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Chapter 1

Introduction

In sample survey, estimation of different finite population parameters like, mean, median, variance,
coefficient of variation, correlation and regression coefficients, interquartile range, measure
of skewness, etc. was considered extensively in the past. However, comparison of different
estimators of the same parameters has been limited. Also, asymptotic theory for several estimators
has not been adequately developed in the available literature. One of the main objectives of this
thesis is to compare various estimators of finite population parameters under different sampling
designs (with no non-response) and superpopulation models, and to identify asymptotically
efficient estimators among them. Another objective of this thesis is to understand the role of
auxiliary information in the implementation of different sampling designs and in the construction

of different estimators.

Suppose that P={1,2,..., N} is a finite population of size N, s is a sample of size n (< N)
from P, and S is the collection of all possible samples having size n. Then, a sampling design
P(s) is a probability distribution on S such that 0 < P(s) < 1forall s € Sand >, ¢ P(s)=1.

In this thesis, we consider sampling designs having fixed sample size. Now, suppose that

seS

X1,..., Xy denote the population values on a positive real-valued size variable x. In sample
survey, these population values are assumed to be known and utilized to implement sampling
designs as well as to construct estimators. In this thesis, we consider the following sampling

designs.

Simple random sampling without replacement (SRSWOR): In SRSWOR, 7 units are selected
from the population P such that any subset of n units has the same probability :(NCn) L of

being selected.

Rejective sampling design ([40]): Suppose that o, ..., ay are such that a; > 0 for any
1=1,..., N and EZ]\; 1 @;=1. Then, in the rejective sampling design, n units are first drawn with

replacement, where the i*"* population unit is selected with probability =a, for i=1,..., N. If

1
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any population unit is selected in the sample more than once, the sample is rejected and the entire
procedure is repeated until n distinct units are selected in the sample. SRSWOR is a special case

of rejective sampling design.

High entropy sampling design ([4]): A sampling design P(s) is called high entropy sam-
pling design if D(P||R)=Y", s P(s)log (P(s)/R(s)) — 0asn, N — oo for some rejective
sampling design R(s). Some examples of high entropy sampling designs are SRSWOR, Lahiri—
Midzuno-Sen (LMS) sampling design and Rao—Sampford (RS) sampling design.

LMS sampling design ([55], [57] and [75]): In LMS sampling design, the first unit is selected
from P, where the 7! population unit has the probability =X/ Z;V: 1 X of being selected for
i=1, ..., N. Following the first draw, n — 1 units are selected from the remaining N — 1 units
in P using SRSWOR. One can show that in this sampling design, the selection probability of a

sample is proportional to the total of the values of the size variable x for the sampled units.

RS sampling design ([4]): In RS sampling design, a population unit is first selected in such a way
that the i*" population unit has the probability =X, / Z;V: 1 X of being selected for i=1,..., N.
After replacing this unit back into the population, n — 1 units are drawn with replacement,
where the 7*" population unit is selected with probability =X;(1 — \;) ™!/ ZZ]\L L A(1 = X) 7t for
Ai=nX;/ Ef\; 1 X;. If any population unit is selected in the sample more than once, the sample

is rejected and the entire procedure is repeated until n distinct units are selected in the sample.

7PS sampling design ([4] and [9]): A sampling design is called 7PS (i.e., inclusion probability
7 proportional to size) sampling design if its inclusion probabilities {m}fil satisfy the condition

mi=nX;/ z;vzl Xj fori=1,..., N. RS sampling design is an example of 7PS sampling designs.

High entropy 7PS (HE7PS) sampling design: A sampling design is called a HE7PS sampling
design if it is a high entropy sampling design as well as a 7PS sampling design. It was shown by

[4] that RS sampling design is a HE7PS sampling design.

Rao-Hartley—Cochran (RHC) sampling design ([66]): In RHC sampling design, P is first
divided randomly into n disjoint groups, say P41, ..., P, of sizes Ny, ..., N,, respectively, by
taking a sample of Nj units from /N units using SRSWOR, then a sample of Ny units from
the remaining N — N7 units using SRSWOR, then a sample of N3 units from the remaining
N — N; — N5 units using SRSWOR and so on. Following this random split, one unit is selected
from each group independently. For each r=1,...,n, the ¢'* unit from P, is selected with

probability =X,/ SN X7 where X /- is the 2 value of the ¢* unit in P,

lr>
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Stratified multistage cluster sampling design ([35] and [77]): Suppose that the finite population
‘P is divided into H strata or subpopulations, where stratum h consists of M}, clusters for

h=1,..., H. Further, the j*" cluster in stratum h consists of N n; units for j=1,..., Mj. For any

given h=1,... , H, j=1,..., M}, and [=1, ..., Np;, we assume that the [th
stratum A is the ‘" unit in the population P, where izzz,zl Z?@'l Nprjr — Z;‘,@] Npj + 1. In

unit from cluster j in

stratified multistage cluster sampling design with SRSWOR, first a sample s, of my, (< Mp,)
clusters is selected from stratum ~ under SRSWOR for each h. Then, a sample s,; of rj, (< Nj;)
units is selected from j** cluster in stratum h if it is selected in the sample of clusters sy, in
the first stage for h=1, ..., H. Thus the resulting sample is s=U1<;<# jes, Shj- The samplings
in the two stages are done independently across the strata and the clusters. Under the above
sampling design, the inclusion probability of the i*" population unit is m;=my,ry, /M N pj 1f it
belongs to the j* cluster of stratum k. Note that stratified multistage cluster sampling design with
SRSWOR becomes stratified sampling design with SRSWOR, when Ny ;=1 for any h=1, ..., H
and j=1,..., M. Also, note that stratified multistage cluster sampling design with SRSWOR
becomes multistage cluster sampling design with SRSWOR, when H=1.

Suppose that (Y;, Z;) is the value of (y, z) for the i*" population unit, where 3 is a finite/infinite
dimensional study variable, z is a finite dimensional covariate, and i=1,..., N. In sample
survey, the population total of z is assumed to be known. Moreover, z is used to construct
different estimators (e.g., generalized regression (GREG) estimator). The variables (z, x) are
also known as auxiliary variables. Sometimes, we consider superpopulation models, where
{(Yi, Zi, X;) : 1 <i < N} are assumed to be independently and identically distributed (i.i.d.)

random elements on (€2, 7, P).

In Chapter 2 of this thesis, several well known estimators of finite population mean and its
functions are investigated under some standard sampling designs. Such functions of mean include
the variance, the correlation coefficient and the regression coefficient in the population as special
cases. We compare the performance of these estimators under different sampling designs based
on their asymptotic distributions. Equivalence classes of estimators under different sampling
designs are constructed so that estimators in the same class have equivalent performance in terms
of asymptotic mean squared errors (MSEs). Estimators in different asymptotic-MSE equivalence
classes are then compared under some superpopulations satisfying linear models. It is shown that
the pseudo empirical likelihood (PEML) estimator of the population mean under SRSWOR has
the lowest asymptotic MSE among all the estimators under different sampling designs considered
in this chapter. It is also shown that for the variance, the correlation coefficient and the regression
coefficient of the population, the plug-in estimators based on the PEML estimator have the lowest
asymptotic MSEs among all the estimators considered in this chapter under SRSWOR. On the
other hand, for any HE7PS sampling design, which uses the auxiliary information, the plug-in
estimators of those parameters based on the Hijek estimator have the lowest asymptotic MSEs

among all the estimators considered in this chapter. This chapter is based on [29].
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Asymptotic equivalence of some specific estimators of the population mean under some
sampling designs was shown earlier in [22] and [74]. [22] established asymptotic equivalence
of the PEML and the GREG estimators by showing that under some conditions on sampling
designs, the difference between these two estimators is asymptotically negligible in probability.
On the other hand, [74] showed that the ratio estimator has the same asymptotic distribution under
SRSWOR and LMS sampling designs. The result that the difference between two estimators is
asymptotically negligible in probability is a stronger result than the result that the asymptotic
distributions of these estimators are the same. However, none of these authors constructed
asymptotic-MSE equivalence classes, which consist of several estimators of a function of the
population means under several sampling designs. Comparisons of some estimators of the
population mean under some sampling designs were also carried out in [1], [2], [24]) and
[64] based on asymptotic MSEs. However, the above comparisons included neither the PEML

estimator nor HE7PS sampling designs.

In Chapter 3 of this thesis, the Horvitz—Thompson (HT), the RHC and the GREG estimators
of the finite population mean are considered, when the observations are from an infinite dimen-
sional space. We compare these estimators based on their asymptotic distributions under some
commonly used sampling designs and some superpopulations satisfying linear regression models.
We show that the GREG estimator is asymptotically at least as efficient as any of the other two
estimators under different sampling designs considered in this chapter. Further, we show that the
use of some well-known sampling designs utilizing auxiliary information may have an adverse
effect on the performance of the GREG estimator, when the degree of heteroscedasticity present
in linear regression models is not very large. On the other hand, the use of those sampling designs
improves the performance of this estimator, when the degree of heteroscedasticity present in linear
regression models is large. We develop methods for determining the degree of heteroscedasticity,
which in turn determines the choice of appropriate sampling design to be used with the GREG
estimator. We also investigate the consistency of the covariance operators of the above estimators.
We carry out some numerical studies using real and synthetic data and our theoretical results are

supported by the results obtained from those numerical studies. This chapter is based on [30].

[12], [13], [14], [16], [15], etc. investigated different asymptotic properties of the HT and the
model assisted estimators of the finite population mean, when population observations are from
C[0, T, the space of continuous functions defined on [0, 7']. The model assisted estimator can be
related to the GREG estimator considered earlier in [22] for finite dimensional data. All these
authors carried out their investigation under sampling designs, which satisfy some regularity
conditions. These sampling designs include SRSWOR, stratified sampling design with SRSWOR,
rejective sampling designs, etc. However, none of the above authors compared the HT and the

model assisted estimators.
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In Chapter 4 of this thesis, the weak convergence of the quantile processes, which are
constructed based on different estimators of the finite population quantiles, is shown under
various well-known sampling designs based on a superpopulation model. The results related to
the weak convergence of these quantile processes are applied to find asymptotic distributions of
the smooth L-estimators and the estimators of smooth functions of finite population quantiles.
Based on these asymptotic distributions, confidence intervals can be constructed for several
finite population parameters like the median, the a-trimmed means, the interquartile range and
the quantile based measure of skewness. Comparisons of various estimators are carried out
based on their asymptotic distributions. We show that the use of the auxiliary information in
the construction of the estimators sometimes has an adverse effect on the performances of the
smooth L-estimators and the estimators of smooth functions of finite population quantiles under
several sampling designs. Further, the performance of each of the above-mentioned estimators
sometimes becomes worse under sampling designs, which use the auxiliary information, than
their performances under SRSWOR. Moreover, it is shown that the sample median is more
efficient than the sample mean under SRSWOR, whenever the finite population observations are
generated from some symmetric and heavy-tailed superpopulation distributions with the same
superpopulation mean and median. In the cases of symmetric superpopulation distributions with
the same superpopulation mean and median, it is also shown that the GREG estimator of the
finite population mean is more efficient than the sample median under SRSWOR, whenever there
is substantial correlation present between the study and the auxiliary variables. This chapter is
based on [31].

Strong and weak versions of Bahadur type representations of the sample quantile process
were shown under simple random sampling in [78]. A quantile process based on the sample
quantile, which is obtained by inverting the Hdjek estimator of finite population distribution
function, was constructed under high entropy sampling designs in [26]. However, there is no
result available in the literature related to the weak convergence of quantile processes based
on quantile estimators like the ratio, the difference, and the regression estimators, which are
constructed using auxiliary information. There is also no available result related to the weak

convergence of a quantile process under RHC and stratified multistage cluster sampling designs.

In sample survey, construction of several estimators (e.g., GREG and ratio estimators of
the finite population mean) and derivation of their properties involve some form of regression
analysis. Regression analysis also plays an important role for statistical analysis of estimators,
when sampling designs (e.g., 7PS, LMS and RHC) use auxiliary information. In Chapter 5 of this
thesis, estimators obtained from least square (LS), asymmetric least square (ALS), truncated least
square (TLS), least absolute deviation (LAD) and quantile regression (QR) are considered, when
the sample observations are drawn from a finite population using some sampling design. The
asymptotic distributions of these estimators are derived under different sampling designs based

on a superpopulation model. Comparisons of several estimators are also carried out based on
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their asymptotic distributions. From these comparisons, it is shown that the use of the auxiliary
information in the design stage sometimes has an adverse effect on the performances of different
estimators of parameters in finite populations. It is also shown that the estimators of the finite
population mean constructed based on quantile and TLS regression become more efficient than
the GREG estimator under various sampling designs, whenever the finite population observations
on the study variable are generated from some heavy-tailed distributions. This chapter is based
on [32].

In the case of i.i.d. sample observations, [46], [39], [50], [51], [59], [33], [21], [49], [42],
etc. studied several asymptotic properties of the estimators obtained from LS, ALS, TLS, LAD,
QR, and other well-known regression methods. However, asymptotic behavior of the above-
mentioned estimators have not been studied much, when the sample observations are drawn from
a finite population using some sampling design. It becomes challenging to show Bahadur type
representations and asymptotic normality of these estimators, when the sample observations may

neither be independent nor identical.

In this thesis, several asymptotic results (e.g., central limit theorems for several estimators of
the finite population mean, weak convergence of various empirical and quantile processes, etc.)
are first derived under rejective sampling designs using consistency and asymptotic normality
of the HT estimator under these sampling designs following the ideas in [40] and [4]. Then,
these results are derived under high entropy sampling designs using the fact that any high
entropy sampling design can be approximated by a rejective sampling design in Kullback-
Liebler divergence. Thus high entropy sampling designs play an important role in the study
of the asymptotic behaviour of several estimators, when the sample observations are neither

independent nor identical.

Some of the major findings from the above-mentioned chapters are as follows. Given any
sampling design, the estimators, which are constructed using the auxiliary information in the
estimation stage, often become more efficient than the estimators, which are constructed without
using any auxiliary information. However, each of the estimators considered in the above chapters
usually becomes more efficient under SRSWOR than under RHC and HE#7PS sampling designs,
which use the auxiliary information in the design stage. This implies that although the use of
the auxiliary information in the estimation stage usually improves the performance of different
estimators, the use of the auxiliary information in the design stage often has adverse effect on
the performance of these estimators. In practice, SRSWOR is easier to implement than the
sampling designs that use the auxiliary information. Thus the above result is significant in view of
selecting the appropriate sampling design. Further, for the finite population mean, the estimator
constructed based on QR as well as TLS regression becomes more efficient than the GREG
estimator constructed based on LS regression under several sampling designs, whenever the

population values on the study variable are generated from heavy-tailed distributions.
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Chapter 2

A comparison of estimators of mean

and its functions in finite populations

Let y be a R%valued (d > 1) study variable. Throughout this chapter, we assume that the
covariate z and the size variable x are the same. Recall from the introduction that (Y;, X;)
denotes the value of (y, ) for the i*" population unit, where i=1, ..., N, and z is a positive
real-valued size variable. Suppose that ?:Zi]\; 1 Yi/N is the finite population mean of y. The
HT estimator (see [44])) and the RHC (see [66]) estimator are commonly used design unbiased
estimators of Y. Other well-known estimators of Y are the Hajek estimator (see [41], [73],
etc.), the ratio estimator (see [24]), the product estimator (see [24]), the GREG estimator (see
[22]) and the PEML estimator (see [22]). However, these latter estimators are not always design
unbiased. For the expressions of the above estimators, the reader is referred to Table 2.1 in
Section 2.1 of this chapter. Now, consider the finite population parameter g(Zf\L Lh(Y3)/N).
Here, h:R? — RP is a function with p > 1 and ¢:RP — R is a continuously differentiable
function. All vectors in Euclidean spaces will be taken as row vectors and superscript 7" will be
used to denote their transpose. Examples of such a parameter are the variance, the correlation
coefficient, the regression coefficient, etc. associated with a finite population. For simplicity,
we shall often write h(Y;) as h;. Then, g(ﬁ):g(zij\i L hi/N) is estimated by plugging in the

estimator h of h.

In this chapter, our objective is to find asymptotically efficient (in terms of asymptotic MSE)

estimator of g(h). In Section 2.1, based on the asymptotic distribution of the estimator of g(h)

under SRSWOR, LMS, HE7PS and RHC sampling designs (see the introduction), we construct
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asymptotic-MSE equivalence classes of estimators such that any two estimators in the same class
have the same asymptotic MSE. We first consider the special case, when g(h)=Y", and compare
equivalence classes of estimators under superpopulations satisfying linear models in Section
2.2. Among different estimators under different sampling designs considered in this chapter,
the PEML estimator of the population mean under SRSWOR turns out to be the estimator with
the lowest asymptotic MSE. Also, the PEML estimator has the same asymptotic MSE under
SRSWOR and LMS sampling design. Interestingly, we observe that the performance of the
PEML estimator under RHC and any HE7PS sampling designs, which use auxiliary information,
is worse than its performance under SRSWOR. Earlier, it was shown that the GREG estimator is
asymptotically at least as efficient as the HT, the ratio and the product estimators under SRSWOR
(see [24]). It follows from our analysis that the PEML estimator is asymptotically equivalent to

the GREG estimator under all the sampling designs considered in this chapter.

[74] proved that the ratio estimator has the same asymptotic distribution under SRSWOR
and LMS sampling design. [22] showed that under some conditions on the sampling design,
the difference between the PEML and the GREG estimators is asymptotically negligible in
probability, i.e., the PEML estimator is asymptotically equivalent to the GREG estimator. Among
different sampling designs, SRSWOR and RHC sampling design satisfy these conditions. The
result that the difference between two estimators is asymptotically negligible in probability is
a stronger result than the result that the asymptotic distributions of these estimators are the
same. However, none of the earlier authors constructed asymptotic-MSE equivalence classes,
which consist of several estimators of a function of the population means under several sampling

designs.

[64] compared the sample mean under the simple random sampling with replacement with
the usual unbiased estimator of the population mean under the probability proportional to size
sampling with replacement, when the study variable and the size variable are exactly linearly
related. [2] compared the ratio estimator of the population mean under SRSWOR with the RHC
estimator under RHC sampling design, when an approximate linear relationship holds between
the study variable and the size variable. [1] carried out the comparison of the ratio estimator of
the population mean under LMS sampling design and the RHC estimator under RHC sampling
design, when the study variable and the size variable are approximately linearly related. It was
shown that the GREG estimator of the population mean is asymptotically at least as efficient
as the HT, the ratio and the product estimators under SRSWOR (see [24]). However, the above

comparisons included neither the PEML estimator nor HE7PS sampling designs.
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In Section 2.2, we also consider the cases, when g(h) is the variance, the correlation coefficient
and the regression coefficient in the population. Note that if the estimators of the population
variance are constructed by plugging in the HT, the ratio, the product or the GREG estimators of
the population means, then the estimators of the variance may become negative. One also faces
problem with the plug-in estimators of the correlation coefficient and the regression coefficient as
these estimators require estimators of population variances. On the other hand, if the estimators of
the above-mentioned parameters are constructed by plugging in the H4jek or the PEML estimators
of the population means, such a problem does not occur. Therefore, for these parameters, we
compare only those equivalence classes, which contain the plug-in estimators based on the Hijek
and the PEML estimators. From this comparison under superpopulations satisfying linear models,
we once again conclude that for any of these parameters, the plug-in estimator based on the
PEML estimator has asymptotically the lowest MSE among all the estimators considered in this
chapter under SRSWOR as well as LMS sampling design. Moreover, under any HE7PS sampling
design, which use the auxiliary information, the plug-in estimator based on the Hajek estimator

has asymptotically the lowest MSE among all the estimators considered in this chapter.

Some empirical studies carried out in Section 2.3 using synthetic and real data demonstrate
that the numerical and the theoretical results corroborate each other. In Section 2.4, the biased
estimators considered in this chapter are compared empirically with their bias-corrected versions
based on jackknifing in terms of MSE. We make some remarks on our major findings in Section

2.5. Proofs of the results are given in Sections 2.6 and 2.7.

2.1. Comparison of different estimators of g(h)

In this section, we first provide the expressions (see Table 2.1 below) of those estimators of Y,

which are considered in this chapter. In Table 2.1, m;=) _ ;. P(s) is the inclusion probability

of the i population unit, and G is the total of the x values of that randomly formed group
from which the i*" population unit is selected in the sample by RHC sampling design (see [66]
and the introduction). In the case of the GREG estimator, ?*:Zies d(i,5)Yi/ Y ics d(i, s),
XY, dli, )X/ Ye, dliys) and f=Y e, d(i, $)(Vi — V) (Xi — X)) iy dli, 8)(Xi —
f*){ where {d(i,s) : i € s} are sampling design weights. Finally, the ¢;’s (> 0) in the

PEML estimator are obtained by maximizing .. d(i, s) log(c;) subject to >, c;=1 and

1ES
Y ics Ci(Xi — X)=0. Following [22], we consider both the GREG and the PEML estimators
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TABLE 2.1: Estimators of Y.

Estimator Expression
HT Y =Y (Nm) 1Y,

RHC Y ruc=Y e, (NXi)'G,Y;

Hajek ?H:Zies 7rz‘_1Yi/ Dics 7rz‘_1

Ratio | YRa=(De,m; Yi/ e, 7 Xi)X
Product | Ypp=>_,  (Nm) 'Y, > (Nm)~'X;/ X
GREG Yaorpa=Y » + B(X — X.)

PEML ?PEML:ZZ'ES Y

with d(i,s)=(N;)~! under SRSWOR, LMS and any HE7PS sampling designs, and with
d(i,s)=(NX;)~'G; under RHC sampling design.

We compare the estimators of g(h), which are obtained by plugging in the estimators of A
mentioned in Table 2.2 below. The expressions of these estimators of h are the same as the

expressions of the estimators of Y (see Table 2.1) with Y; replaced by h(Y;). First, we find

TABLE 2.2: Estimators of h.

Sampli
P e Estimators
designs
SRSWOR HT (which coincides with Hajek esti.mator), ratio,
product, GREG and PEML estimators
HT, Hajek, ratio, product, GREG and
LMS
PEML estimators
HT (which coincides with ratio and product
HE#PS ) ) i
estimators), Hijek, GREG and PEML estimators
RHC RHC, GREG and PEML estimators

equivalence classes of estimators of g(h) such that any two estimators in the same class are

asymptotically normal with the same mean g(h) and same variance.

We define our asymptotic framework as follows. Let {P,} be a sequence of populations
with N, n, — oo as v — oo (see [48], [85], [26], [7], [43] and references therein), where
N, and n, are, respectively, the population size and the sample size corresponding to the v**

population. Henceforth, we shall suppress the subscript v that tends to co for the sake of
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simplicity. Throughout this chapter, we consider the following assumption (cf. Assumption 1 in

[12], A4 in [25], Al in [16] A4 in [26] and (HT3) in [7])

Assumption 2.1.1. n/N — Aasv — oo, where 0 < A < 1.

Before we state the main results, let us discuss some assumptions on {(X;,h;) : 1 <i < N}
(recall that h;=h(Y;)). Note that in any finite dimensional Euclidean space, we consider the

Euclidean norm and denote it by || - ||

Assumption 2.1.2. {P,} is such that S | ||h||*/N=0(1) and "N | X}/N =0(1) as v — oc.
Further, lim,,_, h exists, and Y=Zij\i1 X;/N and S2= Zf\il(X, — X)?2/N are bounded away

from 0 as v — oo. Moreover, Vg(juo) # 0, where pig=lim, o h and Vg is the gradient of g.

Assumption 2.1.3. max;<;<y X;/ minj<;<y X;=0(1) as v — oc.

Let V; be one of h;, h; — h, h; — hX;/X, h; + hX;/X and h; — h — Sup(X; — X)/S?
for i=1,...,N, h=3"1" | hi/N and Spu=3"1, X;hi/N — h X. Define Ty=3 1, Vi(l —
7))/ ZZJ\L L mi(1—;), where 7; is the inclusion probability of the 7** population unit. Also, in the
case of RHC sampling design, define V="~ V;/N, X="%  X,;/N and v=5""_, N,(N, —
1)/N(N — 1), where N, is the size of the r*" group formed randomly in RHC sampling design,
r=1,...,n. It follows from Lemma 2.7.5 in Section 2.7 that ny — c as v — oo for some
¢ > 1 — A\. Now, we state the following assumptions on the population values and the sampling

designs.

Assumption 2.1.4. P(s) is such thatnN=2 "N (V; =Ty ;)T (Vi— Ty ;) (n; 1 —1) converges

to some positive definite (p.d.) matrix as v — oo.

Assumption 2.1.5. ny XN~} Zf\i (Vi = X;V/X)T(V; — X;V/X)/ X, converges to some p.d.

matrix as v — o0.

Similar assumptions like Assumptions 2.1.2, 2.1.4 and 2.1.5 are often used in sample survey
literature (see Assumption 3 in [12], A3 and A6 in both [25] and [26], (HT2) in [7], and F2 and F3
in [43]). Assumptions 2.1.2 and 2.1.5 hold (almost surely), whenever {(X;, h;) : 1 <i < N} are
generated from a superpopulation model satisfying appropriate moment conditions (see Lemma
2.7.8 in Section 2.7). The condition Zf\;1 ||hi|]*/N=0(1) holds, when h is a bounded function
(e.g., h(y)=y and y is a binary study variable). Assumption 2.1.3 implies that the variation in the

population values X7, ..., X cannot be too large. Under any 7PS sampling design, Assumption
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2.1.3 is equivalent to the condition that L. < Nm;/n < L’ for some constants L, L' > 0, any
i=1,..., N and all sufficiently large v > 1. This latter condition was considered earlier in
the literature (see (C1) in [7] and Assumption 2—(i) in [85]). Assumption 2.1.3 holds (almost
surely), when {X z}f\il are generated from a superpopulation distribution and the support of the
distribution of X; is bounded away from 0 and co. Assumption 2.1.4 holds (almost surely) for
SRSWOR, LMS and any 7PS sampling designs under appropriate superpopulation models (see
Lemma 2.7.8 in Section 2.7). In the context of the RHC sampling design, we also consider the

following assumption.

Assumption 2.1.6. For the RHC sampling design, { N, }"_, are such that

N/n, forr =1,--- ,n, when N/n is an integer,

Ny = [N/n), forr=1,--- k, and 2.1.1)

|IN/n| +1, forr =k+1,--- ,n, when N/n is not an integer,

where k is such that 3."_ N,=N. Here, | N/n| is the integer part of N/n.

[66] showed that this choice of {Nr}ﬁzl minimizes the variance of the RHC estimator.
Assumptions 2.1.1-2.1.6 are used to prove some technical results (see Lemmas 2.7.1-2.7.7 in
Section 2.7) under LMS, HE7PS and RHC sampling designs, which will be required to construct

asymptotic-MSE equivalence classes of estimators for g(h) under different sampling designs

considered in this chapter. Now, we state the following theorems.

Theorem 2.1.1. Suppose that Assumptions 2.1.1-2.1.4 hold. Then, classes 1,2,3 and 4 in Table

2.3 describe asymptotic-MSE equivalence classes of estimators for g(h) under SRSWOR and
LMS sampling design.

For next two theorems, we assume that n max;<;<y X;/ Zf\i 1 X; < 1. Note that this

condition is required to hold for any without replacement 7PS sampling design.

Theorem 2.1.2. (i) If Assumptions 2.1.1-2.1.4 hold, then classes 5,6 and 7 in Table 2.3 describe

asymptotic-MSE equivalence classes of estimators for g(h) under any HETPS sampling design.

(ii) Under RHC sampling design, if Assumptions 2.1.1-2.1.3, 2.1.5 and 2.1.6 hold, then classes 8

and 9 in Table 2.3 describe asymptotic-MSE equivalence classes of estimators for g(h).
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TABLE 2.3: Estimators of & based on which asymptotic-MSE equivalence classes of estimators

for g(h) are formed.

Sampling design
Equivalence
SRSWOR LMS HE#PS RHC
classes
GREG and | GREG and

class 1

PEML PEML

| HT and
class 2 HT ]
Hijek
class 3 Ratio Ratio
class 4 Product Product
GREG and
class 5
PEML
class 6 ZHT
class 7 Hajek
GREG and
class 8
PEML

class 9 RHC

! The HT and the Héjek estimators coincide under SRSWOR.
2 The HT, the ratio and the product estimators coincide under HE7PS
sampling designs.

Remark 2.1.1. It is to be noted that if Assumptions 2.1.2-2.1.4 hold, and 2.1.1 holds with A=0,
then in Table 2.3, class 8 is merged with class 5, and class 9 is merged with class 6. For details,

see Section 2.6.

Next, suppose that Wi:Vg(E)hzT fori=1,..., N, W:Ei]\il Wi /N, Spw= 21]11 W; X;/N —
WX, 82=N w2/N W, §2=3N X2/N — X° and ¢=X — (n/N) YN, X2/NX.

Now, we state the following theorem.

Theorem 2.1.3. Suppose that the assumptions of Theorems 2.1.1 and 2.1.2 hold. Then, Table
2.4 gives the expressions of asymptotic MSEs, A%, e ,AS, of estimators in asymptotic-MSE

equivalence classes 1, ...,9 in Table 2.3, respectively.

Remark 2.1.2. It can be shown in a straightforward way from Table 2.4 that A3 < A? for i=2,3
and 4. Thus, both the plug-in estimators of g(h) that are based on the GREG and the PEML
estimators are asymptotically as good as, if not better than, the plug-in estimators based on

the HT (which coincides with the Hdjek estimator), the ratio and the product estimators under
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SRSWOR, and the plug-in estimators based on the HT, the Hdjek, the ratio and the product

estimators under LMS sampling design.

TABLE 2.4: Asymptotic variances of estimators for g(h) (note that for simplifying notations,
the subscript v is dropped from the expressions on which limits are taken).

A%:(l - )‘) Vh—g)lo (SZ) - (wa/Sx)Z)
A3=(1-)) lim S2
A3=(1- ) lim (S3 _2WSW/X+ (W/X)? 52)
A3=(1- ) hm (S2 +2W Spu /X + (W/X) )
A3=lim (1/N)Z L (Wi = W = (Saw/S2)(X; — X)) *x
(X/Xi) = (n/N))
Ad=lim (1/N) S, {Wi+ 71X "X ((n/N) SN WX /N — W X) }x
{(X/X;) = (n/N)}
Aj= lim (1/N) SN (Wi =W + (n/N¢X) X Sp)” x
((Y/X) (n/N)) _
A= lim ny(X/N) 0, (Wi = W = (Sew/S2) (X —-X))°/X;
Ag=lim ny(X/N) S, W2/ X, - W)

2
T
2
T

Let us now consider some examples of g(h) in Table 2.5 below. Conclusions of Theorems

TABLE 2.5: Examples of g(h).

Parameter | d | p h g
Mean 1|1 h(y)=y g(s)=s
Variance | 1 | 2 h(y)=(y?,y) g(s1,82)=s1 — $3
Correlation i h(z1, z2)=(21, 22, | 9(s1, S2, S3, S4, S5)=(S5 — 5152)/
coefficient 22,22, 2129) ((s3 — 57)(s4 — 53))1/2
Regression 5| 4 h(z1, z2)=(z1, 22, g(s1, 2, $3, S4, S5)=
coefficient 23, 2129) (54 — 5182)/(s3 — s3)

2.1.1-2.1.3, and Remarks 2.1.1 and 2.1.2 hold for all of the above parameters. Here, we recall
from the 5" paragraph in the beginning of this chapter that for the variance, the correlation
coefficient and the regression coefficient, we consider only the plug-in estimators that are based

on the Héjek and the PEML estimators.
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2.2. Comparison of estimators under superpopulation models

In this section, we derive asymptotically efficient estimators for the mean, the variance, the
correlation coefficient and the regression coefficient under superpopulations satisfying linear
regression models. Earlier, [64] [58], [2], [1] and [24] used the linear relationship between
the Y;’s and the X;’s for comparing different estimators of the mean. However, they did not
use any probability distribution for the (Y;, X;)’s. Subsequently, [65], [36], [19], [7], [63], etc.
considered the linear relationship between the Y;’s and the X;’s and a probability distribution
for the (Y;, X;)’s for constructing different estimators and studying their behavior. However,
the problem of finding asymptotically the most efficient estimator for the mean among a large
class of estimators as considered in this chapter was not done earlier in the literature. Also, large
sample comparisons of the plug-in estimators of the variance, the correlation coefficient and
the regression coefficient considered in this chapter were not carried out in the earlier literature.
As mentioned in the introduction, let us assume that {(Y;, X;) : 1 < ¢ < N} are i.i.d. random
vectors defined on a probability space (2, F, P). Without any loss of generality, for convenience,
we take 02=Fp(X; — Fp(X;))? =1. This might require rescaling the variable x. Here, Fp denotes
the expectation with respect to the probability measure P. Recall that the population values
X1,..., Xy are used to implement some of the sampling designs like LMS, RHC, HExPS, etc.
In such a case, we consider a function P(s,w) on S x € so that P(s, ) is a random variable on
Q) foreach s € S, and P(-,w) is a probability distribution on S for each w € Q2 (see [7]). Note
that P(s,w) is the sampling design for any fixed w in this case. Then, the A?’s in Table 2.4 can
be expressed in terms of superpopulation moments of (h(Y;), X;) by strong law of large numbers
(SLLN). In that case, we can easily compare different classes of estimators in Table 2.3 under

linear models. Let us first state the following assumption on superpopulation distribution P.

Assumption 2.2.1. X; < b a.s. [P] for some b > 0, Ep(X;)™? < oo, and maxi<;<n X;/
minj<;<y X;=0(1) as v — oo a.s. [P|. Also, the support of the distribution of (h(Y;), X;) is

not a subset of a hyperplane in RP+1,

The condition, X; < b a.s. [P] for some b > 0, in Assumption 2.2.1 and Assumption 2.1.1
along with 0 < A < Ep(X;)/b ensure that n max;<;<n X;/ Zf\il X; < 1 for all sufficiently
large v a.s. [IP], which is required for implementing a 7PS sampling design. On the other hand,
the condition, maxj<;<y X;/ minj<;<ny X; =O(1) as v — oo a.s. [P], in Assumption 2.2.1
implies that Assumption 2.1.3 holds a.s. [P]. Further, Assumption 2.2.1 ensures that Assumption

2.1.5 holds a.s. [P] (see Lemma 2.7.3 in Section 2.7). Assumption 2.2.1 also ensures that



18 Chapter 2. A comparison of estimators of mean and its functions in finite populations

Assumption 2.1.4 holds under LMS and any 7PS sampling designs a.s. [P] (see Lemma 2.7.3 in
Section 2.7).

Let us first consider the case, when g(h) is the mean of y (see the 2"¢ row in Table 2.5)
Further, suppose that Y;=a + 8X; + ¢; for a, 8 € R and i=1,..., N, where {¢;} | are i.i.d.
random variables and are independent of {X;}Y; with Ep(€;)=0 and Fp(¢;)* < co. Then, we

have the following theorem.

Theorem 2.2.1. Suppose that Assumption 2.1.1 holds with 0 < X\ < Ep(X;)/b, and Assumptions
2.1.6 and 2.2.1 hold. Then, a.s. [P], the PEML estimator under SRSWOR as well as LMS sampling
design has the lowest asymptotic MSE among all the estimators of the population mean under

different sampling designs considered in this chapter.

Remark 2.2.1. Note that for SRSWOR, the PEML estimator of the population mean has the
lowest asymptotic MSE among all the estimators considered in this chapter a.s. [P], when
Assumption 2.1.1 holds with 0 < X < 1, and Assumptions 2.1.6 and 2.2.1 hold (see the proof of
Theorem 2.2.1).

Theorem 2.2.2. Suppose that Assumption 2.1.1 holds with 0 < X\ < Ep(X;)/b, and Assumptions
2.1.6 and 2.2.1 hold. Then, a.s. [P], the performance of the PEML estimator of the population
mean under RHC and any HETPS sampling designs, which use auxiliary information is worse

than its performance under SRSWOR.

Recall from the 5" paragraph in the beginning of this chapter that for the variance, the
correlation coefficient and the regression coefficient, we compare only those equivalence classes,
which contain the plug-in estimators based on the Hajek and the PEML estimators. We first state

the following assumption.

Assumption 2.2.2. & > 2max{uy, p—1/(pp1p—1 — 1)}, where {=ps — popuy is the covariance
between X? and X;, and pj=Ep(X;)’, j=—1,1,2,3.

The above assumption is used to prove part (ii) in each of Theorems 2.2.3 and 2.2.4. This
condition holds when the X;’s follow well-known distributions like Gamma (with shape parameter
value larger than 1 and any scale parameter value), Beta (with the second shape parameter value
greater than the first shape parameter value and the first shape parameter value larger than 1),
Pareto (with shape parameter value lying in the interval (3, (5++1/17)/2) and any scale parameter

value), Log-normal (with any parameter value) and Weibull (with shape parameter value lying in
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the interval (1, 3.6) and any scale parameter value). Now, consider the case, when g(h) is the
variance of y (see the 374 row in Table 2.5). Recall the linear model Y;=a + 8X; + ¢; from above
and assume that Ep(e;)® < oo. Then, we have the following theorem. Now, consider the case,
when g(h) is the variance of y, i.e., d=1, p=2, h(y)=(y, y*), and g(s1, s2)=s2 — s2. Recall the
linear model Y;=a + BX; + ¢; from above and assume that Ep(e;)® < oo. Then, we have the

following theorem.

Theorem 2.2.3. (i) Let us first consider SRSWOR and LMS sampling design and suppose that
Assumptions 2.1.1 and 2.2.1 hold. Then, a.s. [P, the plug-in estimator of the population variance
based on the PEML estimator has the lowest asymptotic MSE among all the estimators considered
in this chapter.

(ii) Next consider any HETPS sampling design and suppose that Assumption 2.1.1 holds with
0 < X < Ep(X;)/b, and Assumptions 2.2.1 and 2.2.2 hold. Then, a.s. [P|, the plug-in estimator
of the population variance based on the Hdjek estimator has the lowest asymptotic MSE among

all the estimators considered in this chapter.

Next, suppose that y=(z1,22) € R? and consider the case, when g(h) is the correlation

4th

coefficient between z; and 2o (see the row in Table 2.5). Let us also consider the case, when

g(h) is the regression coefficient of z; on 22 (see the

Yi=a + BX; + €; for Yi=(Z1;, Z2i), a, B € R? and i=1, ..., N, where {¢;})¥, are i.i.d. random

5" row in Table 2.5). Further, suppose that

vectors in R? independent of {X;}Y , with Ep(¢;)=0 and Ep||¢;||® < co. Then, we have the

following theorem.

Theorem 2.2.4. (i) Let us first consider SRSWOR and LMS sampling design and suppose that
Assumptions 2.1.1 and 2.2.1 hold. Then, a.s. [P, the plug-in estimator of each of the correlation
and the regression coefficients in the population based on the PEML estimator has the lowest
asymptotic MSE among all the estimators considered in this chapter.

(ii) Next consider any HETPS sampling design and suppose that Assumption 2.1.1 holds with
0 < X\ < Ep(X;)/b, and Assumptions 2.2.1 and 2.2.2 hold. Then, a.s. [P], the plug-in estimator
of each of the above parameters based on the Hdjek estimator has the lowest asymptotic MSE

among all the estimators considered in this chapter.
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2.3. Data analysis

In this section, we intend to carry out an empirical comparison of the estimators of the mean, the
variance, the correlation coefficient and the regression coefficient, which are discussed in this
chapter, based on both real and synthetic data. Recall that for the above parameters, we have
considered several estimators and sampling designs, and conducted a theoretical comparison
of those estimators in Sections 2.1 and 2.2. For empirical comparison, we exclude some of the
estimators considered in theoretical comparison so that the results of the comparison become

concise and comprehensive. The reasons for excluding those estimators are given below.

(i) Since the GREG estimator is well-known to be asymptotically better than the HT, the ratio
and the product estimators under SRSWOR (see [24]), we exclude these latter estimators

under SRSWOR.

(ii) Since the MSEs of the estimators under LMS sampling design become very close to the
MSE:s of the same estimators under SRSWOR as expected from Theorem 2.1.1, we do not
report these results under LMS sampling design. Moreover, SRSWOR is a simpler and

more commonly used sampling design than LMS sampling design.

Thus we consider the estimators mentioned in Table 2.6 below for the empirical comparison.

Recall from Table 2.2 that the HT, the ratio and the product estimators of the mean coincide

TABLE 2.6: Estimators considered for the empirical comparison.

Parameters Estimators
GREG and PEML estimators under SRS-
WOR; HT, Héjek, GREG and PEML
Mean estimators under RS sampling design;
and RHC and GREG estimators under
RHC sampling design
Variance, correlation Obtained by plugging in Hijek and PEML
coefficient and regression | estimators under each of SRSWOR and'RS
coefficient sampling design, and PEML estimator
under RHC sampling design

3 We consider RS sampling design since it is a HE7PS sampling design,
and it is easier to implement than other HE7PS sampling designs.

under any HE7PS sampling design. We draw /=1000 samples each of sizes n=75, 100 and 125

using sampling designs mentioned in Table 2.6. We use the R software for drawing samples as
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well as computing different estimators. For RS sampling design, we use the ‘pps’ package in R,
and for the PEML estimator, we use R codes in [87]. Two estimators g(ﬁl) and g(ﬁg) of g(h)
under sampling designs P (s) and P»(s), respectively, are compared empirically by means of the

relative efficiency defined as
RE(g(h1), Prlg(h2), P2) = MSEp,(g(h2))/MSEp, (9(h)),

where M SEp, (g ( 3))=I 121 1(g ( 1) — g(ho))? is the empirical MSE ofg(h ) under P;(s),

j7=1, 2. Here, h]l is the estimate of & based on the j estimator and the [*"

sample, and g(hy) is
the true value of the prameter g(h), j=1,2,1=1,..., 1. g(ﬁl) under P (s) will be more efficient

than g(hi2) under Ps(s) if RE(g(h1), Pilg(h2), Po) > 1.

Next, for each of the parameters considered in this section, we compare average lengths
of asymptotically 95% confidence intervals (CIs) constructed based on several estimators used
in this section. In order to construct asymptotically 95% CIs, we need an estimator of the
asymptotic MSE of \/ﬁ(g(ﬁ) — g(h)). If we consider SRSWOR or RS sampling design, it
follows from the proofs of Theorems 2.1.1 and 2.1.2 that the asymptotic MSE of \/ﬁ(g(ﬁ) -
g(h)) is A2=lim, oo nN2Vg(R) N [ (Vi — Tym) T (Vi — Tym) (7t — 1)Vg(R)T, where
Ty= ZZ L Vi(l—m;)/ Z v, mi(1—m;). Moreover, V; is h; or h;—hor hy—h— S, (X;— X)/S?
if h is h HT O h H or h peMmL (as well as hGRgg) with d(i, s)=(N;) "1, respectively. Recall

from the paragraph following Assumption 2.1.3 that Sy,=5"~ | X;h;/N — X h. Following the

idea of [16], we estimate A% by

A} =nN"2Vg(h) Y (Vi = Tym)" (Vi = Tymi) (' — D)m; 'Vg(h)T, 2.3.1)
1€8
where T, 2168 (it = 1)) e (1 = m), ﬁ:ﬁHT in the case of the mean, the variance

and the regression coefficient, and ﬁ:ﬁH in the case of the correlation coefficient. Here, \72-
is h; or h; — ﬁHT or h; — ﬁHT - S'zh,l(Xi - ?HT)/SQ%1 ifﬁ is ﬁHT or ﬁH or ﬁpEML (as
well as ﬁGREg) with d(i,s)=(Nm;)~!. Further, S'xh,ineS(NTrz‘)_lXihi — ?HTﬁHT and
82 1= e (Nmy) 1 X7 — ?ZT We estimate h in Vg(h) by Ty in the case of the mean, the
variance and the regression coefficient because ﬁHT is an unbiased estimator and it is easier to
compute than the other estimators of /& considered in this chapter. On the other hand, different
estimators of the correlation coefficient that are considered in this chapter may become undefined

5th

if we estimate h by any estimator other than hy and hpgyr (see the paragraph in the
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beginning of this chapter). In this case, we choose hj because it is easier to compute than

hpEML-

Next, if we consider RHC sampling design, it follows from the proof of Theorem 2.1.2
that the asymptotic MSE of v/n(g(h) — g(ﬁ)) is A2=lim, oo nyXN~'Vg(h) Zi]il(Vi -
X,V/X)T(V, - X;V/X) X, 1Vg(h)T, where v and V are as in the paragraph following As-
sumption 2.1.3. Moreover, V; is h; or h; — h — Syn(X; — X)/S? it b is ﬁRHC or ﬁpEML (as
well as ﬁg rEG) With d(i, s)=(N X;) "G}, respectively. Here, G; is the total of the x values of

that randomly formed group from which the i** population unit is selected in the sample by RHC

sampling design (cf. [20]). We estimate A2 by

A3 =y XN"'Vg(h) Y (Vi — X,V rie/X) " x
i€s (2.3.2)

~

(Vi — XiVrue/X)(GiX;2)Vg(h)T,

where éRHC:ZiES(N Xi)*lGiVi, ﬁ:ﬁRHC in the case of the mean, the variance and the
regression coefficient, and ﬁ:ﬁp ey 1In the case of the correlation coefficient. Here, Vz is
h; or h; — ﬁRHc — th’Q(XZ' — Y)/S’gQ ifﬁ is ﬁRHC or ﬁpEML (as well as ﬁGREg) with
d(i, s)=(N X;)~'G;. Further, S,,0=Y;c, N~'Gihs — X hge and $2,=3,c, N7'G; X; —
X?. In the case of the mean, the variance and the regression coefficient, we estimate i in Vg(h)
by ﬁR gc for the same reason as discussed in the preceding paragraph, where we discuss the
estimation of / by ﬁHT under SRSWOR and RS sampling design. On the other hand, in the case
of the correlation coefficient, we estimate A in Vg(ﬁ) by ﬁp gy under RHC sampling design so

that the estimator of the correlation coefficient appeared in the expression of Vg(h) in this case

becomes well defined.

We draw /=1000 samples each of sizes n=75, 100 and 125 using sampling designs mentioned
in Table 2.6. Then, for each of the parameters, the sampling designs and the estimators mentioned
in Table 2.6, we construct I many asymptotically 95% CIs based on these samples and compute

the average and the standard deviation (s.d.) of their lengths.

2.3.1 Analysis based on synthetic data

In this section, we consider the population values {(Y;, X;) : 1 <i < N} on (y, x) generated
from a linear model as follows. We choose N=5000 and generate the X;’s from a gamma

distribution with mean 1000 and s.d. 200. Then, Y; is generated from the linear model Y;=500 +
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Xi+e; fori=1, ..., N, where ¢; is generated independently of { X Z},fil from a normal distribution
with mean 0 and s.d. 100. We also generate the population values {(Y;, X;) : 1 < ¢ < N} from
a linear model, when y=(z1, 22) is a bivariate study variable. The population values {X;} , are
generated in the same way as in the earlier case. Then, Y;=(Z1;, Z2;) is generated from the linear
model Zj;=a; + X; + €j; fori=1,..., N, where a;=500 and co=1000. The €1;’s are generated
independently of the X;’s from a normal distribution with mean 0 and s.d. 100, and the ey;’s are
generated independently of the X;’s and the €1;’s from a normal distribution with mean 0 and s.d.
200. We consider the estimation of the mean and the variance of y for the first data set and the

correlation and the regression coefficients between z; and zo for the second data set.

The results of the empirical comparison based on synthetic data are summarized as follows.
For each of the mean, the variance, the correlation coefficient and the regression coefficient, the
plug-in estimator based on the PEML estimator under SRSWOR turns out to be more efficient
than any other estimator under any other sampling design (see Tables 2.7-2.11) considered in
Table 2.6 when compared in terms of relative efficiencies. Also, for each of the above parameters,
asymptotically 95% CI based on the PEML estimator under SRSWOR has the least average
length (see Tables 2.12-2.16). Thus the empirical results stated here corroborate the theoretical
results stated in Theorems 2.2.1-2.2.4.

TABLE 2.7: Relative efficiencies of estimators for mean of y.

Sample size _ _ _
Relative efficiency =75 n=100 n=125

RE(Y pparr, SRSWOR | Yerpc, SRSWOR) | 1.049985 | 1.020252 | 1.035038
RE(Y prasz, SRSWOR | Y7, RS) 4.870516 | 5.370899 | 4.987635
RE(Y prasz, SRSWOR | Y 7, RS ) 2.026734 | 2.061607 | 2.027386
RE(Y pparr, SRSWOR | Vppar, RS) | 1.144439 | 1.124697 | 1.170224
RE(Y pparr, SRSWOR | Yerpe, RS) | 1.144455 | 1.124975 | 1.170267
RE(Y pgarr, SRSWOR| Y ppro, RHC) | 2.022378 | 1.978623 | 2.143015
RE(Y prarz, SRSWOR | Y pparr, RHC) | 1.089837 | 1.030332 | 1.094067

RE(?pEML, SRSWOR | ?GREg, RHC) 1.089853 | 1.030587 | 1.094108
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TABLE 2.8: Relative efficiencies of estimators for variance of y. Recall from Table 2.5 in
Section 2.1 that for variance of y, h(y)=(y?,y) and g(s1, s2)=51 — 53.

Sample size _ _
Relative efficiency n=75 | n=100 | n=125

RE(g(hprars), SRSWOR | g(hzr), SRSWOR) | 1.0926 | 1.0848 | 1.0419
RE(g(hpparr). SRSWOR | g ), RS) 1.0367 | 1.0435 | 1.0226
RE(g(hpparr), SRSWOR | g(hppasr), RS) | 1.15067 | 1.136 | 1.1635

RE(g(hprars), SRSWOR | g(hpparr), RHC) | 1.141 | 1.1849 | 1.1631

TABLE 2.9: Relative efficiencies of estimators for correlation coefficient between z; and
z9. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between z; and zo,

h(z1,22)=(21, 22, 22, 23, z122) and g(s1, S2, 83, 84, 85)=(55 — s152)/((53 — 8%)(54 — s%))l/Q.

Sample size _ _
Relative efficiency n=75 | n=100 | n=125

RE(g(hprarr), SRSWOR | g(hir), SRSWOR) | 1.0304 | 1.0274 | 1.0385
RE(g(hprars), SRSWOR | g(hy), RS) | 1.0307 | 1.0838 | 1.0515
RE(g(hpgar), SRSWOR | g(hpparr), RS) | 1.0573 | 1.1862 | 1.1081

RE(g(hppar), SRSWOR | g(hpgar), RHC) | 1.0847 | 1.1459 | 1.0911

TABLE 2.10: Relative efficiencies of estimators for regression coefficient of z; on
z2. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z; on zo,

h(z1, 22)=(21, 22, 23, 21 22) and g(s1, s2, s3, 54)=(s4 — $152) /(83 — 3).

Sample size _ _ _
Relative efficiency n=r5 | n=100 | =125

RE(g(hprars), SRSWOR | g(fimr), SRSWOR) | 1.0389 | 1.0473 | 1.0218
RE(g(hpparr), SRSWOR | g(hr), RS) | 1.0589 | 1.0829 | 1.0827
RE(g(ﬁpEML), SRSWOR | g(ﬁpEML), RS) | 1.1219 | 1.1334 | 1.2137

RE(g(hpparz), SRSWOR | g(hpgar), RHC) | 1.2037 | 1.1307 | 1.1399
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TABLE 2.11: Relative efficiencies of estimators for regression coefficient of z5 on
z1. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z, on zp,
h(Zh Z2)=(227 21, Z%,lez) and 9(81, 52,83, 84)=(54 - 8152)/(53 - S%)

Sample size
Relative efficiency

n=75 | n=100 | n=125

RE(g(hprarz), SRSWOR | g(hizr), SRSWOR)
RE(g(hpenr), SRSWOR | g(hg), RS)
RE(g(hpenr), SRSWOR | g(hpgar). RS)

RE(g(hpentr), SRSWOR | g(hpenr), RHC)

1.0498 | 1.04 | 1.0301

1.0655 | 1.0652 | 1.0548

1.1073 | 1.1153 | 1.1135

1.0762 | 1.0905 | 1.1108

TABLE 2.12: Average and s.d. of lengths of asymptotically 95% CIs for mean of y.

Average length
(s.d.)

Sample size
Estimator an
sampling design
based on which CI is constructed

n=75 n=100 n=125

Y 1, SRSWOR
4Y pparn, SRSWOR
Y 47, RS
Y, RS
4?PEML, RS
Y nic, RHC

4?PEML’ RHC

536.821 | 538.177 | 539.218
(11.357) | (9.0784) | (6.8211)
44.824 | 38.81 | 34.648
(3.7002) | (2.7727) | (2.2055)
689.123 | 597.999 | 535.951
(7.8452) | (5.7176) | (4.8422)
102.611 | 87.915 | 59.98307
(10.969) | (8.453) | (6.5828)
345.956 | 115.944 | 78.711
(654.77) | (265.93) | (1041.2)
848.033 | 624.881 | 541.421
(6.8489) | (4.9609) | (4.0927)
64.573 | 56.531 | 50.601
(715.16) | (275.11) | (651.31)

4 It is to be noted that in the cases of PEML and GREG estimators under any given sampling
design, we have the same asymptotic MSE and hence the same asymptotic CI. Therefore,
the average and the s.d. of lengths of CIs are not reported for the GREG estimator.
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TABLE 2.13: Average and s.d. of lengths of asymptotically 95% CIs for variance of . Recall

from Table 2.5 in Section 2.1 that for variance of y, h(y1)=(y2,y) and g(s1, s2)=s1 — s3.

2

Average length
(s.d.)
Sample size
Estimato
and sampling n=75 n=100 n=125
design based on
which CI is constructed
= 1010775 | 878689.4 | 786228
g(hz), SRSWOR (34245.5) | (26373.9) | (20414.5)
- 29432.4 25929 23422
9(hpemL), SRSWOR (6076.97) | (4441.2) | (3526.8)
- 444594.4 | 434160.7 | 239065
g(hs). RS (44701.7) | (31965.2) | (26739.6)
- 1152403 | 1290084 | 235909.1
g(hpEmL), RS (9083944) | (869339.1) | (1183961)
- 1031407 | 895639 | 801178.9
g(hpemr), RHC (7311193) | (1530759) | (417582.9)

TABLE 2.14: Average and s.d. of lengths of asymptotically 95% CIs for correlation coefficient
between z; and z5. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between

21 and 22, h(21, 22)=(21, 22, 23, 23, 21 22) and g(s1, S2, $3, 84, 85)=(855 — 5152)/((53 — %) (84 —

53))'/2.
Average length
(s.d.)
. Sample size
based on which CI is constructed
- 8.2191 | 8.0909 | 8.0897
9(hrr), SRSWOR (2.429) | (1.889) | (1.449)
s 0.2542 | 0.2575 | 0.2583
g(hpea), SRSWOR (0.0467) | (0.0365) | (0.0294)
- 4.6847 | 3.3135 | 1.3942
9(hm), RS (2.555) | (1.884) | (1.421)
. 5.0473 | 4.3229 | 3.1306
9(hpppr), RS (162.9) | (17.19) | (21.04)
- 8.3174 | 8.3898 | 8.3514
g(hppa), RHC (15.82) | (41.88) | (19.62)
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TABLE 2.15: Average and s.d. of lengths of asymptotically 95% ClIs for regression coefficient
of z; on z2. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z; on 23,

h(z1,22)=(21, 22, 23, 2122) and g(s1, S2, S3, S4)=(54 — s182) /(53 — 53).

Average length
(s.d.)

Sample size
Estimator and
sampling design
based on which CI is constructed

n=75 n=100 n=125

5.9565 | 5.068 | 4.4818
(2.013) | (1.514) | (1.135)
s 0.2596 | 0.2251 | 0.2032
g(hpemr), SRSWOR (0.0429) | (0.0324) | (0.025)
- 3.0488 | 1.469 | 1.1532

g(hzr), SRSWOR

g(hu), RS (2.178) | (1.517) | (1.171)

- 3.6477 | 1.8558 | 1.4023
g(hpeMmL), RS (19.09) | (4.697) | (4.672)
- 6.111 | 5.1324 | 4.6658
g(hpemL), RHC (25.16) | (38.36) | (11.17)

TABLE 2.16: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of z5 on z;. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z; on 21,
h(z1, 22)=(22, 21, 23, 2129) and g(s1, 52, 83, 84)=(54 — 5182) /(53 — 53).

Average length
(s.d.)

Sample size
Estimator an
sampling design
based on which CI is constructed

n=75 n=100 n=125

11.2173 | 9.6463 | 8.5885
(3.238) | (2.418) | (1.877)
04198 | 0.3652 | 0.3307

(0.0661) | (0.0531) | (0.0405)

- 6.7247 | 3.3547 | 1.7421

9(hr). RS (3.546) | (2.539) | (1.921)

11.3373 | 9.988 | 8.7889
(151.9) | (31.83) | (7.405)

19.9049 | 3.5595 | 1.8327
(28.77) | (321.7) | (8.164)

g(hr), SRSWOR

g(hpEar), SRSWOR

g(hpenrL) RS

Q(BPEML), RHC
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2.3.2 Analysis based on real data

In this section, we consider a data set on the village amenities in the state of West Bengal
in India obtained from the Office of the Registrar General & Census Commissioner, India
(https://censusindia.gov.in). Relevant study variables for this data set are described in Table 2.17

below. We consider the following estimation problems for a population consisting of 37478

TABLE 2.17: Description of study variables.

Y1 Number of primary schools in village

y2 | Scheduled castes population size in village

Y3 Number of secondary schools in village

ya | Scheduled tribes population size in village

villages. For these estimation problems, we use the number of people living in village = as the

size variable.

(i) First, we consider the estimation of the mean and the variance of each of y; and y». It can
be shown from the scatter plot and the least square regression line in Figure 2.1 below that
y1 and x have an approximate linear relationship. Also, the correlation coefficient between
y1 and z is 0.72. On the other hand, y2 and = do not seem to have a linear relationship (see

the scatter plot and the least square regression line in Figure 2.2 below).

(ii) Next, we consider the estimation of the correlation and the regression coefficients of y;
and y3 as well as of y and y4. The scatter plot and the least square regression line in
Figure 2.3 below show that y3 does not seem to be dependent on z. Further, we see from
the scatter plot and the least square regression line of 34 and x (see Figure 2.4 below) that

14 and x do not seem to have a linear relationship.

The results of the empirical comparison based on real data are summarized in Table 2.18 below.
For further details see Tables 2.19-2.38 below. The approximate linear relationship between
y1 and zx (see the scatter plot and the least square regression line in Figure 2.1 below) could
be a possible reason why the plug-in estimator based on the PEML estimator under SRSWOR
becomes the most efficient for each of the mean and the variance of y; among all the estimators
under different sampling designs considered in this section. Also, possibly for the same reason,

the plug-in estimators of the correlation and the regression coefficients between y; and y3 based
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on the PEML estimator under SRSWOR become the most efficient among all the estimators

under different sampling designs considered in this section.
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FIGURE 2.1: Scatter plot and least square regression line for variables y; and z.

On the other hand, any of y2, and y4 does not seem to have a linear relationship with x (see the

scatter plots and the least square regression lines in Figures 2.2 and 2.4 below). Possibly, because

of this reason, the plug-in estimators of the parameters related to y2 and y4 based on the PEML

estimator are not able to outperform the the plug-in estimators of those parameters based on the

HT and the Héjek estimators. Next, we observe that there are substantial correlation present

between yo and x (correlation coefficient=0.67), and y4 and x (correlation coefficient=0.25).
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Possibly, because of this, under RS sampling design, which uses the auxiliary information, the
plug-in estimators of the parameters related to ys and y4 based on the HT and the Héjek estimators
become the most efficient among all the estimators under different sampling designs considered

in this section.
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FIGURE 2.2: Scatter plot and least square regression line for variables y5 and x.
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Vvia = Scheduled tribes population size in village
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TABLE 2.18: Most efficient estimators in terms of relative efficiencies (it follows from Tables
2.29-2.38 that asymptotically 95% CIs based on most efficient estimators have least average
lengths).

Parameters Most efficient estimators

The plug-in estimator based on the
the PEML estimator under SRSWOR
Mean of yo The HT estimator under RS sampling design

Mean and variance of y;

. the plug-in estimator based on the Héjek
Variance of ¥ i ) )
estimator under RS sampling design

Correlation and regression | The plug-in estimator based on the PEML
coefficients of y; and y3 estimator under SRSWOR

Correlation and regression The plug-in estimator based on the Hajek

coefficients of yo and yy estimator under RS sampling design

TABLE 2.19: Relative efficiencies of estimators for mean of y;.

Sample size
Relative efficiency =75 n=100 n=125

RE(Y pparr, SRSWOR | Yerpc, SRSWOR) | 1.008215 | 1.005233 | 1.020408

RE(Y prasz, SRSWOR | Y7, RS) 3.503939 | 3.880443 | 4.175886
RE(Y pasr, SRSWOR | Y 7, RS) 1.796937 | 2.182675 | 1.8311
RE(Y prasrz, SRSWOR | Y pparr, RS) 1.20961 | 1.228022 | 1.50233
RE(Y pasr, SRSWOR | Yerpc, RS) 1.21831 | 1.237737 | 1.553863

RE(Y prarz, SRSWOR | Y ppe, RHC) | 3.274031 | 2.059141 | 2.030995
RE(Y prasz, SRSWOR | Y pparr, RHC) | 1.088166 | 1.388563 | 1.51547
RE(Y prarz, SRSWOR | Yrpe, RHC) | 1.097934 | 1.398241 | 1.567545

TABLE 2.20: Relative efficiencies of estimators for variance of y;. Recall from Table 2.5 in
Section 2.1 that for variance of y1, h(y1)=(y3, y1) and g(s1, s2)=s1 — s3.

Sample size _ _ _
Relative efficiency =75 | n=100 | n=125

RE(g(ﬁpEML), SRSWOR | g(ﬁH), SRSWOR) | 1.3294 | 1.2413 | 1.1476
RE(g(hpenr), SRSWOR | g(hy), RS) 2.5303 | 1.6656 | 1.5374
RE(g(hpenr), SRSWOR | g(hpear), RS) | 3.1642 | 2.4051 | 2.5831

A~

RE(g(hprarr), SRSWOR | g(hpparr), RHC) | 2.5499 | 4.7704 | 3.0985
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TABLE 2.21: Relative efficiencies of estimators for mean of ys.

Sample size B B B
Relative efficiency =75 n=100 n=125

RE(Y 7, RS | Y1, RS) 4.367712 | 4.008655 | 4.463214
RE(Y 177, RS | Y pparr, RS) 1.148074 | 1.082488 | 1.088804
RE(Y 17, RS | Yoruc, RS) 1.216958 | 1.115967 | 1.154132
RE(Y g7, RS | YR, RHC) | 1.073138 | 1.03213 | 1.07484

RE(Y 7 RS | Ypgarr, RHC) | 1.230884 | 1.0937 | 1.207308
RE(Y 7, RS | Yorpe, RHC) | 1.304737 | 1.127526 | 1.279746

RE(Y 577, RS | Y piar, SRSWOR) | 2.440441 | 2.305339 | 2.350916

RE(Y g7, RS | Yerpc, SRSWOR) | 2.58687 | 2.376638 | 2.49197

TABLE 2.22: Relative efficiencies of estimators for variance of y,. Recall from Table 2.5 in
Section 2.1 that for variance of y2, h(y2)=(y3,y2) and g(s1, s2)=s1 — s3.

Sample size : _ ~
Relative efficiency n=75 | n=100 | n=125

RE(g(hig), RS | g(hpparr), RS) 11.893 | 6.967 | 34.691
RE(g(hn), RS | g(hpparr), RHC) | 5.0093 | 19.456 | 21.919
RE(g(h), RS | g(hzr), SRSWOR) | 9.8232 | 10.27 | 16.763

RE(g(hz), RS | g(hpgarr), SRSWOR) | 2.4768 | 4.8093 | 6.2264

[>
[>

TABLE 2.23: Relative efficiencies of estimators for correlation coefficient between y; and
y3. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between y; and ys,

h(y1,y3)=(y1, 3, y2, 93, y1ys) and g(s1, Sa, S3, 54, 55)=(55 — 5152)/((53 — 57) (54 — 52)) /2.

Sample size _ _ _
Relative efficiency =75 | n=100 | n=125

RE(¢(hprasr), SRSWOR | g(fir), SRSWOR) | 1.0967 | 1.0369 | 1.0374
RE(¢(hpparr), SRSWOR | g(figr), RS) 1.317 | 1.4831 | 1.2561
RE(g(hpparr), SRSWOR | g(hppas), RS) | 1.9803 | 1.0874 | 1.8441
RE(g(hprar), SRSWOR | g(hpparr), RHC) | 2.0562 | 1.9651 | 1.8541
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TABLE 2.24: Relative efficiencies of estimators for regression coefficient of y; on
ys. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y; on ys,

h(y1,y3)=(y1, 3, Y3, y1y3) and g(s1, 52, 53, s4)=(s4 — s152)/(s3 — 53).

Sample size B B B
Relative efficiency n=75 | n=100 | n=125

RE(g(hpparz). SRSWOR | g(hyr), SRSWOR) | 1.0208 | 1.0504 | 1.0423
RE(g(hprarz), SRSWOR | g(hz),RS) | 1.8046 | 1.2304 | 1.3482

RE(g(hprarr), SRSWOR | g(hppar), RS) | 2.2709 | 1.5949 | 1.854

RE(g(hppaz), SRSWOR | g(hpgarr), RHC) | 1.8719 | 1.5069 | 1.5626

TABLE 2.25: Relative efficiencies of estimators for regression coefficient of ys; on
y1. Recall from Table 2.5 in Section 2.1 that for regression coefficient of ys on v,

h(y1,y3)=(y3, y1,¥3, y1y3) and g(s1, 52, 53, s4)=(s4 — s152)/(s3 — 53).

Sample size B B B
Relative efficiency =75 | n=100 | n=125

RE(g(hprarr), SRSWOR | g(hzr), SRSWOR) | 1.0997 | 1.2329 | 1.1529
RE(g(hprarr), SRSWOR | g(hm),RS) | 1.3948 | 1.3329 | 1.368

RE(g(hprr), SRSWOR | g(hpparr), RS) | 3.6069 | 1.5532 | 1.8035

RE(g(hpgar), SRSWOR | g(hpparr), RHC) | 2.5567 | 1.4867 | 1.5335

TABLE 2.26: Relative efficiencies of estimators for correlation coefficient between y-» and
y4. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between yo and v,

h(y2, ya)=(Y2, Y4, Y3, Y3 y2ya) and g(s1, s2, 53, 54, 85)=(55 — s152)/((s3 — 53) (54 — 53))"/2,

Sample size _ _ _
Relative efficiency =75 | n=100 | n=125

RE(g(hg). RS | g(hppar). RS) | 1448 | 1.696 | 2.027
RE(g(hg), RS | g(hpparr), RHC) | 1.491 | 2.135 | 2.27
RE(g(hz), RS | g(hr), SRSWOR) | 2.39 | 2.521 | 2.849

RE(g(hig), RS | g(hpparr), SRSWOR) | 2.185 | 2.396 | 2.594
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TABLE 2.27: Relative efficiencies of estimators for regression coefficient of y on

ys. Recall from Table 2.5 in Section 2.1 that for regression coefficient of yo on yy,

h(yz, y4)=(y27y47y27y2y4) and 9(81, 52,53, S4)=(84 - 8182)/(83 - S%)

Sample size B B B
Relative efficiency =75 | n=100 | n=125

RE(g(hx),RS | g(hpgerrL), RS) 1.8158 | 2.3771 | 3.2021
RE(g(hg), RS | g(hpgr), RHC) 2.5985 | 2.6002 | 3.4744
RE(g(hy), RS | g(hy), SRSWOR) | 3.3278 | 4.5041 | 6.312

RE(g(hp). RS | g(hpras), SRSWOR) | 2.9788 | 3.9417 | 6.0391

TABLE 2.28: Relative efficiencies of estimators for regression coefficient of y4 on
yo. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y4 on ys,

h(yz; y4)=(y4,y2,y§,y2y4) and 9(517 52, 83, 84)=(S4 - 5182)/(83 - S%)

Sample size B B B
Relative efficiency n=75 | n=100 | n=125

RE(g(hu), RS | g(hppar), RS) | 1.3146 | 1.6055 | 1.937
RE(g(hu), RS | g(hppar), RHC) | 1.652 | 27715 | 2.0362
RE(g(hi), RS | g(hzr), SRSWOR) | 3.8248 | 2.4388 | 3.4371

RE(g(h), RS | g(hprarr), SRSWOR) | 3.1843 | 2.3399 | 3.038

TABLE 2.29: Average and s.d. of lengths of asymptotically 95% CIs for mean of y;.

Average length
(s.d.)

Sample size
Estimator an
sampling design
based on which CI is constructed

n=75 n=100 n=125

0.7233 | 0.7303 | 0.7333
(0.2304) | (0.1885) | (0.1431)
0.3703 | 0.3734 | 0.3847
(0.1608) | (0.1534) | (0.1074)
0.7738 | 0.7735 | 0.8271

Y ;. SRSWOR

4Y ppasr. SRSWOR

Yhur. RS (0.2724) | (1.071) | (0.2001)
N 04345 | 0455 | 0.5414
Yu, RS (0.8312) | (8.807) | (0.5479)
. e 0.6784 | 0.7207 | 0.7896
PEML (0.3945) | (12.176) | (0.2694)

. 0.7415 | 0.7716 | 0.8014
Y ko, RHC (0.4007) | (0.6359) | (0.2931)

. . 04911 | 05078 | 0.5289
peML, RH (0.9865) | (0.4992) | (0.3594)
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TABLE 2.30: Average and s.d. of lengths of asymptotically 95% CIs for variance of ;. Recall
from Table 2.5 in Section 2.1 that for variance of y1, h(y1)=(y?,v1) and g(s1, s2)=51 — s2.
Average length
(s.d.)
Sample size
E;Iﬁg}i‘g dosign n=75 | n=100 | n=125
based on which CI is constructed
S 5.2879 | 4.2111 | 4.4304
g(hs), SRSWOR (8.762) | (9.309) | (6.856)
-~ 2.7519 | 2.9935 | 3.0013
g(hpEML), SRSWOR (7.181) | (8.622) | (5.952)
2~ 3.5121 | 3.1177 | 3.1095
g(hs). RS (1.345) | (11.37) | (10.88)
a 3.7475 | 3.939 3.792
g(hpeMmL), RS (4.041) | (16.14) | (11.08)
S 3.6365 | 3.4972 | 3.4158
9(hpemL), RHC (14.99) | (8.278) | (10.95)
TABLE 2.31: Average and s.d. of lengths of asymptotically 95% CIs for mean of ys.
Average length
(s.d)
Sample size
based on which CI is constructed
~ 312.1 322.48 326.36
Y, SRSWOR (150.08) | (121.86) | (93.707)
iy SRSWOR 243.23 216.42 198.11
PEML: (65.059) | (55.256) | (44.972)
~ 184.98 160.79 144.43
Yur, RS (24.336) | (17.942) | (13.89)
~ 189.49 163.19 145.82
Yu, RS (314.18) | (209.6) | (164.32)
3 RS 343.6 300.14 272.63
PEML: (60.804) | (20.411) | (21.998)
- 277.91 240.09 214.78
Yruc, RHC (16.039) | (12.042) | (9.2784)
3 RHC 279.97 242.43 217.09
PEML> (52.788) | (58.394) | (21.356)
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TABLE 2.32: Average and s.d. of lengths of asymptotically 95% CIs for variance of 3. Recall
from Table 2.5 in Section 2.1 that for variance of ya, h(y2)=(y3, y2) and g(s1, s2)=s1 — s3.

Average length
(s.d.)
Sample size
Estimato
and sampling n=75 n=100 n=125

design based on
which CI is constructed

1498664 | 1588740 | 2418155
(3236118) | (2694726) | (3205532)
- 1035032 | 1077345 | 1002397
g(hpenmr), SRSWOR (1472036) | (1376947) | (1573834)
- 887813.9 | 764055.6 | 684218.5

g(h), SRSWOR

9(hm), RS (464853) | (377760) | (298552)

N 1385778 | 1168689 | 1055339
g(hpEML), RS (1584677) | (1339377) | (1177054)
N 1310413 | 1134532 | 1072290
g(hppar), RHC (1473379) | (1384754) | (1472584)

TABLE 2.33: Average and s.d. of lengths of asymptotically 95% ClIs for correlation coefficient
between y; and ys3. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between
y1 and ys, h(y1, y3)=(y1, Y3, 1, ¥3, y1ys) and g(s1, s2, 53, 54, 55)=(55 — 5152) /(53— 57 ) (54—

s3)?

Average length
(s.d.)

Sample size
Estimator and
sampling design
based on which CI is constructed

n=75 n=100 n=125

0.3682 | 0.3753 | 0.3893
(0.1138) | (0.1039) | (0.0936)
0.2747 | 0.2881 | 0.2884
(0.1095) | (0.1008) | (0.0879)
- 0.3351 | 0.3453 | 0.3587

g(hir), SRSWOR

g(ﬁpEML), SRSWOR

g(h1). RS (0.1652) | (0.0938) | (0.1034)
N 592.48 | 26044 | 469.36
g(hpeyr). RS (0.2859) | (0.3441) | (2.738)

. 3838.4 | 27405 | 2238.3
g(hpeuL). RHC (1.2271) | (0.1467) | (0.1104)
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TABLE 2.34: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y; on y3. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y; on ys,

h(y1,y3)=(y1, Y3, Y3, y1y3) and g(s1, s2, 53, s4)=(s4 — s152)/(s3 — 53).

Average length
(s.d.)
Sample size
f;;g‘lj‘g dosign n=75 | n=100 | n=125
based on which CI is constructed

= 1.6443 | 1.781 | 1.8077
9(hw), SRSWOR (1.223) | (1.127) | (0.8849)

- 1.3984 | 1.4239 | 1.491
9(hpEML), SRSWOR (0.8867) | (0.7898) | (0.6645)

- 1.4072 | 1.5299 | 1.5449
9(hm), RS (0.6463) | (0.4833) | (0.4883)

- 3240.4 | 49384 | 1705.3

g(hpEMmL), RS (4.3202) | (1.659) | (2.017)
= 50701.7 | 17291.2 | 22245.7

g(hpemr), RHC (2.659) | (3.93) (1.51)

TABLE 2.35: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y3 on y;. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y3 on vy,

h(y1,y3)=(ys, y1, ¥, y1ys) and g(s1, s2, 53, 54)=(54 — s152) /(83 — 3).

Average length
(s.d.)
Sample size
f;;‘;ﬁ‘g dosian n=75 | n=100 | n=125
based on which CI is constructed

= 0.1387 | 0.1449 | 0.1508
g(hir), SRSWOR (0.001) | (0.072) | (0.0616)

- 0.1015 | 0.0994 | 0.1002
g(hpemr), SRSWOR (0.0868) | (0.0692) | (0.0593)

= 0.1305 | 0.1379 | 0.1447
g(hs). RS (0.0919) | (0.0438) | (0.0357)

- 113.4 | 263.23 | 78.782
9(hpEML), RS (0.1712) | (0.0725) | (0.0545)

- 798.95 | 490.91 | 286.92

g(hpemL), RHC (0.6227) | (0.0862) | (0.1107)
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TABLE 2.36: Average and s.d. of lengths of asymptotically 95% ClIs for correlation coefficient
between y, and y4. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between

yo and ya, h(y2, ya)=(y2, ya, Y3, Y3, y2va) an;l)é;g/s%, 52,83, 54, 55)=(55 —5152) /(53— 57) (84—
S5 .
Average length
(s.d.)
Sample size
based on which CI is constructed
~ 0.3428 0.359 0.3821
g(hs), SRSWOR (0.191) | (0.1783) | (0.1844)
-~ 0.3088 0.3279 0.3537
g(hpeML), SRSWOR (0.1886) | (0.171) | (0.1773)
2 0.2924 0.2926 0.298
g(hi). RS (0.1561) | (0.1491) | (0.1568)
S 833.87 300.13 242.51
g(hpEmL), RS (0.5226) | (0.4406) | (0.8658)
S 7593.1 3526.1 2390.9
g(hpemr), RHC (0.4385) | (0.4869) | (0.2661)

TABLE 2.37: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y2 on y4. Recall from Table 2.5 in Section 2.1 that for regression coefficient of ys on gy,

h(y2, y4)=(y2, ya, yiv y2y4) and g(s1, s2, 53, 54)=(54 — 5152) /(53 — 5%)-

Average length

(s.d.)
Sample size
fgfg‘rﬁ'j‘g design n=75 | n=100 | n=125
based on which CI is constructed

- 11188 | L1117 | 1.1566

g(hs), SRSWOR (1.251) | (1.061) | (1.171)

N 0.9865 | 1.0005 | 1.0534
9(hpEu1), SRSWOR (0.9935) | (0.8784) | (0.8758)

. 0.8575 | 0.847 | 0.8427
g(h1), RS (0.6472) | (0.5219) | (0.4524)

N 1583.8 | 1647.2 | 1533.9

g(hpEmL), RS (1.733) | (1.822) | (1.302)

. 24127.4 | 10798.8 | 5076.1

g(hpemL), RHC (2.05) | (1.468) | (2.385)




2.4. Comparison of estimators with their bias-corrected versions 41

TABLE 2.38: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y4 on y». Recall from Table 2.5 in Section 2.1 that for regression coefficient of y4 on ys,

h(y2, ya)=(ya, y2, Y3, y2ya) and g(s1, s2, 53, s4)=(s4 — s152)/(s3 — 53).

Average length
(s.d.)

Sample size
Estimator and
sampling design
based on which CI is constructed

n=75 n=100 n=125

0.1607 | 0.1727 | 0.1682
(0.2236) | (0.2175) | (0.1744)
0.1456 | 0.1586 | 0.1577
(0.2018) | (0.1868) | (0.1616)
- 0.1219 | 0.1232 | 0.1273

g(hr), SRSWOR

g(hpEas), SRSWOR

9(hu). RS (0.0798) | (0.0663) | (0.0615)

. 236.81 | 108.3 | 85.466

g(hpEmL), RS (0.3529) | (0.1879) | (0.3227)
N 1568.1 | 22151 | 659.3

g(hpemL), RHC (0.4045) | (0.197) | (0.1416)

2.4. Comparison of estimators with their bias-corrected versions

In this section, we empirically compare the biased estimators considered in Table 2.6 in Section
2.3 with their bias-corrected versions based on both synthetic and real data used in Section 2.3.
Following the idea in [80], we compute the bias-corrected jackknife estimator corresponding
to each of the biased estimators considered in Table 2.6. For the mean, we compute the bias-
corrected jackknife estimators corresponding to the GREG and the PEML estimators under
each of SRSWOR, RS and RHC sampling designs, and the Hajek estimator under RS sampling
design. On the other hand, for each of the variance, the correlation coefficient and the regression
coefficient, we consider the bias-corrected jackknife estimators corresponding to the estimators
that are obtained by plugging in the H4jek and the PEML estimators under each of SRSWOR

and RS sampling design, and the PEML estimator under RHC sampling design.

Suppose that s is a sample of size n drawn using one of the sampling designs given in

Table 2.6. Further, suppose that s_; is the subset of s, which excludes the i*” unit for any

A~

given i € s. Now, for any i € s, let us denote the estimator g(h) constructed based on s_;
by g(h_;). Then, we compute the bias-corrected jackknife estimator of g(h) corresponding

to g(h) as ng(h) — (n — 1) >, g(ﬁ_l)/n (cf. [80]). Recall from Section 2.3 that we draw

I=1000 samples each of sizes n=75, 100 and 125 from some synthetic as well as real data sets
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using sampling designs mentioned in Table 2.6 and compute MSEs of the estimators considered
in Table 2.6 based on these samples. Here, we compute MSEs of the above-mentioned bias-
corrected jackknife estimators using the same procedure and compare them with the original
biased estimators in terms of MSE. We observe from the above analyses that for all the parameters
considered in Section 2.3, the bias-corrected jackknife estimators become worse than the original
biased estimators in the cases of both the synthetic and the real data (see Tables 2.39-2.53
below). Despite reducing the biases of the original biased estimators, bias-correction increases
the variances of these estimators significantly. This is the reason why the bias-corrected jackknife
estimators have larger MSEs than the original biased estimators in the cases of both the synthetic
and the real data.

TABLE 2.39: Relative efficiencies of estimators for mean of y in the case of synthetic data.

Sample size _ _ _
Relative efficiency =75 n=100 n=125

RE(Y prarr, SRSWOR | 5Y popparr. SRSWOR) | 1.050461 | 1.021275 | 1.038282

RE(Y ¢ric, SRSWOR | 3Y socric, SRSWOR) | 1.002649 | 1.003156 | 1.005397

RE(Y 1, RS | 3Y 5cr. RS) 1.036379 | 1.006945 | 1.12841

RE(Y pparr, RS | Y soprais, RS) 1.016953 | 1.013402 | 1.011762
RE(Y ¢rEcs RS | Y pecrEc. RS) 1.016692 | 1.011597 | 1.011493
RE(Y ppair, RHC | 3Y pepparr, RHC) 1.01914 | 1.02292 | 1.024689
RE(Y ¢ric, RHC | 3Y pocric, RHO) 1.011583 | 1.052311 | 1.023058

> BCPEML=Bias-corrected PEML estimator, BCH=Bias-corrected Hdjek estimator, and
BCGREG=Bias-corrected GREG estimator.

TABLE 2.40: Relative efficiencies of estimators for variance of y in the case of synthetic data.
Recall from Table 2.5 in Section 2.1 that for variance of y, h(y)=(y?, y) and g(s1, s2)=s1 — s3.

Sample size B ~ ~
Relative efficiency n=75 | n=100 | n=125

RE(g(hprarr), SRSWOR | OBC g(iprasz), SRSWOR) | 1.0208 | 1.01 | 1.0669
RE(g(hir), SRSWOR | SBC g(hz7), SRSWOR) 38.642 | 50.009 | 65.398
RE(g(hx), RS | °BC g(hxr), RS) 1.0029 | 1.0117 | 1.074
RE(g(hprarr), RS | SBC g(hpga), RS) 1.0112 | 1.023 | 1.0377
RE(g(hprars), RHC | °BC g(hppars), RHC) 1.0141 | 1.015 | 1.0126

6 BC=Bias-corrected.
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TABLE 2.41: Relative efficiencies of estimators for correlation coefficient between z; and 25 in
the case of synthetic data. Recall from Table 2.5 in Section 2.1 that for correlation coefficient
between 27 and zo, h(z1, 20)=(21, 22, 27, 23, 2122) and g(s1, 82, 83, 84, 85)=(85 — 5152)/((83 —

s1)(sa — s3))1/2.

Sample size

Relative efficiency n=75 | n=100 | n=125
RE(g(hpearr). SRSWOR | BC g(hpearr), SRSWOR) | 89.989 | 95.209 | 123.89
RE(g(hir), SRSWOR | SBC g(hy;), SRSWOR) 90.407 | 96.79 | 141.989
RE(g(hig), RS | SBC g(hzr), RS) 90.037 | 102.914 | 152.993
RE(g(hprars)s RS | $BC g(hpparr), RS) 95.68 | 98.758 | 158.832
RE(g(hpr), RHC | °BC g(hpgasz ), RHC) 86.27 | 120.582 | 125.374

TABLE 2.42: Relative efficiencies of estimators for regression coefficient of z; on 25 in the case
of synthetic data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z; on 25,
h(z1, 22)=(21, 22, 23, 2129) and g(s1, 52, 83, 84)=(54 — 5182) /(53 — 53).

Sample size

Relative efficiency n=75 n=100 n=125
RE(g(hpears), SRSWOR [ BC g(hpparz). SRSWOR) | 80.64 | 91.707 | 124.476
RE(g(Trr), SRSWOR | ®BC g(furr), SRSWOR) 79.298 | 89.105 | 123.042
RE(¢(higs). RS | °BC g(Tur), RS) 85.97 | 96.22 | 135.449
RE(g(hpear). RS | OBC g(hppa). RS) 83.331 | 97.583 | 125.657
RE(9(hppare). RHC | °BC g(fippaL), RHO) 75.343 | 112.619 | 115.594

TABLE 2.43: Relative efficiencies of estimators for regression coefficient of z; on z; in the case
of synthetic data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z5 on 21,
h(z1, 22)=(22, 21, 21, 2122) and g(s1, 2, 53, 54)=(54 — s152)/(s3 — $3).

Sample size

Relative efficiency =75 n=100 =125
RE(g(hpgarr). SRSWOR | BC g(hpearr), SRSWOR) | 72.061 | 105.389 | 111.124
RE(g(hz7), SRSWOR | °BC g(fz), SRSWOR) 60.114 | 108.837 | 118.675
RE(g(hzr), RS | °BC g(hz), RS) 69.16 | 115.113 | 144.811
RE(g(hpparr). RS | OBC g(hppar), RS) 72.448 | 127.387 | 131.558
RE(g(hpparr). RHC | ®BC g(hpparr), RHC) 90.132 | 104.121 | 148.139
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TABLE 2.44: Relative efficiencies of estimators for mean of y; in the case of real data.

Relative efficiency sample see n=T5 n=100 n=125
RE(Y prarr, SRSWOR | 5Y pepparr. SRSWOR) | 1.070226 | 1.019958 | 1.007533
RE(Y ¢rpc, SRSWOR | 5Y pecrec, SRSWOR) | 1.146007 | 1.116225 | 1.117507
RE(Y 1, RS | 5Y 5cr. RS) 1.240493 | 1.012069 | 1.155246
RE(Y prarz. RS | 3Y sopearr. RS) 1.374578 | 1.046986 | 1.055930
RE(Y ¢rrcs RS | 3Y socrEc. RS) 1.466647 | 1.138300 | 1.205053
RE(Y pair, RHC | 3Y peppars, RHC) 1.566827 | 1.083589 | 1.132790
RE(Y ¢rpc, RHC | Y pocrpc, RHC) 1.460886 | 1.037045 | 1.028358

TABLE 2.45: Relative efficiencies of estimators for variance of y; in the case of real data. Recall
from Table 2.5 in Section 2.1 that for variance of y1, h(y1)=(y?, y1) and g(s1, s2)=51 — 53.

Relative efficiency Sample sze n=75 | n=100 | n=125
RE(g(hpparr), SRSWOR | °BC g(hipgarr). SRSWOR) | 1.1812 | 1.2736 | 1.8669
RE(g(hzr), SRSWOR | ®BC g(hizr), SRSWOR) 4.3526 | 4.8948 | 6.0349
RE(g(hir), RS | SBC g(xr), RS) 1.115 | 1.1239 | 1.2269
RE(g(hpparr). RS | $BC g(hppar), RS) 1.4373 | 1.1739 | 1.6481
RE(g(hprar), RHC | ®BC g(hpgasr), RHC) 1.8502 | 1.0186 | 1.0384

TABLE 2.46: Relative efficiencies of estimators for mean of y- in the case of real data.

Relative efficiency Sample see n=75 n=100 n=125

RE(Y 11, RS | Y por, RS) 1.252123 | 1.325047 | 1.241809

RE(Y pparr, RS | 5Y 5opra, RS) 1.988105 | 2.146357 | 2.260343
RE(Y grics RS | Y socric, RS) 2.055588 | 2.018015 | 2.287817
RE(Y pparr, RHC | 3Y peppars, RHC) 1.831377 | 2.083210 | 2.006134
RE(Y gric, RHC | 3Y socrie, RHO) 1.925938 | 1.983984 | 2.091003
RE(Y prarr, SRSWOR | 3Y 5oprasz, SRSWOR) | 1.001786 | 1.004973 | 1.060588
RE(Y grEc, SRSWOR | 5Y 5ocric, SRSWOR) | 1.021103 | 1.008525 | 1.003390
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TABLE 2.47: Relative efficiencies of estimators for variance of ys in the case of real data. Recall

from Table 2.5 in Section 2.1 that for variance of yo, h(y2)=(y3, y2) and g(s1, s2)=51 — 53.

Relative efficiency sample ize =75 | n=100 | n=125
RE(g(hzr), RS | $BC g(hz ), RS) 13.301 | 6.3589 | 33.579
RE(g(hpparr). RS | $BC g(hppar), RS) 4.448 | 7.4621 | 7.989
RE(g(hpraz), RHC | °BC g(hpgasr), RHC) 21.855 | 3.0076 | 11.368
RE(g(hz7), SRSWOR | °BC g(hizr), SRSWOR) 8.7641 | 5.6119 | 13.7
RE(g(hpgarr), SRSWOR | BC g(hipgarr), SRSWOR) | 6.2655 | 2.0015 | 6.959

TABLE 2.48: Relative efficiencies of estimators for correlation coefficient between y; and y3
in the case of real data. Recall from Table 2.5 in Section 2.1 that for correlation coefficient

between yy and y3, h(y1, ys)=(y1.y3, y7, ¥3, y1ys) and g(s1, s2, s3, 54, 55)=(55 —5152) /((s3—

s1)(sa — 53))'/?

Relative efficiency Sample size n=75 | n=100 | n=125
RE(g(hprrz), SRSWOR | SBC g(hpmarr), SRSWOR) | 23.149 | 51.887 | 45.976
RE(g(71r), SRSWOR | BC g(ﬁ ), SRSWOR) 90.769 | 163.74 | 154.97
RE(g(hn), RS | SBC g(Txr), RS) 72.604 | 79.355 | 163.03
RE(g(hprr), RS | SBC g(hpparr), RS) 24.483 | 35.874 | 43.164
RE(g(hprar), RHC | °BC g(hppasr), RHC) 20.189 | 65.949 | 43.13

TABLE 2.49: Relative efficiencies of estimators for regression coefficient of y; on ys3 in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y; on ys,

h(yl,y3)=(y1,y3,y§,y1y3) and 9(81, 52,53, S4)=(S4 - 8182)/(83 - S%)

Relative efficiency Sample see n=T5 | n=100 | n=125
RE(g(hpraz), SRSWOR | SBC g(ﬁpEML) SRSWOR) | 31.789 | 50.26 | 50.107
RE(¢(hz7), SRSWOR | °BC g (i), SRSWOR) 936.49 | 119.88 | 222.23
RE(g(hzr), RS | $BC g(7z ), RS) 63.933 | 77.049 | 184.45
RE(g(hpparr). RS | SBC g(ﬁpEML) RS) 31.503 | 44.945 | 263.5
RE(g(hpparr), RHC | ®BC g(hppas), RHC) 65.145 | 76.533 | 90.413
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TABLE 2.50: Relative efficiencies of estimators for regression coefficient of y3 on y; in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y3 on y1,

h(y1,y3)=(y3, y1,¥3, y1y3) and g(s1, 52, 53, s4)=(s4 — s152)/(s3 — 53).

Relative efficiency Sample see n=75 | n=100 | n=125
RE(g(hprarz), SRSWOR | SBC g(hpparr), SRSWOR) | 26.09 | 29.557 | 32.345
RE(g(7 ). SRSWOR | SBC g(T1), SRSWOR) 98.43 | 104.19 | 165.95
RE(g(hx), RS | SBC g(hy). RS) 100.3 | 110.15 | 196.34
RE(g(hprars)s RS | $BC g(hpparr), RS) 11.416 | 71.664 | 23.433
RE(g(hpraz), RHC | °BC g(hpgasr), RHC) 13.268 | 28.198 | 50.571

TABLE 2.51: Relative efficiencies of estimators for correlation coefficient between y» and y4

in the case of real data. Recall from Table 2.5 in Section 2.1 that for correlation coefficient

between yo and yu, h(y2, ya)=(y2, Y4, Y3, Y3, yoya) and g(s1, s2, s3, S4, $5)=(55 — s152) /(83 —
s1)(s4 — 3))'/2.

Relative efficiency sample sze n=T5 | n=100 | n=125
RE(g(hir), RS | °BC g(hppars), RS) 79.002 | 58.241 | 120.229
RE(g(ﬁPEML)7 RS | ®BC g(ﬁPEML) RS) 82.309 | 61.995 | 316.929
RE(g(ﬁpEML), RHC | °BC g(hpEML) RHC) 175.22 | 74.847 | 220.74
RE(g(ﬁH), SRSWOR | ®BC g(h ), SRSWOR) 87.942 | 36.363 | 97.432
RE(g(ﬁpEML), SRSWOR | ®BC g(ﬁ emr), SRSWOR) | 120.02 | 51.959 | 121.42

TABLE 2.52: Relative efficiencies of estimators for regression coefficient of y5 on y, in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of ys on .,

h(y2, ya)=(y2, ya, Y3, y2ya) and g(s1, s2, 53, s4)=(s4 — s152)/(s3 — 53).

RE(g(hzr), RS | $BC g(hz ), RS) 125.17 | 256.45 | 260.15
RE(g(hpparr). RS | OBC g(hppa), RS) 145.1 | 333.5 | 135.65
RE(g(hpparr), RHC | ®BC g(hpparz), RHC) 86.93 | 238.32 | 292.89
RE(g(hprarr). SRSWOR | 9BC g(hipgarr), SRSWOR) | 93.707 | 101.93 | 121.44
RE(g(hzr), SRSWOR | ®BC g(hiz), SRSWOR) 115.85 | 146.16 | 104.66
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TABLE 2.53: Relative efficiencies of estimators for regression coefficient of ¢4 on y» in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y4 on ys,

h(y2, ya)=(ya, y2, Y3, y2ya) and g(s1, s2, 53, s4)=(s4 — s152)/(s3 — 53).

Sample size _ _ _
Relative efficiency =75 | n=100 | =125

RE(g(h), RS | SBC g(hizr), RS) 47.3317 | 73.749 | 52.592

RE(g(h), RS | SBC g(hpparr), RS) 105.87 | 126.42 | 323.82
RE(g(hg), RS | SBC g(hpparr), RHC) | 93.403 | 79.453 | 91.347
RE(g(hi), RS | SBC g(hppasr), SRSWOR) | 530.94 | 173.19 | 191.26

RE(g(g), RS | SBC g(hzr), SRSWOR) | 394.20 | 156.27 | 164.7

2.5. Concluding discussion and remarks

It follows from Theorem 2.2.1 that the PEML estimator of the mean under SRSWOR becomes
asymptotically either more efficient than or equivalent to any other estimator under any other
sampling design considered in this chapter. It also follows from Theorems 2.1.1 and 2.1.2 that the
GREG estimator of the mean is asymptotically equivalent to the PEML estimator under different
sampling designs considered in this chapter. However, our numerical studies (see Section 2.3)
based on finite samples indicate that the PEML estimator of the mean performs slightly better
than the GREG estimator under all the sampling designs considered in Section 2.3 (see Tables
2.7,2.19 and 2.21). Moreover, as pointed out in the 5¢" paragraph in the beginning of this chapter,
if the estimators of the variance, the correlation coefficient and the regression coefficient are
constructed by plugging in the GREG estimator of the mean, then the estimators of the population
variances involved in these parameters may become negative. On the other hand, if the estimators
of these parameters are constructed by plugging in the PEML estimator of the mean, then such
a problem does not occur. Further, for these parameters, depending on sampling designs, the
plug-in estimator based on either the PEML or the Hajek estimator turns out to be asymptotically

best among different estimators that we have considered (see Theorems 2.2.3 and 2.2.4).

We see from Theorem 2.2.1 that for the population mean, the PEML estimator, which is
not design unbiased, performs better than design unbiased estimators like the HT and the RHC
estimators. Further, as pointed out in the beginning of this chapter, the plug-in estimators of the

population variance based on the HT and the RHC estimators may become negative. This affects
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the plug-in estimators of the correlation and the regression coefficients based on the HT and the

RHC estimators.

It follows from Table 2.3 that under LMS sampling design, the large sample performances
of all the estimators of functions of means considered in this chapter are the same as their large
sample performances under SRSWOR. The LMS sampling design was introduced to make the
ratio estimator of the mean unbiased. It follows from Remark 2.1.2 in Section 2.1 that the
performance of the ratio estimator of the mean is worse than several other estimators that we

have considered even under LMS sampling design.

The coefficient of variation is another well-known finite population parameter, which can
be expressed as a function of population means g(h). We have d=1, p=2, h(y)=(y?,y) and
g(s1,82)=\/51 — 53 /59 in this case. Among the estimators considered in this chapter, the plug-in
estimators of g(h) that are based on the PEML and the Hajek estimators of the mean can be used
for estimating this parameter since it involves the finite population variance (see the 5! paragraph
in the beginning of this chapter). We have avoided reporting the comparison of the estimators

of the coefficient of variation in this chapter because of complex mathematical expressions.

However, the asymptotic results stated in Theorems 2.2.3 and 2.2.4 also hold for this parameter.

In sample survey, sometimes we deal with stratified sampling designs (see [24]) in which
the population is divided into H (> 1) strata and a sample is drawn from each stratum by a
sampling design independently across the strata. For a stratified population, the population mean
of y can be expressed as 7=Z{i 1(Ni/N)Y |, where N is the number of population units in the
Ith stratum and Y is the mean of y for the [*" stratum. Further, N :lei 1 Ni. Therefore, an
estimator of Y under a stratified sampling design is obtained as ?=lei 1(Ni/N )?l where ?l
is the HT, the RHC, the Hijek, the ratio, the product, the GREG or the PEML estimator of Y;

lth

constructed based on the sample drawn from the [*"* stratum. Also, several plug in estimators

of a function of population means g(h) can be constructed under a stratified sampling design
following the approach of this chapter. Suppose that H is fixed as v — oo, the assumptions of
Theorems 2.1.1-2.1.3 and Remarks 2.1.1-2.1.2 hold in each stratum, and lim, o (IV;/N)=A,;
for some 0 < A; < 1, 1=1,...,l. Then, conclusions of the aforementioned results hold for

estimators of g(h) under stratified sampling design.

An empirical comparison of the biased estimators considered in this chapter and their bias-

corrected versions are carried out based on jackknifing in Section 2.4 in terms of their MSEs.
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It follows from this comparison that for all the parameters considered in this chapter, the bias-
corrected estimators become worse than the original biased estimators in the cases of both the
synthetic and the real data. This is because, although bias-correction results in reduction of biases
in the original biased estimators, the variances of these estimators increase substantially after

bias-correction.

2.6. Proofs of the main results

In this section, we give the proofs of Theorems 2.1.1-2.1.3 and 2.2.2-2.2.4, and Remark 2.1.1.
Let us denote the HT, the RHC, the Hdjek, the ratio, the product, the GREG and the PEML
estimators of population means of h(y) by ﬁHT, ﬁRHC, ﬁH, ﬁRA, ﬁpR, ﬁGREG and ﬁpEML,

respectively.

Proof of Theorem 2.1.1. Let us consider SRSWOR and LMS sampling design. It follows from
(i) in Lemma 2.7.4 in Section 2.7 that \f(h - h) N(0,T") as v — oo for some p.d.
matrix I', when h is one of hHT, hH, hRA, hpR, and hGREG with d(i, s)=(Nn;)~! under any
of these sampling designs. Now, note that max;es | X; — X|=0,(v/n), and >, 7 *(X; —
X)) Y ies T Y(X; — X)?=0,(1/+/n) as v — oo under the above sampling designs (see Lemma
2.7.7 in Section 2.7). Then, by applying Theorem 1 of [22] to each real-valued coordinate of
hpEML and hGRE(;, we get f(hpEML — hGRE(;) »(1) as v — oo for d(i, s)=(Nm;) ™1
under these sampling designs. This implies that n pEML and I;G rEG With d(i, s)=(Nm;)~! have

the same asymptotic distribution. Therefore, if his one of hgr, hi, hra, hpr, and hareg and

ﬁpEML with d(i, s)=(Nm;)~!, we have
N(0,A%) as v — 00 (2.6.1)

under any of the above mentioned sampling designs for some A2 > 0 by the delta method and the
assumption Vg (o) # 0 at pio=lim, s h. It can be shown from the proof of (i) in Lemma 2.7.4
in Section 2.7 that A2=Vg(uo)T'1 (Vg(po)”, where T'y=lim,,_, oo nN 2 Ef\il (Vi=Tym) T (V;—
Tym;)(m; " — 1). It can also be shown from Table 2.54 in Section 2.7 that under each of
the above sampling designs, V; in I'y is h; or h; — h or h; — hX;/X or h; + hX;/X or
hi —h — Sun(X; — X)/S2 1fh is hHT or hH or hRA or hpR, or hGREG with d(i, s)=(Nm;) ",

respectively.
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Now, by Lemma (i) in 2.7.6 in Section 2.7, we have

N
2—02=(1-X) lim Y (4; — A)?/N, (2.6.2)

V—00 £
=1

g

where o2 and o3 are as defined in the statement of Lemma 2.7.6 in Section 2.7, and 4;=Vg( o) VE
for different choices of V; mentioned in the preceding paragraph. Note that g(ﬁg rEG) and
g(ﬁ peM L) have the same asymptotic distribution under each of SRSWOR and LMS sampling
design since \/ﬁ(ﬁp EML — ﬁg RrREG)=0p(1) for v — oo under these sampling designs as pointed
out earlier in this proof. Further, (2.6.2) implies that g(ﬁGRE(;) with d(i, s)=(Nm;)~! has
the same asymptotic MSE under SRSWOR and LMS sampling design. Thus g(ﬁg rEG) and
g(ﬁpEML) with d(i,s)=(Nm;)~! under SRSWOR and LMS sampling design form class 1 in
Table 2.3.

Next, (2.6.2) yields that g(ﬁHT) has the same asymptotic MSE under SRSWOR and LMS
sampling design. It also follows from (2.6.2) that g(ﬁH) has the same asymptotic MSE under
SRSWOR and LMS sampling design. Now, note that g(ﬁHT) and g(ﬁH) coincide under SR-
SWOR. Thus g(ﬁHT) under SRSWOR, and g(ﬁHT) and g(ﬁH) under LMS sampling design

form class 2 in Table 2.3.

Next, (2.6.2) implies that g(ﬁR A) has the same asymptotic MSE under SRSWOR and LMS
sampling design. Further, (2.6.2) implies that g(ﬁp r) has the same asymptotic MSE under
SRSWOR and LMS sampling design. Thus g(ﬁR 4) under SRSWOR and LMS sampling design
forms class 3 in Table 2.3, and g(ﬁp r) under those sampling designs forms class 4 in Table 2.3.

This completes the proof of Theorem 2.1.1. 0

Proof of Theorem 2.1.2. Let us first consider a HE7PS sampling design. Then, it can be shown
in the same way as in the 15! paragraph of the proof of Theorem 2.1.1 that \/ﬁ(ﬁpE ML —
ﬁGREg):op(l) for d(i,s)=(Nm;)~! under this sampling design. It can also be shown in the
same way as in the 15! paragraph of the proof of Theorem 2.1.1 that if ﬁ is one of ﬁHT, ﬁH,
and ﬁg rEC and ﬁp ey With d(i, s)=(N;)~1, then (2.6.1) holds under the above-mentioned
sampling design. Here, we recall from Table 2.3 that the HT, the ratio and the product estimators
coincide under any HE7PS sampling design. Further, the asymptotic MSE of \/n(g (ﬁ) —g(h))
is Vg(1o)T'1 (Vg(10))T. where pio=limy o0 7, T1=limy 0o nN "2 3200 (Vs — Tym) T (V; —
Tym;)(m;* — 1), and V; in Ty is h; or h; — hor h; — h — Syp(X; — X)/S? if T is ﬁHT or

ﬁH, or ﬁGREG with d(i, s)=(Nm;) "1, respectively. Now, since \/ﬁ(ﬁpEML - ﬁGRE(;)zop(l)



2.6. Proofs of the main results 51

for v — oo under any HE7PS sampling design, g(ﬁGREC,v) and g(ﬁpEML) have the same
asymptotic distribution under this sampling design. Thus under any HE7PS sampling design,
g(ﬁGREg) and g(ﬁpEML) with d(i, s)=(Nm;)~! form class 5, g(ﬁHT) forms class 6, and g(ﬁH)

forms class 7 in Table 2.3. This completes the proof of (i) in Theorem 2.1.2.

Let us now consider the RHC sampling design. We can show from (ii) in Lemma 2.7.4
in Section 2.7 that \/ﬁ(ﬁ — h) £ N(0,T) as v — oo for some p.d. matrix I', when h
is either ﬁRHC or ﬁGREG with d(i, s)=(NX;)~'G; under RHC sampling design. Further,
\/ﬁ(ﬁpEML — ﬁ(;RE(;):op(l) as v — oo for d(i, s)=(N X;) ~'G; under RHC sampling design
since Assumption 2.1.3 holds, and S? is bounded away from 0 as v — oo (see A2.2 of Appendix
2 in [22]). Therefore, ifﬁ is one of ﬁRHc, and ﬁGREG and ﬁpEML with d(i, 8)=(N X;) "' Gy,

then we have

Vag(h) — g(R)) 5 N(0,A?) as v — oo (2.6.3)

for some A2 > 0 by the delta method and the condition Vg (j0) # 0 at ig=lim,, _,, h. Moreover,
it follows from the proof of (ii) in Lemma 2.7.4 in Section 2.7 that A?=V g(110)T2(Vg(10))7,
where T'o=lim, _,oo ny X N1 Zf\il (Vi — X;V/X)T(V; — X;V/X)/X;. It further follows from
Table 2.54 in Section 2.7 that V; in D is h; if /i is higrc. Also, Vi in g is by — b — San(X; —
X)/S2 it is ﬁGREG with d(i, s)=(N X;) 1 G;. Now, g(ﬁGREg) and g(ﬁpEML) have the same
asymptotic distribution under RHC sampling design since \/ﬁ(ﬁp EML — ﬁg RrREG)=0p(1) for
v — oo under this sampling design as pointed out earlier in this paragraph. Thus g(ﬁg rEG) and
g(ﬁpEML) with d(i, s)=(N X;) ~'G; under RHC sampling design form class 8, and g(ﬁRHc)
forms class 9 in Table 2.3. This completes the proof of (ii) in Theorem 2.1.2. O

Proof of Remark 2.1.1. 1t follows from (ii) in Lemma 2.7.6 in Section 2.7 that in the case of
=0,
N
o3 =05 = lim (X/N) Y A?/X; - A?), (2.6.4)

V—00 £
=1

where o and o4 are as defined in the statement of Lemma 2.7.6 in Section 2.7, and A;=Vg(110)V}
for different choices of V; mentioned in the proof of Theorem 2.1.2 above. Thus g(ﬁg RrREG) With
d(i, 8)=(N;)~* under any HEwPS sampling design, and with d(i, s)=(N X;) ~'G; under RHC
sampling design have the same asymptotic MSE. Therefore, class 8 is merged with class 5 in
Table 2.3. Further, (2.6.4) implies that g(ﬁHT) under any HE7PS sampling design and g(ﬁR HC)
have the same asymptotic MSE. Therefore, class 9 is merged with class 6 in Table 2.3. This

completes the proof of Remark 2.1.1. O
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Proof of Theorem 2.1.3. Recall the expression of A;’s from the proofs of Theorems 2.1.1 and
2.1.2. Note that lim, o Y (A; — A)?/N=limy_,00 Y (B; — B)?/N, lim, 00 ny ((X/N) x
SN A2/ X A?)=limy oo ny (X /N) SN | B2/ X;— B?) and limy, o0 {(1/N) SN, A2
(X/X:)=(n/N) =671 X ((0/N) S, AXi /N — AX)*}=lim, oo { (1/N) L, B2
(X/X:)—(n/N)) =671 X ((n/N) SN, BiX;/N—BX)”} for Bi=Vg(R)VT and V; as in
Table 2.54 in Section 2.7 since Vg(h) — Vg(uo) as v — oc. Here, p=X —(n/N) N | X2/NX.
Then, from Lemma 2.7.6 in Section 2.7 and the expressions of asymptotic MSEs of \/ﬁ(g(ﬁ) -

g(h)) discussed in the proofs of Theorems 2.1.1 and 2.1.2, the results in Table 2.4 follow. This

completes the proof of Theorem 2.1.3. O

Proof of Theorem 2.2.1. Note that Assumptions 2.1.2 and 2.1.3 hold a.s. [P] since Assumption
2.2.1 holds and Fp(¢;)* < co. Also, note that Assumption 2.1.4 holds a.s. [P] under SRSWOR
and LMS sampling design (see Lemma 2.7.8 in Section 2.7). Then, under the above sampling
designs, conclusions of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s.
Note that W;=Vg(h)hI'=Y;. Also, note that the A?’s in Table 2.4 can be expressed in terms

of superpopulation moments of (Y;, X;) a.s. [P] by SLLN since Ep(¢;)* < oo. Recall from

2
ny’

A2 —A¥=(1—N)(0zy — Ep(Yi)/p1)? and A3 — A3=(1—\)(04y + Ep(Y;)/111)? a.s. [P], where
p1=Ep(X;) and o,y=covp(X;, Y;). Hence, A2 < A% a.s. [P] for i=2,3, 4. This completes the

the beginning of Section 2.2 that we have taken o2=1. Then, we have A% — A2=(1 — )

proof of (i) in Theorem 2.2.1.

Next consider the case 0 < A < FEp(X;)/b. Note that ny — ¢ as v — oo for some
¢ >1—X > 0by Lemma 2.7.5 in Section 2.7. Also, note that a.s. [P], Assumption
2.1.5 holds in the case of RHC sampling design and Assumption 2.1.4 holds in the case
of any HE7PS sampling design (see Lemma 2.7.8 in Section 2.7). Then, under RHC and
any HE7PS sampling designs, conclusions of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for
d=p=1, h(y)=y and g(s)=s. Further, we have AZ — A{={Ep(Y; — Ep(Y;))? (11/Xi — \) —
u%axy(axycov]p(Xi, 1/X;) — 2coup(Ys, l/Xi)) + /\Ugy} - (1 - )\){05 — agy}, AZ — AZ=
Ep(Y2(p1/Xi — N) — {\Ep(YiX;) — E]P(Yi)ul}z/xm —{Ep(Y; — Ep(Y;) — 0ay(Xi —
ul))Q(ul/Xi — )\)}, A% — A§={,u%0xy(axycovp(Xi, 1/X;) — 2covp(Y;, 1/Xi)) — )\Ugy —
o2, [px}, A — Af=c{m Ep(Y; — Ep(Y;))?/ Xi — piowy (0wycovp(Xi, 1/ X;) — 2covp(Y;
1/X:))} = (1= N{oy — o, } and Af — A=c{ju Bp(Y?/X;) — EZ(Y)} — (1 = \){o} -

O'%y} a.s. [P], where o2=varp(Y;), x=p1 — Mu2/p1) and pe=FEp(X;)?. Here, we note that

Yy
X=EP(XZ~2(/J,1/XZ‘ — )\))/,ul > 0 because Assumption 2.2.1 holds and Assumption 2.1.1
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holds with 0 < X < Ep(X;)/b. Moreover, from the linear model set up, we can show
that AZ — Af=c?(up—1 — 1) > 0, A3 — A2=Ep{(a + BX;) — x ' Xila + B — Aa —
/\5M2/M1)}2{M1/Xz—>\} >0, A%—A§=52E1P{(Xi—m)—)\X_le'(Nl—M2/M1)}2{M1/Xz'—
)\} >0, A2—A?=0¢? (culu_l—(l—)\)) > co?(puip—1—1) > 0and A3—A2=¢> (c,ulu_l—(l—
N))+ca?(pp—1—1) > 0as. [P], where 0?=Ep(¢;)?. Note that AZ—AZ > 0and A2—AZ2 >0
because Assumption 2.2.1 holds and Assumption 2.1.1 holds with 0 < A < Ep(X;)/b. Therefore,
A? < A? a.s. [P] for i=2,...,9. This completes the proof of (ii) in Theorem 2.2.1. O

Proof of Theorem 2.2.2. The proof follows in a straightforward way from the proof of Theorem
2.2.1. O

Proof of Theorem 2.2.3. Using similar arguments as in the 1%¢ paragraph of proof of Theorem
2.2.1, we can say that under SRSWOR and LMS sampling design, conclusions of Theorems
2.1.1 and 2.1.3 hold a.s. [P] for d=1, p=2, h(y)=(y, y*) and g(s1, s2)=s2 — s7 in the same way
as conclusions of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the

st paragraph of the proof of Theorem 2.2.1. Note that VVZ-:Yi2 — 2Y;Y for the above choices
of h and g. Further, it follows from SLLN and the assumption Ep(¢;)® < oo that the A?’s in
Table 2.4 can be expressed in terms of superpopulation moments of (Y;, X;) a.s. [P]. Note that
A} — A2=cova(W;, X;) a.s. [P], where W;=Y> — 2Y;Ep(Y;). Then, A? < A3 a.s. [P]. This

completes the proof of (i) in Theorem 2.2.3.

Next consider the case of 0 < A < Ep(X;)/b. Using the same line of arguments as in
the 2"¢ paragraph of the proof of Theorem 2.2.1, it can be shown that under RHC and any
HE#PS sampling designs, conclusions of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for d=1, p=2,
h(y)=(y,y?) and g(s1, s2)=s2 — s7 in the same way as conclusions of Theorems 2.1.2 and 2.1.3
hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the 2"¢ paragraph of the proof of Theorem 2.2.1.
Note that A2 A {,ulcov]p Wi, X; )(covp(m,X Yeoup(X;, 1/X;) — 2covp( W;, 1/X; )} —
)\QCOU%(VTQ, X~)/Xu1—)\covP(Wi,Xi < {,ulx covP(Wi,Xi)(covp(Wi,Xi)covp(Xi, 1/X;)—
2covp(W;,1/X;)) } a.s. [P] because x > 0. Recall from Assumption 2.2.2 that £=413 — pio 11 and
w;=Ep(X;)’ for j=—1,1,2, 3. Then, from the linear model set up, we have {ulcovp(VVi, X;)x
(covp(W;, X;)covp(Xi, 1/X;) — 2covp(Wy, 1/X;)) }=(8%0)2(€ — 20) ((€ + 2m1)C1 — 262).
Here, (1=1 — p1p—1 and Co=p1 — pop—1. Note that (§ + 2u1)¢1 — 2¢2=£(1 + 2p—1 and
(1 < 0. Therefore, {u%covp(Wi,Xi)(covp(Wi, X;)covp(X;, 1/X;) — 2covp(W;, 1/X;))} <0
if € > 2max{pu1, pu—1/(u1p—1 — 1)}. Hence, A2 — A2 < 0 a.s. [P]. This completes the proof
of (ii) in Theorem 2.2.3. O
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Proof of Theorem 2.2.4. Using the same line of arguments as in the 15¢ paragraph of the proof
of Theorem 2.2.1, it can be shown that under SRSWOR and LMS sampling design, conclusions
of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=2, p=5, h(z1, z2)=(z1, 22, 2% , 23, z122) and
g(51, 59,53, 54, 55)=(s55 — 5152)/((53 — 57)(s4 — 53))'/? in the case of the correlation coeffi-
cient between 21 and 29, and for d=2, p=4, h(z1, 22)=(21, 22, 23, 2122) and g(s1, S2, 83, $4)=
(s4 — 5182) /(53 — s2) in the case of the regression coefficient of z; on 2, in the same way as
conclusions of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the case
of the mean of y in the 15! paragraph of the proof of Theorem 2.2.1. Further, if Assumption 2.1.1
holds with 0 < A\ < Ep(X;)/b, then using similar arguments as in the 2¢ paragraph of the proof
of Theorem 2.2.1, it can also be shown that under RHC and any HE7PS sampling designs, con-
clusions of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for d=2, p=5, h(z1, 22)=(21, 22, 23 , 23, 2122)
and g(s1, S2, 53, 54, 55)=(55 — 5152) /(53 — 57) (54 — 53))'/? in the case of the correlation coeffi-
cient between z; and 2o, and for d=2, p=4, h(z1, 22)=(z1, 22, 23, 2122) and g(s1, 52, 53, 54)=(54—
5182)/(s3—s3) in the case of the regression coefficient of 2, on zo in the same way as conclusions
of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the case of the mean of
y in the 2™? paragraph of the proof of Theorem 2.2.1. Note that W;=R15[(Z1/ S2—7Z5/512) Z1i+
(Z2/S3% — Z1/S12) Za; — Zfi/QS% — ZQQZ-/QS% + Z1,Z2;/ S12] for the correlation coefficient, and
Wi=(1/52)[~Z9Z1i — (Z1 — 281222/ S3) Zai — S1223,/ S5 + Z1i Zo;] for the regression coeffi-
cient. Here, 71:2?21 Z1i/N, 72=Efi1 Z5% /N, S%=Zi]\i1 Z3 /N — Zi S§=Z¢]\i1 Z35;/N —
73, Slgzzi]il Z1; Zai/N — Z1Z5 and R12=S12/5155. Also, note that since Fp||¢;||® < oo,
the A?’s in Table 2.4 can be expressed in terms of superpopulation moments of (h(Z1;, Z2;), X;)
a.s. [P] for both the parameters by SLLN. Further, for the above parameters, we have A% —
A%=cov%>(l/f/i, X;) > 0 and A% — A§={M%COUP(V~V1-,Xi)(covp(ﬁ/i,Xi)cov[p(Xi, 1/X;) — 2x
covp(W;,1/X;) )}—A%OU%(WZ-,X')/Xm—)\cov[%(Wi,Xi) < {u%covp(Wi,Xi)(covp(Wi,Xi)x
covp(X;,1/X;) — 2covp Wl, 1/X5) )} a.s. [P], where Wi is the same as W; with all finite pop-
ulation moments in the expression of W; replaced by their corresponding superpopulation
moments. Also, from the linear model set up, we have { zi2covp(W;, X;) (covp(W;, X;)covp (X,
1/X;) — 2covp(W;, 1/X;)) }=K1(€ — 2u1)((€ + 2p1)¢1 — 2¢o) for some constant K7 > 0 in
the case of the correlation coefficient, and { ,U,%COU[{D(Wi, Xi) (covp(Wi, Xi)ecovp(X;,1/X;) —
2covp(Wi, 1/X;)) } =Ka(€ — 2u1)((€ + 2u1)¢1 — 2¢2) for some constant K> > 0 in the case
of the regression coefficient. Thus proofs of both the parts of the theorem follow in the same way

as the proof of Theorem 2.2.3. U
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2.7. Proofs of additional results required to prove the main results

In this section, we state and prove some lemmas, which are required to prove Theorems 2.1.1—

2.1.3 and 2.2.2-2.2.4, and Remark 2.1.1.

Lemma 2.7.1. Suppose that Assumption 2.1.3 holds. Then, LMS sampling design is a high
entropy sampling design. Moreover, under each of SRSWOR, LMS and any HETPS sampling

designs, there exist constants L, L' > 0 such that
L < min (N < Nm;/n) < L' 2.7.1
< min (Nmi/n) < max (Nmi/n) < 27.1)
for all sufficiently large v .

The condition (2.7.1) was considered earlier in [85], [7], etc. However, the above authors did

not discuss whether LMS and HE#7PS sampling designs satisfy (2.7.1) or not.

Proof. Suppose that P(s) and R(s) denote LMS sampling design and SRSWOR, respec-
tively. Note that SRSWOR is a rejective sampling design. Then, P(s)=(z/X)/NC, and
R(s)=(NCp)7!, where 7=)", . X;/n and s € S. By Cauchy-Schwarz inequality, we have

D(P|IR) = E(z/X) log(z/X)) < K1 Elz/X — 1| < K,E@/X — 1) (272)

for some K7 > 0 since Assumption 2.1.3 holds, and log(z) < |x — 1| for z > 0. Here E denotes

the expectation with respect to R(s). Therefore,

N
nD(P||R) < Ki(1 —n/N)(N/(N - 1))(s3/X%) < 2k:() " X2/NX?)
i=1 (2.7.3)

< . i )2
< 2K1(1I§11»L‘E%}J<VXZ/ min Xi)*=0(1)

as v — oo. Hence, D(P||R) — 0 as v — oo. Thus LMS sampling design is a high entropy

sampling design.

Next, note that (2.7.1) holds trivially under SRSWOR. Now, suppose that {Tri}i]\il denote
inclusion probabilities of P(s). Then, we have m;=(n — 1)/(N — 1) + (Xi/ 2N | X;)((N —
n)/(N —1)) and 7; — n/N=—(N —n)(N(N —1))~1(X;/X — 1). Further,

|7Ti—n/N‘: N —n ’))?_ ‘ N —n <H1&X1<i<NXi+1)_ (2.7.4)

— -1 <
n/N n(N —1) ~ n(N—-1) \ minj<j<y X;



56 Chapter 2. A comparison of estimators of mean and its functions in finite populations

Therefore, maxj<;<n |[Nm;/n — 1] — 0 as v — oo by Assumption 2.1.3. Hence, Ky <
minj<;<n(Nm;/n) < maxi<;<ny(Nm;/n) < K3 for all sufficiently large v and some constants
Ky > 0and K3 > 0. Thus (2.7.1) holds under LMS sampling design. Further, (2.7.1) holds

under any HE7PS sampling design since Assumption 2.1.3 holds. 0

Next, consider V;’s and V as in the paragraph preceding Assumption 2.1.4. Let us define §1=
> ics(N) 71V, and By=nN 2 SN (Vi—Tym)T (V- Tyn;)(n; ! — 1), where 7;’s and Ty,
ies(NXi)T1G,V;
and Yo=ny XN~} Zfil (Vi—X;V/X)T(V,— X;V/X)/X;, where G;’s are as in the paragraph

are as in the paragraph preceding Assumption 2.1.4. Let us also define 62:2

containing Table 2.1, and + is as in the paragraph preceding Assumption 2.1.4. Now, we state the

following Lemma.

Lemma 2.7.2. Suppose that Assumptions 2.1.1-2.1.4 hold. Then, under SRSWOR, LMS and any
HETPS sampling designs, we have \/ﬁ(f/l -V) £, N(0,T1) as v — oo, where T’y =lim, o0 21.
Further, suppose that Assumptions 2.1.1-2.1.3, 2.1.5 and 2.1.6 hold. Then, we have \/ﬁ(‘ifg —

V) £ N(0,T2) as v — oo under RHC sampling, where T'o=lim,,_,~, Yo.

Proof. Note that SRSWOR is a high entropy sampling design since it is a rejective sampling
design. It follows from Lemma 2.7.1 that (2.7.1) in Lemma 2.7.1 holds under SRSWOR and any
HE7PS sampling design. It also follows from Lemma 2.7.1 that LMS sampling design is a high
entropy sampling design, and (2.7.1) holds under this sampling design. Now, fix € > 0 and m; €
RP. Suppose that L(e, m1)=(n"'N?m Zm{) ™" 37,y (M (Vi — Tym)?)?(m; ' —1) for
Gle,mp)={1 < i < N : |my(V; — Tym)T| > em;N(n~! myZm?)V/2}, Ty="N v,(1 -
)/ Zf\il mi(1 — m;) and V;=(n/N7;)V; —(n/N)Ty, i=1,..., N. Then, given any § > 0,

N
L(e,my) < (mySym{)~H/Dp =020 N=EN " (my |[[|V4]])* T (N /) (2.7.5)

i=1
since ]mlvgp\/(\/ﬁe(lelmlT)l/Q) > 1 for any i € G(e, my). It follows from Jensen’s inequal-

ity that

N N
N VAP (N /n) < 280 (N1 [ Vi(n/Nm)[[PH (N /n)+
i=1 i=1 (2.7.6)

[[(n/N)Ty|*+°)
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since Zf\; m;=n. It also follows from Assumptions 2.1.2 and 2.1.3, and Jensen’s inequality that
SN Vil [P /N=0(1) as v — oo forany 0 < § < 2. Further, >V 7;(1 — 7;)/n is bounded
away from 0 as v — oo under SRSWOR, LMS and any HE7PS sampling designs because (2.7.1)

holds under these sampling designs, and Assumption 2.1.1 holds. Therefore,

N1 f: [Vi(n/Nm)| [>T (Nmi/n) = O(1) and ||(n/N)Ty ||+ = O(1), (2.7.7)
i=1

and hence N1 Zf\il V4|20 (N7;/n)=0(1) as v — oo under the above sampling designs.
Then, L(e,m;) — 0 as v — oo for any € > 0 under all of these sampling designs since As-
sumption 2.1.4 holds. Therefore, inf{e > 0: L(e,m;) < €} — 0 as v — oo, and consequently
the Hajek-Lindeberg condition holds for {le?}f\Ll under each of the above sampling designs.
Also, YN | 7m;(1 — ;) — 0o as v — oo under these sampling designs. Then, from Theorem 5 in
[4], v/n m1(§1 -V AN (0,m;T'ym?") as v — oo under each of the above sampling designs

for any m; € RP and I'1=lim, _,, 1. Hence, f(Vl V) £, N(0,T'1) as v — oo under the

above-mentioned sampling designs.

Next, define

L(ml):n7<maXXi>< 1ZN3 —1ém1VX/X V)T)x

1<i<N
(2.7.8)

-1
1/2 3/22N _ 1 m122m1> ,
where y=>""_, N,.(N, — 1)/N(N — 1) as before. Note that as v — oo,

(Nl ZN:(ml(ViX/Xi - V)T)4(Xi/X)>1/2 —O0(1)and X ' max X;=0(1) (2.7.9
i=1

since Assumptions 2.1.2 and 2.1.3 hold. Now, under Assumptions 2.1.1 and 2.1.6, we have

(Sor_ | N2(N, — 1)Y2(3X"_ Ny(N, — 1))~ '=0(1/+/n) and ny=0(1) as v — oc. Therefore,

L(m;) — 0 as v — oo since Assumption 2.1.5 holds. This implies that the condition C1 in [61]

holds for {leiT}i]\;l. Therefore, by Theorem 2.1 in [61], /nmy (%2 -)T £, N(0, mlFer{)

as v — oo under RHC sampling design for any m; € R? and I's=lim, _,, >2. Hence, \/ﬁ(%g —

V) £, N(0,T'2) as v — oo under RHC sampling design. O

Next, suppose that é=ZiV:1 C;/N, éFZies(Nm)_lCi and ég= > ies(NX;) 7L G, C; for
Ci=(hi, X;hi, X?),i=1,..., N. Let us also define §1=Zi€s (N7;)~1X;. Now, we state the
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following lemma.

Lemma 2.7.3. Suppose that Assumptions 2.1.1-2.1.3 and 2.1.6 hold. Then, under SRSWOR,
LMS and any HETPS sampling designs, we have 61 — C=0,(1), \/ﬁ(il — X)=0,(1) and
V(s (Nm) ™t = 1)=0,(1) as v — co. Moreover, under RHC sampling design, we have
Cy — C=0,(1) and \/i(X ;e .(NX;)"1Gi — 1)=0,(1) as v — .

Proof. We first show that as v — o0, él — C=0,(1), \/ﬁ(?l — X)=0,(1) and /n(>,c,
(N7;)~t — 1)=0,(1) under a high entropy sampling design P(s) satisfying (2.7.1) in Lemma
2.7.1. Fix my € R?P*L, Suppose that Q(s) is a rejective sampling design with inclusion prob-
abilities equal to those of P(s) (cf. [4]). Under Q(s), var(mg(\/ﬁ(él — C)7))=my(nN—2
SV (Ci = Tom)T(C; — Tem)(m; ' — 1))mI' (1 + e) (see Theorem 6.1 in [40]), where
Te="N,Ci(1—m)/ N | mi(1—m;), and e — 0 as v — oo whenever 3. | m;(1—m;) — 00
as v — oo. Note that (2.7.1) holds under Q(s), and hence Zfilm(l — ) — 00 as
v — oo under Q)(s) because (2.7.1) holds under P(s), and Assumption 2.1.1 holds. Then,
my (RN "2 3 (Ci — Tem) (€ — Tom) (w7 = 1))my < nN=2 31 (moC)?/m=0(1)
under Q)(s) since Assumption 2.1.2 holds. Therefore, \/ﬁ(él — C)=0,(1) as v — oo un-
der Q(s) since var(mQ(\/ﬁ(él — C)1))=0(1) as v — oo for any my € R?**! under Q(s).
Now, e P(5) € Yoep Qs) + Yoes IP(s) = QUs)| < e Qls) + (2D(PIQ)Y?
< 3 .crnQ(s) + (2D(P||R))Y? (see Lemmas 2 and 3 in [4]), where E={s € S : ||\/ﬁ(él -
C)|| > 6} for § > 0 and R(s) is any other rejective sampling design. Let us consider a rejec-
tive sampling design R(s) such that D(P||R) — 0 as v — oo. Therefore, given any ¢ > 0,
there exists a 0 > 0 such that ) ©__, P(s) < e for all sufficiently large v. Hence, as v — oo,
\/ﬁ(él — C)=0,(1) and él — C=0,(1) under P(s). Similarly, we can show that as v — oo,
\/ﬁ(fl — X)=0,(1) and v/n(}>;c(Nm;)~! — 1)=0p(1) under P(s). Now, recall from the
proof of Lemma 2.7.2 that SRSWOR and LMS sampling design are high entropy sampling
designs, and they satisfy (2.7.1). Also, any HE7PS sampling design satisfies (2.7.1). Therefore,
as v — 00, él — C=0,(1), \/ﬁ(§1 — X)=0,(1) and \/n(}_,;c,(N7;) ™t — 1)=0,(1) under the

above-mentioned sampling designs.

Under RHC sampling design, var(mg(\/ﬁ(ég —O)T))=my(my XN SN (C;—X,C/X)T
(C; — X;C/X)/X;)ml (see [61]). Recall from the proof of Lemma 2.7.2 that ny=0(1) as
v — oo. Then, var(mg(\/ﬁ(ég —O)7) < my(X/N) N (myCh)?/X;=0(1) as v — oo
since Assumptions 2.1.2, 2.1.3 and 2.1.6 hold. Hence, as v — o0, \/ﬁ(ég — C)=0,(1)
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and ég — C=0,(1) under RHC sampling design. Similarly, we can show that as v — oo,

V(Xies(NX;)7'G; — 1)=0,(1) under RHC sampling design. O

Recall from the 15! paragraph in Section 2.6 that we denote the HT, the RHC, the Hdjek, the
ratio, the product, the GREG and the PEML estimators of population means of A(y) by ﬁ HT
ﬁRHC, ﬁH, ﬁRA, ﬁpR, ﬁGREG and ﬁpEML, respectively. Suppose that ﬁ denotes one of ﬁHT,
ﬁH, ﬁRA, ﬁpR, and ﬁGREG with d(i, s)=(N;)~!. Then, a Taylor type expansion of i — To can
be obtained as 1 — E=@(§1 —V)+R, where §1=ZZ’65(N7U)_1V1L’ V="V, Vi/N,and V;’s, ©

and R are as described in Table 2.54 below. On the other hand, if ﬁ is either hrpo or hareg with

TABLE 2.54: Expressions of V;, © and R for different ﬁ’s.

h v, o R
hur hi 1 0
i hi —h (Cies(Nm)~H 7 0
i h — X,/ X X/X, 0
EPR hi-l-EXi/Y Yl/y —(1 —Yl/Y))QE
EGREG with h; — h— 1N—1 (YZ — X)X
= (N, A
(i, 8)=(Nm) | S - x5z | Zie T (Sun/S2— 1)
) hrHC h; 1 0
EGREG with h; — h— 1 -1 Y((Z (NXi)flGi)fl
— _ (NX;)™ G, 1Es ~
d(i, 8)=(NXZ‘)_1GZ‘ Sgch()(z — X)/Sg (ZZES( ) ) —1)(th/5§ — 52)

d(i,s)=(NX;)~'G}, a Taylor type expansion of /i — i can be obtained as , — E=@(ﬁ2 ~V)+R.
Here, %2:21-65(NX1-)_1G¢V¢, G;’s are as in the paragraph containing Table 2.1, and the
Vi’s, © and R are once again described in Table 2.54. In Table 2.54, ?FZ%S(NWZ-)*IX,»,
Xo=X1/ ey (V7)1 Br=(Sies (V1) ™ Dy (N7) M ha Xy = X1) /(S ey (Ni) '
e (N7 71X = (K1)2) and Bom( e, (N X T1G) Sucs (N T1Gihi) — Brnre X) /(S
(NX)71Gi) Y e (NTI1G X)) — 72). Now, we state the following lemma.

Lemma 2.7.4. (i) Suppose that Assumptions 2.1.1-2.1.4 hold. Further, suppose that ﬁ is one of
ﬁHT, ﬁH ﬁRA, ﬁpR, and ﬁGREG with d(i, 8)=(Nm;)~'. Then, under SRSWOR, LMS and any

HETPS sampling designs,

vn(h —h) £ N(0,T) asv — oo (2.7.10)
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for some p.d. matrix T
(ii) Further, suppose that Assumptions 2.1.1-2.1.3, 2.1.5 and 2.1.6 hold, and ﬁ is ﬁRH(; or
ﬁGREG with d(i, 8)=(NX;) "' G;. Then, (2.7.10) holds under RHC sampling design.

Proof. Tt can be shown from Lemma 2.7.2 that \/ﬁ(ﬁl —V) LN (0,T'1) as v — oo under
SRSWOR, LMS and any HE7PS sampling designs, where T'y=lim, _,o, nN 2 ZZ]\L L (Vi —
Tym)T (Vi — Tym)(m;t — 1) with Ty="" , V;(1 — m;)/ SN | 7i(1 — ;). Note that Ty is a
p-d. matrix under each of the above sampling designs as Assumption 2.1.4 holds under these
sampling designs. Let us now consider from Table 2.54 various choices of © and R corresponding
to ﬁHT, ﬁH, ﬁRA, ﬁpR, and ﬁGREG with d(i, s)=(N;)~!. Then, it can be shown from Lemma
2.7.3 that for each of these choices, y/nR=0,(1) and © — 1=0,(1) as ¥ — oo under the above-
mentioned sampling designs. Therefore, (2.7.10) holds under those sampling designs with I'=I";.

This completes the proof of (i) in Lemma 2.7.4

We can show from Lemma 2.7.2 that \/5(62 —-V) £, N(0,T'3) as v — oo under RHC
sampling design, where ['>=lim,_, o, nyX N~} Zfil (Vi—X;V/X)T(V; — XiV/Y)Xi_l with
y=3""_, N,(N, — 1)/N(N — 1). Note that 'y is a p.d. matrix since Assumption 2.1.5 holds.
Let us now consider from Table 2.54 different choices of © and R corresponding to ﬁR HC, and
ﬁGREG with d(i,s)=(N X;)~'G;. Then, it follows from Lemma 2.7.3 that for each of these
choices, /nR=0,(1) and © — 1=0,(1) as v — oo under RHC sampling design. Therefore,
(2.7.10) holds under RHC sampling design with I'=I'. This completes the proof of (ii) in
Lemma 2.7.4 O

Next, recall from the paragraph following Assumption 2.1.2 that y=""_, N,.(N,—1)/N(N—
1) with N, being the size of the r** group formed randomly in RHC sampling design. Then, we

state the following lemma.
Lemma 2.7.5. Suppose that Assumptions 2.1.1 and 2.1.6 hold. Then, ny — c for some c >

1—X>0asv — oo, where A is as in Assumption 2.1.1.

Proof. Let us first consider the case of A=0. Note that

n(N/n—1)(N —n)/(N(N — 1)) <ny <
@2.7.11)
n(N/n+1)(N —n)/(N(N — 1))
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by Assumption 2.1.6 in Section 2.1. Moreover, n(N/n+1)(N—n)/(N(N—1))=(1+n/N)(N—
n)/(N—1) — land n(N/n—1)(N —n)/(N(N —1))=(1 —n/N)(N —n)/(N —1) — 1 as

v — oo because Assumption 2.1.1 holds and A=0. Thus we have ny — 1 as ¥ — oo in this case.

Next, consider the case, when A > 0 and A\~ is an integer. Here, we consider the following
sub-cases. Let us first consider the sub-case, when N/n is an integer for all sufficiently large
v. Then, by Assumption 2.1.6, we have ny=(N — n)/(NN — 1) for all sufficiently large v. Now,

since Assumption 2.1.1 holds, we have

(N=n)/(N—1) = 1-Xasv — . (2.7.12)

Further, consider the sub-case, when N/n is a non-integer and N/n — A1 > 0 for all

sufficiently large v. Then by Assumption 2.1.6, we have

ny = (N/(N = 1))(n/N)[N/nJ(2 = ((n/N)|N/n]) = (n/N)) (2.7.13)

for all sufficiently large . Now, since Assumption 2.1.1 holds, we have 0 < N/n — A~! < 1 for

all sufficiently large v. Then, | N/n|=A"" for all sufficiently large v, and hence

(N/(N —1))(n/N)|N/n| <2 — ((n/N)|N/n)) — (n/N)) 1A (2.7.14)

as v — oQ.

Next, consider the sub-case, when N/n is a non-integer and N/n—A~1 < 0 for all sufficiently
large v. Then, the result in (2.7.13) holds by Assumption 2.1.6, and —1 < N/n — A~! < 0
for all sufficiently large v by Assumption 2.1.1. Therefore, | N/n|=A"! — 1 for all sufficiently
large v, and hence the result in (2.7.14) holds. Thus in the case of A > 0 and A~! an integer, n-y
converges to 1 — X\ as ¥ — oo through all the sub-sequences, and hence ny — 1 — A as v — oc.

Thus we have c=1 — ) in this case.

Finally, consider the case, when A > 0, and A lis a non-integer. Then, N/n must
be a non-integer for all sufficiently large v, and hence ny=(N/(N — 1))(n/N)|N/n](2 —
((n/N)|N/n]) — (n/N)) for all sufficiently large v by Assumption 2.1.6. Note that in this
case, N/n — [A7Y] — A1 — |A\71] € (0,1) as v — oo by Assumption 2.1.1. There-
fore, [\"!] < N/n < |[A71| + 1 for all sufficiently large v, and hence | N/n|=|\"1]| for
all sufficiently large v. Thus ny — A|A7![(2 — A|[A™!] — A\) as v — oo by Assumption
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2.1.1. Now, if t=|A7!| and A~! is a non-integer, then (t + 1)~! < X\ < t~!. Therefore,
AATHE=AAT =X =1+ A=— (1= (2t + DA+t +1)A2)=—(1—tA) (1 — (t+1)A) > 0.
Thus we have c=A| A~1](2 — A|[A™!] — A) > 1 — X in this case. This completes the proof of the

Lemma. O]

Recall the expressions of 3J; and Yo from the paragraph preceding Lemma 2.7.2, and Vg
and po from Assumption 2.1.2. Note that the expression of 3; remains the same for different
HE7PS sampling designs. Also, recall from the paragraph preceding Theorem 2.1.3 that ¢p=X —
(n/N) Zf\; | X2/NX. Now, we state the following lemma.

Lemma 2.7.6. (i) Suppose that Assumptions 2.1.1-2.1.4 hold. Further, suppose that a% and 03 de-
note lim, o0 Vg(110)21Vg(10)” under SRSWOR and LMS sampling design, respectively, where
pio=lim,, o h. Then, we have 03=03=(1 — \)lim, 00 2% (A; — A)%/N for Ai=Vg(uo)V?,
i=1,...,N.

(ii) Next, suppose that Assumption 2.1.5 holds, and 0§=1im,,ﬁoo Vg(10)X2Vg(po)T in the
case of RHC sampling design. Then, we have o3=lim, o ny((X/N) N | A2/X; — A?).
On the other hand, if Assumptions 2.1.1-2.1.4 hold, and c3=lim,,_,oo Vg(110)X1Vg(io)? un-
der any HETPS sampling design, then we have o3= lim,_, {(1/N) Zi\il A2((X/X3) —
(n/N)) — "X ((n/N) XN, AiXi/N — AX)?Y. Further, if Assumption 2.1.1 holds with
A=0, and Assumptions 2.1.2-2.1.4 and 2.1.6 hold, then we have o3=c3=lim, . ((X/N)

S, A2/X; - A2).

Proof. Let us first note that the limits in the expressions of o7 and o3 exist in view of Assump-
tion 2.1.4. Also, note that Vg(s10)21Vg(uo)"=nN"2 3N (A; — Tym;)? (7 — 1)=nN—2
[ZzN:1 A?(Wi_l -1)- (Zf\; Ai(1—m)?/ Zi\il mi(1 — m;)], where Ta=ZfV:1 Ai(1 —mi)/
ZZ]\L , mi(1 — ;) and AZ-:Vg(,u,O)ViT. Now, substituting m;=n/N in the above expression for
SRSWOR, we get o= lim, oo nN 2 [N A2(N/n — 1) — (N, Ai(1 — n/N))?/n(1 —
n/N)J=lim, oo (1—n/N) 2N (A4;— A)?/N. Since Assumption 2.1.1 holds, we have o7=(1—
A) limy, o0 vaz ((A; — A)?/N. Let {m;} V| be the inclusion probabilities of LMS sampling de-
sign. Then, 0§ —0=lim, 0o nN 2[00, A2(m; ' = N/n)— (0L, As(1—m:))?/ 0L, mi(1—
™) — (Zfil Ai(1 =n/N))2/n(1 —n/N))]. Now, it can be shown from the proof of Lemma
2.7.1 that max;<;<ny |[Nm;/n — 1| — 0 as v — oo. Therefore, using Assumption 2.1.2,
we can show that lim, .o nN 23N A2(771 — N/n)=0 and lim, oo nN2[(2N | A;(1 —
)2/ N w1 —m) — (0N, Ai(1 — n/N))?/n(1 — n/N)]=0, and consequently o3=03.

This completes the proof of (i) in Lemma 2.7.6
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Next, consider the case of RHC sampling design and note that the limit in the expression of a§
exists in view of Assumption 2.1.5. Also, note that Vg(10) X2V (po)” =ny(X/N) SN (4; —
AX;/X)? ) Xi=ny (X /N) SN | A2 ) X;— A?), where A=Y"1 | A;/N andv=3"_| N, (N, —
1)/N(N —1). Thus we have o2=lim, o, ny((X/N) N | A2/ X; — A%)=lim, 00 (X /N)x
Zz’]\il A?/Xz - AQ)‘

Next, note that the limit in the expression of o7 exists in view of Assumption 2.1.4. Sub-
stituting m;=nX;/ le\il X; in Vg(uo)X1Vg(uo)? for any HETPS sampling design, we get
oF=limy, oo nN 7210, AN, Xi/nXi—1)— (300, A(1—nX/ S5, Xi))?/ 0L, (nXi/
SN X)L = nXy/ SN Xo)J=limy o {(1/N) SN, A2((X/X) — (n/N)) = 671X '
((n/N) Zfil A X;/N—-A 7)2} Further, we can show that o=lim,,_,~((X /N) Zfil A2/ X;—
A?), when Assumptions 2.1.2 and 2.1.3 hold, and Assumption 2.1.1 holds with A\=0. It also
follows from Lemma 2.7.5 that ny — 1 as ¥ — oo, when Assumption 2.1.1 holds with A=0.
Thus we have 03=0%=lim, . ((X/N) ZZ]\L | A%/ X; — A?). This completes the proof of (ii) in
Lemma 2.7.6. U

Lemma 2.7.7. Suppose that Assumptions 2.1.1-2.1.3 hold. Then under SRSWOR, LMS and any

HETPS sampling designs, we have

(i) u"=max|Li| = 0p(v/n), and (i) nglLi/nglLf = 0,(1/v/n)

€S 1€ES

as v — oo, where Li=X; — X fori=1,...,N

Proof. Let P(s) be any sampling design and E be the expectation with respect to P(s). Then,
E(u*/v/n) < (maxi<i<ny Xi + X)/v/n < X(maxi<<y Xi/ mini<i<n X; + 1)/v/n=o(1)
as v — oo since Assumptions 2.1.2 and 2.1.3 hold. Therefore, (i) holds under P(s) by Markov
inequality. Thus (i) holds under SRSWOR, LMS and any HE7PS sampling designs.

Using similar arguments as in the 1%¢ paragraph of the proof of Lemma 2.7.3, it can be shown
that /(Y ,es Li/N7i— L)=y/n Y ic Li/ Nmi=Op(1) and 3, L2 /N — SN | L2 /N=0,(1)
as v — oo under a high entropy sampling design P(s) satisfying (2.7.1) in Lemma 2.7.1. There-
fore, 1/(3";cs L?/N7;) =Op(1) as v — oo under P(s) since SN | L?/N is bounded away from
0 as v — oo by Assumption 2.1.2. Thus under P(s), Y ;. 7 'L/ Y ics T L2=0,(1//n) as

VvV — OQ.
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It follows from Lemma 2.7.1 that SRSWOR and LMS sampling design are high entropy
sampling designs and satisfy (2.7.1). It also follows from Lemma 2.7.1 that any HE7PS sampling
design satisfies (2.7.1). Therefore, the result in (ii) holds under the above-mentioned sampling

designs. 0

In the following lemma, we demonstrate some situations, when Assumptions 2.1.2-2.1.5 hold.
Let us recall {VZ} ¥, and V from the paragraph preceding Assumption 2.1.4. Let us also recall
the expressions of >3 and 3o from the paragraph preceding Lemma 2.7.2 and b from Assumption

2.2.1. Now, we state the following lemma.

Lemma 2.7.8. (i) Suppose that Assumptions 2.1.1, 2.2.1 and 2.1.6 hold, and {(h(Y;), X;) : 1 <
i < N} are generated from a superpopulation distribution P with Ep||h(Y;)||* < oo. Then,
Assumptions 2.1.2, 2.1.3 and 2.1.5 hold a.s. [P).

(ii) Further, if Assumptions 2.1.1 and 2.2.1 hold, and Ep||h(Y;)||> < oo, then Assumption 2.1.4
holds a.s. [P] under SRSWOR and LMS sampling design. Moreover; if Assumptions 2.1.1 holds
with 0 < X\ < Ep(X;)/b, Assumption 2.2.1 holds, and Ep||h(Y;)||? < oo, then Assumption 2.1.4

holds a.s. [P] under any wPS sampling design.

Proof. As before, for simplicity, let us write (Y;) as h;. Under the conditions Assumption 2.2.1
and Ep||h(Y;)||* < oo, Assumption 2.1.2 holds a.s. [P] by SLLN. Also, under Assumption 2.2.1,
Assumption 2.1.3 holds a.s. [P]. Next, by SLLN, lim, o, Yo=cEp(X;)Ep[(h; — (Ep(X;)) 1 X;
Ep(h:))T (hi—(Fp(X;)) ' X;Ep(hi)) X; Y a.s. [P] for Vi=h;, hi—hX;/X and h;+hX;/X be-
cause 7y — cas v — oo by Lemma 2.7.5. Similarly, lim, o Yo=cEp(X;)Ep[(h; —Ep(h;))" (hi—
Ep(hi))/X;] a.s. [P] for Vi=h; — h, and lim,,_,o Yo=Ep(X;) Ep|[ (hi — Ep(h;) — Con(X; —
Ep(X)) T (hi — Ep(h;) — Con(Xs — Ep(X3)))/ Xi] a.s. [P] for Vi=h; — h — Spp(X; — X)/S2.
Here, C,,=(Ep(h: X;) — Ep(hi)Ep(X;))/ (Bp(X;)? — (Ep(X;))?). Note that the above limits
are p.d. matrices because Assumption 2.2.1 holds. Therefore, Assumption 2.1.5 holds a.s. [P].

This completes the proof of (i) in Lemma 2.7.8

Next, note that X1=(1 — n/N) (XN, VIV, /N — V' V) under SRSWOR. Then, Assumption
2.1.4 holds a.s. [IP] by directly applying SLLN. Under LMS sampling design, Assumption
2.1.4 can be shown to hold a.s. [P] in the same way as the proof of the result 0?=03 in the
proof of Lemma 2.7.6. Next, we have lim, _,oc $1=Ep [{hi + x ' (Ep(X;)) 1 X; (AEp(hi X;) —
Ep(hi) Ee(X:)) } {hi + x 1 (Be(X:) "' Xi(ABe(hiX;) — Ee(hi) Ee(X:)) Y Be(Xi)/Xi —
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/\H a.s. [P] for Vy=h;, h; —hX;/X and h; +hX;/X under any 7PS sampling design (i.e., a sam-
pling design with m;=nX,;/ Zf\; 1 Xi) by SLLN because Assumptions 2.1.1 and 2.2.1 hold, and
Ep||hi||? < co. Here, x=Ep(X;) — M(Ep(X;)?/Ep(X;)). Moreover, under any 7PS sampling
design, we have lim, 0o $1=Ep [{h; — Ep(hi) + Ax ™ (Ep(X:)) " XiCon } {hi — Bp(hi) +
AN (Ep(X3) 1 XiCon } x {Ep(X)/X; — AY] as. [P] for Vi=h; — T and lim, o 5=
Ep[{hi—Ep(h;)—Con(Xi—Ep(X } {hi—Ep(h;i)—Con(Xi— Ep(X;)) }{ Ep(X;)/ Xi— A}
a.s. [P] for V;=h; — h — Sy (X; — X)/S2. Note that the above limits are p.d. matrices because
Assumption 2.2.1 holds and Assumption 2.1.5 holds with 0 < A < Ep(X;)/b. Therefore,
Assumption 2.1.4 holds a.s. [P] under any 7PS sampling design. This completes the proof of (ii)

in Lemma 2.7.8. O]






Chapter 3

Estimators of the mean of infinite

dimensional data in finite populations

In the recent past, [12], [13], [16], etc. considered the HT estimator (see [44]) of the finite
population mean, when population observations are from some functional space. [14] and
[15] also constructed a model assisted estimator for finite population mean function based on
some homoscedastic linear regression models. This model assisted estimator can be related to
the GREG estimator considered earlier in [22] for finite dimensional data. All these authors
investigated different asymptotic properties of the HT and the model assisted estimators in C[0, 7],
the space of continuous functions defined on [0, T'], under sampling designs, which satisfy some
regularity conditions. These sampling designs include SRSWOR, stratified sampling design
with SRSWOR and rejective sampling designs. However, none of these authors compared the

performance of the aforementioned estimators under different sampling designs.

In this chapter, we consider the extensions of the HT and the RHC estimators (see Table 2.1
in Chapter 2) for the population mean of a study variable that lies in an infinite dimensional
separable Hilbert space H because these estimators are widely used design unbiased estimators
of the population mean for finite dimensional data. We also consider the extension of the GREG
estimator (see Table 2.1 in Chapter 2) for the population mean of the same study variable, which
is not a design unbiased estimator but known to be asymptotically often more efficient than other
estimators for finite dimensional data (see Sections 2.1 and 2.2 in Chapter 2). We compare the
HT, the RHC and the GREG estimators using their asymptotic distributions under SRSWOR,

LMS, HE7PS and RHC sampling designs (see the introduction), and some superpopulations

67
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satisfying linear regression models. The main results obtained from this comparison are the

following.

* The GREG estimator is asymptotically at least as good as the HT estimator under each of
SRSWOR, LMS and any HE7PS sampling designs. Also, the GREG estimator turns out

to be asymptotically at least as good as the RHC estimator under RHC sampling design.

* If the degree of heteroscedasticity present in linear regression models is not very large,
then the use of the well-known sampling designs like RHC and any HE7PS sampling
designs instead of SRSWOR may have an adverse effect on the performance of the GREG
estimator. In other words, the use of the auxiliary information in the design stage of
sampling may have an adverse effect on the performance of the GREG estimator. On
the other hand, if the degree of heteroscedasticity present in linear regression models is
sufficiently large, then the sampling designs like RHC and any HE7PS sampling designs

lead to an improvement in the performance of the GREG estimator.

In section 3.1, we discuss infinite dimensional extensions of the HT, the RHC and the GREG
estimators of the population mean. In section 3.2, we compare these estimators using their
asymptotic distributions under the sampling designs mentioned above and some superpopulations
satisfying linear regression models. In this section, we also discuss the estimation of asymptotic
covariance operators of several estimators and show that these estimators of asymptotic covariance
operators are consistent. Some numerical results based on both synthetic and real data are
presented in Section 3.3. Several methods of determining the degree of heteroscedasticity present
in linear regression models are provided in Section 3.4. Proofs of various results are given in

Sections 3.5 and 3.6.

3.1. Estimators based on infinite dimensional data

Suppose that H is an infinite dimensional separable Hilbert space with associated inner product
(-,-), and y is a H-valued study variable. Some examples of such a study variable are electricity
consumption curve of household in the summer/winter (e.g., see [12], [13], [16], [14], etc.),
rainfall curve in state/district over a particular time period (e.g., see the website of India Meteoro-
logical Department (https://mausam.imd.gov.in/imd_latest/contents/rainfall_statistics_3.php)),

growth curve of height of male/female over a certain period of time (see [83]), micro-array
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expression levels of genes in cell/tissue (e.g., see the Colon dataset in the statistical software
R), etc. Recall from the introduction that Y7, ..., Yy are the population values of y. The HT

estimator of the finite population mean of y, 7=Zfi 1 Yi/N, is defined as

Yur = Z(Nm)_lYi (3.1.1)
i€s
where m;=) -, P(s) is the inclusion probability of the i*" population unit for i=1, ..., N.

Before we write the expression of the RHC estimator, recall from the introduction that in the
RHC sampling design, the population P is first divided randomly into n disjoint groups of sizes
Ni, ..., N, such that oy N,=N, and then one unit is selected from each group independently.
Also, recall from the beginning of Section 2.1 in Chapter 2 that G; denotes the total of the x
values of that randomly formed group from which the i*" unit is selected in the sample s. Then,

the RHC estimator of Y can be expressed as

Yrue = Y _(NX;)"'GY;, (3.1.2)
1€S
where X1, ..., X are known population values on the size variable x in (0, 00).

[66] considered the RHC estimator for a real-valued study variable. The RHC estimator is
more easily computable than other unbiased estimators under other unequal probability sampling
designs without replacement (e.g., the HT or the Des Raj estimator (see [58]) under probability
proportional to size sampling without replacement). Moreover, the RHC estimator has smaller
variance than the usual unbiased estimator under the probability proportional to size sampling
with replacement. Also, its variance can be estimated by a non negative unbiased estimator. These

results continue to hold, when we consider the RHC estimator for a -valued study variable.

[68], [72], [28], [22], etc.considered the GREG estimator for finite dimensional data. Suppose
that z=(z1,...,24) is a Re-valued (d > 1) covariate with population values 7y, ..., Zy and
known population total Zf\;l Z;. It will be appropriate to note that the size variable x may be
one of the real-valued components of z in some cases. As mentioned in Chapter 2, all vectors
in Euclidean spaces will be taken as row vectors and superscript 7' will be used to denote their
transpose. Further, suppose that G is any separable Hilbert space with inner product (-, -), and
B(G,H) is the class of all bounded linear operators from G to . It is to be noted that 5(G, H)

is an infinite dimensional Hilbert space associated with the Hilbert-Schmidt (HS) inner product
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(see [45]). Forany a € G and b € H, let us consider the tensor product a ® b € B(G,H),
which is defined as (@ ® b)e=(a, €)b, e € G. Suppose that ?zzies 7 2] S esmi b Letus

N2 = Z)T(Zi = 7)) e, mi " exists. Then, an

also suppose that the inverse of Szz:Zz‘es T

infinite dimensional version of the GREG estimator for the population mean is defined as
Yerec =Y + 8.,(Z — 2)S)), (3.1.3)

where Z=Ei\;1 ZZ/N’ ?zz:iEs 7'[‘;1}/;-/ ZiEs 7[-;1 and Szy=2i65 WZI(Z’i - 7) ® (Yv@ - ?)/
> 7. Under RHC sampling design, we consider the GREG estimator Y ¢ pr¢ after replac-

i€s 1

ing ;' by Gi Xt (cf. [22)).

3.2. Comparison of estimators under superpopulation models

In this section, we compare among the HT and the GREG estimators under SRSWOR, LMS and
HE®PS sampling designs, and the RHC and the GREG estimators under RHC sampling design.
For this, as mentioned in the introduction, we assume that the observations {(Y;, Z;, X;) : 1 <
i < N}areiid. H x R%*1-valued random variables on a probability space (€2, 7, P). Also, as
in Section 2.2, we consider the function P(s,w) that is defined on S x Q. Recall from Section
2.2 that for each s € S, P(s,w) is a random variable on 2, and for each w € Q, P(s,w) is a
probability distribution on S. It is to be noted that P(s,w) is a sampling design for each w € Q.
Next, recall from Section 2.1 in Chapter 2 that our asymptotic framework is as follows. Let {P, }
be a sequence of populations with N,,, n,, — oo as v — oo, where N,, and n,, are, respectively,
the population size and the sample size corresponding to the v** population. We shall frequently

drop the limiting index v for the sake of notational simplicity.

We now slightly modify the notation to describe high entropy sampling designs given in
the introduction. Suppose that a sampling design P(s,w) is such that the Kullback-Leibler
divergence D(P||R)=)_, s P(s,w)log (P(s,w)/R(s,w)) converges to 0 as v — oo a.s. [P]
for some rejective sampling design R(s,w) (for the description of rejective sampling design, see
the introduction). Such a sampling design is known as the high entropy sampling design (cf.
[4], [16], [7], etc.). We call a sampling design P(s,w) a HExPS sampling design if it is a high

entropy sampling design as well as a 7PS sampling design (see the introduction).
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Before we state our main results, let us consider some assumptions on distributions of
{Y;, Z;, X;}Y | Recall from Section 2.2 in Chapter 2 that Fp denotes that expectation with
respect to the probability measure P. The expectations of -valued random variables are defined
using Bochner integrals (see [45]). Also, recall from Section 2.1 in Chapter 2 that in any finite
dimensional Euclidean space, we consider the Euclidean norm and denote it by || - ||. On the
other hand, in H, we consider the norm induced by the inner product associated with H and

denote it by || - ||3.
Assumption 3.2.1. n/N — Aasv — oo, where 0 < A < 1.

Assumption 3.2.2. 0 < X; < ba.s. [P] for some b > 0, Ep(X;)™2 < oo, and maxi<;j<y Xi/

minj<;<y X;=0(1) as v — oo a.s. [P).

ASSllIIlptiOl’l 3.2.3. EPHYVZH;{L < 00, Ep||ZZ||4 < 00, and EP(Z,L — EP(ZZ))T(Z,L — EP(ZI)) is

positive definite (p.d.).

Assumptions 3.2.1 and 3.2.2 are discussed in Chapter 2 (see the discussion related to Assump-
tions 2.1.1, 2.1.3 and 2.2.1 in Chapter 2). Assumption 3.2.3 implies that the fourth order raw
moments of Y; and Z; exist. In this chapter, Assumptions 3.2.1-3.2.3 are used to prove some
technical results (see Lemmas 3.6.1-3.6.4 in Section 3.6) under LMS, HE7PS and RHC sampling
designs, which will be required to show weak convergence of \/ﬁ(? ar —Y), \/ﬁ(?R e —Y)
and \/ﬁ(?GREG —Y) via uniform approximation (see [54]). Now, we state the following

proposition.

Proposition 3.2.1. Suppose that Assumptions 3.2.1-3.2.3 hold. Then, a.s. [P], under SRSWOR
and LMS sampling design, \/ﬁ(?HT -Y) £y N asv — oo, where N is a Gaussian distribution
in H with mean 0 and some covariance operator. Moreover, if Assumption 3.2.1 holds with
0 < X\ < Ep(X;)/b, and Assumptions 3.2.2 and 3.2.3 hold, then the same result holds under any

HE®PS sampling design.

Next, as in Chapter 2, here also we consider the following assumption.

Assumption 3.2.4. For the RHC sampling design, { N, }"_, are such that

N/n, forr =1,--- ,n, when N/n is an integer,

Ny = [N/n], forr =1,--- ,k, and 3.2.1)

|IN/n| +1, forr =k+1,--- ,n, when N/n is not an integer,
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where k is such that 3."_, N,=N. Here, | N/n| is the integer part of N/n.

Now, we state the following propositions.

Proposition 3.2.2. Suppose that Assumptions 3.2.1-3.2.4 hold. Then, a.s. [P|, under RHC
sampling design, \/n(Y puc —Y) £y N as v — oo, where N is a Gaussian distribution in H

with mean 0 and some covariance operator.

Proposition 3.2.3. Suppose that Assumptions 3.2.1-3.2.3 hold. Then, a.s. [P], under SRSWOR
and LMS sampling design, \/ﬁ(?GREG -Y) L Nasv — oo, where N is a Gaussian
distribution in H with mean 0 and some covariance operator. Further, if Assumption 3.2.1 holds
with 0 < X\ < Ep(X;)/b, and Assumptions 3.2.2 and 3.2.3 hold, then the same result holds under
any HETPS sampling design. Moreover, if Assumptions 3.2.1-3.2.4 hold, then the above result
holds under RHC sampling design.

The weak convergence of the HT and the GREG estimators is shown under SRSWOR, LMS
and HE7PS sampling designs (see Propositions 3.2.1 and 3.2.3) using the weak convergence
of the HT and the GREG estimators under high entropy sampling designs and the fact that
the aforementioned sampling designs can be approximated by rejective sampling designs in
Kullback-Liebler divergence. The technique used to prove Propositions 3.2.1-3.2.3 is based on
the idea of convergence in distribution via uniform approximation considered in [54]. This idea
was used in [54] to extend central limit theorem for independent random variables from finite
dimensional Euclidean space to an infinite dimensional separable Hilbert space (see Proposition
2.11in [54]). Any infinite dimensional separable Hilbert space (e.g., the space of square integrable
functions equipped with L2-inner product) is isometrically isomorphic to the space of square
summable sequences I2 because a separable Hilbert space always has a complete orthonormal
basis. Further, the [? space can be conveniently viewed as an infinite dimensional extension
of a finite dimensional Euclidean space. Thus it is relatively easy to extend the results from

multivariate data setup to the functional data setup using the sequence structure of the [? space.

[12] and [15] showed the weak convergence of the HT and the model assisted estimators,
respectively, in C[0, 7] under some conditions on sampling designs (see pp. 110-111 in [12]
and pp. 569-573 in [15]). These conditions hold under usual sampling designs like SRSWOR,
stratified sampling design with SRSWOR, rejective sampling design, etc. We are able to dispense
with these conditions, and show the weak convergence of the HT and the GREG estimators in

a separable Hilbert space under SRSWOR, LMS and any HE7PS sampling designs. Many of
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these sampling designs are not covered in the earlier literature. We are also able to show the
weak convergence of the RHC and the GREG estimators in a separable Hilbert space under RHC

sampling design. These results are not available in the earlier literature.

We develop our results in a separable Hilbert space framework rather than in a space of
continuous functions equipped with supremum norm because we are able to prove Propositions
3.2.1-3.2.3 in the case of a separable Hilbert space framework. The space of continuous functions
is a subset of the space of square integrable functions, which is a separable Hilbert space equipped
with L? inner product. Random functions from the space of continuous functions can be expressed
as linear combinations of orthonormal basis functions in the space of square integrable functions

through the Karhunen-Lo¢ve expansion.

Next, we carry out the comparison of the estimators mentioned earlier based on the above
results. We say that an estimator ?1 with asymptotic covariance operator I' is asymptotically
at least as efficient as another estimator ?2 with asymptotic covariance operator A if A —I'is
non negative definite (n.n.d.), i.e., if ((A —I')a,a) > 0 for any a € H. We also say that ?1 is
asymptotically more efficient than ?2 if A —Tisp.d,ie.,if (A—-T)a,a) >0forany a € H

and a # 0. We now state the following theorems.

Theorem 3.2.1. Suppose that Assumptions 3.2.1-3.2.3 hold. Then, a.s. [P), the GREG estimator
is asymptotically at least as efficient as the HT estimator under SRSWOR as well as LMS sampling
design. Moreover, a.s. [P], both the GREG estimator has the same asymptotic distribution under

SRSWOR and LMS sampling design.

Before we state the next theorem, let us consider superpopulations satisfying the linear

regression model

d
Yi=Bo+ Y ZjiBj + eX], (3.2.2)
j=1
where i=1,..., N, {¢};., are i.i.d. H-valued random variables independent of {Z;, X;};*,

with mean 0. Here, Z;=(Z1;,..., Zq;), B € H for j=0,...,d, and > 0 is the degree of
heteroscedasticity present in the linear model given above. For any given n > 0, the conditional
total variance of Y; given (Z;, X;), the trace of the conditional covariance operator of Y; given
(Z;, X;), increases as the value of X; increases (cf. [72]). In essence, the parameter 1 determines
the rate at which this conditional total variance increases with X;. Similar types of linear model as

in (3.2.2) were used for constructing several estimators by earlier authors, when the observations
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on y are from some finite dimensional Euclidean space (see [17], [71], [72] and references
therein). A homoscedastic (i.e., when 1=0) version of the above linear regression model was
considered earlier in [14] and [15] for constructing the model assisted estimator of Y, when the

observations on y are from some functional space. Now, we state the following theorem.

Theorem 3.2.2. Suppose that (3.2.2) and Assumptions 3.2.1-3.2.4 hold. Then, a.s. [P, the GREG
estimator is asymptotically at least as efficient as the RHC estimator under RHC sampling design.
Further, if (3.2.2) holds, Assumption 3.2.1 holds with 0 < X\ < Ep(X;)/b, and Assumptions
3.2.2 and 3.2.3 hold, then a.s. |P), the GREG estimator is asymptotically at least as efficient as

the HT estimator under any HETPS sampling design.

It follows from the preceding results that the GREG estimator is asymptotically at least as
efficient as the HT and RHC estimators under each of the sampling designs considered in this
chapter. Also, both the HT and the GREG estimators have the same asymptotic distribution under
SRSWOR and LMS sampling design. Now, we compare the performance of the GREG estimator
under SRSWOR, RHC sampling design and HE7PS sampling designs based on the degree of

heteroscedasticity 7.

Theorem 3.2.3. Suppose that (3.2.2) holds, and €; has a p.d. covariance operator. Further,
suppose that Assumption 3.2.1 holds with 0 < \ < Ep(X;)/b, and Assumptions 3.2.2-3.2.4 hold.
Then, the sampling designs among SRSWOR, HEmPS and RHC sampling designs under which
the GREG estimator becomes the most efficient estimator a.s. [P)] are as mentioned in Table 3.1
below. Further, if Assumption 3.2.1 holds with A=0, and Assumptions 3.2.2-3.2.4 hold, then the
GREG estimator has the same asymptotic distribution under RHC and any HETPS sampling

designs.

Proofs of Theorems 3.2.1-3.2.3 involve some results related to operator theory, which are
available in [45]. It follows from (3.5.18) in the proof of Theorem 3.2.3 that covp(X 12 "_1, Xi),

) 2n—1
the covariance between X K

and X;, determines the sampling design among SRSWOR,
HE#PS and RHC sampling designs under which the GREG estimator becomes the most efficient
estimator. The GREG estimator performs more efficiently under SRSWOR than under RHC
and any HE7PS sampling designs, whenever covp (X, ZZ nfl, X;) < 0. On the other hand, the
GREG estimator under RHC as well as any HE7PS sampling design becomes more efficient

than the GREG estimator under SRSWOR in the case of A=0, whenever covp(X f XG>

0, and the GREG estimator under any HE7PS sampling design becomes more efficient than
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TABLE 3.1: Sampling designs for which the GREG estimator becomes the most efficient

estimator.
\=0 A>0& A>0&
A~1is an integer A~1 is a non-integer
n<0.5 SRSWOR SRSWOR SRSWOR
n=05 I'SRSWOR, HE#PS | ! SRSWOR, HE7PS | 2 SRSWOR & HE7PS
& RHC & RHC
n>0.5| 3 HExPS & RHC HE®PS HE~®PS

! GREG estimator has the same asymptotic distribution under SRSWOR, RHC
sampling design and HE7PS sampling designs for 7=0.5, A > 0 and A~! an
integer.

2 GREG estimator has the same asymptotic distribution under SRSWOR and
HE7PS sampling designs, when 7=0.5, A > 0 and A~ is a non-integer.

3 GREG estimator has the same asymptotic distribution under HE7PS and RHC
sampling designs for n > 0.5 and \=0.

the GREG estimator under both SRSWOR and RHC sampling design in the case of A > 0,
whenever covp(X2"™!, X;) > 0. Now, 227171 is a decreasing function of z for < 0.5 and
an increasing function of x for n > 0.5. Therefore, covp(anfl, X;) < 0forn < 0.5 and
covp(XZ-2 =1 Xi) > 0forn > 0.5. Thus the use of the auxiliary information in HE7PS and
RHC sampling designs has an adverse effect on the performance of the GREG estimator, when
1 < 0.5. On the other hand, for the case of > 0.5, the use of HE7PS and RHC sampling

designs improves the performance of the GREG estimator.

Note that if we consider a generalized version of the linear regression model in (3.2.2) as
Y;=Fy + Z?Zl Z;iBj + €ig(X;) for i=1,..., N and some non-negative real-valued function
g, then it can be shown in the same way as in the proof of Theorem 3.2.2 that the conclusion
of Theorem 3.2.2 holds under the above linear model. It can also be shown in the same way
as in the proof of Theorem 3.2.3 that the results in 2%, 37 and 4" rows in Table 3.1 related
to Theorem 3.2.3 hold, whenever covp(g%(X;) X, ", X;) < 0, covp(g*(X;)X; !, X;)=0 and
covp(g?(X;) X, L X;) > 0, respectively. In particular, the results in 2"¢, 37¢ and 4" rows in

Table 3.1 hold if g?(x)x ! is decreasing, constant and increasing function of z, respectively.

Let us denote the asymptotic covariance operator of \/n(Y — Y) by I', where Y denotes
one of Y i1, Y rzc and Y grra. Next, suppose that Y is either Y ;7 or Y grec under one

of SRSWOR, LMS and any HE7PS sampling designs. Then, it follows from the proofs of
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Propositions 3.2.1 and 3.2.3 that I'=lim,,_,o, n.N 2 Zfil(VZ —Tym) & (V; — Tvm)(wi_l -1)
a.s. [P], where Ty=>"N | Vi(1 — m;)/ 2N mi(1 — m;) and {m;} | are inclusion probabilities.
Further, V; is Y; for? being ?HT. Also, V;isY; - Y — Say(Zi — Z)S}) for Y being YGREG
Here, S.,=>" (Z; = Z) ® (Y; = Y)/N and S,.=5" (Z; — Z)T(Z; — Z)/N. We estimate
I by

D= mN")Y (Vi - Tym) @ (Vi = Tym) (" = Dm; (32.3)

ics

where V; is Y; or Y; — ?HT -8, y((Z; — ZHT)S 1) for Y being YHT or YGREg, respectively.

AISO TV 2265 ( )/Zzés( ) Szz Zzes Z_l(Z Z) (ZZ - Z)/ZiEsﬂ-i_ ’
and S,,=>",c m;  (Zi — Z) ® (Vi — Y)/ Dies T

Next, suppose that ? is either ?RHC or ?G rec under RHC sampling design. Then, it can
be shown from the proofs of Propositions 3.2.2 and 3.2.3 that I'=lim,, _, n’yYN -1 ZZJ\; 1 (V; —
X;V/X)®(Vi— X;V/X) X" as. [P], where y=3_""_, N,(N, — 1)/N(N — 1) with N, being
the size of the 7 group formed randomly in the first step of the RHC sampling design (see the
introduction), =1, ..., n. Further, V; is Y; for? being ?RHC- Also, V;isY; — Y — S.y(Zi —

Z)S}) for Y being ?G rEG- In this case, we estimate I" by

I'=ny(XNH) (V - XiVRHc/X> ® (V — XiVRHC/X) (GiX;%), (324

1€s
where V; is Y; or Y; — YRHC Szy((Z ZRHC)S 1) for Y being YRHC or YGREg, respec-
tively. Further, VRHC:ZiES(NXi)*IGiV;, ZRHC:ZiGS(NXZ-)*IGiZi and Szy and S., are
the same as above with 7, ! replaced by G; X P L. Also, recall b from Assumption 3.2.2. Now, we

state the following theorem concerning the consistency of I as an estimator of I" with respect to

the HS norm (see [45]).

Theorem 3.2.4. Let us consider I, the asymptotic covariance operator of \/ﬁ(? ~Y), and its
estimator T from the preceding discussion. Suppose that Assumptions 3.2.1-3.2.3 hold. Then,
a.s. [P], under SRSWOR and LMS sampling design, I' % I'as v — co. Here, the convergence
in probability holds with respect to the HS norm. Further, if Assumption 3.2.1 holds with
0 < X < Ep(X;)/b, and Assumptions 3.2.2 and 3.2.3 hold, then the same result holds under any
HEnPS sampling design. Moreover, if Assumptions 3.2.1-3.2.4 hold, then the above result holds
under RHC sampling design.
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3.3. Data analysis

3.3.1 Analysis based on synthetic data

In this section, we consider a finite population of size N=1000 generated as follows. We first
generate the observations X7, ..., Xy on the size variable x from a gamma distribution with
mean 500 and standard deviation (s.d.) 100. Here, we assume that the covariate z and the size
variable x are same. Then, we generate the population observations on y from L?[0, 1] using
linear regression models Y;(¢)=1000 + 3(¢)X; + €;(t) X;', where 8(t)=1, t and 1 — (t — 0.5),
n=Fk/10 for k=0,1,...,10, and {€;(¢)}¢co,1)’s are i.i.d. copies of standard Brownian motion
with mean 0 and covariance kernel o (s, t)=s A t. The population observations on y are generated
atti,...,t,, where r=100 and t;=jr~! for j=1,...,r. We now consider the estimation of the
mean of y. We compare the HT and the GREG estimators under SRSWOR and RS sampling
design, and the RHC and the GREG estimators under RHC sampling design in terms of relative
efficiencies as defined in the following paragraph. The RS sampling design is chosen as a HE7PS
sampling design since it is easier to implement than any other HETPS sampling design. We shall
not report the results under LMS sampling design because these results are very close to the

results under SRSWOR as expected from our theoretical results.

Suppose that each curve in a population of N curves from L2[0, 1] is observed at 1, ..., ¢, €
[0, 1] for some r > 1. Let us consider I samples each of size n from this population. Then, the
MSE of an estimator of Y, say ?, under sampling design P(s) is computed as M SE (?, P)=
(r)~ S, Z;Zl(?l(tj) — Y (t;))? (see [12], [14], etc.), where Y, is an estimate of ¥ based
on the I"" sample, I=1, ..., I. Further, we define the relative efficiency of an estimator ?1 under

sampling design P (s) compared to another estimator ?2 under sampling design P»(s) by
RE(Y:, Py|YV2, Ps) = MSE(Y, P)/MSE(Y1, Py).

We say that ?1 under P (s) is more efficient than ?2 under P,(s) if RE(?l, P | ?2, Py)> 1.
We compute relative efficiencies of the estimators mentioned in the preceding paragraph based
on /=1000 samples each of size n=100. We plot the relative efficiency of the HT estimator
compared to the GREG estimator under each of SRSWOR and RS sampling design as well as the
relative efficiency of the RHC estimator compared to the GREG estimator under RHC sampling
design for different 1. We also plot the relative efficiency of the GREG estimator under SRSWOR
compared to the GREG estimator under each of RS and RHC sampling designs. We use the R
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software for drawing samples as well as computing estimators. For RS sampling design, we use

the ‘pps’ package in R. The results obtained from this analysis are summarized as follows.

(1) It follows from Figures 3.1, 3.2 and 3.3 that the relative efficiency curve of the HT estimator
compared to the GREG estimator under each of SRSWOR and RS sampling design and
that of the RHC estimator compared to the GREG estimator under RHC sampling design
always lie below the y = 1 line (dashed line), when 3(t)=1,t or 1 — (¢ — 0.5)?. This
implies that the GREG estimator is more efficient than the HT estimator under SRSWOR
and RS sampling design, and the GREG estimator is more efficient than the RHC estimator
under RHC sampling design for different 7. The above results are in conformity with

Theorems 3.2.1 and 3.2.2.

RE(\A?HT, SRSWOR | \A(GREG, SRSWOR) RE(\A7HT, RS| \A/GRE& RS) RE(\A?RHC, RHC| \A?GREG, RHC)
n n n
= = =
gol gol gol
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Degree of heteroscedasticity Degree of heteroscedasticity Degree of heteroscedasticity

FIGURE 3.1: Comparison of HT, GREG and RHC estimators under different sampling designs
for 5(t)=1.

(ii) We see from Figures 3.4, 3.5 and 3.6 that the relative efficiency curve of the GREG
estimator under SRSWOR compared to that under each of RS and RHC sampling designs
lies above y = 1 line, when < 0.5 and 3(t)=1,t or 1 — (¢ — 0.5)2. However, these lines
lie below y = 1 line, when 17 > 0.5. This means that the use of the sampling designs like
RS and RHC have an adverse effect on the performance of the GREG estimator, when
n < 0.5. However, the use of the above sampling designs improves the performance of
the GREG estimator, when 77 > 0.5. Thus the above empirical results corroborate the

theoretical results stated in Theorem 3.2.3.
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3.3.2 Analysis based on real data
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Degree of heteroscedasticity

In this section, we consider Electricity Customer Behaviour Trial data available in Irish Social

Science Data Archive (ISSDA, https://www.ucd.ie/issda/). In this data set, we have electricity

consumption of Irish households measured (in kWh) at the end of every half an hour during the

period, 14" July in 2009 to 31%! December in 2010. We are interested in the estimation of the
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FIGURE 3.4: Comparison of GREG estimators under different sampling designs for 3(¢)=1.
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FIGURE 3.5: Comparison of GREG estimators under different sampling designs for 3(¢)=t.

mean electricity consumption curve in the summer months, viz. June, July and August in 2010
and in the winter month of December in 2010. It is to be noted that we consider the estimation of
the mean electricity consumption curve only in the winter month of December in 2010 because
the data for the other two months in the winter of 2010, viz. January and February in 2011 are

unavailable. In this data set, we have N=5372 households for which electricity consumption



3.3. Data analysis 81

A A
- — RE(Ycaeo, SRSWOR| Yopeg, RS)

A A
RE(Yree, SRSWOR | Yggee, RHC)

Relative efficiency
(¢]

T T
0.0 02 04 0.6 08 10
Degree of heteroscedasticity

FIGURE 3.6: Comparison of GREG estimators under different sampling designs for §(¢)=1 —
(t —0.5)2.

data are available during July and August of 2009 and all the summer months of 2010. We also
have N=5092 households for which electricity consumption data are available during December
of both 2009 and 2010. Further, for each unit, there are 4416 and 1488 measurement points in
summer months and December of 2010, respectively. Electricity consumption in summer months
and December of 2010 can be viewed as electricity consumption curves in L2[0, T} ] and L?[0, T%],
respectively, where T71=30 x 4416=132480 and T5=30 x 1488=44640. For estimating the mean
electricity consumption curve in the summer months of 2010, we choose the mean electricity
consumption in July and August of 2009 as the size variable x, the mean electricity consumption
in July of 2009 as the first covariate z; and the mean electricity consumption in August of 2009
as the second covariate z2. On the other hand, for estimating the mean electricity consumption
curve in December of 2010, we choose the mean electricity consumption in December of 2009
as both the size variable z and the covariate z. In case of the above estimation problems, we
compare the estimators considered in the preceding section in terms of relative efficiencies (see
Section 3.3.1). We compute relative efficiencies of these estimators based on /=1000 samples
each of size n=100, where these samples are selected from the two data sets consisting of 5372
and 5092 observations, respectively. The results obtained from this analysis are summarized as

follows.
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TABLE 3.2: Relative efficiencies of the HT, the GREG and the RHC estimators under various
sampling designs.

. . Jun, July and August | December
Relative efficiency iZ 92010 £ i 2010
RE(Y ¢rec, SRSWOR | Y g7, SRSWOR) 1.529 1.805
RE(Y ¢recs RS | Y g1, RS) 1.427 1.263
RE(Y greg, RHC | Y ryc, RHC) 1.531 1.251

TABLE 3.3: Relative efficiencies of the GREG estimator under various sampling designs.

. . Jun, July and August | December
Relative efficiency in 2010 i1 2010
RE(Y grec, RS | Y grEG, SRSWOR) 2.32 1.76
RE(Y grec, RS | Y grEG, RHC) 1.018 1.012

(i) We see from Table 3.2 that the GREG estimator is more efficient than the HT estimator
under SRSWOR and RS sampling design in both the data sets. Also, the GREG estimator
is more efficient than the RHC estimator under RHC sampling design in both the data sets.

Therefore, these results support the results stated in Theorems 3.2.1 and 3.2.2.

(i1) In the cases of both the data sets, we observe the presence of substantial heteroscedasticity
in electricity consumption data, when we plot each of the first three principal components
(PC) of electricity consumption data against the size variable (see Figures 3.7 and 3.8).
Further, it follows from Table 3.3 that the GREG estimator under RS sampling design is
more efficient than any other estimator under any other sampling design for both the data
sets. Thus the empirical results stated here are in conformity with the theoretical results

stated in Theorem 3.2.3.

3.4. Determining the degree of heteroscedasticity ,

In this section, we provide two methods for checking whether the degree of heteroscedasticity
7 in the linear regression model in (3.2.2) in Section 3.2 is bigger than 0.5 or smaller than 0.5
based on a pilot survey using SRSWOR. In the first method, we estimate 1 based on some
non-parametric estimation methods. In the second method, we choose 7 based on statistical tests

of heteroscedasticity.
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FIGURE 3.7: Scatter plots of the first three principal components of electricity consumption
data versus the size variable.

3.4.1 Estimation of n

Under the linear regression model in (3.2.2), we have the conditional total variance tr(covp(Y;|Z;,
Xi))= tr(covp(ei))Xi2 "I where tr denotes the trace of an operator, and covp(Y;|Z;, X;) is the
conditional covariance operator of Y; given (Z;, X;). Thus according to the linear model
(3.2.2), log (tr(covp(Yi|Z;, X;))) and log(X;) are linearly related with the slope 2. Now,
in the case of H=L>[0,T], we have tr(covp(Y;-|Zi,Xi))=f[07T] varp(Y;(t)|Z;, X;)dt, where
varp(Y;(t)| Z;, X;) is the conditional variance of Y;(¢) given (Z;, X;). Suppose that the obser-
vations {(Y;, Z;, X;) : 1 < i < N} in the population are generated from the linear model in
(3.2.2) and the observations on the study variable y are obtained at 1, . . ., ¢, in [0, T'|. Further,
suppose that s is a sample of size n drawn based on a pilot survey using SRSWOR. Then, we
estimate tr(covp(Y;|Z;, X;)) based on { (Yi(t;), Z;, X;) : i € s,1 =1,...,r} as follows. For
any 7 € sand [=1,...,r, we first construct the local average estimator of Ep(Y;(t;)|Z;, X;), the

conditional mean of Y;(¢;) given (Z;, X;), as

d
Be(Yi(t)|Z:, X)) =) ] ]l[Zji—Z]-k|§hu]]l[Xi—Xk|§hll]Yk’(tl>/

kes j=1

d
Z H ]l[lei*ijIShu]]l[erXkIShu]'

kes j=1

(34.1)
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FIGURE 3.8: Scatter plots of the first three principal components of electricity consumption
data versus the size variable.

Here, Zj; is 4% component of Z;. For any given [=1,...,r, we compute the bandwidth
hy; using leave one out cross validation based on {(Y;(t;), Z;, X;) : i € s}. Now, using

{Ep(Yi(t))|Zs, X;) : i € s}, we estimate varp(Y;(t;)| Zi, X;) by local sample variance
d
varp(Y;(t)|Zi, Xi) = Z H ]l[IZjﬁijléhzz]]l[erXkIShm} x
kes j=1

d
(Yk(tl) - EP(Yk(tl”ZkvXk))Q/ Z H ]1[|Zji—ij\§h2l}]1[|Xi—Xk\§h2l}

kes j=1

(3.4.2)

forany i € sand l=1,...,r. We compute the bandwidth ho; based on { ((Y;(t;) — Ep(Y;(t))|Zi,
Xi))z, Z;, Xi) S s} using leave one out cross validation in the same way as we compute
the bandwidth hq;. Now, given {Wp(Yi(tl)]Zi, X;) i€ sl=1..., r}, we estimate
tr(covp(Y;|Zi, X;)) by Tr=1>°7_, varp(Yi(t)|Zi, X;) for any i € s. Then, we fit a least
square regression line to the data { (log(Tr' 3"_, vare(Y;(t)|Zi, X)), log(X;)) : i € s},
and compute the slope of this line. The slope, say 0, is expected to be close to 27 if the linear
model in (3.2.2) holds. Thus ﬁ:O.Sé can be considered as an estimator of 77. We demonstrate this

method based on real and synthetic data as follows.

(1) Let us first consider the data sets from Section 3.3.2. Recall from Section 3.3.2 that in

the case of the estimation of the mean electricity consumption curve in June, July and
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(i)

August of 2010, we have r=4416. On the other hand, in the case of the estimation of the
mean electricity consumption curve in the December of 2010, we have r=1488. Also,
recall that T'=30r in the cases of the estimation problems for both the data sets. We draw
1=100 samples each of size n=500 from these populations using SRSWOR and estimate
1 as above based on these samples. Then, we compute the proportion of cases, when
7 > 0.5. It follows that this proportion is 0.72 in the case of the estimation of the mean
electricity consumption curve in June, July and August of 2010 and 0.76 in the case of the
estimation of the mean electricity consumption curve in the December of 2010. Recall
from Section 3.3.2 that in the cases of the estimation problems for both the data sets, the
GREG estimator under RS sampling design is more efficient than any other estimator
under any other sampling design when compared in terms of relative efficiencies. These

corroborate the results stated in Theorem 3.2.3.

Next, suppose that finite populations each of size N=5000 are generated from linear models
in the same way as in Section 3.3.1. Recall from Section 3.3.1 that »=100, T'=1 and 7=0.1k
for k=0, ...,10 in this case. We draw =100 samples each of size n=500 from these
populations using SRSWOR. Based on each sample s, we estimate 7. Now, suppose that
Tk is the estimate of 0.1k based on the I** sample for k=0, ...,10 and /=1, ..., I. Then,
we compute the proportion [ ~1#{] : 7, < 0.5} for different 1’s and 3(t)’s (see Section
3.3.1) in Table 3.4. It follows from Table 3.4 that for the values of 7 smaller than 0.5, the
proportions are close to 1. On the other hand, these proportions gradually decrease and
become 0, when 77 becomes larger than 0.5. Once again, these corroborate the results stated

in Theorem 3.2.3.

3.4.2 Tests for n

Under the linear regression model in (3.2.2), in the case of H=L?[0, T'], we have X, f 0 T] i (t)dt=
X" f[O’T] Bo(t)dt + Zj:l (f[o,T] Bi(t)dt) Z; X" + f[O,T] e;(t)dt for i=1,..., N. As in the

preceding section, suppose that observations on the study variable y are obtained at ¢1,...,%,

in [0, 7], and s is a sample of size n drawn based on a pilot survey using SRSWOR. Then we

can say that {(Y;X; ", (1,Z;)X; ") : i € s} are generated from a homoscedastic linear model.

Here,

Y= f[o 7] “(t)dt for i € s. We approximate Y; by Y;=T"r1 > -1 Yi(t1). Next, for every

nin {0.1k : k = 0,...,10}, we test the null hypothesis Hy ,, : the data {(V; X, ", (1, Z:)X; ") :

i € s} are generated from a homoscedastic linear model against the alternative hypothesis H1 ,, :



86 Chapter 3. Estimators of the mean of infinite dimensional data in finite populations

TABLE 3.4: Proportion of cases when 7} < 0.5 for different )’s and 5(¢)’s in the case of synthetic
data.

n | Bt)=L | Bt)=t | B(t)=1— (t —0.5)*
0 1 1 1
01| 1 1 1
02| 1 1 1
03| 1 0.99 0.98
04| 099 | 095 0.96
05| 09 | 092 0.94
0.6 | 052 | 0.56 0.59
07| 02 | 024 0.2
0.8 | 001 | 0.02
09| 0 0

1 0 0

heteroscedasticity is present in the data {(Y; X, ", (1, Z;)X; ") : i € s}. For this purpose, we use
the Breusch-Pagan (BP, see [11]), the White (see [86]) and the Glejser (see [38]) tests because
these are some well-known tests for heteroscedasticity. In these tests, the residuals obtained
from the ordinary least square regression between the response and the explanatory variables are
expressed in terms of explanatory variables by means of different parametric models, and it is
checked whether the explanatory variables have any influence on these residuals. Large P-values
of the BP, the White and the Glejser tests are indicative of substantial evidence in favour of Ho .
Thus, we select the 1 from {0.1k : £ = 0,...,10} for which we have the highest P-value. We

denote this 7 by 7). Now, we demonstrate this method based on real and synthetic data as follows.

(1) As in the preceding section, let us first consider the data sets used in Section 3.3.2. We
draw =100 samples each of size n=500 from these data sets using SRSWOR and compute
7 as above based on each of these samples. Then, for each of the three tests and each of the
data sets, we compute the proportion of cases, when 7} > 0.5 (see Table 3.5). As mentioned
in the preceding Section, in the cases of both the estimation problems, the GREG estimator
under RS sampling design becomes the most efficient estimator when compared in terms

of relative efficiencies. These corroborate the results stated in Theorem 3.2.3.

(i) Next, we determine 7 as above based on the synthetic data considered in Section 3.4.1.
We draw =100 samples each of size n=500 from these data sets using SRSWOR and

compute 7 based on each of these samples. Then, for each of the three tests, every 7 in



3.5. Proofs of the main results 87

TABLE 3.5: Proportion of cases when 7) > 0.5 for different tests and data sets in the case of
electricity consumption data.

Test Jun, July and August | December
in 2010 in 2010
BP 0.79 0.83
White 0.76 0.78
Glejser 0.84 0.8

{0.1k : k =1,...,10} and each §(t) (see Section 3.3.1), we compute the proportion of
cases, 1) < 0.5 (see Table 3.6). As in the previous section, it follows from Table 3.6 that
for the values of 1 smaller than 0.5, these proportions are close to 1. On the other hand,
these proportions gradually decrease and become 0, when 7 becomes larger than 0.5. Once

again, these corroborate the results stated in Theorem 3.2.3.

TABLE 3.6: Proportion of cases when 7} < 0.5 for different 7)’s and 5(¢)’s in the case of synthetic

data.
. pt)=1 p(t)=t Bt)=1— (t—0.5)°
BP | White | Glejser | BP | White | Glejser | BP | White | Glejser
0 1 1 1 1 1 1 1 1 1
0.1 1 1 1 1 1 1 1 1 1
0.2 1096 | 0.99 0.99 | 0.99 1 1 1 0.97 0.93

031095 | 0.77 0.98 0.9 | 091 093 |098| 09 0.88
04085 | 0.75 0.84 | 0.83| 0.72 0.88 | 0.87| 0.9 0.79
0.5] 0.6 | 0.65 0.68 | 0.67 | 0.58 0.69 | 0.58 | 0.69 0.72
0.6 | 047 | 0.29 0.36 | 0.43 | 0.46 0.47 |0.39| 045 0.36
0.7 1017 | 0.22 0.15 |0.16 | 0.21 0.14 |0.13 | 0.25 0.17
0.8 | 0.09 | 0.07 0.06 | 0.07 | 0.06 0.05 | 0.03| 0.04 0.09
0.9 | 0.01| 0.02 0 0.01 | 0.01 0.01 | 0.01| 0.01 0

3.5. Proofs of the main results

In this section, we give the proofs of different Propositions and Theorems. For technical de-
tails, which are related to operator theory and used in the proofs of Propositions and The-
orems, the reader is referred to [45]. Let us first introduce some notations. Let {ej}?L

be an orthonormal basis of the separable Hilbert space . Suppose that V; is either Y; or
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Vi —Y = S.,(Zi — 2)S5}), where S.,=S"N (Z; —Z)® (Y; = Y)/N and S..=5"~ (Z; —
2)1(Z;—Z)/N. Further, suppose that ﬁI:ZiES(Nm)*IVi and $1=nN2 N (Vi-Tym)®
(Vi — Tym;)(m; ' — 1), where TV=Z£\L1 Vi(l —m;)/ Zf\il 7 (1 — 7;), and 7; is the inclusion
probability of the i*" population unit. Moreover, in the case of RHC sampling design, suppose
that Vo=3",. (N X;)"1G;V; and Sy=ny XN N (Vi - X,V/X) @ (Vi — X,V /X)X,
where V="V V;/N, X="" | X;/N, G, is the total of the z values of that randomly formed
group from which the i*? population unit is selected in the sample by RHC sampling design (see
the introduction), and y=>_"_, N,.(N,, — 1)/N(N — 1) with N, being the size of the r*" group
formed randomly in the first step of the RHC sampling design for r=1, ..., n. Let us also assume

that Sk:\/ﬁ(ﬁk — V) for k=1, 2.

Proof of Proposition 3.2.1. Recall the expression of ?HT from (3.1.1) in Section 3.1 and note
that S1= \/ﬁ(?HT —Y) if we substitute V;=Y; in ;. It follows from Lemma 3.6.3 in Section 3.6
that ((S1,e1),...,(S1,er)) £ N, (0,T'1) as v — oo for any r > 1 under SRSWOR, LMS and
any HE7PS sampling designs a.s. [P]. Here, I'1 - is a 7 x r matrix such that ((I'y;.)) y=(I'1e;, e1),
and I'1=lim,_, ¥1 a.s. [P]. Further, it follows from the 15! paragraph in the proof of Lemma
3.6.2 in Section 3.6 that [';=A; for SRSWOR and LMS sampling design, and I'y=As for any
HE#PS sampling design. Here,

Ay = (1-NEp(Y; — Ep(Y)) ® (Vi — Ep(Y;)) and
Ao = Ep [{Y; -X'X; (EP(Yi) - )‘EP(XiY;l)/EP(Xi)> }® (3.5.1)

{33 (et — 3B () ) H X B

with x=Ep(X;) — AEp(X;)?/Ep(X;). Now, suppose that IT,. denotes the orthogonal projection
onto the linear span of {e1, ..., e }, e, ;(a)=>"_,(a,e;)e; forany r > 1 and a € H. Then,
by continuous mapping theorem, II,-(S1)= >"%_, (51, ¢;)e; £ Mo I ! as v — oo under the
above sampling designs for any 7 > 1 a.s. [P], where A7 is the Gaussian distribution in H with
mean 0 and covariance operator I';. Moreover, in view of Lemma 3.6.4 in Section 3.6, we have
lim, 00 limy, 500 > ey, P(s,w)=0 a.s. [P], where P(s,w) denotes one of the above sampling
designs. Then, by Proposition 2.1 in [54], \/ﬁ(?HT -Y) £ N1 as v — oo under the above
sampling designs a.s. [P]. O

Proof of Proposition 3.2.2. Recall the expression of ?RHC from (3.1.2) in Section 3.1 and

note that Sp= \/ﬁ(?RHC —Y) if we substitute V;=Y; in S. It follows in view of Lemma
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3.6.3 in Section 3.6 that under RHC sampling design, ((S2,e1), ..., {S2,¢e,)) £ N,(0,T'y,) as
v — oo for any r > 1 a.s. [P]. Here, Iy, is a 7 x r matrix such that ((I'2;-)) i=(I'2¢;, €;), and
Io=lim, o, X9 a.s. [P]. Further, it follows from the 2"¢ paragraph in the proof of Lemma 3.6.2

in Section 3.6 that 'o=Aj3. Here,
Az = cf{ Bp(X,) Ep((Yi @ Y)) X[ ') — Bp(Y;) © Ep(Yi)} (35.2)

with c=lim,_, o, ny > 0. It is to be noted that ny — casv — coforsomec >1— X >0
by Lemma 2.7.5 in Section 2.7 of Chapter 2. Therefore, by continuous mapping theorem,
I, (S2)=> "1 (S2, e5)¢; L Nyo II-! as v — oo under RHC sampling design for any r > 1
a.s. [P], where N> is the Gaussian distribution in H with mean 0 and covariance operator I's.

Next, it follows from Lemma 3.6.4 in Section 3.6 that lim, . lim, 00 > P(s,w)=0

s€Bs
|, where P(s w) denotes RHC sampling design. Then, by Proposition 2.1 in [54],

P
f(?RHC Y) £, N3 as v — oo under RHC sampling design a.s. [P]. O

Proof of Proposition 3.2.3. Recall from (3.1.3) in Section 3.1 that YG REG= Y + Szy((

7)5 ) WhereY Zzes 7 IY/Zzes 'L 7 Zzes 7 Z/Z’LES 7 SZZ Zzes ’L_I(Z -
(2= 2)) ey m; ' and Soy=X,c w2 = 2) @ (Vi = V) Tieymi - Note that

Yeree —Y = eV, -V)+ B, (3.5.3)

where ﬁl_zzes
2)S;1) - 8. ((Z 2)S21), Sey=3"101 (Zi= Z)® (Y;=Y) /N, and S..=3" % (Zi = Z)"(Zi -

zZz

(N7) Vi VisYi — ¥ = 82y (Zi — 2)S71). 0=(T sy ) L B=S2y (Z -
Z)/N. Using Lemmas 3.6.3 and 3.6.4 in Section 3.6, it can be shown in the same way as in the
proof of Proposition 3.2.1 that as v — oo, \/ﬁ(ﬁl -V) £ N3 under SRSWOR, LMS and any
HE#PS sampling designs a.s. [P], where N3 is the Gaussian distribution in 4 with mean 0 and
covariance operator I'y. Here, I'1=lim, _, o 31 a.s. [P]. It follows from the last paragraph in the
proof of Lemma 3.6.2 in Section 3.6 that I';=A,4 under SRSWOR and LMS sampling design,
and ['1=Aj under any HE7PS sampling design. Here,

Av=(1- A)Ep{ (Y ~ Ep(¥) — Oy (2 — EP<ZZ->>CZ£)) ®
(3.5.4)

<Y;- — Bp(Y;) — Coy((Z; — EP(Zi))CZ_zl)> } and
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As = [{Y Ep(Y;) — Coy((Z; — Ev(Z;))CLH )+
XIXM(EP(Xin‘) — Ep(Xi)Ep(Y;) — Coy ((Ep(XiZi) — Ep(X;)Ep(Z;)) %
CZJ)) (EP(Xi))‘l} ® {Y — Bp(Y:) — Coy ((Zi — Bp(Z:))C )+ (3.5.5)

XA (Br(0Y0) — Bl Br(Y) - Oy (Be(X:23) ~ Be(X)Er(Z0)

Cz;))<Ep<Xi)>1}{X 'Bp(X AH

with xy=Ep(X;) — AEp(X;)?/Ep(X;). Now, to establish the weak convergence of \/ﬁ(?g REG —
Y) under the above sampling designs a.s. [P], it is enough to show that © £ 1 and \/nB % 0

under these sampling designs as v — oo a.s. [P].

Suppose that || - ||,, denotes the operator norm. Note that except the operator norm, we use
only the HS norm for the operators considered in this chapter and denote it by || - || zs. Also,
note that

1Bl < (152 lopl1Szy = Szyllop + 1192y llop 17 = SZH lop) 1 Z — Z]].- (3.5.6)

It follows in view of Lemma 3.6.5 in Section 3.6 that as v — oo,

N
S (Nm) TN Y@ Z) =op(1). || Y (Nm) 1zl Z;-
€S z:l €S
N o (3.5.7)
ZZiTZz'/NH = 0p(1),Vn||Z1 — ZH = Op(1), and Z(Nm)_l —1=0,(1)
i=1 1€S
under the sampling designs considered in the previous paragraph a.s. [P], where ?1:2 ies(NT) 1
x Z;. Consequently, in view of Assumption 3.2.3,
VallZ - ZH =0,(1),[]8.: — S..|| < ‘ S.. = S..|| = 0p(1) and
» (3.5.8)
[5-5a] = [s-ss| =o
op HS
as v — oo under these sampling designs a.s. [P]. Here, Szy Sies T (Vi — Y) (Z; —

7)/ Sics ™ - and S¥ —Zi]\il(Yi —Y) ® (Z; — Z)/N are adjoints of S, and S.,, respectively.
Now, recall C., and C.,, from the 27? paragraph in the proof of Lemma 3.6.2 in Section 3.6. Note

that ||S.. — C..||=0(1) and ||S.y — C.y||ms=0(1) as v — oo a.s. [P] in view of Assumption
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3.2.3. Also, note that C;;' exists by Assumption 3.2.3. Consequently, ||S2!||o,=0(1), ||} —
S M op=0p(1) and [|S.y||op=0p(1) as v — oo a.s. [P]. Thus v/n|| B||z=0,(1) and © — 1=0,(1)
as v — oo under the above-mentioned sampling designs a.s. [P]. Hence, the weak convergence

of \/ﬁ(?G reG — Y ) follows under these sampling designs by using Proposition 2.1 in [54].

Let us next consider the RHC sampling design. Recall from Section 3.1 that we consider
?G rec under RHC sampling design with 7, ! replacing G; X ;1. Then, under this sampling
design,

Yeree —Y = O(Vy-V)+ B, (3.5.9)

where ﬁFZ (NX;) LG,V for Vi=Y; = Y — S.,((Z; — Z)S2.}), and © and B are the same

i€s
as defined in the 15" paragraph of this proof with r;” ! replaced by G; X i ! Using Lemmas 3.6.3
and 3.6.4 in Section 3.6, it can be shown in a similar way as in the proof of Proposition 3.2.2 that
ﬁ(ﬁg -V) £ Ny as v — oo under RHC sampling design a.s. [P], where A, is the Gaussian
distribution in A with mean 0 and covariance operator I'y. It follows from the last paragraph in

the proof of Lemma 3.6.2 in Section 3.6 that I'y=Ag=lim, o, >2 a.s. [P]. Here,

Ag = cEp<Xi>Ep{ <Y — BpY) - .y (Zi - EP<ZZ->>CZ;)> ®
(3.5.10)

(Y; — Bp(Yi) — Coy ((Zi — EP(Zi))CZZl)>Xi_1}

with c=lim,_,,, ny > 0. It is to be noted that ny — casv — oo forsomec > 1— X > 0
by Lemma 2.7.5 in Section 2.7 of Chapter 2. Moreover, using Lemma 3.6.5 in Section 3.6,
it can be shown in the same way as in the preceding paragraph of this proof that © 2 1 and
V/nB 2, 0 as v — oo under RHC sampling design a.s. [P]. Threfore, the weak convergence of

\/ﬁ(?a rEG — Y ) follows under this sampling design by using Proposition 2.1 in [54]. O

Proof of Theorem 3.2.1. Let us recall the expressions of A; and Ay from the proofs of Proposi-
tions 3.2.1 and 3.2.2, respectively. It follows from the proof of Proposition 3.2.3 that a.s. [P],
vn (?G RrEG — Y ) has the same asymptotic covariance operator A4 under SRSWOR and LMS
sampling design. It further follows from the proof of Proposition 3.2.1 that a.s. [P], the asymptotic
covariance operator of \/ﬁ(?HT —Y)is Ay under SRSWOR as well as LMS sampling design.
Let A;=(Y;,a) fora € H and i=1,..., N. Then, we have

<(A1 — A4)a, a> = (1 — )\) (EP(Az — E’P(AAZ))2 — Ep(AZ — EP(Az)— (3 5 11)
CouCM(Z: — Ep(Z))T)?) = (1 - N)CauClCT, -
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for C.o=Ep(A; — Ep(4;))(Z; — Ep(Z;)) and C,.=Ep(Z; — Ep(Z:))T (Z; — Ep(Z;)). Note that
C.oC'CT > 0 for any a € H by Assumption 3.2.3. In fact, there exists a € H such that a # 0
and C,,=0. Therefore, A; — Ay is p.s.d. Hence, a.s. [P], the GREG estimator is asymptotically
at least as efficient as the HT estimator under SRSWOR and LMS sampling design. Moreover,
a.s. [P], both the GREG estimator has the same asymptotic distribution under SRSWOR and

LMS sampling design. O

Proof of Theorem 3.2.2. Let us recall the expressions of Ao, As, Az and Ag from the proofs of
Propositions 3.2.1-3.2.3. It can be shown from the proofs of Propositions 3.2.2 and 3.2.3 that
a.s. [P], asymptotic covariance operators of \/n (? ruc — Y ) and \/n (?G rEG — Y ) under RHC
sampling design are As and Ag, respectively. Now, it follows from the linear regression model

in (3.2.2) in Section 3.2 that

2
<A3a CL> = C|:NIEP(62)2EP(X277 1) + g Ep <ﬁ0 + ZBJ ]z) Xi_l_
j=1

(Zﬂﬂ@) ]and (Aga, a) = cu, Bp(&) Ep (X771,

(3.5.12)

where c=lim,_,oo ny > 0, a € H, €=(€;,a), u=Ep(X;), 6' (Bj,a) for j=0,...,d, po=1, and
pui=Ep(Zj;) for j=1, ..., d. Therefore,

d d 2
(A3 — Ag)a, a) = cuiz Ep (Bo +Y BiZi— Xi )y Bjuju;1> X7'>0 (3513
j=1 j=0
for any a € H. Thus Ag — Ag is n.n.d. Hence, a.s. [P], the GREG estimator is asymptotically
at least as efficient as the RHC estimator under RHC sampling design. Next, it follows from
the proofs of Propositions 3.2.1 and 3.2.3 that a.s. [P], asymptotic covariance operators of
\/ﬁ(?HT —Y) and \/ﬁ(?g rEG — Y) under any HE7PS sampling design are Ao and As,

respectively. Further, it follows from the linear regression model in (3.2.2) in Section 3.2 that

(Asa,a) = [Ep(ez) { 11 Bp (X7 — AEP(X??)} + Ep{ <Bo + Ed: 3 ij)?x

j=1
d 2
(6 e =0 = 0= Mo+ (3B (e = ) } | (3514
j=1

and (Asa, a) = Ep(&)” <M:cEP (X" - AEP(Xz‘Qn)>,
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where p1j,=FEp(Z;;X;) for j=1,...,d and x=p1, — AEp(X;)% (1)~ 1. Now, since Assumption
3.2.2holds and 0 < X < .b~!, we have

d d
(A2 — As)a,a) = Ep [{ (Bo +) Bijz) —x ' X; < > Bin — Abo—
= =0 (3.5.15)

d 2
> /\Bjﬂjxﬂa_rl)} (X5 e — )‘)} 20
j=1

Thus using similar arguments as above, we can say that a.s. [P], the GREG estimator is asymptot-

ically at least as efficient as the HT estimator under any HE7PS sampling design. 0

Proof of Theorem 3.2.3. Recall from the proofs of Theorems 3.2.1 and 3.2.2 that a.s. [P], the
asymptotic covariance operators of the GREG estimator under SRSWOR, any HE7PS sampling
design and RHC sampling design are A4, As and Ag, respectively. Also, recall from (3.5.12)
and (3.5.14) in the proof of Theorem 3.2.2 that

<A5a, CL) = Ep(€i>2 (M:UEP (an—l) — )\Ep (X?n)) and <A6a, CL)
(3.5.16)

= e Bp(&)2Ep (X771

)

for any a € H under the linear regression model in (3.2.2) in Section 3.2. It can be further shown

using (3.2.2) in Section 3.2 and (3.6.10) in the proof of Lemma 3.6.2 in Section 3.6 that
(Aga,a) = (1 — \)Ep(&)2Ep(X") (3.5.17)
for any @ € ‘H. Therefore, we have

(A4 — As)a,a) = Ep(&)*covp (Xf"l, XZ->

7

((Ag — As)a,a) = Ep(&)* (AEP (X27) — (1 - C)EP(X.Qn_l),ux) and (3.5.18)

(Ag — Ag)a, a) = Ep(&)> ((1 — N Ep(X]") - cEP(X?"‘l)ux>

for any a € H. Note that Ep(&)?=(Ep(¢; ® €;)a,a) > 0 for any a € H since Ep(e; ® ¢;) is
p.d. Also, note that covp (X?"il, X;) > 0forn > 0.5, covp(Xiznfl, X;) = 0forn=0.5and

covp (Xf”_l, Xi) < 0 for 7 < 0.5. Further, it follows from Lemma 2.7.5 in Section 2.7 of

Chapter 2 that c=1 for A\=0, c=1 — X for A > 0 and A\~ ! an integer, and ¢ > 1 — X\ when A > 0
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and \"lisa non-integer. Therefore, the results in Table 3.7 below hold, and hence the results
stated in Table 3.1 hold.

TABLE 3.7: Relations among Ay, Ay and Ag.

\=0 A>0& A>0&
A~lisaninteger | A~!is a non-integer
As — Ay and As — Ay and As — Ay and
1<0:5 Ag — Agarep.d. | Ag — Ay are p.d. Ag — Ay are p.d.
n = 0.5 A4=A5=A6 A4=A5=A6 AGAi_AAj iznlf.d.
As=Ag and A4 — As and A4 — Ag and
n>0.5 Ay — Asispd. | Ag — Ajs are p.d. Ag — As are p.d.

Next, if we put A=0 and c=1, respectively, in the expressions of As and Ag in the proof of
Lemma 3.6.2 in Section 3.6, we have A5=Ag. Thus a.s. [P], the GREG estimator has the same
asymptotic covariance operator under RHC and any HE7PS sampling designs. Hence, a.s. [P],
the GREG estimator has the same asymptotic distribution under RHC and any HE7PS sampling

designs. This completes the proof of the theorem. O
Proof of Theorem 3.2.4. Recall the expression of I from (3.2.3) in Section 3.2 and note that

I'= (nN72) ( S e Vi)t - Dt =Y (1 -m) Ty @ T},) (3.5.19)

i€s i€s
with TV=Zi€s ‘71(77;1 — 1)/ ,c,(1 —m;). Let us first consider the case, when I" denotes the
asymptotic covariance operator of /n (? gT — Y ) and I is its estimator. Then, we have V;=Y; in

I". Now, recall the expression of X7 from the beginning of this section and note that

N

N
Y1 = (nN72) < ViV -1 =) ml-m)Ty @ Tv> (3.5.20)
i=1 i=1
with Tvzzij\il Vi(l —m;)/ Zfil m;(1 — ;). Let us substitute V;=Y; in ;. We shall first show
that under SRSWOR, LMS and any HE7PS sampling designs, I — % % 0with respect to the
HS norm as v — oo a.s. [P]. It follows by Assumption 3.2.3 that 3N | 1Y;]|3,/N=0(1) as
v — oo a.s. [P]. It also follows by (3.6.1) in the statement of Lemma 3.6.1 in Section 3.6 that as
v — 00, Zf\;l (Nmi(1— Wi)/n)2/N=O(1) under the above sampling designs a.s. [P]. Then,
using the same line of arguments as in the proof of Lemma 3.6.5 in Section 3.6, it can be shown

that
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(Z(l — ) — Zm(l - m))/n = 0,(1) and

ies =1 N (3.5.21)
SV 1) - V- ) ] /N — 0,(1)
1€8s i=1 H

as v — oo a.s. [P]. Moreover, Z,fil mi(1 — m;)/n is bounded away from 0 as v — oo a.s. [P]
because (3.6.1) and Assumption 3.2.1 hold. Consequently, under all of the above-mentioned
sampling designs, (nN~2)(Y;c,(1 —m)(Ty @ Ty) — SN m(1 — ) (Ty @ Tv)) 2 0 with
respect to the HS norm as v — oo a.s. [P]. Similarly, (nN_2)(ZZ-€S(Vi ® ‘A/l)(ﬂ'z_l — ;-
SN (Vo Vi) (rt = 1)) & 0 with respect to the HS norm as v — oo a.s. [P]. Thus under the
above sampling designs, I -3 & 0with respect to the HS norm as v — oo a.s. [P]. Recall
from Section 3.2 that I'=lim,_,», 31 a.s. [P]. Therefore, under the aforesaid sampling designs,

' & T with respect to the HS norm as v — oo a.s. [P].

Let us next consider the case, when I' denotes the asymptotic covariance operator of
\/ﬁ(?g REG — 7) and T" denotes its estimator. Then, I" is the same as described in the pre-
ceding paragraph with Vi=Y; — ?HT — S'Zy((Zi — ?HT)S';;). Let us also consider X; with
Vi=Y; =Y — S.,((Zi — Z)SZ.}). Note that

N N . -
<ZVi(7TZ~ 1) —;v;(l—m))/N:Z(Vi—w)(wi 1 _1)/N+

1€8 1€S

N
<sz-<ml—1>—;vi(1‘”")>/]v'

1€s

(3.5.22)

It can be shown in the same way as in the proof of Lemma 3.6.5 in Section 3.6 that |[(>_, ., Vix

(1 =1) =N Vi(1—m;)) /N||3=0,(1) under the sampling designs considered in the previous
paragraph as v — oo a.s. [P]. Further, it can be shown that || ZiEs(Vi—Vg)(ﬂ;l—l)/N||H=0p(1)
as v — oo a.s. [P] since H?HT = Yllu=0,(1), ngy — Szyllop=0p(1), ng_zl = 82 lop=0p(1),
11524 |1op=0p(1) and ||S5;!||op=O(1) as v — oo a.s. [P] (see the proof of Proposition 3.2.3).
Then, (nN~2)(X;es(1 — m)(Ty @ Ty) — S mi(1 — m)(Tv @ Ty)) £ 0 with respect to
the HS norm as v — oo a.s. [P]. Similarly, (nN=2)(3 e, (Vi @ Vi) (m; ' — D) = N (Vi@
Vi) (w7t — 1)) & 0 with respect to the HS norm as v — oo a.s. [P]. Hence, under the above

sampling designs, I'— %, % 0, and hence I' % T with respect to the HS norm as v — oo a.s.

[P].
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Next, consider the case, when I" denotes the asymptotic covariance operator of /(Y rgc —
Y) or /n(Y greg — Y) under RHC sampling design, and I denotes its estimator. Recall from

(3.2.4) in Section 3.2 that in this case,

I'= nV(YN_l) Z <Vz - Xi{/RHC/X> ® <‘71 — Xi‘A/'RHc/X> (GiXi_2) =

e (3.5.23)
-1 TPy v T
ny ((XN ) Z(Vi @ Vi)GiX; " = VRuc ® VRHC) :

1€S
Also, recall the expression of >5 from the beginning of this section and note that
— N j— _—
Sy = m((XN—l) Y VieVX ' -Ve V). (3.5.24)
i=1

Then, it can be shown in a similar way as in the earlier cases that under RHC sampling design,
I'— %y % 0 with respect to the HS norm as v — oo a.s. [P]. Therefore, under RHC sampling
design, [ 2 T with respect to the HS norm as v — oo a.s. [P] because I'=lim,,_, o X2 a.s. [P]

(see Section 3.2). ]

3.6. Proofs of additional results required to prove the main results

In this section, we state and prove some technical lemmas, which will be required to prove our

main results.

Lemma 3.6.1. Suppose that Assumption 3.2.2 holds. Then, LMS sampling design is a high
entropy sampling design. Moreover, under each of SRSWOR, LMS and any HE7PS sampling

designs, we have, for all sufficiently large v,

L < Nm;/n < L' for some constants L, L' > 0 and all 1 <i < N a.s. [P]. 3.6.1)

Lemma 3.6.1 is similar to Lemma 2.7.1 in Chapter 2.

Proof. The proof of the above Lemma follows exactly the same way as the proof of Lemma

27.1. H
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Before we state the next lemma, let us recall {e;}52, {V;}¥, %1 and ¥, from the paragraph
preceding the proof of Proposition 3.2.1 in Section 3.5. Let us also recall b from Assumption

3.2.2. We now state the following lemma.

Lemma 3.6.2. Suppose that Assumptions 3.2.1-3.2.3 hold. Then, under SRSWOR and LMS
sampling design, ¥1 — 'y with respect to the HS norm as v — oo a.s. [P] for some n.n.d.
HS operator I'1. Also, 322 (T'1ej, e5) < oo, and 3277 (Siej, e5) — 372 (Tiej, ej) under
the above sampling designs as v — oo a.s. [P). Further, if Assumption 3.2.1 holds with
0 < X < Ep(X;)/b, and Assumptions 3.2.2 and 3.2.3 hold, then, the above results hold under
any HETPS sampling design. Moreover, if Assumptions 3.2.1-3.2.4 hold, then in the case of RHC
sampling design, Yo — 'y with respect to the HS norm as v — oo a.s. [P] for some n.n.d. HS

operator T's. Also, 3772 (Taej, e5) < 00, and 37721 (Yaej, e5) — 372 (Taej, e5) as v — oo

a.s. [P).
Proof. Let us first consider the case V;=Y; for ¢=1, ..., N. Then, we have
N N
S1=nN"2Y (V= Tym)® (Vi — Tym)(r; ' — 1) = nN2{ (Ve Y)x
= = (3.6.2)
N N N
(it 1) (ZW S e Y Vi - m)/zmu - m}.
i=1 i=1 i=1

Now, substituting 7m;=n /N for SRSWOR, we obtain ¥1=(1—n/N) Zfil (Y;-Y)®(Y;—Y)/N.
Note that Ep||Y;||3, < oo in view of Assumption 3.2.3. Then, under SRSWOR,

1= A= (1 -NEp(Y; — Ep(Y)) @ (Y; — Ep(Y))) (3.6.3)

with respect to the HS norm as v — oo a.s. [P] by SLLN and Assumption 3.2.1. Now, suppose
that Egl) and 252) denote >; under SRSWOR and LMS sampling design, respectively. Further,

suppose that {m}f\;l are the inclusion probabilities of LMS sampling design. Then, we have

N

o -5 = nNQ{ St =TI Y»}—
=1
nN‘Q{(;Yi(l—m)®gYi(1—m))/ém(l—m)— (3.6.4)

N

(fjm ~n/N) @ SV = n/)) [y |

=1 =1
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by (3.6.2). Further, it follows from the proof of Lemma 2.7.1 in Section 2.7 of Chapter 2 that
as v — 00, maxj<;<y [n 'Nm; — 1| = 0 a.s. [P]. It also follows from Assumption 3.2.3 that

N1 Zfil |1Y;||3,=0(1) as v — oo a.s. [P]. Therefore, it can be shown that as v — oo,

nN~ { Z n"IN)(Y; ® Y)} — 0and (3.6.5)

nN2{<§:Yi(1—7ri)®§: Yi(1 —m) >/Zw 1—m)—

i=1 i=1

N (3.6.6)
(ZY (1-n/N)® Z 3(1 —n/N)>/n(1 - n/N)} — 0, and hence
=1
252) - Egl) — 0 with respect to the HS norm a.s. [P]. Thus ¥; — I'y as v — oo under SRSWOR
as well as under LMS sampling design a.s. [P] with I'y=A;. Next, under any HE7PS sampling
design (i.e., a sampling design with m;=nX;/ Zfil X5),

¥ = Ay :Ep[{Y X 1 X; <EP( i) = ALp(XY:)/ Ep(X ))}® (3.6.7)

(v (B s ) B o) - o

with respect to the HS norm as v — oo a.s. [P] by SLLN because Ep||Y;|[3, < oo, As-
sumptions 3.2.1 and 3.2.2 hold. Here, x=Ep(X;) — AEp(X;)?/Ep(X;). Note that Ay is
a n.n.d. HS operator since Assumption 3.2.1 holds with 0 < A < FEp(X;)/b. Thus as
v — 00, X1 — I'1 under any HE7PS sampling design a.s. [P] with T';=A,. Next, note that
>oo21(Avej, e)=Ep|[Yi — Ep(Y;)|[5, < oo and 3772, (Agej, e5)=Ep |||V — x ' Xi{ Bp(Y;) —
ANEp(X:Y3)/Bp(X) Y12 (X Ep(X3)— A} < oo since Assumption 3.2.2 holds, and Ep||Y;|[3, <

co. Then, it can be shown in the same way as argued above that as v — 00, > 322, (¥1ej, €5)=
NN (= DIV - S IV m)l B/ S w1 - )} - X (Aeg o)
under SRSWOR and LMS sampling design, and > 72, (X1ej, €5) — D72, (Azey, e;) under any

HE7PS sampling design a.s. [P)].

Next, consider the case of RHC sampling design and 5 with V;=Y;. Then, we have

N
S =m XNy (Vi - XZ-V/X) ® <Vi - XZ-V/X) X! (3.6.8)
=1
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— m{XN—l i(Yi RY)X, ' -V ® Y},
i=1

where v=3""_, N,(N,. —1)/N(N — 1) with N, being the size of the 7" group formed randomly

in the first step of the RHC sampling design (see the introduction) for =1, ...,n. Note that

ny — cas v — oo for some ¢ > 1 — A > 0 by Lemma 2.7.5 in Section 2.7 of Chapter 2. Then,

by SLLN,

S — Az = c{Bp(X) Bp (Y @ Y1) X, 1) — Ep(Y;) ® Bp(Y;)} (3.6.9)

with respect to the HS norm as v — oo a.s. [P]. Thus I's=Aj in this case. It follows that
> 5% (Asey, e5) =c{ Ep(Xi) Bp(|[Vill3,X; 1) — ||Ep(YD)|3,} < oo since Assumption 3.2.2
holds, and Ep||Y;||3, < co. Further, it can be shown using SLLN that > i1 (Eaej, ej)=nyx
{(XNTISN WIBXT = IVIB ) — 3521 (Asej, e5) as v — oo as. [P].

Let us next consider the case V;=Y; =Y — S, ((Z; — Z)S;;!) fori=1,..., N. It follows from
SLLN that 3>V | |V;]13,/N=0(1) as v — oo a.s. [P] because Assumption 3.2.3 holds. Then, it

can be shown using similar arguments as in the 1%¢ paragraph of this proof that as v — oo,

(3.6.10)
(¥ B3 - oy (2~ En(z)C) ) |
under SRSWOR and LMS sampling design, and
Y — As = Fp HY — Ep(Y;) — Coy((Z; — Ev(Z;))C2H)+
x—1X1A<EP<Xm> — Ep(X0)Eo(Y:) — Coy(Bo(XiZ:) — E(X:) Ep(Z:)) %
szl)> (EP(Xi))l} ® {Y — Ep(Y;) — C.y ((Z; — En(Z))C)+ (3.6.11)

XA BrCGY5) = Bl Br(Y) — Cy (Be(X:23) ~ Ee(X)Er(Z0)»
o) ) e X B - A |

under any HE7PS sampling design with respect to the HS norm a.s. [P]. Here, C.,=Ep(Z; —
Ep(Zi)) & (E —EP(YZ)) and sz=EP(Zi —Ep(Zi))T(ZZ' —Ep(Zi)). Thus as v — oo, 21 — F1
with I';=A, under SRSWOR and LMS sampling design, and ¥; — I'; with I'y=Aj5 under any
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HE7PS sampling design a.s. [P]. Note that 372 (Ase;, ej>:(1—)\)Ep} |Y7;—EP(Yi) —C.y((Zi—
Ep(Z:)CNIF, < 00, and Y222 | (Asey, e5)=Ep[||Yi — Ep(Yi) — Coy ((Zi — Ep(Z:))CL') +
X XM Ep(XiY;)— Ep(Xi) Ep(Y:) = Coy (Ep(Xi Zi)— Ep(Xi) Ep(Z:))C2') } (Ep( X)) ™| \i
X {Xi_lEp(Xi) — A}] < oo since Assumptions 3.2.2 and 3.2.3 hold. Then, it can be shown
in a similar way as in the 1** paragraph of this proof that 3°72 | (¥1e;, e;) — 372, (Aqej, )
under SRSWOR and LMS sampling design, and } 22, (S1ej, €5) — > 721 (Ase;, e;) under any
HE#PS sampling design as v — oo a.s. [P|. Further, it can be shown using the same line of

argument as in the 2"¢ paragraph of this proof that for RHC sampling design,

Yo = Ag = cEP(Xi)EP{ (Y — Ep(Y;) — Cy ((Z; — Ep(Zi))C’Z_Zl)) ®
(3.6.12)

<Yi — Ep(Y;) — Cy((Z; — Ep(Zi))szl)>X;1}

with respect to the HS norm, and 372, (¥aej, €) — 372, (Agej, ej) as v — oo a.s. [P]. Thus

I's=Ag in this case. ]

Recall {ej};')ip {Vz}fil S1, S, 31, and X, from the paragraph preceding the proof
of Proposition 3.2.1 in Section 3.5 and define W;= ((V,e1), ..., (Vi,e,)) fori=1,..., N and
r > 1. Suppose that le > ics(NT;)'W; and W=N"1 S° | W;. Moreover, suppose that
WgzZiGS(N X;)~1G;W;, where G; is the total of the x values of that randomly formed group
from which the i*" population unit is selected in the sample by RHC sampling design (see the
introduction). Let us also assume that ¥, ,. is a r X 7 matrix such that ((£,.)) ;=(Xre;, ;) for

7, 0=1,...,r, k=1,2 and r > 1. We now state the following lemma.

Lemma 3.6.3. Fixr > 1. Suppose that Assumptions 3.2.1-3.2.3 hold. Then, under SRSWOR and
LMS sampling design, ({S1,e1),...,(S1,¢€)) £ N, (0,T'1,) as v — oo a.s. [P, where Iy, is
ar x r matrix such that (I'1))i=(T'1ej, e;) for j,0 = 1,...,r, and I'y is as in the statement
of Lemma 3.6.2. Further, if Assumption 3.2.1 holds with 0 < X\ < Ep(X;)/b, and Assumptions
3.2.2 and 3.2.3 hold, then, the above result holds under any HETPS sampling design. Moreover,
if Assumptions 3.2.1-3.2.3 hold, then ({Sa,e1), ..., (52, €)) N N, (0,Ty,) as v — oo under
RHC sampling design a.s. [P|. Here, I'y ;. is a r x r matrix such that ((I'2,.)) i=(I'2e;, e;) for

3,0=1,...,7r, and T'; is as in the statement of Lemma 3.6.2.

Proof. Note that ((S1,e1), ..., (51, er))z\/ﬁ(wl — W). Let us first consider SRSWOR, LMS
and any HE7PS sampling designs. Note that under the above-mentioned sampling designs,

Y1, =Ty asv — ocoas. [P] because X1 — I'y under these sampling designs as v — oo a.s.
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[P] in view of Lemma 3.6.2. Moreover, I'; ;- is a n.n.d. matrix since ¥ is a n.n.d. operator. Now,
consider the case, when I'; ;- is p.d. Then, under the above sampling designs, mFLTmT >0
for any m € R” and m # 0, and all sufficiently large v a.s. [P]. It can be shown that
\/ﬁm(wl -wW)T £ N(0,mI'; ,m”) as v — oo for any m # 0 under these sampling designs
a.s. [P] in the same way as \/ﬁm1(§1 -V £ N(0,m;Tym!) as v — oo under each of
the above sampling designs for any m; € RP?, m; # 0 and I'1=lim, _, 31 in the proof of
Lemma 2.7.2 in Section 2.7 of Chapter 2. This implies that under these sampling designs,
\/ﬁ(wl - W) £ N;(0,T'1,) as v — oo a.s. [P].

Next, consider the case, when I'; . is a positive semi definite (p.s.d.) matrix. Let Aj={m # 0 :
ml'; ,m? > 0} and Ao={m # 0 : mFl,rmT = 0}. Then, under the sampling designs mentioned
in the preceding paragraph, \/ﬁm(Wl ~-wW)T £ N(o, mI; ,m’) as v — oo forany m € A;
a.s. [P] in the same way as argued above. Next, suppose that P(s,w) denotes one of these
sampling designs, and Q(s,w) is a rejective sampling design with inclusion probabilities equal to
those of P(s,w) (cf. [4]). Note that under Q(s,w), Uar(\/ﬁm(wl — W)D)=m¥; ,m? (1 + h)
(see Theorem 6.1 in [40]) for any w and m, where h — 0 as v — oo if Zfil mi(1 —m;) — o0
as v — 00. Also, note that Zf;l mi(1 — m;) — oo as v — oo under P(s,w) a.s. [P] because
(3.6.1) in Lemma 3.6.1 holds under P(s,w). Therefore, Zf\;l mi(1—m;) — oo as v — oo under
Q(s,w) a.s. [P]. Next, note that X; ,, depends on the sampling design only through the inclusion
probabilities, and 31 , — I'; , as ¥ — oo under P(s,w) a.s. [P] as mentioned in the previous
paragraph. Therefore, m¥ ,m’ — 0 as v — oo for any m € A under Q(s,w) a.s. [P]. Hence,
\/ﬁm(wl — W)T=0,(1) as v — oo for any m € As under Q(s,w) a.s. [P]. Now, it follows

from Lemmas 2 and 3 in [4] that

ZP(va) < ZQ(Saw) +Z |P(5>w> - Q(S,UJ)| < ZQ($7W)+

SEA sEA seS seA

(2D(P[|Q))"* <>~ Q(s,w) + (2D(P||R))"/?,

SEA

(3.6.13)

where A={s € S : \\/ﬁm(wl — W)T| > ¢} for e > 0, and R(s,w) is any other rejective
sampling design. Since P(s,w) is a high entropy sampling design as discussed earlier in this
proof, there exists a rejective sampling design R(s,w) such that D(P||R) — 0 as v — o0
a.s. [P]. Then, under P(s,w), \/ﬁm(wl — W)T=0,(1) as v — oo for any m € As a.s. [P].
Therefore, under P(s,w), as v — oo, \/ﬁm(Wl - w)T £, N(0,mI'; ,m?) for any m # 0,
and hence /i(W; — W) 5 N,(0,T,) a.s. [P].
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Next, note that ({Ss,e1),. .., <SQ,€T>)=\/E(W2 — W). Also, note that X9, — Ty, as
v — oo a.s. [P] since ¥ — I'p as v — oo a.s. [P] in view of Lemma 3.6.2. Moreover, I' . is
a n.n.d. matrix since Yo is a n.n.d. operator. Let us consider the case, when I'; . is p.d. Then,
mFQVTmT > 0 for any m # 0 and all sufficiently large v a.s. [P]. It can be shown that under
RHC sampling design, \/ﬁm(WQ - W)T £ N(0,mI'y,m?) as v — oo for any m # 0 a.s.
[P] in the same way as y/nm; (%2 -V)T £ N(0,m;Tom?") as v — oo under RHC sampling
design for any m; € RP, m; # 0 and ['5=lim,,_, o, o in the proof of Lemma 2.7.2 in Section 2.7
of Chapter 2. Therefore, under RHC sampling design, \/ﬁ(Wg -W) £ N;(0,T3,) as v — oo
a.s. [P].

Next, consider the case, when I'y ;. is p.s.d. Let Aj={m # 0 : mFQ,TmT > 0} and Ao={m #
0 : ml'y,m’ = 0}. Then, under RHC sampling design, \/ﬁm(wg -w)t £ N(0,mI'y,m”)
as v — oo for any m € A; a.s. [P] in the same way as above. Under RHC sampling design,
var(\/ﬁm(WQ — W)T)=m>, ,m7” (see [61]) for any w and m. Note that m¥5,m’ — 0 as
v — oo for any m € Ajs a.s. [P]. Then, under RHC sampling design, \/ﬁm(WQ - W)T'=0,(1)
as v — oo for any m € As a.s. [P]. Therefore, under RHC sampling design, as v — oo,
\/ﬁm(Wg ~W)T £ N(0,mI',m”) for any m # 0, and hence \/ﬁ(WQ ~W) 5 N,(0,T,)
a.s. [P]. O

Recall from the proof of Proposition 3.2.1 in Section 3.5 that II, denotes the orthogonal
projection onto the linear span of {e1,...,e,}, i.e., II,(a)=)_"_,(a,e;)e; for any r > 1 and
a € H. Further, suppose that By ,={s € S : [|S1 — IL.(S1)||nx > €} and By,={s € S :

||S2 — I1,-(S2)||% > €} for any € > 0. Now, we state the following lemma.

Lemma 3.6.4. Suppose that Assumptions 3.2.1-3.2.3 hold, and P(s,w) denotes one of SRSWOR
By, P(s,w)=0a.s. [P].
Further, if Assumption 3.2.1 holds with 0 < A < Ep(X;)/b, and Assumptions 3.2.2 and 3.2.3

and LMS sampling design. Then, for any € > 0, lim,_,o lim, o0 >

hold, then the above result holds under any HETPS sampling design. Moreover, suppose that
Assumptions 3.2.1-3.2.4 hold, and P(s,w) denotes RHC sampling design. Then, for any € > 0,

lim, 00 limy, s o0 28632 . P(s,w)=0a.s. [P].

Proof. Let us first consider the case, when P(s,w) is one of SRSWOR, LMS and any HE7PS
sampling designs. Suppose that Q(s,w) is as described in the 2"¢ paragraph of the proof of

Lemma 3.6.3. Then, following similar arguments as in the proof of Theorem 6.1 in [40], we can
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show that

N
E(Sy,€))” = (nN"2)Y (Vi = Tymi,e5)*(m; ' = 1)(1+ h) = (Syej,e)(1+h)  (3.6.14)
i=1
under Q(s,w) for any w and j > 1. Here, h does not depend on {e;}72,, and b — 0 as
v — oo whenever YN 7m;(1 — m;) — oo as v — oco. Recall from the 2% paragraph in
the proof of Lemma 3.6.3 that Zfil mi(l —m;) — oo as v — oo under Q(s,w) a.s. [P].
It follows from Lemma 3.6.2 that under P(s,w), ¥; — I'; with respect to the HS norm
and 3°7° (Yiej,e5) — 3272 (Tej.e5) as v — oo a.s. [P]. Therefore, ¥; — TI'y and
doiei(Beje5) = 2222 (Tej, ej) as v — oo under Q(s,w) a.s. [P] because X depends
on the sampling design only through inclusion probabilities, and P(s,w) and Q(s,w) have the
same inclusion probabilities. Thus as v — oo, E(S], ej)2 — (Flej, ej> for any 5 > 1, and
> i1 E(S, ej)? — > i21(l'1ej, e5) under Q(s,w) a.s. [P]. Then, following the same line of

arguments as in the proof of Theorem 1.1 in [54], we can say that

o
m, e Y Q(s,w) < Y (Trej,ej)e (3.6.15)
SEB1,» j=r+1

a.s. [P] for any r > 1. Therefore, lim, o0 lim, 00 D e p,  Q(s,w)=0 a.s. [P]. Further, it

can be shown that lim, o lim, o0 > P(s,w)=0 a.s. [P] in the same way as the result

sEB1
Vvnm(W; — W)T=0,(1) as v — oo under P(s,w) a.s. [P] is shown in the 2" paragraph of the

proof of Lemma 3.6.3.

Let us next consider the case, when P(s,w) is RHC sampling design. Note that

N 2
E(Sy,e;)* = (n)(XN"H> ((w,ej> —(V/X, ej>XZ-> X1 = (Zej,e5)  (3.6.16)
i=1
under RHC sampling design for any 7 > 1 and w (cf. [61]). Also, note that as v — oo,
Yo — T'o with respect to the HS norm and 3 7% (¥oej,e5) — 3772 (Iaej,€5) as. [P]
in view of Lemma 3.6.2. Then, under RHC sampling design, as v — o0, E(Sg,ej>2 —
(T2ej,ej) for any j > 1, and } 22, E(S3,e;)? — > je1(T2ej,e5) a.s. [P]. Therefore,
1m0 limy o0 D e B, P'(8,w)=0 a.s. [P] using similar arguments as in the proof of Theorem

1.11in [54]. O

Before we state the next lemma, let VZ-u be one of Y; ®Z;, ZiTZi, Z;and 1 fori=1,..., N. Also,
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T Ar— N - A - S8
let V=N SN VE St=y/n(Y e (Nm) "W V) and Sh=y/n(X,c, (N X)) 71 G VE-T7).
In this case, we denote the associated norm by || - ||g. Note that || - ||g=the Euclidean norm, when

VZ-u is one of Z!'Z;, Z; and 1, and || - ||g=the HS norm, when Viﬁ:Y; ® Z;.

Lemma 3.6.5. Suppose that Assumptions 3.2.1-3.2.4 hold. Then, ||S ii llg=0p(1) under SRSWOR,

LMS and any HETPS sampling designs, and |]S§Hg:0p(1) under RHC sampling design as

v — oo a.s. [P).

Proof. Note that {Vzﬁ}f\il are elements of either an infinite dimensional separable Hilbert space
or a finite dimensional Euclidean space. Let {eg} be an orthonormal basis of that space. Further,
note that N~ SN HViﬁHé:O(l) as v — oo a.s. [P] by SLLN and Assumption 3.2.3. Now,
suppose that P(s,w) is one of SRSWOR, LMS and any HE7PS sampling designs, and Q(s, w)
is the corresponding rejective sampling design as described in the 2¢ paragraph of the proof of

Lemma 3.6.3. Then, one can show that

E||SHE = E<Z <s§7 e§>2> = (N> i <viN — Thr,, e§.>2x

i i=1

(m P = 1)(1+h)

(3.6.17)

for any w under Q(s,w) in the same way as the derivation of E(Sy, ¢;)2=(X1e;,¢;)(1 + h) in
the proof of Lemma 3.6.4. Here, Tﬁ:Zf;l Viﬁ(l —mi)( ZZJL mi(1—m;)) !, h does not depend
on {eg}, and h — Oas v — oo if SN | m;(1—m;) — oo as v — oo. Note that (3.6.1) in Lemma
3.6.1 holds under (s, w) because (3.6.1) holds under P(s,w) by Lemma 3.6.1, and P(s,w) and
Q(s,w) have the same inclusion probabilities. Then, ZZI\; , mi(1 — m;) = oo as v — oo under

Q(s,w) a.s. [P]. Therefore, as v — oo,

N 2
(N> <Vf - T"w§> (r7' = 1)(1+h) = (AN )
j =1
N N
STV - Trmil|(n7t — 1)(1+ k) = (nN~2) [Z VS = 1)— (3.6.18)
=1 i=1

N N
1740 3 w1 = m)] (14 1) < (8 2) S0 IV (1 -+ 1) = O()
=1 =1
under Q(s,w) a.s. [P] since N1 S°N | [|VF[|2=0(1) as v — oo as. [P]. Hence, E|[S}]|2=0(1)
as v — oo under Q(s,w) a.s. [P]. Thus ||S§||g=0p(1) as v — oo under Q(s,w) a.s. [P]. Now,

it can be shown that HSMQ = Op(1) as v — oo under P(s,w) a.s. [P] in the same way as the
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result \/ﬁm(Wl — W)T=0,(1) as v — oo under P(s,w) a.s. [P] is shown in the 2"¢ paragraph

of the proof of Lemma 3.6.3.

Next, note that under RHC sampling design, as v — oo,

plstig = 5( X (54t ) = <m><XN—1>Z§:V; (1.6

7 7
2 N
711 R _ _ ~ o —
% /X,eg.)XZ) X7 <)Y ONTIY (V)X X < (3.6.19)
j i=1

N
(n)N~ Y IIVEIGX X = 0(1)
i=1
a.s. [P] because N~' SN HViﬁHé:O(l) as v — oo a.s. [P], and Assumption 3.2.2 holds.
Also, note that ny=0(1) as v — oo since Assumption 3.2.4 holds. Therefore, ||Sg| |g=0,(1) as

v — oo under RHC sampling design a.s. [P]. O






Chapter 4

Quantile processes and their

applications in finite populations

The estimation of the finite population median instead of the population mean is meaningful,
when the population observations are generated from skewed and heavy-tailed distributions. The
estimation of the population trimmed means, which are constructed based on the population
quantile function, can also be considered for a similar reason. [18], [35], [52], [53], [67], [85], etc.
considered the estimation of the population median, whereas [77] considered the estimation of the
population trimmed means. The estimation of some specific population quantiles (eg., population
quartiles) are also of interest because estimators of population parameters like interquartile range,
quantile based measure of skewness (Bowley’s measure of skewness), etc. can be constructed
based on the estimators of the population quantiles. [35] considered the estimation of the
interquartile range, whereas [77] considered the estimation of the Bowley’s measure of skewness
and several other functions of the population quantiles. The median and the trimmed means in the
population are more robust and resistant to outliers than the population mean. Several problems

due to outliers in sample survey were discussed in detail in [3], [34], [47] and references therein.

Weak convergence of quantiles and qauntile processes were studied in classical set up, when
sample observations are i.i.d. random variables from a probability distribution (see [76], [79],
etc.). It becomes challenging, when we deal with samples drawn from a finite population using
a without replacement sampling design. In this case, we face difficulty as sample observations
may neither be independent nor identical. It becomes more challenging, when we consider

the quantile processes constructed based on estimators other than the sample quantile, namely
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the ratio, the difference and the regression estimators of the population quantile. Furthermore,
different quantile processes are considered under different sampling designs unlike in the case of

i.i.d. sample observations.

The weak convergence of several empirical processes were shown in the earlier literature (see
[71, [43] and references therein) under some conditions on sampling designs. These conditions
seem to hold under only SRSWOR, Poisson sampling design and rejective sampling design. There
is no result available in the literature related to the weak convergence of empirical processes under
LMS, 7PS, RHC and stratified multistage cluster sampling designs. These sampling designs,
especially stratified multistage cluster sampling designs, are of practical importance in sample
surveys. In this chapter, we show the weak convergence of an empirical process similar to the
Héjek empirical process considered in [7] and [43] under high entropy sampling designs, which
include SRSWOR, LMS and HE#PS sampling designs. We also show the weak convergence of

the above empirical process under RHC and stratified multistage cluster sampling designs.

Asymptotic results related to the weak convergence of empirical processes were applied to
study the asymptotic behaviour of poverty rate (see [7]) and to deal with different regression and
classification problems (see [43]). However, neither [7] nor [43] considered quantiles and quantile
processes in the context of sample survey. [78] proved strong and weak versions of Bahadur type
representations for the sample quantile process under simple random sampling in the presence of
superpopulation model. [26] constructed a quantile process based on the sample quantile, which
is obtained by inverting the Héjek estimator of finite population distribution function under high
entropy sampling designs. There is no available result related to the weak convergence of quantile
processes based on well-known quantile estimators like the ratio (see [67]), the difference (see
[67]), and the regression (see [27] and [70]) estimators, which are constructed using an auxiliary
information. There is also no result available in the literature related to the weak convergence of
a quantile process under RHC and stratified multistage cluster sampling designs. In this chapter,
we establish the weak convergence of the quantile processes, which are constructed based on
the sample quantile as well as the ratio, the difference and the regression estimators of the finite
population quantile, under the aforementioned sampling designs using the weak convergence
of empirical process, Hadamard differentiability of the quantile map and the functional delta
method. The weak convergence of the empirical and the quantile processes are shown under a
probability distribution, which is generated by a sampling design and a superpopulation model

jointly.
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In this chapter, we apply asymptotic results for quantile processes to derive asymptotic
distributions of the smooth L-estimators (see [77]) and the estimators of smooth functions
of population quantiles. We estimate asymptotic variances of these estimators consistently.
Confidence intervals for finite population parameters like the median, the a-trimmed means,
the interquartile range and the quantile based measure of skewness are constructed based on

asymptotic distributions of these estimators.

We also compare several estimators based on their asymptotic distributions. It is shown
that the use of the auxiliary information in the estimation stage may have an adverse effect
on the performances of the smooth L-estimators and the estimators of smooth functions of
population quantiles based on the ratio, the difference and the regression estimators under each
of SRSWOR, LMS, HE7PS and RHC sampling designs. Moreover, each of the aforementioned
estimators may have worse performance under HE7PS and RHC sampling designs, which use
the auxiliary information, than under SRSWOR. In practice, SRSWOR is easier to implement
than the sampling designs that use the auxiliary information. Thus the above result is significant

in view of selecting the appropriate sampling design.

In this chapter, it is further shown that the sample median is more efficient than the sample
mean under SRSWOR, whenever the finite population observations are generated from some
symmetric and heavy-tailed superpopulation distributions with the same superpopulation mean
and median. A similar result is known to hold in the classical set up with i.i.d. sample observations.
However, for the cases of symmetric superpopulation distributions with the same superpopulation
mean and median, it is shown that the GREG estimator of the finite population mean is more
efficient than the sample median under SRSWOR, whenever there is substantial correlation
present between the study and the auxiliary variables. This stands in contrast to what happens in

the case of 1.i.d. observations.

In Section 4.1, we give the expressions of the sample quantile and the ratio, the difference
and the regression estimators of the population quantile. In this section, we also construct
several quantile processes based on these estimators. We present asymptotic results related to
the weak convergence of empirical and quantile processes in Sections 4.2 and 4.3 for single
stage and stratified multistage cluster sampling designs. Asymptotic results related to the smooth
L-estimators and the estimators of smooth functions of population quantiles are presented in
Section 4.4. In Section 4.5, we compare different estimators. Some numerical results based on

real data are presented in Section 4.6. Proofs of several results are given in Sections 4.7 and 4.8.
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4.1. Quantile processes based on different estimators

We recall from the introduction that (Y;, X;) denotes the value of (y, 2) for the i*" population unit,
i=1,..., N, where y is a finite/infinite dimensional study variable, and x is a positive real-valued
size variable. In this chapter, we assume that y is a real-valued study variable. As in Chapter 2,
here also we assume that the covariate z and the size variable x are the same. Recall from the
introduction that the population values {X;}¥, on x are assumed to be known and utilized to
implement sampling designs as well as to construct estimators. Let F}, N(t)zzi]i 1 Ly<g/N
be the finite population distribution function of , where t € R. Then, the finite population p**
quantile of y is defined as Q, v (p)=inf{t € R : F, ny(t) > p}, where 0 < p < 1. The HT

estimator » . (N Wi)_l]l[yi <] (cf. 274 row in Table 2.1 in Chapter 2) and the RHC estimator

ies
Y sV Xi)_lGZ-]l[yi <q (cf. 37 row in Table 2.1 in Chapter 2) are well-known design unbiased
estimators of Fy n(t). Here, 7; is the inclusion probability of the i" population unit under
any sampling design P(s), and G; is the x total of that group of population units formed in
the first step of the RHC sampling design from which the i** population unit is selected in
the sample (see the beginning of Section 2.1 in Chapter 2). A unified way of writing these
estimators is ;- d(i, s)1y,<;. An estimator of Q) n(p) can be constructed as inf{t € R :
> ics A1, 8) Ly, < > p} (see [52]). However, inf{t € R : ), d(i,s)ly,<q > p} is not well
defined, when maxer ) ;c, d(i, 5) L[y, <g=) ;c, d(i,s) < pforsome 0 < p < lands € S.
On the other hand, 7, d(i, s)1 [y, < violates the properties of the distribution functions, when
maxyeR Y e, A4, 5)ljy,<yy > 1 for some s € S. To eliminate these problems, we consider
Fy(t)=zies d(i, s)Njy,<q/ Y i d(i, s) (see [26], [52] and [85]) as an estimator of F n(t).
Fy(t) becomes the Hijek estimator of F), y(t) for d(i, s)=(N7;)~! (see [41]). Based on E,(t),

the sample p*” quantile of y is defined as

Qy(p) = inf{t € R: F,(t) > p}. @.1.1)

Note that Fy (t) satisfies all the properties of a distribution function, and max;cr Fy(t):l >p
forany 0 < p < 1 and s € S. Thus Qy(p) is a well defined estimator of Q, n(p). The
estimator Q,,(p) was considered for d(i, s)=(N;) =" in [26], [85], etc. We also consider Q,(p)
for d(i, s)=(N X;)~1G; under RHC sampling design. Further, we consider some estimators of
Qy,~(p), which are constructed using the auxiliary variable x in the estimation stage. Suppose
that Q, n(p) and Q. (p) are the population and the sample p'" quantiles of z, respectively. Then,

the ratio, the difference and the regression estimators of @, n(p) are defined as
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CA?;L/,RA (p) = (Qy (p)/Qz (p))Qz,N (p)a
Qypr(p) = Qylp) + (Z (i, 5)Y; / S d( s)Xi) Qo) — Qup)and  (4.12)

€S i€ES

Qy.rec(p) = Qy(p) + B(Qun(p) — Qu(p)),

respectively, where B:ZiES d(i,5)X;Yi/ 3 es d(i, s)X7? is the estimator of finite population
regression coefficient of 3 on x through the origin. The estimators Qy, rA(p) and Qy, pr1(p) were
considered in [67] for d(i, s)=(N;)~!, whereas Qy, rEG(p) was considered in [27] and [70].
for d(i, s)=(Nm;)~!. We also consider these estimators for d(i, s)=(NX;)"'!G; under RHC

sampling design.

Now, suppose that forany 0 < o < 8 < 1, D]a, 3] is the space of all left continuous functions
on [a, 4] having right hand limits at each point, and D is the o-field on D], 3] generated by
the open balls (ball o-field) with respect to the sup norm metric. Note that D coincides with
the Borel o-field on D[«, 5] with respect to the Skorohod metric (cf. [6] and [79]). Thus the
quantile processes {v/n(G(p) — Qyn(p)) : p € [a, B]} for G(p)=Qy(p), Qy,0r(p); Qy,rA(D)
and va rEc(p) are random functions in (D[« ], D). Following the notion of weak convergence
in [6] and [79], we shall show that the above quantile processes converge weakly in (D[« (], D)
with respect to the sup norm metric (see Sections 4.2 and 4.3). The weak convergence in
(Dl[a, B], D) with respect to the sup norm metric implies and is implied by the weak convergence
in (D[a, (], D) with respect to the Skorohod metric given that the limiting process has almost

sure continuous paths.

4.2. Weak convergence of quantile processes under single stage sam-

pling designs

As in the earlier chapters, we first consider a superpopulation model such that {(Y;, X;) : 1 <
i < N} are i.i.d. random vectors on some probability space (€2, F,P). Also, as in Section 2.2
of Chapter 2 and Section 3.1 of Chapter 3, we consider the function P(s,w) that is defined on
S x Q. Recall from these sections that for each s € S, P(s,w) is a random variable on {2, and
for each w € Q, P(s,w) is a probability distribution on S. It is to be noted that P(s,w) is a

sampling design for each w € ). Suppose that A is the power set of S. Then, we consider
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the probability measure P*(B x E)=[. > 5 P(s,w)dP(w) (see [7] and [43]) defined on the
product space (S x 2, A x F), where B € A, F € F and B x F is a cylinder subset of S x (2.
Recall from Section 2.2 of Chapter 2 and Section 3.1 of Chapter 3 that we denote expectations of
random quantities with respect to P by Ep. We also denote expectations of random quantities
with respect to P(s,w) and P* by E and Ep+, respectively. Also, recall from these sections that
we define our asymptotic framework as follows. Let {P, } be a sequence of populations with
N,,n, — oo as v — oo, where IV, and n,, are, respectively, the population and sample sizes
corresponding to the v*" population. We suppress the limiting index v for the sake of notational

simplicity.

We shall first show the weak convergence of the quantile processes introduced in Section
4.1 under high entropy sampling designs. Recall from Section 3.2 in Chapter 3 (see also the

introduction) that a sampling design P (s, w) is called the high entropy sampling design if

D(P||R) = ZP(s,w) log(P(s,w)/R(s,w)) — 0as v — oo a.s. [P] (4.2.1)

seS
for some rejective sampling design R(s,w) (for the description of the rejective sampling design,
see the introduction). Some examples of high entropy sampling designs are SRSWOR, RS
sampling design (see [4] and the introduction), LMS sampling design (see Lemma 3.6.1 in

Section 3.6 of Chapter 3), etc.

Suppose that F, and F). are superpopulation distribution functions of y and x, respectively.
Further, suppose that Q,(p)=inf{t € R : F,(t) > p} and Q. (p)=inf{t € R : F,(t) > p} are
superpopulation p* quantiles of y and z, respectively, and V,=R; — Zf\; 1Ry/N fori=1,..., N,
where

Ri = (Iyi<oym) -+ Ivi<y ) Lixi<@uenl -+ Lxi<Qu (o))
forpi,...,pr € (0,1) and & > 1. Moreover, let Tvzzi]il Vi(l—m)/ Zfil m;i (1 —m;), where
{m}f\il denote inclusion probabilities. Recall from earlier chapters that all vectors in Euclidean
spaces are taken as row vectors and superscript 7" is used to denote their transpose. Before, we

state the main result, let us consider the following assumptions.
Assumption 4.2.1. n/N — \asv — oo, where 0 < A < 1.

Assumption 4.2.2. The inclusion probabilities {m}i]\il are such that the following hold.
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(i) Givenanyk > landpy,...,p; € (0,1), (n/NQ) Zfil(Vi —Tvﬂ'i)T(Vi —Tvﬂ'i)(ﬂ'i_l —

1) = T as v — oo a.s. [P] for some positive definite (p.d.) matrix T.

(ii) There exist constants K1, Ko > 0 such that foralli=1,... ,Nandv > 1, K1 < Nm;/n <

K> a.s. [P].

Suppose that supp(F)=(a1, a2) is the support (see [26]) of any distribution function F', where
aj=sup{t € R : F(t) = 0} and ag=inf{t € R : F(t) = 1}. Note that —oco < a1 < as < 0.

Then, we consider the following assumption on superpopulation distributions of y and x.

Assumption 4.2.3. Superpopulation distribution functions Fy, of y and F, of x are continuous
and are differentiable with positive continuous derivatives fy, and f, on supp(F,) C (—o0,00)

and supp(Fy) C (0, 00), respectively.

Similar assumptions like Assumptions 4.2.1 and 4.2.2—(i) are stated and discussed in Chapter
2 (see the discussion related to Assumptions 2.1.1 and 2.1.4 in Section 2.1 of Chapter 2). It
can be shown using SLLN that Assumption 4.2.2-(i) holds under SRSWOR, LMS and any 7PS
sampling designs (see Lemma 4.8.10 in Section 4.8). It can also be shown that Assumption
4.2.2-(ii) holds under the aforementioned sampling designs (see Lemma 3.6.1 in Chapter 3).
Assumption 4.2.2-(ii) was considered earlier in sample survey literature (see (C1) in [7] and
Assumption 2—(i) in [85]). Assumption 4.2.3 was considered before by [26] (see A2 in [26]).
Assumptions 4.2.1 and 4.2.2 are required to show the finite dimensional convergence of the
empirical process {/n(F,(t) —t) : t € [0,1]} for d(i, s)=(Nn;)~" under high entropy sampling

designs, where

Fu(t) = d(i, s)ly,<y / > d(i,s) and U; = F,(Y;) (4.2.2)
ics ics

fori=1,...,N and 0 < ¢ < 1. Here, F), is as in the paragraph preceding Assumption 4.2.1.
On the other hand, Assumptions 4.2.1, 4.2.2-(ii) and 4.2.3 are used to establish the tightness of
this empirical process under the same sampling designs. Based on the weak convergence of this
empirical process, we shall prove the weak convergence of the aforementioned quantile processes
under high entropy sampling designs. Suppose that f?[(), 1] is the class of all right continuous
functions defined on [0, 1] with finite left limits, and D is the o-field on D0, 1] generated by
the open balls (ball o-field) with respect to the sup norm metric. Then, we state the following

proposition.
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Proposition 4.2.1. Suppose that Assumptions 4.2.1 and 4.2.3 hold. Then, under P*,
{\/ﬁ(pu(t) —t):t€[0,1]} L Hasv — oo

in (D[0,1], D) with respect to the sup norm metric, for d(i, s)=(Nw;)~! and any high entropy
sampling design satisfying Assumption 4.2.2, where I is a mean O Gaussian process in ]5[0, 1]

with almost sure continuous paths.

The weak convergence of the empirical process mentioned in Proposition 4.2.1 is first shown
under rejective sampling designs by establishing its tightness and finite dimensional convergence.
Then, the weak convergence of this empirical process is shown under high entropy sampling
designs using the fact that any high entropy sampling design can be approximated by a rejective

sampling design in Kullback-Liebler divergence.

[7] and [43] showed the weak convergence of a similar version of the above-mentioned
empirical process under some conditions on sampling designs (e.g., (HT2) in [7], and (F2) and
(F3) in [43]). These conditions hold under very few sampling designs (with fixed sample size)
like SRSWOR and rejective sampling designs. We are able to dispense with those conditions
and show the weak convergence of {\/ﬁ(ﬁu(t) —t) :t €0,1]} for d(i, s)=(Nm;) " under any
high entropy sampling design satisfying Assumption 4.2.2. Examples of such a sampling design
are SRSWOR, LMS and HE7PS sampling designs. Recall from the introduction that a sampling
design is called HEwPS sampling design if it is a high entropy as well as a 7PS sampling design
(e.g., RS sampling design, rejective sampling design, etc.). In particular, we are able to show the
weak convergence of the aforementioned empirical process under LMS and HE7PS sampling

designs, which are not covered in the earlier literature. Now, we state the following theorem.

Theorem 4.2.1. Fixany 0 < o < 8 < 1. Suppose that Assumptions 4.2.1 and 4.2.3 hold, and
Ep||W;||? < oo for W;=(X;, Y, X;Y;, X?). Then, under the probability distribution P*,

{Vn(G(p) — Qy.n(p)) : p € [a, 8]} £ Qasv — oo

in (D[, 8], D) with respect to the sup norm metric, for any high entropy sampling design satis-
fying Assumption 4.2.2, where G(p) denotes one ony (p), Q%RA (p), QAy,DI(p) and Q%REG (p)
with d(i, s)=(Nw;) L, and Q is a mean 0 Gaussian process in D], B] with almost sure continu-

ous path and p.d. covariance kernel
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N
K (p1,p2) = lim (n/N?) EP(Z Gi(p1) = C(p1) = S(p1)mi)

(Glp2) — Cp) — S(p2)m) (" — 1>>forp1,pze[a,m.

Here, {(p)=3_1, Ci(p)/N, S(p)=3_1L, (Gi(p) — Cp)) (1 — ) / iy mid

are as in Table 4.1 below.

i), and (;(p)’s

TABLE 4.1: Expressions of (;(p)’s appearing in (4.2.3) and (4.2.5) for different G(p)’s in the

cases of high entropy and RHC sampling designs.

G(p) Gi(p)

Qy(p) Ly,<@, 1/ fy(Qy(P))

Quor(P) | Lyi<q,m) /fy(Qy( ) — (Ep(Yi)/Ep(Xi)

[Xi<Qz(p)] /fx(Qa: (p))

Qy,rEC(D) ﬂmng(p)]/fy(Qy(P)) — (Ep(X3Y3)/Ep(X

)

Qy,rA(P) Livi<@, 1/ fu(Q@y(P)) = (Qy(P)/Quz(P) 1 x,<Q, (p)]/ f2(Qz(P))
)1
i)’

)ﬂ[xigczz(pn/fx(Qx(p))

As discussed in the beginning of this chapter, the weak convergence of the quantile processes

mentioned in Theorem 4.2.1 are shown under high entropy sampling designs using the weak

convergence of empirical process mentioned in Proposition 4.2.1, Hadamard differentiability

of the quantile map and the functional delta method. The weak convergence of the quantile

process constructed based on the sample quantile for d(i, s)=(N;)~! was considered earlier in

[26] under a high entropy sampling design. However, in [26], the author did not provide much

details of the derivation of the main weak convergence result. Using dominated convergence

theorem (DCT) and Lemma 4.8.10 in Section 4.8, K (p1, p2) in (4.2.3) can be expressed in terms

of superpopulation moments under SRSWOR, LMS and any HE#7PS sampling designs as in

Table 4.2 below.

TABLE 4.2: K(p1,p2) in (4.2.3) under different high entropy sampling designs.

[ X = A

Sampling design K(p1,p2)
e e (1= NEp[Go1) — Be(Gon)] [Gp2) — Er(Gip2))]
YEp[Ci(p1) — Ep(Gi(p1)) + Ax g " X Bp ((Gi(p1) — Ep(Gi( pl N)X;)] x
HE®PS [Gi(p2) — Ep(Gi(p2)) + Ax g ' X Bp ((Gi(p2) — Ep(Gi(p2))) Xi) ] %

U pio=Ep(X;) and x=p1; — (A\Ep(X:)?/ i)
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Next, we shall show the weak convergence of the quantile processes considered in Section 4.1
under RHC sampling design. Recall from the introduction that in RHC sampling design, the finite
population P is first divided randomly into n disjoint groups of sizes Ny, Ny, respectively,
by taking a sample of N units from N units with SRSWOR, a sample of N units from N — N}
units with SRSWOR and so on. Then, one unit is selected in the sample from each of these groups
independently with probability proportional to the size variable z. [66] suggested this sampling
design for constructing the well-known RHC estimator of the population mean. Advantages of
the RHC estimator are discussed in Section 3.1 of Chapter 3. Before, we state the next theorem,

let us consider some assumptions on the superpopulation distribution P.

Assumption 4.2.4. There exists a constant K such that maxj<;<y X;/ minj<;<ny X; < K a.s.

[P].

Assumption 4.2.5. The support of the joint distribution of (Y;, X;) is not a subset of a straight

line in R2.

As in the earlier chapters, here also we consider the following assumption.

Assumption 4.2.6. For the RHC sampling design, {Nr}le are such that

N/n, forr =1,--- ,n, when N/n is an integer,

NT: LN/nJ’-fO"T:l?.” 7k7 and (424)

|IN/n|+1, forr=k+1,--- ,n, when N/n is not an integer,

where k is such that 3."_, N,=N. Here, | N/n| is the integer part of N/n.

Assumption 4.2.4 is equivalent to Assumption 4.2.2—(ii) under any 7PS sampling design.
Similar assumptions like Assumptions 4.2.4-4.2.6 are stated and discussed in Chapter 2 (see the
discussion related to Assumptions 2.1.6 and 2.2.1 in Chapter 2). These assumptions are required
to show the finite dimensional convergence of the empirical process {/n(E,(t)—t)) : t € [0,1]}
for d(i,s)=(NX;)~'G; under RHC sampling design, where G’s are as in the 1°¢ paragraph
of Section 4.1. Assumptions 4.2.4 and 4.2.6 are also required to establish the tightness of
this empirical process. As in the case of high entropy sampling designs, here also we shall
show the weak convergence of several quantile processes based on the weak convergence of the

above-mentioned empirical process.
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Proposition 4.2.2. Suppose that Ep(X;)~! < oo, and Assumptions 4.2.1 and 4.2.3—4.2.6 hold.
Then, the conclusion of Proposition 4.2.1 holds for d(i, s)=(NX;)"'G; and RHC sampling

design.

Theorem 4.2.2. Fix any 0 < o < 8 < 1. Suppose that Ep(X;)~! < oo, Ep||W;||> < oo for
w.=(X;,Y;, X;Yi, Xl-?), and Assumptions 4.2.1 and 4.2.3-4.2.6 hold. Then, the conclusion of
Theorem 4.2.1 holds for d(i,s)=(N X;)~'G; and RHC sampling design with p.d. covariance

kernel

N
K(p1,p2) = Vllrgo nyEp[(X/N) Z(Cz‘(pl) —{(p1))(Gilp2) — C(p2)) X 1]

= cEp(X;)Ep[(Gi(p1) — Ep(Gi(p1))) (Gi(p2) — Ep(Gi(p2))) X, ]

forpl,pg S [a7/8]

[y

(4.2.5)

Here, y=>_"_| N.(N, — 1)/N(N — 1), c=lim, 00 ny, and (;(p)’s are as in Table 4.1 above.

The proof techniques of Proposition 4.2.2 and Theorem 4.2.2 are similar to the proof tech-
niques of Proposition 4.2.1 and Theorem 4.2.1, respectively. It follows from Lemma 2.7.5 in
Section 2.7 of Chapter 2 that c=1 — X for A\~! an integer, and c=A| A\~ ] (2 — A|[A~!] — \) when
A1 is a non-integer. If we replace Qy,N by @y in the quantile processes considered in this
section, then the weak convergence of these quantile processes can be shown under high entropy

and RHC sampling designs using the key ideas of the proofs of Theorems 4.2.1 and 4.2.2.

4.3. Weak convergence of quantile processes under stratified

multistage cluster sampling design

Stratified multistage cluster sampling design with SRSWOR is used instead of single stage
sampling designs mentioned in the preceding section, when heterogenity is present in the
population values of (y, ). Let us recall the definition of stratified multistage cluster sampling
design with SRSWOR from the introduction. Suppose that the finite population P is divided into
H strata or subpopulations, where stratum h consists of M}, clusters for h=1, ..., H. Further,
the j*" cluster in stratum A consists of Npj units for j=1, ..., M},. For any given h=1, ..., H,

lth

Jj=1,..., My and I=1, ..., Nj;, we assume that the [*" unit from cluster j in stratum / is the ith

.. . ‘ M, . .
unit in the population P, where Z=ZZ,:1 > J M Npjr — Z;\ﬁ] Ny + 1. In stratified multistage
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cluster sampling design with SRSWOR, first a sample s;, of mj, (< Mjp,) clusters is selected
from stratum A under SRSWOR for each h. Then, a sample sj,; of 7, (< Ny;) units is selected
from j* cluster in stratum h if it is selected in the sample of clusters sy, in the first stage for
h=1,..., H. Thus the resulting sample is s=U1<j < jes, Sh;- The samplings in two stages are
done independently across the strata and the clusters. Under the above sampling design, the
inclusion probability of the i*"* population unit is 7;=my,r, /M) N, hj if it belongs to the 4t cluster
of stratum h. Note that stratified multistage cluster sampling design with SRSWOR becomes
stratified sampling design with SRSWOR, when Nj,;=1 for any h=1, ..., H and j=1, ..., M.
Also, note that stratified multistage cluster sampling design with SRSWOR becomes multistage

cluster sampling design with SRSWOR, when H=1.
[*" unit from cluster

j in stratum h. Note that given any h, j and [, (Yh’jl7 X,’le)=(Yi, X;), where i=22/:1 Z?@'l Ny jr—

Suppose that (Y}, ;;, X},;;) denotes the value of (y, ) corresponding to the

Zj\,/[i ; Nnjr + Land (Y3, X;) is the value of (y, ) corresponding to the it" population unit. We
assume that for any given h=1,..., H, {(Y};jl,X,’lﬂ) cl=1,...,Npj,j = 1,..., My} are
i.i.d. random vectors defined on (2, F,P) with marginal distribution functions F), , and F j,
where I, ;’s and F), ;,’s are not necessarily identical for varying h. We also assume that the
population observations on (y, ) in any stratum are independent of the observations in other
strata. [35] used a similar superpopulation model set up for studying the asymptotic behavior
of sample quantiles. However, they considered all F,, ,’s to be the same. Note that H, Mj,
Np;, myp, and 7, depend on v, when we consider the sequence of populations { P, }. However,
for simplicity, we omit v. As in the cases of single stage sampling designs, here also we shall

show the weak convergence of various quantile processes based on the weak convergence of the

empirical process {\/ﬁ(ﬁ’u(t) —t) : t €[0,1]} for d(i, s)=(Nm;)~".

First, we consider the case, when H is fixed as v — oo (cf. [10]). In this case, we need
the following assumptions to show that the conclusions of Proposition 4.2.1 and Theorem 4.2.1
hold for stratified multistage cluster sampling design with SRSWOR. Let }V, h=2§vih1 Npj and
np=myry, be the number of population units in stratum A and the number of population units

sampled from stratum h, respectively, for any h=1, ..., H.

Assumption 4.3.1. > > exp(—KM},) < 00, 0 < lim mp/ My < limy,_oomp /My, < 1,

V— 00
lim, s ’I?,h/TL:)\h > 0, lim, o Nh/N=Ah > 0and 0 < liiml,_wo minlSjSMh Th/Nhj <
limy, — oo maxi<j<m, Th/Nnj < 1forany h=1,..., H and K > 0, and maxi<p<p Zj]\/ihl foj/

Mp=0(1) and maxi<p<p Zj]\ihl(Nhj — Ny /Mp)?/ My, — 0 as v — oc.
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Assumption 4.3.2. For any h=1,..., H, the support of the joint distribution of (Y}, 1, X}, ;) is
not a subset of a straight line in R?, and Ep||Wj, ;||* < oo, where Wi, ;y=(X, 5, Y}, X0 Y,

(X3j)?)-

Assumption 4.3.3. supp(F, ,)=Cy and supp(Fy ,)=C, for any h=1,..., H and some open
intervals Cy C (—00,00) and C, C (0,00). Moreover, Fy j, and F, j, are continuous on R and
are differentiable with positive continuous derivatives fy , and f, j, on C, and C, respectively,

forany h=1,... . Handv > 1.

The condition Y 2, exp(—K M) < oo for any h=1,...,H and K > 0 in Assumption
4.3.1 holds, when the number of clusters in each stratum is a strictly increasing function
of v. This condition implies that My, ..., My grow infinitely as ¥ — oco. The condition
maxj<p<H ij‘ihl N,ffj/Mh=O(1) as v — oo in Assumption 4.3.1 holds, when cluster sizes in
any stratum are not arbitrarily large. The condition max;<p<p ij‘ihl (Np; — N /M, n)? /My — 0
as v — oo in Assumption 4.3.1 implies that the variation among cluster sizes in each stratum
is negligible. The rest of the conditions in Assumption 4.3.1 are often used in sample survey
literature (see [62], [77] and references therein). Assumptions 4.3.1-4.3.3 are required to estab-
lish the finite dimensional convergence of the empirical process {\/ﬁ(ﬁ’u(t) —t):te0,1]}
for d(i, s)=(N;)~! under stratified multistage cluster sampling design with SRSWOR, whereas
Assumptions 4.3.1 and 4.3.3 are required to show the tightness of this empirical process under

the same sampling design.

Next, we consider the case, when H — oo as v — oo (cf. [35], [77], etc.). In this case, we
replace Assumption 4.3.1 by Assumption 4.3.4 and Assumption 4.3.2 by Assumption 4.3.5 given
below, and consider some further assumptions to show that the conclusions of Proposition 4.2.1

and Theorem 4.2.1 hold for stratified multistage cluster sampling design with SRSWOR.

mpN =O(1), Zthl Mé/H=O(1) and maxi<h<H Zj]\ihl(Nhj — Nh/Mh)Q/Mh —0asv —

Q.

Next, suppose that Fva(t):Ele(Nh/N)FyJL(t) and FLH(t):Zthl(Nh/N)nyh(t), and

Qy,n and @,y are quantile functions corresponding to Fy z and F p, respectively. Let

/ _
nit = (M, <Qua o] -+ Yy <@y ) LX) <Qu st (o)) 5 11X <Qui (p)])
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forany k > 1and py,...,pr € (0,1), and T,=Ep(R},;; — Ep(R}, ;)" (Rj,;; — Ep(R},;;)). Then,

we consider the following assumptions.

Assumption 4.3.5. Givenany k > 1 and p1,...,p; € (0,1), Ethl Np(Np —np)Th/np N —
I’y and ZhH 1 NI /N — Ty as v — oo for some positive definite matrices I'y and I'y. More-

N, N,
over, Sy S ST Wi /N — ©=(01,...,04) and Y4y ST S0 (| W |2 /N =
O(1) a.s. [P] as v — oo, where ©1 > 0.

Further, suppose that f, p(t)=dF, g /dt and f, g (t)=dF, r/dt, and consider the following

assumptions.

Assumption 4.3.6. supp(F, ,)=C, and supp(F}, ,)=C, for any h=1,..., H and some open
intervals C,; C (—o0,00) and C; C (0,00). Further; there exists a distribution function F, with
supp(F,)=C, and positive continuous derivative f, such that F, g (t) — F,(t) foranyt € R
and supcy | fy,m(t) — fy(t)] = 0as v — oc. There also exists a distribution function Fy with
supp(E,)=C, and positive continuous derivative f, such that Fy i (t) — Fy(t) foranyt € R

and supe, | fz,m(t) — fa(t)] = 0as v — .

The condition maxi<p<m1<j<n, "MpNpj/mpN=0(1) as v — oo in Assumption 4.3.4
was considered earlier in the literature (cf. [77]). This condition and Assumption 4.2.1 imply
that cluster sizes in any stratum cannot be arbitrarily large. The condition ) | th1 M} /H=0(1)
as v — oo in Assumption 4.3.4 holds, when the number of clusters in any stratum is not
arbitrarily large. Assumption 4.3.6 implies that Iy ; and F; 5 can be approximated by the
distribution functions Fy and F, respectively, when H — oo as v — oco. This assumption
also implies that f,, z and f, p can be approximated uniformly by the density functions of Fy
and F}, respectively, when H — oo as v — oo. Assumptions 4.3.4 and 4.3.5 are required to
show the finite dimensional convergence of the empirical process {\/ﬁ(ﬁu (t)—t):te[0,1]}
for d(i,s)=(Nm;)~! under stratified multistage cluster sampling design with SRSWOR, and
Assumptions 4.3.4 and 4.3.6 are required to establish the tightness of this empirical process under

the same sampling design. Now, we state the following results.

Proposition 4.3.1. (i) Suppose that H is fixed as v — oo, and Assumptions 4.2.1 and 4.3.1-4.3.3
hold. Then, the conclusion of Proposition 4.2.1 holds for stratified multistage cluster sampling
design with SRSWOR.

(ii) Further, if H — oo as v — 00, and Assumptions 4.2.1 and 4.3.3—4.3.6 hold, then the same

result holds.
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Theorem 4.3.1. (i) Suppose that H is fixed as v — oo, and Assumptions 4.2.1 and 4.3.1-4.3.3
hold. Then, the conclusion of Theorem 4.2.1 holds for stratified multistage cluster sampling
design with SRSWOR with p.d. covariance kernel

H

K(p1,p2) = lim (n/N) > Nu(No = 1) Ep (Ghya(p1) = E(Chin(p1))
h=1 4.3.1)

(Chii(p2) — Ep(Chji(p2))) /1 for p1,p2 € [av, B].

Here, (;,;,(p)’s are as in Table 4.3 below.
(ii) Further, if H — o0 as v — o0, and Assumption 4.2.1 and 4.3.3-4.3.6 hold, then the same
result holds.

TABLE 4.3: Expressions of (j, ;;(p)’s appearing in (4.3.1) for different G(p)’s in the case of
stratified multistage cluster sampling design with SRSWOR.

G(p) Ci/w‘z(p)
Qy(p) ]1[YéjZSQy,H(p)}/f%H(anH(p))
A Uiy <@y u@)/ fu.0 (Qya(P)) = (Quu(P)/ Qa1 (p))x
H is fixed Qural?) Uix;  <Qu.u @)/ fo.1 (Qu, 1 (P))
v 00| g ) | Qe fun (@ (p) = (X hes (Na/N)Ep (Y1) /
’ IZthl(Nh/N)EP(Xl/le))]l[X,’leng’H(p)]/fz,H(Qm,H(p))
0, nc(p) Uiyy <@y )/ fu1 (Qyr(p)) — (et (Nu/N)Ep (XY, )/
’ Zthl(Nh/N)EP(X},le)Q)]l[X,’LﬂSQI,H(p)}/fx,H(Qx,H(p))
Qy(p) Uiy <@y n @)/ Fy.1(Qy.u(p))
A Uiy <Qyou @)/ Ju.H (Qu. (D)) = (Qy 1 (P)/ Qa1 (P)) X
H o oo | Qo) Uix;  <Quu(p)/ fo.1 (Qu 1 (P))
asv — 00 |~ Uiy <@y @)/ fu.0(Qyu(P)) — (*02/701) %
Q.1 (p) Uix;  <Quu )]/ Jo.1 (Qe, 1 (P))
- Uy <@y )/ fo.(Qyu(P)) — (30s/04)
Qy,REG (p) ]l[X,’,/jlSQz,H(P)]/f‘E:H(vaH(p))

2 94, Oy, O3 and O are as in Assumption 4.3.5 in Section 4.3.

The proof techniques of Proposition 4.3.1 and Theorem 4.3.1 are similar to the proof
techniques of Proposition 4.2.1 and Theorem 4.2.1, respectively. The weak convergence of
the above quantile processes with (), n replaced by ), can be shown using the key ideas
of the proof of Theorem 4.3.1. When H is fixed as v — oo, the expression of K (p1,p2)
in (4.3.1) can be further simplified (cf. (4.7.42) in Section 4.7) because N,/N — Aj and
(n/N?)Np(Np, —np)/np — Ap(Ap /AN, — 1) as v — oo for any h=1, ..., H by Assumptions
4.2.1 and 4.3.1.
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4.4. Functions of quantile processes

In this section, we derive the asymptotic normality of the smooth L-estimators as well as the esti-
mators of smooth functions of finite population quantiles, which are based on the sample quantile,
and the ratio, the difference and the regression estimators of the population quantiles, under
sampling designs considered in the preceding two sections. The smooth L-estimators include the
estimators of the population a-trimmed means, whereas the estimators of smooth functions of
population quantiles include the estimators of any specific quantile, the interquartile range and
the quantile based measure of skewness in the population. Note that non smooth L-estimators
are also special cases of these latter estimators. Some asymptotic normality results related to
the estimators of the population quantiles are available in sample survey literature. [53] showed
that the ratio estimator of the population median is asymptotically normal under SRSWOR. [35]
derived the asymptotitc normality of the sample quantile under stratified cluster sampling design
with SRSWOR based on superpopulation model assumptions. [85] derived the asymptotitc
normality of the sample quantile under some conditions on sampling deigns. [18] derived the
asymptotic normality of the sample median under SRSWOR based on superpopulation model
assumptions. [77] derived the asymptotic normality of smooth and non smooth L-estimators,
which are constructed based on the sample quantile, under stratified multistage cluster sampling
design with SRSWOR. However, there is no result present in the existing literature related to
the asymptotic normality of the smooth L-estimators and the estimators of smooth functions of
population quantiles, which are based on the ratio, the difference and the regression estimators of
the population quantile. There is also no result present in the available literature related to the

asymptotic normality of the above estimators under high entropy and RHC sampling designs.

Let us fix 0 < o < 8 < 1 and consider the finite population parameter f[a 8] Qy.~(p)J (p)dp
for some known smooth function .J on [0, 1]. It follows from the definition of @, n(p) that the

above parameter coincides with the population a-trimmed mean

N—|Na)-1
Ta,N = ( Z Yy + (1 = {Na}) (Y naj+1) + Y(NLNaJ))> /N(1 — 2a)
i=|Na+2

when 0 < o < 1/2, B=1 — aand J(p)=1/(1 — 2a), p € [0,1]. Here, Y{y),..., Y are
the ordered population values of y, and [Na] and { Na} are, respectively, the integer and

the fractional parts of Na. Several estimators of f[a 5 Q. ~(p)J(p)dp can be constructed by

plugging Qy (p), Qy,ra (), Qu,pr(p) and Qy,pr(p) into [, 5 Qy,n(p)J (p)dp. Note that these
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estimators can be expressed as weighted linear combinations of the ordered sample observations
on y, where the weights are mainly generated by the smooth function J. That is why these

estimators are called smooth L-estimators (cf. [77]).

Next, suppose that k& > 1, py,...,pr € (0,1), f : R¥ — R is a smooth function, and
f(Qy.N(p1),...,QyN(pk)) is a finite population parameter. Some examples of such a parame-

ter are given in Table 4.4 below. Several estimators of f(Qy n(p1),. .., Qy n(pk)) can be con-

TABLE 4.4: Examples of f(Qy n(p1),.-.,Qy,n(Pk))-

Parameter k Ply- -, Pk f
Median 1 p1=0.5 f(t)=t
Interquartile _ _ _
range 2 p1—0.25, p2—0.75 f(tl, tg)—tg tl
Bowley’s measure
of s}l;ewness 3 | p1=0.25, p=0.5, p3=0.75 f(tl, t2)=(t1 + i3 — 2t2)/(t3 — tl)

structed by plugging Qy (p), Qy.ra(P), Qy.p1(p) and Q. pr(p) in f(Qy.N(P1);- - -, Qy.N(Pk))-

Now, we state the asymptotic normality results for the above estimators.

Theorem 4.4.1. (i) Fix 0 < o < 8 < 1. Suppose that the conclusion of Theorem 4.2.1 holds and

K (p1,p2) in (4.2.3) is continuous on |« 8] X [«, 5]. Then, under P*,

vn ( G(p)J(p)dp — ]Qy,N(p)J(p)dp) £ N(0,0%) and

(o8] [o,8 (4.4.1)

Vi (F(G 1), Gor) = F(Qyx(pr), - Qu(pr)) 5 N(0,03) as v — o0

for any high entropy sampling design, where k > 1, p1,...,pr € [o, 8], and G(p) is one of
Qy(p). Qu.ra(p). Qy,p1(p) and Qy,rpc(p) with d(i, s)=(Nm;)~". Here,

B8 B
o} :/ / K(p1,p2)J (p1)J (p2)dprdpz, 03 = aAa”, (4.4.2)
A is a k x k matrix such that

((A))ig = K(pispj) for 1 <i,j < k, and a = lim Vf(Qyn(p1),...,Qyn(pr)) (44.3)

a.s. [P].
(ii) Further, if the assumptions of Theorem 4.2.2 hold, then the results in (4.4.1) hold for
d(i,s)=(NX;)"'G; in the case of RHC sampling design.
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It can be shown using the expressions in Table 4.2 and Assumption 4.2.3 that K (p1, p2) in
(4.2.3) is continuous on [« 8] X [«, 5] under SRSWOR, LMS and 7PS sampling designs. Next,

we state the following theorem.

Theorem 4.4.2. (i) Fix 0 < a < 8 < 1. Suppose that H is fixed as v — oo, and Assumptions
4.2.1 and 4.3.1—4.3.3 hold, then the results in (4.4.1) of Theorem 4.4.1 hold for d(i, s)=(Nm;)~'=
My, Nyj /Nmyry, under stratified multistage cluster sampling design with SRSWOR.

(ii) On the other hand, if H — 0o as v — 00, Assumptions 4.2.1 and 4.3.3—4.3.6 hold, and

K (p1,p2) in (4.3.1) is continuous on |« 5] X [« B], then the same results hold.

When H — oo as v — oo in the case of stratified multistage cluster sampling design with
SRSWOR, it can be shown that K (p1, p2) in (4.3.1) is continuous on [, 8] X [«, f] if the limit

in the expression of K (p1,p2) in (4.3.1) exists uniformly over [a, 8] X [, 3].

4.4.1 Estimation of asymptotic covariance kernels and confidence intervals

Suppose that

61 = . Qy.n(p)J(p)dp, 2 = f(Qyn(p1), ..., QyN(Pr)),

01 = . G(p)J(p)dp and B = f(G(p1), ..., G(px)),

where G(p) is one of Qy(p), Qyra(p), Qy.or(p) and Qy rrc(p). Then, n(d; — 6;) =

N(0,0?) for i=1,2, where 02’s are as in Theorem 4.4.1. Further, suppose that &; 2, o; for some

estimator &; of oy, i=1, 2. Then, a 100(1 — )% confidence interval for ; can be constructed as
[0; — Z, 261/ v/, 0i + Zyy 263/ /0] fori = 1,2,

where Z, 5 is the (1 —n/ 2)*" quantile of the standard normal distribution. We now discuss the
estimation of the asymptotic covariance kernels mentioned in (4.2.3), (4.2.5) and (4.3.1) based

on which consistent estimators of o2’s will be constructed.

Following the approach of [16], K (p1,p2), for d(i,s)=(N;)~!, under any high entropy
sampling design (see (4.2.3)) can be estimated by
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K (p1,p2) =(n/N?) 3" (G(p1) — Cp1) — S(pa)ms)
ics (4.4.4)

(Gip2) = Cp2) — S(pa)ms) (w7 = Dy,

whete C(p)=3,c, (Vi) " Gi(p) and S(p)= e, (Gi(p) = L) (w7 = 1)/ Sy (1 = m). Here,
@- (p) is obtained by replacing the superpopulation parameters involved in the expression of (;(p)
in Table 4.1 by their estimators under high entropy sampling designs (see Table 4.5 below). Note

that \/n(Qy(p + 1/v/n) — Qy(p — 1/4/n))/2 was considered as an estimator of 1/ f,(Q,(p))

earlier in [77].

Next, K (p1,p2), for d(i, s)=(N X;)~'G; under RHC sampling design (see (4.2.5)), can be

estimated as

K(p1,p2) = nv(X/N) Y GilGilp1) — C(p1)) (Gilp2) = C(p2)) X2, (4.4.5)

i€s
where E(p):Zies(N X;)71G,Ci(p). Here, Ci(p) is obtained by replacing the superpopulation
parameters involved in the expression of (;(p) in Table 4.1 by their estimators under RHC

sampling design (see Table 4.5 below).

TABLE 4.5: Estimators of various superpopulation parameters involved in the expression of
¢i(p) in Table 4.1 for high entropy and RHC sampling designs.

Parameters Estimators
High entropy sampling designs RHC sampling design
Qy(p) Qy(p) with d(, 5>=(N7Ti)_1 Qy(p) with d(i, 5)=(NX1')_1G1'
Q= (p) Qx(p) with d(i, s)=(N7;)~! | Qz(p) with d(i, s)=(NX;)~'G;
1/f (Q (p)) \/Aﬁ(Qy(p + 1/\/5)_ \/ﬁ(@y(p + 1/\/5)_
v &y Qulp — 1/v/n))/2 Qulp—1/v/n))/2
1/ £:(Qy(p)) \/ﬁ(Qx(p +1/v/n)— \/{L(Qx(p +1/v/n)—
=\ Qulp — 1/y/n))/2 Qulp — 1/y/n))/2
Ep(Y3) Dics(Nm) Y Dies (VX)) ' GyY;
Ep(X;) D ics(Nm) ' X Yics NG
Ep(X;Y;) > ies(NT) 1 XY, >ies NG,
Ep(X;)? Dics(Nm) 1 X7 >oies N 'GiXi

Given an estimator K (p1,p2) of K(p1,p2), an estimator of % can be constructed as 62

=[ f J (5 K(p1,p2)J (p1)J (p2) dp1dps, whereas an estimator o can be constructed as 63=aAa” .
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Here, =V f(Qy(p1), -- -, Qy(pr)), k > 1, p1,...,p € [a, 8], and A is a k x k matrix such

that ((A))ij=K(ps,p;) for 1 < 4,5 < k. In the following theorem, we assert that the above

estimators of o7 and o3 are consistent.

Theorem 4.4.3. (i) Fix 0 < o < 8 < 1. Suppose that the assumptions of Theorem 4.2.1 hold,
K (p1,p2) is as in (4.2.3), and f((pljpg) is as in (4.4.4). Then, under P*,

62 2, o asv — oo fori=1,2 (4.4.6)

and any high entropy sampling design satisfying Assumption 4.2.2.
(ii) Further, if the assumptions of Theorem 4.2.2 hold, K (p1, p2) is as in (4.2.5), and f((pl,pQ)
is as in (4.4.5). Then, the result in (4.4.6) hold under RHC sampling design.

Next, for the case of stratified multistage cluster sampling design with SRSWOR , Ep((j, ;;(p1)—
Ep(Chj1(p1)))(Chji(p2) —Ep(G 1 (p2))) in the expression of K (p1, p2) in (4.3.1) can be estimated

as

0> MuNw (i) — )Gt (p2) — Ca(p2)) /s Na,

JESHK lesh,j

where C4(p)=3)c., Sicsn, MnNnjChji(p)/murn N, and h=1, ..., H. Here, {j(p) is ob-
tained by replacing the superpopulation parameters involved in the expression of (;, i (p) in Table

4.3 by their estimators as mentioned in Table 4.6 below. Thus an estimator of K (p1, p2) in (4.3.1)

TABLE 4.6: Estimators of various superpopulation parameters involved in the expression of
Cpji(p) in Table 4.3 for stratified multistage cluster sampling design with SRSWOR.

Parameters Estimators
Qy.1(p) Qy(p) with d(i, s)=(N7;) ' =M}, Ny, /Nmy,ry,
Qa1 (p) Qu(p) with d(i, s)=(Nm;)~'=MyNy,; /Nmyrp,
1/ fy, 0 (Qy 1 (p)) Vi(Qy(p +1/vn) — Qy(p = 1/v/n))/2
1/ fu, 1 (Qu,1 (p)) Vn(Qu(p+1/vn) — Qu(p —1/y/n))/2
Sl (Na/N)Ep(X} ;) as well as %0, Sohet Djesicsn; MaNwi Xp/murn N
Zthl(Nh/N)Ep(Y,:ﬂ) as well as %99 Zthl Zje%lesw MhNij,;jl/mhrhN
> iy (Na/N)Ep( X, Yy ) as well as 03 | 32300 3ic, 1es,, MiNag X Vi /marnN
Zthl(Nh/N)EP(X;le)Q as well as %0, Zthl ZjESh,IEShj MhNhj(X}/zjﬂZ/mh?"hN

2 94, Oy, ©3 and O, are as in Assumption 4.3.5 in Section 4.3.

under stratified multistage cluster sampling design with SRSWOR is obtained as
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H ~
K(pr,p2) =(n/N*) > (N /mn = Np) D D~ MuNaj(Caji(p1) = Cu(pr)) <

h=1 JEsk ICsn; “4.4.7)

(Chjt(p2) — C(p2))/mnrn N

Given K (p1, p2), estimators of 0’% and a% can be constructed under stratified multistage cluster
sampling design with SRSWOR in the same way as in the case of single stage sampling designs

discussed in the paragraph preceding Theorem 4.4.3. Now, we state the following theorem.

Theorem 4.4.4. Fix 0 < a < 8 < 1. Suppose that the assumptions of Theorem 4.3.1 hold,
K(p1,p2) isasin (4.3.1), and K(pl,pg) is as in (4.4.7). Then, the result in (4.4.6) of Theorem

4.4.3 hold under stratified multistage cluster sampling design with SRSWOR.

4.5. Comparison of different estimators

4.5.1 Comparison of the estimators of functions of quantiles

In this section, we shall first compare different estimators of the finite population parameter
f[aﬁ] Qy.N(p)J(p)dp as well as f(Qy n(p1), -, Qyn(pr)) (see Section 4.4) under each of
SRSWOR, RHC and any HE7PS sampling designs in terms of their asymptotic variances given
in Theorem 4.4.1. Here, 0 < a < 8 < 1,k > 1 and py,...,pr € (0,1). Recall from Section
4.4 that these parameters include the median, the a-trimmed mean, the interquartile range and
the quantile based measure of skewness. Let us assume that P(s,w) is one of SRSWOR, RHC
and any HE7PS sampling designs. Let us also assume that K1 (p1, p2), K2(p1,p2), K3(p1,p2)
and K4(p1, p2) are the asymptotic covariance kernels of the quantile processes constructed based

on Qy (p), Qy,RA (p), Qy,DI(p) and CA)%REG (p) under P(s,w), respectively (see Table 4.2 and
(4.2.5)), and {A; : 1 <i < 4}isak x k matrix such that

((Ai)ji = Ki(pj,pi) for1 < j,l <kand1 <i <4 (4.5.1)

Then, we have the following theorem.

Theorem 4.5.1. Suppose that X; < b a.s. [P] for some b > 0, Ep(X;)™! < oo, Assumption
4.2.1 holds with 0 < A < Ep(X;)/b, and Assumptions 4.2.4, 4.2.5 and 4.2.6 hold. Then, we have
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the following results.
(i) Under P(s,w), the asymptotic variance of the estimator of f[a 8 Qy.~(p)J (p)dp based on
the sample quantile is smaller than the asymptotic variances of its estimators based on the ratio,

the difference and the regression estimators of the finite population quantile if and only if

B rB
<ic: {/ / (K1(p1,p2) = Kilp1,p2)) (pl)J(pz)dpldpz} <0 (452

2<i<4

(ii) Under P(s,w), the asymptotic variance of the estimator of f(Qyn(p1), - ,Qy,N(Pk))
based on the sample quantile is smaller than the asymptotic variances of its estimators based on
the ratio, the difference and the regression estimators of the finite population quantile if and only
if

— AT
21252(4@(A1 Aj)a’ <0, (4.5.3)

where a=V f(Qy(p1),- -, Qy(px)) is the gradient of f at (Qy(pl)’ o ’Qy(pk))'

Next, we shall compare the performances of each of the estimators of f[a, 5 @y, ~(p)J(p)dp
as well as f(Qy,n(P1), -, Qy,n(Pk)) considered in Section 4.4 under SRSWOR, RHC and
any HE7PS sampling designs in terms of their asymptotic variances (see Theorem 4.4.1). Let us
assume that G(p) is one of Qy(p), Qy’RA(p), Qy’D](p) and nyREc;(p), K3 (p1,p2), K5 (p1,p2)
and K3 (p1, p2) denote asymptotic covariance kernels of {/n(G(p) — Qy n(p)) : p € [, 8]}
under SRSWOR, RHC and any HE7PS sampling designs (see Table 4.2 and (4.2.5)), respectively,

and {A : 1 <4 < 3} are k x k matrices such that
(AD);1 = K (pj,p) for 1 < j,1 < kand1<i < 3. (4.5.4)

Then, we have the following theorem.

Theorem 4.5.2. Suppose that X; < b a.s. [P] for some b > 0, Ep(X;)™! < oo, Assumption
4.2.1 holds with 0 < \ < Ep(X;)/b, and Assumptions 4.2.4, 4.2.5 and 4.2.6 hold. Then, we have
the following results.

(i) The asymptotic variance of the estimator of f[m 4] Qy.~n(p)J(p)dp based on G(p) under
SRSWOR is smaller than its asymptotic variance under RHC as well as any HE7PS sampling

design, which uses auxiliary information, if and only if

B B
max {/ / (K{(p1,p2) — K;(p17p2))J(pl)J(pQ)dpldPQ} < 0. (4.5.5)
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(ii) The asymptotic variance of the estimator of f(Qy N (1), - ,Qy,n(pr)) based on G(p)
under SRSWOR is smaller than its asymptotic variance under RHC as well as any HETPS
sampling design if and only if

max a(A} — Af)aT <0, (4.5.6)

2<i<3

where a=V f(Qy(p1),- -, Qy(pk)) is the gradient of f at (Qy(p1),- -, Qy(pk))-

The conditions that X; < b a.s. [P] for some b > 0, and 0 < A < Ep(X;)/b are discussed
in Chapter 2 (see the discussion related to Assumption 2.2.1 in Chapter 2). Now, we consider
some examples where the conditions (4.5.2) and (4.5.3) hold, and some examples where these
conditions fail to hold. Suppose that Y;’s have a normal distribution with mean p € {—10 +
7}32, and s.d. o=1, X,=eY¥i for i=1,..., N, and A=0.05. Then, the conditions (4.5.2) and
(4.5.3) are discussed in Table 4.7 below in the cases of various finite population parameters and
sampling designs. Next, we consider some examples where the conditions (4.5.5) and (4.5.6)
hold, and some examples where these conditions fail to hold. Suppose that Y;’s have a normal
distribution with mean =10 and s.d. o € {5/100};2, U {j/10}32,, X;=e" for i=1,..., N,
and A=0.05. Then, the conditions (4.5.5) and (4.5.6) are discussed in Table 4.8 below in the cases
of various finite population parameters and their estimators. The above conditions depend on
superpopulation quantiles, moments and densities. In practice, one can check these conditions

by estimating the above-mentioned superpopulation parameters (see Table 4.5 in the preceding

section) based on a pilot survey.

Theorem 4.5.1 shows that in the case of the estimation of f[a’ 5 Qy.~n(p)J(p)dpand f(Qy n(p1),

-, Qy,Nn(pr)), the use of the auxiliary information in the estimation stage may have an adverse
effect on the performances of their estimators based on the ratio, the difference and the regression
estimators under each of SRSWOR, RHC and any HE7PS sampling designs. This is in striking
contrast to the case of the estimation of the finite population mean, where the use of the auxiliary
information in the estimation stage improves the performance of the GREG estimator under these
sampling designs (see Chapaters 2 and 3). On the other hand, Theorem 4.5.2 implies that the
performance of each of the estimators of the above parameters considered in this chapter may
become worse under RHC and any HE7PS sampling deigns, which use the auxiliary information,

than their performances under SRSWOR.
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TABLE 4.7: Discussion of the conditions (4.5.2) and (4.5.3).

Sampling design
Parameter The condition SRSWOR RHC HE#PS
(4.5.3) holds for uw<—2& < —2& < —2&
Median w>8 w>8 uw>8
(4.53)doesnotholdfor | —1 < pu<7| -1<u<7| -1<u<T7
a-trimmed mean (4.5.2) holds for p=1 p=1 u=1
with a=0.1 (4.5.2) does not hold for w#1 w#1 w#1
a-trimmed (4.5.2) holds for < —2& < —2& nw<—2&
mean with ©w=>8 ©w=>9 w=>9
a=0.3 (4.5.2)doesnotholdfor | -1 <pu<7| 1< u<8| -1<u<s8
Inter- (4.5.3) holds for < —2& < —2& nw<—2&
quartile w>4 w>4 w>4
range (4.53)doesnotholdfor | -1 <pu<3 | -1<pu<3 | -1<u<3
Bowley’s (4.5.3) holds for < —2& < —2& nw< —2&
measure w=>5H w=>7 w>7
of skewness (4.53)doesnotholdfor | -1 <pu<4 | -1<u<6|-1<u<b6
TABLE 4.8: Discussion of the conditions (4.5.5) and (4.5.6).
Estimator based on
Parameter The condition Qy(p) | Quralp) | Qubr(p) | Qurec(®)
Median (4.5.6) holds for c>0.2 c>0.2 o>0.2 c>0.2
(4.5.6) does not hold for | o <0.1 o <0.1 o <0.1 o <0.1
a-trimmed (4.5.5) holds for oc>1.2 c>1.3 oc>1.6 oc>1.2
mean with | (4.5.5) does not hold for | ¢ < 1.1 oc<1.2 oc<15 c<1.1
a=0.1
a-trimmed (4.5.5) holds for c>0.2 c>0.2 o>02 c>0.2
mean with | (4.5.5) does not hold for | ¢ < 0.1 0 <0.1 oc<0.1 0 <0.1
a=0.3
Inter- (4.5.6) holds for 0>006| 0>006| c>1.1 oc>1
quartile (4.5.6) does not hold for | 0 < 0.05 | ¢ <0.05 o<1 c<0.9
range
Bowley’s (4.5.6) holds for c>003] 0c>003] 06201 |01<0c<0.6
measure &o>1.2
of (4.5.6) does not hold for | 0 < 0.02 | ¢ <0.02 | o <0.09 0 <0.09 &
skewness 0.7<oc<1.1

4.5.1.1 Comparison of the estimators of quantile based location, spread and skewness

It follows from Theorem 4.5.1 that in the cases of the median, the interquartile range and the
Bowley’s measure of skewness, the estimator based on the sample median becomes more efficient
than the estimators based on the ratio, the difference and the regression estimators of the finite
population quantile under P(s,w) if and only if (4.5.3) holds with &, p1,...,px and a as in
Table 4.9 below. Here, P(s,w) is one of SRSWOR, RHC and any HE7PS sampling designs.

On the other hand, it follows from Theorem 4.5.2 that in the cases of the above parameters



4.5. Comparison of different estimators 131

the performance of the estimator based on G(p) becomes worse under RHC and any HE7PS
sampling deigns, which use the auxiliary information, than its performance under SRSWOR if
and only if (4.5.6) holds with k, p1, ..., px and a as in Table 4.9 below. Here, G(p) is one of
Qy (p)s QyﬂA (p), Qy,DI (p) and Qy,REG(P)-

TABLE 4.9: k, p1,...,px and a in (4.5.3) and (4.5.6) for different parameters.

Parameter | k P1,- -, Dk a
Median 1 p1=0.5 1
Im‘“’fﬁlga:ﬂe 2 p1=0.25, pp=0.75 (=1,1)
Bowley’s 2(Qy(p3) — Qy(p2),
measure 3 | p1=0.25, p2=0.5, p3=0.75 Qy(Pl) —Qy (p3),
of skewness Qy(p2) — Qy(pl))/(Qy(p3) — Qy(Pl))2

4.5.2 Comparison of the sample mean, the sample median and the GREG

estimator

Here, we compare the GREG estimator, say ?G REG (see [24] and references therein), of the finite

population mean ?=Zi]i 1 Y;/N, the sample mean y=) .. Y;/n, and the sample median Qy (0.5)

i€s
under SRSWOR in terms of asymptotic variances of \/ﬁ(?(; reGc — Ep(Y3)), vn(y — Ep(Y3))
and \/H(Qy(O.S) —Q,(0.5)), when the superpopulation median @), (0.5) and the superpopulation

mean Ep(Y;) are same.

Theorem 4.5.3. Suppose that Q,(0.5)=Ep(Y;), and Assumptions 4.2.1 and 4.2.3 hold. Then,
under SRSWOR, the asymptotic variance of the sample median is smaller than that of the sample
mean and the asymptotic variance of the GREG estimator of the mean is smaller than that of the

sample median if and only if
op > 1/40, f2(Qy(0.5)), and (4.5.7)

pay > (1= X)"H1 = 1/40] £2(Qy(0.5))), (4.5.8)

respectively. Here, 05 is the superpopulation variance of vy, and p., is the superpopulation

correlation coefficient between x and y.

The conditions (4.5.7) and (4.5.8) are discussed below for different superpopulation distribu-

tions of Y;’s and X;’s, and different values of A (see Tables 4.10 and 4.11 below). As mentioned
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in the cases of (4.5.2), (4.5.3), (4.5.5) and (4.5.6) in the preceding section, the conditions (4.5.7)

and (4.5.8) can also be checked using a pilot survey.

TABLE 4.10: Discussion of the condition (4.5.7).

Superpopulation distribution of Y;’s

The condition (4.5.7) holds iff

Exponential power distribution with
location i1 € R, scale o > 0 and shape o > 0

3aT(3/a) > T3(1/a)

Student’s ¢-distribution with
degrees of freedom m > 2

34T ((m +1)/2) > (m — 2)7[%(m/2)

3 Here, T'(-) denotes the gamma function.

TABLE 4.11: Discussion of the condition (4.5.8).

Superpopulation Superpopulation \
distribution of Y;’s | distribution of X;’s
Normal distribution Any distribution The condition (4.5.8) holds
with mean p € R supported on for any
and variance o2 > 0 (0, 00) Ae(0,1)
Standard Laplace X;=max{Y;,0} The condition (4.5.8) holds
distribution fori=1,...,N iff A € (0,0.25)

Theorem 4.5.3 implies that under SRSWOR, the performance of the sample mean is worse
than that of the sample median and the performance of the sample median is worse than that of
the GREG estimator if and only if (4.5.7) and (4.5.8) hold, respectively. In the case of a finite
population, if the population observations on y are generated from heavy-tailed distributions (e.g.,
exponential power, student’s ¢, etc.) and SRSWOR is used, the sample median becomes more
efficient than the sample mean. It is well-known that a similar result holds in the classical set up
involving i.i.d. sample observations. However, the GREG estimator of the mean becomes more
efficient than the sample median under SRSWOR, whenever y and x are highly correlated. This

is in striking contrast to what happens in the case of i.i.d. observations.

4.6. Demonstration using real data

In this section, we use the data on irrigated land area for the state of West Bengal in India from
the District Census Handbook (2011) available in Office of the Registrar General and Census
Commissioner, India (https.://censusindia.gov.in/nada/index.php/catalog/1362.). In West Bengal,
lands are irrigated by different sources like canals, wells, waterfalls, lakes, etc., and irrigated

land area (in Hectares) in different villages are reported in the above data set. We consider the
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population of 14224 villages having lands irrigated by canals in this state. We use this data set to
demonstrate the accuracy of the asymptotic normal approximations for the distributions of several
estimators of several parameters under single stage sampling designs like SRSWOR, LMS and

RHC sampling designs.

We use the same data set to demonstrate the accuracy of the asymptotic approximations for
the distributions of different estimators of different parameters under stratified multistage cluster
sampling design with SRSWOR. Note that the above-mentioned population can be divided into
18 districts, and every district can further be divided into sub districts consisting of villages. We
consider districts as strata, sub districts as clusters and villages as population units. Boxplots of
number of clusters, number of population units, 4" order moments of cluster sizes, and variance
of cluster sizes in different strata are given in Figure 4.1 below. Descriptive statistics of number of
clusters, number of population units, 4'" order moments of cluster sizes and variances of cluster

sizes are given in Table 4.12 below.

Boxplot of number of clusters in different strata Boxplot of number of population units in different strata
T T T T T T T T T T T T
10 15 20 25 0 500 1000 1500 2000 2500 3000 3500
Number of clusters Number of population units
Boxplot of 4™ order moments of cluster sizes in different strata Boxplot of variance of cluster sizes in different strata
T T T T T T T T T
0.0e+00 5.0e+08 1.0e+09 1.5e+09 0 2000 4000 6000 8000
4™ order moments Variance of cluster sizes

FIGURE 4.1: Boxplots of number of clusters, number of population units, maximum cluster
sizes, and variance of cluster sizes in different strata.

We choose the land area irrigated by canals as the study variable ¥, and the total irrigated
land area as the auxiliary variable x. We are interested in the estimation of the median and the
a-trimmed means of y, where a=0.1 and 0.3. We are also interested in the estimation of the

interquartile range and the Bowley’s measure of skewness of y. For each of the aforementioned
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TABLE 4.12: Descriptive statistics of number of clusters, number of population units, 4*" order
moments of cluster sizes and variances of cluster sizes.

1% quartile | Median | 377 quartile

Number of clusters 13 18 21
Number of population units 208.5 406 1252
47 order moment

) 391394.8 | 5414937 | 37339619
of cluster sizes

Variance of

] 114.33 547.91 1269.26
cluster sizes

parameters, we compute relative biases of the estimators, which are based on the sample quantile,
and the ratio, the difference and the regression estimators of the population quantile. We consider
I1=1000 samples each of size n=200 and n=500 selected using single stage sampling designs
mentioned in the first paragraph of this section. Further, we consider /=1000 samples each of size
n=108 (a sample of 6 clusters from each stratum and a sample of 1 village from each selected
cluster) and n=216 (a sample of 6 clusters from each stratum and a sample of 2 villages from
each selected cluster) selected using stratified multistage cluster sampling design with SRSWOR.
Suppose that 6 is an estimator of the parameter 6, and 0y, is the estimate of 0 computed based on
the k' sample using a sampling design P(s) for k=1, ..., I. The relative bias of # under P(s)

(cf. [7]) is computed as

I
RB(0,P) => (6 — 00) /100, (4.6.1)
k=1

where 6 is the true value of 6 in the population. Note that 6y is known because we have all the
population values available for y and x in the above-mentioned dataset. We use the R software for
drawing samples as well as computing estimators. For sample quantiles, we use weighted.quantile
function in R. The plots of relative biases for different parameters, estimators, sampling designs
and sample sizes are presented in Figures 4.2-4.9 below. Also, boxplots of relative biases for
different parameters and estimators in the cases of single stage sampling designs and stratified

multistage cluster sampling design with SRSWOR are given in Figure 4.10 below.

Next, we compute asymptotic MSEs of the estimators following the procedure described below.
Recall from Section 4.4 the expressions of the asymptotic covariance kernels K (p1, p2) of several
quantile processes considered in this chapter. Note that K (p1, p2)=lim,_,~c Ep(c1(p1,p2)) for
d(i, s)=(Nm;)~! under high entropy sampling designs, K (p1, p2)=lim, o, Ep(o2(p1,p2)) for
d(i, s)=(N X;)~1G; under RHC sampling design, and K (p1, p2)=lim, o (n/ N?) Zthl Np(Np,—

np)on(p1,p2)/ny for d(i, s)=(Nm;)~! under stratified multistage cluster sampling design with
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SRSWOR, where

N
a1(p1,p2) = (n/N?) Y (Gi(p1) = C(p1) = S(p1)mi) (Gilp2) — C(p2) — S(p2)mi) X
i=1
(m ! =),
N (4.6.2)
o2(p1.p2) = (M) (X/N) Y (Gi(p1) = <(p1))(Gi(p2) — C(p2))/ X, and
=1

on(prp2) = Er(Gji(p1) — Er(Cji(p1))) (Chji(2) — Ee(Chju(p2)))

for h=1,..., H. Here, (;(p)’s, ¢, ;1(P)’s, ¢(p), S(p) and +y are as in Sections 4.3 and 4.4, and N},
and nj, are as in the paragraph preceding Assumption 4.3.1 in Section 4.3. Note that (;(p)’s in
o1(p1,p2) and o2(p1, p2) involve superpopulation parameters like Ep(X;), Ep(Y;), Ep(X;Yi),
Ep(X?), £,(Qy(p)) and f,(Q.(p)) (see Table 4.1). We approximate Ep(X;), Ep(Y;), Ep(X;Y;)
and Ep(X?) by their finite population versions X, Y, YV | X;V;/N and Y | X2 /N, respec-
tively. We also approximate 1/ f,(Q,(p)) and 1/ f,(Q~(p)) b

VN(Qyn(p+1/VN) = Qyn(p—1/VN))/2 and
VN(Qun(p+1/VN) — Qun(p— 1/VN))/2,

(4.6.3)

respectively, following the ideas in [77]. Next, we approximate the superpopulation covariance

on(p1, p2) between C,’lﬂ(pl) and C;le(pg) by

My, Nij

SN " Chaer) = Cu) (Ghji(p2) — Ch(p2)) /N, (4.6.4)

j=11=1
where y(p)=M4 SN ¢f - (p) /N, Further, we approximate Y-2, (Ny/N) Eo(X}) (as
well as O), thl(Nh/N)Ep(Y,:jl) (as well as ©3), S (N,/N) Ep(X},;, Y1) (as well

as ©3), 4y (Nu/N)Ep (X},;,)? (as well as ©4), 1/f, u(Qy.u(p)) and 1/ fz 1(Qu 11 (p))
involved in the expressions of C,’lﬂ(p)’s (see Table 4.3) in the same way as we approximate
Ep(X:), Ep(Y;), Ep(X:Y:), Ep(X?), f,(Qy(p)) and f.(Q(p)) in the case of single stage
sampling designs. Let &1 (p1, p2), 62(p1, p2) and &3 (p1, p2) denote the approximated o1 (p1, p2),
o2(p1, p2) and op(p1, p2), respectively. Then, asymptotic MSEs of several estimators of the
parameters considered in this section are computed by replacing K (p1, p2) in the expressions
of 07 and o3 (see Theorem 4.4.1) by &1 (p1, p2)/n, Ga(p1,p2)/n and (1/N?) 311 Ny (Nj, —
nn)54(p1,p2)/nn. We approximate the double integral in the expression of o2 by sum after

dividing [a, 1 — ] into 100 sub intervals of equal width.
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Based on the asymptotic MSE, we compute the bias relative to the standard error of the single

sample estimates for the estimator 6 of 6 under a sampling design P(s) as

! i(ék — 6)) / (nAMSE(6))"?, (4.6.5)
k=1

where AMSE(f) denotes the asymptotic MSE of 6 under P(s), and (nAMSE(0))'/? de-
notes the standard error of the single sample estimates. The plots of ratios of biases and
(n asymptotic MSE)'/?’s for different parameters, estimators, sampling designs and sample sizes
are presented in Figures 4.11-4.18 below. Also, boxplots of ratios of biases and (n asymptotic
MSE)l/ 25 for different parameters and estimators in the cases of single stage sampling designs

and stratified multistage cluster sampling design with SRSWOR are given in Figure 4.19 below.

Next, we compute ratios of asymptotic and true MSEs for different parameters, estimators
and sampling designs considered in this section. The true MSE of an estimator 6 of 6 under a

sampling design P(s) is estimated as

MSE(@,P) = i(ék —60)%/1, (4.6.6)

k=1
where 6 is the true value of 6, and 6y, is the estimate of 0 computed based on the k" sample
using the sampling design P(s) for k=1, ..., I. The plots of ratios of asymptotic and true MSEs
for different parameters, estimators, sampling designs and sample sizes are presented in Figures
4.20-4.27 below. Also, boxplots of ratios of asymptotic and true MSEs for different parameters
and estimators in the cases of single stage sampling designs and stratified multistage cluster

sampling design with SRSWOR are given in Figure 4.28 below.

Finally, we compute coverage probabilities of nominal 90% and 95% confidence intervals
(see Section 4.4.1) of the parameters discussed in this section. While computing coverage

probabilities, we consider the estimators

B B .
61 = / / K (p1,p2)J (p1)J (p2)dp1dps and 63 = aAaT (4.6.7)

discussed in the paragraph preceding Theorem 4.4.3. We compute coverage probabilities of
nominal 90% and 95% confidence intervals of a parameter by taking the proportion of times
confidence intervals constructed based on 7=1000 samples include the true value of the parameter.

We also compute the magnitude of the Monte Carlo standard errors of these coverage probabilities.
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The plots of observed coverage probabilities of nominal 90% and 95% confidence intervals for
different parameters, estimators, sampling designs and sample sizes are presented in Figures
4.29-4.44 below. Also, boxplots of observed coverage probabilities of nominal 90% and 95%
confidence intervals for different parameters and estimators in the cases of single stage sampling
designs and stratified multistage cluster sampling design with SRSWOR are given in Figures

4.45 and 4.46 below.
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FIGURE 4.2: Relative biases of different estimators for n=500 in the case of SRSWOR.
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FIGURE 4.3: Relative biases of different estimators for n=500 in the case of LMS sampling
design.
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figure, SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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design.
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figure, SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.10: Boxplots of relative biases for different parameters and estimators in the cases
of single stage sampling designs and SMCSRS. In this figure, SMCSRS stands for stratified
multistage cluster sampling design with SRSWOR.
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FIGURE 4.12: Ratios of biases and (n asymptotic MSE)'/2’s for different estimators under
LMS sampling design in the case of n=500.
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FIGURE 4.13: Ratios of biases and (n asymptotic MSE)'/2’s for different estimators under
RHC sampling design in the case of n=500.
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FIGURE 4.14: Ratios of biases and (n asymptotic MSE)'/2’s for different estimators under
SMCSRS in the case of n=216. In this figure, SMCSRS stands for stratified multistage cluster
sampling design with SRSWOR.
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FIGURE 4.16: Ratios of biases and (n asymptotic MSE)'/?’s for different estimators under
LMS sampling design in the case of n=200.
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FIGURE 4.17: Ratios of biases and (n asymptotic MSE)'/2’s for different estimators under
RHC sampling design in the case of n=200.
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FIGURE 4.18: Ratios of biases and (n asymptotic MSE)'/2’s for different estimators under
SMCSRS in the case of n=108. In this figure, SMCSRS stands for stratified multistage cluster
sampling design with SRSWOR.
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of SRSWOR.
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FIGURE 4.21: Ratios of asymptotic and true MSEs of different estimators for n=500 in the case
of LMS sampling design.
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FIGURE 4.22: Ratios of asymptotic and true MSEs of different estimators for n=500 in the case
of RHC sampling design.
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FIGURE 4.23: Ratios of asymptotic and true MSEs of different estimators for n=216 in the case
of SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design
with SRSWOR.
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of SRSWOR.
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FIGURE 4.25: Ratios of asymptotic and true MSEs of different estimators for n=200 in the case
of LMS sampling design.
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FIGURE 4.26: Ratios of asymptotic and true MSEs of different estimators for n=200 in the case

of RHC sampling design.
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FIGURE 4.27: Ratios of asymptotic and true MSEs of different estimators for n=108 in the case
of SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design
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FIGURE 4.28: Boxplots of ratios of asymptotic and true MSEs for different estimators and
parameters in the cases of single stage sampling designs and SMCSRS. In this figure, SMCSRS
stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.29: Observed coverage probabilities of nominal 90% confidence intervals for n=500
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the
Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.30: Observed coverage probabilities of nominal 90% confidence intervals for n=500
in the case of LMS sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.31: Observed coverage probabilities of nominal 90% confidence intervals for n=500
in the case of RHC sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.32: Observed coverage probabilities of nominal 90% confidence intervals for n=216

in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of

the Monte Carlo standard error for observed coverage probabilities is 0.009). In this figure,
SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.33: Observed coverage probabilities of nominal 95% confidence intervals for n=500
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the
Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.34: Observed coverage probabilities of nominal 95% confidence intervals for n=500
in the case of LMS sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.35: Observed coverage probabilities of nominal 95% confidence intervals for n=500
in the case of RHC sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).



154 Chapter 4. Quantile processes and their applications in finite populations

L] o -trimmed mean with o =0.1
© 0 o -trimmed mean with o =0.3
o .
) A
é‘ o Median
3 v Interquartile range
_‘g o Measure of skewness
2 o
Q o 4 v ]
(i)
o) N ul A
o :
o g [a}
> v
0 « A v
o O i .
P o
0
S n
—
9]
8
N
0§
o
A [ A ‘ A ‘ A ‘
Qy(p), SMCSRS Qy.ea(p), SMCSRS Qyoi(p). SMCSRS Qyres(p) SMCSRS

FIGURE 4.36: Observed coverage probabilities of nominal 95% confidence intervals for n=216

in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of

the Monte Carlo standard error for observed coverage probabilities is 0.007). In this figure,
SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.37: Observed coverage probabilities of nominal 90% confidence intervals for n=200
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the
Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.38: Observed coverage probabilities of nominal 90% confidence intervals for n=200
in the case of LMS sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.39: Observed coverage probabilities of nominal 90% confidence intervals for n=200
in the case of RHC sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.40: Observed coverage probabilities of nominal 90% confidence intervals for n=108

in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of

the Monte Carlo standard error for observed coverage probabilities is 0.009). In this figure,
SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.41: Observed coverage probabilities of nominal 95% confidence intervals for n=200
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the
Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.42: Observed coverage probabilities of nominal 95% confidence intervals for n=200
in the case of LMS sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.43: Observed coverage probabilities of nominal 95% confidence intervals for n=200
in the case of RHC sampling design (the number of simulation iterations is 1000 and the
magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.44: Observed coverage probabilities of nominal 95% confidence intervals for n=108

in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of

the Monte Carlo standard error for observed coverage probabilities is 0.007). In this figure,
SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.45: Boxplots of observed coverage probabilities of nominal 90% confidence intervals

for different estimators and parameters in the cases of single stage sampling designs and

SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design with
SRSWOR.
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FIGURE 4.46: Boxplots of observed coverage probabilities of nominal 95% confidence intervals
for different estimators and parameters in the cases of single stage sampling designs and
SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design with

SRSWOR.

The results obtained from the above data analysis are summarised as follows.

@)

(i)

It follows from Figures 4.2-4.9 above (see also the boxplot in Figure 4.10 above) that
for different parameters, estimators, sampling designs and sample sizes considered in this
section, relative biases are quite close to 0 except for the following cases. Figures 4.6 and
4.7 that for n=200, the estimator of the interquartile range based on difference estimator
under SRSWOR and the estimators of measure of skewness based on ratio, difference and
regression estimators under LMS sampling design have somewhat large negative biases
compared to the other estimators. Also, Figures 4.5 and 4.9 shows that the estimators of
measure of skewness based on ratio, difference and regression estimators under stratified
multistage cluster sampling design with SRSWOR have relatively large negative biases

compared to the other estimators for both n=108 and n=216.

It can be seen from Figures 4.11-4.18 above (see also the boxplot in Figure 4.19 above)
that for different parameters, estimators, sampling designs and sample sizes considered in

this section, biases relative to (n asymptotic MSE)'/2’s are close to 0.
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(iii) It follows from Figures 4.20—4.27 above (see also the boxplot in Figure 4.28 above) that
ratios of asymptotic and true MSEs for different parameters, estimators and sampling

designs become closer to 1 as the sample size increases from n=200 to n=500.

(iv) Figures 4.29-4.44 above (see also the boxplots in Figures 4.45 and 4.46 above) show that
for different parameters, estimators, sampling designs and sample sizes, observed coverage
probabilities of nominal 90% and 95% confidence intervals are quite close to 90% and
95%, respectively, except for the following case. Observed coverage probability of nominal
95% confidence interval of a-trimmed mean with a=0.1 based on the sample quantile

under SRSWOR and sample size n=200 is 97.2%.

(v) Overall, the asymptotic approximations of the distributions of different estimators of
different parameters considered in this chapter seem to work well in finite sample situations.

Also, the accuracy of the asymptotic approximations increases as the sample size increases.

4.7. Proofs of the main results

Before we give the proof of Proposition 4.2.1, suppose that P(s,w) denotes a high entropy
sampling design satisfying Assumption 4.2.2, and (s, w) denotes a rejective sampling design
having inclusion probabilities equal to those of P(s,w). Such a rejective sampling design always

exists (see [4]).

Proof of Proposition 4.2.1. We shall first show that the conclusion of Proposition 4.2.1 holds
for Q(s,w). Let us define

N
Fun(t) =Y Lp,<g/Nand Uy(t) = v Y (Nm) ' (Liy,<q — Fun(t)) (4.7.1)

i=1 €S

for 0 <t < 1. Then, for d(i, s)=(Nm;) !, we have

H, == {Vn(Fy(t) —t) : t € [0,1]} = Zp, + /n/NWy with Z,, = {Un(t)
(4.7.2)
> (Nm) it elo, 1]} and Wy = {VN(F,n(t) —t) : t €[0,1]}.

€S

Next, define
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Bqu(tl,tg) = Fu7N(t2) — Fu,N(tl) and Bn(tl,tg) = Un(tg) — Un(tl) (473)

for 0 < t; < to < 1. Then, by Lemma 4.8.2 in Section 4.8, we have E[(Bn(tl,tg))QX
(Bn(tg, tg))Q] < Kj (Bu,]\/(tl,tg))2 for all dyadic rational numbers 0 < t; < to < t3 < 1 a.s.

[P], where K; > 0 is some constant and v > 1. This further implies that
E[(Bn(t1,12))° (Bu(ta,t3))*] < Ki(Bun(t1,t3))  forany 0 <t <ty <t3 <1 (4.74)
a.s. [P], where v > 1. Suppose that

wp(l/r) = sup |U,(t) — Uy(u)|and B = {s € S : wy(1/7) > 0} (4.7.5)
[t—ul<1/r

for r=1,2,.... Here, w,(1/r) is the modulus of continuity of {U,(¢) : ¢ € [0,1]}. Then, by

using (4.7.4) above and imitating the proof of Lemma 2.3.1 in [79] (see p. 49), we obtain

S Qsw) < 54<Z E{B,.((j — 1)/r,j/r)}'+
j=1

seB

K5By, n(0,1) [max Bun((j — 1)/m/7“)>

(4.7.6)

a.s. [P] forany 6 > 0,7 > 1,v > 1 and some constant Ky > 0. Next, it follows from (4.7.6) that
- . . 4
hm,,_moE{]Bn((] — 1)/7“,]/7“)} < Kg(l/r)2 @.7.7)

a.s. [P] for any j=1,...,r, 7 > 1 and some constant K3 > 0 by Lemma 4.8.2 in Section 4.8.
Now, note that {U;}/¥, are i.i.d. uniform random variables supported on (0,1) since F}, is
continuous by Assumption 4.2.3. Then, B, n(t1,t2) — t2 — t1 a.s. [P] by SLLN. Therefore, in
view of (4.7.6) and (4.7.7), we have

im0 Y Q(s,w) < 6 *(Ka/r + Ks/r) as. [P] (4.7.8)
sEB

forany 6 > 0 and r > 1. Since, ) 5 Q(s,w) is bounded, by taking expectation of left hand

side in (4.7.8) w.r.t. P and applying an extended version of Fatou’s lemma, we obtain that

lim, oo P {w,(1/7) > 6} < 64Ky /1 + K3 /1) (4.7.9)
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for any 6 > 0 and r > 1. This further implies that lim, o P*{w,(1/r) > 6} — 0 for any
d as r — oo. Then by Theorem 2.3.2 in [79] (see p. 46), {U,, : v > 1} is weakly/relatively
compact in (D[0, 1], D) with respect to the sup norm metric under P*. In other words, given any
subsequence {v}}, there exists a further subsequence {vy, } such that Ep«(f(U,)) — E(f(U))
along the subsequence {1, } for any bounded continuous (with respect to the sup norm metric)

and D-measurable function f, and for some random function U in (D[0, 1], D) (see p. 44 in

[79]).

Now, under Q(s,w), m(U,(t1), ..., Uy(tp)? £ N(0,mI'smT) as v — oo a.s. [P] by
Lemma 4.8.1 in Section 4.8, where k > 1, t1,...,t; € (0,1), m € R¥, m # 0 and I'3 is a p.d.
matrix. Moreover, ['3=lim,,_, o, n.N 2 Zé\il(Ui —Tym)T(U; — Tym;) (7, t — 1) as. [P], where
Ui=(Li, <ty — Fun(t1), -, Lz — Fun(te)) and Tu=3"10, Ui (1—m)/ S8 mi(1—m).
Note that >>% | ||U;]|?/N is bounded. Also, note that Assumption 4.2.2-(ii) holds under Q(s,w)
because P(s,w) and Q(s,w) have same inclusion probabilities, and Assumption 4.2.2-(ii) holds

under P(s,w). Then, we have

N
I3 = lim Bp(nN~?) (U; - Tym)" (U; — Tym;)(m; " — 1)) (4.7.10)

V—00
i=1
by DCT. Further, it follows from DCT that under P*,

m(U,(t1),..., U, (te)? £ N(0,mI'sm”) for any m # 0, and hence
(4.7.11)

L
(Un(t1); - -, Un(tr)) = N(0,T3)
as v — oo. Relative compactness and weak convergence of finite dimensional distributions of
{U,, : v > 1} imply that U, L Uasv — ooin (D[0,1], D) with respect to the sup norm
metric, for Q(s,w) under P*, where U has mean 0 and covariance kernel

V—00

N
lim FEp (nN_2 Z(H[Uiﬁtl] — Fu,N(t1> — R(tl)m)x
i=1 4.7.12)

(Lseta) — Fun(t2) — R{t2)m)(m " 1>>,

with R(t)=ziji1(1[Uigt] — Fun(t)(1 — )/ SN mi(1 — m;). Moreover, it follows from
Theorem 2.3.2 in [79] that U has almost sure continuous paths. Next, note that Zf\i L (1 —
;) — 00 as v — oo under Q(s,w) a.s. [P] since Q(s,w) satisfies Assumption 4.2.2-(ii), and

Assumption 4.2.1 holds. Then, it can be shown using Theorem 6.1 in [40] that under Q(s, w),
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var(Y e (Nm)™") — 0 as v — oo a.s. [P]. Consequently, 3, (Nm;)™ ' & lasv — oo
under P*. Then, under P*, Z,=U,,/ 3", (Nm;)~! £ Z £ U as v — oo in (D[0, 1), D) with
respect to the sup norm metric, for Q(s,w). This further implies that under P*, Z,, £ Uas

v — oo in (DJ0, 1], D) with respect to the Skorohod metric, for Q(s,w).

Now, it follows from Donsker theorem that under P, Wy <> W as v — oo in (D[0,1],D)
with respect to the Skorohod metric, where W is the standard Brownian bridge in ﬁ[O, 1] and
has almost sure continuous paths. Hence, under P*, both Z,, and W are tight in (D[O, 1], D)
with respect to the Skorohod metric by Theorem 5.2 in [6]. Then, it follows from Lemma B.2
in [8] that under P*, T,,=7Z,, + /n/NWy is tight in (D0, 1], D) with respect to the Skorohod

metric, for d(i, s)=(N;)~! and Q(s,w) since Assumption 4.2.1 holds. It also follows from (i7)

of Theorem 5.1 in [69] that

m(Z,(t) + 0/ NWx (), ..., Zn(tr) + V/n/NWy (1)) 5
N(0,m(T's + ATy)m")

(4.7.13)

as v — oo under P* for k > 1 and m # 0 because m(Zy(t1), . . ., Zon(tx))T = N(0, mI'sm?)
as v — oo under Q(s,w) a.s. [P], and /n/Nm(Wy(t1),. .., Wy (t)T < N(0, \mIym?)

as v — oo under P. Here, I'y is a k x k matrix such that

((F4))’LJ =t Nt; — titj forl <i<j<k. 4.7.14)

Therefore, under P*, H, < H in (D[0,1], D) with respect to the Skorohod metric, for

d(i, s)=(N;)~! and Q(s,w), where H is a mean 0 Gaussian process with covariance kernel

N
z/h—>Holo FEp (TLN_2 Z(]I[Uigtl] - Fu,N(tl) — R(tl)ﬂ'i) X
i—1 4.7.15)

(]I[U«;Stz] — FuyN(tQ) - R(tg)ﬂ'i)(ﬂi_l — 1)) + A(tl Nty — tltg) forty,ts € [0, 1].

We can choose independent random functions, H;, Hy € D[O, 1] defined on some probability
space such that IH; £ U and Hy £ W. Since U and W have almost sure continuous paths, H;
and Hy have almost sure continuous paths. Hence, H; + V/AH, has almost sure continuous
paths. Next, note that H; and Hy are mean 0 Gaussian processes because U and W are mean
0 Gaussian processes. Thus H; + v/ A\Hj is a mean 0 Gaussian process. Also, note that the

covariance kernel of H is the sum of covariance kernels of U and v/AW. Thus the covariance
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kernel of H; + v/ AHj is the same as that of H. Therefore, H; + v/ AH, £ H. Hence, H has
almost sure continuous paths. Then, under P*, H,, £ Hin (D[0,1], D) with respect to the sup

norm metric, for d(i, s)=(Nm;)~! and Q(s,w) by Skorohod representation theorem.

Finally, we shall show that the conclusion of Proposition 4.2.1 holds for the high entropy
sampling design P(s,w), which satisfies Assumption 4.2.2. Note that for d(i, s)=(Nm;) "1,
Ep(f(Hy))= Ep(>ses f(Hy)Q(s,w)) — [ fdPu as v — oo given any bounded continuous
(with respect to the sup norm metric) D-measurable function f, where Py is the probability

distribution corresponding to IH. Then, it follows from Lemmas 2 and 3 in [4] that

Z f(H,)(P(s,w) — Q(s,w))‘ < Ky Z |P(s,w) — Q(s,w)]
ies ses (4.7.16)

< K2(2D(P||Q))"/? < K2(2D(P||R))"/?,

for some constant Ko > 0, where R(s,w) is a rejective sampling design such that D(P||R) — 0
as v — oo a.s. [P]. This implies that Ep(}>", g f(H,)P(s,w)) — [ fdPyg as v — oo for
d(i,s)=(N;)~! by DCT, and hence, the conclusion of Proposition 4.2.1 holds for the high

entropy sampling design P(s,w). O

Proof of Theorem 4.2.1. Recall H,, and W,, from (4.7.2) in the proof of Proposition 4.2.1, and

suppose that 0 < ¢1,...,t; < 1 for some k > 1. Then, for d(i, s)=(Nn;) !, we have

my (H, (1), .., H, ()" + /n/Nmy (W (t), ..., Wa(te)"

= my (H, (1) = V/n/NWa(t1), ... Ha(t) = /n/NWy(t) "+
/Ny +mo) (W (t), ..., Wa(ts)) =my (Zn(t1),. .., Zu(t1)) +
Vn/N(my +mo) (W (th), ..., Wa(ty)"

4.7.17)

given any mp, mg € R* and m;, my # 0, where Z,, is as in (4.7.2). Further, suppose that P (s, w)
denotes a high entropy sampling design satisfying Assumption 4.2.2. Then, it can be shown in

the same way as the derivation of the result in (4.7.13) that under P*,

my (Zo(t1), ..., Zn(t))" + /N (my +my) (W (th), ..., W (ts)" 5

4.7.18)
N(O, mngmlT + )\(ml + mg)F4(m1 + mg)T)

for P(s,w). Here, I's is as in (4.7.10), and T'y as in (4.7.14). Thus in view of (4.7.17) and
(4.7.18), we have
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(Hp(t1), - -, Ho (1), /i /NWa(t1), ..., /n/NW(tg)) "

4.7.19)
N Noi(0,T5), for d(i,s) = (N7;)~" and P(s,w) under P*, where

I's+ Ay Ay
Ay Ay

5 =

The result stated in (4.7.19) implies weak convergence of finite dimensional distributions of the
process (I, \/n/NWy) for d(i, s)=(N;)~!. Recall from the 3"¢ paragraph in the proof of

Proposition 4.2.1 that under P,

Wy = {VN(Fun(t)—t): t€[0,1]} W (4.7.20)

as v — oo in (D[0,1],D) with respect to the Skorohod metric, where W is the standard
Brownian bridge in D[0, 1] and has almost sure continuous paths. Then, (H,,, v/n/NWy) is
tight in (D[0, 1] x D[0, 1], D x D) with respect to the Skorohod metric, for d(i, s)=(Nm;)~" and
P(s,w) because both T, and y/n/NW y are tight in (D0, 1], D) with respect to the Skorohod
metric, for d(i, s)=(N7;)~! and P(s,w) in view of (4.7.20) and Proposition 4.2.1. Therefore,
under P*,

(Hpn, /n/NWy) 5V = (V1,Vy) 4.7.21)

as v — oo in (D[0, 1] x D[0, 1], D x D) with respect to the Skorohod metric, for d(i, s)=(Nm;)~!
and P(s,w), where V is a mean 0 Gaussian process in D[0,1] x D[0,1] with almost sure
continuous paths. The covariance kernel of V is obtained from I'5 above. Next, recall from the
paragraph preceding Assumption 4.2.1 that F;, denotes the superpopulation distribution function
of y. Then, by (4.7.21), continuous mapping theorem and Skorohod representation theorem, we
have

(H, 0 F,, Wy o F,) £ (Vi 0 F,, Va0 F,) as v — 00 4.7.22)

in (D(R) x D(R), Dr x Dr) with respect to the sup norm metric, for d(i, s)=(Nm;)~" and
P(s,w). Here, D(R) denotes the class of all bounded right continuous functions defined on R
with finite left limits, and D denotes the o-field on D(IR) generated by the open balls (ball
o-field) with respect to the sup norm metric. Note that (V; o F, V5 o F})) has almost sure

continuous paths because F, is continuous by Assumption 4.2.3. Let us now consider the quantile
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map

$(F) = F~! = Q for any distribution function F, (4.7.23)

where F~1(p)=Q(p)=inf{t € R : F(t) > p} forany 0 < p < 1. Now, suppose that D denotes
the set of distribution functions on R restricted to [Qy () —€, Qy () +¢€| forsome 0 < av < B < 1
and € > 0, where (), is the superpopulation quantile function of y. Then, it can be shown in the
same way as the proof of Lemma 3.9.23—(i) in [84] that ¢: D C D[Qy(a) — ¢, Qy(B) + ¢] —
D« 8] is Hadamard differentiable at F, tangentially to C[Q,(«) — €, Q, () + €]. Note that

H, o F, = {\/n(F,(t) — F,(t)) : t € R} and
Vn/NWy o Fy = {V/n(Fyn(t) — Fy(t)) : t € R},

(4.7.24)

where Fy(t):zies d(i, s)Ljy,</ D i, d(i, s) and Fyn(t)=N, 1jy,<4/N. This is because
F,, is continuous by Assumption 4.2.3. Then by (4.7.22), (4.7.24), functional delta method (see
Theorem 3.9.4 in [84]) and Hadamard differentiability of ¢, we have

L

({vn(Qy(p) — Qy(p)) : p € [a, B} {V(Qyn(P) — Qy(p)) 1 p € [, B]}) =
(=V1,=V3)/fy 0 Qy

(4.7.25)

as v — oo in (D[a, 8] x D[a, 8], D x D) with respect to the sup norm metric, for d(i, s)=(Nm;) "
and P(s,w). Here, f, is the superpopulation density function of y, (V1,Vy) is a mean 0 Gaussian
process in D[, 8] x Dla, 3], and (V1, V5) £ (V1, V3). Then, by continuous mapping theorem,

we have

(V(Qy(0) — Qun() :p €, B} & (Vi = V2)/f0Q, = Qsay)  (4.7.26)

as v — oo in (D[a, 3], D) with respect to the sup norm metric, for d(i, s)=(N7;)~! and P(s,w).
The covariance kernel of Q) is obtained from the matrix
I

[Ik —Ik} I's =1TI3.
_Ik

Here, I, is the k& x k identity matrix.

We shall next show the weak convergence of the quantile processes constructed based on

Qy,RA(p), Qyﬁm(p) and Qy’Rgg(p) in (D], 5], D) with respect to the sup norm metric, for
d(i, s)=(Nm;)~" and P(s,w). Recall Q, and Q, y from Section 4.1, and Q,, from the paragraph
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preceding Assumption 4.2.1. Note that

ﬁ(c?ymu—czyzv(p)):f (Qu(p) — Qy(P)) — V1 (Qun (D) — Qy(p))+
(Qy(9)/Q2() {Vr(Qun () — Qu(p)) — v (Qr(p) — Qu(p)) }.

(4.7.27)

First, it can be shown in the same way as the derivation of the results in (4.7.22) and (4.7.25) that

under P*, ({y/n(Fy(t) — Fy(1) : t € RY {Vn(Fyn(t) — Fy(t) : ¢ € R}, {v/n(Ea(t) -
Fy(t)) : t € Ry, {V/n(Fyn(t) — Fy(t)) : t € R}) converges weakly to some mean 0

Gaussian process with almost sure continuous paths as ¥ — oo, and hence ({\/ﬁ(Qy(p) —

Qy(p) : p € [ AL AVI(Qyn(p) — Qy(p) : p € [, B} AvVR(Qu(p) — Qulp)) : p €
[, B1}, {v/n(Qz,n(P) — Qu(p)) : p € [a, B]}) converges weakly to some mean 0 Gaussian

process with almost sure continuous paths as v — oo. Then, we have

sup |Qy(p)/Qx(p) — Qy(p)/Qu(p)] & 0 (4.7.28)

p€la,fl

as v — oo under P*. Further, it can be shown in the same way as the derivation of the result in

(4.7.26) that under P*,

{(Vr(Qy(p) — Qun (D) + (Qy(p)/Qu(p)) x

. . (4.7.29)
\/H(Qw,N(p) - Qx(p)) ‘p e [a,ﬁ]} = Qasv —

in (D|a, (], D) with respect to the sup norm metric, for d(i, s)=(N;)~! and P(s,w). Here, Q
is a mean 0 Gaussian process in f)[oz, B] with almost sure continuous paths. Therefore, in view

of (4.7.27)—(4.7.29),

{(V(Qyralp) — Qun(®) :p €[, B} 5 Qasv — o (4.7.30)

in (D[a, 8], D) with respect to the sup norm metric, for d(i,s)=(Nm;)~! and P(s,w) un-
der P*. The covariance kernel of @ is obtained from the asymptotic covariance kernel of

({Va(Fy(t) — Fy(t) : t € Ry, {Va(Fyn(t) = Fy(1) : t € R}, {/n(EL(t) - Fu(t)) : t €
R}, {Vn(Fyn(t) — Fy(t)) : t € R}). Next, note that

Vi (Qy.pr(p) = Qyn(p) = vVn(Qy(p) — Qy(p)) — Vi (Qyn(p) — Qy(p))+
<Z7T_1Y/Zﬂ_1X>{f Qz.n(p) — Qz(p )) - ﬁ(@x(p) - Qa:(p))}

1€8 1€8

4.7.31)



168 Chapter 4. Quantile processes and their applications in finite populations

and

\/H(Qy,REG( ) - Qy N( )) = \/H(Qy( ) - Qy( )) - \/H(Qy,N(p) - Qy(p))“‘
<Zw1X Y/Z 1X2){W(QM Q2(p)) — vn(Qz(p) — Qx(p)) }.

1E€8 1€8

(4.7.32)

It can be shown using Theorem 6.1 in [40] and similar arguments in the last paragraph of the

proof of Proposition 4.2.1 that under P(s, w),

N
> (Nm)"'W; =Y Wi/N 5 0asv — coas. [P (4.7.33)
1€ES =1
because Ep||W,||?> < co. Here, W;=(X;,Y;, X;Y;, X?). Since >N, W;/N — Ep(W,) as
v — oo a.s. [P] by SLLN, we have

ZW—W/Zw—lx Y Ep(Y:)/Ep(X;) and

1€8 1€8

S X [ 3w KR B B Bl

1€ES 1€ES

(4.7.34)

as v — oo for P(s,w) under P*. Therefore, using (4.7.31), (4.7.32) and similar arguments as in
the case of{\/ﬁ(QyﬂA(p)—Qy’N(p)) :p € [a, ﬁ]}, we can say that under P*, {\/ﬁ Qy pr(p)—
QyN(P)) :p € [a,B]} and {\/H(Qy,REg(p) — Qyn(p) : p € [, B]} converge weakly to a

mean 0 Gaussian process with almost sure continuous paths in (D [a, B], D) with respect to the

sup norm metric, for d(i, s)=(Nn;)~! and P(s,w). O

Before we give the proof of Proposition 4.2.2, recall {U;}¥, from (4.2.2) and F, y(2)
from (4.7.1). Define an(t)=\/ﬁZiES(NXi)_lGi(]l[Uigt] — Fyn(t)) for 0 < ¢t < 1 and
B, (t1,t2)=Un(t2) — Up(t1) for 0 < ¢ < tp < 1.

Proof of Proposition 4.2.2. Using Lemmas 4.8.3 and 4.8.4 in Section 4.8, it can be shown in the
same way as in the first two paragraphs of the proof of Proposition 3.1 that under P*, U, Ny i)
as v — oo in (D]0, 1], D) with respect to the sup norm metric, for RHC sampling design, where
U is a mean 0 Gaussian process in D[0, 1] with almost sure continuous paths. Moreover, the

covariance kernel of U is

N

Jim Ep <n’Y(X/N D (<t = Fun () (Lp,<y) — Fu,N(t2))X¢_1)- (4.7.35)
=1
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It can be shown that under RHC sampling design,

var(Z(N > ﬁ:X X)?/NX; X = 7<XZX/N—1>—>O (4.7.36)

€S =1

as v — oo a.s. [P] since ny — ¢ > 0 by Lemma 2.7.5 in Section 2.7 of Chapter 2, and
Assumptions 4.2.4 and 4.2.6 hold. Consequently, under P*, >, _ (N X;) ™' G; L lasv — .

Therefore, under P*,

7., = U, /Z (NX)'6; 5 Z L0 (4.7.37)

SE]
as v — oo in (D0, 1], D) with respect to the sup norm metric, for RHC sampling design. Next,

note that

H, = {Vn(Fu(t) —t) : t € [0,1]} = Zy, + /n/NWy, (4.7.38)

for d(i, s)=(NX;) "' G, where W y={vV/N(F, n(t) —t) : t € [0,1]}. Also, note that under P,
Wy 5 Was v — ocoin (D[0,1], D) with respect to the Skorohod metric by Donsker theorem,
where W is the standard Brownian bridge. Therefore, using the same arguments as in the 3¢
paragraph of the proof of Proposition 3.1, we can show that under P*, H,, L Hasv — oo in
(D[0,1], D) with respect to the sup norm metric, for d(i, s)=(NX;)~'G; and RHC sampling

design, where I is a mean 0 Gaussian process with covariance kernel

N
Jim Ep(ny(X/N) > A< — Fun (b)) A<ty — Fun (t2) X )+
P (4.7.39)

)\(tl Nty — tltz),

for t1,ty € [0, 1]. Also, H has almost sure continuous paths. It can be shown using Lemma 4.8.3,

Assumption 4.2.4 and DCT that the expression in (4.7.39) becomes

CEP(Xi)EP((]l[U¢<t1] —P(U; < t1)) (L, <) — P(U; < t2))X,;_1)+
(4.7.40)

)\(tl Nty — tltg),

where c=lim,_, o, n7y. ]

Proof of Theorem 4.2.2. The proof follows in view of Proposition 4.2.2 in the same way as the

proof of Theorem 4.2.1 follows in view of Proposition 4.2.1. O
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Proof of Proposition 4.3.1. Let us denote the stratified multistage cluster sampling design by
P(s,w).

(i) Recall Fy g from the paragraph preceding Assumption 4.3.5, and consider {U; N as
in (4.2.2) with F, g replacing Fy,. Also, recall F, y(t) and U,(t) from (4.7.1). Note that
Fun(t) = tasv — oo a.s. [P] for any ¢ € [0,1] by Assumption 4.3.3 and SLLN. Therefore,
using Lemmas 4.8.6 and 4.8.7 in Section 4.8, one can show in the same way as in the first two

paragraphs of the proof of Proposition 4.2.1 that under P*,
U, & Uasv - (4.7.41)

n (D[0, 1], D) with respect to the sup norm metric, for P(s,w). Here, U is a mean 0 Gaussian

process in D[0, 1] with covariance kernel

H

Ki(tyt2) =AY An(An/My = DEp(Lyr <6 iy — POiji < Qu(t1)) %
h=1 ! 4.7.42)

(]1[ V) <Quy 1 (t2)] P(Yf;jl < Qy,H(h)))

for t1,1 € [0,1]. Here, Qy g (p)=inf{t € R : F, g(t) > p}, Fyu(t)=3"1_, AyF, (), and
Ap’s and Ap’s are as in Assumption 4.3.1. Moreover, U has almost sure continuous paths.
Next, it can be shown using Assumption 4.3.1 that var(}_,.,(N7;) )= o(1), and hence
>ies(Nm) ™t 2, 1 as v — oo under P(s,w) for any given w € 2. Here, mi=mpry/MpNp;
when the i*" population unit belongs to the 5" cluster of stratum h. Therefore, it follows from

DCT that under P*, ", (Nm;) ! 2, 1, and hence under P*,

Z,=U / Y (Nm) ' B zZEU (4.7.43)

€S

as v — oo in (D0, 1], D) with respect to the sup norm metric, for the sampling design P(s,w).

Next, recall Wy from the 1%¢ paragraph in the proof of Proposition 4.2.1. Then, using

assumptions Assumptions 4.3.1 and 4.3.3, and Lemma 4.8.8 in Section 4.8, it can be shown that

H
covp(W(t1), Wy (t2)) Z Ny/N) Ep< V1< Qy.a (81)]
h=1 (4.7.44)

P(Y,; < Qyﬂ(h))) <]1[Y,;ﬂ<Qy,H(t2)] —P(Y; < Qy,H(tZ))> —
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H
> AnEp (H[Yéjls@y,H<t1>1 —P(Yy < Qyﬂ(tﬂ)) (1[Yéﬂs@y,H(t2>r
h=1

P(Y], < @y,H<t2>>) — Kot t2) (say)

as v — oo for any ¢1,t2 € [0,1]. Then, under P, Wy L Wasv — ocoin (D[0,1], D) with
respect to the Skorohod metric by (4.7.44) above and Theorem 3.3.1 in [79] (see p. 109), where
W is a mean 0 Gaussian process in D[0, 1] with covariance kernel K»(t1,t). Also, W has
almost sure continuous paths. Therefore, using similar arguments as in the proof of Proposition

4.2.1, we can say that under P*,
H, = Zn + /n/NWy = {Va(Eu(t) —t) : t € [0,1]} 5 H (4.7.45)

as v — oo in (D[0, 1], D) with respect to the sup norm metric, for d(i, s)=(N;)~" and P(s,w),

where H is a mean 0 Gaussian process in D[0, 1] with covariance kernel
Ki(t1,t2) + AKa(t1,t2). (4.7.46)

Moreover, IH has almost sure continuous paths. This completes the proof of (7).

(i) Using Hoeffding’s inequality (see [76]), and Assumptions 4.2.1, 4.3.3 and 4.3.4, it can be
shown that F, x(t) — t as v — oo a.s. [P] for any ¢ € [0, 1]. Therefore, using Lemmas 4.8.6

and 4.8.7, and the Assumption 4.3.4, one can show in the same way as in (i) that under P*,

Zn 5 Uasv — oo (4.7.47)

in (D[0, 1], D) with respect to the sup norm metric, for P(s,w), where U is a mean 0 Gaussian

process in D[0, 1] with covariance kernel

H
Ki(t1,t2) = lim A > Nu(N, - n) B (Lyy <Qy n(n)—
h=1

(4.7.48)

P(Yyj < Quar (1)) (L <@y n(e2)) — P(Yij < Quura(t2))) /nnN,

for ¢1,t2 € [0, 1]. Moreover, U has almost sure continuous paths. Next, given any ¢1,t2 € [0, 1],



172 Chapter 4. Quantile processes and their applications in finite populations

H
covp(Wy(t1), Wy(te)) Z Ny /N)Ep ]1[ 4SQy, ()]
h=1

(4.7.49)
P(Yyj < Qu (1)) (Lyy, <@y ) — PViju < Quurr(t2))) = Ka(ty, t2)
as v — oo for some covariance kernel Ks(t1,t2) by Assumption 4.3.5. Then, under P,
Wx 5 Was v — oo (4.7.50)

in (DI0, 1], D) with respect to the Skorohod metric by Theorem 3.3.1 in [79] (see p. 109), where
W is a mean 0 Gaussian process in D[0, 1] with covariance kernel Ky (t1,t). Also, W has
almost sure continuous paths. Therefore, using similar arguments as in the proof of Proposition

4.2.1, we can say that under P*,

H, = Zn + /n/NWy = {Va(Eut) —t) : t € [0,1]} S Has v — oo (4.7.51)

n (D[0, 1], D) with respect to the sup norm metric, for d(i, s)=(N;)~" and P(s,w), where H
is a mean 0 Gaussian process in D[O, 1] with almost sure continuous paths and p.d. covariance

kernel

K; (tl,tz) + )\Kz(tl,tg). (4.7.52)

This completes the proof of (ii). O

Proof of Theorem 4.3.1. The proof follows in view of Proposition 4.3.1 in the same way as the

proof of Theorem 4.2.1 follows in view of Proposition 4.2.1. O

Proof of Theorem 4.4.1. By conclusions of Theorems 4.2.1 and 4.2.2, and continuous mapping

theorem, we have

8 . [P
| VA - Quyo)Iwip 5 | Q)T w)dpasy - o (4753)

for high entropy and RHC sampling deigns under P*. Note that Q(p).J(p) is Riemann integrable
on [, A] implying Z:ff Q(p)J (p)dp=lim, oo m~1 311 (a+i(B—a)/m)J(a+i(B—

a)/ m) under the aforementioned sampling designs. By DCT, we have
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m—1m—1
E(exp(itZ)) = n%gnoo exp { —m™2 Z Z K(a+i(8—a)/m,
i=0 j=0 (4.7.54)

a+j(B—a)/m)J(a+i(B—a)/m)J(a+j(B— a)/m)(t2/2)}

since @ is a mean 0 Gaussian process in D[, 3] with covariance kernel K (p1,p2). Note that
K (p1,p2) in the case of any high entropy sampling design (see (4.2.3)) is continuous on [, 8] X
[a, B] by the assumption of this theorem, whereas K (p1, p2) in the case of RHC sampling design
(see (4.2.5)) is continuous on [ev, 3] x [av, 5] by Assumption 4.2.3. Then, E(exp(itZ))=exp ( —
t2 ff faﬁ K(p1,p2)J (p1)J (p2)dp1dp2/2) under the above sampling designs since K (p1, p2) is

continuous on [«, 3] X [«, 3], and hence Riemann integrable on [a, §] X [, B]. Therefore,
B ) ) B B
| QW@ ~ N©0.0). where ot = [ [ K(pr.pa)Jon) I (pa)dprdpe. (4755)

Hence, under P*, ff Vn(G(p) — Qyn(p))J (p)dp £, N(0,0%) as v — oo for high entropy and

RHC sampling deigns.

Next, for any £ > 1 and p1, ..., px € [a, (], we have

Vi(f(G(p1),...,G(pr)) = F(QyN(P1),- -, Qyn(Dr))) = anvnT, 4+ Vne(T,) (4.7.56)

by delta method, where an=V f(Qy.~n (1), .-, Qy.N(Pk)), Tn=G (pr)—Qy N (P1), ..., G(Pr)—
Qy,~N(pr), and €(T,) — 0 as T, — 0. It follows from conclusions of Theorems 4.2.1 and 4.2.2
that under P*

VT, 55 Nu(0,A) as v — oo (4.7.57)

for high entropy and RHC sampling deigns, where A is a k x k matrix such that ((A));;=K (pi, pj)
for 1 <,j < k. It can be shown that Q, n(p) — Qy(p) as v — oo a.s. [P] for any p € (0, 1),
when {(V;,X;) : 1 < i < N} are ii.d. Thus ay — a as v — oo a.s. [P] for some a.
Consequently, under P*, \/n(f(G(p1), ..., G(pk))— F(Qyn(p1),-- -, Qyn(PK))) £ N(o, o3)
as v — oo for the aforesaid sampling designs, where ca=aAa’ . This completes the proofs of (i)

and (ii). O

Proof of Theorem 4.4.2. 1t can be shown using Assumptions 4.2.1, 4.3.1 and 4.3.3, and Lemma

4.8.8 in Section 4.8 that asymptotic covariance kernels of the quantile processes considered
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in this chapter under stratified multistage cluster sampling design with SRSWOR (see (4.3.1))
are continuous on [«, 5] X [«, 5], when H is fixed as v — oo. Moreover, by the assumption
of this theorem, asymptotic covariance kernels of the aforementioned quantile processes are
continuous on [«, ] X [« 5], when H — oo as v — oo. Then, the asymptotic normality of
/ f Vn(G(p) — Qy,n(p))J(p)dp for the above sampling design under P* can be shown using

similar arguments as in the 15! paragraph of the proof of Theorem 4.4.1.

Next, if H is fixed as v — oo, then it can be shown using A6 that Q, n(p) — Q.1 (p) asv —
coa.s. [P forany p € (0,1), where Q, i (p)={t € R : E, (t) > p}, By u(t)=2"1", ApEy p(t),
and Aj’s are as in Assumption 4.3.1. Further, if H — oo as v — o0, then it can be shown
using Assumption 4.3.6 that Q, n(p) — Qu(p) as v — oo a.s. [P] for any p € (0,1),
where Q,(p)={t € R : F,(t) > p}, and F, is as in Assumption 4.3.6. Thus ay — a
as v — oo a.s. [P] for some a, where ay is as in the 2"¢ paragraph of the proof of Theo-
rem 4.4.1. Then, given any k& > 1 and p1,...,px € [a, ], the the asymptotic normality of
V(f(G(p1),....Gpr)) — f(Qyn(P1),-..,Qyn~(pk))) for the above sampling design under
P* can be shown using similar arguments as in the 2"¢ paragraph of the proof of Theorem 4.4.1.

This completes the proofs of (i) and (ii). O]

Proof of Theorem 4.4.3. (i) We shall prove this theorem using (4.8.6) in Lemma 4.8.5 in Section

4.8. Fix € > 0, and suppose that

~

Be(s,w) = {p1,p2 € [, ] : |K(p1,p2) — K(p1,p2)| < €} fors € Sandw € . (4.7.58)

Then, we have

B rB N
/ / [(K (p1,p2) — K(p1,p2))J (p1)J (p2)|dp1dp2 < K(//B o) | K (p1,p2)—
K(p1,p2)|dprdps + // | K (p1,p2) — K (p1, p2)|dpidps) (4.7.59)

(Be(s,w))e

< K(c(B— ) + / /(B( V)~ K122 i)

for some constant K > 0 since ./ is continuous on [«, 3]. Now, let W,=sup,,, paclasf] \K (p1,p2)

—K(pl,p2)|. Then,

//( o) |K (p1,p2) — K(p1,p2)|dprdps < (4.7.60)
Bc(s,w))¢
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B B
W"/ / Li(5.(s.0)))(P1, P2)dp1dpa.

Further, under a high entropy sampling design,

B B 6 8
EP*(/ / ]l[(BE(s,w))c](p1,p2)dp1dp2>:/ / P*(|K (p1,p2) — K (p1,p2)|

> €)dpidps — 0 as v — oo by DCT since K (p1,p2) 2 K (p1,p2) as v — 0

(4.7.61)

for any p1, p2 € [a, §] under P* by (4.8.6) in Lemma 4.8.5 in Section 4.8. Therefore, under P*,

B B »
/ / LB, (s,w))°) (1, P2)dp1dp2 = 0, and
o Ja (4.7.62)

//( o |K (p1,p2) — K(p1,p2)|dpidps 2 0 as v — oo
Be(s,w))e

for a high entropy sampling design because W,,=0O,(1) as v — oo by (4.8.6) in Lemma 4.8.5.
Hence, [7 [7 (K (p1,p2) — K(p1,p2)) J(91)J (p2)|dpidps 2> 0 as v — oo under P*. This
completes the proof of the first part of (i). The proof of the other part of (i) follows in a straight

forward way. Also, the proof of (ii) follows exactly the same way as the proof of (i). ]

Proof of Theorem 4.4.4. The proof follows exactly the same way as the proof of Theorem 4.4.3

in view of Lemma 4.8.9 in Section 4.8. O

Proof of Theorem 4.5.1. (i) Suppose that 67, 63, 05 and 7 are the asymptotic variances of

the estimators of [ Q,,x(p)J(p)dp based on Qy(p). Qy.ra(p). Qy.01(p) and Qy.rzc(p).
respectively, under P(s,w). Here, P(s,w) denotes one of SRSWOR, RHC and any HE7PS
sampling designs. It follows from Lemma 4.8.10 in Section 4.8 that Assumption 4.2.2 holds
under SRSWOR and any HE7PS sampling designs by the assumptions of Theorem 4.5.1. Then,

in view of Theorem 4.4.1, we have

B rB
622 = / / Ki(pl,pg)J(pl)J(pQ)dpldpg forl <:<4 (4.7.63)
a Ja

where K;(p1,p2)’s are as in the paragraph preceding Theorem 4.5.1. Therefore, the conclusion

of (i) in Theorem 4.5.1 holds in a straightforward way.

(ii) The proof follows exactly the same way as the proof of (). O
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Proof of Theorem 4.5.2. (i) Suppose that 77%, 77% and 77% are the asymptotic variances of the
estimators of | f Qy,~(p)J (p)dp based on G(p) under SRSWOR, RHC and any HE7PS sampling

designs, respectively. Here, G(p) denotes one of Qy (p), Q% rA(D), Q% pr(p) and Qy, rEG(D).

Then, in view of Theorem 4.4.1, we have

B rB
;= / / K (p1,p2)J (p1)J (p2)dprdps for 1 <i <3 (4.7.64)

where Kf(p1, p2)’s are as in the paragraph preceding Theorem 4.5.2. Therefore, the conclusion

of (i) in Theorem 4.5.2 holds in a straightforward way.

(ii) The proof follows exactly the same way as the proof of (i). O

Proof of Theorem 4.5.3. 1t follows from (4.7.25) in the proof of Theorem 4.2.1 that under P*

{(Vr(Qy(p) — Qy(p)) :€ [a, B} 5 —V1/f,0Q, (4.7.65)

as v — oo in (D[a, 8], D) with respect to the sup norm metric, for d(i, s)=(Nn;)~! and
SRSWOR. Here, @), and f, are superpopulation quantile and density functions of y, respectively,

and V is a mean 0 Gaussian process in D], 3] with covariance kernel

N

K (pr.pa) = lim (1 - n/N)EP(Dnmng(pln ~ Fyn(Qy(m)
=1

4.7.66
(Lpy;<Qy(pa)) — Fy,N(Qy(pz))/N> + A(p1 A p2 — pip2) ( )
= p1 A p2 — p1p2 for p1,ps € [a, B].
The result in (4.7.65) implies that under P*
Vi(Qy(0.5) — Qy(0.5)) £ N(0,02) as v — oo (4.7.67)

for d(i, s)=(N;)~* and SRSWOR, where a%=1/4f5(Qy(0.5)). Next, it can be shown using
Theorems 1 and 3 in [74] that under SRSWOR,

Vi@ —Y) 5 N(0,03) and Va(Yeoree — Y) £ N(0,03) (4.7.68)

as v — oo a.s. [P], where 03=(1 — A)ai, o3=(1 - )\)05(1 - piy), 05 is the superpopulation

variance of y, and p,, is the superpopulation correlation coefficient between z and y. Further, it
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can be shown in the same way as the proof of the result in (4.7.13) that under P,
_ L ~ L
V(g —Ep(Y;)) = N(0,03+Aoy) and vVa(Y grec — Ee(Y:)) = N(0,03+Aoy) (4.7.69)

as v — 00. Therefore, the conclusion of Theorem 4.5.3 holds in a straightforward way in view

of (4.7.67) and (4.7.69). O

4.8. Proofs of additional results required to prove the main results

Let us fix & > 1 and py,...,px € (0,1), and recall Vy,...,Vy from the 3" paragraph in
Section 4.2. Define ﬁlzzi@(]\f 7;)~'V;. Suppose that P(s,w) denotes a high entropy sampling
design satisfying Assumption 4.2.2, and Q(s,w) denotes a rejective sampling design having
inclusion probabilities equal to those of P(s,w). Recall from the paragraph preceding the proof
of Proposition 4.2.1 that such a rejective sampling design always exists. Now, we state the

following lemma.

Lemma 4.8.1. Fixm € R?* such that m # 0. Suppose that Assumption 4.2.1 holds. Then, under

Q(s,w) as well as P(s,w), we have
T r T
vVnmV, = N(0,mI'm") as v — oo a.s. [P],
where I is as mentioned in Assumption 4.2.2-(ii).

Proof. The proof follows exactly the same way as the derivation of the result, which appears in
the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that \/nm; (61 -)T £ N(0,m;I'ymT)
as v — oo under each of SRSWOR, LMS and any HE7PS sampling designs for any m; € RP,
m; # 0and I'1=lim, o 1. ]

Next, recall {U;}Y, from (4.2.2) in Section 4.2, F,, y(t) and U,,(¢) from (4.7.1) in Section
4.7, and B, n(t1,t2) and B,,(t1,t2) from (4.7.3) in Section 4.7. Now, we state the following

lemma.

Lemma 4.8.2. Suppose that Assumption 4.2.1 holds. Then, there exist constants Ly, Lo > 0 such
that under Q(s,w),

E[(Bn(tl,tg))Q(Bn(tQ,tg))2] <Ih (B%N(thtg))Q a.s. [P]
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forany 0 <t; <ty <tz <landv > 1, and

myﬁooE(]Bn(t]‘?tQ))ZL S L2 (tg — t1)2 a.s. [P]

forany 0 <t; <ty <1.

Proof. Suppose that for i=1, ..., N, &=1, when the i*" population unit is included in the sample,
and &;=0 otherwise. Further, suppose that Sy, n={(41,...,%) : 41,...,% € {1,2,..., N} and i1,

., iy, are all distinct} for k=2, 3, 4. Recall from the proof of the preceding Lemma that under
Q(s,w), N mi(1 — m;) /n is bounded away from 0 as v — oo a.s. [P]. Then, it follows from
the proof of Corollary 5.1 in [7] that there exists a constant K7 > 0 such that for all v > 1

max | E((&, — i) (6 — )| < Kin/N?,
(Z11Z2)€SQ’N

max | E((&, — 7i,)(&iy — i) (&1 — miy)) | < Kin?/N?, and 4.8.1)

(41,i2,i3)€S3 N

max ‘E((g’bl - Wil)(ﬁlé - 7ri2)(§i3 - 7Ti3)(§l'4 - 7ri4))‘ < Klnz/N4

(41,42,i3,54)ESa, N
under Q(s,w) a.s. [P]. Now, let
B = 1y, cv,<ty) — Bun(t1,t2), C; = Ly, <ty) — Bun(t2,t3),
oy = Bz(gz/ﬂ'z — 1) and BZ = CZ(&/TFZ — 1)

for given any ¢=1,..., N and 0 < t; < t3 < t3 < 1. Then, we have

E[(Bn(tlth))2(IBn(t27t3)) ] 2/N4 {Za2162 Z ai1ai26i16i2+

(i1,i2)€S2, N

Z a% i22 + Z aiﬁil/ﬁb + Z ailai2ﬁi22 + Z a?16126i3+

(ilviQ)GSQ,N (i17i2)68271\7 (il,iQ)eSQ,N (i17i2,i3)65;;7]\1
E 2 2
aila’iQﬁig + ahaigﬁigﬁ’u] .
(i1,12,i3)€S3 N (1,92,13,i4)ES4, N

Note that Q(s,w) satisfies Assumption 4.2.2—(ii) because P(s, w) satisfies Assumption 4.2.2—(ii),

and P(s,w) and Q(s,w) have the same inclusion probabilities. Then, we have

N

(n*/NYE [Za2ﬁz] (n*/NY E(& — m)'BICH 7} < (4.8.2)

i=1
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N
2
(K2/N) ZBECE < K3(Buyn(t1,13))
i=1
a.s. [P] for all v > 1 and some constants K5, K3 > 0 since Assumption 4.2.1 holds, and
Ly, <v,<to)Lita<vi<ty) =0 forany 0 < ¢; < t2 < ¢3 < 1. Next, suppose that {miiy 11 <1 <

io < N} are second order inclusion probabilities of Q(s,w). Then, we note that

EINOE| S anani ] = 02 /3 )
(i1,i2)€S2, N
Z E((gll - 7Ti1>2(§i2 - 7ri2)2>BilBizcilciQ/ﬂ-i%Trng < (K4/n2)><
(i1,i2)€Sa N
> (Miiy — iy Tiy| + iy 0,)| By, Ciy || Biy Ciy | < (K5/N?) x
(41,i2)ES2, N

2
Z ‘Bil CllHBlzCl2| < KG(Bu,N (tla tS))

(i1,i2)€S2, N

(4.8.3)

a.s. [P] for all v > 1 and some constants K4, K5, Kg > 0 since Assumption 4.2.2-(ii) holds,
E((fﬂ - 7ri1)2(§i2 - 7Ti2)2):(7ri1i2 - 7Ti17ri2)(1 - 27Ti1)(1 - 27Ti2) + ﬂilﬂiz(l - Wil)(l - Triz)
for (i1,i2) € So.n, and max, iyes, v | E (& — miy) (& — Tin)) |[=Max(, ip)e s, [Tiris —

iy Tiy| < Kin/N? a.s. [P] by (4.8.1). An inequality similar to (4.8.3) holds for (n?/N*)E

[Z(il,iQ)GSZN 0‘121 61»22}. Since, E((&-1 —TTiy )3(&-2 —7%)) ‘ < T|m3yip — Ty Ty |, inequalities similar

to (4.8.3) also hold for (n*/N")E [Y;, ,)es, y @ Bir Bin] and (n® /[N E[Y;, i) es,  ir@in 7).
Note that

E((&l - 7Ti1)2(§i2 - 7ri2)(§i3 - 7Ti3>) = (1 - 27Ti1)E((§i1 - 7Ti1)(§i2 - 7Ti2) X

(513 - ﬂ-i:s)) + 7Ti1(1 - Wil)E((fiz - sz)(&zg - 7Ti3)) for (il, 12, 71-3) S SB,N-

Also, note that

max  |E((&, — i) (&, — Tip)(&is — miy))| < K1n?/N® and

(71,i2,i3)€S3, N

max }E((le - ﬂil)(fh - 7Ti2)(§i3 - Wig)(fm - 7Ti4))‘ < K1n2/N4 a.s. [P]

(41,02,i3,04)ES4, N

by (4.8.1). Therefore, it can be shown in the same way as in (4.8.2) and (4.8.3) that under
Q(s,w),

(n*/NYE > azzlﬁizﬁi3:| < K7(Bun(t, ts))g,

(41,12,i3)€S3,n
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(n?/NYE > ailahﬁi} < K7(Byn(t1,t3))° and

(41,i2,i3)€S3, N

2
(n2/N4)E[ > ailabﬂisﬁu} < K7(Bun(t1,t3))” as. [P]
(41,02,03,i4) €Sy N
for all v > 1 and some constant K7 > 0. Hence, there exists a constant Kg > 0 such that
under Q(s,w), E[(Bn(tl, tg))2 (IBn(tg, t3))2] < Ky (Bu,N(tl, tg))2 a.s. [P] forany v > 1 and

0<ti <ta<itg<1.

Next, one can shown that

E(B,(t1,12))" = (n?/NYE Za +2 Y alal+

(i1,i2)ES2, N

3 2
2 E Qg Qy + 2 g Qg Qi g + E ailaigaigau}.

(i1,i2)€S2 N (i1,i2,i3)€S3, N (41,02,i3,i4) €Sy, N

It can also be shown in the same way as in (4.8.2) and (4.8.3) that under Q(s,w),

N
(n?/NHYE Za O(1/n) asv — oo a.s. [P], and
=1

(n2/N4)E[2 Z auam +2 Z a?loziz +2 Z a?lai2a¢3+

(11,i2)€S2 N (41,i2)ES2, N (41,92,i3)€S3, N

2 .
Z o, iy iy iy | < Ko(Bun(t1,t2))” given any v > 1 a.s. [P]

(41,02,33,04) €Sy, N

for some constant Ko > 0. Therefore, under Q(s, w), lim, o E (B (t1, tg))4 < Ko(ta— tl))2
a.s. [P] because B, n(t1,t2) — (t2 — t1) a.s. [P] by SLLN. Hence, the result follows. O

Next, fix k > 1 and py,...,pr € (0,1) and define §2=Z (NX;)~'G;V;, where V,;’s are

1€s
as in the 37 paragraph of Section 4.2 and G;’s are as in the 15! paragraph of Section 4.1. Also,

recall -y from the paragraph preceding the statement of Theorem 4.2.2 in Section 4.2.

Lemma 4.8.3. Fixm € R?* such that m # 0. Suppose that Ep(X;)™" < 0o, and Assumptions
4.2.1 and 4.2.4-4.2.6 hold. Then, under RHC sampling design, we have

T
VnmV, £, N(0,mI'gm™) as v — oo a.s. [P],

where T'¢=cEp(X;)Ep|[(R; — Ep(R;))T (R; — Ep(R;))/X;), and c=lim,,_,o, ny.
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Note that I'g is p.d. by Assumption 4.2.5. Also, note that lim,,_,, n-y exists by Lemma 2.7.5
in Section 2.7 of Chapter 2.

Proof. The proof follows exactly the same way as the derivation of the result, which appears in
the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that \/ﬁml(ﬁg -V)T £, N(0,m;Tom?)

as v — oo under RHC sampling design for any m; € RP, m; # 0 and 's=lim,,_,, 3lo. O

Before we state the next result, recall {Ui}ﬁil from (4.2.2) in Section 4.2, and F,, () from
(4.7.1) and By, n(t1, t2) from (4.7.3) in Section 4.7. Define U,, (t)=\/n > ies(NX) T Gi(L < —
F,n(t) for 0 <t < 1and B, (t1,t2)=U,(t2) — Up(ty) for 0 <t < tg < 1.

Lemma 4.8.4. Suppose that Assumptions 4.2.4 and 4.2.6 hold. Then, there exist constants

L1, Ly > 0 such that under RHC sampling design,
E[(Bu(t1,t2))* (B (ta, t3))?] < L1 (Bun(t1,t3))” a.s. [P]
forany 0 <t; <ty <tz <landv > 1, and
Ty 00 B (B (t1,12))" < Lo (ta — t1)” a.s. [P]
forany 0 <t <ty <1

Proof. Recall from Section 4.2 that RHC sampling design is implemented in two steps. In the first
step, the entire population is randomly divided into n groups, say P, ..., Py, of sizes Ny, N,
respectively. Then, in the second step, a unit is selected from each group independently. For
each r=1, ..., n, the ¢" unit from P, is selected with probability X,'F/ @, where X, ;T is the z

value of the qth unit in P, and QFZfIV:Tl X ér. Let E; and E»> denote design expectations with

274 steps, respectively. Suppose that (y,, ;) is the value of (y, z)

respect to the 15¢ and the
corresponding to the 7" unit in the sample for 7=1, . .., n. Further, suppose that z=Fy(y,) for

r=1,...,n, where Fy is the superpopulation distribution function of y. Define

Qp = QT(ﬂ[t1<Z7~StQ] — By,n(t1,t2)) /2 and B, = Qr(]l[t2<zr§t3} — By n(t2,t3)) /7y

for0 < t1 <ty <t3 < 1andr=1,...,n. Note that I[jn(t):\/ﬁZies(NXz’)ilGi(]l[Uigt] —
Fun(t)=vn) )1 Qr(1.,<q — Fun(t))/Nx,. Then, we have
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E[(Bu(t1,12))* (Bu(t2, t3))*] = (nZ/N‘*)ElEQ[Za%BE + Y B Bt

r=1 (r1,m2)€S2.n

Z 0431 7?2 + Z 042157“167“2 + Z a"'la"?ﬂ??g + Z a72"167“267“3

(r1,r2)€S2,n (r1,r2)€S2.n (r1,r2)€S2.n (r1,r2,73)€S3,n

2
+ > B+ > ar1047"257“357“4:|7
(r1,r2,r3)€S3,n (r1,r2,r3,r4)€S4,n
where Sy ,={(r1,...,7%) : 71,...,7x € {1,2,...,n}and rq,...,ry are all distinct} for k=

2,3, 4. Suppose that for i=1,..., N,

1, when the i*? population unit is selected in the 7" group P,, and
gir =

0, otherwise.

Note that by Assumption 4.2.4, maxj<;<y X;/ minj<;<ny X; < Kj a.s. [P forall v > 1 and
some constant /{1 > 0. Also, note that n max;<,<y, NT/N < 2 for all v > 1 because {Nr}le

are as in page 484 of [66]. Recall B; and C; from the proof of Lemma 4.8.2. Then, we have

(n? /N Ey {i&(aiﬂzﬁ ~ (n/NYEy [Z( 3 BCH/ X )Y <
r=1 1

r=1 “i=
(K1)3(n?/NYE, [i ( :1 BZ-QCZ?@,.) NS] < (K»/N) {gBECEEI ( i:l g)] (4.8.4)
- (o[ 32 B2CE] 2 Ko (Bt 1)
=1

a.s. [P] for all v > 1 and some constants K, K3 > 0 since Y ., &,=1forany 1 <i < N.

Next, recall S n from the proof of Lemma 4.8.2 and note that

<n2/N4>E1{ 3 Ez<arl%ﬂnﬁm>} — (/N x

(r1,r2)€S2,n

El[ 3 EQ(%MEQ(%/BW)}:(n2/N4)E1[ 2

(r1,r2)€S2,n (r1,72)€S2,n

< Z Bi, Ciy Biy Ciyiyri iara / Xy Xiz) Qr QT2:| < (K1)2(n2/N4) x

(11,i2)€S2, N

Ey |: Z Z |Bi10i1||Bi20i2|§i1h£i27“2>NT1NT2:| <

(r1,r2)€S2,n  (i1,i2)ES2 N

(4.8.5)
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N N
Ki > |Bi,Ciy| . [BiyCiyl /IN(N = 1) < K5(Byn(t,t3))°
i1=1 in=1
a.s. [P] for all v > 1 and some constants K4, K5 > 0 since units are selected from P,, and P,,
independently, {NT}?:l are as in page 484 of [66], and E'1 (&;,r, &igry )=Np, Ny, /N(N — 1) for
any (r1,72) € S2., and (i1,72) € Sz n. It can be shown that an inequality similar to (4.8.5) holds
for each of (n?/N*)E1E; > i ra)e 800 a2 2], (n2/N4)E1E2[Z(rl,rz)gsm o2 By, Br,) and
(n®/NYELE2 (Y, 1y)es, ., Cori s B, ). Note that

E1(§i1T15i2T2€i3T3) - NTIN”'QN"'B/(N(N - 1)(N - 2))

for (7“1, 9, 7’3) S S37n and (il, 19, ig) € 537]\[, and Z( ererNm /N(N—l)(N—Q)

r1,r2,r3)E€S3 R

is bounded. Also, note that
E1(§i1T1§i2T2§i3T3§i4T4) = (NT1NT2NT3N7’4)/N(N - 1)(N - 2)(N - 3)

for (7’1, 79,73, 7‘4) € S47n and (il, iQ, i3, i4) S 547]\7, and Z( er NTQNT3NT4/N(N—

1)(N — 2)(N — 3) is bounded. Then, it can be shown in the same way as in (4.8.4) and (4.8.5)

r1,r2,73,74)ES4n

above that

(n*/N*)E\ E; Z a?ﬁmﬂm} < K6(Bu,N(t17t3))23

~(r1,r2,m3)€S3 .1

(n?/N*)E\Ey > Oémoémﬁfgl < K¢(Bun(t1,t3))” and

" (r1,r2,m3)€S3 .1

(n?/N*E, E, > am%,@m@m} < Ko(Bun(t1,13))° as. [P]

- (r1,r2,r3,74)ES4n

for all v > 1 and some constant K¢ > 0. Thus

E[(an(tl, tg))Q(an(tg, t3))2} < K7(Bu7N(t1, tg))Qa.s. [P]

for all » > 1 and some constant K7 > 0.

Next, note that

n
~ 4
E(By(t1,t2)) :(nz/N4)E1E2[Za;§+2 > alel+

r=1 (7“1,7“2)652,71
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3 2
2 E Q. Qpy + 2 g Qg Oy Qg + g Olpy Oty Olpy Ol |

(r1,m2)€S2,n (r1,m2,r3)€S3,n (r1,m2,73,74)ES4 R

It can be shown in the same way as in (4.8.4) and (4.8.5) above that

n

(n®/N*%) ElEz[Z } O(1/n) as v — oo a.s. [P], and (n?/N?*)x

E1E2[2 S a2e 42 Y adant? Y alanant

(r1,r2)€S2,n (r1,r2)€S2,n (r1,r2,73)€S3,n

Z amamamam} < Kg (BU,N(tl,tg))2 given any v > 1 a.s. [P]

(r1,72,73,74)E€S4,n

for some constant Kg > 0. Therefore, m,,ﬁooE(INBn(tl,152))4 < Kg(t2 — t1)2 a.s. [P] since

By n(ti,t2) = (t2 — t1) as v — oo a.s. [P] by SLLN. O

Next, we state the following lemma, which is required to prove Theorem 4.4.3.

Lemma 4.8.5. (i) Fix 0 < o < 8 < 1. Suppose that the assumptions of Theorem 4.2.1 hold,
K (p1,p2) is as in (4.2.3) in Section 4.2, and K(pl,pg) is as in (4.4.4) in Section 4.4.1. Then,
under P*,

sur[) ] \K(pl,pg) — K(p1,p2)| = Op(1) and K(pl,pg) LN K(pi,p2)asv — o (4.8.6)
p17p2€ a)ﬂ

for any p1,p2 € |«, 5] and high entropy sampling design satisfying Assumption 4.2.2.

(ii) Further, if the assumptions of Theorem 4.2.2 hold, K (p1,p2) is as in (4.2.5) in Section 4.2,
and K (p1,p2) is as in (4.4.5) in Section 4.4.1. Then, the above results hold under RHC sampling
design.

Proof. (i) Let us first consider a high entropy sampling design P(s,w) satisfying Assumption
4.2.2, and a rejective sampling design (s, w) having inclusion probabilities equal to those of
P(s,w). Since, K(p1,p2) in (4.2.3) in Section 4.2 and K(pl,pg) in (4.4.4) in Section 4.4.1
depend on P(s,w) only through its inclusion probabilities, and P(s,w) and Q(s,w) have equal
inclusion probabilities, it is enough to show that the results in (4.8.6) hold for Q(s,w). The
results in (4.8.6) holds for P(s,w) in the same way as the conclusion of Proposition 4.2.1 holds

for P(s,w) in Section 4.7. We shall first show that under P*,

sup |K(p1,p2) — K(p1,p2)| = Op(1) as v — oo for Q(s,w).
p1,p2€[a, ]
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It can be shown in the same way as the derivation of the result in (4.7.25) in Section 4.7 that
under P*, {y/n(Qy(p) — Qy(p)) : p € [/2, (1+ ) /2]} converges weakly to a mean 0 Gaussian
process as v — oo in (D]a/2, (1 4 ) /2], D) with respect to the sup norm metric, for Q(s,w).

Consequently,

sup [Vn(Qy(p) — Qy(p))| = Op(1) (4.8.7)

p€la/2,(148)/2]
as v — oo under P* by continuous mapping theorem. Then, under P*, we have

sup [vV(Qy(p + 1/vn) = Qy(p — 1/v/n)) /2| = O,(1) as v — oo for Q(s, w)

p€la,f]

since & — 1/y/n > a/2and B+ 1//n < (1 + 3)/2 for all sufficiently large v, and f, o Q, is
bounded away from 0 on [«/2, (1 + 3)/2] by Assumption 4.2.3. Here, we recall from Table 4.5
in Section 4.4.1 that \/n(Qy (p + 1/v/n) — Qy(p — 1/4/n))/2 is the estimator of 1/f,(Qy(p)).

Similarly, under P*,

sup [vn(Qz(p + 1/vn) — Qu(p — 1/3/n)) /2| = Op(1) as v — oo for Q(s,w).

p€la,f

It further follows from (4.7.28) and (4.7.34) in the proof of Theorem 4.2.1 in Section 4.7 that

under P*,

sup |Qy(p)/Qa(p) — Qy(p)/Qu(p)| = 0, ZﬂilYi/ZwilXi S EP(Yi)/EP(Xi)

pEla,f] i€s i€s
and Zﬁi_le‘Yi/Zﬂi_lX? 2, Ep(XZ-Y;)/Ep(Xiz) as v — oo for Q(s,w).
i€s i€s

Similarly, it can be shown that under P*,
N
Z(l - m)/Zm(l — ;) B 1as v — oo for Q(s,w).
i€s i=1
Consequently, under P*,

A~

sup  |K(p1,p2) — K(p1,p2)| = Op(1) as v — oo for Q(s,w).
p1,p2€[, ]

This completes the proof of the first result in (4.8.6) for Q(s,w).

Next, if we establish that under P*,
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K(p1,p2) — K(p1,p2) 2 0and K (p1,p2) & K(p1,p2)

as v — oo for Q(s,w) and any p1, pa € [, (], then the result
K(pl,pg) LN K (p1,p2) as v — oo for Q(s,w) and any p1, p2 € [, 5] under P*

will follow. Here,

K(p1,p2) = (n/N?) > (Gip1) = {(p1) — S(p1)mi) (Gi(p2) — {(p2) — S(pa)ms) (m; = 1), .

Note that
N —

K(p1,p2) — (n/N?)> (Ci(p1) = C(p1) = S(p1)mi) (Gi(p2) — C(p2) — S(p2)mi)(m; ' — 1)
=1

2 0as v — oo for any p1,p2 € |, 5] under P*

in the same way as the derivation of the result 3°._ (N7;)~* & 1 for Q(s,w) under P* in the

iES(

proof of Proposition 4.2.1 (see the last few lines in 2"¢ paragraph of the proof of Proposition

4.2.1 in Section 4.7). Also, note that (n/N2) =N | (Ci(p1) — C(p1) — S(p1)mi)(Ci(p2) — C(p2) —

S(p2)m;)(m; * —1) has a deterministic limit a.s. [P] for any p1, pa € [, 8] in view of Assumption

4.2.2-(i). Further,

N

EP( lim_ (n/N?) Z (Gi(p1) p1) — S(p1)m)(Gi(p2) — C(p2) — S(p2)m)(m; ' — 1))
=1

= K(p1,p2) for any p1,p2 € o, (]

in view of Assumption 4.2.2-(ii) and DCT. Therefore, as v — oo,
N —
(n/N?)> (G(p1) = C(p1) = S(p1)mi) (Gilp2) — C(p2) — S(p2)mi)(w; ! = 1) — K (p1,p2)
i=1

a.s. [P], and hence K (p1, p2) LN K (p1,p2) under P* for any p;, p2 € [o, 3].

Next, letus fix v > 1,¢ > 0, > 0 and p € [« 5]. Then, we have

{\/ﬁle(p) —Qyp)l <tand > (Ly,<q,()+t/vi — Lvi<o,m)—t/vm)/NTi  (4.8.8)

1€ES
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< 5} < { 2 Ly, on/Nmi = 2 Lvisq, /Nl < 5}-

€S €S

Further, one can show that under P*,

Z(]I[Yé@y(p)ﬂ/\/m B ]l[Yi<Qy(p)t/\/ﬁ])/N7ri_

€S

Fy n(Qy(p) +t/v/n) + Fy n(Qy(p) — t/v/n) Popasv — o0

in the same way as the derivation of the result >, (Nm;)~* 2, 1 for Q(s,w) under P* in the

proof of Proposition 4.2.1. Moreover, under P, F, x(Q,(p)+t/v/n)—F, n(Qy(p)—t/v/n) £ 0

as v — oo by Chebyshev’s inequality and Assumption 4.2.3. Thus as v — oo

Y (Lyi<qu+t/viil = Lyi<y(—tyy))/Nmi = 0 under P*.

1€Es

Moreover, it follows from (4.8.7) above that as v — oo,

\/ﬁ@y(p) — Qy(p)| = Op(1) under P*.

Therefore, using (4.8.8), (4.8.9) and (4.8.10) above, one can show that

p *
Z]l[YiSQy(p)]/Nﬂ—i — Z]l[yi<Qy(p)]/N’/Ti — 0 as ¥ — oo under P*.

€S 1€ES

Now, suppose that p,=p + ¢//n for ¢ € R. Then, we have

Qy(pn) = Qy(p) + (¢/vn)(1/ fy(Qy(en)))

by Taylor expansion, where €,, — p as ¥ — oo. Thus one can show that as v — oo,

V(B (Qy(pn)) — Ey(Qy(p)) — Fy(Qy(pn)) + p) 2 0 under P*

(4.8.9)

(4.8.10)

in the same way as the derivation of the result >, (Nm;)~* 2, 1 for Q(s,w) under P* in the

proof of Proposition 4.2.1. Further, it can be shown that

Qy(p) — Qy(p) = (p = F,(Qy()))/ f4(Qy(p)) + 0p(1/v/n) as v — oo under P*.

Similarly, we have
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A~

Qy(pn) — Qy(pn) = (Pn — Fy(Qy(pn)))/fy(Qy(pn)) + Op(l/\/ﬁ) as v — oo under P”.

Therefore,

\/E(Qy(p +1/v/n) — Qy(p —1/v/n))/2 LN 1/fy(Qy(p)) as v — oo under P*.

Similarly,

p
> Lixi<o, /N = D Uixi<Qu()/Nmi = 0 and

1€S €S

Vi(Qe(p +1/v/n) — Qu(p — 1/v1))/2 B 1/ £.(Qu(p)) as v — oo under P*.

Hence, under P*, K (p1,p2) — f((pl,pg) 2 0as v — oo for Q(s,w) and any p1,p2 € [a, 5].
This completes the proof of (i). The proof of (ii) follows exactly the same way as the proof of
). O

Next, suppose that P(s,w) denotes the stratified multistage cluster sampling design with
SRSWOR mentioned in Section 4.3. Fix kK > 1 and p1,...,p; € (0,1). Recall Rﬁljl from the
paragraph preceding Assumption 4.3.5. Define

A H
it =Ri —Rand Vs =Y "> N My Ny, Vi /mpry N
h=1j€sy lESh]’
— ‘_ _ R/_~~H My, ~Nrj ppr
for h=1,..., H, j=1,...,Mp and I=1, ..., Ny;, where R=} ;" ; > 57" 37 'V R}, /N. Now,

we state the following lemma.
Lemma 4.8.6. (i) Fix m € R?* such that m # 0. Suppose that H is fixed as v — oo, and
Assumptions 4.2.1, 4.3.1 and 4.3.3 hold. Then, under P(s,w),

T
VnmV, £ N(0, \mDymT) as v — oo a.s. [P]

for some p.d. matrix Iz, where \ is as in Assumption 4.2.1.
(ii) Further, if H — oo as v — 00, and Assumptions 4.2.1 and 4.3.3—4.3.5 hold, then the same

result holds.
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Proof. Note that

NG mV3 =n Z >N MuNy Vi fmyr N = Z’rh(say)

h=1j€Esp le€sp;

(i) We shall first show that 7,=+/n Zjesh Zl@hj MhNth;ljlmT/mhrhN is asymptotically
normal under two stage cluster sampling design with SRSWOR for each h=1, ..., H. Then, the
asymptotic normality of ZhH:1 Ty, follows from the independence of {771}th1- For establishing

the asymptotic normality of 7j, we shall use Theorem 2.1 in [62].

Let ©p=)_ ¢, EN’” thlmT/,/m for h=1, ..., H. Note that ©,/,/my, is the HT estima-
tor of Z ZN'” Vi ;m” /M;, under SRSWOR. Also, note that Assumption 4.2.2-(ii) holds triv-
ially under SRSWOR. It follows from Assumptions 4.2.1 and 4.3.1 that Z ! ZN’” Vii ym7 |29

Mp=0(1)asv — oo forany 0 < § < 2andw € .

Now, it can be shown that var(©p,)=0}, | — o} , + 0}, 5. Here,

My,
Tha = (1= fn) 3 Niy (R, = R)m")*/ (M), — 1),
oho=2(1— f)Na((R}, —R ZNhj (R,; — R)m") /M, (M, — 1)

and o} 3 = (1 — f) N7 ((R,, —R)m ) [Mp(Mp, — 1)

with fr=mp, /M, Rh] ZN'” R}, i1/ N and R),= Z ZN’” R}, ;; /Np. Next, we note that

Mp,

Uhl B 1_fh <ZNhJ RhJ —Z(R/mT)ZN,%j(R;ijT)+
Jj=1 (4.8.11)

S (Rm")?) /1, - 1),

where Nj,= ZM" Ny 2 Let us consider the first term on the right hand side of (4.8.11). Using

Assumptions 4.2.1 and 4.3.1, and Hoeffding’s inequality, it can be shown that

(1= fn) > Ni;((Rym")? — Ep(Rj,;m")?)/(My — 1) = O as v — oo a.s. [P].
j=1

Further, we have
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Mh
(1= fn) > NiBEp(Rym")?/(My, — 1) = (1 — fn)(Nu&h + Napiz) /(M — 1),
j=1

where 6}%:Ep [( ’hﬂ — FEp (Rﬁlﬂ))mT]Q:thmT (recall I'j, from the paragraph preceding As-

sumption 4.3.5) and pu,=Ep (R}, ;m”). Thus

My,
(1= fa) Y Nz (R, m")?/(My, — 1) = (1= fu)(Nn67 + Napiz) /(My — 1) + 0(1) (4.8.12)
j=1

as v — oo a.s. [P]. Using similar arguments, we can say that

ony = (1= fr) N6y + Nu(un — 1)*)/(Mp — 1) + o(1),
ot = 2(1 = fa)Nit (i — j1)* /Mp(Mp, — 1) + o(1) and

ong = (1= fa)Ni(pun — 1)* /My (M, — 1) + o(1) as v — oo a.s. [P],
where fi=) th1 Appp (recall Ap’s from Assumption 4.3.1). Then, we have
var(0) = (1 — fu)Npoi/(My, — 1) 4 o(1) (4.8.13)

as v — oo a.s. [P] by Assumption 4.3.1.

Next, recall F, i (t) and F, g (t) from the paragraph preceding Assumption 4.3.5. It can be

shown that

sup | Fy g (t) — Fy s (t)| — 0and sup |Fy g (t) — Fp g (t)] — 0asv — oo (4.8.14)
teR teR

by Assumption 4.3.1, where F, j (t):ZhH:1 ApF, (t) and FE7H(t)=Zf:1 ApFy p(t). Then, it

follows from Lemma 4.8.8 that

Qy.u(pr) — Qy’H(p,ﬂ) asv —ooforanyr =1,... k, (4.8.15)
where Qy,g(p)=inf{t eR: Fy’H(t) > p}. Similarly,

Qz.u(pr) — Qx,H(pr) asv —ooforanyr =1,... k, (4.8.16)

where Q. g (p)=inf{t € R : Fy, g(t) > p}. Let
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1

Rpjt = <]1[ V1< el L <0y o)) LX) <0 o)) [X;Lﬂg@x,mk)])’

where (Y}, X}, ;) is as in the second paragraph of Section 4.3. Then,
o7, = mlym” — mEp(Ryj — Ep(Raji))" (Rpji — Ep(Rpj))m

as v — oo forany h=1, ..., H in view of Assumption 4.3.3. Moreover, Fp (thl — EP(thl))T X

(thl - Ep(ﬁhjl)) is a p.d. matrix because Assumption 4.3.2 holds. Therefore,
lim, . ((Mp, — 1)/Mp)var(©y) > 0 a.s. [P
by (4.8.13) above and Assumption 4.3.1. Hence, one can show that
(©1 — E(61))/+/var(©y) 5 N(0,1) as v — oo under SRSWOR  a.s. [P]

in the same way as the derivation of the result, which appears in the proof of Lemma 2.7.2 in
Section 2.7 of Chapter 2, that \/nmy (61 -v)T £, N(0, mlf‘lm{) as v — oo under SRSWOR
for any m; € RP, m; # 0 and I'y=lim,,_, X31. Thus the condition C1 of Theorem 2.1 in [62]
holds a.s. [P].

Next, suppose that Vh] ZN’” Vii1/Nij. Note that for any h=1,..., H, ZNh] (Vi —
th)m ) /Np,; are independent bounded random variables for 1 < j < Mj,. Then, by Assump-

tions 4.2.1 and 4.3.1, and Hoeffding’s inequality, we have

Mh Nhj Mh
> (N Jri)(1/m) [Z (( %jl_v;zj)mT)Q/Nhj:| = (1/ramn) > Nij(Npj —1)57 +o(1)
j=1 =1 Jj=1

as v — oo a.s. [P]. Thus
M Nh7
. </ 2 2
hmy—mo[Z(Nhg/rh (1/mp) {Z hjl - th)mT) /Nhj}]
7=1
a.s. [P]. Further, in view of Assumption 4.3.1, we have
Nij

[Mg Nh]/rh 1/Mh){ Z (( ;zjl —V;w-)mT)Q/Nhj}T <K

=1
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for all sufficiently large v and some constant X' > 0 a.s. [P]. Therefore,

ulggo[fé(Néj/T%)(Mh/mh)‘g{g(( i — Vi)m )/Nh]}2]/
S {3 (Vom0 )] o

j=1 1=1

a.s. [P] by Assumption 4.3.1. Thus the condition C2 of Theorem 2.1 in [62] holds a.s. [P] by
Assumption 4.3.1 and Proposition 4.1 in [62].

The condition C3 of Theorem 2.1 in [62] holds for any w € € by (b) of Proposition 2.3 in [62]
since SRSWOR is used to select samples from clusters in the 1! stage and from population units
of the selected clusters in the 2"¢ stage. Therefore, the conditions C1, C2 and C3 of Theorem 2.1
n [62] hold a.s. [P]. Hence, by Theorem 2.1 in [62], we have

(VR /Nu) (N/V/0) (T, = E(Th)) / (var((v/rn /Nu) (N/Vm)T) 2 5 N(0,1) - (4.8.17)

as v — oo under two stage cluster sampling design with SRSWOR a.s. [P] for any h=1,..., H.

Now,

var((/nn/Ni)(N/v/n)Th) = ZC’U R;U R')m ) 5h((I_{;l—NhR'/Mh)mT)2+

Nhj

Z th Z hjl - R/hj)mT>2,
J=1

where

ehj = (N/Np)*(nn/n)cng, dnj = (N/Np)?(nn/n)dp;, and & = (N/Ny)*(nn/n)cy
Here,

chj = cnNiyj /My, dpj = nMp(1 = fu;)Nir; /mprn(Nyj — 1)N?,

ch =nMj(1— f)/mp(My — 1)N?, fr, = mp, /My, and fr; = r4/Np;.

It can be shown using Hoeffding’s inequality that

var((v/nn/Np) (N/V/n)Th) = (1 — nh/Nh)&,% +o(l)asv — oo as. [P].
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Therefore, using (4.8.17) above and Assumption 4.3.1, it can be shown that

H H
Z ZE— £>N(0,A2)as1/—>c>oa.s. [P].
h=1 h=1
Here,
H
_ . _ T 2
A? Vli}ngozjln]\fh Ny, nh)ah/nhN VILH;O;nNh(Nh np)mlym™ /n, N
H ~ ~
= Z Ah(Ah/)\)\h — 1)Ep (thlmT — Ep(thlmT))2 = )\mF7mT >0
h=1

with F7:ZhH:1 Ah(Ah/)‘)\h — 1)Ep (ﬁhjl — Ep(lihjl))T (thl — Ep(lihjl)). This completes
the proof of (i).

(ii) Since, population units are sampled independently across the strata in P(s, w), asymptotic
normality of Zthl Tr, under P(s,w) follows by applying Lyapunov’s central limit theorem

(CLT) to independent random variables {771}th1' Note that for any § > 0, we have

IThl** < e(v)(mn/v/n)**°

by Assumption 4.3.4, where () does not depend on s and w, and €(r)=0(1) as v — oc.

Therefore, under P(s,w),

H H
Z E|7;L|2+5 < 6(V)(H/711+6/2) Z M}%—M/H — O(n*‘S/z)

h=1 h=1

asv — oo forany 0 < § < 2 and w € ). Hence, under P(s,w), Ethl E|Tn, — E(Th)]?*° — 0

asv —ooforany 0 < § <2andw € Q.

Next, we have

H M, H
Zvar Tn) = chhﬂ Rh] Zch — NhR//Mh)mT)2
h=1j=1 h=1

H M, Np;

£33N dn > (R, — Ry )m™)? = A2 — A%+ AZ (say).

h=1 j=1 =1

Now, it can be shown using Assumptions 4.2.1 and 4.3.4, and Hoeffding’s inequality that
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H H
A% — A% + AQ = Zch(Nh - N}%/th,u,h — M*)Q/Mh + ZthNh&,QL/
. h=t (4.8.18)
mprpaN? — ZnNh&;QL/NQ +o(1) as v — oo a.s. [P],
h=1

in the same way as the derivation of the result in (4.8.12). Here, M*:Zthl Nppp/N. The first
term on the right hand side of (4.8.18) converges to 0 as ¥ — oo by Assumption 4.2.1 and

Assumption 4.3.4. Moreover, we have

H H
ZthNh(}}%/thth — ZnNh5,21/N2

h=1 B h=1 " (4.8.19)
= (n/N?) Y My(Ny — Ni [Mp)G7/murn + (n/N?) > Nu(Ny = np)65 /1.
h=1 h=1
The first term on the right hand side of (4.8.19) converges to 0 and
H H
(n/N?)> " Np(Np = np)on/nn = X>_ Ny(Ny — np)65 /naN + o(1) as v — o0
h=1 h=1

by Assumption 4.3.4. Therefore,

H
AT — A5+ A3 =X Ny(Ny, — nw)&h /nnN + o(1),
h=1

and hence

H
Zvar(ﬁ) =A? - AZ4+ A2 - dxmI'im” >0
h=1

as v — 0o a.s. [P] for some p.d. matrix I'y in view of Assumption 4.3.5. Here, I'; is as in Assump-
tion 4.3.5. Thus the Lyapunov’s condition Y"1 E|T; — E(T5) 20/ (37, var(Tp)) /2 = 0
as v — oo for some § > 0, holds under P(s,w) a.s. [P]. Consequently, 7 Tj, £

N (0,  mI'sm”) as v — 0o a.s. [P] with T'7=T"y. This completes the proof of (ii). O
Next, consider {U;}Y, as in (4.2.2) in Section 4.2 with F}, j replacing F},. Also, consider
B, n(t1,t2) and B,,(t1,t2) as in (4.7.3) in Section 4.7. Now, we state the following lemma.

Lemma 4.8.7. (i) Suppose that H is fixed as v — oo, and Assumptions 4.2.1, 4.3.1 and 4.3.3
hold. Then, under P(s,w),
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E[(Bn(tl,tg))Q(IBn(tg,tg))2] <Ih (B%N(thtg))Q a.s. [P]

forany 0 < t; <ty <tz <1, v>1andsome constant L, > 0, and
o 4
limy oo B (By(t1,t2))” < La(ta — t1)? as. [P]

forany 0 <t <ty <1 and some constant Ly > 0.

(ii) Further, if H — oo as v — 00, and Assumptions 4.2.1, 4.3.3 and 4.3.4 hold, then the

same results hold.

Proof. Recall Y, from the 274 paragraph in Section 4.3. Let us define U}, a=Fy,u(Yy;,) for any
given h=1,...,H, j=1,..., My and I=1, ..., Np;. Consider F;, n(t) and U,(t) asin (4.7.1) in
Section 4.7. Recall from Section 4.3 that given any h, j and [, Yéﬂ:Yi forsomei € {1,...,N}.
Also, recall from Section 4.3 that under P(s,w), the inclusion probability of the i*" population

unit is m;=my,ry /My, Ny if it belongs to the jth cluster of the ht" stratum. Then, we have

Un(t)=vn 3101 Yics, Ytesn, MuNw; (Lvy <o — Fun(t)) /maraN.

Now, suppose that for h=1,..., H, j=1,..., My and I=1, ..., Nyj,

1, if the [*" unit of the j** cluster in the h'" stratum is selected in the sample, and
Enjt =
0, otherwise.

Then, we have

H Mh Nhj

Zon(t) = (VR/N) D DS ((MpNaj&nji/mnrn) — 1) (Lizy,,<q — Frn (1))

h=1j=1 I=1
Further, suppose that

My, Nnj _
an =Y Y ((MpNyiénji/mnrn) — 1) Apji and

J=11=1
My, Nij

By = Z Z (M Nnj&nji/mury) — 1) Bhji

j=11=1

for h=1, R ,H and 0 <t <ty < t3 <1, where Ahjl:]l[t1<Z,’1jl§t2] — Bz,N(tlatQ) and



196 Chapter 4. Quantile processes and their applications in finite populations

thl:]l[t2<Z;le§t3] — BzyN(tQ, t3). Now, let us define Sk,H:{(hh ... ,hk) :hi,...,h €
{1,2,...,H} and hy,..., hy are all distinct} for k=2, 3, 4. Then, we have

E[(Bn(t17t2))2(Bn(t27t3)) | = @*/NYE [Z%ﬁh‘*‘
Z 5‘%15}%2 + Z d%zy@/nﬁhz + Z dhl&hZBfZLQ_‘_

(h1,h2)€S2 1 (h1,h2)€S2 1 (h1,h2)€S2 1

Z Gty Gvhy By By + Z &, By By +

(h1,h2)€So 1 (h1,h2,h3)€S3 1

S ananiLt Y w}

(h1,h2,h3)€Ss 1 (h1,h2,h3,ha)ESs i

(4.8.20)

(i) Suppose that apji=((Mp Npj&njt/mnrn) — 1) Anjis Brji=((MyNij€nji/mnra) — 1) Brji,
o =50 g and By =31 By for h=1,. .. H, j=1,..., My, I=1,..., Njjand 0 < ¢ <
to < tz < 1. Then, we have &= Z] | o and thzjj‘ihl B,;- Now, let us consider the first
term on right hand side of (4.8.20). Further, suppose that Sy ,={(j1,...,Jk) : J1,---,Jk €

sp and j1,. .., ji are all distinct}, k=2,3,4, 1 < h < H. Then, we have

H My,
E@R) = (/N ZE[Z B Y (ah B
h=1 7=1

(j1,J2)€S2,n

M=

(n?/N%)

>
Il

1

+ Z (azj1)2ﬁ;;j1ﬁ;;j2 + Z a;;jla}kljz (ﬂftjz)Q_‘_

(j17j2)es2,h (jlva)eSQ,h (4821)

2
Z azjla;klhﬂzjlﬁzjz + Z (azjl) fB;j2ﬁ;:j3+

(J1,J2)€S2,n (J1,52,J3)€S3 1
Y @, (Bh) D 0y Bhi B |-
(J1,J2,33)ES3,1 (J1,J2,J3,44)ESa,n
Next, consider the first term on the right hand side of (4.8.21). Suppose that Sy, 5;={(l1,...,lx) :
li,....ls € {1,...,Np;}and Iy, ..., are all distinct}, k=2,3,4, j=1,...,Mpand 1 < h <
H. Then, we have

H My, Nh]
(n?/NY) ZE[Z i | = /) ZE[Z (@i
Jj=1 j=1 Ni=1
+ ) @nBrn)? Y @hie))*Bhji Bhiis (4.8.22)

(I1,12)€S2, h; (I1,l12)€S2 nj

_ — o) 2 — — o) n
+ ) @i Brn)® D hjt @hjin By Brjy+

(l1,l2)€S2 hj (l1,12)€S2 hj
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— 23 7 ——F N2
Yo @) BuBui + Y, @it (Brsiy)

(I1,l2,13)€S3,n; (I1,12,13) €S53, hj

+ Z ahjllahjlzﬂhjlgﬁhjl4>:| .
(I1,12,13,14)ES4 b
Now, consider the first term on the right hand side of (4.8.22). Note that N/n=0(1) and
N/n=0(1) and maxi<n<n,1<j<m, (WMpNp;/rpmpN)=0(1) as v — oo by Assumptions

4.2.1 and 4.3.1. Then, we have

H My Npj H My Npj

(n*/NYI DS B@nuBuu)® = /N DS E((MuNujlnjt/mnrn)

h=1j=1 I=1 h=1j=1 |=1
H Mh N}LJ

— 1) 4}, BY;; < (Ki/N?) ZZZ( o +BZN<t1’t2)> (4.8.23)

h=1j=11=1

2
(11[t2<z;u.lgt3] + Bz,N(t2at3)> < Ky(B.n(t1,t3))

a.s. [P] for all v > 1 and some constants K7, Ko > 0. Inequalities similar to (4.8.23) can be
shown to hold for the other terms on the right hand side of (4.8.22). Thus

H M,

* ok 2
(n*/N")> Y E(aj,;8)° < Ks(Ban(ti, t3)) (4.8.24)
h=1 j=1
a.s. [P] forany 0 < t¢; < to < t3 < 1,r > 1 and some constant K3 > 0. Inequalities similar
to (4.8.24) can also be shown to hold for the other terms on the right hand side of (4.8.21).

Therefore,
H

(n®/N*) ZE(d%B}%) < Ky (Bz,N(tlatS))2 (4.8.25)
h=1

a.s. [P]forany 0 < t; < to < t3 < 1, v > 1 and some constant X, > 0. Furthermore,
inequalities similar to (4.8.25) can be shown to hold for the other terms on the right hand side
of (4.8.20). Consequently, E[ (B, (t1,t2))* (Bn(t2, t3))°] < K5(B. n(t1,t3))> a.s. [P] for any
0<t; <ty <t3 <1, v>1andsome constant K5 > 0. Moreover, it can be shown in the same
way that lim, _,oc E (B, (u, t))4 < Kg(t —u)? as. [P] forany 0 < u < t < 1 and some constant
K > 0 because B, n(u,t) — (t —u) as v — oo a.s. [P] by Assumption 4.3.3 and SLLN. This

completes the proof of (i).

(ii) It follows from Assumptions 4.2.1 and 4.3.4 that N/n=0(1) and max;<p<m 1<j<Mm,
(nMpNpj/rpmpN)=0(1) as v — oo. Then the proof of the result in (ii) follows the same way

as the proof of the result in (7). 0
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Next, recall A\y’s from Assumption 4.3.1, Fy g and (), i from the paragraph preceding
Assumption 4.3.5 and F}, from Assumption 4.3.6. Let us define Q,(p)=inf{t € R : F,(t) > p}
for 0 < p < 1. Also, recall 13'% g and Q% g from the paragraph containing (4.8.14)—(4.8.16) in

the proof of (i) in Lemma 4.8.6. Then, we state the following lemma.

Lemma 4.8.8. (i) Suppose that H is fixed as v — oo, and Assumptions 4.3.1 and 4.3.3 hold.

Then, forany 0 < a < B < 1,

sup [Qyu(p) — @yH(p)] —0asv — oo.
p€la,fl

(ii) Further, suppose that H — 0o as v — oo, and Assumptions 4.3.3, 4.3.4 and 4.3.6 hold. Then,

forany0 < a < <1,

sup |Qy,u(p) — Qy(p)] —0asv — oo.
p€la,f]

Proof. (i) Note that the inverse of Fy ulc,, say F,~ % :(0,1) — C,, exists and is differentiable
by Assumption 4.3.3, and F - é(p):Qy, m(p) for any 0 < p < 1. Also, note that the inverse
of Fy,H|Cy, say Fy*}{ :(0,1) — Cy, exists and is differentiable, and FJ}{ (p)=Qy.1 (p) for any
0 < p < 1. Clearly, Q, r is uniformly continuous on [e/2, (1 + /3)/2]. Then, given any ¢ > 0

there exists a > 0 such that

1Qy. (1) — Qyr(p2)| < e, whenever |py — pa| < 8 and py,p2 € [/2, (1 + B)/2].

Now, it follows that

sup |p— Fyu(Qyu®)| = sup |Fyu(Quu(p) — Fyn(Qyu(p)| — 0
p€la,f p€[a,f]

as v — oo. This further implies that

sup |p — Fy(Qy.u(p))| < min{a/2, (1 - §)/2,}
p€la,f]

for all sufficiently large v. Therefore,

a/2 < Fyg(Qyu(p) < (1+B)/2forallp € [a, ]

and all sufficiently large v. Hence,
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sup |Qy,r(p) — Quu(p)| = sup |Qyu(Eyu(Quu(p)) — Quup)| < e
p€la,f] p€la,f]

for all sufficiently large v. This completes the proof of (i). The proof of (ii) follows exactly the

same way as the proof of (i). O

Next, we state the following lemma, which is required to prove Theorem 4.4.4.

Lemma 4.8.9. Fix 0 < a < 8 < 1. Suppose that the assumptions of Theorem 4.3.1 hold,
K (p1,p2) is as in (4.3.1) in Section 4.4, and K(pl,pg) is as in (4.4.7) in Section 4.4.1. Then, the
results in (4.8.6) of Lemma 4.8.5 hold under stratified multistage cluster sampling design with
SRSWOR.

Proof. The proof follows exactly the same way as the proof of (i) in Lemma 4.8.5 for the cases,

when H is fixed as v — oo and H — oo as v — o0. O

In the following lemma, we demonstrate some situations, when Assumption 4.2.2—(i) holds.
Recall from the paragraph preceding Assumption 4.2.1 in Section 4.2 that @, (p)=inf{t € R :
F,(t) > p} and Q. (p)=inf{t € R : F,(t) > p} are superpopulation p!* quantiles of y and =,
respectively, and V,;=R; — Zf\; 1 Ry/N fori=1,..., N, where

Ri = (Lvi<Q, 1)) -+ Lvi<@y o)) LiXi<Quo)] -+ » LXi<Qu (i)

for p1,...,pr € (0,1) and k& > 1. Then, we state the following lemma.

Lemma 4.8.10. Suppose that Assumptions 4.2.1, 4.2.4 and 4.2.5 hold. Then, Assumption 4.2.2—(i)
holds under SRSWOR and LMS sampling design. Moreover, if X; < b a.s. [P] for some b > 0,
Ep(X;)~! < oo, Assumption 4.2.1 holds with 0 < \ < Ep(X;)/b, and Assumption 4.2.5 holds,

then Assumption 4.2.2—(i) holds under any wPS sampling design.

Proof. Givenany k > 1and py,...,px € (0,1) let us denote (1/N?) Zi]il(Vi —Tym)T(V; —
Tym;)(m; ' —1) by X. Here, Tvzzi]\il Vi(l—m;)/ le\il m;(1—m;), and the 7;’s are inclusion

probabilities. Note that

nSy = (1 —n/N) <§:vai/N - VTV>

=1
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under SRSWOR. Then,
nZN — (1 — )\)EP(RZ — EP(RZ»T(RZ — EP(RZ)) as v — o0 a.s. [P] (4826)

by Assumption 4.2.1 and SLLN. Note that Ep(R; — Ep(R;))T (R; — Ep(R;)) is p.d. by Assump-
tion 4.2.5. Thus A4.2.2—(i) holds under SRSWOR.

Next, suppose that 25\1,) and 253) denote (1/N?) Zf\il(Vi — Tym)T (Vi — Tym)(n; b —
1) under LMS sampling design and SRSWOR, respectively, and {wgl) ﬁvzl denote inclusion
probabilities of LMS sampling design. Then, it follows from the proof of Lemma 2.7.1 in Section
2.7 of Chapter 2 that

max |N7T§1)/n —1] - 0asv — oo a.s. [P] (4.8.27)
1<i<N

It can be shown using this latter result that n(E%) - Eg\%)) — 0 as v — oo a.s. [P|. Therefore,

Assumption 4.2.2—(i) holds under LMS sampling design in view of (4.8.26).

Next, under any 7PS sampling design (i.e., a sampling design with m;=nX;/ Zfi 1 Xi), we
have

lim Sy = Ep[{Ri — Ep(R;) + Ax 15 ' Cor X3} T x
v 00 (4.8.28)

{R; — Ep(R;) + A\ 'y ' Cor X } {112/ Xi — N}] as. [P]

by SLLN because Ep(X;)~! < oo and Assumption 4.2.1 holds. Here, p,=Ep(X;), X=ptz —
A Ep(X;)?/u,) and Cypr=Ep[(R; — Ep(R;))X;]. The matrix on the right hand side of (4.8.28)
is p.d. because X; < b a.s. [P] for some b > 0, Assumption 4.2.5 holds and Assumption 4.2.1
holds with 0 < A < Ep(X;)/b. Thus Assumption 4.2.2—(i) holds under any 7PS sampling

design. This completes the proof of the lemma. O



Chapter 5

Regression analysis and related

estimators in finite populations

In finite population problems, least square (LS) regression is used in the construction of several
estimators (see [35], [19], [24], etc.). Some examples of these estimators are the GREG and
the ratio estimators of the finite population mean (see Section 2.1 in Chapter 2). The GREG
estimator is often considered for estimating the finite population mean because it turns out to
be more efficient than several other estimators of the mean under various sampling designs (see
Sections 2.1 and 2.2 in Chapter 2). Least square type regression analysis is also used for studying
several estimators under sampling designs, which use the auxiliary information. Some examples

of those sampling designs are 7PS, LMS and RHC sampling designs (see the introduction).

[56], [37], [23], [81], [82], etc. considered quantile (QR) and robust regression in the context
of sample survey. However, asymptotic behavior of the estimators obtained from these regression
methods has not been studied in the above-mentioned articles, when the sample observations are
drawn from a finite population using some sampling design. For i.i.d. sample observations, these
estimators were studied in details in the earlier literature (see [46], [39], [50], [51], [59], [33], [21],
[49], [42] etc.). It becomes challenging to show Bahadur type representations and asymptotic
normality of these estimators, when the sample observations may neither be independent nor

identical.

In this chapter, we construct estimators in regression analysis by optimizing convex loss
functions. Examples of such estimators include estimators in regression methods like LS,
asymmetric least square (ALS), truncated least square (TLS), least absolute deviation (LAD),

201
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QR or asymmetric least absolute deviation, etc. Bahadur type representations of these estimators
are shown under a probability distribution generated by a sampling design and a superpopulation
model. Asymptotic distributions of the above-mentioned estimators are then derived using these

Bahadur type representations.

QR and TLS regression are used to construct estimators of the finite population mean.
Asymptotic results related to regression analysis are applied to check whether a subset of the
auxiliary variables has any influence on the study variable. Moreover, QR and ALS regression

are used for detecting the heteroscedasticity present in the finite population observations.

Large sample comparisons of different estimators are carried out based on their asymptotic
distributions. From these comparisons, we observe that HEwPS (see the introduction) and
RHC sampling designs, which use the auxiliary information, sometimes may have an adverse
effect on the performances of different estimators in regression analysis as well as different
regression estimators of the finite population mean. We also observe that the estimators of the
finite population mean constructed based on QR and TLS regression become more efficient than
the GREG estimator under several sampling designs, whenever superpopulations satisfying linear
models are considered, and errors in the linear models are generated from symmetric heavy-tailed

superpopulation distributions (e.g., Laplace, Student’s ¢, etc.).

In Section 5.1, estimators in regression analysis are constructed. Various asymptotic properties
of these estimators are studied in Section 5.2. Covariance estimation for estimators in regression
analysis is discussed in Section 5.3. Different applications of regression analysis in finite
populations are discussed in Sections 5.4, 5.5 and 5.6. We make some remarks on our major

findings in Section 5.7. The proofs of several results are given in Sections 5.8 and 5.9.

5.1. Regression analysis by minimizing loss functions in finite popu-

lation

Suppose that y is a real-valued study variable and z is a R%-valued (d > 1) covariate. Recall
from the introduction that (Y;, Z;, X;) is the value of (y, z, ) for the i*" population unit, where
i=1,..., N, and z is a positive real-valued size variable. Also, recall from the introduction that
the population total of z and the population values of x are assumed to be known. Moreover, z is

used to construct estimators, and z is used to implement sampling designs as well as to construct
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estimators. As in the earlier chapters, here also we consider all vectors in Euclidean spaces as

row vectors and use superscript 7' to denote their transpose.

Suppose that W;=(Z;, X;) fori=1,..., N and p : R — R is a strictly convex function. Then,

we define an estimator in regression analysis under a sampling design P(s) as

S A ) o -

0, = (G, Bn) = arg (a,ﬁ%lel]%dﬁ Zd i,8) a— W), (5.1.1)
where {d(i, s) : i € s} are sampling design weights for the sampling design P(s). Note that in the
case of z=x, we take W;=2;=X; for i=1, ..., N. There is a unique solution to the minimization
problem mentioned in (5.1.1) for any given s € S almost surely, when p is strictly convex, and
the population values {(Y;,W;) : 1 < i < N} is a sample from some absolutely continuous

distribution. Some examples of 0,, are given in Table 5.1 below. We consider d(i, s)=m, ! under

TABLE 5.1: Examples of 0,.

Regression procedure p(t)
LS regression t?
ALS regression [P — 1< |t? for any fixed p € (0, 1)

P Ly<x)/2 + K ([t = K/2) Ly k]
for any fixed K > 0
LAD regression |t]
QR |t| + (2p — 1)t for any fixed p € (0,1)

TLS regression

high entropy sampling designs and d(i, s)=G; X, * under RHC sampling design. Here, {m; }}¥,
are inclusion probabilities of high entropy sampling designs, and G; is the x total of that group
of population units formed in the first step of the RHC sampling design from which the i‘"
population unit is selected in the sample (see the beginning of Section 2.1 in Chapter 2). It is to

be noted that 971 can be viewed as an estimator of

— — —a—BWr
On = (an,OBN) = arg 10[11]1(1%01+2 Zp a— BW;). (5.1.2)
This is because >, d(i, s)p(Y; —a— W' is the HT estimator of Zf\il p(Y; —a—BW]T) for
d(i, s)=m; ', and 3, d(i, s)p(Y; —a— BW]T') is the RHC estimator of SN p(Yi—a—pw]lh)
for d(i, s)=G; X; .
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5.2.  Asymptotic behavior of estimators in regression analysis

In this section, we shall study the asymptotic behavior of 0., for a general p under RHC and
any high entropy sampling designs. In Chapter 2, we have derived the asymptotic distribution
of 3, for p(t)=t?> under RHC and several high entropy sampling designs in the case of z=x.
We consider the asymptotic framework discussed in the earlier chapters. That is, we assume
that {P,} is a sequence of populations with N,,n, — oo as v — oo, where N, and n, are,
respectively, the population and the sample sizes corresponding to the v*" population. As in
the preceding chapters, here also we suppress the limiting index v for the sake of notational
simplicity. Moreover, we consider the following assumption mentioned in the earlier chapters
(see Assumption 2.1.1 in Chapter 2, Assumption 3.2.1 in Chapter 3 and Assumption 4.2.1 in
Chapter 4).

Assumption 5.2.1. n/N — \asv — oo, where 0 < A < 1.

As in Chapters 2—4, we consider a superpopulation model, where {(Y;, W;) : 1 <1i < N} are
i.i.d. random vectors on (2, 7, P) with some absolutely continuous distribution function. Also,
as in Section 2.2 of Chapter 2, Section 3.1 of Chapter 3 and Section 4.2 of Chapter 4, we consider
the function P(s,w) that is defined on S x ). Recall from these sections that for each s € S,
P(s,w) is a random variable on €2, and for each w € 2, P(s,w) is a probability distribution on
S. Tt is to be noted that P(s,w) is a sampling design for each w € ). Moreover, as in Section 4.2
of Chapter 4, we consider the probability measure P*(B x E)=[ > 5 P(s,w)dP(w) defined
on the product space (S x §2, A x F), where B € A, F € F and B x F is a cylinder subset of
S x €. Here, A is the power set of S. As in Section 4.2 of Chapter 4, we denote expectations of

random quantities with respect to P(s,w), P and P* by E, Ep and Ep-, respectively.

Note that p has left hand as well as right hand derivatives at all ¢ € IR because p is convex on
R. Also, note that p is differentiable at all but at most countably many real numbers. Suppose
that p™ (¢) denotes the right hand derivative of p at ¢. Let us also suppose that p’(¢) denotes the
derivative of p at ¢, when p is differentiable at {. Then, we define a function ¢ : R — R as

follows.
p'(t), when p is differentiable at ¢,
B(t) = (5.2.1)
pT(t), otherwise.
Note that 1(t)=p'(t) if p is differentiable at all ¢ € R. One can also consider the left hand

derivative of p(t), say p~(t), in order to define ¢. Then, the results stated in the following
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Theorems will remain the same. Let us also define

0 =ar min F Y, —a— wir , and 2.
8, i, Bl BW)) (5.2.2)
e =Y; — OV} and ¢(t,W;) = Ep(v)(e; — t)|W;) (5.2.3)
fori=1,..., N and ¢t € R, where V;=(1, W;). Next, we consider the following assumptions on

superpopulation distribution P.

Assumption 5.2.2. p is such that Ep (1/)(61-))4 < o0 and sup { Ep(1(e; — uVl/y/n +h) —
Y(e; —uVE /\/n — h))/h:0<h <68} < ooforany givenu € R4?2 and some § > 0. Further,
Ep(w(e; +h) — z/z(ei))2:0(1), and Ep(¢(e; + h) — z/z(ei))4:0(1), when h — 0 as v — oo.

Assumption 5.2.3. p is such that ¢(t, W;) is differentiable with respect to t, ¢' (t, W;) is continu-
ous with respect to t and sup,cg |¢' (t, W;)| exists for any given w € Q and i=1, ..., N, where
¢ (t, W;) denotes the derivative of (t, W;) with respect to t. Moreover, Ep( sup,cg |¢'(t, W;)|) 2

< 0Q.

Assumption 5.2.4. The distribution of W; is supported on a compact set in R and Ep(Y;)* <

0. Moreover, ©=Ep( — ¢/ (0, WZ)V;‘FVl) is a positive definite (p.d.) matrix.

Since (Y;, W;) has absolutely continuous distribution function, Assumptions 5.2.2, 5.2.3 and
5.2.4 hold for different choices of p in Table 5.1 in Section 5.1 under some weak regularity

conditions as follows.

(i) For p(t)=t? (LS regression), we have 1(t)=2t and ¢(t, W;)=2(Ep(¢;|W;) — t) given any
i=1,..., N. Thus in this case, Assumptions 5.2.2 and 5.2.3 hold, whenever Ep(ei)4 < 00. Also,
the condition that E:Ep( —¢/(0, W,)V;‘FVZ) is a p.d. matrix, which appears in Assumption 5.2.4,

holds trivially in this case.

(i) For p(t)=|p — Ly<o)|t* (ALS regression), we have 1(t)=2(1 — 2p)tlyq + 2pt and
o(t, Wi)=2(1 — 2p) Ep((&i — t)Lje,<|Wi) + 2p(Ep(es|Ws) — t) given any i=1,..., N. Then,
the assumptions discussed in (i) above hold in this case if Ep(¢;)* < oo, F(t, W;) is differentiable
with respect to ¢ and f (¢, W;) is continuous with respect to ¢ for any given w € €2, and p + (1 —
2p)F(OVT,W;) > 0 a.s. [P]. Here, F(t,W;) and f(t, W;), respectively, denote the conditional

distribution and the conditional density functions of Y; given W.

(iii) For p(t)=t*1j4)< )/ 2+ K (|t| =K /2) L4~ i) (TLS regression), we have ¢ (£)=t1 4 x|+
K1y g — Klje g and o(t, Wi)=K (1— F(t + OV + K, W;)) = KF(t+ 6V — K, W;) +
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ftJrOV,L-TJrK
t+0VI - K

in (i) hold in this case, whenever F'(¢, ;) is differentiable with respect to ¢ and f(t, W;) is

(y—t—OVE) f(y, W;)dy given any i=1, ..., N. Therefore, the assumptions discussed

continuous with respect to ¢ for any given w € Q, and F(OV! + K, W;) — F(OV! — K, W;) > 0
a.s. [P].

(iv) For p(t)=[t| + (2p — 1)t (QR), we have ¥ (t)=2(p — Lo)) and $(t, W;)=2(p — F(t +
ov’, Wl)) given any ¢=1, ..., N. Assumption 5.2.2 holds in this case, whenever Ep ( SUpP;cRr
f(t,W;)) < oo. Further, in this case, Assumption 5.2.3 is equivalent to Assumption 5.2.5 below.
Moreover, the condition that ¥ is p.d. holds if f(@VY, W;) > 0 a.s. [P].

Assumption 5.2.5. F(t,W;) is differentiable with respect to t, f(t,W;) is continuous with

respect to t and sup,cr f(t,W;) exists for any given w € Q and i=1,...,N. Moreover,

Ep(supteR f(t, M))Q < 0.

Assumptions 5.2.1-5.2.4 are required to show that the results similar to (3.3) and (3.4) in
[51] (see Lemmas 5.9.1 and 5.9.3 in Section 5.9) hold under rejective sampling designs (see
[40]). Based on these results, we shall show the Bahadur type representation and the asymptotic
normality of 8., for d(i,s)=m, ! under high entropy sampling designs. Recall from Section 3.2

of Chapter 3 that a sampling design P(s,w) is called high entropy sampling design, when

D(P||R) =) _ P(s,w)log(P(s,w)/R(s,w)) — 0 as v — o0 a.s. [P] (5.2.4)

seS
for some rejective sampling design R(s,w) (for the description of the rejective sampling design,
see the introduction). Some examples of high entropy sampling designs are SRSWOR, RS
sampling design (see the introduction), LMS sampling design (see Lemma 3.6.1 in Section 3.6 of

Chapter 3), etc.

Next, suppose that H;=y(¢;)V; for i=1,..., N. Further, suppose that T H:Zfi L H;i (1 -

)/ ZZJ\L 1 mi(1 — m;). Then, we consider the following assumption.

Assumption 5.2.6. The inclusion probabilities {m}fil are such that the following hold.

(i) There exist constants K1, Ko > 0 such that for any i=1, ..., N and all sufficiently large v,
Ky < Nmj/n < Ks a.s. [P].

(ii) The matrices (n/N?) Zfil(Hi —Tym)T(H; — Tym)(7; ' —1) = Tasv — oo a.s. [P],

where 1 is a p.d. matrix.
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A similar assumption like Assumption 5.2.6 is stated and discussed in Chapter 4 (see the
discussion related to Assumption 4.2.2 in Section 4.2 of Chapter 4). It can be shown that
Assumption 5.2.6-(i) holds under SRSWOR, LMS and any 7PS sampling designs (see Lemma
3.6.1 in Chapter 3). It can also be shown using SLLN that Assumption 5.2.6-(ii) holds under
the aforementioned sampling designs (see Lemma 5.9.5 in Section 5.9). Like Assumptions
5.2.1-5.2.4, Assumption 5.2.6 is also required to prove the results stated in Lemmas 5.9.1 and

5.9.3 in Section 5.9. Now, we state the following theorems.

Theorem 5.2.1. Suppose that Assumptions 5.2.1-5.2.4 hold. Then, under the probability distri-

bution P*, as v — oo,

N
0, — 0y = [Zd(i, $)(e)Vi /N — qu(ei)vi/N} Y7t 4 o,(1/v/n)and  (5.2.5)
=1

€S

6, —0= [Z d(i, s)w(ei)vi/N] 27+ 0,(1/4/n) (5.2.6)

<]

for any high entropy sampling design satisfying Assumption 5.2.6, and d(i, s)=m; L

Theorem 5.2.2. Suppose that Assumptions 5.2.1-5.2.4 hold. Then, under the probability distri-

bution P*, as v — oo,
Vi (0, — Ox) 5 Nuwo(0,57'TS ) and (5.2.7)

Vi(0, —8) 5 Nuys(0,A) (5.2.8)

for any high entropy sampling design satisfying Assumption 5.2.6, and d(i, s)=m; 1 where A=
SIS+ AS T Ep (v (e) VI Vi) SN

Bahadur type representations of 6., (see Theorem 5.2.1 above) are first shown under rejective
sampling designs using the idea of the proof of the result (3.11) in [51]. Then, these results are
shown under high entropy sampling designs using the fact that any high entropy sampling design
can be approximated by a rejective sampling design in Kullback-Liebler divergence. On the other
hand, the asymptotic normality results of 6., (see Theorem 5.2.2 above) are shown based on the

results stated in Theorem 5.2.1 and the existing asymptotic normality results for the HT estimator.

Next, we shall show that asymptotic results similar to Theorems 5.2.1 and 5.2.2 hold under

RHC sampling design. Recall from the introduction that in RHC sampling design, P is first
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divided randomly into n disjoint groups of sizes Ni---, Ny, respectively, by taking a sample of
N7 units from N units with SRSWOR, a sample of No units from N — N; units with SRSWOR
and so on. Then, one unit is selected in the sample from each of these groups independently with
probability proportional to the size variable x. As in the earlier chapters, here also we consider

the following assumption.

Assumption 5.2.7. For the RHC sampling design, { N, }"_, are such that

N/n, forr =1,--- ,n, when N/n is an integer,

Ny = [N/n], forr =1,--- ,k, and (5.2.9)

|IN/n| +1, forr =k+1,--- ,n, when N/n is not an integer,

where k is such that 3."_, N,=N. Here, | N/n| is the integer part of N/n.

We also consider the following assumptions.
Assumption 5.2.8. max;<;<y X;/ minj<;<y X;=0(1) as v — oo a.s. [P].

Assumption 5.2.9. The matrix F*=EP(X1)EP{ (Hz — XlEp(Hz)/EP(XZ))T (Hz — XzEP(Hz)/
Ep(Xi))Xfl} is a p.d. matrix.

Assumption 5.2.8 is stated and discussed in Chapters 2 and 3 (see Assumption 2.1.3 of Chapter
2 and Assumption 3.2.2 of Chapter 3). Similar kind of assumptions as Assumption 5.2.9 are
often used in asymptotic analysis (see [50], [51], etc.). Assumptions 5.2.7-5.2.9 are required
to show that the results similar to (3.3) and (3.4) in [51] hold under RHC sampling design (see
the proof of Theorem 5.2.3 in Section 5.8). As in the case of high entropy sampling designs,
here also we shall show the Bahadur type representation and the asymptotic normality of 6., for

d(i, s)=G;X; ! under RHC sampling design based on the aforementioned results.

Theorem 5.2.3. Suppose that Assumptions 5.2.1-5.2.4 and 5.2.7-5.2.9 hold. Then, under the

probability distribution P*, as v — oo,

N
6, — 0y = {Z d(i, s)(e)Vi/N = > w(ei)Vi/N] Y7t 4 o,(1//n)and  (5.2.10)
i=1

1€ES

6, —0= [Zd(i, s)@w(ei)vi/N] 27+ 0,(1/v/n) (5.2.11)

€S
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for RHC sampling design, and d(1, S):GiXi_l.

Theorem 5.2.4. Suppose that Assumptions 5.2.1-5.2.4 and 5.2.7-5.2.9 hold. Then, under the

probability distribution P*, as v — oo,
V0, — 0n) 5 Nuyo (0,275 and (5.2.12)

Vi (0, —8) £ Nypo(0,A%) (5.2.13)

for RHC sampling design, and d(i, s)=G; X, !, where c=lim,, oo 1y, y=5"_; N (N, —1)/N(N—
1) and A*=cS7IT*S71 + AR L Ep (¢ (e;) VI V) S L

The proof techniques of Theorems 5.2.3 and 5.2.4 are similar to the proof techniques of
Theorems 5.2.3 and 5.2.4, respectively. It follows from Lemma 2.7.5 in Section 2.7 of Chapter 2
that c=1 for A\=0, c=1 — A for A™! an integer, and c=A[A71 (2 — A|[A7!] — \) when A"t is a

non-integer.

5.2.1 Comparison of 6., under different sampling designs

In this section, we shall first compare the performance of the estimator 8,, for a general p
under SRSWOR, LMS, RHC and any HE7PS sampling designs in terms of asymptotic total
variances (traces of asymptotic covariance matrices) of \/ﬁ(én — 6y) under these sampling
designs. Recall from the introduction that a sampling design is called HE7PS sampling design if
it is a high entropy as well as a 7PS sampling design (e.g., RS sampling). We shall carry out the

above-mentioned comparison under superpopulations satisfying the linear model
Y; = OV! + ¢; with Ep(¢(¢;)) = 0 and Ep(@b(ei))2 >0 (5.2.14)

fori=1,--- , N, where V;=(1, W;), and {¢;}}Y, are independent of {W;}¥,.

Theorem 5.2.5. Suppose that X; < ba.s. [P] for some b > 0, Ep(X;)~2 < oo, Assumption 5.2.1
holds with 0 < A\ < Ep(X;)/b, and Assumptions 5.2.2-5.2.4 and 5.2.7-5.2.9 hold. Then, the
asymptotic total variance of /n(0,, — 0 ) under SRSWOR is the same as that of /n(0,, — Oy)
under LMS sampling design. Further, the asymptotic total variance of \/ﬁ(én — Oy) under

SRSWOR is smaller than the asymptotic total variances of \/ﬁ(én — Oy ) under RHC and any
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HETPS sampling designs (which use auxiliary information) if and only if

tr[(Ep(VZ-TVi)> _IEP<(MIXZ»1 — 1)V,L»TVi) (EP(VZ-TVi)> _1} > 0, (5.2.15)

where tr denotes the trace, and i, =Ep(X;).

The conditions that X; < b a.s. [P] for some b > 0, and 0 < A < Ep(X;)/b are discussed in
Chapter 2 (see the discussion related to Assumption 2.2.1 in Chapter 2). The condition in (5.2.15)
is an algebraic necessary and sufficient condition. This condition depends neither on the choice
of p nor on the superpopulation distribution of €,s. This condition involves superpopulation
moments. In practice one can check the above-mentioned condition based on a pilot survey by
estimating these superpopulation moments. However, in pilot surveys, the sample size sometimes
may not be large enough to reliably estimate these superpopulation moments. Using (5.2.15),
several statistical agencies and social-science pollsters can improve the sampling design of
recurrently performed surveys. In Table 5.2 below, we consider some cases where this condition
holds, and some cases where this condition does not hold. Theorem 5.2.5 implies that the use of
the auxiliary information in the design stage may have an adverse effect on the performance of
0,,.

TABLE 5.2: Discussion of the condition in (5.2.15).

w=(z, ) Superpopulation distributions of W;’s The condition in (5.2.15)
Xi's h'a Ve log'—normal holds for any parameter values
o distribution

w=e=r X;’s have Pareto distribution fails to hold for

with shape « and scale o 3<a<6&o=1
holds for 6 < o < 10
X,’s have Pareto distribution & o=1

2T with shape « and scale o, and Z;=log(Xj;) fails to hold for

2<a<b&o=1

Now we try to demonstrate the result stated in Theorem 5.2.5 using synthetic data. For this,
we choose N=5000 and consider the population values {(Y;, X;) : 1 < ¢ < N} generated
from the linear model Y;=1000 + X; + ¢; for =1, ..., N. Here, X;’s and ¢;’s are independently
generated from the standard log-normal and the standard normal distributions, respectively. Note
that in this case, we have W;=Z;=X; for any given 7. We also consider the population values
{(Y:,W;) : 1 <i < N} generated from the linear model Y;=1000+ Z; + X; +¢; fori=1,..., N.

Here, we generate X;’s from the Pareto distribution with shape=3 and scale=1, and choose
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Z;i=log(X;) fori=1,..., N. Then, we generate ¢;’s independently of the X;’s from the standard

normal distribution.

From each of the above data sets, we draw I=1000 samples each of size n=100 using
SRSWOR, LMS, RS and RHC sampling designs. Based on these samples, we compare the
performance of 9n under the aforementioned sampling designs in terms of relative efficiencies.
We carry out this comparison for each of LS, TLS and LAD regression techniques in the cases of
both the data sets. We consider RS sampling design since it is a HE7PS sampling design, and it is
easier to implement than other HE7PS sampling designs. Suppose that P (s) and P»(s) denote
any two sampling designs. Then, the relative efficiency of 6., under P, (s) compared to 6., under

P5(s) is defined as
RE(6,, P1|0,, P,) = MSE(0,, P,)/MSE(6,, P,),

where MSE(0,,, P)=I""3}_, ||6,,; — Oy]||? is the MSE of ,, under any sampling design

I*" sample, I=1, ..., I. We say that 6., under

P(s). Here, 9,” is an estimate of @y based on the
P (s) is more efficient than under Py(s) if RE(6,,, Py|0,,, Pi) > 1. We use the R software for
drawing samples as well as computing estimators. The conclusions drawn from the above data

analysis are summarized as follows.

(i) For each of LS, TLS and LAD regression methods, 9n has lower MSE under SRSWOR
than under LMS, RS and RHC sampling designs (see Table 5.3 below) in the case of the first

data set.

(ii) In the case of the second data set, 8,, has lower MSE under RS sampling design than
under SRSWOR, LMS, and RHC sampling designs (see Table 5.4 below) for each of the above

regression techniques.

(iii) The condition in (5.2.15) holds for the linear model Y;=1000 + X; + ¢;, whereas it fails
to hold for the linear model Y;=1000 + Z; + X; + ¢; (see Table 5.2 above). Thus the above

empirical results corroborate the theoretical result stated in Theorem 5.2.5.

Next, we try to demonstrate the result stated in Theorem 5.2.5 using real data. For this, as
in Section 3.3.2 of Chapter 3, here also we consider Electricity Customer Behaviour Trial data
available in Irish Social Science Data Archive (ISSDA, https://www.ucd.ie/issda/). Recall from
Section 3.3.2 that in this data set, we have electricity consumption of Irish households from

14" July in 2009 to 315! December in 2010. Electricity consumption of these households were
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TABLE 5.3: Relative efficiencies of @, for the synthetic data set generated from the linear
model Y;=1000 + X; + ¢;. Here, X;’s and ¢;’s are independently generated from the standard

log-normal and the standard normal distributions, respectively.

Regression Relative efficiency
technique

RE(0,,, SRSWOR | 8,,, LMS) | 1.054569
LS RE(0,,, SRSWOR | 6,,, RS) | 2.844394
RE(8,,, SRSWOR | 6,,, RHC) | 2.897122
RE(#,,, SRSWOR| 0,,, LMS) | 1.096166
LAD RE(0,,, SRSWOR | 0,,, RS) | 2.844734
RE(8,,, SRSWOR | 6,,, RHC) | 3.028323
RE#,,, SRSWOR| 0,,, LMS) | 1.106733
TLS RE(0,,, SRSWOR | 0,,, RS) | 1.356747
RE(8,,, SRSWOR | 8,,, RHC) | 1.65992

TABLE 5.4: Relative efficiencies of 6,, for the synthetic data set generated from the linear

model Y;=1000 + Z; + X; + ¢;. , Here, X;’s are generated from the Pareto distribution with

shape=3 and scale=1, and Z;=log(X;). ¢;’s are generated from the standard normal distribution
independent of the X;’s.

Regression Relative efficiency
technique

RE(0,,, RS | 0,,, LMS) 3.972501
LS RE(#,,RS | 0,,, SRSWOR) | 3.697424
RE@#,, RS | 6,,, RHC) 1.015652
RE(0,,, RS | 6,,, LMS) 3.888212
LAD RE(8,,, RS | 0, SRSWOR) | 4.094494
RE(#,,, RS | 6,,, RHC) 1.148761
RE8,, RS | 6,,, LMS) 3.751654
TLS RE(0,,, RS | 0,,, SRSWOR) | 4.789821
RE(0,,, RS | 6,,, RHC) 1.125117

measured (in kWh) at the end of every half an hour during the entire time period mentioned
above. We choose the mean electricity consumption in December of 2010 as the study variable y,
and the mean electricity consumption in December of 2009 as both the covariate z and the size
variable z. We have N=5092 households for which electricity consumption data are available
during December of both 2009 and 2010. The scatter plot in Figure 5.1 below shows that y is ap-
proximately linearly related to z in this data set. Based on this data, we compare the performance

of 8,, under SRSWOR, LMS, RS and RHC sampling designs in the same way as in the case
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mean electricity consumption in December of 2010

y:

T T T T T
o 2 4 6 8

X = mean electricity consumption in December of 2009

FIGURE 5.1: Scatter plot between y and x for the real data set consisting of mean electricity
consumption in December of 2009 and 2010.

of synthetic data. We also approximate the superpopulation moments in (5.2.15) by their corre-
sponding finite population moments based on all the population values in the above data set, and
compute Cr=tr (370, Vi Vi/N) 7 (0L, VIVi(X X[ = 1)/N) (323, Vi'Vi/N)~!]. From
this analysis, we observe that C'; > (. Further, for each of LS, TLS and LAD regression methods,
6., has lower MSE under SRSWOR than under LMS, RS and RHC sampling designs (see Table
5.5 below). Thus the above empirical results are consistent with the asymptotic result stated in

Theorem 5.2.5.

5.3. Covariance estimation for estimators in regression analysis

It follows from Theorem 5.2.2 that under P*, as v — oo,
V0, — On) 5 Nuso(0,57'TS 1) and va(8, — 6) 5 Naps(0,4) (5.3.1)

for d(i, s)=m; ! and any high entropy sampling design satisfying Assumption 5.2.6. Here,

I=2"re-1, Sisasin Assumption 5.2.4, and T' is as in Assumption 5.2.6—(i7). Further, we
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TABLE 5.5: Relative efficiencies of 8,, for the real data set consisting of mean electricity
consumption in December of 2009 and 2010.

Regression . . December
Relative efficiency
technique in 2010
RE(0,,, SRSWOR | 8,,, LMS) | 1.025963
LS RE#,,, SRSWOR| 6, RS) | 1.401591

RE(#,,, SRSWOR | 6,,, RHC) | 6.972742
RE(0,,, SRSWOR | 0,,, LMS) | 1.507617
LAD RE(O,,, SRSWOR | 0,,, RS) | 6.439307
RE(0,,, SRSWOR | 0,,, RHC) | 2.245872
RE(0,,, SRSWOR | 0,,, LMS) | 1.024037
TLS RE(0,,, SRSWOR | 6,,,RS) | 5.860129
RE(0,,, SRSWOR | 0,,, RHC) | 5.303686

have
A =378 + A2 Ep (¢ (e;) V] V;) S and

Here, V;=(1, W;) and €;=Y;—0V] . Recall from Assumption 5.2.4 that =FEp (—¢'(0, W;)V{ V;),
where ¢/ (0, W;)=0¢(t, W;)/Ot|i¢ for ¢(t, W;)=Ep (1(e; —t)|W;). We estimate ¢(¢, W;) under
any high entropy sampling design by

d+1
o1(t, W;) = Z’]‘[‘;l H Kh(Wik — ij) / Uy — OnVZT —t)X
JEs k=1 R
i1 (5.3.2)
Kn(yr — Yj)dyl/ o T En (W — W)
JEs k=1
for any given =1, ..., N, where W, and W}, are k" components of W; and W;, respectively,

K (t)=K(t/h)/h, K(t) is a bounded continuous density function, and h > 0 is the smoothing
parameter. Here, ,, is as defined in (5.1.1) in Section 5.1 for d(i, s)=m; 1. Note that o1(t, W)
is a Nadaraya-Watson type estimator of the conditional mean Ep (¢(¢; — t)|W;). Now, if we
assume that [ ¥ (hyy — t)K (y1)dy1 is differentiable with respect to ¢, then an estimator of
¢’ (0, W;) can be obtained as

d+1

(0, W3) = 0d1(t, W) [Otli—o = Y _ ;" | K (Wik — W) x (5.3.3)
JEs k=1
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{a( [ vt = 0.VT K - Yj>dy1> / o1 to} /

d+1

2y L8 (Wa = W),

JEs

Thus an estimator of 3 under any high entropy sampling design can be constructed by

= (0, W) VI Vi/N. (5.3.4)

1€s
Note that 3 is a HT type estimator of Y. Also, note that for different choices of p in Table 5.1,
(25/1 (0, W;) becomes as in Table 5.6 below. Thus 331 does not depend on the smoothing parameter
h and the density function K (t) for p as mentioned in 2"? row of Table 5.6, whereas N depends

5th

on h and K (t) for p as mentioned in 37, 4" and 5™ rows of Table 5.6. Now, following the

approach of [16], I" can be estimated under any high entropy sampling design by

I'=(n/N?)Y (H; = Tgm)" (H; — Tym)(m; ! = D)y, (5.3.5)

1
1€S
where

Ty = S By /Z ~ m), and

€S 1€ES

H, = P(€)Viand €, = Y; — BnV;fF forany i € s.

We also estimate Ep (@bz(ei)VZTVi) in the expression of A by 3. 7 142(&)VI'V;/N. There-

1€S 2

TABLE 5.6: Expressions of ¢?’1 (0, W;) for different p as mentioned in Table 5.1.

p(1) (0, ;)

t? —9

—2((1—2@(263 P T K (Wi — Wie) x

fen C Kp(yr = Yj)dy)/
e T Kn (Wi — ij)) —2p

lp — ]l[t<0]|t2 for any fixed p € (0,1)

Lyy<r)/2 + K (|t] = K/2) 1 jy5 k) —(Xjesm; J w1 Ko (Wi, — Wig) %
for any fixed K > 0 f;:‘YT t Kh(yl —Y;)dy1)/
Z]Es 7Tj d+1 Kh(W ij)

72(23’65 7'('] d+1 Kh (W ij)x
|t| + (2p — 1)t for any fixed p € (0,1) Kh(e VT Y;))/
Z]ES J d+1 1 Kn (Wlk — ij)
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fore, estimators of I';=X"1T'S ! and A are obtained as

=318 and A =Ty + (n/N)2 (Zwlq/} DVIV, /N) : (5.3.6)

1ES8

Next, it follows from Theorem 5.2.4 that under P*, as v — oo,
Vi (0, — Ox) 5 Nyyo (0,57 TS ) and Vi (8, — 8) 5 Nayo (0, A7) (5.3.7)

for d(i, s)=G'X71 and RHC sampling design. Here, ['j=cX~1T*¥ =L, I'* is as in Assumption
5.2.9, c=lim, 0o ny, and y=3""_, N,(N, — 1)/N(N — 1) with N, being the size of the r'"
group formed randomly in RHC sampling design (see the paragraph following Theorem 5.2.2).

Further, we have
A* =X TS AT Ep (Y2 () V] Vi) ST
Under RHC sampling design, we estimate 3 by
Sp ==Y (NX)'Gidh(0, W) V]V, (53.8)
ics

where ¢} (0, W;) is defined in the same way as ¢/ (0, W;) with ;! replaced by G; X, *. Note
that 35 is a RHC type estimator of X.. As in the case of 31, 39 does not depend on h and K (t)
for p as mentioned in 2% row of Table 5.6, and 3 depends on / and K (t) for p as mentioned in

374, 4th and 5! rows of Table 5.6. Next, I'* can be estimated under RHC sampling design by

= (X/N) S G,X;?H; H, — (H)'H, (5.3.9)
€8
where
H- Z(NXZ')AGZ‘I:I% and H; = 1(&)V; and & = Y; — 0, V! forany i € s.
1€8
Here, 0, is as defined in (5.1.1) in Section 5.1 for d(, s):GiXifl. We also estimate Ep (g!)2 (ei)ViTVi)
in the expression of A* by 3" (N X;)"1Gi1?(&) V! 'V;. Therefore, estimators of I'j=cS~1I* 51

and A* are obtained as
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I =ny2y ' 185 and A% = T + (n/N)x

R . (5.3.10)
I <Z(in)1aiw2(€i)vai> I
1€S
We shall now show that fl, A, f’{ and A* are consistent estimators of I't, A, I'] and A%,

respectively. Let us first consider the following assumptions.
Assumption 5.3.1. h — 0 and nh**' — oo as v — oo.

Assumption 5.3.2. The density function K (t) is such that [, K*(t)dt < oo and [ tK (t)dt=0.

Moreover, 8( fIR Y(hy — y2 — t)K(yl)dyl) /Ot|i—o is continuous with respect to yo.

Assumption 5.3.1 is often considered in the literature for asymptotic analysis. The condition
that 9( [ ¥ (hyr — y2 — t) K (y1)dy1) /Ot|1—o is continuous with respect to 1, which appears
in Assumption 5.3.2, holds for different p in Table 5.6 because K (t) is a continuous density
function. Assumptions 5.3.1 and 5.3.2 are required to show the consistency of the asymptotic

covariance matrices of 8,,.

Theorem 5.3.1. (i) Suppose that Assumptions 5.2.1-5.2.4 and 5.2.7-5.3.2 hold. Then, under the
probability distribution P*, as v — oo, IR for any high entropy sampling design satisfying
Assumption 5.2.6, and f*{ LN I'] for RHC sampling design.

(ii) Further, suppose that Assumptions 5.2.1-5.2.4 and 5.2.7-5.3.2 hold. Then, under the prob-
ability distribution P*, as v — oo, AL A for any high entropy sampling design satisfying

Assumption 5.2.6, and A* B Ax for RHC sampling design.

5.4. Regression estimators of the population mean and their com-

parison

The GREG estimator of the finite population mean Y= Z]\i 1 Yi/N can be expressed as ?G REG=
9HVT, where 6,, is obtained from LS regression, and V:Z,fil V;/N for V;=(1,W;). This
motivates us to construct alternative estimators of Y based on QR and TLS regression. The
estimators obtained from QR and TLS regression depends on p and K (see Table 5.1), respectively,
where p € (0,1) and K > 0. A special case of @,,(p) is the estimator 6,,(0.5), which is obtained

from LAD regression. For convenience, we shall denote these estimators by 8,,(p) and 6,,(K).
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The finite population parameter 8 in (5.1.2) also depends on p for QR and therefore will be

denoted by O (p). Now, we define

Ed A - ~ A ~ 7T
Yor = (0n(p1),---,0n(p1),60,(0.5),0,(1 —p1),...,0,(1 —p)))HiV" and

= 5 T
Yrrs =0,(K)V

(5.4.1)
where ! > 0,p1,...,p; € (0,0.5), Hi=[m1; K1z, 9: (1—2Im)Ig0 i m1; X1 5T, m=0 for (=0
and 0 <m < 1/2lforl > 1,1;is a1 x [ vector with all the elements equal to 1, and X denotes
the Kronecker product. Since 6,,(p) is an estimator of 6 (p) (see Section 5.1), ?Q R can be
viewed as an estimator of (O (p1),...,0n(p1),0n(0.5),0N8(1 —p1),...,0n(1 — pl))HlvT.

Now, suppose that {(Y;, W;) : 1 <i < N} are generated from the linear model
Y; =60V 1 ¢, (5.4.2)

where {e}fil are independent of {I/VZ}Z]\L1 and are generated from some symmetric distri-
bution with Ep(e;)=0. Then it can be shown that (x5 (p1),...,0n(p:),On(0.5),0n(1 —
p1),.-.,0Nn(1 — pl))HlvT is close to Y for large N. Thus ?QR can be considered as an
estimator of Y. For a similar reason, ?T s can also be considered as an estimator of Y. Some

special cases of ?Q R are

N

0,,(0.5)V" and (0.256,,(0.25) + 0.56,,(0.5) + 0.250,,(0.75)) V" .

For superpopulations satisfying the linear model in (5.4.2), we have shown that the GREG
estimator under SRSWOR has the lowest asymptotic variance among the HT, the H4jek, the ratio,
the product and the GREG estimators under SRSWOR, LMS, RHC and any HE7PS sampling
designs (see Sections 2.1 and 2.2 of Chapter 2). In this section, we shall compare ?G REG,
?Q r and ?TLS (see Section 5.4) under SRSWOR, LMS, RHC and any HE7PS sampling
designs based on the asymptotic distributions of \/ﬁ(?g rec — Ep(Y3)), \/ﬁ(?Q r— Ep(Y))
and \/ﬁ(?T s — Ep(Y;)) under these sampling designs. We shall carry out the aforementioned
comparison under the linear model in (5.4.2). Suppose that €;’s in this linear model have a
positive continuous density function f.. Further, suppose that [ > 0, p1,...,p; € (0,0.5),
(q15---,q2041)=(P15- -+, p,0.5,1 —p1,...,1 —p), Disa (2l + 1) x (2] + 1) matrix such that
((D))ij=a¢i N qj — gig; for 1 < 4,5 <20+ 1, and
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£ = (m/fe(Qe(p1)), - -, m/ fe(Qe(pr)); (1 — 2im)/ f(Qe(0.5)),
m/fe(Q€(1 - pl))a s vm/fe(Q€(1 - pl)))'

(5.4.3)

where Q¢ (p) is the p'" quantile of ¢;. Then, we state the following theorem.

Theorem 5.4.1. Suppose that X; < b a.s. [P] for some b > 0, Ep(X;)™2 < 0o, Assumption
5.2.1 holds with 0 < X\ < Ep(X;)/b, and Assumptions 5.2.7 and 5.2.8 hold. Then, under
any of SRSWOR, LMS, RHC and any HETPS sampling designs, the asymptotic variance of
\/ﬁ(?Q r — Ep(Y;)) becomes smaller than the asymptotic variance of \/ﬁ(?g rec — Ep(Y;))
if and only if

0?2 > ¢DeT, (5.4.4)

the asymptotic variance of \/n(Y r1s — Ep(Y;)) becomes smaller than the asymptotic variance

of i(Y Gric — Ep(Y:)) if and only if
o2 > (K*P(lei| > K) + Ep(ei)* 1y, <x1)/ (P(lei] < K))?, and (5.4.5)

the asymptotic variance of \/n(Y gr — Ep(Y:)) becomes smaller than the asymptotic variance

of vn(Yrrs — Ep(Y:)) if and only if
2
(K*P(lei| > K) + Ep(e;)*1,1<x) / (P(lei] < K))™ > ¢DET, (5.4.6)
where 062 is the superpopulation variance of €;’s.

The conditions in (5.4.4), (5.4.5) and (5.4.6) are algebraic necessary and sufficient conditions.
These conditions involve superpopulation moments, quantiles and density function. In practice,
one can check these conditions by estimating the above-mentioned parameters based on a pilot
survey. For [=0 and K=1, we consider some cases where these conditions hold, and some cases
where these conditions do not hold (see Tables 5.7, 5.8 and 5.9 below). Theorem 5.4.1 shows
that ?Q r as well as ?TLS is more efficient than ?GREg, whenever ¢;’s are generated from

heavy-tailed distributions (e.g., Laplace, Student’s £, etc.).

Under the linear model in (5.4.2), it is shown in Chapter 2 that ?G rEG has the same asymp-
totic distribution around Y under SRSWOR and LMS sampling designs. It is also shown in

Chapter 2 that RHC and HE7PS sampling designs, which use the auxiliary information, have an
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TABLE 5.7: Discussion of the condition in (5.4.4).

Superpopulation
distribution of ¢;’s
Exponential power

distribution with location =0, | “holds iff o*T'(3/a) > I'3(1/a)
scale o > 0 and shape a > 0
Student’s t-distribution “holds iff 4I%((r + 1)/2) >

with degrees of freedom (df) » > 2 (r —2)7T2(r/2)

" Here, I'(+) denotes the gamma function.

The condition in (5.4.4)

TABLE 5.8: Discussion of the condition in (5.4.5).

Superpopulation The condition in (5.4.5)
distribution of ¢;’s
Standard Laplace distribution holds
Student’s t-distribution holds
with df r=3,4 & 5
Standard normal distribution does not hold

TABLE 5.9: Discussion of the condition in (5.4.6).

Superpopulation
distribution of ¢;’s
Standard Laplace distribution holds
Student’s ¢-distribution
with df r=3,4 & 5
Standard normal distribution does not hold

The condition in (5.4.6)

does not hold

adverse effect on the performance of Y ¢rrg. In the next theorem, we shall show that a similar

result holds for ?Q r and ?T LS-

Theorem 5.4.2. Suppose that the assumptions of Theorem 5.4.1 hold. Then, the asymptotic
distribution of each of \/ﬁ(?QR —Ep(Y;)) and \/ﬁ(?TLS — Ep(Y;)) is the same under SRSWOR
and LMS sampling designs. Further, the asymptotic variance of each of \/ﬁ(?Q r— Ep(Y;))
and \/ﬁ(?T s — Ep(Y;)) under SRSWOR is smaller than its asymptotic variance under RHC as

well as any HETPS sampling design, which uses the auxiliary information.

Theorem 5.4.2 implies that the use of the auxiliary information in the design stage has an

adverse effect on the performance of ?Q r and ?T LS-

As in Section 5.2.1, here also we try to demonstrate the results stated in Theorems 5.4.1 and
5.4.2 using synthetic and real data. For this, we consider z=x, and generate N=5000 population
values on (y, ) from the linear model Y;=1000 + X; + ¢; for i=1,..., N. Here, X;’s are

generated from the standard log-normal distribution, and ¢;’s are generated independently of the
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X;’s from the standard normal, the Student’s ¢ (with df 3) and the standard Laplace distributions.
Based on these data sets, we compare ?Q R» ?T s and ?G rec under SRSWOR, LMS, RS and
RHC sampling designs in the same way as in Section 5.2.1. We consider ?Q g for (=0, and
?T s for K=1. The relative efficiency of an estimator ?1 of Y under a sampling design P ()

compared to another estimator ?g under another sampling design P (s) is defined as
RE(Y1,P\|Ys, Py) = MSE(Y4, P)/MSE(Y1, P),

where MSE(?;C, Py)=I"1 Z{Zl(?kl —Y)?% is the MSE of ?k under Py (s) for k=1, 2. Here,
?kl is an estimate of Y based on the k" estimator and the [*" sample, k=1, 2, I=1, ..., I=1000.
The conclusions drawn from the above data analysis are summarized in Table 5.10 below (for
further details, see Tables 5.11-5.13 below). We observe that the empirical results stated in Table
5.10 corroborate the theoretical results stated in Theorems 5.4.1 and 5.4.2.

TABLE 5.10: Most efficient regression estimators of Y in terms of relative efficiencies.

Superpopulation . . Conditions
distribution of €;’s Most efficient estimators in (5.4.4)~(5.4.6)

Standard normal distribution Y ¢rEc under SRSWOR None of these holds
(5.4.4) & (5.4.5) hold
but (5.4.6) does not hold

Standard Laplace distribution Y or under SRSWOR All of these hold

Student’s ¢-distribution with df=3 ?T 1.5 under SRSWOR

Next, we carry out the above comparison based on the real data set considered in Sec-
tion 5.2.1. We also approximate the superpopulation parameters in the conditions (5.4.4)—
(5.4.6) for [=0 and K=1 based on all the population values in this real data set. Note that
for =0, we have {DE7'=1/4f2(0). Then, we approximate o2, 1/4f2(0) and (P(|e;] > 1) +
Br() 1<) / (Pl < 1))" by

N N 2
Cy=>Y e /N, Cs=1 / 4(21{(%2 /h) /Nh> and
=1 i=1
N N

N 2
Cy= <Z ]1[|ei,3|>1] + Z 61273]1[|6i,3|§1]>/N<Z ]1[|ei,3|§1]/N> J
=1 =1 =1

respectively, where {e; 1} |, {e; 2} | and {e; 3}V, are the residuals obtained from LS, LAD
and TLS regression, respectively, and Zf\il K(ei2/h)/Nh is the kernel density estimator of
fe(0). We choose K (t) to be the uniform density function 1;_; ;;(¢) and h by means of leave

one out cross validation. We compute C5, C'5 and Cy based on LS, LAD and TLS regression,
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respectively, because o2, 1/4f2(0) and (P(|e;] > 1) + Ep(€;) ]l[|61|<1])/( (lei] < 1))2 are
involved in the asymptotic variances of YG REG, YQ g (for [=0) and YT s (for K=1), respectively.
From the above analysis, we observe that Co > Cy > C3. Moreover, YQ r under SRSWOR has
the lowest MSE among all the estimators and the sampling designs considered here (see Table
5.14 below). Thus the above empirical results are consistent with the asymptotic results stated in
Theorems 5.4.1 and 5.4.2.

TABLE 5.11: Relative efficiencies of the regression estimators of Y for the synthetic data
set generated from the linear model Y;=1000 4+ X; + ¢;. Here, ¢;’s have the standard normal
distribution.

RE(Y cric, SRSWOR | Yrrs, SRSWOR) | 1.079478
RE(Y gric, SRSWOR | Yor, SRSWOR) | 1.523295
RE(Y grec, SRSWOR | Yor, LMS) | 1.563709
RE(Y cric, SRSWOR | Yrrg, LMS) | 1.118407
RE(Y gric, SRSWOR | Yarua, LMS) | 1.011407

RE(Y ¢rec, SRSWOR | Y g, RS) 4.233067
RE(Y grec, SRSWOR | Yris, RS) 2.774588
RE(Y gric, SRSWOR | Yerna, RS) | 2.173338
RE(Y rec, SRSWOR | Yor, RHC) | 4.04144

RE(Y ¢ric, SRSWOR | Yrrg, RHC) | 2.550825
RE(Y ¢ric, SRSWOR | Yarpc, RHC) | 2.166384

TABLE 5.12: Relative efficiencies of the regression estimators of Y for the synthetic data set
generated from the linear model Y;=1000 + X; + ¢;. Here, ¢;’s have the ¢ distribution with df 3.

RE(YTLS, SRSWOR y Yor, SRSWOR) | 1.14752
RE(YTLS, SRSWOR | Y cruc, SRSWOR) | 1.88136

RE(Y 715, SRSWOR | Y o, LMS) 1.28922
RE(Y 715, SRSWOR | Y15, LMS) 1.0916
RE(Y 715, SRSWOR | Yerpe, LMS) | 1.924977
RE(Y7Ls, SRSWOR | Y o, RS) 3.535446
RE(Y 715, SRSWOR | Yr1s, RS) 2.008073
RE(Y 115, SRSWOR | Y gric, RS) 5.03639
RE(Y7Ls, SRSWOR | Y gr, RHC) 3.760415

RE(Y 715, SRSWOR | Yrrg, RHC) 1.973055
RE(Y 115, SRSWOR | Y cric, RHC) | 5.661026
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TABLE 5.13: Relative efficiencies of the regression estimators of Y for the synthetic data set
generated from the linear model Y;=1000 + X; + ¢;. Here, ¢;’s have the standard Laplace
distribution.

RE(Y o, SRSWOR | Y5, SRSWOR) | 1125307
RE(Y o, SRSWOR | Y gric, SRSWOR) | 1.690677

RE(Y or, SRSWOR | Y g, LMS) 1.013656
RE(Y gr, SRSWOR | YrLs, LMS) 1.153869
RE(Y gr, SRSWOR | Ygrea, LMS) | 1.738247
RE(Y or, SRSWOR | Y or, RS) 1.865937
RE(Y gr, SRSWOR | Yr1s, RS) 2.9604
RE(Y i, SRSWOR | Y grec, RS) 3.974535
RE(Y o, SRSWOR | Y gr, RHC) 1.837466

RE(Y or, SRSWOR | Yy15, RHC) | 3.073856
RE(Y o, SRSWOR | Yrpa, RHC) | 4.074943

TABLE 5.14: Relative efficiencies of the regression estimators of Y for the real data set
consisting of mean electricity consumption in December of 2009 and 2010.

December
in 2010
RE(Y gr, SRSWOR | Yr15, SRSWOR) | 1.170082

RE(Y or, SRSWOR | Y gric, SRSWOR) | 1.922412

Relative efficiency

RE(Y gr, SRSWOR | Y g, LMS) 1.070182
RE(Y gr, SRSWOR | Y115, LMS) 1.298114
RE(Y or, SRSWOR | Yrpe, LMS) | 2.100872
RE(Y or, SRSWOR | Y or, RS) 9.793544
RE(Y gr, SRSWOR | YrLs, RS) 3.231571
RE(Y gr, SRSWOR | Y grec, RS) 4.081814
RE(Y or, SRSWOR | Y o, RHC) 9.43444
RE(Y gr, SRSWOR | YrLs, RHC) 3.142127

RE(Y or, SRSWOR | Y grue, RHC) | 3.402416

5.5. Variable selection and related tests in sample survey

As discussed in Section 5.1, in sample survey, the auxiliary variables in w=(z, x) are used to
construct estimators and to implement sampling designs. Therefore, it becomes significant to

determine the variables in w, which have influence on the study variable y. In this section, we



224 Chapter 5. Regression analysis and related estimators in finite populations

shall discuss a variable selection method based on LS regression under RHC and any high entropy

sampling designs. The estimator in LS regression can be expressed as

N

~ T
0, = (am Bn) with &, = Y ﬁn 7671 = S’wySwum

Y = > d(i,s) /Zdst Zdst/Zdzs

i€ES 1€8 €8 1€8
~ 2 T _~_ (551)
S = (Zdz 5 WTW/Zdz s)—W W and
1€8 1€8
wy—<ZdZSYW/Zd’LS> YW
€8 1€8

Now, suppose that the population values {(Y;,W;) : 1 < i < N} are generated from a

superpopulation satisfying the linear model
Y; = V! + ¢; with Ep(e;|W;) = 0, (5.5.2)

where V;=(1, ;). One can carry out a step-wise selection of variables under high entropy
and RHC sampling designs as follows. Suppose that 6, is the (j + 1)*" component of 6
and wj is the 4" component of w for j=1,...,d + 1. Then, Hy; : 0;41=0 is tested against
Hy j: 041 # 0 based on the asymptotic distribution of \/ﬁ(én,jﬂ — 61) in the first step of
the variable selection method for all j=1,...,d + 1. Here, én’j+1 is the (j + 1)"* component of
6.,, and 6, is the estimator obtained from LS regression. If the asymptotic p-value corresponding
to the test Hy j, : 04.+1=0 is the largest among the asymptotic p-values corresponding to the
above-mentioned tests, and it exceeds a certain threshold C' (e.g., 0.01 or 0.05), then wy, is
dropped from the model. In the second step, the same procedure is followed with all the auxiliary
variables except wy. This step-wise selection of variables is continued until the maximum p-value
at any step becomes less than the threshold C'. In any given step, a large sample test for the

hypothesis Hy ; : 8;,1=0 is constructed based on the test statistic

Xn,j = (\/ﬁén,j+1)2/z‘\/(\/ﬁ(én,j+1 - 9j+1)), (5.5.3)

where AV (Vn (én j+1—8,+1)) is a consistent estimator of the asymptotic variance of \/n (6. 11—
6;.1) for j=1,...,d + 1. It follows from the asymptotic distribution of \/n(8,, — 6) under high
entropy and RHC sampling designs (see Theorems 5.2.2 and 5.2.4) that under Hy ; and these
sampling designs, the asymptotic distribution of ., ; is central chi-square with df 1 given any j.

The variable selection method described above can also be carried out based on LAD regression
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under the assumption that the conditional distribution of ¢; given W; is symmetric about 0.

We shall now demonstrate the variable selection method described above using synthetic
data. For this, we choose N=5000 and consider the population values {(Y;, ;) : 1 <1i < N}
generated from the linear models Y;=1000 + Z; + X; +¢; and Y;=1000+ X; +¢; fori=1,..., N.
Here, we independently generate Z;’s and X;’s from the standard normal and the standard log-
normal distributions, respectively. Then, we generate ¢;’s independently of the (Z;, X;)’s from
the standard normal distribution. From each of these data sets, we draw 1000 samples each of
size n=100 using SRSWOR. Based on these samples, we carry out variable selection using LS
regression for C'=0.05 as discussed in the preceding paragraph. The conclusions drawn from the

above data analysis are summarized as follows.

(i) For the data set generated from the first linear model, the variables z and x are always

selected.

(ii) For the data set generated from the second linear model, although x is always selected, z

is selected only 46 times out of 1000 repetitions.

Next, we consider the mean electricity consumption in the summer months (viz. June, July
and August) of 2009 and 2010 from the Electricity Customer Behaviour Trial data (see Section
5.2.1), and demonstrate the variable selection method based on this data set. We choose the mean
electricity consumption in the summer months of 2010 as the study variable y, the mean electricity
consumption in July of 2009 as the first covariate z;, and the mean electricity consumption in
August of 2009 as the second covariate zo. We have N=5372 households for which electricity
consumption data are available during July and August of 2009 and all the summer months of
2010. Note that we have w=(z1, z2) in this case. Scatter plots in Figures 5.2 and 5.3 below
show that y is approximately linearly related to each of z; and z3 in this data set. Also, the
finite population linear regression coefficient of y on z; and that of y on 29 are 0.282 and 0.665,
respectively. We observe that z; is selected 650 times and 23 is selected 840 times out of 1000

times, when we perform the numerical experiment discussed in the preceding paragraph.

5.6. Detection of heteroscedasticity in finite populations

The presence of heteroscedasticity has an important influence on the performance of different

estimators in sample survey. For instance, under superpopulations satisfying heteroscedastic linear
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FIGURE 5.2: Scatter plot between y and z; for the real data set consisting of mean electricity
consumption in the summer months of 2009 and 2010.
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FIGURE 5.3: Scatter plot between y and z» for the real data set consisting of mean electricity

consumption in the summer months of 2009 and 2010.

models, the performance of the GREG estimator of the finite population mean under different

sampling designs depends on the degree of heteroscedasticity (see Chapter 3). Therefore, it
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is important to detect heteroscedasticity present in the data. [51] constructed statistical test
for detecting heteroscedasticity based on QR in the classical set up involving i.i.d. sample
observations. In this section, we shall construct similar tests under RHC and any high entropy
sampling designs. Suppose that the population values {(Y;, W;) : 1 < i < N} are generated

from a superpopulation satisfying the linear model
Y; = 0V! 4+ (1 +qgWh)e;, (5.6.1)

where 7 € R, V,=(1,W;), and {¢;}}¥ | are i.i.d. random variables independent of {W;} .
This type of linear model was considered earlier in [51]. Under this linear model, one may be

interested to check whether n=0. Note that the linear model in (5.6.1) can be expressed as
Yi = 0(p)Vi + (1+nW)ei(p), (5.62)

where 0(p)=0 + (Q.(p), Qc(p)n), Qc(p) is the p'* quantile of ¢;, and ¢;(p)=¢; — Q.(p). Thus,
ifl >2and py,...,p; € (0,1), we have

n=0xs0(p)AT = ... =0(p) AT for A = [0T : I;41]. (5.6.3)
Now, suppose that Hy=B X AT with B being al x (I — 1) matrix such that

1,ifj=iand1<i<[-—1,
(B)ij={-1,ifj=i—1land2<i<I, (5.6.4)
0, otherwise .

Here, X denotes the Kronecker product. Then, for the diagnosis of heteroscedasticity present in

the finite population observations, one can test the hypothesis (cf. [51])

Ho: (0(p1),....0(p))Ha = ((8(p1) — O(p2)) AT, (6(p2) — O(p3))A”,
-5 (8(pi-1) — 6(m))AT) = 0.

(5.6.5)

A large sample test for the hypothesis mentioned above can be constructed based on the test

statistic

Xn = n(0n(p1),- -, 00(p)) Ha[HIV Hy] " HT (B(p1), - -, 0n(p))", (5.6.6)
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where 4, (p) is obtained from QR method, and V is a consistent estimator of the asymptotic
covariance matrix of \/ﬁ(én (p1) —O(p1), ..., O0n(p)) — 6(p1)). It follows from the proofs of
Theorems 5.2.2 and 5.2.4 that under high entropy and RHC sampling designs, the asymptotic
distribution of \/ﬁ(én(pl) —0(p1),...,0,(p) — 6(p;)) is normal with mean 0 and some p.d.
covariance matrix. Hence, under Hj and aforementioned sampling designs, the asymptotic

distribution of x,, is central chi-square with df (I — 1)(d + 1).

The detection of heteroscedasticity can also be carried out based on the estimator obtained
from ALS regression in the same way as above. For ALS regression, the p!” quantile of ¢;, Q. (p),
in (5.6.2) is replaced by the p'* expectile of ¢;, . (p), which is obtained by solving the equation
(see [60])

o0

he(p) — Beles) = (20— 1)/(1 - p)) ( | - ue(p))dFe(t)>, (5.67)

(p)

where F¢(t) is the distribution function of ¢;.

Now, we demonstrate the detection of heteroscedasticity discussed above based on synthetic
data. For this, we choose N=5000 and generate the population values {(Y;, X;): 1 <i < N}
from the heteroscedastic linear model Y;=1000 + X; + €;(1 + X;) and the homoscedastic linear
model Y;=1000 + X; + ¢; for i=1,..., N. Here, X;’s and ¢;’s are independently generated
from the standard log-normal and the standard normal distributions, respectively. Note that we
have W;=Z7;=X; for any given i. From these data sets, we draw /=1000 samples each of size
n=100 using SRSWOR. Based on these samples, we perform the statistical tests discussed in the
preceding paragraphs at 5% level. We choose /=3, and p1=0.25, p2=0.5 and p3=0.75 in the cases
of QR as well as ALS regression. For both the regression methods, we construct V in the same
way as the consistent estimator of the asymptotic covariance matrix of 6., (p) (see Section 5.3).
It follows from Section 5.3 that V/ depends on some smoothing parameter h and some density
function K (t). We choose K (t) to be the uniform density function 1_; ;)(¢) and h by means of
leave one out cross validation. Then, we compute proportions of times the tests reject the null

hypothesis. The conclusions drawn from the above data analysis are summarized as follows.

(1) For the data set generated from the heteroscedastic model, the proportion of times the test
based on QR reject the null hypothesis is 0.586, and the proportion of times the test based on

ALS regression reject the null hypothesis is 0.59.
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(ii) However, for the data set generated from the homoscedastic model, these proportions

drop down to 0.048 and 0.042, respectively.

Next, based on the real data set considered in Section 5.2.1, we compute these proportions in
the same way as in the case of synthetic data. The scatter plot in Figure 5.1 in Section 5.2.1 shows
that there is heteroscedasticity present in this data set. We observe that for the above data set, the
proportion of times the test based on QR reject the null hypothesis is 0.386, and the proportion of

times the test based on ALS regression reject the null hypothesis is 0.414.

5.7. Concluding remarks

LS regression is extensively used to construct several estimators of finite population parameters.
However, the use of regression methods like ALS, TLS, LAD, QR, etc. has been limited in the
construction of different estimators in sample survey. Also, in the case of finite populations,
large sample theory for the estimators obtained from different regression methods has not been
adequately developed. In this chapter, asymptotic behavior of the estimators obtained from the
above regression techniques is studied under high entropy and RHC sampling designs. Also,
estimators of the finite population mean are constructed based on quantile and TLS regression.
These estimators are then compared with the GREG estimator of the finite population mean,
which is constructed using LS regression, based on their asymptotic distributions under several

sampling designs.

As pointed out in the beginning of this chapter, it becomes challenging to derive different
asymptotic results for the estimators obtained from various regression procedures, when the
sample observations are neither independent nor identical. In this chapter, these results are first
derived under rejective sampling designs using consistency and asymptotic normality of the HT
estimator under these sampling designs following the ideas in [40] and [4]. Then, these results
are derived under a high entropy sampling design using the fact that any high entropy sampling
design can be approximated by a rejective sampling design in Kullback-Liebler divergence. Thus
high entropy sampling designs play an important role in the study of the asymptotic behavior
of the above-mentioned estimators, when the sample observations are neither independent nor

identical.

It follows from the results discussed in Sections 5.2.1 and 5.4 that different estimators in

regression analysis as well as different regression estimators of the finite population mean have
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the same performance under SRSWOR and LMS sampling designs. It also follows that these
estimators sometimes may have worse performance under HE7PS and RHC sampling designs,
which use the auxiliary information, than under SRSWOR. In practice, SRSWOR is easier to
implement than the sampling designs that use the auxiliary information. Thus the above results

are significant in view of selecting the appropriate sampling design.

As mentioned in the introduction and Section 5.4, the GREG estimator is more efficient than
several other estimators (e.g., HT, RHC, ratio, product, etc.) of the finite population mean (see
Chapter 2). However, it follows from an important result in Section 5.4 that the estimators of the
finite population mean constructed based on quantile and TLS regression become more efficient
than the GREG estimator under several sampling designs, whenever superpopulations satisfying
linear models are considered, and errors in the linear models are generated from symmetric

heavy-tailed superpopulation distributions like Laplace, Student’s ¢, etc.

As discussed in Section 5.1, in sample survey, auxiliary variables are used to construct
estimators and to implement sampling designs. Thus it becomes important to identify those
auxiliary variables, which have more influence on the study variable than the others. On the
other hand, heteroscedasticity influences the performance of the GREG estimator of the finite
population mean under several sampling designs. In Chapter 3, it is shown that if the degree
of heteroscedasticity present in linear regression models is not very large, then RHC and any
HE#PS sampling designs, which use the auxiliary information, may have an adverse effect
on the performance of the GREG estimator. It is also shown in Chapter 3 that if the degree of
heteroscedasticity present in linear regression models is sufficiently large, then the aforementioned
sampling designs improve the performance of the GREG estimator (see Theorem 3.2.3 in Chapter
3). Therefore, it also becomes important to detect heteroscedasticity present in the data. Variable
selection and detection of heteroscadasticity were carried out in the earlier literature based on
different regression techniques in the classical set up involving i.i.d. sample observations. In this
chapter, we describe a variable selection method that uses the asymptotic results related to LS
regression under high entropy and RHC sampling designs derived in this chapter. Under these
sampling designs, we also construct a statistical test for detecting heteroscadasticity present in

the data based on quantile regression.
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5.8. Proofs of the main results

Suppose that

M, (u) = \/ﬁZﬂi_lViz/Jl (e, —uV]/y/n)/N and

1ES

Ln(u) = My (a) — Mp(0) — Ep-(Mp(u) — M,(0))

for any givenu € R%*+2, where Y is asin (5.2.1) and ¢; is as in (5.2.3), and V,;=(1, W;). Let us
also suppose that P(s,w) denotes a high entropy sampling design satisfying Assumption 5.2.6,
and Q)(s,w) denotes a rejective sampling design having inclusion probabilities equal to those of
P(s,w). Such a rejective sampling design always exists (see [4]). Now, we give the proofs of the

theorems.

Proof of Theorem 5.2.1. We shall first show that the result stated in (5.2.5) in Theorem 5.2.1
holds for the rejective sampling design Q(s,w) and d(i, s)=m; '. It is to be noted that L(8)=
Sics ™ 'p(Y; — OVY) is a convex function of 6 because p is a convex function. Therefore,
VL(0,,)=0 for 6, = (an,Bn) = argming, gcgarz Y ie,m; (Y — a — BWT) if L(6) is
differentiable at 8=0,,. Here, VL denotes the gradient of L. Recall from the paragraph containing
(5.2.1) in Section 5.2 that p is differentiable at all but countably many ¢ € R. Let {¢;} be the real
numbers, where p is not differentiable. Since (Y;, W;)’s have absolutely continuous distribution,

we can say that a.s. [P],
6 —u, VI /\/n—t;=Y;—0,VI —t; £ 0foranyi=1,... N,se€ S,y >1landl=1,2...,

where @i,=/n(6,, — 0). Hence, a.s. [P], p is differentiable at Y; — 0,,V} forany 1 < i < N,
s € Sandv > 1. Thus a.s. [P],

(\/E/N)VL(én) = _\/ﬁzﬂ;lvz'@b(l/z - éanT)/]V

€8
= —v/n > 7w Vip(e; — 0, Vi /y/n) /N =0
€8
forany s € S and v > 1. This is because ¢ (t)=p'(t), when p is differentiable at ¢ (recall from

the paragraph containing (5.2.1) in Section 5.2). Then, we have under P*, as v — oo,

My (i) = v Y w7 ' Vith(e; — 0,V /v/n) /N = 0,(1) (5.8.1)

€S
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for Q(s,w). Now, using (5.8.1), Lemma 5.9.3, and similar arguments as in the proof of Theorem
3.1in [51], we can say that under P*, as v — 00, 0,=0) (1) for Q(s,w). Then, using (5.9.14) in
the proof of Lemma 5.9.3, one can show that under P*, as v — oo, M,,(0,,) —M,,(0) 40, X=0p(1)

for Q(s,w). This result and (5.8.1) above further imply that under P*, as v — oo,
My (0) — 8,5 = 0,(1) (5.8.2)

for Q(s,w). Therefore, under P*, as v — oo,

0, —0= [anlzp(ei)vi/zv] >~ 4 0,(1/v/n) (5.8.3)

1€S

for Q(s,w). One can similarly show that under P, as v — oo,

N
Oy — 0 = [Zzp(ei)Vi/N} 2714—0,3(1/\/5). (5.8.4)
i=1
Hence, using (5.8.3) and (5.8.4), we can say that (5.2.5) in the statement of Theorem 5.2.1 holds
for Q(s,w) and d(i, s)=m; .

Now, we shall show that (5.2.5) in the statement of Theorem 5.2.1 holds for high entropy

sampling design P(s,w) (which satisfies Assumption 5.2.6) and d(i, s)=n; *. Suppose that

e

N

0, — Oy — <Z7Ti_1¢(ei)Vi/N — Zw(ei)vi/N> !

i€s =1

312{8682\/771

for any given ¢ > 0. Then, forany w € Qand v > 1,

S (Pls,w) - Q(«%w))‘ 25

SEST seS

P(s.) Q(s,m\ < D(P||Q) < D(P|IR)

by Lemmas 2 and 3 in [4], where R(s,w) is such a rejective sampling design that D(P||R) — 0

as v — oo a.s. [P]. Therefore,

Z (P(s,w) — Q(s,w)) — 0 as v — oo a.s. [P], and hence
SES]

Ep[z (P(s,w) — Q(s,w))| = 0asv — oo

SES]

by DCT. Now, since
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EP[ > Q(s,w)} =P [ﬁ

SEST

B, Oy (Zw;w(ei)viﬂv—

1€ES

N
> (e)Vi /N) »t
=1

>6] — 0 as v — oo for any given § > 0,

Ep[ Z P(s,w)] — 0 as v — oo for any given 6 > 0.
SEST

Thus (5.2.5) in the statement of Theorem 5.2.1 holds for high entropy sampling design P(s,w)
and d(i, s)=m; ' because P(s,w) and Q(s,w) have same inclusion probabilities. Similarly,
(5.2.6) in the statement of Theorem 5.2.1 holds for P(s,w) and d(i, s)=r; * based on the result

stated in (5.8.3). ]

Proof of Theorem 5.2.2. 1t is enough to show that the results stated in (5.2.7) and (5.2.8) in
Theorem 5.2.1 hold for the rejective sampling design Q(s,w) and d(i, s)=m; *. Then, these
results hold for high entropy sampling design P(s,w) (which satisfies Assumption 5.2.6) and
d(i, s):7ri_1 in the same way as (5.2.5) and (5.2.6) in Theorem 5.2.1 hold for P(s,w) and
d(i,s)=m; ! in the 2" paragraph of the proof of Theorem 5.2.1. Let us fix m € R%t2 such that

m # 0. Then, it follows from Lemma 5.9.2 in Section 5.9 that under Q(s,w), as v — oo,
N T
vnm {Zwilw(ei)Vi/N -y w(ei)Vi/N] £, N(0,mI'm?) (5.8.5)
1€S i=1
a.s. [P]. Then, using DCT, one can show that under P*, as v — oo,
N T
vnm {Zwilw(ei)Vi/N -y w(ei)Vi/N] £ N(0,mI'm?) (5.8.6)
€S =1

for Q(s,w). It also follows from the 1% paragraph in the proof of Theorem 5.2.1 that (5.2.5) in
the statement of Theorem 5.2.1 holds for Q(s,w) and d(i, s)=n; '. Therefore, using (5.8.6), we

can say that under P*, as v — oo,
Vim(, —oy)" & N<0,m(2—1r2—1)mT> (5.8.7)

for Q(s,w) and any given m # 0. Thus (5.2.7) in the statement of Theorem 5.2.2 holds for
Q(s,w) and d(i, s)=m; *.
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Next, it follows from the paragraph containing (5.9.17) and (5.9.18) in the proof of Lemma
5.9.3 in Section 5.9 that Ep(1)(¢;)V;)=0. Then, under P, as v — oo,

N
V[ V] S NOmE VIV 689
=1

by CLT. Now, using (5.8.5), (5.8.8), Assumption 5.2.1, and (#ii) of Theorem 5.1 in [69], one can

show that under P*, as v — oo,

T
Vvnm [ > wglzp(ei)vi/N] LN (0, m( + )\Ep((l/z2(e,~)VZTV,~))mT> (5.8.9)

€S

for Q(s,w). Therefore, it follows from (5.8.3) that under P*, as v — o0,
Vnm(,, — 6) & N (0,mAm”) (5.8.10)

for Q(s,w) and any given m # 0. Thus (5.2.8) in the statement of Theorem 5.2.2 holds for
Q(s,w) and d(i, s)=m; *. O

Proof of Theorem 5.2.3. Let us first define ﬁij:(w(ei —uVl/y/n) —(e)) Vi fori=1, ..., N
and j=1,...,d + 2, where Vj; is the jth component of V;. Then, note that (cf. [20], [66], cf.

[61], etc.) given any w € §2 and j=1,...,d + 2, under RHC sampling design,

N N 2
var <\/EZ(NXi)1GiHZ-j> = (nv) {X > (Hij)*/NX; - ( > Hij/N> ] . (5.8.11)
i€s i=1 i=1
where Y=Z¢]\i1 X;/N,v=""_, N;(N, —1)/N(N — 1), and {N, }"_, are as in the paragraph
preceding Assumption 5.2.8. Since ny — c as v — oo for some ¢ > 1 — A > 0 by Lemma 2.7.5
in Section 2.7 of Chapter 2, it can be shown using (5.8.11) and Assumption 5.2.8 that given any

j=1,...,d + 2, under RHC sampling design,

N
var <\/EZ(NX’L)1GZ‘E[Z]> < K1 Z(ﬁm)2/N (5.8.12)

i€s i=1
for all sufficiently large v and some constant X1 > 0 (may depend on w) a.s. [P]. Now, if we
consider M,,(u) and L, (u) as mentioned in the paragraph preceding Lemma 5.9.1 with 7; *
replaced by G; X ;1, then using (5.8.12), it can be shown in the same way as the proof of Lemma

5.9.1 that the result stated in (5.9.1) in Lemma 5.9.1 holds for RHC sampling design. Next, it
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follows from Lemma 5.9.4 that for any given j=1,...,d + 2, under RHC sampling design, as

v — 00,
N T
Vne; [Z(NXi)lGW(Ei)Vz’ - Z w(Ei)Vi/N] £ N(o, e;T"e]) (5.8.13)

€S =1

a.s. [P], where {e; : 1 < j < d + 2} are canonical basis vectors of R%*2. Then, using DCT, one

can show that for any given j=1,...,d + 2, under P*, as v — oo,
N T
Vne; [Z(NXi)—lGiw(ei)Vi — ZWQ)VZ./N] =
1€S8 i=1

N (5.8.14)
Vil S w bV N = 3 wleVig/N| = 0,00
i€s i=1

for RHC sampling design. Now, if M, (u) is considered as in the paragraph preceding Lemma
5.9.1 with 7~ ! replaced by G; X Z-_l, then using (5.8.14), one can show in the same way as the
proof of Lemma 5.9.3 that (5.9.12) in Lemma 5.9.3 holds for RHC sampling design. Thus (5.2.10)
and (5.2.11) in the statement of Theorem 3 hold for RHC sampling design and d(i, s)=G; X ;1
in the same way as (5.2.5) and (5.2.6) in the statement of Theorem 5.2.1 hold for the rejective
sampling design Q(s,w) and d(i, s)=m; 1in the 1% paragraph of the proof of Theorem 1 above.
O

Proof of Theorem 5.2.4. Using Lemma 5.9.4, one can show that the conclusion of Theorem
5.2.4 holds for RHC sampling design and d(i, s)=G; X, ! in the same way as the conclusion of
Theorem 5.2.2 holds for the rejective sampling design Q(s,w) and d(i, s)=m; " (see the proof of
Theorem 5.2.2 above). O

Proof of Theorem 5.2.5. Let us denote the asymptotic covariance matrices of \/ﬁ(én —0y)
under SRSWOR, LMS, RHC and any HE#7PS sampling by I'srs, I'tvs, Trac and U'ggrps,
respectively. It follows from (5.2.7) in Theorem 5.2.2, (5.2.12) in Theorem 5.2.4, and the proof

of Lemma 5.9.5 in Section 5.9 that

Tsrs = Tras = (1 — N Ep(v(e;)) S Ep(VEV)E L,
T'ruc = o Ep(¥(€;))* S Ep(V] Vi X; )2 ! and

Therps = Ep(1(6))*S Ep(VE V) (ua X1 — NS,

where
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x Ep(VI'V;)and ¢ = lim ny.

V—r00

pe = Ep(X;), ¥ = —8(EP(¢(61‘ - 75)))/375

t=0

Thus the result that the asymptotic total variance of 1/7(8,, — @) under SRSWOR is the same

as that of \/ﬁ(én — @) under LMS sampling design follows. Next, we have

tr(Crac — Tsrs) = Ktr [(Ep(ViTVi)> _1Ep <(%X;1 -(1- )\))VZTVZ-> X

(Ep(ViTVZ-)> _1} > K(1— M\tr KEP(VZ-TVi)> _IEP<(;L$XZ.‘1 — 1)ViTVz-> X

o) |

for some K > 0 because ¢ > 1 — A by Lemma 2.7.5 in Section 2.7 of Chapter 2. Moreover, we

have

tr(Cuprps — Dsrs) = Ktr KEP(ViTVi)> _1Ep ((MX[I — 1)V?Vi> (EP(VZTV,»)> _1] .

Therefore, tr(T'srs) < min{tr(Tryc), tr(Tae-ps)} if and only if the condition in (5.2.15)

holds. This completes the proof of the theorem. O

Proof of Theorem 5.3.1. (i) We shall first show that under P*, as v — oo, I'; 2, 1 for the
rejective sampling design Q(s,w), where Q(s,w) is as mentioned in the paragraph preceding
the proof of Theorem 5.2.1. Then, this result will hold for high entropy sampling design P(s,w)
(which satisfies Assumption 5.2.6) in the same way as (5.2.5) in Theorem 5.2.1 holds for P(s,w)
and d(i, s)=m; !in the 2" paragraph of the proof of Theorem 5.2.1 above. In order to show that

under P*, Ty 2 'y as v — oo for Q(s,w), we need to first show that under P*,
&P
Y1 = XYasv — oo

for Q(s,w). Let us define

N
S1=—> m '¢(0, W)V Vi/Nand £ = = Y " ¢/(0, W;)V] V;/N

1€s =1

. We establish the consistency of P by showing that as v — oo, -2 B 0and B — X7 20

under P* for Q(s,w), and £} 2 ¥ under P.
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The result

>t 5 Y as v — oo under P

holds by weak law of large numbers since Ep||#'(0, W;)V! V;||| < oo by Assumptions 3
and 4. Next, note that the (j,1)"" element of 1 is ((X1));1= — Yies T Lo/ (0, W;)Vi; Vit /N
for j,l=1,...,d + 2. Then, it follows from Theorem 6.1 in [40] that given any w € {2 and
Jyl=1,...,d+ 2, under Q(s,w),

mar<<<il>>ﬂ) (n/N?) [i ¢(0, Wi)Vig Vi) (" — 1)

(Z¢ 0, Wi)Vi; Vi (1 )2/27@1—7@} (1+e),

=1

(5.8.15)

where e — 0 if sz\il mi(1 — m) — oo as v — oo. Recall from the proof of Lemma 5.9.1
that under Q(s,w), SV mi(1 — m;) — oo as v — oo a.s. [P]. Therefore, using (5.8.15) and

Assumption 5.2.6—(7), we can show that given any j, =1, ...,d + 2, under Q(s,w),

N

nvar(((il))jl> n/N2 Z (0, W; VUVZz)Z Z'_1 <

) i=1 (5.8.16)
Ky Y (¢/(0, W) VigVa)2 /N

i=1

for all sufficiently large v and some constant K7 > 0 (may depend on w) a.s. [P]. Now,
SN (¢/(0, Wi)VijVit)2/N=O(1) as v — oo a.s. [P] by SLLN since Ep(¢'(0, W;)Vi;Vi)? <
oo by Assumptions 3 and 4. Thus under Q(s,w),

(Z0)j— (Z)jt B 0asv — oo as. [P]
for any given j,I=1,...,d + 2. Using DCT, one can then show that under P*,
21 =35 B 0as v — oo for Q(s,w).
Next, suppose that
£(y2) = </ U(hyr —y2 — 1)K (yl)dy1>/8t|t 0

for y» € R. Then, we have
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=y it ﬁKh Wir)€(0, V! —Y; /Zw ﬁKh Wik)

Jj€Es JES

for any given ¢=1, ..., N. Let us define

d+1 d+1
L | CUCSURETE VD Sl | EACRIE

JEs Jj€Es k=1
for i=1,..., N. Now, suppose that u=(1,u;), where u; € R%*! and u € R%*2. Further, suppose
that uy, is the k** component of u; for k=1, ..., d + 1. Then, it can be shown in the same way

as in the preceding paragraph that under P*, as v — oo,

N d+1 N d+1
sup  |¢'(0,w) ZHKh uik — W)€ /ZHKh utk — Wik)| = 0
[luf|<K1 =1 k=1 7j=1k=1
for Q(s,w). It can also be shown that under P,
N d+1 N d+1
|| SHUP ST En(wr = Wik)¢ /ZHKh urk — Wik) — ¢/(0,u1)| 5 0
u SK1

=1 k=1 j=1k=1

as v — 00, and under P*,

sup ’é’(O,ul) — qAS’(O,ul)} 2y 0as v — oo for Q(s,w).
[luf|<EK;

Moreover, under P*, as v — oo, >, m; | |Vi||>/N=0,(1) for Q(s,w). Thus under P*, as

€S 2

vV — 00,

151 = S| <) (0, Wh) — ¢/(0, W[ Vil P/N <
1€ES
sup [¢/(0,u1) — ¢/(0, )| Y Y|Vil[P/N 50
[[uf|[<K1 ics

for Q(s,w). Therefore, under P*, as v — oo, £1 £ %, and hence 71 £ %1 for Q(s, w).

Next, note that we have

— (n/N?) [Zﬂ?ﬁmgl S Dr (5817
1€8
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(Zﬁf@rf ~ ) Bt - 1))/2(1 - m)],

€S €S €S

where H;= (é;)V; for any given i € s. The first term on the right hand side of (5.8.17) can be

expressed as
- o )
/)| R = )| =

(/)| S (87(E) — () VI Vil 1)791} n (5.818)

(/N | S B H (! 1>7r;1],

- 1€ES
where H;=t(¢;)V; for i=1, ..., N. One can show that
N
(n/N?) [ZHZHi(ngl — Dt = HIH(r ' — 1)} 20
i€s i=1

as v — oo under P* for Q(s,w) in the same way as Y — 2] 2y 0 as v — oo under P* for

Q(s,w) in the 2" paragraph of this proof. Moreover, we have

/)| ma 107(@) = (@)l ) IVl = .

€S

0/ X (06 — @) VIVl = vy

€5

<

(5.8.19)

Using (5.8.3) and (5.8.4) in the proof of Theorem 5.2.1 above, one can show that under P*, as

vV — 00,

(ma [02(6) — 2] ) & 0for Q)

1<i<N

. Therefore, using Assumption 5.2.4, it can be shown in the same way as in the 2"¢ paragraph of
this proof that both the right hand side of (5.8.19) converges to 0 in probability under P*. Hence,

it follows from (5.8.18) that under P*, as v — oo,

1€s =1

for Q(s,w). Similarly, one can show that under P*, as v — oo,

DRSPS ACEEND o el Y SRR

1ES 1ES 1€ES
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N N
{;Hi(l—m); (1—m) }/Zw 1—m} 20

for Q(s,w). Thus

N

(/N [ZH,»T H(r—1)-

=1

{ZHT1—7@ 1—7@}/27@ — ] 0,

and hence I' & T as v — oo under P* for Q(s,w) by Assumption 5.2.6—(ii). Therefore, under

P* as v — oo,

~

I’y & Iy for the rejective sampling design Q(s,w).

Next, the result, f*{ 2, I} as v — oo for RHC sampling design under P*, will follow in the same

way as the above result.

(ii) The proof follows exactly the same way as the proof of (). O

Proof of Theorem 5.4.1. Let us first assume that p(t)=t* or t* 1< /2 + K ([t| — K) Ly k]
fort € R and K > 0. Note that

Vi(Yeree — Be(Y)) = Vi(@, — 0V + VBV — Ep(V,))” and
Vi(Yrrs — Ep(Y:) = Vi(0,(K) — 0)V' + /nB(V — Ep(V,))"

where V;=(1, W;), and 6,, and 8,,(K) are the estimators obtained from LS and TLS regression,
respectively. Since {ei}i]\il in (5.4.2) are generated from some symmetric distribution with
Ep(€;)=0, we have Ep(¢(€;))=0 for the above choices of p. Further, Assumptions 5.2.2-5.2.4
hold for these p’s because €;’s in (5.4.2) have a positive continuous density function. Then, it can

be shown in the same way as the proof of the result in (5.8.9) that under P*, as v — oo,

VaYerpe — Ee(Y:)) 5 N(0,Ar) and va(Yrrs — Ep(Yi)) S N(0, Ag)

for d(i, s)=m; ' and SRSWOR, LMS and HE7PS sampling designs, and

Vi(Vorse — Ee(¥:) 5 N(0,A7) and vai(YVrzs — Ep(Yi) S N(0, A3)

for d(i, s)=G; X, ! and RHC sampling design. Here, we have
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F2/4 + )\UEEP(V;-FVI'))GT> + AGCO’UP(VZ')HT

< (6275 + AO?&?EP(VZ-TVi))aT> + A@covp(V;)0"
< (T3/4 + /\opr(VzTVi))aT) + Acovp(V;)0T and

A} = <a(5gr§ + AB?&?EP(V;TFVi))aT> + Acovp(V;)07,

where a is a 1 x (d+2) vector with first entry equals to 1 and other entries equal to 0, 02=Ep(e;)?,

02=(K2P(|e;| > K) + Ep(e))* 1y, 1<x)> 02=(P(|e;| < K)) 72,

N
FQ = Vli)I{.lo n/N2 Zl i,1 — TL 17T1)T(LZ'71 — TL,17T,L')(7T;1 — 1) and
1=
N
I's= ulglolo (n/N?) Z — TL’27ri)T(L,-72 — TL,27TZ')(7TZ~_1 — 1) a.s. [P], and
=1

'y = cEp(X;)Ep (L] 1Li1 X; ') = 4co? Bp(X;)Ep(V;ViX; ') and

I} = cBp(X:) Ep(LIyLi 2 X[1) = c02Ep(X:) Ep(VIVX ).

Here, Li71=26ivi and Li,2:(K1[61>K] — K]l[ei<fK] + fi]lﬂq\gl(])vi for i=1, .. ,N, TLJ.g
=Zi]\il Liy(1—m)/ Zfil i (1 — ;) for k=1, 2, and c=lim,_,, n-y (see Theorem 5.2.4). More-

over, it can be shown in the same way as the proof of Lemma 5.9.5 in Section 5.9 that

4(1 — N2 Ep(VI'V;) under SRSWOR and LMS sampling designs, and
Iy = (5.8.20)

402 Ep(VIV;)(Ep(X;)X; ' — \) under any HE7PS sampling design,

)

and

(1 —\)@?Ep(VI'V;) under SRSWOR and LMS sampling designs, and
I's = (5.8.21)

6?Ep(VI'V;)(Ep(X;)X; " — \) under any HE7PS sampling design.

Let us next assume that p(t)=[t| + (2p — 1)t fort € R and p € (0, 1). Note that the linear

model in (5.4.2) can be expressed as

Y; = 0(p)VY + ei(p) fori = 1,..., N,
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where 8(p)=0+(Q.(p),0, ..., 0), Q(p) is the superpopulation p"* quantile of ¢;’s, and ¢;(p)=¢; —

Qe(p). Also, note that Ep (¢(€;(p)))=2Ep (p — L, (»)<0))=0. Let us recall (g1, .. ., gar41) from

Section 5.4. Now, since ¢;’s have a symmetric distribution about 0, we have

\/ﬁ(?QR - Ep(Y))) = \/ﬁ(én(QI) —0(q1),..-,0n(q2+1) — 9(Q2l+1))H1VT+

(O(ql), ceey 0((]2[+1))H1 (V - EP(VZ'))T,

where H is as defined in the paragraph containing (5.4.1) in Section 5.4. Further, Assumptions
5.2.2-5.2.4 hold for the above-mentioned p because ¢;’s have a positive continuous density
function. Then, it can be shown in the same way as the proof of the result in (5.8.9) that under
P*, as v — oo,

Vi(Yor — Ep(Y;)) £ N(0, Ag)

for d(i, s)=n; ' and SRSWOR, LMS and HE7PS sampling designs, and
-~ C .
V(Y gr — Ep(Y;)) = N(0,A3)
for d(i,s)=G; X; ! and RHC sampling design. Here, we have

Az = ((g ®a)(T4/4+AD ® Ep(VI V) (€ ® a)T) + A@covp(V;)0" and

Aj = ((5 ®a)(T5/4+AD ® Ep(VI V) (€ ® a)T> + Acovp(V;)07,
where D and ¢ are as defined in Section 5.4. ® denotes the Kronecker product, I'y=lim,,_, . (n/N?)
xS (Lig = Tram) T (Lig — Trm)(m; ' — 1) as. [P, Tog=>0", Lis(1 —m)/ X0,
mi(1 — m;), and Dj=cEp(X;) Ep(L5L;3X; ). Here,

L3 = 2<Vz‘(p1 — L py<0))s - -+ Vilr = Ly ) <0))s Vi(0-5 = L1, 0.5)<0))

Vi(l =p1 = L, i—py)<q))s - -+ Vil =i — ]l[ei(1—pl)<o]))

for =1, ..., N. Moreover, it can be shown in the same way as the proof of Lemma 5.9.5 in

Section 5.9 that

(1 — \)Ep(LT,L; 3) under SRSWOR and LMS sampling designs, and
I'y= ’ (5.8.22)

EP(L3:3LZ-’3)(EP(X¢)X -1 — )\) under any HE7PS sampling design.
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In view of (5.8.20), (5.8.21) and (5.8.22), it follows that

02 — ¢DET under SRSWOR and LMS sampling designs, and
Al — Az = (5.8.23)

(02 — €DET)Ep(X;) Ep(X; 1) under any HE7PS sampling design,

o2 — 6262 under SRSWOR and LMS sampling designs, and
A — Ay = (5.8.24)
(02 — 0262)Ep(X;)Ep(X; ') under any HE7PS sampling design,

and

6252 — ¢DET under SRSWOR and LMS sampling designs, and
Ay — Az = { (0262 — ¢DET) Ep(X;) Ep(X; ") under any HETPS (5.8.25)

sampling design.
It also follows that

A} — AL = (02 — ¢DET) (cBp(X;)Ep(X; ') + A) under RHC sampling design,
A} — A = (02 — 0262)(cEp(X;)Ep(X; ) + \) under RHC sampling design, and

Ay — A = (0262 — ¢DET) (cEp(X;)Ep(X; ) + \) under RHC sampling design.

Therefore, the conclusion of Theorem 5.4.1 holds. OJ

Proof of Theorem 5.4.2. Tt follows from the 1! paragraph in the proof of Theorem 5.4.1 that
the asymptotic distribution of \/ﬁ(?TLS — Ep(Y;)) is the same under SRSWOR and LMS
sampling designs. Further, it follows from the 1! paragraph in the proof of Theorem 5.4.1 that
the asymptotic variance of \/ﬁ(?T s — Ep(Y;)) under SRSWOR is smaller than its asymptotic
variance under RHC as well as any HE7PS sampling design because Ep(X;)Ep(X;)~! > 1 and
c>1— X(see2.7.5 in Section 2.7 of Chapter 2).

It follows from the 2"¢ paragraph in the proof of Theorem 5.4.1 that the asymptotic distribution
of \/ﬁ(?Q r — Ep(Y;)) is the same under SRSWOR and LMS sampling designs. Further, it
follows from the 2"¢ paragraph in the proof of Theorem 5.4.1 that the asymptotic variance of
\/ﬁ(?Q r — Ep(Y;)) under SRSWOR is smaller than its asymptotic variance under RHC as well

as any HE7PS sampling design. O
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5.9. Proofs of additional results required to prove the main results

In this section, we state and prove some lemmas, which will be required to prove the theorems in
this chapter. Let us first recall expressions for M,,(u) and L, (u) from the paragraph preceding
the proof of Theorem 5.2.1 in Section 5.8. Next, suppose that P(s,w) denotes a high entropy
sampling design satisfying Assumption 5.2.6, and Q(s,w) denotes a rejective sampling design
having inclusion probabilities equal to those of P(s,w). Recall from the paragraph preceding the
proof of Theorem 5.2.1 in Section 5.8 that such a rejective sampling design always exists. Now,

we state the following lemma.

Lemma 5.9.1. Suppose that Assumptions 5.2.1, 5.2.2 and 5.2.4 hold. Then, for any K > 0,
under the probability distribution P*,

sup ||Ln(u)|| = 0p(1) as v — o0 (5.9.1)
||| <K

for the rejective sampling design Q(s,w).

Proof. We write the proof using similar arguments in the proof of Lemma 4.1 in [5]. Note that

Ln(w)=L% (u) + L, (u), where
L (u) = M, (a) — M, (0) — (M, (a) — M,(0)) with
N
M, () = \/ﬁz Vi1 (e; —uVy //n) /N, and
i=1
Ly (u) = M, (u) — M,(0) — Ep(M,(u) — M,(0)).

Suppose that V;; and u; are the 4t components of V; and u, respectively, for j=1,...,d + 2.

Further, suppose that

C= {u € R™2?: max luj| < K} for some K > 0,
1<5<d+2

and {e; : 1 < j < d+ 2} is the canonical basis of R%*2. Also, recall from the proof of Theorem

5.2.3 that

Hyj = (¢(& —uV] /v/n) — b(e)) Vi
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fori=1,...,N and j=1,...,d + 2. Now, fix u € C. Then, it follows from Theorem 6.1 in [40]
that given any w € Q and j=1,...,d + 2, under Q(s,w),

var <L2(u)e;‘vp> = var (ﬂz 7ri_1[:Iij/N> =
N (5.9.2)

N N 2

/)| St P -1 = (L A= m) /S omi -+ o),
i=1 i=1 i=1

where e — 0 if SN (1 — m;) — oo as v — co. Note that Q(s,w) satisfies Assumption

5.2.6—(1) since P(s,w) and Q(s,w) have same inclusion probabilities, and P(s,w) satisfies

Assumption 5.2.6—(¢). Then, under Q(s,w), Zf\il mi(l —m) — oo as v — oo as. [P] by

Assumption 5.2.1. Therefore, using (5.9.2), one can show that given any j=1,...,d + 2, under

Q(s,w),

N N
Uar<\rz w /N) (/NS (Hy Pt < K SN (593)

(St i=1 i=1
for all sufficiently large v and some constant X1 > 0 (may depend on w) a.s. [P]. Next, there
exists a constant K5 such that maxj<;<n ||V;|| < K3 a.s. [P] by Assumption 5.2.4. Since, 1 is

a non-decreasing function, we have

ZEP )2/N = Ep{(¥(e; — uV] /v/m) — 9(e:)*V2} < K3x
(5.94)

Ep(¢(ei + KKovVd+2/v/n) — (e — KKoVd+2//n))”

as v — oo by Assumption 5.2.2. Hence, by Markov inequality, we have Zfi 1 (ﬁij)2 /N 250 as
v — oo under P for any j=1, ..., d + 2. This result and (5.9.3) imply that under P*,

var(\/ﬁz w{lﬁij/N> 2 0as v — oo (5.9.5)

€S

for the rejective sapling design (s, w) and any j=1,...,d + 2. Suppose that

Sj={seS:vn|> = 'H; ZH,J\/N>5}

1ES

for any given 6 > 0 and j=1,...,d + 2. Then, (5.9.5) implies that under P,
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Z Q(s,w) < var(\/ﬁZW;II:IU/N)/éQ Z0asv — oo

sES; i€s
for§ > Oand j=1,...,d+2. Since, - 5 Q(s,w) is bounded, we have Ep (3 s, Q(s,w))=
P{\/n| >, T Hyy — Zfil Hi;|/N > 6} — 0as v — oo. In other words, under P*, as

vV — 00,

Li(u <Z7r YH;; — ZH”> /N0 (5.9.6)

1€8
for Q(s,w) and any given j=1,...,d + 2. Next, recall L,,(u) from the 15 paragraph of this

proof and note that

varp <Zn(u)ef) = varp (f Z Hij /N) (n/N) Z Ep(H;;)?/N =0

as v — oo under P by (5.9.4) and Assumption 5.2.1. Therefore, under P, as v — oo, Ly, (u)e ;—F 2,
0. Hence, under P*, as v — oo,
Ln(w)el = L (w)el + L, (u)el =0 (5.9.7)

for Q(s,w) and any given j=1,...,d + 2.

Now, we consider the cube

C,={uecR¥"?: Joax luj| < ([1/a] 4+ 1)aK} for any given a > 0,

and decompose it into the cubes with vertices (rakK,...,rq12aK), where r;=0,+1, ...,
+([1/a] + 1) for j=1,...,d + 2. Let C, be the collection of all such cubes. Suppose that
for any C € C,, u* denotes the lowest vertex of C. We say that a vertex v of any cube in R4*2
is its lowest vertex if v; < wj for all j=1...,d + 2 and any other vertex w of that cube. Note
that u* € C, for any given C;, € C,. Then, it follows in the same way as the derivation of the
result in (5.9.7) that under P*, as v — oo,

L, 2 5.9.8
Crpgél (u)e; | = (5.9.8)

for Q(s,w) and any given j=1,...,d + 2. Next, note that



5.9. Proofs of additional results required to prove the main results 247

sup |Ln(u)eﬂ < sup !Ln(u)eﬂ < max sup |(Ln(u) — Ln(u*))eﬂ—i-
ueC €Ca Co€Cavec:

(5.9.9)
s 1200

for any given j=1,...,d + 2. Also, note that

sup [(£af0) = L, (w))ef | < Vi S (wles —wVE s

«
ueC, 1€s

Ka$y Vi)~ bl — wVE (Vi KaS Vi) ) Vil | [+

(5.9.10)
x/ﬁEP*{ dom! (Wéi — WV /v + KaSi/v/n)-

€S

e —w Vi - Kasi /i) )Vl ) /3

for any given C; € C, because v is a non-decreasing function. Here, SFZ‘;J:? |Vij| for
i=1,..., N. It can be shown in the same way as the derivation of the result in (5.9.7) that under
P*, as v — oo,

VLYo (e — w'V] v+ KaSi/y/n) = ble; —w V] /y/n—

1ES

KaSi/v/n))Vijl} /N — V/nEp-{ Zﬁfl(@ﬁ(q —u'V] /\/n+ KaS;/v/n)-

1ES

Y(e; —wVE /i — KaS;/vn))|Vis|} /N 2 0

for Q(s,w) and any given C;, € C,. Now given any § > 0, we have K Ksav/d + 2/+/n < ¢ for

all sufficiently large v. Then, it follows from Assumptions 2 and 4 that as v — oo

\/HEP*{ er;l(wq VT + KaSi/vi)—

€S

e —w Vi~ Kas i) ) Vil /N

N
= \/ﬁz EP{ (Wq —u*'V!/\/n + KaS;/\/n)—
prt (5.9.11)

e u VI Vi~ Kasif V) ) Wil |/
< KQ\/EEP (1/1(6, — U*ViT/\/ﬁ + KKQCL\/ d+ 2/\/%)—
1,/}(61' — ll*VZT/\/> — KKQCL\/d + 2/\/5))



248 Chapter 5. Regression analysis and related estimators in finite populations

< KKjavd + 2sup {EP (w@i —wVl/Vn+h)-
V(e —a*VE/\/n — h))/h 0<h< 5} = aO0(1)

under Q)(s,w) for any given C;, € C,. Therefore, it follows from (5.9.10) that under P*, as
vV — 00,

sup
ucC;

(Ln(u) — L (u*))e] | = aOy(1)

for Q(s,w) and any given C;, € C,. Hence, using (5.9.8) and (5.9.9), one can show that under
P*, as v — 00, Sup,ec !Ln(u)eﬂ:aOp(l) for Q(s,w), and any givena > 0 and j=1,...,d+2.
On taking a — 0, we obtain that under P*, as v — oo,

sup ‘Ln(u)ejT’ < sup |Ln(u)eﬂ = 0p(1)
luf[<K ueC

for Q(s,w) and any given j=1,...,d + 2. Then the proof of the result in (5.9.1) follows in a

straight-forward way. O

Next, suppose that ﬁlzziES(Nm)*lHi and H=Y"Y | H, /N, where H;=y(¢;)V; for i=

1,..., N. Then, we state the following lemma.

Lemma 5.9.2. Fix m € R such that m # 0. Suppose that Assumption 5.2.1 holds. Then,
under Q(s,w), we have \/nm (ﬁl - H)T £ N(0,mI'mT) as v — oo a.s. [P], where T is as

mentioned in Assumption 5.2.6-(i1).

Proof. The proof follows exactly the same way as the derivation of the result, which appears in
the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that \/ﬁml(él -V)T AN (0,m;I'm?)
as v — oo under each of SRSWOR, LMS and any HE7PS sampling designs for any m; € RP,
m; # 0 and ['=lim,,_, o 3. O

Lemma 5.9.3. Suppose that Assumptions 5.2.1-5.2.4 hold. Then, given any 6 > 0, there exist (1,

(2 and vy such that

P*{ nf || My, (w)|] < gl} < S forall v > vy (5.9.12)
uj=G2

and the rejective sampling design Q(s,w).

Proof. Recall ¢ from (5.2.3) in Section 5.2. Then, we note that under Q(s, w),
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N
B (M)~ 30,0)) = Vo Y- B (06— wVT /i) — wle)Vi ) /v

i=1 (5.9.13)
= \/EEP{(cb(uVlT/\/ﬁ, W1) — ¢(0, W1>)V1} = Ep{¢/(&1, W1)uV{ Vi }

by Taylor expansion and Assumption 5.2.3. Here, £; lies between 0 and uVr{ /+/n. This implies

that

1] < [uVT|/v/n < [[ul[[Vi]]/ V7.

Now, if we fix any K > 0, then |¢1]| — 0 uniformly over {u € R4*2: ||u|| < K} as v — oo a.s.
[P] by Assumption 5.2.4. By Assumption 5.2.3, ¢'(¢, W1) is continuous, and hence uniformly

continuous on [—d7, 1] for any given w € 2 and any §; > 0. Therefore,

sup |¢' (&1, W) — ¢'(0,W1)| — 0 as v — oo a.s. [P].
|luf| <K

Moreover, for any v > 1,

sup |¢' (&1, W) — ¢'(0,W1)| < 2sup |¢'(t, W1)| and Ep(sup |&' (¢, Wl)\)Q < 0
|| <K teR teR

by Assumption 5.2.3. Hence,

||S|l|1p HEP{(ﬁ/(fl, Wl)llV{Vl} — Ep{¢/(0, Wl)uV{Vl}H —0asv — o0
u||<K

by Assumption 5.2.4 and DCT. Thus sup)y||<x || Ep* (My(u) — My, (0)) +uX|| = 0as v — oo

by Assumption 5.2.4. This result and Lemma 5.9.1 imply that under P*, as v — oo,

sup || M, (u) — M,(0) + uX|| = 0,(1) (5.9.14)
Jul| <

for Q(s,w) and any K > 0.
Next, it follows from Lemma 5.9.2 that for any given j=1,...,d + 2, under Q(s,w), as
v — 00,
N

Vne; [ZW[W(@)V#N - Z¢(€i)vi/N]T £ N(0,¢;Tel) (5.9.15)

1€s =1
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a.s. [P], where {e; : 1 < j < d + 2} are canonical basis vectors of R%*2. Then, using DCT, one

can show that for any given j=1,...,d + 2, under P*, as v — oo,

N T
Vies | S w wlVi/N = 3 wleVi/| -
=1

ies o (5.9.16)
Vil w3 wle)is/N| = 0,00
i€s =1

for Q(s,w), where Vj; is the 5% component of V;. Moreover, we have

N
varp (x/ﬁz w(ez’)vz’j/N> < (n/N)Ep(4(e)Vij)? = O(1) (5.9.17)
=1

as v — oo for any j=1,...,d + 2 by Assumptions 5.2.2 and 5.2.4. One can also show that
Ep(¢(e;)Vi)=Ep(v(Y; — OV;TF)VZ-)z() because (Y;, Z;, X;) have absolutely continuous distri-
bution and p(t) is differentiable at all but at most countably many ¢. Therefore, under P*, as

vV — 00,

\/ﬁZﬂi_ll/J(ei)Vij/N = Op(1) forany j =1,...,d + 2, and hence ||M,(0)|| = Op(1)

€S

for Q(s,w). This implies that given any J, there exist 19 € IN and K > 0 such that
P*{||M,(0)|] > K1} < /2 forall v > vy. (5.9.18)

Now, suppose that A; is the minimum eigenvalue of 3. Let us choose {; > 0 and (3 > 0 such

that (o > 2K /A1 and ¢; < K /2. Further, suppose that (3=(; (2. Then, we have

P*{ e, (= Mnf@u?) < CP’} : P*{ i, (= M) <G

inf (- M,(0)u’ +uZu’) > 253} + P*{ inf (— M, (0)u”+ (5.9.19)
[Jul|=¢2 lluf|=¢2

uru’) < 2(3}.
Further, we have

P*{ inf (= My(upu") <, inf (=M, (0O)u"+uTu") > 243}
[lull=¢2 [lull=¢2 (5.9.20)
< P*{ sup ((My(u) — M,(0))u” +uXu’) > g‘g} <

lJul|=¢2
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P*{ s [[(M) ~ Mo(0) 0] 2 cl} S0
ul|=C2

as v — oo by (5.9.14). Next, it follows that
P*{ inf (— M,(0)u" +uXu’) < 243} < P*{ inf (— M,(0)u”)
llul|=¢2 lJuf|=¢2
+3N < 2@} < P*{ — (|| M (0)]] < 2¢3 — ggAl} < (5.9.21)

P*{HMn(O)H > Kl} <6/2,
for all v > 1 by (5.9.18). Thus, one can choose 1/ large enough such that

P*{ || iﬁl_fc (= M,(w)u’) < Cg} <0 (5.9.22)

for all v > 1 by (5.9.19), (5.9.20) and (5.9.21). Next, note that
— M, (rup)u? > — M, (u;)ul (5.9.23)

for any given 7 > 1 and u; € R42, Now, if ||u]| > (3 and u;=Cou/||u||, then ||u;||=(2 and
u=7u; with 7=||u||/{2 > 1. Then, using (5.9.22) and (5.9.23), one can show that
P*{ inf || M,(w)|| < Cl} < P*{ inf (— M,(wu")é/|u|| <

[lul|=¢2 [lul[>¢2

(5.9.24)
41C2} < P*{ inf (— Mn(ul)u{) < C3} <9

[Ju1[[=¢2

for all v > vy. Hence, the result in (5.9.12) holds. ]

Next, suppose that ﬁQ:ZiGS(NXi)*lGiHi, where H;=t(¢;)V; for i=1,..., N, and G;’s
are as in the paragraph containing (5.1.1) and (5.1.2) in Section 5.1. Recall from the paragraph
preceding Lemma 5.9.2 that ﬁ:ZfV: 1 H;/N. Also, recall from the statement of Theorem 5.2.4
that y=3""_, N,.(N, — 1)/N(N — 1) with N, being the size of the i*" group formed randomly

in RHC sampling design. Now, we state the following lemma.

Lemma 5.9.4. Fixm € R4 such that m # 0. Suppose that Assumptions 5.2.1 and 5.2.7-5.2.9
hold. Then, under RHC sampling design, we have \/nm (ﬁg — H)T LN (0, cmI*m™) as

v — o0 a.s. [P), where I'* is as mentioned in Assumption 5.2.9 and c=lim,,_, o 1.

Note that the limit lim, _, o ny exists by Lemma 2.7.5 in Section 2.7 of Chapter 2.
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Proof. The proof follows exactly the same way as the derivation of the result, which appears in
the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that \/ﬁm1(§2 -r £, N(0, mngm{)

as v — oo under RHC sampling design for any m; € RP, m; # 0 and ['s=lim,,_, o, 9. ]

Next, we show that Assumption 5.2.6—(ii) holds under SRSWOR, LMS and any 7PS sampling
designs. Recall ¢ from (5.2.1), and ¢; from (5.2.3). Also, recall from the paragraph preceding
Assumption 5.2.6 that H;=t)(¢;)V; fori=1,..., N,and Tg=3"" H;(1 —m;)/ N | m(1—m).

Here, V,;=(1, W;). Now, we state the following lemma.

Lemma 5.9.5. Suppose that Assumptions 5.2.1 and 5.2.8 hold, and Ep||H;||*> < co. Then,
Assumption 5.2.6—(ii) holds under SRSWOR and LMS sampling designs. Moreover, if X; < K
a.s. [P] for some 0 < K < oo, EP(XZ-)_2 < oo, and Assumption 5.2.1 holds with 0 < A <

Ep(X;)/K, then Assumption 5.2.6—(ii) holds under any wPS sampling design.

Proof. Let us denote (1/N?) Zfil(Hz —Tym) T (H; — Tym;)(m; 1 — 1) by X n. Here, m;’s are

inclusion probabilities. Note that

N N
nYy = (1 —n/N) (ZHZTHZ-/N — HTH> with H= Y H;/N
1=1 =1

under SRSWOR. Then,
nYXy — (1 — N)Ep(H; — Ep(H;))(H; — Ep(H;)) as v — oo a.s. [P] (5.9.25)

by Assumption 5.2.1 and SLLN. Note that Ep(H; — Ep(H;))(H; — Ep(H;)) is p.d. because
{(Y;,W;) : 1 < i < N} have absolutely continuous distribution. Thus Assumption 5.2.6—(ii)
holds under SRSWOR.

Next, suppose that ES\I,) and E( ) denote (1/N?) ZZ (| — Tym)T(H; — Tym)(mt —
1) under LMS sampling design and SRSWOR, respectively, and {ﬂ'i }f\il denote inclusion
probabilities of LMS sampling design. Then, we have

) = (n-1)/(¥ < / ) —)/(N —1)) and

7 /N = —(N = n)(N(N - 1))"1(X;/X - 1).

(5.9.26)

Further,
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|7ri(1)_n/N|_ N —n &_1 N —n maXlSiSNXi+1
n/N S a(N-1)|X ~n(N—1) \ minj<j<y X; '
Therefore,
max |N7r§1)/n — 1] - 0asv — coa.s. [P] (5.9.27)
1<i<N

by Assumption 5.2.8. Now, it can be shown using the result in (5.9.27) that n(E%) - Z%)) —0
as v — oo a.s. [P]. Therefore, Assumption 5.2.6—(ii) holds under LMS sampling design in view

of (5.9.25).

Next, under any 7PS sampling design, we have

lim n¥y = Ep[{H; + x5 (A\Ep(H; X;) — Bp(H) ) X} x
S (5.9.28)

{H; + x ' ' ABp(H; X;) — Ep(Hy) o) X } { 112/ Xi — A}] aus. [P]

by Assumption 5.2.1 and SLLN. Here, p1,=Ep(X;) and x=p; — M Ep(X;)?/11z). The matrix
on the right hand side of (5.9.28) is p.d. because X; < K a.s. [P] for some 0 < K < oo,
Assumption 5.2.1 holds with 0 < A < Ep(X;)/K, and {(Y;,W;) : 1 <i < N} have absolutely
continuous distribution. Thus Assumption 5.2.6—(ii) holds under any wPS sampling design. This

completes the proof of the lemma. O
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