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Abstract

Recent research has been driven by the abundance of data, leading to the develop-
ment of systems that enhance understanding across various fields. Effective machine
learning algorithms are crucial for managing high-dimensional data, with dimension
reduction being a key strategy to improve algorithm efficiency and decision-making.
Non-negative Matrix Factorization (NMF) stands out as a method that transforms large
datasets into interpretable, lower-dimensional forms by decomposing a matrix with
non-negative elements into a pair of non-negative factors. This approach addresses the
curse of dimensionality by dimensionally reducing data while preserving meaningful

information.

Dimension reduction techniques rely on extracting high-quality features from large
datasets. Machine learning algorithms offer a solution by learning and optimizing fea-
ture representations, which often outperform manually crafted ones. Artificial Neural
Networks (ANNSs) emulate human brain processing and excel in handling complex and
nonlinear data relationships. Deep neural network models learn hierarchical patterns

from data without explicit human intervention, making them ideal for large datasets.

Traditional NMF technique employs block coordinate descent to update input ma-
trix factors, whereas, we aim for simultaneous update. Our research work attempts
to combine the strengths of NMF and neural networks to develop novel architectures
that optimize low-dimensional data representation. We introduce five novel neural net-
work architectures for NMF, accompanied by tailored objective functions and learning

strategies to enhance the low rank approximation of input matrices in our thesis.

In this thesis, first of all, n"*MFn?, a model based on shallow neural network architec-
ture, has been developed. An approximation of the input matrix has been ensured by
the formulation of an appropriate objective function and adaptive learning scheme. Ac-
tivation functions and weight initialization strategies have also been adjusted to adapt
to the circumstances. On top of this shallow model, two deep neural network models,
named DN3MF and MDSR-NMEF, have been designed. To achieve the robustness of
the deep neural network framework, the models have been designed as a two stage
architecture, viz., pre-training and stacking. To find the closest realization of the con-
ventional NMF technique as well as the closest approximation of the input, a novel neu-
ral network architecture has been proposed in MDSR-NME. Finally, two deep learning
models, named IG-MDSR-NMF and IG-MDSR-RNME, have been developed to imitate
the human-centric learning strategy while guaranteeing a distinct pair of factor ma-
trices that yields a better approximation of the input matrix. In IG-MDSR-NMF and
IG-MDSR-RNMF the layers not only receive the hierarchically processed input from



the previous layer but also refer to the original data whenever needed to ensure that
the learning path is correct. A novel kind of non-negative matrix factorization tech-
nique known as Relaxed NMF has been developed for IG-MDSR-RNME, in which only
one factor matrix meets the non-negativity requirements while the other one does not.
This novel NMF technique allows the model to generate the best possible low dimen-
sional representation of the input matrix while the confrontation of maintaining a pair

of non-negative factors is removed.
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Chapter 1

Introduction

1.1 Introduction

The current era of science is somewhat driven by analyses of extensive datasets gen-
erated by high throughput technology. This huge amount of raw data is undoubtedly
very rich in information content. The scenario has led to the emergence of systems
approaches to advance our understanding of science. However, one of the main prob-
lems is handling the complexity of this information. Simultaneously, this rapid growth
of data has come with the problem of the curse of dimensionality. The conventional
techniques of data analysis are being challenged by this rapidly growing volume/di-
mension of data. Suitable machine learning algorithms need to be developed/used
for handling such high-dimensional data. One way to deal with the high volume of
data demands dimension reduction for reducing space and time complexity of the al-
gorithms, and better decision making. Over the years, researchers have developed sev-
eral dimension reduction techniques. Deep learning, a modern-day machine learning
methodology, is quite capable of finding hidden structures from very large data sets in

an incremental approach.

Non-negative Matrix Factorization (NMF) refers to a group of algorithms in mul-
tivariate analysis and linear algebra. NMF is popular for its effectiveness in feature
extraction and uses the pervasiveness of the non-negative input data matrix to extract
sparse and significant features. In NMF, multivariate data is decomposed into two

constituent parts based on the required number of features. The original data matrix

1
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along with the two learned constituent matrices follows non-negativity criteria. As the
output coefficients are all positive, each data point may be represented as the sum of
vectors in the basis multiplied by certain coefficients. As a result, the output basis is
effectively a breakdown of given data points into small parts. These components can
be added together to recreate the given data points. This additive parts-based represen-
tation of the given data points differentiates NMF from other low rank approximation
techniques and makes the results easier to interpret. NMF has been used effectively in
many fields, such as image processing, computer vision, recommender systems, text

mining and audio signal processing, among others.

An artificial neural network, or ANN, addresses complex problems by modelling
them in a similar way to information processing as done by the human brain. ANNs
are superior to conventional machine learning algorithms in a number of ways. One
of which is the ease of handling complicated and nonlinear data relationships. ANNs
are capable of producing outputs that are not limited to the supplied input, i.e., they
can learn on their own. Additionally, ANNs can adjust themselves to work with in-
sufficient data. ANNs can process a variety of data formats, including texts, pictures
and sequences, to mention a few. Their adaptability allows them to be used for diverse
real-world scenarios. Neural networks are capable of adapting to the changes in the
distribution of data over time. In dynamic contexts where the relationships between
variables may evolve, this flexibility of adaptation to the environment is crucial. From
the input, deep neural networks can automatically learn hierarchical feature represen-
tations, eliminating the need for manual feature engineering. Deep architectures can
exhibit a degree of fault tolerance and redundancy, i.e., they can continue to function

rather effectively even if some neurons or connections fail.

The success of a dimension reduction technique depends on the quality of features
extracted from the hefty dataset. However, for many tasks, it is difficult to know about
the features to be extracted. One solution to this problem is to apply machine learning
algorithms to discover not only the mapping from representation to output but also
the representation of itself. Learned representations often result in much better per-
formance than that of hand-designed representations. Deep learning allows models to
learn from experience. NMF is an iterative algorithm. The effectiveness of the NMF

algorithm would have increased if the traditional iterative procedure could be clubbed
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with the benefits of deep learning. Over the years researchers have tried to develop

algorithms for NMF using neural networks.

Here, in this thesis, we have developed five models of novel neural networks for
NME, and have designed appropriate objective functions and learning methodology
ensuring the best possible low rank approximation of the input matrix. The main
objective of the thesis is to develop neural network models for NMF so that hefty
high-dimensional datasets can be processed to a part-based, sparse and meaningful
low rank representation of the same. Initially, a shallow neural network architecture
based model, named n?MFn?, has been designed. Appropriate objective function and
adaptive learning rules have been formulated to ensure the best possible approxima-
tion of the input matrix. Weight initialization techniques and activation functions have
also been modified to fit the problem. The following two models, namely DN3MF
and MDSR-NMF, have been built on top of this shallow model using the notion of
deep neural network architecture. In deep neural network models, a two-stage ap-
proach, namely, pre-training and stacking, has been used to achieve the robustness
of the models. Novel neural network architecture has been conceived to generate the
nearest possible approximation of the input along with the closest realization of the
traditional NMF technique. Following this, two other deep learning models, viz., IG-
MDSR-NMF and IG-MDSR-RNME, have been designed to mimic the human-centric
learning approach while ensuring a unique pair of factor matrices resulting in the clos-
est approximation of the input matrix. In IG-FMDSR-RNMEF, a new type of non-negative
matrix factorization technique has been formulated, called Relaxed NMF, where only

one factor matrix adheres to the non-negativity criteria whereas the other one does not.

1.2 Literature survey

Over the years researchers have developed numerous techniques to find a low dimen-
sional representation of high-dimensional data and overcome the problems of curse of
dimensionality. Some of these techniques are traditional machine learning techniques
necessitating human intervention and some are employing present-day deep learning
techniques. There are also several procedures which fuse the benefits of traditional ma-
chine learning techniques with that of deep learning. In the following sections, some

of these techniques have been described in brief.
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1.2.1 Traditional dimension reduction techniques

Dimension reduction techniques can be broadly divided into two categories, viz., linear
dimension reduction techniques and non-linear dimension reduction techniques. The
methods using linear transformations for reducing dimension are called linear dimen-
sion reduction methods. Linear dimension reduction techniques are applicable when
data lies on a linear subspace. Some of the well-known linear dimension reduction
methods are Principal Component Analysis (PCA) [84, 46], Singular Value Decompo-
sition (SVD) [35, 116], Independent Component Analysis (ICA) [14, 49, 50], Canonical
Correlation Analysis (CCA) [38], Multi-dimensional Scaling (MDS) [108, 61, 91, 16, 6],
Factor Analysis (FA) [101, 37], Linear Discriminant Analysis (LDA) [31, 86], Latent Se-
mantic Analysis (LSA) [18], and Locality Preserving Projections (LPP) [44, 43], among
others. Some of these most popular linear dimensionality reduction techniques, viz.,
PCA, MDS, LDA, CCA, and LPP use orthogonal projections for interpreting low di-

mensional views of high-dimensional data.

On the other hand, when data do not lie in a linear subspace, non-linear transfor-
mation methods need to be applied. These non-linear transformation methods are also
known as manifold learning methods. Here, it is assumed that the data are embedded
in non-linear low dimensional manifolds which lie in the higher-dimensional space.
Some of the well known non-linear dimension reduction methods include Locally Lin-
ear Embedding (LLE) [88], Hessian Locally Linear Embedding (HLLE) [22], Kernel
Principal Component Analysis (KPCA) [92], Nonlinear Principal Component Analysis
(NLPCA) [33], Self-organizing Map (SOM) [58, 59], t-Distributed Stochastic Neighbor
Embedding (t-SNE) [78], Isometric Feature Mapping (Isomap) [105], Generative Topo-
graphic Mapping (GTM) [5], Autoencoder (AE) [64, 7, 45], and Spectral Embedding
(Laplacian Eigenmaps) [3].

One of the most famous and oldest dimension reduction techniques is PCA [84, 46],
which is a statistical procedure. An orthogonal transformation is applied to the input
data to convert a set of values of correlated variables into a set of values of linearly
uncorrelated variables, called principal components. This transformation ensures the
maximum possible variance along the first principal component, and after that, each
succeeding component being orthogonal to the preceding components has the highest

possible variance. There are several variations to the model, viz., incremental PCA
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(IPCA) [1], sparse PCA (SPCA) [132], kernel PCA (KPCA) [92] and nonlinear PCA
(NLPCA) [33] to name a few.

Some other dimension reduction methods, like MDS, FA and SVD, are highly related
to PCA. MDS [108, 61, 91, 16, 6] is used to visually represent distances or dissimilari-
ties among sets of objects to analyze the similarity or dissimilarity in data. MDS pre-
serves the closeness of data points with respect to one another while projecting them
in lower dimensions. Another popular statistical method for dimension reduction is
FA [101, 37]. Here it is assumed that the correlations between two observed variables
are the effect of several unobserved latent variables. These latent variables are called
factors. FA tries to capture the maximum variability in data using a minimum number

of variables by discarding the correlated variables, keeping only one of them.

Researchers have tried to deal with the dimension reduction problem in many ways;
one of them is factorization/matrix decomposition. SVD [35, 116], a technique from
linear algebra is popular for factorization, where a given matrix is reduced to its con-
stituent parts. Mathematically, SVD is defined as, My;n = UpmXmn V¥ in, where M is
the input matrix having real or complex values, U and V are orthogonal matrices, and
L is a diagonal matrix consisting of the singular values of M. The problem of dimen-
sion reduction is solved by replacing M by U. Another popular dimension reduction
technique called LSA [18] is designed mainly for text document classification. LSA is
an unsupervised linear mapping technique based on SVD. The main idea of LSA is that

words of similar meaning should appear in similar pieces in the text.

ICA [14, 49, 50] is a very widely used machine learning technique that tries to find
the independent components/factors from a multivariate input signal by maximizing
the statistical independence of the estimated components. Another dimension reduc-
tion technique, called CCA [38], tries to identify and measure the associations among
two sets of variables. CCA tries to connect these two sets of variables by finding linear
combinations of variables that maximally correlate. It identifies orthogonal linear com-
binations of the variables within a set, which can explain the variability both within and
between sets. LDA [31, 86] projects data in such a manner that the variance between
data is minimized and the distance between the means of the classes is maximized.
LDA tries to express dependent variables in terms of a linear combination of other fea-

tures.
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Nowadays a technique called manifold learning has gained popularity to deal with
the problem of nonlinear dimensionality reduction. Isomap [105] is one of the earliest
known approaches to manifold learning. Isomap can be described as a combination of
Floyd-Warshall and MDS algorithm. Isomap projects data to a lower-dimensional rep-
resentation maintaining geodesic distances among all points. Dimensionality reduction
using Laplacian Eigenmaps [3] is performed using a non-linear embedding called spec-
tral embedding. Laplacian Eigenmaps preserves locality rather than local linearity, i.e.,

it maps nearby inputs to nearby outputs.

Another unsupervised dimensionality reduction technique LLE [88] represents a
data point as a linear combination of its neighbors preserving the original non-linear
geometric feature structure. LLE can be described as a series of local PCAs, which
are globally compared to identify the best non-linear embedding. When the local lin-
ear structure is identified using a Hessian-based quadratic form then the technique is
called HLLE [22]. Conceptually, HLLE can be described as a modification of the Lapla-

cian Eigenmap framework.

One common disadvantage of Isomap, Laplacian eigenmaps and LLE techniques
is that these techniques only consider the neighbourhood of the training data to find
the lower-dimensional representation of a data point, and thus they extrapolate very
poorly. LPP [44, 43] overcomes this issue by constraining the projections as a linear

projection of the input vectors.

t-Distributed Stochastic Neighbor Embedding (t-SNE) [78] is one of the widely used
stochastic neighbour embedding methods for dimensionality reduction. t-SNE is mainly
used to visualize high dimensional data in lower dimensional space. The algorithm
first computes probability between two points in higher dimensional space in such a
manner that similar points are assigned higher probability while dissimilar points are
assigned lower probability. t-SNE then chooses a low dimensional embedding such
that it produces a similar distribution, i.e. t-SNE tries to preserve the pairwise similari-

ties.

SOM [58, 59] is an unsupervised neural network model mainly used for data visu-
alization. SOM projects higher dimensional data into lower dimensional space using
topological similarity. The probabilistic variant of SOM is GTM [5], which uses the

expectation-maximization algorithm for learning.
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The concept of autoencoder, a deep learning model, used for dimension reduction,
has evolved gradually over the years [64, 7, 45]. An autoencoder is an unsupervised
artificial neural network model that learns to encode the input and then learns to re-
construct the same. Thus, an autoencoder consists of an encoder module followed by
a decoder module, and the middlemost layer acts as the bottleneck of the system, thus
learning the latent representation of the input data. There exist several variations of
this traditional autoencoder model, namely stacked autoencoders, variational autoen-
coders, denoising autoencoders, sparse autoencoders, adversarial autoencoders, and

Wasserstein autoencoders, among others.

Some other popular dimension reduction methods are Dictionary Learning meth-

ods, techniques based on Random Projection, and Non-negative Matrix Factorization.

Dictionary learning is a branch of signal processing and machine learning. It is a
type of representation learning aiming towards a sparse representation of the input
data in terms of its basic elements, called atoms, and a linear combination of them.
These atoms compose a dictionary. A good dictionary is characterized by its sparseness.
This is why dictionary learning is popularly known as sparse dictionary learning or
sparse coding [83]. Mathematically, for a given dataset X, the technique tries to find
a dictionary D,,;, and a representation R,,, such that ||X — DR||f is optimized and R

satisfies the sparsity criteria.

For a set of points in Euclidean space, a technique, called random projection [53],
is used in mathematics and statistics for dimension reduction. A given matrix X, is
projected to a lower k-dimensional subspace using the formula Xy, = Ry, Xjun, where R
is a random matrix whose columns have unit length. There are two common variations
to this technique, namely Gaussian random projection, where R is generated using a
Gaussian distribution and sparse random projection, where a sparse random matrix is

used.

Non-negative Matrix Factorization (NMF) [65, 66] is a traditional matrix factoriza-
tion technique, which can be used for representing a hefty dataset in lower dimen-
sional representation. NMF is used to decompose a matrix, comprising non-negative
elements, into a product of two factor matrices, such that both of them contain non-
negative elements only. Most of the dimensionality reduction techniques suffer from

the fact that they produce feature vectors with negative components and hence the
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applicability of such methods is narrowed down. NMF overcomes this issue by im-
posing the non-negativity constraint and hence the interpretability of the outcome gets

enhanced. NMF obtains a “parts-based" low dimensional representation of a dataset.

1.2.2 Non-negative Matrix Factorization

Non-negative Matrix Factorization is used to decompose a matrix comprising non-
negative elements into a product of two factor matrices, such that both of these factor
matrices contain non-negative elements only. That is, a matrix X;;x, is decomposed
into

X ~ WH (1.2.1)

where, W,,, .« is the first factor matrix, called basis matrix or feature matrix, and Hj,
is the second factor matrix, called coefficient matrix or activation matrix. The cost func-

tion D, a scalar error measure based on the Euclidean distance, is defined as
D(X,WH) = ||X — WH||2 (1.2.2)

The goal is to minimize the error D under the non-negativity constraint, i.e., minimize
D(X, WH) with respect to W, H, subject to elements of W,H > 0. In this context,
the algorithms mainly use multiplicative update rules based on the gradient descent
technique. Instead of jointly updating both W and H, the algorithms update one matrix
assuming that the other matrix is constant, and vice-versa. This scheme is called block-

coordinate descent and is given by
W(t+1) < W(t) = nwi) o Vi DX, W(t)H(t)) (1.2.3)

and

H(t+1) « H(t) — 7y © Ve D(X, W(t)H(t)), (1.2.4)

where o denotes the Hadamard product (element-by-element product), Vw and Vy
are the gradient operators with respect to W and H respectively. The respective learn-
ing rates are denoted by yw and 7y, and ¢ denotes the iteration count. To make the

expressions more readable, we drop the iteration count variable t from now onward.
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Update rules based on Euclidean distance are
W < W + yw o (XHT — WHH) (1.2.5)

and

H <+ H+ o (WIX-WIWH) (1.2.6)

The learning rates are defined in such a manner that any subtraction disappears from

the update rule to satisfy the non-negativity criteria. That is,
nw =W o (WHH") 1.2.7)

and

na = Ho (W'WH) (1.2.8)

Here, © denotes element by element division. Thus the updated rules become
W+ Wo ((XHT) © (WHHT)) (1.2.9)

and

H <+ Ho (WIX) 2 (WI'WH)) (1.2.10)

NMF algorithms can be divided into four categories [119], viz. basic NMF, con-
strained NMF, structured NMF and generalized NMF. When only the non-negativity
criteria are imposed, those algorithms are called basic NMF. In constrained NMEF, some
additional constraints are used as regularization. Sparse NMF [82, 47], orthogonal NMF
[73, 20], discriminant NMF [51, 126, 60] and NMF on manifold algorithms [11, 10] are
some of the popular constrained NMF techniques. When the standard factorization
formulations are modified, the algorithms are called structured NMF. Weighed NMF
[56, 79, 130], convolutive NMF [97, 98] and nonnegative matrix trifactorization tech-
niques [124] fall under the umbrella of structured NMF algorithms. In generalized
NMF, the NMF technique is extended in a broader sense. Some generalized NMF
models are semi-NMF [21], nonnegative tensor factorization [120, 40, 93], nonnegative

matrix-set factorization [72, 71], and kernel NMF [128, 9, 75], among others.
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1.2.3 Neural network based approaches for NMF

NMEF [65, 66] is a typical example of an iterative algorithm. Over the years, researchers
have tried to increase the effectiveness of the NMF algorithm by clubbing its benefits
with that of deep learning. Here we present some of the current state-of-the-art ap-

proaches developed by researchers using NMFE.

Trigeorgis et al. have devised a model named semi-NMF [109] that automatically
learns the attribute hierarchy of a dataset as well as the representations that are suitable
for clustering. Deep Semi-NMF [110], a deep neural network-based variant of semi-
NME, and Deep WSF [110], a semi-supervised version of the approach, have also been
developed. Deep WSF makes use of prior knowledge to some extent for each dataset

attribute.

Ye et al. have attempted to tackle the community detection problem by learning the
hierarchical mappings between the original network and the final community assign-
ment using a Deep Autoencoder-like NMF (DANMF) [122] model. The NMF-based
noise reduction approach has inspired the algorithm. Song et al. have presented a
layer-wise feature learning approach based on stacked NMF layers [100]. Sparsity con-
straints in a multi layer NMF model have been used by Guo et al. to learn localised

features [36].

Nonsmooth Nonnegative Matrix Factorization (nsNMF) [125] is a deep autoencoder
like architecture that learns both part-based and hierarchical features, and produces
more localised and less overlapped feature representations. Yang et al. have developed
DAutoED-ONME, a deep autoencoder network for Orthogonal NMF (ONMEF) [121], to
hierarchically extract features from source datasets while utilising the benefits of shal-
low ONMF model to achieve superior learning capability. Zhao et al. have designed a
deep NMF model that deep factors basis image matrices to learn the underlying basis

images and attempts to find patterns in complex data [131].

Using graph regularisation, the Deep Grouped NMF (DGNMF) [127] model learns
different level attributes of data while preserving local information. Shu et al. have
developed Deep Semi-NMF-EP to successfully represent high-dimensional data while
retaining data elasticity using graph regularizers [94]. An NMF-based feature extrac-

tion technique incorporated in CNN has been developed by Lee et al. [70].
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The researchers have used a stacked autoencoder incorporated in the NMF frame-
work to achieve task-specific nonlinear dimension reduction [129]. To get a more dis-
criminative, robust and generalised feature representation as well as dimension reduc-
tion, Tong et al. have integrated both global and central loss functions of the soft label

constraint matrix in the objective function of the model [107].

Shu et al. [96] have attempted to cluster data by learning an optimum adaptive
graph based on the local neighbourhood relationship among samples at each layer of
the deep network rather than the predetermined fixed graph. The adaptive graph reg-
ularizer has been incorporated into the deep matrix factorization framework, called
adaptive graph regularized deep semi-nonnegative matrix factorization (AGRDSNMEF).
Thus, the AGRDSNMEF technique not only uses a deep framework to uncover hidden
features but also fully exploits prior knowledge of data. A new scRNA-seq data rep-
resentation approach for scRNA-seq data clustering, called Robust Graph regularised
Non-Negative Matrix Factorization with Dissimilarity and Similarity constraints (RG-
NME-DS), has been introduced by Shu et al. [95]. It tackles the issue of high dimen-
sionality and noise in scRNA-seq data by finding their embedded manifold structure

using regularisation.

The majority of the research studies described above have applications on image
datasets [109, 110, 125, 127, 131, 129, 94, 107, 36]. However, in addition to image
datasets, Yang et al. [121] have shown applications in textual databases and networks.
On the other hand, the research work presented by Ye et al. [122] deals with applica-
tions on networks for community discovery. Acoustic signals have been used as the
application area by Lee et al. [70]. Song et al. [100] have shown application on doc-
ument classification. Shu et al. [96] have demonstrated their application in the image
as well as textual datasets. scRNA-seq data have been used for clustering by the RG-
NME-DS model [95].

1.3 Motivation of the thesis

Most of the dimensionality reduction techniques suffer from the fact that they may
produce feature vectors with negative components and hence the applicability of such

methods is limited. Non-negative Matrix Factorization [65, 66], a popular dimension
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reduction method, overcomes this issue by imposing non-negativity constraints and
hence the interpretability of the outcome gets enhanced. We have used NMF to dimen-
sionally reduce a given dataset over unconstrained dimension reduction techniques in

order to exploit the advantages of non-negative feature characteristics, as follows:

® Sparsity in the feature matrix can be enforced through non-negativity. Uncon-
strained decomposition normally results in non-zero factors even though the given
attribute(s) does (do) not contribute to a signal, whereas in the case of non-negative
techniques, zero factors are generated. Thus, sparse representations are one of
the evident characteristics of non-negative decomposition. When we intend to
uncover distinct feature sets or sample relationships, sparse representations are

beneficial.

* Non-negativity assures that factors do not counterbalance one other. For exam-
ple, if one of the factors overcorrects a signal, another factor may attempt to
counter-correct to compensate. When factors can only be positive or zero, they

cannot counter-balance and only additive signals can be explained.

* On top of the above advantages, there are theoretical connections between NMF
and k-means, providing strong support and theoretical foundations for NMF-
based clustering [19, 20, 21, 74]. It has been proved that NMF is equivalent to
a relaxed k-means clustering yielding a soft partitioning [29]. It has also been
shown that Orthogonal NMF amounts to k-means clustering [19, 74]. Hence,
NMEF can not only be used as a dimension reduction method, it can also be used

as a clustering algorithm.

The aspiration of simulating the factorization behaviour of the traditional NMF tech-
nique ensuring the outcome of a unique pair of factor matrices of the reconstructed
input matrix has motivated us for the progressive development of the models. We
have fused the advantages of conventional iterative learning with those of deep learn-
ing in a way that resembles the trait of human learning. Traditional NMF technique
uses a block coordinate descent scheme to update the factors of the input matrix. This
limitation has been solved by updating both factors simultaneously using neural net-

work architecture. While learning, humans always attempt to disintegrate the concepts
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into smaller fragments and try to learn hierarchically referring back to the original de-
tails frequently ensuring the correctness of the learning. We have attempted to simu-
late such human-specific characteristics throughout our design and development of the

models.

1.4 Scope of the thesis

This thesis is a comprehensive attempt to fuse the advantages of the traditional NMF
technique and deep learning aiming toward dimension reduction. In this direction, five
neural network models have been developed. The models have been built on top of the
previous one overcoming any shortcomings of the predecessor. The current chapter
defines the problem and sheds some light on the developed models. The next chap-
ter describes the datasets, experimental procedures and validation strategies used to
establish the effectiveness and superiority of the models. Chapters 3 to 7 constitute
the contributory part of the thesis, explaining and establishing the models. Finally,
Chapter 8 concludes the thesis with some directions for future work. The development
of different neural network architectures over the upcoming chapters is summarized

graphically in Figure 1.1.

1.4.1 Chapter 2 - Description of datasets, experimental procedure and eval-

uators

To establish the effectiveness and superiority of the novel models, developed in the
thesis, various types of experiments have been performed on a number of datasets over
different other well-known dimension reduction techniques. The results have also been
justified using several metrics. The datasets have been described in Chapter 2 along

with the experimental setup and experimental procedure.

1.4.2 Chapter 3 - Non-negative Matrix Factorization Neural Network (n?MFn?)
[24, 25]

A shallow neural network model, called Non-negative Matrix Factorization Neural

Network (n2MFn?), has been developed aiming towards low rank approximation for
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non-negative matrix factorization under neural network framework. The architecture
consists of a single deconstruction layer and a single reconstruction layer. Hence the
architecture is categorized as a single deconstruction single reconstruction neural net-
work model. The architecture has a single hidden layer, constructed in such a way that
serves as the bottleneck layer of the model. With the help of hierarchical learning, the
pervasiveness of the non-negative input data has been processed to produce a part-

based, sparse, and meaningful representation. A modification of the He initialization
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technique to initialize weights maintaining the non-negativity criteria of the model, has
also been proposed. A necessary modification of the ReLU activation function has been
made to suppress all neurons in a layer from adjusting their weights simultaneously.
Regularization has been used in the design of the objective function of the model to
minimize the risk of overfitting. To demonstrate the competency of n?’MFn?, the results
have been analysed and compared to those of six other leading dimension reduction
techniques on five popular datasets in terms of local structure preservation of data
in low rank embedding, as well as in the context of downstream analyses involving
classification and clustering. It has also been tested and demonstrated that low dimen-
sional embedding performs better than the original data, which supports the necessity
of dimension reduction. The statistical significance of the findings has also been deter-
mined. The analysis of the same has justified the effectiveness and superiority of the
model over some others. Additionally, the computational complexity and convergence

analysis of the model have been discussed.

1.4.3 Chapter 4 - Deep Neural Network for Non-negative Matrix Factoriza-
tion (DN3MF) [27]

Continuing with the aim of dimension reduction and mitigating the disadvantages of
shallow neural network architecture while incorporating the advantages of deep neural
network architectures, a deep learning model, called Deep Neural Network for Non-
negative Matrix Factorization (DN3MF), has been developed for the task of NMF. There
are two stages of the model, namely, pretraining and stacking. The pretraining stage
is accomplished by a shallow neural network architecture and the stacking stage is a
deep neural network architecture. Non-negative input data have been processed using
hierarchical learning to generate part-based sparse and meaningful representation. The
novel design of DN3MF ensures the non-negativity requirement of the model. The use
of Xavier initialization technique solves the exploding or vanishing gradient problem.
The objective function of the model has been designed employing regularization, en-
suring the best possible approximation of the input matrix. A novel adaptive learning
mechanism has been developed to accomplish the objective of the model. The superior
performance of DN3MF has been established by comparing the results obtained by the
model with that of seven other well-established dimension reduction algorithms on

five well-known datasets in terms of preservation of the local structure of data in low
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rank embedding, and in the context of downstream analyses using classification and
clustering. Furthermore, low dimensional embedding has been evaluated and shown
to outperform the original data, supporting the need for dimension reduction. The
statistical significance of the results has also been established. The outcome clearly
demonstrates DN3MF’s superiority over compared dimension reduction approaches
in terms of both statistical and intrinsic property preservation standards. The compar-
ative analysis of all eight dimensionality reduction algorithms including DN3MF with
respect to the computational complexity and a pictorial depiction of the convergence

analysis for both stages of DN3MF have also been presented.

1.4.4 Chapter 5 - Multiple Deconstruction Single Reconstruction Deep Neu-
ral Network Model for Non-negative Matrix Factorization (MDSR-NMF)
[26]

DN3MF is able to diminish the shortcomings of a shallow neural network architec-
ture but fails to produce a unique pair of factor matrices. To address this issue, a
novel deep-learning architecture, named MDSR-NMF, has been designed with mul-
tiple deconstruction and single reconstruction layers for non-negative matrix factoriza-
tion aimed at low rank approximation. This design ensures that the reconstructed input
matrix has a unique pair of factor matrices. The two-stage approach, namely, pretrain-
ing and stacking, aids in the robustness of the architecture. The sigmoid function has
been adjusted in such a way that it fulfils the non-negativity criteria and also helps to al-
leviate the data-loss problem. Xavier initialization technique aids in the solution of the
exploding or vanishing gradient problem. The objective function involves a regularizer
that ensures the best possible approximation of the input matrix. The superior perfor-
mance of MDSR-NME, over eight well-known dimension reduction methods, has been
demonstrated extensively using five datasets with an emphasis on maintaining the lo-
cal structure of the data through low rank embedding and considering the implications
for classification and clustering as a part of downstream analyses. The requirement
of dimension reduction is further supported by experiments showing that reduced di-
mensional embedding has outperformed the original data. Furthermore, the statistical
significance of the results has been demonstrated. Computational complexity and con-

vergence analysis have also been presented to establish the model.
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1.4.5 Chapter 6 - Input Guided Multiple Deconstruction Single Reconstruc-
tion neural network for Non-negative Matrix Factorization (IG-MDSR-

NMEF) [28]

Referring back to the original text in the course of hierarchical learning is a common
human trait that ensures the right direction of learning. The model in this chapter has
been developed based on the concept of Non-negative Matrix Factorization inspired by
this idea. The aim is to deal with high-dimensional data by discovering its low rank
approximation by determining a unique pair of factor matrices. The model, named
Input Guided Multiple Deconstruction Single Reconstruction neural network for Non-
negative Matrix Factorization (IG-MDSR-NMF), ensures the non-negativity constraints
of both factors. The competency of preserving the local structure of data in its low rank
embedding produced by the model has been appropriately verified. The superiority
of low dimensional embedding over that of the original data justifying the need for
dimension reduction has been established. The primacy of the model has also been
validated by comparing its performance with that of nine other established dimension
reduction algorithms on five popular datasets. Additionally, the statistical significance
of the results has been determined. Moreover, the computational complexity of the
model and convergence analysis have also been presented testifying to the supremacy

of the model.

1.4.6 Chapter 7 - Input Guided Multiple Deconstruction Single Reconstruc-
tion neural network for Relaxed Non-negative Matrix Factorization
(IG-MDSR-RNMF) [28]

The model IG-MDSR-NMF ensures the non-negativity constraints of both factor matri-
ces. In contrast, Input Guided Multiple Deconstruction Single Reconstruction neural
network for Relaxed Non-negative Matrix Factorization (IG-MDSR-RNMF) has intro-
duced a novel idea of factorization with only the basis matrix adhering to the non-
negativity criteria. This relaxed version helps the model to learn more enriched low di-
mensional embedding of the original data matrix. The ability of the model to maintain
the local structure of data in its low rank embedding has been suitably verified. It has

been demonstrated that low dimensional embedding performs better than the original
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data, which supports the necessity of dimension reduction. By comparing the perfor-
mance of the model on five widely used datasets with ten other well-known dimension
reduction techniques, the model’s superiority has also been confirmed. Furthermore,
the statistical significance of the data has been shown. Additionally, the model’s com-
putational complexity and convergence analysis have been provided, attesting to its

superiority.

1.4.7 Chapter 8 - Conclusions and Scope of Further Research

Finally, we offer closing thoughts on the neural network models developed in this the-
sis and the outcomes they produced in Chapter 8. We provide an understanding of the
constraints included in every designed architecture. In this chapter, we also provide a

quick overview of the future directions of the thesis.

1.5 Conclusions

In this chapter of the thesis, we have described the scope and problem statement of the
thesis. The chapter also covers some traditional and current state-of-the-art methodolo-
gies to solve the problem of dealing with high dimensional data. A brief explanation of
the traditional Non-negative Matrix Factorization technique has also been discussed.
Finally, the outline of the thesis along with a brief introduction of the proposed models
have been provided. To establish the proposed models a number of experiments have
been performed. These experimental procedures together with the description of the

datasets and performance metrics have been delineated in the following chapter.



Chapter 2

Description of datasets,
experimental procedure and

evaluators

2.1 Introduction

The problem statement and scope of the thesis have been covered in Chapter 1. A few
current state-of-the-art and conventional techniques for handling high-dimensional data
have also been described in Chapter 1. Additionally, a brief description of the con-
ventional Non-negative Matrix Factorization method and proposed methodologies has
also been covered. In order to demonstrate the effectiveness and superiority of the
models developed in the thesis, several experiments have been carried out. This chap-
ter outlines these experimental strategies along with the description of datasets and

performance measures (evaluators).

The efficacy of dimensionality reduction with the models (n?MFn?, DN3MF, MDSR-
NMF, IG-MDSR-NMF and IG-MDSR-RNMF) has been studied in two ways on five
popular datasets. First, the extent to which these models can preserve the local struc-
ture of data after dimension reduction, has been compared with that of six different
dimension reduction approaches. The quality of the low rank representation has also
been assessed against the original dataset to justify the need for dimension reduction.
Second, the discriminating ability of reduced feature space obtained by these models

19
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has been compared with that of six different dimension reduction techniques in terms
of classification and clustering. Three of the six dimension reduction methods are tra-
ditional dimension reduction methodologies; one is a classic NMF technique and the
other two are current state-of-the-art neural network based NMF implementation tech-
niques. The same testing procedure has been followed for all the five models, devel-

oped in this thesis, to determine their efficacy over others.

While comparing the performance of the designed models, along with six other di-
mension reduction techniques, each designed model has also been compared with the
previously developed models. That is, for the first designed model, n?MFn?, the per-
formance of n?MFn? has been tested with that of six other dimension reduction tech-
niques. For DN3MF, along with six other dimension reduction techniques, the per-
formance of DN3MF has also been compared with n?MFn?. That is, the efficacy of
DNB3MEF has been tested with a total of seven dimension reduction techniques. Simi-
larly, the efficiency of MDSR-NMF has been established by comparing its performance
with nZMFn?, DN3MF and six other models as mentioned above, i.e., a total of eight di-
mension reduction techniques. In the same way, while working with IG-MDSR-NMF,
the performance of IG-MDSR-NMF has been compared to that of nine other dimension
reduction techniques including MDSR-NMF and others. Finally, for IG-MDSR-RNMF,
a total of ten dimension reduction techniques have been used to compare its perfor-

mance.

The remaining part of the chapter is organized as follows. Data sources are narrated
in Section 2.2. The technique of data preparation has been described in Section 2.3.
Section 2.4 delineates the details of the experimental setup. The methodology to test
the extent of local structure preservation is described in Section 2.5. The experimental
procedure for evaluating the discriminating ability of dimensionally reduced datasets,
in terms of classification and clustering, has also been described in Section 2.5. Different
performance metrics used to justify the efficacy of the proposed models have also been

described in Section 2.5. Finally 2.6 brings the chapter to a conclusion.
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2.2 Data sources

Four popular datasets, viz., Gastrointestinal Lesions in Regular Colonoscopy (GLRC)
dataset [81], Online News Popularity (ONP) dataset [30], Parkinson’s Disease Classifi-
cation (PDC) dataset [90] and Student Performance (SP) dataset [15] have been down-
loaded from the UCI machine learning repository [23]. The MovieLens dataset has been
acquired from the GroupLens research lab website. GroupLens is a research lab at the
Department of Computer Science and Engineering at the University of Minnesota. The
effectiveness of dimensionality reduction by the models has been evaluated using these

datasets.

2.21 Gastrointestinal Lesions in Regular Colonoscopy (GLRC) dataset

The dataset [81] consists of ground truth and features extracted from a colonoscopic
video database of gastrointestinal lesions. Expert image inspection and histology have
been used for modelling the ground truth. The dataset has 76 samples. There are 698
features in all, with 2D textural properties of the lesions accounting for the first 422
attributes, 2D colour features of the lesions accounting for the next 76 and 3D shape
features of the lesions accounting for the last 200. Each sample used two distinct types
of lighting. We have considered the kind of light as a feature while performing the
computation. Thus, the data matrix has 2 x 76 = 152 rows and 1 4 698 = 699 columns.
The dataset consists of three types of lesions: hyperplasic, adenoma and serrated ade-
noma. Hyperplastic lesions are benign, while, adenoma and serrated adenoma lesions
are malignant. As a result, we treat the dataset as a two-class (benign and malignant)

problem [52].

2.2.2 Online News Popularity (ONP) dataset

The dataset [30] contains multiple sets of features extracted from Mashable articles pub-
lished between January 7, 2013 and January 7, 2015. The collection includes 39644 en-
tries for online articles. Each item is defined by a total of 60 features. URL is one of
them, which we have not added because of its uniqueness to each article. The other

59 features are numeric, based on the article’s structure and content, with the last one
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being the number of days between article publication and dataset acquisition. As a
consequence, the dataset size is 39644 x 59. The samples in the dataset are divided into
two categories namely, popular and unpopular, based on the number of shares of each

article [62, 63].

2.2.3 Parkinson’s Disease Classification (PDC) dataset

A study employing voice recordings of 252 individuals was undertaken at the Depart-
ment of Neurology at Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul,
Turkey [90]. There were 188 patients with Parkinson’s disease, while the remaining 64
did not have the ailment. As a consequence, the samples are divided into two groups.
Each sample is described by 754 features. Time-frequency features, mel-frequency cep-
stral coefficients, wavelet transform-based features, vocal fold features and wavelet
transform features with a configurable Q factor were employed. These characteristics
have provided clinically relevant information for Parkinson’s disease assessment. We
have not considered the patient identification number as a feature. The experiment was

repeated three times for each individual. Thus, the data matrix size is 756 x 753.

2.2.4 Student Performance (SP) dataset

The dataset [15] includes student data collected from two Portuguese secondary schools
in the Alentejo region of Portugal in 2005 and 2006. It uses data from two sources:
student grade reports and student replies to a series of questionnaires. The features
include different student grades, as well as demographic, social and school-related in-
formation. Here, we have considered the Math performance of 395 students. These
data are represented by 29 different features. The dataset has a feature identifying the
student’s school. Each student receives three unique grades: G1, G2 and G3 represent-
ing the first period grade, second period grade and final grade respectively. Grades
are simply numerical values ranging from 0 to 20. G1 and G2 have been viewed as
features, whereas G3 has been used as a target attribute. Thus, each student has been
represented by 32 features, resulting in a database size of 395 x 32. We have designed
the problem as a two-class problem based on G3, with a student passing if G3 is more

than or equal to 10 and failing otherwise.
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2.2.5 Movielens dataset

The MovieLens datasets were prepared by the members of the GroupLens Research
Project at the University of Minnesota [39]. This dataset comprises 100,000 ratings for
1682 movies from 943 people and the remaining entries are unavailable. Thus, the
dataset comprises 943 samples, each having 1682 features. The ratings range from 1
to 5, with 1 being the lowest rating and 5 being the highest. Every user has rated at
least twenty movies. The dataset also includes basic demographic information such
as the users’ age, gender, employment and zip code. The data was gathered over
seven months, from September 19, 1997, to April 22, 1998, using the MovieLens web-
site (movielens.umn.edu). Users with less than 20 ratings or with missing demographic
information were removed from this dataset during the cleaning process. We have con-
sidered gender as the classifying attribute, hence the dataset is classified as a two-class

problem.

The following table (Table 2.1) summarizes the datasets described above.

TABLE 2.1: Summary of the datasets used for experimentation.

Dataset No. of samples No. of features doi/URL

GLRC 152 699 10.24432/C5V02D
ONP 39644 59 10.24432 /C5NS3V
PDC 756 753 10.24432 /C5MS4X
SP 395 32 10.24432 /C5TG7T
MovieLens 943 1682  https://grouplens.org/

2.3 Data preparation

Consider a given data matrix, U = [ty;];n. We process U to generate a matrix X =
[Xpi]mxn With each element being non-negative. We use a methodology similar to the
folding data method described in [55] to carry out this task. This approach uses two
columns of X to represent each column of U. That is, i and (1’ + i) columns of X
correspond to i column of U. Entries in every column of U can be either positive or
negative. Positive values from i column of U are kept in i’ column of X, whereas the
absolute form of the negative values is stored in (1’ + i) column of X. The remaining
empty cells in i’ and (n’ + i) columns of X are filled with zeros. To obtain the original

elements of the i*" column of U, subtract the elements of the (1’ + i)' column of X from
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the elements of its i column. As a result, the number of columns in X is exactly twice
that of U, i.e., n = 2n’. Furthermore, it should be noted that in this manner, exactly half
of the elements of X are zero, resulting in a sparse matrix. Each row of X is now used

as input to the model.

2.4 Experimental setup

The proposed models n?MFn?, DN3MF and MDSR-NMF have been implemented from
scratch in Python (version 3.7) using some basic libraries such as numpy. IG-MDSR-
NMEF and IG-MDSR-RNMF have been implemented in Keras (version 2.13.1). Different
software libraries, such as Scikit-learn, TensorFlow and Keras have been employed as
and when needed to program several other existing dimensionality reduction tech-

niques. Plots of various figures have been generated using Python programming lan-

guage.

The data matrices have been preprocessed before using them as input to the mod-
els. Data matrices have been normalised using the Z score normalisation technique. If
a classification/clustering performance score generates an error, i.e., fails to produce
a valid output for any reason, the lowest possible value of that metric is assigned in
that place during computation. This step ensures that the classification/clustering per-
formance scores for various dimension reduction algorithms for a given dataset are

consistent.

2.4.1 Z score normalisation

The values of a feature are scaled using this method to have a mean of 0 and a standard
deviation of 1. To compute this, for each feature value, subtract the mean of the feature

from it, and then divide the result by the standard deviation of the feature.

New_value = (x (_7 ) (2.4.1)

where x represents the original value, the mean of the feature is represented by u and

o denotes the standard deviation of the corresponding feature.
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2.5 Experimental procedure

Six state-of-the-art dimension reduction techniques have been used to compare the per-
formance of the models. They include Autoencoder (AE) (with one hidden layer, the
number of nodes in the hidden layer being the dimension of the transformed space),
Principal Component Analysis (PCA), Uniform Manifold Approximation and Projec-
tion (UMAP), traditional NMF, Semi-NMF [109] and Deep Semi-NMF (DS-NMF) [110].
Let these 6 dimensionality reduction techniques, including n?MFn?, be placed in set
T and a dimension reduction technique (i.e., an element of T) be denoted by T. So,
for nMFn?, |T| = 7. As mentioned above, for every progressive development of the
methods, each new method is also compared with the previously developed methods.
Thus, for DN3ME, |T| = 8, for MDSR-NME, |T| = 9, for IG-MDSR-NME, |T| = 10, and
for IG-MDSR-RNME, |T| = 11.

A dataset X, containing m samples, each being described by n’ features, is reduced to
a dimension r (r < n’) determined using a random factor f (0 < f < 1) and computed
asr = |n’ x f|. For a certain value of f, the dataset X is dimensionally reduced using
all T in T. If we want to reduce to a specific dimension r, the factor f is calculated
accordingly. Thus, there are |T| dimensionally transformed datasets for a value of f,
each having the same r value, denoted by X,(T). The effectiveness of the proposed

model will now be illustrated on these transformed datasets.

The performance of dimension reduction by the proposed models has been demon-
strated in two parts. Firstly, the quality of dimension reduction by the models has been
quantified by comparing their ability to retain the local structure of data and by justify-
ing the need for dimension reduction over the original data. Secondly, the effectiveness
of the dimensionally reduced dataset is explored for downstream analyses, like classi-
fication and clustering. Each of these experiments has been performed for 5 randomly
chosen f values and the mean values of the results have been presented for analysis.
Additionally, the corresponding p-values have also been computed to establish the sta-

tistical significance of the results.
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2,51 Quantifying the quality of low dimensional embedding

The quality of low dimensional embedding by the proposed models has been investi-
gated in two ways, viz., studying the ability to preserve the local structure of data by
using trustworthiness metric and comparing the effectiveness of dimension reduction

by classification/cluster performance metrics compared to the original data.

2.5.1.1 Local structure preservation

The ability to preserve the local structure of data after dimension reduction by the pro-
posed models over that of other dimension reduction approaches has been computed

and compared using the trustworthiness score.

Trustworthiness

Trustworthiness is a metric to measure the extent of local structure retention in the
latent space representation of the data with reference to the original data [111, 112, 85].

The value of trustworthiness lies between 0 and 1, and is defined as

T =1~ 2 5 legw max(0, ((i, ) — k) (25.1)

Here, for each sample i, /\fik is the set of its k nearest neighbours in the output space,
and every sample j is its 7(i, /)" nearest neighbour in the input space. In other words,
any unexpected nearest neighbour in the output space is penalised in proportion to
their rank in the input space. The higher the trustworthiness score, the better the low

rank representation, i.e., the better the dimension reduction technique is.

2.5.1.2 Decision making: Comparison with the original data

The efficacy of dimension reduction by the proposed models has been judged by per-
forming classification and clustering on low dimensional embedding produced by them
as well as on the original data, and then quantifying the performances using different

classification and cluster validity metrics. This study demonstrates why the dimension
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reduction is necessary highlighting the fact that the usability of the data increases with

the low rank representation of the same.

Classification

The reduced datasets by the proposed models have been classified using four well-
known classification methods: K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP),
Naive Bayes (NB) and Quadratic Discriminant Analysis (QDA). Four classification per-
formance metrics have been utilized to examine the quality of the classification per-
formed by the aforementioned classifiers. These measures are Accuracy (ACC), Cohen-
Kappa score (CKS), F1 score (FS) and Matthews Correlation Coefficient (MCC). Thus,
we get a classification performance score by performing classification using a classi-
tier and validating the outcome using a classification performance measure. The same
procedure has been followed over the original data as well, and thus, we get a simi-
lar performance score for the original data. These performance scores have also been
compared to demonstrate the superiority of the dimensionally reduced dataset over

the original data, establishing the necessity of dimension reduction.

Clustering

Likewise, the reduced datasets by the proposed models have been clustered using four
well-known clustering techniques: Mini Batch k-Means (MBkM), Balanced Iterative Re-
ducing and Clustering using Hierarchies (BIRCH), Gaussian Mixture Models (GMM)
and Fuzzy c-Means (FcM). To assess the quality of the results produced by them, four
cluster validity indices have been used. These indices are Adjusted Mutual Information
score (AMI), Adjusted Rand index (ARI), Jaccard index (JI) and Normalized Mutual In-
formation score (NMI). Hence, we get a cluster validity score by performing clustering
using a clustering algorithm and validating the outcome employing a cluster evalua-
tion index. Furthermore, we get a similar performance score by following the same
procedure over the original data. It has also been established that dimension reduc-
tion is necessary by comparing these performance scores to show that the dataset with

reduced dimension is superior to the original one.
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2.5.2 Downstream analyses and statistical significance: Comparison with

other models

By performing classification and clustering on the low dimensional embedding gener-
ated by the proposed models and also that generated by the other |T| dimension re-
duction techniques, the effectiveness of dimension reduction has been assessed. Each
reduced dataset X, (T) has been classified and clustered using the aforesaid four well-
known classification and clustering methods. As previously mentioned, different met-
rics measuring classification and cluster performances have been used to quantify the
same. Thus, for each X,(T), we get a classification/clustering performance score by
performing classification/clustering using a classification/clustering algorithm and val-
idating the outcome using a classification/clustering performance metric. This part of
the experimentation aims to determine the superiority of dimension reduction by the

proposed models using different types of classification and clustering algorithms.

The classification/clustering performance results by the proposed models and that
of other dimension reduction algorithms have also been tested for statistical signifi-
cance. For this, pairwise p-values have been computed. Each of the other dimension re-
duction algorithms considered for competing with the proposed model has been paired

with the proposed model for p-value calculation.

For example, when we are justifying the efficacy of n?MFn?, for a dataset, for each
classification/cluster technique and each classification/cluster performance measure
we have a set of 5 values corresponding to 5 randomly chosen f values. Similarly, there
are other 6 sets of classification/cluster performance measures for each of the compet-
ing dimension reduction techniques, where each set has 5 elements. Thus, there is a
total of 1 4+ 6 = 7 sets of results. The cardinality of each set is 5. For statistical signifi-
cance testing in terms of p-values, the set of results of nMFn? has been compared with
the set of results of AE to get a single p-value. Similarly, the set of results of n”MFn?
has also been compared to that of PCA, UMAP, NMEF, Semi-NMF and DS-NMF. Thus
for n?MFn?, there are 6 p-values for each classification/cluster technique and each clas-
sification/cluster performance measure. As there are 4 classification/clustering algo-
rithms, a total of 6 x 4 = 24 p-values will be generated for each classification/cluster

performance metric.
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A p-value below a predefined threshold is considered an indicator of statistical sig-
nificance [17]. Here we have taken the threshold as 0.05. That is, when a p-value is less
than 0.05, we say the two sets of results are independent of each other. We have counted
the number of significant p-values against each classification/cluster performance met-
ric for a dataset, and have reported the same in tabular format. Thus, for n?MFn?, the
entries of the table represent the count of significant p-values from a total of 24 cases.
Similarly, for DN3MF the total number of casesis 7 x 4 = 28, and 8 x 4 = 32 for MDSR-
NME. The same counts for IG-MDSR-NMF and IG-MDSR-RNMF are 9 x 4 = 36 and
10 x 4 = 40 respectively.

2.5.3 Performance metrics (evaluators)

The performance metrics used to justify the efficacy of the proposed models have been

described hereunder.

Confusion Matrix

Confusion matrix is used in machine learning to assess the performance of a classi-
fication model. A summarization of the performance of a machine learning model on
a set of test data can be represented using a confusion matrix. It is a way to present
the statistics of accurate and inaccurate predictions of the model. The following four

metrics are depicted in a confusion matrix.
¢ When a positive data point is correctly predicted by the model, this is known as
a true positive (TP).

* When a negative data point is correctly predicted by the model, this is known as

a true negative (TN).

* When a positive data item is mispredicted by the model, it results in false posi-

tives (FP).

* When a negative data item is mispredicted by the model, it results in false nega-

tives (FN).
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The following classification performance evaluation metrics (ACC, CKS, F1S and MCC)

have been defined using these four measures (TP, TN, FP and FN).

2.5.3.1 Accuracy (ACO)

A classifier’s accuracy reveals its ability to distinguish between classes. In other words,

accuracy measures how frequently the model is accurate, and is defined as

TP+ TN
ACC = 252
cc TP+TN+FP+FN (252)

Accuracy is not a particularly reliable criterion to assess a classifier’s performance for

an imbalanced class [106].

2.5.3.2 F1 Score (FS)

F1 score is defined as the harmonic mean of precision and recall [8]. That is,

2
L4 1

precision recall

FS = (2.5.3)

Precision may be thought of as a measure of quality, i.e., the correctness of positive pre-
dictions. Precision is also referred to as positive predictive value (PPV), and is defined

as
TP

TP+ EP (2.54)

precision =

Recall attempts to determine if the model can discover all the instances of the positive
class, i.e., recall being a measure of quantity. Recall is also known as sensitivity or true

positive rate (TPR).
TP

Tecall - m

(2.5.5)

F1 score combines the traits of accuracy and recall, making it a stronger metric when

the class distribution is uneven.
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2.5.3.3 Cohen-Kappa Score (CKS)

A statistical measure of inter-rater agreement is defined by the Cohen-Kappa score [13,
99, 104]. A zero or lower values indicate no agreement, or random labeling, and a

higher positive value indicates a good agreement. Cohen-Kappa score is computed as

_ Po—pe
CKS = o (2.5.6)

where py (the observed agreement ratio) is the empirical probability of agreement on
the label assigned to any sample. In essence, pg is defined by equation (2.5.2) and is
nothing but the accuracy measure. The expected agreement when both annotators as-
sign labels at random is denoted by p,. p. is estimated using a per-annotator empirical

prior over the class labels [2]. p. is calculated as

_ (TN 4 FP)(TN + FN) + (FN + TP)(FP + TP) (2.5.7)
pe = (TP + TN 1 EP + EN)? -

CKS is sensitive to imbalanced data [106], and is widely used for measuring the perfor-

mance of a classifier dealing with binary as well as multi-class problems [4, 32].

2.5.3.4 Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient computes the agreement between the predicted
and actual classes, accounting for both true and false positives and negatives, to eval-
uate the quality of binary and multiclass classifications. MCC is viewed as an equal
measure as it accounts for true/false positives/negatives [54]. Better agreement is im-
plied by a higher MCC score, indicating that the model is also able to maintain the
original dataset’s class attributes in the altered dataset as well. MCC is sensitive to data

imbalances [106]. MCC is calculated as

MCC — TP x TN —FP x FN (25.8)

\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Mutual Information score (MI)



32 Chapter 2. Description of datasets, experimental procedure and evaluators

The similarity between two labels of the same data is measured by Mutual Informa-

tion. The Mutual Information between clusterings U and V is given by

i%yum/y N|U; N V| 259)
i Ui V] -

i=1

where the number of samples in cluster U; is denoted by |U;|, and the number of sam-
ples in cluster V; by |V;|. A permutation of the class or cluster label values has no effect
on the score value, indicating that this measure is independent of the absolute values
of the labels. Additionally, this metric is symmetric, meaning that substituting V (i.e.,
pred_label) for U (i.e., true_label) will provide the same score value. Thus, without
taking permutations into account, Mutual Information is a function that assesses how
well the two assignments agree. This metric is available in two different normalised
versions: Normalized Mutual Information (NMI) and Adjusted Mutual Information

(AMI) [115, 114, 80].

2.5.3.5 Normalized Mutual Information score (NMI)

NMI is a normalization of the MI score to scale the results between 0 (no mutual infor-
mation) and 1 (perfect correlation). This function uses a generalised mean of H(U) and

H(V) to normalise mutual information. NMI is defined as

NMI(U, V) = meanjzggg)vé 7 (25.10)
where
i ’ ’ (2.5.11)
" Vil Vil
H(V)=— Z N s (2.5.12)

This metric is independent of the absolute values of the labels, i.e., a permutation of the
class or cluster label values has no effect on the score value in any way. This measure
is not adjusted for chance i.e., the effect of result agreement solely due to chance is not

corrected (i.e. corrected the effect of result agreement solely due to chance).



2.5. Experimental procedure 33

2.5.3.6 Adjusted Mutual Information score (AMI)

AMI is an adjustment of the MI score to account for chance. It accounts for the fact
that the MI is generally higher for two clusterings with a larger number of clusters,
regardless of whether there is actually more information shared. For two clustering U

and V, the AMI is given by

MI(U,V) — E(MI(U,V))

, E
AMI(U,V) = avg(H(U),H(V)) — E(MI(U,V))

(2.5.13)

where, H(U) and H(V) are defined above, and E(MI(U,V)) is the expected mutual
information between two random clustering. A permutation of the class or cluster label
values has no effect on the score value, indicating that this measure is independent of

the absolute values of the labels.

2.5.3.7 Adjusted Rand Index (ARI)

By considering all sample pairs, and counting pairs that are allocated in the same or
different clusters in the predicted and true clustering, the Rand Index (RI) calculates a

similarity measure between two clusterings [48]. Rl is calculated as

RI — number of agreeing pairs
~ total number of pairs

(2.5.14)

Finding a value for random labelling that is close to 0.0 is not guaranteed by the Rand
index. Such a baseline is provided by the Adjusted Rand index, which accounts for
randomness. RI score is “adjusted for chance” into the ARI score [102, 12] as defined
below

RI —E(RI)

ARl = —— R —E(RD (2.5.15)

2.5.3.8 Jaccard Index (JI)

The Jaccard Index (JI), also known as the Jaccard similarity coefficient, is a metric used
to compare the similarity of the set of predicted labels for a sample to the corresponding

set of true labels. JI is defined as

A

YNY
=103 (2.5.16)
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where Y is the set of ground truth labels and ¥ represents the set of predicted labels.

2.6 Conclusions

In this chapter, we have briefly described different datasets used to justify the efficacy
of the proposed models. Experimental setup and experimental procedures have also
been described in detail. This chapter has also covered different performance measures
used throughout the scope of this thesis to establish the proposed models. The next
chapter will describe our first contributory work of the thesis, n"2MFn?, a shallow neural

network architecture developed with the aim of dimension reduction.



Chapter 3

Non-negative Matrix Factorization

Neural Network (n2MFn?2)

3.1 Introduction

In the previous chapter, we have presented an overview of various datasets used to
support the effectiveness of the models developed in, along with comparisons, in the
thesis. Additionally, a thorough explanation of the experimental setup and procedures

has also been delineated.

Nowadays, the curse of dimensionality is an issue brought on by the explosive
growth of data. In order to analyse the ever-increasing volume of data, dimension re-
duction is necessary for lowering complexity in terms of time and space. The majority
of dimensionality reduction strategies have the drawback of producing feature vectors
with negative components, which reduces the applicability of the same. By enforcing
non-negativity criteria, Non-negative Matrix Factorization [65, 66], a conventional di-
mension reduction technique solves this problem and improves the interpretability of
the outcome. On the other hand, neural networks are capable of learning from exam-
ples without human intervention. Complex nonlinear interactions between dependent
and independent variables can also be implicitly detected by neural networks [113].
Our objective is to fuse the advantages of traditional machine learning models with

those of neural networks for NMF. With this objective, initially, in this chapter, we

35
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have designed a shallow neural network architecture n?MFn? for dimension reduc-
tion [24, 25]. We have used a neural network based model to manipulate the ubiquity
of nonnegative input data to generate part-based, sparse and meaningful representa-
tions. A modification of the He initialization technique has been proposed to initialize
the weights while maintaining the non-negative criterion of the model. A necessary
modification of the ReLU activation function has been made to satisfy the architectural
constraints. Regularization has been used in the objective function of the model to
produce an optimal approximation of the input matrix. To demonstrate the efficacy of
the proposed model, we have analyzed and compared the results with six well known
dimension reduction methods on five popular datasets. We have also discussed the

computational complexity and convergence analysis of the model.

The rest of the chapter is organised as follows. Section 3.2 describes the motivation
behind the architecture and learning of n?MFn?. The detailed design and derivation of
respective learning rules have been presented in Section 3.3. Subsequently, Section 3.4
depicts the results following the experimentation procedure described in Chapter 2,
with an adequate analysis. The convergence analysis of n?MFn? and the analysis of
computational complexity have been presented in Sections 3.5 and 3.6. Finally, Sec-

tion 3.7 brings the chapter to a conclusion.

3.2 Motivation behind Architecture and Learning

We aim to fuse the advantages of the traditional iterative NMF technique with that
of the neural network architecture. The traditional NMF technique uses a block co-
ordinate descent scheme to update the factors of the input matrix. In this chapter,
we develop a neural network model, called Non-negative Matrix Factorization Neural
Network (n?2MFn?), for the task of NMF, where this approach for updating the factors

has been overcomed by modifying both the factors simultaneously.

The architecture of the model primarily includes a single hidden layer designed in
such a manner that it acts as the slender layer of the system. The activity of the neural

network model is divided into two phases, namely, deconstruction and reconstruction.
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Hence, the architecture can be referred to as the Single Deconstruction Single Recon-
struction (SDSR) framework. The slender layer output and the weight matrix connect-
ing the slender and the output layers of the model are designed to be the two non-
negative factors of the model. As the weight matrix has to follow the non-negativity
criteria, to maintain the consistency of the model with respect to non-negativity, a mod-
ification of the popular He weight initialization technique [41], called Modified He ini-

tialization technique (mHe), has been derived.

Modified He initialization technique (mHe): First, the elements of the weight matrix
are initialized by the original He initialization technique and hence, the initial weight
values lie in [—¢€1, +€2]. Then the weight values are transformed in such a way that the
negative values disappear and the new interval of values becomes [0, (¢1 + €2)]. With
this transformation, the standard deviation remains unaltered, but the previous mean
0 is changed to (0 + 1), i.e., e1. Now, the transformed values of the elements of the
weight matrix are multiplied by ¢, forcing them to be very small positive fractions, as
g1 is a fraction itself. Hence, in this case, the initial values of the elements of the weight

matrix lie in [0, (¢1 + €2)€1]-

The objective function has been designed to reduce over-fitting using L1 regulariza-
tion/Lasso regularization. The novel regularizer ensures the best possible approxima-
tion of the input data matrix. Moreover, the regularizing parameter has been chosen in
such a way that it has a controlled effect on the regularizer when n?MFn? tries to regen-
erate the input. The learning rules of the architecture have been derived maintaining
the constraints of the model. The update rules tune each element of the weight matrix
individually to satisfy the constraint. In the gradient descent approach, the rule for the
updation of the weight values is the same but the amount of change in each weight is
dynamically decided. Inn?MFn?, the rule of deciding the value of the adaptive learning
rate is fixed but it has been designed in a way that it guides each weight value individ-
ually to satisfy the non-negativity property. Thus, the weight-specific learning rate is
basically fine-tuning the weight update process satisfying the non-negativity criteria.
Choosing a fixed learning rate a priori, satisfying the non-negativity criteria, is difficult,
and hence, an adaptive learning rate is preferred. Furthermore, a good adaptive al-
gorithm converges significantly quicker than basic back-propagation with a randomly

chosen fixed learning rate [87].
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The Rectified Linear Unit (ReLU) activation function replaces all values less than
zero with zero. During the realization of the concept, this would lead to the problem
of division by zero. Hence, the ReLU activation function has been modified to meet
the non-negativity criteria of the architecture. The ReLU activation function does not
activate all neurons at the same time. Thus, the sparsity of the network is maintained

and it prevents all the neurons in a layer from synchronously optimizing their weights.

3.3 n?’MFn?

In this section, we develop an artificial neural network model, called Non-negative
Matrix Factorization Neural Network (n?MFn?), for the task of non-negative matrix
factorization towards dimensionality reduction. We now describe the architecture of

the model followed by its learning algorithm.

3.3.1 Architecture

The architecture of n?MFn?, as depicted in Figure 3.1, consists of an input layer, a single
hidden layer and an output layer. Following the procedures outlined in Chapter 2
Section 2.3, we process the given data matrix U = [u;],ux and get a matrix X =
[Xpi]mxn With each element being non-negative. At this point, the model uses each row
of X as input. Thus, the input layer receives the input signal from a dataset consisting
of m samples; each of which is described by n features. The hidden layer, comprising
r nodes, is designed in such a manner that it acts as the slender layer of the system,
extracting r < n’ features. The output layer tries to get back the original data from the

extracted features.

The model is designed in such a way that the mapping from the input layer to the
hidden layer deconstructs the data to its latent representation. Hence, we refer to this
phase as the deconstruction phase. The model then tries to reconstruct the input from
the latent representation, i.e., the output of the slender layer. In other words, the map-
ping from the hidden layer to the output layer reconstructs the input data from its
latent representation. We call this phase of the model as reconstruction phase. Since
there is only a single hidden layer in n2MFn?, the architecture is termed as a Single

Deconstruction Single Reconstruction (SDSR) neural network framework.
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FIGURE 3.1: The proposed model: n”?MFn?.

Two types of activation functions have been used in n?MFn?. Firstly, the activation
of input nodes is an identity function. That is, the output of i input node is the same as
its input. In other words, the input layer activation function passes on the input to the
next layer without any processing. Secondly, a modified version of the Rectified Linear
Unit (ReLU) activation function 1 has been used in the hidden and output layer nodes

of the model to satisfy the non-negativity constraint. Mathematically, ¢ is defined as,

x, ifx>0
P(x) = (3.3.1)

€, otherwise

where € > 0is a small number specified by the user. Here we have considered € = 0.001
to avoid the problem of division by zero in the course of execution of the algorithm.
Thus, the output of the hidden layer for all the samples can be written in matrix form
B = [by]mxr, and is given by

B = y(Y) (3.3.2)

The term (Y) is a matrix of order m X r, for which each element is obtained by apply-
ing the activation function ¥ on the corresponding element of Y. Here Y = [y/,;]mx is
defined as

Y = XV (3.3.3)

where V = [v;;],xr is the weight matrix between the input and the hidden layers. This

concludes the deconstruction phase of the model and hence marks the beginning of the
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reconstruction phase. The output layer generates X = [fpj}mxn, and is defined as

X =(Z) (3.3.4)
where Z = [z, uxn is computed as

Z = BW (3.3.5)

Here, W = [wlj]rxn is the weight matrix between the hidden and the output layers.
There are no restrictions on the weight values in V, while W follows the non-negativity
constraint. That is, each element of the weight matrix W has to be non-negative. The
non-negativity of W is achieved by estimating the hyper-parameter of the respective
learning rule as described below. The hidden layer output B and weight matrix W are

the two non-negative factors of the regenerated input matrix X.

3.3.2 Learning

Learning in an artificial neural network is a process of estimating weight parameters,
based on the input and output of the network, to meet certain objectives. The objective
of n2MFn? is to minimize ||X — X||r with respect to V and W subject to VW = I, where
I= [5ij]nxn is the Identity matrix of order n. Thus, the cost function ® is defined as

1 n

m 1 nonoq
mn > 5 (xp — Tpj)* + . » E(Z vywyj — 5ij)? (3.3.6)

p=1j=1 i=1j=1% I=1

In the above equation, the first term on the right-hand side has been used to mea-
sure the average squared reconstruction error between the given input X and the re-
constructed output X. The second term on the right-hand side is the regularization
term and A is the Lagrange’s multiplier (regularizing parameter). The regularizer of
the form has been designed to satisfy the condition VW = I, given in the objective
function of the model and to assist n?’MFn? to find an X as close as possible to X, i.e.,
X =~ X. The measure of reconstruction error has been used as guidance to the learning
of the model so that the model can produce a meaningful representation of the input in
the lower dimensional space. From equations (3.3.2) to (3.3.5), ignoring the activation

function ¢, we get X = BW, where B = XV. Hence, we can write X = XVW. Now,
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we try to regulate VW in such a manner, that the product tends to I, and thus, n?MFn?
will be able to produce the best possible approximation of X, i.e., XI = X. The term &;;

(Kronecker delta) is defined as

1, ifi=j
0ij = (3.3.7)
0, otherwise

Thus, the problem boils down to learning (estimating) V and W, such that ® be-

comes the minimum. This is achieved by the following iterative procedure
vy(t+1) =vy(t) +Avy(t),i =1,2,..,nand | = 1,2,...,r (3.3.8)

and

wii(t+1) = wy(t) + Awl]-(t),l =12,.,randj=12,..,n (3.3.9)

t being iteration count. In order to minimize & with respect to V and W, we adopt

gradient descent technique, i.e.,

0P
Avii(t) = — 115, (1) 500 (1) (3.3.10)
and
od
szj(t) = _Uzulj(t)m (3311)

Here 1,, () and Mwy(r) are the learning rates corresponding to v; () and wl]-(t). Itis to be
noted that 1, (1), 70, (t) and 1, are synonymous and will be used interchangeably for
ease of depiction. Similarly 7, (s), 1w, (t) and 1, are synonymous. Thus, the weight

matrices V and W are learned (estimated) iteratively by
V(t+1) = V(t) =y o Vyp® (3.3.12)

and

W(t + 1) = W(t) — 77W(t) o Vw(t)CD (3313)

Here, o denotes the Hadamard product and the matrices 77y ;) and 7w ;) are two hyper-
parameters of the model, called learning rates corresponding to V .and W. The terms

Vy() and V) are the gradient operators with respect to the weight matrices V and



42 Chapter 3. Non-negative Matrix Factorization Neural Network (n?MFn?)

W respectively. It is to be noted that Vv(t)/ Vvy(t) and Vy are synonymous and will
be used interchangeably for ease of depiction. Similarly, V), Vw(t) and Vw are

synonymous.

Now, we calculate the derivatives of ® with respect to v; and wj; ie, Vy® =

|rxn. Let us drop t (iteration count) for simplicity. Thus,
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and
o = 3w o 2 25 (= E) 5 225 Z vy — 6j)°)
lj lj p=1j=1 i=1j=1
1 &9 , A d
= — _— . —_— _— 7 /'—5"2
2mn pzl dw;; (pj = %py)” + 2n? ; dw;; (l':1 Oirtrj = O)
1 & _ 0%y,
= T Y (xpj xm)(;w -+
p=1 lj
)\. n r
S Y (Y viwyj - Z 0y (3.3.15)
[y wij =
1 & _ 0%, azp] A&
= —% p;l(xp] - xp])(szp]' (sZUl ﬁ Zl Z vll’ZUl/ — l] 'Ull
1 Z Bz
= —— Z(x}?] _ P] Z Z ’()ll/wzl — 1] Ull
mn p=1 i n2 i=1I'=
1 m
=T Z(xpj x Pl + ) 2 Z Uiy Wy — z] Uzl
mn p=1 i=1I'=

Using equations 3.3.14 and 3.3.15, Vy and Vw can be written as

1 > A
Vy® = —%(((x - X)WHIx)T + ﬁ((vw —~DW7) (3.3.16)
and
1 S A
Vwd = —%(BT(X —X)) + ﬁ(VT(VW 1)) (3.3.17)

As stated before, the activation function 1 is used only to replace the non-positive val-
ues of the argument by €. Otherwise, the value of the function ¢ is the same as its
argument. For simplicity, ignoring ¢ in equations 3.3.4, we can rewrite equation 3.3.17
as

1 A
Vw® = —%(BT(X —BW)) + E(VT(VW —1)) (3.3.18)

Using equations 3.3.16 and 3.3.18, the learning rules, defined in equations 3.3.12 and
3.3.13, become

V(t+1) = V(1) — v 0 (—<<<X—>?>w<t>T>Tx>T+

%((V(t)w(t) - I)W(l‘)T)> (33.19)
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and

1

—%(BT(X—BW(t)))—I—

W1+ 1) = W00 = g o

AVEHTVEW(E) - 1))) (3.3.20)

n2

As defined above, the elements in V are unrestricted, whereas those in W have to be
non-negative. In order to meet this criterion, we choose the value of 7w in such a
manner that the negative terms arising from the computation in equation 3.3.20 get

dismissed. Thus we choose nw as
nw = (mnW) @ (BTBW) (3.321)

Here, © denotes Hadamard division. Now, using equation 3.3.21, equation 3.3.20 be-

comes,

W(t+1) = ((W(H) @ (BTBW(1))) o (BTX)) —

% ((W(t) @ (BTBW(1))) o A(V(£)T(V(HW(t) — 1))) (3.3.22)

As defined above, the elements in X, B and W are all positive. Hence those in the
first part on the right hand side of the equation 3.3.22 are positive. The second part
of the equation 3.3.22 contains the expression (VW — I), which will gradually vanish
because of the constraint defined in the objective function of the model. That is, the
value of VW will tend towards I over the iterations. Even after the above, during
back-propagation of the neural network, some of the elements of the weight matrix
W may become negative. Those negative values are replaced with 0.001 to maintain
the consistency of the model with respect to the non-negativity criterion of the weight

matrix W.

A is the regularizing parameter used in the objective function of n2MFn2. The value
of A decides the amount by which we want to penalize the model’s flexibility. We have
used ridge regression in the model and it is used to overcome the overfitting of the
model. The ridge regression technique works by preventing coefficient values from
becoming too high. For A = 0, the effect of the penalty term goes away and as A — oo,

the effect of the shrinkage penalty grows. Thus, we have chosen A = 0.1 to have a
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controlled effect on the regularizer when n?MFn? tries to regenerate the input. For
simplicity, all the elements of the hyper-parameter matrix #v have been set to 0.1, i.e.,
v = [0.1],x,. Hence, equations 3.3.19 and 3.3.22 are the update rules for V and W

respectively.

3.4 Experimental Results, Analysis and Discussion

n?’MFn? model has been evaluated using five real-world datasets described in Chap-
ter 2. The datasets can be classified into two groups based on their dimensions. ONP,
PDC and SP datasets have more samples than features (m > n’), whereas GLRC and

MovieLens datasets consist of fewer samples than features (m < n’).

Here the performance of n?MFn? has been presented and justified in two ways.
Firstly, the quality of dimension reduction by n?MFn? has been evaluated by compar-
ing its ability to preserve the local structure of data. The need for dimension reduction,
i.e., the efficacy of the low rank embedding in contrast to the original data has also been
analyzed and established. Secondly, the discriminating ability of the dimensionally re-
duced dataset is explored for downstream analyses, like classification and clustering.
The statistical significance of the results obtained by n?MFn? with respect to other di-

mension reduction techniques has also been studied.

In n2MFn? model, the elements of the weight matrix V have been initialized us-
ing He initialization technique [41] and the elements of W have been initialized using
Modified He initialization technique developed here. The number of training epochs is
decided dynamically. Training stops on reaching predefined stopping criteria based on

the difference in the cost values of two consecutive epochs.

3.4.1 Quantifying the quality of low dimensional embedding

The quality of low dimensional embedding by n?MFn? has been investigated in two
ways, viz., studying the ability to preserve the local structure of data by using trust-
worthiness score and by comparing the effectiveness of dimension reduction by classi-

fication/ cluster performance measures compared with the original data.
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3.4.1.1 Local structure preservation

The ability to preserve the local structure of data after dimension reduction by n?MFn?
over that of six other dimension reduction approaches has been computed and com-
pared using the trustworthiness score values. The outcome of the same is depicted in

the spider/star plot (Figure 3.2).

ONP
AE

— PCA
— UMAP
NMF
— DS-NMF
—— Semi-NMF
n2MFn2

PDC

) GLRC
05 06/ 07/ 08 09 1

SP

MovieLens
FIGURE 3.2: Trustworthiness scores of seven dimension reduction techniques includ-
ing n2MFn?.

There are five axes corresponding to five datasets. The trustworthiness score of a di-
mension reduction technique for a particular dataset is a point on that axis. Thus, for a
dimension reduction technique, there are five points on five axes corresponding to five
datasets. These points can be considered as vertices of a polygon. Thus, in Figure 3.2,
there are seven polygons for seven dimension reduction techniques. The area covered
by a polygon justifies the efficacy of a dimension reduction method over all the datasets
together. The higher the area, the better is the performance of the algorithm. From the
depiction, we can note that nZMFn? has beaten other dimension reduction techniques
for the PDC dataset, and for GLRC the trustworthiness score of nZMFn? is better than
most of the others. The area bounded by the polygon of n?MFn? is shown in a shaded
colour in Figure 3.2. We compute the area of the polygon by adding individual trust-

worthiness scores of the dimension reduction techniques for all five datasets. It can be
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TABLE 3.1: Sum of trustworthiness scores of seven dimension reduction techniques
including n?MFn? on five datasets.

Dimension reduction techniques Sum of trustworthiness scores

AE 4.55550328220533
PCA 4.38647684863791
UMAP 4.13297187263103
NMF 4.50973409888627
DS-NMF 4.22833659492512
Semi-NMF 4.29147059452664
n*MFn? 4.34404888837219

observed from Table 3.1 that the sum of trustworthiness scores of n2MFn? has beaten

three out of six dimension reduction techniques compared with.

3.4.1.2 Decision making: Comparison with the original data

The efficacy of dimension reduction by n?MFn? has been judged by performing classi-
fication and clustering on low dimensional embedding produced by them as well as on
the original data, and then quantifying the performances using different classification
and cluster validity metrics. This study demonstrates why the dimension reduction is
necessary highlighting the fact that the usability of the data increases with the low rank

representation of the same.

Classification

Figures 3.3-3.7 presents the performance of n?MFn? and original data in terms of clas-
sification. For the GLRC (Figure 3.3) and PDC (Figure 3.5) datasets, n?MFn? gener-
ated low rank embedding has outperformed the original data for all four classifiers
in terms of all four metrics. For the ONP dataset, the same count is two out of four
for all four classification evaluators (Figure 3.4). For FS, CKS and MCC performance
metrics, n?MFn? has performed better than the original dataset for three out of four
classification algorithms for the MovieLens dataset, and the same count is two when
the evaluator is ACC (Figure 3.7). In the case of the SP dataset, the performance met-
ric of original data is better than the low rank embedding produced by n?MFn? on all

occasions (Figure 3.6).
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FIGURE 3.3: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the GLRC dataset by n?MFn? and six other di-
mension reduction techniques along with the original data.

Thus, it is evident that in most of the cases, n?MFn? projected data have performed
better than the original data in terms of classification. This justifies the need for di-
mension reduction along with the ability to produce low rank embedding preserving

elemental characteristics of data.

Clustering

The performance comparison of clustering done on the low dimensional embedding
produced by n*MFn? and the original data has been illustrated in Figures 3.8-3.12. For
the ONP (Figure 3.9), PDC (Figure 3.10) and SP (Figure 3.11) datasets, for all four clus-
ter validity indexes, n?MFn? has performed better than the original data with respect
to all four clustering algorithms. For the GLRC (Figure 3.8) dataset, the performance
score is three out of four in favour of n2MFn? for all four cluster evaluators. When the

cluster validity index is ARI, n?’MFn? has performed better than the original data for
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FIGURE 3.4: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the ONP dataset by n”MFn? and six other dimen-
sion reduction techniques along with the original data.

three out of four clustering algorithms in the case of the MovieLens dataset, and for

other evaluators the same count is four out of four (Figure 3.12).

Hence, it is established in terms of clustering performance that the low rank embed-
ding generated by n?’MFn? is much better in preserving the fundamental properties of

the original data. Thus the need for dimension reduction is also justified.

3.4.2 Downstream analyses and statistical significance: Comparison with

other models

By performing classification and clustering on the low dimensional embedding gen-
erated by n?’MFn? and also that generated by the other six dimension reduction tech-
niques, the effectiveness of dimension reduction has been assessed. Several metrics
measuring classification and cluster performances have been used to quantify the same.

Pairwise p-values have also been calculated to support the superiority of n2MFn? over
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FIGURE 3.5: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the PDC dataset by n?MFn? and six other dimen-
sion reduction techniques along with the original data.

other dimension reduction algorithms in terms of producing output from an indepen-
dent set of observations. A p-value less than a particular threshold justifies the statisti-
cal significance of the results. Here, we have taken the threshold value to be 0.05. Thus,
for a dataset, a classification/clustering algorithm and a classification/cluster validity
index, six p-values have been computed comparing the performance of n*MFn? with
that of six other dimension reduction algorithms. As there are four classification/clus-
ter algorithms, there will be a total of 6 x 4 = 24 p-values for each classification/cluster
validity index against each dataset. This part of the experimentation aims to determine
the superiority of dimension reduction by n?MFn? using different types of classification

and clustering algorithms.

Classification

While working with the n?MFn? model for classification, the outcome has been de-

picted by Figures 3.3-3.7. The summary of the count of statistically significant p-values
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FIGURE 3.6: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by n”MFn? and six other dimen-
sion reduction techniques along with the original data.

with respect to n?MFn? has also been presented in Table 3.2.

For four classification techniques, n?MFn? has always achieved the highest accu-
racy score for GLRC (Figure 3.3(a)), PDC (Figure 3.5(a)) and MovieLens (Figure 3.7(a))
datasets and none for ONP (Figure 3.4(a)) and SP (Figure 3.6(a)) datasets. The same
statistics hold when the classification performance metrics are Cohen-Kappa score (Fig-
ures 3.3(c), 3.4(c), 3.5(c), 3.6(c) and 3.7(c)) and Matthews Correlation Coefficient score
(Figures 3.3(d), 3.4(d), 3.5(d), 3.6(d) and 3.7(d)). When the F1 score is used as the classi-
fication performance indicator, the outcome favouring n?MFn? is the same as that of the
Cohen-Kappa score for GLRC (Figure 3.3(b)), PDC (Figure 3.5(b)) and MovieLens (Fig-
ure 3.7(b)) datasets. For the ONP dataset (Figure 3.4(b)), the count favouring n’MFn?
is only one, and for the SP dataset, this value is zero (Figure 3.6(b)).

The preceding description clearly shows that in the majority of situations, for GLRC,
PDC and MovieLens datasets and four types of classifiers, the accuracy score of the

transformed dataset using n?’MFn? has surpassed the others. For ONP and SP datasets,
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FIGURE 3.7: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by n?MFn? and six other
dimension reduction techniques along with the original data.

n’MFn? generated low rank embedding has failed over other dimension reduction
techniques. Accuracy quantifies how often the model is correct. Together with ac-
curacy, we have computed the F1 score, i.e., the harmonic mean of precision and recall.
Figures 3.3-3.7 show that n2MFn? has outperformed other models in terms of F1 score
in most of the situations except SP dataset. Thus, the supremacy of n?MFn? is justified
by its Accuracy and F1 score. The pictorial illustrations show that n”?MFn? has resulted
in greater positive Cohen-Kappa scores and outperformed the others in all of the sit-
uations for GLRC, PDC and MovieLens datasets. As a consequence, it is possible to
conclude that n2MFn? is able to maintain and learn the inherent qualities of the input,
resulting in higher scores for GLRC, PDC and MovieLens datasets. Whereas for ONP
and SP datasets, n”MFn? has performed poorly. Matthews Correlation Coefficient as-
sesses the quality of binary and multiclass classifications. A higher MCC score implies
better agreement, which means that the model can preserve the class properties of the
original dataset in the altered dataset as well. Figures 3.3-3.7 show that n?MFn? has
outperformed the other models in terms of MCC score for GLRC, PDC and MovieLens
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FIGURE 3.8: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the GLRC dataset by n?’MFn? and six other dimension
reduction techniques along with the original data.

TABLE 3.2: The summary of the count (out of 24) of statistically significant p-values for
each classification performance metric against each dataset with respect to n?’MFn?.

Dataset ACC FS CKS MCC

GLRC 24 23 23 22
ONP 18 20 19 20
PDC 22 22 23 23
sp 10 11 13 11

MovieLens 23 22 11 09

datasets. The preceding discussion demonstrates the advantage of n”?MFn? over the
other dimension reduction algorithms in terms of both statistical and intrinsic property
preservation metrics. Thus, for GLRC, PDC and MovieLens datasets, n?MFn? has sup-
pressed others but for ONP and SP datasets the model performance is comparable with

others.

For each classification performance index against each dataset, out of a total of 24 p-
values, the count of p-values less than the assumed threshold (0.05) value is presented

in Table 3.2. Tables A.1-A.20 of Appendix A depicts the actual p-values of n?MFn?
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FIGURE 3.9: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the ONP dataset by n”MFn? and six other dimension
reduction techniques along with the original data.

over six other dimension reduction techniques for each of the five datasets, each of the
four classifiers and each of the four classification performance evaluators. The above
statistics indubitably quantify the quality of low rank embedding produced by n?MFn?

over others.

Clustering

For clustering purposes with the n?MFn? model, Figures 3.8-3.12 present the outcome.
Table 3.3 provides an overview of the count of statistically significant p-values for

n®MFn? for clustering.

n?MFn? has achieved the highest performance score for the Adjusted Rand index
for the GLRC (Figure 3.8(a)), PDC (Figure 3.10(a)) and SP (Figure 3.11(a)) datasets for
all four clustering approaches considered here. This count is three out of four for the

ONP (Figure 3.9(a)) dataset and one out of four for the MovieLens (Figure 3.12(a))
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FIGURE 3.10: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the PDC dataset by n?MFn? and six other dimension
reduction techniques along with the original data.

dataset. When using the Jaccard Index as the cluster validity estimator, n"”MFn? has
outperformed the others in four out of four clustering algorithms on all except the
ONP dataset, for which the count is two (Figures 3.8(b), 3.9(b), 3.10(b), 3.11(b), 3.12(b)).
For both NMI and AMI scores, n2ZMFn?2 projected transformed space has outperformed
others three out of four times for the ONP (Figures 3.9(c), 3.9(d)) dataset and for other

four datasets considered here the count is four out of four.

Adjusted Rand Index (ARI) evaluates the similarity of two data clusterings. Fig-
ures 3.8-3.12 show that n?MFn? has outperformed other dimension reduction tech-
niques across five datasets and four clustering algorithms in terms of ARI score. The
Jaccard Index is used to determine the similarity of two sets. n?’MFn? has outperformed
the rest in terms of the Jaccard Index. Thus, it may be argued that n?’MFn? has learnt
the fundamental features of the input and mapped them to a low rank representation
well. NMI is defined as the normalisation of the Mutual Information score to scale the
outcomes in [0,1]. This metric is unadjusted for chance. The AMI score, on the other

hand, is invariant to the permutation of the class or cluster label. Figures 3.8-3.12 show
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FIGURE 3.11: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the SP dataset by n”MFn? and six other dimension
reduction techniques along with the original data.

TABLE 3.3: The summary of the count (out of 24) of statistically significant p-values
for each cluster performance metric against each dataset with respect to n?’MFn?.

Dataset ARI JI NMI AMI

GLRC 24 23 22 22
ONP 16 21 21 22
PDC 23 24 23 23
Sp 19 18 21 21

MovielLens 23 23 22 24

that n?MFn? has outperformed other dimension reduction strategies in terms of both
NMI and AMI scores. The improved performance of n?MFn? demonstrates that the
low rank representation of the datasets using n”MFn? has been able to maintain the

inherent qualities of the original data better than the other approaches considered here.

Out of the total of 24 p-values for each cluster validity index against each dataset,
Table 3.3 displays the count of p-values that fall below the assumed threshold value,
i.e., 0.05. The aforementioned tally unequivocally demonstrates how good low rank

embedding produced by n?MFn? is compared to others.
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FIGURE 3.12: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by n?MFn? and six other
dimension reduction techniques along with the original data.

3.4.3 Discussion

The ability to preserve the local structure of data by n2MFn? over others has been stud-
ied and discussed using the trustworthiness score. The performance of n?MFn? has
been compared individually with other six dimension reduction methods over all five
datasets, categorized into two sets based on the relation between the number of at-
tributes and samples, as discussed above. It has been observed that n?MFn? has show-
cased better performance than three out of six other methods in dimension reduction

in terms of preservation of the granular relationship of data.

Different types of classification techniques have been considered to validate the per-
formance of low rank approximation by the n?MFn? model. For example, KNN is a
non-parametric approach; whereas NB algorithm is a probabilistic classifier; MLP is a
feed-forward artificial neural network; and QDA is a generative model-based classifier.

We have also used two different types of clustering algorithms. MBkM, FcM and GMM
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are centroid-based clustering algorithms. On the other hand, BIRCH is a hierarchical

clustering methodology.

For five datasets, four classification algorithms and four classification performance
measures, a total of 5 x 4 x 4 = 80 performance scores are there for each dimension re-
duction algorithm. It can be seen that n?MFn? projected datasets have performed better
than the original data on 51 out of 80 occasions. On the other hand, n?MFn? has secured
the highest rating of 49 times out of 80 when comparing the performance with other
dimension reduction algorithms. n?MFn? has almost succeeded in all cases for GLRC,
PDC and MovieLens datasets, whereas for ONP and SP datasets the performance is

comparable. Thus, the supremacy of n?MFn? over the others is comparable.

The low rank embeddings produced by n?MFn? for different datasets are not only
capable of outperforming the original and other dimensionally reduced datasets pro-
duced by different dimension reduction methods. They are also proven to be statisti-
cally significant in terms of the comparative p-values they produce. The overall count
of statistically significant results related to n?MFn? for all classifiers and classification
metrics is 92 out of 96 (4 x 4 x 6) for the GLRC dataset. The same count for the PDC,
ONP, SP and MovieLens datasets are 77, 90, 45 and 65 respectively. Thus the efficacy of
n?MFn? is established over other dimension reduction algorithms in terms of produc-

ing statistically significant low dimensional embedding.

Similar to classification, four clustering algorithms and four cluster validity met-
rics have been used over five datasets to justify the competence of n*MFn?. For clus-
tering, when comparing the performance against the original data, out of 80 possible
cases, nMFn? has registered better performance 75 times. The count of supremacy for
n®MFn? with respect to other dimension reduction algorithms stands out to be 72 out of
80. In light of the preceding discussion, it is clear that in the majority of circumstances,
n?MFn? has proven to be superior to the other dimension reduction approaches con-

sidered here.

In addition to outperforming the original and other dimensionally reduced datasets
produced by different dimension reduction methods, the low rank embeddings gener-
ated by n?MFn? for various datasets have also been shown to be statistically significant
based on the comparative p-values they produce. Considering all clustering algorithms

and cluster validity indexes together, the total number of n?MFn? related statistically
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significant findings is 91 out of 96 (4 x 4 x 6) for the GLRC dataset. The PDC, ONP, SP
and MovieLens datasets have the same count of 80, 93, 79 and 92, respectively. Thus, it
is proven that n?MFn? is more effective than other dimension reduction algorithms in

generating low dimensional embeddings that are statistically significant.

As previously stated, the datasets on which we have experimented are divided into
two sets depending on the relation between the number of samples and attributes.
n’MFn? has demonstrated superiority for both types of datasets, proving its ability in
dimension reduction, and invariance to the relationship between the number of sam-
ples and attributes. Furthermore, the number (r) of the reduced dimension is not lim-
ited by the number of samples or attributes. These properties distinguish n?’MFn? from
several other widely used dimension reduction approaches. As a result, it is estab-
lished that n?MFn? is widely applicable and not limited by input dimension. As a
consequence, n?MFn? has outperformed the other six cutting-edge dimension reduc-
tion methods for various classification and clustering approaches on two separate cat-

egories of datasets.

The above two modes of experiments establish the superior performance of n?MFn?
not only competing with six other state-of-the-art dimension reduction techniques but
also showcasing their comparative performance to preserve the local structure of data.
The need for dimension reduction in contrast to working with the original data has
also been demonstrated. The results have also been judged statistically and have been

proven to be so.

3.5 Convergence Analysis

We have established the convergence of the proposed n?MFn? model using experimen-
tal results. The convergence plots of n"2MFn? for all five datasets is shown in Figure 3.13.
The plots illustrate the variation of the cost function ® against iteration for all five
datasets. Overall, the nature of the cost over time validates that the model converges.
It can also be observed from the plots that the initial cost value for all the datasets starts
from a high position and after a few initial epochs, the value of the cost function has

almost reached a straight line parallel to the horizontal axis. That is, there are very
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nominal changes in the cost value. Thus, we can conclude that the model has con-
verged. Figure 3.13(a) depict the cost versus iteration plot for the GLRC dataset with
r = 69. Similarly, Figure 3.13(b) and 3.13(c) represent the convergence plots for the ONP
(r = 30) and PDC (r = 252) datasets respectively. The plot related to the SP dataset is
portrayed in Figure 3.13(d) with » = 15 and Figure 3.13(e) depicts the convergence plot
for the MovieLens dataset with r = 269.

Dataset = GLRC Dataset = ONP Dataset = PDC Dataset = SP Dataset = MovielLens
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FIGURE 3.13: Cost vs. iteration plot of n"2MFn? for (a) GLRC, (b) ONP, (c) PDC, (d) SP
and (e) MovieLens dataset.

3.6 Analysis of Computational Complexity

Computational complexity of n*MFn? is calculated in terms of the number of opera-
tions done. n?MFn? is a shallow neural network architecture with only three layers:
input, hidden and output. The input, i.e., each row of X, passes through the identity
function at the input layer, hence the computational complexity is O(mn). The com-
putational complexity for the next step, as defined in equation (3.3.3), is O(mnr). The
value of Y is now passed via the activation function ¢ (equation (3.3.2)) and the com-
plexity of this operation is O(mr). The subsequent step, equation (3.3.5), necessitates
O(mrn) operations. Finally, the output layer computes X (equation (3.3.4)) with O (mn)
complexity. As a result, O(mn + mnr + mr 4+ mrn 4+ mn) operations are required for the
forward pass. We may express the computational complexity of the forward pass as
O(mnr) after eliminating the lower order terms. Similar to this, the complexity of com-
puting @ (equation (3.3.6)) is O(mn + n?). Updation of weights through backpropaga-
tion algorithm requires O (mnr + n?r) operations that are defined in equations (3.3.19)
and (3.3.22). As a result, an epoch has a computational complexity of O(mnr + n?r).

For such t, epochs, the complexity is O(t,(mnr + n’r)).
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3.7 Conclusions

There exist a large number of methods for dimensionally reducing a big dataset. The
benefits of NMF and artificial neural networks have been combined in this chapter. A
shallow neural network model, called n2ZMFn?, has been developed for the task of NMF
towards dimensionality reduction. n?MFn? is composed of two phases: deconstruction
and reconstruction. The reduced dimension r should be smaller than the number of
teatures (n). The sample size m does not constrain the choice of r. The methods for ini-
tialisation of weights, transfer function, objective function and the learning algorithm

have been designed in a manner that it supports optimal learning of n?’MFn?.

Extensive experimentation on five well-known datasets has been performed to jus-
tify the efficacy of n2MFn? over the original dataset as well as over six other notable
dimension reduction strategies. Along with three conventional dimension reduction al-
gorithms, three additional NMF-based dimension reduction strategies have been cho-
sen for comparison. Four different classification/clustering algorithms and four dif-
ferent classification/clustering performance metrics have been used for downstream
analyses. The statistical significance of the resultset has also been depicted. When
compared with the original dataset in terms of classification n?MFn? has performed
better in three out of five datasets, equally good in one and not so good in the remain-
ing dataset. In terms of clustering n?MFn? have performed better for all five datasets.
Thus, overall the need for dimension reduction has been established. In terms of classi-
fication, n2MFn? has outperformed other dimension reduction techniques in three out
of five datasets, while not performing that well in the remaining two. Whereas, for
clustering, n?MFn? has always performed better. Thus, the authority of n”?MFn? over
the other dimension reduction strategies taken into consideration has been justified by
the results obtained. The test of statistical significance between the resultset produced
by n?MFn? and that of other dimension reduction algorithms also justifies the efficacy
of n2MFn?. Trustworthiness score has been used to assess the quality of local struc-
ture preservation in the low dimensional embedding by n?MFn? in comparison with
other dimension reduction techniques considered here. Experimental results show that
the performance of n?MFn? is competitive with others in terms of preserving the local

structure of data. It is better than half of the methods compared with.
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The present chapter portrays NMF in a shallow neural network architecture. How-
ever, deep neural network architecture can be used for the task of NMFE. Deep learning
framework should be used to incorporate the advantage of hierarchical learning dur-
ing dimension reduction of huge datasets. ReLU activation function has been used
in n?MFn? to satisfy the non-negativity constraint of the problem, but ReLU activation
function suffers from the data loss problem, because of its nature of discarding negative
elements. Replacing ReLU with some other activation function has been incorporated

in the next chapters.



Chapter 4

Deep Neural Network for
Non-negative Matrix Factorization

(DN3MF)

4.1 Introduction

In the previous chapter, a shallow neural network model, nZMFn2, has been developed
for NMF aiming towards dimension reduction of large datasets. We have seen a mixed
performance of n?’MFn? in contrast to the original dataset and other dimension reduc-
tion techniques. Some points have also been highlighted where possible modifications

can be made over n?MFn? for an enhanced model design.

In this chapter, we have attempted to combine the advantages of the traditional
iterative procedure with the current deep learning framework. One of the major ad-
vantages of deep learning is hierarchical learning. Thus, the representation of data is
learned in a layer wise manner. We have developed a deep learning model, named
Deep Neural Network for Non-negative Matrix Factorization (DN3MF), for the task
of NMF aiming towards low rank approximation of the data matrix [27]. There are
two stages of the model, namely, pretraining and stacking. The pretraining stage is ac-
complished by a shallow neural network architecture and the stacking stage is a deep

neural network architecture.
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The performance of DN3MF is basically a composite effect of the two-stage training
as well as the neural network’s ability to hierarchical learning and optimise parameters.
Each of these stages is divided into two phases, namely, deconstruction and reconstruc-
tion. The novel architecture of DN3MF guarantees the non-negativity criteria of the
model. The use of sigmoid activation function helps to alleviate the data loss problem
in contrast to ReLU. To satisfy the non-negativity criterion of the model sigmoid acti-
vation function has been judiciously modified. The exploding or vanishing gradient
problem has been resolved by using the Xavier initialization approach. Regularisation
has been used in the formulation of the model’s objective function to ensure the best
feasible approximation of the input matrix. The development of a unique adaptive

learning mechanism has helped to achieve the objective of the model.

The superiority of DN3MF over seven well-known dimension reduction techniques
has been demonstrated in two ways. The ability of DN3MF to preserve the local struc-
ture of data in low dimensional embedding has been judged over that of other dimen-
sion reduction algorithms. On the other hand, the quality of dimension reduction with
respect to downstream analyses using classification and clustering has been performed.
Different types of datasets, classification techniques, clustering algorithms and evalua-
tion indexes have been used to support the efficiency of DN3MEF. Moreover, the statis-
tical significance of the results has also been thoroughly experimented with. The com-
putational complexity of DN3MF along with the convergence analysis has also been

presented.

The remaining parts of the chapter have been organised as follows. Section 4.2 dis-
cusses the motive behind the architecture and learning of DN3MF. Section 4.3 show-
cases the comprehensive design and derivation of the respective rules of learning. Sec-
tion 4.4 illustrates the outcomes of the experimentation process presented in Chapter 2,
including satisfactory analysis. Sections 4.5 and 4.6 provide the DN3MF convergence
and computational complexity analyses, respectively. Finally, Section 4.7 brings the

chapter to a conclusion.
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4.2 Motivation behind Architecture and Learning

The deep Neural Network for Non-negative Matrix Factorization (DN3MF) model is
a two-stage architecture developed for the task of NMF towards low rank approxima-
tion. Pretraining and stacking are the two stages of DN3MF. Pretraining is achieved
using a shallow neural network architecture and stacking is performed using a deep
neural network architecture. Each of the stages is divided into two phases, called de-

construction and reconstruction.

In NMF, we try to break down (deconstruct) a given matrix into two non-negative
factor matrices. For both the pretraining and stacking stages of DN3MF, first, we de-
construct a given matrix into two factor matrices and then reconstruct the input matrix
from these factor matrices. The novel architecture of the stacking stage of DN3MF has
multiple deconstruction layers and the same number of reconstruction layers. Hence,
the architecture can be referred to as the Multiple Deconstruction Multiple Reconstruc-
tion (MDMR) framework. It may be mentioned here that in a standard autoencoder,
unlike in DN3ME, an encoded version of the data is generated. This is followed by
decoding the encoded version to get an approximate version of the original data. In
DNB3ME, the input to the model is transformed into the latent space in the deconstruc-
tion phase. The latent space representation is used as the input to the reconstruction
phase that tries to reconstruct the best possible approximation of the input while satis-

tying the non-negativity requirement.

Different architectural constraints have been addressed. To meet the non-negativity
criteria, sigmoid activation function has been modified, and thus, the data loss problem
has also been solved. Sigmoid function takes the input of any interval (—oo, +c0) and
maps the output to the interval (0, 1). There exist other activation functions, like ReLU,
which also guarantee non-negativity by dropping the negative terms. In that sense,
ReLU activation function suffers from the data loss problem, whereas sigmoid function
does not. This modification of the sigmoid function is intended towards ensuring the

non-negativity of the factors obtained by the model.

The exploding or vanishing gradient problem has been tackled by maintaining the
variance of the activation same across every layer. Xavier initialization [34] technique

has been used in this regard to initialize the weights of the shallow neural network.
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The objective function has been designed following the same procedure of n?MFn?
as described in Chapter 3 Section 3.2. Momentum factor has been used to speed up the
convergence of the gradient-based optimization. The learned weights in the pretraining
stage are used as the initialization of weights of the stacking stage. The architecture and

respective learning algorithm of the stages of DN3MF have been described below.

4.3 DN3MF

In this section, we design the two-stage architecture of DN3MF and formulate its learn-

ing rules in detail.

4.3.1 Pretraining Stage

The first stage of DN3MF is carried out with the help of a shallow neural network ar-
chitecture. The primary aim of this stage is to determine the initial weight values for
the stacking stage of the model. The given data matrix U = [u;],,x is processed using
the procedures outlined in Chapter 2 Section 2.3 to produce a matrix X = [x;]ux, with
each element being non-negative. Each row of X now serves as an input to the pertain-
ing stage of the model. The design of the shallow model, followed by its learning has

been described in the next two sections.

4.3.1.1 Architecture of the Pretraining Stage

The pretraining stage architecture of DN3MF is the same as the architecture of n?MFn?
as described in Chapter 3 Section 3.3.1. A dataset having m samples and each sample
having n features, acts as the input to the model. The hidden layer has been designed
to act as the slender layer of the model having r nodes and thus extracts r < n’ fea-
tures. There is no restriction of r with respect to the number of samples m (Section 3.3.1,
Chapter 3). The only difference with n?MFn? is for the hidden and output layer nodes,
a modified version of the sigmoid activation function ¢ has been used. Sigmoid activa-
tion function S is defined as

S(x) = 4.3.1)
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We have defined o as,

) — S(x), ifS(x) >0 ws2)

€, otherwise
where € > 0 is a user-specified small number. We have chosen € = 0.001 to avoid the
problem of division by zero during the execution of the algorithm. The hidden layer
output B and weight matrix W are the two non-negative factors of the regenerated

input matrix X.

4.3.1.2 Learning of the Pretraining Stage

The objective function of the model is the same as described in Chapter 3 Section 3.3.2

and is defined as

p=1j=1

(xpj — Xp)? +

Z Y E(Z vywyj — 5ij)? (4.3.3)

N\H

For minimising ® with respect to V and W, the weight matrices are modified itera-

tively. Adopting the gradient descent technique we get

V(t + 1) = V(t) - 7/V(t) o Vv(t)QD (434)

and

W(t+1) = W(E) — fjwr) © Vwn @ (4.3.5)

Here t is the iteration count. The matrices 77y ;) and 77w ;) are two hyper-parameters of
the model, called learning rates corresponding to V and W. The terms Vy ;) and V()

are the gradient operators with respect to the weight matrices V and W respectively.

Calculating the derivatives of ® with respect to v;; and wy; fori = 1,2,..,n, 1 =

1,2,..,randj =1,2,..,n, we get

0P 1 & & ~
P — Y ) (xpj = ) %pj (1 = )by (1 = by xpi

p=1j=1
n
Z E vll/wl/] — Z] ZU[] (436)

j=1

)\
7
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and

e
awl]-

m
= Z Xpj — Xpj)Xpi(1 — Xpj) by + - Z( szl/wll — djj 2111) (4.3.7)
pi

1

Using equations (4.3.6) and (4.3.7), Vv and Vw can be written as

Vyd = —ﬁXT((((X ~X)oXo(1—X))WT)o(Bo(l—B)))
+%(VW—I)WT (4.3.8)
and
Vw® = —%BT((X —X)oXo(1-X))+ %VT(VW —1) (4.3.9)

Now, rewriting the learning rules, defined in equations (4.3.4) and (4.3.5), using

equations (4.3.8) and (4.3.9), we get

V(E+1) = V(1) — v © <_mlnxT((((x —X) 0X o (1-X))WT)

o(Bo(1—B)))+ %(VW - I)WT> (4.3.10)

A
+ﬁVT(VW — 1)) (4.3.11)

According to the architecture of the model, the elements in V are unrestricted, but
the elements of W should be non-negative. To satisfy this criterion, we choose 7w in
such a manner that the negative terms arising from the computation in equation (4.3.11)

get dismissed. We choose 1w as

nw = (mnW) @ (BT(XoX +XoXoX)) (4.3.12)



4.3. DNSMF 69

Here, ©® denotes Hadamard division. Now, using equation (4.3.12), equation (4.3.11)

becomes,

W(t+1) = (W(t) @ (BT (XoX+XoXo0X)))oBT(XoX+XoXoX))

= Z(W(H) @ (BT(Ro X+ X0 X0 X)) o A(V(HT (V(OW(E) ~ 1)) (43.13)

It is to be noted that the elements in X, B, W and X are all positive. Hence the
first part on the right-hand side of the equation (4.3.13) is positive. The second part
of the equation (4.3.13) contains the expression (VW —I). As per the objective of the
model, this term will gradually vanish over the iterations because the value of VW will
tend towards I. Even after the above, during back-propagation of the network, if some
of the elements of W become negative then those negative values are replaced with
0.001. Hence, the consistency of the model with respect to the non-negativity criterion

is maintained.

A is the regularizing parameter used in the objective function of DN3MF. The value
of A decides the amount by which we want to penalize the model’s flexibility. We
have used ridge regression in the model and it is used to overcome the overfitting
of the model. The ridge regression technique works by preventing coefficient values
from becoming too high. For A = 0, the effect of the penalty term goes away and
as A — oo, the effect of the shrinkage penalty grows. Thus, we have chosen A =
0.1 to have a controlled effect on the regularizer when DN3MF tries to regenerate the
input. All the elements of the hyper-parameter matrix 7y have been set to 0.1, i.e.,
v = [0.1],x,. Hence, the update rules for V. and W are given by equations (4.3.10) and
(4.3.13) respectively.

To speed up the convergence of the gradient based optimisation technique we use
the momentum factor. It is a method to accelerate learning in low curvature directions
while remaining stable in high-curvature directions. While small values of a do not
have much effect in the process of learning, large values (¢ > 1) may lead to lower
importance in minimizing the objective function. Thus, we have considered « € (0,1),
in general, and &« = 0.9 in particular for updating the weight matrix V. Hence, we can

rewrite equation (4.3.4) incorporating the momentum factor ay as

V(t + 1) = V(t) — WV(t) (¢] VV(t)CD + Ky O vV(t—l)q) (4314)
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Let there be s successive shallow models in the pretraining stage of DN3MF. The
first shallow network takes X(© as its input. The output X1 = [x;l)]mwl of the slen-
der layer of this first shallow model is used as the input for the second shallow model.
Similarly, the slender layer output of the second shallow model acts as the input for the
third shallow model and so on. Thus the slender layer output of the s shallow model
is X(5) = [x;SiZ]mxrs- The term 7; is the required reduced dimension, and thus, concludes
the first stage of DN3MF. Training of these s shallow networks is performed one after
another. For this purpose, the target output of the nodes in the reconstruction layers of
these s shallow networks are X(© X1 X(-1), Following the properties of the shal-
low architecture, the entries in the weight matrices v, v V) are unrestricted

and the entries in the weight matrices W(l), W(z), . W) are non-negative in nature.

Figure 4.1 depicts the ¢ (1 < ¢ < s) shallow model.

X(g_yl) — O'(Z(g_l) )

mrg_q

mrg_q

FIGURE 4.1: Pretraining stage architecture of DN3MF.

4.3.2 Stacking Stage

A deep neural network architecture is used in the second stage of DN3MEF. The learned
weights of the pre-trained shallow models are used to initialise the weight values of
the deep model. This stage fine-tunes the weight values. The architecture of the deep

model along with its learning has been presented in the following sections.
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4.3.2.1 Architecture of the Stacking Stage

The stacking stage of the model uses s pretrained shallow neural network models
stacked together forming a deeper network architecture. As described in Chapter 2
Section 2.3, the input data matrix U = [u;],,x, is processed to form the matrix X0 =
[x](ggg]mxro, where 7y = n. This matrix X() is used as the input to the deep neural net-
work model. The model uses the same set of activation functions, viz., the identity

function and the modified version of the sigmoid activation function ¢, as defined ear-

lier. The architecture of stacked pre-trained shallow models is illustrated in Figure 4.2.

X/(\O)m,ro = G(Z(O)m,ro)

Xﬁ)m,rl = O-(Z(l)m,rl)

X(s— 1) o

X(s—l) — G(Y(S_l)mr _1)

x@ - 0(y(1)mr1)
]/(1)%’1"1

X(O)m,ro

FIGURE 4.2: Stacking stage architecture of DN3MF.

The model can be divided into two phases, namely, the deconstruction phase and
the reconstruction phase. In the deconstruction phase, the input data is interpreted in

lower dimensional representation in a step-wise approach and in the reconstruction
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phase, the aim is to regenerate the input data from the latent representation of data
in a step-by-step fashion. The architecture has the input layer, followed by s decon-
struction layers and on top of them, there are s reconstruction layers. As the stacked
model has multiple deconstruction layers and multiple reconstruction layers, the archi-

tecture is described as multiple deconstruction multiple reconstruction deep learning

architecture. The input layer, having ro = n nodes, receives X0 = [x;?-g]mxro as its
input and with the identity function as the activation function of the layer, generates

the output same as its input. The input layer is followed by the first deconstruction

layer having r; nodes, where r; < rg. The term v = [vl(oll)1 Jroxr, is the weight matrix
between the input and the first deconstruction layer. V(1) is initialized by the trained
V() in the first pretrained shallow model. The first deconstruction layer generates out-
put XM = [x;%l)]mxru where X = ¢(YM) and YO = | gl)]mxrr The term Y is
calculated as YV = XOvD, Now, X1 acts as the input to the second deconstruction
layer and follows the same procedure as the previous layer. Thus, for d (1 < d < s)
deconstruction layer,

X = g (YW) (4.3.15)

where X(@) = [x;(zj]mxr , is the output of d" deconstruction layer and Y = [Y;Ez,)]mxf "
and

Y@ = x(@-Dy(@) (4.3.16)

where V(@ is the weight matrix between the (d — 1) and d deconstruction layer of

the model.

The weight matrix V(%) is initialized by the trained V(%) in the d"" pretrained shallow
model. It is to be noted that 7"~ > 9. Thus, for d = s, the final deconstruction layer
is the slenderest layer of the model in terms of the number of nodes in that layer. This
slenderest layer acts as the bottleneck layer of the model and generates X(*) = [xéslz]m xrs
as its output. Thus, the model achieves the targeted reduced dimension r;, the number

of nodes in this layer. This slenderest layer concludes the deconstruction phase of the

model and marks the beginning of the reconstruction phase of the model.

The slenderest layer is followed by the first reconstruction layer of the model with

X(©) acting as the input for the same and W(*) = [w](j])g _Jroxr., is the weight matrix
between these two layers. The weight matrix W) is initialized by the trained W)

in the s pretrained shallow model. The first reconstruction layer generates output



4.3. DNSMF 73

—
—

X6 = [ V), where X6-D = o(26)) and 267 = 25 V), . The

term Z~1) is calculated as Z(~1) = X()W(), The second reconstruction layer receives

—_—

X(-1) as its input and follows the same procedure as the previous layer. Thus, for

et" (1 < e < s) reconstruction layer,

X(=¢) = g(Z07¢) (4.3.17)
where X(5-¢) = [x;j:)]mwsff is the output of the e reconstruction layer. Z6~¢ =

[Z(S*E)

i Jmxr,_, is calculated as
s—e ‘

XE—etDWs—etl) fore =1
Z(sfe) — (4.3.18)

—

X—etDW—etl) for1 <e<s

where X6—¢tl) = [x;“;:zl)]mws_e .1, for e = 1, is the output of the slenderest layer,

To—orl) _ [u(s—et1) . th .
X(s—etl) = [xpjH+1 lmxr, o1, for 1 < e < s, is the output of (e — 1)" reconstruction
layer. WGt for e = 1, is the weight matrix between slenderest layer and e'" re-

(s—e+1)

construction layer of the model, W for 1 < e < s, is the weight matrix be-

tween (e — 1) and e reconstruction layers of the model. W(~¢*1) is initialized by
the trained W=¢+1) in the (s — e + 1) pretrained shallow model. We impose the re-

striction 75_,41 < 7s—.. Thus, for e = s, the final reconstruction layer, also known

—

X(0) — [
as the output layer of the model, generates X(0) = [xpjo

the architecture of the stacking stage tries to regenerate the input to the model, i.e.,

|mxr, as its output and thus

X(©). As mentioned before, the elements in the weight matrices V{1, V), V() are
unrestricted and the elements in the matrices W), ..., W2 W) are non-negative. The
stacked model is finetuned maintaining these non-negativity constraints. The slender-

est layer output X®) is one of the two non-negative factors of the regenerated input

—

matrix X(©). The combination of the weight matrices W along with the activation func-

—

tion ¢ constitutes the other non-negative factor of X(). Thus, we can write

—

XO0) = o((..o(c(XOWEYWED) ywh) (4.3.19)
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4.3.2.2 Learning of the Stacking Stage

The objective of the model is to minimize ||X(O) — )?@ ||r with respect to vl v v

S S
W), .., W2, W subject to I v HW(S*EH) = I, where I = [5;],xr, is the Iden-
d=1 e=1
tity matrix of order ry. Thus, the cost function ® is defined as

n

): (aij — 6ij)? (4.3.20)
]:1

._\

1o Oy, A
=l Yol )

p=1j=1 i

I\J\'—‘
1P

Similar to the pretraining stage, the first term of equation (4.3.20) measures the re-
construction error and the second term acts as the regularizer. A is the regularizing
parameter and J;; is the Kronecker delta. In order for the model to learn and provide a
meaningful representation of the input in the lower dimensional space, reconstruction

error has been used as guidance. The term A = [aij]roxro is defined as

1 Ts Ts—1

g =L YL Y 1Y ool ol Jwl) 1 Jwl)] (4.3.21)

=1 i=1is =1 i=1

Here, it is to be noted that n = r¢, i; = js, i = ip and j = jo. For minimizing ® (equation
(4.3.20)) with respect to v and W(e), forl<d<sand1l <e <s, V@) and W) are

iteratively modified as
V@D (t41) = V(1) + AV (1) (4.3.22)

WO (t4+1) = WE (1) + AW (¢) (4.3.23)

Adopting the gradient descent technique, we get
V@Dt 4+1) = V(1) — 5yw o Vyu @ (4.3.24)

WE(t+1) = WO () — iy © Vigo @ (4.3.25)

Here, o denotes the Hadamard product and the learning rates corresponding to V(@)
and W) are denoted by matrices 77y and 7y, the hyper-parameters of the model.
The terms Vy4) and V) denote gradient operators with respect to V@ and W

respectively.
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Now, calculating derivative of ® with respect to WE© we get

71X( T W % HV H q’+1))T
q'=1
(A-T1), fore=1
T S s—e
*1x( ) Ope + %(Hv(q) H Wi q+1))T
1 =1
Vo ® = : o (4.3.26)
( JT we+)T forl<e<s
q’*s e+2
_1 X( W ;12 HV
9=
S
(A-D)( J[ we T, fore=s
L q'=s—e+2
where
(X(O)_@)o)?(o\)o<1—@), fore =1
Owe = A . (4.3.27)
(O WED ) o XD o (1 — X)), otherwise
Calculating derivative of ® with respect to V(9), we have
d—1
E(ITVOT(A-T1)
q=1
S
(TTwt-7+)T, ford =s
q'=1
A ﬁ GNT
£ ) (A1)
1 (L LV
Vi ® = %XWUT@V@ A (4.3.28)
S
H HW —q'+1) I, forl<d<s
g=d+1
A(A-T)
H v H W= qu))T, ford =1
q=d+1 q'=1
where
O WE ) oXE o (1-X6),  ford=s
Oyw = (O ) ( ) (4.3.29)

(@V(M)V(””T) oX® o (1—-X@), otherwise
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Using equations (4.3.26) - (4.3.29), we can write equations (4.3.24) and (4.3.25) as

_ T
<m’1x(d U Oy + (A1)

n

HV HW qH ),fordl

q=d+1
d 1
(1 Xt Te,, V)T
q:1
VO (t+1) = VO(t) — gy o
H v —q “ ,forl<d<s

q=d+1

(1x(d 1) @

HW —7 1) ),fords

V

:Ii“

-
Il
—

(4.3.30)
and
( T s s—e
=LX(©) @i + %(H v@) H W=+ T
q=1 q'=1
(A-T1)), fore=1
T s s—e
—1x(e) Ow + %(H v@) H w—a +1))T
q=1 q'=1
WOt +1) = WO(E) — gy 0 5
[T We )T ] fori<e<s
q'=s—e+2
(1x< we + 2 ( HV
H WOE=THINT | fore =
q'=s—e+2

(4.3.31)

As per the definition of the model, the elements in V@ are unrestricted and the
elements in W(®) have to be non-negative. Following similar arguments given in the
pretraining stage, the hyper-parameters A, 17y and 77y, for1 <d <sand1 <e <s
is set to 0.1. Thus, the update rules for Viand W¢, for1 <d <sand1 <e < sare given
by equations (4.3.30) and (4.3.31) respectively. Like pretraining, for fast convergence,

we use momentum factors ay = 0.9 and ay) = 0.9 and thus the equations (4.3.24)
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and (4.3.25) becomes
V(d) (t —|— 1) = V(d) (t) — 77V<'7l> o VV@CID —|— lXV(d) (@] Vv(t_l)wcb (4332)

WE (£ +1) = WO () = iy © Vigio @ + o © Vg1 P (4.3.33)

4.4 Experimental Results, Analysis and Discussion

There are two parts to the presentation and justification of the performance of DN3ME.
First, the degree to which DN3MF is able to maintain the local structure of data has
been compared to assess the quality of its dimension reduction. Additionally, an anal-
ysis and decisiveness on the effectiveness of the low rank embedding in comparison to
the original data has been made to justify the necessity of dimension reduction. Second,
the discriminating power of the dimensionally reduced dataset has been investigated
for downstream analyses, such as clustering and classification. It has also been investi-
gated how statistically significant the outcomes of DN3MEF are in comparison to other

dimension reduction methods.

As stated earlier DN3MF is a two-stage model, namely, the pretraining stage and
the stacking stage. The objective of DN3MF is to reduce an original n dimensional
feature space to r dimensional transformed feature space. DN3MF has been designed
to have s shallow networks. For the purpose of demonstration, we have considered
s = 2. Hence, the pretraining stage consists of two shallow neural networks. The
first one projects the original n dimensional feature space to r; dimensional feature
space, where rq is defined as, r; = n — "*5*. The second shallow network receives the
r1 dimensional feature vector as input and transforms to r dimensional feature space.
In the stacking stage, the deep neural network architecture consists of the input layer,
three hidden layers and the output layer. The number of nodes in these layers is 7, 71,

r, r1 and n respectively from input to output.

Xavier normal initialization technique [34] has been proven effective for neural net-
works using sigmoid type activation functions. For the pretraining stage of DN3MF,

the elements of both the weight matrix V. and W have been initialized using Xavier
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initialization technique. The number of training epochs is decided dynamically. Train-
ing stops on reaching predefined stopping criteria based on the difference in the cost

values of two consecutive epochs.

4.4.1 Quantifying the quality of low dimensional embedding

The ability of DN3MF to maintain the local structure of data has been studied using
the trustworthiness metric and the efficiency of dimension reduction as measured by
classification/cluster performance metrics has been compared with the original data in

order to assess the quality of the low dimensional embedding.

44.1.1 Local structure preservation

The superiority of DN3MF over seven other dimension reduction techniques in main-
taining the local structure of data after dimension reduction has been calculated and
compared using the trustworthiness score. The spider/star plot illustrates the result of

the same (Figure 4.3).
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FIGURE 4.3: Trustworthiness scores of eight dimension reduction techniques includ-
ing DN3MF.
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TABLE 4.1: Sum of trustworthiness scores of eight dimension reduction techniques
including DN3MEF on five datasets.

Dimension reduction techniques Sum of trustworthiness scores

AE 4.55550328220533
PCA 4.38647684863791
UMAP 4.13297187263103
NMF 4.50973409888627
DS-NMF 4.22833659492512
Semi-NMF 4.29147059452664
n*MFn? 4.34404888837219
DN3MF 4.72960521062986

Five datasets have been represented by five axes of the plot. A point on an axis
represents the trustworthiness score of a dimension reduction technique for a given
dataset. As a result, five points on five axes, representing five datasets, correspond to a
dimension reduction method. These points can be thought of as the vertices of a poly-
gon. Consequently, there are eight polygons for each of the eight dimension reduction
strategies (Figure 4.3). The area of coverage by a polygon validates the effectiveness
of the dimension reduction method across all datasets combined. A higher area indi-
cates greater algorithmic performance. From the depiction, we can note that DN3MF
has beaten other dimension reduction techniques for the GLRC, PDC and MovieLens
datasets. For the ONP dataset, the trustworthiness score of DN3MF is better than most
of the others. The region enclosed by the polygon related to DN3MF is depicted in
Figure 4.3 using a shaded colour. By aggregating the individual trustworthiness rat-
ings from each of the dimension reduction techniques for all five datasets, we are able
to calculate the size of the polygon. Table 4.1 shows that DN3MF has the highest to-
tal trustworthiness score out of all the categories. As a result, we can conclude that
DNB3MF generates a low dimensional embedding of higher quality than the other di-

mension reduction techniques considered here.

4.4.1.2 Decision making: Comparison with the original data

The effectiveness of dimension reduction using DN3MF has been assessed by classify-
ing and clustering both the original data and the low dimensional embedding gener-

ated by DN3MF and then quantifying the results using various classification/cluster
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performance evaluators. This study shows that the low rank representation of the data

improves its usability, which is one of the reasons why dimension reduction is required.

Classification

Figures 4.4-4.8 presents the performance of DN3MF and original data in terms of clas-
sification. For the GLRC (Figure 4.4) and PDC (Figure 4.6) datasets, DN3MF generated
low rank embedding has outperformed the original data for all four classifiers in terms
of all four metrics. For ONP and MovieLens datasets, for ACC, FS and MCC perfor-
mance metrics, DN3MF has performed better than the original dataset for three out of
four classification algorithms (Figures 4.5, 4.8). In terms of CKS, for the ONP dataset,
the scoreline favouring DN3MF is three out of four and for the MovieLens dataset, the
same count is two out of four. In the case of the SP dataset, the performance metric
of original data is better than the low rank embedding produced by DN3MF on all

occasions (Figure 4.7).
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FIGURE 4.4: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the GLRC dataset by DN3MF and seven other
dimension reduction techniques along with the original data.
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FIGURE 4.5: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the ONP dataset by DN3MF and seven other
dimension reduction techniques along with the original data.

It is clear from these depictions that, with the exception of the SP dataset, majority
of the time, DN3MF projected low rank embedding has outperformed the original in
terms of classification. This supports the requirement for both dimension reduction and
the capacity to generate low rank embeddings that preserve the fundamental properties

of the data.

Clustering

The performance comparison of clustering done on the low dimensional embedding
produced by DN3MF and the original data has been illustrated in Figures 4.9-4.13. For
the ONP (Figure 4.10) dataset, for all four cluster validity indexes, DN3MF has per-
formed better than the original data with respect to all four clustering algorithms. The
same statistics for the GLRC (Figure 4.9) dataset are three out of four. For the ARI
metric, the performance score is three out of four in favour of DN3MF for PDC (Fig-

ure 4.11), SP (Figure 4.12) and MovieLens (Figure 4.13) datasets. Similarly, for the NMI
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FIGURE 4.6: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the PDC dataset by DN3MF and seven other
dimension reduction techniques along with the original data.

clustering validator, the count favouring DN3MF is four out of four for the same set
of datasets. The same count with respect to the AMI metric is four, four and three out
of four clustering algorithms and for the JI metric, the values are two, three and four

respectively for the PDC, SP and MovieLens datasets.

As a result, it has been demonstrated that the low rank embedding produced by
DNB3MF performs significantly better in terms of maintaining the fundamental charac-
teristics of the original data in terms of clustering. Therefore, dimension reduction is

likewise necessary and warranted.

4.4.2 Downstream analyses and statistical significance: Comparison with

other models

The efficiency of dimension reduction has been evaluated by conducting classification

and clustering on the low dimensional embedding produced by DN3MF as well as
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FIGURE 4.7: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by DN3MF and seven other di-
mension reduction techniques along with the original data.

that produced by the seven other dimension reduction methodologies. To quantify the
same, a variety of measures assessing cluster and classification performances have been
employed. In order to demonstrate the superiority of DN3MF over other dimension
reduction algorithms in terms of generating output from an independent set of obser-
vations, pairwise p-values have also been computed. The statistical significance of the
results is justified by a p-value below a certain threshold. In this case, 0.05 has been
chosen as the threshold. In order to compare the performance of DN3MF with that of
seven other dimension reduction techniques, seven p-values have been calculated for
a dataset, a classification/clustering methodology and a classification/cluster validity
index. There will be a total of 7 x 4 = 28 p-values for each classification/cluster va-
lidity index against each dataset because there are four classification/cluster methods.
This portion of the experiment seeks to ascertain if dimension reduction using DN3MF

is preferable when employing various classification and clustering techniques.

Classification
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FIGURE 4.8: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by DN3MF and seven
other dimension reduction techniques along with the original data.

While working with the DN3MF model for classification, the outcome has been de-
picted by Figures 4.4-4.8. The summary of the count of statistically significant p-values

with respect to DN3MEF has also been presented in Table 4.2.

For four classification techniques, DN3MF has achieved the highest accuracy score
on three out of four occasions for GLRC (Figure 4.4(a)), PDC (Figure 4.6(a)) and Movie-
Lens (Figure 4.8(a)) datasets and once for the ONP (Figure 4.5(a)) dataset. The same
statistics hold when the classification performance metric is MCC score (Figures 4.4(d),
4.5(d), 4.6(d) and 4.8(d)). DN3MF has surpassed the others in terms of the F1 score on
PDC (Figure 4.6(b)) and MovieLens (Figure 4.8(b)) datasets using four out of four clas-
sification techniques, thrice for GLRC (Figure 4.4(b)) dataset and once for ONP (Fig-
ure 4.5(b)) dataset. When the Cohen-Kappa score is used as the classification perfor-
mance indicator, the outcome favouring DN3MF is three out of four for the GLRC (Fig-
ure 4.4(c)) and PDC (Figure 4.6(c)) datasets. For the MovieLens (Figure 4.8(c)) dataset,
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FIGURE 4.9: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the GLRC dataset by DN3MF and seven other di-
mension reduction techniques along with the original data.

the same value is two and for ONP (Figure 4.5(c)) that is one. DN3MF has failed on all

four occasions in the case of the SP dataset.

As the above explanation makes evident, the transformed dataset using DN3MF has
a higher accuracy score than the others in most cases for GLRC, PDC and MovieLens
datasets with respect to four classifiers. For ONP and SP datasets the performance of
DNB3MEF is comparable to the others. A model’s accuracy indicates how frequently it is
accurate. We have calculated the F1 score, or the harmonic mean of precision and recall,
in addition to accuracy. Figures 4.4-4.8 demonstrate that, in the majority of scenarios,
DNB3MF has performed better than other models in terms of F1 score except ONP and
SP datasets, where the performance of DN3MF is worthy of comparison. Therefore, the
superiority of DN3MF is supported by its F1 score and accuracy. The visual represen-
tations demonstrate that DN3MF has either outperformed or has at per performance
with respect to others in most cases for Cohen-Kappa scores. Higher Cohen-Kappa
scores can infer that DN3MEF is able to preserve and learn the intrinsic properties of

the input. A higher MCC score denotes stronger agreement, indicating that the model
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FIGURE 4.10: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the ONP dataset by DN3MF and seven other
dimension reduction techniques along with the original data.

TABLE 4.2: The summary of the count (out of 28) of statistically significant p-values for
each classification performance metric against each dataset with respect to DN3MF.

Dataset ACC FS CKS McCC

GLRC 21 24 25 25
ONP 19 15 20 20
PDC 25 25 25 25
sp 11 11 17 17

MovielLens 22 25 14 10

is also able to maintain the class properties of the original dataset in the transformed
dataset. In terms of MCC score, DN3MF has done better than the other models, for
GLRC, PDC and MovieLens datasets and for ONP and SP datasets the performances
are comparable, as seen in Figures 4.4-4.8. The above explanation illustrates the compa-
rable performance of DN3MF over other dimension reduction algorithms with respect

to intrinsic property preservation criteria as well as statistical measures.

Table 4.2 presents the count of p-values less than the selected threshold (0.05) for

each classification performance index against each dataset, out of a total of 28 p-values.
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FIGURE 4.11: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the PDC dataset by DN3MF and seven other
dimension reduction techniques along with the original data.

The aforementioned figures unequivocally demonstrate how good DN3MF’s low rank

embedding is compared to others.

Clustering

For clustering purposes with the DN3MF model, the Figures 4.9-4.13 present the out-
come. Table 4.3 provides an overview of the count of statistically significant p-values

for DN3MF for clustering.

DN3MF has achieved the highest performance score for the Adjusted Rand index
for the GLRC (Figure 4.9(a)), ONP (Figure 4.10(a)) and PDC (Figure 4.11(a)) datasets.
The same statistics hold for the other three cluster performance evaluators namely JI,
NMI and AMI as well (Figures 4.9, 4.10, 4.11). For SP (Figure 4.12(a)) and MovieLens
(Figure 4.13(a)) datasets, the count of supremacy favouring DN3MF with respect to
ARI is two out of four and that is two and four for SP (Figure 4.12(b)) and MovieLens
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FIGURE 4.12: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the SP dataset by DN3MF and seven other dimension
reduction techniques along with the original data.

(Figure 4.13(b)) datasets respectively with respect to Jaccard index. DN3MF has outper-
formed the others in four out of four clustering algorithms on the SP (Figure 4.12(c))
dataset when the cluster validity index is Normalized Mutual Information score and for
the MovieLens (Figure 4.13(c)) dataset, the same count is three out of four. DN3MF pro-
jected transformed space has achieved the highest Adjusted Mutual Information score
among the other dimension reduction techniques four times on the SP (Figure 4.12(d))

and MovieLens (Figure 4.13(d)) datasets.

Adjusted Rand Index compares two data clusters to see how comparable they are.
In terms of ARI score, DN3MF has performed better than other dimension reduction
methods across five datasets and four clustering algorithms, as shown in Figures 4.9-
4.13. The Jaccard Index is used to compare two sets in terms of similarity. In terms
of Jaccard Index, DN3MF has done better than the others. Therefore, one might claim
that DN3MEF has successfully learned the essential properties of the input and mapped
them to a low rank representation. The Normalisation of Mutual Information score to

scale the results in [0, 1] is known as NMI. This measure is not adjusted for chance. In
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FIGURE 4.13: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the MovieLens dataset by DN3MF and seven other
dimension reduction techniques along with the original data.

TABLE 4.3: The summary of the count (out of 28) of statistically significant p-values
for each cluster performance metric against each dataset with respect to DN3MF.

Dataset ARI JT NMI AMI

GLRC 17 22 26 26
ONP 26 27 26 26
PDC 24 23 24 24
SP 11 06 09 10

MovieLens 20 24 24 23

contrast, the AMI score remains constant regardless of how the class or cluster label is
arranged. Both NMI and AMI scores indicate that DN3MF has performed better than
other dimension reduction techniques, as shown in Figures 4.9-4.13. The performance
of DN3BMF indicates that, in comparison to the other methods examined here, the low
rank representation of the datasets using DN3MF has been able to preserve the intrinsic

properties of the original data more successfully.

The count of p-values that are less than the chosen threshold (0.05), is shown in Ta-

ble 4.3, out of a total of 28 p-values for each cluster validity index versus each dataset.
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The previously given tally clearly shows how superior the low rank embedding pro-

duced by DN3MF is, over others.

4.4.3 Discussion

As mentioned in Section 3.4.3 of Chapter 3, we have used different types of datasets,
classification techniques and clustering algorithms to justify the efficacy of dimension

reduction by the proposed models.

DN3MEF has been rigorously evaluated using the trustworthiness score metric across
five datasets, comparing its performance with seven other dimension reduction tech-
niques including n?MFn?. It has consistently demonstrated its effectiveness in pre-
serving local data structures, outperforming or showing competitive performance with

others in four out of five datasets.

Out of a total of 80 performance scores (for five datasets, four classification algo-
rithms and four classification performance metrics), it is observed that on 55 instances,
DN3MEF projected datasets have outperformed the original data and in 41 cases it has
outperformed other dimension reduction algorithms. For GLRC, PDC and MovieLens
datasets, DN3MF has performed far better than the others in most of the cases. For
ONP, DN3MF has recovered its performance over that of n*MFn?, and for SP dataset,
the performance is still comparable to the others. Thus, it is undeniable that overall

DNB3MF is superior to the rest.

In addition to outperforming the original and other dimensionally reduced datasets
produced by various dimension reduction methods for most of the cases, the low rank
embeddings, generated by DN3MF for various datasets, have also been shown to be
statistically significant based on the comparative p-values they have resulted in. For
GLRC, the total number of statistically significant results related to DN3MF for all clas-
sifiers and classification metrics is 95 out of 112 (4 x 4 x 7). The PDC, ONP, SP and
MovieLens datasets have resulted in the corresponding counts of 74, 100, 56 and 71.
Thus, it is proven that DN3MF is more effective than other dimension reduction algo-

rithms in generating low dimensional embeddings that are statistically significant.

In a manner similar to classification, the competency of DN3MF has been demon-

strated through the application of four clustering techniques and four cluster validity
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metrics across five datasets. When comparing the clustering performance to the orig-
inal data, DN3MF has reported a higher performance of 69 times out of 80. DN3MF’s
count of superiority over other dimension reduction algorithms is notable, coming in at
73 out of 80. Considering the previous discussion, it is evident that DN3MF has shown
to be more effective than the other dimension reduction methods considered here in

most cases.

Apart from demonstrating superior performance compared to the original and other
dimensionally reduced datasets generated by the other dimension reduction techniques,
the low rank embeddings produced by DN3MF for all the datasets have also been
demonstrated to be statistically significant in terms of p-values. The overall number
of DN3MF related statistically significant results for the GLRC dataset is 91 out of 112
(4 x 4 x 7) for all clustering techniques and cluster validity indexes. The counts for the
PDC, ONP, SP and MovieLens datasets are 105, 95, 36 and 91, respectively. Thus, it has
been demonstrated that DN3MF produces low dimensional embeddings that are sta-

tistically significant and more effective than the other dimension reduction techniques.

Overall, the ability of DN3MEF to produce statistically significant low-dimensional
embeddings, regardless of dataset characteristics like sample size or number of at-
tributes, highlights its robustness and broad applicability. It has consistently outper-
formed state-of-the-art techniques in both classification and clustering tasks, reinforc-
ing its effectiveness in maintaining data structure fidelity. In conclusion, DN3MF emer-
ges as a leading dimension reduction technique, adept at preserving local data structure
integrity and delivering meaningful low-dimensional representations across diverse

analytical scenarios.

4.5 Convergence Analysis

Here, we aim to establish the convergence of the proposed DN3MF model based on
the experimental results. Figure 4.14 presents the convergence plots for five datasets,
namely GLRC, ONP, PDC, SP and MovieLens respectively. Each row of Figure 4.14
consists of five plots. Each plot depicts the variation of the cost function ® over iter-

ation. Figures 4.14(a), (d), (g), (j) and (m) represent the convergence plot for the first
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shallow neural network architecture which reduces the input feature space n to r1 (Sec-
tion 4.4). Figures 4.14(b), (e), (h), (k) and (n) represent the convergence plot for the sec-
ond shallow neural network architecture which reduces r; dimensional feature space
to r dimension. Finally, Figures 4.14(c), (f), (i), (1) and (o) represent the convergence
plot for the deep model i.e., the stacking stage. The leftmost and middle column plots
portray a one-step dimension reduction related cost analysis in the pretraining stage,
whereas the rightmost column of plots represents the overall dimension reduction re-
lated cost analysis in the stacking stage. Figures 4.14(a) - 4.14(c) depict the cost versus
iteration plots for the GLRC dataset with r{ = 398 and r = 97. Similarly, Figures 4.14(d)
- 4.14(f) represent the convergence plots for ONP dataset with r; = 40 and r = 21 and
for PDC dataset with ry = 472 and r = 192, the convergence has been portrayed in
Figures 4.14(g) - 4.14(i). The convergence plots for SP dataset with r; = 23 and r = 15
has been portrayed by Figures 4.14(j) - 4.14(1) and Figures 4.14(m) - 4.14(o0) depicts the

convergence plots for MovieLens dataset with 71 = 929 and r = 176.
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FIGURE 4.14: Cost vs. iteration plots of DN3MF for (a)-(c) GLRC, (d)-(f) ONP, (g)-(i)
PDC, (j)-(1) SP and (m)-(0) MovieLens dataset for both pretraining and stacking stages
of the model.
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In the cost versus iteration plots for both shallow models, an initial spike in the error
curve has been observed. This may be due to the fact that the initialization of weights
was so near to optimal that the use of a fixed momentum factor had pushed the error
up slightly for a brief number of iterations and after attaining some maximum, a steady
decline in the error value is observed and finally the error curve has almost become a
flat line. In the case of the stacked network, the small oscillation in the error value
throughout the training may also be the effect of the fixed momentum factor. Overall,
the declining nature of the cost over time clearly proves that both the shallow and the

deep models are convergent in nature.

4.6 Analysis of Computational Complexity

The computational complexity of DN3MF has been derived in terms of number of op-
erations performed. The upper bound of the complexity is expressed in terms of O
notation. DN3MF is a two-stage model, viz., the pretraining stage and the stacking

stage.

The computational complexity of the pertaining stage of DN3MF is the same as
that of n?MFn? and is given as O(t,(mnr + n?r)) where, t, denotes the number of
epochs, (m,n) being the order of the input matrix X and r is the number of nodes in
the slender layer. There are s successive shallow models in the pretraining stage of
DN3ME. Hence the computational complexity of the pretraining stage of DN3MF is
O(sty(mnry 4+ n?ry)), where, rq is the size of the slenderest layer of the first shallow

modeland vy > 1y > ... > rs.

In the stacking stage, the computational complexity of the forward pass can be sim-
ilarly computed as O(mror), where rp = nand rp > r; > .. > r;. The compu-
tational complexity of A (equation (4.3.21)) is O(rorirg) i.e. O(n?r;). Therefore, the
computation of ® (equation (4.3.20)) involves O (mn + n?ry) operations. The upper
bound of the number of operations in the backward pass is O(mnry + n?ry). Thus,
the overall computational complexity for an epoch of the stacking stage of DN3MF is
O(mnry + n?ry). For t, epochs, the complexity is O(ts(mnry + n%ry)). Hence, the com-
putational complexity of DN3MF becomes O(st, (mnry + n?ry) + ts(mnry + nrq)), ie.,
O((stp +ts)(m +n)nry).
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4.7 Conclusions

There are quite a few techniques available to dimensionally reduce a huge dataset. In
this chapter, we have developed DN3MF unifying the advantages of NMF and deep
learning, towards dimension reduction. DN3MF is a two-stage model, namely, pre-
training and stacking. The pretraining stage employs a sequence of shallow neural
networks, whereas the stacking stage employs a deep neural network. Again, each of
these stages is divided into two phases, viz., deconstruction and reconstruction. The
naming of the phases resembles the objective of the model. The deep neural network
architecture is an MDMR architecture in the sense that there is more than one decon-
struction and more than one reconstruction layer. The performance of DN3MF is essen-
tially a combination of the two-stage training and the neural network’s ability to learn

hierarchically and optimise parameters.

The constraints of DN3MF have been met through both the design and learning pro-
cedure of the model. The objective function has been developed employing an inno-
vative regularizer, ensuring the best possible approximation of the input data matrix.
Furthermore, the regularising parameter has been customised such that it has a con-
trolled effect on the regularizer when DN3MF attempts to regenerate the input. The
novel objective function helps the model to keep its focus on the generation of the best
possible meaningful approximation of the input. The DN3MF learning process has

been performed employing an adaptive learning approach.

The superiority of DN3MF has been demonstrated over seven other dimension re-
duction techniques including n?MFn?, through a considerable amount of experimen-
tation. The meaningfulness of the low rank approximation produced by DN3MF over
that of others has been judged with the help of the trustworthiness score. It can be ob-
served that DN3MF has performed better than or at least at par with others for four out
of five datasets and for the remaining one DN3MF performance is competitive. Overall
the trustworthiness scores justify DN3MF. Also, the discriminating ability of the low
dimensional embedding has been properly analysed employing both classification and
clustering on five popular datasets. A total of 4 classification algorithms, 4 classifica-
tion performance metrics and 4 clustering algorithms, 4 cluster validity indexes have
been used in the course of experimentation. The hefty result set has been properly sup-

ported in terms of its statistical significance for better understanding. When compared
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to the original dataset in terms of justifying the need for dimension reduction, for clas-
sification DN3MF is not so successful for one out of five datasets however for clustering
DN3MF is successful. In this case, with respect to the previous model (n?MFn?) perfor-
mance, the overall performance of DN3MF is better. When the performance of DN3MF
is judged over other dimension reduction techniques in terms of classification, DN3MF
has better performance for three out of four datasets, competitive performance in one
and not-so-good performance for the remaining one. For clustering, overall DN3MF
performance is better than others. In contrast with the previous model, DN3MF has
much better performance. Thus, the results strongly indicate the superiority of DN3MF
over the original dataset and other dimension reduction techniques in terms of both
statistical and intrinsic property preservation principles. The convergence of DN3MF
has been presented in terms of experimentation. An assessment of the computational

complexity of DN3MF has also been demonstrated.

DNB3MF has established itself better than the shallow model (n?’MFn?) described
in the previous chapter, in a number of ways. The overall aim of the thesis is to di-
mensionally reduce a huge dataset to overcome the curse of dimensionality problem.
Conventional NMF produces two unique non-negative factor matrices for an input ma-
trix. The slenderest layer output (B) of DN3MF is one of the factors. The other factor
is basically a combination of weights and activation functions associated with the lay-
ers above the slenderest layer up to the output layer of DN3MFE. As DN3MF follows
MDMR architecture, there is more than one reconstruction layer above the slenderest
layer of the model, which is difficult to compute directly. On the other hand, as we
have B and X with us, it is easier to back-calculate the second factor matrix. However,
the input matrix X is not necessarily a square matrix. Hence, X and B are not always
square. Non-square matrices are not invertible. In these cases, we need to compute
the pseudo-inverse, which is not unique. Thus, multiple reconstruction layers fail to
compute a unique W, which is, in this case, the second factor matrix. This is a serious
problem with respect to the overall aim of the model design. The following chapter

will mainly focus on this issue.






Chapter 5

Multiple Deconstruction Single
Reconstruction Deep Neural
Network Model for Non-negative
Matrix Factorization (MDSR-NMF)

5.1 Introduction

In the previous chapter, a deep learning based NMF model, named DN3MF, has been
designed and established through rigorous experimentation. However, serious short-
comings of the model, i.e., failing to produce two unique factor matrices, have also
been highlighted. In this chapter, we mainly try to solve the same through the design

of a novel deep learning framework.

We have combined the benefits of the conventional iterative approach with the cur-
rent deep learning framework in this research work. Hierarchical learning is a signifi-
cant benefit of deep learning. As a result, data representation is learned layer by layer.
For low rank approximation of the data matrix using NMF, we have developed a deep
learning model, named Multiple Deconstruction Single Reconstruction Deep Neural
Network Model for Non-negative Matrix Factorization (MDSR-NMF) [26]. Pretraining

and stacking are the two stages of the model.

97
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The pretraining stage of the model is accomplished by means of a shallow neural
network architecture, comprising input, output and a single hidden layer [24, 25]. For
the stacking stage, a unique deep learning architecture has been devised. The design of
this stacking stage distinguishes itself from other current deep learning architectures.
The number of layers between the input and the bottleneck layer in a traditional Au-
toencoder is the same as the number of layers between the bottleneck and the output
layer. The number of layers leading from the input layer to the slenderest layer of the
framework in the MDSR-NMF stacking stage architecture differs from the number of
layers between the slenderest layer and the output layer of the framework. There is no
restriction on the number of layers between the input and the slenderest layer of the
MDSR-NMF framework. On the other hand, the slenderest layer connects directly to
the output layer. As a result, the model is known as Multiple Deconstruction Single
Reconstruction Deep Neural Network Model. This novel architecture ensures a unique
pair of factor matrices of the reconstructed input matrix. Thus, MDSR-NMF simulates

the factorization behaviour of traditional NMF techniques.

In MDSR-NME, two-stage strategy, i.e., pretraining followed by model fine tuning,
enhances the architecture’s resilience. A shallow neural network architecture is used
for pretraining, while a deep neural network architecture is used for stacking. Both ar-
chitectures are divided into two phases, which are deconstruction and reconstruction.
Various architectural restrictions have been handled during the design of the model.
A Sigmoid function maps any data point inside the range (0, 1), solving the data loss
problem. The sigmoid activation function has been modified to suit the architecture’s
non-negativity criterion. The exploding or vanishing gradient problem has been ad-
dressed by keeping the variance of activation constant across all layers and to do so
Xavier initialization [34] technique has been employed to initialise the weights of the

neural network framework.

L1 regularization/Lasso regularisation has been used to design the objective func-
tion, which decreases the chance of over-fitting. The regularizer has been designed
in such a manner that assists the model in achieving the closest approximation of the
input matrix. The learning rules of the architecture have been derived while keeping
the restrictions of the model in mind. Momentum factor has been utilised to accelerate
learning. Using both classification and clustering, the superiority of MDSR-NMF over

eight well-known dimension reduction techniques has been established. A total of five
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datasets have been used to justify the efficacy of the model. The test with respect to
the preservation of the local structure of data in low rank embedding has also been
performed. The need for dimension reduction over the original has also been experi-

mented with.

This is how the remainder of the chapter is structured. The inspiration behind
MDSR-NMF’s design and learning is explained in Section 5.2. In Section 5.3, the specific
design and derivation of the corresponding learning rules are provided. Following the
experimentation process outlined in Chapter 2, the findings are then presented in Sec-
tion 5.4 along with a sufficient analysis. Sections 5.5 and 5.6 have been used to provide
the convergence and the computational complexity analysis of MDSR-NME. Section 5.7

finally brings the chapter to a conclusion.

5.2 Motivation behind Architecture and Learning

MDSR-NMEF is a novel deep learning model developed for the task of NMF. There are
two stages of MDSR-NME, namely, pretraining and stacking. A shallow neural net-
work architecture has been used for pretraining, while a deep neural network architec-
ture has been employed for stacking. Each of these stages of the model is divided into
two phases, viz., deconstruction and reconstruction. The input to the neural network
is transformed into latent space during the deconstruction phase and the network at-
tempts to recreate the input from its low rank representation during the reconstruction
phase. In the stacking stage of MDSR-NMF, there are multiple deconstruction layers
leading towards the slenderest layer of the network from the input but there is only
one reconstruction layer between the slenderest and the output layers of the network.
Hence, the model follows Multiple Deconstruction Single Reconstruction (MDSR) ar-

chitecture.

Motivation behind the design of the deep architecture

The deep neural network architecture of the stacking stage comprises multiple decon-
struction layers and a single reconstruction layer. The novel deep neural network archi-

tecture tries to learn the low rank representation of the input data in a stepwise manner
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in the deconstruction phase of the model. Whereas in the reconstruction phase, it di-
rectly tries to reconstruct the given input from the latent representation in a single step.
The aim of the model is to factorise a given input matrix into two constituent factor
matrices using Non-negative Matrix Factorization (NMF) aiming towards dimension
reduction. The input matrix and both factor matrices adhere to the non-negativity cri-
terion. In MDSR-NME, the input matrix X is factored to produce two factors namely, B
and W, where B is the output of the slenderest layer of the architecture and W is the
weight matrix connecting the slenderest layer and the output layer of the model. These
two factors are used to compute the regenerated matrix X as X = BW. Thus, we need

to produce a unique pair of B and W as the output of the model.

The model tries to learn the low rank representation of the input in a cumulative
approach using the advantage of hierarchical learning facilitated by the deep neural
network architecture. Hence, there is more than one layer in the deconstruction phase
of the model and a unique B is available as the output at the end of the deconstruction
phase. The model tries to simulate the factorization behaviour of the traditional NMF
technique by taking only one layer in the deconstruction phase of the model. If there
were multiple layers in the reconstruction phase then finding a unique value of W with
respect to X and B is not possible. Let there be k layers in the reconstruction phase.
The weight matrices are denoted as W1, Wy, ..., Wy respectively. Thus, ignoring the

activation functions for the sake of simplicity, we can write
X = BW;W,..W, (5.2.1)

Now, from equation (5.2.1) we need to find a unique W, which can be defined as W =
Hi‘:l W,;. Thus, we can write

W=B"'X (5.2.2)

The input matrix X is not necessarily a square matrix. Hence, X and B are also not
square in nature. Non-square matrices are not invertible. In these cases, we need to
compute the pseudo-inverse, which is not unique in nature. Thus, multiple reconstruc-
tion layers fail to compute a unique W, whereas a single reconstruction layer ensures a
unique pair of B and W as the output. Thus, the deep architecture has been designed

in such a manner.
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5.3 MDSR-NMF

Deep Neural Network Model for Non-negative Matrix Factorization. The architecture
has been designed in this manner to simulate the factorization behaviour of the tra-
ditional NMF technique. By taking only one layer in the reconstruction step of the
model, the model is able to synthesize a unique pair of constituent non-negative factor
matrices. Multiple reconstruction layers fail to produce a unique pair of factor matrices
because in that case, we need to compute pseudo-inverse and pseudo-inverse is not
unique in nature. This section describes the architecture and learning algorithms of the

stages of MDSR-NMF that we have developed in this article.

5.3.1 Pretraining stage

The first stage of MDSR-NMF is performed using a shallow neural network architec-
ture. The main purpose of this stage is to find the initial values of the weights for the
stacking stage of the model. The pretraining stage architecture and learning of MDSR-
NMEF is the same as that of DN3MF as described in Chapter 4 Section 4.3.1.1.

Let there be s + 1 shallow models in the pretraining stage of MDSR-NMF. The first
shallow network accepts X = X©) as input, where, X« is the outcome of the pro-
cessed given data matrix Uy, .,, eliminating non-negativity following the procedures
outlined in Chapter 2 Section 2.3. The output X1 = [xg])]mxrl of the slender layer of
this first shallow model, is the input to the second shallow model. Similarly, the slen-
der layer output of the second shallow model serves as the input to the third shallow
model, and so on. As a result, the slender layer output of the s shallow model is
X6 = [x’(;.z]mws. The required reduced dimension is denoted by r;. The only restric-
tion on 7; is that it should be less than 7/, there is no restriction of rs with respect to the
number of samples m (Section 3.3.1, Chapter 3). These s shallow networks are trained
one after another. The target outputs of the nodes in the reconstruction layers of these
s shallow networks for this purpose are X(?, X(1), ..., X5~V Following the properties
of the shallow architectures, the elements in the weight matrices v v V) are

unrestricted, while that in the weight matrices WO W@, W) are non-negative.

As discussed above, the first s consecutive shallow models among s + 1 shallow

models of the pretraining stage of MDSR-NME, reduce the given n dimensional input
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to the required r = r; dimensional feature space in a step-by-step fashion. The remain-
ing one shallow model takes X(*) as input and produces X0 as output. The number
of nodes in the slenderest layer of (s + 1)”‘ shallow model is r;, the desired reduced
feature space dimension. The weight matrices of this (s + 1) shallow network are
denoted by V and W. The elements of V are unconstrained and that of W are non-
negative. As a result, this (s + 1) shallow network reduces the input X to X*) in
order to regenerate the input. Therefore, the consecutive s shallow models and this

(s + 1) shallow model both reduce the n dimensional input to  dimensional lower

rank representation separately. With this, the first stage of MDSR-NMF is completed.

5.3.2 Stacking stage

The second stage of MDSR-NMF is performed using a deep neural network architec-
ture. The initialization of the weight values of this model is done using the learned
weights of the pre-trained shallow models. The job of this stage is to fine-tune the
weights of the model. The following sections describe the motivation behind the design

of the deep network and the architecture of the deep model followed by its learning.

5.3.2.1 Architecture of the deep model

The stacking stage of the model employs (s + 1) pre-trained shallow neural network
models being stacked together to produce a deeper network architecture. As previ-
ously explained, the input data matrix U = [u;],x is processed to generate the ma-
trix X0 = [x,g;?g]mxror where rg = n. The deep neural network model receives X0 as
input. The model employs the same set of activation functions as described in Chap-

ter 4 Section 4.3.1.1, namely, the identity function and a modified version of the sigmoid

activation function ¢. Figure 5.1 depicts the architecture of the stacked model.

The task of the model may be broken down into two phases: deconstruction and
reconstruction. The input data is interpreted in lower dimensional representation in
the deconstruction phase. The goal of the reconstruction phase is to regenerate the
input from this latent representation. The design consists of an input layer, s decon-

struction layers and a single reconstruction layer on top. Hence, the design is known
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X/(B)m,ro = J(Z(O)m,ro)

Wi,
) X, =a(YO,,)
Ve,
X6, =o(YeD,
XD, =o(¥D,,,.)
V0,

X(O)m,ro

FIGURE 5.1: Stacking stage architecture of MDSR-NMF.

as multiple deconstruction single reconstruction deep learning architecture. The in-

put layer, which has ryp = n nodes, gets X0 = [xi,?g

same output as its input using the identity function as the layer’s activation function.

|mxr, as input and produces the

The first deconstruction layer with r; nodes follows the input layer, where r; < ro.
The weight matrix between the input and the first deconstruction layer is denoted by
vl = [vfoli)l]ro xr- The learned V) in the first pretrained shallow model initialises v,
The first deconstruction layer produces output X1 = [xgl)]mxru where X(1) = O'(Y(l))
and YU = [ Sl)]mxrl‘ YD g computed as YD = XxOvD, Now, X serves as the
input to the second deconstruction layer, which operates in the same manner as the

previous layer. As a result, for dath (1 <d < 's) deconstruction layer,
XD = g(y) (5.3.1)

where X(@) = [xl(jj]mxr _ is the output of d" deconstruction layer and
Y@ = x(@-1)y(d) (5.3.2)

Here, V(@) is the weight matrix between (d — 1) and d"" deconstruction layers of the

model.

The trained V(@ in d" pretrained shallow model initialises the weight matrix V@),

It should be observed that #4~1 > 1. As a result, for d = s, the last deconstruction layer



Chapter 5. Multiple Deconstruction Single Reconstruction Deep Neural Network
104 Model for Non-negative Matrix Factorization (MDSR-NMF)

is the slenderest layer of the model in terms of node count. This slenderest layer serves
(s)

pz’s]mxrs as output. As a result,

the model achieves the desired reduced dimension 75, which is the number of nodes

as the bottleneck layer of the model, producing X(®) = [x

in this layer. This slenderest layer concludes the deconstruction phase and marks the

beginning of the reconstruction phase.

The slenderest layer is followed by the single reconstruction layer of the model, with
X() serving as the input and W = [w]jo]r,xr, S€TVINg as the weight matrix between the

slenderest and output layers. The learned W in the (s + 1) pretrained shallow model
@
Plo
the stacking stage architecture attempts to reproduce the input to the model, i.e., X(0).

In this case, )?@ = O'(Z(O)) and Z(0) — [ 0

initialises W. The reconstruction layer produces output X(©) = [x ], and therefore,

z;jg]mxyo. 7 is computed as Z(©) = XCIW.
As previously stated, the elements in the weight matrices vl v v are uncon-
strained and that of W are non-negative. The stacking model is fine-tuned keeping
these non-negativity limitations in mind. One of the two non-negative components of
the regenerated input matrix X is the slenderest layer output X*). The other non-

negative component of X(0) is the combination of the weight matrix W and the transfer

function o. As a result, we may write

X0 = g(XIw) (5.3.3)

5.3.2.2 Learning of the deep model

The objective of the model is to minimise HX(O) —X(0) ||p with respect to v, v@) v,
S
W, subject to (] | V@YW =1, where I = [0ij]roxr, is the Identity matrix of order rg. As

a result, the cost function @ is defined as

1 m n n n By
72 Z Z —|‘ 21’12 Z Z(ﬂl‘]’ — 51]) (534)
p=1j=1 i=1j=1

Similar to the shallow model, the first term of ® measures the reconstruction error and
the second term acts as a regularizer. Here, A is the regularising parameter and J;;
(Kronecker delta) is defined in Chapter 3 equation (3.3.7). The term A = [ai]']mxro is

computed as
Ts Ts—1 1

ai= (Y1 Y [ 05011.)105]2}2]...]z;fj}]is]szjo] (5.3.5)

is=1 i 1=1 ij=1
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It should be observed here that n = rg, is = 5, i = igp and j = jp. For minimising &
(equation (5.3.4)) with respect to V@ and W, for1 < d < s, V@ and W are successively
adjusted as follows:

V@Ot +1) = V(1) + AV (1) (5.3.6)
W(t+1) = W(t) + AW(t) (5.3.7)

Using the gradient descent approach, we obtain
V@t +1) = V(1) — yyw o Vyu @ (5.3.8)

W(t+1) = W(t) — 7w o Vw® (5.3.9)

Hadamard product is represented by ‘o’ and the learning rates corresponding to V(@)
and W are represented by matrices 1y, ® and nw®, which are the hyper-parameters
of the model. Gradient operators with respect to V() and W are denoted by V) and

Vw, respectively. Now, when we calculate derivative of ® with respect to W, we obtain
-1
o = —X0 v 3.
Vnw® = @w+ H (5.3.10)

where

e —

Ow = (X —X(0) 0 X(0) 6 (1 — X(©) (5.3.11)

We also obtain the derivative of ® with respect to v,

d—1
ATTvO)"(A-DwWT, ford =s
q=1
_1 d—1 S
Vya® = —X4'0u0 +{ ATV TA-D1(( ] VOW)T, forl<d<s
mn g=1 g=d+1
AA-D((J] voyw)T, ford =1
q=d+1
(5.3.12)
where
(OWWT) 0 X6) o (1 — X)), ford =s
Oy = (5.3.13)

Oy VD) o X(@ 6 (1 - X@),  otherwise
v
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Equations (5.3.10) - (5.3.13) are used to rewrite equations (5.3.8) and (5.3.9) as

T
(mixw—l) Oy +

S
AMA-D((J] voyw)" |, ford =1
g=d+1
(;XM—UT@ W+
VO(t+1) = VIO (t) =y o -1 s
ATTVOYTA-D(( [T v9W)T |, fori<d<s
g=1 g=d+1
(;XW—UT@ -+
d—1
ATV (A-DWT |, ford =s
q=1
(5.3.14)
and
— §)T A T
W(t+1) =W(t) —ywo (%x< ) Ow + nz(ﬂ VIHT(A 1)) (5.3.15)

According to the formulation of the model, the elements in V@) are unconstrained,
but the elements in W must be non-negative. The hyper-parameters of the model A,
Ny and nw, for 1 < d < s, are set to 0.1. Thus, the update rules for V¢ and W,
for1 < d < s are given by equations (5.3.14) and (5.3.15) respectively. For speedy
convergence of the model, we employ momentum factors ay@ = 0.9 and aw = 0.9.

Accordingly, equations (5.3.8) and (5.3.9) becomes
VOt 4+1) = VO () = 5y © Vy ® + ayiw © Vyg_pya P (5.3.16)

W(t+1)=W(t) —nwo Vwd +awo Vw(tq)q’ (5.3.17)

5.4 Experimental Results, Analysis and Discussion

Two aspects have been used to demonstrate and justify the efficacy of MDSR-NME.
First, the degree to which MDSR-NMF has been able to maintain the local structure of
the data has been used to assess the quality of dimension reduction. Additionally, an

analysis and determination of the effectiveness of the low rank embedding produced
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by MDSR-NMF in comparison to the original data have been performed to establish the
necessity of dimension reduction. Second, the discriminating power of the dimension-
ally reduced datasets has been investigated for downstream analyses such as clustering
and classification. It has also been investigated how statistically significant the MDSR-

NMEF results are in comparison to other dimension reduction methods.

As previously mentioned, MDSR-NMF is a two-stage model with pretraining and
stacking stages. The goal of MDSR-NMTF is to transform an n dimensional feature space
into a r dimensional altered feature space. Three shallow neural networks have been
used in the pretraining stage. Therefore, in this case, s + 1 = 3. The first one reduces
the original n dimensional feature space to r; dimensions, where r; is defined as r; =
n — 5. The second shallow network takes the r; dimensional feature vector as input
and translates it to the » dimensional feature space. The third shallow network, i.e.,
(s +1)" network transforms the feature space from n dimensions to r dimensions. The
deep neural network architecture at the stacking stage comprises the input layer, two
hidden layers and the output layer. From input to output, the number of nodes in these

layers is n, r1, r and n.

Xavier normal initialization technique [34] has been shown to be effective for neural
networks with sigmoid type activation functions. The elements of both the weight
matrices V and W in the proposed MDSR-NMF model have been initialised using the
Xavier initialization technique. The number of training epochs is decided dynamically.
Training stops on reaching predefined stopping criteria based on the difference in the

cost values of two consecutive epochs.

5.4.1 Quantifying the quality of low dimensional embedding

The quality of low dimensional embedding by MDSR-NMF has been investigated in
two ways: the ability to preserve the local structure of data using the trustworthiness
metric, and the effectiveness of dimension reduction by classification/cluster perfor-

mance metrics when compared to the original data.
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5.4.1.1 Local structure preservation

The trustworthiness score has been used to compute and assess the ability of MDSR-
NMEF to retain the local structure of data after dimension reduction in comparison to
eight other dimension reduction methodologies. The spider/star plot depicts the out-

come of the same (Figure 5.2).

ONP
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—— PCA
——— UMAP
NMF
—— DS-NMF
—— Semi-NMF
\ n2MFn2
‘ —— DN3MF

/ GLRC
05 06/°07//08 09 1 MDSR-NMF

PDC

SP

MovielLens

FIGURE 5.2: Trustworthiness scores of nine dimension reduction techniques including
MDSR-NME.

Five datasets are represented by five axes of the plot. A point on that axis represents
the trustworthiness score of a dimension reduction technique for a given dataset. As
a result, five points on five axes, representing five datasets, correspond to a dimension
reduction approach. These points can be thought of as the vertices of a polygon. Conse-
quently, there are nine polygons for nine dimension reduction strategies in Figure 5.2.
The area of coverage of a polygon validates a dimension reduction method’s effec-
tiveness across all datasets combined. A higher area indicates improved algorithmic
performance. From the plot, we can observe that MDSR-NMEF has beaten other dimen-
sion reduction techniques for the PDC and MovieLens datasets and for GLRC and ONP
datasets the trustworthiness score of MDSR-NMF is better than most of the others. The
area bounded by the polygon of MDSR-NMF is shown in a shaded colour in Figure 5.2.

We compute the area of the polygon by adding individual trustworthiness scores of the
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TABLE 5.1: Sum of trustworthiness scores of nine dimension reduction techniques
including MDSR-NMF on five datasets.

Dimension reduction techniques Sum of trustworthiness scores

AE 4.55550328220533
PCA 4.38647684863791
UMAP 4.13297187263103
NMF 4.50973409888627
DS-NMF 4.22833659492512
Semi-NMF 4.29147059452664
n*MFn? 4.34404888837219
DN3MF 4.72960521062986
MDSR-NMF 4.68627962966105

dimension reduction techniques for all five datasets. It can be observed from Table 5.1
that the sum of trustworthiness scores of MDSR-NMF is the second highest among all.
This value is just lower than that of DN3ME. However, the trustworthiness score of
MDSR-NMF is able to beat the remaining seven dimension reduction methods. Thus,
the quality of low dimensional embedding produced by MDSR-NMF is superior to
that produced by the other dimension reduction methods and comparable to that of

DN3MFE

5.4.1.2 Decision making: Comparison with the original data

By classifying and clustering both the original data and the low dimensional embed-
ding produced by MDSR-NMF and then quantifying the results using various cluster
validity and classification metrics, the effectiveness of dimension reduction by MDSR-
NMEF has been assessed. The low rank representation of the data promotes the usability

of the same over the original one, which is why the dimension reduction is necessary.

Classification

Figures 5.3-5.7 presents the performance of MDSR-NMF and original data in terms
of classification. For the PDC (Figure 5.5) dataset, MDSR-NMF generated low rank
embedding has outperformed the original data for all four classifiers in terms of all
four metrics. The same statistics for the ONP (Figure 5.4) dataset are three out of four.

When the classifier evaluator is MCC, for the GLRC (Figure 5.3) dataset the same count
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is three out of four and for the remaining metrics MDSR-NMF has outperformed the
original in all four out of four cases. For MovieLens datasets, for ACC, FS and MCC
performance metrics, MDSR-NMF has performed better than the original dataset for
three out of four classification algorithms (Figure 5.7). In terms of CKS, the scoreline
favouring MDSR-NMF is two out of four. In the case of the SP dataset, the performance
metric of original data is better than the low rank embedding produced by MDSR-NMF
on all occasions (Figure 5.6).
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FIGURE 5.3: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the GLRC dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

It is clear from these experiments that, for most of the cases, the MDSR-NMF pro-
jected data have outperformed the original data in terms of classification. This sup-
ports the requirement for both dimension reduction and the capacity to produce low

rank embeddings that preserve the fundamental properties of the data.

Clustering

The performance comparison of clustering done on the low dimensional embedding
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FIGURE 5.4: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the ONP dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

produced by MDSR-NMF and the original data has been illustrated in Figures 5.8-5.12.
For the ONP (Figure 5.9) dataset, for all four cluster validity indexes, MDSR-NMF has
performed better than the original data with respect to all four clustering algorithms
and for GLRC (Figure 5.8) dataset the same count is three out of four. For the PDC
(Figure 5.10), SP (Figure 5.11) and MovieLens (Figure 5.12) datasets, for NMI cluster
validity index, MDSR-NMF has performed better than the original data for four out of
four clustering algorithms. In terms of AMI, the performance score favouring PDC and
SP datasets is four out of four and for the MovieLens dataset, the same count is three.
For the ARI metric, the performance score is three out of four in favour of MDSR-NMF
for the PDC dataset and two out of four for both SP and MovieLens datasets. Similarly,
in the case of JI, the scorelines favouring MDSR-NMF are two, three and four for PDC,

SP and MovieLens datasets respectively.

As a result, it has been demonstrated that the low rank embedding produced by
MDSR-NMF performs significantly better in terms of clustering in terms of preserv-

ing the essential characteristics of the original data. Dimension reduction is therefore
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FIGURE 5.5: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the PDC dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

required and justified.

5.4.2 Downstream analyses and statistical significance: Comparison with

other models

The efficiency of dimension reduction has been assessed by performing classification
and clustering on the low dimensional embedding produced by MDSR-NMF as well as
those generated by the other eight dimension reduction methods. Several measures for
monitoring classification and cluster performance have been employed to quantify the
outcome. Pairwise p-values have been calculated as well, to demonstrate that MDSR-
NMEF outperforms other dimension reduction algorithms, in terms of generating output
from an independent set of data. A p-value less than a specific threshold validates the
statistical significance of the outcomes. Here, we have set the threshold value at 0.05.
Thus, for a dataset, a classification/clustering algorithm and a classification/cluster

validity measure, eight p-values have been calculated to compare the performance of



5.4. Experimental Results, Analysis and Discussion 113

BN Original N PCA B NMF =9 Semi-NMF  EEE n2MFn2 53 DN3MF @SS MDSR-NMF
I AE EEE UMAP EEE DS-NMF
0.8 0.8
0.6
> o0
e S
a (%2}
204 Zo4
0.2 0.2
0.0 0.0
KNN MLP NB QDA KNN MLP NB QDA
@) (b)
0.7
-
2
0.6 o6
=
E [
§045 8
0.4 .§°'4
o o
G
o3 £
c (s}
2 So.2
5 0.2 g
c 2
0.1 =
Zo.0
0.0
KNN MLP NB QDA KNN MLP NB QDA
(c) (d)

FIGURE 5.6: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

MDSR-NMF and eight other different dimension reduction strategies considered here.
There are four classification/clustering techniques, resulting in a total of 8 x 4 = 32
p-values for each validity index against each dataset. This section of the experiment
tries to determine the superiority of dimension reduction by MDSR-NMF using various

types of classification and clustering techniques.

Classification

While working with the MDSR-NMF model for classification, the outcome has been
depicted by Figures 5.3-5.7. The summary of the count of statistically significant p-
values with respect to MDSR-NMEF has also been presented in Table 5.2.
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FIGURE 5.7: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by MDSR-NMF and eight
other dimension reduction techniques along with the original data.

For four classification techniques, MDSR-NMF has always achieved the highest ac-
curacy score for the PDC (Figure 5.5(a)) dataset and three times for the GLRC (Fig-
ure 5.3(a)) and MovieLens (Figure 5.7(a)) datasets. The same counts are two and one re-
spectively for the ONP (Figure 5.4(a)) and SP (Figure 5.6(a)) datasets. MDSR-NMF has
surpassed the others in terms of F1 score all four times for PDC (Figure 5.5(b)), thrice
for ONP (Figure 5.4(b)) and MovieLens (Figure 5.7(b)), twice for GLRC (Figure 5.3(b))
and once for SP (Figure 5.6(b)) datasets. When the Cohen-Kappa score is used as the
classification performance indicator, the outcome favouring MDSR-NMF on the GLRC
(Figure 5.3(c)) and ONP (Figure 5.4(c)) datasets is two out of four. For the PDC (Fig-
ure 5.5(c)) dataset, it is four out of four and for the MovieLens (Figure 5.7(c)) dataset, the
same count is three out of four. In the case of the SP (Figure 5.6(c)) dataset, MDSR-NMF
has failed to outperform the original dataset. The same statistics hold when the clas-
sification performance metric is the Matthews Correlation Coefficient (Figures 5.3(d),

5.4(d), 5.5(d), 5.6(d) and 5.7(d)).
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FIGURE 5.8: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the GLRC dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

The description presented above makes it evident that the transformed dataset us-
ing MDSR-NMF has a higher accuracy score than the others in most cases, across
GLRC, ONP, PDC and MovieLens datasets and four different classifier types. In terms
of the SP dataset, MDSR-NMF has a competitive performance. A model’s accuracy in-
dicates how frequently it is accurate. We have calculated the F1 score, or the harmonic
mean of precision and recall, in addition to accuracy. Figures 5.3-5.7 reveal that MDSR-
NMEF beat other models in terms of F1 score in the majority of cases except for the SP
dataset, where the performance is comparable. Thus, the superiority of MDSR-NMF is
validated by its Accuracy and F1 score. On the other hand, the Cohen-Kappa score is a
statistical measure of inter-rater agreement. The figures demonstrate that MDSR-NMF
produced higher positive Cohen-Kappa scores and outperformed the others in the ma-
jority of scenarios for four out of five datasets. As a result, it is feasible to assume that
MDSR-NMF is able to keep and learn the fundamental characteristics of the input data,
resulting in higher ratings. The quality of binary and multiclass classifications can be

evaluated using the Matthews Correlation Coefficient. Better agreement is implied by
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FIGURE 5.9: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the ONP dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

TABLE 5.2: The summary of the count (out of 32) of statistically significant p-values
for each classification performance metric against each dataset with respect to MDSR-
NME

Dataset ACC FS CKS MCC

GLRC 17 22 25 25
ONP 19 10 21 21
PDC 29 30 30 31
sp 11 08 21 21

MovielLens 27 28 08 11

a higher MCC score, indicating that the model is also able to maintain the class char-
acteristics of the original dataset in the transformed dataset as well. The MCC score of
MDSR-NMF is higher than that of the other models except for the SP dataset, where
the performance of MSDSR-NMF is comparable to others (Figures 5.3-5.7). The above
explanation illustrates the superiority of MDSR-NMF over other dimension reduction
methods with respect to intrinsic property preservation criteria as well as statistical

measures.
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For each classification performance index against each dataset, out of a total of 32
p-values, the count of p-values less than the determined threshold (0.05) is presented in
Table 5.2. The above statistics indubitably quantify the quality of low rank embedding
produced by MDSR-NMF over others.

Clustering

For clustering purposes with the MDSR-NMF model, Figures 5.8-5.12 present the out-
come. Table 5.3 provides an overview of the count of statistically significant p-values

for MDSR-NMF for clustering.

MDSR-NMF has achieved the highest performance score for the Adjusted Rand in-
dex for the PDC (Figure 5.10(a)) dataset for all four clustering approaches considered
here. This count is three out of four for the GLRC (Figure 5.8(a)) and ONP (Figure 5.9(a))
datasets and one for the SP (Figure 5.11(a)) and MovieLens (Figure 5.12(a)) datasets.
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FIGURE 5.11: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by MDSR-NMF and eight other
dimension reduction techniques along with the original data.

When using the Jaccard Index as the cluster validity estimator, MDSR-NMF has outper-
formed the others in four out of four clustering algorithms on the PDC (Figure 5.10(b))
and ONP (Figure 5.9(b)) datasets. This value ranks three out of four for the GLRC (Fig-
ure 5.8(b)) and SP (Figure 5.11(b)) datasets and two for the MovieLens (Figure 5.12(b))
dataset. MDSR-NMF projected transformed space has achieved the highest NMI score
among the other dimension reduction techniques four out of four times for the PDC
(Figure 5.10(c)) dataset, thrice for ONP (Figure 5.9(c)) and MovieLens (Figure 5.12(c))
datasets and twice for GLRC (Figure 5.8(c)) and SP (Figure 5.11(c)) datasets. The same
statistics hold when the cluster performance evaluator is AMI except for the Movie-
Lens dataset where the count favouring MDSR-NMF is four out of four (Figures 5.8(d),
5.9(d), 5.10(d), 5.11(d) and 5.12(d)).

The Adjusted Rand Index (ARI) measures the similarity of two data clusters. Fig-
ures 5.8-5.12 demonstrate that MDSR-NMF outperformed other dimension reduction

approaches across five datasets and four clustering algorithms in terms of the ARI
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FIGURE 5.12: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by MDSR-NMF and eight
other dimension reduction techniques along with the original data.

score. The Jaccard Index is used to calculate the similarity between two sets. MDSR-
NMEF surpassed the others in terms of the Jaccard Index. Thus, it might be stated that
MDSR-NMF learned the basic properties of the input and accurately mapped them to
a low rank representation. NMI is defined as the normalization of the Mutual Informa-
tion score to scale the outcomes in the interval [0, 1]. This measure is not corrected for
chance. In contrast, the AMI score remains constant regardless of how the class or clus-
ter label is arranged. The results of the NMI and AMI scores demonstrate that MDSR-
NMEF has performed better than other dimension reduction techniques (Figures 5.8-
5.12). The enhanced performance of MDSR-NMF indicates that, in comparison to the
other methods examined here, the low rank representation of the datasets employing
MDSR-NMF has been able to preserve the intrinsic properties of the original data more

successfully.

Out of a total of 32 p-values for each cluster validity index against each dataset,

Table 5.3 displays the count of p-values that fall below the decided threshold, i.e., 0.05.
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TABLE 5.3: The summary of the count (out of 32) of statistically significant p-values
for each cluster performance metric against each dataset with respect to MDSR-NMF.

Dataset ARI JI NMI AMI

GLRC 20 21 18 17
ONP 25 29 24 24
PDC 23 28 29 29
SP 06 15 06 09

MovielLens 19 21 28 29

The aforementioned tally unequivocally demonstrates how good low rank embedding

produced by MDSR-NMF is compared to others.

5.4.3 Discussion

In terms of trustworthiness, it is evident that MDSR-NMF has demonstrated its ef-
fectiveness in dimension reduction by maintaining the granular relationships of data
by scoring the highest trustworthiness score for two datasets, having better than av-
erage scores for another two and average scores for the remaining one. With respect
to the overall area, MDSR-NMF has just performed below DN3MF outperforming the

remaining models.

Each dimension reduction algorithm has a total of 5 x 4 x 4 = 80 performance scores
for five datasets, four classification algorithms and four classification performance mea-
sures. It is evident that on 54 out of 80 instances, the MDSR-NMF predicted datasets
have outperformed the original data. On the other hand, while comparing the perfor-
mance with other dimension reduction methods, MDSR-NMF has obtained the highest
rating, 48 times out of 80. In contrast to DN3MF, MDSR-NMF has bettered its per-
formance for ONP dataset when compared to other dimension reduction techniques,
otherwise, the rest of the performances are similar to that of DN3MEF. Thus, it is unde-

niable that MDSR-NMF is superior to the others.

By comparing the p-values that the low rank embeddings generated by MDSR-NMF
for various datasets produce, it is demonstrated that these embeddings are statisti-
cally significant and can outperform both the original and other dimensionally reduced
datasets generated by different dimension reduction methods including n?MFn? and

DN3ME. For the GLRC dataset, 89 out of 128 (4 x 4 x 8) cases represent statistically
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significant findings pertaining to MDSR-NMTF for all classifiers and classification met-
rics. the figures 71, 120, 61 and 74, respectively, are the same counts for the PDC, ONP,
SP and MovieLens datasets. In order to produce statistically meaningful low dimen-
sional embeddings, MDSR-NMF is, therefore, proven to be more effective than other

dimension reduction methods.

Analogous to classification, MDSR-NMF has been validated for clustering using
four clustering methods and four cluster validity metrics across five datasets. In terms
of clustering, MDSR-NMF has registered a higher performance of 67 times out of 80
potential scenarios when comparing the performance against the original data. Com-
pared to other dimension reduction methods, MDSR-NMF has a notable superiority
count of 57 out of 80. Considering the previous discussion, it is evident that MDSR-
NMEF has shown to be more effective than the other dimension reduction techniques

considered here in most of the cases.

In addition to outperforming the original and other dimensionally reduced datasets
produced by different dimension reduction methods, MDSR-NMF’s low rank embed-
dings for various datasets have been shown to be statistically significant based on the
comparative p-values they produce. The GLRC dataset has resulted in 76 MDSR-NMF
related statistically significant performance count out of 128 (4 x 4 x 8). The similar
counts for the PDC, ONP, SP and MovieLens datasets are 102, 109, 36 and 97, respec-
tively. As a result, MDSR-NMF outperforms other dimension reduction methods in

producing statistically meaningful low-dimensional embeddings.

5.5 Convergence Analysis

Based on the experimental results, we aim to establish the convergence of the proposed
MDSR-NMF model. The convergence plots for four datasets, GLRC, ONP, PDC, SP
and MovieLens are shown in Figure 5.13. Figure 5.13 has five subplots in each row.
Each subplot illustrates the variation of the cost function ® with respect to iteration.
The convergence plots of the first shallow neural network architecture are depicted in
Figures 5.13(a), (e), (i), (m) and (q). The first shallow neural network lowers the input
feature space dimension 7 to r1 (Section 5.4). Figures 5.13(b), (f), (j), (n) and (r) depict

the convergence plots of the second shallow neural network architecture. The second
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shallow network lowers r; dimensional feature space to r dimension. Figures 5.13(c),
(g), (), (0) and (s) show how (s + 1) shallow network converges. (s + 1) shallow
network reduces n dimensional feature space directly to » dimensional feature space.
Finally, Figures 5.13(d), (h), (I), (p) and (t) depict the convergence plots of the deep

model or stacking stage.

Figures 5.13(a) through 5.13(d) depict the cost versus iteration plots for the GLRC
dataset with r; = 398 and r = 97. Figures 5.13(e) - 5.13(h) show the convergence
plots for ONP dataset with ;1 = 40 and r = 22. Figures 5.13(i) - 5.13(l) display the
convergence plots for PDC dataset with r; = 414 and r = 75 and Figures 5.13(m) -
5.13(p) depict the convergence plots for SP dataset with rq = 24 and r = 17. The
convergence plots for the MovieLens dataset for r; = 1063 and r = 445 have been

depicted in Figures 5.13(q) - 5.13(t).

An initial spike in the error curve has been noted in the cost versus iteration plots.
This might be because the initialization of the weights has been so close to ideal that the
application of a fixed momentum factor has driven the error up somewhat for a short
number of iterations before a consistent drop in the error value. Finally, for shallow
networks, the error curve has nearly flattened out after a certain number of iterations.
In some stacked network scenarios, the tiny fluctuation in the error value during train-
ing may also be the result of the fixed momentum component. Overall, the decreasing
nature of the cost over time demonstrates that both the shallow and deep networks

converge.

5.6 Analysis of Computational Complexity

The computational complexity of MDSR-NMF is measured in terms of the number of
operations performed. The upper bound of the complexity is given in terms of O nota-

tion. MDSR-NMF has two stages: pretraining and stacking.

The computational complexity of the pertaining stage of MDSR-NMF is the same
as that of n?MFn? and is given as O(t,(mnr + n*r)) where, t, denotes the number of
epochs, (m,n) being the order of the input matrix X and r is the number of nodes in the

slender layer. In the pretraining stage of MDSR-NMEF, there are s consecutive shallow
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FIGURE 5.13: Cost vs. iteration plots of MDSR-NMF for (a)-(d) GLRC, (e)-(h) ONP, (i)-
(I) PDC, (m)-(p) SP and (q)-(t) MovieLens dataset for both pre-training and stacking
stages of MDSR-NMF.

models. As a result, the computational complexity of the pretraining stage of MDSR-
NMEF is O(st,(mnry + n?r1)), where ry is the size of the slenderest layer of the first

shallow model and r; > 17, > ... > 7s.

The pretraining stage of MDSR-NMF has another (s + 1) shallow model which
directly reduces the input dimension # to r. Following a similar argument as above,

we can say that in this case, the computational complexity will be O(t,, (mnr + n?r)),
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where t,, is the number of epochs. Asr; = rand r; < r, so we can discard (’)(t,g1 (mnr+
n%r)). The complexity of the forward pass in the stacking stage may be calculated in a
similar way as O(mrory), where ro = nand ro > r1 > ... > r;. The computational com-
plexity of calculating A (equation 5.3.5) is O(ror179), i-e., O(n?r1). Thus, O(mn + n’r;)
operations are involved in the computation of ® (equation 5.3.4). O(mnry + n’ry)
gives the upper bound on the number of operations in the backward pass. As a re-
sult, the overall computational cost of an epoch of the MDSR-NMF stacking stage is
O(mnry + n*r1). The complexity for t; epochs is O(ts(mnry + n?r1)). Hence, the com-
putational complexity of MDSR-NMF is O(st,(mnry + n?ry) + ts(mnry + n?ry)), ie.,
O((stp + ts)(m +n)nry).

5.7 Conclusions

A large dataset can be dimensionally reduced using a variety of ways. We have com-
bined the benefits of NMF, a classic matrix factorization approach and deep learning
for dimension reduction in this architecture. MDSR-NME, a novel deep learning model,
has been designed for NMF towards dimensionality reduction. Pretraining and stack-
ing are the two stages of MDSR-NMF. These pretraining and stacking steps contain two
phases: deconstruction and reconstruction. The novel architecture has been designed
in such a way that it resembles the factorization behaviour of the traditional NMF pro-

cedure with respect to producing a set of unique factor matrices.

The technique for weight initialization, transfer function, objective function and
learning algorithm has been designed in such a way that it contributes to optimal
MDSR-NMF learning. The regularizer has been purposely designed in such a manner
that it ensures the best possible approximation of the input matrix as the product of two
factor matrices. The superiority of MDSR-NMF over eight other dimension reduction
strategies has been established through extensive experimentation on five prominent
datasets using both classification and clustering. Three NMF-based approaches, three
additional classic dimension reduction algorithms and previously designed two mod-
els are among the eight other dimension reduction strategies. In terms of local structure
preservation criteria, MDSR-NMEF has performed little below that of the previously de-
veloped model DN3MF but has performed better than the remaining models. During
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experimentation, a total of 4 classification algorithms, 4 classification performance mea-
sures, 4 clustering methods and 4 cluster validity indexes have been utilised. More or
less the performance of MDSR-NMF is similar to that of DN3MF both in comparison
to the original dataset and in comparison with other dimension reduction techniques.
Experimentation has been performed to demonstrate the convergence of MDSR-NME.

The computational complexity of the model has also been presented.

The design of our next model architecture has been motivated by the way a human
being learns a new concept by constantly referring to the original text in order to main-

tain the correct path of learning and increase the efficacy of knowledge acquisition.






Chapter 6

Input Guided Multiple
Deconstruction Single
Reconstruction neural network for

Non-negative Matrix Factorization

(IG-MDSR-NMF)

6.1 Introduction

The aspiration of simulating the factorization behaviour of the traditional NMF tech-
nique ensuring the outcome of a unique pair of factor matrices of the reconstructed
input matrix has motivated us for the progressive development of the previous three
models (Chapters 3-5). In this chapter, we have fused the advantages of conventional
iterative learning with those of deep learning in a way that resembles the trait of hu-
man learning. While learning, humans always attempt to disintegrate the concepts into
smaller fragments and try to learn hierarchically referring back to the original details
frequently ensuring the correctness of the learning. Thus, we can claim that human

learning is always input-guided.

127
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Thus, here we have designed a model, called Input Guided Multiple Deconstruc-
tion Single Reconstruction neural network for Non-negative Matrix Factorization (IG-
MDSR-NMF) towards dimension reduction [28]. Deconstruction and reconstruction
are the two phases of the model. The layers in the deconstruction phase receive the
hierarchically processed output of the preceding layer along with a copy of the original
data as input. Thus the model is called “Input Guided". There is only one layer in the
reconstruction phase, which ensures a true realization of the NMF technique generat-
ing a unique pair of non-negative factor matrices. The main objective of the study is to
find a low rank approximation of the input data to get rid of the curse of dimensionality

problem.

The quality of low dimensional embedding produced by IG-MDSR-NMF has been
verified based on the extent of input shape preservation. The need for dimension reduc-
tion over the original data has also been judged and justified. The superiority of the low
rank approximation by IG-MDSR-NMF has also been verified over nine well-known
dimension reduction techniques, experimenting on five datasets for both classification
and clustering. The efficacy of IG-MDSR-NMF has been justified for downstream anal-
yses (classification and clustering) on different types of datasets. The statistical signifi-

cance of the results has also been established.

The rest of the chapter is organised as follows. Section 6.2 describes the moti-
vation behind the architecture and learning of IG-MDSR-NMF. The detailed design
and derivation of respective learning rules have been presented in Section 6.3. Subse-
quently, Section 6.4 depicts the results following the experimentation procedure de-
scribed in Chapter 2, with an adequate analysis. The convergence analysis of IG-
MDSR-NMF and the analysis of computational complexity have been presented in Sec-

tions 6.5 and 6.6. Finally, Section 6.7 concludes the chapter.

6.2 Motivation behind Architecture and Learning

The philosophy behind the novel architecture of the Input Guided Multiple Decon-
struction Single Reconstruction neural network for Non-negative Matrix Factorization

model is described here.
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Learning of human beings is an iterative process where complex concepts are grad-
ually broken down into simpler ones. Along with the fragmented concepts, humans
always refer to the original material whenever needed, ensuring the correctness of
learning. A Deep neural network learns hierarchically, i.e., the representation of data
is learned in a layerwise approach. That is, the layer /; connecting the input layer Iy
learns directly from the input and the next layer [, learns from the learned represen-
tation of /; and so on. Therefore, the deeper the network grows and the upper-level
layers receive a more abstract form of representation of the original input. If an inter-
mediate layer, for some reason, is unable to learn appropriately from its previous layer,
this improper learning will percolate to the succeeding layers and finally will affect
decision making to a great extent. Thus, there is a possibility of deviation in learning
the actual information content of the raw data. To overcome this phenomenon, a novel
architecture has been designed in this article, where the input layer /j is additionally
connected with the layers Iy, I3, ..., till the second last layer of the architecture. The de-
sign enforces the model to be guided by the original representation of the input in the
process of hierarchically learning representation of the same, mimicking the human
way of learning. As each layer of the model is guided by the input, the model has been
named as Input Guided Multiple Deconstruction Single Reconstruction neural network

for Non-negative Matrix Factorization (IG-MDSR-NMF).

IG-MDSR-NMF has been developed for the task of NMFE. The model is divided into
two phases, viz., deconstruction and reconstruction. The input to the neural network
is transformed into latent space during the deconstruction phase and the network at-
tempts to reconstruct the input from its low rank representation during the reconstruc-
tion phase. There are multiple deconstruction layers leading towards the slenderest
layer of the network from the input but there is only one reconstruction layer con-
necting the slenderest and the output layers of the network. Hence, the model is called
Multiple Deconstruction Single Reconstruction neural network model. The novel archi-
tecture tries to learn the low rank representation of the input data in a stepwise manner
in the deconstruction phase of the model. Whereas, in the reconstruction phase, it di-
rectly tries to reconstruct the input from the latent space. The architecture has been
designed in this manner to simulate the factorization behaviour of the traditional NMF
technique. By taking only one layer in the reconstruction step, the model can synthe-

size a unique pair of constituent non-negative factor matrices. The detailed philosophy
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behind such architecture has been described in Chapter 5 Section 5.2.

6.3 IG-MDSR-NMF

In this section, we have described the detailed architecture of IG-MDSR-NMEF followed

by its learning.

6.3.1 Architecture

IG-MDSR-NMF is a deep neural network architecture made up of an input layer, s
hidden layers and an output layer. Consider a given data matrix, U = [ui]y . We
process U following the methodology described in Chapter 2 Section 2.3, to generate a
matrix X = [xp;]mxn with each element being non-negative. Each row of X is now used

as input to the model.

The uppermost/last hidden layer of IG-MDSR-NMF has been envisioned to be the
model’s slender layer, with r nodes that extract r < n’ features. As mentioned in Sec-
tion 3.3.1 of Chapter 3 there is no restriction of r with respect to the number of samples
m. The responsibility of the output layer is to reconstruct the original data using the
extracted features. The model may be separated into two phases - deconstruction and
reconstruction. The input and s hidden layers comprise the deconstruction phase. The
reconstruction phase consists of the slenderest and output layers. The latent represen-
tation of the input is obtained at the end of the deconstruction step. During the recon-
struction process, the model tries to regenerate the input from this latent representation.
As there is more than one deconstruction layer, but only one reconstruction layer, the
design is referred to as Multiple Deconstruction Single Reconstruction (MDSR) deep

learning architecture. Figure 6.1 depicts the architecture of IG-MDSR-NME.

In IG-MDSR-NMF, we have employed three different types of activation functions.
After preprocessing, data is put into the network. To follow the typical neural network
architecture, an identity function has been used as the activation function for the input
nodes. Thus, the output of any input node is the same as its input. The sigmoid func-

tion has been employed for the hidden layers, whereas the ReLU activation function
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FIGURE 6.1: The architecture of IG-MDSR-NMEF.

has been used for the output layer nodes. Sigmoid function maps the input of any in-
terval (—oo,4+00) to (0,1) as output. In contrast, all negative values are discarded with
zero by the ReLU activation function. Since ReLU eliminates all negative components
in order to meet non-negativity, the ReLU activation function experiences data loss,
while the sigmoid function does not. Therefore, the model’s non-negativity condition
has been met by using the sigmoid and ReLU activation functions and the data loss

issue has been avoided by using the sigmoid function in the hidden layers.

We consider the input layer as the 0" layer of the model having ry = 1 number
of nodes. The input to this layer is denoted as X(©) = [x,g(g]mxroz where X0 = X. The
input layer connects the first hidden layer of the model having r; < rg number of nodes.
The output of the first hidden layer is now expressed in matrix form for all samples as

X1 — [x;(;l)]mxr1 and is defined as

XV = (YD) (6.3.1)
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where, o(YV)) is an m x r; matrix and each element of the matrix is computed by ap-
plying the sigmoid activation function () to the corresponding element of Y(1), where
YO = 21)]’””1 is defined as

Y = xOv®) (6.3.2)

Here V() = [v(l)

ioil]"oxrl is the weight matrix between the input and the first hidden
layers. The output of the first hidden layer connects to the second hidden layer con-
taining 7, nodes, where r, < ry. Additionally, the input layer is also connected to this
second hidden layer. The weight matrix between the first and second hidden layers
is denoted by V(2 = [01(121)2 |ryxr, and the weight matrix between the input and second
hidden layers is V(2) = [275021.)2]r0w2. The output of the second hidden layer is expressed
as X = [xﬁz]mwz and is defined as

X2 = o(Y?) (6.3.3)
where, Y3 = [yﬁi]mxrz is computed as

Y2 — x(Wy(2) + x(0)y(2) (6.3.4)

Similarly, the third hidden layer is connected to the output of the second hidden layer
and the input layer. Eventually, the slenderest layer, i.e., the s hidden layer of the
model is connected to the output of the (s — 1) hidden layer and the input layer. The
number of nodes in this slenderest layer is 7s = r. It is to be noted that r = r; < r;_1 <

.. <13 <11 <19 = n. The weight matrix between the s’ and (s — 1) hidden layers

is denoted by V() = [vz(i)l i.r.1xr, and the weight matrix between the input and sth
hidden layers is V() = [77551‘)5]roxrs- The output of this slenderest layer is denoted by
B = X, where X = [xéjrs)]mws is defined as

X6 = g(Y®) (6.3.5)

Here, Y(*) = [y;z]mxrs is determined as
Y®) = X6y 4 xOvs) (6.3.6)

The slenderest layer concludes the deconstruction phase of the model and marks the

beginning of its reconstruction phase. The output of the slenderest layer, B, represents
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the low rank representation of the input X. The reconstruction phase comprises a single
reconstruction layer, producing the output of the model, i.e., the regenerated input

X = XO). Here, X(0) = [x;(gg]mxro is computed as

p—

X(0) = ReLU(Z) (6.3.7)

where we get Z = [z,;|mxr, as
Z =XOwW (6.3.8)
Here, W = [w;;,]rxr, represents the weight matrix between the slenderest layer and

the output layer of the model.

The elements of the weight matrices v, v@, . VE) and V), VB, .., V() are un-
restricted, while the elements of the weight matrix W must be non-negative to meet the
non-negativity requirement of the NMF algorithm. The two non-negative components
of the regenerated input matrix X are the slender layer output B and the weight matrix

W.

6.3.2 Learning

The objective of IG-MDSR-NMF is to find the best possible reconstruction (X) of the
input matrix (X) while factorizing X into B and W. Thus, the objective function is
defined as the mean square loss of the original and the regenerated input, i.e., we want

to minimize ||X — X||r. Thus, the cost function ® is defined as

1 m n
=5 Z ]Zl Xpj — Xpj)? (6.3.9)
IG-MDSR-NMF have been trained using a stochastic gradient descent method based on
adaptive estimation of first-order and second-order moments employing the Adam op-
timisation technique [57]. The use of sigmoid activation function in the hidden layers
of the network ensures the non-negativity requirement of the latent space representa-
tion (B) of the input data matrix. Similarly, the ReLU activation function in the output
layer guarantees the non-negativity of the regenerated input matrix X. In IG-MDSR-
NME, the non-negativity of the other factor matrix, i.e., the weight matrix W has been
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assured by replacing the negative elements arising in the course of the updation of

weights during backpropagation with zeros.

6.4 Experimental Results, Analysis and Discussion

There are two components to the presentation and justification of the performance of
IG-MDSR-NMF in terms of the quality of low rank embedding generated by the model.
First, by comparing its capability to maintain the local structure of data, the quality of
dimension reduction using IG-MDSR-NMF has been assessed. The effectiveness of
the low rank embedding in comparison to the original data has also been examined
and verified, indicating the necessity for dimension reduction. Second, the discrim-
inating competency of the dimensionally reduced dataset has been investigated for
downstream analyses such as clustering and classification. Additionally, the statistical
significance of the results produced by IG-MDSR-NMF in comparison to other dimen-

sion reduction methods has been examined.

The Xavier normal initialization approach [34] is an effective weight initialization
technique for neural networks with sigmoid activation functions. The elements of all
weight matrices in the proposed IG-MDSR-NMF model have been initialised using the
same. IG-MDSR-NMF model has the input layer, s hidden layers and the output layer.
In our implementation, we have considered s = 3. The number of training epochs is
determined dynamically; training ends when the difference in the cost values in two

consecutive epochs reaches a predetermined threshold.

6.4.1 Quantifying the quality of low dimensional embedding

Two approaches have been used to study the quality of low dimensional embedding
by IG-MDSR-NME. First, employing trustworthiness metrics to study the ability to pre-
serve the local structure of the data, and second, comparing the effectiveness of dimen-

sion reduction by classification/cluster performance metrics with the original data.
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6.4.1.1 Local structure preservation

Using the trustworthiness score, it has been calculated and compared how well IG-
MDSR-NMF can retain the local structure of the data after dimension reduction com-
pared to nine different dimension reduction techniques. The spider/star plot illustrates

the result of the same (Figure 6.2).
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FIGURE 6.2: Trustworthiness scores of ten dimension reduction techniques including
IG-MDSR-NME.

The five axes of the plot relate to five datasets. The trustworthiness score of a dimen-
sion reduction method for a given dataset is represented by a point on that axis. Thus,
with a dimension reduction strategy, there are five points on five axes, each represent-
ing one of five datasets. These points serve as polygon vertices. Figure 6.2 depicts ten
polygons representing ten dimension reduction strategies. The area covered by a poly-
gon demonstrates the effectiveness of a dimension reduction approach over all datasets
combined. The algorithm’s performance improves as the enclosed region grows larger.
From the plot, we can note that IG-MDSR-NMEF has beaten other dimension reduction
techniques for the PDC dataset and for GLRC, ONP, SP and MovieLens datasets, the
trustworthiness score of IG-MDSR-NMEF is better than most of the others. The shaded
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TABLE 6.1: Sum of trustworthiness scores of ten dimension reduction techniques in-
cluding IG-MDSR-NMF on five datasets.

Dimension reduction techniques Sum of trustworthiness scores

AE 4.55550328220533
PCA 4.38647684863791
UMAP 4.13297187263103
NMF 4.50973409888627
DS-NMF 4.22833659492512
Semi-NMF 4.29147059452664
n*MFn? 4.34404888837219
DN3MF 4.72960521062986
MDSR-NMF 4.68627962966105
IG-MDSR-NMF 4.73123216172758

polygon in Figure 6.2 represents the overall performance of IG-MDSR-NME. To com-
pute the area of the polygon, we add individual trustworthiness scores of the dimen-
sion reduction techniques for all five datasets. It can be observed from Table 6.1 that
the sum of trustworthiness scores of IG-MDSR-NMF is the highest among all. Thus,
the quality of low dimensional embedding produced by IG-MDSR-NMF is superior to

that produced by the other dimension reduction methods.

6.4.1.2 Decision making: Comparison with the original data

The efficacy of dimension reduction using IG-MDSR-NMF has been evaluated by per-
forming classification and clustering on the low dimensional embeddings produced by
the model as well as the original data and then quantifying the results using various
classification and cluster validity indexes. This study explains why dimension reduc-
tion is required, underlining the fact that low rank data representation improves its

usability over the original.

Classification

Figures 6.3-6.7 presents the performance of IG-MDSR-NMF and original data in terms
of classification. For the GLRC (Figure 6.3) and PDC (Figure 6.5) datasets, IG-MDSR-
NMF generated low rank embedding has outperformed the original data for all four
classifiers in terms of all four metrics. For ONP and MovieLens datasets, for ACC, CKS

and MCC performance metrics, IG-MDSR-NMF has performed better than the original
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dataset for three out of four classification algorithms (Figures 6.4, 6.7). In terms of FS,
for the ONP dataset, the scoreline favouring IG-MDSR-NMF is four out of four and
for the MovieLens dataset, the same count is three out of four. In the case of the SP
dataset, the performance metric of original data is better than the low rank embedding

produced by IG-MDSR-NMEF on all occasions (Figure 6.6).
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FIGURE 6.3: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the GLRC dataset by IG-MDSR-NMF and nine
other dimension reduction techniques along with the original data.

Hence, it follows that the majority of the time, the projected data by IG-MDSR-
NMF have outperformed the original data in terms of classification. This explains why

dimension reduction and the capability to create low rank embeddings that preserve

the fundamental properties of the data are necessary.

Clustering

The performance comparison of clustering done on the low dimensional embedding
produced by IG-MDSR-NMF and the original data has been illustrated in Figures 6.8-
6.12. For the ONP (Figure 6.9), SP (Figure 6.11) and MovieLens (Figure 6.12) datasets,
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FIGURE 6.4: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the ONP dataset by IG-MDSR-NMF and nine
other dimension reduction techniques along with the original data.

for all four cluster validity indexes, IG-MDSR-NMF has performed better than the orig-
inal data with respect to all four clustering algorithms. For the GLRC (Figure 6.8) and
PDC (Figure 6.10) datasets, for AMI cluster validity index, IG-MDSR-NMF has per-
formed better than the original data for four out of four clustering algorithms. For the
ARI metric, the performance score is three out of four in favour of IG-MDSR-NMF for
both GLRC and PDC datasets. For the GLRC dataset, the performance score against
four clustering methods in favour of IG-MDSR-NMF in terms of JI and NMI metrics is

three and for the PDC dataset, the same count is two and four respectively.

Thus, it is proven that the low rank embedding produced by IG-MDSR-NMF per-
forms significantly better in terms of clustering over the original, preserving the essen-

tial characteristics of the same. Thus, dimension reduction is required and justified.
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FIGURE 6.5: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the PDC dataset by IG-MDSR-NMF and nine
other dimension reduction techniques along with the original data.

6.4.2 Downstream analyses and statistical significance: Comparison with

other models

The efficiency of dimension reduction has been evaluated by performing classification
and clustering on the low dimensional embedding resulting from IG-MDSR-NMF as
well as that generated by the other nine dimension reduction methodologies. To quan-
tify the same, a variety of measures assessing classification and cluster performances
have been employed. In order to demonstrate the superiority of IG-MDSR-NMF over
other dimension reduction algorithms in terms of generating output from an indepen-
dent set of data, pairwise p-values have also been computed. The statistical significance
of the results is justified by a p-value below a certain threshold. In this case, 0.05 has
been chosen as the threshold. Thus, nine p-values have been calculated for a dataset, a
classification/clustering algorithm and a classification/cluster validity index, compar-
ing the performance of IG-MDSR-NMF to that of nine different dimension reduction

methods. Four classification/cluster techniques produce a total of 9 x 4 = 36 p-values
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FIGURE 6.6: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by IG-MDSR-NMF and nine other
dimension reduction techniques along with the original data.

for each validity index against each dataset. This section of the experiment tries to es-
tablish the superiority of IG-MDSR-NMF produced low dimensional embedding over
other dimension reduction techniques in terms of a number of classification and clus-

tering techniques.

Classification

While working with the IG-MDSR-NMF model for classification, the outcome has been
depicted by Figures 6.3-6.7. The summary of the count of statistically significant p-
values with respect to IG-MDSR-NMF has also been presented in Table 6.2.

For four classification techniques, IG-MDSR-NMF has always achieved the high-
est accuracy score for GLRC (Figure 6.3(a)), PDC (Figure 6.5(a)), SP (Figure 6.6(a)) and
MovieLens (Figure 6.7(a)) dataset and three times for the ONP (Figure 6.4(a)) dataset.
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FIGURE 6.7: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by IG-MDSR-NMF and
nine other dimension reduction techniques along with the original data.

The same statistics hold when the classification performance metric is the F1 score (Fig-
ures 6.3(b), 6.4(b), 6.5(b), 6.6(b) and 6.7(b)). IG-MDSR-NMEF has surpassed the others in
terms of Cohen-Kappa score on the GLRC (Figure 6.3(c)) and MovieLens (Figure 6.7(c))
datasets using four out of four classification techniques, thrice for ONP (Figure 6.4(c)),
PDC (Figure 6.5(c)) and SP (Figure 6.6(c)) datasets. When the Matthews Correlation
Coefficient is used as the classification performance indicator, the outcome favouring
IG-MDSR-NMF is the same as that of the Cohen-Kappa score (Figures 6.3(d), 6.4(d),
6.5(d), 6.6(d) and 6.7(d)).

The above explanation makes it quite evident that the accuracy score of the dimen-
sionally reduced dataset using IG-MDSR-NMF has outperformed the others in most
cases, across all five datasets and four types of classifiers. The frequency of the cor-
rectness of the model has been quantified in terms of accuracy. The F1 score, which
is the harmonic mean of precision and recall, has been calculated along with accu-

racy. Figures 6.3-6.7 demonstrate that IG-MDSR-NMF has, in the majority of cases,
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FIGURE 6.8: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the GLRC dataset by IG-MDSR-NMF and nine other
dimension reduction techniques along with the original data.

outperformed other models in terms of F1 score. Therefore, IG-MDSR-NMF’s supe-
riority is supported by its F1 score and accuracy. In contrast, a statistical measure of
inter-rater agreement is the Cohen-Kappa score. The pictorial representations demon-
strate that IG-MDSR-NMF has, in most cases, outperformed the others and produced
higher positive Cohen-Kappa ratings. Consequently, better scores may be obtained by
inferring that IG-MDSR-NMF is able to preserve and acquire the intrinsic properties of
the input. The quality of binary and multiclass classifications is evaluated using the
Matthews Correlation Coefficient. The model’s ability to retain the original dataset’s
class attributes in the modified dataset is represented by a higher MCC score, which
also suggests better agreement. In terms of the MCC score, Figures 6.3-6.7 demonstrate
that IG-MDSR-NMF has performed better than the other models. Thus, IG-MDSR-
NMEF outperforms the other dimension reduction methods in terms of intrinsic prop-

erty preservation measures as well as statistical ones.

For each classification performance index against each dataset, out of a total of 36

p-values, the count of p-values less than the determined threshold (0.05) is presented in
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FIGURE 6.9: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the ONP dataset by IG-MDSR-NMF and nine other
dimension reduction techniques along with the original data.

TABLE 6.2: The summary of the count (out of 36) of statistically significant p-values for
each classification performance metric against each dataset with respect to IG-MDSR-
NMF.

Dataset ACC FS CKS MCC

GLRC 34 31 34 34
ONP 25 32 24 24
PDC 27 27 34 35
sp 24 22 19 20

MovielLens 35 31 27 27

Table 6.2. The above statistics indubitably quantify the quality of low rank embedding
produced by IG-MDSR-NMEF over others.

Clustering

For clustering purposes with the IG-MDSR-NMF model, the Figures 6.8-6.12 present

the outcome. Table 6.3 provides an overview of the count of statistically significant
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FIGURE 6.10: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the PDC dataset by IG-MDSR-NMF and nine other
dimension reduction techniques along with the original data.

p-values for IG-MDSR-NMF for clustering.

IG-MDSR-NMF has achieved the highest performance score for the Adjusted Rand
index for the ONP (Figure 6.9(a)) and MovieLens (Figure 6.12(a)) datasets for all four
clustering approaches considered here. This count is two out of four for the GLRC
(Figure 6.8(a)) dataset and three out of four for the PDC (Figure 6.10(a)) and SP (Fig-
ure 6.11(a)) datasets. When using the Jaccard Index as the cluster validity estimator,
IG-MDSR-NMF has outperformed the others in four out of four clustering algorithms
on the PDC (Figure 6.10(b)) and SP (Figure 6.11(b)) datasets. This value ranks three
out of four for the ONP (Figure 6.9(b)) and MovieLens (Figure 6.12(b)) datasets and for
the GLRC (Figure 6.8(b)) dataset this count is two out of four. When the cluster valid-
ity index is Normalized Mutual Information score, IG-MDSR-NMF has outperformed
others four out of four times for the PDC (Figure 6.10(c)) dataset, thrice for GLRC
(Figure 6.8(c)), ONP (Figure 6.9(c)), SP (Figure 6.11(c)) and MovieLens (Figure 6.12(c))
datasets. IG-MDSR-NMF projected transformed space has achieved the highest Ad-

justed Mutual Information score among the other dimension reduction techniques four
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FIGURE 6.11: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by IG-MDSR-NMF and nine other
dimension reduction techniques along with the original data.

times on the PDC (Figure 6.10(d)) and MovieLens (Figure 6.12(d)) datasets for all the
four clustering algorithms. The count is three for the GLRC (Figure 6.8(d)), ONP (Fig-
ure 6.9(d)) and SP (Figure 6.11(d)) datasets.

The similarity of the two data clusters can be determined using the Adjusted Rand
Index (ARI). Figures 6.8-6.12 demonstrate that IG-MDSR-NMF outperformed other di-
mension reduction approaches in terms of the ARI score across five datasets and four
clustering algorithms. The Jaccard Index is used to compare the similarities of two
sets. IG-MDSR-NMF has outperformed the others in terms of the Jaccard Index as
well. Thus, it might be stated that IG-MDSR-NMF learned the elemental properties of
the input and correctly mapped them to a low rank representation. NMI is defined
as the scaling of outcomes in [0, 1] by normalizing the Mutual Information score. This
measure is not adjusted for chance. In contrast, the AMI score remains constant re-
gardless of the class or cluster label permutation. Figures 6.8-6.12 demonstrate that
IG-MDSR-NMF outperforms other dimension reduction techniques in terms of NMI
and AMI scores. The better performance of IG-MDSR-NMF justifies that the low rank
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FIGURE 6.12: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by IG-MDSR-NMF and
nine other dimension reduction techniques along with the original data.

TABLE 6.3: The summary of the count (out of 36) of statistically significant p-values for
each cluster performance metric against each dataset with respect to IG-MDSR-NMF.

Dataset ARI JI NMI AMI

GLRC 14 13 29 25
ONP 26 33 35 34
PDC 33 33 36 36
Sp 14 20 23 22

MovieLens 33 34 29 32

representation of datasets using IG-MDSR-NMF has been able to better preserve the

underlying features of the original data than the other techniques evaluated here.

Out of a total of 36 p-values for each cluster validity index against each dataset,
Table 6.3 displays the count of p-values that fall below the decided threshold, i.e., 0.05.
The aforementioned tally unequivocally demonstrates how good low rank embedding

produced by IG-MDSR-NMF is compared to others.
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6.4.3 Discussion

In terms of the trustworthiness score (Figure 6.2 and Table 6.1), IG-MDSR-NMF has
clearly outperformed not only other dimension reduction algorithms considered here

also all of the three previously developed models (n?’MFn?, DN3MF and MDSR-NMF).

There is a total of 5 x 4 x 4 = 80 performance scores for each dimension reduction
approach for five datasets, four classification algorithms and four classification perfor-
mance measures. On 57 out of 80 instances, it can be observed that the IG-MDSR-NMF
projected datasets have outperformed the original data as far as classification is con-
cerned. However, in a performance comparison with the other dimension reduction
methods, IG-FMDSR-NMF has achieved the highest rating of 72 times out of 80. When
compared to other dimension reduction methods, IG-MDSR-NMF has been able to re-
cover the moderate performances of the previously developed models for both ONP
and SP datasets. For the remaining cases, the performance of IG-MDSR-NMF is simi-
lar to that of MDSR-NMF. Thus the efficacy of IG-MDSR-NMF has improved over the

previously built models.

In addition to outperforming the original and other dimensionally reduced datasets
produced by various dimension reduction methods, the low rank embeddings gener-
ated by IG-MDSR-NMF for various datasets are also demonstrated to be statistically
significant in terms of the comparative p-values they have resulted in. For all classi-
tiers and classification metrics, the total number of statistically significant results for
IG-MDSR-NMF is 133 out of 144 (4 x 4 x 9) for the GLRC dataset. For the PDC, ONP,
SP and MovieLens datasets, the corresponding counts are 105, 123, 85 and 120. There-
fore, it is proven that IG-MDSR-NMF is more effective than other dimension reduction

algorithms in generating low dimensional embeddings that are statistically significant.

As with classification, the competency of IG-MDSR-NMF has been demonstrated
through the application of four clustering methods and four cluster validity metrics
across five datasets for clustering. When comparing the clustering performance to the
original data, IG-FMDSR-NMF has demonstrated superior performance 74 times out
of 80 potential scenarios. Among the other dimension reduction methods, IG-MDSR-
NMF has a notable 65 out of 80 superiority count over the others. Given the above

discussion, it is evident that IG-MDSR-NMF has shown to be more effective than the
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other dimension reduction techniques that are being considered here in most of the

situations.

Not only the low rank embeddings generated by IG-MDSR-NMF for different data-
sets outperform the original and other dimensionally reduced datasets produced by
different dimension reduction methods, but their comparative p-values also demon-
strate that they are statistically significant. The overall number of statistically signif-
icant performance counts connected to IG-MDSR-NMF for all clustering techniques
and cluster validity indexes combined is 81 out of 144 (4 x 4 x 9) for the GLRC dataset.
The counts of the PDC, ONP, SP and MovieLens datasets are 128, 138, 79 and 128,
respectively. Therefore, it has been demonstrated that IG-MDSR-NMF produces low
dimensional embeddings that are statistically significant and more effective than other

dimension reduction techniques.

The datasets that we have experimented on are, as mentioned in Section 3.4.3 Chap-
ter 3, split into two sets based on the relationship between the number of samples and
characteristics. In terms of dimension reduction and invariance to the relation between
the number of samples and characteristics, IG-MDSR-NMF has shown superiority for
both kinds of datasets. Moreover, neither the number of samples nor the characteristics
may restrict the value of the reduced dimension. IG-MDSR-NMF is distinguished from
a number of other popular dimension reduction techniques by these characteristics.
It is, therefore, demonstrated that IG-MDSR-NMF is not restricted by input dimen-
sion and has broad applicability. Consequently, IG-MDSR-NMF has achieved better
results for different classification and clustering methodologies on two different types
of datasets than the other nine state-of-the-art dimension reduction methods. Thus, the

unique input-guided architecture places itself apart from others.

6.5 Convergence analysis

Based on the experimental results, we aim to establish the convergence of the proposed
IG-MDSR-NMF model. The convergence plot for the IG-FMDSR-NMF model is shown
in Figure 6.13. The plot illustrates the variation of the cost function ® against iteration
for all five datasets. Overall, the decreasing nature of the cost over time validates that

the model converges. It can also be observed from the plot that the initial cost value for
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all the datasets starts from a high position and after a few initial epochs, the value of
the cost function has almost reached a straight line parallel to the horizontal axis. That
is, there are very nominal changes in the cost value. Thus, we can conclude that the
model has converged. Figure 6.13 depict the cost versus iteration plot for the GLRC,
ONP, ONP, SP and MovieLens datasets with r = 115, r = 33, r = 154, r = 13 and
r = 319 respectively.

Convergence plot for IG-MDSR-NMF
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FIGURE 6.13: Loss vs. iteration plots of IG-MDSR-NMF for GLRC, ONP, PDC, SP and
MovieLens dataset.

6.6 Analysis of computational complexity

The computational complexity of IG-MDSR-NMF has been measured in terms of the
number of operations performed. IG-MDSR-NMF has s 4 1 deconstruction layers in-
cluding the input layer and one reconstruction layer. The input, i.e., each row of X,
travels through the identity function (activation function) at the input layer, hence the
computational complexity is O(mry). The following step is defined in equation (6.3.2),

where the complexity is O(mror;). The value of YU is now sent via the activation
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function ¢ (equation 6.3.1), with the complexity of this operation being O(mr1). The
following step using equation (6.3.4) includes O (mriry + mrory) operations. Thereafter,
similar to the previous layer the value of Y(?) passes through the activation function
(equation 6.3.3) contributing O(mr;) to the overall complexity. Proceeding this way
the model finally computes X0 (equations 6.3.7 and 6.3.8) and for this the compu-
tational complexity is O(mrsrg + mry). Thus, the forward pass comprises O(mry +
mrory + mry + mrlry + mrory + ... + mrsrg + mrg) operations. As mentioned before,
n=ry>r >ry > . >r1;=r Removing the lower order terms, the computa-
tional cost of the forward pass is O (mror;). The computational complexity of ® (equa-
tion 6.3.9) is O (mry). The major task of backward propagation is to update the weights.
With similar arguments, we can conclude that the backward pass entails O(mrory) op-
erations. Thus, the computational cost of an epoch is O(mryry). The complexity for ¢

such epochs is O(tmrory). Hence, the overall computational complexity of IG-MDSR-
NMF is O(tmnry).

6.7 Conclusions

There are numerous techniques to dimensionally reduce a huge dataset with a large
number of attributes. In this chapter, we have combined the benefits of NMF, a con-
ventional matrix factorization technique and deep learning for dimension reduction
to develop a novel model (IG-MDSR-NMF) of neural networks. The way how a hu-
man being learns a new concept by frequently referring to the original text to maintain
the proper direction of learning and enhancing the effectiveness of knowledge gain
has inspired the design of IG-MDSR-NME. At each step of hierarchical learning, IG-
MDSR-NMF is assisted by the input and hence the models are called “Input Guided".
IG-MDSR-NMF has been constructed in such a manner that it mimics the factorization

behaviour of the classic NMF technique.

Extensive analysis of the quality of dimension reduction of five popular datasets us-
ing IG-MDSR-NMF has been performed to compare with that of nine other dimension
reduction algorithms. These nine dimension reduction techniques include six NMF-
based approaches and three conventional dimension reduction algorithms. Preserving

the local shape of the original data in the altered space is considered a benchmark of the
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dimension reduction algorithms. IG-MDSR-NMF has outclassed other dimension re-
duction methodologies in terms of local shape preservation. The discriminating ability
of low rank embedding by IG-MDSR-NMF has been tested and validated by compar-
ing their performances using both classification and clustering over that of the original
dataset, which in turn justifies the need for dimension reduction. During experimenta-
tion, a total of four classification algorithms, four classification performance measures,
four clustering methods and four cluster validity indexes have been used. The findings
also support IG-MDSR-NMF’s superiority over other dimension reduction methodolo-

gies evaluated here.

For greater comprehension, the substantial result set has been well supported by
its statistical significance. The outcomes clearly show that, in terms of intrinsic prop-
erty preservation principles as well as statistical performance, IG-MDSR-NMF is better
than other dimension reduction methods. Experiments have also been carried out to
demonstrate the convergence of IG-MDSR-NME. The computational complexity of IG-
MDSR-NMF has also been studied in terms of the number of elementary operations

performed.

Throughout this thesis, we have used the NMF technique encapsulated with deep
learning architecture to factorize the input matrix into two non-negative matrices. Al-
though our only objective is to find a low dimensional non-negative representation
of the input matrix, we have been confronting the models to produce a pair of non-
negative factors as output. The second factor can only be used together with the low
rank embedding to regenerate the original matrix, which is not at all our objective. In
other words, the objective of the present thesis is to obtain low rank embedding of the
original data hybridizing the notion of NMF and neural networks. For achieving better
low rank embedding, let us relax the second factor matrix from being non-negative, to
introduce Relaxed Non-negative Matrix Factorization (RNMF), a novel kind of matrix

factorization technique.
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7.1 Introduction

In the previous chapter, IG-FMDSR-NMF has been designed following the human trait
of learning by referring back to the original data in due course of hierarchical frag-
mented learning. The unique pair of output factors of IG-MDSR-NMF follow the non-
negativity criteria resembling the true notion of NMF. The main objective of this thesis
is to find a low rank approximation of the input data to get rid of the curse of di-
mensionality problem. Constraints such as the non-negativity of both the factor ma-
trices limit the learning of the model to some extent. On the other hand, relaxing the
non-negativity criteria of the coefficient matrix does not hamper the overall aim of the
model, rather may improve the quality of low dimensional embedding. The input as
well as its low rank approximation, i.e., the basis matrix adheres to the non-negativity

constraint, only the non-negativity restriction of the coefficient matrix is relaxed. This
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novel idea has been called “Relaxed Non-negative Matrix Factorization (RNMF)". The
model realizing the same has been named Input Guided Multiple Deconstruction Sin-
gle Reconstruction neural network for Relaxed Non-negative Matrix Factorization (IG-

MDSR-RNMF) [28].

The low dimensional embedding quality of IG-MDSR-RNMF has been justified by
measuring the extent of preservation of the input shape. It has also been determined
and established that dimension reduction over the original data is necessary. By testing
on five datasets for both classification and clustering, the superiority of the low rank ap-
proximation by IG-MDSR-RNMEF has also been confirmed over ten popular dimension
reduction strategies. The effectiveness of IG-MDSR-RNMF has been demonstrated on
several dataset types for downstream analyses in terms of clustering and classification.

Additionally, the statistical significance of the results has been determined.

The remainder of the chapter is structured as follows. The motivation behind the IG-
MDSR-RNMEF architecture and learning is explained in Section 7.2. In Section 7.3, the
design and derivation of the corresponding learning rules have been provided. Fol-
lowing the experimentation process outlined in Chapter 2, the findings are depicted
in Section 7.4 along with a sufficient analysis. In Sections 7.5 and 7.6, the IG-MDSR-
RNMF convergence analysis and the computational complexity study are described

respectively. Section 7.7 brings the chapter to a conclusion.

7.2 Motivation behind Architecture and Learning

IG-MDSR-RNMF has been build on top of IG-MDSR-NMF. IG-MDSR-NMF is a true
realization of NMEF, where both the resulting factors, i.e., the basis matrix and the coef-
ficient matrix follow the non-negativity criteria. A relaxed version of the model, called
Input Guided Multiple Deconstruction Single Reconstruction neural network for Re-
laxed Non-negative Matrix Factorization (IG-MDSR-RNMF) has been designed, where
the non-negativity constraint of the coefficient matrix has been relaxed. That is, in IG-
MDSR-RNME, the basis matrix adheres to the non-negativity constraint, whereas the

coefficient matrix is unconstrained.

Our main objective is to find a low dimensional non-negative representation of the

input matrix X. The low rank representation B should embed relevant information
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in a computationally efficient manner. The second factor W is only used to regener-
ate the input X. In IG-MDSR-RNMF we have relaxed the non-negativity constraint of
the coefficient matrix W, whereas the non-negativity constraint of the basis matrix B
remains intact. Finding a set of non-negative factor matrices is like confronting the
estimation of the low dimensional embedding by enforcing the non-negativity criteria
of the coefficient matrix. The relaxation does not compromise with the ultimate objec-
tive of finding the non-negative low dimensional representation of the input. Whereas,
relaxation helps manoeuvre the learning more efficiently to find the best possible low
rank representation of the input. Relaxing the non-negativity criteria of one of the fac-
tor matrices has been presented as a new class of matrix factorization technique called,

Relaxed Non-negative Matrix Factorization (RNMF).

7.3 1G-MDSR-RNMF

In this section, we have described the architecture of IG-MDSR-RNMEF followed by its

learning.

7.3.1 Architecture

The architecture of IG-MDSR-RNMEF is the same as that of IG-MDSR-NMF (Section 6.3.1
of Chapter 6); only the non-negativity requirement of the weight matrix W has been re-
laxed. That is the slender layer output B will follow the non-negativity requirement
but, the weight matrix W connecting the slender layer and the output layer will be

unconstrained.

7.3.2 Learning

The objective of IG-MDSR-RNMF is to find the best possible reconstruction (X) of the
input matrix (X) while factorizing X into B and W. Thus, the objective function is
defined as the mean square loss of the original and the regenerated input, i.e., we want
to minimize ||X — X||¢. Thus, the cost function ® is defined as
1 m n
=52 ) (i — pj) (7.3.1)

p=1j=1
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IG-MDSR-RNMF have been trained using a stochastic gradient descent method based
on adaptive estimation of first-order and second-order moments employing the Adam
optimisation technique [57]. The use of sigmoid activation function in the hidden layers
of the network ensures the non-negativity requirement of the latent space representa-
tion (B) of the input data matrix. Similarly, the ReLU activation function in the output
layer guarantees the non-negativity of the regenerated input matrix X. No restriction

has been applied on the weight matrix W.

7.4 Experimental Results, Analysis and Discussion

The performance of IG-MDSR-RNMF has been demonstrated and validated in two
parts. To begin, the quality of dimension reduction using IG-MDSR-RNMF has been
assessed by comparing its capacity to retain the local structure of data. The require-
ment for dimension reduction, or the efficacy of low rank embedding compared to
the original data, has also been investigated and verified. Second, the discriminative
capacity of the dimensionally reduced dataset is investigated for downstream analyses
like classification and clustering. The statistical significance of IG-MDSR-RNMF results

compared to other dimension reduction strategies has also been investigated.

The Xavier normal initialization approach [34] is an effective weight initialization
technique for neural networks with sigmoid activation functions. The elements of all
weight matrices in the proposed IG-MDSR-RNMF model have been initialised using
the same. IG-MDSR-RNMF model has the input layer, s hidden layers and the output
layer. In our implementation, we have considered s = 3. The number of training
epochs is determined dynamically; training ends when the difference in the cost values

in two consecutive epochs reaches a predetermined threshold.

7.4.1 Quantifying the quality of low dimensional embedding

A pair of approaches have been used to examine the quality of low dimensional em-
bedding by IG-MDSR-RNME. First, employing trustworthiness metrics to study the
model’s ability to retain its local structure in low dimensional embedding, and sec-

ond, comparing the classification/cluster performance metrics of the low dimensional
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embedding by IG-MDSR-RNMF to the original data to determine how effective the

dimension reduction was.

7.4.1.1 Local structure preservation

Using the trustworthiness score, the superiority of IG-MDSR-RNMF over ten other di-
mension reduction techniques in terms of maintaining the local structure of the data
after dimension reduction has been calculated and compared. The spider/star plot

illustrates the same (Figure 7.1).
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PDC

: GLRC
05 06/ 07 /08 09 1 MDSR-NMF
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~ IG-MDSR-RNMF
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FIGURE 7.1: Trustworthiness scores of eleven dimension reduction techniques includ-
ing IG-MDSR-RNMF.

There are five axes in the plot, each representing a dataset. The trustworthiness
score of a dimension reduction strategy for a certain dataset is represented as a point
on that axis. Thus, for a dimension reduction strategy, there are five points on five axes,
that correspond to five datasets. These points can be considered as polygon vertices.
Figure 7.1 shows eleven polygons representing eleven dimension reduction strategies.
The area covered by a polygon demonstrates the success of a dimension reduction tech-
nique across all datasets. The algorithm performance is justified as the covered area
increases. From the depiction, we can note that IG-MDSR-RNMF has beaten other di-

mension reduction techniques for the ONP and MovieLens datasets. For the SP dataset,
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TABLE 7.1: Sum of trustworthiness scores of eleven dimension reduction techniques
including IG-MDSR-RNMF on five datasets.

Dimension reduction techniques Sum of trustworthiness scores

AE 4.55550328220533
PCA 4.38647684863791
UMAP 4.13297187263103
NMF 4.50973409888627
DS-NMF 4.22833659492512
Semi-NMF 4.29147059452664
n*MFn? 4.34404888837219
DN3MF 4.72960521062986
MDSR-NMF 4.68627962966105
IG-MDSR-NMF 4.73123216172758
IG-MDSR-RNMF 4.80171249545558

the performance of IG-MDSR-RNMEF is just a notch below the highest one. The perfor-
mance is comparable with GLRC and average with the PDC dataset. The shaded poly-
gon in Figure 7.1 represents the overall performance of IG-MDSR-RNME. To compute
the area of the polygon, we add individual trustworthiness scores of the dimension re-
duction techniques for all five datasets. It can be observed from Table 7.1 that the sum
of trustworthiness scores of IG-MDSR-RNMF is the highest among all. Thus, the qual-
ity of low dimensional embedding produced by IG-MDSR-RNMF is superior to that

produced by the other dimension reduction methods.

7.4.1.2 Decision making: Comparison with the original data

Using a variety of classification and cluster validity measures, the effectiveness of di-
mension reduction by IG-MDSR-RNMF has been assessed by performing classification
and clustering on both the original data and the low dimensional embedding generated
by IG-MDSR-RNMEF. This part of the experiment highlights the need for dimension re-
duction by showing how the low rank representation of the data improves its usability

over the original one.

Classification

Figures 7.2-7.6 presents the performance of IG-MDSR-RNMF and original data in terms
of classification. For the GLRC (Figure 7.2) dataset, IG-MDSR-RNMF generated low
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rank embedding has outperformed the original data for all four classifiers in terms of
all four metrics. For the PDC (Figure 7.4) datasets, IG-MDSR-RNMF generated low
rank embedding has outperformed the original data for all four classifiers in terms of
ACC, FS and MCC metrics. For the CKS metric, the same count is three out of four.
For ONP and MovieLens datasets, for all four performance metrics, IG-MDSR-RNMF
has performed better than the original dataset for three out of four classification algo-
rithms (Figures 7.3, 7.6). In terms of ACC, FS and CSK, for the SP dataset, the scoreline
favouring IG-MDSR-RNMF is two out of four (Figure 7.5) and in terms of MCC score,
IG-MDSR-RNMF has performed better than the original only once.
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FIGURE 7.2: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the GLRC dataset by IG-MDSR-RNMF and ten
other dimension reduction techniques along with the original data.

Thus, it is clear that in the majority of situations, IG-FMDSR-RNMF projected data
outperformed the original data in terms of classification. This justifies the requirement
for dimension reduction as well as the capacity to generate low rank embeddings that

preserve data’s elemental features.

Clustering
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FIGURE 7.3: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the ONP dataset by IG-MDSR-RNMF and ten
other dimension reduction techniques along with the original data.

The performance comparison of clustering done on the low dimensional embedding
produced by IG-MDSR-RNMF and the original data has been illustrated in Figures 7.7-
7.11. For the GLRC (Figure 7.7) and SP (Figure 7.10) datasets, for all four cluster va-
lidity indexes, IG-MDSR-RNMF has performed better than the original data with re-
spect to all four clustering algorithms. For the MovieLens (Figure 7.11) dataset IG-
MDSR-RNMF has performed better for all four clustering algorithms in terms of all
cluster validity indexes considered here except NMI, where the same statistics favour-
ing IG-MDSR-RNMEF is three out of four. For NMI and AMI cluster validity indexes,
IG-MDSR-RNMF has performed better than the original data for four out of four clus-
tering algorithms on the PDC (Figure 7.9) dataset and for the ARI and JI metric these
numbers are two out of four. For the ONP dataset (Figure 7.8) the performance score
is four out of four in favour of IG-MDSR-RNMF for ARI and JI metrics and for the

remaining two metrics i.e., NMI and AMI, the same count is three out of four.

As aresult, it has been demonstrated in terms of clustering performance that the low
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FIGURE 7.4: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the PDC dataset by IG-MDSR-RNMF and ten
other dimension reduction techniques along with the original data.

rank embedding produced by IG-MDSR-RNMF is significantly better at retaining the
essential features of the original data. Therefore, dimension reduction is also essential

and warranted.

7.4.2 Downstream analyses and statistical significance: Comparison with

other models

The efficiency of dimension reduction has been examined by performing classification
and clustering on the low dimensional embedding produced by IG-MDSR-RNMF as
well as the other nine dimension reduction approaches. Several measures assessing
classification and cluster performance have been used to quantify the same. Pairwise
p-values have also been determined to demonstrate the superiority of IG-MDSR-RNMF
over other dimension reduction algorithms in terms of generating output from an in-
dependent set of data. A p-value less than a specific threshold indicates that the results

are statistically significant. The threshold value used in this case is 0.05. In order to
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FIGURE 7.5: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by IG-MDSR-RNMF and ten other
dimension reduction techniques along with the original data.

compare the performance of IG-MDSR-RNMF with that of ten different dimension re-
duction techniques, ten p-values have been calculated for a dataset, a classification/-
clustering methodology and a classification/cluster validity index. There will be a to-
tal of 10 x 4 = 40 p-values for each classification/cluster validity index against each
dataset as there are four classification/cluster methods. This part of the experiment
aims to ascertain whether IG-FMDSR-RNMF is a better dimension reduction technique

than others in terms of different classification and clustering algorithms.

Classification

While working with the IG-MDSR-RNMF model for classification, the outcome has
been depicted by Figures 7.2-7.6. The summary of the count of statistically significant
p-values with respect to IG-MDSR-RNMF has also been presented in Table 7.2.

For four classification techniques, IG-MDSR-RNMF has always achieved the highest
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FIGURE 7.6: Mean performance scores of the classification algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by IG-MDSR-RNMF and
ten other dimension reduction techniques along with the original data.

performance score for all four metrics for GLRC (Figure 7.2), SP (Figure 7.5) and Movie-
Lens (Figure 7.6) datasets and three times for the ONP (Figure 7.3) and PDC (Figure 7.4)

datasets.

The previous explanation demonstrates that in the majority of cases, for all five
datasets and four types of classifiers, the accuracy score of the dimensionally reduced
dataset using IG-MDSR-RNMF outperformed the others. Accuracy measures how of-
ten the model is right. Along with accuracy, we calculated the F1 score, which is the
harmonic mean of precision and recall. The majority of the time, IG-MDSR-RNMF
has done better in terms of F1 score than other models (Figures 7.2-7.6). Therefore,
the accuracy and F1 score of IG-MDSR-RNMEF justify its superiority. Conversely, the
Cohen-Kappa score serves as a statistical measure of inter-rater agreement. The graph-
ical representations demonstrate that IG-MDSR-RNMF has outperformed the others in
most cases and produced higher positive Cohen-Kappa scores. Consequently, it can be
said that IG-MDSR-RNMF achieves superior results by being able to preserve and pick

up on the intrinsic characteristics of the input. The Matthews Correlation Coefficient
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FIGURE 7.7: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the GLRC dataset by IG-MDSR-RNMF and ten other
dimension reduction techniques along with the original data.

TABLE 7.2: The summary of the count (out of 40) of statistically significant p-values for
each classification performance metric against each dataset with respect to IG-MDSR-
RNME

Dataset ACC FS CKS MCC

GLRC 30 30 31 31
ONP 27 32 27 27
PDC 31 36 31 33
sp 35 35 34 34

MovielLens 15 16 33 34

evaluates the quality of binary and multiclass classifications. A higher MCC score indi-
cates better agreement, implying that the model can also keep the class features of the
original dataset in the transformed dataset. The Figures 7.2-7.6 reveal that IG-MDSR-
RNMF beat the other models in terms of MCC score. The accompanying discussion
illustrates that IG-MDSR-RNMF outperforms other dimension reduction techniques in

terms of both statistical and intrinsic property preservation criteria.

For each classification performance index against each dataset, out of a total of 40
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FIGURE 7.8: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the ONP dataset by IG-MDSR-RNMF and ten other
dimension reduction techniques along with the original data.

p-values, the count of p-values less than the determined threshold (0.05) is presented in
Table 7.2. The above statistics indubitably quantify the quality of low rank embedding
produced by IG-MDSR-RNMF over others.

Clustering

For clustering purposes with the IG-MDSR-RNMF model, the Figures 7.7-7.11 present
the outcome. Table 7.3 provides an overview of the count of statistically significant

p-values for IG-MDSR-RNMF for clustering.

IG-MDSR-RNMF has achieved the highest performance score for the Adjusted Rand
index for the SP (Figure 7.10(a)) and MovieLens (Figure 7.11(a)) datasets for all four
clustering approaches considered here. This count is three out of four for the GLRC
(Figure 7.7(a)) dataset and two out of four for the PDC (Figure 7.9(a)) and ONP (Fig-

ure 7.8(a)) datasets. When using the Jaccard Index as the cluster validity estimator,
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FIGURE 7.9: Mean performance scores of the clustering algorithms on the dimension-
ally reduced dataset instances of the PDC dataset by IG-MDSR-RNMEF and ten other
dimension reduction techniques along with the original data.

IG-MDSR-RNMF has outperformed the others in four out of four clustering algorithms
on the PDC (Figure 7.9(b)) dataset. This value ranks three out of four for the GLRC
(Figure 7.7(b)), ONP (Figure 7.8(b)) and SP (Figure 7.10(b)) datasets. For the Movie-
Lens (Figure 7.11(b)) dataset, this count is one out of four. When the cluster validity
index is Normalized Mutual Information score, IG-MDSR-RNMF has outperformed
others four out of four times for the PDC (Figure 7.9(c)) and SP (Figure 7.10(c)), thrice
for the GLRC (Figure 7.7(c)) and MovieLens (Figure 7.11(c)) and once for the ONP
(Figure 7.8(c)) dataset. IG-MDSR-RNMF projected transformed space has achieved the
highest Adjusted Mutual Information score among the other dimension reduction tech-
niques four times on the PDC (Figure 7.9(d)), SP (Figure 7.10(d)) and MovieLens (Fig-
ure 7.11(d)) datasets for all the four clustering algorithms. The count is three for the

GLRC (Figure 7.7(d)) and ONP (Figure 7.8(d)) datasets.

The measure of the similarity between two data clusterings can be done using Ad-
justed Rand Index (ARI). In terms of ARI score, IG-FMDSR-RNMF has outperformed

other dimension reduction strategies across five datasets and four clustering algorithms,
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FIGURE 7.10: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the SP dataset by IG-MDSR-RNMF and ten other
dimension reduction techniques along with the original data.

as shown in Figures 7.7-7.11. The Jaccard Index is used to compare two sets in terms
of similarity. In relation to the Jaccard Index, IG-FMDSR-RNMF has done better than
the others. Therefore, one might claim that IG-FMDSR-RNMF has successfully learned
the essential properties of the input and mapped them to a low rank representation.
The Normalization of Mutual Information score to scale the results in [0, 1] is known
as NMI. This measure is uncorrected for chance. In contrast, the AMI score remains
constant regardless of the permutation of the class or cluster label. Figures 7.7-7.11
demonstrate that IG-MDSR-RNMEF outperforms other considered dimension reduction
techniques in terms of both NMI and AMI scores. The better performance of IG-MDSR-
RNMEF reveals that the low rank representation of datasets using IG-MDSR-RNMF has
been able to preserve the underlying features of the original data better than the other

techniques evaluated here.

Out of a total of 40 p-values for each cluster validity index against each dataset,

Table 7.3 displays the count of p-values that fall below the decided threshold, i.e., 0.05.
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FIGURE 7.11: Mean performance scores of the clustering algorithms on the dimen-
sionally reduced dataset instances of the MovieLens dataset by IG-MDSR-RNMF and
ten other dimension reduction techniques along with the original data.

TABLE 7.3: The summary of the count (out of 40) of statistically significant p-values for
each cluster performance metric against each dataset with respect to IG-MDSR-RNME.

Dataset ARI JI NMI AMI

GLRC 33 34 32 32
ONP 27 30 17 19
PDC 27 37 35 33
Sp 22 11 27 27

MovielLens 27 14 30 38

The aforementioned tally unequivocally demonstrates how good low rank embedding

produced by IG-MDSR-RNMF is compared to others.

7.4.3 Discussion

Just like the previously designed models, the capacity of IG-MDSR-RNMEF to retain the
local structure of data over the others has also been investigated using the trustwor-

thiness score metric. IG-MDSR-RNMF’s performance has been compared separately to
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ten different dimension reduction techniques, including n?MFn?, DN3MF, MDSR-NMF
and IG-MDSR-NMF, across all five datasets. It has been observed that IG-MDSR-RNMF
has demonstrated its goodness in dimension reduction by preserving the granular re-

lationship of data and outperforming the other dimension reduction techniques.

For five datasets, four classification methods, and four classification performance
measures, each dimension reduction algorithm has a total of 5 x 4 x 4 = 80 perfor-
mance scores. It can be observed that IG-MDSR-RNMEF projected datasets outper-
formed the real data on 62 out of 80 instances as far as the downstream analyses are
concerned. When compared to other dimension reduction methods, IG-MDSR-RNMF
had the highest performance rating of 72 out of 80. It can be observed that the per-
formance of IG-MDSR-RNMF over the original SP dataset has been improved over the
previous models. Thus, the superiority of IG-MDSR-RNMEF over the others is unques-

tionable.

The low rank embeddings produced by IG-MDSR-RNMF for various datasets not
only outperform the original and other dimensionally reduced datasets produced by
different dimension reduction methods, but they have also been shown to be statisti-
cally significant in terms of the comparative p-values. The aggregate count of statisti-
cally significant findings connected to IG-MDSR-RNMF for all classifiers and classifi-
cation measures is 122 out of 160 (4 x 4 x 10) for the GLRC dataset. These counts for
the PDC, ONP, SP and MovieLens datasets are 113, 131, 138 and 98, respectively. Thus,
IG-MDSR-RNMF has outperformed other dimension reduction methods in terms of

producing statistically meaningful low-dimensional embeddings.

Similar to classification, four clustering techniques and four cluster validity mea-
sures have been applied across five datasets to demonstrate IG-MDSR-RNMF’s compe-
tence. When comparing clustering performance to the original data, IG-MDSR-RNMF
has outperformed the original data by 73 times out of 80. IG-MDSR-RNMF has out-
performed other dimension reduction techniques by 62 out of 80. Given the preceding
discussion, it is evident that in the vast majority of cases, IG-MDSR-RNMF has outper-

formed the other dimension reduction methodologies reviewed here.

The low rank embeddings generated by IG-MDSR-RNMEF for different datasets have
been shown to be statistically significant based on the comparative p-values they pro-

duce, in addition to outperforming the original and other dimensionally reduced datasets
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produced by different dimension reduction methods. Out of 160 (4 x 4 x 10), for the
GLRC dataset, 131 cases, out of all clustering techniques and cluster validity indices,
are statistically significant performant for IG-MDSR-RNMF. The counts of 93, 132, 87
and 109 have been found for the PDC, ONP, SP and MovieLens datasets respectively.
Thus, it has been demonstrated that IG-MDSR-RNMF produces low dimensional em-
beddings that are statistically significant and are more efficient than other dimension

reduction techniques.

7.5 Convergence Analysis

Based on the experimental results, we aim to establish the convergence of the pro-
posed IG-MDSR-RNMF model. The convergence plot for the IG-MDSR-RNMF model
is shown in Figure 7.12. The plot illustrates the variation of the cost function ® against
iteration for all five datasets. Overall, the decreasing nature of the cost over time vali-
dates that the model converges. It can also be observed from the plot that the initial cost
value for all the datasets starts from a high position and after a few initial epochs, the
value of the cost function has almost reached a straight line parallel to the horizontal
axis. That is, there are very nominal changes in the cost value. Thus, we can conclude
that the model has converged. Figure 7.12 depict the cost versus iteration plot for the
GLRC, ONP, ONP, SP and MovieLens datasets with r = 118, 7 =24, r = 327, r = 9 and
r = 470 respectively.

7.6 Analysis of Computational Complexity

The neural network architecture of both IG-MDSR-NMF and IG-MDSR-RNMF are the
same. The learning procedure of both models is also the same. The only difference is
in the output of the models. In IG-MDSR-NMEF both factor matrices adhere to the non-
negativity criteria but in IG-MDSR-RNMEF only one matrix follows the non-negativity
criteria and the other does not. Thus the computational complexity of both models is
also the same. Based on the discussion illustrated in the previous Chapter 6 Section 6.6,
the overall computational complexity of IG-MDSR-RNMF is O(tmnr), where t is the

number of epochs, (m, n) is the dimension of the input matrix X and r; is the maximum
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Convergence plot for IG-MDSR-RNMF
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FIGURE 7.12: Loss vs. iteration plots of IG-MDSR-RNMF for GLRC, ONP, PDC, SP
and MovieLens dataset.

number of nodes among the hidden layers of IG-MDSR-RNME. According to the archi-
tecture, the sequence of the number of nodes perlayerisn =rg >r; > 1 > ... > 1, =r.
Hence, the first hidden layer has the maximum number of nodes among all hidden

layers and thus has been used to estimate the overall computational complexity of IG-

MDSR-RNME

7.7 Conclusions

A large dataset with numerous attributes can be dimensionally reduced using different
methods. In this chapter, we have developed a novel neural network model (IG-MDSR-
RNMF) by combining the advantages of deep learning for dimension reduction with
the benefits of NMF. The design of IG-MDSR-RNMF has been inspired by the way hu-
mans learn new concepts by constantly consulting the original text to keep learning
on track and increase the efficacy of knowledge acquisition. As the input assists IG-

MDSR-RNMEF at every stage/level of hierarchical learning, the model has been named
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"input guided". The way that IG-MDSR-RNMF has been designed allows it to imitate
the factorization behaviour of the traditional NMF method. Through a modified matrix
factorization technique known as Relaxed-NMEF, where only the basis matrix satisfies
the non-negativity requirement, IG-MDSR-RNMF presents an enhanced form of learn-

ing.

A thorough experimentation of the quality of dimension reduction using IG-MDSR-
RNMF on five well-known datasets has been performed in order to compare the out-
come with ten other dimension reduction methods. Three traditional dimension reduc-
tion algorithms and seven NMF-based techniques make up these ten dimension reduc-
tion methodologies. Maintaining the local shape of the original data in the transformed
space is seen as a standard for dimension reduction methods. IG-MDSR-RNMF has
demonstrated superiority over other dimension reduction techniques for the preserva-
tion of local shape. By contrasting their results using both classification and clustering
over the original dataset, the quality of low rank embedding by IG-MDSR-RNMF has
been examined and verified, which in turn supports the necessity of dimension re-
duction. Four clustering techniques, four cluster validity indices, four classification
algorithms and four classification performance measurements have all been employed
in the course of the experimentation. The results corroborate the advantages of IG-

MDSR-RNMEF over the other dimension reduction techniques examined in this study.

The statistical significance of the large result set has been provided for better under-
standing. The results unequivocally demonstrate that IG-MDSR-RNMF outperforms
other dimension reduction techniques taken into consideration here in terms of both
statistical performance and intrinsic property preservation principles. Additionally,
experiments have been conducted to show that IG-MDSR-RNMF converges over time.
The amount of elementary operations executed has also been explored in relation to

the computational complexity of IG-MDSR-RNME.

Throughout this thesis, we have developed and demonstrated five different neural
network models to find the low dimensional embedding of the given input to overcome
the problem of the curse of dimensionality. The next chapter concludes the thesis along

with some highlights of different directions for future work.



Chapter 8

Conclusions and Scope of Further

Research

The key aspects of each of the contributing chapters of the thesis have been compiled
in this chapter. The chapter also sheds light on the potential areas for future research

into deep learning based NMF techniques.

8.1 Conclusions

In this thesis, we intend to combine the advantages of the classical iterative NMF ap-
proach with those of the neural network design. The concluding remarks of the con-

tributory chapters have been summarized here under architecture and results.

8.1.1 Architecture

The standard NMF approach updates the factors of the input matrix via a block co-
ordinate descent scheme. In Chapter 3, we have designed a neural network model,
called Non-negative Matrix Factorization Neural Network (n?MFn?) for NMF, where

this limitation has been removed by updating both factors concurrently [24, 25].

n’MPFn? has a single hidden layer that serves as the system’s slender layer. The

neural network model is divided into two phases: deconstruction and reconstruction.
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Hence, the architecture might be referred to as the Single Deconstruction Single Recon-
struction (SDSR) framework. The model’s non-negative factors are the slender layer
output and the weight matrix that connects the slender and output layers. Because
the weight matrix must adhere to the non-negativity requirement, a variation of the
popular He weight initialization technique, known as the Modified He initialization
technique (mHe), has been developed to ensure model consistency in terms of non-

negativity. The ReLU activation function has also been modified.

The objective function has been developed to reduce overfitting by employing L1
regularization/Lasso regularisation. The innovative regularizer guarantees the best
feasible approximation of the input data matrix. Furthermore, the regularising param-
eter has been set so that it has a controlled influence on the regularizer when n?MFn?
attempts to regenerate the input. The architecture’s learning rules have been derived
while remaining within the model’s constraints. The update rules adjust each element
of the weight matrix independently to meet the requirement. In n?MFn?, the rule for
determining the value of the adaptive learning rate is fixed, but it has been formu-
lated in a manner that it directs each weight value separately to fulfil the non-negative
requirements. Choosing a fixed learning rate a priori that meets the non-negativity cri-
terion is challenging; hence, an adaptive learning rate for neural networks has been

proposed.

n?MFn? realizes NMF in a shallow neural network architecture. However, deep
neural network architecture may be employed for NMF in order to take advantage of
hierarchical learning during the dimension reduction of large datasets. In Chapter 4,
we have developed a deep learning model, known as Deep Neural Network for Non-
negative Matrix Factorization (DN3MF), for the task of NMEF, aiming for low rank ap-
proximation of the data matrix [27]. There are two stages to the model: pretraining and
stacking. The pretraining stage uses a shallow neural network architecture, whereas

the stacking stage uses a deep neural network design.

There are several deconstruction layers and an equal number of reconstruction lev-
els. Thus, the model adheres to the Multiple Deconstruction Multiple Reconstruction
(MDMR) paradigm. To meet the non-negativity condition, n?MFn? has employed the
ReLU activation function. However, due to its tendency to eliminate negative compo-

nents, the ReLU activation function is prone to data loss. In contrast to ReLU, using
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the sigmoid activation function helps prevent data loss. To meet the model’s non-
negativity criteria, the sigmoid activation function has been carefully changed. The
Xavier initialization approach solves the exploding or vanishing gradient problem.
Similar to n?MFn?, DN3MF has used regularisation in the model’s objective function
to achieve the best possible approximation of the input matrix. The formulation of a

one-of-a-kind adaptive learning mechanism has aided the model’s success.

DN3MF has a severe flaw: it fails to generate two distinct factor matrices. In Chap-
ter 5, we have solved the same by designing an innovative deep learning framework.
We have developed a deep learning model, called Multiple Deconstruction Single Re-
construction Deep Neural Network Model for Non-negative Matrix Factorization (MDSR-
NMF) to approximate the data matrix at a low rank using NMF [26]. The methodology

consists of two stages: pretraining and stacking.

The model’s pretraining stage is achieved using a shallow neural network architec-
ture. A one-of-a-kind deep learning architecture has been designed for stacking. The
design of this stacking stage sets it apart from other contemporary deep learning mod-
els. In the MDSR-NMF stacking stage design, the number of layers between the input
layer and the slenderest layer of the framework is different from the number of lay-
ers between the slenderest layer and the output layer of the framework. There is no
limit to the number of layers between the input and the slenderest layer of the MDSR-
NMF architecture. Here, the slenderest layer connects straight to the output layer. This
novel approach guarantees a unique pair of factor matrices for the reconstructed input
matrix. Thus, MDSR-NMF mimics the factorization behaviour of conventional NMF

approaches.

The goal of emulating the factorization behaviour of the standard NMF approach
while assuring the output of a unique pair of factor matrices of the reconstructed input
matrix has inspired us to develop the previous three models. In Chapter 6, we have
combined the advantages of traditional iterative learning with those of deep learning
in a way that mimics the nature of human learning. While learning, humans usually
try to break down concepts into smaller chunks and learn hierarchically, returning back
to the source regularly to ensure the accuracy of the learning. Thus, we might conclude

that human learning is always input-guided.
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In Chapter 6, we have developed a model called Input Guided Multiple Decon-
struction Single Reconstruction Neural Network for Non-negative Matrix Factorization
(IG-MDSR-NMF) for dimension reduction [28]. The model consists of two phases: de-
construction and reconstruction. The deconstruction phase layers receive the preceding
layer’s hierarchically processed output as input, as well as a copy of the original data.
Thus, the model is named "Input Guided". The reconstruction phase consists of only
one layer, ensuring that the NMF model generates a unique pair of non-negative factor

matrices.

Although our main objective is to create a low-dimensional non-negative represen-
tation of the input matrix, we have been experimenting with previously developed
models to produce a pair of non-negative components as output. The second compo-
nent can only be used in conjunction with the low rank embedding to reproduce the
original matrix, which is not at all our goal but to obtain better low rank embedding of
the original space. In Chapter 7, we relaxed the second factor matrix from being non-
negative and introduced Relaxed Non-negative Matrix Factorization (RNMF), a novel
matrix factorization approach, with an aim to even better low rank embedding of the

original data [28].

8.1.2 Results

Throughout this thesis, we have developed and exhibited five distinct neural network
models for determining the low dimensional embedding of a given input in order to
avoid the curse of dimensionality. The performance of the models in dimension reduc-
tion has been demonstrated in two parts. First, the models” capacity to preserve the
local structure of data has been compared, and the requirement for dimension reduc-
tion has been justified over the original data. Second, the efficacy of the dimension-
ally reduced dataset is investigated for downstream analyses such as classification and
clustering. Furthermore, the appropriate p-values have been calculated to determine

the statistical significance of the outcomes.

The performance and effectiveness of n2MFn? (in Chapter 3) in preserving the lo-
cal structure of data have been extensively evaluated using the trustworthiness score
across five datasets comparing individually against six other prominent dimension re-

duction techniques. n?MFn? has demonstrated superior or competitive performance,
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highlighting its efficacy in dimension reduction. In terms of validation through clas-
sification techniques, n?MFn? has shown robust performance in low rank approxima-
tion with algorithms like KNN, NB, MLP and QDA. Besides, for different clustering
methods, n?MFn? has established its superiority over the original and other dimen-
sion reduction algorithms considered here. Statistical analysis reveals that the low
dimensional embeddings produced by n?MFn? are not only effective but also statis-
tically significant across datasets, consistently outperforming the other dimension re-
duction techniques. Overall, n?MFn? emerges as a superior dimensionality reduction
technique, excelling in maintaining data structure integrity and generating meaningful

low dimensional representations for diverse analytical tasks.

In Chapter 4, DN3MF has been thoroughly evaluated using the trustworthiness
score metric across five datasets, and compared against seven other dimension reduc-
tion techniques including n?MFn?. It has consistently demonstrated superior perfor-
mance in preserving the local structure of data, outperforming other methods across
most of the datasets. For classification tasks, low rank approximations produced by
DN3MF have been validated using various algorithms, such as NB, MLP, QDA and
KNN, alongside centroid-based (MBkM, FcM, GMM) and hierarchical (BIRCH) cluster-
ing techniques. Here, it has consistently outperformed the original data and achieved
the highest ratings compared to other techniques in most of the instances. In clustering
evaluations too, DN3MF has demonstrated superior performance in both cases. Statis-
tically, DN3MF’s low-dimensional embeddings have consistently proved to be signifi-
cant across datasets, surpassing both original data and outcomes from other dimension
reduction methods. It has consistently achieved top performance ratings compared to
the other techniques, underscoring its effectiveness and reliability. Thus, DN3MF has
proved its efficacy in dimension reduction, capable of maintaining data integrity, and
producing valuable low dimensional representations for complex data analysis. From
the experimental analyses, it can be clearly observed that, in contrast to n*MFn?, the

performance of DN3MF has bettered in most of the circumstances.

MDSR-NMEF (Chapter 5) has consistently demonstrated its efficacy in preserving
local data structures, achieving top trustworthiness scores for two datasets and above-
average scores for the others. Overall, MDSR-NMF has performed slightly below the
previous model (DN3MF) but outperformed the other methods. In terms of classifica-

tion and clustering, statistically, MDSR-NMF has outperformed the original data and
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achieved the highest ratings compared to the other methods in most of the cases. Low-
rank embeddings generated by MDSR-NMEF have been statistically significant across
datasets, as indicated by comparative p-values. Thus, MDSR-NMF has justified its ef-

ficacy over others.

IG-MDSR-NMF, developed in Chapter 6, stands out as a superior dimension re-
duction technique based on extensive evaluations across multiple datasets and com-
parisons with nine other dimension reduction methods including the above models
developed in this thesis. It has excelled in preserving local data structures, validated
by trustworthiness scores, and has consistently outperformed competitors in both clas-
sification and clustering tasks. Statistically significant low-rank embeddings produced
by IG-MDSR-NMF have underscored its effectiveness across diverse dataset character-
istics, showcasing robust performance and broad applicability. Its innovative input-
guided design places it apart, reaffirming its status as a leading choice for dimension-

ality reduction in complex data analysis scenarios.

IG-MDSR-RNMF (Chapter 7), a dimension reduction technique with a novel Relaxed-
NMEF technique, has proved its ability to preserve local data structure effectively. Com-
pared to ten other state-of-the-art methods (including the previous four models de-
veloped in the thesis) across five datasets, IG-MDSR-RNMEF has consistently outper-
formed in both classification and clustering tasks. It produces statistically significant
low-rank embeddings, demonstrating robustness across varying dataset characteris-
tics. Its input-guided principles and Relaxed-NMF technique, positions it apart as a
superior choice for dimensionality reduction, validated through extensive experimen-

tal evaluations.

The above discussion on the performance of five models developed one after the
other starting from n?MFn? up to IG-MDSR-RNMEF, clearly shows that with each de-
velopment the overall performance has either mostly improved than the previous one
or has at least registered at par performance in some situations. Thus, in terms of ex-
perimental outcomes, the overall agenda of the progressive development of models
has been able to justify their efficacy over the previous ones, and definitely has per-
formed better than the other six dimension reduction techniques considered here for
comparison. The convergence analysis presented in each chapter has experimentally

established the convergence of all five models. The computational complexities have
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also been calculated for all five models to present the upper bound (O) of computation

cost in terms of the number of elementary operations performed.

8.2 Future scope of research

Some possible enhancements of the current thesis and some scope for further research

have been outlined here.

8.2.1 Scope of enhancements

The theoretical connections between NMF and k-means, providing strong support and
theoretical foundations for NMF-based clustering, are well established [19, 20, 21, 74].
It has been proved that NMF is equivalent to a relaxed k-means clustering yielding a
soft partitioning [29]. Moreover, Orthogonal NMF has been shown to boil down to k-
means clustering [19, 74]. On the other hand, in our models, we are not exploiting the
natural clustering property of NMEF. Our one and only intention is dimension reduction
through NMF. In future, the models developed in the thesis can be explored in the

direction of NMF-based clustering.

We have performed comparative analyses of the performance of the developed mod-
els in terms of their ability to preserve the local structure of data in the low-dimensional
space with that of the traditional autoencoder model along with other relevant tech-
niques, using the trustworthiness metric. Several other similar variations of the trust-
worthiness metric have been developed to date. The trustworthiness framework de-
veloped by Lee et al. [67, 68, 69] is one such variation. In future, such comparisons can

also be performed with others such metrics.

8.2.2 Scope for further research

The models described in the thesis have been designed to be applied to numerical data
matrices. In real life, there are a number of data types like image, sequence and spatial

data to name a few. NMF based neural network models developed in this thesis are not
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compatible with applications on these diverse kinds of data. In future, we aim to build

deep learning based models for NMF to be applied to image data.

In the real world, the majority of datasets naturally comprise several views or rep-
resentations. It becomes natural to combine these several representations in order to
achieve greater performance rather than depending just on one since it is often the
case that they offer complimentary and compatible information. In order to perform
better than merely concatenating views, the secret to learning from multiple view-
points (multi-view) is to make use of each view’s distinctive understanding. Multi-
view clustering is a difficult aspect of unsupervised learning from many views of un-
labeled data since unlabeled data are abundant in real-world scenarios and growing
amounts of them come in various views from different sources. Organising items into
clusters based on several representations of the object is the aim of multi-view cluster-
ing [42, 77, 117]. We aim to develop deep neural network based models on NMF to

overcome these problems.

Web-scale dyadic data and other large datasets have been subjected to the applica-
tion of NMF [76, 123]. In such instances, using a cluster of devices to accelerate the
factorization process is preferable. Nevertheless, implementing NMF effectively in a
distributed setting is challenging. Through the use of novel update functions, local ag-
gregation and comprehensive parallelism exploration can be made possible. We might
have to split the original matrix into blocks and partition the factor matrices into equiv-
alent blocks in order to accommodate the new form. When updating a factor matrix,
the update methods should enable modifying different blocks both separately and con-
currently. Additionally, it should be able to make a distributed implementation easier
such that simultaneous updates of multiple factor matrix blocks are possible. The cur-

rent research work can be further enhanced to encompass these kinds of problems.

An intelligent system’s capability is generally measured in terms of its generalisa-
tion ability; the higher the generalisation ability, the more accurate is the prediction of
the system for new events. Intelligent systems are an approximation of the true model
of a problem, which is known as a hypothesis. The risk is described as a mismatch be-
tween the right answer and the hypothesis, or an accumulation of mistakes. However,

if the actual model is unknown, the risk cannot be determined. Meanwhile, empirical
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risk is used to approximate the true answer. However, the disparity between the pro-
jected outcomes from hypothesis overfitting on the sample data and the true solution
of the samples might lead to mistakes. Nowadays, intelligent systems have increas-
ingly used empirical risk reduction to determine the optimal solution. However, it has
been observed that this technique might cause overfitting of the classification function,
resulting in poor generalisation performance. The reason for this is that the empiri-
cal risk, which is used to estimate the genuine risk, is not a trustworthy predictor of
the algorithm’s performance due to the small number of training samples compared
to the real-world data that must be classified. To address this issue, statisticians have
introduced the idea of generalisation error bounds, which give a measure of the bias
and convergence rate between the actual and predicted risks of a learning algorithm.
As a result, the primary goal is to increase algorithm efficiency and performance, par-
ticularly for real-world issues [118]. There is no way to compute the confidence risk
correctly; so, only an estimated interval may be provided, which also allows for the
calculation of just an upper bound on the overall error with the accurate value [103].
These notions of generalisation error bounds can be studied on the neural network

based NMF models.

In real life, a very small percentage of data are labelled, whereas, most of the data
are unlabelled. To tackle this, semi-supervised NMF can be formulated to work on both
labelled and unlabeled data. This kind of NMF technique aims to leverage minimal
labelled data and plentiful unlabeled data to generate effective part-based representa-
tions and more accurate low-dimensional representations. In future, research can focus
on incorporating various types of supervised information into the NMF framework,
designing deep semi-supervised NMF architecture. It may also aid in feature selection

along with feature extraction [89].






Appendix A

Tables of p-values for n?MFn? vs.
others depicting classification

performances

In the thesis for each of the five developed models, one summary table of p-values
with respect to the classification performances and another summary table of p-values
with respect to the clustering performances have been provided in the Chapters 3-7.
For illustration, detailed p-values of one such Table 3.2 have been provided. In order
to restrict the size of the thesis, we have not included similar tables for clustering in

Chapter 3, and for the other models developed in Chapters 4-7.

The following Tables A.1-A.20 depict the actual p-values obtained for n*MFn? over
six other dimension reduction techniques for each of the five datasets, each of the four
classifiers and each of the four classification performance evaluators. From these tables,

the summary Table 3.2 has been obtained.
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TABLE A.1: p-values for the classification performances of nMFn? and other dimen-
sion reduction algorithms on the GLRC dataset in terms of accuracy.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0084 0.0262 0.0293 0.0251
n’MFn? vs. PCA 0.0034 0.0001 0.0016 0.0045
n’MFn? vs. UMAP 0.0001 0.0000 0.0001 0.0000
n’MFn? vs. NMF 0.0046 0.0013 0.0084 0.0015

n’MFn? vs. DS-NMF 0.0067 0.0000 0.0001 0.0000
n’MFn? vs. Semi-NMF  0.0002 0.0000 0.0000 0.0000

The count of p-values in Table A.1 less than the assumed threshold value of 0.05, is 24
out of 24.

TABLE A.2: p-values for the classification performances of nMFn? and other dimen-
sion reduction algorithms on the GLRC dataset in terms of F1 score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0045 0.1668 0.0421 0.0041
n’MFn? vs. PCA 0.0000 0.0000 0.0000 0.0002
n’MFn? vs. UMAP 0.0000 0.0000 0.0001 0.0000
n’MFn? vs. NMF 0.0180 0.0000 0.0019 0.0002

n’MFn? vs. DS-NMF 0.0000 0.0000 0.0000 0.0000
n’MFn? vs. Semi-NMF  0.0000 0.0000 0.0000 0.0003

The count of p-values in Table A.2 less than the assumed threshold value of 0.05, is 23
out of 24.

TABLE A.3: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the GLRC dataset in terms of Cohen-Kappa score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0007 0.1390 0.0220 0.0076
n’MFn? vs. PCA 0.0000 0.0000 0.0000 0.0002
n’MFn? vs. UMAP 0.0000 0.0000 0.0001 0.0000
n’MFn? vs. NMF 0.0064 0.0000 0.0003 0.0002

n?MFn? vs. DS-NMF 0.0000 0.0000 0.0000 0.0000
n’MFn? vs. Semi-NMF  0.0000 0.0000 0.0000 0.0001

The count of p-values in Table A.3 less than the assumed threshold value of 0.05, is 23
out of 24.
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TABLE A.4: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the GLRC dataset in terms of Matthew’s Correlation Co-
efficient score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0088 0.0972 0.1070 0.0071
nMFn? vs. PCA 0.0000 0.0000 0.0001 0.0001
n’MFn? vs. UMAP 0.0016 0.0000 0.0003 0.0000
nMFn? vs. NMF 0.0020 0.0000 0.0015 0.0003

n’MFn? vs. DS-NMF 0.0000 0.0000 0.0000 0.0000
n?MFn? vs. Semi-NMF  0.0000 0.0000 0.0000 0.0001

The count of p-values in Table A.4 less than the assumed threshold value of 0.05, is 22
out of 24.

TABLE A.5: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the ONP dataset in terms of accuracy.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0006  0.0000 0.1501 0.0000
n’MFn? vs. PCA 0.0000 0.0000 0.0992 0.0000
n’MFn? vs. UMAP 0.0000 0.0630 0.5776 0.0000
n’MFn? vs. NMF 0.0000 0.0001 0.0229 0.0000

n’MFn? vs. DS-NMF 0.0000 0.0002 0.7660 0.0000
n’MFn? vs. Semi-NMF  0.0001 0.0001 0.3470 0.0002

The count of p-values in Table A.5 less than the assumed threshold value of 0.05, is 18
out of 24.

TABLE A.6: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the ONP dataset in terms of F1 score.

Techniques KNN MLP NB QDA
nMFn? vs. AE 0.0076 0.0001 0.0154 0.0005
nMFn? vs. PCA 0.0011 0.1091 0.9377 0.0000
nMFn? vs. UMAP 0.0094 0.0363 0.0001 0.0000
nMFn? vs. NMF 0.0081 0.0000 0.8657 0.0000

n’MFn? vs. DS-NMF 0.0037 0.0000 0.0709 0.0000
n’MFn? vs. Semi-NMF  0.0161 0.0000 0.0239 0.0002

The count of p-values in Table A.6 less than the assumed threshold value of 0.05, is 20
out of 24.
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TABLE A.7: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the ONP dataset in terms of Cohen-Kappa score.

Techniques KNN MLP NB QDA
n’MPFn? vs. AE 0.0010 0.0000 0.1172 0.0000
n’MFn? vs. PCA 0.0000 0.0000 0.0887 0.0000
n’MFn? vs. UMAP 0.0000 0.0302 0.9324 0.0000
n’MFn? vs. NMF 0.0000 0.0000 0.0351 0.0000

n?MFn? vs. DS-NMF 0.0000 0.0002 0.5428 0.0000
n’MFn? vs. Semi-NMF  0.0001 0.0001 0.2203 0.0002

The count of p-values in Table A.7 less than the assumed threshold value of 0.05, is 19
out of 24.

TABLE A.8: p-values for the classification performances of nMFn? and other dimen-
sion reduction algorithms on the ONP dataset in terms of Matthew’s Correlation Co-
efficient score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0010 0.0001 0.0825 0.0000
n’MFn? vs. PCA 0.0000 0.0000 0.0489 0.0000
n’MFn? vs. UMAP 0.0000 0.0303 0.9444 0.0000
n’MFn? vs. NMF 0.0000 0.0001 0.0289 0.0000

n’MFn? vs. DS-NMF 0.0000 0.0004 0.4803 0.0000
n’MFn? vs. Semi-NMF  0.0001 0.0002 0.2754 0.0002

The count of p-values in Table A.8 less than the assumed threshold value of 0.05, is 20
out of 24.

TABLE A.9: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the PDC dataset in terms of accuracy.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0248 0.0136 0.7492 0.0004
n’MFn? vs. PCA 0.0000 0.0006 0.0010 0.0018
n’MFn? vs. UMAP 0.0000 0.0000 0.0757 0.0000
n’MFn? vs. NMF 0.0027 0.0016 0.0001 0.0280

n’MFn? vs. DS-NMF 0.0001 0.0001 0.0000 0.0000
n’MFn? vs. Semi-NMF  0.0000 0.0002 0.0000 0.0000

The count of p-values in Table A.9 less than the assumed threshold value of 0.05, is 22
out of 24.
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TABLE A.10: p-values for the classification performances of n”?MFn? and other dimen-
sion reduction algorithms on the PDC dataset in terms of F1 score.

Techniques KNN MLP NB QDA
n’MPFn? vs. AE 0.0268 0.0072 0.9238 0.0000
n’MFn? vs. PCA 0.0001 0.0011 0.0003 0.0007
n’MFn? vs. UMAP 0.0000 0.0001 0.1006 0.0000
n’MFn? vs. NMF 0.0102 0.0013 0.0012 0.0216

n?MFn? vs. DS-NMF 0.0001 0.0001 0.0000 0.0000
n’MFn? vs. Semi-NMF  0.0000 0.0002 0.0000 0.0000

The count of p-values in Table A.10 less than the assumed threshold value of 0.05, is 22
out of 24.

TABLE A.11: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the PDC dataset in terms of Cohen-Kappa score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0333 0.0013 0.1906 0.0001
n’MPFn? vs. PCA 0.0000 0.0000 0.0007 0.0001
n’MFn? vs. UMAP 0.0001 0.0001 0.0343 0.0000
n’MFn? vs. NMF 0.0065 0.0053 0.0007 0.0174

n’MFn? vs. DS-NMF 0.0006 0.0000 0.0000 0.0000
n’MFn? vs. Semi-NMF  0.0000 0.0000 0.0000 0.0000

The count of p-values in Table A.11 less than the assumed threshold value of 0.05, is 23
out of 24.

TABLE A.12: p-values for the classification performances of n?MFn? and other di-
mension reduction algorithms on the PDC dataset in terms of Matthew’s Correlation
Coefficient score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0493 0.0032 0.1308 0.0001
n’MFn? vs. PCA 0.0001 0.0000 0.0028 0.0002
n’MFn? vs. UMAP 0.0000 0.0003 0.0326 0.0000
n’MFn? vs. NMF 0.0033 0.0090 0.0038 0.0195

n’MFn? vs. DS-NMF 0.0001 0.0000 0.0000 0.0000
n’MFn? vs. Semi-NMF  0.0003 0.0000 0.0000 0.0000

The count of p-values in Table A.12 less than the assumed threshold value of 0.05, is 23
out of 24.
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TABLE A.13: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the SP dataset in terms of accuracy.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.1657 09163 0.6236 0.0526
n’MFn? vs. PCA 0.0000 0.0000 0.0002 0.0000
n’MFn? vs. UMAP 0.2199 0.2025 0.9246 0.0002
n’MFn? vs. NMF 0.2790 0.4443 0.4601 0.0062

n’MFn? vs. DS-NMF 0.0338 0.0696 1.0000 0.0027
n’MFn? vs. Semi-NMF  0.0265 0.0631 1.0000 0.0054

The count of p-values in Table A.13 less than the assumed threshold value of 0.05, is 10
out of 24.

TABLE A.14: p-values for the classification performances of n*MFn? and other dimen-
sion reduction algorithms on the SP dataset in terms of F1 score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.1618 0.5713 0.6060 0.0334
n’MFn? vs. PCA 0.0000 0.0003 0.0018 0.0000
n’MFn? vs. UMAP 0.2605 0.2820 0.4985 0.0002
n’MFn? vs. NMF 04410 0.6412 0.7656 0.0048

n’MFn? vs. DS-NMF 0.0321 0.5772 0.2885 0.0059
n’MFn? vs. Semi-NMF  0.0273 0.5167 0.1622 0.0063

The count of p-values in Table A.14 less than the assumed threshold value of 0.05, is 11
out of 24.

TABLE A.15: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the SP dataset in terms of Cohen-Kappa score.

Techniques KNN MLP NB QDA
nMFn? vs. AE 0.4244 0.3395 0.5520 0.1531
nMFn? vs. PCA 0.0011 0.0000 0.0001 0.0000
nMFn? vs. UMAP 0.5087 0.2578 0.4393 0.0006
nZMFn? vs. NMF 0.2559 0.0237 0.1978 0.0127

n?’MFn? vs. DS-NMF 0.0851 0.0019 0.0434 0.0018
nMFn? vs. Semi-NMF  0.1207 0.0036 0.0014 0.0071

The count of p-values in Table A.15 less than the assumed threshold value of 0.05, is 13
out of 24.
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TABLE A.16: p-values for the classification performances of n”?MFn? and other dimen-
sion reduction algorithms on the SP dataset in terms of Matthew’s Correlation Coeffi-
cient score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.3922 0.3833 0.4120 0.1512
nMFn? vs. PCA 0.0010 0.0000 0.0001 0.0000
n’MFn? vs. UMAP 0.4990 0.2498 0.5536 0.0006
nMFn? vs. NMF 0.2360 0.0859 0.2202 0.0124

n’MFn? vs. DS-NMF 0.0808 0.0145 0.4007 0.0017
n’MFn? vs. Semi-NMF  0.1056 0.0256 0.0033 0.0067

The count of p-values in Table A.16 less than the assumed threshold value of 0.05, is 11
out of 24.

TABLE A.17: p-values for the classification performances of n*MFn? and other dimen-
sion reduction algorithms on the MovieLens dataset in terms of accuracy.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0362 0.0062 0.0001 0.0003
n’MFn? vs. PCA 0.0033 0.0002 0.0003 0.0153
n’MFn? vs. UMAP 0.0000 0.0051 0.0025 0.0021
n’MFn? vs. NMF 0.3590 0.0017 0.0043 0.0008

n’MFn? vs. DS-NMF 0.0181 0.0113 0.0020 0.0001
n’MFn? vs. Semi-NMF  0.0006 0.0004 0.0025 0.0002

The count of p-values in Table A.17 less than the assumed threshold value of 0.05, is 23
out of 24.

TABLE A.18: p-values for the classification performances of n”MFn? and other dimen-
sion reduction algorithms on the MovieLens dataset in terms of F1 score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0031 0.0067 0.0004 0.0000
n’MFn? vs. PCA 0.0044 0.0002 0.0000 0.0569
n’MFn? vs. UMAP 0.0000 0.0053 0.0023 0.0016
n’MFn? vs. NMF 0.1140 0.0017 0.0039 0.0004

n’MFn? vs. DS-NMF 0.0304 0.0125 0.0053 0.0000
n’MFn? vs. Semi-NMF  0.0003 0.0004 0.0118 0.0002

The count of p-values in Table A.18 less than the assumed threshold value of 0.05, is 22
out of 24.
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TABLE A.19: p-values for the classification performances of n?’MFn? and other dimen-
sion reduction algorithms on the MovieLens dataset in terms of Cohen-Kappa score.

Techniques KNN MLP NB QDA
n’MFn? vs. AE 0.0019 1.0000 0.2635 0.0000
n’MFn? vs. PCA 0.3937 0.0782 0.8833 0.1393
n’MFn? vs. UMAP 0.0033 1.0000 0.0324 0.1191
n’MFn? vs. NMF 0.1687 1.0000 0.0032 0.0018

nMFn? vs. DS-NMF 0.0869 1.0000 0.0000 0.0001
n?MFn? vs. Semi-NMF  0.0027 1.0000 0.0001 0.0225

The count of p-values in Table A.19 less than the assumed threshold value of 0.05, is 11
out of 24.

TABLE A.20: p-values for the classification performances of n?MFn? and other dimen-
sion reduction algorithms on the MovieLens dataset in terms of Matthew’s Correlation
Coefficient score.

Techniques KNN MLP NB QDA
nMFn? vs. AE 0.1708 1.0000 0.0121 0.0000
nMFn? vs. PCA 0.8240 0.0601 0.0930 0.1242
n’MFn? vs. UMAP 0.0884 1.0000 0.0019 0.1109
nMFn? vs. NMF 0.3209 1.0000 0.0295 0.0016

n’MFn? vs. DS-NMF 0.3673 1.0000 0.0000 0.0001
n’MFn? vs. Semi-NMF  0.0593 1.0000 0.0000 0.0199

The count of p-values in Table A.20 less than the assumed threshold value of 0.05, is 9
out of 24.
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