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ABSTRACT

Over the years, searchable symmetric encryption (SSE) schemes have emerged as

a promising tool for enabling efficient query processing over encrypted data stored

in untrusted cloud servers. This thesis mainly focuses on efficiency and security

enhancements of dynamic searchable symmetric encryption (DSSE) schemes, which

support various query types and are secure against several adversarial conditions.

For any SSE scheme, its query processing, storage, and communication costs are

directly related to the size of the encrypted index stored on the server. A reduction of

the index size naturally leads to enhanced search efficiency and reduced storage and

communication costs. We are unaware of any previous attempts to reduce the index

size of SSE schemes. We introduce a novel technique to directly reduce the index size

of any SSE. Our proposed method generically transforms any secure single keyword

SSE into an equivalently functional and secure version with reduced storage require-

ments, resulting in faster search and reduced communication overhead. Our technique

involves arranging the set of document identifiers db(w) related to a keyword w in the

leaf nodes of a complete binary tree, eventually obtaining a succinct representation of

the set db(w). This compact representation leads to smaller index sizes. We conduct

extensive theoretical analysis to prove the correctness of our scheme. Additionally,

our experiments on real and synthetic data validate the effectiveness of our approach

and demonstrate its practical applicability.

Among the few SSE schemes available in the literature which support complex

query types like conjunctive queries, the oblivious cross tag (OXT) scheme from

Crypto’13 is the most efficient one. OXT has the limitation that it only works for

static databases. In NDSS’20, an extension of OXT called the oblivious dynamic

cross tag (ODXT) was proposed. ODTX supports conjunctive queries with dynamic

updates. However, ODXT is not forward private.

We propose a generic framework for designing conjunctive dynamic SSE (CDSSE)

schemes, supporting conjunctive queries that allow dynamic updates while being both

forward and backward private simultaneously. To the best of our knowledge such a
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scheme does not exist till date. Our scheme assumes a restricted update model where

a document with its associated keywords can be dynamically added to or deleted

from the database as a whole, but the set of keywords for a document is not modified

once uploaded. We define forward and backward privacy for this new setting of

updates and extend the OXT scheme to make it dynamic in the new setting. We

prove the security of our construction against adaptive adversaries and analyse the

precise leakages to the adversarial server. Experiments show that our schemes are

very efficient.

Another less studied aspect of SSE schemes is verifiability. In an SSE scheme,

the server may be dishonest and may not respond to a client’s queries following the

prescribed protocol. A verifiable SSE can detect such anomalous behaviour of a

server. To defend against such malicious adversaries, previous approaches employ

authenticated encryption (AE) to furnish a “proof” for each update. We propose

a new construction where we convert any forward and backward private adaptively

secure SSE scheme into a verifiable SSE. Our construction uses a new class of message

authentication codes (MAC), which we call updatable message authentication codes

(UdMAC). A UdMAC allows the verification tag for a message to be updated with

each modification to the message without recomputing the entire MAC, ensuring

efficiency. We establish security requirements for such a MAC and introduce two

constructions, ConCatU and XoRU, which work with two different types of message

updates, namely, concatenation and exclusive-or (XOR), respectively. Furthermore,

we present the first generic construction for a forward and backward private fault-

tolerant verifiable DSSE using a UdMAC construction and prove its security. Our

construction converts any generic forward and backward secure SSE secure in an

honest-but-curious adversarial model into an equivalently secure DSSE secure in a

malicious adversarial model with faulty updates.
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1
Introduction

Delegating an organization’s or individual’s storage requirements to a third-party

server has become a common practice. Storage as a Service, commonly referred to

as cloud storage, is a model in which providers offer storage solutions to clients.

These solutions are advantageous as they alleviate users from costs associated with

storage-related hardware, software, and maintenance. While outsourcing storage re-

quirements offers convenience and cost-effectiveness, it also raises significant security

concerns. Data protection laws like the General Data Protection Regulation (GDPR)

which is in force in the European Union and the European Economic Area, require

that online service providers using third-party cloud services for storing data must

ensure user privacy “by design and by default”1. Similar policies are applicable to

many other countries also. This makes the problem of securing the data stored in

third party servers even more important, both from the perspective of the user and

the service providers.

Two main dimensions of information security are data confidentiality and in-

tegrity/authenticity. These are applicable in the context of outsourced data also. For

outsourced data, confidentiality means that the data stored in the server should be

unreadable to the server. Integrity means that if the server deviates from the prede-

fined protocols for answering the client’s queries and/or updating the data, then the

client should be able to detect such malicious behaviour of the server. Note that, once

the database is outsourced, the client can no longer monitor its current status. There-

1As in Art. 25 of GDPR as on January 21, 2025. https://gdpr-info.eu/art-25-gdpr/
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fore, it is essential to ensure that the server accurately stores the database, executes

queries, and responds properly to user queries. Thus, the problem of authentica-

tion in the case of outsourced data is as important as the problem of confidentiality.

Note that in this thesis we use both the terms data integrity and authentication

interchangibly.

Historically, the challenge of maintaining data confidentiality has been addressed

through encryption. Secure encryption algorithms ensure that the resulting cipher-

text is indistinguishable from random strings, rendering it practically unreadable for

the server. However, this solution presents a dilemma, as users also require the ability

to query and update the delegated data. Encrypting the stored data with a tradi-

tional encryption algorithm would hinder the server’s capability to execute queries or

updates on behalf of the client. A well accepted solution to this dilemma is provided

by Searchable Symmetric Encryption (SSE) schemes, which are specialized encryp-

tion schemes that allow search and updates on encrypted data without compromising

its confidentiality.

The traditional solution to the problem of data integrity/authentication in the

symmetric key setting has been provided by Message Authentication Codes (MAC)

and/or several variants of Authenticated Encryption (AE). These solutions, though

important in the context of outsourced data also, have to be properly tailored to

achieve integrity in data stored in the cloud.

In this thesis, we study several dimensions of the problem of securing outsourced

data and provide some efficient and secure solutions. In this Chapter, we begin with

a token introduction to SSE. Further, we discuss the scope of this thesis and finally

provide a chapter wise summary of the rest of the thesis.

1.1 Searchable Symmetric Encryption

An SSE scheme abstracts a database as a set of documents denoted as D. Each

document di ∈ D is associated with a unique identifier idi ∈ I. These documents are

viewed as collections of keywords from a predefined finite set, denoted asW . For each
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keyword, w ∈ W , db(w) represents the set of identifiers of those documents containing

the keyword w. For a w ∈ W , let tw = db(w) × {w} = {(id, w) : id ∈ db(w)}. The

database DB of an SSE scheme is viewed as the set of tuples DB =
⋃

w∈W
tw.

The functionality of searching and updating encrypted data is commonly achieved

through an inverted index [76] that stores mappings of document identifiers with key-

words. Searchable Symmetric Encryption (SSE) follows a similar approach, storing

the inverted index in an encrypted form so that user queries are hidden from the

server, thus preserving user privacy.

Specifically, an SSE encrypts the database DB, comprising keyword-identifier

pairs, using a specialized structure often referred to as an “encrypted multi-map” [35]

(EMM) or an inverted index. This encrypted multi-map is stored on the server and

facilitates both searching and updating the encrypted database. An SSE scheme typ-

ically supports three types of operations: addition, search, and deletion, which we

denote by add, srch, and del, respectively. To initiate a keyword search, the client

provides a search token for the encrypted multi-map to the server. For updates (such

as additions and deletions to/from the database), the client supplies an update token

to the server, enabling modifications to the encrypted multi-map. Subsequently, these

search and update tokens are used by the server to transmit encrypted search results

to the client and update the database as needed, respectively. The storage of an

inverted index in an encrypted form in an untrusted server incurs extra computation

and communication overhead on both the client and server. In general, this overhead

is directly related to the size of the inverted index.

SSE schemes that support only the search operation are referred to as static SSE,

whereas those SSEs that support both search and updates (addition and deletion)

are known as dynamic SSE (DSSE) schemes. In the context of SSE, the input for an

update protocol is a keyword-identifier pair (id, w) with an operation op ∈ {add, del}.

For the search operation (op = srch), the input can either be a single keyword or

multiple keywords with a specific search rule. The output of a search is a set of

document identifiers that match the query rule [60, 28]. This design allows SSE to

decouple the storage of documents from the storage of the data structures used for

19



searching and updating the database.

Most SSE schemes to date [86, 42, 60, 28, 23, 25, 87, 49, 38, 89, 90] support

equality search on single keywords in each query. However, some can also support

richer queries like conjunctive or boolean queries [29, 73, 47, 58, 93, 11, 67], wild card

search [85, 22, 54, 37, 96, 69], and sub-string search [36, 53, 72].

Depending upon the adversarial nature of the cloud service provider platform

(CSP), an SSE adversary can be classified into two categories.

a. Honest-but-curious: where the adversary follows the protocol honestly but

attempts to gain knowledge about user data from the information that queries

inadvertently reveal.

b. Malicious: where the adversary tries to learn about the user’s data and may

also cheat by either not storing the user data to save storage or not responding

to a query correctly to save computation.

The primary goal of an SSE scheme is to protect users’ data from both types of

adversaries mentioned above, but all existing SSEs do not provide security against

both these types of adversaries.

Security of SSE schemes is an evolving topic of study and is not yet fully under-

stood. Security guarantees are generally provided in a pre-defined security model,

and as it is common in the cryptographic literature, the security of an SSE scheme

is reduced to the security of one or more well studied cryptographic primitives or

hardness assumptions. The usefulness of such security guarantees depends heavily on

how well the security model represents the real adversarial threat. There have been

several instances that a provably secure SSE scheme has been attacked as the security

model failed to incorporate a real attack scenario [55, 68, 27, 97].

Over the years, two key security notions in DSSE, namely, forward privacy and

backward privacy have been proposed [28], which are acceptable to the community and

are widely believed to encompass a large class of real attack scenarios. Intuitively,

forward private SSE schemes ensure that the server cannot link new updates with

previous search operations performed on the inverted index. This protects queries
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made to the inverted index with newly injected files by the adversary [97]. Backward

privacy ensures that after a pair (id, w) has been deleted, the identifier id will not be

leaked in future searches for w. The first security definition and a scheme achieving

them were proposed in [23], and the first formal definition of backward security was

proposed in [25].

The major focus, till date, has been in designing SSEs secure against honest-but-

curious adversaries [86, 42, 60, 28, 23, 25, 87, 49, 38, 89, 90]. A handful of studies on

SSE have focused towards the adversary being malicious. A verifiable SSE (VSSE)

scheme prevents a malicious/dishonest server from forging the client by providing a

“proof” for every search result. Using the proof, a user can verify the correctness of

the response to a search query returned by the server [63, 30, 64, 65, 24, 99, 98, 52,

48, 71, 94].

While the works mentioned above take into account a dishonest server, very few

of them can handle inappropriate behaviour from the client. The client, who is

unaware of the current state of the database maintained by the server, might submit

inappropriate or invalid updates. For example, a client may attempt to re-insert

an already existing keyword-identifier pair or may attempt to delete a nonexistent

keyword-identifier pair. An SSE scheme that can handle such malicious updates from

a client and still provide correct search results is referred to as a fault-tolerant SSE.

1.2 Scope of This Thesis

This thesis aims to make cloud storage secure and efficient. We specifically answer

the following main questions:

a. Is it possible to develop a method for storing the encrypted inverted index in a

more succinct manner, thereby reducing the computation, communication, and

storage overhead of state-of-the-art SSE schemes?

b. Is it possible to efficiently support complex queries, such as conjunctive searches,

in SSE while maintaining the required security and efficiency?
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c. Is it possible to develop an SSE scheme that ensures correct search results while

maintaining required security, even in the presence of a malicious server?

d. Is it possible to maintain the desired security and correctness of SSE even if the

client performs faulty updates?

In this thesis, we answer all these questions affirmatively. We propose new construc-

tions of SSE schemes and propose modifications over existing schemes to achieve our

goals. We prove the correctness and security of our proposals and, in some cases, pro-

vide extensive experimental data to validate the utility of our proposals in real-world

applications. We always consider a single user model.

1.3 The Road-Map

In this Section, we provide a short overview of our findings and a chapter-wise sum-

mary of the rest of the thesis.

Chapter 2 does not contain any new material. We begin by introducing the general

notations used throughout the thesis and defining the hardness assumptions necessary

to prove the security of our proposed constructions. Following this, we present the

formal definition of SSE and the related security notions. Finally, we discuss some

related works relevant to this thesis.

Chapter 3 and Chapter 4 presents our work related to making SSEs efficient in

terms of storage, computation and communication overheads. Our main observation

is that all existing SSE schemes need to store all the keyword-identifier pairs present

in the database DB. Thus, the size of the encrypted index is never smaller than the

size of DB, i.e. |DB|. In most cases, it is much bigger than |DB|. We propose a

generic pre-processing step that can be applied to any secure SSE to obtain a new

SSE, which will have a significant reduction of its index size on average but would

retain the security of the original scheme. This reduction in size further reduces

search time and communication requirements. The main tool we use to achieve this

reduction is a novel concept that we call the tree cover. For each keyword w we

construct a complete binary tree where the number of leaf nodes is at least |I| and
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associate each id ∈ I with a leaf node. We label a node associated with id with +++ if

id ∈ db(w) and with −−− if id /∈ db(w). This labeled tree uniquely represents the set

db(w). We show that this labeled tree can be represented by a few numbers of tree

nodes, and we can use only these nodes to represent the set db(w) for all keywords

w. This leads to a drastic reduction in the representation of db(w). We further use

this representation of db(w) to design an SSE with a reduced index size.

In Chapter 3 we introduce the idea of tree covers and discuss several algorithms to

generate covers. We prove the correctness of our algorithms and present theoretical

estimates on cover sizes. Finally, we present experiments to validate our theoretical

estimates of the cover sizes. The characterization of tree covers and the algorithms

for cover generation are further used for the construction of SSEs in Chapter 4. The

material presented in Chapter 3 has little reference to SSEs. It just states and solves

a combinatorial problem which can be of independent interest.

In Chapter 4 we use the tools developed in Chapter 3 to construct an SSE. We

treat the cases of static and dynamic SSE separately. The main result presented in

this chapter is that if we take any secure DSSE Λ, then we can convert it into an

equivalently functional and secure DSSE, which will have much smaller index sizes on

average. We prove the security of our construction and present extensive experimental

data on real data sets to demonstrate the effectiveness of our scheme.

Chapter 5 deals with SSEs, which support conjunctive search queries. The most

notable existing construction of an SSE supporting conjunctive queries is the Obliv-

ious Cross Tag (OXT) construction [29]. OXT supports conjunctive and general

boolean queries very efficiently in large databases with reasonable leakage. However,

the scheme is limited to static databases. Designing dynamic databases that support

conjunctive queries while being both forward and backward private has been a long-

standing open problem. The first claim of such a construction was reported in [80].

A subsequent work [100] demonstrated that the scheme in [80] fails to provide for-

ward privacy in certain cases. Since then, several works [102, 100, 95] have proposed

solutions that support conjunctive queries with forward and backward privacy, but

none have achieved the efficiency close to the OXT scheme of [29].
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In Chapter 5, we address the problem for a specific class of databases that we

refer to as non-modifiable databases, which are databases where an existing document

cannot be modified though new documents can be added and existing documents can

be deleted. The only way to modify a document is to delete the document and then

add the modified document. This model of database falls in between static databases

and dynamic databases. We argue that there are numerous practical scenarios where

such a model is applicable. Further, we introduce a generic technique to design an

SSE scheme supporting conjunctive queries for non-modifiable databases, achieving

efficiency comparable to the OXT scheme. Our approach integrates any DSSE scheme

that supports equality queries and addition operations with the OXT framework

of [29] in a modular, black-box fashion. We prove our scheme to be both forward and

backward private if applied to non-modifiable databases.

Chapter 6 and Chapter 7 deal with the problem of authenticity. We consider a

malicious adversarial setting, where the server not only tries to learn about user data

but also differs to follow the protocol correctly. Moreover, the client, being unaware

of the current state of the database, may issue incorrect updates to the database. As

already stated, in such scenarios, it is crucial to have cryptographic assurance that

the query responses returned by the CSP are accurate.

In Chapter 6, we develop a new class of message authentication codes (MAC)

which we call Updatable MACs (UdMAC). Let M be a message space. We fix

∆ : M×M → M to be an associative binary operator, which we call the update

function. As usual, for M,m ∈ M we will denote ∆(M,m) by M∆m. For an

example, one can consider ∆ to be the concatenation operator, ie, M∆m represents

the message M∥m. A ∆-UdMAC is a stateful procedure, which has the following

interesting property. Let M ∈ M be a message and let its tag be t, then one can

compute the tag corresponding to the message M∆m with only access to m, t and

some state information. Thus, to outsource a message M , a ∆-UdMAC computes a

tag t of M . M is sent to the server, and a tag t, along with some state information,

is retained with the client. Further, suppose the client wishes to update M to M ′

where M ′ = M∆m. To do so, the client can compute the tag t′ for the updated
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message M ′ just based on the update m and the state information about M that

the client retained. Thus, the client can just upload the update m to the server and

retain t′ with it. We define the syntax and security of UdMACs and also propose

two constructions for two different update functions. We prove the security of both

constructions.

In Chapter 7, we use UdMACs to construct verifiable and fault-tolerant SSEs. In

particular, in Chapter 7, we present a generic construction of a single keyword DSSE

scheme that ensures forward privacy, backward privacy and correctness, even in the

presence of a malicious server and a client issuing faulty updates. We refer to such a

DSSE scheme as a fault-tolerant verifiable dynamic SSE or FVDSSE. Our construction

combines UdMAC with a generic forward and backward private DSSE scheme that is

secure in the honest-but-curious adversarial setting to develop an equivalently secure

DSSE scheme that is secure against malicious adversaries in the presence of faulty

updates. To the best of our knowledge, such a scheme is the first of its kind.

Chapter 8 summarizes our conclusions and discusses potential future directions for

this area of research.
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2
Preliminaries

In this chapter we discuss some preliminaries which would be used throughout this

thesis. We begin with introducing some general notations in Section 2.1 followed by

a discussion on the basic cryptographic objects and assumptions used in this thesis

in Section 2.2. In Section 2.3, we discuss in detail the syntax of a dynamic SSE

which is our main object of interest. We define important concepts related to con-

junctive SSEs in Section 2.4. In Section 2.5, we define the security of SSE schemes,

where we define the basic L-adaptive security of SSEs and further discuss the other

important dimensions of security of SSEs like correctness, soundness and fault toler-

ance. Section 2.5 also includes a detailed discussion about leakage functions which

are fundamental to the security definitions of SSEs. In Section 2.6 we summarize

some important previous works on SSEs.

2.1 General Notations

For a finite set X, |X| denotes the cardinality of X. Let X be any set, then x
$←− X

means x is sampled uniformly at random from the set X. Let X, Y be two finite

sets then, X × Y denotes the Cartesian products of X and Y . For a non-negative

integer n, [n] denotes the set {1, 2, . . . , n}, and for non-negative integers i, j, i < j,

[i, j] represents the set {i, i+ 1, ..., j}. The set {0, 1}∗ represents the set of all binary

strings, including the empty string, and for a positive integer n, {0, 1}n denotes the

set of all n bit strings. For x, y ∈ {0, 1}∗, x∥y denote the concatenation of the strings
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x and y.

We sometimes see the set {0, 1}n as the finite field F2n with 2n elements. For such

an interpretation, for x, y ∈ F2n , we will denote addition and multiplication of x, y in

F2n by x ⊕ y and xy respectively. We will explicitly mention, when we treat {0, 1}n

as F2n .

We treat adversaries as algorithms. By a ppt adversary A we mean that the

adversary runs in probabilistic polynomial time, i.e., A is a probabilistic algorithm

which runs in polynomial time. Sometimes we describe adversaries with access to

oracles. For an adversary A, by AO = 1, we mean that A has oracle access to O, and

after interacting with O, A outputs a 1.

A function f : N→ R is negligible if and only if for all c > 0, there exists a n0 ∈ N

such that for all n ≥ n0, f(n) < n−c. By negl(λ) we denote a negligible function in

λ. For a natural number n ∈ N, poly(n) denotes an arbitrary polynomial in n.

2.2 Hardness Assumptions

Pseudo-Random Function (PRF).

Let K, M, R be sets and let F : K ×M → R be a two input function, which we

sometimes see as a function family F = {F (K, ·)}K∈K. Let Func(M,R) be the set of

all functions mappingM to R.

Definition 2.2.1 (PRF). Let F : {0, 1}λ×M→ R be an efficiently computable keyed

function. F is said to be a pseudo-random function family if for all ppt adversary A

the following holds.

AdvprfF,A =
∣∣Pr [AFk(·)

(
1λ
)]
− Pr

[
Aρ(·) (1λ)]∣∣ ≤ negl(λ),

where probabilities are taken over random choices of k
$←− {0, 1}λ and ρ $←− Func(M,R)

and any randomness used by A.

For denoting the PRF-advantage of an adversary A attacking a function family

F we sometimes use the equivalent notation AdvprfF (A).
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Decisional Diffie-Hellman Assumption (ddh-Assumption) [29].

Let G be a ppt algorithm which on input λ outputs a description of a cyclic group G

of prime order p, where |p| = poly(λ), and a generator g ∈ G. Then the decisional

Diffie-Hellman assumption is the following.

Definition 2.2.2 (ddh-Assumption ). We say that the ddh problem is hard relative

to G if the following holds for all ppt adversary A.

AdvddhG,A(λ) =
∣∣∣Pr [a, b $←− Z∗

p : A
(
g, ga, gb, gab

)
= 1
]

−Pr
[
a, b, c

$←− Z∗
p : A

(
g, ga, gb, gc

)
= 1
]∣∣∣

≤ negl(λ),

where the probabilities are take over the randomness of A and random choices of

a, b, c ∈ Z∗
p.

Extended Decisional Diffie-Hellman Assumption (eddh-Assumption) [80].

Let G be a ppt algorithm which on input λ outputs a description of a cyclic group

G of prime order p (st. |p| = poly(λ)), and a generator g ∈ G. Then the extended

decisional Diffie-Hellman assumption is the following.

Definition 2.2.3 (eddh-Assumption ). We say that the eddh problem is hard relative

to G if the following holds for all ppt adversary A.

AdveddhG,A (λ) =
∣∣∣Pr [A (g,M) = 1]− Pr

[
A
(
g, M̂

)
= 1
]∣∣∣ ≤ negl(λ),

where

M =


gα1β1 gα1β2 · · · gα1βn

gα2β1 gα2β2 · · · gα2βn

...
...

. . .
...

gαmβ1 gαmβ2 · · · gαmβn

, M̂ =


gγ1,1 gγ1,2 · · · gγ1,n

gγ2,1 gγ2,2 · · · gγ2,1

...
...

. . .
...

gγm,1 gγm,2 · · · gγm,n
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the probabilities are take over the randomness of A and for all i ∈ [m], j ∈ [n],

αi, βj, γi,j
$←− Z∗

p.

2.3 Dynamic Searchable Symmetric Encryption

Let D = {d1, . . . , dD} denote a collection of documents that the client wants to store

in the server. Let W denote the set of all possible keywords. Each document di ∈ D,

is composed of a set of keywords wi ⊆ W . Define W =
D⋃
i=1

wi to be the collection of

all distinct keywords present in the database D.

Let I = {id1, . . . , idD} ⊆ {0, 1}λ, for a fixed constant λ (in general considered as

the security parameter), be the set of all identifiers. For each keyword, w ∈ W, db(w)

represents the set of identifiers of those documents containing the keyword w. For a

w ∈ W, let tw = db(w) × {w} = {(id, w) : id ∈ db(w)}. The database DB of an SSE

scheme is viewed as the set of tuples

DB =
⋃
w∈W

tw.

It is customary to abstract out a database as a collection of identifiers and their

associated keywords as described above. This allows the decoupling of the storage of

documents with the storage of the inverted index.

A DSSE scheme Λ = (Setup, Search,Update) is a three tuple, comprised of three

protocols between the client (C) and the server (S). In the case where the SSE

supports verification of the search result, the Search protocol of SSE is also equipped

with another algorithm called Verify, run by the client. A static SSE scheme does

not support the Update protocol. A protocol P between the client C and the server

S, is denoted by (· · · ; · · · )← P(· · · ; · · · ). The semicolon separates the inputs and

outputs of both parties. The first part before the semicolon is for the client and the

part after the semicolon is for the server. We consider only those as output which

both the parties get after the complete execution of the protocol.

During the initiation of the SSE scheme, the client runs the setup to obtain an

30



encrypted database EDB. The server is provided with EDB. Thereafter, the client

can run three types of queries: addition, search, and deleting (add, srch, and del

respectively) on the EDB. An SSE is primarily concerned with the storage and re-

trieval of the index, and not how the actual documents are stored. An update query

is always considered to be successful. For search queries, in an honest-but-curious

adversarial model, the query is always considered to be successful. In a malicious

adversarial model, the client either outputs the set of identifiers matching the query

rule or “reject” the result.

With this abstraction of a database, a DSSE scheme Λ is defined as follows. It

closely resembles the definitions of [25] and [38]. The definition of DSSE in Defini-

tion 2.3.1 captures an honest-but-curious adversary. We’ll amend the definition while

considering a malicious adversary in Section 2.5.3.

Definition 2.3.1 (DSSE). A DSSE scheme Λ = (Setup, Search,Update) is a three

tuple of protocols between the client (C) and the server (S) defined as follows.

• (k, σC ; EDB) ← Setup(1λ,DB ; ⊥) : is a protocol executed between the client

and the server. It comprises the following two algorithms.

(k, σC,EDB) ← SetupC(1
λ,DB) : This is a probabilistic polynomial time

algorithm run by the client that takes as input the security parameter 1λ

and the initial database DB. It outputs a key k, the client’s state σC and

the encrypted database EDB. The client stores the key (k, σC) securely, and

the encrypted database EDB is sent to the server.

EDB← SetupS(EDB) : upon receiving EDB from the client, the server saves

it.

• (σC ; EDB) ← Update(k, σC, op, (id, w) ; EDB) : is a protocol executed between

the client and the server. It comprises the following two algorithms.

(σC, utk) ← UpdateC(k, σC, op, (id, w)) : This (possibly probabilistic) algo-

rithm is run by the client. On input the key k, client’s state σC, an update
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query with operation op ∈ {add, del}, and a keyword-identifier pair (id, w)

the algorithm outputs an update token utk and client’s updated state σC.

EDB ← UpdateS(utk,EDB) : This is a deterministic algorithm run by the

server that takes as input the encrypted database EDB and the update token

utk. It then outputs an updated encrypted database EDB.

• (σC, db(q) ; EDB)← Search(k, σC, q ; EDB) : is a protocol executed between the

client and the server. It comprises the following two algorithms.

(σC, stk)← SearchC(k, σC, q) : This (possibly probabilistic) algorithm is run

by the client. On input the key k, client’s state σC and search query q, the

algorithm outputs a search token stk and client’s updated state σC.

res ← SearchS(stk,EDB) : This is a deterministic algorithm run by the

server. It takes as input the encrypted database EDB and the search token

stk. It outputs res as the search results. The final search result db(q) for

search query q, is computed from res.

Remark. In the update phase, we always consider atomic updates, which means a

single keyword-identifier pair is updated at a time. In case of a bulk update (e.g.

adding a file with many keywords), we invoke the update protocol multiple times.

However, all the update tokens in such cases, can be communicated together.

Types of SSE. Depending upon the rule of search query and the number of key-

word(s) involved in it, an SSE scheme can be classified into many types. However,

we only discuss those types which are relevant to this thesis.

1. Single-keyword SSE supports only a single keyword per search query and

returns all the matching document identifiers which match the searched keyword

w. We call such a query q = w as the equality query.

2. Conjunctive SSE supports querying a set of keyword {w1, w2, . . . , wn} in each

search query. The scheme, as a search result, returns the set of all the document
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identifiers containing all the keywords in the query. For a conjunctive query, we

write q = ω = w1 ∧ w2 ∧ . . . ∧ wn, and the search result as db(ω).

2.4 Conjunctive Dynamic SSE

An SSE scheme may allow searches using multiple keywords and their conjunctions.

Let L = {w1, w2, . . . , wn} ⊆ W be a subset of keywords and ω(L) = w1∧w2∧· · ·∧wn

be a conjunction of the elements of L. For every conjunction ω(L), we assume the

existence of a least frequent keyword, w.l.o.g say w1.

Definition 2.4.1 (Least Frequent Term in a Conjunction [29]). In a conjunctive

query ω(L), a keyword wi ∈ L is termed the least frequent term in the conjunction if,

for every wj ∈ L such that wj ̸= wi and wj appears at least in as many updates as wi

does.

In simple terms, a least frequent keyword is a keyword in L, which has appeared in

the least number of updates among all the other keywords in L.

Definition 2.4.2 (s-term and x-term [29]). In a conjunctive query ω(L) the least

frequent term (say w1) of the query is referred to as the “s-term” and all wi ∈ L̃ =

L \ {w1} are referred to as the “x-terms”.

For convenience, we denote a conjunctive query ω(L) as ω.

For a conjunctive query ω = w1∧w2∧ · · · ∧wn, the set of identifiers matching the

search query ω is denoted by db(ω). Formally, for a conjunctive query ω, we define

db(ω) =
n⋂

i=1

db(wi).

2.5 Security of DSSE

The security of a DSSE scheme Λ is determined by a leakage profile LΛ. The leakage

profile LΛ = (LΛ,Setup,LΛ,Search,LΛ,Update) denote the information that the adversary

learns from the setup process and each execution of the search and update protocols.
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LΛ,Setup denotes the leakage due to Setup. We note that the adversary only receives

EDB0 (initial encrypted database) from the output of SetupC, where DB0 is the ini-

tial database. So, LΛ,Setup is effectively the leakage from EDB0. LΛ,Search denotes the

leakage due to all the searches. LΛ,Update denotes the leakage due to all updates. The

security of SSE schemes is generally argued by showing that an adversary cannot

distinguish between the transcript of a real-world execution and an ideal-world exe-

cution (simulated using the leakage profile) of the scheme [42, 60, 28]. To formally

define the security of SSE we introduce some more notations.

Query Sequence. A ℓ-query sequence QSℓ of a DSSE scheme Λ is a set with ℓ

element, where 1 ≤ ℓ ≤ poly(λ) is the total number of queries. Formally, QSℓ =

{Q1, . . . , Qi, . . . , Qℓ}, is the list of all queries made by the client. Every element

Qi = (ui, opi, ini) of a query sequence is a three tuple, where ui is the time-stamp

of the query, opi ∈ {add, srch, del} is the type/operation of the query, and ini is the

input of the query depending upon the operation opi. If opi = srch is a search query,

then ini = q1; if opi ∈ {add, del} is an update query, then ini = (idi, wi).

View of the Server. To define the view of the server in an SSE scheme, we use

the formalization of [88, 38]. The “view” of the server in a protocol P is denoted by

T[P]. For a DSSE scheme Λ, the first protocol invoked is always the Setup protocol.

Then, for a query sequence QSℓ and for every query Qi ∈ QSℓ a protocol Pi is invoked,

where 1 ≤ i ≤ ℓ. Pi = Search if opi = srch and Pi = Update if opi ∈ {add, del}. The

view of the server in every individual protocol is formally defined as follows,

T[Setup] = τ0 = ∅, T[Pi] = τi =

(ui, stki) if Pi = Search

(ui, utki) if Pi = Update.

for some 1 ≤ i ≤ ℓ. For every update query, the server gets an update token utk and

for every search query, the server gets a search token stk along with their respective

time stamps. So, τi is either the (ui, utki) or (ui, stki), depending upon whether the

1For example q = w in case of a single keyword search query, and q = ω for conjunctive query.
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query is an update query or a search query, respectively.

A “transcript” of a query sequence only contains the messages sent from the client

for a search or an update query. The output of the server can efficiently be computed

from the EDB and the search or update token sent by the client. This is because both

the SearchS and the UpdateS algorithms of Definition 2.3.1 are deterministic. With

this, we finally define a transcript of a i-query sequence QSi as follows.

Transi[QSi] = {τj : 0 ≤ j ≤ i},

for 1 ≤ i ≤ ℓ. For convenience, we write Transi[QSi] as Transi.

2.5.1 Security Game

The security of SSE is generally defined in a real-ideal simulation paradigm [42, 60, 28].

A leakage profile LΛ is defined to capture all the leakages (due to the setup, search

and update protocols). A simulator is given access to the leakage function to simulate

the real-world execution of the scheme. Thus, the security definition is parameterised

by the leakage profile.

Definition 2.5.1 (Adaptive security of DSSE). Let Λ = (Setup, Search,Update) be a

DSSE scheme and LΛ = (LΛ,Setup,LΛ,Search,LΛ,Update) be a triple of functions. Then,

for any ppt adversary A and simulator S with the leakage function LΛ, we define the

experiment SSERealΛA(λ), and SSEIdealΛA,S (λ) as follows.

SSERealΛA(λ) : The adversary A(1λ) chooses a DB and the challenger runs (σC, EDB)←

SetupC
(
1λ,DB

)
and returns EDB to A. Then for subsequent search or update queries,

the challenger runs (σC, stk)← SearchC (σC, q) or (σC, utk)← UpdateC (σC , op, (id, w))

respectively and provides the adversary with stk or utk. Finally, after the search/update

queries, the adversary A stops by outputting a bit, which is the output of the experi-

ment.

SSEIdealΛA,S (λ) : The adversary A
(
1λ
)
chooses a DB and the challenger runs EDB←

S (LΛ,Setup) and returns EDB to A. Then for subsequent search or update queries, the
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challenger runs stk ← S (LΛ,Search) or utk ← S (LΛ,Update) respectively and provides

the adversary with stk or utk. Finally, after the search/update queries, the adversary

A stops by outputting a bit, which is the output of the experiment.

A DSSE scheme Λ is said to be LΛ-adaptively secure if for all adversaries A, there

exists a simulator S such that, the SSE advantage
(
AdvPriv,ΛA,S (λ)

)
of A (defined below)

is negligible in λ.

AdvPriv,ΛA,S (λ) =
∣∣Pr [SSERealΛA(λ) = 1

]
− Pr

[
SSEIdealΛA,S(λ) = 1

]∣∣ ≤ negl(λ).

2.5.2 Correctness of DSSE

A DSSE scheme Λ is correct, informally, if the result returned by the search protocol

for a search query q is the list of document identifiers matching the query, i.e., (db(q)),

except with negligible probability. To define the correctness of a DSSE scheme we use

the formalization provided in [28, 38]. We assume that the adversary makes ℓ-many

queries where ℓ ≤ poly(λ). The correctness game of a DSSE is defined in Figure 2-1.

DSSECorrΛA(λ):
01. flag← 0
02. (DB, σA)← A(1λ)
03. (σC0,EDB0)← Setup(DB)
04. for 1 ≤ i ≤ ℓ do
05. (σA, qi)← A(σA,EDB0,Transi−1) ▷ qi = (opi, ini)
06. if opi = srch
07. (σCi, resi ; EDBi)← Search(σCi−1, qi ; EDBi−1)
08. τi ← T[Search(σCi−1, qi ; EDBi−1)]
09. if resi ̸= db(qi)
10. flag← 1
11. end if
11. else
12. (σCi,EDBi)← Update(σCi−1, qi; utki,EDBi−1)
13. τi ← T[Update(σCi−1, qi; utki,EDBi−1)]
14. end if
15. end for
16. return flag

Figure 2-1: Correctness Game of DSSE.
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In the correctness game, the adversary submits an initial database DB0, to which it

receives an encrypted database EDB0. The adversary then makes repeated search or

update queries to which it receives a transcript. The DSSE scheme Λ is correct if the

result returned by the search protocol is correct i.e., the search result is db(q), except

with negligible probability.

Definition 2.5.2 (Correctness of DSSE). Let, Λ = (Setup, Search,Update) be a DSSE

scheme, we say Λ is correct if for all ppt adversary A, following holds.

AdvCorr,ΛA (λ) = Pr[DSSECorrΛA(λ) = 1] ≤ negl(λ),

where the DSSECorr game is defined in Figure 2-1.

2.5.3 Soundness of DSSE

In Section 2.3, the Definition of SSE (Definition 2.3.1) is presented assuming an

honest-but-curious adversary. Where the adversary always follows the protocol cor-

rectly and replies with the correct search result. However, the adversary can be

malicious, where it differs from the protocol to save storage and/or CPU time and

tries to forge the client with incorrect search results. In such cases, the client needs

a guarantee from the SSE protocol that the search result is correct.

A verifiable DSSE (VDSSE) ensures that the search result returned by the server

is indeed correct. In a VDSSE the Search protocol is equipped with another additional

algorithm called Verify. And the output of the search protocol of the client is either

db(q) or “reject”. The search protocol of a VDSSE is described as follows. All other

protocols (i.e., Setup and Update) are the same as Definition 2.3.1.

(σC, (db(q) or reject) ; EDB)← Search(k, σC, q ; EDB) : is a protocol executed between

the client and the server. It comprises the following two algorithms.

(σC, stk) ← SearchC(k, σC, q) : this (possibly probabilistic) algorithm is run by

the client. On input the key k, client’s state σC and search query q, the algorithm

outputs a search token stk and client’s updated state σC.
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res← SearchS(stk,EDB) : this is a deterministic algorithm run by the server. It

takes as input the encrypted database EDB and the search token stk. It outputs

a set res as the search results db(q) for search query q which is returned to the

client.

The client then passes the search result res through another algorithm called Verify,

described as follows.

(db(q) or reject)← Verify(k, σC, res) : this is a deterministic algorithm which on

input the secret key k, the state σC and the result res returned by the server,

outputs either the correct search result db(q) for the query q or “reject”.

DSSESoundΛA(λ):
01. flag← 0
02. (σA,DB)← A(1λ)
03. (σC0,EDB0)← Setup(DB0)
04. for 1 ≤ i ≤ ℓ do
05. (σA, qi)← A(σA,EDB0,Transi−1) ▷ qi = (opi, ini)
06. if opi = srch
07. (σCi, resi ; EDBi)← Search(σCi−1, qi ; EDBi−1)
08. τi ← T[Search(σCi−1, qi ; EDBi−1)]
09. if Verify(resi) ̸= reject and resi ̸= db(qi)
10. flag← 1
11. end if
11. else
12. (σCi,EDBi)← Update(σCi−1, qi; utki,EDBi−1)
13. τi ← T[Update(σCi−1, qi; utki,EDBi−1)]
14. end if
15. end for
16. return flag

Figure 2-2: Soundness Game of DSSE

The soundness game of a DSSE is defined in Figure 2-2. In the soundness game,

the adversary submits an initial database DB0, to which it receives an encrypted

database EDB0. The adversary then makes repeated search or update queries to

which it receives a transcript. Informally we say a DSSE scheme Λ is sound if the

result returned by the search protocol is not rejected and is correct i.e., the search
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result is either db(q) or “reject”. To define the soundness of a DSSE scheme, we use

the formalization provided in [24].

Definition 2.5.3 (Soundness of DSSE). Let, Λ = (Setup, Search,Update) be a DSSE

scheme, we say Λ is sound if for all ppt adversary A, following holds.

AdvSound,ΛA (λ) = Pr[DSSESoundΛA(λ) = 1] ≤ negl(λ),

where the DSSESound game is defined in Figure 2-2.

2.5.4 Fault-tolerant Verifiable DSSE

A DSSE scheme is said to be fault-tolerant and verifiable DSSE if it archives correct-

ness and soundness according to Definition 2.5.2 and 2.5.3 respectively even in the

presence of incorrect updates, defined as follows.

Definition 2.5.4 (Incorrect Update). An update operation (op, (id, w)) is said to be

incorrect if any of the following holds

1. if op = del and id /∈ db(w)

2. if op = add and id ∈ db(w).

Remark. If a DSSE is not fault-tolerant, then the adversary in the correctness and

the soundness game of Definition 2.5.2 and 2.5.3 respectively are not allowed to make

any incorrect update according to Definition 2.5.4.

2.5.5 Forward and Backward Privacy (Single Keyword DSSE)

The two most essential security requirements (other than adaptive security) for a

DSSE scheme are forward privacy and backward privacy. Intuitively, forward private

SSE schemes ensure that future update queries do not leak any information about

previous search operations performed on the inverted index. Similarly, backward

privacy ensures that after a pair (id, w) has been deleted, the identifier id will not be
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leaked in future search operations for w. Depending upon the information they leak

during search and update operations, various flavours of backward privacy have been

defined in the literature [25]. They are:

1. Backward privacy with insertion pattern (BPIP): This notion of backward

privacy leaks the document identifiers currently matching the queried keyword

w, the time when they were inserted into the encrypted inverted index, and the

total number of updates performed on the searched keyword w. This security

notion is popularly referred to in the literature as Type I backward privacy.

2. Backward privacy with update pattern (BPUP): This notion of backward

privacy in addition to the BPIP leakages above, also leaks the time when all

the updates on the queried keyword w happened without leaking their specific

content. This security notion is popularly referred to in the literature as Type II

backward privacy.

3. Weak backward privacy (WBP): This notion of backward privacy in addition

to the leakages in the previous two leakages BPIP and BPUP, also leaks the

deletion updates that removed corresponding insertion updates. This security

notion is popularly referred to in the literature as Type III backward privacy.

Some Standard Leakage Functions.

To define forward and backward privacy, we need some auxiliary definitions, which

we introduce here.

sp(w) : The search pattern leakage sp(w) in terms of SSE refers to the information

of those time stamps when the keyword has been searched. The searched pattern

for a keyword w is the set of timestamps of all search queries with the keyword w.

Formally,

sp(w) = {u : (u, srch, w) ∈ QS}.

Hist(w) : This leakage function captures all the modifications that were made to the

set db(w). This is the combination of two leakages, the leakage from db0(w) (the

set of document identifiers matching w at the setup) and the set UpHist(w), defined
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below.

UpHist(w) = {(u, op, id) : (u, op, (id, w)) ∈ QS ∧ op ∈ {add, del}} .

TimeDB(w) : This leakage function is defined as the timestamped list of documents

currently matching the queried keyword w. We consider the refined definition pro-

vided in [38] to correctly capture the timestamps of entries that have not been deleted

yet.

TimeDB(w) ={(u, id) : ((u, add, (id, w)) ∈ QS) ∧ (∀u′ > u, (u′, del, (id, w) /∈ QS))}.

Updates(w) : Similarly, we define another leakage function Updates(w) as the set of

timestamps of all update queries for a given w as,

Updates(w) = {u : (u, op, (id, w)) ∈ QS}.

DelHist(w) : Finally, we define DelHist(w) as the set of all pairs of timestamps of

addition and deletion for a given w.

DelHist(w) =
{(

uadd, udel
)
:
((
uadd, add, (id, w)

)
∈ QS

)
∧
((
udel, del, (id, w)

)
∈ QS

)}
.

With the above definitions in place, we are now ready to provide the definition

of forward and backward privacy for a LΛ-adaptively secure single keyword SSE Λ.

The definition that we present is primarily the one presented in [25] with some mod-

ifications as suggested in [38]. Before we give the definition we discuss some history

of the evolution of the definitions of forward and backward security.

The notion of forward and backward privacy was first introduced in [88]. However,

forward privacy was first formalised in [23]. The first formal notion of backward

privacy for single keyword DSSE was introduced in [25]. The authors of [38] modified

the definition of backward privacy in [25] in several ways. The primary observations

of [38] regarding the definition in [25] are the following:
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• The definition in [25] does not capture a specific type of leakage called search

pattern leakage correctly.

• The definition in [25] considers that an identifier-keyword pair, once inserted

and then deleted, cannot be reinserted again into the database under the weak

backward privacy (WBP) security model. This restriction in the context of WBP

security model is artificial.

• Also, the security definition of WBP in [25] missed the leakage component

Updates(w). Authors of [38] showed that the leakage Updates(w) cannot be

derived from the definition of WBP provided in [25], thus, should be included

explicitly in the definition of WBP

In [38] the definition in [25] was modified to take care of all the above points, i.e.,

the definition in [38] takes care of search pattern leakages and also lifts the artificial

restriction for the WBP security model. In doing so, the authors of [38] provided

an alternate definition of backward privacy called, Backward Privacy with Link Pat-

tern (BPLP). We require some extra leakage function to define BPLP. However, this

alternate formulation of backward privacy is not explicitly required for the works

presented in this thesis. Therefore, we adopt the definitions of forward and backward

privacy from [25] with the modification suggested in [38].

We will need some additional notations. For two leakage functions L1 and L2,

L1 ⪯ L2 denotes that “L1 leaks less than L2”. In other words, L1 leaks less than L2

means that leakage information given by L1 about the database is less than L2, or,

equivalently, all the information that can be inferred from L1 can be inferred from

L2. Whenever, L1 leaks strictly less than L2, we write L1 ≺ L2.

It is a usual practice to assume the initial database of any SSE to be empty. Thus,

the leakage of the setup algorithm is null. However, if the initial database is not empty,

then LΛ,Setup(DB) = N , where N denotes the number of keyword document pairs in

the initial database. The definition of forward and backward privacy of SSE that we

present next assumes the initial database to be empty.

Definition 2.5.5 (Forward Privacy of Single keyword DSSE). An LΛ = (LΛ,Setup,
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LΛ,Search, LΛ,Update)-adaptive secure DSSE scheme Λ is forward private if its leakage

function LΛ can be written as follows.

LΛ,Setup(DB) = ∅, LΛ,Search(w) ⪯ {sp(w),UpHist(w)} ,

LΛ,Update(op, in) ⪯ {op} .

Definition 2.5.6 (Backward Privacy of Single keyword SSE). An LΛ = (LΛ,Setup,

LΛ,Search, LΛ,Update)-adaptive secure DSSE scheme Λ is backward private as per the

notions BPIP,BPUP and WBP if its leakage functions LΛ can be written as the follows.

LBPIP
Λ,Setup(DB) = ∅, LBPIP

Λ,Update(op, in) ⪯ {op} ,

LBPIP
Λ,Search(w) ⪯ {sp(w),TimeDB(w), |Updates(w)|} ,

LBPUP
Λ,Setup(DB) = ∅, LBPUP

Λ,Update(op, in) ⪯ {op, w} ,

LBPUP
Λ,Search(w) ⪯ {sp(w),TimeDB(w),Updates(w)} ,

LWBP
Λ,Setup(DB) = ∅, LWBP

Λ,Update(op, in) ⪯ {op, w} ,

LWBP
Λ,Search(w) ⪯ {sp(w),TimeDB(w),Updates(w),DelHist(w)} .

In our work, specifically in Chapter 5, we are required to define forward and

backward privacy for conjunctive SSEs. We modify the above definitions, which are

essentially the definitions presented in [38], to make them suitable for conjunctive

SSEs.

2.6 Related Works

The Early Schemes. SSE was first introduced in [86]. One of the main drawbacks

of the scheme in [86] was that the search time was linear in the number of documents.

This limitations were lifted in the works reported in [50] and [34]. Constructions

based on an inverted index were first proposed in [50]. The use of an inverted in-

dex was significant, as its use ensured that the search time was proportional to the
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number of documents matching the keyword in the collection. Authors of [50] first

introduced formal security notions of SSE. They proposed the notion of indistinguisha-

bility against chosen keyword attacks (IND-CKA) and the slightly stronger IND2-CKA)

notion for the security of indexes, they also provide a construction based on Bloom

filters [17] and pseudo-random functions. Authors of [34] provide a construction that

achieves security similar to IND2-CKA.

The first strong notion of security, which is still in use, was first proposed in [42].

However, the scheme described in [42] was only static. The first truly dynamic SSE

with search complexity O (db(w)) was proposed in [60]. Since then, several dynamic

single keyword SSE schemes have been proposed.

Attacks on SSE. User queries do leak some information to the server regarding

searches and updates. Determining such leakages is important. There have been

several works which describe attacks on SSE schemes which utilize the leakages during

search and updates [55, 68, 27]. A unifying theme of these attacks was to use

knowledge of the plain text database apriori. One of such attacks reported in [97]

extended the attack by [27] to demonstrate that the server may inject only a few

documents (through the client) into the database, to be able to recover a large fraction

of the keywords searched by the client. Authors of [1] showed the consequences of

this attack on relational databases.

Forward and Backward Privacy. The attacks of [97] above created a necessity

to update the security definition of SSEs. To mitigate such attacks, two new notions

of privacy for DSSE, namely, “forward privacy” and “backward privacy”, were first

proposed in [88]. Intuitively, forward private SSE schemes ensure that the server

cannot link an update operation for (id, w) with previous search operations performed

on the inverted index with w or containing id in its result. This protects queries made

to the inverted index with newly injected files by the adversary as was used in the

attacks mounted in [97]. Backward privacy ensures that after a pair (id, w) has been

deleted, the identifier id will not be leaked in future searches for w.
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The first formal definition and a scheme achieving forward privacy were proposed

in [23]. The scheme of [23] uses a trapdoor one-way permutation to achieve forward

privacy. The first formal definition of backward privacy was defined in [25]. De-

pending upon the information leaked during search and update operations, various

flavours of backward privacy have been defined in the literature [25], which has been

followed in subsequent works [49, 90, 101, 89]. Authors of [25] defined three types of

backward privacy, namely, BPIP, BPUP and WBP in increasing order of leakage (See

Definition 2.5.6) to the server (decreasing order of security). These three types are

popularly referred to as Type I, Type II and Type III backward privacy in literature.

The authors of [101] gave a construction using a bit-map index with homomorphic

addition to achieve Type I− security whose leakage is even lesser than a Type I secure

scheme. However, their storage and search complexities are high at O(u|D|), where u

is the number of updates for a keyword. More efficient construction of a Type III back-

ward private SSE scheme was proposed in [89] that uses symmetric puncturable en-

cryption. Since then, several forward and backward private SSE schemes [49, 101, 38]

have been proposed, improving security and efficiency.

In [38], the authors demonstrated that the definition of backward privacy proposed

in [25] was incomplete, and it didn’t cover all general scenarios. Also, the authors

of [25] did miss some leakage while defining backward privacy. In [25], a relaxed

version of SSE was considered in their Type III security definition. They considered

that once a keyword-identifier pair is added and then deleted, the same pair cannot

be re-inserted into the database. This restriction was lifted in [38] to provide a more

general and complete definition of backward privacy for SSE with all perceivable and

known leakages. Although there are no known practical attacks on SSE schemes due

to a lack of backward privacy, it provides meaningful theoretical assurance.

SSE Supporting Complex Queries. Most SSE schemes [42, 60, 28, 23, 87, 25, 49,

89, 38, 90] allow searching for a single keyword in each query. Supporting conjunctive

queries and/or general boolean queries with efficient computation and communication

along with adequate security (low leakage) is a well-known challenge in the SSE
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literature. There are a few SSE schemes that support conjunctive queries [29, 47,

2, 93, 58, 66, 80, 102, 100, 95]. The most notable of these is the oblivious cross-tag

(OXT) system from Crypto’13 [29]. It assumes that the client knows the least frequent

keyword w1 in a conjunction w1 ∧ · · · ∧wn. This keyword w1 is called the s-term and

all other keywords w2, . . . , wn are called x-terms [29]. OXT uses two data structures

T-Set and X-Set. During a search operation in OXT, the server first conducts a single

keyword search using the T-Set to find all ids containing the s-term w1. For all such

ids containing w1, the X-Set is used to check if the x-terms wi, i ≥ 2 are also in id.

The OXT scheme is quite efficient with its search complexity of O(n · |db(w1)|), where

n is the number of keywords (s-term and x-terms) in the conjunction and the set

db(w1) contains the ids of documents where the s-term w1 appears.

The main criticism of the OXT scheme was that besides being a static scheme,

it leaked keyword pair result patterns (KPRP). Hiding KPRP is important in the

context of the attacks presented in [97]. Moreover, OXT uses exponentiation in ddh-

hard groups, which is a costly operation and removing this would lead to making

OXT more efficient. Subsequently, proposed static schemes like [66, 78] were directed

towards mending these shortcomings of OXT. The work in [66] used significant pre-

processing on the data to restrict KPRP leakage. Their construction uses Bloom

filters and symmetric hidden vector encryption in a novel way. The construction

of [78] has designed a novel data structure called ConjFiler, which allows searching

for conjunction only using symmetric key primitives. However, ConjFiler requires to

pre-compute all possible two-conjunction to facilitate conjunctive query. This is why

making ConjFiler dynamic is a challenging task.

The first proposed construction of a forward and backward secure CDSSE was

in [80] through a new construction called Oblivious Dynamic Cross Tags (ODXT),

that successfully managed the pre-processing of OXT in the dynamic setting. How-

ever, the attack in [100] showed that the construction in [80] failed to provide forward

privacy in some cases. Few other forward and backward private CDSSE schemes [102,

100, 95] have followed, achieving forward privacy and different flavours of backward

privacy with efficiency trade-offs. However, these schemes are far from achieving the
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efficiency of the OXT scheme. The scheme of [102] performs O(|D|) computation

for search, where |D| is the number of documents in the database, making it pro-

hibitively slow. The scheme of [100] uses a single keyword SSE (SKSSE) to store

and fetch the elements in the conjunction which makes it very slow as well. The

scheme of [95] runs in sub-linear time but is still far from the practical performance

of OXT. In [95], the computation and communication complexities of the search op-

eration are both O (u1 + n · db(w1)) and involves two rounds, where u1 is the number

of updates related to w1; the complexities of the update operation are O (|W |/|Wd|)

for adding a document, O (|D|) for editing and O (1) for deleting, where |W | is the

number of keywords in the database and |Wd| denotes the number of keywords con-

tained in the updated document. The storage requirement of [95] is O(|W ||D|), as

compared to O(N) for our scheme, where N is the number of identifier-keyword pairs

in the database. Typically, N is much smaller than |W ||D| in practice. There is no

additional storage requirement due to the keyword updates in [95].

Verifiable SSE. In SSE, it’s assumed the server (seen as an adversary) is honest-

but-curious. However, the servers can be ”malicious”. Verifiable SSE (VSSE) provides

cryptographic guarantees against such servers.

The first universally composable secure VSSE scheme was introduced in [63]

against non-adaptive adversaries. The first adaptive secure VSSE was proposed in

[30], though both works addressed the static SSE setting. Authors of [64] extended

their previous work [63] to a verifiable dynamic SSE (VDSSE), supporting updates

operation, but it lacked forward privacy. The first forward private VDSSE was pro-

posed in [24], using the incremental multi-set hashing proposed in [40]. Subsequently,

Zhang et al. [98] introduced another incremental multi-set hash-based SSE using sym-

metric key primitives. The client-side storage required for both schemes was high.

Authors of [48] addressed this issue by proposing a novel data structure called the

Accumulative Authentication Tag (AAT), which reduces storage overhead while using

symmetric key primitives.

While all these constructions supported verification of the search result, almost all
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of them failed to provide correct proof in case of faulty updates from the client. There

has been limited research focused on designing DSSE schemes that are fault-tolerant,

verifiable, and both forward and backward private. In [88], authors proposed a DSSE

scheme using an ORAM-style data structure, but it required frequent rebuild oper-

ations. This scheme was forward secure and fault-tolerant, but not verifiable. Also,

the search operation in this scheme is inefficient, taking linear time (on the number

of documents) in the worst case. Authors of [24] proposed three forward private, ver-

ifiable DSSE schemes GVS-Hash, GVS-Acc and GVS-Acc-RSA. The first construction

is based on Merkle tree-like data structures and Multi-Set Hash, while the latter two

are based on cryptographic accumulators. However, none of these constructions are

fault-tolerant and they do not scale well with large databases. In addition to these

constructions, authors of [24] also proposed verifiable versions of Linear SPS and

Sublinear SPS introduced in [88]. Recently, an efficient FVDSSE construction was

proposed in [94] that employs authenticated encryption (AE) for verification, avoiding

the expensive use of Merkle trees or accumulators, thereby making the construction

very fast in practice. Their proposed generic scheme, when instantiated with a for-

ward private scheme [87], ensures forward privacy. However, this construction fails

to provide backward privacy.

2.7 Final Remarks

In this Chapter, we discussed the preliminaries required to appreciate the work re-

ported in the subsequent chapters. We listed the general notations which are heavily

used throughout the thesis, some less used notations would be introduced further

wherever necessary. We also discussed all necessary background for SSE schemes

including their syntax, security and variants. We also provided a comprehensive

discussion on the related works which trace the history of the development of SSE.

Though we do not pretend that our coverage of SSE schemes in this chapter is exhaus-

tive, we briefly discuss all works which are of relevance to the work that we present

in the following chapters.

48



3
Tree Covers

We already described in Section 2.3 that Searchable Symmetric Encryption schemes,

as introduced in [86, 42], abstract a database (DB) as a set of keyword-identifier pairs.

Formally,

DB =
⋃
w∈W

{(id, w) : id ∈ db(w)} ,

where db(w) is the set of identifiers corresponding to the keyword w. An SSE en-

crypts this set, comprising keyword-identifier pairs, using a specialized structure often

referred to as an “encrypted multi-map” [35] (EMM) or an inverted index. This en-

crypted multi-map is stored on the server and facilitates both searching and updating

the encrypted database.

The efficiency of an SSE scheme is measured by the time it takes to search and

update. Most schemes are optimized to get better search and update times maintain-

ing adequate security guarantees. Optimizing the size of the encrypted database has

not yet received adequate attention in the literature, as it is always assumed that the

server is computationally powerful and has sufficient storage. But, optimizing the size

of the EMM has an immediate effect on search time and communication overhead. If

the input set of tuples for an SSE is DB, then the size of the encrypted database in

any existing SSE scheme, to the best of our knowledge, is at least |DB|. In fact, in

most schemes (particularly in dynamic SSE schemes), the storage overhead is much

more than |DB|. Similarly, the size of the result of a query w is at least |db(w)|, and

in most schemes, the size of the search result which is to be communicated to the
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client is much more than |db(w)|. In most dynamic SSEs the size of the encrypted

database and the query result increases with the number of updates performed on

the database.

Recently, some effort has been made to restrict the size of the search result to at

mostO (db(w)) for any given keyword w [88, 49, 43, 33]. To the best of our knowledge,

no SSE scheme has considered reducing the storage size beyond |DB| and the result

size beyond |db(w)|. In this study, we specifically address the following questions.

1. Can we build a functional and secure SSE whose storage size is smaller than

|S| on average?

2. Can a search query for a keyword w on average be answered with a result size

smaller than |db(w)|?

We answer both these questions in the affirmative. In order to achieve this, we

introduce a generic method for transforming any single keyword SSE scheme into an

equivalent secure SSE scheme where the size of the encrypted database required to

store for searching is much smaller than in the original SSE scheme. This results

in a more compact representation of both the encrypted database and the set db(w)

compared to the original SSE scheme. Thus, a reduction of the size of the encrypted

database and db(w) also results in a reduction of search time and communication

costs.

The Basic Technique: Given db(w) for any keyword w, we convert db(w) to a new

set cw, which we call as the “cover of the keyword” w. We ensure that, on average,

|cw| is smaller than |db(w)|, while retaining the ability to fully recover db(w) from

cw. We provide D̃B =
⋃

w∈W
cw × {w} as an input to any standard secure SSE. Note

that D̃B is on average less than the size of DB =
⋃

w∈W
db(w)×{w}, which is the input

to the original SSE. This generic transformation of db(w) to its cover cw produces a

considerable reduction in both the storage size and result size, resulting in shorter

search time and reduced communication size.

The heart of our technique lies in representing db(w) for each w as a full binary
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tree. For each keyword w ∈ W , we construct a virtual full binary tree where each

leaf node is associated with an identifier idi. We label the leaf nodes with +++ if the

identifier corresponding to it is present in db(w) and label it with −−− otherwise. This

tree with the labels in the leaf nodes uniquely represents db(w). We devise a scheme

by which this tree can be represented uniquely by a small set of nodes of the tree,

and we call this set the cover of the tree.

In this Chapter we define a tree cover and propose several algorithms to generate

covers. We do an in-depth combinatorial analysis of these algorithms and prove them

to be optimal in our setting. We also provide theoretical estimates of the average

size of the covers generated by our algorithm(s) and experimentally validate these

theoretical estimates. The cover generation algorithms proposed in this chapter are

further used in Chapter 4 to design SSEs. The material in this chapter does not

make reference to SSEs and has a complete combinatorial flavor, which can be of

independent interest. This chapter was partly published in [31].

3.1 Binary Trees and Tree Covers

3.1.1 Binary Trees

Throughout our thesis, we’ll consider a complete binary tree, i.e., a binary tree where

all levels are present (unless specified otherwise). The depth of a node i of a binary

tree is the number of edges in the path from i to the root. The root has a depth of 0.

In a complete binary tree, there are exactly 2d nodes at depth d, and consequently,

all leaf nodes are at the same depth. The height of a node i is the number of edges in

a path from i to the deepest leaf. The height of the tree is the height of the root of

the tree. A complete binary tree of height h, has exactly 2h+1− 1 nodes, with 2h leaf

nodes. The structure of a complete binary tree can be specified only using its height.

Let T be a tree and i a node of T , then by T (i) we denote the subtree rooted at i.

Thus, if i is the root of T , then T (i) = T and if i is a leaf node then T (i) is a tree

containing the single node i. Unless specifically mentioned, by a binary tree, we will
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mean a complete binary tree.

For convenience, we will denote nodes of a complete binary tree by integers. The

root will be denoted by zero. The nodes in depth d will be denoted by 2d consecutive

integers starting with 2d−1, counting left to right. Thus, for a tree T of height h, the

nodes of T would be denoted by the set of integers nodes(T ) = {0, 1, . . . , 2h+1 − 2}

and the leaf nodes would be denoted by the set leaves(T ) = {2h−1, 2h, . . . , 2h+1−2}.

For any i ∈ nodes(T ), leaves(T (i)) ⊆ leaves(T ) will denote the leaf nodes of the

subtree rooted at i.

We will sometimes use an alternative representation of the leave nodes. Given a

tree T of height h with leaves(T ) = {2h − 1, 2h, . . . , 2h+1 − 2}. Let ϕh : leaves(T )→

[1, 2h], be a bijection defined as ϕh(i) = i − 2h + 2. Note that for any i ∈ leaves(T ),

if j = ϕh(i), then the leaf node i in T is the jth leaf node from the left. As ϕ is a

bijection, we have ϕ−1
h : [1, 2h]→ leaves(T ) defined as ϕ−1

h (j) = j + 2h − 2.

3.1.2 Tree Cover

Our main object of interest is a complete binary tree, i.e., a binary tree where all

levels are present. We fix some basic terminology first.

The depth of a node i of a binary tree is the number of edges in the path from i to

the root. The root has a depth of 0. In a complete binary tree, there are exactly 2d

nodes at depth d, and consequently, all leaf nodes are at the same depth. The height

of a node i is the number of edges in a path from i to the deepest leaf. The height of

the tree is the height of the root of the tree. A complete binary tree of height h, has

exactly 2h+1 − 1 nodes, with 2h leaf nodes. The structure of a complete binary tree

can be specified only using its height. Let T be a tree and i a node of T , then by

T (i) we denote the subtree rooted at i. Thus, if i is the root of T , then T (i) = T and

if i is a leaf node then T (i) is a tree containing the single node i. Unless specifically

mentioned, by a binary tree, we will mean a complete binary tree.

For convenience, we will denote nodes of a complete binary tree by integers. The

root will be denoted by zero. The nodes in depth d will be denoted by 2d consecutive

integers starting with 2d−1, counting left to right. Thus, for a tree T of height h, the
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nodes of T would be denoted by the set of integers nodes(T ) = {0, 1, . . . , 2h+1 − 2}

and the leaf nodes would be denoted by the set leaves(T ) = {2h−1, 2h, . . . , 2h+1−2}.

For any i ∈ nodes(T ), leaves(T (i)) ⊆ leaves(T ) will denote the leaf nodes of the

subtree rooted at i.

We will sometimes use an alternative representation of the leave nodes. Given a

tree T of height h with leaves(T ) = {2h − 1, 2h, . . . , 2h+1 − 2}. Let ϕh : leaves(T )→

[1, 2h], be a bijection defined as ϕh(i) = i − 2h + 2. Note that for any i ∈ leaves(T ),

if j = ϕh(i), then the leaf node i in T is the jth leaf node from the left. As ϕh is a

bijection, we have ϕ−1
h : [1, 2h]→ leaves(T ) defined as ϕ−1

h (j) = j + 2h − 2.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 3-1: The tree T used in Example 1.

Definition 3.1.1 (Configuration). Let T be a complete binary tree of height h and

leaves(T ) be the set of leaf nodes of T . A configuration of T is a function ΛT : S →

{+++,−−−}, where S ⊆ leaves(T ). The configuration is complete if S = leaves(T ), i.e.,

a complete configuration of T is a map ΛT : leaves(T )→ {+++,−−−}. We will represent

ΛT by a subset of leaves(T )× {+++,−−−}.

Thus, a configuration puts labels from the set {+++,−−−} to the leaves of a tree. If all

leaves of a tree are labelled then the configuration is called a complete configuration.

We represent a configuration ΛT : S → {+++,−−−}, where S ⊆ leaves(T ) by the set

L = {(i, s) : i ∈ S, s = ΛT (i)}.

Example 1. Consider the full binary tree T of height 3 shown in Figure 3-1. The

nodes of T are elements of the set nodes(T ) = {0, 1, . . . , 14} and leaves(T ) = {7, 8, . . .,

14}. L = {(7,−−−), (8,+++), (9,+++), (10,+++), (11,−−−), (12,+++), (13,+++), (14,+++)}, is a

complete configuration of T , where the nodes 7 and 11 are labeled −−− and all other
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nodes are labeled+++. Whereas, the configuration {(7,−−−), (8,+++), (9,−−−), (10,+++), (11,−−−)}

is not complete, as the leaf nodes 12, 13 and 14 are not assigned any labels.

3.1.3 Cover of a Configuration

Our goal is to have a succinct representation of the configuration of a binary tree. For

a tree T the naive representation of its configuration can be done through a subset

of leaves(T ) × {+++,−−−}, i.e, by listing all the leaf nodes along with their labels. We

are interested in a more compact representation. Informally, a cover is a succinct

representation of a configuration.

We define a cover of a configuration through a pair of algorithms cover generation

and cover reconstruction.

Definition 3.1.2 (Syntax of a Tree Cover Scheme). A tree cover scheme Ψ =

(CoverGen, ReConstruct) is a tuple of two algorithms defined as follows.

• C ← CoverGen(h, L): On input a configuration L of a tree T of height h,

CoverGen outputs a cover C ⊂ nodes(T )× {+++,−−−}.

• L ← ReConstruct(h,C): On input the height h of a tree T and a cover C ⊂

nodes(T )×{+++,−−−}, ReConstruct outputs a configuration L ⊂ leaves(T )×{+++,−−−}.

Correctness: We say a tree cover scheme Ψ is correct if for any configuration L of

a tree of height h,

L = Ψ.ReConstruct(h,Ψ.CoverGen(h, L)).

A tree cover scheme is interesting only if the covers produced by its cover genera-

tion algorithm have a size much smaller than the configuration (which it receives as

input) for most configurations. The cover generation schemes described later satisfy

this property.

We do not yet provide any structural characterisation of a cover of a configuration.

A cover is just what is output by a cover generation algorithm, with the guarantee
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that there is a corresponding reconstruction algorithm which can reconstruct the

configuration from which the cover was generated. This syntactic definition of a

cover would be enough for us to develop SSE schemes with desirable properties, but

at this point, it may be useful to see what a cover generation algorithm can possibly

do.

Let us take the example of Fig 3-1, which represents a complete configuration

L = {(7,−−−), (8,+++), (9,+++), (10,+++), (11,−−−), (12,+++), (13,+++), (14,+++)}, of a tree T of

height 3. Nodes drawn in circles that is the nodes {8, 9, 10, 12, 13, 14} are marked as

+++ and nodes drawn in squares that is {7, 11} are marked as −−−. According to our

definition so far, there can be several algorithms for the cover generation which can

possibly output different covers for the same tree with the same labeled leaf nodes.

We focus on two such simple instances.

1. L itself can be a cover. In this case, on input L the cover generation algorithm

simply outputs L as the cover and the reconstruction algorithm on input any

set C, just outputs C.

2. The set C = {(7,−−−), (11,−−−)}, can be a cover. Here the cover generation algo-

rithm on input L outputs the set C = {(i,−−−) : (i,−−−) ∈ L}, i.e., outputs those

nodes (along with their labels) which are labeled −−−. The cover reconstruction

algorithm on input C labels those nodes in leaves(T ) which are not in C with

+++ and calls those labeled nodes as L1 and outputs C ∪L1. It is easy to see that

this reconstruction always works when L is a complete configuration.

The above two instances are trivial covers. Note that in case (2) we already have

a cover whose size is much smaller than the configuration, at least for the example

that we consider. In Section 3.2, we systematically study much more complex cover

generation algorithms, which, on average, give covers whose sizes are smaller than

the configuration. For designing dynamic SSEs a notion of covers for a dynamic

configuration would be necessary which we provide in the next subsection. The

design of the SSEs presented in Sections 4.1.2 and 4.2 only assumes the definitions of

cover generation and reconstruction algorithms. Exact instances of cover generation
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algorithms, as discussed in Section 3.2, are not required to follow the material in

Sections 4.1.2 and 4.2.

3.1.4 Cover of a Dynamic Configuration

We will be interested in trees where the configuration is dynamic, i.e., we may start

with an initial tree along with a configuration, and the tree may change by more

nodes getting added to it and/or by the leaves changing labels.

For the sake of modelling dynamic trees, we will use the alternative representation

of leaf nodes. Recall for a tree T of height h, if i ∈ leaves(T ) = [2h−1, 2h+1−2], then

ϕh(i) = i − 2h + 2, is the position of the leaf i from the left. Let for a configuration

L of tree T with height h, we define

ϕh(L) = {(ϕh(i), s) : (i, s) ∈ L}.

Thus, ϕh(L) is just a different representation of the configuration L, where the leaf

nodes are specified by their position from the left. Similarly, for any S ⊆ [1, 2h] ×

{+++,−−−}, we define ϕ−1
h (S) = {(ϕ−1

h (i), s) : (i, s) ∈ S}.

Let Ta, Tb be two complete binary trees of height ha and hb respectively. Let La

and Lb be complete configurations of Ta and Tb respectively. Let L̃a = ϕha(La) and

L̃b = ϕhb
(Lb). Let s ∈ {+++,−−−}. If s = +++, then s̄ = −−− and vice versa. We define two

sets D̃ and Ã as

D̃ =
{
(i, s) ∈ L̃b : (i, s̄) ∈ L̃a

}
.

Ã =
{
(i, s) ∈ L̃b : (i, s) /∈ L̃a

∧
(i, s̄) /∈ L̃a

}
.

Note, the set D̃ contains those labeled leaf nodes in L̃a whose labels have changed in

L̃b and Ã contains those labeled nodes in L̃b which are not present in L̃a. As, both

La and Lb are complete configurations of the trees Ta and Tb, then by our definitions

56



of D̃ and Ã they are disjoint. We define the change in configuration of La and Lb as

∆(La, Lb) = ϕ−1
hb

(
D̃ ∪ Ã

)
. (3.1)

Consider a finite sequence of trees T1, T2, . . . , Tℓ, where for each i (1 ≤ i ≤ ℓ−1), and

their corresponding complete configurations L1, . . . , Lℓ. Let

Lδ
i = ∆(Li, Li+1). (3.2)

Note that, Lδ
i represents a configuration (not necessarily, a complete one) of the tree

Ti+1. It is easy to see that given Ti along with Lδ
i one can reconstruct Li+1, i.e., the

complete configuration of Ti+1.

We assume a scenario where we have an initial tree T1 with a certain complete

configuration and over time the tree changes where new labeled nodes are added to the

tree or the labels in its leaf node change. We are given the initial tree and the changes

that take place in each step, i.e., we have access to T1 along with Lδ
1, L

δ
2, . . . , L

δ
ℓ−1.

A dynamic cover generation algorithm outputs a cover on input a configuration.

A dynamic cover reconstruction algorithm when given a sequence of covers generates

a configuration.

Definition 3.1.3 (Dynamic Tree Cover Scheme). A dynamic tree cover scheme Ψd =

(dCoverGen, dReConstruct) is a tuple of two algorithms defined as follows.

• C ← dCoverGen(h, L): On input the height of the tree h and a configuration L,

dCoverGen outputs a cover C.

• L ← dReConstruct
(
{hi, Ci}i∈[ℓ]

)
: On input a sequence of tree height hi and

corresponding cover Ci, dReConstruct outputs a configuration L.
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Correctness: Let L1, L2, . . . , Lℓ be as before, let ∅ denote the empty configuration

corresponding to an empty tree and let

Lδ
1 = ∆(∅, L1),

Lδ
i = ∆(Li, Li+1), 2 ≤ i ≤ ℓ− 1.

We say, Ψd is correct if for all j ≤ ℓ,

Ψd.dReConstruct
(
{hi, dCoverGen

(
hi, L

δ
i

)
}i∈[j]

)
= Lj.

3.2 Cover Generation Algorithms

For ease of exposition, we will sometimes impose colors on the nodes of the trees. For

a node i, color(i) will denote its color. For a node i, leftChild(i) and rightChild(i) will

denote its left and right child respectively. Recall, that configuration of a tree T is a

set of labeled leaf nodes of T , thus elements of a configuration are ordered pairs (i, s)

where i is a node and s ∈ {+++,−−−} is its label, we will sometimes denote the label of i

by sign(i).

We call a configuration L a pure configuration if, for every (i, s) ∈ L, s is the same,

i.e., in a pure configuration, every node is either labeled+++ or−−−. A configuration which

is not pure is called a mixed configuration.

3.2.1 Pure Cover: A Tree Cover Scheme for Pure Configu-

rations

For the algorithms that follow, we assume that each tree node i is endowed with two

fields color(i) and sign(i).

We start with a simple scheme which generates covers only for pure configurations.

Let Lp be a pure configuration of a tree T , and we want to construct a cover of Lp.

As a first step, we color the nodes of the tree according to the scheme described in

the algorithm in Figure 3-2. We start from the leaf nodes and color each node which
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is in the configuration with the color “green”. We proceed with the non-leaf nodes

starting from the level just above the leaf nodes and color a node green if both of

its children are colored green.

PureColoring(h, Lp):

01. Initialize a tree T with height h,
where the nodes of the tree has no color.

02. for i← 2h − 1 to 2h+1 − 2 ▷ leaf nodes
03. if (i, s) ∈ Lp

04. color(i)← green, sign(i)← s
05. for i← 2h − 1 to 0 of T ▷ non-leaf nodes
06. if color(leftChild(i)) = color(rightChild(i)) = green
07. color(i)← green, sign(i)← sign(leftChild(i))
08. return T

Figure 3-2: The coloring scheme for pure configurations

If we apply the algorithm PureColoring(h, Lp) on tree T with a pure configuration

Lp, its nodes either get colored green or they are without color.

Definition 3.2.1 (Top Node). A colored node in a tree T is called a top node if the

path from that node to the root does not contain any other colored node.

We call the set of top nodes in a tree T with a pure configuration Lp as the cover

of the configuration.

With the above characterization of a cover of a pure configuration, we formulate

an algorithm to construct one in Figure 3-3. Initially, the algorithm assigns an empty

set Xi to each node i of the tree. For any leaf node j, if the leaf node is colored

green, then Xj is set to the singleton set {(j, sign(j))}, otherwise Xj remains the

empty set. For any non-leaf node i, if the node is colored green, then Xi is set to

{(i, sign(i))}, else Xi is set as XleftChild(i)

⋃
XrightChild(i). Finally, the algorithm returns

X0, i.e., the set associated with the root node.

Proposition 3.2.1. PureCoverGen(h, Lp) returns the top nodes of a tree of height h

with configuration Lp.

Proof. According to our coloring scheme and the definition of a top node, the following

is true for any top node i.
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PureCoverGen(h, Lp):

01. T ← PureColoring(h, Lp)
02. for i← 0 to 2h+1 − 2
03. Xi ← ∅
04. for i = 2h − 1 to 2h+1 − 2 ▷ leaf nodes
05. if color(i) = green
06. Xi ← {(i, sign(i))}
07. for i← 2h − 2 to 0 ▷ every non-leaf node i
08. if color(i) = green
09. Xi ← {(i, sign(i))}
10. else
11. Xi ← XleftChild(i)

⋃
XrightChild(i)

12. return X0

Figure 3-3: Pure cover generation

1. Both children of i are green. Our coloring scheme guarantees this.

2. The sibling of i is not green, as otherwise, our coloring scheme will make the

immediate ancestor of i also green, which violates the condition that i is a top

node.

3. No ancestor of i is green, as i is a top node.

Based on the above observations, it follows that if i is a top node, then Xi = {(i, s)}

(see lines 6 and 9 of the Algorithm in Figure 3-3). Further, for any ancestor j of i,

Xj contains {(i, s)} (see line 11 of Figure 3-3). As the root (i.e., node 0) is also an

ancestor of i hence X0 contains (i, s). Thus, the set returned by PureCoverGen(h, Lp)

contains all top nodes. Conversely, following the same arguments, it is easy to see

that if (i, s) ∈ X0, then i is a top node.

We list some additional properties of covers generated by the cover generation

algorithm PureCoverGen which are immediate from the algorithm.

Proposition 3.2.2. Let Lp be a pure configuration of a tree T of height h, and let

Cp = PureCoverGen(h, Lp) then the following are true.

1. If (i, s) ∈ Cp and i is a leaf node then (i, s) ∈ Lp.
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2. If (i, s) ∈ Cp and i is not a leaf node then every leaf node of the subtree rooted

at i occurs in Lp with sign s.

3. If i and i′ be siblings in the tree T then both (i, s), (i′, s) cannot be in Cp.

PureReConstruct(h,Cp):

01. Initialize a tree T with height h,
where the nodes of the tree has no color.

02. Initialize Lp ← ∅
03. for every node i = 0 to 2h − 2 ▷ non-leaf nodes
04. if (i, s) ∈ Cp

05. for all j ∈ leaves(T (i))
06. Lp ← Lp ∪ {(j, s)}
07. return Lp

Figure 3-4: Pure cover reconstruction

Now, given a pure cover Cp, corresponding to a pure configuration Lp, a recon-

struction algorithm works as follows (see Figure 3-4). For every non-leaf node i in

the cover, the reconstruction algorithm assigns the same sign to all the leaf nodes of

the sub-tree rooted at node i and adds those leaf nodes along with their sign to the

configuration Lp. And for every leaf node in the cover, it adds the node with its sign

to the configuration.

The following proposition, which is easy to verify, asserts that the cover generation

scheme is correct.

Proposition 3.2.3. Let Lp be a pure configuration and Cp = PureCoverGen(h, Lp)

and L′
p = PureReConstruct(h,Cp), then Lp = L′

p.

3.2.2 Mixed Cover: Generating a Smaller Sized Cover

In the previous section we discussed a scheme to generate covers assuming the con-

figuration to be pure. In this section, we remove this restriction. Let L be a complete

configuration for a tree T of height h. Hence, L contains all leaf nodes of T along

with their sign, i.e.,

L = {(i, sign(i)) : i ∈ leaves(T )} ,
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where sign(i) ∈ {+++,−−−}. Such a complete configuration can be naturally decomposed

into pure configurations Lg and Lr where,

Lg = {(i,+++) : (i,+++) ∈ L} , Lr = {(i,−−−) : (i,−−−) ∈ L} .

As Lg and Lr are pure configurations, we can use our cover generation algorithm for

computing the covers of the pure configurations Lg and Lr as Cg = PureCoverGen

(h, Lg), Cr = PureCoverGen (h, Lr). Note, that any one of Cg or Cr can be used as

a cover of the complete configuration L. The reconstruction would be simple. We

would reconstruct the pure configuration Lg (respectively Lr) from Cg (respectively

Cr) and assign the opposite sign to all other leaf nodes of the tree. Thus, we can

choose the one with smaller number of elements among Cg and Cr as the cover of L.

The above procedure would generate a correct cover for L, but we seek to find

a more succinct cover. The above procedure yields a cover which contains nodes of

the same sign, and hence we call such a cover as a pure cover. The procedure that

we are about to describe will contain nodes with both signs and hence we name this

algorithm a mixed cover algorithm.

MixedColoring(h, Lc):

01. Initialize a tree T with height h,
where the nodes of the tree has no color.

02. for i← 2h − 1 to 2h+1 − 2
03. if (i,+++) ∈ Lc

04. color(i)← green
05. else
06. color(i)← red
07. for i← 2h − 2 to 0
08. if color(leftChild(i)) = color(rightChild(i)) = green
09. color(i)← green
10. if color(leftChild(i)) = color(rightChild(i)) = red
11. color(i)← red
12. return T

Figure 3-5: Coloring scheme for mixed covers

As before, the heart of the algorithm is a coloring scheme MixedColoring(h, Lc)

which is described in Figure 3-5. The algorithm takes in a complete configuration
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(Lc) for a tree T of height h, and colors the nodes of T as green or red. The

algorithm examines the nodes level wise starting from the lowest level, i.e., the leaf

nodes. All leaf nodes with sign +++ are colored green and leaf nodes with sign −−− are

colored red. A non-leaf node gets the color green if both its children are colored

green and gets the color red if both its children are red. Other nodes remain

uncolored.

We discuss the main idea of our cover generation scheme next. It may be helpful

to consider an example shown in Figure 3-6 all along. The number of leaf nodes in

the tree n = 16. Consider that the nodes labeled +++ are Lg = {15, 16, 18, 19, 20, 23},

and the nodes labeled −−− are Lr = {17, 21, 22, 24, 25, 26, 27, 28, 29, 30}. According

to our coloring algorithm of Figure 3-5, the nodes {15, 16, 18, 19, 20, 23} will re-

ceive the color green (denoted by shaded circles in the Figure 3-6) and the nodes

{17, 21, 22, 24, 25, 26, 27, 28, 29, 30} will be colored red (shown by shaded squares in

the figure).

Let T be a tree of height h with a complete configuration Lc and colored using

MixedColoring(h, Lc). Recall that a node i is a top node of the colored tree T if i is

colored and there is no colored node in the path from i to the root. In our example

in Figure 3-6 the nodes 7, 17, 18, 9, 10, 23, 24, 12, and 6 are top nodes. Note that, all

leaf nodes of the subtree rooted at a top node i have the same color as that of i.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 3-6: An example of mixed cover: The leaf nodes represented by circles are
assumed to bear the sign +++, the leaf nodes represented by squares bear the sign −−−.
The shaded circles represent nodes colored green and the shaded squares are nodes
colored red.
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The main intuition of our mixed cover generation algorithm is the following. Let

i be a top node for a colored tree T . Hence, the color of i is enough to determine the

color of all the leaf nodes of the subtree rooted at i. In fact, in many cases, a top

node i along with its color can be used to uniquely color the leaf nodes of a tree much

bigger than the subtree rooted at i. For example, in Figure 3-6, node 10 can be used

to reconstruct the tree rooted at node 4: we will assign the sign of 10 to all of its leaf

nodes and the opposite sign to all the other leaf nodes of the subtree rooted at node

4. We want to make this intuition more concrete. We introduce some definitions for

this purpose.

Definition 3.2.2 (Representable Top Nodes). Let T be a tree of height h with com-

plete configuration Lc and colored by MixedColoring(h, Lc). A set of top nodes S of T

is called representable, if the following holds

1. All nodes in S are of same color c ∈ {green,red}.

2. There exists a subtree T ′ (of T ) containing all nodes in S, such that all leaf

nodes of T ′ other than the leaf nodes of the trees rooted at nodes in S have a

color different from c.

If S is representable then any T ′ satisfying the property (2) above is said to represent

S.

Definition 3.2.3 (Representative Tree). Let T be a tree of height h with complete

configuration Lc and colored by MixedColoring(h, Lc). S be a representable set of top

nodes of T . The largest subtree of T which represents S is called the representative

tree of S. By repT (S) we will denote the root of the representative tree of S. If S is

a singleton set containing only i, we will denote the root of their representative tree

of S by repT (i).

From the definition, it is immediate that every representable set of top nodes

will have a representative tree, moreover every singleton set containing a top node is

representable and thus has a representative tree.
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In our example tree T in Figure 3-6 we have the set {17, 10} is representable

and repT ({17, 10}) = 1, whereas {17, 24} is not representable. Moreover, we have

repT (7) = 7, repT (17) = 3, repT (9) = repT (10) = 4, repT (23) = 2, repT (12) = 12 and

repT (6) = 6.

Definition 3.2.4 (Independent Nodes). Let S1, S2 be two sets of representable top

nodes of a colored tree T and let repT (S1) = i1 and repT (S2) = i2. We say S1, S2 are

independent if T (i1) and T (i2) are disjoint.

In our example, the sets {7},{17} are not independent whereas {17}, {10} and

{23}, {17} are independent.

Definition 3.2.5 (Span). Let S be a set of top nodes of a tree T colored by MixedColoring

(h, L). We say that S spans T , if S can be decomposed into S = S1 ∪ S2 ∪ · · · ∪ Sk,

for some k ≤ |S| such that the following holds

1. For all i, j ∈ [k], Si ∩ Sj = ∅.

2. For all i ∈ [k], Si is representable.

3. For all i, j ∈ [k], i ̸= j, Si and Sj are independent.

4. The union of the leaf nodes of the representative trees of the sets S1, . . . , Sk,

gives the leaves of the tree T , i.e.,

⋃
i∈[k]

leaves (T (repT (Si))) = leaves(T ).

Observe that if X spans a colored tree T , then the nodes in X along with their

colors contain enough information to reconstruct the complete configuration of T .

Thus, for a given colored tree our goal is to find a set X of top nodes of minimum

size which spans the tree. For the reconstruction, it is necessary to just decompose

the span into representable sets and determine the representative tree for each such

representable set.
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Consider any node i of a colored tree T . If i is colored and is of color c ∈

{red,green}, then i along with its color/sign spans the tree T (i). If i is un-colored,

then the following statements hold and are easy to verify.

Proposition 3.2.4. Let i be any un-colored node in a colored tree T and ρ and λ be

the right child and left child of i, respectively. Let Xρ and Xλ span T (ρ) and T (λ)

respectively. Then either both Xρ and Xλ individually spans T (i) or Xλ ∪Xρ spans

T (i).

Proposition 3.2.5. Let i be any un-colored node in a colored tree T and ρ and λ be

the right child and left child of i, respectively. Let X spans T (i) and let X = Xλ∪Xρ,

where Xλ ⊆ nodes(T (λ)) and Xρ ⊆ nodes(T (ρ)). For j ∈ {λ, ρ}, if Xj ̸= ∅, then Xj

spans T (j). Moreover, if Xλ = ∅ then Xρ contains nodes of the same color and all

leaves of T (λ) are of color different from that of the nodes of Xρ.

The above observation is central to our algorithm MixedCoverGen(h, Lc) for gen-

erating covers described in Figure 3-7. The algorithm finds a cover for a tree T of

height h with a complete configuration Lc. The algorithm assigns to each node i,

three sets namely Xi,g, Xi,r, Xi,m. Xi,g and Xi,r contains the green and red top

nodes of the subtree rooted at i. Xi,m is empty if i is a leaf node, otherwise we set

Y ← MixedUnion(i).

The procedure MixedUnion(i), when i is not a leaf node, is described in the right

column of Figure 3-7. MixedUnion(i) computes the following collection of sets

C =
{
XleftChild(i),x

⋃
XrightChild(i),y : x, y ∈ {r, g,m};

x ̸= y;XleftChild(i),x, XrightChild(i),y ̸= ∅
}
,

and returns the set Y of minimum cardinality from C. If |Y | is smaller than both |Xi,g|

and |Xi,r|, then Xi,m is set to Y otherwise it remains empty. Finally, the algorithm

outputs C = minCard(X0,r, X0,g, X0,m). The function minCard(X1, . . . , Xn), for finite
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sets X1, X2, . . . , Xn gives a nonempty set of minimum cardinality among the sets

X1, X2, . . . , Xn.

Theorem 3.2.1. Let T be a tree of height h, and Lc be a complete configuration of

T . Let MixedCoverGen(h, Lc) compute the sets Xi,g, Xi,r, Xi,m for each node i of T as

described in Figure 3-7. Let Ci = {Xi,g, Xi,r, Xi,m}. Then the following are true.

1. Ci contains at least one non-empty set.

2. Any non-empty set X ∈ Ci spans T (i).

3. minCard(Ci) is the smallest set of nodes which spans T (i).

Proof. The proof of (1) is immediate, as at least one of Xi,r or Xi,g must be non-empty

as Lc is a complete configuration of T and hence all the leaves of T are colored.

(2) Directly follows from the description of the algorithm and Proposition 3.2.4.

We prove (3) by induction on the height of a node. Let i be of height 0, i.e., a

leaf node and without loss of generality let i be colored green, thus Xi,g = {(i,+++)}

and Xi,r = Xi,m = ∅, and Xi,g is the smallest set which spans T (i) as |Xi,g| = 1.

This serves as the base case. As induction hypothesis consider that (3) is true for all

nodes at height less than ℓ. Consider, a node i at height ℓ. As ℓ > 0, i have two

children say λ and ρ. By our induction hypothesis, Xλ = minCard(Xλ,r, Xλ,g, Xλ,m)

and Xρ = minCard(Xρ,r, Xρ,g, Xρ,m) are the smallest sets which spans T (λ) and T (ρ)

respectively. Now we have a few cases to consider:

Case 1: i is colored. Without loss of generality let color(i) = green, then

Xi,g = {(i,+++)} and Xi,r and Xi,m are empty. Moreover, as Xi,g = {(i,+++)}

contains a single node which is the root of T (i), thus Xi,g is the smallest set

which spans T (i).

Case 2: i is not colored. LetX = minCard(Ci), and for the sake of contradiction

let Y span T (i) and let |Y | < |X|. Let Y = Yλ ∪ Yρ where Yj contains nodes in

T (j) for j ∈ {λ, ρ}. We consider two subcases:
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(a) Both Yλ and Yρ are non-empty. By Proposition 3.2.5, Yλ and Yρ spans

T (λ) and T (ρ) respectively. Now, we claim that either |Yλ| < |Xλ| or

|Yρ| < |Xρ|, and this contradicts our induction hypothesis. Finally, to see

why our claim is correct, notice that by our algorithm Xλ ∪Xρ ∈ Ci, and

as |Y | < |X| and X = minCard(Ci) it cannot be that |Yλ| ≥ |Xλ| and

|Yρ| ≥ |Xρ|.

(b) One of Yλ and Yρ is empty. Without loss of generality, let Yρ = ∅, i.e.,

Y = Yλ. Then by Proposition 3.2.5, Yλ must contain nodes of the same

color, say green, and all leaves of T (ρ) must be red. Hence, node ρ

must be red and all nodes in leaves(T (λ)) \ Yλ must also be red. In this

configuration, the set Xi,g computed by MixedCoverGen, will contain the

same nodes as in Yλ. Hence, we have Y = Yλ ∈ Ci, which contradicts

|Y | < |X|, as X = minCard(Ci).

MixedCoverGen(h, Lc): MixedUnion(i):
01. T ← MixedColoring(h, Lc) 01. cnt← 0
02. for every node i of tree T 02. for x ∈ {r, g,m}
03. Xi,g, Xi,r, Xi,m ← ∅ 03. for y ∈ {r, g,m}
04. for i← 2h − 1 to 0 04. λ← leftChild(i)
05. if color(i) = green 05. ρ← rightChild(i)
06. Xi,g ← Xi,g

⋃
{(i,+)} 06. if (x ̸= y)

∧
Xλ,x ̸= ∅

∧
Xρ,y ̸= ∅

07. else-if color(i) = red 07. Ycnt ← Xλ,x

⋃
Xρ,y

08. Xi,r ← Xi,r

⋃
{(i,−)} 08. cnt← cnt+ 1

09. else 09. X ← minCard(Y0, Y1, . . . , Ycnt)
10. Xi,g ← XleftChild(i),g

⋃
XrightChild(i),g 10. return X

11. Xi,r ← XleftChild(i),r

⋃
XrightChild(i),r

12. Y ← MixedUnion(i)
13. if |Y | < min{|Xi,g|, |Xi,r|}
14. Xi,m ← Y
15. return minCard(X0,g, X0,r, X0,m)

Figure 3-7: Mixed cover generation algorithm

Theorem 3.2.1 asserts that MixedCoverGen(h, Lc) outputs the smallest possible set

X which spans a tree of height h with a complete configuration Lc. Now our goal is
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to regenerate the configuration of a tree of height h, given h and a set C which spans

the tree and was produced by MixedCoverGen(h, Lc). The reconstruction algorithm is

presented in Figure 3-8.

First, note that it may be the case that the algorithm MixedCoverGen(h, Lc) gen-

erates a pure cover, i.e., it generates C where all nodes in C are labeled with the same

sign. In such a case either C = X0,r or C = X0,g, i.e., C contains all top nodes of a

single color. In this case, the reconstruction is simple, as the representative tree for

C is the complete tree, i.e., repT (C) = 0. For reconstruction, the following procedure

would suffice: For every (i, sign(i)) ∈ C, the leaves of the sub-tree T (i) are labeled

with sign(i) and the rest of the leaf nodes are labeled with the opposite sign. These

steps are done in lines 5 to 8 of the algorithm described in Figure 3-8.

If C is a mixed cover, i.e., C contains nodes of both signs then C = X0,m. In

this case, the reconstruction procedure is a bit more involved. For convenience, we

introduce some additional notations. For any node i in a tree T , let path(i) denote

the sequence of nodes in the unique path from i to the root of T . For any node j ̸= i

of path(i), previ(j) denotes the node preceding j in the sequence path(i).

Reconstructing the configuration, given a mixed cover C boils down to decom-

posing C into disjoint subsets such that each subset is representable. Once such rep-

resentable subsets are obtained the leaves of the corresponding representative trees

can be assigned colors (signs) and this assignment of signs would yield the desired

complete configuration.

Let C be the output of MixedCoverGen (h, Lc) and let C be a mixed cover. Let

(j, s) ∈ C, where s ∈ {+++,−−−} and let s̄ be the sign opposite to s. Let, ℓj be the first

node in path(j) which intersects with path(i) for some node i such that (i, s̄) ∈ C. As

C is a mixed cover, hence C contains at least two elements with different signs and

thus for every (j, s) ∈ C, ℓj is well-defined.

Let λ and ρ be the left and right children of ℓj. Then, if i belongs to T (λ) then j

belongs to T (ρ) and vice versa. Without loss of generality, let i belong to T (λ) also
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let J be those nodes in T (ρ) which belongs to C, i.e.,

J = {(k, sign(k)) : (k, sign(k)) ∈ C, k ∈ T (ρ)}. (3.3)

It is easy to see that all nodes in J bears the same sign as that of j, as otherwise ℓj

cannot be the first node in path(j) which intersects with the path of another node in

C with a sign different from the sign of j. We observe the following

Proposition 3.2.6. The set J as defined in Eq. (3.3) is representable and ρ =

repT (J).

Proof. As all nodes in J are top nodes and bear the same sign, then in the correspond-

ing colored tree T all nodes in J have the same color, say green. With reference to

the algorithm MixedCoverGen((h, Lc)), it is immediate that J ⊆ Xρ,g. We claim that

J = Xρ,g, i.e., J contains all green top nodes in T (ρ). As C is a cover of T and

J ⊆ C, by Theorem 3.2.1, C spans T , and the nodes in J are the only green top

nodes in T (ρ) which are in C. If there are green top nodes in T (ρ) which are not

in J then C cannot span T . Thus, J is representable and T (ρ) represents J .

We are left to show that T (ρ) is the largest tree that represents J , i.e., repT (J) = ρ.

The smallest tree larger than T (ρ) which contains T (ρ) is T (ℓj). We will argue that

ℓj ̸= repT (J). Note that, i ∈ C and i belongs to the left subtree T (λ) of T (ℓj) and i

has color different from j, i.e., i is colored red. If ℓj = repT (J), then a set containing

J and another set containing i cannot be independent, which implies that both nodes

in J and the node i cannot be in C which by Theorem 3.2.1 spans T .

The above proposition is central to the reconstruction algorithm presented in

Figure 3-8 when C is a mixed cover. Lines 10-14 of the algorithm presented in

Figure 3-8 finds the node ℓj (as described above) for each j in C and thus decomposes

C into representative sets J as asserted in Proposition 3.2.6. This process is iterated

until all leaves of the tree are labeled.
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MixedReConstruct(h,C):
01. Initialize a tree T with height h, where the nodes of the tree has no color.
02. L← ∅
03. for all (i, s) ∈ C
04. for all k ∈ leaves(T (i))
05. L← L ∪ {(k, s)}
05. if C is a pure cover with sign s ∈ {+++,−−−}
06. for all k′ ∈ leaves(T )
07. if (k′, s) /∈ L
08. L← L ∪ {(k′, s̄)}
09. else
10. for each (i, s) ∈ C
11. find the first ancestor node j of i in path(i) such that j ∈ path(l) for some (l, s̄) ∈ C
12. for all the leaf nodes k of the sub-tree rooted at the node previ(j)
13. if (k, s) /∈ L
14. L← L ∪ {(k, s̄)}
15. return L

Figure 3-8: Mixed cover reconstruction

3.2.3 Complexity of Proposed Algorithms

In the MixedCoverGen algorithm (Figure 3-7), the loop in line 4 iterates N = 2h+1−1

times, i.e., for all nodes in the tree. For each iteration, the algorithm computes a

minimum-sized cover of the node using the MixedUnion algorithm. This algorithm

operates on a single node and determines the minimum-sized mixed cover by taking

the union of all possible covers from the left and right children of the target node.

Thus, the overall complexity of the mixed cover generation algorithm is determined

by the complexity of the MixedUnion algorithm.

The MixedUnion algorithm has a constant-time computational complexity and

requires linear space. To achieve this, the algorithm maintains the red, green, and

mixed covers of each node using linked lists. Each linked list is structured such that

its head contains the length of the list and an additional pointer to the tail. This

setup allows us to efficiently compute the cover with the minimum cardinality using

the length information stored at the head, and a union operation can be performed

by manipulating the head and tail pointers of the linked lists being merged. Thus,

the MixedUnion operations have constant time complexity. In addition, the size of the

linked lists is linear with respect to the number of tree nodes. The algorithm processes
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the tree level-wise, and at each level, the total size of all linked lists is linear in the

number of tree nodes. Covers for all nodes below the current level can be discarded.

Therefore, the time and space complexity of the proposed algorithm MixedCoverGen

is O(N).

The MixedReConstruct algorithm of Figure 3-8 runs for at most the number of

elements in the input cover C. The size of the input cover is at most half the number

of leaf nodes, i.e., n/2 = 2h−1. For each node in the cover, the algorithm examines

the path from that node to the root. It searches for the first intersection of this path

with another path from a different node in the cover with opposite color. This first

intersection determines the representative tree for the target node (the details are

described in the algorithm MixedReConstruct of Figure 3-8).

This process can be optimized by pre-computing all paths from the elements in the

cover, which requires at most O(h) time per element. As a result, the overall time

complexity of the reconstruction algorithm is O(C · h). Lastly, the reconstruction

algorithm has a space complexity O(N), since the entire process can be performed

directly on the tree structure.

3.2.4 Dynamic Tree Cover Scheme

Recall the setting of a dynamic tree cover scheme as discussed in Section 3.1.4. We

have a sequence of trees T1, T2, . . . , Tℓ, with their corresponding complete configura-

tions L1, L2, . . . , Lℓ, and for 1 ≤ i ≤ ℓ − 1, Lδ
i is defined as in Equations (3.1) and

(3.2). Note each Lδ
i represents a configuration, not necessarily a complete one, of a

tree of height hi, where hi is the height of the shortest complete binary tree which

contains all nodes in Lδ
i . The dynamic cover generation algorithm takes Lδ

i and gen-

erates a cover Ci. The property which is required is that, knowing the complete

configuration of T1 and the sequence of covers C2, C3, . . . , Cℓ corresponding to the

configurations Lδ
2, L

δ
3, . . . , L

δ
ℓ−1, the cover reconstruction algorithm can generate the

complete configuration of Tn.

The dynamic cover generation algorithm just takes a configuration and produces

its cover. If the input configuration L is a complete configuration then the mixed
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cover generation algorithm is used to generate the cover. Otherwise, L is decomposed

into two sets Lg and Lr, where Lg contains the nodes labeled +++ and Lr contains the

nodes labeled −−−, and the pure cover generation algorithm is used to generate covers

Cg and Cr for the configurations Lg and Lr respectively. Finally, C = Cg ∪ Cr is

produced as the output. The details are shown in Figure 3-9.

dCoverGen(h, L):

01. Initialize an empty tree T of height h
02. if |L| = 2h

03. C ← MixedCoverGen(h, L)
04. else
05. C,Lg, Lr ← ∅
06. for all (i,+++) ∈ L
07. Lg ← Lg ∪ {(i,+++)}
08. Cg ← PureCoverGen(h, Lg)
09. for all (i,−−−) ∈ L
10. Lr ← Lr ∪ {(i,−−−)}
11. Cr ← PureCoverGen(h, Lr)
12. C ← Cg ∪ Cr

13. return C

Figure 3-9: Dynamic cover generation

To explain the reconstruction procedure we introduce a new operation on config-

urations. Let Lα and Lβ be two configurations for trees with heights hα and hβ. Let

hmax = max{hα, hβ}, L̃α = ϕhα(Lα) and L̃β = ϕhβ
(Lβ). We define a new configuration

for a tree of height hmax as

Lα ▷(hα,hβ) Lβ = ϕ−1
hmax

(X ∪ Y ∪ Z), (3.4)

where X, Y, Z are defined as follows:

X = {(i, s) ∈ L̃α : (i, s) /∈ L̃β and (i, s̄) /∈ L̃β}

Y = {(i, s) ∈ L̃β : (i, s) /∈ L̃α, (i, s̄) /∈ L̃α}

Z = {(i, s) ∈ L̃β : (i, s̄) ∈ L̃α}.

Lα ▷(hα,hβ) Lβ is essentially the configuration obtained by overwriting Lα by Lβ.
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Notice that the set X contains those labeled nodes in Lα which are not present in Lβ.

Similarly, Y contains those nodes in Lβ which are not present in Lα and Z contains

those nodes in Lβ which are present in Lα but with the opposite label.

For reconstruction, the sequence of covers, along with the corresponding tree

heights, is used. Suppose C1 be the cover of L1 and for 2 ≤ i ≤ ℓ− 1, Ci be the cover

of Lδ
i . The cover reconstruction algorithm first reconstructs the configuration Li for

each cover Ci and then outputs the configuration

L = ((((L2 ▷ L2)▷ L3)▷ · · · )▷ Lℓ−1) .

The details are in Figure 3-10.

dCoverReConstruct({(hi, Ci)}i∈[0,ℓ−1]):

01. L0 ← MixedReConstruct(h0, C0)
02. for i = 1 to ℓ− 1
03. Initialize Xi, Cp, Cr ← ∅
04. for all (j,+++) ∈ Ci

05. Cp ← Cp ∪ {(j,+)}
06. Lp ← PureReConstruct(hi, Cp)
07. for all (j,−−−) ∈ Ci

08. Cr ← Cr ∪ {(j,−−−)}
09. Lr ← PureReConstruct(hi, Cr)
10. Xi ← Lp ∪ Lr

11. h← h0, L← L0

12. for i = 1 to ℓ− 1,
13. L← L▷(h,hi) Xi

14. h← max{h, hi}
15. return L

Figure 3-10: Dynamic cover reconstruction

3.3 Expected Cover Size of a Pure Cover

In this section, we provide an analysis of the expected size of a cover returned by the

Algorithm in Figure 3-3. Let T be a full binary tree of height h and thus T has a

total of n = 2h leaf nodes. Let Lp be a pure configuration of T such that |Lp| = r,

and without loss of generality, we assume that all nodes in Lp bear the sign +++. There
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are
(
n
r

)
such configurations possible, and we are interested in the average (expected

value of) cover size over all these
(
n
r

)
configurations.

Consider a sequence of 2n − 1 binary random variables P0, P1, . . . , P2n−2 corre-

sponding to each node i of T . Define

Pi =

 1; if color(i) = green

0; otherwise.

That is, according to our coloring scheme, Pi = 1 denotes if the node i is col-

ored green or not. Consider any node i at the ℓth level of the tree T , i.e., i ∈{
2ℓ − 1, . . . , 2ℓ+1 − 2

}
. Then, the subtree rooted at node i contains 2h−ℓ many leaf

nodes. The event “{Pi = 1}” can then be viewed as choosing 2h−ℓ many black balls

from a bag containing a total of n balls, where r many black balls and remaining

n− r are white balls. Therefore,

Pr[Pi = 1] =


( r
2h−ℓ)
( n
2h−ℓ)

= η2h−ℓ(n, r); if 2h−ℓ ≤ r

0; otherwise,

where ηρ(ν, ξ) =
(ξρ)
(νρ)

denotes the probability of choosing ρ many black balls from a

bag containing ξ many are black balls and the ν− ξ many white balls. In order to

avoid writing the boundary conditions every time, we extend the definition of ηρ(ν, ξ)

in the following way.

ηρ (ν, ξ)
∆
=


(
ξ
ρ

)(
ν
ρ

) ; if ν, ξ, ρ ≥ 0 and ρ ≤ ξ

0; otherwise.

Define another sequence of 2n− 1 binary random variables X0, X1, . . . , X2n−2 in the
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following manner.

Xi =


1; if

 i = odd and Pi = 1 and Pi+1 = 0

i = even and Pi = 1 and Pi−1 = 0

0 otherwise.

That is, the random variable Xi corresponding to the node i contributes 1 to the size

of the cover if i is a green node, but its sibling node is not a green node. Assume

that i is odd and 2ℓ < i < 2ℓ+1. Then,

Pr[Xi = 1] = Pr[{Pi = 1} ∩ {Pi+1 = 0}]

= Pr[Pi+1 = 0|Pi = 1] · Pr[Pi = 1]

= (1− Pr[Pi+1 = 1|Pi = 1]) · Pr[Pi = 1]

=

(
1−

(
r−2h−ℓ

2h−ℓ

)(
n−2h−ℓ

2h−ℓ

)) · η2h−ℓ(n, r)

=
(
1− η2h−ℓ

(
n− 2h−ℓ, r − 2h−ℓ

))
· η2h−ℓ (n, r).

Let the random variable X denote the cover size. Then, X can be expressed as

X = X0 +X1 + · · ·+X2h+1−2.

Assume that 2α ≤ r < 2α+1. This implies that Pi = 0 for all 0 ≤ i ≤ 2h−α − 2 with

the convention that if 2h−α− 2 < 0 then such an i does not exist. Then the cover size

X is given by,

X = X2h−α−1 +X2h−α + · · ·+X2h+1−2

=
h∑

i=h−α

(X2i−1 +X2i + · · ·+X2i+1−2) .
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Therefore, by linearity of expectation, the expected cover size is given by

E[X] =
h∑

i=h−α

(E[X2i−1] + E[X2i ] + · · ·+ E[X2i+1−2])

=
h∑

i=h−α

{
2i ·
(
1− η2h−i

(
n− 2h−i, r − 2h−i

))
·

η2h−i (n, r)} , (3.5)

where r denote the size of the pure configuration such that 2α ≤ r < 2α+1.

3.4 Experimental Results

In this section, we test the performance of our proposed algorithms experimentally.

Consider a tree with n leaf nodes, where n = 2k for some k. Let r leaves of the tree

would be labeled +++ and n− r leaves would be labeled −−−. We are interested in finding

the cover size of such a tree. Note that if we fix a tree of size n and r of the leave are

+++, then the tree has
(
n
r

)
different configurations, and each configuration will give rise

to a cover of a different size. In our first experiment, we keep n fixed to 32, and for

each 0 ≤ r ≤ 32, we generate
(
n
r

)
configurations and compute the cover of all these

configurations. For each configuration, we generate three types of covers:

1. Pure cover with the nodes labeled +++, by using the algorithm PureCoverGen(·, ·)

described in Figure 3-3.

2. Pure cover with the nodes labeled −−−, also using algorithm PureCoverGen(·, ·) of

Figure 3-3.

3. Mixed cover using Algorithm MixedCoverGen(·, ·) described in Figure 3-7.

For each r, we compute the average cover size over all the configurations. These

results are summarized in Figure 3-11. The X-axis of the graph shown in Figure 3-11

represents the value r, i.e., the number of identifiers which are present corresponding

to the keyword w. The Y -axis represents the average cover size of all
(
n
r

)
configura-

tions corresponding to r. The size of the three types of covers is represented by three
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different types of lines. In addition, we have also plotted the line Y = X for the sake

of reference.

The following can be immediately observed from the results demonstrated in Fig-

ure 3-11:

1. For all three types of covers, the average size of the covers increases with r, and

then it decreases.

2. For all values of r, the size of the mixed cover is smaller than the size of the

pure covers. The difference is significant when the number of identifiers present

is around half of the total number of identifiers.

3. The curves representing the average size of pure cover with nodes labeled +++ and

the mixed cover always lies below the line Y = X

We have theoretically calculated the expected cover size for pure configuration (see

Section 3.3), given by Equation (3.5). To validate our theoretical result (Equa-

tion (3.5)), we ran the pure cover generation algorithm for all possible configura-

tions of the set
(
n
r

)
in a tree with 32 leaf nodes. The experimental results for the

expected cover size match very closely with the values predicted by the expression

(Equation 3.5), confirming the tightness of our expression.

Next, we repeat the same experiment with different database sizes for n = 512,

1024, 2048, and 4096. In this setting, it would be computationally prohibitive to

compute the cover size of all configurations corresponding to a value of r, for all

0 ≤ r ≤ n. Hence, for each r, we generate 5000 uniform random configurations (with

replacement), then compute their mixed cover and the average cover size over these

5000 configurations. The results of this experiment are depicted in Figure 3-12, which

shows the variation of the average cover size with r for different values of n. In each

figure, the line Y = X is also drawn for reference. For pure covers, the curves were

drawn using Equation (3.5). The results in Figure 3-12 show the same pattern as in

Figure 3-11.
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Figure 3-11: Number of Identifiers vs Average Cover Size

3.5 Final Remarks

We introduced the concept of a cover of a tree, which is a novel method for repre-

senting trees with labeled leaves more concisely. This representation has interesting

combinatorial properties, which we explored in detail. We described several algo-

rithms for generating covers and the corresponding algorithms for reconstructing the

configuration of a tree. We also proved that our algorithm(s) produce optimal sized

covers. We also provided an estimation of the expected size of a cover and experi-

mentally validated our estimates.

In the following chapter, we demonstrate how the techniques developed in this

chapter can be applied to transform a generic SSE scheme into an equivalently secure

and efficient version.
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Figure 3-12: Expected Cover Size Comparison

80



4
Tree Cover Based SSE

In this chapter, we show how to use our formulation of tree cover and the algorithms

for cover generation discussed in Chapter 3 to design a cover based SSE scheme.

Our method is generic, i.e., given any secure SSE scheme we can apply our method

to convert it into a cover based scheme which will make the resulting scheme more

efficient in terms of storage, search time and communication costs. This conversion

of any base SSE scheme to cover based SSE scheme is security preserving, i.e., the

new scheme retains the security of the base scheme.

To demonstrate our idea, we start by describing our technique for a static SSE

in Section 4.1. Further in Section 4.2 we extend our scheme for dynamic SSEs. In

Section 4.3, we describe in detail our methodology and point out how our scheme

can result in savings if paired with an existing SSE. In Section 4.4, we also provide a

detailed security argument showing that the new scheme resulting from pairing our

scheme with a base SSE scheme enjoys the same security as the base scheme.

In Section 4.5 we validate our efficiency claims with extensive experimentation on

both real and synthetic data. We report the results of our schemes when applied to

the Enron Email database [45]. Our proposed scheme achieves a significant reduction

(between 35% to 60%) in the size of the encrypted database over a base SSE scheme.

We also simulate the dynamic setting in SSE using a synthetic database, and we

demonstrate a significant advantage of our scheme in the dynamic setting as well.

Furthermore, we provide results on extra overhead incurred by adopting our technique

and show that the overhead of our scheme is fairly reasonable in a practical context.
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The basic codes and data used for our experiment are publicly available at [77]. This

chapter was partly published in [31].

4.1 Constructing Static SSE Using Tree Cover

A static database is where the number of documents in the database is a fixed natural

number D. Let, D = {d1, . . . , dD} be the set of documents and I = {id1, . . . , idD}

be the set of identifiers associated with those documents. We assume a natural

ordering of the identifiers in the database, where idi represents the i-th identifier of

the database. Let w ∈ W be an arbitrary keyword and mw be the largest integer such

that idmw ∈ db(w), and let hw be the smallest integer such that mw ≤ 2hw .

Let Tw be a complete binary tree of height hw. We will represent db(w) by a

configuration of the tree Tw. We associate each identifier idi, i ≤ mw with a leaf node

of the tree Tw, through the injective map φ−1 : I → nodes(Tw), where

φ−1(idi) = ϕ−1(i) = i+ 2hw − 2.

Note, the ϕ−1 function was introduced in Section 3.1.1. With the above specification,

φ−1(idi) represents the ith leaf node from the left of the tree Tw.

We label the leaf nodes of Tw as follows. For every i ≤ mw, the leaf node φ
−1(idi)

is labeled +++ if idi ∈ db(w) and is labeled −−− if idi /∈ db(w). Moreover, if mw < 2hw ,

then for all i, mw < i ≤ 2hw , the leaf nodes φ−1(idi) are labeled −−−. This labelling of

the leaves of Tw yields a complete configuration of Tw, and we call this configuration

Lw. Note that this configuration Lw uniquely represents the set db(w).

We now fix an efficient tree cover scheme Ψ = (CoverGen, ReConstruct), and let

Cw ← Ψ.CoverGen(hw, Lw), where Cw be the cover of the configuration Lw of the

tree Tw of height hw. Thus, from Cw, the configuration Lw and further the set db(w)

can be uniquely reconstructed. This interpretation of db(w) as a configuration of Tw,

which can be represented by a cover, will help us construct an efficient SSE scheme.

It is important to note that the height of a tree completely specifies it. It is not
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required by any of our schemes described later to store the tree explicitly.

4.1.1 Cover-based Representation of DB.

As a first step of constructing a cover-based SSE, we need to convert the given

database DB to a different representation D̃B. We call this the converted database.

This D̃B then acts as the input to the existing SSE scheme. For each w ∈ W, we

generate a configuration Lw from the set db(w) as described before. Let Cw ←

Ψ.CoverGen(Lw). We define

d̃b(w) = {(c, s, hw) : (c, s) ∈ Cw}. (4.1)

The elements of d̃b(w) are the λ-bit encoding of the tuple (c, s, hw). With this we

define

D̃B =
⋃
w∈W

d̃b(w)× {w}.

The conversion scheme from DB to D̃B is summarized in dbConversion Algorithm

in Figure 4-1.

dbConversion (DB) Conversion (db(w))

01. set D̃B← ∅ 01. set d̃b(w), Lw ← ∅
02. for each keyword w ∈ W 02. let mw be the largest integer such that idmw ∈ db(w)

03. d̃b(w)← Conversion(db(w)) 03. let hw be the smallest integer such that mw ≤ 2hw

04. for all ĩd ∈ d̃b(w) 04. initialize an empty full binary tree Tw of height hw

05. D̃B← D̃B ∪ {(ĩd, w)} 05. define P = {φ−1(idi) : idi ∈ db(w)}
06. return D̃B 06. define R = leaves(Tw) \ P

07. for all p ∈ P
08. Lw ← Lw ∪ {(p,+++)}
09. for all r ∈ R
10. Lw ← Lw ∪ {(r,−−−)}
11. Cw ← Ψ.CoverGen(hw, Lw)
12. for all (c, s) ∈ Cw

13. d̃b(w)← d̃b(w) ∪ {(c, s, hw)}
14. return d̃b(w)

Figure 4-1: DB to D̃B conversion algorithm
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4.1.2 Generic Static SSE Using Keyword Cover

Let us consider a database

DB =
⋃
w∈W

{(id, w) : id ∈ db(w)},

and any secure static SSE scheme Σ = (Σ.Setup, Σ. Search) as defined in Defini-

tion 2.3.1 (without the update protocol). Our goal is to covert Σ into a new SSE

sΣ = (sΣ.Setup, sΣ.Search). The procedures sΣ.Setup and sΣ. Search are described

in Figure 4-2.

sΣ.Setup takes in the database DB and a security parameter λ and outputs an en-

crypted database EDB, a key k and a client state σC. EDB is uploaded to the server and

σC and k are retained with the client. sΣ.Setup calls the routine dbConversion(DB),

described in Figure 4-1 and converts DB to D̃B. Further D̃B is sent as input to

Σ.Setup, the setup routine of the base static SSE scheme.

Search for a keyword w is performed by running the sΣ.Search protocol described

in Figure 4-2. In the protocol, first the client’s side SearchC algorithm corresponding to

the base SSE scheme Σ is executed on the inputs (k, σC, w). SearchC (k, σC, w) returns

a search token stkw for the keyword w and the updated client state σC. The search

token stkw is sent to the server, which subsequently runs the Σ.SearchS (stkw,EDB)

and outputs res, the search result, which is sent to the client. The rest of the pro-

cedure, i.e., lines 15 to 23 of Figure 4-2, runs on the client side. Where the client

obtains the set d̃b(w) from the search result sent by the server. Note, as described in

Equation 4.1, d̃b(w) is a collection of tuples which encode a cover of a tree of height

hw. Using the cover reconstruction algorithm, we reconstruct the configuration of the

tree representing the set db(w) and finally output it.

It is worth noting a few important characteristics of the scheme sΣ.

Correctness. The correctness of sΣ directly follows from the correctness of the

base static SSE scheme Σ and the correctness of the cover generation scheme Ψ.
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sΣ.Setup(1λ,DB) sΣ.Search(k, σC, w)

01. D̃B← dbConversion(DB) 01. Generate (σC, stkw)← Σ.SearchC (k, σC, w)

02. (k, σC,EDB)← Σ.SetupC(1
λ, D̃B) 02. Send stkw to the server

03. Send EDB to server and retain (k, σC) 03. res← Σ.SearchS (stkw,EDB)
04. Send res to the client

05. Decrypt and generate d̃b(w) from res
06. Set Cw, db(w)← ∅
07. for each ĩd ∈ d̃b(w)

08. Parse ĩd as (c, s, hw)
09. Cw ← Cw ∪ {(c, s)}
10. Generate Lw ← Ψ.ReConstruct(hw, Cw)
11. for each (ℓ, s) ∈ Lw

12. if s = +++
13. db(w)← db(w) ∪ {φ (ℓ)}
13. return db(w) to client

Figure 4-2: Generic static SSE using tree-cover scheme

Benefits. Performance of any SSE schemes is measured by the search and update

time and the amount of data communicated during these processes. All these param-

eters essentially depend on the databases under consideration. For a keyword w, let

nw = |db(w)| be the number of document identifiers containing the keyword w. In all

the state-of-the-art SSE schemes, either static [42] or dynamic, the search complexity

is O(nw) [88, 43, 33]. In many dynamic schemes, like in [60, 28, 23, 25, 38], the

search complexity is in order of the number of updates for a keyword, which in the

worst case may exceed O(nw). Asymptotically, the worst-case search complexity of

our scheme is also O(nw), but on average the exact number of tuples that need to

be communicated is much less than nw. To the best of our knowledge, in no existing

scheme the search complexity is smaller than nw.

Note that, this improvement of search time is obtained by our scheme because

we use a compact but lossless representation of db(w). This compact representation

results in a smaller index size which further results in more efficient search and com-

munication. The exact savings obtained by pairing our scheme with existing SSEs

are further discussed in Section 4.3. Concrete experimental data on real databases is

presented in Section 4.5.

85



Extra overhead. Superficially, it may look that sΣ requires more computation

than Σ. As sΣ requires the conversion of DB to D̃B in the setup phase and the

conversion of the cover to the configuration (lines 15-23 in Figure 4-2). These extra

computations are negligible and take place on the client side. Conversion of db to d̃b

for a database of decently large size only takes a few seconds whereas reconstruction

of db from cover takes less than a second. More detailed discussion on this can be

found in Section 4.5.1. The important savings that are achieved through sΣ is that,

on average, the size of D̃B is much smaller than DB, and this will significantly reduce

the costs of the routines Σ.Search. Moreover, this will lead to a smaller size of res

which leads to a lower communication cost.

Security. The scheme sΣ just does some pre-processing of the input to the base

scheme Σ and further does some post-processing of the decrypted output. These pre

and post-processing take place on the client side and do not require any computation

involving the secret key(s). This implies that the security of the base scheme Σ implies

the security of sΣ.

BufferUpdate((op, in),B):
01. if (op = add) ∧ ((del, in) ∈ B)
02. B← B \ {(del, in)}
03. B← B ∪ {(op, in)}
04. else-if (op = del) ∧ ((add, in) ∈ B)
05. B← B \ {(add, in)}
06. B← B ∪ {(op, in)}
07. else
08. B← B ∪ {(op, in)}
09. return B

Figure 4-3: Buffer update algorithm

We make this intuition more concrete in Section 4.4, where we present a reduc-

tionist security proof of our dynamic scheme dΣ (described later in Section 4.2). The

security result and the proof are also applicable to the static scheme.

Additional security advantage. Informally, an SSE scheme is called volume hid-

ing if an adversary cannot guess the number of tuples that are related to a query by
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seeing the result of a query which is transmitted by a server. This additional security

property in SSE schemes has been recently studied [79, 59, 7]. In general, making an

SSE volume hiding makes it inefficient in terms of communication and storage costs.

In our scheme, the size of a search result for a keyword w is related to the size of the

cover of the keyword w, and it does not directly reveal the number of tuples related

to the keyword w. Thus, a constrained passive adversary, who only sees the com-

munication between the server and the client, will not be able to accurately estimate

the size of a query result from observing the response sizes. We believe that by using

some additional randomness we can make our scheme to be volume hiding for more

powerful adversaries.

dΣ.Setup
(
1λ,DB

)
:

01. Set B← ∅
02. Initialize an empty map ts

03. D̃B← dbConversiond(ts,DB)

04. Run (k, σC,EDB)← Σ.SetupC(1
λ, D̃B)

05. Send EDB to server and retain (k, σC,B, ts)

dbConversiond (ts,DB)

01. set D̃B← ∅
02. for all w ∈ W
03. tsw ← ⊥
02. for each keyword w ∈ W
03. Set tsw ← 0
04. DB∗ ← dbConversion (DB)
05. for all (id, w) ∈ DB∗

06. ĩd← id∥tsw
07. D̃B← D̃B ∪ {(ĩd, w)}
08. return D̃B

Figure 4-4: A generic dynamic SSE using tree-cover scheme setup phase and DB to
D̃B conversion algorithm

4.2 Constructing Dynamic SSE Using Tree Cover

For constructing a dynamic SSE, we need to support modifications in the database.

Modification may take place in two ways. One being the addition of new documents

in the database and the other being updating an existing document. In the context

of SSE, a modification to the database is recorded by adding or removing the corre-

sponding keyword identifier pair involved in the modification. In the context of the

tree cover-based SSE scheme, we will still represent db(w) as a tree, and thus adding

a new document would result in adding an extra leaf node to the existing tree, which
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in some cases can only be done by increasing the height of the tree. Modification of

an existing document would be achieved by assigning or altering the sign of the leaf

node associated with the identifiers that were affected by the update operation.

As before we take a secure dynamic SSE scheme Σ = (Σ.Setup,Σ.Search, Σ.Update)

and convert it into a tree cover based dynamic SSE dΣ = (dΣ.Setup, dΣ.Search,

dΣ.Update). The procedures for dΣ.Setup are shown in Figures 4-4. dΣ.Update is

shown in Figures 4-3 and 4-5. dΣ.Search is shown in Figure 4-6.

dΣ.Setup described in Figure 4-4 is very similar to sΣ.Setup. In sΣ.Setup a given

database DB is converted to D̃B, where D̃B consists of tuples of the form (w, c, hw)

where c is an element of the cover corresponding to the keyword w and hw is the

height of the corresponding tree representing the set db(w). In the case of dΣ.Setup

the initial database, DB is converted into D̃B, but in this case, the D̃B consists of

tuples of the form (w, c, hw, tsw), where tsw is a new variable associated with each

keyword, which keeps information about the time at which some identifiers related to

w have been updated. Further, we’ll call tsw as the time stamp for the keyword w.

In the setup phase, for each keyword w, tsw is set to zero, signifying that no update

has taken place yet. The role of this variable tsw will be more clear from the update

operation which we describe next.

Updates, in our case, take place by adding or deleting keyword-identifier pairs.

Our main strategy for the update is a lazy update model. We assume a buffer memory

B of restricted size (which may be user defined) at the client’s side to store interme-

diate updates. The client uses this buffer B to store a “few” keyword-identifier pairs

in un-encrypted form along with the corresponding operation op ∈ {add, del}, where

add and del represents addition and deletion respectively. Once the buffer is full, the

client uploads the contents of the buffer to the server and resets the buffer to empty.

The update procedure consists of procedures to update the buffer and procedures to

upload the contents of the buffer to the server. The update procedure is summarized

in Figure 4-3.

The update procedure shown in Figure 4-5 takes as input (op, in), where op ∈

{add, del} and in is a keyword-identifier pair (id, w). On receiving the input the client
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dΣ.Update(k, σC, ts,B, (op, in)):
Client Side:
01. if B ̸= FULL
02. B← BufferUpdate(op, in,B)
03. if B = FULL
04. set UList← ∅
05. for each w such that (op, (id, w)) ∈ B
06. set Lw ← ∅
07. let mw be the largest integer such that (op, (idmw , w)) ∈ B
08. let hw be the smallest integer such that mw ≤ 2hw

09. initialize an empty full binary tree Tw of height hw

10. define P = {φ−1(id) : (add, (id, w)) ∈ B}
11. define R = {φ−1(id) : (del, (id, w)) ∈ B}
12. if tsw =⊥
13. tsw ← 0
14. for all p ∈ P
15. Lw ← Lw ∪ {(p,+++)}
16. for all r ∈ leaves(Tw) \ P
17. Lw ← Lw ∪ {(r,−−−)}
18. (hw, Cw)← Ψd.CoverGen(Lw)
19. else
20. tsw ← tsw + 1
21. for all p ∈ P
22. Lw ← Lw ∪ {(p,+++)}
23. for all r ∈ R
24. Lw ← Lw ∪ {(r,−−−)}
25. Cw ← Ψd.CoverGen(hw, Lw)
26. for each (c, s) ∈ Cw

27. ĩd = (c, s, hw, tsw)

28. (σC, utk)← Σ.UpdateC

(
k, σC, add, (ĩd, w)

)
29. UList← UList ∪ {utk}
30. send UList to server
Server Side:
31. for all utk ∈ UList
32. EDB← Σ.UpdateS(utk,EDB)

Figure 4-5: A generic dynamic SSE using tree-cover scheme update phase
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first checks if (op, in) ∈ B or not, where op = del if op = add and vice versa. If

(op, in) ∈ B, then the client deletes (op, in) from B and add (op, in) to the buffer B.

Otherwise, it only adds (op, in) to the buffer B. This procedure is summarized in the

procedure BufferUpdate shown in Figure 4-3. It is important to note that if (op, in)

is present in the buffer, then only deleting (op, in) from the buffer does not suffice.

It is also necessary to add (op, in) to the buffer B as the client has no knowledge of

the current contents of the server, in particular, it is not possible for the client to

know during the update process if (op, in) is currently present in server or not. For

example, assume that for an identifier id the client wants to delete a keyword w, i.e.,

op = del. Also assume that (add, (id, w)) ∈ B. If (id, w) currently resides in the server,

then deleting (add, (id, w)) from buffer and not adding (del, (id, w)) to B would lead

to a wrong configuration for the keyword w.

After the buffer B becomes full the client retrieves all the entries (op, in) ∈ B that

correspond to each keyword w. Let Udt(w) = {(op, in) ∈ B : in = (id, w)}. The set

Udt(w) gives all identifiers corresponding to w which were updated in the current

phase. The client creates a tree T whose leaf nodes based on the identifiers present in

Udt(w), the identifiers associated with the operation add are labeled +++ and the ones

associated with del are labeled with −−−. This labeling gives a configuration Lw of the

tree T . This configuration along with the height of the tree is fed to a dynamic cover

generation algorithm Ψd.dCoverGen, which yields a cover Cw for the configuration Lw.

Cw consists of pairs (i, s) where i is a node of the tree T and s ∈ {+++,−−−}. The update

operation uploads a λ bit representation of the tuple (i, s, hw, tsw) to the server by

creating an update token for the string through the client side update procedure of

the base SSE, i.e., through Σ.UpdateC. The details are depicted in the Algorithm

shown in Figure 4-5.

To perform a search query on w, the client uses the Σ.SearchC protocol to search

for the keyword w and obtains the search token stkw. This token is then sent to

the server. Upon receiving the search token, the server returns the encrypted search

result resS ← Σ.SearchS(stk,EDB), which the client decrypts. Each element of the

decrypted search result res is an encoding of (c, s, h, tsw). The client generates a
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dΣ.Search (k, σC, ts,B, w):
Round 1:
01. Generate (σC, stkw)← Σ.SearchC (k, σC, w)
02. Send stkw to server
03. Server returns resS ← Σ.SearchS (stk,EDB)
04. Parse all r ∈ resS as (c, s, h, i)
05. for j ∈ [0, tsw − 1]
06. Initialize Cj ← ∅
07. Cj ← Cj ∪ {(c, s)}, and hj ← h for all (c, s, h, j) ∈ resS
08. Generate the final configuration L← Ψd.dReConstruct

(
{hj, Cj}j∈[0,tsw−1]

)
09. Generate db(w) from L using φ
10. Search in B with keyword w and create the set resC from the search result
11. for all (op, (id, w)) ∈ resC
12. if op = add
13. db(w)← db(w) ∪ {id}
14. else
15. db(w)← db(w) \ {id}
Round 2:
Client Side:
16. Set UList← ∅
17. Set tsw ← 0

18. d̃b(w)← Conversion(db(w))

19. for all id ∈ d̃b(w)

20. ĩd← (id, tsw)

21. (σC, utk)← Σ.UpdateC

(
k, σC, add, (ĩd, w)

)
22. UList← UList ∪ {utk}
23. Send UList to server
Server Side:
24. for all utk ∈ UList
25. EDB← Σ.UpdateS(utk,EDB)

Figure 4-6: A generic dynamic SSE using tree-cover scheme search phase

sequence of covers {(ht, Ct)}t∈[0,tsw−1], where

Ct = {(c, s) : (c, s, h, tsw) ∈ res and , tsw = t},

for all t ∈ [0, tsw − 1]. It is important to note that for every update (that is when the

buffer is full and offloaded to the server), the timestamp and corresponding height h

related to all the updates of a particular keyword are the same. The client then feeds

this sequence of covers to the dynamic cover reconstruction algorithm Ψd.dReConstruct
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(Section 3.2.4). The final configuration produced by the Ψd.dReConstruct algorithm

is used to construct db(w). For computing the final search result the client looks

for w in the buffer B and denotes the search result as resC. The entries in B are in

resC and have the format (op, (id, w)). If (del, (id, w)) ∈ resC then client discards the

id from db(w). Otherwise, if (add, (id, w)) ∈ resC then the client adds id to db(w).

Subsequently, it resets tsw to 0. The client then re-uploads the search result for w, in

a manner similar to the update phase discussed earlier. The details are in Figure 4-6.

4.3 Discussions

In this section we discuss some existing SSEs and the consequences of pairing our

scheme with them.

Consider a dynamic SSE scheme applied to an initially empty database. At a

certain instance of time, let iw be the number of additions, and dw be the number of

deletions that have taken place for a keyword w. Thus, the total number of updates

uw for the keyword w is given by uw = iw + dw, and nw = iw− dw denote the number

of identifier pairs currently matching keyword w. In addition, let N be the total

number of document identifier pairs in the database at that instance. In Table 4.1

we summarize the characteristics of some widely studied recent SSE schemes. The

list does not pretend to be a complete one but is a good representative of the existing

SSE schemes. The Table has two major columns named Computation Cost and

Communication Cost. The two sub-columns under Computation Cost report the

asymptotic computation cost for search and update, respectively. The three sub-

columns under Communication Cost list the size of the result of a single keyword

search, the size of an update token for a single update and the number of round-trips

(RT), i.e., the number of communication rounds necessary between the server and

client for a search.

The schemes reported in Table 4.1 can be naturally grouped into two groups as

follows:

Group-1: The schemes whose search cost is O(uw). The first four entries of
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Table 4.1, i.e., Fides, Mitra, ΠBP and Dianadel falls under this category.

Group-2: The schemes whose search cost is not O(uw) but is dominated by nw.

The last five entries of Table 4.1 fall under this group.

SSE protocols that achieve a O(nw) time complexity for search are called optimal

search protocols. The Group-2 schemes are near-optimal, as the leading term in the

search cost of these schemes is dominated by nw.

The Group-1 schemes fail to achieve the optimal search complexity as they treat

deletion also as an insertion with a specific tag and thus the search time depends on

the number of updates and not on the number of documents currently in the database

that contains w. But the Group-2 schemes achieve near-optimal search time at an

increased cost for updates. All Group-2 schemes except Janus and LLSE have an

update cost of O(logN) whereas most Group-1 schemes have a constant update cost.

A similar pattern is observed in the case of communication costs. The size of

the search results of all schemes in Group-2 is dominated by nw, but this is achieved

with an increased number of communication rounds. Most Group-1 schemes require

a small constant number of communication rounds, but the response size for a search

query is O(uw).

Effect of our Pre-processing: Our proposed scheme is just a pre-processing step

which can be applied to all existing SSEs. For a concrete understanding, we can

consider the effect of our pre-processing step on the schemes listed in Table 4.1.

Firstly, if the tree cover scheme is paired with any of the listed schemes the asymptotic

complexity of the schemes does not change. For each w, our scheme deals with d̃b(w)

instead of db(w), hence the parameters of interest on which the complexity is measured

in all the listed schemes will change. In particular, with our scheme the parameter

nw = |db(w)| should be replaced by ñw = |d̃b(w)| and N = |DB| should be replaced

by Ñ = |D̃B|. We have already amply argued that on average for any database

we will have ñw < nw and Ñ < N . With this, it is easy to see that on average

each of the Group-2 schemes will have a concrete reduction of both computation and

communication costs.
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The effect of our scheme in the case of the Group-1 schemes is similar. In these

schemes, the search cost grows linearly with the number of updates uw. These schemes

consider each update, either insertion or deletion, as a new keyword document pair

and these are stored in the database. Thus, the number of keyword document pairs

currently in the database is uw, and this leads to the linear dependence of the search

time with the number of updates. But, if paired with the tree cover scheme, the

effective number of updates that are to be stored will get reduced on average as

instead of the keyword identifier pairs the cover of the configuration related to those

pairs will be stored and this would incur a lesser cost. Based on the same argument,

there would be a concrete reduction of the response sizes on average. Moreover,

the constant update cost and the constant update token sizes, as achieved by these

schemes, would be retained if paired with the tree cover scheme.

However, our pre-processing incurs some additional overhead on the client, as dis-

cussed in detail in Section 3.2.3 and experimentally analyzed in Section 4.5.1 (specif-

ically in Table 4.3). These results demonstrate that the pre-processing time remains

reasonably low for adequately large databases and provides significant benefits in

terms of server storage, search efficiency, and communication overhead.

The use of the buffer memory also adds to the overall performance of the scheme.

However, the buffer memory is typically very small as compared to the size of the

database. While the buffer does incur additional search time, which is linear in the size

of the buffer, it significantly reduces communication overhead. Without the buffer,

the update protocol would need to be triggered immediately whenever an update

occurs. Additionally, the buffer allows the SSE to take advantage of our proposed

tree cover scheme.

4.4 Security of dΣ

As already stated, our scheme dΣ acts as a key-less pre-processing step on a base

SSE scheme Λ. Thus, if our scheme is used as a pre-processing over an SSE Λ, the

resulting scheme would inherit the security of Λ. In this section, we formalize this
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Scheme
Computation Cost Communication Cost
Search Update Search Update RT

Fides [25] O(uw) O(1) O(uw) O(1) 2
Mitra [49] O(uw) O(1) O(uw) O(1) 1
ΠBP [38] O(uw) O(1) O(nw) O(1) 2

Dianadel [25] O(uw) O(log uw) O(nw + dw log uw) O(1) 2
Janus [25] O(nw · dw) O(1) O(nw) O(1) 1

QOS [43] O(nw log iw + log2 |W|) O(log2N) O(nw log2N) O(log3N) O(log |W|)
Orion [49] O(nw log2N) O(log2N) O(nw log2N) O(log2N) O(logN)

Horus [49] O(nw log(dw) logN) O(log2N) O(nw log2N) O(log2N) O(logN)

LLSE [33] O((nw + log iw) · log logN) O(log2N) O(nw) O(log2N) 1

Table 4.1: Characteristics of some existing SSE schemes: N is the number of (id, w)
pairs, |W| is the number of keywords, iw and dw are the number of insertions and
deletions, and uw = iw + dw is the total number of updates, and nw = iw − dw is
the number of keyword-identifier pairs currently matching the keyword w. RT is the
number of roundtrips for a search query.

intuition.

The security of a Dynamic SSE Λ is determined by a leakage function L =

(LSetup,LSearch,LUpdate). L denotes the information that the adversary learns from the

setup process and each execution of the search and update protocols. The security

of SSE schemes is generally argued by showing that an adversary cannot distinguish

between a real-world execution and an ideal-world execution (simulated using the

leakage function) of the scheme [42, 60, 28].

We reduce the security of our dynamic scheme dΣ to the security of the base SSE

scheme Λ.

Theorem 4.4.1. Let dΣ = (dΣ.Setup, dΣ.Search, dΣ.Update) be a Dynamic SSE

scheme as described in Figures 4-4, 4-5 and 4-6. dΣ is instantiated with a fixed

but arbitrary tree cover scheme Ψ = (Ψ.CoverGen,Ψ. ReConstruct) and a base dy-

namic SSE scheme Λ with leakage profile L. If Λ is L-adaptive secure, then dΣ is

also L-adaptive secure.

Proof. We say that SimB is a compatible simulator for an adversary B attacking Λ

if

∣∣Pr [SSERealΛB(λ) = 1
]
− Pr

[
SSEIdealΛB,SimB

(λ) = 1
]∣∣ ≤ negl(λ).
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As Λ is L-adaptive secure hence by Definition 2.5.1, a compatible simulator for B

always exists.

Let A be an arbitrary adversary for dΣ instantiated with a fixed but arbitrary

tree cover scheme Ψ and a base dynamic SSE Λ. Based on the protocols involved

in dΣ (see Figures 4-4, 4-5, 4-6) it is important to note down the correct interface

between the adversary A and its challenger:

1. On a setup query (1λ,DB) for a database DB of A’s choice its challenger returns

EDB.

2. On an update query (op, in), its challenger returns UList a set of update tokens

(see line 30 of Figure 4-5).

3. For a search query w, the challenger returns a search token stokenw and a set

of update tokens UList (See lines 02 and 23 of Figure 4-6).

Given an adversary A for dΣ, we construct an adversary B for the base protocol

Λ, which acts as a challenger for A. B being an adversary for Λ has a challenger

which we denote as C. B provides responses to the queries of A with the help of the

responses it receives from its challenger C. Note the tree cover scheme Ψ is key-less

and is thus accessible to B.

Now we describe the interaction of A, B and C in a sequence of games G0, G1, G2.

Game G0: We assume that B’s challenger C follows the real protocols (Λ.Setup,Λ.

Search,Λ.Update) to answer queries of B. B acts as a challenger to A as follows:

1. When a setup request Setup(1λ,DB) is issued by A then B runs lines 01 to 03

of the procedure dΣ.Setup(1λ,DB) described in Figure 4-4 and obtains D̃B. B

then issues the setup request (1λ, D̃B) to its challenger C and receives EDB as

a response which it transmits to A. Note, in this process B has created a map

ts and a buffer B which it retains with it and updates during the subsequent

queries of A.

2. On receiving an update query (op, in) from A, B runs lines 01 to 30 of the

procedure dΣ.Update described in Figure 4-5. In lieu of line 28, it issues a search
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query (ĩd, w) to its challenger C and receives utoken in response. It populates

the set UList using the responses received from C, then it executes lines 31 and

32 of the procedure dΣ.Update and finally sends UList to A.

3. On receiving a search query w from A, B queries C with w and receives as a

response stokenw. Then it executes lines 03 to 25 of the procedure dΣ.Search

as described in Figure 4-6. Instead of executing line 21, it queries C with an

update query (add, (ĩd, w)) and receives utoken as response. Finally, it sends

UList as constructed in line 23 to A.

After A stops querying, A outputs a bit b ∈ {0, 1}, B and G0 also outputs b.

We can view G0 as an interaction between A and its challenger B, where A gets

a perfect interface for the real scheme dΣ, thus

Pr
[
SSERealdΣA (λ) = 1

]
= Pr[G0 = 1]. (4.2)

We can also view adversaries A and B together as a single adversary B′ who

interacts with C (the challenger of B), which provides the perfect interface for Λ.

Thus, we have

Pr
[
SSERealΛB′(λ) = 1

]
= Pr[G0 = 1]. (4.3)

Game G1: We make some small changes in Game G0 to obtain game G1. First,

observe that for any adversary A for dΣ, Game G0 gives a concrete description for

an adversary B, and thus of the combined adversary B′ which attacks Λ. As Λ is

L-adaptive secure hence a compatible simulator SimB′ for B′ exists. In Game G1 the

challenger responds to the queries of B′ using the simulator SimB′ instead of the real

protocols of Λ. Thus,

Pr
[
SSEIdealΛB′,SimB′ = 1

]
= Pr[G1 = 1]. (4.4)
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As Λ is L-adaptive secure hence, we have

∣∣Pr [SSERealΛB′(λ) = 1
]
−

Pr
[
SSEIdealΛB′,SimB′ (λ) = 1

]∣∣∣ ≤ negl(λ). (4.5)

Thus using Equations (4.3), (4.4, (4.5), we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ negl(λ). (4.6)

Game G2: In this game we view the game G1 a bit differently. We see the description

of B along with the simulator Sim′
B together and call it as SimA. Note, with this view,

we see A interacting with a single piece of code SimA. Thus, we have

Pr[SSEIdealΛA,SimA
(λ)] = Pr[G2 = 1], (4.7)

and as G1 and G2 are essentially same we have

Pr[G1 = 1] = Pr[G2 = 1]. (4.8)

Now, using Equations (4.6) and (4.8) we have

|Pr[G0 = 1]− Pr[G2 = 1]| ≤ negl(λ). (4.9)

Finally, using Equations (4.2), (4.7) and (4.9), we have

∣∣Pr [SSERealΛA(λ) = 1
]
− Pr

[
SSEIdealΛA,SimA

(λ) = 1
]∣∣ ≤ negl(λ),

as desired.

A few more points regarding the security of dΣ are to be noted:

1. Our pre-processing step does not add to the security of the base scheme. The

tree cover scheme is meant to enhance the efficiency of the scheme while restor-

ing the security of the base scheme.

98



2. Theorem 4.4.1 only asserts a basic security guarantee of our scheme. We as-

sumed the base scheme to be L-adaptive secure which is a well accepted model

of security. But security of SSE schemes is still an active area of research and

is not fully understood. It has been claimed that SSE schemes proven secure in

the L-adaptive model may still succumb to attacks that the security model fails

to incorporate. For example, a class of attacks called file injection attacks [97] or

a recent generalization in [6] may still be applicable to provably secure schemes.

Such weaknesses of the base SSE scheme Λ may affect the security of dΣ.

3. A similar security Theorem holds for our static scheme sΣ.

4.5 Experimental Results

To validate our proposed scheme in practical databases, we conducted experiments

using the Enron Email Dataset [45], which has about 500,000 documents and 200,000

keywords. We began by extracting keywords from the data set and construction of

DB consisting of the keyword identifier pairs. Subsequently, using the algorithm in

Figure 4-1 we converted DB to D̃B. We experimented on different sizes of the database

by randomly selecting subsets of the database and for each case we compared the sizes

of the original and converted versions. These results are shown in Table 4.2 and for

easy visual comparison a pictorial representation of the data in Table 4.2 is shown

in Figure 4-7. The last column of Table 4.2 computes (|DB|−|D̃B|)×100
|DB| . It is evident

from Table 4.2 that our protocol results in substantial reductions in database size,

ranging from 60% to 35%, even when dealing with reasonably large databases. This

demonstrates the effectiveness of our approach in practical databases.

4.5.1 Extra Overheads

Our scheme builds over an existing SSE and the extra overhead over the original SSE

is the time required for computing covers and cover reconstruction. We experimen-

tally compute the time required for cover generation and computation. We used the
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|DB| |D̃B| Advantage (%)
220 5,26,492 52.4
220.5 6,08,347 60.2
221 9,24,455 54.8
221.5 15,50,264 49.8
222 29,74,256 43.8
222.5 44,05,133 41.1
223 64,47,481 36.4
223.5 75,17,379 35.6

Table 4.2: The size of original database DB and the converted database D̃B in case
of Enron data.

following configuration for our computation:

CPU: Intel Core i5-1135G7 @ 2.40GHz × 8 processor (3.1GHz).

RAM: 16 GB

OS: Ubuntu 22.04.3 LTS, 64 bits.

Programming Language: Python

Table 4.3 shows the time required for cover generation and reconstruction for

databases of different sizes. We considered database sizes of n = 217, 218, 219. For

each of these databases, we considered different sizes of |db(w)| as shown in the rows

of the Table. For each |db(w)| we generated 100 random configurations and the times

reported for the cover generation and re-construction are the average time required for

generation and reconstruction for these 100 configurations. As expected, Table 4.3

clearly shows that the cover generation times increase with both the increase in n

and |db(w)|. The reconstruction times reported for |db(w)| < 104, are negligible. If

|db(w)| is small it is expected that a pure cover is generated, and reconstruction of a

pure cover is immediate.

Dynamic Scenario: Now, we test the performance of our scheme for updates. We

consider a database containing 109 keyword-identifier pairs, and a client buffer of

size 0.01% of the actual database size. We consider updates for a single keyword w

following the protocol described below.

We consider an initial set of documents D0 and a keyword w∗ where w∗ is initially
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Figure 4-7: A pictorial depiction of the data in Table 4.2 showing the number of
tuples in the original database (represented by filled circles) and the number of tuples
in the converted database (represented by filled triangles) for different database sizes.

present in 12.5% of the documents in D0. Next, we perform a series of update oper-

ations involving w∗. The updates are made in three phases P1, P2, P3. The updates

in phase Pi are applied to the documents in Di−1, and the updates result in a new

set of documents Di. The update operations are designed in such a way that w∗ is

present in 25% of the documents in D1, 50% of the documents in D2 and 60% docu-

ments in D3. In each phase, multiple update operations are performed and 10% of all

operations in each phase are delete operations. At the end of each phase of updates,

a search operation is performed involving w∗. Note, that the search operation forces

|db(w)|
Time (sec)
for n = 217

Time (sec)
for n = 218

Time (sec)
for n = 219

Gen Re-con Gen Re-con Gen Re-con
102 0.22 10−5 0.42 10−5 0.94 10−5

103 0.27 10−4 0.49 10−4 1.01 10−4

104 0.51 10−3 0.88 10−3 1.51 10−3

216 0.87 0.17 1.64 0.25 2.97 0.35
217 - - 1.99 0.37 3.69 0.57
218 - - - - 4.14 0.85

Table 4.3: Cover generation and reconstruction times.
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the transmission of all tuples corresponding to w∗ from the buffer to the server.
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Figure 4-8: Database sizes in dynamic scenario.

We repeated the above protocol 2000 times with random updates following the

rules stated above using our dynamic SSE scheme. After each execution, we recorded

the size of the database after the search operations in each phase. In Figure 4-8 we

report the average size of the database across the 2000 executions in a bar diagram.

In Figure 4-8 the database sizes for our scheme and the base SSE are shown. The

four pairs of bars correspond to the sizes of the databases after each phase just after

the search operation. The first pair correspond to the database for the initial set of

documents D0, the second pair is for D1 etc. The figure clearly shows that our scheme

leads to considerable savings in the dynamic scenario.

4.6 Final Remarks

In this chapter we described a novel way to make SSE schemes space efficient. Our

scheme converts a given database into a different representation which on average re-

sults in a significant amount of space savings. This smaller representation also results

in reduced search time and response sizes. In our experiments, we explicitly show that

our representation results in smaller index sizes with very low extra overhead. Our
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scheme can be used with any secure SSE, and our scheme, being just a pre-processing

step, retains the security of the base SSE.
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5
Conjunctive Dynamic SSE – A Generic Framework

Most SSE schemes to date [42, 60, 28, 23, 87, 25, 49, 89, 38, 90] support single key-

word searches per query. Complex searches may involve multiple keywords combined

via conjunctions or general boolean expressions. A naive approach to achieve this

is by performing individual single keyword searches and then computing set opera-

tions on the results. However, this method is inefficient and increases computation

and communication between the client and server. This also reveals the number of

matching documents for each keyword to the server.

There are a few SSE schemes that support conjunctive queries [29, 47, 2, 93,

58, 66, 80, 102, 78, 100, 95]. The most notable of these is the oblivious cross-tag

(OXT) system from Crypto’13 [29]. The OXT scheme is quite efficient with a search

complexity of O(n · |db(w1)|), where n is the number of keywords in the conjunction

and the set db(w1) contains the ids of documents where the least frequent term in the

conjunction w1 appears. Static schemes like [66, 78] used pre-processing on the data

to restrict this leakage.

Our focus in this chapter will be on the construction of forward and backward

private dynamic SSE schemes that are adaptively secure and support conjunctive

queries. We call such a scheme conjunctive dynamic searchable symmetric encryption

(CDSSE).

The first CDSSE scheme with claimed forward and backward privacy (Type II)

was proposed in 2020 [80]. This was an attempt to extend the OXT scheme to allow

dynamic queries while retaining the efficiency of OXT. But, an attack in [100] showed
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that the scheme is not forward private.

A few other CDSSE schemes [102, 100, 95] have followed, achieving forward privacy

and different flavours of backward privacy with efficiency trade-offs. However, these

schemes are far from achieving the efficiency of the OXT scheme.

In this chapter, our goal is the following.

Construct an adaptively secure forward and backward private CDSSE scheme

that has the computational efficiency of the client and server comparable

with OXT under standard and well-studied security definitions.

In this work, we achieve the above goal for a class of databases, which we call as

“non-modifiable databases”. This chapter has been reported to [3].

5.1 Non-modifiable Database

Most of the single-keyword and conjunctive dynamic SSE schemes [60, 28, 23, 25, 87,

89, 49, 101, 38, 80, 102, 100, 95] allow a user to add/delete an identifier-keyword pair

(id, w) to/from the inverted index dynamically at any point of time. So we define

“modifiability” of a document as

the ability to add/delete keywords to/from a document at any point.

However, there are many real-world applications where, once the documents are up-

loaded to the server, they are not modified. We call such documents “non-modifiable”.

We assume the inverted index of a database storing non-modifiable documents has

the following properties.

• Document identifiers (with associated keywords) can be added to the inverted

index and existing identifiers (with associated keywords) can be (marked as)

deleted from it as a whole.

• Once a document identifier (with associated keywords) has been added to the

inverted index, the content of its document may change, but the associated

keywords in the inverted index do not change.
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We note that in this setting modifiability can be achieved by deleting the document and

then adding the updated version with a different identifier as is common in SSE liter-

ature [28, 25, 51]. Below are some examples of applications handling non-modifiable

documents.

1. Biometric Data. Stored biometric data (fingerprint, voice, iris scan, facial im-

age, etc.) are typically non-modifiable. It is crucial to secure them for privacy

and data protection [61], especially in large databases like Aadhaar [4, 8], for

voice data collected in bulk [70], etc.

2. Media Subscription Services. In digital media subscription services like Netflix,

Spotify, etc., the documents are the DRM-protected media files [75, 14, 5] that

once uploaded, do not change.

3. Digital Libraries and Archives : Documents in digital libraries like the IEEE

Xplore Digital Library and archives are non-modifiable and encrypted for ac-

cess control [91]. They may also contain sensitive information requiring encryp-

tion [83, 82].

4. Legal Documents : They are non-modifiable documents containing sensitive in-

formation (personal details, financial arrangements, strategic plans, etc.) and

should hence be encrypted [9]. Their keywords typically do not change.

5. Medical Records : Patient records are non-modifiable documents filled with

personally identifiable information (PII), which must be protected under pri-

vacy laws1, especially for access control and data sharing for collaborative re-

search [21, 84].

6. Financial Records : Business and finance documents contain sensitive informa-

tion about a company’s financial status and strategy. Such data do not change

and searchability is essential for auditing and making financial decisions. Unau-

thorised access or revealing access patterns can lead to financial loss, reputa-

tional damage, or legal issues.

1Like HIPAA in the United States: https://www.ncbi.nlm.nih.gov/books/NBK500019/
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In each of these scenarios, protecting the privacy of the user “by design and by

default” is a key responsibility of the service provider according to regulations like

GDPR. So while the service providers may use third-party (cloud) storage services

for the inverted indices, they must be encrypted to ensure user privacy. In applica-

tions like the above, modifiability is either not required (like for biometric data and

digital media archives) or should be strictly prohibited (like for legal documents and

medical and financial records). The existing definitions of SSE schemes and their se-

curity models do not consider this subtlety. That leaves scope for new definitions and

scheme designs. As we do away with modifiability, several computations and storage

requirements from previous SSE schemes are rendered redundant without compro-

mising on security. Hence, we arrive at new efficient schemes that would otherwise

be insecure in the general setting of SSE.

5.2 Forward and Backward Privacy in CDSSE for

Non-modifiable Documents

For backward privacy, the three common notions are called BPIP/Type I, BPUP/Type

II, WBP/Type III respectively. Type I is the strongest and Type III is the weakest.

In [80], the security notion of the single keyword SSE (SKSSE) scheme was extended to

a conjunctive SSE scheme for Type II security only. We have adopted the definition of

leakage functions from [23, 25, 38, 80] and appended them as required to define leakage

of CDSSE for all three standard notions of backward privacy. Also, [80] missed some

leakage components in their definition. We have amended those definitions following

the suggestions from [38]. In [38], authors provided another alternate definition of

backward privacy called BPLP. However, in a non-modifiable database configuration,

BPLP reduces to WBP. Thus we define backward privacy for BPIP, BPUP, and WBP

only.

The definition of forward and backward privacy for SSE supporting conjunctive

queries is similar to that of single keyword SSE schemes. In [80], the leakage of
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SKSSE was extended to define the leakage for CDSSE. However, their extension is

for BPUP backward privacy only. We extend the definition of forward and backward

privacy of SKSSE to CDSSE for all notions of backward privacy. In [80], the defini-

tions of TimeDB(w) and Updates(w) for a single keyword w have been extended to

TimeDB(ω) and Updates(ω) for a conjunctive query ω. Here, we also extend the other

two definitions.

Consider the query sequence QS = {Q1, . . . , Qq}, a conjunctive query ω = w1 ∧

· · · ∧wn and its set of included keywords Lω = {w1, . . . , wn}. We define the following

sets of leakages for ω as follows.

sp(ω): The search pattern is defined for a pair of keywords wi and wj in the

conjunction ω.

sp(wi, wj) = {u|(u, srch, ω) ∈ QS, and wi, wj ∈ Lω}

Using this definition, the search pattern for the conjunction ω is defined as follows.

sp(ω) = sp(w1) ∪

(
n⋃

i=2

sp(w1, wi)

)

TimeDB(ω): This is the set of all timestamped ids containing keywords in Lω that

have been added to but are yet to be deleted from the database. In [80], the definition

of TimeDB(w) from [25] was extended to TimeDB(ω). We correct the definition of

TimeDB(ω) from [80] with the amendment suggested in [38].

TimeDB(ω) =
{(
{ui}i∈[n], id

)
: w ∈ Lω, ((ui, add, (id, w)) ∈ QS) ∧ (∀u > ui, (u, del, (id, w)) /∈ QS)

}
.

Updates(ω): For a keyword pair (wi, wj) in the conjunction ω, we define the set of

pairs of timestamps of update operations op ∈ {add, del} on the database as follows.

Updates(wi, wj) ={(u, u′) : ((u, op, (id, wi)) ∈ QS) ∧ ((u′, op, (id, wj)) ∈ QS)}.
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Using this definition, the update history for the conjunction ω is defined as follows.

Updates(ω) = Updates(w1) ∪

(
n⋃

i=2

Updates(w1, wi)

)

DelHist(ω): We define DelHist(ω) as the set of all pairs of timestamps of addition

and deletion for all keywords in a given ω.

DelHist(ω) =
{
{(uadd

i , udel
i )}i∈[n] : w ∈ Lω,

((
uadd
i , add, (id, w)

)
∈ QS

)
∧
((
udel
i , del, (id, w)

)
∈ QS

)}
.

Finally, we define the leakage function LΠ = (LΠ,Setup,LΠ,Update,LΠ,Search), and corre-

spondingly forward and backward privacy for a CDSSE scheme as follows.

Definition 5.2.1 (Forward Privacy of CDSSE). An LΠ-adaptive secure CDSSE scheme

Π is forward private if its leakages due to the Update protocol can be written as the

following.

LFP
Π,Update(op, in) = LFP

Σ,Update.

Definition 5.2.2 (Backward Privacy of CDSSE). An LΠ = (LΠ,Setup,LΠ,Search,LΠ,Update)-

adaptive secure CDSSE scheme Π is backward private as per the notions BPIP,BPUP

and WBP if its leakages due to the Setup, Search and, Update protocols can be written

as the following.

LBPIP
Π,Setup(DB) = ∅, LBPIP

Π,Update(op, id, w) ⪯ {op},

LBPIP
Π,Search(ω) ⪯ {sp(ω),TimeDB(ω), |Updates(ω)|},

LBPUP
Π,Setup(DB) = ∅, LBPUP

Π,Update(op, id, w) ⪯ {op, w},

LBPUP
Π,Search(ω) ⪯ {sp(ω),TimeDB(ω),Updates(ω)},

LWBP
Π,Setup(DB) = ∅, LWBP

Π,Update(op, id, w) ⪯ {op, w},

LWBP
Π,Search(ω) ⪯ {sp(ω),TimeDB(ω),Updates(ω),DelHist(ω)}.
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5.3 Our Construction

Our generic CDSSE construction uses the generic dynamic SKSSE, and the OXT

abstraction of [29] to enable conjunctive search queries. The OXT protocol uses two

data structures called T-Set and X-Set. The T-Set data structure is used to search all

matching documents for every keyword, which is basically a single keyword SSE. The

X-Set data structure stores elements that map a keyword to the document identifier

which contains it. This X-Set data structure is used to search for the conjunction.

The detailed description of OXT protocol is given in Figure 5-2.

In our generic CDSSE construction, we replace T-Set with any generic dynamic

SKSSE for the single keyword search on the least frequent keyword w1, and the

OXT abstraction of [29] remains unaltered. The SKSSE and OXT schemes can be

used unaltered, making our CDSSE completely modular. This modular nature allows

the flexibility to choose efficient component modules to be used in the generic con-

struction rather than developing a new CDSSE scheme from scratch. It creates the

ground for finding better CDSSEs in the future through a more efficient SKSSE, an

improved OXT, or a more suitable OXT substitute, instead of a specific construction

of a CDSSE. The use of OXT also allows our CDSSE construction to achieve the

search complexity of O(nu1), which was previously attempted by [80].

Next, we describe our generic construction of a forward and backward private

CDSSE Π for non-modifiable documents. We assume the existence of a forward and

backward private DSSE Σ with support for the add operation, and the OXT scheme

Γ of [29]. Π uses Σ and Γ in a modular fashion as black boxes.

Γ assumes that the client knows the least frequent keyword w1 in a conjunction

ω = w1 ∧ · · · ∧ wn. During a search operation in Γ, the server first conducts a single

keyword search using the T-Set to find all ids containing the s-term w1. For all such

ids containing w1, the X-Set is used to check if the x-terms wi, i ≥ 2 are also in id. In

Π, Σ is used to search for the s-term and Γ to search for the conjunction.

A Generic DSSE Scheme. A generic DSSE scheme Σ = (Σ.Setup,Σ.Search,

Σ.Update) is described in Figure 5-1.
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Σ.Setup
(
1λ,DB

)
:

– (Ks, σC,TSet)← Σ.SetupC(1
λ,DB)

– ⊥ ← Σ.SetupS(TSet)
Σ.Update (k, σC, op, (id, w); utk,TSet):

– (σC,Σ.utk)← Σ.UpdateC (Ks, σC, op, (id, w))
– TSet← Σ.UpdateS (Σ.utk,TSet)
Σ.Search (k, σC, w; stk,TSet):

– (σC,Σ.stk)← Σ.SearchC (Ks, σC, w)
– (Vw,TSet)← Σ.SearchS (Σ.stk,TSet)

Figure 5-1: A generic dynamic single-keyword SSE (DSSE) construction Σ

The Oblivious Cross Tag Scheme. A modular description of the OXT scheme

Γ = (Γ.Setup, Γ.Add, Γ.SearchC, SearchS) is in Figure 5-2. It assumes the existence

of three PRF families Fp
(I) : K × I × {0, 1} → Z∗

p, Fp
(X) : K × W → Z∗

p and

Fp
(Z) : K×W × N→ Z∗

p. It omits the SKSSE part of the original OXT scheme [29],

to be substituted by the functionalities of the DSSE Σ. The original OXT scheme [29]

only supports static databases where all (id, w) pairs are added during setup. To

adapt it to our dynamic setting, we have split the setup of [29] into Γ.Setup and

Γ.Add protocols, without changing their functionalities. Γ.SearchS also assumes an

input Vw which has Vw[yj] = yj for j ∈ [cnt[w]] generated within Γ for a keyword

w. The res however accumulates Vw[valj] from Σ. This step integrates Σ and Γ in a

modular fashion within our CDSSE Π.

5.3.1 Our Generic CDSSE Scheme

Our generic CDSSE scheme Π = (Π.Setup,Π.Search,Π.Update) is described using Σ

and Γ in Figure 5-3. Note the arguments passed to Γ.SearchS in step 3 of Π.SearchS

Figure 5-3. The input cnt to Γ.SearchS is st.cnt[w1] from Π.SearchS. The input Π.Vw1 is

from the single keyword search Σ.SearchS on the s-term w1, containing pairs (valj, yj)

for j ∈ [st.cnt[w1]].

On receiving the result res from the server in step 4 of Π.SearchS, the client finds

the search result for the conjunction. The identifier in the search result is of the form

id∥op. To get the final search result db(ω), the client does the following. Initialize
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(
Kx, Fp

(I), Fp
(X), Fp

(Z), cnt,XDB
)
← Γ.Setup

(
1λ,DB

)
:

1. Sample Kx = (kI, kX, kZ) ∈ K3, corresponding Fp
(I), Fp

(X) and Fp
(Z),

2. Initialise an empty map cnt :W → Z
3. Set an empty set XDB.
4. Send XDB to the server.
(cnt, Γ.addtk)← Γ.Add (Kx, cnt, (id, w)):

1. If cnt[w] = ⊥, then cnt[w]← 1; else, cnt[w]← cnt[w] + 1

2. Compute xid← Fp
(I)(kI, id); xw ← Fp

(X)(kX, w); zcnt[w] ← Fp
(Z)(kZ, w∥cnt[w])

3. Set ycnt[w] =
(
xid · z−1

cnt[w]

)
; xtag← gxw·xid

4. Output Γ.addtk =
(
ycnt[w], xtag

)
to be sent to the server.

(cnt, Γ.xtk)← Γ.SearchC (Kx, cnt, ω):

1. For (j = 1, . . . , cnt[w1])
For (i = 2, . . . , n)

xtk[j, i]← gFp
(Z)(kZ,w1∥j)·Fp

(X)(kX,wi)

End For
Randomly shuffle xtk[j, i].

End For
2. Output Γ.xtk = {xtk[j, 2], . . . , xtk[j, n]} to be sent to the server.
res← Γ.SearchS (cnt, Γ.xtk,Vw,XDB):

1. res← ∅.
2. For (j = 1, . . . , cnt)
A. flag← true
B. For (i = 2, . . . , n)
i. If (Π.xtk[j, i]Vw[yj ] /∈ XDB),
a. flag← false

C. If (flag == true),
i. res← res ∪ {Vw[valj]}

3. Return res

Figure 5-2: A modular description of Γ without the SKSSE part of [29]

an empty set Iω ← ∅. For each r ∈ res, parse r = id∥op. Now if (op = add),

Iω ← Iω ∪ {id}, and if (op = del). Iω ← Iω \ {id}. Finally output, Iω.

5.3.2 Design Rational

With our generalisation in the previous section, the scheme of [80] is now just an

instantiation of our construction. The work of [80] essentially club Mitra [49] and

their proposed ODXT. The scheme of [80] has a large search token size due to the
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Π.Setup
(
1λ,DB

)
:

Client:
(K, st,Π.EDB)← Π.SetupC

(
1λ,DB

)
:

(Ks, σC,TSet)← Σ.SetupC(DB, 1
λ); assign st.σC ← σC and Π.TSet← TSet

(Kx, Fp
(I), Fp

(X), Fp
(Z), cnt,XDB)← Γ.Setup(DB, 1λ)

Assign st.cnt← cnt and Π.XDB← XDB
Set K← (Ks,Kx), and st← (st.σC, st.cnt)
Send, Π.EDB← (Π.TSet,Π.XDB) to the server

Server:
⊥ ← Π.SetupS (Π.EDB): Server stores Π.EDB

Π.Update (k, st, op, (id, w);Π.utk,Π.EDB):

Client:
(st,Π.utk)← Π.UpdateC (K, st, op, (id, w)):
1. Call Σ.UpdateC (Ks, st.σC, add, (w, (id∥op))) to get Σ.utk
2. Call Γ.add (Kx, st.cnt, w, id∥op) to get Γ.addtk =

(
ycnt[w], xtag

)
3. Set Π.utks ← (Σ.utk, ycnt[w]) and Π.utkx ← {xtag};
4. Send Π.utk← (Π.utks, Π.utkx) to the server

Server:
Π.EDB← Π.UpdateS (Π.utk,Π.EDB):
1. Call Σ.UpdateS(Π.utks,Π.TSet) and to get the output TSet as following
a. Parse (Σ.utk, ycnt[w])← Π.utks
b. Further parse (loc, val)← Σ.utk
c. Update Π.TSet[loc]← (val, ycnt[w])

2. Set Π.XDB as Π.XDB← Π.XDB ∪ Π.utkx
3. Output Π.EDB← (Π.TSet,Π.XDB)

Π.Search (k, st, ω;Π.stk,Π.EDB):

Client:
(Π.stk,Π.xtk)← Π.SearchC (K, st, ω):
1. Call Σ.SearchC (Ks, st.σC, w1) to get Σ.stk; assign Π.stk← Σ.stk
2. Call Γ.Search (Kx, st.cnt, ω) to get Γ.xtk; assign Π.xtk← Γ.xtk
3. Send (Π.stk,Π.xtk) to the server

Server:
res← Π.SearchS ((Π.stk,Π.xtk),Π.EDB):
1. res← ϕ.
2. Call Σ.SearchS (Π.stk,Π.TSet) to get Π.Vw1 = {(valj, yj) : j ∈ [st.cnt[w1]]}
3. res← Γ.SearchS (st.cnt,Π.xtk,Π.Vw1 ,Π.XDB)
4. Send res to the client

Figure 5-3: Our generic CDSSE construction Π.

use of Mitra. With our generalisation, we can do away with the large search token

size of [80] via our instantiations ΠBP-OXT which performances better as can be seen
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from our experimental results.

Using a generic SKSSE and the OXT scheme in a black box fashion we achieved the

computation and communication complexity for search operation as O (n · db(w1)),

and update operation of O(1) for our construction. In [95], the computation and

communication complexities of the search operation are both O (u1 + n · db(w1)) and

involves two rounds, where u1 is the number of updates related to w1; the complexities

of the update operation are O (|W |/|Wd|) for adding a document, O (|D|) for editing

and O (1) for deleting, where |W | is the number of keywords in the database and |Wd|

denotes the number of keywords contained in the updated document. The storage

requirement of [95] is O(|W ||D|), as compared to O(N) for our scheme, where N

is the number of identifier-keyword pairs in the database. Typically, N is much

smaller than |W ||D| in practice. There is no additional storage requirement due to

the keyword updates in [95]. Compared to these, our scheme enjoys the search and

update complexities as O (n · db(w1)), and O(1) respectively.

The scheme of [102] performs O(|D|) computation for search, where |D| is the

number of documents in the database, making it prohibitively slow. The scheme

of [100] uses a single keyword SSE to store and fetch the elements of both TSet and

XSet which makes it very slow as well. The scheme of [95] runs in sub-linear time

but is still far from the practical performance of OXT. See Table 5.1 for a detailed

comparison.

Scheme
Search Update Storage

FP BP KPRP
Computation Communication RT Add Edit Delete Client Server

VBTree [93] O(u|db(w1)| log |D|) O(n+ |db(ω)|) 1 O(Wd) O(v) O(1) O(|W | log |D|) O(|W |h) Yes No No
BDXT [80] O(u1 + n|db(w1)|) O(u1 + n|db(w1)|) 2 O(1) - O(1) O(|W | log |D|) O(N) No Type-II No
ODXT [80] O(nu1) O(nu1) 1 O(1) - O(1) O(|W | log |D|) O(N) No Type-II No

FBSSE-CQ [102] O(u|D|) O(n+ |D|) 1 O(|D|) O(|D|) O(|D|) O(|W | log |D|+ λ) O(N |D|) Yes Type-II Yes
HDXT [95] O(u1 + n|db(w1)|) O(u1 + n|db(w1)|) 2 O(|W |/Wd) O(|D|) O(1) O(|W | log |D|+ λ) O(|W ||D|) Yes Type-II Yes

Our construction (Sec 5.3) O(nu1) O(nu1) 1 O(1) O(Wd) O(1) O(|W | log |D|) O(N) NMD Type-II No

Table 5.1: Comparison of our construction with previous schemes. W : the set of keywords. D: Set
of documents. Wd: Number of keywords in the document to be updated. N : Number of identifier-
keyword pairs in the database. n: Number of keywords in a conjunction. ui: Updates performed
for keyword wi. u =

∑n
i=1 ui: Total updates for a conjunction of n keywords. v: Keywords involved

in the edit operation. h: Average number of documents matched by any two keywords. db(ω):
Set of matching document identifiers for query ω = w1 ∧ · · · ∧ wn, where n ≥ 1. RT: Round-Trip.
FP: Forward Private. BP: Backward Private. KPRP: Keyword-Pair Result Pattern Hiding. NMD:
Non-Modifiable Documents.

115



Leakage Suppression. The scheme of [95] pays with extra storage, computation

and an additional round-trip to prevent keyword-pair result pattern (KPRP) leakage.

In a conjunctive query for w1∧w2∧ · · · ∧wn, KPRP leakage contains db(wi)∩ db(wj)

for all 1 ≤ i < j ≤ n. Although our scheme does not prevent KPRP leakage

completely, we have taken some countermeasures prescribed in [80] to restrict the

leakage of our scheme that makes the attack of [97] using KPRP leakage very difficult

to mount. We have discussed these countermeasures later while discussing the security

of our scheme. According to [80] using those countermeasures, the best-known attack

described in [97] which uses KPRP leakage of SSE, has a success probability of less

than 5% even when the fraction of file injection is more than 60% in the database.

By the same argument, despite not hiding the KPRP leakage, our construction is

suitable for practical applications.

5.4 Security of Our Construction

The security of SSE schemes is generally argued based on leakage to the server that

is upper bounded by some well-defined and “sensible” leakage functions that have

been studied over many years. The practical consequences of such leakage func-

tions especially through resulting attacks, are well studied and understood. So it is

always good to have an SSE scheme that is secure against a well-studied leakage func-

tion. Our generic construction enjoys this advantage, as the security of our scheme is

inherited from the security of the individual components that are secure under well-

studied leakage functions. We note here that previous forward and backward private

CDSSEs [102] and [100] allowing “modifiable” documents have proven their security

under non-standard security notions that warrant more investigations.

We provide a rigorous security analysis of our generic scheme, assuming the stan-

dard and maximum possible leakage of the individual components. The reason to do

so is to keep room for possible future improvements in efficiency or the adaptability

of the generic construction in other ways.

We recollect that Σ is an adaptively secure forward and backward private SKSSE
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scheme as per Definitions 2.5.1, 2.5.5 and 2.5.6. With this assumption, we prove our

generic CDSSE scheme Π to be adaptively secure as well. The leakage functions in

the backward privacy definition of CDSSE (see Definition 5.2.1 and Definition 5.2.2)

subsume the actual leakages of our generic scheme. As discussed in Section 5.2,

the leakage of WBP is a superset of the leakage of the other two notions of backward

privacy – BPUP and BPIP – for non-modifiable documents, and that of forward privacy

as well. We prove Π to be secure assuming the leakage for WBP. So our scheme would

be secure when instantiated with a BPIP and BPUP secure SKSSE scheme as well.

We follow the common practice of defining and subsequently proving the security of

SSE, assuming more than the actual leakages. We later provide the exact leakages of

our scheme as well. We assume the leakage of our conjunctive dynamic SSE Π to be

the following.

LΠ,Update(op, id, w) = op, LΠ,Search(ω) = {sp(ω),TimeDB(ω),Updates(ω)} .

Note that our protocol never used del as an operation, so DelHist(ω) is always empty,

in our case. To the best of our knowledge, all forward and backward private schemes

known in the literature have, at most, this leakage. Also, it is essential to point out

that the leakage of our construction becomes exactly LΣ if ω = w.

Theorem 5.4.1. Assuming that (1) Σ is an LΣ-adaptively secure dynamic DSSE,

(2) Fp is a secure PRF, and (3) the eddh problem is hard in the group output by G,

our scheme Π is LBPUP
Π -adaptively secure conjunctive dynamic SSE.

Proof Idea. We first describe six games G0, . . . ,G6 where we replace all the crypto-

graphic primitives used in our construction one by one with ideal primitives and show

that no PPT adversary can detect the change in any of the steps. Finally, we show that

there exists a simulator that takes the leakages LΠ = (LΠ,Setup,LΠ,Update,LΠ,Search) as

input and simulates the protocol’s transcript that is indistinguishable from the actual

execution of the protocol with ideal primitives. If all leakages have been considered,

then the simulator can simulate all the server’s inputs. Since the server has no other
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source of input in the protocol, hence there is no other leakage. This proves that our

construction Π does not leak more than what is defined by the leakage LΠ.

In our security proof, Game G0 is the original execution of the protocol Π. In Game

G1 replace all cryptographic primitives used in the Σ protocol with ideal primitives,

and show that the adversary has an advantage at most as an SKSSE adversary against

the secure Σ protocol. In Game G2 we replace all the PRFs Fp
(I), Fp

(X), and Fp
(Z)

one by one with randomly sampled elements from Z∗
p, and show that an adversary

has negligible advantage in Game G2 over Game G1. In Game G3, we simulate the

part of the search token of Π in the same fashion as proof of the underlying Σ and

show that an adversary has a negligible advantage in Game G2 over Game G3, which

is upper bounded by the SKSSE adversary. In Game G4 and Game G5 we change

the way xtk and ycnt[w] are generated respectively and show Game G3, G4 and Game

G5 are all equivalent. In the final Game G6 we change the way xtags are generated

and show that for all adversary the distinguishing advantage of G6 over G5 is upper

bounded by the eddh advantage of any PPT adversary. Finally, we demonstrate a

poly-time simulator that can simulate a computationally indistinguishable transcript

from what the adversary got in Game G6. Thus, we conclude our theorem.

Proof. We now describe the six games G0,G1, . . . ,G6 in the following.

Game G0. The experiment starts with the real execution of the protocol Π as

described in Section 5.3.1. Thus we have,

Pr
[
SSERealΠA(1

λ, q) = 1
]
= Pr[G0 = 1].

As we have assumed Σ to be adaptively secure, so it can be simulated exactly as in

its security proof. So in the following steps, we do not explicitly argue about the

simulation of those elements generated from Σ.

Game G1. In game G1, we replace all cryptographic primitives used in the con-

struction of Σ.utk, same as the done in the security proof of Σ. We can do so as Σ

is LΣ-adaptive secure. Thus the advantage of any adversary distinguishing game G0
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and G1 is bounded by the SSE advantage of Σ. We write it as follows.

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ AdvΣ,SSE
A,S,LΣ

≤ negl(λ).

Game G2. Next the challenger replaces all executions of Fp
(I), Fp

(X) and Fp
(Z) one

by one with randomly sampled strings from Z∗
p. The experiment maintains three lists

I, X and Z to store the values sampled for Fp
(I), Fp

(X) and Fp
(Z), thus can be reused

later if needed. The entries of I, X and Z are indexed by (id, op)2, w and (w, cnt[w]).

For an update operation of (op, (id, w)), if I[op, id] = ⊥ then the challenger picks a

random value form Z∗
p and uses it for Fp

(I)(kI, id∥op), and also stores the random value

in I[op, id]. If I[op, id] ̸= ⊥, then the challenger uses the value stored in I[op, id].

The other two PRFs Fp
(X) and Fp

(Z) are simulated similarly. Now if there exist PPT

adversaries AI , AX and AZ who can distinguish between the games G1 and G2 based

on the use of Fp
(I), Fp

(X) and Fp
(Z) respectively, we can use these adversaries to break

the security of Fp. Thus,

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ Advprf
Fp

(I),AI
(1λ) + Advprf

Fp
(X),AX

(1λ) + Advprf
Fp

(Z),AZ
(1λ)

≤ negl(λ).

Game G3. For a search query ω = w1 ∧ w2 ∧ · · · ∧ wn in step 1 of Π.SearchC the

client generates Π.stk using Σ.stk. In the game G3, the challenger proceeds exactly as

the security proof of Σ to show the generation of Σ.stk is indistinguishable from its

simulated form. The same argument will hold in this proof as well. Since the difference

between G2 and G3 is only in the generation of Σ.stk (using ideal primitives) and the

advantage of any such adversary is at most AdvsseΣ,A,S , hence we have

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ AdvΣ,SSE
A,S,LΣ

≤ negl(λ).

Game G4. For a search query ω = w1∧w2∧· · ·∧wn, the challenger next changes the

2Note that the input to Fp
(I) is id along with the key kI. However, when called, id||op is passed

in place of id and hence the simulator will index the list by (id, op).

119



manner in which xtki,j is generated. Recall, xtki,j = gFp
(Z)(kZ,w1∥j)·Fp

(X)(kX,wi), where j ∈

[cnt[w]] and i ∈ [2, n]. The challenger knows all ids that were updated corresponding

to the s-term w1. The challenger computes the xtag (as computed in steps 2 and 3 of

Π.UpdateC) values corresponding to all the ids that were updated for w1 and all the

keywords in the x-terms. Notice that the challenger can do this using its lists I andX.

Then the challenger computes the values for yi,j = Fp
(I)(kI, id∥op) ·Fp

(Z)(kZ, w∥cnt[w])

for all the ids updated for w1 and for all keywords in the x-terms using the lists I and

Z. Finally the challenger computes xtki,j = xtag
y−1
i,j

i,j . Now, the view of the adversary in

games G3 and G4 are identical, and no adversary has any advantage of distinguishing

between these two games. Thus,

Pr[G3 = 1] = Pr[G4 = 1].

Game G5. Next, the challenger samples random values y
$←− Z∗

p and uses them in

place of ycnt[w]’s in the update operations. We recollect that ycnt[w] = xid · z−1
cnt[w] ∈ Z∗

p.

Now if a, b, c
$←− Z∗

p, then c is statistically indistinguishable from (a · b) ∈ Z∗
p for any

adversary. The secure PRF Fp is used to generate xid and zcnt[w]. So xtag and z−1
cnt[w] are

also indistinguishable for any random element from Z∗
p. In the Games G2, we have

already replaced all uses of Fp with randomly sampled values from Z∗
p. Replacing

the value of ycnt[w] with a randomly sampled element from Z∗
p does not change the

advantage of any adversary. Thus,

Pr[G4 = 1] = Pr[G5 = 1].

Game G6. In game G6, for each update operation, the challenger samples a

random value γ
$←− Z∗

p and replaces the value of xtag in every update operation with

the value gγ. Recall that xtag = gFp
(I)(kI,id)·Fp

(X)(kX,w) where Fp is a secure PRF.

We have already replaced the values of every execution of Fp with random values

from Z∗
p. In particular, we already have xtag = gα·β for random values α, β ∈ Z∗

p.

Upon replacing the values of xtag with gγ if any adversary A can detect the change

between the games G5 and G6, we can construct another adversary B which uses A
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as a subroutine to break the eddh problem. Due to [80], breaking the eddh problem

is equivalent to breaking the ddh assumption if the number of queries is bounded by

q = poly(λ). Thus,

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ AdveddhB ≤ negl(λ).

Simulation. Finally, we demonstrate a simulator that perfectly simulates a

transcript, which would be indistinguishable from the transcript in game G6. The

simulator does not have the actual queries in Π. Instead, the simulator only has

access to the leakage functions LΠ. The simulation has two parts, one is to simulate

the components generated in the execution of Σ, and another is to simulate the

components of Γ, which together construct Π. Now the components generated using

Σ can be simulated perfectly as Σ is LΣ-adaptively secure SSE. We note that LΣ ⊆ LΠ.

We demonstrate how to simulate the components generated in the execution

of Γ. To simulate update queries, the simulator has access to leakage function

LBPUP
Π,Update(op, w, id) ⪯ {op, w}. The simulator knows all the time stamps of update

queries. For every update query, the simulator simulates ycnt[w] and xtag by sampling

two uniform random values α, β from Z∗
p and provides α and gβ in place of ycnt[w] and

xtag. This is the same as what is done in game G6. So the simulation is indistinguish-

able. The simulator also stores the values of ycnt[w] and xtag sampled for each update

in a map Map indexed by the timestamps of the queries.

Now to simulate a conjunctive search query ω = w1 ∧w2 ∧ · · · ∧wn, the simulator

simulates xtki,j as follows. From the leakage functions Updates(w) and TimeDB(w),

the simulator knows all timestamps of update queries for the s-term and their corre-

sponding ids. From TimeDB(ω) and Updates(ω), the simulator knows the timestamps

where a keyword in the x-term matches these ids. The simulator uses these times-

tamps to determine the corresponding xtagi,j and yi,j values to construct

xtki,j = xtag
y−1
cnti,j

i,j .

This step is similar to what is done in game G6. So the simulation is indistinguishable.
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Lastly, if two search queries ω1 and ω2 have different s-terms but the same x-

term and share some common ids, then the simulator should simulate the xtk such

that the same xtag is generated for those queries. The simulator knows this by

considering sp(ω1), Updates(ω1), sp(ω2) and Updates(ω2). Hence this simulation is

also indistinguishable, and we have

Pr
[
SSEIdealΠA,S,LΠ

(1λ, q) = 1
]
= Pr[G6 = 1].

Thus,

∣∣Pr [SSERealΠA(1λ, q) = 1
]
− Pr

[
SSEIdealΠA,S,LΠ

(1λ, q) = 1
]∣∣ ≤ negl(λ).

5.5 Leakage Analysis

Although we have argued the security of our scheme assuming the standard and

maximum possible leakage functions defined in the literature, we also argue about

the precise leakage of our scheme. It has been found historically that without a

proper leakage analysis SSE has been attacked by exploiting those leakages missed

in the analysis. Like leakage miss in dynamic SSE was exploited in [97]. Also, the

update leakage of [80] was assumed to be empty. Whereas, in some cases, it leaks

the keyword, as shown in [102]. Thus, a thorough leakage analysis is essential for

any SSE. In order to achieve this, we analyze the leakage of our scheme through all

possible combinations of queries. This novel technique gives confidence in the actual

leakage of any SSE scheme. This discussion helps in understanding the consequences

of the effect of combining different secure components and the exact leakage of the

combination.

The actual leakage of our CDSSE construction is much less than those assumed

above in Section 5.4. The following are public at the beginning of Π: the security

parameter λ, the description of Π, the set of all possible keywordsW , the set db from
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which each document is assigned a unique identifier, the key space K, the descriptions

of the data-structures Π.TSet and Π.XDB to be stored in the server, the descriptions

of the PRF families F
(I)
p (·, ·), F (X)

p (·, ·), F (Z)
p (·, ·).

Setup Leakage

In the setup phase, we assume that the initial database DB that is input to Σ.SetupC

is empty. If the initial database is not empty, we would outsource an empty database

in the setup phase and then update the database using the update protocol. Hence,

the initial structures of Π.TSet and Π.XDB are already known to the adversary. The

server receives as input Π.EDB = (Π.TSet,Π.XDB) and stores it. Since Π.EDB does

not have any data from db or W , there is no leakage during the setup of Π. In other

words, LΠ,Setup = ∅.

After the setup, the server receives additional information with each update or

search query. To find the leakage due to a query qi ∈ QS, we should consider all

information that the server had before qi and those that it attains due to and after

processing qi.

Update Leakage

Single Update Leakage. Before an update query for (op, (id, w)), let the state of

the client be st = (st.σC, st.cnt) while the server has the encrypted database Π.EDB =

(Π.TSet,Π.XDB). During an update operation, the client calls Π.UpdateC and the

output Π.utk =
((
Σ.utk, ycnt[w]

)
, xtag

)
is sent to the server. So the leakage due to the

update operation must be from Π.utk only. Note that Σ.utk is an output of Σ.UpdateC

and (ycnt[w], xtag) is an output of Γ.Add. We argue that these two outputs together

do not leak any more than LΠ.

1. Σ.utk at most leaks ∅. We first note that the protocol Π calls Σ.UpdateC only

with op = add and never uses op = del. By Definition 2.5.5 and Definition 2.5.6

of forward and backward privacy of Σ respectively, the update token Σ.utk out-

put by Σ.UpdateC (Ks, σC, op, (id, w)) leaks at most the operation op which is
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always add in Π. However, as for both cases op = add as well as op = del the

algorithm only issues an add token, so add and del operations are indistinguish-

able. Hence, there is no leakage from Σ.utk.

2. xtag at most leaks ∅. Recall that, xw = F
(X)
p (kX, w) is fixed for every w, and

xid = Fp
(I) (kI, id∥op) is fixed for every (id∥op). In our setting for non-modifiable

documents, the tuple (op, w, id) is always unique for every update operation (as

(id, w) is added or deleted only once). The pseudo-randomness of Fp ensures

that xw and xid for a single update are two random elements from the group G.

Thus ddh hardness of G (Definition 2.2.2) ensures that no efficient adversary

can distinguish the xtag which is gxw·xid from a random element of G.

3. ycnt[w] at most leaks ∅. The value cnt[w] changes (incremented by 1) for every

update operation corresponding to every keyword w and never repeats. As a

result, (w∥cnt[w]) is always unique. The pseudo-randomness of Fp ensures that

zcnt[w] which is Fp
(Z)(kZ, w∥cnt[w]) and consequently ycnt[w] which is xid · z−1

cnt[w]

are random elements from G3. Thus, ycnt[w] also leaks nothing.

4. Together, ((Σ.utk, ycnt[w]), xtag) at most leak ∅. Σ.utk is generated from an in-

dependent protocol from (ycnt[w], xtag). Thus, Σ.utk together with (ycnt[w], xtag)

leaks nothing. Additionally, ycnt[w] and xtag are two random elements of the

group G. So there is no leakage altogether.

This concludes that the leakage of a single update operation is ∅.

Update-Update Leakage.

1. Σ.utk of many updates leaks ∅. The leakage from an update of SKSSE is ∅ even

when the server sees many updates. This ensures that Σ.utk of our scheme for

two or more updates is also ∅.

3A formal argument provided in Game G5 of Theorem 5.4.1
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2. ycnt[w] at most leaks ∅. For every update operation, the input w∥cnt[w] to Fp
(Z)

is always unique. The pseudo-randomness of Fp ensures that ycnt[w] in several

updates are indistinguishable from a random element of G.

3. xtag at most leaks ∅. From the above discussion, we see that for any two update

operations, both xw and xid cannot be the same. Moreover, the server never

gets to see xw or xid in clear in any operation. When the server sees many

update operations, it might happen that two updates use the same xw (when a

keyword is the same) or the same xid (when id and op are the same). However,

both xw and xid would never be the same for two update operations. Hence,

eddh hardness of G (Definition 2.2.3) ensures that no efficient adversary can

distinguish the xtag which is gxw·xid from a random element of G even when the

server sees many xtags either with same xw or with same xid4.

4. Together, ((Σ.utk, ycnt[w]), xtag) at most leak ∅. From the games G1, G5 and G6 in

the Proof of Theorem 5.4.1, we know that each of these values can be simulated

independently of each other. Since the adversary cannot distinguish between

any of these games (except with negligible probability), the server does not get

any additional information from this tuple, other than what it does from each

of its elements individually.

Search-Update Leakage. Consider the following sequence of two queries.

1. The current update query qβ at time instance β is, qβ = (β, opβ, (idβ, wβ)), that

is input to Π.UpdateC and outputs ((Σ.utkβ, yβ), xtagβ), where opβ ∈ {add, del}.

2. For α < β, a previous search query qα = (α, srchα, ωα), where ωα = w1 ∧ w2 ∧

· · · ∧ wn, that is input to Π.SearchC and outputs (Σ.stkα, Γ.xtkα).

We argue that the leakage due to the outputs of qα and qβ in each case is no more

when combined. Both Σ.utkβ and Σ.stkα are outputs to the server for the underlying

single keyword search protocol Σ. Hence the leakage due to the combination of these

4The argument is similar to the argument in Game G6 of Theorem 5.4.1.
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two parameters is no more than has been accounted for in LΣ,Update. Now, as we only

invoke Σ with the add operation, there is no leakage.

In the proof of Theorem 5.4.1, we have argued in Game G5 that the values

yj ← Fp
(I)(kI, id∥op) · (Fp

(Z)(kZ, w∥j))−1, are essentially random elements of G to

the adversary. Due to our setting, the tuple (op, w, id) received in qβ has never ap-

peared in any previous update. This ensures that yβ received in the current update

operation when combined with xtkα received during the search operations at time

instance α, does not generate an xtag = xtkα[i, j]
yβ that is present in XDB. Similarly,

xtagβ received in qβ is also not present in XDB. Thus, xtagβ and yβ received in the

current update combined with any previous search query qα do not leak any more

than the leakage after the current update. All of the above together show that the

update leakage for our scheme is LΠ,Update = ∅.

Search Leakage

Single Search Leakage. For a conjunctive search query ω = w1 ∧ w2 ∧ · · · ∧ wn,

w1 is the s-term and the search token is (Π.stk,Π.xtk).

1. From Π.stk = Σ.stk, the server will know sp(w1), TimeDB(w1) and Updates(w1),

as these are leakages of Σ (see Definition 2.5.6). Note that DelHist(w1) shall not

be leaked as we call Σ.UpdateC with op = add. The actual update operation is

appended to the id. So even if the id in two updates are the same, (id∥op) is

always different for the same keyword. Thus, if a keyword is added and deleted

from the same identifier, the id in both cases would be different, and the server

cannot link the add and delete operations.

2. Next, the server computes

xtk[j, i]yj = gFp
(Z)(kZ,w1∥j)·xwi ·(xid·Fp

(Z)(kZ,w1∥j)−1),

for all j ∈ [cnt[w1]] and i ∈ [2, n], using Π.xtk output by Γ.Search, where xwi
=

Fp
(X)(kX, wi). The server then checks if the generated xtagi,j = xtk[j, i]yj is in

XDB or not.

126



(a) If xtagi,j ∈ XDB, the server knows that the xid = Fp(kX, id∥op) that was

added for the s-term must have also been added for the x-term. Thus,

the server comes to know those timestamps when the pair (op, id) in the

s-term matches other keywords in the conjunction.

(b) Otherwise, xtagi,j /∈ XDB. Our non-modifiability setting ensures that this

event will not occur in future updates. So the xtagi,j computed as xtk[j, i]yj

which is not in XDB, does not convey any information other than the result

of the conjunction to the server.

Thus, the whole leakage is subsumed by the leakage through Updates(ω) and

TimeDB(ω).

Here we note that DelHist(ω) is never leaked as we only add an (id, w) pair using Σ,

even in case of deletion for the protocol Π. So Σ only works with op = add, and the

actual operation remains hidden from Σ and hence from the server.

We note that TimeDB(ω) is a huge overestimation of the actual leakage of Π. The

actual leakage of TimeDB(ω) in our scheme is the following.

TimeDB(ω) = TimeDB(w1) ∪ {(u, id) : (i ≥ 2) ∧ ((id, ∗) ∈ TimeDB(w1)) ∧ ((u, add, (id, wi)) ∈ QS)}.

In other words, the timestamps of those identifiers are leaked for x-terms which are

only present in the s-term.

Search-Search Leakage. For α < β, consider two search queries qα = (α, srchα, ωα)

and qβ = (β, srchβ, ωβ). Any search token Π.xtk contains xtk[j, i] = gFp
(Z)(kZ,w1∥j)·Fp

(X)(kX,wi)

for j ∈ [cnt[w1]] and i ∈ [2, n]. Now say, ωα and ωβ have the same s-terms. So the xtks

are the same whenever w1 and wi are repeated in the two searches. Hence, the server

learns if a pair (w1, wi) has appeared in multiple conjunctive search queries through

the equality of xtks. This is true for any X = wi1 ∧ wi2 ∧ · · · ∧ wiℓ , where wij ∈ L̃ω

for j ∈ [ℓ]. That is, for the least frequent keyword w1 and an arbitrary conjunction
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of set of keywords in L̃(ω), the server comes to know the joint-search pattern

sp(w1, X) = {u|(u, srch, ω) ∈ QS, ω = w1 ∧ · · · ∧X ∧ · · · }.

Hence, for a conjunctive query ω = w1 ∧ · · · ∧wn, the total search pattern leakage of

our scheme is

sp(ω) = sp(w1) ∪

(
n⋃

i=2

sp(w1, wi)

)
.

Update-Search Leakage. Consider a search query qβ = (β, srchβ, ωβ). For α < β,

consider a previous update query qα = (α, opα, (idα, wα)), where opα ∈ {add, del} and

ωβ = w1 ∧ w2 ∧ · · · ∧ wn. If wα /∈ L(ωβ), that is, if a keyword that was updated

previously is not present in the current search query, then such update and search

queries are unrelated and hence there is no additional leakage. If wα ∈ L(ωβ), the

leakage is precisely that captured by the single search leakage described above, as an

update operation does not leak anything.

All of the above together show that the search leakage for our scheme is subsumed

by the following leakage we have assumed for the proof of Theorem 5.4.1.

LΠ,Search =
(
sp(ω),TimeDB(ω),Updates(ω)

)
.

Leakage Profile of Π. We finally summarise the overall leakage of our CDSSE

scheme. By combining the leakage of Σ and Γ, we indeed get the leakage of Π that is

subsumed by the following leakage.

LΠ,Setup(DB) = ∅, LΠ,Update(op, id, w) = ∅,

LΠ,Search(ω) =
(
sp(ω),TimeDB(ω),Updates(ω)

)
.

Remark 1. As mentioned in [95], for a file injection attack [97] to work properly,

the adversary must know the results of all the sub-queries of the form wi ∧ wj for all

wi, wj in the conjunction and 1 ≤ i < j ≤ n, that is the KPRP leakage. Although our

scheme does not prevent such leakage, the precise leakage of our scheme is w1 ∧ wi
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for all wi in the conjunction. Moreover, as shown by [80], random shuffling of xtks

reduces the success probability of the file injection attack like [97] to almost 5% even

when the amount of injected files is 60% of the entire database.

Remark 2. It is important to note that our xtag is deterministic. Consider an update

operation (op, (id, w1)) while (op, (id, wi)) has not occurred yet. The xtag that would

be generated for the search ω = w1 ∧ · · · ∧ wi ∧ · · ·wn would not be present in the

XDB. Now, if at a later stage, the update (op, (id, wi)) indeed happens, then the xtag

for that update would be exactly the same xtag that server has computed at the time of

the search operation ω = w1 ∧ · · · ∧wi ∧ · · ·wn. Thus, the server would be able to link

the update operation (op, (id, wi)) with the search operation ω = w1∧ · · · ∧wi∧ · · ·wn,

breaking the forward privacy of Π. The above event resembles that at the time of

adding the document identifier id, w1 was present in that document and at a later stage

wi was added to the document. However, if an update (op, (id, w1)) has occurred and,

(op, (id, wi)) has not, in that case, our setting of non-modifiable documents ensures

that this operation would never happen in any future update, preventing such kind of

forward privacy breach. The above is the reason why Π is not secure in the general

case of SSE. This was missed by [80].

Remark 3. From the concrete leakage analysis it is quite evident that, even if our

construction can be instantiated with a BPIP secure SKSSE, the resulting CDSSE is

not BPIP secure. The reason is that even if we store the update for every keyword

with a BPIP secure scheme, the xtags are stored in a set membership query data

structure. Now, at the time of a search operation, when an xtag generated for any

keyword in the conjunction is found in the set, it reveals the time when the element

was added to the set, degrading the whole security to BPUP. However, if our scheme is

instantiated using a WBP secure single keyword construction, the security is enhanced

to BPUP. The reason is, in the update phase we always call our single keyword SSE

with op = add, and the actual operation is embedded with the id (as we replace id

with id∥op). So the server is unaware of the actual operation as the server never sees

the original identifiers. Thus the server cannot link the add operation to the delete
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operation as it cannot distinguish between these two operations. Achieving BPIP

secure CDSSE is still an open problem.

5.6 Implementation and Experimental Results

We implemented three instantiations of our generic construction with three different

DSSEs [87, 49, 38]. Our code is available at [77]. We conducted experiments on the

Enron Email database[45] to evaluate the performances of these three implementa-

tions. All three schemes performed very well. Our implementation proved to be very

practical and scalable.

Implementation Details. We have instantiated our generic scheme with three

different SKSSE schemes – one of which is only forward private [87], and two are

state-of-the-art forward and backward private schemes [49] and [38]. The schemes

were implemented in C++. The code is available at [77]. The basic codes for these

experiments were written by Theo Henault.

All the experiments were performed on a desktop computer with Intel Core i7-

6700 CPU, 3.40 GHz with 8 Cores and 16GB memory. The database was stored using

RocksDB [44], and all cryptographic primitives were implemented using Crypto++5.

We report our results in a similar fashion as reported in [29, 80, 100]. We have used

the Enron Email Dataset[45] for our experiments. In [87, 38], when two consecu-

tive queries have the same keyword, the server stores the previous search result to

optimise the search. However, for a fair comparison of the time taken by the three

schemes, we have not implemented this optimisation – all times reported are for fresh

search of the s-terms. We do not report our search results with different probabilities

of search operation. However, the modification suggested in [87, 38] can also be ap-

plied for single keyword searches, which will improve the search performance of the

corresponding implementations.

5Available at: https://www.cryptopp.com/
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EDB Creation and Update Operation. The EDB was created using the Enron

Email Dataset. We wrote a C++ program to extract IDs and keywords from the

dataset. We got 517, 401 IDs and 72, 252, 961 ID-keyword pairs. Table 5.2 shows the

sizes of the encrypted databases and clients’ state sizes for different schemes. We also

report the total time and the time per pair, required to create the EDB. The EDB

creation essentially calls the update process of our protocol (without the network

delay), so the average update time per pair was calculated while generating the EDB

and is reported in Table 5.2. The update time for an id-keyword pair is almost

constant in all three instantiations. We have performed an independent experiment

by inserting 104 pairs and taking the average time. The experiment also matches the

result reported in Table 5.2.

Schemes Time (Hr.) Time/Pair (ms) Server Storage (GB) Client Storage (MB)

FAST-OXT 12.6 0.63 15.5 20
Mitra-OXT 10.4 0.52 9.1 2
ΠBP-OXT 11.1 0.55 13.3 3.1

Table 5.2: Storage cost and time required for each update.

Search Operation. To evaluate the performance of search operations, we follow

the same setting as in [80], and [100]. We report the time for search queries that

are conjunctions of two keywords (w1 ∧ w2). We have conducted two types of search

operations,

1. In the first experiment, we keep the size of the number of updates performed on

the second keyword to a constant |Updates(w2)| = 105 and vary |Updates(w1)|

from 100 to 105 (Figure 5-4). The exact values are in Table 5.3

2. In the second case, we keep the size of the number of updates performed on the

first keyword to a constant, that is, |Updates(w1)| = 10 and vary |Updates(w2)|

from 10 to 105 (Figure 5-5).

In both cases, we report the search time. The time required to search two keywords

both having order of 105 updates takes ∼ 80 sec for FAST-OXT, ∼ 60 sec for Mitra-

OXT and ∼ 52 sec for ΠBP-OXT (Figure 5-4). Our results concur with the results
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Figure 5-4: Search time comparison between the three instantiations of our generic
CDSSE for fixed |Updates(w2)| = 105 with varying |Updates(w1)| from 102 to 105.
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Figure 5-5: Search time comparison between the three instantiations of our generic
CDSSE for fixed |Updates(w1)| = 10 with varying |Updates(w2)| from 10 to 105.

from [38], as Mitra-OXT outperforms ΠBP-OXT when the search output size is small

and ΠBP-OXT outperforms Mitra-OXT for large search output sizes. The search time

is high for FAST-OXT as decryption is done at the server.

We did not perform searches with more than 2 keywords in conjunction as the

search for elements on XDB can be parallelised and hence will essentially take similar

time as a conjunctive query with 2 keywords.

The work of [100] uses an SSE to store the entries of s-term and x-term as well.

The implementation of [100] is not available. However, as reported in their paper,

they did their experiment on a Ubuntu 20.04.3 LTS workstation with Intel @Xeon(R)

W-2123 CPU 3.60GHz with 8 cores and 32GB RAM. Their setup uses more process-
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ing power with a double-sized RAM. As reported in their paper, their protocol has a

higher running time when the number of updates for both w1 and w2 is high. This is

understandably so, as for each s-term and x-term they have to access an SSE. How-

ever, their running time overshoots our scheme by a huge margin when the number

of updates for the s-term is small but the number of updates for the x-term is high.

This is because we only fetch very few x-terms (precisely the number of times the

s-term has been updated) whereas they have to fetch all the x-terms related to the

keyword. Similarly, as reported in [95], they only test their scheme for a database

with 23,643 documents, 60,879 keywords, and 8,373,977 keyword-document pairs,

which is almost a magnitude smaller than our test case. Their server machines were

running Ubuntu 18.04 LTS and had 16 cores (Intel Core i9-9900 CPU 3.10 GHz),

31GB RAM, and 483 GB SSD disk space. However, their running time is also similar

to our results when the matching search output size is small and their search time

grows rapidly when the matching search output size increases, making their scheme

much less suitable for large databases compared to ours.

|Updates(w1)| Mitra-OXT (s) FAST-OXT (s) ΠBP-OXT (s)
102 0.06 0.06 0.13
103 0.57 0.54 0.53
104 6.01 6.15 5.31
105 59.79 80.41 52.49

Table 5.3: Search time comparison for fixed |Updates(w2)| = 105 with varying
|Updates(w1)| from 102 to 105

5.7 Final Remarks

We proposed a generic dynamic searchable symmetric encryption scheme that allows

conjunctive queries while being both forward and backward private. Our scheme is

specifically crafted to protect non-modifiable documents that, once uploaded, their

keywords remain unaltered. This is a common characteristic in a variety of appli-

cations, including biometric databases, digital archives, legal documents, medical

records, etc. Our construction allows the keyword set associated with a document
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to be modified with some extra overhead. With efficiency closest to OXT (among

known dynamic schemes) and by ensuring both forward and backward privacy, our

proposed construction offers a viable solution for preserving the privacy of dynamic

datasets while facilitating conjunctive queries.

The OXT framework has been extended [29] to support general boolean queries and

to the multi-client setting [57] in a modular black-box fashion. Both these extensions

facilitate a lot of practical use cases. Our construction uses OXT in a black-box

fashion as well, where the functionality of OXT has not been altered. Hence, the

extension of our generic scheme to support general boolean queries and multi-clients

seems quite plausible for future work.
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6
Updatable Message Authentication Codes

Our next goal is to construct a fault-tolerant, verifiable DSSE. The main tool that

we use for our construction is a message authentication code with some added func-

tionality which we call an updatable message authentication code (UdMAC). In this

Chapter, we systematically develop UdMACs, and in the next chapter, we use them

to construct a fault-tolerant verifiable DSSE.

Message authentication codes (MACs) are algorithms that have been traditionally

used to provide integrity of a message. A MAC scheme is a pair of algorithms (MAC

generation algorithm, Verification algorithm). On a given message and a key MAC

generation algorithm outputs a tag. The sender sends this tag along with the message.

Given a message, the key and a tag, the Verification algorithm outputs either 0 or 1,

where 1 indicates that the message is authentic and 0 indicates the message is not

authentic. There are several paradigms for constructing MACs. For our purpose, we

need to extend the basic functionality of a MAC. We consider a scenario where a

client outsources its message M to be stored in a server. To ensure the integrity of

the message, the client computes a MAC t for the message and transmits M along

with t to be stored in the server. Over time, if the client needs to update M , then

(s)he has to download the message M update it, re-compute the MAC and then send

it back to the server. If the message is large and frequent updates are required, this

naive solution may be inefficient. We propose a new type of MAC, which we call

updatable MAC (UdMAC), which has the property that for updates, the client does

not need to download the message and recompute the MAC. Suppose the message
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M is to be updated by m and we denote the updated message by M∆m; the client

should be able to compute the update MAC tu for M∆m using only m and t. Thus,

the client only sends the update m along with tu to the server, and the server stores

the updated message M∆m and the updated tag tu.

This specialized functionality provided by UdMACs is not available in traditional

MACs. We define the syntax and security of UdMACs, and provide two constructions,

namely, ConCatU and XoRU. The two constructions work for two different types of

updates, concatenation and xor difference, respectively. We analyze in detail both

the constructions and prove their security.

There is a long history of cryptographic schemes with updating capabilities start-

ing from the work reported in [12, 13], where the concepts of incremental collision

resistant hash functions and signatures were introduced. These ideas were further

refined and formalized in [10]. Another line of work focuses on key updatable en-

cryption. A key updatable encryption scheme is a symmetric encryption scheme that

allows the key holder to update keys and to compute an update token, which can be

given to a party storing ciphertexts, and can be used to update existing ciphertexts to

ones under the new key [19, 18, 46]. Studies on key updatable signatures and message

authentication codes have been reported in [39]. In [39] the key updatable MACs are

called updatable MACs (UMAC). We do not consider key updates, but updates in

the message. We also call our MACs updatable MACs but use a different acronym,

UdMAC. Our work aligns more with the scenarios considered in [12, 13, 10] but our

formulations and constructions are different.

6.1 Message Authentication Codes

A message authentication code (MAC) is a map F : K×M→ {0, 1}τ , where K is the

key space and M the message space. We often write FK(·) to denote F (K, ·). The

output of a MAC is called the tag, and τ is called the tag length. The security of a

MAC F is defined using an interaction of F with an adversary A. It is assumed that

A has an oracle access to FK(·), where K
$←− K. For a query x ∈ M of A the oracle
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responds by sending y = FK(x). Let, A queries x1, x2, . . . , xq and gets y1, y2, . . . , yq

as responses from the oracle. These queries are performed adaptively. Finally, A

outputs a pair (x∗, y∗), where x∗ /∈ {x1, x2, . . . , xq}. This pair is called a forgery and

it is said that A has successfully forged F if FK(x
∗) = y∗. The auth-advantage of A

is defined as

AdvauthF (A) = Pr[K
$←− K : A forges].

We say that F is (ϵ, t) secure if for every adversary A, which runs for time at most t,

AdvauthF (A) ≤ ϵ. It is well known [20] that for any arbitrary adversary A for the MAC

F there exists a PRF adversary B for F such that

AdvauthF (A) ≤ AdvprfF (B) + 1

2τ
, (6.1)

where B and A both run almost for the same time and ask almost the same number

of queries.

6.2 Polynomial MACs

Let F2n denote the field with 2n elements, n-bit strings can be seen as elements in F2n .

Thus additions and multiplication of n-bit strings are addition and multiplications in

F2n . For x, y ∈ {0, 1}n, we denote their addition and multiplication by x⊕ y and xy

respectively.

For x ∈ {0, 1}∗ and h ∈ {0, 1}n, let (x1, x2, . . . , xm) = parse(x). We define the

function

Polyh(x) = x1h⊕ x2h
2 ⊕ · · · ⊕ Padn(xm)h

m

where the additions and multiplications are in F2n and for y ∈ {0, 1}∗, |y| ≤ n,

Padn(y) = y∥0n−|y|.

A related function is

PPolyh(x) = Polyh(x)⊕ |x|hm+1.
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The following result is well known:

Proposition 6.2.1. Let x1, x2 ∈ {0, 1}∗, x1 ̸= x2 and let ℓ1 = ⌈|x1|/n⌉ and ℓ2 =

⌈|x2|/n⌉ then for any c ∈ {0, 1}n

Pr[h
$←− {0, 1}n : PPolyh(x1)⊕ PPolyh(x2) = c] ≤ max{ℓ1, ℓ2}+ 1

2n
.

The nonce based Wegman Carter MAC [26, 92] is a widely used MAC algorithm.

A popular variant of this MAC takes in a message x ∈ {0, 1}∗, two keys K,h ∈ {0, 1}n

and a nonce N ∈ {0, 1}n and produces an n-bit tag as

WCK,h(x;N) = PPolyh(x)⊕ EK(N), (6.2)

where EK() is a pseudo-random function family.

The Theorem below regarding the security of Wegman Carter MAC is well known

(for example see [20]).

Theorem 6.2.1. Let Wegman Carter MAC be as defined in Equation (6.2) and A

be a nonce respecting1 forgery adversary who asks at most q queries. Among the q

queries, let the message queried of the largest length be of length ℓ. Then there exists

a PRF adversary B for EK(), such that

AdvauthWC (A) ≤ AdvprfE (B) + ℓ+ 1

2n
.

We will need the following result regarding the function Polyh().

Proposition 6.2.2. Let x ∈ {0, 1}nℓ1 and y ∈ {0, 1}nℓ2, and let (x1, x2, . . . , xℓ1) =

parsen(x) and (y1, y2, . . . , yℓ2) = parsen(y) and xℓ1 ̸= 0n and yℓ2 ̸= 0n and x ̸= y.

Then, for any c ∈ {0, 1}n,

Pr[h
$←− {0, 1}n : Polyh(x)⊕ Polyh(y) = c] ≤ max{ℓ1, ℓ2}

2n
.

1A nonce respecting adversary is an adversary who never repeats a nonce in its queries.
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Proof. Without loss of generality, let ℓ1 ≥ ℓ2. Thus, we have

Polyh(x) = x1h⊕ x2h
2 ⊕ · · · ⊕ xℓ2h

ℓ2 ⊕ · · · ⊕ xℓ1h
ℓ1

Polyh(y) = y1h⊕ y2h
2 ⊕ · · · ⊕ yℓ2h

ℓ2 .

If ℓ1 = ℓ2 we have

Polyh(x)⊕ Polyh(y) = (x1 ⊕ y1)h⊕ (x2 ⊕ y2)h
2 ⊕ · · · ⊕ (xℓ1 ⊕ yℓ1)h

ℓ1 ,

which is a non zero polynomial of degree at most ℓ1 as x ̸= y. If ℓ1 > ℓ2 we have

Polyh(x)⊕ Polyh(y) = (x1 ⊕ y1)h⊕ (x2 ⊕ y2)h
2 ⊕ · · · ⊕ (xℓ2 ⊕ yℓ2)h

ℓ2 ⊕ · · · ⊕ xℓ1h
ℓ1 ,

which is a non zero polynomial of degree at most ℓ1 as xℓ1 ̸= 0n.

Thus, in both cases we have Polyh(x)⊕ Polyh(y)⊕ c = 0 have at most ℓ1 roots in

F2n = {0, 1}n.

Similar argument holds if ℓ2 > ℓ1 and in that case we have Polyh(x)⊕Polyh(y)⊕c =

0 have at most ℓ2 roots in F2n = {0, 1}n. Thus we have

Pr[h
$←− {0, 1}n : Polyh(x)⊕ Polyh(y) = c] ≤ max{ℓ1, ℓ2}

2n
.

6.3 Updatable MACs

An updatable MAC works on four associated sets K, M, Σ and T called the key

space, message space, state space and tag space, respectively. We will considerM⊂

{0, 1}∗ and an associative binary operation ∆ :M×M→M, which we will further

call as an update function. An updatable MAC Ψ is a triple of algorithms Ψ =

(KeyGen,MacUpdate,MacVerify) described as follows:

KeyGen(1λ): takes as input the security parameter λ outputs a key K, selected
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uniformly at random from the key space K.

MacUpdate(K,m, σ): takes as input K ∈ K, m ∈ M and σ ∈ Σ ∪ {⊥} and

outputs a t ∈ T and an updated state σ̃.

MacVerify(K,m, σ, t): takes in the key K, a m ∈ M, σ ∈ Σ and t ∈ T and

outputs a bit b ∈ {0, 1}.

Correctness: Letm1,m2, . . . ,ms ∈M be a sequence of messages and Ψ = (KeyGen,

MacUpdate, MacVerify). For an updatable MAC Ψ, we define a procedure Ψ.SeqUpdt

in Figure 6-1 which takes in a key K ∈ K generated by Ψ.KeyGen(1λ), a sequence of

messages (m1,m2, . . . ,ms) and outputs (σ, t) ∈ Σ × T . We say that Ψ is correct, if

for any message sequence (m1, . . . ,ms) and any K generated by Ψ.KeyGen,

Ψ.MacVerify(K,M,Ψ.SeqUpdt(K, (m1,m2, . . . ,ms))) = 1,

where M = m1 ∆ m2 ∆ · · · ∆ ms.

Ψ.SeqUpdt(K, (m1,m2, . . . ,ms))
01. (t1, σ1)← Ψ.MacUpdate(K,m1,⊥);
02. for i = 2 to s,
03. (σi, ti)← Ψ.MacUpdate(K,mi, σi−1);
04. end for
05. return (σs, ts);

Figure 6-1: The procedure SeqUpdt used to define correctness of an updatable MAC
scheme Ψ.

The definition of correctness specifies the usefulness of updatable MAC. Consider

the MacUpdate procedure is applied on the messages m1,m2, . . . ,ms, one after the

other in the same sequence as in the procedure SeqUpdt of Figure 6-1. Thus, we

start with the message m1 and an empty state and in the subsequent messages the

input to MacUpdate is the current message and the state obtained for the previous
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message. The final state-tag pair (σs, ts) obtained should be a valid MAC for the

message M = m1 ∆ m2 ∆ · · · ∆ ms.

6.3.1 Security of Updatable MACs

For defining security of an updatable MAC Ψ = (KeyGen,MacUpdate,MacVerify), we

give A oracle access of Ψ.MacUpdate(K, ·, ·), instantiated with a key K generated

by Ψ.KeyGen(1λ). A can query its oracle with (m,σ) ∈ M× Σ and get as response

(σ̃, t) ∈ Σ×T . Let Q = {(m1, σ1), (m2, σ2), . . . (mq, σq)} be the set of queries made by

A and for the ith query (mi, σi), let the response of the oracle be (σ̃i, ti). We denote

the set of messages queried by A by M = {m : (m,σ) ∈ Q} and we call the set

PA = {(σi,mi, σ̃i, ti) : 1 ≤ i ≤ q}

as the query profile of the adversary A. Finally, after A stops querying, it outputs a

forgery (M∗, σ∗, t∗).

We call a forgery (M∗, σ∗, t∗) of an adversaryA with query profile PA as “invalid” if

there exists a sequence of query-responses (σ(1),m(1), σ̃(1), t(1)), (σ(2),m(2), σ̃(2), t(2)), . . .,

(σ(ℓ),m(ℓ), σ̃(ℓ), t(ℓ)), such that the following are true simultaneously

1. {(σ(1),m(1), σ̃(1), t(1)), (σ(2),m(2), σ̃(2), t(2)), . . . , (σ(ℓ),m(ℓ), σ̃(ℓ), t(ℓ))} ⊆ PA.

2. m(1) ∆ m(2) ∆ · · · ∆ m(ℓ) = M∗

3. σ(1) = ⊥, σ̃(ℓ) = σ∗ and σ(i) = σ̃(i−1) for 1 ≤ i ≤ ℓ.

A forgery (M∗, σ∗, t∗) is valid if it is not invalid. An adversary A is successful if

its forgery (M∗, σ∗, t∗) is valid and Ψ.MacVerify(M∗, σ∗, t∗) = 1. Let Succ(A) be the

event that A is successful. We define the forging advantage of an adversary A for a

∆-updatable MAC as

AdvUauthF (A) = Pr[Succ(A)]. (6.3)

The probability is taken over the selection of the key K with which the oracle is

instantiated, the (possible) randomness in Ψ and the (possible) randomness in A.
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6.3.2 Some New Notations

In the subsequent sections we describe two constructions MACs which support two

different update functions. The first one is called ConCatU which converts any given

PRF f : K ×M → {0, 1}n to an ∥-updatable MAC, i.e., where the update function

is concatenation. The second construction converts a Wegman Carter MAC [26] to

an ⊕-updatable MAC, i.e., a UdMAC where the update function is xor differences.

We introduce a bit of new notation for convenience. Let (N)∗ denote the set of

all lists whose elements are natural numbers including the empty list. Thus a finite

list L ∈ (N)∗ can be seen as an array, and its ith element will be denoted by L[i],

and its length, i.e., the number of elements present in it, will be denoted by ||L||.

An empty list is denoted by ⟨⟩. For an a ∈ N, append(L, a) appends a at the end

of L. By sum(L) we will mean the sum of all the elements in L. Let, L ∈ (N)∗ be

a finite length list of length ||L|| = ℓ where L = ⟨x1, x2, . . . , xℓ⟩ and let M ∈ {0, 1}∗

be a string of length sum(L). Then, Parse(M,L) returns (m1,m2, . . . ,ml) such that

|mi| = L[i] and m1∥m2∥ . . . ∥ml = M . For a list L = ⟨x1, x2, . . . , xℓ⟩, by str(L) we

mean the nℓ bit string binn(x1)∥binn(x2)∥ · · · ∥binn(xℓ). If L = ⟨⟩, ||L|| = 0 and str(L)

is the empty string.

6.4 ConCatU: An Updatable MAC for Concatena-

tion

Let M ⊂ {0, 1}∗, K = {0, 1}k × {0, 1}n, Σ ⊂ (N)∗ × {0, 1}n ∪ {⊥}, T = {0, 1}n be

the message space, key space, state space and tag space of ConCatU respectively. Let

f : K ×M→ {0, 1}n be a PRF family. We use f to construct a ∆-updatable MAC

ConCatU, where ∆ is a the concatenation function ∥.

A state σ of ConCatU is either ⊥ or it contains two distinct fields denoted as

σ = (Lσ, pTagσ), where Lσ is a finite list of positive integers, and pTagσ is a n-bit

binary string.

ConCatU.KeyGen() outputs a pair (K,h), where K
$←− {0, 1}k and h

$←− {0, 1}n.
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The procedures ConCatU.MacUpdate and ConCatU.MacVerify are shown in Figure 6-2.

To understand the workings of the procedures ConCatU.MacUpdate and ConCatU.

MacVerify it is important see the role of the state σ.

Consider an initial message m1, and let subsequent updates on it be m2, . . . ,mk.

As the update function is a concatenation function, hence the message after the ith

update, 1 ≤ i ≤ k, will be Mi = m1∥m2∥ · · · ∥mi. We see the initial message also as

an update on an empty message. The intended usage of ConCatU.MacUpdate is to

obtain a correct authentication tag of the updated message after each update without

knowing the whole message. To accomplish this, each update m that is given as an

input to the ConCatU.MacUpdate procedure is associated with a state σ. The state

σ carries some information regarding the message on which the current update m

is to be applied. In particular, σ keeps a record of the history of updates on the

message. The procedure produces an authentication tag for the updated message

and also updates the state with the information of the current update.

For an input (m,σ), if σ = ⊥, then it signifies m is the initial message, i.e., an

update m on an empty message is being sought. The ConCatU.MacUpdate procedure

on such an input should produce a MAC tag for the message m, which in this case

is the updated message. Further, the procedure should populate the initially empty

list L with the length of m and set the current state to (L, tag) and output it along

with the tag.

When an input (m,σ) is received with σ ̸= ⊥, then a MAC is being sought for the

message M∥m, where M is some message which is not being explicitly provided to the

algorithm. But, the information regarding M is encoded in the state σ = (L, pTag),

which carries the following information:

1. The message M , over which the update is being sought was obtained after

k = ||L|| updates.

2. The initial update on the empty message, i.e., the initial message was of length

L[1] bits.

3. For 2 ≤ i ≤ k, the ith update increased the length of the message by L[i] bits.
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Thus, for a correct usage, |M | = sum(L).

4. pTag was the tag computed by ConCatU.MacUpdate for the message M , i.e., the

last call to ConCatU.MacUpdate for this specific message returned pTag.

ConCatU.MacUpdate((K,h),m, σ)
01. if σ = ⊥
02. ℓ← 0;
03. pTag← 0n;
04. L = [ ];
05. else
06. (L, pTag)← σ;
07. ℓ← ||L||;
08. X ← 1n;
09. for i = 1 to ℓ,
10. X ← X∥binn(L[i]);
11. p← Polyh(X);
12. tag← fK(p∥pTag∥m);
13. L← append(L, |m|);
14. σ ← (L, tag);
15. return (σ, tag);

ConCatU.MacVerify((K,h),M, σ, t)
21. if σ = ⊥
22. return 0;
23. else
24. (L, pTag)← σ;
25. if sum(L) ̸= |M | or pTag ̸= t,
26. return 0
27. ℓ← ||L||;
28. (m1,m2. . . . .mℓ)← Parse(L,m);
29. X ← 1n; tag← 0n

30. for i = 0 to ℓ
31. p← Polyh(X);
32. tag← fK(p∥tag∥mi) ;
33. X ← X∥binn(L[i]);
34. if tag = t;
35. return 1;
36. else return 0;

Figure 6-2: Specification of ConCatU using a prf fK : {0, 1}∗ → {0, 1}n.

As specified in Figure 6-2, the update procedure ConCatU.MacUpdate on an input

(m,σ), parses σ = (L, pTag) if σ ̸= ⊥ and if σ = ⊥ it sets L to an empty list and

pTag to 0n. Further, it computes a string X as the concatenation of the n-bit binary

encodings of the entries in L. In particular, if σ = ⊥, thenX is set to 1n and otherwise

it is set as X = 1n∥binn(L[1])∥ · · · ∥binn(L[ℓ]) = 1n∥str(L), where ℓ = ||L||. Then, p is

computed as Polyh(X) ⊕ |X|hℓ+2 and finally the tag is produced as fK(p∥pTag∥m).

The new state σ is constructed as (append(L, |m|), tag).

The verification process takes a message M , a state σ and a tag t. First, it does

some checks to verify if the state σ and the message M are compatible. In particular,

if the following are true, then the verification procedure rejects by returning 0.

144



1. σ = ⊥. This is an incompatible state for any message for verification, as σ =

⊥ signifies that the message has never gone through the ConCatU.MacUpdate

procedure.

2. σ ̸= ⊥ and σ = (L, pTag) but sum(L) ̸= |M |. This also represents an in-

compatible state for the message M . As the list L keeps track of the updates

performed on a message. The size of the list ||L|| represents the number of up-

dates that have taken place and L[i] denotes the number of bits concatenated

to the message in the i-th update. Hence, if sum(L) ̸= |M |, then σ represents

an incompatible state for M .

3. σ ̸= ⊥ and σ = (L, pTag) but pTag ̸= t. This is incompatible, as the ConCatU.

MacUpdate always writes the current computed tag in the pTag field of σ.

After these checks of compatibility, it sets ℓ = ||L||, and parses the message M as

(m1,m2, . . . ,mℓ) such that M = m1∥m2∥ · · · ∥mℓ and |mi| = L[i]. Then, in lines

29 to 33, it basically runs the procedure ConCatU.SeqUpdt((K,h), (m1,m2, . . . ,mℓ))

as described in Figure 6-1, i.e., it sequentially computes updates of m1,m2, . . . ,mℓ

starting from an empty message. Finally, if the computed tag matches the input

tag t, then it accepts by returning 1, else it rejects by returning 0. Based on the

verification procedure described in Figure 6-2, it is easy to verify that ConCatU is a

correct UdMAC.

6.4.1 Instantiations and Efficiency

We have motivated UdMACs to be used in client-server scenarios, where a client

stores a message M along with a tag t in an un-trusted server and it requires updating

the message. In the context of ConCatU the allowed update is concatenation. The

client wants to compute the authentication tag for the updated message without

downloading the previous message from the server. We will view the procedures

of ConCatU in this context as this would help us to evaluate the efficiency of the

procedure.
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A motivating use case may be the following. Suppose the client records real

time video footage through a surveillance camera and every hour uploads the raw

video data to a server. Thus, every hour, the message in the server is updated by

concatenation and by using ConCatU, one can compute the tag using just the data of

one hour without needing any access to the whole data.

In such a client server scenario. If a single message is being updated multiple

times, it is best for the client to store the state of the message with itself. In the

case of ConCatU, the state contains the tag and the list of updates. The size of the

state for a message which has undergone k updates would be n(k+1) bits, n-bits for

the tag and nk bits for the list L. For our example, the size of the state grows just

n-bits per hour, whereas the size of the message grows by about a GB per hour (this

would depend on the resolution of the video etc). Note, n being the tag length, an

acceptable value for it would be just 128.

Storing the state, along with some extra information with the client would have

efficiency implications while computing the tag. As per the procedure depicted in

Figure 6-2, an update with a message m and state (L, pTag) requires computing

p = Polyh(X), and one computation of fk(p∥pTag∥m). The other computations

required are not significant. Note, X = 1n∥strn(L) and thus |X| = (||L|| + 1)n,

hence Polyh(X) is of degree at most (||L||+ 1), and computing Polyh(X) will require

(||L|| + 1) additions and multiplications in the field F2n . But, the client may keep

a bit more information to speed up this computation. Along with the state, it also

stores the current value of p (see line 11 of Figure 6-2) for each update. When a

message m1 is first uploaded then p is computed as (1n)h and L is initialized as a list

containing a single element, where L[1] = |m1|. The client stores both p and L. When

m1 is updated with m2, then instead of recomputing p the client just updates it as

p = (p+ |m2|)h, and uses this value in 12. This update incurs just one multiplication

and one addition. This can be continued, and each update would require just one

multiplication and one addition for computing p irrespective of the current state of

the message.

In addition to p, the client needs to compute fk(p∥pTag∥m). The only require-
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ment for fk() is that it has to be a variable input length PRF. Thus, fk() can be

instantiated with any block-cipher based secure deterministic message authentication

code like PMAC [16, 81], PAuth [32], secure variants of CBC-MAC [15, 56, 74, 62]

etc. The parallelizable MACs like PMAC and PAuth are particularly suited as they

are efficient across several platforms and require just ⌈|M |/n⌉ many block-cipher calls

to authenticate a message M . Thus, a single update call for a message m will require

⌈(|m|+ 2)/n⌉ ≈ ⌈|m|/n⌉+ 2 block-cipher calls and one multiplication in F2n .

6.4.2 Security of ConCatU

First, let us consider a small modification in the procedure ConCatU.MacUpdate where

the procedure only returns the tag, i.e., it does not output the updated state, though

it computes it. We call this modified construction as ConCatU.MU1. Our first obser-

vation is that if f is a PRF, then ConCatU.MU1 is also a PRF. Before we formalize

this fixing a notation would be useful.

Definition 6.4.1. A (q, r, ℓ)-adversary is an adversary who asks q queries in the query

phase where the queries are (σi,mi), 1 ≤ i ≤ q, each σi = (Li, pTagi) ∈ (N)∗×{0, 1}n

and r = maxi{||Li||} and ℓ = maxi{|mi|}. Note if σ = ⊥ we consider σ = (⟨⟩, 0n).

Proposition 6.4.1. Let A be an arbitrary (q, r, ℓ)-PRF adversary for ConCatU.MU1.

Then there exists a PRF adversary B for fK such that

AdvprfConCatU.MU1(A) ≤ Advprff (B) +
(
q

2

)
r

2n
.

Proof. We assume that A does not repeat queries. As it is a (q, r, ℓ)-PRF adversary,

it asks q distinct queries.

Consider the i-th query (σi,mi) of A. If σi = ⊥ we set Li = ⟨⟩, Xi = 1n and

pTagi = 0n. If σi ̸= ⊥ then σi = (Li, pTagi), and we set Xi = 1n∥strn(Li). For the

i-th query of A we define the string Zi = pi∥pTagi∥mi, where

pi = Polyh(Xi).
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Note that on the i-th query, the function fK() is called with input Zi. Let the set

of all inputs to fK() during the queries of the adversary be

S = {Zi : 1 ≤ i ≤ q}.

Let us define the following events:

G0: A interacting with ConCatU.MU1 instantiated with K
$←− {0, 1}k and h

$←−

{0, 1}n and outputting a 1.

G1: A interacting with ConCatU.MU1, where fK() is replaced by a uniform

random function ρ drawn from the set of all functions mapping {0, 1}∗ to {0, 1}n,

and outputting 1.

G2: A interacting with ConCatU.MU1, where fK() is replaced by $(), which on

any input returns a uniform random n bit string, and outputting a 1. Note that

ConCatU.MU1 where fK() is replaced by $() essentially outputs a n-bit random

string irrespective of its input.

COLL: While interacting with ConCatU.MU1, where fK() is replaced by a uni-

form random function ρ, A asks two distinct queries i, j ∈ [q], i ̸= j such that

Zi = Zj.

By definition of PRF advantage, we have

AdvprfConCatU.MU1(A) = |Pr[G0]− Pr[G2]| . (6.4)

By a standard reduction, we can construct an adversary B such that

|Pr[G0]− Pr[G1]| ≤ Advprff (B), (6.5)

Also, the events G1 and G2 are same unless the event COLL occurs, hence by the

difference lemma,we have

Pr[G1]− Pr[G2]| ≤ Pr[COLL]. (6.6)

148



Using the above equations, we have the following sequence of inequalities.

AdvprfConCatU.MU1(A) = |Pr[G0]− Pr[G2]|

= |(Pr[G0]− Pr[G1]) + (Pr[G1]− Pr[G2]) |

≤ |(Pr[G0]− Pr[G1])|+ |(Pr[G1]− Pr[G2]|

≤ Advprff (B) + Pr[COLL].

We are only left to bound Pr[COLL]. For which we consider two distinct queries

(σi,mi), (σj,mj) for which ρ() gets called with Zi and Zj respectively. We consider

the following cases:

Case 1. mi ̸= mj. In this case Pr[Zi = Zj] = 0.

Case 2. mi = mj. As (σi,mi) ̸= (σj,mj), thus σi ̸= σj. We have to consider

two sub cases here. If pTagi ̸= pTagj, then Pr[Zi = Zj] = 0. If pTagi = pTagj,

then Li ̸= Lj. Which implies Xi ̸= Xj and by Proposition 6.2.2 we have

Pr[Zi = Zj] = Pr[pi = pj] ≤ (max(||Li||, ||Lj||))/2n.

Thus, by the above two cases, the fact that S contains q elements, and the union

bound, we have

Pr[COLL] ≤
(
q

2

)
r

2n
. (6.7)

This completes the proof.

The following Theorem claims security of ConCatU against a forgery adversary.

Theorem 6.4.1. Let A be an arbitrary (q, r, ℓ)-forgery adversary attacking ConCatU,

also let the forgery produced by A be (σ,m, t), where σ = (L, ptag), where ||L|| = r∗.

Then there exists a PRF adversary B for f such that

AdvUauthConCatU(A) ≤ Advprff (B) + 1 + (q + 1)r∗

2n
+

qmax{r, r∗}
2n

+

(
q

2

)
r

2n
.

Proof. We denote the real scheme instantiated with (K,h)
$←− {0, 1}k × {0, 1}n by

ConCatU(fK , h). By ConCatU(ρ, h) we denote the update and verification algorithms
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of ConCatU, where the function fK() is replaced by a uniform random function ρ

drawn from the set of all functions mapping {0, 1}∗ to {0, 1}n.

We call the event of A attacking ConCatU(fK , h) and producing a valid forgery

which passes verification by Succ(fK ,h)(A). Similarly, we call the event of A attacking

ConCatU(ρ, h) and producing a valid forgery which passes verification by Succ(ρ,h)(A).

By an easy reduction, we can construct a PRF adversary B such that

AdvUauthConCatU(A) = Pr[Succ(fK ,h)(A)] ≤ Advprff (B) + Pr[Succ(ρ,h)(A)]. (6.8)

Now we try to bound Pr[Succ
(ρ,h)
A ].

We assume that A does not repeat any query and makes q distinct queries. Let

its ith query be (σi,mi), and for such a query it gets a response (σ̃i, ti). Thus, the

query profile of A is

PA = {(σi,mi, σ̃i, ti) : 1 ≤ i ≤ q} .

Also, we denote

QA = {(σi,mi) : 1 ≤ i ≤ q},

the set of distinct queries made by A.

As in the proof of Proposition 6.4.1, consider the i-th query (σi,mi). If σi = ⊥ we

set Li = ⟨⟩, Xi = 1n and pTagi = 0n. If σi ̸= ⊥ then σi = (Li, pTagi), and we set Xi =

1n∥strn(Li). For the i-th update query of A we define the string Zi = pi∥pTagi∥mi,

where

pi = Polyh(Xi).

Note that on the i-th query, the random function ρ is called on the string Zi. Let the

set of all inputs to ρ during the queries of the adversary be

S = {Zi : 1 ≤ i ≤ q}.
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Claim 6.4.1. Let E0, be the event that there is a collision in the set S. Then,

Pr[E0] ≤
(
q

2

)
r

2n
. (6.9)

As the event E0 is exactly the event COLL defined in the proof of Proposition 6.4.1,

hence Equation (6.7) proves the above claim.

Let the valid forgery produced by A be (σ∗,m∗, t∗). It is required that σ∗ ̸= ⊥,

as otherwise the success probability of A will be zero. Let σ∗ = (L∗, pTag∗), where

L∗ = ⟨ℓ∗1, ℓ∗2, . . . , ℓ∗r∗⟩, and

ℓ∗1 + ℓ∗2 + · · ·+ ℓ∗r∗ = ℓ∗ = |m∗|.

Also, let (m∗
1,m

∗
2, . . . ,m

∗
r∗) = Parse(m∗, L∗). Also define L∗

0 = ⟨⟩ and for 1 ≤ i ≤ r∗,

L∗
i = append(L∗

i−1, ℓ
∗
i ).

For ease of exposition, we define some variables. For 0 ≤ i ≤ r∗ we define

X(i) =

1n if i = 1

X(i−1)∥binn(ℓi−1) otherwise,

(6.10)

and for 1 ≤ j ≤ r∗

p(j) = Polyh(X
(j−1)).

For 0 ≤ i ≤ r∗

tag(i) =

0n if i = 0

fK(p
(i)∥tag(i−1)∥m∗

i ) otherwise,

(6.11)

and for 1 ≤ i ≤ r∗,

Y (i) = p(i)∥tag(i−1)∥m∗
i .

and let Y = {Y (i) : 1 ≤ i ≤ r∗}. Note that while verification of the forgery produced

by A, ρ gets evaluated on the strings in Y.
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Now, we define a set of queries Q = {Qi : 1 ≤ i ≤ r∗}, where

Qi =

(⊥,m∗
i ) if i = 1

((L∗
i−1, tag

(i−1)),m∗
i ) if i > 1.

Note that, if Qi is given as an update query, then the function ρ gets evaluated on

the string Y (i). Also this query set Q is defined by the forgery attempt of A.

As the forgery produced by A is a valid forgery, hence according to the definition

of a valid forgery, A has not asked the queries Q1, Q2, . . . , Qr∗ in the query phase in

the same order.

Definition 6.4.2. Given the forgery of A the query set QA is called out of order, if

there exists a i ∈ [r∗ − 1], such that query Qi+1 was asked before query Qi.

Definition 6.4.3. Given the forgery of A the query set QA is called incomplete, if

there exists a i ∈ [r∗], such that query Qi ̸∈ QA.

Thus for the forgery produced by A to be valid its query set QA has to be either

out of order or incomplete.

Claim 6.4.2. Let E1 be the event that the query set QA is out of order. Then,

Pr[E1] ≤ r∗

2n
+

(
q

2

)
r

2n
. (6.12)

Proof of Claim: Let for i ∈ [q− 1] the query Qi+1 was asked before Qi. For these

queries, the random function ρ was evaluated on Zi+1 and Zi respectively in the same

order. Assuming that there was no collision on S, we have Zi ̸= Zi+1. Also,

Zi+1 = pi + 1∥pTagi+1∥mi+1,

Zi = pi∥pTagi∥mi,

and pTagi+1 = ρ(Zi). As all Zi’s are distinct thus A has not seen the output of ρ(Zi)

before it asked the query Qi, as ρ is a random function. Thus the probability that

A could have asked the query Qi+1 = ((Li, t),mi) where t = ρ(Zi) is at most 1/2n.
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Hence using the union bound over all possible i ∈ [r∗] which are out of order, we have

Pr[E1|E0] ≤ r∗/2n. Hence,

Pr[E1] ≤ Pr[E1|E0] + Pr[E0]

≤ r∗

2n
+

(
q

2

)
r

2n
. (6.13)

This completes the proof of the claim.

Now, we assume that the query set QA is not out of order, then if the forgery of

A is valid, then QA must be incomplete, i.e., there exists a j∗ ∈ [r∗] such that Qj∗ is

not in QA. Thus we have the following claim.

Claim 6.4.3. For j∗ ≤ k ≤ r∗, let E2(k) be the event that Y (k) ∈ S. Then

Pr[E2(j
∗)] ≤ qmax{r, j∗}

2n
+

r∗

2n
+

(
q

2

)
r

2n
. (6.14)

and for j∗ + 1 ≤ k ≤ r∗,

Pr[E2(k)|¬E2(k−1)] ≤ q

2n
. (6.15)

For a proof of Equation (6.14), notice that, if Qj∗ = ((L∗
j , pTagj∗),mj∗) was never

asked in the query phase then Pr[Y (j∗) = Zi] for some i ∈ [q] is at most max{r, j∗}/2n.

This follows from Proposition 6.2.2. Thus as there are q many Zi’s in S, by the union

bound we have, Pr[E2(j
∗)|¬E1] is at most qmax{r, j∗}/2n. Hence,

Pr[E2(j
∗)] ≤ Pr[E2(j

∗)|¬E1] + Pr[E1]

≤ qmax{r, j∗}
2n

+
r∗

2n
+

(
q

2

)
r

2n
.

For Equation (6.15), we observe that if Y (k−1), not in S, then tag(k−1) is a n-bit

uniform random string, and thus Y (k) = p(k)∥tag(k−1)∥m∗
k is equal to any Zi ∈ S with

probability at most 1/2n, and hence

Pr[E2(k)|¬E2(k−1)] ≤ q

2n
.
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as claimed.

Finally, we would like to bound the probability of success of A, i.e., we need to

bound Pr[Succ
(ρ,h)
A ].

Pr[Succ
(ρ,h)
A ] = Pr[t∗ = tag(r

∗)]

≤ Pr[t∗ = tag(r
∗)|¬E2(r∗)] + Pr[E2(r

∗)]

≤ 1

2n
+ Pr[E2(r

∗)]. (6.16)

The last inequality is due to the fact that if Y (r∗) ̸∈ S, then tag(r
∗) is a uniform

random n-bit string and t∗ is a fixed string fixed by A before ρ() was evaluated on

Y (r∗).

Now, by using repeated conditioning, we have

Pr[E2(r
∗)] =

r∗−j∗∑
k=0

Pr[E2(r
∗−k)|¬E2(r∗−(k−1))] + Pr[E2(j

∗)]

≤ (r∗ − j∗)q

2n
+

qmax{r, j∗}
2n

+
r∗

2n
+

(
q

2

)
r

2n

<
r∗q

2n
+

qmax{r, r∗}
2n

+
r∗

2n
+

(
q

2

)
r

2n
. (6.17)

Finally using Equations (6.8),(6.16) and (6.17), we get

Pr[Succ
(fK ,h)
A ] ≤ Advprff (B) + 1

2n
+

r∗q

2n
+

qmax{r, r∗}
2n

+
r∗

2n
+

(
q

2

)
r

2n

= Advprff (B) + 1 + (q + 1)r∗

2n
+

qmax{r, r∗}
2n

+

(
q

2

)
r

2n
.

6.5 XoRU: An Updatable MAC for ⊕ Difference

Here, we discuss a scheme for UdMAC where the update function is ⊕, i.e., on a

message M , if an update m is applied then it results in the message M ⊕ m. We

always assume that the length of the updated message is at least the size of the
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original message. In particular, it is important to note the following points:

1. If the current message is M and the intended updated message is M ′, where

|M | = |M ′|, then the update request should be with the string m = M ⊕M ′,

and here |m| = |M |.

2. If the current message is M and the intended updated message is M ′ where

|M | < |M ′|, then an update request should be issued with m = M∥0|M ′|−|M |.

In this case |m| = |M ′|.

3. If the current message is M and the intended updated message is M ′ where

|M | > |M ′|, such an update is not allowed. It is possible to modify the con-

struction of XoRU that we present next to allow such kinds of updates, but it

will require some extra information to be stored in the state. We do not further

explore this here, as such updates will not be required in the context of the

verifiable SSE that we design in the next Chapter.

Let x ∈ {0, 1}∗, and x1, x2, . . . , xm = parsen(x). For h ∈ {0, 1}n, define

Polyh(x) = x1h⊕ x2h
2 ⊕ · · · ⊕ Padn(xm)h

m

where the multiplications are in F2n .

For XoRU we consider the key space to be K = {0, 1}k × {0, 1}n, the state space

to be Σ ∪ {⊥}, where σ is either ⊥ or can be parsed as σ = (pNonce, pLen, pTag),

where pNonce, pLen, pTag ∈ {0, 1}n, and E : {0, 1}k × {0, 1}n → {0, 1}n is a fixed

input length PRF.

The MacUpdate and Verify procedures for XoRU are described in Figure 6-3. Next

we note down some elementary observations regarding the construction.

Proposition 6.5.1. Let m1,m2, . . . ,ms ∈M and XoRU.SeqUpdt((K,h),m1,m2, . . .,

ms)) = (σs, ts). Let σs = (N, L,T). Then

1. L = max(|m1|, |m2|, . . . , |ms|)

2. ts = T = Polyh(m1 ⊕m2 ⊕ · · · ⊕ms)⊕ Lh⌈L/n⌉ ⊕ EK(N).
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XoRU.MacUpdate(K, σ,N,m) XoRU.MacVerify(K, σ,m, t)

01. if σ = ⊥ then 21. if σ = ⊥
02. tag← Polyh(m)⊕ |m|h⌈|m|/n⌉ ⊕ EK(N); 22. return 0;
03. else 23. end if
04. (pNonce, pLen, pTag)← σ; 24. (pNonce, pLen, pTag)← σ;

05. ℓ1 = ⌈pLenn
⌉; 25. if pLen ̸= |m|,

06. ℓ2 = ⌈ |m|
n
⌉; 26. return 0;

07. tag← pTag ⊕ hℓ1pLen⊕ EK(pNonce) ; 27. ℓ = ⌈pLen
n
⌉;

08. if pLen = |m|, 28. tag← Polyh(m)⊕ hℓpLen⊕ EK(pNonce);
09. tag← tag ⊕ Polyh(m)⊕ hℓ1pLen⊕ EK(N); 29. if tag ̸= t,
10. else 30. return 0;
11. tag← tag ⊕ Polyh(m)⊕ hℓ2|m| ⊕ EK(N); 31. else
12. end if 32. return 1;
13. endif 33. end if
14. σ ← (N,max{pLen, |m|}, tag);
15. return (σ, tag);

Figure 6-3: Specification of XoRU.MacUpdate and XoRU.MacVerify.

Note that, point (2) in Proposition 6.5.1 essentially gives the correctness of XoRU.

6.5.1 Efficiency of XoRU

The bulk computation for update takes place in lines 07 and line 09 or line 11 of the

procedure described in Figure 6-3. We first give a general estimate of the computation

required.

First, we observe that if the condition in line number 08 of Figure 6-3 is satisfied

then the computation of hℓ1pLen in both lines 07 and 10 can be avoided. As the

updated tag would be computed as

tag = pTag ⊕ Polyh(m)⊕ EK(pNonce)⊕ EK(N).

Thus, an update satisfying the condition in Line 08 will require the computation of

Polyh(m), which is just an evaluation of a degree ℓ2 polynomial with no constant term.

If the Horners rule is used for evaluating the polynomial, it will take ℓ2 multiplications

and ℓ2 − 1 additions in F2n . In addition to the computation of Polyh(m) three more

additions in F2n and two calls to the PRF EK() (which can be instantiated with a

block-cipher like AES). would be required. If we assume the cost of one block-cipher

call to be TAES and the cost of one multiplication and one addition in F2n to be Tadd
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and Tmult respectively, then the total cost if pLen > |m| (the condition in line 08) will

be

Tadd(ℓ2 + 2) + Tmultℓ2 + 2TAES. (6.18)

Now, let us analyze the case where the condition in line 08 is not satisfied, i.e.,

we have pLen < |m|. Note, in this case computation in line 07 will require two

additions in F2n , a computation of hℓ1 and a multiplication in F2n . If the square and

multiply algorithm for exponentiation is used then computation of hℓ1 will require at

most log(ℓ2) squarings and log(ℓ2) multiplications in F2n . Though squares in fields

of characteristic 2 can be computed much more efficiently than multiplications in

various platforms, for simplicity, we consider the cost of squaring to be the same

as that of multiplication. With such an assumption line 07 can be computed with

2 log(ℓ1) multiplications. For the computation in line 11, Polyh(m) ⊕ hℓ2|m| can be

computed with ℓ2 additions and ℓ2+1 multiplications in F2n . Thus summarizing, the

total cost will be

(ℓ2 + 4)Tadd + (2 log(ℓ2) + ℓ2 + 1)Tmult + 2TAES. (6.19)

A Special Case: XoRU can be used to support the concatenation of messages by

proper update requests. For example, if the current message is M and the intended

message is M∥m, then M can be updated with an update request of 0|M |∥m. The

SSE scheme which we discuss in the next chapter will require such kinds of updates

and in that case both ConCatU and XoRU can be used.

Note, for each update, if |m| = kn where k is a small constant, then the client can

store hℓ1 where ℓ1 = ⌈pLen/n⌉ for each updated message, and also store Poly(M) for

the current message M . This will require just (2k+2) multiplications for computing

each updated tag and also for updating hℓ1 (as ℓ1 increases by k in each update), and

the polynomial of the current message.
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6.5.2 Security of XoRU

We claim security of XoRU against a nonce respecting adversary, i.e., for the mac-

update queries, an adversary never repeats a nonce.

For technical convenience, we consider a little change in the construction of

XoRU.MacUpdate, where the procedure returns only the tag instead of (σ, tag). We

call this construction as XoRU.MacUpdate(1). This change has no effect on security

as the updated state σ can be constructed by the adversary.

We define the rnd-advantage for a nonce respecting adversary A attacking XoRU

as the following:

AdvrndXoRU(A) =
∣∣∣Pr[K,h

$←− {0, 1}n : AXoRU.MacUpdt(1)(K,h, ·, ·, ·) = 1]− Pr[A$(·,·,·) = 1]
∣∣∣ ,

where the $(·, ·, ·) oracle on invocation with any (σ,N,m) ∈ Σ ∪ {⊥} × {0, 1}n ×M

returns a uniform random n-bit string.

We claim that an efficient nonce-respecting adversary interacting with the XoRU.

MacUpdate oracle instantiated with keys (K,h)
$←− {0, 1}n×{0, 1}n cannot distinguish

it from the oracle $ if EK : {0, 1}n ← {0, 1}n is a pseudorandom function family. In

other words,

Proposition 6.5.2. For any efficient nonce respecting rnd adversary A attacking

XoRU, there exists an (almost) equally efficient PRF adversary B for the function

family EK : {0, 1}n → {0, 1}n, such that

AdvrndXoRU.MacUpdate(A) = AdvprfE (B).

The proof of the above proposition is an easy reduction. The main observation

that leads to the claim is that if EK() in the construction of XoRU.MacUpdate(1) is

replaced by a uniform random function then the procedure essentially outputs uniform

random strings.

Now, we are in a position to state the security of XoRU.

Theorem 6.5.1. Let A be any efficient forging adversary for XoRU who asks q many
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update queries and finally outputs a valid forgery (M∗, σ∗, t∗), then there exists an

(almost) equally efficient PRF adversary B attacking EK such that

AdvUauthXoRU(A) ≤ Advprf(B) +
(
|M∗|+ 1

n

)
1

2n
+

1

2n
.

Proof. Let XoRU(K,h) be the real update and verification algorithms described in

Figure 6-3 instantiated with uniform random n-bit keys K,h. Let XoRU(ρ, h) denote

the update and verification algorithms where EK() in Figure 6-3 is replaced by a

function ρ sampled uniformly at random from the set of all functions from {0, 1}n to

{0, 1}n.

We call the event of A attacking XoRU(K,h) and producing a valid forgery which

passes verification by Succ
(K,h)
A . Similarly, we call the event of A attacking XoRU(ρ, h)

and producing a valid forgery which passes verification by Succ
(ρ,h)
A .

By an easy reduction, we can construct a PRF adversary B such that

AdvUauthXoRU(A) = Pr[Succ
(K,h)
A ] ≤ Advprf(B) + Pr[Succ

(ρ,h)
A ]. (6.20)

Now we try to bound Pr[Succ
(ρ,h)
A ].

First, note that according to Proposition 6.5.2, when A asks update queries to

XoRU(ρ, h) (s)he gets as response random strings in place of the real tags. Thus, in

the query phase, irrespective of the queries it asks, A gets no information regarding

the real scheme.

Finally A outputs a valid forgery (M∗, σ∗, t∗). We consider σ∗ = (N∗, L∗, tag∗).

We have the following cases to consider:

Case I: There was no query with the nonce N∗: Consider the verification

procedure described in Figure 6-3 where EK() is replaced by ρ(). Thus, in this

case, in the verification procedure, ρ(N∗) would be a uniform random string.

Thus, the tag computed in line 27 of the procedure described in Figure 6-3 will

in turn be a uniform random string. Thus, as t∗ is a fixed sting, Pr[tag = t∗] =
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1/2n, Thus,

Pr[Succ
(ρ,h)
A ] =

1

2n
. (6.21)

Case II: There was a query with the nonce N∗: In this case, ρ(N∗) was

fixed, say to t when a query with nonce N∗ was asked by A. Thus the tag

computed by the verification algorithm is

tag = Polyh(M
∗)⊕ h⌈L∗/n⌉L∗ ⊕ t.

For A to be successful it is required that tag = t∗. Thus, in this case, we have

Pr[Succ
(ρ,h)
A ] = Pr[tag = t∗] (6.22)

= Pr[Polyh(M
∗)⊕ h⌈L∗/n⌉L∗ ⊕ t⊕ t∗ = 0]. (6.23)

The above probability is computed on the randomness of the choice of h. As,

p(h) = Polyh(M
∗)⊕ h⌈L∗/n⌉L∗]⊕ t⊕ t∗,

is a nonzero polynomial of degree ⌈L∗/n⌉, hence there are at most ⌈L∗/n⌉ many

values of h which makes p(h) = 0. Thus, we have

Pr[Succ
(ρ,h)
A ] = Pr[tag = t∗] (6.24)

≤ 1

2n

⌈
L∗

n

⌉
(6.25)

=
1

2n

⌈
|M∗|
n

⌉
. (6.26)

Now, combining cases I and II and using the union bound, we have

Pr[Succ
(ρ,h)
A ] ≤ 1

2n

(
|M∗|
n

+ 1

)
+

1

2n
(6.27)
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Finally, using Equations (6.20) and (6.27), we get

AdvUauthXoRU(A) ≤ Advprf(B) +
(
|M∗|+ 1

n

)
1

2n
+

1

2n
,

as desired.

6.6 Final Remarks

We proposed a new type of MAC UdMAC which can be used to update the authen-

tication tag of a message and compute the correct tag for the updated message only

with access to the update. We defined the security of UdMACs and finally proposed

two constructions. This class of MACs will be used in the next chapter to construct

verifiable SSE schemes.
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7
Fault-tolerant Verifiable DSSE

So far in this thesis, all the adversaries we’ve considered for an SSE are honest-

but-curious. However, the server, which is typically viewed as the adversary in an

SSE system, can potentially act maliciously by improperly storing user data or by

providing incorrect responses to user queries in order to conserve storage and CPU

resources. In addressing such adversarial behavior, SSE systems must incorporate a

mechanism by which search results may be verified for correctness. An SSE equipped

with a mechanism to verify the correctness of search queries is called a verifiable SSE.

It is not feasible for an honest client to keep track of the current state of the

database stored on the server. As a result, a client may issue faulty updates, such as

adding duplicate entries to the database or attempting to delete non-existent entries

(see Definition 2.5.4). Since the database is encrypted, the server cannot assist the

client in identifying such incorrect behavior. Informally, an SSE which inherently

corrects such faulty updates is called a fault tolerant SSE.

Both verifiability and fault tolerance are essential characteristics required to safe-

guard the interests of clients. Recent work by [94] proposed the first fault-tolerant

verifiable DSSE (FVDSSE) that achieves forward privacy.

In this work, we present the first generic construction for a DSSE scheme that is

both forward and backward private, as well as verifiable and fault-tolerant. The con-

struction by [94] provided the verification for the search results using an authenticated

encryption (AE) scheme. For each update, in addition to the update token, they also

outsource an additional AE tag, which they call an AE proof. When retrieving the
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results, the server sends the AE proofs along with the results, and the client verifies

the results using these AE proofs.

In an SSE system, the search result for a keyword w is the set db(w). An update

to a keyword essentially modifies the set db(w), either by adding new identifiers or

deleting some from the set. The previous schemes which ensure verifiability [24, 98,

48, 99] generally use an incremental multi-set, which is unable to provide proof in the

presence of faulty updates. The work of [94] generates a proof for every update using

an AE scheme and sends the update token and the proof/tag to the server. During

the search, the server finds all the updates and corresponding tags and sends them

to the client. The client verifies each update by invoking the AE verify algorithm.

In our proposed scheme, we see all the updates related to a keyword w as a message

related to the keyword w which is getting updated with each update operation. Thus,

using any updatable MAC, we can generate a tag which acts as proof for every update

corresponding to a w. The specific syntax of a UdMAC allows us then to have a

single tag of constant length for all the updates made for the keyword. This tag can

be stored with the client, as most SSE schemes [23, 25, 24, 87, 49, 90, 38] allows a

O(|W|)1 storage at the client side. Please note that keeping the tag safe on the client

side is not necessary for the purpose of security. We can also outsource the tag with

the update query and ask the server to save the tag. In the proof, we’ll provide the

adversary with the tag and the state of the UdMAC algorithm for every keyword.

7.1 Generic Fault-tolerant Verifiable DSSE

In this section, we explain how to use an UdMAC scheme Ψ to transform any dynamic

secure SSE Σ (see Section 2.3) which is also forward and backward private, into an

equivalently secure dynamic forward and backward private verifiable SSE vΣ that

supports faulty updates. We assume the existence of a forward and backward private

secure DSSE scheme Σ, with leakage LΣ.

An updatable MAC is best described in a client-server framework. Where the

1Recall W is the set of distinct keyword present in the database.
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client with the messages wants to store it in the server and then update the messages.

While querying the client needs the guarantee that the server is sending the current

state of the message and has not tampered with the message.

Recall the primary motivation behind a UdMAC is to avoid recomputing the MAC

of an entire message when updates are made. This is particularly beneficial when we

outsource the message and its tag (potentially to a third-party server). Without

an updatable MAC, updating the message would necessitate downloading the entire

message and its tag, verifying it, making updates, generating a new tag, and then

outsourcing the updated message and tag together, which can be costly.

Notice that the MAC-update algorithm of UdMAC Ψ in Section 6.3 has three

inputs. The secret key K, the message m, and a state σ, and outputs a tag t and

updated state σ. Now, the state σ is specific to every message. Thus, the client has

to maintain a state for every new message. Now, on query for a message, the server

replies with the latest updated message along with its current tag.

A MAC algorithm dictates that only the key should be secret, and the adversary

should have control over every other parameter in the forgery. We’ll prove the security

of our scheme in a model where the adversary controls every parameter of the MAC

algorithm except the key. However, the client keeping the state of the MAC algorithm

is a requirement of the model (for convenience), and has nothing to do with the

security. This does not imply that we can outsource the state of the SSE from client

to the server side, and still have correct verification. We believe that to outsource

the state of the SSE we need to have some sort of verification on that as well. This

needs further investigation.

7.1.1 A Generic FVDSSE Scheme vΣ Using Ψ and Σ

In the beginning, we fix an updatable-MAC scheme Ψ and a secure DSSE scheme

Σ and demonstrate how to construct an FVDSSE scheme vΣ. The setup process

summarised in Figure 7-1, starts by initializing a key for the Ψ-MAC. A general

practice for designing SSE is to assume an empty database at the setup and update

it accordingly. We call the setup phase of Σ to get back a key KΣ a state σC and
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Setup(1λ,DB):

01. Kmac ← Ψ.KeyGen
(
1λ
)

02. (KΣ, σC,EDB)← Σ.Setup
(
1λ,⊥

)
03. UT, ST← [] \\ empty map
04. K← (Kmac, KΣ)
05. State← (σC, ST,UT)
06. Keep (K, State) to client
07. Send EDB to server

Figure 7-1: Setup phase of vΣ.

an empty encrypted database EDB. We also initialize two empty maps UT and ST.

These two maps are used to store the number of updates for a keyword and the state

of the Ψ for each keyword, respectively.

Update(K, State, op, (id, w)):

Client Side:
01. if UT[w] = ⊥ set UT[w]← 1, else UT[w]← UT[w] + 1
02. utw ← UT[w]

03. ĩd← (utw, op, id)

04. (σC, utk)← Σ.UpdateC(KΣ, σC, add, (ĩd, w))
05. if ST[w] =⊥
06. (σmac, tag)← Ψ.MacUpdate(Kmac, ST[w], w)
07. ST[w]← (σmac, tag)

08. (σmac, tag)← Ψ.MacUpdate(Kmac, ST[w], ĩd)
09. ST[w]← (σmac, tag)
10. Send utk to server
Server Side:
20. Server updates EDB using utk

Figure 7-2: Update protocol of vΣ.

In the update phase, for every update operation (op, id, w), we fetch the update

number utw from the map UT. If the keyword is being updated for the first time, we

set the update number to 1. Otherwise, we increment the update number by 1. Then

we construct a new ĩd as an encoding of (ut, op, id). With this new ĩd we now call the

base SSE scheme with update query (add, ĩd, w).

If the keyword is being updated for the first time, we call the Ψ with an empty

state and a |ĩd| bit encoding of the keyword w and save the state. That is, the first

message for every keyword is the keyword itself. This is done to have a signature
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of the keyword on every update on the keyword. We then update the message for

the keyword with the current update ĩd, and save the current state and tag for the

keyword. Next, we call the base SSE scheme Σ with (add, ĩd, w) to get back an update

token utk. Finally, we send the update token (from SSE) to the server. The server

updates the EDB with the utk. The process is summarised in Figure 7-2.

Search(K, State, w; stk,EDB):

Client Side:
01. stk← Σ.SearchC(KΣ, σC, w)
02. Send stk to Server
Server Side:
10. return res to Client
Client Side:
20. Result← Verify(K, State, w, res)
21. return Result

Figure 7-3: Search protocol of vΣ.

During the search operation, the client calls the base SSE scheme with the search

keyword w. The client provides the server with the search token it got from the base

SSE scheme. The correctness of the base SSE dictates that the server is able to find

all the updates related to the search keyword w with the search token. Upon receiving

the search result the client runs the verify algorithm with the search result as input.

The entire process of search is described in Figure 7-3.

The verify algorithm described in Figure 7-4 checks the search result output by

the server and returns the correct search result upon verification else returns “reject”.

The algorithm first finds all ĩdi of the form i∥opi∥idi from the search result. Now from

i = 1 to UT[w] in sequence, if opi = add, then the algorithm adds the idi to the result

set, else if opi = del then the algorithm discards idi from the result set. The algorithm

also constructs a message m for verification. It initializes the message with a |ĩd| bit

encoding of the keyword w, and append every ĩdi for 1 ≤ i ≤ UT[w] in sequence.

Finally, the algorithm fetches the state of the keyword ST[w] and sends the state and

the m it constructed to the Ψ.MacVerify algorithm. If the output of Ψ.MacVerify is

“accept”, then the algorithm returns the result set. Else, it returns “reject”.
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Verify(K, State, w, res, tag):
00. Result,V← ∅
01. m← w
02. for r ∈ res do

03. extract ĩd from r and add it to V

04. m← m∥ĩd
05. for i = 1 to utw and (i, op, id) ∈ V
06. if op = add
07. Result← Result ∪ {id}
08. else
09. Result← Result \ {id}
10. β ← Ψ.MacVerify(Kmac,m, ST[w], tag)
11. if β = 1
12. return Result
13. else
14. return Reject

Figure 7-4: Verify algorithm of vΣ.

7.1.2 Fault-tolerance and Correctness of the Search Result

Notice that, upon verification, the Verify algorithm of vΣ returns a set of document

identifiers matching the searched keyword w. Now, if vΣ is sound, that is, the server

could not forge the search result, then the result returned by the server is the set

of all ids updated for w. Recall, for an update query (opi, idi, w) on keyword w, all

updates to the vΣ is of the form (add, ĩdi, w), where ĩdi is a λ bit encoding of the

tuple (i, opi, idi), and i is the number of updates performed on w till that point. This

value i is kept at a map UT indexed by every keyword w in the database. After

every update UT[w], which was initialized to 1 during the first update call on w, is

incremented by 1. Thus, if the vΣ is sound, we get back all UT[w] updates on the

keyword w. Now, the Verify algorithm of vΣ scans each ĩd = (i, opi, idi) in the result

set res returned by the server in order of i. To compute the final result, the Verify

algorithm initialises an empty set Result. For every opi = add, it adds id to the result

set (i.e., Result ← Result ∪ {id}). And for every opi = del, it deletes id to the result

set (i.e., Result← Result \ {id}). Thus, in the presence of a faulty update, that is add

id while id is already in the database, or delete id where id is not in the database, the

set operations performed by the algorithm Verify will ensure the correctness of the
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search result. Details of the Verify algorithm can be found in Figure 7-4.

7.2 Comparisons and Actual Overheads

In this section, we compare the overheads of our scheme with some of the existing

works in the literature. Table 7.1 provides a summary of selected studies focused on

forward and backward private verifiable fault-tolerant DSSE. The table clearly shows

that none of the existing works achieves verifiability along with backward privacy and

fault tolerance. In this context, our construction is the first to accomplish all of these

features.

Next, we compare the overheads of our scheme with those of existing construc-

tions. The incremental multi-set hash proposed in [41] and adopted in [24, 98] in-

volves multiplication over a DDH-hard group, which is a computationally expensive

operation. Additionally, these schemes require storing the incremental tags on the

server. The most efficient scheme presented in [94] uses an AE to generate and

store proofs for every update. The construction proposed in [94] also introduces a

generic method to integrate their approach with any forward-secure single-keyword

SSE. However, it fails to achieve backward privacy. The instantiation in [94] utilizes

the FAST protocol proposed in [87] as the single-keyword SSE. In this scheme, the

AE proof generated for each update is outsourced and stored along with the update

token of the FAST protocol on the server. During a query, the server retrieves all

updates along with their proofs and returns them to the client, who then runs AE

verification on each result to ensure correctness. The overhead of the most efficient

FVDSSE scheme [94] is twice that of the base single-keyword SSE scheme, FAST, due

to the storage and communication of the tags. Additionally, the scheme requires veri-

fication to be performed on each value returned by the server. The client-side storage

is also doubled compared to what is required by the FAST protocol. In contrast, our

protocol incurs no additional server-side storage and communication overhead as we

save a fixed length tag for every update on the client side. This amount of storage is

allowed in the DSSE scheme, achieving forward and backward privacy and sub-linear
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Construction
Computation Communication

Client Storage FP FT BP
Search Update Search Update

[64] O(|D|) O(u|D|) O(m) O(1) O(1) N N N
GVS-Hash [24] O(m+ logW ) O(u · logW ) O(m+ logW ) O(logW ) O(1) Y N N

GVS-Acc-Pairing [24] O(m) O(uW ϵ) O(m+ logW ) O(logW ) O(1) Y N N
GVS-Acc-RSA [24] O(m+W ϵ) O(u) O(m+ logW ) O(logW ) O(1) Y N N

[98] O(u) O(1) O(m) O(1) O(λW ) Y N N

Verifiable Linear SPS [24] O(α + logN) O(u · log2N) O(m+ logN) O(logN) O(λ logN) Y Y N

Verifiable Sublinear SPS [24] O(m · log3N) O(u · log2N) O(m+ logN) O(logN) O(λ logN) Y Y N
[94] O(u) O(1) O(u) O(1) O(W log |D|) Y Y N

vΣ [Section 7.1] O(u) O(1) O(u) O(1) O(λW ) Y Y Y

Table 7.1: Comparison of our schemes with existing VDSSE schemes. FP, BP and FT
stand for forward privacy, backward privacy, and fault-tolerant, respectively. ‘Com-
putation’ and ‘Communication’ refer to the computational and communication com-
plexity, respectively. W is the number of distinct keywords in the database, and |D|
denotes the number of documents in the database. N is the number of keyword-
identifier pairs. 0 < ϵ < 1 is a fixed constant, and α denotes the number of times the
queried keyword was historically added to the database. m denotes the number of
matching entries for the searched keyword.

search [23, 25, 49, 38, 90]. Furthermore, storing the tag on the client side does not

compromise security, as demonstrated in the security proof (Theorem 7.3.2) of our

scheme, where the adversary is required to store and submit the tags at the time

of query and forgery. We have added a row in Table 7.1 which reflects the over-

head of our scheme in comparison to others. As our scheme can be instantiated with

any DSSE scheme, to make this type of comparison we have to assume a particular

construction. In this case, we assume the construction of [38] or [49].

It is clear from the description of vΣ any updatable MAC scheme satisfying the

Definition 6.3 can be used as Ψ in our construction vΣ. So, we can use both our

proposals ConCatU and XoRU as our Ψ in the construction of vΣ. Below we describe

each extra overhead of vΣ while clubbed with each of the ConCatU or XoRU.

Overhead due to ConCatU. From the description of the efficiency of ConCatU in

Section 6.4.1, it is clear that a single update call for a message m will require ⌈(|m|+

2)/n⌉ ≈ ⌈|m|/n⌉+2 block-cipher calls and one multiplication in Fp, where |m| is the

size of the message and n is the block size. This also requires the ConCatU algorithm

to save an intermediate value p, which is of size n at the client side. However, one

might argue that ConCatU requires storing the list L of the size of every update made
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to the message. The size of the list L is the order of the number of updates made for

the keyword. So storing the list L will defeat the purpose of SSE.

We like to mention that, in the context of SSE, every update for a keyword w has

a fixed size, that is, the size ĩd. So the information of L is implicit in the context of

vΣ, and the algorithm ConCatU in the context of vΣ does not need to explicitly store

the list L as its state. So the extra overhead of vΣ over the base SSE scheme Σ is

the tag value for every keyword and the value of p, and nothing else. At this point,

we would like to mention that most SSE schemes, which are forward and backward

private [23, 25, 87, 38, 90], store the number update for every keyword, that is, the

map UT at the client end. This can also be verified from Table 7.1. However, if the

base SSE does not require to store UT then another extra overhead would be of order

log |D|.

Overhead due to XoRU. As discussed in the special case of Section 6.5.1, where

XoRU is used only for concatenation, the message is always updated with a string

of the form 0|M |∥m, where M is the previous message and m is the update which is

to be concatenated with the current message. In scenarios where, |m| = kn, with k

being a small constant, the update would require only (2k+2) multiplications in F2n

and 2 AES computations, provided that the value of hℓ1 is stored for every keyword.

Please refer to Section 6.5.1 for a detailed analysis.

In the case of an SSE update, we update with only one (id, w) pair at a time. As

a result, for each update the message length increases by only one n-bit block, i.e.,

the message m which is to be concatenated, is always n-bits long. Consequently, the

Equation (6.19) boils down to the following:

(ℓ2 + 4)Tadd + 4Tmult + 2TAES,

where Tadd and Tmult are the times taken for a multiplication and addition in F2n re-

spectively and TAES is the time taken for one call to AES. This amount of computation

can be easily handled by a client in any reasonable computing platform.
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7.3 Security

In the construction of the FVDSSE scheme vΣ, we keep the tag generated for each up-

date to the client itself. This is done to reduce the overhead of our scheme. However,

this is not necessary, and the client may choose to outsource the tag generated for

every update. Keeping or outsourcing the tag does not affect the security of the SSE.

We prove both of our security requirements, i.e., adaptive security and soundness, by

allowing the adversary to see the tag along with the update token. We consider that

the SSE stores the tag in a similar fashion as it stores the id.

7.3.1 Adaptive Security of vΣ

The adaptive security of SSE is established by capturing the maximum permissible

leakage of a scheme and designing a simulator that, using these leakage functions,

can generate a transcript indistinguishable from the one produced by the real-world

execution of the protocol [60, 23, 38]. We assume that the leakage of the base SSE

scheme Σ is LΣ = (LΣ,Setup,LΣ,Search,LΣ,Update) as defined in Definition 5.2.2.

Our design, vΣ, mirrors the setup phase of Σ exactly, resulting in identical setup

leakage for both. In the update phase, along with the update token of Σ, we also

send a tag for the update. The tag can be modelled as the output of a PRF following

Proposition 6.4.1 and 6.5.2 in the real-world execution of our protocol. Therefore, our

scheme has the same update leakage as the base SSE scheme Σ, as the tag value does

not convey any information about the input of the update function. Finally, in the

search protocol, we exactly follow the search protocol of the base SSE scheme. Thus,

the leakage of protocol vΣ is LvΣ = LΣ. Below, we formally prove the confidentiality

and soundness of our scheme.

Theorem 7.3.1. If Σ is a LΣ-adaptive secure forward and backward private DSSE

scheme, then our protocol vΣ is also LΣ-adaptive secure forward and backward private

DSSE.

Proof. As Σ is an LΣ-adaptive secure forward and backward private DSSE scheme,
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with the leakage function LΣ, it implies the existence of a simulator S that can,

using the leakage function LΣ, simulate a transcript TΣ
sim indistinguishable from the

real-world transcript TΣ
real of the protocol Σ.

In this proof, we will demonstrate that a simulator S̃ can efficiently generate a

transcript TvΣ
sim of our protocol using the transcript TΣ

sim produced by the simulator

S. Furthermore, we will show that any efficient distinguisher that can distinguish

between the transcript TvΣ
sim generated by S̃ and the real-world transcript of our pro-

tocol TvΣ
real can always be used to construct a distinguisher for Σ, or a PRF used to

model the UdMAC Ψ used in our construction.

Hence, if Σ is LΣ-adaptive secure, then our scheme is also LΣ-adaptive secure, as

the leakage of Σ is exactly the same as the leakage of our scheme vΣ. Therefore, the

theorem. We demonstrate our proof using a sequence of games.

Game G0: At the beginning of the protocol, the setup and every search query we

follow the protocol vΣ. For each update query (op, id, w) made by the adversary A,

the challenger maintains a list UT that tracks the number of updates performed on

the keyword w. For every update query (op, id, w) to Σ, the challenger replaces id

with ĩd = (UT[w], op, id) and sets the operation op to add, as shown in Figure 7-2.

The Σ outputs an update token for (add, ĩd, w).

Also, for every update query, the challenger generates a tag using the UdMAC Ψ,

as described in lines 5 to 8 of Figure 7-2. Finally, the challenger sends the update

token generated by Σ for input (add, ĩd, w) and the tag generated by Ψ protocol.

Thus,

Pr[G0 = 1] = Pr
[
SSERealvΣA (λ, q) = 1

]
.

Game G1: In the next game, for every update query, we randomly sample a value

from {0, 1}τ and replace the value of tag with this newly sampled value. Now for any

adversary A that can distinguish between game G0 and game G1, we can construct

an adversary B1 which can distinguish the output Ψ from a PRF, which contradicts

the Proposition 6.4.1 and 6.5.2. Thus,

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ AdvprfΨ,B1
≤ negl(λ).
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Recall that, Σ is a LΣ-adaptively secure SSE. Thus, for the real-world transcript

produced by executing the protocol Σ, (denoted by TΣ
real), there exists a simulator S

that, with the assistance of LΣ, can generate a transcript TΣ
sim that is indistinguishable

from TΣ
real. Now, when all the updates of the transcript TΣ

real are appended with

a randomly sampled value from {0, 1}τ , the newly formed transcript is exactly the

real-world execution of the protocol vΣ. We denote this transcript as TvΣ
real.

Construction of S̃: Finally, we construct a simulator S̃ which can simulate an

indistinguishable transcript from TvΣ
real with the help of the indistinguishable transcript

TΣ
sim output by the simulator S. The construction of S̃ is the following.

In the setup phase, the challenger sends an empty database to the adversary,

which is exactly how the simulator S will simulate it.

The search queries of vΣ are simulated exactly the same way as the search queries

of TΣ
sim, are simulated. This simulation is correct as in vΣ we use the search protocol

of Σ unaltered.

For the update query, the simulator S̃ replace all the update tokens of TvΣ
real (except

the tag part) with the update token as simulated by S. The tag is simulated with

randomly sampled strings from {0, 1}τ . The final transcript is exactly the transcript

of TvΣ
sim. Formally,

∣∣∣Pr[G2 = 1]− Pr
[
SSEIdealvΣA,S̃(λ) = 1

]∣∣∣ ≤ AdvΣB2,S ≤ negl(λ).

Now any efficient distinguisher, distinguishing between the real-world transcript

TvΣ
real and the simulate transcript TvΣ

sim of vΣ output by S̃, we can construct a distin-

guisher that distinguishes transcript simulated by S from the real-world execution of

Σ. Thus,

∣∣∣Pr [SSERealvΣA,S̃(λ) = 1
]
− Pr

[
SSEIdealvΣA,S̃(λ) = 1

]∣∣∣ ≤ negl(λ).

174



7.3.2 Forward and Backward Privacy of vΣ

A DSSE scheme is said to be forward and backward private if the leakage of that

scheme is bounded by some well defined leakage functions defined in Section 2.5.5.

Now, in Theorem 7.3.1 we proved that if the base SSE scheme Σ used in our vΣ

construction has leakage LΣ, then our FVDSSE scheme vΣ also has the same leakage

LΣ. As the base SSE scheme Σ is forward and backward private, the LΣ is subsumed

by the leakage defined in the forward and backward privacy Definition 2.5.5 and 2.5.6

respectively. Thus leakage of vΣ is also subsumed by the leakage defined in the

Definition 2.5.5 and 2.5.6. So, by Definition 2.5.5 and 2.5.6, our construction vΣ also

achieves forward privacy and the same level of backward privacy as achieved by the

base SSE scheme Σ.

7.3.3 Soundness of vΣ

While arguing about soundness of vΣ we let the adversary play the soundness game

of DSSE as defined in Definition 2.5.3. We prove in the following theorem that if vΣ

is instantiated with a correct SSE scheme Σ as in Definition 2.5.2, then given any

adversary A breaking the soundness of vΣ as in Definition 2.5.3, we can construct

another adversary B which can either break the authenticity of UdMAC Ψ or can

break the correctness of Σ.

The adversary A initially submits a database and receives the encrypted database.

In the subsequent phase, A makes a search and update query of its choice. Adversary

B acts as a challenger for A and responds to the query of A by running an SSE

instance on its own. For the tag, it sends along with the update query, B uses its

challenger to compute the tag. Finally, any successful forgery by A according to

Definition 2.5.3 we show that B can construct a successful forgery for Ψ.

Theorem 7.3.2. If Σ is a correct DSSE scheme according to Definition 2.5.2, then

for any ppt adversary A which can break the soundness of vΣ as in Definition 2.5.3,

there exists another ppt adversary B which will break the security of UdMAC Ψ as

defined in Section 6.3.1.
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Proof. We establish the soundness of our scheme vΣ under the assumption that Σ is

always correct. This implies that given the latest search token stk for a keyword w,

the server can always accurately retrieve all updates made to EDB for keyword w up

to that point. Failure to satisfy this condition would result in the soundness of vΣ,

reducing to the correctness of Σ.

Let’s assume a ppt adversary A, which makes polynomial many queries to the

SSE vΣ, in the soundness game of Definition 2.5.3 and wins. We then construct

another UdMAC adversary B that uses A as a subroutine to break the security of

Ψ as described in Section 6.3.1. We follow the security definition of 2.5.3 and allow

the adversary to manipulate the search results arbitrarily. Adversary B acts as the

challenger of A and plays the soundness game defined in Definition 2.5.3. B runs an

SSE instance on its own and only uses its challenger for Ψ to compute the tags. B

runs Σ.Setup to obtain a key, a state, and an encrypted database EDB for the SSE. B

then sends EDB to A. Here, we assume the common practice of outsourcing an empty

database during setup and then updating it. In cases where the initial database is

not empty, we can still outsource an empty database and update it subsequently.

Now, for every update query (op, id, w) that adversary A makes, adversary B runs

Σ.UpdateC and returns the utk to adversary A following soundness game of Figure 2-2.

Along with the utk, adversary B, following steps 5 to 8 of the update algorithm of vΣ

in Figure 7-2, generates the tag for the update query. To generate the tag, adversary

B, queries its challenger for the UdMAC Ψ. To do this, adversary B maintains the

state ST and UT described in Figure 7-2. The adversary B sends the updated tag

received from its challenger along with the update token utk. For a search query on

keyword w from adversary A, adversary B runs the Σ.Search protocol and returns

the search token stk to A.

Finally, the adversary stops by outputting a forgery for any search query of its

choice. However, in response to any search query, it must return the correct number

of search results corresponding to the number of updates made for the keyword. This

can easily be checked by the adversary B using the map UT that it stores. Sending

an equal number of search results is necessary as the correctness of Ψ can verify any
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partial search result. In this security game, the adversary submits a search result

along with a tag as its forgery.

For every update query, adversary B also maintains its own state D, initialized to

empty. The state D is a list of sets for each keyword w. For every update operation

(op, id, w), adversary B performs the following steps:

• If op = add, D[w]← D[w] ∪ {id}.

• If op = del, D[w]← D[w] \ {id}.

Finally, for a forgery attempt byA for a search query on a keyword w, B constructs

it forgery as follows. Let the forgery of A be res = (L, t) consists of two components:

(i) the list of all updates L (or an encrypted list, depending on the description of

Σ) made for the keyword w up to that point, and (ii) a tag t. If |L| ≠ UT[w], then

res is not a valid forgery by A, and B aborts. Otherwise, the entries of L (or the

decrypted version) are of the form (i, op, id), where i is the update sequence number,

op is the operation corresponding to that update, and id is the identifier involved in

that update.

Now the adversary B constructs its forgery as in Figure 7-5. Notice, if D̃ = D[w] in

Forgery of B:
01. m← w

02. D̃← ∅
03. for i = 1 to |L|, and ℓ = i∥op∥id ∈ L do
04. m← m∥ℓ
05. if op = add

06. D̃← D̃ ∪ {id}
07. else if op = del

08. D̃← D̃ \ {id}
09. end if
10. end for

11. if D̃ = D[w]
12. abort
13. return (m, ST[w], t)

Figure 7-5: Forger game of FVDSSE.

Line No. 11 of Figure 7-5, then res is not a valid forgery attempt by A, and B aborts.
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If the forgery submitted by A is a valid forgery then adversary B constructs its forgery

as (m, ST[w], t) and submits to its challenger of Ψ. Notice that, if A submits a valid

forgery, that is D̃ ̸= D[w] then the message constructed in Line Number 03 to 10 of

Figure 7-5 has never been queried by B to its challenger. Thus, (m, ST[w], t) is a

valid forgery attempt by B. So, A breaking the soundness of vΣ implies, B certainly

breaks the Ψ-MAC.

At this point, we allow the underlying SSE to be correct except with negligible

probability. By Σcorr we denote the event that the Σ is correct. So,

Pr[A success] = Pr [B wins | Σcorr] Pr [Σcorr] + Pr
[
B wins | Σcorr

]
Pr
[
Σcorr

]
≤ Pr [B wins | Σcorr] + Pr

[
Σcorr

]
AdvSound,ΣA ≤ AdvΨB + AdvCorr,ΣA .

7.4 Final Remark

In this chapter, we addressed the open problem of designing a fault-tolerant verifiable

SSE, which is both forward and backward private. We provided the first generic

construction of FVDSSE using a generic DSSE which is only secure against an honest-

but-curious adversary and our newly proposed updatable-MAC. Our construction is

generic and requires no extra communication and storage on the server side, with

the expense of one tag per keyword stored on the client side. Compared to other

state-of-the art SSE which store and communicate one tag per update on the server

side. A storage of O(|W|) is considered acceptable in the SSE literature. In fact,

almost all DSSE schemes keep a client state of O(|W|).
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8
Conclusion

In this thesis, we explored the security and efficiency of SSE under different adversarial

settings and for various classes of queries.

To recall, we started this thesis with a four-way goal of (i) storing the inverted

index in a succinct manner to reduce overheads of SSE, (ii) possibly supporting richer

queries while maintaining efficiency, and (iii) & (iv) provide correct search result in

presence of a malicious server and a client producing faulty update. To this end, we

conclude that we have addressed all of the above objectives in a satisfactory way.

To address the first problem, we describe a novel way to make SSE schemes space

efficient. Our scheme converts a given database into a different representation, which,

on average, results in significant space savings. The smaller representation also results

in reduced search time and response sizes. Our scheme depends on representing the

set db(w) using binary trees where the leaves are labeled. This representation has in-

teresting combinatorial properties, which we explore in detail. Our experiments show

that our representation results in smaller index sizes with minimal extra overhead.

Our scheme can be used with any secure single keyword SSE, and our scheme, being

just a pre-processing step, retains the security of the base SSE.

Regarding our second goal, we have proposed a generic DSSE scheme that allows

conjunctive queries while being both forward and backward private. Our scheme is

specifically crafted to protect non-modifiable documents that, once uploaded, their

keywords remain unaltered. This is a common characteristic in various applications,

including biometric databases, digital archives, legal documents, medical records,
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etc. Our construction does allow the keyword set associated with a document to

be modified, but with some extra overhead. With efficiency closest to OXT (among

known dynamic schemes) and by ensuring both forward and backward privacy, our

proposed construction offers an ideal solution for preserving the privacy of dynamic

datasets while facilitating conjunctive queries.

To achieve our third and fourth objective, we first introduce a novel message

authentication scheme called the updatable MAC. Unlike traditional MAC methods,

where updating a message necessitates recomputing the tag for the entire updated

message, our updatable MAC system maintains a small state for each message. When

a message is modified, our scheme recalculates the tag using only the stored state and

the previous tag, eliminating the need to recompute the tag for the entire updated

message. We establish specific security criteria for these MACs and propose two

distinct MAC designs tailored for two different types of update functions. Out con-

structions support, updating the message through concatenation and XOR-difference.

Finally, we focus on designing a secure SSE scheme that is resilient against a mali-

cious server, starting from an SSE scheme that is only secure against an honest-but-

curious server. By using the updatable MAC introduced in this thesis, we convert a

generic single keyword SSE scheme–originally forward and backward private against

honest-but-curious adversaries–into a scheme that also offers security against mali-

cious servers while maintaining forward and backward privacy. This approach is the

first of its kind. We also achieve it without increasing communication or storage on

the server’s end from the base SSE construction. We only store a constant size state

for every keyword at the client’s end, which is well-accepted in SSE literature. On

the contrary, state-of-the-art SSE only provides forward privacy and needs to store

and communicate one tag per update.

Throughout our thesis, we provide generic constructions that use an SSE scheme

in a black-box manner to create new SSE systems with desired security or performance

requirements. This increases the acceptability of these works as these works can be

integrated into existing systems without needing to modify the whole structure.
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Future Directions

We list some aspects of our work which we plan to explore in the near future:

1. Our current study on cover based SSE involves only single keyword select

queries. It seems that with some small modifications, it may be possible to

equip the scheme to handle range queries.

2. We compute an estimate of the average size of a cover in the case of pure covers.

Our estimate is quite accurate, as demonstrated by the experiments, but we

failed to obtain a semantically useful analytical expression of the estimate. It

would be nice to try to estimate the average size in some alternative way to

obtain a more meaningful expression.

3. We would like to see the performance of our cover-based scheme in a real en-

vironment, which would require careful implementation of our scheme paired

with a base SSE in a real cloud environment.

4. An attractive property of the cover based SSE scheme is that given the response

of a query produced by our scheme, it is not possible to know the number of

documents that match the query directly. This hints that our scheme is volume

hiding to some extent. But, a thorough investigation of this property is required.

We think that by using some additional randomization, it may be possible to

convert our scheme into a volume hiding scheme against a large class of powerful

adversaries.

5. The recent C-SSE scheme of [78] is similar to [29]. However, [78] pre-computes

all possible 2-conjunctions to facilitate conjunctive search. This is difficult to

achieve in a dynamic setting where the database is not known beforehand. It

will be interesting to use [78] instead of OXT for Γ without a significant loss in

efficiency.

6. The OXT framework has been extended to support multi-client settings in a

modular black-box fashion [57]. Our construction also uses OXT in a black-box
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manner without altering its functionality. Therefore, our generic scheme may

be extended to support multi-clients. We leave this as another future work.

7. We provide constructions for updatable macs for two kinds of updates, namely,

concatenation and xor difference. An interesting theoretical question could be

to ask which kinds of updates can be handled by uddatable MACs. Also it

would be interesting to design schemes for other update functions.

8. In the context of our work on verifiable SSE, a natural question is: Is it possible

to use updatable MAC to construct a verifiable SSE, which supports more

complex queries than a single keyword search? We wish to take this up in near

future.
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