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ABSTRACT

In this thesis, we use the techniques of Boolean functions in different applications.

More specifically, our focus is on the properties of Boolean functions that hold cryp-

tographic significance. The employed techniques primarily revolve around combina-

torial methods, yielding fresh insights into the enumeration and construction of such

functions.

Initially, our effort is on exploring functions generated through an Arbiter-based

Physically Unclonable Function (PUF) construction with random delay parameters.

We observe that, under specific constraints on input weights, such a straightforward

model of Arbiter PUFs yields favourable cryptographic parameters in terms of differ-

ential analysis. In this context, we theoretically address the autocorrelation properties

issue within a restricted space of input variables with fixed weights.

While investigating this aspect independently, we have concentrated on the con-

nection between Arbiter PUFs and Threshold functions. Subsequently, we delve into

the study of the combination of such Arbiter-based PUFs, specifically examining the

scenario involving the XOR operation of two devices with arbitrary inputs of equal

length. Based upon extensive computations, we identify several interesting proper-

ties. Beyond addressing the counting problem, we also derive the general formula

to calculate the probability of the occurrence of identical outputs from a combiner

model PUF corresponding to two distinct challenge inputs.

We further note that the collection of Boolean functions produced by Priority

Arbiter PUF (PA-PUF) is larger than the set of Boolean functions generated by the

traditional Arbiter-based PUFs. Lastly, we investigate the bias estimation of the

response bit generated by PA-PUF concerning the influence of altering specific bits

in the challenge input.

Next, we assess whether a seemingly random stream exhibits any underlying non-

random patterns. In this context, we highlight specific constraints of the BoolTest

strategy proposed by Sýs et al (2017) and introduce combinatorial findings related

to the identification of optimal Boolean functions in this regard. Our results identify

the most effective Boolean function in this context, one that yields the maximum

Z-score.

Subsequently, we conducted a thorough examination of all Boolean functions in-

volving four variables to formulate binary input-binary output two-party nonlocal
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games and assess their efficacy in both classical and quantum contexts. Our inves-

tigation identifies certain games other than the CHSH game (which is naturally the

provably best example) that exhibit a better (may be sub-optimal compared to the

best case) success probability in quantum scenarios compared to classical scenarios.

Additionally, we extend the framework of the classical strategies to encompass other

n-party nonlocal games.
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1
Introduction

Contents

1.1 Thesis Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 30

In this thesis we investigate various properties of Boolean functions in the context

of classical and quantum cryptographic primitives. The first part of the thesis deals

with the analysis and construction of Physically Unclonable Functions (PUF), while

the second part contains our efforts in the testing of randomness of Boolean functions

and quantum advantages related to nonlocal games. In the two major parts of the

thesis, the unifying thread of Boolean functions weaves various topics involving the

broad area of cryptology.

A Physically Unclonable Function or PUF is a technical umbrella-term for any

physical entity whose operation cannot be replicated/“cloned” by means of another

system with identical technology. For specified input conditions, or challenges in

cryptographic terms, a PUF provides a physically defined unique identifier. For in-

stance, PUFs are used in many hardware devices (e.g., RFID tags and smart cards)

to generate cryptographic keys, to achieve secure device authentication and to ensure

various aspects of secure communication [LLG+04]. Integrated circuits are prone to

random manufacturing variations such as process, voltage, and temperature, which

may result in the variations of circuit delay. A PUF generates a unique response from

a device for each challenge by exploiting such variations, thereby creating a unique

Challenge-Response Pair (CRP) for each PUF [LLG+04]. Theoretical and experimen-

tal investigation of CRP set expansion has been demonstrated in [CCKM16]. The

21



unique challenge-response pairs are utilized for various security protocols, such as

device authentication and data encryption [CCM17, GCL+21, RDM+23, MCNS15,

Muk16, CGS+19].

Another important role of the PUFs is to generate random-looking keys for crypto-

graphic computations in run-time without storing those secret patterns in non-volatile

memory. As such the outputs from a PUF should meet certain requirements, mostly

in terms of randomness. However, it must be understood that once several PUFs are

fabricated from the same family, each of them is fixed and should be different. That

is, it is desirable that the truth tables of two different PUFs from the same family

of fabrication will have significantly different patterns. Another important consider-

ation is that, a PUF being a hardware-based bit generator, there can be the presence

of noise, mostly environmental, in the output bits. In [Gas03], it has been proposed

that error-correcting codes can be used in such scenarios.

PUFs can be classified into delay-based and memory-based categories based on

the parameters from which their responses are derived. A delay-based PUF uses

the difference in delay between two paths to derive the response. Prominent exam-

ples of such delay-based PUFs are the Arbiter-based PUF [LLG+05] and the Ring

Oscillator PUF [SD07]. A semiconductor memory, once it is turned on, will store

random data in its memory cells. The random data from the memory can be used to

generate a PUF response - this is the principle of memory-based PUFs such as the

SRAM PUF [GKST07], the Butterfly PUF [KGM+08], the Glitch PUF [SS10] and

the MEmory Cell-based Chip Authentication (MECCA) PUF [KNWB11].

Figure 1-1: Ring Oscillator PUF

A Ring Oscillator is an electronic circuit to generate square waves. In a Ring
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Oscillator PUF [SD07], an n number of ring oscillators were used to generate n

square waves of a similar frequency, as shown in Figure 1-1. Due to the diverse paths

through which oscillation outputs propagate, the skew of the square wave fluctuates,

resulting in the generation of a response. A random challenge selects two of the n

square waves and tallies the total number of rising or falling edges of the two square

waves, designated as top and bottom counters. A comparator decides the response

as ‘1’ (or ‘0’) depending upon whether the top counter is greater than the bottom

counter (or vice versa). An extension to the Ring Oscillator has been proposed, such

as the Configurable Ring Oscillator PUF [SVCL18], which uses a linear feedback shift

register to generate new challenges for the PUF.

In our thesis, we focus on Arbiter-based PUFs and their variants. An Arbiter-

based PUF (Arbiter PUFs) is a hardware-based pseudorandom bit generator that was

introduced by Gassend et al. [GCDD02], [PRTG02] in the year 2002. Such properties

are achievable (to some extent) as the output bit from any Arbiter PUF depends on

device-specific parameters such as delay parameters (defined later). One may assume

that these delay parameters are identically independent random variables which follow

a normal distribution. Such random parameters differentiate each instance from the

same family of PUFs. An n-length Arbiter PUF takes input (also called challenge

input from a cryptanalytic point of view) from {−1, 1}n (for mathematical analysis,

we use {−1, 1}n instead of {0, 1}n) and generates either 0 or 1. The circuit of the

PUF is based on two paths where an input voltage moves from the first layer to the

last layer via any of the two paths in each stage. One path is known as the top path,

and the other is referred to as the bottom path. Due to the delay parameters, the

arrival time of the voltage via the two paths will be different. The circuit of PUF

measures the delay difference between these two paths, and depending upon the sign

of delay difference, it generates as output either 0 or 1.

A Boolean function can be viewed as a mapping from {0, 1}n to {0, 1}. Thus,

an n-length Arbiter PUF can act as an n-variable Boolean function. In most cryp-

tographic applications, the input bits of a Boolean function are usually considered

independent and taken uniformly from the domain and it is expected that the output

bits would display an acceptable measure of pseudo-randomness. Hence the guarantee

of pseudo-randomness in the output is necessary for a PUF model to be acceptable for

cryptographic applications. In recent time, multiple articles [Bec15, BFSK11, RBK10,
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RDK12, RSS+10a, RSS09, RSS+13a] have analyzed varied models of PUFs and ob-

served different weaknesses. Multiple machine learning-based tools have also been de-

veloped to analyze the security of different models of PUF [Lim05, MKP08, RSS+10a,

RSS+13a, CCMC20]. In response, several counter-measures have been proposed to re-

sist such attacks, leading to the introduction of new designs [Dev09, LLG+04, Lim05].

In a parallel development, we are also interested in the combinatorial and statistical

aspects in evaluating the Boolean functions generated out of varying delays in Arbiter

PUFs. In this context, we refer to [SBC+19b], where several non-randomness results

have been demonstrated theoretically.

As an additional note, it’s worth mentioning the operational connection with

specific stream ciphers such as FLIP [MJSC16], which serve as essential elements in

Fully Homomorphic Encryption (FHE) [CCF+18]. FLIP belongs to a class of stream

ciphers whose keystream bit is generated by using a non-linear Boolean function

with inputs from a restricted domain. In this context, several properties of Boolean

functions over the restricted domain (definition of the restricted domain is elaborated

in Section 2.1.1) were studied in [CaR17, MMM+18, MMM+19, MZD19]. Our findings

demonstrate that although there is significant bias in the autocorrelation measures

of Arbiter PUFs [SBC+19b], this bias disappears when challenge inputs are selected

from a restricted domain.

While investigating the number of Boolean functions generated by Arbiter PUFs,

we had not explored the connection between Arbiter PUFs and Linear Threshold

Function. In 1961, Muroga, Toda, and Takasu had introduced and explored the

Majority Decision Function or Threshold Function [MTT61]. The total count of

n-variable threshold functions precisely matches the number of Boolean functions

derived from n-bit Arbiter PUFs. In Section 6.1.2 of [Sor17], it was noted that an

Arbiter PUF could be represented as a threshold function. Considering this connec-

tion, we demonstrate methods for distinguishing Arbiter PUFs from other Boolean

functions. Additionally, it illustrates how one can investigate a substantial portion of

the Boolean functions class by XORing two n-length PUFs with identical inputs.

Research presented in [RRM21] has revealed that only a fraction of the entire

set of Boolean functions can be produced using Arbiter PUFs. This prompts us

to investigate the number of Boolean functions derivable from the circuitry of an

XOR-PUF [RSS+10b]. In this study, we explore two variations of XOR-PUFs, one
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with uniform input lengths and the other with disparate input lengths. Addition-

ally, we examine the XORNF (Exclusive OR Normal Form) representation of two

Arbiter PUFs of identical lengths, observing the resulting count of Boolean functions

generated from them.

Various extensions to the basic Arbiter PUF exist to enhance the randomness

of the response bit. One approach involves adjusting the path by introducing an

Arbiter in the data path, as demonstrated in Figure 1-2, using a Feed Forward Ar-

biter PUF [LP14]. Other alternatives of Arbiter PUF are to increase the number

of arbiters in the PUF circuit and combine the responses using XOR logic to gen-

erate a single response. These methods are proposed to enhance the uniqueness,

reliability, and robustness of the PUF output, and such designs are multi-Arbiter

PUF [KI15], [ZPK+16] and double Arbiter PUF [MYIS14], [MYIS15]. An alterna-

tive design is Programmable delay line-based Arbiter PUF [MKD10, AHT21, AHS22,

AHS17]. An efficient implementation of FPGA-based XOR Arbiter PUF with signifi-

cantly enhanced performances has been presented in [AHC22]. Since the non-linearity

in the arbiter is relatively low, incorporating multi-arbiter designs can enhance the

non-linearity in the overall design.

Figure 1-2: Arbiter PUF with a Feed Forward Arbiter in the data path; Challenges
are considered as 0/1 instead of 1/-1.

A combination of Arbiter PUF and Ring Oscillator PUF is presented in [SSM+14].

The response of the PUF can be modelled mathematically to derive the complete set

of challenge-response pairs. In literature, there are some designs of PUF which are

vulnerable to machine learning attack [WMP+20], [RSS+13b], [TAB20], reliability

attack [DV13], [Bec15]. Authors in [CCMH21] discuss the strict avalanche criterion

(SAC) resistant delay-based PUF. Further, authors in [WTM+22] discuss the neural

network modelling attacks on the Arbiter PUF.

Given the analytical findings and identified weaknesses of the Arbiter PUF uti-
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lizing two paths, a natural enquiry arises: What implications arise from increasing

the number of paths within the PUF? In essence, can an Arbiter PUF be devised

with more than two paths? In 2022, Singh et al.[SBP+22] introduced a revised con-

struction of the Arbiter PUF featuring three distinct paths (Top, Center and Bottom

paths), termed the Priority Arbiter PUF (PA-PUF). While the authors conducted an

experimental analysis demonstrating enhanced robustness in their proposed design,

a thorough mathematical analysis was not conducted. In this thesis, we undertake a

detailed examination of the PA-PUF.

In a different direction, next we focus on (pseudo) randomness testing using

Boolean functions. The extensive array of security applications requires data that

is either truly random or appears indistinguishable. Therefore, it is essential to scru-

tinize whether a seemingly random data stream exhibits any underlying non-random

pattern. However, classical computers operate deterministically, making it impossi-

ble to generate true randomness from them beyond the influence of an initial random

seed, if present. Although pseudo-random number generation is pivotal in cryptology

and other information technology domains, it inherently lacks genuine randomness.

Given the necessity to analyze the security characteristics of a cipher, the presence

of randomness holds significant importance. In the pursuit of cryptanalysis of a

cipher, a crucial approach involves crafting specific distinguishers capable of revealing

insights into the cipher’s inadequate confusion and diffusion properties. This entails

identifying the extent to which the cipher’s output diverges from true randomness.

Examining the algorithm of the cipher to derive such a distinguisher is naturally a

more scientific approach. For example, the famous distinguisher [MS02] against RC4

could be identified from its algorithm. However, a complicated design will always

make identifying such distinguishers harder. In this regard, applying statistical tests

on the reduced rounds of the cipher might provide a quicker way to identify certain

non-randomness, and a more formal design of a distinguisher may be initiated from

that observation. For methodologies where the random numbers are generated from

physical processes such as quantum mechanics or thermal processes, such statistical

tests might be useful. Our focus, therefore, will not be to look at the algorithms to

find the weaknesses but study the data and try to obtain some statistical measure that

will possibly differentiate the available stream at hand from some ideal data generated

from a random source. In this direction, one may refer to the well-defined statistical
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test-beds like Diehard [Mar95], Dieharder [BEB], NIST SP 800-22 [BRS+10], Cryp-

X [GDNC94] and ENT [Wal18].

All these test suites (often called a battery) generally consist of a series of empirical

tests of randomness. Each test aims to find a predefined pattern of bits (or block

of bits) in the data under consideration and examines the randomness property by

certain measures that can be computed from the occurrences of the predefined bit

patterns. Each test results in a distribution of a specific feature of bits or blocks of

bits. The distribution is then statistically compared with the expected one obtained

from random data. The data under examination is considered to be non-random if

the distributions differ significantly.

In theory, it is possible to create an infinite number of tests for certifying random-

ness, each with its strengths and weaknesses. Thus, understanding each statistical

test is crucial rather than using them as black boxes. In this context, our focus is on

the BoolTest [SKŠ17]. Here, every block of the bit-stream is applied to a carefully

selected Boolean function, and the resulting output bits are analyzed. In Chapter 6,

we revisit the methods outlined in [SKŠ17], pinpoint certain constraints of the test

and subsequently propose several techniques to enhance the approach.

In our concluding contribution in this thesis, we concentrate on Boolean func-

tions associated with binary input-binary output two-party nonlocal games. Quan-

tum computing demonstrates a significantly greater level of computational prowess

compared to classical methods, as evidenced by the remarkable speed of quantum

algorithms, which can outperform conventional classical algorithms by exponential

margins [Sho94, Sim94]. The potency of quantum computation lends itself to offer-

ing additional security through quantum cryptography [BB14], a level of protection

unattainable in classical systems. Moreover, this quantum advantage extends to non-

local games, showcasing the unique capabilities of quantum computing in various

contexts.

Nonlocal games are of interest because they have the potential to achieve a quan-

tum advantage or a distinct separation (an advantage to the maximum quantum

success probability as compared to the maximum classical one) in certain instances.

This capability is often valuable for demonstrating the quantum nature of a system

and for certifying the integrity of untrusted devices within a Device Independent

(DI) [RUV13] scenario. However, the inputs and the outputs for any of those games
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are not restricted to bits. To the best of our knowledge, the CHSH game is the only

known binary input-binary output two-party nonlocal game that offers a quantum

advantage.

A seminal contribution in this direction is the Bell inequality [Bel64], introduced

by John Bell in 1964. Bell’s theorem established a ground-breaking result by demon-

strating the existence of correlations in quantum systems that cannot be explained by

local hidden variable theories. This pivotal work paved the way for the exploration

of nonlocal games as a means to test and investigate the implications of quantum

mechanics experimentally. Following Bell’s theorem, significant scholarly efforts have

been dedicated to crafting and scrutinizing nonlocal games to explore quantum phe-

nomena and their practical implications.

In Chapter 7 of this thesis, we analyze the performance of all those binary input

binary output two-party nonlocal games (in both classical and quantum scenarios)

which have at least one successful outcome for every possible input. Our analysis

has resulted in the formulation of some games (other than CHSH game) that yield

a higher success rate in quantum scenarios compared to classical ones, even though

the CHSH provides optimal separation. Also we have extended the characterization

of classical strategies to any n-party nonlocal game.

1.1 Thesis Plan

The thesis consists of five chapters. The thesis structure is briefly summarized as

follows. In Chapter 2, we address the fundamental background material necessary

for the following chapters. Chapter 3 to Chapter 7 consist of the main contributions

of this thesis. Chapter 8 serves as the conclusion, where several interesting problems

for future research are also addressed.

The initial chapter, Chapter 3, makes the first significant contribution. Here,

we investigate the exploration of functions obtained through an Arbiter-based PUF

construction with randomly selected delay parameters. Also we have analyzed the

autocorrelation from a specific angle and discussed relevant discoveries in this area.

It is common knowledge that Boolean functions derived from Arbiter PUFs demon-

strate noticeable biases in their autocorrelation characteristics under certain condi-

tions. Nevertheless, it’s important to highlight that these biases can be mitigated by
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imposing restrictions on input weights and a specific input bit difference.

In Chapter 4, we consider the combination of Arbiter-based PUFs, specifically the

XOR of two Arbiter PUFs. We observed that among all XORNF representations of

two Arbiter PUFs, the XOR PUF yields a significant portion of the Boolean func-

tions class. Through extensive computations, we consequently propose a conjecture.

Finally, we focus on a general PUF combiner and calculate the likelihood of two out-

puts from the combiner model PUF, corresponding to distinct challenge inputs and

matching.

Moreover, we have performed detailed analysis of the Priority Arbiter-based PUF

in Chapter 5. We note that the set of Boolean functions generated from PA-PUF is

notably larger than those generated from classical Arbiter-based PUF. Further, we

look into the bias in the output bit of PA-PUF when a certain challenge input bit

is flipped. In the final part of this chapter, we compare cryptographic properties of

PA-PUF with the existing models of PUF and we observe that PA-PUF possesses

better cryptographic characteristics like Uniformity, Reliability, Uniqueness etc.

Next we consider a different application related to randomness testing where

Boolean functions are exploited. In Chapter 6, we have discussed various key aspects

concerning BoolTest [SKŠ17], recognized as a method for assessing the randomness of

data streams. We introduce combinatorial findings aimed at identifying the optimal

Boolean functions for maximizing the Z-score, achieving a complexity of O(N logN)

concerning the input stream’s length N , which exceeds the capabilities of the heuristic

proposed for BoolTest [SKŠ17].

As pointed out earlier, we have also studied certain properties of Boolean functions

related to certain games and their analyses both in classical and quantum contexts. In

Chapter 7 we have extensively investigated all Boolean functions with four variables

to represent binary input-binary output two-party nonlocal games and analyze their

performance in both classical and quantum settings. Our analysis reveals specific

games, apart from the CHSH game, that demonstrate a greater likelihood of success in

quantum scenarios compared to classical ones. We further expand the categorization

of classical strategies to encompass any n-party nonlocal game.
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1.2 Prerequisites

It is assumed that the reader is familiar with undergraduate level mathematics. We

will present more details regarding the more involved algebraic and combinatorial

structures in Chapter 2. Basic understanding of computer algorithms would be help-

ful to understand a few methodologies. There is no requirement to have any back-

ground on PUFs, Randomness testing or Quantum paradigm. We will develop the

background with sufficient details in the following sections and introduce the ideas

one by one, as and when required.
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This chapter aims to present fundamental definitions and essential tools that will

be utilized throughout the thesis. We recommend that readers who are already ac-

quainted with Boolean functions briefly revisit this chapter to acquaint themselves

with the notation. Before proceeding further, let us take a moment to recall some

fundamental facts regarding Boolean functions.

2.1 Basics of Boolean functions

An n-variable Boolean function is a mapping from {0, 1}n to {0, 1}. Any Boolean

function f in n-variable has a unique polynomial representation, which is known

as Algebraic Normal Form (ANF) of f , such that f(x) =
∑

a∈{0,1}n µa(
∏n

i=1 xi
ai),

for all x = (x1, x2, ..., xn), a = (a1, a2, ..., an) ∈ {0, 1}n and µa ∈ {0, 1}. In the
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truth table representation, the inputs of the form (x1, x2, ..., xn) from {0, 1}n are

arranged in lexicographically increasing order. The algebraic degree of f is deg(f) =

maxa∈{0,1}m{wt(a) : µa 6= 0}, the degree of highest degree term(s) with nonzero

coefficient in its ANF. Here wt(a) is the number of 1’s in a. Let Bn be the collection

of all n-variable Boolean functions. Then any function f ∈ Bn can be expressed as,

f = [f(0, 0, .., 0), f(0, 0, ..., 1), ....., f(1, 1, ..., 1)]

2.1.1 Restricted Domain

Let f be a function from {−1, 1}n to {0, 1}. Further, let the function be defined

over a restricted domain when it takes input from a subset of {−1, 1}n. We know

that the weight of x ∈ {0, 1}n (i.e., wt(x)) is considered as the number of 1’s present

in x. In the similar convention along with the transformation a → (−1)a here we

define wt(x) for x ∈ {−1, 1}n. The weight of x ∈ {−1, 1}n is the total number of

−1’s present in x. This is the total number of 1’s if we consider the string of 0’s

and 1’s. The set En,k denotes the set of all n-length points whose weight is k, i.e.,

En,k = {x : x ∈ {−1, 1}n and wt(x) = k}. Here |En,k| =
(
n
k

)
. It can be noticed that

En,k is a restricted domain, where the restriction is that the all the points in En,k will

be of length n and weight k.

Autocorrelation of an n-variable Boolean function f : {0, 1}n → {0, 1} is defined

by

Af (a) =
∑

x∈{0,1}n
(−1)f(x)⊕f(x⊕a), a ∈ {0, 1}n

It can be noticed this definition of autocorrelation can not be used directly to

compute autocorrelation of f in En,k. As if we take any x ∈ En,k and take any

a ∈ {0, 1}n then x⊕ a may not belong to En,k. For an x ∈ En,k, we need to select an

a selectively such that x⊕ a should also belong to En,k. As we have already pointed

out (see the discussion in Section 3.2 below), significant bias could be identified in

Af (a) when wt(a) = 1. In a similar line, we consider a special case, where a specific

input bit will be selected, where the differential will exist. However, the weight of the

two inputs should be of the same weight.

Let f be an n-variable Boolean function. Let S1 and S2 be two sets defined as

S1 = {x ∈ En,k | u-th bit of x is − 1}, S2 = {x ∈ En,k | u-th bit of x is 1}. Note
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that En,k = S1 ∪ S2 and S1 ∩ S2 = φ. The restricted autocorrelation of f over En,k is

defined as

AEn,kf =
∑

x∈S1,x2∈S2

(−1)f(x1)⊕f(x2).

It is evident that |S1| =
(
n−1
k−1

)
and |S2| =

(
n−1
k

)
. We are not concerned about the bit

position u as it will be proved that this expression actually does not depend on u for

an n-length Arbiter PUF.

The purpose of defining restricted autocorrelation is to study the autocorrelation

spectrum of PUF in a restricted domain, where the simple construction of Arbiter

PUF does not provide any bias.

2.2 Arbiter PUF as a Boolean function

Arbiter-based Physical Unclonable Functions (Arbiter PUFs) take an n-bit challenge

and, based on the manufacturing process variation, provide a pseudorandom output

of either 1 or 0. Here, we try to give a model of a PUF circuit using an additive

delay model. We assume the total path delay, denoted by ∆(n), through the entire

circuit is the sum of the path delays of elementary components. If an adversary knows

all the elementary component delays, then response prediction for any challenge by

calculating the circuit delay will become very easy.

C1 = -1/1 C2 = -1/1 Cn= -1/1

Arbiter
0/1

Output

If Ci = 1
If Ci = -1

Challenge C = (C1, C2, ... , Cn-1, Cn)

Figure 2-1: Basic structure of an Arbiter based PUF

An Arbiter PUF can be described as a function of the challenge and the path

delays resulting from the n arbiter switches. Now, from Fig.2-1, we can say for

n many switches we have 2n many possible paths. Let δtop(n) be the signal delay

of the top path from the starting point to the end point at the n-th stage, and

similarly δbottom(n) be the delay of the bottom path. For the sake of easier notation,
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we use the transformation a → (−1)a, we map the challenge and response bits from

{0, 1} → {1,−1} and from here we will assume Ci ∈ {−1, 1} is the challenge bit at

stage i. Let us introduce four fixed, different delay values at each switch i. The delay

Arbiter

C
n-1 C

n

p
n-1

r
n-1

q
n-1

s
n-1

δ top(n−1)

δbottom (n−1)

δ top(n)

δbottom (n)

If C
i
 = 1

If C
i
 = -1

If C
i
 = 1

If C
i
 = -1

Figure 2-2: Dealy segment notation in each stage

segment notations pn, qn, rn and sn are shown in Fig.2-2. These pn, qn, rn and sn are

randomly chosen from the same normal distribution. So if we know the delay values

δtop(i) and δbottom(i) at stage i, then we can derive δtop(i + 1) and δbottom(i + 1) as a

function of δtop(i) and δbottom(i+ 1). At stage i, the delay segments are as follows:

δtop(i+ 1) = 1
2
(1 + Ci+1)(pi+1 + δtop(i)) + 1

2
(1− Ci+1)(si+1 + δbottom(i))

δbottom(i+ 1) = 1
2
(1 + Ci+1)(qi+1 + δbottom(i)) + 1

2
(1− Ci+1)(ri+1 + δtop(i))

where Ci ∈ {−1, 1} is the challenge bit at the ith stage.

Let ∆(i+ 1) be the difference between the top path delay δtop(i+ 1) and bottom

path delay δbottom(i+ 1) at stage (i+ 1). Then,

∆(i+ 1) = Ci+1 ·∆(i) + αi+1 · Ci+1 + βi+1

where,

αn = 1
2
(pn − qn + rn − sn)

βn = 1
2
(pn − qn − rn + sn)

To simplify the above expression we define the parity challeng bits Pk =
∏n

i=k+1Ci,

where Pn = 1.
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From above equation we can represent ∆(n) as a function of αi, βi and Ci for

1 ≤ i ≤ n.

∆(0) = 0

∆(1) = C1.∆(0) + α1C1 + β1 = α1C1 + β1

∆(2) = C2(α1C1 + β1) + α2C2 + β2 = α1C1C2 + β1C2 + α2C2 + β2

.

.

.

∆(n) = Cn.∆(n− 1) + αnCn + βn

simplifying ∆(n) using Pk =
∏n

i=k+1Ci we get,

∆(n) = α1P0 + (α2 + β1)P1 + ...+ (αn + βn−1)Pn−1 + βnPn

Here Pi ∈ {−1, 1}, for i = 0, 1, ...., n. Thus an n-length Arbiter PUF can be expressed

as a function of delay parameters αi, βi and input C = (C1, C2, · · · , Cn) as follows,

∆(C) = α1P0 + (α2 + β1)P1 + ...+ (αn + βn−1)Pn−1 + βnPn (2.1)

Now, if the sign of ∆(C) is positive, then the PUF outputs 1 and if the sign of

∆(C) is negative, then the PUF outputs 0. From Equation 2.1, we can say that

an n-length Arbiter PUF can be seen as a Boolean function which takes n-bit input

C = (C1, C2, · · · , Cn) and based on the sign of ∆(C), it outputs either 1 or 0.

For a fixed value of C ∈ {−1, 1}n, the mathematical model of PUF (in Equa-

tion (2.1)) can also be re-written in a compact formMj·X, whereMj = [P0, . . . , Pn−1, 1]

and X = [α1, α2 +β1, . . . , αn+βn−1, βn]T . That means the form of the complete equa-

tions corresponding to all values of C ∈ {−1, 1}n can be expressed as M ·X, where

M = [M1, . . . ,M2n ]T and X = [α1, α2 + β1, . . . , αn + βn−1, βn]T .

2.3 Modeling XOR of Arbiter-based PUFs as Boolean

functions

A k-XOR Arbiter PUF consists of k parallel Arbiter PUFs whose outputs are XOR-ed

to produce the pseudorandom bit. In this thesis, we consider the k = 2 case and refer

35



to the 2-XOR Arbiter PUF as an XOR-PUF.

Throughout the thesis, we consider two different classes of XOR-PUFs: the first

one, where the lengths of the individual PUFs are the same, say n, and the second

one, where the lengths of the individual PUFs are non-equal, say n 6= m.

2.3.1 XOR-PUF from the same length Arbiter PUFs

Here we feed an n-bit input to two n-length Arbiter PUFs with delay parameters

αi, βi and α′i, β
′
i, respectively, where

αi =
pi − qi

2
+
ri − si

2
, βi =

pi − qi
2
− ri − si

2
, 1 ≤ i ≤ n,

α′i =
p′i − q′i

2
+
r′i − s′i

2
, β′i =

p′i − q′i
2
− r′i − s′i

2
, 1 ≤ i ≤ n,

and Pj =
n∏

k=j+1

Ck, 0 ≤ j ≤ n − 1. Here, the output is generated by XOR-ing the

output of the individual Arbiter PUFs as in Figure 2-3 and the resultant function

becomes an n-variable Boolean function. Though, not necessarily a PUF, by abuse

of notation, we shall call the mathematical model of the XOR of two PUFs, also a

delay difference ∆XOR(C), and, as described in [RSS+10b], be defined as follows:

∆XOR(C) = ∆(C) ·∆′(C). (2.2)

We are actually interested in the sign of the above expression. If for a challenge

C ∈ {−1, 1}n, the sign of ∆XOR(C) is positive, then the output from the XOR-PUF

will be 1, and if the sign of ∆XOR(C) is negative, then the output will be 0. In this

thesis, we will be using the notation BXOR−PUF
n to denote the set of n-variable Boolean

functions exhaustively generated by the XOR of two n-length Arbiter PUFs.

2.3.2 XOR-PUF from different lengths Arbiter PUFs

Here we feed two different inputs of size n and m to two different Arbiter PUFs

of lengths n and m, respectively. The corresponding delay parameters are given by

αi, βi and α′i, β
′
i, respectively. Here, the output is generated by XOR-ing the outputs

from the individual Arbiter PUFs as in Figure 2-4 and the resultant function becomes

an (n + m)-variable Boolean function. Let C1 ∈ {−1, 1}n and C2 ∈ {−1, 1}m be the
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Figure 2-3: XOR-PUF from same length Arbiter PUFs having same inputs

inputs of two individual Arbiter PUFs of length n and m respectively. Then the delay

difference ∆XOR
n,m (C) (though, the mathematical model is not necessarily of a PUF,

by abuse, we shall still call it delay difference) is given by the following equation

∆XOR
n,m (C) = ∆(C1) ·∆′(C2), (2.3)

Figure 2-4: XOR-PUF from different length Arbiter PUFs

where C = C1 ‖ C2 is the input of length (n+m). Here the output also depends

on the sign of ∆XOR
n,m (C). For a challenge C ∈ {−1, 1}n+m, if the sign of ∆XOR

n,m (C) is

positive then the output will be 1 otherwise 0. We will be using the notation BXOR−PUF
n,m

to denote the set of (n+m)-variable Boolean functions exhaustively generated from

the XOR of two Arbiter PUFs of length n and m, respectively.

2.4 Modeling Priority Arbiter-based PUF as Boolean

functions

Like Arbiter PUF, a Priority Arbiter-based PUF (PA-PUF) also can be expressed in

terms of the challenge inputs and the delays of the paths. In this section we develop
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the mathematical model of PA-PUF with three paths namely top (T ), center (C)

and bottom (B). Given a common impulse as input at the first stage the impulse

reaches to the final stage via travelling through all stages. The challenge input c[i] to

stage i is either 1 or −1. Depending upon the value of challenge input c[i] the path

alteration of the impulse occurs at the i-th stage of PA-PUF. The path alteration of

the impulse at i-th stage occurs according to the following rules.

- c[i] = 1: C → T , B → C, T → B.

- c[i] = −1: B → T , T → C, C → B.

Depending upon the several device specific and environmental parameters of the PA-

PUF some amount of delay occurs in each path during the transmission of the impulse.

Due to this we associate different delay parameters with each of the three paths of

a stage. For developing the mathematical modeling the delay parameters are taken

randomly from a normal distribution with mean µ and standard deviation σ i.e.,

N (µ, σ). We will use the following notations for our discussion.

- δT (i): delay in the top path at i-th stage.

- δC(i): delay in the center path at i-th stage.

- δB(i): delay in the bottom path at i-th stage.

- ∆CB(i) = δC(i)− δB(i), delay difference between center path and bottom path.

- ∆TC(i) = δT (i)− δC(i), delay difference between top path and center path.

- ∆BT (i) = δB(i)− δT (i), delay difference between bottom path and top path.

From Figure 2-5 one can get an idea about the delays of different paths at the i-th

stage after the alteration of the paths of the impulse.

We first measure the delay of the impulse in each of the three paths. This will

help us to find an iterative formula for determining the delay of the impulse in each

path at i-th stage from the delays of the impulse at (i−1)-th stage. For the challenge

input c[i] = 1, impulse in the center path (C) diverts to top path T with a delay q
(T )
i

and for c[i] = −1, the impulse in the bottom path (B) diverts to top path T with a

delay r
(T )
i . Thus the delay at top path at i-th stage is,

δT (i) =
1 + c[i]

2

[
δC(i− 1) + q

(T )
i

]
+

1− c[i]
2

[
δB(i− 1) + r

(T )
i

]
.
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Figure 2-5: i-th stage of PA-PUF with three paths

For c[i] = 1, the impulse in the bottom path (B) diverts to center path (C) with a

delay r
(C)
i and for c[i] = −1, the impulse in the top path (T ) diverts to center path

C with delay p
(C)
i . Thus the delay at center path at i-th stage is,

δC(i) =
1 + c[i]

2

[
δB(i− 1) + r

(C)
i

]
+

1− c[i]
2

[
δT (i− 1) + p

(C)
i

]
.

Similarly the delay in bottom path at i-th stage will be,

δB(i) =
1 + c[i]

2

[
δT (i− 1) + p

(B)
i

]
+

1− c[i]
2

[
δC(i− 1) + q

(B)
i

]
.

Now we compute ∆CB(i), ∆TC(i) and ∆BT (i).

∆CB(i) = δC(i)− δB(i)

=
1 + c[i]

2

[
δB(i− 1) + r

(C)
i

]
+

1− c[i]
2

[
δT (i− 1) + p

(C)
i

]
−
{1 + c[i]

2

[
δT (i− 1) + p

(B)
i

]
+

1− c[i]
2

[
δC(i− 1) + q

(B)
i

]}
=

1 + c[i]

2

{
δB(i− 1) + r

(C)
i − δT (i− 1)− p(B)

i

}
+

1− c[i]
2

{
δT (i− 1) + p

(C)
i − δC(i− 1)− q(B)

i

}
=

1 + c[i]

2

{
∆BT (i− 1) + r

(C)
i − p(B)

i

}
+

1− c[i]
2

{
∆TC(i− 1) + p

(C)
i − q(B)

i

}
=

1

2

(
∆BT (i− 1) + ∆TC(i− 1)

)
+
c[i]

2

(
∆BT (i− 1)−∆TC(i− 1)

)
+
c[i]

2
(r

(C)
i − p(B)

i − p(C)
i + q

(B)
i ) (2.4)
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+
1

2
(r

(C)
i − p(B)

i + p
(C)
i − q(B)

i )

∆TC(i) = δT (i)− δC(i)

=
1 + c[i]

2

[
δC(i− 1) + q

(T )
i

]
+

1− c[i]
2

[
δB(i− 1) + r

(T )
i

]
−
{1 + c[i]

2

[
δB(i− 1) + r

(C)
i

]
+

1− c[i]
2

[
δT (i− 1) + p

(C)
i

]}
=

1 + c[i]

2

{
δC(i− 1) + q

(T )
i − δB(i− 1)− r(C)

i

}
+

1− c[i]
2

{
δB(i− 1) + r

(T )
i − δT (i− 1)− p(C)

i

}
=

1 + c[i]

2

{
∆CB(i− 1) + q

(T )
i − r

(C)
i

}
+

1− c[i]
2

{
∆BT (i− 1) + r

(T )
i − p

(C)
i

}
=

1

2

(
∆CB(i− 1) + ∆BT (i− 1)

)
+
c[i]

2

(
∆CB(i− 1)−∆BT (i− 1)

)
+
c[i]

2

(
q

(T )
i − r

(C)
i − r(T )

i + p
(C)
i

)
(2.5)

+
1

2

(
q

(T )
i − r

(C)
i + r

(T )
i − p

(C)
i

)

∆BT (i) = δB(i)− δT (i)

=
1 + c[i]

2

[
δT (i− 1) + p

(B)
i

]
+

1− c[i]
2

[
δC(i− 1) + q

(B)
i

]
−
{1 + c[i]

2

[
δC(i− 1) + q

(T )
i

]
+

1− c[i]
2

[
δB(i− 1) + r

(T )
i

]}
=

1 + c[i]

2

{
δT (i− 1) + p

(B)
i − δC(i− 1)− q(T )

i

}
+

1− c[i]
2

{
δC(i− 1) + q

(B)
i − δB(i− 1)− r(T )

i

}
=

1 + c[i]

2

(
∆TC(i− 1) + p

(B)
i − q(T )

i

)
+

1− c[i]
2

(
∆CB(i− 1) + q

(B)
i − r(T )

i

)
=

1

2

(
∆TC(i− 1) + ∆CB(i− 1)

)
+
c[i]

2

(
∆TC(i− 1)−∆CB(i− 1)

)
+
c[i]

2

(
p

(B)
i − q(T )

i − q
(B)
i + r

(T )
i

)
(2.6)
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+
1

2

(
p

(B)
i − q(T )

i + q
(B)
i − r(T )

i

)
Equations (2.4),(2.5),(2.6) are the iterative formulae for measuring the delay differ-

ences of the impulse between three paths for i ≥ 0. Here we impose an initial condition

∆CB(−1) = ∆TC(−1) = ∆BT (−1) = 0. The summary of this result is presented in a

form of a theorem in Theorem 1.

Theorem 1. The delay differences of the impulse between three paths at the i-th

stage of a PA-PUF are as per the Equations (2.4),(2.5),(2.6), where ∆CB(−1) =

∆TC(−1) = ∆BT (−1) = 0; p
(j)
i , q

(j)
i , r

(j)
i follow N (µ, σ) for j ∈ {T,C,B} and c[i] ∈

{−1, 1} is the challenge input to the i-th stage.

We have observed that the delay differences ∆TC(n),∆CB(n),∆BT (n) at any stage

n ≥ 0 satisfy the relation ∆TC(n) + ∆CB(n) + ∆BT (n) = 0. The supporting proof is

given in the following proposition.

Proposition 1. ∆TC(n) + ∆CB(n) + ∆BT (n) = 0,∀n ≥ 0.

Proof. We will use mathematical induction to prove this result. From the above

expressions we will get ∆TC(0) + ∆CB(0) + ∆BT (0) = 0. Let us assume for i ≥
0,∆TC(i) + ∆CB(i) + ∆BT (i) = 0. Now for n = i+ 1,

∆TC(i+ 1) + ∆CB(i+ 1) = ∆BT (i) +
1

2
· (∆TC(i) + ∆CB(i))

+
c[i]

2
· (∆CB(i)−∆TC(i)) +

c[i]

2
·
(
−p(B)

i + q
(T )
i + q

(B)
i − r(T )

i

)
+

1

2
·
(
−p(B)

i + q
(T )
i − q

(B)
i + r

(T )
i

)
= ∆BT (i) + ∆TC(i) + ∆CB(i)−∆BT (i+ 1)

= −∆BT (i+ 1)

Hence ∀n ≥ 0,∆TC(n) + ∆CB(n) + ∆BT (n) = 0.

The delay differences are measured by an Arbiter which is placed after the n-th

stage. Depending upon the sign of ∆TC(n),∆CB(n) and ∆BT (n) it produces either 0

or 1 as an output. We associate the following six conditions on ∆TC(n),∆CB(n) and

∆BT (n) for each possible outputs from the PA-PUF as defined in [SBP+22].

1. if ∆TC(n) > 0 and ∆CB(n) > 0 output is 1.
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2. if ∆BT (n) < 0 and ∆CB(n) < 0 output is 1.

3. if ∆BT (n) > 0 and ∆TC(n) > 0 output is 0.

4. if ∆CB(n) < 0 and ∆TC(n) < 0 output is 0.

5. if ∆CB(n) > 0 and ∆BT (n) > 0 output is 0.

6. if ∆TC(n) < 0 and ∆BT (n) < 0 output is 1.

It can be noticed that an n-length PA-PUF outputs 1 if and only if any of the following

relation holds,

- δT (n− 1) > δC(n− 1) > δB(n− 1).

- δC(n− 1) < δB(n− 1) < δT (n− 1).

- δB(n− 1) < δT (n− 1) < δC(n− 1).

Equivalently we can say that an n-length PA-PUF outputs 1 if and only if δB(n−1) <

δT (n− 1). Thus the output of an n-length PA-PUF can be characterized by the sign

of ∆BT (n − 1) only. An n-length PA-PUF outputs 1 if and only if ∆BT (n − 1) < 0

and outputs 0 if and only if ∆BT (n− 1) > 0.

After a detailed discussion related to PUFs, now we will shift to other applications

where Boolean functions are exploited in a different manner.

2.5 Evaluation of Randomness through Boolean

functions

Random number generators find extensive utility in communication and cryptogra-

phy. Generally speaking, the security of a protocol depends on the ‘randomness’

imparted by pseudo-random number generators. Therefore, it is crucial to scrutinize

whether a stream that appears random exhibits any underlying non-random patterns.

In this context, our focus lies on the BoolTest [SKŠ17], wherein each block of the

bit-stream undergoes evaluation by a carefully selected Boolean function, and the

resulting output bits are analyzed.

Consider N -bit of data D, whose randomness we would like to test. The data

is divided into non-overlapping blocks of m bits. For simplicity, we consider N is
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divisible by m, i.e., there are n = N
m

blocks. Each block of data is applied to a

Boolean function of m-input bits to obtain one-bit output. Thus, given N -bit data,

we obtain N
m

bits out of the Boolean function. Let us call the collection of all m block

inputs obtained in such a manner I. The collection I is a multi-set, not a set since

there might be m length blocks that occur more than once.

Naturally, we need to study the frequency distribution from the set I to identify

any non-randomness. By the method described in BoolTest [SKŠ17], one may try

to find the best distinguisher function on the frequency distribution obtained. The

method used in BoolTest to obtain the Boolean function for the best distinguisher

involves the metric Z-score. Before defining Z-score in our interpretation, let us

introduce some notations. Support of an m-input 1-output Boolean function f is

defined as

supp(f) = {x ∈ {0, 1}m : f(x) = 1}. (2.7)

We also define W (f) as the following set,

W (f) = {x ∈ I : f(x) = 1}. (2.8)

Let qf be the proportion of inputs for which the f returns 1, i.e.,

qf =
|supp(f)|

2m
. (2.9)

If the input distribution had uniformly been random, we would get each input

x ∈ {0, 1}m with equal probability. If we had a uniform distribution of m-block

inputs {0, 1}m, then the number of data blocks for which the function f will output

1 is nqf . Let pf be the proportion of elements in I which will output 1 when given

as an input to f .

pf =
|x ∈ I : f(x) = 1|

2m
=
|W (f)|

2m
. (2.10)

In other words, the number of inputs for which the function f will output 1 from the

collection I will be npf .

Definition 1 (Z-score). For a given function f of m-variables, and a collection I,
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pf and qf as defined above, the Z-score defined in [SKŠ17] is given as,

zf =
#1− nqf√
nqf (1− qf )

. (2.11)

where #1 is the random variable that describes the number of m-bit blocks in the

input data D, that when fed to the function f returns 1. Here, #1 can be written as

#1 = |W (f)| = npf (2.12)

Thus the Z-score would be

zf =

∣∣∣∣∣ npf − nqf√
nqf (1− qf )

∣∣∣∣∣ . (2.13)

To provide more intuition to the definition above, if Y is a random variable repre-

senting the number of ones obtained as output from the function f over some input

distribution, then Z-score is the normalization of binomially distributed random vari-

able Y .

Now that we have defined Z-score, let us proceed to outline a brief introduction

to the method presented by [SKŠ17]. Note that, we are interested in identifying the

most optimal Boolean function. Thus, the Z-score we discuss will always be related

to a suitable Boolean function f , and thus, as in Definition 1, we always have zf that

is to be studied. Note that the number of distinct m-variable Boolean functions is

22m and choosing the optimal Boolean function out of that super-exponential space

is the main challenge.

2.5.1 Brief Description of BoolTest by Sýs et al [SKŠ17]

The basic idea is to construct an m-bit Boolean function that will produce the high-

est Z-score. Given that there are 22m Boolean functions, it has been commented

in [SKŠ17] that only a heuristic method in the set of m-variable Boolean functions will

be attempted to identify the function. We will later show that this technique [SKŠ17]

is sub-optimal and consequently we will present an optimal algorithm. Now let us

explain the strategy of [SKŠ17].

The BoolTest algorithm B(deg,m, t, k) takes in as input the following parameters:
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• deg: Each term in the ANF of the functions searched by BoolTest would be of

degree deg.

• m : Block size, which is also the number of inputs to the Boolean functions.

• t : Top t monomials of degree deg are chosen and combined by XOR in the next

step.

• k : Distinguishers are formed by combining k many monomials of degree deg.

Algorithm 1: BoolTest B(deg,m, t, k)

1 M ← {1, . . . ,m};
2 T ← {1, . . . , t};

// GET-SUBSETS(j,M) returns all subsets of M of size j

3 Sdeg ← GET-SUBSETS(deg,M);

// Set Fdeg contains all monomials of degree deg

4 Fdeg ← {f : f =
∏

j∈J xj,∀J ∈ Sdeg};
// Choose top t functions from Fdeg with highest Z-score

// GET-MAX function takes t monomials with highest Z-score

5 Ft ← GET-MAX(t, Fdeg);

6 Sk ← GET-SUBSETS(k, T );

// Take combinations of k monomials from Ft

7 F = {f : f =
⊕

k∈K fk,∀K ∈ Sk, fk ∈ Ft};
// Return the max Z-score and the corresponding distinguisher function from

F

8 return argmaxf∈F z(f);

The Algorithm 1 given above provides an algorithmic outline of the BoolTest [SKŠ17].

There are many other details related to optimization to improve the performance of

the algorithm. To understand the approach, let us consider an example. If the given

parameters are B(deg = 2,m = 4, t = 5, k = 3), then BoolTest first computes Z-

score for all the monomials of degree 2 of the form xixj where i, j ∈ {1, 2, 3, 4}(since

m = 4). There are six such degree 2 monomials in this case. From these monomials,

the top t = 5 monomials with the highest Z-score will be selected. Now, choose

k = 3 monomials out of the 5 obtained in the first step (total
(

5
3

)
combinations) and

combine them using XOR operation to form a new function with 3 monomials each
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having degree 2, and obtain the Z-score for each combination. The function with the

maximum Z-score out of these combinations is considered to be the function that will

provide the best distinguisher through this heuristic.

Let the data D be a sequence of n random variables X1, . . . , Xn. The null hypoth-

esis is,

H0 : Xi ∼ Uniform(0, 2m − 1),∀i ∈ {1, . . . , n} (2.14)

If the Boolean function f had been fixed, the number of ones (#1) would be a ran-

dom variable that follows Binomial distribution B(n, qf ) and zf would approximately

follow standard normal distribution N (0, 1).

The highest Z-score would be of the form Z = max{zf1 , . . . , zf22m } where each zfi

approximately follows standard normal distribution and, its CDF would be difficult

to calculate as the zfi ’s are not independent.

The value [SKŠ17] calculates is the random variable max{zf1 , . . . , zf(tk)
} (it considers

only
(
t
k

)
among all possible Boolean functions, f1, f2, . . . f(tk)

are functions constructed

from the data) whose CDF would be similarly difficult to calculate. Instead, [SKŠ17]

estimates the acceptance region using a “reference window” created by running the

process on (assumed) true random data. If the highest Z-score achieved by the

procedure on some sample of data falls within the reference window, the data is

assumed to be random; otherwise, it is considered that the data might have non-

randomness. However, in Chapter 6, we observe that very high Z-scores do not

necessarily indicate non-randomness. For example, for large block size m, and the

amount of data much smaller than 2m blocks, very high Z-scores are possible even

for truly random data.

Next we shift to our final contribution of the thesis where Boolean functions are

applied in the study of two-party nonlocal games.
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2.6 Two-Party Nonlocal Games in terms of Boolean

functions

Nonlocal games refer to the games played between multiple space-separated players

and a referee where communication between the players is strictly forbidden during

the game. In a binary input binary output nonlocal game, the referee sends an

input bit to each player, who then responds by sending output bits to the referee.

In the classical scenario, players fix some strategies among themselves based on the

winning condition prior to the game’s commencement. Whereas, in the quantum

scenario, players establish shared entanglement among themselves before the start of

the game, aiming to gain an added advantage in the winning probability compared

to the classical scenario.

Definition 2 (CHSH Game). The most well known binary input binary output two-

party nonlocal game is the CHSH game [CHSH69] where a referee provides two uni-

formly random bits x and y to each of the two players. After receiving the inputs, the

two parties send their output bits a and b to the referee. The players win the game

against the referee if (x ∧ y) = (a⊕ b). Thus, the Boolean function representation of

the CHSH game is given by f(x, y, a, b) = (x ∧ y) ⊕ (a ⊕ b), and they win the game

against the referee if and only if f = 0.

In the classical scenario, where x∧ y = 0 in three out of four cases, the maximum

winning probability of the CHSH game is 0.75 when Alice and Bob pre-decide to

provide identical outputs. However, in the quantum scenario, the maximum success

probability is cos2 π/8 (approximately 0.85) by sharing a maximally entangled state

beforehand. The optimality of the quantum advantage has been proved by Cirel’son

in [Cir80].

Based on the distribution of the successful outcomes (i.e., the distribution of 0′s)

in the output column of the Boolean function, a binary input binary output two-

party nonlocal game can be represented in terms of partitions of the total number of

successful outcomes.

Definition 3 (Partition of a nonlocal game). A partition is a representation of a class

of n party nonlocal games depending on the total number of successful outcomes. A

partition of a nonlocal game is generated by splitting up the total number of successful
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outcomes into 2n parts depending on the number of successful outcomes for each of

the 2n possible inputs. For an n-party binary input binary output nonlocal game with

d number of successful outcomes (where 2n ≤ d ≤ 22n), the corresponding partition

will be represented as a summation of 2n non-zero numbers (like n1 + n2 + · · ·+ n2n)

such that d =
∑2n

i=1 ni where each ni is the number of successful outcomes for the i-th

input such that 0 < ni ≤ 2n.

For a binary input binary output two-party nonlocal game, there are four possible

inputs and for every input, there can have atmost four possible successful outcomes.

So for these games, the partition representation is of the form p1 + p2 + p3 + p4 where

each pi denotes the total number of successful outcomes for the i-th input such that

0 ≤ pi ≤ 4. For example, one may consider the CHSH game (which represents a

balanced 4-variable Boolean function) for which the partition representation is of the

form 2 + 2 + 2 + 2. Similarly, every other binary input binary output two-party

nonlocal games can be represented as a summation of four non-zero numbers.

From these discussions, one can easily understand that many different games have

the same representation of the partition. However, all the games that belong to a

particular partition may not behave similarly. In this current endeavour, our focus lies

in identifying all games that provide quantum advantages (i.e., a higher probability

of winning in the quantum scenario compared to the classical scenario).

Definition 4 (Separation for a nonlocal game). A separation denotes the difference

between the maximum classical and the maximum quantum success probabilities for

those games which offer a quantum advantage.

For the sake of simplicity, from now onwards, we use the notation x and y to denote

input bits and the notation a and b to denote the output bits of the two parties.

x, y, a, b denotes the usual complements (bit complement) of x, y, a, b respectively.

Later on, if nothing is specified explicitly, whenever we use xy as input and ab as

output for the two players, we assume that xy and ab can take any values from the

set {00, 01, 10, 11}.

Definition 5 (GHZ Game). Nonlocal games involving more than two parties, are

referred to as pseudo-telepathy games [BBT05]. GHZ game is an example of a three-

party nonlocal game that utilizes entanglement to demonstrate quantum supremacy

[GHZ89]. In this game, each player (Alice, Bob, and Carol) receives a uniformly
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random bit x1, x2, x3 from the referee, with possible inputs of (0, 0, 0), (1, 1, 0), (1, 0, 1),

and (0, 1, 1). The players then send back a single bit output a1, a2, a3 ∈ {0, 1} to the

referee. They win the game if and only if (x1 ∨ x2 ∨ x3) = (a1 ⊕ a2 ⊕ a3).

In classical scenarios, where the players cannot utilize entanglement, the maximum

winning probability of the GHZ game is 0.75. This can be achieved when the three

players agree in advance to either all output 1 or only one of them outputs 1. However,

in the quantum paradigm, by using the GHZ entangled state 1√
2

(|000〉+ |111〉), the

players can win the game against the referee with a probability of 1, showing classical-

quantum separation.

The GHZ game can also be represented using a (partial) Boolean function given

by f(x1, x2, x3, a1, a2, a3) = (x1 ∨ x2 ∨ x3)⊕ (a1 ⊕ a2 ⊕ a3), where the players win the

game if f = 0, and the input bits (x1, x2, x3) are restricted to the set {(0, 0, 0), (1, 1, 0),

(1, 0, 1), (0, 1, 1)}.
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3
How do the Arbiter PUFs Sample the Boolean

Function Class?

Contents
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3.5 On Restricted Autocorrelation of Arbiter PUF . . . . . 70
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Arbiter-based PUF is a hardware based pseudorandom bit generator where the

pseudorandomness in the output bits depends on device specific parameters. Our

work shows how one can explore the functions achieved through an Arbiter PUF

construction with random delay parameters. Our technique mostly shows limitation

of such functions from the angle of cryptographic evaluation as the subclass of the

Boolean function can be identified with much better efficiency (much less complexity)

than random. In this direction we explain new ideas to distinguish the Arbiter PUFs

from any other Boolean functions. On the other hand, we note that under certain

constrains on the weights of inputs, such a simple model of Arbiter PUFs provides

good cryptographic parameters in terms of differential analysis. In this regard, we

theoretically solve the problem of autocorrelation properties in a restricted space of

input variables with a fixed weight.
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3.1 Introduction

As we have already described, an Arbiter-based PUF can act as an n-variables Boolean

function from {0, 1}n to {0, 1}. In most of the cryptographic applications, the input

bits of a Boolean function are usually considered independent and taken uniformly

from the domain.

From [SBC+19b], it can be referred that if one generates output bits corresponding

to two challenge inputs C = (C1, C2, . . . , Cn) and C̃ = (C̃1, C̃2, . . . , C̃n), where C and

C̃ belong to {−1, 1}n and differ only at the most significant bit (MSB) position (i.e.,

C1 + C̃1 = 0), then the output bits will match with high probability. The position

of the differed challenge bit plays an important role in producing the bias. One

can look into Figure 2-1 to understand the position of the challenge bits. This bias

reduces with the location of the bit difference at the inputs. The least bias occurs

for the middle-most bit. Naturally, this lack of randomness provides a direction

that the PUF devices can only produce a restricted class of Boolean functions, not

all. Consequently, the immediate scientific question is to explore the set of Boolean

functions such Arbiter PUFs are generating. In this regard, here we present relevant

combinatorial results to show certain necessary conditions regarding the existence

or non-existence of Boolean functions generated out of the Arbiter PUFs. Then we

try to find out for what kinds of combinatorial properties the functions from Arbiter

PUFs resemble a randomly chosen Boolean function better. We also show how to

distinguish the Arbiter PUFs from any other Boolean functions. We note that if one

considers a certain autocorrelation measure after restricting the input bit pattern to

a fixed weight, then such bias disappears. Thus, if one can restrict the attack model

with such a constraint, then the use of Arbiter PUFs in certain applications (such as

lightweight environment) might be recommended.

3.2 Motivation

Theoretical estimation of autocorrelation of an n-variable PUF over a complete do-

main {−1, 1}n is discussed in [SBC+19b]. In the same paper, it has also been shown

that the outputs corresponding to inputs are heavily biased when two inputs differ at

the first position. It means that the autocorrelation value of f ∈ BPUF
n is not good for

certain a ∈ {0, 1}n. To verify the theoretical analysis presented in [SBC+19b] we have
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Figure 3-1: Representation of Table 3.1

Bit Difference Location Pr[zC = zC̃ ]
1 0.8691
2 0.7699
3 0.6982
4 0.6368
5 0.5804
6 0.5266
7 0.4734
8 0.4196
9 0.3632
10 0.3017
11 0.2300
12 0.1309

Table 3.1: Experimental Bias of PUFs
(n = 12) in complete domain (over
1024 randomly chosen Arbiter PUFs)
for single bit difference, matching with
the theoretical values from [SBC+19b]

performed a simulation. We have taken random values of delay parameters from a nor-

mal distribution and generated 1024 many random 12-length PUFs. For each of these

12-length PUFs we have considered two inputs C, C̃ ∈ {−1, 1}12 where C, C̃ differ only

in one location i i.e., if C = (C1, . . . , Ci, . . . , C12) and C̃ = (C1, . . . ,−Ci, . . . , C12). For

each of these two inputs we compute the output from the PUF, let zC and zC̃ be the

respective output bits. Finally we compute Pr[zC = zC̃ ]. The observed experimental

observation is presented in Figure 3-1 and Table 3.1 and our observations are com-

pletely in the same direction of the theoretical result presented in [SBC+19b]. From

Lemma 1 of [SBC+19b] it is also evident that the bias ε (i.e., Pr[zC = zC̃ ] = 1
2
± ε)

increases with the increase of length of the PUF.

To understand the autocorrelation values we consider a 12-variable PUF and

two inputs C and C̃ where C and C̃ differ at only one location. From the result

of [SBC+19b] we know that the output zC and zC̃ are highly biased for certain bit

difference locations. The experimental Pr[zC = zC̃ ] for different single bit difference

locations is provided in Table 3.1. From Table 3.1 and Figure 3-1 it can be observed

that the bias is highest when the bit difference location is either first or last and bias

is least when the bit difference location is in the middle. Thus for certain values of

a ∈ {0, 1}n the expected autocorrelation value of f ∈ BPUF
n significantly differs from
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0.5.

To get a clearer idea about the autocorrelation distribution of PUF we perform

statistical analysis. We consider all 4-variable Boolean functions and PUFs and mea-

sure the average number of Boolean functions and PUFs corresponding to different

possible autocorrelation values {−16,−8,−4, 0, 4, 8, 12, 16}. From Figure 3-2 it can

be observed that the distribution of PUF differs significantly from the distribution of

Boolean function.
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Figure 3-2: Comparison of Autocorrelation Distribution in Complete Domain

Now we provide a clear answer why the autocorrelation distribution is highly bi-

ased for PUF for single bit difference. The basic reason is that the Arbiter PUFs

cannot exhaustively generate all possible Boolean functions. This observation moti-

vates us to investigate the following.

• How to estimate the set BPUF
n ?

• Can we obtain a restricted definition of autocorrelation so that the Arbiter

PUFs do not expose a significant bias?

3.3 Relation Between BPUF
n and Bn

In this section, we explore the class of Boolean functions generated from n-variable

PUFs i.e., BPUF
n . To compute the number of distinct Boolean functions which can be

constructed using PUFs we start with n = 1. The total number of Boolean functions
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involving 1-variable is |B1| = 221 = 4. We all know that a PUF can be seen as a

Boolean function. Thus, the obvious question is if we consider 1-length PUF, can

that generate all possible Boolean functions given different delay parameters. To

answer this question we state the following proposition.

Proposition 2. All possible Boolean functions involving 1-variable can be generated

by using 1-length PUFs i.e., BPUF
1 = B1.

Proof. This proposition can be proven by exhaustively enumerating BPUF
1 . We have

considered 1-length PUFs for different random delay parameters and observed that all

the possible truth tables are generated in our experiment. Thus |BPUF
1 | = |B1| = 4.

Now we move towards the case for n = 2. The total number of Boolean functions

in this case is |B2| = 222 = 16. Interestingly, from our experiments, we have observed

that 14 many Boolean functions can be constructed from 2-length Arbiter PUFs, i.e.,

|BPUF
2 | = 14. Truth tables of two specific Boolean functions can never be constructed

using 2-length Arbiter PUFs. In this regard, we will state the following result.

Proposition 3. The following two Boolean functions f1 and f2 do not belong to BPUF
2 .

C2 C1 f1 f2

1 1 1 0

1 −1 0 1

−1 1 1 0

−1 −1 0 1

Proof. The mathematical model of 2-length PUF is ∆(C) = α1P0 + (α2 +β1)P1 +β2,

where P0 = C1C2 and P1 = C2. Here αi, βi are the delay parameters. We consider

the truth table of f1 first. It can be observed that if the sign(∆(C)) and sign(C1) are

the same then only the truth table f1 can be generated from 2-length PUF. Thus, to

generate the same truth values from a 2-length PUF, we need to have the following

scenarios.

C2 C1 ∆(C)

1 1 α1 + (α2 + β1) + β2 > 0

1 −1 −α1 + (α2 + β1) + β2 < 0

−1 1 −α1 − (α2 + β1) + β2 > 0

−1 −1 α1 − (α2 + β1) + β2 < 0
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If the above conditions hold for at least one pair of α1, α2, β1, β2 then only the truth

values of f1 can be generated. If we add two > 0 inequalities then we will have

β2 > 0 and if we add two < 0 inequalities then we will have β2 < 0. This generates

a contradiction. Hence the truth table of f1 can not be generated from the 2-length

Arbiter PUF structure. Similarly, it can be shown that it is not possible to generate

the truth table of f2 using a 2-length PUF. Thus f1, f2 /∈ BPUF
2 .

Using the transformation a → (−1)a for a ∈ {0, 1}, the Algebraic Normal Form

(ANF) of f1, f2 are f1(x1, x2) = 1 ⊕ x1 and f2(x1, x2) = x1 respectively. Here x1

corresponds to C1.

Proposition 3 justifies that |BPUF
2 | = 14 as we noted from exhaustive experiment

and directs us towards the following result.

Lemma 1. For any n-variable Boolean function f /∈ BPUF
n if and only if (1 ⊕ f) /∈

BPUF
n .

Proof. To prove this, we assume that there exists an n-variable Boolean function

f ∈ BPUF
n but 1⊕ f /∈ BPUF

n . Let the n-length PUF be ∆(C) = α1P0 + (α2 + β1)P0 +

(α3 + β2)P2 + · · ·+ (αn + βn−1)Pn−1 + βn. Here, αi, βi are the delay parameters. We

know that depending on the sign of ∆(C), the truth table of 1⊕ f is generated. Now

if we consider a PUF with the delay parameters α′i = −αi and β′i = −βi and construct

the PUF ∆(C)′ = α′1P0 +(α′2 +β′1)P0 +(α′3 +β′2)P2 + · · ·+(α′n+β′n−1)Pn−1 +β′n, then

sign(∆(C)) and sign(∆(C)′) will be opposite for the same challenge values. Thus

the truth table generated from ∆(C)′ will be the truth table of 1 ⊕ (1 ⊕ f) = f .

Which contradicts our assumption. Hence if a Boolean function f /∈ BPUF
n then

(1⊕ f) /∈ BPUF
n . Similarly if (1⊕ f) /∈ BPUF

n then f /∈ BPUF
n .

We know that any (n + 1)-variable Boolean function f can be expressed as

f(x1, . . . , xn+1) = (1⊕ xn+1)f1(x1, . . . , xn)⊕ xn+1f2(x1, . . . , xn), where f1, f2 are two

Boolean functions involving n variables. This is basically equivalent to f(x1, . . . , xn+1) =

f1(x1, . . . , xn) ‖ f2(x1, . . . , xn), in terms of concatenating the truth tables. That is,

the truth table of f can be divided into two halves. In upper half if we consider

xn+1 = 0, then it will contain the truth values of f1 and in lower half if we consider

xn+1 = 1 then it will contain the truth values of f2.

Every 3-variable Boolean function f can be written as f = f1 ‖ f2, where f1 and

f2 are two Boolean functions involving 2 variables. As the constructions of PUFs
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depend on parameters from normal distributions, the natural question is that if we

consider a 3-variable PUF then can it be of the form F = f ‖ f1 or F = f1 ‖ f ,

where f1 = (1 0 1 0) /∈ BPUF
2 (see Proposition 3) and f ∈ B2. The mathematical

model of 3-variable PUF is ∆(C) = α1P0 + (α2 + β1)P1 + (α3 + β2)P2 + β3, where

P0 = C1C2C3, P1 = C2C3 and P2 = C3. We prepare a truth table of a 3-variable

PUF F = f1 ‖ f where f1 = (1 0 1 0) /∈ BPUF
2 and f ∈ B2. We now break the truth

table into two parts. In the upper part C3 = 1 and in lower part C3 = −1. Without

loss of generality we consider f = (0 0 0 0). The final truth table of F will be of the

following form.

C3 C2 C1 ∆(C) F = f1 ‖ f
1 1 1 α1 + (α2 + β1) + (α3 + β2) + β3 > 0 1

1 1 −1 −α1 + (α2 + β1) + (α3 + β2) + β3 < 0 0

1 −1 1 −α1 − (α2 + β1) + (α3 + β2) + β3 > 0 1

1 −1 −1 α1 − (α2 + β1) + (α3 + β2) + β3 < 0 0

−1 1 1 −α1 − (α2 + β1)− (α3 + β2) + β3 < 0 0

−1 1 −1 α1 − (α2 + β1)− (α3 + β2) + β3 < 0 0

−1 −1 1 α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0

−1 −1 −1 −α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0

We consider the following pairs of equations from the upper part of the above

truth table. −α1 + (α2 + β1) + (α3 + β2) + β3 < 0

α1 − (α2 + β1) + (α3 + β2) + β3 < 0
(3.1)

α1 + (α2 + β1) + (α3 + β2) + β3 > 0

−α1 − (α2 + β1) + (α3 + β2) + β3 > 0
(3.2)

From Equation (3.1) we get (α3 + β2) + β3 < 0 and from Equation (3.2) we get

(α3 + β2) + β3 > 0, which is a contradiction. Thus for any f ∈ BPUF
3 it can not be

of the form f1 ‖ f2 or f2 ‖ f1 where f1 = (1 0 1 0) /∈ BPUF
2 . Similarly we can prove

that for any f ∈ BPUF
3 it can not be of the form (1 ⊕ f1) ‖ f2 or f2 ‖ (1 ⊕ f1) where

f1 =/∈ BPUF
2 . In this regard, we present the following important result.

Theorem 2. If f1 /∈ BPUF
n , then there does not exist any F ∈ BPUF

n+1 of the form f1 ‖ f
or f ‖ f1.
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Proof. Assume that there exists an F ∈ BPUF
n+1 such that F = f1 ‖ f and f1 /∈ BPUF

n .

Let the challenge input to the (n + 1)-variable PUF be C = (C1, . . . , Cn+1). The

mathematical model of the (n+ 1)-variable PUF corresponding to F is

∆(C) = α0P0 + (α1 + β0)P1 + · · ·+ (αn+1 + βn)Pn + βn+1, (3.3)

where Pk =
n+1∏
i=k+1

Ci. As F ∈ BPUF
n+1, the inequalities constructed from ∆(C) in Equa-

tion (3.3) and the truth table corresponding to F will provide a solution for αi and βi.

Let us look at the truth table of F into two equal parts. In the upper half Cn+1 = 1

and lower half Cn+1 = −1. It can be noticed that the upper half of the truth table of

F should be exactly the same as the truth table of f1 and the lower half should be

exactly the same as the truth table of f . Using the values of αi and βi we prepare

the following model of n-variable PUF

∆(C)′ = α′0P0 + (α′1 + β′0)P1 + · · ·+ (α′n + β′n−1)Pn + β′n, (3.4)

with α′i = αi for i = 0, . . . , n; β′i = βi for i = 0, . . . n− 1 and β′n = (αn+1 + βn) + βn+1.

The existence of αi, βi guarantees that the PUF described in Equation (3.4) will be

able to generate the truth table of f1. This is a contradiction as f1 /∈ BPUF
n . Thus

F = f1 ‖ f /∈ BPUF
n+1. Similar argument works to prove F = f ‖ f1 /∈ BPUF

n+1.

From Lemma 1 and Theorem 2, it is clear that BPUF
n ⊂ Bn for n ≥ 2. In fact we

can directly say that if f ∈ BPUF
n+1 then f = f1 ‖ f2 where f1, f2 ∈ BPUF

n . With this

we would like to investigate BPUF
3 . Proposition 3 claims that |BPUF

2 | = 14. Now if we

prepare a 3-variable Boolean function by concatenating these 14 Boolean functions

from BPUF
2 then we can have maximum 196 Boolean functions. The most natural

question is that whether all such Boolean functions belong to BPUF
3 or not. To answer

this, we note the following result.

Proposition 4. Consider f1 = (1 1 0 1), f2 = (0 1 0 0) ∈ BPUF
2 and f = f1 ‖ f2. The

Boolean function f /∈ BPUF
3 .

Proof. We construct a truth table of f = f1 ‖ f2 for a 3-length PUF, where f1 =

(1 1 0 1), f2 = (0 1 0 0) ∈ BPUF
2 .
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C3 C2 C1 ∆(C) f = f1 ‖ f2

1 1 1 α1 + (α2 + β1) + (α3 + β2) + β3 > 0 1

1 1 −1 −α1 + (α2 + β1) + (α3 + β2) + β3 > 0 1

1 −1 1 −α1 − (α2 + β1) + (α3 + β2) + β3 < 0 0

1 −1 −1 α1 − (α2 + β1) + (α3 + β2) + β3 > 0 1

−1 1 1 −α1 − (α2 + β1)− (α3 + β2) + β3 < 0 0

−1 1 −1 α1 − (α2 + β1)− (α3 + β2) + β3 > 0 1

−1 −1 1 α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0

−1 −1 −1 −α1 + (α2 + β1)− (α3 + β2) + β3 < 0 0

First we consider the following pairs of equations from the above truth table.−α1 + (α2 + β1) + (α3 + β2) + β3 > 0

α1 − (α2 + β1)− (α3 + β2) + β3 > 0
(3.5)

−α1 − (α2 + β1) + (α3 + β2) + β3 < 0

α1 + (α2 + β1)− (α3 + β2) + β3 < 0
(3.6)

From Equation (3.5) we get β3 > 0 and from Equation (3.6) we get β3 < 0. This is a

contradiction. Thus f = f1 ‖ f2 /∈ BPUF
3 .

Proposition 4 shows that even if we take any two Boolean functions f1, f2 from

BPUF
2 then f = f1 ‖ f2 may not belong to BPUF

3 . Now given the above results, the

first two questions that come to our mind are as follows. Let f1, f2 ∈ BPUF
n and

F = f1 ‖ f2.

- Can we have examples of f1, f2, such that F ∈ BPUF
n+1?

- Can we have examples of f1, f2, such that F /∈ BPUF
n+1?

We show that the first case happens when f2 = f c1 and the second case is achieved

when f2 = f1, and they are non-constant functions.

Proposition 5. If f ∈ BPUF
n then (f ‖ (1⊕ f)) ∈ BPUF

n+1.

Proof. It is given that f ∈ BPUF
n . As already mentioned, the mathematical model of f

is given as ∆(C) = α1P0 +(α2 +β1)P1 +· · ·+(αn+βn−1)Pn−1 +βn, with Pi =
n∏

k=i+1

Ck.

Here C = (C1, C2, . . . , Cn) is the input of length n and the values of αi, βi exist as
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f ∈ BPUF
n . Now consider the mathematical model of (n + 1)-length PUF and the

form the inequalities using the truth values f ‖ (1⊕ f). Let the mathematical form

of that (n + 1)-length PUF be α′1P
′
0 + (α′2 + β′1)P ′1 + · · · + (α′n+1 + β′n)P ′n + β′n+1.

It can be noticed that here P ′i =
n+1∏
k=i+1

Ci. The form of the system of inequalities

will be M · X and the inequality sign corresponding to each row will depend on

the corresponding truth value of f ‖ (1 ⊕ f). Here M = [M1, . . . ,M2n+1 ]T , X =

[α′1, α
′
2 +β′1, . . . , α

′
n+1 +β′n, β

′
n+1] and Mj = [P0, P1, . . . , Pn, 1], the index j corresponds

to the j-th element of {−1, 1}n+1. We will break this system of inequalities into

two parts (top and bottom) depending upon the sign of Cn+1. In the top part we

consider Cn+1 = 1 (as if variable value xn+1 = 0, and in the bottom part we consider

Cn+1 = −1 (variable value xn+1 = 1, as in the truth table). The form of each row of

M ·X corresponding to Cn+1 = 1 will be

α′1P0 + (α′2 + β′1)P1 + · · ·+ (α′n + β′n−1)Pn−1 + (α′n+1 + β′n) + β′n+1. (3.7)

Similarly, the mathematical form of the each row of M ·X corresponding to Cn+1 = −1

will be

−α′1P0 − (α′2 + β′1)P1 − · · · − (α′n + β′n−1)Pn−1 − (α′n+1 + β′n) + β′n+1. (3.8)

Now our aim is to construct the inequalities whose left hand side is M · X and the

inequalities sign will be decided from the truth values of f ‖ (1⊕f). We also look for a

possible solution α′i, β
′
i from these inequalities. It can be noticed that for a fixed value

of (C1, . . . , Cn), whatever be the inequality sign of the row of M ·X corresponding to

Equation (3.7), the row of M ·X corresponding to Equation (3.8) will have opposite

inequality sign as the row of M ·X corresponding to Equation (3.7) corresponds to

f and the row of M ·X corresponding Equation (3.8) corresponds to (1⊕ f). From

the pattern of these inequalities and the known values of αi, βi, one can obtain a

solution of α′i, β
′
i and the from of that solution is α′i = αi, for i = 1, . . . , n, β′i = βi

for i = 1, . . . , n − 1, β′n+1 = βn, (α′n+1 + β′n) = 0. The existence of the solution α′i,

β′i from values of αi, βi proves that if f ∈ BPUF
n then f ‖ (1 ⊕ f) will also belong to

BPUF
n+1.

That is, if f ∈ BPUF
n then g(x1, . . . , xn, xn+1) = (xn+1 ⊕ f(x1, . . . , xn)) ∈ BPUF

n+1

where xn+1 is the newly introduced variable. Next let us present a technical result
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related to constant functions. Here, by the constant functions we mean that the

function output is fixed to either 0 or 1 for all the input values.

Proposition 6. For every n, the constant functions belong to BPUF
n .

Proof. Let the mathematical model of the n-length PUF be ∆(C) = α1P0 + (α2 +

β1)P1 + · · · + (αn + βn−1)Pn−1 + (αn + βn−1)Pn−1 + βn, where Pi =
n∏

k=i+1

Ci. From

this mathematical model we can construct M · X, where M = [M1, . . . ,M2n ]T and

X = [α1, α2 + β1, . . . , βn]. Here Mj = [P0, . . . , Pn−1, 1] corresponding to j-th element

of {−1, 1}n. If Cn = 1 then we have the following equation in each row of M ·X and

P ′i will vary with each row.

∆(C) = α1P
′
0 + (α2 +β1)P ′1 + · · ·+ (αn−1 +βn−2)P ′n−2 + (αn +βn−1)Pn−1 +βn. (3.9)

If Cn = −1 then we have the following equation in each row of M · X and P ′i will

vary with each row.

∆(C) = −α1P
′
0−(α2 +β1)P ′1−· · ·−(αn−1 +βn−2)P ′n−2−(αn+βn−1)Pn−1 +βn (3.10)

Here P ′i =
n−1∏
k=i+1

Ci. To get all 0’s in the truth table generated from ∆(C), we should

have ∆(C) < 0 i.e., each row ofM ·X should be< 0. Thus from Equations (3.9), (3.10)

we obtain,

βn < −(α1P
′
0 + (α2 + β1)P ′1 + · · ·+ (αn−1 + βn−2)P ′n−2 + (αn + βn−1)Pn−1),

βn < (α1P
′
0 + (α2 + β1)P ′1 + · · ·+ (αn−1 + βn−2)P ′n−2 + (αn + βn−1)Pn−1).

Let K = max
rows of M ·X

{|(α1P
′
0 + (α2 + β1)P ′1 + · · ·+ (αn + βn−1)P ′n−1 + (αn + βn−1))|}. If

we select βn < −K then each row of M ·X will be < 0, i.e., ∆(C) will be < 0 for all

C ∈ {−1, 1}n. This proves the existence of such αi, βi for any n. Hence it provides the

existence of the function f in BPUF
n for any n, such that f(x) = 0 for all x ∈ {0, 1}n.

We already know from Lemma 1 that f ∈ BPUF
n if and only if (1⊕ f) ∈ BPUF

n . Thus,

both the constant functions belong to BPUF
n for every n.

Now let us get into the non-existence result.

Proposition 7. For every non constant function f ∈ Bn, if f ∈ BPUF
n then (f ‖ f) /∈

BPUF
n+1.
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Proof. As in the earlier cases, consider the mathematical model of an (n+ 1)-length

PUF ∆(C) = α′1P
′
0 + (α′2 + β′1)P ′1 + · · ·+ (α′n+1 + β′n)P ′n+1 + β′n+1 where Pi =

n+1∏
k=i+1

Ck

and C = (C1, . . . , Cn+1). We first prepare the matrix M = [M1, . . . ,M2n+1 ]T where

Mj = [P0, . . . , Pn, 1] and it corresponds to j-th element of {−1, 1}n+1. After that

construct M · X where X = [α′1, α
′
2 + β′1, . . . , β

′
n+1]T . Using M · X we construct a

system of inequalities where inequality sign corresponding to each row of M ·X will

be decided from the truth values of f ‖ f (f ∈ BPUF
n ). For Cn+1 = 1 and −1 the

mathematical forms of the respective rows of M ·X are given in Equation (3.11), (3.12)

respectively.

α′1P0 + (α′2 + β′1)P1 + · · ·+ (α′n + β′n−1)Pn + (α′n+1 + β′n) + β′n+1 (3.11)

−α′1P0 − (α′2 + β′1)P1 − · · · − (α′n + β′n−1)Pn − (α′n+1 + β′n) + β′n+1 (3.12)

Assume in the truth values of f , there is 1 in i-th position and 0 in j-th position,

i.e., f is not constant. Corresponding to 1 in i-th position we will have following two

inequalities from the i-th row of the matrix M ·X.

α′1P0 + (α′2 + β′1)P1 + · · ·+ (α′n + β′n−1)Pn + (α′n+1 + β′n) + β′n+1 > 0,

−α′1P0 − (α′2 + β′1)P1 − · · · − (α′n + β′n−1)Pn − (α′n+1 + β′n) + β′n+1 > 0.

This implies β′n+1 > 0. Now corresponding to 0 in j-th position we will have two

more inequalities from the j-th row of the matrix M ·X.

α′1P0 + (α′2 + β′1)P1 + · · ·+ (α′n + β′n−1)Pn + (α′n+1 + β′n) + β′n+1 < 0,

−α′1P0 − (α′2 + β′1)P1 − · · · − (α′n + β′n−1)Pn − (α′n+1 + β′n) + β′n+1 < 0.

This implies β′n+1 < 0. Here one pair of inequalities are providing β′n+1 > 0 and

other pair of inequalities give β′n+1 < 0, which is a contradiction. Thus system of

inequalities formed from M ·X and f ‖ f is not solvable. Thus if f ∈ BPUF
n and f is

non-constant, then (f ‖ f) /∈ BPUF
n+1.

We summarize the values of |BPUF
n | for different values of n in Table 3.2.

For higher values of n, we have considered the mathematical model of PUF

described in Equation 2.1 for different values of n and exhaustively searched the
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n |BPUF
n |

1 4
2 14
3 104
4 1882

Table 3.2: |BPUF
n | for different n

Boolean functions which belong to BPUF
n . For n = 3, 4 we have observed that

|BPUF
3 | = 104 < |BPUF

2 |2 − |BPUF
2 | + 2 and |BPUF

4 | = 1882 < |BPUF
3 |2 − |BPUF

3 | + 2.

From this, the following result follows.

Theorem 3. For any value of n, |BPUF
n+1| ≤ |BPUF

n |2 − |BPUF
n |+ 2. Further, for n ≥ 4,

|BPUFn |
|Bn| <

1

25·2n−4 .

Proof. The first result follows from Theorem 2. The next result is initiated from ex-

haustive experiments, where for different values of delay parameters we have observed

that |BPUF
4 | = 1882. Regarding the exhaustive experiment supporting the proof we

refer to Algorithm 2 below. If we compute
|BPUF

4 |
|B4| = 1882

224
< 1

25
= 1

25·24−4 . Assume that

the relation holds for n = k, for some k > 4, i.e.,
|BPUFk |
|Bk|

< 1

25·2k−4 . For n = k + 1,

following Theorem 2 we have,

|BPUF
k+1 |
|Bk+1|

≤ |B
PUF
k |2

|Bk|2
<
( 1

25·2k−4

)2
=
( 1

25·2(k+1)−4

)
(3.13)

Hence for n ≥ 4, |B
PUF
n |
|Bn| <

1

25·2n−4 .

Although the bound derived in Theorem 3 is not tight, it provides a significant

estimation about BPUF
n . Now the question is how one can obtain BPUF

n+1 exhaustively.

One informal way is, consider large number of values varying the delay parameters to

construct (n+1) variable PUFs and enumerate the number of distinct ones. However,

this cannot be used as a proof but it can be used to find the set BPUF
n for small values
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of n.

Algorithm 2: Construction of BPUF
n+1 from BPUF

n

Input : BPUF
n

Output: BPUF
n+1

1 Assign ∆(C) = α1P0 + (α2 +β1)P1 + · · ·+ (αn+1 +βn)Pn +βn+1, Pi =
n∏

k=i+1

Ci;

2 for each fi ∈ BPUF
n do

3 F1 = {};
4 if Cn+1 = 1 then

5 if fi(C1, . . . , Cn) = 1 then

6 Construct equation ∆(C) > 0 and include ∆(C) > 0 in F1;

7 end

8 else

9 Construct equation ∆(C) < 0 and include ∆(C) < 0 in F1;

10 end

11 end

12 for each fj ∈ BPUF
n do

13 F2 = {};
14 if Cn+1 = −1 then

15 if fj(C1, . . . , Cn) = 1 then

16 Construct equation ∆(C) > 0 and include ∆(C) > 0 in F2;

17 end

18 else

19 Construct equation ∆(C) < 0 and include ∆(C) < 0 in F2;

20 end

21 end

22 if F = F1 ∪ F2 is solvable then

23 Construct f = f1 ‖ f2 and include f in BPUF
n+1;

24 end

25 end

26 end

27 return BPUF
n+1;

Here we provide an iterative way of completely enumerating BPUF
n+1 from BPUF

n .

64



In Algorithm 2 we consider the mathematical model of (n + 1)-variable PUF, i.e.,

∆(C) = α1P0 + (α2 +β1)P1 + · · ·+ (αn+1 +βn)Pn+βn+1, Pi =
n∏

k=i+1

Ci. That is ∆(C)

can be considered as a Boolean function on C = (C1, C2, . . . , Cn+1), the challenge

inputs corresponding to (n + 1)-length PUF. Consider any two f1, f2 ∈ BPUF
n . Let

f = f1 ‖ f2. For Cn+1 = 1 we prepare the system of inequalities involving αi, βi,

based on the truth table of f1. Similarly, for Cn+1 = −1 we construct the system of

inequalities involving αi, βi based on the truth table of f2. If this system of equations

is solvable then we include the Boolean function f in BPUF
n+1 which corresponds to the

(n + 1)-length PUF ∆(C). If we continue this process for all f1, f2 ∈ BPUF
n then we

will have BPUF
n+1.

We have implemented Algorithm 2 in SageMath 9.2 [sag] and enumerated BPUF
n+1

for n = 1, 2, 3. Algorithm 2 outputs the correct set BPUF
n+1 in 1.891 sec, 72.320 sec and

2553.546 sec for n = 1, 2, 3 respectively. For n = 1, 2 we have run the experiment in a

laptop with processor of 2.80 GHz clock, 16 GB RAM and Linux (Ubuntu 20.04.03)

environment. For n = 3 we have used multiprocessing in our implementation and the

program was executed in a high performance computing machine with processor of

2.30 GHz clock, 72 CPUs, 96 GB RAM and Linux (CentOS 7) environment.

3.4 Determining whether f ∈ BPUF
n

In Section 3.3, it has been observed that truth table of certain class of n-variable (n >

1) Boolean function can not be generated from an n-length PUF. While enumerating

the functions in BPUF
n , a pair (we show in Proposition 7 that they must be distinct)

has been chosen from BPUF
n−1 and the concatenated function has been studied above.

We now want to check whether the truth table of the new function belongs to BPUF
n

by solving inequalities formed using the compact form M ·X and the truth values. If

there is a solution, then it belongs to BPUF
n , else not. Thus, this strategy can be used

as a distinguisher to identify whether a Boolean function belongs to BPUF
n or not. Let

us first formalize this.

Suppose a truth table of an n-variable Boolean function f is provided. With these

truth values we will determine whether this truth table is generated using an n-length

PUF or not, i.e., whether f ∈ BPUF
n or f /∈ BPUF

n . To check this we first consider the

mathematical model of an n-length PUF, which is ∆(C) = α1P0 +(α2 +β1)P1 + · · ·+
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(αn + βn−1)Pn + βn, with Pi =
n∏

k=i+1

Ck and C = (C1, C2, . . . , Cn) is n-length input.

We first prepare the equations of the form M · X by considering all C ∈ {−1, 1}n,

where M = [M1, . . . ,M2n ]T , X = [α1, α2 + β1, . . . , βn]T and the j-th row of M is

Mj = [P0, . . . , Pn−1, 1]. Here j-th row corresponds to the j-th element of {−1, 1}n.

From the truth values of f and M ·X, we can prepare a system of inequalities. For

input C (say j-th element of {−1, 1}n) if the truth value is 1 then we assign > 0

inequality to the j-th row of M · X and if the truth value is 0 then we assign < 0

to the j-th row of M · X. In this way we can prepare a system of 2n inequalities

involving αi, βi, for i = 1, . . . , n. If this system of equations has non trivial solution

then f ∈ BPUF
n else f /∈ BPUF

n . We present this deterministic technique in Algorithm 3.

Algorithm 3: Deterministic Distinguisher on PUF

Input : Truth table T of f ∈ Bn
Output: f ∈ BPUF

n or f /∈ BPUF
n

1 Consider ∆(C) = α1P0 + (α2 + β1)P1 + · · ·+ (αn + βn−1)Pn + βn, with

Pi =
n∏

k=i+1

Ck and C = (C1, C2, . . . , Cn);

2 Construct M ·X by considering all C ∈ {−1, 1}n, where
M = [M1, . . . ,M2n ]T , X = [α1, α2 + β1, . . . , βn]T and the j-th row of M ,
Mj = [P0, . . . , Pn−1, 1] corresponds to the j-th element of {−1, 1}n;

3 for Each C ∈ {−1, 1}n do
4 if f(C) = 1 then
5 Assign > 0 to the respective row of M ·X;
6 end
7 else
8 Assign < 0 to the respective row of M ·X;
9 end

10 end
11 S = non trivial solution of αi, βi from the above inequalities;
12 if S 6= {} then
13 R← f ∈ BPUF

n ;
14 end
15 else
16 R← f /∈ BPUF

n ;
17 end
18 return R;

We have run a few experiments in SageMath9.2 [sag] in a laptop with processor of

2.80 GHz clock, 16 GB RAM and Linux (Ubuntu 20.04.3) environment to check the

correctness of the Algorithm 3 for different values of n and randomly chosen f ∈ Bn.
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Experimental observations are presented in Table 3.3.

n f Decision Time Required (in sec)

2 f (2) = 5 f (2) /∈ BPUF
2 0.767

2 f (2) = 4 f (2) ∈ BPUF
2 0.791

3 f (3) = 4A f (3) /∈ BPUF
3 1.014

3 f (3) = 4B f (3) ∈ BPUF
3 1.280

4 f (4) = BECF f (4) /∈ BPUF
4 2.789

4 f (4) = BEC3 f (4) ∈ BPUF
4 3.535

5 f (5) = 00047454 f (5) /∈ BPUF
5 47.495

6 f (6) = 000000000056A739 f (6) /∈ BPUf
6 448.251

Table 3.3: Experimental validation of Algorithm 3. The functions are written in
hexadecimal format.

The system of inequalities generated in Algorithm 3 contains 2n many inequalities

involving 2n number of variables. This is an over-defined system of inequalities. We

can introduce a new variable corresponding to each inequality and select the sign of

the new variable in such a way that the corresponding inequality becomes an equality.

This process will require 2n number of new variables. This final system now becomes

a system of 2n linear equations involving (2n + 2n) variables. Solving such system

will trivially require Ω(2n+ 2n) complexity and if the solution exists then it will have

infinitely many solutions.

From the structure of the inequalities one can observe that only the sign of the

inequalities changes with the truth values of any function. The structure of left hand

side of each inequality remains the same. To understand this in a better way we

present the form of the inequalities for one particular truth table each for n = 3 and

n = 4.

For n = 3,M =



1 1 1 1

−1 1 1 1

−1 −1 1 1

1 −1 1 1

−1 −1 −1 1

1 −1 −1 1

1 1 −1 1

−1 1 −1 1


, X =


α1

α2 + β1

α3 + β2

β3

 and M ·X



> 0

> 0

> 0

> 0

< 0

> 0

< 0


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For n = 4,M =



1 1 1 1 1

−1 1 1 1 1

−1 −1 1 1 1

1 −1 1 1 1

−1 −1 −1 1 1

1 1 −1 1 1

−1 1 −1 1 1

−1 −1 −1 −1 1

1 −1 −1 −1 1

1 1 −1 −1 1

−1 1 −1 −1 1

1 1 1 −1 1

−1 1 1 −1 1

−1 −1 1 −1 1

1 −1 1 −1 1



, X =



α1

α2 + β1

α3 + β2

α3 + β3

β4


and M ·X



> 0

> 0

> 0

> 0

> 0

< 0

> 0

< 0

< 0

< 0

< 0

< 0

< 0

< 0

< 0

< 0


From these equations one can observe that the structure of the above system of

equations do not change with the increasing values of n. Only the number of variables

are added with the increment of n and the inequality sign changes with the truth table

of the function. Given the structure of the inequalities, it is worth exploring whether

such systems can be analysed in an efficient manner. However, it is clear that studying

the truth table will require Ω(2n) operations.

3.4.1 Improved but randomized technique

It is already known to us that for a given truth table of f ∈ Bn if the system of

inequalities do not have solution for αi, βi then f /∈ BPUF
n . However, we already have

the result from Theorem 2 that if f ∈ BPUF
n+1 with f = f1 ‖ f2 then f1, f2 ∈ BPUF

n .

Thus, we can divide the problem in smaller parts given f ∈ Bn+1. If at least one of

f1 or f2 does not belong to BPUF
n , we can certainly deduce that f /∈ BPUF

n+1. However, if

both belong to BPUF
n , then we cannot answer with certainty. However, as most of the

Boolean functions do not belong to BPUF
n , this provides a very fast practical method

to start with. We will thus outline such a method here.
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Note that all the functions of BPUF
4 are enumerated in Section 3.3. Let us consider

that all the functions of BPUF
u are enumerated for u ≥ 4 and stored in an indexed

database D. Now consider a function f(x1, . . . , xu, xu+1, . . . , xn) ∈ Bn. One can

fix the variables xu+1, . . . , xn to a fixed value and then obtain the truth table of an

u-variable function g. Now one can directly test using the solutions of inequalities

whether g ∈ BPUF
u . The same testing can be done by efficiently by searching through

D.

Let us now present an example. Let f ∈ B4, and f = f1 ‖ f2, where f1, f2 ∈ B3.

We know that |BPUF
3 | = 104 and |BPUF

4 | = 1882. Now if we select f from B4 uniformly

at random, then Pr[f ∈ BPUF
4 ] = 1882

224
. Now consider that we check with certain

algorithm that f1, f2 ∈ BPUF
3 . Given our constraint in Theorem 3, the number of such

functions are 104 × 104 − 104 + 2 = 10714. Among these options, only 1882 many

functions actually belong to BPUF
4 . Thus we obtain the following.

Pr[f ∈ BPUF
4 |f1, f2 ∈ BPUF

3 ] =
1882

10714
>

1882

224
= Pr[f ∈ BPUF

4 ]

One may note that 1882
10714

> 0.175, whereas 1882

22
4 < 0.029, an increase of more than six

times. Hence for any f ∈ B4, if we note that both f1, f2 ∈ BPUF
3 , then the probability

that f ∈ BPUF
4 increases significantly. We generalize this below.

Let f ∈ Bn and Pr[f ∈ BPUF
n ] = |BPUFn |

|Bn| . We have the set BPUF
u for u < n. Using

this and our search algorithm we first take random 2u portion of the truth table of f

by fixing xu+1, . . . , xn. Say, we observe that for all possible options of xu+1, . . . , xn,

the generated u-variable functions are present in BPUF
u . Then,

Pr[f ∈ BPUF
n |fi ∈ BPUF

u , i = 1, . . . , 2n−u] =
|BPUF

n |
|BPUF

u |2n−u
>
|BPUF

n |
|Bn|

= Pr[f ∈ BPUF
n ].

(3.14)

In the other direction, when any such u-variable section of the n-variable function

does not belong to BPUF
u , then we can immediately deduce that the n-variable function

in hand does not belong to BPUF
n . One may have a look at Table 3.3, and note that

solving the inequalities take much higher time as the number of variables increase.

Thus, it is much logical to go for the tests in lower number of variables for all practical

purposes.
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3.5 On Restricted Autocorrelation of Arbiter PUF

In Section 3.2 we have seen that the distribution of Boolean functions and PUFs

differs significantly in terms of autocorrelation spectrum. This happens due to the

fact that the PUFs depend on multiple device specific parameters and BPUF
n ⊂ Bn

for n > 2. Interestingly, if we consider the challenge inputs from En,k with certain

restrictions, then the autocorrelation distributions of random Boolean functions and

PUFs become quite close. For measuring this we need to revisit the definition of

restricted autocorrelation [see Definition 2.1.1].
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Figure 3-3: Comparison of the restricted autocorrelation.

As we have discussed, f is an n-variable Boolean function. S1 and S2 are two

sets defined as S1 = {x ∈ En,k | u-th bit of x is − 1}, S2 = {x ∈ En,k | u-th bit

of x is 1}. Note that En,k = S1 ∪S2 and S1 ∩S2 = φ. The restricted autocorrelation

of f over En,k is defined as

AEn,kf =
∑

x∈S1,x2∈S2

(−1)f(x1)⊕f(x2).

Let us explain the scenario for restricted autocorrelation over the domain E6,3.

We have classified all the 2(6
3) patterns and computed the distribution of Boolean

function corresponding to different restricted autocorrelation values in Figure 3-3.

Such autocorrelation values are {−100, −80, −64, −60, −48, −40, −36, −32, −24,

−20, −16, −12, −8, −4, 0, 4, 8, 12, 16, 20, 24, 32, 36, 40, 48, 60, 64, 80, 100}. The
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Figure 3-4: Distribution of Pr[zC = zC̃ ] in
E12,k

Weight(k) Pr[zC = zC̃ ]
1 0.495117
2 0.502397
3 0.497111
4 0.499929
5 0.502405
6 0.502307
7 0.500808
8 0.499840
9 0.506651
10 0.498867
11 0.506392

Table 3.4: Pr[zC = zC̃ ] in E12,k

frequency of all such functions are normalized by dividing with 2(6
3). For 6-length

PUFs we have randomly searched with 220 different sets of delay parameters (αi, βi)

and obtained 14100 such distinct functions. For them we also obtained the same set

of distinct autocorrelation values. The normalized frequency distribution is drawn

in Figure 3-3. A few blocks corresponding to certain autocorrelation values (such as

−100,−80, 80, 100) in Figure 3-3 are not visible due to very small proportion.

From Figures 3-2 and 3-3, it can be observed that the restricted autocorrelation

distribution of the PUFs demonstrates same behavior as the set of Boolean functions.

That is the differential characteristics related to the bias is not observed for this re-

stricted domain. That is, if the choice of two distinct challenge pairs can be restricted

over certain domains (here one from S1 and another from S2 given a specific input bit

location u), then the cryptographic weakness related to the bias might be avoided.

Other than this different larger classes should be explored where such improved prop-

erties can be observed. Very simple model of Arbiter PUFs can be used there as

cryptographic components with better confidence.

3.5.1 Theoretical Analysis

We now consider an Arbiter PUF whose inputs are from En,k. Let us divide the

complete set En,k into two subsets S1 and S2, where S1 = {x : MSB of x is −1} and

S2 = {x : MSB of x is 1}, i.e., the selected input bit is u = n.

Consider challenge input C from S1 and C̃ from S2. For a randomly chosen PUF,
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let us denote zC as the output corresponding to C and zC̃ as the output corresponding

to C̃. Compute the difference zC ⊕ zC̃ for C ∈ S1 and C̃ ∈ S2. If we calculate the

average for all the points C ∈ S1 and C̃ ∈ S2, then we can estimate the quantity

pi = Pr[zC = zC̃ ]. Here pi denotes the probability corresponding to i-th PUF say.

We compute the average of all these probabilities (pi’s) for of all the different cases

E12,1, E12,2, . . . , E12,11. The obtained experimental data is presented in Table 3.4 and

the distribution is plotted in Figure 3-4. Note that E12,0 and E12,12 are not considered

here as |E12,0| = |E12,12| = 1. From this experiment, we observe that the average

probability is close to 0.5 for all weights k = 1, . . . , 11. During the experiments, we

have also observed that these probabilities do not depend on the choice of input bit

t.

We note that this average probability is very close to 0.5 and that motivates us

to explore the following theoretical result.

Theorem 4. Expectation of AEn,kf is equal to 1
2

for f ∈ BPUF
n .

Proof. Consider two distinct challenge inputs C, C̃ ∈ En,k such that they must differ

at location t1. Here C and C̃ are of the same weight k, hence they will definitely differ

at more than one location. Let the m locations where C and C̃ differ be t1, t2, . . . , tm.

Let α = (αt1+1 +βt1)Pt1 + (αt1+2 +βt1+1)Pt1+1 + . . .+ (αt2 +βt2−1)Pt2−1 + (αt3+1 +

βt3)Pt3 + . . .+ (αt4 +βt4−1)Pt4−1 + . . .+ (αtm +βtm−1)Ptm−1 and X = ∆(C)−α. Thus

the sign of ∆(C) corresponding to two challenge inputs C, C̃ will be same if and only

if | α
X
| < 1. Hence the output bits corresponding two inputs C and C̃ will be same if

and only if | α
X
| < 1.

As αi, βi ∼ N (0, σ), the quantity α will followN (0, σα) andX will followN (0, σX),

where

σα = σ
√

2[(t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)]

and

σX = σ
√

2n− 2[(t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)]

The probability density functions of α and X will be fα(y) = 1√
2πσα

e
− y2

2σ2α , −∞ <

y < ∞ and fX(y) = 1√
2πσX

e
− y2

2σ2
X , −∞ < y < ∞ respectively. Now we consider
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Y1 = α
X

and Y2 = X. So α = Y1Y2. The joint distribution of α,X will be fα,X(α, x) =

1
2πσασX

e
−
(

α2

2σ2α
+ x2

2σ2
X

)
. Similarly, the joint distribution of Y1, Y2 will be fY1,Y2(y1, y2) =

1
2πσασX

e
−
(
y21y

2
2

2σ2α
+

y22
2σ2
X

)
y2, where −∞ < y1, y2 < ∞. The distribution of Y1 will be

fY1(y1) =
∞∫
−∞

fY1,Y2(y1, y2)dy2 =
∞∫
−∞

1
2πσασX

e
−
(
y21y

2
2

2σ2α
+

y22
2σ2
X

)
y2dy2 = 1

π

σα
σX

y21+
(
σα
σX

)2 , where

−∞ < y1 <∞.

We already know that the output bits corresponding to the two inputs C and C̃

will be the same if and only if | α
X
| < 1. To calculate Pr[| α

X
| < 1] we need to calculate

Pr[|Y1| < 1].

Pr[|Y1| < 1] =
∣∣∣ 1∫
−1

1

π

σα
σX

y2
1 +

(
σα
σX

)2dy1

∣∣∣
=

1

π

∣∣∣{tan−1
( 1
σα
σX

)
− tan−1

(−1
σα
σX

)
}
∣∣∣

= 1− 2

π
tan−1

( σα
σX

)
= 1− 2

π
tan−1

(√ (t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)

n− [(t2 − t1) + (t4 − t3) + ...+ (tm − tm−1)]

)
= 1− 2

π
tan−1

√
t

n− t
.

Here t = (t2 − t1) + (t4 − t3) + · · · + (tm − tm−1). Note that we have selected two

distinct challenge inputs C, C̃ from En,k with the condition that C and C̃ must differ at

location t1. Without loss of generality, we can assume that t1-th location of C has −1

and t1-th location of C̃ has 1. Let S1 = {x | x ∈ En,k and t1-th location of x has −
1}, S2 = {x | x ∈ En,k and t1-th location of x has 1}. That is C ∈ S1, C̃ ∈ S2 and we

have already noted |S1| =
(
n−1
k−1

)
, |S2| =

(
n−1
k

)
. If we consider the average probability

for all choices of C ∈ S1 and C̃ ∈ S2 then we will get the expectation of AEn,kf , where

f is an n-length Arbiter PUF chosen uniformly at random. Hence,

Expectation of AEn,kf =
1(

n−1
k

)
×
(
n−1
k−1

) ×∑
C∈S1

∑
C̃∈S2

[
1− 2

π
tan−1

√
t

n− t

]
= 1− 1(

n−1
k

)
×
(
n−1
k−1

) ×∑
C∈S1

∑
C̃∈S2

[ 2

π
tan−1

√
t

n− t

]
.
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We further simplify this. For every pair of inputs C ∈ S1 and C̃ ∈ S2, one can

compute (1 − 2
π

tan−1
√

t
n−t) as follows. Note that for every value of t, tan−1

√
t

n−t

and tan−1
√

n−t
t

both term will occur in the summation
∑
C∈S1

∑
C̃∈S2

2
π

tan−1
√

t
n−t . That

means the above summation will contain tan−1
√
x + tan−1

√
1
x

= π
2
, for different

values of x. As there are total
(
n−1
k

)
×
(
n−1
k−1

)
terms in the summation, the final

expectation of AEn,kf will be equal to 1
2

for f ∈ BPUF
n . This completes our proof.

Let us provide an example with n = 9 and k = 4, i.e., |En,k| = 126. Hence

|S1| =
(

8
3

)
= 56 and |S2| =

(
8
4

)
= 70. Let Ti = {(C, C̃) ∈ S1 × S2 : t = i}. It can

be checked that |Ti| = |Tn−i|, for i = 1, . . . , 8. In E9,4, |T1| = |T8| = 35, i.e., there

are 35 pair of inputs (C, C̃) ∈ S1 × S2, for which t = 1 and another different 35 pairs

of inputs (C, C̃) ∈ S1 × S2, for which t = 8. If we add (1 − 2
π

tan−1
√

t
n−t) for all

these 70 pairs of distinct inputs, the final value becomes 35. Similarly |T2| = |T7| =

215, |T3| = |T6| = 635 and |T4| = |T5| = 1075. Hence the final expectation becomes
1

8C3×8C4
× [35 + 215 + 635 + 1075] = 1

2
.

From the result of Theorem 4 it can be observed that if the challenge pairs are

chosen with certain restrictions related to the input weights, then there does not exist

any bias in the output of the Arbiter PUF. Thus in such restricted scenarios, such sim-

ple models of physically unclonable devices might provide acceptable cryptographic

parameters.

In a related note, it has been shown [MMM+19] that certain cryptographic prop-

erties related to the Walsh spectrum of a Boolean function degrades in the restricted

domain. Here we show that in the case of Arbiter PUFs, certain kind of autocor-

relation property in a restricted sense, improves. The proposed notion of restricted

autocorrelation might be explored for analyzing the security of FLIP [MJSC16] type

ciphers under differential attack or related key attack.

3.6 Conclusion

In this chapter, we have studied certain limitations of Arbiter PUFs and shown that

the class of Boolean functions constructed using n-length (n > 1) PUFs is a proper

subset of the set of all n variable Boolean functions. We make some combinatorial

analysis of n-length Arbiter PUFs. We explore efficient techniques towards distin-
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guishing whether a Boolean function truth table can indeed be fabricated through an

Arbiter PUF or not. Further we have looked at autocorrelation in certain restricted

sense and presented relevant results in this direction.
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On Combining Arbiter-based PUFs
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In Chapter 3, it was shown that a negligible portion of Boolean functions class can

be generated from an n-length Arbiter-based PUF. While studying this independently,

we missed the link between Arbiter PUF and threshold functions [Muroga et al., 1961].

In this chapter, we consider this link and first point out some miscalculations done

by Yajima and Ibaraki in 1965, regarding the number of Boolean functions generated

from a threshold function. Then we study the combination (extendability) of Arbiter

PUFs and investigate the XOR of two n-length such devices with arbitrary inputs.

We checked, for some small dimensions, that among all the XORNF (Exclusive OR

Normal Form) representations of two Arbiter PUFs of the same length, the XOR of

two Arbiter PUFs of the same length produces a large portion of the Boolean functions

class. Based upon extensive computations, we therefore propose a conjecture. Finally,

we concentrate on a general PUF combiner, and compute the probability of two

outputs from a combiner model PUF corresponding to two different challenge inputs

being the same.
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4.1 Introduction

In 1961, the Majority Decision Function or Threshold Function was introduced and

investigated by Muroga, Toda and Takasu [MTT61]. The exact number of n-variable

threshold functions is exactly the same as the number of Boolean functions generated

from n-length Arbiter PUFs. In [Sor17, Section 6.1.2], the author noted that an

Arbiter PUF can be modeled as a threshold function. Recently, we were also studying

such functions independently and unfortunately were not aware of [MTT61, Sor17,

YI65] and thus the connection with threshold functions was not referred to in [RRM21,

SBC+19b]. Here, we point out some miscalculations done by Yajima and Ibaraki

in [YI65], regarding the number of Boolean functions generated from a threshold

function.

In this chapter we show how one can explore a significant portion of the Boolean

functions class from the XOR of two n-length PUFs with the same inputs. The

number of n-bit Boolean functions that can be generated from the circuit of an n-

length Arbiter PUF was recently studied in [RRM21]. It has been shown in [RRM21]

that a very small proportion of the complete set of Boolean functions can be generated

using Arbiter PUFs. This motivates us to study the number of Boolean functions

that can be generated from the circuit of an XOR-PUF [RSS+10b]. Here, we consider

two different versions of XOR-PUFs, one having the same input lengths and the other

having different input lengths. We also consider the XORNF (Exclusive OR Normal

Form) representation of two Arbiter PUFs of the same length and noted the number

of Boolean functions generated from these.

It has been shown in [SBC+19b] that if one considers two (challenge) inputs from

{−1, 1}n, C = (C1, C2, . . . , Cn) and C̃ = (C̃1, C2, . . . , Cn) with the condition C1 +

C̃1 = 0, then the output from PUF corresponding to C and C̃ matches with high

probability. In the same paper the authors have provided a generic from of such

kind of probabilities for different parameters. Such kind of probability for PUF with

combiner function for a special case is also derived in [SBC+19b], although the more

general case was not addressed in [SBC+19b]. In this direction, we derive the general

form of the probability in which two outputs from the PUF with combiner model will

be equal corresponding to two different challenge inputs.

Remark 1. An n-length Arbiter PUF can be modeled as a threshold function with
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weight vector W = (α1, α2 + β1, α3 + β2, . . . , βn) and threshold 0 (see [Sor17, Lemma

6.2]). In this direction, some analysis was done in [MTT61, YI65]. In [YI65], it is

mentioned that f = f1 ‖ f2 is an (n+1)-variable threshold function if and only if both

f1 and f2 are n-variable threshold functions with respect to the same weight vector W .

From the definition of a PUF one can easily check that the threshold of each PUF is

always 0. So, if both f1 and f2 are n-variable threshold functions with respect to the

same weight vector W = (α1, α2 + β1, α3 + β2, . . . , βn), then f1 and f2 are identical.

Hence, according to a result of [YI65], f1 ‖ f1 becomes a threshold function. Since a

PUF can be modeled as a threshold function, then f1 ‖ f1 ∈ BPUF
n+1, which contradicts

Proposition 7.

4.2 Understanding the relation between BXOR−PUF
n ,

BXOR−PUF
n,m and Bn

An n-length Arbiter PUF can not generate all possible functions in n-variables.

In [RRM21] it was shown that a very small portion of the complete set of Boolean

functions Bn can be generated using Arbiter PUFs. In this context, we now present

some combinatorial results on the number of Boolean functions that can be generated

from the XOR of two Arbiter PUFs.

4.2.1 The relation between BXOR−PUF
n,m and BPUF

n

We now explore the class BXOR−PUF
n,m of (n+m)-variable Boolean functions generated

from the XOR of two Arbiter PUFs of length n and m, respectively. We first perform

experiments to measure |BXOR−PUF
n,m | for different values of (n,m) and we observe that

|BXOR−PUF
n,m | = 8, 28, 98, 208 for (n,m) = (1, 1), (2, 1), (2, 2), (3, 1) respectively. From

these experiments on |BXOR−PUF
n,m | we observe that |BXOR−PUF

n,1 | = 2|BPUF
n |, for n = 1, 2, 3.

It turns out that our observation is true in general, namely, we prove the following

theorem.

Theorem 5. For any n,m ∈ N, |BXOR−PUF
n,m | = 1

2
|BPUF

n | · |BPUF
m |.

Proof. Let f1 ∈ BPUF
n and f2 ∈ BPUF

m , where n,m ∈ N. Without loss of generality we

can assume that n ≥ m. We consider the Boolean function F = f1 ⊕ f2 ∈ BXOR−PUF
n,m .
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Here we have |BPUF
n | choices for f1 and |BPUF

m | choices for f2. From the result of Roy

et al. [RRM21] we know that f2 also belongs to BPUF
n , as n ≥ m. Thus we infer that

(f1⊕f2) belongs to BXOR−PUF
n . We also know that the zero function always belongs to

any BPUF
m . Using these two facts we find that F = f1⊕f2 = ((f2⊕f1)⊕0) ∈ BXOR−PUF

n,m .

Hence |BXOR−PUF
n,m | = 1

2
|BPUF

n | · |BPUF
m |.

In [RRM21] Roy et al. proved that if a Boolean function f belongs to BPUF
n then

(1⊕ f) also belongs to BPUF
n . In the same direction we state and prove the following

lemma.

Lemma 2. For any Boolean function f ∈ BXOR−PUF
n,m if and only if (1⊕f) ∈ BXOR−PUF

n,m .

Proof. We first assume that f ∈ BXOR−PUF
n,m . That is, there exists f1 ∈ BPUF

n and

f2 ∈ BPUF
m for which f = f1⊕f2. Now we consider the function (1⊕f) = (1⊕f1⊕f2) =

((1⊕ f1)⊕ f2). From the result of Roy et al. [RRM21] we get that (1⊕ f1) will also

belong to BPUF
n . Hence, (1 ⊕ f) ∈ BXOR−PUF

n,m as (1 ⊕ f1) ∈ BPUF
n and f2 ∈ BPUF

m . The

other direction of the lemma follows similarly.

Lemma 3. If f1 /∈ BXOR−PUF
n,m then f1 ‖ f or f ‖ f1 /∈ BXOR−PUF

n+1,m , for any f ∈ Bn+m.

Proof. We assume there exists an (n + 1 + m)-variable Boolean function F = f1 ‖
f ∈ BXOR−PUF

n+1,m such that f1 /∈ BXOR−PUF
n,m for some f ∈ Bn+m. Let the (n + 1 + m)-bit

challenge input of ∆XOR
n+1,m(C) be C = (C1, · · · , Cn+1, · · · , C(n+1)+m). The mathemat-

ical model of an (n+ 1 +m)-length XOR-PUF constructed from two Arbiter PUFs of

length (n+1) andm is ∆XOR
n+1,m(C) = ∆(C1, C2, · · · , Cn+1)·∆′(C(n+1)+1, · · · , C(n+1)+m),

where

∆(C1, C2, · · · , Cn+1) = α1P0 + (α2 + β1)P1 + · · ·+ (αn+1 + βn)Pn + βn+1 (4.1)

∆′(C(n+1)+1, · · · , C(n+1)+m) = α′1P
′
0+(α′2+β′1)P ′1+· · ·+(α′m+β′m−1)P ′m−1+β′m. (4.2)

Since F ∈ BXOR−PUF
n+1,m , the inequalities constructed from the expression of ∆XOR

n+1,m(C)

and the truth table corresponding to F will provide a solution for αi, βi, α
′
i and

β′i. Now in the truth table of F , the upper half is for Cn+1 = 1, which is exactly
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same as the truth table of f1 and the lower half is for Cn+1 = −1, which is ex-

actly same as the truth table of f . Now we construct an n-length Arbiter PUF

∆′′(C1, C2, . . . , Cn) from Equation (4.1) by substituting α′′i = αi for i = 1, 2, . . . , n;

β′′i = βi for i = 1, 2, . . . , n−1 and β′′n = (αn+1+βn)+βn+1. Then the existence of αi and

βi guarantees that the (n+m)-length XOR-PUF constructed from ∆′′(C1, C2, . . . , Cn)

and ∆′(C(n+1)+1, . . . , C(n+1)+m) will be able to generate the truth table of f1. Hence

f1 ∈ BXOR−PUF
n,m . This is a contradiction. Hence F = f1 ‖ f /∈ BXOR−PUF

n+1,m . Similarly we

can prove f ‖ f1 /∈ BXOR−PUF
n+1,m .

4.2.2 The relation between BXOR−PUF
n and BPUF

n

In this section, we explore the class of Boolean functions generated from the XOR

of two n-length Arbiter PUFs, i.e., BXOR−PUF
n . We start with n = 1. We prove

the following proposition to explore the number of Boolean functions that can be

generated from the XOR of two n-length PUFs.

Proposition 8. All possible Boolean functions involving one and two variables can

be generated by using the XOR of two Arbiter PUFs of length 1 and 2, respectively,

i.e., BXOR−PUF
1 = B1 and BXOR−PUF

2 = B2.

Proof. This proposition was shown by exhaustively enumerating BXOR−PUF
1 and BXOR−PUF

2 .

We considered 1 and 2-length XOR-PUFs for different random delay parameters and

observed that all the truth tables are generated in our experiment.

We now consider the case for n = 3. There are total 223 = 256 many Boolean

functions in this case. We observed from our experiments that |BXOR−PUF
3 | = 254. In

this regard, we state the following result.

Proposition 9. Two 3-variable Boolean functions f1 = (0 1 0 1 1 0 1 0), f2 =

(1 0 1 0 0 1 0 1) do not belong to BXOR−PUF
3 .

Proof. The mathematical model of the XOR of two 3-length PUFs is ∆XOR(C) =

∆(C) ·∆′(C), where ∆(C) = (α1P0 + (α2 + β1)P1 + (α3 + β2)P2 + β3) and ∆′(C) =

(α′1P0 + (α′2 + β′1)P1 + (α′3 + β′2)P2 + β′3). The final truth table of f1 will be of the

following form:
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C3 C2 C1 ∆XOR(C) f1

1 1 1 ∆(1, 1, 1) ·∆′(1, 1, 1) < 0 0

1 1 −1 ∆(1, 1,−1) ·∆′(1, 1,−1) > 0 1

1 −1 1 ∆(1,−1, 1) ·∆′(1,−1, 1) < 0 0

1 −1 −1 ∆(1,−1,−1) ·∆′(1,−1,−1) > 0 1

−1 1 1 ∆(−1, 1, 1) ·∆′(−1, 1, 1) > 0 1

−1 1 −1 ∆(−1, 1,−1) ·∆′(−1, 1,−1) < 0 0

−1 −1 1 ∆(−1,−1, 1) ·∆′(−1,−1, 1) > 0 1

−1 −1 −1 ∆(−1,−1,−1) ·∆′(−1,−1,−1) < 0 0

Let K = α1 · α′1 + (α2 + β1) · (α′2 + β′1) + (α3 + β2) · (α′3 + β′2) + β3 · β′3. If we add

four > 0 inequalities we will get K > 0 and adding four < 0 inequalities we will get

K < 0, which generates a contradiction. Hence f1 /∈ BXOR−PUF
3 . Similarly it can be

shown that f2 /∈ BXOR−PUF
3 .

Proposition 9 along with our experiments justify that |BXOR−PUF
3 | = 254. Also

observe that the two Boolean functions f2 = f1 ⊕ 1. This observation suggests the

following result.

Lemma 4. For any n-variable Boolean function f ∈ BXOR−PUF
n if and only if (1⊕f) ∈

BXOR−PUF
n .

Proof. We first assume that f ∈ BXOR−PUF
n . For this Boolean function f there will

exist f1, f2 ∈ BPUF
n such that f = f1 ⊕ f2. Now we consider (1⊕ f) = (1⊕ f1 ⊕ f2) =

(1 ⊕ f1) ⊕ f2. From the result of Roy et al. [RRM21] it follows that (1 ⊕ f1) also

belongs to BPUF
n . Hence we can directly say that ((1 ⊕ f1) ⊕ f2) ∈ BXOR−PUF

n . The

opposite direction of the theorem follows similarly.

Lemma 5. If f1 /∈ BXOR−PUF
n , then there does not exist any F ∈ BXOR−PUF

n+1 where F

is of the form f1 ‖ f or f ‖ f1, regardless of f ∈ Bn.

Proof. We first assume that there exists an (n + 1)-variable Boolean function F =

f1 ‖ f ∈ BXOR−PUF
n+1 , where f1 /∈ BXOR−PUF

n . The mathematical model of an (n + 1)-

length XOR-PUF constructed from two (n+1)-length Arbiter PUF, ∆(C) and ∆′(C)

is given by ∆XOR(C) = ∆(C) ·∆′(C), where C = (C1, C2, . . . , Cn+1) and

∆(C1, C2, · · · , Cn+1) = α1P0 + (α2 + β1)P1 + · · ·+ (αn+1 + βn)Pn + βn+1 (4.3)
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∆′(C1, C2, · · · , Cn+1) = α′1P0 + (α′2 + β′1)P1 + · · ·+ (α′n+1 + β′n)Pn + β′n+1. (4.4)

Since F ∈ BXOR−PUF
n+1 , the inequalities constructed from ∆XOR(C) and the truth table

of F will give a solution for αi, βi, α
′
i and β′i for i ∈ {1, 2, . . . , n+ 1}. The upper half

of the truth table of F corresponding to Cn+1 = 1, which is same as the truth table

of f1 and the lower half of the truth table of F corresponding to Cn+1 = −1, which

is same as the truth table of f . Now, we assume an n-length XOR-PUF, constructed

from two n-length Arbiter PUFs of delay differences ∆1(C ′) and ∆′2(C ′), given by

∆XOR(C ′) = ∆1(C ′) · ∆′2(C ′), where C ′ = (C1, C2, . . . , Cn), α1i = αi, α2i = α′i for

i = 1, 2, . . . , n, β1i = βi, β2i = β′i for i = 1, 2, · · · , n− 1, β1n = (αn+1 + βn)Pn + βn+1,

β2n = (α′n+1 + β′n)Pn + β′n+1 and

∆1(C ′) = α11P0 + (α12 + β11)P1 + · · ·+ (α1n + β1(n−1))Pn−1 + β1n (4.5)

∆2(C ′) = α21P0 + (α22 + β21)P1 + · · ·+ (α2n + β2(n−1))Pn−1 + β2n. (4.6)

Then the existence of αi, βi, α
′
i and β′i guarantees that the n-length XOR-PUF con-

structed from two n-length Arbiter PUFs, of delay differences ∆1(C ′) and ∆2(C ′)

will be able to generate the truth table of f1. Hence f1 ∈ BXOR−PUF
n , which is

a contradiction. Hence F = f1 ‖ f /∈ BXOR−PUF
n+1 . Similarly we can prove that

f ‖ f1 /∈ BXOR−PUF
n+1 .

In [RRM21], Roy et al. proved that f1 = (1 1 0 1 1 0 1 0), f2 = (1 1 1 0 0 1 0 1) /∈
BPUF

3 but here we notice that f1 ⊕ f2 = (0 0 1 1 1 1 1 1) ∈ BXOR−PUF
3 . The function

f1 ⊕ f2 belongs to BXOR−PUF
3 due to the fact that it can also be expressed as the

XOR of two functions f3, f4 from BPUF
3 (for example f3 = (0 0 0 0 0 0 0 0) and f4 =

(0 0 1 1 1 1 1 1)). Moreover, f1 = (1 1 0 1 1 0 1 0), f2 = (1 1 1 0 0 1 0 1) ∈ BXOR−PUF
3

as both f1, f2 can be expressed as the XOR of two functions from BPUF
3 . With this

we summarize the values of |BXOR−PUF
n | vis-a-vis |BPUF

n | in Table 4.1.

From Lemma 5 we can directly say that if f ∈ BXOR−PUF
n+1 , then f = f1 ‖ f2, where

f1, f2 ∈ BXOR−PUF
n . This observation suggests the following result.

Lemma 6. If f ∈ BXOR−PUF
n , then f ‖ f ∈ BXOR−PUF

n+1 .

Proof. Let F = f ‖ f . Since f ∈ BXOR−PUF
n , the mathematical model of f constructed
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n |BPUF
n | |BXOR−PUF

n |
1 4 4
2 14 16
3 104 254
4 1882 54310

Table 4.1: |BXOR−PUF
n | for different n

from two n-length Arbiter PUF, ∆(C) and ∆′(C) is given by ∆XOR(C) = ∆(C) ·
∆′(C), where C = (C1, C2, . . . , Cn+1) and

∆(C1, C2, · · · , Cn) = α1P0 + (α2 + β1)P1 + · · ·+ (αn + βn−1)Pn−1 + βn (4.7)

∆′(C1, C2, · · · , Cn) = α′1P0 + (α′2 + β′1)P1 + · · ·+ (α′n + β′n−1)Pn−1 + β′n. (4.8)

Now we consider the mathematical model of an (n + 1)-length XOR-PUF and the

implied inequalities using the truth values of F = f ‖ f . Let the delay difference

of the (n + 1)-length XOR-PUF is given by ∆XOR(C ′) = ∆1(C ′) · ∆′2(C ′), where

C ′ = (C1, C2, . . . , Cn+1) and

∆1(C ′) = α11P0 + (α12 + β11)P1 + · · ·+ (α1(n+1) + β1n)Pn + β1(n+1) (4.9)

∆2(C ′) = α21P0 + (α22 + β21)P1 + · · ·+ (α2(n+1) + β2n)Pn + β2(n+1) (4.10)

We break the truth table of F in two parts. In the top part we take Cn+1 = 1 and the

bottom part we take Cn+1 = −1. The form of each row corresponding to Cn+1 = 1 is

of the form

(
α11P0 + (α12 +β11)P1 + · · ·+ (α1(n+1) +β1n)Pn +β1(n+1)

)
·
(
α21P0 + (α22 +β21)P1+

· · ·+ (α2(n+1) + β2n)Pn + β2(n+1)

)
(4.11)

Similarly each row corresponding to Cn+1 = −1 is of the form

(
−α11P0−(α12+β11)P1−· · ·−(α1(n+1)+β1n)Pn+β1(n+1)

)
·
(
−α21P0−(α22+β21)P1−
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· · · − (α2(n+1) + β2n)Pn + β2(n+1)

)
(4.12)

The inequalities sign will be decided by the truth values of F = f ‖ f . Now if we

choose α1(n+1) = β1(n+1) = 0 = α2(n+1) = β2(n+1), then the system of inequalities cor-

responding to Cn+1 = 1 will be identical with the system of inequalities corresponding

to Cn+1 = −1. Since f ∈ BXOR−PUF
n , one can obtain a solution from the two system

of inequalities whose signs are decided by the truth values of f . The existance of

solution proves that F = f ‖ f ∈ BXOR−PUF
n+1 .

From Lemma 5 and Lemma 6, the following result follows.

Corollary 1. For any value of n, |BXOR−PUF
n | ≤ |BXOR−PUF

n+1 | ≤ |BXOR−PUF
n |2.

Thus it is clearly understood that a larger class of Boolean functions can be gen-

erated from the XOR of two n-length Arbiter PUFs with the same input. Moreover

among all the XORNF (Exclusive OR Normal Form) representations of two n-length

Arbiter PUFs, this variant only can generate a significant number of Boolean func-

tions. To check this, we first consider two n-length Arbiter PUFs f1 and f2. Let

g(d0, d1, d2, d3) = d0⊕ (d1 ·f1)⊕ (d2 ·f2)⊕ (d3 ·f1 ·f2), where d0, d1, d2, d3 ∈ {0, 1}. Let

d = (d0, d1, d2, d3) and let us define Bg(d)
n to denote the set of all n-variable Boolean

functions generated from the function g(d). For example, if d0 = 0, d1 = 1, d2 =

1, d3 = 0, then g(0, 1, 1, 0) = f1⊕ f2 and Bg(d)
n = BXOR−PUF

n . The exact count of |Bg(d)
n |

for each of the 16 values of d are mentioned in Table 4.2.

Observation 1. From the result of Proposition 9, we have BXOR−PUF
n ⊂ Bn, for

n ≥ 3. However, if we add one more Arbiter PUF and take the XOR of the outputs

produced by the 3 PUFs, then we observe experimentally that B3−XOR−PUF
3 = B3, where

B3−XOR−PUF
n is the set of all n-variable Boolean functions generated from the XOR of

three n-length Arbiter PUFs. We also observed that |B3−XOR−PUF
4 | = 224 − 2. But

the theoretical proof for 3 XOR-PUF becomes more complex. We have performed

experiments and found two functions F1, F2 /∈ B3−XOR−PUF
4 , where F1 = f1 ‖ f1 and

F2 = f2 ‖ f2 such that f1, f2 /∈ BXOR−PUF
3 .

Based upon extensive experiments, we propose the following conjecture.

Conjecture 1. Let n ≥ 3 be an integer. Then B(n−1)−XOR−PUF
n ⊂ Bn, where Bk−XOR−PUF

n

is the set of all n-variable Boolean functions generated from the XOR of k many n-

length Arbiter PUFs.
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d = (d0, d1, d2, d3) g(d) |Bg(d)
1 | |Bg(d)

2 | |Bg(d)
3 | |Bg(d)

4 |
(0, 0, 0, 0) 0 1 1 1 1
(0, 0, 0, 1) f1 · f2 4 16 246 32286
(0, 0, 1, 0) f2 4 14 104 1882
(0, 0, 1, 1) f2 ⊕ f1 · f2 4 16 246 32286
(0, 1, 0, 0) f1 4 14 104 1882
(0, 1, 0, 1) f1 ⊕ f1 · f2 4 16 246 32286
(0, 1, 1, 0) f1 ⊕ f2 4 16 254 54310
(0, 1, 1, 1) f1 ⊕ f2 ⊕ f1 · f2 4 16 246 32286
(1, 0, 0, 0) 1 1 1 1 1
(1, 0, 0, 1) 1⊕ f1 · f2 4 16 246 32286
(1, 0, 1, 0) 1⊕ f2 4 14 104 1882
(1, 0, 1, 1) 1⊕ f2 ⊕ f1 · f2 4 16 246 32286
(1, 1, 0, 0) 1⊕ f1 4 14 104 1882
(1, 1, 0, 1) 1⊕ f1 ⊕ f1 · f2 4 16 246 32286
(1, 1, 1, 0) 1⊕ f1 ⊕ f2 4 16 254 54310
(1, 1, 1, 1) 1⊕ f1 ⊕ f2 ⊕ f1 · f2 4 16 246 32286

Table 4.2: |Bg(d)
n | for different n ≤ 4

4.3 Theoretical estimation of bias in PUF with

combiner function

In literature different kind of analysis on estimation of non-randomness in different

models of PUFs have been performed. In this section we provide a generic expression

of the probability of final output from the PUFs with combiner model to be equal for

different challenge inputs to the PUFs. We derive the expression of that probability

in Theorem 7. It has been shown in [SBC+19b] that if one considers two (challenge)

inputs from {−1, 1}n, C = (C1, C2, . . . , Cn) and C̃ = (C̃1, C2, . . . , Cn) with the condi-

tion C1 + C̃1 = 0, then the output from PUF corresponding to C and C̃ matches with

high probability. In the same paper the authors have provided a generic form of these

probabilities for different parameters, as well as for a PUF via a combiner function

for a special case, although the more general case was not addressed in [SBC+19b].

Similar to these efforts there are some statistical and machine learning techniques

that present non-randomness observations. Here we present a generalized result in

this regard. We derive the expression of that probability in Theorem 7.

Before proceeding to Theorem 7 we state a theorem from [SBC+19b] which will
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be used in the proof of our new result.

Theorem 6 (Siddhanti et al. [SBC+19b]). Let f : {0, 1}n → {0, 1} be a Boolean

function. We partition the autocorrelation spectrum with respect to the weight of the

vectors, and define the set Ω
(−2n+2k,w)
f = {a : Cf (a) = −2n+2k, wt(a) = w}. Further,

we assume that the probability of any two input changes is Pr[xi + x̃i = 0] = p, for

all i, where x̃i = xi + ai, for ai ∈ {0, 1}. Then,

Pr[f(x1, . . . , xn) = f(x̃1, . . . , x̃n)] =
1

2n

2n+1∑
k=1

n∑
w=0

kpn−w(1− p)w
∣∣∣Ω(−2n+2k,w)

f

∣∣∣ .
Theorem 7. Let f : {0, 1}n → {0, 1} be a Boolean function. We let f0, f1 be the

first and the second half of the function (where the input space is ordered lexicograph-

ically), and therefore, f(x1, . . . , xn) = x̄nf0(x1 . . ., xn−1) + xnf1(x1 . . . , xn−1). Let

Ω
(−2n−1+2k,w)
fi

= {a : Cfi(a) = −2n−1 + 2k, wt(a) = w}, i = 0, 1. Further, we as-

sume that the probability of any two input changes is Pr[xi + x̃i = 0] = p, for all

1 ≤ i ≤ n− `, and Pr[xj + x̃j = 0] = pj, n− `+ 1 ≤ j ≤ n, where x̃k = xk + ak, for

ak ∈ {0, 1}. Then,

Pr[f(x1, . . . , xn) = f(x̃1, . . . , x̃n)]

=

∏`−1
j=0 pn−j

2
`(2n−`−1)

2

2n−`∑
k=1

n−∑̀
w=0

(∣∣∣Ω(−2n−`+2k,w)
f0...00

∣∣∣+
∣∣∣Ω(−2n−`+2k,w)

f0...01

∣∣∣ + · · ·+
∣∣∣Ω(−2n−`+2k,w)

f1...11

∣∣∣) .
In particular, if ` = 1,

Pr[f(x1, . . . , xn) = f(x̃1, . . . , x̃n)]

=
pn

2n−1

2n−1∑
k=1

n−1∑
w=0

kpn−1−w(1− p)w
( ∣∣∣Ω(−2n−1+2k,w)

f0

∣∣∣+
∣∣∣Ω(−2n−1+2k,w)

f1

∣∣∣ ).
Proof. Let ` be the number of variables (and, without loss of generality, we may

assume that these variables are xn, xn−1, . . . , xn−`+1), such that Pr[xi + x̃i] = pi,

n − ` + 1 ≤ i ≤ n and moreover Pr[xj + x̃j] = p, 1 ≤ j ≤ n − `. We will show the

result by induction on `. Surely, the case ` = 0 was shown in Theorem 6.

We will show now the ` = 1 case. Thus, Pr[xn + x̃n = 0] = pn and Pr[xi + x̃i =

0] = p. We will be using below the following identity of probabilities of events A,B,
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namely

Pr[A] = Pr[A ∩B] + Pr[A ∩ B̄] = Pr[A|B]Pr[B] + Pr[A|B̄]Pr[B̄].

We write f as a concatenation of two Boolean functions on n−1 variables, say f0, f1,

and so, f(x1, . . . , xn) = x̄nf0(x1, . . . , xn−1) + xnf1(x1, . . . , xn−1). We regard, as usual,

f0, f1 to be independent. We compute,

Pr[f(x1, . . . , xn) = f(x̃1, . . . , x̃n)]

= Pr[f(x1, . . . , xn) = f(x̃1, . . . , x̃n)|xn = x̃n]Pr[xn = x̃n]

+ Pr[f(x1, . . . , xn) = f(x̃1, . . . , x̃n)|xn 6= x̃n]Pr[xn 6= x̃n]

= Pr[x̄nf0(x1, . . . , xn−1) + xnf1(x1, . . . , xn−1)

= x̄nf0(x̃1, . . . , x̃n−1) + xnf1(x̃1, . . . , x̃n−1)]pn

+ Pr[x̄nf0(x1, . . . , xn−1) + xnf1(x1, . . . , xn−1)

= xnf0(x̃1, . . . , x̃n−1) + x̄nf1(x̃1, . . . , x̃n−1)](1− pn)

= Pr[x̄nf0(x1, . . . , xn−1) + xnf1(x1, . . . , xn−1)

= x̄nf0(x̃1, . . . , x̃n−1) + xnf1(x̃1, . . . , x̃n−1)]pn,

(4.13)

since the second term is zero, because f0, f1 are independent. We now take, as in

Theorem 6,

Ω
(−2n+2k,w)
fi

= {a : Cfi(a) = −2n + 2k,wt(a) = w}, i = 1, 2.

Since in the first term of the probability computation (4.13), xn is a constant now,

by using the result of Theorem 6, we obtain

Pr[f(x1, . . . , xn) = f̃(x1, . . . , xn)]

= (Pr[f0(x1, . . . , xn−1) = f0(x̃1, . . . , x̃n−1)]

+Pr[f1(x1, . . . , xn−1) = f1(x̃1, . . . , x̃n−1)]) pn

=
pn

2n−1

2n−1∑
k=1

n−1∑
w=0

kpn−1−w(1− p)w
( ∣∣∣Ω(−2n−1+2k,w)

f0

∣∣∣+
∣∣∣Ω(−2n−1+2k,w)

f1

∣∣∣ ).
Now, assuming the claim holds for (`−1), we will show it for `. We split the function
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f into 2` equal length subfunctions,

f = f0...00||f0...01||f0...10|| . . . ||f1...11,

where the indices are in lexicographical ordering of the k-bit vector space. By the

induction assumption, we know that for both f1, i = 0, 1,

Pr[fi(x1, . . . , xn−1) = fi(x̃1, . . . , x̃n−1)]

=

∏`−1
j=0 pn−1−j

2
`(2n−`−3)

2

2n−`+1∑
k=1

n−1−`∑
w=0

(∣∣∣Ω(−2n−`+1+2k,w)
fi...00

∣∣∣ +
∣∣∣Ω(−2n−`+1+2k,w)

fi...01

∣∣∣
+ · · ·+

∣∣∣Ω(−2n−`+1+2k,w)
fi...11

∣∣∣) .
Using the same computation as above up to the step

Pr[f(x1, . . . , xn) = f̃(x1, . . . , xn)] = (Pr[f0(x1, . . . , xn−1) = f0(x̃1, . . . , x̃n−1)]

+Pr[f1(x1, . . . , xn−1) = f1(x̃1, . . . , x̃n−1)]) pn,

and using the induction assumption on both f0, f1, we obtain our claim.

4.4 Conclusion

In this chapter, we have studied the number of Boolean functions class generated

from the XOR of two PUFs. Among the two variants of XOR-PUFs, it is shown

that the XOR of two n-length Arbiter PUFs with the same input can generate a

significant number of Boolean functions. However, the other variant can only generate

a negligible number of Boolean functions. We present several findings regarding the

existence and non-existence of these functions. Additionally, we provide theoretical

proof regarding the probability distribution of output equality from the PUF with a

combiner function corresponding to distinct inputs.
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The research we conducted demonstrates the exploration of Boolean functions

obtained by implementing a PA-PUF construction with randomly selected delay pa-

rameters. We observe that the class of Boolean functions generated from an n-length

PA-PUF is significantly larger than the class of Boolean functions generated from

an n-length Arbiter-based PUF. We also study different results related to existence

and non-existence of Boolean functions in the set of Boolean functions generated from

PA-PUF. Further, we look into the bias estimation of the response bit generated from

PA-PUF towards the impact of changing specific bits in the challenge input. Finally,

we perform a comparative analysis of PA-PUF to study its cryptographic properties

and a detailed analysis of the machine learning attacks.
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5.1 Introduction

In 2020, Roy et al. [RRM21] looked into the prime reason behind the biases observed

by Siddhanti et al. [SBC+19b]. Roy et al. have observed that an n-length Arbiter

based PUF with two paths cannot generate all possible 22n Boolean functions. In fact

they have shown that the number of Boolean functions generated from an n-length

PUF are 4, 14, 104 and 1882 for n = 1, 2, 3, 4 respectively. Due to this limitation,

we observe biases in the output bits from a classical Arbiter based PUF. They have

also shown different characteristics of Boolean functions generated from an n-length

Arbiter based PUF with two paths.

From the analytical results and multiple weaknesses of Arbiter-based PUF with

two paths, the question which comes to our mind is that what will happen if we

increase the number of paths in PUF? In other words, is it possible to design an

Arbiter-based PUF with more than two paths?

In 2022, Singh et al. [SBP+22] have proposed a modified construction of arbiter-

based PUF with three paths (Top path, Center path and Bottom path), namely

Priority Arbiter PUF (PA-PUF). Figure 5-1 shows the hardware implementation of

the three paths using multiplexers. They have provided an experimental analysis on

their proposed design with enhanced robustness though, a mathematical analysis is

not carried out. We study PA-PUF in detail in this chapter.

Figure 5-1: Schematic of proposed PA-PUF which includes three parallel multiplexer
lines (T, C, and B) and a priority arbiter at the end to generate the response bit.
Challenges are considered as 0/1 instead of 1/-1.
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5.2 Motivation

Arbiter based PUF models are analyzed in multiple articles. It has been observed that

the output from single Arbiter based PUF is not pseudorandom. In fact, Siddhanti

et al. [SBC+19b] have shown that there is a significant amount of non-randomness

in the two output bits from an Arbiter based PUF corresponding to two inputs

which differ at particular positions. In [RRM21] Roy et al. have shown that BPUF
n is

significantly smaller than Bn. In [RRM21] it has also been shown that several classes

of Boolean functions do exist in BPUF
n . Due to these issues non-randomness exists

in the output bit from an Arbiter based PUF. Now to improve the cryptographic

properties multiple authors have proposed constructions of Arbiter based PUF. In

most of these constructions designers have used multiple Arbiter based PUFs to either

generate a combined output bit or they have fed output from one PUF to another

to generate the final output bit. In recent time Singh et al. [SBP+22] have proposed

Priority Arbiter PUF. Here the authors have used three paths instead of two paths.

The design of PA-PUF looks promising towards solving cryptographic (specifically

non-randomness) issues present in the classical Arbiter based PUF. There is no such

article which tries to analyze the design of PA-PUF. In this chapter, we consider

PA-PUF and study its cryptographic properties.

5.3 Characterization of BPA−PUF
n

We already know that an n-length PA-PUF takes input C = {c[0], c[1], · · · , c[n− 1]}
from {−1, 1}n and produces 0/1 as an output. To compute |BPA−PUF

n |, we start with

n = 1, 2. For finding the BPA−PUF
n we randomly choose the delay parameters of the

top, center and bottom paths from normal distributions and generate the outputs

from the PA-PUF for all possible challenge inputs. We vary the delay parameters

and generate the outputs for all possible challenge inputs. Finally count the distinct

such truth tables to determine BPA−PUF
n .

Proposition 10. All possible Boolean functions involving 1-variable and 2-variable

can be generated using 1-length and 2-length PA-PUF respectively i.e., BPA−PUF
1 = B1

and BPA−PUF
2 = B2.

Proof. This proposition can be shown true by exhaustively enumerating BPA−PUF
1 and
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BPA−PUF
2 . We have considered 1-length and 2-length PA-PUFs for different random

delay parameters and observed that all the possible truth tables are generated in our

experiment. Hence BPA−PUF
1 = B1, BPA−PUF

2 = B2.

In [RRM21] it has been shown that |BPUF
n | = 4, 14 for n = 1, 2 respectively (see

Proposition 1, 2 of [RRM21]). Two Boolean functions f1 = (0 1 0 1) and f2 = 1⊕f1 do

not belong to BPUF
2 . Hence |BPA−PUF

2 | > |BPUF
2 |. With this connection in Proposition 11

we prove why f1, f2 ∈ BPA−PUF
2 . For proving this we find the expressions of ∆BT (0),

∆BT (1). From Equation (2.6) we get,

∆BT (0) =
c[0]

2
·
(
p

(B)
0 − q(T )

0 − q(B)
0 + r

(T )
0

)
+

1

2
·
(
p

(B)
0 − q(T )

0 + q
(B)
0 − r(T )

0

)
,

∆CB(0) =
c[0]

2
·
(
r

(C)
0 − p(B)

0 − p(C)
0 + q

(B)
0

)
+

1

2
·
(
r

(C)
0 − p(B)

0 + p
(C)
0 − q(B)

0

)
,

∆TC(0) =
c[0]

2
·
(
q

(T )
0 − r(C)

0 − r(T )
0 + p

(C)
0

)
+

1

2
·
(
q

(T )
0 − r(C)

0 + r
(T )
0 − p(C)

0

)
.

Let α = p+q
2
, β = p−q

2
, γ = q+r

2
, δ = q−r

2
, κ = r+p

2
and λ = r−p

2
. Then,

∆BT (0) = c[0] ·
(
β

(B)
0 − δ(T )

0

)
+
(
α

(B)
0 − γ(T )

0

)
,

∆CB(0) = c[0] ·
(
λ

(C)
0 − β(B)

0

)
+
(
κ

(C)
0 − α(B)

0

)
,

∆TC(0) = c[0] ·
(
δ

(T )
0 − λ(C)

0

)
+
(
γ

(T )
0 − κ(C)

0

)
and

∆BT (1) =
c[0]

2
·
(
δ

(T )
0 − β(B)

0

)
+

1

2
·
(
γ

(T )
0 − α(B)

0

)
+
c[0] · c[1]

2
·
(
δ

(T )
0 − 2λ

(C)
0 + β

(B)
0

)
+
c[1]

2
·
(
γ

(T )
0 − 2κ

(C)
0 + α

(B)
0

)
+ c[1] ·

(
β

(B)
1 − δ(T )

1

)
+
(
α

(B)
1 − γ(T )

1

)
.

(5.1)

We use the expression of ∆BT (1) as in Equation (5.1) to prove that f1 = (0 1 0 1)

and f2 = 1⊕ f1 belong to BPUF
2 in Proposition 11.

Proposition 11. Two Boolean functions f1 = (0 1 0 1) and f2 = (1 0 1 0) do not

belong to BPUF
2 , but f1, f2 ∈ BPA−PUF

2 .

Proof. We will be using Equation (5.1) for 2-length PA-PUF. We consider the truth

table of f1 first.
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C1 C0 ∆BT (1)

1 1 δ
(T )
0 + γ

(T )
0 − λ(C)

0 − κ(C)
0 + β

(B)
1 − δ(T )

1 + α
(B)
1 − γ(T )

1 > 0

1 −1 −δ(T )
0 + γ

(T )
0 + λ

(C)
0 − κ(C)

0 + β
(B)
1 − δ(T )

1 + α
(B)
1 − γ(T )

1 < 0

−1 1 −β(B)
0 − α(B)

0 + λ
(C)
0 + κ

(C)
0 − β(B)

1 + δ
(T )
1 + α

(B)
1 − γ(T )

1 > 0

−1 −1 β
(B)
0 − α(B)

0 − λ(C)
0 + κ

(C)
0 − β(B)

1 + δ
(T )
1 + α

(B)
1 − γ(T )

1 < 0

If there exists a solution for which the above condition holds, then we can say that

the truth values of f1 can be generated. If we add two > 0 inequalities, then we

have
(
δ

(T )
0 − β

(B)
0 − α

(B)
0 + γ

(T )
0 + 2 ·

(
α

(B)
1 − γ(T )

1

))
> 0 and if we add two < 0

inequalities, we have
(
− δ

(T )
0 + β

(B)
0 − α

(B)
0 + γ

(T )
0 + 2 ·

(
α

(B)
1 − γ(T )

1

))
< 0. Let

A =
(
δ

(T )
0 − β

(B)
0

)
and B =

(
− α

(B)
0 + γ

(T )
0 + 2 ·

(
α

(B)
1 − γ(T )

1

))
. Hence we have

A+B > 0 and −A+B < 0. This condition holds for some A and B i.e., not producing

any contradictory statement. Hence the truth table of f1 can be generated using 2-

length PA-PUF i.e., f1 ∈ BPA−PUF
2 . Similarly, we can also show that f2 ∈ BPA−PUF

2 .

We are now interested to investigate the Lemma 1 from Chapter 3 for BPA−PUF
n .

Proposition 12. For any n-variable Boolean function if f ∈ BPA−PUF
n then (1⊕ f) ∈

BPA−PUF
n .

Proof. Let f ∈ BPA−PUF
n . We know that depending on the sign of ∆BT (n) with delay

parameters α
(B)
i , β

(B)
i , γ

(T )
i , δ

(T )
i , κ

(C)
i and λ

(C)
i (for i = 0, 1, · · · , n) the truth table of

(1⊕ f) is generated. Using Proposition 1, an (n+ 1)-length PA-PUF can be written

as ∆BT (n) = −1
2
·∆BT (n−1)+ c[n]

2
·(∆TC(n−1) −∆CB(n−1))+c[n] ·

(
β

(B)
n − δ(T )

n

)
+(

α
(B)
n − γ(T )

n

)
. Now if we construct an (n + 1)-length PA-PUF ∆′BT (n) with delay

parameters α
′(B)
i = −α(B)

i , β
′(B)
i = −β(B)

i , γ
′(T )
i = −γ(T )

i , δ
′(T )
i = −δ(T )

i , κ
′(C)
i = −κ(C)

i

and λ
′(C)
i = −λ(C)

i for i = 0, 1, 2, · · · , n; then the sign of ∆′BT (n) and the sign of

∆BT (n) will be opposite for the same challenge values. Hence the truth table of (1⊕f)

can be generated from ∆′BT (n). Hence (1⊕ f) ∈ BPA−PUF
n whenever f ∈ BPA−PUF

n .

Now we will move towards the case for n = 3. We first write down the expression

of ∆BT (2) in terms of c[0], c[1], c[2]. Using the expression of ∆BT (2) we prove the
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non-existence of one Boolean function in the set BPA−PUF
3 in Proposition 13.

∆BT (2) =
c[0]

22
·
(
β

(B)
0 − δ(T )

0

)
+

1

22
·
(
α

(B)
0 − γ(T )

0

)
+
c[0] · c[1]

22
·
(

2λ
(C)
0 − δ(T )

0 − β(B)
0

)
+
c[1]

22
·
(

2κ
(C)
0 − γ(T )

0 − α(B)
0

)
+
c[1]

2
·
(
δ

(T )
1 − β(B)

1

)
+

1

2
·
(
γ

(T )
1 − α(B)

1

)
+
c[0] · c[2]

22
·
(

2λ
(C)
0 − δ(T )

0 − β(B)
0

)
+
c[2]

22
·
(

2κ
(C)
0 − γ(T )

0 − α(B)
0

)
+
c[0] · c[1] · c[2]

22
· 3
(
δ

(T )
0 − β(B)

0

)
+
c[1] · c[2]

22
· 3
(
γ

(T )
0 − α(B)

0

)
+
c[1] · c[2]

2
·
(
δ

(T )
1 − 2λ

(C)
1 + β

(B)
1

)
+
c[2]

2
·
(
γ

(T )
1 − 2κ

(C)
1 + α

(B)
1

)
+ c[2] ·

(
β

(B)
2 − δ(T )

2

)
+
(
α

(B)
2 − γ(T )

2

)
.

(5.2)

Proposition 13. The function f1 = (0 0 0 1 1 0 0 0) /∈ BPA−PUF
3 .

Proof. We consider the truth table of f1 = (0 0 0 1 1 0 0 0) and the Equation (5.2) for a

3-length PA-PUF. Let X =
(
β

(B)
2 − δ(T )

2

)
+
(
α

(B)
2 − γ(T )

2

)
and Y = −

(
β

(B)
2 − δ(T )

2

)
+(

α
(B)
2 − γ(T )

2

)
.

c[2] c[1] c[0] ∆BT (2)

1 1 1 −4α
(B)
0 − 4β

(B)
0 + 4κ

(C)
0 + 4λ

(C)
0 + 4δ

(T )
1 + 4γ

(T )
1 − 4κ

(C)
1 − 4λ

(C)
1 + 4X > 0

1 1 −1 −4α
(B)
0 + 4β

(B)
0 + 4κ

(C)
0 − 4λ

(C)
0 + 4δ

(T )
1 + 4γ

(T )
1 − 4κ

(C)
1 − 4λ

(C)
1 + 4X > 0

1 −1 1 4α
(B)
0 + 4β

(B)
0 − 4γ

(T )
0 − 4δ

(T )
0 − 4δ

(T )
1 + 4γ

(T )
1 − 4κ

(C)
1 + 4λ

(C)
1 + 4X > 0

1 −1 −1 4α
(B)
0 − 4β

(B)
0 − 4γ

(T )
0 + 4δ

(T )
0 − 4δ

(T )
1 + 4γ

(T )
1 − 4κ

(C)
1 + 4λ

(C)
1 + 4X < 0

−1 1 1 4α
(B)
0 + 4β

(B)
0 − 4γ

(T )
0 − 4δ

(T )
0 − 4α

(B)
1 − 4β

(B)
1 + 4κ

(C)
1 + 4λ

(C)
1 + 4Y < 0

−1 1 −1 4α
(B)
0 − 4β

(B)
0 − 4γ

(T )
0 + 4δ

(T )
0 − 4α

(B)
1 − 4β

(B)
1 + 4κ

(C)
1 + 4λ

(C)
1 + 4Y > 0

−1 −1 1 −4λ
(C)
0 − 4κ

(C)
0 + 4γ

(T )
0 + 4δ

(T )
0 − 4α

(B)
1 + 4β

(B)
1 + 4κ

(C)
1 − 4λ

(C)
1 + 4Y > 0

−1 −1 −1 4λ
(C)
0 − 4κ

(C)
0 + 4γ

(T )
0 − 4δ

(T )
0 − 4α

(B)
1 + 4β

(B)
1 + 4κ

(C)
1 − 4λ

(C)
1 + 4Y > 0

From the above system of inequalities we get ∆BT (2)
∣∣∣
(1 −1 1)

− ∆BT (2)
∣∣∣
(1 −1 −1)

=

8 · (β(B)
0 − δ(T )

0 ) > 0 and ∆BT (2)
∣∣∣
(−1 1 −1)

− ∆BT (2)
∣∣∣
(−1 1 1)

= 8 · (δ(T )
0 − β(B)

0 ) > 0.

This generates a contradiction. Hence the truth table of f1 = (0 0 0 1 1 0 1 0) can

not be generated from a 3-length PA-PUF.

Proposition 13 shows that BPA−PUF
3 ⊂ B3. We now choose randomly many delay

parameters and construct PA-PUF for n = 3, 4. To each of these PA-PUFs we

give all possible challenge C ∈ {−1, 1}n as input and generate the truth tables.

Finally count the distinct number of truth tables to find |BPA−PUF
n |. The experimental
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n |BPUF
n | |BPA−PUF

n |
1 4 4
2 14 16
3 104 214
4 1882 16584

Table 5.1: Comparison between BPA−PUF
n and BPUF

n .

observation for different values of n is given in Table 5.1. We know that any (n +

1)-variable Boolean function f can be expressed as f(x0, x1, · · · , xn) = (1 ⊕ xn) ·
f1(x0, x1, · · · , xn−1)⊕xn ·f2(x0, x1, · · · , xn−1), where f1, f2 are two n-variable Boolean

functions. The truth table of f will be f1 ‖ f2 i.e., concatenation of the truth tables

of f1 and f2. From our analysis on BPA−PUF
2 and BPA−PUF

3 we have observed that

|BPA−PUF
2 | = 16 and BPA−PUF

3 = 214. If we concatenate every f1, f2 ∈ BPA−PUF
2 and

generate Boolean functions then we should have 256 number of Boolean functions but

|BPA−PUF
3 | = 214. That means every f1 ‖ f2 may not belong to BPA−PUF

3 . In fact if we

take f1 = (0 0 0 1), f2 = (1 0 0 0) ∈ BPA−PUF
2 and construct f = f1 ‖ f2 we get the

function f = (0 0 0 1 1 0 0 0) and our Proposition 13 says that f /∈ BPA−PUF
3 . Thus

in general we can say that even if f1, f2 ∈ BPA−PUF
n it is not guaranteed that f1 ‖ f2

will lie in the set BPA−PUF
n+1 for every n ≥ 2. Thus the characterization of BPA−PUF

n does

not follow the same path as Bn. Following theorem which characterizes BPA−PUF
n for

n = 2, 3, 4 follows directly from Table 5.1.

Theorem 8. |Bn| = |BPA−PUF
n | > |BPUF

n | for n = 2 and |Bn| > |BPA−PUF
n | > |BPUF

n | for

n = 3, 4.

Next in Theorem 9 we find the generalization of the Theorem 8.

Theorem 9. BPUF
n ⊆ BPA−PUF

n for every n > 0.

Proof. The experimental results given in Table 5.1 validate the theorem for n =

1, 2, 3, 4. For general value of n we look into the mathematical expressions of delay

difference between the two paths in PUF and delay differences between the top and

bottom paths of PA-PUF. The expression of the delay difference between two paths

for PUF is ∆(n−1) = c[n−1]∆(n−2)+αn−1c[n−1]+βn−1. Here αn−1 = pn−1−qn−1

2
+

rn−1−sn−1

2
and βn−1 = pn−1−qn−1

2
− rn−1−sn−1

2
(see [SBC+19b]). For c[n−1] = 1 the delay

difference becomes ∆(n− 1) = ∆(n− 2) + pn−1 − qn−1. For c[n− 1] = −1 the delay

difference becomes ∆(n−1) = −∆(n−2)−(rn−1−sn−1). Depending upon the sign of
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∆(n− 1) the PUF outputs either 0 or 1. Whereas the PA-PUF outputs either 0 or 1

depending upon the sign of ∆BT (n−1). For c[n−1] = 1, the expression of ∆BT (n−1)

becomes ∆BT (n−1) = ∆TC(n−2)+(p
(B)
n−1−q

(T )
n−1) and for c[n−1] = −1 the expression

of ∆BT (n− 1) becomes ∆BT (n− 1) = ∆CB(n− 2) + (q
(B)
n−1 − r

(T )
n−1). It can be noticed

that under the special condition ∆(n−2) = ∆TC(n−2), pn−1 = p
(B)
n−1, qn−1 = q

(T )
n−1 for

c[n−1] = 1 and ∆(n−2) = −∆CB(n−2), rn−1 = q
(B)
n−1, sn−1 = r

(T )
n−1 for c[n−1] = −1

the last stage of PUF can be replicated in the last stage of PA-PUF. Thus the output

from the PUF will be exactly same as the output from the PA-PUF. It can also be

noted that this is a special condition, except this condition there are many conditions

under which an n-length PUF will produce same output as an n-length PA-PUF.

Hence we can say that if f ∈ BPUF
n then f ∈ BPA−PUF

n . Thus BPUF
n ⊆ BPA−PUF

n . The

opposite relation will not hold i.e., BPA−PUF
n 6⊂ BPUF

n because of the involvement of

random ∆TC(n− 2) and ∆CB(n− 2) in the expression of ∆BT (n− 2).

Now we are in a position to determine the set BPUF
n for any n ∈ N. Till now to

generate the set BPA−PUF
n we have followed an exhaustive search technique i.e., we have

randomly taken the delay parameters to construct a PA-PUF. We will now propose

an algorithm which will deterministically determine whether f ∈ BPA−PUF
n or not for

every Boolean function f ∈ Bn.

We have implemented Algorithm 4 in SageMath [sag] for different values of n.

The experimental observation is given in Table 5.2. The experiment is performed in

a laptop with with a processor of 2.80GHz clock, 16 GB RAM and Linux (Ubuntu

23.04) environment.

n f (in hex) Decision Time Required (in sec)

2 f = t0x5 f ∈ BPA−PUF
2 1.16

3 f = t0x19 f /∈ BPA−PUF
3 2.002

4 f = t0x3FD f ∈ BPA−PUF
4 10.09

5 f = t0xE7 f /∈ BPA−PUF
5 75.65

Table 5.2: Experimental validation of Algorithm 4.
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Algorithm 4: Deterministic determination of BPA−PUF
n

Input : f ∈ Bn
Output: f ∈ BPA−PUF

n or f /∈ BPA−PUF
n

1 Sys = {};
2 Consider the mathematical formulae of ∆CB(n− 1), ∆TC(n− 1) and

∆BT (n− 1) as per the Equations (2.4), (2.5), (2.6);

3 for each C ∈ {−1, 1}n do

4 if f(C) = 1 then

5 Eqn← ∆BT (n− 1) > 0;

// Delay parameters are the unknown

6 end

7 else

8 Eqn← ∆BT (n− 1) < 0;

// Delay parameters are the unknown

9 end

10 Sys = Sys ∪ {Eqn};

11 end

12 S = Solve(Sys);

13 if S 6= {} then

14 R← f ∈ BPA−PUF
n ;

15 end

16 else

17 R← f /∈ BPA−PUF
n ;

18 end

19 return R;

5.4 Theoretical Estimation of Bias in PA-PUF

In this section we look into the bias in the output bit generated from an n-length

PA-PUF when certain input bit is flipped i.e., if zC is the output bit corresponding

to the challenge C and zC̃ is the challenge C̃, we look forward to find the probability

Pr[zC = zC̃ ] where C and C̃ differ at only one position. We consider two cases:

(1) C and C̃ differ at (n − 1)-th position i.e., last position, (2) C and C̃ differ at
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(n − 2)-th position i.e., second last position. The estimation of Pr[zC = zC̃ ] for

normal Arbiter based PUF was reported by Siddhanti et al. [SBC+19b]. First we

perform experiments to compare the probabilities Pr[zC = zC̃ ] between PUF and

PA-PUF for both the above mentioned types of challenge inputs. Our experiment

shows significant improvements in the probability Pr[zC = zC̃ ] for PA-PUF over the

classical Arbiter based PUF (see Figure 5-2).
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Figure 5-2: Comparison of the restricted autocorrelation.

This experimental observation motivates us to find the mathematical expressions

of the probabilities Pr[zC = zC̃ ] for the above two cases. Before going to the esti-

mation of the probabilities, we first need the distributions of ∆BT (n), ∆TC(n) and

∆CB(n) for n ≥ 0.

Theorem 10. ∆BT (n),∆CB(n) ∼ N (0,
√
n+ 1σ) and ∆TC(n) ∼ N (0,

√
2(n+ 1)σ).

Proof. The mathematical expressions of ∆BT (0), ∆TC(0) and ∆CB(0) are as follows:

∆BT (0) =
c[0]

2

(
p
(B)
0 − q

(T )
0 − q

(B)
0 + r

(T )
0

)
+

1

2

(
p
(B)
0 − q

(T )
0 + q

(B)
0 − r

(T )
0

)
=

1 + c[0]

2

(
p
(B)
0 − q

(T )
0

)
+

1− c[0]

2

(
q
(B)
0 − r

(T )
0

)
,

∆CB(0) =
c[0]

2

(
r
(C)
0 − p

(B)
0 − p

(C)
0 + q

(B)
0

)
+

1

2

(
r
(C)
0 − p

(B)
0 + p

(C)
0 − q

(B)
0

)
=

1 + c[0]

2

(
r
(C)
0 − p

(B)
0

)
+

1− c[0]

2

(
p
(C)
0 − q

(B)
0

)
,

∆TC(0) =
c[0]

2

(
q
(T )
0 − r

(C)
0 − r

(T )
0 + p

(C)
0

)
+

1

2

(
q
(T )
0 − r

(C)
0 + r

(T )
0 − p

(C)
0

)
=

1 + c[0]

2

(
q
(T )
0 − r

(C)
0

)
+

1− c[0]

2

(
r
(T )
0 − p

(C)
0

)
.
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As p
(j)
i , q

(j)
i , r

(j)
i ∼ N (µ, σ), ∆BT (0) ∼ N (0, σ1) where

σ1 =

√(1 + c[0]

2

)2

σ2 +
(1− c[0]

2

)2

σ2 = σ

√
2(c[0]2 + 1)

4
= σ

Hence ∆BT (0) ∼ N (0, σ). Similarly it can be shown that ∆CB(0) ∼ N (0, σ). Now

from Proposition 1 we know that ∆TC(0) = −(∆BT (0) + ∆CB(0)). Thus ∆TC(0)

will follow N (0,
√

2σ). Now we will consider the expressions of ∆BT (1),∆CB(1), and

∆TC(1) to determine their distributions.

∆BT (1) =
1

2
(∆TC(0) + ∆CB(0)) +

c[1]

2
(∆TC(0)−∆CB(0))

+
c[1]

2

(
p
(B)
1 − q

(T )
1 − q

(B)
1 + r

(T )
1

)
+

1

2

(
p
(B)
1 − q

(T )
1 + q

(B)
1 − r

(T )
1

)
= −1

2
∆BT (0) +

c[1]

2
(∆TC(0)−∆CB(0)) +

1 + c[1]

2

(
p
(B)
1 − q

(T )
1

)
+

1− c[1]

2

(
q
(B)
1 − r

(T )
1

)
,

∆CB(1) =
1

2

(
∆BT (0) + ∆TC(0)

)
+

c[1]

2

(
∆BT (0)−∆TC(0)

)
+
c[1]

2
(r

(C)
1 − p

(B)
1 − p

(C)
1 + q

(B)
1 ) +

1

2
(r

(C)
1 − p

(B)
1 + p

(C)
1 − q

(B)
1 )

= −1

2
∆CB(0) +

c[1]

2
(∆BT (0)−∆TC(0)) +

1 + c[1]

2
(r

(C)
1 − p

(B)
1 )

+
1− c[1]

2
(p

(C)
1 − q

(B)
1 ),

∆TC(1) = −
(

∆BT (1) + ∆CB(1)
)
.

Here ∆BT (0),∆CB(0) followN (0, σ) and ∆TC(0) followsN (0,
√

2σ). Hence the mean

of the distribution of ∆BT (1) will be 0 and it will follow N (0, σ2) where

σ2 =

√
1

4
σ2 +

1

4
(σ2 + 2σ2) +

(1 + c[1])2

4
(σ2 + σ2) +

(1− c[1])2

4
(σ2 + σ2)

= 2σ2.

Hence ∆BT (1) follows N (0,
√

2σ). Similarly it can be shown that ∆CB(1) follows

N (0,
√

2σ). Finally ∆TC(1) will follow N (0, 2σ) as ∆TC(1) = −
(

∆BT (1) + ∆CB(1)
)

.

By doing similar computation we get ∆BT (2), ∆CB(2) ∼ N (0,
√

3σ) and ∆TC(2) ∼
N (0,

√
6σ).

Now we assume that ∆BT (i), ∆CB(i) follow N (0,
√
i+ 1σ) and ∆TC(i) follow

N (0,
√

2(i+ 1)σ). With this hypothesis we derive the distributions of ∆BT (i + 1),
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∆CB(i+ 1) and ∆TC(i+ 1). The expression of ∆BT (i+ 1) is

∆BT (i+ 1) =
1

2
· (∆TC(i) + ∆CB(i)) +

c[i+ 1]

2
· (∆TC(i)−∆CB(i))

+
c[i+ 1]

2
·
(
p

(B)
i+1 − q

(T )
i+1 − q

(B)
i+1 + r

(T )
i+1

)
+

1

2

(
p

(B)
i+1 − q

(T )
i+1 + q

(B)
i+1 − r

(T )
i+1

)
= −1

2
∆BT (i) +

c[i+ 1]

2
· (∆TC(i)−∆CB(i))

+
1 + c[i+ 1]

2

(
p

(B)
i+1 − q

(T )
i+1

)
+

1− c[i+ 1]

2

(
q

(B)
i+1 − r

(T )
i+1

)
.

Here ∆BT (i),∆CB(i) followN (0,
√
i+ 1σ) and ∆TC(i) followsN (0,

√
2(i+ 1)σ). The

delay parameters p
(j)
i+1, q

(j)
i+1, r

(j)
i+1 follow N (µ, σ). It can be observed that ∆BT (i + 1)

will follow N (0, σ′) where

σ′ =
1

4

(
(i+ 1)σ2

)
+

1

4

(
2(i+ 1)σ2 + (i+ 1)σ2

)
+

1 + c[i+ 1]2

4
2σ2

= (i+ 2)σ2.

Hence ∆BT (i+1) ∼ N (0,
√
i+ 2σ). Similarly it can also be shown that ∆CB(i+1) ∼

N (0,
√
i+ 2σ). As ∆TC(i+ 1) = −(∆BT (i+ 1) + ∆CB(i+ 1)), ∆TC(i+ 1) will follow

N (0,
√

2(i+ 2)σ). Hence from the mathematical induction we get ∆BT (n),∆CB(n) ∼
N (0,

√
n+ 1σ) and ∆TC(n) ∼ N (0,

√
2(n+ 1)σ) for n ≥ 0.

We now consider two challenge inputs C and C̃ to an n-length PA-PUF where C

and C̃ differ at the last bit i.e., if C = (c[0], . . . , c[n−1]) then C̃ = (c[0], . . . ,−c[n−1]).

Let zC and zC̃ are the outputs from the n-length PA-PUF corresponding to challenge

inputs C and C̃. We are now interested to calculate Pr[zC = zC̃ ] for the mentioned

type of C and C̃.

Theorem 11. If zC and zC̃ are the output bits from an n-length PA-PUF correspond-

ing to two challenge inputs C and C̃, where C and C̃ differ at the (n− 1)-th (n ≥ 1)

position then Pr[zC = zC̃ ] = 1
π

tan−1 2
√

1−ρ2
√
n+3
√

3n+1

2n−2
with ρ = n−1√

n+3
√

3n+1
.

Proof. We have already observed that the output bit from an n-length PA-PUF is

decided on the sign of ∆BT (n − 1). Thus we will look into the change of sign in

∆BT (n − 1) with the change of sign in c[n − 1] of C = (c[0], . . . , c[n − 1]). The
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expression of ∆BT (n− 1) is

∆BT (n− 1) =
1

2
· (∆TC(n− 2) + ∆CB(n− 2))

+
c[n− 1]

2
· (∆TC(n− 2)−∆CB(n− 2))

+
c[n− 1]

2
·
(
p

(B)
n−1 − q

(T )
n−1 − q

(B)
n−1 + r

(T )
n−1

)
+

1

2

(
p

(B)
n−1 − q

(T )
n−1 + q

(B)
n−1 − r

(T )
n−1

)
.

Now with the change in sign of c[n − 1] the sign of ∆BT (n − 1) will not alter if and

only if

∣∣(∆TC(n− 2) + ∆CB(n− 2)) + (p
(B)
n−1 − q

(T )
n−1 + q

(B)
n−1 − r

(T )
n−1)

∣∣
>
∣∣(∆TC(n− 2)−∆CB(n− 2)) + (p

(B)
n−1 − q

(T )
n−1 − q

(B)
n−1 + r

(T )
n−1)

∣∣
⇒

∣∣(∆TC(n− 2) + p
(B)
n−1 − q

(T )
n−1) + (∆CB(n− 2) + q

(B)
n−1 − r

(T )
n−1)

∣∣
>
∣∣(∆TC(n− 2) + p

(B)
n−1 − q

(T )
n−1)− (∆CB(n− 2) + q

(B)
n−1 − r

(T )
n−1)

∣∣. (5.3)

Let X = ∆TC(n − 2) + p
(B)
n−1 − q

(T )
n−1 and Y = ∆CB(n − 2) + q

(B)
n−1 − r

(T )
n−1. From our

earlier discussion ∆TC(n− 2) ∼ N (0,
√

2n− 2σ) and ∆CB(n− 2) ∼ N (0,
√
n− 1σ).

Now X, Y will follow N (0, σx) and N (0, σy) respectively with σx =
√

2nσ and σy =
√
n+ 1σ. With this substitution we get, ∆BT (n − 1) will not alter sign if and only

if |X + Y
∣∣ > ∣∣X − Y

∣∣. Hence Pr[zC = zC̃ ] = Pr
[∣∣X + Y

∣∣ > ∣∣X − Y
∣∣]. Thus we

need to calculate Pr
[∣∣∣X+Y
X−Y

∣∣∣ > 1
]
. We already know that ∆BT (n− 2),∆CB(n− 2) ∼

N (0,
√
n− 1σ) and ∆TC(n−2) ∼ N (0,

√
2n− 2σ). The delay parameters p

(B)
n−1, q

(T )
n−1,

q
(B)
n−1, r

(T )
n−1 follow N (µ, σ). We further simplify X + Y and X − Y .

X + Y = ∆TC(n− 2) + p
(B)
n−1 − q

(T )
n−1 + ∆CB(n− 2) + q

(B)
n−1 − r

(T )
n−1

= ∆TC(n− 2) + ∆CB(n− 2) + p
(B)
n−1 − q

(T )
n−1 + q

(B)
n−1 − r

(T )
n−1

= −∆BT (n− 2) + p
(B)
n−1 − q

(T )
n−1 + q

(B)
n−1 − r

(T )
n−1 (from Proposition 1).

X − Y = (∆TC(n− 2) + p
(B)
n−1 − q

(T )
n−1)− (∆CB(n− 2) + q

(B)
n−1 − r

(T )
n−1)

= ∆TC(n− 2)−∆CB(n− 2) + p
(B)
n−1 − q

(T )
n−1 − q

(B)
n−1 + r

(T )
n−1.

It can be easily checked that X + Y will follow N (0, σx+y) and X − Y will follow
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N (0, σx−y) where σx+y =
√
n+ 3σ, σx−y =

√
3n+ 1σ. We are now interested to find

the joint probability distribution of X + Y and X − Y . To find the required joint

probability distribution we first compute the Cov(X + Y,X − Y ). We know that

Cov(X + Y,X − Y ) = Variance(X) − Variance(Y ) = σ2
x − σ2

y = (n − 1)σ2. The

correlation (ρ) between (X + Y ) and (X − Y ) will be

ρ =
Cov(X + Y,X − Y )

σx+yσx−y
=

n− 1√
n+ 3

√
3n+ 1

.

Let X1 = X + Y , X2 = X − Y , σx1 = σx+y and σx2 = σx−y. The probability density

function of X1 and X2 will be,

fX1(x1) =
1√

2πσX1

e
− x21

2σ2x1 , −∞ < x1 <∞,

fX2(x2) =
1√

2πσX2

e
− x22

2σ2x2 , −∞ < x1 <∞.

We need to calculate the probability Pr
[∣∣∣X+Y
X−Y

∣∣∣ > 1
]

which is basically Pr
[∣∣∣X1

X2

∣∣∣ >
1
]
. As X1, X2 are not mutually independent random variables, the joint probability

distribution of X1, X2 will be,

fX1,X2(x1, x2) =
1

2πσx1σx2
√

1− ρ2
e
− 1

2

x21
σ2x1

−2ρ
x1
σx1

x2
σx2

+
x22
σ2x2

1−ρ2 , −∞ < x1, x2 <∞.

Let Y1 = X1

X2
and Y2 = X2. Then X1 = Y1Y2 and X2 = Y2 and −∞ < y1, y2 < ∞ if

−∞ < x1, x2 <∞. We further derive the joint probability distribution of Y1, Y2.

fY1,Y2(y1, y2) = fX1,X2(y1y2, y2)|J |, where |J | =

∣∣∣∣∣y2 y1

0 1

∣∣∣∣∣
=

1

2πσx1σx2
√

1− ρ2
e
− 1

2

y21y
2
2

σ2x1

−2ρ
y1y

2
2

σx1σx2
+
y22
σ2x2

1−ρ2 y2;−∞ < y1, y2 <∞.

As we are interested in calculating Pr
[∣∣∣X1

X2

∣∣∣ > 1
]

= Pr[
∣∣Y1

∣∣ > 1], we need to derive
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the distribution of Y1. Below we calculate the probability distribution of Y1.

fY1(y1) =

∫ ∞
−∞

fY1,Y2(y1, y2)dy2

=

∫ ∞
−∞

1

2πσx1σx2
√

1− ρ2
e
− 1

2

y21y
2
2

σ2x1

−2ρ
y1y

2
2

σx1σx2
+
y22
σ2x2

1−ρ2 y2dy2

=

∫ ∞
−∞

1

2πσx1σx2
√

1− ρ2
e
− 1

2

(
y21
σ2x1

−2ρ
y1

σx1σx2
+ 1
σ2x2

)
y22

1−ρ2 y2dy2

=
1

πσx1σx2
√

1− ρ2

1− ρ2

y21
σ2
x1

− 2ρ y1
σx1σx2

+ 1
σ2
x2

=

√
1− ρ2

π

σx1
σx2

y1 − 2y1
ρσx1
σx2

+
σ2
x1

σ2
x2

=
1

π

√
1−ρ2σx1
σx2(

y1 −
ρσx1
σx2

)2

+
(1−ρ2)σ2

x1

σ2
x2

=
1

π

a

(y1 − b)2 + a2
, where a =

√
1− ρ2σx1
σx2

, b =
ρσx1
σx2

.

We need to find Pr
[∣∣∣Y1

∣∣∣ > 1
]
. Below, we derive this required probability.

Pr
[∣∣∣Y1

∣∣∣ > 1
]

= 1− Pr
[∣∣∣Y1

∣∣∣ < 1
]

= 1−
∣∣∣ ∫ 1

−1

1

π

a

(y1 − b)2 + a2
dy1

∣∣∣
= 1−

∣∣∣ ∫ 1−b

−1−b

1

π

a

z2 + a2
dz
∣∣∣, substituting z = y1 − b

= 1−
∣∣∣ 1
π

tan−1
(y1

a

)∣∣∣1−b
−1−b

∣∣∣
= 1−

∣∣∣ 1
π

tan−1 1− b
a

+ tan−1 1 + b

a

∣∣∣
= 1−

∣∣∣ 1
π

tan−1
1−b
a

+ 1+b
a

1− 1−b
a

1+b
a

∣∣∣
= 1−

∣∣∣ 1
π

tan−1 2a

a2 + b2 − 1

∣∣∣
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Here a =

√
1−ρ2σx1
σx2

and b =
ρσx1
σx2

. Thus

a2 + b2 − 1 = (1− ρ2)
σ2
x1

σ2
x2

+
ρ2σ2

x1

σ2
x2

− 1

=
σ2
x1

σ2
x2

− 1.

Pr
[∣∣∣Y1

∣∣∣ > 1
]

= 1−
∣∣∣ 1
π

tan−1 2a

a2 + b2 − 1

∣∣∣
= 1−

∣∣∣ 1
π

tan−1
2

√
1−ρ2σx1
σx2

σ2
x1

σ2
x2

− 1

∣∣∣
= 1−

∣∣∣ 1
π

tan−1 2
√

1− ρ2σx1σx2
σ2
x1
− σ2

x2

∣∣∣
= 1−

∣∣∣ 1
π

tan−1 2
√

1− ρ2
√
n+ 3

√
3n+ 1

(n+ 3)− (3n+ 1)

∣∣∣
= 1− | 1

π
tan−1 2

√
1− ρ2

√
n+ 3

√
3n+ 1

−2n+ 2

∣∣∣
= 1− 1

π

(
π − tan−1 2

√
1− ρ2

√
n+ 3

√
3n+ 1

2n− 2

)
=

1

π
tan−1 2

√
1− ρ2

√
n+ 3

√
3n+ 1

2n− 2
.

Hence Pr[zC = zC̃ ] = 1
π

tan−1 2
√

1−ρ2
√
n+3
√

3n+1

2n−2
for C = (c[0], . . . c[n − 1]) and C̃ =

(c[0], . . . ,−c[n− 1]), where ρ = n−1√
n+3
√

3n+1
.

We perform experiments using 210 many random PA-PUFs to verify the derived

probability. Comparison between experimental estimation and theoretically estima-

tion is given in Table 5.3.

The next question that comes to our mind is that if the (n − 2)-th (i.e., second

last) position of the challenge input is altered then in what probability two outputs

will match? We will discuss this probability in the next theorem.

Theorem 12. Let C and C̃ be two challenge inputs of an n-length PA-PUF where

C = (c[0], . . . , c[n− 2], c[n− 1]) and C̃ = (c[0], . . . ,−c[n− 2], c[n− 1]). If zC and zC̃
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n Experimental Pr[zC = zC̃ ] Theoretical Pr[zC = zC̃ ]
5 0.3734 0.3848
6 0.3714 0.3750
7 0.3624 0.3673
8 0.3594 0.3611
9 0.3558 0.3561
10 0.3530 0.3519

Table 5.3: Experimental validation of Theorem 11

be the respective output bits from the PA-PUF, then

Pr[zC = zC̃ ] =
1

2

( 1

π
tan−1 2

√
1− ρ2σ1σ2

σ2
2 − σ2

1

∣∣∣
c[n−1]=−1

+
1

π
tan−1 2σ1σ2

σ2
1 − σ2

2

∣∣∣
c[n−1]=1

)
Here An−1 = 1+c[n−1]

2
, Bn−1 = 1−c[n−1]

2
, σ1 = σ2

(
(n − 2)(1 + A2

n−1) + 12
)

, σ2 =

σ2
(

(n − 2)(2 + B2
n−1) + 4

)
, ρ =

−(n−2)B2
n−1√(

(n−2)(1+A2
n−1)+12

)(
(n−2)(2+B2

n−1)+4

) and σ is the

standard deviation of the distribution of the delay parameters.

Proof. To prove this we consider the expression of ∆BT (n− 1).

∆BT (n− 1)

=
1

2
· (∆TC(n− 2) + ∆CB(n− 2)) +

c[n− 1]

2
· (∆TC(n− 2)−∆CB(n− 2))

+
c[n− 1]

2
·
(
p

(B)
n−1 − q

(T )
n−1 − q

(B)
n−1 + r

(T )
n−1

)
+

1

2

(
p

(B)
n−1 − q

(T )
n−1 + q

(B)
n−1 − r

(T )
n−1

)
=

1 + c[n− 1]

2
∆TC(n−2) +

1− c[n− 1]

2
∆CB(n− 2)

+
1 + c[n− 1]

2
(p

(B)
n−1 − q

(T )
n−1) +

1− c[n− 1]

2
(q

(B)
n−1 − r

(T )
n−1).

Let An−1 = 1+c[n−1]
2

, Bn−1 = 1−c[n−1]
2

, Dn−1 = p
(B)
n−1 − q

(T )
n−1 and En−1 = q

(B)
n−1 − r

(T )
n−1.

The expression of ∆BT (n − 1) now reduces to ∆BT (n − 1) = An−1∆TC(n − 2) +

Bn−1∆CB(n− 2) + An−1Dn−1 +Bn−1Dn−1.

∆BT (n− 1) = An−1∆TC(n− 2) + Bn−1∆CB(n− 2) + An−1Dn−1 + Bn−1Dn−1
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= An−1

{1 + c[n− 2]

2
∆CB(n− 3) +

1− c[n− 2]

2
∆BT (n− 3)

+
1 + c[n− 2]

2
(q

(T )
n−2 − r

(C)
n−2) +

1− c[n− 2]

2
(r

(T )
n−2 − p

(C)
n−2)

}
+Bn−1

{1 + c[n− 2]

2
∆BT (n− 3) +

1− c[n− 2]

2
∆TC(n− 3)

+
1 + c[n− 2]

2
(rCn−2 − p

(B)
n−2) +

1− c[n− 2]

2
(p

(C)
n−2 − q

(B)
n−2)

}
+An−1Dn−1 + Bn−1Dn−1

=
An−1

2

{
∆CB(n− 3) + ∆BT (n− 3) + (q

(T )
n−2 − r

(C)
n−2 + (r

(T )
n−2 − p

(C)
n−2))

}
+
An−1c[n− 2]

2

{
∆CB(n− 3)−∆BT (n− 3) + (q

(T )
n−2 − r

(C)
n−2)− (r

(T )
n−2 − p

(C)
n−2)

}
+
Bn−1

2

{
∆BT (n− 3) + ∆TC(n− 3) + (r

(C)
n−2 − p

(B)
n−2 + (p

(C)
n−2 − q

(B)
n−2))

}
+
Bn−1c[n− 2]

2

{
∆BT (n− 3)−∆TC(n− 3) + (r

(C)
n−2 − p

(B)
n−2)− (p

(T )
n−2 − q

(C)
n−2)

}
+(An−1Dn−1 + Bn−1Dn−1)

=
c[n− 2]

2

{
An−1

(
∆CB(n− 3)−∆BT (n− 3) + (q

(T )
n−2 − r

(C)
n−2)− (rTn−2 − p

(C)
n−2)

)
+Bn−1

(
∆BT (n− 3)−∆TC(n− 3) + (r

(C)
n−2 − p

(B)
n−2)− (p

(C)
n−2 − q

(B)
n−2)

)}
+

1

2

{
An−1

(
∆CB(n− 3) + ∆BT (n− 3) + (q

(T )
n−2 − r

(C)
n−2) + (rTn−2 − p

(C)
n−2)

)
+Bn−1

(
∆BT (n− 3) + ∆TC(n− 3) + (r

(C)
n−2 − p

(B)
n−2) + (p

(C)
n−2 − q

(B)
n−2)

)}
+(An−1Dn−1 + Bn−1Dn−1).

Let X = An−1

(
∆CB(n− 3) + (q

(T )
n−2 − r

(C)
n−2)

)
+ Bn−1

(
∆BT (n− 3) + (r

(C)
n−2 − p

(B)
n−2)

)
,

Y = An−1

(
∆BT (n − 3) + (r

(T )
n−2 − p

(C)
n−2)

)
+ Bn−1

(
∆TC(n − 3) + (p

(C)
n−2 − q

(B)
n−2)

)
and

Z = (An−1Dn−1 +Bn−1En−1). With this substitution we get

∆BT (n− 1) =
c[n− 2]

2
(X − Y ) +

1

2
(X + Y ) + Z.

Now with the change in sign of c[n− 2], ∆BT (n− 1) will have same sign if and only

if |X + Y + 2Z| > |X − Y |. It can be noticed that X ∼ N (0, σX), Y ∼ N (0, σY ) and

Z ∼ N (0, σZ) where

σ2
X = A2

n−1

(
(n− 2)σ2 + 2σ2

)
+B2

n−1

(
(n− 2)σ2 + 2σ2

)
= nσ2,

σ2
Y = A2

n−1

(
(n− 2)σ2 + 2σ2

)
+B2

n−1

(
2(n− 2)σ2 + 2σ2

)
= σ2

(
n+ (n− 2)B2

n−1

)
,

σ2
Z = A2

n−12σ2 +B2
n−12σ2 = 2σ2.
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We are now interested in calculating the probability distributions of (X + Y + 2Z)

and (X −Y ). Here (X +Y + 2Z) ∼ N (0, σ1) and (X −Y ) ∼ N (0, σ2). Here we need

to calculate σ1 and σ2.

X + Y + 2Z = An−1

(
∆CB(n− 3) + (q

(T )
n−2 − r

(C)
n−2)

)
+Bn−1

(
∆BT (n− 3) + (r

(C)
n−2 − p

(B)
n−2)

)
+An−1

(
∆BT (n− 3) + (r

(T )
n−2 − p

(C)
n−2)

)
+Bn−1

(
∆TC(n− 3) + (p

(C)
n−2 − q

(B)
n−2)

)
+2(An−1Dn−1 +Bn−1En−1)

= An−1(−∆TC(n− 3)) +Bn−1(−∆CB(n− 3))

+An−1(q
(T )
n−2 − r

(C)
n−2 + r

(T )
n−2 − p

(C)
n−2)

+Bn−1(r
(C)
n−2 − p

(B)
n−2 + p

(C)
n−2 − qBn−2)

+2(An−1Dn−1 +Bn−1En−1).

Hence

σ2
1 = A2

n−12(n− 2)σ2 +B2
n−1(n− 2)σ2 + A2

n−14σ2 +B2
n−14σ2

+4(A2
n−12σ2 +B2

n−12σ2)

= σ2
(

(n− 2)(2A2
n−1 +B2

n−1) + 4 + 8
)

= σ2
(

(n− 2)(1 + A2
n−1) + 12

)
.

Similarly,

X − Y = An−1

(
∆CB(n− 3) + (q

(T )
n−2 − r

(C)
n−2)

)
+Bn−1

(
∆BT (n− 3) + (r

(C)
n−2 − p

(B)
n−2)

)
−
(
An−1

(
∆BT (n− 3) + (r

(T )
n−2 − p

(C)
n−2)

)
+Bn−1

(
∆TC(n− 3) + (p

(C)
n−2 − q

(B)
n−2)

))
= An−1

(
(∆CB(n− 3)−∆BT (n− 3))

+(q
(T )
n−2 − r

(C)
n−2)− (r

(T )
n−2 − pCn−2)

)
+Bn−1

(
(∆BT (n− 3)−∆TC(n− 3))

109



+(r
(C)
n−2 − p

(B)
n−2)− (p

(C)
n−2 − q

(B)
n−2)

)
Here (X − Y ) ∼ N (0, σ2) with

σ2
2 = A2

n−1

(
2(n− 2)σ2 + 4σ2

)
+B2

n−1

(
3(n− 2)σ2 + 4σ2

)
= σ2

(
(n− 2)(2A2

n−1 + 3B2
n−1) + 4

)
= σ2

(
(n− 2)(2 +B2

n−1) + 4
)
.

Now we would like to check the Cov(X + Y + 2Z,X − Y ) as we are interested

to find the joint probability distribution of X + Y + 2Z and X − Y for finding

Pr
[
|X + Y + 2Z| > |X − Y |

]
.

Cov(X + Y + 2Z,X − Y )

= E((X + Y + 2Z)(X − Y ))− E(X + Y + 2Z)E(X − Y )

= E((X2 − Y 2) + Z(X − Y ))− (E(X) + E(Y ) + 2E(Z))(E(X)− E(Y ))

= E(X2)− E(Y 2) + E(Z(X − Y )) here E(X) = E(Y ) = E(Z) = 0

= E(X2)− E(Y 2) as Z is independent from (X − Y )

= σ2
x − σ2

y

= nσ2 − σ2
(
n+ (n− 2)B2

n−1

)
= −(n− 2)B2

n−1σ
2.

From the above expression of Cov(X+Y +2Z,X−Y ) it can be noticed that Cov(X+

Y + 2Z,X − Y ) = 0 if Bn−1 = 0 (i.e., if c[n− 1] = 1) and n = 2. The correlation (ρ)

between X + Y + 2Z and X − Y will be,

ρ =
Cov(X + Y + 2Z,X − Y )

σ1σ2

=
−(n− 2)B2

n−1√(
(n− 2)(1 + A2

n−1) + 12
)(

(n− 2)(2 +B2
n−1) + 4

) .
We do have two cases one is when ρ 6= 0 i.e., c[n− 1] = −1, n 6= 2 (Case I) and when

ρ = 0 i.e., c[n− 1] = 1 (Case II).

110



Case I. Under this case c[n − 1] = −1, n 6= 2 i.e., An−1 = 0 and Bn−1 = 1. Here

we get the non-zero value for ρ, where ρ = −(n−2)√
(n+10)(3n−2)

6= 0. From the proof of

Theorem 11 we can directly say that Pr[zC = zC̃ ] = 1− 1
π
| tan−1 2

√
1−ρ2σ1σ2
σ2
1−σ2

2
|.

P1 = Pr[zC = zC̃ ]

= 1− 1

π

∣∣∣ tan−1 2
√

1− ρ2σ1σ2

σ2
1 − σ2

2

∣∣∣
= 1− 1

π

(
π − tan−1 2

√
1− ρ2σ1σ2

σ2
2 − σ2

1

)
=

1

π
tan−1 2

√
1− ρ2σ1σ2

σ2
2 − σ2

1

, when (σ2
2 − σ2

1) > 0.

Case II. Under this case c[n− 1] = 1 i.e., An−1 = 1 and Bn−1 = 0. For this case we

get ρ = 0 i.e., (X+Y + 2Z) is uncorrelated with (X−Y ). If Y1 = X+Y+2Z
X−Y then from

the proof of Theorem 11 we get a = σ1
σ2

and b = 0.

P2 = Pr
[∣∣∣Y1

∣∣∣ > 1
]

= 1− Pr
[∣∣∣Y1

∣∣∣ < 1
]

= 1−
∣∣∣ ∫ 1

−1

1

π

a

y2
1 + a2

dy1

∣∣∣
= 1−

∣∣∣ 1
π

tan−1
(y1

a

)∣∣∣1
−1

∣∣∣
= 1−

∣∣∣ 1
π

(
tan−1 1

a
− tan−1 −1

a

)∣∣∣
= 1−

∣∣∣ 1
π

(
tan−1 1

a
− π + tan−1 1

a

)∣∣∣
=

1

π

(
tan−1 1

a
+ tan−1 1

a

)
=

1

π
tan−1

1
a

+ 1
a

1− 1
a2

=
1

π
tan−1 2a

1− a2

=
1

π
tan−1 2σ1σ2

σ2
1 − σ2

2

, note that σ2
1 − σ2

2 > 0.

It can be noticed that P1 is the probability of the event (zC = zC̃) given c[n−1] = −1

and P2 is the probability of the event (zC = zC̃) given c[n − 1] = 1, where C =

(c[0], . . . c[n − 2], c[n − 1]) and C̃ = (c[0], . . . − c[n − 2], c[n − 1]). Thus the required
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probability will be,

Pr[zC = zC̃ ]

= P1 · Pr[c[n− 1] = −1] + P2 · Pr[c[n− 1] = 1]

=
1

2
(P1 + P2)

=
1

2

( 1

π
tan−1 2

√
1− ρ2σ1σ2

σ2
2 − σ2

1

∣∣∣
c[n−1]=−1

+
1

π
tan−1 2σ1σ2

σ2
1 − σ2

2

∣∣∣
c[n−1]=1

)
.

We perform experiments using 210 many random PA-PUF to validate the theoreti-

cal estimation derived in Theorem 12. The comparison between theoretical estimation

and experimental estimation is given in Table 5.4. From the results of Theorem 11

n Experimental Pr[zC = zC̃ ] Theoretical Pr[zC = zC̃ ]
6 0.4464 0.4596
7 0.4285 0.4549
8 0.4223 0.4511
9 0.4089 0.4477
10 0.4093 0.4449
11 0.4002 0.4424

Table 5.4: Experimental validation of Theorem 12

and 12 it can be noticed that Pr[zC = zC̃ ] for PA-PUF differs significantly from the

similar probability for classical PUF obtained by Siddhanti et al. [SBC+19b]. Numer-

ical data clearly indicates that probabilities are improved for PA-PUF if the challenge

inputs C and C̃ differ at (n− 1)-th or (n− 2)-th position. The derivation of the the-

oretical formula of the probability Pr[zC = zC̃ ] becomes more complex when C and

C̃ differ at other location except (n− 1) or (n− 2). We have performed experiments

to compare the probability Pr[zC = zC̃ ] for PUF and PA-PUF of 11 length, where

C and C̃ differ at i-th location for i = 0, . . . , 10. The experimental observation is

presented in Table 5.5. From the experimental analysis presented in Table 5.5 and

Figure 5-3 it can be noticed that the Pr[zC = zC̃ ] has improved in PA-PUF over

the classical PUF for almost all possible flip position i. We believe that deriving the

theoretical formula of Pr[zC = zC̃ ] for all i is quite challenging thus we are keeping

it open.
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i Pr[zC = zC̃ ]
∣∣∣
PUF

Pr[zC = zC̃ ]
∣∣∣
PA−PUF

0 0.8696 0.8667
1 0.7564 0.7843
2 0.6787 0.7230
3 0.6171 0.6700
4 0.5514 0.6166
5 0.4993 0.5737
6 0.4456 0.5337
7 0.3837 0.4811
8 0.3207 0.4422
9 0.2476 0.3940
10 0.1360 0.3505

Table 5.5: Comparison of Pr[zC = zC̃ ] between PUF and PA-PUF of length 11.
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Figure 5-3: Comparison of Pr[zC = zC̃ ] between PUF and PA-PUF for different flip
locations.

We have performed a detailed hardware-based experimental analysis on PA-PUF

to compare its cryptographic properties with the existing models of PUFs. Our

experimental observations are described in the following section.

5.5 Experimental Results and Analysis

The PA-PUF is designed in Verilog HDL and implemented on Nexys4 DDR FPGA.

The PUF is designed with a 16-bit challenge and responses are of lengths 32, 64
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and 128-bits in length. The generated responses from the PUF are collected through

UART on the board. The performance of the PUF can be validated using metrics

such as inter-chip Hamming distance and intra-chip Hamming distance to validate

the performance of the responses generated in the PUF. There exist various metrics

of PUF such as uniformity, uniqueness, bit-aliasing, and reliability.

(a) 64-bit PA-PUF (b) 128-bit PA-PUF

Figure 5-4: Intra-Chip Hamming Distance of the PA-PUF (a) 64-bit Response (b)128-
bit Response.

5.5.1 Intra-Chip Hamming Distance

In general, a PUF should be able to generate all possible combinations of the out-

puts in the response. Ideally, an n-bit challenge should have 2n combinations in the

response. Out of the generated responses, the responses with uniform amounts of

0’s and 1’s are preferred as the key for cryptographic applications for better security.

Usually, PUF will be tested for strict avalanche criterion (SAC) property, when a

single bit flip is there in the challenge of the PUF 50% of the response bits should

also change. The Hamming distance between two consecutive responses is used to

estimate the strict avalanche property of the PUF. The experiment is conducted using

a 16-bit challenge, a total of 216 combinations, where two consecutive challenges differ

in one-bit position. This can be observed using the intra-chip Hamming distance as

shown in Figure 5-4. Figure 5-4a and 5-4b shows the intra-chip Hamming distance

of the PA-PUF for the responses of 64-bit and 128-bit respectively. Ideally, the curve

should be a Gaussian curve with a peak at half of its response length, indicating the
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(a) 64-bit PA-PUF (b) 128-bit PA-PUF

Figure 5-5: Responses of the PA-PUF to show uniformity (a)64-bit PA-PUF (b)128-
bit PA-PUF.

maximum number of responses changing by 50% of the bits. For the 64-bit response,

the Gaussian curve peak is at 32 while the 128-bit response has a peak at 63. This

shows with a single bit change in the challenge, the responses were changing by 50%.

Intra-chip Hamming distance is used as a key to estimate uniformity and reliability.

5.5.2 Uniformity

Uniformity of the PUF is a metric which describes how uniformly 1’s and 0’s are

distributed in the given response space. The response of the PUF should have an

equal number of 1’s and 0’s in the response. Hence, the response can be used in

cryptographic applications such as authentication and encryption resulting in better

security. Figure 5-5 shows the response space for 64-bit and 128-bit responses of the

PA-PUF. Figure 5-6 shows the distribution of 0’s and 1’s in the PUF response with

the 50% probability line indicating the ideal value. It is evident to note that each

response has a uniform distribution of 0’s and 1’s. The PA-PUF has a uniformity of

49.45% for the 128-bit response, whereas the ideal value is 50%.

5.5.3 Reliability

Electronic circuits are often prone to noise and variations in the process, voltage,

and temperature result the variations in the delay, voltage, and current drawn by

the circuit. Similarly, the PUF response has some influence of noise over time and
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(a) (b)

Figure 5-6: Uniformity of the PA-PUF (a) 64-bit Response (b)128-bit Response.

generates a noisy response. Hence, the reliability of the PUF is estimated to assess

the stability of the PUF response. Figures 5-7 shows the responses of the PUF for

the same challenge and it is evident that only a few bits have noise by toggling from

0 to 1 or 1 to 0. The errors that occurred in the PUF response can be corrected

using some error correction codes such as BCH error correction codes. The reliability

of the PUF can be estimated using the Hamming distance between the responses

when the same challenge is given to the PUF. The Hamming distance plots shown in

Figure 5-8 shows the maximum number of errors that are occurred in the PA-PUF. In

particular, Figure 5-8a shows the reliability plot of the 64-bit response, where a total

of seven bits were changed out of the 64-bit response. Whereas for a 128-bit response

as shown in Figure 5-8b, a total of 13 bits were influenced by noise. The reliability of

the PA-PUF is 98% and 95% for 64-bit and 128-bit responses, respectively. However,

the errors can be corrected using BCH error correction codes leading to 100% reliable

responses as shown in Figure 5-9, which shows the stability of the PUF.

5.5.4 Uniqueness

The response of the PUF should be unique to the hardware, even by repeating the

experiment on similar hardware with similar constraints the response should be differ-

ent, resulting in a Hamming distance of 50%. Inter-chip Hamming distance is used to

assess the uniqueness of the PUF. To estimate the uniqueness, the challenge-response

pairs are recorded from two (or more) FPGA boards of the same configuration. Ide-
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(a) 64-bit PA-PUF (b) 128-bit PA-PUF

Figure 5-7: Response of the PA-PUF to show reliability (a) 64-bit Response (b)128-bit
Response.

(a) (b)

Figure 5-8: Reliability of the PA-PUF (a) 64-bit Response (b)128-bit Response.
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Figure 5-9: Reliability of the PA-PUF using BCH error correction codes; Resulting
reliability of 100%.

ally, for the same challenge (C) different boards should give two distinct responses

R1, and R2. Ideally, the inter-chip Hamming distance between R1, and R2 should be

50%. The Hamming distance between two responses of two boards is known as the

inter-chip Hamming distance. Figure 5-10 presents the inter-chip Hamming distance

between of the PA-PUF. Moreover, the peak of the inter-chip Hamming distance of

64-bit response as shown in Figure 5-10a is at 31 while for the 128-bit response in Fig-

ure 5-10b is at 62. This shows the 128-bit PA-PUF has a uniqueness of 49.6%, whereas

the ideal value of uniqueness is 50%. The next metric of interest is bit-aliasing. Since

the responses were generated from hardware, the influence of the power supply (logic

‘1’) and ground (logic ‘0’) have to be estimated in the response.

5.5.5 Bit-Aliasing

Bit-aliasing can be defined as the influence of the power supply or ground on the

response. The response should be derived from the given challenge using the variations

in the circuit. In some cases, the response bit might be connected permanently to

logic ‘1’ or logic ‘0’, which will not have any relation neither with the circuit nor

with the given challenge. To estimate the bit-aliasing, the number of 0’s and 1’s in

a particular bit were calculated. Ideally, every bit should generate an equal number

of 0’s and 1’s. In particular, the average bit-aliasing of 128-bit PA-PUF is 49.6%,

whereas the ideal value is 50%.
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(a) (b)

Figure 5-10: Inter-Chip Hamming Distance of the PA-PUF (a) 64-bit Response
(b)128-bit Response.

Parameter Original CHAR CHAR& MAJ APUF MPUF CA-PUF

% PA-PUF Design [GHO17] Design [SSM+14] Design [MSM+24]
Uniqueness 49.63 48.52 45.60 45.60 50.01 50 49.7
Uniformity 49.45 51.06 50.60 50.54 50.42 49.95 50.84
Reliability 100 92.00 98.87 99.58 99.9 99.70 99.9

Table 5.6: Comparison of the performance metrics of the ring oscillator
PUF;
Ideal value of reliability is 100% while the remaining parameters have an ideal value
of 50%.

5.5.6 Comparisons

Table 5.6 presents the performance metrics of the PA-PUF in terms of uniqueness,

uniformity, and reliability. The PA-PUF has a comparable performance over the

existing designs. Whereas the hardware resources are compared in Table 5.7 along

with uniqueness and reliability. Since the number of LUTs and the number of sources

available on FPGA vary over the technology, the FPGA used for the results is also

reported in Table 5.7.

5.5.7 Machine Learning-based Modeling Attacks

The delay-based PUF can be modeled mathematically using machine-learning attacks

on a set of challenge-response pairs as reported in [RSS+13b], [SSM+14], [EHFCS21],

[SBC19a]. With a given set of known challenge-response pairs, the model should

predict the response for the unknown challenge with a reasonable prediction accuracy.

Over the years, various authors have shown that mathematical modeling of a classical
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PUF Designresponsesize U (%) R (%) Hardware Area
PA-PUF128 >49.63 100 Artix-7 47 slices per PUF

SRAM PUF128 [GKST07] 49.97 88 FPGA 4800 SRAM bits
Latch PUF128 [YSI+11] 46 87 Spartan-3 2x128 slices

Flip Flop PUF4096 [MTV08] 50 95 Virter-2 4096 flip flops
Butterfly PUF64 [KGM+08] 50 94 Virtex-5 130 slices

Ring Oscillator PUF128 [SD07] 46.15 99.52 Virtex-4 1024 ring oscillator
CRO PUF127 [MSE10] 43.50 96 Spartan-3 64 slices
PUF ID128 [GMO14] 49.90 93.93 Artix-7 128 slices per PUF

Ultra-Compact PUF ID128 [GO15] 49.93 93.96 Spartan-6 40 slices
Improved PUF-ID128 [GHO17] 45.60 99.42 Spartan-6 128 slices

APUF64 [HYKS10] 36.75 98.28 Virtex5 129 slices
Improved APUF64 [GLC+21] 19.46 97.03 Artix7 128 slices

FF-APUF64 [GLC+21] 41.53 97.10 Artix7 128 slices

Table 5.7: Comparisons of different PUF designs; ‘U’ is the uniqueness and
‘R’ is the reliability.

Arbiter-based PUF is easy and reports higher prediction accuracy. The challenge-

response pairs of the PA-PUF have been analyzed mathematically, resulting in a

prediction accuracy of 56%. Table 5.8 presents the comparison of the prediction

accuracy of various Arbiter-based PUF.
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Figure 5-11: Learning Accuracy for Various Machine Learning Attacks on the PA-
PUF

5.6 Conclusion

In this chapter, we delve into the analysis of PA-PUF. Initially, we construct a math-

ematical model for PA-PUF. We then investigate effective methods for discerning
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Type of PUF CRP Prediction rate
Standard Arbiter PUF [EHFCS21] 5570 99%

XOR Arbiter [EHFCS21] 500,000 99%
Lightweight secure PUF [EHFCS21] 10000000 99%

Feed-forward Arbiter [EHFCS21] 50000 97%
l-XOR PUF [MSM+24] 160000 99%

MPUF [MSM+24] 150000 99%
CAPUF [MSM+24] 180000 98%

PA-PUF 52000 56%

Table 5.8: Prediction Accuracy of Various Arbiter-based PUF. (lower predic-
tion accuracy represents the PUF has more robustness against modeling attacks.)

whether a given Boolean function truth table can be replicated by a PA-PUF, intro-

ducing an algorithm for this purpose. Additionally, we examine the bias in the output

bit of PA-PUF when specific challenge input bits are inverted. In the final part, we

have performed a detailed analysis on cryptographic properties of PA-PUF and we

have observed that PA-PUF has better cryptographic properties over the other exist-

ing PUFs. The results show that the PA-PUF has more robustness against modeling

attacks.
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6
Revisiting BoolTest – On Randomness testing using

Boolean functions
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Pseudo-random number generation is crucial in cryptology and other areas related

to information technology. In a broad sense, the security of a protocol relies on the

‘randomness’ provided by the pseudo-random number generators. It is thus important

to examine whether a random-looking stream has some kind of non-randomness in

it. Here we consider that a binary stream is divided into blocks of a certain length

m and we try to identify an m-bit Boolean function in this regard that is optimal to

provide the highest Z-score for the output stream generated by the said function. In

this regard, we show certain limitations of the BoolTest strategy by Sýs et al (2017)

and present combinatorial results related to identifying the most suitable Boolean

functions. We show that the existing works related to BoolTest identify the Boolean

functions that are sub-optimal, constrained by the low degree in the Algebraic Normal

Form. Our results find out the best Boolean function in this regard that will produce

the maximum Z-score and the complexity is O(N logN) on the amount of random-

123



looking stream of length N that we read during the evaluation process. We present

substantial experimental evidence corresponding to our theoretical ideas. While we

solve certain combinatorial problems related to BoolTest, the caveat is, this test is

not sufficient to conclude on randomness or non-randomness of a given stream of

data.

6.1 Introduction

Random number generators find extensive utility in communication and cryptogra-

phy. However, classical computers operate deterministically, making it impossible to

generate true randomness beyond the influence of an initial random seed, if present.

The primary innovation lies in the development of Pseudo Random Number Gener-

ators (PRNGs), where a small seed (possibly sourced from a random origin) is used

as input, after which a deterministic algorithm generates a sequence of data that ap-

pears random. This generated data is not inherently random; rather, its randomness

hinges solely on the initial seed.

In this regard, we concentrate on the BoolTest [SKŠ17], where each block of the

bit-stream is applied to a suitably chosen Boolean function and the output bits are

studied. In a later work, by Sýs et al [SKKŠ19], a similar technique has been used

and many experimental results have been provided. As mentioned in [SKKŠ19], the

BoolTest is a generalization of the frequency mono-bit test [BRS+10]. In this chapter,

we revisit the techniques presented in [SKŠ17], identify certain limitations of the test,

and then provide some techniques to optimize the method.

6.2 Critical evaluations of Z-score

In this section, we analyze a few issues related to the values that we receive from

Z-score.

6.2.1 Z-score for data with all and equal frequency inputs

Let us consider N = nm many bits of data, where n = s2m, and each m-bit pattern

has frequency s in the data stream, in any order. Denote such a data stream as

Dall,m,s. Then we have the following result.
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Lemma 7. The Z-score for the input stream Dall,m,s would be 0 considering any m-bit

Boolean function.

Proof. If we parse through the bit stream and generate a frequency table of all m-bit

blocks then we know we will get all the patterns from {0, 1}m equal number of times

(here s) hence our distribution of inputs is uniform. Z-score for a function f shows

how the output bit pattern is different for a particular distribution inferred from the

data, from that of a uniform distribution. In this case, the probability of getting any

m-length block in Dall,m,s is,

p(x) =
1

2m
= q(x), ∀x ∈ {0, 1}m (6.1)

where q(x) is the probability of getting any input in the uniform distribution. Then

the Z-score would be,

zf =
n√

nqf (1− qf )

∣∣∣∣∣∣
∑

x:f(x)=1

(p(x)− q(x))

∣∣∣∣∣∣ = 0. (6.2)

Thus, the Z-score is 0 independent of the choice of the function.

Now, consider a simple counter circuit that generates all the m-bit patterns in a

cycle, in the increasing order of decimal digits 0 to 2m−1, and continues from 0 again.

This data should not be considered random, but the Z-score will always be zero when

we have a multiple of full cycles. The result is the same when the data comes in a

cycle, but according to some permutation of 0 to 2m − 1. However, there are many

other tests, such that linear complexity analysis, that can obtain the simplest LFSRs

to distinguish among such streams. This is not possible using Z-score.

6.2.2 Maximum Z-score for frequencies s and s+ 1

Let us consider N = nm many bits of data, where n = s2m + u. There are u many

m-bit patterns with frequency s + 1 and the rest are having the frequency s, in any

order. Denote this data stream as Dall−two,m,s. Let fi denote the Boolean function

with the highest z-score among those functions that output 1 for exactly i inputs. As

we have denoted, zfi is the Z-score of fi. We prove later in Section 6.3 that the truth

table of fi will contain 1 in the top i most occurring m-bit patterns. We claim that
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for the stream Dall−two,m,s, the maximum Z-score would be obtained for i = u. Here,

#1 would be

#1 =

i(s+ 1) i ≤ u,

u(s+ 1) + (i− u)s i > u.
(6.3)

When i ≤ u, we put 1’s in the outputs of the u patterns that occur s + 1 times,

so #1 = i(s + 1). Similarly, for the case where i > u, the top u patterns will

occur (s + 1) times whereas rest of the i − u patterns will occur s times making

#1 = u(s+ 1) + (i− u)s. Now, we calculate zfi as,

zfi =

∣∣∣∣∣ #1− nqf√
nqf (1− qf )

∣∣∣∣∣ , (6.4)

where qf = i
2m

. For simplicity of notation let M = 2m. Then zfi for both cases is

zfi =



∣∣∣∣ i(s+1)−ni
M√

n( i
M )(1− i

M )

∣∣∣∣ , i ≤ u

∣∣∣∣u(s+1)+s(i−u)−ni
M√

n( i
M )(1− i

M )

∣∣∣∣ , i > u

(6.5)

=

c1

√
i

M−i , i ≤ u,

c2

√
M−i
i
, i > u,

(6.6)

where,

c1 =
M − u√

n
c2 =

u√
n
. (6.7)

From the above result, we can see that zfi is a decreasing function for i > u and

it is an increasing function when i ≤ u. By this, we can conclude that zfi will be

maximum for i = u. Thus, maximum Z-score obtained by plugging in i = u will be,

Zfu =

√
u(M − u)

n
. (6.8)
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6.2.3 Maximum Z-score when some of the patterns arrive

only, and only once

Let us consider N = nm many bits of data, where n = u < 2m. There are u many

m-bit patterns with frequency 1 in any order and the rest are not appearing. Denote

such a data stream as Dsome,m,u. It can be seen that this data stream is a special case

of the Dall−two,m,s for s = 0. So by plugging in the values from the above equation,

we obtain

Z =

√
u(M − u)

n
=

√
u(M − u)

sM + u
=
√
M − u. (6.9)

This is important for large block sizes, as, for large blocks, it is very clear that only

a few patterns will arrive, and most of them will arrive only once. For example, if

we consider m = 256, then in a stream of 238 bits, only 230 blocks will be generated.

This is a very small part of 2256, and thus, each of the blocks that appear will appear

generally only once, and the rest huge numbers will not appear at all. That is the

reason this situation needs to be studied for practical purposes in the cases of larger

block sizes.

To provide specific data, we consider 1MB (megabyte) data generated by AES

(OFB mode, random IV ) with block size m = 64 bits, i.e., 8 bytes. Since the number

of blocks in data is much less than 264, the probability of getting all blocks distinct

is high. The number of blocks for this data would be n = 220

23
= 131072 (because

1MB = 220 bytes and 64 bits = 23 bytes). We have checked that the generated data

had all the blocks distinct, so u = 131072. The maximum Z-score obtained by our

implementation (see Appendix) is 4294967295.9999847 =
√

264 − 131072 =
√
M − u,

that matches the theory. It is important to highlight that the Z-score might be very

high in such a scenario.

6.3 Finding the best Boolean function to have max-

imum Z-score

As described in Section 2.5.1, the BoolTest algorithm B(deg,m, t, k) searches through

α =
(
m
deg

)
monomials of degree deg. Now the top t monomials (with high Z-scores)

are considered for the second stage where k out of these are added (XORed). That
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is, BoolTest searches through a very limited space of Boolean functions since all the

terms in monomials are of the same degree. On top of that, it has a fixed number of

terms k, which makes it at most
(
α
k

)
candidate functions. This limited function search

space significantly fails to discover the function with the best Z-score. As described

in [SKŠ17], the Z-score is considered to heuristically find the good Boolean functions.

In this section, we will present that one can devise a deterministic algorithm to

discover the Boolean function that will indeed provide the highest possible Z-score.

It is computationally elusive to exhaustively search all the 22m Boolean functions for

m ≥ 6. We demonstrate an O(N logN) algorithm for data size N , to achieve this for

any arbitrary block size m. So it would be possible to run this algorithm on almost

any size of data that can be stored (and read in reasonable time) in a particular

machine.

In this regard, let us first define some notations and prove a few technical results.

We define MS for a function f as follow:

MS(f) = |pf − qf | , (6.10)

where pf and qf are same as defined earlier. If there are t inputs for which we get 1 as

output then, qf = t
2m

. We first show how using this metric we will obtain the function

with the highest Z-score in O(m2m) time (an improvement over O(22m)). Define Ft
to be the set of all m-variable Boolean functions that will output 1 on exactly t of

the 2m possible inputs. Thus, for all functions f ∈ Ft, we have

qf =
t

2m
(6.11)

Since we have fixed the value qf for a given set Ft, we have essentially fixed the

denominator of the Z-score. Thus it would be easy to maximize it among the functions

in this set. Further, if F is a set of all Boolean functions of m variables,

F =
n⋃
t=0

Ft (6.12)

Let ft ∈ Ft be the function with maximum Z-score in the set Ft. So the Boolean
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function with the best Z-score in F would be,

f = arg max
ft

z(ft), (6.13)

where, z(ft) gives the Z-score for the function ft. We claim that we can find the

function with maximum MS in each Ft (say ft ∈ Ft ) efficiently. We further claim

that the same ft will provide us with the highest Z-score inside each Ft.

Let us first present a technical result. The complement of a Boolean function f

will have a truth table with negated outputs for each input. In other words, if f is a

Boolean function and f ′ is its complement then for input x

f ′(x) = 1⊕ f(x) (6.14)

So if a Boolean function f of m-input, outputs 1 for t-inputs then f ′ will output 1

for the other 2m − t inputs. Now, we prove that the Z-score for both f and f ′ would

be the same.

Proposition 14. The Z-score for a function f and its complement f ′ would be the

same.

Proof. Let us assume that f is an m-input Boolean function that will output 1 t times

then,

zf =
n√

nqf (1− qf )

∣∣∣∣∣∣
∑

x:f(x)=1

p(x)− t

2m

∣∣∣∣∣∣ (6.15)

where p(x) is the proportion of input x in the input data. Now,
∑

x:f(x)=1 p(x) = pf .

This can also be written as,

zf =
n√

nqf (1− qf )

∣∣∣∣∣∣
1−

∑
x:f(x)=0

p(x)

− t

2m

∣∣∣∣∣∣ (6.16)

By definition, if f outputs 0 for some input x, then for the similar inputs f ′ outputs

1, then

zf =
n√

nqf (1− qf )

∣∣∣∣∣∣
(

1− t

2m

)
−

∑
x:f ′(x)=1

p(x)

∣∣∣∣∣∣ (6.17)
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This is the Z-score for f ′ as,

zf =
n√

nqf (1− qf )

∣∣∣∣∣∣
∑

x:f ′(x)=1

p(x)−
(

2m − t
2m

)∣∣∣∣∣∣ (6.18)

=
n√

n(1− qf ′)qf ′

∣∣∣∣∣∣
∑

x:f ′(x)=1

p(x)−
(

2m − t
2m

)∣∣∣∣∣∣ = zf ′ (6.19)

Now we present the main result.

Theorem 13. If ft is a function in Ft and MS(ft) = maxf∈FtMS(f) then

ft(x) =

1 if x ∈ At

0 otherwise
(6.20)

where At is the set of t-most occurring inputs in the data file.

Proof. For any f ∈ Ft we have,

MS(f) = |pf − qf |

Our goal is to maximize MS and find the function f for which we get the maximum

score. As the function f outputs 1 on exactly t inputs, we have

MS(f) =

∣∣∣∣pf − t

2m

∣∣∣∣ (6.21)

Since we have fixed t, maximizing MS(f) means either maximizing pf or minimizing

pf .

Following Proposition 14, we show that maximization is enough, i.e., it is not

necessary to minimize the sum pf and this can be seen by the fact that a function

and its complement share the same Z-score. Let’s say we minimize the value of pf

and f gives 1 for t inputs. Since we are minimizing the summation what we are doing

is taking the least frequent t inputs and making the function f output 1 on these

inputs. In other words, f outputs 0 for the top 2m − t inputs, so f ′ (the complement

of f) outputs 1 for those 2m − t inputs. Since f ′ ∈ F2m−t, we can calculate the
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function g ∈ F2m−t that has the best Z-score in F2m−t. If g = f ′, then we do not need

to minimize pf because we would anyway find the function f ′, and calculating the

Z-score for f would not be needed. If g 6= f ′, then also we do not need to minimize

pf , because there is already a function g, that has Z-score greater than that of f .

Thus we do not need to minimize the summation separately as we gain information

about a function’s complement from the function itself.

For a given input file, we calculate the number of occurrences (or probability of

occurrence) of each m-bit block [0 to 2m − 1]. We will sort an array containing the 2m

m-bit blocks (consider truth table rows) by their proportion in non-decreasing order.

For each t, we construct a function ft that returns 1 on the top t highest probability

blocks and 0 for the rest.

For any other function f ′t that outputs 1 on exactly t inputs, pf ′t ≤ pft because we

are summing over the highest p(x). Note that there might be other functions f ′t with

pf ′t = pft , but pf ′t can never be greater than pft .

Now that we have established a way to find the maximum MS, we use it to

calculate the Z-score. The relation between MS and Z-score can be shown as:

zf =

∣∣∣∣∣ #1− nqf√
nqf (1− qf )

∣∣∣∣∣ =

∣∣∣∣∣ npf − nqf√
nqf (1− qf )

∣∣∣∣∣ =
n√

nqf (1− qf )
|pf − qf |

=
n√

nqf (1− qf )
MS(f). (6.22)

Fixing the set Ft from which the function will be chosen, we know that the term
n√

nqf (1−qf )
is constant and so if a function maximizes MS, it maximizes the Z-score.

So, we find the highest Z-score for each Ft, t = {1, . . . , 2m − 1}. Note that, for t = 0

or t = 2m only constant functions are possible with undefined Z-scores, that we will

not consider. Then we find the maximum among these 2m − 1 Z-scores. Based on

this, we have the following algorithm.

In Algorithm 5, to get the actual Boolean function providing the highest Z-score,

we can sort the inputs to the truth table using their probabilities and output the
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truth table with 1’s in the tmax highest probability inputs.

Algorithm 5: modified booltest (run time: O(2m))

/* Suppose S is the set of inputs for which the function under

consideration returns 1 (this set completely defines the function) */

1

2 I ← 0 to 2m − 1 (truth table inputs);

3 P ← probability of occurance of each m-bit block according to data;

4 z ← 0 // The Z-score value

5 t← 1 // Number of ones as output

6 p← 0

7 SORT (I, P ) // Sort array of truth-table-inputs wrt their probability of

occurrence

8 while t < 2m do

// try to maximize |p - q|

9 p← p+ P [t− 1] // Adding next most occurring input to S

10 q ← t
2m

11 zt ← n · (p− q)
12 zt ← zt√

nq(1−q)

13 if zt > z then

14 tmax ← t

15 z ← zt

16 t← t+ 1

17 end

6.3.1 Improving the time and space complexity further

The main drawbacks of the above algorithm are as follows:

• It takes O(m2m +N) time, O(N) for calculating the probabilities, O(m2m) for

sorting the inputs according to the probabilities, and O(2m) iterations in the

loop.

• It would also take O(2m) space for storing the probability array.
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Note that N is the length of the data in bits, and thus, we have to accept that for

analysis. On the other hand, if m is large, such as m = 128, then the above algorithm

cannot be executed with the present computational power. Thus, we now improve

the algorithm so that it requires O(N logN) time and O(N) space.

Some observations.

Suppose all the 2m possible blocks do not appear in the input data. This is natural

in the case where the block size is large. If we have data of the order of 240 (say 232

blocks of length 28 each), then the block size being 256 bits, it is very clear that at

most 232 different patterns may appear. Thus, the algorithm should be redesigned.

We already considered that there are n blocks in the data, i.e., n = N
m

. Now let us

consider there are d distinct m bit patterns, i.e., d ≤ n. That is, there are d data

blocks that have non-zero probabilities of occurrences. Now we explain that as in

the algorithm above, we should not check all t. Rather, increasing t above d is not

required as the Z-score for those values of t would not be more than the Z-score

achieved for t = d.

Theorem 14. Let, d be the number of distinct blocks that appear in the data and zt

be the highest possible Z-score for a function ft ∈ Ft. Then, zfd > zfj , ∀j > d.

Proof. For block size m and fixed input data having n many blocks (may not be all

distinct), let, ft be the function with highest Z-score in Ft and zft be the Z-score

corresponding to ft. For t = d, consider the truth table of the function fd providing

the highest Z-score zfd . By Algorithm 5, we know that there would be 1’s in the

d highest probability blocks in the truth table, which would be all the blocks with

non-zero probability. Thus, for every possible data block that appears in the data,

there would be a 1 in the corresponding row in fd’s truth table. So, #1, i.e., the

number of data blocks in the input which when fed into the function fd would return

1 is n, the number of blocks. Thus the Z-score will be:

zfd =

∣∣∣∣∣∣ n− d
2m
n√

n d
2m

(1− d
2m

)

∣∣∣∣∣∣ =
√
n

∣∣∣∣∣∣ 1− d
2m√

d
2m

(1− d
2m

)

∣∣∣∣∣∣ (6.23)

When we increase t, by the above algorithm, the truth table corresponding to each

ft would contain 1’s in t highest probability blocks. Hence, it would contain 1’s in all
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the blocks with non-zero probability (since there are d < t such blocks), i.e, all blocks

that appear in the data will have 1 in the corresponding truth-table row. Thus, #1

will remain fixed at n. Hence the Z-score will be:

zt>d =

∣∣∣∣∣∣ n− t
2m
n√

n t
2m

(1− t
2m

)

∣∣∣∣∣∣ =
√
n

∣∣∣∣∣∣ 1− t
2m√

t
2m

(1− t
2m

)

∣∣∣∣∣∣ (6.24)

Now, the function,

h(y) =

∣∣∣∣∣ 1− y√
y(1− y)

∣∣∣∣∣ (6.25)

is a decreasing function for y ∈ (0, 1). The graph of h is shown below:

So, for t > d, we have:
√
nh( d

2m
) >
√
nh( t

2m
), i.e.,

√
n

∣∣∣∣∣∣ 1− d
2m
n√

d
2m

(1− d
2m

)

∣∣∣∣∣∣ > √n
∣∣∣∣∣∣ 1− t

2m
n√

t
2m

(1− t
2m

)

∣∣∣∣∣∣ ,
i.e., zfd > zft , for t > d. Thus the proof.

Based on the above result, we obtain a more efficient algorithm. Now t will be

considered till d which is O(N) and not up to 2m like in the previous method. Since

we are considering large m now, we cannot use the earlier idea of having 2m length

array for storing the probability of each m-bit block or storing and sorting all the

truth table rows. Instead, we sort the m-bit blocks in the input data interpreting

their natural decimal values. This brings the same blocks together. Then we can

count the number of occurrences of each block by counting the number of consecutive

similar blocks, and the number of distinct blocks that are appearing in the data.
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Function Encoding.

Algorithm 6: optimized modified booltest (run time: O(N logN))

// Sort data by value of m bit blocks to bring same blocks together

1 SORT(Data)

2 m← block size

3 n← number of blocks in data

4 count ← 1

5 idx ← 0

6 DistinctBlocks ← empty N length array of m-bit blocks

7 Occurrences ← N length array of integers initialized to 0s

8 for i← 1 to N do

9 if i = N or Data[i] 6= Data[i-1] then

10 Occurrences[idx] ← count

11 DistinctBlocks[idx] ← Data[i− 1]

12 count ← 0

13 idx ← idx + 1

14 count ← count + 1

15 end

16 d← idx // d is the number of distinct blocks in data

17 SORT-BY-OCCURRENCES(DistinctBlocks, Occurrences)

18 ∆← 0

// ∆ is the number of occurrences of the blocks in Data, for which the

candidate function being considered returns 1

19 zmax ← −1; tmax ← −1

20 for i← 0 to d− 1 do

21 t← i + 1

22 ∆← ∆ + Occurrences[i]

23 p← ∆/N

24 q ← t/2m

25 z ←
∣∣∣∣ N(p−q)√

Nq(1−q)

∣∣∣∣
26 if z > zmax then

27 zmax ← z

28 tmax ← i + 1

29 end

30 return zmax, list of top tmax inputs of DistinctBlocks
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Note that representing an arbitrarym-input Boolean function would requireO(2m)

space in the worst case, irrespective of the function encoding scheme such as truth

table or ANF, etc. However, in our case, the algorithm ensures that whatever is

the highest Z-score Boolean function, it would only output 1 for at most d inputs.

So, consider the encoding scheme where we just list the inputs (truth table rows) for

which the function returns 1, that is we will work with the support set of the function.

This will require O(N) space. Based on all these we present an efficient algorithm.

6.4 Results

In this section, we present the experimental results and compare them with the ex-

isting works.

6.4.1 RC4

It is well known [MS02] that the second byte of the RC4 keystream is biased to-

wards zero with probability almost 2
256

, which is significantly higher than the uniform

random value 1
256

. Consider that a long keystream byte sequence is generated with

randomly chosen secret keys and then accumulates the second output bytes of RC4

in each case. Since the probability of any other value except zero is slightly less than
1

256
, according to our strategy, the Boolean function that should provide the highest

Z-score should have output 1 for all zero input and the rest of the outputs should be

0. This function contains all the terms in ANF.

Based on the bias, it can be shown that the best distinguisher Boolean function for

this data, working on 8-bit blocks is the one that returns 1 on the (0, 0, 0, 0, 0, 0, 0, 0)

input and 0 on everything else (say f0). The complement of this function may also be

considered. Let us name the input variables as (x0, x1, . . . , x7) for the eight-bit block.

The ANF of the function to maximize the Z-score contains all the terms in ANF, as

provided by our Algorithm 6 in all the runs with different sets of data. It is clear that

the ANF is quite complicated and such an ANF will never be considered for BoolTest

[SKŠ17]. We note that taking the constraint of degree 3, BoolTest [SKŠ17] provides

different functions in different runs towards the sub-optimal efforts in maximizing the

Z-score, i.e., cannot provide the correct answer due to sub-optimality. In Table 6.1,

B1 is BoolTest [SKŠ17] with parameters (degree = 2, combine-degree = 2) and B2
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File
B1 B2 Bool-Test-2

highest
Z-
score

best-
distinguisher

highest
Z-
score

best-
distinguisher

highest
Z-
score

best-
distinguisher

RC4
1MB

4.55 x3x6 + x3x4 4.47 x1x3x5 +
x3x6x7 +
x3x4x7

64.16 f0

RC4
10MB

11.56 x2x6 + x3x7 9.90 x3x4x7 +
x0x2x7 +
x2x4x6

204.36 f0

RC4
100MB

31.05 x6x7 + x4x5 23.64 x2x6x7 +
x3x4x5 +
x1x4x6

643.14 f0

Table 6.1: Testing RC4 2nd byte samples.

represents BoolTest [SKŠ17] run with parameters (degree = 3, combine-degree = 3).

Our results are presented with Bool-Test-2, where it could be seen that the Z-score

is much higher.

6.4.2 Comparison with Java rand and AES [DR02, AES01]

In this section, we show a comparison of the Z-scores that we have obtained from

Java Random and AES. We use 10MB files for both AES and Java Random and

apply BoolTest [SKŠ17] as well as our Algorithm 6.

File Block-size B1 B2 Best Z-score

Java 10MB 8 2.668 3.8144 11.7884
Java 10MB 32 4.2611 5.8122 65526.278
Java 10MB 256 5.6797 9.3637 3.4 ×1038

AES 10MB 8 3.4817 4.7543 12.1083
AES 10MB 32 4.322 6.289 65526.10
AES 10MB 256 5.557 8.4509 3.4 ×1038

Table 6.2: Results

In the Table 6.2 above, B1 is the BoolTest algorithm with parameters B(deg =

2,m = Block-size, t = 128, k = 2) and B2 is the BoolTest algorithm with parameters

B(deg = 3,m = Block-size, t = 128, k = 3). As explained in this initiative, since

BoolTest [SKŠ17] searches in limited function space, the Z-score obtained with those
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constraints is sub-optimal. On the other hand, we obtain very high scores in this

regard. Our analysis in Section 6.2.3 theoretically explains why such large values in

Z-score are possible.

6.4.3 Cross-testing by the generated polynomials, i.e., func-

tions

The motivation is to generate the Boolean function for which the Z-score will be maxi-

mized so that one can interpret a high value outside some interval as non-randomness.

One interesting methodology to evaluate this BoolTest is to generate the best func-

tion from one data set and to use that function to evaluate the Z-score of another

random-looking data set. First, let us consider the BoolTest [SKŠ17] heuristics in

this regard.

Function generated
Z-score

by Java
1MB

Java
10MB

Java
100MB

AES
1MB

AES
10MB

Java 1MB (m=8) 3.22 0.8 1.0 0.156 1.124
Java 1MB (m=256) 6.08 0.22 0.80 0.148 1.977
Java 100MB
(m=256)

2.6 8.5 36.75 1.1 2.0

AES 10MB
(m=256)

0.56 0.30 1.34 0.02 8.45

Table 6.3: Cross-testing with BoolTest [SKŠ17].

In the Table 6.3, for Java 1MB (m = 8), we have used the parameters B(deg =

2,m = 8, t = 128, k = 2). For Java 1MB (m = 256), we have used the parameters

B(deg = 2,m = 256, t = 128, k = 2) and for the Java 100MB (m = 256) we have used

the parameters B(deg = 3,m = 256, t = 128, k = 3).

Using our Algorithm 6 (with implementation in Appendix) we performed cross-

testing too and obtained the following results. The small values that we obtained for

m = 256 are probably because most of the 256-bit blocks for which the generated

function outputs 1 will never arrive in other samples of the data. The expected num-

ber of 1s will also be small.

To summarize, we generate the Boolean function for a distinguisher based on a
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Function generated
Z-score

by Java
1MB

Java
10MB

Java
100MB

AES
1MB

AES
10MB

Java 1MB (m=8) 13 0.26 0.87 0.12 0.38
Java 1MB (m=8) 0.58 11.8 0.50 0.20 1.0
Java
100MB(m=256)

10−33 3×10−33 3.4 ×
1038

9.6 ×
10−34

3×10−33

AES
10MB(m=256)

3×10−34 9.6 ×
10−34

3×10−33 3×10−34 3.4 ×
10−38

Table 6.4: Cross-testing for our algorithm

particular sample of data. Then with this function, we run the distinguisher for a

different set of random-looking data and observe the Z-score. Generally, the lower val-

ues related to AES provide the understanding that it demonstrates more randomness

than the Java random number generator. This is a natural conclusion, but these kinds

of cross-testing require further investigation and more concrete theoretical support.

6.5 Conclusion

In this chapter, we have studied certain limitations of BoolTest [SKŠ17]. We intro-

duce combinatorial findings associated with pinpointing the optimal Boolean func-

tions for maximizing the Z-score that was not achievable using the heuristic outlined

in BoolTest [SKŠ17]. Our Algorithm 6 efficiently determines the optimal Boolean

function with the highest Z-score in O(N logN) time, where N represents the vol-

ume of available data. While addressing specific combinatorial challenges associated

with BoolTest, it’s important to note its insufficiency in determining data stream

randomness. Although statistical interpretations in [SKŠ17, Section 5] are available,

we advocate for further evaluation of this tool.

Appendix : Implementation Details

For large block sizes, the Z-score would be very large and it would not be possible to

store the results accurately in 64 bits data elements of C programming compilers. For

example, the highest Z-score for a block size of 256 might be of the order of 1038. It

would require ∼ 126 bits to represent such integers up to 1038. To maintain accuracy,
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we instead use the GNU multi-precision library (GMP) for the calculations [gmp].

Listing 6.1: C code for final algorithm

// data = addre s s ( o f f i r s t b y t e ) o f nm b i t da ta

// l en = l e n g t h in b y t e s o f data , i . e , nm/8

// m = b l o c k s i z e

void generate (unsigned char∗ data , int len , int m)

{
unsigned long n = ( len ∗8)/m;

// merge s o r t m−b i t b l o c k s a t addr e s s ‘ da ta ’

// by t h e va l u e o f m−b i t b l o c k s

s o r t l a r g e b l o c k ( data , 0 , n − 1 , m) ;

i f (n == 0)

{
p r i n t f ( ”no data\n\n” ) ;

return ;

}

// need l e n g t h ( occurence s ) = n um d i s t i n c t b l o c k s ( <= n )

int∗ occurences = malloc (n ∗ s izeof ( int ) ) ;

// need l e n g t h ( d i s t i n c t b l o c k s ) = n um d i s t i n c t b l o c k s ∗ s i z e o f b l o c k (<= data s i z e )

unsigned char∗ d i s t i n c t b l o c k s = malloc ( l en ∗ s izeof (unsigned char ) ) ;

unsigned long num d i s t i n c t b l o ck s = 0 ;

unsigned long cur r count = 1 , idx = 0 ;

unsigned long sum occurences = 0 ;

for (unsigned long i =1; i<=n ; i++)

{
i f ( i==n | | ! same block ( data , i , data , i −1))

{
copy block ( d i s t i n c t b l o c k s , idx , data , i −1, m) ;

occurences [ idx ] = curr count ;

sum occurences += occurences [ idx ] ;

cur r count = 0 ;

idx++;

}
cur r count++;

}
num d i s t i n c t b l o ck s = idx ;

// merge s o r t m−b i t b l o c k s a t addr e s s ’ d i s t i n c t b l o c k s ’

// by t h e i r number o f o c cur r ence s in t h e data

s o r t by oc cu r enc e s ( d i s t i n c t b l o c k s , occurrences , 0 , num d i s t i n c t b l o ck s − 1 , m) ;

mpf t z max ;

mp f in i t ( z max ) ; mp f s e t u i ( z max , (unsigned long ) 0 ) ;

mpf t t , q , p , MS, z , d1 , d2 ;

mp f in i t ( t ) ;

mp f in i t ( q ) ;

mp f in i t (p ) ;

mp f in i t (MS) ;

mp f in i t ( z ) ;

mp f in i t ( d1 ) ;

mp f in i t ( d2 ) ;

int t max = −1; int num one = 0 ;

sum occurences = 0 ;

for (unsigned long i =0; i<num d i s t i n c t b l o ck s ; i++)

{
sum occurences += occurences [ i ] ;

mp f s e t u i ( t , (unsigned long ) ( i + (unsigned long ) 1 ) ) ;

mp f s e t u i (d1 , 2 ) ; mpf pow ui (d1 , d1 , m) ;
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i f (mpf cmp( t , d1 ) == 0)

{
p r i n t f ( ” t = 2ˆm: break\n\n” ) ;

break ;

}

// MS

mpf div (q , t , d1 ) ;

mp f s e t u i (p , sum occurences ) ;

mpf d iv u i (p , p , (unsigned long )n ) ;

mpf sub (MS, p , q ) ;

mpf abs (MS, MS) ;

// z−s co r e

mpf mul ui (MS, MS, (unsigned long ) n ) ;

mp f s e t u i (d2 , (unsigned long ) 1 ) ;

mpf sub (d2 , d2 , q ) ;

mpf mul (d2 , d2 , q ) ;

mpf mul ui (d2 , d2 , (unsigned long ) n ) ;

mpf sqrt (d2 , d2 ) ;

mpf div ( z , MS, d2 ) ;

i f (mpf cmp( z , z max ) > 0)

{
mpf set ( z max , z ) ;

t max = i +1;

num one = sum occurences ;

}

}

// g e t anf

i f (m <= 16)

{
int x = m − 3 ; i f ( x < 0) x = 0 ;

unsigned char∗ t r u th t ab l e = (unsigned char∗) mal loc ((1<<x)∗ s izeof (unsigned char ) ) ;

for ( int i =0; i<(1<<x ) ; i++)

t r u th t ab l e [ i ] = 0 ;

for ( int i =0; i<t max ; i++)

s e t b i t ( t ru th tab l e , g e t b l o c k a s i n t ( d i s t i n c t b l o c k s , i ) ) ;

a n f f r om t ru th t ab l e ( t ru th tab l e , m) ;

f r e e ( t r u th t ab l e ) ;

}

p r i n t f ( ” h ighe s t z−s co r e −−− \n” ) ;

mpf out s t r ( stdout , 10 , 0 , z max ) ;

p r i n t f ( ”\n t max=%d , num one = %d\n\n” , t max , num one ) ;

s a v e boo l f un c t i on ( d i s t i n c t b l o c k s , num di s t inc t b locks , t max , m) ;\\
f r e e ( occurences ) ;

f r e e ( d i s t i n c t b l o c k s ) ;

}
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7
Analysis of Boolean Functions Related to Two-party

Nonlocal Games
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In this chapter, we thoroughly investigated all Boolean functions involving four

variables to model binary input binary-output two-party nonlocal games, assessing

their performance in both classical and quantum settings. Our analysis identifies

several games, apart from the CHSH game, that exhibit greater success probabilities

in quantum scenarios than in classical ones. This underscores the effectiveness of

the CHSH game and similar partitioned games in distinguishing between quantum
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and classical methodologies. Additionally, we extend the characterization of classical

strategies to any n-party nonlocal game. Though this extension does not focus on

identifying quantum advantage in n-party nonlocal games, it establishes the ground-

work for future analyses on classical-quantum separations.

7.1 Introduction

In a binary input-binary output two-party nonlocal game, each player has two choices

for the input and two choices for the output. The most well known binary input binary

output two-party nonlocal game is the CHSH game [CHSH69] where a referee provides

two uniformly random bits x1 and x2 to each of the two players. After receiving the

inputs, the two parties send their output bits x3 and x4 to the referee. The function

that represents the CHSH game is of the form f(x1, x2, x3, x4) = (x1∧x2)⊕ (x3⊕x4).

From the winning condition of the CHSH game, one can easily check that the two

parties can win the game whenever the values of x1, x2, x3, x4 satisfy f(x1, x2, x3, x4) =

0. It is well known that the maximum success probability of the CHSH game in the

classical scenario is 0.75 whereas the maximum success probability using quantum

resources is cos2 π
8

(which is approximately 0.85).

There are several known two-party nonlocal games that offer quantum advan-

tages [BBT05, CM14]. To the best of our knowledge, from the class of all possible

binary input binary output two-party nonlocal games, the only known game that

offers quantum advantage is the CHSH game. As the CHSH game can’t be won with

certainty in the quantum scenario, it would be interesting to check whether there

exists any other binary input binary output two-party nonlocal game for which quan-

tum advantage can be achieved and the game can be won with a better quantum

success probability than the CHSH game (because from the analysis of [BM18], it is

clear that if there exists any such game then it can be used for DI testing instead of

the CHSH game to reduce the overall sample size).

In this chapter, we have explored the performance of all possible binary input bi-

nary output two-party nonlocal games (having atleast one successful outcome for each

possible input) by considering them as four variable Boolean functions. We also ex-

tend the technical results related to classical strategies for any n-party nonlocal game

and provide mathematically rigorous proofs. Although our findings do not provide
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explicit insights into games where classical-quantum separation can be leveraged, in

a forthcoming investigation targeting the characterization of n-party nonlocal games

with quantum advantages, our results will establish the groundwork for identifying

these specific games and developing their optimal strategies.

7.2 Inconsistency for the 2 + 2 Partition and Its

Subpartitions

It is well known that for a binary input binary output two-party nonlocal game, there

are 4 possible inputs and for each input, there can have atmost 4 different outputs.

It is also clear that for a particular input string (i.e., for a particular value of xy),

the two players can have atmost 16 different strategies to generate their outcomes

in the classical scenario. Based on the outcomes, here we classify the 16 different

strategies into four groups where each group has 4 different strategies and each of

these strategies leads to a different outcome for a particular input. These four groups

are as follows.

Group 1 (Constant Strategies): 00, 01, 10, 11

Group 2 (input-dependent Strategies): xy, xy, xy, xy

Group 3 (Mixed Strategies): x0, x1, x0, x1

Group 4 (Mixed Strategies): 0y, 1y, 0y, 1y

Whenever two different inputs are chosen, there are two possibilities for their

values. Either the inputs are complement to each other (i.e., of the form xy, xy) or

they are not complement to each other (i.e., of the form xy, xy or xy, xy).

Now if a strategy is applied to these chosen inputs, the generated output pair

may match in all two positions or only in one position or none of the positions. One

can easily explore that for a complement input pair, if the outputs are same then the

corresponding strategy must be constant. Similarly, if the outputs are complement

to each other (i.e., of the form ab, ab) for a complement input pair, the correspond-

ing strategy must be an input-dependent strategy and if the outputs have only one

different bit (i.e., of the form ab, ab or ab, ab) then the corresponding strategy must

be a mixed strategy (either from group 3 or from group 4). In this similar way, one

can also explore the strategies for the cases where the inputs are not complement to

each other.
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It is interesting that whenever two different inputs match in exactly one bit posi-

tion (i.e., inputs of the form xy, xy or xy, xy) but the output bits in that position are

different for different inputs then one can’t get any strategy that satisfies atleast one

output for both the inputs. More formally, whenever the inputs and the correspond-

ing outputs are of the form mentioned in Table 7.1, one can’t get any strategy that

satisfies atleast one output for both the inputs.

Input Corresponding output

xy ab, ab

xy ab, ab

Table 7.1: Inconsistent Outputs

This leads us to the following result.

Theorem 15. For the two input-output pairs of a game, if one bit of the input pair

remains the same and the corresponding bit of their outputs is different, then no

strategy satisfies atleast one output for both the inputs.

Proof. : Without loss of generality, here we assume that the input pair is of the form

xy, xy and the corresponding outputs are of the form ab and ab respectively (i.e., the

first bit for both the inputs are same however the first bit for the two outputs are

different).

As the two outputs are different, no constant strategy can satisfy both outputs

for this input pair. One can also check that whenever a mixed strategy either from

group 3 or from group 4 is applied to this specified input pair, the first bit of the

corresponding outputs always remains the same. However for the given outputs (as

specified in table 7.1), the first bits of the outputs for the two different inputs are

complement to each other. This implies that no constant or mixed strategy can satisfy

atleast one output for both inputs.

Similarly, one can also explore that whenever an input-dependent strategy is ap-

plied to this specified input pair, the corresponding outputs are of the form ab, ab

or ab, ab. This implies that no strategy from any of the groups can satisfy atleast

one output for both the inputs. Similarly, one can also argue for the other possible

input-output pairs of this form.

146



From this result, it is clear that if a game has two inputs of the form xy, xy(xy, xy)

and the corresponding outputs are of the form ab, ab(ab, ab) and ab, ab(ab, ab) respec-

tively then there exist no strategy which satisfies atleast one output for both the

inputs xy, xy(xy, xy).

7.3 Results related to classical strategies for any

n-party nonlocal game

In an n-party nonlocal game, there are n players and a referee. Each player is given

an input bit xi ∈ {0, 1} by the referee and based on a pre-decided strategy si =

{0, 1, xi, xi}, the player sends back an output bit ai ∈ {0, 1} to the referee. In between,

the players are strictly not allowed to communicate with other players once it receives

the input bit from the referee. We can express any n-party nonlocal game in the

form of a 2n-input 1-output Boolean function: f(x1, . . . , xn, a1, . . . , an), where x =

x1, . . . , xn represents the inputs from the referee, and a = a1, . . . , an denotes the

corresponding outputs. The players win against the referee if and only if f = 0.

Depending on the number of players (n), the referee (may) restricts the input bits

x1, . . . , xn to a subset of {0, 1}n, similar to the GHZ game discussed earlier [See

Definition 5].

Since each player can choose any of the four possible strategies, the total number

of classical strategies for any n-party nonlocal game is given by 4n. Note that the

input bits received by the players can be denoted by an n-bit string x = x1, . . . , xn.

Similarly, the individual strategies of all n players can be denoted by s = s1, . . . , sn,

and the corresponding output is represented by a = a1, . . . , an. In this case, we

denote input bit-strings by x,y, output bit-strings by a,b, c,d, and the corresponding

strategies by s, t,u. In this regard, we present the following results that characterize

the classical strategies for any n-party nonlocal game, as follows.

Proposition 15. In any n-party nonlocal game, there exist 2n many unique strategies

that satisfy a given input-output pair x→ a.

Proof. Let’s consider the ith player (1 ≤ i ≤ n) receiving an input xi ∈ {0, 1} and

sending back the output ai ∈ {0, 1}. When xi = ai, both a constant strategy si = ai ∈
{0, 1} and an input-dependent strategy si = xi will yield the same output. Similarly,
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when xi 6= ai, the constant strategy si = ai ∈ {0, 1} and the input-dependent strategy

si = xi will produce the same output. Consequently, for each player, there exist two

unique strategies resulting in the same output. Therefore, the total number of unique

strategies for all n players combined is 2n.

Next, we extend Theorem 15 to any n-party nonlocal games where the players

can not produce a common winning strategy for given input-output pairs.

Theorem 16. In an n-party nonlocal game, if the input bits are identical at the ith po-

sition but the corresponding output bits differ, no classical strategy can simultaneously

satisfy both outputs.

Proof. Let x = x1, x2, . . . , xn be the input bit string and a = a1, a2, . . . , an be the

corresponding winning output. Similarly, for the input bit string y = y1, y2, . . . , yn,

the winning output is b = b1, b2, . . . , bn.

x→ a, and y→ b.

From the assumption of the theorem, xi = yi and ai 6= bi. We prove this by contradic-

tion. Suppose, the strategy s = s1, s2, . . . , sn satisfy both the outputs simultaneously.

Now, either si ∈ {0, 1} or si ∈ {xi, xi}.
Case 1: si ∈ {0, 1}. This implies ai = bi, which is a contradiction.

Case 2: si ∈ {xi, xi}. WLOG, si = xi. Since xi = yi, we have ai = xi = yi = bi, which

is again a contradiction. Hence, there is no classical strategy s that can simultaneously

satisfy both the outputs.

The output bit-strings, for which there is no shared classical strategy, are called

inconsistent outputs. The maximum classical winning probability in an n-party non-

local game decreases as inconsistent output bit-strings increase. In this regard, we

have the following corollary.

Corollary 2. For all n ∈ N, there exists an n-party nonlocal game for which the

maximum classical winning probability is given by 1/2n−1.

Corollary 2 identifies a class of n-party nonlocal games where the classical winning

probability is very low, suggesting that exploring quantum advantages might be more

feasible in this class of games. Moreover, for every binary input - binary output
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n-party nonlocal game the maximum success probability corresponding to 4n many

classical strategies must belong to the set
{
k

2n
: k ∈ {2, 3, . . . , 2n}

}
. This is from the

fact that, there are 2n many possible input bit-strings, among which at least two of

them is guaranteed to have a common shared strategy (see Theorem 22).

7.4 Some Basic Results

In this section, we derive some basic results which are necessary throughout this

chapter. It is clear from the group of strategies that for a particular input, the four

different strategies of a particular group provide four different outputs. However the

two different strategies from two different groups may collide, i.e., may generate the

same output for a particular input. For example, the mixed strategy x0 (belongs

to group 3) and the dependent strategy xy (belongs to group 2) both generate the

output 10 for the input 10. But the two strategies which provide the same output for a

particular input may not provide the same output for any other inputs. For example,

the constant strategy 00 and the dependent strategy xy always provide the same

output (i.e., the output 00) for the input 00 but these two strategies always provide

two different outputs for all the other inputs. Some interesting results (which are

required for further analysis) related to these strategies and the groups are mentioned

here. We also extend some results from two-party nonlocal games to n-party nonlocal

games in a more structured form.

Theorem 17. If two different strategies either one from the constant group and the

other from dependent group or one from the first mixed group (i.e., group 3) and the

other from the second mixed group (i.e., group 4) provide same output for a particular

input then these two strategies must provide two different outputs for all the other

inputs.

Proof. : Here the two different strategies are either from constant and dependent

groups or from the two mixed groups.

Case 1: For every input, there exists a constant and a dependent strategy that

provides the same output. Now, whenever the input changes, the constant strategy

always provides the same output as before. However the dependent strategy provides

different output than the previous one as the output of a dependent strategy always
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depends on the inputs and provides different outcomes for different inputs.

Case 2: For every input, there exists a strategy from the first mixed group and

another strategy from the second mixed group which provides the same output. In

a mixed strategy, one bit of the output is constant and the other bit of the output

is input-dependent. So for the first mixed group, there are two types of strategies,

namely, xc1 and xc1 and for the second mixed group, there are two types of strategies,

namely, c2y and c2y where c1 and c2 denote the constant bits and x and y denote the

corresponding dependent bits. This implies that there can be four different choices

for the pair of strategies that provide the same output.

Let us first consider the case where xc1 and c2y be the two strategies which provide

same output for the input xy. Then the corresponding outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

This two strategies provides same output for this input i.e., xc1 = c2y.

Now whenever these two strategies xc1 and c2y are applied to the input xy, the

corresponding outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

As xc1 = c2y, xc1 6= c2y. So the two outputs are different.

Similarly whenever this two strategies are applied to the input xy, the correspond-

ing outputs are,

xy → xc1 (applying strategy xc1)

xy → c2y (applying strategy c2y)

As xc1 = c2y, c2y 6= xc1. So the two outputs are different.

Similarly whenever this two strategies are applied to the input xy, the correspond-

ing outputs are,

xy → xc1 (applying strategy xc1)

150



xy → c2y (applying strategy c2y)

As xc1 = c2y, xc1 = c2y 6= c2y. So the two outputs are different.

In this similar way, one can also argue the cases for other pair of strategies.

Now we extend this theorem to any n-party nonlocal games in a more structured

form.

Theorem 18. In an n-party nonlocal game, if two strategies s and t produce the

same output for a specific input bit-string x, where si ∈ {0, 1} ⇒ ti ∈ {xi, xi} and

vice versa for all 1 ≤ i ≤ n, then these two strategies must produce different outputs

for all other input strings provided by the referee.

Proof. We proof this by contradiction. Let y be another input different from x,

and applying strategies s and t on y yields the outputs a and b respectively, where

a = b. Additionally, let x and y differ at the ith position, i.e., xi 6= yi = xi. That is,

y
s−→ a, and y

t−→ b. Then,

Case 1: si ∈ {0, 1} and ti ∈ {xi, xi}. Then, either ai = xi (when ti = xi) or ai = xi

(when ti = xi). If ai = xi, then bi = yi. Since xi 6= yi, it follows that ai 6= bi, implying

a 6= b. Similarly, if ai = xi, then bi = yi. Since xi 6= yi, we again have ai 6= bi and

thus a 6= b, which is a contradiction.

Case 2: si ∈ {xi, xi} and ti ∈ {0, 1}. In a similar manner, either bi = xi (when

si = xi) or bi = xi (when si = xi). If bi = xi, then ai = yi. Since yi 6= xi, it follows

that ai 6= bi, implying a 6= b. Similarly, if bi = xi, then ai = yi. Since yi 6= xi, we

again have ai 6= bi and thus a 6= b, which is again a contradiction.

Hence, the outputs produced by these two strategies corresponding to any other input

must be different.

Theorem 19. If a pair of strategies from two distinct groups provide the same output

for a particular input xy then this pair of strategies must provide two different outputs

for the complement input xy.

Proof. : Here xy is the input for which two different strategies from two different

groups provide the same output. From the result of theorem 17, it can be easily

argued that if the two strategies are from constant and dependent groups or from the
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two mixed groups then these two strategies must provide two different outputs for

the complement input xy.

So there are two remaining cases that may occur. The first case is that whenever

one strategy is from the constant group and the other strategy is from any one of

the two mixed groups and the second case is that whenever one strategy is from the

dependent group and the other strategy is from any one of the two mixed groups.

Case 1: In this case, one strategy from the constant group and the other strategy

from one of the two mixed groups provide the same output (say ab) for the input xy.

Whenever these two strategies are applied to the complement input xy, then one can

easily check that the constant strategy provides the output ab but the mixed strategy

provides the output either ab or ab.

Case 2: Similarly in this case, if one strategy from the dependent group and the

other strategy is from one of the two mixed groups provide the same output (say ab)

for the input xy, then the dependent strategy provides the output ab and the mixed

strategy provides the output either ab or ab for the complement input xy. This proves

the result.

Corollary 3. From the results of theorem 17 and theorem 19, one can conclude that

whenever there are two strategies in which one is from the constant (dependent) group

and the other is from any one of the two mixed groups provide the same output for

the input xy, then these strategies may not always provide two different outputs for

the input xy and xy.

For example, the dependent strategy xy and the mixed strategy 0y both provide

the output 00 for the input 01 however these two strategies also provide the output

01 for the input 00. So whenever the inputs are not complement to each other, one

can’t conclude anything about the outcomes.

Theorem 20. In an n-party nonlocal game, if a pair of strategies s and t yield the

same output for a particular input x, then the same pair of strategies must produce

two different outputs for the complement input x.

Proof. Since s and t are distinct strategies, there exists at least one index i (1 ≤ i ≤ n)

such that si ∈ {0, 1} and ti ∈ {xi, xi}. Let us assume that the output corresponding
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to input xi using strategy si is ai, which implies that the output corresponding to

input xi would also be ai.
(
xi

si−→ ai ⇒ xi
si−→ ai

)
.

As both strategies s and t produce the same output for x, one can conclude that

ai = ti (∈ {xi, xi}).

Case 1: ti = xi. The output for xi with strategy ti is same as xi(= ti 6= ai). Hence,

the corresponding outputs for x are different. xi
si−→ xi ⇒ xi

ti−→ xi.

Case 2: ti = xi. The output corresponding to xi using strategy ti is xi(= ti 6= ai).

Again the corresponding outputs for x are different. xi
si−→ xi ⇒ xi

ti−→ xi.

Hence, the outputs corresponding to x on strategies s and t must be distinct.

Theorem 20 is a direct extension of Theorem 19 from two-party CHSH-like set-up

to any n-party nonlocal games.

Theorem 21. For a complement input pair (i.e., for two inputs of the form xy and

xy), if one input has m many outputs and the other input has n many outputs then

there are exactly mn many strategies such that each of them satisfies an output for

both the inputs.

Proof. : For a complement input pair we show that if each input has exactly one valid

output, then there is exactly one strategy that satisfies both inputs. Let us consider

that the input xy has output ab and input xy has any one of the four outcomes

ab, ab, ab and ab.

One can easily check that whenever xy has output ab then the common strategy is

a constant strategy, whenever xy has output either ab or ab then the common strategy

is a mixed strategy and whenever xy has output ab then the common strategy is an

input-dependent strategy which satisfies the outputs for both the inputs xy and xy.

This implies that there must be a strategy corresponding to every different output

pair for two complement inputs. So for a complement input pair, if one input has

m many outcomes and the other input has n many outcomes, then there are exactly

mn different pair of outcomes. Moreover for each pair of outcomes, there exist a

strategy that satisfies the outcomes for both the inputs. So, there are exactly mn

many strategies which satisfy an output for both the inputs.
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Lemma 8. In an n-party nonlocal game, if the output corresponding to input x is

a and the output corresponding to input x is b, then there exists a common strategy

that satisfy both the input-output pairs, simultaneously.

Proof. We prove this by construction. Let s = s1, . . . , sn be a strategy. For each

index i (1 ≤ i ≤ n), if ai = bi ∈ {0, 1}, we choose si = ai ∈ {0, 1}. If ai 6= bi,

two possible scenarios can arise: either ai = xi and bi = xi, in which we can choose

si = xi, or ai = xi and bi = xi, in which case we can choose si = xi.

Theorem 22. Given a complement input pairs x and x, if one has m many output

strategies, and its complement has n many output strategies, then there are exactly

mn (m times n) many strategies that satisfy both the outputs.

Proof. Based on Lemma 8, the outputs of complement input pairs can be represented

using a common strategy. Moreover, since a single strategy can not produce two

different output bit-strings for a single input bit-string, the uniqueness of each of

these shared strategies are satisfied.

Therefore, when an input bit-string has m many winning strategies, and its com-

plement input has n many winning strategies, there are exactly mn many strategies

that satisfy both the outputs.

Theorem 22 is a direct extensiom of Theorem 21 from two-party nonlocal games

to any n-party nonlocal games.

Theorem 23. If an input (say xy) has a complement output pair and the correspond-

ing complement input (i.e., xy) also has two outcomes (may not be complement), then

the four strategies corresponding to this input pair xy, xy must provide four different

outcomes for atleast one of the rest two inputs (i.e., for inputs xy and xy).

Proof. : Whenever each of the inputs of the complement input pair xy, xy has two

outcomes and the input xy has a complement output pair, the input xy has two

possibilities for output. Either the outcomes of xy are complement to each other or

they are not complement to each other.

Case 1: Whenever the input xy has complement output pair, then also there are

two possibilities. Either xy has the same complement pair as in xy or the complement

pair of xy is different from the output of xy.
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Whenever xy and xy have the same complement output pair, one can check that

the common strategies are 2 constant and 2 dependent strategies. We can easily verify

that for the input pairs xy, xy whenever a constant and a dependent strategy collide

for a particular input, the same constant and dependent strategy must not collide for

the other input (rather the same constant strategy collide with the other dependent

strategy for the other input). From the result of theorem 17, we can argue that for

this case, the four common strategies must provide four different outputs for all the

rest two inputs. Similarly, one can conclude this same result for the case when xy

has a different complement output pair than xy.

Case 2: Whenever the input xy has non-complement output pair, then the com-

mon strategies are one constant, one input-dependent and two mixed strategies for

xy, xy pair. One can verify that among two mixed strategies, one collides with the

constant strategy and the other collides with the dependent strategy for input xy. But

for input xy, the two mixed strategies and the constant and the dependent strategy

collide among themselves. Now for any one of the remaining two inputs, the constant

strategy collides with those mixed strategies for which they provide different outputs

for the input xy and similarly for the dependent and other mixed strategies. So from

the result of theorem 17 and theorem 19, one can conclude that these four strate-

gies must provide four different outputs for the remaining input. This concludes the

proof.

Theorem 24. In an n-party nonlocal game, if an input bit-string (x) and its comple-

ment (x) has complement output pairs a, a and b,b, respectively, then the four shared

strategies corresponding to input bit-strings x and x must yield four distinct outputs

for all other input bit-stings.

Proof. Suppose, a strategy s = s1, s2, . . . , sn yields the output a for input x and

output b for input x, and another strategy t = t1, t2, . . . , tn yields the output a for

input x and b for input x.

x
s−→ a, x

s−→ b, and x
t−→ a, x

t−→ b.

Then, we claim, si ∈ {0, 1} ⇒ ti ∈ {xi, xi} and vice versa for all 1 ≤ i ≤ n.

Case 1: si ∈ {0, 1}. This implies, ai = bi(6= ai). Therefore the strategy ti produce

different outputs for xi and xi, concluding ti ∈ {xi, xi}.
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Case 2: si ∈ {xi, xi}. This implies ai 6= bi ⇒ bi = ai. Since, ti yields ai for input xi

and bi for input xi, and ai = bi, we have ti ∈ {0, 1}.
Since, the shared strategies s and t producing identical output for the input x

satisfy si ∈ {0, 1} ⇒ ti ∈ {xi, xi} and vice versa for all 1 ≤ i ≤ n, from Theorem 18

we can conclude that the strategies s and t will produce distinct outputs for all other

input bit-strings.

Next, we prove the uniqueness of the output bit-string generated by each shared

strategy. Consider another shared strategy u = u1, u2, . . . , un that yields the output

a for input x and output b for input x.
(
x

u−→ a, x
u−→ b

)
.

Since s and u yield similar output as the strategies s and t, we can deduce that

si ∈ {0, 1} ⇒ ui ∈ {xi, xi} and vice versa for all 1 ≤ i ≤ n. Therefore, ti ∈ {yi, yi} ⇒
ui ∈ {yi, yi} for all 1 ≤ i ≤ n.

As s and u satisfy the assumption of Theorem 18 and produce the same output

for x, they must yield different outputs for all other input bit-strings (from Theorem

18).

Furthermore, since t and u yield different outputs for both x and x, and ti ∈
{yi, yi} ⇒ ui ∈ {yi, yi} for all 1 ≤ i ≤ n, it follows that ti = ui for all 1 ≤ i ≤ n.

Therefore, u and t cannot produce the same output for any other input bit-string.

Hence, the output bit-strings produced by each shared strategy are distinct, which

implies, the four shared strategies correspond to input bit-strings x and x must yield

four distinct outputs for all other input bit-strings.

Theorem 24 modifies Theorem 23, in a specific direction, demonstrating a class of

n-party nonlocal games where classical winning strategies are restricted if both the

inputs of a complement input pair have a complement output pair. On the other

hand, Corollary 4 proves the existence of n-party nonlocal games where the strategies

are not restricted if the assumptions of Theorem 24 partially fail to hold.

Corollary 4. In the above theorem (Theorem 24), if an input bit-string x has com-

plement output pairs a, a, however its complement input string x does not have com-

plement output pairs, b, c, then the four shared strategies corresponding to input bit-

strings x and x may not produce four distinct outputs for all other input bit-stings.

Proof. We can prove this by construction. Suppose, a strategy s = s1, s2, . . . , sn

yields the output a for input x and output b for input x, and another strategy
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t = t1, t2, . . . , tn yields the output a for input x and c for input x.

x
s−→ a,x

s−→ b, and x
t−→ a, x

t−→ c.

We constructively prove the existence of an input bit-string y = y1, y2, . . . , yn, where

the strategies s and t yield the same output bit-string.

Case 1: Both si and ti are either in {0, 1} or in {xi, xi}. Since si and ti produce the

same output ai for input bit xi, we conclude that si = ti, i.e., si and ti will yield

the same output irrespective of the ith input bit. In such scenario, we set yi = xi to

ensure that the input y is distinct from x.

Case 2: If si ∈ {0, 1} and ti ∈ {xi, xi}, we assign yi = si when ti = xi, and yi = si

when ti = xi. Similarly, when ti ∈ {0, 1} and si ∈ {xi, xi}, we assign yi following a

similar approach.

In this manner, we construct an input bit-string y for which the strategies s and

t yield the same output bit-string. The constructed input bit-string y differs from x

specifically at the index where si = ti. Considering that b and c are not complements,

there exists at least one index i (1 ≤ i ≤ n) where bi = ci.

xi
si−→ ai

ti←− xi, and xi
si−→ bi = ci

ti←− xi.

For such an index i, it is impossible for si ∈ {0, 1} and ti ∈ {xi, xi} to occur simulta-

neously. If si ∈ {0, 1}, then ai = bi, but ti ∈ {xi, xi} cannot produce the same output

for two complementary bits. Therefore, both si and ti must either be in {0, 1} or in

{xi, xi}, implying si = ti.

Hence, we constructively found an input bit-string y (distinct from x) for which

the strategies s and t yield the same output bit-string.

Lemma 9. : If an input (say xy) has a complement output pair and its complement

input (i.e., xy) has only one outcome then the two strategies from xy, xy pair must

provide non-complement output pairs for each of the rest two inputs.

Proof. : Let us consider that the input xy has two complement outputs of the form

ab and ab. Then the complement input xy has two possibilities, either the output of

xy is same as one of the outputs of xy or the output of xy is different from the output

of xy.
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Case 1: Whenever the output of xy is same with one of the output of xy, there

are one constant strategy and one input-dependent strategy. Let us assume that

the common output of xy and xy is ab. Then the constant strategy is ab and the

input-dependent strategy is mn (say) where m ∈ {x, x} and n ∈ {y, y}. This implies

that,

xy → ab (applying strategy mn)

xy → ab (applying strategy mn)

Thus we conclude that

x→ a (applying m)

y → b (applying n)

Hence it is clear that the strategy mn provides the output ab for the input xy and

provides the output ab for input xy. So the two strategies ab and mn provide non-

complement output pair ab and ab for the input xy and provide non-complement

output pair ab and ab for the input xy.

Case 2: Similarly, whenever the output of xy is different from the outputs of xy,

there are two mixed strategies from two different groups. Let us consider that the

outputs of xy are ab and ab and the output of xy is either ab or ab. Without loss of

generality, we assume that the output of xy is ab. Let the two mixed strategies are mc1

and c2n, where m ∈ {x, x} and n ∈ {y, y} are the dependent bits and c1, c2 ∈ {0, 1}
are the constant bits. If we consider that the strategy mc1 provides output ab and

c2n provides output ab for input xy then one can easily check that,

x→ a (applying m)

y → b (applying n)

It is also clear that c1 = b and c2 = a.

Hence, one can easily check that the strategy mc1 and c2n provide outputs ab and

ab respectively for input xy. Similarly, one can also check that the strategy mc1 and

c2n provide outputs ab and ab respectively for input xy. This implies that the mixed
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strategies from two different groups also provide non-complement output pair for the

rest of the two inputs. Similarly, one can also check the other cases.

We extend Lemma 9 from two-party nonlocal games to n-party nonlocal games as

follows:

Lemma 10. In an n-party nonlocal game, if an input bit-string x has complement

output pairs a, a, and its complement input string x has an output b, then the two

shared strategies corresponding to x and x can not produce two complementary outputs

for any other input bit-sting.

Proof. Suppose s = s1, . . . , sn and t = t1, . . . , tn be the shared strategies correspond-

ing to the inputs x and x.
(
x

s−→ a, x
t−→ a, and x

s−→ b
t←− x
)
.

From Theorem 24, we know si ∈ {0, 1} ⇒ ti ∈ {xi, xi} and vice-versa for all

i (1 ≤ i ≤ n). Also, from Theorem 18, s and t yields two distinct outputs for all

other input bit-string. Let y be any input bit-string other than x such that yy

yields output c = c1, . . . , cn on strategy s and output d = d1, . . . , dn on strategy t.(
y

s−→ c, y
t−→ d

)
. The goal is to show ci = di for atleast one index position i.

Since, y is different from x, there exists atleast one index point i such that yi = xi.

Since, xi
si−→ bi

ti←− xi, for yi, the output bit is bi = ci = di. Hence, c and d can not be

complement to each other.

7.5 Analysis of the Maximum Success Probability

in Classical Scenario

In the classical scenario of a nonlocal game, the players have to fix some strategies

before the game begins because after getting the input bits from the referee, the

players aren’t allowed to communicate with each other. For the binary input binary

output two-party nonlocal games, each player has only two possibilities for their input

bits (either 0 or 1) and has two choices (either 0 or 1) for the output bits. In this

scenario, each player has atmost 4 different strategies (either output 0 or 1 or the

input bit itself or the complement of the input bit) to generate their output bits.

This implies that for a particular two-bit input string provided by the referee, there

are atmost 16 different strategies for the two players in a classical scenario.
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Among these 16 different strategies, the strategy which provides the maximum

success probability for a particular game is the optimal classical strategy and the

corresponding success probability is the maximum classical success probability for

this game. All the possible output strategies (by the two players) for a particular

game and their corresponding success probabilities can be represented in a tabular

form as mentioned in Table 7.2.

In this Table, each pi denotes the fraction of inputs for which the game can be

won using the i-th strategy. The two players can choose any of these 16 different

strategies before the game begins and later can output their bits accordingly. For

example, if they choose the first strategy specified in Table 7.2, both of them output

0 irrespective of their inputs. Similarly, whenever they choose the second strategy,

the first player always outputs 0 irrespective of his inputs whereas, the second player

outputs his corresponding input bit itself i.e., if he receives the input 0, he outputs 0,

otherwise he outputs 1. After their output, the referee checks the fraction of inputs

for which the two players win the game. The strategy which generates the winning

outcomes for most of the inputs of a particular game is considered as the optimal

strategy corresponding to that game. This implies that from Table 7.2, one can

obtain the maximum classical success probability (pmax) as pmax = maxi pi.

As every binary input binary output two-party nonlocal game has 4 possible in-

puts, one can easily check that the classical success probability for each of the possible

16 strategies must belong to the set {0, 0.25, 0.5, 0.75, 1}. From the result of theo-

rem 21, it is clear that there must be a classical strategy corresponding to each of

the complement input pairs. This implies that for every binary input binary output

two-party nonlocal game, the maximum classical success probability must be atleast

0.5. Similarly, if a game has inconsistent outputs (as mentioned in subsection 7.2)

for an input pair, then according to the discussion of subsection 7.2, the maximum

classical success probability must be less than 1 (i.e., either 0.5 or 0.75).

7.6 Analysis of the Maximum Success Probability

in Quantum Scenario

In the quantum strategy of a two-party nonlocal game, the two players initially share

some entanglement among themselves (before the game begins) and then during the
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Output for Alice (a) Output for Bob (b)
Output for Output for Output for Output for Success
input x = 0 input x = 1 input y = 0 input y = 1 Probability

0 0 0 0 p1

0 0 0 1 p2

0 0 1 0 p3

0 0 1 1 p4

0 1 0 0 p5

0 1 0 1 p6

0 1 1 0 p7

0 1 1 1 p8

1 0 0 0 p9

1 0 0 1 p10

1 0 1 0 p11

1 0 1 1 p12

1 1 0 0 p13

1 1 0 1 p14

1 1 1 0 p15

1 1 1 1 p16

Table 7.2: Success probabilities of a game for all possible classical strategies

game, they perform some specific (unitary) operations on their qubits (based on the

inputs) and measure their qubits to get the output bits.

Let us assume that the two players (say Alice and Bob) share the Bell-state

|ψ〉AB = |00〉+|11〉√
2

among themselves and Alice measures in θ0(θ1) rotated basis for the

input 0(1) and Bob measures in ψ0(ψ1) rotated basis for the input 0(1).

Now, it is easy to check that whenever the referee provides the input bit 0 to both

Alice and Bob (i.e., for the input 00), the shared states between Alice and Bob (after

applying their respective unitary operators) are of the form

1√
2

[(cos θ0|0〉+ sin θ0|1〉)(cosψ0|0〉+ sinψ0|1〉)]

+
1√
2

[(− sin θ0|0〉+ cos θ0|1〉)(− sinψ0|0〉+ cosψ0|1〉)]

=
1√
2

[(cos θ0 cosψ0 + sin θ0 sinψ0)|00〉+ (cos θ0 sinψ0 − sin θ0 cosψ0)|01〉]

+
1√
2

[(sin θ0 cosψ0 − cos θ0 sinψ0)|10〉+ (cos θ0 cosψ0 + sin θ0 sinψ0)|11〉]

=
1√
2

[cos(θ0 − ψ0)|00〉 − sin(θ0 − ψ0)|01〉+ sin(θ0 − ψ0)|10〉+ cos(θ0 − ψ0)|11〉]
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So for the input 00, the probability of getting each of the outputs 00 and 11

is 1
2

cos2(θ0 − ψ0) and the probability of getting each of the outputs 01 and 10 is
1
2

sin2(θ0 − ψ0).

Similarly for the input 01, the shared states between Alice and Bob after applying

the specific unitary operations are of the form cos(θ0 − ψ1)|00〉 − sin(θ0 − ψ1)|01〉 +

sin(θ0 − ψ1)|10〉 + cos(θ0 − ψ1)|11〉. So in this case, the probability of getting each

of the outputs 00 and 11 is 1
2

cos2(θ0 − ψ1) and the probability of getting each of the

outputs 01 and 10 is 1
2

sin2(θ0 − ψ1).

In this similar way, one can easily check that for the input 10, the shared states

between Alice and Bob after applying the specific unitaries are of the form cos(θ1 −
ψ0)|00〉− sin(θ1−ψ0)|01〉+ sin(θ1−ψ0)|10〉+ cos(θ1−ψ0)|11〉 and the corresponding

probabilities are 1
2

cos2(θ1−ψ0) (for each of the outputs 00 and 11) and 1
2

sin2(θ1−ψ0)

(for each of the outputs 01 and 10).

Similarly for the input 11, the shared states between Alice and Bob after applying

the specific unitaries are of the form cos(θ1 − ψ1)|00〉 − sin(θ1 − ψ1)|01〉 + sin(θ1 −
ψ1)|10〉+ cos(θ1−ψ1)|11〉 and the corresponding probabilities are 1

2
cos2(θ1−ψ1) (for

each of the outputs 00 and 11) and 1
2

sin2(θ1 − ψ1) (for each of the outputs 01 and

10).

From these quantum success probability expressions for different inputs, it is clear

that for a particular input xy, the probability of getting each of the outputs 00 and

11 is 1
2

cos2 α and the probability of getting each of the outputs 01 and 10 is 1
2

sin2 α

where α = (θx − ψy) (according to our mentioned strategy).

As for every nonlocal game, the referee is supposed to provide the input bits ran-

domly, the two players calculate the overall success probability considering each of the

inputs equally likely. For any particular game, the expression of the quantum success

probability depends on the distribution of the successful outcomes for all the possible

inputs. Depending on this distribution, the quantum success probability expressions

involve the variables θ0, θ1, ψ0, ψ1. After getting the quantum success probability ex-

pression for a particular game, one can easily find the values of θ0, θ1, ψ0, ψ1 for which

the success probability becomes maximum.

One can verify that for the games having inconsistent outputs, the quantum suc-

cess probabilities corresponding to the inconsistent input pair are of the form 1
2

cos2 α

and 1
2

sin2 α. So, the maximum quantum success probability for these games having
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inconsistent outputs will be 0.75. This implies that all the nonlocal games having in-

consistent outputs may not offer a quantum advantage (i.e., the maximum quantum

success probability is greater than the maximum classical success probability)1.

7.7 Analysis of the Results in [DPM19]

It is evident from the discussion till now that every binary input binary output two-

party nonlocal game can be represented as a 4-variable Boolean function. One can

also consider the inputs and the outputs separately as 2-variable Boolean functions

for binary input binary output two-party nonlocal games and compose these two

functions to construct 4-variable functions. For example in the CHSH game, the

input function is f(x, y) = x ∧ y and the output function is g(a, b) = a ⊕ b. The

actual function that represents the CHSH game is just the composition of these two

(input and output) functions.

Recently some analysis has been done in this direction in [DPM19] (considering

all the non-constant 2-variable Boolean functions and composing every possible pairs

among them to construct the corresponding 4-variable Boolean functions) to explore

the performance of some 4-variable Boolean functions (or binary input binary output

two-party nonlocal games) as distinguishers for the certification of different dimen-

sional quantum states. As the authors consider only non-constant Boolean functions

in [DPM19], the total number of 4-variable Boolean functions that they have consid-

ered are (222 − 2)× (222 − 2) = 14× 14 = 196. However, there are total 224 = 65536

possible 4-variable Boolean functions. So in [DPM19], only a small fraction of the

games are explored from the class of all possible binary input binary output two-party

nonlocal games.

There are some miscalculations in [DPM19, Table 1] regarding the number of dif-

ferent Boolean functions which we would like to point out here. In Table 1 of [DPM19],

it is mentioned that the total number of function pairs (f, g2) such that each of f(x, y)

and g2(a, b) contains one 0(1) is 32(32). However one can verify that the total number

of such function pairs is actually 16. For a detail analysis corresponding to this result,

one may refer to Proposition 16.

1In this context one should remember that every classical strategy is also a quantum one where
no entanglement is shared between the parties
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Proposition 16. Let gi : Z2×Z2 → Z2 be a Boolean function such that | g−1
i (0) |= 1

where g−1
i (0) = {(x, y) ∈ Z2 × Z2 : gi(x, y) = 0} for i = 1, 2. Let f(x1, x2, x3, x4) =

g1(x1, x2) ∗ g2(x3, x4) where ∗ is a binary operation on Z2. Then given a binary

operation ∗, there are atmost 16 different possibilities for f .

Proof. : Since | g−1
i (0) |= 1, there is (ai, bi) such that gi(ai, bi) = 0 and gi(x, y) = 1 for

(x, y) 6= (ai, bi). Now, for each of the two functions g1 and g2, there are four different

choices that satisfy the above condition namely,

g
(1)
1 (0, 0) = 0 and g

(1)
1 (x, y) = 1 for (x, y) 6= (0, 0) (7.1)

g
(2)
1 (0, 1) = 0 and g

(2)
1 (x, y) = 1 for (x, y) 6= (0, 1) (7.2)

g
(3)
1 (1, 0) = 0 and g

(3)
1 (x, y) = 1 for (x, y) 6= (1, 0) (7.3)

g
(4)
1 (1, 1) = 0 and g

(4)
1 (x, y) = 1 for (x, y) 6= (1, 1). (7.4)

Similarly for g2, there are also four different choices namely,

g
(1)
2 (0, 0) = 0 and g

(1)
2 (x, y) = 1 for (x, y) 6= (0, 0) (7.5)

g
(2)
2 (0, 1) = 0 and g

(2)
2 (x, y) = 1 for (x, y) 6= (0, 1) (7.6)

g
(3)
2 (1, 0) = 0 and g

(3)
2 (x, y) = 1 for (x, y) 6= (1, 0) (7.7)

g
(4)
2 (1, 1) = 0 and g

(4)
2 (x, y) = 1 for (x, y) 6= (1, 1). (7.8)

Thus f(x1, x2, x3, x4) = g
(i)
1 (x1, x2) ∗ g(j)

2 (x3, x4) for some 1 ≤ i, j ≤ 4. As there are

maximum 4 different choices for each of g
(i)
1 and g

(j)
2 for some 1 ≤ i, j ≤ 4, there are

atmost 4× 4 = 16 different choices for f .

It is also mentioned (in [DPM19] Table 1) that the total number of function pairs

such that f(x, y) contains one 0 and g2(a, b) contains one 1 are 6. For this case also,

similar to the derivation performed in the proof of proposition 16, one can verify that

the total number of such function pairs is also 16.

In [DPM19], the authors have proposed the idea of distinguishing different dimen-

sional quantum states with the help of some nonlocal games. In their paper, they

have explored the performance of some two-party nonlocal games in quantum scenario

with the intention of finding those games which provide significant advantage in the

quantum winning probability for different dimensional states. However, the main lim-
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itation in their approach is that they have explored only 196 functions from the set of

65536 possible 4-variable Boolean functions. Because of this limitation, they might

not consider the game which is the most efficient as the dimensionality distinguisher

(i.e., which has the maximum probability difference in the quantum scenario for dif-

ferent dimensional states) among all possible binary input binary output two-party

nonlocal games. In this article, we have considered all those binary input binary

output two-party nonlocal games which have atleast one successful outcome for every

possible input and evaluate their performance both in classical and quantum scenario

(considering the strategy mentioned in Subsection 7.6). However, we haven’t analyzed

anything regarding the performance of those games as dimensionality distinguishers.

7.8 Analysis of the Binary Input Binary Output

Two-party Nonlocal Games

In the current context, we are interested in finding all those two-party binary input

binary output nonlocal games where one can achieve quantum advantage. So far,

CHSH game is the most well known game that offers a separation around 0.1 between

the maximum classical (which is 0.75) and the maximum quantum (which is around

0.853) success probability.

From the definition of the partition introduced in definition 3, one can easily check

that the CHSH game can be represented as a 2 + 2 + 2 + 2 partition based on the

distribution of its outputs. As our main intention is to find out all those games that

offer quantum advantage (with maximum quantum success probability greater than

the existing maximum for the two party scenario, i.e., 0.853), here we consider only

those games for which the number of valid outputs corresponding to each possible

input is non-zero (so that there is a chance of achieving the maximum quantum

success probability greater than 0.853 for random inputs).

For every number of successful outcomes (i.e., the number of 0′s in the output

column of a Boolean function), we first find out all possible partitions of that out-

come and then explore the performance of the games corresponding to each of those

partitions to derive the maximum classical and the maximum quantum success prob-

abilities. For example, the games having 8 successful outcomes (i.e., 8 number of 0′s

in the output column of the Boolean function representation of those games), there
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are four possible partitions such that each input has atleast one successful outcome.

In this section, we first find out all those partitions for every possible number of suc-

cessful outcomes and then analyze the performance of the games corresponding to

each of those partitions according to the techniques mentioned in Subsection 7.5 and

Subsection 7.6.

7.8.1 Games Corresponding to 8 Successful Outcomes

In this subsection, we analyze (in details) the performance of the games corresponding

to all possible partitions for 8 successful outcomes in both classical and quantum

scenario.

Analysis for partition 4 + 2 + 1 + 1:

For this partition of games, there must be a complement input pair (i.e., of the form

xy and xy) either both the inputs have 1 outcome or one input has 1 outcome and the

other input has 2 outcomes. Whenever the two 1 outcomes have a complement input

pair, the strategy corresponding to this input pair must satisfy one output for the

input corresponding to 4 outcomes. Similarly if the 2 outcome and a 1 outcome has

a complement input pair, then the two strategies corresponding to this complement

input pair must satisfy atleast one output for the input having 4 outcomes.

So the minimum classical success probability for all the games of this partition is

0.75. From the discussion in subsection 7.6, one can easily check that the maximum

quantum success probability corresponding to each of the inputs having 4 and 2

outcomes is 1 and for inputs having 1 outcome is 0.5. So, the maximum quantum

success probability for any game of this partition is 1
4
[1 + 1 + 0.5 + 0.5] = 0.75. This

implies that for this partition of games, one can’t achieve any advantage in quantum

scenario. For example, here we consider the following game corresponding to this

partition. For this game, one can easily check that for the strategy a = x and b = 0,

Input Corresponding output

00 00, 01, 10, 11
01 00, 11
10 01
11 10
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the players can win the game with probability 0.75 in classical scenario whereas in

quantum scenario, the maximum quantum success probability is 0.75. This implies

that for this partition of games, there is no chance of getting a quantum advantage.

Analysis for partition 3 + 3 + 1 + 1

For this partition of games, there must be a complement input pair either they have

3 outcomes or one input has 3 and the other has 1 outcome. Let us consider that

the input xy has 3 outcomes. Then for the complement input xy, there are two

possibilities, either xy has 3 outcomes or xy has 1 outcome.

Case 1: Whenever xy has 3 outcomes, one can get nine strategies for xy, xy pair.

As each of the inputs xy and xy must have a complement output pair, according to

the result of theorem 23, these four strategies corresponding to these two complement

output pairs must provide four different outputs for each of the rest two inputs. So

one of these four strategies must satisfy atleast one output for atleast one of the rest

of two inputs. Hence, the minimum classical success probability for all these games is

0.75. This implies that for this partition of games, one can’t achieve any advantage in

quantum scenario. For example, here we consider the following game corresponding

to this partition.

Input Corresponding output

00 00, 10, 11
01 00
10 11
11 00, 10, 11

For this game, one can easily check that for the strategy a = 0, b = 0 or a = 1, b = 1

or a = x, b = y, the players can win the game with probability 0.75 in classical

scenario whereas in quantum scenario, the maximum quantum success probability is

0.75. This implies that for this partition of games, there is no chance of getting a

quantum advantage.

Case 2: Similarly whenever xy has 1 valid outcome, for xy, xy pair one can get

three strategies. Among these three strategies, the two strategies that correspond to

the complement output pair of xy must provide 2 different outputs for each of the

rest two inputs (as mentioned in theorem 23). So one of these two strategies must
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satisfy atleast one output for the rest input having 3 outcomes. Hence, the minimum

classical success probability for this form of game is also 0.75. This implies that for

this partition of games, one can’t achieve any advantage in quantum scenario. For

example, here we consider the following game corresponding to this partition.

Input Corresponding output

00 00, 01, 11
01 00, 10, 11
10 01
11 11

For this game, one can easily check that for the strategy a = 1, b = 1 or a = x, b =

y, the players can win the game with probability 0.75 in classical scenario.

From the discussion of subsection 7.6, one can easily verify that the maximum

quantum success probability for each of the inputs having 3 outcomes is 1 and for each

of the inputs having 1 outcome is 0.5. So, the maximum quantum success probability

for any game of this partition (for equiprobable outcomes) is 1
4
[1+1+0.5+0.5] = 0.75.

It is clear from the analysis that for this partition of games, there is no chance of

getting any advantage in quantum success probability as compared to the classical

one.

A Game for partition 2 + 2 + 2 + 2 having quantum advantage

For this partition of games, each of the four inputs has 2 outcomes. According

to the discussion of subsections 7.5 and 7.6, one can easily check that if none of

the inputs have complement output pair, the maximum quantum success probability

is 0.5. Whenever 1 or 2 inputs have complement output pair (like the discussions

of the previous two partitions), one can easily check that there is no advantage in

quantum success probability. So to achieve quantum advantage, the games must

have complement output for atleast three inputs. For the games having complement

output for three inputs, one can verify that although the maximum quantum success

probability is greater than 0.75, the maximum classical success probability is always

1. A well-known game of this partition having complement output pair for all the

inputs is the CHSH game which offers quantum advantage. Here we consider this

game and analyze its performance in both classical and quantum scenarios.
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Input Corresponding output

00 00, 11
01 00, 11
10 00, 11
11 01, 10

From the strategies mentioned in subsection 7.5, one can easily check that the

maximum classical success probability for this game is 0.75 and one of the strategies

to get this success probability is a = 0 and b = 0.

Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this game is of the form

1

4

[
cos2(θ0 − ψ0) + cos2(θ0 − ψ1) + cos2(θ1 − ψ0) + sin2(θ1 − ψ1)

]
=

1

2
+

1

8
[cos 2α + cos 2β + cos 2γ − cos 2δ]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

Now the cosines can be written as an inner product between two unit vectors.

Suppose,

u0 = cos θ0|0〉+ sin θ0|1〉

u1 = cos θ1|0〉+ sin θ1|1〉

v0 = cosψ0|0〉+ sinψ0|1〉

v1 = cosψ1|0〉+ sinψ1|1〉

Then one can easily check that for all i, j, uivj = cos 2(θi − ψj). So one can rewrite

the above expression as

1

2
+

1

8
[u0v0 + u0v1 + u1v0 − u1v1]

=
1

2
+

1

8
[u0(v0 + v1) + u1(v0 − v1)]

≤ 1

2
+

1

8
(||v0 + v1||+ ||v0 − v1||)

Let us assume, 〈v0, v1〉 = a + ib and 〈v1, v0〉 = a − ib. Then ||v0 + v1|| =
√

2 + 2a

and ||v0 − v1|| =
√

2− 2a. It is easy to check that the expression
√

2 + 2a+
√

2− 2a
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attains maximum value for a = 0 and the corresponding maximum value is 2
√

2 i.e.,

(||v0 + v1|| + ||v0 − v1||) ≤ 2
√

2. So, the maximum quantum success probability for

this form of games is
(

1
2

+ 2
√

2
8

)
= 1

2
+ 1

2
√

2
≈ 0.853.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the game

can be won with probability 0.853 in quantum scenario. Similarly one can show the

same upper bound for some other games of this group for which the maximum classical

success probability is 0.75. Therefore, the maximum separation for this partition of

games is (0.853− 0.75) ≈ 0.103.

A Game for partition 3 + 2 + 2 + 1 having quantum advantage

From the theoretical analysis (similar to the analysis of partition 4 + 2 + 1 + 1 and

3 + 3 + 1 + 1), one can easily check that not all games for this partition can be

won with probability 1 in classical scenario and there are some games for which the

maximum classical success probability is 0.75. From the expressions of quantum

success probabilities of these games, one can easily check that for some of those

games, maximum quantum success probability is greater than the classical one. Here

we consider one of these games and analyze its performance in both classical and

quantum scenarios. From the strategies mentioned in subsection 7.5, one can easily

Input Corresponding output

00 00, 01, 11
01 00, 11
10 01
11 00, 11

check that the maximum classical success probability for this game is 0.75 and one of

the strategies to get this success probability is a = 0 and b = 0.

Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this game is of the form

1

4

[
1

2
+

1

2
cos2 α + cos2 β +

1

2
sin2 γ + cos2 δ

]
=

1

2
+

1

4
[1 + cos 2α + 2 + 2 cos 2β + 1− cos 2γ + 2 + 2 cos 2δ]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).
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One can think of the cosines as the inner products between unit vectors. In that

case, one can rewrite the above as

1

4
[2 +

1

4
(u0v0 + 2u0v1 − u1v0 + 2u1v1)] ≤ 1

4

[
2 +

1

4
[||v0 + 2v1||+ || − v0 + 2v1||]

]

Let us assume, 〈v0, v1〉 = a+ ib and 〈v1, v0〉 = a− ib. Then ||v0 + 2v1|| =
√

5 + 4a

and ||−v0+2v1|| =
√

5− 4a. It is easy to check that the expression
√

5 + 4a+
√

5− 4a

attains maximum value for a = 0 and the corresponding maximum value is 2
√

5 i.e.,

(||v0 + 2v1||+ || − v0 + 2v1||) ≤ 2
√

5.

Hence the maximum winning probability ≤ 1
4

[
2 + 1

4
× 2
√

5
]
≈ 0.78.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the game

can be won with probability 0.78 in quantum scenario. Similarly one can show the

same upper bound for some other games of this group for which the maximum classical

success probability is 0.75. Therefore the maximum separation for this class of games

is (0.78− 0.75) ≈ 0.03.

From this discussion, it is clear that for all the games corresponding to partitions

4 + 2 + 1 + 1 and 3 + 3 + 1 + 1, there are no chances of getting quantum advantage.

But for the partition 2 + 2 + 2 + 2 and 3 + 2 + 2 + 1, there are some games which

provide quantum advantage with a separation around 0.103 and 0.03 respectively. A

summary of these results are mentioned in Table 7.3.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+2+1+1
0.75 0.75 NA
1.0 1.0 NA

3+3+1+1
0.75 0.75 NA
1.0 1.0 NA

2+2+2+2
0.75 0.853 0.103
1.0 1.0 NA

3+2+2+1
0.75 0.78 0.03
1.0 1.0 NA

Table 7.3: Analysis of partitions for 8 successful outcomes
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7.8.2 Games Corresponding to 9 Successful Outcomes

Proceeding to the similar way as the analysis of the 8 successful outcomes, the max-

imum classical and quantum success probabilities that one can achieve for each of

the partitions of the 9 successful outcomes are mentioned in the Table 7.4. From

these results, one can easily check that quantum advantage can be achieved (with a

separation around 0.042) only for some of the games corresponding to the partition

3+3+2+1. For simplicity, here we only consider a game (having quantum advantage)

from the partition 3 + 3 + 2 + 1 and analyze the performance.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+3+1+1
0.75 0.75 NA
1.0 1.0 NA

4+2+2+1 1.0 1.0 NA
3+2+2+2 1.0 1.0 NA

3+3+2+1
0.75 0.792 0.042
1.0 1.0 NA

Table 7.4: Analysis of partitions for 9 successful outcomes

A Game for partition 3 + 3 + 2 + 1 having quantum advantage

From the results of table 7.4, it is clear that for the games having 9 successful out-

comes, quantum advantage can be achieved only for some of the games having par-

tition 3 + 3 + 2 + 1. Here we consider the following game which can’t be won with

certainty in classical scenario.

Input Corresponding output

00 00, 11
01 00, 01, 10
10 11
11 00, 01, 11

From the strategies mentioned in subsection 7.5, one can easily check that the

maximum classical success probability for this game is 0.75 and one of the strategies

to get this success probability is a = 0 and b = 0.
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Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this mentioned game is of the form

1

4
[cos2 α +

1

2
+

1

2
sin2 β +

1

2
+

1

2
cos2 γ +

1

2
cos2 δ]

=
1

4
[2 +

1

4
+

1

4
(2 cos 2α− cos 2β + cos 2γ + cos 2δ)]

where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

One can think of the cosines as the inner products between unit vectors. In that

case, one can rewrite the above as

1

4
[2 +

1

4
+

1

4
(2u0v0 − u0v1 + u1v0 + u1v1)]

≤ 1

4

[
2 +

1

4
+

1

4
(||u0||||2v0 − v1||+ ||u1||||v0 + v1||)

]
Let us assume that 〈v0, v1〉 = (a + ib) and 〈v1, v0〉 = (a − ib). Then one can easily

check that ||2v0 − v1|| =
√

5− 4a and ||v0 + v1|| =
√

2 + 2a. From these expressions,

one can easily calculate that the expression
√

2 + 2a +
√

5− 4a attains maximum

value for a = −1
4

and the corresponding maximum value is
√

6 +
√

1.5. From this,

the maximum winning probability in quantum scenario can be written as,

1

4

[
2 +

1

4
+

1

4
(||u0||||2v0 − v1||+ ||u1||||v0 + v1||)

]
≤ 1

4

[
9

4
+

1

4
× (
√

6 +
√

1.5)

]
≈ 0.792

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the game can

be won with a probability of 0.792 in the quantum scenario. Similarly one can show

the same upper bound for some other games of this group for which the maximum

classical success probability is 0.75. Therefore the maximum separation for this class

of games is (0.792− 0.75) ≈ 0.042.

From this discussion, it is clear that for all the games corresponding to partitions

4 + 3 + 1 + 1, 4 + 2 + 2 + 1 and 3 + 2 + 2 + 2, there are no chances of getting quantum

advantage. But for the partition 3 + 3 + 2 + 1, there are some games which provide

quantum advantage with a separation around 0.042.
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7.8.3 Games Corresponding to 10 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum

classical and quantum success probabilities that one can achieve for each of the par-

titions of the 10 successful outcomes are mentioned in Table 7.5. From this result,

one can easily check that the quantum advantage can be achieved only for some of

the games corresponding to partition 3 + 3 + 3 + 1 with a separation around 0.05.

For simplicity, here we consider one of these games having quantum advantage and

analyze its performance in both classical and quantum scenarios.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+4+1+1 1.0 1.0 NA
4+2+2+2 1.0 1.0 NA
3+3+2+2 1.0 1.0 NA
4+3+2+1 1.0 1.0 NA

3+3+3+1
0.75 0.8 0.05
1.0 1.0 NA

Table 7.5: Analysis of partitions for 10 successful outcomes

A game for partition 3 + 3 + 3 + 1 having quantum advantage

From the results of table 7.5, it is clear that for the games having 10 successful

outcomes, quantum advantage can be achieved only for some of the games having

partition 3 + 3 + 3 + 1. Here we consider the following game which can’t be won with

certainty in classical scenario.

Input Corresponding output

00 00
01 00, 10, 11
10 00, 01, 11
11 01, 10, 11

From the strategies mentioned in subsection 7.5, one can easily check that the

maximum classical success probability for this game is 0.75 and one of the strategies

to get this success probability is a = 0 and b = 0.
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Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this mentioned game is of the form

1

4

[
1

2
cos2 α +

1

2
+

1

2
cos2 β +

1

2
+

1

2
cos2 γ +

1

2
+

1

2
sin2 δ

]
=

1

4

[
5

2
+

1

4
(cos 2α + cos 2β + cos 2γ − cos 2δ)

]
where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

One can easily think of the cosines as the inner products between unit vectors. In

that case, one can rewrite the above expression as

1

4

[
5

2
+

1

4
(u0v0 + u0v1 + u1v0 − u1v1)

]
≤ 1

4

[
5

2
+

1

4
(||u0||||v0 + v1||+ ||u1||||v0 − v1||)

]

Now, ||u0||||v0 + v1||+ ||u1||||v0 − v1|| ≤ ||v0 + v1||+ ||v0 − v1|| ≤ 2
√

2.

Hence the winning probability in quantum scenario ≤ 1
4

[
5
2

+ 1
4
× 2
√

2
]
≈ 0.80.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the game

can be won with a probability of 0.80 in the quantum scenario. Similarly one can show

the same upper bound for some other games of this group for which the maximum

classical success probability is 0.75. Therefore the maximum separation for this class

of games is (0.80− 0.75) ≈ 0.05.

From this discussion, it is clear that for all the games corresponding to partitions

4 + 4 + 1 + 1, 4 + 2 + 2 + 2, 3 + 2 + 2 + 2 and 4 + 3 + 2 + 1, there are no chances

of getting quantum advantage. But for the partition 3 + 3 + 3 + 1, there are some

games which provide quantum advantage with a separation around 0.05.

7.8.4 Games Corresponding to 11 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum

classical and quantum success probabilities that one can achieve for each of the parti-

tions of the 11 successful outcomes are mentioned in the Table 7.6. From this result,

one can easily check that there are no games corresponding to 11 successful outcomes

for which quantum advantage can be achieved.

So for all the games corresponding to 11 successful outcomes, there are no chances

175



Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

4+4+2+1 1.0 1.0 NA
4+3+3+1 1.0 1.0 NA
4+3+2+2 1.0 1.0 NA
3+3+3+2 1.0 1.0 NA

Table 7.6: Analysis of partitions for 11 successful outcomes

of getting any advantage in quantum success probability as compared to the classical

one.

7.8.5 Games Corresponding to 12 or More Successful Out-

comes

One can easily verify that each of the partitions for 12 successful outcomes is an

extension of some partitions corresponding to 11 successful outcomes. As all the

games corresponding to 11 successful outcomes can be won classically with certainty,

there is no chance of getting quantum advantage for any of the games having 12

successful outcomes. Similarly one can also argue the same statement for 13 or more

successful outcomes.

For this reason, the games having 12 or more successful outcomes can’t achieve

quantum advantage.

7.8.6 Games Corresponding to 7 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maxi-

mum classical and quantum success probabilities that one can achieve for each of the

partitions of the 7 successful outcomes are mentioned in the Table 7.7. From these

results, one can easily check that quantum advantage can be achieved only for some

of the games corresponding to partition 2 + 2 + 2 + 1 with a separation around 0.012.

For simplicity, here we consider one of these games having quantum advantage and

analyze its performance.
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Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

3+2+1+1
0.75 0.75 NA
1.0 1.0 NA

2+2+2+1
0.75 0.762 0.012
1.0 1.0 NA

Table 7.7: Analysis of partitions for 7 successful outcomes

A game for partition 2 + 2 + 2 + 1 having quantum advantage

From the results of table 7.7, it is clear that for the games having 7 successful out-

comes, quantum advantage can be achieved only for some of the games having par-

tition 2 + 2 + 2 + 1. Here we consider the following game which can’t be won with

certainty in the classical scenario. From the strategies mentioned in subsection 7.5,

Input Corresponding output

00 00, 11
01 01, 10
10 11
11 00, 11

one can easily check that the maximum classical success probability for this game is

0.75 and one of the strategies to get this success probability is a = 1 and b = 1.

Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this mentioned game is of the form

1

4

[
cos2 α + sin2 β +

1

2
cos2 γ + cos2 δ

]
=

1

4

[
7

4
+

1

4
(2 cos 2α− 2 cos 2β + cos 2γ + 2 cos 2δ)

]
where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

One can easily think of the cosines as the inner products between unit vectors. In

that case, one can rewrite the above expression as

1

4

[
7

4
+

1

4
(2u0v0 − 2u0v1 + u1v0 + 2u1v1)

]
≤ 1

4

[
7

4
+

1

4
(||u0||||2v0 − 2v1||+ ||u1||||v0 + 2v1||)

]
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Let us assume that 〈v0, v1〉 = (a + ib) and 〈v1, v0〉 = (a − ib). Then one can easily

check that ||2v0 − 2v1|| = 2||v0 − v1|| = 2
√

2− 2a and ||v0 + 2v1|| =
√

5 + 4a. From

these expressions, one can easily calculate that the expression 2
√

2− 2a +
√

5 + 4a

attains maximum value for a = −1
2

and the corresponding maximum value is 3
√

3.

From this, the maximum winning probability in quantum scenario can be written as,

1

4

[
7

4
+

1

4
(||u0||||2v0 − 2v1||+ ||u1||||v0 + 2v1||)

]
≤ 1

4

[
7

4
+

1

4
× 3
√

3

]
≈ 0.762

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the game

can be won with a probability of 0.762 in the quantum scenario. Similarly one can

explore that the same upper bound can be achieved for all the other games of this

group for which quantum advantage can be achieved and the maximum classical

success probability is 0.75. Therefore the maximum separation for this class of games

is (0.762− 0.75) ≈ 0.012.

From this discussion, it is clear that for all the games corresponding to partition

3+2+1+1, there are no chances of getting quantum advantage. But for the partition

2+2+2+1, there are some games which provide quantum advantage with a separation

around 0.012.

7.8.7 Games Corresponding to 6 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum

classical and quantum success probabilities that one can achieve for each of the parti-

tions of the 6 successful outcomes are mentioned in the Table 7.8. From these results,

one can easily check that quantum advantage can be achieved only for some of the

games corresponding to partition 3+1+1+1 with a separation around 0.05. Here we

consider one of these games having quantum advantage and analyze its performance

in both classical and quantum scenarios.
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Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

3+1+1+1
0.5 0.55 0.05
0.75 0.75 NA
1.0 1.0 NA

2+2+1+1
0.75 0.75 NA
1.0 1.0 NA

Table 7.8: Analysis of partitions for 6 successful outcomes

A game for partition 3 + 1 + 1 + 1 having quantum advantage

From the results of table 7.8, it is clear that for the games having 6 successful out-

comes, quantum advantage can be achieved only for some of the games having par-

tition 3 + 1 + 1 + 1. Here we consider the following game which can’t be won with

certainty in the classical scenario.

Input Corresponding output

00 00, 01, 10
01 11
10 01
11 10

From the strategies mentioned in subsection 7.5, one can easily check that the

maximum classical success probability for this game is 0.5 and one of the strategies

to get this success probability is a = 0 and b = 1.

Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this mentioned game is of the form

1

4

[
1

2
+

1

2
sin2 α +

1

2
cos2 β +

1

2
sin2 γ +

1

2
sin2 δ

]
=

1

4

[
3

2
+

1

4
(− cos 2α + cos 2β − cos 2γ − cos 2δ)

]
where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

One can easily think of the cosines as the inner products between two unit vectors.

In that case, one can rewrite the above expression as

1

4

[
3

2
+

1

4
(−u0v0 + u0v1 − u1v0 − u1v1)

]
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≤ 1

4

[
3

2
+

1

4
(||u0||||v0 − v1||+ ||u1||||v0 + v1||)

]

Now, ||u0||||v0 − v1||+ ||u1||||v0 + v1|| ≤ ||v0 − v1||+ ||v0 + v1|| ≤ 2
√

2.

Hence the winning probability ≤ 1
4

[
3
2

+ 1
4
× 2
√

2
]
≈ 0.55.

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the

game can be won with a probability of 0.55 in the quantum scenario. Similarly one

can explore that the same upper bound can be achieved for all the other games of

this group for which quantum advantage can be achieved and the maximum classical

success probability is 0.5. Therefore the maximum separation for this class of games

is (0.55− 0.5) ≈ 0.05.

From this discussion, it is clear that for all the games corresponding to partition

2+2+1+1, there are no chances of getting quantum advantage. But for the partition

3+1+1+1, there are some games which provide quantum advantage with a separation

around 0.05.

7.8.8 Games Corresponding to 5 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maxi-

mum classical and quantum success probabilities that one can achieve for each of the

partitions of the 5 successful outcomes are mentioned in the Table 7.9. From these

results, one can easily check that quantum advantage can be achieved for the games

corresponding to partition 2 + 1 + 1 + 1 with a separation around 0.042. Here we

consider one of these games having quantum advantage and analyze its performance

in both classical and quantum scenarios.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

2+1+1+1
0.5 0.542 0.042
0.75 0.75 NA
1.0 1.0 NA

Table 7.9: Analysis of partitions for 5 successful outcomes
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A game for partition 2 + 1 + 1 + 1 having quantum advantage

From the results of table 7.9, it is clear that for the games having 5 successful out-

comes, quantum advantage can be achieved only for some of the games having par-

tition 2 + 1 + 1 + 1. Here we consider the following game which can’t be won with

certainty in the classical scenario.

Input Corresponding output

00 01, 10
01 11
10 01
11 10

From the strategies mentioned in subsection 7.5, one can easily check that the

maximum classical success probability for this game is 0.5 and one of the strategies

to get this success probability is a = 0 and b = 1.

Similarly from the discussion of subsection 7.6, one can easily check that the

expression for quantum success probability of this mentioned game is of the form

1

4

[
sin2 α +

1

2
cos2 β +

1

2
sin2 γ +

1

2
sin2 δ

]
=

1

4

[
5

4
+

1

4
(−2 cos 2α + cos 2β − cos 2γ − cos 2δ)

]
where α = (θ0 − ψ0), β = (θ0 − ψ1), γ = (θ1 − ψ0) and δ = (θ1 − ψ1).

As one can think of the cosines as the inner products between unit vectors, the above

expression can be rewritten as,

1

4

[
5

4
+

1

4
(−2u0v0 + u0v1 − u1v0 − u1v1)

]
≤ 1

4

[
5

4
+

1

4
(|| − 2v0 + v1||+ ||v0 + v1||)

]
Let us assume that 〈v0, v1〉 = (a + ib) and 〈v1, v0〉 = (a − ib). Then one can

easily check that || − 2v0 + v1|| =
√

5− 4a and ||v0 + v1|| =
√

2 + 2a. From these

expressions, one can easily calculate that the expression
√

2 + 2a +
√

5− 4a attains

maximum value for a = −1
4

and the corresponding maximum value is
√

6 +
√

1.5.
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From this, the maximum winning probability in quantum scenario can be written as,

1

4

[
5

4
+

1

4
(|| − 2v0 + v1||+ ||v0 + v1||)

]
≤ 1

4

[
5

4
+

1

4
× (
√

6 +
√

1.5)

]
≈ 0.542

This implies that one can find some values of θ0, θ1, ψ0 and ψ1 for which the game

can be won with a probability of 0.542 in the quantum scenario. Similarly one can

explore that the same upper bound can be achieved for all the other games of this

group for which quantum advantage can be achieved and the maximum classical

success probability is 0.5. Therefore the maximum separation for this class of games

is (0.542 − 0.5) ≈ 0.042. From this discussion, it is clear that for all the games

corresponding to partition 2+1+1+1, there are some games which provide quantum

advantage with a separation around 0.042.

7.8.9 Games Corresponding to 4 Successful Outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum

classical and quantum success probabilities that one can achieve for the partition of

the 4 successful outcomes are mentioned in the Table 7.10. From these results, one

can easily check that there are no games corresponding to 4 successful outcomes for

which quantum advantage can be achieved.

Partitions
Max. classical Max. quantum Corresponding
success prob. success prob. Separation

1+1+1+1
0.5 0.5 NA
0.75 0.75 NA
1.0 1.0 NA

Table 7.10: Analysis of partition for 4 successful outcomes

So for all the games corresponding to 4 successful outcomes, there are no chances

of getting any advantage in quantum success probability as compared to the classical

one.
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7.8.10 Games Corresponding to 3 or Less Successful Out-

comes

One cannot divide 3 or less number of successful outcomes into four parts such that

each part has atleast one outcome. Hence for these class of games, one can easily argue

from the discussion in subsection 7.6 that the maximum quantum success probability

is always less than 0.5 and there is no chance of getting quantum advantage.

No. of Partition A game corr. Max. Corr. Max. Corr. Max.
succ. with to the partition classicalclassicalquant. quantum Sepa-
out- quant. (in ANF form) succ. strategy succ. strategy ration
come advantage prob. prob.

10 3+3+3+1a⊕ b⊕ xy ⊕ xb⊕ ya 0.75 a=0, 0.80 θ0 = 0, θ1 = π
4

0.05
⊕ab⊕ xya⊕ xyb b=0 ψ0 = π

8
, ψ1 = 7π

8

x⊕ a⊕ b⊕ xy ⊕ xa a=0, θ0 = 0, θ1 = 21π
100

9 3+3+2+1⊕xb⊕ ya⊕ yb⊕ xyb 0.75 b=0 0.792 ψ0 = π
8
, ψ1 = 7π

20
0.042

⊕xab⊕ yab⊕ xyab
8 2+2+2+2 a⊕ b⊕ xy 0.75 a=0, 0.853 θ0 = 0, θ1 = π

4
0.103

b=0 ψ0 = π
8
, ψ1 = 7π

8

x⊕ a⊕ xy ⊕ xa a=0, θ0 = 0, θ1 = 7π
50

8 3+2+2+1 ⊕xb⊕ yb⊕ ab 0.75 b=0 0.78 ψ0 = 5π
6
, ψ1 = 7π

100
0.03

⊕xya⊕ xyb⊕ yab
x⊕ y ⊕ a⊕ b a=1, θ0 = 0, θ1 = π

3

7 2+2+2+1 ⊕xa⊕ xb⊕ xya 0.75 b=1 0.762 ψ0 = 2π
25
, ψ1 = 21π

50
0.012

⊕xyb⊕ xab⊕ xyab
6 3+1+1+1 x⊕ y ⊕ xy ⊕ xb 0.5 a=0, 0.55 θ0 = 0, θ1 = π

4
0.05

⊕ab⊕ xya⊕ xyb b=1 ψ0 = 5π
8
, ψ1 = 7π

8

1⊕ a⊕ b⊕ xa a=0, θ0 = 0, θ1 = 21π
100

5 2+1+1+1 ⊕ya⊕ yb⊕ xab 0.5 b=1 0.542 ψ0 = 14π
25
, ψ1 = 17π

20
0.042

⊕yab⊕ xyab

Table 7.11: List of partitions and the corresponding nonlocal games (in ANF form)
which offer quantum advantage.

7.9 Conclusion

In this chapter, we explore the performance of all possible binary input binary output

two-party nonlocal games in terms of partitions of the total number of successful out-

comes to check whether there exist any such games which offer a quantum advantage
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with maximum quantum success probability greater than 0.85. The maximum clas-

sical and the maximum quantum success probabilities for the games corresponding

to each of those partitions are mentioned in Table 7.11. From our analysis, we found

that there are some binary input binary output two-party nonlocal games (other than

the CHSH game) that offer quantum advantage but the CHSH game has the maxi-

mum quantum success probability (also with a maximum separation of around 0.1)

among all these games. Moreover, we also add the characterization of classical strate-

gies to any n-party nonlocal game. However, this chapter does not demonstrate any

quantum advantage for an n-party nonlocal game.
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8
Conclusion

Contents

8.1 Brief Summary & Further Research Directions . . . . . 185

In this concluding chapter, we summarize the preceding ones and draw relevant

conclusions from various aspects explored throughout this thesis. The main emphasis

of this thesis revolves around subjects pertaining to Boolean functions. In this section,

we emphasize our significant contributions, enhancements, and expansions to current

methodologies.

8.1 Brief Summary & Further Research Directions

This thesis enriches this comprehension through five thorough chapters, which we will

summarize below.

- In Chapter 3 we have explored specific constraints associated with Arbiter

PUFs. Our findings reveal that by exhaustively adjusting the delay parame-

ters, an n-length Arbiter PUFs can only produce a negligible portion of Boolean

functions. We also make a combinatorial analysis of Arbiter PUFs and present

several existence and non-existence results in this direction. Then we explore

efficient techniques towards distinguishing whether a Boolean function truth

table can indeed be fabricated through an Arbiter PUF or not. Our efficient

algorithms clearly show that the Boolean functions generated from n-length

Arbiter PUFs are not well sampled from the generic Boolean function class.

185



Further we have looked at autocorrelation in certain restricted sense and pre-

sented relevant results in this direction. It is known that the autocorrelation

property of Boolean functions generated out of Arbiter PUFs is quite biased in

certain cases. Interestingly, here we note that under certain constraints on the

weights of inputs, along with the difference in a specific input bit, such biases

vanish. That is, such a simple model of Arbiter PUFs provide good crypto-

graphic parameters in terms of differential analysis if certain restrictions on the

input challenge pairs are imposed.

- In Chapter 4 we have studied the number of Boolean functions class generated

from the XOR of two PUFs or the XOR of two threshold functions. Among

the two variants of XOR-PUFs, it is shown that the XOR of two n-length

Arbiter PUFs with the same input can generate a significant number of Boolean

functions. However, the other variant can only generate a negligible number of

Boolean functions. In the final part of this chapter, we provide the theoretical

probability of equality of the outputs from the PUF with the combiner function

corresponding to two different inputs. This result motivates us to look into the

class of Boolean functions generated from a PUF via a combiner function. Our

analysis of XOR-PUF presents the following challenges for readers to consider:

1. XOR of n number of Arbiter PUFs of length n can generate all m-variable

Boolean functions such that m ≤ n i.e., Bn−XOR−PUF
m = Bm, where m ≤ n.

2. |Bn−XOR−PUF
n+1 | = 22n+1 − 2.

- In Chapter 5, we have performed analysis on PA-PUF. At first we have de-

veloped the mathematical model of PA-PUF. From the mathematical model

of PA-PUF we started analysing the cryptographic properties of PA-PUF. We

have shown that the set of Boolean functions generated from PUF is a subset

of the set Boolean functions generated from PA-PUF for any length. We have

also proposed an algorithm to determine the set of Boolean functions which is

generated from PA-PUF with length n. Further, we have studied the bias in

the output bit of PA-PUF when certain challenge input bit is flipped. This

chapter focuses on the estimation of the probabilities for two cases (1) when

the sign of last bit is altered, (2) when the sign of second last bit is altered.

We have shown that the randomness in the output bit of PA-PUF is improved
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over the randomness in the output bit of classical PUF. In the final part of this

chapter, we conducted an in-depth analysis of the cryptographic properties of

PA-PUF. Our findings indicate that PA-PUF possesses superior cryptographic

characteristics compared to other existing PUFs, demonstrating greater robust-

ness against modeling attacks. Our analysis on PA-PUF keeps the following

challenges open for the readers:

1. What is the optimal number of paths required in the circuit of PA-PUF

for generating the entire set Bn for every n?

2. Theoretically estimate the Pr[zC = zC̃ ] when the sign of any arbitrary c[i]

is altered, 0 ≤ i ≤ n− 3.

- Then we move towards different applications. In Chapter 6, we have presented

several critical points related to BoolTest [SKŠ17], which is considered to be a

method to evaluate the randomness of a stream of data. In this connection, we

present combinatorial results related to identifying the most suitable Boolean

functions in maximizing the Z-score that could not be achieved in the heuristic

presented for BoolTest [SKŠ17]. Our Algorithm 6 finds the best Boolean func-

tion having the maximum Z-Score in O(N logN) time, given N amount of data.

While we solve certain combinatorial problems related to BoolTest, the caveat

is, this test is not sufficient to conclude on randomness or non-randomness of

a given stream of data. Certain statistical interpretations have been discussed

in [SKŠ17, Section 5], but we believe that this tool needs further evaluation.

For example, one may consider cross-testing based on the generated polynomi-

als from BoolTest [SKŠ17] or by our method that we have discussed in Sec-

tion 6.4.3. Further analysis in this regard might provide a better understanding

of this domain, which we put forward for future research.

- Considering another application, in Chapter 7, we study certain aspects of non-

local games. In particular, identified seven partitions (over all possible games

having at least one successful outcome for each possible input) such that the

games corresponding to those partitions offer a quantum advantage. The max-

imum classical and the maximum quantum success probabilities for the games

corresponding to each of those partitions are mentioned in Table 7.11. We also

mention an example of such a game (in Algebraic Normal Form) for each of

187



those partitions. It is well known that the CHSH game is used to certify un-

trusted devices in the device-independent scenario. It is also known that the

required sample size for device-independent testing is inversely proportional

to the success probability of the corresponding nonlocal game. Although the

maximum success probability for the CHSH game using quantum resources is

less than 1 (around 0.85), so far no other two-party nonlocal game is used for

device-independent testing. To the best of our knowledge, it was also unknown

whether there exists any other binary input binary output two-party nonlocal

game which offers a quantum advantage. To answer all these questions, in this

article, we explore the performance of all possible binary input binary output

two-party nonlocal games in terms of partitions of the total number of successful

outcomes to check whether there exist any such games which offer a quantum

advantage with maximum quantum success probability greater than 0.85. From

our analysis, we found that there are some binary input binary output two-party

nonlocal games (other than the CHSH game) that offer quantum advantage but

the CHSH game has the maximum quantum success probability (also with a

maximum separation of around 0.1) among all these games. Further study for

three (or more) party nonlocal games will be an interesting research work in this

direction. We additionally include the characterization of classical strategies for

any n-party nonlocal game.

However, it is important to note that this chapter does not illustrate any quan-

tum advantage in the context of n-party nonlocal games and that may be con-

sidered in future efforts.

In summary, this thesis wants to make the study of Boolean functions better by

giving us more understanding, new viewpoints, and pointing out things we still don’t

know. We hope that our research will inspire more studies and help make small steps

forward and big discoveries in this interesting area of research.
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