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Chapter 1

Introduction

Let Ank be the affine n-space Spec k[X1, . . . , Xn] over a field k. The complex analytic space

associated to AnC is the Euclidean space Cn, which is topologically contractible. The set of

complex points X(C) of a complex variety X inherits complex analytic topology from the

Euclidean space Cn. Let us denote the topological space X(C) with respect to the complex

analytic topology by Xan. The implicit function theorem [68, Theorem 1.1.11] says that if the

complex variety X is smooth, then Xan is a complex manifold. The smooth projective curves

over C and the compact Riemann surfaces are essentially same [64, Theorem 3.1, Appendix

B] and they are classified by their genus [64, Chapter IV]. A topologically contractible smooth

complex affine variety has trivial Picard group [61, Theorem 1] and has only trivial group of units

[56, Corollary 1.20]. Ramanujam, in his groundbreaking work showed that a smooth complex

surface X is isomorphic to A2
C if and only if Xan is topologically contractible complex manifold

and Xan is simply connected at infinity [108]. He also constructed a smooth complex surface

to show that the topological contractibility is not enough to detect A2
C [108, Section 3].

Suppose Top is the category of the locally contractible topological spaces (sometimes it is

the category of manifolds or the category of the CW complexes, according to the context) and

Ho(Top) is the associated homotopy category. A functor F : Topop → Ab (Ab is the category

of abelian groups, sometimes it will be category of sets, acccording to the context and Topop

is the opposite category of Top) is called I-invariant (I denotes the unit interval [0, 1]) if the

projection map X× I → X induces an isomorphism p∗ : F(X) → F(X× I). There are several
I-invariant functors on Top. A natural question is about the representability of the I-invariant

functors in Ho(Top). The singular cohomology functor Hn(−;G) is I-invariant, where G is an

abelian group. For a topological space X, Hn(X,G) satisfies the Mayer-Vietoris property i.e.

if X is a union of two open subsets U and V , then the sequence

Hn(X;G) → Hn(U ;G)⊕Hn(V ;G) → Hn(U ∩ V ;G)

is exact (note that this property is very similar to the sheaf condition of a presheaf on a

Grothendieck site). The classical Brown representibility establishes the representability of the

1
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singular cohomology in Ho(Top) by the Eilenberg-Maclane spaces K(G,n) [63, Theorem 4.57

and Section 4.E] i.e.

Hn(X;G) ∼= [X,K(G,n)]Ho(Top).

The functor V ectCn(−) of the isomorphism classes of rank n complex vector bundles on the

category of CW complexes is I-invariant and moreover it is representable in Ho(Top) by the

infinite Grassmannian BUn [4, Theorem 8.5.13]. In particular for n = 1 we have,

V ectC1 (X) ∼= [X,CP∞]Ho(Top) ∼= H2(X;Z).

Complex K-theory functor X 7→ K(X) of the stably isomorphism classes of complex vector

bundles over X is I-invariant and if X is a finite CW complex, then K(−) is representable in

Ho(Top) by doubly infinite Grassmannian BU × Z [4, Corollary 9.4.9] i.e.

K(X) ∼= [X.,BU × Z]Ho(Top).

Bott periodicity [4, Appendix B] and Brown representability [63, Theorem 4.58] imply that

complex K-theory spectrum is indeed a reduced cohomology theory. Thus in particular complex

K-theory satisfies Mayer-Vietoris property. This is a topological story.

Let Sm/k be the category of smooth, separated, finite type schemes over an algebraically

closed field k. A presheaf of sets (or abelian groups or groups) F : (Sm/k)op → Ab is called

A1-invariant if the projection map X×kA1
k → X induces an isomorphism F(X) → F(X×kA1

k)

(see also Definition 3.2.1). Serre proved that finitely generated projective modules over a ring

R are the essentially same as the algebraic vector bundles over Spec R, which are infact same

with the locally free sheaf of OSpec R-modules ([116, §50], see also [117]). Any real or complex

vector bundle over a topological contractible space is trivial. Celebrated Quillen-Suslin theorem

is essentially the algebraic version of this, which says that any algebraic vector bundle over Ank
is trivial ([116, Theorem 4], [107]). Inspired by the Quillen-Suslin theorem and the topological

story, Bass-Quillen conjectured that if X is a regular Noetherian affine scheme of finite Krull

dimension, then the projection map X ×Z A1
Z → X induces bijection

V ectr(X) → V ectr(X ×Z A1
Z),

where V ectr(X) denotes the set of all isomorphism classes of algebraic vector bundles of rank

r over a scheme X [83, Section 6, Chapter 8]. Lindel in [85] proved Bass-Quillen conjecture

is true if we restrict to smooth finite type affine k-schemes (see also [106], for a general

version). The Picard group functor which is the isomorphism classes of the algebraic line

bundles, is A1-invariant on Sm/k [64, Proposition 6.6]. More generally, the classical Chow

group functor CH i(−) is A1-invariant on Sm/k [55, Theorem 3.3]. Classical Chow group

(more generally, Bloch’s higher Chow groups) shares similar properties as singular cohomology



Chapter 1. Introduction 3

on topological spaces. Bloch’s higher Chow group functor is A1-invariant and satisfies Mayer-

Vietoris property in Zariski topology ([23, Theorem 2.1], [86, Theorem 3.3], see also [24], ).

For X is a smooth complex projective variety, there is a map η : CH i(X) → H2i(X,Z) which
gives the fundamental class map

η : CH∗(X) → H∗(X,Z).

The map η takes the intersection products to the cup products ([52, Appendix C.2], [55,

Chapter 19]). If X is the projective n-space PnC, then η is an isomorphism. The Grothendieck

group K0(X) of the stably isomorphism classes of algebraic vector bundles over X ∈ Sm/k

is A1-invariant on Sm/k. In general, Quillen’s higher K-groups Kn(X) is A1- invariant [129,

Lemma 12.8]. Thomason-Trobaugh proved that algebraic K-theory satisfies Nisnevich descent,

equivalently algebraic K-theory satisfies Mayer-Vietoris property in the Nisnevich topology ([122,

Theorem 10.8], see also [129, Section 10, Chapter V]) i.e. for an elementary distinguished square

in Definition 2.2.2, the induced square of simplicial sets

K(X) K(U)

K(V ) K(U ×X V )

is homotopy cartesian.

A1-homotopy theory, constructed by Morel and Voevodsky [94], is a way where we can apply

the algebraic topology techniques in algebraic geometry. The homotopy category of topological

spaces is constructed (or homotopy category of CW complexes or manifolds) making the unit

interval equivalent to point. The topological contractibility of the unit interval [0, 1] is given by

the multiplication map which is a homotopy equivalence

θ : I × I → I defined as (x, y) 7→ xy.

The multiplication map µ on the affine line A1
k is a morphism of varieties

µ : A1
k ×k A1

k → A1
k

. The 0-section and the 1-section of µ are the identity map and the constant map respectively.

Extending the category Sm/k to the category of spaces∆opPSh(Sm/k) and using the standard

model category techniques to invert the projection maps X×kA1
k → X and the Nisnevich local

weak equivalences, Morel-Voevodsky constructed the unstable A1-homotopy category H(k). In

H(k), naturally by the construction X and X ×k A1
k are isomorphic, for every X ∈ Sm/k. In

particular, the affine line A1
k is equivalent to the point Spec k in H(k). The isomorphism classes

of algebraic vector bundles of rank n over an affine scheme X ∈ Sm/k is representable in H(k)



4 Chapter 1. Introduction

by infinite Grassmannian ([93, Theorem 8.1], [123, Theorem 6.22], [12, Theorem 1]). The

infinite projective space P∞
k represents the Picard group functor [94, Proposition 3.8, Section

4] i.e.

Pic(X) ∼= HomH(k)(X,P∞
k ).

In H(k), the algebraic K-theory Kn(−)’s is representable by doubly infinite Grassmannian ([94,

Theorem 3.13, Section 4], see also [124, Remark 2]). There are the motivic Eilenberg-Maclane

spaces K(p, q, A) that represent the motivic cohomology in H(k) [127, Theorem 2]. Therefore

the Bloch’s higher Chow group is representable in H(k) [96, Lecture 17]. Motivic homotopy

theory has successfully applications in algebraic geometry and number theory. It has been used

to prove the Bloch-Kato conjecture and the norm residue isomorphism in characteristic 2 ([125],

[126]). Motivic homotopy theory has been successfully used to obtain the geometric versions

of the Grothendieck conjecture and the Konstevich-Zagier conjecture ([17], [18], [19], see also

[21]) On the other hand, this new homotopical algebraic geometry gives us new insights in

classical questions of algebraic topology ([50], [71]).

Characterisation problem is one of the central problems in affine algebraic geometry ([82]).

There is also a topological story. The only topologically contractible open manifolds over R are

the real line and the real plane in dimensions 1 and 2 respectively. However for n ≥ 3, there

are topologically contractible open manifolds over R in dimension n that are not homeomorphic

to Rn ([130], [58]). The algebro-geometric picture goes in the similar way. The affine line

A1
k is the only A1-contractible smooth affine curve over a field k [6, Theorem 5.4.2.9]. Asok-

Doran constructed infinitely many A1-contractible smooth varieties of dimension n ≥ 4, which

are the quotients of Ank ’s by a suitable Ga-action [9, Theorem 5.1, Theorem 5.3]. However,

these exotic A1-contractible varieties, constructed by Asok-Doran are strictly quasi-affine. The

Koras-Russell threefolds of the first kind are also exotic A1-contractible varieties ([45, Theorem

1.1], [65, Theorem 4.2], [54, Theorem 9.9]). In dimension n ≥ 4, no example of smooth A1-

contractible affine k-varieties is known so far. The Ramanujam surface [108, Section 3] and the

tom Dieck-Petrie surfaces [46, Theorem A] are topologically contractible but not isomorphic

to A2
C. In this situation, it is natural to ask whether A2

k is the only A1-contractible variety of

dimension 2 [6, Conjecture 5.5.2.3]. In this thesis we prove the following theorem which is the

main theorem in this thesis.

Theorem 1.0.1. (see Theorem 8.1.1) An A1-contractible smooth affine surface over a field k

of characteristic zero is isomorphic to the affine plane A2
k.

The study of the classification of varieties using the A1-homotopy types was initiated by Asok

and Morel [11]. Asok-Morel proved that upto A1-weak equivalence, the only rational smooth

proper surfaces over the field k are P1×P1, P2 or blow up of P2 at the finitely many points [11,

Theorem 3.2.1]. They introduced A1-chain connectedness of a variety X ∈ Sm/k, which is
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very similar to the notion of path connectedness of a topological space. The A1-chain connected

component sheaf πch0 (X) associated to X ∈ Sm/k is related to the A1-connected component

sheaf πA
1

0 (X) (see Definition 2.2.11 and Definition 2.2.10). A variety X is A1-connected if it is

A1-chain connected i.e. for every finitely generated separable field extension F/k, the section

πch0 (X)(Spec F ) is trivial which means that any two F -points of X can be joined by a chain

of A1
F ’s in X. They proved a smooth proper scheme X ∈ Sm/k is A1-connected if and only

if it is A1-chain connected ([11, Theorem 2], see also [26, Corollary 3.10]). Near rationality

property of a smooth proper variety is related to its A1-connectedness. The A1-connectedness

is a birational property of a smooth proper variety over the field of characteristic zero [11,

Corollay 2.4.6]. In particular, an A1-connected proper surface over a field of characteristic zero

is rational. Infact any A1-connected surface over the field of characteristic zero is rational

(see Theorem 5.2.1). Asok-Morel and Kahn-Sujatha proved that any retract k-rational proper

variety is A1-chain connected ([11, Theorem 2.3.6], [72, Theorem 8.5.1 and Theorem 8.6.2])

and this result is recently improved by Balwe-Rani [34, Theorem 1.1]. The A1-connected

component of a variety plays a crucial role in determining the existence of A1’s in a variety. In

[26, Definition 3.2], Balwe-Hogadi-Sawant introduced the notion of A1-ghost homotopy. They

extended Asok-Morel’s A1-chain connected component of a variety to a general sheaf F on

Sm/k and they considered the n-th iteration Sn(F). The sheaf Sn(F) carries the data of n-

A1−ghost homotopies. They defined the universal A1-invariant sheaf L(F) by taking colimits

of Sn(F)’s [26, Theorem 2.13]. Though A1-connectedness of a smooth variety X does not

imply that any two F -points ofX are naively A1-homotopic, however ifX is A1-connected, then

any two F -points of X are n-A1-ghost homotopic [26, Corollary 2.18]. More generally, Balwe-

Rani-Sawant showed that the section πA
1

0 (X)(Spec F ) agrees with the section L(X)(Spec F ),

for any finitely generated separable field extensions F/k ([33, Theorem 2.2], see also Corollary

3.3.9). From this, it is tempting to think that πA
1

0 (X) is A1-invariant for X ∈ Sm/k. However,

Ayoub constructed a space X for which πA
1

0 (X ) is not A1-invariant [20]. In this thesis, we

study the A1-connected component sheaf of a smooth variety in great detail.

The successive works of Balwe-Hogadi-Sawant and Balwe-Sawant have established the use-

fulness of the ghost homotopy techniques in computing the A1-connected components of a

smooth variety. Using ghost homotopy techniques, Balwe-Hogadi-Sawant [26, Corollary 3.10]

gave a different proof of Asok-Morel’s result [11, Theorem 2] on the comparison of the A1-

chain connected component and the A1-connected component of a smooth proper variety [26,

Corollary 3.10]. The A1-connected component and A1-chain connected component agree for

a non-uniruled proper k-surface [26, Corollary 3.15] and they agree over the sections of the

Henselian local schemes of dimension ≤ 1 ([30, Theorem 1], see also [29]), in case of a bira-

tionally ruled proper surface over a field of characteristic zero. The ghost homotopy techniques

has beautiful application in determining the A1-connected component of a reductive algebraic

group over a field of characteristic zero ([31, Theorem 3.4], [32, Theorem 2], see also [28,

Theorem 1.3]), which was known to be A1-invariant [37, Corollary 4.18]. Balwe-Hogadi-Sawant
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proved that the A1-connectedness of a smooth proper variety over an algebraically closed field k

is equivalent to the fact that the generic point can be joined to a k-rational point by a chain of

P1’s [27, Corollary 2.4], which improves the Asok-Morel’s result [11, Theorem 2.4.3]. Using the

beautiful idea of ghost homotopy, we prove that the A1-connectedness of a smooth variety is

indeed very much related to the existence of affine lines in the variety. We prove the following:

Theorem 1.0.2. (see Theorem 6.1.2) An A1-connected smooth variety over an algebraically

closed field k is A1-uniruled.

The above theorem immediately implies the following corollary:

Corollary 1.0.3. (see Corollary 6.1.3) An A1-connected smooth variety over an algebraically

closed field k of characteristic zero has negative logarithmic Kodaira dimension.

This is a result in the interface of A1-homotopy theory and birational geometry. The

existence of the family of affine lines plays crucial role in the characterisation of the affine

plane. In case of a smooth affine surface over an uncountable algebraically closed field k of

characteristic 0, the properties of being A1-uniruled, A1-ruled and the negativity of logarithmic

Kodaira dimension are equivalent ([80, Theorem 1.1] [91, §4, §5]). The logarithmic Kodaira

dimension and existence of affine lines in a surface play a crucial role in studying the homology

planes ([60], [90], [62]). Miyanishi proved the following algebraic characterisation of the affine

plane which is a fundamental result in affine algebraic geometry:

Theorem 1.0.4. [92, Section 4.1] A smooth affine surface X = Spec A over an algebraically

closed field k field of characteristic zero is isomorphic to the affine plane A2
k if and only if A is

a U.F.D. with only trivial units and X has negative logarithmic Kodaira dimension.

Using the algebraic characterisation, we prove the main theorem in this thesis (Theorem

8.1.1). The key ingredient is the negativity of the logarithmic Kodaira dimension which we

deduce from the A1-connectedness.

There is a topological realisation functor H(C) → Ho(Top) which takes a complex variety

X ∈ Sm/C to X(C) with respect to the complex analytic topology [43, Proposition 8.3].

Therefore an A1-contractible complex variety is always topologically contractible. However our

main theorem implies that converse is not true.

Corollary 1.0.5. (See Corollary 8.1.4) There are topologically contractible smooth complex

surfaces which are not A1-contractible. For example, the Ramanujam surface [108, Section 3],

the tom Dieck-Petie surfaces [46, Theorem A] are not even A1-connected.

To study A1-connected component sheaf πA
1

0 (X) associated to a proper schemeX ∈ Sm/k,

Asok-Morel introduced a birational, A1-invariant sheaf πbA
1

0 (X) [11, Section 6.2]. There are

canonical morphisms

πch0 (X) → πA
1

0 (X) → πbA
1

0 (X).



Chapter 1. Introduction 7

They proved that each of the canonical morphisms induces bijections over the sections Spec F ,

for every finitely generated separable field extensions F/k [11, Proposition 6.2.6]. We proved

that the sheaf πbA
1

0 (X) is related to a homotopy theory on the category of spaces. It is the

connected component sheaf of X in the birational model structure. We denote the connected

component sheaf of X ∈ Sm/k by πb0(X) in the birational model structure (Definition 4.2.2).

Theorem 1.0.6. (Theorem 4.2.3) Suppose, X is a smooth proper scheme over a field k. Then

the canonical morphism η : πbA
1

0 (X) → πb0(X) is an isomorphism.

Poincarè conjecture is one of the classical questions in algebraic topology. The topological

classification of compact surfaces [97, Theorem 5.1, Chapter 1] or the classical Uniformaization

theorem of Riemann Surface ([2, Section 5], see also [1, Theorem 1.7.2], for existence of complex

strucure in an oriented closed 2-manifold) tells us that any simply-connected closed 2-manifold

is homeomorphic to the sphere. The Poincaré conjecture says that a simply connected closed

three manifold is homeomorphic to the 3-sphere. The generalised Poincaré conjecture says that

if a closed n-manifold has the homotopy type of the n-sphere in Rn+1, then is homeomorphic

to the n-sphere. The successive works of Smale [114], Fredman [53] and Hamilton-Perelman

([103], [104], [105]) established the affirmative solution to the generalised Poincaré conjecture.

The Poincaré conjecture is a particular case of the Thurston’s geometrization conjecture, which

describes the fundamental geometries of a closed oriented 3-manifold and this was also proved

by groundbreaking works of Perelman (see [35]).

There are two kinds of circles in H•(k): one is the simplicial circle S1
s , which is defined to

be the quotient of ∆1 by its boundary and the other is the Tate circle S1
t , which is defined to

be the multiplicative group Gm, pointed by 1 [94, Section 3.2]. The motivic spheres in H•(k)

are the smash products of the copies of S1
s and the copies of S1

t :

Si,j := Si−js ∧ Sjt ,

where Sps and Sqt are the smash product of p-many copies of S1
s and the q-many copies of S1

t

respectively. These motivic spheres are analogous to the spheres in algebraic topology. The

quasi-affine varieties Ank \ {(0, . . . , 0)} are the mixed motivic spheres in H•(k) [94, Example

2.20, Section 3.2]:

Ank \ {(0, . . . , 0)} ∼= Sn−1
s ∧ Snt = S2n−1,n in H•(k).

There is smooth affine (2n− 1)-dimensional variety Q2n−1

Q2n−1 := Spec(k[x1, . . . , xn, y1, . . . , yn]/(
n∑
i=1

xiyi − 1))
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which is isomorphic to Ank \ {(0, . . . , 0)} in H•(k) [7, Theorem 2]. Thus Ank \ {(0, . . . , 0)} has

A1-homotopy type of a smooth affine (2n − 1)-fold. There is 2n-dimensional smooth affine

variety Q2n

Q2n := Spec(k[x1, . . . , xn, y1, . . . , yn, z]/(
n∑
i=1

xiyi − z(1 + z))

such that Q2n is isomorphic to the mixed motivic sphere Sns ∧ Snt in H•(k) [7, Theorem 2].

More generally for a smooth affine k-variety X, the space Sis ∧ Sit ∧X has A1-homotopy type

of a smooth affine k-variety [8, Theorem 4]. However, there is no smooth affine k-variety X

isomorphic to Sis ∧ S
j
t in H•(k), for i > j [7, Proposition 4]. Moreover, Asok-Doran-Fasel also

conjectured that for i < j − 1, Sis ∧ S
j
t can not be A1-weakly equivalent to a smooth k-variety.

It is natural to ask that whether a pointed smooth k-variety X of dimension n, A1-weakly

equivalent to Ank \ {(0, . . . , 0)}, is isomorphic to Ank \ {(0, . . . , 0)} as k-varieties i.e.

Question 1.0.7. Suppose X is an n-dimensional smooth variety. If X ∼= S2n−1,n in H•(k),

then is X isomorphic to Ank \ {(0, . . . , 0)}?

In dimension 1, any smooth curve which is A1-weakly equivalent to A1
k \ {0}, is isomorphic

to A1
k \ {0} (see Theorem 9.1.1). In dimension 2, we prove that over a field k of characteristic

zero A2
k \{(0, 0)} is the only open k-subvariety of a smooth affine k-surface, which is A1-weakly

equivalent to the mixed motivic sphere S3,2.

Theorem 1.0.8. (see Theorem 9.1.2) Suppose X is a smooth affine surface over a field k of

characteristic zero and U ⊂ X is a non-empty open subscheme. Suppose that U is A1-weakly

equivalent to A2
k \ {(0, 0)}. Then U is isomorphic to A2

k \ {(0, 0)} as k-varieties.

However, there are smooth quasi-affine threefolds which are A1-weakly equivalent to the

mixed motivic sphere S5,3 but not isomorphic to A3
k \ {(0, 0, 0)}. We prove the following

theorem.

Theorem 1.0.9. (see Theorem 9.2.3) Suppose X is a Koras-Russell threefold of the first kind

and p = (1, 0, 1, 0) is a k-rational point of X. Then X \ {p} is A1-weakly equivalent to

A3
k \ {(0, 0, 0)}, but X \ {p} is not isomorphic to A3

k \ {(0, 0, 0)}.

1.0.1 Arrangement of the Thesis

In Chapter 2 we discuss about the background materials in this thesis. In Section 2.1, we recall

about the model categories. In Section 2.2, we recall the construction of the Morel-Voevodsky’s

A1-homotopy category H(k) and some of its properties. We recall Voevodsky’s construction

of the triangulated category of geometric motives DMgm(k,Z) over a field k and some of
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its properties in Section 2.3. In Section 2.4, we recall the A1-derived category DA1(Ab(k)),
constructed by Morel and the A1-homology sheaves.

In Chapter 3 we discuss about the A1-invariance of the A1-connected component sheaf

πA
1

0 (X ), of a space X over k. In Section 3.1, we recall the A1-rigid schemes (Definition 3.1.1),

which are A1-invariant representable sheaves, along with their properties. A k-variety X has

a local base of A1-rigid schemes at every points (Lemma 3.1.4). In Section 3.2, we review

on Morel’s Conjecture about the A1-invariance of πA
1

0 (X ) and recall Balwe-Hogadi-Sawant’s

universal A1-invariant sheaf L(F), associated to a sheaf F (Subsection 3.2.2). In Section 3.3,

we prove that the canonical surjection

πA
1

0 (X )(Spec F ) → L(πA1

0 (X ))(Spec F )

is a bijection, for every finitely generated separable field extension F/k (see Corollary 3.3.9).

In Section 3.4, we provide some equivalent criterias on the A1-invariance of πA
1

0 (X ) (Theorem

3.4.7).

In Chapter 4, we define the birational model structure on the category of spaces over k

(Proposition 4.2.1). In Proposition 4.2.7, we prove that the birational model structure is indeed

the left Bousfield localisation of the A1-model structure on the category of spaces over k

at the class of the birational morphisms (see also Remark 4.2.8). We prove that the Asok-

Morel’s birational and A1-invariant sheaf πbA
1

0 (X), associated to a proper scheme X ∈ Sm/k

is isomorphic the connected component sheaf of X in this birational model structure. We prove

this in Theorem 4.2.3, which is the main theorem in this chapter.

Chapter 5 and Chapter 6 are the main chapters that provide the key ingredient to prove

the main theorem (Theorem 8.1.1) in this thesis. In these two chapters we establish the fact

that A1-connectedness of a smooth variety X over an algebraically closed field is related to

the existence of affine lines in X. In Section 5.1, we recall several kinds of varieties containing

the images of affine lines and how they are related to the negativity of the logarithmic Kodaira

dimension. In Section 5.2, we prove that if a surface is A1-connected, then it is dominanted

by images of A1 (Theorem 5.2.8, see Definition 5.1.1). In Theorem 6.1.2, we prove that any

A1-connected variety is A1-uniruled. Therefore if X is A1-connected and the base field k is of

characteristic zero, then X has negative logarithmic Kodaira dimension (Corollary 6.1.3). In

Proposition 6.2, we prove that if X is a smooth affine k-surface with πA
1

0 (X)(Spec k) is trivial,

then either X contains a dominant family of affine lines or through every k-rational point there

is an A1 in X along with two interesecting A1’s in X. We end Chapter 6 with some comments

on the behaviours of the A1-connected component sheaf of an affine surface X over the field

of positive characteristic with the geometric properties of X (Subsection 6.2.1).

The main result in Chapter 7 is Corollary 7.2.5, where we prove that if X is a smooth

affine k-surface with πA
1

0 (X)(Spec k) is trivial and Sing∗(X)(Spec k) is Kan fibrant in degree

2, then X has negative logarithmic Kodaira dimension. We derive this result as a corollary of

Proposition 6.2. A simplicial set is Kan fibrant in degree n if any l-th horn Λnl can be filled to an
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n-simplex (see Definition 7.2.1). Since Ank is an affine group scheme, Sing∗(Ank)(U) is simplicial

abelian group for every U ∈ Sm/k, thus it is Kan fibrant [98, Definition 1.3]. In section 7.1

using [100, Theorem 3.1], we provide explicit formulas of horn filling of Sing∗(Ank)(U) (see

Subsection 7.1.1) and using the formulas we prove that Sing∗(Amk )(U) is Kan fibrant in degree

2, for every U ∈ Sm/k (see Lemma 7.2.3).

In Chapter 8, we prove the main theorem in this thesis. In Theorem 8.1.1, we prove that the

affine plane A2
k is the only A1-contractible smooth affine surface over any field k of characteristic

zero. Theorem 8.1.3 is a consequence of the main theorem, which says that a topologically

contractible smooth complex surface is isomorphic to the complex affine plane if and only if it is

A1-connected. This gives Corollary 8.1.5 which establishes that for a smooth complex surface

A1-contractibility is indeed a stronger notion than the topological contractibility. In particular,

there are complex surfaces X such that the motive M(X) ∼= Z in DMgm(C,Z), but X is not

A1-contractible (Corollary 8.1.7). In Corollary 8.1.10, we provide characterisations of A3
k and

A4
k, as immediate consequences of the main theorem. In Subsection 8.1.1, we recall the locally

nilpotent derivation on a k-algebra and as a corollary of the main theorem we prove that a

smooth affine threefold over a field of charactertic zero is isomorphic to A3
k if and only if it is

A1-contractible and it has a locally nilpotent derivation with a slice (Corollary 8.1.13). In [111]

Sathaye proved the following characterisation of the affine plane over a discrete valuation ring

of equicharacteristic zero:

Theorem 1.0.10. [111, Theorem 1] Let R be a discrete valuation ring (i.e. R is a Noetherian

local domain of dimension 1 with the maximal ideal is principal) of equicharacteristic zero with

the residue field and the field of fractions are k and K respectively. Suppose that A is an affine

R-domain such that A⊗R k ∼= k[x, y] and A⊗RK ∼= K[x, y]. Then A is isomorphic to R[x, y]

as R-algebras.

Using Sathaye’s theorem we obtain the following characterisation of A2
R as a consequence

of the main theorem in Subsection 8.1.2:

Theorem 1.0.11. (see Theorem 8.1.14) Let R be a discrete valuation ring of equicharacteristic

zero and X be a smooth affine scheme over R of relative dimension 2. Then X is A1-contractible

if and only if X is isomorphic to A2
R.

In [3, Theorem 5.1] Asanuma constructed an affine R-domain, where R is a discrete val-

uation ring with the residue field is of positive characteristic, such that the base extensions of

A over the residue field and the fraction field of R are the polynomial rings in two variables

and also A[t] ∼= R[x, y, z], but A is not isomorphic to R[x, y]. This example of Asanuma’s

pseudopolynomial domain shows that Theorem 8.1.14 is not true in case of discrete valuation

ring of not equicharacteristic zero (see Remark 8.1.15).

In Chapter 9, the main theorem is Theorem 9.1.2 where we prove that if U is an open

subscheme of a smooth affine k-surface, where k is any field of characteristic zero and U is

A1-weakly equivalent to A2
k \ {(0, 0)}, then U is isomorphic to A2

k \ {(0, 0)}. However, this is
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not true in dimension 3. In Theorem 9.2.3, we prove that if X is a Koras-Russell threefold of

the first kind, then X \ {p}, where p = (1, 0, 1, 0) is the k-rational point of X, is A1-weakly

equivalent to A3
k \ {(0, 0, 0)}, but X \ {p} is not isomorphic to A3

k \ {(0, 0, 0)}.
In Chapter 10, we define an algebraic invariant Och(X) associated to an affine k-variety X.

The ring Och(X) consists the regular functions on X that are constant along every affine lines in

X (see Definition 10.1.1). The ring Och(X) is related to the classical Makar-Limanov invariant

of X (Proposition 10.2.6, see also [54, Section 2.5]). Unlike the Makar-Limanov invariant,

Och(−) is a functorial invariant and the projection map X ×k A1
k → X induces isomorphism

(Proposition 10.2.7)

Och(X) → Och(X ×k A1
k),

however Och(−) is not representable in the A1-homotopy category H(k) (see Lemma 10.2.15).

The ring Och(X) detects the affine lines in X. A smooth affine k-surface X with O(X) is

a U.F.D. has dense set of affine lines if and only if Och(X) = k (see Theorem 10.2.5). In

Proposition 10.2.10, we prove that

Och(X) = HomSh(Sm/k)(S(X),A1
k),

as k-subalgebras of O(X). In Theorem 10.2.19 we prove a straightforward characterisation of

the affine k-plane using this invariant Och(−).

In the final chapter (Chapter 11), we define an universal A1-invariant sheaf of abelian groups

HA1-naive
0 (X) associated to a scheme X ∈ Sm/k (see Definition 11.1.2). It is universal in the

sense that given any morphism from X to an A1-invariant sheaf of abelian groups G uniquely

factors through HA1-naive
0 (X) (Remark 11.1.3). Thus we have a canonical morphism

HA1-naive
0 (X) → HA1

0 (X).

In Theorem 11.1.5, we give several equivalent descriptions of HA1-naive
0 (X), for example it

is isomorphic to the universal A1-invariant sheaf L(Z(X)) (Proposition 11.1.4). In Corollary

11.1.6, we prove that if X is A1-connected, then HA1-naive
0 (X) isomorphic to the constant sheaf

Z. In Section 11.2, we describe some useful properties of HA1-naive
0 (X), for a proper scheme

X ∈ Sm/k. In Theorem 11.2.11, we prove that if X ∈ Sm/k is a proper scheme, then the

canonical morphism

η : Z(πA
1

0 (X)) → HA1-naive
0 (X)

is an isomorphism of abelian groups, over the sections of every finitely generated separable field

extension F/k. As a consequence in Corollary 11.2.12 we prove that a proper scheme X is

A1-connected if and only if HA1-naive
0 (X) is isomorphic to the constant sheaf Z. There is a

canonical morphism

θ : HA1-naive
0 (X) → Z(πbA

1

0 (X)),

for a proper scheme X ∈ Sm/k and in Corollary 11.2.14 we prove that θ induces isomorphism
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over the sections of every finitely generated separable field extensions F/k. As a consequence

we have the canonical morphism induces isomorphism

HA1-naive
0 (X)(Spec F ) → HA1

0 (X)(Spec F ),

for every finitely generated separable field extension F/k (see Remark 11.2.15).



Chapter 2

A1-homotopy theory: An Introduction

In this chapter we briefly recall the materials we use throughout the thesis. The main section

in this chapter is Section 2.2, where we recall the A1-homotopy category H(k), constructed by

Fabien Morel and Vladimir Voevodsky [94]. We also recall the model categories in Section 2.1.

In Section 2.3 we recall Voevodsky’s triangulated category of effective geometric motives over

a field k from [96, Lecture 20], which we will use in the proof of Theorem 9.1.2. In Section

2.4, we recall the A1-derived category and the A1-homology sheaves from [93, Section 6.2]. In

Chapter 11, we define universal A1-invariant sheaf of abelian groups HA1-naive
0 (X) associated

to X ∈ Sm/k, which is related to the 0-th A1-homology sheaf.

2.1 Model Categories

In this section we recall the model categories and the left Bousfield localisation. We refer [66],

[67] and [87, Appendix] for the detailed discussion on the model categories.

Definition 2.1.1. Suppose, M is a category having small limits and small colimits and M is

equipped with three classes of morphisms called weak equivalences, cofibrations and fibrations

respectively. The category M along with the three classes of morphisms is called a model

category if M satisfies the following:

1. If f, g are composable morphisms in M and any two of f, g, g ◦ f are weak equivalences,

then the rest one is also a weak equivalence M.

2. If a morphism g : X ′ → Y ′ is a retract of a morphism f : X → Y and f is a weak

equivalence, cofibration or fibration, then g is also a weak equivalence, cofibration and

fibration respectively i.e. if there is a commutative diagram

X ′ X X ′

Y ′ Y Y ′

i

g

r

f g

i′ r′

13



14 Chapter 2. A1-homotopy theory: An Introduction

such that r ◦ i and r′ ◦ i′ are the identity maps and if f is a weak equivalence, cofibration

or fibration, then so is g.

3. The cofibrations have left lifting property with respect to the trivial fibrations (a morphism

is called a trivial fibration if it is a fibration as well as a weak equivalence) i.e. the following

commutative diagram

A B

C D

q p

has a lift (dotted arrow exists), where p is trivial fibration and q is cofibration.

4. The fibrations have right lifting property with respect to the trivial cofibrations (a mor-

phism is called a trivial cofibration if it is a cofibration as well as a weak equivalence) i.e

the following commutative diagram

A B

C D

q p

has a lift, where q is trivial cofibration and p is a fibration.

5. There are functorial factorisations of any morphism f as

f = α(f) ◦ β(f) = γ(f) ◦ δ(f)

such that α(f) is a fibration, β(f) is a trivial cofibration and γ(f) is a trivial fibration,

δ(f) is a cofibration.

There are cofibrant and fibrant replacement functors Q : M → M and R : M → M
respectively. Given a model category M, there is an associated homotopy category Ho M
which has objects same as M and morphisms

HomHo M(X,Y ) = HomM(QX,RY )/ ∼,

where HomM(QX,RY )/ ∼ is the homotopy class of morphisms from QX to RY . There is a

localisation functor γ : M → Ho M. The category Ho M is indeed the localisation of M at

the class of weak equivalences [57, Chapter 1].

Example 2.1.2. 1. The category of simplicial sets ∆opSets is a model category with respect

to the weak equivalences defined as the weak equivalences of simplicial sets, fibrations

are defined as the Kan fibrations and the cofibrations are defined as the monomorphisms.

2. The category ∆opPSh(C) of simplicial presheaves on a small category C is a model

category in which a morphism X → Y is a weak equivalence and fibration if the morphism
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X (C) → Y(C) is a weak equivalence and a Kan fibration of simplicial sets respectively, for

every C ∈ C. The cobfibrations are the maps having left lifting property with respect to

the trivial fibrations. This model structure is called the global projective model structure

on ∆opPSh(C). We will come again about this model structure in the next section.

3. The category ∆opPSh(C) admits global injective model structure in which a morphism

X → Y is a weak equivalence and cofibration if the map X (C) → Y(C) between simplicial

sets is a weak equivalence and monomorphisms respectively, for every C ∈ C. The

fibrations are the maps having right lifting property with respect to the trivial cofibrations.

Definition 2.1.3. A functor F : M → N between the model categories is called a left Quillen

functor if F preserves cofibrations and trivial cofibrations. The left Quillen functor F induces

total left derived functor Ho F : HoM → Ho N defined as X 7→ F (QX). Similarly a functor

G : N → M between model categories is called a right Quillen functor if G preserves fibrations

and trivial fibrations. An adjunction (F,G, ϕ) : M → N (where, (F,G) are pairwise adjoint

and ϕ : HomN (FX, Y ) → HomM(X,GY ) is the bijection) is called Quillen adjunction if F

is a left Quillen functor. The Quillen adjunction induces derived adjunction

Ho F : Ho M ⇄ Ho N : Ho G

between the homotopy categories. A Quillen adjunction (F,G, ϕ) is called Quillen equivalence

if for every cofibrant object X in M and fibrant object Y in N a morphism FX → Y is a weak

equivalence in N if and only if the morphism ϕ(f) : X → GY is a weak equivalence in M.

The Quillen adjunction gives an equivalence between the associated homotopy categories.

Remark 2.1.4. The identity functor on ∆opPSh(C) induces an Quillen equivalence between

the global projective model structure and the global injective model structure on ∆opPSh(C)
[87, Proposition A.3.3.8]. Therefore both the projective and injective model structures have

equivalent homotopy categories.

Definition 2.1.5. A model category M which is also a simplicial category, enriched over simpli-

cial sets i.e. for X,Y ∈ M, there is a simplicial set Map(X,Y ) along with some compatibility

conditions [67, Section 9.1.5], is called simplicial model category if it satisfies the following

condition

� If j : A→ B is a cofibration and q : X → Y is a fibration, then the map

Map(B,X)
(j∗,q∗)−−−−→Map(A,X)×Map(A,Y ) Map(B, Y )

is a Kan fibration between simplicial sets, which is a trivial fibration if j or q is also a

weak equivalence in M.

Remark 2.1.6. If M is a simplicial model category and X,Y ∈ M, then

HomHo M(X,Y ) ∼= π0(Map(QX,RY ))
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2.1.1 Left Bousfield localisation [87, Section A.3.7]

Definition 2.1.7. Suppose, M is a simplicial model category and S is a collection of

morphisms in M.

� An object Z is called S-local if for every map f : X → Y in S, the induced map

f∗ :Map(QY,RZ) →Map(QX,RZ)

is a homotopy equivalence between the simplicial sets.

� A morphism g : A → B is called an S-equivalence if for every S-local object Z in M,

the induced map

g∗ :Map(QB,RZ) →Map(QA,RZ)

is a homotopy equivalence between the simplicial sets.

Theorem 2.1.8. Suppose M is a left proper, combinatorial and simplicial model category and

S is a set of morphisms in M. Then the left Bousfield localisation of M with respect to S

exists i.e. there is a model category LSM having the same underlying category as M with

three distinguished classes of morphisms

1. Weak equivalences are S-local equivalences.

2. Cofibrations are same as in the model category M.

3. Fibrations are the morphisms that have right lifting property with respect to the trivial

cofibrations.

The model category LSM is also a left proper, simplicial and combinatorial model category.

The fibrant objects in LSM are the S-local objects which are the fibrant objects of M.

Remark 2.1.9. The left Bousfield localisation LSM is indeed a categorical localisation of M
with respect to S [57, Chapter 1]. The identity map on M induces a left Quillen functor

i : M → LSM

which takes the morphisms in S to the weak equivalences in LSM and given a left Quillen

functor F : M → N (where, N is a model category) that takes the morphisms in S to weak

equivalences, there is the unique left Quillen functor F̃ : LSM → N such that F = F̃ ◦ i.

2.2 The A1-homotopy category

In this section, first we discuss about ∆opPSh(Sm/k), the category of simplicial presheaves on

Sm/k, which is the underlying category of the Morel-Voevodsky’s A1-homotopy category H(k).
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In the subsection 2.2.1, we describe the A1-model structure, which gives the A1-homotopy

category H(k). In subsection 2.2.2 and subsection 2.2.3, we discuss some importent properties

of H(k) and the A1-homotopy sheaves associated to a space X respectively. We refer [94] and

[99] to the reader for the detailed description of H(k). We refer [5] and [16] for a nice survey

on A1-homotopy theory.

Let Sm/k be the category of smooth, finite type, separated schemes over a field k. There

are several Grothendieck topologies on Sm/k (for example, Nisnevich topology, étale topology,

Zariski topology etc.) for which Sm/k is a Grothendieck site. In Zariski topology, a Zariski

covering of X ∈ Sm/k is an open covering of X. A collection of morphisms {fi : Ui → X}i
in Sm/k is an étale covering if each fi is an étale morphism and every x ∈ X has a preimage

in some Ui. A collection of morphisms {fi : Ui → X}i in Sm/k is a Nisnevich covering of X

if it satisfies the following:

� fi is an étale morphism for every i.

� For every x ∈ X, there is some i and y ∈ Ui such that fi(y) = x and the induced map

k(x) → k(y) between the residue fields is an isomorphism.

Nisnevich topology is finer than Zariski topology and weaker than étale topology. The Zariski

coverings of a scheme are open coverings. The covering

{A1
C \ {1} ↪→ A1

C,A1
C \ {0} z 7→z2−−−→ A1

C}

is a Nisnevich covering of A1
C, but it is not a Zariski covering. By Sm/k we always mean

the Grothendieck site Sm/k endowed with the Nisnevich topology. Similar to Zariski topology,

for a scheme X ∈ Sm/k of Krull dimension d and a Nisnevich sheaf of abelian groups F on

Sm/k, the Nisnevich cohomology H i(X,F) vanishes for i > d [94, Section 3.1, Proposition

1.8]. Similar to étale topology, in Nisnevich topology a closed immersion of smooth schemes

over k locally looks like the inclusion Ank → Amk for some n ≤ m [94, Section 3.1]. In particular

in Nisnevich topology, a variety X ∈ Sm/k locally looks like affine spaces at every closed

point. Like Zariski topology, algebraic K-theory satisfies descent in the Nisnevich topology

[129, Section 10, Chapter V].

The category Sm/k is not cocomplete, colimit does not exist in Sm/k, in general. It

is enlarged to the category of presheaves on Sm/k in which both the limits and colimits

exist. The category of presheaves on Sm/k is denoted by PSh(Sm/k). There is a fully

faithful functor (Yoneda embedding) i : Sm/k → PSh(Sm/k) given by X ∈ Sm/k 7→
HomSm/k(−, X). We denote the representable presheaf HomSm/k(−, X) by X, which is a

sheaf in the Nisnevich topology [59, VII.2]. Every presheaf on Sm/k is a colimit of representables

[43, §2.1.1]. We denote the category of Nisnevich sheaves on Sm/k by Sh(Sm/k). There is
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a fully faithful functor j : Sh(Sm/k) → PSh(Sm/k). The functor j admits the left adjoint

j# : PSh(Sm/k) → Sh(Sm/k), given by the Nisnevich sheafification.

For X ∈ Sm/k and x ∈ X, a Nisnevich neighbourhood of x is a pair (U, ϕ), where

U ∈ Sm/k is irreducible and ϕ : U → X is an étale morphism such that there is some y ∈ U

with ϕ(y) = x and the induced map k(x) → k(y) between the residue fields is an isomorphism.

The category of Nisnevich neighbourhoods of x is denoted by Nbdx, which is a filtered category.

For a presheaf F on Sm/k, the stalk of F at x is denoted by Fx and it is defined as the filtered

colimit:

Fx := colim
(U,ϕ)∈Nbdx

F(U).

Remark 2.2.1. For a scheme (X,OX) and a point x of X, OX,x is the local ring at x. If X

an affine scheme given by (Spec A,OSpec A) and x is a point of Spec A given by a prime ideal

P , then OX,x is the local ring AP . The Zariski stalk of F is the section F(Spec OX,x). The

Nisnevich stalk Fx is the section F(Spec Oh
X,x) (for a local ring R, Rh is the henselization

of R). We refer [121, Tag 04GE] (see also [121, Tag 07QL]) for the definition and related

properties of Henselian local rings.

ForX ∈ Sm/k and x ∈ X, the Nisnevich stalk at x gives a functor x∗ : Sh(Sm/k) → Sets,

which commutes with finite limits and all colimits. Thus x∗ is a point of the Nisnevich site. The

Nisnevich topos Sh(Sm/k) has enough points. Indeed, for every X ∈ Sm/k and x ∈ X, the

stalks x∗ form a conservative set of points that detects isomorphisms of the Nisnevich sheaves.

A morphism ϕ : F → G of the Nisnevich sheaves of sets on Sm/k is an isomorphism if and

only if ϕ : F(Spec Oh
X,x) → G(Spec Oh

X,x) is a bijection for every X ∈ Sm/k and x ∈ X.

Definition 2.2.2. ([94, Definition 3.1.3], see also [12, Section 2]) An elementary distinguished

square (in the Nisnevich topology) is a cartesian square in Sm/k of the form

U ×X V V

U X

p

j

such that p is an étale morphism, j is an open embedding and p−1(X − U) → (X − U) is an

isomorphism (we put the reduced induced structure on the corresponding closed sets).

Remark 2.2.3. [94, Proposition 1.4, Section 3] A presheaf of sets F on Sm/k is a Nisnevich

sheaf if and only if for every elementary distinguished square in Definition 2.2.2, the induced

square of sets

F(X) F(U)

F(V ) F(U ×X V )

is cartesian.
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Let ∆ be the category of finite ordinals and the morphisms in ∆ are the order preserving

maps. A simplicial presheaf is a functor X : ∆op → PSh(Sm/k) (∆op is the opposite category

of ∆). The category of simplicial presheaves on Sm/k is denoted by ∆opPSh(Sm/k). We

call it the category of spaces over k. Every simplicial presheaf is a homotopy colimit of the

representables [43, Proposition 2.8]. Every presheaf can be regarded as a constant simplicial

presheaf. There is a fully faithful functor from PSh(Sm/k) to ∆opPSh(Sm/k).

2.2.1 A1-model structure

The global projective model structure (Bousfield-Kan model structure [22, Proposition 8.1] or

the universal model structure [43, Section 2]) on ∆opPSh(Sm/k) is left proper, simplicial and

cofibrantly generated. In the global projective model structure on ∆opPSh(Sm/k) , the weak

equivalences are defined sectionwise weak equivalence between the simplicial sets, fibrations are

defined sectionwise Kan fibration between the simplicial sets and cofibrations are defined as

the maps satisfying the left lifting property with respect to the trivial fibrations. The global

projective model structure satisfies the universal property [43, Proposition 2.3]: a functor γ :

Sm/k → M (M is a model category) factors through ∆opPSh(Sm/k) uniquely upto a natural

weak equivalence (where, ∆opPSh(Sm/k) is the model category with respect to the global

projective model structure).. For a space X , there is a cofibrant space QX , which is the

homotopy colimit of a diagram of representables, along with a weak equivalence QX → X
[43, Propoaition 2.8]. The left Bousfield localisation of the global projective model structure

at the class of Nisnevich hypercovers gives the Nisnevich local model structure [44, Section 6].

Dugger-Hollander-Isaksen proved that the Nisnevich local model structure is the left Bousfield

localisation of the global projective model structure at the collection of Čech hypercovers [44,

Example A10]. The homotopy category of the Nisnevich local model structure is denoted by

Hs(k). The fibrant objects of the Nisnevich local model structure are such spaces X which

are sectionwise Kan fibrant and for every Čech hypercover U• → X associated to a Nisnevich

cover U → X, the induced map

X (X) → holim
n≥0

X (Un)

(where Un is the n-fold fibre product U ×X · · · ×X U) is a weak equivalence ([44, Corollary

7.1])

There is a fibrant replacement functor for the Nisnevich local model structure

Ex : ∆opPSh(Sm/k) → ∆opPSh(Sm/k)

along with a natural transformation Id → Ex such that for a space X , the space Ex(X ) is

fibrant in the Nisnevich local model structure and the map X → Ex(X ) is a trivial cofibration.

Definition 2.2.4. A simplicial presheaf X on Sm/k is said to satisfy Nisnevich excision if for

any elementary distinguished square in the Nisnevich topology as in Definition 2.2.2, the induced
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square of simplicial sets

X (X) X (V )

X (U) X (U ×X V )

is homotopy cartesian [12, Section 3.2].

Remark 2.2.5. A fibrant space of the Nisnevich local model structure satisfies Nisnevich exci-

sion. A sectionwise Kan fibrant space is fibrant in the Nisnevich local model structure if and

only if it satisfies Nisnevich excision ([44, Theorem 1.3], [12, Theorem 3.2.5], see also [94,

Remark 3.1.15]).

We consider the left Bousfield localisation of the Nisnevich local model structure on the

category of spaces ∆opPSh(Sm/k) at the class of the projection maps pr : X ×k A1
k → X,

following [94, Section 3.2]. The resulting model structure is called the unstable A1-model

structure and the resulting homotopy category is denoted by H(k), called the unstable A1-

homotopy category. If we start with the category of pointed simplicial presheaves, then the

same construction yields the pointed unstable A1-homotopy category and it is denoted by

H•(k). A morphism f : (X , x) → (Y, y) between the based spaces is an isomorphism in H•(k)

if and only if the morphism f : X → Y forgetting the base points is an isomorphism in H(k).

Computation of the unstable motivic invariants of a space X requires an A1-fibrant model

of X . Before giving the description of A1-fibrant replacement functor, we recall the definition

of Sing∗ functor from [94, Section 2.3].

Definition 2.2.6. For a space X , the functor Sing∗ : ∆opPSh(Sm/k) → ∆opPSh(Sm/k) is

defined as

Sing∗(X )(U)n = X (∆n
a ×k U)n,

where ∆n
a is the cosimplicial object in ∆opPSh(Sm/k), ∆n

a = Spec k[x0,x1,..,xn]
(
∑n

i=0 xi−1)
, which is

isomorphic to Ank .

Here the boundary maps

di : Sing∗(X )(U)n → Sing∗(X )(U)n−1, 0 ≤ i ≤ n

are induced by the maps di : ∆n−1
a → ∆n

a which are given by the morphism between k-algebras

(we again denote it by di)

di :
k[x0, x1, .., xn]

(
∑n

i=0 xi − 1)
→ k[x0, x1, .., xn−1]

(
∑n−1

i=0 xi − 1)

defined as 
xj 7→ xj j < i

xj 7→ 0 j = i

xj 7→ xj−1 j > i
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(here, for f ∈ k[x0, .., xn] f̄ denotes the class in k[x0,x1,..,xn]
(
∑n

i=0 xi−1)
). Similarly here the degeneracy

maps

si : Sing∗(X )(U)n → Sing∗(X )(U)n+1, 0 ≤ i ≤ n

are induced by the maps si : ∆n+1
a → ∆n

a which are given by the morphism between k-algebras

(we again denote it by si)

si :
k[x0, x1, .., xn]

(
∑n

i=0 xi − 1)
→ k[x0, x1, .., xn+1]

(
∑n+1

i=0 xi − 1)

defined as 
xj 7→ xj j < i

xi 7→ xi + xi+1 j = i

xj 7→ xj+1 j > i

Remark 2.2.7. 1. The canonical morphism X → Sing∗(X ) is an A1-weak equivalence [94,

Corollary 3.8, Section 2.3].

2. If f : X → Y is an A1-fibration, then the morphism Sing∗(f) : Sing∗(X ) → Sing∗(Y)

is also an A1-fibration [94, Corollary 3.13, Section 2.3].

Theorem 2.2.8. [94, Lemma 2.6, Section 3.2] The space Ex ◦ (Ex ◦ Sing∗)N ◦ Ex(X ) is an

A1-fibrant space (for a space Y, (Ex ◦ Sing∗)N(Y) = colim
n∈N

(Ex ◦ Sing∗)nY).

Remark 2.2.9. Theorem 2.2.8 gives an A1-fibrant replacement functor

ExA
1
:= Ex ◦ (Ex ◦ Sing∗)N ◦ Ex : ∆opPSh(Sm/k) → ∆opPSh(Sm/k)

along with a morphism i : X → ExA
1
(X ) such that i is an A1-weak equivalence along with

a cofibration and ExA
1
(X ) Nisnevich fibrant along with A1-local [94, Lemma 2.6]. A space is

A1–fibrant if and only if it is fibrant in the Nisnevich local model structure and it is A1–local

[94, Proposition 3.19, Section 2.3]. Thus any A1-fibrant space satisfies Nisnevich excision

(Definition 2.2.4, Remark 2.2.5).

2.2.2 Properties of H(k)

The following are some classes of maps which are invertible in H(k):

1. A morphism f : X → Y ∈ ∆opPSh(Sm/k) such that the induced morphisms on the

stalks (for the Nisnevich topology) i.e. smooth Henselian local schemes are weak equiva-

lences of simplicial sets.

2. The projection morphism pr : X × A1 → X for any X ∈ ∆opPSh(Sm/k).

3. The structure map of any vector bundle V → X, for X ∈ Sm/k.
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Likewise spheres in algebraic topology, there are the notions of simplicial circle and Tate circle

in H•(k) [94, Section 3.2]. The simplicial circle is the simplicial sheaf associated to the pointed

simplicial set ∆1/∂∆1 and it is denoted by S1
s . The Tate circle is the simplicial sheaf associated

to Gm (Gm is the representable sheaf A1
k \ {0}), pointed by 1 and it is denoted by S1

t . These

two circles are related by following canonical isomorphism in H•(k) [94, Lemma 2.15, Section

3.2]:

S1
s ∧ S1

t
∼= T,

where T is the quotient sheaf associated to A1
k/(A1

k \ {0}). The quotient sheaf T is isomorphic

to the pointed projective line P1
k in H•(k) [94, Corollary 2.18, Section 3.2]. Likewise differential

topology of smooth manifolds, the tubular neighbourhood theorem holds in H•(k). For a closed

immersion i : Y → X in Sm/k, there is a canonical isomorphism of the pointed spaces inH•(k)

X/(X \ Y ) ∼= Th(NX,Y ),

where Th(NX,Y ) is the Thom space of the normal bundle ν : NX,Y → Y over Y [94, Theorem

2.23].

Several important theories are representable in H•(k). For example, the motivic cohomol-

ogy (in particular Milnor K-theory, Picard group, Chow groups) is representable in H•(k) by

the Eilenberg-Maclane objects K(p, q, A) [127, Theorem 2]. In H•(k), algebraic K-theory is

representable by the doubly infinite Grassmannian ([94, Theorem 3.13, Section 4], see also [124,

Remark 2]).

2.2.3 A1-homotopy sheaves and A1-Contractibility

Suppose X is a space over a field k.

Definition 2.2.10. The A1-connected component sheaf of X is the Nisnevich sheaf associated

to the presheaf

U ∈ Sm/k 7→ HomH(k)(U,X )

The A1-connected component sheaf of X is denoted by πA
1

0 (X ) which is a Nisnevich sheaf of

sets on Sm/k. The space X is called A1-connected if πA
1

0 (X ) is isomorphic to the trivial sheaf

Spec k on Sm/k.

We recall the definition of A1-chain connected component sheaf associated to X ∈ Sm/k,

introduced by Asok-Morel [11, Definition 2.2.4].

Definition 2.2.11. The A1-chain connected component sheaf πch0 (X) associated toX ∈ Sm/k

is the connected component sheaf of Sing∗(X) i.e. the Nisnevich sheaf associated to the

presheaf π0(Sing∗(X)). The scheme X is called A1-chain connected if for every finitely gener-

ated separable field extension L/k, πch0 (X)(Spec F ) is trivial [11, Definition 2.2.2].
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Remark 2.2.12. 1. The notion of A1-chain connectedness is analogous to the path connect-

edness of a topological space. By definition, a scheme X ∈ Sm/k is A1-chain connected

if for every finitely generated separable field extension F/k and two F -points x, y in X

there are H1, . . . ,Hn : A1
F → X such that H1(0) = x and Hn(1) = y.

2. For a space X , the morphism i : X → ExA
1
(X ) induces the canonical epimorphism

θ : πs0(X ) → πA
1

0 (X )

(πs0(X ) is the Nisnevich sheaf associated to the presheaf U ∈ Sm/k 7→ HomHs(k)(U,X ))

[11, Corollary 2.1.5]. Thus if X is simplicially connected, then X is A1-connected.

3. The A1-connected component sheaf πA
1

0 (X) detects k-rational points in X. If X is

A1-connected, then X has a k-rational point [11, Example 2.1.6].

4. The canonical morphism X → Sing∗(X) induces canonical epimorphism X → πch0 (X).

5. For X ∈ Sm/k, the morphism θ in (2) factors through the canonical epimorphism X →
πch0 (X) (in this case πs0(X) ∼= X) [11, Lemma 2.2.5]. Thus if X is A1-chain connected,

then X is A1-connected [11, Proposition 2.2.7]. For a proper scheme X ∈ Sm/k, Asok-

Morel [11, Theorem 2], (later Balwe-Hogadi-Sawant [26, Corollary 3.10]) proved that X

is A1-chain connected if and only if X is A1-connected.

Definition 2.2.13. For a pointed space (X , x) over k, the i-th A1-homotopy sheaf of groups

πA
1

i (X , x) (i ≥ 1) is defined to be the Nisnevich sheaf associated to the presheaf

U ∈ Sm/k 7→ HomH•(k)(S
i
s ∧ U+, (X , x)).

Here Sis is the simplicial i-th sphere, defined as the n-times smash product of the simplicial

circle S1
s (i.e. Sis = (S1

s )
∧n).

The sheaf of groups πA
1

i (X , x) is a sheaf of abelian groups if i ≥ 2. A space X over k is

called A1-contractible if X is isomorphic to the trivial sheaf Spec k in H(k). The space X is

A1-contractible if and only if X is A1-connected and all πA
1

i (X , x)’s are trivial, for every i and

for any basepoint x of X . For example, Ank ’s are A1-contractible. We recall two simple lemmas

which we will use in the proof of Theorem 8.1.1.

Lemma 2.2.14. Suppose, X ∈ Sm/k is A1-connected. Then O(X) has trivial group of units

(O(X) = Γ(X,OX) is the ring of regular functions on X).

Proof. Since Gm is A1-local [94, Example 2.4], so πA
1

0 (Gm) is isomorphic to Gm. Thus a

morphism X → Gm uniquely factors through πA
1

0 (X). Hence,

The group of units, O(X)∗ = HomSm/k(X,Gm)

∼= HomSh(Sm/k)(π
A1

0 (X),Gm)
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Thus if X is A1-connected, then O(X)∗ = k∗.

Lemma 2.2.15. [94, Proposition 3.8, Section 4] Suppose, X ∈ Sm/k is A1-contractible. Then

the Picard group of X is trivial.

We end this section mentioning the A1-excision property of H(k), which we will use in the

proof of Theorem 9.2.3.

Theorem 2.2.16. [10, Theorem 4.1] Suppose k is an infinite field and X ∈ Sm/k is A1-

connected. Let U ⊂ X be an open subscheme such that the complement X \ U is everywhere

of codimension d ≥ 2. Fix, x ∈ U(k). If moreover, X is m-connected, m ≥ d − 3, then the

canonical morphism

j∗ : π
A1

i (U, x) → πA
1

i (X,x)

is an isomorphism for 0 ≤ i ≤ d− 2 and j∗ is an epimorphism for i = d− 1.

2.3 Triangulated Category of Motives over a field k

In this section we recall Voevodsky’s construction of the triangulated category of geometric

motives DMgm(k,Z) over a field k with coffecients in Z in the Nisnevich topology [96, Lecture

20]. We refer to the reader [96] and [38, Section 2] for the details.

Let k be a field of characteristic zero and Cork be the additive category of finite corre-

spondences. The objects of Cork are the smooth, separated, finite type schemes over k and

morphisms in Cork from a connected scheme X to a scheme Y is the free abelian group on the

set of all irreducible closed subschemes (called elementary correspondence) of X × Y , which

are finite and surjective over X. There is a faithful functor

i : Sm/k → Cork.

An additive functor F : Coropk → Ab (Ab is the category of abelian groups) is called

a presheaf with transfers. Let PST (k) be the category of presheaves with transfers. The

representable functor Cork(−, X), associated to X ∈ Sm/k is a sheaf with transfers in the

Nisnevich topology and it is denoted by Ztr(X), more precisely Ztr(X)(U) = Cork(U,X), for

every U ∈ Sm/k.

LetK(PST (k)) be the category of bounded above cochain complexes in PST (k). Inverting

the morphisms f : A → B in K(PST (k)) which are quasi-isomorphisms over the sections

of smooth henselian local schemes (stalks in the Nisnevich topology), we obtain the derived

categoryD−(Sh(Cork)) of Nisnevich sheaves with transfers. It is a tensor triangulated category

with respect to the derived tensor product ⊗tr
L . There is also derived hom functor RHom on

D−(Sh(Cork)) which gives the adjunction

HomD−(Sh(Cork))(A⊗tr
L Ztr(X), B) ∼= HomD−(Sh(Cork))(A,RHom(Ztr(X), B)),
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where A,B ∈ K(PSh(k)) and X ∈ Sm/k [96, Lecture 8]. In D−(Sh(Cork)), again inverting

the maps

Ztr(X ×k A1
k)[n] → Ztr(X)[n],

for every X ∈ Sm/k and for every n ∈ Z, we obtain Voevodsky’s category of effective motives,

denoted as DMeff,−
Nis (k,Z). It is also a tensor triangulated category. There is a functor

Sm/k → K(PST (k))

which takes X ∈ Sm/k to the Suslin complex C∗Ztr(X) associated to X. The Suslin complex

C∗Ztr(X) is the Moore complex (coboundary map is the alternating sum of the face maps) of

the simplicial presheaf with transfers C•Ztr(X). Here C•Ztr(X) is given by

C•Ztr(X)n(U) = Ztr(X)(U ×k ∆
n
a).

This functor Sm/k → K(PST (k)) induces a functor M : H(k) → DMeff,−
Nis (k,Z). The

image M(X) of X ∈ Sm/k in DMeff,−
Nis (k,Z) is called the motive of X. The motive of

Spec k is denoted by Z. The thick subcategory generated by M(X)’s, for X ∈ Sm/k is called

the category of effective geometric motives over k and it is denoted by DMeff
gm (k,Z). Inverting

the Tate twist operation

M 7→M(1) =M ⊗tr
L Z(1),

we obtain the category of geometric motives, which is a tensor triangulated category. The

category of geometric motives is denoted by DMgm(k,Z). There are several properties of

DMgm(k,Z). Among them, we list three properties which we will use in the proof of Theorem

9.1.2.

1. (Gysin triangle) Suppose, X,Z ∈ Sm/k and Z is a closed subscheme ofX of codimension

c. Then there is a distinguished triangle in DMgm(k,Z):

M(X \ Z) →M(X) →M(Z)(c)[2c] →M(X \ Z)[1].

2. (Cancellation) The localisation functor DMeff
gm (k,Z) → DMgm(k,Z) is fully faithful i.e.

for M,N ∈ DMeff
gm (k,Z) the map

Hom
DMeff

gm (k,Z)(M,N) → HomDMgm(k,Z)(M(1), N(1))

3. Motivic cohomology is representable in DMgm(k,Z):

Hp,q
M (X,Z) ∼= HomDMgm(k,Z)(M(X),Z(q)[p]).
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Thus Bloch’s higher Chow groups, in particular the classical Chow groups are representable

in DMgm(k,Z), since

Hp,q
M (X,Z) ∼= CHq(X, 2q − p) and

H2i,i
M (X,Z) ∼= CH i(X).

The category DMgm(k,Z) is a rigid category. Suppose, M ∈ DMgm(k,Z) with some twist

M(r) =M ⊗tr
L Z(r) is an effective motive. The dual of M is defined as

M∗ := RHom(M(r),Z(i)(r − i)),

for large i (dual is independent of r, i) and M∗ satisfies

HomDMgm(k,Z)(L⊗M,N) ∼= HomDMgm(k,Z)(L,M
∗ ⊗N)

Any object M ∈ DMgm(k,Z) is reflexive i.e. the natural map M → M∗∗ is an isomorphism.

An object M ∈ DMgm(k,Z) is called strongly dualisable if it is reflexive and the natural map

M∗ ⊗M → (M∗ ⊗M)∗

is an isomorphism (see [41, Definition 1.2]). If F/k is a finite field extension, thenM(Spec F )∗ =

M(Spec F ) and M(Spec F ) is a strongly dualisable object in DMgm(k,Z).
We end this section with the following remark which we will use in the proof of Theorem

9.1.2.

Remark 2.3.1. Suppose X ∈ Sm/k with M(X) is isomorphic to Z in DMgm(k,Z). Assume

that Z is a singleton set consisting a closed point of X of codimension c (c ≥ 1). Then the

map M(X) →M(Z)(c)[2c] in the Gysin triangle

M(X \ Z) →M(X) →M(Z)(c)[2c] →M(X \ Z)[1]

is the zero map in DMgm(k,Z). Indeed, the object M(Z) is a strongly dualisable object in

DMgm(k,Z) with M(Z)∗ =M(Z). So we have

HomDMgm(k,Z)(Z,M(Z)(c)[2c])

∼= HomDMgm(k,Z)(M(Z),Z(c)[2c])
∼= H2c,2

M (Z,Z)
∼= CHc(Z)

Since Z has dimension zero, CHc(Z) is trivial and hence the mapM(X) →M(Z)(c)[2c] is the

zero map. Therefore the Gysin triangle splits. Hence by the property of a triangulated category
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[101, Corollary 1.2.7], we have

M(X \ Z) ∼=M(X)⊕M(Z)(c)[2c− 1].

2.4 A1-Derived Category

In this section we recall the construction of A1-derived category and the A1-homology sheaves.

The construction is similar to the construction of DMeff,−
Nis (k,Z) in the previous section. We

refer [93, Section 6.2] to the reader for the details.

Let Ab(k) be the category of presheaves of abelian groups on Sm/k and C∗(Ab(k)) be the
category of chain complexes in Ab(k). Nisnevich local model structure on the category of chain

complexes C∗(Ab(k)) in Ab(k) is defined as

1. A morphism f : A∗ → B∗ in C∗(Ab(k)) is a weak equivalence if it induces a quasi-

isomorphism over the sections of the smooth Henselian local schemes (stalks in the Nis-

nevich topology).

2. A morphism f : A∗ → B∗ is a fibration if it is an epimorphism.

3. A morphism f : A∗ → B∗ is a cofibration if it has the left lifting property with respect to

the trivial fibrations.

The associated homotopy category is the derived category D(Ab(k)) of Ab(k). The left Bous-

field localisation of the Nisnevich local model structure with respect to the projection maps

A∗ ⊗ Z(A1
k) → A∗,

(where Z(A1
k) is the free abelian sheaf on A1

k) gives the A1-model structure on C∗(A)b(k). The

associated homotopy category is called the A1-derived category and it is denoted byDA1(Ab(k)).
There is an A1-localisation functor

LabA1 : C∗(Ab(k)) → C∗(Ab(k))

that takes a complex A∗ to its fibrant replacement in the A1-model structure.

The normalised chain complex functor gives a functor

N∗ : ∆
opPSh(Sm/k) → C∗(Ab(k))

which induces a functor

NA1

∗ : H(k) → DA1(Ab(k))

defined as X 7→ LabA1(N∗(X )). The n-th A1-homology sheaf associated to X , denoted as

HA1

n (X ), is defined as the n-th homology sheaf of the complex NA1

∗ (X ).
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Definition 2.4.1. [93, Definition 1.7] A Nisnevich sheaf of abelian groups F on Sm/k is called

strictly A1-invariant if the canonical map in the Nisnevich sheaf cohomology

H i(X,F) → H i(A1
k ×k X,F)

is an isomorphism for every i.

Theorem 2.4.2. [93, Corollary 6.31] For a space X , n ∈ Z, the A1-homology sheaf HA1

n (X )

vanishes if n < 0 and for n ≥ 0, HA1

n (X ) is an strictly A1-invariant sheaf of abelian groups.

Remark 2.4.3. [93, Section 6.3] Suppose, X ∈ Sm/k and n ≥ 0. There is a canonical

morphism πA
1

n (X) → HA1

n (X). The 0-th A1-homology sheaf HA1

0 (X) satisfies the following

universal property: the canonical morphism X → HA1

0 (X) induces a bijection

HomAb(k)(H
A1

0 (X),F) → HomPSh(Sm/k)(X,F),

for every strictly A1-invariant sheaf of abelian groups F .

The canonical morphism between pointed spaces X → ΣsX (where, ΣsX := S1
s ∧ X )

induces isomorphism in A1-homology sheaves for every n > 0 [93, Remark 6.30]:

HA1

n (X ) ∼= HA1

n+1(ΣsX ), for every n > 0.

We end this section with the following theorem which we will use in the proof of Theorem 9.2.3:

Theorem 2.4.4. [119, Theorem 1.1] Let k be a perfect field. Suppose, X,Y ∈ Sm/k are

A1-simply connected schemes and f : X → Y is a morphism in Sm/k. Assume that f induces

an isomorphism

HA1

i (X)
∼=−→ HA1

i (Y ), for all 2 ≤ i < d and an epimorphism HA1

d (X) → HA1

d (Y ),

where d = max{dimX + 1, dimY }, then f is an A1-weak equivalence.
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A1-invariance of πA
1

0 (−)

In this chapter we discuss about the A1-invariance of the A1-connected component sheaf. In

Section 3.1, we recall the A1-rigid schemes over k. The A1-rigid k-schemes are fundamental in

the sense that a locally finite type k-scheme has a local base consisting the A1-rigid k-schemes

at every points (Lemma 3.1.4). In Section 3.2, we recall the A1-invariant presheaves (Definition

3.2.1). In Section 3.3, we give a comparison between the A1-conneted component sheaf and the

universal A1-invariant sheaf. Finally in the last section (Section 3.4) we give some equivalent

statements regarding the A1-invariance of πA
1

0 (X ) (Theorem 3.4.7).

3.1 A1-Rigid Schemes

Let Sch/k be the category of finite type schemes over a field k. In this section we recall A1-rigid

k-schemes and prove that for a smooth k-variety X, the A1-rigid k-schemes form a fundamental

system of neighbourhood at each point of X (Lemma 3.1.4). The A1-rigid k-schemes can never

be A1-connected, unless it is trivial. This in particular says that X cannot have a local base

at any point consisting A1-connected k-varieties. This is different from the nature of a locally

contractible topological space which has a local base consisting contractible spaces at every

point. This section is taken from [39, Section 2].

Definition 3.1.1. [94, Example 2.4, Section 3.2] A k-scheme X ∈ Sch/k is said to be A1-rigid

if for each smooth k-scheme U , the natural map

HomSch/k(U,X) → HomSch/k(A1
U , X)

induced by the projection map A1
U → U is a bijection.

Lemma 3.1.2. (see also [11, Lemma 2.1.11]) A k-scheme X is A1-rigid if and only if for every

finite separable field extension L/k, the map

HomSch/k(Spec L,X) → HomSch/k(A1
L, X),

induced by the projection A1
L → Spec L is a bijection.

29
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Proof. The forward implication follows from the definition of an A1-rigid scheme. For the

reverse implication, suppose that every morphism A1
L → X factors through the projection map

A1
L → Spec L. If possible assume that X is not an A1-rigid scheme. Then there is some

U ∈ Sm/k and H : A1
U → X such that H ◦ i0 ̸= H ◦ i1, where i0, i1 : U → A1

U are the

0-section and the 1-section respectively, [96, Lemma 2.16]. The set

{x ∈ U is a closed point | k(x)/k is a finite separable extension}

(k(x) is the residue field of x) is dense in U [121, Tag 056U]. Thus there is some closed point

x in U with k(x)/k is finite extension, such that H(0, x) ̸= H(1, x). Let L be the residue field

k(x) at x. Define G as the composiotion

A1
L

(IdA1
k
,x)

−−−−−→ A1
U

H−→ X.

Then G(0) ̸= G(1) (where, G(0), G(1) : Spec L → X are the 0-section and the 1-section

respectively). So G does not factor through the projection A1
L → Spec L. It is a contradiction.

Therefore, X is A1-rigid.

Remark 3.1.3. 1. The proof in Lemma 3.1.2 also shows that a k-scheme X is A1-rigid if

and only if for every finite separable field extension L/k and H : A1
L → X is a morphism,

then H(0) = H(1), where H(0), H(1) : Spec L → X are the 0-section and 1-section

respectively.

2. The A1-rigid k-schemes are examples of A1-fibrant spaces. These A1-fibrant objects have

trivial A1-homotopy sheaf of groups [94, Example 2.4].

3. Two A1-rigid k-schemes are isomorphic in H(k) if and only if they are isomorphic as

k-schemes [11, Lemma 2.1.9].

4. Abelian varieties, Gm, any smooth projective curve of positive genus are the examples of

A1-rigid k-schemes [11, Example 2.1.10].

5. For an A1-rigid scheme X, πA
1

0 (X) is isomorphic to X [11, Lemma 2.1.9]. Thus for an

A1-rigid k-scheme X, πA
1

0 (X) is A1-invariant (see Definition 3.2.1).

6. Any open or closed subscheme of an A1-rigid k-scheme is A1-rigid. Indeed, if X is A1-

rigid and U ⊂ X is an open subscheme (or a closed subscheme) of X, then a morphism

H : A1
L → U with H(0) ̸= H(1) gives a morphism i ◦H : A1

L → X (i : U ↪→ X is the

inclusion) with (i ◦ H)(0) ̸= (i ◦ H)(1). This contradicts that X is A1-rigid by (1) of

Remark 3.1.3. Thus U is also A1-rigid.

7. Finite product of A1-rigid k-schemes is A1-rigid. Indeed if X1, . . . , Xn are the A1-rigid

k-schemes and H : A1
U → X1 ×k · · · ×k Xn is a morphism, then each pi ◦ H (pi :
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X1 ×k · · · ×k Xn → Xi is the i-th projection) factors through the projection A1
U → U .

Thus H factors through the projection A1
U → U .

The next lemma shows that A1-homotopy theory of smooth schemes has as building blocks

A1-rigid smooth k-schemes. These building blocks have no higher homotopies by Remark 3.1.3.

This is different from the local nature of étale homotopy theory and also different from the usual

homotopy theory of manifolds.

Lemma 3.1.4 (Local nature). X is a locally finite type k-scheme, then X has a local base of

A1-rigid k-schemes at each of its points.

Proof. Since X is of locally finite type, X has an open covering by closed subschemes of Ank .
So it is enough to prove the theorem for Ank by Remark 3.1.3. For any point P ∈ Ank , P is in

a basic open set D((x1 − α1)(x2 − α2)..(xn − αn)), for some k-rational points α1, . . . , αn in

Ank . This basic open set is a finite product of Gm-s, so it is A1-rigid by Remark 3.1.3. Thus

all open subsets of this basic open set form a local base at P of A1-rigid k-schemes by Remark

3.1.3.

3.2 A1-invariance of πA1

0 (−) and the Universal A1-invariant sheaf

We recall A1-invariant presheaves (Definition 3.2.1) in this section. In Subsection 3.2.1, we

discuss the status of the Morel’s conjecture related to A1-connected component sheaf. In Sub-

section 3.2.2, we recall the universal A1-invariant sheaf, introduced by Balwe-Hogadi-Sawant,

which is the main ingredient from A1-homotopy theory we use to prove the main theorem

(Theorem 8.1.1) in this thesis.

Definition 3.2.1. [93, Definition 7] A presheaf of sets F on Sm/k is said to be A1-invariant

if for every U ∈ Sm/k, the map F(U) → F(A1
U ) induced by the projection map A1

U → U is a

bijection.

Remark 3.2.2. A presheaf of sets F on Sm/k is A1-invariant if and only if for every U ∈ Sm/k,

i∗0 = i∗1 : F(A1
U ) → F(U) (i∗0 is induced by the 0-section U → A1

U and i∗1 is induced by the

1-section U → A1
U ) [96, Lemma 2.16].

3.2.1 Conjecture of Morel

For a space X , we denote the A1-connected component presheaf by π̃0
A1
(X ), which is defined

as

U ∈ Sm/k 7→ HomH(k)(U,X ).

By definition, the presheaf π̃0
A1
(X ) is A1-invariant. Likewise in algebraic topology, there is

connected component presheaf associated to a locally contractible topological space X ∈ Top,

defined as

Y 7→ HomHo(Top)(Y,X),
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where the morphism in the homotopy category Ho(Top) is the homotopy class of maps (we de-

note this presheaf by π̃0
Top(X)). The topological connected component presheaf is I-invariant

Due to its discreteness, its sheafification (we denote it by πTop0 (X)) with respect to the usual

open topology [94, Examples 2, Section 2.3] is also I-invariant Inspired by this, Morel con-

jectured that for a space X , the A1-connected component sheaf πA
1

0 (X ), associated to X is

A1-invariant [93, Conjecture 1.12]. Recently Ayoub has constructed a space X (this X is not

a representable sheaf), for which πA
1

0 (X ) is not A-invariant [20]. Therefore, Morel’s conjecture

is false in general.

Remark 3.2.3. However, πA
1

0 (X ) is A1-invariant for the following X :

1. X is an A1-rigid smooth k-scheme [11, Lemma 2.1.9].

2. X is an A1-connected space.

3. X is a motivic H-group or a homogeneous space for motivic H-group [37, Theorem 4.18]

over an infinite perfect field.

4. X is a smooth projective surface [26, Corollary 3.15, over any field in case of non-uniruled

surface] [29, Theorem 1.2, over an algebraically closed field of characteristic zero in case

of birationally ruled surface] or a smooth toric variety [128, Lemma 4.2, Lemma 4.4].

Therefore it is a natural to ask the following:

Question 3.2.4. Is πA
1

0 (X) an A1-invariant sheaf, for a quasi-projective variety X ∈ Sm/k or

in particular for a quasi-projective surface X ∈ Sm/k?

We end this section with the universal property of πA
1

0 (X ):

Lemma 3.2.5. [26, Lemma 2.8] Suppose, X is a space and F is an A1-invariant presheaf of

sets on Sm/k. Then a morphism X → F uniquely factors through the canonical morphism

X → πA
1

0 (X ).

3.2.2 Universal A1-invariant sheaf

Definition 3.2.6. [26, Definition 2.9] Let F be a presheaf of sets on Sm/k, S(F) is defined

as the Nisnevich sheaf associated to the presheaf Spre(F) given by

Spre(F)(U) := F(U)/ ∼

for U ∈ Sm/k, where F(U)/ ∼ is the quotient of F(U) by the equivalence relation generated

by σ0(z) ∼ σ1(z), ∀z ∈ F(A1
U ) and σ0, σ1 : F(A1

U ) → F(U) are induced by the 0-section and

the 1-section U → A1
U respectively. For any n > 1, Sn(F) is defined inductively as the sheaves

Sn(F) := S(Sn−1(F)).
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For any sheaf F , there is a canonical epimorphism F → S(F). The sheaf L(F) is defined as

L(F) := lim−→
n

Sn(F).

Therefore there is an induced epimorphism F → L(F).

Remark 3.2.7. 1. For X ∈ Sm/k, S(X) is the A1-chain connected component sheaf

πch0 (X) of X, defined by Asok-Morel (see Definition 2.2.11). Thus S(X) is the co-

equalizer in Sh(Sm/k) of

Hom(A1
k, X) X

θ0

θ1

where θ0 and θ1 are induced by the 0-section and the 1-section Spec k → A1
k respectively.

2. There is a natural map

S(X) → πA
1

0 (X)

which is an epimorphism.

3. For a presheaf F on Sm/k, L(F) is an A1-invariant sheaf [26, Theorem 2.13].

4. L(F) satisfies the same universal property as πA
1

0 (F): any morphism from F to an

A1-invariant sheaf G uniquely factors through L(F) ([26, Remark 2.15]).

5. The canonical epimorphism F → L(F) uniquely factors through F → πA
1

0 (F) [26,

Remark 2.15]. The morphism πA
1

0 (F) → L(F) is an isomorphism if and only if πA
1

0 (F)

is A1-invariant [26, Corollary 2.18].

3.3 Comparison of πA1

0 (−) with L(−)

In this section we give a comparison of the A1-connected sheaf πA
1

0 (X ) with the universal A1-

invariant sheaf L(F), for a sheaf F . This section is taken from [39, Section 2]. The main result

in this section is Corollary 3.3.9. It is already proved in [33, Theorem 2.2]. However our proof

works in a more general setting (see Remark 3.3.10).

Theorem 3.3.1. [33, Theorem 2.2] Suppose F is a sheaf of sets on Sm/k and K/k is a finitely

generated field extension. Then the natural map

πA
1

0 (F)(Spec K) → L(F)(Spec K)

is a bijection.

Definition 3.3.2. Suppose, G ∈ PSh(Sm/k). G is called homotopy invariant if for each finitely

generated separable field extension F of k the map G(F ) → G(A1
F ) induced by projection is a

bijection.
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Example 3.3.3. 1. Any A1-invariant presheaf is homotopy invariant.

2. πA
1

0 (X ) is homotopy invariant for any space X [37, Corollary 3.2].

Lemma 3.3.4. Suppose G is a Nisnevich sheaf of sets on Sm/k which is homotopy invariant

and F/k is a finitely generated separable field extension. Then the map G(F ) → S(G)(F ) is a

bijection.

Proof. Surjectivity follows because of the epimorphism G → S(G). For injectivity, suppose

a, b ∈ G(F ) such that a and b map to the same element of S(G)(F ). Then there are chain

of A1
F -s in G joining a and b. But any H ∈ G(A1

F ) factors through G(F ). Therefore a = b in

G(F ).

Lemma 3.3.5. Suppose G is a Nisnevich sheaf of sets on Sm/k which is homotopy invariant

and X = Spec R, spectrum of an essentially smooth discrete valuation ring. Then the map

G(X) → S(G)(X) is surjective.

Proof. Let α be an element of S(G)(X). The element α gives an element of S(G)(Spec Rh)
(Rh is the Henselization of R). The map G(Spec Rh) → S(G)(Spec Rh) is surjective. So

there is a Nisnevich neighbourhood W → X of the closed point of X and α′ ∈ G(W ) such that

α′ maps to α|W . Suppose, F = Frac(R) and L = K(W ). Since over F we have bijection

G(F ) → S(G)(F ), there is β ∈ G(F ) such that β maps to α|F . The following square is an

elementary distinguished square in the Nisnevich topology (Definition 2.2.2):

Spec L W

Spec F X

Since the morphism G → S(G) is bijection for sections over fields, we have β|L = α′|L. As G
is a sheaf, β and α′ lift to an element α̃ ∈ G(X). This α̃ maps to α.

Theorem 3.3.6. Let G be a Nisnevich sheaf of sets on Sm/k which is homotopy invariant.

Then for each X ∈ Sm/k with dim(X) ≤ 1, the map G(X) → S(G)(X) is surjective.

Proof. The proof of the theorem follows from Lemma 3.3.5 and the Zariski descent argument

in the proof in [37, Theorem 3.1].

Corollary 3.3.7. Suppose G is a Nisnevich sheaf of sets on Sm/k which is homotopy invariant.

Then S(G) is also homotopy invariant.

Proof. Using Lemma 3.3.4 and Theorem 3.3.6, we get the proof.

Corollary 3.3.8. Suppose G is a Nisnevich sheaf of sets on Sm/k which is homotopy invariant

and F/k is a finitely generated separable field extension. Then the maps G(F ) → L(G)(F ) and

G(A1
F ) → L(G)(A1

F ) are bijections.
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Proof. The map G(F ) → S(G)(F ) is a bijection by Lemma 3.3.4. Since S(G) is homotopy

invariant by Corollary 3.3.7, the map S(G)(F ) → S2(G)(F ) is a bijection. By induction we get,

the map

Sn(G)(F ) → Sn+1(G)(F )

is a bijection ∀ n. Since L(G) is the colimit of Sn(G), the map G(F ) → L(G)(F ) is a bijection.

As L(G) is an A1-invariant sheaf ([26, Theorem 2.13]) and G satisfies G(F ) ∼= G(A1
F ), the

map G(A1
F ) → L(G)(A1

F ) is a bijection.

Corollary 3.3.9. Suppose X ∈ ∆opPSh(Sm/k). The maps πA
1

0 (X )(F ) → L(πA1

0 (X ))(F )

and πA
1

0 (X )(A1
F ) → L(πA1

0 (X ))(A1
F ) are bijections for any finitely generated separable field

extension F/k.

Proof. The canonical morphism

π̃A
1

0 (X )(A1
F ) → πA

1

0 (X )(A1
F )

is a bijection for any finitely generated separable field extension F/k by [37, Corollary 3.2] (here

π̃A
1

0 (X ) is the presheaf on Sm/k defined as U ∈ Sm/k 7→ HomH(k)(U,X )). By definition, the

presheaf π̃A
1

0 (X ) is homotopy invariant. Therefore, the sheaf πA
1

0 (X ) is homotopy invariant.

Hence the corollary follows from Corollary 3.3.8.

Remark 3.3.10. For a sheaf F , Corollary 3.3.9 implies [33, Theorem 2.2]. Indeed in the

commutative triangle,

πA
1

0 (F)(K) L(F)(K)

L(πA1

0 (F))(K)

where all morphisms are canonical epimorphisms, the upper horizontal map is an isomorphism

if the left vertical map is an isomorphism.

We end this section with the following question.

Question 3.3.11. For a proper scheme X ∈ Sm/k, we have S(X)(F ) ∼= Sn(X)(F ) for each

finitely generated separable extension F of k and for every n ≥ 1 [26, Theorem 3.9]. Thus S(X)

is homotopy invariant. On the other hand, the real sphere T in A3
R contains no non-constant

A1
R but S2(T )(R) is point ([113, Theorem 4.3.4], see also Remark 6.1.6). Therefore it is natural

to ask whether S(X) is homotopy invariant for any scheme X ∈ Sm/k with k = k̄.

3.4 Equivalent Criterias of A1-invariance of πA1

0 (X )

In this section we give some equivalent statements of A1-invariance of πA
1

0 (X ), for a space X .

Lemma 3.4.1. Suppose F is an A1-invariant presheaf on Sm/k. Then the canonical map

F → Sing∗(F) is an isomorphism of simplicial presheaves.
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Proof. Since the cosimplicial object ∆n
a is isomorphic to Ank and F is A1-invariant, so the

canonical morphism

F(U) → F(∆n
a ×k U)

is a bijection, for every U ∈ Sm/k. Hence, F ∼= Sing∗(F), as simplicial presheaves.

Definition 3.4.2. A commutative square in ∆opPSh(Sm/k)

W X

Y Z

is called a homotopy cartesian square (in the Nisnevich local model structure) if there is a

factorization of the map X → Z as a Nisnevich local weak equivalence X → X ′ followed

by a fibration (in the Nisnevich local model structure) X ′ → Z such that the induced map

W → X ′ ×Z Y is a Nisnevich local weak equivalence.

Lemma 3.4.3. A commutative square in ∆opPSh(Sm/k)

W X

Y Z

is homotopy cartesian (in the Nisnevich local model structure) if and only if for each Henselian

local scheme U (where U = Spec Oh
X,x), the commutative square

W(U) X (U)

Y(U) Z(U)

is homotopy cartesian in the category of simplicial sets.

Proof. First suppose that the commutative square

W X

Y Z

is homotopy cartesian. Then there is a factorization of the map X → Z as as a local weak

equivalence X → X ′ followed by a fibration X ′ → Z such that the induced map W → X ′×Z Y
is a local weak equivalence. Consider the commutative square of simplicial sets

W(U) X (U)

Y(U) Z(U)
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for sections over a Henselian local scheme U = Spec Oh
X,x. The map X (U) → Z(U) has a

factorization as X (U) → X ′(U) followed by X ′(U) → Z(U). Since the map X → X ′ is local

weak equivalence, the map X (U) → X ′(U) is an weak equivalence of simplicial sets. The map

U ×Λni → U ×∆n, given by the inclusion of the i-th horn in ∆n, is a trivial cofibration in the

global projective model structure. Indeed the commutative square

U × Λni Y ′

U ×∆n Z ′

where the map Y ′ → Z ′ is a sectionwise Kan fibration of simplicial sets, has a lift since the

map Y ′(U) → Z ′(U) is a Kan fibration. So the map U ×Λni → U ×∆n is a trivial cofibration

in the Nisnevich local model structure. Thus the commutative square

U × Λni X ′

U ×∆n Z

has a lift. Therefore the map X ′(U) → Z(U) is a Kan fibration. Since the map W → X ′×Z Y
is a local weak equivalence and the sections over the Henselian local scheme U are the stalks,

the map W(U) → X ′(U)×Z(U) Y(U) is a weak equivalence. Thus the commutative square of

sections over U is homotopy cartesian diagram of simplicial sets.

Conversely, suppose the given commutative square is homotopy cartesian diagram of simpli-

cial sets for every sections over Henselian local scheme U = Spec Oh
X,x. Consider a factorization

of X → Z as a Nisnevich local weak equivalence X → X ′ followed by a fibration X ′ → Z. So

the map X (U) → X ′(U) is a weak equivalence of simplicial sets and since the map X ′ → Z is

a fibration, the same argument in the previous paragraph shows that the map X ′(U) → Z ′(U)

is a Kan fibration. Since the commutative square

W(U) X (U)

Y(U) Z(U)

is homotopy cartesian diagram of simplicial sets and the map X (U) → Z(U) has a factorization

as a weak equivalence X (U) → X ′(U) followed by a Kan fibration X ′(U) → Z(U), so the

map W(U) → X ′(U)×Z(U) Y(U) is a weak equivalence of simplicial sets for every U ∈ Sm/k

Henselian local scheme. Therefore the map W → X ′ ×Z Y is a local weak equivalence. Hence

the given square of simplicial presheaves is a homotopy cartesian diagram.

The following lemma is already in [37, Lemma 2.2]. We repeat it here for the sake of

completeness.
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Lemma 3.4.4. [37, Lemma 2.2] Suppose a commutative square of simplicial sets

W X

Y Z

is homotopy cartesian. Then the induced map

π0(W ) → π0(X)×π0(Z) π0(Y )

is surjective.

Proof. We first replace the diagram

X Z Y

by a diagram

X ′ Z ′ Y ′p q

where X ′, Y ′, Z ′ are Kan fibrant simplicial sets and p, q are Kan fibrations, along with a mor-

phism of diagrams

X Z Y

X ′ Z ′ Y ′p q

(*)

where all the vertical maps the weak equivalences. Indeed, first we replace Z by Z ′ such that

Z ′ is a Kan fibrant and Z → Z ′ is a weak equivalence. Then we factorize the map X → Z ′

as a weak equivalence X → X ′ followed by a Kan fibration X ′ → Z ′ and similarly we factorize

the map Y → Z ′ as a weak equivalence Y → Y ′ followed by a Kan fibration Y ′ → Z ′. Since

the square

W X

Y Z

is homotopy cartesian, thus from the commutative square

W X ′

Y ′ Z ′

(here the maps are induced by (∗)), the map W → X ′ ×Z′ Y ′ is a weak equivalence. Thus it

remains to show that the map

π0(X
′ ×Z′ Y ′) → π0(X

′)×π0(Z′) π0(Y
′)
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is a surjection. Suppose, α and β are the 0-simplices of X ′ and Y ′ respectively such that

p(α) = q(β) ∈ π0(Z
′). Thus there is a 1-simplex H of Z ′ such that d0H = p(α) and

d1H = q(β). Since p is a Kan fibration, the following diagram

∆0 X ′

∆1 Z ′

α

d0 p

H

has a lift H̃. Thus p(d1H̃) = d1H = q(β) and (α, β) ∈ π0(X
′) ×π0(Z′) π0(Y

′) has preimage

(d1H̃, β) ∈ π0(X
′×Z′ Y ′). Therefore, the map π0(W ) → π0(X)×π0(Z)π0(Y ) is surjective.

Remark 3.4.5. A Nisnevich fibrant space X satisfies Nisnevich excision (Definition 2.2.4, Re-

mark 2.2.5). Thus by Lemma 3.4.4, for an elementary distinguished square in Definition 2.2.2,

the induced map

π0(X (X)) → π0(X (U))×π0(X (U×XV )) π0(X (V ))

is surjective. Thus X is A1-fibrant, then the map

π0(X (X)) → π0(X (U))×π0(X (U×XV )) π0(X (V ))

is surjective.

Lemma 3.4.6. Suppose a commutative square

W X

Y Z

of simplicial presheaves is homotopy cartesian. Then the induced map

π0(W) → π0(X )×π0(Z) π0(Y)

is an epimorphism of Nisnevich sheaves.

Proof. Since the sections over the Henselian local schemes are the stalks, thus we need to show

that for each Henselian local scheme U (where U = Spec Oh
X,x), the map

π0(W(U)) → π0(X (U))×π0(Z(U)) π0(Y(U))

is surjective. By Lemma 3.4.3, the commutative square of simplicial sets

W(U) X (U)

Y(U) Z(U)
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is homotopy cartesian and hence the result follows by Lemma 3.4.4.

Here we give some equivalent statements regarding the homotopy invariance of πA
1

0 (X ), for

a space X .

Theorem 3.4.7. Let X be an A1-fibrant simplicial presheaf on Sm/k. Suppose,

F = πA
1

0 (X ) = π0(X ).

Then the following statements are equivalent:

1. F is A1-invariant.

2. The canonical map F → Sing∗(F) is an isomorphism.

3. The canonical map F → Sing∗(F) induces a Kan fibration F(SpecOh
X,x) → Sing∗(F)(SpecOh

X,x)

between the simplicial sets, for each X ∈ Sm/k and x ∈ X.

4. The map F → π0(Sing∗(F)) induced by the canonical map F → Sing∗(F) is an

isomorphism of sheaves.

5. The canonical map F → L(F) is an isomorphism of sheaves.

6. The following cartesian square is homotopy cartesian in ∆opPSh(Sm/k):

Sing∗(X|F) F

Sing∗(X ) Sing∗(F)

7. The map Sing∗(X ) → Sing∗(F), induced by the map X → π0(X ), induces a Kan

fibration Sing∗(X )(Spec Oh
X,x) → Sing∗(F)(Spec Oh

X,x), for each X ∈ Sm/k and x ∈.

8. The canonical map π̃0
A1
(X )(A1

O) → πA
1

0 (X )(A1
O) between the sections over A1

O is a

surjection, where O = Oh
X,x, for every X ∈ Sm/k, x ∈ X (where, π̃0

A1
(X ) denotes the

presheaf on Sm/k, which is defined as U 7→ HomH(k)(U,X ).).

Proof. (1) =⇒ (2): It follows by Lemma 3.4.1.

(2) =⇒ (3): It follows since any isomorphism is a fibration.

(3) =⇒ (4): We need to show for each Henselian local scheme U (where U = Spec Oh
X,x),

the map F(U) → π0(Sing∗(F))(U) is a bijection. Since the sections over Henselian local

schemes are the stalks, so π0(Sing∗(F))(U) = π0(Sing∗(F)(U)). But Sing∗(F)(U) agrees

with F(U) in 0-simplices, so it is already a surjection. For injectivity, suppose two sections

α, β ∈ F(U) are same in π0(Sing∗(F)(U)). Thus there are H1, H2, ..,Hm ∈ F(A1
U ) such that
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H1(0) = α and Hm(1) = β. The map F(U) → Sing∗(F)(U) is a Kan fibration. For every i,

consider the commutative square

Λ1
0 F(U)

∆1 Sing∗(F)(U)

Hi(0)

Hi

which has a lift ∆1 → F(U) making the triangles commutative. Here the lift is Hi(0), since

F(U) is regarded as constant simplicial set. Since the lower triangle is commutative, we have

Hi = Hi(0) ◦ pr, where pr : ∆1
a ×k U → U is the projection map. Thus Hi(0) = Hi(1), for all

i. Hence, α = β. So the map F(U) → π0(Sing∗(F))(U) is injective, for every Henselian local

scheme U ∈ Sm/k. Therefore, the map F → π0(Sing∗(F)) is an isomorphism of sheaves.

(4) =⇒ (5): The sheaf π0(Sing∗(F)) is the A1-chain connected component sheaf S(F) of

F . So if the canonical map F → π0(Sing∗(F)) is an isomorphism, then for each n the canonical

map Sn(F) → Sn+1(F) is an isomorphism. Therefore being colimit, L(F) is isomorphic to F .

(5) =⇒ (1): It follows because L(F) is an A1-invariant sheaf, for any sheaf F on Sm/k

[26, Theorem 2.13].

(1) =⇒ (6): If F is A1-invariant, then the right vertical map in the cartesian square in (6)

is an isomorphism, thus in particular fibration. Hence the cartesian square in (5) is homotopy

cartesian.

(6) =⇒ (4): Since the commutative diagram in (6) is a homotopy cartesian square, by

Lemma 3.4.6 the induced morphism of sheaves

ϕ : π0(Sing∗(X|F)) → π0(Sing∗(X ))×π0(Sing∗(F)) F

is an epimorphism. Since X is A1-fibrant, so Sing∗(X ) is also A1-fibrant [94, Corollary

3.13, Section 2.3]. The canonical map X → Sing∗(X ) is A1-weak equivalence, so F ∼=
π0(Sing∗(X )). The map X → F induces a map ψ : X → Sing∗(X|F). Taking π0, ψ gives a

map

θ : F = π0(X ) → π0(Sing∗(X|F))

The map θ is an epimorphism, since X and Sing∗(X|F) agree in 0-simplices. Suppose, T =

π0(Sing∗(F)). The morphism ϕ ◦ θ : F → F ×T F is the diagonal map and ϕ ◦ θ is an

epimorphism i.e. for each Henselian local scheme U (where U = Spec Oh
X,x) the diagonal map

between sets

F(U) → F(U)×T (U) F(U)

is surjective. This can only occur if the map F(U) → T (U) is injective. The map F → T is an

epimorphism since Sing∗(F) agrees with F in simplicial degree 0. Therefore the map F → T
is an isomorphism. Thus F ∼= π0(Sing∗(F)).
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(1) =⇒ (7): We have shown that (1) and (2) are equivalent. Since F is A1 invariant, the

canonical map F → Sing∗(F) is an isomorphism. This gives a morphism ϕ : Sing∗(X ) → F ,

which is the composition of the map Sing∗(X ) → Sing∗(F) followed by the inverse of the

morphism F → Sing∗(F). Suppose U = Spec Oh
X,x is a Henselian local scheme. It is enough

to show that the map ϕ : Sing∗(X )(U) → F(U) is a Kan fibration. Consider the commutative

square of simplicial sets

Λnk Sing∗(X )(U)

∆n F(U)τ

Since X is A1-fibrant, so Sing∗(X ) is also A1-fibrant [94, Corollary 3.13, Section 2.3]. Thus

Sing∗(X ) is stalkwise Kan fibrant. Therefore there is an n-simplex σ of Sing∗(X )(U) such that

the upper triangle commutes. We show that the lower triangle also commutes. The simplicial

set F is a constant simplicial set, so all the boundary maps are the identity maps. Since the

square is commutative and the upper triangle commutes, so for every i ̸= k, 0 ≤ i ≤ n,

ϕ(diσ) = diτ = τ.

Thus diϕ(σ) = ϕ(diσ) = τ . As the boundary maps in F(U) are the identity maps, so ϕ(σ) = τ .

Therefore, the lower triangle also commutes. Hence ϕ is a Kan fibration, for the sections over

U . Thus for every Henselian local scheme U , the map Sing∗(X )(U) → Sing∗(F)(U) is a Kan

fibration.

(7) =⇒ (6): Since the commutative square is cartesian, it is cartesian diagram of simplicial

sets for every section U = Spec Oh
X,x a Henselian local scheme. We have given that the map

Sing∗(X )(U) → Sing∗(F)(U) is a Kan fibration. So the square is homotopy cartesian diagram

of simplicial sets, for every section over Henselian local scheme U . Therefore the square of

simplicial presheaves is simplicially homotopy cartesian by Lemma 3.4.3.

(1) ⇔ (8): Since the sections over the Henselian local schemes are the stalks, the sheaf F
is A1-invariant if and only if the map

F(U) → Hom(A1,F)(U),

is a bijections for every section over the Henselian local scheme U . Consider the commutative

diagram

π̃0
A1
(X )(U) π̃0

A1
(X )(A1

U )

πA
1

0 (X )(U) πA
1

0 (X )(A1
U )

Since the presheaf π̃0
A1
(X ) is A1-invariant, the upper horizontal map is an isomorphism. Since

the sections over U are the stalks, the left vertical map is an isomorphism. The bottom horizontal
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map, induced by A1
U → U , is an injection. Therefore the right vertical map is surjection if and

only if the bottom horizontal map is a bijection.



Chapter 4

Birational Connected Components

In this chapter we define the birational model structure on ∆opPSh(Sm/k), which is the left

Bousfield localisation of the global projective model structure (Proposition 4.2.1) at the class of

birational morphisms. The main theorem in this chapter is Theorem 4.2.3, where we prove that

the connected component sheaf in the birational model structure associated to a proper scheme

X ∈ Sm/k is isomorphic to the birational A1-invariant sheaf πbA
1

0 (X), defined by Asok-Morel

[11, Definition 6.2.5]. This section is taken from [39, Section 3].

4.1 Birational A1-connected component sheaf

The first example of an A1-invariant sheaf associated to the A1-connected components of

a scheme was constructed by Asok and Morel. In this short section, we recall the Asok-

Morel’s birational and A1-invariant sheaf πbA
1

0 (X) [11, Section 6] associated to a proper scheme

X ∈ Sm/k.

Definition 4.1.1. [11, Definition 6.1.1] A presheaf of sets F on Sm/k is called birational if it

satisfies the following properties:

1. For X ∈ Sm/k with irreducible components X1, X2, . . . , Xn the canonical map

F(X) →
n∏
i=1

F(Xi)

is a bijection.

2. For an open dense subscheme U of X, the canonical morphism F(X) → F(U) is a

bijection.

Remark 4.1.2. A birational presheaf of sets is always a Nisnevich sheaf [11, Lemma 6.1.2].

Definition 4.1.3. [11, Section 6.2] Let X ∈ Sm/k be a proper scheme. There is a birational

and A1-invariant ([11, Theorem 6.1.7]) sheaf πbA
1

0 (X) associated to X [11, Section 6.2] such

that its sections over any irreducible U ∈ Sm/k is the A1-chain connected component of

k(U)-rational points, i.e. S(X)(k(U)) = πbA
1

0 (X)(U) ([11, Definition 6.2.5]).

44
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Remark 4.1.4. 1. For a proper scheme X ∈ Sm/k, there is a canonical morphism

πA
1

0 (X) → πbA
1

0 (X)

such that the composition

πch0 (X) → πA
1

0 (X) → πbA
1

0 (X)

is a bijection on sections over any finitely generated separable field extensions of k [11,

Proposition 6.2.6], [26, Corollary 3.10] .

2. πbA
1

0 is a birational invariant of smooth proper schemes [72, Theorem 1]. However πA
1

0 is

a not birational invariant sheaf of smooth proper schemes [26, Example 4.8].

4.2 Birational Model Structure

In this section in Theorem 4.2.3, we will prove that πbA
1

0 (X) is isomorphic to the connected

component sheaf ofX in the birational model structure (Proposition 4.2.1). This gives a proof of

[72, Theorem 4]. Same line of argument is used in [36, Proposition 1.9]. In [102, Definition 2.6]

Pelaez also constructed birational unstable motivic homotopy category (equivalent construction

by Theorem 4.2.7)

Proposition 4.2.1. The left Bousfield localisation of the global projective model structure on

∆opPSh(Sm/k) with respect to the following set of maps

{U i−→ X ∈ Sm/k | i is an open immersion with dense image}

exists. It gives a model structure on ∆opPSh(Sm/k) called the unstable birational model

structure.

Proof. Existence of the left Bousfield localisation is proved in [87, Section A.3.7].

The resulting homotopy category associated to the birational model structure will be denoted

by Hb(k).

Definition 4.2.2. For any space X , the connected component presheaf associated to the bira-

tional model structure is defined as U 7→ HomHb(k)(U,X ), for U ∈ Sm/k. It will be denoted

by πb0(X ).

The aim of this section is to prove the following result:

Theorem 4.2.3. There is an isomorphism of presheaves: πbA
1

0 (X) ∼= πb0(X), for X ∈ Sm/k a

proper scheme.
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Let f : U → X ∈ Sm/k be a Nisnevich covering and U• be the corresponding Čech

simplicial scheme. Here Un is the smooth scheme given by U ×X U ×X · · · ×X U (the product

is taken n + 1 times). Let f : U• → X be the corresponding map of simplicial schemes. We

show that inverting the birational morphisms in A1-homotopy category is equivalent to only

inverting the birational morphisms in the global projective model structure (Theorem 4.2.7).

Lemma 4.2.4. The map f : U• → X is a birational weak equivalence (i.e., it is an isomorphism

in Hb(k)).

Proof. Any Nisnevich covering has a section over a dense open set. Therefore there is an open

dense set V ⊂ X such that the restriction f−1(V ) → V has a section. We have the following

commutative diagram in ∆opPSh(Sm/k):

f−1(V )• U•

V X

f

where the left vertical map is induced by the restriction and the upper horizontal map is induced

by the inclusion. The left vertical map is a sectionwise weak equivalence, since there is a section.

The map V → X is an inclusion of dense open set, so it is a birational weak equivalence. As the

map f : U → X is an étale map, for each n, the (n+1)-fold product f−1(V )×V f
−1(V )...×V

f−1(V ) is open and dense in U ×X U..×X U fitting in the pullback square:

f−1(V )×V ..×V f
−1(V ) U ×X U..×X U

V X

Therefore the morphism f−1(V )• → U• is a birational weak equivalence [94, Proposition 2.14].

Hence f : U• → X is a birational weak equivalence.

Corollary 4.2.5. Any Nisnevich weak equivalence is a birational weak equivalence.

Proof. The Nisnevich local model structure on ∆opPSh(Sm/k) is the left Bousfield localisation

of the projective model structure at the class of Čech hypercovers ([44, Theorem 6.2, Example

A.11]),

{U• → X | U → X is a Nisnevich covering}

Since the map U• → X is a birational weak equivalence by Lemma 4.2.4, the result follows.

Lemma 4.2.6. For every X ∈ Sm/k, the projection map X × A1 → X is a birational weak

equivalence.

Proof. Suppose X ∈ ∆opPSh(Sm/k) and X ∈ Sm/k. Consider the presheaf of sets FX ,X

on Sm/k defined as Y 7→ HomHb(k)(Y ×X,X ). Then FX ,X is a birational sheaf on Sm/k.
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Therefore we have a bijection FX ,X(Spec k) → FX ,X(P1
k) [72, Appendix A]. This implies the

projection map P1
k × X → X is an isomorphism in Hb(k). Composing it with the birational

map A1
k ×X ↪→ P1

k ×X (induced by the natural open immersion A1
k ↪→ P1

k), we get that the

projection map X × A1
k → X is an isomorphism in Hb(k).

Theorem 4.2.7. Any A1-weak equivalence is a birational weak equivalence. Therefore the un-

stable birational model structure is equivalent to the motivic unstable birational model structure

in [102, Definition 2.6].

Proof. The left Bousfield localisation of the projective model structure (universal model struc-

ture) on ∆opPSh(Sm/k) at the class of the Čech hypercovers and the projection maps

A1
X → X ∈ Sm/k gives the A1-model structure [49, Proposition 8.1]. Therefore, the A1-

weak equivalences are generated by the Čech covers and the projection maps A1
X → X. Both

are birational weak equivalences [Lemma 4.2.4 and Lemma 4.2.6]. Hence the result follows.

Remark 4.2.8. Theorem 4.2.7 says that the birational model structure (Proposition 4.2.1) is

the left Bousfield localisation of the A1-model structure on ∆opPSh(Sm/k) at the class of

the birational morphisms. Therefore, the identity map on ∆opPSh(Sm/k) induces total left

derived functor

H(k) → Hb(k).

4.2.1 Proof of the Theorem 4.2.3

Proof. Suppose U ∈ Sm/k is irreducible. Then, πbA
1

0 (X)(U) = S(X)(k(U)) by [11, Definition

6.2.5]. Recall the fine birational category of smooth k-schemes S−1
b Sm/k [72, Section 1.7]

which is defined as the localisation of Sm/k with respect to the class of birational morphisms

Sb. By [72, Theorem 6.6.3], we have the following natural bijection

HomS−1
b Sm/k(U,X) ∼= πbA

1

0 (X)(U),

for each U ∈ Sm/k. The Yoneda embedding of Sm/k in ∆opPSh(Sm/k) as representable

constant simplicial presheaf induces a functor η : S−1
b Sm/k → Hb(k) because of the universal

property of localisation [57, Section 1]). The functor η is universal and it factors the functor

π : Sm/k → Hb(k). This gives the map

HomS−1
b Sm/k(U,X) → HomHb(k)(U,X).

Thus we have a morphism η : πbA
1

0 (X) → πb0(X).
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Consider the following commutative diagram of presheaves on Sm/k,

X πbA
1

0 (X)

πb0(X) πb0(π
bA1

0 (X))

α

π ∼=θ

induced by the natural transformation Id→ πb0(−). The top horizontal morphism of presheaves

α : X → πbA
1

0 (X) is induced by the canonical functor α : Sm/k → S−1
b Sm/k. The right

most vertical map is an isomorphism, since πbA
1

0 (X) is a fibrant object in the birational model

structure. This gives a morphism θ : πb0(X) → πbA
1

0 (X). The morphism η ◦ θ ◦ π is same as

η ◦ α and η ◦ α is the natural morphism π. The morphism π : X → πb0(X) induces a bijection

HomPSh(Sm/k)(π
b
0(X), πb0(X)) ∼= HomPSh(Sm/k)(X,π

b
0(X)),

since πb0(X) is birational local. This gives η ◦ θ is the identity morphism. So θ is a monomor-

phism. On the other hand, the morphism α factors through θ and the morphism α is section-

wise surjective, since πbA
1

0 (X) is a birational sheaf and its section over U is the A1-equivalence

classes of k(U)-rational points of X. Hence θ is an epimorphism and consequently it is an

isomorphism.
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Existence of A1 and

A1-Connectedness of a Surface

In this chapter we establish the fact that A1-connectedness of a smooth variety X over an

algebraically closed field is related to the existence of affine lines in X. In Section 5.1, we recall

several kinds of varieties containing the images of affine lines and how they are related to the

negativity of the logarithmic Kodaira dimension. In Section 5.2, we prove that if a surface is

A1-connected, then it is dominanted by images of A1 (Theorem 5.2.8, see Definition 5.1.1).

This is the main result in this chapter. By the phrase “there is an A1 in X”, we mean the

existence of a non-constant morphism from A1
k to X. For this chapter, we will assume that our

base field k is an algebraically closed field. This chapter is taken from [39, Section 4].

5.1 Varieties Containing Affine Lines and Negative Logarithmic

Kodaira Dimension

In this section we recall three important classes of varieties containing the images of the affine

lines.

Definition 5.1.1. Suppose X is a k-variety.

1. X is said to be dominated by images of A1 if there is an open dense subset U of X

such that for every p ∈ U(k), there is an A1 in X through p [80, §1].

2. X is said to be A1-uniruled or log-uniruled if there is a dominant generically finite

morphism H : A1
k ×k Y → X for some k-variety Y .

3. X is said to be A1-ruled if there is a Zariski open dense subset U of X such that U is

isomorphic to A1
k ×k Z for some k-variety Z [51, Definition 1].

Remark 5.1.2. Here we will describe few important relations between the above notions. Sup-

pose, the base field k is of characteristic zero. By definition, the A1-ruled varieties are A1-

uniruled and A1-uniruled varieties are dominated by images of A1. Suppose the field k is

49
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uncountable, then the smooth varieties dominated by images of A1 are A1-uniruled. This is

essentially similar to the fact that a smooth projective variety dominated by images of P1 is

uniruled [81, Chapter IV, Proposition 1.3]. Indeed, given a smooth k-variety X with fixed

smooth completion X̄ with boundary D = X̄ \X, non-constant morphisms from A1
k to X are

parametrized by a certain subscheme Mor((P1
k,∞), (X̄,D)) of the hom scheme Mork(P1

k, X̄)

parametrizing morphisms f : P1
k → X̄ such that f−1(D) = {∞}. There is a canonical eval-

uation morphism ev : Mor((P1
k,∞), (X̄,D)) ×k (P1

k \ {∞}) → X which is dominant, as X

is dominated by images of A1. Since k is uncountable and Mor((P1
k,∞), (X̄,D)) has only

countably many irreducible components and there is a dense open subset U of X which is

contained in the image of ev, we get an irreducible component Y of Mor((P1
k,∞), (X̄,D))

such that the restriction to Y of ev is a dominant morphism A1
k ×k Y → X. In case of k is

countable field, the equivalence of (1) and (2) is not known.

Logarithmic Kodaira dimension is an useful invariant in birational geometry. Over the field

of characteristic zero, an A1-uniruled variety and an A1-ruled variety have negative logarithmic

Kodaira dimension. Before discussing about this, we recall the definition of logarithmic Kodaira

dimension of a smooth quasi-projective variety.

Definition 5.1.3. ([70, Section 10.1, Section 11.2], [79]) Suppose V is a smooth proper k-

variety and D is a divisor on V . The D-dimension κ(V,D) is defined as following:

� If for some m,

|mD| = {D′ is an effective divisor of V | D′ is linearly equivalent to mD} ≠ ∅,

then

κ(V,D) := max{dim(Φ|mD|(V )) | m ∈ N and |mD| ≠ ∅},

where Φ|mD| : V 99K PN is the rational map associated to the complete linear system

|mD| .

� If |mD| = ∅ for every m, then κ(V,D) := −∞.

Suppose, X is a smooth quasi-projective k-variety. Assume that X can be embeded in a

smooth proper k-variety V such that D = V \X is a divisor with simple normal crossings (this

is always possible if the base field k is of characteristic zero or dim(X) ≤ 2, by the resolution

of singularities, [70, Theorem 7.21], [64, Theorem 3.9]). The logarithmic Kodaira dimension

κ̄(X) of X is defined to be the (KV +D)-dimension κ(V,KV +D), where KV is the canonical

divisor of V . The logarithmic Kodaira dimension is independent of choosing compactification

of X.

Remark 5.1.4. 1. The logarithmic Kodaira dimension is a proper birational invariant i.e. if

f : X → Y is a proper birational morphism between smooth quasi-projective varieties,

then κ̄(X) = κ̄(Y ) [70, Theorem 10.2].
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2. For a smooth quasi-projective variety X of dimension n, κ̄(X) ∈ {−∞, 0, 1, . . . , n} [70,

Theorem 10.3].

3. For smooth quasi-projective k-varieties X,Y , κ̄(X ×k Y ) = κ̄(X) + κ̄(Y ) [70, Theorem

11.3].

4. The affine n-space Ank and the projective n-space Pnk have negative logarithmic Kodaira

dimension.

5. Suppose X,Y are smooth quasi-projective k- surfaces over an algebraically closed field k

and f : X → Y is a dominant separable morphism,. then κ̄(Y ) ≤ κ̄(X) [109, Lemma

1.8].

6. If X is a k-surface, where k is an uncountable algebraically closed field of characteristic

zero, then X is dominated by images of A1 if and only if X has negative logarithmic

Kodaira dimension κ̄(X) [80, Theorem 1.1]. Moreover, if X is an affine k-surface, then

κ̄(X) = −∞ if and only if X is A1-ruled [91, §4, §5]. However, it is not known in

general whether varieties dominanted by images of A1 have negative logarithmic Kodaira

dimension if k is countable.

Therefore, for a smooth affine k-surface X over an uncountable algebraically closed field

k of characteristic zero, we have (1), (2), (3) in Definition 5.1.1 are equivalent and these are

equivalent to the negativity of the logarithmic Kodaira dimension. However in higher dimensions,

being A1-ruled is a stronger notion than dominated by images of A1 [51, Proposition 9].

5.2 A1-Connectedness of a Surface and Surfaces dominated by

images of A1

The A1-connectedness of a smooth variety X is strongly related to the existence of affine lines

in X. The works of Asok, Morel, Balwe, Hogadi, Sawant and several others established the

fact. We have discussed about this in the Introduction. In this section and also in Chapter 6,

we again establish this fact. In Theorem 5.2.8, we prove that A1-connectedness of a surface X

implies that either X contains family of affine lines or through every k-rational point of X there

is an affine line in X. Before proceeding towards the main theorem, we recall one important

result from the works of Asok and Morel in this regard.

Theorem 5.2.1. (see also [6, Remark 5.4.2.11]) Let X be a smooth surface over an algebraically

closed field k of characteristic zero. Suppose that the 0-th A1-homology sheaf HA1

0 (X) is

isomorphic to the constant sheaf Z. Then X is a rational surface. Therefore, if X is A1-

connected, then X is a rational surface.

Proof. By Hironaka’s resolution of singularities, there is a smooth proper k-surface X con-

taining X as an open subvariety. Since the complement of X in X has codimension 1, by
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[14, Proposition 3.8], the morphism HA1

0 (X) → HA1

0 (X) is an epimorphism. Thus by [78,

Theorem 1.1] (see also [118, Theorem 2]) and from the structure theorem of finitely generated

abelian groups, we conclude that HA1

0 (X)(U) has no torsion elements, for every U ∈ Sm/k.

Theorefore, HA1

0 (X) ∼= Z. By [14, Theorem 5], X̄ is A1-connected. Hence, X is a rational

surface by [11, Corollary 2.4.7]. So X is a rational surface. If X is A1-connected, then HA1

0 (X)

is isomorphic to Z, by [14, Proposition 1] and hence the same argument proves that X is a

rational surface.

Suppose F is a Nisnevich sheaf of sets on Sm/k and W ∈ Sm/k, f ∈ F(W ).

Definition 5.2.2. An element α ∈ F(Spec k) is in the image of f if ∃ γ ∈ W (Spec k) such

that the composition Spec k →W
f−→ F is α.

Definition 5.2.3. A homotopy H ∈ F(A1
W ) is said to be non-constant if H(0) ̸= H(1) ∈

F(W ), where H(0) and H(1) are induced by the 0-section and the 1-section from W to A1
W

respectively.

Remark 5.2.4. Let F be a sheaf and X ∈ Sm/k. A section α ∈ S(F)(X) is given by a

Nisnevich covering W → X, a section γ ∈ F(W ) and a Nisnevich covering W ′ → W ×X W

such that p∗1(γ)|W ′ and p∗2(γ)|W ′ in F(W ′) are joined by a chain of A1-homotopies (where

p1, p2 :W×XW →W are the projection maps). If p∗1(γ)|W ′ = p∗2(γ)|W ′ , then γ can be lifted to

some element α′ ∈ F(X) and in this case α′ maps to α via the canonical morphism F → S(F).

Otherwise, we will get an elementH ∈ F(A1
W ′) such that p∗1(γ)|W ′ = H(0) ̸= H(1) as sections.

This is essentially the data of A1-ghost homotopy mentioned in [26, Definition 3.2].

Condition 5.2.5. Suppose X,W ∈ Sm/k, α ∈ X(k) and n ≥ 0. A homotopy H ∈
Sn(X)(A1

W ) is said to satisfy the condition ∗(W,α), if H satisfies the following properties:

1. H is a non-constant homotopy.

2. H(0) factors through X i.e. there is a morphism ψ : W → X such that the following

diagram commutes:

W X

A1
W Sn(X)

ψ

i0

H

Here i0 : W → A1
W is the 0-section and the right vertical map is the canonical epimor-

phism X → Sn(X).

3. α ∈ ψ(W ) (By (2), H ◦ i0 factors through ψ :W → X).

Proposition 5.2.6. Suppose X,W ∈ Sm/k, α ∈ X(k) and n ≥ 1. Let H ∈ Sn(X)(A1
W )

be a homotopy, where W is irreducible and H satisfies ∗(W,α). Then there is W ′ ∈ Sm/k

irreducible and a homotopy H ′ ∈ Sm(X)(A1
W ′) for some m < n such that H ′ satisfies ∗(W ′, α).

Proof. The morphism X → Sn(X) is an epimorphism and H ∈ Sn(X)(A1
W ). Thus,
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1. There is a Nisnevich covering f : V → A1
W ,

2. There is a morphism ϕ : V → X such that the following diagram commutes:

V X

A1
W Sn(X)

ϕ

f

H

The morphism ϕ gives an element of Sn−1(X)(V ) via the epimorphism X → Sn−1(X). The

elements p∗1(ϕ) and p
∗
2(ϕ) are same in Sn(X)(V ×A1

W
V ) (where p1, p2 : V ×A1

W
V → V are the

projection maps). Therefore, there is a Nisnevich covering V ′ → V ×A1
W
V and there is a chain

of non-constant (since H is a non-constant homotopy, so p∗1(ϕ)|V ′ ̸= p∗2(ϕ)|V ′ ∈ Sn−1(X)(V ′)

by Remark 5.2.4) A1-homotopies G1, G2, . . . , Gk ∈ Sn−1(X)(A1
V ′) such that

G1(0) = p∗1(ϕ)|V ′ and Gk(1) = p∗2(ϕ)|V ′ .

Suppose V =
∐n
i=1 Vi, Vi-s are the irreducible components of V . Then V ×A1

W
V is the

union of Vi ×A1
W
Vj varying i and j (note that, each Vi ×A1

W
Vj is non-empty since W is

irreducible) and for each irreducible component V0 of V ′ which is also a connected component,

there are dominant maps (étale maps) from V0 to Vi (for some i) induced by the projection

maps p1 and p2. We have the following cases.

Case 1: Suppose α /∈ Im(ϕ). Consider the following diagram:

W ′ V X

W A1
W Sn(X)

ϕ

f

i0

H(0)

H

where i0 :W → A1
W is the 0-section. Here the left square is cartesian and the lower triangle is

commutative, since H(0) factors through X. We have ϕ|W ′ ̸= H(0)|W ′ as morphisms to X,

since α /∈ Im(ϕ). But they are the same in Sn(X)(W ′). Suppose m ≥ 0 is the least such that

these two maps are the same in Sm+1(X)(W ′). Thus there is a Nisnevich covering W ′′ →W ′

and there is a non-constant homotopy H ′ ∈ Sm(X)(A1
W ′′), such that H ′(0) = H(0)|W ′′ . There

is an irreducible component (say W0) of W
′′ such that H ′|A1

W0
is non-constant. Since the map

W0 →W is dominant and α ∈ Im(H(0)), α ∈ Im(H ′|A1
W0

(0)).

Case 2: Suppose α ∈ Im(ϕ). Moreover assume that there is an irreducible component (say

V0) of V
′ that maps to Vi×A1

W
Vj (for some i and j) with α ∈ ϕ(Vi) and p

∗
1(ϕ)|V0 ̸= p∗2(ϕ)|V0 .

Then there is some t such that Gt|A1
V0

is the required non-constant homotopy (if for each t,

Gt|A1
V0

is constant, then p∗1(ϕ) and p∗2(ϕ) agree in V0). Since the map V0 → Vi is dominant,
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α ∈ Im(Gt|A1
V0
(0)). In particular, if α ∈ ϕ(Vi) for every i, then we can take any irreducible

component V0 of V ′ such that G1|A1
V0

is the non-constant homotopy.

Case 3: Suppose α ∈ Im(ϕ) and there is a j such that α /∈ ϕ(Vj). If needed, renumbering

Vl-s, we can assume that α ∈ ϕ(V1), ϕ(V2), . . . , ϕ(Vi) and α /∈ ϕ(Vi+1), . . . , ϕ(Vn). Moreover

we can assume that for each irreducible component V0 of V ′ that maps to Vm ×A1
W
Vl with

m ≤ i we have, p∗1(ϕ)|V0 = p∗2(ϕ)|V0 in Sn−1(X)(V0). Otherwise the conclusion follows from

Case 2. Thus we have for every m ≤ i,

p∗1(ϕ)|Vm×A1
W
Vl = p∗2(ϕ)|Vm×A1

W
Vl ∈ Sn−1(X)(Vm ×A1

W
Vl).

Suppose there is a t < n − 1 and there is an irreducible component W0 of V ′ that maps to

Vm ×A1
W
Vl for some m, l with m ≤ i such that

p∗1(ϕ)|W0 ̸= p∗2(ϕ)|W0 ∈ St(X)(W0).

Since p∗1(ϕ)|W0 and p∗2(ϕ)|W0 are the same in Sn−1(X)(W0), we choose t such that p∗1(ϕ)|W0

is same with p∗2(ϕ)|W0 in St+1(X)(W0). Then there is a Nisnevich covering V ′′ → W0 and a

non-constant homotopy (by Remark 5.2.4) H ′ ∈ St(X)(A1
V ′′) such that H ′(0) = p∗1(ϕ)|V ′′ . So

there is an irreducible component W ′
0 of V ′′ such that H ′|A1

W ′
0

is non-constant. Since the map

W ′
0 → Vm is dominant, we have α ∈ Im(H ′|A1

W ′
0

).

On the other hand, if there is no such t then for every irreducible component V0 of V ′

that maps to Vm ×A1
W
Vl for some m ≤ i, we have p∗1(ϕ)|V0 = p∗2(ϕ)|V0 as morphisms to X.

Therefore we have,

p∗1(ϕ)|Vm×A1
W
Vl = p∗2(ϕ)|Vm×A1

W
Vl , ∀m ≤ i ∀l

as morphisms to X. But then all ϕ(Vl) are the same for every l, since p1 : Vm ×A1
W
Vl → Vm

and p2 : Vm ×A1
W
Vl → Vl are dominant maps. It is a contradiction, since we have assumed

there is some j such that α /∈ ϕ(Vj).

Therefore, the proposition is proved.

Remark 5.2.7. 1. For any Nisnevich sheaf of sets F , using the same argument as in the

proof of Proposition 5.2.6, we have the following : Suppose there is a non-constant

homotopy H ∈ S(F)(A1
W ) for some W ∈ Sm/k such that the image of H(0) contains

some α ∈ F(Spec k). Then there is a non-constant homotopy H ′ ∈ F(A1
W ′) for some

W ′ ∈ Sm/k such that the image of H ′(0) contains α.

2. In the next chapter (Chapter 6) in Proposition 6.1.1, we will also give a way of constructing

non-constant homotopy in Sm(X) starting from a non-constant homotopy in Sn(X)

(m < n). In the proof of Proposition 6.1.1, we will use generic argument instead of fixing

a k-rational point in X.
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The next theorem (Theorem 5.2.8) is the main theorem of this chapter. It shows that being

A1-connected gives A1’s in a variety.

Theorem 5.2.8. Let k be an algebraically closed field and X ∈ Sm/k with dim(X) ≥ 2.

Suppose that πA
1

0 (X)(Spec k) is trivial. Then one of the following holds :

1. ∀ x ∈ X(k), there is a non-constant A1 through x.

2. There is a non-constant homotopy H : A1
Y → X, for some irreducible Y ∈ Sm/k, such

that the dimension of the closure of the image of H is at least 2.

In particular for a surface X ∈ Sm/k, if X is A1-connected, then X is dominated by images

of A1.

Proof. Since πA
1

0 (X)(Spec k) is trivial, so L(X)(Spec k) is trivial ([33, Theorem 2.2] or Corol-

lary 3.3.9). Suppose that ∃ α ∈ X(k) such that there is no non-constant A1 through α. Choose

β ∈ X(k) with β ̸= α. Also α ̸= β ∈ S(X)(Spec k), but α = β ∈ L(X)(Spec k). Therefore,

there is an n ≥ 1 such that α = β ∈ Sn+1(X)(Spec k) and α ̸= β ∈ Sn(X)(Spec k). So there

is a non-constant homotopy H ∈ Sn(X)(A1
k) such that H(0) = α. Hence by applying Propo-

sition 5.2.6 repeatedly, there exists some Y ∈ Sm/k irreducible, along with a non-constant

homotopy H ′ : A1
Y → X, such that α ∈ Im(H ′(0)). Since k is algebraically closed, the

k-rational points are dense, so H ′(0) ̸= H ′(1) at some k-rational point. Therefore the image

of H ′ contains a non-constant A1 and we have Im(H ′) contains α. Therefore Im(H ′) is of

dimension at least 2, as we have assumed that there is no non-constant A1 through α.

Since H ′ is a non-constant homotopy, by shrinking Y we can assume that H ′(0, y) ̸=
H ′(1, y), ∀ y ∈ Y (k) and the dimension of the closure of image is at least 2. Thus if X is a

surface, the map H ′ is dominant. So there is a non-empty open subset U of X such that U is

contained in the image of H ′. Each u ∈ U(k) has the preimage (t, y) ∈ A1
Y for some k-point

y in Y . Therefore, u is in the image of H ′|A1
k×{y}. Thus X is dominated by images of A1.

Remark 5.2.9. 1. Suppose X is a rationally connected smooth proper variety over an alge-

braically closed field k of characteristic zero. Then for any two k-points x, y in X, there is

f : P1
k → X such that x, y ∈ f(P1

k) [81, Chapter IV, Theorem 3.9]. So πA
1

0 (X)(Spec k)

is trivial. In the next chapter (Chapter 6) in Proposition 6.2.1, we will give a stronger

version of Theorem 5.2.8 in case of smooth affine k-surfaces.

2. In the next chapter (Chapter 6) in Theorem 6.1.2, we will prove that any A1-connected

smooth variety over an algebraically closed field k is A1-uniruled, which gives a stronger

version of Theorem 5.2.8.

Corollary 5.2.10. Suppose X ∈ Sm/k is a surface with πA
1

0 (X)(Spec k) is trivial and k is an

uncountable algebraically closed field of characteristic zero. Then κ̄(X) = −∞.

Proof. This follows by Theorem 5.2.8 and because of equivalence of (1) and (2) in Definition

5.1.1 (Remark 5.1.2).
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Corollary 5.2.11. Suppose X ∈ Sm/k is A1-connected surface and k is an uncountable

algebraically closed field of characteristic zero. Then κ̄(X) = −∞.

Corollary 5.2.12. Suppose X ∈ Sm/k is A1-connected and k is an algebraically closed field.

Then there is a non-constant A1 in X.

Remark 5.2.13. In Corollary 5.2.12, the assumption that k is an algebraically closed field, is

necessary. The unit sphere T in A3
R given by the equation x2 + y2 + z2 = 1 is A1-connected

([113, Theorem 4.3.4]), however there is no non-constant A1
R in T (see Remark 6.1.6). If

X ∈ Sm/k is an A1-connected surface and the base field is countable (e.g. Q̄), even though

X is dominated by the images of A1’s, we don’t know whether X has negative logarithmic

Kodaira dimension.

We end the section making some comments on the A1-connectivity of the complex sphere

in A3
C.

5.2.1 Complex Sphere in A3
C

We have seen that A1-connectivity of a smooth complex variety X implies X has logarithmic

Kodaira dimension −∞. For affine surfaces X, this implies X contains a cylinder. But A1-

connectivity of a smooth complex surface X does not necessarily imply that X(C) is simply

connected at infinity. This subsection is taken from [40, Subsection 2.2]. Consider the complex

sphere,

X = Spec
C[x, y, z]

(x2 + y2 + z2 − 1)
.

The complex sphere X is an A1-connected surface with non-trivial Picard group. Thus in

particular, X is not isomorphic to A2
C.

By change of variables, X is isomorphic to Spec C[x,y,z]
(xy−z(1−z)) . X is a smooth complex affine

surface with non-trivial Picard group.

Lemma 5.2.14. O(X) is not a U.F.D.

Proof. The following product has two ways of factorization in O(X),

x̄ȳ = z̄1− z

The factorization is not unique. Therefore, O(X) is not a U.F.D.

Remark 5.2.15. So the Picard group of X is non-trivial and hence A1-fundamental group of

X is non-trivial. The surface X is in fact the Jouanolou device of P1
C [6, Example 5.3.1.6].

Thus the Picard group of X is isomorphic to Z and X is A1-connected.

Consider the morphisms

ϕ, ψ : Gm ×C A1
C → Spec

C[x, y, z]
(xy − z(1− z))
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given by ϕ(s, t) = (s, t(1−t)s , t) and ψ(s, t) = ( t(1−t)s , s, t). Then Gm ×C A1
C is isomorphic to

the open subsets D(x̄) and D(ȳ) of X by the morphisms ϕ and ψ respectively, where

D(x̄) =

{
P ∈ Spec

C[x, y, z]
(xy − z(1− z))

∣∣∣∣ x̄ /∈ P

}
and

D(ȳ) =

{
P ∈ Spec

C[x, y, z]
(xy − z(1− z))

∣∣∣∣ ȳ /∈ P

}
Thus X contains cylinders. Hence X has negative logarithmic Kodaira dimension. The proof in

[113, Theorem 4.3.4] shows that the complex sphere X is A1-chain connected, in particular X

is A1-connected. Note that the closure X of X in P3
C is isomorphic to P1

C×P1
C and X \X = P1

C

of degree 2. Therefore, the fundamental group at infinity of X is non trivial.



Chapter 6

A1-homotopy theory and

log-uniruledness

The goal of this chapter is very similar to the previous chapter (Chapter 5) to explore the

behaviour of A1-homotopy theory with A1-uniruledness. In this chapter in Theorem 6.1.2, we

show that an A1-connected variety contains a dominant family of affine lines, which is the main

theorem in this chapter (compare this with Theorem 5.2.8). We also prove that a smooth affine

k-surface X with πA
1

0 (X)(Spec k) trivial, either contains a dominant family of affine lines in X

or through every point there is an affine line in X and there exists a point x ∈ X(k) through

which intersecting A1’s pass (Proposition 6.2.1). Throughout the chapter we assume k to be

an algebraically closed field unless otherwise mentioned. This chapter is taken from [40, Section

2].

6.1 A1-Connectedness of a Variety and its A1-uniruledness

In this section we prove that any A1-connected smooth variety is A1-uniruled (Theorem 6.1.2),

which is the main theorem in this chapter.

Suppose F is a Nisnevich sheaf on Sm/k and X,W ∈ Sm/k. A non-constant homotopy

(Definition 5.2.3) H ∈ F(A1
W ) is such that H(0) ̸= H(1) ∈ F(W ), where H(0) and H(1) are

induced by the 0-section and the 1-section from W to A1
W respectively.

The next proposition (Proposition 6.1.1) gives a way of constructing non-constant A1-

homotopy in Sm(X) starting from a non-constant homotopy in Sn(X) whenever n > m. In

this respect the proposition is similar to Proposition 5.2.6. However, the difference is that in

Proposition 5.2.6 the algorithm requires fixing a closed point but in the following proposition

the argument is more generic in nature. We thank Prof. Chetan Balwe for giving suggestions

to make the proof of Proposition 6.1.1 simpler.

58
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Proposition 6.1.1. SupposeX,W ∈ Sm/k are irreducible schemes, n ≥ 1 andH ∈ Sn(X)(A1
W )

is a non-constant homotopy such that H(0) factors through X and H(0) :W → X is a dom-

inant morphism. Then there is some m < n, W ′ ∈ Sm/k irreducible and a non-constant

homotopy H ′ ∈ Sm(X)(A1
W ′) such that H ′(0) factors through X and H ′(0) : W ′ → X is a

dominant morphism.

Proof. The first part of the proof goes as in Proposition 5.2.6. The canonical morphism η :

X → Sn(X) is an epimorphism. So given H ∈ Sn(X)(A1
W ), there is a Nisnevich covering

f : V → A1
W along with a morphism ϕ : V → X making the diagram

V X

A1
W Sn(X)

ϕ

f

H

commutative and there is a Nisnevich covering V ′ → V ×A1
W
V along with a chain of non-

constant (since H is a non-constant homotopy, so p∗1(ϕ)|V ′ ̸= p∗2(ϕ)|V ′ ∈ Sn−1(X)(V ′)

by Remark 5.2.4, here p1, p2 : V ×A1
W
V → V are the projection maps) A1-homotopies

G1, G2, . . . , Gt ∈ Sn−1(X)(A1
V ′) such that

G1(0) = p∗1(ϕ)|V ′ and Gt(1) = p∗2(ϕ)|V ′ .

Suppose that Vi’s, 1 ≤ i ≤ q are the irreducible components of V , which are also the

connected components. Then each irreducible component V ′
0 of V ′ maps to Vi×A1

W
Vj for some

i, j (note that each Vi ×A1
W
Vj is non-empty, since W is irreducible) and there are dominant

maps (étale maps) from V ′
0 to Vi (for some i) induced by p1 and p2. Consider the following

commutative diagram induced by the 0-section of H:

U V X

W A1
W Sn(X)

θ

f ′

ϕ

f

i0

H(0)

H

where i0 : W → A1
W is the 0-section and the left square is cartesian. Thus f ′ is a Nisnevich

covering. Here the lower triangle is commutative, since H(0) factors through X. The upper

triangle is not commutative in general. However after shrinking W , we can always assume that

H(0) lifts to V i.e. there is a morphism θ′ : W → V such that H(0) factors as the morphism

θ′ : W → V , followed the morphism ϕ : V → X. Indeed, suppose that U1, U2, .., Ud are

the connected components of U . If all the homotopies Hi : A1
Ui

→ Sn(X) induced by the

composition

A1
Ui

(Id,f ′)−−−−→ A1
W

H−→ Sn(X)
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are constant i.e. Hi(0) = Hi(1), then H(0) = H(1). It is not possible, since H is a non-

constant homotopy. Therefore there is some i such that Hi is non-constant. The 0-section

Hi(0) = H(0)|Ui , so Hi(0) factors through X and Hi(0) : Ui → X is dominant. We then

replace the homotopy H by Hi. Therefore we always have the following commutative diagram

(after shrinking W ):

V X

W A1
W Sn(X)

ϕ

f

i0

θ

H

Since W is irreducible and H(0) is dominant, so W maps to some irreducible component of V

(say Vl) and ϕ|Vl is dominant.

We analyse the following cases:

Case 1: Suppose that ϕ(Vi) are same for all i. In this case ϕ|Vi is also dominant for every

i. There is some irreducible component V ′
0 of V ′ such that G1|A1

V ′
0

is a non-constant homotopy.

If V ′
0 maps to Vj ×A1

W
Vl for some j, l, the composition

V ′
0 → Vj ×A1

W
Vl

p1−→ Vj
ϕ|Vj−−→ X

is dominant since the map V ′
0 → Vj is étale. Thus in this case G1|A1

V ′
0

is the required homotopy.

Case 2: Suppose that there are i, j such that ϕ(Vi) ̸= ϕ(Vj). Thus if needed renumbering

all Vm-s we can assume that ϕ(V1), ϕ(V2), . . . , ϕ(Vs) = X and ϕ(Vs+1), . . . , ϕ(Vq) ⫋ X. If

there is some irreducible component V ′
0 of V ′ that maps to Vm ×A1

W
Vl with m ≤ s and

p∗1(ϕ)|V ′
0
̸= p∗2(ϕ)|V ′

0
in Sn−1(X)(V ′

0), then same as Case 2 there is some p such that Gp|A1
V ′
0

is

a non-constant homotopy and Gp|A1
V ′
0

(0) = p∗1(ϕ)|V ′
0
.

Thus we can assume that for each irreducible component V ′
0 of V ′ that maps to Vm×A1

W
Vl

with m ≤ s we have, p∗1(ϕ)|V ′
0
= p∗2(ϕ)|V ′

0
in Sn−1(X)(V ′

0). Therefore we have for every m ≤ s,

p∗1(ϕ)|Vm×A1
W
Vl = p∗2(ϕ)|Vm×A1

W
Vl ∈ Sn−1(X)(Vm ×A1

W
Vl).

Here we have following two subcases:

Subcase 1: Suppose that there is a t < n− 1 and an irreducible component W ′
0 of V ′ that

maps to Vm ×A1
W
Vl for some m, l with m ≤ s such that

p∗1(ϕ)|W ′
0
̸= p∗2(ϕ)|W ′

0
∈ St(X)(W ′

0).

Since p∗1(ϕ)|W ′
0
and p∗2(ϕ)|W ′

0
are same in Sn−1(X)(W ′

0), we choose t such that p∗1(ϕ)|W ′
0
is

same with p∗2(ϕ)|W ′
0
in St+1(X)(W ′

0) and

p∗1(ϕ)|W ′
0
̸= p∗2(ϕ)|W ′

0
∈ St(X)(W ′

0).
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Then there is a Nisnevich covering V ′′ →W ′
0 and a non-constant homotopy (by Remark 5.2.4)

H ′ ∈ St(X)(A1
V ′′) such that H ′(0) = p∗1(ϕ)|V ′′ . So there is an irreducible component W ′′

0 of

V ′′ such that H ′|A1
W ′′

0

is non-constant. Since the mapW ′′
0 → Vm is étale and ϕ|Vm is dominant,

H ′|A1
W ′′

0

(0) is dominant.

Subcase 2: Suppose that for every irreducible component V ′
0 of V ′ that maps to Vm×A1

W
Vl

for some m ≤ s, we have p∗1(ϕ)|V ′
0
= p∗2(ϕ)|V ′

0
as morphisms to X. Therefore we have,

p∗1(ϕ)|Vm×A1
W
Vl = p∗2(ϕ)|Vm×A1

W
Vl , ∀m ≤ s ∀l

as morphisms to X. But then all ϕ(Vl) are same for every l, since p1 : Vm ×A1
W
Vl → Vm and

p2 : Vm ×A1
W
Vl → Vl are dominant (étale) maps. It is a contradiction, since we have assumed

there are i, j such that ϕ(Vi) ̸= ϕ(Vj).

Therefore, the proposition is proved.

Theorem 6.1.2. Suppose X ∈ Sm/k is an irreducible, A1-connected scheme. Then there is

some W ∈ Sm/k with W irreducible and a non-constant homotopy H : A1
W → X such that

H is a dominant morphism.

Proof. As X is A1-connected, the sheaf L(X) is trivial [26, Corollary 2.18] and X has a k-

rational point (say x0 ∈ X(k)). Consider two morphisms Id : X → X (the identity map on

X) and Cx0 : X → Spec k
x0−→ X. Since L(X) is trivial, Id and Cx0 are same in L(X)(X).

Then there is a Nisnevich covering f : Y → X and some m ≥ 1 such that f and Cx0 |Y are

same in Sm(X)(Y ). Choose least n ≥ 0 such that f and Cx0 |Y are same in Sn+1(X)(Y )and

they are not same in Sn(X)(Y ). Thus there is a Nisnevich covering f ′ : Y ′ → Y and there are

chain of non-constant A1-homotopies G1, G2, ..., Gt ∈ Sn(X)(A1
Y ′) such that G1(0) = f ◦ f ′

and Gt(1) = Cx0 |Y ′ . There is some irreducible component Y0 of Y ′ such that G1|A1
Y0

is

non-constant. Since the restriction f ◦ f ′|Y0 : Y0 → X is étale, G1|A1
Y0
(0) is dominant. So

applying Proposition 6.1.1 repeatedly, there is a non-constant homotopy H : A1
W → X for

some W ∈ Sm/k irreducible such that H(0) is a dominant morphism. Therefore the morphism

H : A1
W → X satisfies H(0,−) ̸= H(1,−) :W → X and H is a dominant morphism.

Corollary 6.1.3. Suppose X ∈ Sm/k is an A1-connected k-variety, where k is an algebraically

closed field of characteristic zero. Then X has negative logarithmic Kodaira dimension.

Proof. Since X is A1-connected, by Theorem 6.1.2, there is a non-constant homotopy H :

A1
k ×k Y → X such that Y is irreducible and H is dominant. Infact we can take dim(Y ) =

dim(X) − 1. By [70, Theorem 11.3], the variety A1
k ×k Y has logarithmic Kodaira dimension

−∞. Thus X has logarithmic Kodaira dimension −∞ by [70, Proposition 11.4].

Recall that by the phrase “there is an A1 in W” for some W ∈ Sm/k, we mean that there

is a non-constant morphism ϕ : A1
k → W . If the base field k is algebraically closed, then an
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A1-connected variety X has always a non-constant A1 in X (Theorem 6.1.2, Corollary 5.2.12).

But if k is not algebraically closed, then it is not true (Remark 6.1.6). However, over a general

field k an A1-connected variety always admits a non-constant morphism H : A1
L → X, for some

finite separable field extension L/k (Proposition 6.1.5).

Lemma 6.1.4. Let k be a field and X ∈ Sm/k. Suppose that there is a non-constant homotopy

H ∈ Sn(X)(A1
W ) for some W ∈ Sm/k such that W is irreducible. Then there is a non-constant

homotopy H ′ ∈ Sn−1(X)(A1
W ′) for some W ′ ∈ Sm/k such that W ′ is irreducible.

Proof. The homotopy H ∈ Sn(X)(A1
W ) is given by a Nisnevich covering V → A1

W along with

G ∈ Sn−1(X)(V ) such that there is a Nisnevich covering V ′ → V ×A1
W
V with p∗1(G)|V ′ =

p∗2(G)|V ′ in Spre(Sn−1(X))(V ′) (here p1, p2 : V ×A1
W
V → V are the projection maps).

Therefore there are G1, G2, . . . Gl ∈ Sn−1(X)(A1
V ′) such that G1(0) = p∗1(G)|V ′ and Gl(1) =

p∗2(G)|V ′ . Since H is non-constant, we can assume that G1 is non-constant by Remark 5.2.4.

Thus there is some irreducible component W ′ of V ′ such that G1|A1
W ′

is non-constant.

Proposition 6.1.5. Let k be any field (not necessarily algebraically closed) and X ∈ Sm/k

be an A1-connected scheme. Suppose X has at least two k-rational points. Then there is a

non-constant homotopy H : A1
L → X for some finite separable field extension L of k.

Proof. Suppose, X ∈ Sm/k is an A1-connected scheme and α, β are two k-rational points

in X. If there is a non-constant A1 in X through α or β, we are done. Let us assume that

there is no non-constant A1 in X through α and β. Since X is A1-connected, L(X) is trivial

[26, Corollary 2.18]. Therefore, there is an n ≥ 1 such that α = β ∈ Sn+1(X)(Spec k)

but α ̸= β ∈ Sn(X)(Spec k). Thus there is a chain of non-constant A1-homotopies (Remark

5.2.4)H1, H2, . . . ,Hm ∈ Sn(X)(A1
k) such thatH1(0) = α andHm(1) = β. Therefore applying

Lemma 6.1.4 repeatedly, there is a non-constant homotopy G : A1
W → X for some W ∈ Sm/k

such that W is irreducible. Since G is the non-constant homotopy on A1
W and the set

{w ∈W closed point | k ⊂ k(w) is a finite separable extension}

is dense in W [121, Tag 056U], there is some w0 ∈ W such that G(0)(w0) ̸= G(1)(w0) as

morphisms fromW to X and k(w0)/k is a finite separable extension. Therefore the composition

given by

A1
k(w0)

w0×Id−−−−→ A1
W

G−→ X

is a non-constant morphism H : A1
k(w0)

→ X.

Remark 6.1.6. If k is not an algebraically closed field, then the separable extension L in

Proposition 6.1.5 can be a proper extension of k. For example, if X is the real sphere

Spec( R[X,Y,Z]
(X2+Y 2+Z2−1)

), there is no non-constant morphism from A1
R toX. Indeed, if X̄ is the pro-

jective closure of X, any morphism ϕ : A1
R → X extends to a morphism ϕ̄ : P1

R → X̄. Since X

has no real points at infinity, the morphism ϕ̄ factors throughX ↪→ X̄. AsX is an affine scheme,
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the morphism ϕ̄ is constant. However the ring homomorphism f : R[X,Y,Z]
(X2+Y 2+Y 2−1)

→ C[T ] given
by X 7→ 1, Y 7→ T, Z 7→ iT defines a non-constant morphism f̄ : A1

C → X.

We end this section with the following lemma (Lemma 6.1.7), which we will use to prove

Proposition 6.2.1.

Lemma 6.1.7. Suppose, X is a smooth affine k-variety and H ∈ Sn(X)(A1
W ) is a non constant

homotopy, where n ≥ 1 and W smooth irreducible k-scheme. Let f : V → A1
W be a Nisnevich

covering and suppose ϕ : V → X is a morphism such that the epimorphism η : X → Sn(X)

maps ϕ to H|V .

Then there are irreducible components V0 and V ′
0 of V such that there is no γ : A1

k → X

so that the image γ(A1
k) contains both ϕ(V0) and ϕ(V ′

0).

Proof. Consider the following commutative diagram:

V X

A1
W Sn(X)

ϕ

f

H

Suppose V =
∐m
i=1 Vi, Vi-s are the irreducible components of V .

If possible, for every i, j there is γi,j : A1
k → X such that its image (note that the image

γi,j(A1
k) is closed in X, since X is affine and we denote Im(γi,j) by Li,j) contains both ϕ(Vi)

and ϕ(Vj). Here are two cases.

Case 1: Suppose each ϕ(Vi) is of dimension zero. Then ϕ(Vi) is a singleton set for every

i, since Vi is irreducible. Suppose, ϕ(Vi) = {αi} ⊂ X(k). Then αi = αj ∈ Sn(X)(Spec k) for

every i, j. Indeed, αi, αj ∈ Li,j and γi,j(t) = γi,j(0) ∈ Sn(X)(Spec k), for every t ∈ A1
k. To

prove this, consider the naive A1-homotopy

˜γi,j : A1
k → X defined as s 7→ γ(st).

Thus H|V = αi ∈ Sn(X)(V ) for all i (a k-point α is considered as an element of Sn(X)(V )

as follows

V → Spec k
α−→ X → Sn(X))

and hence H = αi ∀i. Therefore H(0) = H(1) ∈ Sn(X)(W ), which is a contradiction since

H is a non-constant homotopy.

Case 2: Suppose, there is some t such that dim(ϕ(Vt)) ≥ 1. Then ϕ(Vt) ⊂ Lt,i for every

i. Since, Lt,i is the image of A1, so Lt,i = ϕ(Vt), ∀i. Thus ϕ(Vt), which is the image of an A1

in X, contains all the ϕ(Vi)’s. So there is an A1, say γ : A1
k → X such that the image γ(A1

k)
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contains ϕ(Vi) for every i (we denote the image γ(A1
k) by L, which is closed in X). We will

prove that in this situation H is not a non-constant homotopy i.e. H(0) = H(1) ∈ Sn(X)(W ).

The 0-section H(0) is given by the following commutative diagram:

U0 V X

W A1
W Sn(X)

θ0

f0

ϕ

f η

i0 H

Here i0 is the 0-section and the left most square is a pullback square. Similarly the 1-section

H(1) is given by the following commutative diagram:

U1 V X

W A1
W Sn(X)

θ1

f1

ϕ

f η

i1 H

Here i1 is the 1-section and the left most square is a pullback square. Here are two possible

cases regarding the closures of the images of ϕ ◦ θ0 and ϕ ◦ θ1.
Subcase 1: Assume that both the closures of Im(ϕ ◦ θ0) and Im(ϕ ◦ θ1) are L. In this

case, both ϕ ◦ θ0 and ϕ ◦ θ1 factor through the normalisation of L as U0
θ̃0−→ A1

k → X and

U1 → A1
k → X respectively. Therefore we have the following commutative diagram for ϕ ◦ θ0:

Sn(U) Sn(A1
k) Sn(X)

A1
k

U0 V X

W A1
W Sn(X)

Sn(γ)

γ

η′

θ0

θ̃0

f0

ϕ

f η

η

i0 H

From the above diagram we have,

H ◦ i0 ◦ f0 = H ◦ f ◦ θ0

= η ◦ ϕ ◦ θ0

= η ◦ γ ◦ θ̃0

= Sn(γ) ◦ η′ ◦ θ̃0

Since Sn(A1
k) is the trivial sheaf Spec k, therefore, H(0)|U0 is same as the composition of maps

U0 → Spec k
α−→ Sn(X) for some α ∈ X(k). Now, γ = γ(0) ∈ S(X)(A1

k). Indeed, a naive
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A1-homotopy between γ and γ(0) is given by

γ̃ : A1
k ×k A1

k → X defined as (s, t) 7→ γ(st).

Thus α = γ(0) ∈ Sn(X)(Spec k) and H(0)|U0 = γ(0). Similarly, we have the same kind

diagram for ϕ ◦ θ1 and H(1)|U1 = γ(0). Thus both H(0) = H(1) = γ(0) and this contradicts

the fact that H is a non-constant homotopy.

Subcase 2: Assume that one of the closures (say Im(ϕ ◦ θ0)) consists finitely many points

in L. Suppose, Im(ϕ ◦ θ0) = {α1, .., αm} ⊂ X(k) where αi = γ(ti), for some ti ∈ A1
k . So

each irreducible component of U0 maps to some αi under ϕ ◦ θ0. Thus for each irreducible

component (say U ′
0) of U0, ϕ ◦ θ0|U ′

0
factors as U ′

0
ti−→ A1

k
αi−→ X. Hence in this case also

H(0) = γ(0), since γ = γ(t0) ∈ Sn(X)(A1
k), for every t0 ∈ A1

k. Indeed, a naive A1-homotopy

between γ and γ(t0) is given by

γ̃ : A1
k ×k A1

k → X defined as (s, t) 7→ γ((st+ (1− s)t0)).

Similarly, H(1) = γ(0). It is a contradiction to the fact that H is non-constant.

Hence the Lemma follows.

6.2 Affine surfaces with πA1

0 (−)(Spec k) is trivial

The following proposition (Proposition 6.2.1) gives a stronger version of Theorem 5.2.8 in case

of smooth affine k-surfaces. From now on by “two A1’s (given by γ1, γ2 : A1
k → X) in X

intersect”, we mean that Im(γ1) ∩ Im(γ2) ̸= ∅.

Proposition 6.2.1. Let X ∈ Sm/k be an affine surface such that πA
1

0 (X)(Spec k) is trivial.

Then one of the following holds:

1. There exists some Y ∈ Sm/k such that Y is irreducible along with a non-constant

homotopy H : A1
k × Y → X which is dominant.

2. ∀x ∈ X(k) there is an A1 in X through x and there are k-points α, β in X along with

two distinct A1-s (the images are distinct) in X through α and β respectively such that

they intersect.

Proof. Suppose, X ∈ Sm/k is an affine surface with πA
1

0 (X)(Spec k) is trivial. If there is

some α ∈ X(k) such that there is no non-constant A1 through α, according to the proof in [39,

Theorem 4.9], there is a non-constant homotopy H : A1
k×Y → X which is dominant for some

Y ∈ Sm/k such that Y is irreducible. If possible, the conclusion of this Proposition is false for

X. Thus we assume that for each x ∈ X(k) there is the unique A1 through x (this means given

two A1’s γ1, γ2 through x, we have Im(γ1) = Im(γ2)) i.e. there are no intersecting A1’s in X

and X does not admit such a dominant map as described in the conclusion of the Proposition.

Fix α, β ∈ X(k) such that β lies outside the unique A1 through α. Since πA
1

0 (X)(Spec k)
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is trivial, L(X)(Spec k) is trivial ([33, Theorem 2.2] or Corollary 3.3.9). Therefore there is

an n ≥ 1 such that α = β ∈ Sn+1(X)(Spec k), but α ̸= β ∈ Sn(X)(Spec k). Thus there

is a chain of non-constant A1-homotopies (Remark 5.2.4) H1, H2, . . . ,Hp ∈ Sn(X)(A1
k) such

that H1(0) = α and Hp(1) = β. By applying Lemma 6.1.4 repeatedly, there is a non-constant

homotopyG ∈ S(X)(A1
W ) for someW ∈ Sm/k such thatW is irreducible. Since the morphism

X → S(X) is an epimorphism, there is a Nisnevich covering f : V → A1
W and a morphism

ϕ : V → X such that the following diagram commutes:

V X

A1
W S(X)

ϕ

f

G

There is a Nisnevich covering V ′ → V ×A1
W
V such that ϕ ◦ p1|V ′ and ϕ ◦ p2|V ′ are A1-chain

homotopic (where p1, p2 : V ×A1
W
V → V are the projections). Thus there is a chain of

non-constant A1-homotopies (Remark 5.2.4) G1, G2, . . . , Gm : A1
V ′ → X such that G1(0) =

ϕ ◦ p1|V ′ and Gm(1) = ϕ ◦ p2|V ′ .

Suppose V =
∐
i Vi, Vi-s are the irreducible components of V . Then each irreducible

component of V ′ (which is also a connected component) maps to Vi×A1
W
Vj for some i, j (note

that, each Vi×A1
W
Vj is non-empty sinceW is irreducible). If an irreducible component (say V0)

of V ′ maps to Vq×A1
W
Vs such that ϕ(Vq) and ϕ(Vs) are distinct, there is some t such that Gt|A1

V0

is a non-constant homotopy and Gt|A1
V0
(0) = ϕ ◦ p1|V0 , since we have G1|A1

V0
(0) = ϕ ◦ p1|V0

and Gm|A1
V0
(1) = ϕ ◦ p2|V0 and Im(ϕ ◦ p1|V0) = ϕ(Vq) and Im(ϕ ◦ p2|V0) = ϕ(Vs). As k is

algebraically closed, there is a non-constant A1 contained in Im(Gt|A1
V0
). Since G is a non-

constant homotopy, there is some i and j such that there is no A1 in X that contains both

ϕ(Vi) and ϕ(Vj) by Lemma 6.1.7. The rest of the proof follows from the following cases.

Case 1

Case 1: Assume that ϕ(Vi) and ϕ(Vj) are equal and there is some r such that ϕ(Vr)

and ϕ(Vi) are distinct. There is some irreducible component of V ′ (say V0) that maps to

Vi ×A1
W
Vr. There is some t such that Gt|A1

V0
is non-constant and Gt|A1

V0
(0) = ϕ ◦ p1|V0 . Here

Im(ϕ ◦ p1|V0) is same with ϕ(Vi). Since Gt|A1
V0

is non-constant and k is algebraically closed,

Im(Gt|A1
V0
) contains a non-constant A1 and Im(Gt|A1

V0
) contains ϕ(Vi). Therefore Gt|A1

V0
is
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dominant, since ϕ(Vi) is not contained in a single A1. This is a contradiction since we have

assumed that X does not admit such a dominant map.

Case 2

Case 2: Assume that for every r, ϕ(Vr) are same. Choose an irreducible component of V ′

(say V0) such that G1|A1
V0

is non-constant. Suppose V0 maps to Vl ×A1
W
Vs for some l, s. Here

G1(0) = ϕ◦p1|V ′ and Im(ϕ ◦ p1|V0) is same with ϕ(Vl). Since G1|A1
V0

is non-constant and k is

algebraically closed, Im(G1|A1
V0
) contains a non-constant A1 and Im(G1|A1

V0
) contains ϕ(Vl).

Therefore G1|A1
V0

is dominant, since ϕ(Vl) is not contained in a single A1. It is a contradiction.

Case 3

Case 3: Assume that ϕ(Vi) and ϕ(Vj) are distinct. There is an irreducible component

(say V0) of V ′ that maps to Vi ×A1
W
Vj . Then there is some t such that Im(Gt|A1

V0
(0)) and

Im(Gt|A1
V0
(1)) are distinct and there is no single A1 in X that contains both Im(Gt|A1

V0
(0))

and Im(Gt|A1
V0
(1)). Indeed if possible, assume that for each l either Im(Gl|A1

V0
(0)) and

Im(Gl|A1
V0
(1)) are same or if Im(Gl|A1

V0
(0)) and Im(Gl|A1

V0
(1)) are distinct, then there is

an A1 in X that contains both the closures. Thus for each homotopy Gl|A1
V0
, there is an A1

in X that contains both Im(Gl|A1
V0
(0)) and Im(Gl|A1

V0
(1)), as Gl(1) = Gl+1(0). Since there

are no intersecting A1-s in X and Gl(1) = Gl+1(0), there is a single A1 in X that contains all

Im(Gl|A1
V0
(0)) and Im(Gl|A1

V0
(1)) for any l. Thus there is an A1 in X that contains both ϕ(Vi)

and ϕ(Vj). It is a contradiction. Since k is algebraically closed, Im(Gt|A1
V0
) contains a non-

constant A1 and Im(Gt|A1
V0
(0)) and Im(Gt|A1

V0
(1)) are not contained in that A1. Therefore,

Gt|A1
V0

is dominant. It is a contradiction.

Hence the Proposition follows.
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We end this chapter making some comments on the A1-connected component sheaf of an

affine surface X over the field of positive characteristics and the existence of A1’s in X.

6.2.1 Comments in Positive Characteristics

Suppose, X is an affine surface over a field of positive charcteristic. In this subsection we list

some behaviours of the A1-connected component sheaf of X with the geometric properties of

X.

1. There are smooth Frobenius sandwich surfaces ([84], [89, Section 4, Section 5]) X over

an algebraically closed field k of characteristic p > 0 which are not rational, admit a finite

surjective morphism ϕ : A2
k → X and have non-negative logarithmic Kodaira dimension.

Any two k-rational points in X can be joined by a chain of A1
k’s i.e. S(X)(Spec k) is

trivial, since ϕ is surjective and A2
k is A1-chain connected. Thus, πA

1

0 (X)(Spec k) is

trivial. However, over a field of characteristic zero any A1-connected surface is rational

([6, Proposition 5.4.2.7], [11, Corollary 2.4.7]). If X is a surface over an uncountable

algebraically closed field k of characteristic zero and πA
1

0 (X)(Spec k) is trivial, then X

has negative logarithmic Kodaira dimension (Corollary 5.2.10).

2. Suppose the base field k is algebraically closed and is of infinite transcendence degree over

the prime field Fp (p > 0). Then any vector bundle over the Frobenius sandwich surface

S in [89, Theorem 2.6] is trivial ([116], [95, Theorem 2]). The surface S is rational and S

has non-negative logarithmic Kodaira dimension [89, Lemma 2.8]. Since such surface S

admits a finite surjective morphism ϕ : A2
k → X, so similarly as in (1), πA

1

0 (S)(Spec k)

is trivial.
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Kan Fibrant Property of Sing∗(X)(−)

The simplicial set Sing∗(Amk )(U) is Kan fibrant for every U ∈ Sm/k, since Ank is an affine

group scheme. In this chapter, in Section 7.1 we give an explicit formula for horn filling in

Sing∗(Amk )(U) (Subsection 7.1.1). In Section 7.2, we define the notion of a simplicial set being

Kan fibrant in degree n which is a weaker condition than a simplical set being Kan fibrant

(Definition 7.2.1) and we use this condition to prove that if X is a smooth affine k-surface

with πA
1

0 (X)(Spec k) is trivial and Sing∗(X)(Spec k) is Kan fibrant in degree 2, then X has

negative logarithmic Kodaira dimension (Corollary 7.2.5).

7.1 Kan Fibrant Property of Sing∗(Am
k )(−)

Recall the definition of Sing∗ functor on ∆opPSh(Sm/k) (Definition 2.2.6), for X,U ∈ Sm/k

Sing∗(X)(U)n = HomSm/k(∆
n
a ×k U,X),

along the boundary maps di’s and the degeneracy maps si’s. In this section we provide a

method of horn filling of the simplicial set Sing∗(Amk )(U), for every U ∈ Sm/k.

Definition 7.1.1. [98, Definition 1.3] A simplicial set X is called Kan fibrant if for every n,

0 ≤ l ≤ n and given l-th horn in X i.e. a map α : Λnl → X, there is a map ᾱ : ∆n → X such

that α = ᾱ ◦ θ, where θ : Λnl → ∆n is the inclusion of the l-th horn in ∆n. Equivalently, given

n-many (n − 1) simplices x0, .., xl−1, xl+1, .., xn of X satisfying the compatibility condition

dixj = dj−1xi for i < j, i, j ̸= l, there is an n-simplex x such that dix = xi for all i ̸= l.

Example 7.1.2. Any simplicial group is Kan fibrant [98, Theorem 17.1]. Thus Sing∗(Amk )
is sectionwise Kan fibrant since Amk is an affine group scheme. The retract of a Kan fibrant

simplicial set is Kan fibrant.

In the next subsection (Subsection 7.1.1), using [100, Theorem 3.1], we write an explicit

formula of horn filling of the sections of Sing∗(Amk ).
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7.1.1 Formula of horn filling of Sing∗(Am
k )(U) U ∈ Sm/k:

Sing∗(Amk )(U)n = HomSm/k(∆
n
a ×k U,Amk )

∼= Homk−alg(k[T1, .., Tm],
A[x0, x1, .., xn]

(
∑n

i=0 xi − 1)
),

where A is the ring of regular functions O(U). For n ≥ 1 and 0 ≤ l ≤ n, suppose we are given

ϕ0, .., ϕl−1, ϕl+1, .., ϕn : k[T1, .., Tm] →
A[x0, x1, .., xn−1]

(
∑n−1

i=0 xi − 1)

such that di ◦ ϕj = dj−1 ◦ ϕi, if i < j and i, j ̸= l, here we again denote the map IdA ⊗ di by

di (IdA is the identity map on A):

IdA ⊗ di : A⊗k
k[x0, x1, .., xn−1]

(
∑n−1

i=0 xi − 1)
→ A⊗k

k[x0, x1, .., xn−2]

(
∑n−2

i=0 xi − 1)

and denote the map IdA ⊗ si by si again:

IdA ⊗ si : A⊗k
k[x0, x1, .., xn−1]

(
∑n−1

i=0 xi − 1)
→ A⊗k

k[x0, x1, .., xn]

(
∑n

i=0 xi − 1)

Since Tp’s are independent variables, suppose that each ϕi is given by

Tp
ϕi7−→ f

(p)
i , f

(p)
i ∈ A[x0, x1, .., xn−1], 1 ≤ p ≤ m, 0 ≤ i ≤ n, i ̸= l

and f
(p)
i is the class of f

(p)
i in A[x0,x1,..,xn−1]

(
∑n−1

i=0 xi−1)
. We need to find some

Φ : k[T1, .., Tm] →
A[x0, x1, .., xn]

(
∑n

i=0 xi − 1)

such that di ◦ Φ = ϕi, for all i ̸= l.

Using [100, Theorem 3.1], we write the formulas of horn filling of Sing∗(Amk )(U). Define

two k-algebra morphisms

T j , Sj :
A[x0, x1, .., xn]

(
∑n

i=0 xi − 1)
→ A[x0, x1, .., xn]

(
∑n

i=0 xi − 1)

as T j = sj ◦ dj and Sj = sj ◦ dj+1, i.e.

f(x0, .., xn)
T j

7−→ f(x0, .., xj−1, 0, xj + xj+1, xj+2, .., xn)

f(x0, .., xn)
Sj

7−→ f(x0, .., xj−1, xj + xj+1, 0, xj+2, .., xn)

Consider three cases.
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Case 1: Suppose, l = 0. We are given the (n− 1)-simplices as ϕ1, .., ϕn and each ϕi is given

by

Tp 7→ f
(p)
i , p = 1, . . . ,m.

Define Φ : k[T1, . . . , Tm] → A[x0,x1,..,xn]
(
∑n

i=0 xi−1)
as

Tp 7→

n−1∑
i=0

f
(p)
i+1(x0, .., xi−1, xi + xi+1, xi+2, .., xn)

+

n−2∑
r=0

∑
t ̸=0

0≤i1<..<it≤r

(−1)tSi1 ◦ Si2 ◦ ..Sit(f
(p)
r+2(x0, .., xr, xr+1 + xr+2, xr+3, .., xn))

Thus Φ is defined as

Tp 7−→
n−1∑
i=0

sif
(p)
i+1 +

n−2∑
r=0

∑
t̸=0

0≤i1<···<it≤r

(−1)tSi1 ◦ . . . Sitsr+1f
(p)
r+2,

for p = 1, . . . ,m.

Case 2: Suppose, l = n. We are given the (n− 1)-simplices ϕ0, . . . , ϕn−1 and ϕi and each

ϕi is defined as

Tp 7→ f
(p)
i , p = 1, . . . ,m.

Define Φ : k[T1, . . . , Tm] → A[x0,x1,..,xn]
(
∑n

i=0 xi−1)
as

Tp 7−→

n−1∑
i=0

f
(p)
i (x0, .., xi−1, xi + xi+1, xi+2, .., xn)

+

n−1∑
r=1

∑
t ̸=0

r≤it<..<i1≤n−1

(−1)tT i1 ◦ T i2 ◦ . . . T it(f
(p)
r−1(x0, .., xr−1 + xr, xr+1, .., xn))

Thus Φ is defined as

T 7−→
n−1∑
i=0

sif
(p)
i +

n−1∑
r=1

∑
t̸=0

r≤it<···<i1≤n−1

(−1)tT i1 ◦ . . . T itsr−1f
(p)
r−1,

for p = 1, . . . ,m.

Case 3: Suppose, 0 < l < n. We are given ϕ0, . . . , ϕl−1, ϕl+1, . . . , ϕn and each ϕi is

defined as

Tp 7→ f
(p)
i , p = 1, . . . ,m.
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Define Φ : k[T1, . . . , Tm] → A[x0,x1,..,xn]
(
∑n

i=0 xi−1)
as

Tp 7−→

l−1∑
i=0

f
(p)
i (x0, .., xi−1, xi + xi+1, xi+2, .., xn)+

n−l−1∑
i=0

f
(p)
n−i(x0, .., xn−i−1 + xn−i, .., xn)

+

l−1∑
s=1

∑
(t,v) ̸=(0,0)

l≤i1<..<it≤n−1
s≤jv<..<j1≤l−1

(−1)t+vSi1 ◦ Si2 ◦ ..Sit ◦ T j1 ◦ .. ◦ T jv(f
(p)
s−1(x0, .., xs−1 + xs, .., xn))

+

∑
r ̸=0

l≤i1<..<ir≤n−1

(−1)rSi1 ◦ .. ◦ Sirf
(p)
l−1(x0, .., xl−1 + xl, .., xn)

+

n−1−l∑
t=1

∑
v ̸=0

l≤i1<..<iv≤n−1−t

(−1)vSi1 ◦ Si2 ◦ . . . Siv(f
(p)
n−t+1(x0, .., xn−t + xn−t+1, .., xn)),

for p = 1, . . .m. This completes the formulas of horn filling of Sing∗(Amk )(U).

In the next section in Lemma 7.2.3, using these formulas we will show that Sing∗(Amk )(U)

is Kan fibrant in degree 2 (Definition 7.2.1).

7.2 Surfaces with Sing∗(X)(Spec k) is Kan Fibrant

In this section we define the notion of a simplicial set being Kan fibrant in degree n (Definition

7.2.1). In Lemma 7.2.3, using the formulas obtained in Subsection 7.1.1 we show that the

sections of Sing∗(Amk ) are Kan fibrant in degree 2. In Corollary 7.2.5, we prove that if X

is a smooth affine surface over an algebraically closed field k of characteristic zero along with

πA
1

0 (X)(Spec k) is trivial and Sing∗(X)(Spec k) is Kan fibrant in degree 2, then X has negative

logarithmic Kodaira dimension.

Definition 7.2.1. A simplicial set X is called Kan fibrant in degree n if for each l-th horn Λnl

where 0 ≤ l ≤ n, a map ϕ : Λnl → X can be extended to ϕ̃ : ∆n → X.

Example 7.2.2. Any Kan fibrant simplicial set is Kan fibrant in degree n for any n. Any

simplicial group is Kan fibrant in degree n [98, Theorem 17.1]. For example, the sections of

Sing∗(Amk ) are Kan fibrant in degree n for any n.

Lemma 7.2.3. Sing∗(Amk )(U) is Kan fibrant in degree 2, for every U ∈ Sm/k.

Proof. Suppose, we have given a morphism

ϕ : Λ2
l → Sing∗(Amk )(U), where U ∈ Sm/k, l ∈ {0, 1, 2}.
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We will extend ϕ to a 2-simplex of Sing∗(Amk )(U). We have the following isomorphism:

Sing∗(Amk )(U)n = HomSm/k(∆
n
a ×k U,Amk )

∼= Homk−alg(k[T1, .., Tm],
A[x0, .., xn]

(
∑n

i=0 xi − 1)
),

where A is the ring of regular functions O(U). Here are three cases according to the l-th horn,

l = 0, 1, 2.

Case 1: l = 0 Suppose we are given

ϕ1, ϕ2 : k[T1, .., Tm] →
A[x0, x1]

(x0 + x1 − 1)

such that d1 ◦ ϕ2 = d1 ◦ ϕ1. Since Tj ’s are the independent variables, suppose ϕ1, ϕ2 are given

by

Tj
ϕ17−→ fj , fj ∈ A[x0, x1] and

Tj
ϕ27−→ gj , gj ∈ A[x0, x1]

and fj , gj satisfy

gj(x0, 0) = fj(x0, 0).

Define Φ : k[T1, .., Tm] → A[x0,x1,x2]
(x0+x1+x2−1) as

Tj 7→ gj(x0, x1 + x2) + fj(x0 + x1, x2)− gj(x0 + x1, x2).

Then d1 ◦ Φ is given by

Tj 7→ gj(x0, x1)− gj(x0, x1) + fj(x0, x1)

so, Tj
d1◦Φ7−−−→ fj(x0, x1).

The map d2 ◦ Φ is given by

Tj 7→ gj(x0, x1)− gj(x0 + x1, 0) + fj(x0 + x1, 0)

. Since gj(x0, 0) = fj(x0, 0) ∈ A[x0]
(x0−1) , so Tj

d2◦Φ7−−−→ gj(x0, x1).

Case 2: l = 1 Suppose we are given

ϕ0, ϕ2 : k[T1, .., Tm] →
A[x0, x1]

(x0 + x1 − 1)

such that d0 ◦ ϕ2 = d1 ◦ ϕ0. Suppose ϕ0, ϕ2 are given by

Tj
ϕ07−→ fj , fj ∈ A[x0, x1] and
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Tj
ϕ27−→ gj , gj ∈ A[x0, x1]

and fj , gj satisfy

gj(0, x0) = fj(x0, 0).

Define Φ : k[T1, .., Tm] → A[x0,x1,x2]
(x0+x1+x2−1) as

Tj 7→ fj(x0 + x1, x2) + gj(x0, x1 + x2)− fj(x0 + x1 + x2, 0),

so Tj
Φ7−→ fj(x0 + x1, x2) + gj(x0, x1 + x2)− fj(1, 0).

Similarly as in Case 1, we can check d0 ◦ Φ = ϕ0 and d2 ◦ Φ = ϕ2.

Case 3: l = 2 Suppose we are given

ϕ0, ϕ1 : k[T1, .., Tm] →
A[x0, x1]

(x0 + x1 − 1)

such that d0 ◦ ϕ1 = d0 ◦ ϕ0. Suppose ϕ0, ϕ1 are given by

Tj
ϕ07−→ fj , fj ∈ A[x0, x1] and

Tj
ϕ17−→ gj , gj ∈ A[x0, x1]

and fj , gj satisfy

gj(0, x0) = fj(0, x0).

Define Φ : k[T1, .., Tm] → A[x0,x1,x2]
(x0+x1+x2−1) as

Tj 7→ fj(x0 + x1, x2) + gj(x0, x1 + x2)− fj(x0, x1 + x2).

Similarly as in Case 1, we can check d0 ◦ Φ = ϕ0 and d1 ◦ Φ = ϕ1.

Therefore, Sing∗(Amk )(Spec k) is Kan fibrant in degree 2.

Remark 7.2.4. Thus in particular if we are given two morphisms f, g : A1
k → Amk such that

f(1) = g(0), then the morphism h : A2
k → Amk defined as

(t1, t2) 7→ (f(1− t1) + g(t2)− f(1))

satisfies h(1− x, 0) = f(x) and h(0, x) = g(x). Therefore, if there are two intersecting A1’s in

A2
k, then we can extend it to get a morphism from A2

k to A2
k.

We end this section with the following corollary (Corollary 7.2.5) to Proposition 6.2.1. The

following corollary is taken from [40, Corollary 2.12].
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Corollary 7.2.5. Let X ∈ Sm/k be an affine surface, where k is an algebraically closed field

of characteristic zero. Suppose that πA
1

0 (X)(Spec k) is trivial and Sing∗(X)(Spec k) is Kan

fibrant in degree 2. Then X has negative logarithmic Kodaira dimension.

Proof. Since πA
1

0 (X)(Spec k) is trivial, so by the Proposition 6.2.1 either there is some Y ∈
Sm/k irreducible along with a non-constant homotopy H : A1

k ×k Y → X which is dominant

or there are two intersecting A1’s in X. For the first case, we proceed as in Corollary 6.1.3

to conclude that X has negative logarithmic Kodaira dimension. For the second case, since

Sing∗(X)(Spec k) is Kan fibrant in degree 2, there is a dominant morphism ϕ : A2
k → X.

Therefore X has logarithmic Kodaira dimension −∞ by [70, Proposition 11.4].



Chapter 8

Characterisation of the Affine Space

In this chapter we prove the main theorem (Theorem 8.1.1) in this thesis. In Theorem 8.1.1,

we prove that over a field k of characteristic zero, the affine plane A2
k is the only smooth affine

surface which is A1-contractible. We provide a mixed characterisation of the affine complex

plane A2
C (Theorem 8.1.3), which in particular says that A1-contractibility is indeed a stronger

notion than topological contractibility (Corollary 8.1.5). We also give characterisations of Ank ’s

for n = 3, 4 using A1-homotopy theory (Corollary 8.1.10). In Subsection 8.1.1, we recall the

notion of locally nilpotent derivation and give a mixed characterisation of the affine space A3
k

using the locally nilpotent derivation (Corollary 8.1.13). In Subsection 8.1.2, using Sathaye’s

theorem [111, Theorem 1.1] we prove that A2
R is the only A1-contractible smooth affine surface

over a discrete valuation ring R of equicharacteristiz zero (Theorem 8.1.14).

8.1 Characterisation over a field of characteristic zero

In dimension 1, the affine line A1
k is the only A1-contractible smooth affine curve over a field k

[6, Theorem 5.4.2.9]. In this section in Theorem 8.1.1 we prove that the affine plane A2
k is the

only A1-contractible smooth affine surface over a field k of characteristic zero. This is the main

theorem of this thesis. A variant of the main theorem (Theorem 8.1.3) and its consequences are

also given in this section. We thank Prof. Amartya Kumar Dutta for this version of Theorem

8.1.1. This section is taken from [39, Section 5].

Theorem 8.1.1. Let k be a field of characteristic zero and X be an smooth affine surface over

the field k. Then X is A1-contractible if and only if X is isomorphic to A2
k.

Proof. One direction is clear by definition of A1-contractibility. Conversely, suppose X is A1-

contractible. We can consider k as a subfield of an uncountable algebraically closed field L.

As L/k is the filtered colimit of its finitely generated sub-extensions over k, therefore by [94,

Corollary 1.24] the base change XL := X ×k L is A1-contractible. Then the Picard group of

XL is trivial and the group of units of XL is L∗. Moreover by Corollary 5.2.11, the logarithmic

Kodaira dimension of XL is −∞. Therefore, using [92, Section 4.1], we get XL
∼= A2

L. Thus

O(X) is an A2-form over L/k. Using [76, Theorem 3] one can show that O(X) is a trivial
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A2-form as k is of characteristic 0. Indeed, since O(X) is a finitely generated k-algebra,

we can assume L to be a finitely generated field extension over k. In characteristic zero any

algebraic extension is separable, therefore after the base change we can assume L to be a finitely

generated purely transcendental extension (say, L = k(X1, X2, .., Xn)) over k by [76, Theorem

3]. Again since O(X) is a finitely generated k-algebra, there is some f ∈ k[X1, X2, .., Xn] such

that O(X)⊗k k[X1, X2, .., Xn]f ∼= k[X1, X2, .., Xn]f [X,Y ]. Taking quotient by some maximal

ideal, we can assume L is a separable algebraic extension. Therefore by [76, Theorem 3], we

get O(X) ∼= k[X,Y ].

Remark 8.1.2. Theorem 8.1.1 says that A1-contractibility of an affine surface detects the affine

plane over the field of characteristic zero. However only A1-connectedness can not the affine

plane. For example, the complex sphere in A3
C is A1-connected, but it is not isomorphic to A2

C

(it has non-trivial Picard group, see Subsection 5.2.1).

If the base field is C and X(C) is topologically contractible, then X has trivial Picard group

and trivial group of units. Moreover if X is A1-connected, then X has negative logarithmic Ko-

daira dimension by Corollary 5.2.11. Then by [92, Section 4.1], we have another characterisation

of the affine complex plane.

Theorem 8.1.3. A smooth complex surface X is isomorphic to A2
C if and only if it is topolog-

ically contractible and A1-connected.

Corollary 8.1.4. Suppose X is a smooth complex surface which is topologically contractible

and of non-negative logarithmic Kodaira dimension. Then X is not A1-connected.

Theorem 8.1.3 says that A1-contractibility is indeed a stronger notion than topological

contractibility as Ramanujam surface [108, Section 3] is not A1-contractible but topologically

contractible, so are the topologically contractible tom Dieck-Petrie surfaces [46, Theorem A].

Thus we have the following corollary which answers [9, Question 6.4].

Corollary 8.1.5. There exists topologically contractible smooth algebraic surfaces which are

not A1-contractible.

Remark 8.1.6. There are topological contractible complex surfaces which are affine modifica-

tions of A2
C, but they are not A1-contractible. The tom Dieck-Petrie surfaces are the affine

modifications of A2
C [77, Example 3.1] and they are topologically contractible [46, Theorem A].

However the tom Dieck-Petrie surfaces are not even A1-connected (Corollary 8.1.4).

If X is the Ramanujam surface [108, Section 3] or the tom-Dieck Petrie surface [46, Theorem

A], then the motive of X is trivial i.e. M(X) ∼= Z in DMgm(C,Z) by [5, Theorem 1], since X

is topologically contractible. However, X is not A1-contractible (Theorem 8.1.3).

Corollary 8.1.7. There are complex surfaces X which have trivial motive i.e. M(X) ∼= Z in

DMgm(C,Z) but X is not A1-contractible.
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Corollary 8.1.8. Any Koras-Russell threefolds of the first kind over a field of characteristic zero

cannot be the product of two proper subvarieties.

Proof. If possible, X is a Koras-Russell threefold of first kind and X is isomorphic to Y ×k Z

where Y and Z are proper subvarieties of X. Then both Y and Z are smooth affine varieties.

We can assume that Y is a curve and Z is a surface. Since X is A1-contractible [45, Theorem

1.1], being retract of X, both Y and Z are A1-contractible. Therefore, Y ∼= A1
k (Theorem

??) and Z ∼= A2
k (Theorem 8.1.1). Thus X is isomorphic to A3

k which is a contradiction [54,

Thoerem 9.9].

Corollary 8.1.8 holds in a more general setting: Any Koras-Russell threefold (of any kind)

cannot be the product of two other varieties. This can be proved using the properties of

Ga-actions without using A1-homotopy theory. This was pointed by the referee.

Corollary 8.1.9 (Generalised Zariski’s cancellation). Let X and Y be varieties over a field k of

charateristic zero. Suppose that X is a surface and X ×k Y ∼= ANk . Then X ∼= A2
k.

Proof. If X ×k Y ∼= ANk , then both X and Y are smooth affine k-varieties. Being retract of

ANk , X is A1-contractible. Thus X ∼= A2
k by Theorem 8.1.1.

Theorem 8.1.1 has following immediate consequence in dimensions 3 and 4:

Corollary 8.1.10. An A1-contractible smooth affine threefold X over a field k of characteristic

zero is isomorphic to A3
k if and only if it is isomorphic to a product of two proper k-subvarieties

of lower dimension. Similarly an A1-contractible smooth affine fourfold X over a field k of

characteristic zero is isomorphic to A4
k if and only if it is isomorphic to a product of two proper

k-subvarieties each of dimension two.

The above corollaries (8.1.9, 8.1.10) can be stated and proved without an appeal to A1-

homotopy theory. The main ingredient here is the negativity of the logarithmic Kodaira dimen-

sion of the surfaces appearing in the proof , which we have derived from Theorem 5.2.8.

8.1.1 Locally Nilpotent Derivation and Characterisation of the Affine 3-Space

In this section we recall locally nilpotent derivation. In Corollary 8.1.13, we give a characterisa-

tion of the affine 3-space, as a consequence of Theorem 8.1.1.

Let k be a field of characteristic zero and R is a k-algebra. The following definition is related

to the property of being A1-ruled (Definition 5.1.1).

Definition 8.1.11. [54, Section 1.1.7] A locally nilpotent k-derivation D : R→ R is a k-linear

derivation such that for each a ∈ R ∃ n ∈ N such that Dn(a) = 0. The derivation D has a

slice if ∃ s ∈ R with D(s) = 1. We denote the kernel of D by RD which is a k-algebra and the

set of all locally nilpotent k-derivations on R will be denoted by LNDk(R).
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Locally nilpotent derivation is an essential tool in affine algebraic geometry to characterise

the polynomial rings. Miyanishi showed a two dimensional affine U.F.D. over an algebraically

closed field k with no non-trivial units is isomorphic to k[x, y] if it admits a non-trivial locally

nilpotent k-derivation. [88, Theorem 1]. We want to also emphasise that locally nilpotent

derivation corresponds to Ga -action only when char(k) = 0.

Remark 8.1.12. 1. Suppose D ∈ LNDk(R) has a slice s ∈ R. Then R = RD[s] i.e. R is

a polynomial ring over RD of one variable and D = d
ds , derivative with respect to s [54,

Corollary 1.26].

2. The locally nilpotent k-derivations on an affine k-domain B correspond to the algebraic

Ga-actions on Spec B [54, Section 1.5].

3. Let X be an affine variety such that O(X) is a U.F.D. Then X is A1-ruled if and only if

there is a non-trivial locally nilpotent derivation on O(X) [51, Proposition 2] .

The fact that A2
k is the only A1-contractible smooth affine surface over a field k of charac-

teristic zero has the following consequence.

Corollary 8.1.13. A smooth affine threefold X over a field of characteristic zero is isomorphic

to A3
k if and only if X is A1-contractible and there exists a locally nilpotent derivation with a

slice.

Proof. One direction is straightforward. For the other direction, suppose X is A1-contractible

and there is a locally nilpotent derivation on O(X) with a slice. Then by Remark 8.1.12,

X ∼= U ×k A1
k, where U is a smooth affine k-surface. The surface U is A1-contractible, being

a retract of X. Therefore by Theorem 8.1.1, U ∼= A2
k and hence X ∼= A3

k.

In this context, there is an algebraic characterisation of the polynomial ring k[x, y, z] where

k is an algebraically closed field of characteristic zero. A three dimensional finitely generated

k-algebra, which is also a U.F.D., is isomorphic to k[x, y, z] if and only if its Makar-Limanov

invariant is trivial and it has a locally nilpotent derivation with a slice [42, Theorem 4.6].

8.1.2 Characterisation of Affine Plane over a DVR

In this subsection we prove that over a discrete valuation ring R of equicharacteristic zero,

A1-contractibilty detects A2
R (Theorem 8.1.14). However, if R is not of equicharacteristic zero,

then it is not true (Remark 8.1.15). This subsection is taken from [40, Subsection 2.1].

Theorem 8.1.14. Let R be an equicharacteristic zero discrete valuation ring and X be a

smooth affine scheme over R of relative dimension 2. Then X is A1-contractible if and only if

X is isomorphic to A2
R.
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Proof. Let K and k be the fraction field and residue field of R respectively. The base changes

XK and Xk of X over K and k respectively are A1-contractible [94, Corollary 1.24]. Thus XK

and Xk are isomorphic to A2
K and A2

k respectively by Theorem 8.1.1. Therefore X is isomorphic

to A2
R by [111, Theorem 1].

Remark 8.1.15. Theorem 8.1.14 is not true if R is not of equicharacteristic zero. The coun-

terexample of such X appeared in [3, Theorem 5.1]. The affine scheme X is A1-contractible

since it is a retract of A3
R and the base extensions of X are isomorphic to A2

K and A2
k over the

fraction field K and residue field k respectively. However, X is not isomorphic to A2
R.

The characterisation of affine surfaces using A1-homotopy theory yields the generalised

Zariski cancellation:

Corollary 8.1.16. Suppose X is a smooth affine scheme over R of relative dimension 2 and

Y is a smooth scheme over R, where R is a discrete valuation ring of equicharacteristic zero.

Suppose X ×R Y ∼= ANR . Then X ∼= A2
R.

Proof. If X ×R Y ∼= ANR , then X is a retract of ANR . Thus X is an A1-contractible smooth

affine scheme over R of relative dimension 2. Thus X ∼= A2
R by Theorem 8.1.14.



Chapter 9

A1-homotopy type of A2 \ {(0, 0)}

Let k be a field of characteristic 0. In this chapter we prove that if an open subscheme of a

smooth affine k-surface has same A1-homotopy type as A2
k \ {(0, 0)}, then it is isomorphic to

A2
k \{(0, 0)} (Theorem 9.1.2). This is the main theorem in this chapter. However, in dimension

three we prove that a Koras-Russell threefold of the first kind minus a point is A1-weakly

equivalent to A3
k \ {(0, 0, 0)}, but it is not isomorphic to A3

k \ {(0, 0, 0)} (Theorem 9.2.3). This

chapter is taken from [40, Section 3].

9.1 A1-homotopy type of S3,2

In this section in Theorem 9.1.2 we prove that over the field of characteristic zero A2
k \ {(0, 0)}

is the only open subvariety of an affine surface X ∈ Sm/k, which is A1-weakly equivalent to

the mixed sphere S3,2 = S1
s ∧ S2

t .

In Theorem 9.1.1, we prove that Gm is the only smooth curve which is A1-weakly equivalent

to the Tate circle S1
t . Theorem 9.1.1 is already in the literature. We include it here for the sake

of completeness.

Theorem 9.1.1. Suppose X is a smooth curve over a field k which is isomorphic to Gm in

H(k). Then X is isomorphic to Gm as k-varieties.

Proof. Suppose, X is a smooth curve A1-weakly equivalent to Gm, then π
A1

0 (X) ∼= Gm, since

Gm is A1-rigid (Remark 3.1.3). The canonical surjection of sheaves X → πA
1

0 (X) gives a

dominant morphism ϕ : X → Gm. Now if X is not A1-rigid, then by Remark 3.1.3, there is a

finite separable extension L/k along with a morphism H : A1
L → X such that H(0) ̸= H(1)

(where H(0), H(1) : Spec L → X are the 0-section and the 1-section respectively). So H is

dominant and since Gm is A1-rigid, the morphism ϕ◦H is constant. Thus ϕ is constant. It is a

contradiction, since ϕ is dominant. Therefore, X is A1-rigid. Hence X ∼= πA
1

0 (X), by Remark

3.1.3. So X ∼= Gm as k-varieties.
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Theorem 9.1.2. Let k be a field of characteristic 0 and X be a smooth affine k-surface such

that U ⊂ X is a non-empty open subscheme. Suppose that U is isomorphic to A2
k \ {(0, 0)} in

H(k). Then U and A2
k \ {(0, 0)} are isomorphic as k-varieties.

Proof. Let K/k be a field extension such that K is uncountable and algebraically closed.

Step 1 : The quasi-affine variety U is not affine. Indeed, if U is affine then UK :=

U×kSpec K is affine and UK ∼= A2
K\{(0, 0)} inH(K). This implies that UK is an affine variety

with trivial Picard group and trivial group of units. Moreover, A1-connectedness of A2
K \{(0, 0)}

implies that UK has logarithmic Kodaira dimension −∞ (Corollary 6.1.3). Therefore, UK ∼= A2
K

as K-varieties by [92, Section 4.1]. As A2
K \ {(0, 0)} is not A1-simply connected [93, Theorem

6.40], this is absurd.

Step 2 : By Noetherian property, we can embed U in a smooth affine k-surface X̃, which is

also smallest in the sense that there is no smooth affine surface in between U and X̃ contained

in X. The closed subscheme X̃ \ U is finitely many closed points. Indeed, if there is an

irreducible closed subset D of codimension 1 contained in X̃ \U , then D is an effective Cartier

divisor which is a locally principal closed subscheme. Thus X̃ \ D is affine which contradicts

that X̃ is the smallest. Threfore U = X̃ \ {p1, . . . pn} where pi’s are the closed points of X̃.

Step 3 : The smooth K-scheme UK is isomorphic to A2
K \{(0, 0)} in H(k). Therefore UK

is A1-connected which implies that UK is a connected open subset of X̃K := X̃ ×k Spec K.

Thus, UK = X̃K \ {pK1 , . . . , pKn }, where pKi is the extension of the closed point pi to K,

and therefore each pKi is a finite disjoint union of finitely many K points. As the connected

components of the smooth scheme X̃K has dimension 2 and as X̃K\{pK1 , . . . , pKn } is connected,
therefore X̃K is a connected smooth scheme.

Step 4 : Since X̃K \ UK is of pure codimension 2, X̃K has trivial Picard group by [64,

Proposition 6.5]. By Theorem 6.1.2, since UK is A1-connected, there is a dominant morphism

H : A1
K ×K W → UK such that H(0,−) ̸= H(1,−) with W a smooth K-variety. Composing

it with the inclusion UK ↪→ X̃K , we get a dominant morphism H : A1
K ×K W → X̃K .

Therefore X̃K has logarithmic Kodaira dimension −∞. The restriction map O(X̃K) → O(UK)

is an isomorphism since X̃K \ UK is of pure codimension 2. So X̃K has trivial group of

units. Therefore, X̃K is isomorphic to A2
K as K-varieties [92, Section 4.1]. As there is no

non-trivial A2-form over the field characteristic 0 [76, Theorem 3], we get X̃ ∼= A2
k and hence

U ∼= A2
k \ {p1, . . . pn}, as k-varieties.

Step 5 : Next consider the Gysin trinagle [96, Theorem 15.15] in DMgm(k,Z)

M(U) →M(X̃) → ⊕n
i=1M(κ(pi))(2)[4] →M(U)[1].
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Note that each of M(κ(pi)) are strongly dualizable with M(κ(pi))
∗ = M(κ(pi)) (for a object

M ∈ DMgm(k,Z), M∗ is the dual [96, Definition 20.6, Example 20.11, Definition 20.15]).

Therefore, M(X̃) ∼= Z = M(Spec k) implies that the map M(X̃) → ⊕n
i=1M(κ(pi))(2)[4]

is the zero map (Remark 2.3.1) and M(U) ∼= M(k) ⊕n
i=1 M(κ(pi))(2)[3]. But M(U) ∼=

M(A2 \ {(0, 0)} ∼= M(k) ⊕M(k)(2)[3]. This shows that n = 1 and p1 is a k-rational point.

Indeed, using the relation of motivic cohomology and higher Chow groups [96, Lecture 17], we

have

H4,3
M (k,Z) ∼= CH3(k, 2) = 0.

Thus

H4,3
M (U,Z) ∼= HomDMgm(k,Z)(M(k)(2)[3],Z(3)[4])

∼= ⊕n
i=1HomDMgm(k,Z)(M(κ(pi))(2)[3],Z(3)[4]).

Using Voevodsky’s cancellation in DMgm(k,Z), we have

HomDMgm(k,Z)(M(k),Z(1)[1]) ∼= ⊕n
i=1HomDMgm(k,Z)(M(κ(pi)),Z(1)[1]).

For X ∈ Sm/k, we have

HomDMgm(k,Z)(M(X),Z(1)[1]) ∼= H1,1
M (X,Z)

∼= O(X)∗, by [96, Corollary 4.2],

Therefore, we must have n = 1 and p1 is a k-rational point. This completes the proof.

9.2 A1-homotopy type of S5,3

Theorem 9.1.2 is not true in case of quasi-affine threefold. In this section in Theorem 9.2.3, we

prove that if X is a Koras-Russell threefold of the first kind minus a point, then X is A1-weakly

equivalent to the mixed sphere S5,3 = S2
s ∧ S3

t , but X is not isomorphic to A3
k \ {(0, 0, 0)} as

k-varieties.

Suppose that X is the Koras-Russell threefold of the first kind ([45], [54, Section 9.3]) which

is given by the equation

xmz = yr + ts + x in A4
k,

where k is an algebraically closed field of characteristic 0, m ≥ 2 and r, s ≥ 2 are coprime

integers. Consider the morphism,

ϕ : X → A3
k given by (x, y, z, t) 7→ (x, y, t).
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Suppose, p = (1, 0, 1, 0) is a point in X. Then ϕ(p) = q = (1, 0, 0) and ϕ−1(q) = p. This gives

the restriction morphism

ϕ̄ : X \ {p} → A3
k \ {q}.

We show here that X \ {p} ∼= A3
k \ {q} in H(k), but X \ {p} is not isomorphic to A3

k \ {q} as

k-varieties.

Lemma 9.2.1. The induced map dϕp : TpX → TqA3
k is an isomorphism between the tangent

spaces.

Proof. Suppose, f(x, y, z, t) = xmz − yr − ts − x. Then ∇f(x, y, z, t) = (mxm−1z −
1,−ryr−1, xm,−sts−1), so ∇f(1, 0, 1, 0) = (m − 1, 0, 1, 0). Thus the tangent space TpX

of X at p is given by

TpX = {(a, b,−(m− 1)a, d)|a, b, d ∈ k}

The map dϕp : TpX → TqA3
k is given by (a, b,−(m− 1)a, d) 7→ (a, b, d). Therefore dϕp is an

isomorphism between the tangent spaces.

The proof of the following lemma is same as in [47, Example 2.21]. We include it here for

the sake of completeness.

Lemma 9.2.2. [47, Example 2.21] The quasi-affine threefold X ′ = X \ {p} is A1-chain con-

nected.

Proof. Suppose, F/k is a finitely generated field extension. Consider the projection map px :

X ′ → A1
k given by (x, y, z, t) 7→ x. The fiber over a point α ∈ Gm is A2

k, if α ̸= 1 and

A2
k \ {(0, 0)}, if α = 1. Thus the fiber over every point of Gm is A1-chain connected, in

particular for every α ∈ Gm, any two F -points in p−1
x (α) can be joined by a chain of A1

F ’s.

The fiber over 0 is A1
k×k Γr,s (where, Γr,s is the curve in A2

k defined as yr+ ts = 0). Here also

any two F -points can be joined by A1
F ’s. Indeed, for an F -point (t1, t2, t3) in A1

F ×F Γr,s, the

naive A1-homotopy given by

γ : A1
F → A1

k ×k Γr,s as v 7→ (t1v, t2v
s, t3v

r)

joins (0, 0, 0) with (t1, t2, t3). To get the naive-A1-homotopy between the points in different

fibers, we find the polynomials y(v), t(v) ∈ k[v] such that vm divides y(v)r + t(v)s+ v. Indeed

if r is even and s is odd (similarly for r is odd and s is even), suppose that y(v) and t(v) are

given by

y(v) = 1 + a0v + a1v
2 + · · ·+ am−2v

m−1 and t(v) = −1− v · · · − vm−1,

for some ai ∈ k. We choose ai according to the co-effecients of vi is zero in y(v)r + t(v)s + v

for every i ≤ m− 1. The naive A1-homotopy θ : A1
F → X ′ given by

v 7→ (αv,
y(αv)r + t(αv)s + αv

(αv)m
, y(αv), t(αv))
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connects a point in p−1
x (0) with p−1

x (α), α ∈ Gm(k). Note that, the point p = (1, 0, 1, 0) does

not lie in the image of θ. Indeed, if for some v, θ(v) = p, then αv = 1, y(αv) = 1, t(αv) = 0.

But then y(αv)r+t(αv)s+αv
(αv)m = 2. Therefore, X ′ is A1-chain connected.

Theorem 9.2.3. X \ {p} is A1-weakly equivalent to A3
k \ {q}, however they are not isomophic

as k-varieties.

Proof. First we prove that X \ {p} is A1-weakly equivalent to A3
k \ {q}. Consider the commu-

tative diagram with rows are cofibre sequences:

X \ {p} X X/(X \ {p})

A3
k \ {q} A3

k A3
k/(A3

k \ {q})

ϕ̄

ϕ

The middle vertical map is an A1-weak equivalence, since X is A1-contractible [45, Theorem

1.1]. By homotopy purity, X/(X \ {p}) is isomorphic to the Thom space of the normal bundle

over p [94, §3.2, Theorem 2.23]. Since p is a k-point of the smooth threefold X, the normal

bundle over p in X is the trivial bundle of rank three over p. The right vertical map

(P1
k)

∧3 ∼= X/(X \ {p}) → A3
k/(A3

k \ {q}) ∼= (P1
k)

∧3,

is induced by dϕp. Thus the right vertical map is also an A1-weak equivalence by Lemma 9.2.1

[126, Lemma 2.1]. Therefore, taking simplicial suspension, the map

Σsϕ̄ : Σs(X \ {p}) → Σs(A3
k \ {q})

is an A1-weak equivalence. Now X \ {p} is A1-connected by Lemma 9.2.2 and πA
1

1 (X \ {p})
is also trivial [10, Theoem 4.1]. Thus ϕ̄ is a A1-homology equivalence [93, Remark 6.30].

Therefore by [119, Theorem 1.1], ϕ̄ is an A1-weak equivalence.

Now we show that X \{p} is not isomorphic to A3
k \{q} as k-varieties. Suppose, if possible

there is an isomorphism ϕ : A3
k \ {q} → X \ {p} with its inverse ψ. Since q and p are the

codimension 3 points of A3
k and X respectively, both ϕ and ψ can be extended to a morphism

ϕ̄ : A3
k → X and ψ̄ : X → A3

k. Both the maps ψ̄ ◦ ϕ̄ and ϕ̄ ◦ ψ̄ agree with the identity maps

in a complement of a k-point. Therefore both ϕ̄ and ψ̄ are isomorphisms. It is a contradiction

since X has non-trivial Makar-Limanov invariant ([73], [54, Theorem 9.9]). Therefore, X \ {p}
is not isomorphic to A3

k \ {q} as k-varieties.

We end this chapter with the following question:

Question 9.2.4. Does there exist an n-dimensional smooth k-variety X such that X ∼= Ank \
{(0, . . . , 0)} in H•(k) but X is not isomorphic to Ank \ {(0, . . . , 0)} as k-varieties, for n > 3 ?



Chapter 10

Regular Functions on S(X)

So far we have used A1-homotopy theory to classify the affine varieties, specially the affine

spaces. There are algebraic invariants associated to locally nilpotent derivation which also allow

us to classify the affine spaces. One such invariant is the Makar-Limanov invariant. Makar-

Limanov invariant of an affine variety X is a subring ML(X) of O(X). The ring ML(X) is

the set of regular functions on X, constant along the orbits of all Ga-actions on X [54, Section

2.5], affine variety X over a characteristic 0 field k. In particular for a k-domain R,

ML(R) := ∩
D∈LNDk(R)

RD.

In case of R = O(X), we write ML(X) instead of ML(R). This invariant is not functorial.

A two dimensional affine U.F.D. over an algebraically closed field k of characteristic zero is

isomorphic to k[x, y] if and only if its Makar-Limanov invariant is trivial [54, Theorem 9.12].

In this chapter, we construct a new functorial invariant Och(X) (Definition 10.1.1) which is a

subobject of ML(X). It is homotopy invariant (Proposition 10.2.7) but it is not representable in

H(k) (Lemma 10.2.15). In Proposition 10.2.10, we prove that it is the ring of regular functions

on the A1-chain connected component sheaf of X i.e.

Och(X) ∼= HomSh(Sm/k)(S(X),A1).

Theorem 10.2.5 provides evidence that the ring Och(X) detects A1-s in an affine variety X.

From Section 4 onwards, In Theorem 10.2.5, we show that Och(X) is trivial i.e. Och(X) = k

implies the existence of A1-s in X (Theorem 10.2.5). In this chapter we assume k to be an

algebraically closed field. This chapter is taken from [39, Section 6].

10.1 Properties of Och(X)

In this section we define Och(X) (Definition 10.1.1) and discuss its properties. Recall as in

Chapter 5, by the phrase “a line g : A1 → X”, we mean non-constant morphism g : A1
k → X.

86
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Definition 10.1.1. Let X be an affine k-variety and O(X) be the ring of regular functions on

X. For a fixed g : A1
k → X, define

Och,g(X) := {f ∈ O(X) | f ◦ g is constant}

We define Och(X) =
⋂

g∈HomSch/k(A1
k,X)

Och,g(X), where Sch/k is the category of finite type

k-schemes.

We get the following immediate properties of Och,g(X).

Lemma 10.1.2. Suppose X is an affine k-variety and g : A1
k → X a k-morphism.

1. Suppose, A, B are k-algebras and B is finitely generated. A morphism ϕ : Spec B →
Spec A is constant if and only if in the induced k-algebra homomorphism ϕ̃ : A → B,

ϕ̃(f) ∈ k for all f ∈ A. In particular, a morphism ϕ : A1
k → A1

k is constant if and only if

the induced k-algebra homomorphism ϕ̃ : k[T ] → k[T ] takes T to an element of k.

2. Och,g(X) is a k-subalgebra of O(X). In particular, Och(X) is a k-subalgebra of O(X).

3. Suppose f1, f2 ∈ O(X). If the product f1f2 ∈ Och,g(X) is non-zero, then f1 ∈ Och,g(X)

and f2 ∈ Och,g(X).

4. The group of units of X, O(X)∗ ⊂ Och,g(X). Thus O(X)∗ ⊂ Och(X). If Och(X) is

trivial, then X has trivial group of units.

5. Suppose, X is of dimension at least two. Then the morphism ī : X → Spec(Och,g(X))

induced by the inclusion i : Och,g(X) → O(X) is birational.

Proof. (1),(2) and (3): The proofs are quite straightforward. For (1), suppose ϕ : Spec B →
Spec A is constant. Then the image of ϕ is the singleton set, say {x0}, where x0 is a k-rational

point of Spec A. Thus ϕ factors as

Spec B → Spec k
x0−→ Spec A.

Hence ϕ̃ factors as

A→ k → B.

So ϕ̃(f) ∈ k, for every f ∈ A. Conversely, suppose the k-algebra homomorphism ϕ̃A→ B takes

every element of A to an element of k. Then for P ∈ Spec B, ϕ̃−1(P ) = Ker(ϕ̃), which is a

prime ideal of A. Thus the image of ϕ is constant. For (2), suppose that f1, f2 ∈ Och,g(X).

Then g̃(f1), g̃(f2) ∈ k (g̃ : O(X) → k[T ] is induced by g) by (1). Therefore g̃(f1 + f2)

and g̃(f1f2) are in k. Hence (f1 + f2) ◦ g and (f1f2) ◦ g are constant by (1). Therefore

f1 + f2, f1f2 ∈ Och,g(X). So it is a k-subalgebra of O(X). For (3), suppose that the product

f1f2 ∈ Och,g(X) is non-zero. Thus by (1), g̃(f1f2) is a non-zero constant. So both g̃(f1) and

g̃(f2) are non-zero constants. Hence f1 ∈ Och,g(X) and f2 ∈ Och,g(X), by (1).
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(4): Suppose, f ∈ O(X)∗, then f is a morphism from X to Gm. Therefore f ◦g is constant,
since Gm is A1-rigid (Remark 3.1.3). Hence f ∈ Och,g(X).

(5): Since X is of dimension at least 2, so g : A1
k → X is not dominant. The image of g

is closed in X. Indeed, if g is non-constant, we extend g to a morphism ḡ : P1
k → X (X is a

compactification of X). Since P1
k is a projective variety and X is an affine variety, there are no

non-constant morphisms from P1
k to X. Thus ḡ maps the point at infinity of P1

k to a point in X\
X. The morphism ḡ is the composition of two proper morphisms P1

k

graph of ḡ−−−−−−→ P1
k×kX

projection−−−−−−→
X, so ḡ is a proper morphism. Thus the image of ḡ is closed and Im(g) = Im(ḡ)∩X is closed

in X. Therefore, image of g is given by some ideal I of O(X). So its complement is the union

of basic open set D(f)-s, f ∈ I. Choose f ∈ I with D(f) is non-empty. Then g̃(f) = 0

(where g̃ : O(X) → k[T ] is induced by g.). So fh + µ ∈ Och,g(X) ∀ h ∈ O(X), ∀µ ∈ k

by Part (1). We have an injective homomorphism i∗ : Och,g(X)f → O(X)f induced by the

inclusion i. The map i∗ is also surjective. Indeed for h
fk

∈ O(X)f , fh ∈ Och,g(X) and the

element fh
fk+1 is mapped to h

fk
. Hence Och,g(X)f and O(X)f are isomorphic and therefore X

and Spec(Och,g(X)) are birational.

Remark 10.1.3. 1. In the above Lemma 10.1.2(5), the assumption about the dimension of

X is necessary. If X = A1
k and g be the identity map on A1

k, then Och,g(X) is trivial.

2. The map ī : X → Spec Och,g(X) induced by the inclusion i : Och,g(X) ↪→ O(X), takes

the image of g to a k-rational point of Spec Och,g(X) i.e. ī ◦ g is constant. Indeed,

the map g̃ : O(X) → k[T ] takes an element of Och,g(X) to an element of k. Thus by

Lemma 10.1.2(1), ī ◦ g is constant. Therefore the map j̄ : X → Spec Och(X) induced

by the inclusion j : Och(X) ↪→ O(X), takes the image of every g : A1
k → X to constant

(given by a k-rational point of Spec Och(X)). Therefore, we can think Spec Och,g(X) is

obtained by collapsing the image of g in X and Spec Och(X) is obtained by collapsing

all A1’s in X individually.

3. Property (3) of Och,g(X) in the above Lemma 10.1.2 is similar to a ring being factorially

closed which is satisfied by kernel of a locally nilpotent derivation hence by the Makar-

Limanov invariant [54, Section 1.4, Principle 1].

4. Och,g(X) may not always be finitely generated k-subalgebra of O(X). For instance,

suppose X = A2
k and g is the y-axis. Then Och,g(X) = k + xk[x, y]. This subring of

k[x, y] is not Noetherian. For this, consider the chain of ideals {In}n in Och,g(X): In is

the ideal generated by {x, xy, xy2, .., xyn−1}. This chain of ideals does not stabilize.

Remark 10.1.4. We can describe Och,g(X) explicitly. Any constant function in O(X) is in

Och,g(X). The image of the affine line g : A1
k → X is closed in X. Let g̃ : O(X) → k[T ]

be the k-algebra homomorphism induced by g. A regular function on X is in Och,g(X) if and

only if its image is in k under g̃. Thus for ϕ ∈ Och,g(X), ϕ − g̃(ϕ) ∈ Ker(g̃). Therefore,

Och,g(X) = k+Ker(g̃). If ϕ = λ+ θ for some constant λ and θ ∈ Ker(g̃), then ϕ takes value
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λ along Im(g).

Suppose g1 and g2 are two intersecting A1 -s in X :

If ϕ ∈ Och,g1(X) ∩ Och,g2(X), then ϕ = λ + θ = λ′ + θ′ for some constants λ, λ′ and

θ, θ′ are in kernel of g̃1 and g̃2 respectively. Since g1 and g2 intersect, λ = λ′. Therefore

Och,g1(X) ∩ Och,g2(X) = k + (Ker(g̃1) ∩Ker(g̃2)), if g1 and g2 intersect.

Suppose g1 and g2 are parallel :

If the images of g1 and g2 are disjoint, then Och,g1(X) ∩ Och,g2(X) properly contains

k + (Ker(g̃1) ∩Ker(g̃2)) from the following lemma (Lemma 10.2.2).

10.2 Triviality of Och(X) and Existence of A1’s in X

For an affine k-variety X, we say Och(X) is trivial if Och(X) = k. In X is a smooth affine k-

surface with O(X) is a U.F.D., then triviality of Och(X) detects A1’s in X (Theorem 10.2.5).

In Proposition 10.2.6, we show that Och(X) is a k-subalgebra of X. Unlike Makar-limanov

invariant, Och(X) is homotopy invariant (Theorem 10.2.7) and it is functorial. However, Och(−)

is not representable in the A1-homotopy category (Theorem 10.2.15), since it does not satisfy

the gluing property (Remark 3.4.5). In Proposition 10.2.10, we prove that Och(X) is the ring

of regular functions on S(X).

Definition 10.2.1. A line g : A1 → X is called isolated if it does not intersect any other lines

in X i.e. for any line h : A1 → X, if Im(h) ̸= Im(g) then Im(h) ∩ Im(g) = ∅.

Lemma 10.2.2. Suppose X is an affine k-variety.

1. Suppose g1, g2, .., gn are pairwise parallel lines in X (i.e. Im(gi) ∩ Im(gj) = ∅, ∀i ̸= j)

and c1, c2, .., cn are n many constants. Then there is f ∈ O(X) such that f = ci along

Im(gi).

2. Let X be a smooth affine surface such that O(X) is a U.F.D. Suppose there is a line

g : A1 → X which is isolated. Then Och(X) is non-trivial.

Proof. 1. Since gi and gj are parallel, Ker(g̃i) +Ker(g̃j) = O(X). Indeed, if Ker(g̃i) +

Ker(g̃j) is contained in some maximal ideal of O(X), then there is a common point of

g1 and g2. So the ideals Ker(g̃i) and Ker(g̃j) are pairwise comaximal. Thus by Chinese

remainder theorem, there exists f ∈ O(X) such that f is ci along Im(gi).

2. Since O(X) is a U.F.D., there is a f ∈ O(X) irreducible such that the zero set of f is

the closed set Im(g). Then f is non-zero in the complement of Im(g). So for any other

line h : A1 → X with Im(h) ̸= Im(g), f is everywhere non-zero along Im(h) as g is

an isolated line. Hence f must be constant along Im(h), since Gm is A1-rigid (Remark

3.1.3). Therefore f is a non-trivial element in Och(X).
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Therefore, for a smooth affine surface X with trivial Picard group, if Och(X) is trivial,

then all lines in X cannot be parallel to each other (by “all lines in X are parallel to each

other”, we mean that given any two lines g1, g2 : A1 → X with Im(g1) ̸= Im(g2), we have

Im(g1)∩ Im(g2) = ∅). Note that in A1×Gm, any line parallel to x-axis is an isolated line and

any polynomial of y is in Och(A1 ×Gm).

Definition 10.2.3. A chain connected component of X is defined to be the largest subset of

X(k) such that any two points in it can be joined by a chain of A1-s.

Remark 10.2.4. Let T ⊂ X(k) be a chain connected component. Then T is the union of lines

in X such that the k-points in the images of the lines are in T .

Theorem 10.2.5. Let X be a smooth affine surface such that O(X) is a U.F.D. Then Och(X)

is trivial if and only if there is some dense chain connected component of X.

Proof. Suppose there is some chain connected component of X which is dense in X. Let T

be the union of all lines in that chain connected component and suppose that f is in Och(X).

The function f is constant along T , since any two points of T can be joined by chain of lines.

But T is dense in X. Therefore f is constant.

On the other hand, assume that Och(X) is trivial. If possible, there is a chain component

(say T ) which is the union of finitely many lines (i.e. finitely many distinct images). Then it is

closed. There is some f ∈ O(X) such that its zero set is T . Then f is non-zero along every

other line outside T . Therefore it is constant along each line outside T . But f is non-constant.

This gives a contradiction. Therefore every chain connected component is a union of infinitely

many lines (i.e. infinitely many distinct images). Choose any such chain connected component,

say S. Its closure cannot be of dimension 1, since it contains infinitely many lines, hence S is

dense in X.

Functoriality

Suppose, α : Y → X is a morphism of affine k-varieties. For an affine line g in Y , α ◦ g
is an affine line in X. So f ◦ (α ◦ g) is constant if f ∈ Och(X). Thus the morphism α

induces α∗ : O(X) → O(Y ) that restricts to a k-algebra homomorphism Och(X) → Och(Y ).

Therefore, Och(X) is functorial in X.

Proposition 10.2.6. Let k be a field of characteristic 0. Suppose X is an affine k-variety.

Then Och(X) ⊂ML(X). Therefore, if ML(X) is trivial then Och(X) is trivial.

Proof. Suppose f ∈ Och(X) and D is a locally nilpotent k-derivation on O(X). We need to

show that f ∈ Ker(D). We have a k-algebra homomorphism exp(D) : O(X) → O(X)[T ]

defined as exp(D)(g) =
∑∞

n=0
Dn(g)
n! Tn. Fix x ∈ X(k). Consider the following composition of

k-algebra homomorphisms (this is precisely considering f along each of the orbits of x ∈ X(k)):

k[T ]
T 7→f−−−→ O(X)

exp(D)−−−−→ O(X)[T ]
evaluation at x−−−−−−−−−→ k[T ]
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This composition takes T to an element of k by Lemma 10.1.2. Suppose, exp(D)(f) =∑∞
n=0 fnT

n ∈ O(X)[T ], where fn ∈ O(X). Then for every n ≥ 1, fn(x) = 0, ∀x ∈ X(k).

Since X(k) is dense in X, fn-s are zero for every n ≥ 1. Thus exp(D)(f) = f . Hence

f ∈ Ker(D). Therefore, Och(X) ⊂ML(X).

Homotopy invariance of Och(−)

Proposition 10.2.7. Och(−) is homotopy invariant i.e. Och(X) = Och(X × A1
k) (both are

k-subalgebras of O(X × A1
k)), ∀X ∈ Sm/k.

Proof. The projection map p : X ×k A1
k → X induces an injective homomorphism p∗ :

Och(X) → Och(X×A1
k). For the surjectivity, suppose f ∈ Och(X×kA1

k). For each x ∈ X(k),

consider the line jx : A1
k → X ×k A1

k defined as t 7→ (x, t). As f ∈ Och(X ×k A1
k), f ◦ jx is

constant. Thus for every x ∈ X(k) and t ∈ A1
k(k), we have f ◦ i0 ◦ p(x, t) = f(x, t) (where

i0 : X → X×kA1
k is the 0-section). Since X(k) is dense in X, f = f ◦ i0 ◦p. So p∗(f ◦ i0) = f ,

which proves the surjectivity of p∗.

Remark 10.2.8. Makar-Limanov invariant is not homotopy invariant. If X is the Koras-Russell

cubic threefold over C, then ML(X) = C[T ] ([54, Theorem 9.9]) and ML(X × A1
C) = C

([48, Section 1]). From Proposition 10.2.6 and homotopy invariance of Och(X), we have

Och(X) = Och(X × A1
C) = C.

Remark 10.2.9. For an affine variety X ∈ Sm/k, recall the sheaf S(X) of A1-chain connected

components of X is the coequalizer of two morphisms

Hom(A1
k, X) X

θ0

θ1

in Shv(Sm/k) (Remark 3.2.7). There is a canonical isomorphism

HomSch/k(X,A1
k)

∼= O(X).

The natural epimorphism π : X → S(X) induces a monomorphism

HomSh(Sm/k)(S(X),A1
k) → HomSm/k(X,A1

k).

This way we identify HomSh(Sm/k)(S(X),A1
k) as a k-subalgebra of O(X).

Proposition 10.2.10. As k-subalgebras of O(X), we have

Och(X) = HomSh(Sm/k)(S(X),A1
k).

Proof. Suppose ϕ ∈ Och(X), ϕ gives a morphism X to A1
k. We will show that ϕ ◦ θ0 = ϕ ◦ θ1

as morphisms from Hom(A1
k, X) to A1

k i.e. to show that ∀ U ∈ Sm/k and f : A1
U :=

A1
k ×k U → X, ϕ ◦ f ◦ σ0 = ϕ ◦ f ◦ σ1 where σ0, σ1 : U → A1

U are the 0-section and the
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1-section respectively. For any x ∈ U(k), consider the morphism ix : A1
k → A1

U defined as

t 7→ (t, x). Composing f with ix, we get a morphism from A1
k to X. Since ϕ ∈ Och(X),

ϕ ◦ f ◦ ix is constant. Thus ϕ(f(σ0(x))) = ϕ(f(σ1(x))). The k-points are dense in U , so

ϕ ◦ f ◦ σ0 = ϕ ◦ f ◦ σ1. Therefore, ϕ induces a unique morphism of sheaves from S(X) to A1
k.

Thus using the identification we have observed HomShv(Sm/k)(S(X),A1
k) as k-subalgebra of

O(X), we have ϕ ∈ HomShv(Sm/k)(S(X),A1
k).

Conversely suppose, η ∈ HomShv(Sm/k)(S(X),A1
k) and g : A1

k → X is a morphism . Then

η ◦ π gives a morphism from X to A1
k. The morphism g is homotopic to the constant map.

Indeed, there is a homotopy H : A1
k ×A1

k → X as the composition of g with the multiplication

map A1
k × A1

k → A1
k ((s, t) 7→ st). Then Hσ0 is the constant map and Hσ1 = g , where

σ0, σ1 : A1
k → A1

k × A1
k are the 0-section and the 1-section (where we put 0 and 1 in the first

coordinate) respectively. Since S(X) is the coequaliser of θ0 and θ1 (Remark 3.2.7, (1)), we

have

η ◦ π ◦H ◦ σ0 = η ◦ π ◦H ◦ σ1

So η ◦ π ◦ g is constant. This implies η ◦ π ∈ Och(X). Now using the identification in remark

10.2.9 we get η ∈ Och(X).

Remark 10.2.11. If any two k-points of X are joined by a chain of A1’s i.e. S(X)(Spec k) triv-

ial, then any morphism S(X) → A1
k factors through Spec k. Indeed, suppose that S(X)(Spec k)

is trivial and ϕ : S(X) → A1
k is a morphism. Suppose that β is the singleton image of the

map S(X)(Spec k) → A1
k(k). Then for any f ∈ S(X)(U) (U ∈ Sm/k), the morphism

ϕ(f) : U → A1
k has the property that for every x, y ∈ U(k), ϕ(f)(x) = ϕ(f)(y) = β . Since k

is algebraically closed, ϕ(f)(x) = β, for every x ∈ U . Hence ϕ factors as

S(X) → Spec k
β−→ A1

k.

In the above argument (Remark 10.2.11), if we replace the condition S(X) is trivial by a

sheaf F on Sm/k such that F(Spec k) is trivial and replace A1
k by some Y ∈ Sm/k, then the

same argument works. This gives the following lemma which is of independent interest.

Lemma 10.2.12. Suppose Y ∈ Sm/k and F is a sheaf on Sm/k such that F(Spec k) is

trivial. Then the canonical map

Y (Spec k) → HomSh(Sm/k)(F , Y )

is a bijection.

Corollary 10.2.13. Suppose X is a smooth affine k-surface such that S(X)(Spec k) is trivial

or X is A1-chain connected. Then Och(X) is trivial.

Proof. The corollary follows from Proposition 10.2.10 and Remark 10.2.11.
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Remark 10.2.14. Koras-Russell threefolds of the first kind are A1-chain connected [47, Example

2.21]. Therefore if X is a Koras-Russell threefold of the first kind, then Och(X) is trivial.

So far we have observed that Och(−), the presheaf of k-algebras on the category of affine

varieties over k is homotopy invariant and it is directly related to A1-chain-connected component

sheaf (Proposition 10.2.10). However Och(−) is not representable in H(k).

Lemma 10.2.15. Och(−) is not representable in H(k).

Proof. If possible, Och is given by A1-connected component presheaf of some A1-fibrant object

X . Then Och satisfies the gluing property (Remark 3.4.5), for any elementary distinguished

square as in 2.2.2. Suppose, X is the affine line A1
k and the elementary distinguished square

(Definition 2.2.2) is given by Zariski open covering U = A1
k−{0} and V = A1

k−{1}. Then both

U and V contain no affine lines so, Och(U) = O(U) and Och(V ) = O(V ). So O(U)×O(U∩V )

O(V ) = O(A1
k). But Och(A1

k) is trivial. So the map Och(A1
k) to Och(U)×Och(U∩V ) Och(V ) is

not surjective. Hence Och does not satisfy the gluing property for this elementry distinguished

square. Therefore, Och(−) is not representable in H(k).

Remark 10.2.16. For an affine variety X ∈ Sm/k, let XNis be the small Nisnevich site. Then

Och|XNis
is not a sheaf whenever Och(X) ̸= O(X) by Lemma 3.1.4. If Och(X) = O(X), then

Och|XNis
is a sheaf.

Question 10.2.17. Let X ∈ Sm/k be an affine surface such that O(X) is a U.F.D. Suppose

Och(X) is trivial. Is X ∼= A2
k?

Remark 10.2.18. If X is a smooth affine surface with O(X) is a U.F.D. and Och(X) is trivial,

then O(X)∗ = k∗ (by Lemma 10.1.2, (4)) and by Theorem 10.2.5, there is T ⊂ X dense

in X such that for each x ∈ T (k) there is a non-constant morphism g : A1
k → X such that

x ∈ Im(g). But from this, we cannot conclude that X is dominated by images of A1 (Definition

5.1.1) which ensures the negativity of logarithmic Kodaira dimension of X.

However, there are singular affine surfaces with O(X) is U.F.D and Och(X) is trivial.

Consider, for instance the singular Pham-Brieskorn surfaces Xp,q,r = {xp+ yq + zr = 0} ⊂ A3
k,

where p, q, r ≥ 2 are pairwise relatively prime integers. Then each Xp,q,r is factorial [112,

Section 4, Example (c)]. On the other hand, since Xp,q,r is the affine cone over the closed

curve Cp,q,r = {xp + yq + zr = 0} in the weighted projective space P(m/p,m/q,m/r) where
m = lcm(p, q, r), it is A1-chain connected in the naive sense that any two k-points of Xp,q,r

can be connected by finitely many non-constant images of A1
k, which implies Och(Xp,q,r) = k.

However, we have the following characterisation of the affine plane using Och(−), which is

somewhat straightforward.

Theorem 10.2.19. Let k be an algebraically closed field of characteristic zero and X be a

smooth affine surface over k. Suppose that O(X) is a U.F.D. and Och(X) is trivial. Then X

is isomorphic to A2
k if and only if Sing∗(X)(Spec k) is Kan fibrant in degree 2 (see Definition

7.2.1).
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Proof. Since Och(X) is trivial, there are two distinct A1’s (the images are distinct) in X that

intersect Lemma 10.2.2. There is a dominant morphism ϕ : A2
k → X, since Sing∗(X)(Spec k)

is Kan fibrant in degree 2. Thus X has negative logarithmic Kodaira dimension by [109,

Lemma 1.8]. By Castelnuovo’s rationality criterion, X is a rational surface [25, Theorem

13.27]. Therefore X is isomorphic to A2
k by [109, Theorem 2].

Remark 10.2.20. We have seen Och(X) as the regular functions on A1-chain connected com-

ponents of X [Proposition 10.2.10]. We define,

O(n)
ch (X) := HomSh(Sm/k)(Sn(X),A1

k).

Then O(n)
ch (X) is a k-subalgebra of O(X) and if there is n such that any two k-points of X

are n-A1-ghost homotopic i.e. Sn(X)(Spec k) is trivial, then O(n)
ch (X) = k (Lemma 10.2.12).

Since there is an epimorphism from Sn(X) to Sn+1(X), we have O(n+1)
ch (X) ⊂ O(n)

ch (X).

Thus inside O(X), we have a decreasing chain of k-subalgebras {O(n)
ch (X)}n, not necessarily

Noetherian. Does the above chain of k-subalgebras stabilize?

Remark 10.2.21. Suppose X ∈ Sm/k is A1-connected. Then there is an n such that Sn(X)

is trivial. Indeed, if X is A1-connected, then L(X) is trivial [26, Corollary 2.18]. Since L(X)

is trivial, the identity map IdX on X and the constant map Cx0 given by a k-rational point x0

(X has a k-rational point, since X is A1-connected) are the same in L(X)(X). Thus there is

a Nisnevich covering f : Y → X and an n such that IdX ◦ f = Cx0 ◦ f in Sn(X)(Y ). Since

Sn(X) is a sheaf, IdX = Cx0 ∈ Sn(X)(X). Thus any map from ϕ : Spec O → X (O is a

smooth Henselian local ring) is the same with the constant map Cx0 ◦ ϕ in Sn(X)(Spec O).

Thus Sn(X)(Spec O) is trivial, for every smooth Henselian local ring O and hence Sn(X) is

the trivial sheaf. Therefore, if X is an A1-connected smooth affine k-variety, then the chain

{O(n)
ch (X)}n in Remark 10.2.20 stabilizes for some n.

Question 10.2.22. Given an affine variety X, define Xi inductively as follows: X0 = X and

Xi = Spec(Och(Xi−1)). What is the relation between Xi and the spectrum of O(i)
ch (X)?

There is a canonical map from Xi to Xi+1 for every i. Note that if X does not have

any non-constant A1
k, then Och(X) = O(X). Does there exist some n such that Xn has no

non-constant A1 (see also Remark 10.1.3)?
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Naive 0-th A1-homology

In this chapter we define the universal A1-invariant sheaf of abelian groups HA1-naive
0 (X) associ-

ated to a scheme X ∈ Sm/k (Definition 11.1.2). Its section agrees with the section of the sheaf

of free abelian groups Z(πA1

0 (X)) over Spec F , for a proper scheme X ∈ Sm/k and for every

finitely generated separable field extension F/k (Theorem 11.2.11). This is the main theorem

in this chapter. As a consequence in Corollary 11.2.12, we prove that a smooth proper scheme

X is A1-connected if and only if HA1-naive
0 (X) is isomorphic to the constant sheaf Z. There

is a canonical morphism HA1-naive
0 (X) → HA1

0 (X) and if X ∈ Sm/k is a proper scheme, it is

an isomorphism over the sections Spec F , for every finitely generated separable field extension

F/k (Remark 11.2.15). For any scheme X ∈ Sm/k, the canonical epimorphism X → πA
1

0 (X)

induces the isomorphism (Corollary 11.2.17, see also Remark 11.2.16)

HA1-naive
0 (X) → HA1-naive

0 (πA
1

0 (X)).

Throughout this chapter we assume k to be an algebraically closed field.

11.1 Naive 0-th A1-homology sheaf

In this section we define naive 0-th A1-homology sheaf HA1- naive
0 (X) associated to X ∈ Sm/k

(Definition 11.1.2). The sheaf HA1-naive
0 (X) is universal in the sense that a morphism from X

to an A1-invariant sheaf of abelian groups G uniquely factors through HA1-naive
0 (X) (Remark

11.1.3). In Theorem 11.1.5, we give several equivalent descriptions of HA1-naive
0 (X), for example

it is isomorphic to the universal A1-invariant sheaf L(Z(X)) (Proposition 11.1.4, Definition

3.2.6). In Corollary 11.1.6, we prove that if X is A1-connected, then HA1-naive
0 (X) isomorphic

to the constant sheaf Z.

Suppose F is a Nisnevich sheaf on Sm/k. The presheaf of free abelian groups on F ,

denoted by Zpre(F), is defined as

U ∈ Sm/k 7→ the free abelian group on F(U).

95
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The Nisnevich sheaf associated to Zpre(F) is called the sheaf of free abelian groups on F and

it is denoted by Z(F). For example, the constant sheaf Z is the Nisnevich sheaf Z(Spec k).
We will denote the category of sheaves of abelian groups on Sm/k by Ab(k) and its full sub-

category of A1-invariant sheaves of abelian groups on Sm/k is denoted by AbA1-inv(k). The

morphisms in Ab(k) are sectionwise group homomorphisms.

Remark 11.1.1. There is a canonical morphism F → Z(F). This induces a map

HomAb(k)(Z(F),G) → HomSh(Sm/k)(F ,G)

which is an isomorphism, for any sheaf of abelian groups G.

Definition 11.1.2. Suppose, X ∈ Sm/k. The naive 0-th A1-homology sheaf of X is defined

to be the Nisnevich sheaf of abelian groups πA
1

0 (Z(X)) and it is denoted by HA1-naive
0 (X).

Remark 11.1.3. HA1-naive
0 (X) is an A1-invariant sheaf of abelian groups on Sm/k [37, Corollary

5.2]. There is a canonical morphism X → HA1-naive
0 (X). This induces a map

HomAbA1-inv(k)(H
A1-naive
0 (X),G) → HomSh(Sm/k)(X,G)

which is a bijection, for any A1-invariant sheaf of abelian groups G. Equivalently, any morphism

of sheaves X → G uniquely factors through the morphism HA1-naive
0 (X) → G, for any A1-

invariant sheaf of abelian groups G. Thus the canonical morphism X → HA1

0 (X) uniquely

factors through

HA1-naive
0 (X) → HA1

0 (X)

since HA1

0 (X) is a strictly A1-invariant sheaf of abelian groups [93, Corollary 6.31].

The following Proposition relates HA1-naive
0 (X) with the universal A1-invariant sheaf (Defi-

nition 3.2.6).

Proposition 11.1.4. HA1-naive
0 (X) ∼= L(Z(X)).

Proof. Since πA
1

0 (Z(X)) is an A1-invariant sheaf of abelian groups [37, Corollary 5.2], the

canonical map

πA
1

0 (Z(X)) → L(Z(X))

is an isomorphism by [26, Corollary 2.18].

There are also several descriptions of HA1-naive
0 (X).

Theorem 11.1.5. The following A1-invariant sheaves of abelian groups are pairwise isomorphic

in AbA1-inv(k):

HA1-naive
0 (X) ∼= L(Z(X)) ∼= L(π0(Sing∗(Z(X)))) ∼= L(Z(L(X)))

∼= πA
1

0 (Z(L(X))) ∼= L(Z(πA1

0 (X))) ∼= πA
1

0 (Z(πA
1

0 (X))).
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Proof. 1. The first isomorphism follows from Proposition 11.1.4.

2. The natural morphism Z(X) → π0(Sing∗(Z(X))) induces a morphism

ϕ : L(Z(X)) → L(π0(Sing∗(Z(X)))).

The morphism π0(Sing∗(Z(X))) → L(Z(X)) factors uniquely through the morphism

ψ : L(π0(Sing∗(Z(X)))) → L(Z(X))

(Remark 3.2.7). According to the construction of ϕ and ψ, the canonical morphism

Z(X) → L(Z(X)) factors throgh ψ ◦ ϕ. Thus from the universal property of L(Z(X)),

ψ◦ϕ is the identity. Similarly, ϕ◦ψ is the identity. Hence the second isomorphism follows.

3. The canonical morphism X → L(X) induces a morphism Z(X) → Z(L(X)). This

induces a morphism π0(Sing∗(Z(X))) → L(Z(L(X))). This factors uniquely through

the morphism

ϕ : L(π0(Sing∗(Z(X)))) → L(Z(L(X))),

since L(Z(L(X))) is A1-invariant (Remark 3.2.7).

There is a canonical morphism X → L(π0(Sing∗(Z(X)))). It factors through ψ0 :

L(X) → L(π0(Sing∗(Z(X)))). Since L(π0(Sing∗(Z(X)))) is sheaf of abelian groups,

ψ0 factors through ψ1 : Z(L(X)) → L(π0(Sing∗(Z(X)))). Since L(π0(Sing∗(Z(X))))

is A1-invariant, ψ1 factors through

ψ : L(Z(L(X))) → L(π0(Sing∗(Z(X)))).

From the construction of ϕ and ψ, the map X → L(Z(L(X))) factors through ϕ ◦ ψ.
Therefore by the universal property of L(Z(L(X))), ϕ ◦ ψ is identity. Similarly, ψ ◦ ϕ is

identity. Hence the third isomorphism follows.

4. πA
1

0 (Z(L(X))) is A1-invariant sheaf of abelian groups [37, Corollary 5.2]. Thus the

canonical morphism πA
1

0 (Z(L(X))) → L(Z(L(X))) is an isomorphism [26, Corollary

2.18].

5. There is a canonical morphism X → L(Z(πA1

0 (X))). It factors uniquely through the mor-

phism ϕ1 : L(X) → L(Z(πA1

0 (X))), since L(Z(πA1

0 (X))) is A1-invariant. The morphism

ϕ1 factors through ϕ2 : Z(L(X)) → L(Z(πA1

0 (X))), since L(Z(πA1

0 (X))) is a sheaf of

abelian groups. By the universal property of πA
1

0 (−) (Lemma 3.2.5), the morphism ϕ2

uniquely factors through

ϕ : πA
1

0 (Z(L(X))) → L(Z(πA1

0 (X))).
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The morphism X → Z(L(X)) induces a morphism πA
1

0 (X) → πA
1

0 (Z(L(X))). It factors

uniquely through the morphism ψ0 : Z(πA
1

0 (X)) → πA
1

0 (Z(L(X))). Since πA
1

0 (Z(L(X)))

is an A1-invariant sheaf of abelian groups [37, Corollary 5.2], ψ0 factors through the

morphism

ψ : L(Z(πA1

0 (X))) → πA
1

0 (Z(L(X))).

The canonical map X → πA
1

0 (Z(L(X))) factors through ψ ◦ ϕ. Therefore ψ ◦ ϕ is the

identity map. Similarly, ϕ ◦ ψ is also the identity. Hence the fifth isomorphism follows.

6. πA
1

0 (Z(πA1

0 (X))) is an A1-invariant sheaf of abelian groups [37, Corollary 5.2]. There-

fore the canonical morphism πA
1

0 (Z(πA1

0 (X))) → L(Z(πA1

0 (X))) is an isomorphim [26,

Corollary 2.18].

Corollary 11.1.6. Suppose, X ∈ Sm/k is A1-connected. Then HA1-naive
0 (X) is isomorphic to

the constant sheaf Z.

Proof. By Theorem 11.1.5, there is an isomorphism

HA1-naive
0 (X) → L(Z(πA1

0 (X))).

Since X is A1-connected and the constant sheaf Z is A1-invariant, so HA1-naive
0 (X) ∼= Z.

11.2 Sections of HA1-naive
0 (X), for a proper scheme X

In this section we describe some useful properties of HA1-naive
0 (X), for a proper scheme X ∈

Sm/k. In Theorem 11.2.11, we prove that if X is a smooth proper k-scheme, then the canonical

epimorphism

η : Z(πA
1

0 (X)) → L(Z(X))

induces isomorphism over the sections Spec F , for every finitely generated separable field ex-

tensions F/k.

Definition 11.2.1. A sheaf of sets F on Sm/k is called injective over dominant morphisms if

for any dominant morphism U → X in Sm/k, the restriction map F(X) → F(U) is injective.

Lemma 11.2.2. Suppose, X ∈ Sm/k and U is any k-scheme. If two morphisms f, g : U → X

agree on a dense subset V of U , then f = g.

Proof. Since X is separated, the image of the diagonal morphism ∆ : X → X ×k X is closed

in X ×k X. Consider the morphism

(f, g) : U → X ×k X defined as x 7→ (f(x), g(x))

Then (f, g)−1(∆(X)) is closed in X and contains V , so (f, g)−1(∆(X)) = U . Thus, for each

x ∈ U , we have f(x) = g(x).
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Remark 11.2.3. Therefore any representable sheaf X ∈ Sm/k is injective over dominant

morphisms.

The proof of Lemma 11.2.4 and Theorem 11.2.5 are taken from [37, Lemma 5.3] and [37,

Lemma 5.4] respectively. We include these here for the sake of completeness.

Lemma 11.2.4. Suppose, a Nisnevich sheaf F is injective over dominant morphisms. Then for

a dominant morphism ϕ : U → V in Sm/k, the induced map

ϕ∗Z : Zpre(F)(V ) → Zpre(F)(U)

is an injective group homomorphism.

Proof. Suppose α ∈ Zpre(F)(V ) such that ϕ∗Z(α) = 0. Moreover assume that α is given

by
∑l

i=1 niαi, where αi ∈ F(V ) and αi ̸= αj for all i ̸= j. Then ϕ∗Z(α) =
∑l

i=0 niϕ
∗(αi)

(where ϕ∗ : F(V ) → F(U) is induced by ϕ). Since F is injective over dominant morphisms,

ϕ∗(αi) ̸= ϕ∗(αj) for all i ̸= j. Thus ϕ∗Z(α) = 0 implies that ni = 0, for every i. Hence α = 0

and consequently ϕ∗Z is injective.

Theorem 11.2.5. Suppose F is a Nisnevich sheaf which is injective over dominant morphisms.

Then Zpre(F) is an almost sheaf i.e. Z(F) is given by

Z(F)(U) = Zpre(F)(U) for U ∈ Sm/k irreducible and

Z(F)(
n∐
i=1

Ui) =
n∏
i=1

Zpre(F)(Ui), for U =
n∐
i=1

Ui with Ui ’s are connected components of U.

Proof. We show that the above description of Z(F) is a Nisnevich sheaf. We need to show

that for a elementary distinguished square in Sm/k (Definition 2.2.2)

U ×X V U

V X

p

j

where p is an étale morphism and j is an open embedding, the corresponding square of abelian

groups

Z(F)(X) Z(F)(U)

Z(F)(V ) Z(F)(U ×X V )

p∗

j∗

is cartesian i.e. the map (p∗, j∗) : Z(F)(X) → Z(F)(U) ×Z(F)(U×XV ) Z(F)(V ) between

abelian groups is an isomorphism (Remark 2.2.3). We can assume that X,U, V ∈ Sm/k

are irreducibles. Since j is dominant, thus j∗ is injective and hence (p∗, j∗) is injective. For

surjevtivity, suppose β ∈ Z(F)(U) and γ ∈ Z(F)(V ) such that β|U×XV = γ|U×XV . Suppose
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β =
∑t

i=1 niβi, γ =
∑l

j=1mjγj with βi ∈ F(U), γj ∈ F(V ) for every i, j and βi ̸= βi′ , γj ̸=
γj′ for every i ̸= i′, j ̸= j′. Then

t∑
i=1

niβi|U×XV =
l∑

j=1

mjγj |U×XV (*)

Since F is injective over dominant morphisms and the morphisms U ×X V → U and

U×XV → V are dominant, thus βi|U×XV ’s are distinct and γj |U×XV ’s are distinct. Therefore

in the expression (*), t = l and for every i there is unique j(i) such that ni = mj(i) and

βi|U×XV = γj(i)|U×XV . Since F is a Nisnevich sheaf, for such i, j(i) we can glue βi and γj(i)

to get a section δi,j(i) ∈ F(X) such that δi,j(i)|U = βi and δi,j(i)|V = γj(i). Then
∑t

i=1 niδi,j(i)

maps to (β, γ) under (p∗, j∗). Therefore, Zpre(F) is an almost sheaf.

Remark 11.2.6. Thus if F is a sheaf which is injective over dominant morphisms, then the

section Z(F)(U) for U ∈ Sm/k irreducible, is the free abelian group on the set F(U). For a

representable sheaf X ∈ Sm/k, Zpre(X) is an almost sheaf (Remark 11.2.3).

The canonical morphism F → Z(F) induces a morphism

θ : Sn(F) → Sn(Z(F)).

The morphism θ factors through

ϕ : Z(Sn(F)) → Sn(Z(F))

since Sn(Z(F)) is a sheaf of abelian groups (Remark 11.1.1). There is a commutative triangle

consisting morphism of sheaves of abelian groups

Z(Sn(F))
ϕ // Sn(Z(F))

Z(F)

ee

ψ
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Since ψ is an epimorphism, ϕ is an epimorphism.

Theorem 11.2.7. Suppose F is a Nisnevich sheaf which is injective over dominant morphisms.

Then the epimorphism ϕ : Z(S(F)) → S(Z(F)) is an isomorphism.

Proof. We show that for every smooth Henselian local ring O, the map

ϕO : Z(S(F))(Spec O) → S(Z(F))(Spec O),

induced by ϕ, over the sections Spec O, is an isomorphism of abelian groups. The map ϕO is

surjective, since ϕ is an epimorphism and the sections over Spec O are the stalks. For injectivity,

suppose α ∈ Z(S(F))(Spec O) such that ϕO(α) = 0. Suppose that α =
∑k

i=1 niαi, where
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αi ∈ F(Spec O) for every i and αi ̸= αj in S(F)(Spec O) for every i ̸= j. Since ϕO(α) = 0,

there is a chain of A1-homotopies G1, .., Gr ∈ Z(F)(A1
O) such that G1(0) = ϕO(α) and

Gr(1) = 0. Since F is injective over dominant morphisms by Theorem 11.2.5, Z(F)(A1
O) is

the free abelian group on F(A1
O). Suppose

Gj =

lj∑
t=1

m
(j)
t H

(j)
t ,

then G1(0) =
∑l1

t=1m
(1)
t H

(1)
t (0) =

∑k
i=1 niαi and Gr(1) = 0 =

∑lr
t=1m

(r)
t H

(r)
t (1).

For simplicity, we complete the rest of the proof for r = 1. Suppose, G =
∑l

j=1mjHj along

with G(0) =
∑l

j=1mjHj(0) =
∑k

i=1 niαi ∈ Z(F)(Spec O) and G(1) =
∑l

j=1mjHj(1) = 0.

Thus there is a partition of I (we can assume it is increasing)

I = {1, 2, .., l} =

t∐
s=1

Is,

where Is = {rs−1+1, rs−1+2, .., rs}, 1 ≤ s ≤ t and r0 = 0, rt = l. 1 ≤ r1 < r2 < .. < rp = l

such that
∑

i∈Is mi = 0, for every s and for each fixed s, Hi(1)’s are equal for all i ∈ Is. Now,

for every s, Hp(0) = Hq(0), if p, q ∈ Is. Indeed, if there are p, q ∈ Is such that Hp(0) ̸= Hq(0),

for some s, then from the expression G(0) =
∑k

i=1 niαi ∈ Z(F)(Spec O), we have Hp(0) = αi

and Hq(0) = αj for some i, j and i ̸= j. Thus αi = αj ∈ S(F)(Spec O), which is not possible.

Therefore, for each i, there are I
(i)
s1 , I

(i)
s2 , .., I

(i)
sdi

such that ni =
∑

j∈∪di
v=1Isv

mj . Thus ni = 0, for

every i and hence α = 0. Therefore, ϕO is a monomorphism and thus ϕ is an isomorphism.

Using Remark 11.2.3 and Theorem 11.2.7, we have the following:

Corollary 11.2.8. Suppose, X ∈ Sm/k. Then the canonical morphism

ϕ : Z(S(X)) → S(Z(X))

is an isomorphism.,

Recall the notion of almost proper sheaf defined in [26, Definition 3.6]. Proper k-schemes

are almost proper sheaves. We prove that for a proper scheme X ∈ Sm/k and a finitely

generated separable field extension F/k, the section of HA1-naive
0 (X) over Spec F is the free

abelian group on πA
1

0 (X)(Spec F ) (Theorem 11.2.11).

Lemma 11.2.9. Suppose X ∈ Sm/k is a proper scheme. Then Z(X) is an almost proper

sheaf.

Proof. Suppose U ∈ Sm/k is an irreducible variety of dimension ≤ 2. An element s ∈ Z(X)(U)

is given by
∑n

i=1mifi, where mi ∈ Z and fi : U → X is a morphism (Remark 11.2.6). Since X

is proper, the morphism F : U → X×kX×k..×kX given by F (x) = (f1(x), f2(x), .., fn(x)) can
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be extended to a morphism F̄ : Ū → X×k ..×kX, for some compactification Ū ∈ Sm/k. Thus

(AP1) in [26, Definition 3.6] is satisfied. For (AP2), suppose U ∈ Sm/k is an irreducible curve

and U ′ is an open subscheme. Suppose that s1 =
∑p

i=1 aifi, s2 =
∑q

j=1 bjgj ∈ Z(X)(U) and

s1|U ′ = s2|U ′ . Since X is separated, so for every i ̸= i′, j ̸= j′, fi|U ′ ̸= fi′ |U ′ and gj |U ′ ̸= gj′ |U ′

(Remark 11.2.3). Therefore, p = q and for every i, ai is same with exactly one bj along with

fi = gj . Thus s1 = s2. Thus (AP2) in [26, Definition 3.6] is satisfied. Hence Z(X) is an

almost proper sheaf.

Corollary 11.2.10. Suppose X ∈ Sm/k is a proper scheme. Then for any n ≥ 1

Sn(Z(X))(Spec F ) = Z(S(X))(Spec F )

for every finitely generated separable field extension F/k and n ≥ 1.

Proof. The Corollary follows from Lemma 11.2.9 and [26, Theorem 3.9].

The canonical morphism X → HA1-naive
0 (X) factors through Z(πA1

0 (X)), By Proposition

11.1.4, we have an epimorphism of sheaves of abelian groups

η : Z(πA
1

0 (X)) → L(Z(X))

There is a commutative triangle consisting all epimorphisms of sheaves of abelian groups

Z(πA1

0 (X)) // HA1-naive
0 (X)

Z(X)

ee 88

Theorem 11.2.11. Suppose, X ∈ Sm/k is a proper scheme. Then for every finitely generated

separable field extension F/k,

η : Z(πA
1

0 (X))(Spec F ) → HA1-naive
0 (X)(Spec F )

is an isomorphism of abelian groups.

Proof. Using Proposition 11.1.4 we need to show, the canonical map

η : Z(πA
1

0 (X))(Spec F ) → L(Z(X))(Spec F )

is an isomorphism. Since sections over F/k are stalks,

L(Z(X))(Spec F ) = lim−→
n

Sn(Z(X))(Spec F )
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in the category of abelian groups. By Corollary 11.2.10,

L(Z(X))(Spec F ) = Z(S(X))(Spec F ).

The morphism η is a surjection. For injectivity, suppose α =
∑k

i=1 nixi is such that η(α) = 0 ∈
Z(S(X))(Spec F ), where ni ∈ Z, xi ∈ X(F ) for all i such that xi ̸= xj ∈ πA

1

0 (X)(Spec F ) for

i ̸= j. Then xi ̸= xj ∈ S(X)(Spec F ) for all i ̸= j by [11, Theorem 2.4.3]. Therefore η(α) =

0 ∈ Z(S(X))(Spec F ) implies ni = 0 for all i. Therefore, α = 0 ∈ Z(πA1

0 (X))(Spec F ).

Hence, η is injective. Therefore, η is an isomorphism over the section Spec F for every finitely

generated separable field extension F/k..

Corollary 11.2.12. Let X ∈ Sm/k be a proper scheme. Then HA1-naive
0 (X) is isomorphic to

Z if and only if X is A1-connected.

Proof. The reverse implication follows from Theorem 11.1.6. For the forward implication,

suppose that HA1-naive
0 (X) is isomorphic to the constant sheaf Z. Then Theorem 11.2.11

the abelian group Z(πA1

0 (X))(Spec F ) has rank 1, for every finitely generated separable field

extension F/k. Thus πA
1

0 (X)(Spec F ) is trivial. Therefore, X is A1-connected by [99, Lemma

3.3.6].

Corollary 11.2.13. Suppose, X is a smooth proper surface over an algebraically closed field

k of characteristic zero. Then HA1-naive
0 (X) is isomorphic to Z if and only if X is a rational

surface.

Proof. The corollary follows from Corollary 11.2.12 and [11, Corollary 2.4.7].

Recall the birational and A1-invariant sheaf πbA
1

0 (X) introduced by Asok and Morel [11,

Section 6], associated to a proper scheme X ∈ Sm/k. The section of πbA
1

0 (X) over Spec L is

the set of A1-equivalence classes of L-rational points [11, Proposition 6.2.6]. The free abelian

presheaf Zpre(πbA
1

0 (X)) is a birational and a strictly A1-invariant sheaf of abelian groups on

Sm/k ([11, Section 6] and [13, Lemma 2.4]). So the canonical morphism X → Z(πbA1

0 (X))

uniquely factors through the morphism (Remark 11.1.3)

θ : HA1-naive
0 (X) → Z(πbA

1

0 (X)).

Corollary 11.2.14. Suppose, X ∈ Sm/k is a proper scheme. Then for every finitely generated

separable field extension F/k, the canonical morphism θ induces

θ : HA1-naive
0 (X)(Spec F ) → Z(πbA

1

0 (X))(Spec F )

an isomorphism of abelian groups.
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Proof. Consider, the composition

Z(πA
1

0 (X))(Spec F )
η−→ HA1-naive

0 (X)(Spec F )
θ−→ Z(πbA

1

0 (X))(Spec F ), .

By Theorem 11.2.11 and [11, Proposition 6.2.6], the morphism θ is an isomorphism over the

section Spec F , for every finitely generated separable field extension F/k.

Remark 11.2.15. Therefore if X ∈ Sm/k is a proper scheme, then by [11, Theorem 2.4.3,

Theorem 6.2.1] and from the isomorphism HA1

0 (X) → Z(πbA1

0 (X)) [78, Theorem 1.1] (see also

[118, Theorem 2]), the canonical morphism (Remark 11.1.3)

HA1-naive
0 (X) → HA1

0 (X)

is an isomorphism over the sections of every finitely generated separable field extensions F/k.

Remark 11.2.16. Suppose, F is a Nisnevich sheaf of sets on Sm/k. We can extend the

Definition 11.1.2 for any Nisnevich sheaf

HA1-naive
0 (F) := πA

1

0 (Z(F)).

Then by [37, Corollary 5.2], HA1-naive
0 (F) is an A1-invariant sheaf of abelian groups on Sm/k

and HA1-naive
0 (F) satisfies the same universal property as Remark 11.1.3. The proof in Theorem

11.1.5 also holds if we replace X ∈ Sm/k by the sheaf F .

The above remark (Remark 11.2.16) and Theorem 11.1.5 give the following corollary:

Corollary 11.2.17. For X ∈ Sm/k, the canonical morphism X → πA
1

0 (X) induces isomor-

phism (compare with [14, Proposition 1])

HA1-naive
0 (X) → HA1-naive

0 (πA
1

0 (X)).

We end this chapter with the following questions.

Question 11.2.18. Suppose, X ∈ Sm/k.

1. How far is the sheaf HA1

0 (X) from HA1-naive
0 (X). The sheaf HA1

0 (X) is strictly A1-

invariant sheaf of abelian groups [93, Corollary 6.31] and the sheaf HA1-naive
0 (X) is an

A1-invariant sheaf of abelian groups [37, Corollary 5.2]. Is the canonical map

HA1-naive
0 (X) → HA1

0 (X)

an isomorphism or atleast it induces an isomorphism over the sections of every finitely

generated separable field extensions F/k? We know that this is true if X is a smooth

proper k-scheme (Remark 11.2.15).
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2. If HA1-naive
0 (X) is isomorphic to the constant sheaf Z, then is X A1-connected? By

Theorem 11.1.6, if X is A1-connected, then HA1-naive
0 (X) is isomorphic to Z and if X is

proper, thenHA1-naive
0 (X) is isomorphic to Z if and only ifX is A1-connected, by Corollary

11.2.12. We also ask that if X is a smooth affine complex surface and HA1-naive
0 (X) is

trivial, then whether X has negative logarithmic Kodaira dimension (see also, Corollary

5.2.11).

3. If HA1-naive
0 (X) is trivial, then O(X) has only trivial group of units. Indeed, the group of

units of X

O(X)∗ ∼= HomSm/k(X,Gm)

∼= HomAbA1-inv(k)(H
A1-naive
0 (X),Gm) (By Remark 11.1.3),

since Gm is an A1-invariant sheaf of abelian groups. Suppose, X is a smooth affine

complex surface such that O(X) is a U.F.D. If moreover HA1-naive
0 (X) is trivial, then is

X isomorphic to A2
C?
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l’IHES 90 (1990) p. 45-143.

[95] M. P. Murthy, R. G. Swan; Vector Bundles over Affine Surfaces, Inventiones math. 36,

125 - 165 (1976).

[96] C. Mazza, V. Voevodsky and C. Weibel; Lecture Notes on Motivic Cohomology, Clay

Mathematics Monographs, Volume: 2; 2006; 216 pp, www. ams. org/ bookpages/ cmim-2 .

[97] William S. Massey; A Basic Course in Algebraic Topology, Graduate Texts in Mathematics,

Springer, Volume 127.

[98] J. P. May; Simplicial Objects in Algebraic Topology, The University of Chicago Press,

Chicago and London.

[99] F. Morel; An introduction to A1-homotopy theory, in Contemporary Developments in

Algebraic K-theory. ICTP Lecture Notes, vol. XV (electronic) (Abdus Salam International

Central Theoretical Physics, Trieste, 2004), pp. 357–441.

[100] The nLab authors; simplicial group, https: // ncatlab. org/ nlab/ show/

simplicial+ group .

[101] A. Neeman; Triangulated Categories (AM-148), Volume 148, Princeton: Princeton Uni-

versity Press, 2001, https: // doi. org/ 10. 1515/ 9781400837212 .

[102] Pablo Pelaez; The Unstable Slice Filtration, Transactions of the American Mathematical

Society, vol. 366, no. 11, American Mathematical Society, 2014, pp. 5991–6025.

[103] G. Perelman; The entropy formula for the Ricci flow and its geometric applications,

preprint, math.DG/0211159.

[104] G. Perelman; Ricci flow with surgery on three-manifolds, preprint, math.DG/0303109.

[105] G. Perelman; Finite extinction time for the solutions to the Ricci flow on certain three-

manifolds, preprint, math.DG/0307245.

[106] D. Popescu; Polynomial rings and their projective modules, Nagoya Math. J.,

113:121–128, 1989.

[107] Daniel Quillen; Projective modules over polynomial rings, Inventiones Mathematicae 36

(1) (1976), 167–171.

www.ams.org/bookpages/cmim-2
https://ncatlab.org/nlab/show/simplicial+group
https://ncatlab.org/nlab/show/simplicial+group
https://doi.org/10.1515/9781400837212


BIBLIOGRAPHY 113

[108] C. P. Ramanujam; A topological characterisation of the affine plane as an algebraic

variety, Ann. of Math. (2) 94 (1971) 69–88.

[109] P. Russell, On Affine-Ruled Rational Surfaces, Mathematische Annalen 255 (1981): 287-

302.

[110] P. Russell, Forms of the affine line and its additive group, Pacific Journal of Mathematics,

Vol. 32, No. 2, 1970.

[111] A. Sathaye; Polynomial Rings in Two Variables Over a D.V.R.: A Criterion, Invent. Math.

74, 159-168 (1983).

[112] P. Samuel; Unique Factorization, American Mathematical Monthly, Vol. 75, No. 9 (Nov.,

1968), pp. 945-952.

[113] A. Sawant; A1-connected components of schemes, Ph. D Thesis, submitted to Tata

Institute of Fundamental Research, Mumbai.
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[116] J. P. Serre; Faisceaux algébriques cohérents, Ann. of Math. (2) 6 (1955), 197-278.
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