
Data Reduction Using EM

Algorithm with Deliberately

Introduced Missingness

Atanu Kumar Ghosh

INDIAN STATISTICAL INSTITUTE,

KOLKATA

2022

3

Data Reduction Using EM Algorithm with
Deliberately Introduced Missingness

ATANU KUMAR GHOSH

Thesis Advisor: Dr. Arnab Chakraborty

Thesis submitted to the Indian Statistical Institute

in partial fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy.

2022

INDIAN STATISTICAL INSTITUTE

203, B.T. Road, Kolkata, India

4

Dedicated to my family members.

5

Acknowledgment

I shall take this opportunity to acknowledge the overall collective
support which I received from different persons on various occasions to
pursue my research work.

First, I would like to express my sincere gratitude to my supervisor
Dr. Arnab Chakraborty. Without his constant academic guidance, this
thesis would not appear in its present shape. His academic excellence as
well as continuous effort helped me to learn and construct my research
findings. His constant cooperation and careful suggestions have always
helped me to improve upon my work.

Besides my advisor, I would like to thank Prof. Debasis Sengupta,
the Dean of Studies at Indian Statistical Institute for providing me
this opportunity to submit my thesis. I am indebted to all my teachers
at Indian Statistical Institute, Kolkata, from whom I learned a lot in
the form of various academic courses, during my tenure as a Ph.D
scholar. I would also like to thank Prof. Anup Dewanji, Prof. Tapas
Samanta, Prof. Bimal Kumar Roy, Prof. Subhomoy Moitra, Late Prof.
Sourav Ghosh, Prof. Sourav Bhattacharya for their immense support
in different issues. I am thankful to the Indian Statistical Institute
for providing me with excellent infrastructure to carry out my research
work. I would also like to thank various administrative departments
of the Indian Statistical Institute for helping me to resolve various
administrative matters.

Outside ISI, I would like to express my gratitude towards Presidency
University, Kolkata for allowing me to continue my research work. I
would like to thank Prof. Biswajit Roy and my other colleagues at the
Department of Statistics, Presidency University for their support and
encouragement.

I am grateful to my mother Mrs. Sikha Ghosh, my father Mr. Asim
Kumar Ghosh and my wife Mrs. Soumana Dey for their immeasurable
love and belief they put on me which helped me to complete my work.
I also feel proud to have many friends at ISI who made my journey
easy and pleasant during the hard times. Finally I thank the anony-
mous reviewers for their valuable comments which have significantly
improved this work.

Contents

List of Figures 9

List of Tables 11

Chapter 1. Introduction 12

1.1. Data Deluge: The problem with modern data 12

1.2. The new idea of the thesis 16

1.3. Organization of the thesis 23

Chapter 2. On the general idea of filtering 26

2.1. Introduction 26

2.2. Filtering mechanism 28

2.3. A Brief Review of Missing Data Analysis 31

2.4. Bet on non-ignorable missing data mechanism 34

2.5. Likelihood based inference 35

2.6. Constructing the filter operator 47

Chapter 3. Data reduction under independence 55

3.1. Introduction 55

3.2. Literature Review 58

3.3. Setup 59

3.4. Identifiability 59

3.5. An Existing Approach 61
6

CONTENTS 7

3.6. Our Approach 64

3.7. Some Discussions 67

3.8. General Linear Hypothesis 70

3.9. Simulation Study 71

3.10. Practical Example 77

3.11. Conclusions 79

3.12. Appendix 80

Chapter 4. Data Reduction in Markov model 87

4.1. Introduction 87

4.2. Setup 90

4.3. Identifiability 93

4.4. Structural zeroes in Transition probability matrix 100

4.5. Estimation and testing 102

4.6. Multiple Markov chains 116

4.7. Simulation Study 117

4.8. Practical example 119

4.9. Appendix 120

Chapter 5. On the Construction of optimal Filtering Mechanism 130

5.1. Introduction 130

5.2. Two important criteria: size and efficiency 132

5.3. Choice of Filter Matrix: Trade-Off between Size and

Efficiency 134

5.4. Finding the expected size of a filter matrix 135

5.5. Construction of filter matrices 136

5.6. Practical application 142

CONTENTS 8

5.7. Adaptive filtering mechanism 146

5.8. Storing the Filtered Data 148

5.9. Concluding Remarks 150

5.10. Appendix 151

Appendix 155

R codes for Chapter 1 155

R codes for Chapter 2 157

R codes for Chapter 3 162

R codes for Chapter 4 167

R codes for Chapter 5 186

Bibliography 188

List of Figures

1.1.1 Traffic Monitoring.. 15

1.2.1 Steps of Statistical Data Analysis 17

1.2.2 Modified steps of data analysis.. 17

1.2.3 Oscilloscope ... 18

1.2.4 Instantaneous voltage against time.................................. 18

1.2.5 Instantaneous voltages are generally incomprehensible ... 19

1.2.6 Trigger function produces comprehensible output........... 20

1.2.7 Pilot Survey... 21

2.5.1 From complete data analysis to incomplete data analysis 36

2.5.2 Choice of filtering mechanism affects the quality of es-

timate .. 43

2.5.3 Effect of grouping on the variance of the estimator......... 45

2.6.1 Plot of proportion of discarded data with the choice of c 48

2.6.2 Filter should adapt to change in underlying process 51

2.6.3 The data storage pipeline .. 54

3.9.1 Average residuals for three algorithms............................. 74

3.9.2 Average residuals for two algorithms 75

3.9.3 Average residuals in ESREM for different m 77

3.10.1 Single pixel camera.. 78
9

LIST OF FIGURES 10

3.10.2 Original and reconstructed images 79

5.6.1 Estimates based on complete data as compared to fil-

tered data .. 147

List of Tables

3.9.1 Simulation study to check the minimum norm solution .. 72

3.9.2 Comparison of System time .. 76

5.6.1 Glimpse of the data ... 144

5.6.2 A glimpse of the discretized data 144

11

CHAPTER 1

Introduction

Not everything that can be counted counts, and not

everything that counts can be counted.

— Albert Einstein

1.1. Data Deluge: The problem with modern data

Statistics is supposed to be a data driven subject, but sometimes

many of its theoretical developments struggled to find real life applica-

tions. In fact, non-availability of suitable data was a point of concern to

the statisticians in those days, when the term “data” primarily meant

manually collected data. The number of observations in those data sets

typically used to be of the order of a few thousands at the most.

However, the story changed drastically with the advent of mod-

ern computers, especially of micro-controllers equipped with sensors.

In today’s modern sophisticated data collection mechanism “Over 2.5

quintillion bytes of data are created every single day, and it’s only go-

ing to grow from there”1 2. Ironically the philosophy of “...everything

that can be counted counts” has now become the struggle to count

everything that can be counted.

1According to the sixth edition of DOMO’s report [2].
2There are certain application areas like medical statistics, clinical trials where
collecting samples are still expensive and difficult.

12

1.1. DATA DELUGE: THE PROBLEM WITH MODERN DATA 13

Over the last several decades, researchers have contributed signifi-

cantly to the area of digital data acquisition leading to a massive devel-

opment of Internet of Things (IoT) devices which has lead to this data

boom. According to one projection by IDC [3], there will be 41.6 bil-

lion IoT devices in operation by 2025, which are expected to generate

79.4 zettabytes of data. However a data set cannot be powerful on its

own unless a suitable analysis brings out meaningful conclusions from

the raw numbers. Modern data are so voluminous, that it is becoming

extremely difficult to store the information, let aside analyzing it. This

results in an ever increasing gap between the total information pro-

duced and the limited nature of the available storage commonly called

data deluge. As Baraniuk rightly pointed out, “more sensor data can

lead to less efficient sensor systems”. In his paper [8] he illustrates this

with the following two scenarios:

Example 1. (ARGUS-IS) The Defense Advanced Research Projects

Agency (DARPA) conducted a project called Autonomous Real-Time

Ground Ubiquitous Surveillance Imaging System (ARGUS-IS) in which

a 1.8-gigapixel digital camera using hundreds of cell phone camera chips

was designed for wide area surveillance. With each camera capable of

taking images covering up to 160 square kilometer and capturing 15

frames per second this system is capable of high-resolution monitoring

and recording of an entire city. Overall the camera can produce raw

data at a rate of 770 gigabits per second (Gbps), which is too much

for transmission to the ground station where the maximum possible

transmission rate is 274 megabits per second (Mbps).

1.1. DATA DELUGE: THE PROBLEM WITH MODERN DATA 14

Example 2. (CMS) The Compact Muon Solenoid (CMS) is a

general-purpose detector at the Large Hadron Collider (LHC) which

produces data at a rate of 320 terabits per second (Tbps). Such an

enormous amount of data is far beyond the capabilities of any pro-

cessing or storage systems. Hence with the help of a hardware based

triage only 800 Gb data per second is selected which are characterized

as “interesting” events and subsequently analyzed.

While sophisticated research projects like the ARGUS-IS and CMS

have only minimal impact on practical life, the same problem actually

plagues even smaller scale data collection scenarios involving digital

sensors of evergrowing popularity. The following example illustrates

this point:

Example 3. (Traffic monitoring) Kolkata (formerly Calcutta) is

one of the most densely populated metropolitan city in India with traf-

fic congested streets. According to one report [1], in 2016 alone, there

were 13,580 traffic accidents in the roads of Kolkata leading to 11,859

injuries and 6,544 deaths. To reduce overspeeding of vehicles and to

prevent traffic signal violations, Kolkata traffic police in association

with a Canadian based ITS (Intelligent Traffic Systems) company have

installed cameras providing precise images of speeding vehicles’ license

plates. These images are used by the police to issue immediate challans

to the offending drivers. However the total volume of data generated

as images and videos is becoming too massive to be stored on any file

system.

1.1. DATA DELUGE: THE PROBLEM WITH MODERN DATA 15

Figure 1.1.1. Traffic Monitoring

The speed cameras can collect instantaneous information about speed,
location and identity of the vehicles along with the time stamp.

There has been a significant amount of research to tackle this prob-

lem of data explosion. The management of large scale data has been

primarily focusing on increasing the storage capacity of the system.

Common examples of this approach include Distributed file handling

system and Cloud Computing and Parallel Computing. However these

engineering solutions suffer from two major drawbacks:

(1) These are only temporary solutions in the sense that they are

in a constant race with the ever growing volume of the data

generated. Eventually these solutions will be outrun by the

pace of growth in data. In fact these so called solutions merely

defer the actual problem for a period of time.

(2) There is a significant waste of resources in terms of storage

and management of data. Even if we deploy our best compu-

tational efforts, a significant portion of these big data remains

1.2. THE NEW IDEA OF THE THESIS 16

unused or cannot be subjected to further analysis. Accord-

ing to one report [24] in the New York Times, data centres

waste 90% of their energy for storing information which will

be underutilized.

As an alternative strategy, we propose a new methodology in this thesis.

While the conventional engineering solutions aims at increasing the

storage and resources, we shall instead assume that it is not possible to

increase the primary storage. But thanks to micro-controllers, we can

add an extra layer of online computation which can be used suitably

to reduce the storage requirement. More specifically the new proposed

methodology aims to work with large scale data with limited storage

requirements and an additional layer of “light-weight” data processing.

1.2. The new idea of the thesis

Put naively, the new idea is: “if the volume of incoming data is too

big to store or analyze then throw away part of the data...but do so

cleverly !!!” In face of the lure of ever increasing storage promised by

modern hardware, this approach may seem an absurd attempt to ignore

technological progress. However, in fact, this approach proposes to

utilize another aspect of modern technology that often goes neglected.

Micro-controllers are not only good for collecting raw data from sensors,

but also capable of performing a light-weight processing of the incoming

data on the fly before sending them to permanent storage devices.

Figure 1.2.2 shows the steps of our new approach. Indeed it is the

1.2. THE NEW IDEA OF THE THESIS 17

Figure 1.2.1. Steps of Statistical Data Analysis

Statistical data analysis conventionally consists of these three primary
steps

Figure 1.2.2. Modified steps of data analysis

The filtering mechanism adds another step to the conventional steps
of data analysis

same as Figure 1.2.1 but for one addition: the “filtering” step which

refers to the additional light-weight processing we just talked about.

Preposterous as it may seem to most practicing statisticians, this is

nevertheless an idea that has been implemented in certain crude forms

earlier also, though these things, to our knowledge, has never been

systematically analyzed. We start with one example:

Example 4. (Oscilloscope) Oscilloscope is one of the frequently

used instruments in the field of electrical engineering. Reduced to its

bare essentials an oscilloscope consists of a moving point plotting out

an incoming voltage level on a rectangular screen as a function of time

(Figure 1.2.3). The width of the screen typically allows a time span of

an order of tens of nano-seconds to micro-seconds. Thus a single swipe

only reveals us a small portion of long voltage versus time graph 1.2.4.

Once a swipe is complete, the moving dot moves off-screen to the right

and must be brought back to the left to start the next swipe.

1.2. THE NEW IDEA OF THE THESIS 18

Figure 1.2.3. Oscilloscope

A typical oscilloscope producing waveform from the incoming signals

Figure 1.2.4. Instantaneous voltage against time

0 200 400 600 800

−
0.

5
0.

0
0.

5
1.

0
1.

5

Time(t)

V
ol

ta
ge

(V
)

A typical plot of instantaneous voltage against time produces
waveform

Typically the voltages measured by an oscilloscope are periodic in

nature. The main purpose of the instrument is to detect if the input

is indeed periodic and if so, to measure characteristics of the periodic

cycles. The jumble shown in Figure 1.2.5 hardly helps to achieve that.

Hence oscilloscopes use a filtering mechanism (commonly called

triggering): After the completion of a swipe, the next swipe starts

1.2. THE NEW IDEA OF THE THESIS 19

Figure 1.2.5. Instantaneous voltages are generally incomprehensible

0 200 400 600 800

−
0.

5
0.

0
0.

5
1.

0
1.

5

Time(t)

V
ol

ta
ge

(V
)

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time(t)

V
ol

ta
ge

(V
)

Top panel: The instantaneous voltage plotted with respect to time.
The waveform passes the observation window (screen) very fast so

that consecutive snapshots on the screen is shown. Bottom panel: The
consecutive snapshots are shown simultaneously on the same screen.
All these happen in order of nanoseconds making every part of the

curve incomprehensible.

only when the input voltage crosses a specified level in a specified di-

rection (upward or downward) as shown in Figure 1.2.6. The resulting

display is much more “informative” than Figure 1.2.5, though in reality

the former is only a subset of the latter.

This example is a natural illustration of data deluge where “more

information” does not imply “more informative”. Here cleverly filtering

1.2. THE NEW IDEA OF THE THESIS 20

Figure 1.2.6. Trigger function produces comprehensi-
ble output

0 200 400 600 800

−
0.

5
0.

0
0.

5
1.

0
1.

5

Time(t)

V
ol

ta
ge

(V
)

0 5 10 15 20 25 30 35

−
0.

5
0.

0
0.

5
1.

0
1.

5

Time(t)

V
ol

ta
ge

(V
)

Top panel: The trigger function fixes a threshold value shown by the
horizontal line in the plot.The window starts displaying once the input
voltage crosses the threshold value until the curve reaches the end of
the window and then it discards a part of the curve (shown in red)

until the input voltage again touches the threshold. Bottom panel: The
trigger function thus produces a stable comprehensible waveform in

the screen.

out part of the information makes the data more informative. Here is

another example: a more statistical one this time.

Example 5. (Pilot Survey) Suppose that in order to estimate the

mean µ of a distribution, we can potentially observe a sample of large

size m. A standard estimate is the sample mean X̄ with standard error

1.2. THE NEW IDEA OF THE THESIS 21

Figure 1.2.7. Pilot Survey

We can potentially collect m observations but on the basis of a pilot
sample of size k we estimate σ and decide that it is enough to work to
with n̂ samples to satisfy our error limit. Thus we essentially observe

n̂ samples and discard the remaining m− n̂ observations.

σ√
m
. Let us assume that the sampling procedure is expensive and incurs

a fixed cost per observation. Then our aim will be to use only a smaller

sample of size n(≤ m), just large enough to achieve a specified level

of precision c - that is to keep σ√
n
≤ c. However σ is unknown. In

such situations, we often initially collect some samples, say of size k to

have an estimate σ̂ and based on that estimate we decide how many

samples we need to observe, say n̂, so as to keep the standard error

of the estimate σ̂√
n̂
within the tolerable limit. While this may not be

readily recognizable as a data filtering scenario, yet it is one. Here it

is like filtering out the m− n̂ observations at the very end.

However example 4 further showed that we can extend the idea

of filtering observations in the sense that we can ignore observations

even from the middle of a stream of observations and yet produce

good inference about the underlying population. The two examples

we discussed above motivates our proposed methodology which begins

with a very simple understanding regarding the nature of data. In most

1.2. THE NEW IDEA OF THE THESIS 22

of the applications we shall find that all parts of the data do not bear

same significance when it comes to the question of inference. Often we

can cleverly filter out a part of the data and can still produce reasonable

inferences more easily than with the entire data. This will obviously

lead to loss in information, resulting in estimates with less precision,

but that loss is more than offset by the gain in computational and

storage resources. We shall formalize this idea of filtering later in the

thesis. But for now let us focus on two potential application areas which

will be helpful while discussing the details of the theory in subsequent

chapter. In both of these scenarios, the idea of filtering the data can

be obtained easily if we keep in mind the data generation mechanism.

Example 6. (Security Surveillance) Consider a situation where a

security camera is deployed in a room to monitor human movement.

Modern digital cameras can take frequent snapshots at very small inter-

vals of time. Thus if the camera goes on capturing snapshots through-

out the day, the resulting data set will be too big to store. Current

engineering solutions tackle this problem with the help of increased

storage devices which can store in memory data up to certain days.

However if we look at the data we shall find that most of these data

will be of no practical use. For example, it may happen that most of

the times in day the room remains empty. Hence there will be no signif-

icant change in images if we observe them throughout the day. These

snapshots taken by the camera is of no practical use. There will be a

significant change in images only when someone enters the room and

we require that our security camera now captures frequent snapshots

1.3. ORGANIZATION OF THE THESIS 23

to monitor the movement of the person in the room. Clearly we can

throw away some of the snapshots of the camera yet getting a good idea

about human movement in the room. Hence we want to construct a

data collection mechanism where we shall discard a significant portion

of the image data but at the same time produce reasonable inferences

regrading the underlying population.

Example 7. (Monitoring wind directions) Suppose we monitor the

direction of wind at a given place throughout a day in terms of angles

(measured in radians). Currently we have sensors which can record the

angles at very short intervals of time. However this can produce a huge

amount of data throughout the day most of which are constant. This

is because wind directions generally remain stable for most part of the

day and only fluctuates during a storm or a seldom strong wind. We

can definitely use a large storage device and an advanced processor to

store all these data, the significant portion of which provides no or little

information regarding any storm or major wind fluctuations. Instead if

we look at the data generation mechanism and use the fact that wind

directions seldom changes throughout the day, then we can discard a

large amount of data without affecting the inference too much.

1.3. Organization of the thesis

In Chapter 2, we shall discuss the general idea of filtering mecha-

nism in more mathematical detail. In order to estimate the parameters

based on the filtered data, we shall take help of a traditional statis-

tical paradigm known as missing data analysis. The filtering process

1.3. ORGANIZATION OF THE THESIS 24

will be treated as the missing data mechanism which is assumed to be

non-ignorable and known. We shall give a brief review of missing data

analysis in the context of our problem and more specifically the gen-

eral idea of EM algorithm is discussed as a standard tool of likelihood

based inference in case of missing data problems. Finally we shall have

a discussion regarding different aspects in the construction of filtering

mechanism.

Chapter 3 discusses the issue of data reduction in case of indepen-

dent samples. Instead of all the observations we observe only a few

chosen linear combinations of them and treat the remaining informa-

tion as missing. From the observed linear combinations we try to esti-

mate the parameter using EM based technique under the assumption

that the parameter is sparse. We shall propose two related methods

called ASREM and ESREM for the estimation purpose. The methods

developed here are also used for hypothesis testing and construction

of confidence interval. Similar data filtering approach already exists in

signal sampling paradigm, for example, Compressive Sampling intro-

duced by Donoho [19], Candes, Romberg and Tao [14]. The methods

which we shall propose in this chapter are not claimed to outperform all

the available techniques of signal recovery, rather our methods are sug-

gested as an alternative way of data compression using EM algorithm.

However, we shall compare our methods to one standard algorithm,

viz., robust signal recovery from noisy data using min-`1 with qua-

dratic constraints. Finally we shall apply one of our methods to a real

life dataset.

1.3. ORGANIZATION OF THE THESIS 25

Chapter 4 deals with the idea of data reduction in case of depen-

dent samples assuming a Markov chain of specified order. Instead of

observing all the transitions in a Markov chain we shall record only

a few of them and treat the remaining part as missing. The decision

about which transitions to be filtered is taken before the observation

process starts. Based on the filtered chain we try to estimate the pa-

rameters of the Markov model using EM algorithm. In the first half

of the chapter we characterize a class of filtering mechanism for which

all the parameters remain identifiable. In the later half we explain

methods of estimation and testing about the transition probabilities of

the Markov chain based on the filtered data. The methods are first

developed assuming a simple Markov model with each probability of

transition positive, but then generalized for models with structural ze-

roes in the transition probability matrix. Further extension is also done

for multiple Markov chains. The performance of the developed method

of estimation is studied using simulated data along with a real life data.

The issue of the construction of filtering mechanism is studied in

more detail in Chapter 5. In this chapter we shall continue our dis-

cussion on filter matrix introduced in Chapter 4 and consider methods

of selection of the optimal filtering matrix. The optimality criteria is

defined in terms of the size of the filtered data and as well as the stan-

dard error of the estimates. Finally the algorithm developed for the

construction of filter matrices will be applied in a real life data set for

the purpose of illustration.

CHAPTER 2

On the general idea of filtering

2.1. Introduction

Conventionally multivariate data consist of simultaneous measure-

ments of n individuals on p variables. This is what we have described

classically in the form of an n × p data matrix X. When we say volu-

minous data, this can actually mean two things:

• an increase in the number of variables (large p).

• an increase in the number of observations (large n).

The former case, conventionally known as high dimensional statistics

in the literature, is not our area of concern for this work. Our interest

rather revolves round the second case where we have to deal with large

number of observations as a result of information explosion. In Chap-

ter 1 we have already discussed that there are available engineering

solutions to tackle this problem, all of which focus on upgrading the

infrastructure. Instead we introduced an alternative approach which

starts by assuming that we have limited storage. As we have mentioned

earlier, the central idea of this new approach is to discard a portion of

the available data, but wisely. This is accomplished by a process which

we termed a filter mechanism in our earlier discussion. The concept of

filtering the data has been illustrated repeatedly in different forms in

several contexts with the help of examples. In this chapter, we shall
26

2.1. INTRODUCTION 27

provide a formal, unified framework for the concept of filtering mech-

anism. As we shall see, the unified framework encompasses traditional

concepts like grouping data and censoring observations.

It is worthwhile to mention here that the concept of filtering the

data is not entirely new and already existed in a different form under

the paradigm of data compression. These forms of data compression

are significantly different from the idea we are going to introduce here,

both in theory and application. However, for the sake of complete-

ness, we feel that there has been a lot of previous work which should

be mentioned. The idea of data compression began in 1838 with the

invention of Morse code, which uses shorter codewords for the most fre-

quent characters. This concept was used by Claude Shannon [42] and

Robert Fano [22], who devised a systematic way to assign codewords.

Huffman [27] found an optimal algorithm to implement this idea. In

1977, Abraham Lempel and Jacob Ziv [50] suggested an idea of en-

coding, which in 1984, after the following work by Terry Welch [48],

became popular as LZW algorithm. The beginning of lossy compression

can be attributed to Fourier approximations, where we can decompose

any sufficiently smooth function into sums of sine waves with frequen-

cies corresponding to successive integers. Fourier’s method is applicable

to sounds where after splitting a function into frequencies, we can drop

the highest and lowest frequencies, but keep the rest. Wavelet Com-

pression was introduced by Alfred Haar [25] and the field emerged

2.2. FILTERING MECHANISM 28

rapidly since the 1970s. Depending on the type of data, different com-

pression algorithms have been developed over time. Jayasankar et.al.

[28] provides a broad survey of the different compression algorithms.

The latter part of this chapter deals separately with two distinct

and major components of the proposed methodology :

• designing a suitable filtering mechanism and

• using the filtered data to infer about the underlying popula-

tion.

While drawing inferences based on the filtered data, we shall treat the

data discarded by the filtering mechanism as missing. But unlike con-

ventional missing data analysis, here the missing mechanism will not

assumed to be random. In other words, we shall discard a part of the

data in the filtering step but during the inference step we shall use the

information about how they were discarded. Expectation Maximiza-

tion (EM) algorithm will be applied for likelihood based inference as

a standard tool in incomplete data problems. The filtering mechanism

will play a crucial role in the E-step of the algorithm. Regarding con-

struction of the filtering mechanism, several issues are to be considered

all of which will be discussed along with examples in Section 6.

2.2. Filtering mechanism

Suppose we have access to samples X1, X2, ..., Xn where each Xi ∈

Rp. Instead of storing all the observations our idea is to store an ap-

propriate many-to-one function of the data and treat the remaining

part of the data as missing. We shall call this many-to-one function

2.2. FILTERING MECHANISM 29

our filter (F). This function is defined over X n, where X is the sample

space and n is the sample size. At this point, two important points

regarding the filter operator are to be noted:

• Filter operator does not in any way reduce the number of vari-

ables, that is, filtering the data is not a dimension reduction

technique.

• As we shall see in subsequent sections filtering the data is an

online process acting on the stream of incoming observations

but conceptually filter operator is defined as functions of the

hypothetical complete data.

Let us now understand the concept of filtering with the help of some

examples some of which assume independent observations and others

assume dependent data setup.

Example 8. In the simplest case F can lead to a proper subset of

the original data where we retain only some k observations and discard

the remaining ones. Suppose the filtered data are Y1, Y2,, Yk where

Yj = Xij , j = 1, 2, ..., k and ij ∈ {1, 2, ..., n}.

Example 9. F can be k linear combinations of the sample obser-

vations like

Yi = `i1X1 + `i2X2 + ...+ `inXn, i = 1, 2, ..., k.

In this case F can be expressed explicitly in the form of an k×n matrix

with elements `ij.

2.2. FILTERING MECHANISM 30

Example 10. Suppose we have the available observationsX1, X2, ..., Xn.

Instead of storing all the data we group them into 5 fixed and known

categories Ci, i = 1, 2, ..., 5 which are mutually exclusive and exhaus-

tive. The observed frequencies fi, i = 1, 2, ..., 5 of the categories are

only recorded. Here the filtering operator F takes the form

fi = F (X1, X2, ..., Xn) =
n∑
j=1

I(Xj ∈ Ci) for all i = 1, 2, ..., 5.

Example 11. The previous example can be extended to the setup

of what is called the Tobit model in the literature. Consider a multiple

regression with a response variable Y and p covariates X1, X2, ..., Xp

where the values of Y are grouped into categories but the covariates

are completely observed. In particular, this include censoring of the Y

values where the positive Y values are retained and the negative values

are censored. Here the filtered data are

Zi = YiI(Yi > 0) for all i.

It is often convenient to think filter operator as a computational

algorithm as it is not always convenient to express F explicitly as a

mathematical function.

Example 12. Consider n = 100 observations X1, X2, ..., X100 from

the following autoregressive process

Xi = φXi−1 + εi, i = 1, 2, ..., 100

2.3. A BRIEF REVIEW OF MISSING DATA ANALYSIS 31

where εi are iid samples from N(0, σ2
0) distribution and σ2

0 and X0 are

known. Further let us assume |φ| < 1 and φ is the parameter of interest.

Let us consider three filter operators:

(1) F1 : We retain only the first 90 samples and discard the last

10 observations.

(2) F2 : We discard every 10th observation from the beginning and

retain the remaining observations.

(3) F3 : We discard anyXi if |Xi−Xi−1| < c for i = 1, 2, ..., 100 and

some given c and if any Xi−1 is discarded then Xi is definitely

retained.

Technically any sort of collapsing of the data can be treated as fil-

tering mechanism, but for our idea to work we shall be interested in

filtering mechanisms which lead to resonable inferences based on the

filtered data. Given a filtering mechanism, how do we perform statisti-

cal inference based only on the filtered data? As mentioned earlier this

requires analysis of missing data. We shall treat the original data as the

complete data and the filtered data as the observed data. The following

three sections provide a quick review of the various standard concepts

in missing data analysis which will be useful for the development of the

proposed methodology.

2.3. A Brief Review of Missing Data Analysis

Missing data refers to the information about the population which

is missing in the sense that it cannot be either observed or preserved till

2.3. A BRIEF REVIEW OF MISSING DATA ANALYSIS 32

analysis. Traditionally missingness occurs as a natural phenomenon,

the cause of which can be broadly classified into three categories [36]:

(1) missingness due to the study participants,

(2) missingness due to the study design,

(3) the interaction of the participants and the study design.

In general, missing data are viewed as a problem which affects our

ability to infer about the population. Hence all of the literature in

Statistics are dedicated towards removing the missing data hindrance

in data analysis. This includes imputation techniques and likelihood

based inferences. In all of the classical works, the statistical method-

ologies proposed can be grouped into following categories [32]:

(1) Procedures Based on Completely Recorded Units

(2) Weighting Procedures

(3) Imputation based procedures

(4) Model based procedures

2.3.1. Missing Data mechanisms: The most widely accepted

missing data classification system was introduced by Donald Rubin

(1976) [41] which concerns the relationship between missingness and

the values of variables in the data matrix. Specifically Rubin discussed

three types of missing data mechanisms:

• missing completely at random (MCAR) where the missing

data are unrelated to both the missing responses and the set

of observed responses, the observed values are representative

of the entire sample without missing values.

2.3. A BRIEF REVIEW OF MISSING DATA ANALYSIS 33

• missing at random (MAR) where the missing data depend on

the set of observed responses but are unrelated to the missing

values.

• missing not at random (MNAR) where the missing data are

related to specific missing values.

Thus the three missing data mechanisms can be made precise by for-

malizing the relationship between the missingness indicator and the

data. Consider n simultaneous measurements on p variables as xij, i =

1, 2, ..., n, j = 1, 2, ..., p collected in a data matrix X. Further let us

define the missing data indicator matrix M with elements mij, i =

1, 2, ..., n, j = 1, 2, ..., p such that

mij =


1 if xij is missing

0 if xij is observed
.

Further let us denote the observed component of X as Xobs and the

missing component as Xmis. Missing data mechanism refers to relation

ofM withX and can be characterized by the conditional distribution of

M given X, say f(M |X, θ) for some unknown parameter θ. Specifically

the missing data mechanism is

• MCAR if f(M |X, θ) = f(M |θ) for all X, θ.

• MAR if f(M |X, θ) = f(M |Xobs, θ) for all Xmis, θ.

• MNAR if f(M |X, θ) is function of Xmis.

This distinction of missing data mechanism is further extended in a

more recent paper by Mealli and Rubin (2015) [38] where the authors

2.4. BET ON NON-IGNORABLE MISSING DATA MECHANISM 34

have precisely clarified the idea of missingness at random. In partic-

ular, there is a distinction between the missing data being missing at

random (which is defined by MCAR or MAR as above) and the miss-

ingness mechanism which always produces data that are missing at

random (which they have referred to as missing always at random).

Similarly, we can make distinction between missing not at random

(MNAR) defined above and missing not always at random (MNAAR)

where the missing mechanism is such that it always produces data

which are missing not at random. While the distinction between the

missing data mechanisms should be clear by this time, we shall declare

that this work focuses on the non-ignorable missing data mechanism

only as described in the following section.

2.4. Bet on non-ignorable missing data mechanism

Traditionally what has been mostly missing from the literature of

“missing data analysis” is the study of missing mechanism. However

there have been instances of the study of the missing data mechanism

in some literature where missingness is introduced intentionally to deal

with one or other kind of problems. This includes applications in design

of experiments (Hocking & Smith, 1972 [26]; Trawinski & Bargmann,

1964 [47], Kempthorne, 1952 [29]), sequential analysis (Lehman, 1959

[31]) and sampling from a finite population (Cochran, 1963 [16]). The

novelty of this work is that unlike most of the traditional applications

where missingness occurs naturally as a problem, here missingness is

deliberately introduced to reduce the effective size of the data to be

stored. As we have already mentioned earlier, the total data which

2.5. LIKELIHOOD BASED INFERENCE 35

we observe or could have been observed, if we have enough resources,

is the complete data and the data which we actually store after the

filtration process is the observed data. The filter operator F therefore

plays the role of missing data mechanism M which is assumed to be

non-ignorable and completely known. The reasons behind considering

the missing data mechanism to be non-ignorable is that we shall exploit

the filtering mechanism while estimating our parameters. That is, we

shall discard some information from the available data but rather than

simply forgetting them, we remember how they were discarded so that

we use that piece of information for estimation. We shall see later

with the help of examples how discarding the same quantity of data

in different ways may lead to parameter estimates of varying accuracy.

If the missing data mechanism is ignored during estimation, then the

size of the filtered data is all what affects the estimate. However the

study of missing data mechanism in our case will justify how to discard

observations when we need to. Another aspect we need to mention

at this point that the non-ignorable missing data mechanism can be

exploited if we perform likelihood based inference for the parameters.

2.5. Likelihood based inference

Model based inference has been an important aspect of missing

data analysis in various contexts. In this work we shall be interested in

method of estimation based on likelihood function under specific model

assumptions.

2.5. LIKELIHOOD BASED INFERENCE 36

Figure 2.5.1. From complete data analysis to incom-
plete data analysis

Inference based on filtered data means doing analysis on the basis of
incomplete data. Traditionally without the filtering step we can afford

analysis based on the complete data.

2.5.1. Likelihood based estimation based on complete data:

Following our earlier notation, suppose X denote the complete data

that we would receive if there is no filtering mechanism. The likelihood

based approach requires that we assume a parametric model, described

by the probability distribution fθ(X), θ ∈ Θ, which generates the data.

Then the likelihood of θ is any function L(θ|X), θ ∈ Θ which is pro-

portional to fθ(X). Since this likelihood is based on the complete data

we shall denote this as Lcom(θ) or the corresponding log-likelihood as

`com(θ) = logL(θ|X), θ ∈ Θ. In case of maximum likelihood estimation

we choose the value of θ ∈ Θ which maximizes Lcom(θ) or equivalently

`com(θ). However due to limitation of storage resources, we need to ap-

ply the filtering mechanism, as a result of which the complete data is

not available. Hence the maximum likelihood estimate of θ cannot be

obtained by minimizing the complete data log-likelihood `com(θ) and

we need to rely on the estimation based on the incomplete data.

2.5.2. Likelihood based estimation based on incomplete

data: As before let us write X = (Xobs, Xmis), where Xobs and Xmis

2.5. LIKELIHOOD BASED INFERENCE 37

denote the observed and the missing component of X. The joint prob-

ability distribution is given by fθ(X) which is defined as fθ(X) =

f(X|θ) = f(Xobs, Xmis|θ). Further suppose M be the missing data

indicator. Then the joint distribution of M and X is given by

f(X,M |θ, ψ) = f(X|θ)f(M |X,ψ), (θ, ψ) ∈ Θθ,ψ.

The actual observed data is (Xobs,M) whose distribution of the ob-

served data can be obtained as

f(Xobs,M |θ, ψ) =

∫
f(X,M |θ, ψ)dXmis

and the likelihood of θ and ψ is any function of θ and ψ proportional

to this joint distribution as

L(θ, ψ|Xobs,M) ∝ f(Xobs,M |θ, ψ), (θ, ψ) ∈ Θθ,ψ.

We shall call this likelihood the likelihood based on the observed data

when the missing mechanism is non-ignorable and denote this as Lobs(θ, ψ)

or the corresponding log-likelihood as `obs(θ, ψ). In particular we shall

be mainly interested in the case where the missing mechanism is non-

ignorable but known because of the filter operator is completely fixed.

Hence the observed data log-likelihood reduces to `obs(θ), θ ∈ Θ. The

maximization of `obs(θ) may sound good in principle except the fact

that at times, due to the complicated missing data mechanism im-

posed by specific filter operators, `obs(θ) cannot be obtained explicitly

or even if computed cannot be maximized directly.

2.5. LIKELIHOOD BASED INFERENCE 38

Example 13. (Example 12 continued) If we consider the filter F1,

then the observed data are X1, X2, ..., X90 and it is immediate to find

the maximum likelihood estimate of φ based on the observed data as

φ̂ =

90∑
i=1

xixi−1

90∑
i=1

x2
i

.

If the filter F2 is employed then the observed likelihood can be found

out mathematically but it is difficult to maximize the likelihood with

respect to the parameter. On the other hand when we apply the fil-

ter F3, the observed likelihood is very difficult to be computed and

maximized. Thus maximizing the observed likelihood can be compu-

tationally difficult depending on the filter mechanism we choose.

This problem can be largely tackled by using EM algorithm which

provides a general protocol of finding the maximum likelihood estimates

and as well as standard errors of the estimates under a wide class of

filter.

2.5.3. EM Algorithm: EM algorithm is a standard tool for max-

imum likelihood estimation in incomplete data problems. The biggest

advantage of EM algorithm which we shall be exploiting is: even in sit-

uations where there are no actual missing data, the given problem can

be reformulated as a missing data problem and can be tackled with the

EM algorithm. EM algorithm is an iterative procedure which general-

izes the intuitive concept of filling in the missing values and estimating

the parameter through the following steps of iteration:

2.5. LIKELIHOOD BASED INFERENCE 39

(1) Replace the missing values by their estimated figures,

(2) Use the estimated figures to estimate the parameter,

(3) Re-estimate the missing values based on the new parameter

estimate,

(4) Re-estimate the parameter,

and so on. However this is different from standard imputation tech-

niques in the sense that “missing data” here does not necessarily refer

to the missing values Xmis rather functions of Xmis which appear in

the complete data log-likelihood `com(θ). Each iteration of EM consists

of an E-step (expectation step) and an M-step (maximization step). In

particular for non-ignorable missing data mechanism, the E-step finds

the conditional expectation of the complete data log-likelihood given

the observed data, current estimated parameters and the missing data

mechanism. The M-step then maximizes that expected log-likelihood

to obtain the parameter estimates in the same way as the ML estima-

tion in case of complete data. Thus in case of non-ignorable missing

mechanism the steps of EM algorithm can be expressed as:

(1) start with some initial estimates (θ(0), ψ(0)) of (θ, ψ).

(2) E-step: at tth iteration, given current estimates (θ(t), ψ(t)) of

(θ, ψ), the E-step calculates

Q(θ, ψ|θ(t), ψ(t)) =

∫
`comp(θ, ψ|Xobs, Xmis,M)f(Xmis|Xobs,M ; θ = θ(t), ψ = ψ(t))dXmis

2.5. LIKELIHOOD BASED INFERENCE 40

where `comp(θ, ψ|Xobs, Xmis,M) is the complete data log-likelihood

and f(Xmis|Xobs,M ; θ = θ(t), ψ = ψ(t)) is the conditional dis-

tribution of the missing data given the observed data and the

missing mechanism M and θ, ψ.

(3) M-step: The M-step maximizes Q to find the estimates of the

next iteration as

Q(θ(t+1), ψ(t+1)|θ(t), ψ(t)) ≥ Q(θ, ψ|θ(t), ψ(t)) for all θ, ψ.

We iterate until convergence. As we have already mentioned in our

case the missing mechanismM is non-ignorable but completely known,

the parameter ψ can be omitted from the above general description

of the algorithm for our purpose. It can be shown under regularity

conditions each iteration of this algorithm increases L(θ, ψ|Xobs,M),

and under general conditions the algorithm converges to a stationary

value of the observed likelihood. The following examples illustrates

how EM algorithm provides a convenient way of finding the maximum

likelihood estimator based on the filtered data under a wide class of

filter mechanism.

Example 14. (Example 12 continued) Consider the filter opera-

tor F3 which stores a observation only when it differs from the previ-

ous one by at least an amount of c. Moreover the filtering mechanism

does not allow more than one consecutive observation to be discarded

simultaneously. As we have already discussed finding the maximum

likelihood estimator based on the filtered data is not possible in this

case. EM algorithm however can be applied in this case to find the

2.5. LIKELIHOOD BASED INFERENCE 41

estimate of the parameter φ. To begin with, we partition the total data

as X = (xmis, xobs) and Dobs and Dmis are sets of the indices of the ob-

served data and the missing data, so that Dobs ∪Dmis = {1, 2, ..., 100}.

Suppose for all j = 1, 2, ..., n we define the following quantities

αj =
xj − c− φxj

σ0

, βj =
xj + c− φxj

σ0

.

The complete data log-likelihood is given by

`comp(φ) = constant− 1

2σ2
0

n∑
i=1

(xi − φxi−1)2

which is a linear function of the statistics
∑
x2
i−1 and

∑
xixi−1. At the

tth iteration, the E-step of the algorithm finds

E1 =E
(n∑
i=1

x2
i−1|xobs, F3;φ(t)

)
and E2 = E

(n∑
i=1

xixi−1|xobs, F3;φ(t)
)
.

Now

E1 =
∑
j∈Dobs

x2
j−1 +

∑
j∈Dmis

E
(
x2
j−1|xobs, F3;φ(t)

)
where

E
(
x2
j |xobs, F3;φ(t)

)
= E

(
x2
j |xj ∈ (xj−1 − c, xj−1 + c);φ(t)

)
= σ2

0+φ(t)2x2
j−1+σ2

0

αj−1f(αj−1)− βj−1f(βj−1)

Φ(αj−1)− Φ(βj−1)
+2σ0φ

(t)xj−1
f(αj−1)− f(βj−1)

Φ(αj−1)− Φ(βj−1)

where f(.) and Φ are the p.d.f and c.d.f. of standard normal distri-

bution respectively and αj−1 and βj−1 are evaluated under the current

parameter estimate φ(t). Similarly we have

E2 =
∑

j:j,j−1∈Dobs

xjxj−1 +
∑

j:j∈Dmis,j−1∈Dobs

xj−1E
(
xj|xobs, F3;φ(t)

)

2.5. LIKELIHOOD BASED INFERENCE 42

+
∑

j:j∈Dobs,j−1∈Dmis

xjE
(
xj−1|xobs, F3;φ(t)

)
where

E
(
xj|xobs, F3, φ

(t)
)

= E
(
xj|xj ∈ (xj−1 − c, xj−1 + c);φ(t)

)
= φ(t)xj−1 + σ0

f(αj−1)− f(βj−1)

Φ(αj−1)− Φ(βj−1)
.

The M-step maximizes the expected log-likelihood and the estimate is

found out from the MLE based on the complete data with the obser-

vations replaced by their expectations as

φ(t+1) =
E1

E2

.

We iterate until convergence. The quality of the estimate varies with

the nature and amount of the filtered data which in turn are governed

by the choice of c. In order to have an idea of how the choice of c

affects the parameter estimate, we perform a simulation study with

X0 = 0,φ = 0.5,σ0 = 1 and different choices of c varying between 0.01

to 5. Figure 2.5.2 shows the plot of φ̂ and V̂ ar(φ̂) for different values

of c. We find that the choice of c is crucial in getting a good estimate.

Clearly a very large value of c produces bad estimates.

The following two examples have been adapted from [32] and here

we have cast them into our filtering paradigm.

Example 15. (Effect of grouping) Suppose have random samples

X1, X2, ..., Xn from an exponential distribution with unknown mean θ.

2.5. LIKELIHOOD BASED INFERENCE 43

Figure 2.5.2. Choice of filtering mechanism affects the
quality of estimate

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ●

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

c

φ̂

●

●

● ●

●

●
●

● ●

● ●

●

●

●
●

●
●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

● ● ●

●

●
●

●
●

●

●
●

●
●

●
●

● ●
● ●

0 1 2 3 4 5

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

c
V

ar
(φ

)
^

The plots are results of a simulation study for the model in Example
12 with X0 = 0, φ = 0.5, σ0 = 1 and F3 as the filtering mechanism.
For each value of c in [0.01,5] we plot the parameter estimate φ̂ and

V̂ ar(φ̂) as a result of 1000 simulations.

Consider a filter operator F which groups the observations into k mu-

tually exclusive and exhaustive classes. More specifically the filtered

data are k(< n) values f1, f2, ..., fk where fi is the number of observa-

tions belonging to the ith class [ai, bi) where a1 = 0 and bk = ∞. The

complete data log-likelihood is a linear function of
n∑
i=1

xi. Hence in the

E-step of the algorithm at tth iteration, we find

E
(n∑
i=1

xi|f1, f2, ..., fk, F ; θ(t)
)

=
k∑
j=1

fjx̂
(t)
j

where

x̂
(t)
j = E

(
x|aj ≤ x < bj; θ

(t)
)

=
∫ bj
aj
y exp

(
− y

θ(t)

)
dy/

∫ bj
aj

exp

(
− y

θ(t)

)
dy

2.5. LIKELIHOOD BASED INFERENCE 44

= θ(t) +
bje
−bj/θ(t) − aje−aj/θ

(t)

e−bj/θ(t) − e−aj/θ(t)
.

Finally at the M-step of the algorithm we replace the observations in

the expression of MLE based on complete data with their expected

value and get

θ̂(t+1) =
1

n

k∑
j=1

fjx̂
(t)
j .

The missing data mechanism directed by the filter operator in this

example is non-ignorable and completely known assuming the choice

of ai and bi are fixed in advance. However the size of the filtered data

depends on the filter operator which in turn is governed by the choice

of the number of groups k. The important point is that the variance

of the maximum likelihood estimator varies with the number of groups

as well as the selection of groups as depicted in Figure 2.5.3. This is

due to the information in the observed likelihood which is directed by

the filter operator. Hence not only the size of the filtered data but also

the type of filter matters - it is important to decide how we group the

data.

These examples carry an important message: We may throw away

some part of data without significantly hurting the quality of inference.

This means it is important to consider how to throw away data when

we must, due to the limitation of resources. Further this is exactly why

the deliberate introduction of missingness and the non-ignorability of

the missing mechanism are so crucial as we mentioned earlier.

2.5. LIKELIHOOD BASED INFERENCE 45

Figure 2.5.3. Effect of grouping on the variance of the estimator

The figure shows four histograms of the parameter estimates in 1000
simulations corresponding to different grouping (class boundaries

except −∞,∞ are indicated on the top of each figure)

Example 16. (Tobit Model Continued) We are considering a re-

gression of Y on p covariates X1, X2, ..., Xp where the covariates are

fully observed but in case of the response variable we use

zi = yiI(yi > 0) for all i.

Further we assume a multiple linear regression model

Y = β0 +
∑

βkXk + ε

where E(ε) = 0 and V ar(ε) = σ2. The parameter vector here is θ =

(β0, β1, ..., βp, σ
2). The complete data log-likelihood is a linear function

of
∑
yi,
∑
y2
i and

∑
yixki, k = 1, 2, ..., p. Hence after t iterations, at

the E-step we calculate

2.5. LIKELIHOOD BASED INFERENCE 46

E
(∑

yi|Yobs, F, θ = θ(t)
)

=
∑
i:yi>0

yi +
∑
i:yi<0

ŷ
(t)
i

E
(∑

yixki|Yobs, F, θ = θ(t)
)

=
∑
i:yi>0

yixki +
∑
i:yi<0

ŷ
(t)
i xki, k = 1, 2, ...p

E
(∑

y2
i |Yobs, F, θ = θ(t)

)
=
∑
i:yi>0

y2
i +

∑
i:yi<0

(ŷ
(t)2
i + ŝ

(t)2
i)

where

ŷ
(t)
i = E(yi|θ(t), yi ≤ 0, xi)

= β
(t)
0 +

∑
β

(t)
k xki − σ

(t)λ

(
−β

(t)
0 +

∑
β

(t)
k xki

σ(t)

)
where λ(z) = φ(z)

Φ(z)
, φ and Φ being the p.d.f. and c.d.f. of N(0, 1)

distribution respectively and

ŝ
(t)2
i = σ(t)2

(
1− δ(t)

i

(
δ

(t)
i +

β
(t)
0 +

∑
β

(t)
k xki

σ(t)

))

where δ(t)
i = λ

(
−β

(t)
0 +

∑
β
(t)
k xki

σ(t)

)
. Further under normality assumption,

the maximum likelihood estimator of β′is are same as the ordinary least

square estimator. Hence at the M-step of the iteration we perform

a ordinary least square regression with
∑
yi,
∑
y2
i and

∑
yixki, k =

1, 2, ..., p replaced by their expected values.

2.6. CONSTRUCTING THE FILTER OPERATOR 47

2.6. Constructing the filter operator

So far we have discussed how we can employ the EM algorithm

and the general concept of likelihood based inference on filtered data

in order to estimate the parameters of the underlying population. All

these estimation procedures assume that the initial filtering process

is fixed, non-adaptive and completely known in advance. The next

important part of the proposed methodology is the construction of the

filtering mechanism. Apparently how we should filter the data depends

on the available data as well as our available storage. But at the very

first place, while designing any filtering mechanism we need to keep in

mind the issue of identifiability of the parameters. If we throw away too

much data then the parameters of the underlying population may not

remain identifiable. In Example 15, the parameter is not identifiable if

we choose k = 1, a1 = 0, b1 = ∞. In general the issue of identifiability

depends on the underlying population and the type of filter we are

using. Hence we need to ensure that our filter preserves identifiability

of the parameters subject to the restriction that the choice of the filter

is governed by:

• how much we store

• what we store.

The first choice can be easily make from the size of the available storage.

The important thing here is the size of the filtered data may be dictated

either explicitly or implicitly by the filtering mechanism. More specifi-

cally there can be a filtering mechanism which has one or more tuning

parameters which control the size of the filtered data. The choice of

2.6. CONSTRUCTING THE FILTER OPERATOR 48

Figure 2.6.1. Plot of proportion of discarded data with
the choice of c

●

●

●
●

●

●

●

●

●
● ●

●
● ●

● ●
●

● ●
● ● ● ● ● ● ● ● ●

● ●

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

c

P
ro

po
rt

io
n

of
 d

is
ca

rd
ed

 o
bs

er
va

tio
ns

The figure shows the proportion of discarded observations for different
choices of c.

filtering mechanism in such cases boils down to the appropriate choice

of the tuning parameter.

Example 17. (Example 12) We have three filtering mechanism of

which F1 and F2 specify the size of the filtered data explicitly whereas

F3 has a tuning parameter c, the choice of which controls the size of

the filtered data. Figure 2.6.1 demonstrates how the choice of c affects

the proportion of data we discard. This plot can be used to make an

initial choice of c depending on the size of the available storage.

Regarding what we have already seen in Example 14 and Example

15 that even if we discard the same quantity of data, the quality of esti-

mate depends on which observations we discard. Thus there should be

an issue of optimal filtering mechanism which, besides controlling the

size the of the filtered data, will search for the “best” possible option to

2.6. CONSTRUCTING THE FILTER OPERATOR 49

throw away observations. The optimality of a filtering mechanism de-

pends on two aspects: size of the filtered data and the efficiency of the

parameter estimates. Generally this should turn out to be a trade-off:

we need to strike balance between minimizing storage and maximizing

efficiency. We shall see in chapter 5 how this trade-off can be tackled

in a particular case while constructing optimal filtering mechanism for

Markov chains. Further finding such optimal way to discard observa-

tions requires knowledge of the underlying population. For example, in

Example 14, while finding the optimal value of c, we should take into

consideration the expected proportion of missing observation as well

as the standard error of the EM estimates. Calculation of both these

quantities require that we know the distribution of the observed data.

Similarly in Example 15, it is not possible to decide ideal groups for

the data without some knowledge of the complete probability density.

Another important aspect in the construction of filter mechanism

is to note that with respect to the estimation step of the proposed

methodology the filtering mechanism is non-adaptive but the choice of

the filtering mechanism itself should be adaptive to the underlying sto-

chastic process which in turn is unknown, at least before the estimation

step. In order to understand how the filtering mechanism should adapt

to the underlying stochastic process, we can refer back to two previous

examples:

Example 18. (Example 6 continued) For most of the time in a day

when no one enters the room, there will be no significant change in the

pixel intensities and it only changes after some movement in the room.

2.6. CONSTRUCTING THE FILTER OPERATOR 50

If our filtering mechanism records observations at a high rate, there

will be lots of information most of which are constant. On the other

hand if the filtering mechanism stores observations at large intervals,

we may miss certain variation in pixel intensities caused when someone

enters the room. So our filtering mechanism should adaptively change

its recording rate when there is a significant change in the underlying

stochastic process (or population).

Example 19. (Example 7 continued) The angle of the wind direc-

tions mostly remains constant and fluctuates only during a storm or

a windy patch. If our filtering mechanism records observations at a

high resolution, we shall end up recording long stretches of constant

observations. On the other hand if we record at a low resolution, then

we may fail to detect the presence of any potential storm. The figure

2.6.2 illustrates this problem using a hypothetical data set of angles of

wind directions. The filtering mechanism should adapt its recording

rate according to the underlying population.

Thus the two parts of the proposed methodology: inference of pa-

rameters and the construction of filtering mechanism are somewhat

entangled and circular. The design of an optimal filtering mechanism

requires knowledge of the underlying population and estimating the

parameters in the population requires a fully determined and fixed fil-

tering mechanism. In order to find a solution, we take a look at the

pilot survey example in Chapter 1.

2.6. CONSTRUCTING THE FILTER OPERATOR 51

Figure 2.6.2. Filter should adapt to change in under-
lying process

A
n

gl
e

0

2π

Large Intervals: Miss some

fluctuations

Wind Direction

Short Intervals: same

observations

Storm Period

Plot of hypothetical data: angles change rarely in a day. Thus
frequent observations lead to constant values whereas very less
frequent observations may miss some significant change in the

stochastic process.

Example 20. (Pilot Survey Example Continued) Suppose we have

an infinite population from which it is possible to draw a random sam-

ple of large size. Further assume that we have the knowledge that

our population assumes a parametric form N(µ, σ2 = 0.01) and our

objective is to estimate µ. Then if we draw a random sample of size

n, then we can estimate µ by the sample mean X̄ which has standard

error σ√
n
. Now suppose it is enough to keep the standard error less than

2.6. CONSTRUCTING THE FILTER OPERATOR 52

0.01. Then even if we have resources for collecting a large sample, we

can restrict ourselves to a relatively smaller sample size n which will be

good enough to produce estimates with satisfactory precision (so that
σ√
n
is well below the tolerance limit). This situation can be viewed as

if we are originally provided with a hypothetical sample of a very large

size but we observe only a small part of the sample from the beginning,

say X1, X2, ..., Xn, and discard the remaining samples Xn+1, Xn+2,

In practice, generally we do not perform this data trimming because

for computing the statistic in this case, all we need to find is
∑
Xi

which does not require much computational payload. However, there

is another version of this problem in statistics where the process vari-

ance σ2 is not known. In that case we perform a pilot survey or double

sampling where we initially collect a portion of the available data and

form a suitable estimate σ̂2 of the process variance and based on this

estimate we determine the required sample size n so that σ̂√
n
is below

the tolerance limit. If this estimated sample size is n̂, then even if

we have scope of collecting more samples (say n̂ + k) we can satisfy

ourselves with collecting only X1, X2, ..., Xn̂ and effectively dropping

Xn̂+1, Xn̂+2, ..., Xn̂+k.

From this example, we can now form a protocol for filtering mech-

anism as :

(1) Collect initial sample of relatively small size and observe it

completely.

(2) Based on this pilot sample, construct an estimate of the un-

derlying probability distribution.

2.6. CONSTRUCTING THE FILTER OPERATOR 53

(3) Use the estimate to construct an optimal filtering mechanism.

(4) Apply the filtering mechanism to discard part of the data and

store the rest permanently in the storage.

Coupled with this is the issue of adaptivity of the filtering mechanism.

Moreover in most contemporary applications, data stream in as a con-

tinuous sequence of observations. Hence in order to be applicable in

practice, our filtering mechanism should be online, continuously adapt-

ing itself with the data and to be embedded as a preprocessing step in

the data storage pipeline. Keeping all these things in mind, we shall

propose a sequential procedure which fits well in this online filtration

paradigm and is also adaptive in nature.

2.6.1. The adaptive data filtering mechanism: Suppose we

have two kinds of storage: a permanent storage with relatively large

size and a temporary storage of smaller size. When the stream of ob-

servations starts, we shall store the data completely up to a number

of observations (say k) in the temporary memory and based on those

observations we derive an estimate P̂1 of the underlying probability dis-

tribution. Based on this estimate we can construct the optimal filtering

mechanism F1 which can be used to filter the observations. Based on

each such chunk of k observations, we keep on deriving a temporary

estimate P̂ of the probability distribution. If the estimate P̂ does not

change significantly, we continue with the same filtering mechanism,

otherwise we shall consider P̂ as our new estimate to construct a new

filtering mechanism F.We can detect the change in the probability dis-

tribution using some suitable distance measure d : Θ×Θ→ [0,∞). In

2.6. CONSTRUCTING THE FILTER OPERATOR 54

Figure 2.6.3. The data storage pipeline

The filtering mechanism is constructed using a crude estimate P̂ based
on a pilot sample of very small size. Moreover the filtering mechanism
is adaptive to significant change in the underlying stochastic process.

particular, if we are considering a parametric family P = Pθ, then one

can choose d = ||θ − θ̂||p for some p. If this distance d(P, P̂) crosses a

threshold δ, we consider a change in the underlying stochastic process

and the new estimate P̂ is used to update the filtering mechanism F.

Figure 2.6.3 shows the data storage pipeline we just discussed. This

way, our filtering process remains adaptive to the incoming data and

subsequently providing a considerable reduction of data to be stored in

the permanent memory. In practice, this entire filtering mechanism can

be embedded in a temporary storage and programmed within a micro-

controller which can be fit directly to a sensor mechanism collecting

the data.

CHAPTER 3

Data reduction under independence

3.1. Introduction

In recent years there has been a huge explosion in the variety of

sensors as well as in the dimensionality of the data produced by these

sensors. This is true for a large number of applications ranging from

imaging to other scientific areas. Such types of data are usually of large

dimensions or we may require to observe a large number of samples.

The total amount of data produced by the sensors is much more than

the available storage. So we want to store a subset of the information

and reconstruct as much as possible of the entire information from it.

Instead of working with the entire data we observe certain linear com-

binations of the observations and try to estimate the parameter from

them. In general the problem is ill posed in the sense that unique es-

timates of the parameter may not exist. But we shall assume sparsity

of the parameter to get a unique solution. Sparsity is a common phe-

nomenon in nature and hence is a reasonable assumption to make in

many real applications. For example, while working with astronomical

data, high resolution telescope images are generally sparse as only few

pixels correspond to the stars, the rest being dark.

55

3.1. INTRODUCTION 56

We shall work with independent normal samples with different

means. Thus the problem can be viewed as a single sample multivari-

ate normal problem or independent samples from different univariate

normal. The methods suggested here will be a lossy compression algo-

rithm in the sense we will lose some information about the parameter

in the process but the loss in information is compensated by the ad-

vantage due to data reduction not sacrificing reasonable inference of

the parameter.

Our main weapon will be the EM algorithm [18] which is a powerful

tool for maximum likelihood estimation in incomplete data problems.

Even in situations where there are no actual missing data, the given

problem can be reformulated as a missing data problem and can be

tackled with the EM algorithm. Unlike the other uses of EM algorithm

where missingness occurs naturally as a problem, here we deliberately

incorporate missingness to reduce the number of observed samples.

The EM algorithm is computationally straightforward when there is

no restriction on the parameters. Sparsity of the parameter, however,

imposes certain restrictions on the parameter for which solutions may

get complicated. Kim and Taylor [30] worked with parameter under

linear restrictions and proposed a restricted EM algorithm using con-

strained maximization. In the present situation sparsity imposes linear

restrictions on the parameter which are not known in advance. Thus

the methods of Kim and Taylor cannot be applied directly to produce

estimates. In this paper we propose new methods based on the re-

stricted EM algorithm of Kim and Taylor to apply in this sparse data

3.1. INTRODUCTION 57

situation. The modifications, however, do not affect the desirable the-

oretical properties of the algorithm.

Similar data compression techniques using linear combination of

the observations already exist in signal sampling paradigm, for exam-

ple, Compressive Sampling that uses a different data recovery algo-

rithm. Signal sampling methods based on the Nyquist-Shannon sam-

pling theorem [43] often result in too many samples. In contrast com-

pressive sampling try to approximate the true signal with few linear

combinations. We compare our method with the compressive sampling

technique using the same data acquisition protocol but estimating the

parameter with our proposed approach.

Section 2 gives a brief literature review of works relevant to this

paper. Section 3 describes the setup of the problem. Section 4 deals

with the identifiability issues of the parameter that arise due to dimen-

sion reduction. Section 5 briefly describes the conventional method of

data recovery in compressive sampling. Section 6 introduces our new

approaches “All Subspace Restricted EM Algorithm (ASREM)” and

“Estimated Subspace Restricted EM Algorithm (ESREM)”. Section 7

discusses some theoretical properties of the new methods. Section 8 ap-

plies the new algorithms to hypothesis testing and finding confidence

interval. Section 9 compares the new approaches to the conventional

compressive sampling using simulation. Section 10 illustrates the ap-

plication of ESREM in a real life dataset. Section 11 gives some con-

clusions and possible extensions regarding the problem. Section 12 is

3.2. LITERATURE REVIEW 58

the appendix which contains the technical details and proofs of the

theorems stated in this paper.

3.2. Literature Review

Dempster, Laird and Rubin [18] introduced EM algorithm for maxi-

mum likelihood estimation in incomplete data problems. Restricted pa-

rameter problem is very common in many statistical applications. Kim

and Taylor [30] developed the EM algorithm for maximum likelihood

estimation for incomplete data under linear restrictions on the param-

eter. Shi, Zheng and Guo [44] studied EM algorithm under inequality

restrictions on the parameter. Tian, Wang and Tan [46] described re-

stricted EM algorithm for multivariate normal models under regression

setup. [45] applied EM type algorithms for restricted MLE in univari-

ate normal distribution with known and unknown variance. In this

paper we assume the parameter to be sparse and develop EM type al-

gorithms to estimate the parameter and construct hypothesis tests and

confidence intervals. Applying EM algorithm in hypothesis testing and

confidence interval follows from the early works of Louis [34] and Meng

and Rubin [39]. These approaches give symmetric Wald-type intervals

based on asymptotic dispersion matrix.

An already available technique for similar situations is called com-

pressive sampling. It was introduced in signal sampling paradigm by

Donoho [19] and has been further studied by Candes [11]. [6] and [13]

and [40] give a good description of the compressive sampling problem.

3.4. IDENTIFIABILITY 59

3.3. Setup

In this paper we assume that our data x ∈ Rn are coming from

a Nn(µ, σ2In) population where µ = (µ1, µ2, ..., µn)
′ ∈ Rn is unknown

and σ2 is known. The complete data x are not stored. Instead we

only store m (� n) linear combinations of x, which we call y. Then

we can write y = φx where φ is a fixed m × n matrix, whose rows

give the coefficients of the m linear combinations. We choose φ in

such a way that rank[φ] = m. Also the observation process is non-

adaptive in the sense that φ does not depend in any way on the complete

data x. Further µ is assumed to be sparse so that at most m elements

of µ are nonzero. We shall treat x as missing, and we shall try to

estimate µ by the EM algorithm based on the observed data, y. In

general we do not know apriori which of the µi’s are nonzero. This

will make maximization of the likelihood a little difficult. Moreover

since m� n, the problem does not have a unique solution in general.

But, fortunately, sparsity of the parameter will come to our rescue.

3.4. Identifiability

The complete data x ∈ Rn which is unobserved has mean µ =

(µ1, µ2, ..., µn)
′ . Since x has Nn(µ, σ2In) distribution all the µi’s would

have been estimable if we could have stored x. Instead we observe

y ∈ Rm which has distribution Nm(φµ, σ2φφ
′
) where rank[φ] = m.

From the observed data we can estimate the m components of φµ,

that is, m linear equations involving µi’s. Hence we need additional

n − m linear restrictions on µ so that all µi’s are estimable. These

3.4. IDENTIFIABILITY 60

additional restrictions will be provided by the assumption of sparsity

of the parameter. The observed log-likelihood is

`obs(µ) = constant− 1

2
(y − φµ)

′
(σ2φφ

′
)−1(y − φµ).

Setting ∂
∂µ
`obs(µ) = 0 we get

(3.4.1) (φ
′
V −1φ)µ = φ

′
V −1y

where V = φφ
′ . Since

rank[(φ
′
V −1φ)n×n] = m� n

this system of equations does not have a unique solution and we need

to have a linear restriction of the form Hµ = 0 such that

rank[

(φ
′
V −1φ)n×n

H

] = n.

Such a linear restriction matrix H such that rank[H] = n − m and

R(H)
⋂

R(φ
′
V −1φ) = {0} (where R denotes the rowspace of a ma-

trix) will be decided from the sparsity assumption that at least n−m

components of µ are zero. However, since we do not know the matrix H

explicitly, the observed likelihood cannot be maximized directly. This

task will be accomplished by the EM- based algorithms, which we shall

discuss in Section 3.6.

3.5. AN EXISTING APPROACH 61

3.5. An Existing Approach

As far as we know our approach of using EM algorithm for data

compression has not been proposed earlier. However, for the sake of

comparison we describe here an existing approach called Compressive

Sampling (CS) which is somewhat similar, though not related with our

EM approach. Compressive Sampling deals with a general problem

of reconstructing a vector x ∈ Rn from m(� n) linear measurements

y = Ax. If the original signal x is sparse then it can be recovered

exactly by solving

min
x∗∈Rn

‖ x∗ ‖`1 subject to Ax∗ = y.

This technique is also known as basis pursuit. However in real life

applications observations are subject to measurement error or noise.

So instead we shall mainly focus on what is called Robust Compressive

Sampling [11, 13] which deals with signals associated with noise. Here

it is assumed that the true signal x is sparse and the data collected

by a measurement system consists of some linear combinations of the

signals

y = Ax+ e

where A is a measurement matrix (also called sensing matrix) which is

chosen beforehand. e is the error which is assumed to be bounded or

bounded with high probability. Compressive Sampling(CS) designs a

reconstruction algorithm to recover the original data x from the mea-

surements y. Here we shall describe reconstruction using min−`1 with

quadratic constraints, but one can also consider other reconstruction

3.5. AN EXISTING APPROACH 62

algorithms as well [13]. We note that the recovery algorithm addresses

the problem of solving for x when the number of unknowns (i.e. n) is

much larger than the number of observations (i.e. m). In general this

is an ill-posed problem but CS theory provides certain conditions on A

which allows accurate estimation. One such popularly used property

is the Restricted Isometry Property (RIP).

Definition 21. The matrix A is said to satisfy the restricted isom-

etry property of order k with parameter δk ∈ [0, 1) if

(1− δk) ‖ θ ‖2
2≤‖ Aθ ‖2

2≤ (1 + δk) ‖ θ ‖2
2

holds simultaneously for all sparse vectors θ having at most k nonzero

entries. Matrices with this property are denoted by RIP(K, δk).

The following theorem shows that matrices satisfying RIP will yield

accurate estimates of x with the help of recovery algorithms [49].

Theorem 22. Let A be a matrix satisfying RIP(2k, δ2k) with δ2k <
√

2 − 1 and let y = Ax + e be a vector of noisy observations , where

‖ e ‖2≤ ε. Let xk be the best k-sparse approximation of x , that is , xk

is the approximation obtained by keeping the k largest entries of x and

setting others to zero. Then the estimate

x̂ = arg min
x∈Rn

‖ x ‖1 subject to ‖ y − Ax ‖2≤ ε(3.5.1)

3.5. AN EXISTING APPROACH 63

obeys

(3.5.2) ‖ x− x̂ ‖2≤ C1,kε+ C2,k
‖ x− xk ‖1√

k

where C1,k and C2,k are constants depending on k but not on n or m.

The reconstruction in (3.5.1) is equivalent to

(3.5.3) x̂ = arg min
x∈Rn

1

2
‖ y − Ax ‖2

2 +ν ‖ x ‖1

where ν > 0 is a regularization parameter which depends on ε.

There are many ways of constructing RIP matrices from m × n

random matrices [7]. Consider an m×n random matrix A = (aij) and

the following choices of aij:

• aij ∼ N(0, 1
m

)

• aij =


+1/
√
m with probability 1

2

−1/
√
m with probability 1

2

• aij =


+3/
√
m with probability 1

6

0 with probability 2
3

−3/
√
m with probability 1

6

Then it can be shown [7] that A satisfies RIP(K, δK) with high prob-

ability for any integer K = O(m/ log n). In our work we shall use

A = (aij) where aij ∼ N(0, 1
m

) to generate the observed data in the

simulation. However, we shall use the symbol φ in place of A in the

following sections.

3.6. OUR APPROACH 64

3.6. Our Approach

As mentioned already in section 3, we shall treat x as the complete

data and y as the observed data. As a natural tool of missing data anal-

ysis, we shall apply EM algorithm for the estimation of the parameter.

Each iteration of EM algorithm consists of an E-step which requires

computation of the expected complete data log-likelihood (with respect

to the conditional distribution of the complete data given the observed

data) and an M-step where we maximize the same with respect to the

parameter. Following our setup, the complete data log-likelihood is

given by

`(µ) = k1 − k2(x− µ)
′
(x− µ)

= k1 − k2

n∑
i=1

(xi − µi)2

where k1 and k2 are known constants. Then after t iterations in the

EM algorithm, at the E-step we compute

Q(µ) = E(`(µ)|y, µ(t))

where the expectation is computed with respect to the conditional dis-

tribution of x|y, µ(t) and µ(t) is the value of the parameter after t iter-

ations.

At the M-step, we try to maximize Q(µ) with respect to µ. Here

sparsity of the parameter imposes certain restrictions on the parameter

space, which is a strict subset S of Rn where

S = {µ : at most m elements of µ are nonzero}.

3.6. OUR APPROACH 65

This subset can be decomposed as S =

(nm)⋃
i=1

Si, where

Si = {µ : at most m specific elements of µ are nonzero}.

We note that each Si is a linear subspace of Rn.

The difficulty of the problem is that we do not know in advance in

which of these subspaces µ lies. We shall describe here two approaches,

which we call “All Subspace Restricted EM Algorithm (AS-

REM)” and “Estimated Subspace Restricted EM Algorithm

(ESREM)” to circumvent the problem. Both these approaches make

use of a variant of the EM algorithm called the Restricted EM Algo-

rithm (henceforth we shall refer to it as REM) of Kim and Taylor [30].

We first present the theory behind our proposed algorithms. Imple-

mentational issues will be discussed later.

3.6.1. All Subspace Restricted EM Algorithm (ASREM).

In ASREM, we maximize Q(µ) over each of those subspaces at each M-

step. Then after t iterations, the M-step proceeds as follows to compute

µ̂(t+1) = arg max
µ∈S

Q(µ).

We first compute

µ̂(t+1)(Si) ≡
(
µ̂

(t+1)
1 (Si), µ̂

(t+1)
2 (Si), ... ˆ, µ(t+1)

n (Si)
)′

= arg max
µ∈Si

Q(µ).

for each i.

We then define µ̂(t+1) = µ̂(t+1)(Si) such that

Q(µ̂(t+1)(Si)) ≥ Q(µ̂(t+1)(Sj)) ∀j = 1, 2, · · · ,
(
n

m

)
.

3.6. OUR APPROACH 66

Proceeding in this way, we iterate until convergence is attained to

the desired level of accuracy.

3.6.2. Estimated Subspace Restricted EM Algorithm (ES-

REM). In ESREM, instead of maximizing the Q(µ) over all possible

subspaces as described in the previous subsection, we try to estimate

the subspace where µ lies. This estimation is done before the steps of

the EM algorithm. After estimating the subspace, we maximize Q(µ)

at each M-step on that estimated subspace.

Let Sµ be the subspace where µ lies , that is

Sµ =
{

(x1, x2, . . . , xn) ∈ Rn : ∀i (µi = 0 ⇒ xi = 0)
}
.

We hope that if we find the unrestricted maximizer of Q(µ) in each

M-step of the EM algorithm (henceforth called the unrestricted EM),

that is, if we find

µ̂un = arg max
µ∈R

Q(µ),

then the unrestricted EM estimate µ̂un should lie close to Sµ. Hence

we find which components of µ̂un are significant, and take the other

(insignificant) components to be zero. We take the corresponding sub-

space as estimate of Sµ. To test which components of µ̂un are signifi-

cantly different from zero we write V = φφ
′ and P = (φ

′
V −1φ)+φ

′
V −1,

we choose the test statistics to be τi = | µ̂
un
i

σ
√
sii
| ∀i = 1, 2, · · · , n, where

sii = ithdiagonal element of PV P ′ .

Then we estimate Sµ as

(3.6.1) Ŝµ =
{

(x1, x2, . . . , xn) ∈ Rn : ∀i (τi ≤ zα/2 ⇒ xi = 0)
}
.

3.7. SOME DISCUSSIONS 67

But this may sometimes contradict our initial assumption that at

most m components of µ are nonzero. If the cardinality of the set

{ i : τi > zα/2} is more than m, then we order the τi’s in increasing

order of magnitude, say τ(i), i = 1, 2, · · ·n and take the components

corresponding to the τ(1), τ(2), · · · , τ(m) to be significant. In that case

the estimated subspace looks like

Ŝµ =
{

(x1, x2, . . . , xn) ∈ Rn : ∀i τi /∈ {τ(1), τ(2), · · · , τ(m)} ⇒ xi = 0
}
.

It may be noted that Ŝµ is one among the
(
n
m

)
subspaces Si’s. With

this new estimated subspace we apply our original restricted EM algo-

rithm as in the previous subsection as follows.

After t iterations in EM algorithm we have, the M-step of the EM

algorithm as

• M-step: We find

arg max
µ∈Ŝµ

Q(µ)

and take the maximizer as the new estimate of µ after the

(t+ 1)th iteration, that is , µ̂(t+1).

The iterations are continued until convergence is attained.

3.7. Some Discussions

This section deals with some properties of the proposed algorithms

and some important points regarding their application to the estima-

tion of the parameter.

3.7. SOME DISCUSSIONS 68

3.7.1. Theoretical properties. In this subsection we shall prove

that both ASREM and ESREM share the property of convergence of

the observed likelihood. We shall also work on the measure of closeness

of the estimated and the original parameter values in case of ESREM.

These results show that the algorithms suggested in this paper will

produce a reasonable estimate of the parameter.

3.7.1.1. Nondecreasing nature of the observed likelihood with each

iteration. Kim and Taylor [30] showed that REM being adaptation of

the EM and GEM algorithms share some of the properties of EM and

GEM algorithms. In their paper they showed that the observed log-

likelihood, denoted by `obs(µ) , is nondecreasing with each iteration of

the restricted EM algorithm as the Q function satisfies Q(µ̂(t+1)) ≥

Q(µ̂(t)) at the (t + 1)th stage. In our ASREM and ESREM we apply

this REM with slight modifications. Thus the nondecreasing property

of the observed likelihood should also be retained in our algorithms.

The following theorem states that:

Theorem 23. Both in ASREM and ESREM the observed log-likelihood

`obs(µ) is nondecreasing with each iteration, that is, `obs(µ̂(t+1)) ≥ `obs(µ̂
(t)).

3.7.1.2. Measure of closeness between the estimated and original

values in ESREM. We take ‖ µ̂ − µ ‖l2as a measure of closeness be-

tween the original and the estimated values of the parameter. The ex-

pected value of the discrepancy, E[‖ µ̂− µ ‖l2], will give an idea about

the goodness of the estimate. The following theorem, in this connec-

tion, finds an upper bound to this expected discrepancy provided the

subspace is correctly chosen.

3.7. SOME DISCUSSIONS 69

Theorem 24. If µ ∈ Ŝµ then

E[‖ µ̂− µ ‖l2] ≤ σ

√√√√ n∑
i=1

sii

where σ2sii = V ar(µ̂uni).

σ2
∑n

i=1 sii is the trace of the dispersion matrix σ2PV P
′ and is a

measure of the total variation in µ̂un. Thus the total variation in µ̂un

provides an upper bound for the measure of closeness of the estimated

and true value of the parameter provided the subspace is correctly

estimated.

3.7.2. Implementational Issues. Both the algorithms ASREM

and ESREM suggested above have their own implementational com-

plexities and may not be applicable in certain situations.

• The ASREM requires the maximization of Q(µ) over
(
n
m

)
sub-

spaces and then choose the one for which it is maximum at

the M-step of each EM iteration. This is computationally ex-

pensive and practically impossible to implement for large n.

Hence for large values of n we suggest to apply ESREM which

identifies a particular subspace where µ is most likely to be-

long , and then finds the maximum over that subspace in each

M-step.

• In ESREM the tests of significance of the components of µ̂un

give us an idea regarding the subspace where the true µ lies.

But in certain situations these tests may favor the alternate

hypotheses and hence can identify the wrong subspace. The

3.8. GENERAL LINEAR HYPOTHESIS 70

tests find the components of µ̂un that are insignificant com-

pared to the others. If the true µ lies very close to the origin,

that is, if the non zero components of µ are close to zero (that

is the signal to noise ratio is low), then all the components of

µ̂un will also be close to zero. This will inflate the value of the

test statistics τi and tend to reject the null hypotheses. The

sparse nature of µ will not be captured and the true subspace

will not be identified.

In theorem 3 we showed that σ
√∑n

i=1 sii is an upper bound to E[‖

µ̂− µ ‖l2] provided the estimated subspace is the true subspace where

µ lies. Thus given the distribution of the unrestricted EM estimate µ̂un

it is possible to get an idea of the error in estimation.

3.8. General Linear Hypothesis

In this section we will apply ASREM and ESREM to construct tests

and confidence intervals for the parameters of interest. The methods

developed here are important because EM algorithm does not automat-

ically produce the dispersion matrix for the parameters and additional

steps are needed to construct it (Louis 1982; Meng and Rubin 1991).

Kim and Taylor showed in their paper how REM can be applied to

form test statistics and confidence intervals. The same approach can

be adapted in the case of ASREM and ESREM also.

Suppose we want to test the hypothesis:

H0 : Lµ = β

3.9. SIMULATION STUDY 71

where L is a n × n matrix and β is a n × 1 vector. We note that

the null hypothesis imposes certain additional linear restrictions on

the parameter. Hence both ASREM and ESREM can be modified to

find the estimates under these additional restrictions. Let µ̂H0be the

estimate obtained from ASREM or ESREM under the additional linear

restrictions Lµ = β. Then the likelihood ratio test statistic is

r = −2[`obs(µ̂H0)− `obs(µ̂)].

Under suitable regularity conditions [15], r has asymptotically χ2 dis-

tribution with degrees of freedom decided by the difference in the num-

ber of independent parameters in the full model and the model under

the null hypothesis.

The confidence interval for any µi can be constructed using the

likelihood ratio method. Suppose we consider a special case of the

general linear hypothesis as H0i : µi = µ0. Then the likelihood ratio

test criterion r rejects the null hypothesis at level α if r > χ2
α,1 and as

such a 100(1− α)% confidence interval for µi can be defined as

{
µ0 : r > χ2

α,1

}
.

3.9. Simulation Study

This section compares the algorithms developed in this paper with

compressive sampling with the help of simulated data. But first we

verify the convergence of µ̂un to the sparsest solution as claimed before.

The performance of the new proposed approaches will be studied using

simulation technique where we will investigate to what extent we can

3.9. SIMULATION STUDY 72

Table 3.9.1. Simulation study to check the minimum
norm solution

Initial estimate µ̂(1) L1 norm of µ̂un

(0.0001,0.0001,0.0001,0.0001) 10.5667
(12.52,22.76,35.98,67.72) 38.9358
(10.5,11.25,25.62,19.74) 27.8503

Simulation study showing that the minimum norm solution is attained
when the initial estimate of µ is closest to 0.

reduce the dimension of the observed data using ESREM in order to

have a fair reconstruction of the parameter.

3.9.1. Convergence of the Unrestricted EM estimate in ES-

REM. Here we empirically verify that in the unrestricted EM algo-

rithm the EM estimate of µ converges to the sparsest solution of equa-

tion (3.12.2) if we take our initial estimate as 0 (or very close to 0). We

take different initial estimates of µ randomly and check the L1 norm of

the final estimates µ̂un in each case. For demonstration we work with

n = 4 and the results are shown in table 3.9.1. We find that we reach

the minimum norm solution if the initial estimate of µ is taken close

to 0.

3.9.2. Comparison with Compressive Sampling. Here we com-

pare the accuracy of ASREM and ESREM with that of compressive

sampling. We compute ‖ x − x̂ ‖l2 , the measure of closeness between

the original and the reconstructed signal. We note that there is a dif-

ference in the setup of the data in our methods as compared to the

conventional compressive sampling. The conventional approach recon-

structs the signal (data) x whereas in our approaches we reconstruct

(estimate) what is called the true signal (free from noise) µ. Hence for

3.9. SIMULATION STUDY 73

comparison with the conventional compressive sampling approach we

reconstruct signals repeatedly from same population using the conven-

tional approach and average out the residuals to remove the effect of

the noise.

For the comparison of approaches we adopt the following steps:

• We set the actual number of observations n and the observed

number of observationsm. k, the maximum number of nonzero

components in µ, is taken to be equal tom (maximum possible

value), that is, we do not use any prior information about the

number of nonzero components in µ.

• We fix a µ such that its first 4 components are 5 and the rest

are zero.

• We start with a value of σ between 0.1 and 1 (Recall our

assumption that σ is known).

• Assessing the Conventional Approach: We generate data

x from Nn(µ, σ2In) and reconstruct x̂ using (3.5.3) from the

conventional approach and find ‖ x − x̂ ‖l2 . This process is

repeated 1000 times to find the residuals in each case and then

we compute the mean residual 1
1000

1000∑
i=1

‖ xi − x̂i ‖l2 to remove

the effect of randomness and get a measure of closeness among

the original and reconstructed µ.

• Assessing Our Approaches (ASREM and ESREM):We

again generate data x fromNn(µ, σ2In). We apply the ASREM

(wherever possible) and the ESREM to reconstruct µ and find

3.9. SIMULATION STUDY 74

Figure 3.9.1. Average residuals for three algorithms

0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

Average residuals

n=10
σ

Conventional

ASREM

ESREM

The average residuals in case of all the three algorithms are shown for
different values of σ with n = 10 which shows ASREM works better

than other methods.

‖ µ− µ̂ ‖l2 as a measure of closeness between the original and

estimated values.

• For each value of σ in we repeat the process of assessing the

conventional approach as well as our approaches 10 times each

to get the average residual and standard error of the residuals

for each of the conventional and the proposed algorithms.

• We repeat the above procedures for different values of σ in

[0.1, 1.0] and plot the mean residuals along with the standard

error bars.

For small values of n we study the average residuals for different values

of σ for all the three algorithms .

For n = 10, the figure 3.9.1 shows that ASREM works uniformly

best for different values of σ as compared to the conventional method

and ESREM. Though for small values of n ASREM performs better as

compared to the other methods, but this algorithm cannot be applied

for large values of n. In such cases we turn our attention towards

3.9. SIMULATION STUDY 75

Figure 3.9.2. Average residuals for two algorithms

0.2 0.4 0.6 0.8

0
20

40
60

80
Average residuals

n=50,m=40
σ

Conventional

ESREM

0.2 0.4 0.6 0.8

0
20

40
60

80

Average residuals

n=100,m=80
σ

Conventional

ESREM

The average residuals in case of the two algorithms are shown for
different values of σ with n = 50 and 100 which shows ESREM works

better than the conventional method.

ESREM. In figure 3.9.2 we plot the average residuals using ESREM

and the conventional method for both n = 50 and n = 100 and find

that ESREM works relatively better than the conventional method for

different values of σ.

We also compared the computation time taken by ESREM with

that of the conventional compressive sampling algorithm. With our

limited computing facility, both the algorithms were set to run with

the R programming environment in a standard machine. The com-

putation of the inverse of the measurement matrix and other related

matrix products are not included in the computation time because

the measurement process being non-adaptive, those matrix computa-

tions can be done beforehand and stored much before the observation

process starts. Taking σ = 0.1, we report in Table 3.9.2, the aver-

age system time (in seconds) taken by both the algorithms in case of

n = 50,m = 40 and n = 100,m = 80.

3.9. SIMULATION STUDY 76

Table 3.9.2. Comparison of System time

n = 50,m = 40 n = 100,m = 80

ESREM 0.06920431 1.405794
Conventional Algorithm 3.371517 19.12753

The values show that ESREM can be used as a quick algorithm

for the estimation of the parameter. It performs comparably with the

conventional CS algorithm for moderate error levels and outperforms

it for larger error levels.

3.9.3. Performance of ESREM in data reduction. As men-

tioned earlier n is the size of the complete data and m is the number

of the observed linear combinations. Thus the value of m
n

is an im-

portant point of consideration. It signifies the sampling fraction, that

is, to what extent we can reduce the data to get good estimate. We

fix n = 1000 and with σ = 0.001 we plot the average residuals with

different values of m using ESREM in figure 3.9.3.

The plot shows that the average residuals while estimating µ are

very small if we take m more than or equals to 750. Hence ESREM is

found to work well even for m as small as 750, that is, at this variance

level we can afford to store only 75% of the original sample size to get

a good estimate. Obviously the performance of ESREM will decrease

if we increase the value of σ.

Thus we find that both the ASREM and ESREM perform well in

reconstructing the population parameter. Naturally, ASREM works

best if it is not computationally prohibitive for a given problem. For

3.10. PRACTICAL EXAMPLE 77

Figure 3.9.3. Average residuals in ESREM for different m

400 500 600 700 800 900

10
20

30
40

Average Residuals

m

The plot shows the change in average residuals for different values of
m in case of ESREM for n = 1000 and σ = 0.001.

moderate to large dimensional problems which are common in prac-

tice ESREM is suggested in order to get a reasonable estimate of the

parameter. For both ASREM and ESREM the value of the average

residuals will depend on σ and the sampling fraction, m
n
.

3.10. Practical Example

One of the most well-known examples of a CS imager is the Rice

single-pixel camera developed by [21]. Instead of first collecting the

n pixel values, the single-pixel compressive digital camera directly ob-

serves m random linear measurements of a scene. Here the incident

light field corresponding to a target image (say x) is reflected off a

digital micromirror device (DMD) which consists of n mirrors whose

movements are controlled by a random number generator. This re-

flected light is then collected by a second lens and then focused onto

3.10. PRACTICAL EXAMPLE 78

Figure 3.10.1. Single pixel camera

a single photodiode (which is the single pixel). Each of the n mirrors

of DMD can be independently oriented either towards the photodiode

(which corresponds 1) or away from it (which corresponds 0).

The n mirror orientations are set in a pseudo random 0 or 1 pattern

by the random number generator to collect the data. This sets the ith

row of the measurement matrix φ. The voltage at the photodiode is

then observed which is the ith observed linear combination yi. This pro-

cess is repeated m times to obtain all the observed linear combinations

y = (y1, y2, · · · , ym)′. The measurement matrix φ thus formed has each

row containing 0 or 1 in a random manner.

The data used in this paper are obtained from “Rice Single-Pixel

Camera Project, http://dsp.rice.edu/cscamera”. The figures in 3.10.2

illustrate a target object (on the left) which is a image of the letter “R”

and a reconstructed image (on the right) of the same using 40% random

measurements than the reconstructed pixels. The reconstructed image

is a 64× 64 black and white image of the letter “R” (n = 4096) recon-

structed from m = 1638 random measurements taken by the camera.

3.11. CONCLUSIONS 79

Figure 3.10.2. Original and reconstructed images

The figure on the left is the original image of the letter “R” and the
figure on the right is the reconstruction from 1638 random

measurements.

The reconstruction is performed by ESREM. In the theory behind

ESREM the error variance σ2 was assumed known. However in this

example the error variance is not known. Instead we are given the error

bound ε (in 3.5.1) which is 0.01. Since for our approach we assume that

the error is normally distributed with zero mean, so| e |< 3σ with high

probability and hence we approximate the value of σ as 0.00333.

3.11. Conclusions

The present paper employs EM algorithm for data compression in a

iid setup. Unlike the classical uses of EM algorithm where missingness

appears naturally, here missingness is introduced deliberately to reduce

the number of observed samples. While the estimation methods devel-

oped here seem reasonably good, one should note that these methods

are only for those situations where the original sample is too large to

store or observe. The entire work is based on the assumption that the

EM estimate should be close to the true value of the parameter. How-

ever, this may not be always correct due to poor selection of measure-

ment matrix, too much reduction in sample size, or large error variance.

3.12. APPENDIX 80

The compressive sampling technique is described in this paper because

it is a similar data compression procedure which selects a few linear

combinations of the observations. The present work is neither a devel-

opment to the CS theory nor it is claimed to uniformly outperform the

existing CS algorithms. The comparison using the simulated data only

indicates that ASREM and ESREM provide reasonable estimation. In

terms of accuracy, ESREM performs comparably with existing CS al-

gorithm for moderate error level, but requires less computation time.

For larger error levels, it outperforms the existing CS algorithm.

Our approach can be extended to a non-iid setup where the obser-

vations may be generated from a stochastic process. A multivariate

extension can also be done where we can do a two-fold reduction in

terms of dimension and sample size assuming samples from a multi-

variate distribution.

3.12. Appendix

3.12.1. Detailed calculations of the proposed approaches:

The derivations and the detailed expression of the M-steps of ASREM

and ESREM are described here.

3.12.1.1. Calculation of the M-step in ASREM:. The conditional

distribution of x|y, µ(t) is given by

(3.12.1) Nn

(
µ(t) + φ′(φφ

′
)−1(y − φµ(t)), σ2(In − φ′(φφ

′
)−1φ)

)
.

3.12. APPENDIX 81

Now µ ∈ Si implies certain linear restrictions on the parameter µ in

the form

Aiµ = 0

where Ai = ((aiγδ)) is a n× n matrix such that

aiδδ =


1 ifµδ = 0

0 otherwise
and aiγδ = 0 if γ 6= δ.

Using Lagrange multiplier method to incorporate the restrictions we

construct

QR(µ) = Q(µ)− λ′Aiµ

where λ′ = (λ1, λ2, . . . , λn) are Lagrangean multipliers.

We set ∂
∂µj
QR(µ) = 0 for all j. If µj 6= 0

∂

∂µj
QR(µ) = 0 =⇒ ∂

∂µj
Q(µ) = 0

=⇒ ∂

∂µj

[
E{

n∑
α=1

(xα − µα)2|y, µ(t)}
]

= 0

=⇒ µ̂
(t+1)
j (Si) = E[xj|y, µ(t)]

=⇒ µ̂
(t+1)
j (Si) = µ

(t)
j + αj − βj

where αj =jth element of φ(φφ
′
)−1y and βj =jth element of φ′(φφ′)−1φµ(t)

(from (3.12.1))

If µj = 0

∂

∂µj
QR(µ) = 0

=⇒ µ̂
(t+1)
j (Si) = E[xj|y, µ(t)]− λj

3.12. APPENDIX 82

From the restriction µj = 0 we get

λj = E[xj|y, µ(t)]

=⇒ µ̂
(t+1)
j (Si) = 0.

Then we choose the µ̂(t+1)(Si) for which Q(µ̂(t+1)(Si)) is maximum

as the new estimate of µ at (t+ 1)th iteration.Thus the estimate of µ is

µ̂(t+1) = µ̂(t+1)(Si)

such that

Q(µ̂(t+1)(Si)) ≥ Q(µ̂(t+1)(Sj)) ∀j = 1, 2, · · · , n.

3.12.1.2. Calculation regarding in ESREM:. For the unrestricted

EM algorithm the estimate of µ should converge to the maximizer of

the observed log-likelihood. The equation for finding the MLE from

the observed likelihood is

(3.12.2) (φ
′
V −1φ)µ = φ

′
V −1y

where V = φφ
′
.

Now the above equation (3.12.2) does not have a unique solution

as rank[(φ
′
V −1φ)n×n] = m � n. Hence the observed likelihood does

not have a unique maximum and our unrestricted EM algorithm will

produce many estimates of µ. Among these many estimates we choose

the sparsest solution. This is taken care of by taking the initial estimate

of µ as 0 in the iterative process as then the estimate will hopefully

3.12. APPENDIX 83

converge to nearest solution which will be the sparsest one. We have

justify this with the help of simulation in section 9. For finding the

least norm solution of (3.12.2) we take the Moore-Penrose inverse of

(φ
′
V −1φ) [33] and find the unrestricted EM estimate as

µ̂un = (φ
′
V −1φ)+φ

′
V −1y = Py

where P = (φ
′
V −1φ)+φ

′
V −1.

Then the distribution of µ̂un comes out to be Nn(Pφµ , σ2PV P
′
),

so that we get

E(µ̂un) = Pφµ = (φ
′
V −1φ)+(φ

′
V −1φ)µ.

Since µ is sparse we may assume (φ
′
V −1φ)+(φ

′
V −1φ)µ ' µ and hence

we get E(µ̂un) = Pφµ ' µ.

Now for identifying the true subspace we want to test n hypotheses

H0i : µi = 0 ∀i = 1(1)n

Let

µ̂un = (µ̂un1 , µ̂un2 , . . . µ̂unn)
′

The above calculations shows that the test statistics for testing H0i is

τi = | µ̂
un
i

σ
√
sii
| ∼ N(0, 1) under H0i ∀i = 1(1)n

where sii = ithdiagonal element of PV P ′ . This justifies the choice of

the estimated subspace in 3.6.1.

3.12. APPENDIX 84

3.12.2. Proofs of the theoretical properties. Below we give

the proofs of theorem 2 and theorem 3. The theorems are stated earlier

at section 7.

3.12.2.1. Proof of Theorem 23:

Proof. First we consider the ASREM algorithm.We apply the

REM for each of the subspaces Si in each iteration. The only modifi-

cation at this stage is that in the M-step of each iteration we choose

the maximum of the Q values over different subspaces. At the (t+ 1)th

iteration in ASREM we have

Q(µ̂(t+1)(Si)) ≥ Q(µ̂(t+1)(Sj)) ∀j 6= i

⇒ Q(µ̂(t+1)) = max
j

Q(µ̂(t+1)(Sj)).

Also since we apply REM for each of the subspace Si, it follows from

the property of REM that for Si we have

Q(µ̂(t+1)(Si)) ≥ Q(µ̂(t)(Si)) ∀i.

Hence we have the following chain of inequalities

Q(µ̂(t+1)) = max
j

Q(µ̂(t+1)(Sj)) ≥ max
j

Q(µ̂(t)(Sj)) = Q(µ̂(t))

⇒ `obs(µ̂
(t+1)) ≥ `obs(µ̂

(t)).

�

Thus for ASREM we get that the Q function is nondecreasing in

each iteration which makes the observed log-likelihood also nondecreas-

ing in each iteration. Next we consider the ESREM algorithm. Here we

3.12. APPENDIX 85

apply the REM over the estimated subspace Ŝµ. Hence from the prop-

erty of REM we find that the observed log-likelihood is nondecreasing

with each iteration.

3.12.2.2. Proof of Theorem 24:

Proof. The insignificant components of µ̂un are set to zero and

the subspace spanned by the basis corresponding to the significant

components is chosen. We find the restricted estimate µ̂ by maximizing

Q(µ) over this subspace. Thus the restricted estimate µ̂ can be treated

as a projection of µ̂un on Ŝµ. Hence if µ ∈ Ŝµ we have

‖ µ̂− µ ‖l2≤‖ µ̂un − µ ‖l2 w.p. 1.

This implies

E[‖ µ̂− µ ‖l2] ≤ E[‖ µ̂un − µ ‖l2]

Now

‖ µ̂un − µ ‖2
l2

=
n∑
i=1

(µ̂uni − µi)2

⇒ E[‖ µ̂un−µ ‖2
l2

] =
n∑
i=1

E(µ̂uni −µi)2 =
n∑
i=1

V (µ̂uni) [∵ E(µ̂uni) = µi]

⇒ E[‖ µ̂un − µ ‖2
l2

] = σ2

n∑
i=1

sii.

Then

E2[‖ µ̂un − µ ‖l2] ≤ E[‖ µ̂un − µ ‖2
l2

] = σ2

n∑
i=1

sii

⇒ E[‖ µ̂un − µ ‖l2] ≤ σ

√√√√ n∑
i=1

sii [∵ sii > 0 ∀i].

3.12. APPENDIX 86

This implies

E[‖ µ̂− µ ‖l2] ≤ E[‖ µ̂un − µ ‖l2] ≤ σ

√√√√ n∑
i=1

sii

⇒ E[‖ µ̂− µ ‖l2] ≤ σ

√√√√ n∑
i=1

sii.

�

CHAPTER 4

Data Reduction in Markov model

4.1. Introduction

In this chapter we shall consider the problem of data reduction in

case of dependent data setup. More specifically here we shall discuss fil-

tering mechanism in case of discrete Markov models. Discrete Markov

chains are the simplest dependent structure that one can think of and

are very useful for modeling a wide range of scientific problems in na-

ture. Some important applications include modeling of dry and wet

spells (P. J. Avery and D. A. Henderson (1999) [5]), deoxyribonucleic

acid (DNA) sequences (P. J. Avery and D. A. Henderson (1999) [5]),

study of chronic diseases (B. A. Craig and A. A. Sendi (2002) [17]).

Any stochastic process X = {X1, X2, · · · , Xn} having a finite set S

as its state space, is said to be a Markov process of order s if

P (Xn = an|Xn−1 = an−1, Xn−2 = an−2, · · · , X1 = a1)

= P (Xn = an|Xn−1 = an−1, Xn−2 = an−2, · · · , Xn−s = an−s)

For notational convenience let us denote the state space as S ={1, 2, · · · , k}.

Further we assume that the Markov process has stationary transition

probabilities, which means

P (Xn = an|Xn−1 = an−1, Xn−2 = an−2, · · · , Xn−s = an−s) = pan−s,··· ,an−1:an

87

4.1. INTRODUCTION 88

does not depend on n. For s = 1 we have a simple Markov chain with

finite state space. Any Markov chain of sth order can be treated as a

simple Markov chain with suitable parameters. Hence in this chapter

we shall develop the methods assuming a simple Markov chain which

will be equally applicable for any Markov process of higher order. A

Markov chain can be completely described by the initial state and the

set of transition probabilities. Here we shall consider the initial state

of a Markov chain to be known and try to make inferences about the

transition probabilities based on the observed data. More specifically

inferences regarding the transition probability matrix can help us to

answer many specific questions regarding the Markov process which

we usually encounter.

There is an extensive literature available on the statistical infer-

ences of finite Markov chains based on complete data. Billingsley [10]

gives a good account of the mathematical aspects of different techniques

regarding inferences about the transition probabilities which includes

Whittle’s formula, maximum likelihood and chi-square methods. Es-

timation of transition probabilities and testing goodness of fit from

a single realisation of a Markov chain has been studied by Bartlett

[9]. Goodman and Anderson [4] derived the estimates of the transi-

tion probabilities and their hypothesis when there are more than one

realisation of a single Markov chain. Their paper also described the

asymptotic properties of the methods when the number of realisations

increase. All these works assume the observed data to be one or more

long, unbroken observations of the chain. In this paper we assume that

4.1. INTRODUCTION 89

there is a single realisation of the Markov chain which is not completely

observed. The observed broken chain which results from the filtering

mechanism is therefore not Markov.

Based on the filtering mechanism we will observe only certain tran-

sitions of a Markov chain and treat the remaining part of the chain

as missing. From the observed data we will estimate the transition

probabilities using EM algorithm. Since the missingness in the data

occurs due to the filtering process, the data are not missing at random

(NMAR) and the missing mechanism is nonignorable but known. The

E-step of the EM algorithm requires to find the conditional expecta-

tion of the missing data given the observed data. This is achieved by

defining the all possible missing paths for a transition of any order and

finding the probability of the same. The standard error of the EM es-

timate is obtained by the supplemented EM algorithm (SEM) (Meng

and Rubin [39]). Usually the standard error of the EM estimate is

obtained by inverting the observed information matrix. In our case the

observed likelihood cannot be obtained explicitly and hence we avoid

the calculation of the observed information matrix. SEM is a technique

to calculate asymptotic dispersion matrix of the EM estimate without

inverting the observed information matrix.

Section 2 describes the setup of the problem. Section 3 deals with

the identifiability issues of the parameter that arise due to filtering of

data. In section 2 we assume that the transition probability matrix

consists of all positive elements. This assumption is relaxed in section

3 where we allow some structural zeroes in the transition probability

4.2. SETUP 90

matrix. We describe the additional modification we need in the filtering

mechanism due to such relaxation. Section 5 describes the methods of

estimation and testing the transition probabilities. In this section we

also describe the estimation of standard errors of the estimates by the

SEM algorithm. Section 6 describes the generalization of the above

methods in case of multiple Markov chains. In section 7 we demonstrate

the methods developed using simulated data. A real life data analysis

is demonstrated in section 8. Section 9 is the appendix which has the

proofs of a major theorem of this paper.

4.2. Setup

LetX be a simple Markov chain with finite state space S = {1, 2, · · · , k}

and transition probability matrix P = ((pij))k×k. Let us first assume

that 0 < pij < 1, ∀ i, j. We shall relax this assumption later and con-

sider the case where we allow some pij’s to be zero. The transition

probability matrix P satisfy the standard condition

P1 = 1 i.e.
∑
j

pij = 1 for all i.

Hence there are k2 − k independent parameters. We define the vector

of the parameters as

θ = (p11, p12, · · · , p1(k−1), p21, p22, · · · , p2(k−1), · · · , pk1, pk2, · · · , pk(k−1))
′

= (θ1, θ2, · · · , θd)
′

4.2. SETUP 91

where d = k2 − k and the parameter space is

Θ =
{
µ :

k−1∑
j=1

pij < 1, for i = 1, · · · , k
}

=
{
θ :

k−1∑
j=1

θj < 1 ,
k−1∑
j=0

θ(i−1)k+j < 1, for i = 2, · · · , k
}
.

We consider a single realization x of the chain and the number of tran-

sitions from state i to state j in this realization is nij. We assume that

the Markov process is continued sufficiently long enough so that the

realization x contains each transition at least once, that is, nij > 0 for

all i and j. The matrix of transition count is

N =



n11 n12 · · · · · · n1k

n21 n22 · · · · · · n2k

...

nk−11 nk−12 · · · · · · nk−1k

nk1 nk2 · · · · · · nkk


.

In this chapter we shall propose a data acquisition protocol which sug-

gests that instead of observing the entire realization x, we record only

some of the transitions and treat the remaining part of the chain as

missing. The decision about which transitions we record is described

in the form of a filter matrix F = ((fij))1≤i,j≤k which contains 0 and

1 as elements. In particular we record the transition from state i to

state j if fij = 1. If X is the complete chain then let φF (X) denote

the chain filtered using F. So in conjunction with our general notation,

4.2. SETUP 92

the filtering mechanism here can be described in the form of a matrix

and the filtered data is Y = φF (X).

Example 25. Consider a three state Markov chain x as

112312232123331121331

Suppose we are given a filter matrix

F =


1 0 0

0 1 0

1 1 0

 .
Then the transitions we record in φF (x) are

(4.2.1)

1→ 1

2→ 2

3→ 1

3→ 2

Then the filtered chain is

11 312232 311 31

In the filtered chain the missing states are indicated by the symbol

” ” which we call “blank”. The example shows that besides the

transitions (4.2.1) there may be some transitions which are indirectly

recorded in the filtered chain (such as 2→ 3 is recorded even if f23 = 0).

Any transition i → j may be recorded indirectly in the filtered chain

if there exist some states a and b such that fai = 1 and fjb = 1. Thus

4.3. IDENTIFIABILITY 93

all the transitions in the filtered chain may be classified into one of the

three categories:

• directly recorded (fij = 1)

• indirectly recorded (fij = 0 but the transition occurs in the

filtered chain, e.g. 2→ 3 in Example 25)

• unobserved (fij = 0 and the transition does not appear in the

filtered chain e.g. 3→ 3 in Example 25)

4.3. Identifiability

In this section we shall discuss about the identifiability of the pa-

rameters based on the filtered chain. We note that our filtered chain

no longer possesses the Markov property and hence the issue of iden-

tifiability needs to be studied separately. While applying the filtering

mechanism, if we record only a very few transitions then all the pa-

rameters of the Markov chain may not be identifiable. For example in

a Markov chain with state space {1, 2, · · · , 10} if we record only the

transition 1 → 1 then some parameters , say p55, are not identifiable.

We need to study how much data we can throw away, so that the prob-

lem still remains identifiable. Thus our main aim, in this section, will

be to identify a class of filter matrices so that data generated by any

filter matrix of that class will retain the identifiability of the parame-

ters. But first we define what is meant by identifiability of parameter

on the basis of a random sample.

Definition 26. Let X be a random sample from a distribution

characterized by the parameter θ and L(θ, x) be the likelihood. Then

4.3. IDENTIFIABILITY 94

the parameter θ is said to be identifiable on the basis of X if for any

two distinct values θ1 and θ2 in the parameter space

L(θ1, x) 6= L(θ2, x).

Suppose X is a random sample drawn from a population character-

ized by the parameter θ. Let Y = g(X) be function of X. Given X we

can always construct Y through g. So if θ is identifiable on the basis of

Y , we can identify θ also from X. On the contrary, if θ is unidentifiable

on the basis of X, then it is also unidentifiable on the basis of Y. This is

because, if we assume θ to be identifiable on the basis of Y, then given

X, we can construct Y through g and then θ can be identified from X,

which is a contradiction. Thus in general we have the following two

results:

Claim 27. a) If θ is identifiable on the basis of Y, then θ is also

identifiable on the basis of X.

b) If θ is unidentifiable on the basis of X, then θ is also

unidentifiable on the basis of Y.

In the present situation to prove that the parameters are identifiable

it is enough to consider a observed sample x such that ∃t such that

Pθ(φF (x) = t) 6= Pθ′(φF (x) = t) and prove that any two different

values of the parameter θ will yield different values of the observed

likelihood Lobs(θ, x).

Let F be the class of all k × k filter matrices. We call a filter

matrix F ∈ F identifiable if P is identifiable with respect to φF (X).

4.3. IDENTIFIABILITY 95

Let Iθ ⊆ F be the set of all k×k filter matrices for which the parameter

θ is identifiable. Then I = ∩Iθ is the set of identifiable filter matrices.

With this notation, the general fact stated in claim 27 is also ap-

plicable for the data generated by the filter matrices.

Lemma 28. For H,M ∈ F , let φH = g ◦φM for some function g(.).

Then H ∈ I implies M ∈ I and M ∈ F − I implies H ∈ F − I.

Example 29. Let

H =


1 0 0

0 1 0

1 1 0

 and M =


1 1 0

0 1 0

1 1 0

 .
M is same as H except that for M we directly observe one more tran-

sition 2 → 3 than H. Then φH = g ◦ φM and hence if H ∈ I then

M ∈ I.

In general there are 2k
2possible filter matrices in F . Instead of

searching over all possible filter matrices we shall start with some def-

inite structures of filter matrices which are identifiable. The above

discussion motivates us to extend the identifiability over a larger class

of matrices. This requires some ordering of the filter matrices in terms

of the data we store.

Definition 30. For filter matrix M = ((mij)) ∈ F and H =

((hij)) ∈ F we say M � H if ∀i, j hij = 1⇒ mij = 1 and M � H if

∀i, j hij = 0⇒ mij = 0.

4.3. IDENTIFIABILITY 96

Lemma 31. a) If H ∈ I and M � H then M ∈ I.

b) If H ∈ F − I and M � H then M ∈ F − I.

Proof. a) M � H implies φH = g(φM) for some g(.). Using

Lemma 28 we get H ∈ I implies M ∈ I.

b) M � H implies φM = g(φH) for some g(.). Using Lemma

28 we get H ∈ F − I implies M ∈ F − I. �

Thus if any filter matrix M is identifiable, then all filter matrices

which stores more data than M are also identifiable. This fact is also

true for any subclass of filter matrices.

Definition 32. If D ⊆ F , then the closure of D is defined as

D̄ = {F ∈ F : F � D for some D ∈ D}.

Lemma 33. If D ⊆ I then D̄ ⊆ I.

Proof. Let M ∈ D̄. Then M � D for some D ∈ D.

Since D ⊆ I, we get D ∈ I. Then Lemma 31 implies M ∈ I.

This implies D̄ ⊆ I. �

Thus given any class of identifiable filter matrices D we can always

extend it to a larger subclass of identifiable filter matrices.

Our observed chain is a sequence of states and blanks (). Given

any observed chain we want to find the condition under which the

conditional probability of a given segment of the observed chain given

the initial state in the segment is identifiable.

4.3. IDENTIFIABILITY 97

Definition 34. For any finite sequence π of states or blanks ()

we define

Sπ = set of all filtered segments where π occurs in consecutive positions.

We note that if π1 ⊆ π2 then Sπ1 ⊇ Sπ2 .

Lemma 35. For any filter matrix F , if P (Sπ) > 0 then pπ is iden-

tifiable where π is a sequence of states or blanks which starts and ends

with states and pπ is the conditional probability of the sequence π given

the initial state in π.

Proof. Let π start with the state α and end with the state β.

Let

A = subchains that ends with α.

B = subchains that ends with the sequence π.

Then B ⊆ A. Also P (Sπ) > 0 implies P (B) > 0 which implies P (A) >

0.

Also from Markov property we get that P (B|A) = pπ. Thus if pπ

changes P (B|A) changes. Since the conditional probability of a class

of subchains changes, the joint distribution of the entire filtered chain

must also change. Hence two distinct values of pπ will give two distinct

values of the observed likelihood.Thus pπ is identifiable. �

Corollary 36. For any filter matrix F the parameter pij is iden-

tifiable if P (Sij) > 0.

4.3. IDENTIFIABILITY 98

As mentioned before we want to start with filter matrices of definite

structures which are identifiable and extend them to relatively larger

classes. With this view in mind, we define three classes of filter matrices

each of which will be sufficient for a filter matrix to be identifiable.

Class1: We define C1 ⊆ F which consists of all filter matrix

F = ((fij)) , 1 ≤ i, j ≤ k such that

a) ∃ α such that fαj = 0, j = 1, 2, ..., k i.e. the αth row of F is

zero.

b) ∃ β such that fiβ = 0, i = 1, 2, ..., k i.e. the βthcolumn of F is

zero.

c) fpj = 1 for exactly one j, 1 ≤ j ≤ k, p = 1, 2, ..., k , p 6= α

,i.e. except αth row every other row must have exactly one

element 1.

d) fiq = 1 for exactly one i, 1 ≤ i ≤ k, q = 1, 2, ..., k , q 6= β

,i.e. except βth column every other column must have exactly

one element 1.

Class2: We define C2 ⊆ F which consists of all filter matrix

F = ((fij)) , 1 ≤ i, j ≤ k such that

a) ∃ α and β such that fiα = 0, i = 1, 2, ..., k and fiβ = 0, i =

1, 2, ..., k i.e. the αth and βth column of F is zero.

b) fiq = 1 for at exactly one i, 1 ≤ i ≤ k, q = 1, 2, ..., k , q 6=

α, β ,i.e. except αth and βth column every other column have

exactly one element 1.

4.3. IDENTIFIABILITY 99

c) fαj = fβj = 1 1 ≤ j ≤ k, , j 6= α, β, i.e. except αth and

βth column every other element of αth and βth row is 1.

d) fpj = 1 for exactly one j, 1 ≤ j ≤ k, p = 1, 2, ..., k, p 6=

α, β ,i.e. except αth and βth row every other row have exactly

one element 1.

Class3: We define C3 ⊆ F which consists of all filter matrix

F = ((fij)) , 1 ≤ i, j ≤ k such that

a) ∃ α and β such that fαi = 0, i = 1, 2, ..., k and fβi = 0, i =

1, 2, ..., k i.e. the αth and the βth row of F is zero.

b) fqi = 1 for exactly one i, 1 ≤ i ≤ k, q = 1, 2, ..., k , q 6=

α, β ,i.e. except αth and βth row every other row have exactly

one element 1.

c) fjα = fjβ = 1 1 ≤ j ≤ k, , j 6= α, β, i.e. except αth and

βth row every other element of αth and βth column is 1.

d) fjp = 1 for exactly one j, 1 ≤ j ≤ k, p = 1, 2, ..., k, p 6=

α, β ,i.e. except αth and βth column every other column have

exactly one element 1.

The following theorem and its corollary provide sufficient conditions for

filter matrices to be identifiable. Any filter matrix which belong to at

least one of the three classes is identifiable. The proof of the theorem

is given in the appendix.

Theorem 37. Consider an univariate Markov chain X on finite

state space {1, 2, ..., k} and transition probabilities pij where 0 < pij <

4.4. STRUCTURAL ZEROES IN TRANSITION PROBABILITY MATRIX 100

1, i, j = 1, 2, ...k. Suppose F be any filter matrix belonging to the class

C∗ = C1 ∪ C2 ∪ C3. Then F must also belong to the class I.

The following corollary to the above theorem is an immediate ap-

plication of Lemma 33.

Corollary 38. C∗ ⊆ I.

Thus if we start with a definite structure of matrices in C1 or C2 or

C3 we get a relatively larger class C∗ of identifiable filter matrices. For

the rest of the paper we shall be working with filter matrices within

this class. We shall find that any filter matrix in this class will provide

considerable reduction in data.

4.4. Structural zeroes in Transition probability matrix

In the previous section while obtaining the sufficient conditions for

identifiability we assumed 0 < pij < 1, ∀ i, j. This was a crucial assump-

tion in developing the theory for the sufficient conditions. However in

many practical applications this assumption stands out to be too re-

strictive. For example, while modeling a disease status the probability

of an individual entering from one state to another may be zero (in case

of chronic illness, the condition of an individual usually deteriorates).

Also the case of structural zeroes in the transition probability matrix

will occur later in this paper while dealing with multiple Markov chains.

In this section we generalize the sufficient conditions for a filter matrix

to be identifiable even when some pij’s are zero.

We note that all zeroes (if any) in the transition probability model

are structural zeroes, that is, we know the position of the zeroes even

4.4. STRUCTURAL ZEROES IN TRANSITION PROBABILITY MATRIX 101

before the collection of the data. Also for any i, pij must be positive

for at least one j since all the row sums of the transition probability

matrix is 1. We further assume

(A1) for any j, pij must be positive for at least one i.

This is a reasonable assumption to make because if such a state j

exists we shall ignore that state from our analysis.

As before we have the classes of filter matrix C1, C2 and C3. Further

let us define an additional class of filter matrix R ⊆ F as

R = {F ∈ F : For any i ∈ {1, 2, ..., n}, fij = 1 for at least one j ∈ Z}

where Z = {j : pij > 0}. This restriction means for every row of a

filter matrix, we should observe at least one probable transition. The

restriction on the filter matrices is quite justified and does not in any

way reduces the applicability of filtering mechanism. The following

theorem is a generalization of Theorem 37 in the case where we allow

some pij to be zero.

Theorem 39. Consider an univariate Markov chain X on finite

state space {1, 2, ..., k} and transition probabilities pij where 0 ≤ pij ≤

1, i, j = 1, 2, ...k. Let F be any filter matrix belonging to the class S

where S = C∗∩R. Then under the assumption A1, F must also belong

to the class I.

The proof of the above theorem is similar to the proof of Theorem

37 because under the assumption A1, and for filter matrices within

4.5. ESTIMATION AND TESTING 102

the class S, we have P (Sπ) > 0 for all choices of sequences π, that

we require in Theorem 37. Finally application of lemma 33, gives the

required result.

4.5. Estimation and testing

As mentioned earlier, a Markov process can be completely charac-

terized by specifying the transition probability matrix. This section

deals with drawing inferences regarding the parameters. Instead of

recording the entire Markov chain x, we apply a given filter matrix

F ∈ F to record φF (x). F is fixed and does not in any way depend on

the data x. The choice of F may depend on the availability of the sam-

ples, storage facilities or past experience subject to the constraint of

identifiability. Based on φF (x) we shall find estimates of the transition

probabilities and compute the standard error of the estimates. Our

main tool for estimation will be EM algorithm. For the computation

of the standard error we shall use Supplemented EM algorithm(SEM).

The latter part of the section deals with testing of hypothesis regarding

the parameters.

4.5.1. Estimation of parameters: In the present situation the

complete data is x which is unobserved and the observed data is φF (x).

As a natural tool of missing data analysis we will apply EM algorithm

for the estimation of the parameter θ. Each iteration of EM algorithm

consists of a E-step (expectation step) and an M-step (maximization

step). In the E-step of the algorithm we need to find the conditional ex-

pectation of the complete data log-likelihood given the observed data

4.5. ESTIMATION AND TESTING 103

and the current iterated value of the parameters. In our case this

requires to find the conditional expectation with respect to the condi-

tional distribution of x given φF (x) and the current iterated value θ(t)

of the parameter. The complete data log likelihood is

`com(θ) = constant+
k∑

α,β=1

nαβ log pαβ.

Since `com(θ) is linear in nαβ, we need to compute

E
(
nαβ|φF (x); θ(t)

)
.

This conditional distribution cannot be computed directly as the con-

ditional distribution of x given φF (x) cannot be found out explicitly.

We shall express nαβ as a sum of certain indicator variables to evaluate

this conditional expectation, the computation of which will be shown

in subsection 4.5.1.2. We shall show that this require us to find the

conditional probability that the observed chain φF (x) moves from state

α to state β as

Pθ(t)
(
φF (x)i = β|φF (x)i−1 = α

)
where φF (x)k is the kth value of the observed chain φF (x). Since the

observed chain has runs of missing states, the calculation of the above

probability will require us to find the probability of a transition from

one state to another in any number of steps such that all the inter-

mediate steps are missing. If the complete chain is available, then the

probability of a transition from a to b in ν steps is the (a, b)th element of

4.5. ESTIMATION AND TESTING 104

P ν . However we need to find the probability of such transition through

some specific ways.

4.5.1.1. Defining possible missing paths for a transition: Consider

two states a and b. Suppose we are interested in transition from a to

b in ν steps. Each possible way of transition from a to b in ν steps is

called a path of order ν. We call a path of order 1 as edge. Thus any

given path consists of one or more edges. Clearly the transition from a

to b in ν steps can occur through one or more paths. We classify these

paths in two categories based on the given filter matrix:

• observed path(O): whose all edges are observed.

• unobserved path(U): whose all edges are unobserved.

Clearly the two sets O and U are not mutually exhaustive, that is, we

cannot classify all paths into any one of these categories.

Example 40. Consider a two state Markov chain and two filter

matrices F1 and F2 such that

F1 =

1 0

1 1

 F2 =

1 0

0 1


Suppose we consider the transition from state 1 to state 1 in two steps.

The possible paths are:

w1 : 1 −→ 1 −→ 1 w2 : 1 −→ 2 −→ 1

For filter matrix F1, path w1 ∈ O, i.e. path w1is observed whereas U is

empty, i.e. no paths are unobserved. For filter matrix F2, path w1 ∈ O

and w2 ∈ U . If we consider the transition from state 2 to state 2 in two

4.5. ESTIMATION AND TESTING 105

steps, the possible paths are:

w1 : 2 −→ 2 −→ 2 w2 : 2 −→ 1 −→ 2

For filter matrix F1, path w1 ∈ O, and U is empty whereas for filter

matrix F2, path w1 ∈ O and w2 ∈ U .

Now consider the transition probability matrix P of the Markov

chain. We construct two matrices P [0] = ((p
[0]
ij)) and P [1] = ((p

[1]
ij)) as

p
[0]
ij =


0 if fij = 1

pij if fij = 0

and

p
[1]
ij =


0 if fij = 0

pij if fij = 1

Then the (i, j)th element of (P [0])ν gives the probability of going from

state i to state j in ν steps through unobserved path(s). Also the (i, j)th

element of (P [1])ν gives the probability of going from state i to state j

in ν steps through observed path(s).

Example 41. (Example 40 continued) Returning to the previous

example we see that for the filter matrix F1,

P =

p11 p12

p21 p22

 P [0] =

0 p12

0 0

 P [1] =

p11 0

p21 p22

 .

4.5. ESTIMATION AND TESTING 106

Then

(P [0])2 =

0 0

0 0

 (P [1])2 =

 p2
11 0

p21p11 + p22p21 p2
22

 .
Thus for filter matrix F1, probability of going from any state i to any

state j through the unobserved paths in 2 steps is zero. Also

(P [0])ν =

0 0

0 0

 for any ν

which means that the probability of going from any state i to any state

j through the unobserved paths in any steps is zero. Similarly for filter

matrix F2,

P [0] =

 0 p12

p21 0

 (P [0])2 =

p12p21 0

0 p21p12


Thus for F2, the probability of going from state 1 to state 1 in 2 steps

through the unobserved paths is p12p21 and the probability of going

from state 2 to state 2 in 2 steps through the unobserved paths is

p21p12.

Thus given a filter matrix, the probability of going from a state a to

a state b in ν steps through the unobserved paths is the (a, b)th element

of (P [0])ν which is p(ν)0
ab .

4.5.1.2. Estimation by EM Algorithm: For the ith transition, let,

Y1i = state from where the transition occurs

Y2i = state to where the transition occurs

4.5. ESTIMATION AND TESTING 107

Thus Y1i and Y2i are two discrete random variables taking values in the

state space {1, 2, · · · k} for all i. Let us express the total number of

transitions nαβ from the state α to the state β as

nαβ =
n∑
i=1

I(Y1i = α, Y2i = β)

where

I(Y1i = α, Y2i = β) =


1 if Y1i = α, Y2i = β

0 otherwise.
.

The complete data likelihood then can be written as

Lcom(p) ∝
n∏
i=1

f(y1i, y2i|p) = constant×
k∏

α,β=1

p
nαβ
αβ

where

pαk = 1−
k−1∑
j=1

pαj ∀α = 1(1)n.

After t iterations in the EM algorithm we write the E-step and the

M-step as follows:

E-step:

Let P(t) = ((pαβ(t))) be the value of the transition probability ma-

trix after t iterations. The corresponding value of the parameter θ is

θ(t). The other matrices we construct take the values P [0]
(t) and (P

[0]
(t))ν =

((p
(ν)0
ab(t))). Then we compute the expected complete data log-likelihood

4.5. ESTIMATION AND TESTING 108

with respect to the conditional distribution of x|φF (x), θ(t). The com-

plete data log-likelihood is given by

`com(θ) = constant+
k∑

α,β=1

{
(log pαβ)× nαβ

}
.

We then compute

Q(θ) = E(`com(θ)|φF (x), θ(t)).

Since `com(θ) is linear in nαβ, we need to compute

E
(
nαβ|φF (x), θ(t)

)
=

n∑
i=1

E
(
I(Y1i = α, Y2i = β)|φF (x), θ(t)

)
=

n∑
i=1

P
(
Y1i = α, Y2i = β|φF (x), θ(t)

)
.

Let us denote P
(
Y1i = α, Y2i = β|φF (x), θ(t)

)
= P i

αβ. Then for each i,

P i
αβ takes one of the three forms P i(1)

αβ , P i(2)
αβ or P i(3)

αβ as follows:

• Case I (Y1i observed): Suppose we have a missing chain of

length ν − 1 with the next observed state b. Then

P i
αβ =


pαβ×p

(ν−1)0
βb

p
(ν)0
αb

if Y1i = α

0 if Y1i 6= α

=: P
i(1)
αβ , say.

4.5. ESTIMATION AND TESTING 109

• Case II (Y2i observed): Suppose we have a missing chain of

length ν − 1 with the previous observed state a. Then

P i
αβ =


p
(ν−1)0
aα ×pαβ
p
(ν)0
aβ

if Y2i = β

0 if Y2i 6= β

=: P
i(2)
αβ , say.

• Case III (Both are not observed): Suppose we have a missing

chain of length ν − 1 with the previous observed state a and

the next observed state b. Then

P i
αβ =

p
(m)0
aα pαβp

(n)0
βb

p
(ν)0
ab

=: P
i(3)
αβ , say.

where m + n = ν − 1 and a = Y1(i−m+1) and b = Y2(i+n).

If there is no such next observed state (that is, the observed

chain ends) then

P i
αβ =

p
(m)0
aα pαβ(

∑
b

p
(n)0
βb)∑

b

p
(ν)0
ab

=: P
i(3)
αβ , say.

M-step:

We try to maximize Q(θ) with respect to θ. Setting ∂
∂θj
Q(θ) = 0

for each j = 1(1)d we get

θ(t+1) = (θ
(t+1)
1 , θ

(t+1)
2 , · · · , θ(t+1)

d)

4.5. ESTIMATION AND TESTING 110

where

θ
(t+1)
j =

n∑
l=1

P l
1j

k∑
β=1

n∑
l=1

P l
1β

for any j = 1, 2, · · · , (k − 1)

and

θ
(t+1)
(i−1)k+j =

n∑
l=1

P l
i(j+1)

k∑
β=1

n∑
l=1

P l
iβ

for any j = 0, 1, · · · , (k−1) and i = 2, 3, · · · , k.

4.5.2. Estimation of Standard Errors: Since EM estimates of

the parameters are the maximum likelihood estimate of the observed

likelihood, the large sample covariance matrix can be obtained by in-

verting the observed information matrix. But in our problem the ob-

served likelihood is not known explicitly. An alternative way is using

Supplemented EM Algorithm (SEM) by Meng and Rubin [39] which

allows us to find the large sample covariance matrix without inverting

the estimate of the observed information matrix. SEM algorithm is a

procedure of obtaining a numerically stable estimate of the covariance

matrix of the estimated parameters using only the code for the steps

in EM algorithm, code for computing the large sample complete data

covariance matrix and standard matrix operations.

4.5.2.1. Supplemented EM Algorithm: Since each step of the EM

algorithm produces a fresh estimate of the parameter from the previous

estimates, EM algorithm can be considered as a mapping M on the

4.5. ESTIMATION AND TESTING 111

parameter space. The derivative of the EM mapping, which we denote

asM(1), can be expressed in the form

M(1) = imisi
−1
com = I − iobsi−1

com.

The above equation implies

i−1
obs = i−1

com(I −M(1))
−1

which in turn implies

Vobs = Vcom(I −M(1))
−1.

Now we note that

Vobs = Vcom(I +M(1) −M(1))(I −M(1))
−1 = Vcom+ M V

where M V = VcomM(1)(I −M(1))
−1 is the increment in variance due

to missingness.

4.5.2.2. Calculation of Vcom: The complete data log-likelihood is

given by

`com(θ) = constant+
∑
i=1

nij log pij where pik = 1−
k−1∑
j=1

pij ∀i

so that
∂

∂pij
`com =

nij
pij
− nik
pik

.

4.5. ESTIMATION AND TESTING 112

Thus the gradient vector is

S =


n11

p11
− n1k

p1k
...

nk(k−1)

pk(k−1)
− nkk

pkk

 .

Now for any i 6= i′,we have ∂2

∂pij∂pi′j′
`com = 0. Also

∂2

∂pij∂pij′
`com =


nik
2p2ik

if j 6= j′

1
2

[
nik
p2ik
− nij

p2ij

]
if j = j′

.

Let B be the matrix of the negatives of the second order derivatives.

Then B is a matrix of order k2 − k such that

B = blockdiagonal(B1, B2, · · ·Bk)

where Bi = ((bijj′))k−1 and

bijj′ = − ∂2

∂pij∂pij′
`com.

Then the fisher information matrix of the complete data is

icom = E(B |θ, data) = blockdiagonal
(
E(B1), E(B2), · · · , E(Bk)

)
where E(Bi) = ((E(bijj′|θ, data))). Thus the variance-covariance ma-

trix of the complete data is Vcom = i−1
com.

4.5.2.3. ComputingM(1) by numerical differentiation: For our prob-

lem the mappingM = M(θ1, θ2, · · · , θd) : Θ→ Θ is not known explic-

itly. The derivative ofM at θ̂ is calculated numerically from the output

4.5. ESTIMATION AND TESTING 113

Algorithm 1 SEM Algorithm
We take as input θ̂and θ(t).

a) Run the usual E-step and M-steps to get θ(t+1);
b) Fix i = 1. Calculate

θ(t)(i) = (θ̂1, · · · θ̂i−1, θ
(t)
i , θ̂i+1, · · · , θ̂d)

which is θ̂ except the ith component which equals θ(t)
i .

c) Treating θ(t)(i) as the current estimate of θ, run one iteration
of EM to obtain θ̃(t+1)(i).

d) Obtain the ratio

r
(t)
ij =

θ̃
(t+1)
j (i)− θ̂j
θ

(t)
i − θ̂i

for j = 1, 2, · · · , d.

e) Repeat steps 2 to 4 for i = 1, 2, · · · , d.
We get as output θ(t+1) and {r(t)

ij : i, j = 1, 2, · · · , d}.
M(1) is the limiting matrix {rij} as t→∞.

of the forced EM steps. M(1) is the matrix with the (i, j)thelement as

MMj

M θ̂i
= change in the jth component ofM due to the change in the ithelement of θ̂.

For this we start with the EM estimate θ̂ and change its ith element

θ̂i by θ
(t)
i . We call this resultant estimate by θ(t)(i) and run one EM

iteration on it to get θ̃(t+1)(i). Then

MMj = θ̃
(t+1)
j (i)− θ̂j

and

M θ̂i = θ
(t)
i − θ̂i

and so we compute the ratio rij =
MMj

Mθ̂i
. Thus we run a sequence of SEM

iterations, where the (t+ 1)th iteration is defined as in the algorithm 1.

4.5. ESTIMATION AND TESTING 114

A difficulty in running the SEM iterations is that while changing

the ith element θ̂i by θ
(t)
i the resultant estimate θ(t)(i) may not belong

to the parameter space Θ because the sum of the corresponding row

probabilities
∑k−1

j=1
pij may be more than 1. Thus theoretically the

mapping M may not be defined in such cases. Then we replace θ(t)
i by

θ
(t)
i − ε , (ε > 0) so that the corresponding sum of probability is less

than 1.

4.5.2.4. Implementational Issues: While implementing the SEM al-

gorithm it is always safe to start with the initial values of the original

EM algorithm for numerical accuracy. But this may result in too many

unnecessary iterations because the initial choice may be too far from

the MLE. Hence Meng and Rubin suggested to take the initial choice

in SEM as a suitable iterate of the EM algorithm or two complete data

standard deviations from the MLE. Computation of M(1) being nu-

merical differentiation is less accurate than evaluating the functionM

itself. Hence the stopping criterion should be less stringent for SEM

algorithm as compared to the original EM algorithm. Meng and Rubin

suggested to use square root of the stopping criterion of the original

EM as the stopping criterion for SEM.

The observed variance covariance matrix obtained by SEM algo-

rithm should be theoretically a real symmetric positive definite ma-

trix. This provide a diagnostics for programming errors and numerical

precision. The numerical symmetry of the final matrix increases with

more stringent criterion in the algorithm.

4.5. ESTIMATION AND TESTING 115

4.5.3. Testing of Hypotheses. The large sample inferences on

the EM estimate can be drawn using the asymptotic distribution

θ̂ ∼ N(θ, Vobs).

Since SEM algorithm helps us to numerically estimate Vobs, we can

use the above distribution for testing of the parameters and finding

confidence intervals.

4.5.3.1. Testing the transition probability matrix. Suppose we wish

to test the hypothesis H0 : P = P0. Since only k(k − 1) parameters of

the transition probability matrix are independent, the above hypothesis

is equivalent to H0 : θ = θ0. Now

(θ̂ − θ)′V −1
obs (θ̂ − θ) ∼ χ2

k2

asymptotically which implies the test statistic for testing H0 is χ2 =

(θ̂ − θ0)′V −1
obs (θ̂ − θ0) which has asymptotically χ2

k2 distribution under

H0. Thus the critical region for testing H0 is {x : χ2 > χ2
k2,α}

4.5.3.2. Test of hypotheses about specific probabilities and confi-

dence regions. First we consider testing the hypothesis that certain

transition probabilities pij have specified values p0
ij. Under the null

hypothesis H0i : θi = θ0
i , the statistic τi =

θ̂i−θ0i√
sii

has N(0, 1) distribu-

tion. Thus the critical region for testing H0i is {x : |τi| > zα/2}. The

100(1− α)% confidence interval for θi is

(θ̂i −
√
siizα/2, θ̂i +

√
siizα/2).

4.6. MULTIPLE MARKOV CHAINS 116

4.6. Multiple Markov chains

Let {Xn} be a sth order Markov chain. In the previous sections we

have discussed the case where s = 1, that is, simple Markov chains.

If s > 1, then {Xn} is called a multiple Markov chain of order s with

transition probabilities

pa1,··· ,as:as+1 = P (Xn = as+1|Xn−1 = as, Xn−2 = as−1, · · · , Xn−s = a1).

Multiple Markov chains of any order can be reduced to a simple Markov

chain by the following technique.

Suppose {Xn} is called a Markov chain of order s with k states.

We define a new stochastic process {Yn, n = 1, 2, · · · } where Yn =

(Xn, Xn+1, · · · , Xn+s−1). Then {Yn} is a simple Markov chain whose

state space has ks different s−tuples. The transition probabilities of

the new defined Markov process are

p(a1,a2,··· ,as)(b1,b2,··· ,bs) =


pa1a2···as:bs if bi = ai+1, i = 1, 2, · · · , s− 1

0 otherwise.

The number of positive entries in the ks×ks transition probability ma-

trix is ks+1. The parameters of interest are the probabilities pa1,··· ,as:as+1

which requires estimation from the data.

In this situation we apply our filtering technique to the chain {yn}.

But now the transition probability matrix contains many zero elements

and hence the additional restriction described section 4 needs to be

applied on the filter matrices. We note that in this case the transi-

tion probability matrix satisfies the assumption made in section 5. The

4.7. SIMULATION STUDY 117

technique of estimation of the parameters from the data φF (y) remains

same as in the simple Markov chain.

4.7. Simulation Study

For simulation we start with a Markov chain with 3 states. A

Markov chain of length 1000 is being generated with the transition

probability matrix

P =


0.2 0.3 0.5

0.8 0.1 0.1

0.7 0.1 0.2

 .
The filter matrix for generating the observed chain is

F =


0 1 0

1 1 0

1 0 0

 .
Clearly the filter matrix used satisfy the sufficient condition for es-

timability. With this filter matrix we reduce 16% of the data, i.e., from

the complete Markov chain of length 1000 we do not observe 16% of

the data. The precision we use in estimating the parameters through

the steps of the EM algorithm is of the order 10−12 and the precision

used in computing the standard error is of the order 10−6. With this

precision the estimated transition probability matrix is

P̂ =


0.2411168 0.2850831 0.4738001

0.7395851 0.1429865 0.1174284

0.7648870 0.1067367 0.1283763

 .

4.7. SIMULATION STUDY 118

The observed variance covariance matrix Vobs as computed by the SEM

algorithm is

8.00× 10−4 −3.00× 10−4 2.36× 10−5 4.55× 10−6 7.13× 10−4 7.78× 10−5

−3.00× 10−4 4.70× 10−4 −8.85× 10−6 −1.71× 10−6 −2.68× 10−4 −2.92× 10−5

2.36× 10−5 −8.84× 10−6 1.01× 10−3 −5.10× 10−4 −8.05× 10−7 −5.30× 10−5

4.60× 10−6 −1.73× 10−6 −5.10× 10−4 6.06× 10−4 −5.92× 10−8 −1.02× 10−5

7.13× 10−4 −2.68× 10−4 −7.52× 10−7 −1.45× 10−7 1.80× 10−3 −1.06× 10−4

7.78× 10−5 −2.92× 10−5 −5.30× 10−5 −1.02× 10−5 −1.06× 10−4 3.92× 10−4


.

The complete data variance covariance matrix Vcom is

0.0003674 −0.0001380

−0.0001380 0.0004092

0.0009496 −0.0005214

−0.0005214 0.0006041

0.0006033 −0.0002739

−0.0002739 0.0003199


The increase in variance 4V is

4.33× 10−4 −1.63× 10−4 2.36× 10−5 4.58× 10−6 7.13× 10−4 7.78× 10−5

−1.63× 10−4 6.11× 10−5 −8.86× 10−6 −1.71× 10−6 −2.68× 10−4 −2.92× 10−5

2.35× 10−5 −8.84× 10−6 5.75× 10−5 1.11× 10−5 −8.06× 10−7 −5.30× 10−5

4.61× 10−6 −1.73× 10−6 1.11× 10−5 2.15× 10−6 −5.92× 10−8 −1.02× 10−5

7.13× 10−4 −2.68× 10−4 −7.52× 10−7 −1.45× 10−7 1.20× 10−3 1.68× 10−4

7.78× 10−5 −2.92× 10−5 −5.30× 10−5 −1.02× 10−5 1.68× 10−4 7.22× 10−5



4.8. PRACTICAL EXAMPLE 119

4.8. Practical example

The data consists of the daily rainfall, measured in millimeters times

10, at Alofi in the Niue Island group. 1096 observations were recorded

from 1st January 1987 until 31st December 1989. The data is classified

into three states: state 1 which represents “no rain”, state 2 which

represents “from non zero until 5mm” and state 3 which represents

“more than 5mm” rain. This time series data can be considered as a 3

state Markov chain. P. J. Avery and D. A. Henderson (1999) [5] used

this dataset for the fitting of Markov model.

For the generation of the observed data we use the same filter ma-

trix as in case of the simulated data. From 1096 observations we find

that this filter matrix leads to a missingness of 45.35%. While storing

only 54.65% of the original data we find the estimate of the transition

probability matrix is


0.6717154 0.2231926 0.1050920

0.4585938 0.3034812 0.2379251

0.2137608 0.3447883 0.4414509

 .
We compute the observed variance covariance matrix as

4.65× 10−4 −3.16× 10−4 1.23× 10−6 8.14× 10−7 1.15× 10−4 1.81× 10−4

−3.16× 10−4 3.41× 10−4 −8.51× 10−7 −5.63× 10−7 −7.76× 10−5 −1.23× 10−4

1.23× 10−6 −8.51× 10−7 9.21× 10−4 −4.18× 10−4 −4.76× 10−5 −3.09× 10−4

8.14× 10−7 −5.63× 10−7 −4.18× 10−4 7.49× 10−4 −3.15× 10−5 −2.05× 10−4

1.15× 10−4 −7.76× 10−5 −4.76× 10−5 −3.15× 10−5 9.26× 10−4 1.51× 10−4

1.81× 10−4 −1.23× 10−4 −3.09× 10−4 −2.05× 10−4 1.51× 10−4 0.0026


.

4.9. APPENDIX 120

The complete data variance covariance matrix Vcom is

0.000391 −0.000266

−0.000266 0.000307

0.000837 −0.000469

−0.000469 0.0007128

0.0007185 −0.000315

−0.000315 0.0009658


.

The increase in variance due to missingness is

7.48× 10−5 −5.00× 10−5 1.23× 10−6 8.14× 10−7 1.15× 10−4 1.81× 10−4

−5.00× 10−5 3.38× 10−5 −8.50× 10−7 −5.63× 10−7 −7.76× 10−5 −1.23× 10−4

1.23× 10−6 −8.50× 10−7 8.39× 10−5 5.55× 10−5 −4.76× 10−5 −3.09× 10−4

8.14× 10−7 −5.63× 10−7 5.55× 10−5 3.68× 10−5 −3.15× 10−5 −2.05× 10−4

1.15× 10−4 −7.76× 10−5 −4.76× 10−5 −3.15× 10−5 2.08× 10−5 4.66× 10−4

1.81× 10−4 −1.23× 10−4 −3.09× 10−4 −2.05× 10−4 4.66× 10−4 0.0016079


.

4.9. Appendix

Proof of Theorem 37:

Proof. We split the proof in three parts. We shall prove Ci ⊆

I, i = 1, 2, 3. This will imply that C∗ ⊆ I.

Part 1:

Suppose a filter matrix M ∈ C1. Then the αth row and βthcolumn

of M are zero and all other rows and columns of M have exactly one

element nonzero.

Case a: α 6= β

4.9. APPENDIX 121

Step 1:

Consider pij 1 ≤ i, j ≤ k , i, j 6= α, β.

Let the ithcolumn has a element fai = 1 and let the jth row has a

element fjb = 1.

Then P (Saijb) > 0. This implies P (Sij) > 0.

Hence corollary 12 implies that pij 1 ≤ i, j ≤ k , i, j 6= α, β are

estimable.

Step 2:

Next from the βth column of the transition probability matrix con-

sider piβ,∀i = 1(1)k, i 6= β.

Since β 6= α, we have a j such that fβj = 1

Also since i 6= β we have a such that fai = 1

Then P (Saiβj) > 0. This implies P (Siβ) > 0.

Again corollary 12 implies that piβ,∀i = 1(1)k, i 6= β are estimable.

Step 3:

Next from the αth row of the transition probability matrix consider

pαj,∀j = 1(1)k, j 6= α.

For pαj choose i and r such that fiα = 1 i 6= α and fjr = 1

Then P (Siαjr) > 0. This implies P (Sαj) > 0.

From corollary 12 we get pαj, ∀j = 1(1)k, j 6= α is estimable.

Step 4:

The parameter pαα is estimable from the condition
∑
j

pαj = 1

Step 5:

4.9. APPENDIX 122

From the βth row of the transition probability matrix consider

pβj,∀j = 1(1)k, j 6= α.

If j is such that fβj = 1 then we get that pβj is estimable. Hence

we now consider j to be such that fβj = 0.

For this we now choose any state a and a state s such that fjs = 1.

Then P (Sa_ js) > 0 which implies P (Sπ) > 0 where π = a_ js.

Let C = {b : fab = 0 , fbj = 0}. We note that β ∈ C and pπ is of

the form

pπ = (
∑

b∈C,b6=β

pabpbj + paβpβj)× pjs

Now since P (Sπ) > 0, lemma 11 implies that pπ is identifiable. Hence

pπ = (
∑

b∈C,b6=β

pabpbj + paβpβj)× pjs = Known Constant

Since all pab and pbj and also paβ are identifiable , we get pβj,∀j =

1(1)k, j 6= α are estimable.

Step 6:

From the αth column of the transition probability matrix consider

piα,∀i = 1(1)k, i 6= β

If i is such that fiα = 1 then we get that piα is estimable. Hence

we now consider i to be such that fiα = 0.

For this we now choose any state b and a state r such that fri = 1

Then P (Sri_ b) > 0 which implies P (Sπ) > 0 where π = ri_ b.

4.9. APPENDIX 123

Let D = {a : fab = 0 , fia = 0}. We note that α ∈ D and pπ is of

the form

pπ = pri × (
∑

a∈D,a6=α

piapab + piαpαb)

Now since P (Sπ) > 0, lemma 11 implies that pπ is identifiable. Hence

pπ = pri × (
∑

a∈D,a6=α

piapab + piαpαb) = Known Constant

Since all pab and pia and also pαb are identifiable , we get piα,∀i =

1(1)k, i 6= β are estimable.

Step 7:

pβα is estimable from the condition
∑
j

pβj = 1

Case b : α = β

Step 1:

Consider pij 1 ≤ i, j ≤ k , i, j 6= α.

The estimatibility of pij is same as step 1 of case (a).

Step 2:

Next from the αth column of the transition probability matrix con-

sider piα,∀i = 1(1)k, i 6= α.

The parameter piα is identified from the condition
∑
j

pij = 1

Step 3:

Next from the αth row of the transition probability matrix consider

pαj,∀j = 1(1)k, j 6= α

For pαj choose i and r such that fiα = 0 i 6= α and fjr = 1 .

Then P (Si_ jr) > 0 which implies P (Sπ) > 0 where π = i_ jr.

4.9. APPENDIX 124

Let D = {b : fbj = 0 and fib = 0}. We note that α ∈ D and pπ

is of the form

pπ = (
∑

b∈D,b6=α

pibpbj + piαpαj)pjr

Now since P (Sπ) > 0 lemma 11 implies that pπ is identifiable. Hence

pπ = (
∑

b∈D,b6=α

pibpbj + piαpαj)pjr = Known Constant

Since each of pib, pbj, piα in the above equation are already identifi-

able, we get that pαj can also be identified uniquely.

Step 4 :

The parameter pαα is identified from the condition
∑
j

pαj = 1

Thus all the parameters forM are identifiable. Hence for any matrix

M ∈ C1, we have M ∈ F . Thus C1 ⊆ I.

Part 2:

In the next case, suppose a filter matrix M ∈ C2. Then the αth

and βthcolumn of a filter matrix M are zero and all other columns of

M have exactly one element nonzero.

Step 1:

Consider pij 1 ≤ i, j ≤ k , i 6= α, β.

Let the ith column has a element fai = 1 and let the jth row has a

element fjr = 1.

Then P (Saijr) > 0. This implies P (Sij) > 0.

Hence applying the corollary 12 pij 1 ≤ i, j ≤ k , i 6= α, β are

estimable.

4.9. APPENDIX 125

Step 2:

Consider pαα and pβα.

Let the αth row has a element fαr = 1 , r 6= α, β and we choose a i

such that i 6= α, β.

Then P (Si_ αr) > 0 which means P (Sπ) > 0 where π = i_ αr.

Let D = {b : fib = 0 and fbα = 0}. Then pπ is of the form

pπ = (
∑
b∈D

pibpbα)pαr

Clearly α, β ∈ D and hence we get

pπ = (
∑

b∈D,b6=α,β

pibpbα + piαpαα + piβpβα)pαr

Since P (Sπ) > 0, lemma 8 implies that pπ is identifiable. Hence

pπ = (
∑

b∈D,b6=α,β

pibpbα + piαpαα + piβpβα)pαr = Known Constant

Since pib, b 6= α and pbα, b 6= α, β and pαr, r 6= α, β are all estimable

from the above equation we get a equation of the form

This gives us a equation of the form

C1pαα + C2pβα = K1

where C ′is are constants.

Also we from the condition
∑
j

pij = 1 , since all other parameters

are estimable we get a equation of the form

pαα + pβα = K2

4.9. APPENDIX 126

These two equations make pααand pβα estimable.

Step 3:

Consider pαβ and pββ.

Let the βth row has a element fβr = 1 , r 6= α, β and we choose a i

such that i 6= α, β.

Then P (Si_ βr) > 0 which means P (Sπ) > 0 where π = i_ βr.

Let D = {b : fib = 0 and fbβ = 0}. Then pπ is of the form

pπ = (
∑
b∈D

pibpbβ)pβr

Clearly α, β ∈ D and hence we get

pπ = (
∑

b∈D,b6=α,β

pibpbβ + piαpαβ + piβpββ)pβr

Since P (Sπ) > 0, lemma 11 implies that pπ is identifiable. Hence

pπ = (
∑

b∈D,b 6=α,β

pibpbβ + piαpαβ + piβpββ)pβr = Known Constant

Since pib, b 6= α and pbβ, b 6= α, β and pβr, r 6= α, β are all estimable

from the above equation we get a equation of the form

C1pαβ + C2pββ = K1

where C1 and C2 and K1 are constants.

Also we from the condition
∑
j

pij = 1 , since all other parameters

are estimable we get a equation of the form

pαβ + pββ = K2

4.9. APPENDIX 127

These two equations make pαβand pββ estimable.

Thus all the parameters forM are identifiable. Hence for any matrix

M ∈ C2, we have M ∈ F . Thus C2 ⊆ I.

Part 3:

Now suppose a filter matrix M ∈ C3. Then the αth and βthrow of

a filter matrix M are zero and all other rows of M have exactly one

element nonzero.

Step 1:

Consider pij 1 ≤ i, j ≤ k , j 6= α, β.

Let the ith column has a element fai = 1 and let the jth row has a

element fjr = 1.

Then P (Saijr) > 0. This implies P (Sij) > 0.

Hence applying the corollary 12 pij 1 ≤ i, j ≤ k , j 6= α, β are

estimable.

Step 2:

Consider pαj j = α, β.

Let the αth column has a element fiα = 1 , i 6= α, β and we choose

a r such that r 6= α, β.

Then P (Siα_ r) > 0 which means P (Sπ) > 0 where π = iα _ r.

Let D = {b : fαb = 0 and fbr = 0}. Then pπ is of the form

pπ = piα(
∑
b∈D

pαbpbr)

Clearly α, β ∈ D and hence we get

pπ = (
∑

b∈D,b6=α,β

pαbpbr + pααpαr + pαβpβr)piα

4.9. APPENDIX 128

Since P (Sπ) > 0, lemma 11 implies that pπ is identifiable. Hence

pπ = (
∑

b∈D,b6=α,β

pαbpbr + pααpαr + pαβpβr)piα = Known Constant

Since piα, i 6= α and pαb, b 6= α, β and pβr, r 6= α, β and pab, a, b 6=

α, β are all estimable from the above equation we get a equation of the

form

C1pαα + C2pαβ = K1

where Ci and Ki are constants.

Also from the restriction
∑
j

pαj = 1 we get a equation of the form

pαα + pαβ = K2

These two final equations make the parameters pαα and pαβ identi-

fiable.

Step 3:

Consider pβj j = α, β.

Let the βth column has a element fiβ = 1 , i 6= α, β and we choose

a r such that r 6= α, β.

Then P (Siβ _ r) > 0 which means P (Sπ) > 0 where π = iβ _ r.

Let D = {b : fβb = 0 and fbr = 0}. Then pπ is of the form

pπ = piβ(
∑
b∈D

pβbpbr)

Clearly α, β ∈ D and hence we get

pπ = (
∑

b∈D,b6=α,β

pβbpbr + pβαpαr + pββpβr)piβ

4.9. APPENDIX 129

Since P (Sπ) > 0, lemma 11 implies that pπ is identifiable. Hence

pπ = (
∑

b∈D,b6=α,β

pβbpbr + pβαpαr + pββpβr)piβ = Known Constant

Since piβ, i 6= α and pβb, b 6= α, β and pαr, r 6= α, β and pab, a, b 6=

α, β are all estimable from the above equation we get a equation of the

form

C1pβα + C2pββ = K1

where Ci and Ki are constants.

Also from the restriction
∑
j

pβj = 1 we get a equation of the form

pβα + pββ = K2

These two final equations make the parameters pβα and pββ identi-

fiable.

Thus all the parameters forM are identifiable. Hence for any matrix

M ∈ C3, we have M ∈ F . Thus C3 ⊆ I. �

CHAPTER 5

On the Construction of optimal Filtering

Mechanism

5.1. Introduction

In Chapter 2, we have introduced the general idea of filtering, where

we have argued that the choice of filtering mechanism largely affects

the efficiency of the parameter estimates as well as governs the size of

the filtered data. In fact, in both independent and dependent samples

setups we should not only be concerned with how much to retain, but

we should also consider what to retain. Hence, for any data reduction

problem, the issue of designing an optimal filtering mechanism is an

important topic which we shall consider in this final chapter.

In Chapter 3, we have considered independent samples where the

filtering mechanism is accomplished by taking a few linear combinations

y ∈ Rm of the original sample points x ∈ Rn in the form y = Ax. Thus

constructing a suitable filtering mechanism, in that case, means getting

an optimal choice of the matrix A. As we have already discussed in that

chapter, the existing literature of Compressive Sampling guides us how

we can have such a choice of A using the Restricted Isometry Property

(RIP).

Hence, in the current discussion we shall be concerned with the con-

struction of filtering mechanism in the case of dependent samples, more

130

5.1. INTRODUCTION 131

specifically for Markov chains which we have introduced in Chapter 4.

The idea of filtering for Markov chains was implemented through the

concept of a filter matrix. We have identified three sufficient conditions

for constructing a filter matrix so that the parameters in the Markov

model remain estimable. This leads to three distinct classes, C1,C2

and C3, within which we shall search for our filter matrix. We have

described the estimation procedure of the transition probabilities given

any fixed filter matrix using EM Algorithm. However, the question of

constructing such a filter matrix still remains unaddressed. We’ll see

in this discussion that, in order to develop a suitable method for the

construction of filter matrices, we need to specify something that we

call the size and information content of the observed data produced

from that filter matrix. Section 2 and Section 3 formalize the trade-off

between these two considerations. In section 4 we attempt to get a

simple theoretical structure of the idea of the expected size of a filter

matrix. Based on these developments, algorithms are devised to con-

struct an optimal filter matrix for a given problem in section 5. These

are further illustrated through a real life data application in section

6. These concepts of designing optimal filter matrices can be extended

to an adaptive version where the filter matrix can “learn and adapt”

to the stochastic process, as we shall discuss in section 7. Finally, in

section 8, we compare two possible approaches to storing the filtered

data. In section 9, we conclude the thesis with some possible directions

for future developments.

5.2. TWO IMPORTANT CRITERIA: SIZE AND EFFICIENCY 132

5.2. Two important criteria: size and efficiency

There are primarily two considerations when we choose any filter

matrix:

• the amount of storage required to store the filtered data and

• the efficiency of the estimates obtained from the filtered data

Apparently the problem is simple: the more we store, the more efficient

our estimates become. So we need to define an idea of “ size of storage”

required by a filter matrix. We measure this using proportions of the

data retained. More precisely, we use the following definition.

Definition 42. For any filter matrix F and any given input Markov

chain, the size of the filter matrix is defined by

1

n

∑
i

∑
j

nij

where nij is the number of transitions from state i to state j in the

observed chain and n is the total number of transitions in the original

chain.

Example 43. Consider a three state Markov chain x as

112312232123331121331

which we filter using the matrix

F =


1 0 0

0 1 0

1 1 0

 .

5.2. TWO IMPORTANT CRITERIA: SIZE AND EFFICIENCY 133

to get the filtered chain as

11 312232 311 31.

Then the size of the filter matrix with respect to the given Markov

chain is 9
20

= 0.45. The size of the filter matrix

F =


1 1 1

1 1 1

1 1 1


is however 1 because in that case the filtered chain will be the same as

the original chain.

However, for any fixed filter matrix, the proportion of data stored

will be a random quantity varying with the input Markov chain and

hence we should work with the expected value of this quantity.

Definition 44. The expected size of a filter matrix F is then de-

fined as

|F | =
∑
i

∑
j

E(nij)

n
.

The efficiency of the estimates, on the other hand, is generally mea-

sured in terms of the observed variance-covariance matrix. While we

can compute this matrix numerically, we would prefer having a closed

form for optimization. Since this is not always possible, we adopt a

more direct approach in terms of the observed transitions in the filtered

data. More specifically, suppose a single Markov chain x is filtered by

two possible filter matrices F and G to create two different observed

5.3. CHOICE OF FILTER MATRIX: TRADE-OFF BETWEEN SIZE AND EFFICIENCY134

chains φF (x) and φG(x) respectively. As we know from Chapter 4, if

F � G, then φG(x) contains all the observed transitions present in

φF (x). Moreover, this holds true for every possible Markov chain x.

Thus, we can say that G is more information preserving than F is.

Hence, the best possible analysis one can do with G should be as good

as the best possible analysis one can do with F.

5.3. Choice of Filter Matrix: Trade-Off between Size and

Efficiency

Thus, we look at the problem of an “optimal” choice of a filter

matrix as a trade-off between the size and the information content of

the filter matrix. Instead of attempting to solve this trade-off directly,

which is not easy to do, we adopt a greedy procedure. We note that the

size of a filter matrix is one quantity that can be fixed by the user well

before the sampling process starts, depending on the available storage

in the system. Hence, we can fix a value α ∈ (0, 1), and then restrict

ourselves to the class of all filter matrices whose expected size is less

than or equals to α, viz,

F (α) = {F : |F | ≤ α}.

Then, among this class F (α) we choose the filter matrix which is most

information preserving. We call this filter matrix to be optimal within

F (α). The implementation of this idea, however, requires finding the

expected size of a filter matrix.

5.4. FINDING THE EXPECTED SIZE OF A FILTER MATRIX 135

5.4. Finding the expected size of a filter matrix

In principle, the expected size of a filter matrix F should depend

on the original transition probability matrix P and the structure of

the filter matrix itself. It turns out that finding the exact mathemat-

ical form of |F | is too difficult. Hence, we shall look for a tractable

approximation of the same in this section.

We first recall that for any filter matrix F = ((fij)) of size m×m,

the transitions in the filtered chain may be classified into one of the

three categories:

• directly recorded (fij = 1)

• indirectly recorded (fij = 0, but the transition occurs in the

filtered chain.)

• unobserved (fij = 0 and the transition does not appear in the

filtered chain.)

Example 45. (Example 43 Continued) The filtered chain consists

of some transitions which are directly recorded such as 1→ 1 and there

may be some transitions which are indirectly recorded in the filtered

chain (such as 2→ 3 is recorded even if f23 = 0) and some transitions

like 3→ 3 do not appear in the filtered chain.

Then we have the following large sample approximation of the ex-

pected size of a filter matrix.

Theorem 46. Consider a Markov chain with transition probability

matrix Pm×m = ((Pij)) and total number of transitions n, which con-

verges to a unique stationary distribution π = (π1, π2, ...πm) irrespective

5.5. CONSTRUCTION OF FILTER MATRICES 136

of the initial distribution. If we filter the Markov chain using the filter

matrix F = ((fij)) = F (P, n), then the limiting value L of the expected

size of the filter matrix is given by

L = lim
n→∞

|F (P, n)| =
∑
i

∑
j

(i,j):fij=1

pijπi +
∑
i

∑
j

(i,j):fij=0

pij
∑

(γ,δ)∈Dij

pjδpγiπγ

where Dij = {(γ, δ) : fγi = fjδ = 1} for fixed (i, j).

This is a reasonable approximation for all practical purposes be-

cause we need to only assume the sample size n is large enough, which

is also the main reason for applying the filtering mechanism at the be-

ginning. Hence, from now onwards, we shall use this limiting form as

the value of |F | for a filter matrix F. Further, based on this approxi-

mated expression for |F |, we have the following monotonicity property

of |F |.

Theorem 47. For any two filter matrices F1 and F2, if F2 � F1,

then |F2| ≥ |F1|.

The proofs of both the theorems are given in the appendix of this

chapter.

5.5. Construction of filter matrices

Theorem 47 in the previous section suggests the following approach:

starting from a fixed filter matrix, as we go on converting the 0 elements

to 1, the expected size is either going to increase or at least remain the

same. We can use this approach to provide a systematic method of

finding a maximally optimal filter matrix of a pre-specified expected

5.5. CONSTRUCTION OF FILTER MATRICES 137

size α. We shall start with some filter matrix F, belonging to the class

of all identifiable matrices C∗, and then go on converting the 0 elements

to 1 as many as we can so that the expected size of the matrix is less

than α. If we denote F (α) to be the set of all possible filter matrices of

expected size α, then we shall consider

F̄α = F̄ ∩ F (α)

where F̄ = {G : G � F}. Now for every α, the set F̄α being finite,

there must exist at least one optimal F ∗(α) ∈ F̄α, but a search for such

F ∗(α) is computationally intensive procedure.

Instead, we shall adopt a greedy procedure which approximates this

task of finding an optimal F ∗(α). The main idea of the greedy procedure

is that starting from a fixed filter matrix F, which we shall refer to

as the root matrix, we can proceed by converting the 0 elements to 1

stepwise such that the expected size of the filter matrix is increased as

small as possible. More specifically, the greedy algorithm at any stage

converts from 0 to 1 that entry of F which causes the least increment

in |F |. That is, at the tth iteration, we move from f
(t−1)
ij = 0 to f (t)

ij = 1

where

(i, j) = arg min{|F (t)| − |F (t−1)|}.

In case of a tie, we choose any one possible (i, j). The only thing we

need to assume in this greedy approach is that the size constraint α

should be such that

α ≥ |F |

where F is the root matrix of the algorithm.

5.5. CONSTRUCTION OF FILTER MATRICES 138

5.5.1. Determining the root structure: The greedy search al-

gorithm, we just mentioned, works by modifying a pre-specified root

matrix F. How can we determine an optimal root matrix F? We note

that the initial root matrix F may belong to any one of the three classes

C1,C2 or C3 because all of these classes are sufficient for identifiability.

Hence, before proceeding further, let us formalize the idea of finding a

root matrix into one of these classes.

Definition 48. For any class of filter matrix Ci,i = 1, 2, 3, a root

matrix within the class Ci is a matrix F = FR(Ci) such that

• F ∈ Ci,

• if G � F, then G ∈ Ci,

• if H � F, then H /∈ Ci.

This means for each class Ci, we are interested in a matrix F =

((fij)) such that if we convert any fij = 0 to fij = 1, then F remains

within Ci but if we convert any fij = 1 to fij = 0,the matrix F no

longer remains within Ci. The choice of such a root matrix is however

not unique for a class Ci.

Example 49. For a three state Markov chain, both the matrices
1 0 0

0 1 0

0 0 0

 and


0 0 1

0 0 0

0 1 0


are root matrices of class C1.

5.5. CONSTRUCTION OF FILTER MATRICES 139

Algorithm 2 Finding root in C1

a) Fix B = {1, 2, ...,m} and A = (1, 2, ...,m}.
b) for each i ∈ B, compute mi = πimin

j∈A
pij

c) find k such that k = arg min
i∈B

mi.

d) set fk` = 1 where ` = arg min
j∈A

pkj.

e) update B = B − {k} and A = A− {`}.
f) Repeat steps 2 to 5 until B and A are singleton.

Algorithm 3 Finding root in C2

a) Fix B = {1, 2, ...,m} and A = (1, 2, ...,m}.
b) for each i ∈ B, compute mi = πimin

j∈A
pij

c) find k such that k = arg min
i∈B

mi.

d) set fk` = 1 where ` = arg min
j∈A

pkj.

e) update B = B − {k}and A = A− {`}.
f) Repeat steps 2 to 5 until B and A contains exactly two ele-

ments.
g) For each j ∈ A, set fjq = 1 for q /∈ A.

The selection of a root matrix in any one of these classes is based on

the greedy approach we discussed above. We start with a null matrix

and go on converting fij = 0 to fij = 1 so that |F | is increased as small

as possible while the structure of the class is maintained. For example,

while selecting a root in C1, if we convert fij = 0 to fij = 1, then at the

subsequent stages we shall discard the ith row and the jth column from

further consideration. Thus we need to have three separate algorithms

for finding a root matrix in each of these three classes.

With the application of Algorithms 2, 3 and 4, we shall select one

possible root matrix from each of the three classes. Among these three

root matrices, we shall select the one as our final root matrix for which

5.5. CONSTRUCTION OF FILTER MATRICES 140

Algorithm 4 Finding root in C3

a) Fix B = {1, 2, ...,m} and A = (1, 2, ...,m}.
b) for each i ∈ B, compute mi = πimin

j∈A
pij

c) find k such that k = arg min
i∈B

mi.

d) set fk` = 1 where ` = arg min
j∈A

pkj.

e) update B = B − {k}and A = A− {`}.
f) Repeat steps 2 to 5 until B and A contains exactly two ele-

ments.
g) For each j ∈ B, set fqj = 1 for q /∈ B.

|F | is minimum. That is, we select our root matrix as

F = arg min |FR(Ci)|.

It turns out that the restriction on the size constraint α becomes

α ≥ min
i
|FR(Ci)|.

5.5.2. Modifying the root matrix: Once we have the final root

matrix F in our hand, we can apply the same greedy approach to mod-

ify it stepwise by converting fij = 0 to fij = 1 which causes the least

possible increment in |F |. We shall continue this process till the size of

the matrix exceeds α. It turns out that, even this greedy searching pro-

cedure can be computationally slow at times. Hence, in order to make

the algorithm even faster, we can adopt another layer of approximation,

although that is optional.

5.5. CONSTRUCTION OF FILTER MATRICES 141

We note that the limiting form of the expected the size of a filter

matrix is given by

L =
∑
i

∑
j

(i,j):fij=1

pijπi +
∑
i

∑
j

(i,j):fij=0

pij
∑

(γ,δ)∈Dij

pjδpγiπγ = |F |(1) + |F |(2), say.

From the above expression, we note that at any stage t, the greedy

search algorithm is relatively faster and computationally easy if we

take L = |F |(1). This is because while comparing different possible op-

tions of filter matrices, calculating |F |(2) is computationally intensive

because we need to track all the indirect transitions as well. However,

L = |F |(1) is an under-estimation of the size of the filter matrix and

this approximation will be very crude when |F |(2) assumes a signifi-

cantly large value. Now |F |(2) assumes a significantly large value when

there are many indirectly recorded transitions in the observed chain,

which again increases with the number of directly recorded transitions

in the chain. Hence, in order to maintain the scalability of the search

algorithm, it is recommended that in the process of modifying the root

matrix F, we should use the approximation L = |F |(1) during the ini-

tial stages and after a certain stage t, we use the original expression

L = |F |(1) + |F |(2). This is because, during the initial stages of the

algorithm, the number of direct transitions in the chain will be less

(most of fij = 0) and as such |F |(2) is insignificant whereas, during the

latter stages of the algorithm we have converted many entries in the

filter matrix from 0 to 1 which makes |F |(2) significantly larger. While

5.6. PRACTICAL APPLICATION 142

implementing the algorithm, the user can control this optional approx-

imation to make the algorithm faster with a stage parameter t, which

determines the stage until which we shall use the faster approximation

in the algorithm. Setting t = 0, means that we are not using the second

layer of approximation at all, but then the algorithm can be potentially

slow. On the other hand, setting t to be a very large value yields a po-

tentially fast algorithm but with this additional layer of approximation

which can give crude approximation. Algorithm 5 thus provides us a

systematic search procedure to find the optimal filter matrix starting

from a root form F and given a user specified size constraint α.

5.6. Practical application

We shall illustrate the applicability of the above procedures with

a real life data set. Androsensor is one of the free softwares available

in Google Play Store developed as an all-in-one diagnostic tool for

smartphones. This software can capture many essential information

like accelerometer readings, gyroscope readings, ambient magnetic field

values, device orientation, proximity sensor readings from the user’s

smartphone on the go.

We shall work with a data set which contains 20031 readings on

linear acceleration (along X-axis) of the author’s smartphone during 3

hours of a specified day. A glimpse of the data is shown in Table 5.6.1.

In the data pre-processing step we create a discrete variable with

4 levels by splitting the data using the quartiles Q1 = −0.0042650,

Q2 = .0000800 and Q3 = .004535. A glimpse of the discretized data is

provided in Table 5.6.2.

5.6. PRACTICAL APPLICATION 143

Algorithm 5 Finding optimal filter matrix
Input: size α, stage parameter t, transition probability matrix P and

stationary distribution π.
• Call Algorithms 2, 3 and 4 to find FR(Ci), i = 1, 2, 3 and set

F = arg min |FR(Ci)|.
• Set w = 0
• while w < t

a) for the ithrow, fix the active set as Ai = {j : fij = 0}
b) for each i, compute mi = πimin

j∈Ai
pij

c) find s such that s = arg min
i

mi.

d) set fs` = 1 where ` = arg min
j∈As

psj.

e) update As = As − {`}and w = w + 1.
f) if |F | > α, break.

• while w ≥ t
a) for the ithrow, fix the active set as Ai = {j : fij = 0}
b) for each i, compute Mi = min

j∈Ai
|F |(i,j) where |F |(i,j) is the

size of F after making fij = 1.
c) find s such that s = arg min

i
Mi.

d) set fs` = 1 where ` = arg min
j∈As

|F |(s,j).

e) update As = As − {`}and w = w + 1.
f) if |F | > α, break.

Output: F̂ ∈ F̄α which is our greedy estimate for F ∗(α).

Then we can assume that the data arises from a one-stage discrete

Markov process with four possible states. If we store all the observa-

tions in original Markov chain, then the maximum likelihood estimate

of the transition probability matrix is

P̂com =


0.2987817 0.1887358 0.1843419 0.3281406

0.1762475 0.3133733 0.3277445 0.1826347

0.1898102 0.3204795 0.3226773 0.1670330

0.3350639 0.1779153 0.1647364 0.3222843


.

5.6. PRACTICAL APPLICATION 144

Table 5.6.1. Glimpse of the data

Sl. No. Linear Acceleration Time
1 -0.27789 18:08:25:520
2 -0.37871 18:08:26:020
3 0.33692 18:08:26:520
4 1.37086 18:08:27:020
5 -0.17113 18:08:27:520
6 1.48150 18:08:28:019
...

...
...

Sl. No. Linear Acceleration Time
...

...
...

1 0.78671 20:55:18:020
2 -0.32992 20:55:18:520
3 -2.32029 20:55:19:020
4 -3.01193 20:55:19:520
5 0.17800 20:55:20:020
6 -0.07406 20:55:20:520

A part of the data showing the linear acceleration (along X−axis)
along with the time stamps.

Table 5.6.2. A glimpse of the discretized data

1 1 4 4 1 4 4 4 1 1 1 1 1 1 4 4 1 1 1 1 4 1 4 4 4 1 1 1 4 4 4 4 4 1 4 4 4
1 1 4 1 1 1 1 1 1 1 4 4 4 1 4 1 1 4 4 4 1 1 1 4 4 4 4 1 1 4 4 4 4 4 4 4 4

1 4 4 1 1 4 1 1 1 4 4 1 4 1 1 4 1 4 1 1 1 4 1 4 4 1
...

2 1 3 1 2 2 2 3 4 4 2 4 2 3 4 1 2 3 4 2 2 2 4 1 1 2 4 3 3 4 3 1 3 2 3 1 4
1 4 4 1 4 1 4 4 1 1 4 1 4 4 4 4 4 4 4 4 1 4 4 4 4 1 1 1 1 1 4 4 1 4 1 4 4

4 1 4 4 1 4 4 1 1 4 4 1 1 4 1 4 1 1 4 1 1 4 1 1 1 4 1

However, we shall construct an optimal filter matrix to generate the

filtered data. All the above algorithms of construction of a filter ma-

trix depends on a transition probability matrix and hence we get an

estimate of the same based on the initial 5000 values of the Markov

5.6. PRACTICAL APPLICATION 145

chain. as

P̂init =


0.4466280 0.03439035 0.03126396 0.4877177

0.2862903 0.20161290 0.22177419 0.2903226

0.2910798 0.24882629 0.18309859 0.2769953

0.4810787 0.02957808 0.02131361 0.4680296


.

Based on this estimate of the transition probability matrix and setting

the value of α = 0.2, we run the algorithm for finding the root matrix.

The roots in each class comes out to be

FR(C1) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


with size 0.2178

FR(C2) =


0 1 1 0

0 1 0 0

0 0 1 0

0 1 1 0


with size 0.0706.

FR(C3) =


0 0 0 0

1 1 0 1

1 0 1 1

0 0 0 0


with size 0.0715

5.7. ADAPTIVE FILTERING MECHANISM 146

Hence the optimal root matrix turns out to be

F = FR(C2) =


0 1 1 0

0 1 0 0

0 0 1 0

0 1 1 0


.

From this root matrix we start modifying with the stage parameter

t = 3 to obtain the optimal filter matrix to be

F̂ =


0 1 1 0

1 1 1 1

1 1 1 1

0 1 1 0


.

We use this matrix F̂ to filter the remaining observations, based on

which the estimate of the transition probability matrix comes out to

be

P̂ =


0.3142931 0.1862983 0.1819612 0.3174475

0.1762475 0.3133733 0.3277445 0.1826347

0.1898102 0.3204795 0.3226773 0.1670330

0.3330495 0.1804196 0.1670551 0.3194758


.

5.7. Adaptive filtering mechanism

The idea of adaptive filtering mechanism was introduced in Chap-

ter 2, where we argued that the construction of a filtering mechanism

is generally entangled with the estimation of parameter of the under-

lying population. This is true even for the construction of optimal

5.7. ADAPTIVE FILTERING MECHANISM 147

Figure 5.6.1. Estimates based on complete data as
compared to filtered data

Estimates of transition probabilities based on complete data and
filtered data are. A y = x line is added for the reference which shows

the agreement of the probabilities.

filter matrices as we have already discussed in the previous sections.

However, in our real life data application, we have overcome this issue

by constructing an initial estimate P̂init of the transition probability

matrix based on the first 5000 values of the chain and thereby use this

estimate to construct the optimal filter matrix to filter the remaining

part of the chain.

In practice, if we have a steady flow of observations from a Markov

model, we can extend the above idea. In such cases, we can completely

observe k initial observations of the chain to get an estimate of the tran-

sition probability matrix P̂ . Based on this estimate we can construct

an optimal filter matrix F1 which can be used to filter the next obser-

vations. This filtration process goes on till we intervene after a certain

user specified stage (say k∗) and then construct another estimate of the

5.8. STORING THE FILTERED DATA 148

transition probability matrix Q̂. If we find that

max |P̂ij − Q̂ij| < δ,

for some specified δ, we shall continue with the filter matrix F1. Oth-

erwise we conclude that there has been a change in the underlying

Markov process and we shall use the above algorithms to create the

next optimal filter matrix F2 based on Q̂ and so on. In this way we

can make the process of construction of filter matrix adaptive to the

stream of observations from the Markov model.

5.8. Storing the Filtered Data

There are two ways in which we can store the observed chain.

Both the methods depend on the choice of filter matrix to determine

which transitions we record. At the outset we clarify that filter ma-

trix determines the storage in terms of transitions and the missing-

ness occurs in the chain in terms of the states. For example, suppose

f25 = 0, f12 = 1, f53 = 0 and f32 = 1 in the filter matrix and some

portion of the observed chain is 12532, then the filtering mechanism

makes the state 5 missing. However we can express this filtered chain

in two ways:

a) In the first method, the filtered chain will be in the same order

of appearance as the observed chain with the missing states

indicated by a symbol. Thus for the previous example, the

observed chain we look like

12 32

5.8. STORING THE FILTERED DATA 149

b) Alternatively we can discard the missing states and store only

the observed states along with the time-stamps. For the pre-

vious example, we shall have

Time index 1 2 4 5

Observation 1 2 3 2

One possible question of interest is that which method will be more

efficient in terms of storage? Suppose the original Markov chain is of

length n and in the filtered chain we store only m states. Let ε be

the storage required for the missingness symbol. Then it is reasonable

to assume that ε is the storage required for one unit data because the

missingness symbol is determined so that it requires the minimal stor-

age. We shall call this ε as the storage complexity of the string. Then

the proportion of storage required in the filtered chain as compared to

the observed chain is

p1 =
m+ (n−m)ε

n
= ε+ (1− ε)m

n
.

On the other hand, suppose δ be the additional storage required for

storing the time-stamp. Then for the second method, the proportion

of storage required is

p2 =
m

n
(1 + δ).

Thus the first method will be preferred to the second method if and

only if
ε

δ
<

m/n

1− m/n
.

5.9. CONCLUDING REMARKS 150

However in the above expression m is practically not known before the

filtering process starts. Hence we replace m
n
in the above expression by

its expected value. Thus if |F | is the size of a filtering matrix, then we

shall choose the first method storing the data if

ε

δ
<
|F |

1− |F |

and choose the second method otherwise.

5.9. Concluding Remarks

In this thesis, we have discussed the idea of data compression by

deliberately introduced missingness. We have shown how a standard,

yet simple tool like EM Algorithm can be employed to get the estimates

of the parameters in such problems. This work explores a completely

new area of Statistics which we feel should be more relevant in the fu-

ture days, specially when Statistics as a discipline has been considering

potentially large datasets as fields of application. We have considered

the idea of filtering mechanism and estimation based on the filtered

data for both the independent and dependent data setup. In fact,

we have shown how the above-mentioned filtering mechanism can be

made adaptive to the data generation process, so that we can use it

in practice for most real life applications where we have a continuous

stream of observations and a crisis of data storage. Since it is a pio-

neering work in this direction, we have considered simple data setup

like Markov process yet, which in no way demeans the scope of appli-

cation of the methods. However, there is further scope of generalizing

5.10. APPENDIX 151

the concept to more complex data models. Moreover, we can further

improve the filtering mechanism so that the estimation process based

on the non-ignorable missing data mechanism becomes easier.

5.10. Appendix

5.10.1. Proof of Theorem 46. First we restrict ourselves to the

directly recorded transitions only. Then we want to compute

∑
i

∑
j

(i,j):fij=1

E(nij)

n
.

For a Markov chain x, let us define

Uk =


1 if xk = i, xk+1 = j

0 otherwise
, k = 0, 1, 2, ...

where x0 is the initial state of the Markov chain. Then nij =
∑
Uk

and E(nij) =
∑
P (Uk = 1). Now

P (Uk = 1) = P (xk = i, xk+1 = j)

= P (xk+1 = j|xk = i)P (xk = i)

= pijP (xk = i) = pijP
k
0,i.

where P k
1,i is the (1, i)th element of P k which indicates the probability

of visiting the state i in k steps. Thus we get

E(nij) =
n−1∑
k=0

pijP
k
1,i = pij

n−1∑
k=0

P k
1,i = pij

(n−1∑
k=0

P k
)

1,i

5.10. APPENDIX 152

and as such
E(nij)

n
= pij

(1

n

n−1∑
k=0

P k
)

1,i
.

Now assuming the Markov chain converges to stationary distribution

π, we have some m, such that for k ≥ m, P k ≈ 1πT . This implies for

large n,
1

n

n−1∑
k=0

P k = Π

where Π = (π, π, ..., π) is a matrix with all columns π. Thus we get

that for large n,

lim
n→∞

E(nij)

n
= pijπi

where π = (π1, π2, ..., πk). Finally we have

lim
n→∞

∑
i

∑
j

(i,j):fij=1

E(nij)

n
=
∑
i

∑
j

(i,j):fij=1

pijπi.

Now let us consider the case of indirect transitions, that is, (i, j) such

that fij = 0. As before for k = 0, 1, 2, ..., let

Uk =


1 if xk = i, xk+1 = j, xk−1 = γ, xk+2 = δ

0 otherwise
,

where γ and δ are such that fγi = 1 and fjδ = 1 and x0 is the initial

state of the Markov chain Then nij =
∑
Uk and E(nij) =

∑
P (Uk =

1). Now for fixed (i, j)let us indicate Dij = {(γ, δ) : fγi = fjδ = 1} and

hence

P (Uk = 1) =
∑

(γ,δ)∈Dij

P (xk = i, xk+1 = j, xk−1 = γ, xk+2 = δ)

5.10. APPENDIX 153

=
∑

(γ,δ)∈Dij

pijpjδpγiP
(k−1)
1α

= pij
∑

(γ,δ)∈Dij

pjδpγiP
(k−1)
1γ .

Thus we get

lim
n→∞

E(nij)

n
= lim

n→∞
pij

∑
(γ,δ)∈Dij

pjδpγi

(1

n

n−1∑
k=0

P k
)

1,i

= pij
∑

(γ,δ)∈Dij

pjδpγiπγ.

Then we have

L = lim
n→∞

|F (P, n)| =
∑
i

∑
j

(i,j):fij=1

pijπi +
∑
i

∑
j

(i,j):fij=0

pij
∑

(γ,δ)∈Dij

pjδpγiπγ

5.10.2. Proof of Theorem 47.

Proof. Consider two filter matrices F1 = ((f
(1)
pq)) and F2 = ((f

(2)
pq))

such that

f (1)
pq = f (2)

pq , p 6= i, q 6= j

and

f
(1)
ij = 0 and f (2)

ij = 1.

This means that F1 and F2 are identical at all positions except the

(i, j)th position and F2 � F1. It is enough to show |F2| ≥ |F1|. From

the expression of the expected size of a filter matrix we note that

|F2| − |F1| = pijπi − pij
∑

(γ,δ)∈Dij

pjδpγiπγ

5.10. APPENDIX 154

= pij(πi −
∑

(γ,δ)∈Dij

pjδpγiπγ).

The result holds trivially if for any (i, j), Dij = ∅. For non-empty sets

Dij we note the following. π being the stationary distribution of the

Markov chain we have

πP = π

which implies

πi =
∑
γ

pγiπγ

⇒ πi ≥
∑

(γ,δ)∈Dij

pjδpγiπγ

which in turn implies

|F2| ≥ |F1|.

�

Appendix

R codes for Chapter 1

wave = rep(c(rep(1,10),rep(0,20)),30)

noise = rnorm(length(wave),sd=0.03)

comp = wave+noise

w = 37

nw = floor(length(wave)/w)

n = w*nw

thresh = 0.5

trig =function() {

ON = 0; OFF1 = 1; OFF2 = 2

state = ON

bag = c()

showTime = 0

for(i in 1:length(comp)) {

inp = comp[i]

if(state==ON) {

if(showTime<=0) {

showTime = 0

if(inp >= thresh)

state = OFF1

else

state = OFF2

}

else {

showTime = showTime - 1

155

R CODES FOR CHAPTER 1 156

}

}

else if(state==OFF1) {

if(inp < thresh) state = OFF2

}

else {

if(inp > thresh) {

state = ON

showTime = w

bag = c(bag,i)

}

}

}

bag

}

##svg(’oscil%draw.svg’)

Full plot 1

plot(comp,ty=’l’,ylim=c(-0.5,1.5),xlab="Time(t)",ylab="Voltage(V)")

for(i in 1:nw) {rect(w*(i-1),-0.2,w*i,1.2)}

Collapsed plot 1

plot(comp[1:w],ty=’l’,xlab="Time(t)",ylab="Voltage(V)")

for(i in 2:nw) {rng = w*(i-1)+ (1:w); lines(comp[rng])}

trigStarts = trig()

Full plot 2

plot(comp,ty=’l’,ylim=c(-0.5,1.5),xlab="Time(t)",ylab="Voltage(V)")

for(i in 1:length(trigStarts))

{rect(trigStarts[i],-0.2,trigStarts[i]+(w-1),1.2)}

abline(h=comp[trigStarts[1]],col="grey")

##par(new=F)

R CODES FOR CHAPTER 2 157

for(i in 2:length(trigStarts))

{lines(x=(trigStarts[i-1]+(w-1)):trigStarts[i],

y=comp[(trigStarts[i-1]+(w-1)):trigStarts[i]],type="l",col="red")}

Collapsed plot 2

plot(0,xlim=c(1,w),ylim=c(-0.5,1.5),ty=’n’,

xlab="Time(t)",ylab="Voltage(V)")

for(ts in trigStarts) {

lines(1:w,comp[ts:(ts+(w-1))])

}

dev.off()

R codes for Chapter 2

#-----setting up the parameters

start=0

phi=0.5

sigma=1

n=100

##c=0.1

c_seq=seq(0.01,5,by=0.1)

phi_c1=NULL

phi_c2=NULL

miss_c=NULL

k=1

for(c in c_seq)

{

phi_simul=NULL

set.seed(200)

for(j in 1:100)

{

R CODES FOR CHAPTER 2 158

#-----generation of data

x=NULL

x[1]=start

for (i in 2:(n+1))

{

x[i]=phi*x[i-1]+rnorm(1,mean=0,sd=sigma)

}

#------filteration of data

y=NULL

y[1]=x[1]

for (i in 2:(n+1))

{

if(abs(x[i]-x[i-1])>c | is.na(y[i-1])==T)

y[i]=x[i]

else

y[i]=NA

}

miss_c[k]=sum(is.na(y))

#------Estimation starts---

phi0=0

phi1=0.2

while(abs(phi1-phi0)>0.000001)

{

phi0=phi1

#----calculation of E1---

z=y[-(n+1)]

part11=sum(z^2,na.rm=T)

part12=0

for (i in 1:n)

R CODES FOR CHAPTER 2 159

{

if (is.na(y[i]))

{

alpha=(y[i-1]-c-(phi0*y[i-1]))/sigma

beta=(y[i-1]+c-(phi0*y[i-1]))/sigma

Z=pnorm(beta)-pnorm(alpha)

temp1=(phi0*y[i-1])^2

temp2=(sigma^2)*((alpha*dnorm(alpha))-(beta*dnorm(beta)))/Z

temp3=(dnorm(alpha)-dnorm(beta))/Z

temp=(sigma^2)+temp1+temp2+(2*sqrt(temp1)*sigma*temp3)

part12=part12+temp

}

}

E1=part11+part12

#-----calculation of E2----

part1=0

for(i in 2:(n+1))

{

if(is.na(y[i])==F & is.na(y[i-1])==F)

part1=part1+(y[i]*y[i-1])

}

part2=0

for(i in 2:(n+1))

{

if(is.na(y[i]))

{

alpha=(y[i-1]-c-(phi0*y[i-1]))/sigma

beta=(y[i-1]+c-(phi0*y[i-1]))/sigma

Z=pnorm(beta)-pnorm(alpha)

temp3=(dnorm(alpha)-dnorm(beta))/Z

R CODES FOR CHAPTER 2 160

temp=(phi0*y[i-1])+(sigma*temp3)

part2=part2+(temp*y[i-1])

}

}

part3=0

for(i in 2:(n+1))

{

if(is.na(y[i-1]))

{

alpha=(y[i-2]-c-(phi0*y[i-2]))/sigma

beta=(y[i-2]+c-(phi0*y[i-2]))/sigma

Z=pnorm(beta)-pnorm(alpha)

temp3=(dnorm(alpha)-dnorm(beta))/Z

temp=(phi0*y[i-2])+(sigma*temp3)

part3=part3+(temp*y[i])

}

}

E2=part1+part2+part3

phi1=E2/E1

}

phi_simul[j]=phi1

}

phi_c1[k]=mean(phi_simul)

phi_c2[k]=var(phi_simul)

k=k+1

}

##par(mar=rep(0.1,4))

R CODES FOR CHAPTER 2 161

##par(mfrow=c(1,2))

plot(c_seq,phi_c1,type="b",xlab="c",ylab=expression(hat(phi)))

abline(h=phi,col="grey")

plot(c_seq,phi_c2,type="b",xlab="c",ylab=expression(hat(Var(phi))))

plot(c_seq,(miss_c/n),type="b", xlab="c",

ylab="Proportion of discarded observations")

par(mfrow=c(2,2))

theta_simul=NULL

for(i in 1:1000)

{

theta=5

n=100

x=rexp(n, 1/theta)

#------------filtering process----

discretize=function(data,breaks,k=4)

{

return(cut(data,br=c(min(x),breaks,max(data)),

labels=F,right=FALSE,include.lowest=TRUE))

}

mybreaks=c(1,1.5,2,5,10,15)

y=discretize(x,breaks=mybreaks)

freq=table(y)

k=length(breaks)+1

if (length(freq)<k)

{

nam=as.numeric(names(freq))

index=setdiff(1:k,nam)

}

R CODES FOR CHAPTER 3 162

#---------EM starts------

breaks=mybreaks

b=breaks

a=c(0,breaks[-length(breaks)])

theta1=0

theta2=1

while(abs(theta2-theta1)>0.0000000001)

{

theta1=theta2

temp=(b*exp(-b/theta1)-a*exp(-a/theta1))/(exp(-b/theta1)-exp(-a/theta1))

temp=c(temp,breaks[length(breaks)])

xcap=theta1+temp

if(length(xcap)>length(freq))

theta2=sum(freq*xcap[-index])/n

else

theta2=sum(freq*xcap)/n

}

theta_simul[i]=theta2

}

title=mybreaks

hist(theta_simul,main=paste(title,collapse=","),xlab=expression(hat(theta)))

R codes for Chapter 3

require(mvtnorm)

require(MASS)

require(R1magic)

#--------------Defining the constants-------------

n=100

m=80

k=80

truek=4

R CODES FOR CHAPTER 3 163

#--------------Defining true mew ------------

sig=c(seq(0.1,1,0.2))

siglength=length(sig)

mew=c(rep(5,truek),rep(0,n-truek))

Usual_Resid= numeric(10)

Naive_Resid=numeric(10)

New_Resid=numeric(10)

U_mean=numeric(siglength)

N_mean=numeric(siglength)

New_mean=numeric(siglength)

U_sd=numeric(siglength)

N_sd=numeric(siglength)

New_sd=numeric(siglength)

for (sigcount in 1:siglength)

{

for(simul in 1:10)

{

#----Constructing the sensing matrix and other related matrices-----

temp=rnorm((m*n),mean=0,sd=sqrt(1/m))

phi=matrix(temp,nrow=m)

phiinv=solve(phi%*%t(phi))

coeff=t(phi)%*%phiinv

#------Applying Usual Compressive Sensing Algorithm------

dist=NULL #---a vector string the L2 norm of distances at each simulation---

for (i in 1:5)

R CODES FOR CHAPTER 3 164

{

x=rmvnorm(1,mean=mew,sigma=sig[sigcount]*diag(n))

y=phi %*% t(x)

T <- diag(n) ;# Do identity transform

p <- matrix(0, n, 1) ;# initial guess

R1magic Convex Minimization !

(unoptimized penalty parameter)

ll <- solveL1(phi, y, T, p)

x1 <- ll$estimate ;# Returns nlm obje

dist[i]=(x-x1)%*%t(x-x1)

}

Usual_Resid[simul]=mean(dist) #--------Distance of old algorithm

#-----Applying New Proposed Algorithm------

x=rmvnorm(1,mean=mew,sigma=sig[sigcount]*diag(n))

y=phi %*% t(x)

K=coeff%*%y

Beta=coeff%*%phi

Varmat=diag(n)-Beta

varx=diag(Varmat)

pen=ginv(Beta)

#-----Creating function to construct the mean

#------vector from current estimates of mu------

mut=function(x)

{

temp=x+K-Beta%*%x

return(temp)

R CODES FOR CHAPTER 3 165

}

#------Function to compute the maximised value of Q-----

Q=function(index,mu)

{

tempindex=setdiff(1:n,index)

current_mean=mut(mu)

temp=sum((current_mean[index])^2)+

sum(varx[index])+sum(varx[tempindex])

return(temp)

}

#----------Applying Modified Algorithm-------

#--------finding the subspace-------

#---------------Unrestricted EM-------

mu1=rep(0.00001,n)

mu2=mu1+10

temp1=mu1

while(any(abs(mu2-mu1)>0.0000000001))

{

mu1=temp1

mu2=mut(mu1)

temp1=mu2

}

#--------Constructing variance of muhat-------

R CODES FOR CHAPTER 3 166

tempvar= pen%*%t(phi)%*%phiinv%*%(phi)%*%t(pen)

ind=which(abs(mu2/sqrt(sig[sigcount]*diag(tempvar)))>2.575829)

if(length(ind)>m)

{

tempind=sort(abs(mu2/sqrt(sig[sigcount]*diag(tempvar))),

decreasing=TRUE,index.return=TRUE)

ind=tempind$ix[1:m]

}

#----------------------Now Final EM over Restricted Subspace------

mu1=rep(2,n)

temp1=mu1

mu2=mu1+10

while(any(abs(mu2-mu1)>0.0000000001))

{

mu1=temp1

temp=mut(mu1)

mu2=rep(0,n)

mu2[ind]=temp[ind]

temp1=mu2

}

restricted_est=mu2

R CODES FOR CHAPTER 4 167

New_Resid[simul]= t(mew-restricted_est)%*%(mew-restricted_est)

#----distance of new algorithm---

}

U_mean[sigcount]=mean(Usual_Resid)

New_mean[sigcount]=mean(New_Resid)

U_sd[sigcount]=sd(Usual_Resid)/10

New_sd[sigcount]=sd(New_Resid)/10

}

plot(sig,U_mean,type="b",ylab="",ylim=c(0,90),

yaxs="i",lty=1,lwd=2,xlab=expression(sigma),

main="Average residuals",sub="n=100,m=80")

lines(sig,New_mean,type="b",lwd=2,lty=2)

segments(x0=sig,y0=New_mean-New_sd,y1=New_mean+New_sd)

segments(x0=sig,y0=U_mean-U_sd,y1=U_mean+U_sd)

legend(x=0.4,y= 90,lty=c(1,2),c("Conventional","ESREM"),cex=1,bty="n",lwd=2)

R codes for Chapter 4

#----finding the optimal filter matrix-----

#---sample P and F matrix

R CODES FOR CHAPTER 4 168

##P=matrix(c(0.1,0.2,0.7,0.5,0.2,0.3,0.2,0.4,0.4),byrow=T,nrow=3)

##F=matrix(c(1,1,0,0,0,1,0,1,0),byrow=T,nrow=3)

#----function finding the stationary distribution---

stationary=function(P)

{

temp=as.numeric(eigen(t(P))$vec[,1])

return(temp/sum(temp))

}

#-----function finding the size of a filter matrix

size=function(F,P,both=TRUE)

{

pi=stationary(P)

temp=P*pi

F1=sum(temp[F==1])

if(both)

{

for (i in 1:nrow(F))

{

for(j in 1:ncol(F))

{

if (F[i,j]==0)

{

Da=which(F[,i]==1)

Db=which(F[j,]==1)

D=expand.grid(Da,Db)

R CODES FOR CHAPTER 4 169

temp=0

if(nrow(D)>0)

for (k in 1:nrow(D))

{

alpha=D[k,1]; beta=D[k,2]

temp=temp+P[j,beta]*P[alpha,i]*pi[alpha]

}

F1=F1+(temp*P[i,j])

}

}

}

}

return(F1)

}

#----root in C1-----

root1=function(P)

{

pi=stationary(P)

K=nrow(P)

F=matrix(0,nrow=K,ncol=K)

B=1:K; A=1:K

m=NULL

while(length(B)>1)

{

for (i in B)

m[i]=pi[i]*min(P[i,A])

k=B[which.min(m[B])]

l=A[which.min(P[k,A])]

F[k,l]=1

R CODES FOR CHAPTER 4 170

B=setdiff(B,c(k)); A=setdiff(A,c(l))

}

return(F)

}

#-----root in C2 and C3---

root23=function(P)

{

pi=stationary(P)

K=nrow(P)

F1=F2=matrix(0,nrow=K,ncol=K)

B1=B2=1:K; A1=A2=1:K

m1=m2=NULL

while(length(B1)>2)

{

for (i in B1)

m1[i]=pi[i]*min(P[i,A1])

k=B1[which.min(m1[B1])]

l=A1[which.min(P[k,A1])]

F1[k,l]=1

F2[k,l]=1

B1=setdiff(B1,c(k)); A1=setdiff(A1,c(l))

B2=B1; A2=A1

}

set1=setdiff((1:K),B1)

set2=setdiff((1:K),A2)

for(j in A1)

F1[j,set1]=1

for(j in B2)

F2[set2,j]=1

R CODES FOR CHAPTER 4 171

return(list(F1,F2))

}

#----compare the sizes of the root

compare=function(P)

{

r1=root1(P)

print("r1 done")

obj=root23(P)

r2=obj[[1]]

print("r2 done")

r3=obj[[2]]

r=list(r1,r2,r3)

size1=size(r1,P,both=FALSE)

size2=size(r2,P,both=FALSE)

size3=size(r3,P,both=FALSE)

index=which.min(c(size1,size2,size3))

return(r[[index]])

}

#-----construct the filter matrix---

optfilter=function(level,root,stage=3,P)

{

pi=stationary(P)

A=list()

for(i in 1:nrow(P))

A[[i]]=which(root[i,]==0)

iter=1

M=NULL

F1=F2=root

tempsize=size(F1,P)

R CODES FOR CHAPTER 4 172

while(iter<=stage)

{

F1=F2

for (i in 1:nrow(P))

M[i]=pi[i]*min(P[i,A[[i]]])

k=which.min(M)

l=A[[k]][which.min(P[k,A[[k]]])]

F1[k,l]=1

A[[k]]=setdiff(A[[k]],c(l))

iter=iter+1; print(iter)

tempsize=size(F1,P,both=FALSE)

if(tempsize>=level)

break

F2=F1

}

while(iter>stage)

{ change=matrix(1000,nrow=nrow(P),ncol=ncol(P))

F1=F2

for (i in 1:nrow(F1))

{

for(j in 1:ncol(F1))

{

if(F1[i,j]==0)

{

Da=which(F1[,i]==1)

Db=which(F1[j,]==1)

D=expand.grid(Da,Db)

temp=0

if(nrow(D)>0)

{for (k in 1:nrow(D))

{

R CODES FOR CHAPTER 4 173

alpha=D[k,1]; beta=D[k,2]

temp=temp+P[j,beta]*P[alpha,i]*pi[alpha]

}}

##print(temp)

change[i,j]=(pi[i]-temp)*P[i,j]

}

}

}

index=which(change==min(change),arr.ind=TRUE)

F1[index[1],index[2]]=1

A[[index[1]]]=setdiff(A[[index[1]]],c(index[2]))

iter=iter+1

tempsize=size(F1,P)

print(tempsize)

if(tempsize>=level)

break

F2=F1

}

return(F2)

}

##root=compare(P)

##opt=optfilter(0.7,root,stage=3,P)

estimation=function(x,f)

{

#------------creating the observed chain-----

y=NULL

y[1]=x[1]

for (i in 1: (length(x)-2))

{

R CODES FOR CHAPTER 4 174

if (f[x[i],x[i+1]]==1) ind1=1 else ind1 =0

if (f[x[i+1],x[i+2]]==1) ind2=1 else ind2 =0

if (ind1==0 & ind2==0)

y[i+1]= NA

else y[i+1]= x[i+1]

i=i+1

}

if (f[x[i],x[i+1]]==1) ind1=1 else ind1 =0

if (ind1==0) y[i+1]= NA else y[i+1]= x[i+1]

#-checking if all the observed transitions occur in the chain---

index=which(f==1,arr.ind=T)

for (k in nrow(index))

{

i=index[k,1]

j=index[k,2]

ind=NULL

for (l in 1:(length(x)-1))

{

if (x[l]==i & x[l+1]==j)

{

ind[l]=1

break

}

R CODES FOR CHAPTER 4 175

}

if(all(ind==0)) stop("ERROR: All transitions are not there")

}

#------function to compute the matrix product-----

matprod=function(P,k)

{

temp=diag(ncol(P))

if(k>0)

{

for (i in 1:k)

temp=temp%*%P

}

else if (k<0) stop("ERROR: k must be non-negative")

else temp=temp #------in case of P^0 the function returns I

return(temp)

}

#-------function A,B to determine the states

#####and the number of steps in a missing run-----

A=function(y,i) #-computes steps in runs of form a_ _ _ ..._ _

{

temp=which(is.na(y)==FALSE)

ind=min(temp[temp>i])

if(ind==Inf)

{

step= length(y)-i

state=0 #-----not actual state..used as a default indicator----

}

else

{

step=ind-i

R CODES FOR CHAPTER 4 176

state=y[ind]

}

ans=list(state,step)

names(ans)=c("state","steps")

return(ans)

}

B=function(y,i)

{

temp=which(is.na(y)==FALSE)

ind=max(temp[temp<i])

step=i-ind

ans=list(y[ind],step)

names(ans)=c("state","steps")

return(ans)

}

#---------function determining the type of the transitions-----

type=function(y,i)

{

if (is.na(y[i])!=TRUE & is.na(y[i+1])==TRUE) typ=1

else if (is.na(y[i])==TRUE & is.na(y[i+1])!=TRUE) typ=2

else if (is.na(y[i])==TRUE & is.na(y[i+1])==TRUE) typ=3

else if (is.na(y[i])!=TRUE & is.na(y[i+1])!=TRUE) typ=4

else typ=5

return(typ)

}

R CODES FOR CHAPTER 4 177

#--------function which constructs P0 from a given P-----

nullmat=function(p)

{

p0=p

for (i in 1:nrow(p))

{

for (j in 1:ncol(p))

{

if (f[i,j]==1) p0[i,j]=0

else p0[i,j]=p[i,j]

}

}

return(p0)

}

#--------function to determine p[alpha,beta]

######for each transition i-----

case1=function(p,i,y,alpha,beta)

{

if (y[i]!=alpha) estp=0

else if (f[alpha,beta]==1) estp=0

else

{

p0=nullmat(p)

temp=A(y,i)

b=temp$state

k=temp$steps

if(b!=0)

estp=p[alpha,beta]*(matprod(p0,(k-1))[beta,b])

/(matprod(p0,k)[alpha,b])

R CODES FOR CHAPTER 4 178

else

estp= p[alpha,beta]*(sum(matprod(p0,(k-1))[beta,]))

/(sum(matprod(p0,k)[alpha,]))

}

return(estp)

} #------case 1 ends here

case2=function(p,i,y,alpha,beta)

{

if(y[i+1]!=beta) estp=0

else if (f[alpha,beta]==1) estp=0

else

{

p0=nullmat(p)

temp=B(y,(i+1))

a=temp$state

k=temp$steps

estp=p[alpha,beta]*(matprod(p0,(k-1))[a,alpha])

/(matprod(p0,k)[a,beta])

}

return(estp)

} #--------case 2 ends here-----

case3=function(p,i,y,alpha,beta)

{

if(f[alpha,beta]==1) estp=0

else

{

R CODES FOR CHAPTER 4 179

p0=nullmat(p)

temp1=B(y,i)

temp2=A(y,(i+1))

a=temp1$state

b=temp2$state

m=temp1$steps

n=temp2$steps

k=m+n+1

if(b!=0) estp=p[alpha,beta]*(matprod(p0,m)[a,alpha])

*(matprod(p0,n)[beta,b])/(matprod(p0,k)[a,b])

else estp=p[alpha,beta]*(matprod(p0,m)[a,alpha])

*(sum(matprod(p0,n)[beta,]))/(sum(matprod(p0,k)[a,]))

}

return(estp)

} # -----------case 3 ends here-----

case4=function(p,i,y,alpha,beta)

{

if(y[i]==alpha & y[i+1]==beta) estp=1

else estp=0

return(estp)

} #-------case4 ends here-----

prob=function(p,i,y,alpha,beta)

{

typ=type(y,i)

R CODES FOR CHAPTER 4 180

if (typ==1) estp=case1(p,i,y,alpha,beta)

else if(typ==2) estp=case2(p,i,y,alpha,beta)

else if(typ==3) estp=case3(p,i,y,alpha,beta)

else estp=case4(p,i,y,alpha,beta)

return (estp)

}

#--------------------------EM algorithm starts-----------------

dim_mat=nrow(f)

P1= matrix(rep(0.1,(dim_mat^2)),nrow=dim_mat)

P2=P1+0.5

temp1=P1

freq=P1

while(any(abs(P2-P1)>0.01))

{

P1=temp1

for(alpha in 1:nrow(P1))

{

for (beta in 1:ncol(P1))

{

su1=NULL

obs=NULL

for (k1 in 1: (length(y)-1))

{

su1[k1]=prob(P1,k1,y,alpha,beta)

R CODES FOR CHAPTER 4 181

}

freq[alpha,beta]=sum(su1)

}

print(sum(freq[alpha,]))

}

for(alpha in 1:nrow(P1))

{

for (beta in 1:ncol(P1))

{

P2[alpha,beta]=freq[alpha,beta]/sum(freq[alpha,])

}

}

temp1=P2

print(P2)

}

return(P2)

}

completevar=function(Phat)

{

P2=Phat

#----function to find the expected

#------transitions given the data------

expectation=function(P)

{

freq=P

R CODES FOR CHAPTER 4 182

for(alpha in 1:nrow(P))

{

for (beta in 1:ncol(P))

{

su1=NULL

for (k1 in 1: (length(y)-1))

{

su1[k1]=prob(P,k1,y,alpha,beta)

}

freq[alpha,beta]=sum(su1)

}

}

return(freq)

}

#----------construction of B_i matrices------

k=nrow(P) #------number of states---

k2=k-1

B=NULL

freq=expectation(P2)

for (i in 1:k)

{

temp=matrix(rep(0,(k2*k2)),byrow=T,nrow=k2)

for (j in 1:k2)

{

for(j1 in 1:k2)

{

if (j1!=j)

R CODES FOR CHAPTER 4 183

temp[j,j1]= (freq[i,k])/(1*((1-sum(P2[i,1:k2]))^2))

else

temp[j,j1]=(1)*((freq[i,k]/((1-sum(P2[i,1:k2]))^2)

+(freq[i,j]/(P2[i,j]^2))))

}

}

B[[i]]=temp

}

require(Matrix)

bdiag(B)

ami=solve(bdiag(B))

return(ami)

}

sem=function()

{

source("D:\\Research2\\R codes\\Markov3.R")

##P2=estimation(x,f,k)

#-------take the estimated TPM (EM estimate)-------

Phat=P2

s=ncol(P2)

#------ EM estimate..we remove the last column because of restriction

theta_mat=P2[,-ncol(P2)]

theta=as.vector(t(theta_mat))

d=length(theta)

#-----function which computes E-step and M-step

#-------and returns next iterated estimate---

R CODES FOR CHAPTER 4 184

Em=function(Q)

{

estp=Q

for(alpha in 1:nrow(Q))

{

for (beta in 1:ncol(Q))

{

su1=NULL

for (k1 in 1: (length(y)-1))

{

su1[k1]=prob(Q,k1,y,alpha,beta)

}

freq[alpha,beta]=sum(su1)

}

}

for(alpha in 1:nrow(Q))

{

for (beta in 1:ncol(Q))

{

estp[alpha,beta]=freq[alpha,beta]/sum(freq[alpha,])

}

}

return(estp)

}

#------------setting theta_t----

DM=matrix(rep(0,(d*d)),ncol=d)

for(i in 1:d)

{

P1=matrix(rep(0.1,9),nrow=3)

R CODES FOR CHAPTER 4 185

P2=P1+0.5

temp1=P1

R1=rep(0,d)

temp2=R1+2

while(any(abs(temp2-R1)>=0.001))

{

index= which(abs(temp2-R1)<0.001)

P1=temp1

R1=temp2

temp_P=P1[,-s]

theta_t=theta

theta_t[i]=as.vector(t(temp_P))[i]

temp_P1=matrix(theta_t,byrow=T,ncol=(s-1))

temp_P1=cbind(temp_P1,t(t(rep(1,s)-rowSums(temp_P1))))

temp_P2=Em(temp_P1)

temp_theta=as.vector(t(temp_P2[,-s]))

for(j in 1:d)

{

temp2[j]=(temp_theta[j]-theta[j])/(theta_t[i]-theta[i])

}

for(j in index) temp2[j]=R1[j]

temp1=Em(P1)

P2=temp1

print(index)

}

R CODES FOR CHAPTER 5 186

#print(temp2)

DM[i,]=temp2

}

return(DM)

}

R codes for Chapter 5

#------reading data file and basic exploratory analysis----

full_data=read.table("C:\\Users\\Public\\Documents

\\Sensor_data2.csv",header=T,sep=",")

data=full_data[,1]

#----convert continuous data into discrete chain

discretize=function(data)

{

return(cut(data,br=quantile(data),labels=F))

}

full_chain=discretize(data)

##full_chain[13088]=1

#----- ML estimate of T.P.M based on complete data---

ML_ordinary=function(data)

{

x=data

dimension=length(unique(x))

P <- matrix(nrow = dimension, ncol = dimension, 0)

for (t in 1:(length(x) - 1))

R CODES FOR CHAPTER 5 187

P[x[t], x[t + 1]] <- P[x[t], x[t + 1]] + 1

for (i in 1:dimension) P[i,] <- P[i,] / sum(P[i,])

return(P)

}

complete_est=ML_ordinary(full_chain)

#------ partition full chain into two subsets:

#------ one subset for initial T.P.M and other subset to be filtered

train_chain= full_chain[1:5000]

test_chain=full_chain[-train_chain]

init_tpm= ML_ordinary(train_chain)

#------ choosing the filter matrix----

source("D:/research3.1R")

root=compare(init_tpm)

opt=optfilter(0.2,root,stage=3,init_tpm)

#------ filter the data and estimate the T.P.M

source("D:/Research2/R codes/estimationfunction.R")

fin_est=estimation(test_chain,opt)

Bibliography

1. Kolkata case study, https://trafficlogix.in (Retrieved online at 15/2/2022).

2. Data never sleeps, https://www.domo.com (Retrieved online at 15/2/2022),

2018.

3. The growth in connected iot devices is expected to generate 79.4zb of data in

2025, according to a new idc forecast, https://www.businesswire.com/ (Re-

trieved online at 15/2/2022), 2019.

4. T.W. Anderson and Leo A. Goodman, Statistical inference about markov

chains, Annals of Mathematical Statistics 28 (1957), 89–109.

5. Peter J. Avery and Daniel A. Henderson, Fitting markov chain models to dis-

crete state series such as dna sequences, Applied Statistics 48 (1999), 53–61.

6. Richard Baraniuk, Compressive sensing, IEEE Signal Processing Magazine 24

(2007), 118–121.

7. Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin, A

simple proof of the restricted isometry property for random matrices, Construc-

tive Approximation 28(3) (2008), 253–263.

8. Richard G. Baraniuk, More is less: Signal processing and the data deluge, SCI-

ENCE 331 (2011).

9. M.S. Bartlett, The frequency goodness of fit test for probability chains, Mathe-

matical Proceedings of the Cambridge Philosophical Society 47 (1951), 86–95.

10. Patrick Billingsley, Statistical methods in markov chains, The Annals of Math-

ematical Statistics 32(1) (1961), 12–40.

11. Emamnuel J. Candes, Compressive sampling, Proceedings of the International

Congress of Mathematics (2006), 1–20.

188

BIBLIOGRAPHY 189

12. Emamnuel J Candes, J K Romberg, and T Tao, Stable signal recovery from in-

complete and inaccurate measurements, Communications on Pure and Applied

Mathematics 59 (2006), no. 8, 1207–1223.

13. Emamnuel J. Candes and Michael B. Wakin, An introduction to compressive

sampling, IEEE Signal Processing Magazine 25(2) (2008), 21–30.

14. Emmanuel J. CandÃšs, Justin Romberg, and Terence Tao, Robust uncertainty

principles: exact signal reconstruction from highly incomplete frequency infor-

mation, IEEE TRANSACTIONS ON INFORMATION THEORY 52 (2006),

no. 2, 489–509.

15. G. Casella and E.L. Lehman, Theory of point estimation, Springer, 2003.

16. W. G. Cochran, Sampling techniques, Wiley, 1963.

17. Bruce A. Craig and Peter P. Sendi, Estimation of the transition matrix of a

discrete-time markov chain, Health Economics 11 (2002), 33–42.

18. AP Dempster, NM Laird, and DB Rubin, Maximum likelihood from incomplete

data via the EM algorithm, Journal of the Royal Statistical Society, Ser. B 39

(1977), 1–38.

19. David.L. Donoho, Compressed sensing, IEEE Transactions On Information

Theory 52 (2006), no. 4, 1289–1306.

20. J. L. Doob, Stochastic processes, John Wiley and Sons, New York, 1953.

21. Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N. Laska,

Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk, Single-pixel imaging via

compressive sampling, IEEE Signal Processing Magazine 25(2) (2008), 83–91.

22. R.M. Fano, The transmission of information, Technical Report, Research Lab-

oratory of Electronics at MIT (1949), no. 65.

23. Atanu Kumar Ghosh and Arnab Chakraborty, Use of em algorithm for data

reduction under sparsity assumption, Computational Statistics 32 (2017), no. 2,

387–407.

24. James Glanz, Power, pollution and the internet, The New York Times (Re-

trieved online at 15/2/2022), 2012.

BIBLIOGRAPHY 190

25. Alfred Haar, Zur theorie der orthogonalen funktionensysteme, Mathematische

Annalen 69 (1910), 331–371.

26. W. B. Hocking, R. R. & Smith, Optimum incomplete multi-normal samples,

Technometrics (1972).

27. IRE, A method for the construction of minimum redundancy codes, vol. 40,

1952.

28. Uthayakumar Jayasankar, Vengattaraman Thirumal, and Dhavachelvan Pon-

nurangam, A survey on data compression techniques: From the perspective of

data quality, coding schemes, data type and applications, Journal of King Saud

University - Computer and Information Sciences 33 (2021), no. 2, 119–140.

29. Oscar Kempthorne, The deign and analysis of experiment, Wiley, 1952.

30. D K Kim and J M G Taylor, The restricted EM algorithm for maximum like-

lihood estimation under linear restrictions on the parameters, Journal of the

American Statistical Association 90 (1995), no. 430, 708–716.

31. E.L. Lehman, Testing statistical hypothesis, Wiley, 1959.

32. R. J. A. Little and D. B. Rubin, Statistical analysis with missing data, John

Wiley, 1987.

33. Gene H. Golub & Charles F. Van Loan,Matrix computations, The John Hopkins

University Press, 2013.

34. T. A. Louis, Finding the observed information matrix when using the EM algo-

rithm, Journal of the Royal Statistical Society, Ser. B 44 (1982), 226–233.

35. S. Mallat, A wavelet tour of signal processing, Academic Press, 1999.

36. Patrick E. McKnight, Katherine M. McKnight, Souraya Sidani, and Aure-

lio Jose Figueredo, Missing data: A gentle introduction, THE GUILFORD

PRESS, 2007.

37. G. J. McLachlan and T. Krishnan, The em algorithm and extensions, John

Wiley, 2008.

BIBLIOGRAPHY 191

38. Fabrizia Mealli and Donald B. Rubin, Clarifying missing at random and related

definitions, and implications when coupled with exchangeability, Biometrika 102

(2015), no. 4, 995–1000.

39. X. Meng and D. B. Rubin, Using EM to obtain asymptotic variance-covariance

matrices: The SEM algorithm, Journal of the American Statistical Association

86 (1991), no. 416, 899–909.

40. Justin Romberg, Imaging via compressive sampling, IEEE Signal Processing

Magazine 25(2) (2008), 14–20.

41. Donald B. Rubin, Inference and missing data, Biometrika 63 (1976), no. 3,

581–592.

42. Claude E. Shannon, A mathematical theory of communication, Bell Telephone

Systems Publication, Monograph B-1598 27 (1948), 379–423, 623–656.

43. C.E. Shanon, Communications in the presence of noise, Proc. IRE 37 (1949),

447–457.

44. N. Z. Shi, S. R. Zheng, and J. Guo, The restricted EM algorithm under inequal-

ity restrictions on the parameters, Journal of Multivariate Analysis 92 (2005),

53–76.

45. M. Tan, G.L. Tian, and H.B. Fang, Estimating restricted normal means using

the em-type algorithms and ibf sampling, World Scientific, New Jersey, 2003.

46. G. L. Tian, K. W. Ng, and M. Tan, EM-type algorithms for computing restricted

MLEs in multivariate normal distributions and multivariate t-distributions,

Computational Statistics and Data Analysis 52 (2008), 4768–4778.

47. R. E. Trawinski, I. M. & Bargmann, Maximum likelihood estimation with in-

complete multivariate data, Annals of Mathematical Statistics (1964).

48. Terry Welch, A technique for high-performance data compression, IEEE Com-

puter 17 (1984), 8–19.

49. Rebecca M. Willett, Roummel F. Marcia, and Jonathan M. Nichols, Com-

pressed sensing for practical optical imaging systems: a tutorial, Optical Engi-

neering 50(7) (2011), 072601–1 – 072601–12.

BIBLIOGRAPHY 192

50. J. Ziv and A. Lempel, A universal algorithm for sequential data compression,

IEEE Transactions on Information Theory IT-23 (1977), no. 3.

