" | sPlapy1(j)} C {j € I' | sPlay(j)}. Therefore,

r1(s) U{j € I' [ sPjapsa ()} S an(s) U{j € I' | sPjae(j)} (2.4)
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Now, substitutability of C%, inductive hypothesis for k (condition (II)), and Equation 2.4
implies

Thi1(s) C CL (21 (s) U{j € I' | sPjagsa(j)}) -

Let us now consider institution s;. By Equation 2.2, agents in zy.1(s;)\xx(Sk) prefer sy
over their allocation in x;. Individuals who are not chosen from this set in this iteration
are those who still prefer s;, over their allocation in xy ;. This is because xyy1 (i) Rtz (i)

for all 4 € I'. This implies

Tr1(sk)\Tr(sK) = {j el| Skpfﬂfk(J)} \ {j el| Skpfl’kﬂ(j)}-

Or equivalently,

Qik+1(5k) U {j el ‘ SkPJtZCk(j)} = .Z’k(Sk) U {j el ’ SkP;QZk+1(j>} (25)

Using substitutability of C%, (III) for k and Equation 2.5, we obtain

i1 (sk) € CL (wrar(se) U {j € I' | spPlansa () }) -

This concludes our proof of Lemma 2.7. m

2.A.2 Proof of Theorem 2.2

We employ the technique utilized by H&I in the proof of Theorem 2. The notions of
stage stability and sequential stability introduced in this chapter are generalized versions
of spot stability and gradual stability, respectively, as defined by H&I. Thus, it remains
to show the equivalence between Definition 2.1 and Definition 2.7 for an arbitrary stage
t and t = t’ for the stage mechanism ¢. We refer to the conditions of Definition 2.1 as
C1, C2, and C3, and the conditions of Definition 2.7 as C1’, C2’, and C3’, respectively.

We first show that Definition 2.7 implies Definition 2.1. Then, C1 directly follows
from C1’. If possible, assume that C2 is not true. That is, there exists an s € S such that

() C Cu(p'(s)). As [p'(s)] <Gy, this implies |Cy(4'(s))] < q,. Suppose i ¢ Cs (p'(s))-
Since C is an SSP choice rule, at each position py € {p1,...,pq,}, either (i) 0, =2+ i or
(ii) there exists some other individual j such that i(j) = (s, px) and j >P* i. Both cases
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contradicts with our supposition that (=, ), is sequentially stable. Thus C2 is true.

If possible, assume that C'3 is not true. That is, there exists an institution-individual
pair (s,4) such that sP!u'(i) and i € Ct(u'(s) U {i}). Let i be assigned to the position
pk € B,. If p¥ is unassigned at y, then C2’ is violated and if ji(j) = (s,p¥), then C3’ is
violated. Thus, ¢ is stage stable.

We now prove that Definition 2.1 implies Definition 2.7. first, C1’ follows from C1. If
possible, C2’ is violated. That is, there exists an institution s and individual ¢ such that
sPut (7). Also, for some unassigned position p € By, i = (5. This contradicts C3 as this
implies ¢ € C%(u'(s) U {i}). We now prove C3’ by contradiction. Consider i,j € I' such
that ' (j) = (s,p), p'(i) # s and i =2 j for some p € BL. This implies i € CL(u'(s)U{i}).
If sP!u'(i), C3 is violated. Thus, Definition 2.7 is true for t = ¢'.
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Chapter 3

ON THE INTEGRATION OF SHAPLEY—-SCARF

MARKETS!

3.1 Introduction

Shapley—Scarf markets, in which agents own one house each which they can exchange
among themselves without using monetary transfers, have been helpful to analyze sev-
eral real-life allocation problems, such as the assignment of campus housing to students
(Chen and Sonmez, 2002), house allocation with existing tenants (Abdulkadiroglu and
Sonmez, 1999) and kidney exchanges involving incompatible donor-patient pairs (Roth
et al., 2004). A common complication in these allocation problems is that a big market
is fragmented into several small and disjoint ones, causing inefficiencies. For example,
house swaps in Australia are restricted to tenants within the same constituencies and
community housing provider, blocking potentially beneficial exchanges (Powell et al.,
2019). Similarly, most kidney exchanges in the US are conducted locally, despite the
existence of centralized clearinghouses, which if used could increase the number of trans-

plants by up to 63 percent (Agarwal et al., 2019).

Motivated by these observations, we investigate theoretically the welfare effects of
integrating disjoint Shapley—Scarf markets. In our model, there are k Shapley—Scarf
markets with n; agents each (n; is potentially different for each market) and n agents in
total. The segregated allocation is obtained by treating each community separately and
calculating the core allocation for each of them. The integrated allocation is the core

allocation for the entire economy.

LCo-authored with Josué Ortega and Rajnish Kumar (Queen’s Management School, Queen’s Univer-
sity Belfast, UK). A version of this chapter has been previously published in the Journal of Mathematical
Economics (2022).
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Our first result (Proposition 3.1) states that up to, but not more than, n — k agents
may be harmed by integration, that is, they receive a house they prefer more when trade
is only allowed within their own disjoint markets. This upper bound holds for any choice
of n and k. It shows that Shapley—Scarf markets may fail to integrate because doing so

could generate significantly more losers than winners.

Our second result (Proposition 3.2) concerns the size of the gains from integration
in terms of house rank. For example, if an agent receives her 3rd best house before
integration, but her 1st best after integration, the size of her gains from integration is
3—1 = 2. Even if most agents are harmed by the merger of disjoint markets, integration
may still be justified if the size of the gains from integration experienced by a few is
substantially larger than the size of the losses from many. We show that, in the worst-

case scenario, the size of the average gains from integration may be down to, but not

—n’4ntk4k

less than, T

. This lower bound can be achieved for any choice of n and k, and
shows that, asymptotically, integration may increase the average house rank by 50% of

the size of agents’ preference lists.

Taken together, our first two results show that there are real obstacles to the integra-
tion of Shapley—Scarf markets. For example, if we have three small markets that merge
into one with 60, 30, and 10 agents respectively, up to 97 agents may obtain a worse
house after integration occurs, and on average (across all agents) each agent may receive
a house 50 positions down on her preference list, equivalent to going from her top choice
to her 51st choice.

However, these results are obtained in worst-case scenarios, which occur only when
preferences are very specific. Consequently, studying the expected gains from integration
across all possible preference profiles may be more informative. Therefore, our third
result studies the size of the expected gains from integration in random Shapley—Scarf
markets, in which agents’ preferences over houses are drawn uniformly and independently.

In Proposition 3.3, we compute the exact expected gains from integration, which

1 (n+D[(nj+DHn; —15] (41 Hn—n

equa nj(n;j+1)n n?

(where H, is the n-th harmonic number). This
result shows that the expected welfare gains from integration are positive for all agents
and larger for agents belonging to smaller markets. Going back to our example of three
markets integrating with 60, 30 and 10 agents, the agents of the market with size ten go
up 16 positions in their expected house rank, whereas those in the market of size sixty

also increase their expected allocated house rank, but only by 2 rank positions. Our
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third result gives some context to our first two propositions, and shows that on average
we should expect an overall positive effect from integration in Shapley—Scarf markets for

agents from all disjoint markets.

Our fourth result (Proposition 3.4) establishes a connection between the number of
trading cycles that occur in the top trading cycles algorithm and the expected number of
agents harmed by integration. We use this connection to show that the expected number
of agents harmed by integration in each economy is less than n; — y/2wn; — O(logn;),
and consequently the expected number of agents harmed by integration in the entire
economy is smaller than n— \/%(Zle V/1;)—O(log H§:1 n;). In our example regarding
the integration of markets with sizes 60, 30 and 10, our result implies that the expected
number of agents harmed by integration is less than 44, 19, and 4 for each respective
market. A consequence of our result is that, when all markets are of the same size, the
expected fraction of agents harmed by integration is less than 50% whenever each market

has less than 87 ~ 25.13 agents.

A different approach to ensure that integration does not harm a majority of agents
is to focus on specific preference domains. We find a preference domain that achieves
this purpose, called sequential dual dictatorship, which enforces a particular correlation
among agents’ preferences. When preferences satisfy this property, we can guarantee
that no more than 50% of agents in any individual market are harmed by integration
(Proposition 3.5). The sequential dual dictator property is equivalent to assigning the
title of a dictator to at most two agents at each step of the top trading cycle algorithm,

therefore bounding the length of cycles that can occur.

Structure of the paper Next subsection 3.1.1 discusses the literature. Section 3.2
presents our model. Section 3.3 introduces a running example. Section 3.4 presents
worst-case results. Section 3.5 discusses average-case results. Section 3.6 studies prefer-

ence domains. Section 3.7 concludes.

3.1.1 Related Literature

A few other papers study the effects of integration on variations of Shapley—Scarf mar-
kets. For example, Ashlagi and Roth (2014) study the incentives for hospitals to fully
reveal their patient—donor pairs to a centralized clearinghouse. In their model, agents do

not have preferences but only dichotomous compatibility restrictions. Thus, welfare is
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measured by the size of the matching. They obtain worst- and average-case results that
have a similar flavour to ours: the average-case cost for hospitals to fully integrate into a
centralized clearinghouse is small, but the worst-case cost is high. In the same framework
as them, Toulis and Parkes (2015) propose a mechanism that is efficient and asymptot-
ically individually rational for hospitals. Our paper differs from the aforementioned
articles in that we measure welfare in terms of how desirable the integrated allocation is
with respect to the segregated one, rather than by the number of total exchanges (which
is constant in the canonical Shapley—Scarf market that we consider where preferences are
strict). Both welfare measures are relevant in different real-world settings and therefore

we think of these two research strands as complementary.

Our work is also related to a series of recent articles that have studied the integration
of other types of markets without money, in particular for Gale-Shapley one-to-one
matching markets (Ortega, 2018, 2019), Gale-Shapley many-to-one matching markets
with applications to school choice (Manjunath and Turhan, 2016b; Dogan and Yenmez,
2019; Ekmekci and Yenmez, 2019; Turhan, 2019; Aue et al., 2020), exchange economies
(Chambers and Hayashi, 2017, 2020) and networking markets (Gersbach and Haller,
2021). Among these, the closest to ours are Ortega (2018, 2019). He shows that, in
Gale-Shapley marriage markets, market integration never harms more agents than it
benefits, even though the average rank of an agent’s spouse can decrease by 37.5% of
the length of the agents’ preference list. He also provides an approximation for the gains
from integration in random markets. Some of our results parallel his for Gale-Shapley
marriage markets, although ours are more general as: i) they apply to the integration of
markets of different sizes, ii) they provide tight bounds on the welfare losses, and iii) in
the case of the gains from integration in random markets, our results are exact rather

than approximations.

Our average-case results rely on two seminal papers from the computer science litera-
ture regarding random Shapley—Scarf markets with uniform and independent preferences.
The first of these, by Frieze and Pittel (1995), computes the expected number of itera-
tions that the top trading cycles algorithm takes to find the unique core allocation and
the number of cycles created in the process. The second paper, by Knuth (1996), finds
the expected sum of ranks of obtained houses and establishes the equivalence between
the core allocation obtained from random endowments and the random serial dictator-

ship mechanism with no property rights.” Che and Tercieux (2019) use a similar random

2The latter result was also independently discovered by Abdulkadiroglu and Sénmez (1998).
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market approach to show that, in a related two-sided model, the top trading cycles
algorithm achieves efficiency and stability asymptotically when agents’ preferences are

independent.

3.2 Model

Preliminary definitions We study the housing market proposed by Shapley and Scarf
(1974), where there are n agents, each of them owning an indivisible good (say a house).
The agents have strict ordinal preferences over all houses, including their own, and no

agent has any use for more than one house.?

Formally, let N := {1,...,n} be the set of agents and let w = {wy,...,w,} be the
initial endowment of the market. Let »=; denote the strict preference of agent ¢ and let
== (>i)ien. The weak preference corresponding to >=; is denoted by =;. A housing
market (HM) is a pair (N, >). An allocation x = {xy,...,z,} is any permutation of the
initial endowment. That is, w; (resp. x;) denotes the house endowed (resp. allocated)

to agent 1.

An allocation z is individually rational if x; »=; w; for all © € N. An allocation x
is a core allocation if there does not exist a coalition S C N and an allocation y such
that {y; : i € S} = {w; :i € S} and y; >, x; for all ¢ € S. An allocation x is Pareto
optimal if, for every alternative allocation z’ such that z} >, x; for some ¢ € N, there
exists some j € N for which x; =; x’. A matching mechanism M is a map from HMs to
allocations, and is said to be a core one (resp. individually rational, Pareto optimal) if
it produces a core (resp. individually rational, Pareto optimal) allocation for every HM.
The mechanism M is strategy-proof if, for every i, =}, =, M;(N,>) =; M;(N, (=}, =_;)).

There is a unique core allocation (henceforth denoted by x*) in every housing market.
The unique core allocation can be found with an algorithm known as top trading cycles

(TTC) (Shapley and Scarf, 1974; Roth and Postlewaite, 1977), which works by repeating

the following two steps until all agents have been assigned a house.

1. Construct a graph with one vertex per agent. Each agent points to the owner of

his top-ranked house among the remaining ones. At least one cycle exists and no

3We only consider the case where agents have strict preferences; for an analysis of housing markets
with weak preferences, see Quint and Wako (2004); Alcalde-Unzu and Molis (2011); Aziz and De Keijzer
(2012); Jaramillo and Manjunath (2012); Saban and Sethuraman (2013) and Aslan and Lainé (2020).
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two cycles overlap. Select the cycles in this graph.

2. Permanently assign to each agent in a cycle the object owned by the agent he

points to. Remove all agents and objects involved in a cycle from the problem.

TTC is the only mechanism satisfying individual rationality, Pareto-efficiency and

strategy-proofness on the strict preference domain (Ma, 1994).

New definitions We study extended housing markets (EHM), which consist of an HM
and a partition of the set of agents into £ disjoint communities C',...,C). That is, an
EHM is a triple (N, >,C), where C = {C1,...,Cy}. An integrated allocation is any
allocation for the HM (N, ), whereas a segregated allocation is an allocation for (N, >)
in which every agent receives a house owned by an agent in her own community. That
is, a segregated allocation x is such that {z; : 1 € S} = {w; : i € S} VS € C. A matching
scheme o is a map from EHMs into a segregated and integrated allocation, denoted by

o(-,C) and o(-, N), respectively.’

For agent’s i € C; preference =;, we denote its restriction to C; by =;. In other
words, >=; is the strict ranking of agent i on all the houses belonging to agents in the
community C; (including his own) that is consistent with ;. The matching scheme o*
is the core matching scheme if o*(-, N) is the core matching for the HM (N, ) and,
for every community Cj, o*(-,C;) is the core matching for the HM (Cj, >¢,), where
;Cj = (;z’)z‘ecj-

The rank of house wy, in the preference order of agent ¢ is defined by rk;(wp) =
{j € N :wj »=; wp}|. The gains from integration for agent ¢ under the matching scheme

o are defined as v;(0) = rk;(c(i,C)) — rk;(0(i, N)). The total gains from integration

is given by I'(¢) == >,y V- If these are negative, we speak of the total losses from
integration. The average percentile gains from integration are denoted by I'(o) = Fr(;)'

We divide by n? to account for both the number of agents (n) and the length of an
agent’s preference list (which is also n). Thus, I'(¢) € (—1,1), where I'(¢) = —1 means
that everybody was harmed by integration and moved from their best possible house to

the worst possible one.

We use Nt (o) :=={i € N :0(i,N) >; o(i,C)} to denote the set of agents who benefit
from integration. Similarly, N°(o) :== {i € N : 0(i, N) = o(i,C)} and N~ (o) = {i €

4Matching schemes are similar to the concept of assignment schemes in cooperative game theory
(Sprumont, 1990).
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N : 0(i,C) =; o(i,N)} denote the set of agents that are unaffected and harmed by
integration, respectively. For all j € {1,...,k}, we define Ngij(a) ={ieCj:0(i,N) >,
o(i,C)} to be the set of agents in community C; who benefit from integration. The sets
N¢ (o) and Ng, (o) are defined analogously.

Henceforth we focus on ¢*, that is, we study the gains from integration that oc-
cur when the allocation obtained before and after integration occurs is the unique core

allocation.

3.3 Running Example

Example 3.1 presents an EHM that we will use throughout the paper to illustrate how
market integration may harm the majority of agents, and the welfare losses of such
agents can be significant. In this EHM, n = 7 and k& = 2 with C; = {a,b,c} and
Cy ={d,e, f,g}. The integrated (resp. segregated) core allocation appears in a diamond

(resp. circle).
Table 3.1: An EHM with C; = {a,b,c} and Cy = {d, e, f,g}.

abc‘defg
@@@@@@
daaaa
Gy a i b d

(o> ¢ b b

& e
- D
g

e o

In Example 3.1, there are two communities with three and four agents each, such
that one agent from each community (in this case a and d) is assigned to their second
best house in the segregated core allocation, whereas all remaining agents are assigned to
their most preferred house. However, when both communities integrate, a and d exchange
their houses, each obtaining their most preferred house, thus making that all other five
agents are assigned to their own house, which they prefer less than the segregated core

allocation.
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The two agents who experience welfare gains (a and d) go from their second to their
first best after integration occurs, obtaining a rank gain of +1. However, agent ¢ goes
from his first to his third best (a change of -2 in rank), agent g goes from his first to
his fourth best (a change of -3 in rank), and so on, until agent e who goes from his
best to his worst option (a change of -6 in rank). When we add the total welfare losses
(+141—2-3—-4—5—-6), we obtain —3(n* —n—k*—k) = —18. Dividing -18 by n* = 49,

we find an average welfare reduction of 36.7% of the length of agents’ preferences.

In the next section, we generalize these findings, providing upper bounds for i) the

number of agents harmed by integration, and ii) the size of average welfare losses.

3.4 Worst-case Results

Unfortunately, the integration of housing markets may harm the vast majority of agents.
In the worst-case scenario, up to n — k agents are harmed by integration, and this upper
bound is tight.

Proposition 3.1. For any pair (n, k), there exists an EHM in which [N~ (c*)| =n —k;
whereas there is no EHM in which |[N~(c*)| > n — k.

Proof. The EHM in Example 3.1 illustrates an EHM showing that the n — k£ bound is
attainable. We can extend the construction of this example to arbitrary values of n and

k as follows:

1. Enumerate agents arbitrarily so that agents from community C are first, then
those in Cy, and so on. Separate agents into two sets, namely X and N \ X.
The set X contains the first agent from each community only. The agent from
community C; in X is denoted by j*. The last agent in community C; (which is
in N\ X) is denoted by j.

2. The preferences for any agent ¢* € X are such that:

(a) rky.((¢ +1)*) =1 (modulo k) and
(b) th. (1) = 2

3. The preferences for any agent ¢ € N \ X are such that:
(a) tko (1 —1) =1,
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(b) For any j7* € X and h € N\ X (with h # ¢+ 1), vk, (j*) < rk.,(h), and
(c¢) For any two h,h' € N\ X and h,h' #i+1, rk. (h) <tk ,(h') if h < I

Constructing the preferences in such a way guarantees that, in the segregated core
allocation, every agent in N \ X obtains their first choice, whereas every agent in X
gets their second choice. In contrast, in the integrated core allocation, every agent in X
obtains their first choice, whereas everybody in N \ X obtains an object ranked from

k + 1 to n. Example 3.1 was constructed in this fashion.

To see that the n — k upper bound is tight, assume by contradiction that more than
n — k agents are harmed by integration, which implies that there is one community
in which all agents are harmed by integration, say C;. But then ¢*(-,N) is not a core
allocation for (IV, ), because any alternative allocation x such that x; = o*(i, C') Vi € C}
dominates it (since C; is effective for allocation = and every agent in C; prefers the
segregated over the integrated allocation). That the integrated core allocation is not a

core allocation is a contradiction, which terminates the proof. O]

Proposition 3.1 implies that integration may harm the majority of agents in Shapley—
Scarf markets. This is a striking observation, since the integration of Gale-Shapley
marriage markets (in which two sets of agents are matched to each other) always benefits

more agents than those it harms (see Proposition 2 in Ortega (2018), also Gale and
Shapley (1962); Géardenfors (1975)).

Given the negative result in Proposition 3.1, we may think that integration can still
be justified if the size of the welfare gains experienced by a minority are much larger
than the size of the welfare losses suffered by a majority. Unfortunately, in the worst-
case scenario, the size of the losses from integration is much larger than the size of the
gains from integration. In particular, we show below that the agents’ average welfare
loss may be negative and asymptotically equivalent to an increase in ranking of 50% of
the length of the agents’ preference list. We provide a tight lower bound on the size of

agents’ average welfare loss.

—n24+n+ki+k .
2n2 )

Proposition 3.2. For any pair (n, k), there exists an EHM in which T'(c*) =

whereas there is no EHM in which T'(0*) < W

®One may consider the opposite scenario, in which an integrated market of size n breaks into
k disjoint communities. Simple examples show that all agents can become worse off after markets
disintegrate, irrespective of the value of k.
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Proof. Example 3.1 shows that our lower bound for I'(¢*) is attainable. We constructed
the EHM in Example 3.1 in such a way that the minimum possible number of agents
gain from integration (that is, k, per Proposition 3.1), and that the size of such gains is
as small as possible (+1). On the other side, the welfare losses of the remaining n — k
individuals go from —2 to —n + 1 (the largest possible welfare loss). We can replicate
such construction for EHMs with arbitrary values of n and k as described in the proof

of Proposition 3.1 to obtain:

T(o*) = T%(k*l—Zn—z) (3.1)
_ %(k +n2_:z> (32)
- ni< ekt k)<2_k+1)) (33)
= —%n —n—k - k) (3.4)

This establishes that our lower bound can be attained for arbitrary values of n and k.
Interestingly, our lower bound does not depend on the size of each community relative

to the size of the whole society. Note that when n grows and k remains constant,
T(o*) ~—1/2.

We now show that our lower bound for I'(¢*) is tight, with the help of some additional
definitions and two auxiliary lemmas. Given a core allocation z* for a HM (N, >) and
an integer r such that 1 < r <mn, let m(r,2*) = |{i € N : rk;(z})}| = r. Similarly, let
M(r,z*) = |{i € N :rk;(z})}| > .

LEMMA 3.1. In any core allocation x*, rk;(xf) < rk;(w;).

)

Proof. This is a well-known fact due to any core allocation being individually rational.
O

LEMMA 3.2. In any core allocation x*, m(r,z*) <n —r+ 1.

Proof. For r = n, our lemma says m(n,z*) < 1. Note that if rk;(z}) = n, then ;* = w;
because of Lemma 3.1. Therefore, we cannot have m(n,x*) > 1, as otherwise two agents
are assigned their own house but they would like to exchange their house with each other,

and thus z* is not a core allocation.
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For r = n — 1, suppose by contradiction that m(n — 1,z*) > 2. Then there exists
three agents j, [, h for which rk(z}) = n — 1 for all i € {j,1,h}. But for each of those
agents, there exists a house w; € {w;,w;,w,} such that w, =; =} and W, >; w; for all
i € {j,1,h}. Therefore, x* is not a core allocation, since there is a reallocation of houses

among j, [, h that is effective for such coalition and that is strictly preferred.

The same argument applies to any other values of r < n—1. Suppose by contradiction
that there exists some " < n — 1 such that m(r’,z*) > n — 1’ 4+ 2. Then there are
n —r’ 4+ 2 agents for which rk(z}) = 7’. But for each of these agents i, there exists a
house w; belonging to one of these n — 1’ 4 2 agents such that w; >; 7 and w; >; w;.
Therefore, £* is not a core allocation, since there is a reallocation of houses among those
n — 1’ + 2 agents that is effective for such coalition and that is strictly preferred. Hence,

the argument holds for all r.

LEMMA 3.3. In any core allocation x*, M(r,z*) <n —r+ 1.

Proof. For r = n, the statement in Lemma 3.3 is the same as in Lemma 3.2. Forr =n—1,
assume by contradiction that M (n — 1,2*) > 2. By Lemma 2 we cannot have that two
agents are allocated a house ranked n for both, or that three agents are allocated a house
ranked n — 1. Thus, it must be that one agent gets a house ranked n (agent j) and two
agents get a house ranked n — 1 (agents h and [). Then we have x; = w; by Lemma
3.1. Furthermore, for i € {h,l}, there are two houses z},z; € {w;,wp,w;} such that
x; >=; x; and z; >; =}, where x} # w; per Lemma 3.1. If, for either agent h or [, 2} = wj,
then j and such agent would like to exchange their endowments and would be strictly
better off, and thus rky(w;) = rk;(w;) = n. But because rky(x)) = rki(z;) = n — 1, they
must be getting their own houses, that is, ;, = w, and z; = w;. But then, agents h
and [ are better of by trading their endowments, and thus x* is not a core allocation, a

contradiction. The same argument applies for all other values of r < n — 1. O

Armed with these three auxiliary lemmas, we are ready to prove that I'(c*) >

W By Proposition 3.1, at most n — k people may experience negative gains
from integration. These are defined, for each agent i, as ;(0*) = rk;(o/(i,C)) —

rk; (07 (i, N)). To make ~;(c*) as small as possible, we need to fix rk;(c}(i,C)) = 1
and make rk; (o (i, N)) as large as possible. But Lemma 3.3 shows that rk(o} (i, N)) = n

for at most one agent, rk;(c7 (i, N)) > n — 1 for at most two agents, and so on. Thus, in
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the worst-case scenario, the sum of the welfare gains from integration among those n —k

agents equals

1
ol

2 /{32 —k
S -y =2 +”2+ (3.5)
=1

Similarly, the smallest positive gains from integration for the remaining k agents
(which must exist by Proposition 3.1) are equal to 1. Thus, the smallest possible value
for T'(o*) is

T/ % 1 2 2
F(U):—ﬁ(n —n—k*—k) (3.6)

]

Proposition 3.2 can be compared to an analogous result in Gale-Shapley marriage
markets. The average welfare gains may also be negative in Gale-Shapley markets,
but only up to 37.5% of the length of preference lists (Ortega, 2019).° Taken together,
Propositions 3.1 and 3.2 show that the integration of Shapley—-Scarf markets can be hard
to achieve, and in particular is more difficult to obtain (in the worst-case scenario) than

in Gale-Shapley marriage markets.

3.5 Average-case Results

In the previous section, we found two negative results regarding the integration of
Shapley—Scarf markets; however, both results are about worst-case scenarios. While
these results are interesting on their own, one may argue that these are knife-edge sce-

narios, and wonder whether market integration would generate welfare gains on average.

To answer this question, we study random housing markets (RHM). Given a set of
agents, an RHM is generated by drawing a complete preference list for each agent in-
dependently and uniformly at random. Similarly, a random extended housing market
(REHM) is an RHM where the set of agents is partitioned into disjoint communities
Cy,...,Cy, each of size ny,...,n; (where n = ny + ... + ng). We emphasize that the
randomness refers to agents’ preferences and not to the partition C, which is determin-
istic. Random housing markets were first studied by Frieze and Pittel (1995) and Knuth
(1996). The latter proved the following seminal result.

6This lower bound is not proven to be tight but is the best bound available.
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LEmMMA 3.4 (Knuth, 1996). In a« RHM, E(> ", rk;(z})) = (n+ 1)H,, — n, where H, is
the n-th harmonic number, that is, H, =Y %

We can use Knuth’s theorem to find the expected size of the average welfare gains in
REHMs. Let us define the total gains from integration for community C; as I'¢,(0) ==
Ziecj 7;:." The average percentile gains from integration for community C; are denoted
by fcj (o) = ]’:l(_?(;) We divide by n; to take the average across all agents in the community
C;, and by n to normalize by the length of agents’ preference lists. Equipped with these
new definitions, we can compute average gains from integration, which are positive for

agents belonging to any community.

PI'OpOSitiOl’l 3.3. E[T(}] (O'*)] _ (n+1)[(nj+1)Hnj—nj] . (n—l—l)Hn—n'

n;(n;j+1)n n?

Proof. For any 7,7 € C; and any community C, define the relative rank of house wy, in
the preference order of agent i by rk;(wy) = |{l € Cj :w; =; wyp}|. This is, the relative
rank indicates the position of a house in an agent’s preference ranking compared only to
houses owned by other agents belonging to the same community. Knuth’s result directly

implies that

n

E[Z rk;(o*(i, N))] = (n+1)H, —n,and (3.7)
E[ZJ vk, (0*(i,C;))] = (n; + )H,, —n;, Vje{l,... k} (3.8)

So that before integration, agents are assigned to a house relatively ranked (n; +
1)H,,, —n;. To complete the proof, we need to figure out which position is such a house
in the absolute rank of all houses (that is, convert the relative rank into the full rank). To
do so, suppose that a house assigned to an agent in a segregated allocation has a relative
rank ¢q. A randomly chosen house, belonging to an agent from another community, could
be better ranked than house 1, between houses 1 and 2, ..., between houses ¢ — 1 and g,
and so on. Therefore, a random house belonging to another agent is in any of those gaps
with probability # and thus has # chances of being more highly ranked than the
house with relative ranking gq. There are (n — n;) houses from other communities. On
q(;_flj ) houses will be better ranked. Furthermore, there were already ¢ houses
in his own community ranked better than it. This implies that its expected ranking is

average,

"Recall that v;(0) = rk;(0(i, C)) — 1k; (0 (i, N)).

81



q+ q(:j::;j) = quii) . Substituting ¢ for the expression obtained in equation (3.8), we

obtain

BT, () = W0 D il D 2y

nj(n; + 1)n n

]

Proposition 3.3, which is interesting per se, provides valuable comparative statics,

which we present in the following Corollary.

Corollary 3.1. The expected welfare gains from integration are positive for all agents

and higher for agents in smaller communities.

For example, if we merge three Shapley—Scarf markets of size 60, 30, and 10, the
corresponding welfare gains in terms of house rank are 1.98, 5.95, and 16.16, that is,
agents from the market with only 10 agents improve the ranking of their assigned house
by 16 positions, whereas those in the market with 60 agents only improve theirs by
2 positions. In percentile terms, agents from the smallest market improve the rank
of their assigned house by 16% of the length of their preference list, whereas agents
from the largest market increase their corresponding rank only by 2% of the length of
their preference list. Our theoretical predictions match very accurately the gains from
integration observed in simulated random markets. Averaging the results of a thousand
random markets (with three markets each of sizes 60, 30 and 10), we obtain that the
realized gains from integration are 2.07, 5.93, and 16.12 (with standard deviations of
1.31, 2.27, and 5.82, respectively).®

We now turn to study the expected number of agents who are harmed by integration
in each community, that is, [N (07)[. To do so, we relate the number of trading cycles
in TTC for the segregated markets to the number of agents harmed by integration via
two auxiliary Lemmas. For any community, C;, let ¢; be the number of cycles obtained

by TTC when computing the segregated core allocation o*(-,C;), and let ¢t := E?Zl t;.”

Our first auxiliary Lemma relates |[N¢, (07)] to t;.

LEMMA 3.5. In any EHM, |N¢ (0%)| < nj —t;.

8The corresponding code is available from www. josueortega.com.
9To clarify, ¢ is the number of cycles, not of iterations. One iteration in TTC may generate more
than one cycle.
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Proof. In any cycle obtained by TTC when computing the segregated core allocation
o*(-,C;), we must either have that all agents in the cycle are in Ngj (o) or that at least
one agent is in Ngj (c*). Otherwise, there is a cycle (involving a set of agents S) with
at least one agent in N (o) and with no agent in NCJCJ, (¢*). Such a combination cannot
occur. If all agents in the cycle are in Ngj(a*), then those agents are clearly a blocking
coalition to the integrated core allocation. If some agents are in Naj(a*) and some in
Ngj (¢*), then when we run TTC to find the integrated core allocation, there is an agent
i € Ng,(0") who is pointed by an agent & € Ngj(a*), that is, h’s assignment does not
change (it is w; before and after integration) but the one of i becomes worse. But when
we run TTC, 7 points to the agent owning the best house available. Now, if o*(i,C) is
no longer available, it means that its owner exited in an earlier cycle during TTC, and
thus she must have received a better house, and thus there is an agent in NCJC]_ (0%), a

contradiction. O

Our second auxiliary lemma computes the expected number of cycles in random
housing markets. It appears as Theorem 2 in Frieze and Pittel (1995). Let ¢ denote the

number of cycles formed during the execution of TTC in an RHM with n’ agents. Then,

LEMMA 3.6 (Frieze and Pittel, 1995). E[t'] = v2mn/ + O(logn’).

Note that Lemma 3.6 implies that, in a REHM:
V/2mn; + O(log n;) (3.10)

Combining Lemmas 3.5 and 3.6, we obtain an upper bound on the expected number
of agents harmed by integration in each community. Proposition 3.4 below presents this

upper bound.

Proposition 3.4. E[|N¢ (6%)|] < n; — /27n; — O(logn;).

Proof. Substituting ¢; in Lemma 3.6 for its value in equation (3.10) together, we directly

obtain the proof of our result. n

Proposition 3.4 provides, as a Corollary, a bound on the expected total number of

agents in the whole economy that are harmed by integration.

Corollary 3.2. E[N~(¢*)] < n— V27 (3}, ;) — O(log [T5_; ny).
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Proposition 3.4 is our only bound that is not tight, but is nevertheless informative.
Returning to our example of an EHM divided into three communities of sizes 60, 30,
and 10, Proposition 3.4 tells us that, on average, the TTC algorithm generates around
30 trading cycles when computing the integrated core allocation. In each of those cycles,
at least one person is not harmed by integration. Consequently, at most 70 agents can
be harmed by integration. But Proposition 3.4 says more: it tells us the distribution
of agents harmed by integration across communities. Thus, in the market of size 60,
the expected number of agents harmed by integration is smaller than 44. Similarly, for
the markets of sizes 30 and 10, the expected number of agents harmed by integration is

smaller than 19 and 4, respectively.

Another Corollary of Proposition 3.4 is that whenever all communities have the same
number of agents n;, market integration never harms more than half of the total popu-

lation if ny is sufficiently small.

Corollary 3.3. Ifny = ... = ng, then E[[N~(0*)|] < § if ny < 87~ 25.13.
Proof. From Corollary 3.2, we have that:

E[N~(c")] = kn; —kv2mn; — O(lognk) (3.11)

and therefore E[N~(c*)] is less than n/2 when

km

E(ny —v2mnp) — O(logn) < - (3.12)
n < 2[V2mng + O(lognf) /K] (3.13)
In particular, condition (13) is satisfied whenever:
ny < 2[y2mn] =81~ 25.13 (3.14)
O

For several sensible combinations of parameters, we never observe that the number
of agents harmed by integration was over 50%. The fraction of agents harmed by inte-
gration was between 14% to 22%, and becomes smaller as k increases and as n decreases
(see Table 3.2). The intuition behind these changes is that as k grows, integrations of-

fer more opportunities for trade; whereas when n grows (and k remains constant) the
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probability that the integrated and segregated matchings are the same becomes smaller,
and therefore more agents benefit and are harmed by market integration (because fewer
agents are unaffected by integration). Our simulations show that the bound in Propo-
sition 3.4 regarding the number of agents harmed by integration can be improved. We

leave this interesting question for future research.

Table 3.2: Fraction of agents affected by integration.

Average over a thousand simulations with preferences drawn uniformly at random. Standard errors in parenthesis.

n k
2 3 5

Benefit Harmed Benefit Harmed Benefit Harmed
25 53.52 19.95 64.68 17.63 75.05 14.08

(6.8) (4.66) (5) (3.54)  (3.59) (2.55)

50 54.64 21.45 65.57 18.47 75.54 14.67
(4.47) (347)  (3.52) (2.66)  (2.41) (1.84)

100 55.4 22.17 66.06 18.99 75.88 14.88
(3.28) (2.34)  (2.42) (1.8)  (1.78) (1.34)

Other Interpretations As discussed in the related literature section, the core from
random endowments is equivalent to the allocation obtained with random serial dictator-
ship in a market with no property rights, that is, assigning a random order among agents
and letting them choose their most preferred object that remains available according to
such order (Knuth, 1996; Abdulkadiroglu and Sonmez, 1998). Therefore, the results ob-
tained for random markets in this section also apply to the integration of markets with

no endowments in which random serial dictatorship is used.

3.6 Specific Preference Domains

Although uniform and independent preferences are the most natural and simple prefer-
ences to consider in random markets, it is well-known that in real-life applications such as
kidney exchange, agents’ preferences are strongly correlated, with some “houses” being
particularly desired by most agents. In this section, we show that if preferences satisfy a
particular type of correlation structure, we can guarantee that no more than half of the

total population of agents is harmed by integration.
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To do so, let g(r, ;C]—) be the set of agents in the community C; placed at rank r by
any agent in their own community (including themselves) in preference profile ;Cj. This
is, for any positive integer r and any j € {1,...,k}, q(r,>¢,) = {i € C; : Ih € C; :
rk;(w;) = r}. Similarly, let Q(r, >¢,) = LTJ q(t, >¢,) be the set of agents in community

t=1

J placed at rank r and above.

Now we introduce the property that will ensure that market integration does not
harm a majority of agents, which we call sequential dual dictator. This property was
recently introduced by Troyan (2019) in a two-sided extension of a Shapley—Scarf market,

which he used to characterize the obvious strategy-proof implementation of TTC.

Definition 1 (Sequential dual dictator property). A preference profile > satisfies the
sequential dual dictator property if, for any positive integer r and Vj € {1,...,k}, each

of their corresponding preference restriction ¢, satisfies

’Q(Tu ;Cj>’ S r+1

In Example 3.3, we show that the preference profile in Example 3.1 does not satisfy
the sequential dual dictator property and provides a preference profile that does. In
Example 3.1, |Q(1, =¢,)| = [{b, ¢, a}| > 2, violating the sequential dual dictator property.
Similarly, |Q(1,=¢,)| = e, f,g,d}| > 2. In contrast, in the profile on the right in
Example 3.3, [Q(1, a,)| = [{e.a}] < 2, 1Q(LZe)| = e, S} < 2 and [Q(2, S| =
I{e, f,d}| < 3. Whenever preferences satisfy the sequential dual dictator property, we
can guarantee that no more than half of the agents in each community are harmed by
integration. Note that, in contrast to Proposition 3.4, here we bound the number of
agents harmed by integration in every EHM, instead of the expected number of agents

harmed by integration across all REHMs.

Example 3.3: The preference profile on the right satisfies the sequential dual dictator
property, unlike the one on the left.
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Proposition 3.5. If > satisfies the sequential dual dictator property, then |N5j(cr*)| <

nj

5

Proof. To complete the proof, we examine the number and length of trading cycles
generated by the TTC algorithm when computing the segregated core allocation o*(-, C})
for community C;. At the first iteration, all agents point to the owner of their most
preferred house, and if the sequential dual dictator property is satisfied, there are only
two vertices with a positive in-degree. A trading cycle is created, either of those agents
pointing to themselves or pointing at each other, and therefore each cycle created in the
first iteration of TTC has length at most 2. In the second iteration, at most two agents
have positive in-degree (because at least one agent was removed in the first iteration).
Either one or two cycles are formed in iteration 2, and they have length of at most 2.

The argument repeats for each iteration: each trading cycle has length at most 2.

Now we invoke an argument that we used in the proof of Lemma 5, showing that in
any cycle, we must either have that all agents are in N°(c*) or that at least one agent
is in Ngj (0*). We have shown that there are at least n;/2 cycles in each community.
Therefore, [N (0*)] < R O

One particular case of preference profiles satisfying the sequential dual dictator prop-
erty are those in which all agents have the same preferences. Such preferences have
been extensively studied in Gale-Shapley marriage markets because they guarantee the
uniqueness of the core allocation and ensure that truth-telling is a Nash equilibrium of
the revelation game induced by any stable mechanism (Gusfield and Irving, 1989). The
sequential dual dictator preference domain is larger than this classical domain of equal
preferences. The sequential dual dictatorship only imposes a particular structure on the
preferences of each community over its own houses and is therefore substantially less

restrictive than identical preferences.

3.7 Conclusion

Market integration leads to more efficient outcomes and yet real-life offers plenty of
examples of markets that fail to integrate and operate disjointly. In this paper, we have
provided results that shed light on why this might be the case for a specific type of

market where monetary transfers are not permitted.
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Our explanation lies in the fact that market integration may have negative conse-
quences for most traders. These negative consequences are so dire that they vastly
outweigh the welfare benefits of those who become better off with market integration.
Somewhat surprisingly, the average effect on the economy can be so bad that the average

trader ends up with an allocation in the lower half of their preference list.

These negative consequences of market integration, however, are the exception rather
than the rule, as we have shown formally. Two interesting open problems for further
research are: i) to obtain conditions that fully characterize which types of Shapley—Scarf
markets benefit from integration, and more generally, ii) to provide a comprehensive and

unified discussion of the institutional features that prevent markets from integrating.
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