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List of Notations

C denotes the set of all complex numbers.

R denotes the set of real numbers.

7Z denotes the set of all integers.

e 7" denotes the direct sum of k-copies of Z.

e (Q denotes the set of all rational numbers.

e D™ denotes the n-th standered disk.

e 1, denotes the homotopy class of the identity map S™ — S™.

e ()X denotes the loop space of X.

e > X denotes the reduced suspension of a space X.

e >°°X denotes the infinite suspension spectrum of a pointed space X.

e X V¥ denotes the wedge of k-copies of X.

e CP"™ denotes the n-dimensional complex projective space .

e HP™ denotes the n-dimensional quaternionic projective space .

e OP? denotes the 2-dimensional octonionic projective space.

e T op denotes the category of topological spaces.

. Top% denotes the localised category of topological spaces, where 2 is inverted.
11 denotes the localised category of topological spaces, where 2 and 3 are inverted.

e 7., denotes the m-th stable stem .
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Chapter 1

Introduction

This thesis explores the construction of certain sphere fibrations over highly connected mani-
folds. One may study consequences for the loop space decomposition of the highly connected

manifolds.

1.1 Highly connected Poincaré duality complexes

From the point of view of classification problems in differential topology, apart from surfaces
and 3-manifolds, the results for spheres appeared in the celebrated works of Milnor [31] and
Kervaire and Milnor [30]. In dimension 4, classification problems have received a lot of attention
from both topologists and geometers. The determination of simply connected 4-manifolds up
to homotopy goes back to the early works of Whitehead [47] and Milnor [32]. In this case,
the simply connected hypothesis on the 4-manifold M determines the homology groups up to
an integer k, given by Ho(M) = ZF, and the homotopy type up to the classification of inner
product spaces of rank k, given by the intersection form. Conversely, given a non-singular inner
product space, the associated cell complex ( which can be built by attaching the top cell using
the given form to the wedge of 2-spheres) does satisfy Poincaré duality. However, not all of
them are homotopy equivalent to smooth manifolds due to the restrictions proved by Rohlin
[37] and Donaldson [18]. On the other hand, the topological classification problem for simply
connected 4-manifolds solved by Freedman [21], does not carry the same restrictions.

A natural generalization of the simply connected 4-manifolds are the (n — 1)-connected 2n-
manifolds. For these manifolds, the homology is again determined up to an integer k by
H, (M) = Z*. Their classification have been studied by Wall [44] via the approach of expressing
these as a union of handlebodies. The intersection form is no longer sufficient to determine

the homotopy type of M. Such an M with H,(M) = Z* possesses a minimal CW complex
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structure

M =~ (S™)Y* Upar) D", with L(M) € man—1((S™)"").

The homotopy group ﬂgn_l((S”)Vk) is computed via the Hilton-Milnor theorem [25] as

Ton1 ((S™)VF) 2 (ma_1(S™)F @ (a1 57120,

The groups ma,_1(S%""1) 2 Z occuring in the above description are mapped to (S™)Y* via
Whitehead products of the different summands. Moreover, if n is even, the group mo,_1.5"
contains a Z-summand whose generator may be chosen either as the Whitehead product or the
Hopf invariant one classes (which occur only when n = 2, 4, or 8 [1]). The projection of L(M)
onto these torsion-free summands are determined directly by the intersection form.

It is also an interesting question whether given L(M) € ma,—1 ((S™)VF)

, there is a (n — 1)-
connected 2n-manifold homotopy equivalent to the cell complex M. In this paper, we work
around these issues by considering all such cell complexes M. These satisfy Poincaré duality
in the sense that there is a degree 2n homology class [M] which gives the Poincaré duality
isomorphism via the cap product, and are called Poincaré duality complexes [45]. We write
PD; for the collection of Poincaré duality complexes that are k-connected and m-dimensional.
In this notation, the above examples lie in PD2" ;.

The expression for L(M) € ma,—1((S™)"*) shows that a general homotopical classification will
rely on the knowledge of ma,_1S5", and thus, is not possible with our current knowledge of
the homotopy groups of spheres. As a weaker classification, we consider the homotopy type of
the loop space QM. If k = Rank(H,(M)) > 2, one realizes that the homotopy type of QA/
depends only on k [13, 9]. One proves that the loop space is expressable as a weak product of
the loop space of spheres which map to 7, M via Whitehead products. If kK = 1, this is not true
as is observed in [9, §4.3].

The splitting results for the loop space of manifolds fall under the general framework of loop
space decompositions. Such a decomposition for highly connected manifolds was first proved in
[14] for the (n— 1)-connected (2n+ 1)-manifolds. There have been a growing interest in results
of this type [13, 9, 10, 6, 42, 26]. A general idea for producing loop space decompositions is
given in [42]. Given a cofibration sequence YA — E 2 T for which Qh has a right homotopy

inverse, there are equivalences

QF ~ QJ x QFib(h), Fib(h) ~ LA x QJ,
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where Fib(h) is the homotopy fibre of h. While this technique may be applied in many examples,
it is not very useful when the rank of the homology of E is small.

A different view of the loop space decompositions is given by fibre bundles. For example, in the
case of CP?, the usual quotient is part of the principal bundle S — S5 — CP? which yields
the loop space decomposition QCP? ~ S x QS®. Simply connected 4-manifolds also support
principal S'-bundles of the form S! — #F=1(82 x §3) — M where Rank(Hy(M)) = k > 2
[19, 8]. The construction of such bundles have many geometric consequences. In the context
of loop space decompositions, this implies QM ~ S x Q(##71(S% x S3)). The construction
involves a choice of a primitive class in H?(M) = [M,CP>] using the fact that CP> is the
classifying space for S'-bundles, and the classification of spin 5-manifolds by Smale [39]. In

this paper, we search for generalizations of this construction for highly connected manifolds.

1.2 Existence result for sphere fibrations

Let My € PD2", be a Poincaré duality complex of dimension 2n which is (n — 1)-connected
and Rank(H,,(My)) = k. Let Ey = #F71(S™ x §2"~1). We first observe that the existence of
a fibration

Snil — Ek — Mk

puts some restrictions on n. As Ej, is (n — 1)-connected, we must have that the map S~ ! —
E}. is null-homotopic. Now continuing the homotopy fibration sequence further, we find that
OE, — QM;, — S™ ! is a principal fibration with a section and so, there is a splitting
QM ~ QE. x S 1. Therefore , S"! is a retract of an H-space, and hence is itself an
H-space, which doesn’t usually happen . We assume that n is even, and either n = 2, 4, or 8§,
or that we are working in the category T op; /o, which is the localized category of spaces after
inverting 2. This hypothesis implies that S”~! is an H-space.

We first notice that the classification results of Smale [39] and Barden [5] for 5-manifolds are
not available in general. Additionally, the spheres are not loop spaces (other than n = 2, or 4),
so it is not possible to obtain principal fibrations in general. We approach this problem from
a homotopy theoretic point of view. The homology of the loop space is an associative algebra
via the Pontrjagin product, and for both M} and Ej, H,Q2M} and H,.QE}, may be computed
as tensor algebras modulo a single relation [15]. It is then possible to produce a map between
the associative algebras H,.(QFE)) — H.(QMy). Now the results of [9] imply that both QE}
and QM are a weak product of loop spaces on spheres, which enable us to construct a map

QF, — QMp, that realizes the above map on homology.
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The next step is to try to construct a delooping of the map QF, — QM. This is done via

obstruction theory using the cell structure of Fj, as
Ek ~ ((Sn)kal v/ (Sanl)\/kfl) U¢ D?mfl’

where ¢ is a sum of Whitehead products. The map QFE;, — QM already specifies choices for
the map
(Sn)\/k—l v/ (S2n—1)vk—1 N Mk-

Once the map f : E — M is appropriately constructed, a spectral sequence computation is
used to show that Fib(f) ~ S™"~!. The first result that we prove is the following theorem (see

Theorem 3.1.5)

Theorem 1.2.1. For k > 2, let M}, € PD?", with n even and H,(M;Z) = ZF. After
inverting the primes 2 and those which occur as torsion in mo,_1(S™), there is a fibration

S — By — My, such that Ej, is homotopy equivalent to #+~1(S" x §2n—1).,

Following this, we try for improved results which reduce the set of primes that are required to
be inverted. The best case is when n = 2, 4, or 8, which contains a Hopf invariant one class.
In the case n = 2, one already has a S1-bundle over Mj, € 772)‘11 as stated above. We also
point this out from our homotopy theoretic techniques without using the classification results of
Smale. For n = 4, we have 77(S*%) =2 Z®7Z/(12), so the primes that are required to be inverted
in Theorem A are 2, and 3. We observe through direct computation (Example 4.2.3) that there
is no principal S3-bundle over HP24HP? with total space S* x S7. Here, the group structure
on S2 is by quaternionic multiplication identifying S® as the unit quaternions. However, we are
able to prove integral versions of the sphere fibrations as stated in the following theorem. (see

Theorems 4.1.2, 4.2.11)

Theorem 1.2.2. a) Let M, be a simply connected 4-manifold with Hy M), = ZF. Then, there
is a principal S-fibration S* — Ej, — M), where Ej, ~ #+71(8% x §3).

b) Let My € PD§, that is, Hy(My) = Z* for k > 2. Such an M, supports a S>-fibration
S3 — Ej, — My with Ey, ~ #F71(84 x 87).

For n = 8, we have 715(S%) =2 Z®Z/(120) and so the primes that are required to be inverted in
Theorem A are 2, 3, and 5. Through direct computations, we observe that even for Q P2#Q P2,
it is not possible to construct the fibration S7 — S% x S1° — QP24#0P2. However, it appears
that one may put down a list of criteria on M € PD%G for which such fibrations do exist. We

leave this question open for future research.
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For general n, one may increase the value of k to obtain better results for spherical fibrations.
The precise bound is given by the number of cyclic summands 7 in the stable stem 7;_;. The
fibrations are then obtained in the category Top, , if k> r. If we further pass to Top; /913
(that is, also invert the prime 3), we have a homotopy associative multiplication on S™~! which

allows us to construct spaces Fy(S™" 1) o~ §"~1 % S"~1 and P,(S™"1), and a fibration
S = By (S = P(S™).

In the category T0p1/271/3, we prove that the sphere fibrations are obtained as a pullback of
the above fibration via a map M — P,(S™"~1). These results are summarized in the following

theorem. (see Theorems 3.2.7, 3.2.15)

Theorem 1.2.3. a) Let My, € PD?", with H,M = 7ZF, and n > 8 be an even integer. Let
be the number of cyclic odd torsion summands of ;_,. If k > r, after inverting 2 there is a
fibration Ej, — M, with fibre S"~' where Ej, ~ #(k_l)(S” x 21y,

b) After inverting 2 and 3, the fibration Ej, — M), is a homotopy pullback of My, — Py(S™ 1) «+
E5(S™1) for a suitable map My, — Po(S™71).

1.2.1 Applications for Loop space decomposition

As applications of the spherical fibrations constructed here we consider connected sums N# M,
with M, as above, and N a general simply connected 2n-manifold (more precisely, N € PD?").
Using the techniques in [42], we may observe that a loop space decomposition may be obtained
using the fact that the attaching map of the top cell of My is inert. The condition inert means
that the map (S™)V¥ — Mj, has a right homotopy inverse after taking the loop space (that is
Q((S™)V*) — QM;, has a right homotopy inverse).

We present a fresh view for these loop space decompositions (Theorems 3.2.29, 3.2.30, 3.2.31).
We input our fibrations into the arguments in [26] to realize fibrations over N#M with total
space G, (N)#E}, (Proposition 3.2.24). The manifold G-(N) is a union of Ny x S"~! and
S§2n=1 x D" (3.2.23) using an equivalence S?"~1 x §n~1 — §2n=1 x §n~1 ass0ciated to a
map 7 from S?"~1 to the space of homotopy equivalences of S™~!. Earlier observations about
connected sums of sphere products [9, Theorem B] imply that the attaching map of the top cell
is inert. Thus, the homotopy type of Q(G(N)#E}) depends only on G-(N) — *. We identify
this to be Ny x S™"~! and is thus independent of 7 (Proposition 3.2.25). Finally, we point out
that the loop space decompositions also yield results for the loop space of the configuration

spaces of N#Mj, (Theorem 3.2.35).
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1.3 SU(2)-bundles over 8-manifolds

The last chapter explores SU(2)-bundles over 8-manifolds, aiming for results akin to those
about circle bundles over 4-manifolds [19, 8]. In the case of simply connected 4-manifolds, the
results are established by leveraging the classification of simply connected 5-manifolds achieved
by Smale [39] and Barden [5].

A circle bundle S' — X — M over a simply connected 4-manifold M is classified by o €
H?(M), the total space X («) is simply connected if « is primitive, and there are only two
possibilities of X () via the classification of simply connected 5-manifolds. Explicitly, we have

[19, Theorem 2]

1. For every simply connected 4-manifold M, there is a circle bundle «, such that X («) is
homotopy equivalent to a connected sum of S? x S3. If M is spin, among primitive c,

this is the only possibility.

2. For a simply connected 4-manifold M which is not spin and a circle bundle a over it, X («)
is either homotopy equivalent to a connected sum of S? x S3, or to a connected sum of
5?2 x S3 and another manifold B. The manifold B is (unique up to diffeomorphism ) a non-

spin simply connected 5-manifold whose homology is torsion-free, and Rank(H2(B)) = 1.

The results of Smale and Barden are geometric in nature, and do not generalize easily to higher
dimensions. Using homotopy theoretic methods, it was possible to construct sphere fibrations
[11] over highly connected Poincaré-duality complexes possibly by inverting a few primes or in
high enough rank. Among these sphere fibrations, the only case where they could be principal
bundles was in dimension 8, and the question whether they may be realized as such was left
unresolved.

In this chapter, we consider principal SU(2)-bundles, noting that SU(2) = S3 is the only case
apart from the circle where the sphere is a Lie group. The base space of the SU(2)-bundle which
is appropriate for making a similar analysis is a highly connected 8-manifold. More precisely,
we consider Poincaré duality complexes M (8-dimensional) that are 3-connected. These are

obtained by attaching a single 8-cell to a buoquet of 4-spheres. We denote
PD§ = the collection of 3-connected 8-dimensional Poincaré duality complexes.

The notation My € PDj assumes that Rank(Hy(My)) = k. The attaching map of the 8-

cell is denoted by L(Mjy), and is of the form (once we have chosen a basis {aq,...,ax} of
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m4(My) = 7F)

k k
LMp)= Y gijloiog]+ Y giavi+ Y liv (1.3.1)
=1 =1

1<i<j<k
The matrix ((g”)) is the matrix of the intersection form, and hence, is invertible. The notation
v; stands for a; ov and v} for a; ov/. Here v is the Hopf map, and v/ € 77(5%) is the generator

for the Z/(12) factor satisfying [14,t4] = 2v + /. For such complexes, we consider
P(Mjy) = the set of principal SU(2)-bundles E(1)) ¥ M, such that E(v)) is 3-connected.

The bundle ¢ is classified by a primitive element vy € H?*(M}), which satisfies a criterion
(see Proposition 5.3.9). In this context, we first encounter the question whether P (M) is

non-empty. We prove (see Proposition 5.3.3 and Proposition 5.4.2)
Theorem 1.3.2. For k > 3, the set P(Mj,) is non-empty.

For k = 2, there are examples where P(M},) is empty. This means that for every principal
SU (2)-bundle over such complexes, the total space has non-trivial 3. The idea here is that
the existence of v is given by a certain equation in k variables, and solutions exist once k is
large enough.

In the case of simply connected 4-manifolds, the first kind of classification of circle bundles is

the result of Giblin[22] which states
If My = S% x 52, then E(¢)) ~ S? x S for any primitive .
We also have an analogous result in the 8-dimensional case
If 1 € P(S* x §%), then E(1p) ~ §* x 57,

In fact, this fits into a more general framework. We call a manifold M, € PD§ stably trivial if
L(My) is stably null-homotopic (that is the stable homotopy class of L(Mj) : S7 — (S4)W is
0). In terms of (1.3.1), this means for every i, g;; — 2l; = 0 (mod 24). We have the following

theorem (see Proposition 5.3.7)

Theorem 1.3.3. Suppose Mj, is stably trivial. Then, for every ) € P(My), E(1)) ~ #F 184 x

S, a connected sum of k — 1 copies of S* x S7.

This directly generalizes the result for circle bundles over simply connected 4-manifolds that are

spin (identifying the spin manifolds as those whose attaching map is stably null).
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1.3.1 Classification of the homotopy type of 3-connected 11-manifolds

We proceed towards a more general classification of the homotopy type of the space E(v) for
P € P(My). Let PDi% be the class of 3-connected 11-dimensional Poincaré duality complexes
E such that E\ {pt} ~ a wedge of S* and S7. We first observe that E(¢) € 731)4{717 (see
Proposition 5.2.2), and we try to address the question of the classification of complexes in

PD;; up to homotopy equivalence. The homology of such complexes E is given by

Z m=0,11
Hn(E)= Q70 m=4,7

0  otherwise.

We denote the number r by Rank(E). The classification works differently for » = 1, and for
r > 2. Table 5.1 lists the various possibilities for r = 1. For r > 2, E is a connected sum of

copies of 5% x S7, and the complexes E) ¢ s defined below. Note that

m10(S* vV ST) 2 710(S1) @ m10(ST) @ m10(S10)

=Z/24){zr © Z/(3){y} & Z/(24){vr} & Z{[u4, 7]}

Here, z = vowv;and y = v/ oy, Let

Ores = [La,t7] + A7 ovr) + €(tao ) +6(ea 0 y),
where 14: S* — 54V ST and 17: ST — 5%V S7 are the canonical inclusions, and define,

Enes = (S*Vv ST Uy, , D'
The attaching map of the top cell of E takes the form
L(E): 8% — (s*v s

The stable homotopy class of L(E) lies in

7%((54 v 57)W) > (2/(24){v} & Z/(2){1*}) .

This takes the form \;Bov+esa0v? for some B € 7r7((54\/57)w) and o € 714((S4\/S7)vr>.

Up to a change of basis we may assume that A, | 24, and if s is even, €5, € Z/(2). These
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numbers are invariant over the homotopy equivalence class of E, and are denoted by A\;(E),
and ¢5(E) (defined only if A\s(E) is even). We use these invariants to classify the homotopy

types of elements in 731)41717 (see Theorem 5.1.17)
Theorem 1.3.4. Let E € PDilT Then the homotopy type of E is determined by the following.

1. If \s(E) is even and €;(F) = 0, then

E~#"1Eyoo#E\ 5 wheree=0 (mod 2).

2. If \s(E) is even and e¢5(F) = 1, then

E =~ # " Eo00#Ex, 6 where e =1 (mod 2)

or B ~ #’"72E0,070#E0,170#E>\S,6’5 where e =0 (mod 2).
3. If \s(E) is odd, then

E~#""1Eyoo#Ex s or E~#""2Ey00#Eo10#Ex, s

Further given \s, the choices of € and 0 are those which are mentioned in Table 5.1.

We see that in the list given in Table 5.1, for certain cases the homotopy type of E is determined
by As(E) and €s(FE). This happens if A\;(E) = 0, or 12. We also observe that the homotopy
type of QFE depends only on the rank . Now, we look at M} € PDg, and try to determine
the set of homotopy equivalence classes of E(1)) for 1» € P(Mj). In this process, we determine
a formula for A(¢)) := A;(E(v))) (Proposition 5.2.13), and using this we determine the set of
possible values of As(¢)) for ¢ € P(M}). The stable homotopy class of L(Mjy) lies in

w5 ((547F) = (z/ o) ™"

This takes the form o,a o v for some o € 4 ((S*)¥¥), and up to a change of basis for k > 2,
o(My) := ged(os,24) is an invariant of the stable homotopy type of M. Other than k£ and

o (M), the explicit stable homotopy class of a above yields a linear map 7 : H*(M},) — 7/(24)
given by 7(¢) = ¢ (osa).
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1.4 Constructing principal bundles of prescribed stable homotopy

types

We use the invariants k, (M), 7, and the intersection form to completely determine the
possibilities of A(¢)) for ¢ € P(M},). (see Theorem 5.2.14, Proposition 5.3.10, Theorem 5.3.11,
Theorem 5.3.14, and Theorem 5.4.5)

Theorem 1.4.1. For any ¢ € P(My), \(v) is a multiple of o(My) ( (mod 24)). Conversely,

the multiples of o(Mjy,) that may be achieved are described as follows

1. If the intersection form of My, is odd and k > 7, then {\(¢) | ¥ € P(My)} equals the
set of multiples of o(Mj,) (mod 24).

2. If the intersection form of My, is even, each 1y € P(My,) satisfies e5(1)) = 0 (mod 2).

3. If k> 7, there are ¢ € P(My,) such that X\(¢p) = o(My,), and also there are 1) € P(Mjy,)
such that A(¢) = 30 (Mj,).

4. If o(My) = 2, or 4 (mod 8) for k > 5, there is a ¢ € P(My) such that \(vp) = 0
(mod 8) if and only if the complex satisfies hypothesis (Hs).

5 Ifo(My) =2 (mod 8) for k > 5, there is a ¢ € P(Mjy) such that A\(¢)) =4 (mod 8) if

and only if the complex satisfies hypothesis (Hy).

For lower values of k, we do not get systematic results like the above. That is, the set {A\(¢)) |
1 € P(Mj)} is not completely determined by o(My), k, 7, and the intersection form. Theorem
1.4.1 implies that there are certain M} whose intersection form is even and there is no ¥ €
P (M) such that E(zp) ~ #F~18%x S7, however if the intersection form is odd, then for k > 7,

there is a principal bundle SU(2) — #+71(S* x S7) — M;,.
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Constructing maps between loop

space homology algebras

In this chapter, we construct a map from the homology of the loop space of a connected sum of
copies of S™ x §?"~! to that of the loop space of a highly connected Poincaré duality complex .
We use the fact that the latter is a quadratic algebra with a single relation which in turn comes

from a non-singular intersection form. The results of this chapter appear in the paper [11].

2.1 Some algebraic results

-,p%] for a

Let V be a free module over a principal ideal domain R (in our applications Z[p%, .

finite set of primes {p1,--- ,p,}) of finite rank k, and suppose o : V' — R is a non-zero linear
function. Let £ be a symmetric 2-tensor (that is an element of Sym?(V) = (V ® V)*2) which
is invertible (that is, with respect to any basis the corresponding k x k matrix with coefficients
from R is invertible). We think of V' as a graded vector space, also note that the associative

algebra T'(V') has a graded Lie bracket given by
[, w] =vew— (=D @ v forall v,w e T(V). (2.1.1)

Proposition 2.1.2. With V concentrated in a single grading m for m odd, o and L as above,

for any basis vy, --- ,vp_1 of Ker(a), there are wy,--- ,wx—1 € V ® V such that

Ea

—1
1. [vj,wj] =0 (mod L).
1

2. {wy, -+ ,wx_1} projects to a basis of V@ V/(R{L} +V @ Ker(a)).

.
Il
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Proof. Given a basis vy, - - ,vg_1 of Ker(a), pick vy such that vy, .- , v is a basis of V. This
is possible as the image of « is a principal ideal (b) of R , and we may pick v such that

a(vg) = b. As the collection {v; ® v;} is a basis of V' @ V, we have an expression

k k
=3 gijui®u;, (2.1.3)
i=1 j=1

for a symmetric invertible matrix ((g;,;)) over R. Define w; by

k—1
w; = Zgi,j [’Uj, Uk] =+ 9i,kVk & V.- (2.1.4)
j=1

Note that a basis of the free R-module V @ V/(V ® Ker(c)) is given by the images of the
elements v; ® v;, for 1 < j < k. It is clear that the coefficients of the w; in terms of this basis
are those of the first (k — 1) columns of the matrix ((g;,;)), with the last column corresponding

to L. This proves 2. For the statement 1, we compute using the graded Jacobi identity

[, [y, 2] = [[z, 9], 2] + (=) [y, [z, 2]],

and the identity [36, §8.1]

[y?$®x] = [[%ﬂ?x]?

for odd degree classes z. We have

k—1 k—1 k-1
'Uzawz Z (ng (%7 U],Uk]] + i k['UZaUk@Uk:])
=1 =1 =
k—1 k—1
= Y gilvnvloel > giilvi @ vi okl + > giwl[vis vl vkl
1<i<j<k—1 i=1 i=1
= L, v&] = grk[ve ® vk, V]
= [E,Uk].
The last step is true as [vx ® vy, vg] = 0. O

We carry forward the analogy in Proposition 2.1.2 further using graded Lie algebras. First recall
the definition of a graded Lie algebra [36]. A graded Lie algebra over a ring R in which 2 is

not invertible carries an extra squaring operation on odd degree classes to encode the relation

2 _ 1

x® = 5[z, z] whenever |z| is odd.
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Definition 2.1.5. A graded Lie algebra L = ®L; is a graded R-module together with a Lie
bracket

[, ]:Li®r Lj = Litj

and a quadratic operation called squaring defined on odd degree classes

2
()7 ¢ Logy1 — Lago.
These operations are required to satisfy the identities

[,y = —(=1)%8@ Wy o] (@ € Li,y € Ly),

[, [y, 2]] = [z, 9], 2] + (~1) %5 98Oy [z 2]] (¢ € Li,y € Ly, 2 € Ly),
(az)? = a®2® (a € R,z € Lopy1),

(x4 y)? =22 + 92 + [2, 9],
[z,2] =0 (z € Ly),

2.%2 = [.’E,Z'], [1’,332] =0 (.’E € L2k+1)7

ly.2%] = [y, 2], 2] (z € Lars1,y € Ly).

Example 2.1.6. Note that T(V') is a graded Lie algebra with the Lie bracket described in
(2.1.1). For |u| odd, (u)? is defined to be u® u. The identities above are easily verified. A

symmetric 2-tensor L which is expressed in the form (2.1.3) may be written as

kok k
DD gigvi®ui= Y, gijlvn v+ ) giivi @ v
i=1 j=1 1<i<j<k i=1
Therefore, L belongs to the sub-Lie algebra of T (V') generated by V if V' is concentrated in a
single odd degree as in the hypothesis of Proposition 2.1.2. Note that from the definition, we

have that v belongs to a graded Lie algebra for an odd degree class v.

It is possible to derive a Poincaré-Birkhoff-Witt theorem for graded Lie algebras under the extra

assumption that the underlying module is free over R.

Theorem 2.1.7. [36, Theorem 8.2.2] If L is a graded Lie algebra over R which is a free R-
module in each degree, then U(L) is isomorphic to the symmetric algebra on L. In terms of
the multiplicative structure, the symmetric algebra on L is isomorphic to the associated graded

of U(L) with respect to the length filtration induced on U(L).
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We also note the following result which states that the graded Lie algebra injects into the

universal enveloping Lie algebra.

Proposition 2.1.8. [9, Theorem 2.21] Suppose that R is a Principal Ideal Domain. Let L be
a graded Lie algebra over R such that L, is finitely generated for every n. Let U(L) be its

universal enveloping algebra. Then the natural map v : L — U(L) is injective.

The graded Lie algebra of interest is L(V, L) which is defined to be the graded Lie algebra
F(V)/(L). The notation F (V') stands for the free Lie algebra generated by V' and L being a
symmetric 2-tensor, lies in F'(V') (as V is concentrated in odd degree). We may express the
graded Lie algebra as

LV.0) =V e [[V.V+(V)]/(L) e

Example 2.1.9. Note that U(F(V')) =2 T(V'), and [9, Proposition 2.9] implies that U (L(V, L)) =
T(V)/(£).

Let dim(V') = k. For a (k — 1)-dimensional summand W of V, write
LY(V,0)2W e |[V,V]+ (V)] /(L)@

which becomes a Lie subalgebra of L(V, L). We note that Proposition 2.1.2 actually identifies

the Lie algebra LV (V, L).

Proposition 2.1.10. Given any basis v1,--- ,vp_1 of W, there are wy, - - - ,wy_1 satisfying the
conditions of Proposition 2.1.2 such that the map F(vi, -+ ,vk_1, w1, - ,wi—1) — L(V, L)

induces an isomorphism of graded Lie algebras

F(U17“' y Ug—1,W1, " -~ 7wk71)

(0 v, wi))

=~ IW(V,L).

Proof. Let F stand for the left hand side of the equation in the statement of the Proposition.
We wish to show that F = LW (V, £). We note that the universal enveloping algebra of F is
T(vi,-- -, Vp—1, w1, ,wg—1)/(>_[vi, w;]), and the universal enveloping algebra for L(V, L) is
T(V)/L. It follows from Proposition 2.1.8 that both F and L (V, £) are free of finite rank in
each grading. Our first observation is that the Poincaré-Birkoff-Witt theorem (Theorem 2.1.7)
implies that the ranks in each degree are the same. We then show that the map is surjective

wh