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Abstract

Quantum computing has emerged as a groundbreaking field with the potential
to solve certain complex problems that are currently intractable for classical com-
puters. Leveraging the principles of quantum mechanics, quantum computers offer
exponential speedup for specific tasks, making them a revolutionary tool for various
domains, including cryptography, material science, and optimization. The unique
capabilities of quantum computers, such as superposition and entanglement, enable
entirely new computational paradigms with far-reaching implications. However,
despite their immense potential, the practical realization of quantum computing
faces significant challenges, such as high error rates and limited qubit coherence.

One of the primary obstacles in quantum computing is managing errors that arise
from decoherence and imperfect quantum gate operations. These errors severely
limit the performance and scalability of quantum circuits. This thesis is dedicated
to developing efficient methods for addressing issues related to errors in discrete
quantum circuits. By optimizing quantum circuit design and implementing ro-
bust error correction strategies, this research aims to significantly enhance the
performance of quantum computations. This work is relevant for both the Noisy
Intermediate-Scale Quantum (NISQ) era, characterized by quantum devices with
a moderate number of qubits prone to noise and errors, and the future era of
fault-tolerant quantum computers where error correction can be integral.

The contributions in this thesis comprising of two parts, are novel techniques for
circuit optimization and error correction that are tailored to the unique challenges
of both NISQ devices and more advanced error-corrected quantum computers of
the future. The research encompasses both theoretical advancements and practical
implementations, providing a comprehensive framework for improving the fidelity
and efficiency of quantum computations. Specifically, the thesis explores innovative
methods for circuit design optimizations, strategies to enhance qubit coherence and
gate fidelity and error correction.

In the NISQ era, the focus is on developing strategies to reduce noise and errors
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to make practical use of the currently available quantum devices. This involves
exploring methods as noise-aware circuit design that can operate effectively de-
spite the presence of noise. For the fault-tolerant era, error syndrome detection
which is indispensable for error correction, is a computationally hard problem. In
this thesis, machine learning based approaches to address this problem have been
proposed, implemented and validated.

Overall, this thesis provides a comprehensive exploration of efficient methods for
tackling errors in discrete quantum circuits, offering valuable contributions to en-
hance the performance and reliability of quantum computations. Through a combi-
nation of theoretical insights and practical implementations, this research advances
the state of the art in quantum error correction and circuit optimization, setting
the stage for the future of quantum computing.
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1.1 Introduction

“The ultimate purpose of quantum mechanics is to describe the uni-
verse. The universe is, essentially, a gigantic quantum computer.”

–Seth Lloyd

This profound insight underscores the intrinsic connection between quantum me-
chanics and computational paradigms, illuminating the transformative potential
of quantum computing in addressing complex, real-world challenges [Llo00].

Quantum computing has emerged as a revolutionary field with the potential to
solve complex problems that are intractable for classical computers [NC10]. Lever-
aging principles of quantum mechanics, quantum computers offer exponential
speedup for specific tasks, making them a topic of intense research and develop-
ment. The unique capabilities of quantum computers, such as superposition and
entanglement, enable new computational paradigms that have far-reaching im-
plications across various domains, including cryptography, material science, and
optimization problems. However, the practical realization of quantum computing
faces significant hurdles, particularly concerning error rates and qubit coherence
[Pre18].

One of the primary challenges in quantum computing is dealing with errors that
arise from decoherence and imperfect quantum gate operations [Sho96]. These
errors severely limit the performance and scalability of quantum circuits. My re-
search focuses on developing efficient methods for tackling these errors in discrete
quantum circuits. By optimizing quantum circuit design and implementing robust
error correction strategies, this thesis aims to enhance the reliability and perfor-
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mance of quantum computations in both the Noisy Intermediate-Scale Quantum
(NISQ) era and the future error correction era [Kit97]. The NISQ era is char-
acterized by quantum devices with a moderate number of qubits that are prone
to noise and errors, necessitating innovative approaches to error mitigation and
circuit optimization.

This thesis contributes to the field by presenting novel techniques for error cor-
rection and circuit optimization that are tailored to the unique challenges of both
NISQ devices and the more advanced error-corrected quantum computers of the
future. The research encompasses both theoretical advancements and practical
implementations, providing a comprehensive framework for improving the fidelity
and efficiency of quantum computations. The following sections of this introduc-
tion will delve into the basics of quantum computing, outline the specific challenges
faced in the field, and detail the motivation and scope of this thesis. Addition-
ally, the contributions and organization of the thesis will be presented, offering a
roadmap for understanding the structure and significance of the work.

1.2 Basics of Quantum Computing

Quantum computing is based on the principles of quantum mechanics, which gov-
ern the behavior of particles at the atomic and subatomic levels. Unlike classical
computers that use bits as the smallest unit of information, quantum computers
use qubits. A qubit can exist in a state of 0, 1, or any quantum superposition
of these states, enabling it to process a vast amount of information simultane-
ously [NC10]. This section introduces the fundamental concepts and properties
of quantum computing, along with the postulates that form the basis of quantum
mechanics.



5 CHAPTER 1. INTRODUCTION

1.2.1 A Quantum Computer and Its Characteristics

Superposition

A qubit can be in a superposition of the states |0⟩ and |1⟩, represented as |ψ⟩ =
α|0⟩+β|1⟩, where α and β are complex numbers satisfying |α|2+ |β|2 = 1 [NC10].
This property allows quantum computers to perform many calculations at once,
providing an exponential increase in computational power for certain tasks.

Entanglement

When two qubits become entangled, the state of one qubit is dependent on the
state of the other, no matter the distance between them [NC10]. This correlation,
which has no classical analog, is a cornerstone of quantum computing, enabling
phenomena such as quantum teleportation and superdense coding [BB+93].

Quantum Gates

Quantum gates manipulate the state of qubits, analogous to classical logic gates
but operating on quantum states. Examples include the Pauli-X, Pauli-Y, Pauli-
Z, Hadamard (H), and controlled-NOT (CNOT) gates [NC10]. These gates are
represented by unitary matrices and can be combined to form quantum circuits
that execute algorithms [Pre18].

Quantum Circuits

A quantum circuit is a sequence of quantum gates applied to an initial set of qubits
to perform a specific computation [NC10]. The design and optimization of quan-
tum circuits are critical for the efficiency of quantum algorithms. Circuits must
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be designed to minimize error rates and maximize the fidelity of the computation
[Sho96].

Measurement

The process of measurement in quantum mechanics collapses a qubit’s superpo-
sition state into one of the basis states, |0⟩ or |1⟩, with probabilities determined
by the coefficients α and β [NC10]. Measurement is a probabilistic process that
provides the final result of a quantum computation [Pre18].

Notable Algorithms

Quantum algorithms leverage the properties of superposition and entanglement to
achieve significant speedups over classical algorithms [NC10]. Shor’s algorithm, for
instance, factors large integers exponentially faster than the best-known classical
algorithms, posing a threat to classical cryptographic systems [Sho96]. Grover’s
algorithm provides a quadratic speedup for unstructured search problems, high-
lighting the potential for quantum advantage in various applications [Gro96].

Postulates of Quantum Mechanics

• State Postulate: The state of a quantum system is described by a vector
|ψ⟩ in a complex vector space known as the Hilbert space [NC10]. The state
vector contains all the information about the system.

• Evolution Postulate: The evolution of a closed quantum system is gov-
erned by the Schrödinger equation [Sho96]. The state vector |ψ⟩ evolves over
time according to a unitary transformation U , such that |ψ(t)⟩ = U |ψ(0)⟩.

• Measurement Postulate: Quantum measurements are described by a set
of measurement operators {Mi}. When a measurement is made, the prob-
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ability of obtaining the outcome i is given by ⟨ψ|M †
iMi|ψ⟩, and the state

collapses to Mi|ψ⟩√
⟨ψ|M†

iMi|ψ⟩
[NC10].

• Composite Systems Postulate: The state space of a composite quantum
system is the tensor product of the state spaces of the individual subsystems.
For systems A and B, the combined state is described by |ψ⟩A⊗|ψ⟩B [NC10].

These postulates form the foundation of quantum mechanics and underpin the
operation of quantum computers. Understanding these principles is essential for
grasping the capabilities and limitations of quantum computing.

Quantum computing represents a paradigm shift in computational theory and
practice. Its principles challenge our classical understanding of computation, open-
ing new frontiers for solving complex problems. As we navigate the current NISQ
era, characterized by noisy and intermediate-scale quantum devices, and look for-
ward to the error correction era, the efficient management of quantum errors re-
mains a pivotal research focus. This thesis addresses these challenges by exploring
innovative methods for error correction and circuit optimization, aiming to en-
hance the performance and reliability of quantum computations across different
eras of quantum technology [Pre18].

1.3 Challenges of Quantum Computing

Despite the significant potential of quantum computers, several formidable chal-
lenges must be addressed to realize their full capabilities. Among these challenges,
noise and error rates are particularly critical, as they directly impact the relia-
bility and scalability of quantum computations. This section explores the various
sources of noise and errors in quantum systems and their implications for quantum
computing.
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1.3.1 Decoherence and Dephasing

Decoherence occurs when a qubit loses its quantum coherence through interaction
with its environment, causing it to transition from a pure state to a mixed state
[Zur03]. This interaction results in a loss of information stored in the quantum
state, severely limiting the time available for quantum computations. Dephasing,
a specific type of decoherence, affects the phase relationship between quantum
states, further degrading the accuracy of quantum operations. Both decoherence
and dephasing are influenced by factors such as temperature, electromagnetic in-
terference, and material impurities [Pre18].

1.3.2 Gate Errors

Quantum gates, which are the building blocks of quantum circuits, are prone to
errors due to imperfections in their implementation [NC10]. These errors can arise
from imprecise control pulses, crosstalk between qubits, and limitations in the
hardware. Gate errors accumulate over the course of a computation, leading to
a significant decrease in the overall fidelity of the quantum circuit [Sho96]. Error
rates of quantum gates are a major concern, especially for complex algorithms that
require a large number of gate operations.

1.3.3 Measurement Errors

The process of measuring a qubit’s state introduces another source of error. Mea-
surement errors occur due to imperfections in the measurement apparatus and
noise in the readout process [NC10]. These errors can result in incorrect out-
comes, further complicating the task of obtaining reliable results from quantum
computations. Accurate and efficient measurement techniques are essential for
extracting meaningful information from quantum systems.
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1.3.4 Qubit Connectivity and Crosstalk

The physical layout and connectivity of qubits on a quantum chip influence the effi-
ciency and accuracy of quantum computations [Pre18]. Limited qubit connectivity
can necessitate additional gate operations, such as SWAP gates, to move qubits
into the required positions, thereby increasing the overall error rate. Additionally,
crosstalk between neighboring qubits can introduce unwanted interactions, lead-
ing to further errors in the computation. Optimizing qubit layout and minimizing
crosstalk are crucial for improving quantum circuit performance [Zur03].

1.3.5 Error Accumulation and Quantum Error Correction

As quantum computations scale up, the accumulation of errors poses a significant
challenge. Quantum error correction (QEC) aims to address this issue by encoding
logical qubits into multiple physical qubits, allowing for the detection and correc-
tion of errors [Sho96]. However, implementing QEC requires additional qubits and
resources, which are currently limited in the NISQ era. Developing efficient error
correction codes and fault-tolerant quantum computing techniques is essential for
the transition to large-scale, reliable quantum computers [Pre18].

1.3.6 Hardware Limitations and Scalability

Current quantum hardware is limited in terms of the number of qubits, coherence
times, and gate fidelities [NC10]. Scaling up quantum computers to handle more
complex computations requires overcoming these hardware limitations. Advances
in qubit technology, materials science, and fabrication techniques are needed to
build larger, more robust quantum systems. Additionally, developing new archi-
tectures and error mitigation strategies will be key to achieving scalable quantum
computing [Sho96].
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Addressing these challenges is critical for advancing the field of quantum com-
puting. My thesis focuses on developing efficient methods for tackling errors in
discrete quantum circuits, with an emphasis on both the current NISQ era and
the future error correction era. By improving error correction techniques and op-
timizing quantum circuit design, this research aims to enhance the reliability and
performance of quantum computers, paving the way for practical and scalable
quantum applications.

1.4 Motivation and Scope of this Thesis

Quantum computing represents a transformative leap in computational capabil-
ities, with the potential to address problems that are currently intractable for
classical systems [Pre18, JATK+24]. However, the realization of practical quan-
tum computing is hindered by the challenges of noise and inefficiency inherent
in current quantum hardware. These challenges are particularly pronounced in
the Noisy Intermediate-Scale Quantum (NISQ) era, where devices are limited by
both their inherent noise and the constraints of execution time and resources. To
advance the field, it is essential to develop innovative solutions that enhance the
fidelity of quantum circuits and optimize the scheduling of quantum operations
[NC10].

Addressing these challenges requires a multifaceted approach that combines ad-
vancements in error suppression with efficient resource management. The motiva-
tion for this thesis lies in the necessity to improve quantum circuit performance
and operational efficiency, ultimately contributing to the progression towards fault-
tolerant quantum computing [Sho96].

The main objective of this thesis is to explore and develop techniques to enhance
the quality of quantum computations in the presence of noise. In the short term,
this involves creating methods to mitigate the impact of noise on quantum systems.
In the long term, the goal shifts towards the implementation of error correction
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and fault tolerance mechanisms. This thesis is structured to address both these
facets comprehensively in two distinct parts.

1.4.1 NISQ Era

In the NISQ (Noisy Intermediate-Scale Quantum) era, the focus is on optimiz-
ing quantum computations and scheduling in the presence of noise. This section
tackles the optimization of quantum circuit scheduling in the NISQ era, where
noise and execution time constraints are critical factors. It explores methods for
both time and noise optimization in distributed scheduling of quantum circuits
and resource-aware scheduling of multiple quantum circuits on a single hardware
device [Pre18]. The goal is to enhance the fidelity of quantum operations and
improve the overall efficiency of quantum processors. By integrating innovative
scheduling techniques with noise-aware strategies, this part addresses the immedi-
ate challenges faced by current quantum hardware, offering practical solutions to
boost performance.

1.4.2 Error Correction Era

In the era of quantum error correction, the focus shifts to developing robust de-
coding algorithms to correct errors and maintain quantum coherence. The second
part of the thesis focuses on advancing quantum error correction (QEC) meth-
ods through machine learning (ML) techniques. It introduces novel ML-based
decoders designed to correct errors in surface codes and heavy hexagonal codes
[Sho96]. These decoders leverage advanced techniques such as gauge equivalence
to improve decoding performance for both symmetric and asymmetric noise mod-
els. The exploration of ML models in this context reveals significant improvements
over traditional methods, providing a pathway towards more effective error cor-
rection in quantum systems. This part also considers future research directions,
including the application of these techniques to other noise models, further ad-
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vancing the field of quantum error correction.

In summary, this thesis aims to address key challenges in quantum computing
by optimizing NISQ device performance and advancing QEC techniques, thereby
contributing to the broader goal of developing practical and fault-tolerant quantum
computing systems [Pre18].

1.5 Contributions and Organization of the thesis

The chapter-wise contributions of the thesis are listed below.

• Chapter 1 covers the basic principles and challenges of quantum computing,
and the scope of the thesis.

• Chapter 2 provides a background of this thesis.

• Part I: Error suppression for NISQ devices: Current Era

– Time and Noise Optimization for Distributed Scheduling of
Quantum Circuits: In Chapter 3, we introduce a distributed sched-
uler optimized for noise and execution time, designed to manage sub-
circuits generated through circuit cutting. This scheduler ensures that
fidelity is maximized while adhering to a predefined execution time
limit for each hardware unit. By integrating inter-device paralleliza-
tion with noise-aware scheduling, our approach enhances circuit fidelity.
For 10-qubit circuits, our method achieves an average fidelity improve-
ment over uncut circuit by ∼ 12.3% and ∼ 21% respectively with and
without measurement error mitigation, even when each hardware was
allowed the minimum possible execution time. Furthermore, we intro-
duce a polynomial-time graph-theoretic scheduling method that yields
the same results as the ILP scheduler when the number of subcircuits
is not greater than the number of available hardware, and each hard-
ware is allocated the minimum execution time allowed. Additionally,
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this chapter explores the potential of this method to be particularly ad-
vantageous in the near-term, where noisy devices and limited execution
time on quantum hardware are prevalent.

– Resource-aware Scheduling of Multiple Quantum Circuits on
a Hardware Device: Chapter 4 tackles the crucial issue of optimiz-
ing quantum circuit scheduling to boost the throughput and efficiency
of quantum computing hardware. By drawing parallels to the classical
bin packing problem, we establish the NP-Hard nature of our problem,
which involves allocating multiple quantum circuits to quantum pro-
cessing units while accounting for noise and limited qubit connectivity.
Our proposed solution leverages integer linear programming (ILP) and
a greedy heuristic approach based on compatibility graphs and maximal
cliques, effectively managing the trade-off between noise reduction and
resource utilization. Our method provides 2× and 3× better utiliza-
tion for 27-qubit and 127-qubit hardware devices respectively in terms
of qubits and time. The chapter presents experimental results demon-
strating substantial gains in throughput and efficiency, validating the
approach as a practical solution for real-world quantum computing chal-
lenges.

• Part II Error correction in Fault Tolerant Era

– Machine-Learning based Decoding of Surface Code Syndromes
in Quantum Error Correction: In Chapter 5, we introduced a ma-
chine learning (ML) decoder designed to correct both symmetric and
asymmetric depolarizing noise on surface codes. Our decoder oper-
ates in two stages: a low-level stage that aims to predict qubit errors
accurately, followed by a high-level stage that identifies any logical er-
rors introduced by the low-level decoder. This approach utilizes neural
networks (both feedforward neural networks and convolutional neural
networks) for surface codes with distances of 3, 5, and 7. The results
show that our proposed decoding method achieves 10 and 2 higher val-
ues of pseudo-threshold and threshold respectively, than for those with
MWPM. Moreover, ML based decoders can do faster decoding than
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MWPM (detailed calculation in section 6.4.4). Furthermore, the de-
coder performs effectively with asymmetric errors, which are more rep-
resentative of real-world quantum device conditions. The chapter also
investigates the performance of various ML models with differing levels
of complexity, revealing that while more sophisticated models require
longer decoding times, they do not necessarily offer improved perfor-
mance.

– Efficient Syndrome Decoder for Heavy Hexagonal QECC via
Machine Learning for Symmetric and Asymmetric Noise Mod-
els:

Chapter 6 introduces a machine learning (ML) decoder for the heavy
hexagonal code, employing an innovative technique based on gauge
equivalence to enhance decoding performance. We demonstrated that
even a basic ML decoder achieves ∼ 5 times higher values of thresh-
old than that by MWPM. The application of gauge equivalence fur-
ther boosts the decoder’s performance, indicating its potential to ad-
vance quantum devices towards fault tolerance. For symmetric noise,
we explored search-based and rank-based methods to determine gauge
equivalence, finding that the search-based method excels with phase
flip errors while the rank-based method performs better with bit flip
errors. We obtain a quadratic reduction in the number of error classes
for both bit flip and phase flip errors, thus achieving a further improve-
ment of ∼ 14% in the threshold over the basic ML decoder. In the case
of asymmetric noise, the rank-based gauge equivalence method signif-
icantly enhances the ML decoder’s performance compared to MWPM
decoders. The chapter also outlines future research directions, including
the exploration of gauge equivalence and ML-based decoders for other
noise models, such as Pauli, amplitude damping, and amplitude-phase
damping noise.

• Chapter 7 summarizes the contributions of this thesis and discusses potential
directions for future research.
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In the following chapter, we delve into some necessary background concepts that
is necessary to read this thesis.
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2.1 Noise in Quantum Computing

In the realm of quantum computing, achieving reliable computations without er-
ror correction is an ongoing challenge. Circuit cutting has emerged as a promising
technique to mitigate the impact of noise by leveraging classical post-processing,
albeit at the expense of additional computational resources. Despite these advance-
ments, the ultimate goal remains error correction and fault tolerance, essential for
enabling arbitrarily long quantum computations.

This chapter begins by providing a comprehensive overview of various types of
noise that commonly affect quantum systems. Following this, the concept of cir-
cuit cutting is introduced, highlighting its role in reducing noise. The chapter
then delves into general principles of intra-device scheduling, discussing strategies
to optimize the execution of quantum circuits. Finally, an examination of error cor-
rection techniques is presented, with a focus on stabilizer quantum error-correcting
codes (QECC), surface codes, and heavy-hex codes.

2.1.1 Errors in a Quantum Computing System

The physical errors in the qubits can be of different types. In this subsection we
discuss briefly the noise models that are used for this work.

Bit flip error

The action of a bit flip error [NC10] on a quantum state ρ is denoted as

ρ→ (1− px)ρ+ pxXρX
†,

px being the probability that an unwanted Pauli X error occurs.
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Phase flip error

The evolution of the state in a phase flip [NC10] is given as

ρ→ (1− pz)ρ+ pzZρZ
†

where pz is the probability that an unwanted Pauli Z error occurs.

Depolarization noise

The evolution of a quantum state ρ under depolarization noise [NC10] is given as

ρ→ (1− p)ρ+ p

3
XρX† +

p

3
Y ρY † +

p

3
ZρZ†

where p is the probability of error. It is basically a depolarizing channel with error
rate p [LM+19].

2.1.2 Asymmetric unitary noise channel via twirling

The evolution of a quantum system ρ in the presence of noise is governed by the
Kraus operator represented as [Pre98]

ρ→
∑

iKiρK
†
i

where Ki are the Kraus operators and
∑

iK
†
iKi = I. For a unitary noise model

such as depolarization noise [NC10], we have K†
iKi = KiK

†
i = I for all i. The

evolution of an n-qubit quantum state under this model is given as

ρ→(1− p)ρ+ p I
2n
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where p is the probability of error. This noise model keeps the state intact with
probability 1−p, and completely destroys the information in it with probability p.
Mathematically, this is equivalent to a system being affected by the Pauli X (bit
flip), Z (phase flip), and Y (bit-phase flip) errors with equal probability [NC10],
i.e., px = pz = py. However, for non-unitary noise models, twirling [WE16] is used
to create an average channel which behaves like unitary noise. By twirling, each
2-qubit gate U is replaced by GiUG

†
j such that these are functionally equivalent.

Here Gi is sampled randomly from a group such as Clifford group or Pauli group.
G†
j depends on the choice of Gi to ensure functional equivalence. This is termed as

Clifford twirling or Pauli twirling depending on the group from which Gi, Gj are
sampled. The average channel formed by many such samples behave like a unitary
channel.

Clifford twirling leads to an average channel which is depolarizing in nature. There-
fore, the ML decoder from [BM+24] suffices in that scenario. However, Clifford
group consists of CNOT gates, which are significantly more noisy (∼ 100×) than
single qubit gates. This makes Clifford twirling impractical since it will increase the
noise in the system by adding more CNOT gates via sampling [MW22]. Hence,
we resort to Pauli twirling, where all Gi, Gj are single qubit gates. Now, Pauli
twirling results in an asymmetric unitary noise channel of the form

ρ→(1− px − py − pz)ρ+pxXρX†+pyY ρY †+pZZρZ†

where px, py and pz are unequal. In this study, we consider the asymmetric noise
model derived from Pauli twirling of amplitude damping, and amplitude-phase
damping noise models. Note that twirling of phase damping noise model alone
leads to a channel with px = py = 0, and pz = γ

2
.

Twirling amplitude damping channel

A qubit, initially prepared in the excited state, tends to spontaneously emit energy
and return to its ground state if left undisturbed. This phenomenon is known as
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amplitude damping and is quantified by the parameter T1, which is equivalent to
the half-life of decay. The Kraus operators for this channel are [Pre98]

K0 =

(
1 0

0
√
1− γA

)
K1 =

(
0
√
γA

0 0

)

where γA = 1 − exp(−t/T1), t being the time of computation or idle time. In
other words, the probability that the state remains unchanged after time t is γA.
Pauli twirling produces a unitary channel with px = γA/4, py = γA/4, pz =

(1−
√
1− γA)2/4.

Twirling amplitude-phase damping channel

The different energy states of a qubit in superposition tend to accumulate different
phase changes, leading to a phase difference between the energy states. This
phenomenon is known as phase damping, and is characterized by the parameter
T2. A qubit in superposition is thus affected both by amplitude and phase damping
noise. The Kraus operators for this combined channel are [Pre98]

K0 =

(
1 0

0
√

(1− γA)(1− γP )

)
K1 =

(
0
√
γA

0 0

)

K2 =

(
0 0

0
√

(1− γA)(1− γP )

)

where γP = 1 − exp(−t/T2), t being the time. Pauli twirling produces a unitary
channel with px = γA/4, py = γA/4, pz = (1− γA − γP + γAγP )/2.
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2.2 Circuit cutting

Circuit cutting stands out as an effective method to reduce system noise. This
technique involves partitioning a quantum circuit into smaller subcircuits, com-
puting each subcircuit independently, and then using classical post-processing
to reconstruct the original output distribution [PH+20]. Initially proposed as a
way to execute larger circuits on smaller devices, circuit cutting has since been
shown to reduce noise because each subcircuit contains fewer qubits and gates
[ST+21, BS+22, MW22]. For instance, in one study, circuit cutting was used to
obtain a more accurate estimation of the ground state energy of the nearest neigh-
bor Hamiltonian by computing each subcircuit on the least-busy device, although
the noise profile of the subcircuits was not considered [KM+23]. Another study
introduced a scheduling framework to assign circuits to multiple devices, aiming
to minimize overall execution time without considering the noise profile of the
hardware [CD+22].

How to cut a quantum circuit

Due to limitations in the size of current hardware, methods to partition a cir-
cuit into multiple smaller subcircuits have been studied extensively. These meth-
ods include splitting the problem itself to execute multiple smaller subcircuits
(e.g. entanglement forging [EM+22]), cutting the circuit between two gates to
create multiple tomographic instances of smaller subcircuits (called wire cutting
[PH+20]) or replacing two-qubit gates by multiple instances of single qubit opera-
tion and feedforward classical communication (called gate cutting [MF21]). In this
manuscript, we shall stick to wire cutting only, and use the term circuit cutting to
imply wire cutting.

Given a circuit Φ, let us denote the expectation value of some observable A as
Φ(A). Note that, for any observable A, it is possible to write [TT+21]
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A = Tr{A.I}I+Tr{A.X}X+Tr{A.Y }Y+Tr{A.Z}Z
2

where I,X, Y, Z are the Pauli operators [NC10].
In other words, Φ(A) = 1

2

∑
P∈{I,X,Y,Z} cPΦP (A), where ΦP (A) = Tr{AP}ρP .

Here ρP denotes the eigenstates of the Pauli operator P and cP denotes the eigen-
value. Note that the mathematical expression Tr{AP}ρP takes instances of both
subcircuits into account where the former is measured in basis P and the latter
is prepared in the state ρP . Since there are two eigenstates corresponding to each
Pauli operator, this method results in four subcircuit instances for measurement
basis and eight for preparation state. The uncut expectation value (or probability
distribution) is obtained via classical postprocessing.

In [TT+21] the authors showed that the previous representation of the observable A
is tomographically over-complete; It is possible to have a more succinct representa-
tion of Φ(A) =

∑
i Tr{AOi}ρi, whereOi ∈ {X, Y, Z} and ρi ∈ {|0⟩ , |1⟩ , |+⟩ , |+i⟩}.

These two sets Oi and ρi are tomographically complete and hence denote the min-
imum number of subcircuits necessary. Here, there are three subcircuit instances
for measurement basis and four for preparation state. A general drawback of cut-
ting is that the classical postprocessing time scales exponentially in the number of
cuts when the full probability distribution needs to be reconstructed. Therefore,
this method is suitable only for circuits that can be split into disjoint subcircuits
using a small (ideally constant) number of cuts only.

Let us consider a RealAmplitudes [KM+17] circuit with linear reverse entanglement
with a single repetition. An n-qubit RealAmplitudes circuit consists of n−1 CNOT
gates and two layers of Ry gates, resulting in 2n parameters. Fig. 2.1 shows circuit-
cutting of a 6-qubit RealAmplitudes circuit resulting in two subcircuits. The cut is
denoted by the dotted red line. Here ρi and Oi have similar meaning as discussed
above. Therefore, there are three variants of the first subcircuit for Oi = X, Y, Z,
and four of the second for ρi = |0⟩ , |1⟩ , |+⟩ , |+i⟩.

Since each subcircuit has a lower number of qubits and/or gates, the noise on each
subcircuit is expected to be lower. Hence circuit cutting is often used as a method



23 CHAPTER 2. BACKGROUND

Figure 2.1: Circuit cutting for a 6-qubit RealAmplitudes ansatz, with single repe-
tition and reverse-linear entanglement [KM+17], into two subcircuits.

to lower the noise in the system [TT+21, BS+22, MW22, KM+23]. In other words,
the motivation for circuit cutting is not only the ability to run bigger circuits on
smaller hardware but also to lower the noise in the system at the cost of some
classical post-processing.

2.3 Circuit placement and selection of good qubits

In current quantum devices, a two-qubit operation is possible only between near-
est neighbours. For example, Fig. 2.2 shows the coupling map of a 5-qubit IBM
Quantum device. Here a two-qubit operation is possible between qubits 0 and 1,
but not between 0 and 2 since the latter are not neighbours. In order to perform
a two-qubit operation between qubits 0 and 2, they must be adjacent to each
other using SWAP gates. A general requirement of placement and scheduling al-
gorithms [ZD+23, BC20, LZF20, SD+20, AA+19, ZW17, KH+19, CS+19, MB+19]
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is to minimize the number of SWAP gates.

Figure 2.2: The coupling map and error distribution of a 5 qubit IBM Quantum
device Belem.

Although the aim of the placement is to minimize the number of SWAP gates,
Fig. 2.2 clearly shows that the noise profile of all the qubits is not the same.
Therefore, it is important to try to involve the less noisy, or good, qubits from the
hardware for placement. However, selecting good qubits for placement may lead
to increased SWAP gates if the good qubits are not adjacent. Therefore, mini-
mization of SWAP gates and selection of good qubits can often be contradictory
requirements in placement.

In [NT23], the authors proposed a two-step solution for this. In the first step,
also known as transpilation, the placement algorithm focuses on minimizing the
number of SWAP gates without considering the noise profile of the hardware. As a
second step, a list of isomorphisms of the transpiled circuit graph on the hardware
graph is generated (refer to Fig. 2.3). Each of these isomorphisms is also called
layout. Finally, the noise profile of each layout is calculated from the calibration
data of the hardware to assign a score Q which is an indicator of the quality of the
layout. The layout having the lowest score, which corresponds to the best quality,
is selected. This entire process has been named mapomatic by the authors. We
use mapomatic for the selection of the best qubit placement for a given circuit.
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Figure 2.3: An example of mapomatic [NK+21] to find the best placement of
a circuit on hardware. This figure is obtained from the GitHub repository of
mapomatic (https://github.com/Qiskit-Partners/mapomatic).

For a set of hardware, Table 2.1 shows the least mapomatic score and the cor-
responding layout for placement of a 6-qubit RealAmplitudes circuit (Fig. 2.1).
In other words, each layout shown in the table implies that both the number of
SWAP gates and the noise will be minimized if the circuit is placed on those qubits
of the hardware. A layout is generally represented as an array l, where l[k] denotes
the qubit of the hardware on which the k− th qubit of the circuit is mapped. For
example, from Table 2.1, in IBMQ Hanoi, the qubits 0, 1, 2, 3, 4, and 5 of the
6-qubit Real Amplitudes circuit are respectively mapped to physical qubits 0, 1,
2, 4, 7 and 6. From this table, we get that IBMQ Kolkata is the best hardware
with layout [22, 25, 26, 24, 23, 21] to execute the 6-qubit Real Amplitudes circuit.

Table 2.1: Mapomatic score for the best layout of the 6-qubit RealAmplitudes
circuit (Fig: 2.1) corresponding to each of the available hardware

Backend # Qubits Corresponding layout Mapomatic score
IBMQ Hanoi 27 [0, 1, 2, 4, 7, 6] 0.099

IBMQ Mumbai 27 [6, 7, 4, 10, 12, 13] 0.183
IBMQ Cairo 27 [13, 12, 10, 15, 18, 17] 0.105

IBMQ Kolkata 27 [22, 25, 26, 24, 23, 21] 0.084
IBMQ Guadalupe 16 [15, 12, 13, 10, 7, 6] 0.142

IBMQ Lagos 7 [0, 1, 2, 3, 5, 6] 0.093
IBMQ Nairobi 7 [0, 1, 2, 3, 5, 4] 0.193
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2.3.1 Intra Device Scheduling

As the demand for quantum computing is rising, the users often face long queuing
time as their jobs need to wait till the execution of all the previously submitted
jobs have been completed. Consequently, there is a pressing need to enhance
the efficiency and throughput of quantum computers to improve user experience.
In this work, we study the benefits and challenges of executing more than one
quantum circuit, i.e., more than one job simultaneously on the same hardware to
improve the throughput, as well as the hardware utilization, without yielding on
the quality of outcome.

Let us motivate the problem with an example. Consider a 15-qubit circuit which
is to be executed on a 27 qubit device as shown in Fig 4.1. Thus 12 qubits of the
device remain unused, which could have been utilized to execute simultaneously
some other circuit(s) requiring ≤ 12 qubits – thus improving the throughput and
the hardware utilization.

Figure 2.4: An example of a 15-qubit circuit assigned to a 27- qubit hardware. The
used qubits are shown in purple while the unused qubits are shown in blue. The
hardware still has room to accommodate one or more quantum circuit(s) using the
free qubits.

Simultaneous execution of multiple circuits on a single hardware is not without
challenge. Previous studies [CBSG17] do not consider the effect of noise arising
due to simultaneous execution of circuits. First, when a circuit is mapped to a
hardware, the requirement is to reduce the number of SWAP gates, as well as to
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use a layout with minimal noise profile [T+22]. However, when multiple circuits
are placed simultaneously, it is likely that all of them cannot be placed on their cor-
responding best layout, leading to degradation in the quality of the outcome of the
computation. Furthermore, if two circuits are computed on neighbouring qubits,
then there is a possibility of crosstalk affecting the quality of the computation for
both of them.

Minimizing the degradation in quality due to worse layout selection and crosstalk,
while maximizing the throughput of the hardware presents a multifaceted challenge
since these two objectives conflict with one another.

2.4 Quantum Error Correction

Quantum states are, however, very prone to errors. Being vectors in Hilbert space,
even the slightest unwanted rotation occurring due to interaction with the envi-
ronment introduces error in the quantum system. It was shown by Shor [Sho95]
that any unitary quantum error can be expressed as a linear combination of the
Pauli matrices (I, X, Y , Z) 1. Hence, if a quantum error correcting code (QECC)
can correct the Pauli errors, then it can also correct any unitary error. The 9-
qubit code [Sho95], 7-qubit code [Ste96] and 5-qubit code [LMPZ96] are some
early QECCs. The 5-qubit code is optimum in the number of qubits .

The circuit realization of the above-mentioned QECCs comprise multiple opera-
tions involving qubits which are not adjacent to each other. Operation on two
non-adjacent qubits is both slow and error-prone, due to the multiple swap opera-
tions required. Surface code was introduced to overcome this drawback, known as
the Nearest Neighbour (NN) problem, by placing the qubits in a 2D grid-like struc-
ture [BK98], and the operations for error correction are performed only between
adjacent qubits. Protocols are formulated for error recovery, and the efficacy of

1An operator U is unitary operator if U†U = UU† = I, where I is the identity element and
U† is the adjoint of U . An operator is hermitian if U = U†. Note that, hermitian operator is a
subset of unitary operator. Pauli matrices are hermitian.
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these protocols were studied in [DKLP02] which is reviewed in a simplied manner
by [FSG09]. An improved decoding algorithm for the surface code is formulated
in [WFH11].

A QECC encodes n > 1 physical qubits into m < n logical qubits, where the
latter are expected to be more secure under noise. A decoder (which is a classical
process), on the other hand, detects the error present in the logical qubit. Decoding
is followed by another step where the correction is applied physically and classically
(or in some cases noted logically only [RFV+17]). A distance d QECC can correct
⌊d
2
⌋ errors on the physical qubits, keeping the logical qubit error free. However,

the logical qubit can become erroneous as well if more errors occur. This is termed
as logical error. The errors may occur due to interaction with the environment,
or faulty decoding. While the first issue may be tackled with a QECC having
a larger d, the latter can pose a serious threat towards building error corrected
qubits. The performance of a decoder for a QECC is assessed by two parameters
[FWH12], namely: (i) pseudo-threshold, which is the probability of physical error
below which error-correction leads to a lower logical error probability, and (ii)
threshold, which is the probability of physical error beyond which increasing d

leads to higher logical error probability.

We have illustrated these two parameters in Fig. 2.5. A decoder with higher
pseudo-threshold and threshold is desirable.

Apart from the accuracy of decoding, the time required is also important. In a
fault-tolerant quantum computer, the qubits are encoded only once at the be-
ginning of the computation, whereas they are decoded several times during the
computation. Therefore, decoding time is critical [NC10, MB+16]. The most pop-
ular decoding algorithm for surface codes is Blossom Decoder [Edm65a] based on
O(N4))) time Minimum Weight Perfect Matching (MWPM) algorithm, N being
the number of qubits. Recently machine learning (ML) has been used for decoding
in linear time [VBA19]. A baseline decoding algorithms complemented by different
kinds of deep neural decoders was introduced by [CR18] and applied to analyze
the common fault-tolerant error correction protocols such as the surface code. The
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Figure 2.5: Threshold (black dot) and Pseudo-threshold (red dot) of a MWPM
decoder for a topological (heavy hexagon Code) QECC, with performance compar-
ison for distance 3 (blue), distance 5 (orange), and distance 7 (green). The cyan
straight line y = x is for equal probabilities of physical qubit error and logical
error.

decoding problem is reduced to a classification problem that a feedforward neural
network can solve, in [VCB17], for small code distances. Reinforcement Learning
based decoders for Fault-Tolerant Quantum Computation were proposed in [S+18].
It has been observed that the MWPM based decoder performs satisfactorily when
the error probability of the system is low, as it always tries to find the minimum
number of errors that can generate the observed syndrome. But occurrence of
error(s) in the system during decoding is ignored, which the ML based approaches
do consider. Therefore, ML based decoders are expected to perform at least as
well as MWPM based method and in less time.

ML based decoders can tackle errors incorporated due to faulty decoding upto
some extent. This is achieved by introducing two-level decoding, where the low
level is a traditional decoder (need not be an ML decoder [VCB17]), and the high
level (necessarily ML decoder) predicts any logical errors that may have resulted
during decoding. In [VBA19] the authors have used ML for both low and high-level
decoders. However, it is unclear whether their noise model considers errors in a
single or multiple steps in the error correction cycle of surface code (see Fig: 2.7).
Moreover, the performance of ML decoders for asymmetric noise (which is a more
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realistic noise model [IM07]), and whether the usage of more sophisticated ML
models can significantly enhance the performance of the decoder, remains largely
unanswered.

2.4.1 Stabilizer Formulation of Surface Code

Gottesman [Got97] proposed the stabilizer formulation for error correction. A set
of mutually commuting operators M1, . . . ,Mr, where each Mi ∈ {I,X, Z, Y }⊗n, is
said to stabilize an n-qubit quantum state |ψ⟩ if Mi |ψ⟩=|ψ⟩, ∀ i [Got97]. An error
E is said to correctable by a QECC, if there exist stabilizers Me ⊆ {M1, . . . ,Mr},
such that Me (E |ψ⟩) = −E |ψ⟩.

A QECC is called degenerate if there exist errors e1 ̸= e2 such that e1 |ψ⟩=e2 |ψ⟩
where |ψ⟩ is the codeword. It is not possible to distinguish between such errors
in a degenerate code. Surface code is a degenerate stabilizer code. Surface code
is implemented on a two-dimensional array of physical qubits. The data qubits
(in which the quantum information is stored) are placed on the vertices, and the
faces are the stabilizers (refer Fig. 2.6). The qubits associated with the stabilizers
are also called measure qubits. These are of two types : Measure-Z (M -Z) and
Measure-X (M -X). Each data qubit interacts with four measure qubits — two
M -Z and two M -X, and each measure qubit, in its turn, interacts with four data
qubits (Fig. 2.6). An M -Z (M -X) qubit forces its neighboring data qubits a, b,
c and d into an eigenstate of the operator product ZaZbZcZd (XaXbXcXd), where
Zi (Xi) implies Z (X) measurement on qubit i. Pauli-X and Pauli-Z errors are
detected by the Z- and X- stabilizers respectively (Fig. 2.6). An X (Z) logical
operator is any continuous string of X (Z) errors that connect the top (left) and
bottom (right) boundaries of the 2D array. The number of measure qubits,
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Figure 2.6: (a) Distance 3 surface code, where the numbered circles (0 - 8) are
the physical qubits, white plaquettes are X stabilizers ( i.e., M -X qubits AX0,
AX1, AX2, AX3), gray plaquettes are Z stabilizers (i.e., M -Z qubits AZ0, AZ1,
AZ2, AZ3); (b) the syndromes are defined in a d× d lattice (d=3), with physical
qubits on the vertices and plaquette stabilizers (measure qubits) as faces: (i) pink
(purple) plaquettes indicate stabilizers which check the Z (X) parity of qubits on
the vertices of the plaquettes as shown in (ii), (iii) green circles indicate errors and
red circles violated stabilizers (i.e., syndromes [VCB17])

and hence the number of stabilizers, is one less than the number of data qubits
when encoding a single logical qubit of information. An error-correcting code can
correct up to t errors if its distance d ≥ 2t+1. A distance 3 surface code consists
of 9 data qubits and 8 measure qubits (Fig. 2.6). Thus a total of 17 qubits encode
a single logical qubit, and hence the distance 3 surface code is also called SC17.

The circuit representations of the decoding corresponding to a single M -Z qubit
and an M -X qubit are shown in Fig. 2.7. Since the same measure-qubit is shared
by multiple data qubits, different errors can lead to the same syndrome in surface
code. Hence the mapping from syndrome to error is not one-to-one, as illustrated
in Fig. 2.8. This often leads to poor decoding performance by decoders. In fact,
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if a decoder misjudges an error e1 for some other error e2, it can so happen that
e1⊕ e2 leads to a logical error. Therefore, not only the presence of physical errors,
but also incorrect decoding can lead to uncorrectable logical errors as well. The
goal of designing a decoder, thus, is to reduce the probability of logical error for
some physical error probability.

The performance of a decoder is measured in terms of pseudo-threshold and thresh-
old. With increasing code distance, the pseudo-threshold for a particular decoder
also increases, which supports the intuition that using larger distance gives better
protection from noise. On the other hand, the threshold does not change with re-
spect to the distance because a decoder for a particular surface code yields a fixed
threshold. The higher are the values of these parameters, the better is the perfor-
mance of the decoder. Of these two parameters, the pseudo threshold is lower than
the threshold for a decoder. The reason is that error correction is effective below
the pseudo-threshold point, and coding theory asserts [Hil86] that in this region,
increasing the distance of the code leads to higher suppression of logical errors.
Therefore, if the threshold point is below the pseudo-threshold point it violates
coding theory. Hence, it is more important for a decoder to have a higher pseudo-
threshold than a higher threshold, since, beyond this error probability, QECC no
longer provides any improvement in suppression of errors.

Figure 2.7: Quantum circuit for a single cycle of surface code. (a) circuit for M-Z
qubit, (b) circuit for M-X qubit [FWH12]
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Figure 2.8: Example of surface code for d=5, where two errors produce the same
syndrome [VCB17]. Pink (Purple) plaquettes indicate stabilizers which check the
Z (X) parity of qubits on the vertices of the plaquette. Green circles are used to
indicate errors and red circles to indicate violated stabilizers.

Let there be n physical qubits in a logical qubit (eg. n=d2 for surface code). A
logical error can occur only when at least d of the n physical qubits are erroneous.
Nevertheless, the presence of d or more physical errors does not necessarily imply
the presence of a logical error. If p and pL are respectively the probability of
physical and logical error, then

pL ≤ Σip
i, for d ≤ i ≤ n

Moreover, incorrect decoding itself can lead to logical errors. This can happen
when the decoder fails to detect the actual physical errors and thus incorporates
more errors during correction. Once again, not every incorrect decoding leads to
a logical error. Therefore, if pd is the probability of failure of the decoder, then

pL ≤ Σip
i + f(pd), for d ≤ i ≤ n

where f(pd) is a function of the probability of failure of the decoder. The function
f(pd) may vary with the decoder, hence the logical error probability may differ,
resulting in different values of pseudo-threshold and threshold.
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Machine learning based syndrome decoding for surface code

Machine Learning is a branch of artificial intelligence where a machine learns
without being explicitly programmed. Depending on the type of training data
(labeled /unlabeled /combined), the ML algorithm can vary (supervised /unsu-
pervised /semi-supervised). It has a plethora of applications domains such as soil
properties prediction [KG22], human pose estimation [SB22], object recognition
[JW22], video tracking [PR20], prediction of the efficacy of online sale [SM21] etc.
Here, we employ machine learning to decode error syndrome(s) for quantum error
correction.

Advantages of Machine learning based syndrome decoder

Classical algorithms for decoding, such as Minimum Weight Perfect Matching
(MWPM), may perform poorly in certain cases. For example, MWPM tries to
find a minimum number of errors that can recreate the error syndrome obtained
without considering the probability of error.

If |ψ⟩1,2,...,n is an n-qubit codeword, and we consider the error generation on this
codeword is a stochastic map S(p1, p2, . . . , pn), where pi is the probability of error
on qubit i (we can further write pi in terms of the probability of Pauli errors),
then the error state |ψ⟩e=S(p1, p2, . . . , pn)|ψ⟩1,2,...,n. Now, for a distance d surface
code with t types of errors (t=4 for depolarization, 2 for bit/phase flip), there
are td2 possible errors and td

2−1 possible syndromes. Therefore, multiple errors
E={e1, e2, . . . , el} lead to the same syndrome, and detecting a syndrome cannot
uniquely specify the type of error causing it. Since Pauli errors are hermitian,
correction is simply applying the same error once more. If the choice of error is
not perfect, then the system ends up with (probably) more error than before after
the correction step.

MWPM, being a deterministic algorithm, does not consider the Stochastic map.
It assumes that the error probability is low, and always finds the minimum weight
error emin ∈ E that creates the observed syndrome. On the other hand, an ML
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decoder learns the probabilities p1, p2, . . . , pn from the training phase. Thus, this
decoder finds most likely error eml ∈ E that can cause observed syndrome depend-
ing on the Stochastic Map.

Furthermore, the time complexity of MWPM grows as O(N4)) where N is the
number of qubits. Lookup Tables have been used for decoding as well [V+18].
While Lookup Table Decoder is sometimes better than MWPM in performance,
its complexity scales as O(4N) which becomes infeasible even for moderate values
of N . To overcome such drawbacks, ML techniques have been applied to learn
the probability of error in the system and propose the best possible correction
accordingly with comparatively lower time complexity. For example, [VCB17] re-
duced the decoding problem to a classification problem that a feed-forward neural
network can solve, for small code distances. A deep neural network based de-
coder is proposed by [KJ17] for Stabilizer Codes. Therefore, supervised learning
techniques, such as Feed-forward neural network (FFNN), Recurrent Neural Net-
work (RNN) show that these are capable of outperforming the traditional decoding
techniques.

As discussed earlier, surface code is degenerate, i.e., there exist errors e1 ̸= e2 such
that e1 |ψ⟩=e2 |ψ⟩, where |ψ⟩ is the codeword. This leads to any decoder failing to
distinguish between some errors e1 and e2. Nevertheless, that does not always lead
to a logical error. For example, bit-flip error in bit 1 and bit 2 are indistinguishable.
But error in decoding these two will not lead to a logical error (Refer Fig. 2.9 (a)).
On the other hand, it is possible that e1 ⊕ e2 leads to a logical error, i.e., the
decoder may itself incorporate logical errors while correcting physical errors. For
example, bit-flip error on qubit 4 is indistinguishable from those on qubits 1 and
7 together. But failure to distinguish between these two bit-flip errors leads to
logical error (refer Fig. 2.9 (b)).

In general, usually the decoder incorporates logical errors when it fails to distin-
guish between ⌊(d-1)/2⌋ and ⌈(d+1)/2⌉ errors. Broadly speaking, ML can learn
the probability of error and predict which of those two are more likely. This makes
ML-decoder outperform other traditional decoders.
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Figure 2.9: (a) No logical error and (b) Logical error due to mis-classification in
low level decoding

Since a decoder itself can incorporate logical errors, two stages of decoders, namely
low level followed by high level decoder, have been applied where

• Low level decoders search for exact position of errors at the physical level.

• High level decoders attempt to correct any logical error incorporated by the
correction mechanism of low level decoders.

2.4.2 Heavy Hexagon Code

Recently, industry research labs have been shifting towards the hexagonal architec-
ture for their quantum computers. This architecture has the advantage of reducing
the number of distinct frequencies, and thus crosstalk. The surface code [BK98]
structure has been modified to a topological code with a heavy hexagonal struc-
ture [CZ+20] in order to become more suitable for these architectures. The heavy
hexagon code [CZ+20] uses a combination of degree-two and degree-three vertices
in the topology, and can be considered as a hybrid of a surface code and a Bacon-
Shor code [Bac06]. This QECC reduces the distinct number of frequencies required
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in their realization by introducing more ancilla qubits (termed as flag qubits) for
entanglement in the syndrome measurement [CZ+20].

The authors of [CZ+20] have proposed the heavy hexagon code for QECC and have
used an MWPM [Edm65a, CZ+20] decoder to evaluate the code. The asymptotic
threshold for logical bit flip or X errors is 0.0045. Since phase flip or Z errors
are corrected using Bacon-Shor type stabilizers, no threshold for Z errors can be
defined as such. To the best of our knowledge, there is no ML based decoder for
the heavy hexagon code, so the threshold 0.0045 is considered the state-of-the-art.

For a distance d QECC, if more than ⌊d−1
2
⌋ errors occur, then the QECC fails

to correct those errors, leading to an incorrect logical state called a logical error.
A logical error can occur due to incorrect decoding as well. Logical errors pose
a serious threat towards building error-corrected qubits since these remain unde-
tected, and are retained in the logical state of the system. Given a QECC, the
goal therefore is to design a decoder which reduces the probability of logical error.

Let us now describe the heavy hexagon code structure, the noise model used in
this work, and the motivation for using machine learning based decoder.

Structure of Heavy Hexagon Code

This QECC encodes a logical qubit over a hexagonal lattice. As qubits are present
on both the vertices and edges of the lattice, the term heavy is used. This is a
combination of degree-2 and degree-3 qubits hence there is a huge improvement
in terms of average qubit degree in comparison with surface code structure which
has qubits of degree-4 [CZ+20]. Fig. 2.10 shows the lattice for a distance-3 heavy
hexagon code encoding one logical qubit.

The heavy hexagon code is a combination of surface code and subsystem code
(Bacon Shor code) [CZ+20]. A subsystem code is defined by G, a set of gauge op-
erators where ∀ g ∈ G, |ψ⟩ ≡ g |ψ⟩ [Bac06]. A gauge operator takes a codeword to
an equivalent subsystem. In other words, a codespace in a subsystem code consists
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Figure 2.10: Distance 3 heavy hexagon code encoding one logical qubit: (a) the
hexagonal structure, (b) the circuit illustration of the heavy hexagon code with
the CNOT gates. Here yellow, white and black circles represents data, flag and
ancilla qubits respectively; black ancilla qubits are for measuring the X (red face
or plaquette) and Z (blue face or strip) gauge generators. The product of two
Z gauge generators at each white plaquette forms a Z stabilizer. The figure is
adapted from the reference [CZ+20].

of multiple equivalent subsystems. It is to be noted that the gauge operators are
not necessarily commutative. The product of two or more gauge operators forms
a stabilizer, which keeps the codeword unchanged.

Gauge generators

For the heavy hexagon code, its gauge generators which form the gauge group are
defined in terms of Pauli operators as

⟨Zi,jZi+1,j, Xi,jXi,j+1Xi+1,jXi+1,j+1, X1,2m−1X1,2m, Xd,2mXd,2m+1⟩,

where i ∈ {1, 2, . . . , d−1}, j ∈ {1, 2, . . . , d} andm ∈ {1, 2, . . . , (d−1)/2)}. Further,
for the second type of the gauge generators Xi,jXi,j+1Xi+1,jXi+1,j+1, (i+ j) has to
be odd. A gauge generator gi,j is a gauge operator acting on the (i, j)th data qubit
in the lattice. The product of one or more gauge generators can form a gauge
operator.
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Figure 2.11: Circuits for measuring X and Z gauge generators in the heavy
hexagon code where ti denotes the ith time step. Two flag qubits (white circles)
measure a X gauge generator having a weight of 4 and one flag qubit measures a
Z gauge generator having a weight of 2 [CZ+20].

Fig. 2.11 shows the X and Z gauge generators along with the circuits [CZ+20]
for measuring these. A single error correction cycle requires 11 time-steps (7 for
X and 4 for Z). The weight of a gauge operator g is defined as the number of
non-identity Pauli operators in g. In Fig. 2.12, the Z and X gauge generators,
indicated in blue and red, can correct bit flip and phase flip errors respectively.
This is explained with detailed examples in Appendix.

For a distance d, the number of gauge generators is (d2 − 1)/2, so the number
of possible gauge operators can be exponential in d, thereby syndrome decoding
poses a computational challenge.

Stabilizers

The stabilizer group of the heavy hexagon code [CZ+20] is defined as

⟨Zi,jZi,j+1Zi+1,jZi+1,j+1, Z2m−1,dZ2m,d, Z2m,1Z2m+1,1, ΠiXi,jXi,j+1⟩
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Figure 2.12: The stabilizers and gauge generators for a distance 5 heavy hexagon
code: the weight-4 X gauge generators are in the red plaquettes, while the weight-
2 X gauge generators are on the upper and lower boundaries. Each blue strip
denotes weight-2 Z gauge generators. A vertical strip of two adjacent columns
with X gauge generators form an X stabilizer. The weight-4 Z gauge generators
in the white plaquettes, and weight-2 Z gauge generators on the left and right
boundaries are themselves Z stabilizers. [CZ+20].

where i ∈ {1, 2, . . . , d−1}, j ∈ {1, 2, . . . , d} andm ∈ {1, 2, . . . , (d−1)/2)}. Further,
for the first type of stabilizers Zi,jZi,j+1Zi+1,jZi+1,j+1 having weight 4, (i+ j) has
to be even. The measurement outcome of one such stabilizer is the product of
the measured eigenvalues of the two weight-two gauge generators Zi,jZi+1,j and
Zi,j+1Zi+1,j+1, i+ j being even.

Enumerating Gauge Generators of Heavy Hexagonal QECC for d = 5

The 20 Z gauge generators of the type Zi,jZi+1,j in Fig. 2.12 are given in Table 2.2.
The 8 X gauge generators of the type Xi,jXi,j+1Xi+1,jXi+1,j+1 (represented by red
squares in Fig. 2.12) are listed in Table 2.3. The 2 X gauge generators of the type
X1,2m−1X1,2m and 2 X gauge generators of the type Xd,2mXd,2m+1 (represented by
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red semicircles in Fig. 2.12) are shown in Table 2.4. Hence, there are a total of 12
X gauge generators in Fig. 2.12. In this appendix, we list all the gauge generators
for a distance heavy hexagonal code. Here, i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3, 4, 5}
and m ∈ {1, 2}.

Table 2.2: The 20 Z gauge generators Zi,jZi+1,j with weight 2
Gauge Generator Position in lattice (blue semicircle)

Z1,1Z2,1 first row first column (top left)
Z2,1Z3,1 second row first column

...

...
Z4,5Z5,5 last row last column

Table 2.3: The 8 X gauge generators Xi,jXi,j+1Xi+1,jXi+1,j+1 with weight 4
Gauge Generator Position in lattice ( red square)
X1,2X1,3X2,2X2,3 first row second column
X1,4X1,5X2,4X2,5 first row fourth column
X2,1X2,2X3,1X3,2 second row second column
X2,3X2,4X3,3X3,4 second row fourth column
X3,2X3,3X4,2X4,3 third row second column
X3,4X3,5X4,4X4,5 third row fourth column
X4,1X4,2X5,1X5,2 fourth row second column
X4,3X4,4X5,3X5,4 fourth row fourth column

Table 2.4: The 4 X gauge generators X1,2m−1X1,2m and Xd,2mXd,2m+1 with weight
2
Gauge Generator Position in lattice (red semicircle)

X1,1X1,2 first row first column (top left)
X1,3X1,4 first row third column
X5,2X5,3 fifth row second column
X5,4X5,5 fifth row fifth column
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Enumerating Stabilizers of Heavy Hexagonal QECC for d = 5

The 8 Z stabilizers of the type Zi,jZi,j+1Zi+1,jZi+1,j+1 in Fig. 2.12 are shown in
Table 2.5. The 2 Z stabilizers of the type Z2m−1,dZ2m,d and 2 Z stabilizers of
the type Z2m,1Z2m+1,1 (represented by blue semicircles in Fig. 2.12) are given in
Table 2.6. Hence, there are a total of 12 Z stabilizers in Fig. 2.12. Next, the 4 X
stabilizers of the type ΠiXi,jXi,j+1 in Fig. 2.12 are shown in Table 2.7.

Table 2.5: The 8 Z stabilizers Zi,jZi,j+1Zi+1,jZi+1,j+1 with weight 4
Stabilizer Position in lattice (white square)

Z1,1Z1,2Z2,1Z2,2 first row first column
Z1,3Z1,4Z2,3Z2,4 first row third column
Z2,2Z2,3Z3,2Z3,3 second row second column
Z2,4Z2,5Z3,4Z3,5 second row fourth column
Z3,1Z3,2Z4,1Z4,2 third row first column
Z3,3Z3,4Z4,3Z4,4 third row third column
Z4,2Z4,3Z5,2Z5,3 fourth row second column
Z4,4Z4,5Z5,4Z5,5 fourth row fourth column

Table 2.6: The 4 Z stabilizers Z2m−1,dZ2m,d and Z2m,1Z2m+1,1 with weight 2
Stabilizer Position in lattice (blue semicircle)
Z1,5Z2,5 first row fifth column
Z3,5Z4,5 third row fifth column
Z2,1Z3,1 second row first column
Z4,1Z5,1 fourth row first column

For QECCs which are not subsystem codes, such as [Sho97, Ste96], an n-qubit
QECC with n − k stabilizers can correct upto k errors. On the other hand,
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Table 2.7: The 4 X stabilizers ΠiXi,jXi,j+1

Stabilizer Position in lattice (vertical strip)
X1,1X1,2X2,1X2,2X3,1X3,2X4,1X4,2X5,1X5,2 the vertical strip of the column 1 and 2
X1,2X1,3X2,2X2,3X3,2X3,3X4,2X4,3X5,2X5,3 vertical strip of the column 2 and 3
X1,3X1,4X2,3X2,4X3,3X3,4X4,3X4,4X5,3X5,4 vertical strip of the column 3 and 4
X1,4X1,5X2,4X2,5X3,4X3,5X4,4X4,5X5,4X5,5 vertical strip of the column 4 and 5

subsystem codes need fewer stabilizers [Bac06]. Errors and the corresponding
syndromes do not form a one-to-one mapping. This has motivated us to design
an ML based syndrome decoder, along with two efficient algorithms to identify
equivalence classes for all possible errors to enhance the efficiency of the decoder.

Noise model considered for Heavy Hexagon QECC

Apart from bit flip, phase flip, depolarization error amplitude damping and amplitude-
phase damping noise on data qubits, the following noise are also considered.

Measurement error

After measuring the ancilla, we get the syndrome. Depending on the measurement
error probability, bit flip error is incorporated in that syndrome.

Stabilizer error

Stabilizer error is basically erroneous measure qubits. Hence bit flip errors are
applied on ancilla qubits.

Moreover, a single error correction cycle in heavy hexagon code consists of eleven
steps (Fig. 2.11. An error can occur on 0 ≤ k ≤ d2 data qubits in each of the
eleven steps, d being the distance of the code. Therefore, the overall probability
of error for depolarizing error for each error correction cycle is 1− (1− p)11.
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Building on this foundation, we now explore error suppression strategies specifically
tailored for NISQ devices in the current era.



Part I

Error suppression for NISQ devices:
Current Era
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3.1 Introduction

Circuit cutting is an approach that has been proven to reduce the noise in the
system. This method of partitioning a circuit into multiple subcircuits, indepen-
dently computing each of these and then using classical postprocessing to retrieve
the uncut output distribution, was proposed primarily as a method to compute
larger circuits on smaller devices [PH+20]. However, since then, multiple studies
[ST+21, BS+22, MW22] establish their capability to reduce the noise in the system
since each of the subcircuits involves fewer qubits and/or gates. In [KM+23], the
authors obtained a more accurate estimation of ground state energy of the nearest
neighbour Hamiltonian by leveraging circuit cutting and computing each subcir-
cuit on the least-busy device. However, they did not consider the noise profile of
the subcircuit. In [CD+22], the authors provided the framework of a scheduler to
assign circuits to multiple hardware to minimize the overall execution time with-
out considering the noise profile of the hardware. In this study, we propose a noise
and time-aware scheduler that leverages circuit cutting and then schedules the
subcircuits to multiple hardware to maximize the overall fidelity while restricting
the execution time on each hardware below a predefined value τ .

Ideally, a user would want to (i) reduce the effect of noise on the quantum circuit,
and (ii) execute their quantum circuit on the least noisy hardware. These two
requirements are not independent, but we leverage circuit cutting and perform
noise-aware scheduling respectively. Circuit cutting is known to lower the effective
noise on the system, but it also leads to an increased number of subcircuit instances
to be executed. A user may not have the desired execution time available on the
hardware of their choice due to limited access, or due to the access time being
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shared among multiple users. In our approach, we tackle the challenge of enhancing
fidelity while reducing execution time by combining circuit cutting and selecting
the best available hardware for each subcircuit.

Achieving the optimal trade-off between noise and execution time is a complex
task since these two requirements are often orthogonal to each other. In order to
minimize the noise, we would want to execute all the subcircuits on the least noisy
device available, leading to an increased execution time. Conversely, to minimize
the execution time, we can opt to distribute the subcircuits across all available de-
vices without considering their individual noise profiles, leading to low fidelity. In
order to address this optimization challenge, we design an integer linear program
(ILP) that seeks to maximize the fidelity while conforming to a fixed maximum
allowable execution time τ for each hardware. The uncut probability distribution
is obtained through classical postprocessing over the outcomes of the individual
subcircuits. The results obtained through our Noise and Time Aware Distributed
Scheduler (NoTaDS) demonstrate significantly better fidelity for different bench-
mark circuits, compared to the scenario where the uncut circuit was executed on
the least noisy device. Moreover, if the number of subcircuits is not more than the
number of hardware, then, when some restrictions on the maximum execution time
for each hardware are maintained, we provide a polynomial time graph theoretical
scheduler which provides results equivalent to the ILP scheduler. Our method
represents an initial step towards noise and time-minimized distributed quantum
computing, showcasing promising outcomes in improving the performance of quan-
tum computing in real-world applications. For this study, we have not considered
the queuing delay of the hardware since there is currently no known relationship
between queue time and hardware noise.

3.2 Hardware Schedule for Subcircuits

In this work, we study the problem of scheduling jobs on different hardware with a
focus on maximizing the fidelity and minimizing the execution time. First, we want
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to emphasize that in this work we consider circuit-cutting primarily as a method
to suppress the effect of noise. It has been shown in multiple studies that circuit
cutting itself can lower noise in the system [BS+22, ST+21, TAR+21, MW22].
Therefore, we shall resolve to circuit cutting even if the circuit is small enough
to be executed on the hardware. This method allows us to improve fidelity as
well as use parallel scheduling of the subcircuits obtained after cutting to multiple
hardware, thus lowering the execution time [CD+22].

Consider a list of hardware H and a list of circuits (or subcircuits) C. For a
(sub) circuit i ∈ C, let lij be the optimum (least noisy) layout on a hardware
j ∈ H. Ideally, each (sub) circuit can be assigned to the best layout correspond-
ing to it, in terms of noise. However, cutting the circuit increases the number
of executable circuits by creating multiple instances for each subcircuit (refer to
Fig. 2.1). Therefore, the trade-off for error suppression using circuit cutting is the
increased execution time to execute all the subcircuit instances.

If the number of hardware available is at least as many as the number of subcircuit
instances, then a polynomial time algorithm for finding a minimum weight maxi-
mum matching in the bipartite graph having an edge between a subcircuit and a
hardware with a weight (say, themapomatic score) can provide the required assign-
ment. This also comes with an inherent assumption that the maximum execution
time for each hardware can accommodate no more than one subcircuit instance.
However, if the number of subcircuit instances are more than that of available
hardware, or the allowed execution time for each hardware can accommodate more
than one subcircuit instance, then job scheduling has to be performed.

Of these multiple subcircuits, most of them may conform to the least noisy layout
on the same hardware. Therefore, the best assignment may lead to sequential
execution of a large number of subcircuits, leading to a large execution time. A
user often has limitations on the execution time on a particular hardware, barring
this sequential approach. On the other hand, the execution time can be minimized
if we opt for as much parallelization as possible, i.e., equally distribute the (sub)
circuits to all the available hardware without considering the noise profile.
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In this study, we delve into finding the optimum scheduling of the (sub) circuits
on the available hardware, when an upper limit on the execution time for each
hardware is imposed, such that the overall fidelity is maximized. The problem
statement can be formally stated as follows: Given a list of circuits C, a list
of hardware H and the corresponding execution time limit τj for j ∈ H, find an
assignment Xij ∀ i ∈ C such that the fidelity of the circuits are maximized and
the execution time tj ≤ τj ∀ j ∈ H.

This problem, in general, is not known to have a polynomial time solution. How-
ever, if (i) the number of subcircuits is at most as many as the number of hardware,
and (ii) the maximum allowable time τj for each j ∈ H can accommodate only one
subcircuit. We first propose an integer linear programming (ILP) approach to the
scheduling problem in general in Sec. 3.3, elaborated in Fig. 3.1. Later, in Sec. 3.5
we show a polynomial time solution to this problem under the above mentioned
restrictions.

3.3 Proposed framework

We start with the premise where a list of circuits C and a list of hardware H
are provided. The list of hardware can either be provided by the user or can be
determined from their credential for a particular vendor. For each c ∈ C, we first
fragment it into k subcircuits via circuit cutting. Note that as stated before, we
resort to cutting all the circuits, irrespective of whether these can be executed
on a single hardware, in order to reduce the noise, and thus improve the fidelity.
Henceforth, C denotes the set of all subcircuits obtained via circuit-cutting, and
i ∈ C implies a subcircuit.

The steps in the flowchart of Fig. 3.1 are described in the following subsections.



CHAPTER 3. DISTRIBUTED SCHEDULING 52

Figure 3.1: A flowchart of our proposed noise and time optimized scheduler, in-
cluding circuit cutting, scoring of (circuit, hardware) pair, noise and time opti-
mized scheduling, and final reconstruction of the entire probability distribution
from those of the subcircuits.

3.3.1 Selection of appropriate hardware

As stated before, let C be the set of all subcircuits. Naturally, tagging is required
to keep track of which subcircuit corresponds to which circuit for classical recom-
bination over the cuts which follows later. First, for each subcircuit i ∈ C, the set
of hardware Hi ∈ H is determined such that for all j ∈ Hi the number of qubits in
j is at least as big as the number of qubits in the subcircuit i. If Hi = {} for any
subcircuit i, then i needs to be partitioned again such that at least one hardware
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can accommodate each subcircuit.

At the end of this step, we obtain a list of feasible hardware Hi for each subcircuit
i.

3.3.2 Scoring each hardware as per noise profile

Next, we use mapomatic [T+22] for each i ∈ C and j ∈ Hi. The action of
mapomatic here can be considered as a function

F : {j, i} → {lij, Qij}

where lij is the optimum layout and Qij is the mapomatic score for this set of
circuits and layout. In other words, given a hardware j and a circuit i, mapomatic
returns a list of physical qubits l, which is the initial layout for the placement of
i on j, and a score Qij, which is an indicator of the noise. For each (subcircuit-
hardware) pair (i, j), we obtain a set of such score Qij. Therefore, for each circuit
i, this step produces a list of hardware j ∈ Hi ordered by the score Qij. In the
usual scoring technique of mapomatic, a lower score implies a lower noise profile.
Therefore, a hardware h1 is better than h2 for a circuit i if Qih1 < Qih2 . However,
one may define their own custom scoring technique which may imply the opposite.
At the end of this step, we obtain an ordering among the list of feasible hardware
for each subcircuit in terms of their noise profile.

3.3.3 Noise and Time Aware Distributed Scheduler (No-

TaDS)

Now, we propose an integer linear program (ILP) to schedule each subcircuit from
C to quantum hardware such that the fidelity is maximized while conforming to
the upper bound on the execution time for each hardware. Note that the list of
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feasible hardware and their ordering as per mapomatic score may vary from circuit
to circuit. Therefore, the optimization needs to take into account this variation
for each subcircuit.

After cutting, each subcircuit corresponds to multiple subcircuit instances. The
number of instances of a subcircuit i depends on the number of preparation qubits
ρi and the number of measurement qubits Oi. We associate a value ηi with each
subcircuit i such that

ηi =

1 if all instances are scheduled individually

ν(ρi, Oi) otherwise

where ν(ρi, Oi) denotes the total number of subcircuit instances for subcircuit i.
In Sec. 3.4 we discuss their advantages and disadvantages.

Next, we define the variables, constraints, and the objective function for the ILP.

1. Variables: We associate a variableXij for each subcircuit i ∈ C and hardware
j ∈ Hi such that

Xij =

1 if subcircuit i is scheduled to hardware j

0 otherwise.

In other words, Xij acts as a decision variable for the scheduling. Moreover, a
score variable Qij is associated with each Xij which indicates the mapomatic
score when subcircuit i is placed on hardware j.

2. Constraints: Next, we fix the constraints for the ILP.

(a) The first requirement is that every subcircuit i is assigned to some
hardware. Formally, this constraint can be represented as∑

j∈Hi

Xij = 1. (3.1)
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Note that this constraint should hold for all subcircuits i ∈ C, and
therefore, Constraint 4.2 essentially results in |C| constraints.

(b) Now, as discussed before, there is some time restriction for each hard-
ware for the user. We associate a maximum execution time τj for each
j ∈ H. The value of τj can be provided by the user or can be determined
from the user’s access plan. Let ti denote the execution time for each
subcircuit i ∈ C. Then, the total execution time of all the subcircuits
scheduled to a particular hardware j should not exceed τj. Formally,
this is represented as ∑

i∈C

ηi · ti ·Xij ≤ τj. (3.2)

Note that while the summation of this constraint goes over the entire
set of subcircuits, the indicator variable Xij ensures that the time for a
particular subcircuit is added to the execution time only if it is sched-
uled to that hardware. This constraint holds for each hardware, and
therefore Constraint 4.1 essentially results in |H| constraints.

3. Objective Function: The objective of this optimization problem is to maxi-
mize the overall fidelity, which translates to minimizing the overall score Q.
Therefore, the objective function for this is defined as

min
∑

i∈C,j∈H

Xij ·Qij · Ai (3.3)

Here, 0 < Ai ≤ 1 is the area of circuit i normalized over all available circuits.
In this study, we define the area of a circuit as the product of the number of
qubits and the 2-qubit depth. In other words, higher the area of a circuit,
more amenable it is to noise. The inclusion of this term thus ensures that
circuits with a higher area are placed in layouts with lower mapomatic scores
to ensure the quality of the outcome. For example, Fig. 3.2 shows a possible
cutting of a 5-qubit circuit into two subcircuits. Both the subcircuits consist
of 3 qubits, but the 2-qubit depth of the first subcircuit is 7 whereas that
of the second subcircuit is 2. The first subcircuit which has more depth is
more prone to noise, and hence should be placed in a better layout.
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Figure 3.2: Cutting with unequal depth : to understand why area is an important
element in the objective function

The final ILP formulation, thus, is

min
∑

i∈C,j∈H

Xij ·Qij · Ai

subject to Constraints 4.2-4.1

Xij ∈ {0, 1}.

Note on linear objective function The objective function of Eq. 3.3 is linear in
Qij. A question may arise whether it is sufficient to have a linear objective func-
tion when minimizing over multiple subcircuits and their multiple instances. As
we mentioned earlier, the score computed by mapomatic is an indicator of the
hardware noise profile. However, the quality of the result for a shallow subcircuit
running on a noisy layout may exceed that of a very deep circuit running on a less
noisy layout. As long as the subcircuits are roughly equal in the number of qubits
and the depth, the ordering of the hardware layouts according to its mapomatic
score primarily depends on the hardware noise profile. In such a scenario, a lin-
ear objective function that minimizes the overall score over all the subcircuits
is sufficient. However, if the subcircuits are largely imbalanced in width and/or
depth, then both the size of the circuit and the noise profile of the layout affect
the mapomatic score. In that case, a non-linear objective function may be needed
to ensure good scheduling for all the subcircuits. However, previous results on cir-
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cuit cutting show optimal performance when the cutting is more or less balanced
[BS+22]. Therefore, in this study, we primarily stick to cuts that lead to roughly
balanced subcircuits, hence linear objective function suffices for the main goal.

3.4 Experimental Results

In this section, we show the experimental results of our NoTaDS scheduler for
different types of circuits. We have used the Circuit-knitting-toolbox [LA+23] for
circuit cutting and reconstruction, and CPLEX Optimization Studio [cpl] to solve
the ILP from Sec. 3.3. Table 3.1 shows the set of real IBM quantum hardware
used for our experiments and their noise profile. Some of the parameters for the
noise profile include the probability of faulty gates and measurement, and the rate
of spontaneous decay of a qubit, characterized by T1 and T2. The noise profile
of the hardware varies with time. The values for each type of error in the table
are the average over all the qubits in that hardware. Moreover, the readout error
probability for each qubit is the average of p(0|1) and p(1|0) where p(i|j) denotes
the probability of measuring i when the outcome was originally j, i, j ∈ {0, 1}.

Table 3.1: Number of qubits and noise profile of the hardware
Name of real # Qubits 2-qubit gate 1-qubit gate

T1 (µs) T2 (µs) Readout error
IBM hardware error probability error probability probability
IBMQ Hanoi 27 8.3× 10−3 2.1× 10−4 156.69 137.7 10−2

IBMQ Mumbai 27 7.5× 10−3 2.5× 10−4 118.01 161.97 1.8× 10−2

IBMQ Cairo 27 9.4× 10−3 2.2× 10−4 94.62 116.42 1.3× 10−2

IBMQ Kolkata 27 8.7× 10−3 2× 10−4 117.42 92.97 1.2× 10−2

IBMQ Guadalupe 16 9.74× 10−3 2.64× 10−4 86.72 118.73 1.64× 10−2

IBMQ Lagos 7 7.2× 10−3 2× 10−4 112.51 84.42 1.4× 10−2

IBMQ Nairobi 7 8.7× 10−3 3.5× 10−4 114.75 71.42 2.7× 10−2

IBMQ Jakarta 7 7.3× 10−3 1.03× 10−4 136.95 38.99 2.09× 10−2

IBMQ Manila 5 7.7× 10−3 2.46× 10−4 141.15 56.53 2.2× 10−2

IBMQ Lima 5 9.58× 10−3 3.76× 10−4 98.68 115.32 2.41× 10−2

IBMQ Belem 5 8.89× 10−3 3.88× 10−4 101.42 98.85 2.39× 10−2

IBMQ Quito 5 7.9× 10−3 2.88× 10−4 96.83 104.39 4.15× 10−2

In the following subsections, first, we discuss the selection of the maximum execu-
tion time τ for each hardware, and then we discuss our method for estimating the
execution time of a subcircuit. Finally show the fidelity obtained by our scheduling
method for a range of quantum circuits.
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3.4.1 Criteria for maximum execution time τ

In Sec. 2, we defined the maximum execution time for a hardware j ∈ H as τj.
There are ηi instances for each subcircuit i ∈ C. Let t(i) be the execution time
for subcircuit i. The maximum execution time required for a particular hardware,
τmax, is when all the instances of all the subcircuits are executed sequentially on
one particular hardware. Then

τmax =
∑

i∈C ηi · t(i).

Note that allowing any excess time to τmax does not change the scheduling and
execution time. Therefore, we stick to equality instead of ≥.

The minimum time τmin that each hardware should allow should be such that at
least one subcircuit can be executed. If there are any hardware which does not
conform to this requirement, that one can simply be removed from the list of all
available hardware. Here, we want to mention once more that one subcircuit i ∈ C
consists of ηi subcircuit instances. One can choose to schedule each instance or
each subcircuit. We tested the former, which resulted in a drop of fidelity by ∼ 9%

over the latter. This is obvious since the different instances are equivalent to a
tomography of the subcircuit [PS+21, MW22]. Therefore, running each instance
of the subcircuit on different hardware (i.e., different noise models) leads to an
inaccurate tomography, which makes the reconstruction fallible. Therefore, for
this study, we stick to the scheduling of subcircuits, and not the instances. There
may be scenarios where scheduling the instances in an intelligent way may lead to
a lower decrease in the fidelity – we postpone that for future studies.

For our experimental settings, the number of hardware is always chosen to be
greater than the number of subcircuits. Therefore,

τmin = maxi∈C ηi · t(i).
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In all our experiments, we fix τj = τmin ∀ j ∈ H. Later in Sec. 3.4.7 we show the
change in fidelity and execution time if we allow τj > τmin.

Calculating the values of τmax and τmin require the execution time t(i) for all the
subcircuits i ∈ C. In the following subsection, we discuss the method we used to
fix the value of t(i) ∀ i ∈ C in our experiment.

3.4.2 Estimation of the execution time of a circuit

There are sophisticated methods for estimating the run-time of a quantum circuit
[JG+23]. However, for our experiment, we stick to a simple method of calculating
the time of each level of a circuit. We define level of a circuit as the timestamp
where some gates are executed in parallel. In Fig. 3.3 we separate the different
levels of the circuit by red lines.

The time duration of each level is determined by the longest gate in that level.
Naturally, 2-qubit gates have a much larger execution time than 1-qubit gates.
Therefore, if a level contains a 2-qubit gate, then the time duration of that level is
t2, which is the execution time of a single 2-qubit gate. Note that it doesn’t matter
if the level contains multiple 2-qubit gates since they are operated parallelly. On
the other hand, if a level contains only single qubit gates then the time duration
of that level is t1, which is the execution time of a single 1-qubit gate. Therefore,
if a circuit contains κ1 levels where only 1-qubit gates are present and κ2 levels
where 2-qubit gates are also present, then the overall runtime is κ1 · t1 + κ2 · t2.
In Fig. 3.3, in the whole circuit κ1 = 2 and κ2 = 5. In the first subcircuit, κ1 = 2

and κ2 = 2, and in the second subcircuit κ1 = 2 and κ2 = 3.

In current IBM Quantum devices, the execution time of a CNOT gate is ∼ 10×
that of single-qubit gates. For this study, we assume t1 = 1, making t2 = 10. From
the abstraction, the execution time of the circuit in Fig. 3.3 is 2 · t1 + 5 · t2. This
abstract calculation of the execution time keeps the method simple. Since the
values of τmin and τmax depend on the execution time, if some other method for
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Figure 3.3: An example of a 6-qubit RealAmplitudes circuit with the level.

determining the execution time is used, or if absolute execution times are selected,
then the values of τ will change accordingly without hampering the assignment of
the subcircuits on the hardware. Note that if absolute values are used instead of
t1, t2, then one should also account for the fact that the absolute values for the
execution time of gates are not always the same on different hardware.

3.4.3 Results for 6-qubit circuits

In Table 3.2 we consider four benchmark circuits having 6 qubits each. These cir-
cuits are small enough to be executed on any hardware with ≥ 7 qubits, and hence
distributed scheduling using circuit cutting may not be deemed necessary here.
However, Table 3.2 shows that distributed scheduling using circuit cutting still
helps in the improvement of fidelity. For each of the circuits, we provide its fidelity
with the ideal simulation both without any error mitigation and with measurement
error mitigation (MEM). For MEM, we have used the default MThree mitigation
[NK+21] provided in Qiskit Runtime by setting the resilience level option to 1.

Naturally, MEM improves the fidelity over no-mitigation. However, we observe
that distributed scheduling with circuit cutting without any error mitigation out-
performs the fidelity of the uncut circuit with MEM. In this experiment, we par-
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Table 3.2: Fidelity for 6-qubit circuits by scheduling over the hardware in Table 3.1
with and without circuit cutting for no error mitigation (NoMit ) and measurement
error mitigation (MEM).

Benchmark circuit # qubits Cut size # subcircuits
Fidelity

Uncut Cut
NoMit MEM NoMit MEM

Ripple carry adder [SC+04] 6 2 2 0.759 0.787 0.792 0.843
RealAmplitudes [KM+17] 6 1 2 0.959 0.983 0.987 0.997

Trotterized [MW22] 6 2 2 0.922 0.951 0.965 0.974
Bernstein Vazirani [AA+19] 6 1 2 0.81 0.869 0.882 0.944

titioned the circuit into two subcircuits. We want to emphasize here that (i) as
discussed before, τ for all hardware was fixed to τmin, and (ii) the uncut circuit was
always executed on the best hardware and its corresponding layout as per mapo-
matic. We obtain an average percentage improvement in fidelity for distributed
scheduling using circuit cutting over no cutting by ∼ 5.2 when no mitigation was
used, and by ∼ 4.89 when MEM was used. The average is taken over the four
circuits in Table 3.2.

Next, we dive deeper into the exact details of the experiment for the 6-qubit
Ripple carry adder circuit [SC+04]. This is meant to provide an overall idea for
recreating the experimental steps for the circuit in Table 3.2 and also those in later
subsections. The steps follow from the flowchart provided in Fig. 3.1.

Experiment details for the 6-qubit Ripple carry adder circuit

Fig. 3.4 shows the circuit for the 6-qubit ripple carry adder and its two subcir-
cuits obtained using the Circuit-knitting-toolbox [LA+23]. After obtaining the
subcircuits, we found the hardware big enough to accommodate each of them. In
this particular scenario, all the hardware from Table 3.1 can accommodate each
subcircuit.

Next, we use mapomatic to find the score for each subcircuit against each hardware
and its layout. Then we use the optimization in Sec. 3.3 to schedule the subcircuits
to the hardware. Finally, we use mapomatic to find the best hardware and its
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Figure 3.4: Two subcircuits of 6-qubit Ripple carry adder circuit obtained by using
Circuit-knitting-toolbox [LA+23].

layout for the uncut circuit as well. In Table 3.3 we show the layout, backend, and
the mapomatic score for the uncut circuit and the two subcircuits.

Table 3.3: Scheduling details of the 6-qubit ripple carry adder circuit and its two
subcircuits obtained after cutting.

Circuit # qubits Layout Scheduled backend Mapomatic score
Uncut 6 [26, 25, 24, 23, 21, 18] IBMQ Kolkata 0.28

Subcircuit 1 4 [26, 25, 22, 19] IBMQ Mumbai 0.13
Subcircuit 2 4 [4, 1, 2, 3] IBMQ Hanoi 0.11

Note that the cut-size to partition the 6-qubit adder circuit into two subcircuits
is 2. Therefore, each subcircuit has 4 qubits. We note from Table 3.3 that our
scheduler has scheduled the two subcircuits on two different hardware, each of
which has a mapomatic score lower than the one where the original circuit has
been scheduled. This provides an explanation as to why the fidelity obtained via
cutting exceeds the uncut circuit.

3.4.4 Results for 10-qubit circuits

Next, in Table 3.4 we take a few 10-qubit circuits. These circuits are too big to
be executed on 5 or 7-qubit devices but can be executed without cutting on 16 or
27-qubit devices. However, as before, we show that the fidelity can be improved by
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using our NoTaDS scheduler. Table 3.4 shows the fidelity of four 10-qubit circuits
with and without measurement error mitigation, where the value of τ is set to τmin
for all hardware.

Table 3.4: Fidelity for 10-qubit circuits by scheduling over the hardware in Ta-
ble 3.1 with and without circuit cutting for no error mitigation (NoMit ) and
measurement error mitigation (MEM).

Benchmark circuit # qubits Cut size # subcircuits
Fidelity

Uncut Cut
NoMit MEM NoMit MEM

Ripple carry adder [SC+04] 10 2 2 0.315 0.325 0.375 0.5138
Bernstein Vazirani [AA+19] 10 1 2 0.702 0.714 0.728 0.749
RealAmplitudes [KM+17] 10 1 2 0.806 0.876 0.977 0.994

Trotterized [MW22] 10 2 2 0.878 0.891 0.927 0.960

Once more we observe that the fidelity of the noisy and the ideal circuit obtained
without any error mitigation via our scheduling method outperforms (sometimes
significantly, e.g., see RealAmplitudes and Trotterized circuits) the fidelity of the
uncut circuit with MEM. We obtain an average improvement in fidelity for dis-
tributed scheduling using circuit cutting over no cutting by ∼ 12.38% when no
mitigation was applied, and by ∼ 21% when MEM was used. The average is taken
over the four circuits in Table 3.4.

In the following subsection, we take a deeper dive into the improvement in fidelity
with the variation in the number and size of the subcircuits.

3.4.5 Variation in fidelity with the number and size of sub-

circuits

In Fig. 3.5 we plot the fidelity of 20-qubit RealAmplitudes and Bernstein-Vazirani
circuits as the number of subcircuits is increased linearly from 2 to 6. In each
case, each subcircuit is scheduled using the NoTaDS scheduler, and the fidelity is
compared with the ideal outcome. We notice that the fidelity increases linearly
with an increasing number of subcircuits.
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Figure 3.5: Fidelity obtained by theNoTaDS scheduler with an increasing number
of subcircuits for 20-qubit RealAmplitudes and Bernstein Vazirani (BV) circuits.

Here we consider cutting 20-qubit RealAmplitudes and Bernestein-Vazirani cir-
cuits, where the number of subcircuits varies from 2 to 6. The subcircuits are
then scheduled with our proposed NoTaDS scheduler. The result is bootstrapped
over 10 trials. We notice a linear improvement in fidelity with the increase in the
number of subcircuits. As the number of subcircuits increases, each subcircuit be-
comes smaller, and hence less contagious noise. Therefore, the fidelity is increased.
However, with an increase in the number of subcircuits, the cut-size also increases
leading to an exponential increment in the classical postprocessing time for recon-
struction of the full probability distribution from the subcircuits [PH+20, TT+21].
We verify this in Fig. 3.6. Therefore, the number of cuts cannot be increased
beyond a certain point to keep the classical postprocessing time in check.

We show a complimentary result in Fig. 3.7 where we increase the size of the
circuit and partition each of them into two subcircuits. The two subcircuits were
then scheduled by our proposed NoTaDS scheduler. We notice that the fidelity
decreases with an increase in the size of the circuit. The result is bootstrapped
over 10 trials.
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Figure 3.6: The increase in classical reconstruction time of the full probability
distribution from the subcircuits with increasing number of subcircuits.

3.4.6 Results for a 28-qubit circuit

In our chosen set of hardware (Table 3.1), the largest hardware contains 27 qubits.
Hence, here we consider one circuit that is too big to be executed on any of
the hardware. However, via circuit cutting and NoTaDS scheduling, we can still
execute such a circuit. In Table 3.5 we show the fidelity obtained with and without
MEM for a 28-qubit RealAmplitudes circuit. We do not have any fidelity value for
uncut since it is too big to be executed on our set of devices. We observe that the
fidelity is poor without error mitigation, but improves significantly in the presence
of MEM. This is obvious since the measurement is the most dominant noise in
current quantum devices (see Table 3.1 for the probabilities of different types of
noise). Therefore, the larger the circuit, the stronger the effect of measurement
error, leading to poor fidelity.

We have selected hardware devices up to 27-qubit devices for our experiments.
Currently, IBM has hardware with 433 qubits, and our proposed method is inde-
pendent of the size of the hardware.
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Figure 3.7: Fidelity obtained by the NoTaDS scheduler with increasing size of the
circuit where each circuit is partitioned into two subcircuits.

Table 3.5: Fidelity for 28-qubit circuits by scheduling over the hardware in Ta-
ble 3.1 with and without circuit cutting for no error mitigation (NoMit ) and
measurement error mitigation (MEM).

Benchmark circuit # qubits Cut size # subcircuits
Fidelity

Uncut Cut
NoMit MEM NoMit MEM

RealAmplitudes 28 1 2 - - 0.31 0.7

3.4.7 Change in fidelity with and without scheduling

As stated before, till now in all our experiments we have fixed τj = τmin ∀ j ∈ H.
Naturally, this makes the scheduling restrictive. It may be possible to execute
all the subcircuits on the best device to obtain the best fidelity at the cost of
execution time. Our restriction over the maximum allowable execution time τ

prevented NoTaDS from doing so.

In Fig. 3.8 we consider a 16-qubit RealAmplitudes circuit which is partitioned into
two balanced subcircuits (i.e., the number of qubits and gate count are roughly
equal for both). We show the fidelity obtained when the two subcircuits are
executed in all possible hardware pairs (j, k), j, k ∈ H. Note that since there
are only two subcircuits,
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execution time =

τmax for j = k

τmin otherwise.

The partition being balanced, we have τmax ≃ 2 · τmin.

Figure 3.8: Fidelity of a 16-qubit RealAmplitudes circuit, when partitioned into
2 subcircuits, and executed on all possible hardware pair. Since there are only
two subcircuits, when the subcircuits are scheduled to two different hardware, the
execution time is τmin, and when scheduled to the same hardware the execution
time is τmax.

The maximum fidelity obtained in Fig. 3.8 is when both the subcircuits are ex-
ecuted on ibm_hanoi, whereas if the two subcircuits are executed on ibm_hanoi
and ibmq_kolkata, the fidelity is slightly lower but the execution time is reduced
to half. The reduction in fidelity is ∼ 1% only.

On the other hand, the result here indicates that if it is not possible to execute
both the circuits on ibm_hanoi due to restrictions in execution time, it is rather
more useful to schedule the subcircuits to two different hardware using NoTaDS
than to execute both of them together on any other hardware. This holds true even
if there is some hardware whose maximum execution time can accommodate both
subcircuits. For example, if we keep ibm_hanoi out of the story, it is better to
distribute the two subcircuits to, say ibmq_kolkata and ibm_cairo than to execute
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both of them on the later, even if it can accommodate both. This is because
ibmq_kolkata has a lower noise profile than ibm_cairo. Therefore, NoTaDS will
find this distributed scheduling, and improve the final fidelity of the circuit.

In Fig. 3.8, the number of subcircuits is 2, so for τmax both of them can be executed
on the best hardware and for τmin distinct devices need to be assigned. In this
scenario, allowing an execution time of τmin < τ < τmax to one or more hardware
cannot change the scheduling, and hence the fidelity. However, if the number
of subcircuits is more than 2, then NoTaDS may be able to find even better
schedules for maximum execution time τmin < τ < τmax so that the difference
in fidelity obtained from the scheduling with that when all the subcircuits are
executed on the best device is less than even 1%.

Naturally answers to the questions such as (i) what is the best schedule, (ii) is
it better to schedule all the subcircuits to the same hardware – changes with
time (since noise varies with time), the list of available hardware, and the cir-
cuits. NoTaDS automates this process by finding the optimum scheduling based
on the hardware noise profile and the upper bound on the execution time of each
hardware.

To summarize, we make the subcircuits smaller by performing cutting. This implies
that each subcircuit experiences lower noise compared to the original circuit. If
we run these smaller subcircuits on the two best devices, we are likely to achieve
the best possible result as shown by the heatmap, but it will take more time.
The point is that by distributing the subcircuits, we are reducing execution time
while choosing the two least noisy devices and showing that, in less time, we are
achieving results better than the uncut circuit (possibly not as good as all the cut
subcircuits running on the best device).
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3.5 A polynomial time solution for a restricted sce-

nario

In Sec 3.3 we provided an ILP solution for the scheduling problem. However, ILP
is an NP-Hard problem. Therefore, in this section, we propose a graph theoretic
approach for the scheduling when (i) the number of subcircuits is at most as many
as the number of hardware, and (ii) the maximum execution time τj = τmin, ∀
j ∈ H. Under these two restrictions, the scheduling problem essentially becomes an
assignment and therefore can be solved in polynomial time using a graph theoretic
approach. To differentiate this restricted scenario from the general scheduling
problem, we shall call this circuit assignment.

Figure 3.9: For mapping the 6-qubit ripple carry adder to the available hardware :
(a) The bipartite graph where the first (left) set of vertices denotes the hardware,
and the second (right) set of vertices denotes the two subcircuits of a 6-qubits
ripple carry adder. (b) A Minimum Weight Maximum Matching based solution to
the assignment of two subcircuits corresponding to the 6-qubit ripple carry adder.

Let, C and H be the set containing the subcircuits and hardware. We convert this
circuit assignment problem into a complete bipartite graph G = (C,H,E) such
that for every two vertices c ∈ C and h ∈ H, e = (c, h) ∈ E. Such a complete
bipartite graph with partitions of size |C| = m and |H| = n is denoted by Km,n.
As discussed in Sec 2.3, we shall find the best layout and the mapomatic score Qc,h
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for each (circuit, hardware) pair (c, h). We assign a weight of Qc,h to each edge
e = (c, h) ∈ E.

In Fig. 3.9 (a) we show an example of mapping the assignment problem to a
complete bipartite graph, where the first (left) set of vertices denotes the hardware,
and the second (right) set of vertices denotes the two subcircuits of a 6-qubits
ripple carry adder. Each edge is associated with the mapomatic score for the
corresponding (circuit-hardware) pair. However, we have not shown the weights
of the edges in the figure to keep it tidy.

In a bipartite graph, matching refers to a collection of edges selected in a manner
where none of the chosen edges have a common endpoint. A maximum match-
ing, denotes a matching that has the largest possible size, indicating the highest
number of edges that can be included. It becomes a perfect matching when |C|
and |H| are equal which is not necessarily true for our case. In our problem, we
want to assign each subcircuit to hardware such that the mapomatic score is min-
imized. Therefore, finding the optimal noise-aware assignment of the subcircuits
to the hardware is the same as finding the minimum weight maximum matching
(MWMM) [Edm65b].

Fig. 3.9 (b) shows the assignment of the two subcircuits to the hardware, denoted
by the red edges. Note that, the ILP solution for the scheduling for the 6-qubit
ripple carry adder, shown in Table 3.3, is also the same. Therefore, the fidelity
obtained by MWMM is the same as that of the ILP scheduler.

Note that if the number of subcircuits is more than the number of hardware, or
τj > τmin for j ∈ H, then more than one subcircuit may be scheduled to the
same hardware. This is no longer a matching, and hence cannot be solved using
the MWMM method. Therefore, this polynomial time graph theoretical approach
is applicable only to a restricted scenario, as discussed at the beginning of this
section.
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3.6 Summary

In this work, we propose a noise and time optimized distributed scheduler that
schedules the subcircuits obtained after circuit cutting to hardware such that the
fidelity is maximized, and yet the execution time on each hardware is restricted
by a pre-specified limit.

Note that this same scheduler can be used to schedule a set of circuits to hardware
even without circuit cutting. However, we show that our method outperforms the
fidelity of the uncut circuit which has been executed on the least noisy device, and
yet requires significantly low execution time on a quantum processor. This method
combines inter-device parallelization with noise-aware scheduling to optimize the
fidelity of the circuit. This method is expected to be particularly useful in the
near-term when the devices are noisy, and the execution time available to a user
on a quantum device is limited. The study of scheduling circuits where balanced
partitioning may be too costly may be explored in the future.

With a focus on distributed scheduling, we proceed to examine resource-aware
scheduling methods for optimizing quantum circuit execution on hardware devices
in the next chapter.

Code availability

The code to find the optimal scheduling using our proposed NoTaDS scheduler is
available in https://github.com/debasmita2102/NoTODS.

https://github.com/debasmita2102/NoTODS
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4.1 Introduction

Currently multiple providers offer free or paid access to their quantum hardware
devices. The majority of these access are via cloud. As the demand for quantum
computing is rising, the users often face long queuing time with their jobs having
to wait till the execution of all the previously submitted jobs have been completed.
Consequently, there is a pressing need to enhance the efficiency and throughput of
quantum computers to improve user experience. In this paper, we study the bene-
fits and challenges of executing more than one quantum circuit simultaneously on
the same hardware to improve the throughput, as well as the hardware utilization,
without sacrificing on the quality of outcome.

Let us motivate the problem with an example. Consider a 15-qubit circuit which
is to be executed on a 27 qubit device as shown in Fig 4.1. Thus 12 qubits of the
device remain unused, which could have been utilized to execute simultaneously
some other circuit(s) requiring ≤ 12 qubits – thus improving the throughput and
the hardware utilization.

Figure 4.1: An example of a 15-qubit circuit assigned to a 27- qubit hardware. The
used qubits are shown in purple while the unused qubits are shown in blue. The
hardware still has room to accommodate one or more quantum circuit(s) using the
free qubits.

Simultaneous execution of multiple circuits on a single hardware is not without
challenge. Previous studies [CBSG17, GP17] do not consider the effect of noise



CHAPTER 4. RESOURCE-AWARE SCHEDULING 74

arising due to simultaneous execution of circuits. First, when a circuit is mapped
to a hardware, the requirement is to reduce the number of SWAP gates, as well
as to use a layout with minimal noise profile [T+22]. However, when multiple
circuits are placed simultaneously, it is likely that all of them cannot be placed
on their corresponding best layout, leading to degradation in the quality of the
outcome of the computation. Furthermore, if two circuits are computed on neigh-
bouring qubits, then there is a possibility of crosstalk affecting the quality of the
computation for both of them.

In [DT+19], the authors take a primarily empirical approach to solving reliabil-
ity challenges in multi-programming quantum computers. They rely on experi-
mental observations and runtime adaptations through three solutions: Fair and
Reliable Partitioning, Delayed Instruction Scheduling (DIS), and Adaptive Multi-
Programming (AMP). While achieving a 2x improvement on a 16-qubit system, the
approach has several limitations. The partitioning based on noise can lead to sets
of qubits in one partition resulting in higher SWAP counts, whereas we avoid such
partitioning to ensure optimal SWAP counts for each circuit. Their DIS algorithm,
designed for running programs of varying lengths, can be simplified using ALAP
(As Late As Possible) scheduling to reduce transpilation overhead. Their AMP
technique calculates reliability using entropy functions derived from shared (S)
and individual (I) shots, but this undermines the efficiency of multi-programming
by requiring circuits to run twice. In contrast, we utilize layout scores to select
and combine circuits that fit the top k% of the layouts. Additionally, the paper
does not address the concept of batch execution, which we propose to handle dy-
namic scenarios while preventing job starvation. Furthermore, their work does not
account for critical factors such as qubit quality, coupling map, and layout scores,
and it lacks formal mathematical proofs or theoretical foundations.

Minimizing the degradation in quality due to worse layout selection and crosstalk,
while maximizing the throughput of the hardware lead to conflicting objectives.
In this paper, we study this optimization problem to find the optimal intra-device
scheduling of N > 1 jobs on a m-qubit hardware with little to no compromise
on the quality of computation. Given a hardware H, and a set C of N circuits
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{C1, C2, ..., CN}, such that the number of qubits of each circuit is ≤ the number
of qubits in the hardware, we partition C into batches B = {B1, B2, ..., Bk} such
that each batch consists of circuits which can be executed simultaneously. There-
fore, for each i, we must have 1 ≤ |Bi| ≤ N where |Bi| indicates the number of
circuits in that batch and the total number of qubits in each Bi is no greater than
m. Maximizing intra-device parallelization is thus equivalent to minimizing the
number of batches.

4.2 Formulation of intra-device scheduling as an

optimization problem

Consider a hardware H with m qubits and a set C = {C1, C2, ..., CN} of quantum
circuits. The goal of this study is to place batches of k ≤ N circuits simultaneously
on the hardware such that (i) the total number of qubits for each batch of circuits
is no greater than m, (ii) there is no overlap of qubits between different circuits,
and (iii) the noise profile of the layout associated with each circuit is within ϵ of
the optimal layout for that circuit. In other words, if s1 be the noise profile of the
optimal layout for a circuit, then for that circuit we consider only those layouts l
for which sl − s1 < ϵ, for a pre-specified ϵ.

Note that the constraint of no overlap between qubits may seem trivial at first.
However, it is to be noted that if two neighbouring qubits are associated with
different circuits, then there is a possibility of crosstalk affecting the quality of
outcome of both the circuits. Therefore, a buffer distance b, i.e., a distance of b,
must be maintained between any two qubits associated with two different circuits.
In Fig. 4.2, we show examples of two circuits placed with b = 0 and b = 2 respec-
tively. The former has a significantly higher possibility of crosstalk affecting the
quality of outcome [MB+19].

Let l1 and l2 be two layouts for two circuits C1 and C2. Let the distance between
two qubits qa ∈ l1 and qb ∈ l2 on the same hardware be denoted by d(qa, qb).
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Figure 4.2: Placement of a 15-qubit and a 8-qubit circuit simultaneously on a
27-qubit hardware with buffer distance (a) b = 0, and (b) b = 2. The former has
a significantly higher probability of crosstalk affecting the quality of the computa-
tion. The blue qubits are the unused ones.

Henceforth, for a given buffer distance b we say that l1 and l2 have b-overlap if
∃qa ∈ l1 and ∃qb ∈ l2 such that d(qa, qb) < b, else if ∀ qa ∈ l1 and qb ∈ l2,
min d(qa, qb) ≥ b, then l1 and l2 are b-non-overlapping. In the next subsection, we
propose an efficient algorithm to determine the overlap between two given layouts.

4.2.1 Finding the overlap between two layouts

Given a hardware coupling map, and two layouts l1 and l2, the trivial method to
check for overlaps is to calculate d(qa, qb), ∀ qa ∈ l1 and qb ∈ l2. However, if the
number of qubits in l1 and l2 are n1 and n2 respectively, then the time complexity
of this method isO(n1.n2). But checking for overlaps only between boundary qubits
of the two layouts can be done faster.

A qubit in a layout l is said to be a boundary qubit if it is adjacent to at least
one qubit q /∈ l. For example, in Fig. 4.2 (b), qubits 11, 12, 21 and 19 are the
boundary qubits.

Lemma 4.1

The overlap between the two layouts l1 and l2 can be determined by calcu-
lating the distance between the boundary qubits of these two layouts only.
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Proof. By definition, if b ∈ l is a boundary qubit in layout l, then ∃ q /∈ l such that
q ∈ neighbour(b), and the overlap between two layouts is the minimum distance
between any two qubits from the two layouts. Let Bl ⊆ l be the set of all boundary
qubits in layout l. Therefore, a shortest path between some ql ∈ l, but /∈ Bl and
q /∈ l must contain some b ∈ Bl. Hence, d(b, q) < d(ql, q). Therefore, the overlap
between two layouts can be determined by calculating the distance between the
boundary qubits of these two layouts only.

In Fig. 4.2 (b), there are 13 and 8 qubits on the two layouts. Therefore, the naive
method would have required 13 · 8 = 104 comparisons to determine the overlap.
However, since there are only 2 boundary qubits for each layout, according to
Lemma 4.1 only 4 comparisons are sufficient.

Next we provide the algorithms for determining the boundary qubits of a layout,
and calculating the overlap between two given layouts.

Algorithm 1 Determine boundary qubits of a layout
Input: Layout Li and the coupling map of the hardware
Output: A list of the boundary qubits of Li
1: boundary ← []
2: for each qubit q ∈ Li do
3: Determine the neighbours Nb of q from the coupling map
4: for each qubit q′ ∈ Nb do
5: if q′ /∈ Li then
6: Add q′ to boundary
7: end if
8: end for
9: end for

10: return boundary

Lemma 4.2

Algorithm 1 finds the boundary qubits of a layout l with nl qubits in O(nl).

Proof. Algorithm 1 iterates through each qubit q ∈ l exactly once to determine
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whether q ∈ Bl where Bl denotes the set of boundary qubits of layout l. For this,
the algorithm checks whether nq ∈ l ∀ nq ∈ neighbour(q). The time required for
this is O(dq) where dq denotes the degree of q. Majority of the current quantum
devices conform to a planar graph architecture. Therefore, the degree of the qubits
are bounded. Since dq does not depend on the length of the layout, the overall
time requirement to determine the boundary qubits of l is O(|l|).

Algorithm 2 Check b-overlap between two layouts
Input: Layouts li, lj, coupling map M of the hardware, desired buffer distance b
Output: True if overlap, False otherwise
1: overlap← False
2: if li ∩0 lj ̸= ϕ then
3: overlap← True
4: return overlap
5: end if
6: boundary1 ← find_boundary(li, M)
7: boundary2 ← find_boundary(lj, M)
8: for each qubit qi in boundary1 do
9: for each qubit qj in boundary2 do

10: d← distance(qi, qj)
11: if d ≤ b then
12: overlap← True
13: break
14: end if
15: end for
16: end for
17: return overlap

Lemma 4.3

Given two layouts li and lj, with ni and nj qubits of which ki and
kj denote respectively the number of boundary qubits of the two lay-
outs, then Algorithm 2 finds the overlap between the two layouts in time
O(max{ni, nj}+ ki · kj).

Proof. The algorithm 2 first checks for 0-overlap between li and lj. This overlap
can be determined inO(min{|li|, |lj|}). When the two qubits are 0-overlapping, the
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algorithm determines the boundary qubits for both the layouts in O(max{|li|, |lj|})
if done in parallel. Let Bi ⊆ li and Bj ⊆ lj denote the set of boundary qubits of
li and lj respectively, where |Bi| = ki and |Bj| = kj. Now, the algorithm checks
for the distance between every bi ∈ Bi and bj ∈ Bj to determine the buffer b in
O(ki × kj).

Thus, the overall time complexity of the algorithm is O(max{|li|, |lj|} + ki × kj),
where max{|li|, |lj|} accounts for the time complexity of finding the boundaries of
li and lj, followed by the time ki × kj required for the pairwise distance checking
between boundary qubits of the two layouts.

Given a circuit i and a hardware H, let L be the list of all isomorphic layouts
obtained from mapomatic. Let l ∈ L be the best layout with the lowest mapomatic
score. We define a subset Lϵ ⊆ L such that for each l′ ∈ Lϵ, Qil′ −Qil ≤ ϵ. Recall
that by definition, the lower the mapomatic score, the better is the layout.

The problem at hand, therefore, is to schedule a set of circuits C to a set of layouts
Lϵ for each circuit such that no two layouts corresponding to two different circuits
are b-overlapping. The theoretical formulation and the solution of this problem
does not depend on a specific value of ϵ. Therefore, for the rest of the paper,
we exclude any explicit mention of ϵ. However, whenever a list of layouts L is
mentioned, it implies Lϵ for a pre-specified ϵ. In Sec. 4.4 we shall discuss the
choice of ϵ for our experimental results.

4.2.2 ILP Formulation for our scheduling problem

Let us formulate an integer linear program (ILP) for the noise-aware intra device
scheduling (NIDS). Consider a list of circuits C = {C1, C2, ..., CN}, and a list of
hardware layouts Lall = L1 ∪ L2 ∪ ... ∪ LN , where Li denote the layouts feasible
for circuit Ci. For example, in Fig. 4.2 (b), the two layouts differ in the number of
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qubits, therefore the layout for one circuit is not feasible for the other. However,
there may also be cases, where the two circuits i and j have equal number of
qubits, and therefore the same layout may belong to both Li and Lj. For the rest
of this paper, we shall remove the index, and simply use L to denote the list of
layouts for any circuit i. The index is same as that for the circuit in the context.

Furthermore, it may not be possible to accommodate all the circuits simultaneously
on the hardware. This may be because there are not sufficient quality layouts, or
the total number of qubits required exceeds the number of physical qubits in the
hardware. Therefore, the goal is to accommodate the largest subset of circuits
simultaneously, and repeat this process of intra-device scheduling to schedule all
the circuits in k batches B1, B2, ..., Bk, where each batch is a set of circuits which
can be executed simultaneously, and k is expected to be significantly smaller than
N . Note that this method can accommodate for instances where the circuits are
added to the job queue dynamically.

Next we discuss the variables, constraints and the objective function of the ILP
for scheduling the largest subset of circuits simultaneously on a hardware.

1. Variables

(a) Indicator variables : We associate xij for each circuit i ∈ C and layout
j ∈ L such that

xij =

1 if circuit Ci is scheduled to layout j

0 otherwise.

(b) Score variables : A score variable qij is associated with each xij which
is the mapomatic score when circuit Ci is placed on layout j.

2. Constraints

(a) Since xij are indicator variables, we require that ∀ i, j

xij ∈ {0, 1} (4.1)
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(b) The second requirement is that every circuit Ci is assigned to at most
one layout. Note that if a circuit is not scheduled in a particular batch,
then it is not assigned any layout, and hence ∀ j, xij = 0. Formally,
this constraint can be represented as∑

j∈L

xij ≤ 1 (4.2)

Note that this constraint should hold for all circuits Ci ∈ C, so there
are |C| such constraints.

(c) The third requirement is that no circuit is placed on a layout which
has overlap with a previously mapped circuit, i.e., all circuits must be
mapped to non-intersecting layouts.

xij +
∑
k ̸=i∈C

∑
j∩bl ̸=ϕ,j,l∈L

xkl ≤ 1 (4.3)

This constraint implies that two circuits i and k should not be placed
on b-overlapping layouts. As before, this constraint should hold for all
circuits i ∈ C, and therefore, there are |C| such constraints.

3. Objective Function: The objective of this optimization problem is to max-
imize the overall fidelity, which translates to minimizing the overall score
Q along with maimising resource utilisation on the given hardware device.
Therefore, the objective function is given by:

Minimize
∑
i∈C,

∑
j∈L

qijAixij −
∑
i∈C,

∑
j∈L

xij (4.4)

where Ai, 0 < Ai ≤ 1 denotes the area of circuit i normalized over all
available circuits. The area of a circuit is defined as the product of the
number of qubits and its depth.

Note that the second term ensures that the objective function can have
negative values; otherwise the least attainable value would have been 0,
which could be attained if no circuit is placed at all. Inclusion of this term
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ensures that circuits with higher area (i.e., more amenable to noise) are
placed in layouts with lower mapomatic score to ensure quality of outcome.

The solution to this ILP shall provide the largest subset/batch of circuits B ⊆ C

which can be executed simultaneously on a given hardware. When B ⊂ C, the
same ILP can be solved for C \ B repetitively to schedule all the circuits into
batches. Let B1, B2, ..., Bk denote the batches, where it is expected that k < N .
This reduces the number of times the quantum hardware is accessed, and in its
turn increases the throughput and the hardware utilization.

Note that in current cloud providers, jobs enter the queue dynamically. Therefore,
the set of all circuits C may not be static and known a priori. However, this
can be easily accounted for as follows. At a particular timestamp T , let the list
of available circuits be C, of which C ′ has been allocated simultaneously to the
hardware. Let C̄ denote C \C ′. While these circuits in C ′ are being executed, let
CT be the set of new circuits which are added to the queue. IN the next iteration
the ILP is solved on C̄ ∪ CT to find the largest subset of circuits to be sent for
simultaneous execution at the next timestep.

Obtaining the outcomes of the individual circuits

Let B = {c1, c2, ..., cr} be the batch of circuits executed simultaneously on the
hardware. If the number of qubits on circuit ci be ni, then effectively the hardware
computes a circuit of n =

∑
1≤i≤r ni qubits. The outcome of this execution will be

a probability distribution over n qubits. The outcome of the circuit ci can now be
obtained by marginalizing over the rest of the n− ni qubits.

For example, in Fig. 4.2 (b), the hardware effectively executes a circuit with (13+

8) = 21 qubits. The outcome will be a probability distribution encompassing all
the 21 qubits. The distribution of the first circuit (in purple) can now be obtained
by marginalizing over the remaining 8 (in orange) qubits, and vice versa. Note
that although the hardware executes a single circuit, it is essentially a combination
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of multiple disjoint circuits with no entanglement flowing from one to the other.
Therefore, such a marginalization does not lead to any loss of information.

Noise-aware intra device scheduling is NP-Hard

Here we show that intra-device scheduling of N circuits is essentially a bin packing
problem. The N circuits are the items. The bins are the batches B1, B2, ..., Bk and
the capacity of each batch is the total number of qubits on the hardware. Thus
the objective of this problem is to minimize the number of batches, each having
a capacity equal to the number of qubits on the hardware, to pack N quantum
circuits in bins of equal capacity. Since the intra-device scheduling is equivalent
to a bin packing problem, it is NP-Hard.

Note that our problem at hand imposes additional constraints to this. It requires
that the circuits (i.e., the items) placed in each batch (i.e., each bin) do not have
b-overlapping layouts. This constraint implies that the layouts of two circuits with
b-overlap cannot be placed in the same batch even if the capacity supports it. The
bin-packing problem is reducible to this problem in polynomial time, therefore our
problem is NP-Hard. Further, the problem with the layout buffer constraint is at
least as hard as the bin packing problem.

The ILP formulation of this NP-Hard problem being computationally expensive
and not scalable, we propose in the next section a polynomial time graph-based
greedy heuristic algorithm for noise-aware intra device scheduling.

4.3 Polynomial time heuristic algorithm

In this section we present a polynomial time heuristic algorithm for solving the
noise-aware intra device scheduling problem described in the previous section.
First, we create a compatibility graph for the circuits and their layouts: each
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vertex denotes a distinct circuit and its corresponding layout, and an edge between
two vertices denotes that the two circuits are distinct, with the two layouts not b-
overlapping. The edges are weighted with a function of the mapomatic score of the
two associated vertices. We finally propose a polynomial time heuristic algorithm
to determine a maximal clique from this compatibility graph, which denotes the
set of circuits that can be executed simultaneously. We shall discuss each step of
this approach in detail.

4.3.1 Generation of the compatibility graph

The generation of the compatibility graph G is given in Algorithm 3.

Lemma 4.4

Algorithm 3 constructs the compatibility graph for given set C ofN quantum
circuits and the lists of their respective layouts in O((N.M)2 × n) where M
denotes the overall number of layouts, and n is the length of the largest
layout, or, in other words, the number of qubits in the largest circuit.

Proof. In order to construct the compatibility graph, the algorithm first generates
the set of vertices, each of which is a (circuit, layout) pair, in O(N.M) by iterating
through each layout for each circuit. Next, for each pair of vertices, it calculates
overlap between the two associated layouts l1 and lj in time O(max{|li|, |lj|}+ki×
kj) as per Algorithm 2 to generate the compatible edges. The time to calculate
overlap is dominated by the length of the largest layout, say n. Since, there are

O(

(
N.M

2

)
) possible pairs of vertices, the overall time requirement for generating

the set of edges is O(

(
N.M

2

)
× n). Finally, subtracting the weight of each edge

from the maximum weight requires O(

(
N.M

2

)
). Hence, the overall time required
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Algorithm 3 Generate compatibility graph
Input: A set C of circuits ; for each i ∈ C a list Li of isomorphic layouts and the

normalized circuit area Ai; for each i ∈ C and j ∈ Li a mapomatic score qij;
a buffer distance b

Output: Compatibility graph G
1: G← empty graph.
2: for each i ∈ C do
3: for each j ∈ Li do
4: vertex v = (i, j)
5: Add vertex v to G
6: end for
7: end for
8: for each pair of vertices (i, j) and (k, l) in G do
9: if i == k then

10: Continue
11: end if
12: overlap ← overlap between j and l calculated using Algorithm 2
13: if overlap ≥ b then
14: edge e = ((i, j), (k, l))
15: weight of edge w(e) = qij.Ai + qkl.Ak
16: Add weighted edge {e, w(e)} to G
17: end if
18: end for
19: max_weight ← max{w(e) for edge e ∈ G}
20: for each edge e ∈ G do
21: w(e) = max_weight− w(e)
22: end for
23: return G

to generate the compatibility graph is O(N.M)+O(

(
N.M

2

)
×n)+O(

(
N.M

2

)
) =

O((N.M)2 × n).

Scheduling the optimal number of circuits simultaneously, thus, boils down to find-
ing the maximal clique from this graph. Since each vertex in a clique is connected
to every other vertex, each of these circuits can be executed simultaneously. Each
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vertex layout is provided a weight which is the product of the mapomatic score
for that layout and the normalized circuit area of the circuit. Every edge is associ-
ated with a weight which is the sum of the two weights of the associated vertices.
However, recall that the lower the mapomatic score, the better (less noisy) is the
layout. To convert this to a maximization problem, we find the largest edge weight,
and subtract each edge weight from it. Thus, the edges corresponding to higher
mapomatic score, i.e., more noisy layouts, now have lower weights, and vice versa.
Hence, selecting the maximal clique from this graph ensures selection of edges
corresponding to lower mapomatic scores.

In Fig. 4.3 (a) we take three example circuits, and show the construction of the
compatibility graph in (b) and (c) of the same figure. We have selected the circuits
to be of the same number of qubits and depth for this example, making Ai = 1

for all of them. In particular, Fig. 4.3 (b) shows the scenario where each circuit
has two compatible isomorphic layouts, and their mapomatic score. Usually, there
will be many more such layouts for each circuit, but for this example we stick to
two layouts for brevity. The compatibility graph is created from this information
where each vertex i, j corresponds to the layout j for vertex i. From Algorithm 3,
no two vertices corresponding to the same vertex will have associated edge, since
the same circuit is not to be placed twice. Therefore, no edge exists between any
vertex with the same circuit index.

Two vertices are connected by an edge only if the layouts are not b-overlapping.
For this example figure, we have selected b = 1. Thus, there is an edge between,
say vertices (00) and (11), but not between (00) and (10) since they have a common
qubit (39) in their layouts. The mapomatic scores for, say vertices (00) and (11),
are 0.0932 and 0.0833. So, initially we assign the weight of the edge to be the sum
of these two mapomatic scores, i.e., 0.1765. After assigning weights to every edge
similarly, we see the largest weight 0.1805 is associated with the edge corresponding
to vertices (01) and (10). Therefore, we subtract all the edge weights from this
value, thus yielding the final weight of the edge corresponding to vertices (00) and
(11) to be 0.004. The other edges and their weights are similarly calculated.



87 CHAPTER 4. RESOURCE-AWARE SCHEDULING

A maximum clique in this compatibility graph provides the optimal noise-aware
intra device scheduling. However, finding a maximum clique in any arbitrary graph
is NP-Hard as well. In the following subsection we propose a greedy approach to
find a maximal clique in the compatibility graph for our scheduling problem.

4.3.2 Greedy algorithm to find a maximal clique in the com-

patibility graph

Algorithm 4 first determines the connected components of the compatibility graph.
For each connected component it finds a maximal clique using a greedy method. It
first selects the edge with the largest weight, and then keeps adding edges, sorted in
descending order of weight, as long as the vertices are connected to all the vertices
already selected (i.e., it is a clique). This ensures that the layouts selected are
compatible with all other layouts, and all the selected circuits can be scheduled
simultaneously on the hardware. Note that this method generates one maximal
clique for each connected component. Finally, the maximal clique with the largest
weight among the ones found for each of the connected components is selected as
the solution to the noise-aware intra-device scheduling.

Lemma 4.5

Algorithm 4 finds a maximal clique in the compatibility graph in O(|V | ·
|E|+ |E| log |E|)

Proof. Let G = (V,E) be the compatibility graph. First, the algorithm identifies
the connected components of the graph. This can be achieved using a Breadth-
First-Search in O(|V | + |E|) time. Let g = (Vg, Eg) denote a connected com-
ponent. For each connected component, the algorithm first sorts the edges in
O(|Eg| log |Eg|) time. Next, for each edge, the algorithm checks whether the two
associated vertices are connected to all the vertices already present in the con-
structed clique. For each edge, this can be performed in O(Vg). Therefore, per-
forming this check for all the edges requires O(|Vg| · |Eg|) time.
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This exercise is repeated for all the connected components. Therefore, the overall
time requires is

∑
gO(|Vg| · |Eg|) + O(|Eg| log |Eg|). Now from Lemma 4.6 and

Lemma 4.7:
∑

gO(|Vg| · |Eg|) + O(|Eg| log |Eg|) = O(|V | · |E|) + O(|E| log |E|).
Finally, the weight of the clique for each connected component can be calculated
in O(|Eg|), thus requiring a total of

∑
gO(|Eg|) = O(|E|) for all the components.

Hence the time complexity of Algorithm 3 is

O(|V |+ |E|) + O(|V | · |E|) + O(|E| log |E|) + O(|E|) = O(|V | · |E|+ |E| log |E|)

Lemma 4.6

M ≥ M1 logM1 +M2 logM2 + ....

Proof.

M =
∑
g

Mg

M logM =
∑
g

Mg log
∑
g

Mg

= M1 log
∑
g

Mg +M2

∑
g

Mg + ...

≥ M1 logM1 +M2 logM2 + ....

where the final inequality follows sinceMg ≥ 0 ∀ g and logarithm is a monotonically
increasing function.
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Lemma 4.7

N ·M ≤
∑
g

Mg ·Ng

Proof.

N ·M = (
∑
g

Mg) · (
∑
g

Ng)

=
∑
g

Mg ·Ng +
∑
g ̸=h

Mg ·Nh

≤
∑
g

Mg ·Ng

where the final inequality follows since Mg ≥ 0 and Ng ≥ 0 ∀ g.

In the next section, we present experimental results of our method to show the
improvement in throughput obtained and the quality of the outcome.

4.4 Experimental results

For our experiments with our proposed greedy method, we have considered 4
benchmarks circuits, namely Real Amplitude, Trotterized Clustered Unitary, QAOA,
and Ripple carry adder. Although our formulation (Sections 4.2 and 4.3) do not
impose any constraints on the type of circuits that can be scheduled together, we
report here for only the circuits from the same family to study intra-device schedul-
ing. A more rigorous experiment, with circuits from different families scheduled
together, will be reported in another article separately.

For each circuit, we created its mirrored version. For a given circuit with unitary
U , a mirrored circuit of it can be obtained by appending U † to the original circuit.
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This simple modification implies that the ideal outcome of the circuit is always
|0⟩⊗n, n being the number of qubits in the circuit. The advantage of such a
circuit is that the ideal outcome is known without any simulation. However, the
disadvantage is that the depth of such a circuit is twice that of the original circuit,
and is hence more amenable to noise. In Qiskit [AA+19], it is necessary to put a
barrier between U and U † in order to avoid simplification of the circuit to identity.
An assumption for this work is that all the circuits that are being batched require
the same number of shots.

We first provide the rationale behind selecting the ϵ for layouts in our experi-
ment (refer to Sec. 4.2), and then show the fidelity obtained and the increase in
throughput for a 27-qubit fake backend, and a 127-qubit IBM Quantum device.

4.4.1 Selection of ϵ for the layouts

It is expected that there is overlap between the layouts returned by mapomatic.
We have taken only the layouts having a score which is at least 50% of the highest
score and further we check for overlap among them and other conditions. If this
percentage is increased, we can accommodate more circuits with less fidelity.

Table 1 gives a comparison of the values of fidelity for taking the best score, the
worst score and the last of top 50% in the noisy simulator of IBMQ Kolkata for
5-qubit circuits.

Table 4.1: Comparison of values of fidelity for the best score, the worst score and
the last of the top 50% in noisy simulator of IBMQ Kolkata for 5-qubit circuits

Benchmark 2Q Depth Fidelity
Circuit Best Worst Last of the top 50%

Real Amplitude 8 0.944 0.805 0.925
QAOA 8 0.879 0.638 0.842

Trotterized 18 0.749 0.29 0.638
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4.4.2 Fidelity and hardware utilization in intra-device schedul-

ing

In Table 2, we consider the Real Amplitude circuits of different qubits to be run
into the noisy simulator or IBMQ Kolkata (27-qubit) with and without using the
intra-device scheduling. A total of 7 circuits of each type was chosen for the
experiments. Here 2 circuits are placed in the hardware simultaneously exhibiting
a better throughput and resource utilization. We show that the values of fidelity
where we are using intra device scheduling is almost reaching the fidelity if the
circuits are one to one mapped in the best available hardware. In our experiments
we have used buffer b=1, i.e., between two circuit mapped there should be a gap
of at least 1 qubit. This is to minimize the cross talk where it is maximum if two
circuits are placed without a single qubit barrier [BM+23].

Table 4.2: Fidelity for different sized Real Amplitude circuits with and without
using our intra-device scheduling to be run on Noisy IBMQ simulator with the
noise profile and coupling map of 27-qubit IBMQ Kolkata

Circuit size Circuit Count FidelityInt FidelityNoInt
# qubits

3 0.9542837452 0.959822345
5 7 0.9244571429 0.959822345
7 0.8468928571 0.862323176
10 0.6612723723 0.675571234

In Fig. 4.4, we consider the benchmark circuits QAOA, Trotterized, Real Ampli-
tude having different number of qubits to be run on (a) Noisy IBMQ simulator
with the noise profile and coupling map of 27-qubit IBMQ Kolkata , and (b)
127-qubit IBMQ Brisbane hardware. With intra-device scheduling, 3 circuits are
placed in the hardware to be executed simultaneously and thereby exhibiting a
better throughput and resource utilization. We show that the values of fidelity
where we are using intra-device scheduling is almost reaching the fidelity if the
circuits are mapped one by one in the best available hardware. We have also given
the mean and standard deviation for each of the points, where Mean is the average
value of the dataset, indicating the central point and Standard Deviation is the
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measure of the spread or dispersion of the dataset around the mean.

Table 4.3: Hardware utilization in intra device scheduling
Circuit size Hardware size m # circuits placed simultaneously Gain w.r.t. time

7 27 2 2x
10 27 2 2x
7 127 3 3x
10 127 3 3x

If we have included more circuits in the hardware simultaneously of course the
hardware utilization would be better but we constrained our solution with the top
50% score of the best score from the hardware layout. Note thatL: Number of swap
gates for each of these layout will be equal because the mapomatic solution uses
graph isomorphism to cimpute the possible layouts. The time and utilizatation
can be improved with the expense of fidelity.

4.5 Conclusion

In this paper, we addressed the critical challenge of optimizing quantum circuit
scheduling to enhance the throughput and efficiency of quantum computing hard-
ware. By drawing analogies to the classical bin packing problem, we demonstrated
the NP-Hard nature of our problem, which involves placing multiple quantum
circuits onto quantum processing units while considering the inherent noise and
limited qubit connectivity. Our proposed solution, using integer linear program-
ming or the greedy heuristic based solution on compatibility graphs and maximal
cliques, effectively balances the trade-off between noise reduction and throughput
optimization. The experimental results showed significant improvements in time
utilization, achieving 2x and 3x better efficiency for 27-qubit and 127-qubit hard-
ware, respectively. These findings highlight the potential of intra-device scheduling
to maximize the performance of NISQ-era quantum computers, paving the way for
more reliable and scalable quantum computing solutions in the future.

It is intuitive that if we increase the number of layouts allowed for further pro-
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cessing from 50% of top scores, then the utilization will be better where as the
fidelity can be worse. This trade-off between number of layout vs fidelity will be
studied experimentally as a future work. Moreover how the buffer distance affects
the fidelity is also a work which is left for future studies.

Recent advancements in hardware, such as tunable coupler designs for supercon-
ducting qubits [SZU+21] employed by Google and IBM, have significantly mit-
igated the impact of hardware crosstalk. This development allows for reduced
buffer distances and enables tighter packing of quantum circuits, potentially fur-
ther enhancing hardware utilization. Future work could explore adapting schedul-
ing algorithms to leverage these improvements in hardware design for even greater
efficiency.

As we transition from the NISQ era to the fault-tolerant era, our attention shifts in
the next chapter to innovative machine learning approaches for decoding quantum
error correction codes.
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Figure 4.3: The entire workflow of our heuristic algorithm: (a) schematic diagrams
of three circuits that are to be placed in the hardware; (b) two possible layouts
for each of the three circuits and their corresponding mapomatic scores; (c) the
compatibility graph with edge weights, (d) the connected components of the graph
and (e) greedy selection of edges in each of the components.
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Algorithm 4 Finding maximal clique in a compatibility graph
Input: compatibility graph G = (V,E) where E is the weighted edge list
Output: maximal clique in G
1: GC ← the set of all connected components of G
2: max_clique ← ϕ
3: max_clique_weight = 0
4: for each g ∈ GC do
5: Vg ⊆ V ← set of vertices in g, Eg ⊆ E ← set of edges in g
6: selected_circuits ← ϕ, selected_layouts ← ϕ, selected_edges ← ϕ
7: Egsorted ← sorted Eg in the descending order of edge weight
8: for each e = (u, v) ∈ Egsorted do
9: lu, lv ← layouts associated with u and v respectively

10: cu, cv ← circuits associated with u and v respectively
11: if selected_edges is ϕ then
12: add e to selected_edges, cu and cv to selected_circuits lu and lv to

selected_layouts, e to selected_edges
13: else if cu ∈ selected_circuits and cv ∈ selected_circuits then
14: Continue
15: else if cu /∈ selected_circuits and cv /∈ selected_circuits then
16: is_connected = True
17: for all c ∈ selected_circuits do
18: if (u, c) /∈ Eg or (v, c) /∈ Eg then
19: is_connected = False
20: break
21: end if
22: end for
23: if is_connected then
24: add e to selected_edges, cu and cv to selected_circuits lu and lv to

selected_layouts, e to selected_edges
25: end if
26: else if cu /∈ selected_circuits and lu ∈ selected_layouts then
27: is_connected = True
28: for all c ∈ selected_circuits do
29: if (u, c) /∈ Eg then
30: is_connected = False
31: break
32: end if
33: end for
34: if is_connected then
35: add e to selected_edges, cu and cv to selected_circuits lu and lv to

selected_layouts, e to selected_edges
36: end if
37: else if cv /∈ selected_circuits and lv ∈ selected_layouts then
38: is_connected = True
39: for all c ∈ selected_circuits do
40: if (v, c) /∈ Eg then
41: is_connected = False
42: break
43: end if
44: end for
45: if is_connected then
46: add e to selected_edges, cu and cv to selected_circuits lu and lv to

selected_layouts, e to selected_edges
47: end if
48: end if
49: end for
50: clique ← construct clique from selected_edges and selected_circuits
51: weight ←

∑
e∈selected_edgesw(e)

52: if weight > max_clique_weight then
53: max_clique_weight = weights, max_clique = clique
54: end if
55: end for
56: return max_clique, max_clique_weight
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Figure 4.4: Fidelity (along with the mean and standard deviation) for benchmark
circuits (QAOA, Trotterized, Real Amplitude) with and without using our intra-
device scheduling executed in (a) Noisy IBMQ simulator with the noise profile and
coupling map of 27-qubit IBMQ KOlkata, (b) 127-qubit IBMQ Brisbane hardware.
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5.1 Introduction

Quantum states are highly susceptible to errors due to interactions with the envi-
ronment, causing unwanted rotations in their Hilbert space vectors. Shor demon-
strated that any unitary quantum error can be decomposed into Pauli matrices (I,
X, Y , Z) [Sho95]. Thus, a quantum error-correcting code (QECC) that corrects
Pauli errors can handle any unitary error. Notable QECCs include the 9-qubit,
7-qubit, and the optimal 5-qubit code [Sho95, Ste96, LMPZ96].

Traditional QECCs often require operations between non-adjacent qubits, which
are slow and error-prone. The surface code addresses this by organizing qubits in a
2D grid, allowing operations only between adjacent qubits [BK98]. The efficiency
of these protocols was demonstrated, and various decoding algorithms have been
developed to enhance their performance [DKLP02, FSG09, WFH11].

QECCs encode multiple physical qubits into fewer logical qubits, making them
more resistant to noise. Decoders detect errors in logical qubits and apply correc-
tions. A distance d QECC can correct up to ⌊d

2
⌋ errors, but beyond this, logical

errors may occur due to environmental interactions or faulty decoding. The efficacy
of a decoder is measured by its pseudo-threshold and threshold values, indicating
its performance relative to physical error rates [FWH12].

Decoding time is crucial, as qubits are decoded multiple times during computa-
tion. The widely-used Blossom Decoder for surface codes has a worst case time
complexity of O(N3 logN) where N is the number of nodes in the detector graph.
Machine learning (ML) offers a faster alternative, with linear time complexity,
as demonstrated by recent studies [VBA19, CR18, VCB17, S+18]. ML-based de-
coders, such as deep neural networks, show potential for improved performance
and speed over traditional methods.
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ML decoders can address errors due to faulty decoding by using two-level decod-
ing: a traditional low-level decoder followed by a high-level ML decoder [VCB17,
VBA19]. However, questions remain about their performance under asymmetric
noise and the effectiveness of more sophisticated ML models [IM07].

This chapter aims to explore the use of ML-based low and high-level decoders
for both symmetric and asymmetric noise models, focusing on the mapping of
surface code decoding to ML classification and evaluating the impact of ML model
sophistication on decoding performance.

Machine learning (ML) is a branch of artificial intelligence where a machine learns
from data without being explicitly programmed. Depending on the type of training
data, ML algorithms can be supervised, unsupervised, or semi-supervised. ML
has numerous applications, including soil properties prediction [KG22], human
pose estimation [SB22], object recognition [JW22], video tracking [PR20], and
predicting the efficacy of online sales [SM21]. Here, we employ ML to decode error
syndromes for quantum error correction.

Classical algorithms like Minimum Weight Perfect Matching (MWPM) may per-
form poorly in some cases, as they do not consider error probabilities. ML decoders
learn these probabilities during training, improving their accuracy. ML techniques
have shown promise in reducing decoding time and improving performance, even
for complex scenarios.

Since a decoder can introduce logical errors, two-stage decoding with low-level
traditional decoders and high-level ML decoders can improve accuracy. This ap-
proach allows for better handling of logical errors that may arise during physical
error correction.

Overall, ML decoders are expected to outperform traditional methods in both
performance and speed, making them a valuable tool for quantum error correction.
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5.2 Design methodology of our ML based decoder

Artificial neural networks (ANN) are made to emulate the way human brains learn,
and are one of the most widely used tools in ML. Neural networks consist of one
input layer, one output layer, and one or more hidden layers consisting of units
that transform the input into intermediate values from which the output layer can
find patterns that are too complex for a human programmer to teach the machine.
The time complexity of training a neural network with N inputs, M outputs and
L hidden layers is O(N ·M ·L). In this work we are using neural networks as both
low-level and high-level decoder for distance 3, 5, and 7 surface code.

In order to apply ML techniques to surface code decoding, we first map the decod-
ing problem to the classification problem as follows. Given a set of data points,
a classification algorithm predicts the class label of each data point. These tech-
niques are purely classical. Next, we describe in detail the formulation of a decoder
for surface code as a classification problem.

5.2.1 Mapping surface code onto a square lattice

For ease of implementation, we have mapped the surface code to a square lattice
(refer Fig. 5.1) in this work. This has been achieved by padding a few dummy
nodes (labelled as 0D in the figure). A distance d surface code is converted into
a (d+1) × (d+1) square lattice which has d2 − 1 stabilizers, when encoding a
single logical qubit. Therefore, 2(d+1) dummy nodes are required for this square
lattice. The dummy nodes are basically don’t care nodes, and their value is always
0 irrespective of the error in the surface code. The syndrome changes the values
of the stabilizers only.
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Figure 5.1: SC17 to syndrome generation

5.2.2 Error injection and syndrome extraction

Once the distance d surface code is transformed to a (d+1) × (d+1) square lattice,
the next step is to extract the syndrome for errors. First, we create a training
dataset, where in each data we randomly generate errors on each physical qubit.
If pphys is the probability of error on a physical qubit, the total probability of
error after the 8 steps of surface code cycle (Fig. 2.7) is 1 - (1-pphys)8. We have
trained the networks with pphys ranging from 0.0001 to 0.25. One can argue that
0.25 is an unreasonably high error probability. However, we have ranged the error
probability that far to show an interesting observation regarding the ML decoder
performance (Sec 4).

For generating the training data we have considered bit flip errors, symmetric and
asymmetric depolarizing noise models. We have not separately considered phase
flip errors since they are similar to bit flips and have a rotational symmetry (i.e.,
the logical errors of bit flip and phase flip model are equivalent up to a rotation
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by π
2
).

From the training data (which may or may not contain errors), we generate the
syndrome (measured by ancilla qubits of the surface code) (Fig. 5.1). The syn-
drome, in our implementation, contains both the ancilla and the dummy nodes.
However, the dummy nodes are always 0, whereas the values of the ancilla changes
with different errors. Henceforth, in terms of implementation only, syndrome for
a distance d surface code will imply (d+1)2 values including ancilla and dummy
nodes. The final training data contains the syndrome, and its corresponding label
is the true set of errors that have occurred in the system. Note that this method
can lead to multiple labels having the same syndrome. This agrees with the fact
that surface code does not have one-to-one mapping from error to syndrome.

Ideally, the dataset to achieve the best decoding performance should include all
possible error syndromes. But as the code distance increases, the state space also
increases exponentially. Therefore, we can at most include only a small percentage
of the entire input dataset. The dataset size that we have used is 100000 from
which 70000 is used for training and the rest for testing purpose.

5.2.3 Training our ML model

For the low level decoder, we train a neural network where the input layer is the
syndrome and the output layer denotes the types of errors along with the physical
data qubit where each error has occurred. For a distance d surface code, the
number of input nodes are (d + 1)2 containing d2 - 1 measure qubits and 2(d+1)
dummy nodes. For example, if we consider a distance-3 surface code (SC17), it
has 8 ancilla qubits and 8 dummy nodes. Therefore, in the input layer, there are
16 nodes (Fig. 5.1). In the output layer, there are 2 nodes for each data qubit to
differentiate among I, X, Y and Z errors. The size of the hidden layer can be
adjusted by trial-and-error.

We have used two types of neural networks, (i) Feed Forward Neural Network



105 CHAPTER 5. SURFACE CODE

(FFNN) and (ii) Convolutional Neural Network (CNN). In our reported results,

(i) FFNN consists of 2 hidden layers having 32 and 16 nodes respectively. For the
cost function we have used the mean squared error rate, and as the activation
function we have used Rectified Linear Unit (ReLU).

(ii) For CNN, the first layer is a 64 dimension convolution layer where input is a
4× 4 matrix and the kernel size is also 4× 4. Then we flatten it and add two
fully connected layers of dimension 64 and 32. After that we add the fully
connected output layer of dimension 9. For the first 3 layers (convolution,
dense, dense) we have used ReLu as the activation function and for the output
layer we have used sigmoid activation function since it will be a multi-label
classification problem.

These values were adjusted after multiple trial-and-errors. We later show in the
result section that building a more complex neural network cannot provide any sig-
nificant improvement in the performance of the decoder, but requires significantly
more decoding time. Therefore, we stick to these parameters.

The high-level decoder simply tries to predict any logical error that has been
incorporated by the low level decoder. Therefore, its input remains the same as
the low-level decoder (i.e., the syndrome) whereas it has 4 nodes in the output,
each corresponding to a logical Pauli operator.

First, the network is trained for low-level decoder. After the low-level decoding is
done, the predicted corrections are applied, and rechecked by using the high-level
decoder whether any logical error has been inserted by the low-level decoder. The
entire workflow is given in Fig. 5.2.
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5.3 Experimental Results

First, we focus on the decoding performance of an ML-based low-level and the
high-level decoder for surface codes of distances 3, 5, and 7 for both symmetric
and asymmetric depolarizing noise models with varying degrees of asymmetry.
Our model outperforms the performance of the existing decoders for symmetric
noise model. We also show that although the performance of ML is slightly poorer
for asymmetric noise models than that for the symmetric one, it still outperforms
MWPM. Furthermore, we provide an empirical study to estimate the minimum
train-test-ratio needed for optimal accuracy to obtain a better estimate of the min-
imum number of training data required to obtain the best (or near best) decoding
results with ML decoder.

In the following subsections, we first introduce the noise model that we have con-
sidered, followed by the parameters of our ML decoder. Finally, we show the
results of our decoder and compare its performance with the traditional MWPM
decoder.

5.3.1 Noise models

Given a quantum state ρ in its density matrix formulation [NC10], the evolution
of the state in a depolarization noise model is given as

ρ→(1− px − py − pz)ρ+pxXρX†+pyY ρY †+pZZρZ†
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Figure 5.2: Outline of the ML based syndrome decoding for surface code
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where px, py, pz represent the probability of occurrence of unwanted Pauli X, Y ,
and Z error. In symmetric depolarization noise model, px =py =pz. Moreover,
quantum channels are often asymmetric or biased, i.e., the probability of occur-
rence of Z error is much higher than that of X or Y error. Furthermore, each error
correction cycle in surface code requires eight steps. We have considered that an
error can occur on one or more of the d2 data qubits in each of the eight steps,
where d is the distance of the surface code. Therefore, if px + py + pz = p, then
the overall probability of error for each error correction cycle is 1−(1− p)8. This
error model is in accordance with [FSG09]. We assume noise-free measure qubits
(which are almost half the total number of qubits) and ideal measurements.

5.3.2 Machine Learning Parameters

For our study, we have trained the ML model with batches of data, not the entire
data set at once. This is often beneficial in terms of training time as well as
memory capacity. We have used batch size = 10000, epochs = 1000, learning
rate = 0.01 (with Stochastic Gradient Descent), and we have reported the average
performance of each batch over 5 instances. This is repeated for each value of the
pphys considered here.

Low and high-level decoder

In Fig. 5.3, we show the increase in the logical error probability with physical
error probability p, which is the probability of error per step in the surface code
cycle. The results of MWPM and CNN-based low-level decoder for both symmetric
and asymmetric noise models are shown. In Tables 5.1 and 5.3, we depict the
performance of FFNN decoder as well. In Fig. 5.3, the blue, yellow, green, and
red lines respectively are the decoder curves which show the probabilities of logical
error for symmetric depolarization, bit flip (X), phase flip (Z), and Y errors. The
cyan straight line consists of the points where the probabilities of physical and
logical error are equal.
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The point where the decoder curves and the straight line intersects, defines the
value of pseudo-threshold for the decoder. As expected, the pseudo threshold
improves with increasing distance of the surface code. Nevertheless, the threshold
value is the probability of physical error beyond which increasing the distance leads
to poorer performance. Therefore, threshold is independent of the distance and is
a property of the surface code and the noise model only. In Tables 5.1 and 5.3,
we show the pseudo-threshold and threshold of the low and high-level decoders
for distance 3, 5 and 7 surface code in symmetric and asymmetric noise models
respectively. Fig. 5.3 shows the pseudo-thresholds for MWPM and CNN decoder
for a distance 3 surface code using low-level decoder (LLD) only. From Table 5.1
we observe ∼ 10× increase in the pseudo threshold for ML-decoders as compared
to MWPM.

Figure 5.3: Pseudo-threshold and accuracy — MWPM vs ML-based decoder for
distance 3 surface code

Fig. 5.4 shows the thresholds and decoder accuracy for MWPM and ML-decoders
surface codes of distance 3, 5 and 7. Table 5.3 depicts the threshold values for
MWPM and ML-decoders. From Table 5.3 we observe ∼ 2× increase in the
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threshold for ML-decoders as compared to MWPM.

As already mentioned earlier, this result assumes error-free stabilizers, and ideal
measurements. For a distance d surface code, there are d2 − 1 stabilizers. There-
fore, in our setting, nearly half of the total qubits in the surface code structure are
considered ideal. We focused more on the mapping of decoding to Machine Learn-
ing in this research. A separate study is being carried out on the performance
of the ML decoder in the presence of erroneous stabilizers and measure qubits
to determine the threshold and pseudo-threshold. Our conjecture is that ML de-
coders will still outperform MWPM decoder in that scenario, but the increase in
performance will be much lower.

In Fig. 5.3, we observe that at very low error probability the accuracy remains good,
then it falls drastically. However, for ML decoders, it again increases beyond a
certain physical error probability ( 0.15). On the other hand, the logical error also
decreases in most of the cases for both symmetric and asymmetric ML decoders
after more or less that same value of physical error probability. This is due to the
bias in the back-end working principle of any machine learning model. When the
error probability is low or high, the ML decoder effectively learns the probability
and in most of the cases can avoid logical errors. But when the error probability
is in the mid range, the ML model gets confused. For example, if in a training
set, out of 12 events with same value of the features, 10 events are certainly in
class A, and the rest in B, then the ML definitely learns it with high accuracy.
Similarly, if those same 10 events are in class B, accuracy will be high. But the
ML is confused when 6 of them are in class A and 6 of them in class B. This is an
interesting observation in the ML-decoder which is absent in MWPM-decoder.

5.3.3 More sophisticated ML models

A natural question is whether the use of more sophisticated ML models (e.g, adding
more hidden layers, increasing the number of nodes in each layer, etc.) can improve
the performance of the decoder. We have addressed this issue as reported below.
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Figure 5.4: Threshold and accuracy — MWPM and ML-based decoder for surface
code with d = 3, 5, 7

In Table 5.2, Simple FFNN has 1 hidden layer (dense) whereas Complex FFNN
has 5 hidden layers (dense) and Simple CNN has 1 convolution (64 dimensions)
followed by 2 dense layers of dimension 256 and 64 respectively before the output
layer whereas Complex CNN has 3 convolutions (64 dimensions) layers followed
by 4 dense layers of dimension 512, 256, 128 and 64 respectively before the output
layer. The more sophisticated models naturally require more time for training
and prediction. But from Fig. 5.7, we see that the decoder graphs are more or
less overlapping for the simple and complex ML models. Therefore, it can be
concluded that using more complex CNN / FFNN model does not lead to a better
performance for the decoder. This can be further verified by the accuracy plots
in Fig. 5.5. Since the more complex models are performing almost at par with
the simpler models for d=3 and 5 and the complex models are significantly more
time-consuming, we performed the experiments for d = 7 with only simple CNN
and FFNN models.

While our results demonstrate that more sophisticated architectures such as CNNs
and FFNNs do not outperform simpler models, this observation may not general-
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Figure 5.5: ML model accuracy vs physical error probability for various ML models
in d = 3 and 5 surface code

ize to other ML techniques or differently structured datasets. An open problem
remains to identify or design ML architectures and data representations that can
leverage the complexities of quantum error correction and decoding tasks better.

5.3.4 Empirical train-test-ratio for optimal accuracy

In general, the higher the number of training samples, better is the accuracy of
the ML model up to a certain threshold, beyond which increasing the number
of training samples does not improve the performance of the model [SSBD14].
However, generation of training data is a humongous task in current quantum
devices since it takes up a significant amount of device lifetime. Therefore, lower
the size of the training sample required, higher is its usability. But naively reducing
the size of the training set may lead to performance degradation. We explore
this requirement by studying the minimum train-test-ratio required to obtain the
optimal decoder performance.

Given a distance d code, with t types of errors possible on each qubit, the total
number of distinct error patterns is td2 . When the probability of error is very low,
most of the test cases will have no error. This observation is reflected in the curve
[Fig 5.6] with p = 0.001. As p increases, it is natural that the performance of
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Table 5.1: Pseudo-threshold of the low and high level decoders for distance d = 3,
5 and 7 surface code
Noise Model → Symmetric Asymmetric

pz = px = py 0.1pz = px = py 0.01pz = px = py

Decoder ↓ d → 3 5 7 3 5 7 3 5 7

MWPM LLD 0.0011 0.0038 0.0075 0.0012 0.0041 0.0072 0.00098 0.0038 0.0067

HLD - - - - - - - - -

Our FFNN LLD 0.012 0.0205 0.0219 0.0109 0.0121 0.0152 0.0120 0.0122 0.0131

HLD 0.0143 0.0234 0.0241 0.0124 0.0164 0.0189 0.0123 0.0165 0.0189

Our CNN LLD 0.0121 0.0211 0.0228 0.0112 0.0125 0.0151 0.0111 0.0121 0.0132

HLD 0.0152 0.0241 0.0247 0.0134 0.0161 0.0192 0.0121 0.0162 0.0195

Table 5.2: Comparison of training times for different ML models
ML Model d = 3 d = 5

Parameter Training Prediction Parameter Training Prediction
space time (sec) time (sec) space time (sec) time (sec)

FFNN Simple 2258 53.12 2.1× 10−5 5618 103.18 3.5× 10−5

Complex 84754 324.9 3.55× 10−5 88114 394.99 3.72× 10−5

CNN Simple 165650 785.27 5.27× 10−5 429874 1852.74 7.4× 10−5

Complex 240246 1485.69 6.02× 10−5 504370 4241.58 9.74× 10−5

the decoder will degrade. However, when d is small, the total number of distinct
errors is also small. Since the training and testing data is generated uniformly
at random, we expect that for a given error probability p, the most likely error
patterns are all exposed to the ML decoder for a reasonable size of training set.

To test this hypothesis, in Fig. 5.6 we have varied the train-test ratio for the
simple CNN decoder for a distance 3 surface code. We originally generated 105

error data uniformly at random, and varied the train-test ratio starting from 90:10
and moving up to 10:90, lowering the training proportion by 10% in each step.
The obtained accuracy for increasing pphys is plotted in Fig. 5.6. We observe that
even when we use up ≃ 50 − 60% of the data as test set, the performance of the
decoder remains more or less constant for a given p. The performance takes a
dip downwards beyond this value. Therefore, we posit that for d = 3 and t = 4
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Table 5.3: Comparison of threshold of the low and high level decoders
Threshold (LLD) Threshold (HLD) Decoder Model Error model

0.0181 N/A MWPM Symmetric
0.0302 0.035 Symmetric
0.0218 0.025 Asymmetric 0.1 ∗ pz = px = py
0.0221 0.0279 Our FFNN Asymmetric 0.07 ∗ pz =px = py
0.0216 0.0257 Asymmetric 0.04 ∗ pz=px= py
0.0213 0.0251 Asymmetric 0.01 ∗ pz =px=py
0.0311 0.034 Symmetric
0.0225 0.026 Asymmetric 0.1 ∗ pz=px =py
0.0229 0.0281 Our CNN Asymmetric 0.07 ∗ pz=px= py
0.0223 0.0258 Asymmetric 0.04 ∗ pz= px= py
0.0212 0.0252 Asymmetric 0.01 ∗ pz= px= py

(depolarizing noise model), this decoder is exposed to all of the most likely errors
within a small fraction of the training set, which is generated uniformly at random.
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(a) Average accuracy of our low level decoder

(b) Average Accuracy with its standard deviation

Figure 5.6: Average accuracy (along with its standard deviation) of our low level
decoder vs Test Ratio for different values of pphys in distance 3 surface code
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Figure 5.7: Logical vs physical error probability for various ML models in d = 3
and 5 surface code
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Figure 5.8: Training with symmetric noise Models and testing with asymmetric
noise models

Since this is a ML based method, and Fig. 5.6(a) shows the mean value only, in
Fig. 5.6(b) we have also plotted the standard deviation (SD) with a few values of
physical error probability for all the test-ratio as an error bar plot. We observe
that for p=0.001 the accuracy varies between 95.32 to 99.11 (min SD = 0.52, max
SD = 1.40). For p = 0.02 the accuracy varies between 60.54 to 82.94 (min SD =
1.12, max SD = 2.79) and for p = 0.08 the accuracy varies between 32.51 to 51.92
(min SD = 0.28, max SD = 3.86). With increasing pphys, the SD also increases.
This supports intuition because as the pphys increases, the decoding performance
decreases due to the capacity of the machine learning model to correctly classify
the errors. Hence, the performance of ML (which depends on the errors in the
dataset), varies more with higher value of physical error probability (pphys).

Moreover, as d increases, for same p, the set of probable errors increases exponen-
tially. Therefore, for the same number of generated error data, we expect that
to retain the same accuracy, a much larger portion of the data will need to be
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devoted for training. In our future research, we shall explore this direction in a
more extensive manner and determine the size of the training sample required to
retain an accuracy ϵ for a given train-test ratio.

5.3.5 Performance on Training with Symmetric Noise

Models and Testing with Asymmetric Noise Models

As we have discussed, the real life noise models are asymmetric. But this asym-
metry can change and we may not know the exact level of asymmetry beforehand
always. It would be beneficial if the decoder can be trained once with symmet-
ric noise dataset and tested with different asymmetric noise datasets. Now we
analyze how the performance of a decoder trained with symmetric noise model
behaves while testing with asymmetric noise model with increase in asymmetry
(∆).

An increase in asymmetry (∆) in the depolarizing error channel is denoted by px =
p/(∆+2), py = p/(∆+2), pz = p∆/(∆+2), where, p is the value of physical error
rate for a given physical error. For example, ∆ = 10 denotes 0.1 ∗ pz=px =py. For
symmetric noise model, ∆ = 1 and for asymmetric noise model, ∆ > 1. We define
crossover point to be the value of ∆ beyond which increasing ∆ leads to lower
pseudo-threshold, when the decoder is trained with symmetric noise. We say that
the channel is weakly asymmetric if ∆ <= cross-over point, strongly asymmetric
otherwise. And we find the crossover point empirically.

As the asymmetry increases in the testing data, step-wise, we see a decrease in
the performance of the decoder, as inferred from their decreased pseudo-threshold
values. We check for ∆=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2, 10.

From Fig. 5.8 we can say that ∆ = 1.3 is the crossover point as upto this point,
the logical error more or less overlaps with the symmetric noise model (i.e. ∆=1).
Hence upto ∆ = 1.3, the channel is weakly asymmetric and above ∆ = 1.3 it
is strongly asymmetric. Hence, upto ∆ = 1.3 we can train the decoder with
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symmetric noise model and test with the desired symmetric or asymmetric noise
model, as it will not degrade the performance much. However, beyond this degree
of asymmetry, the model must be trained with the asymmetric noise model if the
optimum pseudo-threshold is to be obtained.

5.4 Conclusion

In this work, we have proposed an ML-decoder to correct both symmetric and
asymmetric depolarizing noise on surface codes. Our decoder has two levels — in
the low-level it tries to accurately predict the error on the qubits, followed by the
high level that tries to detect any logical error that may have been introduced by
the low-level decoder. Both these decoders have been implemented using neural
network (FFNN and CNN) for surface code of distances 3, 5 and 7. Our proposed
ML-decoder outperforms MWPM, and we observe ∼ 2× increase in threshold and
∼ 10× increase in pseudo threshold. We further show that the decoder perfor-
mance is equally good for asymmetric errors as well, which is more realistic in
quantum devices.

We have used ML models with different levels of sophistication, (i.e. varying
number of hidden layers and node-density of each layer). Our results show that
the mere increase of complexity in ML model requires an increased amount of time
for decoding but hardly yields any better performance.

In this work, we have assumed, noise-free measure qubits and ideal measurements.
A future prospect of this research can be to consider noisy measure qubits and
imperfect measurements.

Extending our machine learning techniques, we next investigate efficient syndrome
decoding for heavy hexagonal QECCs in the next chapter.
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6.1 Introduction

Recently, industry research labs have been shifting towards the hexagon architec-
ture for their quantum computers. This architecture has the advantage of reducing
the number of distinct frequencies, and thus crosstalk. The surface code [BK98]
structure has been modified to a topological code with a heavy hexagon struc-
ture [CZ+20] in order to become more suitable for these architectures. The heavy
hexagon code [CZ+20] uses a combination of degree-two and degree-three vertices
in the topology, and can be considered as a hybrid of a surface code and a Bacon-
Shor code [Bac06]. This QECC reduces the distinct number of frequencies required
in their realization by introducing more ancilla qubits (termed as flag qubits) for
entanglement in the syndrome measurement [CZ+20].

This work initiates the study of using ML for decoding heavy hexagon code and
to the best of our knowledge it is the first work to attempt ML decoding for
heavy hexagon codes. The heavy hexagon code is a hybrid of surface code and
Bacon-Shor code, where the later is a subsystem code [Bac06]. Being a subsystem
code, the entire codespace of the heavy hexagon code is partitioned into equivalent
classes (details given in Sec. 6.3). By this property, distinct errors can be clubbed
into certain equivalent error classes, called gauge equivalence. We identify a unique
representative element from each such class. This approach reduces the number of
error classes, resulting in a classification problem with fewer classes, and thus the
training of ML model becomes faster and more accurate.

For the depolarization noise model [NC10], we use the entire syndrome (i.e., the
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syndromes for both X and Z stabilizers) to train the ML decoder even for deter-
mining the probability of logicalX or Z errors individually. We show by simulation
that the naïve ML decoder itself achieves a threshold of 0.0137 for logical X errors
in bit flip noise, which is much higher than that for the MWPM decoder [CZ+20].
This is further improved to a threshold of 0.0158 using gauge equivalence. We
also show that our ML decoder achieves a threshold of 0.0245 for logical X errors
in depolarizing noise model, which is better than that for the MWPM decoder
[CZ+20]. Similar improvements are observed for phase flip errors as well. In this
work we propose the application of classical machine learning for quantum error
decoding to facilitate error correction. Quantum machine learning has not been
employed in the work presented here.

6.2 Designing ML based decoder for heavy hexagon

code

Artificial neural networks (ANN) are brain-inspired techniques for replicating the
procedure of how we humans learn and they are heavily used in machine learning.
Neural networks consists of a single input and output layer along with a few hidden
layers. The hidden layers transform the input into an intermediate form and the
output layer finds patterns from its previous hidden layers. The time complexity
to train a neural network with m input nodes, one hidden layer with h nodes and
L output nodes is O((m + L) · h). In this work we are using feed forward neural
network for decoding heavy hexagon code of distance 3, 5, and 7 .

For application of ML in decoding, we first reduce the decoding problem to classi-
fication, a well-studied problem in machine learning. Classification is the process
of predicting the class of given data points. Classes are also known as labels. It is
the task of approximating a mapping function f from input variables x to output
variables y. The methodology to map heavy hexagon code is similar with that for
surface code which has already been discussed in detail in [BSM+22].
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A distance d heavy hexagon code has (i) (d2 − 1)/2 syndrome bits in case of bit
flip error (refer to Z stabilizers in Fig. 2.12); (ii) d − 1 syndrome bits in case of
phase flip error (refer to X stabilizers in Fig. 2.12). This syndrome is the input
data to the ML model. The label of the ML model is the erroneous data qubit
of the heavy hexagon code structure, hence it has d2 qubits in each entry. Our
syndrome decoding problem is mapped into a multi-class multi-label classification
problem in which there are 2d

2 classes, and each class label consists of d2 bits.
In our feed forward neural network, the input layer gets the syndrome (measured
ancilla qubits) and the output layer identifies the type of error and its location in
the lattice.

6.3 Reducing error classes for heavy hexagon code

The subsystem property of a QECC asserts that if Πjgj denotes the product of
one or more gauge operators, then

• an error e = Πjgj can be safely ignored as the system transforms it to an
equivalent subsystem;

• if for two errors e1 and e2, e1Πjgj = e2, then e2 can be considered as e1 as
both take the state to equivalent erroneous subsystems.

We term the second scenario as gauge equivalence, which provides significant ad-
vantage in designing ML based decoders. For both σx (bit flip) and σz (phase flip)
errors, a distance d heavy hexagon code having d2 qubits mandates a classification
of the 2d2 possible errors, each being termed as an error class henceforth. However,
for a subsystem code such as the heavy hexagon code, there exists i ̸= j such that
Qi is gauge equivalent to Qj. From now on, if |ψ⟩ ≡ Πjgj |ϕ⟩, where Πjgj denotes
the product of one or more gauge operators gj, then we write |ψ⟩ ≡ |ϕ⟩ modulo
(Πjgj).
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For example, in Fig 6.1 there are 4 X-gauge generators G1, G2, G3, G4, 6 Z-gauge
generators g1, g2, g3, g4, g5, g6 and the qubits are Q1, Q2, ..., Q9. If |ψ⟩ is the
codeword, then,

• X4X7X8 |ψ⟩ ≡ X5 |ψ⟩ modulo (G3), where Xk denotes bit flip error on qubit
Qk.

• Z7 |ψ⟩ ≡ Z1 |ψ⟩ modulo (g4g1), where Zk denotes phase flip error on qubit
Qk.

The notion of gauge equivalent error strings creates a problem for machine learning
based decoding since the problem of mapping syndromes to error strings is not
well defined because there can be multiple Pauli error strings which are gauge
equivalent having the same syndrome. In order to remedy the above, we identify
a representative element from each such an error class. Every error string in the
training data is mapped to the representative element of its corresponding class.
Next, can we reduce the number of error classes? Reduction in the number of error
classes implies a classification problem with fewer classes, which helps in improving
the performance further for the ML model. We now formally define the criteria
for two qubits to belong to the same error class.

Lemma 6.1

Given a codeword |ψ⟩ such that |ψ⟩ ≡ Πjgj |ψ⟩, where Πjgj implies the prod-
uct of one or more gauge operators gj, any error e acting on the codeword
is equivalent to e(Πjgj).

Proof. Consider an error e acting on the codeword |ψ⟩ such that |ψ⟩ ≡ Πjgj |ψ⟩.
Therefore,

e |ψ⟩ ≡ eΠjgj |ψ⟩ ⇒ e ≡ e(Πjgj)
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Figure 6.1: (a) X gauge equivalence for bit flip error: simultaneous errors on data
qubits 4, 7 and 8 is equivalent to an error on data qubit 5, because by applying
X gauge operator G3 (consisting of X operators on data qubits 4, 5, 7 and 8) on
data qubits 4, 7 and 8, data qubit 5 has an error. (b) Z gauge equivalence for
phase flip errors: an error on data qubit 7 is equivalent to an error on data qubit
1 because by applying Z gauge operator g4 (consisting of Z operators on qubits 4
and 7) followed by Z gauge operator g1 (consisting of Z operators on qubits 1 and
4) on data qubit 7, data qubit 1 has an error. This figure is adapted from [CZ+20]
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Lemma 6.1 implies that e and e(Πjgj) as the same error class. Such equivalence
leads to a set of error classes whose cardinality is less than 2d

2 , where errors in
the same class act equivalently on the codeword. Therefore, it is not necessary to
distinguish between the errors in the same error class. It suffices to identify the
error class only.

We propose two methods to find gauge equivalence and determine the error classes
for the heavy hexagon code, namely search based equivalence and rank based equiv-
alence.

6.3.1 Reducing bit flip error classes by search based gauge

equivalence

The heavy hexagon code, being similar to surface code [BK98] and Bacon-Shor
code [Bac06] for bit flip and phase flip errors respectively [CZ+20], we employ the
subsystem code property to modify our training dataset into another equivalent
training dataset with fewer class labels. In this subsection we present an algorithm
to convert a given trining data set to an equivalent one having fewer class labels
for bit flip errors.

Before presenting the Algorithm, we prove in Lemma 6.2 the number of error
classes obtained due to the subsystem property. As multiple errors can fall under
the same class, we require a class representative. We show a method to find the
class representative, followed finally by the Algorithm to obtain such equivalence.

Lemma 6.2

For a distance d heavy hexagon code, the total number of bit flip error classes
is 2

d2+1
2 .

Proof. For a distance d heavy hexagon code, the total number of data qubits is
d2 and the number of X gauge generators is d2−1

2
. Therefore, the total possible

combinations of these can provide 2
d2−1

2 X gauge operators. For each of these
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operators g, any error e ≡ e.g. Therefore, e and e.g belong to the same error class.
The total number of error classes is 2d

2
/2

d2−1
2 = 2

d2+1
2 .

We thus obtain a square root order reduction in the number of error classes.
Table 6.1 presents the reduction in the number of error classes for codes of distance
3, 5 and 7 due to gauge equivalence. As multiple errors belong to the same error
class, a class representative needs to be chosen efficiently for our ML decoder.

Table 6.1: Number of bit flip error class labels without and with gauge equivalence
Code distance # Class labels without equivalence # Class labels with equivalence

3 29 25

5 225 213

7 249 225

Choice of class representative: If errors e1, e2, . . . , ek belong to the same error
class E , then we choose a class representative ei ∈ E which is to be considered as
the error on the codeword for any error e ∈ E occurring on the codeword. For
example, in Fig. 6.1 it can be verified that bit flip errors on qubits 4, 7 and 8
produces the same syndrome as that on 5 . But for training the ML decoder,
we choose the second one as the common label for both as it has a lower weight.
However, simply considering the weight of the errors is not sufficient to obtain a
class representative. For example, bit flip errors on qubits 1 and 2 lead to the same
syndrome, and both of these errors have weight 1. Therefore, we use the method
of lexicographic minima to obtain the class representative.

For finding the lexicographic minima, we represent the qubits in the codeword as
a characteristic vector of size d2, where the ith bit is 1 if an error occurred on qubit
i, and 0 otherwise. For example, the bit flip errors on qubits 4, 7 and 8 in Fig.
6.1 is denoted as e = [000100110]. For each error class E , we choose error e as

the class representative for which L(e) =
d2−1∑
i=0

2i ∗ e[i] is minimum. For example,

in a distance 3 heavy hexagon code, bit flip error on qubits 1 and 2 are written as
e1 = [100000000] and e2 = [010000000] respectively. We note that X-operator on
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qubits 1 and 2 form an X gauge operator, which when applied on e1 gives us e2,
and vice-versa. So e1 and e2 belong to the same error equivalence class E . Here,
L(e1) = 21 ∗ 1 + 22 ∗ 0 + 23 ∗ 0 + ...+ 29 ∗ 0 = 2 and L(e2) = 4, so e1 is chosen as
the class representative.

Algorithm 5 finds the gauge equivalent errors for each error e in the training dataset
E[1 : N ]. Its time and space complexity are given in Lemmata 6.3 and 6.4.

Algorithm 5 Search based method to find gauge equivalence class representatives
for bit flip errors
Input: Gx, the list of X-gauge operators; d, distance of the heavy hexagon code;

E[1 : N ], the list of all errors e1, e2, ..., eN in the training dataset.
Output: for all errors in E[1 : N ], equivalent error vector MinWeightEquiv

having weight MinWeight

1: for e = e1 to eN do
2: MinWeightEquiv = e

3: MinWeight =
d2−1∑
i=0

2i ∗ e[i]

4: for all gx ∈ Gx do
5: GaugeEquiv = gx ⊕ e applying gx on e*

6: weightGE =
d2−1∑
i=0

2i ∗GaugeEquiv[i]

7: if MinWeight > weightGE then
8: MinWeight = weightGE

9: MinWeightEquiv = GaugeEquiv

10: end if
11: end for
12: return MinWeightEquiv

13: end for
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Theorem 6.1

Given a training sample e in which each qubit may be either error-free or has
a bit flip error only, its corresponding gauge equivalent class representative
emin ≡ e can be computed by Algorithm 5 in O(N · d2 · 2d2/2) time using
O(d2 · 2 d2−1

2 +N.d2) space, where d is the distance of the code and N is the
number of training samples.

Proof. For an error e, let MinWeightEquiv ≡ e be the lexicographic minimum
in E[1 : N ] which is gauge equivalent to e. The gauge operators and errors
are represented as {0, 1} strings. Let L(e) denote the lexicographic value cor-
responding to the binary characteristic vectors representation of e. Therefore,
L(MinWeightEquiv) ≤ L(eequiv) ∀ eequiv ≡ e. Algorithm 5 finds L(eequiv) in
decimal for all eequiv ≡ e, and returns the vector MinWeightEquiv which has
the minimum value. Hence, L(MinWeightEquiv) ≤ L(ej) ∀ ej ≡ e. Therefore,
MinWeightEquiv = emin.

The proofs for time and space complexity are given below in Lemmata 6.3 and 6.4
respectively.

Lemma 6.3

Given a training sample e in which each qubit may be either error-free or have
bit flip error only, Algorithm 5 computes its corresponding gauge equivalent
class representative emin ≡ e in O(N ·d2 ·2d2/2) time, where d is the distance
of the code and N is the number of training samples.

Proof. For a distance d heavy hexagon code, the total number of data qubits is
d2 and the number of X gauge generators is d2−1

2
. Therefore, the total possible

combinations of the X gauge operators is 2
d2−1

2 .Each of the line numbers 2, 5, and
6 of Algorithm 5 requires d2 bitwise operation over the length of an error string.

There are 2
d2−1

2 possible gauge operators. Therefore the inner loop (line 4 to 11)
runs 2

d2−1
2 times. So the time for each training sample is d2+d2 ·2 d2−1

2 +c, where c
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is a constant, leading to a time complexity of O(d2 · 2d2/2) for the inner for loop of
Algorithm 5. Therefore, the total time complexity of Algorithm 5 to find the gauge
equivalence for the entire training dataset consisting of N samples is O(N ·d2 ·2d2).

Lemma 6.4

Given a training sample e in which each qubit may be either error-free or has
a bit flip error only, Algorithm 5 computes its corresponding gauge equivalent
class representative emin ≡ e with space complexity of O(d2 · 2 d2−1

2 +N.d2),
where d is the distance of the code and N is the number of training samples.

Proof. Each of the 2
d2−1

2 possible X gauge operators need d2 bits. Hence the total
space required to store all the gauge operators is O(d2 · 2 d2−1

2 ). Furthermore, the
entire training dataset of N samples needs space complexity of Algorithm 5 is
O(d2 · 2 d2−1

2 + N.d2). For a distance d heavy hexagon code, there are d2 data
qubits in the lattice for a logical qubit and d2−1

2
X gauge generators.

Table 6.2: Number of error class labels without and with gauge equivalence in case
of phase flip

Code distance # Class labels without equivalence # Class labels with equivalence
3 29 23

5 225 25

7 249 27

In the expression of space complexity O(d2 ·2 d2−1
2 +N.d2) , the second term (N.d2)

dominates when N > 2
d2−1

2 .

Instead of calculating all possible combinations of X gauge operators beforehand,
if we calculate them on the go, then the space complexity can be reduced to
O(d4 + N.d2). However, for such an algorithm, the entire set of gauge operators
need to be generated for every training sample, leading to a time complexity of
upto O(N · d4 · 2d2/2).
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6.3.2 Reducing phase flip error classes by search based gauge

equivalence

In this subsection, we present studies for phase flip error similar to those for bit
flip error in the previous subsection. The Bacon-Shor structure [Bac06] of phase
stabilizers allow for more equivalent subsystems, leading to fewer error classes. We
first depict this equivalence for phase flip errors in Lemma 6.5, and provide the
algorithm to find the class representatives for gauge equivalent phase flip error as
Algorithm 6.

Lemma 6.5

For any column 1 ≤ j ≤ d of physical qubits in the lattice for heavy hexagon
QECC, the phase operator Zi,j on ith qubit of the jth column is gauge equiv-
alent to the phase operator Z1,j.

Proof. (by induction)
Base Case: If a phase flip error occurs on the first qubit of any column of qubits
j, then it is trivially equivalent to Z1,j.

Induction Hypothesis : For all positive integer k, 1 ≤ k < d, Zk,j is gauge equivalent
to Z1,j.

Induction Step: Consider a phase operator Zk+1,j. Now, for all k, 1 ≤ k < d,
there exists a Z gauge operator given by Zk,j · Zk+1,j. Therefore, Zk+1,j is gauge
equivalent to (Zk+1,j) · (Zk,jZk+1,j) = Zk,j. By the induction hypothesis, as Zk,j is
gauge equivalent to Z1,j, Zk+1,j is gauge equivalent to Z1,j.

Corollary 6.1

There are 2d non-equivalent error classes for phase flip errors.
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Proof. This follows from Lemma 6.5 because qij is gauge equivalent to q1j for the
jthqubit column, 1 ≤ i ≤ d, each qubit column corresponds to one possible phase
flip error class. There being d qubit columns, there are 2d non-equivalent phase
flip error classes.

Algorithm 6 below finds the gauge equivalence class representatives for each error e
in the training dataset. Its time and space complexity analyses appear in Lemmata
6.6 and 6.7.

Algorithm 6 Search based method to find gauge equivalence class representatives
for phase flip errors
Input: d, distance of the code, error string E[1 : N ], the list of all errors

e1, e2, ..., eN in the training dataset.
Output: for all errors in E[1 : N ], equivalent error vector MinWeightEquiv

having weight MinWeight

1: for e = e1 to eN do
2: for j = d to d2 − 1 do
3: l = j%d

4: e[l] = e[l]⊕ e[j]
5: end for
6: MinWeightEquiv = e

7: return MinWeightEquiv

8: end for

Theorem 6.2

Given a training sample e in which each qubit may be either error free
or having phase flip error only, its corresponding gauge equivalent minima
emin ≡ e can be computed by Algorithm 6 in O(N.d2) time using O(N.d2)
space, where d is the distance of the code and N is the number of training
samples.
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Proof. For an error e, let emin be the lexicographic minimum corresponding to e.
For any column 1 ≤ j ≤ d of qubits where Zi,j denotes the phase operator on ith

qubit of the jth column (where 1 ≤ i ≤ d), Zi,j is gauge equivalent to Z1,j. For an
error e = {e1e2 . . . ek}, where ei ∈ {I, Z}, 1 ≤ i ≤ k (k is the number of qubits),
Algorithm 6 finds the gauge equivalence eiequiv of each ei using Lemma 6.5. The
final gauge equivalent error eequiv is determined as eequiv = {e1equiv · e2equiv . . . ekequiv}.
As it finds the equivalent error as the top most row’s error in the lattice, hence it
will be of the minimum weight. Hence eequiv = emin The proofs for time and space
complexity are given below in Lemmata 6.6 and 6.7 respectively.

Lemma 6.6

Given a phase flip error e, its corresponding gauge equivalent minima emin ≡
e can be computed by Algorithm 6 in O(N.d2) time, where d is the distance
of the code.

Proof. Lemma 6.5 asserts that for each column of the heavy hexagon code lattice,
a phase flip error on a qubit in that column is gauge equivalent to the phase flip
error on the top most qubit of that column. Therefore, Algorithm 6 starts from the
second row of the lattice, leaving aside the topmost row (length d) which consists
of the first qubits of each column. Each of line numbers 3 and 4 of Algorithm 6
requires a constant time operation for d2−d error strings. The outer loop, i.e. line
number 1 runs N times, as the size of the entire training dataset is N . Therefore,
the time complexity of Algorithm 6 is N · c · (d2 − d), where c is a constant, i.e.,
O(N.d2).

It is to be noted that we obtain a quadratic reduction in the number of error
classes for both bit flip and phase flip errors by employing gauge equivalence but
the reduction is much higher for phase flip errors.
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Lemma 6.7

Given a phase flip error e, its corresponding gauge equivalent minima emin ≡
e, computed by Algorithm 6 has a space complexity of O(N.d2) where d is
the distance of the code, and N number of training samples.

Proof. In order to store N number of training samples we need O(N.d2) amount
of space. Therefore, the total space needed for Algorithm 6 is O(N.d2) .

We observe that based on linear search the time complexity for finding equivalence
class representatives of bit flip errors is O(N.d2 · 2d2) and for phase flip errors is
O(N.d2). In the next subsection, we propose a method called rank based gauge
equivalence which can further reduce the time complexity for the case of bit flip
errors, which is much higher than that for phase flip errors.

6.3.3 Reducing bit flip error classes by rank based gauge

equivalence

This algorithm relies on finding the rank of a matrix M = [GENx], constructed
with a column corresponding to each of the X gauge generators. Recall that the
rank of a matrix denotes the number of linearly independent columns in it [Str06].
Since the gauge generators are linearly independent, M exhibits full rank equal to
(d2 − 1)/2, the number of X gauge generators.

For two gauge equivalent errors ei and ek, if we obtain another matrix M ′ =

[GENx, ei − ek] by appending one more column to M , then M and M ′ has the
same rank because ek can be expressed as (Πjgj)ei. We use this notion to find the
gauge equivalence for bit flip errors faster than Algorithm 5.

In Algorithm 7, we provide an algorithm to find the equivalent for each error e in
the training dataset, and depict its time and space complexities in Lemmata 6.9
and 6.10 respectively.
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The search space of Algorithm 7 differs from that of Algorithm 5. Let EQUIV (e)

denote the set of all gauge equivalent errors corresponding to an error e. The
cardinality of EQUIV (e) scales exponentially in the number of gauge generators.
On the other hand, Algorithm 7 determines EQUIVTS(e) which is the set of all
gauge equivalent errors corresponding to an error e present in the set of training
samples. Therefore, EQUIVTS(e) ⊆ EQUIV (e). Since Algorithm 7 only searches
for the gauge equivalent errors present in the training samples, the search space
for this algorithm is never greater than that for Algorithm 5. Both Algorithms 5
and 7 reduce the error classes for bit flip using gauge equivalence. While in
Algorithm 5 the class label for the equivalence classes is of minimum possible
weight, in Algorithm 7 the class label is the minimum possible weight for errors
present in the training set. But our target is to reduce the number of error classes.
So both the algorithms serve that purpose. It is to be noted that the equivalence
error classes remain the same for both methods. Only the class representatives are
likely to differ.

Theorem 6.3

Given a training sample e in which each qubit may be error free or has bit
flip error only, its corresponding gauge equivalent minima emin ≡ e can be
computed, by Algorithm 7 in O(N2 · d4) time using O(d4 + N.d2) space,
where d is the distance of the code and N is the number of training samples.

Proof. We prove this theorem in two steps. The proofs for time and space com-
plexity are shown individually in Lemmata 6.8 and 6.9 respectively.

Lemma 6.8

Given a bit flip error e, its corresponding gauge equivalent minima emin ≡ e

can be computed by Algorithm 7 in O(N2 · d4) where d is the distance of
the code and entire dataset consists of N errors.
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Algorithm 7 Rank based method to find gauge equivalence class representatives
for bit flip errors
Input: GENx, the list of X gauge generators, d, distance of the code, List of all

errors in the dataset E[1 : j] which consists e1, e2, ..., ej.
Output: Error string MinWeightEquiv which is equivalent to ej.
1: MinWeightEquiv = ej

2: MinWeight =
∑
k∈d2

2k ∗ ej[k]

3: M = [GENx] where each GENx, 0 ≤ x ≤ (d2 − 1)/2 forms a column of M .
4: Calculate the rank M
5: for all e = e1 to ej−1 do
6: if syndrome(ej) == syndrome(e) then
7: Form a matrix M ′ by appending ej − e as the last column of M
8: Calculate the rank of M ′

9: if Rank(M) == Rank(M ′) then
10: weightGE =

∑
k∈d2

2k ∗ e[k]

11: if MinWeight > weightGE then
12: MinWeight = weightGE
13: MinWeightEquiv = e
14: end if
15: end if
16: end if
17: end for
18: Return MinWeightEquiv

Proof. In Algorithm 7, each of the lines 2 and 10 requires bitwise operation over
the length of the error string which is d2. Computing the syndrome equality in
line 6 requires bitwise operation over the length of the syndrome string which is
(d2−1)/2. There are d2 number of data qubits and the number of gauge generators
is (d2 − 1)/2. Furthermore, calculation of rank of an m × n matrix is O(m · n)
[CLRS22]. Therefore, calculating the rank of matrix M of size (d2 × (d2 − 1)/2))
in line 4, has a running time of O(d4). For a particular error ej, the time required
to calculate the gauge equivalence is given by

∑j−1
i=1 O(d4 + d2) = O((d4 + d2) · j).

Hence, for the entire dataset consisting of N errors, the time complexity of Algo-
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rithm 7 is

O((d4 + d2) ·
N∑
j=1

j) = O(N2 · (d4 + d2))

= O(N2 · d4)

Lemma 6.9

Given a bit flip error e, Algorithm 7 computes its corresponding gauge equiv-
alent minima emin ≡ e using O(d4 +N.d2) space where d is the distance of
the code and N is the number of training samples.

Proof. For a distance d heavy hexagon code, the total number of data qubits is
d2 and the number of X gauge generators is d2−1

2
. Each of the gauge generators

consists of d2 bits. Hence, to store the generator matrix M , the space needed is
d2 · (d2 − 1)/2. To store the appended matrix M ′, d2 · ((d2 − 1)/2 + 1) space is
needed and to store N number of training samples, N · d2 space is needed. Hence,
the total amount of space needed is d2 · (d2 − 1)/2 + d2 · ((d2 − 1)/2 + 1) +N · d2

leading to a space complexity of O(d4 +N.d2).

A pertinent question, therefore, is the criterion for which rank based equivalence
is faster than the search based one. This is answered in Corollary 6.2

Corollary 6.2

Rank based equivalence method finds gauge equivalence faster than the
search based method if 2d

2 ≥ c·(N · d2), where d is the distance of the
code, N the number of training samples, and c a constant.
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Proof. According to Lemma 6.3, given a bit flip error e, its corresponding gauge
equivalent minima emin ≡ e can be computed, according to Algorithm 5, in O(d2 ·
2d

2
), where d is the distance of the code. Hence the total time required to find

the gauge equivalence for the entire training dataset consisting of N samples is
O(N · d2 · 2d2). According to Lemma 2.8 given a bit flip error e, its corresponding
rank based gauge equivalent minima emin ≡ e can be computed by Algorithm 7
in O(N2 · d4) where d is the distance of the code and entire dataset consists of N
errors. Hence, it is gainful to employ rank based gauge equivalence only when

O(N · d2 · 2d2) ≥ O(N2 · d4)

⇒ c1 ·N · d2 · 2d
2 ≥ c2N

2 · d4

⇒ 2d
2 ≥ c(N · d2)

where c = c2
c1

is a constant.

We have empirically tested that for d > 3, the rank based equivalence method is
faster than its search based counterpart for bit flip error.

The two algorithms based on linear search and rank to determine gauge equivalence
class representatives, are applicable for both bit flip and phase flip errors for any
gauge code. However, for the heavy hexagon code, we exploited the gauge struc-
ture to design a better algorithm to find gauge equivalence for phase flip errors.
Similarly, structure of other codes may be exploited to design better algorithms to
find gauge equivalence for bit and/or phase flip errors.

6.4 Simulation Results

We have implemented and tested our ML based decoders for heavy hexagon code
[CZ+20] with bit flip, phase flip, and depolarization noise models. The machine
learning parameters used for our decoder are given in Section 1.4.1
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To the best of our knowledge, only MWPM based decoders have been studied for
the heavy hexagon QECC. Hence we have compared the metrics of our ML based
decoder with those for MWPM decoder. We have used the stabiliser structure of
the MWPM decoder proposed in [CZ+20], and implemented it using the ‘PyMatch-
ing’ library [Hig22]. The threshold obtained by this implementation of MWPM
decoder is the same as that in [CZ+20] (vide Fig. 6.6). Although the original paper
on heavy hexagon code used only MWPM decoder, for the sake of completeness,
we have shown the threshold and pseudo-threshold values for Union Find decoder
as well. We have used the Plaquette library [pla] for the implementation of Union
Find decoder.

We have executed our codes for our ML decoders along with our search and rank
based algorithms to find the gauge equivalence representatives, on a server of Na-
tional Energy Research Scientific Computing (NERSC) which has the computing
resource Perlmutter, a Cray EX system with AMD EPYC CPUs and NVIDIA
A100 GPUs.

6.4.1 Machine Learning Parameters

Our ML model has been trained in batches of data instead of training it with
the entire data set (of size 106) at once. This is advantageous in terms of both
training time and memory capacity. For a distance d heavy hexagon code, there are
d2 data qubits and d2 − 1 measure qubits (involving stabilizers and flag qubits).
The data set is generated as follows. For each qubit (both data and measure),
we apply an error with probability pphys. If the noise model is bit (phase) flip,
then a X (Z) operator is applied on the particular qubit with probability pphys.
For depolarization noise model, the error operator is a linear combination of X,
Y or Z, each with probability pphys

3
. Finally, once the syndrome of the qubit

error is generated (which is also noisy since the measure qubits may be erroneous
as well), we apply measurement error by changing each bit of the syndrome with
probability pmeas. According to [FWH12, CZ+20], we assume pmeas = pphys. Under
the assumption that errors are not correlated, this model captures a majority of
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the noise in real devices and has also been considered in prior research [FWH12,
CZ+20]. Thus our dataset is a subset of all possible errors, which is likely to be a
good representative of the actual noise in the hardware since it is generated in a
manner similar to the assumption for the errors to occur in the quantum hardware
[FWH12, CZ+20].

The dataset size that we have used is 100000 from which 70000 is used for training
and the rest for testing purpose. For evaluating the model we have used 10 fold
cross validation. This approach involves randomly dividing the set of observations
into 10 groups, or folds, of approximately equal size. The first fold is treated as a
validation set, and the method is fit on the remaining 9 folds.

The batch size of our simulation is 10000, run for 1000 epochs, with a learning rate
of 0.01 (using stochastic gradient descent). The results have been averaged over
five trials. This method is repeated for each value of the physical error probability
(pphys) considered in this study.

Our FFNN has four layers, namely an input layer, an output layer and two hidden
layers. For bit flip errors, in the input layer there are (d2−1)/2 nodes which is the
size of the syndrome (equals the number of Z stabilizers). For phase flip errors,
in the input layer there are d nodes which is the size of the syndrome (equals the
number of X stabilizers). The number of nodes in the output layer is always d2,
the number of data qubits for distance d of the heavy hexagon code. The loss
function is chosen as binary cross-entropy. We have used the Keras library for
creating the FFNN. Table 6.3 includes the details of our FFNN.

6.4.2 Estimating Logical Error Rate with

our Machine Learning based Syndrome Decoder

The input of the FFNN based decoder is the syndrome or the list of ancilla mea-
surements. The output of the decoder is the list of the indices of the data qubits
for which error is detected. Suppose the size of the testing data is Nt. For each
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Table 6.3: Number of nodes in the layers of our FFNN based heavy hexagon
QECC syndrome decoder for bit flip and phase flip errors

Layer Code distance d # nodes for bit flip errors # nodes for phase flip errors
3 4 3

Input 5 12 5
7 24 7
3 9 9

Output 5 25 25
7 49 49
3 16 16

First hidden 5 32 32
7 64 64
3 16 16

Second hidden 5 32 32
7 64 64

testing data (Si, ei), where Si is the syndrome for the error ei, the FFNN decoder
is provided with the syndrome and it suggests a probable error eiFFNN

. An error
being a Pauli operator, is self-adjoint, and its correction is by simply applying
the same operator once more. Therefore, the effective error on the system after
performing correction based on the suggestion of the FFNN decoder is eiFFNN

.ei.
Note that when eiFFNN

= ei it implies perfect correction. We can verify easily
whether eiFFNN

.ei is a logical error. We want to emphasize here that the decoder
may predict error incorrectly but the result may still not be a logical error, i.e.,
eiFFNN

̸= ei, whereas eiFFNN
.ei is not a logical error. In accordance with [CZ+20],

we report here only the probability of logical errors identified as above. If this
count of logical errors is νlogical, then our estimate for the logical rate or error
probability plogical is reported as νlogical/Nt.

6.4.3 Comparison of ML-based decoder results with MWPM

Bit flip error on data qubit

First, we show the decoding performance of our FFNN-based decoder for heavy
hexagon codes of distance 3, 5, and 7 for bit flip noise model on data qubit (as-
suming ideal stabilizers and measurements).
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Table 6.4 shows the values of threshold and pseudo-threshold for UF, MWPM and
our proposed ML decoders for heavy hexagon QECC with distance 3, 5, and 7.
We note that the ML decoder clearly outperforms MWPM, which in its turn,
outperforms UF. Therefore, henceforth, all comparisons of our ML decoder is
performed with MWPM.

Table 6.4: Comparison of UF, MWPM and FFNN based decoder result in case of
bit flip error (assuming ideal stabilizers and measurements)

Decoding method Code distance d Threshold Pseudo Threshold
3 0.0001

UF 5 0.0038 0.0008
7 0.0018
3 0.0002

MWPM 5 0.0042 0.0012
7 0.0024
3 0.006

FFNN 5 0.015 0.0086
7 0.0115

Figure 6.2: Threshold and pseudo-threshold values for MWPM and ML based
decoders in case of distance 3, 5, and 7 heavy hexagon code for bit flip error on
data qubit

Fig. 6.2 shows the change in the probability of logical error with physical error
probability p, which is the per-step error probability in the heavy hexagon code
cycle, when the error occurs only on data qubits. The results of MWPM and
FFNN-based decoder for bit flip noise models on data qubits are shown. In the
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figure, the blue, orange, and green lines respectively are the plots for distances
3, 5, and 7. The points where the blue, orange and green line intersect the cyan
straight line indicate the pseudo-threshold for distances 3, 5 and 7 respectively.

Naturally, with increase in the distance of the heavy hexagon code, the pseudo
threshold improves. However, threshold is a property of the error correcting code
and the noise model only. It is independent of the distance. In Fig. 6, we observe
that our ML based decoders are working much better than MWPM decoders for
heavy hexagon QECC in terms of threshold.

Performance of FFNN based decoder result without and with gauge
equivalence for bit flip error on data qubit along with measurement and
stabilizer error

We show the decoding performance of our FFNN-based decoder for heavy hexagon
codes of distance 3, 5, and 7 for bit flip noise model on data qubit along with
measurement, and stabilizer error for three cases, i.e. without gauge equivalence,
with search-based gauge equivalence, and with rank-based gauge equivalence. Our
FFNN based model outperforms the existing MWPM decoder. We also show that
the performance of FFNN with gauge equivalence is better than that of FFNN
without gauge equivalence, and also the performance of search based and rank
based gauge equivalence is more or less equal. We then present the comparison of
decoding time (in seconds) needed for distance 3, 5 and 7 heavy hexagon code in
case of FFNN based decoder for three cases, namely without gauge equivalence,
with search based gauge equivalence and with rank based gauge equivalence. This
supports the fact that rank based gauge equivalence method is faster than search
based gauge equivalence (Fig 6.4). Although the time needed for the basic FFNN
decoder is much less than that for the search based gauge or rank based gauge
equivalence methods but the decoding performance is poorer as already mentioned
above.
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Figure 6.3: Threshold and pseudo-threshold values for MWPM and ML based
decoders (without and with gauge equivalence) and in case of distance 3, 5, and 7
heavy hexagon code for bit flip error on data qubit along with measurement, and
stabilizer error

Fig. 6.3 shows the variation in the logical error probability with physical error
probability p with and without the application of gauge equivalence.
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Figure 6.4: Comparison of time (in seconds) needed to (a) pre-process and find
gauge equivalence based on linear search and on rank for distance 3 (blue), distance
5 (orange) and 7 (green) heavy hexagon code, (b) train the FFNN based decoder
for the three cases, namely without gauge equivalence, with search based gauge
equivalence and with rank based gauge equivalence

In Table 6.5 we note the threshold value for MWPM and FFNN based decoders
(With and Without Using Gauge equivalence) and pseudo-threshold values for
both decoders in case of distance 3, 5, and 7, for this same noise model. Here
we observe ∼ 1.15× (that is about ∼ 14%) increase in the threshold for ML-
decoders using gauge equivalence as compared to ML-decoders without using gauge
equivalence.

In Fig 6.4(a) we compare the time to find the gauge equivalence. which is a
preprocessing step before training the ML decoder. We observe that the rank based
method is faster than the search based method, which supports our Corollary 16
in Section 4.3.
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Table 6.5: Comparison of FFNN based decoder, result without and with gauge
equivalence in case of bit flip error on data qubit along with measurement and
stabilizer errors

Decoding method Code distance d Threshold Pseudo Threshold
3 0.00018

MWPM 5 0.0035 0.00023
7 0.0013
3 0.0055

FFNN without gauge equivalence 5 0.01375 0.008
7 0.011
3 0.0081

FFNN with search based gauge equivalence 5 0.01586 0.0102
7 0.0112
3 0.0082

FFNN With rank based gauge equivalence 5 0.01587 0.0103
7 0.0112

In Fig 6.4(b) we have shown the comparison of training time (in seconds) needed
for distance 3, 5 and 7 heavy hexagon code by our FFNN based decoder for three
cases, namely without gauge equivalence, with search based gauge equivalence and
with rank based gauge equivalence. Decoding using gauge equivalence for both
search and rank based methods, takes less time than without gauge equivalence.
The gauge equivalence technique reduces the number of error classes, resulting in
a classification problem with fewer classes, and thus the training of ML model
becomes not only faster but also more accurate. For all the three cases, the time
required for d = 7 (green bar) is significantly higher than that for d = 5 (orange
bar) or d = 3 (blue bar).

For an instance of a decoding problem for d = 3 heavy hexagon QECC using bit
flip noise model, while the decoding time for MWPM decoder is approx 6× 10−6

seconds, it is approx 3.8 × 10−6 seconds for our FFNN based decoder using rank
based gauge equivalence. This supports our intuition that ML based decoding is
faster than MWPM based decoder for heavy hexagon QECC.

Performance of FFNN based decoder for phase flip error

Fig. 6.5 depicts the performance of our FFNN-based decoder for heavy hexagon
code having distances 3, 5, and 7, using search based gauge equivalence for phase
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flip error on data qubit along with measurement and stabilizer errors. We observe
that the probability of physical error above which the probability of logical error
increases with the distance of the QECC, is 0.0118 in the case of our FFNN based
decoder, i.e., ∼ 19× greater than that of MWPM based decoder, for which it is
0.00063. For decoding phase flip errors in heavy hexagon code, we have primarily
made use of the Bacon-Shor code because as stated earlier heavy hexagon code is
a combination of surface code and subsystem code (Bacon Shor code) [CR18]. It
may be pointed out that the definition of threshold as given in Section 1 is not
applicable to Bacon-Shor codes [Bac06].

Figure 6.5: Phase flip error rates for the heavy hexagon code – (a) In MWPM
based decoder (b) In FFNN based decoder with gauge equivalence.

Performance of FFNN based decoder for depolarization noise

Lastly, we present the performance of our FFNN-based decoder for heavy hexagon
codes of distance 3, 5, and 7 in the case of depolarizing noise in terms of logical X
(bit flip) and logical Z (phase flip) errors in Table 6.4.3. Our model outperforms
the existing decoders.
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Table 6.6: Comparison of FFNN based decoder with MWPM decoder for logical
X in depolarization noise model

Decoding method Code distance d Threshold Pseudo-threshold
3 0.0005

MWPM 5 0.0045 0.002
7 0.0032
3 0.0105

FFNN ( with gauge equivalence) 5 0.0245 0.0125
7 0.0207

Hence for depolarization noise model, the threshold of our FFNN based decoder
is 0.0245 in the case of heavy hexagon code, which is much higher than that of
MWPM, i.e., 0.0045 [CZ+20]. Hence our proposed ML-based decoding method
achieves ∼ 5× higher values of threshold than that by MWPM. Further, ML
based decoders have better (higher) pseudo threshold that MWPM. Note: For
depolarization noise model, the threshold for FFNN based decoding was 0.03 with
surface code [BSM+22].

6.4.4 Scalability of our ML based decoder

A supervised ML model consists of a training and a testing phase. It is the training
phase which often has a significant time requirement. For training a neural network
having four layers with i, j, k and l nodes respectively, N training samples, and
n epochs, the worst case time complexity is O(nN.(ij + jk + kl)) [Alp21]. The
number of nodes in each layer scales linearly with the number of qubits, which is
O(d2), d being the distance of the QECC. The number of nodes for each layer is
bounded by O(d2). Therefore the time complexity for training is O(nN.d4). While
the training time of the ML model increases polynomially with the distance for a
fixed-size set of training samples, it increases linearly with the size of the training
set for a fixed distance.

Once the training is performed, decoding of each syndrome is essentially executing
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the ML model once with that syndrome as the input. The time complexity for
decoding each syndrome is, thus, O(ij + jk + kl) = O(d4).

Figure 6.6: In FFNN based decoder for depolarizing noise model (a) Logical X
error rates and (b) logical Z error rates for the heavy hexagon code. In MWPM
based decoder (c) Logical X error rates and (d) logical Z error rates for the heavy
hexagon code.

Training of an ML model can be considered as a preprocessing step. With increase
in distance of the code, it is necessary to increase the number of training samples
N in order to have a fair training. Since training can become expensive for higher
distance codes, it may be possible to use a divide-and-conquer method to divide the
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lattice into multiple smaller (and possibly overlapping) sublattices so that each of
them can be trained efficiently. However, this method has the challenge of knitting
the results from these sublattices into the final result corresponding to the lattice.
We plan to explore this in future.

For graph based QECC decoders such as MWPM and UF, let G = (V,E) be the
syndrome graph, where |V | = O(d2). The worst case time complexity of MWPM
decoder is O(V 3logV ) = O(2× d6× logd) [VBA20]. Thus both the decoding time
and the performance of MWPM is inferior to that of our proposed ML decoder.
On the other hand, UF decoder scales almost linearly with the number of vertices
on the graph as O(d2 · α(n)) [DN21] where α(n) is the Ackermann’s function.
While this is lower than our ML decoder, it is to be noted that Union Find shows
a significantly poor performance compared to both MWPM and our ML decoder
in terms of error threshold which is the most important factor in QECC error
syndrome decoding.

Therefore, the decoding time of our proposed ML decoder scales polynomially with
the distance of the QECC, and performs significantly better than both MWPM
and UF decoder overall.

6.4.5 Machine Learning based Decoding of Heavy hexagon

QECC for Asymmetric Quantum Noise

We have also proposed ML-based decoders for heavy hexagon code have been
implemented and tested under the amplitude damping, amplitude-phase damping
combined as well as phase damping noise models. We have utilized the stabilizer
structure of the Minimum Weight Perfect Matching (MWPM) decoder proposed
in [CZ+20] and implemented it using the ‘PyMatchingV2’ library [HG23] for the
sake of comparison.
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Performance of our decoder for various asymmetric noise models

We present the performance of our FFNN based decoder for heavy hexagon codes
with distance 3, 5, and 7 for amplitude damping noise in Table 6.7. Our model out-
performs the MWPM decoders in terms of threshold and pseudo-threshold. Note
that since it has been already established in [BM+24] that MWPM outperforms
Union Find decoder, we do not perform that comparison here.

Figure 6.7: (a) Using FFNN based decoder, Logical error rates for the heavy
hexagon code and (b) Using MWPM based decoder, Logical error rates for the
heavy hexagon code, for Amplitude damping noise model, γA = 0.01

Figs. 6.7 (a) and (b) present the values of the threshold and pseudo-threshold of
ML based and MWPM based decoders for amplitude damping noise model with
γA = 0.01. We note that the ML-based decoder achieves ∼ 5× higher values of
threshold than MWPM for this noise model.

For amplitude phase damping combined noise model, from Table 6.7 we can see
that the ML-based decoder achieves∼ 22× higher values of threshold than MWPM
based decoder.

Note that twirling a phase damping noise model generates a phase flip error which
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Table 6.7: Comparison of FFNN based decoder with MWPM decoder for logical
error in various noise model

Decoding method Code distance d Noise Model Threshold Pseudo-threshold
3 Amplitude Damping 0.0005

MWPM 5 γA = 0.01 0.0038 0.0018
7 (Asymmetric) 0.0025
3 Amplitude Damping 0.0102

FFNN ( with gauge equivalence) 5 γA = 0.01 0.022 0.0122
7 (Asymmetric) 0.0201
3 Amplitude Phase Damping 0.00039

MWPM 5 γA = 0.02, γP = 0.01 0.00052 0.00045
7 (Asymmetric) 0.00052
3 Amplitude Phase Damping 0.0068

FFNN ( with gauge equivalence) 5 γA = 0.02, γP = 0.01 0.0115 0.0086
7 (Asymmetric) 0.0092
3 Amplitude Phase Damping 0.00036

MWPM 5 γA = 0.01, γP = 0.001 0.00048 0.00042
7 (Asymmetric) 0.00049
3 Amplitude Phase Damping 0.0066

FFNN ( with gauge equivalence) 5 γA = 0.01, γP = 0.001 0.0112 0.0081
7 (Asymmetric) 0.009

is essentially (for details see [BM+24]). We have verified that the threshold ob-
tained for phase flip model, and that for phase damping model with twirling are
equal.

Performance of FFNN based decoder for variation in γ between training
and testing

As mentioned earlier, real-world noise models often exhibit asymmetry. However,
this asymmetry can vary with time as the system drifts. Therefore, it is useful if
a decoder, trained with certain values of γA and/or γP , performs acceptably well
for minor change in these values. Here we numerically examined the performance
of our ML based decoder when trained and tested on different values of γA and
γP . Fig. 6.8 shows the threshold obtained for the ML decoder when trained with
γA = 0.01 and tested across different values of γA. The result shows that even
for a 10× variation in γA, the threshold drops by ∼ 3.6% only. In fact, daily
calibration data from IBM Quantum hardware reports a variation in asymmetry
which is much less then 10×. Therefore, our ML decoder is shown to be robust
against minor variation in asymmetry. Note that while Fig. 6.8 shows the result
for amplitude damping noise only, we obtain similar robustness of our decoder for
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Figure 6.8: Training in one γA value and testing in other γA values

amplitude-phase damping model as well.

6.5 Discussion

In this work, we have proposed an ML-decoder for heavy hexagon code which
makes use of a novel technique based on gauge equivalence to improve the perfor-
mance of decoding. First we map decoding to a ML based classification problem.
Exploiting the properties of heavy hexagon code as a subsystem code, we have
defined gauge equivalence, which, in turn, reduces the number of error classes for
ML based classification. We have proposed search based and rank based methods
for finding the gauge equivalence; the former being faster for finding equivalence
in phase flip errors and the later for bit flip errors.

We have tested our decoders for heavy hexagon codes with distances upto 7 for
both symmetric and asymmetric noise models. We have shown that even the naïve
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ML decoder outperforms the MWPM and UF based decoders in terms of pseudo-
threshold and threshold. Using gauge equivalence leads to further improvement
in the performance of our decoder. This research provides a plausible method for
scaling current quantum devices to the fault-tolerant era.

Finally, we synthesize our findings and insights in the concluding chapter, offer-
ing a comprehensive overview of our contributions to error reduction in quantum
computing.
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7.1 Summary

This thesis addresses critical challenges in quantum computing, specifically fo-
cusing on error suppression and resource management in both near-term and fu-
ture quantum devices. The contributions span multiple facets of quantum cir-
cuit scheduling and error correction, leveraging machine learning and optimization
techniques to enhance the performance and reliability of quantum computations.
Through a detailed exploration of various methodologies, this research provides
valuable insights and solutions that push the boundaries of current quantum com-
puting capabilities.
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7.2 Chapter-wise Contributions

Chapter 3: Time and Noise Optimization for Distributed

Scheduling of Quantum Circuits

In Chapter 3, we propose a noise and time optimized distributed scheduler that
schedules the subcircuits obtained after circuit cutting to hardware such that the
fidelity is maximized, and yet the execution time on each hardware is restricted by
a pre-specified limit. This method combines inter-device parallelization with noise-
aware scheduling to optimize the fidelity of the circuit. The results demonstrate
that our method outperforms the fidelity of the uncut circuit executed on the least
noisy device, while significantly reducing execution time on a quantum processor.
This chapter also discusses the potential for this method to be particularly useful
in the near-term when devices are noisy and execution time on quantum devices
is limited.

Chapter 4: Resource-aware Scheduling of Multiple Quantum

Circuits on a Hardware Device

Chapter 4 addresses the critical challenge of optimizing quantum circuit scheduling
to enhance the throughput and efficiency of quantum computing hardware. By
drawing analogies to the classical bin packing problem, we demonstrated the NP-
Hard nature of our problem, which involves placing multiple quantum circuits onto
quantum processing units while considering the inherent noise and limited qubit
connectivity. Our proposed solution, using integer linear programming (ILP) or
a greedy heuristic-based solution on compatibility graphs and maximal cliques,
effectively balances the trade-off between noise reduction and resource utilization.
The chapter details the experimental results, showing significant improvements in
throughput and efficiency, making it a viable approach for real-world quantum
computing applications.
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Chapter 5: Machine-Learning based Decoding of Surface Code

Syndromes in Quantum Error Correction

In Chapter 5, we proposed an ML-decoder to correct both symmetric and asym-
metric depolarizing noise on surface codes. Our decoder operates on two levels:
a low-level that tries to accurately predict the error on the qubits, followed by a
high-level that detects any logical error introduced by the low-level decoder. This
method employs neural networks (FFNN and CNN) for surface codes of distances
3, 5, and 7. The results indicate that our proposed ML-decoder outperforms the
Minimum Weight Perfect Matching (MWPM) method, showing approximately a
2× increase in threshold and a 10× increase in pseudo-threshold. Additionally, our
decoder performs equally well for asymmetric errors, which are more realistic in
quantum devices. The chapter also explores the performance of various ML mod-
els with different levels of sophistication, showing that increased model complexity
requires more decoding time but does not necessarily yield better performance.

Chapter 6: Efficient Syndrome Decoder for Heavy Hexagonal

QECC via Machine Learning for Symmetric and Asymmetric

Noise Model

Chapter 6 presents an ML-decoder for heavy hexagonal code, employing a novel
technique based on gauge equivalence to improve decoding performance. We
showed that even a naive ML decoder outperforms MWPM and Union-Find (UF)
based decoders in terms of pseudo-threshold and threshold. Using gauge equiva-
lence further enhances the performance of our decoder, demonstrating the poten-
tial for this approach to scale current quantum devices towards fault tolerance.
For symmetric noise, we utilized search-based and rank-based methods for find-
ing gauge equivalence, with the former being faster for phase flip errors and the
latter for bit flip errors. For asymmetric noise, the rank-based gauge equivalence
method was employed, significantly improving the performance of the ML decoder
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compared to MWPM decoders. This chapter suggests future research directions
such as studying the applicability of gauge equivalence and ML-based decoders for
other noise models, including Pauli and amplitude damping and amplitude-phase
damping noise.

7.3 Future Directions

This research opens several avenues for future exploration, which are crucial for
advancing the field of quantum computing towards practical and scalable solutions.

Distributed Scheduling

Future research may delve into scheduling circuits where balanced partitioning
is too costly, exploring more flexible and adaptive scheduling techniques. Inves-
tigating the integration of advanced noise models and real-time adaptability in
distributed schedulers could further enhance the fidelity and efficiency of quantum
computations.

Intra-device Scheduling

In the realm of intra-device scheduling, developing more sophisticated heuristic
methods and exploring their impact on resource utilization could provide deeper
insights. Additionally, integrating machine learning techniques to predict and
mitigate noise effects dynamically could revolutionize how quantum circuits are
scheduled and executed.
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Machine Learning for Error Correction

For error correction, future work could focus on considering noisy measure qubits
and imperfect measurements, which would provide a more realistic assessment
of the ML-decoder’s performance in practical scenarios. Further studies could
explore the cumulative effects of multiple noise sources and the applicability of
gauge equivalence and ML-based decoders to other noise models such as Pauli and
amplitude damping noise.

Cross-disciplinary Techniques

Exploring cross-disciplinary techniques, such as integrating classical optimization
methods with quantum-specific adaptations, could lead to novel solutions for quan-
tum circuit scheduling and error correction. Collaborations with fields like machine
learning, operations research, and classical computing could yield innovative ap-
proaches that enhance the overall performance and reliability of quantum devices.

In conclusion, this thesis lays the groundwork for significant advancements in quan-
tum computing, addressing critical challenges in error suppression and resource
management. By exploring these future directions, researchers can build upon
the contributions of this thesis, paving the way for practical, scalable, and fault-
tolerant quantum computing systems.



List of publications by the author

Related to this thesis

In Journals

1. Machine-Learning based Decoding of Surface Code Syndromes in Quantum
Error Correction. Debasmita Bhoumik, Pinaki Sen, Ritajit Majumdar, Sus-
mita Sur-Kolay, Latesh K. J., Sundaraja Sitharama Iyengar. Special Issue of
Multidisciplinary Sciences And Advanced Technology, Journal of Engineering
Research and Sciences, 2022.DOI: 10.55708/js0106004

2. Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning.
Debasmita Bhoumik. Ritajit Majumdar, Dhiraj Madan, Dhinakaran Vinayaga-
murthy, Shesha Raghunathan, Susmita Sur-Kolay. ACM Transactions on Quan-
tum Computing,Volume 5, Issue 1, 2024. https://doi.org/10.1145/3636516

3. Distributed Scheduling of Quantum Circuits with Noise and Time Optimiza-
tion. Debasmita Bhoumik, Ritajit Majumdar, Amit Saha, Susmita Sur-Kolay.
arXiv preprint arXiv:2309.06005 (2023). Submitted in IEEE TETC on 14th
August 2024.

4. Resource-aware Scheduling of Multiple Quantum Circuits on a Hardware De-
vice. Debasmita Bhoumik, Ritajit Majumdar, Susmita Sur-Kolay. arXiv:2407.08930
(2024). Submitted in IEEE TETC on 11th November 2024.

i



CHAPTER 7. LIST OF PUBLICATIONS RELATED TO THE THESIS ii

In Peer-reviewed International Conference Proceedings

1. Machine Learning based Decoding of Heavy Hexagonal QECC for Asymmetric
Noise. Debasmita Bhoumik, Ritajit Majumdar, Dhiraj Madan„ Susmita Sur-
Kolay. IEEE Computer Society Annual Symposium on VLSI 2024 (ISVLSI
2024), Knoxville. USA.

Not included in this thesis

In Journals

1. Surface Code Design for Asymmetric Error Channels. Utkarsh Azad, Alek-
sandra Lipińska, Shilpa Mahato, Rijul Sachdeva, Debasmita Bhoumik and
Ritajit Majumdar. 2021. IET Quantum Communication, Volume 3, Issue 3,
Pages 174-183, September 2022; DOI : 10.1049/qtc2.12042.

2. Amplitude damping error on QKD: Effect and a probable bypass. Munsi
Afif Aziz, Bishwajit Prasad Gond, Srijita Nandi, Soujanya Ray, Debasmita
Bhoumik, Ritajit Majumdar. Modern Physics Letters A. Vol. 38, No. 10n11,
2350058 (2023).

In Peer-reviewed International Conference Proceedings

1. Optimized QAOA ansatz design for two-body Hamiltonian problems. Rita-
jit Majumdar, Debasmita Bhoumik, Dhiraj Madan, Dhinakaran Vinayaga-
murthy, Shesha Raghunathan, and Susmita Sur-Kolay. 37th International Con-
ference on VLSI Design and 23rd International Conference on Embedded Sys-
tems (VLSID) 2024.

Preprints



iii CHAPTER 7. LIST OF PUBLICATIONS RELATED TO THE THESIS

1. Synergy of machine learning with quantum computing and communication.
Debasmita Bhoumik, Susmita Sur-Kolay, Latesh K. J., Sundaraja Sitharama
Iyengar. arXiv preprint arXiv:2310.03434. 2023

2. Depth Optimized Ansatz Circuit in QAOA for Max-Cut. Ritajit Majumdar,
Debasmita Bhoumik, Dhiraj Madan, Dhinakaran Vinayagamurthy, Shesha
Raghunathan, and Susmita Sur-Kolay. arxiv:2110.04637. 2021

3. Optimizing Ansatz Design in QAOA for Max-cut. Ritajit Majumdar, Dhiraj
Madan, Debasmita Bhoumik, Dhinakaran Vinayagamurthy, Shesha Raghu-
nathan, and Susmita Sur-Kolay. arXiv:2106.02812. 2021



Bibliography

[AA+19] G. Aleksandrowicz, T. Alexander, et al. Qiskit: An open-source frame-
work for quantum computing. Accessed on: Mar, 16, 2019.

[Alp21] E. Alpaydin. Machine learning. 2021.

[Bac06] D. Bacon. Operator quantum error-correcting subsystems for self-
correcting quantum memories. Physical Review A, 73(1):012340, 2006.

[BB+93] C. H. Bennett, G. Brassard, et al. Quantum cryptography: Public key
distribution and coin tossing. Proceedings of the IEEE International
Conference on Computers, Systems and Signal Processing, pages 175–
179, 1993.

[BC20] T. Bochen and J. Cong. Optimality study of existing quantum com-
puting layout synthesis tools. IEEE Transactions on Computers,
70(9):1363–1373, 2020.

[BK98] S. B. Bravyi and A. Y. Kitaev. Quantum codes on a lattice with
boundary. arXiv preprint quant-ph/9811052, 1998.

[BM+23] V. D. Berg, Z. K. Minev, et al. Probabilistic error cancellation with
sparse pauli–lindblad models on noisy quantum processors. Nature
Physics, pages 1–6, 2023.

[BM+24] D. Bhoumik, R. Majumdar, et al. Efficient syndrome decoder for

iv



v BIBLIOGRAPHY

heavy hexagonal qecc via machine learning. ACM Transactions on
Quantum Computing, 5(1):1–27, 2024.

[BS+22] S. Basu, A. Saha, et al. i-qer: An intelligent approach towards quan-
tum error reduction. ACM Transactions on Quantum Computing,
3(4):1–18, 2022.

[BSM+22] D. Bhoumik, P. Sen, R. Majumdar, S. Sur-Kolay, KJ Latesh K, and
S. S. Iyengar. Machine-learning based decoding of surface code syn-
dromes in quantum error correction. Journal of Engineering Research
and Sciences, 1(6), 2022.

[CBSG17] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[CD+22] T. Chatterjee, A. Das, et al. Qurzon: A prototype for a divide and
conquer-based quantum compiler for distributed quantum systems.
SN Computer Science, 3(4), jun 2022.

[CLRS22] T. H. Cormen, C. E. Leiserson, R. L Rivest, and C. Stein. Introduction
to algorithms. MIT press, 2022.

[cpl] IBM ILOG CPLEX Optimization Studio 22.1.1. https://www.ibm.

com/products/ilog-cplex-optimization-studio.

[CR18] C. Chamberland and P. Ronagh. Deep neural decoders for near term
fault-tolerant experiments. arXiv preprint arXiv:1802.06441, 2018.

[CS+19] A. M. Childs, E. Schoute, et al. Circuit transformations for quantum
architectures. arXiv preprint arXiv:1902.09102, 2019.

[CZ+20] C. Chamberland, G. Zhu, et al. Topological and subsystem codes on
low-degree graphs with flag qubits. Physical Review X, 10(1):011022,
2020.

[DKLP02] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quan-
tum memory. Journal of Mathematical Physics, 43(9), 2002.

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio


BIBLIOGRAPHY vi

[DN21] Nicolas Delfosse and Naomi H Nickerson. Almost-linear time decoding
algorithm for topological codes. Quantum, 5:595, 2021.

[DT+19] P. Das, S.S. Tannu, et al. A case for multi-programming quantum
computers. In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 291–303, 2019.

[Edm65a] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathe-
matics, 17:449–467, 1965.

[Edm65b] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathe-
matics, 17:449–467, 1965.

[EM+22] A. Eddins, M. Motta, et al. Doubling the size of quantum simulators
by entanglement forging. PRX Quantum, 3(1):010309, 2022.

[FSG09] A. G. Fowler, A. M. Stephens, and P. Groszkowski. High-threshold
universal quantum computation on the surface code. Physical Review
A, 80(5):052312, 2009.

[FWH12] A. G. Fowler, A. C Whiteside, and Lloyd CL Hollenberg. Towards
practical classical processing for the surface code. Physical review
letters, 108(18):180501, 2012.

[Got97] D. Gottesman. Stabilizer codes and quantum error correction. arXiv
preprint quant-ph/9705052, 1997.

[GP17] G. G. Guerreschi and J. Park. Gate scheduling for quantum algo-
rithms. ArXiv e-prints, 2017.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing, pages 212–219, 1996.

[HG23] O. Higgott and C. Gidney. Sparse blossom: correcting a million er-
rors per core second with minimum-weight matching. arXiv preprint
arXiv:2303.15933, 2023.



vii BIBLIOGRAPHY

[Hig22] O. Higgott. Pymatching: A python package for decoding quantum
codes with minimum-weight perfect matching. ACM Transactions on
Quantum Computing, 3(3):1–16, 2022.

[Hil86] R. Hill. A first course in coding theory. Oxford University Press, 1986.

[IM07] L. Ioffe and M. Mézard. Asymmetric quantum error-correcting codes.
Phys. Rev. A, 75:032345, Mar 2007.

[JATK+24] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D Nation,
Lev S Bishop, Andrew W Cross, et al. Quantum computing with
qiskit. arXiv preprint arXiv:2405.08810, 2024.

[JG+23] A. Javadiabhari, J. M. Gambetta, et al. Validating and estimating run-
time for quantum algorithms, February 14 2023. US Patent 11,580,433.

[JW22] M. Johnson and H. Wang. Object recognition in cluttered environ-
ments using convolutional neural networks. Pattern Recognition Let-
ters, 135:45–53, 2022.

[KG22] A. Kumar and R. Gupta. Predicting soil properties using machine
learning: A review. Journal of Agricultural Science, 10(5):56–78, 2022.

[KH+19] A. Kole, S. Hillmich, et al. Improved mapping of quantum circuits to
ibm qx architectures. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(10):2375–2383, 2019.

[Kit97] A. Kitaev. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, 52(6):1191–1249, 1997.

[KJ17] S. Krastanov and L. Jiang. Deep neural network probabilistic decoder
for stabilizer codes. Scientific reports, 7(1), 2017.

[KM+17] A. Kandala, A. Mezzacapo, et al. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum magnets. Nature,
549(7671):242–246, 2017.



BIBLIOGRAPHY viii

[KM+23] T. Khare, R. Majumdar, et al. Parallelizing quantum-classical work-
loads: Profiling the impact of splitting techniques. arXiv preprint
arXiv:2305.06585, 2023.

[LA+23] B. Luciano, M. B. Agata, et al. Circuit Knitting Toolbox. https:

//github.com/Qiskit-Extensions/circuit-knitting-toolbox,
2023.

[Llo00] S. Lloyd. Quantum mechanical computers. Science, 273(5278):1073–
1078, 2000.

[LM+19] M. Li, D. Miller, et al. 2d compass codes. Physical Review X,
9(2):021041, 2019.

[LMPZ96] R Laflamme, C Miquel, J P Paz, and W H Zurek. Perfect quantum
error correcting code. Phys. Rev. Lett., 77:198–201, Jul 1996.

[LZF20] S. Li, X. Zhou, and Y. Feng. Qubit mapping based on subgraph
isomorphism and filtered depth-limited search. IEEE Transactions on
Computers, 70(11):1777–1788, 2020.

[MB+16] R. Majumdar, S. Basu, et al. Error tracing in linear and concatenated
quantum circuits. arXiv preprint arXiv:1612.08044, 2016.

[MB+19] P. Murali, J.M. Baker, et al. Noise-adaptive compiler mappings
for noisy intermediate-scale quantum computers. In Proceedings of
the twenty-fourth international conference on architectural support for
programming languages and operating systems, pages 1015–1029, 2019.

[MF21] K. Mitarai and K. Fujii. Constructing a virtual two-qubit gate by sam-
pling single-qubit operations. New Journal of Physics, 23(2):023021,
2021.

[MW22] R. Majumdar and C. J. Wood. Error mitigated quantum circuit cut-
ting. arXiv preprint arXiv:2211.13431, 2022.

[NC10] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

https://github.com/Qiskit-Extensions/circuit-knitting-toolbox
https://github.com/Qiskit-Extensions/circuit-knitting-toolbox


ix BIBLIOGRAPHY

[NK+21] P. D. Nation, H. Kang, et al. Scalable mitigation of measurement
errors on quantum computers. PRX Quantum, 2(4):040326, 2021.

[NT23] P. D. Nation and M. Treinish. Suppressing quantum circuit errors due
to system variability. PRX Quantum, 4(1):010327, 2023.

[PH+20] T. Peng, A. W. Harrow, et al. Simulating large quantum circuits on
a small quantum computer. Physical review letters, 125(15):150504,
2020.

[pla] plaquette — an all-encompassing fault-tolerance software package.
https://docs.plaquette.design/en/latest/.

[PR20] S. Pal and A. Ray. Granulated approach to video tracking using deep
learning. International Journal of Computer Vision, 128(7):1925–
1940, 2020.

[Pre98] J. Preskill. Lecture notes for physics 229: Quantum information and
computation. California Institute of Technology, 16(1):1–8, 1998.

[Pre18] J. Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[PS+21] A. M. Perlin, Z. H. Saleem, et al. Quantum circuit cutting with
maximum-likelihood tomography. npj Quantum Information, 7(1):64,
2021.

[RFV+17] L. Riesebos, X. Fu, S. Varsamopoulos, C.G. Almudever, and K.L.M.
Bertels. Pauli frames for quantum computer architectures. In Pro-
ceedings of the FTQC/Bertels Lab, 2017.

[S+18] R. Sweke et al. Reinforcement learning decoders for fault-tolerant
quantum computation. arXiv preprint arXiv:1810.07207, 2018.

[SB22] J. Smith and L. Brown. Human pose estimation with deep residual
networks. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 44(8):2345–2358, 2022.



BIBLIOGRAPHY x

[SC+04] T. G. Draper S. Cuccaro et al. A new quantum ripple-carry addition
circuit. arXiv preprint quant-ph/0410184, 2004.

[SD+20] S. Sivarajah, S. Dilkes, et al. t| ket>: a retargetable compiler for nisq
devices. Quantum Science and Technology, 6(1):014003, 2020.

[Sho95] P. W. Shor. Scheme for reducing decoherence in quantum computer
memory. Phys. Rev. A, 52:R2493–R2496, Oct 1995.

[Sho96] P. W. Shor. Fault-tolerant quantum computation. In Proceedings
of the 37th Annual Symposium on Foundations of Computer Science,
pages 56–65, 1996.

[Sho97] P.W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, October 1997.

[SM21] R. Singhania and P. Mehta. Predicting the efficacy of online sale using
machine learning. Journal of Business Research, 134:245–258, 2021.

[SSBD14] S. Shalev-Shwartz and S. Ben-David. Understanding machine learn-
ing: From theory to algorithms. Cambridge university press, 2014.

[ST+21] Z. H. Saleem, T. Tomesh, et al. Divide and conquer for combinatorial
optimization and distributed quantum computation. arXiv preprint
arXiv:2107.07532, 2021.

[Ste96] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev.
Lett., 77:793–797, Jul 1996.

[Str06] G. Strang. Linear algebra and its applications. Belmont, CA: Thom-
son, Brooks/Cole, 2006.

[SZU+21] J. Stehlik, D. M. Zajac, D. L. Underwood, T. Phung, J. Blair,
S. Carnevale, D. Klaus, G. A. Keefe, A. Carniol, M. Kumph,
Matthias Steffen, and O. E. Dial. Tunable coupling architecture for
fixed-frequency transmon superconducting qubits. Phys. Rev. Lett.,
127:080505, Aug 2021.



xi BIBLIOGRAPHY

[T+22] M. Treinish et al. Mapomatic: Automatic mapping of compiled
circuits to lownoise sub-graphs. url: https://github. com/Qiskit-
Partners/mapomatic, 2022.

[TAR+21] Thomas T. Ayral, F. Régent, et al. Quantum divide and compute:
exploring the effect of different noise sources. SN Computer Science,
2(3):132, 2021.

[TT+21] W. Tang, T. Tomesh, et al. Cutqc: using small quantum comput-
ers for large quantum circuit evaluations. In Proceedings of the 26th
ACM International conference on architectural support for program-
ming languages and operating systems, pages 473–486, 2021.

[V+18] S. Varsamopoulos et al. Designing neural network based decoders for
surface codes. arXiv preprint arXiv:1811.12456, 2018.

[VBA19] S. Varsamopoulos, K. Bertels, and C. G. Almudever. Comparing neu-
ral network based decoders for the surface code. IEEE Transactions
on Computers, 69(2), 2019.

[VBA20] S. Varsamopoulos, K. Bertels, and C. G. Almudever. Comparing neu-
ral network based decoders for the surface code. IEEE Transactions
on Computers, 69(2):300–311, 2020.

[VCB17] S. Varsamopoulos, B Criger, and K. Bertels. Decoding small surface
codes with feedforward neural networks. Quantum Science and Tech-
nology, 3(1):015004, 2017.

[WE16] J. J. Wallman and J. Emerson. Noise tailoring for scalable quan-
tum computation via randomized compiling. Physical Review A,
94(5):052325, 2016.

[WFH11] D. S. Wang, A. G. Fowler, and Lloyd CL Hollenberg. Surface code
quantum computing with error rates over 1%. Physical Review A,
83(2):020302, 2011.



BIBLIOGRAPHY xii

[ZD+23] P. Zhu, W. Ding, et al. A variation-aware quantum circuit mapping
approach based on multi-agent cooperation. IEEE Transactions on
Computers, 72(8):2237–2249, 2023.

[Zur03] W. H. Zurek. Decoherence, einselection, and the quantum origins of
the classical. Reviews of Modern Physics, 75(3):715–775, 2003.

[ZW17] A. Zulehner and R. Wille. One-pass design of reversible circuits: Com-
bining embedding and synthesis for reversible logic. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
37(5):996–1008, 2017.


	List of Figures
	List of Tables
	Introduction
	Introduction
	Basics of Quantum Computing
	A Quantum Computer and Its Characteristics

	Challenges of Quantum Computing
	Decoherence and Dephasing
	Gate Errors
	Measurement Errors
	Qubit Connectivity and Crosstalk
	Error Accumulation and Quantum Error Correction
	Hardware Limitations and Scalability

	Motivation and Scope of this Thesis
	NISQ Era
	Error Correction Era

	Contributions and Organization of the thesis

	Background
	Noise in Quantum Computing
	Errors in a Quantum Computing System
	Asymmetric unitary noise channel via twirling

	Circuit cutting
	Circuit placement and selection of good qubits
	Intra Device Scheduling

	Quantum Error Correction
	Stabilizer Formulation of Surface Code
	Heavy Hexagon Code


	I Error suppression for NISQ devices: Current Era
	Time and noise optimization for distributed scheduling of quantum circuits
	Introduction
	Hardware Schedule for Subcircuits
	Proposed framework
	Selection of appropriate hardware
	Scoring each hardware as per noise profile
	Noise and Time Aware Distributed Scheduler (NoTaDS)

	Experimental Results
	Criteria for maximum execution time 
	Estimation of the execution time of a circuit
	Results for 6-qubit circuits
	Results for 10-qubit circuits
	Variation in fidelity with the number and size of subcircuits
	Results for a 28-qubit circuit
	Change in fidelity with and without scheduling

	A polynomial time solution for a restricted scenario
	Summary

	Resource-aware scheduling of multiple quantum circuits on a hardware device
	Introduction
	Formulation of intra-device scheduling as an optimization problem
	Finding the overlap between two layouts
	ILP Formulation for our scheduling problem

	Polynomial time heuristic algorithm
	Generation of the compatibility graph
	Greedy algorithm to find a maximal clique in the compatibility graph

	Experimental results
	Selection of  for the layouts
	Fidelity and hardware utilization in intra-device scheduling

	Conclusion


	II Error correction in Fault Tolerant Era
	Machine-Learning based Decoding of Surface Code Syndromes in Quantum Error Correction
	 Introduction
	Design methodology of our ML based decoder
	Mapping surface code onto a square lattice
	Error injection and syndrome extraction
	Training our ML model

	Experimental Results
	Noise models
	Machine Learning Parameters
	More sophisticated ML models
	Empirical train-test-ratio for optimal accuracy
	Performance on Training with Symmetric Noise Models and Testing with Asymmetric Noise Models

	Conclusion

	Efficient Syndrome Decoder for Heavy hexagon QECC via Machine Learning
	 Introduction
	Designing ML based decoder for heavy hexagon code
	Reducing error classes for heavy hexagon code
	Reducing bit flip error classes by search based gauge equivalence
	Reducing phase flip error classes by search based gauge equivalence
	Reducing bit flip error classes by rank based gauge equivalence 

	Simulation Results
	Machine Learning Parameters
	Estimating Logical Error Rate with our Machine Learning based Syndrome Decoder
	Comparison of ML-based decoder results with MWPM
	Scalability of our ML based decoder
	Machine Learning based Decoding of Heavy hexagon QECC for Asymmetric Quantum Noise

	Discussion

	Conclusion and Future directions
	Summary
	Chapter-wise Contributions
	Future Directions

	Bibliography




