
INDIAN STATISTICAL INSTITUTE KOLKATA

Design and Analysis of Authenticated Encryption

Modes

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Cryptology Research Group

Applied Statistics Unit

by

Arghya Bhattacharjee

Supervised By

Mridul Nandi

September 11, 2024

Statement

I declare that this thesis titled “Design and Analysis of Authenticated Encryption
Modes” and the work presented in it are my own, and were produced by my own
original research. I confirm that this research was done wholly while in candidature
for a doctoral degree at Indian Statistical Institute; that no part of this thesis has
previously been submitted for a degree or any other qualification at this institute
or any other institution; that wherever I have used or developed on the published
work of others, this is always clearly attributed; that wherever I have quoted from
the work of others, the source is always clearly cited; that with the exception of
such quotations, this thesis is entirely my own work; that I have acknowledged
all main sources of help; and that wherever the thesis is based on work done by
myself jointly with others, I have made clear exactly what was done by others and
what I have contributed myself, and have obtained explicit permission from the
others to use the joint work in this thesis.

September 11, 2024

“Remember this, my friends: there are no such things as bad plants or bad men.
There are only bad cultivators.”

Victor Hugo, Les Misérables

Abstract
This thesis proposes and analyses the security of a few symmetric key modes. The
first three of them are NAEAD modes, named Oribatida, ISAP+ and OCB+.
Oribatida is lightweight, sponge-based, INT-RUP secure and achieves better than
the default PRF security of a keyed sponge. ISAP+ is an instance of a generic
EtHM involving a PRF and a hash, a generalisation of ISAP-type modes. The
generic sponge hash of ISAP is replaced with a feed-forward variant of it in ISAP+,
which results in better security. OCB+ uses OTBC-3 (a nonce-respecting BBB
secure offset-based tweakable block-cipher) in an OCB-like mode to achieve BBB
privacy. We conclude with a BBB secure NE mode named CENCPP*, which is
a public permutation-based variant of the block-cipher-based mode CENC as well
as a variable output length version of SoEM. All the relevant security proofs have
been done using a method named Coefficients H Technique.

List of Publications
This thesis is based on the following publications. They are mentioned here in
their order of appearance in the thesis.

[1] Bhattacharjee, Arghya, López, Cuauhtemoc Mancillas, List, Eik and Nandi,
Mridul. "The Oribatida v1.3 Family of Lightweight Authenticated Encryp-
tion Schemes" Journal of Mathematical Cryptology, vol. 15, no. 1, 2021,
pp. 305-344. https://doi.org/10.1515/jmc-2020-0018

[2] Bhattacharjee, A., Chakraborti, A., Datta, N., Mancillas-López, C., Nandi,
M. (2022). ISAP+: ISAP with Fast Authentication. In: Isobe, T., Sarkar,
S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT 2022.
Lecture Notes in Computer Science, vol 13774. Springer, Cham. https://
doi.org/10.1007/978-3-031-22912-1_9

[3] Bhattacharjee, A., Bhaumik, R., Nandi, M. (2022). Offset-Based BBB-
Secure Tweakable Block-ciphers with Updatable Caches. In: Isobe, T.,
Sarkar, S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT
2022. Lecture Notes in Computer Science, vol 13774. Springer, Cham.
https://doi.org/10.1007/978-3-031-22912-1_8

[4] Bhattacharjee, A., Dutta, A., List, E., Nandi, M. CENCPP*: beyond-
birthday-secure encryption from public permutations. Des. Codes Cryptogr.
90, 1381–1425 (2022). https://doi.org/10.1007/s10623-022-01045-z

Acknowledgment
I begin by taking this opportunity to acknowledge the contribution of my parents
in my life. They are the fundamental reason behind all my achievements, however
humble or grand these might be. I also thank the other members of my loving
family—my younger brother, my maternal uncle, my (late) grandfather, my (late)
grandmother, my (late) maternal grandfather and my maternal grandmother—for
their unconditional support and uncompromising hard work thanks to which my
life so far has been a delightfully happy ride.
Next, I extend my sincere gratitude to my supervisor Mridul Nandi. Since the day
I first met him, he has been relentlessly supportive and encouraging as my true
friend, philosopher and guide; I could not have imagined researching and writing
this thesis without him.
I further thank all my teachers, seniors, peers, and juniors in our institute for
creating a disarmingly friendly and productive atmosphere around me where I
never had to hesitate before approaching anyone at any time, however odd, with
any questions, however silly.
I remain deeply indebted to all the office staff and other workers in our institute,
who work behind the scenes day in and day out, with sincerity and diligence, to
keep the academic machinery running smoothly, so we can go about our research
work in peace. They are surely the heroes we need, even if we do little to deserve
them.
I end with a shout out to my other family members and relatives, my friends and
neighbours, and all the people I know or don’t know, who have, through their kind
words and honest deeds, touched my life and made me the person I am today.

September 11, 2024

Contents

Abstract vii

List of Publications ix

Acknowledgment xi

Table of Contents xiii

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1
1.1 Motivation of the Thesis . 1
1.2 Understanding the Terminologies 3
1.3 A Brief History . 3

1.3.1 Antiquity, Medieval, Pre World War Cryptography 3
1.3.2 World War I Cryptography 5
1.3.3 World War II Cryptography 6
1.3.4 Modern Cryptography . 6

1.4 Symmetric-Key Cryptography . 8
1.5 NIST Lightweight Cryptography Project 9
1.6 Contributions . 10

1.6.1 Oribatida . 10
1.6.2 ISAP+ . 11
1.6.3 OCB+ . 11
1.6.4 CENCPP* . 11

2 Preliminaries 13
2.1 General Notations . 13
2.2 Distinguishing Advantage . 15

2.2.1 PRF Advantage . 16
2.2.2 PRP Advantage . 16

xiii

Table of Contents xiv

2.3 NE and Its Security Notion . 16
2.3.1 NE Security . 17

2.4 NAEAD and Its Security Notion . 17
2.4.1 NAEAD Security . 18
2.4.2 RUP Security . 20

2.5 Coefficients H Technique . 22

3 Oribatida 23
3.1 Introduction . 24

3.1.1 Permutation-based Modes 24
3.1.2 Research Gap . 26
3.1.3 Contributions . 26
3.1.4 Outline . 27

3.2 INT-RUP Attacks on Existing AE Schemes 27
3.2.1 INT-RUP Attack on The Duplex Mode 28
3.2.2 INT-RUP Attack on Beetle 29
3.2.3 INT-RUP Attack on SPoC 29
3.2.4 INT-RUP Attack on A Hybrid of Beetle and SPoC 30
3.2.5 Discussion . 31

3.3 Specification of Oribatida . 32
3.3.1 Initialisation . 32
3.3.2 Processing Associated Data 33
3.3.3 Encryption . 34
3.3.4 Decryption . 35
3.3.5 Domain Separation . 35

3.4 INT-RUP Attacks on Schemes with Masked Ciphertexts 36
3.4.1 The Generic INT-RUP Attack on Oribatida (Masked Duplex) 37
3.4.2 INT-RUP Attack on The Masked Beetle 37
3.4.3 INT-RUP Attack on The Masked SPoC 38

3.5 NAEAD Security Analysis . 39
3.6 INT-RUP Analysis . 48
3.7 Comparison with Lightweight INT-RUP-secure Schemes 57

3.7.1 Brief Description . 58
3.7.2 Efficiency . 58
3.7.3 Security . 59

3.8 Discussion of the Updated Variant Oribatida v1.3 59
3.9 Instantiation of Oribatida . 61

3.9.1 The Ψr Domain Extender 61
3.9.2 Φr: A Variant of Ψr That Includes The Key Schedule 61
3.9.3 Simon . 62
3.9.4 The SimP-n-θ Family of Permutations 62

3.9.4.1 Round Function 63
3.9.4.2 Key-update Function 63
3.9.4.3 State-update Function 64

Table of Contents xv

3.9.4.4 Step Function . 64
3.9.4.5 Round Constants 64
3.9.4.6 Number of Steps θ 65
3.9.4.7 Number of Rounds 65
3.9.4.8 The Byte Order in Oribatida 65

3.10 Security of SimP . 66
3.10.1 Requirements . 67
3.10.2 Existing Cryptanalysis on Simon 67

3.10.2.1 Differential Cryptanalysis 67
3.10.2.2 Linear Cryptanalysis 68
3.10.2.3 Integral, Impossible-differential, and Zero-correlation

Distinguishers . 68
3.10.2.4 Related-key Distinguishers 69
3.10.2.5 Algebraic Cryptanalysis 70
3.10.2.6 Meet-in-the-Middle Attacks 70
3.10.2.7 Correlated Sequences 71

3.10.3 Implications to SimP . 71
3.10.3.1 Related-key Differential Cryptanalysis 71
3.10.3.2 Differential Distinguishers 71
3.10.3.3 Integral and impossible-differential Distinguishers . 72
3.10.3.4 Cube-like Distinguishers 73
3.10.3.5 Number of Steps and Rounds of SimP 73

3.11 FPGA Implementations . 74
3.11.1 SimP . 74
3.11.2 Oribatida . 75

3.12 Conclusion . 75

4 ISAP+ 77
4.1 Introduction . 77

4.1.1 ISAP and Its Variants . 78
4.1.2 Improving the Throughput of ISAP 79
4.1.3 Contributions . 80
4.1.4 Relevance of the Work . 82
4.1.5 Interpretation of Hardware Implementation Result 83

4.2 Preliminaries . 83
4.2.1 Fixed Input - Variable Output PRFs with Prefix Property . 83
4.2.2 Multi-Target 2nd Pre-Image with Associated Data 84

4.3 An EtHM Paradigm for NAEAD 85
4.3.1 Specification . 85
4.3.2 Security of EtHM . 86
4.3.3 Proof of Lemma 4.2 . 88

4.4 Multi-Target 2nd Pre-Image Security of Sponge Based Hashes . . . 92
4.4.1 Sponge Hash and Its 2PI+ Security 92
4.4.2 Feed Forward Based Sponge Hash and Its 2PI+ Security . . 93

Table of Contents xvi

4.5 ISAP+: A Throughput-Efficient Variant of ISAP 96
4.5.1 Specification of ISAP+ . 96
4.5.2 Design Rationale . 98
4.5.3 Recommended Instantiations 99
4.5.4 Security of ISAP+ . 100

4.6 Hardware Implementation Details 101
4.6.1 Round Based Implementation of ASCON-p and KECCAK-p . . . 101
4.6.2 Comparison Between ISAP+ and ISAP Virtex 7 Results . . . 102

4.7 Conclusion . 103

5 OCB+ 105
5.1 Introduction . 105

5.1.1 Contributions . 108
5.2 Preliminaries . 109

5.2.1 TPRP, TPRP* and TSPRP Security Notions 109
5.2.2 Mirror Theory . 109

5.3 Finding a Suitable Tweakable Block-cipher 110
5.3.1 Attempt with Same Offset 110

5.3.1.1 Birthday Attack on OTBC-0. 110
5.3.1.2 Attack on OTBC-0 111

5.3.2 Independent Offsets . 112
5.3.2.1 Security of OTBC-1. 112

Transcript Notation. 113
Sampling in the Ideal World. 113
Advantage of the Adversary. 113

5.3.3 Updatable Offsets . 114
5.3.3.1 The simplest updatable design. 114
5.3.3.2 Instantiating OTBC-g. 115
5.3.3.3 Attack on OTBC-2. 115

Input Collision. 116
Distinguishing Event. 117

5.3.4 Offsets with Updatable Caches 117
5.3.4.1 Updatable Caches, Non-updatable Offsets. 118
5.3.4.2 Instantiating OTBC-gg’. 119

5.3.5 TPRP* Security Analysis of OTBC-3 119
5.3.5.1 Internal Sampling. 123
5.3.5.2 Transcript Graph. 123
5.3.5.3 Dual Graph (for Mirror Theory). 124
5.3.5.4 Bad Events. 124
5.3.5.5 Bounding the Ratio of Good Probabilities. 129

5.3.6 TSPRP Security Analysis of OTBC-3 130
Transcript Notation. 130
Sampling in the Ideal World. 130
Bad Events and Their Probabilities. 130

Table of Contents xvii

Good Interpolation Probabilities and Their Ratio. . . 131
Advantage of the Adversary. 131

5.4 An Application of OTBC-3 . 131
5.4.1 Nonce Handling . 131
5.4.2 Handling Incomplete Blocks 132
5.4.3 Security Claims . 132

5.5 Conclusion . 134

6 CENCPP* 135
6.1 Introduction . 136

6.1.1 Contributions . 137
6.2 Preliminaries . 138
6.3 The CENCPP∗ Mode . 140

6.3.1 SoEM . 141
6.3.2 CENC . 141
6.3.3 CENCPP∗ . 143
6.3.4 Discussion . 143

6.4 Birthday-bound Distinguisher on CENCPP∗ with Weak Key Schedul-
ing . 145
6.4.1 Reduction to SoEM′ . 146
6.4.2 Birthday-bound Attack on SoEM′ 147

6.5 Security Analysis of CENCPP∗ . 149
6.5.1 Recalling the Security of CENC 149
6.5.2 The Security of CENCPP∗ 149
6.5.3 CENCPP: An Instantiation of CENCPP∗ 168

6.6 Domain-separated Variants . 168
6.7 Distinguishers on DS-SoEM and DS-XORPP 169
6.8 Security Analysis of DS-CENCPP and DS-SoEM 172

6.8.1 Security Result of DS-CENCPP 172
6.8.2 Security Result of DS-SoEM 189

6.9 Conclusion . 190

References 191

List of Figures

3.1 Beetle . 28
3.2 SPoC and a hybrid of Beetle and SPoC 30
3.3 Oribatida . 32
3.4 Tag generation of Oribatida . 59
3.5 Security of Oribatida using qc = 250 60
3.6 The construction Ψ4 and high-level view of the construction Φ4 as

a variant of Ψ4 . 62
3.7 One iteration of the round function of SimP 63
3.8 Byte and word orientation of inputs into and outputs from SimP as

used in Oribatida . 66
3.9 Setting of a differential attack with the step-reduced instance of

SimP . 72

4.1 Authenticated encryption module of the EtHM paradigm 85
4.2 The sponge hash . 93
4.3 The feed forward variant of the sponge hash 94
4.4 The graph representation of queries 95
4.5 Re-keying module of ISAP+ . 98
4.6 Encryption module of ISAP+ . 98
4.7 Authentication module of ISAP+ 99

5.1 OTBC-0 . 110
5.2 OTBC-1 . 112
5.3 OTBC-2 . 115
5.4 OTBC-3 . 119
5.5 OCB+ . 132

6.1 SoEM22 . 141
6.2 CENCPP∗ . 142
6.3 Example of using a weak key schedule for XORPP∗ and SoEM′ . . . 145

xix

List of Figures xx

6.4 Security of XORPP∗[w] with varying w and n = 64 150
6.5 DS-SoEM and DS-XORPP . 170

List of Tables

3.1 Existing PRF bounds for keyed sponges 25
3.2 Comparison of the security bounds for INT-RUP attacks on previ-

ous permutation-based AE schemes and our construction 27
3.3 Instantiated domains of Oribatida 35
3.4 Comparison of Oribatida with other INT-RUP-security claiming

submissions to the NIST lightweight cryptography project 58
3.5 Parameters of SimP . 65
3.6 Existing results of best distinguishers and best key-recovery attacks

on Simon-96 in the single-key setting 69
3.7 Probabilities of optimal related-key differential characteristics for

round-reduced variants of Simon-96-96 and Simon-128-128 70
3.8 Implementation results for SimP-256 and Oribatida-256-64 encryp-

tion/decryption and only encryption on Virtex 7 FPGA 74

4.1 Comparative study of ISAP+ and ISAP on the no. of permutation
calls in the authentication module 82

4.2 FPGA results of ISAP+ and ISAP 83
4.3 Parameters of ISAP+ . 100
4.4 FPGA results of ASCON-p and KECCAK-p[400] 102
4.5 FPGA results of ISAP+ versions . 103
4.6 FPGA results of ISAP versions . 103

6.1 Comparison of CENCPP∗ and DS-CENCPP with existing PRFs built
on public permutations . 139

xxi

List of Algorithms

1 Specification of Oribatida . 33
2 Instantiated domains of Oribatida 35
3 Specification of SimP-n-θ . 66
4 Specification of ISAP+ . 97
5 Specification of OTBC-3 . 119
6 Specification of OCB+ . 133
7 Specification of CENCPP∗ . 144
8 Specification of CENCPP . 168
9 Specification of DS-CENCPP, DS-XORPP, and DS-SoEM 169

xxiii

Dedicated to my beloved parents

xxv

Chapter 1

Introduction

In this chapter, we try to put the thesis to context. We start with Section 1.1
which tries to motivate the work of the thesis. After that, Section 1.2 introduces
the basic terminologies. Section 1.3 peeks into the history of the subject. Section
1.4 discusses some basic elements of symmetric-key cryptography. Section 1.5
discusses a little about the recently concluded NIST lightweight cryptography
project. Finally, Section 1.6 gives an outline of the fundamental contribution of
this thesis.

1.1 Motivation of the Thesis

The major underlying theme of this thesis is authenticated encryption (AE). Chap-
ters 3, 4 and 5 propose three new AE modes and analyse their security. In the
following, we discuss why we are interested in authenticated encryption in general.
(Chapter 6 diverts from this theme and proposes an encryption mode.)
When someone wants to send a message to someone else over an insecure channel,
they may want to achieve something more than just confidentiality of the message
because the adversary can try to do something else as well, apart from trying to
extract information from the intercepted message. They can try to tamper with
the message as well. In that case, the sender may rightfully want to let the receiver
know about the authenticity of the message. An “authentic” message is a message
that has not been modified by anyone who doesn’t have the secret key.
An encryption mode only provides data privacy (or confidentiality), whereas a Mes-
sage Authentication Code (MAC) only provides data authenticity (or integrity).
It should be apparent by now that an AE mode is used to provide both securities
to the message.

1

Chapter 1. Introduction 2

A natural question at this point should be why one should use an AE mode in
place of using an encryption mode and a MAC. The reason is that an AE uses a
single key and is more robust than the combination of an encryption mode and a
MAC in the sense that one needs to keep fewer things in mind while performing
authenticated encryption. Usually, the only thing that one should follow is that
it should use a “non-repeating” IV (or in one word, a nonce) for each encryption.
On the other hand, the combination of an encryption mode and a MAC uses two
keys, one for each module, and there are many ways one can get it wrong if one
simply combines an encryption mode and a MAC in any arbitrary way. Here, we’d
like to mention that the first strong interest in designing AE modes was sparked
by the work of Charanjit S. Jutla [1, 2].
Now, as the sender transforms the message or the plaintext to its corresponding
ciphertext using an AE mode, it may want to send some additional information
with the ciphertext. When using an AE mode to secure a network protocol, for
example, this information can include addresses, ports, sequence numbers, protocol
version numbers, and other fields that indicate how the plaintext or the ciphertext
should be handled, forwarded or processed. Though this information does not need
to be kept confidential, in many situations, it is desirable to authenticate it. This
additional information is called associated data, and an AEAD (Authenticated
Encryption with Associated Data) mode is used to provide data confidentiality to
the message and data authenticity to both the message and the associated data.
At this point, it is worth mentioning that the need to handle associated data when
using an AE mode was first pointed out by Burt Kaliski to Phillip Rogaway [3]
over personal communication.
It has been a long time since those early days, and the AEAD schemes are used
in a wide range of applications. Recently, a group of international cryptologic
researchers organised a competition named CAESAR (Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness) to encourage the
design of AEAD schemes [4]. Also, the National Institute of Standards and Tech-
nology (NIST) conducted a project to standardise a lightweight AEAD scheme
[5]. This thesis primarily explores this research area, and in doing so, it proposes
a new AEAD scheme and new variations of a couple of existing AEAD schemes.
We discuss the NIST lightweight cryptography project in more detail in Section
1.5 since two of our contributory chapters are related to that.

Chapter 1. Introduction 3

1.2 Understanding the Terminologies

“Cryptography” (from Ancient Greek: κρυπτός, Romanised: kryptós, English
Meaning: “hidden” or “secret”, and Ancient Greek: γράφειν, Romanised: gráphein,
English Meaning: “to write”) is the study of the techniques by which information
can be concealed that can later be recovered by legitimate users and is either
impossible or computationally infeasible for unauthorised persons to do so. On
the other hand, “Cryptanalysis” (from kryptós, and Ancient Greek: ανάλυση, Ro-
manised: analýein, English Meaning: “to analyse”) is the study of techniques by
which unauthorised persons can recover cryptographically concealed information.
“Cryptology” (from kryptós, and Ancient Greek: λογία, Romanised: logia, English
Meaning: “study”) is often and mistakenly considered a synonym for “Cryptog-
raphy” and occasionally for “Cryptanalysis”, but specialists in the field have for
years adopted the convention that “Cryptology” is the more inclusive term, encom-
passing both “Cryptography” and “Cryptanalysis”. Moreover, RFC 2828 advises
that “Steganography” (from Ancient Greek: στεγανός, Romanised: steganós, En-
glish Meaning: “covered” or “concealed”, and Ancient Greek: γραφή, Romanised:
graphia, English Meaning: “writing”) (the practice of representing information
within another message or physical object, in such a manner that the presence
of the information is not evident to human inspection) is sometimes included in
“Cryptology”. The first use of the term “cryptograph” dates back to the 19th cen-
tury - originating from “The Gold-Bug”, a story by Edgar Allan Poe, published in
1843.

1.3 A Brief History

1.3.1 Antiquity, Medieval, Pre World War Cryptography1

The earliest known use of cryptography is found in non-standard hieroglyphs
carved into the wall of a tomb from the Old Kingdom of Egypt circa 1900 BCE.
Subsequent instances of application of cryptography include some clay tablets from
Mesopotamia, one dated near 1500 BCE, simple monoalphabetic substitution ci-
phers (such as the Atbash cipher) used by the Hebrew scholars beginning perhaps
around 600 to 500 BCE, Mlecchita Vikalpa or “the art of understanding writing
in cypher, and the writing of words in a peculiar way” documented in the Kama
Sutra in India around 400 BCE to 200 CE, parts of the Egyptian demotic Greek

1https://en.wikipedia.org/wiki/History_of_cryptography

https://en.wikipedia.org/wiki/History_of_cryptography

Chapter 1. Introduction 4

Magical Papyri dated from the 100s BCE to the 400s CE, scytale transposition
cipher used by the Spartan military, another Greek method developed by Polybius
(now called the “Polybius Square”) and the Caesar cipher and its variations by the
Romans.
David Kahn notes in The Codebreakers that modern cryptology originated among
the Arabs, the first people to systematically document cryptanalytic methods.
Some of the supporting pieces of evidence are the Book of Cryptographic Mes-
sages written by Al-Khalil (717 – 786 CE), the invention of the frequency analysis
technique for breaking monoalphabetic substitution ciphers and a book on cryptog-
raphy entitled Risalah fi Istikhraj al-Mu’amma (Manuscript for the Deciphering
Cryptographic Messages) by Al-Kindi (801 - 873 CE), an Arab mathematician,
and an important contribution of Ibn Adlan (1187 – 1268 CE) on sample size for
use of frequency analysis. Ahmad al-Qalqashandi (1355 – 1418 CE) wrote the
Subh al-a ’sha, a 14-volume encyclopedia which included a section on cryptology.
This information was attributed to Ibn al-Durayhim (1312 - 1361 CE) who is also
credited with an exposition on and a worked example of cryptanalysis, includ-
ing the use of tables of letter frequencies and sets of letters which cannot occur
together in one word.
In early medieval England between the years 800–1100 CE, substitution ciphers
were frequently used by scribes as a playful and clever way to encipher notes,
solutions to riddles, and colophons. This period saw vital and significant cryp-
tographic experimentation in the West. The earliest example of the homophonic
substitution cipher is the one used by the Duke of Mantua in the early 1400s CE.
The polyalphabetic cipher was most clearly explained by Leon Battista Alberti
around 1467 CE, for which he was called the “father of Western cryptology”. Jo-
hannes Trithemius, in his work Poligraphia, invented the tabula recta, a critical
component of the Vigenère cipher. Trithemius also wrote the Steganographia.
The French cryptographer Blaise de Vigenère devised a practical polyalphabetic
system which bears his name, the Vigenère cipher.
Cryptography, cryptanalysis, and secret-agent/courier betrayal featured in the
Babington plot during the reign of Queen Elizabeth I which led to the execution
of Mary, Queen of Scots. Robert Hooke suggested in the chapter Of Dr. Dee’s
Book of Spirits, that John Dee made use of Trithemian steganography, to conceal
his communication with Queen Elizabeth I. The chief cryptographer of King Louis
XIV of France was Antoine Rossignol; he and his family created what is known
as the Great Cipher because it remained unsolved from its initial use until 1890

Chapter 1. Introduction 5

CE, when French military cryptanalyst, Étienne Bazeries solved it. An encrypted
message from the time of the Man in the Iron Mask (decrypted just prior to 1900
CE by Étienne Bazeries) has shed some, regrettably non-definitive, light on the
identity of that real, if legendary and unfortunate, prisoner.
An example of something more than ad hoc approaches to cryptanalysis is Charles
Babbage’s Crimean War era work on mathematical cryptanalysis of polyalphabetic
ciphers, redeveloped and published somewhat later by the Prussian Friedrich Ka-
siski. Understanding of cryptography at this time typically consisted of hard-won
rules of thumb; see, for example, Auguste Kerckhoffs’ cryptographic writings in
the latter 19th century. Edgar Allan Poe used systematic methods to solve ciphers
in the 1840s. In particular, he placed a notice of his abilities in the Philadelphia
paper Alexander’s Weekly (Express) Messenger, inviting submissions of ciphers,
most of which he proceeded to solve. His success created a public stir for some
months. He later wrote an essay on methods of cryptography, which proved useful
as an introduction for novice British cryptanalysts attempting to break German
codes and ciphers during World War I, and a famous story, The Gold-Bug, in
which cryptanalysis was a prominent element.
Cryptography and its misuse were involved in the execution of Mata Hari and
in Dreyfus’ conviction and imprisonment, both in the early 20th century. Cryp-
tographers were also involved in exposing the machinations which had led to the
Dreyfus affair; Mata Hari, in contrast, was shot.

1.3.2 World War I Cryptography2

In World War I the Admiralty’s Room 40 broke German naval codes and played an
important role in several naval engagements during the war, notably in detecting
major German sorties into the North Sea that led to the battles of Dogger Bank
and Jutland as the British fleet was sent out to intercept them. However, its most
important contribution was probably in decrypting the Zimmermann Telegram,
a cable from the German Foreign Office sent via Washington to its ambassador
Heinrich von Eckardt in Mexico which played a major part in bringing the United
States into the war.
In 1917, Gilbert Vernam proposed a teleprinter cipher in which a previously pre-
pared key, kept on paper tape, is combined character by character with the plain-
text message to produce the cyphertext. This led to the development of elec-
tromechanical devices as cipher machines, and to the only unbreakable cipher, the

2https://en.wikipedia.org/wiki/World_War_I_cryptography

https://en.wikipedia.org/wiki/World_War_I_cryptography

Chapter 1. Introduction 6

one-time pad.
During the 1920s, Polish naval officers assisted the Japanese military with code
and cipher development.
Mathematical methods proliferated in the period prior to World War II (notably
in William F. Friedman’s application of statistical techniques to cryptanalysis and
cipher development and in Marian Rejewski’s initial break into the German Army’s
version of the Enigma system in 1932).

1.3.3 World War II Cryptography3

Cryptography was used extensively during World War II because of the importance
of radio communication and the ease of radio interception. The nations involved
fielded a plethora of code and cipher systems, many of the latter using rotor
machines. As a result, the theoretical and practical aspects of cryptanalysis, or
codebreaking, were much advanced.
Possibly the most important codebreaking event of the war was the successful
decryption by the Allies of the German “Enigma” Cipher. The first break into
Enigma was accomplished by the Polish Cipher Bureau around 1932; the tech-
niques and insights used were passed to the French and British Allies just before
the outbreak of the war in 1939. They were substantially improved by British
efforts at Bletchley Park during the war. The decryption of the Enigma Cipher
allowed the Allies to read important parts of German radio traffic on important
networks and was an invaluable source of military intelligence throughout the war.
Intelligence from this source and other high-level sources, such as Cryptanalysis
of the Lorenz cipher, was eventually called Ultra.
A similar break into the most secure Japanese diplomatic cipher, designated Purple
by the US Army Signals Intelligence Service, started before the US entered the
war. The product from this source was called Magic.
On the other side, German code breaking in World War II achieved some notable
successes cracking British naval and other ciphers.

1.3.4 Modern Cryptography4

Encryption in modern times is achieved by using algorithms that have a key to
encrypt and decrypt information. There are two main types of cryptosystems:

3https://en.wikipedia.org/wiki/World_War_II_cryptography
4https://en.wikipedia.org/wiki/Cryptography

https://en.wikipedia.org/wiki/World_War_II_cryptography
https://en.wikipedia.org/wiki/Cryptography

Chapter 1. Introduction 7

symmetric and asymmetric. In symmetric systems, the only ones known until the
1970s, the same secret key encrypts and decrypts a message. Data manipulation
in symmetric systems is significantly faster than in asymmetric systems. Asym-
metric systems use a “public key” to encrypt a message and a related “private key”
to decrypt it. The advantage of asymmetric systems is that the public key can be
freely published, allowing parties to establish secure communication without hav-
ing a shared secret key. In practice, asymmetric systems are used to first exchange
a secret key, and then secure communication proceeds via a more efficient symmet-
ric system using that key. Examples of asymmetric systems include Diffie–Hellman
key exchange, RSA (Rivest–Shamir–Adleman), ECC (Elliptic Curve Cryptogra-
phy), and Post-quantum cryptography. Secure symmetric algorithms include the
commonly used AES (Advanced Encryption Standard) which replaced the older
DES (Data Encryption Standard).
Poor designs and implementations are sometimes adopted, and there have been
important cryptanalytic breaks of deployed cryptosystems in recent years. Notable
examples of broken crypto designs include the first Wi-Fi encryption scheme WEP,
the Content Scrambling System used for encrypting and controlling DVD use, the
A5/1 and A5/2 ciphers used in GSM cell phones, and the CRYPTO1 cipher used
in the widely deployed MIFARE Classic smart cards from NXP Semiconductors, a
spun-off division of Philips Electronics. All of these are symmetric ciphers. Thus
far, not one of the mathematical ideas underlying public key cryptography has been
proven to be “unbreakable”, and so some future mathematical analysis advances
might render systems relying on them insecure. While few informed observers
foresee such a breakthrough, the key size recommended for security as best practice
keeps increasing as increased computing power required for breaking codes becomes
cheaper and more available. Quantum computers, if ever constructed with enough
capacity, could break existing public key algorithms and efforts are underway
to develop and standardise post-quantum cryptography. Even without breaking
encryption in the traditional sense, side-channel attacks can be mounted that
exploit information gained from the way a computer system is implemented, such
as cache memory usage, timing information, power consumption, electromagnetic
leaks or even sounds emitted. Newer cryptographic algorithms are being developed
that make such attacks more difficult.

Chapter 1. Introduction 8

1.4 Symmetric-Key Cryptography

As the works in the thesis are restricted to the symmetric-key cryptography setup,
we’d like to discuss some basic elements of the same before going into the original
contribution of the thesis. In symmetric-key cryptography, the same cryptographic
keys are used for both the encryption of plaintext and the decryption of ciphertext.
Symmetric-key encryption uses either block-ciphers or stream-ciphers as primitives
and builds different cryptographic modes on top of those primitives to achieve
different security goals.

• Block-ciphers take a number of bits and encrypt them in a single unit,
padding the plaintext to achieve a multiple of the block size. A block-cipher
consists of two algorithms, one for encryption, and the other for decryption,
which must be the inverse of the encryption algorithm. Each algorithm
accepts two inputs: an input block and a key, and yields an output block
of length equal to that of the input block. For each key, the block-cipher is
a permutation (a bijective mapping) over the set of input blocks. Each key
selects one permutation from the set of (2n)! possible permutations where n is
the block size in bits. The AES (Advanced Encryption Standard) algorithm,
approved by NIST in December 2001, uses 128-bit blocks.

A more generalised version of block-ciphers is called tweakable block-

ciphers. A tweakable block-cipher accepts a third input called the tweak
along with the key and the input block. The tweak, along with the key,
selects the permutation computed by the tweakable block-cipher. At times,
changing the tweak is sufficiently lightweight compared to a usually fairly
expensive key setup operation.

• Stream-ciphers encrypt the digits (typically bytes), or letters (in substi-
tution ciphers) of a message one at a time. An example is ChaCha20. Note
that none of the symmetric key modes proposed and analysed in the thesis
uses a stream-cipher as the underlying primitive.

Some of the basic security goals of some common cryptographic modes are as
follows. Note that there are other security goals as well, but we haven’t dealt with
them in the thesis.

• An encryption mode ensures privacy, i.e., it’s tough to distinguish the ci-
phertext corresponding to the plaintext from a random bit string of equal
length.

Chapter 1. Introduction 9

• An authentication mode ensures authenticity, i.e., it’s easy to detect any
attempt to change the ciphertext by an adversary at the receiver end. MACs
are used to achieve this goal.

• An authenticated encryption mode ensures both privacy and authenticity.

• A cryptographic hash function ensures the following three security goals.

− Collision resistance, i.e., it’s tough to find two inputs with equal hash
value.

− Pre-image Resistance, i.e., given a hash value, it’s tough to find an
input with that hash value.

− Second Pre-image Resistance, i.e., given an input, it’s tough to find
another input with a hash value equal to that of the given input.

1.5 NIST Lightweight Cryptography Project

As it’s relevant to one of our proposed authenticated encryption modes, we’d like
to talk a little about the NIST lightweight cryptography project. In August 2018,
NIST published a call for algorithms (test vector generation code) to be consid-
ered for lightweight cryptographic standards with AEAD and optional hashing
functionalities. The AEAD requirements were as follows.

• The submitters are allowed to submit a family of AEAD algorithms, where
members of the family may vary in external parameters (e.g., key length,
nonce length), or in internal parameters (e.g., number of rounds, or state
size).

• The family shall include at most 10 members.

• An AEAD algorithm shall not specify key lengths that are smaller than 128
bits.

• Cryptanalytic attacks on an AEAD algorithm shall require at least 2112 com-
putations on a classical computer in a single-key setting.

• The family shall include one primary member with the following properties.

− It will have a key length of at least 128 bits.

− It will have a nonce length of at least 96 bits.

Chapter 1. Introduction 10

− It will have a tag length of at least 64 bits.

− The limits on the input sizes (plaintext, associated data, and the amount
of data that can be processed under one key) for this member shall not
be smaller than 250 − 1 bytes.

If the family supports a key size larger than 128 bits, it is recommended that
at least one member has the following properties.

− It will have a key size of 256 bits.

− Cryptanalytic attacks on this member shall require at least 2224 com-
putations on a classical computer in a single-key setting.

NIST received 57 submissions to be considered for standardisation. After the
initial review of the submissions, 56 were selected as Round 1 candidates. Of the
56 Round 1 candidates, 32 were selected to advance to Round 2. On February
7, 2023, NIST announced the selection of the Ascon family [6] for lightweight
cryptography standardisation.

1.6 Contributions

In the following, we briefly give an overview of the contributory chapters of this
thesis. Note that we might have used terms which might need further explanation.
Please refer to Chapter 2 and/or the chapter corresponding to the particular work
for every such explanation.

1.6.1 Oribatida

The third chapter contains the first contribution of this thesis, which is a sponge-
based NAEAD (Nonce-based Authenticated Encryption with Associated Data)
mode named Oribatida. Oribatida is lightweight as well as both NAEAD and INT-
RUP secure. The security bounds are shown to be tight. The NAEAD security of
Oribatida is better than the traditional security of sponge-based NAEAD modes,
which allows it to be instantiated with lighter permutations. The INT-RUP se-
curity of Oribatida depends only on the number of online or construction queries
which eliminates the dependency on the number of offline or primitive queries.
This is desirable in real life as the number of offline queries is usually much greater
than the number of online queries. In this chapter, we instantiate Oribatida with
a new lightweight permutation named SimP. Oribatida was selected as a round 2

Chapter 1. Introduction 11

candidate of the NIST lightweight cryptography project. This chapter is based on
the publication [7].

1.6.2 ISAP+

The next chapter contains the second contribution of this thesis, which is another
sponge-based NAEAD mode named ISAP+. Initially, we propose a permutation-
based generic EtHM (Encrypt then Hash based MAC) type NAEAD mode using
a PRF (Pseudo Random Function) (say F) and a hash function (say H) which
is essentially a generalisation of ISAP [8, 9] type constructions. ISAP was one
of the finalists of the NIST lightweight cryptography project. We show that the
NAEAD security of EtHM can be expressed in terms of the PRF security of F
and the 2PI+ security of H. The 2PI+ security is a new security notion defined in
the chapter. Then, we show that the generic sponge hash (used in ISAP) can be
replaced by a feed-forward variant of it (used in ISAP+) with better 2PI+ security.
This results in an improved throughput at the ciphertext absorption phase of the
hash. An older version of ISAP+ (named FEASP) has been selected as the second
runner-up of the Light-Weight Cipher Design Challenge 2020, organised by the
National Centre of Excellence (CoE) in collaboration with R. C. Bose Centre for
Cryptology and Security - ISI Kolkata. This chapter is based on the publication
[10], and the full version is available at [11].

1.6.3 OCB+

The next chapter contains the third contribution of this thesis, which is another
NAEAD mode named OCB+. We observe that a nonce-respecting tweakable
block-cipher is the building block for OCB [12], which is an NAEAD mode with
birthday-bound privacy security and beyond-birthday-bound (BBB) authenticity
security [13]. We propose a nonce-respecting BBB-secure tweakable block-cipher
named OTBC-3 and use it in an OCB like mode named OCB+. We show that
OCB+ has both BBB privacy security and BBB authenticity security. This chap-
ter is based on the publication [14], and the full version is available at [15].

1.6.4 CENCPP*

The next chapter contains the fourth contribution of this thesis, which is a BBB-
secure NE (Nonce based Encryption) mode named CENCPP*, which is a public
permutation based variant of the block-cipher based mode CENC [16] as well as a

Chapter 1. Introduction 12

variable output length version of Sum-of-Even-Mansour (SoEM) [17]. CENCPP*[w]

uses two independent secret keys with a general key-scheduling matrix and (w+1)

independent permutations. We instantiate the key-scheduling matrix in a partic-
ular way and call that instance CENCPP[w]. We also propose a domain-separated
single permutation variant of CENCPP[w] and call that variant DS-CENCPP[w].
This chapter is based on the publication [18], and the full version is available at
[19].

Chapter 2

Preliminaries

In this chapter, we try to build the foundation for the rest of the thesis by setting
up the notions and notations that we’ll use from time to time in the following
chapters. Section 2.1 introduces the general notations. The rest of the sections
in this chapter are dedicated to the notions relevant to this thesis. Sections 2.2,
2.3, and 2.4 discuss the distinguishing advantage of an adversary and the security
notions of NE and NAEAD, respectively. Finally, Section 2.5 mentions the famous
Coefficients H Technique that’ll be used multiple times in the rest of the thesis.

2.1 General Notations

We usually use lowercase letters (e.g., x, y) for integers and indices, uppercase
letters (e.g., X, Y) for binary strings and functions, and calligraphic uppercase
letters (e.g., X , Y) for sets and spaces. We use N and Z to denote the set of
natural numbers and the set of integers respectively. We use 0x and 1y to denote
the sequence of x 0’s and y 1’s respectively. We use {0, 1}x, {0, 1}≥x and {0, 1}∗ to
denote the set of binary strings of length x, the set of binary strings of length at
least x and the set of all binary strings respectively. We use F2 to denote the field
of characteristic 2 and Fn

2 = {0, 1}n to denote the set of n-element vectors over F2.
For any X ∈ {0, 1}∗, we use |X|, ∥X∥ and Xi to denote the number of bits, the
number of blocks and the i-th block of the binary string X respectively, where the
definition of one “block” is always clear from the context. For two binary strings X
and Y , we use X∥Y to denote the concatenation of X and Y . For any X ∈ {0, 1}∗,
we define the parsing of X into r-bit blocks as X1 · · ·Xx ←r X, where |Xi|= r

for all i < x and 1 ≤ |Xx|≤ r such that X = X1∥· · · ∥Xx. For any X ∈ {0, 1}∗,
X1 · · ·Xx ↞r X does the work ofX1 · · ·Xx ←r X, and follows it by the compulsory

13

Chapter 2. Preliminaries 14

10∗ padding. Given any sequence X = X1 · · ·Xx and 1 ≤ a ≤ b ≤ x, we denote the
subsequence Xa · · ·Xb by X[a · · · b]. For any X ∈ {0, 1}n, we use X[i] to denote
the i-th bit of X, and we define the bit order by X = X[n−1]∥· · · ∥X[1]∥X[0]. For
anyX ∈ {0, 1}x, we write (X1, X2, · · · , Xm)

x1,x2,···,xm←−−−−−− X for the splitting ofX into
X1 = X[x−1 · · ·x−x1], X2 = X[x−x1−1 · · ·x−x1−x2], · · · , Xm = X[xm−1 · · · 0],
where x = x1 + x2 + · · · + xm holds. For integers a ≤ b, we write [a · · · b] for the
set {a, · · · , b}, and for integer a ≥ 1, we write [a] for the set {1, · · · , a}. We use
the notations ⌈x⌉ and ⌊x⌋ to denote the decimal ceiling and floor function on the
integer x respectively, and similarly, ⌈X⌉r and ⌊X⌋r, to denote the most significant
r bits and the least significant r bits of the binary string X respectively. We often
denote 2n by N . We write ∅ for the empty set, ε for the empty string and ⊥ for
the invalid symbol. For an event E, we denote its complementary event by E and
the probability of E by Pr[E]. For a given set X and non-negative integer x, we
write X≤x for the union set ∪xi=0X i. For a non-negative x < 2n, we write ⟨x⟩n
for its conversion to an n-bit binary string with the most significant bit at the
left-most position, e.g., ⟨135⟩8 = 10000111. We may omit n if it’s clear from the
context. For a finite set S, we use |S| to denote its size. Thus,

|{0, 1}m|= 2m.

For a finite set S and a random variable X, we say X is uniformly sampled from
S, denoted by X $← S, if for each x ∈ S,

Pr[X = x] =
1

|S| .

Thus, when a binary string of length m is uniformly sampled, every string is
picked with a probability 1/2m. A random function f : S → {0, 1}m samples f(x)
uniformly from {0, 1}m for each x ∈ S. A function f : S1 → S2 is called injective
if for any distinct x1, x2 ∈ S1, f(x1) ̸= f(x2). An injective function from S to
S is called a permutation over S. We use Func(X ,Y) for the set of all functions
F : X → Y and Perm(X) for the set of all permutations P : X → X . We use
X ← x to denote the assignment of the value x to the variable X. Matrices
are denoted with boldface letters, and for a matrix H, we use |H| to denote its
determinant. We use the Pochhammer falling factorial power notation

(a)b := a(a− 1) · · · (a− b+ 1).

Chapter 2. Preliminaries 15

For ease of notation, we write + to denote field addition (bitwise XOR) when used
between two or more field elements. Field multiplication in GF(2n) is denoted
with a bold dot (•). Given a vector space V ⊆ F, and an element α ∈ K, we define
the space α •V def

= {α •V : V ∈ V}. We write αV or α •V when the operation is clear
from the context. Given two spaces V ,W ⊆ F, we define V +W def

= {V ∈ V ,W ∈
W : V +W}, where addition is in F. In particular, given two binary strings X
and Y , we denote their bitwise XOR by X ⊕ Y when |X|= |Y |. For two positive
integers x and y with x > y and two bit strings X ∈ Fx

2 and Y ∈ Fy
2, we define

X ⊕y Y
def
= X ⊕ (0x−y∥Y).

2.2 Distinguishing Advantage

For two oracles O0 and O1, an algorithm A which tries to distinguish between O0

and O1 is called a distinguishing adversary. A plays an interactive game with Ob

where b is unknown to A, and then outputs a guess for b; A wins when the guessed
bit matches b. The distinguishing advantage of A is defined as

AdvO1,O0(A) def
=
∣∣∣Pr
O0

[A ⇒ 1]− Pr
O1

[A ⇒ 1]
∣∣∣,

where the subscript of Pr denotes the oracle with which A is playing. All probabil-
ities are defined over the random coins of the oracles and those of A, if applicable.
Here, we consider information-theoretic adversary A whose resources are bounded
only in terms of its maximum numbers of queries and blocks that it can ask to its
available oracles. One can derive its computation-theoretic counterpart straight-
forwardly.
O0 conventionally represents an ideal primitive, while O1 represents either an
actual construction or a mode of operation built using some other ideal primitives.
We use the standard terms real oracle and ideal oracle for O1 and O0 respectively.
The world in which A interacts with the real (or ideal) oracle is called the real
(or ideal respectively) world. Typically, the goal of the function F represented
by O1 is to emulate the ideal primitive F ∗ represented by O0. A security game
is a distinguishing game with an optional set of additional restrictions, chosen
to reflect the desired security goal. When we talk of distinguishing advantage
between F and F ∗ with a specific security game G in mind, we include G in
the subscript, e.g., AdvF,F ∗

G (A). (We note that this notation is general enough to
capture games where each oracle implements multiple functions, e.g., F can handle
both encryption and decryption queries by accepting an extra bit to indicate the

Chapter 2. Preliminaries 16

direction of queries.) Also, we sometimes drop one or more of F, F ∗,G and A from
the notation of the distinguishing advantage when they are clear from the context.

2.2.1 PRF Advantage

Given two non-empty sets or spaces X ,Y , let F : X → Y be a function, and
ρ

$← Func(X ,Y). Then, the PRF advantage of A is defined as

AdvF
PRF(A)

def
= AdvF,ρ(A) .

We call A a PRF adversary.

2.2.2 PRP Advantage

Given a non-empty set or space X , let F : X → X be a function, and P
$←

Perm(X). Then, the PRP advantage of A is defined as

AdvF
PRP(A)

def
= AdvF,P (A) .

We call A a PRP adversary.
We can also parameterise A in terms of the resources it can use. We write
AdvEX(qc, σ,m) to denote the maximum distinguishing advantage of an X ad-
versary for E , where X ∈ {PRF,PRP}, that asks ≤ qc encryption queries of ≤ σ

blocks in total to its oracle such that the maximum number of message blocks
in a query is at most m. Note that the definition of one “block” is always clear
from the context. In the ideal permutation model, we write AdvEX(qp, qc, σ,m)

to denote the maximum distinguishing advantage of an X adversary for E , where
X ∈ {PRF,PRP}, that asks ≤ qp queries to the underlying permutation, ≤ qc

encryption queries of ≤ σ blocks in total to its oracle such that the maximum
number of message blocks in a query is at most m. Since we consider information-
theoretic adversary, we will not consider their time parameter t in defining their
advantage. However, based on contexts, we may omit some resources in defining
the adversarial advantage.

2.3 NE and Its Security Notion

A Nonce-based Encryption (NE) is interpreted as a combination of a key-space K,
a nonce-space N and a message spaceM along with two functions Enc : K×N ×

Chapter 2. Preliminaries 17

M→M (called the Encryption Function) and Dec : K×N×M→M (called the
Decryption Function) with the correctness condition that for any K ∈ K, N ∈ N
and M ∈M, it holds that if

Dec(K,N,Enc(K,N,M)) =M .

2.3.1 NE Security

The NE security game is played between the real oracle Enc described above and an
ideal oracle Enc∗ where Enc∗ : K×N ×M→M is an ideal random function. The
adversary A can make encryption queries to the oracle. In addition, we assume
the following restrictions:

• A should be nonce-respecting, i.e., should not repeat a nonce in more than
one query; and

• A should not make pointless queries, i.e., should not repeat the same query
multiple times.

The distinguishing advantage ofA for an NE scheme E will be denoted by AdvENE(A).
The following security notion is captured in this advantage.

• Privacy, i.e., A should not be able to distinguish the real oracle from the
ideal oracle.

In the ideal permutation model, A has one additional oracle P± that provides
access to the permutation P in forward and backward directions. We write
E [P],Enc[P] and Dec[P] to indicate that P is the underlying permutation of E ,Enc

and Dec respectively.

2.4 NAEAD and Its Security Notion

A Nonce-based Authenticated Encryption with Associated Data (NAEAD) is in-
terpreted as a combination of a key-space K, a nonce-space N , an associated-
data-space AD, a message space M and a tag space T along with three func-
tions Enc : K × N × AD × M → M × T (called the Encryption Function),
Dec : K × N × AD × M → M (called the Decryption Function) and Ver :

K×N ×AD×M×T → {⊤,⊥} (called the Verification Function) with the cor-
rectness condition that for any K ∈ K, N ∈ N , A ∈ AD,M,C ∈ M and T ∈ T ,
it holds that if

Chapter 2. Preliminaries 18

Enc(K,N,A,M) = (C, T) ,

then

Dec(K,N,A,C) =M ,

and

Ver(K,N,A,C, T) = ⊤ .

Note that the actual implementation of a particular NAEAD scheme may differ
from the above-mentioned definition. For example, the last two functions can
be merged into one single function which outputs M if the output of the third
function is ⊤, and ⊥ otherwise.

2.4.1 NAEAD Security

The PRIV (Privacy) security game is played between the real oracle Enc described
above and an ideal oracle Enc∗ where Enc∗ : K × N × AD ×M → M × T is
an ideal random function. The adversary A can make encryption queries to the
oracle. In addition, we assume the following restrictions:

• A should be nonce-respecting, i.e., should not repeat a nonce in more than
one query; and

• A should not make pointless queries, i.e., should not repeat the same query
multiple times.

The distinguishing advantage of A for an NAEAD scheme E will be denoted by
AdvEPRIV(A). The following security notion is captured in this advantage.

• Privacy, i.e., A should not be able to distinguish the real oracle from the
ideal oracle.

The AUTH (Authenticity) security game is played between the real oracle (Enc,Ver)

described above and an ideal oracle (Enc∗,Ver∗) where Enc∗ : K×N ×AD×M→
M×T is an ideal random function and Ver∗ : K×N ×AD×M×T → {⊥} is a
constant function. The adversary A can make encryption and verification queries
to the oracle. In addition, we assume the following restrictions:

Chapter 2. Preliminaries 19

1. A should be nonce-respecting, i.e., should not repeat a nonce in more than
one encryption query; and

2. A should not make pointless queries, i.e., should not make the verification
query (K,N,A,C, T) if it has already made an encryption query (K,N,A,M)

and received (C, T) in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted by
AdvEAUTH(A). The following security notion is captured in this advantage.

• Authenticity, i.e., A should not be able to forge the real oracle. In other
words, A should not be able to make a verification query to Ver/Ver∗ to
which the response isn’t ⊥.

The NAEAD security game is a combination of the PRIV and the AUTH security
games which is played between the real oracle (Enc,Ver) described above and an
ideal oracle (Enc∗,Ver∗) where Enc∗ : K × N × AD ×M → M× T is an ideal
random function and Ver∗ : K×N ×AD×M×T → {⊥} is a constant function.
The adversary A can make encryption and verification queries to the oracle. In
addition, we assume the following restrictions:

1. A should be nonce-respecting, i.e., should not repeat a nonce in more than
one encryption query; and

2. A should not make pointless queries, i.e., should not repeat the same en-
cryption query multiple times or should not make the verification query
(K,N,A,C, T) if it has already made an encryption query (K,N,A,M) and
received (C, T) in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted by
AdvENAEAD(A). The following two security notions are captured in this advantage.

1. Privacy, i.e., A should not be able to distinguish the real oracle from the
ideal oracle.

2. Authenticity, i.e., A should not be able to forge the real oracle. In other
words, A should not be able to make a verification query to Ver/Ver∗ to
which the response isn’t ⊥.

Chapter 2. Preliminaries 20

2.4.2 RUP Security

The PRIV-PA1/PA2 (Privacy) security game is played between the real oracle
(Enc,Dec) described above and an ideal oracle (Enc∗,Dec∗) where Enc∗ : K×N ×
AD×M→M×T is an ideal random function and Dec∗ is a simulator or extractor
that mimics the outputs of Dec. There are two types of PRIV security games. In
the PA1 (Plaintext Awareness 1) security game, the simulator has insight into the
queries that the adversary A makes to Enc∗. In the PA2 (Plaintext Awareness 2)
security game, the simulator does not have insight into the queries that A makes
to Enc∗. A can make encryption and decryption queries to the oracle. In addition,
we assume the following restrictions:

1. A should be nonce-respecting, i.e., should not repeat a nonce in more than
one encryption query; and

2. A should not make pointless queries, i.e., should not repeat the same query
multiple times, should not make the decryption query (K,N,A,C) if it has
already made an encryption query (K,N,A,M) and received (C, T) in re-
sponse or should not make the encryption query (K,N,A,M) if it has already
made a decryption query (K,N,A,C) and received M in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted by
AdvEPRIV-PA1/PA2(A). The following security notion is captured in this advantage.

• Privacy, i.e., A should not be able to distinguish the real oracle from the
ideal oracle.

The AUTH-PA1/PA2 (Authenticity) security game is played between the real
oracle (Enc, Dec,Ver) described above and an ideal oracle (Enc∗,Dec∗,Ver∗) where
Enc∗ : K×N×AD×M→M×T is an ideal random function, Dec∗ is a simulator
or extractor that mimics the outputs of Dec and Ver∗ : K×N×AD×M×T → {⊥}
is a constant function. The adversary A can make encryption, decryption and
verification queries to the oracle. In addition, we assume the following restrictions:

1. A should be nonce-respecting, i.e., should not repeat a nonce in more than
one encryption query; and

2. A should not make pointless queries, i.e., should not repeat the same query
multiple times, should not make the decryption query (K,N,A,C) if it has

Chapter 2. Preliminaries 21

already made an encryption query (K,N,A,M) and received (C, T) in re-
sponse or should not make the encryption query (K,N,A,M) if it has already
made a decryption query (K,N,A,C) and received M in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted by
AdvEAUTH-PA1/PA2(A). The following security notion is captured in this advantage.

• Authenticity, i.e., A should not be able to forge the real oracle. In other
words, A should not be able to make a verification query to Ver/Ver∗ to
which the response isn’t ⊥.

The INT-RUP-PA1/PA2 (Integrity under Release of Unverified Plaintext - PA1
/ PA2) security game is a combination of the PRIV-PA1/PA2 and the AUTH-
PA1/PA2 security games which is played between the real oracle (Enc,Dec,Ver)

described above and an ideal oracle (Enc∗,Dec∗,Ver∗) where Enc∗ : K × N ×
AD×M→M×T is an ideal random function, Dec∗ is a simulator or extractor
that mimics the outputs of Dec and Ver∗ : K × N × AD × M × T → {⊥}
is a constant function. The adversary A can make encryption, decryption and
verification queries to the oracle. In addition, we assume the following restrictions:

1. A should be nonce-respecting, i.e., should not repeat a nonce in more than
one encryption query; and

2. A should not make pointless queries, i.e., should not repeat the same query
multiple times, should not make the decryption query (K,N,A,C) if it has
already made an encryption query (K,N,A,M) and received (C, T) in re-
sponse or should not make the encryption query (K,N,A,M) if it has already
made a decryption query (K,N,A,C) and received M in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted by
AdvEINT-RUP-PA1/PA2(A). The following two security notions are captured in this
advantage.

1. Privacy, i.e., A should not be able to distinguish the real oracle from the
ideal oracle.

2. Authenticity, i.e., A should not be able to forge the real oracle. In other
words, A should not be able to make a verification query to Ver/Ver∗ to
which the response isn’t ⊥.

The INT-RUP security notion was introduced in [20].

Chapter 2. Preliminaries 22

2.5 Coefficients H Technique

The Coefficients H Technique is a proof method by Patarin [21] that was mod-
ernised by Chen and Steinberger [22, 23]. A distinguisher A interacts with and
obtains outputs from a real oracle O1 or an ideal oracle O0. (The oracle could
be a sequence of multiple oracles.) The results of its interaction are collected in
a transcript τ . The oracle can sample random coins before the experiment (often
a key or an ideal primitive that is sampled beforehand) and is then deterministic.
A transcript τ is attainable if A can observe τ with non-zero probability in the
ideal world.
The Fundamental Theorem of the Coefficients H Technique, whose proof can be
found, e.g., in [21–23], states the following:

Theorem 2.1 ([21]). Assume, there exist ϵ1, ϵ2 ≥ 0 such that

Pr
O0

[bad] ≤ ϵ1,

and for any attainable transcript τ obtained without encountering bad,

PrO1 [τ]

PrO0 [τ]
≥ 1− ϵ2.

Then, for all adversaries A, it holds that AdvO0,O1(A) ≤ ϵ1 + ϵ2.

The technique has been generalised by Hoang and Tessaro [24] in their expectation
method, which allowed them to derive the Fundamental Theorem as a corollary.
Since we only consider bad events in the ideal world, we will write PrO0 [bad] simply
as Pr[bad] when there is no scope for confusion; the same notation is used when
the event bad is broken down into further sub-events.

Chapter 3

Oribatida

Permutation-based modes have been established for lightweight authenticated en-
cryption, apparent from the high interest in them in the NIST lightweight cryp-
tography project. In permutation-based modes, there are two parameters, r and
c, with r + c being (almost) the same as the size of the permutation. The first
parameter r (a public parameter called “rate”) usually determines the speed of the
mode, and the second parameter c (a secret parameter called “capacity”) usually
determines the security of the same. As the sum of these two parameters is fixed
once the designer fixes the underlying permutation, there is always this trade-off
between speed and security for such modes. However, the security is usually upper
bounded by O(σ2/2c) bits, where σ is the number of calls. The development of
more schemes that provide higher security bounds led to the CHES’18 proposal
Beetle that raised this bound to O(rσ/2c).
While authenticated encryption can be performed in an online manner, authen-
ticated decryption assumes that the resulting plaintext is buffered and never re-
leased if the corresponding tag is incorrect. Since lightweight devices may lack the
resources for buffering, additional robustness guarantees, such as integrity under
release of unverified plaintexts (INT-RUP), are desirable. In this stronger setting,
the security of the established schemes, including Beetle, is limited by O(qpqd/2c),
where qd is the maximum number of decryption queries, and qp that of offline or
primitive queries, which motivates novel approaches.
This chapter proposes Oribatida, a permutation-based AE scheme that derives s-bit
masks from previous permutation outputs to mask ciphertext blocks. Oribatida can
provide a security bound of O(rσ2/2c+s), which allows smaller permutations for
the same level of security. It provides a security level dominated by O(σ2

d/2
c) un-

der INT-RUP adversaries, which eliminates the dependency on primitive queries.

23

Chapter 3. Oribatida 24

We prove its security under nonce-respecting and INT-RUP adversaries. We show
that our INT-RUP bound is tight and show general attacks on previous construc-
tions.

3.1 Introduction

3.1.1 Permutation-based Modes

Permutation-based modes have been established for various applications of sym-
metric key cryptography during the previous decade. Keyless modes have been
standardised as the hash function SHA-3 and its derivative SHAKE for the ex-
tendable output functions [25]. Keyed modes are used for authentication [26] or
encryption [27]. Moreover, permutation-based schemes have found widespread
adoption for authenticated encryption, as the CAESAR co-selection Ascon [28],
or many more candidates have shown, e.g., PRIMATES [29], NORX [30], Ketje
[31], or Keyak [32].
The sponge [33] and duplex [34] modes transform an internal n-bit state itera-
tively with a public permutation. Both modes absorb an input stream block-wise
to generate a pseudo-random output stream. While sponges separate the input
(absorption) and output (squeezing) phases, the duplex mode generates the i-th
output block directly after absorbing the i-th input block. In both modes, an n-bit
permutation absorbs the data in r-bit chunks r < n, called the rate.
Keyed Sponge Variants were introduced by Bertoni et al. [35] and can be cate-
gorised into inner-keyed, outer-keyed, and full-keyed variants (cf. [36]; recently,
Dobraunig and Mennink added the suffix-keyed sponge [37]. The inner-keyed
sponge [38] initialises the inner part with the key, (0 ∥K), whereas the outer-
keyed sponge [35] (so-dubbed by [39]) concatenates key and message K ∥M for
the output. The full-keyed sponge [40] employs the full state in the absorption
phase; the suffix-keyed sponge uses a keyed function only at the end.
Permutation-based modes are analysed mostly in the ideal-permutation model.
For authenticated encryption, an adversary A shall distinguish between two worlds
consisting of two oracles: each world has (1) a construction oracle that A can ask
encryption and verification queries to and (2) a primitive oracle that provides
access to the internal permutation. The former oracle represents online queries,
whereas the latter represents offline queries. A can ask qe encryption queries, qv

Chapter 3. Oribatida 25

Table 3.1: Existing PRF bounds for keyed sponges. FKS/IKS/OKS = full-
/inner-/outer-keyed sponge, IP = ideal permutation, indiff. = indifferentiability

Scheme

FKS IKS OKS Model Bound Work

– – • IP (Indiff.) O(σ
2+σ
2c) [45]

– • • IP O(σ
2

2c) [38]

– – • IP O(
σ2+σqp

2c) [39]

– • – IP O(
σ2+σqp

2c +
qp
2n) [39]

NORX-like IP O(min(σ
2

2n ,
σ
2c ,

q
2k
)) [47]

Scheme

FKS IKS OKS Model Bound Work

– – • IP O(
q2c+σqc+qcqp

2c) [42]

• – – IP O(σ
2

2n + q2cm
2c +

σcqp
2k

) [43]

– • • IP O(
q2c+qcqp

2c) [44]

• – – IP O(
qcqp+q2c

2c +
qp
2k
) [41]

• – – IP O(
q2c+qcqp

2c +
qp
2k
) [36]

– – • IP O(
q2c+qcqp

2c +
ck/rqp
2k

) [36]

verification queries, and qp construction queries; σ and k usually denote the number
of blocks over all construction queries and the secret key size, respectively.
Sponge modes for authenticated encryption started with the Duplex construction
and the AE scheme SpongeWrap [34] and MonkeyDuplex [40], and led to a consid-
erable corpus of analysis, e.g., [39, 41–44]. Early, Bertoni et al. [45] showed that
the sponge is indifferentiable from a random oracle [46] for up to O(2c/2) calls to
the permutation. Their follow-up work [35] improved the bounds for the unkeyed
sponge to O(qpσ

2c
+ qc

2k
) if σ ≪ 2c/2. For SpongeWrap, Bertoni et al. [34] had shown

a privacy bound of O(q
2k

+ σ2

2c
) and an authenticity bound of O(q

2k
+ σ2

2c
+ q

2τ
).

Jovanovic et al. [47] improved the asymptotic authenticity bound, although under
the limitation of at most σ ≪ 2c/2 decryption queries. Summarising many previous
results, Mennink [36] showed that keyed sponges achieve PRF security of around
O(q

2
c+qcqp
2c

) + Advkp
Π . He coined the final term the key-prediction security, e.g.,

in O(qp
2k
) for full-keyed sponges and k < n. The recent duplex-based AE scheme

Beetle [48] added a transform to the output so that the plaintext input that is
added to the inner part and to the ciphertext output block differ. As a result,
Beetle offered a bound of O(rqp+rσ

2c
+ qv+qp

2r
+

σ2+q2p
2n

). Table 3.1 summarises some of
the most noteworthy results in the past. Improvements to those general bounds
appear hard, which motivates the search for novel constructions.
Correct authenticated decryption requires the entire plaintext to be buffered until
the tag has been verified. On certain architectures (e.g., the memory-constrained
devices in the Internet of Things (IoT), real-time streaming protocols etc.), this
requirement can exceed the available storage and induce unacceptable latency.
Andreeva et al. [20] introduced notions for privacy and authenticity under the
release of unverified plaintext material. Security guarantees such as INT-RUP

represent valuable additional levels of robustness.

Chapter 3. Oribatida 26

3.1.2 Research Gap

While Beetle improved the bound for nonce-based authenticated encryption, this
bound does not hold in the INT-RUP setting: as we will outline, there exists an
attack with an advantage of Ω(qpqv

2c
). The naturally arising question is whether

one can achieve higher INT-RUP security. This is motivated by a practical de-
mand: while the primary advantage of sponges is simplicity, they are also useful
for lightweight applications in resource-constrained environments. In such con-
texts, buffering multi-block decryption outputs is likely infeasible, which renders
INT-RUP security advantageous. For example, the NIST lightweight cryptogra-
phy project requested 112-bit integrity security for AE schemes and support of
at least 250 − 1 encrypted bytes of data. Inserting them into Mennink’s bound
[36] of q2c+qcqp

2c
, the NIST requirements would imply permutation sizes of at least

172 bits plus a plausible rate. A higher INT-RUP security could lead to smaller
permutations, reducing area, and energy consumption simultaneously.

3.1.3 Contributions

This chapter contains three contributions. First, it answers the question above
in the affirmative by showing a sponge with dynamic s-bit masks that achieves
NAEAD security of O(qp

2k
+ qd

2τ
+ qpσ

2c+s + σ2

2n
). Replacing the terms by the NIST

requirements of k ≥ 128, τ ≥ 64, qp ≤ 2112 and σ ≥ 250, a trade-off could use
c+s ≥ 162, or better c+s ≥ 192 bits to be secure for up to σ ∈ O(264) blocks and
qp ≤ 2128 primitive queries. Thus, the rate could be reduced considerably com-
pared to the bound from [36]. We prove that the INT-RUP advantage is at most
O(q2d/2

c), i.e., depends solely on the number of online (i.e., construction) queries,
contrasting the bound of O(qdqp/2c) for the generic duplex and previous con-
structions, as illustrated in Table 3.2. The difference may seem minor. However,
eliminating the dependency on offline (i.e., primitive) queries is a valuable gain.
Because in real life, the number of offline queries is usually much greater than the
number of online queries. As a result, one can use a smaller permutation or higher
throughput depending on requirements. We propose a novel permutation-based
AE scheme Oribatida that applies dynamic masks to the outputs and provides the
NIST security bounds with permutation sizes of only 192 bits. As our second
contribution, we show that the bound provided by our proposal is tight with an
attack that matches the proved bound. Moreover, we show that it also applies to
other duplex-based designs in general if masks would be added.

Chapter 3. Oribatida 27

Table 3.2: Comparison of the security bounds for INT-RUP attacks on pre-
vious permutation-based AE schemes and our construction

Bound

Scheme Unmasked Masked

Generic Duplex [34] O(qdqp/2
c) O(q2d/2

c)

Beetle [48] O(qdqp/2
c) O(q2d/2

c)

SPoC [51] O(qdqp/2
c) O(q2d/2

r)

Oribatida [This Chapter] – O(q2d/2
c)

Remark 3.1. Finally, we acknowledge an observation by Rohit and Sarkar on the
NIST mailing list [49]. We note that our proposal here is a slightly updated
variant of the NIST submission [50], that addresses their observation by masking
the authentication tag. We call it Oribatida v1.3, but use Oribatida hereafter. We
will discuss the effect of the slight update later.

3.1.4 Outline

Section 3.2 motivates our proposal by showing INT-RUP attacks on the duplex
mode and other existing schemes. Section 3.3 describes Oribatida in general. We
close the parenthesis of INT-RUP attacks on Oribatida and other duplex-based
modes when in Section 3.4. We analyse the security on Oribatida for the standard
nonce-based AE setting in Section 3.5 and in the INT-RUP setting in Section
3.6. Next, Section 3.7 compares it with those second-round NIST candidates
that claim INT-RUP security. Section 3.8 discusses the slight update from [50]
and the associated improvement. Subsequently, Section 3.9 specifies an instance
with a Simon-based permutation, whose security is discussed in Section 3.10 from
previous works. Section 3.11 reports on the result of a hardware implementation
of Oribatida before Section 3.12 concludes this chapter.

3.2 INT-RUP Attacks on Existing AE Schemes

This section shows attacks under INT-RUP adversaries on the duplex mode, as
well as on recent more secure AE schemes Beetle or SPoC. For each construction,
we briefly recall the necessary parts of their definition. As summarised in Table 3.2,
the proposed attacks possess an advantage of Ω(qdqp

2c
) on the previous constructions.

Thus, the improved bounds of Beetle or SPoC do not carry over to the INT-RUP

setting. For all attacks, we consider a random permutation π
$← Perm(B) and a

Chapter 3. Oribatida 28

N ⊕K1

K2

r

c

P

ρ
Y1

A1

X1

Z1

P P

ρ
Ya

Aa

Xa

constA

Za

P

Ya

Za+1

Xa

Za

P

ρ
Ya

M1 C1

Xa+1

Za+1

P P

ρ
Ya+m

Mm Cm

Xa+m

constM

Za+m

P

T

Figure 3.1: The Beetle authenticated encryption scheme

randomly chosen secret key K
$← K. We denote by A a nonce-respecting INT-

RUP adversary against the individual schemes.
The main idea of all the attacks in this section is as follows: A asks qd decryption
queries s. t. any predetermined r bits (e.g., the first r bits) of the input to one of
the permutations of the construction are fixed and known (say X). The remaining
n− r = c bits may vary. Next, A asks qp primitive queries Q1, Q2, . . . , Qqp with
the first r bits fixed to X, but with pairwise distinct c bits, and receives R1, R2,
. . . , Rqp . When qd · qp ≈ 2c, A can expect a state collision between an online
input to the permutation and an (offline) permutation query. This collision can
be detected from the first r bits of the outputs of the corresponding construction
queries, which will be equal for the colliding inputs. Once A knows the full state
at the input to the permutation of the construction, it can revert the permutation
calls in the construction and finally recover the key. We adapt this strategy for the
duplex mode and Beetle before we consider the differences in SPoC and hybrids.

3.2.1 INT-RUP Attack on The Duplex Mode

Let us consider the Sponge-Wrap mode [34].

1. The adversary A asks qd decryption queries (N,A1, C), (N,A2, C), . . . ,
(N,Aqd , C), and receives M1, M2, . . ., M qd . The associated data Ai consist
of a single block, the ciphertexts C = (C1, C2) are fixed to the same two
blocks for each query.

Chapter 3. Oribatida 29

2. Now A can follow the generic idea to complete the attack.

The advantage of the attack is Ω(qdqp
2c

).

3.2.2 INT-RUP Attack on Beetle

Beetle [48] is a recent permutation-based light-weight AE scheme. From now
onward, we consider the updated variant [52] that fixed the proof and details (such
as no double call to the permutation). An overview of the encryption process is
provided in Figure 3.1. The map ρ : {0, 1}r×{0, 1}r → {0, 1}r×{0, 1}r computes
ρ(I1, I2)

def
= (shuffle(I1)⊕I2, I1⊕I2) for all inputs I1, I2 ∈ {0, 1}r, where shuffle(x) def

=

(⌊x⌋r/2 ∥ ⌊x⌋r/2⊕⌈x⌉r/2). The results of ρ are ordered as (Xa+i, Ci)← ρ(Ya+i,Mi)

and (Ya+i,Mi)← ρ−1(Xa+i, Ci), respectively.

1. The adversary A asks qd encryption queries (N1, A1,M), (N2, A2,M), . . . ,
(N qd , Aqd , M) to the encryption oracle, and receives C1, C2, . . . , Cqd . Size
of M and Ai is one block for each i.

2. Then, A asks qd decryption queries (N1, A1, C1′), (N2, A2, C2′), . . . , (N qd ,
Aqd , Cq′d) to the decryption oracle where Ci′ ← Y i

2⊕shuffle(Y i
2). This ensures

that the first r bits of the input to the third permutation always equal zero.

3. Now A can follow the generic idea to complete the attack.

The advantage of the attack is again Ω(qdqp
2c

).

3.2.3 INT-RUP Attack on SPoC

SPoC (see Figure 3.2a) is a permutation-based NIST candidate [51] that uses the
capacity to derive ciphertext outputs, while it still absorbs the message in the rate.
In SPoC, the adversary cannot fix any part of the state in contrast to SpongeWrap
and Beetle– though, there is a similar attack:

1. A asks qd queries (N,A,C1), (N,A,C2), . . . , (N,A,Cqd) to the decryption
oracle and receives M1,M2, . . . ,M qd . The associated data A and ciphertext
Ci consist of a single block for every i. This ensures that the first r bits of
the input to the third permutation always equal M1 ⊕ C1.

2. Now A can follow the generic idea to complete the attack.

The advantage of the attack is again Ω(qdqp
2c

).

Chapter 3. Oribatida 30

Figure 3.2: SPoC and a hybrid of Beetle and SPoC

Lo
adN0,K P

A1

U1 X1

const1

Z1

P P

Aa

Ua Xa

constA

Za

P

Ua+1

Za+1

Xa

Za

P

M1

Ua+1 Xa+1

C1

M1

Ya+1

const2

P P

Mm

Ua+1 Xa+m

Cm

Mm

Ya+m

constM

P

E
xt

r

T

(a) The SPoC authenticated encryption scheme

Vi−1

Wi−1

Yi−1

Zi−1

P

ρ
Ui

M1
i C1

i

Vi

Wi

P
M2

i

Xi Yi

C2
i

M2
i

Zi

Vi+1

Wi+1

Yi+1

Zi+1

(b) A hybrid of Beetle and SPoC

3.2.4 INT-RUP Attack on A Hybrid of Beetle and SPoC

We can generalise our attacks to hybrid modes of Beetle and SPoC as well. Such a
hybrid would use both modes Beetle and SPoC in parallel to process the queries.
We illustrate it in Figure 3.2b. Each message block (say M) is parsed into two
sections (say M1 and M2), where |M1|= r1 and |M2|= r2. M1 is processed with
Beetle to a ciphertext block C1; M2 with SPoC to a ciphertext block C2; The final
ciphertext block becomes C ← C1 ∥C2, and the associated data blocks and the
ciphertext blocks for decryption are treated in a similar manner. Note that the
hybrid mode is parameterised by r1, r2 and c with the condition c ≥ r2. The size
of rate and capacity of the Beetle part are r1 and c− r2; the size of both rate and

Chapter 3. Oribatida 31

capacity of the SPoC part is r2. As a result, the size of rate and capacity of the
hybrid mode is r = r1+ r2 and c. When r2 = 0, the hybrid mode translates to the
Beetle mode. Similarly, when r1 = 0, the hybrid mode is equivalent to the SPoC

mode.
An INT-RUP attack on such modes could be defined as follows:

1. A asks qd decryption queries (N,A1, C), (N,A2, C), . . ., (N,Aqd , C) to the
decryption oracle and receives M1,M2, . . . ,M qd . The ciphertext C and as-
sociated data Ai consist of a single block for every i.

2. There exists at least one value of the last r2 bits of the input to the third
permutation which remains same for at least q = qd

2r2
queries. Suppose q

such queries are (N,A1′ , C), (N,A2′ , C), . . ., (N,Aq′ , C).

3. A can detect the previous step as it knows the value of the last r2 bits of
the input to the third permutation because that will be equal to the last r2
bits of C ⊕M i.

4. A retains those q queries and discards the rest.

5. For each of the above queries, A updates the value of the first r1 bits of the
ciphertext to Y2 ⊕ shuffle(Y2) and varies the remaining r2 bits. This ensures
that the first r1 bits of the input to the third permutation always equal zero.

6. In the way mentioned above, A can ask qd more decryption queries to the
decryption oracle. This time, a total of r bits (first r1 bits and last r2 bits)
of the input to the third permutation are fixed and known to A.

7. Then, A can follow the generic idea to complete the attack.

The advantage of the attack is again Ω(qdqp
2c

).

3.2.5 Discussion

As a takeaway from this section, the unmasked sponge-based AE schemes allow
INT-RUP attacks whose advantage can depend linearly on the number of offline
primitive queries. We think that any AE construction which uses linear feedback is
vulnerable to such an attack (Ω(qdqp

2c
)) unless it uses more state. The next section

defines Oribatida that masks its ciphertexts for higher INT-RUP resistance. After
its definition, we will get back to attacks on it and on strengthened versions of the
schemes sketched here to show that they can be similarly extended by a ciphertext
masking.

Chapter 3. Oribatida 32

N
∥
K

r
U0

c
V0

dN

d

X0

Y0
P

A1

U1

V1

X1

Y1
P

A2

U2

V2

X2

Y2
P

Ua

Va

Aa

padn

dA

d

Xa

Ya
P

Ua+1

Va+1

Xa

Ya
P

M1

Ua+1

Va+1

C1

s

V1

lsbs

Xa+1

Ya+1
P P

Mm

padr

Ua+m

Va+m

Cm

msb|Mm|

s

Va+m−1

lsbs

dE

d

Xa+m

Ya+m
P

m
sb

τ T

Va+m

lsbτ

Figure 3.3: Authenticated encryption of a-block associated data A and m-
block message M with Oribatida.

3.3 Specification of Oribatida

At its core, Oribatida is a variant of the monkey-wrap design [40], but adds a
ciphertext masking. This section considers a slightly updated version of Oribatida.
Section 3.8 discusses the update from Oribatida v1.2 from [50] to Oribatida v1.3 in
this chapter.
In the following, let P ∈ Perm(B) be permutations. We denote by (Xi, Yi) the
inputs and by (Ui, Vi) the outputs of the primitive(s). As in the classical sponge,
Oribatida considers the state Si = (Ui ∥Vi) as a rate Ui of r bits, where inputs
are XORed to, and a capacity Vi of c = n − r bits. Unlike the usual sponge, an
s-bit part of the capacity is used to mask the subsequent ciphertext block. The
complete specification is given in Algorithm 1 and a pictorial depiction of the same
is given in Figure 3.3. We assume that the key size is at most the capacity, k ≤ c,
and the tag size is at most τ ≤ r bits.

3.3.1 Initialisation

Each variant of Oribatida uses a fixed-size nonce N , whose length ν is such that
k + ν = n bits. N is concatenated with the key K to initialise the state: N ∥K:
(X0, Y0)← (N ∥K)⊕d ⟨dN⟩d. The domain dN is XORed to the d least significant
bits of the initial state. The first value S1 results from S1 ← P (U0 ∥V0); V1 is
stored for masking the first block of ciphertext later.

Chapter 3. Oribatida 33

Algorithm 1 Specification of Oribatida. The domain-encoding func-
tions GetDomainForN, GetDomainForA, and GetDomainForE
are instantiation-specific. They are defined in Algorithm 2.

101: function EN,A
K (M)

102: ℓA ← |A|
103: ℓE ← |M |
104: dN ← GetDomainForN(ℓA, ℓE)
105: dA ← GetDomainForA(ℓA, ℓE)
106: dE ← GetDomainForE(ℓE)
107: if |A|= 0 then A← 1 ∥ 0r−1

108: A← padr(A)
109: M ← padr(M)
110: (S1, V1)← Init(K,N, dN , ℓA)
111: Sa+1 ← ProcessAD(S1, A, dA)
112: (C, T)← Encrypt(Sa+1,M, V1, dE , ℓE)
113: return (C, T)

121: function Encrypt(Sa+1,M, V1, dE , ℓE)
122: x← ℓE mod r
123: M1 · · ·Mm ←r M
124: V ← V1

125: for i = 1 · · ·m do
126: (Ua+i, Va+i)

r,c←−− Sa+i

127: Xa+i ←Mi ⊕ Ua+i

128: Ci ← Xa+i ⊕s lsbs(V)
129: Ya+i ← Va+i

130: if i = m then
131: Ya+i ← Ya+i ⊕d dE
132: Cm ← msbx(Cm)

133: V ← Va+i

134: Sa+i+1 ← P (Xa+i ∥Ya+i)

135: C ← (C1 ∥C2 ∥ · · · ∥Cm)
136: T ← msbτ (Sa+m+1)⊕s lsbs(V)
137: return (C, T)

141: function Init(K,N, dN , ℓA)
142: V0 ← lsbs(N ∥K)
143: S1 ← P ((N ∥K)⊕d dN)
144: V1 ← lsbs(S1)
145: return (S1, V1)

151: function ProcessAD(S1, A, dA)
152: A1 · · ·Aa ←r A
153: for i = 1 · · · a− 1 do
154: Si+1 ← P (Si ⊕ (Ai ∥ 0c))
155: Sa+1 ← P (Sa ⊕ (Aa ∥ 0c)⊕d dA)
156: return Sa+1

201: function DN,A
K (C, T)

202: ℓA ← |A|
203: ℓE ← |C|
204: dN ← GetDomainForN(ℓA, ℓE)
205: dA ← GetDomainForA(ℓA, ℓE)
206: dE ← GetDomainForE(ℓE)
207: if |A|= 0 then A← 1 ∥ 0r−1

208: A← padr(A)
209: C ← padr(C)
210: (S1, V1)← Init(K,N, dN , ℓA)
211: Sa+1 ← ProcessAD(S1, A, dA)
212: (M,T ′)← Decrypt(Sa+1, C, V1, dE , ℓE)
213: if T = T ′ then return M
214: else return ⊥

221: function Decrypt(Sa+1, C, V1, dE , ℓE)
222: x← ℓE mod r
223: V ← V1

224: if ℓE = 0 then
225: T ′ ← msbτ (Sa+1)⊕s lsbs(V)
226: return (ε, T ′)

227: C1 · · ·Cm ←r C
228: for i = 1 · · ·m do
229: (Ua+i, Va+i)

r,c←−− Sa+i

230: Xa+i ← Ci ⊕s lsbs(V)
231: Ya+i ← Va+i

232: Mi ← Ua+i ⊕Xa+i

233: if i = m then
234: Ya+i ← Ya+i ⊕d dE
235: Mm ← msbx(Mm)

236: V ← Va+i

237: Sa+i+1 ← P (Xa+i ∥Ya+i)

238: M ← (M1 ∥M2 ∥ · · · ∥Mm)
239: T ′ ← msbτ (Sa+m+1)⊕s lsbs(V)
240: return (M,T ′)

241: function padx(X)
242: if |X|modx = 0 then return X

243: return X ∥ 1 ∥ 0x−(|X| mod x)−1

251: function lsbx(X)
252: if |X|≤ x then return X

253: return X[(|X|−x− 1) · · · 0]

261: function msbx(X)
262: if |X|≤ x then return X

263: return X[(|X|−1) · · · (|X|−x)]

3.3.2 Processing Associated Data

After the initialisation, the associated data A is split into r-bit blocks and is
absorbed in the rate. If its length is not a multiple of r bits, A is padded with a 10∗-
padding if |A|modr ̸≡ 0 such that its length becomes the next highest multiple of
r bits. If the associated data is empty, it is padded to one full block 10r−1. In this
case, we denote the length of the padded associated data A in blocks also as a = 1.
The padded A is split into r-bit blocks (A1, · · · , Aa). Given (Ui, Vi)

r,c←− Si, Ai is
XORed to the rate of the state: Xi ← Ui ⊕ Ai, for 1 ≤ i < a. For all non-final

Chapter 3. Oribatida 34

blocks of A, the capacity of the permutation output, Vi, is simply forwarded to
that of the subsequent input to the permutation P : Yi ← Vi. The state is updated
with P afterwards, for all 1 < i < a (that is, except the final a-th block of A):
Si+1 ← P (Xi ∥Yi). When the final block Aa is processed, a domain dA is XORed
to the least significant byte of the capacity.

3.3.3 Encryption

After A has been processed, the message M is encrypted. Similarly as for the
associated data, if its length is not a multiple of r bits, M is padded with a 10∗-
padding such that its length after padding becomes the next highest multiple of r
bits. An empty message M = ε will not be padded.
After M is split into r-bit blocks (M1, · · · ,Mm) (after padding if necessary), the
blocks Mi are processed one after the other. Given the state value (Ua+i, Va+i)

r,c←−
Sa+i, the current block Mi is XORed to the rate Ua+i: Xa+i ← Mi ⊕ Ua+i. The
capacity is simply forwarded: Ya+i ← Va+i. Then, (Xa+i ∥Ya+i) is used as input
to a call to P to derive the next state value Sa+i+1 ← P (Xa+i ∥Ya+i).
The ciphertext blocks Ci are computed from a sum of the current rate, the current
plaintext block, and a (partial) earlier mask value from the capacity. The first
ciphertext block is computed from C1 ← Xa+i ⊕s lsbs(V1). If C1 is the final
ciphertext block, it is computed as C1 ← msbℓE(Xa+i⊕s lsbs(V1)), where ℓE denotes
the length of M before padding. Non-final ciphertext blocks Ci, 1 < i < m

are computed from Ci ← Xa+i ⊕s lsbs(Va+i−1), for 1 < i < m. If m > 1, the
final ciphertext block results from Cm ← msbℓE mod r(Xa+m ⊕s lsbs(Va+m−1)). For
the final message block, a domain dE is XORed to the least significant byte of
the capacity: Ya+m ← Va+m ⊕d ⟨dE⟩d. Similar as for A, dE uses three pairwise
distinct domains depending on whether M was empty, non-empty and required
no padding, or non-empty and has been padded. P is called another time to
derive Sa+m+1 ← P (Xa+m ∥Ya+m). Its rate is XORed with the most significant τ
bits of the key Va+m, and – truncated to τ bits if necessary – is released as the
authentication tag: T ← msbτ (Sa+m+1) ⊕s lsbs(Va+m). Note that, for s = τ as
for our instantiations, the tag is masked as the ciphertext output blocks, which
unifies this process.

Chapter 3. Oribatida 35

Algorithm 2 Instantiated domains
11: function GetDomainForN(ℓA, ℓE)
12: if ℓA = 0 ∧ ℓE = 0 then return ⟨9⟩d
13: return ⟨5⟩d

21: function GetDomainForA(ℓA, ℓE)
22: if ℓA = 0 ∧ ℓE = 0 then return ⟨0⟩d
23: if ℓA = 0 ∧ ℓE > 0 then return ⟨7⟩d
24: if ℓE > 0 ∧ ℓA mod r ≡ 0 then return ⟨4⟩d
25: if ℓE > 0 ∧ ℓA mod r ̸≡ 0 then return ⟨6⟩d
26: if ℓE = 0 ∧ ℓA mod r ≡ 0 then return ⟨12⟩d
27: if ℓE = 0 ∧ ℓA mod r ̸≡ 0 then return ⟨14⟩d

31: function GetDomainForE(ℓE)
32: if ℓE mod r ≡ 0 then return ⟨13⟩d
33: if ℓE mod r ̸≡ 0 then return ⟨15⟩d

Table 3.3: Instantiated domains
of Oribatida. • = yes, – = no

|A| |M | Domains

> 0 modr ≡ 0 > 0 modr ≡ 0 dN dA dE

– – – – ⟨9⟩d ⟨0⟩d –
– – • – ⟨5⟩d ⟨7⟩d ⟨15⟩d
– – • • ⟨5⟩d ⟨7⟩d ⟨13⟩d

• – – – ⟨5⟩d ⟨14⟩d –
• – • – ⟨5⟩d ⟨6⟩d ⟨15⟩d
• – • • ⟨5⟩d ⟨6⟩d ⟨13⟩d

• • – – ⟨5⟩d ⟨12⟩d –
• • • – ⟨5⟩d ⟨4⟩d ⟨15⟩d
• • • • ⟨5⟩d ⟨4⟩d ⟨13⟩d

3.3.4 Decryption

The decryption takes a tuple (K,N,A,C, T). The initialisation with K and N as
well as the processing of the associated data A is performed in the same manner as
for encryption. If |C|modr ̸= 0, the decryption pads C with a 10∗-padding to the
next multiple of r bits. In all cases, it splits C into r-bit blocks (C1, · · · , Cm−1) plus
a final block Cm. Ifm > 1, the plaintext block is computed asXa+i ← Ci⊕s lsbs(V)

and Mi ← (Ua+i⊕Xa+i), where V = V1 for i = 1, and V = Va+i−1 otherwise. The
capacity is simply forwarded to the next call of the permutation: Ya+i ← Va+i.
The subsequent state is then (Ua+i+1 ∥Va+i+1)← Sa+i+1 ← P (Xa+i ∥Ya+i).
The final plaintext block is computed from the padded ciphertext block Cm as
Xa+m ← Cm ⊕s lsbs(V) and Mm ← lsbx(Ua+m ⊕ Xa+m), where x ← ℓE mod r.
For the final block, the domain dE is XORed to the least significant byte of the
capacity: Ya+m ← Va+m ⊕d ⟨dE⟩d. The would-be tag T ′ is derived by computing
(T ′ ∥Z) ← P (Xa+m ∥Ya+m) ⊕s lsbs(Va+m), and using only its most significant
τ bits: T ′ ← msbτ (T

′ ∥Z) as for the encryption If T = T ′, the ciphertext is
considered valid, and M = (M1 ∥ · · · ∥Mm) is released as plaintext. Otherwise,
the ciphertext is deemed invalid, and ⊥ is returned.

3.3.5 Domain Separation

For domain separation, Oribatida defines constants dN , dA and dE. The domains
are XORed with the least significant byte of the state at three stages. Domains are
encoded as d-bit strings, where d = 4 bits suffice in practice. The value depends
on the presence of A and M and whether their final blocks are absent, partial,
or integral to prevent trivial collisions of inputs to P among blocks of A and M .

Chapter 3. Oribatida 36

The constants are determined by four bits (t3, t2, t1, t0) that reflect inputs in the
hardware API, similar to, e.g., [48]:

• EOI: t3 is the end-of-input control bit. This bit is set to 1 if the current
data block is the final block of the input. Note that if the associated data
is empty, then the created 10r−1-block is never treated as the final block of
the input.

• EOT: t2 is the end-of-type control bit. This bit is set to 1 if the current
data block is the final block of the same type, i.e., it is the last block of the
nonce/associated data/message. Note that if both the associated data and
the message are empty, then neither the nonce nor the created 10r−1-block
of the associated data is considered as the final block of its type.

• Partial: t1 is the partial-control bit. This bit is set to 1 if the size of the
current block is less than the block size. Note that if the associated data is
empty and the message is non-empty, then the created 10r−1-block is treated
as a partial block.

• Type: t0 is the type-control bit, identifying the type of the current block.
For the nonce and the final message block, t0 = 1. If the associated data is
empty and the message is non-empty, then t0 = 1 for the created 10r−1-block
of the associated data. For all other cases, t0 = 0.

While processing a data block, the domains are set as the integer representation of
t3 ∥ t2 ∥ t1 ∥ t0. For example, processing the nonce (which is always a complete r-bit
block) with empty associated data and non-empty message yields dN = (t3t2t1t0) =

(0101)2 = 5. Details are provided in Algorithm 2; ℓA denotes the length of A and
ℓE that of M in bits before padding. An overview is given in Table 3.3.

3.4 INT-RUP Attacks on Schemes with Masked

Ciphertexts

The approach of Oribatida is to employ (a portion of) the capacity of the previous
permutation output to mask the ciphertext outputs. This strategy is generic
enough to apply to other modes, such as Beetle or SPoC. We can informally define
a masked variant of Beetle and SPoC. The masked beetle uses Zi−1 and XORs
lsbs(Zi−1) to the s rightmost bits of the ciphertext block Ci, for i > 1 and s ≤ c.

Chapter 3. Oribatida 37

If no associated data is present, we define Z0 = K2. A masked variant of SPoC

would employ the rate (since it is the hidden part). Thus, for the masked SPoC, we
define s ≤ r and define that lsbs(Ui−1) is XORed to Ci for i > 0. If no associated
data is present, we define U0 for the rate of the initial input to the permutation
P .
For Oribatida, the masked Beetle or the masked SPoC, the attacks in Section 3.2 do
not apply directly. However, there exist attacks on each of them with advantage
Ω(q2d/2

c).

3.4.1 The Generic INT-RUP Attack on Oribatida (Masked

Duplex)

Here, we consider an attack on Oribatida that shows that our INT-RUP bound of
O(q2d/2

c) is tight, i.e., the advantage of the attack is Ω(q2d/2
c).

1. A asks qd decryption queries (N i, Ai, Ci, T i), where N i and Ci is static for
all queries. We assume that the associated data Ai are pairwise distinct and
consist of a single block for all queries. A obtains M i from the encryption
oracle, for 1 ≤ i ≤ qd. The rate X i

2 ← Ci
1 ⊕s lsbs(V

i
1) is constant for all

queries.

2. For qd ≈ O(2c/2), A can expect a collision in the capacity of the input:
V i
2 ← V j

2 for some distinct i ̸= j, i, j ∈ [1 · · · qd]. Then, this collision leads
to a full-state collision that can be detected when M i

1 =M j
1 .

3. A asks encryption queries (N,Ai,M i) and obtains (Ci, T) for some tag T .

4. (N,Aj, Ci, T) is a valid forgery and yields M j.

3.4.2 INT-RUP Attack on The Masked Beetle

1. A asks qd encryption queries (N1, A1,M), (N2, A2,M), . . . , (N qd , Aqd , M)

to the encryption oracle, and receives C1, C2, . . ., Cqd . The associated data
Ai consists of a single block for each i; the message M contains ⌈ c

r
⌉ blocks.

2. A asks qd − 1 decryption queries, one for each encryption query except the
first encryption query, to the decryption oracle. The decryption query of the
i-th encryption query is (N i, Ai, Ci′), where Ci′ = Y 1

2 ⊕ Y i
2 ⊕ shuffle(Y 1

2) ⊕
shuffle(Y i

2). A can calculate the r.h.s. as shuffle(Y 1
2)⊕ shuffle(Y i

2) = C1⊕Ci,

Chapter 3. Oribatida 38

and Y 1
2 ⊕ Y i

2 directly from shuffle(Y 1
2) ⊕ shuffle(Y i

2) with the definition of
shuffle. So, the first r bits of the input to the third permutation call always
equal those of the first encryption query.

3. Afterwards, A repeats Step 2 to 6 from Section 3.4.1 to complete the attack.

The advantage of the attack is Ω(q2d/2
c). However, the attack strategy differs for

SPoC.

3.4.3 INT-RUP Attack on The Masked SPoC

Here, A has to perform the attack in two stages.

1. First, A asks qd decryption queries (N,A1, C), (N,A2, C), . . . , (N,Aqd , C)

to the decryption oracle, and receives M1, M2, . . ., M qd . The associated
data Ai consists of a single block for each i; the ciphertext C consists of two
blocks.

2. When qd ≈ O(2r), A expects a collision in the first r bits of the input to
the third permutation call. A can detect this collision by looking at the first
message block because it will be equal only for the two colliding queries.

3. Suppose the associated data of the two colliding queries are Ai and Aj.

4. A makes q1 queries (N,Ai, C1), (N,Ai, C2), . . . , (N,Ai, Cq1), and q2 queries
(N,Aj, C1), (N,Aj, C2), . . . , (N,Aj, Cq2) to the decryption oracle.

5. When q1 · q2 ≈ O(2r), A expects a full state collision at the input to the
third permutation, between one query with associated data Ai and another
query with associated data Aj.

6. Suppose the two ciphertexts corresponding to the two colliding queries are
Cp and Cq, and the corresponding messages are Mp and M q.

7. A identifies those pairs of queries (N,Ai, Cx), (N,Aj, Cy), 1 ≤ x ≤ q1 and
1 ≤ y ≤ q2, for which the sum of the second message blocks equals that
of the first message blocks. For each such pair, A updates Cx and Cy by
appending ⌈ c

r
⌉− 1 ciphertext blocks to each s.t., Cx

2 = Cy
2 , . . . , Cx

⌈ c
r
⌉ = Cy

⌈ c
r
⌉,

and makes decryption queries with the updated ciphertexts. For k > 2, Mp
k

will equal M q
k .

8. Next, A asks (N,Ai,Mp) to the encryption oracle; suppose, the tag is T .

Chapter 3. Oribatida 39

9. Then, A successfully forges with the query (N,Aj, Cq, T).

Again, the advantage of the attack is Ω(q2d/2
c).

3.5 NAEAD Security Analysis

This section analyses the NAEAD security of Oribatida. In the following, let
K

$← K and π
$← Perm(B). We use Π[π, π]K = Π[π]K as short form of Oribatida,

instantiated with π for P , and keyed by K. Let A be a nonce-respecting NAEAD

adversary w.r.t. Π[π]K . We denote by qp, qf , qb, qc, qe, qd, σc, σe, σd the number
of primitive queries, forward primitive queries, backward primitive queries, con-
struction queries, encryption queries, decryption queries, blocks summed over all
construction queries, blocks summed over only all encryption queries, and blocks
summed over all decryption queries, respectively. It holds that qp = qf + qb,
qc = qe + qd, and σc = σe + σd. For simplicity, we define a function ρ as

ρ(i, j)
def
=

1 if j = 1

ai + j − 1 otherwise .

So, V i
ρ(i,j) denotes the used block for masking the ciphertext block Ci

j.
Recall the notion of a longest common prefix from [53]. Let Q = (N,A,M,C, T)

be a query of A with the response. Let Q denote a set of queries without Q, i.e.,
Q ̸∈ Q. We define the length of the longest common prefix of M and another
message M ′ as LCP(M,M ′)

def
= maxi

{
1 ≤ j ≤ i :Mj =M ′

j

}
. Given Q and M , we

overload the notation by considering the longest common prefix of M with the
queries in Q′ = (N ′, A′,M ′, C ′, T ′) ∈ Q: LCP(M,Q) def

= maxM ′∈Q {LCP(M,M ′)}.
We also define

LCPN,A(M,Q) def
= max

(N′,A′,M′,C′,T ′)∈Q
N′=N∧A′=A

{LCP(M,M ′)} .

Collisions of chaining values are trivial if in the longest common prefix and non-
trivial otherwise.

Theorem 3.2 (NAEAD Security of Oribatida). Let A be a nonce-respecting
adversary w.r.t. Π[π]K . Then, Adv

Π[π]K
NAEAD(A) is upper bounded by(

σ
r

)
+ 2
(
qp
r

)
2r(r−1)

+
σ2

2n
+

3qp
2k

+
r(qd + σd) + 2σeqp + qpqc + qd(σe + qp) + 2rqp

2c+s
+
qd
2τ
.

Chapter 3. Oribatida 40

Proof. We follow the strategy of the NAEAD proof of Beetle [48]. The queries
by A and their corresponding answers are collected in a transcript τ = (τe, τd, τp).
In that transcript, the encryption construction queries are stored as tuples τe =

{(N i, Ai,M i, Ci, T i)}, for 1 ≤ i ≤ qe, the decryption construction queries are
stored as tuples τd = {(N i, Ai,M i, Ci, T i)}, for 1 ≤ i ≤ qd, and primitive queries
are stored as tuples τp = {(Qi, Ri)}, where π(Qi) = Ri, for 1 ≤ i ≤ qp.

Sampling. We define the ideal oracle to consist of an online and an offline phase.
In the online phase, the ideal oracle samples the responses (Ci, T i) uniformly
at random from the bit strings of expected lengths for encryption queries. For
decryption queries, it always outputs ⊥. For forward primitive queries Qi, it
forwards the result of π(Qi) to A; for backward primitive queries Ri, it forwards
the result of π−1(Ri).
In the offline phase, the ideal oracle samples the internal chaining values V i

j
$←

{0, 1}c and U i
j

$← {0, 1}r uniformly at random for all construction queries in
encryption direction. It derives the analogous internal chaining values V i

j , for
1 ≤ j ≤ k for all construction queries in decryption direction (N i, Ai, Ci, T i) that
share N i, Ai = N i′ , Ai′ , and for which Ci

1 = Ci′
1 , . . . , Ci

k = Ci′

k holds for some
i′-th construction query, where i ̸= i′. Moreover, for construction queries whose
plaintext or ciphertext length is not a multiple of r bits, the oracle samples exactly
the missing bits Ci

m uniformly independently at random that are not fixed from
previous queries, at most r − |Ci

mi | bits at a time. The so-sampled values for the
final blocks Ci

mi are stored also in the transcript. Moreover, the random key K is
revealed to A after the offline phase.

Bad Events. We define the following bad events. If any of them occurs, the
adversary aborts, and we define that it wins in this case.

• bad1: Multi-collision on the rate X in encryption construction queries. For
some w ≥ r, ∃ indices (i1, j1), (i2, j2), . . . , (iw, jw) with i1, i2, . . ., iw ∈
[1 · · · qe], and j1 ∈ [1 · · · ai1], j2 ∈ [1 · · · ai2], etc. s. t. X i1

j1
= X i2

j2
= . . . = X iw

jw
.

• bad2: Collision of permutation inputs in encryption construction queries: ∃
indices (i, j) ̸= (i′, j′) with i, i′ ∈ [1 · · · qe], j ∈ [1 · · ·mi], and j′ ∈ [1 · · ·mi′]

s. t.
(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)
.

Chapter 3. Oribatida 41

• bad3: Collision of permutation outputs in encryption construction queries:
∃ indices (i, j) ̸= (i′, j′) with i, i′ ∈ [1 · · · qe], j ∈ [1 · · ·mi], and j′ ∈ [1 · · ·mi′]

s. t.
(
U i
j ∥V i

j

)
=
(
U i′

j′ ∥V i′

j′

)
.

• bad4: Collision of permutation inputs between a construction and a primitive
query: ∃ indices (i, j, i′) with i ∈ [1 · · · qe], j ∈ [1 · · ·mi], and i′ ∈ [1 · · · qp] s.
t.
(
X i

j ∥Y i
j

)
= Qi′ .

• bad5: Collision of permutation outputs between a construction and a primi-
tive query: ∃ indices (i, j, i′) with i ∈ [1 · · · qe], j ∈ [1 · · ·mi], and i′ ∈ [1 · · · qp]
s. t.

(
U i
j ∥V i

j

)
= Ri′ .

• bad6: Initial-state collision with a primitive query: ∃ indices (i, i′) with
i ∈ [1 · · · qe] and i′ ∈ [1 · · · qp] s. t. (X i

0 ∥Y i
0) = Qi′ .

• bad7: Multi-collision in the rate of w outputs of forward primitive queries:
for some w ≥ r, ∃ i1, i2, . . ., iw ∈ [1 · · · qp] s. t. msbr(R

i1) = msbr(R
i2) =

· · · = msbr(R
iw).

• bad8: Multi-collision in the rate of w outputs of backward primitive queries:
for some w ≥ r, ∃ i1, i2, . . ., iw ∈ [1 · · · qp] s. t. msbr(Q

i1) = msbr(Q
i2) =

· · · = msbr(Q
iw).

We define that the adversary is provided with all internal chaining values V i
j and U i

j

after its interaction, but before it outputs its decision bit, which only strengthens
the adversary. We denote by Θreal and Θideal random variables that represent the
distribution of transcripts in the real and the ideal world, respectively. We define
the set of bad transcripts BadT, to contain exactly those attainable transcripts
τ for which at least one of the bad events occurred. It holds that Pr[Θideal ∈
BadT] ≤ ∑8

i=1 Pr[badi]. The probability of bad transcripts in the ideal world is
treated in the proof of Lemma 3.3. The ratio of good transcripts is bounded in
Lemma 3.4. Our bound in Theorem 3.2 follows from them and the fundamental
Lemma of the H-coefficient Technique [54], using w = r in the bounds.

Lemma 3.3. Let w ≥ r be a positive integer. It holds that

Pr[Θideal ∈ BadT] ≤
(
σ
w

)
+ 2
(
qp
w

)
2r(w−1)

+
σ2

2n
+

3qp
2k

+
2σeqp + qpqc + 2w · qp

2c+s
.

Proof. In the following, we upper bound the probabilities of the individual bad

events.

Chapter 3. Oribatida 42

bad1: Multi-collision on X in encryption construction queries. In the
ideal world, the ciphertext blocks are sampled independently and uniformly at
random from the strings of expected length. The internal values X i

j can be com-
puted by A once it is given the transcript including the internal chaining values
V i
j . It must hold that X i

j ← Ci
j−ai ⊕s lsbs(V

i
ρ(i,j−ai)). The random sampling of

C implies that the probability of the values X i
j to take any specific r-bit value is

1/2r. Note that in the case of a padded ciphertext block, each padded bit of Ci
mi

is also sampled once randomly and given in the transcript. Hence, the probability
for X i

ai+mi to take any r-bit value is also 2−r in the ideal world. For fixed indices
(i1, j1), (i2, j2), . . . , (iw, jw), it holds that

Pr
[
X i1

j1
= X i2

j2
= . . . = X iw

jw

]
≤ 2−r(w−1) .

Over all queries and blocks of τe, it follows that

Pr [bad1] ≤
(
σ
w

)
2r(w−1)

.

bad2: Collision of two permutation inputs in encryption construction

queries. Here, we consider

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
.

All ciphertext blocks and the internal chaining values V i
ρ(i,j−ai), j > ai are sampled

independently and uniformly at random. Moreover, padded bits of ciphertexts
are sampled also independently and uniformly at random. Though, we have to
consider two cases;

• j = 0 ∧ j′ = 0: since X i
0 and X i′

0 contain nonces, and since we assume A to
be nonce-respecting, the probability for a collision is zero in this case.

• j > 0: In this case, Y i
j = V i

j ⊕ const, where const ∈ {dN , dA, dE} is a public
constant. Moreover, X i

j is derived from Ci
j; so, both X i

j and Y i
j are chosen

independently and uniformly at random, and the probability for a collision
in this case is at most 2−n.

Therefore, for fixed indices (i, j) ̸= (i′, j′), the probability is

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
≤ 2−n .

Chapter 3. Oribatida 43

Over all combinations of indices, it follows that

Pr [bad2] ≤
(
σ
2

)
2n

.

bad3: Collision of two permutation outputs in encryption construction

queries. This case is analogous to bad2. The permutation outputs V i
j are sam-

pled randomly. In all cases, it holds that

Pr
[(
U i
j ∥V i

j

)
=
(
U i′

j′ ∥V i′

j′

)]
≤ 2−n .

Over all combinations of indices, it follows that

Pr [bad3] ≤
(
σ
2

)
2n

.

bad4: Collision of permutation inputs between a construction and a

primitive query. Again, we consider X i
j ← Ci

j−ai ⊕s lsbs(V
i
ρ(i,j−ai)) and Y i

j ←
V i
j ⊕ const, where const is a public constant. The values Ci

j−ai and V i
ρ(i,j−ai) are

sampled randomly, the values (X i
j ∥Y i

j) take any value with probability at most
2−n.

1. Assume, the primitive query was asked before the construction query. If the
construction query was in encryption direction, the collision probability for
fixed queries is at most 2−n, for qp · qc combinations.

2. If the primitive query was asked after an encryption query, then, the latter
one produced a tag. If the primitive query starts at any other block, A
can see r − s bits. Hence, the probability is at most 2−(c+s) for qp · σe
combinations. If the primitive query starts from the tag, the adversary sees
c+ s unmasked bits. Assuming bad1, there are at most w equal tags over all
encryption queries. So, the probability for a collision is 2−(n−τ), for at most
w · qp combinations.

Over all combinations of indices, it follows that

Pr
[
bad4|bad1

]
≤ max

(σe · qp
2n

,
σe · qp
2c+s

)
+
w · qp
2c+s

≤ σe · qp
2c+s

+
w · qp
2c+s

.

bad5: Collision of permutation outputs between an encryption con-

struction query and a primitive query. Again, U i
j+ai can be derived from

Chapter 3. Oribatida 44

M i
j⊕Ci

j⊕s lsbs(V
i
ρ(i,j)) and the values Ci

j and V i
ρ(i,j) are sampled randomly. So, the

values U i
j+ai ∥V i

j+ai take any value with probability at most 2−n. If the primitive
query starts at any other block, A can see r − s bits. Hence, the probability is at
most 2−(c+s) for qp ·σe combinations. Following a similar argument as for bounding
bad4 and excluding bad1, we obtain over all combinations of indices that

Pr
[
bad5|bad1

]
≤ σ · qp

2c+s
+
w · qp
2c+s

.

bad6: Initial-state collision with a primitive query. Here, we know that the
key is chosen uniformly at random. We distinguish between collisions depending
on whether the primitive query was a forward query or a backward query.

1. If the primitive query was a forward query, it must hit the correct value
of K ⊕d dN . So, the probability is at most qp/2k to collide with encryption
construction queries. Considering also decryption queries, a nonce can repeat
but change dN . Since there exist at most three distinct values for dN , the
probability is at most 3qp/2

k to collide.

2. If the primitive query was in backward direction, its response must hit any
initial state of a construction query. If the construction query was asked
before the primitive, A sees at best r − s bits of C1. Then, the probability
is at most qc · qp/2c+s.

3. If the primitive query was asked before the construction query, A can use
the nonce part of the primitive query’s result as a nonce. Though, a collision
needs the key part to be correct, which holds with probability at most 3qp/2k.

Over all possible options, we obtain

Pr [bad6] ≤
3qp
2k

+
qc · qp
2c+s

.

bad7: Multi-collision in the rate of w outputs of forward primitive

queries. Since π is chosen randomly from the set of all permutations, the out-
puts are chosen randomly from a set of size 2n − (i − 1) for the i-th primitive
query. So, the probability for w distinct queries to collide in their rate is at most
1/2r(w−1) as for bad7 in the NAEAD proof. Over all queries, the probability is
upper bounded by

Pr [bad7] ≤
(
qp
w

)
2r(w−1)

.

Chapter 3. Oribatida 45

bad8: Multi-collision in the rate of w outputs of backward primitive

queries. Following a similar argumentation as for bad7, we obtain

Pr [bad8] ≤
(
qp
w

)
2r(w−1)

.

Our bound in Lemma 3.3 follows from summing up all probabilities.

Lemma 3.4. Let τ ∈ GoodT. Then

Pr[Θreal = τ]

Pr[Θideal = τ]
≤ 1−

(
qd
2τ

+
qd(qp + σe)

2c+s
+

(σd + qd) · w
2c+s

)
.

Proof. It remains to lower bound the ratio of real and ideal probability of obtaining
a good transcript τ . Let τ = (τe, τd, τp) be an attainable transcript, where τd = ⊥all

contains only⊥ for all responses. Since all ciphertext-block outputs and all internal
chaining values in encryption queries are sampled independently and uniformly at
random, their probability is 1/2 per bit. We define σdistinct for the number of
distinct calls to the permutation over all encryption and decryption queries. In
the ideal world, it holds that

Pr [Θideal = τ] = Pr [K] · Pr [τe ∧ τp ∧ τd]

= Pr [K] · Pr [τe] · Pr[τp] · Pr[τd] =
1

2k
· 1

(2n)σdistinct
· 1

(2n)qp
· 1

since the outputs from encryption queries are sampled uniformly at random; so,
the encryption and decryption transcripts τe and τd are independent from τp.
In the real world, the probabilities for choosing K as key and π as permutation
are equal to those of the ideal world. We can separate the probability into

Pr [Θreal = τ] = Pr [K] · Pr [τe ∧ τp ∧ τd] =
1

2k
· Pr [τe, τd|τp] · Pr [τp]

since the encryption and the decryption transcript depend on the choice of the
permutation π. Let ⊤i denote that the i-th decryption query was a valid forgery.
We can upper bound

Pr [τe, τd|τp] · Pr [τp] ≤ Pr [τe|τp] · Pr [τp]−
(

qd∑
i=1

Pr [τe ∧ ⊤i|τp] · Pr [τp]
)

= Pr [τe|τp] · Pr [τp]− Pr [τe|τp] · Pr [τp] ·
(

qd∑
i=1

Pr [⊤i|τe|τp] · Pr [τp]
)

Chapter 3. Oribatida 46

= (Pr [τe|τp] · Pr [τp]) · (1− ϵ) , (3.1)

where we define

ϵ
def
=

qd∑
i=1

ϵi and ϵi
def
= Pr [⊤i|τe|τp] · Pr [τp] .

The probability of primitive queries is given by the fraction of all permutations π
that would produce τp, which is

Pr[τp] =
1

(2n)qp
,

as in the ideal world. The ciphertext blocks Ci
j from encryption queries as well as

the chaining values V i
j are results from the permutation π and hence, depend on

the permutation. Since τ is a good transcript, there are no undesired collisions,
e.g., between primitive and construction queries. Hence, all internally computed
values (U i

j ∥V i
j) – note that U i

j can be derived from Ci
j−ai⊕s lsbs(V

i
ρ(i,j−ai))⊕M i

j−ai

by the adversary – are results of fresh values or predefined in decryption queries
from the result of previous encryption queries. Then, the probabilities for the
outputs of π in construction queries are given by 1/(2n)σdistinct

. It is not difficult
to see that for positive σdistinct, the ratio of the interpolation probabilities from
Equation (3.1) can be bounded by

(Pr [τe|τp|Θreal] · Pr [τp|Θreal])

(Pr [τe|Θideal])
=

1
(2n)σdistinct

1
(2n)σdistinct

=
(2n)σdistinct

(2n)σdistinct

≥ 1 .

It remains to upper bound ϵ. For this purpose, we upper bound the values ϵi for
transcripts that contain forgeries. Since τ is a good transcript, we assume that
bad events do not hold. Hence, either ⊤i does not hold, which yields ϵi = 0;
in the opposite case, we have to consider a few mutually exclusive cases in the
following. We assume that there exists a decryption query (N i, Ai, Ci, T i) s. t.
T i is valid. In all cases, the tag can simply be guessed correctly if the block
(X i

ai+mi ∥Y i
ai+mi) is fresh. Then, the probability for the tag to be correct is 2−τ .

So, we can concentrate on the cases where it is non-fresh in the following. Prior,
we define (Xi1 , Xi2 , . . . , Xiw+1) as a w-chain if there exist (Yi1 , Yi2 , . . . , Yiw+1) s. t.
the following chain has been obtained from primitive queries:

π (Xi1 ∥Yi1) = (Ui2 ∥Vi2) = (Ui2 ∥Yi2) ,

Chapter 3. Oribatida 47

π (Xi2 ∥Yi2) = (Ui3 ∥Vi3) = (Ui3 ∥Yi3) ,
...

π (Xiw ∥Yiw) =
(
Uiw+1 ∥Viw+1

)
=
(
Uiw+1 ∥Yiw+1

)
.

The cases are:

• Case (A): N i is fresh; so, there is no earlier construction query i′ ̸= i s. t.
N i = N i′ .

• Case (B): N i is old, but (N i, Ai) is fresh, i.e., there exists no earlier con-
struction query i′ ̸= i with (N i, Ai) = (N i′ , Ai′).

• Case (C): (N i, Ai) is old, but (N i, Ai, Ci) is fresh, i.e., there exists no earlier
construction query i′ ̸= i with (N i, Ai, Ci) = (N i′ , Ai′ , Ci′), and no w-chain
of primitive queries is hit.

• Case (D): (N i, Ai, Ci) is old; (N i, Ai, Ci) a prefix of another construction
query.

• Case (E): (N i, Ai) is old and there exists a w-chain of primitive queries that
is hit.

Clearly, the cases cover all possible options. We assume that no previous bad

events occur, in particular, no w-multi-collisions or collisions with the primitive
queries occurred.

Case (A). We excluded bad6 in this case. The probability that (N i ∥K)⊕d dN

hits any block (X i′
j ∥Y i′

j) from another construction query so that the final block
is old is at most

Pr
[((

N i ∥K
)
⊕d dN

)
=
(
X i′

j ∥Y i′

j

)]
≤ σe

2c+s
.

Case (B). Let p ≤ ai +mi denote the length of the longest common prefix of
the i-th query with all other queries. In Case (B), the probability that any block
(X i

j ∥Y i
j) with j ≥ p+ 1 matches the permutation input of any other encryption-

query block or primitive query can be upper bounded by

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
≤ σe

2c+s
+

qp
2c+s

.

Chapter 3. Oribatida 48

Case (C). A similar argument as for Case (B) can be applied in Case (C). The
probability that there exists i′ ̸= i, s. t. for some block indices, it holds that (j, j′):
(X i

j ∥Y i
j) = (X i′

j′ ∥Y i′

j′) is at most 1/2c+s. So, it holds that

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
≤ σe

2c+s
+

qp
2c+s

.

Case (D). This case needs that (X i
ai+mi+1 ∥Y i

ai+mi+1) matches the permutation
input of any other encryption-query block or primitive query. The probability can
be upper bounded by

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
≤ σe

2c+s
+

qp
2c+s

.

Case (E). Assume that (X i
p+1 ∥Y i

p+1) hits a w-chain of primitive queries. Under
the assumption that no other bad events occurred, the probability is at most

Pr

[(
X i

p+1 ∥Y i
p+1

) ∣∣∣∣∣
8∧

i=1

badi

]
≤ (mi + 1) · w

2c+s
.

Over all decryption queries, we obtain

ϵ ≤
qd∑
i=1

(
1

2τ
+

σe
2c+s

+
qp
2c+s

+
(mi + 1) · w

2c+s

)
≤ qd

2τ
+
qd(qp + σe)

2c+s
+

(σd + qd) · w
2c+s

.

Our claim in Lemma 3.4 follows.

3.6 INT-RUP Analysis

We use the same notations as in Section 3.5, but add some. Let qd and σd be the
number of decryption queries and blocks over decryption queries, respectively, and
qv and σv the analogs for verification queries. We replace π $← Perm(B), assume
K

$← K, and denote Π[π]K for Oribatida with π and K.

Theorem 3.5 (INT-RUP Security of Oribatida). Let A be a nonce-respecting
adversary w.r.t. Π[π]K . Then

Adv
Π[π]K
INT-RUP(A) ≤

σ2
e

2n
+

4σeσd + 4σqp + qcqp + qp + r(σd + qd) + 3rqp
2c+s

+
q2d +

(
qd+qv

2

)
2c

+

(
qe
r

)
2τ(r−1)

+
3qp
2k

+
2
(
qp
r

)
2r(r−1)

+
2qv
2τ

.

Chapter 3. Oribatida 49

Proof. The INT-RUP analysis of Oribatida follows a similar strategy as our NAEAD

analysis. However, this time, the adversary has access to three oracles for encryp-
tion, decryption and verification. Moreover, the encryption and decryption oracles
are the same in both the real and the ideal world. Both worlds differ only in the
verification oracle. To alleviate the task, we replace the oracles for encryption
and decryption Ẽ [π]K , D̃[π]K with a pair of consistent pseudo-random oracles
$Ẽ [π] and $D̃[π] (we define our intent of consistency for encryption and decryption
in a moment). The advantage between both settings can be upper bounded by

∆A1

(
Ẽ [π]K , D̃[π]K , Ṽ [π]K , π±; $Ẽ , $D̃,⊥, π±

)
. Note that the oracles $Ẽ and $D̃ dif-

fer from the independent random oracles in the stronger RUPAE notion. In the
RUPAE notion, they sample independently from each other without consider-
ing common prefixes between queries, which would be impossible to achieve for an
online AE scheme. Again, we consider the H-coefficient approach. So, we define
several bad events and bad as well good transcripts. If any of the bad events occur,
the adversary aborts and is defined to win. Next, we consider the probability of
forgeries under those idealised oracles. So, we can exclude the previous bad events
and study the probability of forgeries. Finally, we study the ratio of interpolation
probabilities for good transcripts.

Sampling Consistently in the Online Phase. This online phase contains
much from the offline phase of the NAEAD analysis. We define the ideal encryp-
tion oracle as in the NAEAD proof: it samples the responses (Ci, T i) uniformly
at random from all bit strings of expected lengths for encryption queries. The
ideal decryption oracle, however, must sample plaintext outputs consistently. For
this purpose, the ideal encryption oracle has to sample also the internal chaining
values V i

j
$← {0, 1}c and U i

j
$← {0, 1}r uniformly at random for all construction

queries already in the online phase. It stores the values of Ci
j, V i

j , and U i
j also

internally, but does not release U i
j and V i

j in this phase.
On each input (N i, Ai, Ci, T i), the ideal decryption oracle looks up the length
of the longest common prefix of the query p← LCPN i,Ai

(Ci,Q) with all previous
queries Q. For all blocks in the common prefix 1 ≤ j ≤ p, it uses the same outputs
M i

j that have been fixed from previous queries. Since the oracle has sampled V i
p+1

for the (p+1)-th block, it can deduce all bits not fixed from previous query outputs.
Assume, i ̸= i′, (N i, Ai) = (N i′ , Ai′), and p = LCPN i,Ai

(Ci, Ci′) where p < mi,mi′ .
Then, Ci

p+1 = Ci
p+1 ⊕∆ is the block directly after the common prefix. Sampling

Chapter 3. Oribatida 50

V i
j and deriving U i

j ensures consistent sampling, i.e., M i
p+1 =M i′

p+1⊕∆ for all such
queries with non-empty common prefix.
Starting from the (p+2)-th block, the ideal decryption oracle samples the responses
M i

j
$← {0, 1}r, V i

j
$← {0, 1}c, and U i

j
$← {0, 1}r uniformly and independently at

random from the bit strings of expected lengths, for p + 2 ≤ j ≤ ai +mi. Note
that queries whose ciphertext lengths are not multiples of r bits are answered
consistently since the oracle samples V i

j , and all bits fixed from previous queries
are used. For verification queries, the ideal verification oracle always outputs ⊥.
For forward primitive queries Qi, the ideal oracle forwards π(Qi); for backward
primitive queries Ri, it returns π−1(Ri).

Offline phase. Here, the ideal oracle releases the internal chaining values (U i
j , V

i
j),

after the considered adversary made all queries, but before outputting the decision
bit. The ideal oracle also reveals a random key K $← K then.

Bad Events. Whenever we consider a non-trivial collision between blocks or
chaining values at block indices j, j′ of two messages, we assume that at least one
of them exceeds the longest common prefix.

• bad1: Non-trivial collision of permutation inputs in construction queries: ∃
(i, j) ̸= (i′, j′) with i, i′ ∈ [1 · · · qc], j ∈ [1 · · ·mi], and j′ ∈ [1 · · ·mi′] s.t.
(X i

j ∥Y i
j) = (X i′

j′ ∥Y i′

j′).

• bad2: Non-trivial collision of permutation outputs in construction queries:
∃ (i, j) ̸= (i′, j′) with i, i′ ∈ [1 · · · qc], j ∈ [1 · · ·mi], and j′ ∈ [1 · · ·mi′] s.t.
(U i

j ∥V i
j) = (U i′

j′ ∥V i′

j′).

• bad3: Multi-collision between w tags. For some w ≥ r, there exist i1, i2, . . . ,
iw with i1, i2, . . ., iw ∈ [1 · · · qe], s.t. T i1 = T i2 = . . . = T iw .

• bad4: Non-trivial collision of permutation inputs between construction and
primitive query: ∃ (i, j, i′) with i ∈ [1 · · · qc], j ∈ [1 · · ·mi], and i′ ∈ [1 · · · qp]
s.t. (X i

j ∥Y i
j) = Qi′ .

• bad5: Non-trivial collision of permutation outputs between construction and
primitive query: ∃ i ∈ [1 · · · qc], j ∈ [1 · · · ai + mi] and i′ ∈ [1 · · · qp] s.t.
(U i

j ∥V i
j) = Ri′ .

• bad6: Initial-state collision with a primitive query: ∃ i ∈ [1 · · · qc] and i′ ∈
[1 · · · qp] s.t. (X i

0 ∥Y i
0) = Qi′ .

Chapter 3. Oribatida 51

• bad7: Multi-collision in the rate of w outputs of forward primitive queries:
for some w ≥ r, ∃ i1, i2, . . ., iw ∈ [1 · · · qp] s.t. msbr(R

i1) = · · · = msbr(R
iw).

• bad8: Multi-collision in the rate of w outputs of backward primitive queries:
for some w ≥ r, ∃ i1, i2, . . ., iw ∈ [1 · · · qp] s.t. msbr(Q

i1) = · · · = msbr(Q
iw).

• bad9: Forgery in decryption queries if all blocks are old: There exists some
i ∈ [1 · · · qd] s.t. for all blocks 0 ≤ j ≤ ai +mi, there exist indices i′, j′ with
i′ ∈ [1 · · · qc], j′ ∈ [1 · · ·mi′] or i′ ∈ [1 · · · qp] s.t. (X i

j ∥Y i
j) = (X i′

j′ ∥Y i′

j′) or
(X i

j ∥Y i
j) = Qi′ and the tag is valid: msbτ

(
π
(
X i

ai+mi ∥Y i
ai+mi

))
= T i .

We denote by Θreal and Θideal random variables that represent the distribution
of transcripts in the real and the ideal world, respectively. We define BadT to
contain exactly the attainable transcripts τ for which at least one of the bad

events occurred. All other attainable transcripts are in GoodT. Then Pr[Θideal ∈
BadT] ≤ ∑8

i=1 Pr[badi]. The probability of bad transcripts in the ideal world is
treated in the proof of Lemma 3.6. The ratio of obtaining a good transcript is
bounded in Lemma 3.7. Our bound in Theorem 3.2 follows from those and the
fundamental Lemma of the H-coefficient Technique [54]. We apply w = r in the
bound of Lemma 3.6.

Lemma 3.6. Let w ≥ r be a positive integer. It holds that

Pr[Θideal ∈ BadT] ≤ σ2
e

2n
+

3σeσd + 3σqp + qcqp + qp + w(σd + qd) + 3wqp
2c+s

+
q2d +

(
qd+qv

2

)
2c

+

(
qe
w

)
2τ(w−1)

+
3qp
2k

+
2
(
qp
w

)
2r(w − 1)

+
qv
2τ
.

Proof. In the following, we upper bound the probabilities of the individual bad

events. For most of them, we differentiate between encryption and decryption
queries.

bad1: Collision of two permutation inputs in construction queries.

1. Among encryption queries only: Here, it holds that

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
≤ 2−n .

Since there exist
(
σe

2

)
block combinations, we obtain

(
σe

2

)
/2n.

2. Dec-then-Enc: If we consider an encryption query block to collide with a
block from a previous decryption query, the probability is at most 2−(c+s)

Chapter 3. Oribatida 52

since A can see r − s bits that it can use as the nonce. We have qeσd

combinations of such blocks. For the remaining σeσd blocks, the probability
is 2−n.

3. Among decryption queries only: w.l.o.g., we consider the first such collision.
If A modifies the nonce in the later following query, the bound is the same
as for encryption-only queries. So, we assume in the remainder of that the
later query is a decryption query. Let j − 1 be the first modified block and
assume it is in the message-processing part. If the block indices differ j ̸= j′,
the probability is 2−(c+s). Otherwise, assume j = j′ and Ai = Ai′ . Then, the
permutation output (U i′

j ∥V i′
j) is sampled randomly in the ideal world. If A

leaves Ci
j−ai = Ci′

j−ai , it automatically holds that

X i
j = Ci

j−ai ⊕ lsbs

(
V i
ρ(i,j−ai)

)
= X i′

j = Ci
j−ai ⊕ lsbs

(
V i
ρ(i,j−ai)

)
.

So, X i
j = X i′

j . With probability 2−c, it also holds for the capacity V i
j+1 = V i′

j+1

and thus Y i
j+1 = Y i′

j+1. Note that this approach holds only for the first
differing block, for which which yields a term of

(
qd
2

)
/2c. If the collision does

not hold, the masks beginning for the (j + 2)-th block will differ and the
probability decreases to 2−(c+s), which produces a term of

(
σd

2

)
/2c+s.

4. Enc-then-Dec: It remains to consider collisions between an encryption query,
followed by a decryption query. If the block indices j ̸= j′ differ, the proba-
bility is again 2−(c+s), for at most σe · σd combinations. Otherwise, if j = j′,
A can apply the strategy above for a collision. Then, the probability is 2−c;
though, the qd queries can collide at most with one encryption query each
since we consider the first collision, producing a term of qd/2c.

Over all cases, we obtain

Pr [bad1] ≤
(
σe

2

)
2n

+max
(qeσd
2c+s

+
σeσd
2c+s

+
qd
2c

)
+

(
σd

2

)
2c+s

+

(
qd
2

)
2c
≤
(
σe

2

)
2n

+
σeσd
2c+s

+

(
qd
2

)
2c

.

bad2: Collision of two permutation outputs in encryption construction

queries. This case is analogous to bad1. Over all combinations of indices, it
follows that

Pr [bad2] ≤
(
σe

2

)
2n

+
σeσd
2c+s

+

(
qd
2

)
2c

.

Chapter 3. Oribatida 53

bad3: Multi-collision on w tags from encryption queries. Since the tags
are sampled uniformly and independently at random in the ideal world, it holds
that

Pr
[
T i1
j1

= T i2
j2

= . . . = T iw
jw

]
≤

(
qe
w

)
2τ(w−1)

.

bad4: Collision of permutation inputs between a construction and a

primitive query. Again, we consider X i
j ← Ci

j−ai ⊕s lsbs(V
i
ρ(i,j−ai)) and Y i

j ←
V i
j ⊕ const, where const is a public constant. The values Ci

j−ai and V i
ρ(i,j−ai) are

sampled randomly, the values (X i
j ∥Y i

j) take any value with probability at most
2−n.

1. Assume, the primitive query was asked before the construction query. If the
construction query was in encryption direction, the collision probability for
fixed queries is at most 2−n, for qp · qc combinations.

2. Otherwise, if the construction query was a decryption query, A can see r− s
bits. Hence, the probability is at most 2−(c+s), for qp · qc combinations.

3. The same argument can be applied in the case when the primitive query was
asked after a decryption query. Then, the adversary can see r− s unmasked
bits of the rate from Ci

j. Again, the probability is at most 2−(c+s) and we
have qp · qc combinations.

4. If the primitive query was asked after an encryption query, then the latter
produced a tag. If the primitive query targets any other block, the argument
is the same as in Case 3. If the primitive query starts from the tag, the
adversary sees τ − s unmasked bits. Assuming bad3, there are at most w
equal tags over all encryption queries. So, the probability for a collision is
2−(c+s), for w · qp combinations.

Over all combinations of indices, it follows that

Pr
[
bad4|bad3

]
≤ max

(σe · qp
2n

,
σe · qp
2c+s

)
+
σd · qp
2c+s

+
w · qp
2c+s

≤ σ · qp
2c+s

+
w · qp
2c+s

.

bad5: Collision of permutation outputs between a construction and a

primitive query. Again, U i
j+ai can be derived from M i

j ⊕Ci
j ⊕s lsbs(V

i
ρ(i,j)); the

values Ci
j and V i

ρ(i,j) are sampled randomly. This case is similar as bad4. Over all

Chapter 3. Oribatida 54

index combinations

Pr
[
bad5|bad3

]
≤ max

(σe · qp
2n

,
σe · qp
2c+s

)
+
σd · qp
2c+s

+
w · qp
2c+s

≤ σ · qp
2c+s

+
w · qp
2c+s

.

bad6: Initial-state collision with a primitive query. Here, we distinguish
between the cases whether the construction query was asked before or after the
primitive query and whether the primitive query was in forward or backward
direction.

1. Assume, the primitive query was asked after the construction query. If the
primitive query was a forward query, it must hit the correct value of K⊕ddN .
This probability is at most qp/2k to collide when considering encryption
construction queries. Considering also decryption queries, a nonce can repeat
often; though, the initial state can take three different values for the same
nonce, namely if the decryption query changes the length of associated data
and message, affecting dN . Since there exist at most three distinct values for
dN , the probability to collide is at most 3qp/2

k.

2. If the primitive query was in backward direction, its response must hit any
initial state of a construction query. If the construction query was asked
before the primitive, A sees at best r − s bits of C1. Then, the probability
is at most qc · qp/2c+s.

3. If the primitive query was asked before the construction query, A can use the
nonce part of the primitive query’s result as the nonce. However, a collision
must hit the key part, which holds with probability at most 3qp/2

k.

4. If the primitive query was in backward direction, A sees at best r− s bits of
C1. Then, there is at most one starting state, assuming bad1, which yields
qp/2

c+s.

Over all possible options, we obtain

Pr
[
bad6|bad1

]
≤ 3qp

2k
+max

(qc · qp
2c+s

,
qp
2c+s

)
≤ 3qp

2k
+
qc · qp
2c+s

+
qp
2c+s

.

bad7: Multi-collision in the rate of w outputs of forward primitive

queries. Since π is chosen randomly from the set of all permutations, the out-
puts are sampled uniformly at random from a set of size at least 2n − (i − 1) for

Chapter 3. Oribatida 55

the i-th query. So, the probability for w distinct queries to collide in their rate is
upper bounded by

2c − 1

2n − 1
· 2

c − 2

2n − 2
· · · · · 2

c − (w − 1)

2n − (w − 1)
=

w−1∏
i=1

2c − i
2n − i ≤

(
2c

2n

)w−1

= 2−r(w−1) .

Over all primitive query indices, it holds that

Pr [bad7] ≤
(
qp
w

)
2r(w−1)

.

bad8: Multi-collision in the rate of w outputs of backward primitive

queries. Using a similar argumentation as for bad7, we obtain

Pr [bad8] ≤
(
qp
w

)
2r(w−1)

.

bad9: Forgeries if all blocks are old. It remains to bound the probability
of a successful forgery of a verification query (N i, Ai, Ci, T i) s. t. T i is valid and
where each block is old.
We consider the same five mutually exclusive cases as in the NAEAD proof. In
all cases, the tag can simply be guessed correctly if the block (Xai+mi ∥Y ai+mi

) is
fresh. Then, the probability for the tag to be correct is upper bounded by 2−τ .
We adopt the cases and the notions from the NAEAD proof and assume that no
previous bad events occur, in particular no w-multi-collisions described earlier or
collisions with primitive queries.

• Case (A): N i is fresh; so, there is no earlier construction query i′ ̸= i s. t.
N i = N i′ .

• Case (B): N i is old, but (N i, Ai) is fresh, i.e., there exists no earlier con-
struction query i′ ̸= i with (N i, Ai) = (N i′ , Ai′).

• Case (C): (N i, Ai) is old, but (N i, Ai, Ci) is fresh, i.e., there exists no earlier
construction query i′ ̸= i with (N i, Ai, Ci) = (N i′ , Ai′ , Ci′), and no w-chain
of primitive queries is hit.

• Case (D): (N i, Ai, Ci) is old; (N i, Ai, Ci) is a prefix of another construction
query.

• Case (E): (N i, Ai) is old and there exists a w-chain of primitive queries that
is hit.

Chapter 3. Oribatida 56

Clearly, the cases cover all possible options. We assume that no previous bad

events occur, in particular no w-multi-collisions described earlier or collisions with
primitive queries.

Case (A). We excluded bad4, i.e., collisions of permutation inputs between con-
struction and primitive queries in this case. The probability that (N i ∥K)⊕d dN

hits any block (X i′
j ∥Y i′

j) from another construction query so that the final block
is old is at most

Pr
[((

N i ∥K
)
⊕d dN

)
=
(
X i′

j ∥Y i′

j

)]
≤ σ + qp

2c+s
.

Cases (B)–(D). Let p ≤ ai+mi denote the length of the longest common prefix
of the i-th query with all other queries. The probability that any block (X i

j ∥Y i
j)

with j ≥ p+1 matches the permutation input of any other query block or primitive
query can be upper bounded analogously as bad1 and bad4:

Pr
[(
X i

j ∥Y i
j

)
=
(
X i′

j′ ∥Y i′

j′

)]
≤ σe + qd

2c+s
+
σe · σd
2c+s

+

(
qd
2

)
2c

+
σ · qp
2c+s

+
w · qp
2c+s

.

Over all verification queries, we obtain

Pr

[
bad9

∣∣∣∣∣
8∧

i=1

badi

]
≤ qv

2τ
+
σe · σd
2c+s

+

(
qd+qv

2

)
2c

+
σ · qp
2c+s

+
w · qp
2c+s

+
w · (σd + qd)

2c+s
.

Case (E). Assume that (X i
p+1 ∥Y i

p+1) hits a w-chain of primitive queries. Under
the assumption that no other bad events occurred, the probability is at most

Pr
[(
X i

p+1 ∥Y i
p+1

)]
≤ (mi + 1) · w

2c+s
.

Over all verification queries, we obtain

Pr

[
bad9

∣∣∣∣∣
8∧

i=1

badi

]
≤ qv

2τ
+
σe · σd
2c+s

+

(
qd+qv

2

)
2c

+
σ · qp
2c+s

+
w · qp
2n−τ

+
w · (σd + qd)

2c+s
.

Our bound in Lemma 3.6 follows from summing up all probabilities.

Lemma 3.7. Let τ ∈ GoodT. Then

Pr[Θreal = τ]

Pr[Θideal = τ]
≤ 1−

(
qd
2τ

+
σd(σe + qp)

2c+s

)
.

Chapter 3. Oribatida 57

Proof. It remains to bound the ratio of the probabilities for obtaining a good tran-
script τ in the real and the ideal world, respectively. The bound is similar to that
of Lemma 3.4. The difference to the NAEAD proof is that the ideal decryption
oracle also generates pseudorandom output blocks M i

j beyond the longest com-
mon prefix. The NAEAD transcript also contained the sampled internal values,
as does the transcript τ here. Since we assume that no bad events have occurred,
we revisit the following cases for forgeries:

• Case (A): The final input to π, (X i
ai+mi ∥Y i

ai+mi) is fresh, i.e., has not
occurred before. Then, the probability that the authentication tag τ i is
valid is at most 1/2τ .

• Case (B): The final input to π, (X i
ai+mi ∥Y i

ai+mi) is old, but there exists
some block index j ∈ [1 · · · ai +mi] s. t. (X i

j ∥Y i
j) is fresh. Since the input

is old, the probability that the result of any of the next blocks is old is at
most (σ+qp)

2c+s .

• Case (C): There exists no j ∈ [1 · · · ai +mi] s. t. (X i
j ∥Y i

j) is fresh. The
probability that all of those blocks are old is at most mi(σe+qp)

2c+s .

It follows that

ϵi ≤
1

2τ
+
σe + qp
2c+s

+
mi(σe + qp)

2c+s
.

Over all indices i ∈ [1 · · · qd], it follows that

ϵ ≤
qd∑
i=1

ϵi ≤
qd
2τ

+
σd(σe + qp)

2c+s
.

Our claim in Lemma 3.7 follows.

3.7 Comparison with Lightweight INT-RUP-secure

Schemes

Among the submissions to the NIST lightweight cryptography project, ESTATE

[55], LAEM [56], LOTUS-AEAD and LOCUS-AEAD [57] claimed security in the
INT-RUP model. Among these modes, ESTATE, LOTUS-AEAD, and LOCUS-

AEAD were elected into the second round. This section compares our proposal to
those; Table 3.4 gives a summary.

Chapter 3. Oribatida 58

Table 3.4: Comparison of Oribatida with other INT-RUP-security claiming
submissions to the NIST lightweight cryptography project. n/t = block/tweak
length of the primitive, m = #message segments, sec. = security, IF = inverse-

free, •/– = feature is present/absent

Sizes (bits) Security Features

Construction |N | |K| |T | n t State Rate NAEAD INT-RUP 1-pass IF

Oribatida-192 (v1.2) [50] 64 128 96 192 0 288 96 89 48 • •
Oribatida-256 (v1.2) [50] 128 128 128 256 0 320 128 121 64 • •
Oribatida v1.3-192 [This work] 64 128 96 192 0 288 96 121 48 • •
Oribatida v1.3-256 [This work] 128 128 128 256 0 320 128 121 64 • •

ESTATE [55] 128 128 128 128 4 260 64 64 64 – •
LOCUS-AEAD [57] 128 128 64 64 4 324 32 64 64 • –

LOTUS-AEAD [57] 128 128 64 64 4 384 32 64 64 • •

3.7.1 Brief Description

ESTATE follows SIV [58]: the associated data and message are authenticated us-
ing a variant of CBC-MAC with a tweakable block-cipher before the tag is used
as an initial vector of CBC-like encryption. The intermediate values are used as
keystream and added to the message blocks. LOCUS-AEAD and LOTUS-AEAD

employ a variant of PMAC [59] to process the associated data with the tweak-
able block-cipher. For encryption, LOTUS-AEAD uses a variant of OTR [60], a
two-round, two-branch Feistel structure to process the message in double blocks.
LOCUS-AEAD employs an encryption similar to OCB [61] and EME/EME∗ [62].
Both LOCUS-AEAD and LOTUS-AEAD employ a single pass over the message for
encryption, but two calls to the primitive per message block. The intermediate
values are summed to the associated data hash and the final message block; the
encrypted sum yields the tag.

3.7.2 Efficiency

Oribatida processes 96- or 128-bit message blocks per primitive call, whereas the
size of the message processed in one primitive call is 64 bits for ESTATE and 32

for LOTUS-AEAD and LOCUS-AEAD. Thus, Oribatida offers higher throughput;
moreover, the state size of Oribatida (288 and 320 bits, respectively) is smaller
than those of LOTUS-AEAD (388 bits) and LOCUS-AEAD (324 bits). ESTATE has
a state size of 260 bits; all three must process the message with two calls to the
primitive. LOCUS-AEAD requires the inverse operation of the underlying block-
cipher to be available for the decryption. In sum, Oribatida possesses a smaller

Chapter 3. Oribatida 59

Mm

padr

Ua+m

Va+m

Cm

msb|Mm|

s

Va+m−1

lsbs

dE

d

Xa+m

Ya+m
P

T

(a) Oribatida v1.2 [50].

Mm

padr

Ua+m

Va+m

Cm

msb|Mm|

s

Va+m−1

lsbs

dE

d

Xa+m

Ya+m
P

m
sb

τ T

Va+m

lsbτ

(b) Oribatida v1.3.

Figure 3.4: Tag generation of Oribatida

state size than LOCUS-AEAD and LOTUS-AEAD, and higher NAEAD security, as
well as a higher rate, compared to its INT-RUP-secure competitors.

3.7.3 Security

All three competitors are based on tweakable block-ciphers, with INT-RUP claims
limited by the birthday bound of the internal primitive. ESTATE inherits INT-

RUP security until the birthday bound from SIV, which has been considered in
[20, Section 6.2]. While LOCUS-AEAD and LOTUS-AEAD share similarities to
OCB and OTR, they use intermediate checksums as in EME designs in the tag-
generation process. Informally, modifying any message block will result in new
pseudorandom internal values and therefore a pseudorandom input to the tag
computation.

3.8 Discussion of the Updated Variant Oribatida

v1.3

This section discusses the update from Oribatida (v1.2) from [50] to Oribatida

v1.3 in this chapter, that addresses the observation by Rohit and Sarkar [49] in a
straight-forward manner. Here, we briefly discuss only the differences:

1. Oribatida v1.2 released the tag without masking. As a consequence, the ad-
versary has seen the full rate and had to guess only the n−τ -bit hidden part
to be able to invert the encryption process. To avoid this attack, Oribatida

v1.3 masks the tag such that the adversary sees τ − s bits if s ≤ τ , which
restores the complexity from q/2n−τ to q/2c+s. Figure 3.4 illustrates both

Chapter 3. Oribatida 60

0 20 40 60 80 100 120 140 160 180
Data log2(σ)

0

20

40

60

80

100

120

140

T
im

e
lo

g
2
(q
p
)

nAE Oribatida-192-96

nAE Oribatida-256-64

Int-RUP Oribatida-192-96

Int-RUP Oribatida-256-64

NIST security

NIST data limit

(a) Oribatida v1.2 [50]

0 20 40 60 80 100 120 140 160 180
Data log2(σ)

0

20

40

60

80

100

120

140

T
im

e
lo

g
2
(q
p
)

nAE Oribatida-192-96

nAE Oribatida-256-64

Int-RUP Oribatida-192-96

Int-RUP Oribatida-256-64

NIST security

NIST data limit

(b) Oribatida v1.3

Figure 3.5: Security of Oribatida using qc = 250

tag-generation processes for comparison. The masking of the authentica-
tion tag is performed exactly as for ciphertext blocks, which streamlines this
process.

2. Oribatida v1.2 employed two permutations P and P ′, where the latter was
intended to be a more efficient variant of the former. In practice, P ′ was
instantiated with a round-reduced version of P , which was only used for
processing intermediate blocks of associated data. This was fine since an
upper bound on the probability of differentials was sufficient for security
and not pseudo-randomness. Oribatida v1.3 unified the process and uses P
at every location.

3. Oribatida v1.2 used a different starting value V0 for masking the ciphertexts
when the associated data was empty and V1 otherwise. The reason was
simply efficiency since empty associated data did not yield a value V1. In
contrast, Oribatida v1.3 always pads the associated data such that there
always exists an intermediate value V1 that is not used as capacity in the
message-processing step. This decision implies a slightly lower throughput
for empty associated data but adds unification.

4. As a result of Aspect (3), Oribatida v1.3 uses slightly different and more
domains to properly address also the additional case when the associated
data was empty.

Among all changes, only Aspect (1) is crucial. All further aspects helped unify
the design. The security effect of the additional tag masking is illustrated in
Figure 3.5 for the maximum number of qc = 250 construction queries as in the

Chapter 3. Oribatida 61

NIST guidelines. One can observe that it salvages the NAEAD security of the
192-bit version of Oribatida v1.3. Note that the figure cannot illustrate that many
primitive (offline) queries to the permutation are in practice much easier to obtain
than construction queries.

3.9 Instantiation of Oribatida

This section specifies the permutation SimP. From a high-level view, SimP is a
variant of the domain extender Ψr by Coron et al. [63]. We define SimP to use a
round-reduced variant of the Simon [64] block-cipher and its key schedule through
four such steps. We briefly recall Ψr before we describe the details of Simon,
provide an overview of existing cryptanalysis, and close with a discussion of the
implications on SimP.

3.9.1 The Ψr Domain Extender

The Ψr family is a two-branch Feistel-like network that consists of r calls to (pair-
wise independent) block-ciphers. An illustration of Ψ4 is given at the top of Figure
3.6. Let BlockCipher(K,B) denote the set of all block-ciphers over B with key space
K. For Ψr, π1, π2, . . . , πr ∈ BlockCipher(Fn

2 ,Fn
2) are pairwise independent block-

ciphers which use one branch Ri as state input, and the other one, Li, as secret key.
Coron et al. provide statements on the indifferentiability of their constructions.

Theorem 3.8 ([63]). Let π1, π2, π3
$← BlockCipher(Fn

2 ,Fn
2) be pairwise indepen-

dent block-ciphers. The three-step construction Ψ3 with an ideal block-cipher is
(tD, tS, q, ϵ)-indifferentiable from an ideal cipher with tS = O(qn) and ϵ = 5q2/2n.

Intuitively, it follows that a four-step construction with a fourth independent block-
cipher π4

$← BlockCipher(Fn
2 ,Fn

2) inherits at least the security of the three-step
construction.

3.9.2 Φr: A Variant of Ψr That Includes The Key Schedule

The Ψr construction has to store the state that is transformed through the block-
cipher πi’s state transformation, plus the key of the current step. Internally, the
block-ciphers πi also have to expand the secret key to subkeys that add to the
total memory requirement. We propose a variant that avoids the need to store the
current secret key input. For this purpose, we define the key-schedule permutation

Chapter 3. Oribatida 62

L0

R0

L4rs

R4rsπ1 π2 π3 π4

Lrs L2rs L3rs

Rrs R2rs R3rs

L0

R0

L4rs

R4rs

φ1 φ2 φ3 φ4

π1 π2 π3 π4

Lrs L2rs L3rs

Rrs R2rs R3rs

Figure 3.6: Top: The construction Ψ4 [63]. The blocks πi denote block-ciphers
over Fn

2 with key space Fn
2 . Bottom: High-level view of the construction Φ4

as a variant of Ψ4. The blocks φi represent the key schedules that produce the
subkeys and which are externalised from the block-ciphers πi in Φ4. φi feeds the
subkeys to πi and outputs the final subkey Krs to become the next value Rirs .

φi : Fn
2 → Fn

2 that takes an initial key K as input and outputs the subkeys
K0, . . . , Krs for fixed number of rounds rs of πi. An illustration is given at the
bottom of Figure 3.6. Hereafter, we call the construction Φr when it consists of r
steps in total. Note that Φr omits the final swap of the halves for simplicity and
since it does not affect the security.

3.9.3 Simon

The Simon family of block-ciphers [64] belongs to the lightest block-ciphers in
terms of hardware area and energy efficiency. Its round function consists of only an
XOR, three bit-wise rotations, and a bit-wise AND, which renders it particularly
lightweight and flexible. Moreover, Simon has been analysed intensively since
its proposal; among others, e.g., [65–69] studied the security of Simon-96-96 and
Simon-128-128. Considerably, more works targeted the smaller-state variants of
Simon, which has recently been standardised as part of ISO/IEC 29167-21:2018
[70]. For concreteness, Simon-96-96 uses a word size w = 48 bits and employs 52

rounds, whereas Simon-128-128 uses w = 64 bits and 68 rounds.

3.9.4 The SimP-n-θ Family of Permutations

SimP is an instantiation of Φ4 that tries to adhere to the standard as close as pos-
sible, SimP-192 employs the round-reduced Simon-96-96 as π and its key schedule
as φ. To form a 256-bit permutation, SimP-256 uses Simon-128-128 with its key

Chapter 3. Oribatida 63

Xi
0 Xi

1 Xi
2 Xi

3

Xi+1
0 Xi+1

1 Xi+1
2 Xi+1

3

Xi
1

c⊕ zi

≫ 3

≫ 4

≪ 1

≪ 8

≪ 2

∧

Figure 3.7: One iteration of the round function of SimP, which is equivalent
to the key-update function (left) and the state-update function (right) of Simon-

2w/2w, where w is the word size

schedule. One iteration of the round function of Simon-2w-2w and its key-update
function side by side, as is used in SimP-n, is illustrated in Figure 3.7. Internally,
the state of SimP-n-θ consists of four w-bit words (X i

0, X
i
1, X

i
2, X

i
3), where the su-

perscript index i indicates the state after Round i. We denote by rs the number
of rounds per step, and index the steps from 1 to θ, and the rounds from 1 to
θ · rs. The plaintext is denoted as (X0

0 , X
0
1 , X

0
2 , X

0
3); the ciphertext is given as

(Xθrs
0 , Xθrs

1 , Xθrs
2 , Xθrs

3).
After Round rs, the state halves (Xrs

0 , X
rs
1) and (Xrs

2 , X
rs
3) are swapped; similarly,

they are swapped also after Round 2rs, . . . , θrs. One round of the permutation is
illustrated in Figure 3.7. Thus, SimP-192-θ uses Simon-96-96 and consists of four
48-bit words. SimP-256-θ employs the round function and the key-update function
of Simon-128-128 as a 256-bit permutation. For SimP-256-θ, the state consists of
four 64-bit words.

3.9.4.1 Round Function

Let w be a positive integer for the word size. for SimP-192, w = 48 bits; for
SimP-256, w = 64 bits. Let f : F2w → F2w and g : F2w → F2w be defined as

f(x)
def
= (x≪ 8) ∧ ((x≪ 1)⊕ (x≪ 2)) and

g(x)
def
= (x≫ 3)⊕ (x≫ 4) .

3.9.4.2 Key-update Function

Let φj : (F2w)
2 → (F2w)

2, for 1 ≤ j ≤ θ be key-update functions. Let ℓ = (j−1)·rs.
On input (Xℓ

0, X
ℓ
1), it derives rs keys (Xℓ+i

0 , Xℓ+i
1), for 1 ≤ i ≤ rs, as

Xℓ+i
0 ← Xℓ+i−1

1 ⊕ g(Xℓ+i−1
0)⊕ c⊕ zℓ+i−1 and Xℓ+i

1 ← Xℓ+i−1
0 ,

Chapter 3. Oribatida 64

for 1 ≤ i ≤ rs. Note that c = 0xff...ffc is a w-bit constant.

3.9.4.3 State-update Function

We define the state-update function as π : (F2w)
rs × (F2w)

2 → (F2w)
2, where the

first input considers the expanded subkeys. Let ℓ = (j − 1) · rs. It takes rs round
keys (Xℓ

0, . . . , X
ℓ
rs−1) as key input, as well as (Xℓ

2, X
ℓ
3) as state input, and computes

(Xℓ+rs
2 , Xℓ+rs

3) recursively as:

Xℓ+i
2 ← f(Xℓ+i−1

2)⊕Xℓ+i−1
3 ⊕Xℓ+i−1

1 and Xℓ+i
3 ← Xℓ+i−1

2 ,

for 1 ≤ i ≤ rs.

3.9.4.4 Step Function

Let ρj : F4
2w → F4

2w denote the step function, for 1 ≤ j ≤ θ. Define Li = (X i
0, X

i
1)

and Ri = (X i
2, X

i
3). The step transforms (Li, Ri) = (X i

0, X
i
1, X

i
2, X

i
3) into (X i+rs

0 ,
X i+rs

1 , X i+rs
2 , X i+rs

3) as

(Lrs , Rrs) = (X i+rs
0 , X i+rs

1 , X i+rs
2 , X i+rs

3)

ρj(X
i
0, X

i
1, X

i
2, X

i
3)

def
= (πj(X

i
2, X

i
3), φj(X

i
0, X

i
1)),

for 1 ≤ j < θ. One exception is the final step ρθ, which omits the final swap of
the halves:

ρθ(X
i
0, X

i
1, X

i
2, X

i
3)

def
= (φθ(X

i
0, X

i
1), πθ(X

i
2, X

i
3)).

SimP-n-θ takes a plaintext (X0
0 , X

0
1 , X

0
2 , X

0
3) as input and outputs (Lr, Rr) =

(Xr
0 , X

r
1 , X

r
2 , X

r
3), with r = θrs as ciphertext.

3.9.4.5 Round Constants

The round constants are those of Simon-96-96 and Simon-128-128 [64], respectively.
It holds that c = 0xff...ffc, i.e., all w bits except for the least significant two
bits are 1. More precisely, for w = 48, it holds that

c = (1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100)2.

Chapter 3. Oribatida 65

Table 3.5: Parameters of SimP

Word size #Steps #Rounds/Step

Variant (w) (θ) (rs)

SimP-192-4 48 4 26

SimP-256-4 64 4 34

For w = 64, it holds that c =

(1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100)2.

For both SimP-192 and SimP-256, the constants z = z0z1 . . . z61 are defined as

z = (10 1011 1101 1100 0000 1101 0010 0110 0010 1000 0100 0111 1110 0101 1011 0011)2.

The sequence has a period of 62, so zi = zi mod 62, for non-negative integers i. Note
that the order of the bits zi is reversed.

3.9.4.6 Number of Steps θ

We consider only the choice of θ = 4 everywhere in our proposed construction.

3.9.4.7 Number of Rounds

SimP-192-4 consists of rs = 26 rounds for each step, and therefore performs r =

4 · rs = 104 rounds in total. SimP-256-4 consists of rs = 34 rounds for each block,
and therefore performs r = 4 · rs = 136 rounds in total. For simplicity, we also
denote SimP-n-4 as SimP-n. The algorithm of SimP-n-θ is given in Algorithm 3
and the parameters of SimP-n-θ are given in Table 3.5.

3.9.4.8 The Byte Order in Oribatida

For the sake of clarity, Figure 3.8 visualises the byte and word order of the in-
puts. Let SB denote the state S in bytes; for more clarity, we further write
this ordering in type-writer font. The rate consists of the first r/8 bytes of the
state: SB[0], ..., SB[r/8 - 1]. The capacity represents the last c/8 bytes
SB[r/8], ..., SB[n/8 - 1]. Similarly, the rate of the state consists of the first
words of the permutation input. If the state is interpreted as an n-bit value, the
initial Byte 0 contains the most significant eight bits: SB[0] = (S[n − 1], S[n −

Chapter 3. Oribatida 66

Algorithm 3 Specification of SimP-n-θ
101: function SimP-n-θ(M)
102: X0

0X
0
1X

0
2X

0
3 ←w M

103: for i← 1 · · · θ do
104: for j ← 1 · · · rs do
105: ℓ← (i− 1) · rs + j
106: Xℓ

0 ← Xℓ−1
1 ⊕g(Xℓ−1

0)⊕c⊕zℓ−1

107: Xℓ
1 ← Xℓ−1

0

108: Xℓ
2 ← Xℓ−1

3 ⊕ f(Xℓ−1
2)⊕Xℓ−1

1

109: Xℓ
3 ← Xℓ−1

2

110: if i ̸= θ then
111: (Xℓ

0, X
ℓ
1, X

ℓ
2, X

ℓ
3) ←

swap(Xℓ
0, X

ℓ
1, X

ℓ
2, X

ℓ
3)

112: C ← (Xθrs
0 ∥Xθrs

1 ∥Xθrs
2 ∥Xθrs

3)
113: return C

121: function f(X)
122: return ((X ≪ 1) ∧ (X ≪ 8))
123: ⊕(X ≪ 2)

131: function g(X)
132: return (X ≫ 3)⊕ (X ≫ 4)

141: function swap(X0, X1, X2, X3)
142: return (X2, X3, X0, X1)

P

X0
0

X0
1

X0
2

X0
3

Xθrs
0

Xθrs
1

Xθrs
2

Xθrs
3

L0

R0

Lθrs

Rθrs

X
j ∥

Y
j

U
j+

1 ∥
V
j+

1

0,1,...,
n8 −

1

Byte order

Figure 3.8: Byte and word orientation of inputs into and outputs from SimP
as used in Oribatida

2], . . . , S[n − 8]). On the other side, the least significant eight bits are stored in
Byte SB[n/8 - 1]: SB[n/8 - 1] = (S[7], S[6], . . . , S[0]).
So, the rate is used first as input to the key-update function; the capacity is used
as input to the state-update function.

Remark 3.9. Instantiating a scheme proven in an idealised model such as indif-
ferentiability with a symmetric-key primitive is almost always a heuristic: there
simply exist few provably secure instantiations. Using the full Simon-2w-2w for
each step would be an option for a more secure, but considerably less performant
scheme. Concerning SimP, our approach follows the prove-then-prune strategy
from AEZ [71]. However, after replacing each step by at least half of the number
of rounds, and always using four steps, our approach is far less aggressive than it,
as outlined above, and seems to provide a sufficient security margin.

3.10 Security of SimP

The number of steps and rounds of SimP was chosen to resist known cryptanalysis
techniques. This section provides a rationale for our choices from the existing

Chapter 3. Oribatida 67

works.

3.10.1 Requirements

Oribatida with a random permutation aims at NAEAD security of O(rσd/2c+s) and
INT-RUP security of O(q2d/2c) in the ideal-permutation model. The advantage
of those bounds should be much higher than the complexity to recover or predict
the key. An instantiation of P must be free of distinguishing properties that allow
us to distinguish it from a random permutation with non-negligible advantage
and << 2n queries. This strengthens the adversary compared to the use of P
in Oribatida. There, it can inject nonce, associated data, or message blocks only
into the rate and can observe ciphertext and tag outputs also only from that part,
but masked. Concretely, we require from P the absence of (truncated, higher-
order) differential characteristics with probability ≥ 2−n, linear approximations
with squared correlation ≥ 2−n, or component functions of degree < n in SimP-4.
Moreover, we require the absence of impossible-differential, zero-correlation, or
integral distinguishers in SimP-4. However, we disregard rebound or other forms
of inside-out attacks that are inapplicable in Oribatida, or splice-and-cut attacks
when using SimP as a compression function.

3.10.2 Existing Cryptanalysis on Simon

Various works analysed the Simon family of block-ciphers since its proposal.

3.10.2.1 Differential Cryptanalysis

Cryptanalysis that appeared early after the proposal of Simon followed mainly
heuristics for differential cryptanalysis: Abed et al. [65] followed a heuristic
branch-and-bound approach that yielded differentials for up to 30 rounds of Si-

mon-96. Biryukov et al. [72] studied more efficient heuristics, but considered
the small variants with state sizes up to 64 bits. Dinur et al. [73] showed that
distinguishers on Simon with k key words can be extended by at least k rounds.
Interestingly, boomerangs seemed to be less a threat to Simon-like ciphers than
pure differentials.
Kölbl et al. [74] redirected the research focus to the search for optimal character-
istics. More recently, Liu et al. [67] employed a variant of Matsui’s algorithm [75]
to find optimal differential characteristics. They found that characteristics with
probability higher than 2−96 covered at most 27 rounds. Moreover, they found

Chapter 3. Oribatida 68

at best 31-round differentials with an accumulated probability higher than 2−96,
i.e., of probability 2−95.34. For Simon-128, they showed that optimal differential
characteristics covered at most 37 rounds and found 41-round differentials with a
cumulative probability of 2−123.74.

3.10.2.2 Linear Cryptanalysis

Linear cryptanalysis is similarly effective for Simon-like ciphers as its differential
counterpart. Alizadeh et al. [76, 77] reported multi-trail linear distinguishers on
all variants of Simon. For Simon-96-96, they proposed a distinguisher on up to 31

rounds that could be extended by two rounds in a key-recovery attack. Similarly,
they reported a 37-round distinguisher for Simon-128-128 that could be extendable
by two rounds. Chen and Wang [66] proposed improved key-recovery attacks with
the help of dynamic key guessing. To the best of our knowledge, their attacks
are the most effective ones for our considered variants in terms of the number
of covered rounds, with up to 37 rounds of Simon-96-96 and up to 49 rounds of
Simon-128-128 in theory.
Similar as for differentials, Liu et al. studied also optimal linear approximations
[78]. They found that the optimal linear approximations can reach at most 28

rounds for Simon-96, and at most 37 rounds for Simon-128. Moreover, they deter-
mined linear hulls with potential of 2−93.8 for 31 rounds of Simon-96, and 2−123.15

for 41 rounds of Simon-128.

3.10.2.3 Integral, Impossible-differential, and Zero-correlation Distin-

guishers

Integral attacks cover at most 22 rounds for Simon-96-96 and 26 rounds of Simon-
128-128. Initially, Zhang et al. [80] found integral distinguishers on up to 21 and
25 rounds for Simon-96 and Simon-128. Their results were extended by one round
each by Xiang et al. [69], and later by Todo and Morii [81]. The latter could show
the absence of integrals for 25-round Simon-96, which was confirmed by Kondo et
al. [82].
The maximal number of rounds that impossible-differential and zero-correlation
distinguishers can cover is given by at most twice the length of the maximal dif-
fusion. From the results by Kölbl et al. [74], full diffusion is achieved by 11

rounds for Simon-96 and 13 rounds for Simon-128-128. So, impossible-differential
and zero-correlation distinguishers can cover at most 22 and 26 rounds in the
single-key setting.

Chapter 3. Oribatida 69

Table 3.6: Existing results of best distinguishers and best key-recovery attacks
on Simon-96 in the single-key setting. – = not given; Pr. = probability; Pot. =

linear potential; Deg. = degree

Type #Rounds Time Data Pr./Pot./Deg. Ref

Simon-96-96 Distinguishers
Algebraic 14 – 20 CPs – [68]
Integral 22 295 295 CP 95 [69]
Differential 30 – – 92.2 [65]
Differential 31 – – 95.34 [67]
Linear 31 – – 93.8 [78]

Simon-96-96 Key-recovery Attacks
Multiple Linear 33 294.42 294.42 KP 94.42 [79]
Linear Hull 37 288.0 295.2 KP 95.2 [66]

Simon-128-128 Distinguishers
Algebraic 16 – 20 CP – [68]
Integral 26 2126 2126 CP 126 [69]
Linear 37 – – 128 [79]
Differential 41 – – 123.74 [67]
Linear Hull 41 – – 123.15 [78]

Simon-128-128 Key-recovery Attack
Linear Hull 49 2127.6 2127.6 CP 126.6 [66]

3.10.2.4 Related-key Distinguishers

Kondo et al. [82] searched for iterative key differences in Simon. This allowed them
to extend previous results by four to 15 rounds. For Simon-96-96, the authors found
iterative key differentials for up to 20 rounds. It remains unclear if this yields an
impossible differential; in the best case, a key-iterated 20-round distinguisher could
be extended by 2+ 2+ 2 wrapping rounds: two more blank rounds where one key
word is not used, plus two rounds where the key difference can be canceled by
the state differences, plus two outermost rounds since the result of the non-linear
function is independent of the key and therefore predictable in Simon. So, an
impossible-differential distinguisher could cover up to 26 rounds. Though, such an
upper bound has not been formulated to an attack on the here-considered versions
by Kondo et al.; therefore, it is not contained in the overview in Table 3.6.

Chapter 3. Oribatida 70

Table 3.7: Probabilities of optimal related-key differential characteristics for
round-reduced variants of Simon-96-96 and Simon-128-128. p denotes the prob-

ability; SK = single-key model, RK = related-key model

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Rounds 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Simon-96-96

− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96

− log2(p) (RK) 0 2 4 10 12 18 20 26

Simon-128-128

− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96 98 104 108 114 116 122 124 126 128

− log2(p) (RK) 0 2 4 10 12 18 20 26

3.10.2.5 Algebraic Cryptanalysis

Algebraic attacks are unlikely to be a threat to Simon-like constructions for suffi-
ciently many rounds. Raddum [68] pointed out that the large number of rounds
is necessary. He demonstrated that the equation systems for up to 14 rounds of
Simon-96-96 and up to 16 rounds of Simon-128 can be solved efficiently in a few
minutes on an off-the-shelf laptop. Extensions to considerably more rounds are
still unknown.

3.10.2.6 Meet-in-the-Middle Attacks

Meet-in-the-middle attacks are successful primarily on primitives that do not use
parts of the key in sequences of several rounds. The Simon-2w-2w versions use
every key bit in each sequence of two subsequent rounds, which limits the chances
of meet-in-the-middle attacks drastically. Considering 3-subset meet-in-the-middle
attacks, together with an initial structure and partial matching, the length of an
attack is limited to roughly that of twice the full diffusion plus four rounds plus the
maximal length of an initial structure plus two rounds for a splice-and-cut part,
which yields 30 rounds as a rough upper bound. It is unlikely that such attacks
cover 30 or more rounds on Simon-2w-2w.

Chapter 3. Oribatida 71

3.10.2.7 Correlated Sequences

An interesting recent direction may be correlated sequences introduced by Rohit
and Gong in [83]. Their technique requires only very few texts and claims to break
27 rounds of Simon-32 and Simeck-32; thus, it might outperform all previous at-
tacks by at least three rounds. Though, that approach needs further investigation
and has seen application only to Simon-32-64 until now.

3.10.3 Implications to SimP

Since the key schedule of Simon is fully linear, the two state words that are trans-
formed by the key schedule allow the prediction of differences, linear and algebraic
properties through a full step. In any case, SimP transforms each input word
through at least 2rs rounds of Simon.

3.10.3.1 Related-key Differential Cryptanalysis

SimP needs cryptanalysis of related-key differential and linear characteristics. Ex-
isting methods such as the exhaustive search in [67] or SAT solvers [74], render
such studies difficult due to the large state size since the known tools cannot
scale appropriately. There exist peer-reviewed related-key results on Simon, e.g.,
by Wang et al. [84]. For the sake of feasibility, they restricted their search to
related-key trails for the small variants, i.e., Simon-32, Simon-48, and Simon-64.
We conducted experiments using the SAT-based approach from [74] as well as with
the branch-and-bound approach from [67] to search for optimal differential char-
acteristics on SimP. Though, the related-key analysis of Simon-like constructions
is computationally difficult because of the large state size. We obtained improved
trails for only up to seven rounds of Simon-96; starting from eight rounds, the best
characteristics found possessed a zero key difference for up to 10 rounds, which
suggests that differences in the few key words do not improve the best single-key
characteristics. It seems that the probabilities of the existing optimal differential
characteristics and linear trails for Simon-96-96 and Simon-128-128 also hold for
SimP-192-1 and SimP-256-1 beyond that point. Table 3.7 compares the probabil-
ities of optimal single- and related-key differential characteristics.

3.10.3.2 Differential Distinguishers

Differential distinguishers are not expected to cover more than two steps. For
two steps, we can sketch the high-level idea for a potential distinguisher. Let

Chapter 3. Oribatida 72

L0

R0

A1 A2

L2rs

R2rs

φ1 φ2

π1 π2

α0 α0

0

αrs β0

0

βrs
βrs

Figure 3.9: Setting of a differential attack with the step-reduced instance of
SimP

α0, αrs , β0, βrs ∈ (Fw
2)

2. Let (α0, 0) → (β0, αrs) be a differential through one step
of SimP. α0 → αrs is a probability-one differential through rs rounds of the key-
update function φ1, and 0 → β0 the related-key differential through rs rounds of
the state-update function π1, keyed with K and K ⊕ α0, respectively. Assume,
p =def Pr[(α0, 0)→ (β0, αrs)] > 2−2w.
In the second step, the difference β0 is transformed to βrs linearly, i.e., Pr[β0 →
βrs] = 1. We can assume that β0 ̸= 0 and (β0, αrs) will be transformed to an output
difference (βrs , 0) after the second step with probability q ≈ 2−2w by approximating
π2 by a random permutation and using the Markov assumption and the random-
key hypothesis. In this case, it holds that

Pr
[
(α0, 0)

p−→ (β0, αrs)
2−2w

−−−→ (βrs , 0)
]
= p · 2−2w > 2−4w .

Since π1 is a round-reduced variant of Simon with 26 or 34 rounds, it is possible to
have such trails. This setting is illustrated in Figure 3.9. However, an adversary
would have to find a manyfold of related-key characteristics.

3.10.3.3 Integral and impossible-differential Distinguishers

Integral and impossible-differential distinguishers are possible for up to two steps
of SimP in general. We study an integral distinguisher in the following: Consider
a structure of texts (L0

i , R
0
i) that use pairwise distinct values R0

i and leave L0
i

constant. After the first step, the value Rrs
i is also constant for all texts and all

values Lrs
i are pairwise distinct. This property is preserved through the linear

key schedule to L2rs
i . However, the values of R2rs are, in general, unknown. Note

that there is no word swap after the second step. The third step destroys that
knowledge.

Chapter 3. Oribatida 73

Impossible-differential distinguishers can use a similar strategy, by setting ∆L0 = 0

and testing if ∆L2rs = 0, which is impossible. Again, note that there is no word
swap after the second step.

3.10.3.4 Cube-like Distinguishers

Cube (and integral) distinguishers exploit that the degree of some output-bit com-
ponent functions is lower than the state size. As discussed above, the degree of
each bit is at least w after more than 22 rounds for Simon-96 and more than 26

rounds for Simon-128. SimP transforms each input bit through at least two steps of
Simon, that consist of 26 rounds for Simon-96 and 34 rounds for Simon-128. While
two out of four steps do not increase the degree in the part that is used as the
key-update function, each bit is transformed through full-round Simon-96 or Si-

mon-192. Thus, cube-like and integral distinguishers are not expected to threaten
the security of SimP.

3.10.3.5 Number of Steps and Rounds of SimP

SimP benefits from the intensive existing cryptanalysis of Simon. The usage of the
key-update function of Simon seems to not promote considerably more effective
differential or linear distinguishers compared to the single-key results on Simon.
The usage of the 2w-word key appears not exploitable either by differentials and
linear characteristics or by techniques that try to benefit from a larger state, such
as meet-in-the-middle distinguishers. The reason seems to be mainly the diffusion
in the key schedule together with the relatively large number of rounds.
The number of steps and the number of rounds in our employed instantiations
of SimP have been chosen very conservatively, using the number of rounds per
step rs as half the number of rounds in Simon. This choice guarantees that each
bit passes at least once through the full-round cipher, and therefore is expected
to possess at least the algebraic degree of the full-round cipher. Moreover, the
diffusion properties of Simon render impossible-differential, zero-correlation, or
integral distinguishers implausible.
The design of SimP is very close to the original design of Simon. So, any consider-
able improvement in the cryptanalysis on SimP would most likely also be a higher
threat on Simon-2w-2w. While such results are not impossible, the higher number
of rounds in SimP provides an additional security margin.

Chapter 3. Oribatida 74

Table 3.8: Implementation results for SimP-256 and Oribatida-256-64 encryp-
tion/decryption and only encryption on Virtex 7 FPGA. LUTs = lookup tables;

Enc. = encryption; Dec. = decryption

Frequency Throughput

LUTs FF #Slices (MHz) Cycles (Mb/s)

SimP

SimP-256 495 340 148 580.51 137 542.37

SimP-192 383 259 122 581.98 105 532.10

Oribatida-256-64

Enc. and Dec. 940 599 298 554.16 138 514.00

Enc. only 805 595 253 560.71 138 520.08

3.11 FPGA Implementations

This section reports on FPGA implementations of SimP and Oribatida.

3.11.1 SimP

SimP is lightweight since its transformations are exactly the round function and the
key-update function of Simon-96-96 or Simon-128-128, respectively. Both trans-
formations are based on simple operations such as rotations, XORs, and ANDs
that consume only routing resources and bit-wise logical operations. The area in
GEs is approximately that of Simon-96 plus some overhead, which is caused by
the need for additional input to both transformations due to the swapping after
rs rounds.
Unprotected implementations of Simon are vulnerable against differential power
analysis attacks using the leakage generated by the transitions in the state register;
the Hamming-distance model captures such leakage. Masking – in particular,
Boolean masking (XORing a random value to the output of the round function) –
is one countermeasure that can be applied to Simon easily. The simple structure
of Simon components allows exploring other countermeasures such as unrolling
rounds to achieve higher-order side-channel resistance.
SimP can be implemented in different levels of serialisation, from fully serial im-
plementations that update only a single bit per cycle up to round-based imple-
mentations that update the full state in one clock cycle. Depending on the choice,
there is a broad implementation spectrum with a trade-off between throughput
and area.

Chapter 3. Oribatida 75

3.11.2 Oribatida

Hardware implementations of our proposed instance of Oribatida are relatively
straight-forward. It can be implemented efficiently with little extra cost compared
to the duplex sponge. Additional costs result from the use of a module to gen-
erate the constants for the domain separation, which can be held in ROM. In
modern FPGAs, this module takes only four look-up tables (LUTs). For domain
separation, only a four-bit XOR is necessary at the input to the capacity of the
permutation. An additional 64-bit register to store a mask and a 64-bit XOR to
add the mask to the ciphertext are required.
The use of SimP as its main building block allows us to directly transfer the same
strategy of using different data-path sizes to Oribatida. Thus, the implementer can
choose among various trade-offs between throughput, latency, area, and power
consumption.
In terms of side-channel resistance, the same aspects that hold for SimP also hold
for Oribatida. Thus, Oribatida does not introduce additional weaknesses of side
channels. Table 3.8 lists our implementations results obtained from Xilinx Vivado
2018 optimising for the area. All results represent measurements after the place-
and-route process.
In Table 3.8, we list two columns for the number of clock cycles and throughput; the
former represents the results for the processing of associated data (with the step-
reduced SimP), whereas the latter denotes the results for processing the message
(with the non-reduced SimP). Our results still leave room for further improvements
in the near future.

3.12 Conclusion

This chapter presented Oribatida, a permutation-based NAEAD scheme that masks
the ciphertexts from preceding permutation outputs. As a result, the adversary
cannot deduce the masked part of the internal state. Therefore, Oribatida can
achieve O(q2d/2c) security against forgeries under the release of unverified plain-
texts. Oribatida improves the best known INT-RUP security bound while the
permutation can be kept as small as 64 + 128 bits for 128-bit AE and 64-bit
INT-RUP security.
We showed that even recent previous proposals with high AE security guarantees,
such as Beetle or SPoC, succumb to attacks with complexity O(qdqp

2c
). In con-

trast, the security bound of Oribatida does not depend primarily on the number of

Chapter 3. Oribatida 76

primitive queries. We showed that our bound is tight with a matching INT-RUP

attack, generalised our masking approach by applying it also to Beetle or the NIST
submission SPoC, and demonstrated its application with similar attacks on their
masked variants.
As we have already seen, the other NIST candidates that claim INT-RUP security
are all TBC-based. As the performance of an NAEAD mode depends not only on
the rate but also on the speed of the underlying primitive, a natural follow-up to
this work should be to implement them as well as Oribatida for a fair comparison
of their performances.

Chapter 4

ISAP+

This chapter analyses the lightweight, sponge-based NAEAD mode ISAP, one
of the finalists of the NIST lightweight cryptography project, that achieves high
throughput with inherent protection against differential power analysis (DPA). We
observe that ISAP requires 256-bit capacity in the authentication module to satisfy
the NIST security criteria. In this chapter, we study the analysis carefully and
observe that this is primarily due to the collision in the associated data part of the
hash function which can be used in the forgery of the mode. However, the same is
not applicable to the ciphertext part of the hash function because a collision in the
ciphertext part does not always lead to a forgery. In this context, we define a new
security notion, named 2PI+ security, which is a strictly stronger notion than the
collision security, and show that the security of a class of encrypt-then-hash based
MAC type of authenticated encryptions, that includes ISAP, reduces to the 2PI+

security of the underlying hash function used in the authentication module. Next
we investigate and observe that a feed-forward variant of the generic sponge hash
achieves better 2PI+ security as compared to the generic sponge hash. We use
this fact to present a close variant of ISAP, named ISAP+, which is structurally
similar to ISAP, except that it uses the feed-forward variant of the generic sponge
hash in the authentication module. This improves the overall security of the mode,
and hence we can set the capacity of the ciphertext part to 192 bits (to achieve a
higher throughput) and yet satisfy the NIST security criteria.

4.1 Introduction

The emergence of side-channel and fault attacks [85–88] has made it clear that
cryptographic implementations may not always behave like a black box. Instead,

77

Chapter 4. ISAP+ 78

they might behave like a grey box where the attacker has physical access to the de-
vice executing a cryptographic task. As a result, designers have started to design
side-channel countermeasures such as masking [89, 90]. However, cryptographic
primitives like block-ciphers (for example, AES [91] and ARX-based designs [92])
are costly to be mask-protected against side-channel attacks. Consequently, de-
signing primitives or modes with inherent side-channel protection is becoming an
essential and popular design goal. In this line of design, several block-ciphers
(e.g., Noekeon [93], PICARO [94], Zorro [95]) and permutations (e.g., ASCON-p
[96], KECCAK-p [97, 98]) have been proposed with dedicated structures to reduce
the resource requirements for masking. In addition, a few NAEAD modes, such
as ASCON [96, 99], PRIMATES [100], SCREAM [101], KETJE/KEYAK [102] have
been proposed and submitted to the CAESAR [4] competition with the same goal
in mind. However, they still lead to significant overheads.
In [103], Medwed et al. have proposed a new technique called fresh re-keying
to have inherent side-channel protection. Following their work, a series of works
[104, 105, 105] have been proposed that use this novel concept. This technique
requires a side-channel resistant fresh key computation function with the nonce
and the master key as the inputs. The main idea behind these designs is to ensure
that different session keys are used for different nonces. Hence, a new nonce should
be used to generate a fresh session key.

4.1.1 ISAP and Its Variants

In [8], Dobraunig et al. proposed a new authenticated encryption, dubbed ISAP

v1, following the re-keying strategy. It is a sponge-based design [45, 106] that
follows the Encrypt-then-MAC paradigm [107, 108]. We’ll traditionally use the
terms rate and capacity to represent the exposed part and the hidden part of
the state of the sponge construction respectively. ISAP v1 claims to offer higher-
order differential power analysis (DPA) protection provided by an inherent design
strategy that combines a sponge-based stream-cipher for the encryption module
with a sponge-based MAC (suffix keyed) for the authentication module. Both
the modules compute fresh session keys using a GGM [109] tree-like function to
strengthen the key computation against side-channel attacks.
Later, ISAP v1 was improved to ISAP v2 [9, 110], and was submitted to the NIST
lightweight cryptography project where it was selected as one of the finalists.
ISAP v2 is equipped with several promising features. It recommends two variants,

Chapter 4. ISAP+ 79

instantiated with the lightweight permutations ASCON-p and KECCAK-p[400]. Pre-
cisely, ISAP v2 retains all the inherent DPA resistance properties of ISAP v1 along
with a better resistance against other implementation based attacks. In addition,
ISAP v2 is even more efficient in hardware resources than the first version. ISAP

v2 has been highly praised by the cryptography community, and to the best of
our knowledge, it is the only inherently DPA protected NAEAD mode that aims
to be implemented on lightweight platforms. The ISAP mode is flexible and can
be instantiated with any sufficiently large permutation. Precisely, the security
claims made by the designers depict that ISAP needs around 256-bit capacity to
satisfy the NIST security criteria and hence needs a permutation with the state
size larger than 256-bits. Thus it is highly desirable to analyse the mode further
to understand whether it can be designed with a smaller capacity and hence a
higher rate, that directly impacts the throughput.

4.1.2 Improving the Throughput of ISAP

ISAP v2 proposes four instances with the ASCON-p and the KECCAK-p permutations.
ISAP v2 with ASCON-p (a 320-bit permutation) is designed with a 64 bit rate.
However, it is better to achieve a higher rate design for a higher throughput. The
observation is similar for the other instances as well. A potential direction can be
to design an algorithm with improved security bound over the capacity to increase
the rate without compromising the security level. An increased security bound
can also help the designers to achieve the same security with a lower state size.
This, in turn, may reduce the register size by using a permutation with a smaller
state. A potential choice can be to analyse ISAP with a focus on the BBB (Beyond
Birthday Bound) NAEAD security.
We observe that ISAP adopts an efficient approach of applying an unkeyed hash
function on the nonce, the associated data, and the ciphertext, and then uses a
PRF (Pseudo Random Function) on the hash value. In this case, the security
of the NAEAD mode boils down to the collision security of the underlying hash
function. This mode can bypass the requirement of storing the master key and can
get rid of the key register. However, the hash collision results in a relatively low
security bound that may not always be acceptable in ultra-lightweight applications
as low security bound forces the designs to adopt primitives with high state size.
Thus, an increase in the security bound has the full potential to increase the
hardware performance of the design significantly. Motivated by this issue, we
aim to study the tightness of the security bound to optimise the throughput and

Chapter 4. ISAP+ 80

the hardware footprint. Note that, ISAP is already an efficient construction and
has been reviewed rigorously by various research groups. Hence, more detailed
mode analysis and any possible mode optimisation can further strengthen the
construction.
The security proof in [8] by Dobraunig et al. showed that ISAP achieves security
up to the birthday bound on the capacity, i.e. of O(T 2/2c), where T is the time
complexity (or, the number of offline queries to the underlying public permuta-
tion), and c is the capacity size (in bits). We observe that this factor arises due
to the simple sponge-type hash applied on the nonce, the associated data, and the
random ciphertext. It is obvious to get a collision in the nonce and the associated
data that can be trivially used by an adversary to mount a forgery. However, it is
not evident how a collision in the random ciphertexts can lead to such an attack.
In this regard, we investigate the amount of the ciphertext-bit that can be injected
per permutation call during the hash and ask the question:

“Can we increase the rate of absorption of the ciphertext blocks in the hash?”

We believe that a positive answer to this question will not only result in a more ef-
ficient construction but, more importantly, contribute significantly to the direction
of NAEAD mode analysis.

4.1.3 Contributions

In this chapter, we study a simple variant of ISAP that achieves higher throughput
keeping all the primary features of ISAP intact. The contribution of this chapter
is four-fold:

1. First, in Section 4.3, we propose a permutation-based generic EtHM (Encrypt
then Hash based MAC) type NAEAD mode using a PRF and an unkeyed
hash function. This is essentially a generalisation of ISAP type constructions.
Note that this generic mode does not guarantee any side-channel resistance;
only proper instantiation of the PRF ensures that. In Section 4.3.2, we show
that the NAEAD security of EtHM can be expressed in terms of the PRF
security of a fixed input length, variable output length keyed function F and
the 2PI+ security of H. Intuitively, the 2PI+ notion demands that given
a challenge random message of some length chosen by the adversary, it is
difficult for an adversary to compute the second pre-image of the random
message. We introduce the notion in Section 4.2.2. This is in contrast with
the traditional collision security that was used for the analysis of ISAP.

Chapter 4. ISAP+ 81

2. Next, in Section 4.4, we first show that for generic sponge hash, a collision
attack can be extended to a 2PI+ attack. Thus, the generic sponge hash
achieves 2PI+ security of Ω(T 2/2c), where T is the time complexity and
c is the capacity size of the sponge hash (in bits). Next, we consider a
feed-forward variant of the sponge hash that uses (i) generic sponge hash
to process the nonce and the associated data and (ii) a feed-forward variant
of the sponge hash to process the message. We show that the feed-forward
property ensures that a collision attack can not be extended to mount a
2PI+ attack. In fact, we prove that this variant of sponge hash obtains an
improved security of O(DT/2c). Note that D and T are data (or, the number
of online queries to the construction) and time complexity respectively, and
we typically allow T ≈ D2. Hence, feed-forward-based sponge achieves a
better 2PI+ security as we consider security in terms of D and T instead of
traditional one-parameter security (i.e., in terms of T only).

3. Next, in Section 4.5, we consider a simple variant of ISAP with minimal
changes, named ISAP+, which is a particular instantiation of the generic
EtHM mode. To be specific, the differences between ISAP+ and ISAP are as
follows:

3.1 Instead of using the generic sponge hash as used in ISAP, we use the
feed-forward variant of sponge hash as discussed above.

3.2 In the authentication module of ISAP+, we use the capacity of c′ bits
for nonce, associated data and first block of ciphertext processing. For
rest of the ciphertext blocks, we use capacity of c bits.

3.3 We make a separation among the messages depending on whether its
length is less than r′ bits or not. The domain separation is performed
by adding 0 or 1 to the capacity part before the final permutation call.

This modification ensures that ISAP+ achieves improved security of O(T 2/2c
′

+DT/2c), where n is the state-size or the size of the permutation (in bits),
c = n− r, c′ = n− r′). This security boost allows the designer to choose c′

and c(< c′) effectively to obtain better throughput.

4. Our primary proposal is denoted as ISAP+-A-128, which is instantiated with
ASCON-p. For a fair comparison with ISAP, we show the implementation
results of three more variants of ISAP+ in Section 4.6, comparable with the
corresponding ISAP instances. We instantiate these variants with ASCON-p

Chapter 4. ISAP+ 82

and KECCAK-p[400] permutations. These variants are denoted as ISAP+-A-
128, ISAP+-A-128A, ISAP+-K-128 and ISAP+-K-128A. The first two use
full and round reduced variants of ASCON-p and the other two use full and
round reduced variants of KECCAK-p[400] respectively. Note that all these
instances follow the ISAP+ mode, and they only differ in the choice of the
underlying permutation. Also note that these four ISAP+ instances use
ASCON-p or KECCAK-p[400] with the same number of rounds as their ISAP

counterparts for a fair comparison. Finally, we provide a detailed hardware
implementation in Section 4.6 for all the ISAP+ and ISAP instances.

Note that we propose only one instance of ISAP+ to stick to the security
assumption that we use one single permutation in our construction and only
the ISAP+-A-128 variant achieves the same. All the other three variants
use different numbers of rounds at different stages of our construction. We
have implemented them for a fair comparison with ISAP and to showcase the
efficiency of the ISAP+ mode in throughput.

4.1.4 Relevance of the Work

To understand the relevance of the improved security, let us consider the instanti-
ation of ISAP with ASCON and KECCAK and compare them with ISAP+. To satisfy
the NIST requirements, ISAP+ can use c = 192, c′ = 256, and hence, it has an
injection rate of r = 128-bits for the ciphertexts and an injection rate of r = 64

bits for associated data. Table 4.1 demonstrates a comparative study of ISAP and
ISAP+ in terms of the number of permutation calls required for the authentication
module.

Table 4.1: Comparative study of ISAP+ and ISAP on the no. of permutation
calls in the authentication module for associated data of length a bits and mes-

sage of length m bits

Mode Permutation Parameters # permutation calls

ISAP ASCON r = 64 ⌈a+m+1
64
⌉

ISAP+ ASCON r = 128, r′ = 64 ⌈a+1
64
⌉+ ⌈ m

128
⌉

ISAP KECCAK r = 144 ⌈a+m+1
144
⌉

ISAP+ KECCAK r = 208, r′ = 144 ⌈a+1
144
⌉+ ⌈ m

208
⌉

This result demonstrates that for applications that require long message process-
ing, ISAP+ performs better than ISAP in terms of throughput and speed. Let us
consider a concrete example. Consider encrypting a message of length 1 MB with

Chapter 4. ISAP+ 83

an associate data of length 1 KB using ASCON permutation. With ISAP, the au-
thentication module requires around 1, 31, 201 many primitive calls. On the other
hand, with ISAP+ this requires only 65, 665 many primitive calls, which is almost
half as compared to ISAP.
This chapter depicts the robustness of the mode ISAP, and how one can increase
the throughput of the mode at the cost of some hardware area preserving all the
inherent security features. This result seems relevant to the cryptography commu-
nity in the sense that ISAP is also a finalist of the NIST lightweight cryptography
project.

4.1.5 Interpretation of Hardware Implementation Result

Both ISAP+ and ISAP have been implemented using VHDL and mapped on Virtex
7XC7V585T (Vivado 2020.2), and the results are summarised in Table 4.2. The
result depicts that all the ISAP+ instances are better in throughput and through-
put/area than the ISAP instances with a small compromise in the hardware area.
Blue-coloured entry is our primary recommendation.

Table 4.2: FPGA results of ISAP+ and ISAP

Instances
Slice

Registers
LUTs Slices

Frequency

(MHZ)

Encryption Throughput

(Gbps)

Authentication Throughput

(Gbps)

ISAP-A-128 818 1550 451 400 2.13 2.13

ISAP+-A-128 1081 1742 507 384.16 2.05 3.07

ISAP-K-128 1143 1932 582 300 3.60 2.16

ISAP+-K-128 1423 2245 613 300 3.60 2.64

ISAP-A-128A 810 1539 449 400 4.27 2.13

ISAP+-A-128A 1070 1728 501 384.16 4.09 3.07

ISAP-K-128A 1131 1850 574 300 5.40 2.70

ISAP+-K-128A 1412 2231 605 300 5.40 4.40

4.2 Preliminaries

4.2.1 Fixed Input - Variable Output PRFs with Prefix Prop-

erty

A fixed input variable output function (FIL-VOL) is a keyed function FK : {0, 1}⋆×
{0, 1} × N → {0, 1}⋆ that takes as input an input a string I ∈ {0, 1}⋆, a flag
b ∈ {0, 1} as input, a positive integer ℓ ∈ N, and outputs a string O ∈ {0, 1}ℓ,
i.e., O := FK(I, b; ℓ). We call such a keyed function a FIL-VOL pseudo random
function maintaining the prefix-property if

Chapter 4. ISAP+ 84

• for all inputs (I, b; ℓ), (I ′, b′; ℓ′) with (I, b) ̸= (I ′, b′), FK(I, b; ℓ), FK(I
′, b′; ℓ)

are distributed uniformly at random, and

• for all inputs (I, b; ℓ), (I, b; ℓ′), with ℓ′ > ℓ, ⌈FK(I
′, b′; ℓ′)⌉ℓ = FK(I

′, b′; ℓ).

More formally,

AdvF
PRF(A) := |Pr[AFK = 1]− Pr[Af = 1]|,

where f is a random function from same domain and range maintaining the prefix
property.

4.2.2 Multi-Target 2nd Pre-Image with Associated Data

In this section, we discuss the notion of multi-target 2nd pre-image security of
permutation-based hash functions.
In this setting, an adversary (say A) chooses q (nonce, associated data, length)-
tuples to the challenger C, say (Ni, Ai, ℓi)i=1..q. The challenger in turn returns q
uniformly random messages of specified lengths respectively, say C1, . . . , Cq. The
queries (Ni, Ai, Ci)i=1..q are called challenge queries. The goal of A is to return
q′ many (N ′j, A

′
j, C

′
j)j=1..q′ (called response queries) tuples such that at least one

of the hash values of (N ′j, A′j, C ′j) matches with the hash value of any one of the
(Ni, Ai, Ci). Note that the adversaries are allowed to set some challenge queries
as response queries: (N ′j, A

′
j, C

′
j) = (Ni, Ai, Ci), for some i, j. However, for the

winning event the challenge and response queries should be distinct. The adversary
can make up to qp queries to p or p−1. Formally, the advantage of A is defined as

AdvH
2PI+(A) := Pr[∃i, j,Hp(N ′j, A

′
j, C

′
j) = Hp(Ni, Ai, Ci),

(N ′j, A
′
j, C

′
j) ̸= (Ni, Ai, Ci)].

where H is an IV-based hash function. Note that the adversary is allowed to
make hash queries before, after, or in between its interaction with the challenger
to obtain the challenge message(s). Also, note that the 2PI+ security does not
depend on the message length. The fact that the adversary submits a length ℓi

to the challenger to obtain each message before the submission of the challenge
message is merely because the 2PI+ security notion enables its adversary to obtain
messages of whatever lengths it pleases.

Chapter 4. ISAP+ 85

4.3 An EtHM Paradigm for NAEAD

This section introduces an efficient generalised Encrypt-then-Hash based MAC
(EtHM) paradigm for NAEAD modes. This is a generalised paradigm for con-
structing side-channel resilient modes such as ISAP.

4.3.1 Specification

Let n, k and τ be positive integers such that n > τ . The construction takes as input
a plaintext M , a nonce N , an associated data A, and outputs a ciphertext C and a
tag T . Given a permutation based FIL-VOL keyed-function with prefix property
F p
K , and a permutation based un-keyed hash function Hp : {0, 1}∗ → {0, 1}n the

mode works as follows.

C =M ⊕ F p
K(N, 0; |M |),

T∥D = p(F p
K(X, 1; |X|)∥Z), where X∥Z = Hp(N,A,C) .

The authenticated encryption module is pictorially depicted in Figure 4.1. Note
that T denotes the most significant τ bits of the output of the permutation call.
The least significant (n−τ) bits is denoted by D. Note that we do not need D from
the construction point of view; however, we require it during the security analysis.
Notations F , H and F p

K , Hp have been used in this chapter interchangeably for
convenience and aren’t supposed to create any confusion. From time to time, we’ll
address this paradigm as EtHM only.

N
F p
K

|M |

0
⊕

M

C
W

A

N

C

Hp

F p
K

|X|

1
p

T

D

X

Z

Y

τ
k

n− k

Figure 4.1: Authenticated encryption module of the EtHM paradigm

Chapter 4. ISAP+ 86

4.3.2 Security of EtHM

In this subsection, we analyse the NAEAD security of EtHM with F as the under-
lying function and H as the multi-target IV-respecting second pre-image resistant
hash function. Formally, we prove the following theorem.

Theorem 4.1 (NAEAD Security of EtHM). Consider EtHM based on a function F
and a hash function H. For all deterministic nonce-respecting non-repeating query
making adversary A which can make at most qe encryption queries, qv decryption
queries and qp primitive queries to p and its inverse and assuming q = qe + qv,
there exists two adversaries B1 and B2 such that the NAEAD advantage of A can
be bounded by

AdvEtHM
NAEAD(A) ≤ AdvF

PRF(B1) + 2Adv
⌊H⌋n−k

2PI+ (B2) +
qqp
2n

+
2kqv
2k

+
qv
2τ

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

,

where B1 can make 2q PRF queries and B2 can make q challenge queries, q response
queries and qp primitive queries to p and its inverse.

Proof. Let EncF
p
K ,p and DecF

p
K ,p be the encryption and the decryption function

of EtHM respectively. Let us call its oracle O1 = (EncF
p
K ,p,DecF

p
K ,p, p). We

have to upper-bound the distinguishing advantage of A interacting with O1 or
O3 = ($,⊥, p). For our purpose, we define an intermediate oracle by replacing
F p
K in O1 by a random function $. Let us call this new intermediate oracle O2 =

(Enc$,p,Dec$,p, p). We will employ a standard reduction proof. We break down
the distinguishing game of A using the triangle inequality as follows.

AdvEtHM
NAEAD(A) = |Pr[AO1 = 1]− Pr[AO3 = 1]|

≤ |Pr[AO1 = 1]− Pr[AO2 = 1]|
+ |Pr[AO2 = 1]− Pr[AO3 = 1]| . (4.1)

Now, we bound each of the two terms.

Bounding |Pr[AO1 = 1] − Pr[AO2 = 1]|. We bound this term by the PRF
advantage of F . For that, let us consider the following adversary B1 that runs A
(any distinguisher of O1 and O2) as follows.

Chapter 4. ISAP+ 87

• Whenever A submits an encryption query (N,A,M), B1 submits (N, |M |, 0)
to its challenger. Suppose the challenger returns C. B1 calculates X∥Z =

Hp(N,A,C) with |X|= k and |Z|= n − k and submits (X, 1; k) to its chal-
lenger. Suppose the challenger returns Y . B1 returns (C, p(Y ∥Z)) to A.

• Similarly, whenever A submits a decryption query (N̂ , Â, Ĉ, T̂), B1 submits
(N̂ , 0; |Ĉ|) to its challenger. Suppose the challenger returns M̂ . B1 calculates
X̂∥Ẑ = Hp(N̂ , Â, Ĉ) with |X̂|= k and |Ẑ|= n − k and submits (X̂, 1; k) to
its challenger. Suppose the challenger returns Ŷ . B1 calculates ⌈p(Ŷ ∥Ẑ)⌉τ
If T = T̂ , then B1 returns M̂ to A. Otherwise it returns ⊥.

• At the end of the game, A submits the decision bit to B1 which it forwards
to its challenger. Note that when A supposedly interacts with O1 or B1
supposedly interacts with F p

K , they submit b = 1. Otherwise, they submit
b = 0.

It is easy to see Pr[AO1 = 1] = Pr[BF p
K

1 = 1] and Pr[AO2 = 1] = Pr[B$
1 = 1], and

hence we obtain the following.

|Pr[AO1 = 1]− Pr[AO2 = 1]|= AdvF
PRF(B1). (4.2)

Bounding |Pr[AO2 = 1] − Pr[AO3 = 1]|. This bound follows from the lemma
given below, the proof of which is deferred to the next section.

Lemma 4.2. Let A be a deterministic nonce-respecting non-repeating query mak-
ing adversary interacting with oracle O2 or O3 which can make at most qe encryp-
tion queries, qv decryption queries and qp primitive queries to p and its inverse.
Assuming q = qe+qv, there exists an adversary B2 such that the NAEAD advantage
of A can be bounded by

|Pr[AO2 = 1]− Pr[AO3 = 1]| ≤ 2Adv
⌊H⌋n−k

2PI+ (B2) +
qqp
2n

+
2kqv
2k

+
qv
2τ

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

,

where B2 can make q challenge queries, q response queries and qp primitive queries
to p and its inverse.

The proof of the theorem follows from Equation 5.1, Equation 5.2 and Lemma 4.2.

Chapter 4. ISAP+ 88

4.3.3 Proof of Lemma 4.2

Now we’ll prove Lemma 4.2 using Coefficients H Technique step by step.
Step I: Sampling of the Ideal Oracle and Defining the Bad Events.

We start with sampling of the ideal oracle and go on mentioning the bad events
whenever they occur. Note that whenever we mention a bad event, even if it’s
not explicitly mentioned, it’s implicitly understood that the previous bad events
haven’t occurred.
In the online phase, the adversary interacts with the oracles and receives the cor-
responding responses. In this phase, it can make any construction or permutation
query. The i-th encryption query is (N i, Ai,M i), the i-th decryption query is
(N̂ i, Âi, Ĉi, T̂ i), H(N̂ i, Âi, Ĉi) = X̂ i∥Ẑi with |X̂ i|= k and |Ẑi|= n − k, the i-th
permutation query is U i if it’s a forward query (i.e., p query), and V i if it’s a
backward query (i.e., p−1 query).

1. Return (Ci, T i),∀i ∈ [qe], where Ci $← {0, 1}|M i|, T i $← {0, 1}τ .

2. Return ⊥,∀i ∈ [qv].

3. Return the true output values of the permutation queries.

4. Set X i := ⌈H(N i, Ai, Ci)⌉k, X̂ i := ⌈H(N̂ i, Âi, Ĉi)⌉k,
Zi := ⌊H(N i, Ai, Ci)⌋n−k, Ẑi := ⌊H(N̂ i, Âi, Ĉi)⌋n−k

The adversary aborts if the following (bad) event occurs.

• bad1: ∃i ∈ [qe] and j ∈ [qv] with i ̸= j and (N i, Ai, Ci) ̸= (N̂ j, Âj, Ĉj) such
that Zi = Ẑj .

• bad2: ∃i, j ∈ [qe] with i ̸= j such that Zi = Zj .

In the offline phase, the adversary can no longer interact with any oracle, but
the challenger may release some additional information to the adversary before it
submits its decision.

1. Y i $← {0, 1}k ,∀i ∈ [qe] and j ∈ [i− 1] with X i ̸= Xj.

2. Ŷ i $← {0, 1}k ,∀i ∈ [qv], j ∈ [i− 1] and ℓ ∈ [qe] with X̂ i ̸= X̂j and X̂ i ̸= Xℓ.

Again, the adversary aborts if any of the following (bad) events occur.

• bad3: ∃i ∈ [qe] and j ∈ [qp] such that Y i∥Zi = U j .

Chapter 4. ISAP+ 89

• bad4: There is a k-multi-collision at the τ most significant bits of the output
of the forward permutation queries.

• bad5: There is a k-multi-collision at the (n− k) least significant bits of the
output of the backward permutation queries.

• bad6: ∃i ∈ [qv] and j ∈ [qp] such that Ŷ i∥Ẑi = U j .

If none of the bad events occur, then

1. Di $← {0, 1}n−τ ,∀i ∈ [qe],

2. T̂ ′
i∥D̂i $← {0, 1}n ,∀i ∈ [qv].

Again, the adversary aborts if the following (bad) event occurs.

• bad7: ∃i ∈ [qv] such that T̂ i = T̂ ′
i
.

Step II: Bounding the Probability of the Bad Events. Now we’ll upper
bound the probabilities of the bad events.

• bad1: This event says that the capacity part of the hash of an encryption
query matches with the capacity part of the hash of a forging query. This
is nothing but computing a second pre-image corresponding to a challenge
(N,A,C), where C is chosen uniformly at random. Thus, the probability of
this event is bounded by the 2PI+ security of H.

Pr[bad1] ≤ Adv
⌊H⌋n−k

2PI+ (B2) ,

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

• bad2: This event says that the capacity part of the hash of an encryption
query matches the capacity part of the hash of another encryption query.
This is again nothing but computing a second pre-image corresponding to
a challenge (N,A,C), where C is chosen uniformly at random. Thus, the
probability of this event is bounded by the 2PI+ security of H.

Pr[bad2] ≤ Adv
⌊H⌋n−k

2PI+ (B2) ,

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

Chapter 4. ISAP+ 90

• bad3: For a fixed encryption query and a fixed permutation query, the prob-
ability of this event comes out to be equal to 1/2n due to the randomness of
U j. Applying union bound over all possible choices, we obtain

Pr[bad3] ≤ qeqp
2n

.

• bad4: For a fixed k-tuple of forward permutation queries, the probability
of this event comes out to be equal to 1/2τ(k−1) due to the randomness of
the permutation output. Applying union bound over all possible choices, we
obtain

Pr[bad4] ≤
(
qp
k

)
2τ(k−1)

.

• bad5: For a fixed k-tuple of backward permutation queries, the probability
of this event comes out to be equal to 1/2(n−k)(k−1) due to the randomness
of the permutation output. Applying union bound over all possible choices,
we obtain

Pr[bad5] ≤
(
qp
k

)
2(n−k)(k−1)

.

• bad6: We analyse this bad event in the three following sub-cases.

− In this case, the number of multi-collision at the τ most significant bits
of the output of the forward permutation queries is at most k. So the
adversary can make a hash query (N,A,C) to obtain X∥Z, fix Z as the
least significant bits and vary the rest of the bits to obtain the multi-
collision. Suppose the multi-collision happens at the value T . In that
case, if the adversary makes the decryption query (N,A,C, T), then the
probability of bad6 comes out to be equal to k/2k. For qv decryption
queries, this probability comes out to be equal to kqv/2k.

− In this case, the number of multi-collision at the (n−k) least significant
bits of the output of the backward permutation queries is at most k. So
the adversary can fix the τ most significant bits (say T) and vary the rest
of the bits to obtain the multi-collisions. Suppose the multi collisions
happen at the values Z1, Z2, · · · , Zm. Also suppose that the adversary
has q1 hash pre-images of Z1, q2 hash pre-images of Z2, · · · , qm hash

Chapter 4. ISAP+ 91

pre-images of Zm, where q1+q2+ · · ·+qm = qv. For i ∈ [r], suppose the
adversary has a pre-image (N,A,C) of Zi. In that case, if the adversary
makes the decryption query (N,A,C, T), then the probability of bad6

comes out to be equal to k/2k. For qv pre-images, this probability comes
out to be equal to kqv/2k.

− If the previous two cases don’t occur, i.e., there is no multi-collision,
then for a fixed decryption query and a fixed permutation query, the
probability of bad6 comes out to be equal to 1/2n due to the random-
ness of U j. For qv decryption queries and qp permutation queries, this
probability comes out to be equal to qvqp/2n.

Combining all three cases, we obtain

Pr[bad6|(bad3 ∧ bad4 ∧ bad5)] ≤ 2kqv
2k

+
qvqp
2n

.

• bad7: For a fixed decryption query, the probability of this event comes out
to be equal to 1/2τ due to the randomness of T̂ ′

i
. Applying union bound

over all possible choices, we obtain

Pr[bad7] ≤ qv
2τ
.

Combining everything, we obtain

ϵbad := Pr[bad] ≤ Pr[bad1 ∨ bad2 ∨ · · · ∨ bad7]

≤ 2Adv
⌊H⌋n−k

2PI+ (B2) +
qqp
2n

+
2kqv
2k

+
qv
2τ

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

. (4.3)

Step III: Ratio of Good Interpolation Probabilities. We recall that to
obtain oracle O2, we replace the function F of O1 with a random function $. All
the remaining specification of O2 are similar to O1 (see Section 4.3.1). Let qx
be the number of construction queries with distinct X i’s and X̂ i’s and q′ be the
number of construction queries with distinct (N i, Ai, Ci)’s and (N̂ i, Âi, Ĉi)’s. For
any good transcript τ , we get

Pr
O2

[τ] =
1

2nσe

1

2kqx
1

(2n)q′+qp

.

Chapter 4. ISAP+ 92

The first term corresponds to the number of choices for W i. The second term
corresponds to the number of choices for Y i. The third term corresponds to the
number of choices for the outputs of the distinct permutation calls. We also get

Pr
O3

[τ] =
1

2nσe

1

2nq′
1

2kqx
1

(2n)qp
.

The first term corresponds to the number of choices for Ci. The second term
corresponds to the number of choices for T i∥Di. The third term corresponds to
the number of choices for Y i. The fourth term corresponds to the number of
choices for the outputs of the distinct permutation calls. Thus we finally obtain

PrO2 [τ]

PrO3 [τ]
≥ 1 , i.e., ϵgood = 0. (4.4)

Step IV: Final Calculation. The Lemma follows as we use Equation 4.3 and
Equation 4.4 in Theorem 2.1.

4.4 Multi-Target 2nd Pre-Image Security of Sponge

Based Hashes

This section analyses the 2PI+ security of the sponge hash and some of its variants.

4.4.1 Sponge Hash and Its 2PI+ Security

First, we briefly revisit the sponge hash. Consider the initial state to be N∥IV
for some fixed IV . Let p ∈ Perm where Perm is the set of all permutations on
{0, 1}n. We call the r most significant bits of the state as rate and the c′ least
significant bits of the state as capacity. The associated data A and the message
C are absorbed in r′-bit blocks by subsequent p-calls, and the output of the last
p-call is the hash output T . Figure 4.2 illustrates the sponge hash. Now let us
look at its 2PI+ security.
The following attack demonstrates that the sponge hash is vulnerable to a meet-
in-the-middle attack as follows.

• Suppose an adversary (say A) submits (N,A, 2) and receives the random
message C1∥C2 from its challenger where |C1|= |C2|= r′.

• A computes the hash as H = p(p(S1 ⊕ C1∥S2 ⊕ 0⋆1) ⊕ (C2∥0c)). Suppose
H = p(Y2∥Z2) where |Y2|= r′ and |Z2|= c.

Chapter 4. ISAP+ 93

N

IVA

k

p p p p p

r′ ⊕ ⊕ ⊕

A1

c′
· · ·

AaA2

r′

c′
ISN,A

0?1

ISN,A p p p p

⊕

⊕

⊕ ⊕r′

c′ c′ c′

C1 C2

r′

· · ·
r′

C`

k

n− k

H1

H2

Figure 4.2: Sponge hash with ℓ message blocks

• A makes some p-queries of the form ⋆∥IV and some p−1-queries of the form
⋆∥Z2, and stores the p-query outputs in the list L1 and the p−1-query outputs
in the list L2.

• Suppose the capacity of one entry in L1 (say Y1∥Z1 where |Y1|= r′ and
|Z1|= c′) matches with the capacity of one entry in L2 (say Y ⋆

1 ∥Z1). Suppose
p(N ′∥IV) = Y1∥Z1 and p−1(Y ⋆

2 ∥Z2) = Y ⋆
1 ∥Z1.

• A returns (N ′, ϵ, (Y1 ⊕ Y ⋆
1)∥(Y2 ⊕ Y ⋆

2)) to its challenger as the second pre-
image of the random message (N,C1∥C2).

It is easy to see that the attack succeeds with probability |L1∥L2|
2c′

. In other words,
if the adversary is able to make around 2c

′/2 p-queries and p−1-queries each, it
would be able to mount this 2PI+ attack with very high probability. Thus, for the
sponge hash, the 2PI+ security reduces to the collision security due to the above
meet-in-the-middle attack, and the 2PI+ security for sponge hash is Ω(q2p/2

c′).
Now, we are more interested in other hash functions where such a collision attack
doesn’t induce a 2PI+ attack.

4.4.2 Feed Forward Based Sponge Hash and Its 2PI+ Secu-

rity

Now, we consider a feed forward variant of the sponge hash. The nonce and
associated data processing remain as it is. However, the following modifications
during the random message processing:

Chapter 4. ISAP+ 94

• The capacity part of the output of the i-th permutation is xored with the
previous state capacity to obtain the updated i-th state capacity.

• The message injection rate for the first block of random ciphertext remains
r′ bits, and for all successive blocks the rate is r bits, where r ≥ r′. To make
things compatible, the capacity part before the first p-call is chopped to the
least significant c-bits while feed-forwarding.

• We use a domain separation before the final permutation call depending on
the size of the random message. If the size is less than or equal to r′, we xor
1 in the capacity.

0?1

ISN,A p p p p

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

r′

c′
c c

chop
c′ c

C1 C2

r

· · ·
r

C`

k

n− k

S′
1

0/1

S′
2

Figure 4.3: The feed forward variant of the sponge hash. The initial state
ISN,A is generated identically as in the sponge hash, depicted in Fig. 4.2.

Figure 4.3 illustrates the feed forward variant of the sponge hash with n-bit hash
value H1∥H2. It is easy to see that the attack on the sponge hash can not be
extended to this hash due to the feed-forward functionality of this hash. Now let
us look at its 2PI+ security. Formally, we state the following lemma:

Lemma 4.3. Let H be the feed-forward based sponge hash as defined above. The
2PI+ security of the construction is given by

Adv
⌊H⌋n−k

2PI+ (A) ≤ q2p
2c′

+
(qp + σv)σe

2c
+
σ2
e

2c
+

qv
2n−k

,

where A makes at most qe challenge queries with an aggregate of σe blocks, qv
forging attempt queries with an aggregate of σv blocks, and qp many permutation
queries.

Proof. First, let us consider the scenario for all challenge queries with ℓ ≥ r′.
Suppose at the i-th step, the adversary (sayA) submits the i-th message length and
receives the random message Ci from its challenger. A makes successive queries
to p to derive the hash value corresponding to the fixed IV and Ci. Moreover, the
adversary makes several additional queries to p or p−1.

Chapter 4. ISAP+ 95

Graph based Representation. Now, we draw a graph corresponding to all the
challenge, permutation queries and forging attempts made by the adversary A.
A node of the graph is an n-bit state value. For a challenge or response query,
we consider all the permutation inputs as nodes. Suppose the (i − 1)th and ith

permutation inputs are Xi−1, and Xi respectively, then we draw an edge from node
Xi−1 to Xi with edge labelled as Ci, where Ci is ith message injected. The starting
vertex for each query (N,A,C) is defined as ISN,A⊕ (C1∥0). Now we consider the
direct permutation queries. suppose A makes a p query with the input X, and
the output is Y (i.e., Y = p(X)), then we draw an edge from vertex X to vertex
Y ⊕ (0∥⌊X⌋c). Similarly, if A makes a p−1 query with input Y ⋆, and the output is
X⋆ (i.e., p−1(Y ⋆) = X⋆), we draw an edge from X⋆ to Y ⋆ ⊕ (0∥⌊X⋆⌋c) with label
0. Essentially, the p−1 queries behave similar to the p queries, and we obtain a
directed edge-labeled graph. This is depicted in Fig. 4.4. Thus, overall we have a
graph corresponding to all the queries. All the nodes computed during the hash
computation (corresponding to the challenge queries) are called “H”-nodes and all
the other nodes are called “P”-nodes. So, by definition, the number of H-nodes is
σe, the total number of primitive calls required for the hash computation of all
the challenge messages. The total number of P-nodes is bounded by (qp + σv), qp
being the total number of direct p and p−1 calls, and σv being the number of p
calls used in the hash computation for the verification queries.

dXi−1e

bXi−1c
p p

dYi−1e ⊕

⊕

Ci

bYi−1c bXic bYic

dXie dYie

⇒
Xi−1 Xi

Ci

dXie

bXic
p

dYie

bYic ⇒

Xi Yi‖(0⊕ bXic)

0

Figure 4.4: The graph representation: challenge and forging queries (top),
direct permutation queries (bottom)

Definition and Bounding the Probability of a Bad Graph. We call a
collision occurs in two nodes if their capacity values are same. Now we call such
a graph bad if there is a collision (i) among two starting “H” nodes, or (ii) due
to a “H” node and a “P” node, (iii) between two “H” nodes. Now let us try to

Chapter 4. ISAP+ 96

bound the probability that a graph is bad. For the first case, the initial state
collision will reduce to a simple collision attack. This is due to the fact that the
nonce and associated data are chosen by the adversary. Hence, this probability
can be bounded by q2p/2c

′ . For case (ii) and (iii), such a collision will occur with
probability at most 1

2c−qp , and the number of possible choices of H nodes and P
nodes are σe and (qp + σv) respectively. Thus, the probability that a graph is bad
can be bounded by (

q2p
2c′

+ (qp+σv)σe

2c
+ σ2

e

2c
).

Bounding 2PI+ Security for A Good Graph. It is easy to see that if a
graph is not bad, then we do not have any forgeries, except for random hash value
matching, which can be bounded by qv

2n−k .
Combining everything together, the lemma follows.

Note that to extend the analysis for shorter challenge queries with ℓ ≥ r′ we need
a domain separator at the end (adding 1 at the capacity). This is to resist an
attack by guessing the random ciphertext and transferring a collision attack into
a 2PI+ attack.
Interpretation of Lemma 4.3. As we can see, the dominating terms in the
bound are q2p/2c

′ and σ2
e/2

c. Now, as the value of qp is usually much greater than
the value of σe, one has the leverage of using c < c′ until q2p/2c

′
= σ2

e/2
c, which in

turn implies r > r′, or in other words, greater absorption rate for the ciphertext.

4.5 ISAP+: A Throughput-Efficient Variant of ISAP

In this section, we describe the ISAP+ family of NAEAD mode by instantiating
EtHM with a sponge based PRF and the hybrid sponge hash and ultimately come
up with the complete specification details of ISAP+.

4.5.1 Specification of ISAP+

Let n, k, r, r′ and r0 be five positive integers satisfying 1 < r, r′, r0 < n, and
IVKE, IVKA and IVA be three (n− k)-bit binary numbers. We call the last three
numbers as the initialisation vectors. Let c = n − r, c′ = n − r′ and c0 = n − r0.
Let p be an n-bit public permutation. The authenticated encryption module of
ISAP+ uses a secret key K ∈ {0, 1}k, receives a nonce N ∈ {0, 1}k, an associated
data A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ as inputs, and returns a ciphertext
C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. The verified decryption module uses the same

Chapter 4. ISAP+ 97

Algorithm 4 Formal specification of the authenticated encryption and
the verified decryption algorithms of ISAP+

Algorithm ISAP+.AEK(N,A,M)

1. C ← ISAP+.Enc/Dec(K,N,M)

2. T ← ISAP+.Auth(K,N,A,C)

3. return (C, T)

Algorithm ISAP+.Auth(K,N,A,C)

1. A1 · · ·Aa ↞r′ A

2. if |C|< r′ then

3. C1 ← C∥10r′−|C|

4. else if |C|= r′ then

5. C1 ← C

6. C2 ← 10r

7. else

8. C1 ← ⌈C⌉r′
9. C2 · · ·Cℓ ↞r ⌊C⌋|C|−r′

10. S ← N∥IVA

11. for i = 1 to a

12. S ← p(S)⊕ (Ai∥0c
′
)

13. S ← p(S)⊕ (C1∥0c
′
)⊕ 0n−11

14. for i = 2 to ℓ

15. S ← p(S)⊕ (Ci∥0c)⊕ 0r∥⌊S⌋c
16. S ← p(S)⊕ 0r∥⌊S⌋c
17. S ←

(ISAP+.RK(K, ⌈S⌉k, 0, k))∥⌊S⌋n−k

18. if |C|< r′ then

19. S ← S ⊕ (0n−1∥1)
20. return T ← ⌈p(S)⌉k

Algorithm ISAP+.VDK(N,A,C, T)

1. T ′ ← ISAP+.Auth(K,N,A,C)

2. if T = T ′ then

3. return ISAP+.Enc/Dec(K,N,C)

4. else

5. return ⊥
Algorithm ISAP+.Enc/Dec(K,N,X)

1. X1 · · ·Xℓ ↞r′ X

2. S ← N∥(ISAP+.RK(K,N, 1, n− k))

3. for i = 1 to ℓ

4. S ← p(S)

5. Yi ← ⌈S⌉r′ ⊕Xi

6. Y ← ⌈Y1∥· · · ∥Yℓ⌉|X|

7. return Y

Algorithm ISAP+.RK(K,X, flag, z)

1. IV ← (flag = 1)? IVKE : IVKA

2. X1 · · ·Xw ←r0 X

3. S ← p(K∥IV)

4. for i = 1 to (w − 1)

5. S ← p((⌈S⌉r0 ⊕Xi)∥⌊S⌋n−r0)

6. S ← p((⌈S⌉|Xw| ⊕Xw)∥⌊S⌋n−|Xw|)

7. return ⌈S⌉z

secret key K and receives a nonce N ∈ {0, 1}k, an associated data A ∈ {0, 1}∗,
a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}τ as inputs. In case of successful
verification, it returns a message M ∈ {0, 1}|C|. In case the verification fails, it
returns ⊥. Both modules use a sub-module named re-keying (RK). The complete
specification of ISAP+ is provided in Algorithm 4. The pictorial representation of
the same is provided in Figures 4.5, 4.6, and 4.7.
Viewing ISAP+ as an Instantiation of EtHM. It is easy to that ISAP+ can
be viewed as an instantiation of EtHM where the hash function Hp is given by the

Chapter 4. ISAP+ 98

feed-forward variant of sponge hash as depicted in Figure 4.7 and the FIL-VOL
keyed function F p

k is described as follows:

• When flag = 1 (i.e., inside encryption module), F p
k involves the rekeying

function with (n − k)-bit output followed by p calls as depicted in Figures
4.5 and 4.6. The inputs are the nonce N , flag = 1 and a parameter ℓ which
represents the message length. The number of p calls is equal to the number
of r-bit message blocks.

• When flag = 0 (i.e., inside authentication module), F p
k involves only the

rekeying function with k-bit output as depicted in Figure 4.5. The inputs
are the k most significant bits of the hash output, flag = 0 and a parameter
ℓ = k.

k

n− k

K

IV

p p p p

⊕

Y1

r0
r0

c0

· · ·
c0

⊕

Yw

r0
r0

z Y ′

Figure 4.5: Re-keying module of ISAP+ on a w-bit input Y

N N ′RK
k n− k

p p p

⊕M1 C1 ⊕M` C`

r′

c′

· · ·
k

n− k

K

IVE

N ′

N

Figure 4.6: Encryption module of ISAP+ for ℓ block message

4.5.2 Design Rationale

In this section, we’ll try to highlight and explain the main points regarding what
motivated the design of EtHM, and in particular, ISAP+.
Improved Rate for Ciphertext Processing in the Hash. As we move from
collision security to 2PI+ security at the ciphertext absorption phase of the au-
thentication module, we achieve the same security with a smaller capacity size,
which allows us to use a larger rate size for ciphertext absorption.

Chapter 4. ISAP+ 99

N

IVA

k

p p p p p

r′ ⊕ ⊕ ⊕

A1

c′
· · ·

AaA3

r′

c′

S1

S2

S1

0?1

S2

p p p p

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

r′

c′
c c

C1 C2

r

· · ·
r

C`

k

n− k

H1

0/1

H2

H ′
1

pRK
k k τ

H1 T

k

n− k

K

IVA

H ′
1

k

H2
n− k

Figure 4.7: Authentication module of ISAP+ for a block associated data and
ℓ block message

Last Domain Separator. The last domain separator is crucial to domain sep-
arate the short and long messages. Without this domain separator, we can have
a forgery with one encryption query which consists of a message that is less than
one block in length and the corresponding forging attempt which consists of more
than one ciphertext block. As a result, a separator bit, applied to the capacity
just before the last permutation call, allows us to differentiate these two cases,
and ensure that the input to the last permutation is distinct for each of the two
queries, which in turn prevents the attack.

4.5.3 Recommended Instantiations

We recommend one primary instance of ISAP+, denoted by ISAP+-A-128, which
is instantiated with 12-round ASCON-p for all the permutation calls (i.e., each of
sH , sB, sE, and sK is equal to 12). To showcase the efficiency of ISAP+, we’ve
also implemented three other instances, comparable with the corresponding ISAP

instances, as mentioned below in Table 4.3. Blue coloured entry is our primary
recommendation.

Chapter 4. ISAP+ 100

Table 4.3: Recommended parameter values of ISAP+

Instances Permutation
Bit Size of No. of Rounds

n r′ r r0 sH sB sE sK

ISAP+-A-128 ASCON-p 320 64 128 1 12 12 12 12

ISAP+-A-128A ASCON-p 320 64 128 1 12 1 6 12

ISAP+-K-128 KECCAK-p[400] 400 144 208 1 20 12 12 12

ISAP+-K-128A KECCAK-p[400] 400 144 208 1 16 1 8 8

4.5.4 Security of ISAP+

In this subsection, we analyse the NAEAD security of ISAP+. We show that our
design follows that paradigm, and hence we can adapt its security result, and the
security of ISAP+ follows. Formally, we prove the following theorem.

Theorem 4.4 (NAEAD Security of ISAP+). For all deterministic nonce-respecting
non-repeating query making adversary A of ISAP+ which can make at most qe en-
cryption queries of a total of maximum σe blocks, qv forging queries and qp prim-
itive queries to p and its inverse, the NAEAD advantage of A can be bounded
by

AdvISAP+
NAEAD(A) ≤

σ2
e + σeqp + q2p

2c′
+
σ2
e + σeqp + σeσv

2c

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

+
qqp
2n

+
2kqv + qp

2k
+
qp + qv
2n−k

+
qv
2τ
.

Proof. The proof follows directly from Theorem 4.1, as we bound the two terms
AdvF

PRF(B1) and Adv
⌊H⌋c
2PI+(B2) for ISAP+.

• To bound the first term, we observe that the key can be randomly guessed
with probability qp

2k
. Also, the state after re-keying might match with an

offline query with probability qp
2n−k , as the capacity part can be controlled.

Otherwise the inputs of the outer sponge construction are fresh, and a col-
lision can happen at some stage only if two construction queries have a full
state collision, or a construction query has a full state collision with a primi-
tive query. The probability of the first case can be bounded by σ2

e/2
c′ and the

probability of the second case can be bounded by σeqp/2c
′ . Hence we achieve

the overall PRF security of F as
(

σeqp+σ2
e

2c′
+ qp

2k
+ qp

2n−k

)
. Further details can

be found in [39].

Chapter 4. ISAP+ 101

• The second term, i.e., the 2PI+ security of the feed-forward based sponge
hash can be bounded by

(
q2p
2c′

+ (qp+σv)σe

2c
+ σ2

e

2c
+ qv

2n−k

)
(See Lemma 4.3, Sec-

tion 4.4.2).

Side-Channel Resistance. ISAP+ inherits its security against side-channel leak-
age directly from ISAP. In [111], the authors have clearly mentioned that “There
are no requirements on the implementation of the hash function H, since it pro-
cesses only publicly known data.” Following their argument, ISAP+ achieves the
same leakage resilience as it modifies only the hash function of ISAP and retains
the rest of the design as it is. Accordingly, ISAP+ will provide a similar result on
the leakage resilience bound as given in [9, Theorem 1].

4.6 Hardware Implementation Details

In this section, we provide the FPGA implementation detail of the ISAP+ family.
All the hardware implementation codes are written in VHDL and are mapped on
Virtex 7XC7V585T using Vivado 2020.2 as the underlying tool. The detail results
are provided below.

4.6.1 Round Based Implementation of ASCON-p and KECCAK-p

In this section, we describe our round-based implementation of ASCON-p and adopted
implementation of KECCAK-p[400]. The implementations are simply basic round
based with n-bit datapath (n is the permutation size in bits). In case of ASCON-p,
p receives a 320-bit (40-byte) input and processes it in 12 cycles (12 rounds in 12

clock cycles). Hence cpb for p is 40/12 = 3.33. The circuit maintains a 320-bit
internal state register which is initialised with the input and then gets updated
after every round. It also maintains an additional 4-bit register Round to store
the current round number. Round is initialised by 0 and is incremented by one
after every round. After all the rounds are executed, Round is again initialised
to 0. The architecture executes one round of p in one clock cycle and each round
consists of 3 sequential sub modules AC, SBox, and Lin. The state is divided
into 64 5-bit nibbles. The row representation of the state divides the state into five
rows (each of the rows is known as a Word), each consisting of 64 bits. AC adds a
round specific 1-byte constant to the third row of the intermediate state. It takes
two inputs, the intermediate state and the current round number. Next, the SBox

Chapter 4. ISAP+ 102

module applies a non-linear 5-bit sbox to each of the nibbles of the state. The
Lin module is used for linear diffusion of the state. This module adds different
rotated copies of each Word (horizontally, within each Word) to the correspond-
ing Word. We directly adopt the KECCAK-p[400] round function implementation
from [112] and implement the round based architecture on our own. The Virtex 7
results of both implementations are provided in Table 4.4.

Table 4.4: FPGA results of ASCON-p and KECCAK-p[400]

Slice

registers
LUTs Slices

Clock Cycle Time

(nS)

Frequency

(MHZ)

Throughput

(Gbps)

ASCON-p 328 937 282 2.5 416.67 11.1

KECCAK-p[400] 415 980 283 2.6 384.61 8.55

4.6.2 Comparison Between ISAP+ and ISAP Virtex 7 Re-

sults

We compare the hardware implementation results of ISAP+ and ISAP versions
using our own implementation. We would like to point out that all our imple-
mentations follow a similar architecture and ignore the overheads associated with
the NIST hardware API. Also note that the throughputs for all the versions have
been computed for sufficiently long inputs and the clock cycle overheads have been
ignored.
Below, we provide FPGA comparison results of ISAP+ and ISAP versions. We
implement both ISAP+ and ISAP using VHDL and mapped the implementation
on Virtex 7XC7V585T (Vivado 2020.2). We use the same RTL approach and a
basic iterative type architecture. We use a common hardware architecture for all
the versions of ISAP and ISAP+. Note that we provide our own implementation
for ASCON-p (as our main recommendation is based on ASCON-p), and we use the
reference round function implementation of KECCAK-p[400] from [112].
The hardware implementation results of the four versions of ISAP+ are presented in
Table 4.5. We also report our hardware implementation results for the four versions
of ISAP. We implement them on the same platform using the same approach. The
detailed results are described in Table 4.6 below. The result depicts that all the
ISAP+ versions are better in throughput than the corresponding ISAP versions
which in turn depicts that ISAP+ versions remain significantly better than ISAP

versions with respect to throughput/area metric. Blue coloured entry in Table 4.5
is our primary recommendation.

Chapter 4. ISAP+ 103

Table 4.5: FPGA results of ISAP+ versions

Versions
Slice

Registers
LUTs Slices

Frequency

(MHZ)

Encryption Throughput

(Gbps)

Authentication Throughput

(Gbps)

ISAP+-A-128 1081 1742 507 384.16 2.05 3.07

ISAP+-K-128 1423 2245 613 300 3.60 2.64

ISAP+-A-128A 1070 1728 501 384.16 4.09 3.07

ISAP+-K-128A 1412 2231 605 300 5.40 4.40

Table 4.6: FPGA results of ISAP versions

Versions
Slice

Registers
LUTs Slices

Frequency

(MHZ)

Encryption Throughput

(Gbps)

Authentication Throughput

(Gbps)

ISAP-A-128 818 1550 451 400 2.13 2.13

ISAP-K-128 1143 1932 582 300 3.60 2.16

ISAP-A-128A 810 1539 449 400 4.27 2.13

ISAP-K-128A 1131 1850 574 300 5.40 2.70

4.7 Conclusion

This chapter proposes a generic framework for a permutation-based EtHM type
NAEAD mode using a PRF and an unkeyed hash function with 2PI+ security.
We have shown that ISAP follows the framework EtHM, and hence, its security
boils down to the 2PI+ security of the underlying hash function. We propose a
feed-forward variant of the sponge hash function with improved security and use it
to design a new variant of ISAP that achieves improved security and that, in turn,
improves the throughput of the construction. Designing new hash functions with
better 2PI+ security (using either the same feed-forward technique we have used,
or some other novel ideas) and applying them to obtain modes with improved
security or throughput seems to be a challenging open problem.

Chapter 5

OCB+

A nonce-respecting tweakable block-cipher is the building-block for the OCB au-
thenticated encryption mode. An XOR-Encrypt-XOR (XEX)-based TBC is used
to process each block in OCB. However, XEX can provide at most birthday bound
privacy security, whereas in Asiacrypt 2017, beyond-birthday-bound (BBB) forg-
ing security of OCB3 was shown in [13]. In this chapter we study how at a small
cost we can construct a nonce-respecting BBB-secure tweakable block-cipher. We
propose the OTBC-3 construction, which maintains a cache that can be easily
updated when used in an OCB-like mode. We show how this can be used in a
BBB-secure variant of OCB with some additional keys and a few extra block-
cipher calls but roughly the same amortised rate. 1

5.1 Introduction

Beginning with the formalisation by Katz and Yung [114] and Bellare and Nam-
prempre [107, 108], and the constructions by Jutla [1, 2], the practical significance
of NAEAD modes has been accepted in the community, and over the last decade
or so the design and analysis of NAEAD modes has been a very active area of
research in symmetric-key cryptography. NAEAD is commonly built as a mode of
operation of a block-cipher. However, there is often an inherent limitation on the
security caused by the birthday paradox on the input or output of a block-cipher,
which ensures only (n/2)-bit security of NAEAD if a block-cipher with n-bit blocks
is used. The (n/2)-bit security is commonly referred to as birthday-bound (BB)

1When this work was in the process of being published, a concurrently published work [113]
proposed a construction named XOCB, which is a modification of OCB3 as well, and achieve
BBB privacy at rate one.

105

Chapter 5. OCB+ 106

security. Possible solutions to break this barrier exist, i.e., NAEAD with beyond-
birthday-bound (BBB) security. However, they come with an extra computational
cost.
One way to get around this obstacle is to use a tweakable block-cipher (TBC) as
the underlying primitive instead of classical block-ciphers. A TBC was formalised
by Liskov, Rivest and Wagner [115, 116], and it has an extra t-bit tweak input to
provide variability, i.e., it provides a family of 2t independent block-ciphers indexed
by the tweak. Starting from the early Hasty Pudding Cipher [117], many TBC
designs have been proposed, including Threefish (in Skein [118]), Deoxys-BC [119],
Joltik-BC [120], and KIASU-BC from the TWEAKEY framework [121], and Scream

[122], where the last four schemes were submitted to CAESAR (Competition for
Authenticated Encryption: Security, Applicability, and Robustness) [123]. We
also see other examples including SKINNY [124, 125], QARMA [126], CRAFT [127],
the TBCs in the proposals for the NIST lightweight cryptography project, OPP

[128] for permutation-based instantiations of OCB3 that uses a (tweakable) Even-
Mansour construction, and a construction by Naito [129].
One of the most popular TBC-based NAEAD schemes is OCB. There are three
main variants of OCB. The first, now called OCB1 (2001) [130], was motivated
by Charanjit Jutla’s IAPM [1, 2]. A second version, now called OCB2 (2004)
[131, 132], added support for associated data (AD) and redeveloped the mode
using the idea of a tweakable block-cipher. Later OCB2 was found to have a
disastrous bug [133, 134]. The final version of OCB, called OCB3 (2011) [12],
corrected some missteps taken with OCB2 and achieved the best performance yet.
OCB3 is simple, parallelisable, efficient, provably secure with BB security, and
its security is well analysed [135–137]. It is specified in RFC 7253 [138] and was
selected for the CAESAR final portfolio.
In recent times, OCB has been analysed in much detail from various perspectives.
A block-cipher-based NAEAD scheme OTR and its TBC-based counterpart OTR
were designed by Minematsu [139] which improve OCB by removing the necessity
of the decryption routine of the underlying block-cipher or TBC (this property
is often called as the inverse-freeness). Bhaumik and Nandi [13] showed that
when the number of encryption query blocks is not more than birthday-bound
(an assumption without which the privacy guarantee of OCB3 disappears), even
an adversary making forging attempts with the number of blocks in the order of
2n/ℓMAX (n being the block-size and ℓMAX being the length of the longest block)
may fail to break the integrity of OCB3. Zhang et al. [140, 141] described a new

Chapter 5. OCB+ 107

notion, called plaintext or ciphertext checksum (PCC), which is a generalisation
of plaintext checksum (used to generate the tag of OCB), and proved that all
authenticated encryption schemes with PCC are insecure in the INT-RUP security
model. Then they fixed the weakness of PCC, and described a new approach
called intermediate (parity) checksum (I(P)C for short). Based on the I(P)C
approach, they provided two modified schemes OCB-IC and OCB-IPC to settle the
INT-RUP of OCB in the nonce-misuse setting. They proved that OCB-IC and
OCB-IPC are INT-RUP up to the birthday bound in the nonce-misuse setting if
the underlying tweakable block-cipher is a secure mixed tweakable pseudorandom
permutation (MTPRP). The notion of MTPRP is defined by the authors (Zhang
et al. [140, 141]) which we omit in this thesis as we don’t need that notion for
our purpose. The security bound of OCB-IPC is proved to be tighter than OCB-

IC. To improve their speed, they utilised a “prove-then-prune" approach: prove
security and instantiate with a scaled-down primitive (e.g., reducing rounds for
the underlying primitive invocations). Bao et al. [142] introduced a scheme called
XTX∗, based on previous tweak extension schemes for TBCs, and defined ZOCB

and ZOTR for nonce-based authenticated encryption with associated data. While
ΘCB and OTR have an independent part to process AD, their schemes integrated
this process into the encryption part of a plaintext by using the tweak input of the
TBC, and thus achieved full absorption and full parallelisability simultaneously.
Liénardy et al. [143] showed the vulnerability of both privacy and authenticity of
OCB3 against short nonces.
OCB has also found its place in other domains of cryptology like lightweight cryp-
tology and quantum cryptology. Chakraborti et al. [144] proposed a light-weight
authenticated encryption (AE) scheme, called Light-OCB, which can be viewed as
a lighter variant of OCB as well as a faster variant of LOCUS-AEAD [145] which
was a round 2 candidate of the NIST lightweight cryptography project. Bhaumik
et al. [146] proposed a new rate-one parallelisable mode named QCB inspired by
TAE and OCB and prove its security against quantum superposition queries.
There are two limitations on OCB that we would like to emphasise. The first is
that OCB’s security crucially depends on the encrypting party not repeating a
nonce. The mode should never be used in situations where that can’t be assured;
one should instead employ a misuse-resistant AE scheme [147]. These include
AES-GCM-SIV [148, 149], COLM, and Deoxys-II. A second limitation of OCB is
its birthday-bound degradation in provable security. This limitation implies that,
given OCB’s 128-bit block-size, one must avoid operating on anything near 264

Chapter 5. OCB+ 108

blocks of data. The RFC on OCB [138] asserts that a given key should be used to
encrypt at most 248 blocks (4 petabytes), including the associated data. Practical
AE modes that avoid the birthday-bound degradation in security are now known
[123, 149–152].

5.1.1 Contributions

In this chapter we explore ways of designing an offset-based tweakable block-cipher
that can be used to obtain an OCB-like authenticated encryption mode with better
security guarantees. First, we show that when using an n-bit nonce (where n is the
width of the block-cipher), it is difficult to go beyond the birthday-bound if we use
the same offset to mask the input and the output (OTBC-0). Next, we show that if
we take fully independent offsets for masking inputs and outputs for each message,
we get full security in the nonce-respecting scenario (OTBC-1); however, this does
not fit well in the OCB-like mode, because new additional random-function calls
are needed to process each message block.
We proceed to introduce the notion of updatable offsets, and explain why TBCs
with updatable offsets are well-suited to build an OCB-like mode. Then we build
a simple TBC with updatable offsets (OTBC-2), and give a birthday-attack on
it that demonstrates that such a construction is not sufficient to get beyond-
birthday security for the OCB. Finally, we introduce the notion of offsets that
are not updatable by themselves, but are efficiently computable from updatable
caches. As the most important technical contribution of the chapter, we instantiate
a TBC with this property (OTBC-3) and show that it achieves a beyond-birthday
TPRP security in the number of nonces queried, as long as the maximum length of
each message (i.e., the maximum number of times each block is used) is not very
high. Additionally, we also show that OTBC-3 achieves at least security up to the
birthday-bound even when the nonce is misused and inverse queries are allowed.
Finally, we use OTBC-3 to design an authenticated encryption mode called OCB+,
which is beyond-birthday secure in both privacy and authenticity. We argue how
the privacy bound follows from our security proof of OTBC-3, while the authen-
ticity can be proved in the exact same way as in [13]. OCB+ uses nine random
function calls for processing each nonce, so its rate is approximately σ/(σ + 9q),
where σ is the total number of blocks including messages and associated data, and
q is the number of distinct nonces. When the messages are sufficiently long, this
rate comes close to 1, making this as efficient as OCB3, but with a BBB security
guarantee.

Chapter 5. OCB+ 109

5.2 Preliminaries

5.2.1 TPRP, TPRP* and TSPRP Security Notions

Given a tweak-space W , let Perm(W , n) be the set of all functions π̃ : W ×
{0, 1}n → {0, 1}n such that for any tweak W ∈ W , π̃(W, ·) is a permutation over
{0, 1}n. Then a π̃∗ distributed uniformly at random over Perm(W , n) will be called
a tweakable random permutation (TRP).
Let K denote a key-space. Then Ẽ : K ×W × {0, 1}n → {0, 1}n will be called a
tweakable pseudorandom permutation (TPRP) if for a key K distributed uniformly
at random over K and for any adversary A trying to distinguish ẼK := Ẽ(K, ·, ·)
from π̃∗, AdvẼK ,π̃∗

(A) is small. We call this game the TPRP game and denote
the advantage of A as AdvẼ

TPRP(A) in short.
We will be more interested in a modified version of the TPRP game, where A is
under the added restriction that no two queries can be made with the same tweak.
We call this the tweak respecting pseudorandom permutation (TPRP*) game, and
denote the corresponding advantage of A as AdvẼ

TPRP*(A).
Finally, the tweakable strong pseudorandom permutation (TSPRP) game allows
A to make both encryption and decryption queries to the oracle. The advantage
term of A in a TSPRP game will be denoted AdvẼ

TSPRP(A).

5.2.2 Mirror Theory

Consider a sequence of n-bit variablesW1, . . . ,Wt, subject to r bi-variate equations
of the form

Wi +Wj = δij.

Consider the graph with W1, . . . ,Wt as vertices and the bi-variate equations as
weighted edges with δij the weight between Wi and Wj. Suppose we can show
that the graph is cycle-free, and that each path has a non-zero sum of weights.
Let ξmax be the size of the largest component of this graph. Then Mirror Theory
tells us that as long as ξ2max ≤

√
N/log2N and t ≤ N/12ξ2max, the number of

solutions to the system of equations such that Wi’s are all distinct is at least
(N)t/N

r. [153, 154]

Chapter 5. OCB+ 110

5.3 Finding a Suitable Tweakable Block-cipher

We set out to find an offset-based Tweakable Block-cipher that could give us a
beyond-birthday security bound for OCB+. The general structure of this is as
follows:

C = π(M + T) + T̂ ,

where the offsets T and T̂ are functions of the nonce N and the block-number i.

5.3.1 Attempt with Same Offset

The first question we asked is whether it is possible to achieve this by having
T = T̂ , i.e., adding the same offset before and after the block-cipher call, like in
OCB. The most powerful version of this is to have

T = T̂ = f(N , i)

for some 2n-bit-to-n-bit random function f . This we call OTBC-0, defined as

OTBC-0(N , i,M) := π(M + f(N , i)) + f(N , i).

This construction is shown in Figure 5.1.

π
S Ŝ

M C

f

X

N
i

Figure 5.1: OTBC-0: Same offset

5.3.1.1 Birthday Attack on OTBC-0.

Unfortunately, OTBC-0 fails to give us beyond birthday-bound security. This is
because for two queries with the same message, there is a collision in the ciphertext
whenever there is a collision in the output of f ; in addition the ciphertext-collision
can also happen if the sum of the outputs of π and f collide. This shows that
the collision probability at C is roughly double the collision probability in an ideal
tweakable block-cipher, which can be detected in the birthday-bound. A more
formal description of the attack is given below.

Chapter 5. OCB+ 111

5.3.1.2 Attack on OTBC-0

Let the i-th nonce be Ni, and the corresponding offset and ciphertext for the
message Mi be Xi and Ci respectively. We get

π(Mi +Xi) +Xi = Ci.

For two distinct queries (say i-th and j-th query with i ̸= j), we get

π(Mi +Xi) + π(Mj +Xj) +Xi +Xj = Ci + Cj.

So, whenever Mi + Xi = Mj + Xj, we have Mi + Ci = Mj + Cj. We call this
event E and consider it as a distinguishing event. We define an event E1 in which
Mi +Xi =Mj +Xj for some i ̸= j. From the above discussion we see that

E1 ⇒ E.

Let cp(q,N) denote the probability of finding a collision-pair in a uniform random
sample of size q from a population of size N . Thus,

Pr
O1

[E1] = cp(q,N).

We also have

Pr
O1

[E] = cp(q,N) + Pr
O1

[E | ¬E1] · (1− cp(q,N)).

Now, when E1 does not happen, all inputs of π must be distinct. Let us denote
the inputs and output of π for the ith query by Si and Ŝi respectively. Then the
event E is equivalent to finding a collision-pair among the Si + Ŝi values. Given
that E1 does not happen both Si’s and Ŝi’s are sampled as uniformly without
replacement and (Si)i∈[q] is independent from (Ŝi)i∈[q]. By using well known result
[155, 156], we know that the sum of independent without-replacement samples is
almost identically distributed as a uniform random sample and hence

Pr
O1

[E | ¬E1] ≈ cp(q,N).

Thus, we have

Pr
O1

[E] ≈ cp(q,N) + (1− cp(q,N)) · cp(q,N).

Chapter 5. OCB+ 112

On the other hand in the ideal world,

Pr
O0

(E) = cp(q,N),

as for every distinct nonce the responses should be uniformly and independently
distributed. Hence, the distinguishing advantage is around cp(q,N)(1− cp(q,N)).
Now we know that cp(q,N) = 1/2 is attained for a q = O(

√
N) and hence for that

choice of q, the distinguishing advantage is at least 1/4.

5.3.2 Independent Offsets

We deduce from the preceding subsection that using the same offset above and
below can never give us beyond-birthday TPRP∗ security for the tweakable block-
cipher. We next examine the most powerful version of this possible, where the two
offsets on either side of π come from two completely independent 2n-bit-to-n-bit
random functions f1 and f2. This we call OTBC-1, defined as

OTBC-1(N , i,M) := π(M + f1(N , i)) + f2(N , i).

This construction is shown in Figure 5.2.

π
S Ŝ

M C

f1 f2

X Y

N

i

Figure 5.2: OTBC-1: Different random offsets

5.3.2.1 Security of OTBC-1.

As it turns out, OTBC-1 trivially achieves full TPRP∗ security. This is because
in a tweak-respecting game, the offsets are always random and independent of all
other offsets in the game, making it impossible to glean any information from the
oracle responses. We formally state this as the following theorem.

Theorem 5.1. For any TPRP* adversary A making q queries, we have

AdvOTBC-1
TPRP* (A) = 0.

Chapter 5. OCB+ 113

Proof. Let’s call (N , i) as T . We’ll use Coefficients H Technique to bound the
advantage of the adversary.

Transcript Notation. The adversary makes q encryption queries (T 1,M1), · · ·
, (T q,M q) to the oracle, and receives C1, · · · , Cq as the corresponding responses.
So the query-response transcript of the adversary initially looks like {(T 1,M1, C1),

· · · , (T q,M q, Cq)}.

Sampling in the Ideal World. For each encryption query, the ideal oracle
samples the output with replacement from {0, 1}n uniformly at random. Once the
adversary is done with all its queries, the oracle releases some additional informa-
tion to the adversary. The ideal oracle samples them in the following way:

• For all j ∈ [q], the ideal oracle samples Xj with replacement from {0, 1}n
uniformly at random.

• For all j ∈ [q], the ideal oracle samples Ŝj without replacement from {0, 1}n
uniformly at random.

The real oracle releases the corresponding true values in this additional release
phase. After the additional release, the extended transcript looks like the following:
{(T 1,M1, C1, X1, Ŝ1), · · · , (T q,M q, Cq, Xq, Ŝq)}.

Advantage of the Adversary. For any attainable transcript τ , we get the
real interpolation probability as

Pr
O1

[τ] =
1

N q
· 1

N q
· 1

(N)q
.

The first, second and third term in the denominator on the right hand side rep-
resents the number of choices for X, Y and Ŝ respectively. We also get the ideal
interpolation probability as

Pr
O0

[τ] =
1

N q
· 1

N q
· 1

(N)q
.

The first, second and third term in the denominator on the right hand side repre-
sents the number of choices for C, X and Ŝ respectively. Thus we finally get

PrO1 [τ]

PrO0 [τ]
= 1 .

Chapter 5. OCB+ 114

Applying H-Coefficient Technique with ϵ1 = ϵ2 = 0 completes the proof.

5.3.3 Updatable Offsets

While OTBC-1 is a fully secure tweakable block-cipher, it’s not very interesting to
us in the context of OCB+. This is because when the same nonce is used with
different block-numbers (as we need for OCB+), new calls to f1 and f2 are needed
for each new block-number. Thus we need three primitive calls to process every
block of message, which robs us of the main advantage of an OCB-like design.
This points us to the next desirable feature we need in the offsets: they should
be efficiently updatable when we keep the nonce same and increment the block-
number. We call a 2n-bit-to-n-bit function h efficiently updatable on the second
input if there is an efficiently computable function g (called the update function)
such that for each i we have

h(N , i+ 1) = g(i, h(N , i)).

In other words, given h(N , i) has already been computed, h(N , i + 1) can be
computed through the update function g while bypassing a fresh call to h. (For
this to make sense, of course, h should be computationally heavy and g should
be much faster than h.) Note that the update function may or may not use i as
an additional argument; while in this chapter we’ll only consider update functions
that are stationary (i.e., ignore the block-number i, and apply the same function
at each block to get the offset for the next block), it is possible to have an update
function that varies with i but still satisfies the above-discussed criteria.

5.3.3.1 The simplest updatable design.

The simplest way to design an updatable function is to call a random function f

on the nonce N once, and then use a stationary update function to obtain the
offset for each successive block-number. This can be formally defined as follows:

h(N , 1) = g(f(N)),

h(N , i) = g(h(N , i− 1)) = gi(f(N)), i ≥ 2.

Using these updatable offsets with two independent random functions f1 and f2

for input-masking and output-masking respectively, we can define a tweakable

Chapter 5. OCB+ 115

block-cipher OTBC-g as

OTBC-g(N , i,M) = π
(
M + gi(f1(N))

)
+ gi(f2(N)).

5.3.3.2 Instantiating OTBC-g.

In commonly used finite fields, there generally exist primitive elements that allow
very fast multiplication. As an instantiation of g, we use multiplication with one
such fixed primitive α. Concretely, we define the update function as

g(f(N)) = α • f(N).

Thus, we use as the updatable offsets

T = αi • f1(N), T̂ = αi • f2(N).

This gives us the construction OTBC-2, defined as

OTBC-2(N , i,M) = π
(
M + αi • f1(N)

)
+ αi • f2(N).

This construction is shown in Figure 5.3.

π
S Ŝ

M C

T T̂

αi

f1 f2

X Y

N

Figure 5.3: OTBC-2: Updatable offsets with two independent random-function
calls

5.3.3.3 Attack on OTBC-2.

Unfortunately, this simple updatable function is not sufficient to give us beyond-
birthday-bound security. This is because since the update function is linear and
publicly known, we can make queries such that successive message blocks under
the same nonce follow the update relation, which forces the successive S blocks
to also conform to the update relation. Thus, one collision on S between two

Chapter 5. OCB+ 116

different nonces ensures that successive blocks also see an S-collision, which can
be exploited in a distinguishing attack. This we state as the following theorem.

Theorem 5.2. There exists a distinguisher A querying with q nonces and L blocks
under each nonce with L ≥ 12 in a TPRP* game against OTBC-2 such that

AdvOTBC-2
TPRP* (A) ≥ Ω

(
q2L2

N

)
.

Proof. A picks q distinct nonces N (1), . . . ,N (q), and q distinct starting messages
M

(1)
1 , . . . ,M

(q)
1 . For each j ∈ [q] it makes L queries (N (j), 1,M

(j)
1), . . . , (N (j), L,M

(j)
L),

such that for each i ∈ [L] we have

M
(j)
i := αi−1 •M

(j)
1 .

This ensures that we have

S
(j)
i :=M

(j)
i + αi •X(j)

= αi−1 •M
(j)
1 + αi •X(j)

= αi−1 •

(
M

(j)
1 + α •X(j)

)
= αi−1 • S

(j)
1 ,

where X(j) := f1(N (j)) and S(j)
i is the input of π on the query (N (j), i,M

(j)
i).

Input Collision. Suppose we have distinct j, j′ ∈ [q] and some i, i′ ∈ [L − 1]

(not necessarily distinct), such that S(j)
i = S

(j′)
i′ . Then we have

S
(j)
i+1 = αi • S

(j)
1 = α •

(
αi−1 • S

(j)
1

)
= α • S

(j)
i

= α • S
(j′)
i′

= α •

(
αi−1 • S

(j′)
1

)
= αi • S

(j′)
1 = S

(j′)
i′+1.

In other words, a collision on two input blocks in two different nonces forces a
collision on the next block as well (and, in fact, this dominoes into all successive
blocks till one of the block-numbers reach L). A can use this property to mount
the distinguishing attack.

Chapter 5. OCB+ 117

Distinguishing Event. A searches for a pair of distinct j, j′ ∈ [q] and i, i′ ∈
[L− 2] (not necessarily distinct) such that

C
(j)
i+2 + C

(j′)
i′+2 = α •

(
C

(j)
i+1 + C

(j′)
i′+1

)
= α2 •

(
C

(j)
i + C

(j′)
i′

)
.

If such j, j′, i, i′ exist, A outputs 1, else it outputs 0.
We note that in the real world, whenever S(j)

i = S
(j′)
i′ , we have Ŝ(j)

i = Ŝ
(j′)
i′ , which

implies that
C

(j)
i + C

(j′)
i′ = αi • Y (j) + αi′ • Y (j′).

From the above discussion, we know that S(j)
i = S

(j′)
i′ forces the collisions S(j)

i+1 =

S
(j′)
i′+1 and S(j)

i+2 = S
(j′)
i′+2. The first of these implies that

C
(j)
i+1 + C

(j′)
i′+1 = αi+1 • Y (j) + αi′+1 • Y (j′)

= α •

(
αi • Y (j) + αi′ • Y (j′)

)
= α •

(
C

(j)
i + C

(j′)
i′

)
,

and similarly the second implies that

C
(j)
i+2 + C

(j′)
i′+2 = α •

(
C

(j)
i+1 + C

(j′)
i′+1

)
= α2 •

(
C

(j)
i + C

(j′)
i′

)
.

Thus, the collision S
(j)
i = S

(j′)
i′ for distinct j, j′ ∈ [q] and i, i′ ∈ [L − 2] is enough

to trigger the distinguishing event.
In the ideal world, this event requires two collisions, each with probability 1/N .
Since there are q(q − 1)/2 choices for j, j′ and (L− 2)2 choices for i, i′, we have

Pr
O0

[A outputs 1] ≈
(
q

2

)
· (L− 2)2

N2
.

But in the real world, this only requires one collision, as the other is automatically
enforced. Thus,

Pr
O1

[A outputs 1] ≈
(
q

2

)
· (L− 2)2

N
.

This completes the proof of the claimed lower bound on the advantage of A.

5.3.4 Offsets with Updatable Caches

To get around this problem, we observe that in order to use an offset-based tweak-
able block-cipher in OCB+, we don’t really need it to be updatable; it is enough

Chapter 5. OCB+ 118

for it to maintain a small and updatable hidden state or cache, such that the
offsets are efficiently computable from the cache. Letting ψ denote the caching
function, g the update function as before, h the offset-generating function, and φ
the cache-to-offset function, we have

ψ(N , i+ 1) = g(i, ψ(N , i)), h(N , i) = φ(ψ(N , i)).

Again, for this to make sense, h and ψ should be computationally heavy when
computed from scratch, while g and φ should be much faster.

5.3.4.1 Updatable Caches, Non-updatable Offsets.

To avoid the kind of attack that we found on OTBC-2, we want to design a tweak-
able block-cipher with offsets which are not themselves updatable, but are effi-
ciently computable from updatable caches. This makes the offsets more indepen-
dent, while still giving us a means of updating them efficiently at a small additional
cost.
One simple way to achieve this is to use two independent random functions f1 and
f2 on the nonce, put the outputs in the cache as two different branches, and use
two different update functions g and g′ on the two branches; the offset can then be
generated as the sum of the two branches. This can be formally defined as follows:

ψ(N , 1) = (g(f1(N)), g′(f2(N))),

ψ(N , i) = [g, g′](ψ(N , i− 1)) = (gi(f1(N)), g′
i
(f2(N))), i ≥ 2,

φ(x, y) = x+ y,

h(N , i) = gi(f1(N)) + g′
i
(f2(N)) = φ(ψ(N , i)),

where [g, g′] denotes the two-input function that applies g to the first input and g′

to the second input. Note that h(N , i) is not efficiently computable from h(N , i−1)
without accessing the cache ψ(N , i− 1), which makes the offsets themselves non-
updatable in the absence of the cache. Using these offsets we can define a tweakable
block-cipher OTBC-gg’ as

OTBC-gg’(N , i,M) = π
(
M + gi(f1(N)) + g′

i
(f2(N))

)
+ f3(N) + gi(π(0n)).

where f3 is a third independent random-function. Note that we do not bother
to use the non-updatable updates for masking the output, because A can make

Chapter 5. OCB+ 119

only encryption queries, and thus cannot exploit the same weakness in the output-
masking.

5.3.4.2 Instantiating OTBC-gg’.

As the main contribution of this section, we propose a concrete instantiation of
OTBC-gg’ and analyse its security. As before we keep the field-multiplication
by α as g, and for g′ we use field-multiplication by α2. The resulting tweakable
block-cipher, called OTBC-3, is defined as

OTBC-3(N , i,M) = π
(
M + αi • f1(N) + α2i • f2(N)

)
+ f3(N) + αi • π(0n).

This construction is shown in Figure 5.4.

π
S Ŝ

M C

T T̂

f1

X

f2

Y

f3

Z

π

L

αi α2i αi

0nN

Figure 5.4: OTBC-3: Offsets with updatable caches using three independent
random-function calls

Algorithm 5 OTBC-3f1,f2,f3,π(N , i,M)

1: T ← αif1(N)⊕ α2if2(N)

2: T̂ ← f3(N)⊕ αiπ(0n)
3: S ←M ⊕ T
4: Ŝ ← π(S)

5: C ← Ŝ ⊕ T̂
6: return C

5.3.5 TPRP* Security Analysis of OTBC-3

Consider a distinguisher A making σ encryption queries to OTBC-3 with q distinct
nonces and ℓ(j) ≤ L block-numbers 1, . . . , ℓ(j) for the j-th nonce for each j ∈ [q].
Then we have the following result.

Chapter 5. OCB+ 120

Theorem 5.3. As long as σ ≤ N/n2L2, we have

AdvOTBC-3
TPRP* (A) ≤

nσL

N
.

Proof. In this proof, we’ll use the following lemma.

Lemma 5.4. For some r ≥ 2 and 2r numbers i1, i′1, . . . , ir, i′r < N such that ij ̸= i′j

for each j ∈ [r], define

Br =



αi1 α2i1 αi′2 α2i′2 0 0 0 0 · · · 0 0 0 0

0 0 αi2 α2i2 αi′3 α2i′3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′4 α2i′4 · · · 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′r α2i′r

αi′1 α2i′1 0 0 0 0 0 0 · · · 0 0 αir α2ir


.

Then Br is at least of rank r.

Proof. First we observe that B2 is of rank 2 since, for the leftmost 2×2 submatrix
of B2, we have∣∣∣∣∣∣∣

αi1 α2i1

αi′1 α2i′1

∣∣∣∣∣∣∣ = αi1+2i′1 + α2i1+i′1 = αi1+i′1(αi1 + αi′1) ̸= 0.

(This also holds for the rightmost 2 × 2 submatrix.) Next we observe that B3 is
of rank 3 since, for the leftmost 3× 3 submatrix of B3, we have∣∣∣∣∣∣∣∣∣∣

αi1 α2i1 αi′2

0 0 αi2

αi′1 α2i′1 0

∣∣∣∣∣∣∣∣∣∣
= αi2

∣∣∣∣∣∣∣
αi1 α2i1

αi′1 α2i′1

∣∣∣∣∣∣∣ = αi1+i′1+i2(αi1 + αi′1) ̸= 0.

(This also holds for any of the three other contiguous 3 × 3 submatrices of B.)
This leaves the case r ≥ 4. We consider two cases, based on whether r is even or
odd. First, suppose r = 2m. Then we look at the 2m × 2m submatrix H of Br

Chapter 5. OCB+ 121

consisting of the columns 4p− 1 and 4p for each p ∈ [m]. Thus,

H =



αi′2 α2i′2 0 0 · · · 0 0

αi2 α2i2 0 0 · · · 0 0

0 0 αi′4 α2i′4 · · · 0 0

0 0 αi4 α2i4 · · · 0 0

...
...

...
...

...

0 0 0 0 · · · αi′2m α2i′2m

0 0 0 0 · · · αi2m α2i2m



.

We observe that H is a block-diagonal matrix of the form

H =



H1 02×2 · · · 02×2

02×2 H2 · · · 02×2

...
...

02×2 02×2 · · · Hm


,

where for each p ∈ [m],

Hp =

αi′2p α2i′2p

αi2p α2i2p

 .
Thus, |Hp|= αi2p+i′2p(αi2p + αi′2p) ̸= 0 for each p ∈ [m], and

|H|= |H1|·|H2|· . . . · |Hm|≠ 0,

which shows that H (and thus Br) is of rank 2m. Next suppose r = 2m+ 1. We
consider the (m + 1) × (m + 1) submatrix H of Br consisting of columns 4p − 1

Chapter 5. OCB+ 122

and 4p for each p ∈ [m], as well as column 4m+ 1. Thus,

H =



αi′2 α2i′2 0 0 · · · 0 0 0

αi2 α2i2 0 0 · · · 0 0 0

0 0 αi′4 α2i′4 · · · 0 0 0

0 0 αi4 α2i4 · · · 0 0 0

...
...

...
...

...
...

0 0 0 0 · · · αi′2m α2i′2m 0

0 0 0 0 · · · αi2m α2i2m αi′2m+1

0 0 0 0 · · · 0 0 αi2m+1



.

Again, we observe that H is a block-diagonal matrix of the form

H =



H1 02×2 · · · 02×3

02×2 H2 · · · 02×3

...
...

03×2 03×2 · · · Hm


,

where for each p ∈ [m− 1],

Hp =

αi′2p α2i′2p

αi2p α2i2p

 ,
and

Hm =


αi′2m α2i′2m 0

αi2m α2i2m αi′2m+1

0 0 αi2m+1

 .
We’ve already seen that |Hp|≠ 0 for each p ∈ [m − 1]. Further, we see that
|Hm|= αi2m+i′2m+i2m+1(αi2m + αi′2m) ̸= 0. Thus,

|H|= |H1|·|H2|· . . . · |Hm|≠ 0,

which shows that H (and thus Br) is of rank 2m+ 1.

Chapter 5. OCB+ 123

Label the q nonces N (1), . . . ,N (q). For the j-th nonce, there are ℓ(j) queries
(N (j), 1,M

(j)
1), . . . , (N (j), ℓ(j),M

(j)

ℓ(j)
), with outputs (C(j)

1 , . . . C
(j)

ℓ(j)
) respectively. For

the internal transcript, we have L, the encryption of 0 with π, and for the j-th
nonce, we have the three random-function outputs X(j), Y (j), Z(j); finally, we have
the (input, output) pairs (S

(j)
1 , Ŝ

(j)
1), . . . , (S

(j)

ℓ(j)
, Ŝ

(j)

ℓ(j)
) to π, and the (input-offset,

output-offset) pairs (T (j)
1 , T̂

(j)
1), . . . , (T

(j)

ℓ(j)
, T̂

(j)

ℓ(j)
). Then this extended transcript sat-

isfies the following equations for each j ∈ [q] and each i ∈ [ℓ(j)]:

S
(j)
i =M

(j)
i + T

(j)
i , Ŝ

(j)
i = C

(j)
i + T̂

(j)
i ,

T
(j)
i = αi •X(j) + α2i • Y (j), T̂

(j)
i = Z(j) + αi • L.

5.3.5.1 Internal Sampling.

Following the query phase of the game, in the ideal world we sample the internal
transcript as follows (subject to certain bad events to be defined subsequently):

• Sample X(j), Y (j) uniformly at random for each j ∈ [q];

• Check for bad1, bad2, bad3, bad4;

• Sample L uniformly at random;

• Check for bad5, bad6;

• Let S1, . . . , St be a labeling of the unique values in {S(j)
i | j ∈ [q], i ∈ [ℓ(j)]};

• Sample {Ŝk | k ∈ [t]} directly from good set, subject to the equations Ŝ(j)
i +

Ŝ
(j)
i′ = C

(j)
i + C

(j)
i′ + (αi + αi′) • L for each j ∈ [q] and each i, i′ ∈ [ℓ(j)].

Before describing the bad events bad1, . . . , bad6, we define two graphs on the
extended transcript.

5.3.5.2 Transcript Graph.

For distinct j1, j2 ∈ [q], there is an edge (j1, j2) in G if we have some i1 ∈ [ℓ(j1)]

and some i2 ∈ [ℓ(j2)] such that S(j1)
i1

= S
(j2)
i2

.
We will refer to paths of length 2 in G as links. A link (j1, j2, j3) formed with
the collisions S(j1)

i1
= S

(j2)
i2

and S
(j2)

i′2
= S

(j3)
i3

for some i1 ∈ [ℓ(j1)], i2, i′2 ∈ [ℓ(j2)]

and i3 ∈ [ℓ(j3)] is called degenerate if i2 = i′2 and non-degenerate otherwise. We
observe that the above link being degenerate implies S(j1)

i1
= S

(j3)
i3

, so (j1, j3) is
also an edge in G. By short-circuiting a degenerate link (j1, j2, j3) we will refer to
the operation of replacing it with the edge (j1, j3).

Chapter 5. OCB+ 124

A path of length ≥ 3 is called non-degenerate if at least one of its sublinks is non-
degenerate. When a non-degenerate path contains a degenerate sublink, we can
short-circuit it to obtain a shorter non-degenerate path. We can repeat this oper-
ation as long as the path contains degenerate sublinks to end up with a minimal
non-degenerate path. When the initial path is a cycle, we end up with either a
minimal non-degenerate cycle or a double-collision edge, i.e., an edge (j1, j2) in G
such that for distinct i1, i′1 ∈ [ℓ(j1)] and distinct i2, i′2 ∈ [ℓ(j2)] we have S(j1)

i1
= S

(j2)
i2

,
and S(j1)

i′1
= S

(j2)

i′2
.

5.3.5.3 Dual Graph (for Mirror Theory).

We also define a second graph H on the transcript, which is something of a dual
of the first. This is the graph we need to check for the conditions necessary to
apply mirror theory. First consider the graph H ′ such that the vertices of H ′ are
the distinct values S1, . . . , St, and there is an edge between Si and Si′ in H if
they appear in the same nonce, i.e., if there is some j ∈ [q], i, i′ ∈ [ℓ(j)] such that
Ŝ
(j)
i + Ŝ

(j)
i′ = C

(j)
i + C

(j)
i′ + (αi + αi′) • L; further, the weight of this edge is then

C
(j)
i + C

(j)
i′ + (αi + αi′) • L.

From H ′ we get H by dropping all redundant edges—for each j ∈ [ℓ(j)], out of the
fully connected subgraph of G with

(
ℓ(j)

2

)
edges, we only keep a spanning tree of

ℓ(j) − 1 edges, and drop the rest. For instance, one way of choosing H could be
to just keep the edge between Ŝ

(j)
i and Ŝ

(j)
i+1 for each i ∈ [ℓ(j) − 1]. (Note that we

assume here that all Ŝ(j)
i are distinct within any j, because that is the only use-

case we’ll need; the notions however easily generalise to graphs with intra-nonce
collisions.)
We observe that H is cycle-free as long as G is cycle-free, and that the size ξmax

of the largest component of H is at most LM when M is the size of the largest
component of G.

5.3.5.4 Bad Events.

Based on the graphs G and H defined above, we can describe our bad events.

bad1: We have j ∈ [q] and distinct i, i′ ∈ [ℓ(j)] such that S(j)
i = S

(j)
i′ .

bad2: There is a double-collision edge in G.

bad3: There is a minimal non-degenerate cycle in G.

bad4: G has a component of size > n.

Chapter 5. OCB+ 125

bad5: We have j ∈ [q] and distinct i, i′ ∈ [ℓ(j)] such that C(j)
i +C

(j)
i′ = (αi+αi′) · L.

bad6: We have a path in H on which the edge-weights sum to 0.

Next we give an upper bound on the probability of at least one bad event happening
in the ideal world. Define

bad :=
6⋃

p=1

bad[p].

Then we have the following lemma.

Lemma 5.5. In the ideal world,

Pr[bad] ≤ nσL

N
.

of Lemma 1. We bound the probability of each of the six bad events one by one
below.

bad1: We have j ∈ [q] and distinct i, i′ ∈ [ℓ(j)] such that S(j)
i = S

(j)
i′ .

For a fixed choice of indices j, i and i′, the probability of the event comes out
to be 1/N due to the randomness of T (j)

i or T (j)
i′ . From union bound over all

possible choices of indices, we obtain

Pr[bad1] ≤ 1

N

q∑
j=1

ℓ(j)2 ≤ L

N

q∑
j=1

ℓ(j) ≤ σL

N
.

bad2: There is a double-collision edge in G.

This implies that we have distinct j1, j2 ∈ [q], distinct i1, i′1 ∈ [ℓ(j1)], and
distinct i2, i′2 ∈ [ℓ(j2)] such that S(j1)

i1
= S

(j2)
i2

, and S
(j1)

i′1
= S

(j2)

i′2
. This can be

written as B2v = c, where

B2 =

αi1 α2i1 αi2 α2i2

αi′1 α2i′1 αi′2 α2i′2

 ,v =



X(j1)

Y (j1)

X(j2)

Y (j2)


, c =

M (j1)
i1

+M
(j2)
i2

M
(j1)

i′1
+M

(j2)

i′2

 .

B2 is of rank 2 by Lemma 5.4. Thus, when we fix j1, j2, i1, i′1, i2, i′2, we have

Pr[B2v = c] ≤ 1

N2
.

Chapter 5. OCB+ 126

Thus,

Pr[bad2] ≤ 1

N2

q∑
j1=1

q∑
j2=1

ℓ(j1)2ℓ(j2)2 ≤ L2

N2

q∑
j1=1

q∑
j2=1

ℓ(j1)ℓ(j2) ≤ σ2L2

N2
.

bad3: There is a minimal non-degenerate cycle in the transcript graph.

First, suppose there is a minimal non-degenerate cycle of length 3. Thus, we
have distinct j1, j2, j3 ∈ [q], distinct i1, i′1 ∈ [ℓ(j1)], distinct i2, i′2 ∈ [ℓ(j2)], and
distinct i3, i′3 ∈ [ℓ(j3)] such that S(j1)

i1
= S

(j2)

i′2
, S(j2)

i2
= S

(j3)

i′3
, and S

(j3)
i3

= S
(j1)

i′1
.

(We name the indices like this for symmetry.) As before, this can be written
as B3v = c, where

B3 =


αi1 α2i1 αi′2 α2i′2 0 0

0 0 αi2 α2i2 αi′3 α2i′3

αi′1 α2i′1 0 0 αi3 α2i3

 ,v =



X(j1)

Y (j1)

X(j2)

Y (j2)

X(j3)

Y (j3)


, c =


M

(j1)
i1

+M
(j2)

i′2

M
(j2)
i2

+M
(j3)

i′3

M
(j3)
i3

+M
(j1)

i′1

 .

B3 is of rank 3 by Lemma 5.4. Thus, when we fix j1, j2, j3, i1, i′1, i2, i′2, i3, i′3,
we have

Pr[B3v = c] ≤ 1

N3
.

Next, suppose there is a minimal non-degenerate cycle of length r ≥ 4.
Thus we have distinct j1, . . . , jr ∈ [q]; for u ∈ [r− 1] we have iu ∈ [ℓ(ju)] and
i′u+1 ∈ [ℓ(ju+1)] such that S(ju)

iu
= S

(ju+1)

i′u+1
; and finally, we have ir ∈ [ℓ(jr)] and

i′1 ∈ [ℓ(j1)] such that S(jr)
ir

= S
(j1)

i′1
; the cycle being minimal non-degenerate

Chapter 5. OCB+ 127

implies that for each u ∈ [r], iu ̸= i′u. This can be written as Brv = c, where

Br =



αi1 α2i1 αi′2 α2i′2 0 0 0 0 · · · 0 0 0 0

0 0 αi2 α2i2 αi′3 α2i′3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′4 α2i′4 · · · 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′r α2i′r

αi′1 α2i′1 0 0 0 0 0 0 · · · 0 0 αir α2ir


,

v =



X(j1)

Y (j1)

X(j2)

Y (j2)

...

X(jr)

Y (jr)



, c =



M
(j1)
i1

+M
(j2)

i′2

M
(j2)
i2

+M
(j3)

i′3

M
(j3)
i3

+M
(j4)

i′4
...

M
(jr−1)
ir−1

+M
(jr)
i′r

M
(jr)
ir

+M
(j1)

i′1


.

Br is of rank r by Lemma 5.4. Thus, for each r ≥ 3, when we fix j1, · · · ,
jr, i1, i

′
1, · · · , ir, i′r, we have

Pr[Brv = c] ≤ 1

N r
.

Assuming 2σL ≤ N , we have

Pr[bad3] ≤
q∑

r=3

∏r
u=1 ℓ

(ju)2

N r

≤
q∑

r=3

((
L

N

)r r∏
u=1

ℓ(ju)

)
≤

q∑
r=3

(
σL

N

)r

≤ 2σ3L3

N3
.

bad4: G has a component of size > n.

For a component of size M , the minimum number of nonces in that compo-
nent should be p+1 where p = ⌈M/L⌉−1 with p collisions among themselves.
In other words, ∃ distinct j1, j2, · · · , jp+1 ∈ [q] and i1 ∈ ℓ(j1), i2, i′2 ∈ ℓ(j2),

Chapter 5. OCB+ 128

i3, i
′
3 ∈ ℓ(j3), · · ·, ip, i′p ∈ ℓ(jp), ip+1 ∈ ℓ(jp+1) such that

S
(j1)
i1

= S
(j2)
i2

, S
(j2)

i′2
= S

(j3)
i3

, . . . , S
(jp)
i′p

= S
(jp+1)
ip+1

.

For a fixed choice of indices, the probability of the event comes out to be
1/Np. The independence assumption comes from the fact that every equa-
tion from the system of equations mentioned above introduces a fresh nonce.
From union bound over all the possible choices of indices, we obtain

Pr[bad4] ≤ 1

Np

q∑
j1=1

q∑
j2=1

· · ·
q∑

jp+1=1

ℓ(j1)2ℓ(j2)2 · · · ℓ(jp+1)2

≤ Lp+1

Np

q∑
j1=1

q∑
j2=1

· · ·
q∑

jp+1=1

ℓ(j1)ℓ(j2) · · · ℓ(jp+1)

≤ σp+1Lp+1

Np
=
σL

N

(
σpLp

Np−1

)
.

Assuming σL ≤ N/2 and p = n, we get

Pr[bad4] ≤ σL

N
.

bad5: We have j ∈ [q] and distinct i, i′ ∈ [ℓj] such that C(j)
i + C

(j)
i′ = (αi + αi′) • L.

For a fixed choice of indices j, i and i′, the probability of the event comes out
to be 1/N due to the randomness of L. From union bound over all possible
choices of indices, we obtain

Pr[bad5] ≤ 1

N

q∑
j=1

ℓ(j)2 ≤ L

N

q∑
j=1

ℓ(j) ≤ σL

N
.

bad6: Suppose the first and last vertices on a path inside some component are Ŝ(j)
i

and Ŝ(j′)
i′ . Also suppose that the path goes through x1, x2, · · · , xy vertices of

position i1, i2, · · · , iy respectively. Then this bad event implies

C
(j)
i + C

(j′)
i′ + (αi + x1α

i1 + · · ·+ xyα
iy + αi′) • L = 0 .

For a fixed choice of the vertex pair (Ŝ(j)
i , Ŝ

(j′)
i′), the probability of the event

comes out to be 1/N due to the randomness of L. Applying union bound
over all possible vertex pairs, and summing over all components C of G, we

Chapter 5. OCB+ 129

get

Pr[bad6] ≤
∑
C

1

2N
·
(∑

j∈C

ℓ(j)

)2

≤
∑
C

1

2N
· ξmax ·

∑
j∈C

ℓ(j) =
ξmaxσ

2N
≤ nσL

2N
.

Thus, by union-bound, we have

Pr[bad] ≤ 4σL

N
+
σ2L2

N2
+

2σ3L3

N3
+
nσL

2N
≤ nσL

N
,

which completes the proof of the lemma.

5.3.5.5 Bounding the Ratio of Good Probabilities.

Let τ be a good transcript. In the real world, there are q distinct inputs to f1, q
distinct inputs to f2, and t distinct inputs to π. Thus,

Pr
O1

[τ] =
1

N2q(N)t
.

In the ideal world, in the online stage, there are σ outputs that are sampled
uniformly at random. In the offline stage, q more values are sampled uniformly,
and finally t variables are sampled from the good set subject to r non-redundant
equations (we calculate r later). Since σ < N/n2L2, and none of the bad events
has happened, the conditions for applying mirror theory are fulfilled. Thus, using
mirror theory,

Pr
O0

[τ] ≤ 1

Nσ+q
· N

r

(N)t
≤ 1

Nσ+q−r(N)t
.

To calculate r, we note that every repeated use of a nonce adds a non-redundant
equation to the system. Thus, r = σ − q, giving us

Pr
O0

[τ] ≤ 1

N2q(N)t
.

Thus, we have
PrO1 [τ]

PrO0 [τ]
≥ 1,

Applying the H-Coefficient Technique with ϵ1 = nσL/N and ϵ2 = 0 completes the
proof.

Chapter 5. OCB+ 130

5.3.6 TSPRP Security Analysis of OTBC-3

Let’s call (N , i) as T . We’ll use Coefficients H Technique to bound the advantage
of the adversary.

Transcript Notation. The adversary makes encryption queries (T (j),M (j))

to the oracle to receive C(j) and decryption queries (T (j′), C(j′)) to the oracle to
receive K(j′) with j, j′ ∈ [σ] and j ̸= j′. So the query-response transcript of the
adversary initially looks like {(T (1),M (1), C(1)), · · · , (T (σ),M (σ), C(σ))}.

Sampling in the Ideal World. For each encryption query (T (j),M (j)), the
ideal oracle samples C(j) with replacement from {0, 1}n uniformly at random. Sim-
ilarly, for each decryption query (T (j′), C(j′)), the ideal oracle samples M (j′) with
replacement from {0, 1}n uniformly at random. Once the adversary is done with
all its queries, the oracle releases some additional information to the adversary.
The ideal oracle samples them in the following way:

• The ideal oracle samples L from {0, 1}n uniformly at random.

• For all j ∈ [σ], the ideal oracle samples X(j), Y (j) and Z(j) with replacement
from {0, 1}n uniformly at random.

The real oracle releases the corresponding true values in this additional release
phase. After the additional release, the extended transcript looks like the following:
{L, (T (1),M (1), C(1), X(1), Y (1), Z(1)), · · · , (T (q),M (q), C(q), X(q), Y (q), Z(q))}.

Bad Events and Their Probabilities. We identify the following events as
bad.

bad1: ∃j, j′ ∈ [σ] with j ̸= j′ such that S(j) = S(j′). The probability of this event
can be bounded by (σ2/N) due to the randomness of X or Y .

bad2: ∃j, j′ ∈ [σ] with j ̸= j′ such that Ŝ(j) = Ŝ(j′). The probability of this event
can also be bounded by (σ2/N) due to the randomness of X or Y .

bad3: ∃j ∈ [σ] such that S(j) = 0n. The probability of this event can be bounded
by (σ/N) due to the randomness of X or Y .

bad4: ∃j ∈ [σ] such that Ŝ(j) = L. The probability of this event can also be
bounded by (σ/N) due to the randomness of X or Y .

Chapter 5. OCB+ 131

Good Interpolation Probabilities and Their Ratio. For any good tran-
script τ , we get the real interpolation probability as

Pr
O1

[τ] =
1

Nσ
· 1

Nσ
· 1

Nσ
· 1

(N)σ+1

.

The first, second and third term in the denominator on the right hand side rep-
resents the number of choices for X, Y and Z respectively, and the fourth term
represents the number of choices for distinct permutation calls. We also get the
ideal interpolation probability as

Pr
O0

[τ] =
1

Nσ
· 1

Nσ
· 1

Nσ
· 1

Nσ+1
.

The first, second and third term in the denominator on the right hand side rep-
resents the number of choices for X, Y and Z respectively, and the fourth term
represents the number of choices for distinct permutation calls. Thus we finally
we get

PrO1 [τ]

PrO0 [τ]
≥ 1 .

Advantage of the Adversary. Applying H-Coefficient Technique, we get that
the TSPRP advantage of the adversary is bounded above by

ϵ1 =
2σ2

N
+

2σ

N
.

5.4 An Application of OTBC-3

Using the tweakable block-cipher OTBC-3, we define an authenticated encryption
scheme OCB+ that is about as efficient as OCB3 while providing a higher degree
of privacy guarantee without affecting the authenticity guarantee of OCB3. This
is shown in Figure 5.5.

5.4.1 Nonce Handling

OCB+ uses a nonce N of n − 2 bits, with the final two bits reserved for domain
separation. N∥00 is used for processing the message blocks, N∥01 is used for
processing the tag, and N∥10 is used for handling the associated data.

Chapter 5. OCB+ 132

π

S1

Ŝ1

M1

C1

α α2 π

S2

Ŝ2

M2

C2

α α2 · · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·

π

Sℓ

Ŝℓ

Mℓ

Cℓ

α α2 π

Stag

Ŝtag

Mtag

X̃

L

f1

f2

f3

π

0n

N∥00

X

Y

L

Z

f2

f1

f3

N∥01

Ỹ

Z̃

π

A2

U2

Û2

B2

α α2π

A1

U1

Û1

B1

α α2 π

Ak

αk • L

Uk

Ûk

Bk

α α2· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

f1

f2

f3

N∥10

L1

L2

L3

auth

Ctag

tag

Figure 5.5: The OCB+ construction. α is a primitive field-element that allows
efficient multiplication.

5.4.2 Handling Incomplete Blocks

Incomplete blocks can be handled in the same way as in OCB3, modifying the
masking constants for the incomplete blocks. This does not affect the privacy
bound significantly, and since the focus of this chapter is to improve the privacy
guarantee of OCB3, we skip giving specific details on how to handle incomplete
blocks in OCB+.

5.4.3 Security Claims

We claim that as long as the maximum length L permitted for each message
(i.e., the maximum number of blocks encrypted using the same nonce) is small,
OCB+ provides both beyond-birthday privacy and beyond-birthday authenticity.
Formally we claim the following.

Theorem 5.6. Consider a distinguisher A of OCB+ which can make q encryp-
tion queries with distinct nonces with σ blocks and q′ decryption queries to its

Chapter 5. OCB+ 133

Algorithm 6 OCB+f1,f2,f3,π(N , A,M)

1: Mtag ← 0n

2: auth← 0n

3: for i← 1 to ℓ do
4: Mtag ←Mtag ⊕Mi

5: Ci ← OTBC-3f1,f2,f3,π(N∥00, i,Mi)

6: C ← C1∥· · · ∥Cℓ

7: Ctag ← OTBC-3f1,f2,f3,π(N∥01, 0,Mtag)
8: for i← 1 to k do
9: Bi ← OTBC-3f1,f2,f3,π(N∥10, i, Ai)

10: auth← auth⊕Bi

11: tag← Ctag ⊕ auth
12: T ← chopτ (tag)
13: return (C, T)

challenger. Suppose the length of the i-th message and the i-th associated data are
ℓi and ki respectively, where ℓi, ki ≤ L∀i ∈ [qe]. As long as σ ≤ N/n2L2, we have

AdvOCB+
NAEAD(A) ≤

nσL

N
+O

(
q′L

N

)
.

Proof. Suppose there is a distinguisher B of OTBC-3 which can make σ+q queries
to its challenger and which works in the following way. It runs A to start the game.
Whenever A makes the i-th encryption query (N i, Ai,M i), B does the following.

• For the j-th message block M i
j , it makes the encryption query(N i∥00, j,M i

j)

to its challenger. Suppose it receives Ci
j as the response.

• Suppose the length of M i is ℓi blocks. It makes and encryption query
(N i∥01, 0,M i

1 + · · · + M i
ℓi
) to its challenger. Suppose it receives Ci

tag as
response.

• For the j-th associated data blockAi
j, it makes the encryption query (N i∥10, j, Ai

j)

to its challenger. Suppose it receives Bi
j as response.

• Suppose the length of Ai is ki blocks. It calculates authi = Bi
1 + · · ·+Bi

ki
.

• Finally it returns (Ci
1∥· · · ∥Ci

ℓi
, chopτ (C

i
tag + authi)) to A.

Chapter 5. OCB+ 134

Once A submits its decision bit, B carries it forward to its challenger as its own
decision bit as well. Then we obtain the following privacy advantage of A:

AdvOCB+
priv (A) = AdvOTBC-3

TPRP* (B).

Combining this result with Theorem 5.3, we obtain

AdvOCB+
priv (A) ≤ nσL

N
. (5.1)

From the security analysis in Section 4 of [157], we obtain the following authenticity
advantage of A.

AdvOCB+
auth (A) ≤ O

(
q′L

N

)
. (5.2)

The result of Theorem 5.6 follows directly from (5.1) and (5.2).

5.5 Conclusion

In this chapter, we have proposed a new nonce-respecting BBB secure offset-
based TBC and used it in an OCB-like mode to obtain a new NAEAD mode
named OCB+, which has both BBB privacy security as well as BBB authenticity
security. A natural follow-up to this work should be to implement OCB+ in a
practical setup and benchmark it against OCB to get an idea of how much the
design overhead of OCB+ costs in performance for real-life applications.

Chapter 6

CENCPP*

Public permutations have been established as important primitives for the purpose
of designing cryptographic schemes. While many such schemes for authentication
and encryption have been proposed in the past decade, the birthday bound in
terms of the primitive’s block length n has been mostly accepted as the stan-
dard security goal. Thus, remarkably little research has been conducted yet on
permutation-based modes with higher security guarantees. At CRYPTO’19, Chen
et al. showed two constructions with higher security based on the sum of two pub-
lic permutations. Their work has sparked increased interest in this direction by the
community. However, since their proposals were domain-preserving, the question
of encryption schemes with beyond-birthday-bound security was left open.
This chapter tries to address this gap by proposing CENCPP∗, a nonce-based en-
cryption scheme from public permutations. Our proposal is a variant of Iwata’s
block-cipher-based mode CENC that we adapt for public permutations, thereby
generalising Chen et al.’s Sum-of-Even-Mansour construction to a mode with vari-
able output lengths. Like CENC, our proposal enjoys a comfortable rate-security
trade-off that needs w + 1 calls to the primitive for w primitive outputs. We
show a tight security level for up to O(22n/3/w2) primitive calls. While the term
of w ≥ 1 can be arbitrary, two independent keys suffice. Beyond our proposal
of CENCPP∗ in a generic setting with w + 1 independent permutations, we show
that only log2(w + 1) bits of the input for domain separation suffice to obtain a
single-permutation variant with a security level of up to O(22n/3/w4) queries.

135

Chapter 6. CENCPP* 136

6.1 Introduction

Permutation-based cryptography has become an important branch of symmetric-
key cryptography. Permutations spare the cryptographer from the task of design-
ing and analysing a secure key schedule. Permutations have a long history in many
applications. For example, the eSTREAM candidate Salsa [158] already allowed
hashing, expansion, and encryption based on a permutation. After Keccak’s selec-
tion as the SHA-3 standard [159], the number of proposed permutations and the
number of schemes built upon them has surged. Nowadays, various schemes exist,
few for hashing and authentication like Chaskey [26], but many more for authenti-
cated encryption, where many AE schemes are based on the Duplex construction
[34].
The security of many block-cipher-based modes, such as GCM [160] or OCB3 [161]
is limited by the birthday bound of the primitive’s state size (usually indicated by
n bits). This limitation renders the privacy guarantees void when some internal
collision occurs, which happens with non-negligible probability after O(2n/2) blocks
have been processed under the same key. Modes with higher security guarantees
appear helpful for cases where smaller primitives must be used. As a response, the
cryptographic community has proposed various modes with higher security over
the previous decades, such as CENC [16]. Many more modes have been proposed
in the domain of MACs and fixed-output-length PRFs, that includes designs like
PMAC+ [162], Sum-ECBC [163], 3kf9 [164], LightMAC_Plus [165], or the Sum of
GCM constructions [166], many of which could be generalised under the framework
of Double-block-Hash-then-Sum designs [167]. The rise of tweakable block-ciphers
(TBCs) [168], that take a tweak as an additional public input, allowed the con-
struction of further modes with enhanced security guarantees, such as ΘCB3 [161]
or OTR [60].
For permutation-based modes, the birthday-bound limitation is often tolerated,
e.g. in Farfalle [27], or Elephant [169], or OPP [170] and compensated by the us-
age of larger permutations. However, birthday-bound-secure permutation-based
modes are not useful in practice if the underlying permutation size is small. For ex-
ample, a birthday-bound-secure permutation-based mode instantiated with PHO-

TON [171] of state size 100 bits or SPONGENT [172] of state size 88 bits, gives only
50 (resp. 44) bits of security. At CRYPTO’19, Chen et al. [17] initiated a line of
research for fixed output-length PRFs with beyond-birthday-bound security. They
proposed two designs: the Sum-of-Even-Mansour constructions (SoEM) and the
Sum of Key-alternating Ciphers (SoKAC), with proofs for up to O(22n/3) queries.

Chapter 6. CENCPP* 137

The single-primitive variants were revisited by Nandi [173] and Chakraborti et
al. [174], respectively. More importantly, the latter work proposed PDM-MAC, a
version of SoKAC that needed only a single permutation and its inverse, as well
as only a single key while maintaining security for up to O(22n/3) queries.
Besides those stateless deterministic constructions, at least two nonce-based PRFs
for variable-length inputs with higher security exist. In [174], Chakraborti et al.
also proposed PDM∗MAC, which extends PDM-MAC to variable-length inputs by
adding a polynomial hash of the message in the middle. At Africacrypt 2020,
Dutta et al. [175] introduced nEHtMp, a variant of Enhanced Hash-then-MAC
from public permutations. Both PDM∗MAC and nEHtMp are nonce-based 2n/3-
bit-secure MACs. In the long run, however, the question will be to build more
secure authenticated encryption schemes. For this purpose, at least equally secure
encryption modes are necessary. The constructions above can produce only fixed-
length outputs. Modes with security beyond the birthday bound are desirable for
settings that are bound to small primitives but need higher security. One can
use a fixed-output-length PRF repeatedly by changing the input for every block.
However, this would imply a rate of 1/2, e.g. for SoEM or PDM-MAC in counter
mode. Therefore, the task of designing a variable-output-length encryption scheme
with comparable security and higher efficiency is still open.

6.1.1 Contributions

In this chapter, we propose CENCPP∗[w], a mode of operation, built from n-bit
permutations with O(22n/3/w2) security where w is a small user-adjustable inte-
ger that represents a trade-off between security and efficiency. It is a variable-
output-length version of SoEM22 that adapts Iwata’s block-cipher-based mode
CENC [16]. CENCPP∗ can be instantiated directly with usual permutations and re-
quires only two independent keys for variable sizes. While our generic construction
CENCPP∗[w] assumes (w+1) independent permutations, we suggest a variant that
needs only a single public permutation while sacrificing only log2(w+1) bits of the
input space for separating domains. We derive domain-separated single-primitive
variants of SoEM and CENCPP∗, that we call DS-SoEM and DS-CENCPP[w], and
show their security. We argue that two independent keys are necessary and suffi-
cient for our security guarantees by providing distinguishers for all constructions
in O(2n/2) queries if they used a single key or a simple key-scheduling approach.
Moreover, we describe distinguishers in O(22n/3) queries to show that the security
is effectively tight except for the logarithmic factor in w.

Chapter 6. CENCPP* 138

Table 6.1 compares our proposals with beyond-birthday-secure PRFs from the liter-
ature that are built on public permutations. Although no standalone parallelisable
encryption mode from permutations seems to exist, our mode is not a novum; the
encryption procedures inside many permutation-based authenticated encryption
schemes, as in Elephant [169], OPP [170], Minalpher [176], etc. can be seen as such.
We added them as well as SoEM and PDM-MAC in counter mode for comparison.
To compare their state sizes, let k, ν, and c denote the length of keys, nonces, and
counters in bits, respectively. Elephant-like modes have min(n/2, k)-bit security
and need 2n+ ν + c bits of state size: ν + c bits for the nonce and counter input,
n bits for the mask derived from the key, and n bits for the current block. A
similar argument holds for Duplex-based constructions, which need only 2n bits
of state for min(n/2, k)-bit security. In contrast, the previously proposed PRFs
with beyond-birthday-bound security need more memory. For example, SoEM

and SoKAC21 need 4n bits each: 2n bits for the keys and 2n bits for the state.
With a single key, PDM-MAC could reduce the memory to 3n bits. CENCPP and
DS-CENCPP need a similar amount of memory as SoEM but are nonce-based.
Thus, CENCPP needs 2n bits for the state, 2n bits for two keys, and ν + c bits for
nonce and counter. It would be desirable to further reduce those figures in future
work.
Hereafter, Section 6.2 recalls preliminaries before Section 6.3 defines CENCPP∗.
We employ two different keys for security and show that it is necessary to combine
them for most primitive calls. We show that simpler key schedulings would lead to
a birthday-bound distinguisher in Section 6.4. Next, we analyse the security of the
generic CENCPP∗ construction in Section 6.5. In Section 6.6, we propose domain-
separated variants of SoEM and CENCPP∗, called DS-SoEM and DS-CENCPP. We
provide a design rationale and distinguishers on weaker variants in Section 6.7.
We analyse the security of DS-CENCPP and DS-SoEM in Section 6.8.1 and 6.8.2,
respectively. Section 6.9 concludes.

6.2 Preliminaries

In this chapter, for any n-bit string X and non-negative integer x ≤ n, we’ll use
lsbx(X) and msbx(X) to denote the x least significant and most significant bits of
X, respectively.

Lemma 6.1. Let d ≥ 0 be a positive integer and K0, K1
$← {0, 1}n be two

independent n-bit random variables. Let A2×2 = (aij) ∈ {0, 1}n be a non-singular

Chapter 6. CENCPP* 139

Table 6.1: Comparison with existing PRFs built on public permutations with
birthday-bound and beyond-birthday-bound security. Prim. = primitives, IF
= inverse-free, n = state size (in bits), w = word parameter, d = domain size,
ν = nonce size, c = counter size, ∗ = variable size, security in O(·) bits under
n-bit keys, •/– = yes/no, † = rate for the finalisation only, (B)BB = (beyond-

)birthday-bound

Efficiency Bits

Construction #
P

ri
m

.

#
K

ey
s

IF N
on

ce

Rate State size In Out Security

Fixed-length input, fixed-length output

PDM-MAC [174] 1 1 – – 1/2 3n n n 2n/3

SoEM22 [17] 2 2 • – 1/2 4n n n 2n/3

SoKAC22 [17] 2 2 • – 1/2 4n n n 2n/3

pEDM [177] 1 2 • – 1/2 4n n n 2n/3

DS-SoEM [Sect. 6.6] 1 2 • – (n− d)/2n 4n n− d n 2n/3

Variable-length input, fixed-length output

nEHtMp [175] 1 2 • • 1/2 † 4n− 1 ∗ n 2n/3

PDM∗MAC [174] 1 2 – • 1/2 † 3n ∗ n 2n/3

1K-PDM∗MAC [174] 1 1 – • 1/2 † 3n ∗ n 2n/3

Variable-length input, variable-length output BB security

Elephant [169] 1 1 • • 1 2n+ ν + c ∗ ∗ min(k, n/2)

Minalpher [176] 1 1 • • 1 2n+ ν + c ∗ ∗ min(k, n/2)

OPP [170] 1 1 • • 1 2n+ ν + c ∗ ∗ min(k, n/2)

Variable-length input, variable-length output, BBB security

CTR-SoEM22 2 2 • – 1/2 4n+ ν + c ∗ ∗ 2n/3

CTR-PDM-MAC 1 1 – – 1/2 3n+ ν + c ∗ ∗ 2n/3

CENCPP∗ [Sect. 6.3] w+1 2 • • w/(w + 1) 4n+ ν + c ∗ ∗ 2n/3− log(w2)

DS-CENCPP [Sect. 6.6] 1 2 • • w(n− d)/((w + 1)n) 4n+ ν + c ∗ ∗ 2n/3− log(w4)

matrix. Then for any b1 ∈ {0, 1}n−d and for any b2 ∈ {0, 1}n

Pr [msbn−d(a0,0 ·K0 ⊕ a0,1 ·K1) = b1, (a1,0 ·K0 ⊕ a1,1 ·K1) = b2] =
2d

22n
.

Proof. Let us consider the two equationsa0,0 ·K0 ⊕ a0,1 ·K1 = b1∥⟨α⟩d
a1,0 ·K0 ⊕ a1,1 ·K1 = b2 ,

where α ∈ {0, 1}d. Now, the number of solutions to the above system of equations

Chapter 6. CENCPP* 140

is 1. Therefore, by varying the last d bits of the constant of the first equations to
its all possible choices, we have total 2d many solutions to the original system of
equations and hence the result follows.

A simple corollary of the above result yields the following:

Lemma 6.2. Let A2×2 = (aij) ∈ {0, 1}n be a non-singular matrix. For any
b1, b2 ∈ {0, 1}n

Pr
[
K0, K1

$← {0, 1}n : A · (K0, K1)
⊤ = (b1, b2)

⊤
]
= 2−2n .

Proof. This result simply follows from Lemma 6.1 by setting d = 0.

Lemma 6.3. Let 0 ≤ pi ≤ 1 for i = 1, . . . , n. Then, we have

n∏
i=1

(1− pi) ≤ 1−
n∑

i=1

pi +
∑

1≤i<j≤n

pipj.

Proof. We prove the result by induction on n. The result holds true for n = 1, 2.
Let the result holds true for n = m. We prove the result for n = m+1. Therefore,

m+1∏
i=1

(1− pi) =
m∏
i=1

(1− pi)(1− pm+1)

≤ (1−
m∑
i=1

pi +
∑

1≤i<j≤m

pipj)(1− pm+1)

= (1−
m+1∑
i=1

pi +
∑

1≤i<j≤m+1

pipj) +
∑

1≤i<j≤m

pipjpm+1

≤ (1−
m+1∑
i=1

pi +
∑

1≤i<j≤m+1

pipj),

which proves the result for n = m+ 1 and hence we prove the result.

6.3 The CENCPP∗ Mode

This section defines a generic CENC construction that we call CENCPP∗. Standing
on the shoulders of existing constructions, we start with the necessary details of
SoEM and CENC.

Chapter 6. CENCPP* 141

M

P1 P2

K1 K2

K1 K2

U X

V Y

C

Figure 6.1: The construction SoEM22 by Chen et al. [17]

6.3.1 SoEM

At CRYPTO’19, Chen et al. [17] proposed SoEM (Sum of Even-Mansour con-
structions) and SoKAC (Sum of Key-alternating Ciphers). Both designs represent
fixed-length PRFs which they provided analyses for up to O(22n/3) queries for
both. An improved analysis that showed subtleties of the proof of SoKAC21 was
presented later in [173]. The former sums the results of two single-round Even-
Mansour ciphers; the latter is a variant of Encrypted Davies-Meyer [178] from
public instead of keyed primitives.
Chen et al. parameterised their constructions as SoEMλκ and SoKACλκ, where λ
denoted the number of permutations, and κ the number of keys. Figure 6.1 illus-
trates SoEM22, which will be relevant in this chapter. Both modes need two calls
to the independent permutations. Moreover, SoEM demanded two independent
keys. Chen et al. also studied SoEM12 with a single permutation: P (M ⊕K1)⊕
K1⊕P (M⊕K2)⊕K2, and SoKAC12 as P (P (M⊕K1)⊕K2)⊕K1⊕P (M⊕K1)⊕K2,
and showed distinguishers with O(2n/2) queries for both. However, Chakraborti et
al. [174] showed that the distinguisher on the latter may be incorrect and SoKAC12

could offer a security bound of Ω(22n/3) (cf. [177]).

6.3.2 CENC

CENC is a nonce-based block-cipher mode that generalises the sum of permutations
by Iwata [16]. It uses the nonce concatenated with a counter as block-cipher input,
splits each sequence of w message blocks into chunks, and processes them by XORP.
In XORP, the message M is split into w blocks of n bits, for a small positive integer
w. Let n, ν, µ be integers such that n = ν+µ and w+1 ≤ 2µ. Let E : K×Fn

2 → Fn
2

be a block-cipher, and let N = Fν
2 be a nonce space. The remaining µ input bits

are used for a counter. Let K ∈ K be a secret key and N ∈ N be a nonce. Then,

Chapter 6. CENCPP* 142

N ∥ ⟨0⟩

(a0,0 ·K0)
⊕ (a0,1 ·K1)

P0

X̂1,0

Û1,0

V̂1,0

N ∥ ⟨0⟩

(a1,0 ·K0)
⊕ (a1,1 ·K1)

P1

M1

C1

X̂1,0

Û1,1

V̂1,1

N ∥ ⟨0⟩

(a2,0 ·K0)
⊕ (a2,1 ·K1)

P2

M2

C2

X̂1,0

Û1,2

V̂1,2

N ∥ ⟨1⟩

(a0,0 ·K0)
⊕ (a0,1 ·K1)

P0

X̂2,0

Û2,0

V̂2,0

N ∥ ⟨1⟩

(a1,0 ·K0)
⊕ (a1,1 ·K1)

P1

M3

C3

X̂2,0

Û2,1

V̂2,1

N ∥ ⟨1⟩

(a2,0 ·K0)
⊕ (a2,1 ·K1)

P2

M4

C4

X̂2,0

Û2,2

V̂2,2

Figure 6.2: Encryption of a message M = (M1, . . ., M4) with CENCPP∗[(P0,
P1, P2), 2]K0,K1 . The final chunk is truncated if its length is less than 2n bits.
N is a nonce, K0 and K1 are independent secret keys and P0, P1, and P2 inde-
pendent permutations. In this figure, Ûi,j (resp. V̂i,j) denotes the permutation
input (resp. output) for the j-th invocation of the permutation in the i-th chunk.

For the i-th chunk, X̂i,0 denotes V̂i,0 ⊕ ai,0K0 ⊕ ai,1K1.

XORP[EK , w](N, s) computes a key stream S1 ∥ . . . ∥Sw as

Si
def
= EK(N ∥ ⟨s⟩µ)⊕ EK(N ∥ ⟨s+ i⟩µ), for i ∈ [w] .

Thus, it makes w + 1 block-cipher calls with pairwise distinct inputs, where
EK(X ∥ ⟨s⟩µ) with the starting value s of the counter is XORed to each of the
other blocks. XORP[EK , w] can be used as a length-restricted encryption scheme
by XORing its output to a message M of |M |≤ n · w bits. The final chunk is
simply truncated to the length of the final message block. We slightly adapt the
definition by [16, 179] to

XORP[EK , w] : N × Fµ
2 → (F2)

n·w,

where XORP[EK , w](N, i) uses N ∥ ⟨i⟩µ, N ∥ ⟨i+ 1⟩µ, . . . as inputs to EK .
CENC concatenates several instances of XORP[EK , w] with pair-wise distinct in-
puts. Let M ∈ F∗2 be a message s. t. M1 · · ·Mm ←n M . Let ℓ = ⌈m/w⌉ denote
the number of chunks. It must hold that ℓ · (w + 1) < 2µ. Then

CENC[EK , w](N,M)
def
= msb|M |

(
∥ ℓ−1i=0 XORP[EK , w] (N, i · (w + 1))

)
⊕M.

Chapter 6. CENCPP* 143

6.3.3 CENCPP∗

In the following, we adapt CENC to the public-permutation setting. Let A = (aij)

be a (w + 1)× 2 dimensional matrix such that each of its elements aij is an n-bit
binary string. Let P0, . . ., Pw ∈ Perm(Fn

2) be permutations, and let K0, K1 ∈ Fn
2

be independent secret keys. We define P
def
= (P0, . . . , Pw) as shorthand form.

Furthermore, D ⊆ Fµ
2 be a set of domains, s. t. n = ν + µ. For brevity, we define

a key vector K = (K0, K1). We combine both keys K0 and K1 for the individual
permutations as (ai,0 ·K0) ⊕ (ai,1 ·K1) to generate the i-th round key K ′i, for all
i ∈ [0..w]. In matrix notation, we write this as follows:

A ·K =



a0,0 a0,1

a1,0 a1,1

.

aw,0 aw,1


·

K0

K1

 =



K ′0

K ′1
...

K ′w


.

We call A the key-scheduling matrix. We adapt XORP to XORPP∗ to note that it is
based on the XOR of public permutations. For a key-scheduling matrix A of di-
mension (w+1)×2, we define XORPP∗ [P, w,A] : (Fn

2)
2×Fn

2 → (Fn
2)

w, instantiated
with w+1 permutations P0, . . . , Pw, a key space (Fn

2)
2 and the key-scheduling ma-

trix A. We write XORPP∗ as short for XORPP∗ [P, w,A] when w, key-scheduling
matrix A and the permutations P are clear from the context. Given that the
permutations are independent, CENCPP∗ uses the same input (N ∥ ⟨i⟩µ) for each
permutation in one call of XORPP∗. We define encryption and decryption of the
nonce-based mode CENCPP∗ as given in Algorithm 7 and a pictorial depiction of
encryption of a four-block message using CENCPP∗ has been given in Figure 6.2.

6.3.4 Discussion

Further constructions with beyond-birthday security from public permutations are
naturally possible. However, our proposal CENCPP∗ seems efficient. Instantiating
CENC with a two-round Even-Mansour construction could be a generic approach
that can provide roughly the security of the primitive, i.e., 2n/3 bits, and would
employ ⌈2w+1

w
⌉ calls to the permutation for w message blocks. In their proposal

of AES-PRF, Mennink and Neves increased the performance of their construction
[180] by instantiating it with five-round AES. However, its security margin is thin
[181] and improved cryptanalysis could break it in the near future.

Chapter 6. CENCPP* 144

Algorithm 7 Specification of CENCPP∗

101: function CENCPP∗[P, w,A].EK(N,M)
102: M1 · · ·Mm ←n M
103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ− 1 do
105: j ← i · w
106: (Sj+1 ∥ · · · ∥Sj+w)
107: ← XORPP∗[P, w,A]K(N ∥ ⟨i⟩µ)
108: for k ← j + 1..j + w do
109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ∥ · · · ∥Cm)

201: function CENCPP∗[P, w,A].DK(N,C)
202: return CENCPP∗[P, w,A].EK(N,C)

301: function XORPP∗[P, w,A]K(I)
302: (K0,K1)← K
303: (P0, . . . , Pw)← P
304: L0 ← (a0,0 ·K0)⊕ (a0,1 ·K1)

305: Û0 ← I ⊕ L0

306: X̂0 ← P0(Û0)⊕ L0

307: for α← 1..w do
308: Lα ← (aα,0 ·K0)⊕ (aα,1 ·K1)

309: Ûα ← I ⊕ Lα

310: X̂α ← Pα(Ûα)⊕ Lα

311: Oα ← X̂α ⊕ X̂0

312: return O ← (O1 ∥ · · · ∥Ow)

More related works exist in the secret-permutation setting. Cogliati and Seurin
[182] showed that a variant of EDM with a single keyed permutation – that
is EK(EK(M) ⊕ M) – possesses roughly O(22n/3) security. The work by Guo
et al. [183] followed this direction, showing O(22n/3/n) security for the single-
permutation variants of EDM and its dual EDMD– EK(EK(M))⊕EK(M). More-
over, they proved a similar security result also for the sum from a single permuta-
tion and its inverse, SUMPIP: EK(M)⊕E−1K (M). The Decrypted Wegman-Carter
Davies-Meyer construction [184] would also possess a security bound of O(22n/3)
but limited the input space to 2n/3 bits. SUMPIP could retain beyond-birthday-
bound security with public permutations, i.e.

P (M ⊕K1)⊕K1 ⊕ P−1(M ⊕K2)⊕K2

could be secure beyond O(2n/2) queries when using a public primitive P .
MACs from public permutations obtained a high level of attention recently. In
[174], Chakraborti et al. proposed a PDM-MAC

P−1(P (K ⊕M)⊕K ⊕ 2K ⊕M)⊕ 2K ,

which eliminated the need for a second key from SUMPIP. They also considered a
nonce-based variable-input-length PRF, PDM∗MAC, and a single-key version 1K-

PDM∗MAC. All of their constructions maintained a security bound of O(22n/3).
However, the instantiations needed both forward and inverse of the permutation,
which is less practical for a permutation-based design compared to the construction
that invokes the permutation only in forward direction.

Chapter 6. CENCPP* 145

I

K0

K0

P0

X̂0

Û0

V̂0

I

K1

K1

P1

O1

X̂0

Û1

V̂1

X̂1

I

αK1

αK1

P2

O2

X̂0

Û2

V̂2

X̂2

· · ·

I

αw−1K1

αw−1K1

Pw

Ow

X̂0

Ûw

V̂w

X̂w

M

P1 P2

K αK

K αK

U X

V Y

C

Figure 6.3: Example of using a weak key schedule for XORPP∗ (left) and
SoEM′ (right)

In [177], Dutta et al. studied the security pEDM, a strongly related variant of
SoKAC12, which uses the single permutation only in forward direction:

P (P (M ⊕K1)⊕ (M ⊕K1)⊕K2)⊕K1 ,

also with O(22n/3) security. These constructions consider related aspects, but
are fixed-output-length PRFs, whereas CENCPP∗ can encrypt messages of variable
lengths. Comparing CENCPP∗ with w = 1, pEDM has the advantage of using
only a single primitive. Though, the latter can evaluate the primitive calls in
parallel and allows a better rate for greater w, whereas for an encryption with the
latter, similar arguments as for a counter mode with a two-round Even-Mansour
construction would hold.

6.4 Birthday-bound Distinguisher on CENCPP∗ with

Weak Key Scheduling

To derive the i-th round key Li of CENCPP∗, we have Li = (ai,0 ·K0)⊕(ai,1 ·K1) for
all i ∈ [0..w], where A = (ai,j) ∈ {0, 1}n is the key-scheduling matrix of dimension
(w + 1) × 2 and K0, K1 are two independent n-bit keys. Using SoEM as a base,
it is tempting to use a key scheduling of K0, K1, αK1, α2K1, . . . , which omits
the addition of K0 for all subsequent permutation calls. In matrix form, this key

Chapter 6. CENCPP* 146

scheduling would produce1 0 0 · · · 0

0 1 α · · · αw−1


⊤

︸ ︷︷ ︸
A⊤

·

K0

K1

 .

While the latter appears much simpler, after transposing its matrix form to w+1

rows, it contains dependent rows. Let two dependent rows be denoted as Ai and
Aj in the key-scheduling matrix A such that they are linearly dependent, i.e.,
Ai = αAj for some non-zero α ∈ {0, 1}n. Then, we have Li = αLj for some
α ∈ {0, 1}n \ {0n}. We use the idea of cancelling dependent outputs and thus
reduce the distinguishing problem to that for single-key SoEM. Since the steps
are not intuitive, we illustrate the birthday-bound distinguisher of CENCPP∗ in
the following. First, we show that we can reduce the security of CENCPP∗ to the
security of SoEM with the key usage of (Li, αLi) for some non-zero α ∈ {0, 1}n
when Ai and Aj rows of A are linearly dependent. We denote this variant of
SoEM as SoEM′ def

= SoEM[Pi, Pj]Li,αLi
.

6.4.1 Reduction to SoEM′

Suppose, D is an information-theoretic distinguisher on SoEM′ and τ = {K} ∪
τp ∪ τc is a transcript, consisting of the key, the primitive-query transcript τp with
qp primitive queries and their corresponding responses (U i, V i) to P1 and (Xk, Y k)

to P2 each, as well as the construction-query transcript τc with qc construction
queries and their corresponding responses (M j, Cj). After the interaction, D is
given τ , including the key K $← Fn

2 , and sees C = W ⊕ Z where

W
def
= P1(M ⊕K)⊕K and Z

def
= P2(M ⊕ (α ·K))⊕ (α ·K) .

In comparison, a distinguisher D′ on CENCPP∗ [P0, Pi, Pj]K0,K1 with key schedule
as above can compute Ci ⊕ Cj = (Xi ⊕X0)⊕ (Xj ⊕X0) = W ⊕ Z = C. Thus,

AdvCENCPP∗

PRF (D′) ≥ AdvSoEM′

PRF (D) ,

where D and D′ ask the same number of construction queries qc and primitive
queries qp to each of the primitives. Note that the distinguisher D′ knows the
values of i and j from the knowledge of the key-scheduling algorithm.

Chapter 6. CENCPP* 147

6.4.2 Birthday-bound Attack on SoEM′

Let U and V be two subspaces of Fn
2 . Then, for every α ∈ Fn

2 , U +V def
= {u+ v|u ∈

U , v ∈ V} and α · V def
= {α · v|v ∈ V} are also subspaces. We write 0 and 1 for the

neutral elements of addition and multiplication, respectively. If {x1, x2, · · · , xn/2}
is a basis of V , then {α ·x1, α ·x2, · · · , α ·xn/2} is also a basis of α · V , where α ̸= 0.

Fact 1. Let U and V be two subspaces of F2n . If their intersection contains only
the zero element U ∩V = {0}, we say that U and V have zero intersection. If both
have zero intersection, it holds that dim(U+V) = dim(U)+dim(V). Equivalently,
one can say that the basis elements of U and V are linearly independent.

Theorem 6.4. Let α ̸∈ {0,1}. For every 1 ≤ i ≤ n/2, there exists a subspace
V ⊆ Fn

2 with dim(V) = i such that V and α·V have zero intersection. In particular,
there is a subspace V of dimension n/2 such that V + α · V = Fn

2 .

Proof. We prove Theorem 6.4 by induction on i. For i = 1, the statement is
obvious by choosing non-zero x1. For 1 ≤ i < n/2, suppose, we have picked
x1, x2, · · · , xi such that all elements from {x1, x2, · · · , xi, α · x1, α · x2, · · ·α · xi} are
linearly independent. Let

Si def
= span({x1, x2, · · · , xi, α · x1, α · x2, · · · , α · xi}) ,

i.e., its span. Moreover, we define Ti as short form of

Ti def
= Si ∪

(
α−1 · Si

)
∪
(
(1 + α)−1 · Si

)
.

It holds that |Ti|≤ 3 · 2n−2 < 2n. When we choose a new element xi+1 ̸∈ Ti, it
follows from the definition of Ti that xi+1, α · xi+1 and (1 + α) · xi+1 are not in Si.
Hence, the elements

{x1, x2, · · · , xi+1, α · x1, α · x2, · · · , α · xi+1}

are linearly independent, which concludes the proof. Note that such a basis can
be constructed efficiently, element by element.

Distinguisher on SoEM′: Next, we demonstrate a distinguisher on SoEM′.
Given the observation above, we can first construct a vector space X of dimension
n/2 such that X +(1+α) · X = Fn

2 . LetM = (1+α)−1 · X . So,M+X = Fn
2 and

Chapter 6. CENCPP* 148

hence there exists X ∈ X and M ∈ M with M + X = α ·K. Let U = α−1 · X .
Then

U = α−1 · (1 + α) · M = (1 + α−1) ·M .

Thus, M + K = α−1 · X + (1 + α−1) ·M ∈ U and there exists M ∈ M, U ∈ U ,
and X ∈ X such that M ⊕ U = K and M ⊕X = αK.
Let P1(U) = V and P2(X) = Y . Then, C = SoEM′(M) = (1⊕α) ·K⊕V ⊕Y . We
use shorthand notations V ⊕c, Y ⊕c and C⊕c to denote P1(U ⊕ c), P2(X ⊕ c) and
SoEM′(M ⊕ c) respectively for some non-zero c ∈ {0, 1}n. It is easy to see that for
any c, it holds that

C⊕c = (1⊕ α) ·K ⊕ V ⊕c ⊕ Y ⊕c

and hence C⊕C⊕c = (V ⊕V ⊕c)⊕ (Y ⊕Y ⊕c). We use this observation to complete
our attack. Suppose that c and d are two distinct constants outside of U , X , and
M. Then, the distinguisher can proceed as follows:

1. It queries all values Ui ∈ U , Ui⊕ c and Ui⊕ d to its primitive oracle P1, and
stores them together with the corresponding responses Vi, V ⊕ci and V ⊕di .

2. Similarly, it queries all values Xi ∈ X , Xi ⊕ c and Xi ⊕ d to its primitive
oracle P2, and stores them together with the corresponding responses Yi,
Y ⊕ci and Y ⊕di .

3. Moreover, it queries all values Mi ∈M, Mi⊕c and Mi⊕d to its construction
oracle, and stores them together with the corresponding responses Ci, C⊕ci

and C⊕di .

4. After making all queries as described above, it looks for triple (i, j, k) such
that the following two equalities hold:

4.1 Ci ⊕ C⊕ci = (Vj ⊕ V ⊕cj)⊕ (Yk ⊕ Y ⊕ck).

4.2 Ci ⊕ C⊕di = (Vj ⊕ V ⊕dj)⊕ (Yk ⊕ Y ⊕dk).

5. If there exists such triple (i, j, k), it outputs real and random otherwise.

Chapter 6. CENCPP* 149

6.5 Security Analysis of CENCPP∗

This section studies the NE security of CENCPP∗. Prior, we briefly revisit that of
CENC.

6.5.1 Recalling the Security of CENC

The security of XORP: In [16], Iwata showed that CENC[w] is secure for up
to 22n/3/w message blocks as long as EK is a secure block-cipher. At Dagstuhl’07
[185], he added an attack that needed 2n/w queries, and showed O(2n/w) security
if the total number of primitive calls remained below σ < 2n/2. He conjectured that
CENC may be secure for up to 2n/w blocks. In [179], Iwata et al. confirmed that
conjecture by a simple corollary from Patarin. We briefly recall their conclusion.
In [186, Theorem 6], Patarin showed the indistinguishability for the sum of multiple
independent secret permutations under assumptions on the validity of the Mirror
Theory. [179] adapted this bound to upper bound the PRF security of XORP:

AdvXORP
PRF (qc, t) ≤

w2q

2n
+AdvE

PRP((w + 1)qc, t). (6.1)

Theorem 3 in [179] conjectured for m being a multiple of w, where m is the
maximum number of message blocks queried:

AdvCENC
NE (qc,m, t) ≤

mwqc
2n

+AdvE
PRP

(
w + 1

w
mqc, t

)
. (6.2)

Note that in Equation (6.1) and Equation (6.2), the authors considered computa-
tionally bounded distinguishers for which we included the time parameter t. Thus,
CENC provided a convenient trade-off of w + 1 calls per w message blocks with
security for up to 2n/w calls to EK . The proof sketch by [179] reduced the security
of CENC to the proof of the sum of two permutations. At that time, the latter
analysis relied on recursive arguments of Patarin’s Mirror Theory that were sub-
ject to controversies. The work by Bhattacharya and Nandi [187] proved similar
security for the generalised sum of permutations and CENC using the χ2 method
[188].

6.5.2 The Security of CENCPP∗

In the following, let n,w be positive integers, P0, . . . , Pw
$← Perm(Fn

2) be indepen-
dent public permutations, K0, K1

$← Fn
2 be a pair of n-bit independent secret keys

Chapter 6. CENCPP* 150

Figure 6.4: Security of XORPP∗[w] with varying w and n = 64

which are sampled uniformly at random from Fn
2 . Let A be the key-scheduling

matrix of dimension (w+1)×2 such that each entry is an n-bit binary string. We
write K = (K0, K1) and P = (P0, . . . , Pw) for brevity. Again, we conduct a two-
step analysis, where we consider (1) the PRF security of XORPP∗ [P, w,A]K and
(2) the NE security of CENCPP∗[P, w,A]K. Since the matrix A is public, we omit
it from the notation XORPP∗[P, w,A]K and CENCPP∗[P, w,A]K and simply write
XORPP∗[P, w]K and CENCPP∗[P, w]K, respectively. For simplicity of notation, we
write XORPP∗ [P, w]K as XORPP∗ and CENCPP∗[P, w]K as CENCPP∗.

Theorem 6.5. It holds that AdvCENCPP∗

NE (qp, qc,m) ≤ AdvXORPP∗

PRF

(
qp,

m
w
qc
)
.

Proof. Recall that, m is the maximum number of message blocks in all queries.
Therefore, for a maximal number of message chunks ℓ = ⌈m/w⌉, CENCPP∗ consists
of the application of ℓ instances of XORPP∗. We can replace XORPP∗ by a random
function ρ at the cost of

AdvXORPP∗

PRF

(
qp,

m

w
qc

)
.

Since the resulting construction is indistinguishable from random bits, Theorem
6.5 follows.

Theorem 6.6. Let A be a matrix of (w + 1) × 2 entries such that each of its
elements is an n-bit binary string and all its rows are pairwise linearly independent.
Let qp + (w + 1)qc ≤ 2n/2(w + 1). It holds that

AdvXORPP∗

PRF (qp, qc) ≤
(w + 1)2q2pqc

22n+1
+

4wq2pqc

22n
+

2wq2cqp
22n

+
w2q2cqp
22n

+
3w2q2pqc

22n+1

+
3w3q2pq

2
c

23n
+

(w + 1)2qc(qp + qc)
2

22n
.

Chapter 6. CENCPP* 151

The security for varying values of w is illustrated in Figure 6.4.

Corollary 6.7. CENCPP∗ security results by combining Theorem 6.5 and Theo-
rem 6.6 as follows:

AdvCENCPP∗

NE (qp, qc,m) ≤ 2wmq2pqc

22n
+

4mq2pqc

22n
+

2qpm
2

w22n
+
qpm

2

22n
+

3wmq2pqc

22n+1

+
3wm2q2pq

2
c

23n
+

4wmqcq
2
p + 8m2qpq

2
c

22n
+

4m3q3c
w22n

,

where m is the maximum number of message blocks among all qc queries and we
used 2w ≥ w + 1.

Proof of Theorem 6.6. We fix a non-trivial information-theoretic deterministic dis-
tinguisher D who is given access to (w + 2) oracles in either of the real or
ideal world. In the real world, D is given access to the construction oracle
XORPP∗[P, w]K where K = (K0, K1) is a pair of n-bit random keys and P =

(P0, P1, . . . , Pw) is a tuple of w+1 many n-bit independent random permutations,
and the primitive oracles P = (P0, . . . , Pw). In the ideal world, D is given access to
a random function, which answers each query of D by w blocks of n bits uniform
and independent random strings O = (O1, . . . , Ow) and to the tuple of w+1 many
independent n-bit random permutations P = (P0, P1, . . . , Pw). Query to the con-
struction oracle is called the construction query and to that of the primitive oracle
is called the primitive query. We assume that D can ask exactly qc construction
queries and qp primitive queries to each of primitive oracle Pα, α ∈ [0..w]. For
queries to each of the primitive oracle Pα, D can either make a forward query Uα to
its primitive oracle Pα and receives response Vα or can make an inverse query Vα to
P−1α and receives response Uα. We summarise the interaction of the distinguisher
D with the oracles in a transcript τ which is partitioned into τ = τc∪ τ0∪ . . .∪ τw,
where each partial transcript captures the queries and responses from a particular
oracle. The construction transcript contains the queries to and responses from the
construction oracle: τc = {(I1,O1), . . . , (Iqc ,Oqc)}, where Oi = (Oi

1, . . . , O
i
w). The

primitive transcripts τα = {(U1
α, V

1
α), . . ., (U

qp
α , V

qp
α)} contain exactly the queries

to and responses from permutation Pα for all α ∈ [0..w]. Since D is non-trivial,
we assume that τ does not contain duplicate elements. After the interaction, we
release the keys K0, K1 to the distinguisher before it outputs its decision bit. In
the real world (K0, K1) are the keys used in the construction, whereas in the ideal
world they are sampled uniformly at random. Hence, the transcript τ becomes
τ = τc ∪ τ0 ∪ . . . ∪ τw ∪ {(K0, K1)}. With the help of the transcript τ , D can

Chapter 6. CENCPP* 152

compute the all the inputs Û i
α to the permutations Pα for qc construction queries

using the following equation

Û i
α

def
= I i ⊕ aα,0 ·K0 ⊕ aα,1 ·K1 , (6.3)

where α ∈ [0..w] and i ∈ [qc]. We partition the set of all attainable transcripts
Att into two disjoint sets of GoodT and BadT that represent good and bad

transcripts. We denote by Θreal and Θideal random variables that represent the
distribution of transcripts in the real and the ideal world, respectively.

Bad Events: Let τ = τc ∪ τ0 ∪ . . .∪ τw ∪{(K0, K1)} be an attainable transcript.
Since, the distinguisher is given the keys K, it can compute all the permutation
inputs (Û i

α)i∈[qc],α∈[0..w] using Equation (6.3). Before defining the bad events for
XORPP∗, we give a brief rationale for them.
Rationale. For w + 1 n-bit permutations (P0, . . . , Pw), we denote Pα(Û

i
α) as V̂ i

α

for α ∈ [0..w]. Then the construction for i-th query leads to the following system
of equations:

Ei =



V̂ i
0 ⊕ V̂ i

1 = Oi
1 ⊕ (a0,0 ⊕ a1,0) ·K0 ⊕ (a0,1 ⊕ a1,1) ·K1

V̂ i
0 ⊕ V̂ i

2 = Oi
2 ⊕ (a0,0 ⊕ a2,0) ·K0 ⊕ (a0,1 ⊕ a2,1) ·K1

...
...

...
...

V̂ i
0 ⊕ V̂ i

w = Oi
w ⊕ (a0,0 ⊕ aw,0) ·K0 ⊕ (a0,1 ⊕ aw,1) ·K1,

A trivial bad event is, if for i-th construction query, both inputs to the permutation
simultaneously collide with two primitive inputs, i.e., Û i

α = U j
α and Û i

β = Uk
β for

α ̸= β ∈ [0..w]. If Û i
α collides with U j

α for some α ∈ [0..w], then this event uniquely
determines the value of the permutation output for the remaining variables in Ei.
In the real world, such a collision uniquely determines the rest of the variables,
whereas this property does not hold in the ideal world. A bad event occurs if any
of such determined variables collides with any primitive query output. Assume
that the i-th and j-th construction query, respectively, Û i

0 and Û j
0 , collide with

some primitive input each. In turn, this uniquely determines the value of the per-
mutation output for the remaining variables in the respective system of equations.
A bad event occurs if any two of such determined variables collide with each other.
A similar situation arises when for two construction queries, let them be the i-th
and j-th construction query, respectively, Û i

α and Û j
β collide with some primitive

Chapter 6. CENCPP* 153

input for some α, β ∈ [0..w], and the determined variables collides. We say that τ
is bad if any of the following bad events hold.

1. Two inputs to the permutations for a construction query simultaneously col-
lide with the input of corresponding two primitive queries.

• bad1: ∃i ∈ [qc], j, k ∈ [qp], and distinct permutation indices α, β ∈ [0..w]

such that (Û i
α = U j

α) ∧ (Û i
β = Uk

β).

2. For a construction query, one of the inputs collides with the input of a prim-
itive query, which lets the output of another permutation call of the same
construction query collide with the output of another primitive query.

• bad2: ∃i ∈ [qc], j, k ∈ [qp], and permutation index α ∈ [w] such that
(Û i

0 = U j
0) ∧ (V j

0 ⊕Oi
α ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V k

α).

• bad3: ∃i ∈ [qc], j, k ∈ [qp], and permutation index α ∈ [w] such that
(Û i

α = U j
α) ∧ (V j

α ⊕Oi
α ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V k

0).

• bad4: ∃i ∈ [qc], j, k ∈ [qp], and distinct permutation indices α, β ∈ [w]

such that (Û i
α = U j

α)∧(V j
α⊕Oi

α⊕Oi
β⊕(aα,0⊕aβ,0)·K0⊕(aα,1⊕aβ,1)·K1 =

V k
β).

3. For two construction queries i and j, one of the inputs of i-th construction
query collides with the input of a primitive query, and one of the inputs of
j-th construction query collides with the input of a primitive query, and the
output of any two permutation calls collide.

• bad5: ∃i, j ∈ [qc], k, l ∈ [qp], and permutation index α ∈ [w] such that
(Û i

0 = Uk
0) ∧ (Û j

0 = U l
0) ∧ (V k

0 ⊕Oi
α = V l

0 ⊕Oj
α).

• bad6: ∃i, j ∈ [qc], k, l ∈ [qp], and permutation index α ∈ [w] such that
(Û i

α = Uk
α) ∧ (Û j

α = U l
α) ∧ (V k

α ⊕Oi
α = V l

α ⊕Oj
α).

• bad7: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices α, β ∈ [w]

such that (Û i
α = Uk

α) ∧ (Û j
α = U l

α) ∧ (V k
α ⊕Oi

α ⊕Oi
β = V l

α ⊕Oj
α ⊕Oj

β).

• bad8: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices γ, β ∈ [w]

such that (Û i
0 = Uk

0) ∧ (Û j
γ = U l

γ) ∧ (V k
0 ⊕ V l

γ ⊕ Oi
β ⊕ Oj

γ ⊕ Oj
β =

(a0,0 ⊕ aγ,0) ·K0 ⊕ (a0,1 ⊕ aγ,1) ·K1).

• bad9: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices α, γ ∈ [w]

such that (Û i
α = Uk

α)∧ (Û j
γ = U l

γ)∧ (V k
α ⊕V l

γ ⊕Oi
α⊕Oj

γ = (aα,0⊕ aγ,0) ·
K0 ⊕ (aα,1 ⊕ aγ,1) ·K1).

Chapter 6. CENCPP* 154

• bad10: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices α, β, γ ∈
[w] such that (Û i

α = Uk
α)∧ (Û j

γ = U l
γ)∧ (V k

α ⊕V l
γ ⊕Oi

α⊕Oi
β⊕Oj

γ⊕Oj
β =

(aα,0 ⊕ aγ,0) ·K0 ⊕ (aα,1 ⊕ aγ,1) ·K1).

Using the union bound, the probability that a transcript in the ideal world is bad

is at most

Pr [Θideal ∈ BadT] ≤
10∑
i=1

Pr[badi] . (6.4)

Lemma 6.8. It holds that

Pr [Θideal ∈ BadT] ≤ (w + 1)2q2pqc

22n+1
+

4wq2pqc

22n
+

2wq2cqp
22n

+
w2q2cqp
22n

+
3w2q2pqc

22n+1
+

3w3q2pq
2
c

23n
.

Proof. In the following, we study the probabilities of the individual bad events.
Before, we recall the key-scheduling matrix A as follows:

A =

a0,0 a1,0 a2,0 . . . aw,0

a0,1 a1,1 a2,1 . . . aw,1


⊤

.

bad1: This event considers the collisions between two construction-query inputs
and two primitive-query inputs. For this event, it must hold that

I i ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U j
α and I i ⊕ (aβ,0 ·K0 ⊕ aβ,1 ·K1) = Uk

β ,

with [ai,0 ai,1] as the i-th row of the key-scheduling matrix. The two equations can
be seen as

A′ ·K =

aα,0 aα,1

aβ,0 aβ,1

 ·
K0

K1

 =

I i ⊕ U j
α

I i ⊕ Uk
β


Since all rows of A are pairwise linearly independent, A′ is non-singular. Moreover,
K0 and K1 are uniform random variables over {0, 1}n. Thus, we can apply Lemma
6.2 and the probability of this event for a fixed choice of indices is 2−2n. Since
one can choose α and β in

(
w+1
2

)
ways, we obtain from the union bound over all

Chapter 6. CENCPP* 155

indices

Pr[bad1] =
∑
i∈[qc]

∑
j∈[qp]

∑
k∈[qp]

∑
0≤α<β≤w

Pr
[
Û i
α = U j

α ∧ Û i
β = Uk

β

]
≤
(
w+1
2

)
q2pqc

22n
. (6.5)

bad2: This event considers the collision between the input of P0 corresponding
to a construction query and the input to P0 corresponding to a primitive query,
and the collision between the output of Pα corresponding to the same construction
query and the output of Pα corresponding to a primitive query. For this event, it
must hold that

I i ⊕ (a0,0 ·K0 ⊕ a0,1 ·K1) = U j
0 and

(V j
0 ⊕Oi

α ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V k
α) ,

The two equations can be seen as

A′ ·K =

 a0,0 a0,1

(a0,0 ⊕ aα,0) (a0,1 ⊕ aα,1)

 ·
K0

K1

 =

 I i ⊕ U j
0

V k
α ⊕ V j

0 ⊕Oi
α


Since all rows of A are pairwise linearly independent, A′ is non-singular, because
det(A′) = (a0,0aα,1 ⊕ a0,1aα,0) which is the determinant of the following matrix

A′′ =

a0,0 a0,1

aα,0 aα,1


and A′′ is non-singular. Moreover, K0 and K1 are uniform random variables over
{0, 1}n. Thus, we can apply Lemma 6.2 and the probability of this event for a
fixed choice of indices is 2−2n. Since one can choose i in qc ways, j and k in qp

ways and α in w ways, we obtain from the union bound over all indices

Pr[bad2] ≤
wq2pqc

22n
. (6.6)

bad3: This event considers the collision between the input of Pα corresponding
to a construction query and the input to Pα corresponding to a primitive query
for α ∈ [w], and the collision between the output of P0 corresponding to the same
construction query and the output of P0 corresponding to a primitive query. For

Chapter 6. CENCPP* 156

this event, it must hold that

I i ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U j
α and

(V j
α ⊕Oi

α ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V k
0) .

The two equations can be seen as

A′ ·K =

 aα,0 aα,1

(a0,0 ⊕ aα,0) (a0,1 ⊕ aα,1)

 ·
K0

K1

 =

 I i ⊕ U j
α

V k
0 ⊕ V j

α ⊕Oi
α


Since all rows of A are pairwise linearly independent, A′ is non-singular, because
det(A′) = (a0,1aα,0⊕a0,0aα,1) which is the determinant of the matrix A′′ as defined
in bad2. Moreover, K0 and K1 are uniform random variables over {0, 1}n. Thus,
we can apply Lemma 6.2 and the probability of this event for a fixed choice of
indices is 2−2n. Since one can choose i in qc ways, j and k in qp ways and α in w

ways, we obtain from the union bound over all indices

Pr[bad3] ≤
wq2pqc

22n
. (6.7)

bad4: This event considers the collision between the input of Pα corresponding
to a construction query and the input to Pα corresponding to a primitive query
for α ∈ [w], and the collision between the output of Pβ corresponding to the same
construction query and the output of Pβ corresponding to a primitive query for
some β ̸= α. For this event, it must hold thatI i ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U j

α

(V j
α ⊕Oi

α ⊕Oi
β ⊕ (aα,0 ⊕ aβ,0) ·K0 ⊕ (aα,1 ⊕ aβ,1) ·K1 = V k

β).

The two equations can be seen as

A′ ·K =

 aα,0 aα,1

(aα,0 ⊕ aβ,0) (aα,1 ⊕ aβ,1)

 ·
K0

K1

 =

 I i ⊕ U j
α

V k
β ⊕ V j

α ⊕Oi
α ⊕Oi

β



Chapter 6. CENCPP* 157

Since all rows of A are pairwise linearly independent, A′ is non-singular, because
det(A′) = (aβ,1aα,0 ⊕ aβ,0aα,1) which is the determinant of the following matrix

A′′ =

aα,0 aα,1

aβ,0 aβ,1


and A′′ is non-singular. Moreover, K0 and K1 are uniform random variables over
{0, 1}n. Thus, we can apply Lemma 6.2 and the probability of this event for a
fixed choice of indices is 2−2n. Since one can choose i in qc ways, j and k in qp

ways and α and β in
(
w
2

)
ways, we obtain from the union bound over all indices

Pr[bad4] ≤
(
w
2

)
q2pqc

22n
. (6.8)

bad5: This event considers the collision between the input of P0 for two construc-
tion queries and the corresponding primitive input to P0 and the collision between
the output of Pα for some α ∈ [w] corresponding to the same two construction
queries. For this event, it must hold that

(a0,0 ·K0 ⊕ a0,1 ·K1) = I i ⊕ Uk
0 = Ij ⊕ U l

0 (E.1)

(Oi
α ⊕Oj

α = V k
0 ⊕ V l

0) .

We can easily observe that

Pr[(E.1)] = Pr[I i ⊕ Uk
0 = Ij ⊕ U l

0] · Pr[(E.1) | I i ⊕ Uk
0 = Ij ⊕ U l

0] (6.9)

Let’s first fix a value for α and the choice of indices of the two construction queries
and the two primitive queries. We’ll break down the event into two following cases.
Firstly, if the last among four queries is a backward primitive query (w.l.o.g.,
suppose it’s V k

0 to obtain Uk
0), then the probability of Equation (6.9) comes out

to be 1
2n
. 1
2n

. The first 1
2n

comes from the randomness over Uk
0 and the second 1

2n

comes from the randomness over a0,0 ·K0⊕a0,1 ·K1. But in this case, Pr[Oi
α⊕Oj

α =

V k
0 ⊕ V l

0] = 1.
Secondly, if the last among four queries is a forward positive query (w.l.o.g., sup-
pose it’s Uk

0 to obtain V k
0) or a construction query (w.l.o.g., suppose it’s I i to

obtain Oi), then the probability of Equation (6.9) comes out to be 1. 1
2n

. The 1
2n

Chapter 6. CENCPP* 158

comes from randomness over a0,0 ·K0 ⊕ a0,1 ·K1. But in this case Pr[Oi
α ⊕ Oj

α =

V k
0 ⊕ V l

0] =
1
2n

. The 1
2n

comes from randomness over V k
0 or Oi

α respectively.
Now, in case when the last query is a primitive query, then i and j can be chosen
in 2
(
qc
2

)
ways. But the value of the index corresponding to the last primitive query

gets fixed once one fixes the value of the index of the other primitive query (This
can be done in qp ways). Similarly, in case when the last query is a construction
query, then k and l can be chosen in q2p ways. But the value of the index corre-
sponding to the last construction query gets fixed once one fixes the value of the
index of the other construction query (This can be done in qc ways). As one can
choose α in w ways, we obtain from the union bound over all indices

Pr[bad5] ≤ max

(
2w
(
qc
2

)
qp

22n
,
wqcq

2
p

22n

)
≤ 2w

(
qc
2

)
qp

22n
+
wqcq

2
p

22n
. (6.10)

bad6: This event considers the collision between the input of Pα for two construc-
tion queries and the corresponding primitive input to Pα for some α ∈ [w] and
the collision between the output of P0 corresponding to the same two construction
queries. For this event, it must hold that

(aα,0 ·K0 ⊕ aα,1 ·K1) = I i ⊕ Uk
α = Ij ⊕ U l

α (E.1)

(Oi
α ⊕Oj

α = V k
α ⊕ V l

α) .

We’ll bound the probability of this event in a way similar to that of bad5. We can
easily observe that

Pr[(E.1)] = Pr[I i ⊕ Uk
α = Ij ⊕ U l

α] · Pr[(E.1) | I i ⊕ Uk
α = Ij ⊕ U l

α] (6.11)

Let’s first fix a value for α and the choice of indices of the two construction queries
and the two primitive queries. We’ll break down the event into two following cases.
Firstly, if the last among four queries is a backward primitive query (w.l.o.g.,
suppose it’s V k

α to obtain Uk
α), then the probability of Equation (6.11) comes out

to be 1
2n
. 1
2n

. The first 1
2n

comes from the randomness over Uk
α and the second 1

2n

comes from the randomness over a0,0 ·K0⊕a0,1 ·K1. But in this case, Pr[Oi
α⊕Oj

α =

V k
α ⊕ V l

α] = 1.

Chapter 6. CENCPP* 159

Secondly, if the last among four queries is a forward positive query (w.l.o.g., sup-
pose it’s Uk

α to obtain V k
α) or a construction query (w.l.o.g., suppose it’s I i to

obtain Oi), then the probability of Equation (6.11) comes out to be 1. 1
2n

. The 1
2n

comes from randomness over a0,0 ·K0 ⊕ a0,1 ·K1. But in this case Pr[Oi
α ⊕ Oj

α =

V k
α ⊕ V l

α] =
1
2n

. The 1
2n

comes from randomness over V k
α or Oi

α respectively.
Now, in case when the last query is a primitive query, then i and j can be chosen
in 2
(
qc
2

)
ways. But the value of the index corresponding to the last primitive query

gets fixed once one fixes the value of the index of the other primitive query (This
can be done in qp ways). Similarly, in case when the last query is a construction
query, then k and l can be chosen in q2p ways. But the value of the index corre-
sponding to the last construction query gets fixed once one fixes the value of the
index of the other construction query (This can be done in qc ways). As one can
choose α in w ways, we obtain from the union bound over all indices

Pr[bad6] ≤ max

(
2w
(
qc
2

)
qp

22n
,
wqcq

2
p

22n

)
≤ 2w

(
qc
2

)
qp

22n
+
wqcq

2
p

22n
. (6.12)

bad7: This event considers the collision between the input of Pα for two construc-
tion queries and the corresponding primitive input to Pα for some α ∈ [w] and
the collision between the output of Pβ corresponding to the same two construction
queries for some β ∈ [w] with β ̸= α. For this event, it must hold that

(aα,0 ·K0 ⊕ aα,1 ·K1) = I i ⊕ Uk
α = Ij ⊕ U l

α (E.1)

(Oi
α ⊕Oi

β ⊕Oj
α ⊕Oj

β = V k
α ⊕ V l

α) .

Again we’ll bound the probability of this event in a way similar to that of the
previous bad event. We can easily observe that

Pr[(E.1)] = Pr[I i ⊕ Uk
α = Ij ⊕ U l

α] · Pr[(E.1) | I i ⊕ Uk
α = Ij ⊕ U l

α] (6.13)

Let’s first fix the values for α and β and the choice of indices of the two construc-
tion queries and the two primitive queries. We’ll break down the event into two
following cases.
Firstly, if the last among four queries is a backward primitive query (w.l.o.g.,
suppose it’s V k

α to obtain Uk
α), then the probability of Equation (6.13) comes out

Chapter 6. CENCPP* 160

to be 1
2n
. 1
2n

. The first 1
2n

comes from the randomness over Uk
α and the second 1

2n

comes from the randomness over a0,0 · K0 ⊕ a0,1 · K1. But in this case, Pr[Oi
α ⊕

Oi
β ⊕Oj

α ⊕Oj
β = V k

α ⊕ V l
α] = 1.

Secondly, if the last among four queries is a forward positive query (w.l.o.g., sup-
pose it’s Uk

α to obtain V k
α) or a construction query (w.l.o.g., suppose it’s I i to obtain

Oi), then the probability of Equation (6.13) comes out to be 1. 1
2n

. The 1
2n

comes
from randomness over a0,0 ·K0⊕a0,1 ·K1. But in this case Pr[Oi

α⊕Oi
β⊕Oj

α⊕Oj
β =

V k
α ⊕ V l

α] =
1
2n

. The 1
2n

comes from randomness over V k
α or Oi

α ⊕Oi
β respectively.

Now, in case when the last query is a primitive query, then i and j can be chosen
in 2
(
qc
2

)
ways. But the value of the index corresponding to the last primitive query

gets fixed once one fixes the value of the index of the other primitive query (This
can be done in qp ways). Similarly, in case when the last query is a construction
query, then k and l can be chosen in q2p ways. But the value of the index corre-
sponding to the last construction query gets fixed once one fixes the value of the
index of the other construction query (This can be done in qc ways). As one can
choose α and β in 2

(
w
2

)
ways, we obtain from the union bound over all indices

Pr[bad7] ≤ max

(
4
(
w
2

)(
qc
2

)
qp

22n
,
2
(
w
2

)
qcq

2
p

22n

)
≤ 4

(
w
2

)(
qc
2

)
qp

22n
+

2
(
w
2

)
qcq

2
p

22n
. (6.14)

bad8: This event considers the collision between the input of P0 for i-th con-
struction query and a primitive input to P0, the collision between the input of Pγ

for j-th construction query and a primitive input to Pγ for some γ ∈ [w] and the
collision between the output of Pβ for i-th and j-th construction queries for some
β ∈ [w] with β ̸= γ. For this event, it must hold that

(a0,0 ·K0 ⊕ a0,1 ·K1) = I i ⊕ Uk
0

(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U l
γ

(a0,0 ⊕ aγ,0) ·K0 ⊕ (a0,1 ⊕ aγ,1) ·K1) = (V k
0 ⊕ V l

γ ⊕Oi
β ⊕Oj

γ ⊕Oj
β).

Note that the system of equations above can be written equivalently as
(a0,0 ·K0 ⊕ a0,1 ·K1) = I i ⊕ Uk

0

(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U l
γ

I i ⊕ Ij ⊕ Uk
0 ⊕ U l

γ = (V k
0 ⊕ V l

γ ⊕Oi
β ⊕Oj

γ ⊕Oj
β).

Chapter 6. CENCPP* 161

Let’s first fix the values for γ and β and the choice of indices of the two construction
queries and the two primitive queries. The probability of each of the first two
equations comes out to be 1

2n
, which comes from the randomness over a0,0 ·K0 ⊕

a0,1 ·K1 and aγ,0 ·K0 ⊕ aγ,1 ·K1 respectively. Since the matrix

a0,0 a0,1

aγ,0 aγ,1


is full-rank, the joint probability of the first two equations comes out to be 1

22n
.

The probability of the third equation comes out to be 1
2n

, but the randomness
comes from different variables depending on the last query. The different possible
cases are as follows.

1. If the last among four queries is the construction query to obtain Oi from
I i, then the randomness comes from Oi

β.

2. If the last among four queries is the construction query to obtain Oj from
Ij, then the randomness comes from Oj

γ ⊕Oj
β.

3. If the last among four queries is the forward primitive query to obtain V k
0

from Uk
0 , then the randomness comes from V k

0 .

4. If the last among four queries is the forward primitive query to obtain V l
γ

from U l
γ, then the randomness comes from V l

γ .

5. If the last among four queries is the backward primitive query to obtain Uk
0

from V k
0 , then the randomness comes from Uk

0 .

6. If the last among four queries is the backward primitive query to obtain U l
γ

from V l
γ , then the randomness comes from U l

γ.

Now, one can choose i and j together in 2
(
qc
2

)
ways and k and l in qp ways each.

Moreover, γ and β together can be chosen in 2
(
w
2

)
ways. Thus, we obtain from

the union bound over all indices

Pr[bad8] ≤
4
(
w
2

)(
qc
2

)
q2p

23n
. (6.15)

Chapter 6. CENCPP* 162

bad9: This event considers the collision between the input of Pα for i-th con-
struction queries and a primitive input to Pα, the collision between the input of
Pγ for j-th construction queries and a primitive input to Pγ for some α ̸= γ ∈ [w]

and the collision between the output of P0 for i-th and j-th construction queries.
For this event, it must hold that

(aα,0 ·K0 ⊕ aα,1 ·K1) = I i ⊕ Uk
α

(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U l
γ

(aα,0 ⊕ aγ,0) ·K0 ⊕ (aα,1 ⊕ aγ,1) ·K1) = (V k
α ⊕ V l

γ ⊕Oi
α ⊕Oj

γ) .

Note that the above system of equations can be equivalently written as
(aα,0 ·K0 ⊕ aα,1 ·K1) = I i ⊕ Uk

α

(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U l
γ

I i ⊕ Ij ⊕ Uk
α ⊕ U l

γ = (V k
α ⊕ V l

γ ⊕Oi
α ⊕Oj

γ) .

Using the similar reasoning while bounding bad8, we have

Pr[bad9] ≤
4
(
w
2

)(
qc
2

)
q2p

23n
. (6.16)

bad10: This event considers the collision between the input of Pα for i-th con-
struction queries and a primitive input to Pα, the collision between the input of
Pγ for j-th construction queries and a primitive input to Pγ for some α ̸= γ ∈ [w]

and the collision between the output of Pβ for i-th and j-th construction queries
for some β ∈ [w] such that β ̸= α, β ̸= γ. For this event, it must hold that

(aα,0 ·K0 ⊕ aα,1 ·K1) = I i ⊕ Uk
α

(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U l
γ

(aα,0 ⊕ aγ,0) ·K0 ⊕ (aα,1 ⊕ aγ,1) ·K1) = (V k
α ⊕ V l

γ ⊕Oi
α ⊕Oi

β ⊕Oj
γ ⊕Oj

β).

Note that the above system of equations can be equivalently written as
(aα,0 ·K0 ⊕ aα,1 ·K1) = I i ⊕ Uk

α

(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U l
γ

I i ⊕ Ij ⊕ Uk
α ⊕ U l

γ = (V k
α ⊕ V l

γ ⊕Oi
α ⊕Oi

β ⊕Oj
γ ⊕Oj

β).

Chapter 6. CENCPP* 163

Using the similar reasoning while bounding bad8, we have

Pr[bad10] ≤
2w(w − 1)(w − 2)

(
qc
2

)
q2p

23n
. (6.17)

The bound in Lemma 6.8 follows from Equation (6.4)-Equation (6.17).

Good Transcripts: It remains to study the interpolation probabilities of good

transcripts.

Lemma 6.9. Let qp + (w + 1)qc ≤ 2n/2(w + 1). For any good transcript τ =

τc ∪ τ0 ∪ . . . τw ∪ {K0, K1}, it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− (w + 1)2qc(qp + qc)

2

22n
.

Proof. Let Allreal(τ) denote the set of all oracles in the real world and Allideal(τ)

the set of all oracles in the ideal world that produce τ ∈ GoodT. Moreover, let
Compreal(τ) denote the fraction of oracles in the real world that are compatible
with τ and Compideal(τ) the corresponding fraction in the ideal world. It holds
that

Pr [Θreal = τ]

Pr [Θideal = τ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)|

.

We can easily bound the number for three out of four terms: |Allreal(τ)| = (2n)2 ·
(2n!)w+1 since there exist (2n)2 keys and 2n! possible ways for each of the w + 1

independent permutations Pα for α ∈ [0..w]. The same argument holds in the
ideal world |Allideal(τ)| = (2n)2 · (2n!)w+1 · (2wn)2

n , combined with (2wn)2
n random

functions for construction queries’ answers. Moreover, |Compideal(τ)| = (2wn)2
n−qc ·∏w

i=0(2
n − qp)! compatible oracles exist in the ideal world, where (2wn)2

n−qc are
the oracles that produce the correct construction-query outputs for the 2n − qc

remaining non-queried inputs, and for all permutations, there exist (2n − qp)!

compatible primitives each. It remains to find |Compreal(τ)|. Note that

|Compreal(τ)| =
∣∣∣∣∣
{
P = (P0, . . . , Pw) : XORPP∗[P, w]K 7→ τc ∧

w∧
α=0

Pα 7→ τα

}∣∣∣∣∣ ,
where XORPP∗[P, w]K 7→ τc denotes that XORPP∗[P, w]K produces the construc-
tion query transcript τc. Similarly, for all α ∈ [0..w], Pα 7→ τα denotes that the per-
mutation Pα produces the primitive query transcript τα. In other words, if Domα

Chapter 6. CENCPP* 164

denotes the set {U i
α : (U i

α, V
i
α) ∈ τα} and Ranα denotes the set {V i

α : (U i
α, V

i
α) ∈ τα},

then Pα 7→ τα equivalently means Pα maps elements from Domα to Ranα. Now, in
order to compute |Compreal(τ)|, we regroup the queries from τc, τ0, . . . , τw to τ new

c ,
τ new
0 , . . . , τ new

w . The new transcript sets are initialised by their corresponding old
parts, and reordered as follows:

1. if ∃i ∈ [qc], j ∈ [qp] such that Û i
0 = U j

0 , then

• τ new
c ← τ new

c \ {(I i,Oi)} and

• for all α ∈ [w], τ new
α ← τ new

α ∪{(Û i
α, V

j
0 ⊕Oi

α⊕ (a0,0⊕ aα,0) ·K0⊕ (a0,1⊕
aα,1) ·K1)}.

2. if ∃i ∈ [qc], j ∈ [qp], and α ∈ [w] such that Û i
α = U j

α, then

• τ new
c ← τ new

c \ {(I i,Oi)} and

• τ new
0 ← τ new

0 ∪{(Û i
0, V

j
α ⊕Oi

α⊕ (a0,0⊕ aα,0) ·K0⊕ (a0,1⊕ aα,1) ·K1)} and

• for all β ∈ [w] with β ̸= α, τ new
β ← τ new

β ∪ {(Û i
β, V

j
α ⊕Oi

α ⊕Oi
β ⊕ (aα,0 ⊕

aβ,0) ·K0 ⊕ (aα,1 ⊕ aβ,1) ·K1)}.

Note that such an addition of elements in Step (1) and Step (2) is sound. For Step
(1),

• since Û i
0 collides with U j

0 , Û i
α cannot collide with any Uk

α for α ∈ [w] due to
bad1.

• Similarly, (V j
0 ⊕Oi

α⊕ (a0,0⊕aα,0) ·K0⊕ (a0,1⊕aα,1) ·K1) cannot collide with
any V k

α for α ∈ [w] due to bad2.

• Moroever, (V j
0 ⊕Oi

α⊕ (a0,0⊕ aα,0) ·K0⊕ (a0,1⊕ aα,1) ·K1) is distinct due to
bad5 and bad8.

For Step (2),

• since Û i
α collides with U j

α for α ∈ [w], neither Û i
0 can collide with any Uk

0 nor
Û i
β can collide with any Uk

β for β ∈ [w] with β ̸= α due to bad1.

• Similarly, (V j
α ⊕Oi

α⊕ (a0,0⊕aα,0) ·K0⊕ (a0,1⊕aα,1) ·K1) cannot collide with
any V k

0 due to bad3.

• (V j
α ⊕ Oi

α ⊕ Oi
β ⊕ (aα,0 ⊕ aβ,0) ·K0 ⊕ (aα,1 ⊕ aβ,1) ·K1) cannot collide with

V k
β for β ∈ [w] with β ̸= α due to bad4.

Chapter 6. CENCPP* 165

• (V j
α ⊕Oi

α ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1) is distinct due to bad6 and
bad9.

• (V j
α ⊕Oi

α⊕Oi
β ⊕ (aα,0⊕ aβ,0) ·K0⊕ (aα,1⊕ aβ,1) ·K1) is distinct due to bad7

and bad10.

Also note that such an addition of elements (x, y) in the transcript τ new
α for α ∈

[0..w] also updates the set Domα ← Domα ∪ {x} and Ranα ← Ranα ∪ {y}. Now,
given qc constructions queries and qp queries to each of the permutations in the
original transcript, let the numbers of queries moved from τc be r which includes
total sα many elements into the primitive partial transcripts τα for α ∈ [0..w].
Thus, the number of queries in the new construction transcript is denoted by
q′ = qc−r and the w+1 sets of transcripts, (τ new

0 , τ new
1 , . . . , τ new

w) define exactly (qp+

s0, qp+s1, . . . , qp+sw) input-output tuples for (P0, . . . , Pw) respectively. Therefore,
it is easy to see that (s0+. . .+sw) = rw. Moreover, for each α ∈ [0..w], sα ≤ r ≤ qc.
Now, what remains is the counting of the number of permutations (P0, . . . , Pw)

that satisfy these (qp + s0, qp + s1, . . . , qp + sw) tuples respectively. That could
give the remaining transcript τ new

c , i.e., we are interested to count the number of
permutations (P0, . . . , Pw) that satisfies the following system of equations:

Ei =



P0(Û
i
0)⊕ P1(Û

i
1) = Oi

1 ⊕ (a0,0 ⊕ a1,0) ·K0 ⊕ (a0,1 ⊕ a1,1) ·K1

P0(Û
i
0)⊕ P2(Û

i
2) = Oi

2 ⊕ (a0,0 ⊕ a2,0) ·K0 ⊕ (a0,1 ⊕ a2,1) ·K1

...
...

...
...

P0(Û
i
0)⊕ Pw(Û

i
w) = Oi

w ⊕ (a0,0 ⊕ aw,0) ·K0 ⊕ (a0,1 ⊕ aw,1) ·K1 ,

where i ∈ [q′], U i
α = I i ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) for all {(I i,Oi)} ∈ τ new

c , along with
the fact that for each α ∈ [0..w], Pα maps Dα to Rα, where Dα = {0, 1}n \ Domα

and Rα = {0, 1}n \ Ranα. Note that

Domα
def
= {U i

α : (U i
α, V

i
α) ∈ τ new

α }
Ranα

def
= {V i

α : (U i
α, V

i
α) ∈ τ new

α }.

It is easy to see that |Dα|= |Rα|= (2n − qp − sα). Note that Ranα = {0, 1}n \ Rα,
for α ∈ [0..w], as the set of range values of Pα that are prohibited (basically these
are the V values in τα). Now, for j = [0..q′ − 1], let

λj+1
def
=
∣∣{(P1

0, . . . ,P
j+1
0 , . . . ,P1

w, . . . ,P
j+1
w)

}∣∣ (6.18)

Chapter 6. CENCPP* 166

be the number of solutions that satisfy

(1) the system of equations E1 ∪ E2 ∪ . . . ∪ Ej+1

(2) ∀α ∈ [0..w], it holds that Pj+1
α ̸∈ {P1

α, . . . ,P
j
α} ∪ Ranα.

Then, the goal is to define a recursive expression for λj+1 from λj such that a lower
bound can be found for the expression λj+1/λj. It holds that

|Compreal(τ)| = λq′ · (2n − (qp + s0 + q′))! · · · · · (2n − (qp + sw + q′))! ,

where the second term represents the number of permutations compatible with P0

and the rightmost term contains the number of permutations compatible with Pw.
We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=
λq′ ·

∏w
i=0(2

n − (qp + si + q′))! ·(2n)w·qc
((2n − qp)!)w+1

. (6.19)

Let B(1) denote the set of solutions that comply with only Condition (1) without
considering Conditions (2.0) through (2.w). Moreover, let B(2.ι:i) denote the set of
solutions compatible with Condition (1), but not with (2.ι : i), for i = 1, . . . , j +

|Ranι|. From the inclusion-exclusion principle, it follows that

λj+1 =
∣∣B(1)∣∣−

∣∣∣∣∣∣
(j+|Ran0|⋃

i=1

B(2.0:i)
)
∪ · · · ∪

(j+|Ranw|⋃
i=1

|B(2.w:i)|
)∣∣∣∣∣∣

≥
∣∣B(1)∣∣−

∣∣∣∣∣∣
j+|Ran0|∑

i=1

|B(2.0:i)|

∣∣∣∣∣∣− · · · −
∣∣∣∣∣∣
j+|Ranw|∑

i=1

|B(2.w:i)|

∣∣∣∣∣∣
+

j+|Ran0|∑
i=1

j+|Ran1|∑
i′=1

∣∣B(2.0:i) ∩ B(2.1:i′)∣∣︸ ︷︷ ︸
≥0

+ · · ·

+

j+|Ranw−1|∑
i=1

j+|Ranw|∑
i′=1

∣∣B(2.(w−1):i) ∩ B(2.w:i′)

∣∣︸ ︷︷ ︸
≥0

≥ 2n · λj −
j+|Ran0|∑

i=1

λj − · · · −
j+|Ranw|∑

i=1

λj.

It follows that λj+1 ≥ 2n ·λj − (j+ qp+ s0) ·λj − . . .− (j+ qp+ sw) ·λj. Therefore,

λj+1

λj
≥ 2n − (w + 1)j − (w + 1)qp −

w∑
α=0

sα

Chapter 6. CENCPP* 167

with λ0 = 1. It follows that Equation (6.19) can be written as

s0−1∏
t=0

2n

2n − qp − t
· . . . ·

sw−1∏
t=0

2n

2n − qp − t
·
q′−1∏
i=0

λi+1

λi
· (2n)w∏w

α=0(2
n − qp − i− sα)

≥
q′−1∏
i=0

(
(2n − (w + 1)i− (w + 1)qp −

∑w
α=0 sα)∏w

α=0(2
n − qp − i− sα)

· 2nw
)
. (6.20)

By substituting zi
def
= qp + i and setting pi,α

def
= (zi + sα)/2

n, we get

(6.20) =
q′−1∏
i=0

(
(2n)w+1 − 2nw · ((w + 1)zi +

∑w
α=0 sα)∏w

α=0(2
n − (zi + sα))

)
(6.21)

≥
q′−1∏
i=0

(
(2n)w+1 − 2nw · ((w + 1)zi +

∑w
α=0 sα)

2n(w+1)(1−∑w
α=0 pi,α +

∑
0≤α<β≤w pi,αpi,β)

)
(6.22)

Note that 0 ≤ pi,α ≤ 1 and smax
def
= max{sα : 0 ≤ α ≤ w} and by applying Lemma

6.3, we derived Equation (6.22) from Equation (6.21). Therefore, we have

(6.22) ≥
q′−1∏
i=0

(
1−

∑
α<β(zi + sα)(zi + sβ)

22n(1−∑w
α=0 pi,α +

∑
0≤α<β≤w pi,αpi,β)

)

≥
q′−1∏
i=0

1−
(
w+1
2

)
(zi + smax)

2

22n − 2n
w∑

α=0

(zi + sα) +
∑
α<β

(zi + sα)(zi + sβ)


(1)

≥
q′−1∏
i=0

(
1− 2 ·

(
w+1
2

)
· (qp + qc)

2

22n

)
(2)

≥
(
1− (w + 1)2q′(qp + qc)

2

22n

)
,(6.23)

where (1) follows from the fact that zi+smax = qp+ i+smax ≤ qp+q
′+r = qp+qc.

Moreover, 2n
∑w

α=0(zi + sα)−
∑

α<β(zi + sα)(zi + sβ) ≤ 22n/2, that follows due to
the fact that (qp+qc) ≤ (qp+(w+1)qc) ≤ 2n/2(w+1). (2) holds due to Bernoulli’s
inequality. Finally, we used qc ≥ q′ to derive the final bound.

Our claim in Theorem 6.6 follows from Lemma 2.1, 6.8, and 6.9.

Chapter 6. CENCPP* 168

Algorithm 8 Specification of CENCPP
101: function CENCPP[P, w].EK(N,M)
102: M1 · · ·Mm ←n M
103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ− 1 do
105: j ← i · w
106: (Sj+1 ∥ · · · ∥Sj+w)
107: ← XORPP∗ [P, w]K(N ∥ ⟨i⟩µ)
108: for k ← j + 1..j + w do
109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ∥ · · · ∥Cm)

201: function CENCPP[P, w].DK(N,C)
202: return CENCPP[P, w].EK(N,C)

301: function XORPP[P, w]K(I)
302: (K0,K1)← K
303: (P0, . . . , Pw)← P
304: L0 ← K0 ⊕K1

305: Û0 ← I ⊕ L0

306: X̂0 ← P0(Û0)⊕ L0

307: for α← 1..w do
308: Lα ← (2α ·K0)⊕ (22α ·K1)
309: Ûα ← I ⊕ Lα

310: X̂α ← Pα(Ûα)⊕ Lα

311: Oα ← X̂α ⊕ X̂0

312: return (O1 ∥ · · · ∥Ow)

6.5.3 CENCPP: An Instantiation of CENCPP∗

A natural instantiation of CENCPP∗ can be realised by instantiating the key-
scheduling matrix A of dimension (w + 1)× 2 of XORPP∗ as follows:

L ·K =

1 α1 α2 · · · αw

1 α2 α4 · · · α2w


⊤

·

K0

K1

 ,

where the elements are in Fn
2 , and α ∈ Fn

2 is a primitive element, which is often α =

2, that is the polynomial x1 for practical values of Fn
2 ·p(x) is an irreducible modulus

polynomial in Fn
2 . Note that any two rows of the matrix L above are linearly

independent. We refer to the instantiation of XORPP∗ with matrix L as XORPP.
We define the concrete nonce- and public-permutation-based encryption scheme
CENCPP in Algorithm 8. Since any two rows in the key-scheduling matrix of
CENCPP are linearly independent, the security of CENCPP follows from Theorems
6.5 and 6.6.

6.6 Domain-separated Variants

DS-SoEM is a sum of Even-Mansour constructions with d = 1 bit of domain
separation, i.e., it uses (n− 1)-bit message inputs and fixes the last bit to encode
domains that are distinct for each permutation. Let P ∈ Perm(Fn

2) and K
def
=

(K0, K1) ∈ fieldn2)2. We define DS-SoEM[P]K0,K1 : (Fn
2)

2×Fn−1
2 → Fn

2 to compute
DS-SoEM[P]K0,K1(M), as listed in Algorithm 9. Note that we use (n − 1) bits
of the key in forward direction only, i.e., the domain is not masked. For this

Chapter 6. CENCPP* 169

Algorithm 9 Specification of DS-CENCPP, DS-XORPP, and DS-SoEM
101: function DS-CENCPP[P,w].EK(N,M)
102: M1 · · ·Mm ←n M
103: ℓ← ⌈m/w⌉
104: for i← 0..ℓ− 1 do
105: j ← i · w
106: (Sj+1 ∥ · · · ∥Sj+w)
107: ← DS-XORPP[P,w]K(N ∥ ⟨i⟩µ)
108: for k ← j + 1..j + w do
109: Ck ← Sk ⊕Mk

110: return msb|M |(C1 ∥ · · · ∥Cm)

201: function DS-CENCPP[P,w].DK(N,C)
202: return DS-CENCPP[P,w].EK(N,C)

301: function DS-XORPP[P,w]K(I)
302: (K0,K1)← K
303: L0 ← K0 ⊕K1

304: Û0 ← (I ⊕msbn−d(L0)) ∥ ⟨0⟩d
305: X̂0 ← P (Û0)⊕ L0

306: for α← 1..w do
307: Lα ← (2α ·K0)⊕ (22α ·K1)
308: Ûα ← (I ⊕msbn−d(Lα)) ∥ ⟨α⟩d
309: X̂α ← P (Ûα)⊕ Lα

310: Oα ← X̂α ⊕ X̂0

311: return (O1 ∥ · · · ∥Ow)

401: function DS-SoEM[P,w]K(M)
402: (K0,K1)← K
403: Û0 ← (msbn−1(K0)⊕M) ∥ ⟨0⟩1
404: Û1 ← (msbn−1(K1)⊕M) ∥ ⟨1⟩1
405: V̂0 ← P (Û0)
406: V̂1 ← P (Û1)
407: return V̂0 ⊕ V̂1 ⊕K0 ⊕K1

construction, we set a zero bit for the call to the left and a one bit for the domain
input to the right permutation. An illustration is given in Figure 6.5a.

DS-XORPP: We can define DS-XORPP[P,w] similarly. Here, d ≥ ⌈log2(w+1)⌉
bits are necessary to separate the domains. Let again K

def
= (K0, K1) ∈ (Fn

2)
2.

We define DS-XORPP[P,w] : (Fn
2)

2 × Fn−d
2 → (Fn

2)
w as given in Algorithm 9 and

a pictorial depiction is given in Figure 6.5b. The input domain is Fn−d
2 . Again,

we use (n − d) bits of the key in forward direction only, i.e., the domain is not

masked.
DS-CENCPP is then defined naturally. Let N def

= Fν+µ
2 be a nonce space such that

ν + µ = n − d. Let N ∈ N be a nonce and M ∈ F∗2 be a message. Let again
K

def
= (K0, K1) ∈ (Fn

2)
2 and P ∈ Perm(Fn

2). Then, the encryption and decryption
algorithms E and D of DS-CENCPP[P,w]K(N,M) are provided in Algorithm 9.

6.7 Distinguishers on DS-SoEM and DS-XORPP

This section provides a distinguisher on DS-SoEM that matches our security bound
and distinguishers on variants that mask also the domain and use only a single
key. Thus, they show that our bound is tight (up to a logarithmic factor) and
explain our designs.

Chapter 6. CENCPP* 170

M

P P

0 1K0 K1

K0 K1

m
sb

b

m
sb

b

Û0 Û1

V̂0 V̂1

C

(a) DS-SoEM[P]K0,K1
.

I

K0 ⊕K1

0m
sb

b

P

X̂0

Û0

V̂0

I

2K0 ⊕ 22K1

1m
sb

b

P

O1

X̂0

Û1

V̂1

X̂1

I

22K0 ⊕ 24K1

2m
sb

b

P

O2

X̂0

Û2

V̂2

X̂2

(b) DS-XORPP[P,w]K0,K1
.

Figure 6.5: The domain-separated constructions, here with DS-XORPP[P, 2].
The trapezoids represent truncation of the key masks at the input to their b =
n − d most significant bits. For DS-SoEM, the trapezoid truncates the key
masks at the input to their n− 1 most significant bits, whereas for DS-XORPP,

it truncates n− 2 most significant bits.

The existing distinguisher from [17, Proposition 2] on SoEM12 (one permutation,
two independent keys) needed 3 · 2n/2 queries:

1. For i ← 1..2n/2, query M i = (⟨i⟩n/2 ∥ 0n/2) to get Ci, and M∗i = M i ⊕ 1 to
get C∗i.

2. For j←1..2n/2, query M ′j = (0n/2∥⟨j⟩n/2) to get C ′j, and M ′∗j=M ′j⊕1 for
C ′∗

j.

After 3 · 2n/2 queries, there exists one tuple (M i,M∗i,M ′j,M ′∗j) such that M i ⊕
M ′j =M∗i⊕M ′∗j = K0⊕K1, which can be seen if Ci = C ′j and C∗i = C ′∗

j. Note
that the fourth set of queries M ′∗j is not new, but can be taken from the other
sets. For SoEM, the distinguisher exploited that one can find two queries M and
M ′ such that their inputs to the left and right permutation are swapped. For
DS-SoEM, this distinguisher does not apply since the domain separation prevents
that the permutation inputs can be swapped.
A working distinguisher can be constructed with significant advantage and 6c·22n/3
queries, for small constant c ≥ 1. Let q = c · 22n/3.

1. For j ← 1..q, query a random M j without replacement, get Cj. Moreover,
query M∗j =M j ⊕ ⟨1⟩n−1 to get C∗j and store (Cj, C∗j).

2. For i← 1..q, sample ui0 ∈ Fn−1
2 without replacement, query U i

0 = (ui0 ∥ ⟨0⟩1)
to P , and obtain V i

0 . Query U∗0
i = U i

0 ⊕ 10n−1 to P to obtain V ∗0
i and store

(V i
0 , V

∗
0
i).

Chapter 6. CENCPP* 171

3. For k ← 1..q, sample uk1 ∈ Fn−1
2 without replacement, query Uk

1 = (uk1 ∥
⟨1⟩1) to P , and get V k

1 . Query U∗1
k = Uk

1 ⊕ 10n−1 to P to get V ∗1
k and store

(V k
1 , V

∗
1
k).

With high probability, there exists a tuple (M j, U i
0, U

k
1) such that

((M j ⊕msbn−1(K0)) ∥ ⟨0⟩1) = U i
0 and ((M j ⊕msbn−1(K1)) ∥ ⟨1⟩1) = Uk

1 .

If this is the case, check if

((M∗j ⊕msbn−1(K0) ∥ ⟨0⟩1) = U∗0
i and ((M∗j ⊕msbn−1(K1)) ∥ ⟨1⟩1) = U∗1

k

also holds. If yes, return real; return random otherwise.

Why not also mask the domain? If the keysK0 andK1 would be XORed also
to the domains, it could hold for DS-SoEM that lsb1(K0)⊕⟨0⟩1 = lsb1(K1)⊕⟨1⟩1 .
Similarly, it could hold for DS-XORPP for any distinct pair i, j ∈ [0..w] that

lsbd(2iK0 ⊕ 22iK1)⊕ ⟨i⟩d = lsbd(2jK0 ⊕ 22jK1))⊕ ⟨j⟩d

This would counter the distinct domains. While the distinguisher from [17, Propo-
sition 2] would still be inapplicable, a slide attack (cf. [189, 190]) could become a
threat. In the following, we consider a variant of DS-SoEM[P] with the permuta-
tion inputs

U i
0 ← (M i ∥ ⟨0⟩1)⊕K0 and U i

1 ← (M i ∥ ⟨1⟩1)⊕K1.

Let K0, K1
$← Fn

2 , and lsb1(K0) ⊕ lsb1(K1) = 1, i.e., their least significant bit
differs, which holds with probability 0.5. Let c ∈ Fn−1

2 be a non-zero constant.
Then:

1. For i← 1..2n/2, sample M i = (⟨i⟩n/2 ∥ 0n/2−1), obtain Ci and store it.

2. Derive M∗i =M i ⊕ c, and obtain its corresponding ciphertext C∗i.

3. Similarly, for j ← 1..2n/2−1, sample M j = (0n/2 ∥ ⟨j⟩n/2−1), obtain Cj and
store it.

4. Derive M∗j =M j ⊕ c, and obtain its corresponding ciphertext C∗j.

Chapter 6. CENCPP* 172

5. If ∃i ̸= j such that Ci = Cj and C∗i = C∗j, return real; return random
otherwise.

Then, there exists a pair s. t. M i ⊕ M j = msbn−1(K
0 ⊕ K1). It follows that

U i
0 = U j

1 and U j
0 = U i

1, from which Ci = Cj follows. A similar argument holds for
C∗i = C∗j.
A distinguisher on a single-key variant shows that the tempting approach of using
a single-key domain-separated variant of DS-SoEM does not offer sufficient security
in practice. Since the domain differs in both permutation calls, this would ensure
distinct inputs on both sides of each query. However, this construction would
possess only n/2-bit PRF security. In the following, we sketch a distinguisher,
where we assume that both keys K0 and K1 are replaced by a single key K.

1. For i← 1..2n/2, sample M i = (⟨i⟩n/2 ∥ 0n/2−1) to obtain Ci and store them.
To each M i, associate a plaintext M ′i =M i ⊕ (10n−2) and its output C ′i.

2. For j ← 1..2n/2−1, ask for the primitive encryption of U j
0 = (⟨0⟩n/2 ∥ ⟨i⟩n/2−1

∥ ⟨0⟩1) to obtain V j
0 . Query U ′0

j = U j
0 ⊕ (10n−1) to obtain V ′0

j.

3. Similarly, for j ← 1..2n/2−1, ask for the primitive encryption of U j
1 = (⟨0⟩n/2

∥ ⟨i⟩n/2−1 ∥ ⟨1⟩1) to obtain V j
1 . Query U ′1

j = U j
1 ⊕ (10n−1) to obtain V ′1

j.

4. If there exists one tuple i, j s. t. Ci = V j
0 ⊕ V j

1 and C ′i = V ′0
j ⊕ V ′1 j, output

real and output random otherwise.

With probability one, there will be one collision for the real construction, whereas
the probability of the event is negligible in the ideal world.

6.8 Security Analysis of DS-CENCPP and DS-SoEM

Here, we study the NE security of DS-CENCPP.

6.8.1 Security Result of DS-CENCPP

As before, let P $← Perm(Fn
2) and K0, K1

$← K be independent secret keys; we
write K = (K0, K1) for brevity. Again, we conducted a two-step analysis, where
we consider (1) the PRF security of DS-XORPP[P,w] and (2) the NE security of
DS-CENCPP[P,w]. For simplicity of notation, we write DS-XORPP[P,w] as DS-

XORPP. Moreover, we write DS-CENCPP[P,w] as DS-CENCPP.

Chapter 6. CENCPP* 173

Theorem 6.10. It holds that

AdvDS-CENCPP
NE (qp, qc,m) ≤ AdvDS-XORPP

PRF

(
qp,

m

w
qc

)
.

The proof follows a similar argumentation as that of CENCPP∗.

Theorem 6.11. Let v def
= w + 1 and qc + v(qp + qc) ≤ 2n/2(w + 1). It holds that

AdvDS-XORPP
PRF (qp, qc) ≤

22dv2qcq
2
p

22n+1
+

2d+1wvqcq
2
p

22n
+

2dv3qcq
2
p

22n+1
+

22dw3q2cqp
22n

+
22d+1w3qcq

2
p

22n
+

22dw4q2cqp
22n

+
22d+1w4q2cq

2
p

23n

+
wqc
2n

+

(
w
2

)
qc

2n
+

4v4q3c + 4v4q2cqp + v4qcq
2
p

22n
.

Corollary 6.12. The Security of DS-CENCPP results from combining Theorem
6.10 and Theorem 6.11 as follows:

AdvDS-CENCPP
NE (qp, qc,m) ≤ 22dvmqcq

2
p

22n
+

2d+1vmqcq
2
p

22n
+

2dv2mqcq
2
p

22n

+
22dwm2q2cqp

22n
+

22d+1w2mqcq
2
p

22n
+

22dw2m2q2cqp
22n

+
22d+1m2w2q2cq

2
p

23n
+
mqc
2n

+
mwqc
2n+1

+
4(w + 7)m3q3c + 16v2m2q2cqp + 2v3mqcq

2
p

22n
,

where m is the maximum number of message blocks among all qc queries.

For the bound in Corollary 6.12, we used that v2/w ≤ 2v and v4/w3 ≤ (w + 7)

and v4/w ≤ 2v3.

Proof of Theorem 6.11. We fix a non-trivial information-theoretic deterministic
distinguisher D that is given access to the oracle DS-XORPP[P,w]K and the prim-
itive oracle P , for a pair of n-bit random keys K = (K0, K1) and an n-bit random
permutation P , in the real world. In the ideal world, it is given access to a random
function, which answers each query of D by w blocks of n bits uniform and inde-
pendent random strings O = (O1, . . . , Ow) and to an n-bit random permutation
P . We assume that D can ask exactly qc construction queries and q′p = (w + 1)qp

forward and backward primitive queries altogether to the primitive P , where U i
α is

the i-th forward primitive query to the primitive P whose last d bits is equal to ⟨α⟩d
and V i

α is the corresponding response and vice versa. We summarise the interaction

Chapter 6. CENCPP* 174

of the distinguisher D with the oracles in a transcript τ which is partitioned into
τ = τc ∪ τ0 ∪ . . . ∪ τw, where the construction transcript τc contains the queries to
and responses from the construction oracle: τc = {(I1,O1), . . . , (Iqc ,Oqc)} and the
primitive transcripts τα = {(U1

α, V
1
α), . . ., (U

qp
α , V

qp
α)} contain exactly the queries

to and responses from permutation P such that the last d bits of U i
α for all i ∈ [qp]

and for all α ∈ [0..w] is equal to ⟨α⟩d. Since D is non-trivial, τ does not contain
duplicate elements. After the interaction is over, we release the keys K0, K1, which
are the keys used in the construction in the real world, and sampled uniformly at
random in the ideal world, to the distinguisher before it outputs its decision bit.
Hence, the transcript τ becomes τ = τc∪ τ0∪ . . .∪ τw ∪{(K0, K1)}. With the help
of the transcript τ , D can compute the all the inputs Û i

α to the permutations P
for qc construction queries using the following equation

Û i
α

def
= I i ⊕msbn−d(2

α ·K0 ⊕ 22α ·K1) ∥ ⟨α⟩d , (6.24)

where α ∈ [0..w] and i ∈ [qc]. We partition the set of all attainable transcripts
Att into two disjoint sets of GoodT and BadT that represent good and bad

transcripts. We denote by Θreal and Θideal random variables that represent the
distribution of transcripts in the real and the ideal world, respectively.

Bad Transcripts: Let τ = τc ∪ τ0 ∪ . . . ∪ τw ∪ {(K0, K1)} be an attainable
transcript. Since, the distinguisher is given the keys K, it can compute all the
permutation inputs (Û i

α)i∈[qc],α∈[0..w] using Equation (6.24). We say that τ is bad
if any one of the following bad events holds.

1. Two inputs to the permutations for a construction query simultaneously col-
lides with the input of corresponding two primitive queries.

• bad1: ∃i ∈ [qc], j, k ∈ [qp] and distinct permutation indices α, β ∈ [0..w]

such that. (Û i
α = U j

α) ∧ (Û i
β = U j

β).

2. For a construction query, one of the inputs collides with the input of a prim-
itive query, which makes the output of another permutation call of the same
construction query collide with the output of another primitive query.

• bad2: ∃i ∈ [qc], j, k ∈ [qp] and permutation indices α ∈ [w] and β ∈
[0..w] such that (Û i

0 = U j
0)∧(V j

0 ⊕Oi
α⊕(2α⊕1)·K0⊕(22α⊕1)·K1 = V k

β).

• bad3: ∃i ∈ [qc], j, k ∈ [qp] and permutation indices α ∈ [w] and β ∈
[0..w] such that (Û i

α = U j
α)∧(V j

α⊕Oi
α⊕(2α⊕1)·K0⊕(22α⊕1)·K1 = V k

β).

Chapter 6. CENCPP* 175

• bad4: ∃i ∈ [qc], j, k ∈ [qp] and disinct permutation indices α, β ∈ [w]

and γ ∈ [0..w] such that (Û i
α = U j

α)∧ (V j
α ⊕Oi

α⊕Oi
β ⊕ (2α⊕ 2β) ·K0⊕

(22α ⊕ 22β) ·K1 = V k
γ).

3. For two construction queries i and j, one of the inputs of i-th construction
query collides with the input of a primitive query, and one of the inputs of
j-th construction query collides with the input of a primitive query, and the
output of any two permutation calls collide.

• bad5: ∃i, j ∈ [qc], k, l ∈ [qp] and permutation indices β, γ ∈ [w] such
that (Û i

0 = Uk
0) ∧ (Û j

0 = U l
0) ∧ (V k

0 ⊕ Oi
β ⊕ Oj

γ ⊕ V l
0 = (2β ⊕ 2γ) ·K0 ⊕

(22β ⊕ 22γ) ·K1).

• bad6: ∃i, j ∈ [qc], k, l ∈ [qp] and permutation index α ∈ [w] and permu-
tation indices β, γ ∈ [0..w] such that α ̸= β, α ̸= γ and (Û i

α = Uk
α) ∧

(Û j
α = U l

α)∧(V k
α⊕V l

α⊕Oi
α⊕Oi

β⊕Oj
α⊕Oj

γ = (2β⊕2γ)·K0⊕(22β⊕22γ)·K1).

• bad7: ∃i, j ∈ [qc], k, l ∈ [qp] and permutation index α ∈ [w] and
permutation indices β ∈ [w] and γ ∈ [0..w] such that α ̸= γ and
(Û i

0 = Uk
0) ∧ (Û j

α = U l
α) ∧ (V k

0 ⊕ V l
α ⊕ Oi

β ⊕ Oj
α ⊕ Oj

γ = (1 ⊕ 2α ⊕ 2β ⊕
2γ) ·K0 ⊕ (1⊕ 22α ⊕ 22β ⊕ 22γ) ·K1).

• bad8: ∃i, j ∈ [qc], k, l ∈ [qp] and distinct permutation indices α, β ∈ [w]

and permutation indices γ, ρ ∈ [0..w] such that α ̸= γ, ρ ̸= β and
(Û i

α = Uk
α) ∧ (Û j

β = U l
β) ∧ (V k

α ⊕ V l
β ⊕Oi

α ⊕Oi
γ ⊕Oj

β ⊕Oj
ρ = (2ρ ⊕ 2α ⊕

2β ⊕ 2γ) ·K0 ⊕ (22ρ ⊕ 22α ⊕ 22β ⊕ 22γ) ·K1).

• bad9: ∃i ∈ [qc] and a permutation index α ∈ [w] such that Oi
α =

(K0 ⊕K1)⊕ (2αK0 ⊕ 22αK1).

• bad10: ∃i ∈ [qc] and distinct permutation indices α, β ∈ [w] such that
Oi

α ⊕Oi
β = (2α ⊕ 2β) ·K0(2

2α ⊕ 22β) ·K1.

Lemma 6.13. It holds that

Pr [Θideal ∈ BadT] ≤ 22d
(
w+1
2

)
qcq

2
p

22n
+

2d+1w(w + 1)qcq
2
p

22n
+

2d(w + 1)
(
w+1
2

)
qcq

2
p

22n

+
22dw3q2cqp

22n
+

22d+1w3qcq
2
p

22n
+

22dw4q2cqp
22n

+
22d+1w4q2cq

2
p

23n
+
wqc
2n

+

(
w
2

)
qc

2n
.

Chapter 6. CENCPP* 176

Proof. In the following, we study the probabilities of the individual bad events.
Before that, we recall the key-scheduling matrix A as follows:

A =

1 2 22 . . . 2w

1 22 24 . . . 22w


⊤

.

bad1 This event considers the collision between the input of P corresponding to
a construction query whose last d bits is ⟨α⟩d and the input to P corresponding to
a primitive query whose last d bits is ⟨α⟩d, and a similar collision corresponding
to construction and primitive query whose last d bits is ⟨β⟩d. To bound the event,
it must hold that

msbn−d(2
α ·K0 ⊕ 22α ·K1) = I i ⊕msbn−d(U

j
α) and

msbn−d(2
β ·K0 ⊕ 22β ·K1) = I i ⊕msbn−d(U

k
β) .

with [2α 22α] and [2β 22β] as the (α+1)-th and the (β+1)-th row of A respectively.
The two equations can be seen as

msbn−d (A
′ ·K) = msbn−d


2α 22α

2β 22β

 ·
K0

K1


 =

I i ⊕msbn−d(U
j
α)

I i ⊕msbn−d(U
k
β)


Since all rows of A are pairwise linearly independent, A′ is non-singular. Moreover,
K0 and K1 are uniform random variables over {0, 1}n. Thus, we can apply Lemma
6.2 and the probability of this event for a fixed choice of indices is 2−2(n−d). Since
one can choose α and β in

(
w+1
2

)
ways, we obtain from the union bound over all

indices

Pr[bad1] ≤
22d
(
w+1
2

)
qcq

2
p

22n
.

bad2 This event considers the collision between the input of P corresponding to
a construction query whose last d bits is ⟨0⟩d and the input to P corresponding to
a primitive query whose last d bits is ⟨0⟩d, and the collision between the output
of P corresponding to the same construction query whose last d bits is ⟨α⟩d and
the output of P corresponding to a primitive query whose last d bits is ⟨β⟩d for
α ∈ [w] and β ∈ [0..w]. For this event, it must hold that

msbn−d(K0 ⊕K1) = I i ⊕msbn−d(U
j
0) and

Chapter 6. CENCPP* 177

(2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1 = Oi
α ⊕ V j

0 ⊕ V k
β .

Note that the matrix

A′ =

 1 1

2α ⊕ 1 22α ⊕ 1


is non-singular. Since K0 and K1 are uniform random variables over {0, 1}n, the
probability of this event for a fixed choice of indices is 2d/22n as follows from
Lemma 6.1. Since one can choose α in w ways and β in w + 1 ways, we obtain
from the union bound over all indices

Pr[bad2] ≤
2dw(w + 1)qcq

2
p

22n
.

bad3 This event considers the collision between the input of P corresponding to
a construction query whose last d bits is ⟨α⟩d and the input to P corresponding to
a primitive query whose last d bits is ⟨α⟩d, and the collision between the output
of P corresponding to the same construction query whose last d bits is ⟨0⟩d and
the output of P corresponding to a primitive query whose last d bits is ⟨β⟩d for
α ∈ [w] and β ∈ [0..w]. For this event, it must hold that

msbn−d(2
α ·K0 ⊕ 22α ·K1) = I i ⊕msbn−d(U

j
α) and

(2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1 = Oi
α ⊕ V j

α ⊕ V k
β .

Note that the matrix

A′ =

 2α 22α

2α ⊕ 1 22α ⊕ 1


is non-singular. Since K0 and K1 are uniform random variables over {0, 1}n, the
probability of this event for a fixed choice of indices is 2d/22n as follows from
Lemma 6.1. Since one can choose α in w ways and β in w + 1 ways, we obtain
from the union bound over all indices

Pr[bad3] ≤
2dw(w + 1)qcq

2
p

22n
.

Chapter 6. CENCPP* 178

bad4 This event considers the collision between the input of P corresponding to
a construction query whose last d bits is ⟨α⟩d and the input to P corresponding to
a primitive query whose last d bits is ⟨α⟩d, and the collision between the output
of P corresponding to the same construction query whose last d bits is ⟨β⟩d and
the output of P corresponding to a primitive query whose last d bits is ⟨γ⟩d for α
and β ∈ [w] and γ ∈ [0..w]. For this event, it must hold that

msbn−d(2
α ·K0 ⊕ 22α ·K1) = I i ⊕msbn−d(U

j
α) and

(2α ⊕ 2β) ·K0 ⊕ (22α ⊕ 22β) ·K1 = Oi
α ⊕Oi

β ⊕ V j
α ⊕ V k

γ .

Note that the matrix

A′ =

 2α 22α

2α ⊕ 2β 22α ⊕ 22β


is non-singular. Since K0 and K1 are uniform random variables over {0, 1}n, the
probability of this event for a fixed choice of indices is 2d/22n as follows from
Lemma 6.1. Since one can choose α and β in

(
w+1
2

)
ways and γ in w+ 1 ways, we

obtain from the union bound over all indices

Pr[bad4] ≤
2d(w + 1)

(
w+1
2

)
qcq

2
p

22n
.

bad5 This event considers the collision between the input of P corresponding
to the i-th construction query whose last d bits is ⟨0⟩d and to that of the input
of corresponding primitive query and the collision between the input of P corre-
sponding to the j-th construction query whose last d bits is ⟨0⟩d and to that of
the input of corresponding primitive query and the collision between the output
of P corresponding to the i-th construction query whose last d bits is ⟨β⟩d and the
output of P corresponding to the j-th construction query whose last d bits is ⟨γ⟩d
for β, γ ∈ [w]. For this event, it must hold that


msbn−d(K0 ⊕K1) = I i ⊕msbn−d(U

k
0),

msbn−d(K0 ⊕K1) = Ij ⊕msbn−d(U
l
0),

(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k
0 ⊕Oi

β ⊕Oj
γ ⊕ V l

0 .

Note that the system of equations above can be rewritten as

Chapter 6. CENCPP* 179

K0 ⊕K1 = Uk
0 ⊕ (I i∥⟨x⟩d) = U l

0 ⊕ (Ij∥⟨y⟩d), (E.1)

(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k
0 ⊕Oi

β ⊕Oj
γ ⊕ V l

0 ,

where x, y ∈ {0, 1}d. We can easily observe that

Pr[(E.1)] = Pr[Uk
0 ⊕ (I i∥⟨x⟩d) = U l

0 ⊕ (Ij∥⟨y⟩d)]
· Pr[(E.1) | Uk

0 ⊕ (I i∥⟨x⟩d) = U l
0 ⊕ (Ij∥⟨y⟩d)]. (6.25)

Let’s first fix the choice of indices of the two construction queries and the two
primitive queries, and the values of β, γ, x and y. Now in the first case, if the
last among four queries is a backward primitive query (w.l.o.g., suppose it’s V k

0 to
obtain Uk

0), then the probability of Equation (6.25) comes out to be 1
2n
. 1
2n

. The
first 1

2n
comes from the randomness over Uk

0 and the second 1
2n

comes from the
randomness over K0⊕K1. And in the second case, if the last among four queries is
a forward positive query (w.l.o.g., suppose it’s Uk

0 to obtain V k
0) or a construction

query (w.l.o.g., suppose it’s I i to obtain Oi), then the probability of Equation
(6.25) comes out to be 1. 1

2n
. The 1

2n
comes from randomness over K0 ⊕ K1. In

both the cases, Pr[(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k
0 ⊕ Oi

β ⊕ Oj
γ ⊕ V l

0] =
1
2n

.
The 1

2n
comes from randomness over (2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1. Since the

matrix

 1 1

(2β ⊕ 2γ) (22β ⊕ 22γ)


is full-rank, the probability of the third equation, conditioned on the first two
equations, comes out to be 1

2n
, and as a result, the joint probability of all the three

equations corresponding to bad5 comes out to be 1
23n

(in the first case) or 1
22n

(in
the second case). In the first case, one can choose i and j together in

(
qc
2

)
ways,

and k and l in qp ways each. In the second case, if the last query is a forward
primitive query, then i and j can be chosen in 2

(
qc
2

)
ways. But the value of the

index corresponding to the last primitive query gets fixed once one fixes the value
of the index of the other primitive query (This can be done in qp ways). Similarly,
if the last query is a construction query, then k and l can be chosen in q2p ways.

Chapter 6. CENCPP* 180

But the value of the index corresponding to the last construction query gets fixed
once one fixes the value of the index of the other construction query (This can be
done in qc ways). Moreover, β and γ together can be chosen in w2 ways. Thus, we
obtain from the union bound over all indices and all possible values of x and y,

Pr[bad5] ≤ max

(
22dw2

(
qc
2

)
q2p

23n
,
22dw2

(
qc
2

)
qp

22n
,
22dw2qcq

2
p

22n

)

≤ 22dw2
(
qc
2

)
q2p

23n
+

22dw2
(
qc
2

)
qp

22n
+

22dw2qcq
2
p

22n
.

bad6 This event considers the collision between the input of P corresponding to
the i-th construction query whose last d bits is ⟨α⟩d and to that of the input of
corresponding primitive query and collision between the input of P corresponding
to the j-th construction query whose last d bits is ⟨α⟩d and to that of the input
of corresponding primitive query for some α ∈ [w] and the collision between the
output of P corresponding to the i-th construction query whose last d bits is ⟨β⟩d
and the output of P corresponding to the j-th construction query whose last d
bits is ⟨γ⟩d for β, γ ∈ [0..w] such that α ̸= β, α ̸= γ. For this event, it must hold
that


msbn−d(2

α ·K0 ⊕ 22α ·K1) = I i ⊕msbn−d(U
k
α),

msbn−d(2
α ·K0 ⊕ 22α ·K1) = Ij ⊕msbn−d(U

l
α),

(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k
α ⊕ V l

α ⊕Oi
α ⊕Oi

β ⊕Oj
α ⊕Oj

γ .

Note that the above system of equations can be rewritten as


2α ·K0 ⊕ 22α ·K1 = Uk

α ⊕ (I i∥⟨x⟩d),
2α ·K0 ⊕ 22α ·K1 = U l

α ⊕ (Ij∥⟨y⟩d),
(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k

α ⊕ V l
α ⊕Oi

α ⊕Oi
β ⊕Oj

α ⊕Oj
γ ,

where x, y ∈ {0, 1}d. Using similar reasoning while bounding bad5, we have

Pr[bad6] ≤
22dw3

(
qc
2

)
q2p

23n
+

22dw3
(
qc
2

)
qp

22n
+

22dw3qcq
2
p

22n
.

Chapter 6. CENCPP* 181

bad7 This event considers the collision between the input of P corresponding to
the i-th construction query whose last d bits is ⟨0⟩d and to that of the input of
corresponding primitive query and collision between the input of P corresponding
to the j-th construction query whose last d bits is ⟨α⟩d and to that of the input
of corresponding primitive query for some α ∈ [w] and the collision between the
output of P corresponding to the i-th construction query whose last d bits is ⟨β⟩d
and the output of P corresponding to the j-th construction query whose last d
bits is ⟨γ⟩d for β ∈ [w] and γ ∈ [0..w] such that α ̸= γ. For this event, it must
hold that



msbn−d(K0 ⊕K1) = I i ⊕msbn−d(U
k
0) ,

msbn−d(2
α ·K0 ⊕ 22α ·K1) = Ij ⊕msbn−d(U

l
α) ,

(1⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (1⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V k
0 ⊕ V l

α ⊕Oi
β ⊕Oj

α ⊕Oj
γ .

Note that the above system of equations can be rewritten as



K0 ⊕K1 = Uk
0 ⊕ (I i∥⟨x⟩d) ,

2α ·K0 ⊕ 22α ·K1 = U l
α ⊕ (Ij∥⟨y⟩d) ,

(1⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (1⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V k
0 ⊕ V l

α ⊕Oi
β ⊕Oj

α ⊕Oj
γ ,

where x, y ∈ {0, 1}d. Let’s first fix the choice of indices of the two construction
queries and the two primitive queries, and the values of α, β, γ, x and y. The rank
of the first two equations over K0 and K1 is 2 and hence the joint probability of
the first two equations comes out to be 1

22n
. Once we bound the probability of the

first two equations, K0 and K1 get fixed. The probability of the third equation
depends on the randomness of different variables depending on the last query.

1. If the last among four queries is the construction query to obtain Oi from
I i, then the randomness comes from Oi

β, and the probability of the third
equation comes out to be 1

2n
.

2. If the last among four queries is the construction query to obtain Oj from
Ij, then the randomness comes from Oj

α ⊕ Oj
γ, and the probability of the

Chapter 6. CENCPP* 182

third equation comes out to be 1
2n

.

3. If the last among four queries is the forward primitive query to obtain V k
0

from Uk
0 , then the randomness comes from V k

0 , and the probability of the
third equation comes out to be 1

2n
.

4. If the last among four queries is the forward primitive query to obtain V l
α

from U l
α, then the randomness comes from V l

α, and the probability of the
third equation comes out to be 1

2n
.

5. If the last among four queries is the backward primitive query to obtain Uk
0

from V k
0 , then the probability of the third equation comes out to be 1.

6. If the last among four queries is the backward primitive query to obtain U l
α

from V l
α, then the probability of the third equation comes out to be 1.

Now, one can choose i and j together in 2
(
qc
2

)
ways. If the last query is a construc-

tion query or a forward primitive query, then one can choose k and l in qp ways
each. but if the last query is a backward primitive query, then the value of the
index of the last primitive query gets fixed once one fixes the value of the index
of the other primitive query (This can be done in qp ways). Moreover, β, γ can
be chosen in w2 ways and α can be chosen in w ways. Thus, we obtain from the
union bound over all indices and all possible values of x and y,

Pr[bad7] ≤ max

(
22dw3

(
qc
2

)
q2p

23n
,
22dw3

(
qc
2

)
qp

22n

)
≤ 22dw3

(
qc
2

)
q2p

23n
+

22dw3
(
qc
2

)
qp

22n
.

bad8 This event considers the collision between the input of P corresponding to
the i-th construction query whose last d bits is ⟨α⟩d and to that of the input of
corresponding primitive query for some α ∈ [w] and collision between the input of
P corresponding to the j-th construction query whose last d bits is ⟨β⟩d and to that
of the input of corresponding primitive query for some β ∈ [w] and the collision
between the output of P corresponding to the i-th construction query whose last
d bits is ⟨γ⟩d and the output of P corresponding to the j-th construction query
whose last d bits is ⟨ρ⟩d for β ∈ [w] and γ, ρ ∈ [0..w] such that α ̸= γ and ρ ̸= β.
For this event, it must hold that

Chapter 6. CENCPP* 183



msbn−d(2
α ·K0 ⊕ 22α ·K1) = I i ⊕msbn−d(U

k
α) ,

msbn−d(2
β ·K0 ⊕ 22β ·K1) = Ij ⊕msbn−d(U

l
β) ,

(2ρ ⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (22ρ ⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V k
α ⊕ V l

β ⊕Oi
α ⊕Oi

γ ⊕Oj
β ⊕Oj

ρ .

Note that the above system of equations can be rewritten as



2α ·K0 ⊕ 22α ·K1 = Uk
α ⊕ (I i∥⟨x⟩d) ,

2β ·K0 ⊕ 22β ·K1 = U l
β ⊕ (Ij∥⟨y⟩d) ,

(2ρ ⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (22ρ ⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V k
α ⊕ V l

β ⊕Oi
α ⊕Oi

γ ⊕Oj
β ⊕Oj

ρ ,

where x, y ∈ {0, 1}d. Using similar reasoning while bounding bad7, we have

Pr[bad8] ≤
22dw4

(
qc
2

)
q2p

23n
+

22dw4
(
qc
2

)
qp

22n
.

bad9 To bound the event, it must hold that

(2α + 1) ·K0 ⊕ (22α + 1) ·K1 = Oi
α .

Since K0 and K1 are uniform random variables over {0, 1}n, the probability of this
event for a fixed choice of indices is 2n. Since one can choose α in at most w ways
and i in at most qc ways, we obtain from the union bound over all indices

Pr[bad9] ≤
wqc
2n

.

bad10 To bound the event, it must hold that

(2α + 2β) ·K0 ⊕ (22α + 22β) ·K1 = Oi
α +Oi

β .

Since K0 and K1 are uniform random variables over {0, 1}n, the probability of this
event for a fixed choice of indices is 2n. Since one can choose α and β in at most

Chapter 6. CENCPP* 184

(
w
2

)
ways and i in at most qc ways, we obtain from the union bound over all indices

Pr[bad10] ≤
(
w
2

)
qc

2n
.

The bound in Lemma 6.13 follows from the sum of probabilities of the individual
bad events.

Good Transcripts: It remains to study the interpolation probabilities of good

transcripts.

Lemma 6.14. Let v def
= w + 1 and qc + v(qp + qc) ≤ 2n/2(w + 1). For any good

transcript τ = τc ∪ τ0 ∪ . . . τw ∪ {K0, K1}, it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− 4v4q3c + 4v4q2cqp + v4qcq

2
p

22n
.

Proof. Let Allreal(τ) denote the set of all oracles in the real world, and Allideal(τ) the
set of all oracles in the ideal world. Let Compreal(τ) denote the fraction of oracles
in the real world that are compatible with τ and Compideal(τ) the corresponding
fraction in the ideal world. It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
=
|Compreal(τ)|·|Allideal(τ)|
|Compideal(τ)|·|Allreal(τ)|

.

We can easily bound three out of four terms:

|Allreal(τ)| = (2n)2 · (2n)!

since there exist (2n)2 keys and 2n! possible permutations. The same argument
holds in the ideal world, i.e.,

|Allideal(τ)| = (2n)2 · (2n)! ·(2wn)2
n

,

combined with (2wn)2
n random functions for the answers to the construction

queries. Moreover,

|Compideal(τ)| = (2wn)2
n−qc · (2n − (w + 1) · qp)!

compatible oracles exist in the ideal world, where (2wn)2
n−qc are the random

function oracles that are compatible with the construction query transcripts and

Chapter 6. CENCPP* 185

(2n − (w + 1)qp)! permutation oracles that are compatible with primitive query
transcripts. Now, it remains to determine |Compreal(τ)|. Note that

|Compreal(τ)| =
∣∣∣∣∣
{
P : DS-XORPP[P,w]K 7→ τc ∧

w∧
α=0

P 7→ τα

}∣∣∣∣∣ .
For α ∈ [0..w], let Domα denotes the set {U i

α : (U i
α, V

i
α) ∈ τα} and Ranα denotes

the set {V i
α : (U i

α, V
i
α) ∈ τα}, then

∧w
α=0 P 7→ τα equivalently means that for each

α ∈ [0..w], P maps elements from Domα to Ranα. Now, in order to compute
|Compreal(τ)|, we regroup the queries from τc, τ0, . . . , τw to τ new

c , τ new
0 , . . . , τ new

w . Us-
ing a similar regrouping technique, the new transcript sets are initialised by their
corresponding old parts, and reordered as follows:

1. if ∃i ∈ [qc], j ∈ [qp], such that Û i
0 = U j

0 , then

• τ new
c ← τ new

c \ {(I i,Oi)} and

• for all α ∈ [w], τ new
α ← τ new

α ∪{(Û i
α, V

j
0 ⊕Oi

α⊕(2α⊕1)·K0⊕(22α⊕1)·K1)}.

2. if ∃i ∈ [qc], j ∈ [qp], and α ∈ [w] such that Û i
α = U j

α, then

• τ new
c ← τ new

c \ {(I i,Oi)} and

• τ new
0 ← τ new

0 ∪ {(Û i
0, V

j
α ⊕Oi

α ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1)} and

• for all β ∈ [w] with β ̸= α, τ new
β ← τ new

β ∪ {(Û i
β, V

j
α ⊕ Oi

α ⊕ Oi
β ⊕ (2α ⊕

2β) ·K0 ⊕ (22α ⊕ 22β) ·K1)}.

Note that the addition of elements in Steps (1) and (2) is sound. For Step (1),

• since Û i
0 collides with U j

0 , Û i
α cannot collide with any Uk

α for α ∈ [w] due to
bad1.

• Similarly, (V j
0 ⊕Oi

α ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1) cannot collide with any
V k
β for β ∈ [0..w] due to bad2.

• Moroever, (V j
0 ⊕Oi

α ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1) is distinct due to bad5

and bad7.

For Step (2),

• since Û i
α collides with U j

α for α ∈ [w], neither Û i
0 can collide with any Uk

0 nor
Û i
β can collide with any Uk

β for β ∈ [w] with β ̸= α due to bad1.

Chapter 6. CENCPP* 186

• Similarly, (V j
α ⊕Oi

α ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1) cannot collide with any
V k
β for any β ∈ [0..w] due to bad3 and

• (V j
α ⊕Oi

α⊕Oi
β ⊕ (2α⊕ 2β) ·K0⊕ (22α⊕ 22β) ·K1) cannot collide with V k

γ for
any γ ∈ [0..w] due to bad4.

• Moroever, (V j
α ⊕Oi

α ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1) is distinct due to bad6

and bad8.

Further note that such an addition of elements (x, y) in the transcript τ new
α for

α ∈ [0..w] also updates the set Domα ← Domα ∪ {x} and Ranα ← Ranα ∪ {y}.
Now, given qc constructions queries and q′p = (w + 1)qp primitive queries to the
permutation P in the original transcript, let the numbers of queries moved from
τc be r which includes total sα elements into the primitive partial transcripts τα
for α ∈ [0..w]. Thus, the number of queries in the new construction transcript is
denoted by q′ = qc−r. Moreover, we define q′′α = qp+sα, for all 0 ≤ α ≤ w and for
each α ∈ [0..w], sα ≤ qc. The w+1 sets of transcripts, (τ new

0 , τ new
1 , . . . , τ new

w) define
exactly (q′′0 , q

′′
1 , . . . , q

′′
w) input-output tuples for P . What remains is the counting of

the number of permutations P that satisfy these q′′0+. . .+q′′w tuples, and that could
give the remaining transcript τ new

c , i.e., we are interested to count the number of
permutation P that satisfies the following system of equations:

Ei =



P (Û i
0)⊕ P (Û i

1) = Oi
1 ⊕ 2 ·K0 ⊕ 22 ·K1 ⊕K0 ⊕K1

P (Û i
0)⊕ P (Û i

2) = Oi
2 ⊕ 22 ·K0 ⊕ 24 ·K1 ⊕K0 ⊕K1

...
...

...
...

P (Û i
0)⊕ P (Û i

w) = Oi
w ⊕ 2w ·K0 ⊕ 22w ·K1 ⊕K0 ⊕K1,

where i ∈ [q′], U i
α = I i ⊕ msbn−d(2

α · K0 ⊕ 22α · K1) ∥ ⟨α⟩d for all {(I i,Oi)} ∈
τ new
c , along with the fact that for each α ∈ [0..w], P maps Dα to Rα, where
Dα = {0, 1}n \ Domα and Rα = {0, 1}n \ Ranα. Since τ is a good transcript,
it follows that the constants in the right hand side of each equation of Ei, i.e.,
Oi

α⊕2α ·K0⊕22α ·K1⊕K0⊕K1, is non-zero, for α ∈ [w] (due to bad9). Similarly,
due to bad10, we have all the constants in the right hand side of equations Ei

distinct from each other. Note that,

Domα
def
= {U i

α : (U i
α, V

i
α) ∈ τ new

α }
Ranα

def
= {V i

α : (U i
α, V

i
α) ∈ τ new

α }.

Chapter 6. CENCPP* 187

It is easy to see that |Dα|= |Rα|= (2n − qp − sα). Note that, for each α ∈ [0..w],
V out
α = {0, 1}n \ Rα is the set of range values of P that are prohibited (basically

these are the V values in τα). Now, for j = [0..q′ − 1], let

λj+1
def
=
∣∣{(P1

0, . . . ,P
j+1
0 , . . . ,P1

w, . . . ,P
j+1
w)

}∣∣ (6.26)

be the number of solutions that satisfy

(1) the system of equations E1 ∪ E2 ∪ . . . ∪ Ej+1.

(2) For all α ∈ [0..w], it holds that Pj+1
α ̸∈ {P1

α, . . . ,P
j
α}∪Ran0∪Ran1∪. . .∪Ranw .

Then, the goal is to define a recursive expression for λj+1 from λj such that a lower
bound can be found for the expression λj+1/λj. It holds that

|Compreal(τ)| = λq′ ·
(
2n −

(
w∑

α=0

q′′α + (w + 1)q′

))
!

We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=
λq′ · (2n − (

∑w
α=0 q

′′
α + (w + 1)q′))!

(2n − (w + 1)qp)!
· (2wn)qc . (6.27)

Let B(1) denote the set of solutions that comply with only Condition (1) without
considering Conditions (2.0) through (2.w). Moreover, let B(2.ι:i) denote the set of
solutions compatible with Condition (1), but not with (2.ι : i), for i = 1, . . . , j +∑w

α=0|Ranα|. From the inclusion-exclusion principle, it follows that λj+1 can be
written as

∣∣B(1)∣∣−
∣∣∣∣∣∣
(j+|Ran0|+...+|Ranw|⋃

i=1

B(2.0:i)
)
∪ · · · ∪

(j+|Ran0|+...+|Ranw|⋃
i=1

B(2.w:i)

)∣∣∣∣∣∣
≥
∣∣B(1)∣∣−

∣∣∣∣∣∣
j+|Ran0|+...+|Ranw|∑

i=1

|B(2.0:i)|

∣∣∣∣∣∣− · · · −
∣∣∣∣∣∣
j+|Ranw|+...+|Ranw|∑

i=1

|B(2.w:i)|

∣∣∣∣∣∣
≥ 2n · λj −

j+|Ran0|+...+|Ranw|∑
i=1

λj − · · · −
j+|Ran0|+...+|Ranw|∑

i=1

λj .

So, it follows that

λj+1 ≥ 2n · λj −
(
j +

w∑
α=0

q′′α

)
· λj − . . .−

(
j +

w∑
α=0

q′′α

)
· λj

Chapter 6. CENCPP* 188

where recall that q′′α = qp + sα for α ∈ [0..w]. Therefore,

λj+1

λj
≥ 2n − (w + 1)j − (w + 1)

(
w∑

α=0

q′′α

)
.

with λ0 = 1. Let s = s0 + . . .+ sw. It follows from Equation (6.27) that

(6.27) =
s−1∏
t=0

2n

2n − (w + 1)qp − t
·
q′−1∏
j=0

λj+1

λj
· (2n)w∏w

α=0(2
n −∑w

k=0 q
′′
k − jq′ − j)

≥
q′−1∏
j=0

(
(2n − (w + 1)j − (w + 1)

∑w
α=0 q

′′
α)∏w

α=0(2
n −∑w

k=0 q
′′
k − jq′ − j)

)
2nw . (6.28)

We use qsum
def
=
∑w

k=0 q
′′
k and define p = (q′ + qsum)/2

n. Note that, 0 ≤ p ≤ 1 and
therefore by applying Lemma 6.3 on Equation (6.28), we have

(6.28) ≥
q′−1∏
j=0

(
(2n)w+1 − (w + 1) · p · 2n(w+1)

(2n − p · 2n))w+1

)
(6.29)

≥
q′−1∏
j=0

(
1− (w + 1)p

1− (w + 1)p+
(
w+1
2

)
p2

)
(6.30)

=

q′−1∏
j=0

(
1−

(
w+1
2

)
p2

1− (w + 1)p+
(
w+1
2

)
p2

)

=

q′−1∏
j=0

(
1−

(
w+1
2

)
(q′ + qsum)

2

22n − (w + 1)2n(q′ + qsum) +
(
w+1
2

)
(q′ + qsum)2

)

≥
q′−1∏
j=0

(
1− 2

(
w+1
2

)
(q′ + qsum)

2

22n

)
(6.31)

≥
(
1− (w + 1)2q′(q′ + qsum)

2

22n

)
(6.32)

(1)

≥
(
1− v2(q3c + 2q2cv(qc + qp) + qcv

2(qc + qp)
2)

22n

)
(6.33)

≥
(
1− 4v4q3c + 4v4q2cqp + v4qcq

2
p

22n

)
. (6.34)

Note that, (w + 1)2n(q′ + qsum) −
(
w+1
2

)
(q′ + qsum)

2 ≤ 22n/2 as q′ + qsum = q′ +∑w
α=0 q

′′
α = q′+(w+1)qp+

∑w
α=0 sα and for each α ∈ [0..w], sα ≤ qc and q′ ≤ qc, it

follows that qsum ≤ (w+1)(qp+ qc), and thereby q′+ qsum ≤ qc+(w+1)(qp+ qc) ≤
2n/2(w+1). (1) follows due to v def

= w+1 and q′ ≤ qc and qsum ≤ v(qp+ qc). which
concludes our proof.

Chapter 6. CENCPP* 189

Our claim in Theorem 6.11 follows from Lemmas 2.1, 6.13, and 6.14.

6.8.2 Security Result of DS-SoEM

We consider DS-SoEM[P]K with d = 1, P $← Perm(Fn
2), K0, K1

$← Fn
2 , and K =

(K0, K1). For the simplicity of the notation, we write DS-SoEM[P]K as DS-SoEM.
Note that the security result of DS-SoEM can be trivially deduced from the security
result of DS-XORPP by putting the value of w = 1, d = 1 and letting K ′0 = K0⊕K1

and K ′1 = 2K0 ⊕ 22K1 in Theorem 6.11, where K ′0 and K ′1 are the keys of DS-

SoEM. It remains to argue that K ′0 and K ′1 are statistically independent random
variables. This is easy to see as the two equations K0 ⊕K1 and 2K0 ⊕ 22K1 are
linearly independent, where K0, K1 are uniformly sampled two independent n-bit
keys, i.e, for any pair of n bit string k′0, k′1,

Pr[K ′0 = k′0, K
′
1 = k′1] = 2−2n.

This holds true as

Pr[K ′0 = k′0, K
′
1 = k′1] =Pr[K0 ⊕K1 = k′0, 2K0 ⊕ 22K1 = k′1]

which can be equivalently written as

Pr


1 1

2 22


︸ ︷︷ ︸

A′

·

K0

K1

 =

k′0
k′1


 . (6.35)

Since the matrix A′ is non-singular, using Lemma 6.2 we can deduce the proba-
bility in Equation (6.35) is exactly 2−2n. Moreover, it is also easy to see that

Pr[K ′0 = k′0] = Pr[K ′1 = k′1] = 2−n ,

which establishes the independence the round keys used in DS-SoEM. Thus, the
security result of DS-SoEM is stated as follows:

Chapter 6. CENCPP* 190

Corollary 6.15. Let D be a distinguisher with exactly qc construction queries
and qp primitive queries. Let 2qp + 3qc ≤ 2n−2. Then

AdvDS-SoEM
PRF (D) ≤ 56qcq

2
p

22n
+

100q2cqp
22n

+
64q3c
22n

+
qc
2n

+
8q2cq

2
p

23n
.

6.9 Conclusion

This chapter has proposed a variant of CENC from public permutations, CENCPP∗.
From that base, it is straightforward to obtain a nonce-based encryption scheme
or a fixed-input-length variable-output-length PRF with a security bound of up to
O(22n/3/w2) queries. Our result can be combined with a beyond-birthday-secure
MAC from public permutations to obtain an authenticated encryption scheme.
The doubling-based key schedule ensures pairwise independent keys for all pairs
of permutation inputs in XORPP∗ and DS-XORPP. Although the key masks can
be cached, for values of w ≤ 2, the choice of keys can be improved in terms of
computations. For w = 1, XORPP∗ degenerates to the SoEM construction and
can simply use (K0, K1) for the permutation calls. For w = 2, XORPP∗ can
use (K0, K0 ⊕ K1, K1) for the calls to the permutations to ensure independent
keys without the need for doubling. A natural follow-up to this work is to im-
plement CENC and CENCPP to compare their speed. Also, we see the recent
summation-truncation-hybrid by Gunsing and Mennink [191] to be similar to the
sum of permutation, although it is based on secret permutations. Adapting it
to beyond-birthday-bound security with public permutations seems an interesting
future work.

References

[1] Charanjit S. Jutla. Encryption modes with almost free message in-
tegrity. In Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT
2001, International Conference on the Theory and Application of Crypto-
graphic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, vol-
ume 2045 of Lecture Notes in Computer Science, pages 529–544. Springer,
2001. doi: 10.1007/3-540-44987-6_32. URL https://doi.org/10.1007/

3-540-44987-6_32.

[2] Charanjit S. Jutla. Encryption modes with almost free message integrity.
J. Cryptol., 21(4):547–578, 2008. doi: 10.1007/S00145-008-9024-Z. URL
https://doi.org/10.1007/s00145-008-9024-z.

[3] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijay-
alakshmi Atluri, editor, Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, CCS 2002, Washington, DC, USA,
November 18-22, 2002, pages 98–107. ACM, 2002. doi: 10.1145/586110.
586125. URL https://doi.org/10.1145/586110.586125.

[4] CAESAR Committee. CAESAR: Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness. http://competitions.cr.

yp.to/caesar.html/.

[5] NIST. Lightweight cryptography. https://csrc.nist.gov/Projects/

Lightweight-Cryptography.

[6] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.2: Lightweight authenticated encryption and hashing. J.
Cryptol., 34(3):33, 2021. doi: 10.1007/s00145-021-09398-9. URL https:

//doi.org/10.1007/s00145-021-09398-9.

191

https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/s00145-008-9024-z
https://doi.org/10.1145/586110.586125
http://competitions.cr.yp.to/caesar.html/
http://competitions.cr.yp.to/caesar.html/
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9

References 192

[7] Arghya Bhattacharjee, Cuauhtemoc Mancillas López, Eik List, and Mridul
Nandi. The oribatida v1.3 family of lightweight authenticated encryp-
tion schemes. J. Math. Cryptol., 15(1):305–344, 2021. doi: 10.1515/
jmc-2020-0018. URL https://doi.org/10.1515/jmc-2020-0018.

[8] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. ISAP - towards side-channel secure authenti-
cated encryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.
doi: 10.13154/tosc.v2017.i1.80-105. URL https://doi.org/10.13154/

tosc.v2017.i1.80-105.

[9] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR
Trans. Symmetric Cryptol., 2020(S1):390–416, 2020. doi: 10.13154/tosc.
v2020.iS1.390-416. URL https://doi.org/10.13154/tosc.v2020.iS1.

390-416.

[10] Arghya Bhattacharjee, Avik Chakraborti, Nilanjan Datta, Cuauhtemoc
Mancillas-López, and Mridul Nandi. sf ISAP+: sf ISAP with fast au-
thentication. In Takanori Isobe and Santanu Sarkar, editors, Progress in
Cryptology - INDOCRYPT 2022 - 23rd International Conference on Cryp-
tology in India, Kolkata, India, December 11-14, 2022, Proceedings, vol-
ume 13774 of Lecture Notes in Computer Science, pages 195–219. Springer,
2022. doi: 10.1007/978-3-031-22912-1_9. URL https://doi.org/10.

1007/978-3-031-22912-1_9.

[11] Arghya Bhattacharjee, Avik Chakraborti, Nilanjan Datta, Cuauhtemoc
Mancillas-López, and Mridul Nandi. ISAP+: ISAP with fast authen-
tication. IACR Cryptol. ePrint Arch., page 1591, 2022. URL https:

//eprint.iacr.org/2022/1591.

[12] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In Antoine Joux, editor, Fast Software
Encryption, pages 306–327, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg. ISBN 978-3-642-21702-9.

[13] Ritam Bhaumik and Mridul Nandi. Improved security for OCB3. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017, pages 638–666, Cham, 2017. Springer International Publishing. ISBN
978-3-319-70697-9.

https://doi.org/10.1515/jmc-2020-0018
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.1007/978-3-031-22912-1_9
https://doi.org/10.1007/978-3-031-22912-1_9
https://eprint.iacr.org/2022/1591
https://eprint.iacr.org/2022/1591

References 193

[14] Arghya Bhattacharjee, Ritam Bhaumik, and Mridul Nandi. Offset-based
bbb-secure tweakable block-ciphers with updatable caches. In Takanori Isobe
and Santanu Sarkar, editors, Progress in Cryptology - INDOCRYPT 2022 -
23rd International Conference on Cryptology in India, Kolkata, India, De-
cember 11-14, 2022, Proceedings, volume 13774 of Lecture Notes in Computer
Science, pages 171–194. Springer, 2022. doi: 10.1007/978-3-031-22912-1_8.
URL https://doi.org/10.1007/978-3-031-22912-1_8.

[15] Arghya Bhattacharjee, Ritam Bhaumik, and Mridul Nandi. Offset-based
bbb-secure tweakable block-ciphers with updatable caches. IACR Cryp-
tol. ePrint Arch., page 1776, 2022. URL https://eprint.iacr.org/2022/

1776.

[16] Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday
Bound Security. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of
LNCS, pages 310–327. Springer, 2006. doi: 10.1007/11799313_20.

[17] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to Build Pseudoran-
dom Functions from Public Random Permutations. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO I, volume 11692 of LNCS, pages
266–293. Springer, 2019. doi: 10.1007/978-3-030-26948-7_10.

[18] Arghya Bhattacharjee, Avijit Dutta, Eik List, and Mridul Nandi. Cencpp*:
beyond-birthday-secure encryption from public permutations. Des. Codes
Cryptogr., 90(6):1381–1425, 2022. doi: 10.1007/s10623-022-01045-z. URL
https://doi.org/10.1007/s10623-022-01045-z.

[19] Arghya Bhattacharjee, Avijit Dutta, Eik List, and Mridul Nandi. CENCPP
- beyond-birthday-secure encryption from public permutations. IACR Cryp-
tol. ePrint Arch., page 602, 2020. URL https://eprint.iacr.org/2020/

602.

[20] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. How to Securely Release Unverified Plaintext
in Authenticated Encryption. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT I, volume 8873 of LNCS, pages 105–125. Springer, 2014. doi:
10.1007/978-3-662-45611-8_6.

[21] Jacques Patarin. The “coefficients h” technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,

https://doi.org/10.1007/978-3-031-22912-1_8
https://eprint.iacr.org/2022/1776
https://eprint.iacr.org/2022/1776
https://doi.org/10.1007/s10623-022-01045-z
https://eprint.iacr.org/2020/602
https://eprint.iacr.org/2020/602

References 194

pages 328–345, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN
978-3-642-04159-4.

[22] Shan Chen and John Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, pages 327–350, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. ISBN 978-3-642-55220-5.

[23] Shan Chen and John Steinberger. Tight security bounds for key-
alternating ciphers. Cryptology ePrint Archive, Report 2013/222, 2013.
https://ia.cr/2013/222.

[24] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-
length extension: Exact bounds and multi-user security. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
pages 3–32, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-
3-662-53018-4.

[25] Morris Dworkin. FIPS 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Technical report, 2015.

[26] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe,
Bart Preneel, and Ingrid Verbauwhede. Chaskey: An efficient MAC al-
gorithm for 32-bit microcontrollers. In Antoine Joux and Amr M. Youssef,
editors, Selected Areas in Cryptography - SAC 2014 - 21st International
Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected
Papers, volume 8781 of Lecture Notes in Computer Science, pages 306–
323. Springer, 2014. doi: 10.1007/978-3-319-13051-4_19. URL https:

//doi.org/10.1007/978-3-319-13051-4_19.

[27] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Farfalle: parallel permutation-based cryp-
tography. IACR Trans. Symmetric Cryptol., 2017(4):1–38, 2017. URL
https://tosc.iacr.org/index.php/ToSC/article/view/801.

[28] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.2 Submission to the CAESAR Competition. September 15
2016. Submission to the CAESAR competition. http://competitions.cr.
yp.to/caesar-submissions.html.

https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://tosc.iacr.org/index.php/ToSC/article/view/801
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

References 195

[29] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Men-
nink, Nicky Mouha, and Kan Yasuda. APE: Authenticated Permutation-
Based Encryption for Lightweight Cryptography. In Carlos Cid and Chris-
tian Rechberger, editors, FSE, volume 8540 of LNCS, pages 168–186.
Springer, 2014. doi: 10.1007/978-3-662-46706-0_9.

[30] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX:
Parallel and Scalable AEAD. In Miroslaw Kutylowski and Jaideep Vaidya,
editors, ESORICS II, volume 8713 of LNCS, pages 19–36. Springer, 2014.
doi: 10.1007/978-3-319-11212-1_2.

[31] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles van Assche, and Ronny
van Keer. Ketje v2. 2016. Submission to the CAESAR competition http:

//competitions.cr.yp.to/caesar-submissions.html.

[32] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles van Assche, and Ronny
van Keer. Keyak v2. 2016. Submission to the CAESAR competition http:

//competitions.cr.yp.to/caesar-submissions.html.

[33] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions. In ECRYPT hash workshop, volume 2007. Citeseer, 2007.

[34] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Duplexing the sponge: Single-pass authenticated encryption and other
applications. In Ali Miri and Serge Vaudenay, editors, Selected Ar-
eas in Cryptography - 18th International Workshop, SAC 2011, Toronto,
ON, Canada, August 11-12, 2011, Revised Selected Papers, volume 7118
of Lecture Notes in Computer Science, pages 320–337. Springer, 2011.
doi: 10.1007/978-3-642-28496-0_19. URL https://doi.org/10.1007/

978-3-642-28496-0_19.

[35] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On
the security of the keyed sponge construction. In SHA-3 competition (round
3), volume 2011, 2011.

[36] Bart Mennink. Key Prediction Security of Keyed Sponges. IACR Trans.
Symmetric Cryptol., 2018(4):128–149, 2018. doi: 10.13154/tosc.v2018.i4.
128-149.

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19

References 196

[37] Christoph Dobraunig and Bart Mennink. Security of the Suffix Keyed
Sponge. IACR Trans. Symmetric Cryptol., 2019(4):223–248, 2019. doi:
10.13154/tosc.v2019.i4.223-248.

[38] Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul
Nandi. A Keyed Sponge Construction with Pseudorandomness in the Stan-
dard Model. In The Third SHA-3 Candidate Conference, volume 3, page 7,
March 2012.

[39] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche.
Security of keyed sponge constructions using a modular proof approach.
In Gregor Leander, editor, Fast Software Encryption - 22nd International
Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected
Papers, volume 9054 of Lecture Notes in Computer Science, pages 364–
384. Springer, 2015. doi: 10.1007/978-3-662-48116-5_18. URL https:

//doi.org/10.1007/978-3-662-48116-5_18.

[40] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryp-
tion. Directions in Authenticated Ciphers, 2012.

[41] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed du-
plex with built-in multi-user support. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd In-
ternational Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II, volume 10625 of Lecture Notes in Computer Science, pages 606–
637. Springer, 2017. doi: 10.1007/978-3-319-70697-9_21. URL https:

//doi.org/10.1007/978-3-319-70697-9_21.

[42] Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. The Exact PRF Secu-
rity of Truncation: Tight Bounds for Keyed Sponges and Truncated CBC. In
Rosario Gennaro and Matthew Robshaw, editors, CRYPTO I, volume 9215
of LNCS, pages 368–387. Springer, 2015. doi: 10.1007/978-3-662-47989-6\
_18.

[43] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state
keyed sponge and duplex: Applications to authenticated encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT II, volume 9453 of
LNCS, pages 465–489. Springer, 2015. doi: 10.1007/978-3-662-48800-3_19.

https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21

References 197

[44] Yusuke Naito and Kan Yasuda. New Bounds for Keyed Sponges with Ex-
tendable Output: Independence Between Capacity and Message Length. In
Thomas Peyrin, editor, FSE, volume 9783 of LNCS, pages 3–22. Springer,
2016. doi: 10.1007/978-3-662-52993-5_1.

[45] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
On the indifferentiability of the sponge construction. In Nigel P. Smart,
editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965
of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.
doi: 10.1007/978-3-540-78967-3_11. URL https://doi.org/10.1007/

978-3-540-78967-3_11.

[46] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In Moni Naor, editor, TCC, volume 2951 of LNCS, pages 21–
39. Springer, 2004. doi: 10.1007/978-3-540-24638-1_2.

[47] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT I, volume 8873 of LNCS, pages 85–104.
Springer, 2014. doi: 10.1007/978-3-662-45611-8_5.

[48] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018. doi: 10.
13154/tches.v2018.i2.218-241. URL https://doi.org/10.13154/tches.

v2018.i2.218-241.

[49] Raghvendra Rohit and Sumanta Sarkar. [lwc-forum] ROUND 2 OFFICIAL
COMMENT: Oribatida. NIST lwc forum mailing list, 17 September 17:09
2019.

[50] Arghya Bhattacharjee, Eik List, Cuauhtemoc Mancillas López, and Mridul
Nandi. The Oribatida Family of Lightweight Authenticated Encryption
Schemes Version v1.2. Technical report, Sep 27 2019. Second-round
submission to the NIST Lightweight Cryptography Competition. https:

//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf.

https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.13154/tches.v2018.i2.218-241
https://doi.org/10.13154/tches.v2018.i2.218-241
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf

References 198

[51] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar
Mandal, Mridul Nandi, and Raghvendra Rohit. SpoC: An Authen-
ticated Cipher. Technical report, Feb 24 2019. First-round submis-
sion to the NIST Lightweight Cryptography Competition. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/spoc-spec.pdf.

[52] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Bee-
tle Family of Lightweight and Secure Authenticated Encryption Ciphers.
http://eprint.iacr.org/2018/805, 2018.

[53] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Nam-
prempre. Online Ciphers and the Hash-CBC Construction. In Joe Kilian,
editor, CRYPTO, volume 2139 of LNCS, pages 292–309. Springer, 2001. doi:
10.1007/3-540-44647-8_18.

[54] Jacques Patarin. The "coefficients h" technique. In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in
Cryptography, 15th International Workshop, SAC 2008, Sackville, New
Brunswick, Canada, August 14-15, Revised Selected Papers, volume 5381
of Lecture Notes in Computer Science, pages 328–345. Springer, 2008.
doi: 10.1007/978-3-642-04159-4_21. URL https://doi.org/10.1007/

978-3-642-04159-4_21.

[55] Avik Chakraborti, Ashwin Jha, Cuauhtemoc Mancillas Lopez, Mridul Nandi,
and Yu Sasaki. ESTATE. Technical report, Mar 29 2019. First-round
submission to the NIST Lightweight Cryptography Competition. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/spoc-spec.pdf.

[56] Han Sui, Wenling Wu, Lei Zhang, and Danxia Zhang. LAEM
(Lightweight Authentication Encryption Mode). Technical report,
Mar 25 2019. First-round submission to the NIST Lightweight Cryp-
tography Competition. https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.

pdf.

[57] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Man-
cillas Lopez, Mridul Nandi, and Yu Sasaki. LOTUS-AEAD and

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf

References 199

LOCUS-AEAD. Technical report, Feb 26 2019. First-round sub-
mission to the NIST Lightweight Cryptography Competition. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf.

[58] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In Serge Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 373–390. Springer, 2006. doi: 10.1007/11761679_23. URL
https://doi.org/10.1007/11761679_23.

[59] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for
Parallelizable Message Authentication. In Lars R. Knudsen, editor, EURO-
CRYPT, volume 2332 of LNCS, pages 384–397. Springer, 2002.

[60] Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from
pseudorandom functions. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 275–292. Springer, 2014.
doi: 10.1007/978-3-642-55220-5_16. URL https://doi.org/10.1007/

978-3-642-55220-5_16.

[61] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a
block-cipher mode of operation for efficient authenticated encryption. In
Michael K. Reiter and Pierangela Samarati, editors, ACM-CCS, pages 196–
205. ACM, 2001. doi: 10.1145/501983.502011.

[62] Shai Halevi. EME*: Extending EME to Handle Arbitrary-Length Messages
with Associated Data. In Anne Canteaut and Kapalee Viswanathan, editors,
INDOCRYPT, volume 3348 of LNCS, pages 315–327. Springer, 2004. doi:
10.1007/978-3-540-30556-9_25.

[63] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A Domain Extender for the Ideal Cipher. In Daniele Micciancio,
editor, TCC, volume 5978 of LNCS, pages 273–289. Springer, 2010. Full
version at https://eprint.iacr.org/2009/356.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-642-55220-5_16
https://eprint.iacr.org/2009/356

References 200

[64] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[65] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential
Cryptanalysis of Round-Reduced Simon and Speck. In Carlos Cid and
Christian Rechberger, editors, FSE, volume 8540 of LNCS, pages 525–545.
Springer, 2014. doi: 10.1007/978-3-662-46706-0_27.

[66] Huaifeng Chen and Xiaoyun Wang. Improved Linear Hull Attack on Round-
Reduced Simon with Dynamic Key-Guessing Techniques. In Thomas Peyrin,
editor, FSE, volume 9783 of LNCS, pages 428–449. Springer, 2016. doi:
10.1007/978-3-662-52993-5_22.

[67] Zhengbin Liu, Yongqiang Li, and Mingsheng Wang. Optimal Differential
Trails in SIMON-like Ciphers. IACR Trans. Symmetric Cryptol., 2017(1):
358–379, 2017. doi: 10.13154/tosc.v2017.i1.358-379.

[68] Håvard Raddum. Algebraic Analysis of the Simon Block Cipher Family.
In Kristin E. Lauter and Francisco Rodríguez-Henríquez, editors, LAT-
INCRYPT, volume 9230 of LNCS, pages 157–169. Springer, 2015. doi:
10.1007/978-3-319-22174-8_9.

[69] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP Method to Searching Integral Distinguishers Based on Division Prop-
erty for 6 Lightweight Block Ciphers. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT I, volume 10031 of LNCS, pages 648–678,
2016. doi: 10.1007/978-3-662-53887-6_24.

[70] ISO/IEC. Information technology – Automatic identification and data cap-
ture techniques – Part 21: Crypto Suite SIMON Security Services for Air
Interface Communications. https://www.iso.org/standard/70388.html, Oct
2018.

[71] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust Authenticated-
Encryption AEZ and the Problem That It Solves. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT (1), volume 9056 of LNCS, pages 15–
44. Springer, 2015. Full version at https://eprint.iacr.org/2014/793.

[72] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential Analysis of
Block Ciphers SIMON and SPECK. In Carlos Cid and Christian Rechberger,

https://eprint.iacr.org/2014/793

References 201

editors, FSE, volume 8540 of LNCS, pages 546–570. Springer, 2014. doi:
10.1007/978-3-662-46706-0_28.

[73] Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi Shamir. Improved
Top-Down Techniques in Differential Cryptanalysis. In Kristin E. Lauter
and Francisco Rodríguez-Henríquez, editors, LATINCRYPT, volume 9230 of
LNCS, pages 139–156. Springer, 2015. doi: 10.1007/978-3-319-22174-8_8.

[74] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SI-
MON Block Cipher Family. In Rosario Gennaro and Matthew Robshaw,
editors, CRYPTO, volume 9215 of LNCS, pages 161–185. Springer, 2015.

[75] Mitsuru Matsui. On Correlation Between the Order of S-boxes and the
Strength of DES. In Alfredo De Santis, editor, EUROCRYPT, volume 950
of LNCS, pages 366–375. Springer, 1994. doi: 10.1007/BFb0053451.

[76] Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar,
and Somitra Kumar Sanadhya. Linear Cryptanalysis of Round Reduced
SIMON. IACR Cryptology ePrint Archive, 2013:663, 2013.

[77] Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda AlKhzaimi, Moham-
mad Reza Aref, Nasour Bagheri, Praveen Gauravaram, and Martin M. Lau-
ridsen. Improved Linear Cryptanalysis of Round Reduced SIMON. IACR
Cryptology ePrint Archive, 2014:681, 2014.

[78] Zhengbin Liu, Yongqiang Li, and Mingsheng Wang. The Security of SIMON-
like Ciphers Against Linear Cryptanalysis. IACR Cryptology ePrint Archive,
2017:576, 2017.

[79] Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda A. AlKhzaimi, Mo-
hammad Reza Aref, Nasour Bagheri, and Praveen Gauravaram. Improved
Linear Cryptanalysis of Reduced-Round SIMON-32 and SIMON-48. In Alex
Biryukov and Vipul Goyal, editors, INDOCRYPT, volume 9462 of LNCS,
pages 153–179. Springer, 2015. doi: 10.1007/978-3-319-26617-6_9.

[80] Huiling Zhang, Wenling Wu, and Yanfeng Wang. Integral Attack Against
Bit-Oriented Block Ciphers. In Soonhak Kwon and Aaram Yun, editors,
ICISC, volume 9558 of LNCS, pages 102–118. Springer, 2015. doi: 10.1007/
978-3-319-30840-1_7.

References 202

[81] Yosuke Todo and Masakatu Morii. Bit-Based Division Property and Appli-
cation to Simon Family. In Thomas Peyrin, editor, FSE, volume 9783 of
LNCS, pages 357–377. Springer, 2016.

[82] Kota Kondo, Yu Sasaki, Yosuke Todo, and Tetsu Iwata. On the Design
Rationale of SIMON Block Cipher: Integral Attacks and Impossible Dif-
ferential Attacks against SIMON Variants. IEICE Transactions, 101-A(1):
88–98, 2018. doi: 10.1587/transfun.E101.A.88.

[83] Raghvendra Rohit and Guang Gong. Correlated Sequence Attack on
Reduced-Round Simon-32/64 and Simeck-32/64. IACR Cryptology ePrint
Archive, 2018:699, 2018.

[84] Xuzi Wang, Baofeng Wu, Lin Hou, and Dongdai Lin. Automatic Search
for Related-Key Differential Trails in SIMON-like Block Ciphers Based
on MILP. In Liqun Chen, Mark Manulis, and Steve Schneider, edi-
tors, ISC, volume 11060 of LNCS, pages 116–131. Springer, 2018. doi:
10.1007/978-3-319-99136-8_7.

[85] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, CRYPTO 1996, Proceedings,
volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
1996. doi: 10.1007/3-540-68697-5_9. URL https://doi.org/10.1007/

3-540-68697-5_9.

[86] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, CRYPTO 1999, Proceedings, vol-
ume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer,
1999. doi: 10.1007/3-540-48405-1_25. URL https://doi.org/10.1007/

3-540-48405-1_25.

[87] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, EUROCRYPT 1997, volume 1233 of Lecture Notes in Com-
puter Science, pages 37–51. Springer, 1997. doi: 10.1007/3-540-69053-0_4.
URL https://doi.org/10.1007/3-540-69053-0_4.

[88] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, CRYPTO ’97, Proceedings, volume

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-69053-0_4

References 203

1294 of Lecture Notes in Computer Science, pages 513–525. Springer, 1997.
doi: 10.1007/BFb0052259. URL https://doi.org/10.1007/BFb0052259.

[89] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the "duplication" method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, CHES 1999, Proceedings,
volume 1717 of Lecture Notes in Computer Science, pages 158–172. Springer,
1999. doi: 10.1007/3-540-48059-5_15. URL https://doi.org/10.1007/

3-540-48059-5_15.

[90] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 398–412. Springer, 1999. doi: 10.1007/
3-540-48405-1_26. URL https://doi.org/10.1007/3-540-48405-1_26.

[91] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002. ISBN 3-540-42580-2. doi: 10.1007/978-3-662-04722-4. URL
https://doi.org/10.1007/978-3-662-04722-4.

[92] Daniel J. Bernstein. ChaCha, a variant of Salsa20. 2008.

[93] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.
The NOEKEON block cipher, 2000. Nessie Proposal. 2020. https:

//competitions.cr.yp.to/round3/acornv3.pdf.

[94] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A block ci-
pher allowing efficient higher-order side-channel resistance. In Feng Bao,
Pierangela Samarati, and Jianying Zhou, editors, ACNS 2012. Proceedings,
volume 7341 of Lecture Notes in Computer Science, pages 311–328. Springer,
2012. doi: 10.1007/978-3-642-31284-7_19. URL https://doi.org/10.

1007/978-3-642-31284-7_19.

[95] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block ciphers that are easier to mask: How far can we
go? In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic
Hardware and Embedded Systems - CHES 2013. Proceedings, volume 8086
of Lecture Notes in Computer Science, pages 383–399. Springer, 2013.

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-662-04722-4
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://doi.org/10.1007/978-3-642-31284-7_19
https://doi.org/10.1007/978-3-642-31284-7_19

References 204

doi: 10.1007/978-3-642-40349-1_22. URL https://doi.org/10.1007/

978-3-642-40349-1_22.

[96] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.2. Submission to CAESAR. 2016. https://competitions.

cr.yp.to/round3/asconv12.pdf.

[97] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche. The
Keccak reference (version 3.0). 2011. https://keccak.team/files/

Keccak-reference-3.0.pdf.

[98] National Institute of Standards and Technology. FIPS PUB 202: SHA-
3Standard: Permutation-based hash and extendable-output functions. . Fed-
eral Information Processing Standards Publication 202, U.S. Department
ofCommerce, 8 2015.

[99] Christoph Dobraunig and Maria Eichlseder and Florian Mendel and
Martin Schläffer. Ascon v1.2. Submission to NIST Lightweight
Cryptography, 2019. 2019. https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/finalist-round/

updated-spec-doc/ascon-spec-final.pdf.

[100] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian
Mendel, Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRI-
MATEs v1.02. Submission to CAESAR. 2016. https://competitions.cr.
yp.to/round2/primatesv102.pdf.

[101] Vincent Grosso, Gaëtan Leurent, Francois-Xavier Standaert, Kerem Varici,
Anthony Journault, Francois Durvaux, Lubos Gaspar, and Stéphanie Ker-
ckhof. SCREAM Side-Channel Resistant Authenticated Encryption with
Masking. Submission to CAESAR. 2015. https://competitions.cr.yp.

to/round2/screamv3.pdf.

[102] Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and
Ronny Van Keer. Ketje v2. Submission to CAESAR. 2016. https:

//competitions.cr.yp.to/round3/ketjev2.pdf.

[103] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh re-keying: Security against side-channel
and fault attacks for low-cost devices. In Daniel J. Bernstein and

https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf

References 205

Tanja Lange, editors, AFRICACRYPT 2010, Proceedings, volume 6055
of Lecture Notes in Computer Science, pages 279–296. Springer, 2010.
doi: 10.1007/978-3-642-12678-9_17. URL https://doi.org/10.1007/

978-3-642-12678-9_17.

[104] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: securing multiple parties
against side-channel and fault attacks. In Emmanuel Prouff, editor, CARDIS
2011, volume 7079 of Lecture Notes in Computer Science, pages 115–132.
Springer, 2011. doi: 10.1007/978-3-642-27257-8_8. URL https://doi.

org/10.1007/978-3-642-27257-8_8.

[105] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
Towards fresh re-keying with leakage-resilient prfs: cipher design princi-
ples and analysis. J. Cryptogr. Eng., 4(3):157–171, 2014. doi: 10.1007/
s13389-014-0079-5. URL https://doi.org/10.1007/s13389-014-0079-5.

[106] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions, 2007. Ecrypt Hash Workshop 2007.

[107] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, vol-
ume 1976 of Lecture Notes in Computer Science, pages 531–545. Springer,
2000. doi: 10.1007/3-540-44448-3_41. URL https://doi.org/10.1007/

3-540-44448-3_41.

[108] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm.
J. Cryptol., 21(4):469–491, 2008. doi: 10.1007/S00145-008-9026-X. URL
https://doi.org/10.1007/s00145-008-9026-x.

[109] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986. doi: 10.1145/6490.6503.
URL https://doi.org/10.1145/6490.6503.

https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/s13389-014-0079-5
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1145/6490.6503

References 206

[110] Christoph Dobraunig and Maria Eichlseder and Stefan Mangard and
Florian Mendel and Bart Mennink and Robert Primas and Thomas
Unterluggauer. ISAP v2.0. Submission to NIST. 2019. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/ISAP-spec.pdf.

[111] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Flo-
rian Mendel, Bart Mennink, Robert Primas, and Thomas Un-
terluggauer. Isap v2.0. https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/finalist-round/

updated-spec-doc/isap-spec-final.pdf.

[112] https://keccak.team/hardware.html.

[113] Zhenzhen Bao, Seongha Hwang, Akiko Inoue, ByeongHak Lee, Jooyoung
Lee, and Kazuhiko Minematsu. XOCB: beyond-birthday-bound secure au-
thenticated encryption mode with rate-one computation. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part IV, volume 14007 of Lecture Notes in Computer Science, pages 532–
561. Springer, 2023. doi: 10.1007/978-3-031-30634-1_18. URL https:

//doi.org/10.1007/978-3-031-30634-1_18.

[114] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen cipher-
text secure modes of operation. In Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, and Bruce Schneier, editors, Fast Software Encryption, pages
284–299, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-
540-44706-1.

[115] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ci-
phers. J Cryptol 24, 588–613 (2011). https://doi.org/10.1007/s00145-010-
9073-y.

[116] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ci-
phers. In Moti Yung, editor, Advances in Cryptology — CRYPTO 2002,
pages 31–46, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN
978-3-540-45708-4.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://keccak.team/hardware.html
https://doi.org/10.1007/978-3-031-30634-1_18
https://doi.org/10.1007/978-3-031-30634-1_18

References 207

[117] Richard Schroeppel. The Hasty Pudding Cipher. AES submission to NIST,
1998.

[118] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function
Family. SHA3 submission to NIST (Round 3), 2010.

[119] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The Deoxys
AEAD family. J. Cryptol., 34(3):31, 2021. doi: 10.1007/s00145-021-09397-w.
URL https://doi.org/10.1007/s00145-021-09397-w.

[120] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Joltik v1.3. CAESAR
Round, 2, 2015.

[121] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block
ciphers: The tweakey framework. In Palash Sarkar and Tetsu Iwata, edi-
tors, Advances in Cryptology – ASIACRYPT 2014, pages 274–288, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-45608-8.

[122] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
Anthony Journault, François Durvaux, Lubos Gaspar, and Stéphanie Ker-
ckhof. SCREAM v3. Submission to CAESAR competition, 2015.

[123] CAESAR: Competition for Authenticated Encryption: Security, Applicabil-
ity, and Robustness. https://competitions.cr.yp.to/caesar-submissions.html.

[124] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
skinny family of block ciphers and its low-latency variant mantis. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO
2016, pages 123–153, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
ISBN 978-3-662-53008-5.

[125] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash. IACR Transactions on Symmetric Cryptology,
2020(S1):88–131, Jun. 2020. doi: 10.13154/tosc.v2020.iS1.88-131. URL
https://tosc.iacr.org/index.php/ToSC/article/view/8619.

[126] Roberto Avanzi. The QARMA block cipher family. almost mds matrices
over rings with zero divisors, nearly symmetric even-mansour constructions

https://doi.org/10.1007/s00145-021-09397-w
https://tosc.iacr.org/index.php/ToSC/article/view/8619

References 208

with non-involutory central rounds, and search heuristics for low-latency s-
boxes. IACR Transactions on Symmetric Cryptology, 2017(1):4–44, Mar.
2017. doi: 10.13154/tosc.v2017.i1.4-44. URL https://tosc.iacr.org/

index.php/ToSC/article/view/583.

[127] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
Craft: Lightweight tweakable block cipher with efficient protection against
dfa attacks. IACR Transactions on Symmetric Cryptology, 2019(1):5–45,
Mar. 2019. doi: 10.13154/tosc.v2019.i1.5-45. URL https://tosc.iacr.

org/index.php/ToSC/article/view/7396.

[128] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved masking for tweakable blockciphers with applications to authenti-
cated encryption. In Marc Fischlin and Jean-Sébastien Coron, editors, Ad-
vances in Cryptology – EUROCRYPT 2016, pages 263–293, Berlin, Heidel-
berg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-49890-3.

[129] Yusuke Naito. Tweakable blockciphers for efficient authenticated encryptions
with beyond the birthday-bound security. IACR Transactions on Symmetric
Cryptology, 2017(2):1–26, Jun. 2017. doi: 10.13154/tosc.v2017.i2.1-26. URL
https://tosc.iacr.org/index.php/ToSC/article/view/636.

[130] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A
Block-Cipher Mode of Operation for Efficient Authenticated Encryption. In
Proceedings of the 8th ACM Conference on Computer and Communications
Security, CCS ’01, page 196–205, New York, NY, USA, 2001. Association
for Computing Machinery. ISBN 1581133855. doi: 10.1145/501983.502011.
URL https://doi.org/10.1145/501983.502011.

[131] Information technology – Security techniques – Authenticated encryption.
ISO/IEC 19772:2009, 2009.

[132] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In Pil Joong Lee, editor, Advances
in Cryptology - ASIACRYPT 2004, pages 16–31, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. ISBN 978-3-540-30539-2.

[133] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering.
Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality. J
Cryptol 33, 1871–1913 (2020). https://doi.org/10.1007/s00145-020-09359-8.

https://tosc.iacr.org/index.php/ToSC/article/view/583
https://tosc.iacr.org/index.php/ToSC/article/view/583
https://tosc.iacr.org/index.php/ToSC/article/view/7396
https://tosc.iacr.org/index.php/ToSC/article/view/7396
https://tosc.iacr.org/index.php/ToSC/article/view/636
https://doi.org/10.1145/501983.502011

References 209

[134] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering.
Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryp-
tology – CRYPTO 2019, pages 3–31, Cham, 2019. Springer International
Publishing. ISBN 978-3-030-26948-7.

[135] Kazumaro Aoki and Kan Yasuda. The security of the OCB mode of opera-
tion without the sprp assumption. In Willy Susilo and Reza Reyhanitabar,
editors, Provable Security, pages 202–220, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. ISBN 978-3-642-41227-1.

[136] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting authenticated
encryption robustness with minimal modifications. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 3–
33, Cham, 2017. Springer International Publishing. ISBN 978-3-319-63697-9.

[137] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption. ACM Trans.
Inf. Syst. Secur., 6(3):365–403, aug 2003. ISSN 1094-9224. doi: 10.1145/
937527.937529. URL https://doi.org/10.1145/937527.937529.

[138] T. Krovetz and P. Rogaway. The OCB Authenticated-Encryption Algo-
rithm. RFC 7253, DOI 10.17487/RFC7253, May 2014, https://www.rfc-
editor.org/info/rfc7253.

[139] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In Phong Q. Nguyen and Elisabeth Oswald, edi-
tors, Advances in Cryptology – EUROCRYPT 2014, pages 275–292, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-642-55220-5.

[140] Ping Zhang, Peng Wang, and Honggang Hu. The int-rup security of ocb
with intermediate (parity) checksum. Cryptology ePrint Archive, Report
2016/1059, 2016. https://ia.cr/2016/1059.

[141] Ping Zhang, Peng Wang, Honggang Hu, Changsong Cheng, and Wenke Kuai.
Int-rup security of checksum-based authenticated encryption. In Tatsuaki
Okamoto, Yong Yu, Man Ho Au, and Yannan Li, editors, Provable Security,
pages 147–166, Cham, 2017. Springer International Publishing. ISBN 978-
3-319-68637-0.

https://doi.org/10.1145/937527.937529

References 210

[142] Zhenzhen Bao, Jian Guo, Tetsu Iwata, and Kazuhiko Minematsu. ZOCB
and ZOTR: Tweakable blockcipher modes for authenticated encryption with
full absorption. IACR Transactions on Symmetric Cryptology, 2019(2):1–54,
Jun. 2019. doi: 10.13154/tosc.v2019.i2.1-54. URL https://tosc.iacr.

org/index.php/ToSC/article/view/8313.

[143] Jean Liénardy and Frédéric Lafitte. A weakness in OCB3 used with short
nonces allowing for a break of authenticity and confidentiality. Inf. Process.
Lett., 183:106404, 2024. doi: 10.1016/J.IPL.2023.106404. URL https://

doi.org/10.1016/j.ipl.2023.106404.

[144] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-
López, and Mridul Nandi. Light-OCB: Parallel lightweight authenticated
cipher with full security. In Lejla Batina, Stjepan Picek, and Mainack Mon-
dal, editors, Security, Privacy, and Applied Cryptography Engineering, pages
22–41, Cham, 2022. Springer International Publishing. ISBN 978-3-030-
95085-9.

[145] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-
López, Mridul Nandi, and Yu Sasaki. Int-rup secure lightweight parallel
ae modes. IACR Transactions on Symmetric Cryptology, 2019(4):81–118,
Jan. 2020. doi: 10.13154/tosc.v2019.i4.81-118. URL https://tosc.iacr.

org/index.php/ToSC/article/view/8454.

[146] Ritam Bhaumik, Xavier Bonnetain, André Chailloux, Gaëtan Leurent,
María Naya-Plasencia, André Schrottenloher, and Yannick Seurin. QCB:
Efficient quantum-secure authenticated encryption. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
pages 668–698, Cham, 2021. Springer International Publishing. ISBN 978-
3-030-92062-3.

[147] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, pages 373–390, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-34547-3.

[148] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV:
Nonce Misuse-Resistant Authenticated Encryption. RFC 8452, DOI
10.17487/RFC8452, April 2019, https://www.rfc-editor.org/info/rfc8452.

https://tosc.iacr.org/index.php/ToSC/article/view/8313
https://tosc.iacr.org/index.php/ToSC/article/view/8313
https://doi.org/10.1016/j.ipl.2023.106404
https://doi.org/10.1016/j.ipl.2023.106404
https://tosc.iacr.org/index.php/ToSC/article/view/8454
https://tosc.iacr.org/index.php/ToSC/article/view/8454

References 211

[149] Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant
Authenticated Encryption at Under One Cycle per Byte. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, page 109–119, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450338325. doi: 10.1145/2810103.
2813613. URL https://doi.org/10.1145/2810103.2813613.

[150] Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday
Bound Security. In Matthew Robshaw, editor, Fast Software Encryption,
pages 310–327, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
978-3-540-36598-3.

[151] Tetsu Iwata. Authenticated Encryption Mode for Beyond the Birthday
Bound Security. In Serge Vaudenay, editor, Progress in Cryptology –
AFRICACRYPT 2008, pages 125–142, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg. ISBN 978-3-540-68164-9.

[152] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated En-
cryption Modes for Tweakable Block Ciphers. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, pages
33–63, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-
662-53018-4.

[153] Avijit Dutta, Mridul Nandi, and Abishanka Saha. Proof of mirror theory for
ξmax = 2. IEEE Trans. Inf. Theory, 68(9):6218–6232, 2022. doi: 10.1109/
TIT.2022.3171178. URL https://doi.org/10.1109/TIT.2022.3171178.

[154] Benoît Cogliati, Avijit Dutta, Mridul Nandi, Jacques Patarin, and Abis-
hanka Saha. Proof of mirror theory for a wide range of $\xi _{\max }$. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EURO-
CRYPT 2023 - 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023,
Proceedings, Part IV, volume 14007 of Lecture Notes in Computer Science,
pages 470–501. Springer, 2023. doi: 10.1007/978-3-031-30634-1_16. URL
https://doi.org/10.1007/978-3-031-30634-1_16.

[155] Srimanta Bhattacharya and Mridul Nandi. Revisiting variable output length
xor pseudorandom function. IACR Transactions on Symmetric Cryptol-
ogy, 2018(1):314–335, Mar. 2018. doi: 10.13154/tosc.v2018.i1.314-335. URL
https://tosc.iacr.org/index.php/ToSC/article/view/853.

https://doi.org/10.1145/2810103.2813613
https://doi.org/10.1109/TIT.2022.3171178
https://doi.org/10.1007/978-3-031-30634-1_16
https://tosc.iacr.org/index.php/ToSC/article/view/853

References 212

[156] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic in-
distinguishability via the chi-squared method. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 497–523,
Cham, 2017. Springer International Publishing. ISBN 978-3-319-63697-9.

[157] Srimanta Bhattacharya and Mridul Nandi. Luby-rackoff backwards with
more users and more security. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2021, Proceed-
ings, Part III, volume 13092 of LNCS, pages 345–375. Springer, 2021.
doi: 10.1007/978-3-030-92078-4_12. URL https://doi.org/10.1007/

978-3-030-92078-4_12.

[158] Daniel J. Bernstein. Salsa20 specification. eSTREAM Project algorithm
description, 2005.

[159] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Federal Information Processing Standards (FIPS) Publication,
202, 2015. URL http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

202.pdf.

[160] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of LNCS, pages 343–355.
Springer, 2004. doi: 10.1007/978-3-540-30556-9_27.

[161] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In Antoine Joux, editor, FSE, vol-
ume 6733 of LNCS, pages 306–327. Springer, 2011. doi: 10.1007/
978-3-642-21702-9_18.

[162] Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In
Phillip Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 596–609.
Springer, 2011.

[163] Kan Yasuda. The Sum of CBC MACs Is a Secure PRF. In Josef Pieprzyk,
editor, CT-RSA, volume 5985 of LNCS, pages 366–381. Springer, 2010. doi:
10.1007/978-3-642-11925-5_25.

[164] Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. 3kf9: Enhancing
3GPP-MAC beyond the Birthday Bound. In Xiaoyun Wang and Kazue

https://doi.org/10.1007/978-3-030-92078-4_12
https://doi.org/10.1007/978-3-030-92078-4_12
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

References 213

Sako, editors, ASIACRYPT, volume 7658 of LNCS, pages 296–312. Springer,
2012. doi: 10.1007/978-3-642-34961-4_19.

[165] Yusuke Naito. Blockcipher-Based MACs: Beyond the Birthday Bound With-
out Message Length. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT III, volume 10626 of LNCS, pages 446–470. Springer, 2017. doi:
10.1007/978-3-319-70700-6_16.

[166] Tetsu Iwata and Kazuhiko Minematsu. Stronger Security Variants of GCM-
SIV. IACR Trans. Symmetric Cryptol., 2016(1):134–157, 2016. doi: 10.
13154/tosc.v2016.i1.134-157.

[167] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-
block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF.
IACR Trans. Symmetric Cryptol., 2018(3):36–92, 2018. doi: 10.13154/tosc.
v2018.i3.36-92.

[168] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block
Ciphers. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages
31–46. Springer, 2002. doi: 10.1007/3-540-45708-9_3.

[169] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink.
Dumbo, jumbo, and delirium: Parallel authenticated encryption for the
lightweight circus. IACR Trans. Symmetric Cryptol., 2020(S1):5–30, 2020.
doi: 10.13154/tosc.v2020.iS1.5-30. URL https://doi.org/10.13154/

tosc.v2020.iS1.5-30.

[170] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-
proved Masking for Tweakable Blockciphers with Applications to Authen-
ticated Encryption. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT I, volume 9665 of LNCS, pages 263–293. Springer, 2016. doi:
10.1007/978-3-662-49890-3_11.

[171] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 222–239, 2011. doi: 10.1007/978-3-642-22792-9_
13. URL https://doi.org/10.1007/978-3-642-22792-9_13.

https://doi.org/10.13154/tosc.v2020.iS1.5-30
https://doi.org/10.13154/tosc.v2020.iS1.5-30
https://doi.org/10.1007/978-3-642-22792-9_13

References 214

[172] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. SPONGENT: A Lightweight Hash Func-
tion. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume 6917 of
LNCS, pages 312–325. Springer, 2011. doi: 10.1007/978-3-642-23951-9_21.

[173] Mridul Nandi. Mind the Composition: Birthday Bound Attacks on
EWCDMD and SoKAC21. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT I, volume 12105 of LNCS, pages 203–220. Springer, 2020. doi:
10.1007/978-3-030-45721-1_8.

[174] Avik Chakraborti, Mridul Nandi, Suprita Talnikar, and Kan Yasuda. On the
Composition of Single-Keyed Tweakable Even-Mansour for Achieving BBB
Security. IACR Trans. Symmetric Cryptol., 2020(2):1–39, 2020. doi: 10.
13154/tosc.v2020.i2.1-39. URL https://doi.org/10.13154/tosc.v2020.

i2.1-39.

[175] Avijit Dutta and Mridul Nandi. BBB Secure Nonce Based MAC Using
Public Permutations. In Abderrahmane Nitaj and Amr M. Youssef, editors,
AFRICACRYPT, volume 12174 of LNCS, pages 172–191. Springer, 2020.
doi: 10.1007/978-3-030-51938-4_9.

[176] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara,
Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1.1. 29
August 2015. Second-round submission to the CAESAR competition.

[177] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Permutation Based EDM:
An Inverse Free BBB Secure PRF. IACR Trans. Symmetric Cryptol., 2021
(2):39, 2021. To appear.

[178] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO, Part III, volume 10403 of LNCS, pages
556–583. Springer, 2017. doi: 10.1007/978-3-319-63697-9_19. Full version
at https://eprint.iacr.org/2017/473.

[179] Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Optimally Secure.
IACR Cryptology ePrint Archive, 2016:1087, 2016. URL http://eprint.

iacr.org/2016/1087.

https://doi.org/10.13154/tosc.v2020.i2.1-39
https://doi.org/10.13154/tosc.v2020.i2.1-39
https://eprint.iacr.org/2017/473
http://eprint.iacr.org/2016/1087
http://eprint.iacr.org/2016/1087

References 215

[180] Bart Mennink and Samuel Neves. Optimal PRFs from Blockcipher Designs.
IACR Trans. Symmetric Cryptol., 2017(3):228–252, 2017. doi: 10.13154/
tosc.v2017.i3.228-252.

[181] Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang
Wang, and Meiqin Wang. Cryptanalysis of AES-PRF and Its Dual. IACR
Trans. Symmetric Cryptol., 2018(2):161–191, 2018. doi: 10.13154/tosc.
v2018.i2.161-191.

[182] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation
encrypted Davies-Meyer construction. Des. Codes Cryptogr., 86(12):2703–
2723, 2018. doi: 10.1007/s10623-018-0470-9.

[183] Chun Guo, Yaobin Shen, Lei Wang, and Dawu Gu. Beyond-birthday secure
domain-preserving PRFs from a single permutation. Des. Codes Cryptogr.,
87(6):1297–1322, 2019. doi: 10.1007/s10623-018-0528-8.

[184] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt
or Decrypt? To Make a Single-Key Beyond Birthday Secure Nonce-Based
MAC. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
I, volume 10991 of LNCS, pages 631–661. Springer, 2018. doi: 10.1007/
978-3-319-96884-1_21.

[185] Tetsu Iwata. Tightness of the Security Bound of CENC. In Eli Bi-
ham, Helena Handschuh, Stefan Lucks, and Vincent Rijmen, editors, Sym-
metric Cryptography, volume 07021 of Dagstuhl Seminar Proceedings. In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007. URL http://drops.dagstuhl.de/opus/

volltexte/2007/1016.

[186] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of
Linear Equalities and Linear Non Equalities for Cryptography. IACR Cryp-
tology ePrint Archive, 2010:287, 2010.

[187] Srimanta Bhattacharya and Mridul Nandi. Revisiting Variable Output
Length XOR Pseudorandom Function. IACR Trans. Symmetric Cryptol.,
2018(1):314–335, 2018. doi: 10.13154/tosc.v2018.i1.314-335.

[188] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-Theoretic
Indistinguishability via the Chi-Squared Method. In Jonathan Katz and

http://drops.dagstuhl.de/opus/volltexte/2007/1016
http://drops.dagstuhl.de/opus/volltexte/2007/1016

References 216

Hovav Shacham, editors, CRYPTO Part III, volume 10403 of LNCS, pages
497–523. Springer, 2017. doi: 10.1007/978-3-319-63697-9_17. Full version
at http://eprint.iacr.org/2017/537, latest version 20170616:190106.

[189] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery
Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES2. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT I, volume 8269 of
LNCS, pages 337–356. Springer, 2013. doi: 10.1007/978-3-642-42033-7_18.

[190] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptog-
raphy: The Even-Mansour Scheme Revisited. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT, volume 7237 of LNCS, pages
336–354. Springer, 2012. doi: 10.1007/978-3-642-29011-4_21.

[191] Aldo Gunsing and Bart Mennink. The Summation-Truncation Hybrid:
Reusing Discarded Bits for Free. In Daniele Micciancio and Thomas Risten-
part, editors, CRYPTO I, volume 12170 of LNCS, pages 187–217. Springer,
2020. doi: 10.1007/978-3-030-56784-2_7.

http://eprint.iacr.org/2017/537

	Abstract
	List of Publications
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation of the Thesis
	1.2 Understanding the Terminologies
	1.3 A Brief History
	1.3.1 Antiquity, Medieval, Pre World War Cryptography
	1.3.2 World War I Cryptography
	1.3.3 World War II Cryptography
	1.3.4 Modern Cryptography

	1.4 Symmetric-Key Cryptography
	1.5 NIST Lightweight Cryptography Project
	1.6 Contributions
	1.6.1 Oribatida
	1.6.2 ISAP+
	1.6.3 OCB+
	1.6.4 CENCPP*

	2 Preliminaries
	2.1 General Notations
	2.2 Distinguishing Advantage
	2.2.1 PRF Advantage
	2.2.2 PRP Advantage

	2.3 NE and Its Security Notion
	2.3.1 NE Security

	2.4 NAEAD and Its Security Notion
	2.4.1 NAEAD Security
	2.4.2 RUP Security

	2.5 Coefficients H Technique

	3 Oribatida
	3.1 Introduction
	3.1.1 Permutation-based Modes
	3.1.2 Research Gap
	3.1.3 Contributions
	3.1.4 Outline

	3.2 INT-RUP Attacks on Existing AE Schemes
	3.2.1 INT-RUP Attack on The Duplex Mode
	3.2.2 INT-RUP Attack on Beetle
	3.2.3 INT-RUP Attack on SPoC
	3.2.4 INT-RUP Attack on A Hybrid of Beetle and SPoC
	3.2.5 Discussion

	3.3 Specification of Oribatida
	3.3.1 Initialisation
	3.3.2 Processing Associated Data
	3.3.3 Encryption
	3.3.4 Decryption
	3.3.5 Domain Separation

	3.4 INT-RUP Attacks on Schemes with Masked Ciphertexts
	3.4.1 The Generic INT-RUP Attack on Oribatida (Masked Duplex)
	3.4.2 INT-RUP Attack on The Masked Beetle
	3.4.3 INT-RUP Attack on The Masked SPoC

	3.5 NAEAD Security Analysis
	3.6 INT-RUP Analysis
	3.7 Comparison with Lightweight INT-RUP-secure Schemes
	3.7.1 Brief Description
	3.7.2 Efficiency
	3.7.3 Security

	3.8 Discussion of the Updated Variant Oribatida v1.3
	3.9 Instantiation of Oribatida
	3.9.1 The _r Domain Extender
	3.9.2 _r: A Variant of _r That Includes The Key Schedule
	3.9.3 Simon
	3.9.4 The SimP-n- Family of Permutations
	3.9.4.1 Round Function
	3.9.4.2 Key-update Function
	3.9.4.3 State-update Function
	3.9.4.4 Step Function
	3.9.4.5 Round Constants
	3.9.4.6 Number of Steps
	3.9.4.7 Number of Rounds
	3.9.4.8 The Byte Order in Oribatida

	3.10 Security of SimP
	3.10.1 Requirements
	3.10.2 Existing Cryptanalysis on Simon
	3.10.2.1 Differential Cryptanalysis
	3.10.2.2 Linear Cryptanalysis
	3.10.2.3 Integral, Impossible-differential, and Zero-correlation Distinguishers
	3.10.2.4 Related-key Distinguishers
	3.10.2.5 Algebraic Cryptanalysis
	3.10.2.6 Meet-in-the-Middle Attacks
	3.10.2.7 Correlated Sequences

	3.10.3 Implications to SimP
	3.10.3.1 Related-key Differential Cryptanalysis
	3.10.3.2 Differential Distinguishers
	3.10.3.3 Integral and impossible-differential Distinguishers
	3.10.3.4 Cube-like Distinguishers
	3.10.3.5 Number of Steps and Rounds of SimP

	3.11 FPGA Implementations
	3.11.1 SimP
	3.11.2 Oribatida

	3.12 Conclusion

	4 ISAP+
	4.1 Introduction
	4.1.1 ISAP and Its Variants
	4.1.2 Improving the Throughput of ISAP
	4.1.3 Contributions
	4.1.4 Relevance of the Work
	4.1.5 Interpretation of Hardware Implementation Result

	4.2 Preliminaries
	4.2.1 Fixed Input - Variable Output PRFs with Prefix Property
	4.2.2 Multi-Target 2nd Pre-Image with Associated Data

	4.3 An EtHM Paradigm for NAEAD
	4.3.1 Specification
	4.3.2 Security of EtHM
	4.3.3 Proof of Lemma 4.2

	4.4 Multi-Target 2nd Pre-Image Security of Sponge Based Hashes
	4.4.1 Sponge Hash and Its 2PI+ Security
	4.4.2 Feed Forward Based Sponge Hash and Its 2PI+ Security

	4.5 ISAP+: A Throughput-Efficient Variant of ISAP
	4.5.1 Specification of ISAP+
	4.5.2 Design Rationale
	4.5.3 Recommended Instantiations
	4.5.4 Security of ISAP+

	4.6 Hardware Implementation Details
	4.6.1 Round Based Implementation of ASCON-p and KECCAK-p
	4.6.2 Comparison Between ISAP+ and ISAP Virtex 7 Results

	4.7 Conclusion

	5 OCB+
	5.1 Introduction
	5.1.1 Contributions

	5.2 Preliminaries
	5.2.1 TPRP, TPRP* and TSPRP Security Notions
	5.2.2 Mirror Theory

	5.3 Finding a Suitable Tweakable Block-cipher
	5.3.1 Attempt with Same Offset
	5.3.1.1 Birthday Attack on OTBC-0.
	5.3.1.2 Attack on OTBC-0

	5.3.2 Independent Offsets
	5.3.2.1 Security of OTBC-1.
	Transcript Notation.
	Sampling in the Ideal World.
	Advantage of the Adversary.

	5.3.3 Updatable Offsets
	5.3.3.1 The simplest updatable design.
	5.3.3.2 Instantiating OTBC-g.
	5.3.3.3 Attack on OTBC-2.
	Input Collision.
	Distinguishing Event.

	5.3.4 Offsets with Updatable Caches
	5.3.4.1 Updatable Caches, Non-updatable Offsets.
	5.3.4.2 Instantiating OTBC-gg'.

	5.3.5 TPRP* Security Analysis of OTBC-3
	5.3.5.1 Internal Sampling.
	5.3.5.2 Transcript Graph.
	5.3.5.3 Dual Graph (for Mirror Theory).
	5.3.5.4 Bad Events.
	5.3.5.5 Bounding the Ratio of Good Probabilities.

	5.3.6 TSPRP Security Analysis of OTBC-3
	Transcript Notation.
	Sampling in the Ideal World.
	Bad Events and Their Probabilities.
	Good Interpolation Probabilities and Their Ratio.
	Advantage of the Adversary.

	5.4 An Application of OTBC-3
	5.4.1 Nonce Handling
	5.4.2 Handling Incomplete Blocks
	5.4.3 Security Claims

	5.5 Conclusion

	6 CENCPP*
	6.1 Introduction
	6.1.1 Contributions

	6.2 Preliminaries
	6.3 The CENCPP^* Mode
	6.3.1 SoEM
	6.3.2 CENC
	6.3.3 CENCPP^*
	6.3.4 Discussion

	6.4 Birthday-bound Distinguisher on CENCPP^* with Weak Key Scheduling
	6.4.1 Reduction to SoEM'
	6.4.2 Birthday-bound Attack on SoEM'

	6.5 Security Analysis of CENCPP^*
	6.5.1 Recalling the Security of CENC
	6.5.2 The Security of CENCPP^*
	6.5.3 CENCPP: An Instantiation of CENCPP^*

	6.6 Domain-separated Variants
	6.7 Distinguishers on DS-SoEM and DS-XORPP
	6.8 Security Analysis of DS-CENCPP and DS-SoEM
	6.8.1 Security Result of DS-CENCPP
	6.8.2 Security Result of DS-SoEM

	6.9 Conclusion

	References

