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Abstract

Image monitoring is an important research problem that has wide applications in various

fields, including manufacturing industries, satellite imaging, medical diagnostics, and so

forth. This problem, however, presents a challenging big data issue in the sense that, (i)

it is characterized by high velocity and high volume of the data streams, (ii) observed im-

age intensity functions are discontinuous in nature, have spatial structures, and it often

contains noise, (iii) a typical grayscale image has a large number of pixels, implying high-

dimensional nature of the data, (iv) in some applications, image surface often contains

artifacts and insignificant anomalies (e.g., shadows, clouds, etc.), (v) sequence of im-

ages are often not geometrically aligned. In this dissertation, image monitoring schemes

are developed on the basis of image intensity values, edges, and other complex features

from the image surface. This dissertation aims to bridge the gap between the research

fields of image processing and statistical process control and effectively address all the

aforementioned issues. Our proposed methods in this dissertation make use of various

state-of-the-art techniques from both research domains and help the research field of im-

age monitoring stride forward. Numerical examples and statistical properties show that the

proposed image comparison and monitoring methods in this dissertation perform well in

various real-life scenarios. Furthermore, the novel methodological advancements proposed

in this dissertation will be highly beneficial to the practitioners in various fields.
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Chapter 1

Introduction

Easy access to modern image acquisition techniques is making “images” a popular data

format across various disciplines of science. Applications in manufacturing industries

include stress and strain analysis of products, anomaly detection in the rolling process,

steel and tile surface monitoring, and so forth. In medical science, various image modalities

such as X-ray, CT-scan, MRI, and fMRI, are being widely used for medical diagnosis. In

recent years, satellite images are increasingly being used in earth surface surveillance.

It has become a basic tool for studying agriculture, forest science, ecology ecosystems,

and many more. Note that in all these applications, sequential monitoring of images

is important, making it a vibrant research area within the statistics community. For

demonstration, Figure 1.1 shows three images of the Aral sea area in Central-Asia taken

in 2000, 2010 and 2018, respectively. These three images clearly show the shrinkage of the

lake over these 19 years of time. In all such applications, one important step is to compare

images of the same scene captured at different times. There are certain challenges to

Figure 1.1: Three satellite images of Aral sea area taken on 25.08.2000 (left), 26.08.2010
(middle), and 21.08.2018 (right).

compare and monitor such images. For example, (i) the images may be not geometrically

aligned perfectly, (ii) the differences between the first and the last image are very small

in some regions, (iii) brightness and contrasts of various sub-parts of such images may be

1
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different due to presence of clouds and many other reasons. This dissertation addresses

many such issues while developing various image comparison and monitoring methods.

Next, we introduce the concepts of digital grayscale image, jump regression analysis,

statistical process control and present a number of basic details relevant to this disserta-

tion. Subsequently, we discuss the concept of sequential image monitoring, and various

imaging issues related to this task, and present a brief literature review on image monitor-

ing. Brief overview of this dissertation along with its contributions and novelty concludes

Chapter 1.

1.1 Digital Image

A gray-scale image can be represented by a bivariate function f(x, y), where function value

f(x, y) is associated to the brightness at the specific location (x, y) within the image. In

literature, this function f(x, y) is frequently referred to as the image intensity function.

In order for a computer to process an image, it must be digitized in terms of both spatial

location and brightness levels. In practical scenarios image acquisition devices, such as

cameras and scanners, come with a digitizer that converts the captured images into digital

formats. Throughout this dissertation, unless specified otherwise, all references to images

are to gray-scale digital images.

A conventional 2-D digital gray-scale image can be represented by a matrix

{f(i, j), i = 1, . . . , n1, j = 1, . . . , n2}

where i and j are the indices of the rows and columns, respectively, as shown below:


f(1, 1) f(1, 2) · · · f(1, n2)

f(2, 1) f(2, 2) · · · f(2, n2)
...

...
. . .

...

f(n1, 1) f(n1, 2) · · · f(n1, n2)


Each element of the matrix is referred to as a pixel. The image resolution is determined

by n1 and n2: a higher resolution corresponds to larger values of n1 and n2, while a lower

resolution corresponds to smaller values. For the pixel at position (i, j), the digitized

value of f(i, j) is typically an integer within the range [0, L− 1], where 0 represents black

and L − 1 represents white. The value of f(i, j) indicates the shade of the image at

that position and is often referred to as the gray level of the pixel. For more detailed

information, refer to Gonzalez and Woods (2019); Qiu (2005).
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1.2 Jump Regression Analysis

Conventional nonparametric regression methods are appropriate under the assumption

that the regression functions are continuous in nature. In the presence of jumps in the

regression function, estimates produced by conventional methods are not statistically

consistent at the jump positions [Qiu (2007)]. The intensity function of an image may

have discontinuities at object boundaries. Given that an image can be seen as a jump

surface of the image intensity function, edge detection and image restoration problems in

image processing are closely related to jump regression problems in statistics.

In literature, when the true regression function is assumed to have jumps in the de-

sign space, the corresponding regression analysis is commonly known as jump regres-

sion analysis (JRA). One significant application of JRA model includes the modeling of

gray-scale image surfaces. More specifically, a gray-scale image can be expressed by a

two-dimensional regression model [Qiu (2005)] as follows:

wij = f(xi, yj) + εij, i = 1, 2, . . . , n1; j = 1, 2, . . . , n2, (1.2.1)

where in the context of digital images, xi denotes the i-th row of the image, yj denotes

its j-th column, f is the image intensity function, f(xi, yj) is the true image gray level

at the (i, j)-th pixel, εij denotes the noise at the (i, j)-th pixel, and wij is the observed

image gray level at the (i, j)-th pixel. Note that, the image intensity function f has jumps

at the outlines of the image objects which is popularly known as Jump Location Curves

(JLCs). In literature, positions at which f have jumps are called step edges, and positions

at which the first-order derivatives of f have jumps are called roof edges [Joo and Qiu

(2009)].

1.3 Statistical Process Control

In today’s computer age, the statistical monitoring of sequential observations has become a

significant research area. When it comes to sequentially monitoring a longitudinal process,

a major statistical tool is Statistical Process Control (SPC). For a systematic description

of the basics of SPC, see books Hawkins and Olwell (2012); Montgomery (2007); Qiu

(2013). Typically, control charts in SPC are extensively utilized to monitor the stability

of sequential processes across various fields, including manufacturing industries, ecological

studies, and healthcare systems [Qiu (2024, 2019)]. The SPC charts generally assume that

there are two sources of variability in the process measurements: a “common cause” that

stems from inevitable randomness, and a “special cause” that arises when an undesirable
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variability, such as mechanical defects, improper machine handling, human error, the

onset of specific medical conditions, etc., interferes. SPC of a process is generally divided

into four phases: Phase 0, Phase I, Phase II and Phase III [Megahed et al. (2010); Vining

(2009)]. However, majority of the literature from SPC focus on Phase I and Phase II

only. Phase 0 primarily involves data gathering and determines the key characteristics of

the process control. The primary objective of Phase I is to adjust the process so that it

can run in a stable manner [Chakraborti et al. (2008); Mukherjee (2023)]. This control-

and-adjustment process typically needs to be repeated multiple times until it is confirmed

that the process is in-control (IC). Once this is achieved, for the online monitoring, a

Phase II control chart can be properly designed using an IC dataset collected after Phase

I SPC. The major goal of Phase II monitoring is to identify any significant changes in

the process distribution occurring after an unknown time point. Additionally, Phase III

focuses on ongoing model maintenance, such as updating the model and control limits

over time [Zwetsloot et al. (2024)]. In certain SPC applications (e.g., satellite image

monitoring, disease risk monitoring, etc..) it becomes difficult to adjust the process in

Phase I. In those applications, the Phase I step is not relevant. In this dissertation, we

mainly consider Phase II monitoring schemes.

1.3.1 Traditional SPC charts

Shewhart control chart: Assume X is a single quality variable in a specific process

monitoring scenario; it is a continuous numerical variable with an in-control (IC) dis-

tribution of N(µ0, σ
2). The observations obtained at the nth time point are denoted

as:

Xn1, Xn2, . . . , Xnm,

where m ≥ 2 represents the batch size. To determine whether the process is IC at the

n-th time point it is natural to use z-test. The process is considered as out-of-control

(OC) if

Xn > µ0 + Z1−α/2
σ√
m

or Xn < µ0 − Z1−α/2
σ√
m
,

where Xn is the sample mean of {Xn1, Xn2, . . . , Xnm}, and Z1−α/2 is the (1 − α/2)-th

quantile of the N(0, 1) distribution. In practice, µ0 and σ could be unknown and need to

be estimated from an IC dataset {(X∗i1, X∗i2, X∗i3, . . . X∗im) : i = 1, 2, . . . ,M, }. Let X∗i and

R∗i be be the sample mean and sample range of the i-th batch of IC dataset and X
∗
and R

∗

be the sample average of {X∗i := 1, 2, . . . ,M} and {R∗i := 1, 2, . . . ,M}, respectively. It is
easy to verify that X

∗
and R

∗
/d1(m) are the unbiased estimator for µ0 and σ, respectively.

Note that d1(m) is a constant that depends on the value of m. Then Shwewhart control
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chart [Shewhart (1931)] raise a signal at the n-th time point if,

Xn > X
∗
+ Z1−α/2

R
∗

d1(m)
√
m

or Xn < X
∗
− Z1−α/2

R
∗

d1(m)
√
m
.

CUSUM control chart: At a given time time point, the Shewhart chart determines

whether a process is in-control solely based on the observed data at that specific time

point. This approach is often inadequate for Phase II process monitoring because past

observed data can provide valuable insights about the current process performance. To

address this limitation, Page (1954) introduced the CUSUM chart, and many different

CUSUM charts have been suggested in the literature for various purposes [Hawkins (1987);

Hawkins and Olwell (2012)]. Here, we briefly describe the fundamental CUSUM chart for

detecting a mean shift of a normal-distributed process. Let us assume that the in-control

process distribution is N(µ0, σ
2), and the process observations for online monitoring are

{Xn, n = 1, 2, . . .}. Then, the CUSUM chart statistics for detecting a mean shift are

defined by

C+
n = max(0, C+

n−1 +
Xn − µ0

σ
− k), (1.3.1)

C+
n = max(0, C+

n−1 +
Xn − µ0

σ
− k), for n ≥ 1, (1.3.2)

where C+
0 = C−0 = 0, and k > 0 is an allowance constant. The chart raises a signal when

C+
n > c or C−n < −c, (1.3.3)

where c > 0 is a control limit. In the above CUSUM chart (1.3.1)-(1.3.2), the allowance

constant k is typically pre-specified. The control limit c is then chosen to ensure that

the in-control average run length (ARL), denoted as ARL0, meets a specified value. The

ARL0 is represented as the average number of observations from the beginning of process

monitoring to a signal when the process is in-control. From (1.3.1)-(1.3.2), it is evident

that the charting statistics C+
n and C−n make use of the all available data before n-th

time point, and they re-start from 0 again when the cumulative information suggests no

significant evidence of a mean shift in the sense that:

C+
n−1 +

Xn − µ0

σ
< k and C−n−1 +

Xn − µ0

σ
> −k

It is important to note that the CUSUM chart’s restarting mechanism offers a significant

theoretical advantage in terms of minimizing detection delay. According to Moustakides

(1986), the CUSUM chart with an allowance constant k has the shortest out-of-control
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ARL (ARL1) value among all charts with a fixed ARL0 value for detecting a persistent

shift of size δ = 2k.

EWMA control chart: Despite their strong theoretical properties, CUSUM charts were

challenging to use in the 1950s due to the lack of computers. As an alternative, a simpler

chart called the exponentially weighted moving average (EWMA) chart was proposed

by Roberts (1959). Under the similar assumptions and notations of CUSUM chart in

(1.3.1)-(1.3.2), the EWMA charting statistic is defined as

En = λXn + (1− λ)En−1, (1.3.4)

where E0 = µ0, and λ ∈ (0, 1] is a weighting parameter. To effectively use the EWMA

chart in practice, it is essential to select appropriate λ values. Generally, small λ values

are suitable for detecting relatively small mean shifts, while large λ values are better for

detecting relatively large mean shifts. From (1.3.4), it can be shown easily that,

En = λ
n∑

i=1

(1− λ)n−iXi + (1− λ)nµ0, (1.3.5)

and when the process is in-control up to the current time point n, we have

En ∼ N

(
µ0,

λ

2− λ

[
1− (1− λ)2n

]
σ2

)
. (1.3.6)

From (1.3.5) it is clear that En is a weighted average of µ0 and all available observations

up to n, and the weight received by Xi decays exponentially fast when i moves away from

n. Then, based on the expression in (1.3.6), the EWMA chart gives a signal of process

mean shift when

|En − µ0| > cσ

√
λ

2− λ
[1− (1− λ)2n], (1.3.7)

where c > 0 is a control limit. In the EWMA chart (1.3.7), with a pre-specified value of

the the weighting parameter λ, the control limit c is chosen such that a given ARL0 value

is achieved.

Change point based control chart: One of the major disadvantage to use the She-

whart, CUSUM, and EWMA charts described earlier, is that the in-control parameters µ0

and σ need to estimated in advance, which can be impractical for some applications. To

address this issue, Hawkins et al. (2003) propose a change point detection (CPD) based

control chart, outlined below. For process observations X1, X2, . . . , Xn, it is assumed that
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they follow the following change-point model:

Xi =

µ0 + εi, if i = 1, 2, . . . , τ,

µ1 + εi, if i = τ + 1, τ + 2, . . . , n,
(1.3.8)

where τ is a change-point, and {ε1, ε2, . . . , εn} is a sequence of i.i.d. random variables with

the common distribution N(0, σ2). Then, the likelihood ratio test statistic for testing the

existence of a change-point is defined as

Tmax,n = max
1≤j≤n−1

√
j(n− j)

n

∣∣∣∣Xj −X ′j

S̃

∣∣∣∣ , (1.3.9)

where Xj and X ′j are sample means of the first j and the remaining (n− j) observations

in {X1, X2, . . . , Xn}, respectively, and

S̃2
j =

j∑
i=1

(Xi −Xj)
2 +

n∑
i=j+1

(Xi −X ′j)
2.

The CPD chart gives a signal of mean shift when

Tmax,n > cn (1.3.10)

where cn > 0 is a control limit that may depend on n. After a signal is given, an estimate

of the change-point τ is given by the maximizer found in (1.3.9).

Here, we outline four fundamental control charts for monitoring process mean shifts

when the process observations are univariate. In literature, there are numerous variations

of each type aimed at detecting changes in process mean, variance, and other aspects of the

process distribution. For more information, see references such as Holland and Hawkins

(2014), Zou and Tsung (2011), Zou and Tsung (2010), Hawkins and Deng (2010), Zamba

and Hawkins (2006), Woodall and Ncube (1985), and many more.

1.4 Sequential Monitoring of Images

In certain applications, image data are collected as data streams, in the sense that new

images are continuously acquired from a longitudinal process over time (e.g., fMRI images

or images from a rolling process). In such applications, a fundamental task is to monitor

the sequence of images to detect any significant changes in the underlying longitudinal

process. This is known as the image monitoring problem. Thus, both image comparison

and image monitoring are critically important in many applications. In manufacturing
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industries, applications include stress and strain analysis of products, anomaly detection

of rolling processes, inspection of composite material fabrication, quality control in liquid

crystal display manufacturing, structural health monitoring, and so forth. In the field

of medical imaging, X-ray, CT-scan, MRI, and fMRI have been widely used for medical

diagnosis. Nowadays, satellite images have become a basic tool in surveillance of the

earth’s surface. It has been widely used in the research of agriculture, forest science,

ecology and ecosystem, coastal resources, environment, etc. A security related example

involves airspace image monitoring performed by the military to detect foreign air crafts.

Since 1972, USGS in collaboration with NASA launched 9 satellites to get images of

earth’s surface which is very well known as Landsat Project. Data from this project are

easily available for researchers all around the world. Monitoring these sequence of images

have received attention in different scientific disciplines. However, monitoring image data

presents a challenging big data issue in the sense that,

1. It characterized by high velocity and high volume of the data streams

2. Image surface contains discontinuities and other singularities, therefore conventional

smoothing techniques are ineffective

3. Image data is high-dimensional: a typical grayscale image has a huge number of

pixels . In practice, changes in the image involve a relatively small number of pixel

coordinates on the image surface. In the literature, this phenomenon is known as

sparsity.

4. In satellite image monitoring, image surface often contains artifacts and insignificant

anomalies (e.g., shadows,clouds, etc.). It is necessary to disregard them during the

process of monitoring.

5. Often in image monitoring applications, sequence of images are not geometrically

aligned. For reliable monitoring, it is necessary to aligned them first. However, it

poses a significant challenges due to its computational demand at each subsequent

stage of image moinitoring.

1.5 Imaging Issues Related to Monitoring

Images obtained from a process often contain various forms of contamination, including

geometric misalignment, pointwise noise, and spatial blur. To make subsequent image

monitoring more reliable, proper processing of the observed image surface is critically

important. This section focuses on some fundamental image processing issues related to

image process monitoring.
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Image Denoising: Image denoising is an important task in image analysis. It is often

required to pre-process images so that subsequent image monitoring becomes more reli-

able. Besides noise removal, it is essential for an image denoising procedure to preserve

the complex structure of the image surface, such as edges. In JRA framework, image

denoising can be achieved by estimating a discontinuous surface from noisy data, because

a monochrome image can be regarded as a surface of the image intensity function and

such a surface has jump discontinuities at the boundary of image objects [Qiu (2009);

Qiu and Mukherjee (2010, 2011); Mukherjee and Qiu (2013)]. In the literature, there are

several existing procedures for image denoising and restoration. One popular approach

is based on Bayesian estimation, using Markov random field (MRF) modeling and max-

imum a posteriori (MAP) algorithm [Besag (1986); Geman and Geman (1984); Fessler

et al. (2000); Godtliebsen and Sebastiani (1994)]. Closely related methods employ a regu-

larization approach, by minimizing a certain objective function that enforces a roughness

penalty in addition to a term measuring the fidelity of an estimator to the data [Rivera

and Marroquin (2002); Marroquin et al. (2001)]. Another alternative denoising method

is based on adaptive weights smoothing, as detailed in a series of papers by Joerg Polzehl

and his co-authors [Polzehl and Spokoiny (2000)].

Image Registration: In applications of image comparison and monitoring, acquired

images from the process are often geometrically mismatched, because the relative positions

between the camera and image objects cannot be exactly the same at different times in

practice. Therefore, for a reliable and meaningful image comparison the images should

be geometrically matched up first [Feng and Qiu (2018); Qiu (2018)]. In image processing

literature, this is popularly known as image registration [Avants et al. (2008)].

wR(xi, yj) = fR(xi, yj) + εR(xi, yj),

wM(xi, yj) = fM(xi, yj) + εM(xi, yj), i, j = 1, · · · , n,
(1.5.1)

where {(xi, yj)} are equally-spaced pixels, fM(xi, yj) and fR(xi, yj) are the true moved and

reference image intensity functions, wR(xi, yj) and wM(xi, yj) are their observed versions,

and {εM(xi, yj)} and {εR(xi, yj)} are i.i.d. random errors with mean 0 and unknown

variances. Additionally, for a transformation T(x, y) = (T1(x, y), T2(x, y)), it is assumed

that reference image and moved image has the following relationship:

fM(T1(x, y), T2(x, y)) = fR(x, y), (x, y) ∈ Ω = [0, 1]× [0, 1], (1.5.2)

The main objective of image registration is to estimate the transformation T(x, y). Based

on the nature of transformation, the problem of image registration can be classified

in two parts viz., rigid-body image registration and non-rigid-body image registration.

Rigid-body transformation include rotation [Reddy and Chatterji (1996)] and translation
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[Wolberg and Zokai (2000)], whereas, non-rigid-body transformation includes zooming,

shearing, elastic transformation, and so forth [Das et al. (2024); Bay et al. (2006); Lowe

(2004); Davatzikos et al. (1996)]. In most of the image surveillance applications where the

geometric difference between fM(x, y) and fR(x, y) is mainly due to the position move be-

tween the products and the camera, it is reasonable to assume that T(x, y) is a rigid-body

transformation defined as follows:

T1(x, y) = x cos θ + y sin θ + h

T2(x, y) = −x sin θ + y cos θ + k,
(1.5.3)

Where θ is the rotation parameter and (h, k) are the translation parameters corre-

sponding to the x-axis and y-axis, respectively. In the rigid-body image registration

problem, our aim is to estimate the parameters (θ, h, k) from the observed images. See

Qiu and Xing (2013); Xing and Qiu (2011) for more discussion regarding image registra-

tion.

Image Deblurring: The challenge of image denoising mainly deals with pointwise

contamination on the image surface. However, in real-world scenarios, spatial blur is

another form of image contamination that can occur due to various factors, such as the

relative motion between the camera and the scene being captured. The primary goal of

image deblurring is to retrieve the true signal from the blurred surface. In the literature,

the blurring mechanism is described as follows:

w(x, y) = H{f}(x, y) + ε(x, y), (1.5.4)

where H{f}(x, y) =
∫
R2 h(u, v)f(x − u, y − v) dudv denotes the convolution of the point

spread function (psf) h and the true image intensity function f , and ε(x, y) represents

the pointwise noise. The psf h describes the spatial contamination(i.e., blurring) of f in

the imaging process. The problem of image deblurring seeks to estimate f(x, y) from the

observed blurred image surface w(x, y). It is important to note that image deblurring is

considered an “ill-posed” problem because multiple sets of h and f can correspond to the

same w, even when there is no pointwise noise in w. So, in the early literature, h is often

assumed to be known [Figueiredo and Nowak (2003)]. However, in practical scenarios, this

assumption may not be realistic. For instance, satellite images are frequently blurred due

to factors such as wind, atmospheric turbulence, optical system aberrations, and others,

making it challenging to define h precisely. More recent research in this field aims to

estimate f(x, y) when h is not completely known, a problem referred to as blind image

deblurring [Joshi and Chaudhuri (2005); Hall and Qiu (2007a,b)]. See [Kang (2020);

Kang et al. (2018); Qiu and Kang (2015)] for more recent development on blind image

deblurring.
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1.6 Literature Review on Image Monitoring

In nonparametric regression literature, preliminary studies on this problem have started

using regression curve comparisons [Hall and Hart (1990); King et al. (1991); Kulasek-

era (1995); Dette and Munk (1998a,b); Wang and Ye (2010)]. Readers are referred to

Dette and Neumeyer (2001) for a good review on comparing regression curves. The

central ideas of nonparametric comparison of image surfaces are based on nonparametric

ANCOVA with multiple covariates. Bowman (2006) suggests a generalization of ANOVA-

type test for comparing regression surfaces. A more flexible test based on L2− distance

between regression surface estimate is proposed by Wang and Ye (2010). These existing

methods are the generalizations of the method proposed by Dette and Neumeyer (2001).

Recently, Zhao et al. (2020) suggest a testing procedure for comparing nonlinear curves

and surfaces in the usual context of semiparametric regression. Since images have been

traditionally used as a form of data in the chemical and manufacturing processes, there is

an extensive discussion in the statistical process control (SPC) literature [Megahed et al.

(2011)]. Most of the existing methods consist of the following two steps. Firstly, extract

important image features from the observed images and use a conventional univariate ”or”

multivariate control chart to get signals from process shifts. However, a number of exist-

ing methods select a set of pre-specified regions known as regions of interest (ROIs) for

individual images and construct control charts based on an appropriate summary statistic

(e.g: average intensity ) for ROIs over time using conventional generalized likelihood ratio

(GLR) control chart by Megahed et al. (2012) or multivariate generalized likelihood ratio

(MGLR) chart by He et al. (2016). The GLR control chart by Megahed et al. (2012)

is designed primarily for monitoring specific patterns in images but struggles to detect

multiple faults on image surfaces. The MGLR chart is more suitable for identifying mul-

tiple faults but the control chart statistic contains the variance-covariance matrix which

is not invertible in high dimensional applications. Okhrin et al. (2020) address this issue

and describe a more sophisticated version of the GLR method to get rid of this problem.

Amirkhani and Amiri (2020) partition the whole image into a set of specific regions and

for comparing with the nominal image, they use a test based on one-way ANOVA ,and

then construct a p-value based control chart to detect the out-of-control signal in an image

sequence as soon as possible. Koosha et al. (2017) propose profile monitoring approach for

monitoring. They have taken the wavelets coefficients as a frequency domain feature and

monitored the change in the coefficients to keep track of images. See Okhrin et al. (2019)

for more discussion about different methods based on frequency domain features. There

is also a substantial number of research work focusing on anomaly detection while moni-

toring images for quality inspection [e.g., Yan et al. (2017)]. Bui and Apley (2018a, 2021)

propose several approaches for monitoring images of textured surfaces. In the field of
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additive manufacturing, image surveillance can help identify geometric nonconformities.

For a detailed discussion, see Grasso and Colosimo (2017).

1.7 Brief Overview of The Dissertation

Inspired by the wide range of applications, my dissertation primarily concentrated around

the continuous surveillance of image data from various disciplines. The monitoring

schemes are developed on the basis of image intensity values, edges, and other com-

plex features from the image surface. The dissertation is broadly divided into two main

areas: (I) intensity-based image monitoring, and (II) feature-based image monitoring.

Monitoring image intensity poses a substantial challenge due to numerous factors: (i)

the presence of discontinuities and singularities on the image surface renders conventional

smoothing techniques somewhat useless; (ii) the high dimensionality of image data, given

the considerable number of pixels in a typical grayscale image. Notably, changes in the

image typically involve only a small subset of pixel coordinates, a feature called as sparsity

in the literature. Additionally, within the context of statistical process control (SPC), it

has been mounted that conventional multivariate control charts exhibit confined efficacy

in signal detection when faced with high data volumes. In Chapter 2, we introduce a

Cumulative Sum (CUSUM) control chart designed for the online monitoring of grayscale

images while preserving the JLCs on the image surface. To cope with the sparsity as-

sumption, the central idea involves constructing a global charting statistic based on the

upper-q-quantile of local CUSUM statistics. The proposed algorithm is theoretically justi-

fied in terms of asymptotic optimality, and numerical comparisons with existing methods

demonstrate its efficacy across various scenarios.

Within the existing literature, a predominant majority of methods rely on changes in

image intensity to identify out-of-control images. However, intensity based monitoring

often impractical in numerous real-life applications where alterations in contrast between

the background and foreground should not flag an image as out-of-control, as long as the

boundaries of image objects remain consistent. The rest of the dissertation delve into the

surveillance of image sequence while ignoring insignificant alternation of image intensities.

In Chapter 3, we present a Shewhart-type control chart designed for the monitoring of

grayscale images, utilizing detected edges. The fundamental concept involves monitoring

the point set of detected edge pixels of the image sequence. This approach is particularly

relevant in scenarios where smooth changes in background of the image object should not

trigger false alarms, provided that the boundaries of image objects remain stable. The

proposed monitoring procedure is designed to be easily implementable across a spectrum
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of real-life applications. Numerical studies indicate its robust performance across various

situations when compared with several competing methods.

One significant drawback of the proposed algorithm in Chapter 3 is that it only ignores

smooth insignificant change. A more flexible algorithm is introduced in Chapter 4 that

effectively disregards any type of insignificant anomalies while monitoring. The central

idea is to compare two local neighborhood corresponding to the every pixel coordinate of

the two surfaces. Since our goal is to compare significant JLCs, we employ pixel clustering

in the respective neighborhoods and compare them using the Variation of Information

metric. A major advantage of this method is that it does not require explicit edge detec-

tion. However, edge information is preserved by the local clustering algorithm, enabling

it to effectively ignore insignificant JLCs during surveillance.

For reliable image comparison, image registration is an essential step. In the literature

on image comparison and monitoring, it is typically assumed that images are properly

aligned. However, misalignment is quite common, particularly in satellite imaging. Exist-

ing literature often utilizes image registration algorithms during the pre-processing stage,

which can be computationally expensive and not always accurate. Therefore, an im-

age monitoring scheme that inherently handles image registration is highly desirable. In

Chapter 5, we introduce a shape and size monitoring algorithm that is invariant under

rotation and translation and efficient in detecting changes in the shape and size of the

image object. The main motivation behind the proposed method is the absence of an

algorithm in the literature that handles image registration issue by its construction. Our

approach involves constructing a test statistic, based on the distribution of distances from

the centroid of the image object to its boundary, for comparing two shapes or images. To

facilitate online monitoring, we propose a nonparametric CUSUM control chart based on

the aforementioned statistics.

A few remarks and a number of future research directions presented in Chapter 6

conclude this dissertation.

1.8 Contributions and Novelty of This Dissertation

• This dissertation makes an effort to bridge the gap between research fields of image

processing and statistical process control. Image monitoring research traditionally

performed by the statisticians use various process control charts without using ad-

vanced image processing tools. Likewise, computer scientists use advanced machine

learning techniques without using any advanced knowledge of statistics or process

control charts. Our proposed methods in this dissertation make use of various
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state-of-the-art techniques from both research domains, and help the research field

of image monitoring stride forward.

• Chapter 2 makes use of an advanced image denoising technique and combine it with

a version of CUSUM control chart for efficiently detecting a small change in an

image. The proposed method shows a much improved performance compared to

some its competitors.

• Chapter 3 proposes to monitor the jump location curves or the edges of he image

objects rather than monitoring pixelwise intensity values. Major advantage of this

approach is that it can ignore minor anomalies in the images that can occur due

to various reasons. For example, while capturing a picture, some parts of an image

can be overexposed or underexposed to light. Change of intensity values merely due

to such reasons should not indicate a meaningful change in the image objects. The

proposed method can handle such issues very well.

• Chapter 4 develops a method of image comparisons based on local pixel clustering,

without explicitly detecting the edges. Based on a tuning parameter, the procedure

can ignore parts of jump location curves where the jump sizes are small. Thus, it can

ignore unimportant edges while performing image comparisons. The practitioner

can choose the value of the tuning parameter based on the nature of the images and

the purpose of the study. This image comparison method can be used for image

monitoring in various settings.

• Chapter 5 aims to solve a long-standing problem of incorporating rigid-body trans-

formations of the image objects while comparing or monitoring images. Application

of the proposed method does not require the pre-processing step of image registra-

tion. Simplicity and effectiveness of the technique should attract attention from

both the practitioners and researchers.

• Not only our proposed methods of image comparisons and image monitoring are

useful in many practical applications, the adapted versions of the central ideas of

our solutions can be used to develop many other techniques in applied statistics and

machine learning.



Chapter 2

Intensity-based Image Monitoring:

Upper-q-Quantile CUSUM Control

Chart

2.1 Introduction

This chapter is mainly dedicated to intensity-based image monitoring. Here, we present

an image monitoring control chart to detect subtle changes in the image intensity function

in the presence of noise while accommodating the edges and other complicated structures

within the images. Note that, it is indeed a challenging task because of the following

Figure 2.1: Example of a small anomaly at the top right corner of a textile image. (a)
Image without anomaly. (b) Image with anomaly. (c) Image of only the anomaly.

major reasons. Along with the noise, the images contain edges and other complicated

structures, leading to discontinuities and other singularities in the image intensity sur-

faces. Therefore, traditional methods for estimating smooth functions [e.g., Qiu (2009)]

are usually inapplicable here. Additionally, a typical grayscale image contains a large

number of pixels, leading to a high dimensional situation. In image based quality mon-

15
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itoring, however, faulty regions in the image surface involve very small numbers of pixel

coordinates. Such cases imply a sparse situation (Kang, 2022). Therefore, conventional

multivariate control charts do not work well. As it is designed to detect small changes

in the intensity function, it has potential applications in anomaly detection across vari-

ous domains, including monitoring textured surfaces, steel and tile surfaces, and beyond.

Figure 2.1 presents an example of a small change in the image of a textile material that

is difficult to spot by visual inspection.

In this chapter, we propose an image monitoring control chart based on upper q quan-

tile of pixelwise CUSUM-type statistics. The procedure is executed as follows: Firstly,

to retain the edge information while denoising the observed image intensity function, we

employ a state-of-the-art jump-preserving surface estimation technique instead of using

a traditional nonparametric kernel regression estimate of the intensity function. Next,

for each pixel, we construct a CUSUM-type statistic and sort them in ascending order.

Finally, to detect anomaly in a small region, we use those CUSUM-type statistics which

are larger than or equal to the upper q sample quantile of these statistics [Mei (2011)].

One of the major advantages of our method lies in its simplicity and flexibility. Based on

the purpose of the applications, we can adjust the value of q to detect various amounts

of anomalies. A small q is preferable for detecting anomalies or faults involving a small

number of pixel coordinates, while a larger value of q is more suitable for larger fault

regions.

This chapter makes the following contributions: (i) It introduces a CUSUM-

type control chart designed specifically for monitoring “small” changes in image data. (ii)

The proposed control chart can detect sparse anomalies in the image intensity function,

and thus it expands the breadth of image monitoring techniques. (iii) One key advantage

of the proposed algorithm is its flexible detection capability through the tuning param-

eter. Depending on the size of the anticipated anomaly or fault region, the proposed

control chart can be made more suitable by tuning the value of upper quantile, and which

enhances its practicality in various real applications. (iv) The chart can use information

about the edges or jump location curves properly during the process of monitoring. (v)

It demonstrates superior performance compared to various state-of-the-art benchmark

methods.

2.2 Proposed Methodology

The proposed online monitoring of sequence of images consists of the following three

steps. (i) Image pre-processing: to eliminate useless parts of the images, and to align

them geometrically. (ii) Estimation of the image intensity functions: during sequential
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monitoring, noisy image surface needs to be estimated using a nonparametric jump edge

preserving state-of-the-art estimator. (iii) Online image monitoring: a Phase II procedure

for online monitoring of images. The following subsections describe the aforementioned

steps in a detailed manner.

2.2.1 Image pre-processing

Since we consider grayscale images only in this chapter, the first step of pre-processing is

to transform RGB color images to grayscale images. Contrast enhancement, resizing, and

standardization of image intensity value are also needed for further analysis. Moreover,

geometric misalignment of the images of the same scene at different time points is com-

mon in image monitoring applications. In the image processing literature, the process of

aligning those images geometrically is known as image registration. See Section 1.5 for

more discussion regarding image registration problem. Throughout this chapter, however,

we assume that the observed images from the production line are aligned properly.

2.2.2 Estimation of image intensity function

Under jump regression analysis (JRA) [Qiu (2005)], a 2-D monochrome image can be

considered as a discontinuous regression surface where boundaries of the image objects

are often considered as the point of discontinuities of the image intensity function or

image intensity surface. In the JRA framework, the observed 2-D image intensities or

image surface can be described by the following regression model:

wij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (2.2.1)

where {(xi, yj) = (i/n, j/n) : i, j = 1, 2, ...., n} are equally spaced pixel coordinates in the

design space Ω = [0, 1]× [0, 1], f is the unknown true image intensity function, N = n2 is

the sample size and εij are independent and identically distributed (i.i.d.) random noise

with mean 0 and variance σ2 > 0. Additionally, the unknown image intensity function f

is assumed to be continuous except on the boundaries of the image objects. We assume

that the image intensity function is piecewise continuous where the the number of pieces

is finite. The locations of discontinuity points are usually curves. In the JRA literature,

these curves are popularly known as jump location curves (JLCs) and we aim to preserve

the JLCs while monitoring the images.

The main objective of the proposed image monitoring technique is to monitor the

unknown discontinuous regression surfaces mentioned above. Hence, we need to accurately
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estimate f first. Given the discontinuous nature of image surface, it is reasonable to

employ an smoothing technique that can preserves the JLCs very well [Qiu (2009)]. In

literature, there are several edge or jump preserving surface estimation techniques. In

this chapter, we suggest a smoothing procedure proposed by Mukherjee and Qiu (2015),

primarily based on the idea of local pixel clustering. This smoothing technique does not

require any explicit edge detection, and the discontinuities and other complicated details

of the images can be preserved well.

Now, to estimate f locally, we undertake the following three major steps. First, we

determine whether a local neighborhood contains JLCs. Next, if JLCs are present, we

partition the pixels in the local neighborhood into two groups based on their observed

image intensity values. Finally, depending on whether the local neighborhood for a given

pixel is located in the continuous or discontinuous region, we estimate the true intensity

as follows: if the pixel lies in a continuous region, we approximate it by computing the

local weighted average of all intensities within that neighborhood. Conversely, if the pixel

is situated in a discontinuous region, then it is estimated by a weighted average of the

observed intensities at pixels located in the same group as the given pixel. Mathematically,

for a given pixel (x, y) ∈ Ω, let us consider the circular neighborhood

B(x, y;hn) = {(u, v) : (u, v) ∈ Ω,
√

(u− x)2 + (v − y)2 ≤ hn},

where hn > 0 is a bandwidth parameter. After the pixels in B(x, y;hn) are clustered

into two different groups B1(x, y;hn) and B2(x, y;hn), the true image intensity function

at f(x, y) can be approximated as the following:

f̂(x, y) =



∑
(xi,yj)∈B(x,y;hn) ϕijwij∑

(xi,yj)∈B(x,y;hn)ϕij

, if B(x, y;hn) does not contains JLCs

∑
(xi,yj)∈B1(x,y;hn) ϕijwij∑

(xi,yj)∈B1(x,y;hn)ϕij

, if B(x, y;hn) contains JLCs

(2.2.2)

where ϕij is the weight corresponding to the (i, j)-th pixel, and without any loss of gen-

erality, we assume that (i, j)-th pixel is located at group B1(x, y;hn). See Mukherjee and

Qiu (2015) for a rigorous discussion about the jump preserving estimator of the image

intensity function.

2.2.3 Online monitoring in phase-II stage

In Phase-II stage, the k-th observed image surface can be expressed as a 2-D JRA model:

wijk = fk(xi, yj) + εijk; for i, j = 1, 2, . . . , n and k = 1, 2, . . . , (2.2.3)
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where wijk is the observed image intensity of the k-th image at (i, j)-th pixel, fk is its

true intensity function, and εijk are i.i.d. random noise with zero mean and variance

σ2 > 0, i.e., similar to those as in (2.2.1). For detecting a step shift in image data, the

change-point model for the (i, j)-th pixel can be expressed as:

wijk ∼

 N
(
f0(xi, yj), σ

2
)

if k ≤ τ,

N
(
f1(xi, yj), σ

2
)

if k > τ,
(2.2.4)

where τ is the change point. Note that, in many applications, the changes in the image

involve relatively small number of pixels of the image. In literature, this phenomena

is known as sparsity. In the SPC literature, there exists some control chart based on

the sparsity assumption [Zou and Qiu (2009); Kang (2022)]. However, in this chapter,

we propose an image monitoring scheme that is simple to interpret and also capable

of handling the sparse nature of anomaly or change in the image intensity function.

Therefore, to monitor a sequence of images of resolution n × n, we propose a global

charting statistic by combining the set of univariate CUSUM chart based on the sequence

of each and every observed pixel coordinate {wijk : i, j = 1, 2, . . . , n; k = 1, 2, . . .}. The
intuition behind the proposed algorithm is as follows: Given a small number of pixels

associated with the anomaly or fault regions, it is more effective to focus a few extreme

values of the local pixelwise statistics rather than aggregating all of them together. At

the k-th time point, the usual likelihood based local CUSUM statistic for monitoring the

sequence of the intensity values at the (i, j)-th pixel is:

Ck(i, j) = max

[
0, Ck−1+

(
fk(xi, yj)−f0(xi, yj)

){
ek(xi, yj)−

1

2

(
fk(xi, yj)−f0(xi, yj)

)}]
,

(2.2.5)

where ek(xi, yj) =
(
wijk − f0(xi, yj)

)
/σ follows a standard normal distribution. The

likelihood based CUSUM chart raises a signal of intensity change at the (i, j)-th pixel

if Ck(i, j) > ζij, where ζij is an appropriately chosen threshold. Now, for the global

charting statistic, let C
(1)
k ≤ C

(2)
k ≤ . . . ≤ C

(n2)
k be the increasing order statistics, where

C
(ℓ)
k denotes the ℓ-th largest local CUSUM statistic. Then, our proposed monitoring

scheme for online monitoring of the image data is as follows. We choose a value of r such

as n2,
[
(1 − q)n2

]
, etc. where q is an appropriately chosen value of the upper quantile

depending on the anticipated size of the fault or anomaly region. At time k, the chart

statistic raises an alarm at global level if

n2∑
ℓ=r

C
(ℓ)
k (i, j) > Λ0, (2.2.6)
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where Λ0 is chosen in such a way that the above global charting statistic can achieve the

prefixed in-control average run length (ARL) value, called ARL0.

Note that, for evaluating the local statistic (2.2.5) for Phase II monitoring, the true

in-control image intensity function denoted as f0, should be known. However, in reality, it

is unknown and has to be estimated from the set of in-control images in the Phase I stage.

Assume that there are m in-control images in Phase I. Then, based on the m observed

samples, we define f̂0(x, y) = 1
m

∑m
i=1 f̃

IC
i (x, y), where f̃ IC

i is the local jump preserving

smoothing estimate (2.2.2) of the i-th in-control image sample in Phase I. Moreover, to

calculate the charting statistic, we have to use (2.2.2) to estimate fk at each time point.

Also, we suggest using the following estimator for σ:

σ̂ =

√
1

n2

∑
i,j

(wij − f̂0(xi, yj))2. (2.2.7)

Then, the proposed global charting statistic gives a signal if

n2∑
ℓ=r

Ĉ
(ℓ)
k > λ0. (2.2.8)

Note that, λ0 is the estimated version of Λ0. Next, we describe the algorithm to

evaluate the value of λ0 with a prefixed ARL0 value.

Construction of the global control limit λ0 with prefixed ARL0 : In this chapter,

λ0 can be determined by a parametric bootstrap technique described below. Traditionally,

to generate bootstrap sample of images we draw a re-sample from the residual images.

However, in our example, residuals around the JLCs could be large, and as a result, there

will be possibility of getting false discontinuity points in the image surface. To get rid

from this problem, we suggest to generate k-th simulated image as Z∗ijk = f̂0(xi, yj) +

a random sample from N(0, σ̂2). Then, based on the bootstrap samples, global CUSUM

charting statistic can be calculated by (2.2.8). For a given value of λ0, we continue the

above process until the global detection scheme in (2.2.8) raises a signal. Thus, a run is

found and corresponding run length is determined. Repeat the above two steps B times to

approximate the actual ARL0 value by the sample mean of those B run lengths. Finally,

if this value is smaller than the pre-determined ARL0 value, then increase the previous λ0

value, and otherwise decrease the previous λ0 value. For searching the suitable value of λ0,

the bisection algorithm can be applied. For a related discussion regarding the searching

algorithm, readers are referred to Qiu (2013).

Remark 2.2.1. One major advantage of the proposed method is its inherent flexibility.

This flexibility is evident in its construction, particularly the way it integrates both Max-
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CUSUM and Sum-CUSUM procedure to construct the global statistic based on top few

local pixelwise CUSUM statistic. Max-CUSUM involves a CUSUM procedure based on the

maximum of all local CUSUM statistics, i.e., when r = n2, while Sum-CUSUM entails a

global chart statistic based on the summation of all local CUSUM statistics i.e., r = 1.

Intuitively, Max-CUSUM should work better when the fault region affects a very small

number of pixel coordinates, whereas the Sum-CUSUM control chart is better otherwise.

Consequently, a global CUSUM control chart based on top few local CUSUM statistics

offers greater flexibility and practical relevance. However, the choice of r is crucial and

it is subjective to prior knowledge. In this chapter, since the focus is on detecting very

small changes we choose r to be n2, 0.999n2, 0.995n2, and so forth.

2.3 Statistical Properties

In this section, we investigate a few important statistical properties regarding the proposed

CUSUM chart for monitoring image data. Similar to the classical change point detection

problem, our main objective is to provide a detection scheme that minimizes the detection

delay subject to the pre-specified ARL0. Based on the statistic in (2.2.6), the chart raises

an alarm at the global level at time

T
(r)
sum = inf

{
k ≥ 1 :

n2∑
ℓ=r

C
(ℓ)
k (x, y) > Λ0

}
,

where Λ0 > 0 is the suitably chosen control limit so that the prefixed ARL0 value is

achieved. In statistical literature, T
(r)
sum is known as the stopping time of the the pro-

posed scheme. Then, the detection delay of the proposed scheme can be obtained by the

following worst case detection delay defined in Lorden (1971):

E
(p1,p2,...,ps)

(T
(r)
sum) = sup

τ=1,2,..
ess supE(p1,p2,...,ps)

τ

[
max

{
(T

(r)
sum−τ+1), 0

}∣∣∣I1, I2, . . . I(τ−1)].
Here, Ij indicates observed image intensity function at the j-th time point, and E

(p1,p2,...,ps)
τ

is the expectation when at time τ , fault occurs by involving s many pixel coordinates.

Note that {p1, p2, . . . , ps} is the pixel coordinates associated with the fault region, and

it is a subset of set of all pixel coordinates {(i/n, j/n) : i, j = 1, 2, ...., n}. We have the

following propositions regarding the asymptotic optimality of the proposed monitoring

scheme for detecting a change of fault in the image data. The first proposition is based

on the average run length to false signal of change. The second proposition is regarding

the detection delay of the proposed scheme.
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Proposition 2.3.1. In Phase II, for a sequence of n× n images, as Λ0 →∞,

E∞

{
T

(r)
sum(Λ0)

}
≥

(
1 + o(1)

)[ exp(Λ0)

1 + Λ0 + Λ2
0/2! + . . .+ Λ

(n2−1)
0 /(n2 − 1)!

]
,

where E∞ is the expectation when there is no change occur in the process.

The above proposition establishes a lower bound of the run length when there is no

change in the process. It indicates low false alarm probability of raising signal when there

is no change in the images. Our next proposition is based on detection delay when there

is a sustained change in the images.

Proposition 2.3.2. For any possible subset S = {p1, p2, . . . , ps} of pixel locations {(i/n, j/n) :
i, j = 1, 2, ...., n}, as Λ0 →∞,

E
(p1,p2,...,ps)

(T
(r)
sum(Λ0)) ≤

2Λ0

(
n2

n2−r+1

)
σ2∑

(x,y)∈S(f0(x, y)− f1(x, y))2
+O(1).

Proofs of these propositions using Theorem 1 of Mei (2010) are provided in Appendix

A.1.

2.4 Numerical Studies

In this section, we present numerical examples concerning the performance of the pro-

posed method in comparison with a number of state-of-the-art methods. We conduct

the comparative studies on a set of simulated test images and a real image. To show

the effectiveness of the proposed method, we present the mean and standard deviation

of the out-of-control ARL, denoted as ARL1, as a performance evaluation metric. As

the proposed method is a CUSUM procedure, the control chart statistic depends on the

previous images, therefore steady state calculation of ARL1 is a reasonable choice. Ad-

ditionally, since there is only one image at each time point, there is no requirement for

temporal aggregation [Zwetsloot and Woodall (2021)]. Throughout this section, we in-

tentionally corrupt the images with additive Gaussian noise. We hereby consider the

following competing methods:

• Wavelet-based image surveillance by Koosha et al. (2017)

• Supervised-learning based approach by Bui and Apley (2018a)
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Note that the aforementioned methods share similar assumptions with the proposed

method and find applications in analyzing industrial images.

2.4.1 Brief description of the competing methods

Koosha et al. (2017) proposes a nonparametric profile monitoring approach where each

image is decomposed into a set of 1D profiles and monitors them using a GLR (generalized

likelihood ratio) control chart. To capture frequency domain characteristics, it utilizes

wavelet transformation and tracks these features over time. In this scenario, every row of

a gray-scale image of size n× n is treated as 1D profile. If there are d estimated features

from each profile, then each image feature becomes a vector of dimensions nd× 1. Let’s

denote the coefficient vector of an image as Γ⊺ = (γ11, . . . , γ1d, . . . , γn1, . . . , γnd). To

monitor the images in Phase-II, the GLR control chart statistic for the k-th Phase II

image, as defined by Koosha et al. (2017), is denoted as:

Rk = max
τ,l∈Γ

(k − τ)

σ2
l

(
γ̂1,τ,k(l)− γ̂0(l)

)2

, k = 1, 2, . . . . (2.4.1)

Here, γ̂1,τ,s(l) = (s − τ)−1
∑s

t=τ+1 γ̂t,l, where γ̂t,l is the l-th element of Γnd×1 for the t-th

sample, γ0(l) is the l-th element of Γnd×1 corresponding to the nominal image, and σ2
l

denotes the variance of the l-th coefficient computed from Phase I samples.

Bui and Apley (2018a) propose a supervised-learning based approach for monitoring

and diagnosing texture surface related anomalies in manufactured products. The central

idea is monitoring the behaviour of local residuals over time. To measure the degree of

deviation from the in-control behaviour, they propose a general spatial moving statistic

(SMS) based on one sample A-D (Anderson and Darling) statistic [Anderson and Darling

(1954)]. For online monitoring, chart statistic for k-th Phase II images can be expressed

as:

Sk = max
(i,j)

SMSk,ij, (2.4.2)

where SMSk,ij is the spatial moving statistic at the (i, j)-th pixel at k-th time point.

Readers are referred to Bui and Apley (2018a) for more details about this algorithm.

Note that this is a Shewhart type control chart. For implementing this procedure we use

spc4sts [Bui and Apley (2021)] package from CRAN-R.
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Figure 2.2: Images from left: (a) in-control simulated image, (b) out-of-control image with
a scratch in the middle, and (c) out-of-control image with a square spot in the middle.

2.4.2 Simulations

In our simulation study, the true in-control image intensity function described in (2.2.4)

has the following expression:

f0(x, y) = I[(x, y) ∈ S], (x, y) ∈ [0, 1]× [0, 1], (2.4.3)

I (.) is the indicator function. See extreme left of Figure 2.2 for the simulated image.

The set of pixels into the star is denoted as S. Consequently, to generate Phase I and

phase II samples, we add point-wise Gaussian noise generated from N(0, 0.032). We carry

out the simulation study under the following set-ups: (i) we consider two different image

resolutions 64×64 and 128×128, and (ii) to generate out-of-control images, we introduce

two types of changes or faults: scratch and square spot on the true or nominal image

intensity function f0. Moreover, for each type of fault, we consider three different degrees

of intensity change: 0.1, 0.2, 0.3, and 0.5. Examples of in-control and out-of-control

images are shown in Figure 2.2. The faulty region are located around the centre of the

star. In this study, based on 500 independent replications, we fix the in-control ARL, i.e.,

ARL0 at 20. It is important to highlight that the pre-defined ARL0 value is relatively

smaller as compared to the values in traditional process monitoring literature. ARL0 = 20

is a reasonable choice due to limited availability of in-control sample images in Phase I

stage. This is often the situation in most practical applications, as collection of images

involve additional cost to the concerned authority. To set the in-control limit with a

prefixed ARL0, we follow the description in Section 2.2.3. For performance evaluation of

the proposed method, we perform a comparative numerical analysis based on the sample

mean and standard deviation of ARL1. Our simulation results are summarized in Tables

2.1 and 2.2. For comparison purpose, we consider two different versions of the proposed

algorithm. One is based on the maximum CUSUM statistic, denoted as Max-CUSUM,

and others are based on the upper q quantile of the CUSUM statistics, where q = 0.5%,

q = 5%, and q = 10%. Based on the definition of ARL, we anticipate small value of
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ARL1 for various out-of-control images, if the changes are detected by the concerned

methods. In Phase II monitoring, we set τ = 4. That is for each replication of run length,

a sustained shift occurs on the fifth image. If the chart statistic raise signal before the

5-th time point, we exclude that run from the calculation of ARL1.

Proposed Algorithm Competing Methods
Fault
type

Shift
Size

Max-CUSUM Upper-q-
CUSUM
(q = 0.5%)

Upper-q-
CUSUM
(q = 5%)

Upper-q-
CUSUM
(q = 10%)

Bui & Apley
Bui and Ap-
ley (2018a)

Koosha et a;.
Koosha et al.
(2017)

Scratch
0.5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 18.37 (20.97) 2.02 (0.78)
0.3 1.01 (0.07) 1.01 (0.07) 1.01 (0.10) 1.01 (0.09) 18.14 (20.83) 4.06 (1.90)
0.2 1.67 (0.99) 1.70 (1.00) 1.96 (1.28) 2.33 (1.68) 19.27 (20.61) 6.83 (3.95)
0.1 17.94 (17.24) 18.23 (17.17) 17.26 (17.80) 25.00 (26.63) 17.80 (20.91) 13.62 (10.00)

Square
0.5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 18.89 (22.08) 1.07 (0.26)
0.3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 12.34 (15.04) 2.22(0.78)
0.2 1.26 (0.53) 1.26 (0.54) 1.31 (0.62) 1.41 (0.71) 18.25 (19.32) 4.21 (1.91)
0.1 16.86 (16.43) 15.91 (15.79) 13.24 (12.72) 19.43 (20.10) 16.37 (19.33) 13.33 (8.50)

Table 2.1: Phase II performance comparison based on images with resolution 64 × 64.
Each entry presents the sample mean of ARL1 values along with the sample standard
deviation within parenthesis, based on 500 independent replications.

Proposed Algorithm Competing Methods
Fault
type

Shift
Size

Max-CUSUM Upper-q-
CUSUM
(q = 0.5%)

Upper-q-
CUSUM
(q = 5%)

Upper-q-
CUSUM
(q = 10%)

Bui & Apley
Bui and Ap-
ley (2018a)

Koosha et a;.
Koosha et al.
(2017)

Scratch
0.5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 28.37 (32.86) 1.96 (0.62)
0.3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 29.38 (33.42) 4.45 (1.53)
0.2 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 29.81 (32.70) 8.56 (3.39)
0.1 1.00 (0.00) 1.54 (0.84) 1.56 (0.93) 1.92 (1.25) 30.71 (34.62) 18.30 (9.75)

Square
0.5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 26.58 (30.88) 1.03 (0.17)
0.3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 28.78 (33.09) 2.08 (0.63)
0.2 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 29.16 (31.09) 3.69 (1.22)
0.1 1.01 (0.10) 1.01 (0.11) 1.02 (0.15) 1.05 (0.23) 29.68 (32.72) 9.50 (4.21)

Table 2.2: Phase II performance comparison based on images with resolution 128× 128.
Each entry presents the sample mean of ARL1 values along with the sample standard
deviation within parenthesis, based on 500 independent replications.

Based on the summary provided in Tables 2.1 and 2.2, the following observations

can be made regarding the proposed method: (i) As the magnitude of the change or

shift increases, the average run length of detecting a rising signal decreases. This trend

is consistent with our expectations and intuition. (ii) In the current simulation study,

the performance of Max-CUSUM and Upper-q-CUSUM methods are comparable. For

smaller shift sizes, Max-CUSUM exhibits slightly better performance, which aligns with

our intuitive expectations. Regarding the competing methods, it is quite evident that the

method proposed by Bui and Apley (2018a) fails to detect the change in all situations

of the current simulation study. This failure is attributed to the fact that it is mainly

designed to detect larger shifts in the pattern of a textured surface. Since it relies on a

Shewart-type control chart, it is more suitable for identifying large transient shifts rather

than smaller persistent shifts. On the other hand, the method proposed by Koosha et al.

(2017) performs relatively better. However, the comparison of the proposed algorithm

is quite illustrative. It outperforms the existing state-of-the-art methods in almost all
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situations. In particular, for the image of resolution 64 × 64 with shift size 0.1, both of

them fail to detect. However, for 128, the proposed method works perfectly. The failure

of the proposed method in the case of 64×64 images can be attributed to relatively poorer

performance of image denoising in low resolution images. Except for that specific setting,

our proposed algorithm is the clear winner for detecting the change nearly perfectly.

Additional Simulation Studies: To emphasize the robustness and practical applica-

bility of the proposed method, we hereby perform a comparative analysis with more types

of simulated texture images. The true texture surface has the following functional form:

f0(x, y) =

1
4
sin(128(x+ y)) if 0.625 ≤ x+ y ≤ 1.375

1
4
sin(32(x+ y)) otherwise.

Figure 2.3: Images from left: (a) in-control simulated image, (b) out-of-control image:
scratch, (c) out-of-control image: pattern change, and (d) out-of-control image: multiple
faults.

Examples of simulated these texture images are shown in Figure 2.3. The left panel

of Figure 2.3 shows the in-control image, whereas the rest show various out-of-control

images. Faulty regions are highlighted by rectangular boxes. To simulate the out-of-

control images, we consider three different cases: (i) a small scratch on the surface, (ii)

a change in the texture pattern, and (iii) multiple fault regions. Note that, we carry

out the simulation study with a similar set-up as before. A comparative analysis of the

simulation study is summarized in Table 2.3 when the image resolutions are 128× 128. It

is evident that the proposed Upper-q-quantile based method outperforms its competitors

nearly in all situations. Additionally, its performance aligns well with our expectations

from earlier simulations. Since the changes are small, the detection power increases as

the value of q decreases in the Upper-q-CUSUM control chart. Among the competing

methods, the wavelet-based approach by Koosha et al. (2017) performs relatively better,

while the method by Bui and Apley (2018a) shows strong performance for detecting

pattern changes in the texture surface. However, this method is not recommended for

detecting small changes. Thus, in the given scenarios, the proposed chart statistic is a

clear winner and its power of raising a change signal in presence of very small change(s)
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in the image intensity function demonstrates its reliability and practical applicability in

various scenarios.

Proposed Algorithm Competing Methods
Fault Type Max-

CUSUM
Upper-q-
CUSUM
(q = 0.5%)

Upper-q-
CUSUM
(q = 5%)

Upper-q-
CUSUM
(q = 10%)

Bui & Apley
Bui and Ap-
ley (2018a)

Koosha et al.
Koosha et al.
(2017)

Scratch 1.00 (0.00) 1.00 (0.00) 1.33 (0.65) 1.78 (1.31) 13.29 (12.61) 3.27 (1.84)
Pattern change 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.56 (0.74) 1.00 (0.00)
Multiple faults 1.00 (0.00) 1.05 (0.21) 1.49 (0.94) 1.87 (1.42) 15.73 (16.12) 2.61 (1.20)

Table 2.3: Phase II performance comparison on simulated textured images with resolution
128 × 128. Each entry presents the sample mean of ARL1 values along with the sample
standard deviation within parenthesis, based on 500 independent replications.

2.5 A Real Image Example

In this section, we illustrate the performance of the proposed control chart on real images

of textile materials. Example images of in-control and out-of-control textile materials

are shown in Figure 2.4. Note that, the fabric pattern of the textile image are very

complicated and it is challenging to identify small anomalies from the observed images.

Textile image data are available in the package “textile” from CRAN-R [Bui and Apley

(2018b)]. We induce the ellipsoidal anomalies using imposedefect( ) function from the

package “spc4sts” [Bui and Apley (2021)].

Figure 2.4: Top row: In-control and out-of-control real textile images. The first image is
an in-control image. Remaining three are different out-of-control images with ellipsoidal
fault regions. Bottom row: Images indicating the locations of the fault regions. The first
image is completely black because there is no fault region.
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In this study, we consider three distinct out-of-control images based on the size of

the ellipsoidal fault (See Figure 2.4). Initially, as a part of pre-processing, we resize the

image resolution to 128 × 128 image and normalize the intensities so that their values

lie between 0 and 1. Subsequently, to generate Phase I and Phase II samples, we add

point-wise Gaussian noise with mean zero and standard deviation 0.01. In this example,

we fix the in-control ARL, i.e., ARL0 at 20, and compute the control limit based on

500 independent replications. Since our target is to detect subtle changes in the textile

surface, we choose q = 0.001, i.e., we construct the chart statistic based on top 0.1%

pixelwise CUSUM statistics. Figure 2.5 presents the performance of the proposed control

chart. In Phase II stage, we consider 10 images of the texture surface. Among these 10

images, the first 4 are in-control, and a sustained shift occurs on the 5-th image. Thus, in

the given situation, the change-point τ = 5. From Figure 2.5, we see that the proposed

method performs very well in all the three situations mentioned above. It is evident that

the chart statistic can detect the change at the 5-th time-point itself in each case.

Figure 2.5: Performance of the upper 0.1% CUSUM control chart in Phase II correspond-
ing to the three changes described in Figure 2.4.

2.6 Concluding Remarks

In this chapter, we propose an efficient image monitoring algorithm for detecting small

changes from the noisy images. Numerical examples ensure superiority of the proposed

method to its competitors in various situations. There are several directions for extending

our current research on image monitoring. The proposed method assumes the conditions

of jump regression analysis, it also assumes point-wise independent Gaussian noise. An

immediate extension of the proposed method is to monitor sequence of images in presence

of spatio-temporally correlated noise.

Additionally, our current method assumes that images are geometrically aligned prop-

erly. A method that can handle geometric misalignment by its construction is always

preferable. Performance-wise superiority of our proposed method is undeniable. How-
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ever, our current method focuses on images with moderate resolutions. Monitoring high-

resolution images might be computationally demanding for our proposed control chart.

Much future research is needed to address all these aspects.





Chapter 3

Monitoring Images Using Jump

Location Curves†

3.1 Introduction

As because images have been traditionally used as a form of data in the chemical and

manufacturing processes, there exists a number of SPC methods for monitoring images.

However, none of them uses detected edges for image monitoring. The novelty of our

approach lies in the fact that it explicitly uses detected edges, one of the most important

features of an image. In literature, almost all existing methods are based on image

intensity values, and therefore, they are too sensitive for a very small change in noise level

and for a insignificant alternation of image intensity values. In that sense our method is

more robust in presence of such insignificant changes. To our best knowledge, there is

no existing study on monitoring image data considering edges as main feature for image

surveillance. Under JRA [Qiu (2005)], a 2-D grayscale image intensity function can be

considered as a discontinuous regression surface, where the location of the discontinuities

are often in the boundaries of the image object. The locations of discontinuity points

are usually curves, known as jump location curves (JLC). For more details, readers are

referred to Section 1.2. The main purpose of this chapter is to propose a Shewhart-type

[Shewhart (1931)] control chart based on JLCs for monitoring images. Essentially, we aim

to monitor the JLCs in the regression surface over time. For this purpose, we first detect

the edge pixels from the images using an appropriate local smoothing procedure and then

for comparison we choose a quantitative similarity measure. In literature, commonly used

similarity measures are mean square deviation (MSD) between two images or the Pearson

†This chapter is based on the publication Roy and Mukherjee (2024a): Roy, A. and Mukherjee, P.S.
“A control chart for monitoring images using jump location curves”, Quality Engineering, 2024, 36(2),
439–452. DOI: 10.1080/08982112.2023.2232441.
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correlation among the intensities of two image intensity matrices. However, the major

drawback of these measures are: they can not take into account the spatial structures

and other complicated details of an image. In our proposed methodology, we choose the

Hausdorff distance between the point-sets of detected edge pixels of two images, and thus

all issues mentioned above can be addressed properly.

3.2 Edge Detection by LLK Smoothing

As discussed earlier, a very important step in our proposed image monitoring control

chart is to identify the edge pixels of the images using a reasonable edge detector. Any

suitable edge detector can be used for this purpose. Many existing edge detection methods

are based on first-order derivatives, [e.g., Canny (1986), Qiu and Bhandarkar (1996)] or

second-order derivatives [e.g., Sun and Qiu (2007), Joo and Qiu (2009), Torre and Poggio

(1986), Clark (1988)] of the image intensity function. in this chapter, we use edge detection

method based on local linear kernel (LLK) smoothing.

Literature on jump regression analysis considers estimating jump location curves

(JLCs) in the design space. However, presence of multiple JLCs or the JLCs crossing

over in the design space make it very difficult to describe the JLCs mathematically due to

the global nature of the curves [Qiu (2005)]. In the digital image setup the more flexible

and appropriate method of jump detection is to consider JLCs as a point set in the design

space. Qiu (1998) and Qiu and Yandell (1997) estimate JLCs as point set by a local

linear estimator. We consider a similar approach using a kernel function in the circular

neighbourhood and it is known as jump detection by local linear kernel (LLK). Under

the jump regression analysis framework, a 2-D image can be expressed by the following

regression model:

wij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (3.2.1)

where {(xi, yj) : i, j = 1, 2, ...., n} are equally spaced pixel coordinates in the design space

Ω = [0, 1] × [0, 1], f is the unknown image intensity function, N = n2 is the sample size

and εij are independent and identically distributed (i.i.d.) random errors with mean 0

and variance σ2 > 0. Now, to detect edge pixels, we consider a circular neighborhood at

each pixel (x, y) as B(x, y, hn) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ hn} where hn > 0 is a

bandwidth parameter. Then LLK smoothing procedure is accomplished by the following

optimization problem:

min
a,b,c

∑
(xi,yj)∈B(x,y,hn)

{wij − (a+ b(xi − x) + c(yj − y)}2K
(
xi − x

hn

,
yj − y

hn

)
, (3.2.2)
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where K is a radially symmetric bivariate density kernel with support {(x, y) : x2 +

y2 ≤ 1}. The estimate of (a, b, c) from the above minimization problem (3.2.2) is de-

noted as (â, b̂, ĉ). When there is no jump, â(x, y) is the LLK estimate of f(x, y), and

(b̂(x, y), ĉ(x, y))′ is the LLK estimator of the gradient vector β(x, y) = (fx(x, y), fy(x, y))
′.

One can easily verify that the estimator has the following expression:

â(x, y)

b̂(x, y)

ĉ(x, y)

 =

m00 m10 m01

m10 m20 m11

m01 m11 m02


−1 

∑
wijKij∑

wij(xi − x)Kij∑
wij(yj − y)Kij

 (3.2.3)

Where mpq =
∑

(xi − x)p(yj − y)qKij for p, q = 0, 1, 2, and Kij = K

(
xi−x
hn

,
yj−y
hn

)
. The

estimated gradient vector at (x, y) is given by β̂(x, y) = (̂b(x, y), ĉ(x, y))′ which carries

information about jump at point (x, y). Larger value of it indicates that underlying

regression function f would be steeper around the point (x, y) and (x, y) is a possible

jump point or an edge pixel. However, when f is steep but continuous in the circular

neighborhood B(x, y, hn), the value of β̂(x, y) would still be large. Therefore, large value

of β̂(x, y) does not guarantee that (x, y) is a jump point. To get rid from the slope effect

we consider two neighboring points (xP1 , yP1) and (xP2 , yP2) such that:

• distance of (xP1 , yP1) and (xP2 , yP2) from (x, y) is 2hn, i.e., there is no overlap among

the circular neighborhoods of the three points (xP1 , yP1), (x, y), and (xP2 , yP2).

• The neighboring points are along the direction of β̂(x, y), i.e., the estimated gradient

direction at (x, y).

Using these, the jump detection criteria is defined as the following:

λ(x, y) = min
{
||β̂(x, y)− β̂P1

(x, y)||, ||β̂(x, y)− β̂P2
(x, y)||

}
,

where β̂P1
(x, y) and β̂P2

(x, y) are the estimated gradient vectors at the neighboring points

(xP1 , yP1) and (xP2 , yP2), respectively and ||.|| is the Euclidean norm. We decide that there

is no jump at the point (x, y) if the value of λ(x, y) is relatively small. Therefore (x, y) is

on the JLC or it is a detected jump point if

λ(x, y) > vn

where vn is a threshold parameter.
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3.3 Phase-I Monitoring of Image Data

3.3.1 Model description

in this chapter, we mainly consider 2-D grayscale images. A sequence of m images of the

dimension n× n each can be expressed by the following 2-D JRA model:

ζijk = fk(xi, yj) + εijk; for i, j = 1, 2, ...n and k = 1, 2, ...m. (3.3.1)

where (xi, yj) is the (i, j)-th pixel coordinate of the k-th image. ζijk is the observed

intensity and fk(xi, yj) is the true intensity value of the k-th image at the pixel (xi, yj).

εijk’s are random errors with mean 0 and variance σ2 > 0. Further, we assume that

images are independent with each other and they are geometrically aligned. In case they

are not geometrically aligned, they have to be registered appropriately.

3.3.2 Edge detection and Hausdorff distance

In Section 3.2, we describe a method to detect the JLC as a point set. We assume that in

Phase-I, we have images of batch size one from m different time points and our primary

goal is to detect if there is any change in the image objects. In Phase-I, our main objective

is to construct a chart statistic and estimate the corresponding parameters and modify

them simultaneously with data of different time points.

Let I1, I2, ..., Im be the m sample images with dimensions n×n from an image process

at m different time points. We assume that the images contain noise of various levels. We

define that estimated true in-control image as ÎIC = 1
m

∑m
1 Ii. Now, by LLK smoothing

as described previously, the estimated point set of edge pixels of sample images is denoted

as {Êk : k = 1, 2, . . . ,m}. The estimated edge pixel of the estimated true image ÎIC) is
denoted as Ê0. Since we are considering edge pixels as a point set, a very well known

measure to calculate the dissimilarity between two point sets is the Hausdorff distance

measure. In image processing literature, it is very popular with lots of applications in

image matching, object tracking , image comparison etc. It measures how close two

subsets from the same metric space are from each other. Being a distance measure on

some metric space it has the following properties:

• The Hausdorff distance between two sets is bounded if the sets are bounded.

• The Hausdorff distance between two sets having the same closure is zero.

• Triangle inequality holds for Hausdorff distance.
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In our context, images are defined on the compact design space [0, 1]× [0, 1] with equally

spaced discrete pixel coordinates. Hence the distance is bounded and smaller the value of

the Hausdorff distance between the point sets of detected edge pixels of two images more

similar the images are. Therefore, for point sets of edge pixels Êi and Êj the Hausdorff

distance is denoted as DH(Êi, Êj) and expressed in Qiu (2005) by the following:

DH(Êi, Êj) = max

{
sup

(p,q)∈Êi

inf
(p′,q′)∈Êj

||(p, q)− (p′, q′)|| , sup
(p,q)∈Êj

inf
(p′,q′)∈Êi

||(p, q)− (p′, q′)||

}
(3.3.2)

3.3.3 Construction of control chart for image monitoring

Now we construct an edge based control chart based on the sample images of size m.

As mentioned earlier, most of image monitoring methods in the literature are intensity

based and a vast majority of them uses GLR chart or MGLR chart to construct control

chart. in this chapter, we are trying to form an edge based control chart to monitor

an image process over time. To construct the control chart, we have to first define the

chart statistic that could help us construct upper control limit (UCL) for the process and

also help practitioners to detect changes in online monitoring stage. From the previous

section, we know that the estimated point set of the edge pixels of an in-control (IC)

image is defined as Ê0. {Êi : i = 1, 2, . . . ,m} are the corresponding estimated point sets

of edge pixel of the sample images. A natural statistic can be defined as:

T =
1

m

m∑
k=1

DH(Êk, Ê0).

Then, the chart will give signal if T > t∗, where t∗ > 0 is a control limit. The value of t∗

can be obtained from the (1− α)-quantile of empirical distribution of T where α is given

nominal IC false alarm rate (FAR). To get empirical distribution of the chart statistic

bootstrap technique can be used.

3.4 Phase-II Monitoring of Image Data

Let us denote the true in-control (IC) image as IIC . In reality, it is usually unknown and

has to be estimated based on observed Phase-I image sample {I1, I2, ..., Im} of size m.

As discussed before, estimated true image is defined as ÎIC = 1
m

∑m
1 Ii, and the point set

of detected edge pixels of this image is denoted as Ê0. In Phase-II step, ℓ-th observed
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image can be expressed as 2-D JRA model as:

wijℓ = fℓ(xiℓ, yjℓ) + ϵijℓ for i, j = 1, 2, . . . , n and ℓ = 1, 2, . . . , (3.4.1)

where wijℓ is the observed image intensity and the other related variables can be described

similarly to those in the model (3.3.1). Image registration is also a necessary step in Phase-

II monitoring as well. To register the images, we use any IC image as a baseline image.

There will not be substantial variations if we use different IC images as baseline image.

After registration, we estimate the point set corresponding to the edge pixels of the images

in Phase-II using LLK method and those are denoted as {Êℓ : ℓ = 1, 2, . . .}. Then, the

Hausdorff distance of the edge point set of ℓ-th image in Phase-II with the edge point set

of mean image is calculated by Tℓ = DH,ℓ(Êℓ, Ê0). The chart will give a signal of change

if Tℓ > t0, where t0 has been chosen in such a way that the chart statistic can reach the

prefixed ARL0 value.

Construction of the control limit with a pre-fixed ARL0: Without any loss of

generality, we assume that the first IC image as the reference image. We apply local

piece-wise smoothing procedure for image surface estimation and calculate the residuals

{ε̂∗} and σ̂ from the reference image. Traditionally, to generate bootstrapped images,

we draw a re-sample of size n2 from the set of residuals {ε̂∗(xi, yj) : i, j = 1, 2 . . . n}.
However, in our e example, the residuals around the estimated JLCs could be large, and

as a result, there will be a few falsely detected edge pixels in the image at the time of

edge detection at the bootstrapped images. To overcome this problem, we generate the

ℓ-th simulated image by adding Gaussian noise N(0, σ̂2) to each pixel, and calculate the

statistic Tℓ based on this generated bootstrapped sample image. For a given value of t0,

we continue the above process until we get a signal of change. Thus, one run is found

and the corresponding run length is calculated. Finally, we repeat the above two steps

B times and average those B run lengths to estimate the actual value of the ARL0. If

the estimated value based on B replications is smaller than the pre-fixed ARL0, then we

should increase the specified value of t0 and if the estimated value of the ARL0 is larger

than the pre-fixed ARL0, then we should decrease the specified value of t0.

3.5 Selection of Procedure Parameters

In the proposed image monitoring procedure, the parameter vn in Section 3.2 should be

chosen carefully to get a good performance in edge detection.

If no jump exists in B(x, y, hn)∪B(xP1 , yP1 , hn)∪B(xP2 , yP2 , hn), for a given constant

vn > 0,
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P [λ(x, y) > vn] ≤ P [||β̂(x, y)− β̂P1(x, y)|| > vn]

= P [(̂b(x, y)− b̂P1(x, y))
2 + (ĉ(x, y)− ĉP1(x, y))

2 > v2n]

= E{P [(̂b(x, y)− b̂P1(x, y))
2 + (ĉ(x, y)− ĉP1(x, y))

2 > v2n|̂b(x, y), ĉ(x, y)]}.

For fixed b̂(x, y) and ĉ(x, y), (̂b(x, y)− b̂P1(x, y))
2 + (ĉ(x, y)− ĉP1(x, y))

2/σ2
P1

approxi-

mately follows χ2
2 distribution, where σ2

P1
= V ar(̂bP1(x, y)). Now from expression (3.2.1),

we have

σ2
P1

= σ2

∑
(xi − xP1)

2K2
P1

{
∑

(xi − xP1)KP1}2
,

where KP1 = K(
xi−xP1

hn
,
yi−yP1

hn
). Therefore, a natural choice for vn is

vn = σ̂

√
χ2
2,1−αn

∑
(xi − xP1)

2K2
P1

{
∑

(xi − xP1)KP1}2
,

where χ2
2,1−αn

is the (1− αn) quantile of χ2
2 distribution and σ̂ is a consistent estimator

of σ. A natural choice for σ̂ is the mean of residual squares of LLK (local linear kernel)

estimator of the true intensity function f using the circular neighborhood of size hn.

Moreover, αn can be specified beforehand to be small number, say, αn = 0.01.

Selection of the bandwidth parameter hn: in this chapter, we consider choosing hn

using a bootstrap procedure. Larger value of hn detects several pixels around the JLCs

as edge pixels while smaller value of hn fails to detect several true edge pixels. Therefore,

it is a safer option to take a relatively large bandwidth. However, for such cases, the

proposed monitoring method will fail to detect a small change near the JLCs. Based on

our numerical experience, we suggest choosing hn ∈ [1.6
n
, 2.5

n
]. In the simulation studies

presented in Section 3.7.3, we choose hn = 2
n
. Readers are referred to Section 3.9.3 for

more details about the bootstrap algorithm for selection of hn.

3.6 Statistical Property

In this section, we discuss some statistical properties of the edge detection procedure

mentioned in Section 3.2. The following proposition shows that the estimated jump

points converge almost surely to the set of true jump points in Hausdorff distance. In

our description a point (x, y) is called a singular point if one of the following conditions

is satisfied:

• There exists some ρ > 0 such that, for any 0 < ρ̄ < ρ, the circular neighborhood of
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(x, y) with radius ρ̄ contains more than two connected regions .

• The jump size is zero.

Other points on JLCs are non-singular points. For simplicity, a point on JLCs which has

a unique tangent line and non-zero jump is defined as non-singular points. Also define,

Ωϵ = [ϵ, 1− ϵ]× [ϵ, 1− ϵ],

Eϵ = {(x, y) : (x, y) ∈ Ω, D((x, y), (x′, y′)) ≤ ϵ for some (x′, y′) ∈ E},
Sϵ = {(x, y) : (x, y) ∈ Ω, D((x, y), (x′, y′)) ≤ ϵ for some singular (x′, y′) ∈ E},
ΩĒ,ϵ = Ω\Eϵ and ΩS̄,ϵ = Ω\Sϵ,

where ϵ is a small positive constant, D denotes Euclidean distance, E defines set of points

on JLCs. We have defined earlier Ên = {(xi, yj) : λ(x, y) > vn} as set of detected edge

points. Then we have,

Proposition 3.6.1. Assume that f has continuous first order partial derivatives over

(0, 1)×(0, 1) except on JLCs at which it has the first order right and left partial derivatives;

hn = o(1), 1
nhn

= o(1) and log2(n)
nh3

n
= O(1); E|ϵ|3 <∞; the kernel function is a Lipschitz-1

continuous, isotropic bivariate density function and αn is so chosen such that (1− αn) =

o(1), nh
7/2
n

n2
√
−log(1−αn)

= o(1), and
√
−log(1−αn)

(nhn)3
= o(1). Then, for any ϵ > 0, DH(E ∩

ΩS̄,ϵ, Ên ∩ ΩS̄,ϵ) = O(hn) a.s., where DH(A,B) is the Hausdorff distance between two

point set A and B.

The above proposition establishes the strong consistency of the detected edge pixels

by the aforesaid procedure. Proof of the Proposition 3.6.1 is presented in Appendix A.2.

3.7 Numerical Studies

In this section, we numerically assess the performance of our proposed method in com-

parison with a number of methods already in the literature. We perform comparative

studies on both, artificially created toy images and real images. In the manufacturing

industry, any change in intensity values in a region is very common and often considered

as faults. However, in many applications such as satellite imaging and medical imaging,

these changes should not be taken as meaningful faults or changes in the underlying image

process. See Figure 3.3 for this type of situation. In literature, a vast majority of methods

are intensity based, and therefore, they are very sensitive to small changes in intensity in a

region. Therefore, such methods are very sensitive to noise and as a result, the proportion

of false detection by these methods is also large. The proposed method primarily focuses

on major image features such as edges and monitors any change of that, rather than just
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monitoring any change of intensities. In this regard, the proposed method is particularly

useful in monitoring satellite images and medical images.

We discuss the performance for Phase-I and phase-II separately. Here we consider the

following methods for numerical comparisons:

• Wavelet-based image monitoring proposed by Koosha et al. (2017)

• Phase-I and Phase-II monitoring of spatial surface data from 3D printing proposed

by Zang and Qiu (2018a,b).

The above methods are comparable in the sense that they do not take into account the

correlation structure of the images also they assume the independence among the images

of different time points.

Figure 3.1: (a) True simulated image, (b) Observed Phase-I simulated image, (c) Edge
detected image of estimated nominal image.

3.7.1 Brief description of the competing methods:

The wavelet-based method for image monitoring uses a nonparametric profile monitoring

approach where each image is decomposed into a set of 1D profiles and monitors them

as a whole using a GLR control chart. To extract the frequency domain features, the

method applies wavelet transformation and monitors the extracted features over time. In

Koosha et al. (2017), wavelet coefficients are termed as frequency domain features and

‘Haar’ basis function is used to get the wavelets coefficients. Suppose we have m 2-D

grayscale images of size n×n. Then each row of an image is considered as 1D profile and

suppose there are d estimated features from each profile. Therefore, each image feature is

a nd×1 dimensional vector. In phase-I, there are m images therefore we get m coefficients

vector each with dimensions nd×1. Suppose the coefficient vector of an image is denoted

as Γ⊺ = (γ11, ...., γ1d, ......, γn1, ...., γnd). Then, we are interested in detecting the changes

of the coefficients over time. To monitor the images in Phase-II, the GLR control chart
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statistic by Koosha et al. (2017) for s-th Phase-II image is defined as:

Rs = max
k∈Γ

s

σ2
k

(
γ̂1,s(k)− γ̂0(k)

)2

, (3.7.1)

s = 1, 2, . . . being the image number in the online monitoring step, γ̂1,s(k) = s−1
∑s

t=1 γ̂t,k,

where γ̂t,k is the k-th element of the Γ vector for the t-th sample, γ0(k) is the k-th element

of the Γ vector corresponding to nominal image and σ2
k is the variance of the k-th coefficient

computed from Phase-I images of sizem. In simulation studies, nominal images are known

to us but in the real life scenario we have to estimate the nominal image from m images

of Phase-I images. Koosha et al. (2017) take another parameter and also maximize the

the statistic over the parameter to get the estimate of the change-point. However, since

we are not interested to estimate the change-point, we modify the statistic like above.

The chart statistic will give signal at the s-th image if Rs > cR where cR is the threshold

value calculated by trial and error method.

Figure 3.2: Different out of control images (without noise).

Now, we discuss another existing method based on Phase-I and Phase-II monitoring

of 3D printing [Zang and Qiu (2018a,b)]. This is a potential competing method in the

sense that we can always think the image intensity as a 3-D surface, and they also assume

spatial independence in the object surface. Here, we assume that images are already

geometrically aligned, and if not, then we can use an appropriate image registration

technique to register them. Consider the model in the Phase-I step as

wijk = fk(xik, yjk) + εijk; for i, j = 1, 2, ...m and k = 1, 2, ...n.

where the variables are same as defined above in the equation (3.3.1). Then, the control

chart statistic is defined as

QART = max
1≤k≤n

1

m2

m∑
i=1

m∑
j=1

|f̂k(xik, yjk)− f̂0(xi, yj)|, (3.7.2)

where f̂k is a jump preserving surface estimate of fk and f̂0(xi, yj) =
1
n

∑n
k=1 f̂k(xik, yjk)
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is the estimated intensity value at (i, j)-th position from the images in Phase-I. For more

details about the jump preserving surface estimates, readers are referred to Qiu (2009).

Zang and Qiu (2018b) use CUSUM statistic in Phase-II stage. However, to make it

comparable with our proposed method, we use Shewart-type chart based on the statistic

in (3.7.2). The chart will give an out of control signal if QART > cART where cART is the

(1 − α)-quantile of the empirical distribution of QART . If we use L2 norm instead of L1

norm in the chart statistic, then it is denoted by QSRT .

3.7.2 Performance evaluation measures

To evaluate the performance of the proposed method in comparison with the existing

methods mentioned above, we use several measures for different phases of monitoring. In

the Phase-I stage, to compare the out-of-control (OC) performances, we use two measures:

fraction correctly classified (FCC) and false positive proportion (FPP) [Chen et al. (2015)].

The first criterion, named fraction correctly classified (FCC) is defined as the proportion

of sample in repeated simulation that are correctly classified. For example, if there are

20 in-control (IC) images and 10 out-of-control (OC) images in a single replication and a

specific chart gives out-of-control signal to 5 IC images and 8 OC images, then its FCC is

calculated as (15+8)
(20+10)

≈ 0.77. The second criterion for Phase-I OC performance measure,

false positive proportion (FPP), is the proportion of false signals among all signals. In the

above example, the FPP is calculated as (5+2)
(5+8)

≈ 0.58. In Phase-II, performance evaluation

is done using 3 different criterion. Average run length (ARL), median run length (MRL)

and standard deviation of run length calculates the efficiency of the proposed method and

competing method for detecting faults as early as possible. Note that, in the Phase-II

stage, we have only the zero-state calculation, i.e., in each simulated process monitoring,

OC images start at the first observation time. As the proposed method is a Shewart-type

control procedure, in Phase-II the control chart statistic depends only on that image and

not on any image in the past. Moreover, we assume that Phase-I samples are independent

across different time points. Also, no temporal aggregation is needed as in each time

point we only have one single image [Zwetsloot and Woodall (2021)]. Therefore, instead

of steady-state calculation, zero-state calculation is a reasonable choice in our context.

3.7.3 Simulations

In this section, we simulate various out-of-control images and compare the performance

of our proposed method with other competing methods mentioned above. In our simu-

lation, the true image intensity function of the in-control (IC) image has the expression:

f0(x, y) = I(0.31 < x < 0.58, 0.31 < y < 0.54), (x, y) ∈ [0, 1] × [0, 1], where I (.) is the
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indicator function. The true IC image is shown in Figure 3.1(a). We consider four out-

of-control (OC) images and denoted these as OC Image-1, OC Image-2, OC Image-3, and

OC Image-4 respectively. To generate Phase-I and Phase-II images, various types of noise

such as Poisson, Salt and Peeper or Gaussian noise can be added as a white noise with

the nominal image (f0). Here we added a zero-mean Gaussian distribution with standard

deviation (σ) equaling 0.05. For determining the correct level of noise, signal-to-noise

ratio (SNR) is an important measure (c.f., Koosha et al. (2017)). Figure 3.2 shows the

simulated OC images. The size of all of these simulated images is 128× 128 (i.e, n=128).

When noise level is high, our edge detection method falsely detects several edge pixels in

the background of the images. To get rid of those falsely detected edge pixels, we run the

following adjustment procedure:

Algorithm for removing false edges

1: En×n = Binary Edge Matrix

2: Ep
(n+2p)×(n+2p) = Padded Edge Matrix (Pad Length= p )

3: for i := (1 + p) to (n+ p− 1) do

4: for j := (1 + p) to (n+ p− 1) do

5: if Ep[i, j]← 1 &
∑i+1

k=i−1
∑j+1

l=j−1Ep[k, l] ≤ 4 then

6: Ep[i, j]← 0

7: end if

8: end for

9: end for

Note that for elements near the boundaries of the image matrix we use the mirror-

ing technique for which there is no subscript out of the bound situation for the above

algorithm. Table 3.1 shows the control limits for the methods to achieve in-control ARL,

i.e., ARL0 ≈ 50 when the size of Phase-I data are m = 10 and m = 20. Note that the

values of m considered in this study is relatively small compared to the conventional SPC

literature, because in most of the applications of medical diagnostics, satellite imaging,

etc., the number of images of the same object is always a few, in the order of 10’s or even

smaller in some cases. Therefore, it is reasonable to construct the control chart based on

small number of Phase-I samples and correspondingly small pre-fixed ARL0. To find the

empirical distribution, bootstrap technique could be used. However, to set the control

limit at the prefixed ARL0 value we use trial and error methods. Readers are referred to

Section 3.4 for more details to determine the control limit with a pre-fixed ARL0 value.

Here, Dnew corresponds to the proposed method , Rk is the statistic (3.7.1) based on the

wavelet-based technique, and QART corresponds to the surface monitoring method defined
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in (3.7.2). From the definition of FCC and FPP, we expect a large value of FCC and a

small value FPP if the monitoring method works well.

n DNew QART QSRT Rk

10 1.414214 0.042375 0.0028167 115.50
20 1.414214 0.041349 0.0026817 33.000

Table 3.1: Control limits of the charts when m=10 or 20 and ARL0 ≈ 50.

FCC and FCC measure the performance of the methods in Phase-I step. In this study,

to calculate the FCC and FPP values, we consider 500 simulated in-control images and

500 simulated out-of-control images. From Table 3.2, we observe that for each type of

image, Dnew has large FCC and small FPP values. OC Image-3 deviates only a little

from the in-control image, and still, our proposed method performs well. There is a

substantial difference in FCC and FPP values with other competing methods that ensures

the effectiveness of our proposed method. Moreover, for OC Image-3, neither of the

competing methods work well in Phase-II stage, but our proposed method still gives an

excellent result. The advantage of the proposed method is that if there is a prominent

change even in a very small region of an image, it is capable to detect.

Image type Method FCC FPP ARL1 me(ARL1) sd(ARL1)
Dnew 0.9906667 0.02723735 1.00 1.00 0.00

OC-Image-1 Rk 0.9886667 0.03288201 1.00 1.00 0.00
QART 0.9893333 0.03100775 1.00 1.00 0.00

Dnew 0.9906667 0.02723735 1.00 1.00 0.00
OC Image-2 Rk 0.9886667 0.03288201 1.00 1.00 0.00

QART 0.9893333 0.03100775 1.00 1.00 0.00

Dnew 0.9906667 0.02723735 1.000 1.000 0.0000000
Oc Image-3 Rk 0.8186667 0.06367041 5.920 6.000 0.6127621

QART 0.6753333 0.3695652 19.26 14.000 18.434250

Dnew 0.9906667 0.02723735 1.00 1.00 0.00
Oc Image-4 Rk 0.9886667 0.03288201 1.00 1.00 0.00

QART 0.9893333 0.03100775 1.00 1.00 0.00

Table 3.2: Phase-I and Phase-II performances for OC Images

Now, we are going to discuss various scenarios that ensure the effectiveness of our pro-

posed method over the competing methods. It shows why edge based image surveillance

is important. The IC image is shown in Figure 3.1.

Case A: Here, the image object is same but the contrast is changed, see Figure 3.3(a)

for this scenario. This type of situation is very common in real life. For instance, we

capture an image of an object with no shadow on it, and then capture another image

from the same position in the presence of shadow in the background or on the image ob-
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Figure 3.3: Different in-control images. (a) Case A is a situation where IC image has been
taken in the presence of light shadow, (b) Case B represent similar situation where image
object remains same but continuous change in background, and (c) Case C presents the
same image with slightly higher noise level.

ject itself. Both images will be the same but there would be changes in the intensity values.

Case B: In this situation, the image object remains the same but there is a smooth

change in the background. For instance, we capture an image in the presence of diffused

light in the background. Figure 3.3(b) presents one such example.

Case C: Here also, the noise level of the images are different from the noise level of the

IC image. It is very relevant in the real life scenario because it is not always possible to

get the images at a fixed level of noise. In our example, the IC image in Figure 3.1(b) has

noise level σ = 0.05 and the image in Figure 3.3(c) has noise level 0.06.

Image type Method FCC ARL1 me(ARL1) sd(ARL1)
Dnew 0.98133 30.330 20.00 29.07694

Case A Rk 0.65800 1.135 1.00 0.3425811
QART 0.65533 1.00 1.00 0.00

Dnew 0.98867 43.825 38.000 35.48012
Case B Rk 0.49600 1.0000 1.0000 0.00

QART 0.47600 1.0000 1.0000 0.00

Dnew 0.98533 41.825 33.000 35.330
Case C Rk 0.98600 46.270 48.000 15.48243

QART 0.65533 1.0000 1.0000 0.00

Table 3.3: Phase-I and Phase-II performances for cases A,B and C.

Since the image object is the same for both cases, and therefore, the images are in-

control, and ARL1 should be the same as ARL0. From Table 3.3, it is clear that in all

the cases mentioned above, proposed method performs well based on the large FCC value

and ARL1 value. The wavelet-based method performed well for the last case but the

surface-based method is not appropriate for these types of situations. Therefore, despite
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good performances in certain situations, we should be more careful to use the competing

methods in practical applications.

Figure 3.4: (a) Smooth steel surface, (b) Steel surface with scratch, (c) Steel surface with
circular fault.

Next, we perform a comparison study on real images from a production process. We

consider the images of smooth steel surface as IC images and insert various types of

simulated faults. Referred to Figure 3.4(a) for an IC image. This is a grayscale image and

we resize it to 128× 128. To artificially create Phase-I data, we add Gaussian noise with

mean zero and standard deviation 0.001. Table 3.4 shows the control limits for different

Phase-I sample sizes.

n DNew QART QSRT Rk

10 11.18034 0.00084534 0.0000011215 58.00
20 11.18034 0.00082480 0.0000010677 20.00

Table 3.4: Control limits of charts when m= 10 and 20 for α = 0.1.

For the comparison study in Phase-II, we incorporate various types of shifts to create

OC images. In Figures 3.4(b) and 3.4(c), we consider scratch and circular faults, respec-

tively on the steel surface which are most common in the manufacturing industry. Table

3.5 shows the performance measures for this example where in-control ARL is 20. For the

steel surface image with a scratch, all methods perform well based on the out-of-control

ARL measures, but based on FCC and FPP, the surface-based method and the proposed

method performs relatively better than the wavelet-based method. However, for the im-

age with the circular-fault, the proposed method is not up to the mark as compared to

the competing methods. This is mainly due to false edge detection. A major limitation of

this method is that it is highly affected by false jumps in the background. This is because

of the fact that the Hausdorff distance is very sensitive to individual points in the related

point sets.
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Image type Method FCC FPP ARL1 me(ARL1) sd(ARL1)
Dnew 0.9673333 0.08925319 1.00 1.00 0.00

Scratch Rk 0.9180000 0.19743180 1.00 1.00 0.00
QART 0.9693333 0.08424908 1.00 1.00 0.00

Dnew 0.8033333 0.16171620 1.985 1.00 1.5184
Circular-Fault Rk 0.9180000 0.19743180 1.000 1.00 0.0000

QART 0.9693333 0.08424908 1.000 1.00 1.0000

Table 3.5: Phase-I and Phase-II performance for Steel Surface

3.8 Real Data Example

In this section, we consider a real image example where we are interested in monitoring

brain tumor growth [Stamatakos and Giatili (2017)]. The panels of Figure 3.5 show tumor

growth at 0-th day, 60-th day, 120-th day, and 180-th day, from left to right. As a pre-

processing step, we convert the original color images to grayscale images. Moreover, we

resize each image to the resolution of 128× 128 and rescale the image intensities so that

their values are in the range 0 to 1.

Figure 3.5: Visualization of a virtual glioblastoma tumor growth in vivo on a coronal slice
at various time points

In this study, we consider the 0-th day brain image as an IC image and now we have

three different cases. For the first case, our objective is to check the ability to detect

the change if we have 180-th day image as an OC image. Similarly, the other two cases

are either we consider 120-th day or 60-th day image as OC image. For each case, we

have calculated the FPP and FCC value and corresponding out-of-control ARL value,

denoted as ARL
(k)
OC ; k = 180, 120, 60. To generate Phase-I and Phase-II images, we add

a zero mean Gaussian noise with standard deviation of 0.004. Table 3.6 presents the

control limits for the competing methods when the number of in-control Phase-I images

are 10 and 20, respectively. In this example, we fix the in-control ARL value at 10 and

to calculate the control limits, we replicate each set of the simulations 200 times.

From Table 3.6, it is clear that for a change in the value of m for our proposed method

change of control limit is negligible whereas for the other methods significant amounts of
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m DNew QART QSRT Rk

10 5.2 0.003374 0.00001786 35.00
20 5.1 0.003292 0.00001700 29.50

Table 3.6: Control limits of charts when m = 10 and 20, for α = 0.1.

changes are evident. Now, in Table 3.7 we have shown different metrics for evaluating

performance. Since the noise level is not high, we have not done any algorithm for false

edge removal in the background. Because there is no substantial change in the control

limit for all the calculations we use samples of size m=10. Since the amount of change in

images over time is respectively large, all the methods perform very well and give perfect

detection. But, if we look into the FCC and FPP value, the proposed method gives a

high FCC and low FPP value which is very important in medical science. The wavelet-

based method performs comparatively well over the surface-based method. To calculate

the FCC and FPP , we have taken 1000 in-control images and 1000 out-of-control images.

In the Phase-II stage, for each set of Phase-II sample we calculate the out-of-control ARL

and to calculate the mean, median and standard deviation of the out-of-control ARL,

we replicate the process for 100 set of Phase-II samples. Since the changes in the image

is relatively large, all methods perform well. However, based on Phase-I metrics, the

proposed method outperforms its competitors.

k-th Image FCC FPP ARL
(k)
OC me(ARL

(k)
OC) sd(ARL

(k)
OC)

k=60 0.9386667 0.1554054 1.00 1.00 0.00
Dnew k=120 0.9386667 0.1554054 1.00 1.00 0.00

k=180 0.9386667 0.1554054 1.00 1.00 0.00

k=60 0.7673333 0.4110718 1.00 1.00 0.00
QART k=120 0.7673333 0.4110718 1.00 1.00 0.00

k=180 0.7673333 0.4110718 1.00 1.00 0.00

k=60 0.9380000 0.1568297 1.00 1.00 0.00
Rk k=120 0.9380000 0.1568297 1.00 1.00 0.00

k=180 0.9380000 0.1568297 1.00 1.00 0.00

Table 3.7: Phase-I and Phase-II performance for the competing methods.

3.9 Guide for Practitioners

3.9.1 Change point estimation

Post-signal diagnosis is an important task in any process monitoring procedure. A major

step in post-signal diagnosis is to accurately estimate the time point (τ) at which the

process becomes OC, i.e., to estimate change point of the process carefully. The proposed
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image monitoring method being a Shewhart-type procedure, τ̂ , an estimate of the change

point, is given by the first time point at which the chart indicates a signal. The proposed

method is capable of estimating the change point almost accurately as indicated in Table

3.2. Table 3.8 presents the performance of the change point estimation. In Phase II

monitoring, we set the change point by adding a sustained shift at time point τ = 6

and onward. That is, an OC image is incorporated in the process at time point 6 and

onward. To calculate the mean and standard deviation of the estimated change point

we replicate the process for 100 sets of Phase-II sample sequences. We have shown the

change point estimation for OC Image-1 and OC Image-3 and the results are consistent

with the out-of-control ARL value in Table 3.2. From the table, it is clear that we have a

perfect result. This is because of the fact that we remove the false edges in the background

due to noise in the image using the algorithm in Section 3.7.3. Therefore, as long as the

noise level of the image is moderate and there is a prominent change in the image object,

the proposed method is capable of detecting the change and estimating the change point

almost accurately.

Image mean(τ̂) sd(τ̂)
OC Image-1 6.00 0.00
OC Image-3 6.00 0.00

Table 3.8: Performance of change point estimation.

3.9.2 Detection of fault regions

In the case of monitoring images, after an OC signal is detected, our main objective is to

diagnose the exact fault regions in those OC images so that corrective measures are taken

quickly. The proposed method for monitoring images is equivalent to monitoring the

corresponding JLCs of the images. For the ℓ-th online image, if there is a signal then we

define the possible fault regions as (Êℓ \ Ê0) ∪ (Ê0 \ Êℓ), where A \B is defined as the set

difference between two sets A and B. In case of high-resolution images, Proposition 3.6.1

indicates theoretical justification for finding possible fault regions. When the noise level

is high in an image, there are often many falsely detected fault regions. To remove those,

we use the same algorithm as in Section 3.7.3. Figures 3.6(a-d) present the performances

of the proposed fault region estimation. Figures 3.6(a) and 3.6(b) show the actual change

and estimated change locations for OC Image-1, discussed in Section 3.7.3. Similarly,

Figures 3.6(c) and 3.6(d) are for OC Image-3. Figures 3.6(a-d) indicate highly accurate

detection of the fault regions by the proposed technique. A major advantage of the

proposed fault region detection technique is that it can detect multiple fault regions in

an OC image. See Figure 3.6(a) for multiple fault regions.
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Figure 3.6: (a) Actual change for OC Image-1, (b) Estimated change regions for OC
Image-1, (c) Actual change for OC Image-3, and (d) Estimated change region for OC
Image-3.

3.9.3 Bootstrap algorithm for bandwidth selection

Selection of hn is an important task in the proposed edge-based monitoring procedure.

Here we propose the detailed algorithm based on bootstrap procedure. In order to choose

the bandwidth parameter, we use Hausdorff metric again to calculate the distance between

the point set of the true jump points and the estimated jump points. Note that, a

bandwidth parameter is preferable for which this distance is small. Figure 3.7, shows a

plot of the distance between the estimated point set and the true jump points for different

values of hn, with the reference image in Figure 3.1. Based on the above diagram we

suggest choosing hn ∈ [1.6
n
, 2.5

n
]. In particular, hn = 2

n
works well in most applications.

Readers are referred to Mukherjee and Qiu (2011) for selecting hn by a cross-validation

method.

Figure 3.7: Hausdorff distance between point set of estimated jump points and true jump
points for different values of hn.
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Algorithm:

Step-1: Apply local piece-wise smoothing procedure for image surface estimation

and calculate the residuals {ε̂∗} and σ̂ from the reference image.

Step-2: Generate a new image by adding a Gaussian noise with N(0, σ̂2).

Step-3: To find the estimated jump points, use the proposed jump detection

algorithm in Section 3.2, for a fixed level of hn.

Step-4: Repeat Steps 2 and 3 B times, where B is a sufficiently large number.

The sets of detected jump points from the bootstrap samples are denoted as

Ê∗1n, Ê
∗
2n, . . . , Ê

∗
Bn, respectively. Then, the bootstrap estimator of the distance

between the estimated and the true jump points (DBT
H (Ên, E;hn)) is defined as

D̂BT
H (Ên, E;hn) =

1

B

B∑
k=1

DH(Ê
∗
kn, E;hn)

The optimal bandwidth is then approximated by minimizing D̂BT
H (Ên, E;hn),

with respect to hn.

3.10 Conclusion

In this chapter, we propose a new procedure for monitoring image data. This is a

Shewhart-type control chart for monitoring image data based on detected edges. The

method is very simple to construct and convenient to use even in the high-dimensional

problem of image monitoring. Similar to the Shewhart control chart, the proposed control

chart monitors the process based on the observed images at the one-time point. Therefore,

it is useful to detect relatively large and transient shifts in the images but not designed

for detecting a small persistent shift. This method is capable enough to ignore smooth

insignificant changes in the image surface. However, a method that can capable of ignor-

ing any type of insignificant change is desirable. A more flexible image comparison and

monitoring scheme based on JLCs has been discussed in the next chapter.



Chapter 4

Image Comparison Based on Local

Pixel Clustering†

4.1 Introduction

Purpose of this chapter is to propose an image comparison algorithm that is more robust

in presence of insignificant changes in the image intensity function. Here we propose a

novel and effective image comparison procedure based on edge information and other fine

details of an image object. One major advantage is that it does not directly depend on

the intensity values of the image and also, does not require an explicit edge detection

algorithm, and hence the method is not very sensitive to background noise of the images.

Moreover, the complicated edge structures can be compared efficiently by a local pixel

clustering algorithm. The steps for our image comparison methods are as follows. Firstly,

for each image we cluster the pixels in a neighborhood into two groups based on their

intensity values, and thereafter compare the clustering outcomes from each image by

a cluster based metric. In the literature, there are several similarity and dissimilarity

measures for comparing clustering outcomes. Some of those include, measure based on

counting pairs, measure based on mutual information, etc. One major drawback of these

measures is that they do not take into account the spatial information. As the image

surface has spatial nature, therefore, along with the proportion of types in a group of the

clustering, their positions are equally important to address. In the proposed methodology,

we choose Variation of Information (VI) [Meilă (2007)] as a metric between two clustering

outcomes, and construct a test based on this metric, and thus all issues mentioned above

can be addressed properly. Moreover, the proposed method is robust to the presence

†This chapter is based on the publication Roy and Mukherjee (2024b): Roy, A. and Mukherjee,
P.S. “Image Comparison Based On Local Pixel Clustering”, Technometrics, 2024, 66(4), 495–506. DOI:
10.1080/00401706.2024.2322670.
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of minor insignificant changes in the background. Also, adjusting the value of a tuning

parameter, the proposed method is capable of detecting small to large changes, based

on the purpose of the applications. For demonstration, let us examine the toy image

in Figure 4.1. The image object in the left and right panels are the same; however,

the intensity functions in the background and also in the foreground are different. This

situation is common in many real-life applications where there are possibilities of shadows

on the image object. As the vast majority of methods in the existing image monitoring

literature rely only on changes in image intensities to identify out-of-control images, they

will consider it a change. However, the proposed algorithm is capable to ignore this

minor alternation of image intensity function in the background and foreground. For a

similar discussion on satellite imaging, readers are referred to Section 4.6. Hence, it is

more flexible and useful in real life scenarios. Both theoretical arguments and numerical

studies show that the proposed method is indeed an effective tool for image comparison

and monitoring.

Figure 4.1: A demonstration on the advantage of the proposed algorithm.

4.2 Proposed Methodology

As discussed earlier, under the JRA literature [Qiu (2005)], a 2-D grayscale image can be

considered as a discontinuous regression surface, where edges of the image object are con-

sidered as discontinuity points or jump points. The locations of the discontinuity points

are considered as JLCs. Essentially, we aim to frame an image comparison procedure

based on these JLCs of the images. Although the proposed method is useful for various

kinds of images, we only consider 2-D monochrome images in this article.
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4.2.1 Model description

In the JRA literature, any n× n image can be expressed as the following 2D JRA model

[Mukherjee and Qiu (2015)]:

wij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (4.2.1)

where {(xi, yj) : i, j = 1, 2, ...., n} are equally spaced design points (or pixels) in the design

space Ω = [0, 1]× [0, 1], f(x, y) is an unknown image intensity function at (x, y), N = n2 is

the sample size, and εij are independent and identically distributed (i.i.d.) random errors

with mean 0 and variance σ2 > 0. Note that, the unknown image intensity function f

is assumed to be continuous except on the boundaries of the image objects. In the JRA

literature, these boundary curves are popularly known as jump location curves (JLCs).

The readers are referred to the A.3 for mathematical description of the JLCs.

4.2.2 Image registration

Geometric misalignment of images is common in image monitoring applications. Due to

the change in the relative position of camera and image objects at different time points,

sometimes, the images of the same production line could be mismatched. Hence, to mon-

itor the images automatically by the computer, they should be matched up first. In

image processing literature, this is commonly known as image registration [Avants et al.

(2008)]. The main objective of any image registration procedure is to estimate the ge-

ometric transformation to geometrically match one image to another. In the literature,

both parametric [Zhang et al. (2020)] and nonparametric [Xing and Qiu (2011)] transfor-

mations have been considered. One can use any existing method available in the literature

for performing image registration as a pre-processing step before applying our proposed

image comparison method. For a reliable image comparison, it is crucial that the images

are registered properly. Geometric misalignment of images affects the performance of

the proposed algorithm and a good registration procedure makes our comparison method

more accurate even for a small change.

4.2.3 Local pixel clustering

In this chapter, our main concern is to compare two images based on image features.

JLCs are important features of an image. In this step, we consider local pixel clustering

to get information about JLCs in each circular neighbourhood. Since the observed image

intensity values are scalars, the first step is a 1-D clustering problem where the maximum
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number of clusters is two. In real life images, including satellite and medical images, the

case where more than two image segments intersect in a small circular neighbourhood of

a pixel is very rare. Therefore, clustering the pixels in a circular neighborhood into two

groups based on the intensity values is a natural choice.

For a given pixel (x, y) ∈ Ω, let us consider the circular neighborhood

B(x, y;hn) = {(u, v) : (u, v) ∈ Ω,
√

(u− x)2 + (v − y)2 ≤ hn},

where hn > 0 is a bandwidth parameter. Now, our objective is to cluster the pixels into

groups based on the observed intensity values wij’s in B(x, y;hn). Theoretically, any rea-

sonable clustering method can be used. In this chapter, we have a simple 1-D classification

problem, and we use a simple but effective pixel clustering suggested by Mukherjee and

Qiu (2015). Such a pixel clustering procedure is reasonable in our context due to the fact

that it can reflect local edge structures and preserve them well, while smoothing without

imposing restrictive conditions on the smoothness or shape of the JLCs. The central idea

is based on within-group and between-group variability of the intensity values within a

circular neighborhood. If B(x, y;hn) indeed contains two continuity regions of the image

intensity function, then the ratio of between-group variability and within-group variabil-

ity would be large. On the other hand, if B(x, y;hn) contains one continuity region, it

implies a small value of the ratio. Therefore, we use this ratio as a criterion based on

which we decide whether to classify the local intensity values into two groups or not. To

classify the pixels in B(x, y : hn) into two clusters, we introduce c as the cut-off constant

and define two groups as

B1(x, y;hn, c) = {(xi, yj) : (xi, yj) ∈ B(x, y;hn) and wij ≤ c}

B2(x, y;hn, c) = {(xi, yj) : (xi, yj) ∈ B(x, y;hn) and wij > c},

where c ∈ I(x, y;hn) =

(
min

(xi,yj)∈B(x,y;hn)
wij, max

(xi,yj)∈B(x,y;hn)
wij

)
. Therefore, bothB1(x, y;hn, c)

and B2(x, y;hn, c) are nonempty sets. Moreover, C0, the optimal value of c can be ap-

proximated by the following optimization problem:

max
c∈I(x,y;hn)

|B1(x, y;hn, c)|(w̄ − w̄1)
2 + |B2(x, y;hn, c)|(w̄ − w̄2)

2∑
(xi,yj)∈B1(x,y;hn,c)

(wij − w̄1)2 +
∑

(xi,yj)∈B2(x,y;hn,c)

(wij − w̄2)2
, (4.2.2)

where w̄, w̄1 and w̄2 are the sample averages of the image intensities in B(x, y;hn),

B1(x, y;hn, c) and B2(x, y;hn, c), respectively, and |A| denotes the number of elements

in A. Since the number of pixels in a circular neighborhood B(x, y;hn) is finite, the opti-

mal choice C0 always exists. To this end, the above algorithm (4.2.2) for selection of the
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optimal threshold value is very similar to Otsu’s algorithm for image thresholding [Otsu

(1979)]. Note that, if B(x, y;hn) is within a continuity region, then local clustering of

that neighborhood is not important. Therefore, to increase the efficiency of the proposed

method, it is necessary to check whether clustering is important in that neighborhood.

Define S(x, y, hn) to be the sample standard deviation of all wij’s in B(x, y;hn). Intu-

itively, if S(x, y, hn) becomes larger than σ, it implies the presence of edge curves in the

neighborhood. However, in our proposed method, we perform local clustering if

S(x, y, hn) > κσ, (4.2.3)

where, κ is a procedure parameter. In practice, σ is not known and has to be estimated

by some suitable procedure. One simple estimator of σ is

σ̂ =

√
1

n2

∑
i,j

(wij − f̂(xi, yj))2, (4.2.4)

where f̂ is a jump preserving estimator of the image intensity function. In literature,

there are extensive discussions about the jump preserving surface estimation procedure.

Readers are referred to [Qiu (2009)] for more discussions about jump preserving surface

estimates.

4.2.4 Image comparison

One fundamental step behind any image monitoring procedure is image comparison. In

this chapter, we propose an image comparison method based on local clusters. Under

the assumption that two images of the same object are geometrically aligned, any image

comparison procedure involves testing the hypotheses

H0 : True image intensity functions of the two images are same

vs.

H1 : True image intensity functions of the two images are different

However, in certain types of applications, minor changes in the image intensity values

should not be considered as a change when the locations of the edges remain unchanged.

Therefore, it is more appropriate to test the equality of JLCs rather than equality of the

two intensity functions. As the information about the JLCs are captured very well by

local pixel clustering, we use these clusters to test the equality of the JLCs.
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Variation of Information for comparing local clustering outcomes

In this chapter, we choose Variation of Information (VI) as a measure of distance between

two clustering outcomes, and construct a test statistic based on that. In the literature,

existing popular methods for comparing clustering outcomes are based on set matching

[Meilă and Heckerman (2001)], counting pairs of points that agreed or disagreed in the

clusters [Fowlkes and Mallows (1983); Rand (1971)], mutual information, etc. However,

major drawbacks of these measures are: they can not take into account the spatial struc-

tures in the clustering and they are not a true metric. For clarification, let us look at the

example in Figure 4.2. The image presents three clustering outcomes with two groups,

one group denoted by big circles and another group denoted by small circles. It is clear

from Figure 4.2 that the proportion of elements in each group for the left panel and the

right panel are same but the positions of the circles have changed. For the middle panel,

the proportions have changed. Most of the existing methods are capable of detecting the

change between the left and middle, also between the right and the middle. As an image

intensity function is spatial in nature, change in the position of elements in the clustering

should also be considered as a change in the image intensity function. Since VI can detect

such changes in the positions, it is a natural choice for comparing clustering outcomes.

Moreover, VI has another major advantage over the others because it enjoys all properties

of a metric.

Figure 4.2: Three different clustering outcomes.

The formal definition of VI is as follows. Suppose, C and C ′ are the partitions (clus-

tering) of a set of points or a data-set D. Then, VI for two clustering outcomes can be

defined as

V I(C, C ′) = H(C) +H(C ′)− 2I(C, C ′), (4.2.5)

where, H(C) and H(C ′) are the entropy associated with clustering C and C ′, respectively,
and I(C, C ′) is the mutual information between two clustering outcomes. Figure 4.3 de-

scribes the definition of the VI metric in (4.2.7). The magnitude of the VI metric is

determined by the sum of the shaded regions of Figure 4.3. Using entropy, we aim to

capture the uncertainty associated with each clustering. Mutual information is useful to

asses mutual dependence between two random variables. In this context, mutual infor-

mation between two clustering outcomes quantifies the information that one clustering
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has about another. Readers are referred to Meilă (2007) for more details about the VI

metric.

Figure 4.3: Graphical demonstration of the VI metric.

Calculation of VI: Let C = {C1, C2, . . . , CM} be a partition of D such that Cℓ∩Cm = ϕ

and ∪Mℓ=1Cℓ = D i.e., mutually exclusive and exhaustive partition of the set D. Let the

number of elements in the ℓ-th cluster be qℓ, and hence
∑M

ℓ=1 qℓ = |D| = q (say). Second

partition C ′ of the set D can be expressed similarly with M ′ clusters where the size of the

ℓ′-th cluster being q′ℓ. Then the entropy associated with C can be expressed as

H(C) = −
M∑
ℓ=1

P (ℓ)logP (ℓ),

where P (ℓ) = qℓ/q. H(C ′) can be calculated in a similar way. Moreover, the mutual

information can be calculated as

I(C, C ′) =
M∑
ℓ=1

M ′∑
ℓ′=1

P (ℓ, ℓ′)log
P (ℓ, ℓ′)

P (ℓ)P (ℓ′)
,

where P (ℓ, ℓ′) =
|Cℓ∩C′

ℓ′ |
q

. Finally, one can calculate the VI metric using (4.2.5).

Proposed test based on VI

Under the 2-D JRA model, k-th image can be expressed by the following regression set-up:

w
(k)
ij = fk(xi, yj) + ε

(k)
ij , k = 1, 2, i, j = 1, 2, . . . , n, (4.2.6)

where (xi, yj) is the (i, j)-th pixel coordinate, fk is the true image intensity function of the

k-th image, N = n2 is the sample size, {ε(1)ij } and {ε
(2)
ij } are independent and identically

distributed (i.i.d.) random errors with mean 0 and variance σ2
1 and σ2

2, respectively. In

(4.2.6), we further assume that σ2
1 = σ2

2 = σ2, and the images are registered properly.
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Here we propose the test statistic:

TV I =
1

n2

∑
i,j

DV I(C(xi, yj), C ′(xi, yj)), (4.2.7)

where C(xi, yj) and C ′(xi, yj) are the clustering outcomes of the observed image intensities

in the circular neighborhood around the point (xi, yj) for these two images, respectively,

and DV I is the VI-based distance between the two clustering outcomes. It is very chal-

lenging to derive the asymptotic distribution of the proposed test statistic. Note that

the statistic is not exactly pivotal. Intuitively, the value of the test statistic depends on

the misclassification associated with the local clustering outcomes due to the presence of

noise in the images. As the sizes of the local clusters depend on the true image intensity

function, the statistic is not pivotal. Under H0, the value of TV I would be small. Oth-

erwise, its value would be large. Moreover, the true null distribution of the test statistic

TV I is unknown. See Section 4.2.4 for determining the critical value of the test statistic

based on the empirical distribution of the statistic under the null hypothesis. Note that,

the statistic TV I is a bounded random variable, and in our context, as the maximum

number of clusters in each neighborhood is two, as per the results from Meilă (2007),

TV I ≤ 2 log 2.

Construction of the empirical distribution of the test statistic

In practice, it is a challenging task to find the asymptotic distribution of TV I . We use a

resampling method, popularly known as wild bootstrap technique to calculate the critical

value of the proposed test statistic. As recommended by Mammen (1993), wild bootstrap

technique has been used to sample from the residuals of the regression model. For similar

discussions regarding wild bootstrap, the readers are referred to Zhao et al. (2020); Wang

and Ye (2010). Under the null hypothesis, f1(x, y) = f2(x, y) = f(x, y), i.e., the true

image intensity functions are identical, and the jump preserving surface estimate in the

combined sample could be obtained by f̂(x, y) = 1
2

(
f̂1(x, y) + f̂2(x, y)

)
, where f̂1(x, y),

and f̂2(x, y) are the estimated image intensity functions of the two images. In our studies,

we use the jump preserving surface estimate proposed by Kang et al. (2018). The null

distribution of the test statistic is approximated by the bootstrap distribution of the test

statistic. The description of the algorithm follows.

1. Using the combined estimate f̂ , construct the residuals {ε̂(xi, yj) = wij − f̂(xi, yj) :

i, j = 1, 2, 3, . . . , n}.

2. Generate two bootstrap images by
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w1∗(xi, yj) = f̂(xi, yj) + ε̂∗(xi, yj),

w2∗(xi, yj) = f̂(xi, yj) + ε̂∗(xi, yj),

where ε̂∗(xi, yj) is a bootstrap sample obtained from the set {ε̂(xi, yj) : i, j =

1, 2, . . . , n}.

3. Calculate the value of VI based test statistic based on the bootstrapped images.

4. Repeat Steps 2 and 3 B times, and use the generated values to find the empirical

distribution of the test statistic.

By the above bootstrap algorithm, we can obtain the empirical distribution of the pro-

posed test statistic, and for a level α test, the null hypothesis is rejected if TV I is greater

than the corresponding (1−α)-th sample quantile of the bootstrap distribution of TV I .

4.3 Practical Guidelines On Parameter Selection

In the proposed image comparison procedure, there are primarily two parameters to

choose: the radius hn of the local circular neighborhood B(x, y;hn), and the tuning

parameter κ for deciding whether a clustering is necessary or not in a local circular

neighborhood. However, it is very difficult to provide a direct formula for selecting the

parameters. Their reasonable values in a finite sample practical application depend on

the noise level, image dimension, image complexity and other factors. The corollary in

Section 4.4 provides a bound for the selection of κ. However, we hereby provide a practical

guideline for the selection of the procedure parameters in finite sample applications.

Notably, the tuning parameter κ makes the proposed method more flexible. Based

on the practical context, we may choose an appropriate value of κ to obtain meaningful

performance. For more discussions related to the flexibility of the tuning parameter,

readers are referred to Section 4.5.2.

Selection of the bandwidth parameter hn: The selection of hn is an important

task. In this chapter, we choose hn by the leave-one-out cross-validation (CV) technique.

We follow the suggestion by Kang et al. (2018) and use the DRIP package in the CRAN

R repository [Kang (2023)]. Additionally, larger values of hn provide better performance

for detecting changes, while smaller values are computationally easy. Based on the CV

procedure, we suggest choosing hn ∈ [2.5
n
, 4
n
]. Readers are referred to use the function:

surfaceCluster bandwidth() in the DRIP package for the selection of hn. See Figure 4.11

in the Section 4.7 for the simulation results on the cross-validation.
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Figure 4.4: Selection of κ for images with various dimensions using the bootstrap proce-
dure: (a) the plots in the upper panel are for the simulated image with dimension 64×64,
and (b) the plots in the lower panel are for the simulated image with dimension 128×128.

Selection of the tuning parameter κ: As the proposed method is based on the

equality of the local clusters, it is very important to choose the value of κ appropriately

in a data-driven manner. Note that larger values of κ are always better for detecting big

changes in the images but there is a possibility of not detecting small changes of image

intensity values. In this experiment, for each κ, we generate B = 50 bootstrap samples

by adding residuals with the smoothed image and calculate the VI distance between the

clustering of the bootstrapped sample and the smoothed image. This is similar to the

procedure described in Section 4.2.4. A reasonable value of κ is obtained by minimizing

the average VI distance. In Figure 4.4, we plot various values of κ in the direction of the

X-axis and the average VI distance calculated from the bootstrapped samples along the Y -

axis. For the simulated images in Section 4.5, we plot three curves for three different noise

levels with a fixed bandwidth parameter hn = 3. In the numerical section, we present the

performances of the proposed method for various values of κ for images with dimensions

64 × 64 and 128 × 128. Considering all images of different noise levels from Figure 4.4,

we suggest κ ∈ [1.2, 2.5] for 64 × 64 simulated images and κ ∈ [1.5, 2.0] for images with

dimension 128 × 128. In the Section 4.7, we have discussed another data-driven method

for selecting the tuning parameter based on the number of circular neighborhoods with

clustering. See the Section 4.7 for more details.
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4.4 Statistical Properties

In this section, we investigate certain statistical properties of the proposed image compari-

son procedure. In this chapter, a point (x, y) is called a singular point if one of the follow-

ing conditions is satisfied. (i) There exists ρ > 0 such that, for any 0 < ρ̄ < ρ, the circular

neighborhood of (x, y) with radius ρ̄ contains more than two connected regions. (ii) The

jump size at (x, y) is zero, that the point (x, y) is one of those {(x∗k, y∗k), k = 1, 2, . . . , K∗}
as defined in A.3. Moreover, define

Ωϵ = [ϵ, 1− ϵ]× [ϵ, 1− ϵ],

Eϵ = {(x, y) : (x, y) ∈ Ω, D((x, y), (x′, y′)) ≤ ϵ for some (x′, y′) ∈ E},
Sϵ = {(x, y) : (x, y) ∈ Ω, D((x, y), (x′, y′)) ≤ ϵ for some singular (x′, y′) ∈ E},
ΩĒ,ϵ = Ω\Eϵ and ΩS̄,ϵ = Ω\Sϵ,

where ϵ is a small positive constant, D denotes Euclidean distance and E defines the set of

points on JLCs. The proposed method has two major steps that we justify theoretically.

We have the following two propositions and the sketches of their proofs are provided in

the Appendix A.3.

Proposition 4.4.1. Assume that f has continuous first-order derivative over (0, 1)×(0, 1)
except on the JLCs, its first-order derivatives have one-sided limits at nonsingular points

of the JLCs, {εij} are iid with mean 0 and finite variance σ2, where σ2 > 0, hn = o(1),

1/nhn = o(1). Then, we have

(i) if (x, y) ∈ ΩĒ,ϵ, then S(x, y, hn) ≤ κσ̂ a.s. for any fixed value of κ ≥ 1.

(ii) On the other hand, if (x, y) ∈ Ehn, and further assume that n1

n2
= O(1) and n2

n1
=

O(1), where n1 and n2 are respectively the number of pixel coordinates in two image

segments inside the circular neighborhood B(x, y;hn), then S(x, y, hn) > κσ̂ a.s. as

n→∞.

Remark 4.4.2. The above proposition theoretically ensures effectiveness of the proposed

clustering rule in both absence and presence of the JLCs in a circular neighborhood

B(x, y;hn) for an arbitrary point (x, y). In the asymptotic sense, to detect a difference

in the images due to any JLC of any jump size, κ = 1 is a reasonable choice. However,

with a suitable value of κ, the proposed method is capable to ignore differences in the

images due to JLCs up to a certain jump size. Such a flexibility of the proposed method

is useful in many practical situations. See Section 4.6 for a related discussion. In finite

sample applications, the choice of κ, however, should depend on both the noise level and

image resolution.
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Corollary 4.4.3. Suppose (x, y) ∈ Ehn and ζ is a jump size that one wishes to ignore in

the circular neighborhood B(x, y;hn). Then, the proposed algorithm decides not to cluster

in B(x, y;hn) almost surely, if κ ≥
√

(1 + ζ2/σ2)

The above corollary gives an idea about the value of the tuning parameter κ based on

situations. It is evident that for a fixed value of σ, to ignore a large jump size, we need

a large value of κ. Moreover, for a fixed jump size with large value of σ, the proposed

algorithm decides to cluster with small value of κ. As a result, there would be a large

number of false clustering and hence performance of the algorithm would become worse.

Therefore, it is difficult to handle small jump size with high noise level. This is natural

and holds true for any clustering algorithm. Consequently, for large σ, we need to focus

on large jump size, and to prevent the effects of false clustering, we choose large κ.

Our next proposition is regarding the effectiveness of the proposed testing procedure

based on the VI metric.

Proposition 4.4.4. Let the maximum mis-classification probability by local pixel cluster-

ing be δ. Then, under the assumptions in Proposition 1,

TH0
V I = O(δ) a.s.,

TH1
V I = O(δ) + c a.s.,

where TH0
V I and TH1

V I are the values of the proposed test statistic under the null and alter-

native hypothesis, respectively, and c > 0.

Remark 4.4.5. From the above proposition, it is clear that as long as the local clustering

is good, i.e., the mis-classification probability is very small, the proposed test is capable of

separating the distributions of TH1
V I and TH0

V I .

The sketches of the proofs of Propositions 4.4.1 and 4.4.4 are provided in Appendix

A.3.

4.5 Numerical Studies

In this section, we numerically evaluate the performance of our proposed image comparison

method. To assess the performance of the proposed method, we perform comparative

studies on various simulated images. In the literature, plenty of the methods are based on

intensity values and therefore, they are very sensitive to noise and unimportant changes

in the image contrast. However, in satellite imaging, medical imaging, etc., there are
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many situations where small changes in the intensity values in the background are not

considered as actual meaningful changes in the images. See Figure 4.6 for a toy example

of a smooth change in the background and Figure 4.1 for an unimportant change in JLCs.

Our proposed method is based on the important JLCs as primary image features and hence

it can raise signal for the changes in JLCs of interest. Therefore, it has wide applications

in satellite imaging studies and medical imaging. To assesses the numerical performance

of the proposed method, we hereby consider the following competing methods:

• Nonparametric comparison of regression surface proposed by Wang and Ye (2010).

• Image comparison based on continuity and discontinuity region, proposed by Feng

and Qiu (2018).

Figure 4.5: Altered images without noise that we consider to evaluate the performance of
the proposed method.

4.5.1 Brief discussions of the competing methods

Based on nonparametric comparison of regression surfaces, the method proposed by Wang

and Ye (2010) considers the difference between the estimates of the individual image

intensity surfaces by L2-distance as the test statistic. The test statistic is thus defined as

TN =
1

n2

n∑
i,j=1

(f̂1(xi, yj)− f̂2(xi, yj))
2, (4.5.1)

where f̂1(xi, yj) and f̂2(xi, yj) are the local estimators for the images. Moreover, the above

test statistic is a multi-dimensional generalisation of the test statistic defined in Dette and

Neumeyer (2001).

Feng and Qiu (2018) propose a testing procedure for image comparisons based on (i)

continuity regions of the images, (ii) regions around the detected edge pixels, and (iii)

a combination of both continuity regions and discontinuity regions. Define the sets of

detected edges for two observed images by D1 and D2, respectively. Also, define Dk(hG),
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k = 1, 2, as the set of pixels whose Euclidean distance to Dk is less than or equal to hG

and hG > 0 is a bandwidth. Then, a natural test statistic based on continuity region has

been defined as:

UC =
∑

(xi,yj)∈G

(w
(1)
ij − w

(2)
ij )2, (4.5.2)

where G = Ω \ (D1(hG) ∪D2(hG)). Under the null hypothesis, the value of the statistic

would be small and otherwise it would be large. For the test at level-α, UC rejects H0 if

UC > zCα . Similarly, the test statistic depending on detected edges has been defined as

UE =
∑

(xi,yj)∈D1

(w
(1)
ij − w

(2)
ij )2, (4.5.3)

and reject the null hypothesis if UE > zEα . The value of zCα and zEα can be obtained from

the (1−α)-quantile of the empirical null distribution of UC and UE, respectively. Finally,

the testing procedure based on the combination of the above two test statistic can be

expressed as follows:

UEC : Reject H0 if UC > zCα
2
or UE > zEα

2
,

where zCα
2
and zEα

2
are the (1 − α

2
)-quantile of UC and UE, respectively, under the null

hypothesis.

4.5.2 Simulations

Here we are comparing two images and without any loss of generality, consider the first

image (f1) as the reference image. For the purpose of simulation, we consider the true

intensity function of the reference image as

f1(x, y) = I(
√
(x− 0.5)2 + (y − 0.5)2 < 0.125), (4.5.4)

where (x, y) ∈ [0, 1]× [0, 1] and I is the indicator function. Under H0, the true intensity

functions of both the images are same i.e., f1(x, y) = f2(x, y) and as an alternative hy-

pothesis, we consider the following scenarios:

(a) Scratch: f
(1)
2 (x, y) =

f1(x, y)− 0.7 if x = y and (x, y) ∈ [0.48, 0.5]× [0.48, 0.5]

f1(x, y) otherwise
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(b) Zooming: f
(2)
2 (x, y) =

1 if
√

(x− 0.5)2 + (y − 0.5)2 < 0.133

0 otherwise

(c) Translation: f
(3)
2 (x, y) =

1 if
√
(x− 0.51)2 + (y − 0.51)2 < 0.125

0 otherwise

(d) Circular Fault: f
(4)
2 (x, y) =

0.3 if
√

(x− 0.5)2 + (y − 0.5)2 < 0.016

f1(x, y) otherwise

Noise Level TV I TV I UE UC UEC TN

κ = 1.3 κ = 1.4
H0 0.008 0.002 0.000 0.004 0.000 0.000

Scratch 1.000 1.000 0.000 0.996 0.790 0.000
σ = 0.03 Zooming 1.000 1.000 1.000 0.004 1.000 0.000

Translation 1.000 1.000 1.000 1.000 1.000 1.000
Circular Fault 1.000 1.000 0.000 0.928 0.188 0.000

H0 0.088 0.010 0.000 0.008 0.000 0.000
Scratch 1.000 1.000 0.000 0.364 0.040 0.000

σ = 0.05 Zooming 1.000 1.000 1.000 0.008 1.000 0.000
Translation 1.000 1.000 1.000 1.000 1.000 1.000

Circular Fault 1.000 1.000 0.000 0.230 0.014 0.000

H0 0.112 0.066 0.000 0.008 0.036 0.000
Scratch 1.000 1.000 0.000 0.000 0.114 0.000

σ = 0.08 Zooming 1.000 1.000 1.000 0.000 1.000 0.000
Translation 1.000 1.000 1.000 0.938 1.000 1.000

Circular Fault 0.286 0.926 0.000 0.000 0.088 0.000

Table 4.1: Empirical sizes and powers for various images of resolution 64 ×64.

Note that the cases (a)-(d) correspond to the alternative hypothesis. In all cases,

(x,y) are generated from a regular grid of values in the design space Ω with a fixed and

equally spaced design. Figure 4.5 shows these four alternative images. For the simulation

purpose, we consider two different sample sizes 64× 64 (i.e., n = 64) and 128× 128 (i.e.,

n = 128), and also consider ε(x, y) as a random sample from N(0, 0.032), N(0, 0.052),

and N(0, 0.082). To find the bootstrap distribution of the test statistic under H0, we

use the algorithm presented in Section 4.2.4, and set B = 500. Moreover, to evaluate

the performance of the proposed method in comparison with the competing methods

mentioned above, we use the empirical size and power. The simulation results for these

image resolutions and noise levels are shown in Table 4.1 and Table 4.2. From Figure 4.4,

a reasonable choice of κ are 1.3 and 1.4 for image dimensions 64×64. Similarly, for images
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Noise Level TV I TV I UE UC UEC TN

κ = 1.5 κ = 1.8
H0 0.038 0.000 0.000 0.000 0.004 0.000

Scratch 1.000 1.000 0.000 0.234 1.000 0.000
σ = 0.03 Zooming 1.000 1.000 1.000 0.000 1.000 0.000

Translation 1.000 1.000 1.000 1.000 1.000 1.000
Circular Fault 1.000 1.000 0.000 1.000 1.000 0.000

H0 0.038 0.002 0.000 0.068 0.270 0.000
Scratch 1.000 1.000 0.000 0.518 0.830 0.000

σ = 0.05 Zooming 1.000 1.000 1.000 0.068 1.000 0.000
Translation 1.000 1.000 1.000 1.000 1.000 1.000

Circular Fault 1.000 1.000 0.000 0.990 0.980 0.000

H0 0.036 0.062 0.000 0.112 0.380 0.000
Scratch 0.998 1.000 0.000 0.278 0.750 0.000

σ = 0.08 Zooming 1.000 1.000 1.000 0.112 1.000 0.000
Translation 1.000 1.000 1.000 1.000 1.000 1.000

Circular Fault 1.000 1.000 0.000 0578 0.850 0.000

Table 4.2: Empirical sizes and powers for various images of resolution 128 ×128.

with dimension 128×128, we have reported the performance with κ equals to 1.5 and 1.8.

The average performance of the proposed method based on 500 replicated simulations are

shown in Table 4.1 and Table 4.2. From the tables, we can have the following conclusion

for the proposed method: (i) For a suitable value of the tuning parameter κ, the empirical

sizes for all the tests are quite small. (ii) With a suitable choice of κ, the proposed method

is able to detect the changes almost accurately. Regarding two competing methods, we

can see that the performance of TN is poor. Most of the time, it fails to reject the null

hypothesis when the alternative hypothesis is correct. TN is able to correctly detect a

change in case of zooming only, because in case of zooming, the change is comparatively

larger than the other changes shown in Figure 4.5. Therefore, we find that TN doe not

Figure 4.6: True reference image (left), image with smooth changes in the background
(middle), and noisy image with smooth changes in the background (right). These images
are of dimension 128× 128.
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perform well for detecting small changes. The method based on testing equality in the

continuity and discontinuity regions performs much better than TN . Similar to TN , a test

based on UE could not detect the changes for scratch and circular faults. Performance

with UC is comparatively better in those situations. However, at high noise levels, it

fails to detect changes accurately. In case of UEC , for 128× 128 images with large noise,

the empirical size is quite large compared to the actual size. Therefore, it needs to be

carefully used in practical situations. The comparison of the proposed algorithm is quite

illustrative. It outperforms the competing methods in nearly all situations mentioned

above. When the noise level is comparatively higher, in cases of scratches and circular

faults, the performance of this method is not up to the mark but much better than the

existing methods. Therefore, from Table 4.1 and 4.2, it is quite evident that the proposed

method is a winner in almost all cases.

σ κ = 1.20 κ = 1.40 κ = 1.60
0.03 0.806 0.472 0.032
0.05 0.434 0.234 0.074
0.08 0.158 0.070 0.050

Table 4.3: Empirical powers for various values of κ for the image in Figure 4.6.

Now, we present an interesting situation to ensure the flexibility and effectiveness of

our proposed method. In real life applications, there are many situations where a small

change in the intensity in the background does not imply actual meaningful change in

the image object. As discussed earlier, one major advantage of the proposed method is

that it can address such situations depending on the purpose the application. To describe

this scenario, consider an image with a small smooth change in the background. True

intensity function of the image in the middle panel of Figure 4.6 is given by:

g(x, y) =

1 if
√

(x− 0.5)2 + (y − 0.5)2 < 0.133

1
10
sin(9.6(x+ y)) otherwise

From the above functional form of the image surface, it is clear that the image object

and the JLCs remain unchanged in across all panels of Figure 4.6. Similar situations are

common in many real life applications. As the image object remains the same, the test

of image comparison should not reject the null hypothesis. However, most of the existing

methods are very sensitive to these changes. From Table 4.3, it is clear that the proposed

algorithm ignores the above smooth insignificant change with a suitable choice of the

tuning parameter (for κ = 1.6). Therefore, the choice of κ makes the proposed method

flexible in handling many practical situations.
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Figure 4.7: Three satellite images of the Aral sea area taken in 2016 (left), 2018 (middle),
and 2022 (right).

4.6 Real Data Application

In this section, we demonstrate the performance of the proposed testing procedure for

image comparison (4.2.7) on real image data from the LANDSAT project (https://

earthexplorer.usgs.gov/). In the Aral sea example in Figure 1.1, the area of the sea

changes gradually over time. It was once the fourth largest lake in the world and has

shrunk to more than half of its former size. As a direct consequence of the shrinkage

of the lake, fisheries and communities that depend on them have collapsed. Also, it

has a wide effect on damaging the local ecosystems and sustainable cultivation. So for

monitoring the sea area over time, comparing images of Aral sea at different time points

is an important task. In this example, we are mainly interested in the area of Aral sea.

The images at different time points are shown in Figure 4.7. Here, it is evident that there

Figure 4.8: Cropped satellite images of Aral sea taken in 2016 (left), 2018 (middle), and
2022 (right).

is a change in the contrast for the image taken in 2016 and the image taken in 2018. As

the proposed method is feature based, it is capable of ignoring this meaningless change.

Also, for the image in 2022, some insignificant spots are present in the background. There

is a possibility that the proposed method may detect a change only due to a change in the

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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background. However, the proposed method is flexible enough to ignore these background

spots. For this reason, we choose a large value of κ. To make the comparison reliable, in

the pre-processing step we register the images properly and for computational simplicity

we cropped the image properly. All cropped images have dimension 126×126. See Figure

4.8 for the cropped images. To find the empirical distribution of the test statistic, we

first calculate the residuals from the jump preserving estimate and generate bootstrapped

image samples by adding bootstrapped residuals to it.

Figure 4.9: Selection of the tuning parameter κ.

For the comparison purpose, we test the equality of images from 2016, 2018 and 2022.

Estimated noise (σ̂) from the residuals are 0.011, 0.009, and 0.017, respectively. From

cross-validation, the suitable choice for hn is 3
126

. As in this applications we are interested

in the large change (change of the area of Aral sea) it is preferable to choose a κ that

ignores jumps of size at least three times σ̂. Therefore, from the corollary in Section 4.4,

it is preferable to consider a κ around 3. Also, from the bootstrap procedure described in

Section 4.2.4, a suitable choice of κ lies in [3, 5]. See Figure 4.9, for the tuning parameter

selection using bootstrap procedure for the image of Aral sea in 2018. However, the

image in 2022 contains background spots that should be avoided in the comparison. To

ignore avoidable JLCs the background, we recommend to choose κ ∈ [9, 10]. The readers

are referred to Section 4.7 for the selection of suitable κ in this example. For testing

“2016 vs 2018”, the estimated p-value with 100 replications and κ = 4 is 0.0012. For

testing “2016 vs 2022” after ignoring the unimportant JLCs with κ = 10, the estimated

p-value is 0.0026. The changes of the major regions of Aral sea are presented in Figure

4.10. Images in Figure 4.10 validate the performance of the proposed method as well.

Therefore, from the p-values mentioned above, it is evident that the proposed method is

capable of detecting changes very efficiently.
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Figure 4.10: Changes from the image in 2016 to 2018 (left), 2016 to 2022 (middle), and
2018 to 2022 (right).

4.7 More Details on The Selection of Procedure Pa-

rameters

Selection of the bandwidth parameter: In Figure 4.11, we plot the CV scores along

the Y-axis and various bandwidth parameter values along the X-axis. From the CV scores,

the preferable choice of hn is [2.5
n
, 4
n
]. For calculating the CV scores, we use the function:

surfaceCluster bandwidth() in the R package DRIP.

Figure 4.11: Plot of the CV scores for the simulated image with various noise levels: (a)
The plots in the upper panel are for the image with dimension 64× 64, and (b) the plots
in the lower panel are for the image with dimension 128× 128.

Selection of the tuning parameter κ : Section 4.3 provides a guideline for selecting κ

by minimizing the average VI metric of bootstrapped sample images. Here we present an
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Figure 4.12: Selection of κ based on the number of neighborhoods undergoing clustering:
(a) In the sub-figures of the upper panel, we plot the number of clustering along the
Y-axis and κ along the X-axis, (b) in the sub-figures of the lower panel, we plot the slope
of the corresponding curves in the upper panel.

alternative way of choosing κ based on the number of circular neighborhoods where the

proposed algorithm performs local clustering. In the first row of Figure 4.12, we plot the

number of neighborhoods undergoing local clustering along the Y-axis and various values

of κ along the X-axis. It is preferable to choose a κ where the the curve is relatively flat,

i.e., the slope is close to zero.

Demonstration of the selection of κ for a real image: To get rid of the background

disturbances, we focus on two different parts of the same image of Aral sea in 2022 (two

panels in Figure 4.13). First we aim to get an idea about the jump size that we wish

to ignore. The image in the left panel of Figure 4.13 contains background disturbances

only. However, they are JLCs, but we wish to disregard them for the purpose of image

comparison with another image of Aral sea collected in another year. Table 4.4 presents

the number of circular neighborhoods undergoing local clustering in the background region

(viz., the left panel of Figure 4.13) with various values of κ, and we recommend the values

of κ for which no local clustering is performed. Conversely, the image on the right panel

of Figure 4.13 contains no background disturbance. Therefore, a suitable choice of the

tuning parameter is a value that will do no clustering in the left image of Figure 4.13,

and maximum clustering in the right image of Figure 4.13 In Section 4.6, we demonstrate

the performance of the proposed algorithm with various values of κ. However, from Table

4.4, it is advisable to consider κ = 9 or 10 for the image of the Aral Sea area in 2022 that
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contains both the disturbances and a part of Aral sea.

Figure 4.13: Two different regions of the Aral sea area in 2022. Only background dis-
turbances in the left panel, and a part of Aral sea without any disturbances in the right
panel.

κ Ignorable JLCs Important JLCs
2.00 2475 2392
3.00 1500 1384
5.00 590 945
8.00 8 779
9.00 0 720
10.00 0 674
12.00 0 575
15.00 0 393

Table 4.4: The number of neighborhoods undergoing local clustering for various values of
κ.

4.8 Concluding Remark

This chapter proposes a feature-based image comparison method based on local pixel

clustering. Most of the existing methods are very sensitive to small changes in the back-

ground that are often unimportant in practical applications, and therefore, such methods

are sometimes unreliable in real life scenarios. However, our method has a mechanism to

detect the actual change over unwanted small changes in the background. In that sense,

it is more flexible and has more reliable performance in many real life applications. Nu-

merical comparisons with two state-of-the-art methods ensure that it has several merits.

There are several future directions for our current research work. Monitoring a sequence

of images over time by the clustering based metrics is a very simple and natural extension.

In many image applications, the images could contain spatial blur [Kang et al. (2018)]
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in addition to the random noise. Although our clustering based comparison method has

certain ability to deal with blurring effects, special attention should be given for image

comparisons in presence of spatial blur. Most image comparison methods consider im-

age registration as a pre-processing step. However, a method that can handle image

misalignment by its construction would be more suitable for real life applications.





Chapter 5

Shape and Size Monitoring in

Presence of Rigid-body Image

Transformation

5.1 Introduction

Recently, satellite images are capturing considerable attention for monitoring the earth’s

surface over time. The LANDSAT Project, which began in 1972, is a well-known initiative

in which the USGS and NASA launched nine satellites till date, to collect images of the

earth’s surface over time. Figure 5.1 shows four satellite images of the Salton sea area

located at the southern end of the U.S. state of California. By comparing the sequence

Figure 5.1: The satellite images of the Salton sea area captured in 2004, 2010, 2018 and
2023, respectively.

of images, one can monitor the earth’s surface and natural resources around this region.

For example, it is quite evident from Figure 5.1 that the upper part of the lake boundary

moved downward drastically in the 19 years of time span. Therefore, it has become an

important to monitor shape and size of this type of satellite images.

75
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However, monitoring this type of image data is indeed a challenging problem because

of two reasons. Firstly, discontinuous image surface contain noise. Secondly, and more

importantly, the real images of the same object captured by different sensors or at dif-

ferent time points are often not geometrically aligned. To demonstrate the role of image

registration in the context of image comparison and image monitoring, consider the fol-

lowing example in Figure 5.2. The first two images from the left are the satellite image

of the Salton sea area in 2005 and 2008, respectively. The third one from the left is the

pixel-wise difference between these two images without image registration, and the image

Figure 5.2: (a) The Salton sea area in 2005, (b) the Salton sea area in 2008, (c) pixel-wise
difference without image registration, and (d) pixel-wise difference after image registra-
tion.

on the right is the pixel-wise difference between the two images after image registration.

From Figure 5.2, it is evident that image monitoring without aligning images properly

leads to significant false conclusions. In case of online image monitoring, performing image

registration at the arrival of each new image is computationally extensive as well. This

chapter aims to overcome the issue of image registration while performing both image

comparison and image monitoring.

In literature, methods related to image monitoring assume proper geometrical align-

ment of the images. Moreover, they are very sensitive to minor and unimportant alter-

ation of the image intensity values. Recently, Feng and Qiu (2018); Roy and Mukherjee

(2024a,b) propose methods for image comparison and monitoring based on jump location

curves (JLCs). These methods are capable of disregarding small unimportant changes

in the image intensities. However, it is worth mentioning that they still have to use an

appropriate image registration technique to geometrically align the images beforehand.

In this chapter, we propose an image comparison and monitoring procedure to deter-

mine whether the shape and size of an image object at different time points are unchanged

or not. The novelty of the proposed method is that it does not require image registration

during the pre-processing phase. To the best of our knowledge, no image comparison

or monitoring technique in the literature can take the geometric misalignment into con-

sideration by its construction, not employing an image registration procedure during

pre-processing. Moreover, the outcomes of the image registration step that the existing
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methods require, are often not error-free. Another critical point to note here is that if the

shape or size of an image object is actually different in two images, the rigid-body image

registration is no longer a valid problem, interpretation of the registered image is not

obvious. Other major benefits of using the proposed method are: it is computationally

less expensive, and more accurate. Additionally, the proposed algorithm does not directly

depend on the image intensity values, and therefore capable of ignoring small unimportant

changes in the image intensity values in the foreground or the background of the images.

Such situations are very common in satellite imaging. For example, images of the same

scene in the presence and absence of clouds. The proposed image comparison and moni-

toring procedure has the following steps. We first detect the edges of the image object by

using a state-of-the-art jump detection algorithm and estimate the centroid of the image

object by calculating the sample mean of the coordinates of the detected edge pixels. In

each image, we estimate the distribution of the radial distances of the edge pixels from

the centroid by a suitable estimator, and develop a test statistic based on Cramér-von

Mises criterion. Finally, we construct a CUSUM control chart for online monitoring of

the sequential images. For better demonstration, refer to the toy image in Figure 5.3. In

this example, we consider two image objects of different shapes: a circle and an ellipse.

Figure 5.3: Graphical demonstration of shape & size comparison based on radial distances.

The 2-nd and 4-th image of Figure 5.3 show the distances from the estimated centroids

to the detected edge points on the boundaries of the circle and ellipse, respectively. We

call such distances as radial distances. Figure 5.4 shows the distribution functions of the

radial distances corresponding to the circle and ellipse.

Figure 5.4: The distribution functions of the radial distances corresponding to the circle
and ellipse.
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5.2 Proposed Methodology

Essentially, our goal in this chapter is to propose an image monitoring procedure that is

invariant under rigid-body transformation of the image object. Therefore, the proposed

algorithm is capable of detecting a change in the shape and size of the image object quite

accurately while accommodating the rigid-body transformation of the image objects, such

as translation and rotation. Although the proposed method can be applied to various

types of images, we consider only the 2-D monochrome images in this chapter. As we are

mainly interested in monitoring the shape and size of one image object, we assume that

the image object has a closed shape. In this section, we describe the proposed algorithm

in a step by step manner.

5.2.1 An LLK-based method for jump location curve estimation

In the JRA literature, a 2-D grayscale image can be expressed by the following nonpra-

metric regression model [Qiu (2009)]:

wij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (5.2.1)

where {(xi, yj) = (i/n, j/n) : i, j = 1, 2, ...., n} are equally spaced pixel coordinates in the

design space Ω = [0, 1] × [0, 1], wij is the observed intensity value at the (i, j)-th pixel,

N = n2 is the sample size and εij are independent and identically distributed (i.i.d.)

random errors with mean 0 and variance σ2 > 0.

As discussed earlier, a key step for the proposed method is to estimate the boundary

of an image object with reasonable accuracy. Theoretically, any edge detection algorithm

[Canny (1986); Sun and Qiu (2007)] can be used to automatically estimate the boundary

curves or the JLCs. In this chapter, we use an edge detection algorithm based on Local

Linear Kernel (LLK) smoothing. Now, at a given pixel (x, y), consider a circular neigh-

borhood B(x, y;hn) = {(u, v) : (u, v) ∈ Ω,
√

(u− x)2 + (v − y)2 ≤ hn}, where hn > 0 is

a bandwidth parameter. Then, the LLK smoothing procedure can be accomplished by

fitting a local plane in B(x, y;hn). To do so, consider the following optimization problem:

min
a,b,c

∑
(xi,yj)∈B(x,y;hn)

[
wij − {a+ b(xi − x) + c(yj − y)}

]2
Kij, (5.2.2)

where Kij = K

(
xi−x
hn

,
yj−y
hn

)
and K is a radially symmetric bivariate density kernel

with support {(x, y) : x2 + y2 ≤ 1}. The solution of the above optimization prob-

lem is denoted as (â, b̂, ĉ). Note that, â(x, y) is the conventional LLK estimate of
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f(x, y), and (̂b(x, y), ĉ(x, y))′ is the LLK estimator of the gradient direction β(x, y) =

(f ′x(x, y), f
′
y(x, y))

′. Now to detect the jump points, we divide the circular neighborhood

B(x, y;hn) into two parts, denoted as B1(x, y) and B2(x, y), along the perpendicular di-

rection of the estimated gradient. Using each of the regions B1(x, y) and B2(x, y), we
estimate f(x, y) by LLK method and call them f̂LLK,B1 and f̂LLK,B2 , respectively. A large

value of |f̂LLK,B1 − f̂LLK,B1 | indicates that (x, y) can be a possible jump point. Let us

define,

LLK(x, y) =
f̂LLK,B1 − f̂LLK,B2√ ∑

(xi,yj)∈B1
K2

ij

[
∑

(xi,yj)∈B1
Kij ]2

+

∑
(xi,yj)∈B2

K2
ij

[
∑

(xi,yj)∈B2
Kij ]2

,

then it can be shown that [Kang and Qiu (2014)]:

(i) If f is continuous around (x, y), then LLK(x, y)
d−→ N(0, 1).

(ii) If f has discontinuities around (x, y), then LLK(x, y)
p−→∞.

Therefore, a design point (x, y) is flagged as a detected jump point if

|LLK(x, y)| > σ̂Z1−αn ,

where Z1−αn , is the (1− αn) quantile of N(0, 1), and σ̂ is an estimate of unknown σ. In

practice, σ2 can be estimated by the residual sum of squares divided by the total number

of pixels. Then the set of edge pixels is defined as

E = {(x, y) : |LLK(x, y)| > σ̂Z1−αn}.

Readers are referred to [Qiu (2004)] for more details about the jump detection criterion.

Selection of the bandwidth parameter hn: Determining the bandwidth parameter

hn is pivotal. In this study, we choose hn through leave-one-out cross validation (CV)

procedure. Based on our numerical experience and CV score, we suggest choosing hn ∈
[ 2
n
, 3
n
]. In Section 5.2 (refer to Figure 5.7), we illustrate the CV scores for different values

of hn for the simulated images and identify the optimal bandwidth (h̃n) as the one that

minimizes the CV score.

Remarks: Any edge detection technique with reasonable performance can be effectively

applied to the proposed methodology. In medical imaging applications, such as tumor

detection, it is sometimes necessary to disregard vague boundaries in order to accurately

identify the tumor. For such applications, deep learning based image segmentation and

edge detection methods are particularly beneficial. Siddique et al. (2021) provide recent

and advanced edge detection and image segmentation procedure.
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5.2.2 Shape and size comparison

The pivotal step for any image monitoring procedure is image comparison. In this chapter,

we propose a test based on the distribution of the distances of all points on the boundary of

the image object from its centroid, for comparing the shape and size of the image object

in two different images in presence of a rigid-body transformation. In literature, most

of the image comparison methods are based on either image intensities or selected image

features. However, they are not invariant to rotation and translation. Therefore, to make a

reliable image comparison, these existing methods need a separate image registration step

as pre-processing. Hence, it is important to construct a feature-based image comparison

test that is invariant under rotation and translation. In this chapter, we consider the

distances from centroid to all points on the boundary of the image object as our primary

feature and construct a test based on that. It can be easily shown that the distribution

of the distances from centroid to all points on the boundary curve of the image object

is invariant under rotation and translation. See Section 5.3 for more details. We define

the distances from the centroid of the image object to the points on the boundary of that

image object as radial distances. Therefore, a suitable test of hypotheses that we can use

is the following:

H0 : F1 = F2 vs. H1 : F1 ̸= F2, (5.2.3)

where F1 and F2 are the CDFs of the distances from centroid to all points on the bound-

ary curve of the image object (JLCs) for the two images. To this end, we use jump

preserving LLK smoothing on the two images to get the point sets of detected edge pixels

corresponding to the boundary of the image object.

Calculation of the empirical distribution function: To determine the empirical

distribution, we need to first calculate the jump/edge preserving surface estimates [Qiu

(2009)] of the true image intensity functions for the two images, using LLK smoothing.

Let the surface estimates for the two images be f̂1 and f̂2, respectively. Then the boundary

curve or JLC of the image object can be approximated by the point-sets Ê1 and Ê2. The

centroid of the image object is then estimated by Ĉk =
∑n

i,j=1 (xi,yj)I(xi,yj)(Êk)

|Êk|
for the k-th

image, where k = 1, 2. Here, I(.) is the indicator function. As the point-set of detected

edge pixels converges almost surely to the true JLC as the image dimension increases,

the estimated centroid of the image object converges to the true centroid as well. Finally,

the empirical distribution is obtained by calculating the Euclidean distance between the

estimated centroid to each point in the point-set of detected edge pixels. See Section 5.3,

for the theoretical justification.

Construction of the test statistic: Suppose, we denote the empirical CDFs of F1 and

F2 by F̃1 and F̃2, respectively. Additionally, F̃c is the empirical distribution function of
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the combined samples. Assuming |Êk| = rk for k = 1, 2, the proposed test statistic can

be expressed as

TCVM =
r1r2

r1 + r2

∫ ∞
−∞

[F̃1(x)− F̃2(x)]
2dF̃c(x). (5.2.4)

Note that the test statistic is similar to the classical Cramér-von Mises statistic. It

calculates the sum of squared differences between the two estimated CDFs, evaluated at

each sample points of the combined samples. Readers are referred to [Curry et al. (2019);

Anderson (1962); Rosenblatt (1952)] for an extensive discussion regarding the Cramér-von

Mises statistic.

Determination of critical value for the proposed test: It is a challenging task

to theoretically find the asymptotic null distribution of the proposed statistic. In this

chapter, we determine the cut-off value of the test statistic by the bootstrapping technique

as described below.

1. Under the null hypothesis, the shape and size of the image object are the same

after accommodating the fact that rigid-body transformation of the image object

may be present. Therefore, to reflect the null hypothesis, we apply rigid-body

transformation (i.e., rotation and translation) on the observed image object, and

create a pool of image samples, keeping the shape and size of the image object

unchanged.

2. Select two images randomly from the pool with replacement, and calculate the value

of the proposed test statistic with the two bootstrapped images.

3. Repeat the previous step B times, and use these values of the test statistic to obtain

the empirical distribution of the test statistic.

The empirical distribution of under H0 can be calculated using the above bootstrap pro-

cedure. The null hypothesis is rejected for a level-α test if TCVM is greater than the

corresponding (1− α)-th sample quantile of the bootstrap distribution of TCVM . A theo-

retical justification for the proposed bootstrap algorithm is outlined in Appendix A.4.

5.2.3 Phase II online monitoring

For the purpose of image comparison, we need to know the true distribution F0 of radial

distances of the image object. Therefore, for Phase-II process monitoring, the true image

surface, denoted as f (0)(x, y), should ideally be known. In practice, it is typically unknown,

and needs to be estimated from the in-control data. Assume that there are m observed

images in Phase-I of image monitoring. These images may or may not be geometrically
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aligned, and they are referred as in-control data/images. The true distribution of the

radial distances can be reasonably estimated by using all in-control images in Phase-I

stage, and we denote the empirical distribution of the radial distances of the combined

sample by F̃0.

In Phase-II step, the ℓ-th observed image intensities can be expressed by a 2-D JRA

model:

Zijℓ = fℓ(xi, yj) + εijℓ; for i, j = 1, 2, . . . , n, and ℓ = 1, 2, . . . , (5.2.5)

where Zijℓ is the observed image intensity of the ℓ-th image at (i, j)-th pixel, and other

related variables can be described similarly as in (5.2.1). To this end, each Phase-II image

intensity function is estimated using the jump preserving local linear smoothing technique

[Qiu (2009)]. As the proposed algorithm is invariant under rigid-body transformation, the

Phase-II step also does not require the images to be geometrically aligned. Therefore, if

the process is in-control at ℓ-th time point, i.e., the shape and size of the image object at

that time point is same as in the in-control images, then it is natural that Fℓ = F0, where

Fℓ is the distribution of the radial distances for the image at ℓ-th time point. Then, the

overall difference between the distribution of radial distances of the image object at ℓ-th

time point, and in-control distribution of the radial distances, i.e., F̃0 can be determined

by the Cramér-von Mises statistic

TCVM,ℓ =
r0rℓ

rℓ + r0

∫ ∞
−∞

[F̃ℓ(x)− F̃0(x)]
2dF̃c(x), (5.2.6)

where r0 is the number of detected edge pixels by combining all in-control samples and rl

is the number of detected edge pixels in f̂ℓ(x, y), respectively . For online monitoring, we

construct the following CUSUM statistic at ℓ-th time point:

TCUSUM,ℓ = max

(
0, TCUSUM,(ℓ−1)+

TCVM,ℓ − EIC(TCVM,ℓ)√
V arIC(TCVM,ℓ)

−κ
)

for ℓ = 1, 2, . . . , (5.2.7)

where κ ≥ 0 is a pre-specified allowance parameter. To choose the allowance parameter

optimally, the readers are referred to [Reynolds (1975); Qiu (2013)]. EIC(TCVM,ℓ) and

V arIC(TCVM,ℓ), i.e., the in-control mean and variance of TCVM,ℓ have to be estimated

from the in-control images. Note that, for ℓ = 0, TCUSUM,ℓ = 0. Therefore, the proposed

algorithm raises a signal of change at ℓ-th time point if TCUSUM,ℓ > t0, where t0 is the

control limit. Traditionally, the control limit is chosen in such a way that the in control

“average run length” (ARL) of the chart statistic can reach the pre-fixed nominal level

ARL0. In this case, the in-control ARL is the expected time to signal a change under the

in-control distribution F0.
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Determination of t0 using a pre-fixed ARL0: In this chapter, we determine the

control limit t0 by the bootstrap technique mentioned as follows. Similar to Section

5.2.2, we generate bootstrap images by applying rigid-body transformations on the image

object. Based on the bootstrapped images, we calculate the CUSUM statistic using

equation (5.2.7). For a given value of t0, we continue the above process until the control

chart based on the CUSUM statistic raises a signal of change. To this end, a sample run

is found, and the corresponding run length is calculated. We repeat the above-mentioned

steps B times, and estimate the actual ARL0 by the sample mean of the B run lengths.

We increase or decrease the trial value of t0 based on whether the estimated ARL0 is less

than or more than the pre-determined ARL0 value. The bisection procedure can be used

to get the appropriate value of t0.

5.3 Statistical Properties

In this section, we discuss a number of statistical properties of the proposed method for

shape and size monitoring of an image object described in Section 5.2.2. Let us define

the following notations:

Ωhn = [hn, 1− hn]× [hn, 1− hn],

Ehn = {(x, y) : (x, y) ∈ Ω, D((x, y), (x′, y′)) ≤ hn for some (x′, y′) ∈ E},
Shn = {(x, y) : (x, y) ∈ Ω, D((x, y), (x′, y′)) ≤ hn for some singular (x′, y′) ∈ E},
ΩĒ,hn

= Ω\Ehn and ΩS̄,hn
= Ω\Shn ,

where ϵ is a small positive constant, D denotes Euclidean distance, E is the set of points

on true JLCs, and Ê, is the set of detected edge pixels. Proposition 5.3.1 shows that the

estimated centroid of the image object converges almost surely to the true centroid.

Proposition 5.3.1. Assume that in each closed subset of [0, 1] × [0, 1], the unknown

true regression function f has piecewise continuous third order derivative. Additionally,

on each boundary curve of the pieces in which the first order derivative of f are con-

tinuous, the first-order derivatives of f have uniformly bounded one-sided limits defined

in individual pieces. Further assume that, hn = o(1), log(n)
nh4

n
= o(1); E|ε11|2 < ∞; the

kernel function is a Lipschitz-1 continuous circularly symmetric density function on the

support [0, 1] × [0, 1] and αn is chosen such that αn = o(1), Z1−αn/(nhn) = o(1), and

(nh3
n)/Z1−αn = o(1). Then we have,

Ĉ = C +O(hn) a.s.,

where C = (Cx, Cy)′ is the true centroid of the image object and Ĉ is the estimate of it.
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A sketch of the proof of the above proposition is provided in Appendix A.4. Using

Proposition 5.3.1, we can prove the following results. The details of the proofs are also

provided in Appendix A.4.

Corollary 5.3.2. For every (xi, yj) ∈ Ê∩ΩS̄,hn
, there exists at least one (x, y) ∈ E∩ΩS̄,hn

such that D((xi, yj), Ĉ) = D((x, y), C) +O(hn) a.s.

Corollary 5.3.3. Let F be the true CDF of the radial distances, and assume that the

first order derivative of F is bounded. Then as n → ∞, F̃ (z)
a.s.−−→ F (z) , where F̃ is the

estimated CDF of F .

Corollary 5.3.3 ensures that the estimated distribution function converges almost

surely to the true distribution function of the radial distances of the image object.

Now we have the next proposition.

Proposition 5.3.4. Let F1 and F2 be the CDFs of radial distances corresponding to the

image object in the given two images. Assume that the first order derivatives of F1 and

F2 are bounded, and that r1
r1+r2

→ τ , where 0 < τ < 1. Then,

TCVM(F̃1, F̃2) =
r1r2

r1 + r2

∫ ∞
−∞

[F̃1(x)− F̃2(x)]
2dF̃c(x)

a.s.−−→ TCVM(F1, F2),

where TCVM(F1, F2) =
∫∞
−∞[F1(x) − F2(x)]

2d(τF1(x) + (1 − τ)F2(x)) is the population

version of TCVM(F̃1, F̃2). Here, r1 and r2 are the detected edge pixels in the given two

images.

Proposition 5.3.4 justifies the consistency of the proposed test statistic based on the

radial distances of the image object in two images. Proposition 5.3.4 can be proved easily

using Corollary 5.3.3. A sketch of the proof of Proposition 5.3.4 is provided in Appendix

A.4.

5.4 Numerical Studies

In this section, we numerically investigate the performance of the proposed method in

comparison with two state-of-the-art methods. We conduct comparative analyses using

various simulated toy images. In literature, most of the intensity and feature based image

monitoring approaches are overly sensitive to even a little variation in intensities within

a region. Consequently, these techniques have a very high probability of false detection

since they are highly sensitive to noise. In the manufacturing industry, any small change

in intensity values in a region is very common and often correctly interpreted as faults.
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However, in many applications such as satellite imaging and medical imaging, such small

changes should not be considered as meaningful changes in the underlying image process.

This makes the proposed method especially helpful for tracking the shape and size of the

image object in satellite and medical imaging. Section 5.2 provides discussions on image

comparison and image monitoring individually. In this section also, separate comparative

studies with the state-of-the art methods are described for both image comparison and

image monitoring. To assess the performance of the competing procedures, we consider

empirical size and power of these procedures. In addition, we consider the mean and stan-

dard deviation of the out-of-control run length as the performance evaluation measures

for online monitoring. Moreover, as the control chart (5.2.7) at ℓ-th time point depends on

the images of previous time points, steady-state average run length ARL1 is the natural

choice in the online monitoring stage.

5.4.1 Comparison with state-of-the-art methods

To investigate the numerical performance of the proposed image comparison algorithm,

we consider Wang and Ye (2010) as a competing method. The central idea behind the

competing method is based on nonparametric comparison of regression surface. It con-

siders the L2-distance between the surface estimate at each pixel coordinates. The test

statistic is thus defined as

TN =
1

n2

n∑
i,j=1

(f̂1(xi, yj)− f̂2(xi, yj))
2, (5.4.1)

where f̂1(xi, yj) and f̂2(xi, yj) are the local estimators of the two image intensity functions

at the pixel coordinate (xi, yj). The above test statistic is a multi-dimensional generalisa-

tion of the test statistic defined in Dette and Neumeyer (2001). Additionally, for numerical

comparison for the online monitoring part, we choose the approach proposed by Zang and

Qiu (2018b) as our competitor. The competing method needs additional rigid-body im-

age registration before the monitoring step, i.e., after getting each image in Phase II, we

have to estimate one rotation parameter and two translation parameters, which make this

method computationally expensive. However, the proposed method does not need any

such step, and thus the flexibility and applicability of our method is well justified. The

competing methods are comparable in the sense that they do not take into account the

correlation structure of the images, they assume independence of the images captured

at different time points. Suppose in Phase II stage, after rigid-body image registration,

the geometrically aligned surfaces are denoted as {f̂ ∗ℓ (x, y) : ℓ = 1, 2, . . .}. The overall
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difference between ℓ-th aligned surface and the in-control image is expressed as

ΛART,ℓ =
1

n2

n∑
i=1

n∑
j=1

|f̂ ∗ℓ (xi, yj)− f̂0(xi, yj)|, (5.4.2)

where f̂0 can be estimated by combining all jump preserving estimated in-control image

surfaces after registering them properly. Then, the control chart statistic based on ΛART,ℓ

can be expressed in a similar fashion as in (5.2.7). For more discussion regarding this

competing method, the readers are referred to Zang and Qiu (2018a,b). Since all compet-

ing methods require an initial image registration step, we utilize the R package RNiftyReg

[Clayden et al. (2023)] to geometrically align the observed images.

5.4.2 Simulation studies

In this part, we present some simulation results regarding the numerical performance of the

proposed method of image comparison and image monitoring. Throughout this section, if

there is no further specification, Gaussian noise was added to generate observed images.

In our simulation study, the true in-control (IC) shape of the image object is assumed to

be an ellipse (see Figure 5.5(a)) and the image intensity function of true IC image can be

expressed as

f0(x, y) = I

√(
x− 0.5

0.1875

)2

+

(
y − 0.5

0.25

)2

< 1

 , (5.4.3)

where (x, y) ∈ [0, 1] × [0, 1] and I(.) is the indicator function. For detecting the edge

pixels we use the algorithm described in Section 5.2.1. As observed image intensities

contain noise, there is a possibility of getting false jump points in the background of the

image object and they affect the performance of the proposed method. To get rid of this

problem, we use the following algorithm which is similar to the one suggested by Roy and

Mukherjee (2024a).

Algorithm for removing false edges

1: En×n = Binary Edge Matrix

2: Ep
(n+2p)×(n+2p) = Padded Edge Matrix (Pad Length= p )

3: for i := (1 + p) to (n+ p− 1) do

4: for j := (1 + p) to (n+ p− 1) do

5: if Ep[i, j]← 1 &
∑i+1

k=i−1

∑j+1
l=j−1 Ep[k, l] ≤ 4 then

6: Ep[i, j]← 0

7: end if

8: end for

9: end for
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We evaluate the performance of the image comparison methods by empirical size and

power. We use the following image intensity functions to conduct the simulation study.

1. Only rigid body transformation (i.e., rotation & translation):

g
(IC)
1 (x, y) = I

√(
x− 60/128

32/128

)2

+

(
y − 60/128

24/128

)2

< 1

 .

2. Smooth change in the background of the image object:

g
(IC)
2 (x, y) =


1 if

√(
x−60/128
32/128

)2

+

(
y−60/128
24/128

)2

< 1

1
10
sin(x+y

10
) otherwise.

3. Change in size of the image object:

g
(OC)
3 (x, y) = I

√(
x− 60/128

32.5/128

)2

+

(
y − 60/128

24/128

)2

< 1


4. In addition to the rigid transformation change in the size of the image object:

g
(OC)
4 (x, y) = I

√(
x− 60/128

24.5/128

)2

+

(
y − 60/128

32/128

)2

< 1


5. Change in the shape of the image object:

g
(OC)
5 (x, y) = I

{√(
x− 60/128

32/128

)2

+

(
y − 60/128

24/128

)2

< 1

}⋂{
x+ y > 154/128

}
Note that the image intensity functions g

(IC)
1 (x, y) and g

(IC)
2 (x, y) imply situations

under the null hypothesis, i.e., the shape and size of the image object is unchanged. The

intensity functions g
(IC)
3 (x, y), g

(IC)
4 (x, y), and g

(IC)
5 (x, y) correspond to the alternative

hypothesis. In all cases, (x, y) are generated from a regular grid of values in the design

space Ω = [0, 1]× [0, 1] with a fixed and equally spaced design. Figures 5.5 and 5.6 show

various types of null and alternative images as in the situations 1-5 described above. We

perform the simulation study under the following settings: (i) two different image resolu-

tions: 128× 128 and 256× 256, and (ii) two different noise levels of σ: 0.02 and 0.05 for

each image resolution. Tables (5.1) illustrates the empirical size and power across various

bandwidth parameter values. As outlined in Section 5.2.2, we determine the procedure
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Figure 5.5: In-control simulated images: (a) noisy reference image, (b) the same image
object after rigid-body transformation, and (c) the same image object with a smooth
change in the background.

Figure 5.6: Out-of-control simulated images: (a) change in size of the image object, (b)
change in size of the image object in presence of rotation and translation, and (c) change
in shape of the image object.

parameter hn using cross-validation procedure. Figure 5.7 presents the cross-validation

(CV) scores versus nhn for the simulated images. From Figure 5.7 it is clear that the opti-

mal bandwidth should be h̃n = 2
n
. Table 5.2 presents the comparative analysis with Wang

and Ye (2010). Regarding the competing method, we can see that it always rejects the

null hypothesis even when it is true. That is because of the erroneous image registration

performance beforehand. Therefore, these type of method that requires image registration

step beforehand should be avoided in practice. However, the proposed algorithm exhibits

robust performance and consistently outperforms the alternative method by Wang-Ye in

all the scenarios mentioned above.

Figure 5.7: Parameter selection based on cross-validation.

Subsequently, we conduct a series of simulations to evaluate the effectiveness of the

proposed approach in the context of online monitoring of the shape and size of the image
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σ2 = 0.02 σ2 = 0.05
n = 128 nhn = 2 nhn = 3 nhn = 4 nhn = 2 nhn = 3 nhn = 4

g
(IC)
1 (x, y) 0.040 0.041 0.047 0.049 0.043 0.045

g
(IC)
2 (x, y) 0.042 0.041 0.151 0.044 0.041 0.093

g
(OC)
3 (x, y) 1.000 1.000 1.000 1.000 1.000 1.000

g
(OC)
4 (x, y) 1.000 1.000 1.000 1.000 1.000 1.000

g
(OC)
5 (x, y) 0.771 1.000 1.000 0.510 0.999 1.000

σ2 = 0.02 σ2 = 0.05
n = 256 nhn = 2 nhn = 3 nhn = 4 nhn = 2 nhn = 3 nhn = 4

g
(IC)
1 (x, y) 0.058 0.061 0.046 0.061 0.061 0.064

g
(IC)
2 (x, y) 0.059 0.035 0.186 0.057 0.010 0.080

g
(OC)
3 (x, y) 1.000 1.000 1.000 1.000 1.000 1.000

g
(OC)
4 (x, y) 1.000 1.000 1.000 1.000 1.000 1.000

g
(OC)
5 (x, y) 0.999 1.000 1.000 1.000 1.000 1.000

Table 5.1: Empirical sizes and powers of the proposed method for various images using
different values of the bandwidth parameter hn.

object. For this purpose, we consider the test image in figure 5.6 with resolution 128×128

(i.e., n = 128) and generatem = 36 Phase I images by rotating the image object by equally

spaced rotation angles. To each image, we add a zero-mean Gaussian noise with standard

deviation (σ) equaling 0.02. In this study, we fix the nominal in-control ARL0 = 20. Note

that the number of Phase I images and the pre-defined ARL0 value in our experiment are

relatively small compared to the conventional SPC literature. This is primarily due to

limited availability of similar images in practical scenarios. To set the control limit at a

pre-fixed ARL0, we use the bootstrap technique described in Section 5.2.3. We divide the

simulation performance in two parts. The first part evaluates the in-control performance,

and the second one evaluates the out-of-control performance. Based on the definition of

average run length, we anticipate a high value of ARL1, i.e., close to the value of pre-fixed

ARL0 = 20 for the in-control images, and a substantially low value of ARL1 for the

out-of-control images.

In-control performance: Based on in-control image samples, we numerically compare

the performance of the proposed method with the state-of-the-art method proposed by

Zang and Qiu (2018b) which we call Zang-Qiu hereafter. When we refer to in-control

image samples, we mean that the shape and size of the image object remain unchanged

but there could be rigid-body transformation such as rotation and/or translation of the

image object. See Figure 5.5 for various in-control images. Another intriguing situation

with potential application is depicted in Figure 5.5(c) where there is a smooth change in
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σ2 = 0.02 σ2 = 0.05
(n = 128, hn = 3

n
) Proposed Wang-Ye Proposed Wang-Ye

g
(IC)
1 (x, y) 0.041 1.000 0.043 1.000

g
(IC)
2 (x, y) 0.041 1.000 0.041 1.000

g
(OC)
3 (x, y) 1.000 1.000 1.000 1.000

g
(OC)
4 (x, y) 1.000 1.000 1.000 1.000

g
(OC)
5 (x, y) 1.000 1.000 0.999 1.000

σ2 = 0.02 σ2 = 0.05
(n = 256, hn = 3

n
) Proposed Wang-Ye Proposed Wang-Ye

g
(IC)
1 (x, y) 0.061 1.000 0.061 1.000

g
(IC)
2 (x, y) 0.035 1.000 0.010 1.000

g
(OC)
3 (x, y) 1.000 1.000 1.000 1.000

g
(OC)
4 (x, y) 1.000 1.000 1.000 1.000

g
(OC)
5 (x, y) 0.999 1.000 1.000 1.000

Table 5.2: Empirical sizes and powers of the proposed method and its competitor for
various in-control and out-of-control images.

the background of the image object. The first two rows of Table 5.3 show the average

run length for both, the proposed method and the competing method, based on 1000

replications. We perform out the simulation experiment using two values of the allowance

parameter κ. As the images are in-control, it is expected that the value of the ARL1

should be close to ARL0. Across all the scenarios of the this example, our proposed al-

gorithm emerges as the superior choice. The competing method performs comparatively

fairly only in the case of rigid-body transformation. In presence of smooth changes in the

background, competing method fails to disregard it appropriately. Therefore, we should

be more cautious to use the competing method in real-life scenarios. In contrast, the

proposed method consistently achieves ARL1 value close to the prefixed ARL0 value in

the situations mentioned in this example for in-control images. It ignores unimportant

alternation of foreground and background image intensity values quite well. Hence, ac-

cording to the in-control performance, the proposed method outperforms its competitor

in each of the aforementioned scenarios.

Out-of-control performance: Now, we evaluate the out-of-control performance of the

proposed method in comparison with Zang-Qiu. Figure 5.6 shows various types of out-

of-control test images. Out-of-control images contain alterations of the shape and/or size

of the image object even after accommodating rigid-body transformations, if there is any.

Table (5.3) shows ARL1 values based on 1000 replications for two values of the allowance

parameter κ. In each replication of run length, we choose the first 4 images to be in-
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Proposed Zang-Qiu
(n = 128, hn = 3

n
) κ = 0.1 κ = 0.5 κ = 0.1 κ = 0.5

g
(IC)
1 (x, y) 15.76 (5.46) 14.84 (6.57) 12.03(1.02) 11.09 (1.05)

g
(IC)
2 (x, y) 18.38 (7.40) 19.31 (9.95) 7.95 (0.47) 7.33 (0.51)

g
(OC)
3 (x, y) 1.09 (0.29) 1.00 (0.00) 7.70 (1.01) 6.76 (1.03)

g
(OC)
4 (x, y) 1.01 (0.10) 1.00 (0.00) 8.19 (0.98) 7.22 (1.03)

g
(OC)
5 (x, y) 1.00 (0.00) 1.00 (0.00) 7.29 (0.87) 6.35 (0.91)

Table 5.3: Mean ARL of the proposed method and its competitor for various simulated
in-control and out-of-control images.

control, and subsequent images to be out-of-control. If a method raises signal before the

5-th time point, we exclude the replication from ARL1 calculation. From Table (5.3) we

see that the proposed method has a significantly better performance in each case of this

example as compared to Zang-Qiu. The proposed algorithm raise a signal at the earliest

possible time, while the competing method has higher values of ARL1 in each case of the

current example. Note that, a larger ARL1 in the presence of a sequence of out-of-control

images implies more detection delay.

5.5 Real Data: Monitoring Salton Sea Area

In this section, we present the performance of the proposed method for the surveillance real

images. We collect the image data of the Salton Sea area from the LANDSAT project

(Data source: https://earthexplorer.usgs.gov/). As discussed in Section 5.1, the

area of Salton sea is shrinking gradually over time and this is due to the population

growth, water demand or weather condition. The local ecosystem of animals and plants

Figure 5.8: Cropped satellite images of the Salton sea area captured in 2014 (left), 2018
(middle), and 2022 (right).

[Shuford et al. (2002)] are badly impacted by the shrinkage of Salton sea. It is the largest

inland lake at the southernmost part of California. In this example, our primary objective

is to monitor the shape and size of Salton sea using radial distances. Figure 5.8 shows

https://earthexplorer.usgs.gov/
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the Salton sea area in 2014, 2018, and 2022. For image surveillance, we consider the

images of Salton Sea captured at the second quarter of each year from 2014 to 2023. We

consider the images captured in 2014 as in-control images and construct the control chart

as discussed in Section 5.2.3. We generate 30 Phase I sample images by employing rigid-

body transformations on the in-control images. For testing purpose, we use the images

captured at the second quarter from 2015 to 2023. In this study, we fix the in-control ARL

to be 20. Now, we are at the stage of monitoring the sequence of images of the Salton sea

region. Firstly, we detect the boundary curve by the LLK method discussed in Section

5.2.1, and estimate the location of the centroid by the sample mean of the coordinates of

the detected edge pixels. As the proposed method does not directly depend on the image

intensity values, it can ignore the small intensity changes due to the presence of clouds in

the satellite images of Salton sea. Moreover, we ignore the falsely detected edge pixels by

the algorithm mentioned in Section 5.4.2. In Phase II, we find that the mean of the steady

state ARL1 is equals to 3.52 with the standard deviation of the run lengths equaling 0.687,

while the corresponding median of ARL1 being 4, based on 500 replications. Therefore,

the first signal given by the proposed CUSUM method is at the second quarter of 2018.

Figure 5.9 shows the result of online monitoring by the proposed method.

Figure 5.9: Online monitoring of Salton sea images. The horizontal line indicates the
control limit and the image samples before the vertical line are assumed as in-control.

Note that, we are unable to find any other study based on the recent LANDSAT

dataset of Salton sea area from 2014-2023. In literature [Jones and Fleck (2020); Yi and

Qiu (2023)], there exists a number of studies that validate the long-term decline of Salton

Sea shoreline. Nonetheless, the proposed algorithm shows a notable shift in the time

period from 2014 to 2018. See Figure 5.10 for year-wise plot of the distribution of the

radial distance. We believe that further ecological research is necessary to investigate

such a rapid decline of the Salton sea area.
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Figure 5.10: Estimated cumulative distribution functions (ECDFs) of the radial distances
of the Salton sea images.

5.6 Concluding Remarks

Motivated by the issue of image registration while comparing or monitoring images such

as satellite images, we develop a novel procedure to compare and monitor the shape and

size of an image object in presence of rigid-body transformation. In literature, this is

a well-known and well-discussed problem. However, as per our knowledge, this is one

of the first attempts to bypass the step of image registration, and address the problem

of image comparison and monitoring appropriately. Numerical studies and theoretical

justifications show that it has an effective and reliable performance in various scenarios

examined.

Below we point out a number of issues that we have not taken into account in this

chapter regarding the proposed method, and are worthy of further investigations. To

begin with, the test based on equality of the distributions of the radial distances is not

equivalent to the test of equality of the shapes and sizes of an image object in two images.

It is theoretically possible to intelligently construct image objects of different shapes but

having the same distribution of the radial distances. However, such examples are rare

in practical situations. In reality, the proposed method is useful and capable to detect

changes of the shape and/or size of a large class of image objects. Secondly, only rigid-

body transformation is assumed in this chapter. In satellite imaging, scaling or zooming

transformation [Das et al. (2024)] is also very widespread. Therefore, scale invariant

extension of the proposed method will be useful in practice. Lastly, the proposed method

assumes that the images over time are independent. However, in practice, there could

be serial correlation or other data dependence among the images. Extensive research is

needed to address these issues.
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Concluding Remarks and Future

Directions

In this dissertation, we introduce innovative image comparison and monitoring schemes to

tackle various issues that have not been addressed in the literature yet. The core strength

of this dissertation lies in its simplicity, novel ideas, and wide-ranging applications to

real-world data scenarios. Remembering the comment by renowned statistician, Prof.

Prasanta Chandra Mahalanobis, “Statistics is the universal tool of inductive inference,

research in natural and social sciences, and technological applications,” we believe that our

methodological advancements will be highly beneficial to practitioners in various fields.

6.1 Limitations And Future Scopes

In this section, we discuss some limitations of our work presented in this dissertation.

The current contributions primarily focus on the rapid detection of faults and anoma-

lies through lower ARLs rather than estimating the sizes and locations of faults within

the image. However, estimating the fault size and location are important aspects in the

field of image monitoring/surveillance. An important avenue for future work would be to

extend these methods to estimate the locations and sizes of the faults. Throughout the

dissertation, we have assumed that the time-varying images are independent; however, it

would be more practical to accommodate spatio-temporal correlation in the observed im-

age sequence. In literature, there are several studies which attempt to account for spatial

correlation in the images, for example Otto (2019) and Okhrin et al. (2020). However,

the discussion remains limited when it comes to jump-preserving surveillance of spatio-

temporal image sequences. Recently, Yi and Qiu (2021) provide jump preserving image

denoising procedure in the presence of spatio-temporal correlation structure. Extending

95
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our current research to monitor spatio-temporal image sequences would be a valuable

future direction. In most of the chapters, we have assumed that images are aligned ge-

ometrically. In chapter 5, we propose an algorithm for monitoring the shape and size of

an image object that can handle image misalignment issues by its construction. Nonethe-

less, significant future research is needed to tackle this issue for more general images.

Furthermore, in some image monitoring applications, the in-control distribution of image

sequences might change over time due to seasonality. This type of situation is common

in satellite imaging and mostly opens areas for further investigation. Image monitoring

scheme, accommodating time-varying in-control distribution needs much future research

effort.

6.2 Possible Future Research Areas Related to Mon-

itoring

Research on monitoring network data, surveillance of Riemannian functional data, etc.,

are limited in the literature and currently are important to explore.

Network data monitoring: Network sequence has been frequently used for describing

the longitudinal pattern of a dynamic system. In practice, to characterize the state of a

network at a given time point, people use tools from graph theory. Since the relationship

among nodes in a graph often evolves over time, monitoring network sequence can be

viewed as dynamic process monitoring. See Stevens et al. (2021a,b); Dong et al. (2020)

for more discussions on monitoring network data.

Statistical process monitoring of Riemannian function data: This challenging

task involves monitoring functional data where each function value lies on a Riemannian

manifold, as opposed to traditional functional data analysis where the observations are in

Euclidean space [Dai and Müller (2018); Su et al. (2014)]. This has wide applications in

statistical shape monitoring.



Appendix A

Appendix with Additional Details

A.1 Sketches of Proofs of the Stated Propositions in

Chapter 2

A.1.1 Proof of Proposition 2.3.1

Using Theorem 1 of Mei (2010), as Λ0 →∞,

E∞

{
Tsum(Λ0)

}
≥

(
1 + o(1)

)[ exp(Λ0)

1 + Λ0 + Λ2
0/2! + . . .+ Λ

(n2−1)
0 /(n2 − 1)!

]
.

We know that, Tsum(Λ0) ≤ T
(r)
sum(Λ0). Hence,

E∞

{
T

(r)
sum(Λ0)

}
≥ E∞

{
Tsum(Λ0)

}
,

i.e., E∞{T (r)
sum(Λ0)} ≥

(
1 + o(1)

)[ exp(Λ0)

1 + Λ0 + Λ2
0/2! + . . .+ Λ

(n2−1)
0 /(n2 − 1)!

]
.

■

A.1.2 Proof of Proposition 2.3.2

Define Tsum(a) = inf
{
t ≥ 1 :

∑n
ℓ=1C

(ℓ)
k > a

}
as the stopping time of the SUM-scheme

of the CUSUM statistic. Then, by Theorem 1 of Mei (2010), as a→∞ ,

E
(p1,p2,...,ps)

(Tsum(a)) ≤

[
2aσ2∑

(x,y)∈S(f0(x, y)− f1(x, y))2

]
+O(1).
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Now, we know that T
(r)
sum

(
a(n2−r+1)

n2

)
≤ Tsum(a). Therefore,

E
(p1,p2,...,ps)

[
T

(r)
sum

(
a(n2 − r + 1)

n2

)]
≤ E

(p1,p2,...,ps)
(Tsum(a)),

i.e., E
(p1,p2,...,ps)

[
T

(r)
sum

(
a(n2 − r + 1)

n2

)]
≤ 2aσ2∑

(x,y)∈S(f0(x, y)− f1(x, y))2
.

For fixed r and n, as a→∞, Λ0 =
(

a(n2−r+1)
n2

)
→∞.

Therefore, as Λ0 →∞, E
(p1,p2,...,ps)

(T
(r)
sum(Λ0)) ≤

2Λ0

(
n2

n2−r+1

)
σ2∑

(x,y)∈S(f0(x,y)−f1(x,y))2
. ■

A.2 Sketches of Proofs of the Stated Propositions in

Chapter 3

Lemma A.2.1. Under the conditions stated in Proposition 3.6.1, we have, for i1, i2 =

0, 1, 2,∥∥∥∥∥ 1

n2h2
n

∑(
xi − x

hn

)i1 (yj − y

hn

)i2

K

(
xi − x

hn

,
yj − y

hn

)
− νi1i2

∥∥∥∥∥
Ωhn

= O

(
1

nhn

)

and ∥∥∥∥ 1

n2h2
n

∑
εijK

(
xi − x

hn

,
yj − y

hn

)∥∥∥∥
Ωhn

= o

(
βn log(n)

nh

)
a.s.

Proof of Lemma A.2.1: See Proposition 2 of Qiu (2009) for the proof of Lemma A.2.1.

■

Lemma A.2.2. Under the conditions in Proposition 3.6.1, we have

∥â− f∥ΩĒ,hn
= O

(
h2
n

)
+ o

(
βn log n

nhn

)
a.s.∥∥∥b̂− f ′x

∥∥∥
ΩĒ,hn

= O (hn) + o

(
βn log n

nh2
n

)
a.s.

∥∥ĉ− f ′y
∥∥
ΩĒ,hn

= O (hn) + o

(
βn log n

nh2
n

)
a.s.

On the other hand, if (x, y) ∈ Ehn\Sϵ, then we have
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 â

b̂

ĉ

 =

 f−(x, y)

f ′x(x̃, ỹ)

f ′y(x̃, ỹ)

+


ϕ0(x, y)C(x, y) +O (h2

n) + o
(

βn logn
nhn

)
ϕ1(x, y)C(x, y) + γ1(x, y)Cx(x, y) +O (hn) + o

(
βn logn
nh2

n

)
ϕ2(x, y)C(x, y) + γ2(x, y)Cy(x, y) +O (hn) + o

(
βn logn
nh2

n

)
,

where f−(x, y) is the smaller of the two one-sided (due to JLC ) limits of f at (x, y), (x̃, ỹ)

is some point around (x, y) that satisfies (i) it is a continuity point of f that is on the same

side of the JLC as (x, y), and (ii) D((x̃, ỹ), (x, y)) ∼ O(1/n), C(x, y), Cx(x, y), Cy(x, y)

are absolute jump magnitudes of f(x, y) and its first order x and y partial derivatives,

ϕ1(x, y) and ϕ2(x, y) are two constants satisfying√
ϕ2
1(x, y) + ϕ2

2(x, y) = O (1/hn) a.s.,

γ1(x, y) and γ2(x, y) are two constants between −1 and 1 , and ϕ0(x, y) is a constant

between 0 and 1.

Proof of Lemma A.2.2: When (x, y) ∈ ΩĒ,hn
, by Taylor’s series expansion, for any

(xi, yj) ∈ Bhn(x, y), we have

wij = f (xi, yj) + εij

= f(x, y) + (xi − x) f ′x(x, y) + (yj − y) f ′y(x, y) +O
(
h2
n

)
+ εij.

So, we have
∑

wijKij∑
wij (xi − x)Kij∑
wij (yj − y)Kij

 =

 m00 m10 m01

m10 m20 m11

m01 m11 m02


 f(x, y)

f ′x(x, y)

f ′y(x, y)



+


∑

O (h2
n)Kij +

∑
εijKij∑

O (h2
n) (xi − x)Kij +

∑
εij(xi − x)Kij∑

O (h2
n) (yj − y)Kij +

∑
εij(yj − y)Kij

 .

(A.2.1)

By (3.2.3), (A.2.1) and Lemma A.2.1, we have

 â

b̂

ĉ

 =

 f(x, y)

f ′x(x, y)

f ′y(x, y)

+


O (h2

n) + o
(

βn logn
nhn

)
O (hn) + o

(
βn logn
nh2

n

)
O (hn) + o

(
βn logn
nh2

n

)
 a.s. (A.2.2)

The above expression is an application of Lemma A.2.1 and under the condition of Propo-

sition 3.6.1, it is evident that (A.2.2) is uniformly true for (x, y) ∈ ΩĒ,hn
.

Now, consider the case when (x, y) is on JLC and is not a singular point (i.e.,(x, y) ∈
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Ehn\Sϵ). When n is large enough so that hn < ϵ, then Bhn(x, y) is divided into two

regions by JLC defined as I1 and I2. Without loss of generality we can assume that there

is a positive jump at (x, y) from I1 to I2. For (xi, yj) ∈ I1, we have

wij = f (xi, yj) + εij

= f−(x, y) + (xi − x) f ′x(x̃, ỹ) + (yj − y) f ′y(x̃, ỹ) +O
(
h2
n

)
+ εij.

Similarly, when (xi, yj) ∈ I2, we have

wij = f (xi, yj) + εij

= f−(x, y) + (xi − x) f ′x(x̃, ỹ) + (yj − y) f ′y(x̃, ỹ)

+ C(x, y) + (xi − x)Cx(x, y) + (yj − y)Cy(x, y)

+O
(
h2
n

)
+ εij.

Here (x̃, ỹ) is some point around (x, y) that satisfies the condition mentioned in Lemma

A.2.2. Now, by (3.2.3) and above expression using similar argument of (A.2.2), we have

 â

b̂

ĉ

 =

 f−(x, y)

f ′x(x̃, ỹ)

f ′y(x̃, ỹ)

+


ϕ0(x, y)C(x, y) +O (h2

n) + o
(

βn logn
nhn

)
ϕ1(x, y)C(x, y) + γ1(x, y)Cx(x, y) +O (hn) + o

(
βn logn
nh2

n

)
ϕ2(x, y)C(x, y) + γ2(x, y)Cy(x, y) +O (hn) + o

(
βn logn
nh2

n

)
 ,

where

ϕ0(x, y) =

∑
(xi,yj)∈I2 K

(
xi−x
hn

,
yj−y
hn

)
∑

K
(

xi−x
hn

,
yj−y
hn

) ,

ϕ1(x, y) =

∑
(xi,yj)∈I2 (xi − x)K

(
xi−x
hn

,
yj−y
hn

)
∑

(xi − x)2K
(
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hn

,
yj−y
hn

) ,

γ1(x, y) =

∑
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(
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)
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) ,
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(
xi−x
hn
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hn

)
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xi−x
hn
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yj−y
hn

) ,
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∑
(xi,yj)∈I2 (yj − y)2K

(
xi−x
hn

,
yj−y
hn

)
∑

(yj − y)2K
(
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hn

,
yj−y
hn

) .

From the above expression, it is clear that γ1 and γ2 are always positive constants

between 0 and 1 and ϕ0 is a constant between 0 to 1. From Lemma A.2.2, we know that

Cx(x, y) and Cy(x, y) is the absolute jump magnitude of f ′x and f ′y respectively, therefore



A.2 Sketches of Proofs of the Stated Propositions in Chapter 3 101

γ1 and γ2 are constants between -1 and 1. By similar idea of Qiu and Yandell (1997) it is

easy to check
√

ϕ2
1(x, y) + ϕ2

2(x, y) = O (1/hn) a.s.. Hence Lemma A.2.2 is proved. ■

A.2.1 Proof of Proposition 3.6.1

For a design point (x, y) ∈ ΩS̄,ϵ, if it is more than hn away from any JLC, then at least

one of Bhn (xP1 , yP1) and Bhn (xP2 , yP2) is located in a same continuous region as (x, y).

So, we have

λ(x, y) ≤
∥∥∥β̂(x, y)− β̂N1(x, y)

∥∥∥ = O (hn) + o

(
βn log n

nh2
n

)
a.s.

The above expression is a direct application of Lemma A.2.2. From the fact χ2
2,(1−αn)

≤
2χ2

1,(1−αn)/2
and the Mill’s inequality regarding normal tail probabilities it can be shown

easily that

χ2
2,(1−αn) = O (− log(1− αn)) .

Using the above fact, Lemma A.2.1, and the expression of threshold value, it is not difficult

to check that vn = O

(
n
√
− log(1−αn)

(nh2
n)

5/2

)
a.s. So under the condition (nhn)

7/2

n2
√
− log(1−αn)

= o(1),

we have λ(x,y)
vn

= o(1) a.s. which implies λ(x, y) < vn a.s. The above expression establishes

the fact that when n is large enough, a design point (x, y) on the continuous region is

not detected as an edge point, and this is uniformly true for all (x, y) ∈ ΩS̄,ϵ ∩ ΩĒ,hn
.

Therefore,

sup
(x,y)∈Ên∩ΩS̄,ϵ

inf
(x′,y′)∈E∩ΩS̄,ϵ

D
(
(x, y)T , (x′, y′)

T
)
= O (hn) a.s. (A.2.3)

Now, consider the case where (x, y) is a non-singular point on a JLC, Then, by Lemma

A.2.2, we have

λ(x, y) ∼ C(x, y)
√

ϕ2
1(x, y) + ϕ2

2(x, y) +O (hn) + o

(
βn log n

nh2
n

)
a.s.

From Lemma A.2.2, we know that
√
ϕ2
1(x, y) + ϕ2

2(x, y) = O (1/hn) a.s. . By the

condition
√
−log(1−αn)

(nhn)3
= o(1) from Proposition 3.6.1, we have λ(x, y) > vn a.s.. Therefore,

(x, y) would be detected almost surely as edge points when n is large enough. By the

definition of singular point discussed in Section 3.6, since min(x,y)∈D∩ΩS̄,ϵ
C(x, y) > 0, the

above result is uniformly true for (x, y) ∈ E ∩ ΩS̄,ϵ.

Therefore,

sup
(x,y)∈E∩ΩS̄,ϵ

inf
(x′,y′)∈Ên∩ΩS̄,ϵ

D
(
(x, y)T , (x′, y′)

T
)
= O (hn) a.s. (A.2.4)
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By (A.2.3) and (A.2.3), Proposition 3.6.1 is proved. ■

A.3 Sketches of Proofs of the Stated Propositions in

Chapter 4

Assume that there exists a finite partition {Γl, l = 1, 2, . . . P} of the design space [0, 1]×
[0, 1] such that (i) each Γl is a connected region in the design space. (ii) Define ∂Γl as the

set of boundary points in Γl and f(x, y) is continuous in Γl \ ∂Γl, for l = 1, 2, . . . , P . (iii)⋃P
i=1 Γl = Ω. (iv) There exists at most finitely many points {(x∗k, y∗k), k = 1, 2, . . . , K∗} in

[
⋃n

i=1 ∂Γ]
⋂

Ω such that for each (x∗, y∗) with k = 1, 2, . . . K∗, there are Γ∗k1 ,Γ
∗
k2
∈ {Γl, l =

1, 2, . . . P} satisfying (a) (x∗, y∗) ∈ Γ∗k1
⋂

Γ∗k2 , and (b) lim(x,y)→(x∗,y∗),(x,y)∈Γ∗
k1
f(x, y) =

lim(x,y)→(x∗,y∗),(x,y)∈Γ∗
k2
f(x, y). In the JRA literature, we call [

⋃n
i=1 ∂Γ]

⋂
Ω the jump loca-

tion curves (JLCs) of the discontinuous image regression surface.

Lemma A.3.1. Under the conditions in Proposition 4.4.1, if (x, y) ∈ ΩĒ,ϵ, then

S(x, y, hn)
a.s.→ σ.

Proof of Lemma A.3.1: As (x, y) ∈ ΩĒ,ϵ, the circular neighborhood B(x, y;hn) lies in

a continuous region. Then, the pixel intensities in B(x, y;hn) are i.i.d. with E(wℓ
xy) = µ

(say), and var(wℓ
xy) = σ2, where {wℓ

xy : ℓ = 1, 2, . . . , |B(x.y;hn)|} are the observed pixel

intensities in the circular neighborhood B(x, y;hn). Now,

S2(x, y, hn) =
1

|B(x, y;hn)|
∑
ℓ

(wℓ
xy − w̄xy)

2

=
1

|B(x, y;hn)|
∑
ℓ

{(wℓ
xy − µ) + (µ− w̄xy)}2

=
1

|B(x, y;hn)|
∑
ℓ

(wℓ
xy − µ)2 + (µ− w̄xy)

2 + 2(µ− w̄xy)
1

|B(x, y;hn)|
∑
ℓ

(wℓ
xy − µ)

=
1

|B(x, y;hn)|
∑
ℓ

(wℓ
xy − µ)2 − (µ− w̄xy)

2

By the strong law of large numbers (SLLN), 1
|B(x,y;hn)|

∑
ℓ(w

ℓ
xy−µ)2

a.s.−−→ σ2 and w̄xy
a.s.−−→ µ.

Therefore, by the additive property of almost sure convergence, S(x, y, hn)
a.s.→ σ. ■
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A.3.1 Proof of Proposition 4.4.1:

Note that from Lemma A.3.1, if (x, y) ∈ ΩĒ,ϵ, then S(x, y, hn)
a.s.→ σ. Similarly, σ̂

a.s.→ σ.

Hence the first statement is correct. Now consider the situation where (x, y) ∈ Ehn , i.e.,

there are two clusters in B(x, y;hn). Then,

S2(x, y, hn) =
n1s

2
1 + n2s

2
2

n1 + n2

+
n1n2

(n1 + n2)2
(x̄1 − x̄2)

2,

where x̄i and s2i represents the sample mean and sample variance of the intensities from

the i-th segment in B(x, y;hn), for i = 1, 2. Now, using a similar argument as in the proof

of Lemma A.3.1, it can be shown that
n1s21+n2s22

n1+n2

a.s.−−→ σ2. Note that (x̄1 − x̄2)
2 a.s.→ (JS)2,

where JS is the jump size. For κ = 1, under the conditions in Proposition 4.4.1, the

statement is correct under any positive JS. Similarly, for a larger κ, the statement is also

correct when JS is large enough. ■

Proof of Corollary 4.4.3: For (x, y) ∈ Ehn , if we wish not to perform local clustering

in the circular neighborhood B(x, y;hn), then using (i) of Proposition 4.4.1,

S2(x, y, hn) =
n1s

2
1 + n2s

2
2

n1 + n2

+
n1n2

(n1 + n2)2
(x̄1 − x̄2)

2 ≤ κ2σ̂2.

Now, (x̄1 − x̄2)
2 a.s.→ ζ2, S(x, y, hn)

a.s.→ σ, and σ̂
a.s.→ σ. Therefore, from the above in-

equality, it is clear that the proposed algorithm almost surely decides not to cluster if

κ ≥
√
(1 + ζ2/σ2). ■

To prove Proposition 4.4.4, we start with the following Lemma.

Lemma A.3.2. Under H0, for an arbitrary pixel (x, y) ∈ B(x, y;hn),

H(C(x, y))− I(C(x, y), C ′(x, y)) = O(δ) a.s.

Proof of Lemma A.3.2: Here we are assuming that (x, y) ∈ Ehn , i.e., B(x, y;hn)

contains a JLC. The situation when (x, y) is in a continuity region, the proof will be

similar and trivial.

Define the following:

pc1 =
1
t
|{pixels in B(x, y;hn) of image 1 > c0 }|,

pc2 =
1
t
|{pixels in B(x, y;hn) of image 1 ≤ c0 }|,

pc′1 =
1
t
|{pixels in B(x, y;hn) of image 2 > c′0 }|,
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pc′2 =
1
t
|{pixels in B(x, y;hn) of image 2 ≤ c′0 }|,

p(1, 1) =
1
t
|{pixels in B(x, y;hn) of image 1 > c0 }

⋂
{pixels in B(x, y;hn) of image 2 > c′0 }|,

p(1, 2) =
1
t
|{pixels in B(x, y;hn) of image 1 > c0 }

⋂
{pixels in B(x, y;hn) of image 2 ≤ c′0 }|,

p(2, 1) =
1
t
|{pixels in B(x, y;hn) of image 1 ≤ c0 }

⋂
{pixels in B(x, y;hn) of image 2 > c′0 }|,

p(2, 2) =
1
t
|{pixels in B(x, y;hn) of image 1 ≤ c0 }

⋂
{pixels in B(x, y;hn) of image 2 ≤ c′0 }|,

where |.| denotes the cardinality of a set and t is defined as the number of pixels in the

circular neighborhood B(x, y;hn). Clearly, t = O(n2h2
n).

Then, we have the following results:

H(C(x, y)) = −pc1log(pc1)− pc2log(pc2),

H(C ′(x, y)) = −pc′1log(pc′1)− pc′2log(pc′2),

I(C(x, y), C ′(x, y)) = p(1, 1)log p(1,1)
pc1.pc′1

+p(1, 2)log p(1,2)
pc1.pc′2

+p(2, 1)log p(2,1)
pc2.pc′1

+p(2, 2)log p(2,2)
pc2.pc′2

.

As δ is the maximum mis-classification probability, under H0,

(a) p(1, 1)− pc1 = O(δ) a.s.,

(b) pc1 − pc′1 = O(δ) a.s.,

(c) p(1, 2) = O(δ) a.s.

Using (a)-(c), we have the following results:

pc1log(pc1)− p(1, 1)log
p(1, 1)

pc1.pc′1
= O(δ) a.s.,

pc2log(pc2)− p(2, 2)log
p(2, 2)

pc2.pc′2
= O(δ) a.s.,

p(1, 2)log
p(1, 2)

pc1.pc′2
= O(δ) a.s.,

p(2, 1)log
p(2, 1)

pc2.pc′1
= O(δ) a.s.

Therefore, under H0, H(C(x, y))− I(C(x, y), C ′(x, y)) = O(δ) a.s. ■
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A.3.2 Proof of Proposition 4.4.4:

Note that

TV I =
1

n2

∑
i,j

DV I(C(xi, yj), C ′(xi, yj)),

where DV I(C(xi, yj), C ′(xi, yj)) is the dissimilarity metric between the clustering outcomes

within B(xi, yj;hn) for the two images. We have

DV I(C(xi, yj), C ′(xi, yj)) = H(C(xi, yj)) +H(C ′(xi, yj))− 2I(C(xi, yj), C ′(xi, yj)),

where H(C(xi, yj)) and H(C ′(xi, yj)) are the entropy values corresponding to the images,

and I(C(xi, yj), C ′(xi, yj)) is the mutual information among them.

Under H0, the true image intensity function of both images are same. Therefore, it

can be shown easily that

H(C(xi, yj))− I(C(xi, yj), C ′(xi, yj)) = O(δ) a.s.

H(C ′(xi, yj))− I(C(xi, yj), C ′(xi, yj)) = O(δ) a.s.

Hence, TH0
V I = O(δ) a.s. ■

Now consider the situation when H1 is true, i.e., the true image intensity functions are

not the same. The change in a neighborhood of the reference image implies a situation

where the neighborhood with no clustering (i.e., neighborhood in a continuity region)

transformed into a neighborhood with two clusters (i.e., neighborhood contains JLCs),

neighborhood with two clusters transformed into neighborhood with no cluster. Moreover,

there is also a possibility where the number of clusters is the same but cluster sizes are

different. Let us define the following notations:

A0 : regions with no change,

A1 : regions where the continuity region is transformed into regions with two clusters,

A2 : regions with two clusters, that are transformed into regions with continuity region,

A3 : regions where the change is due to cluster sizes only.
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Then,

TH1
V I =

1

n2

∑
i,j

DV I(C(xi, yj), C
′(xi, yj))

=
1

n2

[∑
A0

DV I(C(xi, yj), C ′(xi, yj)) +
∑
A3

DV I(C(xi, yj), C ′(xi, yj))

+
∑
A1∪A2

DV I(C(xi, yj), C ′(xi, yj))
]
.

In A0, DV I(C(xi, yj), C ′(xi, yj)) = O(δ) a.s., since this case is similar to the situation

under H0. Also, in A3, i.e., the middle term of the above expression is always strictly

positive by the property of a metric. Thus in A3, DV I(C(xi, yj), C ′(xi, yj)) = O(δ) + c1

a.s., for some c1 > 0. Moreover, using the linearity property of the VI metric, it can be

shown that for any (i, j) ∈ A1∪A2, DV I(C(xi, yj), C ′(xi, yj)) = H(C(xi, yj))+H(C ′(xi, yj))

a.s., and at least one of H(C(xi, yj)) and H(C ′(xi, yj)) is strictly positive. Therefore, for

(i, j) ∈ A1 ∪ A2, DV I(C(xi, yj), C ′(xi, yj)) = c2 a.s., where c2 > 0. Hence, combining all

results, TH1
V I = O(δ) + c a.s. for some c > 0. ■

A.4 Sketches of Proofs of the Stated Propositions in

Chapter 5

Lemma A.4.1. Under the assumption mentioned in Proposition 5.3.1 in Section 5.3,

DH(E ∩ ΩS̄,hn
, Ê ∩ ΩS̄,hn

) = O(hn), a.s.,

where DH(A,B) is the Hausdorff distance between two point-sets A and B.

Proof of Lemma A.4.1: See Theorem 1 of Kang and Qiu (2014) for the proof of Lemma

A.4.1. This lemma demonstrates the strong consistency of the detected edge pixels using

the LLK-based jump location curve estimation procedure described in Section 5.2.1. ■

Intuitively, it is evident from the proof of Lemma A.4.1 that any pixel within a circular

neighborhood of hn of the true edge pixel is detected as edge pixel with probability one

when the image resolution is large, i.e., n→∞, P
[
(xi, yj) is detected as edge pixel

]
= 1,

if D((x, y), (xi, yj)) ≤ hn for (x, y) ∈ E ∩ ΩS̄,hn
.

Similarly, P
[
(xi, yj) is NOT detected as edge pixel

]
= 1, if D((x, y), (xi, yj)) > hn for

(x, y) ∈ E ∩ ΩS̄,hn
.
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A.4.1 Proof of Proposition 5.3.1:

From Lemma A.4.1, we know that DH(E ∩ ΩS̄,hn
, Ê ∩ ΩS̄,hn

) = O(hn) a.s.

Let us define U = E ∩ ΩS̄,hn
and Û = Ê ∩ ΩS̄,hn

. Then we have,

DH(U, Û) = max{δ(U, Û), δ(Û , U)}, . . . . . . . . . (i)

where δ(U, Û) = sup(x,y)∈U inf(x′,y′)∈Û D((x, y), (x′, y′)).

Therefore, from (i), we have

δ(U, Û) ≤ O(hn), a.s., . . . . . . . . . (ii)

δ(Û , U) ≤ O(hn), a.s. . . . . . . . . . (iii)

From (ii),

sup
(x,y)∈U

inf
(x′,y′)∈Û

D((x, y), (x′, y′)) ≤ O(hn) a.s.

i.e., inf
(x′,y′)∈Û

D((x, y), (x′, y′)) ≤ O(hn) a.s., ∀(x, y) ∈ U.

Therefore, given any (x, y) ∈ U , ∃(x′, y′) ∈ Û such that D((x, y), (x′, y′)) ≤ O(hn), a.s.

Similarly, using (iii), given any (x′, y′) ∈ Û , ∃(x, y) ∈ U such that D((x′, y′), (x, y)) ≤
O(hn) a.s.

Hence,

Ĉ =
∑n

i,j=1 (x
′
i, y
′
j)I(x′

i,y
′
j)
(Û)

|Û |
=

∑n
i,j=1 (xi, yj)I(x′

i,y
′
j)
(Û)

|Û |
+O(hn) a.s. . . . . . . (iv)

Here, we replace each (x′i, y
′
j) ∈ Û by (xi, yj) + O(hn), where (xi, yj) is the nearest true

edge pixel in U . Due to Lemma A.4.1, if a non-singular pixel is within hn-neighborhood of

a JLC, it will be detected as an edge pixel almost surely. Hence, the detected edge pixels

around the true JLC form a band of width 2hn = 1
n
(2nhn). Note that 1

n
is the distance

between two nearest pixels. Hence, for large n, the number of detected edge pixels for

which we get the same closest true edge pixel is (2nhn − o(nhn)). We subtract o(nhn)

because the asymptotic probability that we fail to detect a pixel as an edge pixel within

hn of a true JLC is zero. Consequently,

|Û |
2nhn|U |

a.s.−−→ 1 . . . . . . . . . (v)
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Therefore, for large n,∑n
i,j=1 (xi, yj)I(x′

i,y
′
j)
(Û)

|Û |
=

(2nhn − o(nhn))
∑n

i,j=1 (xi, yj)I(xi,yj)(U)

|Û |
. . . . . . . . . . (vi)

From (iv), (v), and (vi), Ĉ a.s.−−→ |U |−1
∑n

i,j=1(xi, yj)I(xi,yj)(U) = C.
Hence, Proposition 5.3.1 is proved. ■

Proof of Corollary 5.3.2:

From Proposition 5.3.1, it is clear that, for a detected jump point (xi, yj) ∈ Û there exists

at least one (x, y) such that D((xi, yj), (x, y)) = O(hn) a.s. Then,

D((xi, yj), Ĉ) ≤ D((xi, yj), (x, y)) +D((x, y), Ĉ)

≤ O(hn) +D((x, y), C) +D(C, Ĉ) a.s.

= D((x, y), C) +O(hn) a.s.

Similarly, D((x, y), C) ≤ D((xi, yj), Ĉ) +O(hn) a.s.

Therefore, |D((xi, yj), Ĉ)−D((x, y), C)| = O(hn) a.s. ■

Proof of Corollary 5.3.3:

Let RDn be one sample radial distance from F̃ . Then,

F̃ (z) = P(RDn ≤ z)

= P(RD +O(hn) ≤ z) a.s. (from Corollary 5.3.2)

= F (z +O(hn)) a.s.

Therefore, under the assumption that the distribution of the radial distance is absolutely

continuous, for large n, F̃ (z)
a.s.−−→ F (z). ■

A.4.2 Proof of Proposition 5.3.4:

From Corollary 5.3.3, it is clear that

F̃1(z)
a.s.−−→ F1(z),

F̃2(z)
a.s.−−→ F2(z).

Note that,

TCVM(F̃1, F̃2) =
r1r2

r1 + r2

∫ ∞
−∞

[F̃1(x)− F̃2(x)]
2dF̃c(x)
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Note that, F̃1(z) and F̃2(z) are the plug in estimator of F1 and F2, respectively. From

Corollary 5.3.3, we have shown that F̃1(z) and F̃2(z) are consistent estimates of the

distribution from which the samples are drawn. Therefore, the procedure is consistent,

i.e., TCVM(F̃1, F̃2)
a.s.−−→ TCVM(F1, F2). The proof of the proposition follows from Curry

et al. (2019), and Anderson (1962). ■

A.4.3 Theoretical Justification of Bootstrapping in Section 5.2.2

Here we investigate statistical consistency to substantiate the proposed bootstrap algo-

rithm in Section 5.2.2. Before going into details, we introduce relevant notations below.

The distribution of the test statistic TCVM is denoted by F(x), and its empirical distri-

bution is denoted by F̂(x). We denote its bootstrap distribution by F̂∗(x) which can be

expressed as

F̂∗(x) = 1

B

∑
I{T ∗

CV M (F̃1,F̃2)≤x},

where B is the number of bootstrap samples and T ∗CVM(F̃1, F̃2) is the computed Cramér-

von Mises distance with the bootstrapped image samples.

We define the shape difference between two images I1 and I2 by dGH(I1, I2), the

Gromov-Hausdorff distance which is invariant under rigid-body transformation. Now

under H0, I1 = I0 + E1 and I2 = RI0 + E2, where R is a rigid-body transformation

and Ek(k = 1, 2) is the pointwise noise in the two images. Define a transformation

T : Rn×n → R such that

T (I1, I2) = TCVM(F̃1, F̃2).

As radial distance is invariant under rotation and translation on the image object, we

have T (I0, RI0) = 0. Moreover, for a small changes in the shape of the image object the

Cramér-von Mises distance will change a little only. Let us assume that T is continuous

under the metric dGH( ) defined earlier. Thus, given any ϵ > 0, there exists δ > 0 such

that dGH(I1, I∗1 ) ≤ δ,

i.e., |T (I1, I2)− T (I∗1 , I∗2 )| < ϵ

i.e., |T (I0 + E1, RI0 + E2)− T (Î0 + E∗1 , RÎ0 + E∗2)| < ϵ

i.e., T (I0 + E1, RI0 + E2)− ϵ < T (Î0 + E∗1 , RÎ0 + E∗2) < T (I0 + E1, RI0 + E2) + ϵ.

Here E∗k is the added residual can be taken with replacement from the set {Ik − Îk},
k = 1, 2. Hence,

1
B

∑
I{T (I0+E1,RI0+E2)≤x−ϵ} <

1
B

∑
I{T (Î0+E∗

1 ,RÎ0+E∗
2 )≤x}

< 1
B

∑
I{T (I0+E1,RI0+E2)≤x+ϵ}

i.e., 1
B

∑
I{TCV M (F̃1,F̃2)≤x−ϵ} <

1
B

∑
IT ∗

CV M (F̃1,F̃2)≤x} <
1
B

∑
I{TCV M (F̃1,F̃2)≤x+ϵ}

i.e., F̂(x− ϵ) < F̂∗(x) < F̂(x+ ϵ).
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We are now ready to sketch the proof of consistency of F̂∗(x) under Kolmogorov

metric. We start with the definition of bootstrap consistency. By definition, F̂∗ is strongly
consistent of F̂ under Kolmogorov metric if K(F̂∗, F̂) → 0 a.s., where K() denotes

Kolmogorov metric. Now we can write

K(F̂∗, F̂) = sup
x
|F̂∗(x)− F̂(x)| ≤ sup

x
|F̂∗(x)−F(x)|+ sup

x
|F̂ (x)−F(x)|.

By Glivenko Cantelli Theorem, supx |F̂(x) − F(x)| → 0 a.s., as the image resolution

increases. Moreover,

supx |F̂(x− ϵ)−F(x)| ≤ supx |F̂(x− ϵ)−F(x− ϵ)|+ supx |F(x− ϵ)−F(x)|.
Since F(x) is continuous, supx |F(x − ϵ) − F(x)| → 0 and again by Glivenko Cantelli

Theorem, supx |F̂(x− ϵ)−F(x− ϵ)| → 0 a.s. Hence, the proposed bootstrap is strongly

consistent under Kolmogorov metric. ■
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