
Design and Analysis of Some Symmetric Key
Schemes for Encryption and Authentication

A thesis submitted to the Indian Statistical Institute
in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Computer Science

Samir Kundu
Senior Research Fellow

Applied Statistics Unit
Indian Statistical Institute
Kolkata - 700108, India

Dedicated to
To My Family

2

LIST OF PUBLICATIONS

1. Debrup Chakraborty, Avijit Dutta and Samir Kundu, “Designing tweakable

enciphering schemes using public permutations.", Advances in Mathematics of

Communications, 2023, 17(4): 771-798.

DOI: https://doi.org/10.3934/amc.2021021.

2. Debrup Chakraborty and Samir Kundu, "On the security of TrCBC." Infor-

mation Processing Letters 179 (2023): 106320.

DOI: https://doi.org/10.1016/j.ipl.2022.106320

3. Nilanjan Datta, Avijit Dutta and Samir Kundu, “Tight Security Bound of

2k-LightMAC_Plus.” Proceedings of 24th International Conference on Cryptol-

ogy in India, INDOCRYPT 2023. (To Appear)

3

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere gratitude to all those who

have contributed to the completion of my PhD thesis.

First and foremost, I am deeply grateful to my supervisor, Dr. Debrup Chakraborty,

for his unwavering support, guidance, and mentorship throughout my research jour-

ney. His valuable comments, motivating discussions and ideas help a lot in my re-

search work. I am indebted to Dr. Avijit Dutta and Dr. Nilanjan Datta, who have

helped me with their noble guidance, support, and encouragement being my senior

and collaborator.

I am sincerely grateful to Prof. Bimal Kumar Roy, Prof. Palash Sarkar, Prof. Mridul

Nandi and Prof. Subhamoy Maitra, for their invaluable help and guidance.

I thank Avishek, for his support and for motivating me in my low time of the PhD

journey. I am also thankful to the former and current members of our research group,

including Mostaf, Prabal, Nayana, Subhadip-da, Laltu-da, Amit-da, Diptendu-da,

Butu-da, Soumya, Pritam, Biswajit, Suprita, Susanta, Sougata, Aniruddha, Jyotir-

moy, Animesh, Chandranan, Gourab, Anup, Suman, Suvo with whom I have always

had fruitful discussions and enjoyable times. In addition to the research group, I

would like to express my thanks to Anurag, Chotu, Dipayan, Pitamber, Subhankar,

Manab, Samir and Sumanta for their support and friendship throughout my journey.

I would like to express my heartfelt gratitude to my entire family for their unwavering

support and guidance. My dream of pursuing research would be incomplete without

the constant support and encouragement from my parents Mr. Dharani Kundu and

Mrs. Kanchan Kundu, sister Laxmi Kundu and uncle Shantimoy Mondal. Last but

not the least, I am grateful to Sumana, for her support, which has been a constant

source of inspiration for me.

Samir Kundu

4

ABSTRACT

This thesis mainly focuses on the design and analysis of tweakable enciphering schemes

(TESs) and message authentication codes (MACs).

Tweakable enciphering schemes are length preserving encryption schemes that

provide security of a strong tweakable pseudorandom permutation. There are several

constructions of TES using block ciphers as the main cryptographic primitive. Re-

cently, public random permutations have been widely considered as a replacement for

block ciphers in several cryptographic schemes, including Authenticated Encryption

(AE) schemes, MACs, etc. However, to the best of our knowledge, a systematic study

of constructing TESs using public random permutations is missing. We fill this gap

by constructing TES using public permutations. We propose two main constructions

with several variants. The basic construction, which we call ppTES is generically

constructed using a public random permutation, a length expanding pseudorandom

function (PRF) based on public random permutations and an almost xor-universal

and almost-regular (AXUAR) hash function. We show a concrete instantiation of

ppTES and prove its security using the H-Coefficient technique.

ppTES requires both forward and inverse calls to the public random permutation.

Most public random permutations are designed with the goal of making the forward

calls extremely fast. Thus, a TES construction that does not need computing the

inverse of a permutation will have better efficiency. This fact leads us to design

a TES that uses a public permutation but does not require the inverse calls to the

permutation. We call this construction as IpTES. In addition to a public permutation,

IpTES uses an AXUAR hash function. To ensure the inverse free property, we suitably

use a two-round Feistel structure. We prove that IpTES is a birthday bound secure

public permutation based TES.

The rest of the work is on MACs. TrCBC is a variant of the famous CBC MAC

which was proposed by Zhang et al. in 2012. It was claimed that TrCBC is a secure

MAC with significant efficiency advantages over other secure variants of CBC. The

authors also mentioned the only disadvantage of TrCBC to be the fact that it produces

5

shorter tags; in particular, it was claimed that TrCBC can only produce secure tags

of length less than n/2, where n is the block length of the underlying block cipher.

We mount a concrete practical attack on TrCBC. We show that with high probability,

an adversary can forge TrCBC with tag length n/2 − 1 with just three queries. We

discuss some general scenarios of our concrete attack and also do a detailed analysis

of the authors’ security claims of TrCBC.

Next, we study variable output length pseudorandom functions and their use in

constructing secure MACs, which can produce tags of varying lengths using the same

key. In this regard, we propose a generic construction of converting a fixed output

length PRF to a variable output length PRF and discuss its utility in constructing

MACs. We also propose some modifications to the famous block cipher based MAC

called PMAC to equip it to produce tags of varying lengths.

Finally, we do an extensive study of a newly proposed MAC, 2k-LightMAC_Plus.

2k-LightMAC_Plus was proposed by Datta et al. in FSE 2018, where the author

proved that the scheme provides 2n/3 bits of security. We improve this bound and

show that 2k-LightMAC_Plus provably achieves 3n/4 bit security. We also exhibit

a matching attack on the construction and hence establish that our bound is tight.

Our proof uses several components of Mirror Theory.

6

Contents

1 Introduction 15

1.1 Cryptography and The Objects of Our Interest 15

1.2 Scope of the Thesis . 18

2 Preliminaries 21

2.1 Notations . 21

2.2 Adversary and Advantage . 22

2.3 Basic Building Blocks . 24

2.4 H-Coefficient Technique . 28

2.5 Permutation Based Cryptography . 30

2.6 Tweakable Enciphering Schemes . 31

2.6.1 Various Model of Designing TES 33

2.7 Message Authentication Codes . 34

2.7.1 MACs Based on Block Ciphers 36

2.7.2 MACs Based on Cryptographic Hash Functions 38

2.7.3 MACs Based on Universal Hash Functions 38

3 Designing Tweakable Enciphering Schemes Using Public Permuta-

tions 41

3.1 TES Based on Public Random Permutation 42

7

3.2 PRF Based on Public Random Permutation 43

3.3 HCTR Construction . 44

3.4 ppTES : A Generic Public Permutation Based TES 46

3.4.1 Length Expanding Pseudorandom Function 48

3.4.2 Security of ppTES . 49

3.5 Proof of Theorem 3.4.3 . 51

3.5.1 Initial Set Up . 51

3.5.2 Attack Transcript . 52

3.5.3 Definition and Probability of Bad Transcripts 53

3.5.4 Analysis of Good Transcript 55

3.6 ppCTR: Public Permutation Based Length Expanding PRF 56

3.6.1 Security Analysis of ppCTR 57

3.6.2 Definition and Probability of Bad Transcripts 58

3.6.3 Analysis of Good Transcript 61

3.6.4 ppHCTR : An Instantiation of ppTES with ppCTR and PolyHash 62

3.7 ppHCTR+ : A Single-Keyed Variant of ppHCTR 62

3.7.1 Security Result of ppHCTR+ 64

3.8 Proof of Theorem 3.7.1 . 64

3.8.1 Definition and Probability of Bad Transcripts 65

3.8.2 Analysis of Good Transcript 72

4 IpTES: An Inverse-free Tweakable Enciphering Schemes Using Public

Permutations 75

4.1 IpTES : A Inverse-Free Single-Keyed TES 75

4.2 Security Proof . 76

4.2.1 Definition and Probability of Bad Transcripts 78

4.2.2 Analysis of Bad Transcripts: 79

4.2.3 Analysis of Good Transcript 86

5 On the Security of TrCBC 89

5.1 CBC-MAC . 90

8

5.2 The Scheme TrCBC . 91

5.3 An Attack on TrCBC . 92

5.4 Discussions . 94

6 Variable Output Length Message Authentication Codes 99

6.1 Variable Output-Length PRF (vlPRF) 100

6.2 Variable Output-Length MAC (vlMAC) 101

6.3 Constructing vlPRF from Fixed Input Length and Fixed Output Length

PRF . 103

6.4 Constructing vlPRF from Variable Input Length and Fixed Output

Length PRF . 107

6.5 Variable Length MACs Using vlPRF 107

6.6 vlPMAC: Variable Output-Length Variant of PMAC 108

6.7 Proof of Theorem 6.6.1 . 110

7 Tight Security Bound of 2k-LightMAC_Plus 117

7.1 Beyond Birthday Bound Secure Variants of LightMAC 118

7.2 Our Contribution . 119

7.3 Mirror Theory . 120

7.4 2k-LightMAC_Plus . 122

7.4.1 Security Result of 2k-LightMAC_Plus 123

7.5 Proof of Theorem 7.4.1 . 124

7.5.1 Description of The Ideal World 124

7.5.2 Definition and Probability of Bad Transcripts 128

7.5.3 Analysis of Good Transcript 142

7.6 Matching Attack on 2k-LightMAC_Plus 144

7.6.1 Attack Idea . 145

7.6.2 Attack Complexity . 147

8 Conclusion 149

8.1 Summary of Contributions . 149

9

8.2 Future Work . 151

10

List of Figures

3.3.1 HCTR construction based on an n-bit block cipher Ek and an n-bit

Polyhash function. The left part of the algorithm is the encryption

function and the right part is the decryption function. 45

3.3.2 Pictorial description of HCTR, where EK is the underlying block ci-

pher, PolyKh is the poly-hash function and CtrEK is the counter mode

encryption. 46

3.4.1 ppTES based on an n-bit public random permutations π1, an AXUAR

hash function Hkh and a public permutation based length expanding

PRF Fπ2k . M ∈ {0, 1}≥n is the input message and T ∈ {0, 1}tw is the

tweak. The left part of the algorithm is the encryption function and

the right part is the decryption function. 47

3.4.2 Algorithm corresponding to a length expanding random function. T[x]1,...,b

denotes the first b many blocks stored at the x-th entry of table T. . . 50

3.6.1 ppCTR construction with an n-bit input z and an integer b = 3 and

corresponding output S1‖S2‖S3. π is the public random permutation,

k is the key and γ is the root of a primitive polynomial of GF(2n). . . 57

3.7.1 ppHCTR+ based on an n-bit public random permutation π and an n-

bit random hash key kh. The left part is the encryption algorithm and

the right part is its decryption algorithm. 63

11

4.1.1 IpTES based on an n-bit public random permutation π and an n-bit

random hash key kh. The left part is the encryption algorithm and the

right part is its decryption algorithm. 77

4.1.2 Two round Feistel based on an n-bit public random permutation π. . 77

5.1.1 The function CBCK(M). EK is a block cipher of block size n and

M = M1|| . . . ||M`, where |Mi| = n, for i ∈ [`]. 91

5.2.1 Specification of TrCBC instantiated with an n-bit block cipher EK . . . 92

5.2.2 The TrCBC construction. The first figure is for the full block messages,

i.e., the message length is a multiple of the block size n, and the second

figure is for messages whose length is not a multiple of n. Padn(M`) =

M`‖10n−|M`|−1 and τ < n/2. 93

6.3.1 Constructing a vlPRF F ′ from a PRF F . And, (h,K) ∈ K′ × K,
(x, τ) ∈M× L . 103

6.5.1 Specification of vlPMAC construction based on an n-bit block cipher

EK , where γ is the root of a primitive polynomial inGF (2n). Padn(M`) =

M`‖10n−|M`|−1. 109

6.7.1 Description of the collision events of vlPMAC. 112

7.4.1 Algorithmic Specification of the 2k-LightMAC_Plus construction pro-

posed by Datta et al. [37]. fix0 and fix1 are two functions that take

an n-bit input and return an n-bit output string such that its most

significant bit is set to 0 and 1 respectively. s denotes the size of the

block counter. 〈i〉s denotes the s bit binary representation of integer i. 122

7.4.2 Pictorial description of the 2k-LightMAC_Plus [37]. 123

12

7.5.1 Offline phase of the Ideal oracle Oideal: Boxed statements denote bad

events. Whenever a bad event is set to 1, the oracle immediately aborts

(denoted as ⊥) and returns the remaining values of the transcript in

any arbitrary manner. So, if we proceed further we can surely assume

that the event ⊥ (and so any bad event so far) does not hold. We write

> when the value of a variable is not defined. 127

7.5.2 (a) represents a W-path and (b) represents a M-path. 143

13

14

1
Introduction

This Chapter begins with a token introduction to Cryptography and a description of

two broad cryptographic schemes, namely tweakable enciphering schemes and message

authentication codes. Finally, we discuss in detail the scope of the thesis and provide

a short description of the following Chapters.

1.1 Cryptography and The Objects of Our Interest

In our contemporary digital era, the concept of security primarily revolves around

maintaining the confidentiality of information. This means ensuring that digital data

transmitted via various channels remains concealed from unintended recipients in the

network. It is essential to recognize that the need for confidentiality and security is

a social construct. If no individuals were interested in the specific information being

safeguarded, the concept of secrecy would lose its relevance. Consequently, we gauge

security in qualitative terms, considering the determination and capability of poten-

tial adversaries who might be interested in the protected information. Cryptography,

at its core, involves the art of concealing information. While a cryptosystem aims

to maintain the secrecy of data, adversaries might attempt to break it, either by

recovering the actual data or by extracting valuable insights from it. This practice

of breaking cryptosystems is widely known as Cryptanalysis. The term Cryptology,

derived from the combinations of cryptography and cryptanalysis, represents the sci-

entific field dedicated to studying the art of secure communication.

15

Cryptography is broadly categorized into two parts: symmetric-key and public-

key cryptography. Symmetric-key cryptography employs a single secret key for both

encryption and decryption, which must be shared between both the communicating

parties. Public-key cryptography uses a public key and a private key per entity. The

public key of an entity allows to encrypt the messages for the corresponding entity and

decrypt using the private key. Although public-key cryptography simplifies the key

distribution problem, symmetric-key cryptography is generally computationally more

efficient. As a result, a common approach in the real scenario is that for an initial key

exchange, we use public-key cryptography, and for ongoing communication, we use

symmetric-key cryptography. This thesis focuses on symmetric-key cryptography.

The two fundamental goals of symmetric-key cryptography are:

• Confidentiality. This ensures that any adversary accessing a communication

channel cannot derive information about the content of messages exchanged be-

tween communicating parties. It maintains the privacy of the message contents.

• Integrity. It guarantees that the adversary has not made any unauthorized

modifications to the exchanged messages. It prevents active adversaries from

tampering with transmitted messages, ensuring the content’s integrity.

In the symmetric key setting, confidentiality is achieved through encryption and

integrity/authenticity is achieved through message authentication codes. Several

kinds of encryption schemes are available in the literature which suit different applica-

tion areas. In this thesis, we concentrate on a specific type of encryption scheme called

a tweakable enciphering scheme. Additionally, this thesis studies message authentica-

tion codes. Next, we will provide a non-technical introduction to these cryptographic

objects.

Tweakable Enciphering Schemes. A Tweakable Enciphering Scheme, or in short

TES, is a deterministic length preserving encryption scheme,i.e., the encryption algo-

rithm is not randomized and the length of the ciphertexts produced by such schemes

is the same as the length of the plaintext. TES are secure against adaptive chosen

16

plaintext and chosen ciphertext attacks, i.e., an efficient adversary should be unable

to differentiate ciphertexts produced by a TES from random strings and should not

be able to manipulate a ciphertext to decrypt into a meaningful message. An encryp-

tion scheme always takes as input a plaintext and a key and produces a ciphertext.

A TES, in addition to a key and plaintext, takes as input a quantity called a tweak.

A tweak is a public parameter that is meant to provide variability in the ciphertext,

i.e., the same plaintext, when encrypted with the same key but with different tweaks,

will produce different ciphertexts. The length preserving feature of TES, along with

its usage of tweaks, makes it a suitable candidate for low-level disk encryption. This

application for TES was first pointed out in [50]. Later, several constructions of TES

have been proposed in the last two decades. An IEEE standard [53] specifies two

TES, namely XCB [67, 20] and EME* [51, 48] as standards for disk encryption. A

related object is a tweakable block-cipher [62], which is a TES with a fixed (and

generally small) block length. TESs are designed to support plaintexts of arbitrary

lengths and are sometimes called wide block modes. A more comprehensive survey

of the tweakable enciphering schemes is presented in Section 2.6 of Chapter 2.

Message Authentication Codes. Message authentication codes, or in short MACs,

are the algorithms that provide integrity of a message, i.e., MACs allow the sender

to transmit a message in a way that if anyone modifies the messages in transit, then

the receiver can detect such modification with high probability. Here, the adversary

is an active adversary who can see the message, modify the message in transit and

also create new messages. A MAC scheme is a pair of algorithms (MAC generation

algorithm, Verification algorithm). On a given message and a key MAC generation

algorithm outputs a tag. The sender sends this tag along with the message. Now,

on a given message, the key and a tag, the Verification algorithm outputs either 0

or 1, where 1 indicates that the message is authentic and 0 indicates the message is

not authentic. There are several paradigms for constructing message authentication

codes. The most important properties sought for a MAC are its efficiency and the

security that it provides. Until now, new constructions of MACs have been proposed,

17

either more efficient than the previous ones, have a better security margin, or provide

a functionality absent in the previous constructions.

1.2 Scope of the Thesis

As already stated, this thesis focuses on designing and analyzing Tweakable Encipher-

ing Schemes(TES) and Message Authentication Codes (MAC)1. The thesis is divided

into seven chapters. Chapters 3 and 4 deal with TESs, and Chapters 5, 6, and 7

deal with MACs. In this section, we provide a brief overview of the contents of the

chapters that follow and also highlight our contributions.

Chapter 2 contains no new material. It introduces the general notation and de-

fines some cryptographic objects which are used throughout the thesis. This Chapter

also contains a brief survey of TESs and MACs.

In Chapter 3, we construct TESs using public random permutations. Pub-

lic random permutations are cryptographic objects that, in recent times, have seen

wide usage in the construction of different cryptographic schemes like hash functions,

authenticated encryption, message authentication codes, etc. Public random permu-

tations are seen as a more efficient alternative to block ciphers in certain scenarios.

However, to our knowledge, a systematic study of constructing TES using public ran-

dom permutations is missing. In this Chapter, we give a generic construction of a

TES that uses a public random permutation as the main cryptographic object; we

call our construction ppTES. In addition to public random permutations, ppTES uses

a length expanding public permutation based pseudorandom function (PRF) and a

hash function, which is both almost xor universal and almost regular. Further, we

propose a concrete length expanding public permutation based PRF construction.

We also propose a single keyed variant of ppTES. We prove the security of all our

constructions and provide concrete security bounds. The material presented in this

Chapter is based on the paper [18].

1All analysis and security claims in this thesis are in the classical setting, i.e., we do not consider
quantum adversaries.

18

Most existing public permutations have the property that they are faster in the

forward computation than in the inverse computation. Thus, a construction based

on a random permutation will be more efficient if it does not contain calls to the

inverse of the permutation. ppTES and its variant described in Chapter 3 requires

both forward and inverse calls to the public random permutation. In Chapter 4 we

propose a new public permutation based TES called IpTES, which does not use any

inverse call to the permutation. We thoroughly analyze its security and derive its

concrete security bound.

In Chapter 5, we analyze a message authentication code called TrCBC [88], which

was proposed by Zhang et al. in 2012. The authors claimed TrCBC to be a secure

message authentication code (MAC) with some interesting properties. If TrCBC is

instantiated with a block cipher with block length n, then it requires dλ/ne block
cipher calls for authenticating a λ-bit message and requires a single key, which is the

block cipher key. This is quite interesting, as all known secure variants of CBC-MACs

require more block-cipher calls than this. The authors state that TrCBC can have tag

lengths of size less than n/2. We show a concrete attack on TrCBC. Particularly, we

show that with high probability, an adversary can forge TrCBC with tag length n/2−1

with just three queries. The attack that we show can be applied to forge a large class

of messages. The authors proved TrCBC to be a pseudorandom function (PRF).

A scrutiny of the claimed PRF bound shows that for some recommended values of

tag lengths, the bound turns out to be quite large. Thus, the security theorem does

not imply security of TrCBC for all recommended tag lengths. The contents of this

Chapter are based on the paper [21].

The heart of a message authentication code is the tag generation function, which

is used to both generate tags and verify them; it is well known that when the tag

generation function is a PRF, then the MAC can produce un-forgeable tags. A tag

generation function for a deterministic MAC is generally a variable input length and

fixed output length PRF. Most deterministic MACs designed with block ciphers, for

example, variants of CBC-MAC [4, 54, 72], PMAC [14] etc., are of this type. These

MACs are designed to generate tags of fixed length, and their security proofs also

19

consider the tags to be of fixed length. It may be desirable in some scenarios, say

for lightweight applications, that the MAC is equipped to produce tags of variable

length. Until recently, this aspect of MACs has not been studied. Recently, Ghosh

and Sarkar in [47] studied Wegman-Carter type MACs, which can produce tags of

variable length MACs. In Chapter 6 we study deterministic block cipher based

MACs, which can produce variable length tags. Specifically, in this Chapter, we

construct variable output length PRFs (vlPRF) and show how they can be used to

construct variable tag length MACs. We also propose a modification of the PMAC

scheme to enable it to securely generate variable length authentication tags.

In Chapter 7, we do an improved security analysis of an existing MAC called

2k-LightMAC_Plus. In ASIACRYPT’17, Naito [65] proposed a beyond-birthday-

bound variant of the LightMAC construction, called LightMAC_Plus, which is built

on three independently keyed n-bit block ciphers, and showed that the construction

achieves 2n/3-bits PRF security. In FSE’18, Datta et al. [37] have proposed a two-

keyed variant of the LightMAC_Plus construction, called 2k-LightMAC_Plus, which

is built on two independently keyed n-bit block ciphers, and showed that the con-

struction achieves 2n/3-bits PRF security. We show a tight security bound on the

2k-LightMAC_Plus construction. In particular, we show that it provably achieves se-

curity up to 23n/4 queries. We also exhibit a matching attack on the construction with

the same query complexity, hence establishing the tightness of our security bound.

The contents of this Chapter are based on the paper [36].

In Chapter 8, we conclude the thesis with a summary of presentations and a

discussion on future directions of research.

20

2
Preliminaries

2.1 Notations

Suppose X be a finite set then, X $← X denotes that X is sampled uniformly at ran-

dom from X . If (X1, . . . , Xr) is a sequence of r random variables thanX1, . . . , Xr
$← X

denotes that Xi’s are independently and uniformly sampled from X . Similarly, we

write X1, . . . , Xq
wor←−− {0, 1}n to denote that each Xi is sampled uniformly from

{0, 1}n \ {X1, . . . , Xi−1}, i.e., Xi
$← {0, 1}n \ {X1, . . . , Xi−1}. For q ∈ N, [q] denotes

the set {1, . . . , q}. For a natural number n, the set of all binary strings of length n is

denoted by {0, 1}n and {0, 1}≥n denotes the set of all binary strings of length at least

n. Therefore, {0, 1}≥0 is the set of all binary strings of arbitrary length (including the

empty string ε) and denoted by {0, 1}∗. For a natural number `, {0, 1}≤` denotes the
set of binary strings of length at most `. An element of {0, 1}n is called a block. For

x ∈ {0, 1}∗, |x| denotes the length of x in bits. For s ∈ N, first(s, x) denotes the first

s bits of a binary string x whose length is at least s. For x, y ∈ {0, 1}∗, x‖y denotes

the concatenation of x followed by y. For x, y ∈ {0, 1}n, we write x ⊕ y to denote

their bitwise xor. For any x ∈ {0, 1}∗, parsen(x) parses x as x1‖x2‖ . . . ‖x` where each
xi, for i ∈ [`− 1], is a block and 0 ≤ |x`| ≤ n. For any n ∈ N, we define an injective

function padn that takes an arbitrary string x ∈ {0, 1}∗ and returns y ∈ ({0, 1}n)∗,

defined as follows:

padn(x)
∆
= x‖10d,

21

where d is the smallest integer such that |padn(x)| is a multiple of n. For two positive

integers i, s such that i < 2s, we write 〈i〉s to denote the s-bit representation of

integer i. For b ∈ {0, 1}, we consider the function fixb that takes an n-bit binary

string x and returns x except its most significant bit is changed to bit b. Similarly,

for b ∈ {10, 11}, we consider the function fixb that takes an n-bit binary string x

and returns x except its two most significant bits are changed to b. For two pairs of

positive integers (i, j), (i′, j′) ∈ Z+×Z+, we write (i, j) � (i′, j′) to denote that either

i < i′ or (i = i′ and j < j′).

We write a q-tuple x̃ = (x1, . . . , xq) as (xi)i∈[q]. When all the elements of a tuple

x̃ = (x1, . . . , xq) are distinct, then by abusing of notation, we often write x̃ as the set

x̃ = {xi : i ∈ [q]}. We write X (q) to denote the set of all q tuples whose all elements

are distinct, i.e.,

X (q) = {(x1, . . . , xq) : xi 6= xj, ∀i 6= j}.

For a sequence of elements x1, x2, . . . , xs ∈ {0, 1}∗, we write xia to denote the a-th

block of the i-th element xi. For integers 1 ≤ b ≤ a, we write P(a, b) to denote

a(a− 1) . . . (a− b+ 1), where P(a, 0) = 1 by convention.

The set of all functions from X to Y is denoted by Func(X ,Y). When Y = {0, 1}n,
then we denote Func(X , {0, 1}n) simply as FuncX (n) and sometimes we write Func(n)

by omitting X when the domain of the function is understood from the context.

When X = {0, 1}n and Y = {0, 1}r, then we denote Func(X ,Y) as Func(n, r). We

denote the set of all n bit permutations by Perm(n).

2.2 Adversary and Advantage

In this section, we discuss about a cryptographic adversary and its distinguishing

advantages.

Adversaries and Oracles. A cryptographic adversary A is a randomized algorithm,

who has access to an oracle O. An oracle O is also an algorithm that provides

cryptographic functionality or information within a cryptographic scheme for analysis

22

and security evaluation. The interaction between the adversary A and the oracle O
generates a set of pairs τ = {(x1, y1), (x2, y2), . . . , (xq, yq)}, where x1, x2, . . . , xq are the

q many queries to oracle O by the adversary A and y1, y2, . . . , yq are the corresponding

responses by the oracle O. We consider the adversary as an adaptive adversary, which

means the i-th query by the adversary depends on the previous i− 1 responses.

Distinguishing Advantage. We consider two systems I and R and a distinguishing

adversary A. The adversary A is given access to either I or R. After completing

the interaction with an oracle O, A returns 1, denoted by AO ⇒ 1. This kind of

adversary is called a distinguisher and the game is called a distinguishing game. Now,

the goal of the distinguishing adversary or distinguisher is to distinguish between the

two systems I and R in a distinguishing game. The distinguishing advantage of the

distinguisher is defined as

AdvI
R(A)

∆
=
∣∣ Pr[AI ⇒ 1]− Pr[AR ⇒ 1]

∣∣ ,
where the above probability refers to the probability computed over the probability

spaces of the adversary A and the oracle O. If we take the maximum over the

advantages for all possible distinguishers A, who make q queries, we get the maximum

advantage and is defined as

max
A

AdvI
R(A).

Adversarial Resources. In the given definition of the distinguishing advantage of

the adversary A, the resources utilized by the distinguisher to distinguish algorithms

I and R are not explicitly mentioned. However, two main resources commonly consid-

ered for adversaries are time complexity and query complexity. The time complexity

(t) of an adversary A includes the time required for interacting with the oracle and

the time required for local computations. Query complexity (q) refers to the num-

ber of queries made by A to the oracle. Additionally, data complexity (σ) is the

total number of blocks queried by A to the oracle O. The maximum advantage in

distinguishing I and R, considering a class of adversaries with a maximum time com-

plexity of t and a maximum query complexity of q and maximum data complexity σ,

23

is defined as

AdvI
R(q, t, σ)

∆
= max

A
AdvI

R(A),

where the maximum is taken over all adversaries that make at most q queries with

maximum running time t and maximum data complexity σ.

2.3 Basic Building Blocks

Block Cipher. A block cipher is a function E : K × {0, 1}n → {0, 1}n, where

K = {0, 1}k. So a block cipher takes an n-bit input and produces an n-bit output

under the action of a k-bit key; the values of n and k vary for different block ciphers

and they are called the block length and key length, respectively. For any K ∈ K
and P ∈ {0, 1}n, we will denote a block cipher by EK(P) instead of E(K,P). It is

a requirement that for any K ∈ K, EK(·) must be a permutation, i.e., the function

EK : {0, 1}n → {0, 1}n must be a bijection. If EK is a bijection then for every

C ∈ {0, 1}n, there exists only one P ∈ {0, 1}n such that C = EK(P). EK(·) has an

inverse function denoted as E−1
K (·), such that P = E−1

K (EK(P)). A secure block cipher

is assumed to be a strong pseudorandom permutation.

Pseudorandom Functions. Let F : K × X → Y be a keyed function from X to

Y , which is denoted by F(k, x) or Fk(x), where K is called the key space, X is called

the input space and Y is called the output space. We view F : K × X → Y as a

family of functions {Fk}k∈K. Now consider a distinguisher A, who has oracle access

to either FK , where K
$← K, or a uniform random function from Func(X ,Y). Suppose

A makes at most q queries to its oracle and runs for time at most t. The task of the

distinguisher A is to distinguish if its oracle is the function FK or a uniform random

function from Func(X ,Y). We define the Pseudo Random Function (PRF) advantage

of A as

AdvPRF
F (A)

∆
= | Pr[AFK ⇒ 1]− Pr[ARF ⇒ 1] |,

24

where K $← K and RF
$← Func(X ,Y). F is said to be a (q, t, ε) secure PRF, if

AdvPRF
F (q, t)

∆
= max

A
AdvPRF

F (A) ≤ ε,

where the maximum is taken over all adversaries that make at most q queries and

runs for the time at most t.

Pseudorandom Permutation and Strong Pseudorandom Permutation. Let

E : K × X → X be a keyed bijective function on X , which is denoted by E(k, x) or

Ek(x), where K is called the key space, X is called the domain space. For each key

k ∈ K, the map Ek() is a permutation over the domain space X . Now consider a

distinguisher A, who has oracle access to either Ek where k is chosen uniformly from

K or a permutation chosen uniformly from Perm(X). Suppose A makes at most q

queries and runs for the time at most t. The task of A is to distinguish a permutation

E from a random permutation. We consider the Pseudo Random Permutation (PRP)

advantage of A as

AdvPRP
E (A)

∆
= | Pr[AEK ⇒ 1]− Pr[AΠ ⇒ 1] |,

where K $← K and Π
$← Perm(X). E is said to be a (q, t, ε) secure PRP, if

AdvPRP
E (q, t)

∆
= max

A
AdvPRP

E (A) ≤ ε,

where the maximum is taken over all adversaries with maximum running time t that

asks at most q queries.

Now, we define the security against those adversaries who have access to the keyed

permutations as well as their inverse.

As previously, let E : K × X → X be a keyed bijective function on X . Now consider

a distinguisher A, who has oracle access to a permutation and its inverse over X .
Suppose A makes at most q queries with maximum running time t. The task of

the distinguisher is to distinguish a permutation E from a random permutation. We

25

consider the Strong Pseudo Random Permutation (SPRP) advantage of A as

AdvSPRP
E (A)

∆
= | Pr[AEK ,E

−1
K ⇒ 1]− Pr[AΠ,Π−1 ⇒ 1] |,

where K $← K and Π
$← Perm(X). E is said to be a (q, t, ε) secure SPRP, if

AdvSPRP
E (q, t)

∆
= max

A
AdvSPRP

E (A) ≤ ε,

where the maximum is taken over all adversaries that make at most q queries with

maximum running time t.

Theorem 2.3.1. (PRF-PRP Switching Lemma) Let F : {0, 1}n → {0, 1}n be a

random function and E : {0, 1}n → {0, 1}n be a random permutation, for a natural

number n ≥ 1. Suppose A be a distinguisher with oracle access, which asks at most q

queries. Then

AdvF
E(A) ≤ q(q − 1)

2n+1
. (2.1)

A short proof of this lemma can be found in [28].

Almost (XOR) Universal and Almost Regular Hash Function. Let Kh,X be

two non-empty finite sets and H be an n-bit keyed function H : Kh × X → {0, 1}n.
Then, H is said to be an ε-Almost Xor Universal (AXU) hash function if for any

distinct X,X ′ ∈ X and for any δ ∈ {0, 1}n,

Pr[Kh
$← Kh : HKh(X)⊕ HKh(X ′) = δ] ≤ ε. (2.2)

Moreover, H is said to be an ε-Almost Regular (AR) hash function if for any X ∈ X
and for any δ ∈ {0, 1}n,

Pr[Kh
$← Kh : HKh(X) = δ] ≤ ε. (2.3)

A keyed hash function is said to be an (εaxu, εreg)-AXUAR hash function if it is εaxu-

AXU and εreg-AR hash function.

26

PolyHash Function. PolyHash [86] is one of the popular examples of an algebraic

hash function, defined as follows: for a fixed key kh ∈ {0, 1}n and for a message

M ∈ {0, 1}∗, we first apply a padding rule 0∗ i.e., pad the minimum number of zeros

to the end of M , so that the total number of bits in the padded message becomes a

multiple of n. Let the padded message be M∗ = M1‖M2‖ . . . ‖Ml where l = d|M |/ne
and for each i, |Mi| = n. Then,

PolyHashkh(M) = M1 · khl+1 ⊕M2 · khl ⊕ . . .⊕Ml · k2
h ⊕ 〈|M |〉n · kh, (2.4)

where l is the number of blocks of M∗ and the multiplications in Equation (2.4) are

in the field GF(2n). If M = ε, the empty string, we define Polykh(ε) = k2
h ⊕ kh.

Note that the use of the non-injective padding rule (i.e., appending 0∗ at the end of

the message) does not make the hash function insecure as the definition includes the

message length information, which is the safeguard against the xor universal attack.

The following well-known result says that the PolyHash defined in Equation (2.4)

with an n-bit key is an
(
`+1
2n
, `+1

2n

)
-AXUAR hash function, where ` is the maximum

number of message blocks.

Lemma 2.3.2. PolyHash as defined in Equation (2.4) is
(
`+1
2n
, `+1

2n

)
-AXUAR hash

function.

Proof. Consider two distinct messagesM1 andM2 with a maximum number of blocks

less than `. Thus according to Equation (2.4), for any δ ∈ {0, 1}n,

PolyHashkh(M1)⊕ PolyHashkh(M2)⊕ δ

is a non-zero polynomial on kh of degree at most ` + 1. Hence, it has at-most ` + 1

roots in {0, 1}n. Thus for a uniform random choice of kh from {0, 1}n, we have

Pr[PolyHashkh(M1)⊕ PolyHashkh(M2) = δ] ≤ `+ 1

2n
. (2.5)

27

Similarly, for any M1 with ` many blocks, and any δ ∈ {0, 1}n the polynomial

PolyHashkh(M1)⊕ δ,

is a non-zero polynomial on kh of degree at most `+1 and thus for an uniform random

kh from {0, 1}n we have

Pr[PolyHashkh(M1) = δ] ≤ `+ 1

2n
. (2.6)

Thus, fron Equations (2.5) and (2.6) it follows that PolyHash is a
(
`+1
2n
, `+1

2n

)
-AXUAR

hash function.

2.4 H-Coefficient Technique

The H-Coefficient technique is a powerful tool that is used to bound the distinguish-

ing advantage between two random systems. Its formal introduction was made by

Patarin in SAC’09 [77]. It regained attention since the work of Chen and Stein-

berger [30] to analyze the security of iterated Even-Mansour [43] cipher. Since then,

it has been successfully used as a tool for upper bounding the statistical distance

between the responses of two interactive systems. It is commonly used to prove the

pseudo randomness of various cryptographic constructions against information theo-

retic distinguishers. The H-Coefficient technique is generally implemented as follows:

Suppose we have an information theoretic deterministic distinguisher D with access

to either the real oracle, i.e., the real construction, or the ideal oracle. Generally, the

ideal oracle is considered as a uniform random function or permutation. The collection

of all the queries made by D to the oracle and the responses received by D from the or-

acle, is called the attack transcript of D, denoted as τ ∆
= ((x1, y1), (x2, y2), . . . , (xq, yq)).

Occasionally, we permit the oracle to disclose further internal information to D, but

only after D completes all the queries and before it generates the final output. In such

instances, the transcript of D carries the extra information about the oracle. So, the

28

maximum distinguishing advantage of D in this scenario cannot be lower than that

without the additional information. The transcript τ represents a random variable,

and its randomness is solely derived from the randomness of the oracle with which D

interacts.

Let us consider two random variables Tre and Tid, that takes the transcript τ result-

ing from the interaction between D and the real world or between D and the ideal

world respectively. The probability of observing a transcript τ in the real world is

referred to as the real interpolation probability, while the probability of observing a

transcript τ in the ideal world is referred to as the ideal interpolation probability. A

transcript τ is considered as an attainable transcript with respect to D if its ideal

interpolation probability is non-zero (i.e., Pr[Tid = τ] > 0). The collection of all

attainable transcripts is denoted by V . Now we state the theorem of H-Coefficient

Technique [77, 30].

Theorem 2.4.1 (H-Coefficient Technique). Suppose D be a fixed deterministic

distinguisher with the oracle access to either the real oracle Ore or the ideal oracle Oid

and V = Vg∪Vb, Vg∩Vb = ∅, be some partition of the set of all attainable transcripts

of D. Suppose there exists εratio ≥ 0 such that for any τ ∈ Vg,

Pr[Tre = τ]

Pr[Tid = τ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Tid ∈ Vb] ≤ εbad. Then,

AdvOid
Ore

(D)
∆
= |Pr[DOre → 1]− Pr[DOid → 1]| ≤ εratio + εbad. (2.7)

The proof of the theorem can be found in [29].

A tutorial introduction to the H-coefficient technique and detailed examples of

applying this technique for proving security of some basic pseudo-random objects can

be found in [55].

29

2.5 Permutation Based Cryptography

Cryptographic permutations are keyless public permutations that are designed to

behave like random permutations. In recent years cryptographic permutations have

started to evolve as a useful primitive in parallel to the block ciphers. The main

characteristic of cryptographic permutations is that they are keyless and hence sep-

arate processing of the key and the data input is not required as in a block cipher.

This makes cryptographic permutations a more efficient primitive compared to block

ciphers in certain scenarios. Cryptographic permutations gained prominence during

the SHA-3 competition, where many proposed schemes were built upon this primi-

tive. The adoption of the permutation based Keccak sponge function as the SHA-3

standard further boosted the confidence in the community regarding the advantage

of this approach [80]. In 2007, Bertoni et al. defined the cryptographic permuta-

tion based sponge function [8], which was initially aimed for hashing. Soon after,

several efficient modes for encryption, authentication and authenticated encryption

were developed [68, 6, 7]. In the recent day, permutation based constructions have

emerged as a successful and fully established alternative to modes based on block

ciphers. Notably, Ascon [40], the winner in NIST lightweight competition [76], is also

based on permutation. Apart from the modes, several cryptographic permutations

have also been designed which are claimed to be more efficient than standard block

ciphers [9, 15, 5].

Besides the permutation based designs of encryption and authentication schemes,

extensive research has been carried out in designing block ciphers and tweakable block

ciphers using public random permutations. Even-Mansour (EM) [43] and Iterated

Even-Mansour (IEM) [16, 32, 39, 34] ciphers are the main approaches for designing

block ciphers and tweakable block ciphers from public random permutations. EM

cipher is defined as EM(x)
∆
= π(x⊕k1)⊕k2, where π is a public random permutation

and k1, k2 are two independent keys. Iterating EM cipher for r ≥ 2 times with r

independent permutations and r+1 independent round keys defines the r-round IEM

30

cipher, i.e. EMr(x)
∆
= kr+1⊕ πr(kr⊕ πr−1(. . . (π2(k2⊕ π1(k1⊕ x)) . . .)). A long line of

research has studied the security of r-round IEM [16, 32, 39, 34]. Recently, Chen et

al. have designed two public permutation based PRFs [31] which have been proven

to be secure beyond the birthday bound.

2.6 Tweakable Enciphering Schemes

A Tweakable Enciphering Scheme (TES) is a tweak-based length preserving encryp-

tion scheme that encrypts variable length messages. A TES provides security against

adaptive chosen plaintext and ciphertext attacks. In other words, an efficient adver-

sary should be unable to distinguish ciphertexts produced from a TES from random

strings and should not be able to manipulate a ciphertext to decrypt into meaningful

information. A TES accepts an additional input called a "tweak" apart from the mes-

sage and the key. The tweak is considered a public value that enhances the diversity

of the resulting ciphertext. Due to the length preserving feature, TES is considered

a suitable candidate for low-level disk encryption [50, 26, 19].

Formally, a TES is a function E : K×T ×M→M, where K 6= ∅ and T 6= ∅ are
the key space and the tweak space respectively. The message and the cipher spaces

areM. In general, we assume thatM = ∪i>0{0, 1}i, but in certain scenariosM may

be restricted to contain strings of some predefined lengths.

We shall sometimes write ET
K(.) instead of E(K,T, .). The inverse of an encipher-

ing scheme is D = E−1 where X = DT
K(Y) if and only if ET

K(X) = Y . An important

property of a tweakable enciphering scheme is that it is length preserving, i.e., for

every x ∈M and every T ∈ T , |ET
K(x)| = |x|.

Security of TES: Let PermT (M) denote the set of all functions πππ : T ×M →M
where πππ(T , .) is a length preserving permutation. Such a πππ ∈ PermT (M) is called a

tweak indexed permutation. For a tweakable enciphering scheme E : K × T ×M→
M, we define the advantage of an adversary A has in distinguishing E and its inverse

31

from a random tweak indexed permutation and its inverse in the following manner.

AdvtSPRP
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−

Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ . (2.8)

We assume that an adversary never repeats a query, i.e., it does not ask the en-

cryption oracle with a particular value of (T, P) more than once and neither does

it ask the decryption oracle with a particular value of (T,C) more than once. Fur-

thermore, an adversary never queries its deciphering oracle with (T,C) if it got C

in response to an encipher query (T, P) for some P . Similarly, the adversary never

queries its enciphering oracle with (T, P) if it got P as a response to a decipher query

of (T,C) for some C. These queries are called pointless as the adversary knows what

it would get as responses for such queries.

In the last few years, there have been several proposals for TES constructions, with

many of them using block ciphers as an underlying primitive. CMC [50], EME [51],

EME* [48], FMix [11], AEZ [52] are constructed only using block ciphers whereas

XCB [67, 20], HCTR [85], HCH [26], TET [49], HEH, HMCH [81] are constructed

using block ciphers and universal hash functions. Also, there are a few TES construc-

tions that use stream ciphers [23, 82, 33].

The security analysis of most block cipher based schemes is typically based on the

assumption that the underlying block cipher is a strong pseudorandom permuta-

tion. This assumption holds as these schemes rely on the decryption functionality

of the block cipher to decrypt the ciphertext. Notably, constructions like FMix [11],

AEZ [52] and FAST [19] do not use the decryption property of the block cipher and

prove their security bound using the pseudorandom function property of block cipher.

Such schemes are called inverse free TESs. All the above constructions achieve birth-

day bound security. Dutta and Nandi [41] proposed a TES that relies on a tweakable

block cipher and they provided beyond the birthday bound security.

32

2.6.1 Various Model of Designing TES

Traditionally TESs have been classified into three different groups based on their

structure.

Hash-Encrypt-Hash. Hash-Encrypt-Hash approach was first introduced by Naor

and Reingold [75]. The proposed construction utilizes an invertible ECB mode of

encryption sandwiched between two invertible pairwise independent hash functions

to create a wide block secure strong pseudorandom permutation. However, the de-

scription provided in their work was high-level, and subsequent work [74] did not

fully specify a mode of operation. Also, note that the scheme is not a tweakable

strong pseudorandom permutation, as the concept of tweak was proposed much later.

In FSE’06, Chakraborty and Sarkar present PEP [25] using Hash-Encrypt-Hash ap-

proach. PEP incorporates a layer of ECB-type encryption between two layers of

polynomial hashing. Halevi later proposed TET [49], a more efficient version of PEP.

HEH proposed by Sarkar [81] is another construction in this category.

Encrypt-Mix-Encrypt. Encrypt-Mix-Encrypt is a type of construction that has a

mixing layer between two encryption layers. CMC [50] is the first TES construction

of this type, proposed by Halevi and Rogaway. They use a mixing layer between two

CBC encryption layers. This is a sequential construction. Unlike CMC, EME [51]

is a parallel construction. In EME, authors used two ECB type encryption layers

with a mixing layer in between. EME* [48] is an extended version of EME, which

can handle arbitrary message lengths. These constructions use both the forward and

inverse direction of the underlying block cipher. FMix [11], proposed by Bhaumik

et al., is a variant of CMC but does not require inverse calls of the underlying block

cipher. AEZ [52] is also a recent addition to this category.

Hash-Counter-Hash. Hash-Counter-Hash is similar to Hash-Encrypt-Hash, but it

uses counter-mode encryption instead of ECB in between two hash layers. Because of

the use of counter-mode encryption, it easily handles variable length messages. The

33

construction known as XCB [67] is the first of its kind in the Hash-Counter-Hash

category, requiring five block cipher keys and two block cipher calls (in addition to

those in counter mode encryption). Wang et al. introduced HCTR [85], which reduces

the number of block cipher calls and utilizes a single block cipher key. A serious

drawback of HCTR was that the security proof provided in [85] only guaranteed that

the security degrades by a cubic bound on the data complexity of the adversary.

As quadratic security bounds for TES were already known, so HCTR seemed to

provide very weak security guarantees compared to the then known constructions. In

an attempt to fix this situation, HCH [26] was proposed, which modified HCTR in

various ways to produce a new mode that used one more block cipher call than HCTR

but provided a quadratic security guarantee. HCH offered some more advantages

over HCTR in terms of the number of keys used, etcetera. In [69], another variant

of HCTR was proposed, which provides a quadratic security bound and later in [24]

a quadratic security bound of the original HCTR construction (as proposed in [85])

was proved. Chakraborty et al. recently proposed FAST [19] a construction, based

on the Hash-Counter-Hash paradigm, using only forward calls to the block cipher.

2.7 Message Authentication Codes

Message authentication codes (MAC) provide authentication in the symmetric key

setting. It is assumed that the sender and the receiver share a common secret key

K. Given a message x, the sender uses K to generate a footprint of the message.

This footprint (commonly called a tag) is the message authentication code (MAC) for

the message x. The sender transmits the pair (x, tag) to the receiver. The receiver

uses K to verify that (x, tag) is a properly generated message-tag pair. Verification

is generally performed by regenerating the tag on the message x and comparing the

generated tag with the one received.

Formally, we see a MAC as a pair of algorithms: the tag generation algorithm

and the verification algorithm. Both algorithms depend on a tag generation function

F : K ×M → {0, 1}τ , where K is the key space, M is the message space and τ is

34

the tag length. The tag generation algorithm receives as input a message x ∈M and

the key K ∈ K, and generates t = FK(x) and finally outputs (x, t). The verification

algorithm on receiving a message tag pair (x, t), computes t′ = FK(x) and outputs

true if t′ = t and false otherwise. We generally specify the MAC by the tag generation

function FK(.) and sometimes FK(.) itself is called the message authentication code.

Security of MACs. The security of a MAC F is defined using an interaction of F

with an adversary A [4]. It is assumed that A has an oracle access to FK(), where

K
$←− K. For a query x ∈ M of A the oracle responds by sending y = FK(x).

Let, A query x1, x2, . . . , xq and gets y1, y2, . . . , yq as responses from the oracle. These

queries are performed adaptively. Finally, A outputs a pair (x∗, y∗), where x∗ /∈
{x1, x2, . . . , xq}. This pair is called a forgery and it is said that A has successfully

forged F if FK(x∗) = y∗. The auth-advantage of A is defined as

Advauth
F (A) = Pr[K

$←− K : A forges].

We say that F is a (ε, t) secure MAC if for every adversary A, which runs for time

at most t, Advauth
F (A) ≤ ε.

It is well known that if F is a secure PRF, then F is also a secure MAC. In

particular, for any arbitrary adversary A for the MAC F there exists a PRF adversary

B for F such that

Advauth
F (A) ≤ Advprf

F (B) +
1

2τ
, (2.9)

where B and A both run almost for the same time and ask almost the same number

of queries.

MAC algorithms can be broadly categorized into four types: (i) MACs based

on block ciphers; (ii) MACs based on tweakable block ciphers; (iii) MACs based

on cryptographic hash functions; and finally, (iv) MACs based on universal hash

functions. We discuss popular candidates in these categories in the following sub-

sections.

35

2.7.1 MACs Based on Block Ciphers

Block cipher based MACs are most commonly used. In this approach, a block cipher

is used as the main primitive. Processing of messages of arbitrary lengths is done

using specific modes. Depending upon the modes applied, there are various MACs

based on block cipher. These MACs can generally be categorized into two types: (a)

Sequential MACs and (b) Parallel MACs.

Sequential MACs. Sequential MACs based on block cipher are built in sequential

mode. CBC MAC [4] is most popular block cipher based sequential MAC. CBC MAC

defined as

CBCK(M1‖ . . . ‖M`)
∆
= EK(. . . (EK(EK(M1)⊕M2)) . . .M`),

where EK is a n-bit block cipher and M = (M1‖ . . . ‖M`) is the message. In [4],

Bellare et al. proved that CBC MAC is secure for the fixed length messages where the

message lengths are multiples of the block size. If the messages are prefixes of other

messages, CBC MAC is not secure due to its vulnerability to length extension attacks.

One potential solution involves incorporating the message length information as the

initial block in CBC computation. However, this approach necessitates knowing the

entire message before CBC computation, which might not always be feasible. To

counter this vulnerability, Petrank et al. [78] proposed encrypting the CBC output

with a separate block cipher and named it Encrypted CBC-MAC or EMAC. EMAC

is defined as:

EMACK1,K2(M) = EK2(CBCK1(M)).

In [78], Petrank et al. show that the EMAC is secure if the lengths of the messages are

multiples of the block size. For the arbitrary length of messages, Black and Rogaway

proposed a three-keyed variant of CBC MAC, called XCBC [13]. After that, Iwata et

al. [58] proposed a two-keyed variant of CBC MAC, called TCBC and also a one-keyed

version called OMAC [54].

36

Parallel MACs. The first parallel MAC was introduced by Bellare et al., called

XOR MAC [3]. In this mode, the message M is parsed into ` many blocks of length

b, where b < n. Then the i-th block Mi is prepended with 〈i〉, where 〈i〉 denotes the
n− b− 1 bit encoding of integer i and then the block cipher EK is applied over each

1‖〈i〉‖Mi and we take the xor of the block cipher outputs. Finally, we encrypt 0‖IV
with EK , where IV is of size n − 1 bits and take the xor of all these block cipher

outputs. When IV is random, then the scheme is called XMACR [3], an instance of a

probabilistic MAC and when IV is a counter, then the scheme is called XMACC [3],

an instance of a stateful MAC. Later, Bernstein proposed Protected Counter Sum in

short PCS MAC, which is similar to XMACC, only the block cipher is replaced by a

keyed function from (b+c) bits to b bits. In 2002, Black and Roagway improved upon

the XOR MAC and proposed a deterministic, parallelizable message authentication

code, called PMAC [14]. In this mode, each message block Mi is masked with ∆i,

which is encrypted by EK (except the final message block), where ∆i is some function

of the block cipher. The masked value of the final message block and all the block

cipher outputs are xored together to produce an intermediate value. This intermediate

value is again encrypted to produce the final tag. PMAC iterates a block cipher in

a fully parallelizable way and it requires just one block-cipher invocation to process

each message block. Mandal and Nandi [73] have shown the security bound of PMAC

to be roughly qσ/2n, where σ is the total number of message blocks processed, and q is

the total number of queries made. Later, Gazi et al. [44] have demonstrated an attack

with roughly 2n/2 data complexity and hence established the tightness of the bound.

Later Yasuda [87] introduced PMAC with parity, which processes each sequence of r

consecutive message blocks in PMAC like manner, but inserts the xor sum of those

r blocks as an additional block. Zhang [89] introduced PMACX construction that

generalizes PMAC with parity construction by multiplying the input with an MDS

matrix before authentication. In 2016, Lyukx et al. proposed a lightweight variant

of PMAC, called LightMAC [65]. In this mode, the message M is parsed into ` many

blocks of length b, where b < n. Then the i-th block Mi (except the last message

block) is prepended with 〈i〉, where 〈i〉 denotes the n − b bit encoding of integer i

37

and then the block cipher EK is applied over each 〈i〉‖Mi and we take the xor of the

block cipher outputs with the last message block with appropriate padding. Finally,

we encrypt the xor with another independent block cipher EK′ to generate the tag.

This is the first deterministic MAC that is proven to be secure independent of the

length of the message.

2.7.2 MACs Based on Cryptographic Hash Functions

In 1996, Bellare et al. [2] proposed two cryptographic hash functions based MACs,

called, NMAC and HMAC. NMAC uses a compression function f : {0, 1}b+k → {0, 1}k.
For a message M = (M1, . . . ,M`), where each Mi is of size b-bit, NMAC is defined as

follows:

NMACfK1,K2
(M)

∆
= f(K2, f(. . . (f(f(K1,M1),M2)) . . .),M`),

where K1 and K2 are independent keys.

HMAC uses a IV -based hash function. Let f be compression function such that

f : {0, 1}b+n → {0, 1}n and F be the Markel-Damagard hash function, defined as:

F f (IV,M)
∆
= f(f(. . . (f(f(K1,M1),M2)) . . .),M`).

Then HMAC defined as:

HMAC(K,M)
∆
= F f (K ⊕ opad, F f (K ⊕ ipad,M)),

where M is the message, K is the key and opad, ipad are two fixed constants.

2.7.3 MACs Based on Universal Hash Functions

In 1981, Wegman and Carter [17] proposed a completely different paradigm of con-

structing MACs from universal hash functions. In this paradigm, a universal hash

function is applied on the messageM which is masked with a random salt. The draw-

38

back of this approach is that one requires a fresh random string each time to authenti-

cate a new message. To alleviate this problem, we are required to use a pseudorandom

function and it should be applied over a nonce N each time one is required to au-

thenticate a new message. This nonce-based MAC, known as the Wegman-Carter, in

short, WC construction, generates tag as WCK1,K1(M)
∆
= HK1(M) ⊕ FK2(N), where

H is a universal hash function and F is a PRF. The WC construction gives opti-

mal security when nonces are never reused. However, the inherent drawback of the

scheme is that it loses security once a nonce is repeated. In fact, if the underlying

hash function is a PolyHash, then nonce repetition can reveal the hash key. To pre-

vent this nonce-misuse problem, Black et al. [12] proposed a simple solution in which

one applies a 2n-bit PRF to nonce and the hash value, i.e., if the PRF takes 2n-bit

inputs, one can define the tag as FK2(N‖HK1(M)). However, designing 2n-bit to

n-bit PRF is non-trivial as one can apply 5-round feistel [64] or buttefly [1] construc-

tion. Due to the practical infeasibility of pseudorandom function, Shoup replaced the

function with block cipher and renamed the construction as Wegman-Carter-Shoup,

in short, WCS [125]. This construction offers the same level of security in nonce re-

specting and nonce misuse scenarios. However, to alleviate the nonce misuse problem

of WCS, one can encrypt the output of WCS with an independent block cipher key,

i.e.,T = EK3(HK1(M)⊕EK2(N)). Although the construction gives security even when

nonces repeat, but at the same time, the security of this construction becomes poorer

than the original WCS construction in nonce respecting setting.

39

40

3
Designing Tweakable Enciphering Schemes Using

Public Permutations

Although several modes for authentication, hash function, and authenticated encryp-

tion, have been developed using public permutations till date, to our knowledge, the

only work which describes a TES built using a public random permutation is [6]. The

construction in [6] uses four round Luby Rackoff construction using two pseudoran-

dom functions and the pseudorandom functions are constructed using public permu-

tations. Concrete security bounds and formal security proofs for the TES scheme

are not provided in [6] and to the best of our knowledge, there is no provably secure

public permutation based TES scheme. We initiate a study of such a construction in

this chapter. Our concrete contributions are the following.

1. First, we propose a generic construction of a public permutation based TES,

called ppTES. Our proposal closely resembles the HCTR construction. ppTES is

designed using a public permutation π, a length expanding public permutation

based pseudorandom function1 Fπ
′

k , where π and π′ are two independent public

random permutations over the same space. Additionally, ppTES uses a keyed

hash function Hkh , which is required to be both almost xor universal (AXU)

and almost regular (AR) (we further call such functions as AXUAR functions).

We prove that if Fπ
′

k is a secure length expanding public permutation based

1Informally, a length expanding PRF takes an input x and the number of blocks b and outputs
b many blocks, where block refers to an element of {0, 1}n, for some fixed n.

41

PRF and the hash function is a secure AXUAR function, then ppTES is secure

against adaptive chosen plaintext and ciphertext adversaries.

2. As our second contribution, we construct a length expanding public permuta-

tion based PRF, which we call ppCTR. ppCTR essentially is a counter mode

of encryption where the block ciphers are replaced by the single round Even-

Mansour [43] construction. We show that ppCTR offers a tight n/2 bit security.

We use ppCTR and the PolyHash [86] function in ppTES construction to realize

a concrete TES, which we call ppHCTR. ppHCTR requires two keys and two

independent public permutations.

3. Finally, we propose ppHCTR+, a public permutation based TES that uses a sin-

gle key and a single public permutation. Along with the permutation, ppHCTR+

also requires an AXUAR hash function and the only key required in ppHCTR+

is the hash key of the AXUAR hash function. We prove that ppHCTR+ is a

birthday bound secure public permutation based TES.

3.1 TES Based on Public Random Permutation

A tweakable enciphering scheme (TES) T, on the public random permutation model,

is a pair of algorithms T = (Encπ,Decπ), where Encπ : K × T × M → M and

Decπ : K×T ×M→M constructed by d many n-bit permutations π ∆
= (π1, . . . , πd)

and K, T ,M are three non-empty finite sets. As the TES is a length preserving

permutation, Encπk (T, ·) for all M ∈ M. A tweakable permutation is a mapping

Π̃ : T ×M → M, such that for all tweak T ∈ T , M 7→ Π̃(T,M) is a permutation

ofM. We will denote Π̃(T,M) by Π̃T (M). The set of all tweakable permutations is

denoted by TP(T ,M).

Now, we consider that π1, . . . , πd
$← Perm(n) and the Chosen Ciphertext Attack

(CCA) distinguisher D is given access to either the oracles (T.EncπK ;T.DecπK ; π±1 , . . . , π
±
d)

for a random keyK $← K or the ideal oracles (Π̃; Π̃−1; π±1 , . . . , π
±
d) for Π̃

$← TP(T ,M).

42

The superscript ± for the πi’s denotes that the distinguisher can query πi in both the

forward and reverse directions. The tweakable Strong Pseudo-Random Permutation

(tSPRP) advantage of T in public random permutation model with respect to the dis-

tinguisher D that makes qe encryption queries, qd decryption queries and altogether

qp primitive queries is

AdvtSPRP
T (D)

∆
= | Pr[DT.EncπK ;T.DecπK ;π±1 ,...,π

±
d → 1]− Pr[DΠ̃;Π̃−1;π±1 ,...,π

±
d → 1] |,

where K $← K, π1, . . . , πd
$← Perm(n) and Π̃

$← TP(T ,M). We say that T is a

(qe, qd, qp, `, σ, t)-secure tSPRP if

AdvtSPRP
T (D) ≤ ε,

for all CCA distinguishers D that make qe encryption, qd decryption, qp primitive

queries and run at most time t and the maximum number of blocks in an encryption

or decryption query is ` length of and total query complexity is σ.

3.2 PRF Based on Public Random Permutation

Let F : K × X → Y be a keyed function from X to Y constructed using d many

n-bit permutations π
∆
= (π1, . . . , πd), where K is called the key space, X is called

the input space and Y is called the output space. We consider the Pseudo Random

Function (PRF) security of F under public permutation model where we assume that

π1, . . . , πd
$← Perm(n) and the distinguisher D is given access to either (FπK ; π±1 , . . . , π

±
d)

for a random key K $← K or (RF; π±1 , . . . , π
±
d) for RF $← Func(X ,Y). Query of the

distinguisher to πi is called the primitive query and query to FπK or RF is called the

construction query. We define the PRF advantage of F in public permutation model

with respect to the distinguisher D that makes q construction queries and total qp

primitive queries as

AdvPRF
F (D)

∆
= | Pr[DFπK ;π±1 ,...,π

±
d → 1]− Pr[DRF;π±1 ,...,π

±
d → 1] |,

43

where K $← K, π1, . . . , πd
$← Perm(n) and RF $← Func(X ,Y). F is said to be a

(q, qp, t, ε)-secure PRF if AdvPRF
F (q, qp, t)

∆
= maxD AdvPRF

F (D) ≤ ε, where the max-

imum is taken over all distinguishers D that makes q construction queries, total qp

primitive queries and runs for time at most t.

3.3 HCTR Construction

HCTR is a TES proposed by Wang et al. [85] and our main construction ppTES shares

the basic structure of HCTR. Hence, in this section, we give a description of HCTR.

HCTR turns an n-bit strong pseudorandom permutation into a variable length

tweakable strong pseudorandom permutation. The encryption and decryption algo-

rithm of HCTR is shown in Fig. 3.3.1 and its pictorial representation is shown in

Fig. 3.3.2.

We explain the encryption algorithm of HCTR using an example. The decryption

algorithm can be understood in a similar way. Suppose the input message M =

(M1‖M2) and for the sake of simplicity, we assume that |M1| = |M2| = n, i.e., M

consists of two full blocks. Therefore, in step (2) of the algorithm, the variable ML is

assigned to M1 and MR is assigned to M2. In step (3) of the algorithm, we evaluate

the poly hash Polykh on (M2‖T) which results to M2 · k3
h ⊕ T · k2

h ⊕ 〈|M2| + |T |〉 · kh
which is xored with the n-bit valueM1 to produce U . In step (4), we take the xor of U

and its encryption V = Ek(U) to produce Z. In step (6), we compute the key stream

S = S1‖S2 where each |S1| = |S2| = n. Since, |MR| = n, CR will be M2 ⊕ S1, which

becomes the input along with tweak T to the poly hash function Polykh . Evaluation

of the poly hash on input CR‖T results to CR · k3
h ⊕ T · k2

h ⊕ 〈|CR|+ |T |〉 · kh. Then
the result is xored with V to produce CL, which is returned along with CR as the

encryption of M = M1‖M2.

Wang et al. [85] have shown that HCTR is a secure TES against all adaptive chosen

plaintext and chosen ciphertext adversaries that make roughly 2n/3 encryption and

decryption queries. Later, Chakraborty and Nandi [24] improved its security bound

to O(σ2/2n), where σ is the total number of message blocks among all q queries.

44

HCTR.Enck,kh(T,M)

1. M1‖ . . . ‖Ml ← parsen(M);

2. ML ←M1;MR ← (M2‖ . . . ‖Ml);

3. U ←ML ⊕ Polykh(MR‖T);

4. V ← Ek(U); Z ← U ⊕ V ;

5. for i = 1 to l

6. Si ← Ek(Z ⊕ i) ;

7. S
∆
= S1‖ . . . ‖Sl ;

8. CR ← first(|MR|,S)⊕MR;

9. CL ← V ⊕ Polykh(CR‖T);

10. return (CL‖CR);

HCTR.Deck,kh(T,C)

1. C1‖ . . . ‖Cl ← parsen(C);

2. CL ← C1;CR ← (C2‖ . . . ‖Cl);

3. V ← CL ⊕ Polykh(CR‖T);

4. U ← E−1
k (V); Z ← U ⊕ V ;

5. for i = 1 to l

6. Si ← Ek(Z ⊕ i) ;

7. S
∆
= S1‖ . . . ‖Sl;

8. MR ← first(|CR|,S)⊕CR;

9. ML ← U ⊕ Polykh(MR‖T);

10. return (ML‖MR);

Figure 3.3.1: HCTR construction based on an n-bit block cipher Ek and an n-bit
Polyhash function. The left part of the algorithm is the encryption function and the
right part is the decryption function.

Recently, Dutta and Nandi [41] proposed a tweakable block cipher based HCTR,

called tweakable HCTR, and showed its security beyond the birthday bound.

Remarks 3.3.1. In [85], authors defined the output of thePolyHash to be the hash key

kh, when the input is an empty string ε. But that definition of the PolyHash function

leads to an attack on the construction as reported in [57]. This attack does not work

if the message space contains messages of length at least n+1. We redefine the output

of the PolyHash for an empty input string to be k2
h⊕kh, which eliminates the message

length restriction.

Motivated by HCTR, we first replace the block cipher based counter mode part of

HCTR with a public permutation based length expanding PRF, and the block cipher

EK (see Fig. 3.3.2) with a public permutation π. We show that such a combination

yields a secure public permutation based TES, which we call ppTES as described in

45

EK ⊕ Z

P
ol

y K
h

⊕

M1

U

V

M2M3 Ml

CtrEK

P
ol

y K
h

⊕

T

C1 C2C3 Cl

Figure 3.3.2: Pictorial description of HCTR, where EK is the underlying block cipher,
PolyKh is the poly-hash function and CtrEK is the counter mode encryption.

section 3.4. In section 3.6, we construct a public permutation based length expanding

PRF, which we call ppCTR. Using ppCTR along with the the PolyHash function, we

instantiate ppTES to realize a public permutation based TES, which we call ppHCTR.

However, ppHCTR requires two independent public permutations, a key for the ppCTR

and another independent hash key for the PolyHash function. Next, we go one step

further to reduce the number of keys and permutations used in ppHCTR and come up

with a single keyed (for the PolyHash function) and single permutation based TES

construction, ppHCTR+. We describe ppHCTR+ in section 3.7.

3.4 ppTES : A Generic Public Permutation Based

TES

ppTES is based on three cryptographic components: (i) an n-bit public random per-

mutation π1, (ii) an AXUAR hash function Hkh which maps {0, 1}∗ to {0, 1}n, and
(iii) a public permutation based length expanding PRF Fπ2k , where π2 is a n-bit inde-

pendent public random permutation independent of π1. The message space of ppTES

is {0, 1}≥n and the tweak space is {0, 1}tw. The working principle of ppTES is exactly

the same as HCTR where the block cipher is replaced by a public permutation π1

46

and the counter mode encryption is replaced by a public permutation based length

expanding PRF Fπ2k .

The algorithmic description of encryption and decryption function of ppTES is

shown in Fig. 3.4.1. The description in Fig. 3.4.1 mentions Fπ2k , which is a length

expanding PRF. We describe this primitive next.

ppTES.Encπ1,π2k,kh
(T,M)

1. M1‖ . . . ‖Ml ← parsen(M);

2. ML ←M1;MR ← (M2‖ . . . ‖Ml);

3. U ←ML ⊕ Hkh(MR‖T);

4. V ← π1(U); Z ← U ⊕ V ;

5. S
∆
= S1‖ . . . ‖S`−1 ← Fπ2k (Z, l);

6. CR ← first(|MR|,S)⊕MR;

7. CL ← V ⊕ Hkh(CR‖T);

8. return (CL‖CR);

ppTES.Decπ1,π2k,kh
(T,C)

1. C1‖ . . . ‖Cl ← parsen(C);

2. CL ← C1;CR ← (C2‖ . . . ‖Cl);

3. V ← CL ⊕ Hkh(CR‖T);

4. U ← π−1
1 (V); Z ← U ⊕ V ;

5. S
∆
= S1‖ . . . ‖S`−1 ← Fπ2k (Z, l);

6. MR ← first(|CR|,S)⊕CR;

7. ML ← U ⊕ Hkh(MR‖T);

8. return (ML‖MR);

Figure 3.4.1: ppTES based on an n-bit public random permutations π1, an AXUAR
hash function Hkh and a public permutation based length expanding PRF Fπ2k . M ∈
{0, 1}≥n is the input message and T ∈ {0, 1}tw is the tweak. The left part of the
algorithm is the encryption function and the right part is the decryption function.

As in the case of HCTR, to explain the encryption algorithm we use a two block

message M = (M1‖M2), where |M1| = |M2| = n. On input M , in step (2) of the

algorithm, the variable ML is assigned to M1 and MR is assigned to M2. In step (3)

of the algorithm, we evaluate the hash value Hkh on (M2‖T), which is xored with the

n-bit value M1 to produce U . In step (4), we take the xor of U and its permuted

value V = π1(U) to produce Z. In step (5), we compute the key stream S = S1 using

length expanding PRF Fπ2k where |S1| = n. Since, |MR| = n, CR will be M2 ⊕ S1,

which becomes the input along with tweak T to the hash function Hkh . Then the

resulting hash value is xored with V to produce CL, which is returned along with CR

47

as the encryption of M = M1‖M2.

3.4.1 Length Expanding Pseudorandom Function

For an arbitrary large positive integer L, Let F ⊆ Func({0, 1}n × N,∪0<i≤L{0, 1}ni),
such that F ∈ F if and only if the following two conditions are satisfied:

1. For every x ∈ {0, 1}n and every b ∈ [L], |F (x, b)| = nb.

2. For every x ∈ {0, 1}n and every b, b′ ∈ [L], b ≥ b′, first(nb′, F (x, b)) = F (x, b′).

We call a uniform random element of F a length expanding random function.

In Fig. 3.4.2, we give an algorithmic description of a length expanding random

function ρ. The algorithm depicts ρ as a lazy sampler, which provides as output ρ(x, b)

upon receiving a query (x, b). For any input (x, b), it first checks whether x is a fresh

element or not. If it is fresh, then it samples b many blocks uniformly at random from

{0, 1}nb. If it is not fresh, then it first checks whether the number of requested blocks

b′ in the earlier query for input x is less than the number of requested blocks in the

current query for the same input. In that case, it first fetches b′ many blocks which

are already stored at T[x], and then samples the remaining blocks, i.e., b− b′ blocks
independently and uniformly at random from {0, 1}n(b−b′) which is appended with the

first b′ many fetched blocks and finally updates the entry T[x] with the output of the

current query. The final case is if the number of requested blocks in the current query

for input x is less than the number of requested blocks in the earlier query with the

same input. Then it fetches the first b many blocks out of b′ many blocks which are

already stored at T[x] and returns it.

Informally, length expanding pseudorandom function is a function which is indis-

tinguishable from a length expanding random function by any efficient distinguisher.

For the sake of our construction, we require a public permutation based length ex-

panding PRF which we formally define next.

Definition 3.4.1. Public Permutation Based Length Expanding PRF . Let L

be an arbitrary large positive integer and let F : K×{0, 1}n× [L]→ ∪1≤i≤L{0, 1}ni be

48

a keyed function based on d many n-bit permutations π
∆
= (π1, . . . , πd) such that for

any input (x, b) ∈ {0, 1}n × [L], Fπk (x, b) returns (y1, . . . , yb) where each yi ∈ {0, 1}n.
We consider the length expanding PRF security of F under public permutation model

where we assume that π1, . . . , πd
$← Perm(n) and the distinguisher D is given access

to either of the world (FπK , π
±
1 , . . . , π

±
d) for a random key K $← K or (ρ, π±1 , . . . , π

±
d),

where ρ works as shown in Fig 3.4.2. We define the LENPRF advantage of F in

public permutation model with respect to the distinguisher D that makes q construction

queries and total qp primitive queries as

AdvLENPRF
F (D)

∆
= | Pr[DFπK ,π±1 ,...,π

±
d → 1]− Pr[Dρ,π±1 ,...,π

±
d → 1] |,

where K $← K, π1, . . . , πd
$← Perm(n). F is said to be a (q, qp, σ, t)-secure LENPRF if

AdvLENPRF
F (q, qp, σ, t)

∆
= maxD AdvLENPRF

F (D) ≤ ε, where the maximum is taken over

all distinguishers D that makes q construction queries with total σ = (b1 + . . . + bq)

blocks, where bi is the number of blocks requested at i-th construction query. It

also makes total qp primitive queries and runs for time at most t. As before, for

information theoretic distinguisher, we omit the time parameter t and in the rest of

this chapter, we assume the distinguisher is information theoretic.

Remarks 3.4.2. The length expanding PRF is a weaker notion than the notion of

variable output length PRF [10]. For a length expanding PRF, if two queries have

the same input with different numbers of requesting blocks, then one output is a prefix

of the other. In the case of variable output length PRF, outputs for two queries

are completely random, even if they have the same input with a different number of

requesting blocks.

3.4.2 Security of ppTES

In this section, we show that if π1, π2
$← Perm(n) are two independently sampled n-bit

public random permutations, K $← {0, 1}n be a uniformly sampled n-bit key, H is an

(εaxu, εreg)-AXUAR n-bit keyed hash function and Fπ2K is a secure public permutation

based length expanding PRF, then ppTES is a public permutation based secure TES

49

Algorithm for ρ

1. initialize:

2. for all x ∈ {0, 1}n

3. T[x]← ⊥;L[x]← ⊥;

4. end for;

5. on input (x, b) 6= (x′, b′);

6. if x = x′

7. if b > b′, then

8. Y
∆
= (yb′+1, yb′+2, . . . , yb)

$← {0, 1}n(b−b′);

9. T[x]← T[x]‖Y ; L[x]← b; return T[x];

10. else return T[x′]1,...,b;

11. end if;

12. else

13. Y
∆
= (y1, . . . , yb)

$← {0, 1}nb;

14. T[x]← Y ; L[x]← b;

15. return T[x];

16. end if;

Figure 3.4.2: Algorithm corresponding to a length expanding random function.
T[x]1,...,b denotes the first b many blocks stored at the x-th entry of table T.

against all (qe, qd, qp1 + qp2 , `, σ) information theoretic adaptive CCA distinguishers

that make qe many encryption, qd many decryption queries with total σ many blocks

queried among all q ∆
= qe + qd queries and ` is the maximum number of message

blocks present in a single encryption or decryption query. Moreover, it also makes qp1
primitive queries to π1 and qp2 primitive queries to π2. Formally, the following result

bounds the tSPRP advantage of ppTES in the public permutation model.

50

Theorem 3.4.3. Let Kh be a finite and non-empty set, π1, π2
$← Perm(n) be two in-

dependently sampled n-bit public random permutations and K $← {0, 1}n be an n-bit

random key. Let H : Kh × {0, 1}∗ → {0, 1}n be an (εaxu, εreg)-AXUAR n-bit keyed

hash function. Let Fπ2K be a secure LENPRF. Then, for any (qe, qd, qp1 + qp2 , `, σ)

information theoretic adaptive CCA distinguisher D against the tSPRP security of

ppTES[π1, π2, K,H] in the public permutation model, there exists a LENPRF adver-

sary B against the length expanding PRF security of Fπ2K in the public permutation

model, where σ is the total number of message blocks queried, such that

AdvtSPRP
ppTES (D) ≤ AdvLENPRF

F (B) + q2εaxu + 2qqp1εreg +
q2

2n+1
+
q(q − 1)

2n+1
.

The proof of this result is given in section 3.5.

3.5 Proof of Theorem 3.4.3

As a matter of convenience, we refer to the construction ppTES[π1, π2, K,H] as simply

ppTES when the underlying primitives are assumed to be understood.

3.5.1 Initial Set Up

By Theorem 2.3.1, we have

AdvtSPRP
ppTES (D) ≤ Adv±rnd

ppTES(D) +
q(q − 1)

2n+1
, (3.1)

where n is the minimum message length allowed for ppTES. Therefore, we bound the

±rnd advantage of ppTES. Let D be any information theoretic non-trivial adaptive de-

terministic CCA distinguisher with access to the oracles in either of the following two

worlds: in the real world, it interacts withOre = (ppTES.Encπ1,π2K,Kh
, ppTES.Decπ1,π2K,Kh

, π±1 , π
±
2)

for an n-bit random key K, a random hash key Kh and two independent n-bit random

permutations π1 and π2 or in the ideal world it interacts with Oid = ($0, $1, π
±
1 , π

±
2),

where $0 and $1 are two independent random functions that output uniform ran-

51

dom strings for every distinct input. Now, our goal is to upper bound the maximum

advantage in distinguishing the real world from the ideal one.

For doing this, as the first step of the proof, we replace Fπ1,π2K with the function ρ as

described in Fig. 3.4.2. We call the resulting construction as ppTES∗.

This replacement comes at the cost of the length expanding PRF security of Fπ
′

K in

the random permutation model, where the PRF adversary B simulates D as follows:

it first samples a hash key Kh
$← Kh and an n-bit random permutation π $← Perm(n).

Then, for any input (M,T), it computes

Z ← π1(HKh(MR‖T)⊕ML)⊕ HKh(MR‖T)⊕ML.

Then it calls its own oracle with (Z, d |M |
n
e) as input and receives the nd |M |

n
e bit

output S. Then it masks the first |MR| bits of S with MR and produces the cipher-

text blocks CR which is hashed along with T and the hash output is masked with

π1(HKh((MR‖T)⊕ML)) to generate the first ciphertext block CL. For any primitive

query x made by D to π1, B accordingly returns the value π1(x). Similarly, it returns

the response for backward query to π1. For any primitive query x made by D to π2,

B forwards the query to its own oracle and returns the received response. Similarly,

it returns the response for backward query to π2. Finally, B outputs the same bit as

returned by D. Therefore, we have

Adv±rnd
ppTES(D) ≤ AdvLENPRF

F (B) + Adv±rnd
ppTES∗(D)︸ ︷︷ ︸
δ∗

. (3.2)

3.5.2 Attack Transcript

Our main goal is to bound δ∗, i.e., we need to distinguish the two worlds: the

real world Ore = (ppTES∗.Encπ1,π2K,Kh
, ppTES∗.Decπ1,π2K,Kh

, π±1 , π
±
2) from the ideal world

Oid = ($0, $1, π
±
1 , π

±
2), where K is an n-bit random key, Kh is a random hash key

and π1, π2 are two independent n-bit random permutations. Since we consider the

maximum distinguishing advantage, let us assume that D is the information theo-

retic non-trivial adaptive CCA distinguisher for which the distinguishing advantage

52

is maximum. Let D makes qe (resp. qd) encryption (resp. decryption) queries and qp1
primitive queries to π1 and qp2 primitive queries to π2. Since our proof is in the ran-

dom permutation model, D can query the primitive in forward and reverse directions.

After the interaction is over, the real world returns the hash key Kh and the ideal

world samples a dummy hash key Kh
$← Kh and returns it to D. Finally, D outputs a

single bit. Let τ ∆
= {(T 1,M1, C1), (T 2,M2, C2), . . . , (T q,M q, Cq)} be the list of con-

struction queries and responses (i.e., including encryption and decryption queries),

τp1
∆
= {(x1, y1), (x2, y2), . . . , (xqp1 , yqp1)} and τp2

∆
= {(u1, v1), (u2, v2), . . . , (uqp2 , vqp2)}

be the two list of primitive queries and responses to π1 and π2 respectively made by

D. The triplet τ ′ = (τ, τp1 , τp2 , Kh) constitutes the query transcript of the attack.

3.5.3 Definition and Probability of Bad Transcripts

In this section, we define bad transcripts and bound their probability in the ideal

world. From transcript τ ′, we derive the following notation: for i ∈ q, Ui = M i
1 ⊕

Hkh(M i
2‖ . . . ‖M i

li
‖T i), Vi = Ci

1 ⊕ Hkh(Ci
2‖ . . . ‖Ci

li
‖T i) and Zi = Ui ⊕ Vi. Having set

up the notation, we identify an event to be bad if for any two construction queries

there is a collision in the Zi values or there is a non-trivial input or output collision

of the permutation π1.

Definition 3.5.1 (Bad Transcript for ppTES∗). An attainable transcript τ ′ =

(τ, τp, τ
′
p, Kh) is called bad for ppTES∗ if any of the following conditions hold:

- B.1 : ∃ i 6= j ∈ [q] such that, U i = U j.

- B.2 : ∃ i 6= j ∈ [q] such that V i = V j.

- B.3 : ∃ i ∈ [q] and j ∈ [qp] such that U i = xj.

- B.4 : ∃ i ∈ [q] and j ∈ [qp] such that V i = yj.

- B.5 : ∃ i, j ∈ [q] such that Zi = Zj.

Lemma 3.5.2. Let Tid be the random variable that takes the transcript resulting from

the interaction between the distinguisher and the ideal world and Vb be the set of all

53

attainable bad transcripts for ppTES∗. Then we have,

Pr[Tid ∈ Vb] ≤ εbad = q2εaxu + 2qqpεreg +
q2

2n+1
.

Proof. By the union bound,

Pr[Tid ∈ Vb] ≤
4∑
i=1

Pr[B.i] + Pr[B.5 | B.1 ∧ B.2 ∧ B.3 ∧ B.4]. (3.3)

In the following, we bound the probability of all the bad events individually. The

lemma will follow by adding the individual bounds.

Bounding B.1. For two fixed values of i and j, we compute the probability of

the event U i = U j. Note that U i = U j implies the hash equation: HKh(Mi
R‖T i) ⊕

HKh(Mj
R‖T j) = M i

1 ⊕M j
1 . By fixing the value of all other random variables in the

hash equation, the probability of this event is bounded by the AXU advantage of the

hash function. Therefore, by summing over all possible choices of i and j, we have

Pr[B.1] ≤
(
q

2

)
εaxu. (3.4)

Bounding B.2. This event is similar to that of B.1 where we consider the out-

put collision of π. Note that, V i = V j implies the hash equation: HKh(Ci
R‖T i) ⊕

HKh(Cj
R‖T j) = Ci

1⊕Cj
1 . Similar to B.1, we bound the event using the AXU advantage

of the hash function and thus we have

Pr[B.2] ≤
(
q

2

)
εaxu. (3.5)

Bounding B.3. For two fixed values of i and j, we compute the probability of the

event U i = xj. Note that U i = xj implies the hash equation: HKh(Mi
R‖T i) = M i

1⊕xj.
By fixing the value of all other random variables in the hash equation, the probability

of this event is bounded by the AR advantage of the hash function. Therefore, by

54

summing over all possible choices of i and j, we have

Pr[B.3] ≤ qqp1εreg. (3.6)

Bounding B.4. For two fixed values of i and j, we compute the probability of the

event V i = yj. Note that V i = yj implies the hash equation: HKh(Ci
R‖T i) = Ci

1⊕ yj.
Similar to B.3, we bound the event using the AR advantage of the hash function and

thus we have

Pr[B.4] ≤ qqp1εreg. (3.7)

Bounding B.5 | B.1∧B.2∧B.3∧B.4. To bound this event, we first fix the values

of i and j. Note that Zi = Zj implies U i⊕V i = U j ⊕V j. Now, due to the condition,

we have U i 6= U j and V i 6= V j. Therefore, we obtain the following hash equation:

HKh(Mi
R‖T i)⊕ HKh(Ci

R‖T i)⊕ HKh(Mj
R‖T j)⊕ HKh(Cj

R‖T j) = W, (3.8)

where W = M i
1 ⊕M j

1 ⊕ Ci
1 ⊕ Cj

1 . W.l.o.g, we assume that i < j. If the j-th query

is an encryption query, then Cj
1 is uniformly distributed in the ideal world and if

the j-th query is a decryption query, then M j
1 is uniformly distributed in the ideal

world. Combining the above two arguments and by varying over all possible choices

of indices, we have

Pr[B.5] ≤
(
q
2

)
2n
. (3.9)

The proof follows from Equation (3.3)-Equation (3.7) and Equation (3.9).

3.5.4 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp1 , τp2 , kh), realizing τ ′ is

almost as likely in the real world as in the ideal world.

Lemma 3.5.3. Let τ ′ = (τ, τp1 , τp2 , kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

55

Proof. Since, in the ideal world, the encryption and the decryption oracle behave

perfectly random, we have

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp1)
· 1

P(2n, qp2)
· 1

2nσ
, (3.10)

where σ is the total number of blocks queried among all q construction queries that

include encryption and decryption queries.

Real Interpolation Probability. Since τ ′ is a good transcript, all the inputs

and outputs of π1 are fresh. Moreover, all Zi values are distinct. Therefore, the

outputs of ρ are all uniformly random. Since, there are total qp1 +q many invocations

of π1, we have

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp1 + q)
· 1

P(2n, qp2)
· 1

(2n)σ−q
. (3.11)

By doing a simple algebraic calculation, it is easy to see that the ratio of Equa-

tion (3.11) to Equation (3.10) is at least 1 and hence proves the result.

By combining Lemma 3.5.2, Lemma 3.5.3, Theorem 2.4.1, Equation (3.1) and Equa-

tion (3.2), the result follows.

3.6 ppCTR: Public Permutation Based Length Ex-

panding PRF

In this section, we propose ppCTR, a public permutation based length expanding

PRF. Our proposed construction is a public permutation variant of the block cipher

based standard counter mode encryption where the block cipher is replaced by a single

round EM [43] cipher. The working principle of ppCTR is as follows: it takes an n-bit

public random permutation π and an n-bit random key k from GF(2n). Then for any

n-bit input value z and an integer b, it outputs b many blocks where the j-th block

56

Sj is defined as follows:

Sj
∆
= π(z ⊕ γjk)⊕ γj · k, j ∈ [b],

where γ is the root of any fixed primitive polynomial of degree n of GF(2n). In the

π π π

z

⊕γk ⊕γ2k ⊕γ3k

⊕γk

S1

⊕γ2k

S2

⊕γ3k

S3

Figure 3.6.1: ppCTR construction with an n-bit input z and an integer b = 3 and
corresponding output S1‖S2‖S3. π is the public random permutation, k is the key
and γ is the root of a primitive polynomial of GF(2n).

following section, we state and prove that ppCTR is a public permutation based secure

LENPRF against all adversaries that make roughly 2n/2 construction and primitive

queries. It is needless to say that the above bound is tight as EM cipher is known to

have a tight birthday bound security [43].

3.6.1 Security Analysis of ppCTR

In this section, we show that ppCTR is a public permutation based length expanding

PRF.

Theorem 3.6.1. Let π $← Perm(n) be an n-bit public random permutation and let

K
$← {0, 1}n be an n-bit random key. Then, for any (q, qp, σ) adversary D against

the LENPRF security of ppCTR[π,K], we have

AdvLENPRF
ppCTR (D) ≤ σ2

2n
+

2σqp
2n

,

where σ is the total number of blocks queried across all q queries.

Proof. Let Dmax be the distinguisher with maximum distinguishing advantage in

57

distinguishing the following two worlds: (a) in the real world it interacts with Ore =

(ppCTR[π,K], π±) for a random n-bit key K and a random n-bit permutation π and

(b) in the ideal world it has access to Oid = (ρ, π±), where ρ works in the similar way

as shown in Fig. 3.4.2. It makes q construction queries and qp primitive queries. After

the interaction is over, the real world returns K to Dmax and the ideal world randomly

samples a dummy key K $← {0, 1}n and returns to Dmax. Finally, Dmax outputs a bit.

Let τ ∆
= {(z1, b1,S

1), (z2, b2,S
2), . . . , (zq, bq,S

q)} be the list of construction queries and

responses, where Si = (Si1, . . . , S
i
bi

) and τp
∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the

list of primitive queries and responses to π made by Dmax. Let σ = (b1+. . .+bq) denote

the total number of blocks queried across all q queries. The triplet τ ′ = (τ, τp, K)

constitutes the query transcript of the attack. We define a relation ∼ over τ such that

(zi, bi,Si) ∼ (zj, bj,Sj) if and only if zi = zj. Thus, ∼ induces a partition on τ and let

us assume we have r many such partitions. Each partition contains ci many elements

and therefore, c1 + . . . + cr = q. Note that, there exists a total ordering among bi

values in each component. This allows us to sort the elements of each component in

the ascending order of their b values. After rearrangement, we have the following:

{(z1, b
1
1,S

1
1), . . . , (z1, b

1
c1
,S1

c1
)}

{(z2, b
2
1,S

2
1), . . . , (z2, b

2
c1
,S2

c2
)}

...
...

...
...

{(zr, br1,Sr1), . . . , (zr, b
r
c1
,Src1)}

Note that, for each i ∈ [r], bici ≥ bici−1 ≥ . . . ≥ bi1 and Sij is a prefix of Sij+1 for all

j ∈ [ci].

3.6.2 Definition and Probability of Bad Transcripts

In this section, we define bad transcripts and bound their probability in the ideal

world. Informally, we define an event to be bad if it introduces any non-trivial input

or output collision of the permutation π.

58

Definition 3.6.2. (Bad Transcript for ppCTR) : An attainable transcript τ ′ =

(τ, τp, K) is called a bad transcript for ppCTR if any of the following conditions hold:

- B.1 : ∃ i 6= j ∈ [r], α ∈ [`ci] and β ∈ [`cj] such that zi ⊕ γαK = zj ⊕ γβK.

- B.2 : ∃ i ∈ [r], j ∈ [qp] and α ∈ [`ci] such that zi ⊕ γαK = xj.

- B.3 : ∃ i 6= j ∈ [r], α ∈ [`ci] and β ∈ [`cj] such that Siα ⊕ γαK = Sjβ ⊕ γβK.

- B.4 : ∃ i ∈ [r], j ∈ [qp] and α ∈ [`ci] such that Siα ⊕ γαK = yj.

Lemma 3.6.3. Let Tid be the random variable that takes the transcript resulting from

the interaction between the distinguisher and the ideal world and Vb be the set of all

attainable bad transcripts for ppCTR. Then we have,

Pr[Tid ∈ Vb] ≤ εbad =
σ2

2n
+

2σqp
2n

.

Proof. By the union bound,

Pr[Tid ∈ Vb] ≤
4∑
i=1

Pr[B.i]. (3.12)

In the following, we bound the probability of all the bad events individually. The

lemma will follow by adding the individual bounds.

Bounding B.1. To bound this event, we first fix a value of the indices i 6= j ∈ [r]

and α ∈ [`ci], β ∈ [`cj]. For such a fixed choice of indices, we bound the probability

of the event zi ⊕ γαK = zj ⊕ γβK. Now, if α = β, then the probability of the event

is zero as zi 6= zj. Therefore, we assume that α 6= β. For this choice of indices, we

write the event as

K = (γα ⊕ γβ)−1(zi ⊕ zj). (3.13)

The probability of Equation (3.13) is 2−n, due to the randomness of the key K.

Therefore, by varying over all possible choices of i, j, α and β, we have

Pr[B.1] ≤ σ2

2n+1
. (3.14)

59

Bounding B.2. For a fixed choice of i ∈ [r], j ∈ [qp] and α ∈ [`ci], the probability of

the eventK = γ−α(zi⊕xj) is bounded by 2−n due to the randomness ofK. Therefore,

by varying over all possible choices of i, j and α, we have

Pr[B.2] ≤ qp
2n

(bc1 + · · ·+ bcr) ≤
σqp
2n

. (3.15)

Bounding B.3. Bounding this event is similar to that of B.1. To bound this event,

we first fix the value of the indices i 6= j ∈ [r] and α ∈ [`ci], β ∈ [`cj]. For such a fixed

choice of indices, we bound the probability of the event Siα⊕ γαK = Sjβ ⊕ γβK. Now

we have the following two cases:

- Case A. Let us consider that α = β. As i 6= j, without loss of generality,

we assume that i < j. Therefore, the event boils down to Siα = Sjα, which is

bounded by 2−n due to the randomness of Sjα. Therefore, by varying over all

possible choices of i, j and α, we have

Pr[B.3] ≤ σ2

2n+1

- Case B. if α 6= β, then the event can be equivalently written as

K = (γα ⊕ γβ)−1(Siα ⊕ Siβ). (3.16)

Since, α 6= β, we have γα ⊕ γβ 6= 0 and therefore, the probability of Equa-

tion (3.16) is 2−n due to the randomness of the key K. Therefore, by varying

over all possible choices of i, j, α and β, we have

Pr[B.3] ≤ σ2

2n+1
.

By taking the maximum of the above two, we have

Pr[B.3] ≤ σ2

2n+1
. (3.17)

60

Bounding B.4. Bounding this event is exactly identical to that of B.2, where we

use the randomness of K to bound the event. Therefore, we have

Pr[B.4] ≤ qp
2n

(bc1 + · · ·+ bcr) ≤
σqp
2n

. (3.18)

The proof follows from Equation (3.12) and Equation (3.14)-Equation (3.18).

3.6.3 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp, k), realizing τ ′ is almost

as likely in the real world as in the ideal world.

Lemma 3.6.4. Let τ ′ = (τ, τp, k) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Consider a good transcript τ ′ = (τ, τp, k). In the ideal world, ρ randomly

samples nbci bit output for i-th class and the key k is sampled uniformly from {0, 1}n

and independent of all other sampled random variables. Thus, we have

Pr[Tid = τ ′] =
1

2n
· 1

P(2n, qp)
·

r∏
i=1

1

2nqbci
. (3.19)

For computing the real interpolation probability, as τ ′ is good, all the inputs and

outputs of π are distinct. The total number of π invocations including the primitive

queries is (bc1 + . . .+ bcr + qp). Therefore,

Pr[Tre = τ ′] =
1

2n
· 1

P(2n, bc1 + . . .+ bcr + qp)
. (3.20)

It is trivial to see that the ratio of Equation (3.20) to Equation (3.19) is at least

1. Hence, the result of Lemma 3.6.4 follows. Finally, by combining Lemma 3.6.3,

Lemma 3.6.4 and Theorem 2.4.1, the result of Theorem 3.6.1 follows.

61

3.6.4 ppHCTR : An Instantiation of ppTES with ppCTR and

PolyHash

We instantiate the public permutation based length expanding PRF Fπ2k of ppTES[π1, π2, k,

H] with ppCTR[π2, k] and its underlying AXUAR hash function Hkh with the PolyHash

function Polykh , as described in Equation (2.4), to realize a practical candidate of a

public permutation based TES, referred to as ppHCTR[π1, π2, k,Polykh]. We assume

that the tweak is µ blocks long, i.e., tw = nµ and thus, for any i ∈ [q], the maximum

degree of Polykh(M i
2‖ . . . ‖M i

li
‖T i) is l̂i + µ, where l̂i = d |Mi

R|
n
e. Since l̂i ≤ ` for all

i ∈ [q], where ` denotes the maximum number of message blocks among all q queries,

therefore the AXU and the AR advantage of the PolyHash function is (` + µ)/2n.

Note that ppHCTR requires two independent n-bit random permutations π1 and π2,

an n-bit random key K and an independent n-bit random hash key Kh for the Poly-

Hash function. Security result of ppHCTR follows trivially from Theorem 3.4.3 and

Theorem 3.6.1 which can be summarized as follows:

Theorem 3.6.5. Let π1, π2
$← Perm(n) be two independent n-bit public random per-

mutations and let K $← {0, 1}n be an n-bit random key. Let Kh
$← {0, 1}n be an n-bit

random hash key of PolyHash function as described in Equation (2.4). Then, for any

(qe, qd, qp1 + qp2 , `, σ) information theoretic non-trivial adaptive CCA distinguisher D

against the tSPRP security of ppHCTR[π1, π2, K,PolyKh], we have

AdvtSPRP
ppHCTR(D) ≤ σ2

2n
+

2σqp2
2n

+
q2`

2n
+

2qqp1`

2n
+
µq2

2n
+

2µqqp
2n

+
q2

2n+1
+
q(q − 1)

2n+1
,

where q = qe + qd, ` is the maximum number of message blocks and µ is the number

of tweak blocks.

3.7 ppHCTR+ : A Single-Keyed Variant of ppHCTR

In the last section, we have seen that ppHCTR, a public permutation based TES,

requires two independent n-bit public random permutations and two independent n-

bit keys. In this section, we propose a single permutation and single keyed variant

62

of ppHCTR, referred to as ppHCTR+. The construction is based on an n-bit public

random permutation π and an n-bit random hash key of the PolyHash function as

described in Equation (2.4). We consider that the tweak size is µ blocks long. The

encryption and decryption algorithm of ppHCTR+ is shown in Fig. 3.7.1.

ppHCTR+.Encπkh(T,M)

1. (M1‖ . . . ‖Ml)← parsen(M);

2. ML ←M1;MR ← (M2‖ . . . ‖Ml);

3. U ←ML ⊕ Polykh(MR‖T);

4. V ← π(U); Z ← U ⊕ V ;

5. for j = 1 to l − 1

6. Zj ← Z ⊕ j;

7. Sj ← π(Zj)⊕ Zj;

8. S
∆
= (S1‖ . . . ‖Sl−1);

9. CR ←MR ⊕ first(|MR|,S);

10. CL ← V ⊕ Polykh(CR‖T);

11. return (CL‖CR);

ppHCTR+.Decπkh(T,C)

1. (C1‖ . . . ‖Cl)← parsen(C);

2. CL ← C1;CR ← (C2‖ . . . ‖Cl);

3. V ← C1 ⊕ Polykh(CR‖T);

4. U ← π−1(V); Z ← U ⊕ V ;

5. for j = 1 to l − 1

6. Zj ← Z ⊕ j;

7. Sj ← π(Zj)⊕ Zj;

8. S
∆
= (S1‖ . . . ‖Sl−1);

9. MR ← CR ⊕ first(|CR|,S);

10. ML ← V ⊕ Polykh(MR‖T);

11. return (ML‖MR);

Figure 3.7.1: ppHCTR+ based on an n-bit public random permutation π and an n-bit
random hash key kh. The left part is the encryption algorithm and the right part is
its decryption algorithm.

To see the dataflow of the encryption algorithm, we consider an input message

M = (M1‖M2), where |M1| = |M2| = n, i.e., M consists of two full blocks. Therefore,

in step (2) of the algorithm, the variable ML is assigned to M1 and MR is assigned

to M2. In step (3) of the algorithm, we evaluate the poly hash Polykh on (M2‖T)

which results to M2 · k3
h ⊕ T · k2

h ⊕ 〈|M2| + |T |〉 · kh which is xored with the n-bit

value M1 to produce U . In step (4), we take the xor of U and V = π(U) to produce

Z. In steps (6) and (7), we compute the key stream S = S1 where each |S1| = n by

63

S1 = π(Z ⊕ 1)⊕ (Z ⊕ 1). Since, |MR| = n, CR will be M2 ⊕ S1, which becomes the

input along with tweak T to the poly hash function Polykh . Evaluation of the poly

hash on input CR‖T results to CR · k3
h⊕ T · k2

h⊕ 〈|CR|+ |T |〉 · kh. Then the result is

xored with V to produce CL, which is returned along with CR as the encryption of

M = M1‖M2. The decryption works in a similar way.

3.7.1 Security Result of ppHCTR+

The security result of ppHCTR+ is as follows:

Theorem 3.7.1. Let π $← Perm(n) be an n-bit public random permutation and let

Kh
$← {0, 1}n be an n-bit random hash key of PolyHash function as described in

Equation (2.4). Then, for any (qe, qd, qp, `, σ) information theoretic non-trivial adap-

tive CCA distinguisher D against the tSPRP security of ppHCTR+[π,PolyKh], we

have

AdvtSPRP
ppHCTR+(D) ≤ 9σ2

2n
+

6µσ2

2n
+

4qpσ(µ+ 1)

2n
+
q(q − 1)

2n+1
,

where σ is the total number of message blocks for all q ∆
= qe + qd queries and µ is the

number of tweak blocks.

3.8 Proof of Theorem 3.7.1

In section 3.6.4, we propose ppHCTR, which uses two independent random permu-

tations and two independent random keys, which allows us to use the generic se-

curity result of ppTES in order to derive the security result of ppHCTR. However,

for the single keyed variant of it, we cannot use the generic result of ppTES due to

the input/output dependency and that demands an independent security proof for

ppHCTR+.

For the sake of simplicity, we refer ppHCTR+[π,PolyKh] as ppHCTR+ when the un-

64

derlying primitives are assumed to be understood. By Theorem 2.3.1, we have

AdvtSPRP
ppHCTR+(D) ≤ Adv±rnd

ppHCTR+(D) +
q(q − 1)

2n+1
, (3.21)

where recall that n is the minimum message length allowed for ppHCTR+. There-

fore, we bound the ±rnd advantage of ppHCTR+. Let D be any information the-

oretic non-trivial adaptive deterministic CCA distinguisher with access to the ora-

cles in either of the following two worlds: in the real world it interacts with Ore =

(ppHCTR+.EncπKh , ppHCTR+.DecπKh , π
±) for an n-bit random hash key Kh and a ran-

dom n-bit permutation π or in the ideal world it interacts with Oid = ($0, $1, π
±),

where $0 and $1 are two independent random functions such that for any input, it

responds with uniform values. Now, our goal is to upper bound the maximum ad-

vantage in distinguishing the real world from the ideal one.

Let D be the maximum distinguishing advantage achieving distinguisher that makes

qe (resp. qd) encryption (resp. decryption) queries and qp primitive queries. After the

interaction is over, the underlying hash key is revealed to D and finally, D outputs a

bit. Let τ ∆
= {(T 1,M1, C1), (T 2,M2, C2), . . . , (T q,M q, Cq)} be the list of construction

queries and responses and τp
∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the list of primitive

queries and responses where each T i is exactly µ blocks long. The triplet τ ′ =

(τ, τp, Kh) constitutes the query transcript of the attack. Now, we characterize the

set of bad transcripts and good transcripts.

3.8.1 Definition and Probability of Bad Transcripts

In this section, we define bad transcripts and bound their probabilities in the ideal

world. The defining criterion of the bad event is any non-trivial collision in the input

or output of the permutation. As defined in Fig. 3.7.1, Mi
R denotes M i

2‖ . . . ‖M i
li
and

Ci
R denotes Ci

2‖ . . . ‖Ci
li
. Moreover, for a transcript τ ′, we denote U i = PolyKh(Mi

R‖T i)⊕
M i

1, V
i = PolyKh(Ci

R‖T i)⊕ Ci
1 and Zi

α = U i ⊕ V i ⊕ 〈α〉.

Definition 3.8.1. (Bad Transcript for ppHCTR+) : An attainable transcript

65

τ ′ = (τ, τp, Kh) is called a bad transcript for ppHCTR+ if any of the following con-

ditions hold:

- B.1 : ∃ i 6= j ∈ [q] such that, U i = U j.

- B.2 : ∃ i, j ∈ [q] and α ∈ [lj − 1] such that, U i = Zj
α.

- B.3 : ∃ i, j ∈ [q], α ∈ [li − 1] and β ∈ [lj − 1] with (i, α) 6= (j, β) such that

Zi
α = Zj

β, where (i, α) 6= (j, β).

- B.4 : ∃ i 6= j ∈ [q] such that V i = V j.

- B.5 : ∃ i, j ∈ [q] and α ∈ [lj − 1] such that V i = Zj
α ⊕M j

α+1 ⊕ Cj
α+1.

- B.6 : ∃ i, j ∈ [q], α ∈ [li − 1] and β ∈ [lj − 1] with (i, α) 6= (j, β) such that

Zi
α ⊕M i

α+1 ⊕ Ci
α+1 = Zj

β ⊕M j
β+1 ⊕ Cj

β+1.

- B.7 : ∃ i ∈ [q] and j ∈ [qp] such that U i = xj.

- B.8 : ∃ i ∈ [q] , j ∈ [qp] and α ∈ [li − 1] such that Zi
α = xj.

- B.9 : ∃ i ∈ [q] and j ∈ [qp] such that V i = yj.

- B.10 : ∃ i ∈ [q] , j ∈ [qp] and α ∈ [li − 1] such that Zi
α ⊕M i

α+1 ⊕ Ci
α+1 = yj.

Lemma 3.8.2. Let Tid be the random variable that takes the transcript resulting from

the interaction between the distinguisher and the ideal world and Vb be the set of all

attainable bad transcripts for ppHCTR+. Then, by assuming q ≤ σ, we have

Pr[Tid ∈ Vb] ≤ εbad =
9σ2

2n
+

6µσ2

2n
+

4qpσ(µ+ 1)

2n
.

Proof. By the union bound,

Pr[Tid ∈ Vb] ≤
10∑
i=1

Pr[B.i]. (3.22)

In the following, we bound the probability of all the bad events individually. The

lemma will follow by adding the individual bounds.

66

Notation. We consider that the tweak is µ blocks long, i.e., tw = nµ. Therefore,

for any i ∈ [q], the maximum degree of Polykh(Mi
R‖T i) is l̂i + µ, where l̂i

∆
= d |Mi

R|
n
e.

Let ˆ̀
i,j denotes max{l̂i, l̂j}+ µ and σ̂ = qµ+ (l̂1 + . . .+ l̂q) denotes the total number

of message blocks of Mi
R (including the tweak blocks) across all q queries. Therefore,

σ = (σ̂ − qµ+ q) which implies that σ − q = l̂1 + . . .+ l̂q. Since, ˆ̀
i,j ≤ l̂i + l̂j + µ, we

have ∑
1≤i<j≤q

ˆ̀
i,j ≤

(
q

2

)
µ+

∑
1≤i<j≤q

(l̂i + l̂j) ≤ (q − 1)σ̂ ≤ qσ + µq2. (3.23)

Bounding B.1. Bounding this event is equivalent to bounding

PolyKh(Mi
R‖T i)⊕ PolyKh(Mj

R‖T j) = M i
1 ⊕M j

1 .

If Mi
R‖T i = Mj

R‖T j then the probability of this event is zero, otherwise it is bounded

by the AXU advantage of the PolyHash and hence from Equation (3.23) and by

assuming q ≤ σ, we have

Pr[B.1] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
≤ σ2(µ+ 1)

2n
. (3.24)

Bounding B.2. To bound the probability of B.2, we first fix the value of i, j and α.

Note that Zj
α = Zj ⊕〈α〉. Therefore, U i = Zj

α implies U i⊕U j ⊕V j = 〈α〉. Now, this
essentially implies the following hash equation:

PolyKh(Mi
R‖T i)⊕PolyKh(Mj

R‖T j)⊕PolyKh(Cj
R‖T j) = M i

1⊕M j
1 ⊕Cj

1 ⊕〈α〉. (3.25)

Based on the values of i and j, we have the following two subcases:

- Case A: If i 6= j, then we first assume that i < j. Then, if the j-th query is

an encryption query, then Cj
1 is random and therefore, by conditioning on the

hash key and using the randomness of Cj
1 , probability of Equation (3.25) can

be bounded by 2−n as Cj
1 is uniformly distributed in the ideal world. Similarly,

if the j-th query is a decryption query, then M j
1 is random and therefore by

conditioning on the hash key and using the randomness of M j
1 , the probability

67

of Equation (3.25) can be bounded by 2−n asM j
1 is uniformly distributed in the

ideal world. Therefore, by varying over possible choices of i and (j, α), we have

Pr[B.2] ≤ qσ

2n
.

On the other hand, if i > j, then by conditioning all other random variables, we

bound the probability of the event using the AXU advantage of the PolyHash

function. Therefore, we have

Pr[B.2] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
.

By considering the maximum of the above two, we have

Pr[B.2] ≤ qσ + µq2

2n
. (3.26)

- Case B: If i = j, then, Equation (3.25) boils down to the following hash

equation:

PolyKh(Ci
R‖T i) = Ci

1 ⊕ 〈α〉. (3.27)

Note that for a fixed choice of i and α, Equation (3.27) can be bounded by the

AR advantage of the PolyHash function. Therefore,

Pr[B.2] =

q∑
i=1

l̂i∑
α=1

l̂i + µ

2n
=

1

2n

q∑
i=1

l̂2i +
1

2n

q∑
i=1

l̂iµ ≤
σ2 + q2

2n
+
µσ

2n
. (3.28)

By considering both the cases and by assuming q ≤ σ, we have

Pr[B.2] ≤ σ2 + q2 + µσ

2n
+
qσ + µq2

2n
≤ 3σ2(µ+ 1)

2n
. (3.29)

Bounding B.3. To bound the probability of B.3, we first fix the value of i, j, α and

68

β such that (i, α) 6= (j, β). Note that Zi
α = Zj

β implies the following hash equation:

PolyKh(Mi
R‖T i)⊕ PolyKh(Mj

R‖T j)⊕ PolyKh(Ci
R‖T i)⊕ PolyKh(Cj

R‖T j) = W,

where W = M i
1 ⊕M j

1 ⊕ Ci
1 ⊕ Cj

1 ⊕ 〈α〉 ⊕ 〈β〉. Note that for i = j, the probability of

this event is zero. For i 6= j, without loss of generality, we assume that i < j, if the

j-th query is an encryption query, then Cj
1 is uniformly distributed in the ideal world

which is used to bound the probability of the event by conditioning the hash key and

all other random variables. Similarly, if the j-th query is a decryption query, thenM j
1

is uniformly distributed in the ideal world, which is used to bound the probability of

the event by conditioning the hash key and all other random variables. Combining

the above two arguments with the assumption q ≤ σ and by varying over all possible

choices of indices, we have

Pr[B.3] =

(
σ−q

2

)
2n
≤ σ2 + q2

2n+1
≤ σ2

2n
. (3.30)

Bounding B.4. Bounding this event is equivalent to bounding

PolyKh(Ci
R‖T i)⊕ PolyKh(Cj

R‖T j) = Ci
1 ⊕ Cj

1 .

If Ci
R‖T i = Cj

R‖T j then the probability of this event is zero, otherwise it is bounded

by the AXU advantage of the PolyHash and hence from Equation (3.23) and by the

assumption q ≤ σ, we have

Pr[B.4] ≤
∑

1≤i<j≤q

ˆ̀
i,j

2n
≤ qσ + µq2

2n
≤ σ2(µ+ 1)

2n
. (3.31)

Bounding B.5. We first fix the values of i, j and α and compute the probability of

V i = M j
α+1 ⊕ Cj

α+1 ⊕ Zj
α. This event boils down to computing the probability of the

following event:

PolyKh(Ci
R‖T i)⊕ PolyKh(Mj

R‖T j)⊕ PolyKh(Cj
R‖T j) = W ,

where W = Ci
1 ⊕M j

α+1 ⊕ Cj
α+1 ⊕M j

1 ⊕ Cj
1 ⊕ 〈α〉. Now, we have two subcases as

69

follows:

- Case A: if i = j, then we have PolyKh(Mi
R‖T i) = Ci

1⊕M i
α+1⊕Ci

α+1⊕M i
1⊕Ci

1⊕
〈α〉, which can be bounded using the AR advantage of the PolyHash function

after conditioning all other random variables. Therefore, by assuming q ≤ σ,

we have

Pr[B.5] =

q∑
i=1

l̂i∑
α=1

l̂i + µ

2n
=

1

2n

q∑
i=1

l̂2i +
1

2n

q∑
i=1

l̂iµ ≤
2σ2

2n
+
µσ

2n
. (3.32)

- Case B: Now we consider the case when i 6= j and without loss of generality

we assume that i < j. Then, by fixing the hash key Kh, the probability of the

above event is the probability over the random draw of Cj
1 (if j-th query is an

encryption query) or M j
1 (if j-th query is a decryption query), which is at most

2−n. Therefore, varying over all the possible choice of i, j and α and q ≤ σ, we

have

Pr[B.5] ≤ qσ

2n
≤ σ2

2n
. (3.33)

Taking the maximum of Equation (3.32) and (3.33), we have

Pr[B.5] ≤ 2σ2

2n
+
µσ

2n
. (3.34)

Bounding B.6. To bound this event we first fix i, j and α, β and then we compute

the probability ofM i
α+1⊕Ci

α+1⊕Zi
α = M j

β+1⊕Cj
β+1⊕Zj

β. Now, we have the following

subcases based on the values of i and j.

- Case A: If i = j, then the above event boils down to the following event

M i
α+1⊕Ci

α+1⊕M i
β+1⊕Ci

β+1 = 〈α〉⊕〈β〉. Since α 6= β, without loss of generality,

we assume that α < β. Therefore, using the randomness of Ci
β (if i-th query

is encryption) or using the randomness of M i
β (if i-th query is decryption), the

probability of the event is bounded by 2−n. By summing over all possible values

70

of i, α and β, we have

Pr[B.6] ≤
q∑
i=1

(
l̂i
2

)
2n
≤ 1

2n+1
(

q∑
i=1

l̂i)
2 =

(σ − q)2

2n+1
≤ σ2 + q2

2n+1
. (3.35)

- Case B: If i 6= j, then we bound the probability of the event similar to that

of B.3, that is 1/2n and therefore, by summing over all possible values of i, j, α

and β, we have

Pr[B.6] ≤ σ2 + q2

2n+1
. (3.36)

By taking the maximum of Equation (7.1) and (3.36) and by assuming q ≤ σ, we

have

Pr[B.6] ≤ σ2 + q2

2n+1
≤ σ2

2n
. (3.37)

Bounding B.7. Bounding this event is equivalent to bounding PolyKh(Mi
R‖T i) =

M i
1⊕xj. This event is bounded by the AR advantage of the PolyHash and hence from

Equation (3.23) and by assuming q ≤ σ, we have

Pr[B.7] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qpσ(µ+ 1)

2n
. (3.38)

Bounding B.8. To bound the probability of B.8, we first fix the value of i, j and

α. Note that Zi
α = xj implies the following hash equation: PolyKh(Mi

R‖T i) ⊕
PolyKh(Ci

R‖T i) = M i
1 ⊕ Ci

1 ⊕ 〈α〉 ⊕ xj. If the construction query comes after the

primitive query, then we can bound the probability of the event using the random-

ness of Ci
1 (if the construction query is an encryption query) or using the randomness

of M i
1 (if the construction query is a decryption query). Therefore, by conditioning

the hash key and all other random variables, the bound will be 2−n. Therefore, we

have

Pr[B.8] =
(σ − q)qp

2n
≤ σqp

2n
.

On the other hand, if the primitive query comes after the construction query, then

we condition every other random variable and bound the probability of this event by

71

using the AR advantage of the PolyHash function. Therefore, we have

Pr[B.8] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qp(σ + qµ)

2n
.

Therefore, by taking the maximum of the above two and by assuming q ≤ σ, we have

Pr[B.8] ≤ qpσ(µ+ 1)

2n
. (3.39)

Bounding B.9. Bounding this event is equivalent to bounding PolyKh(Ci
R‖T i) =

Ci
1⊕ yj. This event is bounded by the AR advantage of the PolyHash and hence from

Equation (3.23) and by assuming q ≤ σ, we have

Pr[B.9] ≤
q∑
i=1

qp∑
j=1

l̂i + µ

2n
≤ (σ − q)qp

2n
+
µqqp
2n
≤ qpσ(µ+ 1)

2n
. (3.40)

Bounding B.10. To bound the probability of B.10, we first fix the value of i, j and

α. Note that M i
α+1 ⊕ Ci

α+1 ⊕ Zi
α = yj implies the hash equation: PolyKh(Mi

R‖T i) ⊕
PolyKh(Ci

R‖T i) = W , where W = M i
α+1⊕Ci

α+1⊕M i
1⊕Ci

1⊕〈α〉⊕ yj. Similar to B.8,

we bound the event as

Pr[B.10] ≤ qpσ(µ+ 1)

2n
. (3.41)

The proof follows from Equation (3.22), Equation (7.5)-Equation (4.18) and q ≤
σ.

3.8.2 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp, kh), realizing τ ′ is

almost as likely in the real world as in the ideal world.

Lemma 3.8.3. Let τ ′ = (τ, τp, kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1.

Proof. Since, in the ideal world, the encryption and the decryption oracle behave

72

perfectly random, we have

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp)

1

2nσ
, (3.42)

where σ is the total number of message blocks queried among all q queries.

Real Interpolation Probability. Since τ ′ is a good transcript, all the inputs

and outputs of π are fresh as we have eliminated all the internal input and output

collisions of π, including the primitive queries, while defining the bad events. Since

there are total σ + qp invocation of π, including the primitive queries, therefore, the

required probability is,

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp)

1

P(2n − qp, σ)
. (3.43)

By doing a simple algebraic calculation, it is easy to show that the ratio of Equa-

tion (3.43) to Equation (3.42) is at least 1. This proves Lemma 3.8.3.

By combining Lemma 3.8.2, Lemma 3.8.3, Theorem 2.4.1 and Equation (3.21), the

result of Theorem 3.7.1 follows.

Discussion. We would like to note here that a simple birthday bound attack reveals

the hash key of the Polyhash function for ppHCTR and ppHCTR+. This would allow

an adversary to generate the ciphertext for any plaintext. The same attack also works

for HCTR construction. A simple remedy for this problem is to introduce additional

permutation calls after the hash evaluation in the upper and bottom layers. This

would resolve the problem of revealing the hash difference to any adversary, which in

turn makes the recovery of the hash key difficult. A formal security analysis of this

modified construction is beyond the scope of this chapter.

73

74

4
IpTES: An Inverse-free Tweakable Enciphering

Schemes Using Public Permutations

In the previous Chapter, we have proposed tweakable enciphering schemes using pub-

lic permutations, which use both the forward and inverse directions of the permuta-

tions. Most existing public random permutations are more efficient in the forward

direction than in the inverse direction. Thus, avoiding the inverse call of the per-

mutations in a construction will make the scheme faster. Therefore, constructing

inverse-free TES using public permutations is an interesting and important problem.

In this Chapter, we design an inverse-free TES using public permutations called IpTES

and also provide adequate arguments in favor of its security.

There are several inverse-free TESs in literature, called FMix [11], AEZ [52] and

FAST [19], which are constructed using block-ciphers. IpTES bears structural simi-

larities with block cipher based TESs, most notably with the construction FAST[19],

whose main building blocks are a block cipher and an AXU hash function.

4.1 IpTES : A Inverse-Free Single-Keyed TES

We construct IpTES using an n-bit public random permutation π and an AXUAR hash

function H : Kh × {0, 1}∗ → {0, 1}n. IpTES takes as input a arbitrary long message

M , a n-bit key Kh and a µ blocks long tweak T . The encryption and decryption

75

algorithm of IpTES is shown in Fig. 4.1.1. To achieve the inverse-free property, we

use a two round Feistel type construction based on π. The Feistel structure is shown

in Fig. 4.1.2.

4.2 Security Proof

Theorem 4.2.1. Let π $← Perm(n) be an n-bit public random permutation and let

Kh
$← {0, 1}n be n-bit random hash key of the (ε, δ)-AXUAR hash function H. Then,

for any (qe, qd, qp, `, σ) information theoretic non-trivial adaptive CCA distinguisher

D against the tSPRP security of IpTES[π,Kh], we have

AdvtSPRP
IpTES (D) ≤ 3q2ε

2
+

q

2n
+

3q2

2n+1
+ 2qqpδ +

4qqp
2n

+ 4qqpε+ 2σδ +
4qσ

2n
+

2σ2

2n
,

where σ is the total number of message blocks for all q ∆
= qe + qd queries.

Proof. When the underlying primitives are understood, for the sake of simplicity,

we denote IpTES[π,HKh] as IpTES. From the Theorem 2.3.1, we have

AdvtSPRP
IpTES (D) ≤ Adv±rnd

IpTES(D) +
q(q − 1)

2n+1
. (4.1)

Now, we deal with the ±rnd advantage of IpTES instead of the tSPRP advantage.

Consider any information theoretic CCA adversary D, who has oracle access of either

Ore = (IpTES.EncπKh , IpTES.DecπKh , π
±) or Oid = ($0, $1, π

±), where Kh is a random

n-bit hash key, π is a random n-bit permutation and $0, $1 are two independent ran-

dom function. Also, note that the minimum message length for IpTES is 2n-bit.

Let, the adversary D make qe many encryption queries, qd many decryption

queries and qp many primitive queries. Note that, q = qe + qd. Suppose that

τ
∆
= {(T 1,M1, C1), (T 2,M2, C2), . . . , (T q,M q, Cq)} be the queries-response set of the

construction and τp
∆
= {(x1, y1), (x2, y2), . . . , (xqp , yqp)} be the queries-response set of

76

IpTES.EncπKh(T,M)

1. (M1‖ . . . ‖Ml)← parsen(M);

2. MR ← (M3‖ . . . ‖Ml);

3. U ←M1 ⊕HKh(T‖MR);

4. V ←M2 ⊕HKh(T‖MR‖M1);

5. (X, Y)← Feistelπ(U, V);

6. Z ← V ⊕X;

7. for j = 1 to l − 2

8. Zj ← Z ⊕ 〈j〉;

9. Sj ← π(Zj)⊕ Zj;

10. S
∆
= (S1‖ . . . ‖Sl−2);

11. CR ←MR ⊕ first(|MR|,S);

12. C1 ← Y ⊕HKh(T‖CR);

13. C2 ← X ⊕HKh(T‖CR‖C1);

14. return (C1‖C2‖CR);

IpTES.DecπKh(T,C)

1. (C1‖ . . . ‖Cl)← parsen(C);

2. CR ← (C3‖ . . . ‖Cl);

3. X ← C2 ⊕HKh(T‖CR‖C1);

4. Y ← C1 ⊕HKh(T‖CR);

5. (U, V)← Feistel−1
π (X, Y);

6. Z ← V ⊕X;

7. for j = 1 to l − 2

8. Zj ← Z ⊕ 〈j〉;

9. Sj ← π(Zj)⊕ Zj;

10. S
∆
= (S1‖ . . . ‖Sl−2);

11. MR ← CR ⊕ first(|CR|,S);

12. M1 ← U ⊕HKh(T‖MR);

13. M2 ← V ⊕HKh(T‖MR‖M1);

14. return (M1‖M2‖MR);

Figure 4.1.1: IpTES based on an n-bit public random permutation π and an n-bit
random hash key kh. The left part is the encryption algorithm and the right part is
its decryption algorithm.

Feistelπ(U, V)

1. X ← U ⊕ π(V);

2. Y ← V ⊕ π(X);

3. return (X, Y);

Feistel−1
π (X, Y)

1. V ← Y ⊕ π(X);

2. U ← X ⊕ π(V);

3. return (U, V);

Figure 4.1.2: Two round Feistel based on an n-bit public random permutation π.

77

the primitive π. After all the interactions are over, we reveal the hash key is to D.

Thus, τ ′ = (τ, τp, Kh) is the query transcript of the attack. Our objective is to find

the upper bound on the maximum advantage in distinguishing the real world from

the ideal. Now, we define the bad transcripts and upper bound their probabilities in

the ideal world.

4.2.1 Definition and Probability of Bad Transcripts

In this section, we define the bad transcripts and bound the probabilities of occurrence

of these transcripts in the ideal world. Mi
R denotes (M i

3‖ . . . ‖M i
li
), Ci

R denotes

(Ci
3‖ . . . ‖Ci

li
), U i = M i

1 ⊕ HKh(T i‖Mi
R), V i = M i

2 ⊕ HKh(T i‖Mi
R‖M i

1), X i = Ci
1 ⊕

HKh(T i‖Ci
R‖Ci

2), Y i = Ci
2 ⊕HKh(T i‖Ci

R) and Zi
α = V i ⊕X i ⊕ 〈α〉.

Definition 4.2.2. (Bad Transcript for IpTES) : If any of the following conditions

holds for an attainable transcript τ ′ = (τ, τp, Kh), is called as a bad transcript:

– B.1 : ∃ i 6= j ∈ [q] such that, V i = V j.

– B.2 : ∃ i 6= j ∈ [q] such that, X i = Xj.

– B.3 : ∃ i, j ∈ [q] such that, X i = V j.

– B.4 : ∃ i 6= j ∈ [q] such that, U i ⊕X i = U j ⊕Xj.

– B.5 : ∃ i 6= j ∈ [q] such that, V i ⊕ Y i = V j ⊕ Y j.

– B.6 : ∃ i 6= j ∈ [q] such that, U i ⊕X i = V j ⊕ Y j.

– B.7 : ∃ i ∈ [q], j ∈ [qp] such that, X i = xj.

– B.8 : ∃ i ∈ [q], j ∈ [qp] such that, V i = xj.

– B.9 : ∃ i ∈ [q], j ∈ [qp] such that, U i ⊕X i = yj.

– B.10 : ∃ i ∈ [q], j ∈ [qp] such that, V i ⊕ Y i = yj.

– B.11 : ∃ i, j ∈ [q], α ∈ [li − 2] such that, V i = Zj
α.

– B.12 : ∃ i, j ∈ [q], α ∈ [li − 2] such that, X i = Zj
α.

– B.13 : ∃ i, j ∈ [q], α ∈ [li − 2] such that, U i ⊕X i = Zj
α ⊕M j

α+2 ⊕ Cj
α+2.

– B.14 : ∃ i, j ∈ [q], α ∈ [li − 2] such that, V i ⊕ Y i = Zj
α ⊕M j

α+2 ⊕ Cj
α+2.

– B.15 : ∃ i, j ∈ [q], α ∈ [li − 2] and α′ ∈ [lj − 2] with (i, α) 6= (j, α′) such that,

Zi
α = Zj

α′.

78

– B.16 : ∃ i, j ∈ [q], α ∈ [li − 2] and α′ ∈ [lj − 2] with (i, α) 6= (j, α′) such that,

Zi
α ⊕M i

α+2 ⊕ Ci
α+2 = Zj

α′ ⊕M j
α′+2 ⊕ Cj

α′+2.

– B.17 : ∃ i ∈ [q], j ∈ [qp] and α ∈ [li − 2] such that, Zi
α = xj.

– B.18 : ∃ i ∈ [q], j ∈ [qp] and α ∈ [li − 2] such that, Zi
α ⊕M i

α+2 ⊕ Ci
α+2 = yj.

4.2.2 Analysis of Bad Transcripts:

Bounding B.1. Bounding this event is equivalent to bounding

HKh(T i‖MR
i‖M i

1)⊕HKh(T j‖MR
j‖M j

1) = M i
2 ⊕M j

2 .

If T i‖MR
i‖M i

1 = T j‖MR
j‖M j

1 then the probability of this event is zero, otherwise it

is bounded by the AXU advantage of the HKh and hence, we have

Pr[B.1] ≤
∑

1≤i<j≤q

ε ≤ q2ε

2
. (4.2)

Bounding B.2. Bounding this event is equivalent to bounding

HKh(T i‖CR
i‖Ci

1)⊕HKh(T j‖CR
j‖Cj

1) = Ci
2 ⊕ Cj

2 .

If T i‖CR
i‖Ci

1 = T j‖CR
j‖Cj

1 then the probability of this event is zero, otherwise it is

bounded by the AXU advantage of the HKh and hence, we have

Pr[B.2] ≤
∑

1≤i<j≤q

ε ≤ q2ε

2
. (4.3)

Bounding B.3. To bound the probability of B.3, first we fix the values of i and j.

Now, this essentially implies the following hash equation:

HKh(T i‖CR
i‖Ci

i)⊕HKh(T j‖MR
j‖M j

1) = Ci
2 ⊕M j

2 . (4.4)

–Case A: Consider i = j. If it is an encryption query, then Ci
2 is uniformly distributed

79

in the ideal world and if it is a decryption query, then M j
2 is uniformly distributed in

the ideal world. Therefore, by varying all possible choices of i, we have

Pr[B.3] ≤ q/2n. (4.5)

–Case B: Consider the case i 6= j. This event is the same as B.2, so,

Pr[B.3] ≤ q2ε

2
. (4.6)

Hence, considering both cases, we have

Pr[B.3] ≤ q2ε

2
+

q

2n
. (4.7)

Bounding B.4. To bound the probability of B.4, first we fix the values of i and j.

Now, this essentially implies the following equation:

HKh(T i‖MR
i)⊕HKh(T i‖CR

i‖Ci
1)⊕HKh(T j‖MR

j)⊕HKh(T j‖CR
j‖Cj

1)

= M i
1 ⊕ Ci

2 ⊕M j
1 ⊕ Cj

2 .
(4.8)

Without loss of generality, suppose i < j. Then, if j-th query is an encryption query,

then Cj
2 is random. Similarly, if j-th query is a decryption query, then M j

1 is random.

So, conditioning on the hash keys and the randomness of M j
1 or Cj

2 , the probability

of the Equ. (4.8) can be bounded by 2−n. Therefore, by varying over possible choices

of i and j, we have

Pr[B.4] ≤
∑

1≤i<j≤q

1

2n
≤ q2

2n+1
. (4.9)

Bounding B.5. To bound the probability of B.4, first we fix the values of i and j.

Now, this essentially implies the following equation:

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i)⊕HKh(T j‖MR

j‖M j
1)⊕HKh(T j‖CR

j)

= M i
2 ⊕ Ci

1 ⊕M j
2 ⊕ Cj

1 .
(4.10)

80

This event is the same as B.4. Therefore,

Pr[B.5] ≤ q2

2n+1
. (4.11)

Bounding B.6. Bounding this event is equivalent to bounding

HKh(T i‖MR
i)⊕HKh(T i‖CR

i‖Ci
1)⊕HKh(T j‖MR

j‖M j
1)⊕HKh(T j‖CR

j)

= M i
1 ⊕ Ci

2 ⊕M j
2 ⊕ Cj

1 .

With the similar argument as B.4, we can say that,

Pr[B.6] ≤
∑

1≤i<j≤q

1

2n
≤ q2

2n+1
. (4.12)

Bounding B.7. Bounding this events is equivalent to bounding HKh(T i‖CR
i‖Ci

1) =

Ci
2 ⊕ xj and it is bounded by the AR advantage of HKh . Hence,

Pr[B.7] ≤
q∑
i=1

qp∑
j=1

δ ≤ q.qp.δ. (4.13)

Bounding B.8. Bounding this events is equivalent to boundingHKh(T i‖MR
i‖M i

1) =

M i
2 ⊕ xj and it is bounded by the AR advantage of HKh . Hence,

Pr[B.8] ≤
q∑
i=1

qp∑
j=1

δ ≤ q.qp.δ. (4.14)

Bounding B.9. To bound the probability of B.9, first we fix the values of i and j.

Now, this essentially implies the following event:

HKh(T i‖MR
i)⊕HKh(T i‖CR

i‖Ci
1) = M i

1 ⊕ Ci
2 ⊕ yj.

If the primitive query comes before the construction query, then the probability of the

event is bound by the randomness of Ci
2 or M i

1 according to the encryption query or

description query, respectively. Therefore, conditioning on all the random variables,

81

the bound of this event will be 1/2n. Hence, we have

Pr[B.9] ≤ qqp
2n
. (4.15)

Also, if the primitive query comes after the construction query, then the proba-

bility of the event is bound by the AXU advantage of the hash function. Therefore,

we have

Pr[B.9] ≤ qqpε. (4.16)

Hence,

Pr[B.9] ≤ qqp
2n

+ qqpε. (4.17)

Bounding B.10. To bound the probability of B.10, first we fix the values of i and

j. Now, this essentially implies the following event:

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i) = M i

2 ⊕ Ci
1 ⊕ yj.

Bounding this event is similar to that of B.9. Therefore, we have

Pr[B.10] ≤ qqp
2n

+ qqpε. (4.18)

Bounding B.11. Bounding this event is equivalent to bounding

HKh(T i‖MR
i‖M i

1)⊕HKh(T j‖MR
j‖M j

1)⊕HKh(T j‖CR
j‖Cj

1) = A,

where A = M i
2 ⊕M j

2 ⊕ Cj
2 ⊕ 〈α〉.

Now we have two subcases as follows:

- Case A: If i = j, then we have HKh2
(T i‖CR

i‖Ci
1) = Ci

2 ⊕ 〈α〉. This can be

bounded using the AR advantage of the HKh after conditioning all other random

variables. Therefore,

Pr[B.11] ≤
q∑
i=1

li−2∑
α=1

δ ≤ σδ. (4.19)

82

- Case B: Now consider that i 6= j. We first assume that i < j, then the

probability of the event is bound by the randomness of Cj
2 or M j

2 according to

the encryption query or description query respectively. Therefore, conditioning

on all the random variables, the bound of this event will be 1/2n. Therefore by

varying over all possible i and (j, α), we have

Pr[B.11] ≤ qσ

2n
. (4.20)

Now, if i > j, then by conditioning all the random variables the probability of

the event is bounded by the AXU advantage of the hash function. Therefore,

we have

Pr[B.11] ≤ qσε. (4.21)

taking the maximum of the above two, we have

Pr[B.11] ≤ qσ

2n
. (4.22)

Therefore, from both the cases we have

Pr[B.11] ≤ σδ +
qσ

2n
. (4.23)

Bounding B.12. To bound the probability of B.12, first we fix the values of i and

(j, α). Now, this essentially implies the following event:

HKh(T i‖CR
i‖Ci

1)⊕HKh(T j‖CR
j‖Cj

1)⊕HKh(T j‖MR
j‖M j

1) = M j
2 ⊕ Ci

2 ⊕ Cj
2 ⊕ 〈α〉.

This is similar as B.11. Therefore,

Pr[B.12] ≤ σδ +
qσ

2n
. (4.24)

83

Bounding B.13. Bounding this event is equivalent to bounding

HKh(T i‖MR
i)⊕HKh(T i‖CR

i‖Ci
1)⊕HKh(T j‖MR

j‖M j
1)⊕HKh(T j‖CR

j‖Cj
1) = W,

where W = M i
1 ⊕M j

2 ⊕ Ci
2 ⊕ Cj

2 ⊕M j
α+2 ⊕ Cj

α+2 ⊕ 〈α〉.

If i = j and it is an encryption query, then in the ideal world, Cj
α+2 is random.

Also, if i = j and it is a decryption query, then in the ideal world M j
α+2 is random.

So, fixing the hash keys and the randomness of Cj
α+2 or M j

α+2, the probability of this

event is 1/2n. Therefore in this case,

Pr[B.13] ≤ qσ/2n. (4.25)

If i 6= j, then without loss of generality, we suppose that i < j. Then, by fixing

the hash keys, the probability of the above event is the probability over the random

draw of Cj
2 (if j-th query is an encryption query) or M j

2 (if j-th query is a decryption

query), which is at most 2−n. Therefore, in this case,

Pr[B.13] ≤ qσ/2n. (4.26)

Therefore, from both the cases, we have

Pr[B.13] ≤ qσ/2n. (4.27)

Bounding B.14. Bounding this event is equivalent to bounding

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i)⊕HKh(T j‖MR

j‖M j
1)⊕HKh(T j‖CR

j‖Cj
1) = W,

where W = M i
2 ⊕ Ci

1 ⊕M j
2 ⊕ Cj

2 ⊕M j
α+2 ⊕ Cj

α+2 ⊕ 〈α〉.

The probability analysis is same as B.13, so

Pr[B.14] ≤ qσ/2n. (4.28)

84

Bounding B.15. To bound the probability of B.15, first we fix the values of i, j, α

and α′ such that (i, α) 6= (j, α′). Now, this essentially implies the following event:

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i‖Ci

1)⊕HKh(T j‖MR
j‖M j

1)⊕HKh(T j‖CR
j‖Cj

1) = A,

where A = M i
2⊕M j

2 ⊕Ci
2⊕Cj

2 ⊕ 〈α〉 ⊕ 〈α′〉. For i = j the probability of this event is

zero. For i 6= j, without loss of generality, let i < j, if the j-th query is an encryption

query, then Cj
2 is uniformly distributed in the ideal world which is used to bound the

probability of the event by conditioning the hash key and all other random variables.

Similarly, if the j-th query is a decryption query, then M j
2 is uniformly distributed in

the ideal world, which is used to bound the probability of the event by conditioning

the hash key and all other random variables.

Therefore in this case,

Pr[B.15] ≤ σ2

2n
. (4.29)

Bounding B.16. Bounding this event is equivalent to bounding

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i‖Ci

1)⊕HKh(T j‖MR
j‖M j

1)⊕HKh(T j‖CR
j‖Cj

1) = A,

where A = M i
2 ⊕M j

2 ⊕ Ci
2 ⊕ Cj

2 ⊕M i
α+2 ⊕ Ci

α+2 ⊕M j
α′+2 ⊕ Cj

α′+2 ⊕ 〈α〉 ⊕ 〈α′〉.

The probability analysis is same as B.15, so

Pr[B.16] ≤ σ2

2n
. (4.30)

Bounding B.17. To bound the probability of B.17, first we fix the values of i and

j. Now, this becomes the event

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i‖Cj

1) = M i
2 ⊕ Ci

2 ⊕ xj ⊕ 〈α〉.

If the primitive query comes before the construction query then the probability

of the event is bound by the randomness of Ci
2 or M i

2 according to the encryption

query or description query, respectively. Therefore, conditioning on all the random

85

variables, the bound of this event will be 1/2n. Hence, we have

Pr[B.17] ≤ qqp
2n
. (4.31)

Also, if the primitive query comes after the construction query then the probability

of the event is bound by the AXU advantage of the hash function. Therefore, we have

Pr[B.17] ≤ qqpε. (4.32)

Hence,

Pr[B.17] ≤ qqp
2n

+ qqpε. (4.33)

Bounding B.18. To bound the probability of B.18, first we fix the values of i and

j. Now, this becomes the event

HKh(T i‖MR
i‖M i

1)⊕HKh(T i‖CR
i‖Ci

1) = M i
2 ⊕ Ci

2 ⊕M i
α+2 ⊕ Ci

α+2 ⊕ yj ⊕ 〈α〉.

The probability analysis is same as B.17, so

Pr[B.18] ≤ qqp
2n

+ qqpε. (4.34)

4.2.3 Analysis of Good Transcript

In this section, we show that for a good transcript τ ′ = (τ, τp, Kh), realizing τ ′ is

almost as likely in the real world as in the ideal world.

Let τ ′ = (τ, τp, Kh) be a good transcript. Then

Pr[Tre = τ ′]

Pr[Tid = τ ′]
≥ 1. (4.35)

Proof. Since, in the ideal world, the encryption and the decryption oracle behave

86

perfectly random, we have

Pr[Tid = τ ′] =
1

|Kh|
1

P(2n, qp)

1

2nσ
, (4.36)

where σ is the total number of message blocks queried among all q queries.

Real Interpolation Probability. Since τ ′ is a good transcript, all the inputs

and outputs of π are fresh. Therefore, the required probability is,

Pr[Tre = τ ′] =
1

|Kh|
1

P(2n, qp)

1

P(2n − qp, σ)
. (4.37)

By doing a simple algebraic calculation, it is easy to show that the ratio of Equa-

tion (3.11) to Equation (3.10) is at least 1.

Now, by combining probabilities of the bad transcripts and Equation (4.35), the result

of Theorem 4.2.1 follows.

87

88

5
On the Security of TrCBC

CBC-MAC and its variants are widely used and are parts of different standards. It is

known that the basic CBC-MAC is not secure as a variable input length MAC; more

precisely, CBC-MAC is only secure if the message space is prefix-free [78], i.e., the

message space does not contain any two messages where one is a prefix of the other.

In case the message space is not prefix-free, a simple length extension attack [4] can

be performed to obtain a forgery with probability 1. However, CBC-MAC is optimal

in terms of the number of block-cipher calls. If CBC-MAC is instantiated with a

block-cipher of block length n, then to authenticate a message of λ bits, it requires a

single key (which is the key of the underlying block cipher) and dλ/ne block-cipher
calls. This makes CBC-MAC a good choice for applications where only fixed-length

messages are required to be authenticated.

Over the years, several modifications over the basic CBC-MAC have been proposed

to accommodate general message spaces. Some notable constructions in this direc-

tion are EMAC [78], XCBC[13], CMAC [42], TMAC [58], OMAC [54], GCBC1 [72],

GCBC2 [72]. All these variants require some extra overhead compared to the ba-

sic CBC-MAC either in terms of the number of keys used and/or in the number of

block-cipher calls required.

TrCBC is a variant of CBC-MAC proposed in [88]. The motivation of TrCBC

construction was to provide a CBC-MAC like message authentication code which

works for general message spaces but whose overhead in terms of the number of keys

and block cipher calls is exactly the same as the CBC-MAC. In [88], it is claimed

89

that TrCBC achieves this with the limitation that it can produce only short tags

whose lengths are less than n/2-bits, where n is the block length of the underlying

block cipher. The main idea of the construction is to truncate the output of CBC-

MAC. Truncated CBC-MACs have been analyzed in [45] through a construction called

TCBC which is quite different from TrCBC. We discuss more about TCBC later in the

chapter.

In this Chapter, we show that TrCBC is insecure. A variant of the length extension

attack can be mounted on TrCBC which produces (n/2 − 1)-bit tags with a success

probability of 1/4. The basic attack can be extended to make it work for a large class

of messages.

The authors of [88] also claimed TrCBC to be a psudorandom function (PRF) and

proved an upper bound for the PRF advantage of an adversary for TrCBC. The bound

on the PRF advantage that the authors proved does not suggest TrCBC to be a PRF

where the tag length is (n/2−1)-bits. We analyze the PRF bound and conclude that

the security theorem for TrCBC does not really imply that TrCBC is a secure MAC

for all suggested tag lengths.

5.1 CBC-MAC

Consider the map CBC : K ×M → {0, 1}n, whereM ⊆ ∪i>0{0, 1}ni. For M ∈ M,

let parse(M) = M1||M2|| · · · ||M` and C0 = 0n, Ci = EK(Mi ⊕Ci−1) for i ∈ [`], where

EK : {0, 1}n → {0, 1}n is a block cipher. We define CBC(K,M) = C`. We often

denote CBC(K,M) by CBCK(M). A schematic view of the function CBCK(M) is

shown in Figure 5.1.1. The function CBC is called the CBC-MAC and it is a secure

MAC if the underlying block cipher E is a pseudorandom function and the message

spaceM is prefix-free, i.e., for any two distinct x, y ∈ M, x is not a prefix of y. For

practical purposes, CBC is used in scenarios where the message space contains strings

of fixed length; such message spaces are prefix-free.

90

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Mℓ

EK

T

Figure 5.1.1: The function CBCK(M). EK is a block cipher of block size n and
M = M1|| . . . ||M`, where |Mi| = n, for i ∈ [`].

Let X1, X2, . . . , X` ∈ {0, 1}n, then it is easy to see that for any 1 < k < `,

CBCK (X1‖ · · · ‖Xk‖ · · · ‖X`) = CBCK (CBCK(X1‖ · · · ‖Xk)⊕Xk+1‖Xk+2‖ · · · ‖X`) .

(5.1)

Thus, if CBCK(X1‖ · · · ‖Xk) = T , then

CBCK (X1‖ · · · ‖Xk‖ · · · ‖X`) = CBCK (T ⊕Xk+1‖Xk+2‖ · · · ‖X`) .

This property can be easily translated into a forgery attack: an adversary queries

X1‖ · · · ‖Xk and gets response as T = CBCK (X1‖ · · · ‖Xk); further, it queries T ⊕
Xk+1‖Xk+2‖ · · · ‖X` and gets the response T1; and finally it produces (X1‖ · · · ‖Xk‖ · · · ‖X`, T1)

as a forgery. From Equation (5.1), it is easy to verify that the forgery will be success-

ful with probability 1. This specific attack is called the length extension attack and

this cannot be mounted if the message space is prefix-free.

5.2 The Scheme TrCBC

TrCBC instantiated with a block cipher E : K × {0, 1}n → {0, 1}n is described in

details in Figure 5.2.1. A schematic diagram of the same is shown in Figure 5.2.

TrCBC takes a random key K $← K and a message M ∈ {0, 1}∗ as input and returns

a tag T ∈ {0, 1}τ of length τ < n/2.

A simplified view of TrCBC in terms of the function CBC would be useful. Let

M ∈ {0, 1}∗, where |M | = λ > 0. Let x1||x2|| . . . ||x` = parsen(M) and let r = |x`|.

91

MAC Algorithm: TrCBCK(M)

Input: K
$←− K, M ∈ {0, 1}∗.

Output: T ∈ {0, 1}τ , where τ < n/2.

01. M1‖ · · · ‖M` ← parsen(M);
02. Y ← 0n;
03. for i← 1 to `− 1 do
04. X ← Y ⊕Mi;
05. Y ← EK(X);
06. end for
07. if |M`| = n then
08. X ← Y ⊕M`;
09. Y ← EK(X);
10. T ← MSBτ (Y);
11. else
12. X ← Y ⊕ Padn(M`);
13. Y ← EK(X);
14. T ← LSBτ (Y);
15. end if
16. return T .

Figure 5.2.1: Specification of TrCBC instantiated with an n-bit block cipher EK .

Notice that r = λ− (`− 1)n = λ− (dλ/ne − 1)n. We define TrCBC as

TrCBCK(M) =

 MSBτ (CBCK(M)) if r = n,

LSBτ (CBCK(M ||10n−r−1)) if r < n,
(5.2)

where MSBτ (x) and LSBτ (x) return τ many most significant bits and τ many least

significant bits of x respectively.

5.3 An Attack on TrCBC

It was claimed in [88] that TrCBC is a secure MAC if the underlying block cipher is

a pseudorandom permutation. We show that an adversary making just three queries

to the MAC oracle can successfully forge TrCBC with probability 1/4.

We consider TrCBC instantiated with a block cipher of block length n (which is

even). We fix the tag length τ = n/2− 1. Let x1, x2, x3 be fixed but arbitrary strings

such that |x1| = |x3| = n and |x2| = n − 2. We set M1 = x1, M2 = x2||10 and

M3 = x3. The three queries which the adversary asks, along with the responses, are

as follows.

92

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Mℓ

EK

MSBτ (.)

T

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Pad(Mℓ)

EK

LSBτ (.)

T

Figure 5.2.2: The TrCBC construction. The first figure is for the full block messages,
i.e., the message length is a multiple of the block size n, and the second figure is
for messages whose length is not a multiple of n. Padn(M`) = M`‖10n−|M`|−1 and
τ < n/2.

1. Query X(1) = M1||M2, and get T1 as response.

2. Query X(2) = M1||x2, and get T2 as response.

3. Query X(3) = M1||M2||M3, and get T3 as response.

Finally, the adversary submits (M∗, T ∗) as the forgery, where

M∗ = (T1‖b∗1b∗2‖T2)⊕M3, T ∗ = T3 where b∗1, b
∗
2

$←− {0, 1}.

Note that (M∗, T ∗) is a valid forgery, as M∗ which is a single block message has

never been queried to the oracle. We are left to show that this forgery is successful

with high probability. We claim that for any choice of K ∈ K,

Pr[TrCBCK(M∗) = T ∗] = 1/4,

where the probability is over the choice of b∗1, b∗2. We substantiate our claim below.

93

From the TrCBC construction and our simplified description of TrCBC in Equa-

tion (5.2) we get,

T1 = TrCBCK(M1||M2) = MSBτ (CBCK (M1‖M2))

T2 = TrCBCK(M1||x2) = LSBτ (CBCK (M1‖x2‖10)) = LSBτ (CBCK (M1‖M2))

T3 = TrCBCK(M1||M2||M3) = MSBτ (CBCK (M1||M2||M3)) .

As |T1| = |T2| = τ = n/2− 1, we have for some b1, b2 ∈ {0, 1},

T1‖b1b2‖T2 = CBCK(M1||M2). (5.3)

Hence, using Equation (5.3) and Equation (5.1)

MSBτ (CBCK(T1‖b1b2‖T2 ⊕M3)) = MSBτ (CBCK (CBCK(M1||M2)⊕M3))

= MSBτ (CBCK (M1||M2||M3))

= T3,

and

TrCBCK(M∗) = MSBτ (CBCK((T1‖b∗1b∗2‖T2)⊕M3)) .

As b∗1, b∗2 are chosen uniformly at random from {0, 1}, so with probability 1/4, we have

(b∗1, b
∗
2) = (b1, b2), and thus

Pr[TrCBCK(M∗) = T3] =
1

4
,

as claimed.

5.4 Discussions

The source of insecurity. The following are the main characteristics of TrCBC:

1. For full block messages, TrCBC is exactly the CBC-MAC scheme, except that

94

instead of the full output only a part of the output is produced as the tag, in

particular τ < n/2 most significant bits only forms the tag.

2. For messages which are not full block, a deterministic padding is applied and

the CBC-MAC of the padded message is computed and the least significant τ

bits are output as a tag.

The idea behind such a design seems to be separating the outputs for full block and

incomplete block messages and the authors thought that a small tag length would

prevent a length extension type of attack. But, as only a deterministic padding

scheme is applied, hence for any message M ∈ {0, 1}mn where the last block is not 0n

almost all bits of CBCK(M) can be recovered with just two queries to TrCBC. To see

this, letM = M ′||x, where |x| = n and x 6= 0n. Let x = an · · · a2a1, where ai ∈ {0, 1},
and j be the smallest element in [n] such that aj = 1. Let M1 = M ′||anan−1 · · · aj−1.

Then, following the padding scheme in TrCBC we have,

TrCBCK(M) = MSBτ (CBCK(M)),

TrCBCK(M1) = LSBτ (CBCK(M)).

Our attack essentially uses the above property of TrCBC to recover 2τ many bits of

CBCK(M). This property can be further used to forge a large class of messages, which

we will describe next.

A generic attack. Consider a messageX = X1||X2|| . . . ||X`, for ` ≥ 2 and suppose

there exists k ∈ [` − 1] such that Xk 6= 0n, i.e, X1||X2|| . . . ||X`−1 is not the all zero

string. Let, Xk = x‖10m, where the first 1 (from the right) in Xk followed by m ≥ 0

zeros. As before, we fix the tag length τ = n/2− 1. Let an adversary query with the

three queries specified below:

1. X(1) = X1||X2|| . . . ||Xk.

2. X(2) = X1||X2|| . . . ‖Xk−1||x.

3. X(3) = X1||X2|| . . . ||X`.

95

Let the responses to the above three queries be T1, T2, T2 respectively, and let

M∗ = ((T1‖b∗1b∗2‖T2)⊕Xk+1)‖Xk+2‖ . . . ‖X`,

where b∗1, b∗2
$←− {0, 1}. Then following the same arguments as in Section 5.3 it is easy

to verify that (M∗, T3) will be a forgery with a success probability 1/4.

Provable security of TrCBC. In [88] the authors claim TrCBC to be a PRF. We

restate the theorem in [88] next.

Theorem 5.4.1. Let R $←− Func(∗, τ) and P $←− Perm(n). Let TrCBCP be the con-

struction where the block cipher in TrCBC is replaced by P . A is an adversary who

asks at most q queries, having an aggregate length of at most σ blocks, then

∣∣Pr
[
ATrCBCP (.) ⇒ 1

]
− Pr

[
AR(.) ⇒ 1

]∣∣ ≤ σ(σ − 1)

2n+1
+
σ(σ − 1)

2n−2τ+1
.

Theorem 5.4.1 claims a bound on the PRF advantage of an adversary attacking

TrCBC. If we investigate the bound a bit closely, it is clear that the bound on the

advantage can be really large for some suggested parameter values of TrCBC. For

example, for τ = n/2 − 1, the dominant term in the bound is σ(σ − 1)/8, thus

for any σ > 3 the bound becomes meaningless. As a PRF advantage (which is

a difference of two probabilities), being less than 1 is a trivial information. Thus,

though the theorem is correct, the bound does not guarantee that TrCBC is a PRF

for all suggested parameter values and hence, the provable security theorem, though

correct, does not imply security of TrCBC for all suggested tag lengths.

The inadequacy of the theorem gets more clear when we see it in light of our

attack. For our basic version of the attack, the adversary uses only three queries with

query lengths 2 blocks, 2 blocks and 3 blocks respectively. Thus the query complexity

(the total aggregate query length) of our adversary is σ = 7 and it has a large forgery

advantage of 1/4. Based on Theorem 5.4.1 and Equation (2.9), the forgery advantage

96

of an adversary with query complexity 7 would be at most

7(7− 1)

2n+1
+

7(7− 1)

23
+

1

2n/2−1
,

which is greater than five irrespective of the value of n. Thus, technically our attack

does not refute the provable security claim.

It is worth investigating for which tag length(s) the bound implies security of

TrCBC. According to Equation (2.9), the forgery advantage of any adversary A with

query complexity σ attacking TrCBC will be upper bounded by

σ(σ − 1)

2n+1
+
σ(σ − 1)

2n−2τ+1
+

1

2τ
.

Taking τ = n/2− α, where 1 ≤ α < n/2 we have the bound as

σ(σ − 1)

2n+1
+
σ(σ − 1)

22α+1
+

1

2n/2−α
>

1

22α+1
+

1

2n/2−α
. (5.4)

A simple computation shows that the expression on the right-hand side of Equa-

tion (5.4) attains the minima at α = n/6, which suggests that the best-suited value

of τ will be n/2− n/6 = n/3.

As suggested by the authors, the allowed value of τ is less than n/2. It is common

knowledge that shorter tags give lesser security; hence from a user’s perspective, the

maximum length of a tag, which is supported by the MAC and the application at

hand, is chosen. Thus, given the specification of TrCBC it would be alluring for a user

to use the largest possible tag length, which is n/2 − 1, and as we show, this choice

can be disastrous. Thus, the provable security guarantee of TrCBC which the authors

provide through Theorem 5.4.1 is very confusing without a proper interpretation of

the bound.

Our analysis shows that the PRF bound suggests maximum security when the

tag length is n/3. If we consider a block cipher with a block length of 128 bits,

this translates to tags of length around 42 bits. For most applications, such short

tag lengths would not be tolerated. But TrCBC can provide adequate security when

97

instantiated with block ciphers with large block lengths (say 256 bits) and when the

tag length is appropriately selected.

The case of TCBC . Security properties of truncated CBC-MAC has been studied

in details in [45]. In [45] a scheme called TCBC is described as

TCBCK(X) = MSBτ (CBCK (pad1(X))) .

Where pad1(x) appends a 1 followed by sufficiently many zeros to X to make the

length of the resulting string a multiple of n. In particular if x1||x2|| . . . ||x` =

parsen(X) then

pad1(X) =

 X||10n−|x`|−1 if |x`| < n.

X||10n−1 if |x`| = n.

It has been proved in [45] that TCBC is a secure pseudorandom function. In particular,

if TCBC is instantiated with a random permutation, then any adversary making q

queries with length at most λ < 2n/4 cannot distinguish TCBC from a random function

with probability more than ε(λ, q) = O(q(q+λ)
2n−τ

+ λq2

2n
).

It is important to note the differences between TrCBC and TCBC. The padding

scheme of TCBC injectively maps any string in {0, 1}∗ to the set of strings ∪i≥1{0, 1}ni,
whereas the padding scheme for TrCBC is not injective. Also, for any message it is not

possible for an adversary to know more than τ bits of the final output of TCBC, but

as we already showed for TrCBC it is possible to know 2τ many bits of the output for

a large class of messages and this helps in the forgery attack. Finally, TCBC requires

one more block cipher call than TrCBC for full block messages.

98

6
Variable Output Length Message Authentication

Codes

A message authentication code (MAC) generally produces fixed length authentication

tags. An important question addressed in [47] is the following. Is it possible to

construct MACs which can produce tags of variable lengths and the users have the

liberty to choose the tag lengths? The authors of [47] points out a discussion in the

Crypto Forum Research Group which voices concerns regarding the suggested use of

tags of different lengths in UMAC [12]. As a part of this discussion Wagner [84] warns

that such uses may lead to unexpected vulnerabilities and it is better to use just a

single tag length with a specific key. As claimed in [47] we also could not find any

work which addresses this issue of variable tag length MACs.

In the context of authenticated encryption (AE) there have been some discussions

on the variable tag length issue. In [79], a formal treatment of variable tag length AEs

was done and there it was pointed out that it is desirable that an AE scheme securely

generates variable length authentication tags as this protects it against abuse and

makes them more usable in lightweight scenarios. These reasons are valid for MACs

also and it is important to have MACs which can securely generate tags of different

tag lengths.

A formal study of message authentication codes that produce variable length tags

was first presented by Sarkar and Ghosh [47]. The study in [47] encompasses nonce

based Wegman-Carter(WC) type MACs. They show concrete attacks on WC type

99

MACs when used to generate variable length tags and also construct secure WC type

nonce based MACs and prove their security.

We consider deterministic MACs (MACs which does not use nonces or states)

based on PRFs and thus extend the work in [47]. We show that variable output length

pseudorandom functions (vlPRF) can be used as MACs with variable tag lengths. In

a variable output length PRF, the output length can be specified by the user. We

specify the syntax and security of vlPRF and propose two generic constructions. The

first construction uses a fixed input and fixed output length PRF and an AXU hash

function. The other one converts a variable input length but fixed output length

PRF into a vlPRF. The later construction can be generically used to convert a secure

deterministic MAC into a variable output length MAC with very little overhead. In

particular, for widely used block cipher based MACs like (secure variants of) CBC-

MAC, PMAC, etc., the extra overhead would be just one block-cipher call. Finally,

we explore if a given deterministic MAC can be converted into a variable output

length MAC with no extra overhead. In this regard, we propose vlPMAC which is a

modification of PMAC [14] to enable it to produce tags of variable lengths.

6.1 Variable Output-Length PRF (vlPRF)

Let, K ⊂ {0, 1}∗ and L ⊂ N be finite sets, and F : K × {0, 1}≤` × L → ∪i∈L{0, 1}i

be a function family where for every k ∈ K, x ∈ {0, 1}≤` and τ ∈ L, |F (k, x, τ)| = τ .

As is customary, we will further denote F (k, x, τ) by Fk(x, τ), and consider F to be

a family of functions F = {Fk}k∈K.
We define the vlPRF-advantage of an adversary A in distinguishing the family F

as

AdvvlPRF
F (A) =

∣∣∣Pr[k
$←− K : AFk(·,·) ⇒ 1]− Pr[A$(·,·) ⇒ 1]

∣∣∣ ,
where $(x, i) outputs a uniform random element in {0, 1}i for each distinct input

(x, i). We call the function family F = {Fk}k∈K a vlPRF if AdvvlPRF
F (A) is small for

all the efficient adversaries A.
The above definition is a slight variant of the definition in [63]. Unlike a (fixed

100

output length) PRF, a vlPRF in addition to its normal input, takes in an extra positive

integer τ ∈ L, which specifies the output length of the function F . For distinct

(x, τ) ∈ {0, 1}≤` × L, the output of F (x, τ) is indistinguishable from an uniform

random element in {0, 1}τ .

6.2 Variable Output-Length MAC (vlMAC)

A variable output length MAC (vlMAC) is a MAC that can produce variable output

length tags. As a traditional MAC, a vlMAC is a pair of algorithms: the tag generation

algorithm and the verification algorithm. Both algorithms depend on a tag generation

function F : K ×M× L → T , where K is the key space, M is the message space,

L ⊂ N is the set of allowed tag lengths and T the tag space. For any x ∈ M, and

τ ∈ L, |Fk(x, τ)| = τ . The tag generation algorithm receives as input a message

x ∈M and a desired tag length τ ∈ L and computes t = Fk(x, τ) and finally outputs

(x, t). The verification algorithm on receiving a message tag pair (x, t), computes

t′ = Fk(x, |t|) and outputs true if t′ = t and false otherwise. We generally specify the

MAC by the tag generation function Fk(., .).

The security of a variable length MAC Fk against an adversary A is described as

follows. A has oracle access to the tag generation algorithm. A makes q many tag

generation queries (x1, τ 1), (x2, τ 2), . . . (xq, τ q) and gets the corresponding responses

t1, t2, . . . , tq. These queries are made adaptively, and for each i, |ti| = τ i. Finally A
outputs (x̃, t̃) ∈ M × T , such that (x̃, |t̃|) 6= (xi, τ i), for any i ∈ [q]. We say that

successfully forges F for tag length τ if Fk(x̃, |t̃|) = t̃. Let SuccA[τ] be the event that

A successfully forges for tag length τ , then

AdvauthF [τ](A) = Pr[SuccA[τ]]. (6.1)

Tag Truncation is Not Secure: Consider a secure MAC, with tag generation

function FK : K×M→ {0, 1}n. Suppose that this MAC is used to generate variable

length tags of length at most n, i.e. when a tag of length τ is required for a message

101

x ∈M, the tag generation algorithm outputs MSBτ (FK(x)).

This is not secure according to the above definition. Consider an adversary who

queries a message x and seeks a n−1 bit tag and gets t as a response. So, |t| = n−1.

After this single tag generation query A presents its forgery attempt as (x, t‖0). Note,

this is a valid forgery attempt as it has never asked a tag generation query for a n bit

tag. It is easy to see that A is successful in its forgery with probability 1/2.

The next Theorem says that if F is a vlPRF, then F is also a secure tag generating

function for a variable output length MAC.

Theorem 6.2.1. Let F : K × L → ∪i∈L{0, 1}i be such that |Fk(x, τ)| for all k ∈ K,
x ∈ M and τ ∈ L. If A be a vlMAC adversary for F , then there exists a vlPRF

adversary B of F .

In particular, for every vlMAC adversary A that attacks F , who makes at most qg

many tag generation queries, there exists a vlPRF adversary B that attacks F , who

makes at most q = qg + 1 many queries, such that

Advauth
F [τ](A) ≤ AdvvlPRF

F (B) +
1

2τ
,

where τ is the tag length for the forgery attempt of A.

Proof. Let A be an arbitrary vlMAC adversary for F . We construct a vlPRF adversary

B with oracle O that runs adversary A as follows:

On receiving a query (x, τ) from A, B returns t = O(x, τ) to A and continues

until A stops querying. Finally, when A outputs a forgery (x̃, t̃), if O(x̃, |t̃|) = t̃ the

B outputs a 1; otherwise, it outputs a zero.

In the real world, the oracle O is F (·, ·) and B outputs a 1 if A successfully forges.

Thus, we have

Pr[BF (·,·) ⇒ 1] = Advauth
F [τ](A). (6.2)

In the ideal world B’s oracle is $(·, ·) and thus in the ideal world O(x̃, |t̃|) will be a

uniform random string in {0, 1}|t̃|. The the probability that O(x̃, |t̃|) would be equal

102

to A’s forged tag t̃ would be at most 1/2|t̃|. If the tag length of A’s forgery is τ , i.e

if |t̃| = τ , we have

Pr[B$(·,·) ⇒ 1] ≤ 1

2τ
. (6.3)

Thus using Equations. (6.2),(6.3) and the vlPRF advantage of B, we have

Advauth
F [τ](A) ≤ AdvvlPRF

F (B) +
1

2τ
.

6.3 Constructing vlPRF from Fixed Input Length and

Fixed Output Length PRF

Let F : K × {0, 1}r → {0, 1}n be a PRF family with fixed input length r, and fixed

output length n. Let H : K′×{0, 1}≤` → {0, 1}n be a universal hash family. Let L ⊂
[2n− 1]. We construct a function family F ′ : (K×K′)×{0, 1}≤`−n×L→ ∪i∈L{0, 1}i

as shown in the algorithm in Figure 6.3.1.

F ′K,h(x, τ)

1. z ← Hh(x‖〈τ〉n);

2. m← d τ
n
e;

3. for i← 1 to m,

4. Ci ← FK(z ⊕ 〈i〉n);

5. end for

6. C ← C1||C2|| · · · ||Cm;

7. return MSBτ (C)

Figure 6.3.1: Constructing a vlPRF F ′ from a PRF F . And, (h,K) ∈ K′ × K,
(x, τ) ∈M× L

103

Theorem 6.3.1. Let F : K × {0, 1}r → {0, 1}n be a PRF and H : K′ × {0, 1}≤` →
{0, 1}n be ε-AXU and F ′ be as defined in Figure 6.3.1. Let A be an arbitrary vlPRF

adversary attacking F ′, and A asks q queries (x1, τ 1), (x2, τ 2),(xq, τ q) to its oracle.

Let τmax = max{τ 1, τ 2, . . . , τ q}. Then there exists a PRF adversary B such that

AdvvlPRF
F ′ (A) ≤ AdvPRF

F (B) + εq2
⌈τmax
n

⌉
.

Moreover, if A runs for time t then B runs for time O(t) and asks at most qdτmax/ne
queries to its oracle.

Proof. First notice that for any (x, τ) ∈M×L and any (K,h) ∈ K×K′, |F ′K,h(x, τ)| =
τ , a required property of vlPRF.

If we replace FK used in the construction of F ′ with a random function ρ(), we

call the resulting algorithm as F ′[ρ].

Let A be an arbitrary vlPRF adversary for F ′, who makes q distinct queries to its

oracle. We construct a PRF adversary B attacking F . Consider B’s oracle to be O,
which is either the function FK(.) for an uniform random K, or a random function ρ

from Func(r, n). B selects a h uniformly at random from K′ and runs the adversary

A as follows. On receiving a query (xi, τ i) from A, it computes mi = dτ i/ne and
zi = Hh(x

i‖〈τ i〉) and sends

MSBτ i
(
O
(
zi ⊕ 〈1〉n

)
‖ . . . ‖O

(
zi ⊕ 〈mi〉n

))
to A. B continues the above procedure as long as A queries, and finally A outputs

b ∈ {0, 1} and B also outputs b. Thus, if B’s oracle is FK then for a query (xi, τ i),

A receives as response F ′K,h(xi, τ i), and if B’s oracle is a random function ρ, then A
receives as response F ′[ρ]. Thus, we have

Pr[K
$← K : BFK() ⇒ 1] = Pr[K

$← K, h $← K′ : AF ′K,h(.,.) ⇒ 1] (6.4)

Pr[ρ
$← Func(r, n) : BFK() ⇒ 1] = Pr[AF ′[ρ](.,.)⇒1]. (6.5)

Consider a procedure $(., .) which when queried with (xi, τ i) returns a uniform

104

random element from {0, 1}τ i . The procedures $(., .) and F ′[ρ] are indistinguishable

to A unless there is a collision in the set Dom defined as

Dom =
⋃
i∈[q]

Si,

where

Si =
{
zi ⊕ 〈1〉n, zi ⊕ 〈2〉n, . . . , zi ⊕ 〈mi〉n

}
.

Let COLL be the event that there is a collision in the set Dom, then we have

Pr[AF ′[ρ](.,.)]− Pr[A$(.,.)] = Pr[COLL]. (6.6)

Using Equations (6.4),(6.5),(6.6) and the definitions of PRF advantage of B and

vlPRF advantage of A, we have

Advvlprf
F ′ (A) ≤ Adv

prf
F (B) + Pr[COLL]. (6.7)

Finally, we are left with bounding Pr[COLL]. We consider the event zi ⊕ 〈j〉n =

zi
′ ⊕ 〈j′〉n, where (i, j) 6= (i′, j′). We have several cases to consider:

Case 1: i = i′. In this case j 6= j′ and thus

Pr[zi ⊕ 〈j〉n = zi
′ ⊕ 〈j′〉n] = 0

Case 2: i 6= i′. Here we have zi = Hh(x
i‖〈τ i〉n) and zi′ = Hh(x

i′||〈τ i′〉n). As

i 6= i′ and all queries of A are distinct, hence we have (xi, 〈τ i〉n) 6= (xi
′
, 〈τ i′〉n)

and thus xi‖〈τ i〉n 6= xi
′‖〈τ i′〉n. Hence,

Pr
[
zi ⊕ 〈j〉n = zi

′ ⊕ 〈j′〉n
]

= Pr
[
Hh

(
xi‖〈τ i〉n

)
⊕Hh

(
xi
′‖〈τ i′〉n

)
= 〈j〉n ⊕ 〈j′〉n

]
≤ ε (6.8)

105

The last equation is true as xi‖〈τ i〉n 6= xi
′‖〈τ i′〉n and H is a ε-AXU.

To complete our calculations, we need to find how many distinct equations of the

type

zi ⊕ zi′ = 〈j〉n ⊕ 〈j′〉n (6.9)

are possible where (i, j) 6= (i′, j′) and i 6= i′. When i 6= i′, there are
(
q
2

)
distinct pairs

of (zi, zi
′
).

Let mmax = max{m1,m2, . . . ,mq} and S = {〈1〉n, 〈2〉n, . . . 〈mmax〉n}. If S ⊕ S =

{p ⊕ q : p, q ∈ S}, then |S ⊕ S| < mmax. Thus, the number of distinct values of

〈j〉n ⊕ 〈j′〉n, j, j′ ∈ [mmax] is at most mmax. Thus, the total number of distinct

equations of the form in Equation (6.9) is at most q2mmax. As mmax =
⌈
τmax
n

⌉
, hence

by using Equation (6.6) and the union bound, we have

Pr[COLLD] ≤ εq2
⌈τmax
n

⌉
,

as desired.

We observe some properties of the construction of F ′ below:

1. Construction of F ′ is generic; any ε-AXU hash function and PRF can be plugged

in place of H and F , respectively. In particular, a polynomial hash can be used

in place of H and a block cipher can be used in place of F .

2. The number of calls to the PFR F depends on the value of τ . Thus, for bigger

output lengths, more calls to F are required. The calls to F can be parallelized,

and thus F ′ can be efficiently implemented in both software and hardware.

3. The construction bears similarity with the Wegman-Carter paradigm of con-

structing PRFs. A very similar construction as F ′ has been reported in [47]

in the context of deterministic Wegman-Carter type variable tag length MACs.

But the construction in [47] does not consider output lengths greater than n.

106

6.4 Constructing vlPRF from Variable Input Length

and Fixed Output Length PRF

In this section, we construct a vlPRF G′ from a variable input length and fixed output

length PRF G where the output length of G is fixed to n. We consider the case where

the output length of G′ is at most n. Such a construction would have applications

in converting an ordinary deterministic MAC to a variable output length MAC. This

application is discussed in detail in Section 6.5.

Consider a variable input length and fixed output length PRF family G : K ×
{0, 1}≤` → {0, 1}n. We construct a vlPRF G′ : K ×M × L → ∪i∈L{0, 1}i, where
L ⊆ [n] andM = {0, 1}≤`−n. The construction is:

G′K(x, τ) = MSBτ (GK(x‖〈τ〉n)). (6.10)

Note, here τ ≤ n.

Theorem 6.4.1. If G : K × {0, 1}≤` → 0, 1n is a PRF, then G′ as described in

Equation (6.10) is a PRF.

Proof. The only thing to note here is that if (x, τ) 6= (x′, τ ′), then x‖〈τ〉n 6= x′‖〈τ ′〉n.
Thus, for distinct inputs to G′, G is also called on distinct inputs, which ensures that

G′ is also a PRF.

6.5 Variable Length MACs Using vlPRF

As is evident from Theorem 6.2.1 a vlPRF can be used as a tag generation function

for a vlMAC. With the constructions discussed in Sections 6.3 and 6.4, we have two

different possibilities which we discuss next.

1. The construction in Section 6.3 allows us to construct a vlPRF of arbitrary

output lengths using a fixed input-output length PRF. Thus, this construction

can be instantiated with a block cipher and any AXU hash function to be an

107

efficient MAC. This MAC resembles a deterministic Wegman-Carter type MAC

with the additional functionality of variable tag lengths. It is to be observed

that irrespective of the tag length, the security of the MAC would be O(q2`)/2n

where ` is the maximum length of a message. Thus, the security of the MAC

would depend on the block length of the block cipher, and larger tags will not

provide more security if the tag lengths exceed n. Thus, using this construction

for generating large tags (larger than n) will not have any security advantage.

Though there may be applications where tag lengths greater than n may be

required for functionality, not for enhanced security and this construction may

be useful in such scenarios.

2. The construction in Section 6.4 converts a variable input length and fixed output

length (say n) PRF into a vlPRF whose output length can be at most n. This

construction can be useful in converting an existing fixed output length MAC to

a variable output length MAC. This can only produce tags of length up to n, and

this functionality would be of practical interest to accommodate the MAC in

applications where only short tags can be tolerated, say in case of a lightweight

scenario. Most block cipher based MACs, say variants of CBC MAC, PMAC

etc are variable input length but fixed input length PRFs. These MACs can

be easily converted into variable tag length MACs using the construction in

Equation (6.10). This would incur a minimal extra overhead, like in the case of

PMAC, OMAC etc., this would lead to only one extra block cipher call.

6.6 vlPMAC: Variable Output-Length Variant of PMAC

As discussed in Section 6.5, PMAC can be easily converted into a variable output

length MAC just by using the construction in Equation (6.10) with an extra over-

head of one block-cipher call. Here, we propose a variable output length variant of

PMAC [14] called vlPMAC where the number of block-cipher calls is the same as

PMAC.

108

MAC Algorithm: vlPMACK(M, τ)

Input: K
$←− K, M ∈ {0, 1}∗, τ ∈ T .

Output: T ∈ {0, 1}τ , where τ < n.

01. M1‖ · · · ‖M` ← parsen(M);
02. L← EK(τ);
03. if ` = 1 then
04. if |M`| = n then
05. X` ←M` ⊕ γ−1 · L;
06. else
07. X` ←M` ⊕ γ−2 · L;
08. else
09. for i← 1 to `− 1 do
10. Xi ←Mi ⊕ γi · L;
11. Yi ← EK(Xi);
12. end for
13. Σ← Y1 ⊕ Y2 ⊕ · · · ⊕ Y`−1 ⊕ Padn(M`);
14. if |M`| = n then
15. X` = Σ⊕ L · γ−1;
16. else
17. X` = Σ;
18. T ← MSBτ (EK(X`));
19. return T .

Figure 6.5.1: Specification of vlPMAC construction based on an n-bit block cipher EK ,
where γ is the root of a primitive polynomial in GF (2n). Padn(M`) = M`‖10n−|M`|−1.

The underlying primitive is a block cipher E : K × {0, 1}n → {0, 1}n, considered
secure as a PRP. We denote E(K, ·) as EK(·) and each EK(·) is a permutation on

{0, 1}n. vlPMAC takes a randomly sampled key K, a message M of arbitrary length

and the desired length of the tag τ ≤ n as input and returns a τ -bit tag. Let us

denote vlPMAC(K,M, τ) as vPlMACK(M, τ). The algorithm of vlPMAC is described

in Figure 6.5.1. In the algorithm γ is a root of a fixed primitive polynomial of degree

n over GF (2n).

vlPMAC is a small modification of the original PMAC algorithm [14]. The differ-

ences are described below:

1. In line 02 of Figure 6.5.1, L is computed by encrypting the desired tag length τ

109

using the block cipher. whereas in the original PMAC construction L is set to

EK(0). Setting L = EK(τ) makes the output tag dependent on the tag length τ .

Hence, tags of two different lengths of the same message generated by vlPMAC

will be different.

2. Messages of length less or equal to n are treated differently than in the original

construction. This handling of messages of single blocks have similarity with

the construction PAuth reported in [27].

The next theorem asserts that vlPMAC is a vlPRF and thus a secure variable

output length MAC.

Theorem 6.6.1. Let vlPMAC[Perm(n)] be the vlPMAC construction in Figure 6.5.1

where the block-cipher EK(·) is replaced by a permutation π drawn uniformly from

Perm(n). Let A be any adversary which attacks vlPMAC[Perm(n)] and asks at most q

queries which consists of a total of σ many n-bit blocks. Then,

AdvvlPRF
vlPMAC[Perm(n)](A) ≤ 7σ2

2n
(6.11)

The next section is devoted to the proof of Theorem 6.6.1.

6.7 Proof of Theorem 6.6.1

The proof bears similarity with the original security proof of PMAC in [14].

As a first step, we replace the uniform random permutation in vlPRFvlPMAC[Perm(n)]

with a function chosen uniformly at random from Func(n, n), and we call the resulting

scheme as vlPRFvlPMAC[Func(n,n)]. We suppose that A makes a total of q queries, where

the ith query is (M i, τ i), also each M i contains `i blocks, and σ = `1 + `2 + · · · + `q.

Notice that the ith query of A results in `i + 1 many calls to the block cipher. Thus,

all the q queries of A the block cipher is called with at most σ + q ≤ 2σ distinct

110

inputs, thus by the PRP-PRF switching lemma (see Theorem 2.3.1), we have

AdvvlPRF
vlPMAC[Perm(n)](A) ≤ AdvvlPRF

vlPMAC[Func(n,n)](A) +
1

2n

(
2σ

2

)
≤ AdvvlPRF

vlPMAC[Func(n,n)](A) +
4σ2

2n
(6.12)

We are left with bounding the quantity AdvvlPRF
vlPMAC[Func(n,n)](A) in Equation 6.12.

For that purpose, we need to define a few events. Consider the random experi-

ments XColl1(M, τ), XColl2((M, τ), (M ′, τ ′)) and XColl3((M, τ), (M ′, τ ′)) defined in

Figure 6.7.1.

We define Coll1(M, τ) to be the event that XColl1(M, τ) returns true. Simi-

larly, Coll2((M, τ), (M ′, τ ′)) is the event that XColl2((M, τ), (M ′, τ ′)) returns true and

Coll3((M, τ), (M ′, τ ′)) denote the event XColl3((M, τ), (M ′, τ ′)) returns true.

The events Coll1,Coll2,Coll3 denotes non-trivial collisions in the domain of the

random function which replaced the block cipher in the construction of vlMAC. We

claim that the events Coll1(M, τ), Coll2((M, τ), (M ′, τ ′)), Coll3((M, τ), (M ′, τ ′)) are

the failure events and if they do not occur then the output of vlPRFvlPMAC[Func(n,n)] is

indistinguishable from a random string.

Let P1(`) = max Coll1(M, τ) where the maximum is taken over all (M, τ) where

M contains ` blocks. Similarly, P2(`, `′) = max Coll2 ((M, τ), (M ′, τ ′)), where the

maximum is taken over all (M, τ), (M ′, τ ′) whereM contains ` blocks andM ′ contains

`′ blocks. Finally, P3(`, `′) = max Coll3 ((M, τ), (M ′, τ ′)), where the maximum is taken

over all (M, τ), (M ′, τ ′) where M contains ` blocks and M ′ contains `′ blocks. Then

we have,

AdvvlPRF
vlPMAC[Func(n,n)](A) ≤ max

`1,...,`q :∑
`i=σ

{ ∑
1≤r≤q

P1(`r) +
∑

1≤r<s≤q

P2 (`, `′) +
∑

1≤r<s≤q

P3 (`, `′)

}
(6.13)

Now bound the quantities P1(`),P2 (`, `′) and P3 (`, `′).

We refer to the variables in Figure 6.7.1. First, suppose MColl
′
= MColl \ {X ′`′}

111

XColl1(M, τ)

001. L
$← {0, 1}n;

002. if ` = 1 then
003. if |M`| = n then X1 ←M1 ⊕ γ−1 · L;
004. else X1 ←M1 ⊕ γ−2 · L;
005. else
006. for i← 1 to `− 1 do
007. Xi ←Mi ⊕ γi · L;

008. Yi
$← {0, 1}n;

009. end for
010. Σ← Y1 ⊕ Y2 ⊕ · · · ⊕ Y`−1 ⊕ Pad(M`);
011. if |M`| = n then
012. X` = Σ⊕ L · γ−1;
013. else
014. X` = Σ;
015. X ← {X1, . . . , X`};
016. if collision occurs in {τ} ∪ X then
017. return true;
018. else return false;

XColl2((M, τ), (M ′, τ ′))
101. if τ 6= τ ′ then
102. return false
103. end if
104. MColl← {i ∈ [min{`, `′ − 1}] : Mi = M ′i};
105. MColl← [`′] \MColl;
106. for i← 1 to `′ − 1 do
107. if i ∈ MColl then
108. X′i ← Xi, Y

′
i ← Yi;

109. if i ∈ MColl then
110. X′i ←M ′i ⊕ γi · L, Y ′i

$← {0, 1}n;
111. end for
112. Σ′ ←

∑`′−1
i=1 Y ′i ⊕ Pad(M ′

`′);
113. if |M ′

`′ | = n then
114. X′

`′ ← Σ′ ⊕ γ−1 · L;
115. else
116. X′

`′ ← Σ′;
117. X ′1 ← {X′i : i ∈ MColl};
118. if X ∩ X ′ 6= φ then
119. return true
120. else return false

XColl3((M, τ), (M ′, τ ′))
201. if τ = τ ′ then
202. return false;

203. L′
$← {0, 1}n;

204. for i← 1 to `′ − 1 do
205. X′i ←M ′i ⊕ γi · L′, Y ′i ← {0, 1}n;
206. Σ′ ←

∑`′−1
i=1 Y ′i ⊕ Pad(M ′

`′);
207. if |M ′

`′ | = n then
208. X′

`′ ← Σ′ ⊕ γ−1 · L′;
209. else
210. X′

`′ ← Σ′;
211. X ′2 ← {X′1, X′2, . . . , X′`′};
212. if X ∩ X ′2 6= φ then
213. return true;
214. else return false;

Figure 6.7.1: Description of the collision events of vlPMAC.

112

and define

E1 = {τ} E2 = {X1, . . . , X`−1} E3 = {X`}

E4 = {X ′j : j ∈ MColl
′} E5 = {X ′`′} E6 = {τ ′} E7 = {X ′1, . . . , X ′`′−1}.

Let, B(Ei, Ej) be the event that represents the collision between Ei and Ej.

Bounding B(E1, E2): Pr[Xi = τ] = Pr[Mi ⊕ γi · L = τ] = 1/2n, since γi is nonzero

and L is chosen uniformly random.

Bounding B(E1, E3): If |M`| < n and ` ≥ 2 then Σ is random. Therefore,

Pr[X` = τ] = Pr[Σ = τ] = 1/2n.

If |M`| < n and ` = 1 then

Pr[X` = τ] = Pr[M1 ⊕ γ−2 · L = τ] = 1/2n,

as L is chosen uniformly random.

If |M`| = n and ` ≥ 2 then Σ is random and independent from L, so

Pr[X` = τ] = Pr[Σ = τ ⊕ x−1 · L] = 1/2n.

If |M`| = n and ` = 1 then

Pr[X` = τ] = Pr[M1 ⊕ γ−1 · L = τ] = 1/2n,

as L is chosen uniformly random.

Bounding B(E2, E2): Suppose i, j ∈ [` − 1] and i < j. So, Pr[Xi = Xj] = Pr[Mi ⊕
Mj = (γi ⊕ γj) · L] = 1/2n because γi 6= γj and L is random.

Bounding B(E2, E3): If |M`| < n, then Pr[Xi = X`] = Pr[Mi ⊕ γi · L = Σ] = 1/2n,

as Σ is uniformly random and independent to L.

If |M`| = n, then Pr[Xi = X`] = Pr[Mi ⊕ γi · L = Σ ⊕ γ−1 · L] = 1/2n, as γi 6= γ−1

113

(assume that, i < 2n−2) and Σ is uniformly random and independent to L.

Considering the probabilities of those events we get,

Pr[P1(`)] ≤
(
`+ 1

2

)
1

2n
. (6.14)

Now, we have bound the events for P2 (`, `′).

Bounding B(E2, E4): In this event, i ∈ [` − 1] and j ∈ MColl
′. The event can be

written as

Pr[Xi = X ′j] = Pr[Mi ⊕ γi · L = M ′
j ⊕ γj · L]

= Pr[Mi ⊕M ′
j = (γi ⊕ γj) · L].

If i 6= j then γi 6= γj, thus the probability is 1/2n (as L is random). If i = j then the

probability is zero since Mi 6= M ′
j.

Bounding B(E2, E5): First consider the case |M ′
`′| < n. Here, Pr[Xi = X ′`′] =

Pr[Mi ⊕ γi · L = Σ′] = 1/2n, as Σ′ is uniformly random and independent to L.

If |M ′
`′| = n, then Pr[Xi = X ′`′] = Pr[Mi ⊕ γi · L = Σ′ ⊕ γ−1 · L] = 1/2n because

γi 6= γ−1 and Σ′ is uniformly random and independent to L.

Bounding B(E3, E4): This event is similar to B(E2, E5), so the probability of this

event is also 1/2n.

Bounding B(E3, E5):

Case 1. Consider the case |M`| < n and |M ′
`′| < n. If ` 6= `′, w.l.g. take ` > `′.

Now, Pr[X` = X ′`′] = Pr[Σ = Σ′] = 1/2n, as the contribution of Y`−1 in Σ is not

used in the definition of Σ′. If ` = `′ and for any i < ` such that Mi 6= M ′
i , then

Pr[X` = X ′`′] = 1/2n, and if ` = `′ and for all i < ` such that Mi = M ′
i , then

M` = M ′
`′ , so Pr[X` = X ′`′] = 0.

Case 2. Consider the case |M`| = n and |M ′
`′ | = n. In this case Pr[X` = X ′`′] =

Pr[Σ⊕γ−1 ·L = Σ′⊕γ−1 ·L] = Pr[Σ = Σ′] = 1/2n, using the same argument described

in Case 1.

Case 3. Consider the case |M`| < n and |M ′
`′| = n. Then Pr[X` = X ′`′] = Pr[Σ =

114

Σ′ ⊕ γ−1 · L] = 1/2n, since Σ and Σ′ are random and independent to L.

Case 4. Consider the case |M`| = n and |M ′
`′ | < n. This event is similar to Case 3,

so the probability is 1/2n.

Considering the probabilities of those events, we get,

Pr[P2 (`, `′)] ≤ ``′

2n
, (6.15)

as |E2 ∪ E3| · |E4 ∪ E5| < ``′.

Now, we compute a bound for P3 (`, `′).

Bounding B(E2, E7): In this event Pr[Xi = X ′j] = Pr[Mi⊕γi·L = M ′
j⊕γj ·L′] = 1/2n,

as L and L′ are uniformly random and independent.

Bounding B(E2, E5): First consider the case |M ′
`′| < n. Here, Pr[Xi = X ′`′] =

Pr[Mi ⊕ γi · L = Σ′] = 1/2n, as Σ′ is uniformly random and independent to L.

If |M ′
`′ | = n, then Pr[Xi = X ′`′] = Pr[Mi ⊕ γi · L = Σ′ ⊕ γ−1 · L′] = 1/2n because

γi 6= γ−1 and Σ′ is uniformly random and independent to L and L′.

Bounding B(E3, E7): This event is similar to B(E2, E5), so the probability of this

event is also 1/2n.

Bounding B(E3, E5): Case 1. Consider the case |M`| < n and |M ′
`′| < n. Now,

Pr[X` = X ′`′] = Pr[Σ = Σ′] = 1/2n, as Σ and Σ′ are uniformly random and indepen-

dent.

Case 2. Consider the case |M`| = n and |M ′
`′ | = n. In this case Pr[X` = X ′`′] =

Pr[Σ ⊕ γ−1 · L = Σ′ ⊕ γ−1 · L′] = 1/2n, as Σ and Σ′ are uniformly random and

independent to L and L′.

Case 3. Consider the case |M`| < n and |M ′
`′ | = n. Then Pr[X` = X ′`′] = Pr[Σ =

Σ′ ⊕ γ−1 · L′] = 1/2n, since Σ and Σ′ are random and independent to L′.

Case 4. Consider the case |M`| = n and |M ′
`′ | < n. This event is similar to Case 3,

so the probability is 1/2n.

115

Considering the probabilities of all the above events, we get,

Pr[P3 (`, `′)] ≤ ``′

2n
, (6.16)

as |E2 ∪ E3| · |E5 ∪ E7| < ``′.

Therefore, from Equations (6.14),(6.15) and (6.16) we get,

max
`1,...,`q :∑
`i=σ

{ ∑
1≤r≤q

P1(`r) +
∑

1≤r<s≤q

P2 ((`r, `s)) +
∑

1≤r<s≤q

P3 ((`r, `s))

}

≤ max
`1,...,`q :∑
`i=σ

{(
`+ 1

2

)
1

2n
+ 2

∑
1≤r<s≤q

`r`s

2n

}

≤ (σ + 1)2

2n+1
+
σ2

2n

≤ 3σ2

2n
. (6.17)

Finally, using the Equations (6.12), (6.13) and (6.17), we get,

AdvvlPRF
vlPMAC[Perm(n)](A) ≤ 7σ2

2n
. (6.18)

116

7
Tight Security Bound of 2k-LightMAC_Plus

In FSE’16 [65], Luykx et al. have proposed LightMAC, which has been standardized

by ISO/IEC standardization process. LightMAC is a block cipher based PRF that

operates in parallel mode, i.e., for an n-bit block cipher E instantiated with two

independently sampled keys K1, K2, and with a global counter size s, the LightMAC

function is defined as follows:

LightMACEK1,K2
(M) = EK2

(`−1∑
i=1

EK1(〈i〉s‖M [i])⊕ padn(M [`])

)
,

where 〈i〉s denotes the s bit encoding of the integer i and (M [1], . . . ,M [`]) denotes

the n− s bit parsing of message M , where each M [i] is an n− s bit string, and padn

is an injective function that takes a message and appends to it a suitable number of

10∗ to make the length of the padded string to be exactly n. However, this design

comes at the cost of a reduced rate of construction, where the rate of a construction

is determined by the ratio of the total number of n-bit message blocks in a message

M to the total number of primitive calls with block size n required to process the

message M . Despite having a reduced rate, the design of LightMAC is simple in the

sense that it minimizes all auxiliary operations other than having the block cipher

calls, which allows to have a low overhead cost, and hence obtains a more compact

implementation than PMAC [14]. Moreover, due to the inherent parallelism in the

design of the scheme, LightMAC outperforms all the other popular sequential MAC

constructions in terms of throughput in the parallel computing infrastructure.

117

7.1 Beyond Birthday Bound Secure Variants of Light-

MAC

Over the years, there have been many proposals of variants of LightMAC construc-

tion achieving beyond the birthday bound security. In 2017, Naito [70] proposed

LightMAC_Plus construction based on three block cipher keys and showed that it

gives 2n/3-bit security. In fact, LightMAC_Plus is the first beyond the birthday

bound-secure PRF whose proven security bound does not depend on the message

length. In the same paper, the author has also proposed LightMAC_Plus2 [70] that

provides a higher security bound than LightMAC_Plus or LightMAC, but it comes at

the increased number of block cipher calls. In CT-RSA’18 [71], Naito has improved

the bound of the LightMAC_Plus construction from q3/22n to q2
t qv/2

2n, where qt is the

number of tagging queries and qv is the number of verification queries. This security

bound implies that LightMAC_Plus is secure up to 2n tagging queries if the number

of verification queries is 1. Later, in [61], Leurent et al. have shown a forging attack

on the construction that achieves a constant success probability when the number

of tagging queries is 23n/4 and the number of verification queries is 1, which in turn

invalidates the security claim of Naito [71] on LightMAC_Plus. In EUROCRYPT’20,

Kim et al. [56] have claimed an improved security bound (but did not supply any

formal proof to back up the claim) of LightMAC_Plus construction from 2n/3-bits to

3n/4-bits, and due to the result of [61], the improved bound of LightMAC_Plus turns

out to be the tight one.

In FSE’18, Datta et al. [37] proposed a two-keyed variant of LightMAC_Plus, called

2K-LightMAC_Plus, where the sum function used in the finalization phase uses the

same block cipher key that is independent to the block cipher key used in the internal

hash computation of 2K-LightMAC_Plus. Authors have shown that 2K-LightMAC_Plus

achieves 2n/3-bits security bound. In [71], Naito has proposed a single-keyed vari-

ant of LightMAC_Plus, dubbed as LightMAC_Plus-1k, in which a single block ci-

pher key is used in the entire construction. However, the 2n-bits output (Σ,Θ) of

the internal hash computation is domain separated by setting their two most sig-

118

nificant bits to it 10 and 11, respectively. Moreover, the checksum of the message

blocks after padded with the string 0n−s is masked with the Σ value. Author has

shown that LightMAC_Plus-1k achieves 2n/3-bits security. Recently, Song [83] pro-

posed another variant of the single-keyed LightMAC_Plus construction dubbed as

1k-LightMAC_Plus, in which a single block cipher is used throughout the construc-

tion and the 2n-bit hash value is domain separated by setting their most significant

bit to 0 and 1 respectively. It has been shown in [83] that 1k-LightMAC_Plus also

achieves 2n/3-bits security bound.

Therefore, to summarize, only the LightMAC_Plus construction has been claimed

to achieve a tight 3n/4-bit security bound [56], and all its existing reduced-keyed

variants achieve only 2n/3-bits security. Therefore, the motivation for this chapter

stems from asking the question

Can we prove a tight 3n/4-bit security bound on any reduced-keyed variants of

the LightMAC_Plus construction?

7.2 Our Contribution

In this chapter, we answer the above question affirmatively and show that the con-

struction achieves a tight security bound up to 23n/4 queries (ignoring the maximum

message length). In particular, we have shown an upper bound on the PRF advantage

of 2k-LightMAC_Plus in roughly of the order of 23n/4 queries, provided the maximum

number of message blocks in a query is at most min{2n−2−1, 2s}, and the total num-

ber of distinct message blocks across all queries is at most 2n, where n denotes the

block size of the block cipher and s denotes the size of the block counter. Moreover, we

have also shown a matching PRF attack on the construction with query complexity in

roughly of the order of 23n/4 queries. The schematic diagram of 2k-LightMAC_Plus is

shown in Fig. 7.4.2 and its algorithmic description is shown in Fig. 7.4.1 respectively.

However, to prove the security bound of the construction, we deeply rely on the result

of the mirror theory, where we lower the bound on the number of solutions of a given

119

system of equations.

The following result from linear algebra will be very useful in establishing the security

bound of our construction. Proof of this result can be found in Proposition 1 of [38].

Lemma 7.2.1. Let (Z1, . . . , Zq)
wor←−− X ⊆ {0, 1}n with |X | = N > q. Let A be a k×q

binary matrix with rank r. We denote the column vector (Z1, . . . , Zq)
tr as Z̃. Then,

for any c̃ ∈ ({0, 1}n)k, we have

Pr[A · Z̃ = c̃] ≤ 1

(N − q + r)r
.

7.3 Mirror Theory

Suppose G = (V , E ,L) be an an undirected edge-labelled acylic graph, where V =

{P1, . . . , Pα} and E be the vertex and edge set of G respectively and L : E → {0, 1}n

be the edge labelling function. For an edge {Pi, Pj} ∈ E , we write L({Pi, Pj}) = λij.

Consider a path P and a cycle C in the graph G. Now, we define the label of the

path as L(P)
∆
=
∑

e∈P L(e) and the label of the cycle as L(C) ∆
=
∑

e∈C L(e). We say

the graph G is good if the graph is acyclic and L(P) 6= 0 for any path P in the graph

G . For such a good graph G, we associate a system of bivariate affine equations as

follows:

EG = Yi ⊕ Zj = λij ∀ {Yi, Zj} ∈ E .

In the mentioned set of bivariate affine equations, the variables correspond to the

graph’s vertices. Two variables are considered involved in an equation if their cor-

responding vertices are connected by an edge in the graph. The constants of the

equations are the labels of the corresponding edges of the graph. So, for the system

of affine equations EG, the variables are Yi’s and Zi’s. Now, we define an equivalence

relation ∼ over V such that u ∼ v if and only if (u, v) ∈ E . This equivalence relation ∼
makes a partition on V and each partition is called a component. The size of a compo-

nent is the number of elements (i.e., the number of vertices) present in the partition.

The set of components in G is denoted by comp(G) = (C1 t . . . t Cα t D1 t . . . t Dβ)

120

where we assume that there are α many components of G (i.e., C1, . . . ,Cα) whose size

greater than 2 and β many components of G (i.e., D1, . . . ,Dβ) having size exactly 2.

Suppose, C = C1 t . . . t Cα and D = D1 t . . . t Dβ. Let the total number of edges

in C be denoted by qc and the total number of edges in the graph G is denoted by q.

Then, it is easy to see that q = qc + β.

Notations: For the i-th component of C, i.e., Ci, which is acyclic and edge-labelled

graph, let VCi be the set of vertices of the component Ci and wi denotes the cardinality

of the set VCi . Let VC denotes the set of vertices of C. For 1 ≤ i ≤ α, we write

σi = w1 + w2 + . . . + wi, with the convention that σ0 = 0. Note that qc = σα − α as

each component Ci is a tree. Let h(G) denote the number of solutions to the graph G.

Let hc(i) denote the number of solutions for the subgraph C1 tC2 t . . .tCi and hd(i)
denote the number of solutions for the subgraph CtDi where Di ∆

= D1tD2t . . .tDi.

Therefore, hd(0) = hc(α) and hd(β) = h(G).

Definition 7.3.1. Let EG be a system of equations corresponding to a good acyclic

edge-labeled graph G (as defined above). An injective function Φ : V → {0, 1}n, is
said to be an injective solution to EG if Φ(Pi)⊕ Φ(Pj) = λij for all {Pi, Pj} ∈ E such

that L({Pi, Pj}) = λij.

In [35], authors have proved that if G is a good acyclic edge-labeled graph such that

it is decomposed into finitely many components of size greater than 2 and exactly 2,

then the number of injective solutions chosen from {0, 1}n, to EG, is very close to the

average number of solutions until the number of edges in E is roughly 23n/4. Formally,

the result is as follows:

Theorem 7.3.2. Let G = (V , E ,L) be a good acylic edge-labelled graph with |E| = q

edges and s vertices such that G is decomposed into α many components C1 t . . .tCα

of size at least 3 and β many components D1t. . .tDβ of size exactly 2. For 1 ≤ i ≤ α,

let wi be the total number of vertices of C1 t . . . t Ci and qc be the total number of

edges in C1 t . . . t Cα. Let σα = w1 + w2 + . . . + wα be the total number of vertices

of C1 t C2 t . . . t Cα. Then the total number of injective solutions to EG which are

121

chosen from {0, 1}n is at least:

(2n)s
2nq

(
1− 9q2

c

4 · 2n −
9q2
cq

22n
− 24q2qc

22n
− 6qqc

22n
− 40q2

22n
− 16q4

23n

)
.

We refer the interested reader to [35] for proof of the result.

7.4 2k-LightMAC_Plus

In this section, we revisit the 2k-LightMAC_Plus construction proposed by Datta et

al. [37]. The algorithmic specification and the pictorial description of the construction

are depicted in Fig. 7.4.1 and Fig. 7.4.2 respectively. We would like to point out

2k-LightMAC_Plus is structurally similar to 1k-LightMAC_Plus [83], except that the

block cipher key used in the finalization phase is independent of the block cipher key

used in the hash function.

Algorithm 2k-LightMAC_Plus[E]

1 : (M [1], . . . ,M [`])
n−s←−−M ;

2 : for i = 1 to ` do

3 : X[i]← 〈i〉s‖M [i];

4 : Y [i]← EK1(X[i]);

5 : end for;

6 : Σ′ ← Y [1]⊕ Y [2]⊕ . . .⊕ Y [`];

7 : Θ′ ← 2`Y [1]⊕ 2`−1Y [2]⊕ . . .⊕ 2Y [`];

8 : Σ← fix0(Σ′), Θ← fix1(Θ′);

9 : T ← EK2(Σ)⊕ EK2(Θ);

10 : return T ;

Figure 7.4.1: Algorithmic Specification of the 2k-LightMAC_Plus construction pro-
posed by Datta et al. [37]. fix0 and fix1 are two functions that take an n-bit input
and return an n-bit output string such that its most significant bit is set to 0 and
1 respectively. s denotes the size of the block counter. 〈i〉s denotes the s bit binary
representation of integer i.

122

〈1〉‖M1

EK1

⊕

〈2〉‖M2

EK1

⊕

〈`〉‖M`

EK1

⊕· · ·0

⊕ � � �⊕ ⊕

2

· · ·0

2 2
fix0 EK2

fix1 EK2

Σ

Θ
⊕ T

Figure 7.4.2: Pictorial description of the 2k-LightMAC_Plus [37].

7.4.1 Security Result of 2k-LightMAC_Plus

The existing security result of 2k-LightMAC_Plus by Datta et al. [37] shows that the

construction is secured against all information-theoretic distinguishers under the pseu-

dorandom permutation assumption of the underlying block cipher of 2k-LightMAC_Plus

that makes roughly up to 22n/3 queries such that the maximum number of message

blocks in a query is at most min{2n−2 − 1, 2s}, where n being the block size of the

underlying block cipher and s denotes the size of the block counter. Now, we state

and prove that 2k-LightMAC_Plus is secured against all information-theoretic distin-

guishers under the pseudorandom permutation assumption of the underlying block

cipher of 2k-LightMAC_Plus that makes roughly up to 23n/4 queries such that the

maximum number of message blocks in a query is at most min{2n−2 − 1, 2s}, and
the total number of message blocks σ ≤ 2n. Formally, we state the following security

result:

Theorem 7.4.1. Let K be a finite and non-empty set. Let E : K× {0, 1}n → {0, 1}n

be a block cipher. Then, the PRF advantage for any (q, `, σ, t) adversary against

2k-LightMAC_Plus[E] is given by,

AdvPRF
2k-LightMAC_Plus[E](q, `, σ, t) ≤ 2AdvPRP

E (σ + 2q, t′) +
96q4

23n
+

8
√

2q2

23n/2
+

7q4/3

2n

+
39q8/3

22n
+

244q2

22n
+

32q3

23n
+

6σ

2n
+

q

2n
+

8

2n
,

123

where ` ≤ min{2n−2 − 1, 2s}, is the maximum number of message blocks in a query,

σ ≤ 2n, is the total number of distinct message blocks queried, and t′ = O((σ+ 2q)t).

7.5 Proof of Theorem 7.4.1

As the first step of the proof, we replace the underlying block ciphers EK1 and EK2

of the construction with a pair of uniformly sampled n-bit random permutations P1

and P2 at the cost of the prp advantage of E and denote the resulting construction

as 2k-LightMAC_Plus∗[P1,P2], i.e.,

AdvPRF
2k-LightMAC_Plus[E](q, σ, t) ≤ 2AdvPRP

E (σ, t′) + AdvPRF
2k-LightMAC_Plus∗[P1,P2](q, σ).

We write 2k-LightMAC_Plus or 2k-LightMAC_Plus∗ instead of 2k-LightMAC_Plus[E]

or 2k-LightMAC_Plus∗[P1,P2] whenever the primitives are understood from the con-

text. Now, our goal is to upper bound the information-theoretic PRF security of

2k-LightMAC_Plus∗. For doing this, we bound the PRF security of 2k-LightMAC_Plus∗

in terms of the distinguishing advantage of an information-theoretic distinguisher D

in distinguishing the output of 2k-LightMAC_Plus∗ from the output of an ideal world

that consists of a random function RF which outputs a random n-bit tag T on every

input M ∈ M. We assume that the distinguisher D makes q queries to the oracle in

either of the two worlds and at the end of the interaction, the oracle releases some

additional information to D. If D interacts with the oracle in the real world, then it

releases Σ̃ = (Σ1,Σ2, . . . ,Σq) and Θ̃ = (Θ1,Θ2, . . . ,Θq). However, if D interacts with

the oracle in the ideal world, then the oracle also releases Σ̃, Θ̃ tuple, where the tuple

Σ̃, and Θ̃ are computed in the ideal world as described in the following section.

7.5.1 Description of The Ideal World

The ideal oracle consists of two phases: (i) online phase in which for each queried

message M i, the oracle samples the response Ti uniformly at random from {0, 1}n

and returns it to the distinguisher D. If it happens that any of the sampled responses

124

are all zero strings, then we set the bad flag Bad-Tag to 1 and abort the game, i.e.,

Bad-Tag← 1 : ∃i ∈ [q] : Ti = 0n.

When all the queries and responses are over, the offline phase of the ideal world

begins. In this phase, we consider a function L1, which is initially undefined at every

point of its domain. The oracle of the ideal world computes X i
j = 〈j〉s‖M i

j values

for all i ∈ [q], j ∈ [`i] and samples Y i
j as follows: (a) if X i

j is fresh in X̃, then Y i
j is

uniformly sampled from outside of the set Ran(L1) followed by including it to the set

Ran(L1); (ii) on the other hand, if X i
j collides with some previous X i′

j′ value, where

(i′, j′) � (i, j), then Y i
j is set to the value Y i′

j′ . When all the Y i
j , for i ∈ [q], j ∈ [`i] are

determined, the oracle computes the tuple (Σi,Θi) for all i ∈ [q] as

Σi = fix0(Y i
1 ⊕ Y i

2 ⊕ . . .⊕ Y i
`i

),Θi = fix1(2`iY i
1 ⊕ 2`i−1Y i

2 ⊕ . . .⊕ 2Y i
`i

).

After the computation of the tuple (Σ̃, Θ̃) is over, we set the bad flag Bad1 to 1, if

there exists two pairs (Σi,Θi) and (Σj,Θj) such that (Σi,Θi) = (Σj,Θj) holds, i.e.,

Bad1← 1 : ∃i 6= j ∈ [q] : (Σi,Θi) = (Σj,Θj).

Moreover, we set the bad flag Bad2 to 1, if there exists two pairs (Σi, Ti) and (Σj, Tj)

such that (Σi, Ti) = (Σj, Tj) holds, i.e.,

Bad2← 1 : ∃i 6= j ∈ [q] : (Σi, Ti) = (Σj, Tj).

Similarly, we set the bad flag Bad3 to 1, if there exists two pairs (Θi, Ti) and (Θj, Tj)

such that (Θi, Ti) = (Θj, Tj) holds, i.e.,

Bad3← 1 : ∃i 6= j ∈ [q] : (Θi, Ti) = (Θj, Tj).

We set the bad flag Bad4 to 1 if there exists three distinct indices i1, i2, i3 ∈ [q] such

125

that Σi1 = Σi2 ,Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n holds, i.e.,

Bad4← 1 : ∃i1, i2, i3 ∈ [q] : Σi1 = Σi2 ,Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n.

We set the bad flag Bad5 to 1 if there exists four distinct indices i1, i2, i3, i4 ∈ [q] such

that Σi1 = Σi2 ,Θi2 = Θi3 ,Σi3 = Σi4 holds, i.e.,

Bad5← 1 : ∃i1, i2, i3, i4 ∈ [q] : Σi1 = Σi2 ,Θi2 = Θi3 ,Σi3 = Σi4 .

We set the bad flag Bad6 to 1 if there exists four distinct indices i1, i2, i3, i4 ∈ [q] such

that Θi1 = Θi2 ,Σi2 = Σi3 ,Θi3 = Θi4 , Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n holds, i.e.,

Bad6← 1 : ∃i1, i2, i3, i4 ∈ [q] : Θi1 = Θi2 ,Σi2 = Σi3 ,Θi3 = Θi4 , Ti1⊕Ti2⊕Ti3⊕Ti4 = 0n.

Finally, we set the bad flag Bad7 to 1 if the number of colliding pairs for Σ or Θ

values is at least q2/3, i.e.,

Bad7← 1 :

|{(i, j) : i 6= j ∈ [q],Σi = Σj}| ≥ q2/3 or

|{(i, j) : i 6= j ∈ [q],Θi = Θj}| ≥ q2/3.

The offline phase of the ideal world is depicted in Fig. 7.5.1.

Therefore, we summarize the interaction of D with the oracle in the following attack

transcript

τ = {(M1, T1,Σ1,Θ1), (M2, T2,Σ2,Θ2), . . . , (Mq, Tq,Σq,Θq)}.

Let Tre denote the random variable that takes a transcript τ realized in the real world.

Similarly, Tid denotes the random variable that takes a transcript τ realized in the

ideal world. The probability of realizing a transcript τ in the ideal (resp. real) world

is called the ideal (resp. real) interpolation probability. A transcript τ is said to be

attainable with respect to D if its ideal interpolation probability is non-zero, and Θ

denotes the set of all such attainable transcripts.

126

Offline Phase of Oideal, Initialize L1 = ∅

1 : ∀i ∈ [q] : compute (Σi,Θi)← InternalL1(M i)

1 : ∀j ∈ [`i] : Xi
j ← 〈j〉s‖M i

j ;

2 : if L1(Xi
j) = >, then

3 : L1(Xi
j)← Y i

j
$←− Ran(L1);

4 : else Y i
j ← L1(Xi

j);

5 : Σi := fix0(Y i
1 ⊕ · · · ⊕ Y i

`i);

6 : Θi := fix1(2`iY i
1 ⊕ · · · ⊕ 22Y i

`i−1 ⊕ 2Y i
`i);

return (Σi, Θi);

2 : Let Σ̃ = (Σ1, . . . ,Σq), Θ̃ = (Θ1, . . . ,Θq);

3 : if ∃i 6= j ∈ [q] : (Σi,Θi) = (Σj ,Θj), then Bad1← 1 ,⊥;

4 : if ∃i 6= j ∈ [q] : (Σi, Ti) = (Σj , Tj), then Bad2← 1 ,⊥;

5 : if ∃i 6= j ∈ [q] : (Θi, Ti) = (Θj , Tj), then Bad3← 1 ,⊥;

6 : if ∃i1, i2, i3 ∈ [q] : Σi1 = Σi2 ,Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n, then Bad4← 1 ,⊥;

7 : if ∃i1, i2, i3, i4 ∈ [q] : Σi1 = Σi2 ,Θi2 = Θi3 ,Σi3 = Σi4 , then Bad5← 1 ,⊥;

8 : if ∃i1, i2, i3, i4 ∈ [q] : Θi1 = Θi2 ,Σi2 = Σi3 ,Θi3 = Θi4 , Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n,

9 : then Bad6← 1 ,⊥;

10 : FΣ ← {(i, j) ∈ [q]2 : ∃i 6= j, Σi = Σj}; FΘ ← {(i, j) ∈ [q]2 : ∃i 6= j, Θi = Θj};
11 : if |FΣ| ≥ q2/3 ∨ |FΘ| ≥ q2/3, then Bad7← 1 ,⊥;

12 : return

(
(X̃i, Ỹi)i∈[q], (Σ̃, Θ̃)

)
;

Figure 7.5.1: Offline phase of the Ideal oracle Oideal: Boxed statements denote bad
events. Whenever a bad event is set to 1, the oracle immediately aborts (denoted as
⊥) and returns the remaining values of the transcript in any arbitrary manner. So,
if we proceed further we can surely assume that the event ⊥ (and so any bad event
so far) does not hold. We write > when the value of a variable is not defined.

127

Now, we prove the security of the construction using the H-Coefficient technique 2.4.1.

We need to identify the set of bad transcripts and compute an upper bound for their

probability in the ideal world. Then, we need to lower bound the ratio of the real to

ideal interpolation probability for a good transcript.

Remarks 7.5.1. Note that Bad4 allows the good graph to have a path of length three

(an N-type graph) such that the sum of the labels of the edges of the path is non-zero.

On the other hand, Bad5 is stronger than Bad6. Note that Bad5 allows the graph to

have path length at most three (an N-type graph), whereas Bad6 allows the graph to

have path length at most four (an W-type graph) such that the sum of the labels of the

edges of the path is non-zero. The asymmetry between Bad5 and Bad6 arises because

it is easy to bound Bad6 with the condition Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n

7.5.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the ideal

world. We say that an attainable transcript τ is a bad transcript if any bad flags,

defined in the offline phase of the ideal world as shown in Fig. 7.5.1, is set to 1. Recall

that BadT ⊆ Θ be the set of all attainable bad transcripts and GoodT = Θ \BadT be

the set of all attainable good transcripts. We bound the probability of bad transcripts

in the ideal world as follows. Before we proceed to bound the above events in the ideal

world, we state the following two lemmas that upper bounds the collision probability

between two Σ (or Θ) values for two distinct queries. We emphasize that the following

result will be frequently used in upper bounding the probability of the above bad

events.

Lemma 7.5.2. For distinct two messages Mα and Mβ, we have

(i) Pr[Σα = Σβ] ≤ 4

2n
, (ii) Pr[Θα = Θβ] ≤ 4

2n
.

Proof. We prove only (i) as the proof of (ii) is exactly similar to (i). Suppose the

number of blocks ofMα andMβ be `α and `β respectively. Without loss of generality,

128

we assume that `α ≤ `β. Now,

Σα = Σβ ⇒ msbn−1

(`α⊕
i=1

Yα[i]⊕
`β⊕
i=1

Yβ[i]︸ ︷︷ ︸
F

)
= 0n−1.

(7.1)

For computing the probability of the above event, we consider the following three

cases.

1. (`α = `β) ∧ (∃a ∈ [`α] : Xα[a] 6= Xβ[a]) ∧ (∀i ∈ [`α] \ {a} : Xα[i] = Xβ[i])

2. (`α = `β) ∧ (∃a, b ∈ [`α] : Xα[a] 6= Xβ[a] ∧Xα[b] 6= Xβ[b])

3. (`α 6= `β).

Case 1: Since Xα[a] 6= Xβ[a]⇒ Yα[a] 6= Yβ[a] and Xα[i] = Xβ[i]⇒ Yα[i] = Yβ[i], for

i ∈ [`α] \ {a}, F 6= 0n. So, the probability of Σα = Σβ is 1/2n−1.

Case 2: Suppose ∃a1, a2, . . . , aj ∈ [`α], j ≥ 2 such that, for all i ∈ [j], Xα[ai] 6=
Xβ[ai]. After eliminating all the same outputs between {Yα[i] : 1 ≤ i ≤ `α} and

{Yβ[i] : 1 ≤ i ≤ `β}, we have

F =

j⊕
i=1

(Yα[ai]⊕ Yβ[ai]) .

Since F has at most `α + `β outputs, the probability of F = 0n is 1/(2n− `α− `β − 1).

Case 3: Without loss of generality, we assume that `α < `β. Similarly from the

previous case, after eliminating the same outputs between {Yα[i] : 1 ≤ i ≤ `α} and

{Yβ[i] : 1 ≤ i ≤ `β}, we have

F =

j⊕
i=1

Yα[ai]⊕
k⊕
i=1

Yβ[ai],

where a1, . . . , aj ∈ [`α] and b1, . . . , bk ∈ [`β]. Also, by the similar argument of case 2,

129

we have the probability of F = 0n is at most 1/(2n − `α − `β − 1). Hence,

Pr[Σα = Σβ] ≤ 2

(2n − `α − `β − 1)

≤ 4

2n
, assuming `α + `β ≤ 2n−1.

Now, we are ready to bound the probability of the above bad events and hence, we

bound the probability of realizing a bad transcript in the ideal world as follows:

Lemma 7.5.3 (Bad Lemma). Let us define the event BadT := Bad-Tag ∨ Bad1 ∨
Bad2∨Bad3∨Bad4∨Bad5∨Bad6∨Bad7a∨Bad7b. Let τ ′ be any attainable transcript

and Xid be defined as above. Then

Pr[Xid ∈ BadT] ≤ 204q2

22n
+

80q4

23n
+

8
√

2q2

23n/2
+

8

2n
+

q

2n
+

6σ

2n
+

4q4/3

2n
+

32q3

23n
.

Proof. We upper bound the probability of individual bad events in the ideal world

and then by the virtue of the union bound, we sum up the bounds to obtain the

overall bound on the probability of bad transcripts in the ideal world.

1. Bound for Bad-Tag : For a fixed i ∈ [q], the probability that Ti = 0n is exactly

2−n, which follows from the uniform sampling of the output for the i-th query in the

ideal world. Therefore, by varying over all possible choices for i, we have

Pr[Bad-Tag] = Pr[∃i ∈ [q] : Ti = 0n] ≤ q

2n
. (7.2)

2. Bound for Bad1 : For a fixed i 6= j ∈ [q], (Σi,Θi) = (Σj,Θj) implies the

following two equations:

E =

msbn−1

(
(Yi[1]⊕ . . .⊕ Yi[`i])⊕ (Yj[1]⊕ . . .⊕ Yj[`j])

)
︸ ︷︷ ︸

S1

= 0n−1

msbn−1

(
(2`iYi[1]⊕ . . .⊕ 2Yi[`i])⊕ (2`jYj[1]⊕ . . .⊕ 2Yj[`j])

)
︸ ︷︷ ︸

S2

= 0n−1,

130

where `i and `j denotes the number of blocks of message Mi and Mj. We bound the

probability of the above equation holds in the three disjoint cases as follows:

1. (`i = `j) ∧ (∃a ∈ [`i] : Xi[a] 6= Xj[a]) ∧ (∀α ∈ [`i] \ {a} : Xi[α] = Xj[α])

2. (`i = `j) ∧ (∃a, b ∈ [`i] : Xi[a] 6= Xj[a] ∧Xi[b] 6= Xj[b])

3. (`i 6= `j).

Case 1: Since Xi[a] 6= Xj[a]⇒ Yi[a] 6= Yj[a] and Xi[α] = Xj[α]⇒ Yi[α] = Yj[α], for

α ∈ [`i] \{a},
⊕`i

t=1 Yi[t]⊕
⊕`j

t=1 Yj[t] 6= 0n−1. So, the probability of S1 = 0n−1 is 1/2n

and also the probability of S2 = 0n−1 is 1/2n−1. Thus, the probability that satisfies

equation E is 1/22n−2.

Case 2: Suppose ∃a1, a2, . . . , ap ∈ [`i], p ≥ 2 such that, for all t ∈ [p], Xi[at] 6= Xj[at].

After eliminating all the same outputs between {Yi[α] : 1 ≤ α ≤ `i} and {Yj[α] : 1 ≤
α ≤ `j}, we have

S1 = msbn−1

(p⊕
t=1

(Yi[at]⊕ Yj[at])
)
, S2 = msbn−1

(p⊕
t=1

2`i−at+1 (Yi[at]⊕ Yj[at])
)
.

(7.3)

Note that, there are at most `i + `j outputs in S1 and S2. Therefore, the numbers of

possibilities for Yi[a1] and Yi[a2] are at least 2n − (`i + `j − 2) and 2n − (`i + `j − 1)

respectively. Therefore, by fixing the values to the other output variables of equations

in E , the equations in E provide a unique solution for Yi[a1] and Yi[a2]. As a result, the

probability that equation E is satisfied is at most 4/(2n−(`i+`j−2))(2n−(`i+`j−1)).

Case 3: Without loss of generality, we assume that `i < `j. Similar to the previous

case, after eliminating the same outputs between {Yi[α] : 1 ≤ α ≤ `i} and {Yj[α] :

1 ≤ α ≤ `j}, we have

S1 = msbn−1

(p1⊕
t=1

Yi[at]⊕
p2⊕
t=1

Yj[at]

)
,

S2 = msbn−1

(p1⊕
t=1

2`i−at+1Yi[at]⊕
p2⊕
t=1

2`j−at+1Yj[at]

)
, (7.4)

131

where a1, . . . , ap1 ∈ [`i] and b1, . . . , bp2 ∈ [`j]. By `i < `j, we have `j ∈ {b1, . . . , bp2}
and `j 6= 1. Since, there are at most `i + `j outputs in S1 and in S2, the number

of possibilities for Yj[b1] and Yj[`j] is at least (2n − (`i + `j − 2))(2n − (`i + `j − 1)).

By fixing the values to the other output variables of equations in E , the equations

in E provide a unique solution for Yj[b1] and Yj[`j]. As a result, the probability that

equation E is satisfied is at most 4/(2n − (`i + `j − 2))(2n − (`i + `j − 1)).

Therefore, we see that for each of the above case, equations in E holds with probability

at most 4/(2n − (`i + `j − 2))(2n − (`i + `j − 1)). Therefore, we have

Pr[Bad1] ≤ 4
(
q
2

)
(2n − (`i + `j − 2))(2n − (`i + `j − 1))

≤ 8q2

22n
, (7.5)

where the second last inequality follows due to the fact that `i + `j − 1 ≤ 2n−1.

3. Bound for Bad2: To bound the probability of the event Bad2, for a fixed choice

of indices i 6= j ∈ [q],

Pr[Σi = Σj, Ti = Tj]
(1)
= Pr[Σi = Σj] · Pr[Ti = Tj]

(2)
=

4

2n
× 1

2n
=

4

22n
,

where (1) follows due to the fact that the distribution of Ti is independent over the

distribution of Σi in the ideal world and (2) follows from Lemma 7.5.2 and from the

event that Ti = Tj holds with probability 2−n. Therefore, by varying over all possible

choices of indices, we have

Pr[Bad2] = Pr[∃i 6= j ∈ [q] : (Σi, Ti) = (Σj, Tj)] ≤
2q2

22n
(7.6)

4. Bound for Bad3:We bound the probability of the event Bad3 in a similar way as

we have bounded the probability of the event Bad2. Using the exact argument as used

in bounding the probability of the event Bad2, we similarly bound the probability of

the event Bad3 and hence, we have

Pr[Bad3] ≤ 2q2

22n
. (7.7)

132

5.Bound for Bad4: To obtain the bound for Bad4, we first define an auxiliary bad

event

Aux-Bad := Yi[j] ∈ {0n, 0n−11}.

It is easy to see that Pr[Aux-Bad] ≤ 2σ
2n
, if σ is the total number of blocks over all the

q queries. Now, we will obtain the bound for Bad4, assuming that the auxiliary bad

doesn’t occur. Suppose ` is the maximum number of message blocks among all the q

queries. After fixing a triplet (i1, i2, i3), Σi1 = Σi2 ,Θi2 = Θi3 can be represented by a

system of three linear equations as follows:

Σ′i1 = Σ′i2 ⊕ 0n−1b1 ⇔
t⊕

j=1

A1,j · Y [j] = 0n−1b1,

Θ′i2 = Θ′i3 ⊕ 0n−1b2 ⇔
t⊕

j=1

A2,j · Y [j] = 0n−1b2,

(7.8)

for some Aα,β, bij, where i ∈ [2], j ∈ [2] and t ≤ 3`. The i-th row of the augmented

matrix (A|B) is denoted as (A|B)i and we denote the i-th row of the coefficient matrix

A as Ai for i = 1, 2. Now, we assume that b1 = b2 = 0. If Aux-Bad doesn’t occur then

(i) A1 contains at least three 1’s, and (ii) A2 contains at least two distinct entries and

at most two 2α for each α. Thus, A2 is not a multiple of A1, and hence rank of A is

at least 2. For other choices of b1, b2 also we can also show that the rank of A is at

least 2. Thus, for a fixed choice of indices i1, i2, i3 ∈ [q] as follows:

Pr[Σi1 = Σi2 ,Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n ∧ Aux-Bad]

= Pr[Σi1 = Σi2 ,Θi2 = Θi3 ∧ Aux-Bad] · Pr[Ti1 ⊕ Ti2 ⊕ Ti3 = 0n]

=
4

(2n − 3`)(2n − 3`− 1)
× 1

2n − 2

≤ 32

23n
,

assuming ` ≤ 2n−2−1. Here we have used the facts that the distribution of Ti1 , Ti2 , Ti3
are chosen uniformly at random and they are independent over the distribution of Σi

133

in the ideal world. Therefore, by varying over all possible choices of indices, we have

Pr[Bad4] ≤ Pr[Aux-Bad] + Pr[Bad4 ∧ Aux-Bad] ≤ 2σ

2n
+

32q3

23n
. (7.9)

6.Bound for Bad5: To obtain the bound for Bad5, we first define an auxiliary bad

event

Aux-Bad := Yi[j] ∈ {0n, 0n−11}.

It is easy to see that Pr[Aux-Bad] ≤ 2σ
2n
, if σ is the total number of blocks over all

the q queries. Now, we will obtain the bound for Bad5 conditioned on the auxiliary

bad doesn’t happen. Suppose ` is the maximum number of message blocks among all

the q queries. For the Σ and Θ collision, we can simply eliminate all the same input

blocks. Let us denote

Bad5i1,i2,i3,i4 ⇔ Σi1 = Σi2 ∧Θi2 = Θi3 ∧ Σi3 = Σi4 ,

for (i1, i2, i3, i4) ∈ [q]4. Therefore,

Bad5⇔
∨

(i1,i2,i3,i4)∈[q]4

Bad5i1,i2,i3,i4 .

After fixing a quadruple (i1, i2, i3, i4), Bad5i1,i2,i3,i4 can be represented by a system of

three linear equations as follows;

Σ′i1 = Σ′i2 ⊕ 0n−1b1 ⇔
t⊕

j=1

A1,j · Y [j] = 0n−1b1,

Θ′i2 = Θ′i3 ⊕ 0n−1b2 ⇔
t⊕

j=1

A2,j · Y [j] = 0n−1b2,

Σ′i3 = Σ′i4 ⊕ 0n−1b3 ⇔
t⊕

j=1

A3,j · Y [j] = 0n−1b3,

(7.10)

134

for some Aα,β, bi, where i ∈ [3]. Suppose

B =

0n−1b1

0n−1b2

0n−1b3

Therefore, (A|B) be the augmented matrix and A be the coefficient matrix of the

system of equations. The i-th row of the augmented matrix is denoted by (A|B)i and

the i-th row of the coefficient matrix is denoted by Ai for i = 1, 2, 3. We analyse the

following cases depending on the B matrix as follows.

Case 1. B is all zero matrix. We fix (i1, i2, i3, i4) and consider the matrix A. First

let us consider the case `i2 = `i3 . Now, assuming that Aux-Bad doesn’t occur, we have

the following four properties:

(P1) Both A1 and A3 contains at least three 1’s. This is due to the fact that there

are Σ′ collisions in A1 and A3,

(P2) All the entries of A2 should look like 2β for some β,

(P3) A2 contains at most two 2α for each α, and

(P4) Since there is Θ collision for A2, it contains at least two distinct elements.

It is easy to see that the above properties ensure that A2 is not a multiple of A1, and

hence, the rank of the coefficient matrix A is at least 2. This implies that, either rank

of A is 3, or A1 = A3, or A2 = xA1 + yA3, for some nonzero values x, y. We define

three cases as follows:

(a) T1
∆
= {(i1, i2, i3, i4) ∈ [q]4 : A has rank 3},

(b) T2
∆
= {(i1, i2, i3, i4) ∈ [q]4 : A1 = A3},

(c) T3
∆
= {(i1, i2, i3, i4) ∈ [q]4 : A2 = xA1 ⊕ yA3 for some non-zero x,y}.

Case (1a): Since the matrix is full ranked, the probability of Y -variables which

satisfies system of equation is bounded by 1/(2n − t)(2n − t − 1)(2n − t − 2). So we

135

have

Pr

 ∨
(i1,i2,i3,i4)∈T1

Bad5i1,i2,i3,i4

 ≤ q4

(2n − 4`)(2n − 4`− 1)(2n − 4`− 2)
≤ 8q4

23n
, (7.11)

as t ≤ 4`.

Case (1b): To bound the probability of Bad5i1,i2,i3,i4 for (i1, i2, i3, i4) ∈ T2, we define

an equivalence relation ∼ on [q]2, where (i1, i2) ∼ (i3, i4) implies A1 = A3 for A, which

means that Σ′i1 = Σ′i2 ⇔ Σ′i3 = Σ′i4 . Assume that the relation ∼ partitions [q]2 into r

many subsets, namely I1, . . . , Ir, i.e., [q]2 = I1 t · · · t Ir. Now, we consider the event
Σ′i1 = Σ′i2 for all (i1, i2) ∈ Ij, j = 1, . . . , r, denoted by Fj. Then, we have

Pr[Fj] ≤ 2/2n.

Therefore, we have

Pr

 ∨
(i1,i2,i3,i4)∈T2

Bad5i1,i2,i3,i4

 ≤ Pr

∨
j∈[r]

∨
(i1,i2),(i3,i4)∈Ij

Bad5i1,i2,i3,i4

≤

r∑
j=1

Pr[Fj]Ṗr

 ∨
(i1,i2),(i3,i4)∈Ij

(
Θ′i2 = Θ′i3

) ∣∣∣∣Fj

≤
r∑
j=1

2

2n
.min

{
2|Ij|2

2n
, 1

}
, (7.12)

where ` ≤ 2n/16. Using the given condition
∑r

j=1 |Ij| = q2, min
{

2|Ij |2
2n

, 1
}

have

maximum value when r = bq2/2
n−1
2 c + 1 and |Ij| = 2

n−1
2 , for j = 1, . . . , r − 1 and

|Ir| = q2 − (r − 1)2
n−1
2 . Hence,

Pr

 ∨
(i1,i2,i3,i4)∈T2

Bad5i1,i2,i3,i4

 ≤ 2
√

2q2

23n/2
+

2

2n
. (7.13)

Case (1c): Now we consider the case (i1, i2, i3, i4) ∈ T3. Properties (P1) - (P4)

136

ensure that (i) A1 and A3 intersect at most two positions and can not be disjoint,

and (ii) A2 can have at most three different elements. So, we can find a submatrix of

order 3× 3
1 1 0

2α 2α ⊕ 2β 2β

0 1 1

 ,
where α 6= β. Since all the elements of A2 is a power of 2, there must exist some γ

such that 2α ⊕ 2β = 2γ. We define

NEQi,j
∆
= {µ ∈ [min{`i, `j}] : Mi[µ] 6= Mj[µ]} t {µ : min{`i, `j} < µ ≤ max{`i, `j}}.

Since xA1⊕yA3 gives at most three nonzero elements in A2, NEQi2,i3 = {α, β, γ}. Now
consider thatMi2 andMi3 are given with NEQi2,i3 = {α, β, γ}, where 2α⊕2β⊕2γ = 0

and α < β < γ. We have to find Mi1 and Mi4 such that (i1, i2, i3, i4) ∈ T3. In this

scenario, A2 is determined uniquely. After choosing distinct x, y ∈ {2α, 2β, 2γ}, A1

and A3 are fixed, such that xA1 ⊕ yA3 = A2. If A2 contains every nonzero element

exactly twice and if x = 2α and y = 2β, then we can find a submatrix of order 3× 6
1 0 1 1 0 1

2α 2β 2γ 2α 2β 2γ

0 1 1 0 1 1

with other elements are 0’s. As, there are at most two possibilities that Mi1 yielding

A1 and Mi4 yielding A3 each, Mi1 and Mi4 can be chosen at most 24 possible ways.

Therefore, we have,

Pr

 ∨
(i1,i2,i3,i4)∈T3

Bad5i1,i2,i3,i4

 ≤ 24
(
q
2

)
(2n − 4`− 1)(2n − 4`− 2)

≤ 96q2

22n
. (7.14)

137

By considering all three sub-cases we have

Pr

 ∨
(i1,i2,i3,i4)∈T1

⊔
T2

⊔
T3

Bad5i1,i2,i3,i4

 ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
+

96q2

22n
. (7.15)

Now we consider the case where `i2 6= `i3 . W.l.o.g. assume that `i2 > `i3 . We observe

that property (P1), (P4) remain as it is, and property (P2) gets modified to the fact

that all the entries of A2 should now look like 2β or 2`i2−`i3+β for some β. Similar to

the previous analysis, this may result in three sub-cases 1a, 1b, and 1c. We can easily

bound 1a and 1b identically. Now, we claim that 1c can not happen in this case. This

is due to the fact that (i) The length difference between the two messages ensures

that the contribution of Y -variables can not be canceled out (as the coefficients are

different depending on the length of the message), (ii) one can have at least 2 different

and at most 3 different entries in A2, (iii) Both A1, A3, and A1⊕A3 must contain at

least 3 1’s. Combining the cases, we have

Pr[Bad5-1 | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
+

96q2

22n
. (7.16)

Case 2: B is a non-zero matrix. Let us fix (i1, i2, i3, i4). Now depending on the

values of b1, b2, b3 we have the cases as follows:

Case (2a): This case corresponds to b1 = b3 = 0, and b2 = 1. In this event, it is

clear that (A|B)2 can not be written as a linear combination of (A|B)1 and (A|B)3.

So, the rank of (A|B) is either 2 or 3. Thus, we have

Pr[Bad5-2a | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
.

Case (2b): This case corresponds to b1 = b3 = 1, and b2 = 0. In this event A2

follows the conditions (P2)-(P4). Since A2 contains at least 2 distinct elements and

b1 = b3 = 1, b2 = 0, (A|B)2 can not written as a linear combination of (A|B)1 and

138

(A|B)3. So, the rank of (A|B) is either 2 or 3. Thus, we have

Pr[Bad5-2b | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
.

Case (2c): This case corresponds to b1 6= b3, and b2 = 0. In this event (A|B)1 6=
(A|B)3. Also, there exists at least one column in (A|B) where the corresponding

elements of A1 and A3 are distinct. Due to this reason (A|B)2 can not written as a

linear combination of (A|B)1 and (A|B)3. So, the rank of (A|B) is 3. Thus, we have

Pr[Bad5-2c | Aux-Bad] ≤ 16q4

23n
.

Case (2d): This case corresponds to b1 6= b3, and b2 = 1. This is the same as Case

2c. Thus the probability of this event is bounded by

Pr[Bad5-2d | Aux-Bad] ≤ 16q4

23n
.

Case (2e): This case corresponds to b1 = b2 = b3 = 1. In this event, any of the cases

may happen among Case 1a, Case 1b and Case 1c. Thus the probability of this event

is bounded by

Pr[Bad5-2e | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
+

96q2

22n
.

Thus, summing all the above five cases, we have

Pr[Bad5-2 | Aux-Bad] ≤ 56q4

23n
+

6
√

2q2

23n/2
+

6

2n
+

96q2

22n
. (7.17)

Finally, by combining all the cases, we obtain:

Pr[Bad5] ≤ Pr[Bad5 | Aux-Bad] + Pr[Aux-Bad]

≤ Pr[Bad5-1 | Aux-Bad] + Pr[Bad5-2 | Aux-Bad] + Pr[Aux-Bad]

≤ 64q4

23n
+

8
√

2q2

23n/2
+

2σ + 8

2n
+

192q2

22n
. (7.18)

139

7. Bound for Bad6: To obtain the bound for Bad6, we first define an auxiliary bad

event

Aux-Bad := Yi[j] ∈ {0n, 0n−11}.

It is easy to see that Pr[Aux-Bad] ≤ 2σ
2n
, if σ is the total number of blocks over all the

q queries. Now, we will obtain the bound for Bad6, assuming that the auxiliary bad

doesn’t occur. Suppose ` is the maximum number of message blocks among all the q

queries. After fixing a quadruple (i1, i2, i3, i4), Θi1 = Θi2 ,Σi2 = Σi3 ,Θi3 = Θi4 can be

represented by a system of three linear equations as follows:

Θ′i1 = Θ′i2 ⊕ 0n−1b1 ⇔
t⊕

j=1

A1,j · Y [j] = 0n−1b1,

Σ′i2 = Σ′i3 ⊕ 0n−1b2 ⇔
t⊕

j=1

A2,j · Y [j] = 0n−1b2,

Θ′i3 = Θ′i4 ⊕ 0n−1b3 ⇔
t⊕

j=1

A3,j · Y [j] = 0n−1b3,

(7.19)

for some Aα,β, bα, where α ∈ [3] and t ≤ 4`. The i-th row of the augmented matrix

(A|B) is denoted as (A|B)i and we denote the i-th row of the coefficient matrix A as

Ai for i = 1, 2. Now we claim that if Bad-Aux doesn’t occur, then the rank of A is at

least 2, for any choice of (b1, b2). Thus, for a fixed choice of indices i1, i2, i3, i4 ∈ [q]

as follows:

Pr[Θi1 = Θi2 ,Σi2 = Σi3 ,Θi3 = Θi4 , Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n ∧ Aux-Bad]

= Pr[Θi1 = Θi2 ,Σi2 = Σi3 ,Θi3 = Θi4 ∧ Aux-Bad] · Pr[Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n]

=
4

(2n − 4`)(2n − 4`− 1)
× 1

2n − 3
=

16

23n
,

assuming ` ≤ 2n−2 − 1. Note that we have used the facts that the distribution of

Ti1 , Ti2 , Ti3 , Ti4 are chosen uniformly at random and they are independent over the

distribution of Yi values in the ideal world. Therefore, by varying over all possible

140

choices of indices, we have

Pr[Bad6] ≤ Pr[Aux-Bad] + Pr[Bad6 ∧ Aux-Bad] ≤ 2σ

2n
+

16q4

23n
. (7.20)

8. Bound for Bad7a and Bad7b:We bound only the probability of the event Bad7a

as the analysis of bounding the probability of the event Bad7b is exactly similar to

that of bounding the probability of the event Bad7a. To bound the probability of the

event Bad7a, we define an indicator random variable. For each i 6= j ∈ [q], we define

Xi,j which is defined as follows:

Xi,j =

1, if Σi = Σj

0, otherwise

Note that, Pr[Xi,j = 1] = Pr[Σi = Σj] and therefore, from Lemma 7.5.2, we have

Pr[Xi,j = 1] =
4

2n
.

We define another random variable X :=
∑
i,j

Xi,j. Therefore, we have

Pr[Bad7a] = Pr[|{(i, j) ∈ [q]× [q] : i 6= j,Σi = Σj}| > q2/3]

= Pr[X > q2/3] ≤ E[X]

q2/3
≤ 4

(
q
2

)
2n · q2/3

≤ 2q4/3

2n
. (7.21)

Using the exact argument as used in bounding the probability of the event Bad7a, we

similarly bound the probability of the event Bad7b and hence, we have

Pr[Bad7b] ≤
2q4/3

2n
(7.22)

Finally, the result follows as a sum of the probabilities of all these bad events.

141

7.5.3 Analysis of Good Transcript

In this section, we lower bound the ratio of the probability of realizing a good tran-

script τ in the real and the ideal world. Let τ be a good transcript, where

τ = {(M1, T1, X̃1, Ỹ1,Σ1,Θ1), (M2, T2, X̃2, Ỹ2,Σ2,Θ2), . . . , (Mq, Tq, X̃q, Ỹq,Σq,Θq)}.

In order to compute the real or ideal interpolation probability, let σ denote the dis-

tinct number of message blocks among all q queries. As a result of that, the ideal

interpolation probability becomes 2−nq/(2n)σ.

Now, to compute the real interpolation probability, we first note that the permutation

P1 is invoked on a total of σ distinct input-output pairs and P2 is invoked on at most

2q input-output pairs. Therefore, we have

Pr[Tre = τ] = Pr[P1(X i
j) = Y i

j ,∀i ∈ [q], j ∈ [`i],P2(Σi)⊕ P2(Θi) = Ti,∀i ∈ [q]]

= Pr[P1(X i
j) = Y i

j ,∀i ∈ [q], j ∈ [`i]] · Pr[P2(Σi)⊕ P2(Θi) = Ti,∀i ∈ [q]︸ ︷︷ ︸
E

]

=
1

(2n)σ
· Pr[E] (7.23)

Therefore, it now boils down to compute a lower bound on the probability of the

event E. To do this, we first consider that τ is a good transcript. As a result of

it, none of the bad flags defined in the offline phase of the ideal world have been

set to 1. Now, we consider the tuple Σ̃ = (Σ1,Σ2, . . . ,Σq), Θ̃ = (Θ1,Θ2, . . . ,Θq)

corresponding to the good transcript τ . From the two tuples Σ̃ and Θ̃, we construct

an edge labeled graph G as follows: for each i ∈ [q],Σi and Θi represents the vertices

of the graph and for each i ∈ [q], we put an edge between the vertices Σi and Θi with

the label of the edge being Ti. Moreover, for any i 6= j, if Σi = Σj, then we merge

the corresponding two vertices into one. Similarly, for any i 6= j, if Θi = Θj, then we

merge the corresponding two vertices into one. This will end up with an edge-labeled

graph having the following properties:

1. The graph does not have any cycle of length 2, otherwise the bad event Bad1

142

would have been hold true.

2. The label of an edge of any path is non-zero; otherwise bad event Bad-Tag would

have been held true.

3. For a path of length two in the graph, the xor of the label of the edges of the

path is non-zero; otherwise, the bad event Bad2 or the bad event Bad3 would

have been held true.

4. The graph does not have any odd length cycle.

5. The graph contains a path of length three, which we call N path, such that the

xor of the label of the edges of the path is non-zero; otherwise, bad event Bad4

would have been held true.

6. The graph does not have any M-path, otherwise bad event Bad5 would have

been hold true. A pictorial description of the M path is shown in (b) of Fig. 3

7. The graph contains a W path such that the xor of the label of the edges of

the path is non-zero; otherwise, bad event Bad6 would have been hold true. A

pictorial description of the W path is shown in (a) of Fig. 3

8. The last three properties ensure that the graph does not have any cycle of length

4 or above and it does not have any path of length more than 4. Hence, the graph

G becomes acyclic. Therefore, G is a collection of some disjoint components.

9. Finally, due to Bad7a and Bad7b, each component is of size at most q2/3.

Σi1 Σi2 = Σi3 Σi4

Θi1 = Θi2 Θi3 = Θi4

Ti1 Ti2 Ti3 Ti4

(a)

Θi1

Σi1 = Σi2

Θi2 = Θi3

Σi3 = Σi4

Θi4

Ti1 Ti2 Ti3 Ti4

(b)

Figure 7.5.2: (a) represents a W-path and (b) represents a M-path.

143

Therefore, computing a lower bound on the probability of the event E is equivalent

to computing a lower bound on the number of injective solutions which are chosen

from {0, 1}n to EG. Therefore, by applying Theorem 7.3.2, we have

Pr[E] ≥ 1

2nq

(
1− εratio

)
. (7.24)

Therefore, from Equation ((7.23)) and Equation ((7.24)), we have

Pr[Tre = τ] ≥ 1

(2n)σ
· 1

2nq
·
(

1− εratio

)
(7.25)

where εratio is defined as follows:

εratio
∆
=

9q2
c

4 · 2n +
9q2
cq

22n
+

24q2qc
22n

+
6qqc
22n

+
40q2

22n
+

16q4

23n
. (7.26)

where qc denotes the total number of edges in the components having a size greater

than two. Since qc ≤ q2/3 ≤ q, we have

εratio ≤
9q4/3

4 · 2n +
9q7/3

22n
+

24q8/3

22n
+

6q5/3

22n
+

40q2

22n
+

16q4

23n
(7.27)

Finally, the result follows by taking the ratio of real to ideal interpolation probability,

and by combining Lemma 7.5.3 and Equation ((7.27)).

7.6 Matching Attack on 2k-LightMAC_Plus

In this section, we show an information-theoretic distinguishing attack on the con-

struction 2k-LightMAC_Plus based on random permutations P1,P2 with 23n/4 query

complexity which establishes the proven information-theoretic security bound of the

construction 2k-LightMAC_Plus is tight. The distinguishing attack essentially follows

a similar technique as described in [61]. Broadly speaking, we consider a compu-

tationally unbounded adversary A that makes a sufficient number of queries to the

construction so that it satisfies a given relation R. Once A gets a quadruple that

144

satisfies the relation R; it tries to distinguish. Note that it has been assumed that

s ≤ n/4 for the attack. Details of the attack are given as follows:

1. Perform the following for different choices of x ≤ 23n/4:

(a) Make queries to the construction 2k-LightMAC_Plus on the following

three inputs: (i) 0‖x, (ii) 1‖x, (iii) 2‖x.

(b) L[x]
∆
= ‖2

i=0

(
2k-LightMAC_Plus(i‖x)

)
.

2. For each (x1, x2, x3, x4) such that L[x1]⊕ L[x2]⊕ L[x3]⊕ L[x4] = 03n, do

the following:

(a) Make four additional queries to the construction 2k-LightMAC_Plus

with the following inputs: (i) 3‖x1, (ii) 3‖x2, (iii) 3‖x3, (iv) 3‖x4.

(b) If
⊕4

i=12k-LightMAC_Plus(3‖xi) = 0n output 1.

3. Output 0.

7.6.1 Attack Idea

Due to the presence of collisions in the fix functions in the finalization process, we

can construct a matching attack by utilizing differences in Σ′ and/or Θ′ that are

absorbed by the fix functions. Our approach involves finding a quadruple of messages

(M1 := u‖x1,M2 := u‖x2,M3 := u‖x4,M4 := u‖x4) such that two values collide

within half of the state. Specifically, we search for quadruples that satisfy a relation

145

R(M1,M2,M3,M4) defined as:

R(M1,M2,M3,M4)
∆
=

Σ′(M1) = Σ′(M2)⊕ 0n−11

Θ′(M2) = Θ′(M3)⊕ 0n−11

Σ′(M3) = Σ′(M4)⊕ 0n−11

Θ′(M4) = Θ′(M2)⊕ 0n−11

Note that, a quadruple (M1,M2,M3,M4) satisfies the relation R, we must have

4⊕
i=1

2k-LightMAC_Plus(Mi) = 0n.

Now, it is easy to see that our choice of messages, as shown in the attack algorithm,

ensures the following:

R(M1,M2,M3,M4)⇔

EK1(〈2〉‖x1) = EK1(〈2〉‖x2)⊕ 0n−11

2EK1(〈2〉‖x2) = 2EK1(〈2〉‖x3)⊕ 0n−11

EK1(〈2〉‖x3) = EK1(〈2〉‖x4)⊕ 0n−11

2EK1(〈2〉‖x4) = 2EK1(〈2〉‖x1)⊕ 0n−11

⇔

⊕4
i=1 EK1(〈2〉‖xi) = 0n

EK1(〈2〉‖x1) = EK1(〈2〉‖x2)⊕ 0n−11

EK1(〈2〉‖x1) = EK1(〈2〉‖x4)⊕ 0n−11

Therefore, R defines a 3n-bit relation which is independent of u, so that several

quadruples can be made easily that satisfy R. Now we consider a list:

L = {2k-LightMAC_Plus(0‖x)‖2k-LightMAC_Plus(1‖x)‖2k-LightMAC_Plus(2‖x)},

where x ∈ [23n/4] and looking for a quadruples (x1, x2, x3, x4) such that L(x1)⊕L(x2)⊕
L(x3)⊕L(x4) = 03n. This leads to an attack: we look for a quadruple (x1, x2, x3, x4)

146

such that

∀u ∈ {0, 1, 2},
4⊕
i=1

2k-LightMAC_Plus(u‖xi) = 0n.

We expect, on average, one random quadruple (with 23n potential quadruples and a

3n-bit filtering), and one quadruple satisfyingR (also a 3n-bit condition). The correct

quadruple is checked with 4 extra queries (as given in line 2(a) of the algorithm). It

is easy to see that the distinguisher succeeds with probability (1− 1
2n

). This is due to

the fact that the probability that line 2(b) gets executed for (i) the real construction

is 1, and for (ii) a random function is 1
2n
.

7.6.2 Attack Complexity

It is easy to see that the number of queries made by the adversary is Õ(23n/4). The

searching required for step (iii) is done with at most Õ(23n) operations, and using

O(23n/4) memory size (to store all the lists). We would like to point out that one can

improve on the time complexity of the attack following the technique used in [61],

which can report a quadruple used in line 2(a) in Õ(23n/2) operations.

147

148

8
Conclusion

Here we provide a summary of our contributions and point out a few directions of

future work.

8.1 Summary of Contributions

This thesis deals with designing of tweakable enciphering schemes based on public

random permutations and also design and analysis of message authentication codes.

In Chapters 3 to 7 of this thesis the main technical contributions are reported.

Though there are several tweakable enciphering schemes reported in literature

there was no concrete proposal of a TES designed with public random permutations.

Our work closes this gap. In Chapter 3, we design tweakable enciphering schemes

built on a random permutation. We initiate the study with a generic construction of

a public permutation based TES, called ppTES. Then we construct ppCTR, a public

permutation based length expanding PRF and finally, we propose a single keyed and

single permutation based TES which we call ppHCTR+. To the best of our knowledge,

this is the first provably secure public permutation based TES. Our constructions,

both ppTES and ppHCTR+ require both the forward and inverse calls of the permu-

tation. Most existing public random permutations are more efficient in their forward

calls compared to the inverse calls, thus an inverse free construction like [19, 11] is

worth studying. In Chapter 4, we proposed IpTES, an inverse free tweakable enci-

phering scheme based on public random permutation. We proved concrete security

149

bounds for all the constructions.

In Chapter 5, we revisited the security of TrCBC. Our study shows that TrCBC

is not secure for all suggested tag lengths. In particular, for a tag length of n/2− 1,

we showed a concrete and practical attack with high success probability, which uses

only three queries to the MAC. The security theorem for TrCBC, though correct, does

not imply security of TrCBC for all suggested parameters. Our study re-confirms the

need to study claimed security bounds in security theorems for cryptographic con-

structions before choosing safe parameter values for the system. We do not see any

easy way to fix TrCBC such that it retains the interesting requirement of a single key

and dλ/ne many block cipher calls for authenticating a λ-bit message with a good

security margin. It is worth mentioning here that GCBC1/GCBC2 [72] achieves this

to a large extent, i.e., when λ > n GCBC1/GCBC2 indeed produces a secure MAC

with a single key and dλ/ne block cipher calls.

In Chapter 6, we study block-cipher based deterministic MACs which can produce

variable length tags. Specifically, in this chapter, we construct variable output length

PRFs (vlPRF), and show how they can be used to construct variable tag length MACs.

We also propose a modification of the PMAC scheme, called vlPMAC, to enable it

to securely generate variable length authentication tags. Variable tag length block

cipher based MACs are a new addition to the literature.

In Chapter 7, we have shown that the upper bound on the PRF advantage of the

construction 2k-LightMAC_Plus is roughly of the order of q4/23n. The bound holds

when the maximum number of message blocks in a query is at most min{2n−2−1, 2s},
and the total number of distinct message blocks across all q queries is at most 2n.

Where n denotes the block size of the block cipher and s denotes the size of the block

counter. Moreover, we have also shown a matching PRF attack on the construction

with query complexity roughly of the order of 23n/4 queries. Thus, we get a tight

security bound of order 3n/4-bits for 2k-LightMAC_Plus.

150

8.2 Future Work

We plan to address the following problems in the near future:

1. There are extensive experimental performance data of most TESs in several

computing platforms [66, 22, 19]. It would be nice to know the exact efficiency

characteristic of the TES constructions reported in this thesis in both software

and hardware. Particularly, schemes built on public random permutations are

well-suited for lightweight applications. Thus it would be important to measure

the efficiency of our schemes when implemented with constrained processors

and microcontrollers. We wish to do such implementations in the future and

further optimize the schemes for specific platforms based on the performance

data.

2. A systematic study of implementation related vulnerabilities of existing TES

including the ones reported in this thesis can be an interesting and important

direction of future work.

3. Almost all TES provide birthday bound security. An important question to ask

is how we can design TES to achieve security beyond birthday bound. The only

work in this direction so far is [41] which achieves a beyond birthday bound

security using tweakable block ciphers. Designing TES which achieves beyond

birthday bound security using block ciphers or public permutations is still open

and we wish to explore this direction.

4. Recently some TESs have been analyzed in the quantum setting [46]. Analyzing

security of the proposed schemes against quantum adversaries would be an

interesting future line of work. The structure of the Even-Mansour cipher has

been used in our TES designs. It has been shown that the Even-Mansour scheme

is insecure against quantum adversaries [59, 60]. It is important to analyze our

TESs in light of these quantum attacks.

5. We have provide the 3n/4-bit tight security bound of 2k-LightMAC_Plus. Prov-

ing 3n/4-bit security of single-keyed variant of LightMAC_Plus construction

151

would be a direction of future work.

152

Bibliography

[1] William Aiello and Ramarathnam Venkatesan. Foiling birthday attacks in length-
doubling transformations: Benes: a non-reversible alternative to feistel. In In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 307–320. Springer, 1996.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, pages 1–15, 1996.

[3] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New meth-
ods for message authentication using finite pseudorandom functions. In Annual
International Cryptology Conference, pages 15–28. Springer, 1995.

[4] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sci-
ences, 61(3):362–399, 2000.

[5] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform
permutation. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture
Notes in Computer Science, pages 299–320. Springer, 2017.

[6] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR
Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-
based pseudo-random number generators. In Stefan Mangard and François-

153

Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 33–47. Springer, 2010.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, volume 2007. Citeseer, 2007.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Annual international conference on the theory and applications of crypto-
graphic techniques, pages 313–314. Springer, 2013.

[10] Srimanta Bhattacharya and Mridul Nandi. Revisiting variable output length
XOR pseudorandom function. IACR Cryptol. ePrint Arch., 2019:249, 2019.

[11] Ritam Bhaumik and Mridul Nandi. An inverse-free single-keyed tweakable en-
ciphering scheme. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory
and Application of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture
Notes in Computer Science, pages 159–180. Springer, 2015.

[12] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rog-
away. UMAC: Fast and secure message authentication. In Advances in Cryp-
tology—CRYPTO’99: 19th Annual International Cryptology Conference Santa
Barbara, California, USA, August 15–19, 1999 Proceedings 19, pages 216–233.
Springer, 1999.

[13] John Black and Phillip Rogaway. CBC MACs for arbitrary-length messages:
The three-key constructions. In Mihir Bellare, editor, Advances in Cryptology -
CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 20-24, 2000, Proceedings, volume 1880 of Lecture
Notes in Computer Science, pages 197–215. Springer, 2000.

[14] John Black and Phillip Rogaway. A block-cipher mode of operation for paral-
lelizable message authentication. In EUROCRYPT 2002, pages 384–397, 2002.

[15] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. Spongent: A lightweight hash function. In Bart Preneel
and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October
1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science, pages
312–325. Springer, 2011.

[16] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert,
John Steinberger, and Elmar Tischhauser. Key-alternating ciphers in a provable
setting: Encryption using a small number of public permutations. In Advances
in Cryptology – EUROCRYPT 2012, pages 45–62. Springer, 2012.

154

[17] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In
Proceedings of the ninth annual ACM symposium on Theory of computing, pages
106–112, 1977.

[18] Debrup Chakraborty, Avijit Dutta, and Samir Kundu. Designing tweakable en-
ciphering schemes using public permutations. Advances in Mathematics of Com-
munications, 17(4):771–798, 2023.

[19] Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, and Palash
Sarkar. FAST: Disk encryption and beyond. Adv. Math. Commun., 16(1):185–
230, 2022.

[20] Debrup Chakraborty, Vicente Hernandez-Jimenez, and Palash Sarkar. Another
look at XCB. Cryptography and Communications, 7(4):439–468, 2015.

[21] Debrup Chakraborty and Samir Kundu. On the security of TrCBC. Information
Processing Letters, 179:106320, 2023.

[22] Debrup Chakraborty, Cuauhtemoc Mancillas-López, Francisco Rodríguez-
Henríquez, and Palash Sarkar. Efficient hardware implementations of BRW poly-
nomials and tweakable enciphering schemes. IEEE Trans. Computers, 62(2):279–
294, 2013.

[23] Debrup Chakraborty, Cuauhtemoc Mancillas-López, and Palash Sarkar. STES:
A stream cipher based low cost scheme for securing stored data. IACR Cryptology
ePrint Archive, 2013:347, 2013.

[24] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.
In Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne,
Switzerland, February 10-13, 2008, Revised Selected Papers, pages 289–302, 2008.

[25] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a
tweakable strong pseudo-random permutation. In Fast Software Encryption: 13th
International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised
Selected Papers 13, pages 293–309. Springer, 2006.

[26] Debrup Chakraborty and Palash Sarkar. HCH: A New Tweakable Enciphering
Scheme Using the Hash-Counter-Hash Approach. IEEE Transactions on Infor-
mation Theory, 54(4):1683–1699, 2008.

[27] Debrup Chakraborty and Palash Sarkar. On modes of operations of a block
cipher for authentication and authenticated encryption. Cryptogr. Commun.,
8(4):455–511, 2016.

[28] Donghoon Chang and Mridul Nandi. A short proof of the PRP/PRF switching
lemma. Cryptology ePrint Archive, 2008.

155

[29] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John Stein-
berger. Minimizing the two-round Even-Mansour cipher. In Annual Cryptology
Conference, pages 39–56. Springer, 2014.

[30] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In EUROCRYPT 2014. Proceedings, pages 327–350, 2014.

[31] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to build pseudoran-
dom functions from public random permutations. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2019, Proceedings, Part I, pages 266–293, 2019.

[32] Benoit Cogliati and Yannick Seurin. On the provable security of the iterated
Even-Mansour cipher against related-key and chosen-key attacks. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 584–613. Springer, 2015.

[33] Paul Crowley and Eric Biggers. Adiantum: length-preserving encryption for
entry-level processors. IACR Trans. Symmetric Cryptol., 2018(4):39–61, 2018.

[34] Yuanxi Dai, Yannick Seurin, John Steinberger, and Aishwarya Thiruvengadam.
Indifferentiability of iterated Even-Mansour ciphers with non-idealized key-
schedules: Five rounds are necessary and sufficient. In Annual International
Cryptology Conference, pages 524–555. Springer, 2017.

[35] Nilanjan Datta, Avijit Dutta, and Kushankur Dutta. Improved security bound
of (E/D)WCDM. IACR Trans. Symmetric Cryptol., 2021(4):138–176, 2021.

[36] Nilanjan Datta, Avijit Dutta, and Samir Kundu. Tight security bound of 2k-
LightMAC_Plus. Cryptology ePrint Archive, 2023.

[37] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-block
hash-then-sum: a paradigm for constructing BBB secure PRF. IACR Transac-
tions on Symmetric Cryptology, pages 36–92, 2018.

[38] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting
Zhang. Single key variant of PMAC_Plus. IACR Trans. Symmetric Cryptol.,
2017(4):268–305, 2017.

[39] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key recovery at-
tacks on iterated Even-Mansour encryption schemes. Journal of Cryptology,
29(4):697–728, 2016.

[40] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. NIST LWC, 2019.

[41] Avijit Dutta and Mridul Nandi. Tweakable HCTR: A BBB secure tweakable
enciphering scheme. In Progress in Cryptology - INDOCRYPT 2018 - 19th In-
ternational Conference on Cryptology in India, New Delhi, India, December 9-12,
2018, Proceedings, pages 47–69, 2018.

156

[42] Morris Dworkin. The CMAC mode for authentication. Recommendation for
Block Cipher Modes of Operation, 2005.

[43] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. J. Cryptology, 10(3):151–162, 1997.

[44] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact security of PMAC.
IACR Transactions on Symmetric Cryptology, pages 145–161, 2016.

[45] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security
of truncation: Tight bounds for keyed sponges and truncated CBC. In Rosario
Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 368–387. Springer, 2015.

[46] Sebati Ghosh and Palash Sarkar. Breaking tweakable enciphering schemes using
Simon’s algorithm. Des. Codes Cryptogr., 89(8):1907–1926, 2021.

[47] Sebati Ghosh and Palash Sarkar. Variants of Wegman-Carter message authen-
tication code supporting variable tag lengths. Des. Codes Cryptogr., 89(4):709–
736, 2021.

[48] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data.

[49] Shai Halevi. Invertible universal hashing and the TET encryption mode. In
Advances in Cryptology-CRYPTO 2007: 27th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings 27, pages
412–429. Springer, 2007.

[50] Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode. In Dan
Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 482–499. Springer, 2003.

[51] Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292–304. Springer, 2004.

[52] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption AEZ and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 15–44. Springer, 2015.

[53] IEEE Security in Storage Working Group (SISWG). PRP Modes Comparison,
November 2007. http://siswg.org/. IEEE p1619.2.

157

http://siswg.org/

[54] Tetsu Iwata and Kaoru Kurosawa. OMAC: one-key CBC MAC. In Thomas
Johansson, editor, Fast Software Encryption, 10th International Workshop, FSE
2003, Lund, Sweden, February 24-26, 2003, Revised Papers, volume 2887 of
Lecture Notes in Computer Science, pages 129–153. Springer, 2003.

[55] Ashwin Jha and Mridul Nandi. A survey on applications of H-technique: Revis-
iting security analysis of PRP and PRF. Entropy, 24(4):462, 2022.

[56] Seongkwang Kim, ByeongHak Lee, and Jooyoung Lee. Tight security bounds
for Double-Block Hash-then-Sum MACs. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture
Notes in Computer Science, pages 435–465. Springer, 2020.

[57] Manish Kumar. Security of XCB and HCTR. In M.Tech.(Computer Science)
Thesis. Indian Statistical Institute, Kolkata, 2018.

[58] Kaoru Kurosawa and Tetsu Iwata. TMAC: two-key CBC MAC. In Marc Joye,
editor, Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the
RSA Conference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings,
volume 2612 of Lecture Notes in Computer Science, pages 33–49. Springer, 2003.

[59] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type Even-
Mansour cipher. In 2012 International Symposium on Information Theory and
its Applications, pages 312–316, 2012.

[60] Gregor Leander and Alexander May. Grover meets Simon - quantumly attacking
the FX-construction. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in
Computer Science, pages 161–178. Springer, 2017.

[61] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic attacks against
beyond-birthday-bound MACs. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part I, volume 10991 of Lecture Notes in Computer Science, pages 306–336.
Springer, 2018.

[62] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block Ciphers.
J. Cryptology, 24(3):588–613, 2011.

[63] Eik List and Mridul Nandi. ZMAC+–an efficient variable-output-length variant
of ZMAC. IACR Transactions on Symmetric Cryptology, pages 306–325, 2017.

158

[64] Michael Luby and Charles Rackoff. How to construct pseudorandom permuta-
tions from pseudorandom functions. SIAM Journal on Computing, 17(2):373–
386, 1988.

[65] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC mode
for lightweight block ciphers. In Fast Software Encryption: 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers 23, pages 43–59. Springer, 2016.

[66] Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-
Henríquez. Reconfigurable hardware implementations of tweakable enciphering
schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

[67] David A. McGrew and Scott R. Fluhrer. The Security of the Extended Codebook
(XCB) Mode of Operation. In Carlisle M. Adams, Ali Miri, and Michael J.
Wiener, editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes
in Computer Science, pages 311–327. Springer, 2007.

[68] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state
keyed sponge and duplex: Applications to authenticated encryption. In Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, pages 465–489. Springer, 2015.

[69] Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering
schemes from Hash-Sum-Expansion. In Progress in Cryptology–INDOCRYPT
2007: 8th International Conference on Cryptology in India, Chennai, India, De-
cember 9-13, 2007. Proceedings 8, pages 252–267. Springer, 2007.

[70] Yusuke Naito. Blockcipher-based MACs: Beyond the birthday bound without
message length. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part III, volume 10626 of Lecture Notes in
Computer Science, pages 446–470. Springer, 2017.

[71] Yusuke Naito. Improved security bound of LightMAC_Plus and its single-key
variant. In Nigel P. Smart, editor, Topics in Cryptology - CT-RSA 2018 - The
Cryptographers’ Track at the RSA Conference 2018, San Francisco, CA, USA,
April 16-20, 2018, Proceedings, volume 10808 of Lecture Notes in Computer
Science, pages 300–318. Springer, 2018.

[72] Mridul Nandi. Fast and secure CBC-Type MAC algorithms. In Orr Dunkelman,
editor, Fast Software Encryption, 16th International Workshop, FSE 2009, Leu-
ven, Belgium, February 22-25, 2009, Revised Selected Papers, volume 5665 of
Lecture Notes in Computer Science, pages 375–393. Springer, 2009.

[73] Mridul Nandi and Avradip Mandal. Improved security analysis of PMAC. Jour-
nal of Mathematical Cryptology, 2(2):149–162, 2008.

159

[74] Moni Naor. A pseudo-random encryption mode. http://siswg. org/, 2002.

[75] Moni Naor and Omer Reingold. On the construction of pseudo-random permu-
tations: Luby-Rackoff revisited. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 189–199, 1997.

[76] NIST. Online: https://csrc.nist.gov/projects/lightweight-cryptography.

[77] Jacques Patarin. The “Coefficients H” Technique. In Selected Areas in Cryptog-
raphy, SAC, pages 328–345, 2008.

[78] Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. J.
Cryptol., 13(3):315–338, 2000.

[79] Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Authenticated encryp-
tion with variable stretch. In Advances in Cryptology–ASIACRYPT 2016: 22nd
International Conference on the Theory and Application of Cryptology and In-
formation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I
22, pages 396–425. Springer, 2016.

[80] Phillip Rogaway, Mihir Bellare, and John Black. SHA-3 standard. ACM Trans-
actions on Information and System Security (TISSEC), 6(3):365–403, 2003.

[81] Palash Sarkar. Efficient Tweakable Enciphering Schemes from (Block-Wise) Uni-
versal Hash Functions. IEEE Transactions on Information Theory., 55(10):4749–
4760, 2009.

[82] Palash Sarkar. Tweakable enciphering schemes from stream ciphers with IV.
IACR Cryptol. ePrint Arch., 2009:321, 2009.

[83] Haitao Song. A single-key variant of LightMAC_Plus. Symmetry, 13(10):1818,
2021.

[84] Wagner D. CFRG discussion on UMAC., September 2005. https://marc.
info/?l=cfrg&m=143336318527073&w=2.

[85] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Information Security and Cryptology, First SKLOIS Con-
ference, CISC 2005, Beijing, China, December 15-17, 2005,Proceedings, pages
175–188, 2005.

[86] Mark N Wegman and J Lawrence Carter. New classes and applications of hash
functions. In 20th Annual Symposium on Foundations of Computer Science (sfcs
1979), pages 175–182. IEEE, 1979.

[87] Kan Yasuda. PMAC with parity: Minimizing the query-length influence. In Orr
Dunkelman, editor, Topics in Cryptology - CT-RSA 2012 - The Cryptographers’
Track at the RSA Conference 2012, San Francisco, CA, USA, February 27 -
March 2, 2012., volume 7178 of Lecture Notes in Computer Science, pages 203–
214. Springer, 2012.

160

 https://marc.info/?l=cfrg&m=143336318527073&w=2.
 https://marc.info/?l=cfrg&m=143336318527073&w=2.

[88] Liting Zhang, Wenling Wu, Peng Wang, and Bo Liang. TrCBC: Another look at
CBC-MAC. Inf. Process. Lett., 112(7):302–307, 2012.

[89] Yusi Zhang. Using an error-correction code for fast, beyond-birthday-bound
authentication. In Cryptographers’ Track at the RSA Conference, pages 291–
307. Springer, 2015.

161

162

	Introduction
	Cryptography and The Objects of Our Interest
	Scope of the Thesis

	Preliminaries
	Notations
	Adversary and Advantage
	Basic Building Blocks
	H-Coefficient Technique
	Permutation Based Cryptography
	 Tweakable Enciphering Schemes
	Various Model of Designing TES

	Message Authentication Codes
	MACs Based on Block Ciphers
	MACs Based on Cryptographic Hash Functions
	MACs Based on Universal Hash Functions

	Designing Tweakable Enciphering Schemes Using Public Permutations
	TES Based on Public Random Permutation
	PRF Based on Public Random Permutation
	HCTR Construction
	ppTES : A Generic Public Permutation Based TES
	Length Expanding Pseudorandom Function
	Security of ppTES

	Proof of Theorem 3.4.3
	Initial Set Up
	Attack Transcript
	Definition and Probability of Bad Transcripts
	Analysis of Good Transcript

	 ppCTR: Public Permutation Based Length Expanding PRF
	Security Analysis of ppCTR
	Definition and Probability of Bad Transcripts
	Analysis of Good Transcript
	ppHCTR : An Instantiation of ppTES with ppCTR and PolyHash

	 ppHCTR+ : A Single-Keyed Variant of ppHCTR
	Security Result of ppHCTR+

	Proof of Theorem 3.7.1
	Definition and Probability of Bad Transcripts
	Analysis of Good Transcript

	IpTES: An Inverse-free Tweakable Enciphering Schemes Using Public Permutations
	 IpTES : A Inverse-Free Single-Keyed TES
	Security Proof
	Definition and Probability of Bad Transcripts
	Analysis of Bad Transcripts:
	Analysis of Good Transcript

	On the Security of TrCBC
	CBC-MAC
	The Scheme TrCBC
	An Attack on TrCBC
	Discussions

	Variable Output Length Message Authentication Codes
	Variable Output-Length PRF (vlPRF)
	 Variable Output-Length MAC (vlMAC)
	Constructing vlPRF from Fixed Input Length and Fixed Output Length PRF
	 Constructing vlPRF from Variable Input Length and Fixed Output Length PRF
	Variable Length MACs Using vlPRF
	vlPMAC: Variable Output-Length Variant of PMAC
	 Proof of Theorem 6.6.1

	Tight Security Bound of 2k-LightMAC_Plus
	Beyond Birthday Bound Secure Variants of LightMAC
	Our Contribution
	Mirror Theory
	2k-LightMAC_Plus
	Security Result of 2k-LightMAC_Plus

	Proof of Theorem 7.4.1
	Description of The Ideal World
	Definition and Probability of Bad Transcripts
	Analysis of Good Transcript

	Matching Attack on 2k-LightMAC_Plus
	Attack Idea
	Attack Complexity

	Conclusion
	Summary of Contributions
	Future Work

