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Abstract

In this thesis, we aim to develop generalised secret sharing protocols to enhance privacy, security

and robustness in various applications. We begin by introducing various existing concepts related to

secret sharing, including combinatorial repairable threshold schemes (RTSs), ramp schemes, balanced

incomplete block designs (BIBDs), frameproofness, verifiability and hierarchy in the access structure.

Our first work, motivated by the concepts of reparable threshold schemes by Stinson et al. develops

extendable tensor designs built on balanced incomplete block designs. It then combines this construc-

tion with the concepts of frameproofness by Desmedt et al. and consequently presents a frameproof

version (which by definition, loses the property of share repairability). This results in a method of

generalizing multiple BIBDs into a single, multi-level, ramp-type extendable secret sharing scheme,

along with a discussion focusing on improvement of security, and reduction of share size as well as

computation, particularly for application in IoT environments. A new graphical approach can be found

in our paper that deals with the problem of secret and share reconstruction in the frameproof setup.

Furthermore, a generalised combinatorial design resistant to framing has interesting implications in

many areas of interest in distributed IoT devices.

Vulnerabilities may arise in communication networks at various stages. For example, at the share

distribution stage, anomalies may be introduced during data transfer from the dealer to some players.

It is also possible that some (malicious) players try to frame others. Furthermore, there may occur false

share contributions by some (malicious) players during the secret reconstruction stage. We present a

novel approach to verify correct submission of shares by each participant during secret reconstruction

through a lightweight cheater identification algorithm, which significantly improves the computational

complexity of verification compared to existing algorithms.

We move on to exploring ramp-type verifiable secret sharing schemes, and the application of hidden

access structures in such cryptographic protocols. Inspired by Sehrawat et al.’s access structure

hiding scheme, we develop an ϵ-almost access structure hiding scheme, which is verifiable as well

as frameproof. We detail how the concept of ϵ-almost hiding is important for incorporating ramp

schemes, thus making a fundamental generalisation of this concept. In particular, this proves that

tensor designs are verifiable ramp-type secret sharing schemes.



Finally, we explore hierarchy in access structures and formalize our ϵ-almost access structure hiding

framework in the context of zero-knowledge proofs. We aim to achieve this by modelling a smart

transportation system implemented through a new Hierarchical Secret Sharing (HSS) ramp scheme

within this framework and instantiated with ASCON, a good lightweight verification authenticated

encryption scheme.

Keywords— combinatorial secret sharing - secure eID - cloud storage - SBIoT - cheater identification

- tensor designs - ramp schemes - access structure hiding - verifiability - frameproofness - smart

transportation
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1 | Introduction

This thesis aims to develop a generalized secret sharing protocol that enhances privacy, security,

and robustness for various applications. We begin by introducing foundational concepts in secret

sharing, including combinatorial repairable threshold schemes (RTSs), ramp schemes, balanced

incomplete block designs (BIBDs), verifiability, and hierarchical access structures.

A secret sharing scheme is a cryptographic technique used to divide a secret into multiple

parts, called shares, and distribute these shares among different parties. The secret can only be

reconstructed when a sufficient number of shares are combined. Such a scheme has a threshold,

or a minimum number of shares required to recover the original secret; any set of shares less

than the threshold reveals no information about the secret. On the other hand, combining the

required number of shares allows for the exact recovery of the original secret. For example,

imagine a safe with a combination that needs to be split among three people. No single person

should be able to open the safe alone, but any two should be able to. This is a basic concept of a

(2-out-of-3) secret sharing scheme. By distributing the secret, secret sharing enhances security

by preventing a single point of failure and mitigating the risk of unauthorized access.

Our first contribution builds on reparable threshold schemes by Stinson et al. (Kacsmar &

Stinson, 2019), introducing extendable tensor designs based on BIBDs. We combine this

with frameproofness concepts from Desmedt et al. (Desmedt, Mo, & Slinko, 2021) to create

a frameproof version, sacrificing share repairability. This leads to a multi-level, ramp-type

extendable secret sharing scheme generalizing multiple BIBDs, with a focus on improving

security, reducing share size and computation, particularly for IoT applications. We introduce a

novel graphical approach for secret and share reconstruction in the frameproof setup.

We extend Stinson’s combinatorial model from finite fields Fqk to integer rings by constructing

distribution designs with integer ring entries, demonstrating a simpler ramp scheme and secret

reconstruction method. Addressing the security vulnerability of framing players, we generalize

combinatorial RTS and enhance our scheme with frameproofness. We believe our results can

be extended to arbitrary numbers of distribution designs and that the Krönecker product of

BIBDs can be generalized to t-designs, with corresponding results following. A frameproof

modification for the generalized scheme remains an open problem. We demonstrate the broad

applicability of our tensor design and verification protocol in various IoT contexts.
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The Internet of Things (IoT) encompasses a vast array of critical applications, from extensive

networks in healthcare, commerce, and government to indispensable everyday devices. These

applications universally demand robust privacy and security for personal data while minimiz-

ing computational overhead and energy consumption. A generalized combinatorial design

resistant to framing holds immense potential for addressing these challenges in distributed IoT

environments.

IoT networks are susceptible to vulnerabilities at various stages. The share distribution phase

can introduce anomalies during data transfer or malicious framing attempts. Similarly, the

secret reconstruction phase may encounter false share contributions from malicious participants.

These threats underscore the critical need for robust and secure Verifiable Secret Sharing (VSS)

schemes.

Cheater detection is a fundamental component of VSS, ensuring only authorized shareholders

with valid shares can reconstruct the secret. This integrity is essential for protecting sensitive in-

formation from malicious manipulation. While existing VSS verification protocols such as those

employing homomorphic commitments (Benaloh, 1986), share coherence verification (Harn &

Lin, 2009), space-efficient techniques (Cafaro & Pellè, 2018; Cafaro & Pellè, 2014) and consen-

sus mechanisms (Geng, Njilla, & Huang, 2022) offer valuable solutions, further advancements

are necessary.

We propose an improved cheater detection algorithm that surpasses traditional hash-based

methods in computational efficiency through simple algebraic operations. While reducing

storage requirements, this algorithm incurs increased communication overhead. This work

lays the foundation for future research to enhance VSS security, efficiency, and practical

implementation in IoT applications.

We introduce a novel, computationally efficient cheater identification algorithm to verify the

integrity of shares during secret reconstruction. Building upon this, we delve into ramp-type

verifiable secret sharing schemes and explore the integration of hidden access structures. Inspired

by Sehrawat et al.’s (V. S. Sehrawat, Yeo, & Desmedt, 2021) work, we propose an ϵ-almost

access structure hiding scheme that is both verifiable and frameproof. This concept is crucial for

incorporating ramp schemes, leading to a fundamental generalization of the original concept.

Notably, we demonstrate that our tensor designs are verifiable ramp-type secret sharing schemes.
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We further explore the verifiability and frameproofness of access structure hiding ramp-type

tensor designs by introducing an ϵ-almost access structure hiding (θ,Θ, ℓ)-ramp tensor design, a

significant extension of Sehrawat et al.’s work. Our approach leverages Roy et al.’s concept of

extending repairable threshold schemes through tensor products of balanced incomplete block

designs to enhance data security and privacy. This generalization strengthens the security and

verifiability of secret sharing schemes by providing a mechanism for verifying the correctness

of received shares and ensuring accurate reconstruction. Incorporating ramp schemes enhances

resilience against malicious attacks and unauthorized access.

While our ϵ-almost access structure hiding concept is demonstrated for extendable combinatorial

tensor designs, its potential applications extend to various ramp-type schemes, offering opportu-

nities for improved confidentiality, secrecy, and verifiability. We envision practical applications

of our techniques in domains demanding robust security, such as secure data sharing, access

control, and distributed systems.

To bridge theory and practice, we introduce a novel hierarchical secret sharing (HSS) scheme

inspired by (Tassa, 2007), tailored to protect passenger data and travel histories within a smart

public transportation system. This system involves multiple entities with varying access require-

ments. Our HSS scheme, built upon the foundation of tensor-based designs from Chapter 3,

offers a hierarchical structure with strong security and efficiency guarantees. By incorporating

lightweight cryptographic primitives like ASCON, we address potential vulnerabilities such as

communication errors and malicious attacks. This practical implementation demonstrates the

feasibility and effectiveness of our ϵ-almost access structure hiding framework in a real-world

setting, providing a robust solution for safeguarding sensitive data while maintaining system

functionality.

Our approach leverages the strengths of the theoretical concepts discussed in this thesis in veri-

fiable secret sharing, frameproofness, and tensor-based designs; by combining these concepts

with hierarchical access control and lightweight cryptography, we create a comprehensive frame-

work that addresses the specific challenges of a smart public transportation system. This work

therefore represents a significant step towards realizing secure and efficient data management

solutions for complex real-world applications.
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1.1 Secret Sharing in the Internet of Things

A secret sharing scheme is a useful tool in modern cryptography. They are distinctive in

distributing a secret amongst multiple devices, ensuring that no single device has access to

the entire secret. This makes secret sharing schemes ideal for IoT applications where multiple

devices need to work together to perform a task. For example, in a smart home system, multiple

devices such as sensors, cameras, and smart locks need to communicate with each other to

provide security and convenience to the homeowner. In secret sharing-based IoT (SBIoT),

each cloud server is given a share constructed using a secret sharing scheme. A collection

of servers can reconstruct the secret provided that they satisfy the reconstruction criteria of

the underlying scheme (instead of privately owned keys in encryption-based schemes). Such

a scheme enables processing without the need of decryption. Energy efficiency refers to the

total energy consumption of an IoT network, which affects the lifetime of a network (Shivhare,

Maurya, Sarif, & Kumar, 2022). It is well-known that use of a ramp-type scheme improves the

security and energy efficiency in SBIoT networks (Tang, 2021). It provides better security against

various types of attacks, including replay attack, modification attack, selective forwarding attack,

and data leakages when a passive attacker is encountered. These benefits contribute to enhancing

the overall security and performance of data transfer in SBIoT networks. Using a threshold

scheme enhances personal information protection for eID cards by not storing any personal

information per se in the card (Park & Lee, 2018). Instead, sensitive personal information is

divided into two parts for distributed storage in the client and the eID card. This ensures safety

even when eID cards are lost because none of the original information can be figured out from a

single secret share. With this structure, no information whatsoever on the original can be known

from only the secret share in the card.

Secret sharing schemes also play a crucial role in ensuring secure data storage within cloud

environments. These schemes involve the division of data into multiple shares, which are

then stored on different servers. This approach provides a safeguard against any potential

compromise of a single server, thereby maintaining the security of the data. In (Nirmala, Bhanu,

Patel, & Pvt, 2012), the authors present an exploration of the comparative performance of

Shamir’s secret sharing algorithm (Shamir, 1979) and Rabin’s IDA (Rabin, 1989) within a

private cloud framework utilizing the OpenStack cloud infrastructure. The experimental results

indicated that Shamir’s secret sharing algorithm outperformed Rabin’s IDA in terms of generating
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the shares and reconstructing the data. However, Rabin’s IDA exhibited a lower storage

overhead when compared to Shamir’s secret sharing algorithm. These findings underscore

the importance of considering various factors, such as generation time, reconstruction time,

and storage requirements, when selecting an appropriate secret sharing scheme for secure data

storage in cloud environments.

In (Kacsmar & Stinson, 2019), Stinson and Kacsmar showcased imperfect secret sharing

methods that evolved from an ideal scheme like the Shamir scheme. They introduced a threshold

scheme that could rebuild lost shares with a certain chance, and protect against adversaries

with fewer players than the threshold. Our research expands upon this by broadening the scope

of distribution designs, simplifying secret reconstruction and share restoration, and enhancing

security across multiple scenarios. In short, we revisit the combinatorial design and some of its

key properties first.

1.1.1 Combinatorial RTS

A repairable threshold scheme (RTS) is a (τ, b)-threshold scheme in which a subset of players

can repair another player’s share in the event that their share is lost or corrupted, without

the participation of the dealer who set up the scheme. Stinson and Wei (Stinson & Wei,

2018) introduced combinatorial RTS in which, the repairing protocol does not compromise the

(unconditional) security of the threshold scheme.

In this work, we generalize the domain by proposing a method to construct a distribution design

with entries from an integer ring, and show that this is a ramp scheme. The size of the authorized

coalition that can recover the secret is significantly reduced in our framework. Furthermore,

the scheme proposed in this thesis produces a far more efficient share repairability, which is

possible due to the generalized domain, and based heavily on the easier secret reconstruction

mentioned beforehand.

1.1.2 Frameproofness

The concept of frameproofness was examined by Desmedt et al. in their recent paper (Desmedt

et al., 2021). Framing a player (or players) clearly compromises the security of any secret sharing

system by allowing a group of players to gain unauthorized access to additional information

about the secret. Therefore, it is vital to restrict these capabilities and/or the size of any such
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group when designing a combinatorial secret sharing scheme. We address this issue in our

proposed method and introduce a modified scheme to address the issue of a small coalition size.

Specifically, we enhance the extension scheme to prevent any framing by a coalition smaller

than the threshold. The question of the minimum coalition size that can frame a player under

this new modification remains unanswered.

1.2 Lightweight Verifiability Through a Combinatorial Ap-

proach

Secret sharing schemes, particularly in the context of the Internet of Things (IoT), have several

important applications that enhance security and data integrity. In IoT networks, devices often

need to communicate securely. Protecting sensitive data collected by these devices, such as

health data from wearable devices or environmental data from sensors can be encrypted using

a secret key derived from a secret sharing scheme. The encrypted data is then distributed

among multiple nodes. Only a subset of nodes can collaborate to decrypt the data, ensuring

that unauthorized nodes cannot access the original data. Storing data across multiple IoT

devices enhances the reliability and security of the system, since the original data can only

be reconstructed when a sufficient number of nodes collaborate. This approach also mitigates

the risk of data loss due to node failures or attacks. For applications in secure multi-party

computation, i.e. enabling multiple IoT devices to perform computations on shared data without

revealing the data to each other, secret sharing allows devices to hold shares of inputs and

perform computations on these shares. The results can be shared among the devices, and only

the final output is revealed, ensuring that individual inputs remain confidential.

Furthermore, secret sharing can be used to create a multi-factor authentication system where a

secret is shared among several devices. A device must present its share along with other factors

(like biometric data) to gain access. This adds an additional layer of security, thus enabling

authentication and access control. Firmware can also be encrypted using a secret key shared

among trusted nodes. The update process can require multiple nodes to verify the integrity

of the firmware before it is applied, preventing unauthorized or malicious updates. These are

only some examples where secret sharing schemes provide a robust framework for enhancing

security in IoT applications by mainly ensuring that sensitive information is distributed, making
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it resilient against various types of attacks while maintaining confidentiality and integrity.

Verifiable Secret Sharing (VSS) is a cryptographic protocol that allows a secret to be distributed

among a group of participants. In such a scheme, the secret (such as a cryptographic key) is

divided into multiple shares, which are distributed to participants. Only a specific subset of

these participants (defined by a threshold) can reconstruct the original secret. Each participant

can verify that the share they received is correct. This is crucial because it prevents participants

from accepting incorrect or tampered shares. In a VSS scheme, additional verification data is

provided alongside the shares, allowing participants to check the validity of their shares without

needing to communicate with others. VSS schemes are designed to be secure against certain

types of attacks, such as collusion among participants. They ensure that even if some participants

act maliciously, they cannot reconstruct the secret unless they meet the threshold requirement.

VSS is particularly useful in distributed systems, such as in the Internet of Things (IoT), where

secure and reliable group communication is essential. It can be used for secure key management,

authentication, and other cryptographic applications. Thus, VSS enhances traditional secret

sharing by adding a layer of verifiability, ensuring that participants can trust the shares they

receive and that the secret can be reconstructed securely.

1.2.1 Vulnerabilities in Communication Networks

• Share Distribution Stage: Introduction of anomalies during data transfer from dealer to

player

• Framing Dynamics: Risks of players framing each other

• Malicious Share Insertion: Threats of false share contributions during secret reconstruc-

tion

7



We shall discuss a lightweight share verification protocol for which, the residue computation is

at most O(log2 n), and the summation is O(n).

1.3 Access Structure Hiding Verifiable Tensor Designs

A verifiable secret sharing scheme (Verheul & van Tilborg, 1997; Peng, 2012; Feldman, 1987;

Pedersen, 1991; Dehkordi, Farahi, & Mashhadi, 2024) is a cryptographic protocol that allows

a dealer to distribute shares of a secret to a group of parties in such a way that (i) the secret

remains confidential and cannot be determined by any unauthorized collection of parties, (ii) the

secret can be reconstructed correctly by the authorized collection of parties when they combine

their shares, (iii) there is a mechanism for parties to verify the correctness of the shares they

receive and for the reconstruction process, and (iv) the scheme can withstand malicious behavior

from both the dealer and the parties, thus ensuring the security and integrity of the secret sharing

process.

Repairable Threshold Schemes (RTSs) (Stinson & Wei, 2018; Laing & Stinson, 2018) are

cryptographic schemes that allow for the reconstruction of lost or corrupted shares in a threshold

scheme without the need for the dealer who initially set up the scheme to be involved in the repair

process. In RTSs, a subset of authorized parties can collaboratively reconstruct the lost share,

ensuring the integrity and availability of the shared secret. Chapter 3 discusses how (B. K. Roy

& Roy, 2023) explores the concept of repairable ramp schemes for secret sharing and various

applications, including cloud storage, sensor-based IoTs, and electronic identification cards.
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It proposes a protocol for extending schemes that allow for the retrieval of shares through

collaborative efforts in case of loss or corruption, thereby enhancing data security and privacy. It

also introduces the concept of tensor products of balanced incomplete block designs (BIBDs),

which help securely combine individual secrets from various systems, enabling multi-level or

multi-system secret sharing schemes in a robust and efficient manner. (Desmedt et al., 2021)

introduced the concept of frameproofness of secret sharing schemes, which ensures the security

and integrity of shared secrets and analyses the resistance of a scheme to attempts of falsely

implicating (framing) a (set of) player(s) in the unauthorized disclosure of secret information. 3

establishes a theoretical framework for frameproofness within its extension protocol, and ensures

that its extended scheme upholds the principles of frameproofness by leveraging concepts from

combinatorial design theory.

(V. S. Sehrawat et al., 2021) provide a detailed discussion on how secret sharing can be

achieved with access structures hidden from any unauthorized coalition of players, allowing

for a wide range of access policies to be enforced in the secret sharing process. The scheme

is designed to support verifiability even when a majority of the parties are malicious, and its

verification procedure does not incur any communication overhead, making it “free” in terms of

computational resources. The scheme provides a maximum share size formula that allows for

efficient sharing of secrets while maintaining security guarantees. The share size is optimized

to balance security and efficiency considerations. It also includes mechanisms to detect and

identify malicious behavior during the secret sharing process.

In this thesis, we introduce a novel framework for ϵ-almost access structure hiding ramp-type

tensor designs. Building upon existing work on secret sharing, including VSS, RTSs, BIBDs,

and access structure hiding schemes, we formalize our proposed ϵ-almost access structure hiding

scheme. By extending the concept of tensor designs and incorporating frameproofness, we

establish a robust secret sharing mechanism with provable security properties. Our contributions

include the development of an efficient access structure token generation algorithm and rigorous

proofs of the scheme’s correctness, secrecy, and verifiability. Several suggestions about practical

applicability in real-world use-cases are also listed.
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1.4 A Secret Sharing Application on a Public Transport Model

Next, we shall formalize the ϵ-almost access structure hiding framework in the context of zero-

knowledge proofs by introducing a new ramp-type hierarchical secret sharing scheme motivated

by (Dutta, Paul, Ozaki, Ranzan, & Sakurai, 2021) of Dutta et al., within this framework. We

shall discuss applications of this scheme in IoT as well as other use-cases such as in ledger

management situations. Finally, we shall also describe a verification protocol through a good

lightweight authenticated encryption scheme, say Ascon (Dobraunig, Eichlseder, Mendel, &

Schläffer, 2021).

1.4.1 Securely Updating a Ledger

We assume that every passenger has a travel id card and a bank account. These are some

questions we attempt to answer with our framework:

• Every bus maintains a ledger. With whom does it communicate this?

• How to encrypt this bus ledger?

• How to consolidate it with the station ledger?

• What can be a good ledger updating protocol for E?

• Who can read the ledger(s)?

• In which communication channels can errors occur?
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• Which communication channels can be affected by malicious entities?

• Which participants can be affected by framing attacks from other participants?

• How to ensure secure communication (verifiability)?

• How to protect the participants from framing and other attacks?

• How to ensure that our system is lightweight, secures all passenger data, and satisfies all

the above requirements?

1.4.2 Implementation

Our goal is to protect the confidential travel information and payment records of passengers

from potential threats (such as the bus companies). To achieve this, it is necessary to integrate

access structure tokens and (ϵ-almost) access structure hiding into a practical and secure secret

sharing system that is resistant to tampering. Additionally, we need to clearly identify which

parties could be considered malicious or simply potential sources of errors in the communication

network, and develop secure and efficient algorithms for verification and error correction to

be utilized in the interactions within this system. We suggest the adoption of the lightweight

authenticated encryption scheme ASCON for the verification aspect of our proposed model.

Before studying the above questions, we shall study some of the properties of the answers. We

begin in Chapter 2 with some definitions and basic Mathematical preliminaries.
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2 | Mathematical Preliminaries

This section briefly describes some concepts required to read further. An interested reader is

requested to refer the books or the papers associated for the proof of the theorems and results

mentioned here.

2.1 Combinatorial Designs

Combinatorial design theory concerns questions about whether it is possible to arrange elements

of a finite set into subsets so that certain “balance” properties are satisfied. We recall some basic

definitions and properties of certain types of designs from (Stinson, 2004). Firstly, given a set of

points X and a collection (i.e., multiset) A of nonempty subsets of X called blocks, the pair

(X,A) is a design.

Definition 2.1 Let v, k and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-balanced

incomplete block design (which we abbreviate to (v, k, λ)-BIBD) is a design (X,A) such that

the following properties are satisfied:

1. |X| = v,

2. each block contains exactly k points, and,

3. every pair of distinct points is contained in exactly λ blocks.

Figure 2.1: The Fano Plane – An example of a (7, 3, 1)-BIBD with X = {1, 2, 3, 4, 5, 6, 7} and
A = {123, 145, 167, 246, 257, 347, 356}.

The following are some properties of balanced incomplete block designs.

Theorem 2.1 In a (v, k, λ)-BIBD, every point occurs in exactly r :=
λ(v − 1)

k − 1
blocks.
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Theorem 2.2 A (v, k, λ)-BIBD has exactly b :=
vr

k
=

λ(v2 − v)

k2 − k
blocks.

Corollary 2.1 If a (v, k, λ)-BIBD exists, then λ(v − 1) ≡ 0 (mod k − 1) and λv(v − 1) ≡ 0

(mod k(k − 1)).

Sometimes we shall use the notation (v, b, r, k, λ)-BIBD if we want to record the values of all

five parameters.

Definition 2.2 Let (X,A) be a design where X = {x1, . . . , xv} and A = {A1, . . . , Ab}. The

incidence matrix of (X,A) is the v × b 0− 1 matrix M = (mi,j) defined by the rule

mi,j =

1 if xi ∈ Aj;

0 if xi ̸∈ Aj.

Suppose that (X,A) is a design with |X| = v and |A| = b. Let M be the v× b incidence matrix

of (X,A). The design having incidence matrix M⊤ is called the dual design of (X,A). Suppose

that (Y,B) is the dual design of (X,A); then |Y | = |A| = b and |B| = |X| = v. Properties of

dual designs of BIBDs are summarized in the following theorem.

Theorem 2.3 Suppose that (X,A) is a (v, b, r, k, λ)-BIBD, and let (Y,B) be the dual design of

(X,A). Then the following properties hold:

1. every block in B has size r,

2. every point in Y occurs in exactly k blocks in B, and

3. any two distinct blocks Bi, Bj ∈ B intersect in exactly λ points.

Theorem 2.4 (Fisher’s Inequality) In any (v, b, r, k, λ)-BIBD, b ≥ v.

Note that t-designs generalise BIBDs.

Definition 2.3 Let v, k, λ, and t be positive integers such that v > k ≥ t. A t-(v, k, λ)-design

is a design (X,A) such that the following properties are satisfied:

1. |X| = v,

2. each block contains exactly k points, and
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3. every set of t distinct points is contained in exactly λ blocks.

The general term t-design is used to indicate any t-(v, k, λ)-design.

Theorem 2.5 Suppose that (X,A) is a t-(v, k, λ)-design. Also suppose that Y ⊆ X , where

|Y | = s ≤ t. Then there are exactly

λs :=
λ
(
v−s
t−s

)(
k−s
t−s

)
blocks in A that contain all the points in Y .

Corollary 2.2 Suppose that (X,A) is a t-(v, k, λ)-design, and 1 ≤ s ≤ t. Then (X,A) is an

s-(v, k, λs)-design, where

λs =
λ
(
v−s
t−s

)(
k−s
t−s

) .

Theorem 2.6 For all positive integers t, k and v such that t < k < v−t, there exists a nontrivial

t-(v, k, λ)-design for some positive integer λ.

2.2 Matroids and Framing

(Desmedt et al., 2021) provides a detailed overview of the important concepts in secret sharing.

Furthermore, they also introduce the new concept of framing in various cases. We shall

summarize these here in short.

A secret sharing scheme contains a set P = {p0, p1, p2, . . . , pn} of participants, where p0

is designated as the dealer. The dealer is responsible for distributing the secret among the

participants. The set K is defined as the set of all possible secrets, while Si denotes the

set of all possible shares for participant pi. The shares are the pieces of information that

participants receive, which collectively allow them to reconstruct the secret. A distribution table

T ⊆ K × S1 × S2 × . . .× Sn represents the possible distributions of secrets and shares among

participants. When a secret s0 ∈ K is to be distributed, an n-tuple (s0, s1, s2, . . . , sn) ∈ T is

chosen uniformly at random, where each si is the share given to participant pi. The dealer

always knows the secret, ensuring that the distribution process is controlled and secure. The set

of possible shares (of all participants) is denoted by S.
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Definition 2.4 The information rate ρ of a threshold scheme is the ratio of the size of the secret

to the size of a player’s share, i.e.

ρ =
log2 |K|
log2 |S|

,

where S is the set of all possible shares and K is the set of all possible secrets.

The distribution table can be represented as a matrix M with entries from the union of the sets

of secrets and shares, specifically K ∪ S1 ∪ . . . ∪ Sn. The rows of the matrix correspond to

different methods of distributing the secret, while the columns correspond to the participants in

the secret sharing scheme. An arbitrary element of the distribution table is denoted as M(r, p),

where r is the index of the row corresponding to a specific method of distribution, and p is the

index of a participant in the set P . The distribution table M is considered public knowledge,

meaning that all participants have access to this information. This transparency is crucial for the

functioning of the secret sharing scheme, as it allows participants to understand the structure of

the shares they receive. For a subset A ⊆ P , the notation M(r, A) is used to denote the row r

of the matrix restricted to the columns corresponding to the participants in A. This allows for

analysis of the information available to specific coalitions of participants.

If a coalition A has no information about the share of another participant b (denoted as A ↛ b),

it means that for any row r and any possible share s ∈ S(b), there exists another row r′ such that

M(r, A) = M(r′, A) and M(r′, b) = s. Conversely, if A knows the share given to b – denoted

as A⇒ b, which occurs when M(r, A) = M(r′, A) =⇒ M(r, b) = M(r′, b) – it implies that

the knowledge of A about the distribution allows them to determine the value of M(r, b). This

mathematical framework of the distribution table is essential for analyzing the properties and

security of secret sharing schemes, particularly in the context of framing and seniority.

Definition 2.5 A coalition A ⊆ P is said to be authorized if it can reconstruct the secret.

This means that the coalition A belongs to the access structureA, denoted as A ∈ A. The access

structure is a collection of all authorized coalitions that can access the secret. Formally:

Definition 2.6 An access structure A is defined as a collection of subsets of participants P

such that if a coalition X is in A and Y is a superset of X (i.e., Y ⊇ X), then Y is also in A.

Formally, this is expressed as: If X ∈ A and Y ⊇ X, then Y ∈ A. This property is known as

the monotonicity property of access structures.
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Definition 2.7 Authorized coalitions of the minimum size (i.e. no coalition of smaller size can

be authorized) are called minimal authorized coalitions.

There may be multiple minimal authorized coalitions for an access structure.

Definition 2.8 The minimal access structure Amin consists of all minimal authorized coalitions.

A coalition X is considered minimal if it is authorized, but removing any participant from X

results in a coalition that is no longer authorized. Formally:

Amin = {X ⊆ P | |X| = t and X is authorized}.

For example, in Shamir’s t-out-of-n scheme, the minimal access structure is defined as: Amin =

{X ⊆ P | |X| = t}. Clearly, access structures – and especially minimal access structures – are

a fundamental characteristic of a secret sharing scheme; knowing the full access structure means

knowing the secret sharing scheme, and it can therefore be used to characterise the scheme.

We now take a look at certain essential properties of secret sharing schemes.

Definition 2.9 A secret sharing scheme is said to be connected if every participant p ∈ P is

contained in at least one minimal authorized coalition. This means that no participant is a

"dummy" (i.e., a participant that does not contribute to any authorized coalition). Formally, for

every participant p, there exists a coalition X ∈ Amin such that p ∈ X .

Definition 2.10 A secret sharing scheme is defined as perfect if any coalition A ⊆ P that does

not know the secret has no information about it. This can be expressed mathematically as:

A → p0 =⇒ A ⇒ p0, where p0 is the dealer. In other words, if coalition A does not have

access to the secret, it cannot infer any information about it.

Definition 2.11 A secret sharing scheme is considered ideal if it is perfect and the cardinality

of the set of secrets |K| is equal to the cardinality of each set of possible shares |Si| for all

participants i. This means: |K| = |S1| = |S2| = . . . = |Sn| = q, where q is the size of the finite

field from which the secrets and shares are drawn. An ideal secret sharing scheme is thus a

perfect scheme with the shortest possible shares.

Having reviewed the fundamentals of secret sharing schemes, we now turn our attention to
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a combinatorial structure known as matroids. As we shall subsequently demonstrate (in say,

Theorem 2.7), matroids can be employed to define access structures for secret sharing schemes.

Definition 2.12 A matroid is a combinatorial structure that generalizes the notion of linear

independence in vector spaces. Formally, a matroid M is defined as a pair (E, I), where:

- E is a finite set, called the ground set. - I is a collection of subsets of E that satisfies the

following properties:

1. Empty Set The empty set is in I: ∅ ∈ I.

2. Hereditary Property If a set X is in I and Y is a subset of X , then Y is also in I:

If X ∈ I and Y ⊆ X, then Y ∈ I.

3. Exchange Property If X and Y are in I and |X| > |Y |, then there exists an element

x ∈ X \ Y such that Y ∪ {x} is also in I: If X, Y ∈ I and |X| > |Y |, then ∃x ∈

X \ Y such that Y ∪ {x} ∈ I.

A set X ⊆ E is called independent if X ∈ I; otherwise, it is called dependent. A set X is a

circuit if it is minimally dependent, meaning that it is dependent but any proper subset of it is

independent.

A matroid port is a specific subset of a matroid that retains certain properties of the original

matroid. Formally, given a matroid M = (E, I) and an element p ∈ E, the matroid port

of M at point p, denoted as Pp(M), is defined as the set of subsets X ⊆ E \ {p} such that

the rank of X is equal to the rank of X ∪ {p}. Mathematically, this can be expressed as:

Pp(M) = {X ⊆ E \ {p} | r(X ∪ {p}) = r(X)}, where r(X) denotes the rank of the set X .

In simpler terms, a matroid port captures the idea of how the inclusion of a specific element p

affects the independence of subsets of the remaining elements. If Pp(M) is an access structure,

it indicates that the structure of the matroid is preserved when considering the independence of

subsets excluding the element p.

Theorem 2.7 (Brickell-Davenport) Let M be a connected ideal secret sharing scheme on a

set of participants P . Then the sets D(M) = {A ⊆ P |∃y ∈ A such that A \ y → y} are the

dependent sets of a connected matroid.

A coalition C ⊆ P can frame a participant p /∈ C if the following condition holds: C can
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compute the share of p from their own shares. Mathematically, this can be expressed as:

C can frame p ⇐⇒ ∃S ⊆ C such that S can reconstruct p′s share sp.

Next, we consider two concepts fundamental to the consideration of framing in secret sharing:

Definition 2.13 A participant’s seniority is defined in the context of the access structure, where

a higher seniority implies a greater ability to influence the framing process. A participant p′ is

considered essential for coalition X if removing p′ from X would prevent X from being able to

reconstruct the secret.

(Desmedt et al., 2021) presents a key theorem regarding framing in ideal access structures:

Theorem 2.8 In an ideal secret sharing scheme, an authorized coalition X can frame a partici-

pant p if and only if:

• p is at least as senior as at least one member of X , and

• X contains a participant p′ that is essential for the coalition X .

This theorem establishes a critical relationship between the seniority of participants and the

ability of coalitions to frame others. The concepts of seniority and essentiality of a participant

are crucial in determining the framing capabilities of coalitions. The theorem implies that if an

authorized coalition contains a pivotal member who is essential, they can compute the share

of a participant who is at least as senior as that member. This creates a potential vulnerability

where participants can be framed based on their seniority and the structure of the coalition. The

implications of framing in ideal access structures are significant for the design and security of

secret sharing schemes. If authorized coalitions can frame participants, it raises concerns about

the integrity of the shares and the potential for misuse. This understanding emphasizes the need

for careful design of access structures to mitigate the risks associated with framing, ensuring

that participants’ shares remain confidential and secure.

Hierarchical Secret Sharing:

A hierarchical secret sharing (HSS) scheme is one whose access structure is partitioned into

two or more subcollections, with an order (i.e. a hierarchy) defined on the partitions such that
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shares from higher priority partitions are “more important” for secret reconstruction. An access

structure Γ is said to be hierarchical if it is defined by a seniority relation ≻ that is a non-strict

linear order. This means that for any two participants pi and pj in the set of participants P ,

we can determine if one is at least as senior as the other, and this relation has no cycles. Let

P = {p0, p1, p2, . . . , pn} be the set of participants, where p0 is the dealer (the most senior

participant). The seniority relation ≻ implies that if pi ≻ pj , then pi is no less senior than pj .

Theorem 2.9 In a hierarchical access structure, an authorized coalition X can frame a partici-

pant p if: - p is at least as senior as the least senior member of X , and - X contains a participant

p′ that is essential for the coalition X .

Thus, the seniority of participants plays a crucial role in determining the framing capabilities of

coalitions in HSS schemes. A participant p can be framed if they are at least as senior as the

least senior member of the coalition X . A participant p′ is essential for coalition X if removing

p′ from X would prevent X from being able to reconstruct the secret. This condition is vital for

framing capability.

The implications of framing in hierarchical access structures are significant for the design and

security of secret sharing schemes. If authorized coalitions can frame participants based on

their seniority, it raises concerns about the integrity of the shares and the potential for misuse.

This understanding emphasizes the need for careful design of hierarchical access structures to

mitigate the risks associated with framing, ensuring that participants’ shares remain confidential

and secure.

Verifiable Secret Sharing (VSS) Schemes:

Verifiability in secret sharing schemes is a critical property that ensures the integrity and

correctness of the shares distributed among participants. It allows participants to confirm that the

shares they receive are valid and that they can reconstruct the secret accurately when combining

their shares. A secret sharing scheme is said to be verifiable if there exists a verification algorithm

that allows each participant to check the validity of their share, and/or if there exists a verification

algorithm that allows a collection of players to check the validity of all shares contributed by

that collection. Thus, A VSS scheme is one that can withstand active attacks, specifically:

• a dealer sending inconsistent or incorrect shares to some of the participants during the
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distribution protocol, and

• participants submitting incorrect shares during the reconstruction protocol.

If the shares of the players involved are valid, then the reconstruction of the secret from the

shares must yield the original secret. Mathematically, if Recon(sA) = S for a set of participants

A that can reconstruct the secret, then the shares must be valid. On the other hand, if a share is

invalid, the verification algorithm must output a negative result. This ensures that participants

cannot mistakenly believe they have a valid share when they do not. Finally, if a share is valid,

the verification algorithm must output a positive result. This guarantees that valid shares are

accepted.

2.3 Graph Theory

A graph G is defined as having a vertex set V (or V (G)), an edge set E (or E(G)), and a

function that assigns to each edge e ∈ E(G) an unordered pair x, y of vertices known as the

endpoints (or simply the ends) of e. An edge is considered incident with its ends, and it connects

the ends. If the endpoints of an edge are the same (x = y), in which case the edge is referred to

as a loop. A vertex is said to be isolated when it has no edges incident with it.

Given an undirected graph G, a matching of G is a collectionM of edges of G such that no two

edges inM share a vertex. M is a maximal matching of G if it is not a subset of any other

matching of G. Thus, adding even one more edge to a maximal matchingM ensures that it is

no longer a matching. The number of edges in a maximal matching of G of the largest size is

called the matching number of G. A perfect matchingM of G is such that each vertex ofM has

an edge incident to it.

A vertex cover of a graph G is a collection of vertices of G such that every edge is incident to at

least one vertex in the collection; an edge cover of a graph G is a collection of edges of G such

that every vertex of G has at least one edge from the collection incident to it. A minimal vertex

cover (respectively minimal edge cover) is one that is not a proper subset of any other vertex

cover (respectively edge cover). Thus, if G has no isolated vertices, then the sum of the number

of vertices in its minimal vertex cover and the number of edges in its minimal edge cover equals

the total number of its vertices.

20



If the vertex set V of a graph G can be partitioned into two disjoint subsets as V = A ⊔ B such

that any edge from a vertex in A can only be incident to a vertex in B and vice versa, then G is

called a bipartite graph. Let us recall some interesting results on matching in bipartite graphs.

Theorem 2.10 (König, (König, 1931)) In any bipartite graph, the number of edges in a maxi-

mum matching equals the number of vertices in a minimum vertex cover.

Theorem 2.11 (Hall, (Hall, 1935)) Given a bipartite graph G = (V , E) with V = A ⊔ B, G

has a matching of size |A| if and only if for every S ⊆ A we have |N(S)| ≥ |S|, where

N(S) = {b ∈ B : ∃ a ∈ S with (a, b) ∈ E}.

2.4 Entropy

Information theory is the mathematical study of the quantification, storage, and communication

of information. A key measure in information theory is entropy. Entropy quantifies the amount

of uncertainty involved in the value of a random variable or the outcome of a random process.

Definition 2.14 The entropy of a random variable X with probability mass function p(x) is

defined by

H(x) := −
∑
x∈X

p(x) log2 p(x) = Ep

(
log2

1

p(x)

)
.

Definition 2.15 The joint entropy H(X, Y ) of a pair of random variables (X, Y ) with joint

probability mass function p(x, y) is given by the expression

H(X, Y ) := −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y).

The conditional entropy of Y given X is defined as

H(Y |X) :=
∑
x∈X

p(x)H(Y |X = x).

Definition 2.16 The joint entropy of two random variables can be defined as

H(X, Y ) := H(X) +H(Y |X)
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Definition 2.17 The mutual information of two random variables is defined by

I(X;Y ) :=
∑
x∈X

∑
y∈Y

p(x, y)
log p(x, y)

p(x)p(y)

We shall not dive further into information theory here as not much is required in our work.

2.5 Interpolation Techniques

Interpolation is a fundamental concept in numerical analysis and approximation theory, which

involves estimating the values of a function at points that are not explicitly known, based on

its values at a set of known points. The goal is to construct a new function that passes through

these known points, providing a good approximation of the original function. It is a powerful

mathematical tool that allows for the estimation of unknown values based on known data. The

choice of interpolation method (Lagrange, Hermite, etc.) depends on the specific requirements of

the problem, such as the need for derivative matching or the nature of the data. Understanding the

underlying theory and error analysis is crucial for effectively applying interpolation techniques

in practical scenarios. Interpolation has numerous applications across various fields, such as for

numerical integration and solving differential equations, for rendering curves and surfaces in

computer graphics, for reconstructing signals from sampled data in signal processing, and for

creating models that approximate real-world data. Interpolation can be broadly categorized into

two types: polynomial interpolation involves finding a polynomial that passes through a given

set of points, while piecewise interpolation involves constructing a piecewise-defined function

that approximates the original function.

Lagrange Interpolation:

The Lagrange interpolation formula provides a way to construct a polynomial that passes through

a given set of points. It is a method for constructing a polynomial that passes through a given

set of points. It is particularly useful because it provides a straightforward way to find the

interpolating polynomial without needing to solve a system of equations.

Definition 2.18 Given a set of n+ 1 distinct data points (x0, y0), (x1, y1), . . . , (xn, yn), where
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yi = f(xi) for some function f , the Lagrange interpolating polynomial P (x) is defined as:

P (x) =
n∑

i=0

yiLi(x),

where Li(x) are the Lagrange basis polynomials defined as:

Li(x) =
∏

0≤j≤n
j ̸=i

x− xj

xi − xj

.

Each Li(x) is constructed such that Li(xj) = δij (the Kronecker delta), meaning Li(x) is 1 at

x = xi and 0 at all other xj .

Properties of Lagrange Basis Polynomials:

Degree. Each Li(x) is a polynomial of degree n.

Interpolation Property. Li(xj) = δij , meaning Li(x) is equal to 1 at x = xi and 0 at all other

xj (for j ̸= i).

Unique Polynomial. The polynomial P (x) is the unique polynomial of degree at most n that

passes through the points (x0, y0), (x1, y1), . . . , (xn, yn).

Construction of the Lagrange Polynomial:

Identify the Data Points. Choose n+ 1 distinct points (x0, y0), (x1, y1), . . . , (xn, yn).

Calculate the Basis Polynomials. For each i, compute Li(x) using the formula provided

above.

Form the Polynomial. Substitute the values yi into the polynomial expression:

P (x) =
n∑

i=0

yi
∏

0≤j≤n
j ̸=i

x− xj

xi − xj

.

The error in Lagrange interpolation can be expressed as:

E(x) = f(x)− P (x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi),
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for some ξ in the interval containing the xi. This shows that the error depends on the (n+ 1)th

derivative of the function f and the distance from the interpolation points.

For example, consider the points (1, 2), (2, 3), and (3, 5). We want to find the polynomial P (x)

that passes through these points. For the points

x0 = 1 , y0 = 2

x1 = 2 , y1 = 3

x2 = 3 , y2 = 5,

we calculate basis polynomials as follows:

L0(x):

L0(x) =
(x− 2)(x− 3)

(1− 2)(1− 3)
=

(x− 2)(x− 3)

(−1)(−2)
=

(x− 2)(x− 3)

2
.

L1(x):

L1(x) =
(x− 1)(x− 3)

(2− 1)(2− 3)
=

(x− 1)(x− 3)

(1)(−1)
= −(x− 1)(x− 3).

L2(x):

L2(x) =
(x− 1)(x− 2)

(3− 1)(3− 2)
=

(x− 1)(x− 2)

(2)(1)
=

(x− 1)(x− 2)

2
.

Finally, we can form the polynomial as P (x) = 2L0(x) + 3L1(x) + 5L2(x). Substituting the

basis polynomials then gives:

P (x) = 2 · (x− 2)(x− 3)

2
− 3(x− 1)(x− 3) + 5 · (x− 1)(x− 2)

2
.

Hermite Interpolation:

Hermite interpolation extends Lagrange interpolation by not only matching the function values

but also the derivatives at specified points. Given a set of points and the desired values of the

function and its derivatives, the Hermite polynomial can be constructed similarly to Lagrange

but incorporates derivative information. It is useful in constructing polynomials that not only fit

a set of data points but also respect the derivatives at those points. This makes it particularly

useful in applications where the smoothness of the function is important.
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Definition 2.19 Given a set of m distinct data points x0, x1, . . . , xm and corresponding func-

tion values f(xi) and derivative values f ′(xi), the Hermite interpolating polynomial H(x) is

constructed to satisfy:

H(xi) = f(xi) and H ′(xi) = f ′(xi) for i = 0, 1, . . . ,m.

Construction of the Hermite Polynomial:

Using Divided Differences. The Hermite polynomial can be expressed as:

H(x) =
m∑
i=0

(f(xi)Hi(x) + f ′(xi)H
′
i(x)) ,

where Hi(x) is the Lagrange basis polynomial for the ith point, and H ′
i(x) is its derivative.

Using Lagrange Basis Polynomials. The Lagrange basis polynomial Hi(x) for Hermite inter-

polation is defined as:

Hi(x) =
m∏
j=0
j ̸=i

(x− xj)

(xi − xj)
.

For each point xi, we need to account for the multiplicity of the derivatives. If f has a

derivative of order k at xi, the basis polynomial is modified to:

Hi(x) =
(x− xi)

k

k!

m∏
j=0
j ̸=i

(x− xj)

(xi − xj)
.

The error in Hermite interpolation can be expressed similarly to Lagrange interpolation. If H(x)

is the Hermite interpolating polynomial for f(x), the error can be given by:

E(x) = f(x)−H(x) =
f (n+1)(ξ)

(n+ 1)!

m∏
i=0

(x− xi)
2,

for some ξ in the interval containing the xi. This shows that the error depends on the (n+ 1)th

derivative of the function f and the square of the distance from the interpolation points.

For example, consider the function f(x) = ex and we want to interpolate it at the points x0 = 0
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and x1 = 1 with the following conditions:

f(0) = 1 , f ′(0) = 1

f(1) = e , f ′(1) = e

We must first identify the points and derivatives:

x0 = 0, f(0) = 1, f ′(0) = 1

x1 = 1, f(1) = e, f ′(1) = e,

and then construct the basis polynomials as follows:

H0(x):

H0(x) =
(x− 0)2

2!
· (x− 1)

(0− 1)
=

x2

2
· (x− 1) =

x2(x− 1)

2
.

H1(x):

H1(x) =
(x− 1)2

2!
· (x− 0)

(1− 0)
=

(x− 1)2

2
· x.

Finally, we form the polynomial as H(x) = f(0)H0(x)+f ′(0)H ′
0(x)+f(1)H1(x)+f ′(1)H ′

1(x).

Substituting the values gives:

H(x) = 1 ·H0(x) + 1 ·H ′
0(x) + e ·H1(x) + e ·H ′

1(x).

Birkhoff Interpolation:

Birkhoff interpolation is a generalization of polynomial interpolation that allows for the specifi-

cation of both function values and derivative values at given points. This method is particularly

useful in scenarios where one needs to ensure that a polynomial not only passes through

certain points but also has specific behaviour (derivatives) at those points. Consider a finite

set X ⊆ R of points x1, x2, . . . , xk such that x1 < x2 < . . . < xk, a matrix E with en-

tries ei,j (1 ≤ i ≤ k, 0 ≤ j ≤ ℓ) whose rightmost column is non-zero, the set I(E) defined

as {(i, j) | ei,j = 1} along with the parameter d := |I(E)|, and a set C of d real values

{ci,j | (i, j) ∈ I(E)}. Then the Birkhoff interpolation problem that corresponds to the triplet
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⟨X,E,C⟩ is the problem of finding a polynomial P (x) ∈ Rd−1[x] that satisfies the d equalities

P (j)(xi) = ci,j, (i, j) ∈ I(E) (2.1)

The matrix E is called the interpolation matrix.

Lagrange and Hermite interpolations can be viewed as specific instances of Birkhoff interpolation.

In Lagrange interpolation, the interpolation matrix comprises solely one column, as all data

corresponds to the zeroth-order derivative. Hermite interpolation matrices, on the other hand,

feature rows (representing interpolation points xi) that initiate with a sequence of 1s followed

by 0s, reflecting the given values at that point in the form P (j)(x), 0 ≤ j ≤ ji, for some ji ≥ 0.

Unlike Lagrange or Hermite interpolation, which are unconditionally well-posed, the Birkhoff

interpolation problem may not always yield a unique solution. The system of equations (2.1)

translates into a square linear system of equations A−→x =
−→
b , where the vector of unknowns −→x

consists of the coefficients of the desired polynomial P , the matrix A is determined by X and

E, and the right-hand side
−→
b comprises the data in C. The pair ⟨X,E⟩ is called regular if the

resulting matrix A is regular, ensuring a unique solution to the system (2.1) for any choice of C;

otherwise it is called singular. The matrix E is termed regular or poised if ⟨X,E⟩ is regular for

all X = {x1 < x2 < . . . < xk} ⊂ R.

The subsequent lemma provides a simple necessary condition that E must satisfy, to prevent

⟨X,E⟩ from being singular for all X .

Lemma 2.1 (Pòlya’s Condition.) A necessary condition for the well-posedness of the Birkhoff

interpolation problem with the interpolation matrix the interpolation matrix E is that for each

derivative order t (0 ≤ t ≤ ℓ, where ℓ denotes the highest derivative order in the data), there

must exist at least t + 1 given values of derivatives of the polynomial P of order less than or

equal to t. Formally, this condition can be expressed as:

|{(i, j) ∈ I(E) | j ≤ t}| ≥ t+ 1, 0 ≤ t ≤ ℓ.

While any interpolation problem where one is given at each point, a succession of derivatives

(f, f ′, f ′′′, f (3) etc.) is Hermite interpolation, Birkhoff interpolation is the case of unstructured

data, in which only some values of the function or its derivatives may be available at certain
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points (for example, one may know the values of f and f (3), just f ′′ at another point, and f (4)

and f (6) at a third point). Birkhoff interpolation is devoted to this distinction between structured

and unstructured data, and to the numerical challenges that such lack of structure imposes.

The flexibility of Birkhoff interpolation as a method for constructing polynomials that satisfy

both function values and derivative conditions at specified points makes it particularly useful in

applications requiring smoothness and specific behaviour of the interpolating function.

2.6 Block Ciphers and Authenticated Encryption

A block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called

blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They

are ubiquitous in the storage and exchange of data, where such data is secured and authenticated

via encryption.

A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is

suitable for the encryption of only a single block of data at a time, using a fixed key. A

multitude of modes of operation have been designed to allow their repeated use in a secure way

to achieve the security goals of confidentiality and authenticity. However, block ciphers may

also feature as building blocks in other cryptographic protocols, such as universal hash functions

and pseudorandom number generators.

Definition 2.20 A block cipher consists of two paired algorithms, one for encryption, E, and

the other for decryption, D. Both algorithms accept two inputs: an input block of size n bits

and a key of size k bits, and both yield an n-bit output block. The decryption algorithm D is

defined to be the inverse function of encryption, i.e., D = E−1. More formally, a block cipher is

specified by an encryption function

EK(P ) := E(K,P ) : {0, 1}k × {0, 1}n → {0, 1}n,

EK(P ) := E(K,P ) : {0, 1}k × {0, 1}n → {0, 1}n,

which takes as input a key K, of bit length k (called the key size), and a bit string P , of length n

(called the block size), and returns a string C, also of n bits. P is called the plaintext, and C is

termed the ciphertext. For each K, the function EK(P ) is required to be an invertible mapping
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on {0, 1}n. The inverse for E is defined as a function

E−1
K (C) := DK(C) = D(K,C) : {0, 1}k × {0, 1}n → {0, 1}n,

E−1
K (C) := DK(C) = D(K,C) : {0, 1}k × {0, 1}n → {0, 1}n,

taking a key K and a ciphertext C to return a plaintext value P , such that

∀P : DK(EK(P )) = P.

For each key K, EK is a permutation over the set of input blocks. Each key selects one

permutation from the set of 2n! possible permutations.

Data encryption standard (DES) (DES, 1979), triple DES (3DES or TDEA) (De Cannière, 2005),

advanced encryption standard (AES) (AES, 2001), blowfish (Schneier, 1993), twofish (Schneier,

Kelsey, Whiting, Wagner, & Hall, 1998), and RC5 (Rivest, 1994) are some examples of block

ciphers.

Authenticated Encryption (AE) is a cryptographic technique that combines the properties of

confidentiality and authenticity into a single operation. It ensures that a message is not only

kept secret from unauthorized parties but also verifies that the message has not been altered

in transit. This dual functionality is crucial in modern cryptographic applications, where

both data integrity and confidentiality are paramount. It is a critical component of modern

cryptographic systems, providing a robust mechanism for ensuring both confidentiality and

integrity of data. By combining encryption and authentication into a single operation, AE

simplifies the implementation of secure communication protocols and reduces the risk of

vulnerabilities associated with separate implementations of confidentiality and authenticity. An

AE has confidentiality if it ensures that the plaintext message is not accessible to unauthorized

parties. It is typically achieved through encryption, which transforms plaintext into ciphertext

using a secret key. The authenticity of an AE guarantees that the message comes from a

legitimate sender and has not been tampered with. This is often achieved through the use of

Message Authentication Codes (MACs) or digital signatures.

Let K be a secret key, P be the plaintext message, C be the ciphertext, T be the authentication

tag, and A be the associated data. The encryption process takes as input, a plaintext P , a
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key K and optionally, some associated data A. The encryption function can be denoted as

(E, T ) = AE_Encrypt(K,A, P ), where E is the encryption function that produces the ciphertext

C and the authentication tag T . On input of a ciphertext C, a key K, an authentication tag

T and (optionally) an associated data A, the decryption process either outputs a plaintext P

if authentication passes, or an error if authentication fails. The decryption function can be

represented as P = AE_Decrypt(K,A,C, T ). If the authentication tag T does not match, the

decryption process will return an error, denoted ⊥. Authenticated encryption schemes must

satisfy several security properties:

Confidentiality. The ciphertext C should not reveal any information about the plaintext P

without the key K.

Integrity An adversary should not be able to modify the ciphertext C or the associated data A

without detection.

Authenticity Only parties possessing the key K should be able to generate valid ciphertexts

and authentication tags.

Several modes of authenticated encryption have been standardized, including

• the Galois/Counter Mode (GCM), which combines the counter mode of encryption with

Galois mode of authentication,

• the Counter with CBC-MAC (CCM), which combines counter mode encryption with

Cipher Block Chaining (CBC) for authentication,

• the Offset Codebook Mode (OCB), which, provides both encryption and authentication in

a single pass, etc.

2.6.1 ASCON

ASCON (Dobraunig et al., 2021) is a lightweight authenticated encryption and hashing scheme

designed for resource-constrained environments. It was selected as one of the finalists in the

CAESAR competition and is notable for its efficiency and security. It is a robust and efficient

authenticated encryption and hashing scheme tailored for lightweight applications. Its sponge-

based design, combined with a well-analyzed permutation, provides a strong security foundation

while maintaining low resource requirements. ASCON is designed to provide authenticated
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encryption with associated data (AEAD) and hashing capabilities. It is particularly suitable

for applications in the Internet of Things (IoT) and other environments where computational

resources are limited. ASCON is based on the sponge construction, which is a flexible framework

for building cryptographic primitives. The key features of ASCON include:

Lightweight Design. Optimized for low memory and computational overhead.

Security Margins. Provides a generous security margin against known cryptanalytic attacks.

Sponge Construction. Utilizes a permutation-based approach that allows for efficient process-

ing of data.

ASCON operates on a state represented as a 320-bit value, divided into five 64-bit lanes:

State = (s0, s1, s2, s3, s4) where si ∈ F264 .

The core of ASCON is a permutation P that transforms the state. The permutation consists of

several rounds, each involving substitution and permutation operations. The number of rounds

is typically denoted as r. The permutation can be expressed as:

Statenext = P (Statecurrent).

ASCON uses a sponge construction for both encryption and hashing. The sponge construction

consists of two phases: absorbing and squeezing.

Absorbing Phase. Input data (plaintext, associated data) is absorbed into the state by XORing

it with the state and applying the permutation.

Squeezing Phase. The output (ciphertext, hash) is produced by repeatedly applying the permu-

tation and extracting bits from the state.

ASCON provides authenticated encryption through the following algorithms:
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The authenticated encryption algorithm ASCON_AE(K,N,A, P ) takes as input, a secret key K

(up to 160 bits), a nonce N (128 bits), some associated data A of arbitrary length, and a plaintext

P , also of arbitrary length. The output consists of a ciphertext C and an authentication tag T .

The encryption process can be summarized as follows:

1. Initialize the state with the key and nonce.

2. Absorb the associated data A.

3. Absorb the plaintext P .

4. Squeeze the output to produce the ciphertext C and authentication tag T .

The decryption algorithm ASCON_Decrypt(K,N,A,C, T ) takes the same inputs as the encryp-

tion algorithm, along with the ciphertext C and authentication tag T . The output is the plaintext

P or an error if authentication fails. The decryption process involves:

1. Initializing the state with the key and nonce.

2. Absorbing the associated data A.

3. Absorbing the ciphertext C.

4. Verifying the authentication tag T .

5. If verification succeeds, squeezing the output to retrieve the plaintext P .

ASCON also provides a hashing function ASCON_Hash(M) that operates similarly to the AEAD

scheme but focuses on producing a hash output from the input message M .

Security Claims of ASCON:

The ASCON design aims at providing immunity to several possible attacks; the structure of

the permutation and the number of rounds are chosen to provide resistance against differential

attacks, its design protects against linear cryptanalysis by minimizing linear correlations between

the input and output, and the construction ensures collision resistance by making it computation-

ally infeasible to find two distinct inputs that yield the same output. ASCON provides several

security claims regarding its authenticated encryption and hashing capabilities. Below are the

key security claims along with their corresponding mathematical bounds in terms of the number

of bits:
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Confidentiality of Plaintext. The confidentiality of the plaintext is guaranteed against chosen

plaintext attacks (CPA), with a security of 128 bits against ASCON-128, ASCON-128a

and ASCON-80pq.

Integrity of Plaintext. The integrity of the plaintext is ensured, meaning that any modification

to the ciphertext will be detected. ASCON also ensures a 128-bit integrity for all three of

its variants.

Integrity of Associated Data. The integrity of associated data (A) is also guaranteed, ensuring

that any changes to the associated data will be detected. This security is also bound by

128 bits for all three variants.

Integrity of Public Message Number (Nonce). The integrity of the nonce (N) is protected,

meaning that any modification to the nonce will be detected. This security is also bound

by 128 bits for all three variants.

Key Recovery Resistance. The scheme is designed to resist key recovery attacks, where an

attacker attempts to recover the secret key from the ciphertext. The key recovery bounds

for the three variants are as follows:

• For ASCON-128: min(2k, 2c/2) where k = 128 and c = 256 (resulting in 2128

complexity).

• For ASCON-128a: min(2k, 2c/2) where k = 128 and c = 192 (resulting in 296

complexity).

• For ASCON-80pq: min(2k, 2c/2) where k = 80 and c = 128 (resulting in 264

complexity).

Collision Resistance for Hashing. The hashing function is designed to be collision-resistant,

meaning it is computationally infeasible to find two distinct inputs that hash to the same

output. This security bound is 128 bits (for fixed output size) in the case of ASCON-hash;

for ASCON-Xof, the security is based on the output length, typically providing a security

level of 2n/2 for an output size of n bits.

Security Margin. ASCON has a security margin against known attacks, particularly in its

permutation structure. The best attacks against ASCON’s initialization have been shown

to require complexity significantly below 2k or 2c/2, with a security margin of 5 rounds
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(42% of the 12 rounds).

The following table summarizes the security claims for ASCON:

Security Aspect ASCON-128 ASCON-128a ASCON-180pq
Confidentiality of Plaintext 128 bits 128 bits 128 bits
Integrity of Plaintext 128 bits 128 bits 128 bits
Integrity of Associated Data 128 bits 128 bits 128 bits
Integrity of Public Message Number 128 bits 128 bits 128 bits
Key Recovery Resistance 2128 296 264

Collision Resistance (Hashing) 128 bits 128 bits 128 bits
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3 | IoT-Applicable Generalized Frameproof Combina-

torial Designs

3.1 Introduction

Secret sharing schemes are widely used to protect data by breaking the secret into pieces and

sharing them amongst various members of a party. In this chapter, our objective is to produce a

repairable ramp scheme that allows for the retrieval of a share through a collection of members

in the event of its loss. Repairable Threshold Schemes (RTSs) can be used in cloud storage

and General Data Protection Regulation (GDPR) protocols. Secure and energy-efficient data

transfer in sensor-based IoTs is built using ramp-type schemes. Protecting personal privacy

and reinforcing the security of electronic identification (eID) (Park & Lee, 2018) cards can be

achieved using similar schemes. In this chapter, our objective is to produce a repairable ramp

scheme that allows for the retrieval of a share through a collection of members in the event of its

loss. We propose a combinatorial design that extends the RTS proposed by Kacsmar and Stinson

in 2019 (Kacsmar & Stinson, 2019) over the integer ring Z. Desmedt et al. introduced the

concept of frameproofness in 2021 (Desmedt et al., 2021), which motivated us to further improve

our construction with respect to this framework. We introduce a graph theoretic approach to the

design for a well-rounded and easy presentation of the idea and clarity of our results. We also

highlight the importance of secret sharing schemes for IoT applications, as they distribute the

secret amongst several devices. Secret sharing schemes offer superior security in lightweight

IoT compared to symmetric key encryption or AE schemes because they do not disclose the

entire secret to a single device, but rather distribute it among several devices.

The Internet of Things (IoT) is a rapidly expanding network of interconnected devices that

communicate with each other to carry out various tasks. With the increasing number of IoT

devices comes a growing need for secure communication among them. Cryptography plays a

crucial role in ensuring the security of IoT devices, with secret sharing schemes standing out as

a promising cryptographic element for IoT applications. One example is the Datachest applica-

tion (Čuřík, Ploszek, & Zajac, 2022), which encrypts and stores sensitive data in commercial

cloud storage systems using secret sharing methods. In this setup, data is uploaded in encrypted

form, and the cryptographic keys are divided into shares, with each cloud server receiving
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one share. This approach significantly enhances the security of user data stored in the cloud.

This chapter highlights the significance of implementing secret sharing schemes in IoT and

explores the potential benefits of our proposed distribution design in terms of frameproofness

and integrating multiple systems without losing their distinctive characteristics.

Secret sharing schemes are particularly suitable for IoT applications where multiple devices

collaborate to perform tasks, such as in a smart home system involving sensors, cameras, and

smart locks. In a secret sharing-based IoT (SBIoT) setup, each cloud server receives a share

generated using a secret sharing scheme. The energy efficiency of an IoT network, affects

its lifespan (Shivhare et al., 2022) and is therefore a critical factor to consider. The use of a

ramp-type scheme is known to enhance security and energy efficiency in SBIoT networks (Tang,

2021), ultimately protecting against various types of attacks and data leakages. Implementing a

threshold scheme in eID cards (Park & Lee, 2018) can enhance personal information protection

by distributing sensitive data between the client and the card, ensuring that even if the card is

lost, the original information remains secure due to the distributed storage mechanism. This

strategy prevents unauthorized access to personal information by requiring multiple secret shares

to reconstruct the original data.

Consider b players and a positive integer τ ≤ b. Suppose a dealer distributes a secret to these b

players such that any collection of τ players can reconstruct the secret with their shares, but no

smaller collection of players can do so. This is called a (τ, b)-threshold secret sharing scheme

with threshold τ . If the dealer distributes shares to b players such that any collection of τ1 players

can reconstruct the secret but no collection of τ2 or less players can do so (for τ2 < τ1 ≤ b), then

it is called a (τ1, τ2, b)-ramp scheme. Thus, if τ1 − τ2 = 1, then it is a (τ1, b)-threshold scheme.

In this chapter, we shall present a repairable ramp scheme, which we call a tensor design.

A threshold scheme that is secure against all adversaries, irrespective of computational power,

is called an unconditionally secure threshold scheme. The information rate ρ of a threshold

scheme is the ratio of the size of the secret to the size of a player’s share, i.e.

ρ =
log2 |K|
log2 |S|

,

where S is the set of all possible shares and K is the set of all possible secrets. An ideal secret

sharing scheme has information rate 1.
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In their 2019 work, Stinson and Kacsmar (Kacsmar & Stinson, 2019) demonstrated non-ideal

secret sharing schemes stemming from an ideal scheme (viz. Shamir scheme) as the base scheme.

They presented a distribution design which was a threshold scheme with the ability to repair

lost shares with a certain probability, and secure against any adversary with fewer players than

the threshold. Our work further generalizes the domain over which our distribution designs are

defined, in addition to providing it with easier secret reconstruction and share repairability, and

securing it in more than one context. In short, we revisit the combinatorial design and some of

its key properties first.

3.1.1 Combinatorial RTS

Consider the problem of securely reconstructing the lost share of a player by that player and a

subset of the other players. A combinatorial solution to this problem was proposed by Stinson

and Wei (Stinson & Wei, 2018). These schemes are termed combinatorial RTS. A repairable

threshold scheme (RTS) is a (τ, b)-threshold scheme in which a subset of players can repair

another player’s share in the event that their share is lost or corrupted, without the participation

of the dealer who set up the scheme. The repairing protocol should not compromise the

(unconditional) security of the threshold scheme.

3.1.2 A Drawback and An Idea of Extension

The combinatorial model proposed so far produces shares that are in a finite field Fqk . Whether

we can extend this notion to an integer ring is the first question. In this work, we propose a

method to construct a distribution design with entries from an integer ring, thus generalizing the

domain. We further show that this is a ramp scheme and consequently give a method of secret

reconstruction for it, which is significantly easier in comparison to (Kacsmar & Stinson, 2019).

The size of the authorized coalition that can recover the secret is significantly reduced in our

framework. Example 3 will demonstrate the fact.

Repairability Problem

Techniques from network reliability theory are heavily used in reliability studies of these

combinatorial repairable threshold schemes in a setting where players may not be available to

take part in the repair of a given player’s share. Reference (Kacsmar & Stinson, 2019) deals
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with the problem of reliability of such schemes and reconstruction of secrets and repairing shares

without participation of the dealer.

The scheme proposed in this chapter produces a far more efficient share repairability, which is

possible due to the generalized domain, and based heavily on the easier secret reconstruction

mentioned beforehand.

3.1.3 Frameproofness

Moving forward with the concept of repairing shares, another similar possibility was recently

explored, called framing. Instead of simply specifying the minimum size of a set of players

that can access the secret, suppose the dealer defines the share distribution through some other

process. Say f : P→ {0, 1} (where P denotes the power set of the set of all players P) such

that any coalition of players A ⊆ P can access the secret if and only if f (A) = 1 (thus, in a

Shamir scheme, f (A) = 1 if and only if |A| ≥ τ ). If A ⊆ P maps to 1 through f , then A is

called an authorized coalition; if it maps to 0, then A is an unauthorized coalition.

Given such an access structure over a secret sharing scheme, suppose a coalition A of players

can gain information about the share of a player P ∈ P \ A dishonestly. Then A can wrongly

accuse P of releasing information about the secret that only A is not authorized to access, i.e.,

A can frame P . Framing a player (or players) evidently undermines the security of any secret

sharing scheme, as it allows a group of players to access extra information about the secret

illegally. Thus, it is imperative to limit such capabilities and/or size of any such coalition when

constructing a combinatorial RTS. The concept of frameproofness was examined by Desmedt et

al. in their recent paper (Desmedt et al., 2021). In this chapter, we improve the extension scheme

so that no framing is possible for any coalition of smaller size than the threshold. The question

of what can be the minimum size of a coalition that can frame a player under this modification

currently remains open.

3.2 Results

In this chapter, we first introduce an operation, the Krönecker product of two matrices, extendable

to a Krönecker product of two BIBDs. Following up with some properties of this operation, we

present methods to solve two inherent problems with Krönecker products; firstly, the operation
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does not produce a BIBD from two BIBDs, and secondly, we resolve the issue of uniqueness

that arises with the introduction of this operation. Our next theorem deals with the existence of

secret reconstruction, which we prove by producing an algorithm. A probabilistic proof is given

next.

An immediate consequence of our results on the new scheme is its extensibility to multiple

BIBDs. We discuss it briefly though a dealer’s algorithm. We proceed with an example to

illustrate our algorithms further. We make considerable improvements on the method of share

repair described in (Kacsmar & Stinson, 2019) for our proposed Krönecker product-induced

BIBDs.

Next, we explore the concept of frameproofness for our proposed model and improve it signifi-

cantly through certain changes in the model. We also prove existence of frameproofness of the

modified scheme through results based on matchings of bipartite graphs.

Finally, we note the importance of secret sharing schemes in varied IoT applications, especially

for their lightweight functionality, uniquely encapsulated through the non-accessibility of the

full secret to any single entity, which we strengthen by frameproofness and can expand by

incorporating multiple systems by our Krönecker product.

Our chapter starts with a brief review of the work performed by Stinson and Wei (Stinson &

Wei, 2018) in Section 3.3. We then move on to describe our construction, beginning with an

introduction of the Krönecker product of two BIBDs in Section 3.4. We describe the secret

reconstruction procedure for such an object illustrated through an example in Section 3.5.

Next, we briefly describe the method of share repair and compute the corresponding repair

probabilities, much like in (Kacsmar & Stinson, 2019), in Section 3.6. We then proceed to

modify this scheme to give a frameproof construction in Section 3.7. Furthermore, we answer

the question of existence of such a modified construction in Section 3.8.

3.3 Stinson and Wei’s Model

The classical Shamir scheme is defined over a finite field Fq (q ≥ b + 1). It involves the

following:

• an initialization phase, in which the dealer chooses distinct, non-zero public elements
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x1, x2, . . . , xb from Fq, and gives value xi to player Pi;

• a share distribution phase in which the dealer chooses a secret K = a0 ∈ Fq, then secretly

chooses a1, . . . , aτ−1 ∈ Fq independently and uniformly at random, and finally computes

the share yi = a(xi)

(
where a(x) :=

τ−1∑
j=0

ajx
j

)
and gives it to player Pi.

The combinatorial solution proposed by Stinson and Wei (Stinson & Wei, 2018) to the share

repairability problem is based on an old technique by Benaloh and Leichter, namely, giving each

player a subset of shares from an underlying threshold scheme called a base scheme (which is,

say, a (σ,m)-Shamir scheme over the base field Fq, where a minimum of σ players out of a total

m players can reconstruct the secret). Each player is then given a certain subset of d of the m

shares, by use of a set system (or design) consisting of b blocks of size d, defined on a set of m

points. This design is termed the distribution design B:


y11 y12 · · · y1d

y21 y22 · · · y2d
...

yb1 yb2 · · · ybd

 ,

∣∣∣∣{yij} i∈{1,2,...,b}
j∈{1,2,...,d}

∣∣∣∣ ≤ m. (3.1)

The resulting expanded (τ, b)-threshold scheme consists of each player Pi corresponding to

a block Bi ∈ B of the distribution design. For each point x ∈ Bi, the player Pi is given

the subshare sx. If X denotes the set of m points on which the design is defined and B =

{B1, . . . , Bb} is the set of all blocks, then this forms an (X,B)-distribution design.

Recall Definition 2.1 of a BIBD. Observe that if each point occurs in exactly r blocks, then the

parameters b, v, k, r, λ of a BIBD satisfy the following relations (Stinson, 2004):

(i) bk = vr;

(ii) λ(v − 1) = r(k − 1);

(iii) b ≥ v (and hence r > k).

Definition 3.1 We shall call a distribution design a tensor design if it simply satisfies property

(i) above.
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Design Properties

For the purpose of computations, we recall some results from (Kacsmar & Stinson, 2019) on

block designs.

Theorem 3.1 (Replication Number) Every point in a (v, k, λ)-BIBD occurs in exactly r =

λ(v−1)
k−1

blocks. The value r is termed the replication number of the scheme.

Theorem 3.2 (Blocks and Block Size) A (v, k, λ)-BIBD has exactly

b = vr
k
= λ(v2−v)

k2−k
blocks of size k.

3.4 Tensor Design Generated by Two BIBDs

Given two matrices A and B, the usual matrix product operation can be carried out only when

the column size of the left matrixA is equal to the row size of the right matrix B. The Krönecker

product can be applied on any two matrices, irrespective of their dimension. This operation

has several applications in Linear Algebra, of which, we consider some properties that shall be

useful for working with BIBDs.

3.4.1 Definition of the Krönecker Product

The Krönecker product of two matrices Ab1×k1 and Bb2×k2 is the block matrix

A⊗ B =


a11B a12B . . . a1k1B

a21B a22B . . . a2k1B
...

ab11B ab12B . . . ab1k1B

 , (3.2)

where aij denotes the entry in the ith row and j th column of A.

Observe that Krönecker products follow the associative property. Thus, for matrices A, B, and

C,

(A⊗ B)⊗ C = A⊗ (B ⊗ C) .

Another interesting property of Krönecker products is that they maintain structure over block
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matrices. Thus, if A is written as a block matrix


A11 A12 · · · A1k

A21 A22 · · · A2k

...

Ab1 Ab2 · · · Abk

 for some b ≤ b1 and k ≤ k1,

then A⊗ B =


A11 ⊗ B A12 ⊗ B · · · A1k ⊗ B

A21 ⊗ B A22 ⊗ B · · · A2k ⊗ B
...

Ab1 ⊗ B Ab2 ⊗ B · · · Abk ⊗ B

 . (3.3)

3.4.2 Krönecker Product of Two BIBDs

Let A and B be the share matrices generated by ramp schemes with, respectively, b1 and b2

blocks having shares of sizes k1 and k2. Suppose A and B also denote the b1 × k1 and b2 × k2

matrices corresponding to the two schemes. The Krönecker product of A⊗ B is therefore

M =


a11B a12B . . . a1k1B

a21B a22B . . . a2k1B
...

ab11B ab12B . . . ab1k1B

 =


T1

T2

...

Tb1

 , (3.4)

where Ti (i ∈ {1, 2, . . . , b1}) is the ith row-block submatrix of M containing rows (i− 1)b2 +

1, (i − 1)b2 + 2, . . . , ib2. If the share matrix A is defined over the field Fp1 and B over the

field Fp2 for some primes p1 and p2, then we define the scalar multiplication by simple integer

multiplication:

Fp1 × Fp2 → Z

such that (x1, x2) 7→ x1 · x2.

The reason behind taking such a multiplication is that the product elements are not distinguishable

from integers. Therefore, M is a matrix over the integer ring Z.
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At this point, the first observation that we make is that the Krönecker product A ⊗ B of two

BIBDs A and B does not always produce a BIBD. To illustrate the fact, we start with a small

example, and then we describe a method for resolving this issue. Also, the Krönecker product

in general does not produce an injective mapping fromMb1×k1 ×Mb2×k2 to the matrix space

Mb1b2×k1k2 . So it is hopeless to search for a secret reconstruction procedure from a given

Krönecker product matrix. We shall thus impose a condition producing an injective map and in

turn, ensuring the existence of secret reconstruction.

Consider an example of two (4, 3, 2) Shamir schemes in F5 and F7 over the points {1, 2, 3, 4}

and {1, 2, 3, 5} constructed using two polynomials modulo F5 and F7, respectively. These can

be represented by share matrices A and B, respectively, with r1 = r2 = 3:

A =


1 2 3

2 1 4

3 4 2

4 3 1

 and B =


1 2 3

2 3 5

3 5 1

5 1 2

 . (3.5)

The Krönecker product of the BIBDs A and B is as follows:
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1 2 3 2 4 6 3 6 9

2 3 5 4 6 10 6 9 15

3 5 1 6 10 2 9 15 3

5 1 2 10 2 4 15 3 6

2 4 6 1 2 3 4 8 12

4 6 10 2 3 5 8 12 20

6 10 2 3 5 1 12 20 4

10 2 4 5 1 2 20 4 8

3 6 9 4 8 12 2 4 6

6 9 15 8 12 20 4 6 10

9 15 3 12 20 4 6 10 2

15 3 6 20 4 8 10 2 4

4 8 12 3 6 9 1 2 3

8 12 20 6 9 15 2 3 5

12 20 4 9 15 3 3 5 1

20 4 8 15 3 6 5 1 2

Hence, A⊗ B has the parameters b = 16, v = 12, and k = 9; the parameters r and λ are not

well-defined. Obviously, neither does this satisfy property 3 of a BIBD (Definition 2.1), nor the

relation (i) of a tensor design (Definition 3.1). Lemmas 3.1, 3.2, 3.3 and Theorem 3.3 ensure that

we always obtain a tensor design from a Krönecker product, and furthermore that we always

obtain a secret reconstruction for such a share distribution scheme.

3.4.3 Some Results on the Krönecker Product of BIBDs

We now resolve these issues by defining some properties of a tensor design. Let A and B be

share matrices defined on points {x1, x2, . . . , xn} and {y1, y2, . . . , ym}, respectively. Let Bd be

the same distribution scheme as B, but on the points {y1 + d, y2 + d, . . . , ym + d}. The position

of an element in the Krönecker product of these two matrices can be found by simple counting,

and is stated in the following lemma:

Lemma 3.1 The product of aij ∈ A and bkl ∈ B can be found in the row (i− 1)b2 + k (which

is also the player number in the repair scheme represented by M ), and the column (j − 1)k2 + l

of M .
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The next result helps ensure that A⊗ B is indeed a BIBD:

Lemma 3.2 Let {x1, x2, . . . , xn} and {y1, y2, . . . , ym} be two collections of integers. Then

there exists an integer d such that {x1, x2, . . . , xn} and {y1 + d, y2 + d, . . . , ym + d} have no

multiplicative collisions of the type xiyj = xkyl for (i, j) ̸= (k, l).

Proof: Set d ≥ max
i,k∈{1,2,...,n}
j,l∈{1,2,...,m}

{xiyj − xkyl}+ 1. Suppose xi(yj + d) = xk(yl + d).

=⇒ xiyj + xid = xkyl + xkd

=⇒ (xk − xi)d = xiyj − xkyl

=⇒ d =
xiyj − xkyl
xk − xi

; (3.6)

however, since d ≥ max
i,k∈{1,2,...,n}
j,l∈{1,2,...,m}

{xiyj − xkyl} + 1, this is a contradiction. Therefore,

{x1, x2, . . . , xn} and {y1 + d, y2 + d, . . . , ym + d} produce no multiplicative collisions. □

Lemma 3.3 Given a list of distinct elements {y1, y2, . . . , ym}, we can choose an integer d̂ such

that gcd(y1 + d̂, y2 + d̂, . . . , ym + d̂) = 1.

Proof: Without loss of generality, we may assume y1 < y2 < · · · < ym. Let l = gcd(y1, y2, . . . , ym)

and fix i < j in {1, 2, . . . ,m}. Thus, yi = lki and yj = lkj such that ki < kj . Choose d̂ such that

gcd(d̂, l) = 1 and gcd(d̂+yi, kj−ki) = 1 for some j in {1, 2, . . . ,m}. Now, gcd(yi+ d̂, yj + d̂)

= gcd(lki + d̂, lkj + d̂) = gcd(lki + d̂, l(kj − ki)) = 1. □

Theorem 3.3 (Reconstruction from Tensor Designs) Consider a

(v1, k1, λ1, b1, r1)-BIBD A and a (v2, k2, λ2, b2, r2)-BIBD B. Also consider a (public) integer

d such that there are no multiplicative collisions of the type xi(yj + d) = xk(yl + d) for

(i, j) ̸= (k, l).

1. The matrix A⊗ Bd produces a tensor design (over the integer ring Z).

2. • If gcd(x1, x2, . . . , xv1) = 1, and

• gcd(y1, y2, . . . , yv2) = 1,

then A and B can be reproduced from a collection of players in the new scheme A⊗ Bd,

hence enabling share repair and secret reconstruction.
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This theorem can be generalized for finitely many such Krönecker products, and motivates us to

present the following algorithm for a share distribution scheme.

Proof: The parameters of the Krönecker productA⊗ B are b = b1b2, v = v1v2, k = k1k2, r =

r+1r+2, λ = λ1λ2. Part 1 of the theorem therefore follows from Lemma 3.2, which ensures a

well-defined value for r, and Lemma 3.3, which ensures a well-defined value for λ.

In order to prove part 2, we describe two ways to reproduce A and B. Recall first that any τ1

rows of A produce all points of A, and similarly τ2 rows for Bd. Furthermore, we claim the

following:

[I] A collection of players that has

(i) τ2 players from one row-block Ti of M ;

(ii) at least one player from distinct τ1 − 1 row-blocks Tj ̸= Ti of the remaining b1 − 1

row-blocks

can reconstruct the secret.

[II] Let Sj (j ∈ {1, 2, . . . , b2}) be the collection of players
{
Pb2k+j : k ∈ {0, 1, . . . . . . , b1 −

1}
}

. A collection of players that contains

(i) τ1 players from one Sj;

(ii) at least one player from τ2 − 1 Si, i ̸= j

can also reconstruct the secret.

We now present an algorithm to prove claim [I]; claim [II] follows similarly.

1. The share of the j th player Pi·b2−1+j of the ith row-block Ti is of the form

ai1 · {bj1, bj2, . . . , bjk2}, ai2 · {bj1, bj2, . . . , bjk2}, . . . , aik1 · {bj1, bj2, . . . , bjk2}.

Fix any i ∈ {1, 2, . . . , b1} and choose j1, j2, . . . , jτ2 to ensure that

gcd(bj11, bj12, . . . , bj1k2 , bj21, bj22, . . . , bj2k2 , . . . , bjτ21, bjτ22, . . . , bjτ2k2) = 1.

2. Therefore, the values of ai1, ai2, . . . , aik1 become known. Divide aiαbjkβ by aiα (for α ∈

{1, 2, . . . , k1}, β ∈ {1, 2, . . . , k2} and k ∈ {1, 2, . . . , τ2}) to obtain bjk1, bjk2, . . . , bjkk2 .
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3. Construct the complete matrix Bd using the shares of τ2 players of Bd that are now known.

Hence construct B.

4. Using the values of the elements in Bd, compute the values ai′1, ai′2, . . . , ai′k1 for τ1 − 1

indices i′ that are distinct from each other as well as from i.

5. Hence, construct A from the shares of τ1 players of A thus obtained.

6. Finally compute the secret from A and B.

□

This reconstruction algorithm is clearly better than the one in (Kacsmar & Stinson, 2019) in

the sense that the size of the authorized coalition is smaller. In fact, the size of the authorized

coalition, while not unique, has a lower bound in the number of players. The following section

provides a proof that there is always a secret reconstruction for this scheme.

3.4.4 Proof of Existence of Secret Reconstruction

Let us redefine the problem in terms of random variables. Let X1, X2, . . . , Xn be sampled

without replacement from the collection of all players.

Let Ii,j =

 1 if Xi ∈ Sj, i ∈ [n], j ∈ [b2],

0 otherwise.

Also let Ji,k =

 1 if Xi ∈ Tk, i ∈ [n], k ∈ [b1],

0 otherwise.

We further define nk =
n∑

i=1

Ji,k and rj =
n∑

i=1

Ii,j . Then the condition for reconstruction becomes

[I] (i) max
k∈[b1]

nk ≥ τ2,

(ii) nk ≥ 1 for at least τ1 indices k.

[II] (i) max
j∈[b2]

rj ≥ τ1,

(ii) rj ≥ 1 for at least τ2 indices j.
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Let E1 be the event that condition [I] is satisfied and E2 be the event that condition [II] is satisfied.

Also, let D(n0) be the event that n ≥ n0. We find an n0 such that Pr [E1 ∪ E2 |n ≥ n0] ≈ 1.

This is equivalent to Pr [Ec
1 ∩ Ec

2 |n ≥ n0] ≈ 0. In fact, it is sufficient to show Pr [Ec
1 |n ≥ n0] ≈

0 and Pr [Ec
2 |n ≥ n0] ≈ 0.

As E1 = E1(i) ∩ E1(ii), Ec
1 = E1(i)

c ∪ E1(ii)
c,

Pr [Ec
1 |n ≥ n0] = Pr [E1(i)

c ∪ E1(ii)
c |n ≥ n0]

= Pr
[
E

(
1i)c |n ≥ n0

]
+ Pr [E1(ii)

c |n ≥ n0]− Pr [E1(i)
c ∩ E1(ii)

c |n ≥ n0]

Lemma 3.4 Pr [E1(i)
c ∩ E1(ii)

c |n ≥ (τ1 − 1)(τ2 − 1) + 1] = 0.

Proof: We observe that E1(i)
c is the event max

k∈[b1]
nk < τ2 and E1(ii)

c is the event that nk ≥ 1

for at most τ1 − 1 indices k. Thus, if there are (τ1 − 1)(τ2 − 1) + 1 players in a collection, then

by the pigeonhole principle, either E1(i)
c or E1(ii)

c is violated. □

Lemma 3.5 Pr [E1(i)
c |n ≥ (τ2 − 1) b1 + 1] = 0.

Proof: We observe that E1(i)
c is the event max

k∈[b1]
nk < τ2 and there are b1 nks. Thus, if there

are (τ2 − 1)b1 + 1 players in a collection, then by the pigeonhole principle, E1(i)
c is violated,

since there is at least one nk with τ2 or more players. □

Lemma 3.6 Pr [E1(ii)
c |n ≥ (τ1 − 1) b2 + 1] = 0.

Proof: We observe that E1(ii)
c is the event that nk ≥ 1 for at most τ1 − 1 indices k. By

definition, each nk can have at most b2 elements. Thus, any collection of (τ1 − 1)b2 + 1 players

violates E1(ii)
c. □

Lemma 3.7 Pr [E2(i)
c ∩ E2(ii)

c |n ≥ (τ1 − 1)(τ2 − 1) + 1] = 0.

Proof: We observe that E2(i)
c is the event max

j∈[b2]
rj < τ1 and E2(ii)

c is the event that rj ≥ 1

for at most τ2 − 1 indices j. Thus, if there are (τ1 − 1)(τ2 − 1) + 1 players in a collection, then

by the pigeonhole principle, either E2(i)
c or E2(ii)

c is violated. □

Lemma 3.8 Pr [E2(i)
c |n ≥ (τ1 − 1) b2 + 1] = 0.
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Proof: We observe that E2(i)
c is the event max

j∈[b2]
rj < τ1 and there are b2 rjs. Thus, if there are

(τ1 − 1)b2 + 1 players in a collection, then by the pigeonhole principle, E2(i)
c is violated, since

there is at least one rj with τ1 or more players. □

Lemma 3.9 Pr [E2(ii)
c |n ≥ (τ2 − 1) b1 + 1] = 0.

Proof: We observe that E2(ii)
c is the event that rj ≥ 1 for at most τ2 − 1 indices j. By

definition, each rj can have at most b1 elements. Thus, any collection of (τ2 − 1)b1 + 1 players

violates E2(ii)
c. □

For n0 = max{(τ2 − 1) b1 + 1, (τ1 − 1) b2 + 1}, Lemmas 3.4, 3.5, and 3.6 imply

Pr [Ec
1 |n ≥ n0] = 0 and n0 = max{(τ2 − 1) b1 + 1, (τ1 − 1) b2 + 1}, and Lemmas 3.7, 3.8,

and 3.9 imply Pr [Ec
2 |n ≥ n0] = 0.

Note that the bound given here for the reconstruction number is tight, as we might expect. In the

example presented in Section 3.5, the bound turns out to be 5, which matches all the bounds

above. Corresponding counterexamples can be constructed to show that no smaller-sized general

collection can complete the reconstruction.

This result can be generalized for three or more designs. These results provide us with the tools

to present a generalized scheme, which we do now.

3.4.5 A Generalized Share Distribution Scheme

1. Dealer selects n (not necessarily distinct) BIBDs A1,A2, . . . ,An, where for

i ∈ {1, 2, . . . , n}, Ai is defined over points {xi
1, x

i
2, . . . , x

i
vi
}.

2. Dealer finds an integer d1 such that gcd(x1
1 + d1, x

1
2 + d1, . . . , x

1
v1
+ d1) = 1.

3. For i ∈ {2, . . . , n}:

• Dealer finds an integer di (using Lemmas 3.2 and 3.3) such that di breaks all

pairwise multiplicative collisions and makes the gcd of all elements xj
l + dj (j ∈

{1, . . . , i− 1}, l ∈ {1, . . . , vj}) and xi
1 + di, x

i
2 + di, . . . , x

i
vi
+ di is 1.

4. M ←A1 ⊗A2 ⊗ · · · ⊗ An.

5. Dealer distributes each row i of M as share to player Pi and outputs (d1, d2, . . . , dn)

publicly.
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Note that by Theorem 3.3, M is a tensor design, and the algorithm in the proof of the theorem

can be generalized for secret reconstruction of this scheme.

3.5 Example

We quickly revisit the previous example demonstrating the Krönecker product of BIBDs A and

B as in Equation (3.5):

Two (4, 3, 2) Shamir schemes in F5 and F7 over the points {1, 2, 3, 4} and {1, 2, 3, 5} can be

represented by share matrices A and B, respectively, with r1 = r2 = 3:

A =


1 2 3

2 1 4

3 4 2

4 3 1

 and B =


1 2 3

2 3 5

3 5 1

5 1 2

 .

The Krönecker product of the BIBDs A and B is as follows:

1 2 3 2 4 6 3 6 9

2 3 5 4 6 10 6 9 15

3 5 1 6 10 2 9 15 3

5 1 2 10 2 4 15 3 6

2 4 6 1 2 3 4 8 12

4 6 10 2 3 5 8 12 20

6 10 2 3 5 1 12 20 4

10 2 4 5 1 2 20 4 8

3 6 9 4 8 12 2 4 6

6 9 15 8 12 20 4 6 10

9 15 3 12 20 4 6 10 2

15 3 6 20 4 8 10 2 4

4 8 12 3 6 9 1 2 3

8 12 20 6 9 15 2 3 5

12 20 4 9 15 3 3 5 1

20 4 8 15 3 6 5 1 2
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Using the algorithm in Section 3.4.5, we produce a tensor design A ⊗ B21 using an integer

d = 21 satisfying Lemma 3.3. Representing the share matrix modified from B by B21 (and

noting that both share matrices are undeclared), with r1 = r2 = 3:

B21 =


22 23 24

23 24 26

24 26 22

26 22 23

 , (3.7)

we still have b1 = 4, b2 = 4, k1 = 3, and k2 = 3. Observe that τ1 = 2 and τ2 = 2 are the

reconstruction numbers of A and B, respectively. The Krönecker product of the two matrices A

and B21, represented by the matrix M , is shown in Figure 3.1.

22 23 24 44 46 48 66 69 72

T1={P1,P2,P3,P4}
23 24 26 46 48 52 69 72 78
24 26 22 48 52 44 72 78 66
26 22 23 52 44 46 78 66 69
44 46 48 22 23 24 88 92 96

T2={P5,P6,P7,P8}
46 48 52 23 24 26 92 96 104
48 52 44 24 26 22 96 104 88
52 44 46 26 22 23 104 88 92
66 69 72 88 92 96 44 46 48

T3={P9,P10,P11,P12}
69 72 78 92 96 104 46 48 52
72 78 66 96 104 88 48 52 44
78 66 69 104 88 92 52 44 46
88 92 96 66 69 72 22 23 24

T4={P13,P14,P15,P16}
92 96 104 69 72 78 23 24 26
96 104 88 72 78 66 24 26 22
104 88 92 78 66 69 26 22 23
S1={P1,P5,P9,P13} S2={P2,P6,P10,P14} S3={P3,P7,P11,P15} S4={P4,P8,P12,P16}

Figure 3.1: The matrix A⊗B21 is the Krönecker product of A and B21 as in Equation (3.7), and
is a secret sharing scheme with reconstruction number 2. A secret reconstruction algorithm for
this scheme is detailed in Section 3.5.1.

3.5.1 Secret Reconstruction

The matrix A⊗ B21 in the above example produces interesting results.

1. A collection of three players—exactly two from one of the sets T1, T2.T3, T4 and one

from another—allows reconstruction of the secret. For example, consider the set of three
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players {P1, P2, P5}. This set can reconstruct the secret:

(i) gcd(22, 23, 24, 23, 24, 26) = 1; hence, the first row of MA is (1 2 3) and the first

two rows of MB are (22 23 24) and (23 24 26). As τ2 = 2, MB can be obtained

from its two rows.

(ii) Now, observing 5 = 4 · 1 + 1, we readily know P5 uses the first row of MB and the

second row of MA; this yields the second row of MA, (2 1 4). Since τ1 = 2 and we

have two rows of MA, the whole matrix MA is known.

2. Any collection of three players—two from one of the sets S1, S2, S3, S4 and one from

another—also allows reconstruction of the secret.

3. Reconstruction of the secret is ensured for a collection of five or more players.

This idea can be generalized to a secret reconstruction algorithm in the general case.

3.6 Share Repair for a Krönecker Product-Induced Distribu-

tion Design

LetA and B be (v1, k1, 1)- and (v2, k2, 1)-BIBDs with b1 and b2 blocks, and replication numbers

r1 and r2, respectively. Consider player P1, whose share is the first block (i.e., row) of A⊗ B.

Thus,

share of P1 = a11b11 a11b12 · · · a11b1k2 | a12b11 a12b12 · · · a12b1k2 | · · ·

· · · | a1k1b11 a1k1b12 · · · a1k1b1k2 = L1 | L2 | · · · | Lk1 .

Using the notations and method described in (Kacsmar & Stinson, 2019) (and making the same

assumption that any player is available with a fixed probability p), the probability of availability

of at least one repair set is

R(p) = (1− (1− p)r1r2)
k1k2 . (3.8)
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We improve this method significantly. For this, observe that each block Lk

(k ∈ {1, 2, . . . , k1}) (possibly with a different factor ami for some m ∈ {1, 2, . . .

. . . , b1}, i ∈ {1, 2, . . . , k1}, from A) occurs in the shares of r1 − 1 players other than P1.

(3.9)

Furthermore, the share of P1 can also be characterized as

a11b11 a11b12 · · · a11b1k2 | a12b11 · · · a12b1k2 | · · · · · · | a1k1b11 · · · a1k1b1k2 ;

K1 := a11b11 a12b11 · · · a1k1b11,

K2 := a11b12 a12b12 · · · a1k1b12,
...

Kk2 := a11b1k2 a12b1k2 · · · a1k1b1k2 .

It is thus clear that each Kj(j ∈ {1, 2, . . . , k2}) (possibly with a different

factor blj for some l ∈ {1, 2, . . . , b2}, from B) occurs in the shares of r2 − 1

players other than P1. (3.10)

Let us assume that we have t1 players of type (3.9) and t2 players of type (3.10). Then

R∗
(t1,t2)

(p) = R∗
t1
(p)R∗

t2
(p)R∗

δ(p), (3.11)

where

(i) t1 are selected from type (3.9);

(ii) t2 are selected from type (3.10);

(iii) δ := k1k2 − t1k1 − t2(k2 − t1) are selected independently, and
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R∗
t1
(p) =

(
1− (1− p)r1−1

)t1
R∗

t2
(p) =

(
1− (1− p)r2−1

)t2
R∗

δ(p) =
(
1− (1− p)(r1−1)(r2−1)

)δ
.

Observe that δ = (k1 − t2)(k2 − t1). Therefore, the probability of at least one repair set being

available in this case is

R∗(p) =
∑
t1,t2

R∗
t1
(p)R∗

t2
(p)R∗

δ(p).

Let E∗(p) be the expected number of minimal repair sets. In general, this expected number is

the product of the total number of possible repair sets and the probability of availability of each

repair set. Ref. (Kacsmar & Stinson, 2019) sets E(p) = (r1r2)
k1k2 . We denote by C(t1, t2), the

number of partitions of a set of size k1k2 into three sets of sizes t1, t2 and k1k2 − t1 − t2. By an

argument similar to the previous,

E∗
t1
(p) = (r1 − 1)t1pt1 ,

E∗
t2
(p) = (r2 − 1)t2pt2 , and

E∗
δ (p) = [(r1 − 1)(r2 − 1)]δ pδ, so that

E∗
(t1,t2)

(p) = C(t1, t2)E
∗
t1
(p)E∗

t2
(p)E∗

δ (p).

Hence, E∗(p) =
∑
t1,t2

C(t1, t2)E
∗
t1
(p)E∗

t2
(p)E∗

δ (p).

Table 3.1 shows a comparison of share repair probability on three projective planes for two

different methods.

Table 3.1: A comparison table showing probability of share repairability on three projective
planes.

A B R(p) R∗(p)

(3, 2, 1) (3, 2, 1) (1− q3)4 > (1− q)4 + . . .

(3, 2, 1) (7, 3, 1) (1− q5)6 > (1− q2)6 + . . .

(7, 3, 1) (7, 3, 1) (1− q8)9 > (1− q4)9 + . . .
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3.7 Frameproofness

Consider matrix representations of two BIBDs A = (aij)i∈{1,...,b1}
j∈{1,...,k1}

and B = (bij)i∈{1,...,b2}
j∈{1,...,k2}

, and

their Krönecker product as depicted in Equation (3.4). We show here how the share of a player, say

P1, can be retrieved (i.e., player P1 can be framed; see (Desmedt et al., 2021) for more details) by

only two other players. For clarity, we mention here that the share of P1 is

a11b11, a11b12, . . . , a12b11, a12b12, . . . , a13b11, . . ..

1. There exist (b2 − 1) + (r1 − 1) · b2 players that possess the element a11bij for some

i ∈ {1, 2, . . . , b2} and j ∈ {1, 2, . . . , k2}, since r1 is the replication number ofA. Of these,

(r1−1) ·1 players possess the first k2 elements of the share, i.e., a11b11 a11b12 . . . a11b1k2 .

If any of these players knows the ratios a12
a11

, a13
a11

, . . ., then they could construct the entire

share of P1.

2. Note that for j ̸= 1, any of the b2 − 1 players with shares

a11B2 | a12B2 | . . . | a1k1B2,

a11B3 | a12B3 | . . . | a1k1B3,
...

a11Bb2 | a12Bb2 | . . . | a1k1Bb2

knows these ratios.

Therefore, only two players — one from the r1 − 1 players possessing a11b11 and one from the

b2− 1 players possessing a12
a11

, a13
a11

, . . . — can reconstruct the entire share of player P1, and hence,

frame this player.

We try to address this problem by reducing the repetitive nature of shares of the participants.

We shall do this by decreasing the size of each share, while retaining all the information that

a player had in the previous construction (i.e., Equation (3.4)), thus increasing the number of

players required to frame another player.
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3.7.1 A Modified Scheme

Given two matrices A and B of the same dimension r × c, we define the operation A ⊙ B

as the r × c matrix generated by position-wise products of elements of A and B, i.e., if

A =


a11 a12 · · · a1c

...

ar1 ar2 · · · arc

 and B =


b11 b12 · · · b1c

...

br1 br2 · · · brc

, then

A⊙ B =


a11b11 a12b12 · · · a1cb1c

...

ar1br1 ar2br2 · · · arcbrc

 .

The operator ⊙ is well-behaved in the sense that it is commutative and respects scalar multipli-

cation on integer-valued matrices.

Let π : {1, 2, . . . , b} → {1, 2, . . . , b} be a permutation. Given i ∈ {1, 2, . . . , b} and π(i) = j,

we define π̃ : {1, 2, . . . , b} → {1, 2, . . . , k} as π̃(i) = j (mod k), for any integer k ≤ b.

Now given BIBDs Ab1×k1 and Bb2×k2 , we modify their Krönecker product by first choosing a

permutation π1 randomly from the set of all permutations over {1, 2, . . . , b2} and producing π̃1.

Then we produce π̃2, π̃3, . . ., π̃k1 by simple translations.

Next, we represent application of the function π̃l to the mth block matrix (of size b2 × k2) of

block-row t in A⊗ B by θmt = l, and define matrix Nb1b2×k1k2 = (nij) divided into blocks of

size b2 × k2 similarly as A⊗ B such thatnij = 1 if π̃l(i) = j

nij = 0 if otherwise
,

where nij is the element in the ith row and j th column of the (m, t)th block matrix of M . Finally,

the ith row of matrix (A⊗ B) ⊙ N produces the share of player Pi (i ∈ {1, 2, . . . , b1b2}) by

omitting the zeroes.
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3.7.2 Example

Consider another example, where a (4, 3, 2)-BIBD and a (5, 4, 3)-BIBD over the points {1, 2, 3, 4}

and {22, 23, 24, 25, 26} are represented by matricesA and B, respectively (note that r1 = 3, r2 =

4):

A =


1 2 3

2 3 4

3 4 1

4 1 2

 , and MB =



22 23 24 25

23 24 25 26

24 25 26 22

25 26 22 23

26 22 23 24


. (3.12)

Then b1 = 4, b2 = 5, k1 = 3 and k2 = 4; τ1 = 2 and τ2 = 2 are the reconstruction numbers of

A and B, respectively.

Modifying the matrix in Figure 3.2, as shown in Figures 3.3 and 3.4, we obtain a scheme for

which it is no longer possible to reconstruct the secret of the scheme in Figure 3.4 from just

two players (as was possible in the example in Section 3.5). In fact, the subsequent section

(Section 3.7.3) provides an algorithm for secret reconstruction from this scheme using τ1 + τ2

players.
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22 23 24 25 44 46 48 50 66 69 72 75
23 24 25 26 46 48 50 52 69 72 75 78
24 25 26 22 48 50 52 44 72 75 78 66
25 26 22 23 50 52 44 46 75 78 66 69
26 22 23 24 52 44 46 48 78 66 69 72
44 46 48 50 66 69 72 75 88 92 96 100
46 48 50 52 69 72 75 78 92 96 100 104
48 50 52 44 72 75 78 66 96 100 104 88
50 52 44 46 75 78 66 69 100 104 88 92
52 44 46 48 78 66 69 72 104 88 92 96
66 69 72 75 88 92 96 100 22 23 24 25
69 72 75 78 92 96 100 104 23 24 25 26
72 75 78 66 96 100 104 88 24 25 26 22
75 78 66 69 100 104 88 92 25 26 22 23
78 66 69 72 104 88 92 96 26 22 23 24
88 92 96 100 22 23 24 25 44 46 48 50
92 96 100 104 23 24 25 26 46 48 50 52
96 100 104 88 25 26 22 23 48 50 52 44

100 104 88 92 25 26 22 23 50 52 44 46
104 88 92 96 26 22 23 24 52 44 46 48

Figure 3.2: The matrix A⊗B is the Krönecker product of A and B as in Equation (3.12), and is
a secret sharing scheme with reconstruction number 2.

1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0

Figure 3.3: The matrix N , right-operated as ⊙N on the tensor design A⊗ B in Figure 3.2
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22 0 0 0 0 0 0 50 0 0 72 0
23 0 0 0 46 0 0 0 0 0 0 78
0 25 0 0 48 0 0 0 72 0 0 0
0 0 22 0 0 52 0 0 75 0 0 0
0 0 0 24 0 0 46 0 0 66 0 0
0 0 0 50 0 0 72 0 88 0 0 0

46 0 0 0 0 0 0 78 92 0 0 0
48 0 0 0 72 0 0 0 0 100 0 0
0 52 0 0 75 0 0 0 0 0 88 0
0 0 46 0 0 66 0 0 0 0 0 96
0 0 72 0 88 0 0 0 0 0 0 25
0 0 0 78 92 0 0 0 23 0 0 0

72 0 0 0 0 100 0 0 24 0 0 0
75 0 0 0 0 104 0 0 0 26 0 0
0 66 0 0 0 0 92 0 0 0 23 0

88 0 0 0 0 0 0 25 0 0 48 0
92 0 0 0 23 0 0 0 0 0 0 52
0 100 0 0 25 0 0 0 48 0 0 0
0 0 88 0 0 26 0 0 50 0 0 0
0 0 0 96 0 0 23 0 0 44 0 0

7→

22 50 72
23 46 78
25 48 72
22 52 75
24 46 66
50 72 88
46 78 92
48 72 100
52 75 88
46 66 96
72 88 25
78 92 23
72 100 24
75 104 26
66 92 23
88 25 48
92 23 52

100 25 48
88 26 50
96 23 44

Figure 3.4: The matrix on the left is (A⊗ B) ⊙ N , and the one on the right is the share
distribution scheme obtained from this operation, as described in Section 3.7.1.

3.7.3 Secret Reconstruction for the Modified Scheme

1. Choose a player Pm
i (which is the ith player in the mth row-block of A ⊗ B, or the

((m− 1)b2 + i)th player from the top), for any m ∈ {1, 2, . . . , b1} and i ∈ {1, 2, . . . , b2}.

2. Consider elements amtbij in the share of player Pm
i , i.e., θmt = l and π̃l(i) = j. For such

an element amtbij , set y = bij (note that the value y ∈ {y1, y2, . . . , yv2} is not known, but

the positions at which the matrix B contains elements bîĵ = y is known).

3. Construct set Sy :=
{
l̂ :
(
π̃ l̂(̂i) = ĵ

)
∧
(
bîĵ = y

)}
. By Theorem 3.4, for a maximal set

Sy (if not, then another value y may be chosen by selecting a different element am′t′bi′j′)

the set

{
am̂t̂ : am̂t̂bîĵ ∈ the share of player P m̂

î
such that bîĵ = y

}
= {x1, x2, . . . , xv1}

is the set of all values in A. Observe that this requires τ1 players.
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4. Construct matrix A, since the positions of all values x1, x2, . . . , xv1 in this matrix are now

known.

5. Compute bi′j′ for am′t′bi′j′ ∈ share of player Pm′

i′ using the known values am′t′ until all

values y1, y2, . . . , yv2 are known. Observe that this requires τ2 more players.

6. Construct matrix B, since the positions of all values y1, y2, . . . , yv2 in this matrix are now

known.

7. Compute A⊗ B from the two known matrices.

Thus, framing any player is not possible for just two other participants, and requires a much

larger coalition of τ1 + τ2 players.

3.8 Graphical Representation and Proof of Existence of Per-

mutations

Matching in Bipartite Graphs

We shall now use the concepts of matchings and covers to analyze the frameproofness of the

secret sharing scheme. We leverage bipartite graphs to model the relationships between players

and the secrets they can access, ensuring that coalitions cannot frame other players. We use the

graph theoretical concepts discussed in section 2.3 for this purpose.

P V

P1

P2

P3

P4

P5

x1

x2

x3

x4

x5

Figure 3.5: A bipartite graph for the tensor design B defined in Section 3.7.2 with 5 players
and 5 points. Each edge (Pi, xj) denotes the inclusion of point xj in the share of player Pi. The
collection of red edges shows one possible maximal matching for the graph.
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Definition 3.2 A bipartite graph G = (V , E) is said to induce a tensor design B if

• the vertex set V = P ⊔V the disjoint union of the set of players P = {P1, . . . , Pb} and

the set of points V = {x1, . . . , xv} of B;

• the edge set is the collection
⋃

i∈[b]
j∈[v]
{(Pi, xj) : xj ∈ share of Pi}.

Theorem 3.4 Given a bipartite graph G inducing a tensor design B, and given subsets δ(Pi) ⊆

N(Pi) of size s,

(i) If
⋃

i∈[b] δ(Pi) = V, then reconstruction of the modified scheme (A⊗B)modified is possible.

(ii) If s ≥ 1, then (i) holds.

Proof: Assuming the usual notations for a tensor design, it is clear that in G,

|N(xj)| = r ∀xj ∈ V

|N(Pi1 ∩ Pi2)| = λ (3.13)

From Equation (3.13) and the inclusion-exclusion principle,

|N({xi1 , . . . , xim})| ≥ m(r − λ)

Since r ≥ λ, Hall’s theorem (Theorem 2.11) implies G has a matching of size v, i.e.,
⋃

i∈[b] δ(Pi) =

V. Thus, (i) holds by the reconstruction algorithm in Section 3.7.3.

Now choose δ(Pi) such that each subset contains at least one point matched with Pi in this

matching, so that (ii) holds. This proves the theorem. □

3.9 Conclusions and Future Work

This chapter presents a significant advancement in the field of secret sharing by introducing

a novel combinatorial design that surpasses existing methods in terms of efficiency, security,

and flexibility. By generalizing the domain of distribution designs to integer rings, we achieve

enhanced share repairability and simplified secret reconstruction. The integration of frameproof-

ness significantly strengthens the scheme’s resistance to malicious attacks, making it highly
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suitable for sensitive applications. The proposed construction based on a simple Krönecker

product offers a scalable and efficient approach to combining multiple secret sharing systems

while preserving their individual properties.

We have thus, first generalized the concept of combinatorial RTS and then improved our

secret sharing scheme by producing a frameproof one. Our findings underscore the potential of

combinatorial designs for developing robust and secure secret sharing schemes tailored to diverse

IoT applications. The proposed framework provides a solid foundation for future research in this

area, with opportunities to explore further optimizations, new applications, and the integration

of additional cryptographic primitives.
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4 | Applications to IoT and Verifiability

4.1 Secret Sharing Schemes and the Internet of Things

The Internet of Things (IoT) refers to a network of interconnected devices, objects, and systems

that are embedded with sensors, software, and other technologies to collect and exchange

data over the internet. These devices can range from everyday objects such as smart home

appliances and wearable devices to industrial machines and infrastructure components. IoT

enables these devices to communicate with each other and with centralized systems, allowing

for automation, data analysis, and improved efficiency in various domains such as healthcare,

transportation, agriculture, and smart cities. Verifiable secret sharing schemes play a crucial role

in ensuring the security, privacy, and integrity of sensitive data transmitted and stored by IoT

devices. In collaborative IoT applications where multiple entities need to work together while

preserving data privacy, verifiable secret sharing schemes can facilitate secure collaboration

without compromising sensitive information. (Geng et al., 2022) proposes a privacy-preserving

implementation of a VSS scheme, where information is split and encrypted to protect sensitive

data during transmission. (Rehman, Saba, Haseeb, Larabi Marie-Sainte, & Lloret, 2021) also

highlights the significance of verifiable secret sharing schemes in IoT, particularly in healthcare

scenarios, where the protection of patient data is paramount. These schemes play a critical role in

enhancing security, privacy, trust, and data integrity in IoT-based e-health systems, contributing

to the overall reliability and effectiveness of healthcare applications. (Fu, Ren, Feng, Zhang, &

Qin, 2021) proposes a non-interactive and secure data aggregation scheme that utilizes additive

secret sharing to share data in two parts before masking these shared values, ensuring the data

privacy of mobile users.

Secret sharing schemes can be used to distribute the security key amongst numerous devices

in an IoT system, ensuring that no single device has access to the entire key. They are also

lightweight and require less computational power compared to other cryptographic elements.

Additionally, their ability to detect and prevent attacks that attempt to modify or delete parts of

the secret is particularly important in IoT applications where security is critical.

For example, (Rehman et al., 2021) proposes an AI heuristic decision algorithm, utilizing a

best-first search (BFS) approach. It effectively balances energy load and reduces communication
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overhead in smart healthcare technologies. The utilization of homomorphic secret sharing in

IoT-based e-health applications provides various advantages in terms of privacy and security. It

securely distributes secret pairs among medical nodes, ensuring the confidentiality of sensitive

health data during transmission and storage within the network. This is achieved by encrypting

data through homomorphic secret sharing, thereby preventing unauthorized access to medical

data. Access to medical records is limited to authorized entities possessing the necessary secret

keys to decrypt and utilize the shared data. Thus, the incorporation of homomorphic secret

sharing adds an extra layer of protection against unauthorized modifications or alterations to

medical records. A generalization of this scheme to multiple levels—possibly to combine data

between different hospitals or chains of healthcare providers, different states within a country, or

even different countries—can be easily achieved through the Krönecker product of the individual

schemes used by each hospital system. The fields on which these schemes are based provide a

perfect foundation for the homomorphism, which can be easily maintained by the integer ring

over which the Krönecker product is then defined.

A frameproof tensor product of multiple distribution designs can be distinctly useful for

lightweight IoT applications, as it allows for a multi-level or multi-system secret sharing

scheme IoT implementation in a secure and efficient manner, while detecting and preventing

any attempt to modify or delete parts of the secret data. This approach ensures that even if some

levels are compromised, the overall security of the system(s) remains intact.

The wide range of applicability of our generalizations can be further seen in, say, the management

of massive data, such as (Fu et al., 2021), which proposes a non-interactive approach for IoT

data aggregation that utilizes additive secret sharing, addressing numerous challenges including

privacy concerns, security risks, high communication overhead, and user interaction. The

additive secret sharing effectively masks the original data, preventing malicious analysis by the

servers. The scheme also supports offline mobile users, maintains privacy, and provides efficient

algorithms for result verification. However, (Fu et al., 2021) only splits the secret between

two servers at a time. A frameproof tensor product can be smoothly applied in this context for

connecting a large number of such systems, due to the underlying fields over which the secrets

are split between servers in individual systems, as well as the generalized integer ring over which

the tensor product is then defined.

Figure 4.1 shows an application of tensor design in multi-system IoT. We draw the reader’s
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attention to the applicability of our results from chapters 3 and 4 to secret sharing applications

on the Internet of Things, especially in a secure, lightweight context.

+ =data breach

Figure 4.1: An application of the tensor product of repairable threshold schemes from Chapter 3
in multi-system IoT, where each system (say, a single hospital) may possess a separate RTS
for sharing its own secret key, while multiple systems (say, a chain of hospitals) may share
their individual secrets to non-colluding cloud storage providers through a tensor product of the
individual schemes.

4.2 Vulnerabilities in Communication Networks

Some models of vulnerability and attacks/malicious behaviors are studied in detail in this domain.

We briefly identify them here. A detailed discussion may be found in Chapters 6 and 7.

• Share Distribution Stage: Anomalies may be introduced during data transfer from the

dealer to players.

• Framing Dynamics: There may be risks of players framing other players.

• Malicious Share Insertion: There may also be threats of false share contributions during

the secret reconstruction phase.

Section 4.3 addresses one such vulnerability: anomaly due to erroneous share distribution. One

can use error-correcting codes (Poli, 1985; Yao & Cheng, 1986; Dong, Mani, & Zhao, 2023) as
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well as repair techniques described in (Kacsmar & Stinson, 2019) to reconstruct faulty shares.

Further chapters (Chapters 5 and 6) explore these concepts in detail.

4.3 Verifiability in Secret Sharing

Verifiable secret sharing schemes play a crucial role in ensuring the security, privacy, and

integrity of sensitive medical data transmitted and stored by IoT devices. They are essential for

maintaining the security and privacy of medical data in IoT-based healthcare systems. These

schemes enable the distribution of secret pairs among peer medical sensors in a secure manner,

ensuring that sensitive information is protected from unauthorized access and malicious nodes.

They also help IoT devices establish trust amongst each other, as it is ensured that only authorized

devices have access to the shared secrets. Moreover, verifiable secret sharing schemes help

maintain the integrity of medical data transmitted and stored by IoT devices and prevent data

tampering and unauthorized modifications, ensuring the reliability of the information exchanged

between devices.

Existing Verifiable Secret Sharing (VSS) schemes are based on several foundational concepts in

cryptography and distributed computing. The security of VSS schemes often relies on one-way

functions, which are easy to compute in one direction but hard to invert. This property is used to

create verification data that participants can use to check the validity of their shares. Many VSS

schemes utilize homomorphic functions, which allow certain operations to be performed on the

shares without needing to reconstruct the secret. For instance, Feldman’s VSS scheme (Feldman,
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1987) employs a homomorphic one-way function to verify the consistency of shares. This

property is crucial for ensuring that participants can validate their shares without needing to

communicate with others. Some other VSS schemes incorporate zero-knowledge proofs to allow

participants to prove that they possess a valid share without revealing any information about

the share itself. This is particularly useful in scenarios where privacy and confidentiality are

paramount. Likewise, many VSS schemes leverage public key cryptography to facilitate secure

communication and verification.

Given the resource constraints of many IoT devices, existing VSS schemes are increasingly

focused on efficiency in terms of computation and communication. This includes minimizing

the amount of verification data required and reducing the computational overhead associated

with share generation and verification. Many modern VSS schemes utilize cryptographic hash

functions to ensure the integrity and authenticity of shares. Hash functions can be used to create

compact representations of shares that can be easily verified.

4.4 Lightweight Share Verification

Cheater detection in Verifiable Secret Sharing (VSS) ensures that the secret can only be re-

constructed by authorized shareholders who possess valid shares. This integrity is crucial in

scenarios where the secret is sensitive or valuable, as it prevents malicious players from manip-

ulating the reconstruction process to gain unauthorized access to the secret, or to maliciously

sabotage the reconstruction of secrets without making any other gain for themselves. Since

shareholders must trust that the shares they receive and use for reconstruction are legitimate,

cheater detection mechanisms provide a way to identify and exclude dishonest participants from

the reconstruction process. This is particularly important in environments where shareholders

may not have prior relationships or trust established. In addition, identifying coalitions of

dishonest shareholders attempting to reconstruct the secret using fake or manipulated shares

is facilitated, allowing the VSS scheme to maintain its security. There is no doubt that the

ability to detect cheaters enhances the overall robustness of the secret sharing scheme against

various attacks, including those from insiders who may attempt to compromise the system. This

is especially relevant in cloud computing environments. In fact, simply knowing that there

are mechanisms in place for cheater detection can deter potential dishonest behavior amongst

various participants. For these reasons, cheater detection is a critical component of VSS schemes,
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as it ensures the security, integrity, and trustworthiness of the secret sharing process, making it

suitable for applications in sensitive areas such as finance, healthcare, and cloud computing.

4.5 Existing Verification Protocols

One approach to achieving verifiability is through homomorphic commitment schemes, such

as Benaloh’s scheme (Benaloh, 1986). These allow shareholders to verify that all shares are

collectively consistent without revealing the secret. However, this method requires interactive

proofs to ensure the dealer’s integrity, which can complicate the process and make it less

practical. Another method by (Harn & Lin, 2009) involves verifying the coherence of shares by

comparing the secrets reconstructed from different subsets of players. If all subsets yield the

same secret, it indicates no cheating has occurred. This method requires a coalition of players

larger than the threshold to effectively detect cheaters, which can be a limitation in smaller

groups.

The verification algorithms of (Cafaro & Pellè, 2018) are designed to be space-efficient, meaning

they do not require the storage of public data for verification, which reduces the overhead typi-

cally associated with secret sharing schemes. The proposed schemes can be used in conjunction

with arbitrary secret sharing schemes and provide mechanisms for detecting cheaters among

shareholders. Consequently, the design emphasizes robustness against cheaters by implementing

verification routines that ensure the legality of shares independently from the secret they are

generated from, unlike traditional homomorphic commitment schemes.

The Delegated Proof of Secret Sharing (DPoSS) consensus protocol proposed by (Geng et al.,

2022) introduces several mathematically grounded contributions that address the challenges

inherent in IoT environments. It optimizes the consensus process by leveraging secure multiparty

computation (MPC) techniques (Luo, Deng, Wu, & Wang, 2019; Zhong, Sang, Zhang, & Xi,

2019), specifically through the use of Shamir’s Secret Sharing (SSS) (Shamir, 1979). The

protocol employs a randomized selection algorithm to elect nodes for block packing, which

can be mathematically represented as a uniform distribution over the set of eligible nodes. Let

N be the total number of nodes, and let S ⊆ N be the subset of nodes eligible for selection.

The probability P (i) of node i being selected is given by P (i) = 1
|S| ∀i ∈ S. This ensures

that each node has an equal chance of being selected, thereby promoting fairness and reducing
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the risk of centralization, as no single node or small group of nodes can dominate the selection

process. Further clarification of this process may be found in (Geng et al., 2022).

DPoSS incorporates verifiable secret sharing (VSS) by splitting the secret s into shares s1, s2, . . . , sn

using a polynomial f(x) of degree k − 1 such that f(0) = s. Each share si is computed as

si = f(xi) for distinct xi values. The reconstruction of the secret requires at least k shares,

ensuring that any coalition of fewer than k nodes cannot derive any information about s. This

framework provides a robust mechanism for protecting sensitive data in the IoT context. Fur-

thermore, the authors propose a modular architecture that allows for the integration of various

secret sharing schemes, which can be mathematically represented by defining a set of secret

sharing functions F = {f1, f2, . . . , fm}, where each function fj corresponds to a different secret

sharing scheme. The protocol can dynamically select fj based on the specific requirements of

the application, thus enhancing its versatility and efficiency across diverse IoT environments.

In particular, the key sharing protocol proposed in (Geng et al., 2022) incorporates VSSThe

verification process involves a commitment phase in which, the dealer commits to the polynomial

f(x) by sending a commitment C = Commit(f(x)) = (f(0), f(1), . . . , f(k − 1)) to the

nodes. This commitment can be done using cryptographic techniques such as hash functions

or homomorphic encryption. It also involves a share verification phase in which, each node

that receives a share si can verify it by checking if si = f(xi). If the share does not match the

polynomial evaluation, the node can reject it and request a new share. The protocol ensures that

no information about the secret is revealed unless k shares are combined, and that nodes can

verify the correctness of the shares they receive

The consensus protocols of (Geng et al., 2022) based on Verifiable Random Functions (VRFs)

(which are a cryptographic primitive that produce a pseudorandom output from a given input,

along with a proof that the output was generated correctly) ensure that the output appears

random to anyone who does not know the secret key, allows any entity to verify that the output

was generated correctly from the input and the secret key, and guarantees that for each input,

the output is unique. Let Ks be the secret key and Kv be the verification key. The VRF

consists of a key generation algorithm that generates a key pair (Ks, Kv) using a secure key

generation algorithm, an evaluation algorithm such that for an input X , the output is (Y, π) =

VRF_Eval(Ks, X) (Y is the pseudorandom output, and π is the proof of correctness), and a

verification algorithm, which given (Y, π), checks if VRF_Verify(Kv, X, Y, π)→ True/False.
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While the DPoSS protocol presents several advantages, it also has some drawbacks that can

impact its implementation and performance in practical scenarios. DPoSS relies on the distri-

bution of secret shares among nodes, which can lead to increased communication overhead,

especially in large networks. The effectiveness of the secret sharing scheme is contingent upon

the threshold k. If the number of malicious nodes exceeds n− k, the protocol’s security can be

compromised. The process of collecting shares, performing polynomial interpolation, and re-

constructing the secret can introduce latency in reaching consensus. The time taken for nodes to

communicate and verify shares can delay the block packing process, which may not be suitable

for applications requiring real-time or near-real-time processing. Moreover, DPoSS assumes

that a certain proportion (majority) of players are honest to function correctly. Additionally, the

protocol’s fault tolerance is inherently linked to the robustness of the underlying secret sharing

scheme, which may not be sufficient in all scenarios.

Evidently, many existing VSS schemes face challenges such as requiring multiple rounds of

communication (which can be inefficient and impractical in real-world applications), needing

large numbers of polynomials or additional verification data, inadequate robustness against

collusion among dishonest participants, etc. It is clear that despite significant progress in the field

of verifiable secret sharing, challenges remain in terms of efficiency, robustness, and practicality.

There is hence, a need for continued research to develop more effective and secure VSS schemes

that can be applied in real-world scenarios.

4.6 An Improved Cheater Detection Algorithm

Let us first begin by recalling some ideas described in the previous chapter. Using two Shamir

schemes on points x1, . . . , xv1 of a BIBD A, and y1, . . . , yv2 of a BIBD B, we construct a tensor

design F (A,B), which is frameproof. In short, we shall describe a verification protocol not

based on hash functions. This protocol has a better computation complexity than standard

hash-based verifiers and is moreover based on simple algebraic functions.

• The dealer chooses a (not very large) prime p such that none of x1, . . . , xv1 , y1, . . . , yv2
are divisible by p, and declares p beforehand.

• He also produces a chart of inverse pairs (a, a−1) ∀a ∈ Zp.

• The dealer then runs the share generation algorithm as described in Section 3.7.1.
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• He then computes
∑
i,j

x−1
i y−1

j (mod p) for each player P , where the share of P consists

of elements xi from A and yj from B.

• Finally, the dealer attaches this value to each share and distributes the shares to the

participants.

• The secret reconstruction is done by an authorised collection of participants as in Sec-

tion 3.7.3 and the verification can commence in this phase.

Complexity: In short, our computation complexity comes out to be O(n) – which is better than

the previous O(n log n).

Residue computation: at most O(log2 n).

Summation: O(n).

The storage space required is at most p− 1. However, the communication size increases.

4.7 Conclusion

In this chapter, we have demonstrated the broad applicability of the proposed scheme from

Chapter 3 and the novel verification protocol in a variety of IoT contexts. This work underscores

the critical need for ongoing research to develop more robust and secure VSS schemes suitable

for real-world deployment. A promising avenue for future exploration involves in-depth analysis

of specific use cases.

Cheater detection is a cornerstone of VSS, ensuring that only authorized shareholders with valid

shares can reconstruct the secret. This integrity is paramount in scenarios where the secret carries

significant value or sensitivity, as it safeguards against malicious attempts to manipulate the

reconstruction process. We have discussed several existing VSS verification protocols that have

explored various approaches. Homomorphic commitment schemes, such as Benaloh’s, provide

one method. Harn and Lin’s technique focuses on verifying share coherence. Cafaro and Pellè’s

algorithms prioritize space efficiency by eliminating the need for public data storage during

verification, thereby reducing overhead. The DPoSS consensus protocol offers mathematically

sound solutions to the unique challenges posed by IoT environments.

Building upon these foundations, we have introduced an improved cheater detection algorithm
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that departs from traditional hash-based verification methods. This algorithm exhibits superior

computational efficiency while relying on simple algebraic operations. Although it reduces

storage requirements, it comes at the cost of increased communication overhead. This chapter

lays the groundwork for further advancements in VSS, with a particular focus on enhancing

security, efficiency, and practical implementation for IoT applications.
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5 | Access Structure Hiding Verifiable Tensor Designs

5.1 Introduction

The field of verifiable secret sharing schemes was introduced by Verheul et al. (Verheul &

van Tilborg, 1997) and has evolved over time, incorporating well-known earlier examples by

Feldman (Feldman, 1987) and Pedersen (Pedersen, 1991) that necessitated verifiability. Stinson

made advancements in combinatorial design-based secret sharing schemes in 2004 (Stinson,

2004). Desmedt et al. introduced the concept of frameproofness in 2021 (Desmedt et al., 2021),

while recent research by Sehrawat et al. in 2021 (V. S. Sehrawat et al., 2021) focuses on

LWE-based access structure hiding verifiable secret sharing with malicious-majority settings.

Furthermore, Roy et al. (B. K. Roy & Roy, 2023) combined the concepts of reparable threshold

schemes by Stinson et al. and frameproofness by Desmedt et al. in 2023, to develop extendable

tensor designs built from balanced incomplete block designs, and also presented a frameproof

version of their design. This chapter explores ramp-type verifiable secret sharing schemes,

and the application of hidden access structures in such cryptographic protocols. Inspired by

Sehrawat et al.’s access structure hiding scheme, we develop an ϵ-almost access structure hiding

scheme, which is verifiable as well as frameproof. We detail how the concept of ϵ-almost hiding

is important for incorporating ramp schemes, thus making a fundamental generalisation of this

concept.

Beginning with the introduction of various important types of secret sharing schemes such as

VSS schemes, RTSs, BIBDs and access structure hiding schemes in Section 5.1, we define

various notations, definitions and other preliminaries in Section 5.2. We introduce our modified

concept of ϵ-almost access structure hiding ramp-type tensor designs in section 5.3, where we

provide a background of the existing theory of extending tensor designs by Roy et al. (B. K. Roy

& Roy, 2023), as well as demonstrate various secret sharing properties (such as correctness,

ϵ-correctness and computational secrecy for their tensor design schemes. We also recall the

concept of frameproof tensor designs through an example and show that it is also applicable

to our scheme, and detail an algorithm for access structure token generation according to

our requirements. In Section 5.4, we state the mains results of this chapter in the form of

Theorems 5.3, 5.4, 5.5 and 5.6. Sections 5.5 and 5.6 present detailed proofs of these theorems. In

Section 5.7, we enumerate a few applications of our results in the real world, and then conclude
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in Section 5.8.

Concepts of extremal set theory are used to hide the access structure.

5.2 Preliminaries

Given a collection P = {P1, . . . , Pℓ} of (say) players in a secret sharing scheme, we denote

the power set of P, i.e. the set of all subsets of P, by 2P. The closure of a subset A ∈ 2P

is the set cl(A) := {C : C∗ ⊆ C ⊆ P for some C∗ ∈ A}. Given a security parameter ω, a

function δ(ω) is called negligible if for all c > 0, there exists an ω0 such that δ(ω) < 1/ωc for

all ω > ω0. Given a probability distribution X , the notation Pr[t← X] denotes a sampling of t

by the distribution X .

Definition 5.1 Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be collections of probability distributions

(or ensembles) Xλ and Yλ over {0, 1}κ(λ) for some polynomial κ(λ). These two ensembles are

polynomially or computationally indistinguishable if for every (probabilistic) polynomial-time

algorithm D, for all λ ∈ N, and a negligible function δ,

|Pr[t← Xλ : D(t) = 1]− Pr[t← Yλ : D(t) = 1]| ≤ δ(λ).

Assume that there exist positive integers θ, Θ and ℓ, where θ < Θ ≤ ℓ. A (θ,Θ, ℓ)-ramp

scheme (Paterson & Stinson, 2013) involves a dealer selecting a secret and then distributing a

share to each of ℓ players in a manner that fulfills the following criteria:

Reconstruction: Any subset of Θ players has the ability to collectively determine the secret

using the shares they possess.

Secrecy: No subset of θ players is able to deduce any details regarding the secret.

The terms θ and Θ are referred to as the lower and upper thresholds of the scheme, respectively.

For the sake of convenience, we shall refer to collections of players C ∈ 2P such that θ < |C| <

Θ by the term ramp collection. In the event where Θ = θ + 1, the scheme is recognized as a

(Θ, ℓ)-threshold scheme. In the context of such a Θ-threshold scheme, the problem of share

repairability pertains to the identification of a secure protocol for restoring the lost share of a

specific player (Pi ∈ P). This process involves a certain subset of d players (excluding Pi ∈ P)
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engaging in message exchange amongst themselves and with Pi ∈ P, with the objective of

successfully repairing its share. The smallest integer d required to accomplish this task is known

as the repairing degree of the scheme. If an honest-but-curious coalition of no more than Θ− 1

players of a (Θ, ℓ)-threshold scheme combines all the information it holds (this includes their

shares, as well as all messages that they send or receive during the protocol) and still obtains no

information about the secret, then we say that it is a (Θ, ℓ, d)-repairable threshold scheme, or a

(Θ, ℓ, d)-RTS.

Definition 5.2 Let P = {P1, . . . , Pℓ} be a set of parties or players. A collection Γ ⊆ 2P is

monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ. An access structure Γ ⊆ 2P is a monotone

collection of non-empty subsets of P. Sets in γ are called authorized, and sets not in Γ are

called unauthorized.

Definition 5.3 For an access structure Γ, Γ0 = {A ∈ Γ : B ̸⊂ A for all B ∈ Γ \A} is the

family of minimal authorized subsets in Γ.

Definition 5.4 A computational secret sharing scheme with respect to an access structure Γ,

security parameter ω, a set of ℓ polynomial-time parties or players P = {P1, . . . , Pℓ}, and a set

of secrets K, consists of a pair of polynomial-time algorithms (Share,Recon), where:

• Share is a randomized algorithm that gets a secret k ∈ K and access structure Γ as inputs,

and outputs ℓ shares, {s(k)1 , . . . , s
(k)
ℓ }, of k, and

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,

denoted by
{
s
(k)
i

}
i∈A

, and outputs a string in K,

such that the following two requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A ∈ Γ, it

holds that: Pr
[
Recon

({
s
(k)
i

}
i∈A

,A
)
= k

]
= 1,

2. (Computational Secrecy) for every unauthorized collection B ̸∈ Γ and all distinct se-

crets k1, k2 ∈ K, it holds that the distributions
{
s
(k1)
i

}
i∈A

and
{
s
(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).

Traditionally, secret sharing relies on honest participants. However, a verifiable secret sharing

(VSS) scheme is also required to withstand active attacks, specifically:
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• a dealer sending inconsistent or incorrect shares to some of the participants during the

distribution protocol, and

• participants submitting incorrect shares during the reconstruction protocol.

The access structure hiding verifiable (computational) secret sharing scheme of (V. S. Sehrawat

et al., 2021) defined below guarantees a relaxed definition of verifiability of shares of authorised

collections of players even when a majority of the parties are malicious. Their scheme supports

all monotone access structures, and its security — in particular, verifiability — relies on the

hardness of the LWE problem.

Definition 5.5 An access structure hiding verifiable (computational) secret sharing scheme with

respect to an access structure Γ, security parameter ω, a set of ℓ polynomial-time parties or

players P = {P1, . . . , Pℓ}, and a set of secrets K, consists of two sets of polynomial-time

algorithms, (HsGen,HsVer) and (VerShr,Recon,Ver), which are defined as follows:

• VerShr is a randomized algorithm that gets a secret k ∈ K and access structure Γ as

inputs, and outputs ℓ shares, {s(k)1 , . . . , s
(k)
ℓ }, of k,

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,

denoted by
{
s
(k)
i

}
i∈A

, and outputs a string in K, and

• Ver is a deterministic Boolean algorithm that gets
{
s
(k)
i

}
i∈A

and a secret k′ ∈ K as

inputs, and outputs b ∈ {0, 1},

such that the following three requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A ∈ Γ, it

holds that: Pr
[
Recon

({
s
(k)
i

}
i∈A

,A
)
= k

]
= 1.

2. (Computational Secrecy) for every unauthorized collection B ̸∈ Γ and all distinct se-

crets k1, k2 ∈ K, it holds that the distributions
{
s
(k1)
i

}
i∈A

and
{
s
(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).

3. (Computational Verifiability) Every authorized collection A ∈ Γ can use Ver to verify

whether its set of shares
{
s
(k)
i

}
i∈A

is consistent with a given secret k ∈ K. Formally, for

a negligible function δ, it holds that:
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- If all shares s(k)i ∈
{
s
(k)
i

}
i∈A

are consistent with the secret k, then

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 1
]
= 1− δ(ω)

- If any share s
(k)
i ∈

{
s
(k)
i

}
i∈A

is inconsistent with the secret k, then

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 0
]
= 1− δ(ω).

• HsGen is a randomized algorithm that gets P and Γ as inputs, and outputs ℓ access

structure tokens
{
℧(Γ)

1 , . . . ,℧(Γ)
ℓ

}
, and

• HsVer is a deterministic algorithm that gets as input the access structure tokens of a subset

A ⊆ P
(

denoted
{
℧(Γ)

i

}
i∈A

)
, and outputs b ∈ {0, 1},

such that the following three requirements are satisfied:

1. (Perfect completeness) Every authorized collection of parties A ∈ Γ can identify itself as

a member of the access structure Γ, i.e. Pr
[
HsVer

({
℧(Γ)

i

}
i∈A

)
= 1
]
= 1.

2. (Perfect soundness) Every unauthorized collection of parties B ̸∈ Γ can identify itself to

be outside of the access structure Γ, i.e. Pr
[
HsVer

({
℧(Γ)

i

}
i∈B

)
= 0
]
= 1.

3. (Statistical hiding) For all access structures Γ,Γ′ ⊆ 2P where Γ ̸= Γ′, and for all

unauthorised collections B ̸∈ Γ,Γ′,

∣∣∣Pr [Γ | {℧(Γ)
i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣ = 2−ω.

5.3 ϵ-Almost Access Structure Hiding Ramp-Type Tensor

Designs

So far, access structure hiding and related concepts have been primarily discussed in the context

of threshold schemes. In such schemes, there exists a deterministic algorithm to determine

whether an authorized set of players can recover the secret and whether an unauthorized set

gains no information about the secret.
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We integrate the novel access structure hiding technique from (V. S. Sehrawat et al., 2021) into

the tensor design obtained by extending BIBDs, as introduced in Chapter 3.

Since the scheme in Chapter 3 is a ramp scheme for both the non-frameproof and frameproof

variants (defined below) of the tensor design, we introduce the new concept of an ϵ-almost

access structure hiding ramp scheme in order to also tackle the intermediate case(s) generated

by ramp bounds.

Definition 5.6 Consider a (θ,Θ, ℓ)-ramp scheme, so that its access structure Γ is characterised

by the ramp bounds (θ,Θ). For ϵ = (ϵCorr, ϵ1, ϵ2, ϵ3), an ϵ-almost access structure hiding

(θ,Θ, ℓ)-ramp scheme with respect to a security parameter ω, a set of ℓ polynomial-time parties

or players P = {P1, . . . , Pℓ}, and a set of secrets K, consists of two sets of polynomial-time

algorithms, (HsGen,HsVer) and (VerShr,Recon,Ver), which are defined as follows:

• VerShr is a randomized algorithm that gets a secret k ∈ K and the bounds θ,Θ as inputs,

and outputs ℓ shares, {s(k)1 , . . . , s
(k)
ℓ }, of k,

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,

denoted by
{
s
(k)
i

}
i∈A

, and outputs a string in K, and

• Ver is a deterministic Boolean algorithm that gets
{
s
(k)
i

}
i∈A

and a secret k′ ∈ K as

inputs, and outputs b ∈ {0, 1},

such that the following four requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A such that

|A| ≥ Θ, it holds that: Pr
[
Recon

({
s
(k)
i

}
i∈A

,A
)
= k

]
= 1.

2. (ϵcorr-Correctness) for all secrets k ∈ K and every ramp collection C such that θ < |C| <

Θ, there exists ϵcorr > 0 such that: Pr
[
Recon

({
s
(k)
i

}
i∈A

,A
)
= k

]
= ϵcorr.

3. (Computational Secrecy) for every unauthorized collection B with |B| ≤ θ and all distinct

secrets k1, k2 ∈ K, it holds that the distributions
{
s
(k1)
i

}
i∈A

and
{
s
(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).

4. (Computational Verifiability) Every authorized collection A such that |A| ≥ Θ can use

Ver to verify whether its set of shares
{
s
(k)
i

}
i∈A

is consistent with a given secret k ∈ K.

Formally, for a negligible function δ, it holds that:
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- If all shares s(k)i ∈
{
s
(k)
i

}
i∈A

are consistent with the secret k, then

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 1
]
= 1− δ(ω)

- If any share s
(k)
i ∈

{
s
(k)
i

}
i∈A

is inconsistent with the secret k, then

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 0
]
= 1− δ(ω).

• HsGen is a randomized algorithm that gets P, θ and Θ as inputs, and outputs ℓ access

structure tokens
{
℧(Γ)

1 , . . . ,℧(Γ)
ℓ

}
, and

• HsVer is a deterministic algorithm that gets as input the access structure tokens of a subset

A ⊆ P
(

denoted
{
℧(Γ)

i

}
i∈A

)
, and outputs b ∈ {0, 1},

such that the following six requirements are satisfied:

1. (Perfect completeness) Every authorized collection of parties A such that |A| ≥ Θ can

identify itself as a member of the access structure Γ, i.e. Pr
[
HsVer

({
℧(Γ)

i

}
i∈A

)
= 1
]
=

1.

2. (ϵ1-Completeness) Every ramp collection of parties C (where θ < |C| < Θ) can almost

always identify itself as a member of the access structure Γ),

i.e. Pr
[
HsVer

({
℧(Γ)

i

}
i∈A

)
= 1
]
= 1− ϵ1.

3. (Perfect soundness) Every unauthorized collection of parties B with |B| ≤ θ can identify

itself to be outside of the access structure Γ, i.e. Pr
[
HsVer

({
℧(Γ)

i

}
i∈B

)
= 0
]
= 1.

4. (ϵ2-Soundness) Every ramp collection of parties C (where θ < |C| < Θ) can almost al-

ways identify itself to be outside of the access structure Γ, i.e. Pr
[
HsVer

({
℧(Γ)

i

}
i∈B

)
= 0
]
=

1− ϵ2.

5. (Statistical hiding) For all ramp access structures Γ ̸= Γ′ and for all unauthorised

collections B with |B| ≤ θ, θ′,

∣∣∣Pr [Γ | {℧(Γ)
i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣ = 2−ω.
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6. (ϵ3-Statistical Hiding) For all ramp access structures Γ,Γ′ ⊆ 2P where Γ ̸= Γ′, and for

all ramp collections C such that θ < |C| < Θ,

∣∣∣Pr [Γ | {℧(Γ)
i

}
i∈C

,
{
s
(k)
i

}
i∈C

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈C

,
{
s
(k)
i

}
i∈C

]∣∣∣ ≤ ϵ3(ω).

5.3.1 Tensor Design

Recall from Chapter 3 that if A and B are the share matrices generated by ramp schemes with

respectively b1 and b2 blocks having shares of sizes k1 and k2, and if A and B also denote the

b1 × k1 and b2 × k2 matrices corresponding to the two schemes, then Krönecker product of

A⊗ B is

M =


a11B a12B . . . a1k1B

a21B a22B . . . a2k1B
...

ab11B ab12B . . . ab1k1B

 . (5.1)

If the share matrix A is defined over the field Fp1 and B over the field Fp2 for some primes p1

and p2, then we define the scalar multiplication as the simple integer multiplication:

Fp1 × Fp2 → Z

such that (x1, x2) 7→ x1 · x2.

The reason behind taking such a multiplication is that the product elements are not distinguishable

from integers. Therefore, M is a matrix over the integer ring Z.

Theorem 5.1 (Reconstruction from Tensor Designs, Chapter 3) Consider a (v1, k1, λ1, b1, r1)-

BIBD A and a (v2, k2, λ2, b2, r2)-BIBD B.

1. The matrixA⊗B produces a tensor design (over the integer ring Z) for a (public) integer

d such that there are no multiplicative collisions of the type xi(yj + d) = xk(yl + d) for

(i, j) ̸= (k, l).

2. • If gcd(x1, x2, . . . , xv1) = 1;

• if gcd(y1, y2, . . . , yv2) = 1;

then A and B can be reproduced from a collection of players in the new scheme A⊗ B,
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hence enabling share repair and secret reconstruction.

For the purpose of real-world implementation, we consider a prime power q, which is computed

from p1, p2 and d such that it is sufficiently greater than all the elements in A⊗ B.

5.3.2 Secret Sharing Properties of A⊗ B

Since A⊗ B is a (θ,Θ, ℓ)-ramp scheme, it clearly satisfies the following properties of Defini-

tion 5.6:

Perfect Correctness: From Lemmas 3.4–3.9 of Chapter 3, it is clear that A⊗ B is a (θ,Θ, ℓ)-

ramp scheme, for θ = (τ1−1)(τ2−1)+1 and Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}.

Hence, any A with |A| ≥ Θ can reconstruct the secret with probability 1,

i.e. Pr
[
Recon

({
s
(k)
i

}
i∈A

,A
)
= k

]
= 1.

ϵcorr-Correctness: Suppose θ < |C| < Θ and C gets partial information aboutA⊗B, i.e. it can

reconstruct exactly one ofA and Bd, sayA (respectively Bd). Then it must guess the secret

of the other factor, i.e. Bd (respectivelyA) uniformly at random at best, ie. with probability
1
p2

(respectively 1
p1

). Therefore, for all secrets k ∈ K and such a ramp collection C, we

denote ϵcorr := max
{

1
p1
, 1
p2

}
. Therefore, Pr

[
Recon

({
s
(k)
i

}
i∈A

,A
)
= k

]
≤ ϵcorr.

Computational Secrecy: Consider an unauthorised collection B, with |B| ≤ θ or θ < |B| <

Θ. Thus, B gets no information about the secret, which means it must guess (at best)

uniformly at random, the secrets of both the factors A and Bd of A ⊗ B. Hence, given

the access structure Γ, it holds for every unauthorised collection B ̸∈ Γ and every pair of

different secrets k1 ̸= k2 in K that the distributions
{
s
(k1)
i

}
i∈B

and
{
s
(k2)
i

}
i∈B

are com-

putationally indistinguishable w.r.t. the parameter δ := 1
p1p2

, according to Definition 5.1.

5.3.3 Frameproofness

For the collection P of all players in the scheme, (V. S. Sehrawat et al., 2021) make the following

claim regarding its frameproofness:

“...the share of each party Pi is sealed as a PRIM-LWE instance such that the lattice

basis, Ai, used to generate it is known only to Pi. Since Ai is required to generate

Pi’s share, it is infeasible for any coalition of polynomial-time parties A ⊂ P to
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compute the share of Pi ∈ P \A without solving the LWE problem.”

Furthermore,Chapter 3 shows that for the tensor design in Equation (5.1), only two players

— one from the r1 − 1 players possessing a11b11 and one from the b2 − 1 players possessing
a12
a11

,
a13
a11

, . . . — can reconstruct the entire share of player P1, and hence, frame this player.

They address this problem by reducing the repetitive nature of shares of the participants — by

decreasing the size of each share, while retaining all the information that a player had in the

previous construction. In fact, the secret reconstruction for the modified scheme is then shown

to require at τ1 + τ2 players. Additionally, Theorem 5.2 below ensures that F (A,B) is simply a

Θ-threshold scheme for Θ = τ1 + τ2 (and not a ramp scheme like (AoB).

Example

Consider an example, where matrixA represents a 2−(4, 3, 2)-BIBD and B a 2−(5, 4, 3)-BIBD

over the points {1, 2, 3, 4} and {1, 2, 3, 4, 5}, respectively (note that r1 = 3, r2 = 4), and d = 21.

The Krönecker product tensor design obtained from these two matrices is represented by the

matrix A⊗ B as defined in Chapter 3:
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

22 23 24 25 44 46 48 50 66 69 72 75

23 24 25 26 46 48 50 52 69 72 75 78

24 25 26 22 48 50 52 44 72 75 78 66

25 26 22 23 50 52 44 46 75 78 66 69

26 22 23 24 52 44 46 48 78 66 69 72

44 46 48 50 66 69 72 75 88 92 96 100

46 48 50 52 69 72 75 78 92 96 100 104

48 50 52 44 72 75 78 66 96 100 104 88

50 52 44 46 75 78 66 69 100 104 88 92

52 44 46 48 78 66 69 72 104 88 92 96

66 69 72 75 88 92 96 100 22 23 24 25

69 72 75 78 92 96 100 104 23 24 25 26

72 75 78 66 96 100 104 88 24 25 26 22

75 78 66 69 100 104 88 92 25 26 22 23

78 66 69 72 104 88 92 96 26 22 23 24

88 92 96 100 22 23 24 25 44 46 48 50

92 96 100 104 23 24 25 26 46 48 50 52

96 100 104 88 25 26 22 23 48 50 52 44

100 104 88 92 25 26 22 23 50 52 44 46

104 88 92 96 26 22 23 24 52 44 46 48


On applying certain permutations on each block of A⊗ B (and removing zeroes), we obtain a

scheme that extends the BIBDs A and B, where it is no longer possible to reconstruct the secret

from just two players. The full algorithm may be found in Chapter 3. The shares of players in
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this version, which we shall denote here by F (A,B), are:

22 50 72

23 46 78

25 48 72

22 52 75

24 46 66

50 72 88

46 78 92

48 72 100

52 75 88

46 66 96

72 88 25

78 92 23

72 100 24

75 104 26

66 92 23

88 25 48

92 23 52

100 25 48

88 26 50

96 23 44



5.3.4 Secret Sharing Properties of F (A,B)

From Theorem 5.2 stated below, it is clear that F (A,B) is a (θ,Θ, ℓ)-ramp scheme, for θ = τ1+

τ2 and Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}. Therefore, it clearly satisfies the following

properties of perfect correctness for all authorised collections of players of size greater than Θ,

ϵcorr-correctness for ramp collections of players that are authorised, and computational secrecy

for all unauthorised collections of players (irrespective of size), from Definition 5.6.

A complete explanation is very similar to that for A⊗ B given in Section 5.3.2.
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5.3.5 Graphical Representation

Definition 5.7 A bipartite graph G = (V , E) is said to induce a tensor design B if

• the vertex set V = P ⊔V the disjoint union of the set of players P = {P1, . . . , Pb} and

the set of points V = {x1, . . . , xv} of B, and

• the edge set is the collection
⋃

i∈[b]
j∈[v]
{(Pi, xj) : xj ∈ share of Pi}.

Theorem 5.2 Given a bipartite graph G inducing a tensor design B, and given subsets δ(Pi) ⊆

N(Pi) of size s,

(i) If
⋃

i∈[b] δ(Pi) = V, then reconstruction of the modified scheme F (A,B) is possible.

(ii) If s ≥ 1, then (i) holds.

5.3.6 Defining Access Structure Tokens

Consider first, the Krönecker product tensor design A⊗ B as defined in Equation (5.1).

Let a1, . . . , av1 ∈ Fp1 be the elements in A and b1, . . . , bv2 ∈ Fp2 be the elements in B. The

access structure tokens for the share of each player are elements of ∈ Zv1
2 × ∈ Zv1

2 , computed

according to Algorithm 1.

Algorithm 1 HsGen: Access structure tokens for the tensor designs A⊗ B and F (A,B)

γ
$←− Perm ({0, 1}v1 × {0, 1}v2).

for 1 ≤ i ≤ b1b2 do: //player Pi

for 1 ≤ j ≤ v1 do: //element aj
℧̂(1,Γ)

i ← (ω1, . . . , ωv1) such that ωj = 1 if and only if element aj of A occurs as
a product ajbl in the share of Pi.

end for
for 1 ≤ l ≤ v2 do: //element bl

℧̂(2,Γ)
i ← (ω1, . . . , ωv2) such that ωl = 1 if and only if element bl of B occurs as

a product ajbl in the share of Pi.
end for(
℧(Γ)

1 , . . . ,℧(Γ)
b1b2

)
← γ

(
℧̂(1,Γ)

1 ||℧̂(2,Γ)
1 , . . . , ℧̂(1,Γ)

b1
||℧̂(2,Γ)

b2

)
. //permutation

end for
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Logical Condition

From Algorithm 1, it is clear that the authorisation of a collection of players B can be determined

directly from the intermediate vectors ℧̂(1,Γ)
i and ℧̂(2,Γ)

i used to compute their access structure

tokens. Consider the two logical statements P and Q:

P : B ∈ Γ (5.2)

Q :

(∨
i∈B

℧̂(1,Γ)
i has Hamming weight ≥ τ1

)
∧

(∨
i∈B

℧̂(2,Γ)
i has Hamming weight ≥ τ2

)
.

Then from the definition of ℧̂(1,Γ)
i and ℧̂(2,Γ)

i , it is clear that P ↔ Q. The proceeding lemma

easily follows from this observation:

Lemma 5.1 Let Γ denote the access structure for the tensor design A ⊗ B. Then there exist

parameters θ and Θ such that Γ is fully characterised by the following three conditions on any

collection of players B ∈ 2P:

1. If |B| < θ, then B ̸∈ Γ.

2. If θ ≤ |B| < Θ, then B may or may not belong to Γ, i.e. it may or may not be authorised.

3. If |B| ≥ Θ, then B ∈ Γ.

Proof: The proof follows by checking which collections of players satisfy the condition Q.

If τ1 and τ2 are the reconstruction numbers of A and B, respectively. Then from Lemmas 3.4

and 3.7 of Chapter 3, θ = (τ1 − 1)(τ2 − 1) + 1. Also, from Lemmas 3.5, 3.6, 3.8 and 3.9 of

Chapter 3, Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}. □

Further observe that the permutation γ in Algorithm 1 ensures that a collection of players B of

size t < Θ cannot simply examine their tokens and conclude (with probability 1) whether or not

it is authorised.

5.4 Main results

Theorem 5.3 Given a positive integer d that satisfies Theorem 5.1, consider the tensor designs

A ⊗ B with ramp structure (θ,Θ, ℓ), for a secret k, and shares s
(k)
i for each player Pi ∈ P.
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Then there exists an access structure token generation algorithm that makes A⊗ B an ϵ-almost

access structure hiding (θ,Θ, ℓ)-ramp tensor design.

Theorem 5.4 Given a positive integer d that satisfies Theorem 5.1, consider the tensor designs

F (A,B) with ramp structure (θ,Θ, ℓ), for a secret k, and shares s(k)i for each player Pi ∈ P.

Then there exists an access structure token generation algorithm that makes F (A,B) an ϵ-

almost access structure hiding (θ,Θ, ℓ)-ramp tensor design.

Theorem 5.5 The access structure hiding tensor design A⊗ B is verifiable.

Theorem 5.6 The access structure hiding tensor design F (A,B) is verifiable.

5.5 Proof of Theorems 5.3 and 5.4

Proof: [Proof of Theorem 5.3.] This is easily seen as the scheme A ⊗ B satisfies the six

properties enumerated in Definition 5.6.

Completeness and ϵ1-completeness:

Case 1: |A| ≥ Θ. Since the access structure tokens of any collection of size at least Θ always

satisfy the logical condition (5.2), A can simply check this condition and output 1.

Therefore,

Pr
[
HsVer

({
℧(Γ)

i

}
i∈A

)
= 1
]
= 1.

Case 2: θ < |C| < Θ, and C is authorised. Let |C| = T , such that θ < T < Θ and C is an

authorised collection of players.

Number of permutations that fix the access structure tokens of C = (ℓ− T )!

Total number of permutations on all ℓ access structure tokens = ℓ!

As there is a uniformly random distribution on the access structure tokens, C can make

a uniformly random guess from {0, 1} about its authorisation status. Therefore, the

probability that any collection of size T can identify itself as authorised can be bounded

87



above by the summation

∑
C∈Γ

with |C|=T

(ℓ− T )!

ℓ!
≤ 1(

ℓ
T

) ,
and thus, Pr

[
HsVer

({
℧(Γ)

i

}
i∈C

)
= 1
]
≤

∑
θ<T<Θ

1(
ℓ
T

) . (5.3)

Denoting ϵ1 :=
∑

θ<T<Θ

1(
ℓ
T

) , we then have

Pr
[
HsVer

({
℧(Γ)

i

}
i∈C

)
= 1
]
≥ 1− ϵ1.

Soundness and ϵ2-soundness:

Case 1: |B| ≤ θ. Since the access structure tokens of any collection of size at most θ never

satisfy the logical condition (5.2), B can simply check this condition and output 0.

Therefore,

Pr
[
HsVer

({
℧(Γ)

i

}
i∈B

)
= 0
]
= 1.

Case 2: θ < |C| < θ, and C is unauthorised. Let |C| = T , such that θ < T < Θ and C is an

unauthorised collection of players. We arrive at the upper bound ϵ2 :=
∑

θ<T<Θ

1(
ℓ
T

) as in

Equation (5.3), by the same argument as for ϵ1-completeness above. Hence,

Pr
[
HsVer

({
℧(Γ)

i

}
i∈C

)
= 0
]
≥ 1− ϵ2.

Statistical hiding and ϵ2-statistical hiding: AsA⊗B is a (θ,Θ, ℓ)-ramp scheme, any non-ramp

collection pf parties can simply count the access structure tokens of all its players and determine

its authorisation.

Case 1: |B| ≤ θ. By definition of the access structure tokens,
∨
i∈B

℧̂(1,Γ)
i < τ1 and

∨
i∈B

℧̂(2,Γ)
i <

τ2.

Thus, for any such collection and for any access structure Γ′ ⊆ 2P characterised by the

ramp bounds (θ,Θ) such that B ̸∈ Γ′, Γ′ |
{
℧(Γ)

i

}
i∈B

follows the uniform distribution.

88



Hence,

Pr
[
Γ′ |

{
℧(Γ)

i

}
i∈B

]
=

2

ℓ(ℓ− 3)
=

2

2b1b2(2b1b2 − 3)
.

And therefore,
∣∣∣Pr [Γ | {℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣ =

0.

If Γ′ is any other type of access structure (which does not characterise a ramp scheme),

then Pr
[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
= 0.

And therefore,
∣∣∣Pr [Γ | {℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣
=

2

2b1b2(2b1b2 − 3)
.

Case 2(a): θ < |C| < Θ and C is unauthorised. Since C is an unauthorised collection of par-

ties, it knows no information about either factor, A, Bd, of A⊗B. Therefore, by the same

arguments as for Case 1,

∣∣∣Pr [Γ | {℧(Γ)
i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣ = 2

2b1b2(2b1b2 − 3)
.

Case 2(b): θ < |C| < Θ and C has partial information about the secret. Let us assume C

knows the secret of the factor A of A⊗ B. Then it must guess the shares of players of Bd
at best uniformly at random. So, a similar computation as in Case 1 allows us to arrive at

the bound

∣∣∣Pr [Γ | {℧(Γ)
i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣ ≤ 2

2b2(2b2 − 3)
.

On the other hand, if C knows the secret of the factor Bd of A ⊗ B, then the bound

becomes

∣∣∣Pr [Γ | {℧(Γ)
i

}
i∈B

,
{
s
(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
℧(Γ)

i

}
i∈B

,
{
s
(k)
i

}
i∈B

]∣∣∣ ≤ 2

2b1(2b1 − 3)
.

The required value for the parameter ϵ3 is therefore the maximum of these two bounds.

□

The proof of Theorem 5.4 is exactly similar to the proof above.
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5.6 Proof of Theorems 5.5 and 5.6

Proof: If A is an authorised collection of parties (irrespective of its size), then clearly,

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 1
]
= 1

as A can reconstruct the secret perfectly.

Recall the definition of the prime power q from Section 5.3.1. For an unauthorised collection of

parties A such that A cannot compute all elements of even one of A or Bd,

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 1
]
≤ 1

q

and therefore, Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 0
]
≥ 1− 1

q
. (5.4)

For a ramp collection of parties A such that θ < |A| < Θ, i.e. A can compute all elements of

exactly one of A or Bd,

Pr
[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 1
]
≤ max

{
1

p1
,
1

p2

}
and therefore, Pr

[
Ver

(
k,
{
s
(k)
i

}
i∈A

)
= 0
]
≥ 1−max

{
1

p1
,
1

p2

}
. (5.5)

The bounds in Equations (5.4) and (5.5) are simply because A and Bd are τ1- and τ2-threshold

schemes based on Shamir schemes (Shamir, 1979), which means any collection of players that

cannot reconstruct the entire secret cannot obtain any information about the secret. □

The proof of Theorem 5.6 is exactly similar to the proof above.

5.7 Applications

Our technique has real-world applications in a very wide range of domains, including secure

multiparty computation (Chaum, 1989; Andrychowicz, Dziembowski, Malinowski, & Mazurek,

2016; Smart, Baron, Saravanan, Brandt, & Mashatan, 2024), secure distributed storage (Garay,

Gennaro, Jutla, & Rabin, 1997; Rajasekaran & Duraipandian, 2024), attribute-based encryp-

tion (Nali, Adams, & Miri, 2005; Ibraimi, Tang, Hartel, & Jonker, 2009; Saidi, Amira, &
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Nouali, 2024; Asaithambi et al., 2024), access control mechanisms (Eland, 1978; di Vimercati,

2011; Gondara, 2011; Nour, Khelifi, Hussain, Mastorakis, & Moungla, 2022), secure cloud

computing (J. Xu, Huang, Huang, & Yang, 2009; Cui & Yi, 2024), e-voting systems (Rabia,

Arezki, & Gadi, 2023), secure data sharing in blockchain technology (Zhang & Lin, 2018;

Alshehri, Bamasag, Alghazzawi, & Jamjoom, 2023; Wang et al., 2023), and privacy-preserving

machine learning algorithms (Çatak, 2015; K. Xu, Yue, Guo, Guo, & Fang, 2015; Qin et al.,

2024; Mestari, Lenzini, & Demirci, 2024), to name a few.

For example in cloud storage systems (Shin, Koo, & Hur, 2017), our technique can enhance data

integrity and availability by enabling authorized parties to reconstruct lost or corrupted shares

without involving the initial dealer, avoiding framing of various parties, and computationally

easy verification of shares against malicious adversary interactions.

Within sensor-based IoT systems (Sikder, Petracca, Aksu, Jaeger, & Uluagac, 2018), repairable

ramp schemes safeguard the confidentiality and integrity of sensitive information exchanged

among devices. The ability to repair lost or corrupted shares while maintaining frameproofness,

and verifiability of these shares, along with the ability to ensure their completeness and soundness

without the need to actually access the shares ensures uninterrupted operation and security,

critical for IoT applications.

Furthermore, repairable ramp schemes are instrumental in multi-level security systems (Gao

& Xiao, 2011; Wagner, 1997), such as those employed by government agencies and financial

institutions. Our techniques would only improve their guarantees of security, while maintaining

accessibility of critical information. They would also enable secure collaborative data sharing in

environments where multiple parties require access to confidential data.

5.8 Conclusion and Future Work

In this chapter, we discuss verifiability and frameproofness of access structure hiding ramp-type

tensor designs. We do this through the introduction of a new type of secret sharing scheme,

called an ϵ-almost access structure hiding (θ,Θ, ℓ)-ramp tensor design, thus making an essential

generalisation of the existing novel design introduced by Sehrawat et al.. We explore ways

of enhancing data security and privacy, especially Roy et al.’s concept of extending repairable

threshold schemes, using tensor products of balanced incomplete block designs. This concept
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provides a fundamental generalization of existing designs, and thus plays an important role in

enhancing the security and verifiability of secret sharing schemes by providing a mechanism for

parties to verify the correctness of the shares they receive and ensuring that the reconstruction

process is accurate. By incorporating ramp schemes, the construction becomes more robust

against malicious behavior and unauthorized access, thus strengthening the overall security and

integrity of the secret sharing process. We also list a few real-world applications where our

techniques could be utilised for improved security.
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6 | A Secret Sharing Application on a Public Transport

Model

6.1 Introduction

We are now ready to formalize the ϵ-almost access structure hiding framework (A. Roy, Roy,

Sakurai, & Talnikar, 2024) in a real-world context through a smart public transportation system

running buses through a country. The main goal of this set-up will be to protect the private data

and travel history of passengers using the bus service while securely and efficiently running

the system. Various entities such as the passengers themselves, the government, different

bus companies, etc. are a part of the system, each with a different status in a hierarchical

structure. We shall model this example by introducing a new ramp-type hierarchical secret

sharing scheme motivated by (Tassa, 2007). We shall also incorporate the ledger updation

protocol of (Dutta et al., 2021) within this framework. We shall discuss applications of this

scheme in IoT as well as other use-cases such as in ledger management situations. Finally, we

shall also describe a verification protocol through a good lightweight authenticated encryption

scheme, say ASCON (Dobraunig et al., 2021).

6.1.1 An Overview of the Model

Figure 6.1: An overview of the communication flow in the transport network.

The main goal of our secret sharing model in the context of this public transportation system is

to protect the private data and travel history of passengers while securely and efficiently running

93



the transportation system. This involves ensuring that various entities, such as passengers, the

government, and different bus companies, can operate within a hierarchical structure without

compromising sensitive information. We assume that every passenger has a travel id card and a

bank account. Let us recall the questions from Chapter 1, which we shall soon answer with our

framework:

• Each bus maintains a ledger. With whom does it communicate this?

• How to encrypt this bus ledger?

• How to consolidate it with the bus station ledger?

• What can be a good ledger update protocol for E?

• Who can read the ledger(s)?

• In which communication channels can errors occur?

• Which communication channels can be affected by malicious entities?

• Which participants can be affected by framing attacks from other participants?

• How to ensure secure communication (verifiability)?

• How to protect the participants from framing and other attacks?

• How to ensure that our system is lightweight, secures all passenger data, and satisfies all

the above requirements?

Modelling the Scheme

We design a ramp-type hierarchical secret sharing model that allows for flexible secret reconstruc-

tion, using Birkhoff’s interpolation to distribute smaller secrets amongst designated players. We

assign the highest priority to the Transport Department and second highest to the Bus Companies

running buses (which have the lowest priority). Other entities such as Passengers, the Station

Ledger and the Bank are not assigned any priority as they do not contribute any shares. The

smaller secret sharing schemes are viewed together as a single tensor design. Several verification

protocols like secure lightweight encryption and secure ledger updation ensure that the scheme

is sufficiently lightweight to be feasible for such a multi-level model, and all communication
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channels exchange correct information. Section 6.2 provides a thorough explanation of this

implementation.

6.1.2 Communication Flow

There is an interconnected network of communication between the various entities involved in

this model. Passengers are individual people who use the bus transportation service, the Station

Ledger is a record of all bus stops and the buses that arrive at these stops throughout the day,

various Bus Companies manage a number of Buses running on different routes every day, the

Transportation Department is a government entity that runs the bus transportation system, and

the bank allows the Transportation Department to deduct all travel charges incurred by each

passenger. A high-level visualisation of the communication flow is shown in figure 6.1.

Station Ledger: Suppose there are M bus stations, numbered {m}m∈{1,...,M}. Also let the

buses be numbered 1, 2, . . . , R, where R = r1 + r2 + . . .+ rn, and the ith bus company

Ci controls buses numbered ri−1 + 1, ri−1 + 2, . . . , ri−1 + ri. Finally, assume there to be

a total of T timestamps (say T = 1440 = 24 hours × 60 minutes) in a single running day.

Then the bus station ledger is a collection of all data of the form

{(m, r, t)} ,

where m ∈ {1, 2, . . . ,M} is the bus station at which bus br (r ∈ {1, 2, . . . , R}) stops at

time t ∈ {1, 2, . . . , T}.

Transportation Department to Passenger: Each (potential) passenger applies to the trans-

portation department for a travel card. The transportation department (physically) sends

such a card (with a unique passenger identity id and a private encryption key k(p)) to the

applicant after linking it with his/her bank account.

Passenger

Bank

Transport Department Passenger
(personal details,

bank account number)

(personal
details,

bank account
number)

(id,k(p))

Bus Company to Bus: By ‘one bus’, we mean a bus running on exactly one route exactly
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once a day. Therefore, if the same (physical) bus runs two different routes in a day, it is

considered as two different buses in our bus count. First of all, each bus br receives a secret

key kb(r) from its respective company at the beginning of each day (possibly through a

standard public key exchange protocol, which we shall not discuss here). Additionally,

these keys are also communicated with the Transport Department.

At the beginning of each day (i.e. at t := 0), each bus receives the route it must follow at

an ordered sequence of bus station numbers, along with starting time. Thus, each bus b

receives
(
m1,m2, . . . ,mb, t

b(1)
)

from its respective company C.

Transport Department

Ci

bri−1+1 bri−1+2 · · · bri−1+ri

(ki(1), ki(2), . . . , ki(ri))

(
ki(1),m

i
1(1),mi

1(2),...,

mi
1(b(ri−1+1)),t

i
2(1)

) (
ki(2),m

i
2(1),mi

2(2),...,

mi
2(b(ri−1+1)),t

i
2(1)

)
(
ki(ri),m

i
ri

(1),mi
ri

(2),...,

mi
ri

(b(ri−1+1)),t
i
ri

(1)

)

Bus to Bus Company: At the end of the running day, each bus br under company Ci uses its

key kb(r) (and the day as IV) to encrypt through ASCON its actual route of the day, and

sends it to Ci. It similarly encrypts its passenger travel records, and also sends it to Ci.

Bus bri−1+r

encday,kb(r)
(
m̄i

r(1), m̄
i
r(2), . . . , m̄

i
r(br)

)
(enc(id),m(in),m(out))

Company Ci

Passenger to Bus: Each passenger scans their card when getting on (check-in) and off (check-

out) a bus. While checking in, the passenger’s encrypted id along with the bus station

where he/she boarded the bus (i.e. (enc(id),m(in)) is recorded. This record is updated

with the bus station when the passenger alights the bus

i.e. (enc(id),m(in,m(out)) .

Furthermore, each passenger id is encrypted through a good lightweight block cipher

using the day of travel as the IV/nonce/counter/tweak and his/her private key (shared by the

Travel Department with the passenger when physically sending the travel card). (D. Sehrawat

96



& Gill, 2018) presents a comparative study of various lightweight block ciphers suitable

for IoT applications along with their benefits and limitations. Given a Passenger p, we call

this secret key k(p). Due to this physical exchange of information, we assume a secure

secret key exchange between the Transport Department and the Passenger.

Passenger encday,k(p)(id) Transport Department(m(in),m(out))

Bus to Station Ledger: Each bus sends its identification number (i.e. r) and its time of arrival

to each bus station on its route. The bus station records this information along with its

own identification number (i.e. m) in the common Station Ledger maintained for all

bus stations. This ledger is encrypted using the day as the IV and some keys k (stTr)

and k (st, Ci) through ASCON, and sent to the Transportation Department as well as the

company (say Ci) of bus br, respectively, at the end of each running day.

Bus Station Ledger Transport Department

Bus Company Ci

(br, t(in)) encday,k(stTr)
(m, r, t)

encday,k(st,Ci)
(m, r, t)

Bus Company to Transport Department: The Transport Department sends administrative

data such as authorisation to run buses on various routes to each bus company.

Once this is done, the information communicated by each bus company with the Transport

Department includes the secret key kb(r) that each bus br receives from it at the beginning

of each day, the transport rates for all the routes run by its buses (along with the actual bus

routes), and (possibly) the cumulative passenger travel records from all its buses at the

end of a day.

Transport Department

Company Ci

administrative
data,

authorisation,
rate approval

bus keys,
bus routes,

rates,
cumulative
passenger

travel
records
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Transport Department to Bank and Passenger: Finally, the Transport Department consoli-

dates all travel information of each passenger; at the end of a certain time period (say,

one month), it directly debits the travel costs from the connected bank account of each

passenger. It also allows a view of the passenger’s travel history and charges incurred on a

secure platform, only to the passenger.

Station Ledger Bus Companies

Transport Department

Passenger Bank

transport rates,
cumulative passenger

travel records, etc.
bus stop records

travel history,
travel charges

passenger details,
cost debit

Malicious Entities

Next, we enumerate which entities in the network can be malicious. Since the system is formed

(and run) by the government, we assume all government entities, i.e. the station ledger (and

therefore also all bus stops) as well as the transport department as non-malicious. If all bus

companies are malicious, it is not possible to run the system. Therefore, we also assume that a

majority of the companies are honest. A number of (including the case when all) buses – under

a single company or even under all companies – may be malicious; any false data computed by

the corresponding company will be captured by the transport department. For this verification,

the transport department runs a ledger updation algorithm inspired by the one from (Dutta et al.,

2021). The transport department can similarly take note of only a small number ofmalicious bus

companies, given that all other bus companies communicate honestly and without error.

As is the case for buses, so too can all passengers be malicious. Passenger maliciousness

may occur in two ways: (i) Incorrect feedback to the transport department. This must simply

be controlled by the complaint resolution policy of the transport department. (ii) Collusion

with a bus. A bus may collect money personally (say by cash) and allow passengers to travel
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without scanning their travel cards. This can be resolved by installing a camera (or say, an

infra-red scanner) on all buses, which would count the total number of passengers boarding

and deboarding; the bus ledger is appended with this counter at the end of the day before being

sent to the respective bus company. Finally an adversary (i.e. an outside malicious entity) may

attempt to attack any part of the entire system, and the system is protected from such attacks by

the nature of its secret sharing model.

Framing Attacks

All passengers are protected by the secret key sent physically with the travel card from the

transport department, through a good lightweight block cipher. Any collection of buses being

framed by a collusion of buses is protected as the secret sharing scheme is frameproof. Likewise

any collection of bus companies being framed by a collusion of other bus companies is also

protected as the secret sharing scheme (which shall be the tensor design of chapter 2) is

frameproof. If a collusion of buses tries to frame a bus company, the error will be captured by

the transport department similarly as in the case of malicious buses.

Errors in the Communication Network

A bus may get a wrong key from its company at the start of a running day. The bus encrypts its

log using this key, and sends this encrypted log to the bus company at the end of the day. Due to

the ledger updation protocol of the transport department, the bus company becomes aware that

the information provided by the bus is incorrect; it (actually, the transport department) may even

be able to compute that the error is in the encryption key of the bus ledger. The bus company

can retrieve this wrong key so as to decrypt the bus log by simply asking the particular bus for

the key; this can be achieved by ensuring that every bus has memory space to store two (or three)

daily keys at any given time, so that the company can request old keys up to two days previously

from a bus. Similarly, the transport department can also compute when it receives incorrect

information from any bus company (due to its ledger updation protocol), and can notify it to

resend its information. The transport department can also verify the information it receives from

the station ledger and bus companies by comparing the two logs and searching for mismatches.

We assume that there is no error in certain communication channels, such as from the passenger

to the bus (any passenger whose travel card does not scan correctly is not allowed to travel in a
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bus), all buses can successfully record their arrival at all bus stops, and the transport department

can also communicate with the bank(s) and passengers without any errors.

6.2 Implementation

Our objective is to secure passengers’ private travel data and payment log from various malicious

entities (such as the companies). For this, we must incorporate access structure tokens and

(ϵ-almost) access structure hiding into a suitable verifiable and frameproof combinatorial secret

sharing scheme. We must also clearly enumerate which entities can be malicious parties (points

of error in the communication network) and formulate secure and efficient verification/error

correction algorithm(s) to be used in the various transactions/communications in this scheme.

We propose the lightweight authenticated encryption scheme ASCON to be used for verification

purposes in our model.

E

A1 ⊗ A2

y1

y2

...
yb1−1

yb1

z1

z2

...
zb2−1

zb2

Let us first consider the base case of only two secret sharing schemes, A1 and A2. We propose a

hierarchical secret sharing structure through Birkhoff’s interpolation to distribute the smaller

secrets s1 and s2 amongst the players {y1, y2, . . . , yb1} and {z1, z2, . . . , zb2}, respectively. Ramp

bounds are maintained as the authorised sets are derived from A1 ⊗ A2. y1 and z1 are the bus

companies; all other (non-priority) players are the buses. The goal of the secret sharing scheme is

to secure an individual passenger’s travel data from (most of the) other players, and to regularise

the bus rates and other information of each bus company with the transport department of the

government (which is E in this case).
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Ramp Bounds

Recall the setup of a ramp scheme with ramp bounds θ and Θ as defined in 5.1 of Chapter 5.

Since this chapter proposes implementing a ramp-type scheme, the same notation is carried over

here.

• E views the smaller schemes altogether as a single tensor design.

• Thus, θ = (τ1−1)(τ2−1)+1, where the priority share y1z1, any τ1−1 of the shares z1yi,

i ∈ {2, . . . , b1}, any τ2 − 1 of the shares y1zj , j ∈ {2, . . . , b2}, and one more from any of

the remaining shares yizj , i ∈ {1, . . . , b1}, j ∈ {1, . . . , b2} are enough to reconstruct the

secret s.

• Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}, since the priority share y1z1 along with the

remaining number of any of the remaining shares yizj , i ∈ {1, . . . , b1}, j ∈ {1, . . . , b2}

can always reconstruct the secret s.

6.3 Conclusion

This chapter consolidates the theoretical underpinnings established throughout this thesis by

introducing a novel secret sharing model tailored to safeguard the privacy of passenger data and

travel histories within a smart public transportation system while ensuring the framework’s secure

and efficient operation. The primary objective of this secret sharing framework is to protect

sensitive passenger information and travel records while maintaining the system’s functionality.

This necessitates a hierarchical structure that enables diverse entities to collaborate without

compromising data confidentiality. The proposed framework establishes a secure mechanism

for data sharing and verification among these entities, thereby enhancing the overall security

and integrity of the public transportation system.

Building upon the foundation laid by Verheul et al., Feldman, Pedersen, Stinson, Desmedt et al.,

Sehrawat et al., and Roy et al.’s seminal contributions to verifiable secret sharing, frameproof-

ness, and tensor-based designs, we introduce a ramp-type hierarchical secret sharing scheme.

This approach leverages the concept of hierarchical secret sharing by assigning varying lev-

els of access to different entities (passengers, government, bus companies) while employing

tensor design to bolster security and streamline secret reconstruction. To mitigate potential
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vulnerabilities such as communication errors, framing attacks, and malicious behavior, the

framework incorporates lightweight block ciphers, authenticated encryption, and the inherent

frameproofness and verifiability of the underlying tensor design.

To concretize the ϵ-almost access structure hiding framework in a real-world context, we present

a smart public transportation system comprising passengers, government, bus companies, and

a bank. The system’s primary goal is to protect passenger privacy while ensuring efficient

operations. Our proposed ramp-type hierarchical secret sharing scheme, inspired by Tassa’s

work, assigns distinct priorities to participants and utilizes Birkhoff’s interpolation for flexible

secret reconstruction. The interconnected network encompasses passengers, station ledgers, bus

companies, the transportation department, and a bank, each with specific roles and potential

vulnerabilities. By integrating the ledger updation protocol of Dutta et al. and employing a

robust lightweight authenticated encryption scheme like Ascon, we provide a comprehensive

cryptographic implementation that safeguards data integrity and privacy.

In summary, this chapter offers a novel and practical approach to enhancing the security and

efficiency of public transportation systems through a carefully designed secret sharing framework.

By addressing the challenges posed by data privacy, hierarchical access control, and potential

threats, this work contributes significantly to the advancement of secure and reliable public

transportation solutions.
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7 | Conclusions and Open Issues

In this thesis, we have first generalized the concept of combinatorial RTS and then improved our

secret sharing scheme by producing a frameproof one. We believe our results can be extended

further to an arbitrary number of distribution designs. We also believe that the Krönecker product

of BIBDs can be generalized to t-designs, and all corresponding results will hold for these.

Furthermore, we have discussed the extensive scope of applicability for our proposed scheme

in a diverse array of IoT contexts. A fascinating avenue for further investigation entails the

examination of specific instances of these applications.

We have also shown an efficient method of verification through a cheater identification algorithm

that makes our construction a verifiable secret sharing scheme and greatly improves its suitability

for various IoT applications. While we have reduced the storage space requirements, the size

of communication increases. Decreasing this is an interesting future problem to consider.

Additionally, conducting rigorous experimental evaluations to validate our theoretical findings

and assess the scheme’s performance under real-world conditions is a promising research

direction.

We have discussed verifiability and frameproofness of access structure hiding ramp-type tensor

designs through the introduction of a new type of secret sharing scheme, called an ϵ-almost

access structure hiding tensor design, thus making an essential generalisation of the existing

novel design introduced by Sehrawat et al.. We have explored ways of enhancing data security

and privacy, especially Roy et al.’s concept of extending repairable threshold schemes, using

tensor products of balanced incomplete block designs. This concept provides a fundamental

generalization of existing designs, and thus plays an important role in enhancing the security

and verifiability of secret sharing schemes by providing a mechanism for parties to verify the

correctness of the shares they receive and ensuring that the reconstruction process is accurate. By

incorporating ramp schemes, the construction becomes more robust against malicious behavior

and unauthorized access, thus strengthening the overall security and integrity of the secret

sharing process. We have also listed a few real-world applications where our techniques could

be utilised for improved security.

While we demonstrate our concept of ϵ-almost access structure hiding for only extendable

combinatorial tensor designs, it opens up a wide range of possibilities for any ramp-type scheme
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to incorporate this technique for further improvement of confidentiality, secrecy and verifiability.

Finally, we have implemented our abstract construction of a tensor design into a real-life model,

where we have shown that even in the case of small storage and fast computability requirements,

sufficient security can be provided through a consolidation of all our theoretical concepts.

To fully realize the potential of our proposed scheme, future research should focus on several key

areas. Extending the framework to support more complex access structures and dynamic group

management is essential. Conducting comprehensive performance evaluations and security

analyses under various threat models is crucial for assessing the scheme’s practical viability.

Finally, developing efficient implementations for different hardware platforms can realise the

scheme’s applicability in resource-constrained environments.

By addressing these research directions, we can further advance the state-of-the-art in secret

sharing and unlock new opportunities for secure and privacy-preserving applications.
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Čuřík, P., Ploszek, R., & Zajac, P. (2022). Practical Use of Secret Sharing for Enhancing

Privacy in Clouds. Electronics, 11(17). Retrieved from https://www.mdpi.com/

2079-9292/11/17/2758 doi: 10.3390/electronics11172758

Verheul, E. R., & van Tilborg, H. C. A. (1997). Constructions and Properties of k out

of n Visual Secret Sharing Schemes. Des. Codes Cryptogr., 11(2), 179–196. Re-

trieved from https://doi.org/10.1023/A:1008280705142 doi: 10.1023/A:

1008280705142

Wagner, G. (1997). Multi-level Security in Multiagent Systems. In P. Kandzia & M. Klusch

(Eds.), Cooperative information agents, first international workshop, cia’ 97, kiel, ger-

many, february 26-28, 1997, proceedings (Vol. 1202, pp. 272–285). Springer. Re-

trieved from https://doi.org/10.1007/3-540-62591-7_40 doi: 10.1007/

3-540-62591-7\_40

Wang, N., Fu, J., Zhang, S., Zhang, Z., Qiao, J., Liu, J., & Bhargava, B. K. (2023). Secure

and Distributed IoT Data Storage in Clouds Based on Secret Sharing and Collaborative

Blockchain. IEEE/ACM Trans. Netw., 31(4), 1550–1565. Retrieved from https://

doi.org/10.1109/TNET.2022.3218933 doi: 10.1109/TNET.2022.3218933

Xu, J., Huang, R., Huang, W., & Yang, G. (2009). Secure Document Service for Cloud

Computing. In M. G. Jaatun, G. Zhao, & C. Rong (Eds.), Cloud computing, first inter-

national conference, cloudcom 2009, beijing, china, december 1-4, 2009. proceedings

(Vol. 5931, pp. 541–546). Springer. Retrieved from https://doi.org/10.1007/

978-3-642-10665-1_49 doi: 10.1007/978-3-642-10665-1\_49

Xu, K., Yue, H., Guo, L., Guo, Y., & Fang, Y. (2015). Privacy-Preserving Machine Learning

112

https://doi.org/10.1007/s10623-017-0336-6
https://doi.org/10.1007/s10623-017-0336-6
https://doi.org/10.1109/ACCESS.2021.3075282
https://doi.org/10.1109/ACCESS.2021.3075282
https://doi.org/10.1007/s00145-006-0334-8
https://www.mdpi.com/2079-9292/11/17/2758
https://www.mdpi.com/2079-9292/11/17/2758
https://doi.org/10.1023/A:1008280705142
https://doi.org/10.1007/3-540-62591-7_40
https://doi.org/10.1109/TNET.2022.3218933
https://doi.org/10.1109/TNET.2022.3218933
https://doi.org/10.1007/978-3-642-10665-1_49
https://doi.org/10.1007/978-3-642-10665-1_49


Algorithms for Big Data Systems. In 35th IEEE international conference on distributed

computing systems, ICDCS 2015, columbus, oh, usa, june 29 - july 2, 2015 (pp. 318–327).

IEEE Computer Society. Retrieved from https://doi.org/10.1109/ICDCS

.2015.40 doi: 10.1109/ICDCS.2015.40

Yao, Y. D., & Cheng, S. (1986). Generalization of Hadamard Matrices and a Class of

Two-Dimensional Error-Correcting Codes. In IEEE international conference on commu-

nications: Integrating the world through communications, ICC 1986, toronto, canada,

june 22-25, 1986, proceedings (pp. 997–1001). IEEE.

Zhang, A., & Lin, X. (2018). Towards Secure and Privacy-Preserving Data Sharing in e-

Health Systems via Consortium Blockchain. J. Medical Syst., 42(8), 140:1–140:18.

Retrieved from https://doi.org/10.1007/s10916-018-0995-5 doi: 10

.1007/S10916-018-0995-5

Zhong, H., Sang, Y., Zhang, Y., & Xi, Z. (2019). Secure Multi-Party Computation on Blockchain:

An Overview. In H. Shen & Y. Sang (Eds.), Parallel architectures, algorithms and

programming - 10th international symposium, PAAP 2019, guangzhou, china, december

12-14, 2019, revised selected papers (Vol. 1163, pp. 452–460). Springer. Retrieved

from https://doi.org/10.1007/978-981-15-2767-8_40 doi: 10.1007/

978-981-15-2767-8\_40

113

https://doi.org/10.1109/ICDCS.2015.40
https://doi.org/10.1109/ICDCS.2015.40
https://doi.org/10.1007/s10916-018-0995-5
https://doi.org/10.1007/978-981-15-2767-8_40

	Introduction
	Secret Sharing in the Internet of Things
	Combinatorial RTS
	Frameproofness

	Lightweight Verifiability Through a Combinatorial Approach
	Vulnerabilities in Communication Networks

	Access Structure Hiding Verifiable Tensor Designs
	A Secret Sharing Application on a Public Transport Model
	Securely Updating a Ledger
	Implementation


	Mathematical Preliminaries
	Combinatorial Designs
	Matroids and Framing
	Graph Theory
	Entropy
	Interpolation Techniques
	Block Ciphers and Authenticated Encryption
	ASCON


	IoT-Applicable Generalized Frameproof Combinatorial Designs
	Introduction
	Combinatorial RTS
	A Drawback and An Idea of Extension
	Frameproofness

	Results
	Stinson and Wei's Model
	Tensor Design Generated by Two BIBDs
	Definition of the Krönecker Product
	Krönecker Product of Two BIBDs
	Some Results on the Krönecker Product of BIBDs
	Proof of Existence of Secret Reconstruction
	A Generalized Share Distribution Scheme

	Example
	Secret Reconstruction

	Share Repair for a Krönecker Product-Induced Distribution Design
	Frameproofness
	A Modified Scheme
	Example
	Secret Reconstruction for the Modified Scheme

	Graphical Representation and Proof of Existence of Permutations
	Conclusions and Future Work

	Applications to IoT and Verifiability
	Secret Sharing Schemes and the Internet of Things
	Vulnerabilities in Communication Networks
	Verifiability in Secret Sharing
	Lightweight Share Verification
	Existing Verification Protocols
	An Improved Cheater Detection Algorithm
	Conclusion

	Access Structure Hiding Verifiable Tensor Designs
	Introduction
	Preliminaries
	-Almost Access Structure Hiding Ramp-Type Tensor Designs
	Tensor Design
	Secret Sharing Properties of AB
	Frameproofness
	Secret Sharing Properties of F(A,B)
	Graphical Representation
	Defining Access Structure Tokens

	Main results
	Proof of Theorems 5.3 and 5.4
	Proof of Theorems 5.5 and 5.6
	Applications
	Conclusion and Future Work

	A Secret Sharing Application on a Public Transport Model
	Introduction
	An Overview of the Model
	Communication Flow

	Implementation
	Conclusion

	Conclusions and Open Issues
	Bibliography

