
Design of Blockchain-Enabled
Secure Real Life Applications

A thesis submitted to Indian Statistical Institute
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

by
Debendranath Das

Senior Research Fellow

Under the joint supervision of

Dr. Sushmita Ruj
University of New South Wales, Sydney, Australia

&
Prof. Subhamoy Maitra

Indian Statistical Institute, Kolkata, India

Cryptology and Security Research Unit
Indian Statistical Institute

Kolkata, India

December, 2024

iii

Dedicated to the Almighty

v

Declaration of Authorship
I, Debendranath Das, declare that this thesis titled, “Design of Blockchain-
Enabled Secure Real Life Applications” and the work presented in it is the
original work done by me. I confirm that:

– I have completed this work while pursuing my Ph.D. program in Computer
Science at the Indian Statistical Institute, Kolkata. This thesis has not
been submitted anywhere else for the award of any degree.

– Whenever I have referred to the work of others, I have always provided
clear attribution and reference.

– I have acknowledged all the main sources of help.

– In the case of joint works with other co-authors, I have obtained a no-
objection certificate from each co-author to include the work in my thesis.
Each co-author has acknowledged my adequate contribution to merit the
inclusion of the joint work in my thesis.

Date: Signature:

DEBENDRANATH DAS
Cryptology and Security Research Unit

Indian Statistical Institute
203 Barrackpore Trunk Road

Kolkata - 700108
West Bengal, India.

26.12.2024

vii

List of Publications
Following is the list of publications/manuscripts that are included in this thesis.
Chapter 3 is based on the paper C1. Chapter 4 is based on the paper J1.
Chapter 5 is based on manuscript J2; Chapter 6 is based on paper C2, and
Chapter 7 is based on paper C3.

Journals:

J1. Debendranath Das
“BISECTION: BlockchaIn-enabled SECure healTh Insurance prOcessiNg.”
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC),
Vol. 46, No. 1, PP. 44-63, (2024)
DOI: https://doi.org/10.1504/IJAHUC.2024.138744

J2. Debendranath Das, Sushmita Ruj, and Subhamoy Maitra
“SecureVAX: A Blockchain-Enabled Secure Vaccine Passport System.”
Communicated to a Journal
Preprint: https://doi.org/10.48550/arXiv.2407.13852

Conferences:

C1. Debendranath Das, Amudhan Muthaiah, and Sushmita Ruj
“Blockchain-Enabled Secure and Smart Healthcare System.”
International Conference on Design Science Research in Information Sys-
tems and Technology - DESRIST (2022)
Lecture Notes in Computer Science, Vol. 13229. PP. 97-109, Springer
DOI: https://doi.org/10.1007/978-3-031-06516-3_8

C2. Debendranath Das, and Atosi Das
“Blockchain-Enabled Distributed Payment Card Tokenization System.”
IEEE India Council International Subsections Conference - INDISCON
(2024)
IEEE Xplore
DOI: https://doi.org/10.1109/INDISCON62179.2024.10744200

C3. Debendranath Das
“Blockchain-enabled Multicurrency Supported Distributed e-Banking Sys-
tem.”
International Conference on Advanced Communication and Intelligent
Systems - ICACIS (2024) [Accepted. To Appear in Springer CCIS Series]

https://doi.org/10.1504/IJAHUC.2024.138744
https://doi.org/10.48550/arXiv.2407.13852
https://doi.org/10.1007/978-3-031-06516-3_8
https://doi.org/10.1109/INDISCON62179.2024.10744200

ix

Acknowledgements
Words cannot fully capture my gratitude for the incredible support I have re-
ceived throughout this Ph.D. journey. This experience has been more than just
earning a degree; it has been an emotional journey with a great adventure.

I am deeply grateful to my supervisors, Prof. Subhamoy Maitra and Dr.
Sushmita Ruj, for their unwavering support, insightful advice, and constant
encouragement. Their guidance has been invaluable in conducting my research
and completing this thesis. It has been an honor to have such supervisors who
have supported me both academically and personally.

I would like to express my appreciation to my course teachers, Prof. Rana
Barua, Prof. Mandar Mitra, Dr. Pinakpani Pal, Prof. Sandip Das, Prof. Palash
Sarkar, Prof. Mridul Nandi, Dr. Gautam Pal, Dr. Debrup Chakraborty, Dr.
Sabyasachi Karati, Dr. Arijit Bishnu, Dr. Sarbani Palit, Prof. Krishnendu
Mukhopadhyaya, and Prof. Ansuman Banerjee. I am fortunate to have learned
from such esteemed mentors during my Ph.D. coursework.

I am also deeply thankful to my co-authors, Mr. Amudhan Muthaiah and
Mrs. Atosi Das, for their valuable contributions to my research work. I am
blessed with wonderful friends who have been my pillars of support. Special
thanks to Subhra, Abhinav, Bibhuti, Anupam, Shankar, Drimit, Rathindra,
Animesh, Jyotirmoy, Debasmita, Sreyosi, Akanksha, Sreejit, Surochita, Manish,
and Mohammad for the endless discussions and persistent encouragement. My
sincere gratitude to my friends and seniors at ISI Kolkata, including Anirban
da, Soumya da, Laltu da, Prabal da, Avijit da, Avik da, Binanda da, Nilan-
jan da, Anirudhha da, Avishek da, Samir da, Nayana di, Suprita di, Pritam
da, Mostaf da, Diptendu da, Partha da, Suprita di, Suman, Gourab, Subha,
Rakesh, Chandranan, Panchalika, and many more who have made my time at
ISI Kolkata inspiring and enjoyable.

I extend my gratitude to the non-academic staff of ASU, CSRU, the accounts
section, and the Dean’s office for their assistance with logistics and official work.
I also wish to thank my teachers and friends from my alma maters, from my pri-
mary school to postgraduate university: South Suburban Junior School, Mitra
Institution (Bhowanipur Branch), Kalidhan Institution, Maulana Abul Kalam
Azad University of Technology (formerly WBUT - in-house campus), and Ja-
davpur University.

Last but not least, I express my deepest gratitude to my family - my par-
ents, elder sister, brother-in-law, niece - for their unwavering love, support, and
sacrifices. Their faith gave me the strength to pursue academics. Words cannot
suffice to repay their contributions.

Finally, I am grateful to all who have directly or indirectly contributed to
this work. While I have endeavored to acknowledge everyone, any omissions
are entirely unintentional. Your contributions, whether named or unnamed, are
deeply appreciated and have been instrumental in shaping this research.

Debendranath Das

xi

Abstract
Blockchain is a distributed, immutable, verifiable append-only ledger main-
tained across a peer-to-peer network. Bitcoin, proposed by Satoshi Nakamoto
in 2008, is the first and most popular application based on blockchain tech-
nology, enabling digital transactions using a virtual currency called Bitcoin.
In 2015, Ethereum, the next famous permission-less blockchain platform, sup-
ported writing smart contracts using a Turing-complete language. This allows
developers to build any secure decentralized application on the platform.
In this thesis, we propose and implement several secure protocols applicable to
various real-life applications, specifically focusing on the healthcare and bank-
ing sectors. These works leverage the power of the Ethereum blockchain, smart
contracts, and relevant cryptographic tools. All our prototypes are implemented
using the Ethereum platform: the first two were deployed on the Ropsten test
network, and the remaining on the Sepolia test network.
Our first contribution proposed a blockchain-enabled secure and smart health-
care system, where blockchain integrated with smart contracts builds trust by
providing transparency. The system guarantees fairness between the patient
and the hospital, as well as the privacy and security of the patient’s electronic
healthcare records (EHRs). The second proposal extends the scope of the first
by introducing a novel blockchain-enabled health insurance processing system
that streamlines critical operations and ensures fairness for all stakeholders.
Various insurance procedures are encoded through smart contracts, increasing
transparency and trust in the claim settlement process. We present a secure
and privacy-preserving access control policy for sharing EHR with insurance
companies during verification to address privacy concerns.
A Vaccine Passport provides proof of vaccination, enabling mobility during pan-
demics like COVID-19. Challenges include preventing certificate forgery and
protecting personal data. As our third contribution, we propose a blockchain-
enabled vaccine passport system powered by smart contracts, ensuring secure
and authentic vaccination certificates, with encrypted passports stored in the
distributed InterPlanetary File System for added security.
The current payment card tokenization landscape is dominated by centralized
entities like Visa and Mastercard, serving as Token Service Providers (TSPs).
Our fourth contribution introduces a decentralized blockchain-powered tok-
enization system, where smart contracts generate tokens based on predefined
criteria, ensuring robustness and transparent audit trails. Finally, our fifth
contribution is an innovative e-banking system leveraging blockchain’s decen-
tralized features to support both fiat currencies and cryptocurrencies. Using
Ethereum smart contracts, the system enables a single account to hold multiple
currencies, with a functional prototype demonstrating its feasibility.

xiii

Contents

Declaration of Authorship v

List of Publications vii

Acknowledgements ix

Abstract xi

1 Introduction 1
1.1 Healthcare Industry and Digitization 3
1.2 Online Banking and Payment Systems 4
1.3 A Decentralized World . 5

1.3.1 Impact of Blockchain on Healthcare Sector 7
1.3.2 Impact of Blockchain on Banking Sector 7

1.4 Contributions and Organization of the Thesis 8

2 Preliminaries and Background 11
2.1 Notations used in the thesis . 11
2.2 Cryptographic Preliminaries . 12

2.2.1 Encryption Scheme . 12
2.2.2 Hash Function . 15
2.2.3 Digital Signature . 18
2.2.4 Commitment Schemes 20
2.2.5 Proxy Reencryption . 21

2.3 Merkle Tree Data Structure . 23
2.4 Blockchain . 25
2.5 Bitcoin . 26

2.5.1 Key Properties . 26
2.5.2 Bitcoin Addresses . 27
2.5.3 UTXO Model . 27
2.5.4 Transaction Structure 27
2.5.5 Bitcoin Script . 27
2.5.6 Consensus Mechanism 28

xiv

2.5.7 Mining and Monetary Policy 28
2.5.8 Network Security . 28
2.5.9 Full Nodes and Light Nodes 28
2.5.10 Privacy and Pseudonymity 29
2.5.11 Scalability Challenges 29
2.5.12 Recent Developments . 29
2.5.13 Transaction Finality . 30

2.6 Ethereum . 30
2.6.1 From Bitcoin to Ethereum: Addressing Limitations and

Introducing New Paradigms 30
Bitcoin’s UTXO (Unspent Transaction Output) Model . 31
Ethereum’s Account-Based Model 31
Key Differences . 32

2.6.2 Key Properties . 32
2.6.3 Ethereum Virtual Machine (EVM) 32
2.6.4 Accounts . 33
2.6.5 Transactions and Messages 33
2.6.6 Consensus Mechanism 33
2.6.7 Smart Contracts . 33
2.6.8 Tokenization Standards 34
2.6.9 Gas and Ether . 34
2.6.10 Transaction Cost and Latency 34
2.6.11 Scalability Solutions . 35
2.6.12 Ethereum 2.0 (Eth2) Upgrade 35
2.6.13 Ethereum Node Types 35

2.7 Smart Contract . 36
2.8 Distributed File Storage . 37
2.9 Incentive Mechanism . 38

3 Blockchain-Enabled Secure and Smart Healthcare System 39
3.1 Objectives . 40

3.1.1 Contributions . 40
3.1.2 Organization . 41

3.2 Related Work . 41
3.3 High-Level View of The System 42

3.3.1 System Model . 42
3.3.2 Assumptions . 43
3.3.3 Communication Protocol between Patient and Hospital . 44

3.4 Implementation and Technical Details 46
3.5 Security Analysis . 50

3.5.1 Fairness . 52
3.5.2 Privacy . 54
3.5.3 Data Security . 55

3.6 Result and Discussion . 55
3.7 Conclusion . 57

xv

4 Blockchain-Enabled Secure Health Insurance Processing 59
4.1 Objectives . 62

4.1.1 Contributions . 63
4.1.2 Organization . 64

4.2 Related Work . 64
4.3 High-Level View of The System 65

4.3.1 System Model . 66
4.3.2 Assumptions . 67
4.3.3 Communication Protocol between Policyholder and Health

Insurance Company . 68
4.4 Implementation and Technical Details 71

4.4.1 Terminology . 71
4.4.2 Algorithms . 71

4.5 Security Analysis . 77
4.5.1 Fairness . 78
4.5.2 Privacy . 80
4.5.3 Data Security . 80
4.5.4 Liveness . 81

4.6 Result and Discussion . 81
4.7 Conclusion . 84

5 Blockchain-Enabled Secure Vaccine Passport System 85
5.0.1 Contributions . 88
5.0.2 Organization . 89

5.1 Related Work . 89
5.2 System Model . 94

5.2.1 Components . 95
5.2.2 Security Goal . 96
5.2.3 Adversarial Model . 97
5.2.4 Assumption . 97
5.2.5 Protocol Design . 98
5.2.6 Implementation & Technical Details 109

5.3 Security Analysis . 120
5.4 Results and Discussions . 126
5.5 Conclusion . 130

6 Blockchain-Enabled Secure Payment Card Tokenization Sys-
tem 133
6.1 Objectives . 134

6.1.1 Contributions . 134
6.1.2 Organization . 135

6.2 Related Work . 135
6.3 Token Eco-System . 136

6.3.1 Card Transaction Processing Prior to Tokenization . . . 136
6.3.2 Card Transaction Processing in Token Eco-System 137

6.4 Proposed Model . 139
6.4.1 Components . 139
6.4.2 Assumptions . 140

xvi

6.4.3 Protocol Design . 140
6.4.4 Implementation Details 144
6.4.5 Security and Privacy Implications of Decentralizing the

Tokenization Process . 148
6.5 Results . 149
6.6 Conclusion . 151

7 Blockchain-Enabled Multicurrency Supported Distributed e-
Banking System 153

7.0.1 Contributions . 155
7.0.2 Organization . 155

7.1 Related Work . 156
7.2 Background . 157
7.3 System Model . 158

7.3.1 System Components . 158
7.3.2 Functionalities Offered by Our e-Banking System 159
7.3.3 Managing Multi-Currency Transactions in the System . . 161
7.3.4 Algorithm . 161
7.3.5 Implementation Details 163

7.4 Security Features . 166
7.5 Result and Discussion . 168
7.6 Conclusion . 170

8 Conclusion 173
8.1 Summary of Technical Contributions 173
8.2 Future Scope . 175

Bibliography 179

xvii

List of Figures

3.1 Architecture of the proposed healthcare system illustrating the con-
nections between key components 43

3.2 Interaction between Patient and Hospital 45
3.3 Functional Sequence Diagram of SC_P_HA and Fair Exchange Pro-

tocol between Patient and Database Owner 51
3.4 Transaction Cost for Contract Deployment 56
3.5 Time taken for Contract Deployment 56
3.6 Transaction Cost for Party Registration 56
3.7 Time taken for Party Registration 56
3.8 SC_P_HA Transaction Cost for 4 Input Gates 57
3.9 SC_P_HA Transaction Cost for 8 Input Gates 57
3.10 SC_P_HA Transaction Cost for 16 Input Gates 57
3.11 SC_P_HA Transaction Cost for 32 Input Gates 57

4.1 Process of Legacy Health Insurance System 59
4.2 Challenges of Legacy Health Insurance System 60
4.3 Healthcare Data Breaches Statistics 61
4.4 System Model . 67
4.5 Interaction between Policyholder and Health Insurance Company . . 69
4.6 Functional Sequence Diagram of SC_P_IC_DBO 77
4.7 Transaction Cost for Contract Deployment 82
4.8 Time Taken for Contract Deployment 82
4.9 Transaction Cost for Entity Registration 82
4.10 Time Taken for Entity Registration 82
4.11 SC_P_IC_DBO Transaction Cost for 4 Input Gates 83
4.12 SC_P_IC_DBO Transaction Cost for 8 Input Gates 83
4.13 SC_P_IC_DBO Transaction Cost for 16 Input Gates 83
4.14 SC_P_IC_DBO Transaction Cost for 32 Input Gates 83

5.1 Architecture of the vaccine passport system, illustrating the connec-
tions between the blockchain, government, vaccination centers, veri-
fiers, and users. 95

xviii

5.2 Registration of Vaccination center 99
5.3 Computation of MR for set V . 100
5.4 Refilling Vaccine Stock . 101
5.5 Obtaining TokenID . 102
5.6 Injecting Vaccine to Citizen by Vaccination Center 103
5.7 Generating and Storing Citizen’s Vaccine Passport on IPFS 104
5.8 Vaccine Passport as a JSON File 104
5.9 Verification Process of Citizen’s V P 105
5.10 Vaccine Passport Forgery Security Game 123
5.11 Gas Consumption of Transactions for VC Registration (Module

1)
. . . 127

5.12 Gas Consumption of Transactions for Refilling Vaccine Stock
(Module 2)

. . . 127

5.13 Gas Consumption of Transactions for Obtaining Token ID
(Module 3)

. . . 127

5.14 Gas Consumption of Transactions for Injecting Vaccine (Module
4)

. . . 127

5.15 Gas Consumption of Transactions for Generating and Storing
Vaccine Passport (Module 5)

. . . 127

5.16 Gas Consumption of Transactions for Verifying Vaccine Pass-
port (Module 6)

. . . 127

5.17 Transactions Latency for VC Registration (Module 1) . . . 128
5.18 Transactions Latency for Refilling Vaccine Stock (Module 2) . . . 128
5.19 Transactions Latency for Obtaining Token ID (Module 3) . . . 128
5.20 Transactions Latency for Injecting Vaccine (Module 4) . . . 128
5.21 Transactions Latency for Generating and Storing Vaccine Pass-

port (Module 5)
. . . 128

5.22 Transactions Latency for Verifying Vaccine Passport (Module 6) . . . 128
5.23 A few screenshots demonstrating the functionalities of our Web Ap-

plication . 130

6.1 Sensitive Values of a Card . 133
6.2 Card Transaction Processing Prior to Tokenization 137
6.3 Token Issuance in Token Eco-System 138
6.4 Transaction Processing through Token in Token Eco-System . . 139
6.5 Bank Registration . 141
6.6 Customer Registration . 141
6.7 Token Issuance . 143
6.8 Token Execution at Payer (or Sender) Side 144
6.9 Token Execution at Payee (or Receiver) Side 144
6.10 Gas Consumption of Transactions for Entity Registration 149
6.11 Gas Consumption of Transactions for Card Tokenization 150
6.12 Transactions Latency for Entity Registration 150
6.13 Transactions Latency for Card Tokenization 150

7.1 Centralized Banking System Vs Decentralized Banking System . . . 153
7.2 Context Diagram: Blockchain-enabled Distributed e-Banking System 159
7.3 Connecting to Metamask Wallet 163
7.4 Opening a New Bank Account . 164
7.5 Depositing Money to Bank Account 164

xix

7.6 Withdrawing Money from Bank Account 165
7.7 Transferring Money between Two Bank Accounts 165
7.8 Currency Exchange . 166
7.9 Closing a Bank Account . 167
7.10 Steps to access our e-Banking DApp 168
7.11 Gas Consumption of Transactions 169
7.12 Transaction Latency . 170

xxi

List of Tables

2.1 General Notations/Acronyms used in this Thesis 11

3.1 Drawbacks of State-of-the-Art Healthcare Systems 42
3.2 Terminology & Notation used in our Scheme 47
3.3 Structure Definition . 47
3.4 Deployment Addresses of Smart Contracts 55
3.5 Deployment Cost of Smart Contracts 56

4.1 A Comparative Analysis of Current State-of-the-Art 66
4.2 Terminology and Notation used in our Scheme 72
4.3 Structure Definition . 72
4.4 Deployment Addresses of Smart Contracts 82
4.5 Deployment Cost of Smart Contracts 82

5.1 Drawbacks of Various Vaccine Passport Projects Initiated by
Governments and Private Organizations 91

5.2 A Comparative Analysis with Current State-of-the-Art 93
5.3 Terminology & Notation used in our Scheme 98
5.4 Timestamp Definitions Across Various Modules of our Vaccine

Passport System . 110
5.5 Structs Used in our Implementation 111
5.6 Mappings Used in our Implementation 112
5.7 Deployment Addresses and Cost of Smart Contracts 126

6.1 Deployment Addresses and Cost of Smart Contracts 149

7.1 Contrasting the Existing State-of-the-Art with the Proposed Sys-
tem . 157

1

1
Introduction

“To succeed in your mission, you must have single-minded de-
votion to your goal.”

— A. P. J. Abdul Kalam

In an era where digital interactions underpin nearly every aspect of our
lives, ensuring their security and integrity is inevitable. Blockchain technology,
known for its decentralized and immutable nature, offers a promising solution for
creating secure digital systems. This dissertation, titled “Design of Blockchain-
Enabled Secure Real Life Applications,” embarks on a journey to explore and
innovate at the intersection of blockchain technology and the security of prac-
tical applications.

Blockchain technology has demonstrated groundbreaking potential across
various industries, revolutionizing traditional systems and processes by intro-
ducing decentralization, transparency, and security. Key industries benefiting
from blockchain include:

– Healthcare: It ensures the secure storage and sharing of electronic health
records, protects patient privacy, enables transparent tracking of pharma-
ceuticals, streamlines health insurance claims processing, and enhances
interoperability between healthcare providers.

– Finance: Blockchain facilitates secure cross-border payments, enhances
fraud detection in transactions, automates compliance processes, reduces
transaction fees, and improves transparency in corporate governance.

– Supply Chain Management: Blockchain provides end-to-end trace-
ability of goods, prevents counterfeit products, ensures compliance with
ethical sourcing standards, and streamlines logistics operations.

– Real Estate: It simplifies property transactions, maintains tamper-proof
property records, prevents ownership disputes, and reduces fraud in real
estate dealings.

2 Chapter 1. Introduction

– Voting Systems: Blockchain ensures secure and tamper-proof elections,
enables transparent remote voting, and verifies the integrity of election
outcomes.

– Digital Identity Verification: It creates decentralized and secure digi-
tal identities, prevents identity theft, verifies credentials for education and
employment, and empowers users with control over personal information.

– Energy Trading: Blockchain facilitates decentralized energy trading, en-
hances transparency in carbon credit systems, improves grid management,
and promotes sustainable energy practices.

– Decentralized Data Marketplaces: It enables secure data sharing
without intermediaries, allows individuals to monetize their data, pre-
vents unauthorized access, and ensures fair compensation through verifi-
able data ownership.

– Others: Blockchain enables transparent tracking of pharmaceuticals in
the pharmaceutical industry, supports self-sovereign identity by empow-
ering individuals to manage their digital identities, simplifies intellectual
property management, revolutionizes gaming with tokenized assets, en-
hances transparency in public sector governance, tracks disaster relief do-
nations, streamlines educational certifications, and improves traceability
in agricultural supply chains.

These are just a few examples, as the potential use cases of blockchain are
vast and continually evolving, with applications emerging across diverse indus-
tries and domains. Its key features—decentralization, immutability, and trans-
parency—provide unique opportunities to solve long-standing security issues.
However, the path to effectively harnessing blockchain for real-world applica-
tions is laden with both technical and conceptual hurdles. In a broader context,
while blockchain has a wide range of applications, this thesis focuses on address-
ing challenges related to fairness, security, and privacy in healthcare, as well as
enhancing transparency in banking. In healthcare, issues such as safeguard-
ing electronic health records (EHRs), ensuring patient privacy, and automating
processes like insurance claims are critical pain points. In banking, the need for
secure multicurrency transaction systems, transparent operations, and secure
credit/debit card processes highlight the limitations of traditional centralized
systems. This research narrows its scope to these domain-specific problems,
proposing blockchain-enabled solutions that bridge the gap between its theoret-
ical advantages and practical applications. By leveraging blockchain’s inherent
capabilities, this research aims to demonstrate practical solutions tailored to
these domains. The proposed approaches seek to bridge the gap between theo-
retical potential and real-world applicability, addressing key pain points while
laying the groundwork for future advancements in blockchain-enabled systems.

Healthcare and online banking are two pillars of modern society and have
a profound impact on individuals and the society at large. The healthcare
sector safeguards our well-being, while the banking industry underpins our
economic stability. The security of digital systems in these fields is critical

1.1. Healthcare Industry and Digitization 3

because breaches can lead to severe consequences, such as identity theft, fi-
nancial loss, and compromised health records. Our research focuses on design-
ing secure, user-friendly protocols for blockchain-based applications in these
two areas by bridging theoretical foundations with practical implementations.
Blockchain’s inherent properties—such as immutability, decentralization, and
transparency—make it uniquely suited for applications requiring trust and se-
cure data management, such as healthcare and banking.

1.1 Healthcare Industry and Digitization

The healthcare industry is experiencing a significant transformation due to the
rise of digital technologies, leading to an increase in the average life expectancy
of human beings. Digitization has completely changed the way healthcare ser-
vices are provided and managed. This has brought innovations such as electronic
health records (EHRs), telemedicine, wearable health devices, and mobile health
applications, all of which have improved the efficiency, accessibility, and quality
of healthcare. These advancements have resulted in improved patient outcomes
and more streamlined administrative processes. Nonetheless, the industry con-
tinues to grapple with significant issues like centralization, unfair practices, and
financial exploitation. The COVID-19 pandemic has further highlighted these
challenges, exposing inefficiencies in data sharing and coordination and raising
concerns about privacy and fairness, especially with the introduction of vaccine
passports.

Challenges Faced by the Healthcare Sector
1. Centralization: Patient data is often stored in siloed databases con-

trolled by individual hospitals or healthcare providers, leading to ineffi-
ciencies and data breaches.

2. Unfair Practices: Patients may have difficulty accessing their health
records, and disparities in the quality of care provided to different popu-
lations can exist.

3. Financial Exploitation: High healthcare costs and a lack of trans-
parency in pricing policy can lead to financial burdens for patients.

4. Data Privacy and Security: Ensuring the privacy and security of sensi-
tive health information is a major concern, particularly with the increasing
digitization of records.

5. Interoperability Issues: Different healthcare systems often lack the
ability to share and integrate data, leading to fragmented care effectively.

6. Inefficiencies in Data Sharing: Slow or inadequate sharing of data
between providers can hinder patient care and public health responses.

4 Chapter 1. Introduction

7. Equity and Access: Not all patients have equal access to digital health
technologies, creating disparities in healthcare delivery.

8. Regulatory and Compliance Challenges: Navigating complex regu-
latory environments can be difficult for healthcare providers and innova-
tors.

9. Adoption of New Technologies: Resistance to change and the high
cost of implementing new technologies can slow down the adoption of
beneficial innovations.

10. Emergency Response Preparedness: The COVID-19 pandemic high-
lighted weaknesses in the healthcare system’s ability to respond to sudden,
large-scale health crises.

The question now is whether we could design a framework that addresses
all the above challenges, improving transparency, securing data privacy, and
ensuring equal access to healthcare services. Before we move on to discuss
potential solutions to our problem, we discuss the online banking scenario and
certain challenges in this area.

1.2 Online Banking and Payment Systems

Online banking has revolutionized the financial industry by providing customers
with convenient access to banking services through digital platforms. It allows
users to perform a variety of transactions, such as transferring funds, paying
bills, and managing accounts, without needing to visit a physical bank branch.
Advancements in Internet technology, mobile applications, and secure online
payment systems have fueled the growth of online banking. Despite the con-
venience and efficiency of online banking, the centralized nature of traditional
banking systems presents several significant drawbacks.

Several high-profile incidents have exposed the weaknesses of centralized
data storage and IT systems. For instance, the 2017 Equifax data breach [167]
compromised the personal information of 147 million people, and the 2018 TSB
IT meltdown [15] left 1.9 million customers without access to their accounts.
These events, along with the 2008 global financial crisis, emphasize the risks
associated with institutions labelled “too big to fail”, which required significant
taxpayer-funded bailouts. The 2016 Bangladesh Bank heist [169] illustrated
the security vulnerabilities in centralized financial systems, as hackers exploited
weaknesses in the SWIFT network to steal $101 million. Additionally, the 2022
data breach at Flagstar Bank compromised the personal information of over 1.5
million customers [32]. These examples collectively underline the potential for
widespread disruption, data breaches, and systemic financial risks inherent in
centralized banking structures.

Next, we will discuss the drawbacks of the current banking system.

1.3. A Decentralized World 5

Drawbacks of Traditional Banking System
1. Limited Fault Tolerance: Centralized banking systems have poor fault

tolerance. If a central server or database is compromised, it can result in
widespread service disruptions and expose sensitive data to breaches.

2. Security Risks: Centralized systems are prime targets for cyberattacks.
Hackers often focus on these systems due to the high volume of sensitive
data stored in one place.

3. Lack of Transparency: Centralized control can lead to a lack of trans-
parency in how transactions are processed and how fees are applied. This
can result in mistrust among customers.

4. Limited Accessibility: Centralized banking systems may not be acces-
sible to everyone, especially in regions with limited banking infrastructure
or where people do not have easy access to bank branches or reliable In-
ternet connections.

5. Problems in Cross-Currency Trading: Cross-currency trading, or
foreign exchange (forex) trading, involves exchanging one currency for
another in the global market. Several challenges, including high transac-
tion costs, slow transaction time, exchange rate volatility, and complex
regulatory and compliance requirements, complicate this process. These
issues can significantly impact international trade, business operations,
and individual remittances, making cross-currency trading a cumbersome
and costly endeavor.

1.3 A Decentralized World

The shift towards a decentralized world is reshaping the foundations of various
industries, addressing long-standing inefficiencies and injustices. Blockchain
technology is at the heart of this transformation. It offers a strong solution to
many issues found in centralized systems. Blockchain helps make things fairer,
more secure, and more open. This makes it a powerful tool for improving
various real-life problems, including healthcare and online banking, which have
struggled with these issues for a long time.

Blockchain is a decentralized, immutable digital ledger that records trans-
actions in a tamper-proof way across a distributed peer-to-peer network. Each
block is cryptographically linked to the previous one, forming a chain of blocks
that ensures data integrity. Blockchain validates new transactions through dis-
tributed consensus mechanisms, such as Proof of Work (PoW) or Proof of Stake
(PoS), creating a transparent, tamper-resistant record of all transactions.

Blockchain technology gained significant recognition following the publica-
tion of a groundbreaking research paper by Satoshi Nakamoto in 2008 titled
“Bitcoin: A Peer-to-Peer Electronic Cash System”[110]. Although initially as-
sociated with cryptocurrencies such as Bitcoin, the introduction of Ethereum

6 Chapter 1. Introduction

in 2015 [25], which supports complete smart contracts, has highlighted the far-
reaching potential of blockchain technology in diverse industries beyond just
digital currencies.

The Distinct Benefits of Blockchain
Blockchain technology offers numerous advantages over traditional technologies,
making it a superior choice for many applications:

– Decentralization: Unlike traditional centralized systems, blockchain op-
erates on a distributed peer-to-peer network of nodes. This decentraliza-
tion eliminates single points of failure, reduces the risk of data breaches,
and ensures system robustness.

– Immutability: Once data is recorded on the blockchain, it cannot be
altered or deleted in practice (although theoretically possible). This im-
mutability ensures the integrity of records and prevents unauthorized tam-
pering.

– Transparency: Blockchain’s ledger is open and transparent to all partic-
ipants in the network. Each node has a copy of the entire blockchain, mak-
ing transaction histories fully visible and auditable. This transparency
builds trust among stakeholders by providing a verifiable trail of all trans-
actions.

– Security: Blockchain uses advanced cryptographic techniques, such as
SHA-256 hashing, to secure data. Each block is linked to the previous one
through a cryptographic hash, making it extremely difficult for malicious
actors to alter the blockchain.

– Verifiability: Information stored on the blockchain is decentralized, al-
lowing everyone to verify the correctness of data.

– Open Access: Blockchain is accessible to anyone, allowing any individual
to participate in the network without requiring permission, considering a
permission-less model. This open access encourages widespread partici-
pation and innovation.

– Availability: Transaction records are stored across multiple nodes in the
decentralized network. This redundancy ensures that data is not lost and
remains available even if some nodes fail.

– Censorship Resistance: Blockchain is free from censorship because it
does not rely on control by any single party. Trustworthy nodes validate
transactions through consensus protocols, ensuring fairness and prevent-
ing unilateral control.

– Smart Contracts: Blockchain supports programmable smart contracts,
which are self-executing contracts with the terms directly written into
code. These contracts automate processes, reduce the need for intermedi-
aries, and ensure fairness and efficiency.

1.3. A Decentralized World 7

– Efficiency: Blockchain removes third-party intermediaries, reducing er-
rors and speeding up transactions. This efficiency makes settlement pro-
cesses smoother and faster.

– Cost Reduction: By eliminating the need for intermediaries, blockchain
reduces transaction costs for businesses and builds trust between partners
through improved transparency.

– Resilience: The decentralized nature of blockchain makes it highly re-
silient to attacks. Even if some nodes in the network fail or are compro-
mised, the rest of the network can continue to operate seamlessly.

1.3.1 Impact of Blockchain on Healthcare Sector
In Section 1.1, we discussed the numerous challenges confronting today’s health-
care system. Blockchain technology offers a life-changing solution by addressing
many of these issues to a significant extent, although regulatory and compli-
ance challenges persist. By ensuring the integrity and immutability of medical
records, blockchain enhances data security and privacy, safeguarding sensitive
patient information from unauthorized access and tampering. Its decentral-
ized nature fosters transparency throughout healthcare processes, thereby cul-
tivating trust among patients, providers, and insurers. Moreover, blockchain
facilitates efficient data sharing and interoperability among healthcare entities,
enhancing care coordination and breaking down data silos. Through the au-
tomation capabilities of smart contracts, healthcare operations are streamlined,
leading to reduced administrative costs and improved efficiency, particularly
in insurance claim processing. The technology’s transparency and immutabil-
ity also strengthen fraud prevention measures, making it difficult to manipu-
late medical records, insurance claims, or vaccination certificates. Furthermore,
blockchain empowers patients by granting them greater control over their med-
ical data, enabling secure management and authorization of access. In public
health, blockchain aids in tracking vaccination statuses and optimizing pan-
demic response management, highlighting its potential to revolutionize health-
care delivery and management.

1.3.2 Impact of Blockchain on Banking Sector
While Bitcoin has addressed several major problems associated with the cen-
tralized banking system, additional issues persist. For instance, traditional
banks do not support the simultaneous holding of multiple currencies, limit-
ing users’ flexibility in managing their assets. Although cryptocurrencies have
been invented to provide an alternative, many people remain unfamiliar with
their usage and prefer fiat currencies. This creates a gap between the worlds
of crypto and fiat, which has yet to be effectively bridged. Blockchain tech-
nology, however, presents a solution. By enabling the integration of multiple
currencies into a single banking platform, blockchain can enhance the conve-
nience of managing diverse assets. Its cryptographic features provide a higher

8 Chapter 1. Introduction

level of protection for transactions against unauthorized access and cyberat-
tacks, surpassing the security of traditional systems. The decentralized nature
of blockchain ensures greater availability with zero system downtime, as the
network is not reliant on a single point of failure. Smart contracts offer the
potential to automate and streamline various banking functionalities, increas-
ing efficiency and reducing human error. Furthermore, blockchain facilitates
direct peer-to-peer transactions, reducing the need for intermediaries and con-
sequently lowering transaction fees. Additionally, in the realm of payment card
usage—such as credit and debit cards—blockchain can enhance security through
tokenization. By removing centralized token service providers and employing
decentralized mechanisms, blockchain ensures a higher level of security for card
transactions. These advancements underscore the metamorphic potential of
blockchain in creating a more integrated, secure, and efficient banking system.

1.4 Contributions and Organization of the
Thesis

This research has primarily focused on designing blockchain-enabled secure real-
life applications, concentrating on the healthcare and banking sectors. The rest
of the chapters of the thesis are organized as follows: In Chapter 2, we have
discussed the notations, cryptographic primitives, and background needed to
understand the thesis. Related work is discussed within the relevant chap-
ters. Our first three contributory chapters focus on blockchain’s impact in the
healthcare domain, while the latter two chapters concentrate on its impact on
the banking sector. The contributions of this thesis are summarized in the
remaining chapters, as outlined below.

Contribution 1 : Blockchain-Enabled Secure Healthcare System
In Chapter 3, we focus on developing a blockchain-enabled
patient-centric hospital management system that addresses
key challenges in healthcare. This system ensures fairness
by protecting honest parties from financial loss, even in the
presence of malicious actors. It enhances privacy by requir-
ing patient consent for data access and protects data security
by preventing tampering. The proposed secure and smart
healthcare system coordinates interactions between patients
and hospitals, ensuring that patient data is only accessible
with permission and cannot be altered by unauthorized par-
ties. It prevents overcharging and mandates timely treat-
ment initiation by hospitals. Patients can choose to store
their data either personally or in a semi-trusted medical
database, with mechanisms in place to verify data authen-
ticity.

Contribution 2 : Blockchain-Enabled Secure Health Insurance Pro-
cessing System

1.4. Contributions and Organization of the Thesis 9

A health insurance policy is crucial for providing essential
medical coverage during emergencies. However, the health
insurance sector faces challenges such as delayed claim pro-
cessing, high administrative costs, and trust issues. In Chap-
ter 4, we propose a transformative solution using blockchain
technology to address these existing health insurance is-
sues effectively. Our solution introduces a novel blockchain-
enabled health insurance processing system that streamlines
critical operations and ensures fairness for all stakeholders.
Various insurance procedures are encoded through smart
contracts, improving transparency and trust in the claim
settlement process. We also present a secure and privacy-
preserving access control policy for sharing electronic health-
care records (EHR) with insurance companies during verifi-
cation to address privacy concerns.

Contribution 3 : Blockchain-Enabled Secure Vaccine Passport System
A vaccine passport serves as documentary proof, provid-
ing passport holders with a greater degree of freedom while
roaming around during pandemics. It confirms vaccination
against certain infectious diseases like COVID-19, Ebola,
and flu. The key challenges faced by the digital vaccine
passport system include passport forgery, unauthorized data
access, and inaccurate information input by vaccination cen-
ters. Privacy concerns must also be addressed to ensure
that the user’s personal identification information (PII) is
not compromised. Additionally, it is necessary to track vac-
cine vials or doses to verify their authenticity, prevent mis-
use and illegal sales, as well as to restrict the illicit distri-
bution of vaccines. To address these challenges, we pro-
pose a blockchain-enabled secure vaccine passport system,
in Chapter 5, leveraging the power of smart contracts.
Our solution integrates off-chain and on-chain cryptographic
computations, facilitating secure communication among var-
ious entities. We have utilized the InterPlanetary File Sys-
tem (IPFS) to store encrypted vaccine passports of citizens
securely. Our prototype is built on the Ethereum platform,
with smart contracts deployed on the Sepolia Test network,
allowing for performance evaluation and validation of the
system’s effectiveness. By combining IPFS as a distributed
data storage platform and Ethereum as a blockchain plat-
form, our solution paves the way for secure, efficient, and
globally interoperable vaccine passport management, sup-
porting comprehensive vaccination initiatives worldwide.

Contribution 4 : Blockchain-Enabled Secure Payment Card Tokeniza-
tion System
Payment card tokenization is a process that replaces sensi-
tive card (Credit/Debit) information with a unique identifier

10 Chapter 1. Introduction

or token. This token is used for transaction processing, re-
ducing the risk of unauthorized access and fraud. However,
the current landscape is dominated by a few centralized enti-
ties, such as Visa, Mastercard, functioning as Token Service
Providers (TSP). To address this, we propose a blockchain-
powered decentralized tokenization system, in Chapter 6,
where a smart contract generates tokens based on prede-
fined criteria. Decentralization ensures the system’s robust-
ness against attacks and offers transparent audit trails. Our
prototype is built on the Ethereum platform, with smart
contracts deployed on the Sepolia test network, allowing for
performance evaluation and validation of the system’s effi-
cacy.

Contribution 5 : Blockchain-Enabled Multi-currency Supported Dis-
tributed e-banking System
Blockchain technology has catalyzed a paradigm shift in the
banking and financial sectors. In Chapter 7, we introduce
an innovative e-Banking system leveraging blockchain’s de-
centralized capabilities to create a hybrid platform accom-
modating both traditional fiat currencies and cryptocurren-
cies. The traditional banking system is susceptible to fraud
as it is controlled by a central or consortium of power en-
tities. Motivated by the limitations of traditional banking
systems, we present a novel approach. Our system utilizes
Ethereum’s smart contracts to enable a bank account to hold
multiple fiat currencies and cryptocurrencies simultaneously.
The model boasts unique attributes: compatibility with var-
ious fiat currencies, decentralized banking operations, real-
time currency exchange, and a user-friendly web application
interface. We have developed a fully functional prototype of
our proposed e-Banking system, demonstrating the system’s
capabilities, and experimental results establish its practical-
ity. This research advances decentralized finance by bridg-
ing the gap between conventional financial systems and the
emerging cryptocurrency world.

Finally, in Chapter 8, we conclude the thesis with a brief overview of our
work, highlighting key contributions and discussing unresolved issues requiring
further exploration in blockchain technology.

Through case studies and experiments, this dissertation demonstrates how
blockchain enhances security, mitigates risks, and fosters trust in digital sys-
tems. In an era of growing digital threats, robust security is crucial. This
work highlights blockchain’s transformative potential in securing real-life appli-
cations, paving the way for a safer digital future.

11

2
Preliminaries and Background

“When it comes to privacy and accountability, people always
demand the former for themselves and the latter for everyone
else.”

— David Brin

This chapter defines important notations and terminology, provides formal
definitions of various cryptographic concepts, and presents relevant background
information for this thesis. Additional notations and tools specific to each
chapter are detailed within their respective chapters.

2.1 Notations used in the thesis

The common notations or acronyms used in this thesis are listed in Table 2.1.

Table 2.1: General Notations/Acronyms used in this Thesis

Notations/Acronyms Description
ASKE Asymmetric Key Encryption
SKE Symmetric Key Encryption

K Shared Common Key in SKE setup
< PKe, SKe > Public Key and Secret Key of an entity e in ASKE setup

H(x) or MD(x) Hash or Message Digest of x
commitx or commit(x) Commitment of x

MR(y) Merkle Root Computation over a set y
PRE Proxy Re-encryption Scheme

RKa→b Re-encryption Key, Delegator a and Delegatee b
BC Blockchain
SC Smart Contract

BTC Bitcoin
ETH Ether
IPFS Interplanetary File System
TEvent Timestamp, when the Event occurs

12 Chapter 2. Preliminaries and Background

2.2 Cryptographic Preliminaries

The majority of the cryptographic-related concepts discussed in this chapter
are borrowed from the textbooks authored by 1. Boneh & Shoup [20], 2. Katz
& Lindell [82], 3. Stinson & Paterson [150], and 4. Stallings [149].

2.2.1 Encryption Scheme
Encryption is the process of converting an original plaintext message into a
meaningless, unreadable ciphertext using an algorithm and a key. Decryption
is the reverse process of encryption that converts the ciphertext back into plain
text. Both encryption and decryption must co-exist for a working system [29].
Encryption takes place at the sender’s end before transmitting confidential in-
formation over an insecure network, while decryption occurs at the receiver’s
end. The purpose of encryption is to ensure that information is only accessible
to authorized parties.

– Types of Encryption Scheme:

1. Symmetric Key Encryption (SKE): A symmetric key encryp-
tion scheme enables two communicating parties to encrypt and de-
crypt messages securely using the same key, which was shared apriori.
Symmetric key encryption is also known as private key encryption.
This system comprises three essential algorithms: 1. Key generation
algorithm, 2. Encryption algorithm, and 3. Decryption algorithm.
This encryption scheme is associated with three sets: the keyspace
(K), the message space (M), and the ciphertext space (C).
Here is how the algorithms work:

– KeyGen(1n) → k: It takes a security parameter n as input and
generates a secret key k belonging to K.

– Enc(k, m) → c: It takes a secret key k from K and a message
m from M as inputs, producing a ciphertext c in C.

– Dec(k, c) → m: It uses a secret key k from K and a ciphertext
c from C to output a message m in M .

An encryption scheme is considered correct if, for all messages m in
M and keys k in K, decrypting a ciphertext with the same key used
for encryption yields the original message: Dec(k,Enc(k,m)) = m.
However, it is important to note that even if an encryption scheme
is correct, it may not necessarily be secure.
There are two types of symmetric key encryption algorithms (or ci-
phers): stream cipher and block cipher. A block cipher divides
the plaintext data into blocks (often 64-bit blocks, but newer al-
gorithms sometimes use 128-bit blocks) and encrypts the data one
block at a time. On the other hand, stream ciphers encrypt the data
as a continuous stream of bits, encrypting one bit at a time.

2.2. Cryptographic Preliminaries 13

– Modes of Operation: Encryption algorithms often use differ-
ent modes of operation to enhance security and provide addi-
tional functionalities:

∗ ECB (Electronic Codebook): Each block of plaintext is
encrypted independently. Simple but vulnerable to pattern
attacks.

∗ CBC (Cipher Block Chaining): Each block of plaintext
is XORed with the previous ciphertext block before being
encrypted. Provides better security than the ECB.

∗ CFB (Cipher Feedback): Converts a block cipher into
a self-synchronizing stream cipher. Suitable for encrypting
data in real time.

∗ OFB (Output Feedback): Converts a block cipher into
a synchronous stream cipher, avoiding the propagation of
errors.

∗ CTR (Counter): Turns a block cipher into a stream ci-
pher. Each block is combined with a counter value, which is
incremented for each subsequent block.

– Strengths: Generally, symmetric key encryption is faster than
asymmetric key encryption and suitable for encrypting large
amounts of data.

– Weaknesses: Securely sharing the secret key between parties
can be difficult, especially over long distances or insecure chan-
nels. If the key is intercepted during transmission, the encryption
is compromised. Also, key management is challenging. As the
number of users increases, the number of keys required grows
exponentially. For n users, n(n−1)

2
unique keys are needed, which

can become unmanageable.
– A few examples of symmetric key encryption algorithms:

Stream Ciphers:
∗ RC4:

· RC4 is one of the most well-known stream ciphers [64].
· RC4 generates a keystream by initializing a state array

using the key-scheduling algorithm (KSA), and then pro-
duces a pseudorandom stream of bits using the pseudo-
random generation algorithm (PRGA).

· Usage: Widely used in various protocols such as WEP
and SSL/TLS.

∗ Salsa20:
· Salsa20 is another stream cipher known for its performance

and security [18].
· The core function maps a 256-bit key, a 64-bit nonce, and

a 64-bit counter to a 512-bit block of the key stream (a
Salsa version with a 128-bit key also exists).

· Usage: Salsa20 is used in various modern applications
where efficient and secure encryption is needed.

14 Chapter 2. Preliminaries and Background

Block Ciphers:
∗ AES (Advanced Encryption Standard):

· Key Sizes: 128, 192, or 256 bits.
· Block Size: 128 bits.
· Usage: Widely used in various applications, including se-

curing sensitive data and in SSL/TLS for web security
[37].

∗ DES (Data Encryption Standard):
· Key Size: 56 bits.
· Block Size: 64 bits.
· Usage: Historically used in various applications, now largely

considered obsolete due to its vulnerability to brute force
attacks [121].

∗ 3DES (Triple DES):
· Key Sizes: 112 or 168 bits.
· Block Size: 64 bits.
· Usage: An enhancement of DES used in financial services

and other industries for data encryption [36].
∗ Blowfish:

· Key Sizes: 32 to 448 bits.
· Block Size: 64 bits.
· Usage: Used in various applications, including encryption

for data storage and file encryption [113].

2. Asymmetric Key Encryption (ASKE): In an asymmetric key
encryption scheme, each involved party possesses a pair of keys: a
public key and a secret key. The public key is publicly available and
known to all, while the secret key is kept private and known only
to the key owner. When sending a message, the sender encrypts
it using the recipient’s public key, ensuring that only the recipient,
who has the corresponding secret key, can decrypt the message. This
preserves the confidentiality of the communication. The public and
secret keys are mathematically linked, making it computationally
hard to deduce the secret key from the public key alone.
This scheme consists of three algorithms: one for generating the key
pair, one for encrypting a message using the public key, and one
for decrypting a ciphertext using the secret key. Three sets—the
keyspace K, the message space M , and the ciphertext space C—are
associated with an asymmetric encryption scheme.
The three algorithms have the following input/output behavior:

– KeyGen(1n)→ (pk, sk): Takes a security parameter n as input
and outputs a key pair (pk, sk), where pk, sk ∈ K.

– Enc(pk, m) → c: Takes a public key pk ∈ K and a message
m ∈M as inputs, and produces a ciphertext c ∈ C.

2.2. Cryptographic Preliminaries 15

– Dec(sk, c) → m: Takes a secret key sk ∈ K and a ciphertext
c ∈ C as inputs, and outputs a message m ∈M .

An asymmetric key encryption scheme is considered correct if, for
all messages m ∈ M and any key pair (pk, sk) ∈ K, decrypting
an encrypted message with the corresponding secret key returns the
original message: Dec(sk,Enc(pk,m)) = m.

– Strengths: Key sharing is simpler and more secure since the
public key can be openly shared. Additionally, key management
is easy. For n persons to communicate using asymmetric key
encryption, the number of keys required is 2n.

– Weaknesses: It is slower than symmetric encryption and is
usually not used for encrypting large amounts of data directly.

– A few examples of asymmetric key encryption algorithms:
∗ RSA (Rivest-Shamir-Adleman):

· Key Sizes: Typically, 2048 or 4096 bits.
· Strength: Based on the difficulty of factoring large inte-

gers.
· Usage: Often used for secure data transmission, digital

signatures, and key exchange [141].
∗ ECC (Elliptic Curve Cryptography):

· Key Sizes: Typically, 256, 384, or 521 bits.
· Strength: Based on the algebraic structure of elliptic

curves over finite fields.
· Usage: Increasingly used in mobile devices and systems

with limited computational resources due to its efficiency
[21].

∗ ElGamal:
· Key Sizes: Variable, typically large primes.
· Strength: Based on the difficulty of computing discrete

logarithms.
· Usage: Used for encryption and digital signatures, par-

ticularly in PGP (Pretty Good Privacy) [160].

– Applications of Encryption:

– Data at Rest: Protecting stored data on devices and storage sys-
tems.

– Data in Transit: Securing data transmitted over networks.

– Secure Communication: Enabling confidential communication be-
tween parties.

2.2.2 Hash Function
Hash functions are fundamental cryptographic primitives used in various ap-
plications to ensure data integrity, provide unique identifiers called digest, and

16 Chapter 2. Preliminaries and Background

enable efficient data retrieval [38]. A hash function H : {0, 1}∗ → {0, 1}n is a
one-way function, where {0, 1}∗ represents inputs of arbitrary length and {0, 1}n
represents fixed-length outputs. This function takes an input x of any size and
produces a fixed-size output y such that H(x) = y. Hash functions are one-way
functions, meaning that it is computationally hard to reverse the process and
retrieve the original input x from its hash value y.

– Properties of a Cryptographic Hash Function: A secure crypto-
graphic hash function should have the following properties:

– Deterministic: The same input x will always produce the same
output y.

– Fast Computation: The hash function should be able to process
input quickly and efficiently.

– Preimage Resistance: Given y, it should be computationally in-
feasible to find x such that H(x) = y.

– Second Preimage Resistance: Given x and H(x), it should be
computationally infeasible to find x′ ̸= x such that H(x′) = H(x).

– Collision Resistance: It should be computationally infeasible to
find any two distinct inputs x and x′ such that H(x) = H(x′).

– Avalanche Effect: A small change in the input x should produce a
significantly different hash output y, making the hash function highly
sensitive to input variations.

– A few examples hash functions:

– MD5 (Message Digest Algorithm 5):

∗ Output Size: 128 bits.
∗ Usage: Historically used for checksums and data integrity veri-

fication. Due to vulnerabilities, it is not recommended for cryp-
tographic security.

– SHA-1 (Secure Hash Algorithm 1):

∗ Output Size: 160 bits.
∗ Usage: Previously widely used in digital signatures and certifi-

cates. Now considered insecure due to collision vulnerabilities.

– SHA-256 (Secure Hash Algorithm 256):

∗ Output Size: 256 bits.
∗ Usage: Part of the SHA-2 family, widely used for secure hash-

ing in various security applications, including SSL/TLS, digital
signatures, and blockchain.

– SHA-3 (Secure Hash Algorithm 3):

∗ Output Size: Variable (commonly 224, 256, 384, or 512 bits).

2.2. Cryptographic Preliminaries 17

∗ Usage: The latest member of the Secure Hash Algorithm fam-
ily, designed as an alternative to SHA-2 with enhanced security
properties.

– RIPEMD-160 (RACE Integrity Primitives Evaluation Mes-
sage Digest):

∗ Output Size: 160 bits.
∗ Usage: Used in various security applications, particularly in

PGP and cryptocurrencies.

– Keccak:

∗ Output Size: Variable (commonly 224, 256, 384, or 512 bits).
∗ Usage: The basis for the SHA-3 standard, Keccak is used in a

wide range of cryptographic applications due to its robust secu-
rity properties.

– Applications of Hash Functions

1. Data Integrity: Hash functions are used to ensure data integrity
by generating a fixed-size hash (digest) of data. Any changes to the
data result in a different hash value, alerting to potential tampering
or corruption.

2. Digital Signatures: In digital signatures, hash functions are used
to create a digest of a message. The digest is then signed with a pri-
vate key, allowing verification of both the integrity and authenticity
of the message using the corresponding public key.

3. Password Storage: Hash functions securely store passwords by
hashing them before storage. During authentication, the hash of the
entered password is compared to the stored hash, ensuring that even
if the hash is compromised, the original password remains protected.

4. Blockchain: Hash functions play a crucial role in blockchain tech-
nology by linking blocks of transactions. Each block includes a hash
of the previous block, forming a chain. This ensures the immutability
and integrity of the entire blockchain.

5. Message Authentication Codes (MACs): Hash functions create
MACs, which are tags added to messages to ensure their authenticity
and integrity. The MAC is generated using a shared secret key,
verifying that the message has not been altered.

6. File and Data Identification: Hash functions are used to generate
unique identifiers (hashes) for files or data sets. These identifiers are
used to quickly compare and identify files, detect duplicates, or verify
data integrity during transmission.

7. Cryptographic Salting: In password hashing, salts (random val-
ues) are combined with passwords before hashing to prevent identi-
cal passwords from producing the same hash. This enhances security
against dictionary attacks and rainbow table attacks.

18 Chapter 2. Preliminaries and Background

8. Data Deduplication: Hash functions are used in data deduplica-
tion systems to identify and eliminate duplicate data by comparing
hashes of data chunks. This optimizes storage space and improves
data management efficiency.

9. Fingerprinting and Digital Forensics: Hash functions are used
in digital forensics to create digital fingerprints of files and storage
devices. These fingerprints help in identifying and verifying digital
evidence without altering the original data.

10. Content Addressing: Hash functions uniquely identify data chunks
in content-addressable storage systems (like BitTorrent). This en-
ables efficient distribution, retrieval, and verification of data across
distributed networks.

These applications demonstrate the versatility and critical role of hash
functions in ensuring security, data integrity, and efficient data manage-
ment across various domains of computing and information technology.

2.2.3 Digital Signature
Just like signing a document with a pen to prove authorship and prevent tam-
pering, digital signatures serve a similar purpose in the digital world. They
are cryptographic mechanisms used to validate the authenticity and integrity
of a message, software, or digital document. They provide assurances that the
message was created and sent by the claimed sender (authentication) and that
it was not altered in transit (integrity) [81].

A digital signature scheme typically consists of three algorithms: KeyGen,
Sign, and Verify.

– KeyGen(1n) → (SK, PK): The KeyGen algorithm takes a security
parameter n as input and outputs a pair of keys: the private key (SK)
and the public key (PK).

– SignSK(m) → σ: The Sign algorithm uses the private key (SK) and a
message m to produce a digital signature σ.

– V erifyPK(m,σ) → {true, false}: The Verify algorithm takes the public
key (PK), the message m, and the digital signature σ as inputs and
outputs a boolean value indicating whether the signature is valid (true)
or not (false).

– How Digital Signatures Work:

– Signature Creation:

∗ The sender creates a hash of the message. Signing large data is
computationally expensive and time-consuming. By creating a
hash, a small fixed-size digest of the data, signing becomes more
efficient than signing the entire message.

2.2. Cryptographic Preliminaries 19

∗ The hash is then encrypted with the sender’s private key to
create the digital signature.

∗ The original message, along with the digital signature, is sent to
the recipient.

– Signature Verification:

∗ The recipient decrypts the digital signature using the sender’s
public key to obtain the hash.

∗ The recipient also generates a hash of the received message.
∗ If the two hashes match, the signature is verified as authentic,

and the message integrity is confirmed.

– Examples of Digital Signature Algorithms:

– RSA (Rivest-Shamir-Adleman):

∗ Relies on the difficulty of factoring large integers.
∗ Widely used but less efficient compared to ECC.

– DSA (Digital Signature Algorithm):

∗ A U.S. federal standard for digital signatures.
∗ Based on the mathematical properties of discrete logarithms.

– ECDSA (Elliptic Curve Digital Signature Algorithm):

∗ Uses elliptic curve cryptography.
∗ Provides the same level of security with smaller key sizes com-

pared to RSA and DSA, making it more efficient.

– Properties of Digital Signatures:

– Authenticity: The signature confirms the identity of the signer.

– Integrity: Any modification to the signed data will invalidate the
signature.

– Non-repudiation: The signer cannot deny having signed the mes-
sage, as signing requires a secret key known only to the signer.

– Applications of Digital Signatures:

– Email Security: Ensures that the email is from the claimed sender
and has not been altered.

– Software Distribution: Verifies that software or updates are from
the legitimate developer and have not been tampered with.

– Financial Transactions: Provides security for online transactions
by ensuring the authenticity and integrity of transaction details.

– Legal Documents: Digital signatures can be used to sign contracts
and legal documents, providing a secure and verifiable method of
consent.

20 Chapter 2. Preliminaries and Background

2.2.4 Commitment Schemes
Commitment schemes are cryptographic protocols that enable one party (the
committer) to commit to a chosen value while keeping it hidden from others,
with the ability to reveal the committed value later [146]. These schemes play a
crucial role in various cryptographic protocols and applications, such as secure
multi-party computation, zero-knowledge proofs, and blockchain technology.

– Properties of Commitment Schemes: A secure commitment scheme
has two main properties:

– Hiding: Ensures that the committed value remains secret from any
party other than the committer until it is revealed. This property
guarantees that the commitment does not leak any information about
the committed value.

– Binding: Ensures that the committer cannot change the commit-
ted value after the commitment is made. This property prevents
the committer from committing to a value and then changing it to
another value at the time of revelation.

– Phases of a Commitment Scheme: A typical commitment scheme
consists of two phases:

1. Commit Phase:

– The committer chooses a value v to commit to and generates
a commitment C using a commitment function Commit(v, r),
where r is a random value (often called a nonce) to ensure the
hiding property.

– The commitment C is then sent to the receiver.

2. Reveal Phase:

– The committer reveals the value v and the randomness r to the
receiver.

– The receiver verifies the commitment by checking if C = Commit(v, r).

– Types of Commitment Schemes:

– Bit Commitment:

∗ Commits to a single bit (0 or 1).
∗ Fundamental building block for more complex protocols.

– String Commitment:

∗ Commits to a string of bits or a more complex value.
∗ Used in broader applications requiring commitment to larger

datasets.

– Construction of Commitment Schemes:

– Hash-Based Commitment:

2.2. Cryptographic Preliminaries 21

∗ Commit: To commit to a value v, choose a random value r and
compute the commitment C = H(v∥r), where H is a crypto-
graphic hash function and ∥ denotes concatenation.

∗ Reveal: Reveal the values v and r. The receiver checks if the
commitment C matches H(v∥r).

– Pedersen Commitment:

∗ Commit: To commit to a value v, choose a random value r
and compute the commitment C = gvhr mod p, where g and
h are generators of a cyclic group of prime order p, and h is
chosen such that the discrete logarithm of h with respect to g is
unknown.

∗ Reveal: Reveal the values v and r. The receiver checks if the
commitment C matches gvhr mod p.

– Applications of Commitment Schemes:

– Zero-Knowledge Proofs:

∗ Used to prove the knowledge of a value without revealing the
value itself.

∗ Commitment schemes ensure that the prover cannot change their
mind after committing to a value.

– Secure Multi-Party Computation:

∗ Enables multiple parties to jointly compute a function over their
inputs while keeping those inputs private.

∗ Commitment schemes ensure that parties commit to their inputs
before computation begins.

– Blockchain and Cryptocurrencies:

∗ Used in various protocols to ensure the integrity and confiden-
tiality of transactions.

∗ Commitment schemes are fundamental in constructing secure
and verifiable ledgers.

– Electronic Voting:

∗ Ensures that votes are committed securely and cannot be altered.
∗ Provides a mechanism to reveal votes at a later stage while main-

taining voter privacy until then.

2.2.5 Proxy Reencryption
Proxy re-encryption (PRE) is a cryptographic technique that allows a proxy to
convert ciphertexts encrypted under one public key to another public key with-
out learning the plaintext. This method provides a way for users to securely
delegate decryption rights without exposing their secret keys. Let us consider a
scenario where Alice wishes to enable Bob to decrypt messages encrypted with
her public key without giving him her private key. Alice also prefers not to give

22 Chapter 2. Preliminaries and Background

her private key to a proxy, as it demands too much trust. Instead, Alice seeks a
solution where a proxy can transform messages encrypted with her public key
into messages encrypted with Bob’s public key without decrypting them. Proxy
re-encryption serves this purpose. By providing the proxy with certain infor-
mation, Alice allows it to carry out this transformation. In this setup, Alice is
the delegator, and Bob is the delegate. For instance, Alice may need to forward
her encrypted emails to Bob temporarily. She sends her encrypted emails to a
proxy, which re-encrypts them under Bob’s public key, enabling Bob to decrypt
and read them. [108]

Workflow of Proxy Re-encryption Scheme

1. Key Generation:

– Let K = (G,E,D) be a public-key encryption scheme, where G is
the key generation algorithm, E is the encryption algorithm, and D
is the decryption algorithm.

– Alice has a key pair (PKA, SKA) generated by G, where PKA is her
public key and SKA is her secret key.

– Similarly, Bob has a key pair (PKB, SKB) generated by G, where
PKB is his public key and SKB is his secret key.

2. Encryption:

– Alice encrypts the message m using her public key PKA:

cA = E(PKA,m)

3. Re-encryption Key Generation:

– Alice generates the re-encryption key RKkA→B using her secret key
SKA and Bob’s public key PKB:

RKA→B = GenReencKey(SKA, PKB)

4. Re-encryption:

– The proxy uses the re-encryption key RKA→B to transform cA =
E(PKA,m) into cB = E(PKB,m) without learning the plaintext m:

cB = ReEncrypt(RKA→B, cA)

5. Decryption:

– Bob decrypts cB using his secret key skB and obtains the original
plaintext m:

m = D(SKB, cB)

– Security Properties:

2.3. Merkle Tree Data Structure 23

1. Confidentiality: The proxy cannot see the plaintext unless it colludes
with Bob.

2. Key Privacy: The proxy cannot derive Alice’s secret key, even if it col-
ludes with Bob.

3. Directionality: The scheme can be:
– Bi-directional: When Alice delegates to Bob, Bob can automatically

delegate to Alice, requiring mutual trust.
– Uni-directional: Alice can delegate to Bob without requiring Bob to

delegate to her, so trust does not need to be mutual.
4. Transitivity: The scheme can be:

– Transitive: Alice can delegate to Bob, and Bob can delegate to Tim,
and so on.

– Non-transitive: Bob cannot delegate to Tim after receiving a dele-
gation from Alice.

– Applications of Proxy Re-encryption Scheme:

PRE has several applications:

– Secure Data Sharing: Allows users to securely share encrypted data
without exposing their secret keys.

– Cloud Storage: Enables secure and efficient sharing of data stored in the
cloud by allowing the cloud provider to re-encrypt data for different users
without accessing the plaintext.

– Access Control: Enhances access control mechanisms by enabling fine-
grained delegation of decryption rights without exposing the original de-
cryption keys.

– Distributed Systems: Supports secure communication and data sharing
in distributed systems where trust levels vary among participants.

Proxy re-encryption provides a powerful mechanism for secure data sharing
and delegation in various applications. By leveraging re-encryption keys, it
maintains data confidentiality while enabling controlled access, making it a
valuable tool in the realm of cryptographic security. In some proxy re-encryption
schemes, the re-encryption process can be handled by the delegator (Alice) or
the delegatee (Bob) instead of a proxy. This allows for flexibility in how the
re-encryption is performed and can increase security by reducing the reliance
on a third-party proxy.

2.3 Merkle Tree Data Structure

Merkle Trees, introduced by Ralph Merkle in 1979, are binary trees used for
efficient and secure verification of data integrity and membership proofs. They
derive their name from their inventor and have since become a foundational
concept in cryptography, distributed systems, and blockchain technology [80],
[153].

24 Chapter 2. Preliminaries and Background

– Each leaf node contains the hash of a data block or element in the set.

– Non-leaf nodes store hashes computed from the concatenation or pairwise
combination of their child nodes’ hashes.

– The root node of the tree, known as the Merkle Root (MR), represents a
condensed cryptographic summary of all data in the tree.

Properties:

1. Data Integrity: Merkle Trees enable efficient verification of data in-
tegrity. By comparing the Merkle Root against a trusted value, one can
quickly determine if any part of the data has been altered.

2. Efficient Updates: When data changes, only a subset of the tree needs
to be updated, typically logarithmic with respect to the number of ele-
ments, ensuring efficiency in dynamic environments.

3. Compact Proof Generation: Proof of membership or non-membership
in a set can be efficiently generated and verified using a logarithmic num-
ber of hash comparisons proportional to the height of the tree.

Operations:

– Construction: Initially, all leaf nodes are populated with hashes of in-
dividual data elements. Non-leaf nodes are then constructed by hashing
pairs of child nodes until a single root hash (Merkle Root) remains.

– Verification: To verify the integrity of a particular data element or set, a
proof path from the leaf containing the element’s hash to the Merkle Root
is generated. This path consists of sibling hashes at each level, allowing
quick verification.

– Dynamic Updates: Updating a Merkle Tree involves recalculating hashes
along the path from the updated leaf node to the root. This ensures that
the Merkle Root accurately reflects the current state of the data.

Applications of Merkle Tree:

– Blockchain Technology: In blockchain systems like Bitcoin and Ethereum,
Merkle Trees are used to verify the inclusion of transactions in blocks ef-
ficiently and to detect tampering with block data.

– Distributed File Systems: Systems like IPFS (InterPlanetary File Sys-
tem) utilize Merkle Trees to verify the integrity of distributed data across
multiple nodes.

– Data Synchronization: They are employed in data synchronization
protocols to ensure that only changed data is transmitted between syn-
chronized systems, optimizing bandwidth usage.

2.4. Blockchain 25

– Cryptographic Commitments: Merkle Trees serve as a form of cryp-
tographic commitment, where the Merkle Root can be publicly shared to
prove possession of specific data without revealing the data itself.

– Secure Communication: Used in protocols like TLS (Transport Layer
Security) to verify the integrity of transmitted data and ensure resistance
against tampering attacks.

Merkle Trees, which are fundamental in cryptography and distributed sys-
tems, come in several variations tailored to different applications. The basic
Binary Merkle Tree serves as the foundation, using concatenated hashes of child
nodes to ensure data integrity and enable efficient verification. Variants like the
Quad Merkle Tree build upon this by accommodating up to four child nodes
per parent, reducing tree height for large datasets. Other adaptations, such as
the Patricia Tree (Radix Tree), focus on optimizing storage and retrieval by
storing keys at leaf nodes and hashes at internal nodes. Each variation, from
Sparse Merkle Trees for sparse datasets to Layered Merkle Trees for hierarchical
aggregation in blockchains, addresses specific needs such as scalability, security,
and efficiency in various technological contexts.

By leveraging Merkle Trees, developers can ensure data integrity, optimize
performance, and enhance security across a wide array of technological imple-
mentations.

In the proposed healthcare system, digital signatures verify the authenticity
of EHRs, while encryption protects sensitive patient data. Similarly, in the
banking system, hash functions ensure the integrity of financial transactions,
preventing unauthorized modifications. These cryptographic primitives are fun-
damental to blockchain operations: hash functions (e.g., SHA-256 in Bitcoin and
Keccak-256 in Ethereum) ensure data integrity by organizing transactions into a
Merkle tree structure, digital signatures (e.g., ECDSA in Bitcoin and Ethereum)
provide authentication, and encryption secures communication between nodes.

2.4 Blockchain

As the name suggests, a blockchain is a chain of blocks, i.e., an ordered sequence
of blocks, each containing a set of transactions [111]. The first block in the
blockchain is known as the genesis block, serving as the root of the entire
blockchain. The height of the blockchain is defined by the distance from the
genesis block. Every block includes the hash of its preceding block within
its header. This sequence of hashes creates a linked chain, with each block
connecting to its parent. A block can have only one parent but may have
multiple children, leading to a fork in the network. Consensus mechanisms
are employed to resolve forks, determining which child block will continue the
blockchain [110].

Blockchain records are immutable due to the cryptographic hashing mech-
anism. Altering the data in one block changes its hash, which in turn alters

26 Chapter 2. Preliminaries and Background

the hashes of all subsequent blocks. This cascading effect makes tampering
computationally impractical, especially as the blockchain grows longer.

Consensus in Blockchain
Nakamoto’s consensus algorithm enables all nodes in the blockchain network
to agree on the validity of a block without needing a central authority. The
process includes:

– Verifying transactions: Nodes validate the correctness of transaction in-
puts, outputs, and signatures and check for double-spending.

– Block creation: Miners collect verified transactions into a block and solve
a cryptographic puzzle using the proof-of-work algorithm.

– Block propagation: The first miner to solve the cryptographic puzzle
broadcasts the block to the network. Other nodes independently verify
the block and, if valid, add it to their copy of the blockchain.

Mining and Proof-of-Work
Mining is the process that secures the Bitcoin network and enables decentralized
consensus without a third party [110]. Any network node can become a miner
tasked with validating transactions and recording them in the blockchain. Once
included in a block, a transaction is confirmed, allowing the transaction out-
puts to be spent. Miners receive rewards for block mining and transaction fees
included in the block. The proof-of-work mechanism requires miners to solve a
cryptographic puzzle with a specific difficulty, ensuring that creating new blocks
requires significant computational effort. This mechanism prevents the creation
of numerous fake nodes, known as Sybil attacks. The winning miner, who solves
the puzzle first, earns a reward for their computational effort.

Due to the complexity of verification and the proof-of-work process, blockchain
transactions are slower compared to traditional payment systems.

2.5 Bitcoin

Bitcoin, introduced by Satoshi Nakamoto in 2008 [110], represents a ground-
breaking decentralized digital currency system. It ensures secure and efficient
transactions while addressing the double-spending problem and enabling par-
ticipants to join and leave the network seamlessly.

2.5.1 Key Properties
Bitcoin achieves several key properties:

– Permissionless: Users can participate in the network without requiring
identities. They can join or leave the network anytime.

2.5. Bitcoin 27

– Decentralized: It operates without a central authority or trusted third
party.

– Secure: Transactions are secured by cryptographic mechanisms and a
resilient consensus protocol [35].

– Immutable Ledger: All transactions are permanently recorded in a
verifiable append-only ledger, known as the blockchain.

2.5.2 Bitcoin Addresses
Users generate private/public key pairs to create Bitcoin addresses, which serve
as pseudonymous identities. Ownership of funds is tied to these addresses,
enabling secure transactions.

2.5.3 UTXO Model
Bitcoin uses the Unspent Transaction Output (UTXO) model [8]. Each trans-
action output consists of coins (BTC) and conditions (script) that must be met
to spend these coins. This model differs from the account-based model used in
some other cryptocurrencies, as it tracks individual "coins" rather than account
balances.

2.5.4 Transaction Structure
A Bitcoin transaction tx = (id, input, output) includes:

– Transaction ID: Hash of the transaction.

– Transaction Input: References to existing UTXOs that the spender has
the right to use.

– Transaction Output: New UTXOs created, specifying coins and spend-
ing conditions.

2.5.5 Bitcoin Script
Transactions are valid if each input is accompanied by a valid signature or
other required conditions and if the inputs have not been spent before. Bitcoin
Script plays a crucial role in this validation process by allowing users to define
these conditions directly within transaction outputs. This stack-based, tur-
ing in-complete scripting language enables complex spending conditions, such
as multi-signature requirements or time-locked transactions, which are verified
autonomously. Valid transactions meeting these specified conditions are then
added to the blockchain through the consensus mechanism, ensuring the in-
tegrity and security of the Bitcoin network.

28 Chapter 2. Preliminaries and Background

2.5.6 Consensus Mechanism
Bitcoin’s consensus mechanism ensures agreement among network nodes on the
validity of transactions without relying on a central authority. It involves:

– Verification: Nodes validate transactions and create blocks.

– Proof-of-Work (PoW): Miners compete to solve cryptographic puzzles
to append new blocks to the blockchain, requiring significant computa-
tional effort.

– Blockchain Security: The longer the blockchain, the more secure it
becomes against tampering due to the computational difficulty of altering
past transactions.

2.5.7 Mining and Monetary Policy
New bitcoins are created through mining rewards. Miners receive newly minted
bitcoins as a reward for successfully adding a block to the blockchain. The
reward amount undergoes a "halving" event approximately every four years,
reducing by 50%. This deflationary mechanism is crucial to Bitcoin’s mone-
tary policy and scarcity. However, the mining process is not without potential
exploits. Selfish mining is a strategy where miners withhold newly discovered
blocks to create a private chain, potentially claiming more rewards than their
fair share. Additionally, in mining pools, malicious actors may engage in block
withholding attacks [10], where they submit partial proofs of work but withhold
full solutions, undermining the pool’s efficiency. These strategies, while detri-
mental to the network’s intended fairness, highlight the complex game theory
aspects of Bitcoin’s consensus mechanism.

2.5.8 Network Security
The Proof-of-Work system secures the network against various attacks:

– 51% Attacks: An attacker would need to control more than half of the
network’s computational power to alter the blockchain potentially.

– Double-Spending: The consensus mechanism and blockchain structure
make it extremely difficult to spend the same bitcoin twice.

2.5.9 Full Nodes and Light Nodes
Bitcoin network participants can run different types of nodes:

Full Nodes
Full nodes download and verify the entire blockchain, including all transactions
and blocks. They play a crucial role in maintaining and validating the network
by:

– Independently verifying all transactions and blocks

2.5. Bitcoin 29

– Enforcing the consensus rules of the Bitcoin protocol

– Providing a complete and authoritative record of all transactions

Running a full node requires significant storage and bandwidth resources but
offers the highest level of security and network support.

Light Nodes and SPV
Light nodes, also known as SPV (Simplified Payment Verification) clients, pro-
vide a more resource-efficient way to interact with the Bitcoin network:

– Lightweight: They do not store the entire blockchain, only downloading
block headers and specific transactions relevant to the user’s wallet.

– SPV Mechanism: Light nodes use SPV to verify transactions without
downloading full blocks. They rely on the longest proof-of-work chain to
confirm transaction inclusion.

– Merkle Proofs: Light nodes request Merkle proofs from full nodes to
verify specific transactions, allowing them to confirm payments without
storing the entire blockchain.

– Trade-offs: While SPV nodes are more efficient in terms of resources,
they offer reduced security compared to full nodes and must trust full
nodes to some extent for transaction verification.

SPV, introduced in the original Bitcoin whitepaper [110], enables Bitcoin
wallets on resource-constrained devices like smartphones. However, users should
be aware of the security trade-offs when using light nodes instead of full nodes.

2.5.10 Privacy and Pseudonymity
While Bitcoin transactions are pseudonymous, they are not entirely anonymous.
All transactions are publicly recorded on the blockchain, which can potentially
be analyzed to link addresses to real-world identities [132]. Users face challenges
in maintaining complete anonymity, leading to the development of privacy-
enhancing techniques and alternative cryptocurrencies focused on privacy.

2.5.11 Scalability Challenges
Bitcoin faces scalability challenges, particularly in terms of transaction through-
put. The current block size and block time limit the number of transactions that
can be processed per second. Solutions like the Lightning Network, a second-
layer protocol, aim to address these limitations by enabling faster and cheaper
off-chain transactions.

2.5.12 Recent Developments
Notable recent developments in the Bitcoin ecosystem include:

30 Chapter 2. Preliminaries and Background

– Segregated Witness (SegWit): An upgrade that increased block ca-
pacity and fixed transaction malleability.

– Taproot: An upgrade that improved privacy, scalability, and smart con-
tract functionality.

2.5.13 Transaction Finality
The time taken to finalize a transaction, ensuring it is irreversible and added to
the blockchain, is bounded by ∆, dependent on network confirmation processes.
Generally, six confirmations (approximately one hour) are considered sufficient
for most transactions.

Bitcoin’s design ensures robustness against arbitrary deviations (Byzantine
faults) and provides a foundation for decentralized financial applications and
trustless peer-to-peer transactions. Its ongoing development and the grow-
ing ecosystem around it continue to shape the future of digital currencies and
blockchain technology.

2.6 Ethereum

Ethereum, proposed by Vitalik Buterin in 2013 and launched in 2015 [24], [170],
is a decentralized, open-source blockchain platform that enables the creation
and execution of smart contracts and decentralized applications (DApps).

2.6.1 From Bitcoin to Ethereum: Addressing Limita-
tions and Introducing New Paradigms

Limitations of the Bitcoin Ecosystem

While Bitcoin revolutionized digital currencies, it had several limitations:

– Limited Programmability: Bitcoin’s script language is intentionally
non-Turing complete, restricting complex smart contract functionality.

– Specialized Use Case: Bitcoin primarily focuses on peer-to-peer value
transfer, limiting its use to more complex applications.

– Slow Transaction Finality: Bitcoin’s block time and confirmation re-
quirements lead to slower transaction finality compared to traditional pay-
ment systems.

– Scalability Issues: The fixed block size limits transaction throughput,
leading to higher fees during network congestion.

The Need for Ethereum

Ethereum was conceived to address these limitations and expand blockchain
capabilities:

2.6. Ethereum 31

– General-Purpose Platform: Ethereum aimed to create a blockchain
that could support a wide range of decentralized applications beyond sim-
ple value transfer.

– Turing-Complete Smart Contracts: By implementing a Turing-complete
programming language, Ethereum enabled complex, self-executing con-
tracts and applications.

– Faster Block Time: Ethereum’s shorter block time (originally 15 sec-
onds, compared to Bitcoin’s 10 minutes) allows for quicker transaction
confirmations.

– Flexible State Storage: Ethereum’s account-based model provides more
flexibility for complex state management compared to Bitcoin’s UTXO
model.

UTXO vs. Account-Based Model

Bitcoin and Ethereum use fundamentally different models for tracking user bal-
ances and facilitating transactions:

Bitcoin’s UTXO (Unspent Transaction Output) Model

– Transaction-Centric: Each transaction consumes one or more UTXOs
as inputs and creates new UTXOs as outputs.

– Stateless: There is no concept of an account balance; a user’s balance is
the sum of their unspent outputs.

– Privacy Advantage: Each transaction can use a new address, enhancing
privacy.

– Parallel Processing: UTXOs can be processed in parallel, potentially
improving scalability.

– Complexity in Smart Contracts: Implementing complex smart con-
tracts is more challenging in a UTXO model.

Ethereum’s Account-Based Model

– Account-Centric: Each account has a balance, and transactions directly
update these balances.

– Stateful: The system maintains the state (balance and other data) for
each account.

– Simplified Logic: Easier to understand and implement complex smart
contract logic.

– Nonce System: Uses a nonce (transaction count) to prevent double-
spending and ensure transaction order.

32 Chapter 2. Preliminaries and Background

– Potential Privacy Concerns: Reuse of addresses can make transaction
tracking easier.

Key Differences

– State Management: UTXO tracks unspent outputs, while the account
model tracks account balances.

– Transaction Verification: UTXO requires verifying the entire trans-
action history, while the account model only needs to check the current
state.

– Smart Contract Suitability: The account model is generally more
suitable for complex smart contracts and state-dependent operations.

– Scalability Trade-offs: UTXO offers potential parallelization benefits,
while the account model simplifies state management.

Ethereum’s choice of the account-based model aligns with its goal of being
a general-purpose blockchain platform. This model facilitates the easier im-
plementation of complex smart contracts and decentralized applications. This
fundamental difference in design philosophy and implementation underscores
the distinct roles that Bitcoin and Ethereum play in the blockchain ecosystem.

2.6.2 Key Properties
Ethereum extends the blockchain concept beyond simple value transfer, offering:

– Turing-complete Programming: Allows for complex, arbitrary com-
putation on the blockchain.

– Smart Contracts: Self-executing contracts with the terms directly writ-
ten into code.

– Decentralized Applications (DApps): Applications that run on a
peer-to-peer network rather than a single computer.

– Tokenization: Ability to create and manage custom tokens (e.g., ERC-
20, ERC-721).

2.6.3 Ethereum Virtual Machine (EVM)
The EVM is a Turing-complete virtual machine that executes smart contract
bytecode:

– State Machine: Maintains the global state of all accounts and smart
contracts.

– Gas Mechanism: Uses “gas” to measure computational cost and prevent
infinite loops.

– Opcodes: Provides a set of instructions for smart contract execution.

2.6. Ethereum 33

2.6.4 Accounts
Ethereum has two types of accounts:

– Externally Owned Accounts (EOAs): Controlled by private keys,
can initiate transactions.

– Contract Accounts: Controlled by their code, cannot initiate transac-
tions on their own and activated by transactions from EOAs or messages
from other contracts.

2.6.5 Transactions and Messages
– Transactions: In the Ethereum network, transactions and messages

are two distinct concepts that facilitate operations and communication.
Transactions are signed data packages initiated by Externally Owned Ac-
counts (EOAs). They can transfer Ether, deploy smart contracts, or trig-
ger contract code execution. Transactions are recorded on the blockchain
and modify the global state. They require gas for execution and include
fields such as recipient, value, data, gas price, and gas limit. Every trans-
action is recorded on the Ethereum blockchain and represents a state
transition in the network.

– Messages: Messages, on the other hand, are virtual objects that exist
only within the Ethereum execution environment. They represent internal
calls between contracts and are created when one contract calls another
contract’s function. Unlike transactions, messages are not directly serial-
ized or recorded on the blockchain. While messages themselves are not
visible on the blockchain, their impact is reflected in the overall state
changes recorded as part of the transaction that triggered them. This
mechanism allows for complex interactions between contracts while main-
taining the integrity and traceability of the blockchain state.

2.6.6 Consensus Mechanism
Ethereum has undergone significant changes in its consensus mechanism:

– Proof-of-Work (PoW): Initially used, similar to Bitcoin’s mechanism.

– Proof-of-Stake (PoS): Transitioned to PoS in 2022 with "The Merge",
significantly reducing energy consumption.

– Validators: In PoS, validators replace miners, staking ETH to propose
and attest to blocks.

2.6.7 Smart Contracts
Smart contracts are self-executing programs stored on the blockchain:

– Solidity: Primary high-level language for writing smart contracts.

34 Chapter 2. Preliminaries and Background

– Immutability: Once deployed, the contract code cannot be changed.

– Deterministic Execution: Given the same input, contracts always pro-
duce the same output.

2.6.8 Tokenization Standards
Ethereum introduced several token standards:

– ERC-20: Standard for fungible tokens.

– ERC-721: Standard for non-fungible tokens (NFTs).

– ERC-1155: Multi-token standard supporting both fungible and non-
fungible tokens.

2.6.9 Gas and Ether
– Ether (ETH): Native cryptocurrency of Ethereum.

– Gas: Unit to measure computational effort, priced in Ether.

– Gas Limit: Maximum amount of gas a transaction or block can consume.

– Gas Price: Amount of Ether the sender is willing to pay per unit of gas.

2.6.10 Transaction Cost and Latency
– Transaction Cost:

When conducting transactions on Ethereum, a gas fee is incurred. Ev-
ery transaction executed on the Ethereum platform consumes a certain
amount of gas, known as the “gas cost”, which depends on the complexity
and computational resource requirements of the transaction. Gas refers
to the monetary cost associated with completing a transaction or the exe-
cution of a contract on the Ethereum platform. The term “gas cost” refers
to the amount of gas a transaction consumes to execute successfully. On
the other hand, the “gas price” is the unit price of gas measured in GWei
(1 Gwei = 10−9 ETH) [7]. Each blockchain transaction has a gas limit
to avoid running out of gas if the code contains bugs, providing a safety
mechanism.

Transaction cost is derived by multiplying gas cost by gas price. While gas
cost is a fixed parameter, gas price is variable. The transactor initiator
has the provision to select the gas price. Choosing the appropriate gas
price can be a challenge task. To calculate the correct gas price, one
must monitor network congestion and current gas price trends. Opting
for higher gas prices provides a lucrative incentive for validators/miners
to include transactions more quickly into a block of a blockchain. The
transaction initiator needs to pay a transaction fee to the validator or
miner for including the transaction into a block of a blockchain.

2.6. Ethereum 35

– Transaction Latency:
Latency refers to the duration of time that a user must wait after initiating
a transaction by broadcasting it to the network before it is processed and
then included in a block. In other words, it’s the duration between the
moment a user triggers a transaction and the moment it becomes a part of
the blockchain. In public blockchains like Ethereum, transactions must go
through a distributed consensus mechanism before they can be added to
the blockchain. This means that multiple nodes in the network must agree
on the transaction’s validity. As a result, there will be some delay. The
delay or latency may vary based on network congestion. High transaction
latency can impact the user experience by causing delays in transaction
confirmation, which can be critical in time-sensitive applications.

2.6.11 Scalability Solutions
Ethereum faces scalability challenges, addressed through various solutions:

– Layer 2 Solutions: Off-chain scaling solutions like Optimistic Rollups
and zk-Rollups.

– Sharding: Planned future upgrade to split the network into multiple
shards, increasing throughput.

2.6.12 Ethereum 2.0 (Eth2) Upgrade
A series of upgrades to improve Ethereum’s scalability, security, and sustain-
ability:

– Beacon Chain: Introduced the Proof-of-Stake mechanism.

– The Merge: Transitioned the main network from PoW to PoS.

– Future Upgrades: Include sharding and other improvements.

2.6.13 Ethereum Node Types
1. Full Nodes: Download and verify the entire blockchain, including all

transactions and state changes.

2. Light Nodes: Download block headers and use Merkle proofs to verify
specific data without storing the entire blockchain.

3. Archive Nodes: Store the entire history of the blockchain, including all
historical states, requiring significant storage.

Ethereum’s programmable blockchain and smart contract capabilities have
made it a foundational platform for numerous blockchain applications, from de-
centralized finance to non-fungible tokens and beyond. Its ongoing development
and the growing ecosystem continue to drive innovation in the blockchain space.

36 Chapter 2. Preliminaries and Background

2.7 Smart Contract

Invented by Nick Szabo in 1994, years before the advent of blockchain tech-
nology, smart contracts are self-executing agreements between parties written
in programming languages like Solidity, Serpent, and Vyper, and deployed on
blockchain networks. They automate the enforcement of contract terms without
requiring intermediaries, thereby enhancing security and transparency. By exe-
cuting automatically based on predefined conditions, smart contracts reduce the
need for trust and eliminate opportunities for fraud or manipulation. Integrat-
ing smart contracts with blockchain technology has catalyzed the development
of decentralized applications (DApps) that securely manage transactions and
processes across various industries [83], [107], [135].

Initially used in the Bitcoin network for transferring digital value, early
smart contracts were limited by a Turing-incomplete language, restricting their
functionality. Ethereum later revolutionized smart contracts by introducing a
Turing-complete language, empowering developers to create more sophisticated
and powerful custom contracts.

– Key Features:

– Autonomy: Operate without intermediaries, ensuring direct and trans-
parent interactions.

– Immutability: Once deployed on the blockchain, contracts cannot be
altered, ensuring reliability and trustworthiness.

– Transparency: Contract terms and execution are visible to all par-
ticipants on the blockchain, promoting openness.

– Automation: Automatically execute predefined actions based on con-
ditions, reducing human intervention.

– Customization: Modifiable before deployment to suit specific con-
tract requirements.

– Advantages:

– Enhance recordkeeping accuracy and transparency.

– Reduce fraud and manipulation through automated enforcement.

– Improve operational efficiency and cost-effectiveness by eliminating
intermediaries.

– Foster trust among parties by ensuring programmable contract exe-
cution.

– Enable secure and reliable execution of complex contractual agree-
ments.

– Challenges:

– Security Risks: Vulnerabilities in smart contract code can lead to
breaches and financial losses.

2.8. Distributed File Storage 37

– Regulatory Uncertainty: Legal frameworks for smart contracts are
still evolving, posing compliance challenges.

– Implementation Complexity: Developing robust code and ensuring
security measures are crucial but challenging.

– Immutability Concerns: Once deployed, contracts cannot be easily
updated, necessitating careful planning.

– Alignment of Intentions: Ensuring all parties agree on contract terms
and their implications is critical.

– Scalability Issues: Increasing transaction volume and complexity can
strain blockchain networks.

This innovation promises to redefine traditional business models by enabling
trustless, efficient, and autonomous digital interactions across industries.

The first two works in this thesis were deployed on the Ropsten test network,
utilizing Ethereum’s Proof-of-Work consensus algorithm, while later works were
deployed on the Sepolia test network under Ethereum’s Proof-of-Stake mech-
anism. Solidity-based smart contracts were used for executing autonomous
operations, integral to the proposed solutions in healthcare and banking.

2.8 Distributed File Storage

Distributed file storage is a system that allows files to be stored across multiple
locations or nodes rather than on a single server. This approach enhances data
redundancy, availability, and accessibility. Key benefits include improved fault
tolerance, as data is replicated across multiple nodes, ensuring that the system
can recover from individual node failures. Additionally, distributed storage sys-
tems often provide better scalability, allowing for seamless expansion as storage
needs grow. One prominent example of a distributed file storage system is the
InterPlanetary File System (IPFS).

InterPlanetary File System
InterPlanetary File System (IPFS) is a decentralized protocol for storing and
sharing files on a distributed network. Instead of relying on a centralized server,
IPFS uses a peer-to-peer network of nodes to store and retrieve files, making it
more resilient to censorship and failure. In IPFS, files are addressed by their
content rather than their location. When a file is added to the IPFS network, it
is split into multiple smaller pieces, each assigned a unique cryptographic hash.
These hashes create a unique identifier for the entire file, called a Content
Identifier (CID) [16].

When a user requests a file from the IPFS network, they use the CID to
locate the file. The IPFS network employs a distributed hash table (DHT)
to store information about which nodes have a copy of the file. The DHT is

38 Chapter 2. Preliminaries and Background

a decentralized system that allows nodes to communicate and find the file’s
location. The file is then retrieved from the node that has a copy of it.

IPFS offers significant advantages, including enhanced data resilience, im-
proved access speeds through decentralized retrieval, and resistance to single
points of failure or censorship. It is particularly useful for applications requir-
ing robust, decentralized data management, such as blockchain technologies and
content distribution networks.

This innovation in file storage ensures that data is more secure, accessible,
and efficiently managed, offering a reliable solution for modern data storage
needs.

2.9 Incentive Mechanism

An incentive mechanism is created to reward honest participants and penal-
ize malicious or dishonest parties in a decentralized system. This mechanism
is essential for ensuring security, reliability, and proper functioning, as well as
for maintaining trust and encouraging participation in decentralized networks.
Typically, rewards come in the form of cryptocurrency tokens or other digi-
tal assets and are given to participants who adhere to protocol rules, validate
transactions, and contribute to network security [66], [100]. For instance, in
blockchain networks, miners or validators receive rewards for successfully adding
a new block to the chain. These rewards act as a motivator for honest behavior
and consistent participation.

On the other hand, parties that engage in malicious activities or try to
compromise the system will face penalties. These penalties may involve los-
ing staked tokens, paying fines, or facing temporary or permanent exclusion
from participating in the network. These penalties are in place to discourage
malicious behavior by making it expensive and unprofitable.

In a smart contract-enabled system, participants typically lock a certain
amount of stake in the smart contract. If all parties adhere to the protocol, the
stake is released back to them at the end. However, if a participant behaves
maliciously, their stake is deducted and transferred to the honest party as a
reward for their compliance. This system of staking and penalizing ensures that
participants are financially motivated to act honestly and follow the protocol,
thereby enhancing the security and integrity of the decentralized application.

By balancing rewards and penalties, incentive mechanisms play a critical role
in ensuring the integrity and robustness of decentralized networks, promoting
honest participation, and discouraging harmful activities. It is an important
mechanism towards designing a secure decentralized application on a blockchain
platform.

39

3
Blockchain-Enabled Secure and Smart

Healthcare System

“For he who has health has hope, and he who has hope has
everything.”

— Owen Arthur

IoT devices in the healthcare sector generate massive amounts of patients’
medical data. This digital data is a part of EHRs (Electronic Health Records),
typically stored in databases. Owing to the personal nature of EHRs, they must
not be made available publicly. Failure to do so can have grave implications
on the patient’s life – such as discrimination by an employer based on medical
history or failure to get insurance. Further, tampering of medical data has
the potential to jeopardize a person’s life. A third party might also use such
sensitive data to inflict harm or sell it to other parties.

Each entity involved in providing medical service to the patient must be
made accountable for their action. Unethical behavior on the part of medical
professionals includes hospitals overcharging patients or providing inadequate
medical service. According to a survey conducted by Jan Arogya Abhiyan and
Corona Ekal Mahila Punarvasan Samiti in September 2021, 75% of the pa-
tients admitted for COVID-19 were overcharged. This happened despite the
government capping the treatment expenses of COVID patients.

Patients may make false accusations of doctors and hospitals of mistreating
them. Relying on a third party to resolve a dispute is not a good solution.
Further, rules and regulations imposed by the country on medical treatment
can be easily bypassed. Keeping all these problems in mind, we inferred that
blockchain-based solutions would perfectly fit in this case.

The proposed patient-centric healthcare system ensures privacy, security of
patients’ medical data and fairness of the entities involved. If a patient has
given consent to a party, the latter can access the medical data. An access
control matrix stored in blockchain disallows any sort of malicious intervention.
The digital footprint of the medical data is stored in the blockchain to pro-
vide integrity and immutability, while digital signature ensures accountability.
The hospital authority cannot extort any arbitrary amount from a patient by

40 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

providing unfair treatment or denying treatment. In that case, our system will
penalize the hospital authority. On the other hand, if a patient claims that s/he
has received an invalid medical report or denies receiving treatment, the logic
encoded in the smart contract prevents such behavior by penalizing the patient.

3.1 Objectives

We intend to propose a patient-centric hospital management system which re-
alizes the following objectives:

– Fairness : An honest party will never lose money even if the rest of the
parties are malicious and try to cheat and claim money without providing
the desired service or data.

– Privacy : Any party cannot view a patient’s data until and unless it gets
consent from the patient.

– Data Security : The data of a patient stands protected and cannot be
tampered.

3.1.1 Contributions
We briefly discuss the salient features of our proposed patient-centric healthcare
system that bring novelty to the design:

– We propose a Secure and Smart Healthcare System which coordinates
the interaction between patient and hospital while the patient is getting
treated;

– The proposed system ensures that no one has access to the patient’s data
stored in the medical database until the patient grants permission. Any
external agent without access cannot tamper with the data. Any malicious
behavior can be detected using the digital fingerprint of the data recorded
in the blockchain.

– A patient cannot be overcharged for seeking treatment from a hospital.
Simultaneously, a hospital has to start the treatment within a specified
period. If they fail to do so, the patient can withdraw any deposit made.

– A patient can either keep the data with himself or store it in a medi-
cal database, which is assumed to be semi-trusted. The database owner
checks the validity of the data provided by the patient before storing it in
the database to prevent the storage of any spurious data.

– We have implemented the prototype in the Ethereum platform and Rop-
sten test network and have evaluated the performance. Code for the
protocol is publicly available on GitHub∗.

3.2. Related Work 41

3.1.2 Organization
The rest of the chapter is structured as follows - we have discussed the state-of-
the-art in Section 3.2. In Section 3.3, the system model and high-level view of
our construction are presented. In Section 3.5, we have addressed our security
claims. Section 3.6 shows the results of our proposed system and also discusses
the outcome. Finally, we have concluded the chapter in Section 3.7.

3.2 Related Work

We discuss the state-of-the-art blockchain solution for the healthcare system.
Although state-of-the-art tries to enhance the security of the healthcare system
using blockchain framework, these have certain drawbacks. Xiao et al. [173]
have proposed a blockchain architecture model to store and enable different
parties to view EHRs. However, this blockchain model is prone to a single
point of failure. The current healthcare system struggles with fragmented, non-
interoperable, and non-interpretable EHRs, complicating data sharing and anal-
ysis. To address this, Talukder et al. [155] propose an Ethereum-based "Proof
of Disease" (PoD) consensus protocol. This protocol aims to ensure a consis-
tent, secure, and easily interpretable version of medical information, potentially
transforming health data management and utilization. However, the system
faces significant challenges in adoption, regulatory compliance, and technical
complexity. Xia et al. [172] had proposed a cloud-based blockchain platform
for sharing files with untrustworthy parties seeking access to medical files. How-
ever, the solution is not scalable and suffers from key management problems.
Jiang et al. [79] designed a medical data exchange system using blockchain by
developing off-chain and on-chain verification for the security of the system’s
storage. Their work has addressed the problem of scalability. However, the
solution does not guarantee the fairness of the entities involved.

The data preservation system in work proposed by Li et al. [91] basically
contains two programs - the data access program and the blockchain interaction
program. Zhang et al. [179] proposed PSN-based healthcare by designing two
protocols for the authentication and sharing of healthcare data. The drawback
of these two systems is that it lacks a data access control policy. Additionally,
[179] does not provide a protocol for sharing EHR.

A healthcare data gateway was proposed by Yup et al. [177]. It is a
blockchain approach to healthcare intelligence to address users’ privacy by
proposing a data access control for privacy. Liang et al. [97] proposed a mobile-
based healthcare record-sharing system using blockchain. They designed a se-
cure user-centric approach to provide access control and privacy using a channel
formation scheme. Zhang and Poslad [180] proposed an access control policy
for electronic medical records with finer granular access. Yang and Li [176] pro-
posed an architecture for securing EHR based on distributed ledger technology.
However, these works lack any formal algorithm or proper implementation, and
the authors have not evaluated system performance.

42 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

Table 3.1: Drawbacks of State-of-the-Art Healthcare Systems

Related Works Drawbacks
[173] Single point of failure
[97], [176], [177], [180] Lack implementation and do not evaluate sys-

tem’s performance
[97], [172], [176], [179], [180] Lack proper framework
[179] Do not provide data access control policy
[97], [176], [177], [180] No algorithm is given for the protocol
[59], [79], [152], [176], [177],
[179], [180]

Lack EHR sharing protocol

[172], [173] Scalability issue
[63], [97] Interoperability problem
[172] Key management issue
[79], [152] Performance and fairness issues
[50], [59], [152] Require high Storage, power and/or computa-

tion cost

Fan et al. [50] proposed an improved consensus mechanism to enhance the
security and privacy of medical data. Sun et al. [152] designed a distributed
attribute-based signature scheme for medical systems based on blockchain and
proposed a blockchain-based record-sharing protocol. Gorenflo et al. [59] pro-
posed a performance optimization for the Hyperledger blockchain framework.
However, this work requires high storage, high power and computation cost.

Table 3.1 has summarized the drawbacks of various healthcare improve-
ment proposals. Our model has addressed most of the existing problems by
proposing a decentralized, distributed healthcare system using a permission-
less blockchain framework. It also ensures the privacy of patient’s medical data
(using the access control policy), data security, and fairness of various entities
involved in the system.

3.3 High-Level View of The System

Remark 1. The problem is to design a patient-centric healthcare system that
ensures privacy, as well as security of patient’s medical data and fairness of
the entities involved. Specifically, the system must enforce access control using
a blockchain-based access control matrix that is resistant to malicious interven-
tions. Digital footprints of medical data are stored on the blockchain to ensure
integrity and immutability, while digital signatures provide accountability. To
uphold fairness, the system penalizes hospital authorities for extortion or de-
nial of treatment and discourages patients from making false claims or denying
received services through smart contract logic.

3.3.1 System Model
The major actors or parties involved in our proposed system, as shown in Fig-
ure 3.1, are as follows -

1. Patient (P)/User

3.3. High-Level View of The System 43

Figure 3.1: Architecture of the proposed healthcare system
illustrating the connections between key components

2. Hospital Authority (HA)
3. Database Owner (DBO)

In our system, we have the following smart contracts. The protocol suite is
written in the form of functions inside the smart contracts.

– Smart Contract between Patient and Hospital Authority: SC_P_HA

– Smart Contract between Patient and Database Owner: SC_P_DBO

We introduce an additional smart contract, SC_Registration, where sys-
tem entities register themselves before participating in the protocol. Thus, the
system is built using three smart contracts. Blockchain’s immutability ensures
tamper-proof patient data, while smart contracts enforce secure and automated
access controls. For example, every access request and update to EHRs is
recorded on the blockchain, providing a transparent audit trail.

In the following subsections, we discuss how these actors interact within the
system. Before that, we outline the assumptions taken.

3.3.2 Assumptions
a) In our system, every single party has a unique ID. A smart contract gen-

erates these IDs at the time of registration in the system. One unique ID
corresponds to a particular PublicKey. Every party must register first to
be a part of the system.

b) Medical Data Repository Owner or simply the Database Owner (DBO)
is considered semi-trusted in our system. DBO can have open access to
the stored data as the data is stored in plain-text form. However, this as-
sumption can be removed by adding the scope of handling encrypted data
in the database, and the model can be changed accordingly. The DBO’s

44 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

activity log is maintained in the blockchain. In case DBO misbehaves,
then it can be questioned and penalized accordingly. Patients can also
keep their records in their private storage locally or appeal to the DBO
to remove their records in case of privacy concerns.

c) Database Owner (DBO) must satisfy certain prerequisite conditions to
be a part of the system and appeal to the government expressing their
interest. The conditions or criteria may vary for different Governments of
various countries. If all the necessary criteria are satisfied, the government
introduces DBO into the system.

3.3.3 Communication Protocol between Patient and Hos-
pital

When a patient visits a hospital, the hospital initially analyzes the patient’s
problems. After preliminary scanning, the hospital generates an estimated cost
of the treatment. Hospitals and patients need to lock this amount in the smart
contract (SC_P_HA).

Access Control : For accessing the patient’s medical records from the med-
ical repository, the hospital authority asks the patient to grant proper access
permission. The hospital can read the patient’s medical history if permission is
granted. The patient can revoke access permission, if needed, at any instant.
Information related to this access control is stored in the blockchain.

Locking of Hospital Treatment Cost : The patient locks the estimated cost in
the smart contract. Then, the hospital must start the treatment within a fixed
time window and register the timestamp of treatment in the blockchain. If the
hospital fails to do so, the patient can unlock their money.

Storing Patient’s Record after Treatment : The hospital generates the pa-
tient’s medical files - reports, prescriptions, etc. However, these files are not
transferred to the patient immediately because of security reasons, which are
addressed in Section 3.5. With the help of some cryptographic computations
and fair exchange protocol, as shown in Figure 3.2, the hospital sends the med-
ical files to the patient. The hospital stores the following crucial attributes as
the metadata in the blockchain - MR of the file chunks M1, MR of the encrypted
file M2, the signature of the hospital on MR of the file, and the signature of the
hospital on H(Patient ID || Date of Report || MR of Encrypted File). MRs M1

and M2 are used for verification by the protocol on behalf of the patient and
other associated entities like DBO. The signature on the MR makes the hospital
accountable for its encrypted file. The signature on the hash of the patient’s
attributes and the hash of the encrypted file add much more accountability,
giving the patient the chance to complain if the hospital misbehaves.

Upon receiving these file attributes offline, the patient verifies and gives
consent. If the attributes match, the patient invokes a function to give consent
and sign on the file. If the patient finds a mismatch in the file attributes, s/he
can withdraw the locked amount.

Hospital Bill Settlement : Meanwhile, the hospital provides the final medical
bill to the patient. We assume that the final bill amount is not greater than the

3.3. High-Level View of The System 45

Figure 3.2: Interaction between Patient and Hospital

estimated cost. The patient has two options: give consent or raise a dispute for
being overcharged. The hospital and patient agree on the price through offline
communication. Furthermore, this pathway involves two additional transactions
by the parties before agreeing to the revised final bill.

Receiving the patient’s consent on the final bill, the hospital sends the de-
cryption key to the patient. Suppose the MR of the decrypted file does not
match the one in the contract. In that case, the patient raises a complaint
by providing a Proof of Misbehavior [45]. In that case, the patient provides
the positions and the two witnesses corresponding to both file chunks and en-
crypted file chunks where a mismatch occurred. It also provides intermediate

46 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

nodes in the Merkle tree as proof so that the root can be reconstructed. Once
the complaint is verified and the counterparty is found to be malicious, s/he
is penalized accordingly. Vice versa, if a false complaint has been raised, the
party gets penalized. Suppose the patient does not respond within the time-
out period. In that case, the hospital withdraws the locked money (patient’s
and hospital’s) and aborts the protocol. There is a timeline check in all the
functions to ensure that each process in the protocol runs within the allocated
time window. Also, at each stage of the protocol, both parties are given func-
tions to abort the protocol to avoid indefinite waiting if one of the parties stops
responding. The above communication model between patient and hospital is
depicted in Figure 3.2

Uploading Medical Data: When the treatment is completed successfully, the
patient can store the medical files in their local storage devices or store them
in some medical repository/cloud server owned by a semi-trusted third-party
vendor (a.k.a. DBO). And DBO provides the storage space service for some
charges. Any two-party fair exchange protocol can be used. In this proto-
col, we implement the Fairswap Protocol [45], as part of the smart contract
SC_P_DBO, for ensuring a fair exchange of information between patient
and DBO. The system leverages off-chain storage solutions for large data vol-
umes while maintaining essential metadata on-chain, ensuring scalability with-
out overloading the blockchain network.

Having described the architecture and components of the proposed health-
care system, we now transition to the implementation details. The next section
focuses on the technologies, frameworks, and protocols used to translate the
system design into a functional solution, validating its feasibility and robust-
ness.

3.4 Implementation and Technical Details

Prior to describing the actual algorithms, let us discuss some important termi-
nologies and notations that we have used in our implementation (Table 3.2).
The readers can also refer to Table 3.3 for the various structure definitions used
in the Algorithms. These algorithms are then converted to smart contract codes
written in the Solidity programming language.

1. Entity Registration: The patient can sign up in the Healthcare
System by calling the function PatientRegistration (Algorithm 1). The pa-
rameter hash_of_Personal_Info ← H(name||age||mob||address) refers to
a hash value. It helps to preserve the patient’s privacy. Once the registration
is finished, the patient will receive a unique identifier. Similarly, other entities

Algorithm 1 Patient Registration Function
Function PatientRegistration(hash_of_Personal_Info) ▷ Caller: P :

if (caller is already registered) then
Exit

Generate: a unique pID
Create: a mapping or association between pAddr and corresponding pID
Record: the hash_of_Personal_Info corresponding to pID on BC
end

3.4. Implementation and Technical Details 47

Table 3.2: Terminology & Notation used in our Scheme

Abbreviation Interpretation
BC Blockchain
SC Smart Contract
P Patient

HA Hospital Authority
DBO Database Owner

pAddr Patient Address
hAddr Hospital Address

dboAddr Database Owner Address
pID Patient ID
hID Hospital ID

dboID Database Owner ID
ebID Estimated Cost Bill ID
fbID Final Cost Bill ID

msID Multi-Signature ID
CST Current System Time
TTL Threshold Time Limit

Table 3.3: Structure Definition

Structure Name Member Variables
EstimatedCheckUpCost ebID, pID, hID, estimatedCost, TEstimate,

TLockingByHA, TLockingByP , TCheckUpStart,
TUnlockingByHA, TUnlockingByP

FinalCheckUpCost fbID, pID, hID, finalCost, TFinalBilling, TComplaintByP ,
TUnlockingByHA, TUnlockingByP , TFinalConsentByP

MultiSigOnMedicalData msID, pID, hID, MR_MedData,
MR_EncCircuitOperatedMedData, H_x,
SignSKHA

MR_MedData, SignSKHA
x, TSigningByHA,

TV erificationByP , TUnlockingByHA, TUnlockingByP

*x=(pID||Date||MR_EncCircuitOperatedMedData)
FileProperties fileSize, fileChunkSize, depth

can also register in the system -
HA: hID ← HospitalRegistration(name)
However, a DBO cannot register itself directly into the system. A trusted third
party or TTP (here, we consider the Government as TTP) is responsible for in-
troducing a DBO into the system.

2. Providing Medical Services to the Patient and Settling the Final
Bill: Here, we will discuss the algorithms related to generating the new medical
reports or EHRs of a patient, fairly communicating the same to the patient
party, preserving the integrity of the files, generating the final cost bill, and
finally, discharging the patient by settling the final bill and transferring EHR
to the patient. We break it into two modules - I. Pre-Treatment and II.
Generation and Transfer of EHR to Patient and Settlement of Final
Bill, described in Algorithm 2 and Algorithm 3 respectively.

I. The Algorithms for Pre-Treatment (Algorithm 2)

48 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

–The patient, having ID - pID, reports to the hospital the medical prob-
lem s/he is facing. Hospital, having ID hID, estimates the cost for the
medical service and locks the amount with the invocation of the Genera-
teEstimatedCostBill function (say, at time T1). The function generates
a unique estimated cost bill ID - ebID and also instantiates a structure
of EstimatedCheckUpCost with this ebID. The ebID is communicated
with the patient.

–Upon receiving the ebID, the patient needs to invoke the function Lock-
EstimatedAmount (say, at time T2) within a limited time period (TTL)
to lock the estimatedCost amount.

Algorithm 2 Pre-Treatment Functions
Function GenerateEstimatedCostBill(pID, estimatedCost) ▷ Caller: HA:

Check: if (caller’s ID == hID)
Check: if (msg.value == estimatedCost)
Generate: a unique ebID
Instantiate: a structure EstimatedCheckUpCost ec
Lock: the estimatedCost in the SC
Record: the CST (say, T1) on BC

end
Function LockEstimatedAmount(hID, ebID) ▷ Caller: P :

Check: if (caller’s ID == pID)
Fetch: the structure from BC : EstimatedCheckUpCost ec (corresponding to ebID)
if ((CST - T1) > TTL OR (msg.value ̸= ec.estimatedCost)) then

Exit
Lock: the estimatedCost amount in the SC
Record: the CST (say T2) on BC

end

II. The Algorithms for Generating and Transferring EHR and Settlement
of Final Bill (Algorithm 3)

–Upon patient locking the estimated amount, the hospital needs to invoke
the function StartTreatment (say, at time T3) within a threshold time
limit (TTL) to start the treatment process. The medical files are generated
after the function invocation. Considering the variable nature of medical
processes, there is no set time limit for the next immediate function -
(KeepSignedHashToBlockchain)’s invocation.

–The generated medical report (R)is broken into chunks of predetermined
size. A Merkle tree is constructed with the chunks, and the Merkle root
as M1 ← MR(R) is obtained. The chunks are operated according to
a circuit. In our case, the Boolean circuit maps to the construction of
the Merkle tree. Hash is the primary operation of the gates used. In
any gate of this circuit, the child gate’s output vectors are concatenated
and used as the inputs to the next predecessor gate (i.e., bottom-up ap-
proach). The concatenated vector is hashed, and the resultant value is
the output of the gate. The gate outputs are encrypted with a key, and
all the encrypted chunks are used to construct a different Merkle tree and
obtain a Merkle root as M2 ← MR(Enc(CircuitOperatedOnR)). This
Merkle root is concatenated with the patient ID, date of report, etc. It is
hashed as H1 ← H(pID||Date||Enc(CircuitOperatedOnR)) and signed
as S2 ← SignSKHA

(H1). The hospital also signs on the Merkle root of the

3.4. Implementation and Technical Details 49

original file R as S1 ← SignSKHA
(MR(R)). The two hashes - M1 and M2,

the corresponding signatures - S1 and S2, and a few file-related variables
are the parameters of the function KeepSignedHashToBlockchain. Let
us say the function is invoked at the time T4.

–The patient, by this time, might have received the encrypted file chunks
from the hospital. The patient constructs the Merkle tree with the received
Enc(CircuitOperatedOnR) and checks whether the constructed Merkle
root and the root kept on the blockchain are the same. The patient also
verifies the matching of the concatenated hash (H1) discussed in the last
function. The patient also verifies the two signatures - S1 and S2. If these
parameters are valid, then the patient invokes the function VerifyAnd-
GiveConsent (say, at time T5) within a limited period (TTL).

–Next, the hospital invokes the function DischargeAndGenerateFinal-
CostBill (say, at time T6) within a limited period (TTL) specifying the
final cost - finalCost. It is important to note that the final cost is always
less than or equal to the estimated cost because the estimated cost is an
overestimation of the actual treatment cost, serving as an upper bound.

–The patient calls the function consentOnFinalBill (say, at time T7) if
the final cost provided by the hospital is satisfactory.

–The hospital reveals the key by invoking the function KeyReveal (say, at
time T8) within a limited time period (TTL). Then the key is hashed and
checked with the key’s commitment stored in the contract.

–When the hospital discloses the key in the blockchain, the patient decrypts
the file chunks and performs the circuit operation of the gates one by one.
If all the checks are valid, then the patient gives consent by invoking the
function PatientFinalConsent (say, at time T9) within a limited period
(TTL) and then the service charges are transferred to the hospital. Also,
the locking amount gets unlocked and transferred to the individual parties.
If the above check finds a mismatch, the patient lodges a complaint with
the SC, providing proof of misbehavior, as defined in Fairswap protocol
[45]. SC verifies the legitimacy of the complaint and identifies the faulty
party for appropriate penalties.

After completing treatment, the patient can choose to store their EHRs on
their local device or upload it to a repository or cloud storage. If the patient
opts for repository storage, they must pay service charges to DBO. A secure fair
exchange protocol facilitates data exchange between the patient and DBO. We
have implemented the fairswap protocol [45] for this purpose. However, since
this is not central to our thesis, details are omitted here. For further information,
refer to the original paper. The implementation code is available on GitHub∗

for reference. The functional sequence diagram is depicted in Figure 3.3.
With the technical implementation of the proposed system detailed, we now

proceed to analyze the security of our system. This section evaluates the ro-
bustness of the system against potential threats, demonstrating how the design
ensures fairness, privacy, and data integrity while addressing key security chal-
lenges.

50 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

Algorithm 3 Generating and Transferring EHR and Settlement of Final Bill
Function StartTreatment(pID) ▷ Caller: HA:

Check: if (caller’s ID == hID)
Generate: the medical file or EHR of the patient with pID
Record: the CST (say T3) on BC

end
Function KeepSignedHashToBlockchain(pID, M1, S1, H1, M2, S2, keyCommitment, EHRParams) ▷
Caller: HA:

Check: if (caller’s ID == hID)
Generate: a unique msID
Instantiate: a structure MultisigOnMedicalData
Populate: MultisigOnMedicalData with M1, S1, H1,M2, S2, keyCommitment
Instantiate: a structure FileProperties
Populate: FileProperties with EHRParams
Record: the CST (say, T4) on BC

end
Function VerifyAndGiveConsent(msID, H(pID||Date||offlineReceivedEncryptedData)) ▷ Caller: P :

Check: if (caller’s ID == pID)
if (CST - T4) > TTL) then

Exit
Fetch: the structure from BC : MultisigOnMedicalData corresponding to msID
Verify: if the two hashes are matched and also their respective signatures were signed by the right HA
Record: the CST (say, T5) on BC

end
Function DischargeAndGenerateFinalCostBill(ebID, pID, finalCost) ▷ Caller: HA:

Check: if (caller’s ID == hID)
if (CST - T5) > TTL) then

Exit
Fetch: the structure from BC : estimatedCost corresponding to ebID
if (finalCost>estimatedCost) then

Exit
Generate: a unique fbID
Instantiate: a structure FinalCheckUpCost and update the finalCost
Record: the CST (say, T6) on BC

end
Function ConsentOnFinalBill(fbID, hID) ▷ Caller: P :

Check: if (caller’s ID == pID)
if (CST - T6) > TTL) then

Exit
Fetch: the structure from BC : FinalCheckUpCost corresponding to fbID
Validate: necessary members of struct FinalCheckUpCost
Record: the CST (say, T7) on BC

end
Function KeyReveal(pID, msID, key) ▷ Caller: HA:

Check: if (caller’s ID == hID)
if (CST - T7) > TTL) then

Exit
Fetch: the structure from BC : MultisigOnMedicalData corresponding to msID
Validate: if struct MultisigOnMedicalData belongs to pID
if (H(key) ̸= MultisigOnMedicalData.keyCommitment) then

Exit
Store: the key on the BC
Record: the CST (say, T8) on BC

end
Function PatientFinalConsent(consent) ▷ Caller: P :

Check: if (caller’s ID == pID)
if (CST - T8) > TTL) then

Exit
if (consent == true) then

Transfer: final cost to the HA’s account
Unlock: the remaining locked amount and transfer the same to the respective parties

Record the CST (say, T9) on BC;
end

3.5 Security Analysis

Blockchain technology uses some cryptographic primitives (e.g., hash function,
digital signature). As long as the underlying cryptographic primitives are se-
cured, the blockchain is secure, and so is our system. Assuming that the

3.5. Security Analysis 51

Figure 3.3: Functional Sequence Diagram of SC_P_HA and
Fair Exchange Protocol between Patient and Database Owner

blockchain is secure, the money locked in the blockchain is protected, and hence,
the payment involved in the system is also safe. We claim that our system takes
care of essential security aspects and provides fairness to the parties involved
in the system.

52 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

3.5.1 Fairness
We discuss the fairness of each party, i.e., Patient and Hospital Authority. Even
if one of the parties acts maliciously and tries to cheat, the malicious party is
penalized, and the money is used to compensate the honest party.

Proposition 1. (Patient’s Fairness) The honest patient must not lose money
or get mistreated, no matter if the other party (e.g., the hospital) behaving ma-
liciously, under the assumption that the owner of the Medical Data Repository
is semi-trusted and the underlying blockchain is secure.

Proof. We will prove the proposition in the cases where an honest patient’s
interest might get compromised. Specifically, we will be analyzing the security
on the grounds of price, data, and responsiveness.

When Hospital Authority (HA) is malicious:

HA tries to overcharge after treatment
Initially, at the time of admission, the Hospital Authority examines the med-

ical history of the patient. It generates a bill with an estimated cost, and it gets
recorded in the BC. If the patient agrees with it, then only s/he would proceed
further to take the services from the hospital. The final cost of the check-up
must not be higher than this estimated cost. Therefore, in our system, a pa-
tient knows the upper limit of the total check-up cost beforehand. It might be
possible that the hospital has overcharged, or the patient is not fully satisfied
with the treatment, then both the parties can negotiate on this bill and come
to a joint agreement (however, it can never be higher than the estimated cost,
that was given initially).

HA sends wrong medical files to patient
Medical Data or EHR (Electronic Health Record) is a crucial factor in deter-

mining the fairness of the protocol. The patients have to be ensured of receiving
the correct file, and if not, then there is a provision for raising a complaint and
aborting the protocol. Before actually sending the medical reports to the pa-
tient, the hospital first splits the file into multiple chunks of equal size. The
Merkle root of the file chunks is obtained; the hospital keeps this Merkle root
and the signature on it in the blockchain. Let this root be M1. The hospital
encrypts the entire Merkle tree’s input, starting from the leaf level, which is
the chunks of the file, to the intermediate level up to the root, using a key
and then computes the Merkle root of the encrypted inputs. Let this root be
M2. This Merkle root is concatenated with the patient identifier and the date
before being signed by the hospital. The encrypted file Merkle root, along with
the digital signature, is put in the immutable blockchain (refer to < M2, S2 >
in Figure 3.2). Next, the hospital sends the encrypted inputs to the patient
using some fair exchange protocol (in our case, we are using fairswap protocol
[45]). Upon receiving the encrypted inputs, the patient re-computes the Merkle
root, verifies the result with the stored root in the blockchain, and verifies the
signatures to ensure that the file indeed came from the same hospital (proof of
authenticity).

3.5. Security Analysis 53

Date and patient identifier have been used along with M2 for the signature
to ensure that the hospital is held accountable if in case it sends encrypted
inputs of a file belonging to a different person or sends a patient’s previous
medical file. If in case the hospital keeps the date and patient identifier correct
with a mismatched file, the patient on deriving the file after the revelation of
the key might come that the file is corrupted. The Merkle root of the file and
the signature on it that was kept in the blockchain serve as a sufficient means
to hold the hospital accountable for its maliciousness.

The key closely, coupled with the processed file, also needs to be rightly
served to the patient to ensure a fair protocol. There are two ways in which the
key can become an issue for the patient. In the first case, the hospital keeps
the commitment of one key in the blockchain and reveals a different key to
be used for decryption. In the second case, right after encrypting with a key,
the hospital commits to a different key and reveals the same. In this case, the
patient will decrypt the file with the second key and on finding a mismatch in
the gate output computation, it will lodge a complaint, which will be resolved
on-chain by penalizing the malicious party.

HA repudiates
In case the hospital authority provides a wrong file and computes the digi-

tal fingerprint as per the wrongly generated file. The contract cannot detect
whether things are out of place. When the patient later detects it has received
the wrong medical report, in such a case the transcript of the interaction be-
tween hospital and patient present in blockchain can be used for accusing the
authorities and taking legal action if needed.

HA becomes unresponsive in the midst of the protocol
A timely response is necessary for a fair protocol. A party can stop respond-

ing, which can lead to an indefinite delay in the termination of the protocol.
So, when the patient locks the estimated bill amount in the smart contract, the
hospital needs to start the treatment within a fixed time window (a tunable
parameter that can be set as per the system requirement). Hospital immedi-
ately invokes a function StartTreatment (defined in SC_P_HA) and updates
the state. That essentially makes a transaction entry in the blockchain. Failure
to start treatment within a limited period causes the patient to unlock their
money. A patient can then seek treatment from some other hospitals. We can
also penalize the hospital for this negligence (by deducting some amount of
locked estimated cost of the hospital). That is the reason behind locking the
estimated cost amount of the hospital. Suppose the hospital becomes unrespon-
sive at any point in the protocol. In that case, the patient can call the respective
exit function to abort the protocol, and we can also penalize a hospital for any
such malpractice by deducting its locked money.

Proposition 2. (Hospital’s Fairness) An honest hospital authority will receive
money for all the services provided to the patient, despite the patient’s misbe-
havior (say, the patient tries to take services from the hospital without paying
the bill amount and then leaves), under the assumption that the underlying
blockchain is secure.

54 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

Proof. If a patient is malicious, they may try to cheat in the following ways:

Patient does not pay for the medical service
A patient can not deny paying the hospital after taking medical services.

Because at the time of taking admission to the hospital, the hospital authority
would guess the expected cost of the treatment. The patient is supposed to
lock this amount in the smart contract beforehand, and only then the treatment
will begin. Again, at the time of discharge, the hospital authority calculates
the exact/final treatment cost. In our case, we have considered that the final
cost should not be greater than the estimated cost. Once the patient gives
consent over the final bill by putting a signature, then the patient receives all
the medical files (i.e., Prescriptions, reports, etc.). Otherwise, the patient does
not obtain these medical files (The patient can have the encrypted files, but the
decryption key is still with the hospital. It is only revealed after the final bill
has been locked in the contract by the patient).

Patient produces a wrong complaint
Receiving the correct file, the patient might try to raise a false complaint to

exonerate money from the hospital without paying any money for the obtained
services. The encrypted Merkle root ensures that the complaint should be part
of the Merkle tree. This is used for checking the validity of the complaint, and
the fact that the patient is lying gets detected.

Patient becomes unresponsive in the middle of protocol
Different exit points prevent an honest party from waiting indefinitely and

keep its money locked in the smart contract. If this happens at any time in the
middle of the protocol, the hospital can exit and unlock the money locked in
the contract.

3.5.2 Privacy
A patient’s medical data is sensitive information. If a person’s health record
is available publicly, s/he may face embarrassment and might be subjected to
discrimination in daily life. Hence, it must be ensured that access to patient
data is provided only with the patient’s consent.
Proposition 3. (Patient’s Privacy) In our proposed system, no entity can ac-
cess a patient’s data unless granted permission. At the same time, the patient’s
personally identifiable attributes remain hidden from public view.
Proof. When a patient registers on the blockchain, they do not provide personal
details such as name, age, address, and contact number. Instead, the hash of
these attributes is stored in the blockchain at the time of registration. Our
healthcare model prioritizes patient control by managing consent through smart
contracts that record and enforce consent policies. Patients define an access
control matrix, specifying which identities have access to their data, and can
update this matrix to grant or revoke permissions as needed. This access control
matrix is securely stored in the blockchain, ensuring that no one can access the
patient’s medical data without their explicit consent.

3.6. Result and Discussion 55

3.5.3 Data Security
Tampering with a patient’s medical records can have catastrophic consequences,
such as administering incorrect medication dosages or altering diagnoses, which
could endanger lives. In addition, users might attempt to falsify their medical
records to submit fraudulent insurance claims, leading to financial exploitation
and a loss of trust in the system. Ensuring the security of medical data while
maintaining privacy is therefore critical.

Proposition 4. (Data Security) In our proposed system, no individual, includ-
ing the patient or the hospital, can tamper with medical data or misuse it for
fraudulent purposes.

Proof. Our protocol uses blockchain as its foundational framework to secure
the system while addressing privacy concerns. Instead of storing medical data
directly on the blockchain, we store its digital footprint—such as cryptographic
hashes — to ensure integrity and immutability. The immutability of blockchain
guarantees that any unauthorized modification to the data will be detectable.
This approach not only prevents tampering and misuse but also safeguards pa-
tient privacy and reduces costs associated with on-chain storage. By combining
off-chain storage of sensitive medical data with on-chain verification, our system
effectively balances security, privacy, and cost-efficiency.

3.6 Result and Discussion

Implementation Setup: We have implemented the Healthcare Management
System on Ethereum test networks in a system having Intel(R) Core(TM) i7-
6700HQ running Linux Mint 18.04 19.1 (Tessa), a 64-bit operating system using
16.00 GiB of RAM. We have used the Ropsten test network and an infura
endpoint. Source code is available on GitHub repository∗.

The two main factors determining the feasibility of any blockchain model
are the cost of implementation and the time required. The details of Ethereum
transaction cost and latency are discussed in Chapter 2 - Section 2.6.10.

Table 3.4: Deployment Addresses of Smart Contracts

Smart Contract Address
SC_Registration 0x5a818296705cC24Feec4CfEAF1DfdaE056fEf037

SC_P_HA_1 0x9528dA5753ae928Eb1e0284C7b1771e2FC17a766
SC_P_HA_2 0x7b88e153aC1b2BCA865CD58E1082f50Ed69f4c3c
SC_P_DBO 0xC062E1eF5EdB815bcF5B93C6BaD497ABCA407f31

Table 3.4 specifies the addresses of the deployed contracts. The contract de-
ployment is a one-time occurrence. The transaction cost and the time taken for
each contract deployment have been depicted in Figure 3.4 and Figure 3.5 re-
spectively. The gas price was 18.9 Gwei, and the ether cost was 2300.54 dollars
at the time of deployment. Depending upon the size of the contracts, the de-
ployment cost varies (Table 3.5). These are one-time costs. So, once deployed,

∗https://github.com/Debendranath-Das/Blockchain-Enabled-Secure-and-Smart-Healthcare-System

https://github.com/Debendranath-Das/Blockchain-Enabled-Secure-and-Smart-Healthcare-System

56 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

Table 3.5: Deployment Cost of Smart Contracts

Smart Contract Deployment Cost(Ether)
SC_Registration 0.0353157

SC_P_HA_1 0.0994202
SC_P_HA_2 0.0583187
SC_P_DBO 0.04783231

we can get the benefits throughout the usage of this protocol.
The smart contracts for patients and hospitals (SC_P_HA_1 & SC_P_HA_2)
have been split into two parts, citing the limited gas limit for blocks in Ethereum.
The high gas for the collective patient and hospital contracts reflects the slightly
higher steps involved in the protocol.

Figure 3.4:
Transaction Cost
for Contract De-

ployment

Figure 3.5: Time
taken for Contract

Deployment

Figure 3.6:
Transaction Cost
for Party Registra-

tion

Figure 3.7: Time
taken for Party

Registration

The transaction costs and time taken associated with the entities’ registra-
tion process, depicted in Figure 3.6 and Figure 3.7 respectively, are similar in
scale for different parties except for the patients, which are slightly higher due
to the few more variables involved in the registration for patients.

The transaction cost for certain functions involved in the protocol depends
on the size of the files. The file size may vary depending upon the treatment and
the corresponding result produced. The base file is constructed indifferently for
subsequent usage in the protocol. The file is divided into numbers of chunks.

3.7. Conclusion 57

Figure 3.8:
SC_P_HA Trans-
action Cost for 4

Input Gates

Figure 3.9:
SC_P_HA Trans-
action Cost for 8

Input Gates

Figure 3.10:
SC_P_HA Trans-
action Cost for 16

Input Gates

Figure 3.11:
SC_P_HA Trans-
action Cost for 32

Input Gates

The number and size of the chunks are the varying parameters, referred to as
the number of input gates and the buffer size of the gate, respectively.

We have shown the cost associated with various functions call for the con-
tracts SC_P_HA (Figure 3.8, 3.9, 3.10, 3.11) with varying number of input
gates and the buffer size. The number of input gates varies in the range of 4, 8,
16, 32 and the buffer sizes used are 32, 64, and 128. The file size can be derived
by multiplying the number of input gates and the buffer size. So, a file having
4 input gates and a buffer size of 32 would have a file size of 128 bytes.

We find from the graphs of SC_P_HA (Figure 3.8, 3.9, 3.10, 3.11) that
they follow a similar kind of trend with varying numbers of input gates. The
transaction cost for different functions hardly varies while keeping the number
of input gates constant and varying the buffer size. The graphs show that some
functions require a higher cost due to their heavy functionalities. However, this
is viable as the functions’ utilities outweigh the cost.

3.7 Conclusion

We have discussed a novel Secure and Smart Healthcare System where every
involved party’s fairness is preserved without trusting each other. EHRs are
tamper-proof and free from unauthorized access in our healthcare system en-
abled by blockchain technology. Our system also ensures that the patient’s

58 Chapter 3. Blockchain-Enabled Secure and Smart Healthcare System

privacy does not get compromised. We proposed, prototyped, and deployed our
healthcare system, which works fine in the private and Ropsten test networks.
Experimental result shows the satisfactory outcome of various performance met-
rics. Our protocol demonstrates blockchain’s capability and importance in the
healthcare sector and proves that it could be the next revolutionary technology
to replace current healthcare systems. Future work could focus on integrating
the proposed system with existing healthcare standards, such as HL7 [72], to
enhance interoperability and ensure seamless adoption within current healthcare
infrastructures.

In the next chapter, we will demonstrate a generalization of the above system
incorporating the involvement of the Medical Insurance Company. In this, we
aim to build trust between a policy buyer and an insurance company by making
the processes transparent through the blockchain framework.

59

4
Blockchain-Enabled Secure Health Insurance

Processing

“A tremendous amount of needless pain and suffering can be
eliminated by ensuring that health insurance is universally
available.”

— Daniel Akaka

The insurance industry consists of businesses that provide policyholders with
risk management services. The insurer guarantees protection against unforeseen
adverse events. In contrast, the policyholder pays a premium in exchange for
risk protection [52]. Nowadays, health insurance has become necessary as med-
ical expenses continue to rise. Health insurance covers medical treatments,
ensuring quality care without financial worries. However, the process of filing
health insurance claims is often manual, complex and time-consuming, making
it challenging for the patients (or policyholders) to receive the payments.

Challenges of Existing Health Insurance Processing System: The tra-
ditional health insurance processing system (Figure 4.1) involves a series of steps
that begin with a patient seeking medical treatment from a healthcare provider.
After providing the service, the healthcare provider charges the patient for the
services rendered. The patient then submits a claim to the insurance company
seeking reimbursement for the medical expenses incurred. The insurance com-
pany reviews the claim, verifies the services rendered, and decides on the reim-
bursement amount. Unfortunately, despite its widespread adoption, the legacy

Figure 4.1: Process of Legacy Health Insurance System

60 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

health insurance processing system has several shortcomings (Figure 4.2) [52],
[125].

– Lack of Transparency: The patients and healthcare providers are often
unaware of the exact reimbursement process and how decisions are made.
Sometimes, insurance providers cheat the policyholders during claim set-
tlement by refusing to approve the financial reimbursement, citing various
justifications. This leads to mistrust between policyholders and insurance
providers, negatively impacting the insurance industry’s reputation. On
the other way, the policyholders may attempt to seek medical reimburse-
ment from insurers by submitting false medical invoices. A recent survey
report estimates that around 15% of the total claims in the health insur-
ance industry are false [144]. However, today’s insurance providers have
limited ability to verify the authenticity of such claims, leading to poten-
tially fraudulent activities [112]. These fraudulent activities can lead to
significant losses for insurance companies, resulting in higher premiums
for policyholders and decreased trust between the parties.

Figure 4.2: Challenges of Legacy Health Insurance System

– Slow Processing: The traditional system is slow and cumbersome, in-
volving numerous intermediaries. While considerable automation process-
ing has been accomplished in the current insurance systems, they continue
to experience performance bottlenecks because of a single reliable source
of transaction state data. In addition, the manual interactions required
by the general insurance systems for various transaction procedures cause
slow processing and long payment settlement times. This slow processing
can be frustrating for patients who require quick reimbursement.

Chapter 4. Blockchain-Enabled Secure Health Insurance Processing 61

– Higher Administrative Cost: The legacy health insurance processing
system has a higher administrative cost due to the need for multiple inter-
mediaries and manual processing steps. These administrative costs also
lead to higher insurance premiums, making healthcare insurance inacces-
sible for some individuals [4].

– Poor Data Security and Privacy: Another significant challenge of
the traditional health insurance processing system is poor data security
and privacy. Healthcare data breaches have become a significant concern
in recent years, and the insurance industry has not been immune to such
breaches. For example, in 2015, Anthem Inc. suffered a data breach
that affected 78.8 million individuals, making it the largest healthcare
data breach in history [168]. The same year, Premera Blue Cross [139]
and Excellus BlueCross BlueShield [123] also experienced data breaches
that affected 11 million and 10 million individuals, respectively. Another
notable healthcare data breach in the insurance industry was the 2011
Health Net data breach, which affected 1.9 million individuals [30]. These
incidents highlight the importance of implementing robust cybersecurity
measures to protect sensitive patient data and prevent such breaches from
occurring in the future [14], [87].

Figure 4.3: Healthcare Data Breaches Statistics

According to HIPAA, 912992 patient records were stolen or made public
in March 2019. Compared to the average rate over the previous five years,
there was an abrupt rise of 14% in data breaches [71]. As per the HIPAA
Medical Journal, in 2018, an average healthcare data breach of 500 or more
records was reported daily (Figure 4.3). According to these statistics,
medical data is neither safe nor secure because it is sometimes utilized
for personal or financial advantage or research [134]. Numerous types
of insurance coverage are available (e.g., car, health, life insurance). The
fundamental requirements for different insurance companies are essentially
the same. However, health insurance requires significantly more focus. As
it deals with patients’ medical data, maintaining data privacy is one of
the significant challenges.

Potential of Blockchain to Resolve the Existing Problems of Legacy
Health Insurance Processing Systems: Introducing transparency to the

62 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

legacy health insurance processing systems through the use of blockchain tech-
nology can enable more trust among the involved parties. Blockchain tech-
nology can potentially revolutionize the health insurance industry by offering
a secure, transparent, and efficient platform for processing claims. By lever-
aging the power of blockchain and smart contracts, healthcare providers can
securely store and share medical data with insurance companies, streamlining
the claims process and reducing the likelihood of errors and fraud [57], [124].
Smart contracts, which are self-executing computer programs, can automate
insurance claims’ verification and approval process, thereby reducing the need
for intermediaries and eliminating the potential for human error. The smart
contract-based distributed ledger will automatically stop any fraudulent trans-
action if the requests or actions do not adhere to the rules of the contracts. Also,
blockchain technology can ensure that medical data is safe, can’t be changed,
and is easy to access. This cuts down on administrative costs and processing
times.
In summary, a blockchain-based insurance industry should -

1. increase system transparency;

2. increase automation;

3. speed up key business processes, such as client registration, policy is-
suance, and claims processing;

4. eliminate the need for intermediaries or insurance agents;

5. facilitate fraud detection easier;

6. ensure the privacy of the client’s data;

7. reduce administrative or operational costs, and

8. make it simpler for auditors to identify suspicious trading patterns [124].

4.1 Objectives

In light of the challenges posed by legacy-based health insurance systems, our
objective is to explore the potential use of blockchain technology to design a
fair, efficient health insurance framework with a shorter turnaround time while
eliminating the need for trust assumptions. Given that blockchain offers many
of the essential features required for this purpose, we aim to investigate its
potential to realize the following properties:

– Fairness : An honest entity (whether policyholder or insurer) would never
forfeit money, even if the other players are dishonest and make every effort
to defraud.

– Automation: Introducing greater automation to the key stages of the in-
surance processing system to reduce manual interactions and operational
costs.

4.1. Objectives 63

– Privacy : A third party (e.g., an insurance company) cannot view a poli-
cyholder’s data unless the user grants consent to access their data.

– Data Security : policyholder’s medical data stands shielded and cannot be
modified.

4.1.1 Contributions
The chapter aims to explore the potential of blockchain technology integrated
with smart contracts to revolutionize the health insurance industry. The chapter
will highlight the potential benefits of adopting blockchain technology through
an in-depth analysis of the existing health insurance processing system. We
briefly highlight the distinguishing features of the proposed system that make
our model unique.

– We propose a Smart and Transparent Health Insurance Processing System
which coordinates the interaction between policyholder and insurer dur-
ing various phases of the insurance process, from policy offering to claim
settlement. Our strategy can expedite key phases of the insurance process
by using greater automation and online engagement.

– Fairness is assured for both the insured and the insurer. Nobody can
manipulate another by engaging in malicious behavior.

– Our system ensures the privacy of users’ data. Policyholders’ data re-
mains confidential and is only shared with those who have been granted
authorised access. When needed, users can also revoke access permission.

– In our system, an insurance firm would rapidly determine whether a claim
submitted by a policyholder is legitimate. Various critical security param-
eters are stored in the blockchain to prevent fraudulent activity, such as
message digests, digital signatures, and so on.

– Because blockchain serves as the backbone of our system, some security
features such as immutable data, transparency, and non-reliance on cen-
tralized authority are implicitly inherited.

– We have implemented and assessed the prototype on the Ethereum plat-
form and the Ropsten test network. The protocol’s source code is available
on GitHub∗.

In a nutshell, we have focused on the health insurance industry and designed a
blockchain-based solution to address its performance and security issues in this
work.

ahttps://doi.org/10.5281/zenodo.8232704

https://doi.org/10.5281/zenodo.8232704

64 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

4.1.2 Organization
The remaining chapter is structured as follows - We have discussed the state-of-
the-art in Section 4.2. Section 4.3 presents the system model and high-level view
of the construction. In Section 4.4, implementation details are discussed. Next,
we have addressed our security assertions in Section 4.5. After that, Section 4.6
shows the results of our proposed system and discusses the outcome. Finally,
we have concluded the chapter in Section 4.7.

4.2 Related Work

The finance industry was the first to incorporate blockchain technology, led
by the pioneering cryptocurrency, Bitcoin [110]. Since then, numerous other
cryptocurrencies have emerged and continue to grow in the financial market
[31]. Ethereum [24], introduced by Buterin in 2014, expanded the possibilities
of blockchain by integrating smart contracts, leading to its adoption across
various sectors. Here, we will explore a state-of-the-art blockchain solution for
insurance processing systems.

Using machine learning approaches to identify fraudulent auto insurance
claims, [130] developed a system to lower risks and fraud in processing in-
surance claims. Their future goals include improving algorithms and process-
ing efficiency to produce better results. [89] suggested employing blockchain’s
smart contracts and sensors to reduce fraud in auto insurance. Sensors con-
tinuously monitor the location and motion of the car, and updates are made
in the blockchain’s smart contract to reduce fraud. The B-FICA: Blockchain-
based Framework for Auto-Insurance Claims and Adjudication [115] provides
a two-way verification in which sensor and entity data are tracked to decrease
the fictitious claims for automated vehicles.

Besides the car insurance system, a few works are also done on health insur-
ance. [124] suggested a framework for processing health insurance claims using
private blockchain Hyperledger Fabric. [148] elaborates on a framework for pro-
cessing health insurance transactions using role-based access on parties using
the Ethereum blockchain. [181] proposed MIStore, a blockchain-based solution
for the medical insurance storage system. There are n servers in addition to
patients, hospitals, and insurance providers. Few nodes are selected as servers,
and the system’s security heavily depends on these servers.

[57] use IBM Blockchain to secure insurance claim transactions and counter
fraud attempts. The author of the papers [57] has not offered any solution
for other essential functionalities except claim operation. Goyal et al. [62]
also proposed a blockchain-based solution for the insurance management sys-
tem employing a machine learning tool. They applied a random forest classifier
for predicting the risk to compute the risk-rated premium rebate. Ismail et al.
[76] suggest Block-HI, a blockchain-based healthcare insurance fraud detection
architecture based on various fraud scenarios. Their study focused on detecting
claim fraud; however, no precise picture of how insurance companies handle
claims or offer policies was provided. [6] propose a blockchain-based solution

4.3. High-Level View of The System 65

to enhance Ghana’s National Health Insurance Scheme (NHIS), aiming to im-
prove data management, transparency, and security while streamlining claims
processing. The work is criticized for its limited scope, lack of comparative
analysis, and insufficient evaluation, potentially oversimplifying the challenges
of implementing blockchain in a healthcare setting.

[133] explore the potential of blockchain technology in transforming the in-
surance industry, emphasizing consensus models, distributed ledgers, and in-
tegrating technologies like smart contracts and machine learning. However,
criticisms point to insufficient analysis of security and privacy issues, imple-
mentation constraints, and the need for more empirical evidence. [138] con-
tribute a theoretical model for optimizing health insurance claims processes in
Indonesia through blockchain. The proposed model has not been implemented
yet. Therefore, there is no empirical testing of its performance with extensive
data. Additionally, there is a lack of detailed information on data collection
and processing methodologies.

[78] focus on health insurance fraud detection, proposing an insurance chain
model with Hyperledger Fabric and leveraging Support Vector Machines and
Random Forest for fraud claim detection. However, challenges such as high
costs, complexity, data privacy, security, scalability, and limitations in empirical
setup are acknowledged. Detailed security analysis and scalability challenges are
potential drawbacks.

While the existing literature on blockchain-based insurance systems has ex-
plored several solutions, their implementations still have significant drawbacks.
For example, many of these solutions focus solely on claim operations, neglect-
ing other essential functionalities such as policy offering and handling [57], [158].
Few solutions rely heavily on a few servers, leaving the system vulnerable to se-
curity breaches [133], [181]. Furthermore, existing solutions need to adequately
address data privacy concerns, especially in the context of healthcare insurance,
where patient confidentiality is crucial [76]. Also, some papers convey ideas that
are region-specific (e.g.,[6] on Ghana and [138] on Indonesia), so their proposed
models may have limitations in terms of generalizability to diverse healthcare
and insurance systems. We propose a decentralized, distributed health insur-
ance processing system that utilizes a permission-less blockchain foundation
to address these limitations. In addition, our solution incorporates an Access
Control Policy to ensure patients’ medical information remains private while en-
suring all system participants are treated fairly. Unlike existing solutions that
primarily focus on claim operations, our model addresses all critical functions of
the insurance process, including policy offering and handling. By implementing
our system, we can assure data security, protect patients’ privacy, and promote
fairness among all system participants. In Table 4.1, a comparative analysis of
our model and existing solutions is presented, focusing on 7 key features.

4.3 High-Level View of The System

Remark 2. The traditional health insurance processing systems face significant
challenges, including inefficiencies in claims settlement, lack of transparency,

66 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

Table 4.1: A Comparative Analysis of Current State-of-the-
Art

Article Policy
offering

Timely management
of claim

Access control
mechanism

Privacy
of EHR Safety Application

Liveness Implementation

[124] ✘ ✔ ✔ ✔ ✔ ✘ ✔

[148] ✘ ✔ ✘ ✘ ✔ ✘ ✔

[181] ✘ ✘ ✘ ✔ ✘ ✘ ✔

[57] ✘ ✔ ✘ ✘ ✔ ✘ ✘

[62] ✔ ✔ ✘ ✘ ✘ ✘ ✘

[76] ✘ ✔ ✘ ✘ ✘ ✘ ✔

[6] ✘ ✘ ✔ ✔ ✔ ✘ ✔

[133] ✘ ✘ ✔ ✔ ✔ ✘ ✘

[138] ✘ ✔ ✘ ✔ ✔ ✘ ✘

[78] ✔ ✔ ✘ ✔ ✔ ✘ ✔

Proposed Model ✔ ✔ ✔ ✔ ✔ ✔ ✔

and vulnerabilities to fraudulent activities. These issues not only delay the re-
imbursement process for policyholders but also impose financial and operational
burdens on insurers. Furthermore, centralized architectures compromise data
security and privacy, leaving sensitive medical information exposed to unautho-
rized access and tampering. In this context, it becomes imperative to design
a system that ensures fairness, privacy, and data security, while eliminating
reliance on trust assumptions. The problem is to create a framework where
honest entities are protected from malicious behavior, sensitive data remains
confidential, and the entire process is streamlined through automation. This
chapter addresses these challenges by leveraging blockchain technology to pro-
pose a decentralized, secure, and transparent health insurance processing system
that overcomes the limitations of legacy systems.

4.3.1 System Model
The significant actors or parties involved in our proposed system are as follows
-

1. Policyholder/User/Patient (P): The entity that seeks treatment in
healthcare (acted as Patient), purchases a health insurance policy and
later claims for reimbursement of the medical bill (served as Policyholder).
Sometimes simply called as User.

2. Insurer/Insurance Company (IC): The entity that offers and sells
insurance. Insurance firms are financial organizations that offer direct
insurance or reinsurance and provide financial protection against future
risks. In this context, we are specifically interested in health Insurance
Company, also referred to as Insurer.

3. Database Owner (DBO): The semi-trusted entity that the Govern-
ment appoints in our blockchain ecosystem after checking their credibility.
Database Owner provides storage space/database to store the patients’
EHRs and, in return, obtains money. We can think of a DBO as today’s
cloud service providers such as iCloud, Google Drive, Microsoft One Drive,
Dropbox, etc.

Figure 4.4, illustrates the various actors involved in the system and also sketches
the smart contracts between multiple entities. It is worth mentioning that part

4.3. High-Level View of The System 67

of the figure (surrounded by a red dotted box) depicts our prior work [39], in
which we provided a prototype for secure patient-hospital interaction employing
the blockchain framework, and this work extends the same.

We make certain that all parties must safely and reliably communicate with
one another. The system has a few established protocols or regulations that
must be adhered to by all parties involved. The protocol suite is written using
functions in smart contracts. We have the following smart contracts in our
system.

– Smart Contract between Policyholder (P), Insurance Company (IC) and
Database Owner (DBO): SC_P_IC_DBO

– Smart Contract between Patient (P) and Database Owner (DBO):
SC_P_DBO

Additionally, we have an auxiliary smart contract named
SC_Registration, in which system entities should register themselves
prior to participating in the protocol. Therefore, the system consists of three
smart contracts. In the following subsections, we will examine how these
various system actors interact with one another. Before we continue, let us lay
out a few fundamental truths or presumptions of our system.

Figure 4.4: System Model

4.3.2 Assumptions
1. Every entity must register first before participating in our system. Every

party has a unique ID generated by the smart contract during registration.
One unique ID maps to a particular PublicKey.

2. Our system considers the Medical Data Repository Owner or the Database
Owner (DBO) semi-trusted. The government selects DBOs only after

68 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

checking their credibility. The norms of each country stipulate that DBOs
must meet specific prerequisite standards. Even though they are regis-
tered and trusted by the government, Our system maintains the activity
log of DBOs in the blockchain to hold them accountable for their actions,
and they are required to adhere to the system protocols; hence, they are
semi-trusted. A DBO may operate multiple nodes on the blockchain net-
work in order to increase the network’s accessibility and decentralization.

3. The users or policyholders must maintain their Electronic Health Records
(EHRs) in some medical data repository to claim reimbursement against
treatment costs from the insurer. In this regard, a two-party fair exchange
protocol (e.g. Fairswap [45]) is executed between the user and DBO.
Our earlier chapter [39], can be consulted for a deeper understanding and
linkability with this study.

4. In our system, a user can buy a policy by paying the policy price decided
by the insurer as a one-time payment, unlike most policy schemes where
the user needs to pay a premium in a periodical manner.

5. Health insurance claims are primarily two types - Cashless Claims and
Reimbursement Claims. A cashless facility means the insurer pays directly
to the network hospital for the treatment of the insured as per the policy
conditions. In contrast, a reimbursement claim means settling the hospital
bill out-of-pocket and then applying for reimbursement from the insurance
company. Out of the two, here we implemented the system considering
the second one.

4.3.3 Communication Protocol between Policyholder
and Health Insurance Company

We assume that every Health Insurance Company maintains a local database
containing all the policy-related information. This database is openly readable
to the public. For the sake of simplicity, we can presume that the insurance
company holds a relational table with the schema definition Policy (policyNo,
termsAndcondition, price), having policyNo as the primary key attribute.

For policy purchasing or claiming processes, policyholders and insurance
companies would engage in a sequence of blockchain-based transactions for
future accountability purposes, thereby obtaining fairness to the system.
policyNo, termsAndConditions, and price are denoted as P , T&C_P , and
V , respectively.

Purchasing an Insurance Policy

It is a two-phase process -
In phase one, the buyer expresses their desire to the insurance company

for a specific policy (P). By locking the policy’s price (V) in the smart contract
and also recording the hash of the terms and conditions file (h(T&C_P)) into
the blockchain, the purchaser agrees to the policy’s terms and conditions.

4.3. High-Level View of The System 69

Figure 4.5: Interaction between Policyholder and Health In-
surance Company

In phase two, the insurance provider must also acknowledge by specifying
the hash of the terms and conditions file and the policy price within a predeter-
mined time frame. Assume the insurance company responds within the given
time frame by specifying the h(T&C_P) and policy price on the blockchain.
In this example, the smart contract evaluates if these two hash values are iden-
tical (i.e., the hash value provided by the buyer in step one and the hash value
provided by the insurance company in phase two). In addition, the contract
assesses whether the policy price locked by the user differs from the price listed
by the insurance company. If they match, the policy price (V) is paid to the in-
surance company’s account, and the system assigns the user a unique policy ID
(poID) for future usage. The blockchain stores all pertinent information about
this poID (for example, buyer and seller information, the hash of T&C_P , the
purchase timestamp, and so on). The policyholder is now eligible to receive
the policy’s benefits upon fulfilling the terms and conditions. The user may

70 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

withdraw their locked funds from the system if the two hashed values do not
match or if the insurance provider does not respond within the specified time
frame.

Claiming for Reimbursement

We have developed a blockchain-based system that enables an insurance com-
pany to confirm the legitimacy of a user’s (or patient’s) medical bill reimburse-
ment claims. When a user submits a claim against their medical policy, the in-
surance company requests authorization to read the information relating to the
medical expenditure from the medical repository, presuming that the claimant
has already uploaded all medical files to the database beforehand.

The patient’s medical information is categorized into three types -

1. Personal Information (like name, age, address, etc.)

2. Medical Treatment Related Information (like prescriptions, lab test re-
ports, etc.)

3. Medical Expenditure Related Information (like invoices, medical bills,
etc.)

Categorizing medical information into granular tiers facilitates sharing infor-
mation with a third party in a restricted manner. The policyholder grants
the appropriate authorization to the insurance company to access their medical
records from the repository (or cloud). The insurance company requests the rel-
evant user’s files or documents from the Database Owner (DBO) after obtaining
appropriate access permission from the user. First, the DBO checks that the
insurance company has legal authorization to view these files through the smart
contract function and then provides them. After receiving the required file(s),
the insurance company determines whether the policy’s terms and conditions
have been met and then approves the fund. However, it is not a good idea to
transmit the data to the insurance company at this point. It might simply steal
the data without reimbursing the patient. A solution is proposed to prevent
such an attempt. First, the user will generate a unique one-time secret key K,
communicate it to the DBO, and put the key’s commitment on the blockchain.
When the insurance company requests the patient’s data from the DBO, the
DBO encrypts the data with the key K, delivers the encrypted data to the in-
surance company (offline), and stores the hash of the encrypted data and digital
signature on the blockchain. After receiving the encrypted file, the insurance
company seeks the user for the decryption key K. The user only discloses the
key if the insurance provider has already locked the claimed amount in the
smart contract. After receiving the user’s key K, the insurance company de-
crypts the encrypted data. The insurance company then verifies the accuracy of
the information using blockchain and authorizes the sanctioned amount within
a predetermined time frame. By retrieving the hash value from the blockchain,
the insurance provider may validate the authenticity of the information. The
insurance company can also verify the legitimacy of medical bills by examining

4.4. Implementation and Technical Details 71

the digital signatures (of hospital authority and patient) that are also kept on
the blockchain.

An insurance company might decide not to react to a user’s claim request.
However, the insurance company actively participated in the policy-selling pro-
cess in order to gain the user’s money. This is undeniably malicious action on
the part of the insurance company, which attempts to defraud the policyholder.
We alleviate this risk by permitting insurance companies to maintain a secu-
rity deposit of a specific amount in the system by locking the same in the smart
contract. The security deposit should be greater than the cost of the company’s
most expensive policy (i.e., Security Deposit >= Costliest Policy Price). An in-
surance firm may deposit or withdraw its security funds at any time. However,
the company must always retain the minimum threshold amount locked. The
security deposit partially compensates the buyer. Suppose a legitimate user’s
claimed amount is not reimbursed due to the mal-functionalities of the insur-
ance company. In such a scenario, the system will return at least the policy
premium to the purchaser, debiting from the locked security deposit of the in-
surance firm. Even if the premium cannot be repaid, the insurance company is
immediately deregistered from the system and permanently banned from doing
business further. Smart contract facilitates these functionalities in our system.
Figure 4.5 depicts our protocol at a high level.

4.4 Implementation and Technical Details

In this section, we will present the algorithms or methods that underpin the pri-
mary functionalities of our smart contracts. These smart contracts are written
in Solidity programming language.

4.4.1 Terminology
Before detailing the algorithms, let us review the terminology and notation we
have used in our implementation (Table 4.2). Other acronyms in the chapter are
self-explanatory. Table 4.3 lists the structure definitions used in the Algorithms.

4.4.2 Algorithms
The algorithms are classified into three groups:

1. Algorithms for Entity Registration

2. Algorithm for Data Upload and Access Control

3. Algorithm for Data Access and Incentives

1. Algorithms for Entity Registration: Every entity possesses a <
SK,PK > pair, where PK and SK serve as the Public Key (aka, address)
and Secret Key (aka, authentication factor) of the entity, respectively. A user

72 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

Table 4.2: Terminology and Notation used in our Scheme

Abbreviation Interpretation
P User/Patient/Policyholder

IC Insurance Company
DBO Database Owner

pAddr User/Patient/Policyholder Address
icAddr Insurance Company Address

dboAddr Database Owner Address
pID User/Patient/Policyholder ID
icID Insurance Company ID

dboID Database Owner ID
poID Policy ID
cID Claim ID

asID Application for Storing ID
TEvent Timestamp, when the Event occurs

MR_File Merkle Tree Root Hash of File
CST Current System Time
TTL Threshold Time Limit

Table 4.3: Structure Definition

Structure Name Member Variables
ApplicationForStoring asID, pAddr, dboAddr, key, MR_File, MR_EncFile,

TApplication, TV erificationMR, TKeyReveal, TComplain,
TApproval, TUnlockingByP , TUnlockingByDBO

PolicyDetails poID, buyerID, icID, TBuyingPolicy,
terms&ConFileHash, claimIDs[]

ClaimDetails cID, ebID, TGeneratingClaimByP , claimedAmount, ap-
provedAmount, commK , K, TRevealKey, TLockingByIC ,
TUnlockingByIC , TApproval

can register themselves into the system by invoking the function UserRegis-
tration as specified in Algorithm 1.

Algorithm 1: User/Policyholder Registration
Function UserRegistration(PKP , hash_of_Personal_Info) ▷ Caller: P

if (caller ̸= pAddr OR PKP is already registered) then
Exit

Generate: a unique pID
Create: a mapping entry from PKP to the associated pID
Record: hash_of_Personal_Info corresponding to pID on BC

end

Likewise, other actors may also register with the system and acquire a unique
identifier upon successful registration -
IC: icID ← ICRegistration(PKIC , name)
DBO: dboID ← DBORegistration(PKDBO, name)
DBO cannot register themselves. Instead, a trusted third party, or TTP (here,
we consider the Government to be TTP), is in charge of bringing a DBO into

4.4. Implementation and Technical Details 73

the system. The TTP will invoke the function DBORegistration.

2. Algorithm for Data Upload and Access Control: When treatment
is over, patients can store their medical records in a database or medical
repository, and DBO charges a fee for providing the storage space. If a patient
wishes to submit an insurance claim to reimburse medical expenses, s/he must
maintain their medical records in the database. Any fair exchange protocol
between two parties can be applied to serve the purpose. Several articles
and protocols exist in the literature specifically for sharing medical data (e.g.
[96], [129], [164], [166], [174]). In this protocol, we use the Fairswap [45]
protocol (SC_P_DBO) to make sure that P and DBO exchange information
fairly. The DBO will not provide storage and abort if it receives an invalid
file. Structure ApplicationForStoring member variables are populated during
protocol invocations to instantiate the two-party exchange protocol. When
the patient stores the EHR generated by the hospital and runs SC_P_DBO,
an ID (asID) for ApplicationForStoring is created. The user controls access
to their medical data in the medical repository. The blockchain stores Access
Control Policy details. The DBO must comply with this access control policy
before transferring a patient’s EHR to a third party. Readers may refer to the
original work[45] for more details.

3. Algorithm for Data Access and Incentives: We can further divide these
algorithms into four subcategories - Algorithm 2 describes the fair procedure
for Purchasing an Insurance Policy from an IC. Procedures for Claim-
ing an Insurance and Processing a Claim are described in Algorithm 3
and Algorithm 4, respectively. The Claim Approval process is specified in
Algorithm 5.
Functions for Buying a Policy (Algorithm 2):

– Consider, a user holding ID - pID wishes to purchase a policy from an
insurance company having ID - icID. The policy costs V units. The user
or policy buyer reads the policy’s terms and conditions (T&C_P). Then
the user computes the hash of the terms and conditions file locally as
hashOfTermsAndCon ← h(T&C_P) and calls BuyPolicyPhaseOne
at time t1.

– First, the user stores the hash of the policy’s terms & conditions on the
BC and locks the policy price V in the SC. The IC should respond to
the buyer’s desire to purchase an insurance policy within a specific time
frame (TTL). The IC calls BuyPolicyPhaseTwo (at time t2). IC must
specify the policy price and the file hash on-chain. The smart contract
determines if the values provided by both parties (policy buyer or user in
phase one and insurance provider in phase two) are consistent.

– If the IC does not respond within TTL, i.e. (t2 − t1) > TTL after the
first phase of buying, the user can unlock their money (i.e. policy price)
from the system by calling WithdrawLockedPolicyBuyingMoney.

74 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

Algorithm 2: Buying Insurance Policy
Function BuyPolicyPhaseOne(icID, hashOfTermsAndCon) ▷ Caller: P

Record: hashOfTermsAndCon, icID on BC
Lock: the Policy Price V in SC
Record: the CST (say, t1) on BC

end
Function BuyPolicyPhaseTwo(pID, price, hashOfTermsAndCon) ▷ Caller: IC

if (caller ̸= icID) then
Exit

if (price > securityMoneyicID) then
De-register the IC from the System and Exit

t2 ← CST
if ((t2− t1) > TTL) then

Exit

Retrieve: the amount locked by buyer pID from BC and matches with price
Retrieve: the hash of terms and condition file mentioned by buyer pID from BC and

matches with hashOfTermsAndCon
if (any of the matches are found wrong) then

Exit

Generate: a unique poID
Instantiate: a structure PolicyDetails pd corresponding to poID and store on BC
return (poID)

end
Function WithdrawLockedPolicyBuyingMoney(icID) ▷ Caller: P

Retrieve: the timestamp(t1) of locking the money from BC
if (CST - t1) > TTL) AND the seller IC does not respond then

Unlock: the money from SC and Credit to the Buyer’s Account

end

Algorithm 3: Claiming Insurance
Function ClaimMoney(poID, asID, billID, claimedAmount, comm_K) ▷ Caller: P

Retrieve: the structures PolicyDetails pd, and ApplicationForStoring as corresponding to
poID, and asID from BC resp.

Parse: pd and as and Verify for the correctness of the necessary field values
Obtain: Medical invoice using billID
Verify: Multi-Signatures of hospital and patient on the invoice
Check: (caller == pd.buyerID == as.pID)
Check: (as.timestamp_approval ̸= 0)
Check: (claimedAmount ≤ invoiceAmount)
Incorporate the business logic to ensure that the user has not previously claimed for the same

bill.
if (any of the above checks is FALSE) then

Exit

Generate: a unique cID
Instantiate: a structure ClaimDetails cd
cd.commK ← comm_K
cd.TGeneratingClaimByP ← CST
Record: cd on BC
Create: an mapping entry - cIDTopoID[cID]← poID
Grant: Read Access to pd.icID

end

Functions for Claiming (Algorithm 3):

– The policyholder (P) can claim reimbursement from insurer (IC) by call-
ing function ClaimMoney. P generates a temporary key K and calculates
K’s commitment offline.
K ← SKE.Gen(1n).
comm_K ← h(K).

4.4. Implementation and Technical Details 75

Algorithm 4: Processing a Claim
Function KeepSigOnHashOfEncFile(cID, sign_DBO) ▷ Caller: DBO

Record: <sign_DBO and CST> corresponding to cID on BC
Mark: the key K as expired

end
Function LockClaimedMoney(cID, amount) ▷ Caller: IC

Obtain: poID ← cIDTopoID[cID]
Retrieve: the structures PolicyDetails pd, ClaimDetails cd corresponding to poID and cID

from BC resp.
if (caller ̸= pd.icID) then

Exit

if (amount == cd.claimedAmount) then
Lock: the amount in SC
cd.TLockingByIC ← CST

end
Function RevealSecretKey(cID, K) ▷ Caller: P

Obtain: poID ← cIDTopoID[cID]
Retrieve: the structures PolicyDetails pd, ClaimDetails cd corresponding to poID and cID

from BC resp.
if (caller ̸= pd.buyerID OR
h(K) ̸= cd.commK OR
(CST - cd.TLockingByIC) > TTL) then

Exit

cd.K ← K
cd.TRevealKey ← CST

end
Function WithdrawLockedClaimedMoney(cID) ▷ Caller: IC

Obtain: poID ← cIDTopoID[cID]
Retrieve: the structures PolicyDetails pd, ClaimDetails cd corresponding to poID and cID

from BC resp.
if (caller ̸= pd.icID) then

Exit

if (cd.TRevealKey == 0 AND cd.TLockingByIC ̸= 0 AND (CST - cd.TLockingByIC) >
TTL) then

Unlock: the claimedAmount from SC and Credit to the IC’s Account.

end

P delivers the key K to the DBO (one-to-one offline communication) and
includes the comm_K as function parameters. Once the transaction is
mined, comm_K goes to BC. Using BC, this function validates impor-
tant data (member variables of various structures), verifies signatures, and
looks for timestamps of crucial operations. The algorithm ensures that
the policyholder does not file a duplicate claim for the same medical bill.
If all the conditions are met, a unique cID is generated and communi-
cated to the policyholder for further reference. The function instantiates
and stores a ClaimDetails structure in BC. P must also provide the IC
read access to their medical files/bills in the medical repository.

Functions for Processing a Claim (Algorithm 4):

– The DBO obtains the Key K from P and checks to verify that the
comm_K agrees with the received key K. If it matches, then DBO en-
crypts the user’s file R (say)
enc_data← SKE.EncK(R)
The DBO must invalidate K after encryption. Invalidating K pre-
vents security risks. DBO computes the hash of the encrypted data,

76 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

digitally signs on it, and stores it in BC for future accountabil-
ity (i.e., SignSKDBO

(h(enc_data))). DBO calls the function Keep-
SigOnHashOfEncFile and transfers the encrypted file to the IC offline.

– Next, the IC locks the claimed amount in the SC and invokes the function
LockClaimedMoney.

– Once IC locks the claimed amount; the P must produce key K within
TTL so IC can decrypt the encrypted files by calling RevealKey.

– If P does not submit the key K within the stated time window, the IC
can withdraw the locked money by invoking WithdrawLockedClaimed-
Money

Algorithm 5: Approving a Claim
Function ApproveClaim(cID, approvedAmount) ▷ Caller: IC

Obtain: poID ← cIDTopoID[cID]
Retrieve: the structures PolicyDetails pd, ClaimDetails cd corresponding to poID and cID

from BC resp.
if (caller ̸= pd.icID OR cd.TRevealKey == 0 OR cd.TApproval ̸= 0 OR (CST -
cd.TRevealKey)>TTL) then

Exit

cd.approvedAmount← approvedAmount
cd.TApproval ← CST
Unlock: the approvedAmount from SC and Credit to the Policyholder’s Account
remainingAmount← (cd.claimedAmount− cd.approvedAmount)
if (remainingAmount > 0) then

Unlock: the remainingAmount from SC and Credit to the IC’s Account

end
Function SelfApproveClaim(cID, icID) ▷ Caller: P

Obtain: poID ← cIDTopoID[cID]
Retrieve: the structures PolicyDetails pd, ClaimDetails cd corresponding to poID and cID

from BC resp.
if (caller ̸= pd.buyerID) then

Exit

if (cd.TRevealKey ̸= 0 AND cd.TApproval == 0 AND (CST - cd.TRevealKey) > TTL) then
cd.approvedAmount← cd.claimedAmount
cd.TApproval ← CST
cd.isSelfApproved← TRUE
Unlock: the claimedAmount from SC and Credit to the Policyholder’s Account.

end

Functions for Approving a Claim (Algorithm 5):

– The IC decrypts the encrypted file using the user’s key K and verifies
the integrity. The IC approves the claim based on the policy’s Terms and
Conditions. Sometimes a claim is only partially granted. The IC must
follow all the terms in the T&C_P file. The file’s hash is already in the
blockchain; therefore, there is no way to defy rules or norms. After the
user reveals the key, the IC should call ApproveClaim within TTL.

– If the IC does not call the procedure above within the set time limit (even
if the user revealed the key on time), the user can validate the claim
amount themself. The policyholder can unlock the IC’s locked amount by
invoking SelfApproveClaim. It ensures that the policyholder is treated
fairly.

4.5. Security Analysis 77

The functional sequence diagram among policyholder, insurance company and
database owner (specified in the smart contract SC_P_IC_DBO) is shown in
Figure 4.6.

Figure 4.6: Functional Sequence Diagram of SC_P_IC_DBO

4.5 Security Analysis

Blockchain technology makes use of several basic cryptographic concepts (such
as the hash function and digital signature). The blockchain is secure as long
as the fundamental cryptographic building blocks are safeguarded. And so,
our blockchain-based system also stands protected. The money held on the

78 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

blockchain is safe, assuming the blockchain is secure, and as a result, the pay-
ments performed via the system are likewise safe. We assert that our method
addresses significant security concerns and assures fairness for all system users.

4.5.1 Fairness
We discuss about whether patients and insurance companies are both being
treated fairly. Even if one of the parties engages in dishonest behavior and
attempts to defraud, the malicious party is punished, and the honest party is
compensated with the money.

Proposition 5. (Policyholder’s Fairness) Considering that the owner of the
Medical Data Repository is semi-trusted and the underlying blockchain is se-
cure, the honest user or policyholder must not lose money or receive inferior
service, regardless of how maliciously the other party (i.e., the insurance com-
pany) behaves.

Proof. We shall demonstrate the notion when an honest patient’s interests
might be jeopardized. In particular, we will evaluate the security based on
pricing, data, and responsiveness.

When Insurance Company (IC) is malicious:

IC defrauds policyholder by rejecting claim
The blockchain stores the hash of the file containing the policy’s terms and

conditions, and the user confirms this hash upon purchasing the policy. There-
fore, the insurer cannot later refuse the claim. Additionally, when a policyholder
submits a claim for reimbursement of their medical expenses, a transaction is
formed, and the related data is recorded to the blockchain. The transaction
must be resolved within a specified time frame after the claim; otherwise, the
insurer will face a penalty. In a distributed system like blockchain, the insur-
ance company’s reputation takes a hit, which is not desirable. If the IC partially
sanctions a claim and the policyholder is dissatisfied with the approval, the pol-
icyholder may pursue legal recourse and file a complaint against the IC. With
the aid of blockchain technology, the judge can promptly resolve the disagree-
ment (as the hash of the terms and conditions file is kept in BC). If the IC fails
to react to a policyholder’s claim, the system might refund the premium paid
by the user. If it is impossible to repay the money (due to insufficient security
funds), the IC’s access to the system would be blocked permanently, and the
IC would also be banned from the further business.

IC steals patient’s medical data
If we examine the claim procedure, we will realize that the policyholder must

provide the IC authorization to view the EHRs in the medical database so that
the insurer may check the legitimacy of claims made by the policyholder. Never-
theless, if the Database Owner (DBO) delivers the medical report, the insurance
company can obtain the data and cease all communication with the customer.
To counteract this, the DBO transmits encrypted data to the IC (enc_data

4.5. Security Analysis 79

in Figure 4.5). Encryption is performed using a user-generated temporary key,
K. This key must be used only once. The IC locks the claimed amount in the
smart contract upon receiving the encrypted data and requests for the user’s
key (K). The user will not reveal the key unless the insurance locks the money
into the contract.
Patient/user data can be classified into three categories: (i) Personal Infor-
mation, (ii) Medical Reports, and (iii) Invoices/Bills pertaining to Medical
Expenses. If confidentiality is required, users can provide access to only the
medical expenses segment of the data and suppress the rest. Therefore, it also
addresses data privacy concerns.

IC becomes unresponsive in the middle of the protocol
Our system has a set time frame for each consecutive function call in the

smart contract. If the IC fails to respond in a timely manner, the user can take
appropriate action. For example, if the IC does not respond in Phase Two of
the policy-buying process, the user can unlock the funds for purchasing a policy.
In the same way, the user can take the necessary measures when submitting a
claim for reimbursement of medical expenses to avoid losing money if the IC
becomes inactive.

Proposition 6. (Insurance Company’s Fairness) An honest insurance company
will obtain the precise policy price or premium from the policyholders at the
time of policy offers, and it also should not be suffered from any financial loss
by reimbursement of invalid claims of fraudulent users under the premise that
the owner of the Medical Data Repository is semi-trusted and the underlying
blockchain is secure.

Proof. When Policyholder (P) is malicious:

P manages to get insurance coverage without paying a policy pre-
mium

During the initial phase of policy purchase, the user declares a desire, keeping
the money (i.e., policy price V) locked in the smart contract. The user also
uploads the hash of the file containing the terms and conditions of the policy to
the blockchain. Next, the IC validates the same information during the second
phase of the policy purchasing process. Finally, if everything is in order, the
smart contract deposits the policy price (V) to the IC’s account and provides
the buyer with a unique policy ID. Therefore, a user can not have insurance
coverage without paying a policy premium.

P submits a false claim
When a policyholder submits a claim for reimbursement of medical expenses,

the system first determines whether or not the claim has already been processed
in the past. If the claim is fresh, the system then assesses the validity of all med-
ical expenditure records by matching their hash values and verifying the digital
signatures of hospital authorities and patients stored in the blockchain. Finally,
the system validates that the claim complies with the terms and conditions of
the insurance policy. After these verifications, the claim is either partially or

80 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

entirely approved. Thus, the insurance company’s fairness is safeguarded, and
policyholders cannot defraud an insurance company in our system.

P becomes unresponsive in the middle of the protocol
The policyholder has no fundamental reason for being unresponsive (as it is

the user whose money has been locked in the system). However, a policyholder
may be inactive during the claim process. For example, the policyholder may
delay providing the decryption key after submitting an insurance claim when
the IC needs it to decipher the encrypted content. If this occurs and the time
window for revealing the key expires, the IC can quit the protocol without ap-
proving any money claimed by the policyholder and release the IC’s locked funds
from the smart contract. Therefore, if the policyholder becomes unresponsive,
the IC will not be tricked.

4.5.2 Privacy
Medical information about a user or patient is sensitive data.. If a person’s
medical history is made public, they could feel humiliated and might encounter
prejudice daily. As a result, it is crucial to guarantee that access to patient
information is only allowed with the patient’s consent.

Proposition 7. (User/Patient Privacy) The medical data of a user cannot be
accessed by any of the entities in our proposed system without the user’s per-
mission. The user’s individually identifiable information is also kept concealed
from the public.

Proof. While enrolling on the blockchain, a user does not disclose information
such as name, age, address, phone number, etc. Rather, the hash of these
properties is stored in the blockchain during registration. Due to the user-
centric nature of our system model, no one can view the user’s medical records
without their permission. Thus, any unauthorised access to medical records is
prevented. The user specifies the identities that have access to their data in
the access control matrix. The patient can update the matrix periodically; s/he
can grant access permission to a third party or revoke access permission from
a third party. In the blockchain, the access control matrix is stored.

4.5.3 Data Security
Altering a patient’s medical records could have disastrous effects. The changes
in medication dosages or modifications to the condition for which a diagnosis
has been made may put lives in danger. In our context, users can attempt to
falsify their medical records to fraudulently submit claims for payment to their
insurance provider.

Proposition 8. (Data Security) No one, not even the patient/user, can tamper
with the medical data in our envisioned system and misuse it.

Proof. Since we have constructed our protocol with blockchain serving as the
underlying framework, the immutability of blockchain, which is a fundamental
characteristic of the technology, ensures the safety of medical data.

4.6. Result and Discussion 81

4.5.4 Liveness
Liveness is critical in distributed systems because it guarantees that the system
remains active and responsive even in the presence of failures, delays, or mali-
cious behavior. A blockchain-based system inherently supports liveness through
decentralized consensus, ensuring continuous progress and transaction finality.
The fault-tolerant nature of the network enables uninterrupted operation even
during node failures or malicious behavior, contributing to implicit liveness.

Proposition 9. (Liveness) The proposed blockchain-based system keeps pro-
gressing and continues to process and finalize transactions.

Proof. While blockchain-based systems inherently possess liveness as an implicit
property, ensuring the smooth and continuous functioning of the underlying net-
work, application-level liveness becomes essential for scenarios where specific ac-
tions must be taken within defined time frames. In certain instances, situations
might arise where the non-execution of one function can potentially block the
execution of subsequent functions, creating a need for timely and autonomous
actions to maintain system responsiveness and application-level liveness. For ex-
ample, in a proposed smart contract for an insurance claim process, the function
ApproveClaim() must be executed by the insurance company within a specific
time window after the policyholder submits a claim. However, if the insurance
company fails to act within the fixed time, the subsequent claim processing
may be blocked, impeding the system’s overall liveness. To address this, our
system introduces a supplementary safeguard. Upon the expiration of the time
window, the policyholder is granted the capability to invoke the SelfApprove-
Claim() function independently. This measure empowers the policyholder to
settle the claim autonomously, maintaining the system’s liveness and ensuring
timely execution. By integrating these features into the smart contract design,
we enhance the application-level liveness of the system, offering a reliable and
dynamic environment for all stakeholders involved.

4.6 Result and Discussion

Implementation Setup: Our model has been implemented on the Ethereum
test networks using a computer system having an Intel Core i7-6700HQ pro-
cessor running Linux Mint 18.04 19.1 (Tessa), a 64-bit operating system, and
16.00 GiB of RAM. We have employed an Infura endpoint and the Ropsten test
network. On GitHub†, the source code is made available. The feasibility of any
blockchain model depends on the implementation cost and time required. The
specifics of Ethereum transaction cost and latency are discussed in Chapter 2,
Section 2.6.10.

The addresses of the deployed contracts are listed in Table 4.4. Figure 4.7
and Figure 4.8, respectively, illustrate the transaction cost and time required for
each contract deployment. At the time of deployment, the cost of gas was 18.9
Gwei, and ether was 2,300.54 USD. The cost of deployment varies depending

bhttps://doi.org/10.5281/zenodo.8232704

https://doi.org/10.5281/zenodo.8232704

82 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

Table 4.4: Deployment Addresses of Smart Contracts

Smart Contract Address
SC_Registration 0x5a818296705cC24Feec4CfEAF1DfdaE056fEf037
SC_P_IC_DBO 0xD519535972d006DD72AbBd60453Ae78747065B5e

SC_P_DBO 0xC062E1eF5EdB815bcF5B93C6BaD497ABCA407f31

Table 4.5: Deployment Cost of Smart Contracts

Smart Contract Deployment Cost(Ether)
SC_Registration 0.0353157
SC_P_IC_DBO 0.0516384

SC_P_DBO 0.04783231

Figure 4.7: Trans-
action Cost for Con-
tract Deployment

Figure 4.8: Time
Taken for Contract

Deployment

on the size of the contracts (Table 4.5). The contract deployment occurs only
once, so these are one-time expenses. Once the protocol is in place, we can reap
the benefits as long as it is used.

Figure 4.9: Trans-
action Cost for En-

tity Registration

Figure 4.10: Time
Taken for Entity

Registration

Figure 4.9 and Figure 4.10 represent the transaction costs and time involved

4.6. Result and Discussion 83

in the entities’ registration procedure. These are similar in magnitude for differ-
ent parties except for the policyholders, who have a few more variables involved
in the registration. The transaction cost for specific protocol functionalities is
related to the size of the medical file. The file size may vary based on the med-
ical treatment administered. For the experiment, we constructed the base file
arbitrarily. The file is segmented into several parts. The variables, referred to
as the number of input gates and the gate’s buffer size, represent the number
and size of the split chunks.

Figure 4.11:
SC_P_IC_DBO
Transaction Cost
for 4 Input Gates

Figure 4.12:
SC_P_IC_DBO
Transaction Cost
for 8 Input Gates

Figure 4.13:
SC_P_IC_DBO
Transaction Cost
for 16 Input Gates

Figure 4.14:
SC_P_IC_DBO
Transaction Cost
for 32 Input Gates

With changing numbers of input gates and buffer sizes, we have il-
lustrated the costs associated with different function calls for the contract
SC_P_IC_DBO (Figure 4.11, 4.12, 4.13, 4.14). The range of input gates
is 4, 8, 16, and 32, while the usual buffer sizes are 32, 64, and 128. The number
of input gates and the buffer size could be multiplied to get the file size. As a
result, a file with 4 input gates and a 32-byte buffer would be 128 bytes in size.

84 Chapter 4. Blockchain-Enabled Secure Health Insurance Processing

The SC_P_IC_DBO graphs (Figure 4.11, 4.12, 4.13, 4.14) reveal that they
exhibit a similar pattern despite having different numbers of input gates. While
maintaining a fixed number of input gates and altering the buffer size, the trans-
action cost for various functions minimally changes. The graphs demonstrate
that some functions need a higher cost because of their complex functionality.
It is economically feasible since the functions’ benefits surpass their costs.

4.7 Conclusion

In this work, we have provided a novel Health Insurance Processing System
that ensures the fairness of all parties without relying on mutual trust. Smart
contracts securely enable online correspondence between policyholders and in-
surers, increasing transparency and automation. Additionally, it aids in speed-
ing up the insurance company’s key processing stages, from policy offering to
claim verification and settlement. The use of blockchain technology and cryp-
tographic primitives assures against fraudulent conduct. We prototyped and
deployed our health insurance processing system in private and Ropsten test
networks. The experimental analysis demonstrates that multiple performance
indicators produce satisfactory results. Our protocol exhibits blockchain’s util-
ity and significance in the insurance industry—specifically, health insurance. It
establishes that it may be the next ground-breaking technology to replace the
nation’s current insurance processing infrastructure.

The unprecedented situations faced by global society during the COVID-19
pandemic gave rise to new challenges in public healthcare systems worldwide.
A critical instance is the development of a secure and robust vaccine passport
system, which provides documentary proof of vaccination against certain infec-
tious diseases like COVID-19, Ebola, and flu. That is taken up in the next
chapter.

85

5
Blockchain-Enabled Secure Vaccine Passport

System

“Misinformation or distrust of vaccines can be like a contagion
that can spread as fast as measles.”

— Theresa Tam

A vaccine passport, also known as an immunity passport, serves as
documentary proof, implying a person has been vaccinated against certain
infectious diseases. It can be digital, like a phone app, or physical, like a small
paper card. People can carry it with them and show it whenever required,
like before entering the office, boarding an airplane, or visiting a restaurant,
movie theatre, or gym. In the recent past, we have witnessed the global
impact of the COVID-19 pandemic [5], underscoring the critical importance
of vaccine passports in managing and mitigating the spread of infectious
diseases. However, the relevance of vaccine passports extends beyond the
COVID-19 pandemic to encompass a broader spectrum of contagious illnesses
that pose significant public health risks. Historical outbreaks such as the
Spanish flu in 1918 [117], the H1N1 influenza pandemic in 2009 [118], and
the Ebola outbreak in West Africa in 2014 [56] highlight the devastating
consequences of infectious diseases on global populations. These events serve
as stark reminders of the urgent need for robust public health measures,
including vaccination and disease containment strategies. As the COVID-19
pandemic continues to persist in recent memory, the implementation of a
vaccine passport system emerges as a crucial tool in safeguarding public health
and promoting safe mobility. The prospect of fully reopening businesses,
facilitating international travel, and reviving economies hinges on the adoption
of vaccine passports as a means to verify vaccination status and mitigate the
transmission of contagious diseases. As international passenger traffic gradually
rebounds from the impacts of the COVID-19 pandemic, the role of vaccine
passports becomes increasingly prominent in facilitating safe movement across
borders. By providing individuals with proof of vaccination, vaccine passports
not only enable access to various venues and activities but also contribute

86 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

to broader public health objectives by arresting the spread of infectious diseases.

Challenges of the Vaccine Passport System

Vaccine passports play a crucial role in managing infectious diseases, yet
they also present several challenges.

1. Authentication Concerns: The issuance of vaccine certificates by health-
care clinics or third parties introduces the risk of counterfeit or fraudulent
passports. Instances of counterfeit vaccine certificates have been reported in
various disease outbreaks, such as the Ebola outbreak in West Africa. For
example, during the COVID-19 pandemic, there were reports of individu-
als purchasing fake vaccine certificates on the black market to bypass travel
restrictions or gain access to venues. Such incidents underscore the impor-
tance of robust authentication mechanisms to prevent forgery and ensure the
integrity of vaccine passports.

2. Regulatory Ambiguity: The proliferation of various vaccines introduces
complexity in determining their efficacy, dosage requirements, and interna-
tional recognition. Lack of standardization across different diseases compli-
cates travel restrictions and entry requirements based on vaccine type. For
instance, certain vaccines may not be universally accepted for international
travel during outbreaks of diseases such as yellow fever or Zika virus. In
the recent past, during the COVID-19 outbreak, we have seen that the Eu-
ropean Union does not allow Indian citizens vaccinated with Covishield to
enter their countries [73]; likewise, the US has not approved Sputnik-V and
Co-vaxin. Such inconsistencies highlight the need for harmonization of vac-
cine regulations to facilitate global mobility and ensure equitable access to
travel opportunities.

3. Equity Issues: Vaccine distribution disparities worsen existing inequalities
worldwide. Limited vaccine availability, along with unequal distribution,
means some privileged people receive doses while others do not. Unequal
access to healthcare, coupled with restrictions on the import and export of
medical supplies, exacerbates global health inequalities. For example, during
the H1N1 influenza pandemic, wealthier nations stockpiled vaccines, leaving
developing countries with limited access. Additionally, concerns about fake
vaccine certificates and unethical practices at vaccination centers undermine
fairness and trust in the vaccination process.

4. Privacy Considerations: Privacy concerns emerge as individuals may be
reluctant to disclose personal information beyond vaccination status. A vac-
cine passport should solely serve the purpose of verifying vaccination without
compromising individuals’ privacy by revealing unnecessary personal details.
Furthermore, individuals with medical exemptions may hesitate to disclose
their health conditions due to fears of social stigma or discrimination.

By acknowledging and addressing these challenges, the development and
implementation of vaccine passport systems can better serve their intended

Chapter 5. Blockchain-Enabled Secure Vaccine Passport System 87

purpose while safeguarding public health and individual rights across various
infectious diseases.

Limitations of Existing Legacy Technology

1. Data Tampering Vulnerabilities: Traditional centralized databases are
vulnerable to unauthorized data changes, which can occur due to insider
manipulation or external hacking attempts. These systems often lack robust
auditing mechanisms, making it difficult to detect and prevent fraudulent
alterations. As a result, data integrity is compromised, leading to potential
inaccuracies in critical information such as vaccination records.

2. Lack of Transparency and Auditability: Centralized systems operate
as opaque entities managed by a single trusted authority. This lack of trans-
parency means that users must place blind trust in the administrators main-
taining these systems. Without open mechanisms for independent verifica-
tion and auditing of data integrity, concerns arise regarding the accuracy and
reliability of the information stored within these databases.

3. Centralized Trust Model: Current solutions rely on a centralized trust
model, wherein a single entity controls the entire system. While this may
simplify management, it introduces significant vulnerabilities, such as single
points of failure and susceptibility to insider threats or external attacks.
Moreover, the lack of decentralized data integrity undermines the overall
reliability of these systems.

4. Data Silos and Lack of Interoperability: Data fragmentation across
various institutions, organizations, or nations creates silos that hinder global
information sharing. Incompatible data formats, standards, and policies fur-
ther exacerbate this issue, impeding efforts to establish seamless interoper-
ability. Without standardized and universally accessible platforms for man-
aging immunization records, the efficient exchange of critical data remains a
challenge.

5. Privacy Concerns: Centralized databases containing sensitive healthcare
information raise significant privacy concerns. The potential for data leakage
or misuse poses risks to individuals’ privacy rights and confidentiality. Inade-
quate privacy-preserving controls and access policies further compound these
concerns, highlighting the need for enhanced safeguards to protect users’
personal information while still enabling efficient verification of vaccination
status.

Objectives

In the Vaccine Passport System, we want the following criteria to be satis-
fied.

– Various countries are involved that allow their foreign guest to enter only
if the traveler produces a valid vaccine certificate. Here, the basic assump-
tion is that the verifier (i.e., the entity that verifies the vaccine passport)
does not trust the user or the traveler.

88 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

– At the same time, the involved parties in the system would like to take a
common decision on whether the travelers should produce a valid vaccine
certificate, and they can not forge the certificate in any way.

– The users or travelers do not want to reveal their personal information
due to privacy concerns - they intend to prove that they are vaccinated
and nothing more.

– Also, from the global perspective, we want an equitable distribution of
vaccine doses across all countries to guarantee fairness.

Blockchain integrated with smart contracts can be a perfect fit to satisfy the
criteria mentioned above.

1. Immutability : Storing the records of vaccine passports in a blockchain
helps to protect these from any unauthorized modifications of data. The
immutable property of blockchain guarantees that once the data is stored
inside a blockchain, it persists permanently - no one can tamper with the
data.

2. Decentralized Distributed System : Since blockchain is a distributed
system, it does not solely depend on a single centralized authority for the
verification of transactions or records. Here, multiple nodes of different
countries located across the globe would take part to validate a transac-
tion. So, the probability of forging a vaccine passport by a single entity
is almost negligible. Any certain specific country also can not be able
to function maliciously in such a distributed network spanning across the
entire world.

3. Privacy : In a public blockchain system, as data exists across the various
nodes, so one might be concerned about privacy issues. However, we can
cleverly store the record in a blockchain so that we can easily verify that
a person is vaccinated without revealing any details about his/her private
information.

4. Fairness : Smart Contracts can be written in such a way that we can ob-
tain statistics about how many people of the total population of a country
have been vaccinated. This information essentially helps to identify which
countries are lagging in the vaccination process, and in turn, it helps the
Governments of so many countries take necessary actions immediately.
Also, a smart contract ensures that no one can forge a vaccine certificate
colluding with the vaccination center, and a malicious vaccination cen-
ter cannot put wrong records regarding the vaccination status inside the
blockchain, intending to sell vaccine doses to a third party for money.

5.0.1 Contributions
In this work, we propose a vaccination passport system using a blockchain
framework to ensure the following -

5.1. Related Work 89

– Fairness:

1. An individual can not create a fake vaccine certificate itself or collude
with the vaccination center.

2. A vaccination center can not record any false information into the
blockchain that a person has been vaccinated, which is not the case.
Also, it can not sell vaccine doses to third parties for extra money.

3. Global perspective - Obtaining statistics regarding the proportion of
the citizens who got vaccinated out of the total population for a spe-
cific country and also to get the figure about the number of available
vaccine doses in different centers. It, in turn, allows distributing the
vaccine doses where the supply is insufficient - ensuring every part
across the globe should get a uniform/fair share of the vaccine doses.

– Immutability: Record stored in the blockchain regarding the vaccination
status of a person can not be altered by any malicious or unauthorized
access.

– Privacy: We will store information in the blockchain in such a way that
it does not compromise the private information of a person, but still,
a person can verify to others that s/he has been vaccinated. Also, we
incorporate an access control policy; it is up to the person to decide who
can verify the vaccination record of the person. The person can grant (or
revoke) access permission to (or from) other parties occasionally.

Although our proposed work solves most of the crucial problems, the problem
caused by a lack of regulation persists. We believe this can not be solved unless
and until the WHO specifies and standardizes the set of valid vaccines.

5.0.2 Organization
The rest of the chapter is structured as follows -
Section 5.1 briefly discusses the current state of the art. Section 5.2 describes
our system model. Here, we have discussed our system components, security
goal, adversarial model, assumptions, major procedures, and other technical
details. We addressed our security claims in Section 5.3. The outcomes of our
proposed system are shown in Section 5.4. Finally, Section 5.5 concludes the
chapter and showcases some future directions.

5.1 Related Work

After the World Health Organization (WHO) declared COVID-19 a global pan-
demic in March 2020, governments, NGOs, and corporations worldwide made
concerted efforts to combat the spread of the disease. One potential solution
that gained significant attention was the use of immunity or vaccine passports to
help manage the spread of infectious diseases. This approach contrasts sharply

90 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

with contact tracing apps, which focus on tracking and isolating infected indi-
viduals during outbreaks, specifically in the pre-vaccination era when no proven
treatments or vaccines were available, making isolation one of the most effec-
tive strategies to control outbreaks [2], [3], [27], [154]. The shift from isolating
infected individuals to enabling safe interactions among vaccinated individu-
als in the post-vaccination context underscores a fundamental change in strat-
egy. Although the concept of vaccine passports has existed for some time, the
COVID-19 pandemic brought it to the forefront as a means to facilitate a return
to normalcy. This renewed interest has highlighted the broader applicability of
vaccine passports beyond the COVID-19 context for managing public health
and enabling safe travel and access to services.

One of the earliest proposals for a blockchain-enabled vaccine passport sys-
tem was the Vaccine Credential Initiative (VCI) [161] established in 2020 by the
Argonaut Project. The VCI aims to provide individuals with secure, privacy-
preserving, and interoperable access to their immunization information. The
VCI uses a combination of blockchain and secure enclaves to create a tamper-
proof record of an individual’s vaccine status.

Numerous non-governmental organizations, professional associations, and
private companies have been developing health and identity documents to ad-
dress the COVID-19 pandemic. For example, the World Economic Forum and
the Commons Project worked on an online platform called “CommonPass” [157]
that documents an individual’s COVID-19 status, including vaccinations, PCR
tests, and health declarations. IBM has also created a “Digital Health Pass”
[74] for health verification of employees, customers, or visitors. Meanwhile, the
International Air Transport Association launched the “IATA Travel Pass Initia-
tive” [75] smartphone app to inform airline staff and passengers about testing
and vaccination requirements.

In addition, the European Commission has proposed the creation of a “Dig-
ital Green Certificate” [47] to facilitate safe travel within the European Union.
The “Digital Green Certificate” would use blockchain technology to provide a
secure and tamper-proof record of an individual’s COVID-19 vaccine status
and test results. In a similar direction, various other countries have developed
their own vaccine passport systems, including Denmark’s “Corona Pass” [60]
and Israel’s “Green Pass” [61].

Governments and private organizations rushed to finish these projects to
combat the pandemic, resulting in shoddy applications with significant issues.
Furthermore, these applications were only tested in a limited environment. For
example, “CommonPass” was trialled by a handful of airlines and governments,
and “Health Pass” by a few organizations. In addition, the “Digital Green Cer-
tificate” only applied within the European Union, while Denmark’s “Corona
Pass” and Israel’s “Green Pass” were only valid within their respective coun-
tries. Furthermore, these “Corona Pass” and “Green Pass” systems rely on a
centralized authority to manage and verify information, creating the potential
for further problems.

The downsides of these project initiatives are listed in Table 5.1. However,

5.1. Related Work 91

Table 5.1: Drawbacks of Various Vaccine Passport Projects
Initiated by Governments and Private Organizations

System Drawbacks

Vaccine Credential
Initiative (VCI)

– Requires healthcare providers to integrate
with the VCI system, which may be a bar-
rier to adoption

CommonPass
– Limited adoption, currently being trialed

by a small number of airlines and govern-
ments

Health Pass by IBM
– Limited adoption, currently being used by

a small number of organizations

Digital Green Certifi-
cate

– Only applicable within the European
Union

– Limited adoption, still under development

Denmark’s Corona
Pass

– Requires a centralized authority to manage
and verify the information

– Limited adoption, only applicable within
Denmark

Israel’s Green Pass

– Requires a centralized authority to manage
and verify the information

– Limited adoption, only applicable within
Israel

these proposals demonstrate the increasing interest in using secure vaccine pass-
port systems across multiple geographical regions. So, researchers have gradu-
ally come up with their proposals.

The paper [68] proposes a blockchain-based solution for COVID-19 man-
agement using digital immunity certificates. It highlights the benefits of data
security, privacy, and cost-efficiency. However, the paper does not thoroughly
address challenges like implementation difficulties, scalability, and real-world
effectiveness. Further research is needed before this solution can be practically
implemented.

The authors of the paper [13] proposed a privacy-preserving distributed
platform for COVID-19 vaccine passports using blockchain and smart contracts.
This platform securely creates, stores, and verifies digital vaccine certificates.

The author [67] proposed a blockchain-based COVID-19 vaccine passport

92 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

system called VacciFi. It offers benefits such as integrity and verifiability. How-
ever, it faces significant challenges, including privacy concerns, potential in-
equality and exclusion, technical implementation issues, and hurdles in achiev-
ing widespread adoption.

The paper [140] introduces a blockchain-based system for secure vaccination
records using smart contracts and IPFS storage. This system enhances data
integrity and prevents forgery with unique hash values for each certificate.

The paper [1] discusses the challenges faced by Africa in procuring COVID-
19 vaccines and authenticating certification. The authors suggest a blockchain-
based system called BLOCOVID to secure and verify vaccination certificates
using distributed ledger technology. Vaccine serial numbers and certificates are
stored on the blockchain as hash values to ensure that they cannot be altered
and are authentic.

The paper [23] addresses privacy issues related to the personal data of users
by proposing a two-factor authentication system. One part of the system relies
on information that the user possesses, such as biometrics like retina scans and
fingerprints. The other part relies on information that the user knows, such as
personal details like date of birth, gender, and country.

In the paper [165], the authors propose modifying the process of vaccine
user verification by validating the user’s physical license with the information
provided by the user’s QR code.

Another interesting work [109] demonstrates the use of priority-based vac-
cine distribution in areas with higher positive test results.

The authors [143] suggest a Hyperledger Fabric-based consortium blockchain
solution to create digital vaccine passports (DVPs) for combating counterfeit
paper passports during the COVID-19 pandemic. They recommend federated
identity management for secure verification across different trust realms.

The paper [126] introduces a blockchain-based solution called Block-HPCT
that incorporates smart contracts for digital health passports and contact trac-
ing using proof of location. It utilizes trusted oracles, IPFS, and Hyperledger
Fabric for secure data storage, aiming for transparency in COVID-19 informa-
tion management.

In the paper [119], the authors introduce a protocol for managing digital
COVID-19 certificates. It allows users to control data sharing in a hierarchical
system using proxy re-encryption and blockchain.

The study [26] presents a blockchain-based vaccine passport system using a
dual-chain framework: a public blockchain with IoT for transparent cold-chain
logistics and a consortium blockchain for privacy and auditing. It employs
distributed threshold signatures to prevent collusion in vaccine qualification
and cryptographic tools to protect user privacy during customs checks.

The paper [54] introduces a system named UniVAC for verifying universal
vaccine passports. It uses ciphertext policy attribute-based encryption and
blockchain to provide secure access control to COVID-19 vaccine data. This
setup ensures that transactions are transparently recorded and data indexing is
reliable.

5.1. Related Work 93

T
a
bl

e
5.

2:
A

C
om

pa
ra

ti
ve

A
na

ly
si

s
w

it
h

C
ur

re
nt

St
at

e-
of

-t
he

-A
rt

A
rt

ic
le

A
lg

or
it

h
m

Im
p
le

m
en

ta
ti

on
Fa

ir
n
es

s
P

ri
va

cy
A

cc
es

s
C

on
tr

ol

P
ol

ic
y

A
d
d
it

io
n
al

S
ec

u
ri

ty
Fe

at
u
re

s

P
re

ve
nt

io
n

of

P
as

sp
or

t
Fo

rg
er

y

P
ro

h
ib

it
io

n
of

B
la

ck
M

ar
ke

ti
n
g

of
V

ac
ci

n
e

V
ia

ls

V
al

id
at

io
n

of
V

ac
ci

n
e

vi
al

A
u
th

en
ti

ci
ty

U
se

of
D

is
tr

ib
u
te

d

S
to

ra
ge

S
ys

te
m

-
IP

F
S

R
ew

ar
d
/P

en
al

ty
b
as

ed

S
ys

te
m

fo
r

h
on

es
t/

m
al

ic
io

u
s

en
ti

ti
es

[6
8]

✔
✔

✘
✔

✔
✔

✘
✘

✔
✘

[1
3]

✘
✔

✘
✔

✔
✔

✘
✘

✔
✘

[6
7]

✘
✘

✘
✔

✔
✔

✘
✘

✘
✘

[1
40

]
✘

✔
✘

✔
✘

✘
✘

✘
✔

✘

[1
]

✘
✔

✘
✔

✘
✔

✘
✘

✘
✘

[2
3]

✔
✔

✘
✔

✘
✘

✘
✘

✘
✘

[1
65

]
✔

✔
✘

✔
✘

✘
✘

✘
✘

✘

[1
09

]
✔

✔
✔

✘
✘

✘
✘

✘
✘

✘

[1
43

]
✔

✘
✘

✔
✘

✘
✘

✘
✘

✘

[1
26

]
✘

✔
✘

✔
✔

✘
✘

✘
✔

✘

[1
19

]
✔

✔
✘

✔
✘

✔
✘

✘
✔

✘

[2
6]

✘
✘

✔
✔

✘
✔

✘
✘

✘
✘

[5
4]

✔
✔

✘
✔

✔
✘

✘
✘

✔
✘

[8
5]

✘
✔

✘
✘

✔
✔

✔
✘

✘
✘

[1
03

]
✔

✔
✘

✔
✔

✘
✘

✘
✘

✘

P
ro

po
se

d
M

od
el

✔
✔

✔
✔

✔
✔

✔
✔

✔
✔

94 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

The paper [85] introduces Vacchain, a blockchain-based system to improve
the security and traceability of vaccine distribution. It presents a SYS-MAN
mechanism for role verification, mutual agreement protocols for ownership
transfer, and blockchain-based vaccine passports. The aim is to enhance data
reliability and prevent counterfeiting.

The study [103] builds a blockchain application using Solidity smart con-
tracts to enhance vaccine traceability and certificate reliability. Tested on vari-
ous networks, it shows high performance and successful deployment.

The existing vaccine passport systems have notable limitations and research
gaps. Most systems rely on a central authority, which requires trust in that
authority. Not much research has been done on using blockchain technology
to remove this centralization. The papers on blockchain-based solutions for
COVID-19 management highlight significant challenges that impede practical
implementation. Several studies, including those by [1], [13], [68], [119], [140],
[143], emphasize issues related to scalability, integration with diverse healthcare
systems, and regulatory compliance [23], [26], [54], [67], [85], [126]. Privacy
concerns and the need for robust security measures are recurrent themes in the
research by [23], [26], [54], [67], [85], [126]. Additionally, several studies, such as
those by [109], [165], highlight the challenges of ensuring data integrity and pre-
venting forgery. The need for widespread adoption, comprehensive data man-
agement, and user consent is also noted in the works by [54], [103]. There is sig-
nificant untapped potential in using smart contracts integrated with blockchain.
Critical issues such as fairness among involved parties, verification of vaccine
authenticity, and prevention of black-market trading remain inadequately ad-
dressed. Our comparison with state-of-the-art systems, as found in Table 5.2,
highlights these gaps and emphasizes the need for further research in this area.

In this chapter, we propose a smart contract-powered blockchain system
that addresses various security aspects. The proposed vaccine passport system
offers enhanced security and decentralization compared to existing solutions
such as the EU Digital COVID Certificate (DCC), which relies on centralized
storage, and IBM’s Digital Health Pass, which depends on external verification
processes. By leveraging blockchain, our system ensures tamper-proof records
and improved user control over data. Instead of storing users’ vaccination in-
formation directly on the blockchain or in a centralized database, we store it
in decentralized IPFS storage. This approach provides greater security and
privacy for users and reduces costs associated with storing large amounts of
data on the blockchain. Our system uses smart contracts to ensure fairness
among parties and verifies the authenticity of vaccine doses, thus addressing
key security concerns.

5.2 System Model

Remark 3. The problem is to develop a robust framework for vaccine passport
systems that address critical issues such as forgery, privacy breaches, and in-
efficiencies in centralized solutions. Existing systems often fail to ensure data

5.2. System Model 95

Figure 5.1: Architecture of the vaccine passport system, il-
lustrating the connections between the blockchain, government,

vaccination centers, verifiers, and users.

integrity, leaving records susceptible to tampering and unauthorized access. Ad-
ditionally, these systems lack sufficient measures to protect user privacy, as
sensitive vaccination information is typically stored in centralized databases that
are vulnerable to breaches. Manual verification processes are also slow, prone
to errors, and difficult to scale during large-scale verification scenarios. The
proposed framework, leveraging blockchain technology, offers a decentralized,
tamper-proof, and transparent system that ensures authenticity, protects user
privacy, and streamlines verification processes. This approach provides a se-
cure, and efficient solution for managing vaccine passports, addressing current
challenges while preparing for future needs.

5.2.1 Components
In our system, we have the following entities/parties (Figure 5.1):

1. Government (Govt): It is one of the major entities in our system and
has several significant functionalities.

– Govt is responsible for registering VCs in the system after verifying
their credentials.

96 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

– Govt validates citizens’ identity before generating tokenID for taking
vaccine dose.

– Govt locks money in the SCs that gets transferred to the VCs for
their service charges as per the policy.

– Govt also ensures the adequate supply of vaccine doses to various
VCs so that the entire process can run smoothly.

2. Vaccination Center (V C): It actively involved in the vaccination pro-
gram. Once registered into the system, VC can start their job and obtain
fees for the service offered.

3. Citizen/User/Traveller (C): It is the user (sometimes also referred to
as Citizen or Traveller) who takes the vaccine dose from the VC and
then obtains the vaccine passport.

4. Verifier (V F): It is another entity that verifies if the citizens’ vaccine
passports are valid.

5. Blockchain (BC): Our proposed model employs a public blockchain e.g.
Ethereum, which is a permissionless blockchain that allows anybody to
join the network. BC is used as a tamper-proof log of records distributed
across multiple nodes.

6. Smart Contract (SC): These are globally accessible executable pieces
of code that regulate the key operations within the blockchain.

7. InterPlanetary File System (IPFS): We have used IPFS to store the
citizens’ vaccine passports in a distributed manner.

5.2.2 Security Goal
We state the security properties which must be realized by our proposed proto-
col:

• Fairness : To ensure that

– A person/citizen can not forge a vaccine certificate.

– A person should be able to validate the authenticity of the vaccine
vial.

– Vaccination centers can not misuse the vaccine doses for their own
profit. Black marketing is prevented.

– Global statistics of the vaccination process can be obtained.

• Privacy : To ensure that a person’s private information, like name, ad-
dress, etc, would not be compromised or leaked to the outside world.

• Data Security : To ensure that no one can tamper with the vaccine data
or records.

5.2. System Model 97

5.2.3 Adversarial Model
– User/Party/Player: A user/party/player is said to be honest if they

adhere to the system protocol. Otherwise, It is said to be malicious (i.e.
when a user performs sporadically or deviates arbitrarily).

– Adversary: In the context of security, an adversary is a polynomial
time algorithm that can compromise any user at any given point. This
algorithm has an upper bound. The adversary is dynamic, meaning it
can coordinate attacks through message exchanges on behalf of malicious
users. On the other hand, the adversary cannot interfere with honest
users’ message exchanges, nor can it break cryptographic primitives like
encryption schemes, digital signatures or hash functions except with neg-
ligible probability. Additionally, the adversary is limited in computational
power and storage capabilities. Finally, we assume that all participants
in our system are rational. By rational, we mean that when an adver-
sary wants to exploit certain flaws in the underlying system, its primary
and sole objective is to gain sufficient benefits - either monetary or useful
information. Other sorts of malevolent functionality are not considered
adversarial conduct here (e.g. wasting system resources - CPU, memory,
time and so on).

5.2.4 Assumption
1. Every entity in our system has a unique < SK,PK > pair where PK and

SK represent the entity’s address and authentication factor, respectively.

2. The Government of every country is responsible for distributing the vac-
cine doses to its country’s vaccination centers. How the Govt gets the
vaccine doses from the manufacturer (i.e. supply-chain system) is out of
the scope of this work.

3. A Vaccination center (VC) must satisfy certain prerequisite conditions
(e.g. it should be a hospital or healthcare unit) and appeal to the respec-
tive Government expressing their interest. The requirements or criteria
may vary for different Governments of various countries. If they satisfy all
the necessary measures, the Government introduces VC into the system
by providing a unique ID.

4. To ensure that every citizen has access to the vaccine, we are not charging
any fees for taking vaccine doses. However, Governments pay vaccination
centers for their services on a per-vaccine basis.

5. Our system primarily uses the blockchain to store hashes of records,
timestamps of significant events, issuing authority signatures, and other
context-specific auxiliary information to ensure accountability, integrity,
authenticity, and fairness. Citizen vaccination information is stored in
IPFS, a decentralized peer-to-peer storage system.

98 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

6. Information about registered vaccination centers, such as their location
and contact details, is displayed on a public dashboard. Any updates to
this information are available to the public in real-time.

7. To simplify the problem caused by regulatory issues, we do not specify any
particular vaccines by name. Instead, we assume that a person must take
a dose of the vaccine. In reality, citizens must receive multiple vaccine
doses periodically.

5.2.5 Protocol Design

Table 5.3: Terminology & Notation used in our Scheme

Abbreviation Interpretation
V Vaccine Dose/Vial

VP Vaccine Passport
Govt Government

VC Vaccination Center
C Citizen

VF Vaccine Passport Verifier
< SKEntity, PKEntity > Key pair used by an Entity, Entity ∈ {Govt, V C,C, V F}

vID Vaccine Vial ID
vcID Vaccination Center ID

tokenID Token ID
applID Application ID

cID Content Identifier in IPFS System
TEvent Timestamp, when the Event occurs

Our proposed scheme is divided into 6 major modules, which are discussed
below.

Module 1: Registration of Vaccination Centers (VCs)
Before participating in the vaccination program, VCs must acquire a licence.
And they must meet certain pre-requisite conditions imposed by the individ-
ual country’s government to obtain a licence. After validating the required
credentials, the government registers an entity as VC in the system, and the
VC is assigned a unique vaccination center ID (vcID) generated by the smart
contract. Figure 5.2 depicts the VC registration process.

I. At first, the VC sends an application (Appl) to the Govt, furnishing all
the required details in off-chain communication and then registers the
timestamp of the application (TAppl) on-chain through SC.

II. Govt, in turn, creates a digest of the received application and puts it on
the BC.

III. Once VC agrees to the hash value, SC generates an Application ID
(ApplID) for future reference. On the contrary, if the VC does not con-
sent to the hash value, the protocol terminates, and the VC needs to send
a new application again.

5.2. System Model 99

Figure 5.2: Registration of Vaccination center

IV. Next, the Govt processes the application within a fixed period and verifies
if the application satisfies the necessary requirements. Accordingly, Govt
accepts or rejects the application on-chain. If the application gets
accepted, the SC will generate and assign a unique vcID against the
applicant.

Module 2: Refill of Vaccine Vials/Doses
Govt distributes the vaccine vials to the registered vaccination centers. Let us
say that V is the set of vaccine vial IDs, which will be transferred to the VC
with ID vcID upon VC applying for refilling its vaccine stock. The cardinality
of the set V is |V | = n.

V = {vi}, i ∈ N ∧ i ∈ [1, n]

I. First, the VC applies to the Govt to refill its vaccine stock. The timestamp
of the application (TRefillAppl) is recorded on BC.

100 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

II. Before transferring the vaccine vials (corresponding to the set V) to the VC,
the Govt will compute the MR (i.e. Merkle Tree Root Hash) for the set V ,
organizing the member elements in ascending order. Figure 5.3 demonstrate
the computation of MR for the set V , where |V | = 8.

Figure 5.3: Computation of MR for set V

Computing MR, Govt puts the value on the BC as the commitment of set
V (i.e. BC ← MR(V)) and then sends the corresponding vaccine vials to
the VC. Govt also locks the service charge of the VC in the SC apriori.

III. Receiving the vaccine vials, VC also computes the MR based on the vial IDs
it got and then checks whether the calculated value matches the one that the
Govt stored on BC. If the values match, VC accepts the vials; otherwise, it
refuses the delivery and returns to the Govt again.

IV. If VC accepts the vaccine stock, SC generates a unique stockID and assigns
the stock to the VC. Otherwise, SC unlocks the locked money and transfers
it to the Govt.

5.2. System Model 101

Figure 5.4: Refilling Vaccine Stock

Figure 5.4 illustrates the process of refilling vaccine stock.

Module 3: Obtaining TokenID
If citizens want to receive the vaccine, they must obtain a unique token ID from
the Govt. The process typically involves three steps.

I. The citizen must contact the appropriate Govt authority and provide valid
proof of citizenship to express their interest in being vaccinated. This com-
munication usually occurs offline.

II. Simultaneously, the citizen should also generate a message digest of their
private information, which includes their name, address, date of birth, and
citizen ID, and record it on the BC. Since the hash is stored on BC, it
preserves data privacy.

m← (Name||Addr||DOB||CitizenID)

commitm ← H(m)

BC ← commitm

102 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

III. Once the Govt verifies that the citizen has properly recorded the message
digest on the BC and that it matches the information provided offline, the
Govt will issue the citizen a unique tokenID through the SC.

Figure 5.5 illustrates the process of tokenID generation.

Figure 5.5: Obtaining TokenID

Module 4: Injecting Vaccine to Citizen by Vaccination Center
Once a citizen has received a unique tokenID, they are eligible to receive a
vaccine at a convenient VC. Information about the VCs, such as their address,
contact details, and vaccine availability, is publicly available. When a citizen
goes to the VC to receive the vaccine, a protocol runs between the citizen and
the VC to ensure that the vaccine is administered correctly.

I. First, the citizen reveals their tokenID to VC. Then VC obtains information
regarding the vaccination status of the citizen from the BC. If the citizen is
not vaccinated, the protocol proceeds further; otherwise, abort.

II. In the next stage, both the parties, i.e. VC and citizen, lock a certain
amount into the SC. Locking money ensures fairness. If the parties behave
maliciously later in the protocol, they will be penalized by deducting their
locked money. Honest parties will eventually recover their locked money at
later stages.

5.2. System Model 103

Figure 5.6: Injecting Vaccine to Citizen by Vaccination Center

III. Once the money gets locked, VC proceeds further to inject the vaccine dose.
VC picks the vaccine vial. Next, VC proves towards the citizen that the cho-
sen vial is authentic and received from the Govt. Essentially, VC convinces
this fact by providing a set membership proof corresponding to the selected
vaccine vial ID. VC generates a Merkle Tree Proof of log(n) in size. VC
sends the log(n) size proof to the citizen in offline mode and puts the hash of
the proof on BC as a commitment of the proof. Without loss of generality,
let’s say VC picks the vaccine vial with vID - v4 to be injected (Figure 5.3).
In this case, the proof consists of < Hv3, Hv1v2, Hv5v6v7v8 > (Blue colored
internal nodes in Figure 5.3).

104 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Figure 5.7: Generating and Storing Citizen’s Vaccine Passport
on IPFS

Figure 5.8: Vaccine Passport as a JSON File

MT_Proof ← < Hv3, Hv1v2, Hv5v6v7v8 >

commitMT_Proof ← H(Hv3||Hv1v2||Hv5v6v7v8)

BC ← commitMT_Proof

5.2. System Model 105

Figure 5.9: Verification Process of Citizen’s V P

VC sends the MT_Proof for vial ID - v4 to the citizen and keeps the
commitment of the proof commitMT_Proof on the BC.

IV. Receiving MT_Proof , the citizen verifies if it matches the commitMT_Proof

stored on BC. If so, citizen provides their consent (Consent I as mentioned
in Figure 5.6); else, protocol aborts.

V. Next, VC hands over the vaccine vial to the citizen, keeping the commitment
of vaccine vial ID on BC. Subsequently, SC conducts a thorough check to
confirm the freshness of the vaccine vial associated with the given commit-
ment, ensuring it has not been used previously. In our example, VC does
the following:

106 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

commitvID ← H(v4)

BC ← commitvID

VI. Then citizen verifies if the given vaccine vial satisfies the commitvID. Also,
citizen checks the expiry date and other important information printed on
the vial. If the citizen finds everything is right, s/he provides their consent
(Consent II as mentioned in Figure 5.6); else, protocol aborts.

VII. Next, the citizen again provides their consent for the third time (Consent
III as mentioned in Figure 5.6). This time citizen verifies whether the given
MT_Proof for the specified vial with vID matches the Merkle Tree Root
hash, i.e., MR. Notably, Govt stored this MR on the BC while delivering
the vaccine vials to the VC.

On the contrary, if the citizen finds that the MR does not match the given
proof for the vial, then the citizen complaints to the SC. If citizen dissents,
VC must reveal the proof to the SC within a specific time window. SC
verifies the correctness of the complaint and judges the faulty party. Conse-
quently, the malicious party gets penalized and it will lose its locked money.

VIII. Upon receiving Consent III from the citizen, the VC administers the vaccine
dose and records the vaccination timestamp on the BC.

IX. Following vaccination, the citizen is required to acknowledge receipt within
a specified time window. In the event of a negative acknowledgement, where
the citizen denies receiving the vaccine despite the VC registering a times-
tamp of vaccination, legal intervention may be necessary to address the dis-
crepancy. Although real-time image capture during vaccination could poten-
tially resolve this issue using cameras/IoT devices, it falls outside the scope
of this work.

X. Upon receiving a positive acknowledgement from the citizen, the corre-
sponding vID is marked as USED. Simultaneously, the VC is granted its
service charge, which had been previously locked in the SC by the Govt
during the initial dispatch of the vaccine stock. Additionally, the SC unlocks
the VC’s security deposit. However, the locked amount from the citizen is
not immediately released for security reasons. It will be released after the
receipt of the Vaccine Passport (V P) as part of the subsequent protocol
between the citizen and the Govt.

Module 5: Generating and Storing of Citizen’s Vaccine Passport
Following the successful vaccine administration, the citizen’s vaccination status
is promptly updated on the BC. Subsequently, citizens are required to apply for
a V P from the government, encompassing crucial details such as the vaccination
date, time, vaccine vial ID, and VC information. For a visual representation of
a typical VP’s contents, please refer to Figure 5.8.

5.2. System Model 107

In our system, V P is securely stored off-chain through the IPFS system. A
citizen must initiate the V P application process to unlock the funds held during
the upfront vaccination protocol. Moreover, from a security perspective, this
protocol assumes significance as it empowers the SC to verify the accuracy of
information provided by the citizen. The process of V P application, generation,
and storage generally involves the following steps:

I. A citizen applies for a V P from the government by locking a certain amount
on the SC and recording the application timestamp on the BC.

II. If the SC verifies the applicant’s vaccination status as true and confirms the
absence of the V P , the government proceeds to the next stage by locking a
certain amount on the SC.

III. Subsequently, the citizen needs to substantiate the truth of their vaccina-
tion by disclosing the vaccine vial ID (vID) and committing the Merkle Tree
Proof (commitMT_Proof∗) on the SC for vID membership verification. Si-
multaneously, the citizen sends the proof to the government offline.

IV. The SC retrieves the stored values for vial ID commitment and Merkle tree
proof commitment, previously shared by the VC, upon which the citizen
provided its Consent I and Consent II (Figure 5.6). If the commitment
values match those shared by the citizen, the protocol proceeds; otherwise,
it terminates. The SC also checks if the vial with vID is marked as USED.

V. Upon receiving the Merkle tree proof offline, the government verifies its
match with the commitment. Consequently, the government provides its
initial response - Consent 1 or Dissent 1.

VI. Once Consent 1 is given, the government verifies if the Merkle tree proof vali-
dates the vial’s membership with vID. Subsequently, the government provides
its Consent 2 or Dissent 2. If Dissent 2 is given, the government must
submit the proof to the SC.

VII. With Consent 2 granted, the government initiates the creation of the citizen’s
V P by performing the following operations:

1) Creates the citizen’s V P .

2) Computes the message digest of the V P (i.e., MDV P).

3) Signs digitally on the MDV P .

4) Keeps the MDV P and its signature on the BC.

5) Encrypts the V P using PKC .

6) Uploads the encrypted V P of the citizen to IPFS.

7) Retrieves the cID from IPFS.

8) Records the cID on the BC.

108 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

MDV P ← H(V P)

σ ← SIGSKGovt
(MDV P)

BC ← < MDV P , σ >

Enc_V P ← EncryptPKC
(V P)

cID ← Uploads Enc_V P to IPFS

BC ← cID

VIII. Once the citizen’s VP is generated and cID is recorded on the BC, the
SC unlocks the security deposits for both parties. It is important to note
that, at this time, the citizen receives the money not only for this particular
protocol but also for the preceding protocol conducted between the citizen
and the vaccination center.

Refer to Figure 5.7 for an illustration of the process of creating and storing a
vaccine passport for a citizen.

Module 6: Verification of Vaccine Passport
When a verifier proceeds to check a user’s V P , s/he must pass through a pro-
tocol as shown in Figure 5.9.

I. VF seeks permission from the citizen to check their V P . Once the citizen
grants so, VF obtains the cID through SC interaction. Obtaining the cID,
VF can fetch the citizen’s encrypted V P from IPFS.

II. Since V P was encrypted under the citizen’s public key (i.e. PKC), VF
needs the citizen’s secret key (i.e. SKC) to decrypt it. However, sharing
SK compromises system security. So, instead of sharing a secret key, we are
introducing the Proxy Re-encryption technique here. However, the proxy is
absent here; the proxy’s job is delegated to the end parties.

III. The citizen generates a re-encryption key and then shares the key with the
V F , while keeping the key’s commitment on the BC.

RKC→V F ← GenReencKey(SKC , PKV F)

commitRK ← H(RKC→V F)

BC ← commitRK

IV. Receiving the RKC→V F , VF will re-encrypt the encrypted file. This re-
encryption enables the VF to decrypt the file using its own secret key
(SKV F).

V. After the decryption, VF fetches the message digest of the citizen’s V P (i.e.,
MDV P) and checks if it complies with the decrypted file. VF also verifies
the issuing VC’s signature σ from BC. And then, the VF decides if the

5.2. System Model 109

citizen’s V P is valid. A record containing the VF’s details, timestamp, and
verification result is put on the BC.

5.2.6 Implementation & Technical Details
As per the protocols described in Subsection 5.2.5, the entire system can be
divided into six main modules. Each module facilitates the interaction between
multiple parties and records the transactions in the blockchain. These six main
modules serve the following purposes:

1. Registration of New Vaccination Centers

2. Refilling Vaccine Stock at Vaccination Centers

3. Obtaining TokenID by Citizen

4. Injecting Vaccine to Citizen by Vaccination Centers

5. Generating & Storing Vaccine Passport by Government

6. Verifying Vaccine Passport by Verifier

Each module is written as an algorithm, converted into smart contract codes,
and deployed on the Sepolia Test Network. Each smart contract consists of a
set of structures, mappings, and methods. We have documented timestamps
corresponding to various events or instances when an entity invokes a function,
and these are detailed in Table 5.4. Readers can refer to Table 5.5 and Table 5.6,
respectively, for the necessary structures and mapping definitions used in our
algorithms.

1. Algorithm for Registration of New Vaccination Centers: The al-
gorithm 4 overseeing the VC registration process (as discussed in Subsec-
tion 5.2.5 Module 1) comprises specific methods that are invoked in sequence
by the alternating parties (VC and Govt) at specific time intervals.
This algorithm 4 allows new vaccination centers (VC) to register themselves
onto the blockchain network. Once registered, they are provided with a
unique ID (vcID) and can start administering vaccines.
Sequence of methods in algorithm 4:

– timestampRegAppl → VC creates RegAppl and sets TAppl.
– regApplHash → Govt submits the hash of the application.
– decideOnAcceptanceHash → VC accepts/rejects the hash.
– decideOnAcceptanceRegAppl → Govt accepts/rejects application.

2. Algorithm for Refilling Vaccine Stock at Vaccination Centers: The
algorithm 5 facilitates the replenishment of vaccine vials or doses at vacci-
nation centers, with crucial information securely stored on the blockchain
(as discussed in Subsection 5.2.5 Module 2). This ensures transparency and
security in the vaccine distribution process. The algorithm comprises specific
functions that are alternately invoked by VC and Govt in a timely manner.
Sequence of methods in algorithm 5:

110 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Table 5.4: Timestamp Definitions Across Various Modules of
our Vaccine Passport System

Module 1: Registration of Vaccination Centers
Abbreviation Interpretation

TregAppl Timestamp when VC submits the registration application
ThashAppl Timestamp when Govt submits hash of the received application

TdecideOnHash Timestamp when VC consents/descents on the hash value
TdecideOnAppl Timestamp when Govt accepts/rejects the registration application

Module 2: Refilling of Vaccine Stock
Abbreviation Interpretation

TrefillAppl Timestamp when VC submits the refill application
Tcommitment Timestamp when Govt commits MR of the vaccine set

Module 3: Obtaining TokenID
Abbreviation Interpretation

TAppl Timestamp when C submits token application
TV erification Timestamp when Govt provides result verifying application

Module 4: Injecting Vaccine
Abbreviation Interpretation

TprotocolBegins Timestamp when C initiates the protocol
TlockMoneyByV C Timestamp when VC locks money
TlockMoneyByC Timestamp when C locks money

TcommitMT_Proof
Timestamp when VC commits MT_Proof

Tconsent1 Timestamp when C sends consent1/descent1
TcommitvID Timestamp when VC commits to vID
Tconsent2 Timestamp when C sends consent2/descent2
Tconsent3 Timestamp when C sends consent3/descent3

TmoneyReceivedByC Timestamp when C receives it’s locked money
TmoneyReceivedByV C Timestamp when VC receives it’s locked money

TprotocolEnds Timestamp when VC ends the protocol successfully
Module 5: Generating and Storing Vaccine Passport

Abbreviation Interpretation
TlockMoneyByC Timestamp when C locks money

TlockMoneyByGovt Timestamp when Govt locks money
TprovideV accinationProof Timestamp when C sends the vaccination proof

Tconsent1 Timestamp when Govt sends consent1/descent1
Tconsent2 Timestamp when Govt sends consent2/descent2
TissueV P Timestamp when Govt issues VP

TmoneyReceivedByC Timestamp when C receives it’s locked money
TmoneyReceivedByGovt Timestamp when Govt receives it’s locked money

Module 6: Verifying Vaccine Passport
Abbreviation Interpretation
TlockMoneyByV F Timestamp when VF locks money

TlockMoneyAndCommitRkByC Timestamp when C locks money and commits Re-encryption Key
TprovideConsent Timestamp when VF provides consent
TgrantAccessByC Timestamp when C grants access to VF

TfetchV PInfo Timestamp when VF fetches VP information
TverificationResult Timestamp when VF sends verification result

TunlockMoney Timestamp when security money gets unlocked

– refillStockAppl → VC submits ReStockAppl to Govt.

– commitVaccineSet → Govt commits the MR of the vaccine set to be
delivered and also locks the service charge for VC on SC.

– decideOnAcceptanceVaccineSet → VC provides its consent if the MR
matches with the received vaccine vials set; otherwise, it declines.

– takeAwayLockedMoney → Govt can withdraw the locked amount if VC
denies accepting the vaccine set or becomes unresponsive.

5.2. System Model 111

Table 5.5: Structs Used in our Implementation

Module 1: Registration of Vaccine Centers
Struct Name Members

V C
vcID, currentStockID, vialsInStock, mon-
eyEarned

RegAppl
underReview, TregAppl, ThashAppl, hash,
TdecideOnHash, decision, TdecideOnAppl, regAp-
plID

Module 2: Refilling of Vaccine Stock
Struct Name Members

ReStockAppl
refillApplID, TrefillAppl, underProcess,
vialsCount, commitment, Tcommitment

V accineStock stockID, owner, vialsCount, stockMR
Module 3: Obtaining TokenID
Struct Name Parameters

Citizen
citizenInfoDigest, tokenID, vaccinationSta-
tus, vpStatus, cID

TokenAppl
tokenApplID, citizenInfoDigest, underRe-
view, TtokenAppl, result, Tresult

Module 4: Injecting Vaccine
Struct Name Parameters

InjectingProtocol

protocolID, underProcess, tokenID, vcID,
TprotocolBegins, TlockMoneyByV C , TlockMoneyByC ,
commitMT_Proof , TcommitMT_Proof

, consent1,
Tconsent1, commitvID, TcommitvID , consent2,
Tconsent2, consent3, Tconsent3, Tvaccination

, TmoneyReceivedByC , TmoneyReceivedByV C , ac-
knowledgement, Tacknowledgement

Module 5: Generating & Storing Vaccine Passport
Struct Name Parameters

V P MDV P , σ, cID

V PAppl

vpApplID, applicantTokenID, TlockMoneyByC ,
TlockMoneyByGovt, TprovideV accinationProof , con-
sent1, Tconsent1, consent2, Tconsent2, TissueV P ,
TmoneyReceivedByC , TmoneyReceivedByGovt

Module 6: Verifying Vaccine Passport
Struct Name Parameters

V erificationProtocol

vfProtocolID, underExecution, to-
kenID, vfAddr, TlockMoneyByV F ,
TlockMoneyAndCommitRkByC , consent,
TprovideConsent, TgrantAccessByC , TfetchV PInfo,
verificationResult, TverificationResult,
TunlockMoney

3. Algorithm for Obtaining TokenID by Citizen: The algorithm 6 enables
citizens to obtain a unique TokenID, a prerequisite for accessing vaccination
services. As mentioned in Subsection 5.2.5 Module 3), the process begins
with a citizen (C) applying for the TokenID from the Govt. To protect
privacy, the citizen’s private information is initially transmitted to the Govt
through an off-chain mode. After this, all subsequent transactions take place
on the blockchain.
Sequence of methods in algorithm 6:

112 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Table 5.6: Mappings Used in our Implementation

Module 1: Registration of Vaccine Centers
Mapping Name Relations

currentRegistrationAppl Maps RegAppl ← VC Address
RegApplBelongsTo Maps VC Address ← regApplID

vcAddrTovcID Maps vcID ← VC Address
vcIDToV CDetails Maps VC ← vcID
Module 2: Refilling Vaccine Stock
Mapping Name Relations
currentRefillAppl Maps ReStockAppl ← VC Address

lockedServiceCharge Maps Locked Amount ← VC Address
vaccineStockDetails Maps VaccineStock ← stockID
Module 3: Obtaining TokenID
Mapping Name Relations
currentTokenAppl Maps TokenAppl ← citizenInfoDigest

tokenAppl Maps TokenAppl ← tokenApplID
citizenAddrTocitizenInfoDigest Maps citizenInfoDigest ← Citizen Address

citizenInfoDigestToTokenID Maps tokenID ← citizenInfoDigest
tokenIDToCitizenDetails Maps Citizen ← tokenID

Module 4: Injecting Vaccine
Mapping Name Relations

currentInjectingProtocol Maps InjectingProtocol ← C Address
informationAboutV P Maps VP ← tokenID

vialState Maps {"Used", "Reserved", "Unused"} ← vial ID commitment
Module 5: Generating and Storing Vaccine Passport
Mapping Name Relations
currentV PAppl Maps VPAppl ← C Address

Module 6: Verifying Vaccine Passport
Mapping Name Relations

verificationProtocolDetails Maps VerificationProtocol ← vfProtocolID
accessControl Maps Boolean (true/false) ← tokenID × vfAddr

– applForTokenID → C applies for a TokenID. The function parameter
citizenInfoDigest represents the commitment of personal data (men-
tioned as commitm in Figure 5.5).

– verifyAppl → Govt decides whether to accept or reject the application
based on the provided information.

4. Algorithm for Injecting Vaccine to Citizen: The Algorithm 7 out-
lines the secure and transparent process through which a VC administers
a vaccine dose to a C. The details of the protocol have been discussed in
Subsection 5.2.5 Module 4.
Sequence of methods in algorithm 7:

– beginProtocol → C begins the protocol mentioning its desired vcID.

– lockMoneyByVC → V C locks security money.

– lockMoneyByC → C locks security money.

– commitMTProof → V C commits MT_Proof .

– provideConsent1 → C provides its first consent.

– commitVialID → V C commits the vial ID (vID) to ensure traceability.

5.2. System Model 113

Algorithm 4 Algorithm for VC Registration
Function timestampRegAppl() ▷ Caller: V C

Fetch: Current RegAppl of VC
Check: If VC not yet registered
Check: If RegAppl.underReview == false
RegAppl ← new RegAppl
RegAppl.TregAppl ← block.timestamp
RegAppl.underReview ← true
Update: Mapping entries of currentRegistrationAppl
Store: RegAppl

end

Function regApplHash(vcAddr, hashAppl) ▷ Caller: Govt
Fetch: Current RegAppl of VC having address vcAddr
Check: If VC not yet registered
Check: If RegAppl.underReview == true
Check: If RegAppl.TregAppl ̸= 0
Check: If (block.timestamp−RegAppl.TregAppl) ≤ timeout
RegAppl.ThashAppl ← block.timestamp
RegAppl.hash ← hashAppl
Update: RegAppl

end

Function decideOnAcceptanceHash(decision) ▷ Caller: V C
Fetch: Current RegAppl of VC
Check: If VC not yet registered
Check: If RegAppl.underReview == true
Check: If RegAppl.ThashAppl ̸= 0
Check: If (block.timestamp−RegAppl.ThashAppl) ≤ timeout
if decision == true then

Generate: a unique regApplID
RegAppl.regApplID ← regApplID
Update: Mapping entries of regApplBelongsTo

else
RegAppl.underReview ← false

RegAppl.TdecideOnHash ← block.timestamp
Update: RegAppl

end

Function decideOnAcceptanceRegAppl(regApplID, decision) ▷ Caller: Govt
Check: If regApplID valid
vcAddr ← regApplBelongsTo[regApplID]
Fetch: Current RegAppl of VC having address vcAddr
Check: If VC not yet registered
Check: If RegAppl.underReview == true
Check: If RegAppl.TdecideOnHash ̸= 0
Check: If (block.timestamp−RegAppl.TdecideOnHash) ≤ timeout
if decision == true then

Generate: a unique vcID
Assign the vcID to the VC
VC ← new VC
VC.vcID ← vcID ; VC.vialsInStock ← 0
Update: VC
Update: Mapping entries of vcAddrTovcID & vcIDToVCDetails

RegAppl.decision ← decision
RegAppl.TdecideOnAppl ← block.timestamp
RegAppl.underReview ← false
Update: RegAppl

end

– provideConsent2 → C provides its second consent.

– provideConsent3 → C provides its third consent, verifying if the given
vID satisfies the membership proof.

– registerVaxTimestamp → V C registers the timestamp of vaccination on
the BC.

114 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Algorithm 5 Algorithm for Refilling Vaccine Stock
Function refillStockAppl() ▷ Caller: V C

Check: If VC is registered
Check: If VC.vialsInStock == 0
Fetch: Current ReStockAppl of VC
Check: If ReStockAppl.underProcess == false
ReStockAppl ← new ReStockAppl
Generate: a unique refillApplID
ReStockAppl.refillApplID ← refillApplID
ReStockAppl.TrefillAppl ← block.timestamp
ReStockAppl.underProcess ← true
Update: ReStockAppl
Update: Mapping entries of currentRefillAppl

end

Function commitVaccineSet(vialsCount, MR, vcAddr) ▷ Caller: Govt
Check: If VC having address vcAddr is registered
Check: If vialsCount > 0
Fetch: Current ReStockAppl of VC.
Check: If ReStockAppl.underProcess == true
Check: ReStockAppl.TrefillAppl ̸= 0
Check: If (block.timestamp−ReStockAppl.TrefillAppl) ≤ timeout
Check: If correct amount (as serviceCharge of VC) is locked
Update: Mapping entries of lockedServiceCharge
ReStockAppl.vialsCount ← vialsCount
ReStockAppl.commitment ← MR
ReStockAppl.Tcommitment ← block.timestamp
Update: ReStockAppl

end

Function decideOnAcceptanceVaccineSet(decision) ▷ Caller: V C
Check: If VC is registered.
Fetch: Current ReStockAppl of VC
Check: If ReStockAppl.underProcess == true
Check: If ReStockAppl.Tcommitment ̸= 0
Check: If (block.timestamp−ReStockAppl.Tcommitment) ≤ timeout
if decision == true then

Generate: a unique stockID
Instantiate new VaccineStock and populate the members
VC.currentStockID ← stockID
Update: VC
Update: Mapping entries of vaccineStockDetails

else
Transfer: locked money to Govt
Update: Mapping entries of lockedServiceCharge

ReStockAppl.TacceptV accineSet ← block.timestamp
ReStockAppl.underProcess ← false
Update: ReStockAppl

end

Function takeAwayLockedMoney(vcAddr) ▷ Caller: Govt
Check: If VC having address vcAddr is registered
Fetch: Current ReStockAppl of VC.
Check: If ReStockAppl.underProcess == true
Check: If ReStockAppl.Tcommitment ̸= 0
Check: If ReStockAppl.TacceptV accineSet == 0
Check: If (block.timestamp−ReStockAppl.Tcommitment) > timeout
ReStockAppl.underProcess ← false
Transfer: locked money to Govt
Update: Mapping entries of lockedServiceCharge

end

– acknowledgeVaccination → C acknowledges the vaccination, completing
the process.

5. Algorithm for Generating and Storing Vaccine Passport of Citizen:

5.2. System Model 115

Algorithm 6 Algorithm for Obtaining Citizen Token
Function applForTokenID(citizenInfoDigest) ▷ Caller: C

Check: C with given citizenInfoDigest not yet received tokenID
Fetch: Current TokenAppl of C
Check: If TokenAppl.underReview == false
TokenAppl ← new TokenAppl
Generate: a unique tokenApplID
TokenAppl.tokenApplID ← tokenApplID
TokenAppl.citizenInfoDigest ← citizenInfoDigest
TokenAppl.underReview ← true
TokenAppl.TtokenAppl ← block.timestamp
Update: TokenAppl
Update: Mapping entries of currentTokenAppl, tokenAppl & citizenAddrTocitizenInfoDigest

end

Function verifyAppl(tokenApplID, decision) ▷ Caller: Govt
Fetch: TokenAppl corresponding to tokenApplID
Check: If TokenAppl.underReview == true
Check: If TokenAppl.TtokenAppl ̸= 0
Check: If TokenAppl.Tresult == 0
Check: If (block.timestamp−TokenAppl.TtokenAppl) ≤ timeout
Check: If C with TokenAppl.citizenInfoDigest not yet received tokenID
if decision == true then

Generate: a unique tokenID
Citizen ← new Citizen
Citizen.citizenInfoDigest ← TokenAppl.citizenInfoDigest
Citizen.tokenID ← tokenID
Citizen.vaccinationStatus ← false
Citizen.cID ← NULL
Update: Citizen
Update: Mapping entries of citizenInfoDigestToTokenID & tokenIDToCitizenDetails

TokenAppl.result ← decision
TokenAppl.Tresult ← block.timestamp
TokenAppl.underReview ← false
Update: TokenAppl

end

After successfully receiving the vaccine, the C must apply for the VP to the
Govt. The vaccine passport includes information about the vaccine name,
target disease, timestamp of vaccination, and other relevant details. Due
to the large size of the file, it is not stored directly on the BC. Instead,
Govt uploads the encrypted vaccine passport (VP) to IPFS and then stores
the essential security information on the BC invoking SC functions. The
Algorithm 8 corresponding to the protocol Subsection 5.2.5 Module 5 depicts
the entire process of how the Govt issues and stores VP of a citizen who
received the vaccine.
Sequence of methods in algorithm 8:

– initiateVPApplAndLockMoney → C initiates the VP application by
locking a certain amount on SC.

– lockMoneyByGovt → Govt also locks the same amount on SC.

– sendVaccinationProof → C submits vaccination proof, specifies vial ID
- vID and commits MT_proof on-chain.

– sendConsent1 → Upon offline verification of the Merkle tree proof
against the on-chain commitment, the Govt issues its initial consent.

– sendConsent2 → Govt provides its second consent if the vID satisfies
the given membership proof.

116 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Algorithm 7 Algorithm for Injecting Vaccine
Function beginProtocol(vcID) ▷ Caller: C

Check: If vcID is valid
Check: If C has a valid tokenID and not yet vaccinated
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == false
InjectingProtocol ← new InjectingProtocol
Generate: a unique protocolID
InjectingProtocol.protocolID ← protocolID
InjectingProtocol.underProcess ← true
InjectingProtocol.tokenID ← tokenID
InjectingProtocol.vcID ← vcID
InjectingProtocol.TprotocolBegins ← block.timestamp
Update: InjectingProtocol
Update: Mapping entries of currentInjectingProtocol

end

Function lockMoneyByVC(cAddr) ▷ Caller: V C
Check: If VC has a valid vcID
Check: If C with cAddr has a valid tokenID and is not vaccinated
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.TprotocolBegins ̸= 0
Check: If InjectingProtocol.TlockMoneyByV C == 0
Check: If (block.timestamp−InjectingProtocol.TprotocolBegins) ≤ timeout
Check: If correct amount is locked
InjectingProtocol.TlockMoneyByV C ← block.timestamp
Update: InjectingProtocol

end

Function lockMoneyByC(vcID) ▷ Caller: C
Check: If C has a valid tokenID and is not vaccinated
Check: If vcID is valid
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.TlockMoneyByV C ̸= 0
Check: If InjectingProtocol.TlockMoneyByC == 0
Check: If (block.timestamp−InjectingProtocol.TlockMoneyByV C) ≤ timeout
Check: If correct amount is locked
InjectingProtocol.TlockMoneyByC ← block.timestamp
Update: InjectingProtocol

end

Function commitMTProof(cAddr, commitMT_Proof) ▷ Caller: V C
Check: If VC has a valid vcID
Check: If C with cAddr has a valid tokenID and is not vaccinated
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.TlockMoneyByC ̸= 0
Check: If InjectingProtocol.TcommitMT_Proof

== 0
Check: If (block.timestamp−InjectingProtocol.TlockMoneyByC) ≤ timeout
InjectingProtocol.commitMT_Proof ← commitMT_Proof

InjectingProtocol.TcommitMT_Proof
← block.timestamp

Update: InjectingProtocol
end

– uploadVPInfo → Finally, Govt uploads the encrypted VP on IPFS and
uploads essential security parameters onchain by calling this function.
At the same time, SC releases the locked amount to both Govt and C.

5.2. System Model 117

Algorithm 7 Algorithm for Injecting Vaccine (Contd.)
Function provideConsent1(vcID, consent1) ▷ Caller: C

Check: If C has a valid tokenID and is not vaccinated
Check: If vcID is valid
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.TcommitMT_Proof

̸= 0
Check: If InjectingProtocol.Tconsent1 == 0
Check: If (block.timestamp−InjectingProtocol.TcommitMT_Proof

) ≤ timeout
if consent1 == false then

Transfer Money: C and VC get back their locking amount
TmoneyReceivedByC = TmoneyReceivedByV C ← block.timestamp
InjectingProtocol.underProcess ← false

InjectingProtocol.consent1 ← consent1
InjectingProtocol.Tconsent1 ← block.timestamp
Update: InjectingProtocol

end

Function commitVialID(cAddr, commitvID) ▷ Caller: V C
Check: If VC has a valid vcID
Check: If C with cAddr has a valid tokenID and is not vaccinated
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.Tconsent1 ̸= 0
Check: If InjectingProtocol.TcommitvID

== 0
Check: If (block.timestamp−InjectingProtocol.Tconsent1) ≤ timeout
Check: If vialState of the vial with commitvID is "Unused"
InjectingProtocol.commitvID ← commitvID
InjectingProtocol.TcommitvID

← block.timestamp
Update: InjectingProtocol
Update: Mapping entries of vialState (change vial state to "Reserved")

end

Function provideConsent2(vcID, consent2) ▷ Caller: C
Check: If C has a valid tokenID and is not vaccinated
Check: If vcID is valid
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.TcommitvID

̸= 0
Check: If InjectingProtocol.Tconsent2 == 0
Check: If (block.timestamp−InjectingProtocol.TcommitvID

) ≤ timeout
if consent2 == false then

Transfer Money: C and VC get back their locking amount
TmoneyReceivedByC = TmoneyReceivedByV C ← block.timestamp
InjectingProtocol.underProcess ← false

InjectingProtocol.consent2 ← consent2
InjectingProtocol.Tconsent2 ← block.timestamp
Update: InjectingProtocol

end

6. Algorithm for Verifying Vaccine Passport: This algorithm (corre-
sponding to the protocol described in Subsection 5.2.5 Module 6) allows
healthcare providers and other authorized parties to verify the authenticity
of a citizen’s vaccine passport. This helps prevent fraud and ensures that
only vaccinated individuals are granted access to certain services.
Sequence of methods in algorithm 9:

– lockMoneyByVF → VF locks money on SC specifying the C ’s address

118 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Algorithm 7 Algorithm for Injecting Vaccine (Contd.)
Function provideConsent3(vcID, consent3) ▷ Caller: C

Check: If C has a valid tokenID and is not vaccinated
Check: If vcID is valid
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.Tconsent2 ̸= 0
Check: If InjectingProtocol.Tconsent3 == 0
Check: If (block.timestamp−InjectingProtocol.Tconsent2) ≤ timeout
InjectingProtocol.consent3 ← consent3
InjectingProtocol.Tconsent3 ← block.timestamp
Update: InjectingProtocol

end

Function registerVaxTimestamp(cAddr) ▷ Caller: V C
Check: If VC has a valid vcID
Check: If C with cAddr has a valid tokenID and is not vaccinated
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.Tconsent3 ̸= 0
Check: If InjectingProtocol.consent3 == true
Check: If InjectingProtocol.Tvaccination == 0
Check: If (block.timestamp−InjectingProtocol.Tconsent3) ≤ timeout
InjectingProtocol.Tvaccination ← block.timestamp
Update: InjectingProtocol

end

Function acknowledgeVaccination(vcID, ack) ▷ Caller: C
Check: If C has a valid tokenID and is not vaccinated
Check: If vcID is valid
Fetch: Current InjectingProtocol of C
Check: If InjectingProtocol.underProcess == true
Check: If InjectingProtocol.vcID == vcID
Check: If InjectingProtocol.tokenID == tokenID
Check: If InjectingProtocol.Tvaccination ̸= 0
Check: If InjectingProtocol.Tacknowledgement == 0
Check: If (block.timestamp−InjectingProtocol.Tvaccination) ≤ timeout
if ack == true then

Transfer Money: VC gets its locking amount and also the serviceCharge
TmoneyReceivedByV C ← block.timestamp
C.vaccinationStatus ← true
VC.vialsInStock ← VC.vialsInStock - 1
VC.moneyEarned ← V C.moneyEarned + serviceCharge
InjectingProtocol.underProcess ← false
Update: VC, C
Update: Mapping entries of vialState (change vial state to "Used")

InjectingProtocol.acknowledgment ← ack
InjectingProtocol.Tacknowledgement ← block.timestamp
Update: InjectingProtocol

end

for which passport verification is sought, and it marks the start of the
verification protocol.

– lockMoneyAndCommitRK → C also locks the same amount on SC and
commits re-encryption key - RK.

– provideConsent → VF provides its consent if the offline received RK
matches with its commitment.

– grantAccessPermission → C provides access permission to VF to fetch
cID for encrypted VP.

5.2. System Model 119

Algorithm 8 Algorithm for Generating and Storing Vaccine Passport
Function initiateVPApplAndLockMoney() ▷ Caller: C

Check: If C has a valid tokenID and is vaccinated
Check: If C has not obtained VP
Check: If correct amount is locked
Fetch: Current VPAppl of C
Check: If VPAppl.underprocess == false
VPAppl ← new VPAppl
Generate: a unique vpApplID
VPAppl.vpApplID ← vpApplID
VPAppl.applicantTokenID ← tokenID
VPAppl.TlockMoneyByC ← block.timestamp
Update: VPAppl
Update: Mapping entries of currentVPAppl

end

Function lockMoneyByGovt(cAddr) ▷ Caller: Govt
Check: If C with cAddr has a valid tokenID and is vaccinated
Check: If C has not obtained VP
Check: If correct amount is locked
Fetch: Current VPAppl of C
Check: If VPAppl.underprocess == true
Check: If VPAppl.applicantTokenID == tokenID
Check: If VPAppl.TlockMoneyByC ̸= 0
Check: If VPAppl.TlockMoneyByGovt == 0
Check: If (block.timestamp−VPAppl.TlockMoneyByC) ≤ timeout
VPAppl.TlockMoneyByGovt ← block.timestamp
Update: VPAppl

end

Function sendVaccinationProof(vID, commitMT_Proof) ▷ Caller: C
Check: If C has a valid tokenID and is vaccinated
Check: If C has not obtained VP
Fetch: Current VPAppl of C
Check: If VPAppl.underprocess == true
Check: If VPAppl.applicantTokenID == tokenID
Check: If VPAppl.TlockMoneyByGovt ̸= 0
Check: If VPAppl.TprovideV accinationProof == 0
Check: If (block.timestamp−VPAppl.TlockMoneyByGovt)≤timeout
Fetch: Latest InjectingProtocol of C
Check: If InjectingProtocol.commitMT_Proof==commitMT_Proof

Check: If InjectingProtocol.commitvID == h(vID)
Check: If vial with ID - vID is “Used”, employing Map vialState
VPAppl.TprovideV accinationProof ← block.timestamp
Update: VPAppl

end

Function sendConsent1(cAddr, consent1) ▷ Caller: Govt
Check: If C with cAddr has a valid tokenID and is vaccinated
Check: If C has not obtained VP
Fetch: Current VPAppl of C
Check: If VPAppl.underprocess == true
Check: If VPAppl.applicantTokenID == tokenID
Check: If VPAppl.TprovideV accinationProof ̸= 0
Check: If VPAppl.Tconsent1 == 0
Check: If (block.timestamp−VPAppl.TprovideV accinationProof) ≤ timeout
if consent1 == false then

Transfer Money: Govt and C get back their locking amount
VPAppl.TmoneyReceivedByGovt ← block.timestamp
VPAppl.TmoneyReceivedByC ← block.timestamp
VPAppl.underProcess ← false

VPAppl.consent1 ← consent1
VPAppl.Tconsent1 ← block.timestamp
Update: VPAppl

end

– fetchVPInfo → VF retrieves C ’s encrypted VP details.

120 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Algorithm 8 Algorithm for Generating and Storing Vaccine Passport (Contd.)
Function sendConsent2(cAddr, consent2) ▷ Caller: Govt

Check: If C with cAddr has a valid tokenID and is vaccinated
Check: If C has not obtained VP
Fetch: Current VPAppl of C
Check: If VPAppl.underprocess == true
Check: If VPAppl.applicantTokenID == tokenID
Check: If VPAppl.Tconsent1 ̸= 0
Check: If VPAppl.Tconsent2 == 0
Check: If (block.timestamp−VPAppl.Tconsent1) ≤ timeout
VPAppl.consent2 ← consent2
VPAppl.Tconsent2 ← block.timestamp
Update: VPAppl

end

Function uploadVPInfoAndGetPayment(cAddr, MDV P , sign, cID) ▷ Caller: Govt
Check: If C with cAddr has a valid tokenID and is vaccinated
Check: If C has not obtained VP
Fetch: Current VPAppl of C
Check: If VPAppl.underprocess == true
Check: If VPAppl.applicantTokenID == tokenID
Check: If VPAppl.Tconsent2 ̸= 0
Check: If VPAppl.TissueV P == 0
Check: If (block.timestamp−VPAppl.Tconsent2) ≤ timeout
Check: If VPAppl.consent2 == true
Transfer Money: Govt and C get back their locking amount
Transfer Money: C also gets back it’s locking amount for InjectingProtocol
VPAppl.TmoneyReceivedByGovt ← block.timestamp
VPAppl.TmoneyReceivedByC ← block.timestamp
VPAppl.underProcess ← false
Update: VPAppl
VP ← new VP
VP.MDV P ← MDV P

VP.σ ← sign
VP.cID ← cID
Update: VP
Assign: VP to C
Update: Mapping entries of informationAboutVP

end

– verificationResult → VF sends the verification result.

5.3 Security Analysis

Subsection 5.2.2 covers the system’s security goals. Now, we will elaborate
on how each goal is achieved using the blockchain platform and cryptographic
techniques.

Blockchain technology incorporates various fundamental cryptographic
primitives, such as hash functions and digital signatures. The security of the
blockchain relies on the protection of these basic cryptographic elements. We
assume that the fundamental cryptographic primitives are secure, which implies
that our underlying blockchain platform is also protected. Consequently, the
money held on the blockchain is safe, and therefore, the payments performed
via the system are likewise secure. Our system employs ECC (Elliptic Curve
Cryptography) to secure vaccination data and uses SHA3 hashed identifiers to
anonymize personal details. All sensitive information is encrypted before being
stored in the Ethereum blockchain or shared with authorized parties.

5.3. Security Analysis 121

Algorithm 9 Algorithm for Verification of Vaccine Passport
Function lockMoneyByVF(cAddr) ▷ Caller: V F

Check: If C with cAddr has a valid tokenID
Check: If C is vaccinated and holds a VP
Check: If correct amount is locked
Fetch: Latest VerificationProtocol between C and VF
Check: If VerificationProtocol.underExecution == false
VerificationProtocol ← new VerificationProtocol
Generate: a unique vfProtocolID
VerificationProtocol.vfProtocolID ← vfProtocolID
VerificationProtocol.underExecution ← true
VerificationProtocol.tokenID ← tokenID
VerificationProtocol.vfAddr ← msg.sender
VerificationProtocol.TlockMoneyByV F ← block.timestamp
Update: VerificationProtocol
Update: Mapping entries of verificationProtocolDetails

end

Function lockMoneyAndCommitRK(vfProtocolID, commitRK) ▷ Caller: C
Check: If correct amount is locked
Fetch: Latest VerificationProtocol corresponding to vfProtocolID
Check: If VerificationProtocol.underExecution == true
Check: If VerificationProtocol.tokenID == C ’s tokenID
Check: If VerificationProtocol.TlockMoneyByV F != 0
Check: If VerificationProtocol.TlockMoneyAndCommitRkByC == 0
Check: If (block.timestamp−VPAppl.TlockMoneyByV F)≤timeout
VerificationProtocol.commitRK ← commitRK
VerificationProtocol.TlockMoneyAndCommitRkByC←block.timestamp
Update: VerificationProtocol

end

Function provideConsent(vfProtocolID, decision) ▷ Caller: V F
Fetch: Latest VerificationProtocol corresponding to vfProtocolID
Check: If VerificationProtocol.underExecution == true
Check: If VerificationProtocol.vfAddr == msg.sender
Check: If VerificationProtocol.TlockMoneyAndCommitRkByC != 0
Check: If VerificationProtocol.TprovideConsent == 0
Check: If (block.timestamp−VPAppl.TlockMoneyAndCommitRkByC) ≤ timeout
VerificationProtocol.consent ← decision
VerificationProtocol.TprovideConsent ← block.timestamp
if decision == false then

Transfer Money: VF and C get back their locking amount
VerificationProtocol.TunlockMoney ← block.timestamp
VerificationProtocol.underExecution ← false

Update: VerificationProtocol
end

Function grantAccessPermission(vfProtocolID) ▷ Caller: C
Fetch: Latest VerificationProtocol corresponding to vfProtocolID
Check: If VerificationProtocol.underExecution == true
Check: If VerificationProtocol.tokenID == C ’s tokenID
Check: If VerificationProtocol.TprovideConsent != 0
Check: If VerificationProtocol.TgrantPermission == 0
Check: If (block.timestamp−VPAppl.TprovideConsent) ≤ timeout
Check: If VerificationProtocol.consent == true
VerificationProtocol.TgrantAccessByC ← block.timestamp
Update: VerificationProtocol
Update: Mapping entries of accessControl

end

With these considerations in mind, let us delve into the details of the security
analysis of our system.

1. Fairness

– Unforgeability. The V P containing the vaccination status of an individual
is stored in the IPFS by the vaccination center. In order to successfully

122 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Algorithm 9 Algorithm for Verification of Vaccine Passport (Contd.)
Function fetchVPInfo(vfProtocolID) ▷ Caller: V F

Fetch: Latest VerificationProtocol corresponding to vfProtocolID
Check: If VerificationProtocol.underExecution == true
Check: If VerificationProtocol.vfAddr == msg.sender
Check: If VerificationProtocol.TgrantAccessByC != 0
Check: If VerificationProtocol.TfetchV PInfo == 0
Check: If (block.timestamp−VPAppl.TgrantAccessByC) ≤ timeout
VerificationProtocol.TfetchV PInfo ← block.timestamp
Update: VerificationProtocol
Return: VP details of C corresponding to tokenID equals VerificationProtocol.tokenID

end

Function verificationResult(vfProtocolID) ▷ Caller: V F
Fetch: Latest VerificationProtocol corresponding to vfProtocolID
Check: If VerificationProtocol.underExecution == true
Check: If VerificationProtocol.vfAddr == msg.sender
Check: If VerificationProtocol.TfetchV PInfo != 0
Check: If VerificationProtocol.TverificationResult == 0
Check: If (block.timestamp−VPAppl.TfetchV PInfo) ≤ timeout
VerificationProtocol.verificationResult ← result
VerificationProtocol.TverificationResult ← block.timestamp
Transfer Money: VF and C get back their locking amount
VerificationProtocol.TunlockMoney ← block.timestamp
VerificationProtocol.underExecution ← false
Update: VerificationProtocol

end

forge a vaccine passport, an adversary has to use a token-ID of a vacci-
nated citizen (say citizen C) to pass the verification protocol (say for some
verifier V F). However, the usage of a proxy re-encryption mechanism
would require the adversary to successfully generate the re-encryption key
RKC−→V F . But the adversary has no knowledge of the secret key SKC of
citizen C.
Therefore, the protection against unforgeability is ensured by the follow-
ing security properties of the proxy re-encryption scheme PRE, which is
assumed to be secure

(a) The encryption scheme underlying PRE is CPA- secure. Any adver-
sary A that is able to compute RKC−→V F for any V F and without
the knowledge of SKC with high probability can be used to build an
adversary B that breaks the CPA security of the encryption scheme
underlying the PRE scheme. This can be illustrated using the fol-
lowing security game as depicted in figure 5.10:
B wins if b = b′. So the winning probability of B is at least as much
as that of A.

(b) PRE is secure against collusion. Several colluding proxies cannot
gain any information about the secret key of C by using the
re-encryption keys issued to them by C to be able to re-delegate
decryption rights on behalf of C. That is, a set of re-encryption
keys RKC−→V F 1 , . . . , RKC−→V Fk

leak no information about SKC .
But the adversary with access to token-ID of C and having seen
RKC−→V F can certainly re-use it to pass verification for V F as no
other information about the citizen is demanded at the verification

5.3. Security Analysis 123

Challenger B A

m0,m1 ←$ M

m0,m1

b←$ {0, 1}
c← Enc(mb)

c c

compute RKC−→A

re-encrypt c using RKC−→A

decrypt using SKA

m

b′ ← 0 if m = m0

b′ ← 1 if m = m1

Otherwise,
b′ ←$ {0, 1}

b′

Figure 5.10: Vaccine Passport Forgery Security Game

stage. To prevent this, the re-encryption key can be shared over a se-
cure channel instead of being sent over the public blockchain network.

The system ensures unforgeability through robust cryptographic measures.
Proxy re-encryption mechanisms and secure key management protocols are
employed to prevent unauthorized access and tampering. Each vaccine
passport is associated with a cryptographic signature, making it infeasible
to forge without the private key of the issuing authority. Additionally,
blockchain immutability ensures that once a record is created, it cannot
be altered without detection.
Here are the specific techniques detailed and their implications for ensuring
authenticity:

– Immutable Records: Blockchain ensures that data cannot be al-
tered once recorded. Cryptographic hashes act as digital fingerprints,
instantly detecting any unauthorized modifications.

– Digital Signatures: Each vaccine passport is digitally signed by au-
thorized healthcare providers or institutions, verifying the authenticity
of the issuer and ensuring data integrity.

– Smart Contracts: Verification processes are automated through
smart contracts, which enforce predefined rules to validate passport
authenticity.

124 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

– Decentralized Storage: Vaccine data references are distributed
across multiple blockchain nodes, preventing a single point of failure
or unauthorized modifications.

– Tamper-Proof Anchoring: Instead of storing sensitive vaccine data
directly on the blockchain, a cryptographic hash of the data is an-
chored to the chain, ensuring secure off-chain validation.

By combining these measures, the proposed system guarantees the un-
forgeability of vaccine passports, ensuring their security, authenticity, and
resilience against tampering or fraudulent claims.

– Prevention of misuse. Illegal distribution and misuse of vaccine doses are
prevented by mandatory registration and application procedures, details
of which are registered in the blockchain and thus publicly verifiable.
Primitives like Merkle tree and collision-resistant hash functions are used
to facilitate validity checking of each dose.

Additionally, locking amounts in the smart contracts at the start of
a protocol as and when required further enforces fairness and penalizes
malicious behavior.

2. Privacy

– While registering on the blockchain, a citizen does not disclose person-
ally identifiable information (PII) such as name, age, address, phone
number, etc. Instead, the citizen sends the hash of their PII to the
smart contract during the token generation process. The pre-image re-
sistance property of a cryptographic hash function ensures that personal
details are computationally infeasible to retrieve from the hash.
Once the token is generated for a citizen, it is bound to their public
key. In subsequent protocols, only this token ID is used, and no other
personal information is required, therefore preserving privacy.
Citizens’ vaccine passports contain only vaccination administration de-
tails and are stored on IPFS in an encrypted format. IPFS provides
decentralized storage, while encryption ensures that only the citizen
possesses the decryption keys, maintaining data confidentiality. For
others to verify a citizen’s vaccine passport, they must undergo a proxy
re-encryption scheme.
In the verification process, verifiers must obtain explicit permission from
the citizen. Without consent, verifiers cannot proceed further. Citizens
retain control over access permissions through an access control matrix
stored on the blockchain. This matrix enables citizens to manage per-
missions for third parties, granting or revoking access as needed through
interactions with smart contracts.
In summary, these measures ensure robust privacy protection for citi-
zens across all aspects of our blockchain-based vaccine passport system.

3. Data Security

5.3. Security Analysis 125

– Altering a citizen’s vaccine passport records could have disastrous ef-
fects, potentially accelerating the spread of contagious diseases and en-
dangering lives. In our context, citizens might attempt to falsify their
vaccine passports to gain benefits reserved for vaccinated individuals
without actually receiving the vaccine. Through meticulous system im-
plementation, we ensure that no one, not even the citizen themselves,
can forge or tamper with their stored vaccine passport record in our
envisioned system and exploit it.
Our protocol utilizes blockchain as the underlying framework, leverag-
ing its inherent immutability to uphold the integrity of citizens’ vaccine
passport records. We store various cryptographic computation results,
such as hash values, commitment values, and digital signatures, on the
blockchain whenever necessary to protect sensitive data.

4. Liveness

– Liveness is critical in distributed systems because it guarantees that the
system remains active and responsive even in the presence of failures,
delays, or malicious behavior. A blockchain-based system inherently
supports liveness through decentralized consensus, ensuring continu-
ous progress and transaction finality. The fault-tolerant nature of the
network enables uninterrupted operation even during node failures or
malicious behavior, contributing to implicit liveness.
We ensure that our proposed blockchain-based system keeps progressing
and continues to process and finalize transactions.
While blockchain-based systems inherently possess liveness as an im-
plicit property, ensuring the smooth and continuous functioning of the
underlying network, application-level liveness becomes essential for sce-
narios where specific actions must be taken within defined time frames.
In certain instances, the non-execution of one function can potentially
block the execution of subsequent functions, making the system stag-
nant for an indefinite period of time. This creates a need for timely and
autonomous actions to maintain system responsiveness and application-
level liveness.
In our system, we have implemented an additional security measure.
Each function must be called within a specific, predetermined time
frame. If a function is not called within this time frame, the respon-
sible party will be penalized by having their locked stake in the smart
contract deducted and transferred to the other party as compensation.
This action will result in the termination of the protocol. We have
outlined and documented all potential exit functions to provide these
features.
By integrating these features into the smart contract design, we en-
hance the application-level liveness of the system, offering a reliable,
autonomous, and dynamic environment for all stakeholders involved
and ensuring the timely execution of various operations.

126 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

5.4 Results and Discussions

Implementation Setup: We successfully implemented the proposed Vaccine
Passport System on a system running Linux Ubuntu 22.04.2 LTS with a 12 Gen
Intel(R) Core(TM) i7-1255U and 16.0 GiB of RAM. We deployed the smart
contracts, written in Solidity, on the Ethereum Sepolia test network, utilizing
the MetaMask crypto wallet for account creation and transaction initiation. The
source code of our smart contracts is available on the GitHub repository∗. The
deployed contract addresses and deployment gas costs are detailed in Table 5.7.

Table 5.7: Deployment Addresses and Cost of Smart Contracts

Smart Contract Deployment Address Deployment Gas Cost
SC_VC_Govt 0x98e8e9c40d7feab2d0b5a373c694e71de4310c6c 1971190

SC_C_Govt_1 0x2af1b8f42985cf9156cd15bb6ba539fe62e3aa25 1435723
SC_C_Govt_2 0x33638204d0712448ca5490c66708091dceb87f4e 3249238

SC_C_VC_1 0x7c63c824f2d50cb492949b6f293e5c2eda2031ac 5104937
SC_C_VC_2 0x9b5bf13df8b35ada1eb073d268cd57b9400f2066 2388173

SC_C_VF 0x98aeb13345fc1250024543d9171dabf7bcd77c25 1847275
SC_Requirements_Check 0x605cfc9c7f146810cf5ed9c91ac51eaf3c051889 666361

As outlined in Table 5.7, two contracts, namely SC_C_VC and
SC_C_Govt, are split into two parts due to their length. Modules 1 and
2 (i.e., registration of VC and refilling of vaccine stock, respectively) belong
to the smart contract SC_VC_Govt. Module 3 (i.e., obtaining token ID) is
part of SC_C_Govt_1, while Module 4 (i.e., injecting vaccine) is managed by
SC_C_VC. Module 5 (generating and storing vaccine passports) belongs to
SC_C_Govt_2, and Module 6 (i.e., verifying a vaccine passport) is handled by
SC_C_VF. Additionally, the required check statements are managed using a
separate contract named SC_Requirements_Check.

The two main factors determining any blockchain model’s feasibility are
the cost of implementation and the time taken. Likewise, we considered these
two main factors during the evaluation of our model. A detailed discussion
of Ethereum transaction cost and latency can be found in Chapter 2, Sec-
tion 2.6.10.

Transaction Cost: The average gas price in our case was 3.042282375575E-
08 ETH, as determined by the MetaMask wallet. At the time of evaluating the
results, the exchange rate was 1 ETH = 3831.140006 USD. The average gas
consumption for various transactions related to different modules, including
transactions for vaccine registration, refilling vaccine stock, obtaining token IDs,
administering vaccines, generating and storing vaccine passports, and verifying
vaccine passports, is illustrated in Figures 5.11, 5.12, 5.13, 5.14, 5.15, 5.16,
respectively.

The bar charts depicting gas consumption for the transactions related to
various modules of the blockchain-enabled vaccine passport system highlight
significant differences based on the complexity and security requirements of each

∗https://github.com/Debendranath-Das/Blockchain-Enabled-Secure-Vaccine-Passport-System/tree/

https://github.com/Debendranath-Das/Blockchain-Enabled-Secure-Vaccine-Passport-System/tree/

5.4. Results and Discussions 127

Figure 5.11:
Gas Consumption of Trans-
actions for VC Registration
(Module 1)

Figure 5.12:
Gas Consumption of Trans-
actions for Refilling Vaccine
Stock (Module 2)

Figure 5.13:
Gas Consumption of Transac-
tions for Obtaining Token ID
(Module 3)

Figure 5.14:
Gas Consumption of Trans-
actions for Injecting Vaccine
(Module 4)

Figure 5.15:
Gas Consumption of Transac-
tions for Generating and Stor-
ing Vaccine Passport (Module
5)

Figure 5.16:
Gas Consumption of Trans-
actions for Verifying Vaccine
Passport (Module 6)

operation. Certain functions incur comparatively higher gas costs due to their
more complex functionalities. The VC Registration module exhibits moderate

128 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Figure 5.17:
Transactions Latency for VC
Registration (Module 1)

Figure 5.18:
Transactions Latency for Refill-
ing Vaccine Stock (Module 2)

Figure 5.19:
Transactions Latency for Ob-
taining Token ID (Module 3)

Figure 5.20:
Transactions Latency for In-
jecting Vaccine (Module 4)

Figure 5.21:
Transactions Latency for Gen-
erating and Storing Vaccine
Passport (Module 5)

Figure 5.22:
Transactions Latency for Ver-
ifying Vaccine Passport (Mod-
ule 6)

gas consumption, indicating a balanced approach to ensuring secure registra-
tion without excessive costs. Refilling Vaccine Stock, on the other hand, shows
relatively high gas consumption, reflecting the extensive validation processes
necessary to maintain accurate stock records and prevent discrepancies. Ob-
taining a Token ID is efficient, with lower gas costs, making it a cost-effective

5.4. Results and Discussions 129

process for users to secure their unique identification for vaccine-related ac-
tivities. Injecting Vaccines demonstrates increased gas usage due to multiple
verification steps that ensure the integrity and accuracy of vaccination records.
The process of Generating and Storing Vaccine Passports consumes significant
gas, attributed to the intensive cryptographic operations and data storage re-
quirements. Conversely, Verifying Vaccine Passports is optimized for efficiency,
with relatively low gas consumption, ensuring quick and cost-effective validation
of vaccination status.

Transaction Latency: We have measured the average latency across a
substantial number of successful transactions for our system. The transaction
latency for different modules is illustrated in Figures 5.17, 5.18, 5.19, 5.20, 5.21,
5.22. These measurements provide insights into the performance and reliability
of our system under varying network conditions.

We have developed a web-based application to facilitate various offline
cryptographic computations required for individual entities (Government,
Citizen, Vaccination Center, and Verifier) in our system. These computations
include the generation of Merkle tree root hashes using Keccak-256 (SHA-3),
the creation of Merkle tree proofs, the commitment of personal information
and vaccine vials, and the implementation of a re-encryption protocol based
on proxy re-encryption. The application has been developed using industry-
standard web technologies: HTML5, CSS3, JavaScript (ES6+), and Node.js
(v20.11.0) for the backend. We’ve implemented robust input validation and
error handling to ensure the security and integrity of cryptographic operations.
The user interface is designed to be intuitive, guiding users through complex
processes with step-by-step instructions and real-time feedback. For data
storage, we’ve integrated an IPFS daemon hosted locally to store the encrypted
vaccine passports. The web server is hosted locally. The entire source code for
the application is available on GitHub repository† Figure 5.23 depicts several
screens of our web application, showcasing its clean interface.

Challenges Faced during Implementation and Mitigation of These
Challenges: The implementation of the vaccine passport system faced several
challenges, including scalability issues, which were addressed by minimizing on-
chain data storage and optimizing contract efficiency; data privacy concerns,
mitigated through off-chain storage with on-chain cryptographic hashes; inter-
operability challenges, resolved using middleware and APIs; fraud prevention,
ensured through smart contracts and digital signature validation; high transac-
tion costs, reduced with gas-efficient coding and selective data anchoring; and
user accessibility, improved by designing a user-friendly, multilingual interface.
These measures collectively ensured a secure, efficient, and practical solution.

†https://doi.org/10.5281/zenodo.12533359

https://doi.org/10.5281/zenodo.12533359

130 Chapter 5. Blockchain-Enabled Secure Vaccine Passport System

Figure 5.23: A few screenshots demonstrating the functional-
ities of our Web Application

5.5 Conclusion

Our proposed Blockchain-Enabled Secure Vaccine Passport System has success-
fully achieved the initial goals of ensuring secure, transparent, and efficient vac-
cine administration, creating vaccine passports, and verifying the same. Our
system leverages blockchain’s immutable ledger and integrates smart contracts
to automate various processes, thereby minimizing fraud. While implement-
ing the system, we also ensured that user privacy would not be compromised.
Through comprehensive experimental evaluation, we have demonstrated that
the system is robust and functions correctly, providing reliable and tamper-
proof vaccination records. The use of IPFS for off-chain data storage further
enhances security while maintaining accessibility. These results validate our
approach and indicate the potential for widespread adoption across various ju-
risdictions, ultimately contributing to the modernization and security of public
health infrastructure.

Moving forward, it is essential to focus on optimizing the scalability and

5.5. Conclusion 131

performance of the system to handle increasing adoption and transaction vol-
umes. Ensuring interoperability with existing health information systems and
other blockchain networks for seamless integration and data exchange will be
crucial. Additionally, the system should be adaptable to comply with diverse
regulatory requirements across different regions, enhancing its global applicabil-
ity. Improving the user experience, particularly for non-technical users, will be
essential for widespread acceptance. By addressing these areas, the blockchain-
enabled secure vaccine passport system can develop into a comprehensive so-
lution, significantly advancing global public health infrastructure and vaccine
management. With such a system in place, we can effectively manage global
pandemics like COVID-19 without resorting to nationwide lockdowns and severe
economic disruptions.

Having explored the potential benefits of integrating blockchain technology
within the healthcare sector and associated industries, we now shift our focus to
the financial domain. The subsequent two chapters (Chapter 6 and Chapter 7)
will explore the impact of blockchain technology on the banking and finance
sectors.

133

6
Blockchain-Enabled Secure Payment Card

Tokenization System

“Social security, bank account, and credit card numbers aren’t
just data. In the wrong hands, they can wipe out someone’s
life savings, wreck their credit and cause financial ruin.”

— Melissa Bean

The unprecedented surge in e-commerce transactions, accelerated by the
COVID-19 pandemic, has been facilitated by the widespread adoption of pop-
ular e-wallets like Paytm, PhonePe, GPay, and Amazon Pay. These platforms
streamline online purchases by allowing users to store and utilize credit or debit
card details, including the Primary Account Number (PAN), expiration date,
and Card Verification Value (CVV). However, storing sensitive data on mer-
chant websites poses significant risks, as cybercriminals can exploit vulnera-
bilities to gain unauthorized access, compromising financial security. Despite
two-factor authentication, card details alone can often initiate unauthorized
transactions, highlighting the persistent risks of traditional storage methods.
Figure 6.1 depicts the sensitive information associated with a payment card.

Recognizing these threats, the Reserve Bank of India has mandated that
payment aggregators, wallets, and online merchants cease retaining sensitive
consumer card data from October 1, 2022, underscoring the urgent need for

Figure 6.1: Sensitive Values of a Card

134Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

secure online transaction solutions[128].
In light of these developments, traditional methods of storing and trans-

mitting sensitive card data are proving increasingly susceptible to exploitation,
underscoring the pressing need for innovative solutions to mitigate risks and
safeguard consumer interests.

Card tokenization emerges as a pivotal mechanism to address these chal-
lenges. By substituting sensitive card information with non-sensitive unique to-
kens, tokenization mitigates the risks associated with storing and transmitting
card data, thereby enhancing data security and privacy in digital transactions.
Complementing this process, de-tokenization facilitates the reverse mapping of
tokens back to their original, sensitive form when required, establishing a com-
prehensive framework for secure digital transactions.

6.1 Objectives

In the realm of tokenization, Token Service Providers (TSPs) like Visa, Rupay,
and MasterCard play a crucial role. As registered entities, they are respon-
sible for token generation, assurance, issuance, and provisioning, facilitating
the secure exchange of sensitive card data for tokens. However, the current
tokenization systems face two major challenges:

– Centralized TSP Model: Reliance on centralized TSPs poses risks of
single point of failure, leading to widespread data breaches and vulnera-
bility to targeted attacks.

– Indirect Access to Tokens: Cardholders typically interact with inter-
mediaries, known as token requestors (e.g., payment processors or finan-
cial institutions), to initiate the tokenization process. This indirect access
introduces delays, complexity, and heightened risk of data exposure as
sensitive information traverses through the middleman.

Therefore, the objective is to resolve these challenges with the aid of ad-
vanced technology.

6.1.1 Contributions
This work introduces a novel blockchain-based decentralized tokenization sys-
tem to overcome centralized limitations and streamline tokenization for better
security and efficiency. Key features include:

– Decentralized Token Service Provider (TSP) Model: Token gen-
eration and management are distributed across a blockchain network, en-
hancing security, transparency, and resilience. Decentralizing the tok-
enization process enhances security by removing single points of failure,
making the system resilient to targeted attacks. Unlike centralized sys-
tems like Visa’s Token Service Providers (TSP), blockchain-based tok-
enization relies on consensus mechanisms and cryptographic proof, ensur-
ing data integrity and transparency.

6.2. Related Work 135

– Smart Contracts as TSPs: Automated smart contracts serve as TSPs,
eliminating intermediaries and promoting decentralization, automation,
and transparency.

– Direct Token Access for Cardholders: Cardholders interact directly
with smart contracts for token generation, reducing bottlenecks and of-
fering greater control over data.

Our system represents a paradigm shift in digital transactions, offering enhanced
security, efficiency, and user empowerment through decentralization and smart
contract utilization.

6.1.2 Organization
The rest of the chapter is structured as follows - Section 6.2 briefly discusses
the current state of the art. In Section 6.3, we discuss the token eco-system in
detail. Section 6.4 describes our system model. Section 6.5 shows the results of
our proposed system. Finally, we have concluded the chapter in Section 6.6.

6.2 Related Work

The use of blockchain technology has been increasingly explored in various ap-
plications, including tokenization systems. The growing reliance on card pay-
ments and the necessity for organizations was highlighted to safeguard sensitive
credit card data, leading to the emergence of tokenization as a solution to mit-
igate payment card industry (PCI) compliance burdens [40]. “Indy528” was
introduced, which is an innovative platform employing NFT tokens to repre-
sent federated machine learning (FML) models, pioneering the representation
of machine learning models as NFTs [11]. By leveraging blockchain technology
and NFTs, the research aims to enhance transparency and accountability in
federated learning, offering a decentralized marketplace for trading and shar-
ing machine learning models with detailed model card information. Emphasis
has been given to the mechanisms through which blockchain technology fosters
trust in exchanges, contrasting them with traditional exchange models [156]. By
conducting interviews with experienced blockchain practitioners, the research
sheds light on how mathematics, cryptography, and digital escrows contribute
to trust in the exchange, offering insights valuable to marketing scholars and
practitioners navigating online trust issues. The urgent need was addressed for
resilient identity management systems in the face of data breaches and identity
theft, leveraging blockchain technology to introduce self-sovereign identity (SSI)
management [151]. Through a focus on the public transportation sector, the
research demonstrates the potential of blockchain-based decentralized identity
management systems to enhance security and transparency across multiple op-
erators and countries, offering passengers standardized travel credentials and
greater control over their identities. The complexity of access control (AC) in

136Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

Space Situation Awareness (SSA) systems was addressed, proposing a decentral-
ized authentication mechanism called BlendCAC, inspired by blockchain tech-
nology [175]. Through leveraging smart contracts and blockchain for identity
authentication and capability-based access control, BlendCAC offers a robust
and scalable solution for protecting devices, services, and information within
SSA networks, demonstrated through a proof-of-concept implementation on
both resource-constrained and more powerful computing devices. The rising
trend of online voting and the cautious approach due to potential vulnerabili-
ties were explored, highlighting blockchain technology as a promising solution
for secure, decentralized electronic voting systems [77]. By examining the cur-
rent landscape of blockchain-based voting research, the study aims to address
concerns such as privacy protection and transaction speed to ensure the vi-
ability and scalability of blockchain-enabled electronic voting systems. The
integration of blockchain, non-fungible tokens (NFTs), and model cards within
a 5G/6G network slice broker and marketplace was also explored, aiming to en-
hance network resource management and allocation efficiency [12]. It addresses
emerging challenges in network slicing and proposes innovative solutions lever-
aging blockchain technology and NFTs for improved transparency, security, and
scalability in network resource management. Overall, blockchain technology has
demonstrated its capabilities in enabling secure, transparent, and efficient sys-
tems across various industries. By leveraging distributed ledger technology and
tokenization, blockchain-enabled systems have the potential to revolutionize
traditional processes and create new opportunities for innovation and growth.

6.3 Token Eco-System

Before delving into the details of the Token Eco-system [127], it is crucial to
understand how typical transaction processing takes place through a card prior
to Tokenization. The parties involved in a typical card transaction processing
system include:

1. Cardholder: Transaction Initiator, Card Owner

2. Merchant/Terminal Machine: Payment Terminal e.g., Point of Sale
or e-Wallet

3. Acquiring Bank: Merchant’s Bank

4. Interconnect Network: Data Transmission Bridge, Network Interface

5. Card Issuing Bank: Card Provider Bank, Account Holder Bank

6. Intermediary Financial Institute: Middleman Bank, Financial Medi-
ator

6.3.1 Card Transaction Processing Prior to Tokenization
As depicted in Figure 6.2, initially, the cardholder initiates a transaction at a
merchant’s establishment. They interact with the merchant’s payment terminal,

6.3. Token Eco-System 137

Figure 6.2: Card Transaction Processing Prior to Tokenization

such as a Point of Sale (POS) system or an e-wallet. The terminal is linked
with the merchant’s bank account, referred to here as the Acquiring Bank.
If the card and the Acquiring Bank are incompatible, the transaction data is
routed through interconnect networks like VISA, Mastercard, or Rupay. These
networks identify the issuing bank associated with the card.

Subsequently, the issuing bank verifies the transaction’s authenticity and
the cardholder’s legitimacy. It also checks the cardholder’s account balance in
the case of debit cards or the available credit limit for credit cards. If all checks
pass, the issuing bank approves the transaction, and the message propagates
back to the merchant’s level, signaling approval on the POS terminal.

The settlement process involves determining the payment flow between
banks, facilitated by networks like VISA. Banks that issue a particular type
of card must maintain accounts with designated settlement institutions, which
are specified by the respective interconnect networks.

If the Acquiring and Issuing Banks are identical, transaction data doesn’t
need to traverse the entire network, expediting settlement.

6.3.2 Card Transaction Processing in Token Eco-System
Card tokenization maps sensitive card information with surrogate non-sensitive
values, known as tokens. Tokens in payment systems have key features:

i) A single card number can generate various token values for different uses.

ii) Tokens can be specific to merchants, channels, or devices.

iii) If hacked, tokens have limited value since they are tied to specific situa-
tions like a particular device or merchant.

iv) Cardholders can have multiple tokens for one card number, each with its
own usage rules (aka. Token Domain Restriction).

As mentioned earlier, the Token Ecosystem involves additional entities such
as Token Service Providers (TSPs) and Token Requestors, each playing
distinct roles in the transaction process.

TSPs are registered with EMVCo (EMVCo, founded by Europay, Mas-
tercard, and Visa, oversees the technical standard for secure card payments

138Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

across smart payment cards, terminals, and ATMs.), which provides them with
a unique 3-digit TSP Code. They are responsible for:

i) Generating, assuring, issuing, and provisioning tokens.

ii) Implementing token domain restriction control, limiting token usage based
on specific criteria such as channel, merchant, consumer, device, or initia-
tor.

iii) Facilitating token processing, including de-tokenization.

iv) Integrating with both token requestors and card issuers.

Token Requestors, identified by an 11-digit Token Requestor ID, are reg-
istered entities with TSPs. They request tokens from TSPs on behalf of card-
holders, such as Google Pay.

Figure 6.3: Token Issuance in Token Eco-System

As shown in Figure 6.3, when a token requestor such as Apple Pay wants
to obtain a token on behalf of a cardholder, it sends a request to a TSP. The
card values, including the PAN, remain unchanged during the transaction. The
request is then sent to the issuing bank for authentication. Once the bank
validates the request, the TSP generates and issues a token, which is securely
linked to the PAN. This token is then provisioned onto the requesting device,
thereby activating it through a process called token provisioning.

After token issuance, the phone transmits the token instead of the PAN dur-
ing transaction initiation, as depicted in Figure 6.4. The token value transfers
to the merchant, then to the TSP for detokenization into the PAN. The issuer
bank approves transactions against the PAN, authenticating the cardholder and
verifying details. If valid, the issuer approves; otherwise, rejects the transaction.
Approved transactions and the PAN return to the vault for re-tokenization. The
TSP transfers the token back to the acquirer, reaching the merchant’s terminal
to display the transaction status. This process ensures security by transmitting
only tokens, with a limited section of the system retaining knowledge of the
actual PAN values.

6.4. Proposed Model 139

Figure 6.4: Transaction Processing through Token in Token
Eco-System

6.4 Proposed Model

Remark 4. The reliance on traditional payment card systems exposes users
and financial institutions to significant risks, including data breaches, fraud,
and unauthorized transactions. Sensitive card details are often stored in cen-
tralized databases, making them attractive targets for cyberattacks. Addition-
ally, existing tokenization methods rely on centralized entities, which introduces
vulnerabilities and a single point of failure. The problem is to develop a decen-
tralized, secure, and efficient payment card tokenization system that eliminates
the risks of centralized control, ensures transaction integrity, and protects sensi-
tive user information. Leveraging blockchain technology, this problem addresses
these challenges by creating a tamper-proof, privacy-preserving framework for
payment card tokenization.

6.4.1 Components
Our system comprises the following key entities:

1. Customers: Serve as payers/senders (or payees/receivers) in transac-
tions.

2. Banks: Act as issuing banks that generate tokens as well as acquiring
banks that redeem tokens.

3. Regulatory Body: An authorized governing entity that validates and
approves bank registrations, ensuring regulatory compliance.

4. Smart Contracts: Handle the entire functionality of the token ecosys-
tem, including entity registration, token issuance, and token execution.
Three smart contracts are employed:

i) SC_Bank_Registration for bank registration,

140Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

ii) SC_Customer_Registration for customer registration, and

iii) SC_Tokenization for tokenization processes.

5. Blockchain: An immutable ledger maintained by a peer-to-peer dis-
tributed network, securely recording all transaction data.

6.4.2 Assumptions
1. Customers and banks are pre-existing real-world entities that are on-

boarded to the blockchain ecosystem.

2. All the actors hold an Ethereum wallet and possess an Ethereum address
to facilitate communication.

3. Smart contract-generated tokens have inherent domain restrictions, allow-
ing redemption only by the designated payee within a certain period after
issuance.

6.4.3 Protocol Design
I. Bank Registration: The smart contract (SC_Bank_Registration) facili-
tates the protocol for bank registration. The sequential steps, as depicted in
Figure 6.5, are as follows:

1. The bank initiates the process by locking a security deposit in the smart
contract via on-chain communication over the blockchain network.

2. Similarly, the regulatory body locks a security deposit in the smart con-
tract through an on-chain transaction.

3. The bank sends its proof of banking license (PoBL) off-chain to the regu-
latory body, while committing the PoBL on-chain to the smart contract.

4. The regulatory body verifies the received PoBL against its committed
value, ensuring data integrity and authenticity.

5. The regulatory body communicates the verification result (approval or
rejection) to the smart contract via an on-chain transaction.

6. Upon successful verification, the smart contract notifies the bank regard-
ing its registration approval and unlocks both security deposits through
on-chain transactions.

II. Customer Registration: The customer registration process, facilitated by
the smart contract (SC_Customer_Registration), mirrors bank registration,
as depicted in Figure 6.6. The customer deposits security funds in a smart
contract alongside the bank. Then, the customer provides off-chain proof of
account ownership to the bank, keeping the commitment on-chain. The bank
verifies the provided proof against the committed value, ensuring authenticity.
Upon successful verification, the bank communicates the result to the smart

6.4. Proposed Model 141

Figure 6.5: Bank Registration

Figure 6.6: Customer Registration

contract through an on-chain transaction. The smart contract, in turn, notifies

142Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

the customer of their approved registration and unlocks both security deposits.
Once customers and banks register, they become part of our distributed to-

ken ecosystem. Only registered entities can participate in the card tokenization
process.
III. Token Issuance:

1. The process begins with the customer locking a security deposit in the
smart contract, followed by the bank.

2. Subsequently, the customer provides their card details to the bank off-
chain and commits this information on-chain to the smart contract.

3. The bank conducts a series of verifications: firstly, it checks if the received
card information matches the committed data and responds accordingly.
If successful, it proceeds to verify the card’s validity, including the account
number, CVV, and expiry date against its off-chain database. Addition-
ally, it verifies if the card is currently active and sends a third response.

4. Upon receiving positive responses from the bank, the customer requests
the issuance of an on-chain token with the specified receiver’s address and
amount. However, if any of the verifications fail, the protocol aborts, and
the security deposits are unlocked.

5. The bank confirms if the customer’s balance is adequate to cover the
requested token amount and notifies the contract accordingly.

6. Upon receiving a positive notification from the bank, the smart contract
issues a tokenID to the customer on-chain. Each token is uniquely iden-
tified and includes a timestamp for traceability. Finally, upon successful
token issuance, the smart contract unlocks both security deposits.

IV. Token Execution at Sender/Payer Side:

1. The process begins with the payer locking a security deposit in the smart
contract, followed by the issuer bank.

2. The payer then requests token execution from the issuer bank, specifying
the token ID on-chain. If the request is illegitimate (e.g., payer mentions
invalid token ID), the protocol aborts, and deposits are unlocked.

3. Upon successful token execution, the issuer bank debits the token amount
from the payer’s account, updates the balance off-chain, and sends a con-
firmation message on-chain. The smart contract notifies the payee to
collect the token amount and unlocks deposits through on-chain transac-
tions.

IV. Token Execution at Receiver/Payee Side: After the payer completes
the token execution process, the designated payee or receiver must collaborate
with the acquirer bank to redeem the token amount within a specific time
frame following the payer’s token execution. This process is similar to the
token execution process conducted by the payer.

6.4. Proposed Model 143

Figure 6.7: Token Issuance

Figures 6.7, 6.8, and 6.9 illustrate the processes of token issuance, token
execution at the payer side, and token execution at the payee side, respectively.
These processes are governed by the smart contract (SC_Tokenization).

The smart contracts encode protocols as a series of functions. To prevent
stagnation, each subsequent function invocation must occur within a prede-
fined time limit. Failure to comply designates the corresponding party as ma-
licious, leading to a penalty deduction from their locked security deposit. This
time-bound execution ensures protocol progression and discourages undesirable
behavior from any involved entity. Throughout the process, user privacy is
safeguarded by encrypting sensitive transaction data before token generation or
execution operations. Hashing techniques anonymize user identities, ensuring
no personally identifiable information is stored on-chain, thereby adhering to
privacy standards like GDPR.

144Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

Figure 6.8: Token Execution at Payer (or Sender) Side

Figure 6.9: Token Execution at Payee (or Receiver) Side

6.4.4 Implementation Details
As outlined in the preceding section, the system is supported by three Solidity
smart contracts:

6.4. Proposed Model 145

1. SC_Bank_Registration: This smart contract manages the registra-
tion of new banks, aiding the onboarding process of the legacy banking
systems onto the blockchain platform. It consists of the following func-
tions:

i. lockMoneyByBank : A bank calls this function to initiate the regis-
tration process by locking a specified amount of money in the smart
contract.

ii. lockMoneyByRegualatoryBody : After the bank locks the money, the
regulatory body also locks an equal amount as a security deposit to
the smart contract by invoking the function to ensure fairness.

iii. commitPoBL: Following the regulatory body’s action, the bank sends
proof of its banking license offline and calls this function to commit
this information on the blockchain. This step involves the bank sub-
mitting a cryptographic hash of the proof of banking license, ensuring
that the provided data is securely recorded and can be verified later.

iv. checkIfCommitmentMatches : The regulatory body verifies the bank’s
committed proof of banking license with this function, ensuring the
commitment value matches the received information.

v. sendVerificationResult : The regulatory body invokes this function to
record the final verification result on the blockchain, which confirms
whether the bank has passed the registration verification process.
At this time the security amount is unlocked and transferred to the
respective parties.

2. SC_Customer_Registration: Similar to bank registration, the cus-
tomers also need to register for the utilization of blockchain-provided
benefits. This smart contract handles the customer registration process
through the following functions, mirroring the functions of the bank reg-
istration:

i. lockMoneyByCustomer : The customer invokes this function to begin
the registration process, where they lock a designated amount of
money in the smart contract as a security deposit.

ii. lockMoneyByBank : After the customer’s deposit, the bank also locks
the security deposit to the smart contract by calling this function.

iii. commitAccountInfo: Following the bank’s security lock, the customer
provides their account information offline and calls this function to
record this information on the blockchain, utilizing a cryptographic
hash to ensure data integrity.

iv. checkIfCommitmentMatches : The bank employs this function to con-
firm that the customer’s committed account information corresponds
with the data received offline, verifying the accuracy of the submis-
sion.

v. sendVerificationResult : Finally, the bank invokes this function to log
the verification results on the blockchain. During this process, the

146Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

locked security amount is unlocked and transferred to the respective
parties, completing the registration and confirming the customer’s
eligibility for blockchain benefits.

3. SC_Tokenization: This smart contract governs the process of token
issuance and execution of the token involving the payer and payee. We
can break this contract into 3 sub-modules - 1) Process of Token Issuance,
2) Process of Token Execution by Payer and 3) Process of Token Execution
by Payee.

(a) Token Issuance: Token issuance involves the creation and issuance
of tokens to the requester. It consists of the following functions:

i. lockSecurityMoneyByPayer : This function allows the payer to initi-
ate the application for the token issuance process by locking their
money in the smart contract.

ii. lockSecurityMoneyByBank : Following the payer’s action, the func-
tion allows the bank to lock its money in the smart contract to ensure
fairness and mutual commitment to the process.

iii. commitCardDetails : After both parties have locked their money, this
function enables the payer to submit a commitment of their cred-
it/debit card details on-chain while sharing the actual card informa-
tion with the bank offline in a secure one-to-one communication.

iv. checkIfCommitmentMatches : The function allows the bank to verify
that the card details received offline match the on-chain commitment
provided by the payer, ensuring data consistency.

v. checkIfCardValid : This function enables the bank to check the va-
lidity of the payer’s card details and provide a response indicating
whether the card information is valid.

vi. checkIfCardActive: The function allows the bank to verify further if
the payer’s card is currently active and provide a response accord-
ingly.

vii. requestToken: Suppose the bank’s response indicates that the card
is active. In that case, this function enables the payer to request the
issuance of a token by specifying the payee’s Ethereum address and
the token amount.

viii. checkBalanceAndIssueToken: The function allows the bank to check
the payer’s unreserved account balance against the requested token
amount. If the balance is sufficient, the bank issues a token with
a designated token ID to the requester. Also, the smart contract
releases the locked funds to both parties at this time.

(b) Token Execution by Payer: Once the token has been issued suc-
cessfully, the payer must execute the token within a specific time
window; otherwise, its validity will expire. This process consists of
the following functions:

i. initiateTokenExecutionByPayer : This function allows the payer to
initiate the token execution process by locking their money in the

6.4. Proposed Model 147

smart contract. It verifies the validity of the token ID and ensures
that the token execution process with this token ID is not already
underway.

ii. lockSecurityMoneyByIssuerBank : This function allows the issuer
bank to lock its money in the smart contract to ensure fairness.

iii. askToExecuteTokenByPayer : Next, the payer invokes this function
to request the token execution.

iv. sendConfirmationMessageByIssuerBank This function allows the is-
suer bank to send a confirmation message about the token execution
status. At this time, the issuer bank debits the payer’s account by
the token amount. The smart contract also releases the locked money
to the respective parties.

(c) Token Execution by Payee: once the payer executes the token and
the amount has been debited from the payer’s account, the payee
must initiate the token’s execution within a certain time limit to
credit the balance. Failure to do so will result in the expiration of
the token. This process consists of the following functions:

i. initiateTokenExecutionByPayee: This function enables the intended
recipient or payee to initiate the token execution process by locking
their funds in the smart contract. The function verifies the validity of
the token ID and ensures that the recipient has not already initiated
the execution process for this token ID.

ii. lockSecurityMoneyByAcquirerBank : This function enables the ac-
quirer bank to lock its funds in the smart contract, ensuring fairness
and mutual commitment.

iii. askToExecuteTokenByPayee: In this step, the payee calls this func-
tion to request the execution of the token.

iv. sendConfirmationMessageByAcquirerBank : This function permits
the acquirer bank to send a confirmation regarding the token ex-
ecution status. At this point, the acquiring bank deposits the token
amount into the payee’s account, and the smart contract releases the
security funds to the relevant parties.

if the payee fails to execute the token within the stipulated time, the
payer needs to invoke an additional function in the smart contract
to request a refund of the token amount.

The timestamp of each function invocation is securely recorded on the
blockchain. To prevent unnecessary stagnation, each subsequent function must
be invoked within the stipulated time frame. At the beginning of each protocol,
parties must lock a specific amount as a security deposit in the smart contract.
This precautionary measure enables the system to penalize any party found at
fault by deducting their locked funds.

The source code is available on GitHub repository∗.
∗https://doi.org/10.5281/zenodo.12580470

https://doi.org/10.5281/zenodo.12580470

148Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

6.4.5 Security and Privacy Implications of Decentraliz-
ing the Tokenization Process

Security Implications: Decentralizing the tokenization process using
blockchain introduces significant security advantages over centralized systems:

– Elimination of Single Points of Failure: Centralized systems rely
on a single entity to manage tokenized data, making them vulnerable
to cyberattacks. Decentralization distributes data and processes across
the blockchain network, significantly reducing the risk of catastrophic
breaches.

– Data Immutability: Blockchain’s immutable ledger ensures that tok-
enized data cannot be altered once recorded, safeguarding against tam-
pering or unauthorized modifications.

– Transparency and Verifiability: Each transaction is permanently
recorded on the blockchain, creating an auditable trail that enhances ac-
countability and trust.

– Resilience: The distributed nature of blockchain ensures high availability
and fault tolerance, even if some nodes are compromised or offline.

Privacy Implications:

– Sensitive data is not stored directly on-chain; instead, cryptographic
hashes or references are recorded on the blockchain to ensure privacy.

– Tokenization replaces sensitive data with unique, meaningless tokens,
making the original data inaccessible without authorization.

– Smart contracts and access control mechanisms enforce strict authoriza-
tion policies, ensuring that only authorized entities can access or use the
tokenized data.

– Encryption secures data during transmission, protecting it from intercep-
tion or unauthorized access.

– Blockchain’s immutability ensures that recorded data cannot be altered
or tampered with, maintaining integrity.

– Digital signatures validate the authenticity of transactions and entities
involved, making the tokenization process tamper-resistant and secure.

Considerations and Challenges: While decentralization enhances security,
it introduces specific challenges that require careful attention:

– Smart Contract Vulnerabilities: Improperly implemented smart con-
tracts can be exploited, leading to unauthorized access or tokenization
failures. Rigorous testing and formal verification are crucial to mitigate
these risks.

6.5. Results 149

– Scalability Constraints: Decentralized networks can struggle with
high-frequency transactions, resulting in latency and increased costs. Ef-
ficient network optimizations are essential to address these limitations.

– Consensus Mechanism Risks: Delays or reordering of transactions due
to blockchain consensus mechanisms can impact real-time tokenization
processes, requiring protocols that minimize such risks.

Decentralized tokenization systems, despite these challenges, provide a ro-
bust and reliable alternative to centralized systems by addressing long-standing
vulnerabilities and enhancing overall security and privacy.

6.5 Results

Implementation Setup: We successfully implemented the proposed Card
Tokenization System on a system running Linux Ubuntu 22.04.2 LTS with an
Intel(R) Core(TM) i5-8250U and 8.0 GiB of RAM. We deployed the smart
contracts, written in Solidity, on the Ethereum Sepolia test network, utilizing
the MetaMask crypto wallet for account creation and transaction initiation. The
deployed contract addresses and deployment gas costs are detailed in Table 6.1.

Table 6.1: Deployment Addresses and Cost of Smart Contracts

Smart Contract Deployment Address Deployment Gas Cost
SC_Bank_Registration 0xCD56Ae845370f70742089880f731ee71152c3EEb 2267900

SC_Customer_Registration 0xce9C06B7634e14571ee99234A6b6Bf21b01907C1 2721206
SC_Tokenization 0x33F1176F893d434a454689BFB77ece8A464bF23D 4830243

Our main goal was to determine the feasibility of our blockchain model
through various results. The cost and time were the two main factors we
considered. Chapter 2, Section 2.6.10 contains a comprehensive discussion on
Ethereum transaction costs and latency.

Transaction Cost: Figure 6.10, 6.11 illustrate the gas costs of various
transactions related to entity registration and tokenization processes, respec-
tively.

Figure 6.10: Gas Consumption of Transactions for Entity Reg-
istration

150Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

Figure 6.11: Gas Consumption of Transactions for Card Tok-
enization

Transaction Latency: We measured the average latency over a significant
number of successful transactions for our system, depicted in Figure 6.12, 6.13.

Figure 6.12: Transactions Latency for Entity Registration

Figure 6.13: Transactions Latency for Card Tokenization

Gas Cost Optimization: One of the key challenges in a blockchain-enabled
tokenization system is minimizing gas costs during the tokenization process,
especially for high-frequency transactions. To address this, the following opti-
mizations were implemented:

6.6. Conclusion 151

– Off-Chain Computations: Computationally intensive processes, such
as token generation and validation, are handled off-chain, with only essen-
tial cryptographic references and transaction metadata stored on-chain.
This approach reduces the on-chain computational burden and gas costs.

– Efficient Smart Contract Design: Smart contracts were optimized to
use minimal storage and computational resources by employing efficient
data structures and avoiding unnecessary operations, thereby lowering the
gas consumed per transaction.

– Selective On-Chain Storage: Instead of storing full token details, cryp-
tographic hashes or references are stored on-chain. This significantly re-
duces storage costs, which form a major component of gas fees.

To further enhance cost efficiency and scalability, the following techniques
are planned for future integration:

– Batching Transactions: Consolidating multiple transactions into a sin-
gle batch for processing reduces the number of on-chain operations, effec-
tively lowering the overall gas expenditure per transaction.

– Layer-2 Solutions: Integrating layer-2 scaling solutions, such as rollups
or sidechains, offers a viable strategy to further reduce gas costs and im-
prove scalability for high-frequency transactions.

These optimizations ensure that the proposed tokenization system remains
both cost-effective and scalable, even under high transaction volumes.

6.6 Conclusion

The proposed solution addresses the critical limitations of the current tokeniza-
tion system by introducing decentralization facilitated by smart contracts act-
ing as autonomous TSPs. Cardholders do not need to rely on token requestors,
enabling them to apply directly to obtain a token. This innovative approach
offers greater resilience and security, reducing dependency on centralized enti-
ties and enhancing the overall efficiency of the token ecosystem. Experimental
results demonstrate the effectiveness of this solution, highlighting its potential
to significantly improve transaction processing and security in card tokenization
systems.

The proposed system can integrate with existing payment networks by lever-
aging APIs provided by Visa and Mastercard, requiring only minor compatibil-
ity adjustments. Future research and development efforts should focus on:

i) Challenges such as standardizing token formats and ensuring compatibil-
ity with existing infrastructure must be addressed. Future work could
explore cross-network token interoperability to facilitate seamless adop-
tion.

152Chapter 6. Blockchain-Enabled Secure Payment Card Tokenization System

ii) Optimizing smart contract integration as tokenized security providers for
seamless interoperability.

iii) Enhancing scalability and throughput to handle increasing transaction
volumes.

iv) Identifying and mitigating security vulnerabilities in decentralized tok-
enization systems. Collaborative initiatives across stakeholders are key to
driving adoption and standardization.

153

7
Blockchain-Enabled Multicurrency Supported

Distributed e-Banking System

“Banking is necessary, banks are not.”

— Bill Gates

The emergence of blockchain technology has brought about a paradigm shift
in the financial landscape, presenting new opportunities for innovation and dis-
ruption. One of the most promising applications of blockchain technology is in
the banking and finance sector [93], giving rise to Decentralized Finance (aka
DeFi).

Traditional banking systems operate on a centralized model, where banks
and financial institutions serve as trusted intermediaries to manage transac-
tions, maintain records, and ensure security. While effective in many scenarios,
this model can face challenges, including higher operational costs, inefficiencies
in certain processes, limited transparency, and potential vulnerabilities due to
centralized control. Moreover, the most significant disadvantage is the suscep-
tibility to fraudulent activities [162].

Figure 7.1: Centralized Banking System Vs Decentralized
Banking System

In contrast, as portrayed in Figure 7.1, a blockchain-enabled decentralized
banking system addresses the challenges of traditional banking by removing

154 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

the intermediaries and creating a trustless, transparent, and secure environ-
ment for financial transactions [142]. At its core, blockchain is a distributed
and immutable ledger, ensuring the integrity of financial records as once data is
recorded, it cannot be altered or deleted. In such a system, transactions are ver-
ified and added to the blockchain through a distributed consensus mechanism
involving a network of nodes. This eliminates the need for a central author-
ity and enables faster and more efficient cross-border payments while reducing
transaction fees [44].

Additionally, with the advent of Ethereum [25], blockchain technology en-
ables the creation of programmable smart contracts, self-executing agreements
with predefined conditions. Without intermediaries, these smart contracts can
automate various banking processes, such as loan approvals, asset transfers, and
interest payments. This not only streamlines operations but also reduces the
risk of human error and increases the overall efficiency of the banking system.

However, like any transformative technology, blockchain-enabled decentral-
ized banking systems also face challenges, including scalability, regulatory com-
pliance, and user adoption [33]. The adoption of cryptocurrencies [49] in coun-
tries has been controversial, with public key addresses being the only identi-
fiable information. To create a robust and sustainable ecosystem, overcoming
these hurdles requires collaboration between technology innovators, financial
institutions, and regulatory bodies. In light of these intricate dynamics, current
research is actively delving into the question of whether a decentralized banking
system based on blockchain technology can cater to users who prefer traditional
fiat currencies like the INR or Dollar instead of cryptocurrencies. Such a feature
is essential for a gradual and adaptive transition from conventional fiat currency
systems to cryptocurrency systems. Significantly, the current landscape lacks
an existing system that comprehensively supports the simultaneous holding of
both fiat currencies and cryptocurrencies, making this a key topic of ongoing
investigation and exploration. This unique dual capability has the potential
to bridge the gap between the familiarity of conventional currencies and the
novelty of cryptocurrencies in the context of shifting financial paradigms.

To illustrate this notion, let us consider an example of a hypothetical dis-
tributed marketplace with sellers and buyers. Some sellers accept payments in
fiat currencies such as the Indian Rupee, the United States Dollar, or the Euro,
while others prefer cryptocurrencies. This scenario poses challenges for buyers,
as they must pay in the currency chosen by the seller. If a buyer only has a
cryptocurrency wallet, they can only transact with vendors who accept cryp-
tocurrencies, not those who accept fiat currencies. Likewise, buyers with fiat
currency can only buy from vendors who accept fiat currency. However, this
restriction can be overcome if a wallet or bank account allows holding both fiat
currency and cryptocurrency. In such a scenario, users hold a bank account with
multiple currencies (e.g. Ether, INR, etc.) and can transact using any agreed-
upon currency between the buyer and seller. As of our current knowledge, no
such system exists in practice.

Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System 155

7.0.1 Contributions
We have proposed an innovative idea of having a bank account capable of si-
multaneously holding both fiat currencies and cryptocurrencies. These accounts
can support having multiple fiat currencies, e.g. INR, Dollar, and Euro. We
have created a prototype for the model on the Ethereum platform and launched
it as a web application with a user-friendly graphical interface. We highlight
our system’s distinctive features:

1. Simultaneous Fiat-Crypto Holding: This model innovates by en-
abling a bank account to handle both fiat currencies and cryptocurrencies
concurrently, distinguishing it from traditional banking structures.

2. Multi-Fiat Compatibility: Beyond individual fiat support, the model
allows various fiat currencies like INR, Dollar, and Euro to coexist within
one account, showcasing adaptability.

3. Implementation on Ethereum Prototype: A working prototype of
the proposed banking system has been created using smart contracts on
the Ethereum public blockchain platform.

4. Decentralized with Zero Downtime: Built on the blockchain, the
model’s decentralized, distributed nature ensures continuous operation
without downtime, unlike traditional centralized banking systems.

5. User-Friendly Web Application: The prototype is accessible via a
user-friendly web application with a graphical interface, making it more
approachable for non-tech-savvy users.

6. Comprehensive Spectrum of Banking Functionality: It encom-
passes account opening, deposits, withdrawals, fund transfers, real-time
currency exchanges as per the conversion rate, and account closure, of-
fering a holistic financial solution uniting fiat and crypto in one dynamic
framework.

By amalgamating these unique features, the proposed model introduces a novel
solution to the challenge of integrating conventional fiat currencies and cryp-
tocurrencies within a single financial framework. This model has the potential
to bridge the gap between the two currency paradigms and offer users a more
seamless and versatile financial experience.

7.0.2 Organization
The rest of the chapter is structured as follows - We have discussed the state-of-
the-art in Section 7.1. Then, Section 7.2 provides a quick overview of the basic
building blocks. Section 7.3 presents the system architecture and implemen-
tation details. Next, we have addressed our security assertions in Section 7.4.
After that, Section 7.5 shows the results of our proposed system and also dis-
cusses the outcome. Finally, we have concluded the chapter in Section 7.6.

156 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

7.1 Related Work

In this section, we provide an overview of relevant research and studies that
explore the applications of blockchain technology within the financial industry.

Eyal et al. [49] conducted a comprehensive investigation into the potential
implications of blockchain technology within the financial realm and its rele-
vance to overseeing the banking sector. The primary objective of their study
was to uncover the value that blockchain could bring to the field of finance and
account management. They delved into historical data analysis and highlighted
the role of Bitcoin in addressing persistent challenges within the financial sector.

Popova et al. [120] focused on the application of blockchain technology in
safeguarding financial transaction information without the use of tokens. Their
study thoroughly examined the security aspects of decentralized databases and
introduced a novel solution to the challenge of maintaining data integrity within
these databases through tokenless blockchain technology.

Cocco et al. [33] delved into the challenges and prospects associated with
the adoption of blockchain technology within the banking sector. Their research
sheds light on the unique challenges and opportunities that blockchain presents
in the context of traditional banking operations.

Wu et al. [171] provided insights into how blockchain technology benefits
commercial banks. Their study focused on three key areas: transaction fees,
cross-border payments, and asset securitization conducted by commercial banks.
Wu et al. emphasized the potential for blockchain to reduce transaction costs
and enhance operational efficiency in the commercial banking sector.

Dozier et al. [44] scrutinized blockchain innovation as a groundbreaking de-
velopment within the financial management sector. Through an evaluation in-
volving 12 financial management providers, the authors observed that financial
service organizations often perceive blockchain advancement as a lower priority
due to the need for a clear value proposition. They conclude that as industries
confront new technologies and advancements, such as blockchain, it becomes im-
perative to adopt efficient methodologies for assessment, determining whether
they can reap benefits from the innovation’s adoption or not.

Li et al. [93] demonstrated that blockchain technology has the potential
to disrupt existing business models and to examine the potential mechanisms
through which this disruption might occur. In conclusion, the paper recom-
mends that individuals closely monitor developments in this field to prepare for
potential disruptions in their businesses.

Arantes et al. [9] proposed leveraging blockchain technology to stream-
line the processes of lending, monitoring, and evaluating development projects
within the Brazilian Development Bank. The proposal aims to streamline pub-
lic fund allocations, enhance manual tasks, lower operational costs, and provide
data to support comprehensive analyses of the bank’s loans.

Sharma et al. [142] addressed the issue of financial fraud within the Indian
Banking System. They explored the potential of blockchain technology to de-
centralize the system and mitigate the problem. The paper briefly discussed

7.2. Background 157

key challenges within the Indian Banking System, such as issues with double
taxation and subpar documentation practices.

Kuzmina et al. [88] examined the unique aspects of introducing and uti-
lizing central bank digital currencies (CBDCs) in various countries worldwide.
Their research encompassed a review of how CBDCs are defined, identifying
the primary reasons and objectives for creating such a tool, and outlining its
key attributes. Special emphasis was placed on analyzing specific projects from
individual countries as examples to gauge the effectiveness and viability of in-
corporating central bank digital currencies into monetary systems.

Building on the insights gained from previous research in the financial in-
dustry, our exploration now shifts to the realm of cryptocurrency wallets. While
the prior part illuminated the potential of blockchain in financial applications,
this part delves into the practical tools that facilitate cryptocurrency manage-
ment and transactions, offering a comprehensive overview of their capabilities
and integration with fiat currencies. The majority of the wallets are tailored
for the management of cryptocurrencies rather than traditional fiat currencies.
These wallets excel at functions like storing, sending, receiving, and exchanging
a diverse range of cryptocurrencies. Nevertheless, a select few do offer lim-
ited features for fiat currency support and integration with third-party services.
Notably, Coinbase Wallet [34] and Binance Trust Wallet [19] are associated
with major cryptocurrency exchanges, allowing users to engage in fiat-to-crypto
transactions. At the same time, Exodus Wallet [48] provides fiat-to-crypto on-
ramps through partner services. Edge Wallet[46], on the other hand, facilitates
direct cryptocurrency purchases using fiat through bank account linking. How-
ever, it is essential to bear in mind that these wallets primarily serve as conduits
for cryptocurrencies. For exclusive fiat transactions, conventional banking apps
or financial service platforms like PayPal are generally preferred. When it comes
to acquiring cryptocurrencies using fiat, cryptocurrency exchanges often bridge
the gap, with many of these wallets harmoniously integrating with these plat-
forms to streamline the process.

We have summarized the features explored in our proposed system with
respect to the existing literature in Table 7.1.

Table 7.1: Contrasting the Existing State-of-the-Art with the
Proposed System

Article Distributed Multicurrency Implementation
details

User interface
for application

Data
security AvailabilityFiat Crypto

[49] ✔ ✘ ✔ ✘ ✘ ✔ ✔

[44] ✔ ✘ ✔ ✘ ✘ ✔ ✘

[9] ✔ ✘ ✔ ✔ ✘ ✔ ✘

[142] ✔ ✘ ✔ ✘ ✘ ✔ ✘

Proposed ✔ ✔ ✔ ✔ ✔ ✔ ✔

7.2 Background

In this section, we offer a succinct overview of various useful technologies and
tools that we use in our application.

158 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

– Metamask Wallet: MetaMask is a popular cryptocurrency wallet and
gateway to decentralized applications [90]. It functions as a browser ex-
tension or a mobile app, allowing users to manage their cryptocurrency
holdings, interact with decentralized applications, and execute transac-
tions on the Ethereum blockchain (Mainnet and various Testnets like Go-
erli, Sepolia, etc.). MetaMask acts as a bridge between the users and the
blockchain, providing a user-friendly interface for managing digital assets
and interacting with the decentralized web.

– Web 3.0: Web 3.0, often referred to as the “decentralized web”, is an
evolution of the traditional web (Web 2.0) [69]. It aims to create a more
open, user-centric, and decentralized internet experience. Web 3.0 envi-
sions a world where users have greater control over their data and online
interactions, facilitated by blockchain technology and decentralized proto-
cols. Instead of relying solely on central servers, Web 3.0 applications use
peer-to-peer networks and smart contracts to create more trustless and
autonomous online interactions [131].

7.3 System Model

In this section, we will delve into the architecture of the proposed banking
system and furnish implementation details.

Remark 5. Traditional e-banking systems face significant challenges, including
reliance on centralized architectures that introduce vulnerabilities such as single
points of failure, data breaches, and inefficiencies in managing accounts that
hold multiple currencies—both fiat and cryptocurrencies. These systems often
lack the transparency, trust, and flexibility required for seamless global transac-
tions, fail to support real-time currency conversion effectively, and are limited by
operational downtime. The problem is to design a blockchain-enabled, decentral-
ized e-banking system that securely manages multicurrency accounts, supports
real-time conversion between currencies, ensures transparent and tamper-proof
transaction handling, provides robust user authentication, and operates 24× 7.
Additionally, a GUI-based web application is essential to enable seamless inter-
actions and enhance user accessibility and experience.

7.3.1 System Components
The integral components of the system are as follows -

– Customers: These are the end-users of the banking system, encom-
passing individuals and entities seeking to leverage the hybrid capabilities
of the account for seamless management of both fiat currencies and cryp-
tocurrencies.

– Smart Contract: Smart contracts form the core of the system, automat-
ing transactions like deposits, withdrawals, fund transfers, and currency

7.3. System Model 159

Figure 7.2: Context Diagram: Blockchain-enabled Distributed
e-Banking System

exchanges. This streamlines operations boost accuracy and removes in-
termediaries.

– Blockchain: Serving as the foundation, the blockchain ensures the im-
mutability and security of transaction records, enabling transparency and
trust within the system through its decentralized ledger structure.

– Peer-to-Peer Network: The system operates on a decentralized peer-
to-peer network, enabling the execution of transactions without central-
ized authority and operationalizing the system 24×7.

Figure 7.2, as shown in the diagram, illustrates the context of our model.

7.3.2 Functionalities Offered by Our e-Banking System
Pre-requisite: An account in the Metamask web-based wallet connected to
Sepolia Testnet with a nonzero balance (test ethers) and an active internet
connection.

The Metamask Wallet contains the user’s balance (in ETH only). However,
the user’s bank account (A/C) contains balances in different currencies (crypto
and fiat). Let C be the set of different currency units that the user can hold in
their bank account. In this case, the set is as follows:

C = {ETH, INR,Dollar,Euro}

1. Open Bank Account:

– Generate a unique A/C number for a new user.

– Establish a one-to-one correspondence between the user’s address
(i.e., Public Key) and their Bank A/C Number.

2. Deposit:

– User enters the value to be deposited and selects one unit from the
set C.

160 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

– If ETH is the desired unit, the amount is directly deducted from
Metamask wallet balance and deposited to the user’s Bank Account.

– For other units (fiat currencies), deduct an equivalent value in ETH
from the Metamask wallet balance and store in the smart contract
as the same unit chosen by the user.

3. Withdraw:

– User enters the value to be withdrawn and selects one unit from the
set C.

– Check the smart contract to ensure sufficient balance in the selected
unit for withdrawal from the bank account. If the balance is suffi-
cient, allow the user to withdraw the specified amount in the chosen
unit. Consequently, debit the user’s bank A/C balance (in the se-
lected unit) and credit an equivalent amount in ETH to the user’s
Metamask wallet.

4. Fund Transfer:

– User specifies the receiver A/C number (or public key address), the
transfer amount, and selects one unit from the set C.

– Validate that both the sender and receiver have bank accounts.

– Confirm the sender has sufficient A/C balance (in the selected unit)
for the transfer. If so, enable the user to transfer funds to the re-
cipient’s bank A/C. Consequently, debit the sender’s bank A/C by
the transferred amount (in the chosen unit), and credit an equivalent
amount in the recipient’s bank A/C (in the same unit).

– Metamask Wallet balances (in ETH) for both sender and receiver re-
main unchanged, except for a slight deduction in the sender’s Meta-
mask wallet balance to cover Ethereum transaction fees.

5. Currency Exchange:

– Users can exchange their currency from one unit to another. The user
specifies the amount, source, and destination currency units from the
set C.

– Validate the user’s balance (in the chosen source currency unit) for
conversion. If sufficient, convert the amount to the desired currency
unit based on the currency exchange rate, updating the user’s A/C
balance accordingly.

6. Check Bank A/C Specifications and Balance:

– Display information as follows:
A/C Holder Name: Anonymous
A/C Number: 001
Ethereum Address (Public Key): 0X1234abD384...(20 bytes)
Balance: ’w’ ETH, ’x’ INR, ’y’ Dollar, ’z’ Euro

7.3. System Model 161

7. Close Bank Account:

– Transfer the entire bank A/C balance to the user’s Meta-
mask Wallet upon closing the account. For example, if the
user’s bank account contains ’w’ ETH, ’x’ INR, ’y’ Dollar,
and ’z’ Euro at closure, the Metamask wallet will be cred-
ited with (w + ToEther(x, INR) + ToEther(y,Dollar) +
ToEther(z, INR)) ETH. Here, ToEther() is a utility function
converting currency values to their equivalent Ether counterparts.

– Deactivate the bank account in the smart contract.

For all transactions involving currency conversion, the applicable currency ex-
change rate will be used during the execution of the transaction.

7.3.3 Managing Multi-Currency Transactions in the Sys-
tem

The e-banking system manages multiple fiat currencies by leveraging a single
Ethereum ledger, where account balances for different currencies are stored as
state variables in ETH units. When displaying balances to users, real-time
conversion rates are applied to present the equivalent fiat currency amounts,
avoiding direct currency exchanges and ensuring simplicity and consistency.
Users can deposit, withdraw, or transfer funds in multiple fiat or crypto units
through an external cryptocurrency wallet, such as MetaMask.

During deposits, the equivalent amount in ETH is deducted from the user’s
wallet and credited to their bank account, represented as a smart contract on the
Ethereum ledger, updating the state variable for the desired currency unit. For
withdrawals, the requested amount is converted to its ETH equivalent using the
real-time conversion rate and credited back to the user’s cryptocurrency wallet
as ETH. For fund transfers, the user can specify the desired currency unit,
and the sender’s account is debited in that unit while the receiver’s account is
credited with the same amount.

Notably, every banking transaction—whether deposit, withdrawal, or fund
transfer—requires updating the state variables in the smart contract, necessi-
tating interaction with the underlying blockchain. As a result, the transaction
initiator incurs a transaction fee, introducing an additional overhead cost as-
sociated with blockchain-based banking systems. This trade-off highlights the
balance between the benefits of decentralization and the operational costs of
blockchain infrastructure.

7.3.4 Algorithm
The workflow of our e-banking System is presented in Algorithm 1. In order
to simplify comprehension, we have encapsulated the functions of the smart
contract as a black box. Nevertheless, The source code is available on GitHub
repository∗.

∗https://doi.org/10.5281/zenodo.11079932

https://doi.org/10.5281/zenodo.11079932

162 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

Algorithm 6: Work Flow of our e-Banking System
Connect the Web Application to Metamask Wallet Account
if !(Bank account exists) then ▷ Create a new bank account

Prompt: username, initial_deposit_value, currency_unit
Validate: user input.
if currency_unit ̸= ETH then

Convert: ToEther(initial_deposit_value, currency_unit)

Account_number ← Open_account() ▷ Execute back-end smart contract
Return: Account_number ▷ User gets unique Account_number

while true do
Display: Banking Home Page with options - {1. Deposit, 2. Withdraw, 3. Fund
Transfer, 4. Currency Exchange and 5. Check Account Balance, 6. Close
Account}

Read: user choice
if user’s choice is 1 then ▷ Deposit funds

Prompt: deposit_amount, currency_unit
Validate: user input
if currency_unit ̸= ETH then

Convert: ToEther(deposit_amount, currency_unit)

Deposit() ▷ Execute smart contract & Update account balance

else if user’s choice is 2 then ▷ Withdraw funds
Prompt: withdrawal_amount, currency_unit
Validate: user input
if withdrawal_amount ≤ Account Balance (in specified currency_unit) then

if currency_unit ̸= ETH then
Convert: ToEther(withdrawal_amount, currency_unit)

Withdraw() ▷ Execute smart contract & Update account balance

else if user’s choice is 3 then ▷ Transfer funds
Prompt: recipient_account_number, transfer_amount, currency_unit
Validate: user input
if recipient_account_number is valid and transfer_amount ≤ Sender’s Account
Balance (in specified currency_unit) then

if currency_unit ̸= ETH then
Convert: ToEther(transfer_amount, currency_unit)

Fund_transfer()

else if user’s choice is 4 then ▷ Exchange Currency
Prompt: exchange_amount, currency_unit_from, currency_unit_to
Validate: user input
if currency_unit_from ̸= currency_unit_to and exchange_amount ≤ Account Balance
(in specified currency_unit_from) then

Currency_exchange() ▷ Execute smart contract & Update account balance

else if user’s choice is 5 then ▷ Display Account Balance
Display the account balances under every currency unit

else if user’s choice is 6 then ▷ Close account
Close_account() ▷ Execute smart contract, deactivate Account_number & Transfer the

cumulative ETH balances of all currency units to Metamask wallet
Exit and terminate the program.

One crucial aspect we emphasize is our approach to handling currency con-
version. The smart contract uses predefined conversion formulas based on real-
time exchange rates obtained through external Oracle API. For transaction
management, the contract validates user inputs, calculates the required amount
post-conversion, and logs the transaction on the blockchain for transparency and
auditability. Each currency unit has a dedicated state variable within the smart
contract, responsible for storing A/C balances in WEI (1 ETH = 1018 WEI).
To illustrate this concept, consider an example where a user opens an account
with an initial deposit of ’X’ INR. First, we convert this amount to its WEI

7.3. System Model 163

equivalent (say, ’X’ INR = ’Y’ WEI) using the prevailing currency exchange rate
off-chain. Subsequently, ’Y’ WEI is deducted from the user’s Metamask wallet
balance and recorded as the INR balance within the smart contract. When
the user queries their account balance, the smart contract returns ’Y’ WEI as
the ’INR’ balance, while other balances remain at ’0’, assuming no interme-
diate transactions or fund inflows. This ’Y’ WEI immediately gets converted
to equivalent INR as per the applicable exchange rate at that instant and is
conveyed to the user on the screen. Due to dynamic real-time exchange rates,
the displayed balance might not precisely match ’X’ INR.

7.3.5 Implementation Details
We provide a detailed analysis of how our e-banking system is implemented,
revealing the essential technologies and architectural components that work
together to bring our vision into reality.

Figure 7.3: Connecting to Metamask Wallet

At the same time, we offer a visual narrative of our system in action for
ease of understanding. Through meticulously captured screenshots, we illus-
trate operational scenarios, aligning them with their respective functionalities.
These visual aids, arranged in a logical sequence, illuminate the control flow and
highlight key transaction updates through distinct boundary markings. The pri-
mary operations of our e-banking system encompass establishing a connection
to a Metamask wallet, opening a new bank account, depositing funds, with-
drawing money, transferring funds to other accounts, exchanging currency, and
closing a bank account are depicted in Figure 7.3, 7.4, 7.5, 7.6, 7.7, 7.8 and 7.9
respectively.

1. Development of Smart Contract
The heart of our e-banking system is an intricately designed smart contract
coded in the Solidity programming language. This smart contract serves as the
bedrock for our vital banking operations, orchestrating the entire spectrum of
functionalities, including account creation, deposits, withdrawals, secure fund
transfers, balance inquiries, currency exchange, and account closure. Solidity’s
robust capabilities empower us to safeguard the paramount attributes of secu-
rity, immutability, and transparency that the banking sector demands.

2. Deployment of Smart contract
Upon completing the coding phase of our smart contract, we initiated a rigorous

164 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

Figure 7.4: Opening a New Bank Account

Figure 7.5: Depositing Money to Bank Account

testing phase within the private Ganache blockchain network. This meticulous
examination confirmed the functionality and reliability of our codebase. With
a boosted confidence level, we embarked on the deployment journey, making a
significant stride by deploying our contract on the Sepolia Testnet. This enabled
us to have a controlled environment that facilitated us to conduct rigorous
testing and validation.

3. Designing of Front-end Interface
We artfully designed an array of front-end webpages to harmoniously inter-
lace users with the intricate blockchain back-end. We used industry-standard
web technologies like HTML, CSS, and JavaScript to craft an intuitive and
user-centric interface. Our digital platform allows users to easily interact with
blockchain operations, making it simpler to execute smart contract functions.

7.3. System Model 165

Figure 7.6: Withdrawing Money from Bank Account

To ensure seamless interactions, we integrate the Web 3.0 framework. This
allows our front-end to communicate with the back-end blockchain, perform
transactions, and provide important account-related information.

Figure 7.7: Transferring Money between Two Bank Accounts

166 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

4. Secure Communication between Front-end and Back-end
The symphony between our front-end and the smart contract unfolds via a
secure communication pipe. All users’ input and requests undergo careful val-
idation before embarking on their journey to the smart contract. In parallel,
responses originating from the smart contract retrace the same channel, arriving
at the front-end with unwavering integrity. This holistic approach ensures the
sanctity of data throughout the e-banking process, underpinning consistency
and precision.

We have incorporated an external API to obtain up-to-date currency con-
version rates for transactions that involve unit conversion. The data received is
processed on the client side before being sent to the back-end smart contract,
resulting in a smooth currency exchange process. Similarly, when retrieving user
account balances from the back-end smart contract, the values are automati-
cally converted to fiat currency units if necessary, using the currency conversion
rates provided by the API. This seamless integration ensures that balances are
accurately displayed on the user interface.

Figure 7.8: Currency Exchange

7.4 Security Features

Blockchain technology relies on cryptographic primitives, such as hash func-
tions and digital signatures. The security of the blockchain and, consequently,
our entire system hinges on the robustness of these foundational cryptographic
elements. Assuming the foundational technologies are adequately secured, let
us delve into the security features offered by our application, many of which
stem from its underlying blockchain architecture.

1. Immutable Transaction Records: Our system ensures that once trans-
actions are recorded on the blockchain, they become permanent and cannot

7.4. Security Features 167

Figure 7.9: Closing a Bank Account

be altered. This guarantees the accuracy and reliability of financial histories,
preventing any manipulation or unauthorized changes.

2. Decentralized Data Storage: User data is distributed across the net-
work, eliminating the risk of failures (e.g., server crashes). It enhances system
resilience and security by reducing vulnerability to attacks targeting centralized
data repositories.

3. Tamper-Resistant Smart Contracts: Our banking operations, encom-
passing Deposits, Withdrawals, Fund Transfers, and Currency Exchanges, are
meticulously encoded within smart contract code, ensuring precision and trans-
parency. These smart contracts are committed to the blockchain in an unalter-
able form, effectively shielding them from tampering. This guarantees that the
execution of each transaction adheres to its predefined terms and conditions,
eliminating any room for manipulation or ambiguity.

4. Cryptography-Backed User Authentication: The e-banking system
leverages advanced cryptographic methods, specifically the Elliptic Curve Dig-
ital Signature Algorithm (ECDSA), to ensure secure user authentication and
protect user identities. During registration, users generate a cryptographic key
pair, consisting of a public key (PK) and a private key (SK). The public key
(PK) serves as the user’s unique identifier within the system, while the private
key (SK) is securely stored and managed by the user. All interactions with
the e-banking system, including account access and transaction authorizations,
require cryptographic signatures created using the private key. These signa-
tures are validated against the user’s public key to ensure the authenticity of
the actions. This approach eliminates the reliance on traditional usernames and
passwords, which are susceptible to phishing and brute-force attacks, thereby
enhancing security.

168 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

Moreover, the decentralized nature of the authentication mechanism aligns
with the principles of blockchain, ensuring that user credentials are not stored
on centralized servers, reducing the risk of breaches. The system ensures non-
repudiation, as users cannot deny their actions once cryptographically signed,
further strengthening trust and accountability within the e-banking system.

This cryptographic authentication mechanism provides a robust, tamper-
proof, and privacy-preserving foundation for user interactions, ensuring only
legitimate users can access and operate within the system.

5. Protected Private Key Management: Users have sole ownership and
control over their private keys in the Metamask wallet. It minimizes the risk of
unauthorized access, ensuring user assets remain secure from external threats.

6. Built-In Network Resilience: Our decentralized network design reduces
dependency on centralized systems, enhancing resilience against service disrup-
tions caused by localized failures or targeted attacks and ensuring higher service
availability

7. Continuous Monitoring and Rapid Response: Our application is
already deployed and operational for user access; it benefits from real-world
exposure, making it a live testing ground for identifying potential vulnerabilities
or shortcomings.

By leveraging these existing security features, our blockchain-enabled dis-
tributed e-banking system guarantees a fortified platform that users can trust
for managing their financial assets and transactions with utmost confidence.
This framework prioritizes financial well-being through advanced blockchain
security.

7.5 Result and Discussion

Figure 7.10: Steps to access our e-Banking DApp

Implementation Setup: We have successfully implemented the pro-
posed e-Banking System on a system running Linux Ubuntu 22.04.2 LTS

7.5. Result and Discussion 169

with an Intel(R) Core(TM) i5-8250U and 8.0 GiB of RAM. We deployed
the smart contract on the Ethereum Sepolia test network. Metamask crypto
wallet is used for account creation and transaction initiation. Our back-end
smart contracts were written in Solidity, while the front-end used HTML,
CSS, and JavaScript. To ensure seamless interaction between the front-
end webpage and the back-end blockchain, we utilized the Web 3.0 library.
To access our application, please refer to the instructions outlined in Fig-
ure 7.10. The smart contract is reachable through the deployment address
- 0x459b5ec8c6c4273ed131934cdf0f2064c563bdc0 on the Sepolia testnet. The
contract creation transaction consumed 3900576 units of gas.

Our main goal was to determine the feasibility of our blockchain model
through various results. The cost and time were the two main factors we con-
sidered. The detailed discussion can be found in Chapter 2, Section 2.6.10.

Transaction Cost: Figure 7.11 illustrates the gas cost of various transac-
tions of our e-banking system. It can be seen from Figure 7.11 that the gas cost
for Open_account is high; however, it is a viable expense since this function will
be executed only once per user. This initial cost is a reasonable trade-off for en-
suring the security and reliability of the Open_account process. Furthermore,
it’s essential to highlight that the remaining transaction costs are optimized and
efficient, which contributes to the overall efficiency of our system.

Figure 7.11: Gas Consumption of Transactions

Transaction Latency: To determine transaction latency, we measure the
maximum, minimum, and average time taken for 100 successful transactions to
be submitted to the network and included in a block. The latency for various
transactions for our system is depicted in Figure 7.12. Upon closer examination
of Figure 7.12, it becomes evident that the average transaction latency for each
of the transactions is at an optimum level. This observation underscores the
robustness of our implementation. The consistently low transaction latency is a

170 Chapter 7. Blockchain-Enabled Multicurrency Supported Distributed
e-Banking System

testament to the scalability and performance of our system, ensuring a seamless
and responsive user experience.

Figure 7.12: Transaction Latency

7.6 Conclusion

We explore the potential of blockchain technology within the banking sector.
The emergence of blockchain has glorified a new era of decentralized finance
(DeFi), challenging the traditional centralized banking model with its inefficien-
cies and vulnerabilities. Through a carefully crafted model, we have addressed
the limitations of conventional banking systems by introducing an innovative
dual-capability bank account that can simultaneously accommodate both fiat
currencies and cryptocurrencies. The approach facilitates the development of a
financial landscape that is more inclusive and flexible, accommodating users who
have a preference for traditional fiat currencies as well as the emerging domain of
cryptocurrencies. By leveraging smart contracts and decentralized blockchain
technology, we have built a functional e-Banking system that holds multiple
fiat currencies and seamlessly integrates cryptocurrency transactions. This in-
novative approach overcomes the significant obstacle of combining traditional
and digital currencies by connecting traditional practices with technological ad-
vancements. The end result is a robust, decentralized, and user-friendly web
application offering diverse banking capabilities. Experimental result shows
the satisfactory outcome of various performance metrics. In conclusion, our
work advances the vision of a decentralized banking system that accommodates
users’ diverse preferences, disrupts traditional financial paradigms, and unlocks
the potential of blockchain technology to reshape the future of banking and
finance. In the future, our e-Banking system holds promising directions for
growth and improvement:

7.6. Conclusion 171

1. Developing a dedicated mobile application to enhance user accessibility
and convenience.

2. Implementing advanced security measures, including biometric and multi-
factor authentication, will strengthen the system’s security framework.

3. Expanding a broader range of banking services, such as investment op-
tions, insurance services, and wealth management, will transform the e-
Banking system into a comprehensive financial hub.

4. Ensuring regulatory compliance and adherence to evolving financial stan-
dards remains a key priority to ensure a stable and compliant ecosystem.
We aim to integrate KYC (Know Your Customer) and AML (Anti-Money
Laundering) compliance measures into our model. This enhancement will
enable us to track and prevent fraudulent activities efficiently.

The e-banking system currently operates within the transaction throughput
limitations of the underlying Ethereum blockchain, relying on its native ca-
pabilities to handle user interactions and transaction processing. While this
ensures seamless integration with Ethereum’s robust infrastructure, enhancing
the system’s scalability remains a promising area for future work. Potential im-
provements include the integration of layer-2 scaling solutions such as rollups or
state channels to increase transaction throughput and reduce costs. Addition-
ally, upcoming advancements in Ethereum, such as sharding in Ethereum 2.0,
could be leveraged to further improve scalability. These enhancements would
enable the system to support a significantly larger user base and higher trans-
action volumes, making it more robust and adaptable for widespread adoption
in the e-banking domain.

While blockchain and smart contract-based applications offer promising op-
portunities for enhancing transparency, security, and efficiency in banking sys-
tems, their implementation must be approached with caution. Smart con-
tracts, though innovative, are not immune to vulnerabilities. Incidents such
as reentrancy attacks, logic flaws, and exploits in poorly written code highlight
the risks associated with inadequate security measures. For instance, the re-
cent WazirX attack [159] underscored the potential for vulnerabilities in smart
contract implementations, emphasizing the need for rigorous testing, secure
coding practices, and regular audits. Addressing these challenges is critical
to ensuring the reliability and safety of smart contract-based banking solu-
tions, paving the way for their wider adoption and trust in the financial sector.

173

8
Conclusion

“I think there is always room for improvement, and every day
is a chance to get better.”

— Jennifer Brady

In this concluding chapter, we take a comprehensive look at the previous
chapters, summarizing and drawing conclusions from the various aspects
explored in this thesis. This research has primarily focused on design-
ing blockchain-enabled secure real-life applications, concentrating on the
healthcare and banking sectors. Here, we highlight our key contributions,
improvements, and extensions to existing methods. Furthermore, we delve into
the potential directions for future research and identify the open problems that
lie ahead in the field of blockchain technology.

Chapter 1 functions as the thesis introduction, while Chapter 2 offers a foun-
dational understanding of various cryptographic concepts and blockchain tech-
nology, setting the stage for readers to engage with the thesis effectively. Our
first three contributory chapters focus on blockchain’s impact in the healthcare
domain, while the latter two chapters concentrate on its impact on the banking
sector.

8.1 Summary of Technical Contributions

Chapter 3: Blockchain-Enabled Secure Healthcare System
We proposed a novel, Secure, and Smart Healthcare System utilizing blockchain
to ensure tamper-proof Electronic Health Records (EHRs) and preserve patient
privacy. The system’s deployment on private and Ropsten test networks con-
firmed its practical feasibility and effectiveness in enhancing healthcare data
management. Additionally, the system addresses interoperability challenges,
enabling seamless data sharing among healthcare providers while maintaining
robust security standards.

174 Chapter 8. Conclusion

Chapter 4: Blockchain-Enabled Secure Health Insurance System
This work introduced a Health Insurance Processing System that employs
smart contracts to automate interactions between policyholders and insur-
ers. The system achieves increased transparency, expedites key processes,
and provides better safeguards against fraudulent activities, demonstrating
blockchain’s utility in modernizing health insurance infrastructure. Fur-
thermore, the system incorporates mechanisms to enforce fairness, ensuring
honest parties are protected against malicious behavior during claim processing.

Chapter 5: Blockchain-Enabled Secure Vaccine Passport System
We developed a Blockchain-Enabled Secure Vaccine Passport System to ensure
secure, transparent, and efficient vaccine administration and verification. By
leveraging the blockchain’s immutable ledger and integrating IPFS for off-chain
data storage, the system provides tamper-proof vaccination records while
maintaining user privacy. The implementation supports real-time verification
of vaccination status, enabling its use in scenarios such as travel or access to
public venues.

Chapter 6: Blockchain-Enabled Secure Payment Card Tokenization
System
The proposed solution introduced decentralization in payment card tokeniza-
tion through smart contracts, reducing reliance on centralized entities. This
approach enhanced security and efficiency, as confirmed by experimental
results, indicating its potential to improve current tokenization systems
significantly. Additionally, the system ensures privacy by tokenizing sensitive
card data and protecting it from unauthorized access or tampering through
blockchain’s inherent immutability.

Chapter 7: Blockchain-Enabled Multicurrency Supported Dis-
tributed e-Banking System
We presented a dual-capability e-Banking system that integrates both fiat
and cryptocurrencies. Utilizing smart contracts and decentralized blockchain
technology, the system offers a robust, user-friendly platform for diverse
banking needs, bridging traditional finance with emerging digital currencies.
The system also enables real-time conversion and multicurrency management,
demonstrating its adaptability to evolving financial landscapes.

A unified blockchain platform could serve as the foundation to integrate
the proposed healthcare, insurance, and e-banking systems, creating a seamless
and interconnected ecosystem. By securely linking health records with insur-
ance claims and payment processing, the platform would enable users to access
and manage their healthcare and financial needs through a cohesive interface.
For instance, a patient’s medical records stored in the healthcare system could
be directly referenced during an insurance claim, automating the verification
process and reducing administrative delays. If payments are made using credit
or debit cards, the tokenization system ensures that sensitive card details are

8.2. Future Scope 175

replaced with secure tokens, safeguarding user data while processing transac-
tions. Additionally, the integrated e-banking system could facilitate instant pay-
ments for medical expenses, whether using fiat, cryptocurrencies, or tokenized
credit card transactions, leveraging smart contracts to ensure transparency and
trust. This unified approach enhances operational efficiency, eliminates redun-
dant processes, and maintains robust privacy and security through blockchain’s
decentralized and tamper-proof architecture. The interoperability of these sys-
tems offers a streamlined user experience, bridging healthcare, insurance, and
banking while addressing the complexities of modern digital ecosystems.

8.2 Future Scope

While our research has demonstrated promising results, several challenges and
areas for future development remain:

1. Enhanced Privacy and Data Protection Mechanisms: While our
systems ensure user privacy, further research into advanced cryptographic
techniques, such as zero-knowledge proofs, can enhance privacy and se-
curity in blockchain applications. Balancing the immutable nature of
blockchain with data protection regulations like the General Data Protec-
tion Regulation (GDPR) of the European Union, particularly the “right to
be forgotten” [163], presents an ongoing challenge that requires innovative
solutions.

2. Scalability Solutions: Addressing scalability challenges is crucial for
the widespread adoption of blockchain-based systems. Current blockchain
networks often face limitations in handling large transaction volumes due
to the constraints of on-chain processing. Future work could explore the
implementation of layer 2 solutions, such as state channels and sidechains,
to offload transactions from the main blockchain, thereby improving trans-
action throughput and reducing latency [99], [105]. State channels enable
off-chain interactions between participants, requiring minimal on-chain
operations, which significantly reduces congestion. Similarly, sidechains
operate as independent blockchains connected to the main chain, allowing
parallel processing of transactions and custom optimizations tailored to
specific use cases. These solutions not only enhance scalability but also
lower transaction costs, making the systems more accessible for broader
adoption.

3. Interoperability: Developing interoperability standards for different
blockchain networks can facilitate seamless data sharing and collabora-
tion across various platforms, enhancing the functionality and adoption
of blockchain-enabled applications.

4. Regulatory Compliance: As blockchain technology evolves, ensuring
compliance with regulatory frameworks becomes essential. Future re-
search can explore mechanisms for embedding compliance checks within
smart contracts to meet legal and regulatory requirements.

176 Chapter 8. Conclusion

5. Integration with Emerging Technologies: Combining blockchain
with other emerging technologies, such as artificial intelligence and the
Internet of Things (IoT) [43], [136], [145], can unlock new possibilities for
secure and intelligent real-life applications in various sectors.

6. User-Centric Design: Focusing on user experience and accessibility
can drive broader adoption of blockchain applications. Future work could
involve developing more intuitive interfaces and enhancing usability to
cater to a diverse user base.

7. Performance Optimization of Smart Contracts: Optimizing the
performance of smart contracts is essential for efficient blockchain oper-
ations. Future research could focus on minimizing gas consumption and
improving execution speed to make smart contracts more practical for
large-scale applications.

8. Energy Efficiency and Carbon Footprint Reduction: There is an
urgent need to address the high energy consumption and carbon foot-
print associated with blockchain technologies, particularly cryptocurren-
cies. Studies have shown that popular cryptocurrencies like Bitcoin con-
sume energy on the scale of entire countries such as Sweden and Thailand.
The carbon footprint of Bitcoin has been estimated to be close to that of
Greece and Oman [84]. Future research should focus on developing and
implementing more energy-efficient consensus mechanisms and blockchain
architectures. Case studies on networks like Ethereum 2.0 and Pi Network,
which aim to solve some of these challenges, can provide valuable insights.
This aligns with global sustainability goals and the urgent need to control
human-caused global warming.

9. Quantum Secured Blockchain: Quantum computing presents both
challenges and opportunities for blockchain technology. While quantum
computers could potentially break the current cryptographic methods
used in blockchains, they also offer ways to enhance security and per-
formance. The blockchain community is actively researching quantum-
resistant cryptographic algorithms to safeguard against future quantum
threats. Simultaneously, concepts like quantum blockchains [122] are be-
ing explored to leverage quantum principles for improved security. As
both fields evolve, their intersection may lead to more secure and effi-
cient blockchain systems, potentially enabling more sophisticated smart
contracts and applications.

While our research has focused on the healthcare and banking sectors,
blockchain technology has vast potential across various other important sec-
tors, including:

– Supply chain management: Enhancing traceability, reducing fraud,
and improving efficiency in global supply chains [22], [101], [178].

– Decentralized data marketplaces: Enabling secure and fair data shar-
ing and monetization [42], [102], [137].

8.2. Future Scope 177

– Pharmaceutical industry: Ensuring drug authenticity and improving
clinical trial management [55].

– Decentralized identity management: Providing secure, self-sovereign
digital identities [41], [58].

– e-Voting systems: Increasing transparency and security in electoral pro-
cesses [104], [106].

– Real estate: Streamlining property transactions and record-keeping
[147].

– Energy sector: Facilitating peer-to-peer energy trading and grid man-
agement [94].

– Intellectual property and copyright protection: Ensuring proper
attribution and managing royalties [65].

– Government and public services: Improving transparency in public
spending and service delivery [114].

– Education: Verifying academic credentials and managing lifelong learn-
ing records [28], [98].

– Charity and non-profit organizations: Enhancing transparency in
fundraising and fund allocation [51].

– Digital content creation and distribution: Ensuring fair compensa-
tion for creators and reducing piracy [70].

– Automotive industry: Authenticating spare parts, securing vehicle his-
tory records, enabling car-to-car communication, enhancing cybersecurity
in connected vehicles, and managing driverless car operations [53].

– Logistics and transportation: Optimizing route planning and cargo
tracking [92].

– Agriculture: Improving food traceability and managing sustainable
farming practices [17].

– Crime investigation: Maintaining secure and tamper-proof chain of
custody for evidence, enhancing the integrity of forensic processes [86],
[95], [116].

Completing this thesis has been a transformative journey, enriching my un-
derstanding of blockchain technology and its potential to revolutionize critical
sectors. This experience underscored the value of collaboration and adaptabil-
ity in tackling research challenges. The proposed applications aim to foster a
more transparent and efficient world by combating corruption, enhancing trust,
and improving various societal and industrial aspects. In conclusion, this re-
search highlights blockchain’s potential to enhance security, transparency, and
efficiency in healthcare and banking. By addressing current limitations and

178 Chapter 8. Conclusion

exploring new avenues, we can further advance the adoption and impact of
blockchain-enabled solutions in real-world applications.

179

Bibliography

[1] P. Agbedanu, F. U. Bawah, V. Akoto-Adjepong, N. Awarayi, I. Nti, S.
Boateng, P. Nimbe, and O. Nyarko-Boateng, “Blocovid: A blockchain-
based covid-19 digital vaccination certificate verification system,” in
2022 International Conference on Engineering and Emerging Technolo-
gies (ICEET), IEEE, 2022, pp. 1–6. doi: 10.1109/ICEET56468.2022.
10007366.

[2] N. Ahmed, R. A. Michelin, W. Xue, G. D. Putra, S. Ruj, S. S. Kanhere,
and S. Jha, “Dimy: Enabling privacy-preserving contact tracing,” Journal
of Network and Computer Applications, vol. 202, p. 103 356, 2022. doi:
10.1016/j.jnca.2022.103356.

[3] N. Ahmed, R. A. Michelin, W. Xue, G. D. Putra, W. Song, S. Ruj, S. S.
Kanhere, and S. Jha, “Towards privacy-preserving digital contact trac-
ing,” in 2021 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), IEEE, 2021, pp. 1–3. doi: 10.1109/ICBC51069.
2021.9461052.

[4] R. Ahuja, “Health insurance for the poor,” Economic and Political
Weekly, pp. 3171–3178, 2004. [Online]. Available: http://www.jstor.
org/stable/4415637.

[5] I. Ali and O. M. Alharbi, “Covid-19: Disease, management, treatment,
and social impact,” Science of the total Environment, vol. 728, p. 138 861,
2020. doi: 10.1016/j.scitotenv.2020.138861.

[6] A. A. Amponsah, A. F. Adekoya, and B. A. Weyori, “Improving the finan-
cial security of national health insurance using cloud-based blockchain
technology application,” International Journal of Information Manage-
ment Data Insights, vol. 2, no. 1, p. 100 081, 2022. doi: 10.1016/j.
jjimei.2022.100081.

[7] R. Annon, Ethereum Gas and Fees, https : / / ethereum . org / en /
developers/docs/gas/, 2024.

https://doi.org/10.1109/ICEET56468.2022.10007366
https://doi.org/10.1109/ICEET56468.2022.10007366
https://doi.org/10.1016/j.jnca.2022.103356
https://doi.org/10.1109/ICBC51069.2021.9461052
https://doi.org/10.1109/ICBC51069.2021.9461052
http://www.jstor.org/stable/4415637
http://www.jstor.org/stable/4415637
https://doi.org/10.1016/j.scitotenv.2020.138861
https://doi.org/10.1016/j.jjimei.2022.100081
https://doi.org/10.1016/j.jjimei.2022.100081
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/

180 Bibliography

[8] A. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurren-
cies. O’Reilly Media, 2014, isbn: 9781491902646. [Online]. Available:
https://books.google.co.in/books?id=IXmrBQAAQBAJ.

[9] G. M. Arantes, J. N. D’Almeida, M. T. Onodera, S. M. D. B. M. Moreno,
and V. d. R. S. Almeida, “Improving the process of lending, monitor-
ing and evaluating through blockchain technologies: An application of
blockchain in the brazilian development bank (bndes),” in 2018 IEEE
International Conference on Internet of Things, IEEE, 2018, pp. 1181–
1188. doi: 10.1109/Cybermatics_2018.2018.00211.

[10] S. Bag, S. Ruj, and K. Sakurai, “Bitcoin block withholding attack: Anal-
ysis and mitigation,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 8, pp. 1967–1978, 2016. doi: 10.1109/TIFS.2016.
2623588.

[11] E. Bandara, X. Liang, et al., “Indy528—federated learning model tok-
enization with non-fungible tokens (nft) and model cards,” in 2022 IEEE
19th International Conference on Mobile Ad Hoc and Smart Systems
(MASS), IEEE, 2022, pp. 195–201. doi: 10.1109/MASS56207.2022.
00033.

[12] E. Bandara, S. Shetty, et al., “Kaputa-blockchain, non-fungible token
and model card integrated 5g/6g network slice broker and marketplace,”
in MILCOM 2022-2022 IEEE Military Communications Conference
(MILCOM), IEEE, 2022, pp. 559–564. doi: 10.1109/MILCOM55135.
2022.10017900.

[13] M. Barati, W. J. Buchanan, O. Lo, and O. Rana, “A privacy-preserving
distributed platform for covid-19 vaccine passports,” in Proceedings of the
14th IEEE/ACM international conference on utility and cloud computing
companion, 2021, pp. 1–6. doi: 10.1145/3492323.349562.

[14] M. V. Baysal, Ö. Özcan-Top, and A. Betin-Can, “Blockchain technology
applications in the health domain: A multivocal literature review,” The
Journal of Supercomputing, pp. 1–45, 2022. doi: 10.1007/s11227-022-
04772-1.

[15] BBC, TSB lacked common sense before IT meltdown, says report, https:
//www.bbc.com/news/business-50471919, 2019.

[16] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014. doi: 10.48550/arXiv.1407.3561.

[17] O. Bermeo-Almeida, M. Cardenas-Rodriguez, T. Samaniego-Cobo, E.
Ferruzola-Gómez, R. Cabezas-Cabezas, and W. Bazán-Vera, “Blockchain
in agriculture: A systematic literature review,” in Technologies and Inno-
vation: 4th International Conference, CITI 2018, Guayaquil, Ecuador,
November 6-9, 2018, Proceedings 4, Springer, 2018, pp. 44–56. doi: 10.
1007/978-3-030-00940-3_4.

[18] D. J. Bernstein, “The salsa20 family of stream ciphers,” in New stream
cipher designs: the eSTREAM finalists, Springer, 2008, pp. 84–97. doi:
10.1007/978-3-540-68351-3_8.

https://books.google.co.in/books?id=IXmrBQAAQBAJ
https://doi.org/10.1109/Cybermatics_2018.2018.00211
https://doi.org/10.1109/TIFS.2016.2623588
https://doi.org/10.1109/TIFS.2016.2623588
https://doi.org/10.1109/MASS56207.2022.00033
https://doi.org/10.1109/MASS56207.2022.00033
https://doi.org/10.1109/MILCOM55135.2022.10017900
https://doi.org/10.1109/MILCOM55135.2022.10017900
https://doi.org/10.1145/3492323.349562
https://doi.org/10.1007/s11227-022-04772-1
https://doi.org/10.1007/s11227-022-04772-1
https://www.bbc.com/news/business-50471919
https://www.bbc.com/news/business-50471919
https://doi.org/10.48550/arXiv.1407.3561
https://doi.org/10.1007/978-3-030-00940-3_4
https://doi.org/10.1007/978-3-030-00940-3_4
https://doi.org/10.1007/978-3-540-68351-3_8

Bibliography 181

[19] Binance, Bianace Trust Wallet, https://www.binance.com/, 2024.

[20] D. Boneh and V. Shoup, “A graduate course in applied cryptography,”
Draft 0.5, 2020.

[21] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E.
Wustrow, “Elliptic curve cryptography in practice,” in Financial Cryp-
tography and Data Security: 18th International Conference, FC 2014,
Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers 18,
Springer, 2014, pp. 157–175. doi: 10.1007/978-3-662-45472-5_11.

[22] S. Bose, M. Raikwar, D. Mukhopadhyay, A. Chattopadhyay, and K.-Y.
Lam, “Blic: A blockchain protocol for manufacturing and supply chain
management of ics,” in 2018 IEEE international conference on Inter-
net of Things (iThings) and IEEE green computing and communications
(GreenCom) and IEEE cyber, physical and social computing (CPSCom)
and IEEE smart data (SmartData), IEEE, 2018, pp. 1326–1335. doi:
10.1109/Cybermatics_2018.2018.00229.

[23] P. Bradish, S. Chaudhari, M. Clear, and H. Tewari, “Covichain: A
blockchain based covid-19 vaccination passport,” in Future of Informa-
tion and Communication Conference, Springer, 2023, pp. 195–206. doi:
10.1007/978-3-031-28076-4_17.

[24] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

[25] V. Buterin, “Ethereum: Platform review,” Opportunities and Challenges
for Private and Consortium Blockchains, vol. 45, 2016.

[26] Y. Cao, J. Chen, and Y. Cao, “Blockchain-based privacy-preserving vac-
cine passport system,” Security and Communication Networks, vol. 2022,
no. 1, p. 4 769 187, 2022. doi: 10.1155/2022/47691.

[27] P. Chakraborty, S. Maitra, M. Nandi, and S. Talnikar, “Contact tracing
in post-covid world,” Indian Statistical Institute Series, 2020. doi: 10.
1007/978-981-15-9727-5.

[28] S. Chakraborty, K. Dutta, and D. J. Berndt, “Blockchain based resource
management system,” Available at SSRN 3104351, 2017. doi: 10.2139/
ssrn.3104351.

[29] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative sur-
vey of symmetric and asymmetric key cryptography,” in 2014 Interna-
tional Conference on Electronics, Communication and Computational
Engineering (ICECCE), 2014. doi: 10.1109/ICECCE.2014.7086640.

[30] R. N. Charette, Health Net Data Breach Affects 1.9 Million People
Second major breach for Health Net in two years, https://bit.ly/
Health_Net_Data_Breach, 2011.

[31] H. Chaudhari and M. Crane, “Cross-correlation dynamics and commu-
nity structures of cryptocurrencies,” Journal of Computational Science,
vol. 44, p. 101 130, Jul. 2020, issn: 1877-7503. doi: 10.1016/J.JOCS.
2020.101130.

https://www.binance.com/
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1109/Cybermatics_2018.2018.00229
https://doi.org/10.1007/978-3-031-28076-4_17
https://doi.org/10.1155/2022/47691
https://doi.org/10.1007/978-981-15-9727-5
https://doi.org/10.1007/978-981-15-9727-5
https://doi.org/10.2139/ssrn.3104351
https://doi.org/10.2139/ssrn.3104351
https://doi.org/10.1109/ICECCE.2014.7086640
https://bit.ly/Health_Net_Data_Breach
https://bit.ly/Health_Net_Data_Breach
https://doi.org/10.1016/J.JOCS.2020.101130
https://doi.org/10.1016/J.JOCS.2020.101130

182 Bibliography

[32] V. Chinnasamy, 1.5 Million Customers Impacted By US Bank Data
Breach – Possible Lessons Learned, https://www.indusface.com/
blog / 1 - 5 - million - customers - impacted - by - us - bank - data -
breach-possible-lessons-learned, 2022.

[33] L. Cocco, A. Pinna, and M. Marchesi, “Banking on blockchain: Costs
savings thanks to the blockchain technology,” Future Internet, vol. 9,
no. 3, p. 25, 2017. doi: 10.3390/fi9030025.

[34] Coinbase, Coinbase Wallet, https://www.coinbase.com/wallet, 2022.

[35] M. Conti, A. Gangwal, C. Lal, and S. Ruj, “Bitcoin blockchain system:
An overview of security and privacy aspects,” Blockchains: A Handbook
on Fundamentals, Platforms and Applications, pp. 75–108, 2023. doi:
10.1007/978-3-031-32146-7_3.

[36] D. Coppersmith, D. B. Johnson, and S. M. Matyas, “A proposed mode
for triple-des encryption,” IBM Journal of Research and Development,
vol. 40, no. 2, pp. 253–262, 1996. [Online]. Available: https://api.
semanticscholar.org/CorpusID:18377483.

[37] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” The Rijndael Block
Cipher, 1999.

[38] I. B. Damgård, “A design principle for hash functions,” in Advances in
Cryptology — CRYPTO’ 89 Proceedings, Springer, 1990, pp. 416–427.
doi: 10.1007/0-387-34805-0_39.

[39] D. Das, A. Muthaiah, and S. Ruj, “Blockchain-enabled secure and smart
healthcare system,” in International Conference on Design Science Re-
search in Information Systems and Technology, Springer, 2022, pp. 97–
109. doi: 10.1007/978-3-031-06516-3_8.

[40] S. Díaz-Santiago, L. M. Rodríguez-Henríquez, and D. Chakraborty, “A
cryptographic study of tokenization systems,” International Journal of
Information Security, vol. 15, pp. 413–432, 2016. doi: 10.1007/s10207-
015-0313-x.

[41] A. Dixit, W. Asif, and M. Rajarajan, “Smart-contract enabled decentral-
ized identity management framework for industry 4.0,” in IECON 2020
The 46th Annual Conference of the IEEE Industrial Electronics Society,
IEEE, 2020, pp. 2221–2227. doi: 10.1109/IECON43393.2020.9254545.

[42] A. Dixit, A. Singh, Y. Rahulamathavan, and M. Rajarajan, “Fast data:
A fair, secure, and trusted decentralized iiot data marketplace enabled by
blockchain,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 2934–
2944, 2021. doi: 10.1109/JIOT.2021.3120640.

[43] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain
for iot security and privacy: The case study of a smart home,” in 2017
IEEE international conference on pervasive computing and communica-
tions workshops (PerCom workshops), IEEE, 2017, pp. 618–623. doi:
10.1109/PERCOMW.2017.7917634.

https://www.indusface.com/blog/1-5-million-customers-impacted-by-us-bank-data-breach-possible-lessons-learned
https://www.indusface.com/blog/1-5-million-customers-impacted-by-us-bank-data-breach-possible-lessons-learned
https://www.indusface.com/blog/1-5-million-customers-impacted-by-us-bank-data-breach-possible-lessons-learned
https://doi.org/10.3390/fi9030025
https://www.coinbase.com/wallet
https://doi.org/10.1007/978-3-031-32146-7_3
https://api.semanticscholar.org/CorpusID:18377483
https://api.semanticscholar.org/CorpusID:18377483
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-031-06516-3_8
https://doi.org/10.1007/s10207-015-0313-x
https://doi.org/10.1007/s10207-015-0313-x
https://doi.org/10.1109/IECON43393.2020.9254545
https://doi.org/10.1109/JIOT.2021.3120640
https://doi.org/10.1109/PERCOMW.2017.7917634

Bibliography 183

[44] P. D. Dozier and T. A. Montgomery, “Banking on blockchain: An evalua-
tion of innovation decision making,” IEEE Transactions on Engineering
Management, vol. 67, no. 4, pp. 1129–1141, 2019. doi: 10.1109/TEM.
2019.2948142.

[45] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly ex-
change digital goods,” in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, 2018, pp. 967–984.
doi: 10.1145/3243734.3243857.

[46] Edge, Edge Wallet, https://edge.app/, 2021.

[47] European Commission, EU Digital COVID Certificate, https://ec.
europa.eu/info/live-work-travel-eu/coronavirus-response/
safe - covid - 19 - vaccines - europeans / eu - digital - covid -
certificate_en, 2021.

[48] Exodus, Exodus Wallet, https://www.exodus.com/, 2024.

[49] I. Eyal, “Blockchain technology: Transforming libertarian cryptocurrency
dreams to finance and banking realities,” Computer, vol. 50, no. 9, pp. 38–
49, 2017. doi: 10.1109/MC.2017.3571042.

[50] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient and
secure medical data sharing via blockchain,” Journal of medical systems,
vol. 42, no. 8, pp. 1–11, 2018. doi: 10.1007/s10916-018-0993-7.

[51] M. S. Farooq, M. Khan, and A. Abid, “A framework to make charity
collection transparent and auditable using blockchain technology,” Com-
puters & Electrical Engineering, vol. 83, p. 106 588, 2020. doi: 10.1016/
j.compeleceng.2020.106588.

[52] B. Fernandez and N. Uberoi, Health Insurance: A Primer (CRS report
for Congress). Congressional Research Service, 2015. [Online]. Available:
https://books.google.co.in/books?id=HdcRxQEACAAJ.

[53] P. Fraga-Lamas and T. M. Fernández-Caramés, “A review on blockchain
technologies for an advanced and cyber-resilient automotive industry,”
IEEE access, vol. 7, pp. 17 578–17 598, 2019. doi: 10.1109/ACCESS.
2019.2895302.

[54] S. Fugkeaw, “An efficient and scalable vaccine passport verification
system based on ciphertext policy attribute-based encryption and
blockchain,” Journal of Cloud Computing, vol. 12, no. 1, p. 111, 2023.
doi: 10.1186/s13677-023-00486-8.

[55] K. Garimella and K. Dutta, “Blockchain architecture for the healthcare
ecosystem,” in Blockchain in Healthcare: Analysis, Design and Imple-
mentation, Springer, 2023, pp. 19–46. doi: 10.1007/978-3-031-45339-
7_2.

[56] D. Gatherer, “The 2014 ebola virus disease outbreak in west africa,”
Journal of general virology, vol. 95, no. 8, pp. 1619–1624, 2014. doi:
10.1099/vir.0.067199-0.

https://doi.org/10.1109/TEM.2019.2948142
https://doi.org/10.1109/TEM.2019.2948142
https://doi.org/10.1145/3243734.3243857
https://edge.app/
https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/eu-digital-covid-certificate_en
https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/eu-digital-covid-certificate_en
https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/eu-digital-covid-certificate_en
https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/eu-digital-covid-certificate_en
https://www.exodus.com/
https://doi.org/10.1109/MC.2017.3571042
https://doi.org/10.1007/s10916-018-0993-7
https://doi.org/10.1016/j.compeleceng.2020.106588
https://doi.org/10.1016/j.compeleceng.2020.106588
https://books.google.co.in/books?id=HdcRxQEACAAJ
https://doi.org/10.1109/ACCESS.2019.2895302
https://doi.org/10.1109/ACCESS.2019.2895302
https://doi.org/10.1186/s13677-023-00486-8
https://doi.org/10.1007/978-3-031-45339-7_2
https://doi.org/10.1007/978-3-031-45339-7_2
https://doi.org/10.1099/vir.0.067199-0

184 Bibliography

[57] J. Gera, A. R. Palakayala, V. K. K. Rejeti, and T. Anusha, “Blockchain
technology for fraudulent practices in insurance claim process,” in 2020
5th International Conference on Communication and Electronics Sys-
tems (ICCES), IEEE, 2020, pp. 1068–1075. doi: 10.1109/ICCES48766.
2020.9138012.

[58] B. C. Ghosh, V. Ramakrishna, C. Govindarajan, D. Behl, D.
Karunamoorthy, E. Abebe, and S. Chakraborty, “Decentralized cross-
network identity management for blockchain interoperation,” in 2021
IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2021. doi: 10.1109/ICBC51069.2021.9461064.

[59] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling hyper-
ledger fabric to 20 000 transactions per second,” International Journal of
Network Management, vol. 30, no. 5, e2099, 2020. doi: 10.1109/BLOC.
2019.8751452.

[60] Governement of Denmark, Corona Passport, https://www.sst.dk/en/
english/Vaccination-against-influenza-and-covid-19, 2024.

[61] Government of Israel, Green Pass, https://corona.health.gov.il/
en/green-pass/, 2024.

[62] A. Goyal, A. Elhence, V. Chamola, and B. Sikdar, “A blockchain and
machine learning based framework for efficient health insurance man-
agement,” in Proceedings of the 19th ACM conference on embedded net-
worked sensor systems, 2021, pp. 511–515. doi: 10 . 1145 / 3485730 .
3493685.

[63] R. Guo, H. Shi, Q. Zhao, and D. Zheng, “Secure attribute-based signa-
ture scheme with multiple authorities for blockchain in electronic health
records systems,” IEEE access, vol. 6, pp. 11 676–11 686, 2018. doi: 10.
1109/ACCESS.2018.2801266.

[64] S. S. Gupta, A. Chattopadhyay, K. Sinha, S. Maitra, and B. P. Sinha,
“High-performance hardware implementation for rc4 stream cipher,”
IEEE Transactions on Computers, vol. 62, no. 4, pp. 730–743, 2012.
doi: 10.1109/TC.2012.19.

[65] G. Gürkaynak, I. Yılmaz, B. Yeşilaltay, and B. Bengi, “Intellectual prop-
erty law and practice in the blockchain realm,” Computer law & security
review, vol. 34, no. 4, pp. 847–862, 2018. doi: 10.1016/j.clsr.2018.
05.027.

[66] R. Han, Z. Yan, X. Liang, and L. T. Yang, “How can incentive mecha-
nisms and blockchain benefit with each other? a survey,” ACM Comput-
ing Surveys, vol. 55, no. 7, pp. 1–38, 2022. doi: 10.1145/3539604.

[67] A. B. Haque, B. Naqvi, A. N. Islam, and S. Hyrynsalmi, “Towards a
gdpr-compliant blockchain-based covid vaccination passport,” Applied
Sciences, vol. 11, no. 13, p. 6132, 2021. doi: 10.3390/app11136132.

https://doi.org/10.1109/ICCES48766.2020.9138012
https://doi.org/10.1109/ICCES48766.2020.9138012
https://doi.org/10.1109/ICBC51069.2021.9461064
https://doi.org/10.1109/BLOC.2019.8751452
https://doi.org/10.1109/BLOC.2019.8751452
https://www.sst.dk/en/english/Vaccination-against-influenza-and-covid-19
https://www.sst.dk/en/english/Vaccination-against-influenza-and-covid-19
https://corona.health.gov.il/en/green-pass/
https://corona.health.gov.il/en/green-pass/
https://doi.org/10.1145/3485730.3493685
https://doi.org/10.1145/3485730.3493685
https://doi.org/10.1109/ACCESS.2018.2801266
https://doi.org/10.1109/ACCESS.2018.2801266
https://doi.org/10.1109/TC.2012.19
https://doi.org/10.1016/j.clsr.2018.05.027
https://doi.org/10.1016/j.clsr.2018.05.027
https://doi.org/10.1145/3539604
https://doi.org/10.3390/app11136132

Bibliography 185

[68] H. R. Hasan, K. Salah, R. Jayaraman, J. Arshad, I. Yaqoob, M. Omar,
and S. Ellahham, “Blockchain-based solution for covid-19 digital medical
passports and immunity certificates,” Ieee Access, vol. 8, pp. 222 093–
222 108, 2020. doi: 10.1109/ACCESS.2020.3043350.

[69] J. Hendler, “Web 3.0 emerging,” Computer, vol. 42, no. 1, pp. 111–113,
2009. doi: 10.1109/MC.2009.30.

[70] G. Heo, D. Yang, I. Doh, and K. Chae, “Efficient and secure blockchain
system for digital content trading,” IEEE Access, vol. 9, pp. 77 438–
77 450, 2021. doi: 10.1109/ACCESS.2021.3082215.

[71] HIPAA, Healthcare Data Breach Statistics, https : / / www .
hipaajournal.com/healthcare-data-breach-statistics/, 2022.

[72] HL7, Health Level Seven International, https://www.hl7.org/, 2024.

[73] HT Correspondent, Covishield may not be eligible for ‘vaccine passport’
by the EU, http://tinyurl.com/y8sja52s, 2021.

[74] IBM, What is a vaccine passport? https://www.ibm.com/topics/
vaccine-passport, 2021.

[75] International Air Transport Association, IATA Travel Pass Initiative,
https://www.iata.org/en/programs/passenger/, 2024.

[76] L. Ismail and S. Zeadally, “Healthcare insurance frauds: Taxonomy
and blockchain-based detection framework (block-hi),” IT professional,
vol. 23, no. 4, pp. 36–43, 2021. doi: 10.1109/MITP.2021.3071534.

[77] U. Jafar, M. J. A. Aziz, and Z. Shukur, “Blockchain for electronic voting
system—review and open research challenges,” Sensors, vol. 21, no. 17,
p. 5874, 2021. doi: 10.3390/s21175874.

[78] S. K. Jena, B. Kumar, B. Mohanty, A. Singhal, and R. C. Barik, “An
advanced blockchain-based hyperledger fabric solution for tracing fraud-
ulent claims in the healthcare industry,” Decision Analytics Journal,
p. 100 411, 2024. doi: 10.1016/j.dajour.2024.100411.

[79] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “Blochie: A
blockchain-based platform for healthcare information exchange,” in 2018
ieee international conference on smart computing (smartcomp), IEEE,
2018, pp. 49–56. doi: 10.1109/SMARTCOMP.2018.00073.

[80] S. Jing, X. Zheng, and Z. Chen, “Review and investigation of merkle
tree’s technical principles and related application fields,” in 2021 Inter-
national Conference on Artificial Intelligence, Big Data and Algorithms
(CAIBDA), 2021, pp. 86–90. doi: 10.1109/CAIBDA53561.2021.00026.

[81] J. Katz, Digital signatures. Springer, 2010, vol. 1.

[82] J. Katz and Y. Lindell, “Introduction to modern cryptography,” Book,
2020.

[83] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-
Hani, “Blockchain smart contracts: Applications, challenges, and fu-
ture trends,” Peer-to-peer Networking and Applications, vol. 14, no. 5,
pp. 2901–2925, 2021. doi: 10.1007/s12083-021-01127-0.

https://doi.org/10.1109/ACCESS.2020.3043350
https://doi.org/10.1109/MC.2009.30
https://doi.org/10.1109/ACCESS.2021.3082215
https://www.hipaajournal.com/healthcare-data-breach-statistics/
https://www.hipaajournal.com/healthcare-data-breach-statistics/
https://www.hl7.org/
http://tinyurl.com/y8sja52s
https://www.ibm.com/topics/vaccine-passport
https://www.ibm.com/topics/vaccine-passport
https://www.iata.org/en/programs/passenger/
https://doi.org/10.1109/MITP.2021.3071534
https://doi.org/10.3390/s21175874
https://doi.org/10.1016/j.dajour.2024.100411
https://doi.org/10.1109/SMARTCOMP.2018.00073
https://doi.org/10.1109/CAIBDA53561.2021.00026
https://doi.org/10.1007/s12083-021-01127-0

186 Bibliography

[84] V. Kohli, S. Chakravarty, V. Chamola, K. S. Sangwan, and S. Zeadally,
“An analysis of energy consumption and carbon footprints of cryptocur-
rencies and possible solutions,” Digital Communications and Networks,
vol. 9, no. 1, pp. 79–89, 2023, issn: 2352-8648. doi: 10.1016/j.dcan.
2022.06.017.

[85] A. Koyama, V. C. Tran, M. Fujimoto, V. N. Q. Bao, and T. H. Tran, “A
decentralized covid-19 vaccine tracking system using blockchain tech-
nology,” Cryptography, vol. 7, no. 1, p. 13, 2023. doi: 10 . 3390 /
cryptography7010013.

[86] G. Kumar, R. Saha, C. Lal, and M. Conti, “Internet-of-forensic (iof): A
blockchain based digital forensics framework for iot applications,” Future
Generation Computer Systems, vol. 120, pp. 13–25, 2021. doi: 10.1016/
j.future.2021.02.016.

[87] R. Kumar and R. Tripathi, “Towards design and implementation of se-
curity and privacy framework for internet of medical things (iomt) by
leveraging blockchain and ipfs technology,” The Journal of Supercom-
puting, vol. 77, no. 8, pp. 7916–7955, 2021. doi: 10.1007/s11227-020-
03570-x.

[88] O. Kuzmina, M. Konovalova, and T. Stepanova, “The global practice
of implementation and use of digital currencies of central banks,” in
International Conference Ecosystems Without Borders, Springer, 2023,
pp. 206–222. doi: 10.1007/978-3-031-34329-2_21.

[89] F. Lamberti, V. Gatteschi, C. Demartini, M. Pelissier, A. Gomez, and
V. Santamaria, “Blockchains can work for car insurance: Using smart
contracts and sensors to provide on-demand coverage,” IEEE Consumer
Electronics Magazine, vol. 7, no. 4, pp. 72–81, 2018. doi: 10.1109/MCE.
2018.2816247.

[90] W.-M. Lee, “Using the metamask chrome extension,” Beginning
Ethereum Smart Contracts Programming: With Examples in Python, So-
lidity, and JavaScript, pp. 93–126, 2019. doi: 10.1007/978-1-4842-
9271-6.

[91] H. Li, L. Zhu, M. Shen, F. Gao, X. Tao, and S. Liu, “Blockchain-based
data preservation system for medical data,” Journal of Medical Systems,
vol. 42, Aug. 2018. doi: 10.1007/s10916-018-0997-3.

[92] H. Li, D. Han, and M. Tang, “Logisticschain: A blockchain-based secure
storage scheme for logistics data,” Mobile Information Systems, vol. 2021,
no. 1, p. 8 840 399, 2021. doi: 10.1155/2021/8840399.

[93] L. Li, M. Sy, and A. McMurray, “Blockchain innovation and its impact on
business banking operations,” in Data Intensive Computing Applications
for Big Data, IOS Press, 2018, pp. 583–598. doi: 10.3233/978- 1-
61499-814-3-583.

https://doi.org/10.1016/j.dcan.2022.06.017
https://doi.org/10.1016/j.dcan.2022.06.017
https://doi.org/10.3390/cryptography7010013
https://doi.org/10.3390/cryptography7010013
https://doi.org/10.1016/j.future.2021.02.016
https://doi.org/10.1016/j.future.2021.02.016
https://doi.org/10.1007/s11227-020-03570-x
https://doi.org/10.1007/s11227-020-03570-x
https://doi.org/10.1007/978-3-031-34329-2_21
https://doi.org/10.1109/MCE.2018.2816247
https://doi.org/10.1109/MCE.2018.2816247
https://doi.org/10.1007/978-1-4842-9271-6
https://doi.org/10.1007/978-1-4842-9271-6
https://doi.org/10.1007/s10916-018-0997-3
https://doi.org/10.1155/2021/8840399
https://doi.org/10.3233/978-1-61499-814-3-583
https://doi.org/10.3233/978-1-61499-814-3-583

Bibliography 187

[94] M. Li, D. Hu, C. Lal, M. Conti, and Z. Zhang, “Blockchain-enabled secure
energy trading with verifiable fairness in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6564–
6574, 2020. doi: 10.1109/TII.2020.2974537.

[95] M. Li, C. Lal, M. Conti, and D. Hu, “Lechain: A blockchain-based law-
ful evidence management scheme for digital forensics,” Future Genera-
tion Computer Systems, vol. 115, pp. 406–420, 2021. doi: 10.1016/j.
future.2020.09.038.

[96] X. Liang, M. Barua, R. Lu, X. Lin, and X. S. Shen, “Healthshare: Achiev-
ing secure and privacy-preserving health information sharing through
health social networks,” Computer Communications, vol. 35, no. 15,
pp. 1910–1920, 2012. doi: 10.1016/j.comcom.2012.01.009.

[97] X. Liang, J. Zhao, S. Shetty, J. Liu, and D. Li, “Integrating blockchain
for data sharing and collaboration in mobile healthcare applications,” in
2017 IEEE 28th annual international symposium on personal, indoor,
and mobile radio communications (PIMRC), IEEE, 2017, pp. 1–5. doi:
10.1109/PIMRC.2017.8292361.

[98] D. Madala, M. P. Jhanwar, and A. Chattopadhyay, “Certificate trans-
parency using blockchain,” in 2018 IEEE International Conference on
Data Mining Workshops (ICDMW), IEEE, 2018, pp. 71–80. doi: 10.
1109/ICDMW.2018.00018.

[99] G. Malavolta, P. A. Moreno-Sánchez, C. Schneidewind, A. Kate, and M.
Maffei, “Anonymous multi-hop locks for blockchain scalability and inter-
operability,” Proceedings 2019 Network and Distributed System Security
Symposium, 2019. doi: 10.14722/ndss.2019.23330.

[100] N. Maleki, B. Padmanabhan, and K. Dutta, “The effect of monetary
incentives on health care social media content: Study based on topic
modeling and sentiment analysis,” Journal of Medical Internet Research,
vol. 25, e44307, 2023. doi: 10.2196/44307.

[101] S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, “Trustchain:
Trust management in blockchain and iot supported supply chains,” in
2019 IEEE International Conference on Blockchain (Blockchain), 2019,
pp. 184–193. doi: 10.1109/Blockchain.2019.00032.

[102] A. Manzoor, M. Liyanage, A. Braeke, S. S. Kanhere, and M. Yliant-
tila, “Blockchain based proxy re-encryption scheme for secure iot data
sharing,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019, pp. 99–103. doi: 10.1109/BLOC.2019.
8751336.

[103] F. Masood and A. R. Faridi, “Developing a novel blockchain-based vac-
cine tracking and certificate system: An end-to-end approach,” Peer-
to-Peer Networking and Applications, pp. 1–19, 2024. doi: 10.1007/
s12083-024-01662-6.

https://doi.org/10.1109/TII.2020.2974537
https://doi.org/10.1016/j.future.2020.09.038
https://doi.org/10.1016/j.future.2020.09.038
https://doi.org/10.1016/j.comcom.2012.01.009
https://doi.org/10.1109/PIMRC.2017.8292361
https://doi.org/10.1109/ICDMW.2018.00018
https://doi.org/10.1109/ICDMW.2018.00018
https://doi.org/10.14722/ndss.2019.23330
https://doi.org/10.2196/44307
https://doi.org/10.1109/Blockchain.2019.00032
https://doi.org/10.1109/BLOC.2019.8751336
https://doi.org/10.1109/BLOC.2019.8751336
https://doi.org/10.1007/s12083-024-01662-6
https://doi.org/10.1007/s12083-024-01662-6

188 Bibliography

[104] P. McCorry, M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F.
Hao, “On secure e-voting over blockchain,” Digital Threats: Research and
Practice (DTRAP), vol. 2, no. 4, pp. 1–13, 2021. doi: 10.1145/3461461.

[105] P. McCorry, M. Möser, S. F. Shahandasti, and F. Hao, “Towards bit-
coin payment networks,” in Information Security and Privacy, Springer
International Publishing, 2016, pp. 57–76. doi: 10.1007/978-3-319-
40253-6_4.

[106] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for
boardroom voting with maximum voter privacy,” in Financial Cryp-
tography and Data Security: 21st International Conference, FC 2017,
Sliema, Malta, April 3-7, 2017, Revised Selected Papers 21, Springer,
2017, pp. 357–375. doi: 10.1007/978-3-319-70972-7_20.

[107] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart con-
tract and use cases in blockchain technology,” in 2018 9th international
conference on computing, communication and networking technologies
(ICCCNT), IEEE, 2018, pp. 1–4. doi: 10.1109/ICCCNT.2018.8494045.

[108] Nabeel’s Blog, Proxy Re-encryption, https : / / mohamednabeel .
blogspot.com/2011/03/proxy-re-encryption.html, 2011.

[109] S. S. Nabil, M. S. A. Pran, A. A. Al Haque, N. R. Chakraborty, M. J. M.
Chowdhury, and M. S. Ferdous, “Blockchain-based covid vaccination reg-
istration and monitoring,” Blockchain: Research and Applications, vol. 3,
no. 4, p. 100 092, 2022. doi: 10.1016/j.bcra.2022.100092.

[110] S. Nakamoto, “Re: Bitcoin p2p e-cash paper,” The Cryptography Mailing
List, 2008.

[111] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bitcoin
and cryptocurrency technologies: a comprehensive introduction. Prince-
ton: Princeton University Press, 2016.

[112] I. Nath, “Data exchange platform to fight insurance fraud on blockchain,”
in 2016 IEEE 16th international conference on data mining workshops
(ICDMW), IEEE Computer Society, 2016, pp. 821–825. doi: 10.1109/
ICDMW.2016.0121.

[113] T. Nie and T. Zhang, “A study of des and blowfish encryption algorithm,”
in Tencon 2009-2009 IEEE Region 10 Conference, IEEE, 2009, pp. 1–4.
doi: 10.1109/TENCON.2009.5396115.

[114] A. Nigmatov, A. Pradeep, and N. Musulmonova, “Blockchain technology
in improving transparency and efficiency in government operations,” in
2023 15th International Conference on Electronics, Computers and Ar-
tificial Intelligence (ECAI), 2023, pp. 01–06. doi: 10.1109/ECAI58194.
2023.10194154.

https://doi.org/10.1145/3461461
https://doi.org/10.1007/978-3-319-40253-6_4
https://doi.org/10.1007/978-3-319-40253-6_4
https://doi.org/10.1007/978-3-319-70972-7_20
https://doi.org/10.1109/ICCCNT.2018.8494045
https://mohamednabeel.blogspot.com/2011/03/proxy-re-encryption.html
https://mohamednabeel.blogspot.com/2011/03/proxy-re-encryption.html
https://doi.org/10.1016/j.bcra.2022.100092
https://doi.org/10.1109/ICDMW.2016.0121
https://doi.org/10.1109/ICDMW.2016.0121
https://doi.org/10.1109/TENCON.2009.5396115
https://doi.org/10.1109/ECAI58194.2023.10194154
https://doi.org/10.1109/ECAI58194.2023.10194154

Bibliography 189

[115] C. Oham, R. Jurdak, S. S. Kanhere, A. Dorri, and S. Jha, “B-fica:
Blockchain based framework for auto-insurance claim and adjudica-
tion,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), IEEE, 2018, pp. 1171–1180. doi: 10.
1109/Cybermatics_2018.2018.00210.

[116] C. Oham, R. A. Michelin, R. Jurdak, S. S. Kanhere, and S. Jha,
“Wide: A witness-based data priority mechanism for vehicular foren-
sics,” Blockchain: Research and Applications, vol. 3, no. 2, p. 100 050,
2022. doi: 10.1016/j.bcra.2021.100050.

[117] Y. J. Park, J. Farooq, J. Cho, N. Sadanandan, B. Cozene, B. Gonzales-
Portillo, M. Saft, M. C. Borlongan, M. C. Borlongan, R. D. Shytle, et al.,
“Fighting the war against covid-19 via cell-based regenerative medicine:
Lessons learned from 1918 spanish flu and other previous pandemics,”
Stem cell reviews and reports, vol. 17, pp. 9–32, 2021. doi: 10.1007/
s12015-020-10026-5.

[118] M. Patel, A. Dennis, C. Flutter, and Z. Khan, “Pandemic (h1n1) 2009
influenza,” British journal of anaesthesia, vol. 104, no. 2, pp. 128–142,
2010. doi: 10.1093/bja/aep375.

[119] R. Pericàs-Gornals, M. Mut-Puigserver, and M. M. Payeras-Capellà,
“Highly private blockchain-based management system for digital covid-
19 certificates,” International Journal of Information Security, vol. 21,
no. 5, pp. 1069–1090, 2022. doi: 10.1007/s10207-022-00598-3.

[120] N. A. Popova and N. G. Butakova, “Research of a possibility of using
blockchain technology without tokens to protect banking transactions,”
in 2019 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (EIConRus), IEEE, 2019, pp. 1764–1768.
doi: 10.1109/EIConRus.2019.8657279.

[121] F. Pub, “Data encryption standard (des),” FIPS PUB, pp. 46–3, 1999.

[122] Quantum Blockchains Inc., Quantum Blockchains, https : / / www .
quantumblockchains.io/, 2022.

[123] S. Ragan, Excellus BCBS discloses breach, 10 million members affected,
https://bit.ly/Excellus_Data_Breach, 2015.

[124] M. Raikwar, S. Mazumdar, S. Ruj, S. S. Gupta, A. Chattopadhyay, and
K.-Y. Lam, “A blockchain framework for insurance processes,” in 2018
9th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), IEEE, 2018, pp. 1–4. doi: 10.1109/NTMS.2018.
8328731.

[125] S. Rao, “Health insurance: Concepts, issues and challenges,” Economic
and Political Weekly, pp. 3835–3844, 2004. [Online]. Available: http:
//www.jstor.org/stable/4415449.

https://doi.org/10.1109/Cybermatics_2018.2018.00210
https://doi.org/10.1109/Cybermatics_2018.2018.00210
https://doi.org/10.1016/j.bcra.2021.100050
https://doi.org/10.1007/s12015-020-10026-5
https://doi.org/10.1007/s12015-020-10026-5
https://doi.org/10.1093/bja/aep375
https://doi.org/10.1007/s10207-022-00598-3
https://doi.org/10.1109/EIConRus.2019.8657279
https://www.quantumblockchains.io/
https://www.quantumblockchains.io/
https://bit.ly/Excellus_Data_Breach
https://doi.org/10.1109/NTMS.2018.8328731
https://doi.org/10.1109/NTMS.2018.8328731
http://www.jstor.org/stable/4415449
http://www.jstor.org/stable/4415449

190 Bibliography

[126] M. M. Rashid, P. Choi, S.-H. Lee, and K.-R. Kwon, “Block-hpct:
Blockchain enabled digital health passports and contact tracing of in-
fectious diseases like covid-19,” Sensors, vol. 22, no. 11, p. 4256, 2022.
doi: 10.3390/s22114256.

[127] Razorpay, What is Tokenisation? Types, and How Does It Work, https:
//razorpay.com/blog/tokenisation-and-its-impact-on-online-
payments/, 2024.

[128] RBI, FAQs on Device based Tokenisation – Card Transactions, https:
//www.rbi.org.in/commonperson/English/Scripts/FAQs.aspx?Id=
2917, 2023.

[129] M. Rodriguez-Garcia, M.-A. Sicilia, and J. M. Dodero, “A privacy-
preserving design for sharing demand-driven patient datasets over per-
missioned blockchains and p2p secure transfer,” PeerJ Computer Science,
vol. 7, e568, 2021. doi: 10.7717/peerj-cs.568.

[130] R. Roy and K. T. George, “Detecting insurance claims fraud using ma-
chine learning techniques,” in 2017 international conference on circuit,
power and computing technologies (ICCPCT), IEEE, 2017, pp. 1–6. doi:
10.1109/ICCPCT.2017.8074258.

[131] R. Rudman and R. Bruwer, “Defining web 3.0: Opportunities and chal-
lenges,” The Electronic Library, vol. 34, no. 1, pp. 132–154, 2016. doi:
10.1108/EL-08-2014-0140.

[132] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical de-
centralized coin mixing for bitcoin,” in Computer Security - ESORICS
2014, Springer International Publishing, 2014, pp. 345–364. doi: 10.
1007/978-3-319-11212-1_20.

[133] W. El-Samad, M. Atieh, and M. Adda, “Transforming health insurance
claims adjudication with blockchain-based solutions,” Procedia Computer
Science, vol. 224, pp. 147–154, 2023. doi: 10.1016/j.procs.2023.09.
022.

[134] D. Saveetha and G. Maragatham, “A decentralized blockchain based sys-
tem for secure health record and claims processing,” in 2022 Interna-
tional Conference on Computer Communication and Informatics (IC-
CCI), IEEE, 2022, pp. 1–8. doi: 10.1109/ICCCI54379.2022.9740838.

[135] A. Savelyev, “Contract law 2.0:‘smart’contracts as the beginning of the
end of classic contract law,” Information & communications technology
law, vol. 26, no. 2, pp. 116–134, 2017. doi: 10.1080/13600834.2017.
1301036.

[136] J. Sengupta, S. Ruj, and S. D. Bit, “A comprehensive survey on at-
tacks, security issues and blockchain solutions for iot and iiot,” Journal
of network and computer applications, vol. 149, p. 102 481, 2020. doi:
10.1016/j.jnca.2019.102481.

https://doi.org/10.3390/s22114256
https://razorpay.com/blog/tokenisation-and-its-impact-on-online-payments/
https://razorpay.com/blog/tokenisation-and-its-impact-on-online-payments/
https://razorpay.com/blog/tokenisation-and-its-impact-on-online-payments/
https://www.rbi.org.in/commonperson/English/Scripts/FAQs.aspx?Id=2917
https://www.rbi.org.in/commonperson/English/Scripts/FAQs.aspx?Id=2917
https://www.rbi.org.in/commonperson/English/Scripts/FAQs.aspx?Id=2917
https://doi.org/10.7717/peerj-cs.568
https://doi.org/10.1109/ICCPCT.2017.8074258
https://doi.org/10.1108/EL-08-2014-0140
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1016/j.procs.2023.09.022
https://doi.org/10.1016/j.procs.2023.09.022
https://doi.org/10.1109/ICCCI54379.2022.9740838
https://doi.org/10.1080/13600834.2017.1301036
https://doi.org/10.1080/13600834.2017.1301036
https://doi.org/10.1016/j.jnca.2019.102481

Bibliography 191

[137] J. Sengupta, S. Ruj, and S. D. Bit, “Fairshare: Blockchain enabled fair,
accountable and secure data sharing for industrial iot,” IEEE Transac-
tions on Network and Service Management, vol. 20, no. 3, pp. 2929–2941,
2023. doi: 10.1109/TNSM.2023.3239832.

[138] I. P. S. Setiawan and A. Alamsyah, “Enhancing security, privacy, and
traceability in indonesia’s national health insurance claims process us-
ing blockchain technology,” in 2023 International Conference on Arti-
ficial Intelligence, Blockchain, Cloud Computing, and Data Analytics
(ICoABCD), IEEE, 2023, pp. 77–82. doi: 10.1109/ICoABCD59879.
2023.10390967.

[139] A. Shahani, Premera Blue Cross Cyberattack Exposed Millions Of Cus-
tomer Records, https://bit.ly/Premera_Blue_Cross_Cyberattack,
2015.

[140] R. N. Shaikh, C. G. Jadhav, V. R. Bhogawade, G. Narang, and A. M.
Gangadhar, “Block chain based electronic vaccination record storing sys-
tem,” in 2022 8th International Conference on Advanced Computing and
Communication Systems (ICACCS), IEEE, vol. 1, 2022, pp. 272–276.
doi: 10.1109/ICACCS54159.2022.9785292.

[141] M. Shand and J. Vuillemin, “Fast implementations of rsa cryptography,”
in Proceedings of IEEE 11th Symposium on Computer Arithmetic, IEEE,
1993, pp. 252–259. doi: 10.1109/ARITH.1993.378085.

[142] A. Sharma and M. Damle, “Blockchain technology: Reinventing the se-
curity and efficiency posture of the indian banking system,” in 2022 In-
ternational Interdisciplinary Humanitarian Conference for Sustainabil-
ity (IIHC), IEEE, 2022, pp. 364–369. doi: 10.1109/IIHC55949.2022.
10060224.

[143] D.-H. Shih, P.-L. Shih, T.-W. Wu, S.-H. Liang, and M.-H. Shih, “An
international federal hyperledger fabric verification framework for digital
covid-19 vaccine passport,” in Healthcare, MDPI, vol. 10, 2022, p. 1950.
doi: 10.1109/IIHC55949.2022.10060224.

[144] D. S. Sippy, Fraudulent Health Insurance Claims, https : / / www .
medindia . net / patients / insurance / fraudulent - health -
insurance-claims.html, 2013.

[145] N. Sivaselvan, K. V. Bhat, M. Rajarajan, and A. K. Das, “A new scalable
and secure access control scheme using blockchain technology for iot,”
IEEE Transactions on Network and Service Management, vol. 20, no. 3,
pp. 2957–2974, 2023. doi: 10.1109/TNSM.2023.3246120.

[146] N. P. Smart et al., Cryptography: an introduction. McGraw-Hill New
York, 2003, vol. 3.

[147] A. Spielman, “Blockchain: Digitally rebuilding the real estate industry,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2016. [On-
line]. Available: http://hdl.handle.net/1721.1/106753.

https://doi.org/10.1109/TNSM.2023.3239832
https://doi.org/10.1109/ICoABCD59879.2023.10390967
https://doi.org/10.1109/ICoABCD59879.2023.10390967
https://bit.ly/Premera_Blue_Cross_Cyberattack
https://doi.org/10.1109/ICACCS54159.2022.9785292
https://doi.org/10.1109/ARITH.1993.378085
https://doi.org/10.1109/IIHC55949.2022.10060224
https://doi.org/10.1109/IIHC55949.2022.10060224
https://doi.org/10.1109/IIHC55949.2022.10060224
https://www.medindia.net/patients/insurance/fraudulent-health-insurance-claims.html
https://www.medindia.net/patients/insurance/fraudulent-health-insurance-claims.html
https://www.medindia.net/patients/insurance/fraudulent-health-insurance-claims.html
https://doi.org/10.1109/TNSM.2023.3246120
http://hdl.handle.net/1721.1/106753

192 Bibliography

[148] N. P. V. Sravan, P. K. Baruah, S. S. Mudigonda, et al., “Use of blockchain
technology in integrating heath insurance company and hospital,” Int J
Sci Eng Res, vol. 9, no. 10, pp. 1664–1669, 2018.

[149] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice (The William Stallings books on computer and data communications
technology). Prentice Hall, 1999, isbn: 9780138690175.

[150] D. R. Stinson and M. Paterson, “Cryptography: Theory and practice,”
Book, 2018.

[151] L. Stockburger, G. Kokosioulis, et al., “Blockchain-enabled decentral-
ized identity management: The case of self-sovereign identity in public
transportation,” Blockchain: Research and Applications, vol. 2, no. 2,
p. 100 014, 2021. doi: 10.1016/j.bcra.2021.100014.

[152] Y. Sun, R. Zhang, X. Wang, K. Gao, and L. Liu, “A decentralizing
attribute-based signature for healthcare blockchain,” in 2018 27th Inter-
national conference on computer communication and networks (ICCCN),
IEEE, 2018, pp. 1–9. doi: 10.1109/ICCCN.2018.8487349.

[153] M. Szydlo, “Merkle tree traversal in log space and time,” in Eurocrypt,
Springer, vol. 3027, 2004, pp. 541–554. doi: 10.1007/978- 3- 540-
24676-3_32.

[154] S. Tahir, H. Tahir, A. Sajjad, M. Rajarajan, and F. Khan, “Privacy-
preserving covid-19 contact tracing using blockchain,” Journal of Com-
munications and Networks, vol. 23, no. 5, pp. 360–373, 2021. doi: 10.
23919/JCN.2021.000031.

[155] A. K. Talukder, M. Chaitanya, D. Arnold, and K. Sakurai, “Proof of
disease: A blockchain consensus protocol for accurate medical decisions
and reducing the disease burden,” in 2018 IEEE SmartWorld, ubiquitous
intelligence & computing, advanced & trusted computing, scalable com-
puting & communications, cloud & big data computing, internet of people
and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBD-
Com/IOP/SCI), IEEE, 2018, pp. 257–262. doi: 10.1109/SmartWorld.
2018.00079.

[156] T. M. Tan and S. Saraniemi, “Trust in blockchain-enabled exchanges:
Future directions in blockchain marketing,” Journal of the Academy of
marketing Science, vol. 51, no. 4, pp. 914–939, 2023. doi: 10.1007/
s11747-022-00889-0.

[157] The Commons Project Foundation, CommonPass, https : / / www .
thecommonsproject.org/.

[158] M. Thenmozhi, R. Dhanalakshmi, S. Geetha, and R. Valli, “Implement-
ing blockchain technologies for health insurance claim processing in hos-
pitals,” Materials Today: Proceedings, 2021. doi: 10.1016/j.matpr.
2021.02.776.

https://doi.org/10.1016/j.bcra.2021.100014
https://doi.org/10.1109/ICCCN.2018.8487349
https://doi.org/10.1007/978-3-540-24676-3_32
https://doi.org/10.1007/978-3-540-24676-3_32
https://doi.org/10.23919/JCN.2021.000031
https://doi.org/10.23919/JCN.2021.000031
https://doi.org/10.1109/SmartWorld.2018.00079
https://doi.org/10.1109/SmartWorld.2018.00079
https://doi.org/10.1007/s11747-022-00889-0
https://doi.org/10.1007/s11747-022-00889-0
https://www.thecommonsproject.org/
https://www.thecommonsproject.org/
https://doi.org/10.1016/j.matpr.2021.02.776
https://doi.org/10.1016/j.matpr.2021.02.776

Bibliography 193

[159] Times of India, WazirX probe hits wall as suspect flees to B’desh, https:
//timesofindia.indiatimes.com/city/delhi/wazirx-probe-hits-
wall-as-suspect-flees-to-bdesh/articleshow/116575615.cms,
2024.

[160] Y. Tsiounis and M. Yung, “On the security of elgamal based encryption,”
in International Workshop on Public Key Cryptography, Springer, 1998,
pp. 117–134. doi: 10.1007/BFb0054019.

[161] Vaccination Credential Initiative, VCI, https://vci.org/, 2022.

[162] R. M. Visconti, “Microfinance vs. traditional banking in developing coun-
tries,” International Journal of Financial Innovation in Banking, vol. 1,
no. 1-2, pp. 43–61, 2016. doi: 10.1504/IJFIB.2016.076613.

[163] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017. doi: 10.1007/978-
3-319-57959-7.

[164] M. Wang, Y. Guo, C. Zhang, C. Wang, H. Huang, and X. Jia, “Medshare:
A privacy-preserving medical data sharing system by using blockchain,”
IEEE Transactions on Services Computing, 2021. doi: 10.1109/TSC.
2021.3114719.

[165] R. Wang, B. Wu, and T. Xia, “A blockchain-based multiple-parties-
involved vaccination passport system,” in 2022 3rd International Con-
ference on E-commerce and Internet Technology (ECIT 2022), Atlantis
Press, 2022, pp. 772–785. doi: 10.2991/978-94-6463-005-3_78.

[166] Z. Wang and S. Guan, “A blockchain-based traceable and secure data-
sharing scheme,” PeerJ Computer Science, vol. 9, e1337, 2023. doi: 10.
7717/peerj-cs.1337.

[167] Wikipedia, 2017 Equifax data breach, https://en.wikipedia.org/
wiki/2017_Equifax_data_breach, 2024.

[168] Wikipedia, Anthem Medical Data Breach, https://en.wikipedia.org/
wiki/Anthem_medical_data_breach, 2015.

[169] Wikipedia, Bangladesh Bank robbery, https://en.wikipedia.org/
wiki/Bangladesh_Bank_robbery, 2024.

[170] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[171] B. Wu and T. Duan, “The advantages of blockchain technology in com-
mercial bank operation and management,” in Proceedings of the 2019
4th International Conference on Machine Learning Technologies, 2019,
pp. 83–87. doi: 10.1145/3340997.3341009.

[172] Q. Xia, E. Sifah, K. Asamoah, J. Gao, X. Du, and M. Guizani, “Med-
share: Trust-less medical data sharing among cloud service providers via
blockchain,” IEEE Access, vol. PP, pp. 1–1, Jul. 2017. doi: 10.1109/
ACCESS.2017.2730843.

https://timesofindia.indiatimes.com/city/delhi/wazirx-probe-hits-wall-as-suspect-flees-to-bdesh/articleshow/116575615.cms
https://timesofindia.indiatimes.com/city/delhi/wazirx-probe-hits-wall-as-suspect-flees-to-bdesh/articleshow/116575615.cms
https://timesofindia.indiatimes.com/city/delhi/wazirx-probe-hits-wall-as-suspect-flees-to-bdesh/articleshow/116575615.cms
https://doi.org/10.1007/BFb0054019
https://vci.org/
https://doi.org/10.1504/IJFIB.2016.076613
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1109/TSC.2021.3114719
https://doi.org/10.1109/TSC.2021.3114719
https://doi.org/10.2991/978-94-6463-005-3_78
https://doi.org/10.7717/peerj-cs.1337
https://doi.org/10.7717/peerj-cs.1337
https://en.wikipedia.org/wiki/2017_Equifax_data_breach
https://en.wikipedia.org/wiki/2017_Equifax_data_breach
https://en.wikipedia.org/wiki/Anthem_medical_data_breach
https://en.wikipedia.org/wiki/Anthem_medical_data_breach
https://en.wikipedia.org/wiki/Bangladesh_Bank_robbery
https://en.wikipedia.org/wiki/Bangladesh_Bank_robbery
https://doi.org/10.1145/3340997.3341009
https://doi.org/10.1109/ACCESS.2017.2730843
https://doi.org/10.1109/ACCESS.2017.2730843

194 Bibliography

[173] Y. Xiao, Y. Liu, Y. Wu, T. Li, X. Xian, and W. Jiang, “Healthchain: A
blockchain for electronic health records (preprint),” Journal of Medical
Internet Research, vol. 23, Jan. 2019. doi: 10.2196/13556.

[174] G. Xu, C. Qi, W. Dong, L. Gong, S. Liu, S. Chen, J. Liu, and X. Zheng,
“A privacy-preserving medical data sharing scheme based on blockchain,”
IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 2,
pp. 698–709, 2022. doi: 10.1109/JBHI.2022.3203577.

[175] R. Xu, Y. Chen, et al., “Exploration of blockchain-enabled decentralized
capability-based access control strategy for space situation awareness,”
Optical Engineering, vol. 58, no. 4, pp. 041 609–041 609, 2019. doi: 10.
1117/1.OE.58.4.041609.

[176] G. Yang and C. Li, “A design of blockchain-based architecture for the
security of electronic health record (ehr) systems,” in 2018 IEEE Inter-
national conference on cloud computing technology and science (Cloud-
Com), IEEE, 2018, pp. 261–265. doi: 10.1109/CloudCom2018.2018.
00058.

[177] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare data gate-
ways: Found healthcare intelligence on blockchain with novel privacy risk
control,” Journal of medical systems, vol. 40, no. 10, pp. 1–8, 2016. doi:
10.1007/s10916-016-0574-6.

[178] H. Zhang and K. Sakurai, “Blockchain for iot-based digital supply chain:
A survey,” in Advances in Internet, Data and Web Technologies: The 8th
International Conference on Emerging Internet, Data and Web Technolo-
gies (EIDWT-2020), Springer, 2020, pp. 564–573. doi: 10.1007/978-
3-030-39746-3_57.

[179] J. Zhang, N. Xue, and X. Huang, “A secure system for pervasive social
network-based healthcare,” IEEE Access, vol. 4, pp. 9239–9250, 2016.
doi: 10.1109/ACCESS.2016.2645904.

[180] X. Zhang and S. Poslad, “Blockchain support for flexible queries with
granular access control to electronic medical records (emr),” in 2018
IEEE International conference on communications (ICC), IEEE, 2018,
pp. 1–6. doi: 10.1109/ICC.2018.8422883.

[181] L. Zhou, L. Wang, and Y. Sun, “Mistore: A blockchain-based medical
insurance storage system,” Journal of medical systems, vol. 42, no. 8,
pp. 1–17, 2018. doi: 10.1007/s10916-018-0996-4.

https://doi.org/10.2196/13556
https://doi.org/10.1109/JBHI.2022.3203577
https://doi.org/10.1117/1.OE.58.4.041609
https://doi.org/10.1117/1.OE.58.4.041609
https://doi.org/10.1109/CloudCom2018.2018.00058
https://doi.org/10.1109/CloudCom2018.2018.00058
https://doi.org/10.1007/s10916-016-0574-6
https://doi.org/10.1007/978-3-030-39746-3_57
https://doi.org/10.1007/978-3-030-39746-3_57
https://doi.org/10.1109/ACCESS.2016.2645904
https://doi.org/10.1109/ICC.2018.8422883
https://doi.org/10.1007/s10916-018-0996-4

	Declaration of Authorship
	List of Publications
	Acknowledgements
	Abstract
	Introduction
	Healthcare Industry and Digitization
	Online Banking and Payment Systems
	A Decentralized World
	Impact of Blockchain on Healthcare Sector
	Impact of Blockchain on Banking Sector

	Contributions and Organization of the Thesis

	Preliminaries and Background
	Notations used in the thesis
	Cryptographic Preliminaries
	Encryption Scheme
	Hash Function
	Digital Signature
	Commitment Schemes
	Proxy Reencryption

	Merkle Tree Data Structure
	Blockchain
	Bitcoin
	Key Properties
	Bitcoin Addresses
	UTXO Model
	Transaction Structure
	Bitcoin Script
	Consensus Mechanism
	Mining and Monetary Policy
	Network Security
	Full Nodes and Light Nodes
	Privacy and Pseudonymity
	Scalability Challenges
	Recent Developments
	Transaction Finality

	Ethereum
	From Bitcoin to Ethereum: Addressing Limitations and Introducing New Paradigms
	Bitcoin's UTXO (Unspent Transaction Output) Model
	Ethereum's Account-Based Model
	Key Differences

	Key Properties
	Ethereum Virtual Machine (EVM)
	Accounts
	Transactions and Messages
	Consensus Mechanism
	Smart Contracts
	Tokenization Standards
	Gas and Ether
	Transaction Cost and Latency
	Scalability Solutions
	Ethereum 2.0 (Eth2) Upgrade
	Ethereum Node Types

	Smart Contract
	Distributed File Storage
	Incentive Mechanism

	Blockchain-Enabled Secure and Smart Healthcare System
	Objectives
	Contributions
	Organization

	Related Work
	High-Level View of The System
	System Model
	Assumptions
	Communication Protocol between Patient and Hospital

	Implementation and Technical Details
	Security Analysis
	Fairness
	Privacy
	Data Security

	Result and Discussion
	Conclusion

	Blockchain-Enabled Secure Health Insurance Processing
	Objectives
	Contributions
	Organization

	Related Work
	High-Level View of The System
	System Model
	Assumptions
	Communication Protocol between Policyholder and Health Insurance Company

	Implementation and Technical Details
	Terminology
	Algorithms

	Security Analysis
	Fairness
	Privacy
	Data Security
	Liveness

	Result and Discussion
	Conclusion

	Blockchain-Enabled Secure Vaccine Passport System
	Contributions
	Organization

	Related Work
	System Model
	Components
	Security Goal
	Adversarial Model
	Assumption
	Protocol Design
	Implementation & Technical Details

	Security Analysis
	Results and Discussions
	Conclusion

	Blockchain-Enabled Secure Payment Card Tokenization System
	Objectives
	Contributions
	Organization

	Related Work
	Token Eco-System
	Card Transaction Processing Prior to Tokenization
	Card Transaction Processing in Token Eco-System

	Proposed Model
	Components
	Assumptions
	Protocol Design
	Implementation Details
	Security and Privacy Implications of Decentralizing the Tokenization Process

	Results
	Conclusion

	Blockchain-Enabled Multicurrency Supported Distributed e-Banking System
	Contributions
	Organization

	Related Work
	Background
	System Model
	System Components
	Functionalities Offered by Our e-Banking System
	Managing Multi-Currency Transactions in the System
	Algorithm
	Implementation Details

	Security Features
	Result and Discussion
	Conclusion

	Conclusion
	Summary of Technical Contributions
	Future Scope

	Bibliography

