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Abstract

Advancements in data acquisition make multiple data sources available to explain dif-
ferent perspectives of an object. In order to enhance the performance of a single-task
learning such as classification, the multi-view learning (MVL) leverages the comple-
mentary and consistent information across multiple views. However, MVL has its own
set of challenges. The major issues associated with MVL include selecting relevant and
informative views while discarding the noisy and redundant views, integrating hetero-
geneous views while constructing discriminant subspaces, handling “high-dimension
low-sample size” nature of different views, and finding the intrinsic non-linear class-
geometry of the data across all the views. Moreover, applying MVL under a multi-task
learning (MTL) framework, for learning multiple related tasks simultaneously to im-
prove the performance of single-task MVL, is a major challenge.

In this regard, the thesis introduces some supervised MVL algorithms, based on the
theories of canonical correlation analysis (CCA). In order to construct the discrimi-
native subspaces while preserving the non-linear class-geometry of the data, a novel
supervised MVL method, termed as class-structure preserving multi-view correlated
discriminant analysis (CSP-MVCDA), is proposed, which judiciously integrates the
merits of multiset CCA (MCCA), linear discriminant analysis (LDA), and a local-
ity preserving norm. The proposed method jointly optimizes the inter-set correlation
across all the views and intra-set discrimination in each view to obtain a common
discriminative latent space, where the shared and complementary information across
multiple views is exploited. The locality preserving norm with prior class labels helps
to preserve the local class-structure of the data, while both MCCA and LDA take
care of its global class-structure across multiple views. A closed form solution, based
on the generalized eigenvalue problem, makes the proposed method applicable for
high-dimensional multi-omics data integration. In order to compute view relevance
and inter-view dependency for a desired task, and to address the problem of “high-
dimension low-sample size” nature of different views, a novel supervised MVL method,
termed as supervised graph regularized multi-view canonical correlation and discrim-
ination analysis (SGR-MCCDA), is next introduced based on the maximum variance
formulation of MCCA. Incorporating the known geometry of source vectors encoded
by the within-class and between-class graphs, the proposed method preserves the class-
structure of the data, which facilitates multi-omics cancer stratification.

In imaging genetics study, sparse models are effective to select diagnosis- or task-
specific features for a comprehensive understanding of the underlying disease, and
to find the genetic basis for the brain function and structure associated with the
disease. In this regard, a new sparse multi-task two-view algorithm, termed as multi-
task learning and sparse discriminant canonical correlation analysis (MTL-SDCCA),



is proposed, judiciously integrating the theories of CCA and LDA under the MTL
framework to find the association between an imaging and a genetic modality. It
uses lasso and group lasso penalties to select the diagnosis-specific and diagnosis-
consistent features from the large number of features to identify group-wise imaging
genetic associations. In order to reduce the high complexity of existing algorithms,
under multiple imaging and genetic modalities, a multi-task multi-view algorithm,
termed as multi-view multi-task sparse canonical correlation analysis (MvMt-SCCA),
is proposed, which learns multiple sparse CCA tasks together for identifying the group-
wise imaging genetic association. Incorporating the lasso and fused lasso penalties, the
proposed method is able to select the modality-wise, class-specific, and class-consistent
features for large-scale imaging genetics studies.
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Chapter 1

Introduction

In the world of digital enhancement, data has evolved into a vital resource that reshapes
the way we live, work, and make choices. Data, in its raw form, consists of facts, fig-
ures, and information collected from various sources and events. It can include everything
from the numbers to complex multimedia files, including text, photos, videos, and sensor
readings. The usefulness of data lies in its ability to provide insights, make decisions, and
solve problems across a multitude of domains, like, business, health care, education, and
scientific research. There has been an explosive growth in the amount of data generated
worldwide over the past few decades. For example, in the early 2010s, the world generated
approximately 1.2 zettabytes (1.2 trillion gigabytes) of data annually, whereas in recent
times, the world has produced over 120 zettabytes of data annually, and the prediction
says that the amount will reach 175 zettabytes per year in 2025 [212]. Apart from the
increment in volume of data, the diversity of the data has also been increasing drastically.
From one perspective, it is useful to understand the digital world, but on the contrary, it
brings in the challenges of storing and analyzing of such huge data as well.

Data analysis acts as a link between raw data and insights that may be used to make
decisions. It involves techniques such as data cleaning, visualization, statistical analysis,
and more. Through this process, the data can be transformed into knowledge. A pattern
in data, which gives knowledge about the data, refers to a repeating, significant structure
or feature that may be observed within a data set. Patterns can take various forms and
may include trends, seasonality, anomalies, clusters, correlations and many more. In the
realm of relentless stream of data, pattern recognition, an automated process of identifying
meaningful patterns or structures within data sets, becomes a necessary technique for the
data analysis [248]. Pattern recognition is the fundamental aspect of both machine learning
and artificial intelligence (AI) [26]. Machine learning, a branch of AI, employs algorithms
to help computers learn from data and get better over time. It is essentially the practical
use of pattern recognition. Al is a more general term, which strives to develop robots or
systems that can mimic human intellect including abilities to comprehend natural language,
reason, solve problems, and make decisions. Al systems leverage pattern recognition and
machine learning to make sense of complex data, adapt to changing environments, and
perform tasks that require intelligence.

Pattern recognition and machine learning algorithms may be roughly categorized into
the following four groups depending on the learning technique. The difference between



these four groups, namely, supervised, unsupervised, semi-supervised and reinforcement
learning, is represented pictorially in Fig. 1.1.
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Figure 1.1: Difference between supervised, unsupervised, semi-supervised, and reinforce-
ment learning.

e The primary objective of supervised learning is to learn a mapping from a set
of given inputs or objects to a set of given labels or target variables, so that it
can accurately classify or predict the output against unseen inputs or objects. It
can be broadly viewed as two category, namely, classification and regression. The
classification algorithms are applied when the target variables are categorical. These
algorithms predict the category in which the unseen objects belong to. The examples
include classifying emails as spam or not spam, classifying images of animals into
different species, and so on. The regression algorithm involves a continuous target
variable that predicts a numeric value, like predicting house prices depending on
features such as area, number of bedrooms, transportation cost, etc.

e Unsupervised Learning does not require the prior labeled data, rather focuses on
discovering hidden patterns, structures, or relationships within unlabeled data. It
is very helpful for exploratory data analysis and finding insights when the expected
results are not known in advance. Clustering and anomaly detection are some of the
common tasks in unsupervised learning. Clustering algorithms group similar data
points based on their intrinsic characteristics or similarities. For example, retailers
use clustering to group their clients based on demographics, purchasing habits, and
past purchases. Anomaly detection recognizes unusual or unexpected data items,
which deviate from the norm in an unsupervised way. Anomaly detection is beneficial
for fraud detection, network security, and quality control.

e Semi-supervised Learning combines aspects of both supervised and unsupervised
learning. In this approach, the algorithm is trained on a data set that includes
large amount unlabeled samples and a small amount labeled samples. In many real-
world applications, collecting and annotating large amount of labeled data can be a



major barrier. In such cases, semi-supervised learning is very useful. Applications
of semi-supervised learning include text classification, image recognition and speech
recognition, where large number of instances are unlabeled and very few are labeled.

¢ Reinforcement Learning, a machine learning technique, aims to learn an agent-
environment system, where the agent is trained to make sequential decisions in the
environment in such a way that the cumulative reward based on each action by the
agent is maximized. It is influenced by behavioral psychology, where an agent learns
through trial and error by interacting with its surroundings. Due to its capacity
to handle complicated decision-making tasks, such as game playing, robotics, and
autonomous systems, reinforcement learning has drawn a lot of interest in machine
learning.

The machine learning algorithms usually deal with a data set represented by a two
dimensional matrix, X™*¢, where n denotes the number of instances and d denotes the
number of features for each instance. This type of representation is known as feature
vector based representation of a data set. It can include numerical, categorical, textual, or
binary feature sets for n samples in a d-dimensional measurable space. For example, in an
image data set, an image is considered as a sample and intensity values of the pixels of the
image can be considered as features. A “view” or “modality” of a data set is a collection of
n samples that are represented by d-dimensional feature vectors.

The single-view learning is a machine learning paradigm in which a model is trained and
used to operate on just one data source or view. It is appropriate for many machine learning
applications when a single set of features is enough to generate reliable predictions or
inferences. Traditional supervised or unsupervised algorithms, such as k-means clustering,
support vector machine, and linear regression, often belongs to this category. Though
single-view learning is popular and efficient in many applications, it may not completely
use the potential of data when several viewpoints or perspectives are available.

1.1 Multi-View Learning

In many real-world applications, data can be represented by many ways or can be obtained
from different perspectives. Multi-view learning (MVL) deals with the multiple views to-
gether to obtain insightful decisions from the data [237]. In comparison to single-view
learning, MVL makes use of the strengths and complementary information of several data
representations to produce models that are more reliable, accurate, and interpretable. It
has gain enormous success in a wide range of practical applications, such as, multi-omics
data integration, imaging genetics association, face recognition, biomedical imaging, nat-
ural language processing, and so on [151,186,209,310|. For instance, in imaging genetics
applications, genetic data, such as, single nucleotide polymorphism (SNP) or copy num-
ber variation, is integrated with different imaging modalities, such as, magnetic resonance
imaging (MRI), diffusion tensor imaging, and positron emission tomography (PET), to find
reliable biomarkers for improving the disease diagnosis. Figure 1.2 illustrates a few of the
numerous applications of MVL.

Some of the key characteristics and concepts of MVL are discussed below, which are
the main reasons behind the success of MVL in machine learning applications.
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Figure 1.2: Diverse applications of multi-view data analysis.

e Consistency and Agreement: Many MVL techniques place a strong emphasis on
the premise that data from multiple viewpoints should be coherent or agreeable with
one another. Inconsistent information might hinder learning and inhibit the model’s
ability to utilize the multiple viewpoints. For instance, if two interpretations of the
same piece of data are consistent, then their predictions or depictions ought to be
comparable or congruent.

e Complementary Information: Even though all of the views of a system capture
the same aspect of it, each view may provide complementary information that is not
available in the other views, which potentially improve the performance and robust-
ness of the learning models. For example, MRI and PET scans are two modalities
to express the brain abnormalities of an individual. The MRI scan gives the tissue
level mapping, which helps to identify the tumor region or decrease in brain volume,
whereas the PET scan gives functional level information of the brain to identify the
abnormal behavior of the brain.

e Comprehensive View of the System: Multiple distinct views of a system can give
comprehensive knowledge about the system and upon integration, it has strong in-
fluence over the learning process. For instance, multiple cameras, capturing a person
from different angles and perspectives, can recognize the person more conveniently
than a single-view of the camera.

e Resilience to Noise and Data Variability: The real data is often noisy, incom-



plete, or subject to variations. The multiple distinct views help in minimizing the
impact of noise or missing data in individual views. The model becomes more resilient
to data variability by relying on complementary sources.

1.2 Challenges in Multi-View Learning

The MVL has great potential in dealing with multiple perspectives of data over single-
view learning in various applications. But, it also has its own set of challenges due to the
complexities in multi-view data [310]. The major challenges in MVL are as follows:

¢ High-dimension Low-sample Size: Data sets from real-world applications typi-
cally contain a large number of observed variables. An image may have 10® number of
pixels, a DNA microarray contains almost 20,000 genes, a text file contains millions
of words, and so forth. Conversely, there are often very few observed samples. The
learning models tend to overfit the data as a result of the small number of training
samples, which lowers the generalization performance. In the domain of multi-omics
integration, large number of features and low-sample size nature of different views
make the sample covariance matrix non-invertible, which lead to poor performance
of the model. In case of imaging genetics study, the large number of features (~ 10)
compared to samples (~ 102 or 103) requires sparse models to select the important
feature from such huge number of features.

e Non-linear Geometry: The majority of the views in several real-world data sets
have large number of attributes. Although, these views seem like a point cloud in a
high-dimensional feature space, their important structures are often embedded in a
lower-dimensional manifold or subspace that is part of the high-dimensional space.
Hence, most of the variables in these views are collinear and should be taken care of
while learning from the data. Moreover, capturing intrinsic non-linear class-geometry
of the data embedded into high-dimensional space could also be a challenging task
while fusing multiple views.

e View Heterogeneity: The most straightforward method for handling multi-view
data is to create a single view by concatenating the feature sets of multiple views, and
apply traditional machine learning techniques. But, the concatenation of features is
not always effective, because each data view has some unique statistical properties
and also differs in unit, scale and variance that are not usually compatible across
the multiple views. For example, in imaging genetics study, the imaging views like
functional MRI (fMRI) measures the frequency fluctuations in the brain, which are
continuous data, whereas in genetic view like SNP data are categorical depending on
minor allele count. In multi-omics study, the features of DNA methylation data rep-
resent the f—values, which range from 0 to 1, whereas the features in gene expression
data are measured in RPM (reads per million), which may have size of 10°. So, the
concatenation can be biased towards the views, which have high scale and variance.
Therefore, in order to preserve the intrinsic features of each view throughout the
learning process, the data integration needs to remain impartial.



e View Selection: In real-world applications, measurement errors might lead to noise
in the observations across different views. The noise in one view can be propagated
in other views or even can be inflated during the data integration. The majority of
machine learning algorithms assume that all the views are informative, and can pro-
duce uniform and consistent knowledge about the data set. However, in reality, there
might exist views which contain repetitive, unimportant or even worse information.
The learning process may not perform well when all available views are integrated,
due to the presence of redundant, irrelevant, and noisy views. Therefore, it is impor-
tant to decide which viewpoints to employ and how much weight to give them during
the data fusion process.

e Scalability: In MVL, scalability describes an algorithm’s capacity to manage large-
scale data across several views in an effective manner. Each view can contain large
number of features, which may increase the total feature size extremely high, while
integrating the multiple views. For instance, in imaging genetics studies, genetic data
like SNP has very high feature size of order 10%, neuroimaging data like fMRI con-
tains 10%-107 number of voxel level measurements, which makes the data integration
process challenging. Therefore, designing a machine learning model, which is scalable
to the dimension of the views, is a difficult task.

e Incomplete Views: The conventional MVL methods assume that the multi-view
data is complete, which means all the views have the same set of samples. However, in
real-world scenario, this is not the case, since different artificial factors like equipment
failure during the data collection procedure make the views incomplete. According to
the missing information, incomplete data are mainly of two kind: (1) the information
about a sample is completely missing in some of the views (view missing) and (2)
the information about the sample is partially observed in some of the views (variable
missing). Removing the samples having missing information from all the views could
reduce the sample size, which leads to the overfitting problem. Another strategy
is to impute the missing values by some special values such as 0 or mean of the
corresponding attributes. But, this approach may introduce additional noise into the
data and degrade the performance. Therefore, designing a machine learning model,
which is able to find the underlying data distribution or a latent representation from
the incomplete views, would be of great interest.

e Overfitting: In MVL, there is a limited number of training data while there exists
different kinds of features to work with, which makes traditional machine learning
model to be overfitted. The cross-validation and regularization strategies are fre-
quently employed to lessen this issue.

While certain challenges, such as incomplete views and heterogeneous data, are ex-
clusive to multi-view data, other challenges, such as capturing data geometry and high-
dimension low-sample size nature, are also present in single-view data.



1.3 Multi-Task Multi-View Learning

The MVL methods are often used for dimensionality reduction, semi-supervised learning,
supervised learning, transfer learning, and clustering. However, the MVL methods usually
extract or select feature sets for single-task models. A good learning algorithm for single-
task models needs a large amount of labeled training data and may have a large number of
parameters to estimate. On the other hand, multi-task learning (MTL) [39] has the ability
to improve the performance of single-task model by the knowledge-transfer approach. It
can particularly be helpful when there is limited data available for the targeted task, and a
lot of data from related tasks is easily available. Figure 1.3 explains the difference between
single-task learning and MTL. The multi-task extension of mulit-view learning, termed as
multi-task multi-view learning [98,303|, aims to use several MVL tasks simultaneously, to
enhance the performance of each task by using relevant information from the related tasks.
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Figure 1.3: Difference between single-task and multi-task learning.

The main objective of multi-task learning (MTL) [39] is to train models that perform
multiple related tasks simultaneously, instead of training separate models for each task.
The model learns generalized representations of the data, which are applicable in multiple
context by using all of the available data across different tasks. This idea is rooted in the
notion that knowledge acquired from one task can leverage the performance of another
task. Primarily, there are two factors in MTL. The first factor is task relatedness and the
second one is the definition of task. The task relatedness relies on the knowledge of the
relationships between various tasks, which can be incorporated into the MTL model for
learning. The definition of the task is the second factor. The supervised tasks such as
classification and regression, unsupervised tasks such as clustering, semi-supervised tasks,
active learning, reinforcement learning, online learning, and multi-view learning are the
primary types of learning tasks in machine learning. As a result, different learning chal-
lenges result in various MTL settings. In the context of classification problem, MTL tries
to improve multiple classification tasks by learning them concurrently. An example of
MTL in the domain of computer vision is facial recognition and emotion detection. Al
systems can efficiently learn to identify faces while also identifying and deciphering facial
expressions and emotions through MTL. By fostering a more comprehensive knowledge of



human face characteristics, this simultaneous learning technique improves the accuracy of
emotion detection and facial recognition systems.

Some of the key aspects of MTL are given below, which make it a widespread ma-
chine learning approach across multiple domains, like imaging genetics, natural language
processing (NLP), recommendation system and so on.

e Shared and Complementary Knowledge: The multiple tasks in MTL share
some commonalities or underlying structure, and also have differences across the
tasks, which are explored to come up with a more generalized and improved model.
A real-life example is a text-based task in NLP, where multiple language related tasks
are performed simultaneously, benefiting from shared and complementary knowledge
across different tasks. Google’s BERT (Bidirectional Encoder Representations from
Transformers) is a prominent example of MTL in NLP.

e Regularization Effect: The MTL also functions as a regularizer. Training on
multiple tasks helps to prevent overfitting problem because the model must balance
its parameters to perform well on all tasks. This can result in better generalization
to new data.

e Data Efficiency: The MTL can be useful when it comes to deal with limited data
available for each individual task. It allows the model to leverage information from
multiple tasks to boost performance.

¢ Reduced Model Complexity: By combining several tasks into one model, MTL
can lower the overall complexity of a machine learning system.

As mentioned above, the design of MTL models is influenced by the comprehension of
task relatedness. There are two primary aspects to define the task relatedness: feature-
based and parameter-based. The feature-based MTL models assume that tasks with vari-
able features have comparable or equivalent feature representations, which may consist of
a subset or a transformation of the original features. The parameter-based MTL models
embed task relatedness via regularization or prior knowledge on model parameters. In the
domain of imaging genetics, feature-based MTL models are more popular [63,74].

1.4 Challenges in Multi-Task Learning

Although the MTL framework has drawn a lot of interest due to its ability to increase
efficiency and generalization by simultaneously training models on several related tasks, it
comes with the following challenges:

e Task Interference: It is possible that different tasks in MTL require different rep-
resentations or have competing aims. Task interference can occur when learning to
perform well on one task has a detrimental effect on performance on another. For ex-
ample, named entity recognition (NER) and sentiment analysis are two tasks in NLP.
While sentiment analysis categorizes a text’s sentiment (positive, negative, or neu-
tral), NER recognizes and categorizes named entities, such as individuals, groups,
and places. Due to potential conflicts between features relevant for NER (proper



nouns) and features beneficial for sentiment analysis (sentiment-related terms), these
tasks may generate interference.

e Transferability: Improved performance can result from exchanging information
across tasks, but there is no guarantee that knowledge gained from one task will be
applied to others. Effective regularization strategies and the identification of tasks
with complementary information are critical components of successful transfer.

e Data Heterogeneity: Different types of data, such as text, images, and structured
data, may be involved in tasks inside an MTL framework. Therefore, it is necessary
to build architectures that can handle a variety of data modalities.

e Hyperparameter Tuning: When it comes to tuning hyperparameters, MTL mod-
els frequently have more hyperparameters than single-task models. Determining the
optimal set of hyperparameters that performs well for every task can be computa-
tionally expensive and time-taking.

e Task Imbalance: The tasks can differ with the relevance, complexity, and availabil-
ity of data. To keep dominant tasks from overshadowing others throughout training,
it is imperative to balance each task’s contribution. For instance, finding anomalies
(like tumours) and segmenting organs are two aspects of medical image analysis that
aid in diagnosis. However, compared to organ segmentation, acquiring labeled data
for anomalies is sometimes more difficult and costly. It is important to balance these
tasks’ influence during training so as to prevent the more accessible task from taking
precedence.

e Architecture Design: It is difficult to design a shared architecture that can effi-
ciently collect features relevant to every task. It is not easy to balance the model’s
complexity to prevent overfitting and make sure the model has enough capacity for
each task.

In order to handle effectively the challenges corresponding to MVL and extract signifi-
cant patterns hidden in multi-view data sets with respect to both single and multiple tasks,
some more sophisticated algorithms need to be developed.

1.5 Scope and Organization of Thesis

One of the major challenges in multi-view data analysis is to capture the intrinsic data
geometry with respect to each class across multiple distinct, high-dimensional, and het-
erogeneous views. Another significant issue with multi-view data analysis is the high-
dimensional, low sample size nature of individual views, which makes the sample covari-
ance matrix ill-conditioned. It is also possible that some of the views offer contradictory,
redundant, or even worse information. Moreover, most of the MVL algorithms are designed
to handle the single-task of extracting a set of features for either classification or clustering.
But, task-specific feature selection under the MTL framework has gained interest recently
in many real-world applications [39] [98]. For example, in the field of imaging genetics,
diagnosis-specific feature selection facilitates the diagnosis and prognosis of many neurode-
generative disorders, such as Alzheimer’s disease and Parkinson’s disease. The principal
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contribution of the thesis is to develop some novel algorithms for extracting or selecting
meaningful and pertinent features from multi-view data sets with respect to single as well
as multiple tasks.
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Figure 1.4: Outline of the thesis.

The outline of the thesis is given in Fig. 1.4. There are eight chapters in the thesis.
In Chapter 1, the significance of multi-view data analysis and MTL is discussed. This
chapter also covers some of the challenges of multi-view data analysis and MTL. Chapter
2 presents a brief review on existing multi-view data integration and MTL strategies.

The multiset canonical correlation analysis (MCCA) is a subspace learning method,
which seeks a low dimensional latent space, where the pair-wise correlation among the mul-
tiple views is maximized. However, most of the MCCA based approaches do not exploit
the prior knowledge of the data in terms of the labels or the geometry of the source vectors.
In this regard, a supervised subspace learning method, termed as class-structure preserv-
ing multi-view correlated discriminant analysis (CSP-MvCDA), is introduced Chapter 3 to
capture the class-geometry present in the data, exploring the shared and complementary
information across multiple views. It judiciously integrates the merits of multiset canonical
correlation analysis (MCCA), linear discriminant analysis (LDA), and a locality preserv-
ing norm. The proposed method jointly optimizes the inter-set correlation across all the
views and intra-set discrimination in each view to obtain a common discriminative latent
space. The locality preserving norm with prior class labels helps to preserve the local
class-structure of the data, while the LDA maintains its global class-structure. In effect,
both the local and global class-geometry of data can be preserved. Moreover, the proposed
formulation of CSP-MvCDA has a closed-form solution to the problem, which most of the
existing models lack. It is shown to be the simplest and most effective among the popular
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existing supervised MVL techniques, namely, GMA, MULDA, and MvDA, since it has only
two parameters to be optimized. Moreover, a strategy based on geometric separability in-
dex has also been introduced to find out the optimal parameters of the proposed method.
The effectiveness of the proposed method has been shown by evaluating its performance on
several multi-omics cancer and benchmark data sets. The experimental results establish
that the proposed CSP-MvCDA method is superior to several state-of-the-art algorithms
in terms of classification performance and preserving class-geometry of the data.

In MVL, the proper use of consistent and complementary information from different
views is necessary to handle view dependency and view discrepancy. Most of the MVL algo-
rithms ignore the view dependency problem and assume that each view is equally relevant
to a desired task, which may not be the case. In this regard, a supervised MVL algorithm,
based on maximum variance (MAXVAR) formulation of MCCA, is proposed in Chapter
4. The proposed formulation is termed as supervised graph regularized multi-view canon-
ical correlation and discrimination analysis (SGR-MCCDA). The proposed model utilizes
the label information, incorporates the known geometry of source vectors encoded by the
within-class and between-class graphs, and learns a proper weight for each view according
to their relevance in a unified way. An iterative rule is introduced for the optimization of
SGR-MCCDA. The computational complexity of the proposed model and the convergence
analysis of the iterative rule are also presented to justify the performance of the proposed
model. To show the impact of the proposed method, extensive experiments over several
multi-omics cancer and benchmark data sets are conducted. The results confirm that the
proposed model surpasses the existing algorithms, in terms of the classification accuracy
and has comparatively lower execution time.

In imaging genetics research, the main objective is to investigate the complex genotype-
phenotype association for the disease under study. To understand the impact of genetic
variations over the brain functions and structure, the genotypic data such as SNP is in-
tegrated with the phenotypic data such as imaging quantitative traits. In this regard,
two new MVL algorithms, namely, CSP-MvCDA and SGR-MCCDA, proposed in Chap-
ter 3 and Chapter 4, respectively, are successfully used to extract features for imaging
genetics study in Chapter 5. A comparative performance analysis with existing MVL al-
gorithms is also presented in this chapter. A real imaging genetics data set, obtained
from Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, is used for the analysis
by using the Alzheimer’s disease (AD) related genetic variants (SNPs) and brain imaging
(fMRI) modalities. The results establish that the classification performance of proposed
CSP-MvCDA and SGR-MCCDA on the ADNI data set is better than that of the existing
MVL models. Moreover, these two approaches perform well with respect to capturing the
correlation between imaging and genetic data, although they are not capable of identifying
the disease-specific imaging genetics association, which necessitates multi-task framework
in this field.

The sparse models, based on canonical correlation analysis (CCA), are popular in this
area to find the complex bi-multivariate genotype-phenotype association, as the number
of features in genotypic and/or phenotypic data is significantly higher as compared to the
number of samples. However, the sparse CCA based methods are, in general, unsuper-
vised in nature, and fail to identify the diagnose-specific features those play an important
role for the diagnosis and prognosis of the disease under study. In this regard, a new su-
pervised multi-task model is proposed in Chapter 6 to study the complex disease-specific
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genotype-phenotype association. It judiciously integrates the merits of CCA and LDA
under the MTL framework. The proposed model can identify the diagnose-specific as well
as the diagnose-consistent features with significantly lower computational complexity. The
performance of the proposed method, along with a comparison with the state-of-the-art
methods, is evaluated on several synthetic data sets and one real imaging genetics data
collected from ADNI cohort. In the current study, the SNP as genetic data and resting
state functional MRI (fMRI) as imaging data are integrated to find the complex genotype-
phenotype association. An important finding is that the proposed method has better cor-
relation value, improved noise resistance and stability, and also has better feature selection
ability. All the results illustrate the power and capability of the proposed method to find
the diagnostic group-specific imaging genetic association, which may help to understand
the neurodegenerative disorder in a more comprehensive way.

Imaging genetics primarily focuses on the study of neurodegenerative disorders to iden-
tify the complex connections between genetic variations and brain activity for the disease
under consideration. The MTL and sparse CCA (SCCA) are the two effective approaches
to integrate the high-dimensional genetic and imaging data. However, conventional MTL
based SCCA approaches focus either on modality-wise or class-wise feature selection to find
the association between genetic and imaging data. Moreover, these approaches require com-
puting the inverse of a very high-dimensional covariance matrix, which has large time and
space complexity. It makes the models inefficient for large-scale imaging genetics studies.
In this regard, a multi-view multi-task sparse canonical correlation analysis (MvMt-SCCA)
is proposed in Chapter 7 to identify the complex relationships between genetic and mul-
timodal imaging data. It uses the lasso and fused lasso penalties simultaneously to select
the modality-wise, class-specific and class-consistent features. An iterative algorithm is
introduced using the block coordinate descent technique to solve the optimization prob-
lem efficiently. The proposed algorithm has very low time and space complexity, which
makes the model suitable for large-scale imaging genetics studies. The performance of the
proposed method is evaluated on both simulated and real-world data sets. The results on
simulated data show that the proposed method provides a higher correlation value, has a
better feature selection capability, and is robust with respect to noise. The real data is
collected from the ADNI cohort. The study using ADNI data finds a group of risk genes
and modality-wise abnormal brain regions corresponding to each diagnosis group, which
may contribute to a more comprehensive understanding of the neurodegenerative disease.

The thesis is finally ended in Chapter 8, which discusses the improvements and future
directions of the proposed research work.

12



Chapter 2

Survey on Multi-View Learning

This chapter provides an introduction to the fundamental concepts of multi-view learning
and multi-task learning, along with a concise review of existing literature on the topics.

2.1 Multi-View Data Analysis

Suppose there are M number of views of n data samples {x1,x2,...,2z,}, where M >
2. This creates multi-view data with M number of views and n samples. The thesis
uses the terms "view" and "modality" interchangeably. The modalities or views may
have either feature vector based or relation based representations. In feature vector based
representation, multi-view data having M number of views can be represented by the M
data matrices X1, Xo, ..., Xas. Each data matrix, X,,, has p,, number of features for
the n samples observed in a p,, dimensional measurement space. The measurement space
is often considered the Euclidean space, that is, X, € R™*Pm, However, the views can
consist of other types of measurements, such as textual, categorical, binary, and so on.
The dimensions of each data matrix need not be equal, and the measurement space can be

different across multiple modalities. The data matrices, X1, Xo, ..., X7, might differ in
terms of the variance, scale, and data distribution. Multiple views, in the case of relational
data, can be represented by the similarity matrices, Si, Sa, ..., Sy, where each Sy, is a

(n x n) matrix, defined by Sy, = [s{}]nxn, sj; being the similarity or distance between the
samples z; and z; of the m-th view.

An example of multi-view data in the domain of imaging genetics is given in Fig. 2.1.
Genetic data such as SNP contains information about the change of a single nucleotide base
in the genome sequence, whereas different neuroimaging modalities such as fMRI, PET-
FDG, and PET-AV45 capture different quantitative traits (QTs) of the brain in terms
of its function, glucose metabolism, and amyloid load, respectively. The objective is to
analyze multimodal imaging and genetic data to find the genetic basis for brain function
and structure. In an imaging genetics data set, the genetic data and multiple neuroimaging
data are collected for n number of patients, which results in generating multi-view data
with M number of modalities: X1, Xo, ..., X3;. Each X, contains different types of
measurements, such as nucleotide changes in DNA | frequency fluctuations in fMRI, glucose
metabolism in the brain tissue, and so on. Whole genome sequencing technologies can
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obtain different types of omics data, such as epigenomic, proteomic, transcriptomic, and
genomic data, forming another example of multi-view data. These multi-omics data can
be integrated to gain comprehensive knowledge about a human’s cancer grades.

SNP

Xl c Rnxm Xg € ]Rnx;nz e o o Xu € R™*PM
\ Views/Modalities

Figure 2.1: Different modalities of imaging genetics data

2.2 Multi-View Learning Approaches

Traditional machine learning methods, such as support vector machines, discriminant anal-
ysis, kernel machines, and eigendecomposition based methods, are designed to learn on a
single view data. Thus, one simple way, to analyze multiple views, is to concatenate all
the views into a single view and feed into the traditional machine learning algorithms.
However, this trivial approach intensifies the problem of "curse of dimensionality", since it
makes the feature size of the concatenated view very large while the sample size remains
the same. Moreover, this approach lacks physical significance due to the distinct statis-
tical properties of each view. Unlike single view learning, multi-view learning is a novel
approach which learns one function to model each specific view and simultaneously opti-
mizes all the functions to explore the different statistical properties of the same input data
and enhance the learning performance. While the ways of integrating multiple views to
enhance learning performance vary widely, they generally rely on either the complementary
or the consensus principle to guarantee the success of multi-view learning. Depending on
the learning strategy current multi-view learning algorithms can be categorized into four
groups, namely, co-training style algorithms, multiple kernel learning, subspace learning,
and deep multi-view learning.
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2.2.1 Co-training Style Algorithms

Co-training [29], one of the earliest multi-view learning models, was initially developed for
the issues of semi-supervised learning, when both labeled and unlabeled data are available.
The scenario assumes that each example may be divided into two different points of view
and relies on three key premises: (a) Sufficiency: Each individual view is capable of classify-
ing on its own, (b) Compatibility: The target functions in both views accurately anticipate
the same labels for features that occur together with a high probability, and (¢) Condi-
tional independence: Given the class labels, the views are conditionally independent. To
address a wider range of multi-view learning problems, researchers have used the concept of
co-training and have created many extended algorithms based on this approach. These in-
clude co-expectation-maximization (co-EM) [192], co-testing [185], and co-clustering [287].
Furthermore, significant and essential study was conducted on co-training style algorithms,
which contributes to the advancement of co-training methodologies.

The study conducted by Nigam et al. implemented a generalized EM approach, in which
unlabeled data was allocated changeable probabilistic labels [192]. Brefeld and Scheffer [32]
have effectively devised a co-EM variant of support vector machines. In [183-185|, Muslea
introduced robust semi-supervised learning algorithms that combine active learning with
co-training. The authors Yu and Yu have proposed Bayesian undirected graphical models
for co-training [295]. Additionally, they have introduced a new co-training kernel specifi-
cally designed for Gaussian process classifiers. In the study of Wang (2010) [267], a method
combining graph-based and disagreement-based semi-supervised learning was developed.
The co-training process was seen as a combined label propagation over two different per-
spectives. The paper [226] presents a co-regularization system that uses multi-view regu-
larization to learn classifiers in each view. Several co-training based multi-view clustering
techniques have been presented in the papers [24,140,141]. Zhao et al. [311] introduced an
approach that integrates the simple nature of k-means clustering and linear discriminant
analysis in a co-training framework. This framework leverages automatically learned labels
from one perspective to acquire discriminative subspaces from another perspectives. Al-
though the success of co-training algorithms can be attributed to three primary factors as
discussed above, in practical situations, it is very challenging to fulfill the requirement of
conditional independence across perspectives. Therefore, a number of weaker alternatives
have been suggested in [4, 18,268].

2.2.2 Multiple Kernel Learning

The multiple kernel learning (MKL) was first designed to regulate the capacity of the search
space for potential kernel matrices in order to achieve optimal performance. It provides
a way of integrating various properties of objects, such as genes, proteins, metabolites,
etc., by utilizing distinct kernel matrices [230]. The kernels in MKL represent distinct per-
spectives, and the incorporation of many kernels has the potential to enhance the learning
efficacy. In recent years, MKL has emerged as a significant method for analyzing multi-
view data sets. The reason for MKL being a popular technique is a result of its use of many
optimization strategies [6,143,230] and its capacity to recognize patterns by exploring dif-
ferent combinations of basic kernels [134,257,281]. Several models have been developed
to expand MKL approaches, including localized MKL [90], sample-adaptive MKL [158],
Bayesian MKL [62], multiple empirical kernel learning [72,269], two-stage MKL [187,266|,
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and function approximation MKL [139,223]. The formulation of MKL as a semi-definite
programming problem is presented in [143|. In [15], MKL is utilized to create a second-
order cone programme issue by formulating a dual version of the quadratically-constrained
quadratic programme. To efficiently get the best solution, a sequential minimum optimiza-
tion technique has been devised. Several effective semi-infinite linear programmes have
been suggested in references [230,231], with MKL being utilized to tackle large-scale data
analysis.

2.2.3 Subspace Learning Approaches

The primary aim of subspace learning-based methods is to get a common latent subspace
shared by multiple modalities, where each input view can be generated from this latent
subspace. The "curse of dimensionality" issue can be overcome by the subspace learning
techniques as the common latent space may have very small number of features compared
to each input view. The canonical correlation analysis (CCA) [107] is a subspace learning
technique, which obtains two linear transformation for two data views such that the cor-
relation between these two data views is maximized in the latent space. In many of the
significant scientific domains, including face recognition, text mining [57,148,314], imaging
genomics [109,131], integration of omics data [80,162|, facial expression analysis, and brain
MRI data analysis [174,202], CCA has extensively been used. The literature has a number
of CCA variations, some of which are covered here.

e Regularized CCA: Since real-world data sets may contain very few samples and a
high number of attributes, CCA finds it problematic to construct the latent space.
Data sets with large number of feature usually have multicollinearity problem, which
results in ill-conditioned covariance matrices of different views. This leads to the
unreliability of their inverses, which in turn causes an erroneous CCA computation
and an unreliable meta-space. The regularized CCA (RCCA) [259] is the extension
of CCA, which makes the singular covariance matrix invertible by adding some small
positive quantity to the diagonal of the matrix and prevents the overfitting problem.
Moreover, RCCA is able to handle many real-life data sets that are often plagued with
noise. The supervised RCCA [81] is the supervised extension of RCCA, which learns
the optimal regularizer by some statistical test for better classification performance.

e Penalized CCA: In penalized CCA, certain penalties are appended to the weight
vectors. This will lead to a constrained optimization problem involving CCA. This
constraint optimization problem can be solved numerically using iterative optimiza-
tion approaches because analytical solutions are not available. There are several op-
timization approaches that may be used, including the reduced gradient method, se-
quential quadratic programming, Broyden-Fletcher-Goldfarb-Shanno algorithm, and
augmented-Lagrangian algorithm. In [31,194], £;-norm penalty is added to canonical
weight vectors to form sparse version of CCA, which makes the weight vectors sparse
to handle “large feature small sample size” problem. To incorporate the prior knowl-
edge of the samples or features such as natural ordering in the features or grouped
according to property of the features, sparse CCA can be extended to group sparse
CCA or structured sparse CCA [74,155]. The relationship between genetic, neuropsy-
chological, behavioral or clinical data, and brain imaging data has been established
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using different penalized version of CCA in [65,67,93,95,110,155]. In [175], a multi-
modal data fusion model employing sparse and structured CCA has been created to
maintain the spatial structure of images.

Discriminant CCA: The learning method of CCA is typically unsupervised and
does not rely on class labels of the data. Linear discriminant analysis (LDA) [76] is
a supervised subspace learning method for single view learning. It finds an optimal
linear transformation to project the data onto a subspace, where the within-class
scatter is minimized and between-class scatter is maximized. The multi-view LDA
(MLDA) [286], which is based on CCA and LDA, optimizes the sum of correlation
between two views and discrimination of each view. It is further extended to uncor-
related LDA (ULDA) [121,286], where the optimum feature vectors are uncorrelated
to each other. The multi-view extension of ULDA, called MULDA [239], extracts
uncorrelated features by imposing more constraints on the solutions.

The discriminative CCA (DCCA) has been introduced in [243] to include the su-
pervised information into CCA. The DCCA finds the subspace by maximizing the
within-class similarity and minimizing the between-class similarity. The multi-view
common component discriminant analysis (MvCCDA) [292] considers supervised in-
formation and local geometry to find the discriminative common space for cross-view
classification. However, the MvCCDA ignores the global geometry of the data, and
uses an iterative approach to solve the problem.

The multi-view discriminant analysis (MvDA) [124] forms a common discriminative
latent space by maximizing the between-class variance and minimizing the within-
class variance, considering both the intra-view and inter-view information across all
the views. The MvDA-VC, an extension of MvDA, takes care of the view consistency
property. The major drawback of MvDA is that it considers only the intra-view and
inter-view discrimination information, which actually gives more emphasize on the
complementary information and ignores the consensus information across multiple
views.

Kernel CCA: The CCA can only capture the linear relationships between two
data views. Thus, if two input views have non-linear relationships, the CCA cannot
capture their true relationships. To capture non-linear relationship among multiple
views kernelization is a useful technique. Using kernelization technique, the CCA
is extended to kernel CCA (KCCA) [7], which maps the input views to a higher
dimensional Hilbert space, where the data views are assumed to have linear relation-
ships. Using the kernel trick, LDA has been extended to generalized discriminant
analysis (GDA) [20], which is a kernel based non-linear LDA. The MLDA [286],
DCCA [243], ULDA [121,286] and MULDA [239] are extended to their non-linear
versions, namely, KMLDA [222|, KDCCA [241], KULDA [154] and KMULDA [239],
respectively. In [25], a KCCA-based method for computing a multivariate temporal
filter that connects the connection between brain activity and functional magnetic
resonance imaging is presented as a solution to the dynamic time-delay problem.

Locality Preserving CCA: A locality-based or locality-preserving strategy is a
very successful way for addressing data nonlinearity other than kernel tricks. The Lo-
cality Preserving Canonical Correlation Analysis (LPCCA) was introduced in [240].
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LPCCA incorporates similarity matrices into the CCA algorithm to detect the lo-
cal structure of the manifold. The fundamental concept behind LPCCA is that
data points are considered to be in close proximity in the low-dimensional pro-
jected subspace if they are sufficiently close in the high-dimensional input space
[125, 240, 252, 262, 285]. Based on the data, LPCCA may be categorized into two
distinct categories. Ome group generates a local neighborhood graph by utilizing
cross-correlation information among neighbors [252,262|, while the other group dis-
regards the insignificant correlation between non-neighbors and focuses on providing
a local manifold structure [125,240,285]. The authors of [285] have built a super-
vised LPCCA model with the aim of enhancing the classification performance. The
inclusion of neighborhood property in [262] enhances the resilience of the model.

Multiset CCA: The generalized CCA, also known as multiset CCA (MCCA) [105,
106], is the multi-view extension of the CCA. It maximizes the sum of pair-wise
correlation for multiple views and finds one linear transformation for each view along
which the views can be projected to form a common latent space. Based on different
optimization criteria, several formulations have been made for MCCA [129,191]. The
MCCA models may be categorized into two groups: pairwise-correlation or zero-
order-correlation based models and high-order-correlation based models, depending
on the concept of cross-view correlation for multi-view learning.

1. Pairwise-Correlation or Zero-Order-Correlation Based Models: There
are multiple ways to capture zero-order correlation or pair-wise correlation
among multiple views, which creates multiple forms of MCCA. In SUMCOR-
MCCA, the sum of all elements in the correlation matrix is maximized, whereas
the sum of squares of all elements is maximized in SSQCOR-MCCA. In MAX-
VAR and MINVAR criterion of MCCA, the largest and smallest eigenvalue of
the correlation matrix are maximized and minimized, respectively. The determi-
nant of the correlation matrix is minimized in GENVAR formulation of MCCA.
All these criteria and their significance can be found in [129,191]. Hanafi et al.
additionally examined the sum of absolute value correlations (SABSCOR) as
an additional criteria [91]. In [53], the sum of covariance (SUMCOV) criteria
was put out. The sum of squared covariance (SSQCOV) criteria has also been
presented in [92]. In [246], various variants of SUMCOR, SSQCOR, and SAB-
SCOR have been presented, which consider some conjectures regarding the rela-
tionships between sets of variables. This article has additionally taken the sum
of absolute value covariances (SABSCOV) into consideration. The analyses of
SUMCOV, SSQCOV, and SABSCOV are based on covariance between canoni-
cal variates, whereas the SUMCOR, MAXVAR, SSQCOR, MINVAR, GENVAR,
and SABSCOR are based on maximizing a function of the correlation between
canonical variates [247].

2. High-Order-Correlation Based Models: In multi-view data analysis, ten-
sors can be considered as generalizations of matrices, vectors, and scalars. It is
employed in order to record higher-order correlations between different points of
view [47,275,279]. In [161], the tensor-based generalization of CCA (TCCA) for
more than two views was presented. TCCA builds a covariance tensor to esti-
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mate the correlation of all views rather than computing the pairwise correlation
matrix.

Like CCA, MCCA is unsupervised and cannot handle non-linear relationships among
multiple views. Moreover, it has the same issue of ill-conditioned covariance ma-
trix. In [298|, Laplacian MCCA (LapMCCA) has been introduced to uncover the
non-linear correlation hidden in multiple views, by considering the nearest neighbor
graphs of local intra-view correlation and inter-view correlation structure. Although
LapMCCA can capture the non-linear correlation, it is unable to use the class la-
bel information. To cope with the singularity problem of the covariance matrices
regularized multiple-sets canonical correlation analysis (RGCANO) [245] have been
proposed, which prevents the over fitting issue by adding some positive numbers to
the diagonals of singular covariance matrices. Additionally, MCCA has been ex-
panded into probabilistic models [51,133,260], deep learning frameworks [21], and
kernel approaches [14,215].

Apart from the CCA based methods, there are several subspace learning methods based
on non-negative matrix factorization (NMF). Recently, a semi-supervised label-driven auto-
weighted strategy (LACK) has been proposed in [296], which uses the label of the data
to select the important views from a discriminative perspective. However, it only fo-
cuses on identifying the redundant views that have negative impact on the performance
of the model, without considering the other aspects of multi-view data analysis such as,
view consistency and data geometry. Some of the semi-supervised MVL algorithms, based
on NMF, have been developed to simultaneously learn feature and sample representations.
The multi-view semantic learning (MvSL) [196] focuses on capturing the semantic structure
in the multi-view data by exploring the ideas of NMF and graph embedding. It constructs
an affinity graph and a penalty graph for characterizing the intra-class compactness and
inter-class separability in the common subspace. However, the MvSL only explores the
complementary discrimination information of each view and ignores the consistent infor-
mation across multiple views. In [153|, a graph-regularized partially shared non-negative
matrix factorization (GPSNMF) is introduced, which obtains a latent representation of
each view by preserving the intrinsic geometry of the view via affinity graph construction.
The co-consensus orthogonal non-negative matrix factorization (CONMF) has been pro-
posed in [152] to learn not only the consensus information between the samples, but also
between the samples and their sub-cluster centroid. To explore the relationship between
the samples and their sub-cluster centroid, orthogonal NMF is used. However, all these
methods restrict the data decomposition into non-negative weight matrices, as they are
primarily based on the NMF of the data.

2.2.4 Deep Multi-View Learning

Deep learning algorithms have gained interest in recent years due to their great feature
extraction capacity. Deep learning methods utilize several hierarchical layers to acquire
intricate, non-linear, and abstract representations of the target data from various perspec-
tives. There are various deep multi-view learning algorithms documented in the litera-
ture, including the multi-view convolutional neural network [165,289], multi-view auto-
encoder [103,307], multi-view generative adversarial network [60,251], multi-view graph
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neural network [97,130,282], multi-view deep belief net [10,304], and multi-view recurrent
neural network [3,218|. In addition to CCA, additional traditional learning methods are
also included into the deep framework, including deep multi-view matrix factorization [308],
deep multi-view spectral learning network [114], and deep multi-view information bottle-
neck [8].

The deep adversarial CCA [73] has been proposed by integrating the CCA with the
framework of generative adversarial network (GAN). Although it learns the non-linear data
representation by generating realistic multi-view samples through GAN; it does not incor-
porate the class label information of the samples. The tensor canonical correlation analysis
network (TCCANet) [288] maximizes the high-order correlation among multiple views and
handles the optimization problem by decomposing a covariance tensor. In [305|, Zhang
and Sun proposed a multi-view graph restricted Boltzmann machine (mgRBM), which si-
multaneously learns the view-specific and view-consistent representation while preserving
the local manifold structure of the data. In [278], Xie et al. proposed a deep multi-view
twin support vector machines (DMvTSVM) for multi-class classification problem. It uses
deep neural network and auto-encoder to learn the data non-linearity from multiple views
and twin support vector machines to construct the class separating hyperplanes. A semi-
supervised multi-view deep discriminant learning (SMDDRL) method has been proposed
in [116], which uses two representation learning networks to learn both the shared and com-
plementary properties from different views. In [300], a multi-view graph learning approach
has been introduced for semi-supervised classification. It proposes a diversity promoting
regularized term to capture the diversity of multiple views, while minimizing the mutual
redundancy among them. In effect, it does not consider the consistency present across the
multiple views.

2.3 Muti-Task Learning

Suppose there are T' number of tasks {7}}?:1. For each task Tz, there are N input/output
examples {(:L‘Tt , yz—t),(:n;t , y;—t), . (zz\,—t , yz\?)} € R x R. The objective of multi-task learning
(MTL) is to generate T' functions f; : R? — R, where t = 1,2,...,T, which accurately
find the relationship between the input and output variables and have strong statistical
prediction power.

Multi-task learning [39] has become increasingly popular in the last ten years because
of its strong predictive capabilities. There are two primary methods for understanding
the connection between related tasks: utilizing a shared feature representation and utiliz-
ing shared model parameters. The approaches for sharing a similar feature representation
involve sharing common underlying structures [11,13,45], whereas the approaches for shar-
ing model parameters include utilization of the shared prior distributions in hierarchical
Bayesian models [17], employing kernel-based techniques with regularization [71,169], and
sharing parameters of a Gaussian process [30].

Multi-task learning has its influence over the domain of imaging genetics, where multi-
ple task-specific features are learned to have a comprehensive understanding of underlying
neurodegenerative disease. In [66], a multi-task SCCA (MTSCCA) has been introduced,
which builds several SCCA tasks concurrently and associates SNPs with imaging QTs of
each modality, in order to study the multimodal imaging genetics problem. The dirty
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MTSCCA (DMTSCCA) [64] makes use of parameter decomposition and MTL simultane-
ously in order to identify not only the shared imaging QTs and genetic loci across multiple
modalities but also the modality-specific imaging QTs and genetic loci. However, both
MTSCCA and DMTSCCA do not use the diagnostic status of the samples, which may
give important insight in finding the complex relationships among SNPs and multimodal
imaging QTs. The label-guided MTSCCA (LGMTSCCA) [94] applies parameter decom-
position and sparse regression analysis, along with the label information of the data, to
obtain modality-consistent and modality-specific weight matrices. The label information
is used in sparse regression analysis to retain the relevant and noise-free features. In [63],
Du et al. proposed a multi-task bi-multivariate approach, termed as multi-task SCCA and
logistic regression (MT-SCCALR), which selects diagnose-specific features to find genotype-
phenotype patterns particular to each diagnosis. It uses MTSCCA and multi-task logistic
regression simultaneously to select a set of relevant features for each diagnostic group.
In [128], multi-task SCCA and regression (MT-SCCAR) has been introduced, which uses
genetic and multimodal neuroimaging data, along with cognitive measures, to identify the
high-risk brain regions and genetic risk factors associated with Alzheimer disease.

Apart from the imaging genetics study multi-task learning has also been used in other
fields. According to the different tasks in machine learning, there exist multi-task unsuper-
vised learning [13,306]|, multi-task semi-supervised learning [157], multi-task reinforcement
learning [147], multi-task active learning [5,210] and multi-task online learning [55].

2.4 Multi-Task Multi-View Learning

Multi-task multi-view learning is an extension of multi-view learning that aims to enhance
the performance of each multi-view learning problem by using important information from
related tasks. Multi-task multi-view learning [98] addresses the challenge of learning nu-
merous interconnected activities that share one or more common perspectives. The graph-
based approach described in [98] effectively utilizes the diverse features and activities by
mapping them to a Reproducing Kernel Hilbert Space using shared perspectives. The
generic inductive learning framework described in [303] employs co-regularization and task
connection learning to enhance the applicability of multi-task multi-view learning. The
approach proposed in [119] enables the learning of shared predictive structures from nu-
merous related activities. It leverages the consistency among diverse viewpoints to enhance
performance. The system described in [104] utilizes many views and various types of visual
characteristics to perform multi-task multi-view sparse learning. It also takes into account
the link between tasks across different views and particles. The approach, called multi-
task multi-view discriminant analysis, proposed in [120], addresses the issue of multi-task
multi-view learning for heterogeneous tasks.

2.5 Conclusion

This chapter provides an overview of the fundamental concepts and principles of multi-
view data analysis under both single-task and multi-task frameworks. Because of its good
performance across several application domains, it quickly gained attention in machine
learning research and has generated a substantial amount of literature over the last decade.
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In the current chapter, a brief literature survey, primarily focused on the numerous feature
extraction techniques of multi-view learning, has been presented. It also covers some of
the literature on multi-task learning in the domain of imaging genetics study.

One major challenge in analyzing multi-view data is to determine the common dis-
criminative latent space by productively using the inter-view correlation and intra-view
discrimination information, where the local as well as global class-structure of the data can
be preserved. In this context, the upcoming chapter presents a new supervised multi-view
learning framework by judiciously combining the concepts of MCCA, LDA, and a locality
preserving norm.
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Chapter 3

Class-Structure Preserving Multi-View

Correlated Discriminant Analysis

3.1 Introduction

Technological advancement made it possible to analyze an object using multiple views
or sets of features. Each such set captures a different aspect of the objects under con-
sideration. Instead of analyzing the objects using a single view, multiple views together
may give complementary as well as consensus information across all the views. Multi-
view learning (MVL), a machine learning framework for data integration from multiple
views, is growing rapidly over the last decade [238,310]. Presently, many MVL models,
for instance, multi-view representation learning [116,277|, multi-view clustering [150,168|,
multi-view classification [118,305|, multi-view graph learning [301], multi-view manifold
learning [113,190], and multi-view active learning [294,309], have been introduced to deal
with the particular machine learning tasks. The aim of MVL is to build a function for each
view and then optimize all the functions jointly to enhance the generalization performance.
A primary solution to MVL is to concatenate all the views to form a single view and then
apply the single view algorithms. However, this would intensify the problem of “curse of
dimensionality” [213].

To get rid of the dimensionality issue, the subspace learning approaches can be used.
Subspace learning [58,107], a popular technique in MVL, assumes that the multiple views
can be generated from a single common latent space where the shared and complementary
information from all the views can be explored. Canonical correlation analysis (CCA) [107],
a popular statistical multivariate method, is a typical subspace learning approach. It
finds a common latent space where two views are maximally correlated. The generalized
CCA, also known as multiset CCA (MCCA) [105, 106], is the multi-view extension of the
CCA. It maximizes the sum of pair-wise correlation for multiple views and finds one linear
transformation for each view along which the views can be projected to form a common
latent space. Based on different optimization criteria, several formulations have been made
for MCCA [129,191]. The CCA or MCCA has been used extensively in MVL, including
multi-view classification [89,239], multi-view regression [123], multi-view clustering [27,42]
and so on. However, classical CCA or MCCA only considers the linear relationships among
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multiple views, and does not perform well for cross-view classification as it does not consider
the class label information present in the data.

To deal with these limitations, many extensions of CCA and MCCA have been proposed
in past few decades. Two unsupervised methods, namely, kernel CCA (KCCA) [7] and lo-
cality preserving CCA (LPCCA) [242], have been proposed to overcome the limitation of
non-linearity. In [298], Laplacian MCCA (LapMCCA) has been introduced to uncover
the non-linear correlation hidden in multiple views, by considering the nearest neighbor
graphs of local intra-view correlation and inter-view correlation structure. Although LapM-
CCA can capture the non-linear correlation, it is unable to use the class label information.
Another unsupervised method, called correlative covariation projection (CCP), has been
proposed in [297], which projects the features rather than the samples on a new space
by introducing a new canonical F-correlation framework to explore the non-linearity in
features. One of the important issues with the CCA or MCCA is the singularity problem
of the covariance matrices. The real world data having small number of samples and large
number of features makes the covariance matrices ill-conditional. To cope with the singu-
larity problem of the covariance matrices, regularized CCA (RCCA) [259] and regularized
multiple-set canonical correlation analysis (RGCANO) [245] have been proposed, which
prevent the over fitting issue by adding some positive numbers to the diagonal of singular
covariance matrices.

For cross-view classification and to improve the classification performance of RCCA,
several supervised extensions of CCA and MCCA have also been introduced in [81,163].
However, most of them do not use the supervised information to learn the subspace; rather
they learn the subspace by CCA and then use some statistical tests to include supervised
information [81], which is not much effective towards classification. The supervised feature
extraction algorithm, termed as ReDMiCA, has been introduced based on MCCA [164].
It uses the supervised information to find optimal regularization parameters. Unlike these
methods, the generalized multi-view analysis (GMA) [222] framework has been proposed,
where the class labels are utilized to form a common discriminative latent space. In GMA,
the intra-view discrimination information and pair-wise correlation among multiple views
have been considered. The multi-view discriminant analysis (MvDA) [124] forms a common
discriminative latent space by maximizing the between-class variance and minimizing the
within-class variance, considering both the intra-view and inter-view information across all
the views. The MvDA-VC, an extension of MvDA, takes care of the view consistency prop-
erty. The major drawback of MvDA is that it considers only the intra-view and inter-view
discrimination information, which actually gives more emphasize on the complementary
information and ignores the consensus information across multiple views. Another su-
pervised extension of MCCA is discriminative MCCA (DMCCA) [78], which incorporates
the supervised information by maximizing the within-class correlation and minimizing the
between-class correlation. The convex discriminant semantic correlation analysis [250]| an-
alyzes the sample representation space by considering both the correlation and cross-view
semantic information. In [19], a model has been introduced, based on a supervised general
covariance matrix. The model explores the class labels to construct a discriminating space
and captures feature non-linearity as well. However, the MVL methods described above
are either unsupervised in nature or capture linear relationships among multiple views.
Most of them do not consider the geometry of the classes present in the data to learn the
discriminative subspace. They focus either only on the complementary and discriminatory
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information in each view or on the shared correlation information across multiple views,
which make them vulnerable to the data having both the information.

In this regard, a new subspace learning approach, termed as class-structure preserving
multi-view correlated discriminant analysis (CSP-MvCDA), is proposed in this chapter by
judiciously integrating the merits of MCCA and linear discriminant analysis (LDA). The
CSP-MvCDA considers equal importance to the consensus and complementary informa-
tion present in different views. The consensus information across all the views is captured
through the correlation structure, while the complementary information is captured from
each view using within-class scatter and between-class scatter. Both the scatter matrices
help to incorporate the discrimination information into the projection vectors. Thus, the
projected space constructed by the proposed approach has optimum correlation and dis-
crimination, which best represents the multiple views. Moreover, the CSP-MvCDA uses a
locality preserving norm guided by the labels of the data, which can handle the non-linear
structures of the classes present in the data. The idea, to include the label guided locality
preserving norms, is to bring the samples belonging to the same class closer, while the
samples belonging to different classes are farther apart in the projected space. In this way,
the proposed model extracts the best possible set of features, which are discriminative
and consistent across all the views and preserve the class geometry present in the data.
The proposed method has only two parameters, which make the model computationally
less complex with respect to parameter tuning. Based on geometrical separability index,
a method is introduced to find out the optimum values of parameters of the proposed
method. Moreover, a computational complexity analysis of the proposed as well as several
existing MVL algorithms is presented.

Some of the novel characteristics of the proposed approach with respect to existing
MVL approaches are highlighted below:

e The proposed method is built on the concept of singular value decomposition (SVD) of
a block matrix. The block matrix consists of the cross-covariance matrices normalized
by the within-class scatter of the data, which brings the supervised information into
the model to preserve the global class geometry. However, most of the existing models
are based on either non-negative matrix factorization (NMF) of the data matrices or
SVD of the cross-covariance matrices, which constructs an unsupervised subspace.
Hence, different regularizers are used to make these models supervised.

e A label guided regularizer term, based on the locality preserving projection, is intro-
duced to the proposed model to preserve the local class geometry of the data in each
view. On the other hand, the global class geometry of the data is preserved by jointly
optimizing the ISC and ISD ratio. In effect, both local and global class geometry of
the data are preserved.

e It is shown that the formulation of CSP-MvCDA has a closed-form solution to the
problem, which most of the existing models lack. This formulation can be solved
easily by solving a generalized eigenvalue problem.

e The proposed CSP-MvCDA model is shown to be simplest and most effective among
the popular existing supervised MVL techniques, namely, GMA, MULDA, and MvDA|
since it has only two parameters to be optimized.
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The extensive experimental results on several cancer and benchmark data sets establish
that the proposed CSP-MvCDA model performs significantly better than the state-of-the-
art approaches, as it has the capability in extracting class discriminative features more
accurately than the existing methods. The results on large data sets signify the scalability
of the proposed method with respect to number of features and classes. Some of the results
of this chapter can be found in [176].

The remaining sections in this chapter are arranged as follows: Section 3.2 gives the
preliminary ideas in MCCA and LDA. Section 3.3 elaborates the proposed algorithm. An
analytical solution is given to obtained a closed form solution based on the generalized
eigenvalue problem. The effectiveness of the proposed algorithm is shown by comparing
the performance of it with the other state-of-the-art algorithms over several omics and
benchmark data sets in Section 3.4. The chapter is concluded in Section 3.5.

3.2 Basics of MCCA and LDA

In this section, the basic concepts of both multiset canonical correlation analysis (MCCA)
and linear discriminant analysis (LDA) are presented.

Notation

Uppercase letters and lowercase letters denote the matrices and column vectors, respec-
tively. The operators Tr(-), (-)~! and ()7 denote the trace, inverse and transpose of a
matrix, respectively; || - |7 is the Frobenius-norm of a matrix; | - ||2 is the la—norm of a
vector; A/a represents variable in the optimization problem whereas A*/a* is the critical
value of the variables; 1 is the vector consists of all ones; I, is identity matrix of order n.

3.2.1 Multiset Canonical Correlation Analysis

The MCCA [106] is a generalization of the CCA. It can analyze the linear relationship
among multiple sets of data (more than two). There exist several models of the MCCA,
depending on different criteria and constraints. The sum of correlation (SUMCOR) crite-
rion of MCCA, given here, is taken from [195|, which maximizes the inter-set correlation
(ISC) between multiple views. Suppose, there are m sets of data {X;|X; € R"*Pi} where
n is the number of common samples and p; is the number of features in the data of the
i-th view X;, i = 1,2,...,m. The ISC is defined by the ratio of between set covariance rpg
and the within set covariance 7y, as follows:

p= ﬁ (:Vi) . (3.1)

The objective of MCCA is to find m sets of projection vectors, {v;}I", for m data blocks,
such that the ISC between m data blocks in the projected space is maximized. The between

26



set covariance (rp) and within set covariance () in the projected space are defined as

rg = i i viTZijvj, (3.2)

i=1j=1
J#i

rw = Z UZTZ”'UZ', (33)
i=1

where Y;; = XiTXj (i # j) is the between set covariance and ¥;; = X;FXi is the within set
covariance of the data blocks in the original space. By substituting the values of rp and
rw in (3.1), the ISC in the projected space, pproj, can be obtained as follows:

. i1 Z;‘nzl,j;ﬁi v} Sijv; (3.4)
Pproj m—1 S IS0 : :

=1 "4

The objective function for this formulation of MCCA can be written as

m m
max Z Z viTZijvj
i=1j=1
J#i
m
subject to Z vl Sy = 1. (3.5)
=1

The solution of the optimization problem of (3.5) can be obtained using Lagrange’s mul-
tiplier method and is given by the eigenvectors v of the generalized eigenvalue problem:

Rv = ADv; (3.6)
211 212 . Elm (%]
221 222 PN Egm (%) .
where R = . . , v=| . |,and D = diag[X11, 222, - - -, Zmam]-
Eml ng e Emm Um

3.2.2 Linear Discriminant Analysis

The LDA [76] is a popular supervised technique for single view learning. It utilizes the
class label information of a given data set to find a projective space, where different classes
or groups are maximally separated. Let X = {x1,z9,23,...,2,} be a set of n data points,
where each z; € RP and p is the dimension or number of features for each sample x;. The
LDA finds an optimal direction vector w, for which the between-class scatter of the data,
w? Syw, is maximized and the within-class scatter of the data, w’ S,,w, is minimized in the
projected space, where S and S, are the between-class scatter and within-class scatter in
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the original space. The ratio

w? Spw (3.7)

wT Sy,w

is known as Fisher’s criterion, which is maximized to obtained the optimal direction vector
w as follows:

wT Syw
) 3.8
max TS w (3.8)

The scatter matrices, S, and Sy, in the original space, can be constructed using the class
label of the samples, and are defined as

Sp = ch(ﬂc —2) (ke — E)T§ (3.9)
Sw = 2 2 (wi = pe) (i = 1e) (3.10)

where Z is the mean over all the samples, p. is the mean of the samples belonging to the
c-th class and n,. is the number of samples present in class c.

The objective function of the LDA can also be expressed in terms of the total scatter
Si(= Sp + Sw) of the data as follows:

T
w” Sw (3.11)

max )
w wlS,w

The formulation proposed in Section 3.3 uses the above form.

3.3 Class-Structure Preserving Multi-View Correlated Dis-

criminant Analysis

The MCCA is unsupervised in nature and does not use the available class label informa-
tion present in the data. In this section, a new multi-view supervised method, named
class-structure preserving multi-view correlated discriminant analysis (CSP-MvCDA), is
introduced. The proposed method not only considers pair-wise correlation to incorporate
the consensus information across all the views, but also uses class-label information to
preserve the global geometry of the classes present in each view. It also preserves the local
structure of each class in the projected space by using a class-structure preserving norm.

3.3.1 Formulation of CSP-MvCDA Model

Let there be m data sources {X; | X; € R"*Pi}" . - corresponding to m views of an ob-
ject, where n is the number of samples and p; is the number of features in the ¢-th view
X;. Assume that there are K pattern classes {ci1,c,...,cx}. Consider m projection vec-

tors wi,ws,...,wy, for the data views X1, Xo,..., X,,, such that the new features in the
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projected space are given by z; = X;w;, 1 = 1,2,...,m.

3.3.1.1 Consensus Information through Correlation Structure

The consensus information from all the views can be captured through the ISC of the m
views. From (3.4), the ISC of the m views in the projected space ppo; is given by

oo = 1 ity ZT:LJ‘# w Tijw; (3.12)
pros m—1 Z;Zl WZ'TEiiwi ‘ .

3.3.1.2 Global Class-Structure through LDA

The LDA [76] preserves the global class-structure of the data in the projected space by
using the within-class scatter and between-class scatter. Correspondingly, the global class-
structure of each view X; in the transformed space can be obtained by applying the LDA.
Let S! and S? be the total scatter and within-class scatter in the i-th view X; of the
original space. Define intra-set discrimination (ISD) ratio Dp,,; as the ratio between the
sum of the total scatter and the sum of the within-class scatter across all the views in the
projected space, as follows:

m Tqi, ,.
Zi=1 wj Stwi

(Wi 3.13
ity wi S wi (3.13)

Dproj =

Maximizing the ISD ratio (Dp;) in the projected space would minimize the within-class
scatter and maximize the between-class scatter of each view. It helps to find a direction
vector that separates the classes maximally by considering the global class-structure of
each view.

The main objective of the proposed formulation is to optimize jointly the ISC (pproj) and
ISD ratio (Dprej), so that the transformed space contains discriminative information from
each view as well as the correlation information across all the views. Hence, the objective
function of the proposed method maximizes the product of pp.,; and Dy,,;, which is given
by

m m TS . .. N\m i
porei Do = o1 2ujet i Wi Digwi Sy wl St (3.14)
projDproj = m ™ - :
Die Wi Biiwg ey wl Shwi

Since the total scatter (S¢) of each view X; is equal to the total variance ¥;; of that view,
therefore

m m 4
2 w;-‘FEiiwi = 2 szssz (3.15)
i=1 i=1
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So, the objective function of (3.14) can be simplified using (3.15) as follows:

m§m Ty o

i Do = st 21 jpi Vi DigWi

proj Hproj = m T Qi
Dlim1 Wi Siwi

(3.16)

3.3.1.3 Local Class-Structure through Locality Preserving Norm

The discriminative information through global class-structure may not always be useful
for multi-class discrimination. There may be some local structures of the multiple classes
in the data set that may be omitted when the global class-structure is only considered.
Therefore, the projective space must be modified in such a way that the samples belonging
to the same class come closer in the projective space and also maintain the global structure.
This can be achieved by using a local class-structure preserving norm [284], inspired by the
locality preserving projection, which is given by

lwlzep = aw XTLyXw — (1 — a)w? XT Ly Xw, (3.17)
where « is a trade-off parameter. The parameter « is used to balance between the within-

class and between-class discrimination information through two graph Laplacians L,, and
Ly of the graphs G, and Gy, respectively, constructed from the class labels of the samples.

View or Modality

A Group1
O Group 2
® Group 3

Within-class Graph ((7,,) Between-class Graph (G)

Figure 3.1: Construction of within-class and between-class graph.

Using the prior class label information, two graphs, namely, G, and Gy, are first con-
structed, where a vertex corresponds to a sample. In the graph G, the vertices those
belong to the same class are connected, whereas in the graph Gy, the vertices belonging to
different classes are connected. So, the n x n adjacency matrices A,, and Ay, corresponding
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to the graphs G, and Gy, respectively, are defined as follows:

1, if the class labels of samples z, and x, are same
Av(p:a) = { 0 otherwise ’ ! (3.18)
1, if the class labels of samples z, and x, are different
Ap(p, ) = { 0 otherwiseé ! (3.19)

The construction of these two graphs is shown in Fig. 3.1. Following the definition of graph
Laplacian, Ly = Dy — Ap and L, = D,, — A, are the graph Laplacians of two graphs G
and G, respectively. Here, Dy and D,, are the degree matrices of the graphs G and G,
respectively.

The norm defined in (3.17) has the importance in increasing the closeness of the samples
belonging to the same class and distance between the samples belonging to different classes
in the projected space. Taking the norm of (3.17) into consideration, the objective function
of (3.16) can be written as

i Z;’nzl,j;&i wz'TEijwj

max

W1LW2,e e Wim > wlShw; ’
m
subject to Z |willLep < K, (3.20)
i=1
where k is some constant and
lwillrop = aw! XT Ly Xw; — (1 — a)wl XTI Ly Xiw;. (3.21)

The objective function (3.20) can further be expressed as

m m
max Z Z wZTZijwj,
W1,W2,...,Wm

i=1;5=1
J#i
m m )
subject to Z |willLop < k; Z wl'St wi = 1. (3.22)
i=1 i=1

For simplicity, adding the first constraint of (3.22) as a regularizer term into the objective
function, the final objective function can be written as follows:

m m ~y m
E 2 T 2
max Ww; Eijwj - = HwiHLCP,
W1,W2,...,Wm : X 2 :
i=1j=1 =1

J#i

subject to Z wl'Stwi =1, (3.23)
i=1
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where v is some constant, and is interdependent with x. The proposed CSP-MvCDA
method is pictorially represented in Fig. 3.2, along with MCCA and LDA. It also gives a
brief overview of the construction of correlated discriminative subspace.

Cross-

71,'TSZ wi
i

2T,

wl 3w

LDA Discriminative Space

Em(m— 1)
[] o ° 4 —p
Cross-covariance

3 I S [, U S s
l lrllzer 1 |wallLop i llwm|lLcp
T gl . T G2 . T gm )
wi Sjw Regulariser wa Siws Regulariser WSy Win Regulariser
fq T2, —> e o o wI Gm
wi SLwy Wy OyW2 WOy W
Discrimination Discrimination Discrimination

! sy ., . T Qi
i zi<jwi Lijw; 3wl Sjw;

'max

. T . T -
: Yoiwi Buw 3w Shw

A Group 1
© Group2
@ Group3

Common Correlated Discriminative Space

CSP-MvCDA

Figure 3.2: Pictorial representation of MCCA, LDA, and proposed CSP-MvCDA.
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3.3.2 Analytical Solution

To solve the constraint optimization problem of (3.23), the following Lagrangian function
is defined:

m m
F(wy,wa,...,w Z Z Wl Byjw; — %Z |willLep — A (Z wl'S wi — 1) . (3.29)
i=1

i=1j=1 i=1
J#i
where A is the Lagrange’s multiplier. For the maximization of F'(w1,wa, . ..,wpm),
OF (w1, wa, ..., wn) _0
(%ui
= Ow; Z Z wiTEijwj T 90w <Z |W2’LCP> - )\5 (Z M?S;wi — 1) =0
i=1j5=1 =1 i=1
J#i
a m m ’y m
2 Z Z w; E”w] 5 <Z ang?Linwi — (1 — a)wZTXZTLlewz)>
Wi lio j=1 i=1
J#i

— ai (ZwTSsz—1> =0

i=1

= 2 Sijw; — 7 (X! Ly Xiw; — (1 — o) X] LyXiw;) — AShw; = 0
Jaéz
= Z Yijwi = ASLw; + yLiw;, i=1,2,....m (3.25)
j=1
where L; = aX ' L,X; — (1 —a)X! Ly X;. (3.26)

The set of equations in (3.25) can be written in the following form using the block matrix
notation:

AQ = ASQ + 1L, (3.27)
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0 212 . Elm W1

221 0 . Egm w2
where A = . ) ] , Q=1 .1, (3.28)
Eml Emg e 0 Wm
S0 ... 0 Ly 0 ... 0
0 S2 ... 0 0 Ly ... 0
S=| . } . |l,and L= | . ) . (3.29)
0 0 S 0 O Ly,

The relation of (3.27) can also be expressed in a generalized eigenvalue problem as
follows:

(A —~L)Q = ASQ. (3.30)

The solution Q = [w1,wa, . ..,wy] of the generalized eigenvalue problem of (3.30) gives

m projection vectors wi,ws,...,wy, for m views X1, Xs, ..., X;n. Suppose, the top d
eigenvectors, O, Qa, ..., y are obtained from (3.30), where ; = [w!, wi,... Wi ], i =
1,2,...,d. Let W; be the transformation matrix for the j-th view X, formed by the top
d projection vector w},w?-, e ,w?, j =1,2,...,m. The data sets in the projected space
become Z; = XyWy, Zy = XoWas, ..., Z,, = X, Wy,. These projected sample sets are

sum up to construct the new feature set in the common discriminative latent space. This
new feature set is then used for the downstream classification tasks. Each step of the
proposed method is explained using the flowchart of Fig. 3.3, while the algorithmic steps
are presented in Algorithm 3.1.

Algorithm 3.1 Algorithm for the Optimization Problem of (3.23)

INPUT: X1, X9, X3,...,X,,, class labels of samples.

OUTPUT: Q = [wi,ws, ...,wn]"

Compute the cross-covariance matrix %;; = X1 X (i # j) for each pair of views.
Compute the block matrix A using (3.28).

Compute the within-class scatter matrix S, = 25:1 X¢TX¢ for each view.
Construct the within-class graph G,, and between-class graph G} using the class labels
of the samples.

7: Compute the graph Laplacians L,, and L, corresponding to G, and Gj.

8: Compute the matrix L; for each view using (3.26).

9: Compute the block diagonal matrices S and L using (3.29).
10: Solve the generalized eigenvalue problem of (3.30).

3.3.3 Comparison with Other MVL Techniques

In this section, the merits of the proposed model are discussed with respect to three multi-
view data integration techniques, namely, MCCA, GMA and MvDA.
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Figure 3.3: Flowchart of the proposed CSP-MvCDA method.

3.3.3.1 CSP-MvCDA versus Multiset CCA (MCCA)

Both MCCA [105] and CSP-MvCDA are the extended forms of the two-view method CCA
and belong to the category of subspace learning technique. The basic difference between
MCCA and CSP-MvCDA is that CSP-MvCDA utilizes the class label information of the
data, whereas the MCCA cannot. The objective functions of MCCA and CSP-MvCDA
differ in their constraints. The objective function of the MCCA is as follows:

m m T
max Z Z w; Bijwj, (3.31)

wl,o.;%,..‘,wm —
m = =
> w; iwi=1 ? Jj;ﬁi

whereas the objective function of the CSP-MvCDA is as follows:

m m
max 2 2 w] By jw; . (3.32)

W1,W2, W VAN
SrwlShw=1 =1 ]2
21 lwilep<k J
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So, in the constraints of the proposed method, the sum of class-wise variance, S! =
Zﬁil X¢TX¢, replaces the total variance ¥; = X7 X; in the constraint of MCCA. More-
over, there is a restriction on the projection vectors, {wi}f‘il, in the proposed model, which
makes the model cope with the non-linear class-structure. The constraints in CSP-MvCDA
play an important role to include the discriminative information into the projection vector
by moving the direction of the projection vector so that the class-wise variance of each data
is minimized and preserve the local class-structure as well. The proposed method can han-
dle the data non-linearity and is expected to be more significant towards the construction

of discriminative latent space unlike MCCA.

3.3.3.2 CSP-MvCDA versus Generalized Multi-View Analysis (GMA)

The GMA [222], a general multi-view feature extraction method, is intuitively a supervised
extension of CCA. It learns a single linear subspace by optimizing a relaxed quadratic con-
strained quadratic program (QCQP) over different feature spaces. The objective function
of the GMA is given by

m
T T
manm Z MW, Aw; + Z 2)\¢jwiXi ijj,

w1, w2;...,

i=1 i<j
m
subject to Z viw! Byw; = 1 (3.33)
i=1

where 1;(p1 = 1), Ajj and ;(y1 = 1) are the balance parameters, both A; and B; are square
symmetric matrices. In supervised CCA version of GMA, A; = Sg and B; = S! are the
between-class and within-class scatter matrices for the i-th view.

The objective function of the GMA maximizes the sum of between-class scatter of
each view and cross-covariance across multiple views to achieve the common latent space.
Though the GMA is a more general method in MVL, the formulation of CSP-MvCDA is
much simpler than the GMA with respect to formation of the common discriminative latent
space. Also, the CSP-MvCDA has a closed form solution and is capable of preserving the

non-linear class-structure of each view, whereas the GMA is unable to preserve the non-

number of parameters for m views, and thus it becomes computationally very expensive.
On the other hand, the proposed CSP-MvCDA method has only two parameters o and ~
to be tuned. So, the proposed method has less computational burden for parameter tuning.

linearity of each view. Besides, the objective function of the GMA includes [

3.3.3.3 CSP-MvCDA versus Multi-View Discriminant Analysis (MvDA)

The MvDA [124] seeks a discriminant common subspace from multiple views and can be

considered as a multi-view extension of LDA. Let {xfj|z =1,2...,K;5 = 1,2,...,n;}
be the j-th sample of the i-th class in v-th view, where n; is the number of samples in
the i-class and v = 1,2,...,m. Let y;”j be the projected samples, which are obtained

by projecting the original samples T3 through the m view-specific linear transformations
wi, W2, . .., Wy, that is, y; = wfa:;’j. The objective function of the MvDA can be written
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as

¢ Sy
max  Lrace(Sp). (3.34)
wiwa,...;.wm trace(Sy,)

where the between-class scatter matrix SyB and within-class scatter matrix SZ{/V of the
projected samples are defined by

DI> § s

Il
—

||Mx

ng
Z yy — i) (Y — )" (3.35)

ni(pi — ) (i — )" (3.36)

(2

The MvDA takes the inter-view and intra-view discriminative information into account
and ignores the shared correlated information across multiple views, which might loose
some important information and degrade the performance. However, the proposed CSP-
MvCDA method considers both the shared and complementary information through ISC
and ISD ratio, respectively, which makes the model more consistent towards multi-view
data integration. While the subspace learned by the MvDA preserves the global class
geometry of multiple views, the proposed model has the ability to preserve both the local
and global class geometry from each view in the projected space.

3.3.4 Computational Complexity Analysis

In this section, the computational complexity of the proposed method is analyzed, assum-
ing p = max;{p;}, where p; (i = 1,2,...m) is the dimension of the i-th view X;. The time
complexity for computing the cross-covariance matrix ¥;; (i # j), (4,5 = 1,2,...,m) in
Step 3 of Algorithm 6.1 is O(m?2p?n). Similarly, the time complexity to compute the class
covariance matrix {S%}7, is also O(m?p?n). The computational complexity to construct
the within-class graph {G’ ™, and between-class graph {Gi}", is O(mn?). To compute
their graph Laplacian Li and L!, the time complexity is also O(mn?). The time com-
plexity to solve the generalized eigenvalue problem of (3.30) is O(m?p?®). So, the total
computational complexity of the proposed CSP-MvCDA method is O(m?p?n + m?p*n +
mn? + mn? + m?p?) ~ O(m?p?n + mn? + m?p?). In case of “large p small n" problem,
p >> n implies m?>p? >> mn?, and the computational complexity of the proposed method
becomes O(m?p?n + m3p3).

In Table 3.1, the computational complexity of different state-of-the-art methods and the
proposed CSP-MvCDA is compared. Here, d represents the number of extracted features
in the projected space, ¢ is number of classes, and T is the number of iterations required
to converge MvCCDA [292], LACK [296], GPSNMF [153] and CONMF [152]. Parameters
K. and K, denote the number of common latent factors and view specific latent factors,
respectively, for GPSNMF; while 77 and 75 are the number of iterations required for the
subproblems I and II, respectively, in the ¢t-th iteration of MvCCDA. The parameter 7 is
the total number of possible regularization parameters in ReDMiCA [164].
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Table 3.1: Complexity of Proposed and Existing Algorithms

Different Methods Computational Complexity
MCCA [106] O(m?*p*n + m3p3)
GMA [222] O(m?pn + m3p3)
MvDA [124] O(
MULDA [239] O(
MvCCDA [292] O(
ReDMICA [164]  O(dtp?)

O(

O(

O(

O(

LACK [296]
GPSNMEF [153]
CONMF [152]
CSP-MvCDA

3.4 Experimental Results and Discussion

In this section, the performance of the proposed CSP-MvCDA method is compared compre-
hensively with that of several existing multi-view learning methods, namely, MCCA [106],
GMA [222], MvDA [124], MvDA-VC [124], MLDA [286], MULDA [239], MvCCDA [292],
ReDMiCA [164], LACK [296], GPSNMF [153] and CONMF [152], and two deep learning
based multi-view classification methods, namely, DMvTSVM-AE [278] and SMDDRL [116].
Three real life cancer data sets and five benchmark data sets are used for the compara-
tive performance analysis in the current study. The cancer data sets are breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma
(CESC) and lower grade glioma (LGG), which are collected from The Cancer Genome Atlas
(TCGA)!. The benchmark data sets are Cora?, CiteSeer®, Nus-Wide-Object?(NW-Object),
Caltech-101° and ALOIS. The statistical information of these data sets is given in Table 3.2
and their detailed description is given in Appendix A. The source code of the proposed CSP-
MvCDA algorithm, written in Python, is available at https://github.com /sankarML /CSP-
MvCDA.

Both training-testing and 10-fold cross-validation (CV) are used to study the effective-
ness of different algorithms. In training-testing, 50% samples are used for training and the
rest is used for testing. For all the methods, top 25 features are extracted, except for MvC-
CDA, LACK, CONMF and two deep learning methods DMvTSVM-AE and SMDDRL.
The methods MvCCDA, LACK, and CONMF have the capability of generating at most ¢
numbers of features, where ¢ is the number of classes present in the data. For these five
methods, the optimal number of features is used to report the classification accuracy. To
compute the classification accuracy, support vector machine (SVM) with linear kernels is
used. To establish the performance of the proposed method statistically, two significance
tests, namely, paired sample t-test and Wilcoxon’s signed rank test, are performed, and
the corresponding p-value is reported.

"https://cancergenome.nih.gov/

http://lig-membres.imag.fr /grimal /data.htm]

Shttp:/ /lig-membres.imag.fr/grimal /data.html

4https:/ /Ims.comp.nus.edu.sg/wp-content /uploads /2019 /research /nuswide /NUS-WIDE.html
Phttp://www.vision.caltech.edu/datasets,/

Shttps://elki-project.github.io/datasets /multi view
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Table 3.2: Descriptions of Data Sets Used

Data Sets Sample Views/Modalities Class

RNA Sequence (12268)
Protein expression (216)

BRCA 134 miRNA Sequence (178) 4
Copy number segmentation (2258)
RNA Sequence (12028)
CESC 104 Protein expression (192) 3

miRNA Sequence (174)
DNA methylation (291368)

RNA Sequence (11973)
Protein expression (181)
LGG 374 miRNA Sequence (139) 3
DNA methylation (293965)
Copy number segmentation (6261)

Content (3703)
Inbound (3312)

CiteSeer 3312 Outbound (3312) 0
Citation (3312)
Content (1433)

Coma 9708 Inbound (2708) 7

Outbound (2708)
Citation (2708)

Color histogram (64)
Block-wise color moments (225)
NW-Object 30000 Color correlogram (144) 31
Edge direction histogram (73)
wavelet texture (128)

Gabor (48)
Wavelet moments (40)
Cenhist (254)

Caltech-101 9144 Hog (1984) 102
Gist (512)
Local binary patterns (LBP) 928
RGB color histograms (64)
ALOI 10800 HSB color histograms (125) 100

Color similarity (77)
Haralick features (13)

3.4.1 Selection of Optimal Parameters

The proposed CSP-MvCDA model has two parameters, namely, o and ~, to be tuned.
The parameter « controls the balance between within-class and between-class discrimi-
native information in class-structure preserving norm, while the parameter v represents
the contribution of the class-structure preserving norm into the performance of the model.
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To find out the optimal values of a and v parameters, the geometrical separability index
(GSI) [249] is used. The GSI, also known as the Thornton index, calculates the average
number of samples that share the same class label as those of their first nearest neighbor.
The GSI is mathematically defined as follows:

n

1
T= 23 faia) (3.37)
i=1
where 2 denotes the first nearest neighbor of the sample z;, n is the total number of
samples and f is a binary function, defined as follows:

Flas ) = 1 if label of z; = label of
%) =0 0 if label of x; # label of 2.

)

(3.38)

The value of T belongs to the closed interval [0,1]. For the set of samples, where the
individuals with opposite labels exist in well-separated groups, the value of T will be closer
to 1. The index value drops as the groupings get closer together and samples from different
classes start to geometrically overlap. Lastly, this separability index will be near 0.5 if the
centroids coincide or the samples are evenly distributed throughout the space. As a result,
the best approximated sample grouping will be represented by the index with the highest
value.

The optimal parameters a® and +* are obtained using a grid search approach using
GSI. The value of « is varied from 0.0 to 1.0 having a step size of 0.1 and the value of ~ is
taken from the set {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The
values of a and « for which the GSI is maximum are considered as the optimal parameters
a* and v* of the proposed CSP-MvCDA model, that is,

{a*,7*} = arg gneu; {GSI(a,)}, (3.39)

a?’y

where GSI(«,~) denotes the GSI value for the parameter set {a,~}. The optimal parame-
ters of the proposed method are listed in Table 3.3 for different data sets. To establish the
effectiveness of the proposed parameter optimization technique, the classification accuracy
of CSP-MvCDA on test samples is reported in Table 3.3 considering optimal parameters
and parameters for which training accuracy is maximum (Max. Training). The best pos-
sible test accuracy (Best) is also presented for comparison, which is obtained by searching
the parameter space exhaustively. From the results reported in Table 3.3, it can be seen
that the CSP-MvCDA attains the highest accuracy in 13 cases out of total 16 cases, con-
sidering optimal parameters. Also, the performance for optimal parameters is better than
that of Max. Training in 2 out of remaining 3 cases. All the results reported here estab-
lish the effectiveness of the proposed parameter optimization technique. The variation of
classification accuracy and GSI, with respect to two parameters v and «, is presented in
the supplementary material.
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Table 3.3: Parameter Analysis of CSP-MvCDA on Different Data Sets

. Parameters Classification Accuracy on Test Data
Different
Data Sets (v*, a™) Optimal Parameters Max. Training  Best
BRCA (0.4, 0.8) 0.8325 0.8313 0.8375
CESC (0.2, 0.5) 0.9416 0.9416 0.9416
5 LGG (0.0001, 0.1) 0.9842 0.9842 0.9842
= CiteSeer (0.01, 0.8) 0.6891 0.6874 0.6891
S Cora (0.01, 0.7) 0.7847 0.7949 0.7949
S NW-Object  (0.001, 0.1) 0.4450 0.4450 0.4450
Caltech-101  (0.0001, 0.1) 0.8251 0.8234 0.8251
ALOI (0.0001, 0.1) 0.9926 0.9926 0.9926
BRCA (0.1, 0.2) 0.8030 0.8030 0.8030
CESC (0.8, 0.1) 0.8654 0.8654 0.8654
% LGG (0.01, 0.3) 0.9839 0.9839 0.9839
E  CiteSeer  (0.01, 0.0) 0.6975 0.6975 0.6975
= Cora (0.2, 0.5) 0.7780 0.7747 0.7795
£  NW-Object (0.001, 0.0) 0.4395 0.4375 0.4395
Caltech-101  (0.001, 0.8) 0.6100 0.6100 0.6100
ALOI (0.001, 0.4) 0.9815 0.9815 0.9815
Importance of Class-Structure Preserving Norm

3.4.2

In order to establish the importance of class-structure preserving norm used in the proposed
CSP-MvCDA method, the performance of the proposed method with v # 0 and v = 0
is studied on all the eight data sets. The corresponding results are reported in Table 3.4
with respect to classification accuracy on test data. The results corresponding to v # 0
imply the performance of the proposed method for optimal . All the results reported here
confirm that the performance of the CSP-MvCDA with « # 0 is significantly better than
that of v = 0, irrespective of the data sets and experimental set-up used. This signifies the
necessity of including the class-structure preserving norm into the proposed model.

Table 3.4: Classification Accuracy of CSP-MvCDA on Different Data

Different =0 7#0

Data Sets Train-Test 10-fold CV  Train-Test 10-fold CV
BRCA 0.606 0.744 0.803 0.833
CESC 0.712 0.683 0.865 0.942
LGG 0.973 0.984 0.984 0.984
CiteSeer 0.662 0.661 0.698 0.689
Cora 0.740 0.760 0.778 0.785
NW-Object 0.406 0.407 0.440 0.445
Caltech-101 0.568 0.713 0.610 0.825
ALOI 0.976 0.983 0.981 0.993
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3.4.3 Superiority of CSP-MvCDA over MCCA

In order to establish the superiority of CSP-MvCDA over MCCA, these two methods
are extensively studied and evaluated on the same eight data sets, namely, BRCA, CESC,
LGG, Cora, CiteSeer, NW-Object, Caltech-101 and ALOI. The first and last columns of the
scatter plots presented in Fig. 3.4 give insight into the quality of top two features extracted
by CSP-MvCDA and MCCA. In case of LGG, the CSP-MvCDA is able to isolate the
three classes almost accurately, and for CiteSeer and Caltech-101, it shows a discriminating
nature, whereas MCCA has no pattern of differentiating classes for all these data sets. This
is because the MCCA finds correlated features that does not help in class discrimination
most of the time.

In Fig. 3.5, the variation of classification accuracy with respect to the number of ex-
tracted features is reported, where deep green and blue curves correspond to MCCA and
CSP-MvCDA, respectively. The graph signifies that the extracted features of CSP-MvCDA
contain much more discriminative information than the features of the MCCA. The scatter
plots and feature versus accuracy graphs for the other data sets are given in the supple-
mentary material.

Finally, Table 3.5 and Table 3.6 presents the classification accuracy of both training-
testing and 10-fold CV. Statistical significance test is also performed for 10-fold CV and
corresponding p-values are reported in Table 3.5 and Table 3.6. The results show that the
CSP-MvCDA achieves much higher classification accuracy than MCCA for each experi-
mental set-up over all eight data sets and all the p-values are significant for 10-fold CV
with respect to the MCCA. All these results establish that the CSP-MvCDA can be consid-
ered as the supervised alternative of MCCA and more suitable for multi-class classification
problem unlike MCCA.

3.4.4 Comparative Performance Analysis

This section compares the performance of the proposed method with that of several state-
of-the-art approaches.

3.4.4.1 Classification Results on Omics Data Sets

The performance of the proposed CSP-MvCDA model is compared with that of several
existing algorithms on omics data sets. From the scatter plots presented in Fig. 3.4, it
is seen that only the proposed method can distinguish between the three classes of LGG
data set. For this data set, only two methods, namely, ReDMiCA and LACK are able
to isolate one class from the other two. All the other methods are unable to identify the
three classes of LGG. In brief, the top two extracted features of the proposed method
contains significantly more discriminative information than the other algorithms. To study
the quality of the features extracted by the proposed method as well as existing algorithms,
the variation of classification accuracy with respect to the number of extracted features
is shown in Fig. 3.5. The graphs in Fig. 3.5 show that the proposed method provides
best performance for LGG. It establishes that the quality of the extracted features by the
proposed method is better than that of the existing algorithms.

The classification accuracy for both the training-testing and 10-fold CV is provided in
Table 3.5. The mean, median and standard deviation of classification accuracy are also re-
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Figure 3.4: Scatter plots for the proposed and existing methods based on the first two
extracted features.

ported in case of 10-fold CV, and the p-values corresponding to paired-t test and Wilcoxon
signed rank test are presented to prove the statistical significance of these results. All the
results reported in Table 3.5 show that, in case of training-testing, the classification accu-
racy of the proposed model corresponding to BRCA and CESC data sets is significantly
higher than that of the existing algorithms. This is because the proposed method integrates
the data by taking the combination of inter-set correlation and intra-set discrimination,
rather than considering only the inter-set or intra-set discrimination which is considered
in the MvCCDA, MvDA, and MvDA-VC. Taking only the intra-set or inter-set discrimi-
native information may include unnecessary information that may lead to degradation in
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Figure 3.5: Variation of classification accuracy with respect to number of extracted features
for the proposed CSP-MvCDA and existing methods on omics and benchmark data sets
(top-row: training-testing, bottom-row: 10-fold CV).

the performance. Other than CSP-MvCDA, some of the existing models, namely, MLDA,
MULDA, and MvCCDA, provide better classification accuracy on CESC, which is com-
paratively better among all the other methods. In case of LGG data set, the proposed
model also attains the highest accuracy of 98.39% in case of training-testing. Similarly, for
10-fold CV, the proposed model has obtained highest classification accuracy with highest
mean and median statistics over all the omics data sets compared to the existing algo-
rithms. Other than the proposed method, the classification accuracy of MvCCDA is also
noticeable in case of CESC data set. The deep learning based method, namely, SMDDRL
achieves a descent classification score on LGG data set and another deep learning model,
namely, DMvTSVM-AE performs well in case of BRCA and CESC. The ReDMiCA also
attains better classification accuracy in case of LGG data set. From Table 3.5, it is also
clear that all the p-values are significant, justifying that the proposed method has signifi-
cantly better performance than all other existing methods on three omics data sets. This
concludes that the proposed method has the ability to classify omics data sets better than
any other state-of-the-art algorithms.

3.4.4.2 Classification Results on Benchmark Data Sets

The scatter plots in Fig. 3.4 show that the proposed method has significant class discrim-
ination ability in case of CiteSeer and Caltech-101 data sets using its top two extracted
features. The variation of the classification accuracy with respect to the number of ex-
tracted features of the proposed model, shown in Fig. 3.5, suggests that the performance
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Table 3.5: Classification Accuracy of Proposed Method (CSP-MvCDA) and Different Al-

gorithms on Omics and Benchmark Data Sets

Accuracy and Significance Analysis for 10-fold CV  Time

Different Data Accuracy
Algorithms Sets  (Train-Test) Mean Median StdDev Paired-t:p Wilcoxon:p (Sec.)
MCCA [106] 0.288 0.306 0.319 0.055 2.61E-10 2.21E-03 31.2
GMA [222] 0.424 0.538 0.531 0.109 2.44E-05 3.91E-03 33.0
MvDA [124] 0.318 0.431 0.375 0.100 2.31E-10 1.95E-03 14.1
MvDA-VC [124] 0.303 0.400 0.400 0.079  2.53E-10 1.95E-03 15.2
MLDA [286] 0.561 0.394 0.406 0.134  3.49E-05 1.95E-03 73.3
MULDA [239] 0.561 0.381 0.406 0.123 2.11E-05 1.95E-03 76.5
MvCCDA [292] S 0.455 0.569 0.625 0.095 4.91E-05 1.95E-03 0.9
ReDMIiCA [164] ?g 0.424 0.413 0.400 0.119 2.91E-10 1.95E-03 5774.5
DMvTSVM-AE [278] 0.692 0.615 0.615 0.843 2.21E-10 1.95E-03 147.7
SMDDRL [116] 0.373 0.474 0.481 0.086 2.29E-10 1.95E-03 1.8
LACK [296] 0.439 0.444 0.438 0.110 1.22E-05 1.95E-03 0.1
GPSNMF [153] 0.409 0.388 0.375 0.047 1.98E-07 1.95E-03 0.8
CONMF [152] 0.591 0.725 0.719 0.098 1.63E-02 2.69E-02 0.2
CSP-MvCDA 0.803 0.833 0.822 0.081 - - 5.2
MCCA [106] 0.385 0.458  0.458 0.137 1.97E-10 1.95E-03 6.0
GMA [222] 0.462 0.558 0.625 0.124 9.93E-06 1.93E-03 10.4
MvDA [124] 0.423 0.467  0.492 0.153  2.05E-10 1.95E-03 15.5
MvDA-VC [124] 0.404 0.500 0.467 0.142 2.08E-10 1.95E-03 21.9
MLDA [286] 0.769 0.483 0.417 0.170 1.91E-04 7.26E-03 51.4
MULDA [239] 0.769 0.483 0.417 0.170 1.91E-04 7.26E-03 50.7
MvCCDA [292] 8 0.712 0.833 0.833 0.091 1.32E-02 2.40E-02 0.4
ReDMIiCA [164] 8 0.500 0.567  0.608 0.203 1.92E-10 1.95E-03 5162.4
DMvTSVM-AE [278] 0.650 0.730 0.700 0.078 1.32E-02 2.40E-02 147.4
SMDDRL [116] 0.423 0.390 0.381 0.079 1.97E-10 1.95E-03 1.8
LACK [296] 0.577 0.625 0.667 0.113 1.55E-04 1.95E-03 0.1
GPSNMF [153] 0.250 0.258  0.250 0.025 2.81E-09 1.95E-03 0.6
CONMEF [152] 0.596 0.533  0.500 0.130 1.55E-05 1.95E-03 0.2
CSP-MvCDA 0.865 0.942 1.000 0.092 - - 4.9
MCCA [106] 0.398 0.355  0.342 0.077  2.17E-18 1.95E-03 14.2
GMA [222] 0.457 0.426 0.447 0.082 5.35E-09 1.95E-03 135.3
MvDA [124] 0.758 0.758 0.763 0.080 1.99E-18 1.95E-03 16.4
MvDA-VC [124] 0.731 0.811 0.789 0.078 1.99E-18 1.95E-03 16.9
MLDA [286] 0.618 0.603  0.605 0.093 5.62E-07 1.95E-03 1171.3
MULDA [239] 0.624 0.595 0.592 0.090 3.21E-07 1.95E-03 1183.6
MvCCDA [292] ] 0.694 0.766 0.776 0.057 1.83E-06 1.95E-03 0.7
ReDMICA [164] 3 0.946 0.850 0.842 0.035 1.63E-18 1.95E-03 5958.2
DMvTSVM-AE [278] 0.743 0.746 0.757 0.052 1.99E-18 1.95E-03 143.4
SMDDRL [116] 0.861 0.877 0.900 0.055 1.63E-18 1.95E-03 4.3
LACK [296] 0.731 0.945  0.947 0.018 5.28E-04 7.11E-03 0.2
GPSNMF [153] 0.484 0.476 0.474 0.078 6.03E-09 1.95E-03 1.4
CONMF [152] 0.532 0.568 0.539 0.100  5.45E-07 1.95E-03 0.8
CSP-MvCDA 0.984 0.984 0.974 0.012 - - 8.8
MCCA [106] 0.608 0.736 0.742 0.021 2.41E-15 1.95E-03 0.1
GMA [222] 0.931 0.941 0.940 0.005 1.82E-07 1.95E-03 0.2
MvDA [124] 0.971 0.986 0.986 0.004 1.01E-02 1.95E-03 0.5
MvDA-VC [124] 0.981 0.992 0.992 0.003  2.89E-02 0.44E-02 4.9
MLDA [286] 0.935 0.957  0.958 0.009 2.76E-06 1.95E-03 0.3
MULDA [239] 0.906 0.926 0.914 0.007 1.66E-14 1.95E-03 0.3
MvCCDA [292] 2 0.977 0.986 0.985 0.002 1.73E-02 1.95E-03 141.6
ReDMIiCA [164] j 0.941 0.949 0.950 0.011  4.54E-05 1.95E-03  436.6
DMvTSVM-AE [278] 0.808 0.871  0.881 0.008 8.61E-05 1.95E-03 133.6
SMDDRL [116] 0.820 0.838  0.839 0.006 2.16E-08 1.95E-03 60.6
LACK [296] 0.972 0.982 0.983 0.004 2.52E-05 1.95E-03 2.2
GPSNMF [153] 0.235 0.252 0.250 0.020 2.31E-15 1.95E-03 9.1
CONMF [152] 0.981 0.985 0.985 0.003 7.39E-05 1.95E-03 6.5
CSP-MvCDA 0.981 0.993 0.992 0.003 - - 11.9
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of the proposed method on benchmark data sets is better than that of the other existing
algorithms. The results of Fig. 3.5 show that all the methods, except MvDA and MvDA-
VC, provide good performance in case of CiteSeer data set, which indicates the importance
of including the correlation information across all the views. The scatter plots and feature
versus accuracy graphs for the other benchmark data sets, namely, Cora, NW-Object and
ALOQOI, are given in the supplementary material. In brief, the graphs and scatter plots on
benchmark data sets establish that the quality of the features extracted by the proposed
method is much better than that of other existing algorithms.

Finally, the results of Table 3.5 and Table 3.6 on benchmark data sets show that the
proposed model obtains the highest classification accuracy in case of training-testing as
well as 10-fold CV except for Caltech-101. Although MvDA method achieves highest
classification accuracy of 85.2% for the data set Caltech-101 in 10-fold CV, the proposed
model also performs well to achieve a classification accuracy of 82.3%. In case of CiteSeer
data set, both MvDA and MvDA-VC perform poorly, whereas CSP-MvCDA has better
classification accuracy than these two methods, suggesting the importance of including the
shared information through correlation across all the views. While all the existing methods
do not perform well on NW-Object data set, the proposed method provides comparatively
better accuracy in both the cases. Although the proposed model obtains the highest
classification accuracy on Cora data set, MvCCDA has also a promising result on this data
set.

For ALOI data set, the proposed method is not significant with respect to MvDA-VC
in case of Wilcoxon test, which is shown in Table 3.5 in italics. In case of CiteSeer and NW-
Object, one p-value is not significant in each case, obtained by Wilcoxon test for the model
MvCCDA, as shown in Table 3.6 in italics. Similarly, for NW-Object, the performance
of the proposed method is not significant with respect to LACK for both statistical tests.
Out of total 130 cases of benchmark data sets, the proposed method achieves significantly
better p-values in 125 cases. The non-significant p-value represents the similar performance
of two models. Overall, the proposed method has better classification ability on benchmark
data sets than the existing approaches.

From all the results reported in this chapter on both real-life cancer data sets and
benchmark data sets, it can be concluded that the proposed CSP-MvCDA method out-
performs all the existing methods. The results also signify that the CSP-MvCDA has the
advantage over some of the non-linear deep learning based methods such as DMvTSVM-
AE and SMDDRL, in terms of execution time and performance on large data sets. The
comprehensive performance analysis also signifies that the proposed method can take the
shared and complementary information across all the multiple views in a balanced and
much simpler way with respect to other algorithms.

3.4.4.3 Performance of CSP-MvCDA on Deep Features

In order to evaluate the performance of the proposed CSP-MvCDA method on deep fea-
tures, two deep learning models, namely, deep Boltzmann machines (DBM) [217] and deep
convolutional neural networks (DCNN) [40], are considered to extract deep features. Two
data sets, namely, CiteSeer and Cora, are taken as examples. For each view, ten deep
features are extracted for the analysis. After extracting the deep features, the proposed
CSP-MvCDA method is applied to generate the common correlated discriminative space
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Table 3.6: Classification Accuracy of Proposed Method (CSP-MvCDA) and Different Al-

gorithms on Benchmark Data Sets

Accuracy and Significance Analysis for 10-fold CV  Time

Different Data Accuracy
Algorithms Sets  (Train-Test) Mean Median StdDev Paired-t:p Wilcoxon:p (Sec.)
MCCA [106] 0.581 0.592 0.599 0.028 1.75E-15 1.95E-03 0.9
GMA [222] 0.652 0.652 0.646 0.025 7.41E-05 1.95E-03 11.3
MvDA [124] 0.377 0.414 0.416 0.020 1.81E-14 1.95E-03 30.5
MvDA-VC [124] 0.435 0.477 0.473 0.032 1.34E-14 1.95E-03 27.2
MLDA [286] 0.666 0.671 0.676 0.026 7.21E-04 1.07E-02 7.5
MULDA [239] L 0.666 0.671 0.676 0.026 1.01E-02 5.85E-03 7.5
MvCCDA [292] t% 0.685 0.682 0.694 0.026 1.66E-19 6.44E-02 17.4
ReDMIiCA [164] 2 0.646 0.641 0.643 0.027 1.75E-15 1.95E-03  447.7
DMvTSVM-AE [278] o 0.489 0.480 0.480 0.016 1.73E-14 1.95E-03 132.6
SMDDRL [116] 0.515 0.618 0.625 0.028 1.15E-14 1.95E-03 64.3
LACK [296] 0.694 0.646 0.648 0.014 2.54E-09 1.95E-03 0.2
GPSNMF [153] 0.650 0.642 0.653 0.030 1.33E-05 1.95E-03 4.7
CONMEF [152] 0.668 0.662 0.668 0.029 6.28E-04 3.91E-03 3.4
CSP-MvCDA 0.698 0.689 0.710 0.027 - - 3.0
MCCA [106] 0.329 0.247  0.256 0.073  2.15E-15 1.95E-03 6.1
GMA [222] 0.609 0.604 0.608 0.024 8.01E-08 1.95E-03 57.4
MvDA [124] 0.539 0.495  0.504 0.029 1.29E-15 1.95E-03 71.0
MvDA-VC [124] 0.557 0.438 0.441 0.020 1.13E-16 1.95E-03 70.1
MLDA [286] 0.567 0.690 0.692 0.014 2.16E-07 1.95E-03 30.9
MULDA [239] 0.574 0.683 0.687 0.013  2.92E-08 1.95E-03 31.1
MvCCDA [292] S 0.716 0.748  0.753 0.038 2.45E-02 2.73E-02 15.0
ReDMIiCA [164] S 0.573 0.615  0.610 0.035 1.76E-15 1.95E-03 1286.8
DMvTSVM-AE [278] 0.704 0.755 0.754 0.023 2.61E-02 2.73E-02 137.3
SMDDRL [116] 0.613 0.686 0.683 0.021 2.92E-08 1.95E-03 38.8
LACK [296] 0.769 0.783 0.789 0.022 1.10E-09 1.95E-03 0.2
GPSNMF [153] 0.587 0.607  0.593 0.030 2.55E-08 1.95E-03 7.6
CONMEF [152] 0.669 0.687  0.685 0.032 1.65E-05 1.95E-03 6.7
CSP-MvCDA 0.778 0.785 0.801 0.021 - - 6.3
MCCA [106] 0.303 0.322  0.321 0.005 5.48E-17 1.95E-03 0.5
GMA [222] 0.283 0.296 0.298 0.008 1.11E-11 1.95E-03 0.2
MvDA [124] 0.290 0.280 0.279 0.008 5.25E-17 1.95E-03 53.2
MvDA-VC [124] 0.286 0.279 0.281 0.008 5.55E-17 1.95E-03 73.8
MLDA [286] 0.392 0.323 0.322 0.012 1.18E-10 1.95E-03 0.9
MULDA [239] § 0.370 0.314 0.314 0.007  9.95E-12 1.95E-03 0.9
MvCCDA [292] iy 0.424 0.431 0.432 0.007  4.58E-02 6.44E-02 1745.3
ReDMIiCA [164] g 0.377 0.382 0.382 0.009 5.30E-17 1.95E-03 1344.7
DMvTSVM-AE [278] 2 0.387 0.374 0.373 0.027 1.29E-17 1.95E-03 145.3
SMDDRL [116] 0.346 0.368 0.366 0.008 5.48E-17 1.95E-03 240.7
LACK [296] 0.424 0.434 0.434 0.006 8.02E-01 8.46E-01 2.8
GPSNMF [153] 0.166 0.181 0.182 0.009 9.35E-15 1.95E-03 84.1
CONMF [152] 0.359 0.369 0.369 0.007 1.78E-11 1.95E-03 49.5
CSP-MvCDA 0.440 0.445 0.446 0.008 - - 72.6
MCCA [106] 0.306 0.345 0.332 0.013 1.72E-14 1.95E-03 5.2
GMA [222] 0.379 0.285 0.286 0.013 2.16E-15 1.95E-03 4.4
MvDA [124] 0.607 0.852 0.854 0.091 2.31E-08 1.95E-03 1.1
MvDA-VC [124] 0.605 0.839 0.839 0.096 2.01E-04 1.95E-03 4.9
MLDA [286] 0.575 0.495  0.489 0.014 1.07E-15 1.95E-03 51.3
MULDA [239] § 0.572 0.493 0.489 0.024 1.65E-15 1.95E-03 24.2
MvCCDA [292] < 0.605 0.815 0.815 0.009 1.66E-14 1.95E-03 25.3
ReDMIiCA [164] é 0.391 0.412 0.400 0.013 5.85E-09 1.95E-03 4531.7
DMvTSVM-AE [278] S 0.553 0.737  0.736 0.007 1.66E-14 1.95E-03 164.0
SMDDRL [116] 0.378 0.704 0.715 0.017  3.51E-09 1.95E-03 128.3
LACK [296] 0.372 0.417 0.420 0.013 2.04E-14 1.95E-03 5.9
GPSNMF [153] 0.258 0.265 0.271 0.039 8.84E-13 1.95E-03 22.4
CONMF [152] 0.362 0.401 0.401 0.015 4.91E-16 1.95E-03 30.6
CSP-MvCDA 0.610 0.825  0.825 0.009 - - 14.8
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for classification. The results corresponding to training-testing are reported in Table 3.7.
From the results reported here, it can be seen that the performance of the proposed method
on original features is comparable with or better than that of deep features. This is mainly
due to the fact that the extracted deep features are small in number and do not consider
the supervised information of class labels.

Table 3.7: Classification Accuracy of Proposed Method on Deep Features

Different ‘ Deep Features ‘ Original

Data Sets | DCNN [40] DBM [217] | Features

CiteSeer |  69.85 66.58 | 69.80
Cora |  75.03 7403 | 77.80

3.5 Conclusion

This chapter introduces a new supervised subspace learning technique, termed as CSP-
MvCDA, by judiciously combining the merits of both MCCA and LDA. It also includes a
class-structure preserving norm to preserve the class-structure of each view. The proposed
method forms a common discriminative latent space, where both the global and local ge-
ometry of the classes in each view are preserved. It has been shown that the formulation of
CSP-MvCDA can be solved easily by solving a generalized eigenvalue problem. The pro-
posed CSP-MvCDA method can be used as an alternative to MCCA, in case of supervised
multi-view subspace learning. The CSP-MvCDA can deal with non-linear data as well
because of its class-structure preserving norm. To estimate the potency of the proposed
method and to compare it with that of the state-of-the-art multi-view subspace learning
techniques, several real-life cancer and benchmark data sets have been used under the 10-
fold cross-validation and training-testing experimental set-up. The results on both types
of data sets show that the proposed approach outperforms the state-of-the-art subspace
learning methods.

The algorithm, proposed in this chapter, is based on the concept of the SUMCOR
criterion of MCCA. To reduce the complexity, another supervised MVL algorithm, based
on maximum variance criterion of MCCA, has been proposed in the next chapter.
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Chapter 4

Supervised Graph Regularized
Multi-View Canonical Correlation

and Discrimination Analysis

4.1 Introduction

Due to the information explosion, the size of data representing an object from different
perspectives is increasing rapidly in the fields of pattern recognition, data mining, and
computer vision. These multiple perspectives create heterogeneous and distinct views
of the common sources. As mentioned in Chapter 3, learning from these heterogeneous
and distinct views to express the object more comprehensively is known as multi-view
learning [238]. Numerous studies have demonstrated that the proper integration of data
from various viewpoints will improve the performance in several learning tasks, including
dimensionality reduction, classification, and clustering than the performance obtained from
each view separately [37,312].

In multi-view learning, the feature sets collected from different perspective can be di-
verse in nature, high in dimension, and may not be equally relevant to a desired task.
Moreover, these multiple views should be integrated to make use of the consistent infor-
mation across all the views and the complementary information of each view properly.
As mentioned in Chapter 3, the canonical correlation analysis (CCA) [107] is a classical
multi-view subspace learning technique, which forms a reduced low dimensional subspace
by maximizing the correlation between two views. The multi-set CCA (MCCA) [129] is the
generalization of the two view CCA, which seeks for the common low dimensional subspace
by maximizing the pairwise correlation among multiple views. There are several MCCA
formulations according to the optimizing criteria, such as SUMCOR, maximum variance
(MAXVAR), sum of squared correlations, minimum variance, and generalized variance
methods [105,129]. However, MCCA is unable to use label of the data, can only explore
the linear relationships among the multiple views, and suffers from singularity issue of the
covariance matrices for “large p small n" problem.

The regularized CCA (RCCA) [259] is the extension of CCA, which makes the singular
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covariance matrix invertible by adding some small positive quantity to the diagonal of the
matrix and prevents the overfitting problem. The supervised RCCA [81] is the supervised
extension of RCCA, which learns the optimal regularizer by some statistical test for better
classification performance. The supervised and regularized version of MCCA has been
explored in [164]. A supervised multi-view CCA (sMVCCA) has also been proposed in
[145]. To explore the non-linear relationship between the data, several extension of CCA
and MCCA, based on kernel learning [224], locality preserving projection [242] and deep
neural networks [12]| [79], have been introduced. Moreover, the CCA or MCCA based
models do not explore the geometry of the data. In [44], a graph regularized CCA (gCCA)
has been proposed, which incorporates the graph information of the data as a regularizer
into the objective function of CCA. The graph multi-view CCA (GMCCA) [43] is the
extension of the gCCA in multi-view settings. In [298], Laplacian MCCA (LapMCCA) has
been introduced to uncover the non-linear correlation hidden in multiple views. Although
these methods explore the prior geometry of the data, they are unsupervised in nature.
Moreover, all the methods described above give equal importance to each of the views for
constructing the common latent space. But, the integration of multiple views according to
the relevance of each view is reasonable and may improve the performance of the models.

In this regard, a supervised subspace learning approach, based on MAXVAR formula-
tion of MCCA is presented in this chapter. The proposed formulation is termed as multi-
view canonical correlation and discrimination analysis (MCCDA). The MCCDA finds a
latent low dimensional subspace, where the covariance between any two views is maxi-
mized and the within-class scatter of each view is minimized. The features obtained by
this approach contain both the correlated information among multiple views and discrimi-
native information of each view, which make the formulation more suitable for multi-class
classification problem. The proposed model is further extended by considering the prior
geometrical structure of the data encoded by the within-class and between-class graphs,
which are used to construct a regularizer term and incorporated into the model. The
model also learns a proper weight for each view while integrating the multiple views. The
extended version of MCCDA is termed as supervised graph regularized MCCDA (SGR-
MCCDA). The SGR-MCCDA is a unified framework, where label information as well as
known geometry of data are explored and a suitable weight for each view is learned. Fur-
thermore, an iterative rule is presented to solve the optimization problem of SGR-MCCDA.
The convergence analysis and computational complexity analysis are also given to justify
the efficacy of the proposed method. Several cancer and benchmark data sets with different
characteristics are used to show the effectiveness of the proposed model. The results con-
firm that the SGR-MCCDA outperforms the existing algorithms in terms of classification
accuracy, and has comparatively lower execution time than the existing ones. Some of the
results of this chapter can be found in [179].

The remaining sections of this chapter are as follows: Section 4.2 presents brief ideas
of the MAXVAR criterion of MCCA, and GMCCA. Section 4.3 presents the proposed
algorithm. An iterative rule has been provided in this section for solving the proposed
optimization problem. Computational complexity analysis for different algorithms is also
given in this section. The effectiveness of the proposed algorithm is shown by comparing
the performance of it with the other state-of-the-art algorithms over several omics and
benchmark data sets in Section 4.5. The chapter is concluded in Section 4.6.
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4.2 Basics of MCCA and GMCCA

This section gives a brief overview of MAXVAR formulation of MCCA [129] and GMCCA
[43].

4.2.1 MAXVAR Criterion of MCCA

v=1
obtained from a common data source matrix S € RV*? where N is the number of common

source vector §,(n =1,2,...,N), dy(v=1,2,..., M) is the number of feature in the v-th
feature set and p is the original dimension of the source vector with p << min, {dv}i\iy The
classical CCA for two views X; and X5 looks for two linear transformations, W, € R >4
and Ws € R%2%4 with d < p, so that the transformed views X1 W7 and X3W5 have maximum
correlation or it can be said that their euclidean distance is minimum. This is known as
the sum of correlation (SUMCOR) formulation of the CCA. The MCCA is multi-view
extension of the two view CCA. The MAXVAR formulation of the MCCA finds a shared
low dimensional space, S, such that the euclidean distance between each view’s linear
projection X, W, and S is minimized. The formulation is given by

Suppose M feature sets, {X, € RN*dAM - are given for M number of views which are

M

min | X, Wy — SH%,

M
{Wv v=1p=1

subject to STS = I. (4.1)

If the sample covariance matrices, { X X}, are all non-singular, then by fixing S, the
W,-minimizer of (4.1) can be obtained from the following equation

W, = (XI'Xx,)'xTs.

Replacing the values of W, into (4.1), the S-minimizer would be the solution of the following
eigendecomposition problem:

M
S* = arngaXTr [ST (Z Xv(XvTXv)leT> S] ;
v=1

subject to ST S = I. (4.2)

The top d principal component of the matrix Y2, X, (X7 X,) "' X! would give the d
columns of S*. In succession, the optimal linear transformations are given by

w,* = (xIx,)'xTs. (4.3)
It is worth noting that the solution of SUMCOR and MAXVAR criteria of MCCA are
different. In particular, for M = 2, both the variant can be solved analytically by eigen-

decomposition; but for M > 2, the SUMCOR cannot be solved analytically, while the
MAXVAR still admits analytical solution though there is an extra variable S to compute.

51



4.2.2 GMCCA

The GMCCA is the extension of the MAXVAR criterion of the MCCA, where the known
geometry of the data is incorporated into the model as a graph regularizer. Suppose
G : (V, W) is the graph representing structural geometry of the N common sources, where
V denotes the vertex set {51, S2,..., 5y} and W is the set consisting of all the edge weights
w;j(> 0) between the vertices §; and §; (i,j € V). Let W e RV*N be the weighted
adjacency matrix of G, whose (i, j)-entry is the edge weight w;;. Let the degree matrix
be D := diag({d;},), where d; = 2. wij. The graph Laplacian Lg of G, which can be
computed as: Lg = D — W, is used to form the following regularizer term:

Tr (8" LgS) = Z Z wijllsi — 3. (4.4)

i=1j=1

The term is then invoked into the model of MAXVAR criterion of MCCA to form the
objective function of GMCCA as given by:

min Z | X, W, — S|% +~yTr (STLgS),
{Wd}d 17

subject to STS = Iy, (4.5)

where « is the trade-off parameter, which controls the minimization of distance between
canonical variables and common source vectors, and smoothness of the common source
estimates over the graph G. Similar to the MAXVAR criterion of MCCA, the optimal
solution S* of the problem (4.5) can be obtained from the top d eigenvalues of the matrix

M
=) X (X7 X)X — yLg

v=1

and W,* as given in (4.3).

4.3 Formulation of SGR-MCCDA

The MCCA finds the optimal linear transformation without using the available prior in-
formation of class label or the known geometry of source vectors. Incorporating the prior
knowledge of class label or structural geometry of the data may improve the performance
of MCCA. Moreover, most of the MCCA based models consider equal weight of the views
to construct the low dimensional subspace. In this section, a supervised graph regular-
ized multi-view learning algorithm, based on the MAXVAR criterion of MCCA, has been
proposed, which uses the prior information of the data in a weighted average manner to
improve the performance in multi-class classification.
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4.3.1 MCCDA: Multi-View Canonical Correlation and Discrimination
Analysis

Suppose, the N source vectors {§n}f¥=1 are categorized into K number of classes {c1, co,
..., ci}. Then, the within-class scatter matrix (S;,) and between-class scatter matrix (S})
for v-th view can be computed from the following formula:

K
So= 20 2 —pb )@ — ) (4.6)
k=1’i€ck
K

Sy = 25 (@ — )@ — ), (4.7)
k=1

where z¥ is the mean over all the samples and pg, is the mean over the samples of the
class ¢y for the v-th view X,. The MAXVAR formulation of MCCA in (4.1) is modified
to incorporate the supervised information by adding an extra term —\ Tr(W.I SYW,) into
the objective function to obtain a new formulation given by:

M
min X, W, — 8|% - XTe(WLSsw,)],

{Wv}%wpsg [H 2 ( b )]

subject to ST = I,. (4.8)

The above formulation, different from the MAXVAR criterion of MCCA, maximizes the
between-class variance of each view in the projected space and hence minimizes the within-
class variance of each view while keeping the projected space as near as possible to the
common space S. The formulation is termed as multi-view canonical correlation and dis-
crimination analysis (MCCDA). The optimization problem of MCCDA can be solved using
Lagrangian multiplier method. Consider the Lagrangian function of the above problem:

M
f({WU}QZ)Vih S) = Z [HX’UW’U - SH%’ - )‘Tr(WESvi)] + TT{(STS - Id)A}7 (4'9)
v=1

where A is the diagonal matrix consisting of the Lagrange’s multiplier of each sub problem
of (4.8).
After simplifying, the expression (4.9) reduces to

M
FUWLLS) = [d — 2 Tr{STX, W, + WI(XTX, — )\S{j)”WU}] +Tr{(STS — I)A}.
v=1

(4.10)

Assuming A = 1 and substituting X7 X,, — ASP = XI'X, — S = SY into (4.10), the

w
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equation becomes
M
FUWLM,,S) Z [d — Tr(2ST X, W, — WISUW,)] + Te{(STS — I)A}.  (4.11)

The function f is convex in S, when {W,}M | is fixed and also convex in each of the
Wy, when S is fixed. The problem can be solved using alternating optimization method.
Keeping S fixed, the W,,-minimizer is given by the equation:

of
oW,

=0=—-2X15+25°W, =0

=W, = (52)" ' xTs. (4.12)
Keeping each of the W,-fixed, the S-minimizer is given by the equation

of M
ﬁz():_z;X“WUHSA:O

M
= —2) X, (54) ' XIS +25A =0

M
=57 [Z X, (52)7 ! XUT] S =A. (4.13)

v=1

The above expression suggests that the columns of S* consist of the top d principal eigenvec-
tors of the matrix Zf]w: L X, (82)7' XT' and in succession the W,-minimizer can be obtained
from the equation W* = (S%)~' XT'S*. The optimization procedure of MCCDA is given
in Algorithm 4.1.

Algorithm 4.1 Algorithm for MCCDA

INPUT: {X,}M, class label of the samples.

Compute the within-class scatter matrices {S2}M,.

Construct C' = szlX (se)ytxT.

Apply eigendecomposition on C' and take the d eigenvectors corresponding to the d
largest eigenvalues which will constitute the columns of S.

Compute {W, = (82)~' XTS}M

6: OUTPUT: S* and {W;}M,

o

Remark 4.1. At the optimum point, the minimum value attained by the objective function

of MCCDA will be (Md — Zf’:l )\i), where \; is the i’th largest eigenvalue of the matriz
M -1

ZU=1 XU (S;}l)) Xg
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Proof. Consider the objective function in (4.8) as

i

TAW3L1, 8) = D [IXoWo — S[3 — ATe(W, SpW,)]

v=1

||M§

d Tr (287X, W, — W SuW,)]  (See 4.8 to 4.11)  (4.14)
Substituting the values of {W, = (S2)"'XT'S}M | into (4.14), it reduces to

FUWNLLS) = 3 [a— e (257 x,(55)7xTS) — (84 XE )T sp((s8) X7

v=1
M M
= > d-Tr [ST (Z Xv(Sz,)leT> S]
v=1 v=1
= Md—Tr(A) (Using 4.13)
d
= Md— ) N,
i=1

where \; is the i’th largest eigenvalue of the matrix Zszl X, (52)"* XT'. This concludes
the remark. ]

4.3.2 Supervised Graph Regularized MCCDA (SGR-MCCDA)

The objective function of (4.8) is modified further to consider a suitable weight, w,, for each
view, X, so that multiples views are integrated according to their relevance. An entropy
term involving w, is also added to the objective function to avoid the trivial solution on
the weights. The modified objective function is given by:

M M
min Z wy [| XoWy — S|F — )\Tr(WgSgWU)] + Z wy log wy,
{vawv}{)u 175 =1
subject to STS =I5 wll1=10<w, <1, w=[w,w,...,wy]". (4.15)

Consider that the structural geometry of N common source vectors can be represented
as a graph G : (V, W), where V denotes the vertex set {$1,382,...,8x5} and W is the set
consisting of all the edge weights w;;(> 0) between the vertices ¢ and j (¢, j € V). Exploring
the idea of [284], two new graphs Gy : (V1, W) and Gp : (V2, Wa) are constructed using
the class labels, where V; = Vo = V. The W, is the set of edge Weights wl defined by

le = w;j, if the vertices 7 and j belong to the same class and w =0 elsewhere The
Wy denotes the edge Welghts w . defined by w = wjj, if the Vertlces i and j belong to
different classes and wzj =0 elsewhere The QW and Gp are known as the within-class
and between-class graphs Let Aq and As be the weighted adjacency matrices formed by

the edge weights wl- and w?;, respectively. Define d} = Z;V 1w and d? = Z;V LW,

’Lj’ Z]’
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and construct the degree matrices as Dy := diag({d'i}Y |) and Dy := diag({d%}},). The
Laplacian matrices for the graphs Gy and Gp can be computed as Lg,, = D1 — Ay, and,
Lg, = Dy — Ay. Now, define a new Laplacian graph by using Lg,, and Lg, as

Lg =aLg,, — (1 —a)Lg, (4.16)

The prior knowledge of graph structure of the source vectors is incorporated into the
proposed model. Assume that the source vectors {3;})¥, are smooth over G, which sug-
gests that two source vectors, s; and s; corresponding to the connected nodes 7 and j,
respectively, stay close to each other in euclidean distance. The graph Gy suggests that
the nodes belonging to the same class are connected, whereas the graph Gp establishes
the connection between the nodes of different classes. A graph regularizer term, which is

constructed using the knowledge of both the within-class and between-class graph, is given
by

N N
T / 2
r (5% LgS) 2 >, wijllsi = 53, (4.17)
i=15=1
where s; and s] are d-dimensional approximations of the source vectors §; and s;, respec-
2
tively, and, wj; = awy; — (1 — a)wy;.

It is clear from the definition of wz-j that the large positive value of ng will bring the
adjacent nodes ¢ and j, belonging to the same class, closer and larger negative value of
w! ;; will make the nodes ¢ and j, belonging to different classes, far apart in the projected
space. To use the prior geometry of the data and labels, the term (4.17) is included as a

regularizer into (4.15), resulting in a new formulation

M

min Z wy [[XoWy = S|F = ATe(W, SEW,) + vlogw, | + BTr (ST Lg S)
S{Wv,wu}v 1o=1
subject to STS =1, wil=1, 0<w, <1, w= [wi,wa, ... ,wM]T. (4.18)

This formulation is termed as supervised graph-regularized weighted MCCDA (SGR-MCCDA).
The proposed SGR-MCCDA method is pictorially represented in Fig. 4.1, along with
MCCA-MAXVAR and MCCDA. It also gives a brief overview of the construction of the

discriminative subspace.

4.3.3 Optimization of SGR-MCCDA
Consider the objective function of SGR-MCCDA as

M
T (W, wo}sly, 8) = wy [| XWy = Sl5 — ATe(W,] SgW,,) + ylogw,] + B Tr (ST Lg:S)
v=1

(4.19)
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Source space (5) Source space ()

Given views Given views

“y

T g2 i
WS, W2 SiWe |

v A

XTS:X. : Between-class scatter l .
} ’ i e Obtained common space (S)
i omin > X, W, - S|F

i{w,z);,’:,.sv:l i

Label vector

T Q2 .
WS, Wi, WESW

X Z Sy X, : Between-class scatter

SGR-MCCDA

i M M !
' o mi}nM SZwU [ X, W, — S||% — )\Tr(WvTS,’,’WU)] +72wv logw, + BTr(STLg S) :
! vsWo fy—159 T v=1 i

Figure 4.1: Pictorial representation of MCCA-MAXVAR, proposed MCCDA, and proposed
SGR-MCCDA.
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The objective function, J({Wy,w,}*,,S5), involves the variables {W,}, S {w,} | to
be optimized. To solve this, an alternating optimization technique is adopted, where each
variable is updated iteratively while other variables remain fixed. Consider the Lagrangian
function of (4.18) as

M
2 [1XoWy — S|3 — ATe(W. SgW,) + ylogw,| + BTr (ST Lg:S)

Te{(STS — I;)A} — N (f Wy — 1) (4.20)

v=1

Simplifying the above expression and taking A\ = 1, the Lagrangian in (4.20) reduces to
M
L=> wy|d-Tr25" X, W, - W] SLW,) + ylogw,] + BTr (ST Lg:S)
v=1

M
Tr{(STS — I;)A} — N <Z Wy — 1) (4.21)
v=1

4.3.3.1 Update Projection Matrix

If S and w, are fixed, the last three terms of the Lagrangian in (4.21) can be treated as
constant. Taking partial differentiation of (4.21) with respect to W, and equating it to 0
gives

oL

= —2XTS +925°W, =
W, 0= 2 S+ 25, W, =0

=W, = (S) ' X8, (4.22)

4.3.3.2 Update Common Space

Fixing W, and w,, the terms involving them in (4.21) can be treated as constant and thus
taking the partial differentiation of L with respect to S and equating it to 0 gives

oL
55 = 0= 2;wvxw +26LgS +2SA =0
= — Zwv 1 XTS + BLgS +SA =0

7M
Z YXT — BLg | S = A. (4.23)
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The relation (4.23) suggests that S consists of top d eigenvecctors of the matrix
M
C =) wXy (Sh) X} — BLg:. (4.24)
v=1

4.3.3.3 Update View Coefficient

Fixing W, and S, the terms involving them in (4.21) can be taken as constant. Therefore,
taking the partial differentiation of L with respect to w, and equating it to 0 gives

oL
Owy

=0=r, +7(l +logw,) — N =0 (4.25)

)\,77‘1; 1

=wy =€ 7 , (4.26)

where r, = d — Tr(25T X,W,, — WISUW,). Again, from (4.25), the value of )’ is given by
N =71, + (1 + logw,). (4.27)

Now, substituting the values of w, from (4.26) into the equation Zf)w: L wy = 1 gives
Mo,
A —ry -1
e =1 (4.28)
v=1

Substituting the value of X' and simplifying the above equation, the updation rule of w,
can be obtained as

S — (4.29)
Solie T

The combined iterative rule (4.22), (4.23) and (4.29) gives the required shared space S and
projection matrices {Wv}f)wzl upon convergence. Later the projection matrices are used to

project the data into common latent space. The optimization procedure of the proposed
SGR-MCCDA is described in Algorithm 4.2.

Remark 4.2. When the dimension of the data matrix is very high compared to the sample
size, that is, d, >> N, the within-class scatter matriz, S}, will become singular, which
makes the matriz non-invertible and yields undesirable solution to the problems of (4.8)
and (4.18). Similar to an analysis reported in [43], a dual formulation of SGR-MCCDA
can be adopted for such cases. However, to tackle this problem, one may also use a low rank
approximation of the scatter matrices to find the inverse of the matrices. In the current
study, eigendecomposition is used to approximate the scatter matrix and find the inverse of

it. The following formula is used to find the inverse of the within-class scatter matriz of
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Algorithm 4.2 Algorithm for SGR-MCCDA
INPUT: {X,}M, d, v, B, a, class label of samples.

v=1>
INITIALIZE w, = 1/M forv=1,2,..., M.
Construct Lg: using (4.16).
while not converge do
Compute C = Zivil we Xy (S2) P XT — BLg
Apply eigendecomposition on C and take the d eigenvectors corresponding to the
d largest eigenvalues which constitute the columns of S according to (4.23).
Update W, according to (4.22).
Update w, according to (4.29).
9: end while
10: OUTPUT: S* and {W}}M ..

v

the v-th view.
R
Sy = > drurul” (4.30)
r=1

where o7 is the r’th largest eigenvalue and u? is the corresponding eigenvector of the v-
th within-class scatter matriz; R is the optimal rank, chosen in such a way that the 99%

variance of the matriz is retained.

Remark 4.3. In the experiment, the prior graph information (Lg:) of the estimated source
vectors can effectively be obtained from the existing views [43]. Consider, AW s the adja-
cency matriz of the v’th view, X,, consisting of the edge weights, Wi, between the i’th and
J'th samples. The wj; is defined below as:

=y —af)?
wts = e o2 z} € Ni(x}) or zff € Ni(a}) (4.31)
0 otherwise

where Nk(:n;) 1s the set of all points belonging to k-nearest neighbor ofxg. The edge weights,

g ; M
wyj, used in the current study can be taken as wi; = Y Wi

4.4 Theoretical Analysis

This section presents some of the important properties, convergence analysis and compu-
tational complexity analysis of the proposed SGR-MCCDA algorithm.
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4.4.1 Important Properties

Theorem 4.1. Given «, 5 and vy, the minimum value of the objective function of SGR-
MCCDA for a fixed set {w,}, is [d — 2?21 i + W’Zij\il wy log wv] , where \; is the i-th largest
eigenvalue of the matriz C of (4.24).

Proof. Consider the reduced form of the objective function in (4.18) as

M
wy [d — Tr(287 X, W,)] 2 wy Tr(WSEW,) + 4 | wy logwy

Mz

¢7({LV57“W}SLIVS)::

v=1 v=1
+BTr (STLg:S). (4.32)
Substituting the values of {W, = (S%)~ !XT S}, into (4.32), it reduces to
j({mev}z];\ila Z d T ( STXU(S;}])_lXZS)]
. —
Z ((Se) ' XTS)TSL((S) ' XES)} + ylogw, | + BTr (STLgS).  (4.33)
After simplifying, (4.33) becomes
M M
T (W, w, M, S) Z [d + ~vlogw,] — Tr [ST {Z weXo(SY) T txT — ﬁLg/} S] .
v=1 v=1

(4.34)

Using (4.23), the minimum value of the objective function J({W,,w,}M ,S) of (4.34)

becomes

M

J* =d+’waylong—Tr(A)
v=1

d M
= d—Zx\i —|—’wa@10ng.
i=1 v=1

This concludes the theorem. [ |

Corollary 4.1. Ifw, = 1/M forv=1,2,..., M, then, the minimum value of the objective
function of SGR-MCCDA is [d - L (22?’:1 5; + vM log M)] where & is the i-th largest
etgenvalue of the matrix Zf)w:l X, (S3) ' X' — BM Lg.
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Proof. From Theorem 4.1, the minimum value of J ({W,,w,}M ,,S) is

d M
* :d—E)\i+'wavlong (4.35)

where J; is the i-th largest eigenvalue of the matrix C' of (4.24). Substituting w, = ﬁ, Yo,
into (4.24) and (4.35), the minimum value of J ({W,,w,} ., S) becomes

J=d- ZA +’yZ—log—

=d—2)\i—fylogM (4.36)

i=1
where ); is the i-th largest eigenvalue of the matrix Zszl =X, (82)"' XTI — BLg. Now,
if \ is an eigenvalue of a matrix ﬁA, then M\ is an eigenvalue of the matrix A. Hence,

the expression (4.36) can be written as
1
J = [d S <Z 8 + M log M)] (4.37)
i=1

where §; = M), is the i-th largest eigenvalue of the matrix Y2 | X, (82) ' XTI — M Lg.
|

Corollary 4.2. If 7 and J* be the minimum values of the objective function J ({Wy,wy}M,, 9)
of SGR-MCCDA for the equal and unequal weights, respectively, then

_ 1 M M
T =T >+ g Tr(A,) — M ;{Trmv)}? <0,

where A, = X, (S2) ' XT.

Proof. From Theorem 4.1, the minimum value of J ({W,,w,}} ,, S) for unequal weights is
J*, which is given in (4.35). From Corollary 4.1, the minimum value of J ({W, w,}*,, S)
for equal weights is J, which is given in (4.37). Subtracting (4.37) from (4.35), we get

d M

d
= Z —i—’ylogM—Z)\i-i-’)/Zwleng
b} i=1 i=1

d M
Z ) +7 (logM + Zwv long) : (4.38)

=1
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Since 7y <logM +3M W, log wv> > 0, (4.38) reduces to

d d
*7*_72]\14<25@'—M2Ai)' (4.39)
i=1 i=1

Using the relationships between the eigenvalues of a matrix and its trace, the right-hand
side of (4.39) reduces to

1 U o
= M Z TI“(AU) — ,BTI“(Lg/) — Z Wy TT(AU) + ﬁTl"(Lg/)
v=1 v=1
1 M M
- 3 Tr(Ay) = D wy Tr(Ay). (4.40)
v=1 v=1

Applying Cauchy-Schwartz inequality on w, (= 0) and Tr(A,)(= 0), v = 1,2,..., M, the
following holds

M 2 M M
{Z Wy Tr(AU)} < > w? D {Tr(A,)}). (4.41)
v=1 v=1 v=1
Moreover,
M M
Dwy=1= >lw?<L (4.42)
v=1 v=1

Combining (4.41) and (4.42), we get

(4.43)

(4.44)
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Again,

2
= (f Tr(AU)> < M? Z{Tr »)}? (since M > 0)

(4.45)

Therefore, using (4.45), (4.44) becomes

. B 1 M M )
T =T = ; ZTr(Av)—M Z{Tr(Av)} <0

4.4.2 Convergence Analysis

Theorem 4.2. The iterative rule described in Algorithm 4.2 is guaranteed to converge.

Proof. Recall the objective function of the SGR-MCCDA, J ({W,,w,}M ;,9), and assume
that W, w! and S* are the values of W,, w, and S derived at the ¢-th iteration. To prove

the convergence of the proposed algorithm, the following two conditions must hold:

e the objective function is bounded below, that is, J({Wy,w,}*L,, S) = K, where K is

some constant;

e the objective function decreases monotonically with the iteration, that is,

T{W, w1y, 87 < T((W, wihily, 8°)

’ U

From the Corollary (4.2), it can be written that

Q
|

J* =

M
Z }Z—I-fZTr

Assuming K = J — \/Ziwzl{Tr(Av)}? + L 3M Tr(A,), it can be concluded that the
objective function J ({W,,w,}*,,S) is bounded below.
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Now, at the (t-+1)-th iteration, keeping {w!}M | fixed, the update rules (4.22) and (4.23)
together imply that the optimization problem (4.18) can be considered as the subproblem
given by

M
max Tr [ST {Z Wt X, (SU) T tx T — BLQI} S]

v=1

subject to STS =1, (4.46)

where S can be obtained from the eigendecomposition of the matrix Zﬁ/i JwE X, (S8t xT -~
BLg and W, can be obtained from (4.22). Therefore, it can be written that

(Wl 871 = argmin J({Wo}iL,, 8, {w)}oly);

{WU}»{)/[:l?S

which suggests that

j({Wngl}vM:la St+17 {wfi}’zj)wzl) < j({W57 wfj}’{)\ih St) (447)
Once {WITHM = and S'*! are obtained, {w!*1}M | will satisfy the following minimization
problem:

{W?l}ﬁl = argmin J({Wfl’wv}uM:la S, (4.48)
{wv}’L]}l:l

Thus,

JEW w Ly, 87 < T wi il 8. (4.49)

Combining (4.47) and (4.49), it can be concluded that
Ty Wi, 87 < T, Wikl 5, (4.50)

which indicates that the second condition holds true. Therefore, the convergence of the

Algorithm 4.2 is guaranteed. |

4.4.3 Computational Complexity Analysis

This section briefly presents the computational complexity of the proposed SGR-MCCDA
algorithm. For convenience, assume that p = max,{d,}, where d, is the dimension of the
v-th view X,,. The computational cost for executing each step of Algorithm ?7 is outlined
below.

1. The time cost for the initialization step is O(M).
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2. The computational cost to construct the graph Laplacian Lg: is O(n?).

3. In Step 5 of the Algorithm 4.2, the cost for computing the class scatter matrices
{SVIM | is O(Mnp?) and the inverse calculation takes O(Mp?) time. To compute the
n x n matrix C, the time complexity is O(M (p?n+n?p+p?)) + O(n?). Therefore, the
total computational cost for this step is O(Mnp? + Mp3+Mp?*n+ Mn2p+Mp?+n?) ~
O(p® + n?), since M << p,n.

4. The time complexity of computing d eigenpairs of the matrix C' is O(dn?).
5. The computational cost for updating {W,}*, is O(M (p3+p*n+pnd)) ~ O(p>+p*n).

6. The computational cost for updating {w, }) | is O(M (pnd+d?p+dp*+d)) ~ O(d*p+
dp?).

Therefore, the total computational complexity of the proposed algorithm is O(M + n? +
7(p® + n? + dn? + p3 + p?n + d?p + dp?)) ~ O(7(p> + p*>n + dn?)), where 7 is the number
of iterations required to converge the iterative procedure. The complexity is expressed in
terms of the sample size n, the feature size p of the largest view, and the reduced dimension
d. The complexity can also be written as O(p®) or O(dn?) depending on the condition of
n << por p << n. Note that, for the case when feature size p is very high compared to the
sample size n, the eigendecomposition in Step 4, which is one of the time consuming step,
takes O(dn?) time cost. This makes the algorithm efficient for “large p small n" problem.

4.4.4 Comparison of CSP-MvCDA and SGR-MCCDA

This section presents the statistical difference between CSP-MvCDA, proposed in Chapter

3, and SGR-MCCDA, proposed in this chapter. The SGR-MCCDA is different from CSP-
MVCDA in terms of the following three aspects.

e The regularizer term, included in the objective function of CSP-MvCDA, captures
the local class-structure of the data and aggregates class-geometry from each of the
views. On the other hand, the regularizer term, included in SGR-MCCDA, depends
only on the class-geometry of the common source space.

e The CSP-MvCDA algorithm considers equal relevance of each view while constructing
the common discriminative latent space, whereas the SGR-MCCDA computes the
relevance of each view for constructing the common discriminative latent space.

e The SUMCOR criterion of MCCA forms the basis of CSP-MvCDA, while the MAX-
VAR criterion of MCCA forms the basis of SGR-MCCDA. When the sample size
is very small compared to the feature size, the execution time of SGR-MCCDA is
significantly reduced. On the other hand, when the feature size is smaller than the
sample size, the CSP-MvCDA executes faster than the SGR-MCCDA.
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Table 4.1: Descriptions of Data Sets Used in the Study

Data Sets  Sample Feature Type(Feature Size) Class
w1: RNA Sequence (13465)

wo: Protein expression(222)

CRC 261 ws: miRNA Sequence(236) 2
wyg: DNA methylation (293526)
wy: Gene expression (12042)
GBM 513 wo: miRNA expression (534) 5

ws: DNA methylation (21422)
wy: Copy number segmentation (4070)

w1: English (21531)
wa: French (24892)
Reuters 18758 ws: German (34251) 6
wyq: Italian (15506)
ws: Spanish (11547)

w1: Gabor (48)
wo: Wavelet moments (40)
ws: Cenbhist (254)

Caltech-20 2386 ws: Hog (1984) 20
ws: Gist (512)
we: Local binary patterns (LBP) (928)
wy: Shape descriptor (64)
100Leaves 1600 wy: Fine scale margin (64) 100

ws: Texture histogram (64)

4.5 Experimental Results and Discussion

This section describes the experimental study comprehensively and analyzes the perfor-
mance of the proposed method, called SGR-MCCDA, with respect to different state-of-
the-art multi-view classification algorithms, namely, MAXVAR-MCCA [129], GMA [222],
MULDA [239], MvDA [124], MvDA-VC [124], MvCCDA [292], ReDMiCA [164], GMCCA
[43], DMvTSVM-AE [278], and SMDDRL [116]. Among these methods, the DMvTSVM-
AE and SMDDRL are deep learning algorithms. The experiments are conducted on five
cancer data sets and eight benchmark data sets. The cancer data sets are obtained from
TCGA. Three cancer data sets, namely, BRCA, CESC, and LGG are already described
in Chapter 3, and two new cancer data sets, namely, colorectal carcinoma (CRC) and
glioblastoma multiforme (GBM) are added in this chapter to conduct the experiments. On
the other hand, out of eight benchmark data sets, four data sets, namely, CiteSeer, Cora,
NW-Object, Caltech-101, and ALOI, are already described in Chapter 3, and the three new
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data sets, namely, Reuters® (multilingual document data set), Caltech-20? (image based
object data set) and 100Leaves® (one-hundred plant species leaves data set) are added in
this chapter for the experiments. A brief description of the newly added data sets are given
in Table 4.1 and their detailed description can be found in Appendix A.

Similar to the experimental setup of Chapter 3, both the train-test and 10-fold cross
validation (CV) setup are used to conduct the experiment. To compare the performance
of all the methods, top 25 features are extracted except MvCCDA and two deep learning
algorithms, namely, SMDDRL and DMvTSVM-AE. The MvCCDA effectively generates ¢
number of features, where c is number of classes present in the data. For these three meth-
ods, the optimal number of features extracted by them, are used to report the classification
accuracy. The support vector machine (SVM) with linear kernels is used to compute the
classification accuracy. Two significance tests, namely, paired sample t-test and Wilcoxon’s
signed rank test, are carried out, and the associated p-value is presented, to determine the

statistical significance of the proposed technique in 10-fold CV setup.

Table 4.2: Parameter Analysis of SGR-MCCDA on Different Data Sets

Data Proposed Parameter Optimization Exhaustive Search
Sets (v,8,a) TrainAcc TestAcc TestAcc (v7,8,)
BRCA (10, 0.7, 0.9) 0.9917 0.8375 0.8375 (10, 0.7, 0.9)
CESC (10, 0.5, 0.1) 0.9843 0.8166  0.8671 (100, 0.5, 0.3)
CRC (1, 0.7, 0.8) 0.9930 0.9148  0.9259 (0.1, 0.7, 0.8)
LGG (10, 0.5, 0.1) 0.9942 0.9842 0.9842 (10, 0.5, 0.1)
- GBM (100, 0.001, 0.2) 0.9375 0.8417 0.8417 (100, 0.001, 0.2)
O CiteSeer (10, 0.01, 0.1) 0.7877 0.6897 0.6897 (10, 0.01, 0.1)
% CORA (10, 0.3, 0.1) 0.9278 0.7875  0.7915 (10, 1, 0.1)
& Reuters (100, 1, 0.1) 0.8944 0.8764 0.8789 (100, 1, 0.2)
—  Caltech-101 (10, 0.0001, 0.1) 0.9531 0.8201 0.8201 (10, 0.0001, 0.1)
Caltech-20 (100, 0.001, 0.5) 1.0000 0.9672 0.9672 (100, 0.001, 0.5)
NW-Object (10,0.001,0.2) 0.4561 0.4387  0.4449 (10,0.001,0.4)
ALOI (10,0.0001,0.4) 0.9998 0.9933 0.9933 (10,0.0001,0.4)
100Leaves (10, 0.1, 0.1) 1.0000 0.9840 0.9840 (10, 0.1, 0.1)
BRCA (10, 0.5, 0.8) 1.0000 0.7273 0.7273 (10, 0.5, 0.8)
CESC (100, 0.001, 0.4) 0.9615 0.7884  0.8216 (100, 0.01, 0.2)
CRC (100, 0.3, 0.8) 0.9924 0.8692 0.8692 (100, 0.3, 0.8)
LGG (10, 0.001, 0.1) 0.9947 0.9785 0.9785 (10, 0.001, 0.1)
. GBM (100, 0.7, 0.9) 0.9815 0.7810  0.7920 (100, 0.5, 0.9)
£ CiteSeer (100,0.01,0.1) 0.8032 0.6848 0.6848 (100,0.01,0.1)
& CORA (100, 0.001, 0.3) 0.9469 0.7647 0.7647 (100, 0.001, 0.3)
‘T Reuters (10, 0.7, 0.1) 0.9496 0.8655 0.8655 (10, 0.7, 0.1)
= Caltech-101 (100,0.001,0.1) 0.9538 0.6160 0.6160 (100,0.001,0.1)
Caltech-20 (100, 0.001, 0.3) 1.0000 0.9544 0.9544 (100, 0.001, 0.3)
NW-Object (100,0.001,0.4) 0.4432 0.4091  0.4217 (100,0.001,0.3)
ALOI (100, 0.01,0.1) 0.9982 0.9712 0.9842 (100, 0.001,0.1)
100Leaves (100, 0.0001, 0.5) 1.0000 0.9713 0.9713 (100, 0.0001, 0.5)
Thttps://github.com /yeqinglee/mvdata

Zhttps://github.com /yeqinglee /mvdata
3https:/ /archive.ics.uci.edu/ml/datasets /One-hundred +plant+species-+leaves+data-+set
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Figure 4.2: 3D bar plot of classification accuracy on the test set over 10-fold cross-validation
for the parameters «, 8 and . The lighter shade denotes the better classification accuracy.
Top row: 100Leaves; bottom row: Caltech-20.

4.5.1 Parameter Analysis

The proposed SGR-MCCDA model has three parameters, namely, «, v and 3, which are
required to be tuned. A grid search strategy is followed to find out the optimal param-
eters. The parameter « signifies the balance between the within-class and between-class
graph information of the data, and is varied from 0.0 to 1.0 having step size of 0.1. The
parameter 8 emphasizes the contribution of the term consisting of structural informa-
tion into the performance of the proposed model. The value of 5 belongs to the set
{0.0001, 0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. The entropy term responsible
for obtaining suitable weight distribution among multiple views is controlled by the param-
eter . The parameter + is varied in a log-scale and taken from the set {0.1, 1.0, 10.0,100.0},
because the weights can increase or decrease exponentially according to (4.29). The opti-
mal parameter is chosen based on best classification accuracy obtained over the training
set. The optimal parameters along with the corresponding training accuracy (TrainAcc)
and test accuracy (TestAcc) are reported in Table 4.2 for both the experimental setup.
The classification accuracy of the test set based on the exhaustive search procedure is also
reported in Table 4.2 under the column "ExhaustiveAcc" to evaluate the effectiveness of
optimal parameters. The results in Table 4.2 show that the difference between the test ac-
curacy obtained for the optimal parameters and that obtained by exhaustive search process
is either zero or not significant enough for most of the cases.

To analyze the sensitivity of the parameters «, 3, and -, the variation of the classifica-
tion accuracy over the test set of 10-fold CV for these parameters, is presented by 3D-bar
plot in Fig. 4.2. The figure describes that the parameter « is sensitive to the choice of
values in the range of {0.1,1.0,10.0,100.0}, as the variation of the classification accuracy is
comparatively high with respect to the parameter «. This is justified because the relevance
of each view for constructing common latent space is controlled by the parameter v. On
the other hand for a particular value of -, the classification accuracy does not differ much
for the parameters o and § in the range of 0.1 to 1.0. But, it is also worth noting that the
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classification accuracy varies a lot if the values of 8 change in the range of 0.0001 to 0.1.
This signifies that the model is less sensitive to the parameters o and 3 in the range of 0.1
to 1.0 but sensitive to 8 in the range of 0.0001 to 0.1.

4.5.2 Ablation Study

The proposed SGR-MCCDA method is evaluated under different conditions to justify the
role of including graph knowledge of the estimated source vectors and learning proper
weight for each view instead of considering equal weights. The ablation study indicating
the classification performance of the proposed method over the five cancer data sets and
eight benchmark data sets is given in Table 4.3. The results show that when § # 0, that is,
when the structural geometry is incorporated into the proposed model, the classification
performance of the model increases compared to the model, MCCDA, when 8 = 0. Again,
the proposed model (3 # 0) is examined under two different scenarios: first, equal weights
are considered for all the views; second, an appropriate weight for each view is learned while
integrating multiple views. From Table 4.3, it is clear that the model, SGR-MCCDA, where
the weight for each view is learned iteratively, obtain the best classification accuracy for
all the thirteen data sets except for GBM and NW-Object in train-test case. It is also
noticeable that for LGG, the performance is same across all different conditions, which
suggests that incorporating graph knowledge might not improve the performance but did
not degrade the performance as well. The weights learned by the proposed method is given
in Table 4.4.

4.5.3 Comparative Performance Analysis

In this section, the classification performance of the proposed method is compared with
that of different state-of-the-art algorithms on real cancer and benchmark data sets.

4.5.3.1 Classification Results on Omics Data Sets

To show the efficacy of the proposed model, the classification accuracy for both the 10-fold
CV and train-test setup is presented in Table 4.5 for five cancer data sets, namely, BRCA,
CESC, CRC, LGG and GBM. The mean, median and standard deviation are reported for
10-fold CV and the p-values corresponding to paired t-test and Wilcoxon signed rank test
are presented to prove the statistical significance of these results. From Table 4.5, it is
clear that the proposed SGR-MCCDA has achieved highest classification accuracy on all
the five cancer data sets for both the experimental setup. For BRCA and CESC, where
most of the existing methods have very low classification score, the proposed model has
obtained almost 73% and 79% in train-test setup and 84% and 82% in case of 10-fold
CV, respectively. The classification performance for LGG data set is also similar. The
results signify that considering both the shared correlated structure of multiple views and
intra-view discrimination to obtain the common space is more useful than considering only
the intra-view and inter-view discrimination, which have been used in MvDA, MvDA-VC
and MvCCDA. Taking only the intra-view and inter-view discrimination, and ignoring the
correlation among multiple views may encounter undesired information, which may degrade
the performance. In case of CRC data set, most of the existing models have performed
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Table 4.3: Ablation Study of SGR-MCCDA on Different Data Sets

MCCDA (8 = 0)

Data Sets Accuracy Accuracy (10-fold)
(Train-Test) Mean Median StdDev

BRCA 0.697 0.800  0.813 0.104
CESC 0.692 0.750 0.750 0.083
CRC 0.862 0.904  0.914 0.050
LGG 0.968 0.984 0.974 0.013
GBM 0.800 0.804 0.792 0.053
CiteSeer 0.647 0.650  0.653 0.016
Cora 0.740 0.760  0.762 0.018
Reuters 0.856 0.853 0.851 0.009
Caltech-101 0.544 0.808  0.800 0.014
Caltech-20 0.886 0.903  0.901 0.005
NW-Object 0.419 0.422 0.422 0.012
ALOI 0.938 0972  0.974 0.006
100Leaves 0.956 0.967  0.978 0.008

SGR-MCCDA (8 # 0)
Equal weight Proposed weight

Data Sets
Accuracy Accuracy (10-fold) Accuracy Accuracy (10-fold)

(Train-Test) Mean Median StdDev (Train-Test) Mean Median StdDev

BRCA 0.712 0.831 0.844 0.089 0.727 0.838 0.844 0.085
CESC 0.788 76.667  75.000 8.975 0.788 0.817 0.833 0.090
CRC 0.869 0.911 0.926 0.038 0.877 0.915 0.926 0.041
LGG 0.973 0.984 0.974 0.013 0.978 0.984 0.974 0.013
GBM 0.771 0.825 0.813 0.486 0.781 0.842 0.833 0.039
CiteSeer 0.683 0.683 0.686 0.028 0.685 0.690 0.695 0.022
Cora 0.764 0.771 0.777 0.023 0.765 0.785 0.789 0.020
Reuters 0.864 0.874 0.874 0.008 0.866 0.876 0.874 0.008
Caltech-101 0.606 0.812 0.812 0.012 0.616 0.820 0.820 0.009
Caltech-20 0.942 0.956 0.957 0.010 0.954 0.967 0.967 0.005
NW-Object 0.419 0.431 0.432 0.009 0.409 0.439 0.438 0.007
ALOI 0.968 0.985 0.985 0.003 0.971 0.993 0.993 0.003
100Leaves 0.961 0.981 0.983 0.006 0.973 0.984 0.985 0.009

well. It happens probably because of the less number of classes (K = 2) present in the
CRC data. Among all the existing methods, the deep learning method, DMvTSVM-AE,
has noticeable performance in all the four cancer data sets. In fact, for BRCA and CRC,
it obtains second best classification accuracy for both the train-test and 10-fold CV setup.
The ReDMiCA has attained second best classification score on LGG data for the train-test
set up. From the table, it can be seen that all the p-values, except for the MvDA-VC and
DMvTSVM-AE, are significant. The MvDA-VC and DMvTSVM-AE models correspond
non-significant p-value for CRC and the DMvTSVM-AE gives non-significant p-value for
GBM with respect to the proposed model. The non-significant p-value indicates that the
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Table 4.4: Proposed View Weights for SGR-MCCDA

Data sets w1 wo w3 w4 ws we
BRCA 0.2554 0.2426 0.2588 0.2432 - -
CESC 0.2519 0.2477 0.2517 0.2487 - -
CRC 0.2610 0.2387 0.2380 0.2623 - -
LGG 0.2083 0.1989 0.2058 0.1789 0.2081 -
GBM 0.2508 0.2491 0.2424 0.2577 - -
CiteSeer 0.2476 0.2498 0.2500 0.2526 - -
Cora 0.2498 0.2544 0.2508 0.2449 - -
Reuters 0.1977 0.1868 0.2198 0.1852 0.2105 -

Caltech-101 0.1736 0.1731 0.1729 0.1502 0.1675 0.1627
Caltech-20  0.1879 0.1863 0.1827 0.1268 0.1632 0.1530
NW-Object 0.2000 0.2001 0.2002 0.1998 0.1999 -
ALOI 0.2591 0.2539 0.2412 0.2458 - -
100Leaves 0.2795 0.3604 0.3601 - - -

two models have similar distribution of classification accuracy over 10-fold CV.
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Figure 4.3: Variation of classification accuracy with respect to the number of extracted
features for the proposed (SGR-MCCDA) and existing methods on Omics and benchmark
data sets (top-row: training-testing, bottom-row: 10-fold CV; left-to-right: BRCA, LGG,
GBM, Cora, Caltech-20).

Fig. 4.3 shows the variation of classification accuracy with respect to the number of
extracted features for the proposed as well as existing methods. The classical method
MvCCDA and two deep learning methods, SMDDRL and DMvTSVM-AE, are excluded
from this analysis. The feature versus accuracy curves are shown for three cancer data
sets, namely, BRCA, LGG and GBM. Note that the mean classification accuracy is taken
to plot the curves for 10-fold CV. Also, the scatter plots for the top two extracted features
are given in Fig. 4.4 for LGG data. From Fig. 4.3, it is clear that the proposed model
has an increasing curve of classification accuracy with respect to the number of extracted
features for both the experimental setup. Moreover, it is worth noting that as the number
of features approaching to 25, the curve is getting flat indicating the saturation in the
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Table 4.5: Classification Accuracy of Proposed Method (SGR-MCCDA) and Different Al-

gorithms on Cancer Data Sets

Accuracy and Significance Analysis for 10-fold CV

Different Data  Accuracy Time
Algorithms Sets  (Train-Test) Mean Median StdDev Paired-t:p Wilcoxon:p (Sec.)
MCCA-SUMCOR [106] 0.288 0.306 0.319 0.055 5.50E-08 1.95E-03 31.2
MCCA-MAXVAR [129] 0.212 0.300 0.300 0.097 3.97E-07 1.95E-03 18.6
GMA [222] 0.424 0.538 0.531 0.109 4.89E-04 3.91E-03 33.0
MvDA [124] 0.318 0.431 0.375 0.100 2.08E-05 1.95E-03 14.1
MvDA-VC [124] 0.303 0.400 0.400 0.079  2.92E-06 1.95E-03 15.2
MULDA [239] 5 0.561 0.381 0.406 0.123  1.69E-05 1.95E-03 76.5
MvCCDA [292] g 0.455 0.569 0.625 0.095 2.72E-04 1.95E-03 0.9
ReDMICA [164] 0.424 0.413  0.400 0.119  2.34E-06 1.95E-03 5774.5
GMCCA [43] 0.288 0.300  0.319 0.131 8.47E-06 1.95E-03 49.4
DMvTSVM-AE [278] 0.692 0.615  0.615 0.843 9.44E-04 5.86E-03  147.7
SMDDRL [116] 0.373 0.474 0.481 0.086 9.23E-07 1.95E-03 1.8
SGR-MCCDA 0.727 0.838 0.844 0.085 - - 2.4
MCCA-SUMCOR [106] 0.385 0.458 0.458 0.137 3.51E-08 1.95E-03 6.0
MCCA-MAXVAR [129] 0.385 0.300 0.333 0.143  3.97E-07 1.95E-03 15.9
GMA [222] 0.462 0.558 0.625 0.124 1.29E-05 5.32E-03 10.4
MvDA [124] 0.423 0.467  0.492 0.153  2.71E-05 1.95E-03 15.5
MvDA-VC [124] 0.404 0.500 0.467 0.142  3.29E-06 1.95E-03 21.9
MULDA [239] 8 0.769 0.483  0.417 0.170  1.09E-05 1.95E-03 50.7
MvCCDA [292] 8 0.712 0.833 0.833 0.091 3.51E-04 1.95E-03 0.4
ReDMiCA [164] 0.500 0.567  0.608 0.203 1.24E-07 1.95E-03 5162.4
GMCCA [43] 0.423 0.492 0.492 0.144 5.47E-06 1.95E-03 51.4
DmvTSVM-AE [278] 0.650 0.730 0.700 0.078 7.21E-04 2.16E-04 1474
SMDDRL [116] 0.423 0.390 0.381 0.079 7.13E-08 1.95E-03 1.8
SGR-MCCDA 0.788 0.817 0.833 0.090 - - 2.3
MCCA-SUMCOR [106] 0.738 0.607  0.741 0.104 1.70E-07 1.95E-03 14.7
MCCA-MAXVAR [129] 0.600 0.704 0.737 0.080 7.54E-06 1.95E-03 16.0
GMA [222] 0.792 0.800 0.796 0.058 6.22E-04 1.95E-03 32.8
MvDA [124] 0.808 0.848 0.852 0.039 7.25E-04 7.42E-03 6.2
MvDA-VC [124] 0.831 0.867  0.889 0.060 8.98E-02 1.05E-01 6.3
MULDA [239] o 0.746 0.796  0.796 0.053 4.33E-04 3.91E-03 635.5
MvCCDA [292] 5 0.838 0.848 0.852 0.078 3.86E-03 1.12E-02 0.6
ReDMiCA [164] 0.800 0.878  0.874 0.068 3.19E-02 4.07E-02 5285.3
GMCCA [43] 0.838 0.785  0.770 0.076  6.55E-03 3.91E-03 50.5
DMvTSVM-AE [278] 0.865 0.892  0.887 0.037  1.61E-01  2.32E-01  66.909
SMDDRL [116] 0.733 0.772 0.766 0.027  1.20E-05 1.95E-03  2.509
SGR-MCCDA 0.869 0.915 0.926 0.041 - - 7.1
MCCA-SUMCOR [106] 0.398 0.355 0.342 0.077 1.96E-09 1.95E-03 14.2
MCCA-MAXVAR [129] 0.403 0.426 0.474 0.072  2.75E-09 1.95E-03 48.1
GMA [222] 0.457 0.426 0.447 0.082 3.52E-09 1.95E-03 135.3
MvDA [124] 0.758 0.758  0.763 0.080 9.52E-06 1.95E-03 16.4
MvDA-VC [124] 0.731 0.811 0.789 0.078 5.29E-05 1.95E-03 16.9
MULDA [239] &} 0.624 0.595  0.592 0.090 4.98E-07 1.95E-03 1183.6
MvCCDA [292] 8 0.694 0.766 0.776 0.057 1.23E-06 1.95E-03 0.7
ReDMICA [164] 0.946 0.850  0.842 0.035 5.31E-07 1.95E-03 5958.2
GMCCA [43] 0.333 0.405  0.408 0.087 1.72E-09 1.95E-03  143.1
DMvTSVM-AE [278] 0.743 0.746  0.757 0.052 3.16E-07 1.95E-03 143.4
SMDDRL [116] 0.861 0.877  0.900 0.055 1.91E-04 1.95E-03 4.3
SGR-MCCDA 0.978 0.984 0.974 0.013 - - 3.6
MCCA-SUMCOR [106] 0.219 0.179 0.200 0.065 1.20E-08 1.95E-03 25.6
MCCA-MAXVAR [129] 0.371 0.588 0.463 0.101  9.80E-06 1.95E-03 15.7
GMA [222] 0.705 0.754 0.750 0.044 1.64E-03 T7.63E-03 137.8
MvDA [124] 0.629 0.692 0.588 0.077  7.38E-03 7.70E-03 6.3
MvDA-VC [124] 0.733 0.671 0.600 0.099 8.07E-05 1.95E-03 6.6
MULDA [239] = 0.686 0.558  0.563 0.088 1.56E-05 1.95E-03  265.5
MvCCDA [292] g 0.543 0.704 0.708 0.071 4.56E-04 1.95E-03 0.4
ReDMICA [164] 0.714 0.717  0.729 0.047  3.42E-04 7.58E-03 2150.7
GMCCA [43] 0.457 0.350  0.313 0.102  2.18E-06 1.95E-03 44.5
DMvTSVM-AE [278] 0.655 0.795  0.810 0.064 7.12E-02 8.40E-02  68.861
SMDDRL [116] 0.262 0.370 0.359 0.071  1.47E-07 1.95E-03  2.626
SGR-MCCDA 0.781 0.842 0.833 0.039 - - 7.240
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performance. Most of the existing methods are not consistent with their performance and
have a decreasing nature with respect to the number of extracted features. Among the
existing algorithm, the curve of ReDMiCA is comparatively better in case of LGG; the
curve of GMA is better and consistent for GBM in both the setup. In Fig. 4.4, the scatter
plot of LGG shows that the top two extracted features of the proposed method have almost
isolated the three classes of LGG, whereas none of the existing algorithms are capable of
doing it. The ReMiCA and MvDA-VC are able to separate one class of the LGG data.
The scatter plot signifies that the proposed model forms the common space by considering
the graph structure of classes, which is reflected in the picture.
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Figure 4.4: Scatter plots for the proposed and different existing methods, based on the
first two extracted features.

4.5.3.2 Classification Results on Benchmark Data Sets

To prove the diverse potency of the SGR-MCCDA method, eight benchmark data set,
namely, CiteSeer, Cora, Caltech-20, Caltech-101, Reuters, ALOI and 100Leaves with dif-
ferent characteristics have been used in the study. The Reuters and NW-Object are data
sets with large number of samples and features. The 100leaves and ALOI have less number
of feature than the samples but consists of 100 classes. The Cora and Caltech-20 have 6
and 20 number of classes, respectively, with a reasonable sample size. The Caltech-101
has large number of samples as well as large number of classes. From Table 4.6 and 4.7, it
is seen that the proposed method obtains highest classification accuracy over all the eight
benchmark data sets, except Reuters, Caltech-101, and ALOI, for both the train-test and
10-fold CV setup. In case of Reuters, the deep learning model SMDDRL has the best
accuracy in train-test case. The MvDA and MvDA-VC have performed better than the
proposed method for the data set Caltech-101 in 10-fold CV setup. In case of ALOI. the
MvDA-VC has obtained height classification accuracy in train-set setup. In all these cases,
the proposed method obtains the second best accuracy and has no significant difference.
The results suggest that the proposed method can deal with the large as well as small
data sets. Moreover, the results on 100Leaves and ALOI data sets prove that the proposed
method can distinguish between large number of classes with very low number of features.
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Table 4.6: Classification Accuracy of Proposed Method (SGR-MCCDA) and Different Al-

gorithms on Benchmark Data Sets

Accuracy and Significance Analysis for 10-fold CV

Different Data  Accuracy Time
Algorithms Sets  (Train-Test) Mean Median StdDev Paired-t:p Wilcoxon:p  (Sec.)
MCCA-SUMCOR [106] 0.329 0.247 0.256 0.073  5.42E-09 1.95E-03 6.1
MCCA-MAXVAR [129] 0.418 0.164  0.227 0.027 1.50E-14 1.95E-03 3.6
GMA [222] 0.609 0.604  0.608 0.024 3.53E-08 1.95E-03 57.4
MvDA [124] 0.539 0.495 0.504 0.029 9.27E-09 1.95E-03 71.0
MvDA-VC [124] 0.557 0.438  0.441 0.020 1.70E-10 1.95E-03 70.1
MULDA [239] 1] 0.574 0.683 0.687 0.013 4.92E-08 1.95E-03 31.1
MvCCDA [292] 8 0.716 0.748 0.753 0.038 8.92E-03 9.77E-03 15.0
ReDMiCA [164] 0.573 0.615  0.610 0.035 1.39E-07 1.95E-03  1286.8
GMCCA [43] 0.310 0.397 0.405 0.030 2.31E-11 1.95E-03 6.8
DMvTSVM-AE [278] 0.704 0.755  0.754 0.023 8.15E-04 1.95E-03 137.3
SMDDRL [116] 0.613 0.686  0.683 0.021 1.02E-06 1.95E-03 38.8
SGR-MCCDA 0.765 0.785 0.789 0.020 - - 11.3
MCCA-SUMCOR [106] 0.575 0.657 0.661 0.013 3.32E-14 1.95E-03 1392.3
MCCA-MAXVAR [129] 0.298 0.278  0.238 0.019 5.20E-16 1.95E-03  325.5
GMA [222] 0.837 0.821 0.821 0.007  6.04E-08 1.95E-03 307.7
MvDA [124] 0.560 0.578  0.579 0.012 5.21E-13 1.95E-03 23.0
MvDA-VC [124] " 0.551 0.582 0.588 0.015 1.00E-12 1.95E-03 42.2
MULDA [239] E 0.847 0.856 0.858 0.007  3.96E-04 1.95E-03 590.4
MvCCDA [292] g 0.810 0.815  0.814 0.010 5.59E-10 1.95E-03  826.0
ReDMiCA [164] = 0.662 0.696 0.697 0.008 9.36E-12 1.95E-03 11434.1
GMCCA [43] 0.685 0.406 0.418 0.042 1.40E-08 1.95E-03 509.8
DMvTSVM-AE [278] 0.808 0.848  0.848 0.015 6.26E-03 1.37TE-02  656.5
SMDDRL [116] 0.928 0.864 0.864 0.003 2.01E-03 3.91E-03 203.7
SGR-MCCDA 0.866 0.876 0.874  0.008 - - 297.8
MCCA-SUMCOR [106] 0.418 0.707  0.705 0.025 6.92E-13 1.95E-03 19.8
MCCA-MAXVAR [129] 0.733 0.727 0.484 0.024 1.55E-10 1.95E-03 22.4
GMA [222] 0.795 0.821  0.817 0.012 4.73E-10 1.95E-03 46.9
MvDA [124] 0.763 0.788  0.789 0.015 1.26E-11 1.95E-03 10.8
MvDA-VC [124] < 0.753 0.785 0.791 0.020 4.92E-11 1.95E-03 11.4
MULDA [239] 5 0.778 0.305  0.303 0.049 2.59E-11 1.95E-03 27.1
MvCCDA [292] 2 0.915 0.936  0.939 0.011 4.72E-05 1.95E-03 27.2
ReDMiCA [164] 5 0.852 0.801 0.791 0.026 1.80E-08 1.95E-03 8882.1
GMCCA [43] 0.850 0.839  0.837 0.011 1.12E-10 1.95E-03 4.9
DMvTSVM-AE [278] 0.866 0.720 0.724 0.011 2.82E-14 1.95E-03 79.5
SMDDRL [116] 0.761 0.753  0.747 0.017  6.09E-10 1.95E-03 26.2
SGR-MCCDA 0.954 0.967 0.967  0.007 - - 7.9
MCCA-SUMCOR [106] 0.803 0.680  0.649 0.074 4.74E-07 1.95E-03 0.3
MCCA-MAXVAR [129] 0.738 0.853 0.850 0.029 3.05E-07 1.95E-03 0.4
GMA [222] 0.225 0.286 0.280 0.031 2.07E-13 1.95E-03 0.2
MvDA [124] 0.924 0.958 0.955 0.019 1.46E-03 1.07E-02 6.0
MvDA-VC [124] 2 0.951 0.979  0.983 0.015  2.79E-01  2.57E-01 6.1
MULDA [239] § 0.911 0.855  0.855 0.035 1.36E-06 1.95E-03 0.2
MvCCDA [292] = 0.941 0.974 0.975 0.008 7.13E-03 1.06E-02 6.1
ReDMiCA [164] = 0.885 0.949  0.950 0.021 1.05E-03 3.91E-03 135.6
GMCCA [43] 0.738 0.675  0.670 0.022 1.20E-10 1.95E-03 0.4
DMvTSVM-AE [278] 0.238 0.099 0.100 0.002 1.08E-19 1.95E-03 68.7
SMDDRL [116] 0.163 0.104 0.133 0.011 2.43E-18 1.95E-03 6.4
SGR-MCCDA 0.971 0.984 0.985 0.009 - - 0.8

Among the classical methods, MvCCDA performs really well in case of Caltech-20 and ob-
tains the second highest classification accuracy after the proposed method SGR-MCCDA.
The p-values for the benchmark data set, reported in Table 4.6 and 4.7, are all significant
except for the methods, MvDA-VC with respect to 100Leaves data set and MvCCDA with
respect to the data sets CiteSeer and NW-Object. It suggests that the 10-fold CV values
of the methods MvDA-VC and MvCCDA are similar to the proposed method for those
data sets. Both the deep learning models, DMvTSVM-AE and SMDDRL, perform poorly
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Table 4.7: Classification Accuracy of Proposed Method (SGR-MCCDA) and Different Al-
gorithms on Benchmark Data Sets

Accuracy and Significance Analysis for 10-fold CV

Different Data  Accuracy Time
Algorithms Sets  (Train-Test) Mean Median StdDev Paired-t:p Wilcoxon:p (Sec.)
MCCA-SUMCOR [106] 0.581 0.592 0.599 0.028 1.72E-14 1.95E-03 0.9
MCCA-MAXVAR [129] 0.567 0.560 0.453 0.010 8.11E-05 1.95E-03 4.4
GMA [222] 0.652 0.652 0.646 0.025 2.01E-14 1.95E-03 11.3
MvDA [124] 0.377 0.414 0.416 0.020 2.13E-14 1.95E-03 30.5
MvDA-VC [124] . 0.435 0.477 0.473 0.032 1.93E-05 1.07E-02 27.2
MULDA [239] 081) 0.666 0.671 0.676 0.026 1.66E-19 1.95E-03 7.5
MvCCDA [292] £ 0.685 0.682 0.694 0.026 1.75E-15  6.44FE-02 174
ReDMiCA [164] o 0.646 0.641 0.643 0.027 1.43E-14 1.95E-03 447.7
GMCCA [43] 0.234 0.462 0.458 0.040 1.35E-14 1.95E-03 5.9
DMvTSVM-AE [278] 0.489 0.480 0.480 0.016 2.54E-09 1.95E-03 132.6
SMDDRL [116] 0.515 0.618 0.625 0.028 3.23E-05 1.95E-03 64.3
SGR-MCCDA 0.685 0.690 0.695 0.022 - - 14.9
MCCA-SUMCOR [106] 0.306 0.345 0.332 0.013 7.54E-15 1.95E-03 5.2
MCCA-MAXVAR [129] 0.509 0.755 0.759 0.015 8.01E-08 1.95E-03 43.1
GMA [222] 0.379 0.285 0.286 0.013 1.29E-15 1.95E-03 4.4
MvDA [124] 0.607 0.852 0.854 0.091 1.13E-16 1.95E-03 1.1
MvDA-VC [124] § 0.606 0.839 0.839 0.096 2.16E-07 1.95E-03 4.9
MULDA [239) é 0.572 0.493 0.489 0.024 2.45E-02 2.73E-02 24.2
MvCCDA [292] ) 0.605 0.775 0.775 0.009 1.76E-15 1.95E-03 25.3
ReDMIiCA [164] S 0.391 0.412 0.400 0.014 2.61E-02 2.73E-02 4531.7
GMCCA [43] 0.509 0.678 0.678 0.016  2.92E-08 1.95E-03 62.6
DMvTSVM-AE [278] 0.553 0.737 0.736 0.007  1.10E-09 1.95E-03 164.0
SMDDRL [116] 0.378 0.704 0.715 0.017 2.55E-08 1.95E-03 128.3
SGR-MCCDA 0.616 0.820  0.820 0.009 - - 35.7
MCCA-SUMCOR [106] 0.303 0.322 0.321 0.0056 5.48E-17 1.95E-03 0.5
MCCA-MAXVAR [129] 0.051 0.054 0.080 0.008 1.11E-11 1.95E-03 344.4
GMA [222] 0.283 0.296 0.298 0.008 5.25E-17 1.95E-03 0.2
MvDA [124] 0.290 0.280 0.279 0.008 5.55E-17 1.95E-03 53.2
MvDA-VC [124] § 0.286 0.279 0.281 0.008 1.18E-10 1.95E-03 73.8
MULDA [239] = 0.370 0.314 0.314 0.007  4.58E-02 1.95E-03 0.9
MvCCDA [292] Q 0.424 0.431 0.432 0.007  5.30E-17  6.44E-02 17453
ReDMiCA [164] E 0.377 0.382 0.382 0.009 1.29E-17 1.95E-03 1344.7
GMCCA [43] 0.046 0.055 0.055 0.005 5.48E-17 1.95E-03 1659.2
DMvTSVM-AE [278] 0.387 0.374 0.373 0.027  8.02E-03 1.95E-03 145.3
SMDDRL [116] 0.346 0.368 0.366 0.008 9.35E-15 1.95E-03  240.7
SGR-MCCDA 0.409 0.439 0.438 0.007 - - 783.7
MCCA-SUMCOR [106] 0.608 0.736 0.742 0.021 1.72E-14 1.95E-03 0.1
MCCA-MAXVAR [129] 0.874 0.916 0.917 0.009 2.16E-15 1.95E-03 55.0
GMA [222] 0.931 0.941 0.940 0.005 2.31E-08 1.95E-03 0.2
MvDA [124] 0.971 0.986 0.986 0.004 2.01E-04 1.95E-03 0.5
MvDA-VC [124] 0.981 0.992 0.992 0.003 1.07E-15  6.44E-02 4.9
MULDA [239] o 0.906 0.926 0.914 0.007 1.66E-14 1.95E-03 0.3
MvCCDA [292] é 0.977 0.986 0.985 0.002 5.85E-09 1.95E-03 141.6
ReDMIiCA [164] 0.941 0.949 0.950 0.011 1.66E-14 1.95E-03  436.6
GMCCA [43] 0.913 0.892 0.893 0.009 3.51E-09 1.95E-03 58.8
DMvTSVM-AE [278] 0.808 0.871 0.881 0.008 2.04E-14 1.95E-03 133.6
SMDDRL [116] 0.820 0.838 0.839 0.006 8.84E-13 1.95E-03 60.6
SGR-MCCDA 0.971 0.993 0.993 0.003 - - 22.8

on 100Leaves data set. This degradation in the performance is probably caused because
of the less number of samples per class in that data, which affects the training of these
model. Overall the performance of the proposed model with the reduced 25 dimension is
the best among all the existing methods.

The feature versus accuracy curves for the data sets Cora and Caltech-20 are presented
in Fig. 4.3 and the scatter plots for the data sets Cora, Reuters, and Caltech-20 are shown
in Fig. 4.4 to compare the quality of the extracted features of the proposed model with
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the existing ones. In Fig. 4.3, the blue curve of the proposed method stays always on the
top of the other existing algorithms and also shows an increasing nature with respect to
the number of dimensions. The performance of MULDA is impressive in case of Cora on
both the setup. In case of Caltech-20, the yellow curve of MULDA is decreasing with the
number of features over 10-fold CV. The scatter plots in Fig. 4.4 show that the proposed
method has the best separating patterns of the classes for Cora and Caltech-20 data sets.
In case of Reuters, the proposed SGR-MCCDA, MULDA, and MvCCDA have comparable
performance in separating the classes. Other than the proposed method, MULDA has
performed well in separating the classes of Caltech-20 with the top two extracted features.

Thus, the results in Table 4.5, 4.6, and 4.7, feature versus accuracy curves in Fig. 4.3
and scatter plots in Fig. 4.4 establish that the proposed method outperforms the existing
state-of-art algorithms in terms of the classification accuracy in both the setup, separating
the classes with the top-two extracted features and the increasing nature of classification
accuracy with respect to the number of features. Moreover, the proposed model is scalable
to the data sets with large number of samples and features. The proposed method can deal
with the data sets having large number of classes as well.

4.5.3.3 Execution Time

Finally, the execution time reported in Table 4.5, Table 4.6 and Table 4.7 shows that
the proposed method has comparatively lower execution time than most of the existing
algorithms. In this regard, it should be noted that the deep learning models are executed
on 16 GB NVIDIA RTX-4000 GPU, while all other models are evaluated with the following
CPU configuration: RAM - 32 GB and Processor - Intel@®) Core™ i7-4770 CPU @ 3.40GHz
x 8. The lower execution time of the proposed method is due to the quick convergence of
the iterative algorithm. Fig. 4.5 shows the normalized deviation D of the objective function
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Figure 4.5: Variation of D with respect to the number of iterations 7.

of the SGR-MCCDA from its theoretical lower bound in each iteration, which is given by:

(4.51)



where K and 7 (¢) are the theoretical lower bound and the value of the objective function of
the SGR-MCCDA at the t-th iteration. The results are reported for two data sets, namely,
BRCA and Caltech-20, as examples. The figure shows that the normalized deviation
decreases rapidly with the increase of the number of iterations and stabilizes after few
iterations for both the data sets, which establishes the quick convergence of the proposed
SGR-MCCDA.

4.5.4 Comparison of CSP-MvCDA and SGR-MCCDA

To show the effectiveness of CSP-MvCDA and SGR-MCCDA, the performance of the
two algorithms has been evaluated for all five cancer and eight benchmark data sets. The
performance of the two algorithms, in terms of classification accuracy for both the train-test
and 10-fold setup, is given in Table 4.8. The results show that, in case of train-test setup,
the CSP-MvCDA attains significantly better classification accuracy for BRCA, CESC,
GBM and NW-Object, while SGR-MCCDA obtains higher classification accuracy for the
data sets CRC, Caltech-20 and 100Leaves. In case of 10-fold setup, the CSP-MvCDA
performs better on CESC, LGG, Cora, Caltech-101 and NW-Object, while SGR-MCCDA
performs significantly better on CRC, Reuters, Caltech-20 and 100Leaves. The possible
reason can be observed from the Table 4.4. It shows that the weights of each view, learned
by SGR-MCCDA, are not equally distributed, which promotes view relevance and justifies
the higher accuracy value of SGR-MCCDA for these data sets. For LGG, Citeseer, Cora,
Caltech-101 and ALOI the performance of the two algorithms are comparable in case of
both the setups.

Table 4.8: Comparative Study of CSP-MvCDA and SGR-MCCDA on Different Data Sets

CSP-MvCDA SGR-MCCDA

Data Sets
Accuracy Accuracy (10-fold) Accuracy Accuracy (10-fold)

(Train-Test) Mean Median StdDev (Train-Test) Mean Median StdDev

BRCA 0.803 0.838 0.813 0.085 0.727 0.838 0.844 0.085
CESC 0.865 0.942 1.000 0.092 0.788 0.817  0.833 0.090
CRC 0.862 0.909  0.912 0.061 0.877 0.915 0.926 0.041
LGG 0.984 0.984 0.974 0.012 0.978 0.984 0.974 0.013
GBM 0.829 0.820 0.815 0.060 0.781 0.842 0.833 0.039
CiteSeer 0.698 0.687 0.701 0.025 0.685 0.690 0.695 0.022
Cora 0.775 0.785 0.801 0.019 0.765 0.785  0.789 0.020
Reuters 0.859 0.775  0.774 0.008 0.866 0.876 0.874 0.008
Caltech-101 0.610 0.823 0.826 0.011 0.616 0.820  0.820 0.009
Caltech-20 0.905 0.882  0.882 0.018 0.940 0.964 0.963 0.005
NW-Object 0.439 0.445 0.446 0.008 0.409 0.439  0.438 0.007
ALOI 0.981 0.993  0.992 0.003 0.971 0.993 0.993 0.003
100Leaves 0.945 0.896  0.903 0.020 0.971 0.984 0.985 0.009

The time comparison of the two algorithms is also shown by the bar plot in Fig. 4.6.
In case of the five cancer data sets, namely, BRCA, CESC, CRC, LGG, and GBM, the
sample size is very small compared to the feature size. Since the SGR-MCCDA is an
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iterative process and requires eigendecomposition of a sample-by-sample matrix, the time
complexity is greatly reduced in SGR-MCCDA for the cancer data sets. On the other
hand, the rest of the eight benchmark data sets, except CiteSeer and Cora, have a small
number of features compared to the number of samples. Since the CSP-MvCDA requires
eigendecomposition of a feature-by-feature matrix, the time to execute the CSP-MvCDA
algorithm for these data sets is much shorter than the SGR-MCCDA. For the data sets,
CiteSeer and Cora, the sample and feature size are almost equal. In this case, the SGR-
MCCDA takes longer time to execute, because, it possibly took large number of iterations
to compute the eigenvalues of the sample-by-sample matrix.
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Figure 4.6: Time comparison of CSP-MvCDA and SGR-MCCDA on different data sets.

4.6 Conclusion

This chapter introduces a new supervised graph regularized multi-view learning algorithm,
termed as SGR-MCCDA, based on the unsupervised subspace learning algorithm MCCA-
MAXVAR. The method utilizes the prior knowledge of the data in terms of the class label
and the structural geometry of the source vector. The class labels are used to encode the
structural geometry of the source vectors by constructing the within-class and between-
class graphs, which have been invoked as the regularizer term into the model. Due to
the supervised graph information, the common subspace learned by the proposed method
has the ability to preserve the class structure of the data. An iterative solution of the
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proposed formulation has been presented. The convergence of the iterative rule and the
computational complexity of the method have been studied. To deal with the data vectors
whose dimension is very high, the low rank approximation technique is used to find inverse
of the rank deficient class-covariance matrices. Finally, to prove the diverse potency of the
proposed method, several cancer and benchmark data sets with different characteristics
have been used in this study. The results justify the performance of the proposed method
by giving significantly higher classification accuracy compared to the state-of-the-art algo-
rithms.

In Chapter 3 and Chapter 4, two MVL algorithms, namely, CSP-MvCDA and SGR-
MCCDA, respectively, are successfully applied to extract features from the multiple omics
data for cancer stratification. In the next chapter, both the methods are applied in the
domain of imaging genetics study for the identification of imaging and genetic biomarkers
to classify neurodegenerative disease subtypes.
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Chapter 5

Multi-View Data Analysis in

Imaging Genetics Studies

5.1 Introduction

The neurodegenerative disorders, such as Alzheimer, Parkinson, and Huntington, are very
common nowadays, and sometimes become serious or even life-threatening, as they cause
brain deterioration over the time [235]. The risk of getting affected by these disorders
is increasing day-by-day. These disorders occur when the nerve cells get damaged and
lose their functions. A person having one of these disorders may suffer from forgetfulness,
inability to move, or may face balance problem. An early diagnosis may help in improving
some of the mental and physical symptoms associated with it. Therefore, it is necessary
to develop new approaches for proper diagnosis of the disease and better understanding
about the cause of the disease [99,112].

The neurodegenerative disorders are complex diseases and considered to be caused by
the interplay of a number of genetic factors such as change of gene regulation, alteration of
mRNA and single nucleotide polymorphism (SNP). The genetic factors play an important
role in causing these diseases. Both genetic variants and brain region abnormalities are rec-
ognized as important factors for such complex diseases. Therefore, brain function study and
genetic variant study are two most popular approaches to diagnose these diseases. There ex-
ist many neuroimaging technologies such as magnetic resonance imaging (MRI), functional
MRI (fMRI) and positron emission topography (PET), which give information about the
brain function from different perspectives. On the other hand, the gene or genetic variants,
SNP and copy number variation (CNV) are responsible for the disease to occur. Imaging ge-
netics is an integrative study of the imaging (MRI, fMRI, PET) and genetic (SNP, CNV)
modalities, to understand the impact of genetic variations over the brain functions and
structure. It provides a comprehensive information to diagnose the neurodegenerative dis-
ease |74]. The importance of imaging genetics study is illustrated in Fig. 5.1. Recent large-
scale initiative from the UK Biobank (https://www.ukbiobank.ac.uk/), CHARGE consor-
tium (https://www.hgsc.bem.edu/human /charge-consortium), and ENIGMA consortium
(https://enigma.ini.usc.edu/) have gathered large amount of data containing genome-wide
genetic information and brain imaging in order to investigate the relationship between spe-
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Figure 5.1: Hlustration of imaging genetics studies.

cific nucleotide variants in the genome and differences in brain structure. Due to increase
in the imaging genetics data availability and collection, more thorough studies have been
possible for the practical importance of these discoveries in connection to human behavior
and illness.

The main challenge in integrating the imaging and genetic modalities is that both of
them are represented by a large number of features (~ 10°) for a small set of samples.
Moreover, these two modalities are heterogeneous in nature. The mass univariate and
voxel-wise methods are two popular univariate approaches to study the imaging genetics
association. The genome-wide association study (GWAS) is a very powerful and widely
used framework, which uses univariate marginal regression for identifying genetic variants
that are associated with a given phenotype [261]. In Oxford Brain Imaging Genetics
Server-BIG40, the results from GWAS studies across 40,000 subjects have been presented
associating 17,103,079 SNPs to almost 4,000 imaging-derived phenotypes [68]. But, the
univariate methods simply look for the association between each pair of voxel and genetic
marker, and treat them independently. On the other hand, the voxel-wise approaches [99,
112] include multiple genetic markers in each model additionally. However, they overlook
the joint relationships between the genetic marker and imaging quantitative traits (QTs),
and thus fail to model the data explicitly. These methods also require massive univariate
analysis (~ 10'2), which leads to multiple testing problems.

In order to address the problem of univariate methods, several multivariate methods
have been introduced to study the association between imaging and genetic data jointly,
and to model the data explicitly. The most popular and successful methods of multivariate
analysis for imaging genetics study are canonical correlation analysis (CCA) [107] and
partial least square methods (PLS) [274]. The CCA finds a projective space where the
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two data blocks are maximally correlated, whereas the PLS finds it by maximizing the
covariance between the two data sets. However, due to the “large features-small samples”
nature of the imaging genetics data, both CCA and PLS undergo severe overfitting issues.
To overcome this problem, sparse CCA (SCCA) [31,194] and sparse PLS (SPLS) [50] have
been introduced. Both of them have the ability to select a small set of features, employing
a sparse penalty to the model, and are found to be very effective in identifying imaging
genetic association [31,50]. In [205], a multivariate method, deploying sparse reduce rank
regression (SRRR), has been formulated to improve the statistical performance for large
scale imaging genetics data. An application to large scale UK Biobank data has been
given to justify its performance on large scale data. In recent time, polygenic risk score
(PRS) [199] models have been developed to understand the role of genetic variants, in risk
of developing a disease. Recently developed algorithm, namely, batch screening iterative
lasso [204], has been applied to individual-level genotype phenotype data from UK Biobank
to find the significant PRS models. However, given multi-class imaging genetics data, the
SCCA or SPLS models cannot utilize the label information of the data. Incorporation of
the diagnostic status of the disease into the model would help in better feature selection
and provide an in-depth analysis of the imaging genetics data.

Collaborative regression (CoRe) [86] and cooperative learning (CoopLe) [59] are two
supervised multi-view learning algorithms, which have been introduced for analyzing mul-
tiple modalities. The CoRe is a form of supervised canonical correlation analysis under
a regression framework, whereas CoopLe combines the concept of squared error loss of
prediction with an agreement penalty to encourage the prediction of different data views
to agree. In the context of imaging genetics, CoRe and CoopLe are two useful approaches
for identifying characteristics shared by phenotypic and genotypic data, and they produce
encouraging outcomes [16,315].

In this regard, two supervised MVL algorithms, namely, CSP-MvCDA and SGR-
MvCDA, proposed in Chapter 3 and Chapter 4, respectively, are successfully used in this
chapter to extract the features for imaging genetics studies for the identification of the
genotype-phenotype association and disease-subtype classification. A real neuroimaging
data set, obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, has
been used for imaging genetics analysis by using the AD-related genetic variants (SNPs)
and brain imaging (fMRI) modalities. This chapter presents a comparative performance
analysis of two proposed MVL methods, namely, CSP-MvCDA and SGR-MCCDA, with
that of the existing MVL algorithms to show the effectiveness of the proposed methods in
terms of classifying disease subtypes in imaging genetics studies. The results establish that
the classification performance of proposed CSP-MvCDA and SGR-MCCDA on the ADNI
data set is better than that of the existing MVL models. Moreover, these two approaches
perform well with respect to capturing the correlation between imaging and genetic data,
although they are not capable of identifying the disease-specific imaging genetics associa-
tion.

The remaining sections of this chapter are as follows: Section 5.2 presents the data
acquisition and preprocessing of the real neuroimaging genetic data. The performance of
CSP-MvCDA and SGR-MCCDA in terms of feature extraction and biomarker selection
with respect to the existing algorithms in the domain of imaging genetics study is given in
Section 5.3. The chapter is concluded in Section 5.4.
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5.2 Real Neuroimaging and Genetic Data

This section presents a brief description of the real neuroimaging and genetic data along
with their preprocessing.

5.2.1 Data Source

The data used in the current study were obtained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD'. The primary goal of ADNI is to detect early stage of
Alzheimer’s disease (AD) and to track the progression of the disease by developing clinical,
imaging, genetic and bio-chemical biomarkers. Different types of neuroimaging data like
PET scan, MRI and resting state fMRI, and different types of genetic modalities such as
gene expression, DNA methylation profiling, and SNP data, are available in this cohort. A
total of 120 participants are included in the current study whose resting state fMRI and
SNP data are collected in their raw form from the ADNI cohort. The participants belong
to four diagnostic groups, namely, control normal (CN), early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI) and AD. The basic characteristics of these
participants are given in Table 5.1.

Table 5.1: Characteristic of the Participants

CN EMCI LMCI AD
Number 30 43 23 24
Gender (M/F) 15/15 18/25 15/8 11/13
Handedness (R/L) 28/2 43/0 23/0 23/1
Age (mean =+ std) 76.27 + 6.28 70.83 £ 6.72 70.68 £ 7.37 72.43 + 7.67
Education (mean + std) | 16.30 £ 2.11 1548 + 2.66 16.39 + 2.68 14.92 + 2.66

5.2.2 fMRI Data Acquisition and Preprocessing

The fMRI images of the 120 participants were acquired by resting the participants with
closed eyes and with no given task. The fMRI scans were captured by using Philips Medical
Systems 3T scanner. The scanning protocol is as follows: Field Strength = 3.0 Tesla; Flip
Angle = 80.0 degree; Acquisition Matrix = 64 x 64 pixels; Pixel Dimension = 3.3 x 3.3
mm?; Pulse Sequence = GR; Slices = 6720.0; Slice Thickness = 3.3 mm; TE = 30.0 ms;
and TR = 3000.0 ms. For quality control, the fMRI data is preprocessed using DPARSF
toolbox [283] within MATLAB environment following the standard preprocessing steps.
The steps involved in preprocessing of the fMRI data are given as follows:

e Conversion of the original file format to NIfTT file format. There were 6720 2-D slices
of dimension 64 x 64 before conversion. After conversion, it gives 140, 3D volume of
dimension 64 x 64 x 48.

!The investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data, but did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: https://adni.loni.usc.edu/wp-content/uploads/how to apply/
ADNI _Acknowledgement List.pdf
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e First 10 volumes of the fMRI scans are discarded to make sure that the magnetic
gradient field of the scanner is stable. After this step, 130 volumes are considered for
further preprocessing.

e Slice timing correction is performed on the remaining slices to temporally align all
slices with reference to a time-point.

e Head motion correction is required to remove the effect of head movement of each
participant during scanning procedure.

e Normalization using EPI template is done and is resliced to 2 x 2 x 2 mm?.

e Images are smoothed to improve the signal-to-noise ratio by applying a Gaussian
kernel with the full width at half maximum (FWHM) of 6 mm.

e Nuisance covariates including white matter and global signal are regressed out by
using a linear model.

e Temporal filtering in the range of 0.01Hz to 0.08Hz is performed to retain the resting
state low frequency signal.

After the standard preprocessing steps, there are 130, 3-D volumes of dimension 91 x
109 x 91 left for further analysis. Considering these 130 3-D volumes, mean amplitude low
frequency fluctuation (mALFF) measure of each voxel is calculated, which gives 9,02,629
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Figure 5.3: Preprocessing of SNP.

voxel-wise mALFF measures. The whole preprocessing of the resting state fMRI are
represented pictorially in Fig. 5.2. These voxel-wise measures are further grouped according
to the 52 ROIs, which are related to previously identified 7 resting state networks (RSN)
including the default mode network (DMN), fronto-parietal attention network (FPAN),
visual network, auditory network, sensori-motor network (SMN), basal ganglia network
(BGN), and frontal network [228]. To reduce the time complexity, 52 ROIs are taken
as a small spherical region centered at a seed voxel whose MNI coordinates are obtained
from [228]. The spherical ROIs are created by taking 5 mm radius around the seed voxel
using MarsBaR (MARSeille Boite A Région d’Intérét) toolbox in SPM, which provides
routines for ROI analysis [33]. After grouping the voxels into 52 ROIs, it results in 3411
voxels for further analysis. Moreover, the imaging measurements were preadjusted to
exclude the influence of age, gender, handedness and education.
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5.2.3 SNP Data Acquisition and Preprocessing

The SNP data of same set of 120 samples is obtained through the Illumina Human 610-Quad
or Illumina Human OmniExpress BeadChip. There are 3,34,343 SNPs at the beginning
of the experiment. The SNP data is then preprocessed using PLINK tool (http://pngu
.mgh.harvard.edu/purcell/plink/) [201] for quality purpose. The preprocessing steps
reported in [23] are followed in this study. The raw SNP data goes through the following
preprocessing steps.

e The SNPs from chromosome 1 to 22 are extracted.

e Sample call rate threshold is set to 95% to retain the quality of the genetic data.
e Minor allele frequency (MAF) is set to 5%.

e The SNP call rate threshold is set to 99.9%.

e Hardy-Weinberg equilibrium test (HWE) threshold is at 1 x 1074

After the processing of SNP data, 2,64,031 SNPs remain to continue the experiment. A
pictorial representation of the preprocessing steps is also given in Fig. 5.3. To reduce
the number of SNPs further, all the SNPs are grouped into genes, and the genes, whose
SNP counts are greater than a predefined threshold, are retained. After that, the genes
were sorted according to the SNP counts and the top 50 genes are selected to reduce
the computational cost. A total of 2500 SNPs, grouped into 50 genes, are considered
to continue the experiment. The top 50 genes with their corresponding SNP count are
reported in Table 5.2.

Following the preprocessing steps, finally, there are two blocks of data, fMRI and SNP,
having dimensions of 120 x 3411 and 120 x 2500, respectively, to continue the experiment.

5.3 Comparative Performance Analysis

In this section, the performance of two supervised MVL algorithms, namely, CSP-MvCDA
and SGR-MCCDA, proposed in Chapter 3 and Chapter 4, respectively, is compared with
that of three primary MVL models in the domain of imaging genetics, namely, CCA,
CoRe, and CoopLe. Since the objective of imaging genetics study is to find the genotype-
phenotype association by identifying the disease related biomarkers, the first pair of prin-
cipal components are obtained for the analysis of fMRI and SNP data [83,137|. The
canonical weights are sorted according to their absolute values, and the SNPs and voxels
are selected by specifying a certain threshold. A five-fold cross-validation strategy is used to
find the optimal parameters of the proposed models. The set of parameters, for which the
average of canonical correlation coefficient (CCC) and classification accuracy (one versus
all) is highest, is considered as the optimal parameter set.

5.3.1 Classification Accuracy

The classification performance of the proposed algorithms is compared with that of the
three existing methods, and the corresponding results are reported in Table 5.3. The
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Table 5.2: Sorted Genes according to SNP Count

Sl. No. Gene SNP Count ‘ Sl. No. Gene SNP Count
1 CSMD1 768 26 NPAS3 176
2 RBFOX1 576 27 NELL1 172
3 PTPRD 460 28 SOX5 167
4 MACROD2 302 29 PCDH15 164
5 CDH13 294 30 DABI1 163
6 FHIT 293 31 NTM 162
7 MAGI2 252 32 ZNF385D 159
8 CNTNAP2 238 33 LINGO2 157
9 WWOX 226 34 DPP6 155
10 CNTN5 221 35 NAV2 155
11 OPCML 220 36 RYR3 154
12 TENMS3 216 37 SORCS2 154
13 PRKN 215 38 ERBB4 153
14 SGCZ 212 39 ROBO2 152
15 CNTN4 212 40 CAMTA1 152
16 NRXN3 207 41 NRXN1 150
17 DLG2 200 42 ASTN2 146
18 CTNNA2 198 43 CTNNA3 146
19 TMEM132D 188 44 DLGAP2 146
20 PRKG1 182 45 CACNA2D3 145
21 ASIC2 182 46 PDZD2 144
22 ADAMTSL1 181 47 FRMD4A 143
23 PTPRT 179 48 ADARB2 142
24 LRP1B 179 49 PDE4D 142
25 KAZN 178 50 KCNIP4 140

classification accuracy is obtained by using the support vector machine (SVM). The abso-
lute values of the canonical wights corresponding to SNPs and imaging QTs are sorted in
ascending order, and the top ten SNPs and imaging QTs are considered, and then concate-
nated to generate 20 features. These 20 features are then used to calculate the one versus
all classification accuracy for each diagnostic group. The classification results reported in
Table 5.3 show that the proposed CSP-MvCDA and SGR-MCCDA have comparatively
better classification accuracy than the other three algorithms. Particularly, the algorithm
SGR-MCCDA proposed in Chapter 4 attains highest classification accuracy for all the four
groups, namely, CN, EMCI, LMCI and AD. It signifies that the features selected by the
proposed methods contain more discriminative information than the other existing methods
with respect to the four classes.

5.3.2 Imaging Genetic Association

The association between genetic and imaging data has been assessed by reporting the
canonical correlation coefficient (CCC) between the SNP and fMRI data. The perfor-
mance of the proposed methods with respect to mean testing CCC is compared with that
of the three existing methods, and the corresponding results are reported in Table 5.3.
Higher value of CCC indicates the stronger imaging genetic association. It is seen from
the results reported in Table 5.3 that both the CCA and CoRe attain similar correlation
values of 0.1189 and 0.1110, respectively, but the standard deviation of CCC in case of
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Table 5.3: Canonical Correlation Coefficient and Classification Accuracy (mean + std)

Metric Algorithms CN EMCI LMCI AD
CCA [107] 0.1189 £ 0.1070 0.1189 £ 0.1070 0.1189 £ 0.1070 0.1189 £ 0.1070
Canonical CoRe [86] 0.1110 £ 0.2063 0.1110 £ 0.2063 0.1110 £ 0.2063 0.1110 £ 0.2063
Correlation CoopLe [59] 0.1307 £ 0.2524 0.1307 £ 0.2524 0.1307 £+ 0.2524 0.1307 £+ 0.2524

Coeflicient CSP-MvCDA | 0.1353 £ 0.1477 0.1353 £ 0.1477 0.1353 £+ 0.1477 0.1353 £ 0.1477
SGR-MCCDA | 0.1869 + 0.1533 0.1869 + 0.1533 0.1869 + 0.1533 0.1869 + 0.1533

CCA [107] 0.5417 £+ 0.1054 0.5417 £ 0.0833 0.5667 £+ 0.0971 0.5916 £ 0.1196
CoRe [86] 0.5000 £ 0.1490 0.5583 + 0.0424 0.4416 £+ 0.0772 0.5583 £ 0.0424
Classification CoopLe [59] 0.5000 £ 0.0874 0.5250 £ 0.0857 0.5500 £+ 0.0964 0.4416 £ 0.0857

Accuracy CSP-MvCDA | 0.5550 + 0.1224 0.5550 £ 0.1280 0.5916 £+ 0.0967 0.5500 £ 0.0928
SGR-MCCDA | 0.5833 £+ 0.0950 0.5916 + 0.0927 0.5916 + 0.0889 0.6000 + 0.0857

CoRe over five folds are high compared to CCA. On the other hand, although the CoopLe
and proposed CSP-MvCDA methods have similar correlation values, the proposed CSP-
MvCDA has lower standard deviation compared to CoopLe. The proposed SGR-MCCDA
attains highest CCC value of 0.1869 with the standard deviation of 0.1533. All these
results signify that although the proposed CSP-MvCDA and SGR-MCCDA algorithms
capture better correlation values than the other existing methods, the standard deviation
is quite high for all the methods. The possible reason is that the imaging genetics data
are noisy and the MVL models used in this study are not designed to handle such noise,
which makes these model non-robust with respect to noise of the fMRI and SNP data.

Table 5.4: Top Ten ROIs and Their Weights, Selected by Different Methods.

CCA CoRe CoopLe CSP-MvCDA SGR-MCCDA
ROI weight ROI  weight ROI  weight ROI weight ROI weight

AMPFC 0.025 MCC 0419 RMCC 0.147 RSFG 0.026 RSFG 0.025
AMPFC 0.020 RSMG 0.173 BCG  0.134 RSFG 0.025 RSFG 0.020
RC 0.020 MCC 0.163 RIPL 0.130 RSFG 0.024 RITG 0.016
RIFG 0.019 RIPL 0.139 RSMG 0.083 LDPFC 0.021 RSFG 0.015
AMPFC 0.018 RIPL 0.121 LLPC 0.076 RSFG 0.021  AMPFC 0.015
VMPFC 0.018 RMCC 0.109 RMFG 0.069 LSFG 0.020 RPHG  0.015
VMPFC 0.018 MCC 0.094 RSMG 0.067 LDPFC 0.020 AMPFC 0.014
LITG 0.017  MCC 0.088 BCG 0.066 LSFG 0.020 RSFG 0.013
AMPFC 0.016 MCC  0.086 LS1 0.065 VMPFC 0.018 LSFG 0.012
RLPC 0.016 MCC 0.079 RSMG 0.063 RITG 0.018 RPHG  0.012

5.3.3 Interpretation of Selected Brain Regions

The selected voxels from the predefined ROIs, belonging to the seven resting state net-
works, are shown in the right part of the heatmap in Fig. 5.4 and the ROIs selected
according to absolute values of the voxel weights are given in Table 5.4. The top ROIs
selected by the proposed SGR-MCCDA method are left superior frontal gyrus(LSFG),
right superior frontal gyrus (RISG), right inferior temporal gyrus (RITG), anterior medial
prefrontal cortex (AMPFC), and right parahippocampal gyrus (RPHG), which are part
of the default mode network (DMN) [228]. Among the so-called resting-state networks,
the DMN has been linked to self-directed cognitive functions as autobiographical mem-
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Figure 5.4: Mean canonical weights of SNPs (U: left column) and voxels (V: right column)
obtained over five-fold cross-validation. Rows 1 to 5 correspond to the canonical weights
for the five methods, namely, CCA, CoRe, CoopLe, CSP-MvCDA and SGR-MCCDA.

ory and introspection. Mental health appears to depend on the integrity of the DMN.
Individuals with Alzheimer’s disease disrupts the functional connectivity within the DMN
brain areas [69,84]. Thus, the selection of the ROIs, by SGR-MCCDA, is significant with
respect to AD. The ROIs selected by the proposed CSP-MvCDA method are right supe-
rior frontal gyrus (RSFG), LSFG, RITG, left dorsolateral prefrontal cortex (LDPFC), and
ventral medial prefrontal cortex (VMPFC). All these ROIs except LDPFC are part of the
DMN, and hence are significant towards the progression of AD. The LDPFC belongs to the
fronto-parietal network (FPN), which is involved in executive function and goal-oriented
cognitively demanding tasks [255]. Research indicates that in AD, the fronto-parietal net-
work (FPN) and dorsal attention network (DAN) are affected after the primary affected
network, DMN [203]. Thus, the selection of these ROIs in case of CSP-MvCDA is also sig-
nificant with respect to progression of AD. The CCA, apart from selecting ROIs belonging
to DMN; selects right claustrum (RC) [258] and right inferior frontal gyrus (RIFG) [127]
belonging to frontal network (FN). All the methods select ROIs more or less from the
DMN, but most of ROIs selected by the proposed CSP-MvCDA and SGR-MCCDA algo-
rithms are from the primary affected network, DMN, of AD, which supports their higher
correlation value in Table 5.3.

5.3.4 Interpretation of Selected SNPs and Corresponding Genes

The selected SNPs are shown by the heatmaps in the left column of Fig. 5.4. To get a
clear view of the SNPs shown in the heatmap, the top 10 SNPs are selected according
to their absolute value of the canonical weights, and the corresponding genes are shown
in Table 5.5. The SNPs selected by the proposed SGR-MCCDA belong to genes NPAS3,
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Table 5.5: Top Ten SNPs, along with corresponding Genes and Weights, Selected by
Different Methods

CCA CoRe CoopLe
SNP(Gene) weight SNP(Gene) weight SNP(Gene) weight

rs4454114 (PRKN)  0.024  1s11218323 (CNTN5)  0.163  1s12421122 (CNTN5)  0.235
rs11946827 (SORCS2)  0.023  1s6464749 (CNTNAP2)  0.125  1s2135732 (CTNNA3)  0.180
rs11749056 (PDZD2)  0.023  rs6016752 (PTPRT)  0.111  1s7931452 (NAV2)  0.146
17937542 (NELL1)  0.022 17951332 (NTM) 0.102  rs6571585 (NPAS3)  0.116
rs11646321 (CDH13)  0.022  1s2891126 (ADAMTSL1) 0.100  1s7948049 (CNTN5)  0.110
rs3846424 (SORCS2)  0.021  rs7073786 (PCDH15)  0.079  rs10002408 (TENM3)  0.100
rs577876 (PRKN)  0.021 rs790350 (DLG2) 0.078  rs1439281 (TENM3)  0.087
rs4641570 (SOX5)  0.020 rs7931452 (NAV2) 0076  rs2037197 (DLG2)  0.083
rs11990503 (CSMD1)  0.020 rs7121400 (NELLI) 0.076  rs7657904 (SORCS2)  0.074
rs3828472 (GRM7)  0.019  1s10483889 (NRXN3)  0.076 rs13376837 (CTNNA3)  0.067

CSP-MvCDA SGR-MCCDA
SNP(Gene) weight SNP(Gene) weight

rs6016732 (PTPRT)  0.025  1s10151755 (NPAS3)  0.016
rs6072654 (PTPRT)  0.023  1s1911355 (CTNNA3)  0.015
rs12892137 (NRXN3)  0.023 151435110 (RYR3) 0.014

rs27723 (PDE4D)  0.023  1s6565062 (CDH13)  0.014
rs10833428 (NELL1)  0.022  rs9922483 (WWOX)  0.013
rs800621 (ZNF385D)  0.021  rs6450853 (PDZD2)  0.013
rs12152570 (SORCS2)  0.019  1s1104979 (NRXN1)  0.012
rs653127 (RBFOX1)  0.019  rs1497366 (ASIC2)  0.012
rs3807669 (MAGI2)  0.018  1s12495770 (ZNF385D)  0.012
rs4837530 (ASTN2)  0.018  1s1465221 (MAGI2)  0.012

CTNNA3, RYR3, CDH13, WWOX, PDZD2, NRXN1, ASIC2, ZNF385D, and MAGI2.
Out of these ten genes, eight genes, namely, CTNNA3 [28,171], RYR3 [82], CDH13 [156],
WWOX [108], PDZD2 [9], NRXN1 [167], ASIC2 [227], MAGI2 [302] are all proved to be as-
sociated with the progression of AD. There is no significant evidence of the other two genes,
NPAS3 and ZNF385D, to be associated with AD. In case of the proposed CSP-MvCDA
method, the six genes, namely, NRXN3 [100], PDE4D [276], NELL1 [117], RBFOX1 [206],
MAGI2 [302], and ASTN2 [271], are found to be associated with AD, while the three genes
have no significant effect on the progression of AD. The SGR-MCCDA method has selected
eight AD-related genes, whereas CSP-MvCDA has identified six genes, which justifies the
higher correlation value of SGR-MCCDA. Among all the genes, the genes, namely, NAV2,
CTNNA3, NRXN1, NRXN3, RBFOX1, RYR3, WWOX, and CSMD1, are found to be
common and significant with respect to AD. Most of these genes are selected by the pro-
posed SGR-MCCDA method, which supports the results of getting the highest correlation
value among all the methods for imaging genetic association in Table 5.3. The AD-related
genes selected by CCA are CSMD1, NELL1, CDH13, and PDZD2. Both methods, CoRe
and CoopLe, have selected NAV2, which is a risk gene in AD and is highly expressed in
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the brain and involved in nervous system development, according to Wang et al. [264]. All
these results justify the role of genetic biomarkers in imaging genetic associations for AD.

The classification results, reported in Table 5.3, indicate that although it is very difficult
to separate different diagnostic groups for the real imaging genetic data using resting state
fMRI and SNP data, the proposed SGR-MCCDA method has performed best among all
the methods. It can also be seen that the correlation obtained by the proposed method,
by the selection of meaningful genes and ROIs, is significant. Overall, the proposed SGR-
MCCDA method shows a promising result in terms of classification and correlation, and
the performance of the proposed CSP-MvCDA method is comparatively better than that
of the existing models in multi-class imaging genetics study.

5.4 Conclusion

In imaging genetics research, the main objective is to investigate the complex genotype-
phenotype association for the disease under study. To understand the impact of genetic
variations over the brain functions and structure, the genotypic data such as SNP is in-
tegrated with the phenotypic data such as imaging quantitative traits. In this chapter,
two new MVL algorithms, namely, CSP-MvCDA and SGR-MCCDA, proposed in Chapter
3 and Chapter 4, respectively, are successfully used to extract features for imaging ge-
netics correlation and select important biomarkers for the disease subtype classification,
which highlights the key characteristics of the imaging genetics study. A comparative per-
formance analysis with the three primary MVL algorithms of imaging genetics domain,
namely, CCA, CoRe and CoopLe, is presented in this chapter. A real imaging genetics
data set, obtained from ADNI cohort, is used for the analysis by using the AD related ge-
netic variants (SNPs) and brain imaging (fMRI) modalities. The results establish that the
classification performance of the proposed CSP-MvCDA and SGR-MCCDA on the ADNI
data set is better than that of the existing MVL models. Moreover, these two approaches
perform well with respect to capturing the correlation between imaging and genetic data,
although they are not capable of identifying the disease-specific imaging genetics associa-
tion, which necessitates sparse multi-task framework in this field.

Since the number of features in genotypic and/or phenotypic data is significantly higher
as compared to the number of samples, the sparse models, based on CCA, are popular in
this area to find the complex bi-multivariate genotype-phenotype association. However,
the sparse CCA based methods are, in general, unsupervised in nature, and fail to identify
the diagnose-specific features those play an important role for the diagnosis and prognosis
of the disease under study. In this regard, a new supervised model is proposed in next
chapter to study the complex genotype-phenotype association, by judiciously integrating
the merits of CCA, linear discriminant analysis (LDA) and multi-task learning.
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Chapter 6

Multi-Task Learning and Sparse
Discriminant Canonical Correlation

Analysis for Imaging Genetics Study

6.1 Introduction

In imaging genetics studies, identification of diagnose-specific imaging genetic association
may provide an in-depth investigation of a targeted group and can help in personalized
treatments. In this regard, the algorithms, which can select a small set of features for
each of the diagnostic groups, are of great interest. In 74|, Fang et al. proposed joint
SCCA (JSCCA), to study the imaging genetic association by applying the SCCA model in
each diagnostic group. However, it has the limitation of getting many undesirable imaging
genetics associations, which dominate the associations of interest, because of applying the
SCCA within a single diagnostic group. Moreover, it is not suitable for diagnose-specific
feature selection, although it is supervised in nature. In [66], another SCCA model, termed
as multi-task SCCA (MT-SCCA), has been proposed to study the genetic associations
with multiple imaging phenotypes by applying multiple SCCA model jointly. Similar to
most of the SCCA models, the MT-SCCA is also unsupervised and cannot capture the
diagnose-specific genotype-phenotype association. Also, the MT-SCCA model uses the
group structure of the SNP, but is unable to use the group structure of brain imaging
modality to learn the canonical weights. A supervised technique, termed as MT-SCCALR,
has been proposed in [63], which is the combination of MT-SCCA and multi-task logistic
regression. It has the capability of identifying the characteristic of a diagnostic group
by selecting the class-specific and class-consistent features. Although it is supervised in
nature and has the ability to select diagnose-specific features, it is computationally very
expensive and is not suitable for large scale imaging genetic associations. In recent time,
two more supervised methods, namely, collaborative regression (CoRe) [86] and cooperative
learning (CoopLe) [59], have been introduced for analyzing multiple modalities. Though
these methods are supervised, they are not suitable for diagnose specific feature selection.

In this regard, a novel multi-task bi-multivariate learning method, termed as multi-task
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Figure 6.1: An illustration of the MT-SDCCA method for the identification of diagnose-
specific imaging genetic association.

learning and sparse discriminant canonical correlation analysis (MTL-SDCCA) is proposed
in this chapter to identify the diagnostic group specific imaging genetic patterns as illus-
trated in Fig. 6.1. It judiciously integrates the merits of CCA, linear discriminant analysis
(LDA) and multi-task learning. Unlike most of the existing SCCA models, it learns two
canonical weight matrices, one for the genetic data and another for the imaging data.
Each column of the weight matrices is associated with a class-specific task. The proposed
method not only considers the group structure of the genetic variants, but also considers
the group structure of the brain imaging modality that is generally overlooked by most
of the existing methods. In the proposed model, the group structure is modeled with the
group la 1, that is, G 1 regularization. Also, the joint selection of features through all the
classes is modeled using I 1 regularization, and the /1 1 norm is used to sparsify the features.
The proposed method is applied on several simulated data sets and one real imaging ge-
netic data obtained from ADNI cohort. The current study integrates the SNP and resting
state fMRI data to find the bi-multivariate associations with respect to Alzheimer disease.
All the results show that the proposed method outperforms the existing algorithms. It
can capture the class-specific and class-consistent features more accurately than any other
methods, and yields better canonical correlation over all the existing algorithms. The class-
specific and class-consistent genetic variants associated with the resting state network can
provide better information for calculating polygenic scores (PGs) for Alzheimer disease.
The proposed method also provides higher classification accuracy as compared to other
existing methods. Moreover, the proposed method is computationally less expensive than
the existing diagnosis-specific feature selection methods, such as MT-SCCALR. Some of
the results of this chapter can be found in [177].

The remaining sections of this chapter are as follows: Section 6.2 presents the pro-
posed methodology. Computational complexity analysis of the proposed MTL-SDCCA
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with respect to different algorithms is also given in this section. The efficacy of the pro-
posed method, in terms of selecting biomarkers for imaging genetics association and disease
subtype classification, is shown by comparing the performance of it with the other state-
of-the-art algorithms over two simulated and a real neuroimaging data in Section 6.3. The
chapter is concluded in Section 6.4.

6.2 Proposed Method

In this section, a multi-task sparse method is introduced to identify the association between
the imaging and genetic data in such a way that the disease specific genetic markers and
brain voxels can be found out accurately.

6.2.1 Formulation of the Proposed Method

Let X € R™ P be the genetic data and Y € R™*9 represents the brain imaging phenotype
data, where n is the number of participants, p and g are the number of genetic markers
and imaging QT measures, respectively. Let us also assume that there are C' number of
diagnostic groups. Then, two discriminative spaces for two modalities can be constructed
by the objective function of the LDA as follows:

T T
w,, ST,xwx . Wy, STvywy .
max —————; Max ——————;
Wz Wy SW,xwac Wy Wy SWaywy

(6.1)
where w, and w, are the projection vectors corresponding to the data sets X and Y,
respectively. On the other hand, St , and Sw, represent the total scatter matrix and
within-class scatter matrix of the data X, respectively.

Similarly, a common space, where two data sets are maximally correlated, can be found
by the CCA objective function as follows:

T
max W 2oy Wy ; (6.2)

)
W, Wy /T [wI
Wy Zigg Wy wy yy Wy

where w, and w, are the direction vectors along which two data sets are projected.

Combining (6.1) and (6.2), the proposed method finds a new projective space where
the correlation between the two data sets as well as the class separability of individual data
set are simultaneously maximized. Hence, the objective function of the proposed method
can be formulated as follows:

i wl' Sy, \/wgST,zwx \/U’gST,ywy
T T :
et W B wen [l w, Wy SWaWz \| Wy Swywy
Since the total scatter of the data sets X and Y equal to

STz = Ygz; and Sty = Xy (6.3)
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the objective function of the proposed method reduces to

T
Wy, Ewywy

T
max wgzmcw:c wy, Eyywy
Wz, Wy T Ty wTSszx U)TSW w
AV Wy 2igz Wy [ Wy 2igy Wy z ) Yy Y

T
= max W oy Wy . (6.4)

W , W
N JwE Swpweq Jw] Swyw,

As the rescaling of w, and w, cannot affect the solutions of the problem (6.4), the above
maximization problem can also be expressed as a constraint optimization problem as fol-
lows:

max  wl Yy, wy,
We , Wy

subject to w;‘cpSW’mwx =1, wyTSW,ywy =1. (6.5)

Based on the above objective function, a novel multi-task model is proposed to find the
disease specific genetic markers and imaging QTs while maximizing the correlation between
them. The formulation of the objective function as a minimization problem is given by

C
min — Z ugZzyvc
c=1

Uc,Vc
: T qc _ T qc _
subject to  u, Syyauc =1, v, Syyyve =1,
Pl(U) <tq, PQ(V) < to9; (6.6)

where u. and v, are analogous to w, and wy of (6.5) for each class ¢, U is the canonical
weight matrix associated with X, consisting of the class-specific weights u. of the genetic
markers and V is the canonical weight matrix associated with Y, consisting of the class-
specific weights v, of the imaging QTs. Here, P;(U) and P»(V') are two penalty functions.
The within-class variance matrices for a specific class ¢, namely, S{ju . and SIC/V,y are defined
as follows:

Sive = D (@i — pe) (@i — )" + > (i — fie) (i — fie) T

iec ig¢c
Stry = D —ve) (Wi — ve)" + D (i — 7o) (i — 7e) "
iec i¢c

where u. and v, are the means of the samples belonging to the c-th class of the data
X and Y, respectively, and fi, and 7, are the means of the samples those do not belong
to the c-th class of X and Y, respectively. Two scatter matrices SIC/V,I and Sﬁv’y help
in class binarization to set up a multi-class classification task by using the one-versus-all
decomposition technique. If the classes in the data set are not balanced, the class balancing
technique such as random oversampling can be used to overcome this issue, while computing
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the scatter matrices Sj;, . and Sf,, [198].

6.2.2 Regularization for Class-Specific and Class-Consistent Feature

Selection

Since the genetic markers SNPs can be grouped according to their corresponding genes or
linkage disequilibrium or tag SNPs and the voxel-wise measures in different neuroimaging
modalities can be grouped according to different region of interests (ROIs) in the brain,
a realistic modeling should include these information into the model. The group lasso
penalty can be used to incorporate the group structure of SNPs or voxel-wise measures.
But, since it can be applied to a vector, it cannot be used directly to penalize the canonical
weight matrices U and V of the proposed method. To penalize the weight matrices U and
V', Go,1 norm, proposed in [263], is used, which is defined for U and V, respectively, as
follows:

K K C
k
1UlGas = D N5 = DIt
k=1 k=1 \ iepy j=1
L L C
l
Vigos = > IV!]F = N
I=1 =1 \ ieq j=1

Here, SNPs are assumed to be partitioned into K subgroups, {pk}ﬁil, and voxel-wise
imaging measures are partitioned into L ROls, {ql}lel. Applying this regularization would
consider the SNPs or voxels belonging to the same group as a whole, and would give a
similar weight to all the SNPs and voxels. Also, this regularization would penalize the
canonical coefficients of a group of variables across multiple task jointly, which practically
helps to select task or class-consistent features.

Although the G2 1 norm helps to select the SNPs and voxels according to their group
structure, it is unable to select features at an individual level shared through all the task.
There might be the case that some SNPs within a specific group shared by all the task is
relevant to the imaging QTs, but the remaining ones are not. In that case, an individual
level feature selection is required. In the proposed model, this is obtained via I norm,
the modified lasso regularization for multi-task feature selection. It is defined for U and
V', respectively, as follows:

p
[Ulha =D
i=1

q

IVlian =D,
i=1

So, G21 and I 1 regularization norms together are capable of selecting the task consistent
features at the group level as well as at an individual level.
Besides the class-consistent features, there may exist some features (SNPs or imaging
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QTs) those are relevant to a specific class. Then, the element-wise sparsity across all
the classes is necessary to select the class-specific features. To select these features, the
proposed method applies I1 1 penalty, which is similar to /; but is applicable for the multi-
task learning. This is defined for U and V, respectively, as follows:

p p C
e T T P N ik
i=1

i=1j=1
q g C
IV, =D il = >3 vl
i=1 i=1j=1

Although the norm /; ; is non-smooth, it can be optimized since it is convex. Applying the
Go,1-norm, Iz ;-norm and [y ;-norm regularizations for the canonical weights U and V/, the
proposed objective function can be expressed as follows:

C
min — 2 uszvc
c=1

Uc,Ve
subject to ucTSﬁv’zuc =1, ngIc/Vvyvc =1, (6.7)
HUHGZ,l <ap, HUH12,1 < by, HUHll,l < €1,

HVHGz,l < ag, HVHZQ,l < b, HVH12,1 < C2;

where a1, a9, b1, b, c1,co are constants. The necessity of using different norms for the
regularization of class-consistent and class-specific features is illustrated in Fig. 6.2

In this regard, it should be noted that unlike the MT-SCCALR model [63], the proposed
method integrates judiciously the merits of CCA and LDA. In effect, the proposed model
simultaneously has the power of maximizing correlation and can classify the diagnostic
groups properly. Both Sﬁv, , and SIC,V,y play an important role to identify the diagnose-
specific features. On the other hand, in the MT-SCCALR [63], the multi-class logistic
regression is combined with the MT-SCCA model [66], to identify the diagnose-specific
features. However, the proposed method is easy to implement and has lower computational
cost as compared to the MT-SCCALR model. Also, unlike the MT-SCCALR, the proposed
model is capable of dealing with large number of features.

6.2.3 Analytical Solution

To solve the minimization problem of (6.7), the following Lagrangian function is considered:

C
L(U,V) = Z ( —ul S + Al(uCTSf/VJuc —-1)+ AQ(UZS%/7yUC - 1))
c=1

(6.8)
+a1(|U] gy —a1) + a2(|U]y, — b1) + as(|U]ls,, — c1)

+ 81V oy — a2) + B2(IV |1y — b2) + B3|V ]1y — c2);

where A1, A2, a1, ag, a3, B1 B2, and (B3 are the Lagrange multipliers of the model to be
tuned. The parameters o and s, respectively, control the group-level and feature-level
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Figure 6.2: Illustration of different sparsity norms, included in the proposed method.

sparsity of the canonical weights U, while 51 and (s are the group-level and feature-level
sparsity parameters of the canonical weights V. On the other hand, ez and 3 control the
element-wise sparsity across all the classes for the canonical weights U and V', respectively.

The function L(U,V) in (6.8) is a biconvex function, that is, convex in U when V is
fixed and convex in V', when U is fixed. So, the problem can be solved using alternative
optimization rule. Taking the derivative of L(U, V') with respect to U, when V is fixed,
and equating it to 0 gives

XTY = MSfy .U — 201 DyoU — 202 Din U — 2a3Dy2U = 0

A 1
. (%SWQU + a1 Dy + asDy1 + Ongug) U = §XTY

1 (A !
U= 3 (?1551/:0 + a1Dyo + agDya + a3Du2> XTy. (6.9)

So, the updation rule for U is given by (6.9), where Y = [Yv; Yvy ... Yu |, 2D, oU
is the subgradient of |Ul|g,, with respect to U and 2D, U is the subgradient of |U];,,
with respect to U. The matrix D, is a block diagonal matrix whose entries are ml ks
(k=1,2,...K), where Ij is an identity matrix of size equal to the k-th subgroup of genetic

marker. The matrix D, is a diagonal matrix whose entries are m (1=1,2,...p). Also,
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the matrix D, is a diagonal matrix whose diagonal entries are ﬁ (i=1,2,...,pand j =
ij

1,2,...,0). When |U¥|r = 0, the k-th diagonal block of D, can be regularized as
m, where 7 is a very small positive number. Similarly, D,; and Dys can be
F

regularized.
Similarly, taking the derivative of L(U,V) with respect to V, when U is fixed, and
equating it to 0, gives the updation rule of V' as follows:

1/A -1
V = 5 (;S‘C/V’y + ﬁleo + BQDU:[ + ﬁgDv2> YTX; (610)

where X = [Xuy Xug ... Xue], 2DV is the subgradient of ||V, , with respect to V'
and 2D,1V is the subgradient of ||[V'|;,, with respect to V. The matrix D, is a block
diagonal matrix whose entries are ﬁh’ (I =1,2,...L), where I; is an identity matrix
of size equal to the [-th ROI. The matrix D,; is a diagonal matrix whose diagonal entries

1 . . . . . . . .. 1
are g (i=1,2,...q). Also, D, is a diagonal matrix whose diagonal entries are oo

(i=1,2,...,qand j = 1,2,...,C). When |V!|r = 0, the I-th diagonal block of D,q can

be regularized as \/%, where 7 is a very small positive number. Similarly, D,; and

24/[VHE+n
Dy can be regularized.

Both U and V' can be computed efficiently by solving the following linear system of
equations:

A 1

(;Sw + a1 Dyo + a2 Dy + agDu2> U= X"y (6.11)
Al e 1 r
?SVV,y + B1Dyo + B2Dy1 + B3 D2 | V = §Y X, (6.12)

without involving the matrix inversion which is computationally more expensive [263]. The
solution of the proposed optimization problem can now be obtained through iteratively and
alternatively optimizing U and V. The basic steps are outlined in Algorithm 6.1, which
converge to a local optimum depending on the initialization of U and V.

6.2.4 Computational Complexity Analysis

This section establishes that the proposed method has low computational complexity with
respect to the number of features p and g of two data sets X and Y, respectively, and the
number of common samples n. The computational complexity to initialize p x C' canonical
weight matrix U is O(pC'), where C' is the number of classes; while that to initialize ¢ x C'
canonical weight matrix V' is O(¢C). The time complexity for both class binarization
and class balancing is O(n). This step is to be executed C times. Therefore, the total
complexity of Steps 2 and 3 is O((p + ¢ + n)C).

In Step 5, one p x p block diagonal matrix D, and two p x p diagonal matrices D,
and Do need to be computed with a total computational complexity of O(pC). In Step
6, the complexity to update U according to (6.11) is O(p(p? + gnC)). Similarly, in Step 7,
one ¢ x ¢ block diagonal matrix D,o and two ¢ x ¢ diagonal matrices D, and D, need to
be computed with a total computational complexity of O(¢C). In Step 8, the complexity
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Algorithm 6.1 Proposed Algorithm
1. INPUT: X e R™?, Y e R™, \i, Ay, a1, g, a3, f1, Ba, Bs.

2: Initialize the canonical weights U = [u1,us,...,u.] € RP*C, V = [vy,v9,...,0.] €
R7*C.

3: Do class binarization and class balancing.

4: while not converge do

5: Calculate Dy, Dy1, and Dyo.

6: Solve U according to (6.11) and normalize each u. (¢ = 1,2,...,C) such that

uZS{jV@uC =1
Calculate Do, Dy1, and Dys.
Solve V' according to (6.12) and normalize each v, (¢ = 1,2,...,C) such that
rse, ve=1
v Sty te = 1.
9: end while
10: Sort each u. and v, (¢ = 1,2,...,C) in descending order according to the absolute
values of their elements.

to update V according to (6.12) is O(q(¢> + pnC)). The Steps 5 to 8 are executed T
times, where 7 is the number of iterations required to converge the proposed algorithm.
So, the overall complexity of Steps 5 to 8 is O(7(pC + p(p? + qnC) + qC + q(q* + pnC)))
~ O(t(p® + ¢ + pgnC)). Finally, Step 10 has O((p? + ¢*)C) complexity. Hence, the
overall computational complexity of the proposed multi-task sparse discriminant CCA is
O((p+q+n)C+71(p*+ ¢ +pgnC) + (p* + ¢*)C) ~ O(rp?), assuming p > ¢ and n, C < p.

In table 6.1, the computational complexity of different existing algorithms and the
proposed method is compared. In this table, n represents the number of samples and M
is the number of imaging modalities in case of MT-SCCAR and JCB-SCCA.

6.3 Experimental Results and Discussion

The performance of the proposed method is extensively compared with that of several
related existing algorithms, namely, CoRe [86], CoopLe [59] , JSCCA [74], JCB-SCCA
(joint-connectivity-based SCCA) [132], MT-SCCALR [63], and MT-SCCAR (multi-task
SCCA and regression) [128]. Since the objective of the proposed method is not only to
classify samples, but also to identify the important class-specific features, the one versus
all classification model is considered for the comparative performance analysis. A five-fold
cross-validation strategy is used to find the optimal parameters of the proposed model. The
set of parameters, for which the average of mean canonical correlation coefficient (CCC) and
classification accuracy (one versus all) is highest, is considered as the optimal parameter
set [63]. Two different metrics, namely, CCC and classification accuracy, are used here to
find the optimal parameter for the model, as CCC selects the features which maximize the
correlation while classification accuracy emphasizes to select the class specific features with
maximum correlation. In the current experiment, the mean CCC is computed as follows:

5

Z Z p(Xue, Yo.),

k=1c=1

Q| =
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Table 6.1: Complexity Analysis of Proposed and Existing Algorithms

Different Method  Computational Complexity

CoRe [86] O(r((p* + p*n) + (¢° + ¢*n)))
CoopLe [59] O(r((p* + p*n) + (¢ + ¢°n)))
JSCCA [74] O(7(p® + pnlog(n) + npg*))
JOB-SCCA [132] O(T((nq +p)p+(np +q)gM + gnlog(n)))
MT-SCCALR [63] O(T(n ¢+ np*¢® + p?))
o(r(p°
o(r(p*

MT-SCCAR [128] (v (q +n’pq)M))
Proposed (0 + ¢%))

where u. and v, are the c-th class-specific features. The proposed method has eight param-
eters, namely, A1, Ao, aq, a9, as, 81, B2, B3. The fine tuning of this set of eight parameters
together is computationally intensive. To reduce the computational cost, the parameters
A1 and Ag are set to 2.0, since they mainly effect the magnitude of the weight matrices U
and V', respectively. The remaining six parameters are tuned by the grid search strategy
over the set {102,107, 1,10, 10%}. The stopping criteria of all the methods are considered
as [UT™H —U"|| < e and |[V™H! — V7| < ¢, where T is the iteration number and e is the
tolerance level, which is set to 1075 empirically.

6.3.1 Simulation Study

This section presents the comparative performance analysis of different methods on six
simulated data sets.

6.3.1.1 Data Generation

A set of six simulated data is build to show the strength of the proposed method in
identifying the bi-multivariate association of the imaging genetic data by selecting the
diagnose-specific features. In all the simulations, three diagnostic groups are considered.
Let us assume that each data set consists of n samples, and n; is the number of samples in
the i-th class such that n; + na + n3 = n. First, a latent variable model, similar to [194],
is used to correlate the SNP and fMRI data. Let the latent vector be [ € R™, which
is generated from the normal distribution A/(0,1). Then, two sparse canonical weight
matrices, namely, U = [ug,ug,u3] € RP*3 and V = [v1,v2,v3] € R?*3 are generated.
Based on the latent vector | and the canonical weights U and V', four pairs of data sets
X~ N (liue, 021pxp) and Yo~N(live, 0ylgxq) are generated for each class ¢, and further
concatenated to form the SNP data X and fMRI data Y, where o, and oy are the noise
strength to X and Y, respectively. The SNP data X is further recoded into {0, 1,2} using
a binomial distribution B(2, logit (X + logit(x))), where logit(x) = log(7£-) and & is the
minor allele frequency of SNP, generated from the uniform distribution U (0 2,0.4).

DS-A: Following the above procedure, a data set namely, DS-A, is generated where the
SNP data X and Imaging data Y have dimensions (150,300) and (150,450). The DS-A
is simulated in such a way that both the class-consistent and class-specific features are
being present in the data. Among 150 samples, each of the three classes has 50 samples.
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Also, the group structures for both the SNP and fMRI data are given as prior information.
The SNPs in the data are grouped into 15 genes, each having size of 20, and each voxel
from the fMRI data is grouped into 15 ROIs, each having size of 30. The noise strength,
while generating DS-A, is considered as 0, = 0, = 0.5. To show the importance of class-
consistent and class-specific features separately, three more data sets, namely, DS-A1,
DS-A2 and DS-A3, are generated following the same procedure. The descriptions of these
data sets and the corresponding results are given in Section I and Section II, respectively,
of the supplementary material of [177].

DS-B: Another data set, namely, DS-B is generated to mimic the real high dimensional
data in the field. The data set is simulated to reflect the class-specific and class-consistence
feature across three classes. The dimensions of SNP data X and imaging data Y are set to
(300,20000) and (300,3000). Each class has 100 samples. The SNPs are grouped into 40
genes, each having size of 500 and the voxels in the fMRI data are grouped into 30 ROIs,
each having size of 1000. In this case the following three properties hold:

e To mimic the group effect of the real genetic and imaging data, two covariance ma-
trices ¥, and X, are generated. The correlation between the correlated variables
belonging to the same group is set to be from the uniform distribution U(0.1,0.3).
Then, for each class ¢, Xe~N (lite, Xgz) and Yo~N (v, Eyy) are generated and con-
catenated to form the SNP and voxel data.

e X, and Y, are generated from c¢ independent normal distributions to keep the labels
independent to each other.

e The minor allele frequency (k) is generated from the uniform distribution U(0.01,0.1)
to analyze the rare variant of SNPs, while recoding the SNP data into {0, 1, 2}.

Following the same procedure, another data set, namely, DS-B1, is generated. The details of
this data set and the corresponding results are given in Section I and Section II, respectively,
of the supplementary material of [177].

6.3.1.2 Accuracy and Correlation Analysis

To evaluate the performance of the proposed method with respect to the existing algo-
rithms, the feature selection ability is shown through heatmaps in Fig. 6.3, while mean
testing canonical correlation coefficient (CCC) and mean testing classification accuracy
(one versus all) are computed and represented by bar graphs in Fig. 6.4. To better under-
stand the difference between the existing algorithms and the proposed method, the receiver
operating characteristic (ROC) curve is presented in Fig. 6.5 by varying the cut-off of the
canonical loadings.

In Fig. 6.3, the canonical weights U and V are represented by the heatmaps indicating
the importance of features. Since both JSCCA and JCB-SCCA generate one canonical
weight vector u for all the task and C' canonical weights {v.} for C' tasks, u is stacked C
times to make its heatmaps comparable. Also, as CoRe, CoopLe and MT-SCCAR generate
one canonical weight vector for all the tasks, both v and v are stacked C times to draw
the heatmaps. From Fig. 6.3, it is seen that the proposed method is able to identify
the features which have higher degree of similarity with the ground truth than any other
existing methods.
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Figure 6.3: Heatmaps showing comparison of the canonical weights U and V for two data
set, namely, DS-A and DS-B. The rows 1 to 8 depict the results corresponding to the
ground truth, CoRe, CoopLe, JSCCA, JCB-SCCA, MT-SCCAR, MT-SCCALR, and the
proposed method, while the columns 1 and 2 represent the canonical weights U and V,
respectively. Each row contains three task (Cy,Cq,C3) specific features. The features are
shown by taking the mean computed over five-fold cross-validation.
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Figure 6.4: Comparative performance analysis of different methods with respect to mean
testing canonical correlation coefficient (left-column) and mean classification accuracy
(right-column) on two data sets, namely, DS-A (top row) and DS-B (bottom row) ob-
tained over five-fold cross-validation.

For the data set DS-A, the MT-SCCALR has identified only the class-specific features
and overlooked the shared information, while the proposed method has captured both the
class-specific and shared information across all the classes. For the data set DS-B, MT-
SCCALR is out of its program limit due to the large number of SNPs and voxels. In this
case JSCCA has captured both the shared and class-specific information for the canonical
weight V', but captured only the shared information for canonical weight U. All other
methods are capable of selecting a small amount of shared information only, but unable
to select the class-specific information across the three class. But, the proposed method
has performed better in case of selecting the class-consistent and class-specific features for
both the canonical weights U and V. From all the results reported in Fig. 6.3, it can be
concluded that the proposed method has more diverse feature selection ability than other
six existing algorithms.

In Fig. 6.4, the mean testing CCCs and mean classification accuracy are shown to
signify the association between the SNPs and voxels. The support vector machine (SVM),
of LIBSVM software package, is used to find the classification accuracy of all the methods.
The classification accuracy is obtained by selecting the top ten (10) generated features of
imaging and genetic data, and then concatenating them. In top row of Fig. 6.4, the graphs
of test CCCs and classification accuracy signify that the proposed method attains the
highest correlation and comparatively better classification accuracy among all the methods
in case of DS-A. Besides the proposed method, MT-SCCALR has also performed well in
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case of DS-A. On the other hand, for DS-B data set, the proposed method as well as JSCCA
have comparatively performed better in capturing the canonical correlation coefficient.
But, JSCCA has performed poor in case of obtaining classification accuracy. This happens
because the feature selection for U, by JSSCA is highly biased towards class-consistent
features. In effect, the top 20 features of SNP data come from class-consistent features. In
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Figure 6.5: ROC curves of different methods on two data sets, namely, DS-A (top row)
and DS-B (bottom row). Column 1 depicts FPR versus TPR on detection of canonical
SNPs (U), and column 2 depicts FPR versus TPR on detection of canonical Voxels (V).

top row of Fig. 6.5, the graph of receiver operating characteristics (ROC) curves for DS-A
shows that MT-SCCALR has highest true positive rate (TPR) than all other methods in
case of selecting the canonical weight U, whereas JSCCA has the best TPR values for
selecting the canonical weight V', with lower false positive rate (FPR). But, in both the
cases, MT-SCCALR and the proposed methods are consistent enough to have the descent
TPR value and JSCCA perform poorly in case of the canonical weight U. On the other
hand the ROC curve for DS-B presented in the bottom row of Fig. 6.5, shows that the
proposed method has highest TPR, values in case of the canonical wight U, but in case of
V', JSCCA has the best TPR values with low FPR values. All other methods have poor
TPR values as the FPR increases.

All the results demonstrate that although there exist several existing methods, such
as MT-SCCALR and JSCCA, which provide similar performance to that of the proposed
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method, with respect to CCCs, classification accuracy and ROC curves, the proposed
method has the better class-specific feature selection ability than all other methods.

6.3.1.3 Ablation Study

In this section, the importance of including different regularizer terms into the objective
function of the proposed method is evaluated by the capability of selecting class-specific
and class-consistent features, mean canonical correlation coefficient and mean classification
accuracy. The corresponding results are shown in Fig. 6.6. Depending on the three
regularizer terms, the experiments are conducted for the following five cases:

e Case-I: None of the three regularizer terms is present in the objective function; that
is, aq,a0, a3, B1, B2, and B3 all are set to zero.

e Case-II: The regularizer term, which controls the group-level sparsity, is only present,
while the other regularizer terms are absent, that is, ay # 0 and 1 # 0, while all the
other hyperparameters, as, ag, 2, and B3, are set to zero.

e Case-III: The regularizer term, which controls the individual-level sparsity, is only
present, while the other regularizer terms are absent, that is, as # 0 and (2 # 0,
while all the other hyperparameters aq, as, 51, and 53 are set to zero.

e Case-IV: The regularizer term, which controls the element-wise sparsity, is only
present, while the other regularizer terms are absent, that is, ag # 0 and 3 # 0,
while all the other hyperparameters, ai, as, 51, and (51, are zero.

e Case-V: All three regularizer terms are present in the objective function; that is, all
of the hyperparameters, a1, as, as, 81, B2, and 3, are nonzero. This is the proposed
formulation.

It is observed from Fig. 6.6 that when there are no regularizer terms involved in the
objective function of the proposed method, that is, in Case-I, the proposed method is unable
to identify the class-consistent and class-specific features, which is reflected in the heatmap
of the canonical weights U and V in Fig. 6.6a. For Case-II and Case-1II, where either
the group-level sparsity or individual-level sparsity is present in the objective function,
respectively, the proposed model still cannot identify the ground truth features for the
canonical weights U and V', which is reflected in Fig. 6.6a. These result in poor correlation
coefficient and classification accuracy for the cases I, II, and III, which can be observed
in Fig. 6.6b. On the other hand, for Case-IV, when the element-wise sparsity is included
in the proposed model, the model is able to identify the class-consistent and class-specific
features, but it has captured some unwanted noisy features also. At last, for Case-V,
when all the regularizer terms are present in the objective function, the performance of
the proposed method, in terms of selecting the class-consistent and class-specific features,
capturing correlation, and classifying one class from the others, has increased significantly,
which can be shown in Fig. 6.6a and Fig. 6.6b.
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Figure 6.6: The performance of the proposed method on DS-A data set under different
regularizer terms. (a) Heatmaps showing comparison of the canonical weights U and V.
The rows 1 to 6 depict the results corresponding to the ground truth (GT), and different
combinations of the proposed method presented through Case-1 to Case-V respectively.
(b) Comparison with respect to mean testing canonical coefficient (left-column) and mean
classification accuracy (right-column).

6.3.1.4 Noise Sensitivity Analysis

To analyze the noise sensitivity of the proposed method over the existing methods, the
noise strengths o, and o, are varied from 1 to 10 for the synthetic data DS-A. The F1-
scores, along with mean CCC and mean classification accuracy, are used to evaluate the
performance of different methods. The variation of Fl-score with respect to noise level is
studied in Fig. 6.7(a). It indicates that the F1-score of the proposed method deceases slowly
with the increase in noise level. However, the proposed method attains a higher Fl-score
as compared to all the existing methods, irrespective of the noise levels, modalities and
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Figure 6.7: Comparative performance analysis of different methods on DS-A data set under
different noise levels, with respect to (a) F1 score; and (b) CCCs and classification accuracy.
In (a), the 1st row represents the results corresponding to the selected SNPs, while the 2nd

(b)

row shows that of selected canonical voxels.

classes. Finally, Fig. 6.7(b) shows the variation of both CCCs and classification accuracy
with respect to noise level. The same optimal parameters, obtained over the data set DS-A,
has been used to compute the CCCs and classification accuracy of the proposed method
for all the noisy synthetic data sets. All the results reported here confirm that both CCCs
and accuracy of all the methods decrease with the increase in noise level. The proposed
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method achieves better performance with respect to CCCs for classes 1 and 3, while both
JSCCA and JCB-SCCA provide better performance for class 2, in most of the noise levels.
However, in case of the proposed method, the computed CCCs are more relevant since
the CCCs are captured by selecting the class-specific features, whereas the CCCs captured
by other models, namely, JSCCA, JCB-SCCA and MT-SCCAR, are highly similar for all
the classes. The performance of the proposed method and MT-SCCALR, with respect
to classification accuracy, is quite similar to each other, and after the noise level of 5, it
becomes similar for all the models.

6.3.2 Performance on Real Neuroimaging Genetic Data

This section presents the performance of different methods on real neuroimaging and ge-
netic data, obtained from the ADNI database (adni.loni.usc.edu). A total of 120 par-
ticipants are included in the current study whose resting state fMRI and SNP data are
collected from the ADNI cohort. The data acquisition and preprocessing are described in
Section 5.2 of Chapter 5. The performance of the proposed method is compared with that
of CoRe, CoopLe, JSCCA, JCB-SCCA and MT-SCCAR. The MT-SCCALR is excluded
from the comparative analysis since the number of voxels and SNP counts are large enough
to exceed the program limit of the MT-SCCALR. In this regard, it should be noted that the
proposed method is capable of handling large number of features, consumes less memory
and computationally less expensive than the MT-SCCALR.

6.3.2.1 Imaging Genetic Association and Classification

The performance of the proposed method is extensively compared with that of several
existing methods, with respect to mean testing CCCs and classification accuracy, and
the corresponding results are reported in Table 6.2. Higher value of CCC indicates the
stronger imaging genetic association. It is seen from the results reported in Table 6.2 that
both JSCCA and MT-SCCALR attain the correlation values near to zero. On the other
hand, the JCB-SCCA achieves a correlation value of 0.15, 0.14, 0.18 and 0.15 with respect
to CN, EMCI, LMCI and AD, respectively, but the standard deviation of the correlation
computed over five-fold cross-validation is quite high. Similar results are observed in case
of CoRe and CoopLe. However, the proposed method achieves the best correlation value
with low standard deviation, irrespective of the diagnostic groups. This result also suggests
that the correlation is significant for the imaging genetic association.

The classification accuracy reported in Table 6.2 is obtained by using the SVM. The
top ten SNPs and imaging QTs are considered, and then concatenated to generate 20
features. All the results reported in Table 6.2 show that the proposed method attains
highest classification accuracy (one versus all) for the three groups, namely, EMCI, LMCI
and AD. It signifies that the class-wise feature selection, which can distinguish one class
over the other, of the proposed method is comparatively better than the feature selection
of all other existing methods. The classification results also indicate that it is very difficult
to separate different diagnostic groups for the real imaging genetic data using resting state
fMRI and SNP data. However, it can also be seen that the correlation obtained by the
proposed method, by the selection of meaningful genes and ROls, is significant. Overall,
the proposed method shows a promising result in multi-class imaging genetic problem.
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Table 6.2: Canonical Correlation Coefficient and Classification Accuracy (

mean + std) for

Real Data
Metric Algorithms CN EMCI LMCI AD
CoRe [86] 0.1110 + 0.2063 0.1110 + 0.2063 0.1110 + 0.2063 0.1110 + 0.2063
Canonical CoopLe [59] 0.1307 + 0.2524 0.1307 + 0.2524 0.1307 + 0.2524 0.1307 + 0.2524
Correlation JSCCA [74] 0.0243 + 0.2996 0.0163 + 0.1624 0.0100 + 0.2872 0.0309 £ 0.1720
Coefficient JCB-SCCA [132] 0.1517 + 0.2621 0.1438 + 0.2517 0.1804 + 0.2094 0.1519 + 0.2656

MT-SCCAR [128]

0.0957 £ 0.1058

0.0957 £ 0.1058

0.0957 £ 0.1058

0.0957 £ 0.1058

Proposed 0.2556 + 0.0968 0.1694 + 0.1011 0.1747 + 0.0797 0.2339 + 0.0476

CoRe [36] 0.5000 + 0.1490 0.5583 + 0.0424 0.4416 + 0.0772 0.5583 £ 0.0424

CoopLe [59] 0.5000 + 0.0874 0.5250 + 0.0857 0.5500 + 0.0964 0.4416 + 0.0857

Classification JSCCA [74] 0.6750 + 0.0485  0.5250 + 0.0772 0.4333 + 0.0971 0.5667 + 0.1307

Accuracy JCB-SCCA [132] 0.5250 + 0.0677 0.5250 + 0.0971 0.5500 + 0.0849 0.5917 + 0.1000
MT-SCCAR [128] 0.5333 + 0.1034 0.5083 + 0.0716 0.5416 + 0.1020 0.5750 + 0.0807
Proposed 0.5833 + 0.0950 0.5916 + 0.0927 0.5916 + 0.0889 0.6000 + 0.0857
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Figure 6.8: Mean canonical weights of SNPs (U: left column) and voxels (V: right column)
obtained over five-fold cross-validation. Rows 1 to 5 correspond to the canonical weights for
the five existing methods, namely, CoRe, CoopLe, JSCCA, JCB-SCCA and MT-SCCAR,
and proposed method.

6.3.2.2 Interpretation of Selected Brain Regions

The imaging QTs, selected by the proposed method, are shown to be correlated significantly
with the progression of AD. The selected brain regions are shown in the right part of the
heatmap in Fig. 6.8. Most of the brain regions identified by the proposed method are class-
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Figure 6.9: (a) Number of voxels in 52 brain regions included in RSN. Row:1-4 frequency
of different ROIs in CN, EMCI, LMCI, AD group respectively. The higher frequency of
the ROI is, the more contribution to the correlation between the group and ROL.; (b) Top
fifty genes with corresponding SNP count. Row:1-4 frequency of different genes in CN,
EMCI, LMCI, AD group respectively. Higher the frequency is, the more contribution to
correlation of the gene associated with the respective group.
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consistent and significant with respect to AD. The brain regions selected by the existing
methods are not significant enough as evident from Table 6.2. The mean CCC near to zero
means the selected ROIs and SNPs are not correlated. The frequency of different ROIs
belonging to RSN for each diagnostic group is also shown in Fig. 6.9(a). The common
ROIs selected by the proposed method are left /right intraparietal sulcus (LIPS, RIPS), left
putamen (LPM), left primary motor cortex (LPMC), left primary somatosensory cortex
(LS1), and right middle frontal gyrus (RMFG). It has been shown in the existing works
that IPS [211] [149], LPM [160] and LPMC [244] are associated with the progression of AD.
In [236], it has been suggested that LS1 is affected early in the progression of AD and may
have some consequence on behavioral and functional measures. The functional activity in
RMFG is also associated with the AD, which has been shown in [290]. The most affected
and significant brain region in AD is posterior singulate cortex (PCC), which is specifically
selected here for the diagnostic group EMCI and also occur in both LMCI and AD. It is the
evidence of starting cognitive declination in EMCI from the healthy group [220,291,293].
The PCC is a central part in DMN and plays an important role in internally directed
cognition [34,207]. The reduced functional connectivity in PCC leads to occur AD [35].
So, the selection of PCC is significant. The right middle singulate cortex (RMCC) is
selected in EMCI group and different from ROIs of CN group. It is considered to be one
the affected brain regions in AD and justifies the cognitive degradation in EMCI [41]. The
RMCC is also selected in LMCI group. The left inferior temporal gyrus (LITG) is selected
in case of LMCI and AD only, which is also significant according to [219]. There are two
more regions, namely, left and right claustrum (LC, RC), selected in LMCI and AD groups,
which are reported to be affected by AD connected with the entorhinal cortex [180,258].
Overall, it can be concluded that although there are not many class-specific ROIs found
and most of the selected features are shared by all the classes; but they are proved to be
associated with the progression of AD.

6.3.2.3 Interpretation of Selected SNPs and Corresponding Genes

The selected SNPs are shown by the heatmaps in the left sides of Fig. 6.8. To get a
clear view of the diagnose-specific SNPs, the top 20 SNPs, selected according to their
canonical weights, and the corresponding genes are shown in Table 6.3. It shows that the
AD specific SNP rs7931452 gets the highest canonical weight and it comes from the gene
neuron navigator 2 (NAV2). There are three more SNPs, namely, rs11025246, rs10766573
and rs11025105, which are selected from NAV2 in the top 20 SNPs. According to [264],
NAV2 gene is highly expressed in brain and involved in the nervous system development. It
is a risk gene in AD. The frequency of occurrence of different genes in four diagnostic groups
is shown in Fig. 6.9(b). The most frequent genes occurring in AD group are CTNNA3
[171], DPP6 [36], NRXN3 [313], PDE4D [253]|, LINGO2 [170], ADAMTSL1 [22], NTM
[193], DABLI [77,182], DLG2 [200], and MACROD?2 [136], which are directly or indirectly
related with AD. In case of LMCI, the most frequent genes are NAV2, DPPG6 [36], PTPRT,
MACROD2, PDE4D, LINGO2, TMEM132D, DLG2, ADAMTSL1, and CNTNAP2. From
Fig. 6.9(b), it can also be seen that all the above mentioned genes are selected more or less
with respect to all the diagnostic groups. It suggests that although these genes cannot give
an insight to distinguish the four groups by their selection, but they are responsible for the
progression of AD and are significant towards class-specific correlation, which is shown in
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Table 6.3: Top Twenty SNPs, along with corresponding Genes and Weights, Selected by
the Proposed Method for Four Diagnostic Groups

\ CN \ EMCI \
GENE SNP Weight GENE SNP Weight

PDE4D 1s6865647  0.078804 | PTPRT 16016732 -0.090525
TMEM132D 151872712  0.075821 | PDE4D 6865647  0.08488

PDE4D rs10068809 0.070544 | NAV?2 110766573 0.083776
NAV2 1510766573  0.069887 | TMEMI132D 1s1872712  0.082469
NAV2 1s7931452  0.06943 PTPRT 16016752 0.072905
MACROD?2  rs444594  0.068855 | NAV2 1s2012651  0.068071
CTNNA3 1510509244  -0.057769 | DAB1 1s155294  0.06444

PTPRT rs6016752  0.057724 | DABI1 rs17115430  0.063024
MACROD?2  1s6042778  -0.054714 | NAV?2 rs7931824  0.061202
DPP6 rs6464378  0.053829 | PDE4D 11078368 -0.058396
NTM 17951332  0.052471 | DABI1 1s12132898  0.054784
TMEM132D 152292723  -0.05208 | PDE4D 1s27184 -0.054779
NAV?2 rs1364792  0.051959 | PDE4D 1s27183 -0.053174
MACROD?2 156034011  0.051011 | PDE4D 12910641  -0.053147
FRMD4A rsd748054  -0.047646 | NTM 1s10894417  0.052807
DABI1 rs17115430 -0.047507 | PDE4D 110068809  0.051554
DABI1 10493218 -0.046891 | PDE4D rs17721878  -0.051046
PTPRT rs6016732  -0.046427 | NAV?2 1s11025246  0.050735
WWOX rs6564559  0.046128 | NAV?2 1s7931452  0.050538
PTPRT 16102795  0.043723 | LINGO2 110968246 0.050032
\ LMCI \ AD \
| GENE SNP Weight | GENE SNP Weight |
NAV?2 rs10766573  0.11348 NAV?2 rs7931452  0.11662

PDE4D 1s6865647  0.107959 | LINGO2 110968246 0.08933

NAV?2 rs1364792  0.08444 PDE4D rs10068809  0.087625
TMEM132D 151872712  0.080466 | TMEM132D 1s1872712  0.083483
MACROD?2  1s444594  0.074877 | PTPRT 16016752 0.07748

MACROD?2  rs6074737  -0.074707 | LINGO2 1s7018499  0.074052
NAV?2 1s7931824  0.073344 | MACROD2  1s444594  0.072993
FRMD4A rs7095537  -0.071283 | TMEMI132D rs1386216  0.067443
PDE4D 1s27184 -0.071114 | NAV?2 1s11025246  0.067382
PDE4D s27183 -0.069814 | NTM 1s7951332  0.065785
NAV?2 1s2012651  0.063346 | PTPRT 16016732 -0.065705
CTNNA3 1513376837 -0.059706 | MAGI2 1s3779312  -0.059982
NAV?2 1511025239  0.056449 | PDE4D 1s2112957  0.056813
PTPRT 16016752 0.055904 | NRXN3 1s3861630  0.055988
NAV2 1511025158  -0.055325 | TMEM132D 182292723  -0.055084
NAV2 rs4757842  -0.051023 | NAV?2 110766573 0.05445

MACROD?2  rs6079391  -0.050938 | DABI 1s10489468  0.050205
PDE4D rs10068809 0.050515 | DPP6 rs6464378  0.050178
RYR3 1s2442463  -0.050287 | MACROD2  rs10485771 0.050164
DABI1 10493220 -0.049653 | NAV?2 1511025105  0.049452

Table 6.3.

6.3.3 Execution Time and Memory Usage

Finally, the performance of different methods is compared with respect to execution time
and memory consumption. The corresponding results are reported in Table 6.4. The
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Table 6.4: Execution Time and Memory Usage of Different Algorithms

‘ Different ‘ Execution Time (in second) ‘ Memory usage (in Gigabytes) ‘
| Algorithms | DS-A | DS-B | ADNI |DS-A |DS-B|  ADNI |
CoRe [86] 16.80 | 1398.10 53.14 0.51 0.83 0.57
CoopLe [59] 15.31 | 1220.00 71.40 0.51 0.83 0.57
JSCCA [74] 9.78 145.30 114.01 0.57 1.66 0.71

JCB-SCCA [132] 0.21 675.45 74.74 0.57 7.16 0.99
MT-SCCALR [63] | 316.12 | - . 268 | - -
MT-SCCAR [128] 1.66 1582.60 172.38 0.71 12.16 1.15
Proposed 7.34 | 3186.50 | 550.98 0.77 | 21.24 1.53

reported execution time of proposed method is given for the optimal parameter to make
the result consistent with all the existing algorithms. From the results, it can be seen
that although JCB-SCCA and MT-SCCAR need lower time than the proposed method for
convergence, both of them perform poorly, irrespective of the data sets used. Due to the
lower computational cost, the proposed method needs significantly lower execution time
than the MT-SCCALR. In fact, it is not possible to execute the MT-SCCALR on DS-B
and ADNI data sets, as the number of voxels and SNP counts are large enough to exceed
the program limit of the MT-SCCALR. Though the methods JSCCA, CoRe, and CoopLe
take more time than the proposed method to execute on DS-A, but their execution time
on DS-B and ADNI is very less compare to the proposed method. The reason behind this
is that in the algorithm of JSCCA, main steps are to execute the fused lasso solver for
updating V in each iteration and for the initialization of U, singular value decomposition
is used once, while in case of proposed method the main step is to solve the linear system
of equation twice for updating U and V respectively. The complexity to solve fused lasso
is O(pnlog(n)) [101] and the complexity to solve linear system of equation O(p®). For the
data set DS-A, the sample and feature size is quite similar for which JSCCA took 2 sec
more time than the proposed method for execution but as the feature size increases, time
to solve the linear system of equation get much higher than the time to solve fused lasso.
Similarly for CoRe and CoopLe, the only step which is to be executed iteratively is a lasso
solver. The time to solve lasso is faster compare to solve a system of linear equation for
high dimension. Although these methods take less time to execute, they do not perform
well in class-specific feature selection.

From the table, it is seen that the memory consumption of MT-SCCALR is the highest
among all the algorithms for the data set DS-A and is not applicable for DS-B and ADNI.
The proposed method performs better than MT-SCCALR in this respect. The MT-SCCAR
consumes less memory than the propose method because it calculates one canonical weight
vector u and v for all the classes, where as the proposed method has to calculate the
canonical weight wu,. and v, for each class ¢, so it require class specific weight updation,
which consumes more memory.
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6.4 Conclusion

In the field of imaging genetics, identification of the diagnose-specific imaging measures
and genetic markers are of great importance in personalized treatments. Most of the mod-
els in this domain are based on sparse CCA, and thus unsupervised in nature. Though
few supervised models have been developed in the recent years, they cannot identify the
diagnose-specific biomarkers. The MT-SCCALR, which can identify the diagnose-specific
and diagnose-consistent biomarkers, is not capable of handling large number of features,
and is also computationally very expensive. In this regard, a supervised multi-task model,
termed as MTL-SDCCA, has been proposed by judiciously integrating the merits of both
CCA and LDA. The proposed method can identify the diagnose-specific as well as diagnose-
consistent features. It is able to handle thousands of features and less computationally ex-
pensive than MT-SCCALR. The proposed model has also included different regularizations
to sparsify the solution and to select the important features.

The performance of the proposed method is compared with that of several existing
supervised models, namely, CoRe, CoopLe, JSCCA, JCB-SCCA, MT-SCCALR and MT-
SCCAR, considering four sets of synthetic data and one real imaging genetic data obtained
from ADNI cohort. An important finding is that the proposed method can successfully
identify the class-specific and class-consistent features, irrespective of the data sets used.
It also has better feature selection capability than several existing methods. For real
brain imaging data set, the correlation value for the proposed method is best among all
the existing methods compared. It signifies that the selected SNPs and imaging QTs are
consistent to give associated genes and ROIs with respect to AD. The results also show
that the proposed method has a diverse feature selection ability, can handle large number
of features and has significantly lower computational complexity than MT-SCCALR. In
future, the proposed model may be extended to incorporate the information of multiple
imaging modalities to find the bi-multivariate association with respect to the multi-class
problem.

The MTL-SDCCA proposed in this chapter is applicable for two modalities only. In the
next chapter, a more general sparse multi-task model is proposed to identify the complex
relationships among multimodal imaging genetics data having number of modalities more
than 2.
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Chapter 7

Multi-View Multi-Task Sparse

Canonical Correlation Analysis for

Imaging Genetics Study

7.1 Introduction

Imaging genetics, one of the most popular research fields in brain science, primarily fo-
cuses on studying neurodegenerative disorders, such as Alzheimer disease, to identify the
complex connections between genetic variations and brain functions for the disease under
consideration [96]. Due to the advancements in imaging technologies, several neuroimag-
ing modalities, such as magnetic resonance imaging (MRI), functional MRI (fMRI), and
positron emission tomography (PET), are now available to capture different quantitative
traits (QTs) of the brain, in terms of its structure, function, and metabolism, respectively.
In imaging genetics study, these multimodal brain imaging data can provide consensus
and complementary information of the underlying disease when integrated with genetic
data, such as single nucleotide polymorphism (SNP). This can provide a brief overview of
the genetic basis for the abnormal brain regions with respect to the underlying disease.
Additionally, a wealth of diagnostic and cognitive assessment data from several angles fa-
cilitates the identification of diagnosis-specific biomarkers, which can help to diagnose and
prevent the disease a priori [128]. Moreover, diagnosis-specific biomarkers can be used to
calculate the polygenic risk score (PRS) to follow the disease progression for personalized
treatments [49]. Thus, it is crucial to analyze multiple neuroimaging, genotype, and clinical
diagnostic data simultaneously to have a thorough understanding of the disease.

In order to find the complex relationships between high-dimensional multivariate genetic
and imaging data, multivariate learning methods explicitly model the data to capture the
joint influence of the multiple variables of one data set over the other. The sparse canonical
correlation analysis (SCCA) [272,273] is a popular multivariate method in imaging genetics
study, which is the sparse variant of canonical correlation analysis (CCA) [107]. It includes
a f1 norm as a constraint to the CCA model and can be applied as a variable selection
method to identify the important variables for the genetic and imaging data for which the
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data sets are maximally correlated. There exist several SCCA based approaches, which
rely on different sparsity-inducing norms, in order to explore the unique structure and prior
group information of the imaging genetics data [65,67,93,95,110,155]. However, most of
the SCCA based approaches do not consider the discriminant information between different
diagnostic groups when selecting the features for imaging genetics association. Also, the
SCCA models are applicable only for unimodal imaging and genetic data. Since multiple
brain imaging modalities can be useful for their complementary and shared information over
single brain imaging modality, the integration of multiple imaging modalities in association
with the genetic data is of great interest. Some attempts have been made to accommodate
more than two modalities by replacing two-view SCCA with its multi-view extension, called
multi-view SCCA (mSCCA) [273]. The three-way SCCA was introduced by Hao et al. [93]
to examine the connections between SNPs, imaging QTs, and diagnostic status. However,
the mSCCA based methods include all the pairwise correlation information among the
modalities to find the association. So, it is not possible to uncover plausible genetic loci,
unless all the SNPs and imaging modalities are highly correlated with each other, which is
too strict to assume.

As mentioned in Chapter 6, the multi-task learning (MTL) is a framework where mul-
tiple tasks are learned simultaneously, leveraging the shared information across the tasks,
to improve the overall performance [39]. The MTL framework has been adopted for the
SCCA models, where multiple SCCA models are learned simultaneously, in order to find the
complex imaging genetics association by identifying the task-specific and task-consistent
features [128]. The multiple tasks correspond to the selection of features specific for either
disease subtypes or multiple modalities explaining different perspective of the disease. The
multi-task SCCA (MTSCCA) [66] builds several SCCA tasks concurrently and associates
SNPs with imaging QTs of one modality, in order to study the multimodal imaging genetics
problem. However, the multiple tasks in MTSCCA focus only on modality-wise feature
selection. So, the MTSCCA is unable to perform task-specific and task-consistent feature
selection separately, for the multimodal imaging QTs. This limitations can be overcome by
the dirty MTSCCA (DMTSCCA) [64], which makes use of parameter decomposition and
MTL in order to identify not only the shared imaging QTs and genetic loci across multiple
modalities, but also the modality-specific imaging QTs and genetic loci. However, both
MTSCCA and DMTSCCA do not use the diagnostic status of the samples, which may
give important insight in finding the complex relationships among SNPs and multimodal
imaging QTs.

The label-guided MTSCCA (LGMTSCCA) [94] applies parameter decomposition and
sparse regression analysis, along with the label information of the data, to obtain modality-
consistent and modality-specific weight matrices. The label information is used in sparse
regression analysis to retain the relevant and noise-free features. In [265], a multimodality
discriminant SCCA (MD-SCCA) algorithm has been introduced, which utilizes the dis-
criminant information between different diagnostic groups, and explores the relationships
among multiple brain imaging modalities, to identify the complex genotype-phenotype as-
sociations. In [128], multi-task SCCA and regression (MT-SCCAR) has been introduced,
which uses genetic and multimodal neuroimaging data, along with cognitive measures, to
identify the high-risk brain regions and genetic risk factors associated with Alzheimer dis-
ease. The joint connectivity based SCCA (JCB-SCCA) [132] introduces a connectivity
penalty to incorporate the prior biological connectivity measures such as brain pathway
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and joint association of genetic markers. The joint sparse canonical correlation analysis
(JSCCA) [74] uses the label information for jointly estimating the multiple SCCA models,
to obtain canonical vectors with common and class-specific patterns using a generalized
fused lasso penalty. In [63], Du et al. proposed a multi-task bi-multivariate approach,
termed as multi-task SCCA and logistic regression (MT-SCCALR), which selects diagnose-
specific features to find genotype-phenotype patterns particular to each diagnosis. It uses
MTSCCA and multi-task logistic regression simultaneously to select a set of relevant fea-
tures for each diagnostic group. In order to obtain common and unique characteristics from
various disease classes, Song et al. [229] proposed a joint sparse collaborative regression
(JSCoReg) model, based on sparse regression and CCA.

However, the MTL based SCCA models described above focus either on the diagnose-
specific or modality-specific feature selection. Most of them, such as MTSCCA, DMTSCCA,
LGMTSCCA, MD-SCCA, MT-SCCALR, MT-SCCAR, and JSCoReg, are also computa-
tionally very expensive since all these methods involve computing inverse of a very high-
dimensional covariance matrix of SNP or imaging data, or require to solve a large system of
linear equations. The complexity of these methods is thus O(p?®), where p is the number of
features of SNP or imaging data. Moreover, most of them ignore the available information
of cognitive assessment or clinical data of the patients, which may help in identifying the
relevant features and making the model robust to noise.

In this regard, a multi-view multi-task sparse canonical correlation analysis (MvMt-
SCCA) is proposed in this chapter, as illustrated in Fig. 7.1, which utilizes multiple imag-
ing modalities, genetic data, cognitive assessment and label information simultaneously, in
order to identify the complex relationships between genetic and multimodal imaging data.
While the multiple brain imaging modalities provide the complementary and shared infor-
mation of different imaging QTs that are intrinsically connected to the genetic variations,
the cognitive assessment data, along with the label information, helps to select the features
those are relevant and noise-free with respect to disease-subtypes. In effect, the proposed
method has the ability to find modality-wise diagnose-specific and diagnose-consistent fea-
tures, which help in finding the SNPs-QTs association with respect to the disease-subtypes.
The proposed method utilizes both lasso and fused lasso penalties, which together guide
the modality-wise, class-specific and class-consistent variable selection. An iterative al-
gorithm, using block coordinate descent, is introduced to solve the optimization problem
of MvMt-SCCCA. It reduces the complexity of the proposed method to O(p?logp), and
makes the model applicable for large-scale imaging genetics study compared to the state-
of-the-art methods. The performance of the proposed method is studied on both simulated
and real-world data sets. The results on the simulated data signify that the proposed
method obtains a higher correlation value, has a better feature selection capability with
respect to each diagnostic group, and is robust to noise. The study using real ADNI data
finds a group of risk genes and modality-wise abnormal brain regions corresponding to
each diagnosis group, which may contribute to a more comprehensive understanding of
neurodegenerative disease and may help in personalized treatment. Some of the results of
this chapter can be found in [178].

The remaining sections of this chapter are as follows: Section 7.2 presents a brief
overview of the sparse canonical correlation analysis, based on which the proposed method-
ology is built in Section 7.3. Computational complexity analysis of the proposed MvMt-
SCCA is also given in this section. The efficacy of the proposed method, in terms of identi-
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Figure 7.1: An illustration of the MvMt-SCCA method for the identification of diagnose-
specific imaging genetic association with respect to multimodal imaging genetics data.

fying important biomarkers for multi-modal imaging genetics study, is shown by comparing
the performance of it with the other state-of-the-art algorithms over a simulated and a real
neuroimaging data in Section 7.4 and Section 7.5, respectively. The chapter is concluded
in Section 6.4.

7.2 Sparse Canonical Correlation Analysis

The SCCA model [272,273] is the sparse variant of the CCA model. Suppose X € R"*P
and Y € R™*7 are two data sets, where n denotes the number of common samples, and p
and ¢ denote the number of features in X and Y, respectively. The SCCA aims to find the
association between X and Y by obtaining two sparse canonical vectors uP*! and v?*!.
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The objective function of the SCCA is given by

min —u! XTYv + Aufulr + Aollv)1

u,v

subject to [luf2 < 1,[Jv]2 <1, (7.1)

where A, and A, are the regularization parameters of sparsity. The ¢ penalty is used to
make the model sparse and to prevent the overfitting problem for p, ¢ >> n. In the above
optimization problem, the data variance matrices are taken as the identity matrices, that
is, XTX = YTY = I, [272|, where I,, is the identity matrix of order n.

The JSCCA model attempts to fit multiple SCCA models jointly for multiple tasks [74].
Assume that the data X and Y can be divided into K classes of normalized data X € R™*P
and Yj, € R™*? according to the available information of K classes, where n;, is the number
of samples in the k-th class. The JSCCA estimates one shared canonical vector u for X
and K related sparse canonical vectors {vg} | for Y, respectively, by jointly applying
multiple SCCA models for multiple classes of normalized data X and Yi. The objective
of the JSCCA is defined as follows:

K K
. 1
min — Y —u" X] Vv + Aaflufy + Ao Y ol +7 D ok — vl
u,V Nk
k=1 k=1 k<k'
subject to [ul3 = |[V|% = 1, (7.2)
where V' = [v1,v2,...,v0k], and 7 is the regularization parameter. The general fused

lasso penalty [52] is applied to V' to make the K canonical vectors sparse and to find
similar structures across different classes. However, the JSCCA is limited to apply for two
modalities only. Moreover, it obtains task specific canonical vectors for the modality Y
only, not for the modality X.

7.3 Proposed Method

In this section, a multi-view multi-task sparse CCA (MvMt-SCCA) model is introduced
for imaging genetics study. Let X € R™*P be the SNP data set, where p denotes the
number of SNPs, and Y € R"*9 represents the neuroimaging data of the m-th modal-
ity, where ¢, denotes the number of neuroimaging features present in the m-th modality
(m=1,2,...M). Also, assume that the cognitive assessment data, Z € R™*", with r num-
ber of features is available for the n samples. Let the samples be classified into K number
of diagnosis groups. Consider dividing K classes of normalized data, X € R™*P for the
SNP data X, Y™ € R">*% for the m-th neuroimaging modality Y™, and Z;, € R"**" for
the cognitive assessment data Z, where ny is the number of samples present in the k-th
diagnosis group. The proposed model overcomes the limitations of JSCCA by incorpo-
rating the information of prior cognitive measures into the JSCCA model and selecting
the class-wise features not only for neuroimaging modalities but also for genetic modality.
The objective is to find diagnose-specific correspondence between the genetic data and
multiple neuroimaging modalities by jointly fitting multiple SCCA models. The proposed
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formulation is as follows:

K K
Jmin, Z Z X 4wl ZDYP + Y, ol + e Y el
m=1k=1 k=1 k=1
71 >k —w |y + Z Ag' 2 log* 1 + 2 5 ol — vl
k<k! m=1 m=1  k<k/
M
subject to [W[F = 1,|U[F =1, Y, [V™|F =1, (7.3)
m=1
where U = [uy,ug,...,ux], V"™ = [o]",v5,..., 0] for m = .M, and W =
[wy,we, .. wK] are the canonical weight vectors for Xi, {YM_ and Zy,, respectively,
A1, Ag, {)\5 M_ .7, and {7"}M_, are the regularization parameters. The relevance of

each term in the proposed formulatlon is explained next.

The first term of the objective function in (7.3) consists of two parts. The first part
takes into account the correlation between the SNP and neuroimaging data, whereas the
second part is considered to correlate the cognitive measures with the neuroimaging data.
Since the cognitive outcome of patients is directly affected by the abnormal brain regions
due to the degeneration of the neurons, the correlation between cognitive assessment and
neuroimaging data is only considered. Moreover, the cognitive measures with the label
information can influence relevant and noise-free feature selection for each diagnosis group
for the multiple imaging modalities, which further helps in the association of imaging
and genetic data. The second term of the objective function is taken as the ¢y (41-
norm for matrix) penalty of W, which is used to find the diagnose-specific sparse cognitive
measures that implicitly highlight the diagnose-specific features in imaging modalities. The
parameter A1 controls the sparsity of the canonical weight W.

In the third and fourth terms, ¢1 1 penalty and the generalized fused lasso penalty are
applied to the canonical weight U, to sparsify the weight vectors uyg, for the class-specific
and class-consistent feature selection for the SNP data. The ¢1 1 penalty on U is controlled
by the parameter 2. It ensures the sparsity on each uy. The ¢ ;1 penalty, applied to the
difference of every two canonical weight vectors of U, encourages multiple features of the
canonical weight vectors to be fused with each other. It helps the canonical vectors to
share a similar structure over different diagnostic groups of the SNP data. The fusion level
between two canonical vectors uy and wuys is controlled by 77. The fifth and sixth terms
of the objective function are for the class-specific and class-consistence feature selection of
multiple neuroimaging modalities. The ¢1 1 penalty on each V'™ encourages the sparsity in
each canonical vector vj* for the k-th class in the m-th imaging modality, which is controlled
by the parameter A3*. The fused lasso penalty on v;* and v} selects variables that share the
same information across different diagnosis groups for each imaging modality. The fusion
level between two imaging canonical vectors v} and v} is controlled by the parameter 73"
for the m-th imaging modality.

The constraint |[W|% = 1 explains the joint estimation of the canonical weights wy,
across different classes, while |U|% = 1 signifies the joint estimation of different canonical
vectors of the genetic data. Instead of taking |[V™|% = 1, for m = 1,2,..., M as the
constraint, Z _1 ||VmHF = 1 is taken for estimating the imaging canonical vectors jointly
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across different classes and cooperatively across all the imaging modalities.

7.3.1 Optimization of MvMt-SCCA

This section presents an alternating optimization technique for the minimization problem
of (7.3), in terms of the variables W, U, and {V™}M_, since the objective function cannot
be optimized directly. In this scenario, the objective function of (7.3) is alternatively convex
with respect to each of the three variables, while the remaining variables are treated as
fixed. In each case, the block coordinate descent algorithm is applied to solve the problem.

7.3.1.1 Canonical Weight of Cognitive Measure

In order to update W, while U and {V™}M_, are fixed, the optimization problem in (7.3)
can be expressed as follows:

M K 1 K
min — 2 Z ok wi ZEYP P+ A Y wil- (7.4)
HW”F:1 k=1 k=1

m=1

The solution to the problem of (7.4) can be obtained by solving the K sub-problems defined
as follows:

min  — af wg + Ap|wg1, (7.5)
il <1
g1
where ap = Y —ZI V"l k=1,2,... K. (7.6)
m=1 Uk

It contains the information of the sum of cross-correlation among the cognitive measures
and multiple imaging modalities corresponding to each diagnosis group. The sparse solution
wyg, for the k-th group is in the direction where the sum of cross-correlation for the group is
maximum. The solution can be obtained by the algorithm described in [273] and is given
by the equation

. S(ak; A1)
W = ———- (7.7)
IS (ax, A1)
The operator S(-) is soft-thresholding operator, which is defined as follows:
S(z, \) = sgn(zr) max(|z| — A, 0).
The solution of the problem of (7.4) is given by W = Y where W = [iy, Wy, . . ., Wy].

HWH
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7.3.1.2 Canonical Weight of SNP Data

To update the canonical weight matrix U, while considering the other variables W and
{VmIM_ as constant, the optimization problem of (7.3) can be written as

K
min — Z Z —uk P e )kl + Y s — e (7.8)
Wie=t  =ipm ™ k=1 k<K'
The problem of (7.8) can be expressed as follows:
K
min Eb uk+/\22 |ug1 + 71 Z |ur — upr |1,
k=1

[Uz=1 =

which is same as solving the following problem:

K K
min by — gl +Xo Y funli + 70 D)k — ww s
1U1E=1 55 h=1 <k
a1
where by = Z —Xxtymom. (7.9)
m=1 Tk

It includes the sum of cross-correlation among the SNP data and multiple imaging modal-
ities corresponding to each diagnosis group. The solution uy for the k-th group is in the
direction of maximum sum of cross-correlation for that group. The problem of (7.9) can
be viewed as a special case of the fused lasso signal approximator (FLSA) problem [102].
A very efficient solution to this problem is found in [52,101]|. Following three steps are
required to solve the problem of (7.9):

e Fusion: In this step, a solution U is obtained by setting A = 0, which is necessary
to fuse the features in u; and ug that do not have significant differences measured
by the parameter 7. The optimization problem for this step is given by:

U= argmln Z b, — uz|3 + 71 Z |wg — wgr |1 (7.10)
k=1 k<k'

The solution to this problem can efficiently be obtained by the algorithm of FLSA
[101].

e Sparsification: In this step, a soft-thresholding operator is applied to U to obtain
the optimal solution, U = [11,Ug, ..., Ux], from the relation 4y = S(ug, A2).

e Normalization: In the final step, U is normalized by ﬁ, which gives the optimal

solution for the variable U.
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7.3.1.3 Canonical Weight of Neuroimaging Data

For updating the variables {V™}M
of (7.3) becomes

-1, considering W and U as fixed, the objective function

M K
1
gu]r\}[ _ZETT P rwpZ +Z)\3 ZH’%HlJFZTQ ZH% vir |y
Vmim=1 =1 k=1 m=1 m=1  k<k'
M
subject to Z V™% = 1. (7.11)

I
—

m
The minimization problem in (7.11) can be broken down to M sub-problems given by
K 1 K
min — Z nk( EXE 4w ZE)Y M+ A Z log* 1 + 73" 2 ot = vprla (7.12)

m
vmist o =1 <k’

The problem of (7.12) can also be written in the form of (7.9) as follows:

K
Jmin Z et = o 13 + A5 D0 ol + 73" Y o = vt
I H -1 oy
1
where ¢} = n—Yka(Xkuk + Zywy). (7.13)
k

The above problem can be solved in the same three-step procedure mentioned above. Here,
the optimization problem in the fusion step is

K

Vm:fﬂfgfg},{lZ e = oI5 + 7" Y5 i = ol (7.14)
k=1 k<K'

where V™ is the solution of (7.12) obtained by setting AZ* = 0. All the successive steps
are similar as before and the final solution of the problem of (7.11) can be obtained by
normalizing each canonical loading, V™, by the sum Z _, [V™|%, which scales the solu-
tions across all the imaging modalities. The main steps to solve the proposed optimization
problem are summarized in Algorithm 7.1.

7.3.2 Computational Complexity Analysis

This section briefly analyzes the computational complexity of the proposed MvMt-SCCA
algorithm. For convenience, assume that ¢ = max,,{gm,}, where ¢, is the dimension of the
m-th imaging modality Y. The computational cost for executing each step of Algorithm
7.1 is outlined below.

1. The computational cost for the initialization step is O(K(p+ Mq+71)) ~ O(p+ Mq).

2. The computational cost to compute ay in step 4 is O(rq) and wy is O(r). Since the
steps 4 and 5 are executed K times in a loop, the total complexity of step 3 to step
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Algorithm 7.1 MvMt-SCCA
Input: Normalized data X}, Y, and Zj. The parameters A\, A2, AY*, 71 and 75*; m =
1,2,...,M; k = 1,2,..., K. Output: The canonical loadings, W = [wi,ws, ..., wk],
U =ui,u,...,ux] and V™ = [o]", 0", ... o] form =1,2,..., M.

1: Initialize the loading matrix W, U and {V™}M_ .

2: while not converge do

3: for k =1to K do

4: Compute ay according to (7.6).

5: Compute Wy, according to (7.7).

6: end for R

T: Normalize: W = %

8: Find U according to (7.10).

9: Obtain uy = S(ug, A2); k=1,2,..., K.
10: Normalize: U = ﬁ

11: for m =1 to M do

12: Find V™ according to (7.14).

13: Obtain 0" = S(0;*, A2); k= 1,2,..., K.
14: Normalize: V'™ = %

15: end for R

16: Normalize: V™ = Ve

. S IV
17: end while

6is O(K(rq+r)) ~ O(rq).
3. The normalization in step 7 requires O(Kr) time.

4. In step 9, the cost for solving the FLSA for the canonical vector U is at most
O(p*logp) [101]. The steps of soft-thresholding and normalization require O(Kp)
computational cost each. Therefore, total time cost for the computation of U is
O(Kp +p*logp) ~ O(p*logp).

5. Similarly, the total computational cost for the steps 11 to 15 is O(M (Kq + ¢*log q))
~ O(q*log q).

6. The computational cost for the step 16 is O(MgK).

Therefore, the total computational complexity of the proposed algorithm is O(p + Mq +
7(rq + Kr + p?logp + ¢*logq + MqK)), where 7 is the number of iterations required to
converge the iterative procedure. Since the number of classes K, cognitive measures 7,
and number of imaging modalities M are very very less than p or ¢, the complexity can
be reduced to O(7(p? logp + ¢*log q)). So, the complexity is lesser than the existing MTL
based SCCA methods, which require O(7(p* +¢*)) time to solve the optimization problem.
This makes the proposed algorithm efficient for large-scale imaging genetics problem.
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7.4 Simulation Study

In this section, the effectiveness of the proposed method in identifying imaging genetics
correlation is evaluated through a set of experiments on simulated data.

7.4.1 SIG: A Simulated Data

A simulated imaging genetics data, termed as SIG, is generated to conduct a set of ex-
periments. Let X € R™ P be the SNP data, and Y' € R"*? and Y? € R™ ¢ denote
two neuroimaging modalities, namely, IM1 and IM2, respectively. The SIG data contains
n = 300 samples belonging to three diagnostic groups, where each of the three groups
or classes consists of 100 samples each. The data set is generated in order to reflect the
association between SNPs-QTs through both the class-consistent and class-specific features.

To reflect similar effect between the genetic and multiple imaging modalities, a latent
variable model is used similar to [272]. The latent variable, I, € R™*! (k = 1,2,3), is
generated by a normal distribution A(0,1). Next, one sparse canonical weight matrix
U = [uy,uz,us] € RP*3 for the SNP data and two sparse canonical weight matrices V™ =
[v7*, v, o] € RI*3 (m = 1,2) for the two imaging modalities are generated. Using the
latent variable I, and the canonical weight matrices U, V!, and V2, X,i ~N (l,’;,uk, zxlpxp),
YU AN Lok, 0y, Iyxg), and Y2 ~N (Liug, 0y, Iyxq) are constructed for each i-th sample
belonging to the k-th class (k = 1,2, 3). The noise strength is considered to be o, = 0y, =
oy, = 0.5. Finally, the SNP data X and two imaging modalities IM1 (Y'!) and IM2 (Y?)
are constructed from Xli7 Ykl’i and Ykz’i, respectively.

Following [132], the SNP data X is further recoded into {0,1,2} in order to reflect
the intrinsic property of the SNP as its minor allele count. A binomial distribution
B(2,logit ™ (z +logit(x))) is used to convert each element of the SNP data X into {0, 1,2},
where logit(x) = log(7%;) and  is the minor allele frequency (MAF) of the SNP, generated
from the uniform distribution ¢/(0.01,0.1) to include rare variant of SNPs. The cognitive as-
sessment data Z is generated by the relation Z = [w” +e, where | = [ly,ls,15]7, w~N(0,1)
consisting of ten cognitive outcomes corresponding to each sample, and e is the Gaussian
noise [128]. Using the above procedure, the SIG data is generated, which consists of SNP
(X), two imaging modalities IM1 (Y1) and IM2 (Y2), and cognitive assessment score Z,
with p = 10,000 and g = 5000.

7.4.2 Selection of Parameters

The proposed method has (2M + 3) number of parameters, namely, Aj, Ag, {A?}%zl, T,

and {72"}M_,  to be tuned. A five-fold cross-validation (CV) strategy has been used to find
the optimal set of parameters. The parameters for which the mean canonical correlation
coefficient (CCC) is highest in the training set are considered to be optimal parameters.
In the current experimental setup, the mean CCC (p) over the five-fold CV is computed
as follows:

1 M K
P= o 2 ) D AKX, Y, (7.15)

f=1m=1k=1
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where p is the correlation between genetic and imaging canonical vectors in the projected
space. The sparsity parameters A1, Ay, and A3 are chosen from the set {0.001,0.01, 0.1, 1.0},
while the fusion parameters 71 and 7 are chosen from the set {0.001, 0.01, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
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Figure 7.2: Heatmaps showing canonical weights U, V! and V? for SIG data: Rows 1 to
6 depict the results corresponding to the ground truth (GT), mSCCA, MTSCCA, JCB-
SCCA, MT-SCCAR, and the proposed method, while the columns 1, 2 and 3 represent the
canonical weights U, V! and V2, respectively, corresponding to SNP, IM1 and IM2. Each
row contains three task (Ci,Cs,C3) specific features. The features are shown by taking
the mean computed over five-fold cross-validation.

7.4.3 Experimental Results and Discussion

This section presents the experimental results on SIG data set. The detailed description of
generating the canonical weight matrices, including the class-consistent and class-specific
features, is given in the supplementary material. The performance of the proposed method
is evaluated with respect to both diagnose-specific and modality-specific feature selection
ability in identifying the SNPs-QTs association.

7.4.3.1 Modality Specific Feature Selection

The performance of the proposed MvMt-SCCA is compared with that of several multi-
view modality-specific feature selection methods, namely, mSCCA [273], MTSCCA [66],
JCB-SCCA [132], and MT-SCCAR [128], and the corresponding results on SIG data are
reported in Fig. 7.2. In Fig. 7.2, the canonical weights U, V! and V? are represented
by using the heatmaps to highlight the important features. Since the methods mSCCA,

128



1.01 1.01
ey >
g 8
G %% Ik Ikl 508
= 19
b [v]
] <<
8 0.6 = 06 I I i
5 2
2 ] ©
o4 S 0.4
2 3
f wn
S 02 © 0.2
o (@)
0.0 0.0+
CiGCCC GGG GC GGG GG GG CiCC3C GGG GGG G C3CL GG QGGG GGOGGEGGGEGOGCGG
SNP-IM1 SNP-IM2 SNP-IM1-IM2
B mSCCA H MTSCCA I |CB-SCCA MT-SCCAR E MvMt-SCCA
U V! V2
1.0 1.0 1.0
0.8 0.8 0.8
o 06 0.6 0.6
o
= 0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR FPR
—— mSCCA  —— MTSCCA JCB-SCCA —— MT-SCCAR —— MvMt-SCCA

Figure 7.3: Comparison of different methods: Top row presents canonical correlation coef-
ficient and classification accuracy, while columns 1, 2 and 3 of bottom row depict the ROC
curve on detection of canonical weights U, V! and V2, respectively.

MTSCCA, JCB-SCCA, and MT-SCCAR generate one canonical vector for each modality,
the canonical vectors are stacked K = 3 times to get a heatmap comparable to the proposed
method. From Fig. 7.2, it can be concluded that each of the extracted canonical vectors
by the proposed method has the highest degree of similarity with the ground truth (GT)
for the SIG data. All the other methods have also identified important features, more or
less consistent with the G'T vectors, but they are not class-specific.

The first row of Fig. 7.3 presents the mean correlation coefficient and classification
accuracy on test set as indicators of the relationship between imaging QTs and SNPs.
The support vector machine (SVM) is used to compute the classification accuracy of each
method. By concatenating the top ten (10) selected features of the genetic and two imaging
modalities, the classification accuracy is achieved. The bars of Fig. 7.3 corresponding to
the correlation coefficient and classification accuracy signify that the proposed method at-
tains the highest correlation and comparatively better classification accuracy among all the
methods for the SIG data set. The proposed method indeed has the highest classification
accuracy since all the existing multi-view methods are not able to obtain the class-specific
features that help to classify the samples. Finally, the performance of the proposed method
is compared with that of the existing algorithms in bottom row of Fig. 7.3 with respect
to the receiver operating characteristic (ROC) curve by varying the cutoff of the canonical

129



1.0 ¢ 1.0 1.0
0.8 0.8 0.8
R eeeee Beeeee e s B
) e T . POV VST SO S PSS
=06 0.6 % | 0.6
o
(9]
v
— 0.4 0.4 0.4
[T ® FYSIIRR " % ®eeen 8- g TV PN % *
0.2 0.2 0.2
B i ARt TIPS
0--0-—-@--0--0--0--0--0--9-—-0 PPN S S EEE ELE S dunh J e St A
0.0 0.0— - 0.0— -
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Noise (%) Noise (%) Noise (%)
1.0
o
C
Qos
]
5
o 0.6 0.6 0.6
&)
c Ol pRw e Ol per et OG- prT e Y
Loa *---o- < |04 -9 < |04 *~-—o- Y
©
[
[
80.2 0.2 0.2
()
0.0
1.0
>
[}
©
I
3
Sos
<
c
o
k]
&
EO.G
w0
%]
©
&)
0.4 0.4 0.4
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 1 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Noise (%) Noise (%) Noise (%)
--e-- mSCCA e MTSCCA JCB-SCCA % MT-SCCAR —6— MMSCCANN

Figure 7.4: Comparative performance analysis of different methods under different noise
levels, with respect to F1 score, correlation coefficient and classification accuracy.

loadings. The figure shows that the proposed method has an almost perfect curve of true
positive rate (TPR) versus false positive rate (FPR) for all the canonical weights on SIG
data. Both MT-SCCA and MT-SCCAR have poor performance in terms of TPR and FPR
values in case of large data set like SIG. All the findings show that the proposed method
outperforms all other methods, in terms of selected features that are specific to a given
class, correlation value, and classification accuracy. The results on SIG data also indicate
that the proposed method is capable of handling large-scale imaging genetics data.

7.4.3.2 Noise Sensitivity Analysis

To analyze the noise sensitivity of the proposed approach in comparison to the existing
methods, random Gaussian noise is added to the standardized SIG data set as follows:

D' =D +o.E, (7.16)
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Table 7.1: Comparison of Execution Time and Space

Algorithms ‘ Time (Sec.) Space (MB) ‘
JSCCA [74] 0.03 150
MT-SCCALR [63] |  653.6 1600
MTL-SDCCA 8.42 500
MvMt-SCCA 0.30 150

where D’ is the noisy data set, D is the original noise free SIG data set, F is the Gaussian
noise generated from the normal distribution N (0gx1, Igxq) and o is the noise strength.
By varying o, from 1% to 19% with the increment of 2%, the performance of various
approaches is evaluated, in terms of Fl-scores, mean correlation coefficient, and mean
classification accuracy. The first row of Fig. 7.4 shows the variation of the F1l-score with
respect to different noise levels. From the results, it can be seen that the performance
of the proposed method with respect to Fl-score reduces very slowly with the increase in
noise levels, whereas that of different methods deteriorates significantly. All the existing
methods, except MT-SCCAR, attain very low Fl-score, irrespective of the noise levels.
On the other hand, the proposed approach outperforms all other approaches in terms of
F1-score, regardless of noise levels and modalities.

The second and third rows of Fig. 7.4 illustrate the variation of the correlation coefficient
and classification accuracy, respectively, with the increase in noise levels. The correlation
coefficient is computed class-wise, but averaged over all the modalities. All the results show
that the correlation coefficient of the proposed method decreases slightly as the noise level
increases, whereas the classification accuracy changes a lot with respect to noise after 10%
noise level. However, the proposed method performs better than all other existing methods
with respect to both correlation coefficient and classification accuracy, irrespective of the
noise levels. Other than the proposed method, both MTSCCA and JCB-SCCA provide
higher correlation value, but they do not have significance for class-specific correlations.
Also, the classification accuracy of the existing methods is very poor as compared to that
of the proposed method over different noise levels.

7.4.3.3 Diagnose Specific Feature Selection

In this section, the performance of the proposed method is compared with that of JSCCA
[74], MTL-SDCCA, proposed in Chapter 6, and MT-SCCALR [63], which are bi-multivariate
diagnose-specific feature selection methods. So, the analysis is presented for both (X, Y!)
and (X, Y?) pairs separately. As the the algorithm, MT-SCCALR, is not scalable to high-
dimensional data, another data set is simulated, which has the similar structure of having
class-consistent and class-specific features like SIG data, but significantly lesser number of
features and samples. In this case, n = 150, p = 500 and ¢ = 600 are considered.

To compare the performance of the proposed method with that of these three methods,
extensive experimentation is conducted. Fig. 7.5(a) and Fig. 7.5(b) present the heatmaps
for the pairs of canonical matrices (U, V1) and (U, V2), respectively, while the mean testing
canonical correlation coefficient and mean testing classification accuracy are presented by
the bar graphs in Fig. 7.5(c) and Fig. 7.5(d), respectively. It is seen from the results that
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Figure 7.5: Comparative performance analysis of different methods with respect to feature
selection, canonical correlation coeflicient and classification accuracy. Top row: Heatmaps
of canonical weights signifying feature selection corresponding to the pairs (a) (SNP, IM1)
and (b) (SNP, IM2). Bottom row: Correlation coefficient and classification accuracy ob-
tained by the selected features for the pairs (c¢) (SNP, IM1) and (d) (SNP, IM2).

for both pairs of canonical weights (U, V1) and (U, V?), the proposed MvMt-SCCA method
has the best feature selection capability. It has also captured the highest correlation value
and classification accuracy, irrespective of the tasks, with lower variance over the five folds,
compared to MT-SCCALR and JSCCA. On the other hand, MTL-SDCCA have the second
best correlation coefficient and classification accuracy on both pairs. The MT-SCCALR
performs well in both cases, whereas JSCCA has only identified class-specific features for
the imaging modalities. The execution time and space required for different methods are
reported in Table 7.1. The results show that both JSCCA and the proposed method
need the lower execution time and least memory consumption. The execution time and
space required for the MTL-SDCCA is also high with respect to the methods JSCCA and
MvMt-SCCA, but significantly lower than the method MT-SCCALR. Both time and space
complexities of the MT-SCCALR are very high, because of the calculation of the Hessian
matrix and the gradient of the graph-guided pairwise group lasso penalty.

Finally, it can be concluded from the above results that the MvMt-SCCA proposed in
this chapter significantly reduces the space and time complexities compared to the MTL-
SDCCA method proposed in the last chapter.

7.4.3.4 Ablation Study

This section presents the significance of incorporating various regularizer terms into the ob-
jective function of the proposed MvMt-SCCA method. The ablation study, in terms of the
ability to select class-specific and class-consistent features, the mean canonical correlation

132



I

-2

GT
C: C C1
[ |
.
.
|
| |
|

-0
" 0.02
g |
[, -0.01
Ay
o " -0.00
s il
l-o.oz
-0.01

-0.00

Case-ll
C: C G
|
||

0.02
-0.01

-0.00

11
(| I | I I
I I I L.
] | _

o 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000

Case-lll
C; C C1
|
|

0.0
0.02

Case-IV
C; C C

0.00

(a)

1.0 1.0
o >
c ] L I I I
Dog I 1 I I ] 1 i | ©os 1
L [] =1
E 1 i o
26 <06 |
&) c
5 2
S04 S 0.4
o =
3 =
£ @
o 02 02
o O

0.0 0.0+

C G GG GGG GCGOGLaGCG C GGG GGG GCGOGLG G G G G G GGG GGG G G
SNP-IM1 SNP-IM2 SNP-IM1-IM2
mm Case-l Case-ll Case-lll mm Case-lV

Figure 7.6: The performance of the proposed MvMt-SCCA method on SIG data set under
different regularizer terms. (a) Heatmaps showing comparison of the canonical weights U
and V. The rows 1 to 4 depict the results corresponding to the ground truth (GT), and
different combinations of the MvMt-SCCA represented by Case-1 to Case-1V, respectively.
(b) Comparison with respect to mean testing canonical coefficient (left-column) and mean
classification accuracy (right-column).

coefficient, and the mean classification accuracy is illustrated in Fig. 7.6 and Table 7.2.
The experiments are conducted for the following four scenarios, based on two regularizer
terms, namely, lasso and fused lasso.

e Case-I: None of the two regularizer terms is present in the objective function of the
MvMt-SCCA, that is, A1, A5*, 71, and 73" all are set to zero for m =1,2,..., M.

e Case-II: The lasso regularizer term, which controls the element-wise sparsity, is only
present in the objective function, that is, A\; # 0 and 5" # 0, while all the other
hyperparameters for fused lasso, that is, 71, and 75" are set to zero.

e Case-III: The fused lasso regularizer term, which controls the fusion of two similar
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Table 7.2: F1-Score of Different Cases of MvMt-SCCA for U, V! and V2.

MvMt-SCCA U Vi V2

Case-1 0.35 0.59 0.56
Case-1I1 046 0.74 0.70
Case-I11 0.32 0.68 0.64
Case-1V 0.96 0.94 0.94

features, is only present in the objective function, that is, 7 # 0 and 75" # 0, while
all the other hyperparameters for lasso, that is, A\ and \5* are set to zero.

e Case-IV: All the regularizer terms are present in the objective function of MvMt-
SCCA, that is, all of the hyperparameters A\;, AJ*, 71, and 75" are all nonzero for
m=12,..., M.

The heatmap in Fig. 7.6a shows that, in Case-I, when neither of the two regularizer
terms is part of the objective function of MvMt-SCCA, the proposed method picks up
almost all the noisy features along with the class-specific and class-consistent features.
Similarly, in Cases II and III, where the objective function includes either the lasso or
fused lasso, the proposed method not only selects the class-specific and class-consistent
features, but also captures the other noisy features. On the other hand, for Case IV, where
both lasso and fused lasso are included in the objective function, the proposed method
has identified the class-specific and class-consistent features more accurately. The Fl-score
shown in Table 7.2 gives a better understanding of the selected features for these four cases.
It is clear that both the lasso and fused lasso regularizer terms are important for choosing
features more accurately. The accurate feature selection is also responsible for the increase
in canonical correlation coefficient and classification accuracy, which is shown in Fig. 7.6b.
In Case IV, the MvMt-SCCA obtains the highest mean canonical correlation coefficient
and classification accuracy. All the results justify the inclusion of two regularizer terms in
the objective function of the MvMt-SCCA.

7.5 Real Neuroimaging Genetics Data Study

The real neuroimaging and genetic data sets used in this study are acquired from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD'. The main objective of ADNI has been to determine whether the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD) can
be tracked using a combination of clinical and neuropsychological assessment, PET, serial
MRI, and other biological markers. The current study includes 800 subjects considered
from three diagnostic groups, namely, control normal (CN), MCI, and AD. Their basic
characteristics are given in Table 7.3.

!The investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data, but did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: https://adni.loni.usc.edu/wp-content/uploads/how to_apply/
ADNI _Acknowledgement List.pdf
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Table 7.3: Characteristics of the Participants

CN MCI AD

Number 222 342 236
Gender (M/F) 121/101 179/163 134/102
Handedness (R/L) 202/20 305/37 212/24

Age (mean =+ std) 75.66+5.87 71.694£6.98  73.54£8.03
Education (mean + std) 16.44+2.66 16.16 +£2.64 16.10 +2.60

7.5.1 Neuroimaging Data Acquisition and Preprocessing

The neuroimaging modalities of the participants include two types of PET scans, namely,
18-F florbetapir (AV-45) scans and fluorodeoxyglucose (FDG) scans. In AD patients, FDG
and AV45 PET imaging are useful methods for measuring the amyloid-5 (A/) burden and
brain glucose metabolism, respectively [122]. The PET scans downloaded from ADNI go
through some primary preprocessing. The steps consist of averaging across voxels, coreg-
istration, standardization, intensity normalization and variable smoothing to obtain the
standardized uptake value ratio (SUVR) images. The preprocessed images are further cor-
rected for anterior commissure and posterior commissure, and registered to the standard
Montreal Neurological Institute (MNI) space as 2 x 2 x 2 mm? voxels. After that, the whole
brain is subdivided, and 116 region of interest (ROI) level measurements are extracted ac-
cording to the MarsBaR automated anatomical labelling (AAL) atlas [254]. These include
glucose utilization for FDG scans and amyloid levels for AV45 images. These imaging
measurements are pre-adjusted to exclude the effects of baseline age, gender, education,
and handedness using the regression weights obtained from the healthy control subjects.

7.5.2 SNP Data Acquisition and Preprocessing

The SNP data of the same population is downloaded from the ADNI LONI website. The
Human 610-Quad or OmniExpress Array (Illumina, Inc., San Diego, CA, USA) was used to
genotype them. The SNP data is preprocessed to follow the standard quality control (QC)
criteria using the PLINK tool (http://pngu.mgh.harvard.edu/) [201]. There are 1,008,823
SNP markers to start with. The QC criteria for the SNP data include (1) call rate check
per subject thresholded at 95%, (2) call rate check per SNP marker thresholded at 99.9%,
(3) marker removal by the MAF (< 5%), and (4) the Hardy-Weinberg equilibrium test
thresholded at 1IE—6. After the QC check, the marker count reduces to 307,281. The
majority of genes in the human genome can be found in the region of chromosome 19
sequence, where the average gene density is more than double that of the entire genome [85].
Thus, the current study includes the SNPs that are extracted from the chromosome 19
sequence. There are a total of 6032 SNPs left for further experiments.

The neuropsychological or cognitive assessment data is also collected for the 800 samples
from the ADNI site (study data). The data contains four composite measures for executive
functioning (ADNI-EF), memory (ADNI-MEM), language (ADNI-Lan), and visuospatial
functioning (ADNI-VS). Thus, there are four modalities, namely, SNP (800 x 6032), PET-
FDG (800 x 116), PET-AV45 (800 x 116) and cognitive measures (800 x 4), included in
the current study. The objective is to find out a small set of SNPs that are correlated to a
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Table 7.4: Comparison of Canonical Correlation Coefficient and Classification Accuracy
on ADNI Data

. SNP-FDG Correlation SNP-AV45 Correlation
Different
Algorithms CN MCI AD CN MCI AD
mSCCA [273] 0.01 + 0.07  0.01 +£ 0.07 0.01 +£0.07 0.01 £ 0.05 0.01 £ 0.05  0.01 + 0.05
MTSCCA [66] 0.06 £ 0.06 0.06 £ 0.06 0.06 + 0.06 0.06 + 0.05 0.06 + 0.05 0.06 + 0.05

JCB-SCCA [132] 0.07+£0.03 0.07+0.03 0.07+003 015+010 0.15+0.10 0.15 £ 0.10
MT-SCCAR [128] 0.14 £0.06 0.14 £ 0.06 0.14 £ 0.06  0.20 £ 0.06  0.20 £ 0.06  0.20 £ 0.06
MvMt-SCCA 0.17 £ 0.05 0.16 + 0.05 0.15 + 0.07 0.28 + 0.06 0.28 + 0.06 0.28 + 0.06

Classification Accuracy

Different

Algorithms CN MCI AD
mSCCA [273] 0.56 £ 0.06  0.51 £ 0.04  0.55 + 0.03
MTSCCA [66] 0.51 £ 0.08 0.51 £ 0.03  0.55 + 0.02

JCB-SCCA [132] 0.60 + 0.06 0.47 + 0.04  0.53 + 0.03
MT-SCCAR [128] 0.53 £ 0.07  0.51 + 0.03  0.50 + 0.02
MvMt-SCCA 0.56 £ 0.03 0.52 + 0.03 0.56 + 0.02

small set of imaging biomarkers with respect to AD subtypes, which may help to diagnose
and prognosis of AD in the early stages.

7.5.3 Experimental Results and Discussion

In this section, the performance of the proposed method is compared with that of several
multi-view methods, namely, mSCCA, MTSCCA, JCB-SCCA, and MT-SCCAR. It should
be noted that the proposed method is the only one that identifies a correlation between
SNP data and multiple imaging QTs with respect to disease-subtypes.

7.5.3.1 SNPs-QTs Association and Classification

The association between SNPs and multimodal imaging QTs has been assessed by reporting
the canonical correlation coefficients and classification accuracy in Table 7.4 with respect
to three disease-subtypes, namely, CN, MCI, and AD. A higher correlation value denotes
a greater genetic connection with multimodal imaging QTs. The results show that the
mSCCA has a very low correlation value for both the pairs SNP-FDG and SNP-AV45 with
respect to the three disease courses since it tries to look into the strong correlation between
every pair of imaging and genetic data, which may not be the case. Both MTSCCA and
JCB-SCCA provide similar correlation value for the SNP-FDG pair, but JCB-SCCA has
found a significantly higher correlation value for the SNP-AV45 pair for the three disease
courses. The MT-SCCAR has a comparatively better correlation value than other existing
methods. It has obtained correlation values of 0.14 and 0.20 for the pairs SNP-FDG and
SNP-AV45, respectively, with respect to each of the three disease-subtypes. On the other
hand, the proposed MvMt-SCCA has the higher correlation values compared to all the
existing methods, and obtained 0.17, 0.16 and 0.15 for the pair SNP-FDG with respect
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Figure 7.7: Mean canonical weights of SNPs (U: 1% column), PET-FDG (V!: 2"¢ column)
and PET-AV45 (V2: 3™ column) obtained over five-fold cross-validation.

to CN, MCI, and AD, respectively. In the case of SNP-AV45, it has obtained 0.28 for all
three diagnostic groups. Both the proposed method and MT-SCCAR have included the
cognitive data into the model, which helps in associating the relevant and noise-free imaging
measures to the genetic data, and results in a better correlation value. The selected SNPs
and ROIs, which are responsible for correlating the genetic data with multimodal imaging
QTs, are shown through the heatmaps of Fig. 7.7. The results show that only the proposed
MvMt-SCCA method is able to select diagnose-consistent and diagnose-specific SNPs as
well as imaging QTs, which is also justified by the higher correlation values, reported in
Table 7.4.

The classification accuracy (one versus all) reported in Table 7.4 is obtained using
the SVM, based on 30 features formed by concatenating 10 features for each of the three
modalities, namely, SNP, PET-FDG, and PET-AV45. The accuracy establishes how well
the selected features can separate one diagnostic group from the others. The classification
accuracy reported in this table indicates that the proposed method has identified MCI
and AD, better than any other methods. However, it provides second highest accuracy
for the third diagnostic group by the selected features. This is mainly due to the fact
that the selected features contain more shared correlation information compared to class-
discriminative information.

7.5.3.2 Interpretation of Selected SNPs and Corresponding Genes

According to the canonical weight matrix U, there are 16 SNPs selected by the proposed
method. The diagnose-consistent and diagnose-specific SNPs and their corresponding genes
are reported by a Venn diagram in Fig. 7.8. There are 7 SNPs, which are same across all
three diagnostic groups and are shown in middle of the first Venn diagram of Fig. 7.8. This
7 SNPs correspond to 5 genes, namely, TOMM40, NECTIN2, MUC16, PRTN3 and PRR12.
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Figure 7.8: Venn diagrams for SNPs and ROIs of PET-FDG and PET-AV45, selected by
the proposed method using ADNI data, corresponding to three diagnostic groups, namely,
CN, MCI and AD.

Out of 7 SNPs, three SNPs, namely, rs2075650, rs157580, and rs8106922, come from the
gene TOMM40. The genetic variants of translocase of outer mitochondrial membrane
40 (TOMM40) cause neuroinflammation and are believed to increase the risk of AD in
different populations [46,87]. Three genetic markers, namely, rs2075650, rs157580, and
rs8106922 of TOMMA40, selected by the proposed method, are proven to be associated with
the progression of late-onset AD [48,233].

Three SNPs, namely, rs12972439, rs256335 and rs188701, which are selected only for
the diagnostic group AD, belong to the genes MUC16, RYR1 and U2AF2, respectively.
The expression and function alteration of ryanodine receptor (RYR1) gene, which code for
ryanodine receptors, and involve in SAPP processing and A peptide production, may play
an important role in the progression of AD [56]. In recent studies, the genes MUC16 [299]
and U2AF2 [216] were discovered as the genetic biomarkers for AD [299]. Two SNPs,
namely, rs6859 and rs12610605, selected for the AD group, come from the NECTIN2
gene. The SNP rs6859 is shared by all the three diagnostic groups, whereas rs12610605
is shared by the AD and CN. According to [172], NECTIN2 is expressed in particular
brain regions and is crucial for processes including synaptic development and astrocyte
and neuron homeostasis. The rs6859 SNP of NECTIN2 can be associated with cognitive
declination in AD patients [208]. The other SNP, rs12610605 of the NECTIN2 gene, is also
considered to be associated with AD [138]. Although the selected gene PRR12 is thought
to have a role in brain development, its function and possible significance in human illness
remain unknown [144]. All other selected genes, such as PRTN3 [214], HSPBP1 [61], and
FBXP046 [142], selected for MCI or AD, are directly or indirectly related to the progression
of AD. All the results of Fig. 7.7 and Fig. 7.8 suggest that the SNPs selected by the proposed
method are either diagnose-consistent or diagnose-specific, and their corresponding genes
are all significant towards the progression of AD.
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Figure 7.9: Visual representation of region of interests (ROIs) corresponding to PET-FDG
(1% column) and PET-AV45 (2"4 column) obtained by the proposed method. Rows 1, 2
and 3 correspond to ROIs of three diagnostic groups, namely, CN, MCI and AD.

7.5.3.3 Interpretation of Selected ROIs

The selected brain ROIs for the two imaging QTs, namely, PET-FDG and PET-AV45, are
shown by a glass brain plot in Fig. 7.9, while the names of ROIs corresponding to diagnose-
specific and diagnose-consistent are shown in Fig. 7.8 using Venn diagrams. It has been
demonstrated that there is a strong correlation between the selected imaging QTs and
SNPs in developing AD. Fig. 7.9 shows that there exist several ROIs for both modalities,
which are mostly diagnose-consistent. Moreover, the selected ROIs for FDG and AV45 are
almost similar with respect to the diagnostic status of CN and AD, which suggests that the
degradation of those ROIs in normal people over time may increase the risk of AD. It can
also be concluded from Fig. 7.8 and Fig. 7.9 that both imaging modalities have different
ROIs selected by the proposed method. In case of the FDG modality, most of them are
from the parieto-temporal lobe and cerebelum, whereas the selected ROIs in case of AV45
modality are mostly from the temporal lobe and medial frontal lobe.

The FDG-PET measures the cerebral metabolic rates of glucose (CMRglc), a stand-in
for neuronal activity in AD patients. Some of the important ROIs, specific to AD, selected
by the proposed method from the FDG modality are the posterior singulate cortex (PCC),
angular gyrus, parahippocampal gyrus, caudate, putamen, lingual gyrus, and precuneus.
The PCC is the only brain region that is selected for all the modalities and classes, and
it is proven to be the most affected brain region in early AD. With strong anatomical
and functional links to several other brain areas, the PCC is a region of the brain with
increased metabolic activity. According to [146], AD patients show PCC hypometabolism,
volume atrophy, and connection corruption. In a longitudinal study with MCI patients, it
has been seen that changes in PCC connectivity over time are associated with cognitive
decline [270]. Therefore, the selection of PCC is significant for MCI and AD. Along with
PCC, in the parieto-temporal regions such as the angular gyrus [225] and medial temporal
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Table 7.5: Comparison of Execution Time and Space

‘ Different ‘ SIG ‘ ADNL ‘

‘ Algorithms ‘ Time (Sec.) Space (GB) ‘ Time (Sec.) Space ( ‘
mSCCA [273] 217.4 3.5 82.20 1.0
MTSCCA [66] 378.41 3.5 170.46 1.1
JCB-SCCA [132] 45.66 2.1 7.05 0.7
MT-SCCAR [128] |  194.79 5.1 47.84 1.3
MvMt-SCCA 1.93 0.2 0.14 0.2

lobe such as the hippocampus and parahippocampus [181], AD patients consistently have
CMRglc abnormalities. According to [115]|, people at risk for AD had far worse glucose
metabolism in the right angular gyrus, compared to controls. In [126], it has been shown
that the glucose metabolism in the precuneus gets reduced in patients developing AD.
All the other selected ROI markers, such as parahippocampal gyrus [256], caudate [197],
putamen [54], and lingual gyrus [159], have been shown to be associated with AD.

The PET-AV45 detects Af load in patients with AD and can provide information on
both neurodegeneration and amyloid deposition. Some of the important brain ROIs se-
lected by the proposed method from the AV45 modality are different parts of the frontal
cortex (Frontal Med Orb, Frontal Inf Orb, Frontal Mid Orb), anterior cingulate cor-
tex, different parts of the temporal lobe (Temporal Mid L, Temporal Inf L, Temporal Sup
L), gyrus rectus, and precuneus. In [88], a systematic review has shown that the infe-
rior frontal gyrus, anterior cingulate cortex, and medial temporal lobe are the areas most
commonly related to ROIs associated with AD. The insula, orbitofrontal cortex, posterior
cingulate cortex, medial frontal gyrus, and superior frontal gyrus are further important ar-
eas. All the ROIs, except insula, have been selected by the proposed method with respect
to AD. The gyrus rectus is also considered to be associated with MCI and AD [38], which
justifies the selection of this ROI.

7.5.4 Execution Time and Memory Usage

Finally, the performance of various approaches is compared in Table 7.5, in terms of memory
usage and execution time. The results show that the proposed method performs signifi-
cantly better, in terms of memory usage and execution time on both SIG and ADNI data
sets. It takes only 1.93 seconds on SIG data having 10,000 features, while 0.14 seconds on
ADNI data set having 6032 features. All other methods, except JCB-SCCA, take a huge
amount of time and space on both the data sets. This is due to the fact that the mSCCA,
MTSCCA, and MT-SCCALR require computation of the inverse of a high-dimensional
(p x p) covariance matrix, which has a complexity of O(p3). On the other hand, the pro-
posed method uses a lasso or a fused lasso solver, and optimizes the algorithm using the
block coordinate descent technique, which has a complexity of O(p?logp) at most. The
coordinate-wise optimization technique helps the proposed method to occupy less memory
while executing it on large data sets. The JCB-SCCA also uses the block coordinate descent
algorithm to compute the canonical vectors, but it incorporates a GraphNet regularizer,
for which there are more computations involving graph Laplacian in the intermediate steps
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of the algorithm.

7.6 Conclusion

A multi-view multi-task SCCA model (MvMt-SCCA) has been proposed in this chapter,
which integrates multimodal neuroimaging data, genetic data, and cognitive assessment
data. It also uses the diagnostic status to find out complex connections between genetic
and multimodal neuroimaging data with respect to disease-subtypes. It uses the lasso
and fused lasso penalty together to identify the diagnose-specific and diagnose-consistent
features, exploring the natural ordering in the SNPs and brain ROIs. The iterative al-
gorithm that solves the proposed optimization problem uses the block coordinate descent
technique, which is both time and space efficient. The proposed model has a time complex-
ity of O(p?logp), which is significantly lesser than that of the existing MTL based SCCA
methods, which have a complexity of O(p?) or O(p*). The results on simulated data, SIG,
establish that the proposed method can capture a higher correlation value, select relevant
and noise-free features, with lower computational cost. The real neuroimaging study over
ADNTI data has identified some of the important genetic and imaging biomarkers for AD.
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Chapter 8

Conclusion and Future Directions

This chapter provides an overview of the major contributions of MVL algorithms discussed
in the various chapters of this thesis. This chapter also covers the potential applications
and future directions of the proposed research work.

8.1 Major Contributions

A few novel MVL methods for multi-view data integration are presented in the thesis. There
are five key challenges involved in multi-view data analysis, which include (i) integrating
heterogeneous views while constructing discriminant subspaces, (ii) finding the intrinsic
non-linear class-geometry of the data across all the views, (iii) handling “high-dimension
low-sample size” nature of different views, (iv) selecting relevant and informative views
while discarding the noisy and redundant views, and (v) applying MVL under a multi-
task learning framework, for learning multiple related tasks simultaneously to improve the
performance of single-task MVL. This thesis has addressed each of the aforementioned con-
cerns. The key characteristics of the proposed methods in the thesis are briefly summarized
and discussed next.

Chapter 3 introduces a novel supervised MVL algorithm, termed as CSP-MvCDA, by
judiciously combining the merits of both MCCA and LDA. It jointly optimizes the inter-set
correlation across all the views and intra-set discrimination in each view to obtain a common
discriminative latent space, where the global class-structure of the data can be preserved.
A label guided regularizer term, based on the locality preserving projection, is incorporated
into the proposed framework to preserve the local class-structure of the data in each view.
In effect, both local and global class-structure of the data can be preserved, which makes
the model compatible for non-linear data. The proposed formulation of CSP-MvCDA can
be solved easily by solving a generalized eigenvalue problem and used as an alternative
to MCCA, in case of supervised multi-view subspace learning. Although the model CSP-
MvCDA considers both intra-view and inter-view information to integrate multiple views,
it may suffer from the presence of noisy and irrelevant views. For example, some of the
views may not contain the desired information, and integrating all of them may lead to
poor performance with respect to a particular task. Moreover, the “high-dimension low-
sample size” nature of different views makes the class-scatter matrices ill conditioned. In
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this regard, a new supervised graph regularized MVL algorithm, termed as SGR-MCCDA,
based on the unsupervised subspace learning algorithm MCCA-MAXVAR, is introduced
in Chapter 4. It uses a low rank representation of the class-scatter matrices to form a
sample-by-sample non-singular normalized variance matrix, which makes it applicable for
high-dimension low-sample size case. The method utilizes the prior knowledge of the data
in terms of the class label and the structural geometry of the source vector. The class
labels are used to encode the structural geometry of the source vectors by constructing the
within-class and between-class graphs, which have been invoked as the regularizer term into
the model. Due to the supervised graph information, the common subspace learned by the
proposed method has also the ability to preserve the class structure of the data. Moreover,
it learns a proper weight according to the relevance of each view, which helps selecting
informative views while pay less attention to noisy and redundant views with respect to a
desired task. Finally, to prove the diverse potency of both CSP-MvCDA and SGR-MCCDA
methods, several cancer and benchmark data sets with different characteristics have been
used.

In Chapter 5, both CSP-MvCDA and SGR-MCCDA have been applied successfully to
extract features for imaging genetics data. In imaging genetics research, the main objective
is to investigate the complex genotype-phenotype association for the disease under study.
To understand the impact of genetic variations over the brain functions and structure, the
genotypic data such as SNP can be integrated with the phenotypic data such as imaging
quantitative traits. Both CSP-MvCDA and SGR-MCCDA extract features for imaging
genetics correlation and select important biomarkers for the disease subtype classification,
which highlights the key characteristics of the imaging genetics study. A comparative
performance analysis with the three primary MVL algorithms of imaging genetics domain,
namely, CCA, CoRe and CoopLe, is presented in this chapter. A real imaging genetics
data set, obtained from ADNI cohort, is used for the analysis by using the AD related
genetic variants (SNPs) and brain imaging (fMRI) modalities. The results establish that
although, both the methods perform well in terms of classifying AD disease subtypes, they
are not capable of handling the noise of such SNP or fMRI data and is unable to identify
disease-specific imaging genetics association.

In the field of imaging genetics, identification of the diagnose-specific imaging mea-
sures and genetic markers are of great importance in personalized treatments. Most of
the models in this domain are based on sparse CCA, and thus unsupervised in nature.
Though few supervised models have been developed in the recent years, they cannot iden-
tify the diagnose-specific biomarkers. This necessitates the sparse multi-task model in this
field. In this regard, a supervised multi-task model, termed as MTL-SDCCA, has been
proposed in Chapter 6, by judiciously integrating the merits of both CCA and LDA under
MTL framework. It uses lasso and group lasso penalties to select the diagnosis-specific and
diagnosis-consistent features from the large number of features to identify group-wise imag-
ing genetic associations. The performance of the proposed method is compared with that
of several existing supervised models, namely, CoRe, CoopLe, JSCCA, JCB-SCCA, MT-
SCCALR and MT-SCCAR, considering two synthetic data and one real imaging genetic
data obtained from ADNI cohort. The results show that the proposed method has better
feature selection capability than several existing methods and can successfully identify the
class-specific and class-consistent features, irrespective of the data sets used. However, like
most of the existing approaches, the proposed MTL-SDCCA require computing the inverse
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of a very high-dimensional covariance matrix, which has large time and space complex-
ity. It makes the models inefficient for large-scale imaging genetics studies. Moreover, the
proposed model is unable to utilize the multiple imaging and genetic modalities. In this
regard, a multi-view multi-task SCCA model, termed as MvMt-SCCA, has been proposed
in Chapter 7, which integrates multimodal neuroimaging data, genetic data, and cogni-
tive assessment data for identifying disease-specific imaging genetics association. It uses
the lasso and fused lasso penalty together to identify modality-wise diagnose-specific and
diagnose-consistent features, exploring the natural ordering in the SNPs and brain ROIs.
An iterative algorithm based on the block coordinate descent technique is introduced to
solve the optimization problem, which is both time and space efficient. The proposed model
has a time complexity of O(p?logp), which is significantly lesser than that of the existing
MTL based SCCA methods, which have a complexity of O(p®) or O(p*), where p is the
maximum feature size of the imaging or genetic data. The results on simulation and real
ADNI data supports the claim.

8.2 Future Directions

The work presented in this thesis covers a wide range of significant MVL algorithms that
can be extended further to advance the multi-view data analysis under both single and
multi-task learning framework. The research can proceed with the following improvements
and future directions:

e Hierarchical Fusion: All the MVL algorithms proposed in this thesis fuses multiple
views, which are all in the same level of abstraction. However, complex tasks in the
fields of computer vision and biomedical imaging require integration of features at
various stages of processing. By combining features at different levels, the model can
produce richer and significant representations. While high-level features can offer a
wider context and improve the model’s ability to generalize, low-level features might
capture crucial details. Thus, all the MVL algorithms presented in this thesis can
be extended to incorporate the hierarchical feature extraction technique for model
generalization.

e Incomplete Views: The thesis makes the assumption that every view is complete,
that is, every view has the same set of common samples. However, in real-world
applications, it may occur that measurement mistakes and pre-processing leave the
data set with incomplete views. Sometimes, the information about a sample may not
be present in some of the views or the information about the sample may partially
be observed in some of the views. In both the scenarios, the MVL algorithms should
work. Therefore, the multi-view data integration techniques discussed in the thesis
may be extended to deal with the view missing or variable missing problem and re-
cover missing samples by creating connections between the views, without discarding
the missing sample from all views, as described by Xu (2015) [280].

e Updation in Database: The MVL models described in the thesis are constructed
under the premise that all the views are accessible a priori for the analysis. However,
a substantial volume of data is consistently being added to the current databases.
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Either more observations are incorporated or an entirely new perspective is devel-
oped to enhance the interpretation of the current data. The databases in TCGA
have undergone more than 20 updates in the past 5 years, including additions to
observations and views. Therefore, it is necessary to alter the learning process of the
proposed MVL models in such a manner so that they can effectively adjust to any
change in the databases.

e Optimization on Manifold: Several real-world data sets exhibit significant struc-
tures that are located on a low-dimensional manifold within a higher-dimensional
Euclidean space [221]. Since each view might have its own manifold structure, the
multi-view data set can be seen as a combination of manifolds. According to this
hypothesis, all the techniques for integrating multi-view data provided in the the-
sis may be improved to include the construction of discriminant subspaces from a
low-dimensional manifold.

e Deep Network Based Optimization: Shallow optimization strategies and anal-
ysis based on eigendecomposition are the main interests of the thesis. On the other
hand, non-linear transformations may be learned from various modalities via deep
learning architectures like the multimodal deep Boltzmann machines [234]. An at-
tempt will be made to integrate multi-view data sets utilizing a deep learning frame-
work as extensions of the proposed methods in order to learn the latent subspaces.
The deep optimization techniques can be used to solve the optimization problems of
different chapters.

e Active Learning: All the MVL algorithms proposed in this thesis are supervised
in nature. In supervised MVL, data from multiple viewpoints must be labeled in
order to train the models. However, it will cost more to label the data for mul-
tiple viewpoints. Consequently, it is important to decrease the amount of labeled
data without compromising the multi-view learning efficiency. Active learning is an
useful approach which selects fewer and more valuable data points for labeling. It
constructs the classifier with data acquisition by rating the unlabeled data to make
recommendations for the following query with the highest training utility. As a re-
sult, the training set can be kept as small as feasible while the learner’s full potential
is explored on both labeled and unlabeled data. This lowers the cost of data labeling
dramatically and exploit the most informative data samples. Thus integrating MVL
and active learning jointly can improve the efficiency of MVL algorithms by selecting
more informative data points across multiple views.

e Views Observed in Heterogeneous Measurement Spaces: All the MVL algo-
rithms proposed in the thesis assume that every view is seen in a real-valued Euclidean
space. However, some of the views may not be embedded into the Euclidean space
in realistic applications. For example, textual information and categorical data may
represent different views along with the Euclidean data. Thus, certain modifications
can be made to the proposed MVL algorithms, which will enable the integration of
heterogeneous multi-view data consisting of several views in various measurement
spaces.

e Sparse Data Integration: The sparsity of the data sets is not directly addressed
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by the techniques in this thesis. However, while training model, data sparsity can
lead to issues like overfitting and sub-optimal solutions. Therefore, it is necessary to
enhance the data integration methods so that the sparse multi-view data sets can be
merged effectively.

Weak Supervision: All the algorithms proposed in this thesis needs labeled data
in order to train the models. However, labeling data manually one by one take huge
effort and time. In a weak supervision model, artificial labeling, using high-level
and frequently noisy sources of supervision, can generate significantly larger training
sets much faster than the manual supervision. By enabling noisy labeled samples to
supervise the multi-view classification algorithms, new methods can be developed to
enhance the learning performance.

Task-heterogeneity in Multi-task Learning: The thesis proposes a multi-task
multi-view model in Chapter 7 for imaging genetics studies. The tasks here are
homogeneous and uses same set of labels for different views. Task heterogeneity is
major challenge in MTL which can be dealt with developing new methodologies for
multi-task multi-view learning.

Federated Multi-Task Learning: The classical machine learning techniques, pro-
posed in the thesis, use centralized data training, in which the training is done at
the central server once the data are collected. This training presents multiple pri-
vacy risks to participant data when shared with the central cloud server, despite
of significant convergence. Through federated learning, users can work together to
train local models on local data without disclosing private information to a central
cloud server. However, while training machine learning models across distributed
networks of devices, federated learning presents significant statistical and technical
issues. Multi-task learning is well-suited to manage this setting’s statistical problems.
In this regard, new federated multi-task learning models can be developed to enhance
the generalization performance of both multi-task learning and federated learning.
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Appendix A

Description of Data Sets

A quick summary of the multi-view benchmark and multi-omics cancer data sets has been
presented in this appendix. These data sets have been used to compare the performance
of the proposed method with the existing multi-view learning algorithms, in the thesis.
There are five multi-omics cancer data sets, namely, breast invasive carcinoma (BRCA),
cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and lower
grade glioma (LGG), colorectal carcinoma (CRC) and glioblastoma multiforme (GBM);
and eight benchmark data sets, namely, CiteSeer, Cora, Reuters, Nus-Wide-Object (NW-
Object), Caltech-101, Caltech-20, ALOI and 100Leaves, included in the thesis.

A.1 Benchmark Data Sets

This section presents a brief description of the eight benchmark data sets.

1. CiteSeer: The CiteSeer dataset have been downloaded from http://lig-membres
.imag.fr/grimal/data.html. The set is generated by sampling scientific documents
from CiteSeer digital library. 3312 documents from the six labels—Agents, IR, DB,
Al HCI, and ML—are included in the archive. It consists of four perspectives on the
same documents: cites, content, inbound, and outbound. In the content view, the
papers are described in 3703 words. In the inbound, outbound, and citations views,
there are 4732 links that connect the documents. Every word with a document
frequency lower than ten is eliminated. A word vector with values of 0 or 1, which
denotes the existence or absence of the matching word in the document, describes
every publication in the database.

2. Cora: The Cora dataset is obtained from http://lig-membres.imag.fr/grimal/
data.html. Over the course of the seven labels—Neural Networks, Rule Learning,
Reinforcement Learning, Probabilistic  Methods, Theory, Genetic_ Algorithms, and
Case Based—the repository includes 2708 documents. It consists of four perspec-
tives on the same documents: content, inbound, outbound, and citations. The ma-
terials are explained in 1433 words in the content view and 5429 links in the cites,
inbound, and outbound views. The documents-words matrix, which has 0/1 values,
represents a word’s presence or absence in a document.
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. Reuters: This multilingual data has been downloaded from http://archive.ic
s.uci.edu/ml/machine-learning-databases/00259/. This collection includes
the common set of six categories’ feature characteristics from English-language texts
along with their matching translations into French, German, Spanish, and Italian.
Multilingual classification and multi-view learning research can benefit from the use
of this collection. After being translated and preprocessed, the documents are pro-
vided as feature characteristics in a "bag of words" style. The 18758 documents are
described using the following five feature sets and divided into six categories: CCAT,

C15, ECAT, E21, GCAT, and M11.

. Nus-Wide-Object (NW-Object): This data has been downloaded from https:
//1ms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WID
E.html. This database was developed for object recognition tasks by the National
University of Singapore’s Lab for Media Search. The 30000 photos are organised into
31 classes. The five feature sets correspond to the 30000 photos in the database.

. Caltech: This data has been downloaded from http://www.vision.caltech.edu/I
mage_Datasets/Caltech101/. Images of items in 101 categories make up Caltech-
101. For every category, there are 40-800 photos. The majority of the categories
contain roughly fifty photographs that were gathered by Fei-Fei Li, Marco Andreetto,
and Marc Aurelio Ranzato in September 2003. Each image is about 300 x 200 pixels
in size. The Caltech-20 is a subset of Caltech-101, with a total of 20 classes. The
performance of the algorithms proposed in chapter 3 and 4 are examined using both
the Caltech-101 and Caltech-20 data sets in the current research.

. ALOI: This is the Amsterdam Library of Object Image data set, available at https:
//elki-project.github.io/datasets/multiview. The data set consists of 11,0250
images of 1000 small objects. Each image is represented with four types of features,
that is, RGB color histogram, HSV color histogram, color similiarity and Haralick
features. In the current research work, a subset of 10800 samples with 100 classes
having 108 samples in each, has been used to conduct the experiments.

. 100Leaves: It is a one-hundred plant species leaves data set https://archive.ic
s.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set. The
data set includes 1,600 samples, where each type of leaf consists of sixteen samples.
The texture histogram, fine scale margin, and form descriptors are the three sets of
image attributes that each sample is represented by. A 64-element vector is provided
for every feature for every leaf sample. 64-element feature vectors are contained in
a single file. The class label starts each row. The feature vector is comprised of the
remaining 64 elements.

A.2 Omics Data Sets

This section describes the five multi-omics cancer data sets, obtained from The Cancer
Genome Atlas (TCGA) [2| and downloaded through the Genomic Data Commons (GDC)
Data Portal [1].
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. breast invasive carcinoma (BRCA): Breast cancer is one of the most common
cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide
[214]. During the last 15 years, four intrinsic molecular subtypes of breast cancer,
namely, Luminal A, Luminal B, HER2-enriched, and Basal-like, have been identified
and intensively studied [111,135,232|. The BRCA data set consists of 134 samples
and is classified into four groups, namely, LuminalA, LuminalB, HER2-enriched, and
Basal-like subtype, respectively.

. Cervical Carcinoma (CESC) More than any other gynaecological tumour, this
disease causes 266,000 deaths and 528,000 new cases every year, globally [75]. Three
subtypes of CESC have been identified by the TCGA research network through ex-
tensive integrated analysis [188]. There are 104 samples in the CESC data set: 26
samples belong to the adenocarcinoma-rich subgroup, 32 samples are in the keratin-
low squamous subgroup, and 46 samples are in the keratin-high squamous subgroup.

. Lower Grade Glioma (LGG): According to World Health Organization, lower
grade gliomas are benign tumours classified as grades I and II. They are made up of
diffuse low-grade and intermediate-grade gliomas. It is exceedingly difficult to predict
LGG based on histologic class because of its highly varied clinical behavior [189].
Some develop into glioblastoma slowly, while others do so rapidly. The performance of
each method is analyzed using 374 LGG samples in the current study effort. With 180
samples, the first subtype shows IDH mutation without 1p/19q co-deletion. There
are 129 instances in the second subtype that have both 1p/19q co-deletion and an
IDH mutation. The third subtype, with 65 samples, is the wild-type IDH subtype.

. Colorectal Carcinoma (CRC): It accounts for 9% of all cancer-related fatalities
and is the third most frequent cancer in both men and women [166]. As components
of the digestive system, the colon and the rectum can develop cancer. The CRC
data set has 261 samples. The CRC samples are classified into two subtypes, colon
carcinoma and rectum carcinoma, with 192 and 69 samples, respectively, based on
the place of origin.

. Glioblastoma multiforme (GBM): It is the most common primary brain tumour
in adults and the most aggressive and widespread subtype of glioma. It has four
subtypes identified in the study by Veerhak et al. [70]. The subtypes consist of
proneural, neural, classical, and mesenchymal. The data set consists of 213 samples
from four genomic modalities, namely, miRNA, RNA, DNA, and CNV. The data set
contains 39, 52, 21, 64, and 37 samples of proneural, classical, G-CIMP, mesenchymal,
and neural subtypes, respectively.

These subtypes offer a framework for patient classification and focused therapy trials,
and they are clinically significant. Each and every omics data collection has made use
of the information regarding DNA methylation (mDNA). On the other side, the LGG
data set uses reverse phase protein array expression (RPPA). MicroRNA (miRNA) is used
in sequence form in the previously described data sets, while GBM uses the information
of miRNA in expression form. Gene expression offers information associated to genes in
the GBM data set, whereas gene details have been extracted from RNA sequences in the
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LGG data. The GBM and LGG data sets make use of copy number segmentation (CNS)
information.

Data Platforms and Preprocessing

The reverse-phase protein array data from the MDA RPPA Core platform is used to
obtain the protein modality. The number of proteins is different for each sample. Only a
set of common proteins which is present in all the samples is considered to construct the
protein expression data set. The H-miRNA 8x15Kv2 and H-miRNA 8x15K platforms are
used to extract the information of miRNA for OV and GBM, respectively. On the other
hand, the sequence-based miRNA expression data from the Illumina HiSeq platform is used
for other data sets, which contain RPM (reads per million miRNA mapped) values for 1046
miRNAs. The miRNA sequence data is also log-transformed. The expression values of this
modality are not available for most of the samples in these data sets. As there are too
many missing values, the feature having more than 5% missing values is discarded. The
missing values are replaced by 0 for the feature which has less than or equal to 5% missing
values.

For the DNA methylation modality, methylation S-values from Illumina Human Methy-
lation 450 platform are used on LUNG, KIDNEY, and LGG data sets. On the other hand,
methylation S-values of GBM and OV data sets consist of Illumina Human Methylation
27 platform. The Human Methylation 450 gives methylation S-values of approximately
450,000 CpG sites, while Human Methylation 27 covers 27,000 CpG sites. The CpG lo-
cations having missing gene information are excluded. In the current research work, the
top 2,000 CpG sites having the most variance, are used. In all omics data sets, CNV is
generated from Affymetrix SNP Array 6.0 platform. To reduce the redundant copy number
regions, the CNregions function of iCluster+ R-package [173] has been used in raw copy
number segmented data. There is an epsilon parameter in the CNregions function, which
has been used to compute the maximum FEuclidean distance between adjacent probes tol-
erated for defining a non-redundant region. The value of this epsilon parameter gives the
number of non-redundant copy number regions. According to [173], the value of this epsilon
parameter has to be selected in this manner so that the reduced dimension becomes less
than 10,000. In all the data sets, the default value that is 0.005 has been considered for the
epsilon parameter of the CNregions function. For the RNA modality of LUNG, KIDNEY,
and LGG data sets, RNA-sequence data from the Illumina HiSeq platform is used which
contains normalized RPKM (reads per kilobase of exon per million) counts for 20,531 genes.
The data is then log transformed and 2,000 most variable genes based on their expression
profile across the samples are considered. The RNA modality of the GBM and OV data
sets are prepared using the platform HT HG-U133A and AgilentG4502A 07 3, respec-
tively, and consists of log-ratio based expression data for 12,042 genes amongst which 2,000
genes having the most variance are considered.

A.3 Simulated Data Sets

This section describes the canonical weight matrices to construct the simulated imaging
genetics data sets used in Chapter 6 and Chapter 7. The concept of setting canonical
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Set the canonical weight matrices U and V' as follows: u;
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