
Graph Neural Networks for
Homogeneous and Heterogeneous

Graphs: Algorithms and Applications

A thesis submitted to Indian Statistical Institute

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

by

Sucheta Dawn
Senior Research Fellow

Under the supervision of

Prof. Sanghamitra Bandyopadhyay

Machine Intelligence Unit

Indian Statistical Institute, Kolkata

July, 2024

To my family,
who means the world to me

2

ACKNOWLEDGEMENTS

PhD is a journey of having Patience, doing Hard work, and being Determined. In this

long journey, there were several ups and downs. It would not be possible to reach the

completion of this thesis without those people around me who have always motivated

me in every way possible. When I look back on this journey, I realize how fortunate

I am. Now, the time has arrived when I should make little effort to express gratitude

towards them.

Before all else, I am grateful to the universe for always providing me with the right

amount of positivity, strength, and determination to get to where I am today.

It is a pleasure for me to express my heartfelt gratitude to my thesis supervisor, Prof.

Sanghamitra Bandyopadhyay, for her endless guidance, encouragement, and support.

She will always remain an inspiration for me. I still remember the day when I was

completely clueless about my research topic, and she introduced me to my research

passion: Graph Neural Networks. Thanks a lot, Madam, for being so supportive and

inspiring.

I am also grateful to Dr. Monidipa Das for providing valuable suggestions, which

formed the stepping stones for my work in my early PhD days.

I am extremely thankful to the Indian Statistical Institute(ISI) for providing me with

the fellowship, which helped me to conduct my research without any financial con-

straints. I am also grateful to Prof. Sanghamitra Bandyopadhyay, the Director of ISI,

for providing an excellent research facility and environment in the institute. I am grate-

ful to the faculties of ISI, especially of the Machine Intelligence Unit, for their valuable

suggestions for the betterment of my work.

I sincerely thank my seniors, Dr. Monalisa Pal, Dr. Snehalika Lall, and Suparna Saha,

who always guided me like big sisters. I thank all of my labmates, Sayan Saha, Mrittika

Chakraborty, and Aishik Chanda, for having fruitful discussions, which have enriched

my knowledge.

I don’t have enough words to express gratitude to my friends and colleagues for al-

ways being there for me. I extend my earnest gratitude to Sukumar Mandal and

Nivedita Chatterjee, who have never stopped believing in me since my college days,

even though I doubted my ability. Special thanks to Sukriti Roy, Sankar Mondal, Ab-

hinav Chakraborty, Bibhuti Das, and Rathindra Nath Dutta for making this journey

smooth and cherishable.

Finally, words are inadequate to express my gratitude to my family. I am thankful

to my mother, Mrs. Sukriti Daw, for her constant support and encouragement during

my PhD career and throughout my life. I thank my father, Mr. Deb Ranjan Daw, for

teaching me to work with love and passion. Thanks to my sister Soumita Dawn for her

unconditional love and support. My heartfelt gratitude to my husband, Dr. Subhadip

Pramanik, for his assistance and presence throughout this journey. I would not have

enrolled for a PhD if he was not there. Last but not least, my son, Siddhartha, is a

gift of my life. His smile brightens my day every morning and encourages me to work

harder.

Sucheta Dawn

ii

Abstract
A graph is used to represent complex systems where both entities and their intercon-
nections are equally important. Real-life situations, e.g., social networks, biological
networks, recommender systems, etc., are better modeled in terms of graphical struc-
tures, as the information about individual entities is not enough to understand the whole
system. Due to the existence of non-uniformity in graphical data, traditional machine
learning algorithms that perform tasks like prediction, classification, etc., can not be
applied directly to such data. Graph Neural Networks (GNNs) are robust variants of
deep neural network models that are typically designed to learn from such graphical
data. GNN involves transforming graph data into Euclidean representations that vari-
ous machine-learning algorithms can utilize.

In this thesis, two types of graphs have been studied. In the first two contributory chap-
ters, the graphs considered are homogeneous, where all nodes are of the same type.
Chapter 2 describes a model called Interval-Valued Graph Neural Network (IV-GNN),
which has been developed to handle homogeneous graphs with interval-valued node
features. This model relaxes the restriction that the node features should be single-
valued. Here, interval-valued features are allowed, and the corresponding GNN model,
along with its mathematical analysis, is presented.

Chapter 3 discusses the importance of hierarchical structure learning within a graph. It
describes a model called GraMMy, which is designed for hierarchical semantics-driven
graph representation learning based on Micro-Macro analysis. It focuses on the graph
at different levels of abstraction to allow the flexible flow of information between the
higher-order neighborhoods. The task that we aim to perform on the homogeneous
graphs in Chapter 2 and 3 is graph classification.

The second part of the thesis deals with heterogeneous graphs. We consider the social
recommender system as an area of application. We have modeled the problem of
predicting missing rating value for a user to an item as a link prediction task in a
heterogeneous graph setting where multiple types of nodes are present in the data. In
our third contribution (Chapter 4), the aim is to quantify the usefulness of the ratings
given by the user to an item. For this purpose, a metric called Influence Score of a user
has been defined and incorporated into a GNN-based recommender system to develop
a Social Influence-aware recommendation system, SInGER.

Although SInGER improves the prediction quality, a limitation of the approach is the
uniform definition of the Influence Score, irrespective of the data set considered. To
overcome this, in the fourth work (Chapter 5), we develop a neural architecture to cap-

ture user trust without explicitly defining it. It provides an effective means of implic-
itly accounting for trust propagation and composability while performing GNN-based
analyses to accomplish the overall task of item rating prediction.

iv

Related Publications by the Author

Papers in Peer-reviewed Journals

• S. Dawn and S. Bandyopadhyay. IV-GNN: interval valued data handling using
graph neural network. Applied Intelligence, 53(5) : 5697–5713, 2023.
DOI- https://doi.org/10.1007/s10489-022-03780-1.

• S. Dawn, M. Das, and S. Bandyopadhyay. GraMMy: Graph representation
learning based on micro–macro analysis. Neurocomputing, 506 : 84–95, 2022.
DOI- https://doi.org/10.1016/j.neucom.2022.07.013.

• S. Dawn, M. Das, and S. Bandyopadhyay. SoURA: a user-reliability-aware so-
cial recommendation system based on graph neural network. Neural Computing
and Applications, pages 1–19, 2023.
DOI- https://doi.org/10.1007/s00521-023-08679-7.

Papers in Peer-reviewed Book Chapters

• S. Dawn, M. Das, and S. Bandyopadhyay. Graph representation learning for
protein classification. In Artificial Intelligence Technologies for Computational
Biology, pages 1–28. CRC Press.
DOI- https://doi.org/10.1201/9781003246688.

Papers in Peer-reviewed Proceedings of International Conferences

• S. Dawn, M. Das, and S. Bandyopadhyay. Singer: A recommendation system
based on social-influence-aware graph embedding approach. In 2021 IEEE 18th
India Council International Conference (INDICON), pages 1–6. IEEE, 2021.
DOI- https://doi.org/10.1109/indicon52576.2021.9691733.

• S. Dawn, M. Das, and S. Bandyopadhyay. Caterer: A graph neural network-
based model for category-wise reliability-aware recommendation. In 9th Inter-
national Conference on Pattern Recognition and Machine Intelligence (PReMI’21),
2021. (In Print).

v

Contents

Chapter1: Introduction and Scope of the Thesis 1
1.1 Introduction . 1
1.2 Graph - The Power of Connectivity 2

1.2.1 Definitions . 2
1.2.2 Types of Graphs 3
1.2.3 Common Graph Theoretic Problems and their Solu-

tions . 4
1.2.3.1 Graph Problems and Traditional Algorithms 4
1.2.3.2 Graph Algorithms using Machine Learning 6

1.3 Graph Neural Networks: From Nodes to Knowledge . . . 8
1.3.1 Spectral Graph Neural Networks [1] 9

1.3.1.1 Drawbacks of Spectral Approaches 10
1.3.1.2 The Weisfeiler-Lehman Isomorphism Test: An Iso-

morphism Check for Graphs 11
1.3.2 Spatial Graph Neural Networks 15

1.3.2.1 Embedding Generation Approach of a Spatial GNN 15
1.3.2.2 Some Widely Used GNN Models 17

1.4 Scope of the Thesis . 28
1.4.1 Graph Classification on Homogeneous Graphs . . . 29

1.4.1.1 Handling Interval Valued Data in Graph Neural Net-
work: IV-GNN [2] 29

1.4.1.2 Graph Representation Learning based on Micro-Macro
Analysis: GraMMy [3] 30

1.4.2 Link Prediction on Heterogeneous Graphs 30
1.4.2.1 A Recommendation System Based On Social-Influence-

aware Graph Embedding Approach: SInGER [4] . . 30
1.4.3 User-Reliability-Aware Social Recommendation Frame-

work based on Graph Neural Network [5] 31

vii

Contents

Chapter2: Handling Interval Valued Data in Graph Neural Network:
IV-GNN . 33

2.1 Introduction . 33
2.1.1 Related Works and their Limitations 34
2.1.2 Research Contribution 36

2.2 Background And Definition 36
2.2.1 Basic Mathematics of Intervals 36
2.2.2 Aggregation Functions 38

2.3 Theoretical Framework 39
2.4 Proposed Framework: Interval-Valued Graph Neural Net-

work (IV-GNN) . 41
2.4.1 AGGREGATE and UPDATE functions of IV-GNN 41
2.4.2 Details of Updation Step 42

2.4.2.1 Neural Architecture of IV-GNN 43
2.4.3 Graph-Level READOUT function of IV-GNN . . . 43
2.4.4 Challenging Structures for agr0 and agre 44
2.4.5 Model Training 47
2.4.6 Time and Space Complexity of Training the Embed-

ding Generation Process of IV-GNN 47
2.5 Experimental Results . 48

2.5.1 Datasets . 48
2.5.2 Results of Comparative Study on Model Performance 53

2.5.2.1 Data Preparation 53
2.5.2.2 Baselines . 53

2.5.3 Performance with Degenerate Interval: A Special
Case of IV-GNN 54

2.5.3.1 Baselines . 54
2.5.4 Parameter Settings 54
2.5.5 Results and Discussion 55

2.5.5.1 Training Set Performance 55
2.5.5.2 Test Set Performance 58

2.5.6 Runtime Comparison 59
2.5.7 Empirical Study on Hyperparameter Setting 59

2.6 Conclusion . 62

Chapter3: Graph Representation Learning Based on Micro-Macro Anal-
ysis: GraMMy . 63

viii

Contents

3.1 Introduction . 63
3.1.1 Related Works and their limitations 63
3.1.2 Research Contribution 65

3.2 Proposed Framework: GraMMy 65
3.2.1 Micro-Macro Analysis of the Graph Structure . . . 66

3.2.1.1 Significance of Micro-Macro Analysis 70
3.2.2 Capturing Semantics through node Context Gener-

ation from Different Levels of Abstraction 76
3.2.2.1 Significance of Context Generation 78

3.2.3 Information Capturing of neighborhood using Flat
Message Passing 79

3.3 Experimental Results . 79
3.3.1 Datasets . 79
3.3.2 Experimental Settings 79
3.3.3 Baselines Models 80
3.3.4 Results and Discussions 81

3.3.4.1 Graph Classification Performance 81
3.3.4.2 Validation of Theoretical Findings 82

3.4 Conclusion . 86

Chapter4: SInGER: A Recommendation System Based on Social-Influence-
aware Graph Embedding Approach 87

4.1 Introduction . 87
4.2 Related Works and their limitations 89

4.2.1 Matrix Factorization (MF)-Based Recommender Sys-
tem: . 89

4.2.2 Neural Network (NN)-Based Recommender Systems: 91
4.3 The Proposed Framework 92

4.3.1 Problem Scenario 92
4.3.2 An Overview of the Proposed Model: SInGER . . . 94
4.3.3 Item-category-Based Influence Estimation of a User

in Social Networks 94
4.3.3.1 Item-Category Specific Influence Propagation Graph

Generation . 96
4.3.3.2 Influence Score of a User based on Item-Category . 97

4.3.4 Social-Influence-Aware Graph Embedding Generation 99
4.3.4.1 User Embedding Generation 99

ix

Contents

4.3.4.2 Item Embedding Generation 103
4.3.5 Rating Prediction Module 104

4.4 Experimental Results . 105
4.4.1 Datasets . 105
4.4.2 Performance Metrics 106
4.4.3 Parameter Settings 107
4.4.4 Baselines . 107
4.4.5 Results and Discussion 107

4.4.5.1 Results of Comparative Study on Model Performance 107
4.4.5.2 Empirical Results for Different Parameter Settings . 108

4.5 Conclusion . 111

Chapter5: User-Reliability-Aware Social Recommendation Framework
based on Graph Neural Network 113

5.1 Introduction . 113
5.1.1 Motivation . 114
5.1.2 Contributions . 115

5.2 Related Works and their limitations 116
5.3 SoURA: A User-Reliability-Aware Social Recommenda-

tion System based on Graph Neural Network 117
5.3.1 User-Reliability Modeling 118

5.3.1.1 Sequence-to-Sequence Encoder-Decoder Architecture 120
5.3.1.2 Motivation behind the use of Sequence-to-Sequence

Encoder-Decoder Architecture 121
5.3.1.3 User-Reliability Value Generation 122

5.3.2 User Embedding Generation 124
5.3.3 Item Embedding Generation 124
5.3.4 Rating Prediction 126
5.3.5 Limitation of SoURA 126

5.4 CateReR: A Graph Neural Network-based Model for Category-
wise Reliability-aware Recommendation 127

5.5 Experimental Results . 129
5.5.1 Datasets . 129
5.5.2 Performance Metrics 129
5.5.3 Parameter Settings 129
5.5.4 Baselines . 130
5.5.5 Results and Discussions 131

x

Contents

5.5.5.1 Results of comparative study on model performance 131
5.5.5.2 Ablation Study for User-Reliability Module 133
5.5.5.3 Empirical Study on Effect of Different User-Reliability

Computation Strategy 134
5.6 Conclusion . 134

Chapter6: Conclusions and Future Scope of Research 137
6.1 Research Contribution 137
6.2 Limitations and Future Scope 138

Bibliography . 141

xi

List of Figures

1.1 Weisfeiler-Lehman test to check whether G1 and G2 are isomorphic or
not [6]. 12

1.2 Examples of two non-isomorphic graphs that WL test fails to distinguish 14
1.3 Example of a graph that is to be used as input graph [6]. 16
1.4 Representation learning using Neural Message Passing Technique [6]. 17

2.1 a: Weekly cases of Mumps at county level for 2005 in counties of
England and Wales. b: Network structure using distances between
county towns [2]. 34

2.2 An overview of the proposed framework: IV-GNN [2]. 41
2.3 Ranking by expressive power for agr0, agre, agrnew. Among these

three aggregation functions, agrnew has the maximum ability to cap-
ture the structural and feature related information. One thing to notice
that, the right end point of an resulting interval equals to 1 expresses
the fact that two aggregating intervals are non overlapping. agre is
equally powerful as agrnew when two intervals have non-null intersec-
tion. agr0 captures the smaller interval (according to the order relation)
and ignores the other interval [2]. 45

2.4 Examples of interval structures that agr0 and agre fail to distinguish:
In the left picture, agr0 is giving the same aggregated interval even
though two sets of intervals are different. In the right picture, agr0 and
agre both are unable to recognize the differences between the two sets
of intervals [2]. 45

2.5 Explanation of assigning feature interval to a node. For node A, it has
two neighbors of degree 3, resulting in dmin = dmax = 3. Hence the
feature interval(A) = [dmin, dmax] = [3, 3]. Similarly, node F has 4

neighbors of degree 2, 2, 3, 3. Hence dmin and dmax are 2 and 3 respec-
tively. Therefore, feature interval(F) = [2, 3] [2]. 50

xiii

List of Figures

2.6 Training set performance of IV-GNN and less powerful interval-valued
feature accepting GNNs. The X-axis and Y-axis show the epoch num-
ber and the accuracy of training respectively [2]. 56

2.7 Training set performance of IV-GNN accepting degenerate interval
value and other single value feature accepting GNN. The X-axis and
Y-axis show the epoch number and the accuracy of training, respec-
tively [2]. 57

2.8 Comparison in runtime of different GNN models [2]. 60
2.9 Empirical study on hyper-parameter setting. X-axis and Y-axis show

the name of the dataset and the accuracy of training respectively [2]. . 61

3.1 Two triangles with similar structures but differently colored nodes [3]. 64
3.2 An overview of the proposed framework: GraMMy [3]. 66
3.3 Micro-Macro analysis of a graph [3]. 68
3.4 Impact of the amount of detail in Influence Score [3]. 71
3.5 Impact of the amount of detailing in the Characteristic path length of a

graph. Two graphs shown in the picture are G′
f (left) and G′

f ′ (right),
where f < f ′. In G′

f , let us assume that each node cluster is a singleton
node. Here, to reach v from u, the shortest path is of length 3. Whereas
in G′

f ′ , an increase in abstraction level will allow more nodes to collide
and make only 3 distinct clusters. Hence, the node v will be just 1 hop
away from u [3]. 74

3.6 Information propagation flexibility vs Information Loss. (a) The graph
on the left side is the original graph, a micro view of that graph, which
focuses on the local information of every node. (b) The graph on the
right-hand side is a more macro view of the graph, where the graph is
seen in a more clustered manner based on the similarity of the node’s
neighborhood set [3]. 76

3.7 Comparison of Training set performance of GraMMy with the state-of-
the-art models on several benchmark datasets. The X-axis and Y-axis
denote the number of iterations and training accuracy, respectively [3]. 82

3.8 f vs. Average no. of nodes: The effect of the amount of detail f on an
Average number of nodes [3]. 83

3.9 Effect of the amount of detail (f) on Average characteristic path length
[3]. 84

3.10 f vs. IL :The effect of amount of detail f on Information Loss (IL) [3]. 85

xiv

List of Figures

4.1 Summary of works on Social Recommender Systems. 91
4.2 In the Social Recommender system, the graph contains two sub-graphs,

user-item interaction [left sub-graph] and Social interaction [right sub-
graph]. As per the figure, the user u trusts users u2 and u4 and rated i1,
i2 and i3. The numbers mentioned on the user-item connection denote
the ratings given by the user u to the respective items [4]. 93

4.3 The overall framework for our proposed social-influence-aware graph
embedding based recommender system : SInGER [4]. 95

4.4 Overview of our proposed Item-Category specific Influence propaga-
tion graph generation process:(a)-Social Recommender System frame-
work, where the items can be categorized into 4 types, namely Books,
Movies, Electronics and Music. (b)- influence propagation graph for
item category books. (c)- influence propagation graph for item cate-
gory movies. (d)- influence propagation graph for item category elec-
tronics. (e)- influence propagation graph for item category music. For
example, the Influence Score of user no. 11 (marked in green) re-
garding the ”Movie” category (marked in blue circle), the set of users,
who have rated the movie that u11 has also rated, will be considered,
i.e.{u12, u13, u15, u16}, all are marked in yellow [4]. 97

4.5 Effect of different aggregation function used for embedding generation
for recommendation [4]. 109

4.6 Effect of different embedding size used for user-embedding, item-embedding
and rating-embedding [4]. 110

4.7 Effect of different batch size during training [4]. 110
4.8 Effect of learning rate during the training of the model [4]. 111

5.1 Overview of our proposed User-Reliability-Aware Social Recommen-
dation Framework (SoURA)[5] . 118

5.2 The sequence used for generating User-Reliability value. 120

xv

List of Figures

5.3 Encoder-Decoder system contains two LSTM units, functioning as En-
coder [left box] and Decoder [right box], respectively. Every encoder
unit takes one element of the degree sequence, say dp(jl), and the hidden
state hl−1 generated from the previous encoder unit. After the degree
sequence finishes, Encoder outputs a context vector C, which is fed to
the Decoder LSTM. Each decoder unit takes a hidden state, say sl−1

and the output dp(jl), generated by the previous decoder unit at every
timestamp and produces the next term of the output sequence and the
hidden state for the next decoder unit. Our aim is to collect the context
C and generate the User-Reliability value by scaling it. 123

xvi

List of Tables

2.1 Comparison between three interval aggregators. 46
2.2 Statistics of the synthetic datasets 51
2.3 Statistics of the Bioinformatics datasets used 52
2.4 Statistics of the Social network datasets used 53
2.5 Test set classification accuracies in percentage 58
2.6 Test set classification accuracies in percentage 59

3.1 Test set classification accuracies . 80

4.1 Table of Notations . 96
4.2 Characteristics of the datasets . 106
4.3 Performance Comparison with other Recommender System Models . 108

5.1 Comparative results on models performance 132
5.2 Effect of User-Reliability generation module on prediction performance 134
5.3 Effect of different strategies for User-Reliability generation 134

xvii

List of Algorithms

1 GNN framework for embedding generation 18
2 Context generation for a node u through sequence learning in the graph

G′
f from a particular level of abstraction f 78

3 Prediction for the missing rating rjk in SInGER (Forward propagation) 105
4 Forward propagation of User-Reliability generation for user uj through

context learning . 123
5 Forward propagation of User-Embedding generation for the user uj . 125
6 Forward propagation of Item-Embedding generation for the item ij . . 126
7 Prediction for the missing rating rjk (Forward propagation) 127

xix

List of Abbreviations

Abbreviations:

GNN Graph Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Networks

DNN Deep Neural Network

DFS Depth-First Search

BFS Breadth-First Search

SCC Strongly Connected Components

WL Weisfeiler-Lehman

GI Graph Isomorphism

MST Minimum-Spanning Tree

GRL Graph Representation Learning

LSTM Long Short Term Memory

MLP Multi Layer Perceptron

LSH Locality Sensitive Hashing

MAE Mean Absolute Error

RMSE Root Mean Square Error

Chapter 1

Introduction and Scope of the Thesis

1.1 Introduction

Much of the real-life data in this data-driven era are high dimensional and complex, and

do not necessarily follow the Euclidean structure. Often, they are better represented as

non-Euclidean data, such as graphs and manifolds. For instance, in the e-commerce

system [7], the interactions between users and products can be represented as graphs.

Additionally, bio-active molecules and their bio-activity [8] can be modeled as graph.

In citation networks [9], papers can be viewed as nodes of a graph, and the link be-

tween different papers via citation can be modeled as edges of that graph. In computer

graphics and vision applications, each shape is modeled as a manifold to find similarity

and correspondence between shapes [1].

One of the basic differences of this kind of data and Euclidean data is that the di-

rect connection between any two points in a Non-Euclidean space is not necessarily

the shortest path between them: on the contrary a straight line in a Euclidean space

is actually the shortest distance between the two. Therefore, applying the Artificial

Neural Network technique to solve different tasks on the Non-Euclidean domain is not

straightforward and has faced several challenges [10] as follows:

• Graph data is non-uniform. Each graph consists of different number of nodes,

and each node in a graph has variable number of neighbors. Hence, convolution

1

Chapter 1. Introduction and Scope Of The Thesis

type operations are not directly applicable here.

• Application of the existing machine learning algorithms is not always possible

because instances in non-Euclidean space have interdependence. For example,

in graph, the nodes share connections with other nodes via edges. So, to extract

maximum information about the data while performing any specified task, it is

necessary to capture this inter dependency among the nodes.

Graph Neural Networks (GNNs) play a crucial role in filling this gap between Graph

data and existing Artificial Neural Network techniques, overcoming the aforemen-

tioned challenges. It finds a low-dimensional representation for nodes in a large graph,

which captures the structural information as well as feature-related information of the

nodes. Therefore, the whole graph data will be transferred to a set of low dimensional

vectors, which makes several machine learning tasks such as Recognition, Classifica-

tion, and Prediction easy to perform.

1.2 Graph - The Power of Connectivity

A graph is a data structure representing a network of entities and their relationships. In

this section, some formal definitions pertaining to graphs are provided.

1.2.1 Definitions

Definition 1. A graph G = (V,E) consists of a set of vertices V and the set of edges

E ⊆ V × V . A node vi ∈ V is related to another node vj ∈ V if eij = (vi, vj) ∈ E.

A graph can be directed or undirected based on the relationship defined among the

nodes of the edges. The directed edges are usually denoted by an arrow showing the

direction.

Definition 2. Neighborhood of a node vi in a graph is defined as the set of nodes

which are connected by edges to the node vi, i.e.,

N (vi) = {vj ∈ V | eij = (vi, vj) ∈ E}. (1.2.1)

2

1.2. Graph - The Power of Connectivity

Definition 3. Degree of a node d(vi) is the number of nodes in the neighborhood of

the node vi, i.e.,

d(vi) =| N (vi) |, (1.2.2)

where |.| denotes the cardinality of a set.

Definition 4. Adjacency Matrix A for a graph G = (V,E) with N nodes, i.e., | V |=

N is a N ×N matrix, where

Aij = wij, if eij ∈ E,

= 0,Otherwise,
(1.2.3)

where wij is the weightage of the edge eij . For unweighted graphs, all edges are given

the same weightage, i.e., wij = 1, ∀eij ∈ E.

1.2.2 Types of Graphs

Graphs are useful for understanding and modeling various real-world systems and re-

lationships. Graphs can be usually classified into two main types based on the nature

of their vertices: homogeneous graphs and heterogeneous graphs.

Definition 5. Homogeneous Graph. Formally, a graph G = (V,E) is considered

homogeneous if all vertices in the vertex set V are of the same type.

Definition 6. Heterogeneous Graph. Formally, a graph G = (V,E) is considered

heterogeneous if vertices in the vertex set V are of different types.

In a heterogeneous graph, the neighborhood of a node is the set of nodes that are

directly connected to it, taking into account the different types of nodes. Similarly,

a node have different degrees based on the different nodes types, which is known as

Type-specific degree of a node in literature. Also, a heterogeneous graph has a Multi-

dimensional adjacency matrix where each entry is a vector or a tensor that represents

the connections between nodes of different types.

3

Chapter 1. Introduction and Scope Of The Thesis

1.2.3 Common Graph Theoretic Problems and their Solutions

Various tasks can be performed on graphs, each with its own algorithms and appli-

cations. We divide these into two groups: (i) algorithms that use traditional graph

theoretic approaches, and (ii) those that use machine learning approaches. A detailed

overview of some common graph-related tasks is presented in the following subsec-

tions.

1.2.3.1 Graph Problems and Traditional Algorithms

Some of the common tasks in graphs and graph-theoretic approaches for solving them

are mentioned below.

• Graph Search and Traversal:

a. Depth-First Search (DFS) and Breadth-First Search (BFS): These classical

algorithms are used to explore or traverse graphs, find paths, cycles, or

connected components.

b. Dijkstra’s Algorithm [11]: This algorithm is used to find the shortest paths

between nodes in a weighted graph.

c. Bellman-Ford Algorithm [12]: This algorithm overcomes the limitation of

Dijkstra’s algorithm by finding the shortest paths in a graph with negative

edge weights.

• Graph Connectivity and Components:

a. Connected Components: A connected component of an undirected graph

is a subgraph in which each pair of nodes is connected with each other via

a path. Algorithms such as Depth-First search find connected components

in undirected graphs.

b. Strongly Connected Components (SCC): A strongly connected component

is a subgraph of a directed graph where each pair of nodes is connected

with each other via a route which is a path with directed edges. Tarjan’s

4

1.2. Graph - The Power of Connectivity

algorithm and Kosaraju’s algorithm are used to find SCC in directed graphs

[13].

• Graph Matching and Isomorphism:

a. Graph Isomorphism Testing: The graph isomorphism problem, the prob-

lem of determining whether two graphs are isomorphic or not, is not only

a fundamental problem of graph theory but also a very practical problem

in studying and enumerating combinatorial structures in real-life scenar-

ios. Graph Isomorphism (GI) became significant in the theory community

during the 1970s. It stood out as one of the rare natural problems in the

complexity class NP that could neither be categorized as NP-complete nor

solved by a polynomial time algorithm [14]. Traditionally algorithms such

as the Weisfeiler-Lehman (WL) algorithm [15] or the Nauty algorithm [16]

are used to determine whether two graphs are isomorphic or not. In this the-

sis, our works are inspired by the WL algorithm to solve the GI problem,

and hence, this algorithm has been discussed in detail in a later section.

b. Subgraph Matching: Here the job is to find occurrences of a pattern graph

within a larger graph. Techniques like subgraph isomorphism or graph

matching are used to solve this problem.

• Network Flow and Optimization:

a. Max-Flow Min-Cut Theorem: The max-flow min-cut theorem is a fun-

damental result in network flow theory, which connects two key concepts:

the maximum flow through a network and the minimum cut of the network.

Algorithms such as Ford-Fulkerson [17] or Edmonds-Karp [18] are used to

find the maximum flow in a network.

b. Minimum-Spanning Tree (MST): A spanning tree is a tree-like subgraph

of a connected, undirected graph that includes all the graph’s vertices. The

spanning tree that has the minimum possible weight among all possible

5

Chapter 1. Introduction and Scope Of The Thesis

spanning trees is called MST. Finding an MST is an important task in net-

work design, social network analysis, etc., to identify important connec-

tions and relationships among the entities and reduce the connection cost.

Algorithms like Kruskal’s [19] and Prim’s [20] are well known for finding

the MSTs of a graph.

c. Graph Colouring: Graph coloring is the task of coloring vertices of a graph

with the fewest possible colors such that no two adjacent vertices have the

same color. Techniques such as greedy coloring algorithms or backtracking

are used to solve this task.

• Network Analysis:

a. Centrality Measures: Algorithms like degree centrality, betweenness cen-

trality, and closeness centrality are used to identify important nodes in so-

cial networks.

b. Community Detection: This is an important problem in graph theory, where

the objective is to find groups or clusters of nodes that are more connected

and/or similar to each other than nodes from different groups or clusters.

Techniques such as modularity optimization or hierarchical clustering are

used to find communities or clusters within social networks.

1.2.3.2 Graph Algorithms using Machine Learning

Graph-related tasks have expanded significantly in the machine learning era, leverag-

ing advancements in graph theory, machine learning, and deep learning. Following are

some key graph-related tasks and applications:

• Graph Representation Learnings (GRLs): Graph Representation Learning is a

field where machine learning and graphs come together. It focuses on how to

learn and encode graphs into low-dimensional vector spaces. These vectors cap-

ture the structural and semantic properties of the graph, making it easier to apply

6

1.2. Graph - The Power of Connectivity

machine learning algorithms to graph data. The different levels of representation

learning on graphs are as follows,

a. Node Embedding: Learning low-dimensional vector representations of nodes

that preserve graph topology and node attributes.

b. Graph Embedding: Learning representations for entire graphs to capture

structural information that can be useful for graph classification tasks.

• Graph Neural Networks (GNNs): GNNs are a subset of GRL techniques that

specifically use neural network-based methods to learn node, edge, or graph

embeddings. Here are different tasks that can be performed on graphs using

GNNs.

a. Node Classification: It is the task of predicting the labels of nodes based

on graph structure and node features[21].

b. Link Prediction: Link prediction is a useful task in recommendation sys-

tems and social network analysis. Here, the job is to predict the existence

of edges between pairs of nodes[22].

c. Graph Classification: In this problem, one has to classify entire graphs into

categories. This has important applications in bioinformatics (e.g., protein

function prediction) and chemistry (e.g., molecular property prediction)[23].

As this thesis mainly focuses on GNNs, and their use for graph classification and

link prediction, these will be discussed formally in a later part of this chapter.

• Graph-based Semi-Supervised Learning: Graph-based Semi-Supervised Learn-

ing focuses on using graph structure to propagate labels from a small set of

labeled nodes to a larger set of unlabeled nodes. The goal here is to improve the

classification performance with limited labeled data [24].

• Graph Generative Models:

7

Chapter 1. Introduction and Scope Of The Thesis

a. Graph Generation: Graph generative models such as GraphRNN [25], Graph-

VAE [26] creates new graphs with similar properties to a given set of graphs

and these have been found useful in drug discovery and material science.

b. Graph Completion: Graph Completion is done to fill in the missing parts

of a graph, such as predicting missing nodes or edges.

• Graph-based Clustering for Community Detection: Identifying clusters or com-

munities within a graph has been useful in several domains, especially for social

network analysis and for detecting functional modules in biological networks.

• Explainability in Graph Models: The job here is to improve trust and trans-

parency in AI applications by developing methods to interpret the decisions

made by GNNs.

This discussion above shows that the integration of graph theory with machine learn-

ing has opened up a multitude of tasks and applications that leverage the rich structural

information contained in graphs. As the field evolves, further advancements are ex-

pected in graph algorithms, models, and real-world applications driven by continuous

innovations in machine learning and deep learning.

1.3 Graph Neural Networks: From Nodes to Knowl-

edge

GNNs are robust variants of deep network models, typically designed to learn from

graph. It is an emerging branch of machine learning in non-Euclidean space, especially

performing well in different tasks where graph-structured data is involved [27]. GNN

approaches can extract structural and feature-related information from a graph and find

Euclidean embeddings for non-Euclidean data, which help to perform several tasks

like classification, regression, link prediction, etc., on graphs [28]. In this thesis, we

focus on graph classification and link prediction tasks on graphs using GNN-based

approaches.

8

1.3. Graph Neural Networks: From Nodes to Knowledge

Let G = (V,E) be a graph, and xv be the node feature vector associated with a node

v ∈ V .

• Graph Classification Let {G1, ..., GN} be a collection of graphs, where {y1, ...,

yN} is the set of associated labels of the graphs. The aim of Graph Classification

task is to learn an association between the graphs and the labels. Towards this,

the objective of a GNN-based approach is to learn a Euclidean representation zG

for a particular graph G such that yG is a function of zG, i.e., yG = h(zG).

• Link Prediction Given a pair of nodes (u, v) ∈ V × V , the goal is to predict

the likelihood p(u, v) of the existence of an edge between them. The objective

of a GNN-based approach is to get vector representations zu and zv for u and v,

respectively, such that p(u, v) is a function of zu and zv, i.e., p(u, v) = g(zu, zv).

GNN model approaches can be classified into two categories, namely spectral and

spatial methods [10]. Specifically, early GNN models were implemented using spectral

theory. In this section, first the basic steps of spectral GNNs, some examples, and their

drawbacks are discussed. This is followed by a detailed discussion on spatial GNNs,

which is the main topic of this thesis.

1.3.1 Spectral Graph Neural Networks [1]

Spectral GNNs are a type of neural networks designed to operate on graph-structured

data that rely on spectral decomposition and convolutional filters to capture graph

structure and node relationships.

Spectral GNNs use the following steps:

a. Spectral decomposition: Decompose the graph’s Laplacian or adjacency matrix into

eigenvalues and eigenvectors.

b. Filtering: Apply filters to the eigenvalues and eigenvectors to extract relevant infor-

mation.

9

Chapter 1. Introduction and Scope Of The Thesis

c. Node embedding: Compute node representations by combining the filtered eigen-

values and eigenvectors.

d. Learning based on neural networks: Feed the node embeddings into a neural net-

work to predict graph properties or node labels.

Some spectral convolution approaches are SpectralCNN [29], SyncSpecCNN [30],

SSF-CNN [31], ChebNet [8] and Motifnet [32].

1.3.1.1 Drawbacks of Spectral Approaches

Some of the drawbacks of spectral approaches are listed below.

a. Computational cost: Spectral decomposition can be computationally expensive for

large graphs.

b. Eigenvalue sensitivity: Small changes in eigenvalues can significantly affect node

embeddings.

c. Over-smoothing: Spectral GNNs suffer from over-smoothing, losing node-specific

information.

d. Lack of spatial awareness: Spectral GNNs may not capture local spatial informa-

tion, relying solely on spectral features.

e. Limited interpretability: While the spectral domain provides some insights, node

embeddings can be difficult to interpret.

In order to address the aforementioned limitations, subsequent developments have

taken place is, Spatial GNNs. Before introducing the notion of a spatial GNNs, the

intuition behind its development is first elaborated. For this purpose, it is necessary to

first introduce the Weisfeiler-Lehman (WL) test.

10

1.3. Graph Neural Networks: From Nodes to Knowledge

1.3.1.2 The Weisfeiler-Lehman Isomorphism Test: An Isomorphism Check for

Graphs

The Weisfeiler-Lehman(WL) test is a procedure introduced in 1968 by Albert Weis-

feiler and Roman L. Lehman to determine whether two graphs are isomorphic (i.e.,

structurally identical) or not [15].

The main idea of the WL algorithm is to decompose the graph into substructures. It

extracts node-level features using the iterative neighborhood aggregation approach,

which enables the model to gather neighborhood information and accumulate this rich

information into a graph-level representation. To test whether two given graphs are

isomorphic or not, the key idea of the algorithm is to iteratively assign a new color to

a node from the sorted alphabet of colors, based on the node’s current color and the

multi-set of colors of neighboring nodes. Refer Fig. 1.1 for an illustration. Here the

task is to check whether the two graphs, G1 and G2 are isomorphic or not. As shown

in the figure, initially (in 0-th iteration) both the graphs G1 and G2 have the same fre-

quency distribution of node labels, which is nothing but the degrees of the nodes. But

in the next iteration (i = 1), the labels of the neighbors of a node get concatenated

with its own; the two graphs end up having different representations. Hence it can be

concluded that G1 and G2 are non-isomorphic, and the algorithm terminates. The steps

of the i-th iteration of the WL test are summarized in the following algorithm.

Algorithm:

i. The nodes are initiated with the node label. If node label is not given, node labeling

function f (0) is used to assign label to each node. Possible node labeling functions

are assigning degree, centralities or clustering coefficient of the node. In Fig. 1.1,

Step-1, the node degree is used as the initial label of the node.

ii. The multiset of the node label is sorted in a defined order. The feature vector

representation for the graph is the frequency distribution of the node label.

iii. For iteration i > 0, the node labelling function f (i) will take the target node v’s

11

Chapter 1. Introduction and Scope Of The Thesis

G1 G2

Step-1

Step-2: The multiset of labels is {1,2,3}, sorted using Radix sort.

Feature vector representations of G1 and G2, defined as the

freequency distribution of the node labels are as follows,

(0) (G1)=(1, 2, 3)

(0) (G2)=(1, 2, 3)

Therefore, after 0-th iteration, both graph ended up having same

vector representation.

3 3

3

31
1

I teration- 0

G1 G2

Step-1: Node labelling function assigns node label as concatenation

of existing own label and the labels of the neighbouring nodes.

Step-2: The multiset of labels is { , , , , ,

sorted using Radix sort and we give the colours to the labels as

follows,

Feature vector representations of G1 and G2 after 1st iteration is the

contanetation of existing feature vector and freequency distribution

of the current node labels.

(1) (G1)=(1, 2, 3, 1, 2, 0, 1, 2 ,)

(0) (G2)=(1, 2, 3, 1, 2, 1, 0, 1 ,)

Therefore, after 1st iteration, both graphs ended up having different

vector representation, which concludes that these two graphs are

non-isomorphic.

133 233 233

32231

I teration- 1

3223
1

3123

3233

233

3223233

1 233 123 133 3223 , }

1

33

123

133

3223

4

5

6

7

8

3 2 2

2

2

3

3

3
3

3 3 3 2333

3233 99

3

2

3

3

0

1

: Let node labeling function assign node degrees as the labels

of the nodes.

Figure 1.1: Weisfeiler-Lehman test to check whether G1 and G2 are isomorphic
or not [6].

12

1.3. Graph Neural Networks: From Nodes to Knowledge

node label l(i−1)(v) and the multiset{l(i−1)(u) : u ∈ N (v)} and will output a

unique label l(i)(v) for the node v, i.e.,

l(i)(v) = f (i)(l(i−1)(v), {l(i−1)(u) : u ∈ N (v)}). (1.3.1)

Here,N (v) is the set of nodes directly connected to v. Step-2 in Fig. 1.1 describes

this step.

iv. Repeat Steps (ii) − (iii) until i reaches the pre-defined iteration bound or the

multisets for the graphs end up being different.

After the execution of the WL algorithm, if two multisets of node labels for two graphs

are different, it can be concluded that the two graphs are non-isomorphic. However,

if two multisets are the same, nothing can be concluded about the two graphs being

isomorphic. The WL test of graph isomorphism works effectively on certain classes

of graphs but has limitations on others (See Fig. 1.2 for an example where WL test

fails). A detailed discussion of where the WL test works well and where it does not is

provided below.

Graph Classes where WL Test Succeeds

• Trees: The WL test is very effective on trees and can distinguish non-isomorphic

trees because the tree structure allows the test to propagate and refine node colors

effectively.

• Planar Graphs: The WL test distinguishes planar graphs because the planar

structure often provides sufficient variation in local neighborhoods to uniquely

refine colors.

• Graphs with Unique Node Degrees: If all nodes in a graph have unique degrees,

the WL test can easily distinguish between non-isomorphic graphs, as the initial

coloring (based on degree) will be unique.

13

Chapter 1. Introduction and Scope Of The Thesis

Gskip (11,2) (11,3)Gskip

Figure 1.2: Examples of two non-isomorphic graphs that WL test fails to distin-
guish

• Graphs with a High Degree of Symmetry Breaking: If the graph has a structure

that allows the color refinement process to quickly break symmetries, the WL

test can often distinguish between non-isomorphic graphs.

Graph Classes where WL Test Fails

• Regular Graphs: Graphs where all nodes have the same degree (k-regular graphs)

often cause the WL test to fail because the initial coloring based on degree does

not provide any distinction, and further refinement may not break the symmetry.

• Cographs: Cographs (complement-reducible graphs) are another class where the

WL test fails because they have highly symmetric structures that the WL test

cannot distinguish.

• Strongly Regular Graphs: Strongly regular graphs have very symmetric struc-

tures and specific properties that make them indistinguishable by the WL test.

These graphs have the same number of nodes, the same degree for each node,

and the same number of common neighbors between pairs of adjacent and non-

adjacent nodes.

• Certain Highly Symmetric Graphs: Any graph with a high degree of symmetry,

14

1.3. Graph Neural Networks: From Nodes to Knowledge

where nodes have similar local structures, can defeat the WL test. Examples

include the Petersen graph [33] and other symmetric graphs where local neigh-

borhoods look identical under the refinement process.

Fig. 1.2 gives an example of two non-isomorphic graphs where the WL test can not

conclude that they are non-isomorphic. Note that, in both graphs, each node is con-

nected to four nodes of degree 4. Wl test could not distinguish between them as the

degrees of each node in both the graphs are the same.

Spatial GNNs follow a similar technique when finding the representation of a node

where, at each iteration, a node’s representation is modified based on its current repre-

sentation and its surroundings’ representation. The next subsection details the Spatial

GNN and various developments in GNN literature.

1.3.2 Spatial Graph Neural Networks

In spatial GNNs, information is passed to each node as a message from all of its neigh-

bors in an iterative manner. This approach is usually referred to as the neural message-

passing technique, which allows nodes to exchange information with their neighbors,

thus enabling the GNN to capture node relationships and graph structure. The mes-

sages received at a node from its neighbors are aggregated and further combined with

the information at that node. In this way, the information at every node is updated,

after which the updated information is again propagated to the neighbors following the

same neural message-passing process. Both the aggregate and the combine operators

involve parameters that are learned through various approaches.

1.3.2.1 Embedding Generation Approach of a Spatial GNN

Let us consider an example of a graph as shown in Fig. 1.3, a typical input to a GNN

for embedding generation. The graph contains 9 nodes of two types, which are denoted

by Green and Yellow colors. Fig. 1.4 depicts the representation learning for node ”A”

in Fig. 1.3 following the Neural Message Passing Technique as mentioned earlier. We

consider the 2- hop neighborhood of ”A” and represent it as the subtree structure rooted

15

Chapter 1. Introduction and Scope Of The Thesis

Figure 1.3: Example of a graph that is to be used as input graph [6].

at ”A” (Fig. 1.3). At each layer, as it can be seen that the ”Blue” rectangle denotes the

AGGREGATE function, which collects information from the immediate neighbors of a

node and generates a message. The ”Purple” triangle denotes the COMBINE function,

which accepts the message from the neighborhood and the node itself to generate a new

representation for the node. The right-hand side of Fig. 1.4 depicts how embeddings

are updated (denoted by new colors) of the nodes.

More formally, the k-th iteration of the neural message passing technique can be ex-

pressed in two steps,

Mk
N (v) = AGGREGATEk({hk−1

u : u ∈ N (v)}), (1.3.2)

and

hk
v = COMBINEk(hk−1

v ,M(i)
N (v)). (1.3.3)

AGGREGATEk and COMBINEk are two trainable neural networks. We summa-

rize the forward propagation algorithm of a GNN model, which is used to generate

the embeddings of nodes using the graph structure and node features in Algorithm 1.

The node embeddings are initialized with node features in step 1. Then for each node

v, AGGREGATEk accumulates the feature information about the neighboring nodes

16

1.3. Graph Neural Networks: From Nodes to Knowledge

(N (v)) that has been gathered so far (i.e. upto k − 1-th iteration) and generates the

message Mk
N (v) for v in k-th iteration (as shown in Step 4). In Step 5, the job of

COMBINEk function is to accept the message Mk
N (v) and, based on the received

message, update the existing feature vector of v (See Fig. 1.4). Therefore, building

a powerful GNN requires finding powerful AGGREGATE and COMBINE func-

tions for the model.

= ((, ,),)

= ((),)

= ((, ,),)

= ((, ,),)

:AGGREGATE

:COMBINE

Neural message passing to node A

A

B C D E

A F G A H A E I A D

Figure 1.4: Representation learning using Neural Message Passing Technique [6].

As this thesis primarily aims to perform graph classification, there is a need of another

function named READOUT, which will accept the representation of every node after

the final iteration K, and will predict the graph label as follows:

zG = READOUT ({zv|v ∈ V }).

1.3.2.2 Some Widely Used GNN Models

Some widely used GNN models are discussed in this section.

17

Chapter 1. Introduction and Scope Of The Thesis

Algorithm 1 GNN framework for embedding generation

Input : Graph G(V,E); input features {xv,∀v ∈ V }; depth K;

aggregator functions AGGREGATEk,∀k ∈ {1, · · · ,K};
combine functions COMBINEk,∀k ∈ {1, · · · ,K}
Output : Vector representations zv,∀v ∈ V

1: h0
v ← xv,∀v ∈ V

2: for k = 1, · · · ,K do
3: for v ∈ V do
4: Mk

N (v) = AGGREGATEk({hk−1
u : u ∈ N (v)})

5: hk
v = COMBINEk(hk−1

v ,Mk
N (v))

6: end for
7: end for
8: zv ← hK

v ;∀v ∈ V

1. Graph Convolutional Network (GCN) [24]: GCN is a type of neural network

architecture designed for processing and analyzing graph-structured data. GCNs

leverage convolutional operations to capture and aggregate information from

neighboring nodes in a graph, enabling them to learn meaningful representa-

tions of nodes that account for the relational structure within the graph. The

following are the key mathematical equations for GCN.

(a) Graph Convolutional Layer:

Let G = (V,E) be a graph with nodes V and edges E. Let X ∈ RN×F be

the node feature matrix, where N = |V | and F is the number of features.

Let A ∈ RN×N be the adjacency matrix of the graph.

The graph convolutional layer computes the following:

H = σ(ÂXW). (1.3.4)

where:

- Â = D−1/2AD−1/2 is the normalized adjacency matrix.

- D is the degree matrix (diagonal matrix with node degrees).

- W ∈ RF×F ′ is the weight matrix and F ′ is the dimension of the embed-

ding space.

18

1.3. Graph Neural Networks: From Nodes to Knowledge

- σ is an activation function (e.g., ReLU [34]).

- H ∈ RN×F ′ is the output feature matrix.

(b) Node Representation Update:

The node representation is updated as follows,

Hi = σ

 ∑
j∈N (i)

1√
DiiDjj

AijXjW

 , (1.3.5)

where:

- Hi is the updated representation of node i.

- N (i) is the neighborhood of node i.

- Dii and Djj are the degrees of nodes i and j, respectively.

- σ is an activation function (e.g., ReLU [34]).

(c) Multi-Layer GCN:

A multi-layer GCN stacks multiple graph convolutional layers as follows,

Hk+1 = σ
(
ÂHkW k

)
. (1.3.6)

where,

- Hk is the output of the previous layer,

- W k is the weight matrix of the current layer,

- HK is the final output of the GCN (after K layers),

- σ is an activation function (e.g., ReLU [34]).

Despite their success in multiple applications, GCNs face challenges, such as

scalability issues with large graphs and sensitivity to the chosen graph structure.

These prompt ongoing research to enhance their efficiency and robustness in

diverse applications. The next model GraphSAGE was developed to solve the

scalability issue found in the GCN model.

2. GraphSAGE [35]: GraphSAGE, or Graph Sample and Aggregated Embed-

19

Chapter 1. Introduction and Scope Of The Thesis

dings, is a powerful GNN model designed for learning node embeddings in

large-scale graphs. One of the key innovations of GraphSAGE is its ability to

generate embeddings for nodes by sampling and aggregating information from

their local neighborhoods, allowing it to scale efficiently to massive graphs.

GraphSAGE employs a sampling strategy to select a fixed-size neighborhood

around each node, capturing both the local and global structural information of

the graph. The model employs an aggregation function, such as mean or Long

Short Term Memory (LSTM), to combine the embeddings of sampled neighbors,

enabling it to generate expressive and context-aware node representations.

(a) Node Representation Update:

The node representation is updated as follows:

hk+1
v = kσ

(
W · CONCAT

(
hk
v ,Mk

N (v)

))
, (1.3.7)

where,

- hk
v is the representation of node v at layer k,

-Mk
N (v) is the representation of the neighborhood of node v at layer k,

- W is the weight matrix,

- σ is an activation function,

- CONCAT concatenates the node representation with the neighborhood

representation.

(b) Neighborhood Representation:

The aggregator function computes the neighborhood representation as fol-

lows,

Mk
N (v) = AGGREGATE

({
hk
u | u ∈ N (v)

})
, (1.3.8)

where,

- AGGREGATE is a pooling function (e.g. mean, sum, max).

20

1.3. Graph Neural Networks: From Nodes to Knowledge

(c) Final Representation:

The final representation of a node is computed after K layers as follows,

hv = hK
v . (1.3.9)

(d) Readout Layer:

The readout layer computes the final output as

yG = σ (Wy · hv) , (1.3.10)

where,

- Wy is the weight matrix of the readout layer,

- yG is the final output,

- σ is an activation function (e.g., ReLU [34]).

While GraphSAGE scales well to large graphs, neither GCN nor GraphSAGE

can achieve the same expressive power as that of the WL test. This paves the

way for more powerful models as discussed below.

3. Graph Isomorphism Network (GIN) [36]: The GIN model is a deep learn-

ing architecture specifically designed for solving graph isomorphism problems,

a fundamental challenge in graph theory and computer science. GIN employs a

message-passing neural network framework, enabling it to capture and learn the

structural features of graphs by iteratively updating node representations based

on their neighborhood information. Unlike traditional graph isomorphism algo-

rithms, GIN utilizes learnable parameters to adaptively process and distinguish

different graph structures, making it more versatile and capable of handling a

wide range of graph types. The model’s success lies in its ability to efficiently

determine whether two given graphs are isomorphic, meaning they have the same

underlying structure despite potentially different node and edge labels. This

model uses one of the powerful pooling techniques SUM for aggregation and a

21

Chapter 1. Introduction and Scope Of The Thesis

non-linear function for combination, same as in GCN.

(a) Graph Isomorphism Network (GIN) Layer:

The GIN layer computes the following,

hk+1
v = MLP

(1 + ϵ) · hk
v +

∑
u∈N (v)

hk
u

 , (1.3.11)

where,

- hk
v is the representation of node v at layer k,

- N (v) is the neighborhood of node v,

- ϵ is a learnable parameter,

- MLP is a multi-layer perceptron (neural network).

(b) Node Representation Update:

The node representation is updated as,

hk+1
v = UPDATE

hk
v ,

∑
u∈N (v)

hk
u

 , (1.3.12)

where,

- UPDATE is a learnable update function.

(c) Final Representation:

The final representation of a node is computed after K layers as

hv = hK
v . (1.3.13)

(d) Readout Layer:

The readout layer computes the final output as

yG = READOUT ({hv | v ∈ G}) , (1.3.14)

where,

22

1.3. Graph Neural Networks: From Nodes to Knowledge

- READOUT is a readout function (e.g. sum, mean).

- G is the input graph.

It is to be noted that the fundamental basis for the models we have seen so far

is the WL test. GIN achieves equal discriminative power as that of WL test.

However, a more powerful test than the WL test is the higher-order WL test.

The higher-order WL test is better than the traditional WL test because it can

find more complex structural patterns and might be better at telling the difference

between graphs that are not isomorphic. The next model, k-GNN, based on the

higher-order WL test is discussed below.

4. k-GNN [37]: k-GNN explores the integration of higher-order GNNs into the

WL graph isomorphism test. It leverages the expressive power of higher-order

neural networks to capture more complex graph structures. By extending the

WL test to incorporate neural components, the model gains the ability to discern

subtle structural differences between graphs, leading to improved performance

on various graph-related tasks.

(a) k-GNN Layer:

The k-GNN layer computes the following:

hk+1
v = σ

(
W · AGGREGATE(k)

({
hk
u | u ∈ Nk(v)

}))
, (1.3.15)

where,

- hk
v is the representation of node v at layer k,

- Nk(v) is the k-hop neighborhood of node v,

- W is the weight matrix,

- σ is an activation function (e.g., ReLU [34]),

- AGGREGATEk is a k-hop aggregation function (e.g. mean, sum).

(b) k-Hop Aggregation:

23

Chapter 1. Introduction and Scope Of The Thesis

The k-hop aggregation is computed as follows:

AGGREGATEk
({

hk
u | u ∈ Nk(v)

})
=

1

|Nk(v)|
∑

u∈Nk(v)

hk
u. (1.3.16)

This is a mean aggregation over the representations of the nodes in the

k-hop neighborhood.

(c) Node Representation Update:

The node representation is updated as,

hk+1
v = UPDATE

(
hk
v ,AGGREGATEk

({
hk
u | u ∈ Nk(v)

}))
, (1.3.17)

where,

- UPDATE is a learnable update function.

(d) Final Representation:

The final representation of a node is computed after K layers as

hv = hK
v . (1.3.18)

(e) Readout Layer:

The readout layer computes the final output as

yG = READOUT ({hv | v ∈ G}) , (1.3.19)

where,

- READOUT is a readout function (e.g., sum, mean).

- G is the input graph.

k-GNN is capable of handling higher-order graph patterns, allowing the model

to capture more intricate relationships and dependencies within graph-structured

data. This enhancement proves crucial in scenarios where traditional GNNs may

24

1.3. Graph Neural Networks: From Nodes to Knowledge

fall short in capturing nuanced structural information.

5. Graph U-Net (g-U-Net) [38]: g-U-Net extends the traditional U-Net archi-

tecture to handle irregularly shaped data by incorporating graph convolutional

layers, enabling the model to capture dependencies and relationships in graph-

structured inputs. The architecture consists of an encoder-decoder structure, with

graph convolutional layers used to process information at different hierarchical

levels. It leverages the concept of message passing to aggregate information

from neighboring nodes, enabling the model to learn complex patterns and rep-

resentations in graph data. The skip connections in Graph U-Net facilitate the

flow of information between corresponding layers of the encoder and decoder,

aiding in the preservation of important features. This model adatively selects

a small set of nodes to form a smaller subgraph using a pooling layer (such as

mean, max) and its inverse operation by another unpooling layer (such as inter-

polation) to restore the original graph structure.

(a) Graph Convolutional Layer:

The graph convolutional layer computes the following,

Hk+1 = σ
(
ÂHkW k

)
, (1.3.20)

where,

- Hk is the node representation at layer k,

- Â is the normalized adjacency matrix

- W k is the weight matrix,

- σ is an activation function (e.g., ReLU).

(b) Graph Pooling Layer:

The graph pooling layer computes the following,

Hk+1 = POOL
(
Hk

)
, (1.3.21)

25

Chapter 1. Introduction and Scope Of The Thesis

where,

- POOL is a pooling function (e.g., mean, max).

(c) Graph Unpooling Layer:

The graph unpooling layer computes the following,

Hk+1 = UNPOOL
(
Hk

)
, (1.3.22)

where,

- UNPOOL is an unpooling function (e.g., interpolation).

(d) Graph Convolutional Block:

The graph convolutional block computes the following,

Hk+1 = σ
(
Â · ReLU

(
ÂHkW k

1

)
W k

2

)
, (1.3.23)

where,

- W k
1 and W k

2 are weight matrices.

(e) g-U-Net Architecture:

The g-U-Net architecture consists of multiple graph convolutional blocks,

followed by graph pooling layers, and then graph unpooling layers:

H(K) = UNPOOL
(
POOL

(
H(K−1)

))
, (1.3.24)

where,

- K is the number of layers.

6. Principal neighborhood Aggregation (PNA) [39]: PNA is designed to cap-

ture higher-order relationships by incorporating the structural information from

neighboring nodes in a principled manner, allowing it to model complex graph

structures better. One key feature of PNA is its ability to learn adaptive weights

for different neighborhood nodes, enabling it to assign varying importance to dif-

26

1.3. Graph Neural Networks: From Nodes to Knowledge

ferent parts of the graph during the aggregation process. This adaptive weighting

mechanism in PNA makes it particularly effective in handling graphs with non-

uniform structures and varying degrees of connectivity. PNA introduces a set

of shared parameters across different aggregation layers, promoting parameter

efficiency and facilitating the transfer of information across multiple layers of

the neural network. The PNA model leverages learnable aggregation functions,

enabling it to adapt to diverse graph datasets and capture intricate patterns in

the underlying graph topology. By incorporating both global and local informa-

tion, PNA strikes a balance between capturing overall graph-level features and

preserving detailed local node characteristics.

(a) Node Representation:

The node representation is computed as,

hv = σ (W · xv) , (1.3.25)

where,

- hv is the representation of node v,

- xv is the input feature of node v,

- W is the weight matrix,

- σ is an activation function (e.g., ReLU).

(b) Neighborhood Aggregation:

The neighborhood aggregation is computed as,

Mk
N (v) =

1

|N (v)|
∑

u∈N (v)

hu, (1.3.26)

where,

-Mk
N (v) is the aggregated representation of the neighborhood of node v,

- N (v) is the neighborhood of node v.

(c) Principal Neighborhood Aggregation:

27

Chapter 1. Introduction and Scope Of The Thesis

The principal neighborhood aggregation is computed as:

hpna
v = σ

(
Wp · CONCAT

(
hv,Mk

N (v)

))
, (1.3.27)

where,

- hpna
v is the output of the PNA layer,

- Wp is the weight matrix,

- CONCAT concatenates the node representation and the neighborhood

aggregation.

(d) Node Representation Update:

The node representation is updated as,

hk+1
v = hpna

v + hk
v , (1.3.28)

where,

- hk
v is the representation of node v at layer k.

(e) Final Representation:

The final representation of a node is computed after K layers,

hv = hK
v . (1.3.29)

1.4 Scope of the Thesis

This thesis deals with different techniques of generating embedding for graphs. These

can be broadly categorized into two parts, namely, methods for embedding Homoge-

neous graphs and for Heterogeneous graphs. In homogeneous graph setting, the task

addressed here is graph classification. Hence the embeddings are generated keeping

this task in mind. This thesis aims to deal with two drawbacks of existing approaches.

First one is to design a GNN-based architecture that can handle those graphs where

the node features are intervals. And, secondly, to encode hierarchical structure of a

28

1.4. Scope of the Thesis

graph while generating graph embedding.On the other hand, for heterogeneous graph,

the focus is on performing link prediction and the embeddings are generated accord-

ingly. An application in the area of social recommender system is demonstrated. In

this heterogeneous graph setting, this thesis aims to capture Influence of an user in

social recommender system in both unsupervised and supervised ways. The contents

of the different chapters are mentioned briefly below.

1.4.1 Graph Classification on Homogeneous Graphs

In this subsection, we introduce the chapters where methods have been developed for

graph classification on homogeneous graphs and discuss the research gaps that they

address.

1.4.1.1 Handling Interval Valued Data in Graph Neural Network: IV-GNN [2]

Interval-valued data is an effective way to represent complex information where uncer-

tainty, inaccuracy etc. are involved in the data space. Interval analysis together with

neural network has proven to work well on Euclidean data. However, in many real-life

scenario, data follows a complex structure and is been represented as graphs, which is

non-Euclidean in nature. Although GNN is a powerful tool to handle graph data, stud-

ies on GNNs with interval-valued data is limited. Thus, there is a research gap between

the interval-valued data handling approaches and the existing GNN model.Chapter 2

proposes an Interval-Valued Graph Neural Network, a novel GNN model, where we

relax the restriction of the feature space taking single-value, without compromising the

time complexity of the best performing GNN model of the literature. This model is

more general than existing models as any finite set is always a subset of the univer-

sal set Rn, which is uncountable. In this chapter, to deal with interval-valued feature

vectors, a new aggregation scheme of intervals has been proposed and its expressive

power to capture different interval structures is demonstrated. The theoretical findings

are experimentally substantiated for graph classification task by comparing its perfor-

mance with those of the state-of-the-art models on several benchmark and synthetic

network datasets.

29

Chapter 1. Introduction and Scope Of The Thesis

1.4.1.2 Graph Representation Learning based on Micro-Macro Analysis: GraMMy

[3]

Despite the recent advancement of GNNs, the basic message passing scheme of learn-

ing often holds back these models in effectively capturing the influence of the nodes

from higher order neighborhood. Further, the state-of-the-art approaches mostly ig-

nore the contextual significance of the paths through which the message/information

propagates to a node. In order to deal with these two issues, Chapter 3 deals with a

novel framework for hierarchical semantics-driven graph representation learning based

on Micro-Macro analysis, GraMMy, proposed in [3]. The key idea is to study the graph

structure from different levels of abstraction, which not only provides an opportunity

for flexible flow of information from both local and higher-order neighbors but also

helps in more concretely capturing how information travels within various hierarchical

structures of the graph. We incorporate the knowledge gained from micro and macro

level semantics into the embedding of a node and use this to perform graph classifi-

cation. Experimentations on four bio-informatics and two social datasets exhibit the

superiority of GraMMy over state-of-the-art GNN-based graph classifiers.

1.4.2 Link Prediction on Heterogeneous Graphs

1.4.2.1 A Recommendation System Based On Social-Influence-aware Graph Em-

bedding Approach: SInGER [4]

Due to the massive explosion of data in social networks in the recent past, exploring

user influence has gained popularity in recommender systems. The role of the users

and their collaborative activities towards the others are important to model the overall

influential behaviours of the users in social networks. In Chapter 4, an unsupervised

measure of Influence Score has been proposed to estimate how influential a user is to

the other users so that the rating given to an item by that person can affect the other

users’ perception of the item. Typically, the influence score is estimated considering

the trustworthiness/reliability of the user in reviewing the items under each specific

category. Later, the users’ Influence score has been utilized to predict the missing rat-

30

1.4. Scope of the Thesis

ings by employing a social recommender system based on GNN.

1.4.3 User-Reliability-Aware Social Recommendation Framework

based on Graph Neural Network [5]

Exploiting user trust information for developing a recommendation system has gained

increasing research interest in recent years. Due to the exchange of opinions about

items over the social network, trust plays a crucial role for a user to like or dislike

an item. GNNs, which have the intrinsic power of integrating node information and

topological structure, have a high potential to advance the field of trust-aware so-

cial recommendation. However, as of now, this area is little explored, with most of

the existing GNN-based models ignoring the trust propagation and trust composition

properties. To address this issue, in Chapter 5, a novel GNN-based framework has

been proposed that can capture such trust propagation and trust composition aspects

by incorporating the concept of ‘user-reliability’. The proposed user-reliability-aware

social recommendation framework, termed as SoURA, generates the user-embedding

and item-embedding considering the user-reliability values, which, in turn, helps in

better evaluation of the user trust. Experimental evaluations on the benchmark Ciao

and Epinion datasets demonstrate the effectiveness of incorporating user-reliability for

finding user-embedding and item embedding in a social recommendation system.

Although the GNNs, with their natural ability to integrate node information and topo-

logical structure, have shown enormous potential in the trust-aware social recommen-

dation, these do not implicitly deal with external factors, such as ‘item category’, that

may have a significant impact on user-trust. In Chapter 5, we present a novel approach

that projects trust as dependent on the product category. Subsequently, GNN-based

social recommendation has been augmented by defining a concept of category-based

user-reliability value. The proposed GNN-based model in Chapter 5 for category-

wise reliability-aware recommendation (CateReR) finds user-embedding and item-

embedding considering the variation of user’s reliability over different product cate-

31

Chapter 1. Introduction and Scope Of The Thesis

gories. CateReR is also capable of dealing with trust propagation and trust composi-

tion, which are often ignored by existing GNN-based models.

Finally, Chapter 6 concludes the thesis with a mention of some directions of future

research.

32

Chapter 2

Handling Interval Valued Data in

Graph Neural Network: IV-GNN

2.1 Introduction

Graph Neural Network (GNN) has emerged as a powerful tool in the last few years to

find low-dimensional vector embedding of nodes in large graphs. These embeddings

aim to capture the structural information of the graph as well as the feature information

of the nodes. However, in general, GNNs are focused on graphs where the input feature

space is single-valued. However, it is not uncommon for data to be recorded as inter-

vals instead of precise point values in statistics. In general, interval-valued data arises

due to two types of situations. Firstly, when there is an uncertainty involved in the

feature space, which needs to be captured, and secondly, when there is a class, collec-

tion, or group involved instead of individuals. The common example of interval-valued

data includes recording systolic and diastolic pressure, an individual’s weekly expense

range, daily temperature, stock price, etc. Also, time series data can sometimes be

treated as interval-valued data. A potential approach to perform this transformation is

to use visibility algorithm [40], i.e., assigning visibility range interval on both sides

(left and right) of a data point. In this chapter, we describe in detail a GNN model

called IV-GNN [2] that is able to handle interval-valued node features. Before going

33

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

into the details of IV-GNN, we provide a brief literature survey of handling interval-

valued data.

2.1.1 Related Works and their Limitations

The traditional approach to analyze interval-valued data was the Center Method (CM),

which uses the midpoint of the interval as an input to a regression model [41]. How-

ever, the Center Method (CM) does not consider the variations of the intervals. To

overcome this drawback, the Center-Range Method (CRM) uses two interval-valued

regression models for mid-points and the ranges of the interval values [42]. However,

in general, the mid-points and half ranges are related, which has not been taken into

account by CRM [43]. The Bivariate Center and Range Method (BCRM) uses two

regression models using mid-points and half-ranges of the intervals, which take care

of the effects of interval widths [44].

 (a) (b)

Figure 2.1: a: Weekly cases of Mumps at county level for 2005 in counties of Eng-
land and Wales. b: Network structure using distances between county towns [2].

34

2.1. Introduction

All these linear regression models can be used to analyze data that follows a linear

pattern. In addition, there are several instances where the interconnectivity between

the entities is also important. For example, in cases of infectious diseases such as

the mumps in UK at country level in 2005 [See Fig. 2.11] or the global pandemic

COVID-19, the intensity of the disease in an area is highly dependent on the other

areas it is linked with. The link might be in the form of people’s movement, weather

patterns such as wind, geographical connection, etc. Also, the daily new cases over a

period of time can be modeled as an interval with minimum and maximum new cases.

Therefore, problems like modeling the number of infected people in the next few days

or deciding whether the transportation between two places should be stopped or not

can be modeled as prediction tasks on graphs with interval-valued features. The aim

of this chapter is to develop an appropriate GNN architecture where the model accepts

the interval-valued feature, performs the embedding generation efficiently, and finally,

executes the specific task using those embeddings.

An interesting question to be asked here would be, why not use two end points of an

interval as two separate features of a node and apply an existing GNN architecture

accepting single-valued node features of a graph. The answer to this question is that

although the neural network has the ability to capture relationships among different

node features, the interval is a quantitative measurement where there is an order, and

the difference between two endpoints is meaningful. Our aim is to exploit this property

of interval and develop an appropriate GNN architecture where the model is capable

enough to accept multiple intervals and output a single representation on its own. This

will allow us to consider an interval as a unit throughout the progress of the algorithm

and perform the classification task as a function of the interval-valued feature as well

as the structure of the graph.

1Figure source: https://www.newton.ac.uk/files/seminar/20140115093010001-153908.pdf

35

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

2.1.2 Research Contribution

Motivated by the above discussion, in this chapter, we describe a new aggregation

function of intervals, called agrnew, and develop a neural architecture called IV-GNN

(Interval-valued Graph Neural Network) [2] to apply on interval-valued data using

MLPs and the newly developed agrnew as its basic building blocks.

Below, we give a summary of the main contributions:

1. A new interval aggregation function agrnew is introduced and its representational

power is elaborated.

2. Interval structures that previously available interval aggregation functions can

not distinguish, are identified.

3. We develop a neural-based architecture Interval-Valued Graph Neural Network

(IV-GNN), that can deal with interval-valued features.

4. We discuss the space and time complexities of our proposed algorithm and vali-

date our theoretical findings by performing graph classification tasks on several

datasets.

2.2 Background And Definition

As we have already discussed the notion of GNNs in Chapter 1 (see Sec. 1.3.2), here

we overview the basics Mathematics of Intervals and Aggregation Functions.

2.2.1 Basic Mathematics of Intervals

The existing works discussed so far in Chapter 1 (see Sec. 1.3.2.2) consider situa-

tions when the feature space is single-valued. Before generalizing this idea to interval-

valued feature space, in this section we first introduce the mathematical concepts re-

garding intervals. Note that if the node feature is single-valued, it can be considered a

degenerate interval, i.e., the start and the end points of the interval are the same. Here,

36

2.2. Background And Definition

we discuss two existing order relations defined on the set of intervals.

Let us consider U = {[a, b]|0 ≤ a ≤ b ≤ 1} along with ∩0 and ∪0 defined by

[x1, x2] ∩0 [y1, y2] = [m,m′], and,

[x1, x2] ∪0 [y1, y2] = [M,M ′],

where, min(x1, y1) = m, max(x1, y1) = M , min(x2, y2) = m′ and, max(x2, y2) =

M ′

Note that, (U ,∩0,∪0) forms a complete lattice [45]. A partially ordered set is said to

be a complete lattice if all subsets have both a supremum (join) and an infimum (meet).

It may be noted that the ∩0 as defined above is biased towards the interval with a lower

value. To overcome this drawback, in [46], (U ,∩e,∪e) is defined as a lattice where the

greatest lower bound, ∩e and the least upper bound, ∪e are defined as follows,

[x1, x2] ∩e [y1, y2] = [M,m′], if M ≤ m′,

= [m′,m′] , otherwise.

[x1, x2] ∪e [y1, y2] = [M ′,M ′], if x1 = x2, y1 = y2,

= [M,M ′], if x1 = x2 < y1 < y2,

= [m,M ′] , otherwise,

where, min(x1, y1) = m, max(x1, y1) = M , min(x2, y2) = m′ and, max(x2, y2) =

M ′.

Note that, (U ,∩e,∪e) is also a complete lattice. However, ∪e also has a drawback.

One can easily note that whenever two intervals are not intersecting, ∪e generates a

degenerate interval. The new order relation defined in IV-GNN [2] overcomes this

drawback.

37

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

2.2.2 Aggregation Functions

As mentioned in Chapter 1, a function is required to aggregate the intervals to make

them suitable for processing. We denote the aggregation functions as agr0 and agre

based on ∩0 and ∩e, respectively. In order to define a more powerful aggregation

function, we discuss the properties of the aggregation function that need to be satisfied.

Let us denote the minimal and maximal possible input intervals as Imin and Imax,

respectively. Then, any aggregation function [47] for n ≥ 2, where n is the number of

intervals, is defined by agr : [[0, 1]× [0, 1]]n → [0, 1]× [0, 1] fulfilling at least the two

following conditions.

• Aggregation of n number of Imin is Imin and Aggregation of n number of

Imax is Imax.

More formally,

agr(Imin, Imin, ..., Imin) = Imin,

agr(Imax, Imax, ..., Imax) = Imax.

This condition is denoted as the Boundary condition.

• Aggregation function must be Monotonically increasing.

More formally, for two sets, each containing n number of intervals (I1, I2, ..., In) ∈

[[0, 1]× [0, 1]]n and (J1, J2, ..., Jn) ∈ [[0, 1]× [0, 1]]n,

if Ii ≤ Ji, ∀i ∈ {1, 2, ..., n} then agr(I1, I2, ..., In) ≤ agr(J1, J2, ..., Jn).

Here, ≤ is the order relation defined on the lattice (U ,∩,∪) such that I ≤

J ⇐⇒ I ∩ J = I .

Besides these properties, we want our aggregation function to satisfy two additional

properties.

38

2.3. Theoretical Framework

• Aggregation function should be symmetric.

More formally, agr(I1, I2, ..., In) = agr(Ip(1), Ip(2), ..., Ip(n)) for any permuta-

tion p on {1, 2, ..., n}.

• Aggregation function should be idempotent.

More formally, agr(I, I, ..., I) = I , ∀I ∈ [0, 1]× [0, 1].

2.3 Theoretical Framework

We introduce a new order relation⊆new on U such that (U ,∩new,∪new) forms a lattice.

Definition 7. ⊆new is a binary relation on U defined as below

[x1, x2] ⊆new [y1, y2] ⇐⇒ (y1 < x1) or (x1 = y1 and x2 ≤ y2).

Proposition 1. (U ,⊆new) forms a poset.

To show (U ,⊆new) forms a poset, we have to show the relation ⊆new is reflexive,

antisymmetric, and transitive.

• Reflexivity

[x1, x2] ⊆new [x1, x2] as x1 = x1 and x2 ≤ x2.

Hence, ⊆new is reflexive.

• Antisymmetricity

[x1, x2] ⊆new [y1, y2] =⇒ y1 < x1 or

x1 = y1 and x2 ≤ y2....(i)

[y1, y2] ⊆new [x1, x2] =⇒ x1 < y1 or

y1 = x1 and y2 ≤ x2....(ii)

39

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

(i) and (ii) imply

x1 = y1 and x2 = y2.

Hence,

[x1, x2] = [y1, y2].

Thus, ⊆new is antisymmetric.

• Transitivity can be shown similarly.

Proposition 2. (U ,⊆new) forms a lattice.

(U ,⊆new) is a lattice where the greatest lower bound, say ∩new and the least upper

bound, say ∪new are defined as follows,

[x1, x2] ∩new [y1, y2] = [M,m′], if M ≤ m′ ≤M ′ ̸= 1,

= [M, 1] , otherwise.

[x1, x2] ∪new [y1, y2] = [m,M ′], if M ′ ̸= 1,

= [m,m′] , otherwise.

where, min(x1, y1) = m, max(x1, y1) = M , min(x2, y2) = m′ and, max(x2, y2) =

M ′

Proposition 3. (U ,⊆new) forms a bounded lattice.

For an arbitrary interval [x, y] ∈ U , we have 0 ≤ x ≤ y ≤ 1. Hence [1, 1] ⊆new

[x, y] ⊆new [0, 1].

We denote the aggregation function as agrnew, which is based on ∩new.

Proposition 4. agrnew satisfies all four conditions of aggregation function.

agrnew satisfies boundary conditions where [1, 1] and [0, 1] are the minimal and maxi-

mal possible inputs respectively.

40

2.4. Proposed Framework: Interval-Valued Graph Neural Network (IV-GNN)

2.4 Proposed Framework: Interval-Valued Graph Neu-

ral Network (IV-GNN)

We develop a general GNN model where the feature need not be single-valued. Releas-

ing this constraint on the feature space, our model can capture the graph’s structural

properties and extract useful information from interval-valued features of the nodes.

As a result, our proposed architecture is much more general in nature, and to the best

of our knowledge, no existing models of GNN in literature can accept nodes’ features,

which are intervals.

Figure 2.2: An overview of the proposed framework: IV-GNN [2].

2.4.1 AGGREGATE and UPDATE functions of IV-GNN

As we have already discussed in Chapter 1 (see Sec. 1.3.2), GNN architecture has

two primary functions, namely AGGREGATE and COMBINE, we use our newly

developed interval aggregation function agrnew function to aggregate the neighboring

41

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

nodes’ embedding to extract maximum information out of it. As shown in Fig. 2.2, we

develop our model with aggregation and update function on k-th iteration defined as

hk
v = Φ(hk−1

v , agrnew({hk−1
u : u ∈ N(v)})). (2.4.1)

, where Φ is the update function. To choose Φ, we take the help of the Universal

Approximation Theorem [48], which states that using the multi-layer feed-forward

architecture in a neural network framework makes it a universal approximator of any

continuous functions under mild assumptions on the activation function [49]. However,

the limitation of continuity of the function was released much later. It has been shown

that a single hidden layer feed-forward neural network (SLFNN) can approximate any

real, piece-wise continuous function almost uniformly [50].

Therefore, IV-GNN has the updating step as,

hk
v = MLP k(agrnew((1 + ϵk)hk−1

v , agrnew{hk−1
u : u ∈ N(v)})). (2.4.2)

Here, ϵ is a parameter that decides how much weight to give to the node’s existing

embedding. It can be learned or assigned as a fixed scalar.

2.4.2 Details of Updation Step

The proposed Interval-Valued Graph Neural Network (IV-GNN) operates on interval-

valued input and output in order to generate embeddings. As discussed earlier, for any

given node, the newly developed aggregation function agrnew has been used twice in

every update step. Firstly, it will accumulate the neighbors’ intervals and express them

as a single interval. And secondly, it will combine neighborhood information with the

node itself. We have discussed the agrnew in detail in the previous section. Now, we

give the details of the neural architecture of our model.

42

2.4. Proposed Framework: Interval-Valued Graph Neural Network (IV-GNN)

2.4.2.1 Neural Architecture of IV-GNN

One of the basic building blocks of our proposed model IV-GNN is Multi-Layer Per-

ceptron (MLP). However, unlike the commonly used architecture, the MLP used in

the proposed model deals with interval-valued inputs and outputs, but the weights and

biases are single-valued [51]. In order to understand, we assume that, the MLP has

only one hidden layer with h units.

Let us consider the interval-valued inputs as Xi = [X lower
i , Xupper

i], with i = 1, 2, ..., n.

The output of the j-th hidden unit is the single-value weighted linear combination of

inputs and the bias as follows,

Sj =< S1
j , S

2
j >=< wj0 +

n∑
i=1

wji
X lower

i +Xupper
i

2
,

n∑
i=1

|wji|
Xupper

i −X lower
i

2
> .

After that, the tanh function was used as an activation function,

Aj = tanh(Sj) = [tanh(S1
j − S2

j), tanh(S
1
j + S2

j)].

Finally, the output is the linear combination of the hidden layer output and bias, which

is the output of the whole updation step.

2.4.3 Graph-Level READOUT function of IV-GNN

The purpose of this graph-level read-out function is to get the embedding of the graph

using the embedding of the nodes. If we want to perform jobs like node classification

[52] or link prediction [53] within a graph, then the node embedding using aggregation

and update function at the node level is sufficient.

While selecting the Graph-level READOUT function, we want to focus on the follow-

ing aspects:

• We want to use the structural information and node embedding that we have got-

ten after every iteration. It may happen that the node embedding from an earlier

iteration captures more information about the graph than the final iteration.

43

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

• The graph-level function should be injective to have our GNN variant as pow-

erful as the WL-test of isomorphism by distinguishing between different struc-

tures/node features.

Hence, to achieve a skip connection-like architecture similar to Jumping Knowledge

[54] and maximal distinguishing power, we concatenate the SUM of the node embed-

dings after every iteration.

zG = CONCAT (SUM({hk
v|v ∈ G})|k = 0, 1, ..., K). (2.4.3)

2.4.4 Challenging Structures for agr0 and agre .

The main idea of choosing a powerful aggregation function is to capture and compress

the amount of structural and feature information from the nodes in its aggregated out-

put value. Also, the aggregation function should be permutation invariant. That is, the

order of the interval during aggregation should be immaterial. In this context, agr0

, agre and agrnew, all are satisfying this condition. In Fig. 2.3, we have shown the

ranking of three aggregation functions pictorially with respect to their representational

power. We have denoted the root node as the red node and the adjacent nodes of the

root node as the black node whose features need to be aggregated and combined with

the root node. In Table. 2.1, we have illustrated these facts with the help of examples.

In the Fig. 2.4a, we have three intervals, I1 = [0.1, 0.2] , I2 = [0.1, 0.3] and I3 =

[0.15, 0.3]. We construct two sets of intervals S1 and S2, where S1 = {I1, I2} and

S2 = {I1, I3}, which need to be aggregated. Now,

agr0(S1) = agr0(S2) = I1.

Hence, in this case, agr0 fails to capture the desired information about the intervals.

However, agre and agrnew will give the aggregated intervals as the intersecting subin-

tervals.

agre(S1) = agrnew(S1) = [0.1, 0.2].

44

2.4. Proposed Framework: Interval-Valued Graph Neural Network (IV-GNN)

Figure 2.3: Ranking by expressive power for agr0, agre, agrnew. Among these
three aggregation functions, agrnew has the maximum ability to capture the struc-
tural and feature related information. One thing to notice that, the right end point
of an resulting interval equals to 1 expresses the fact that two aggregating inter-
vals are non overlapping. agre is equally powerful as agrnew when two intervals
have non-null intersection. agr0 captures the smaller interval (according to the
order relation) and ignores the other interval [2].

Figure 2.4: Examples of interval structures that agr0 and agre fail to distinguish:
In the left picture, agr0 is giving the same aggregated interval even though two
sets of intervals are different. In the right picture, agr0 and agre both are unable
to recognize the differences between the two sets of intervals [2].

45

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

agre(S2) = agrnew(S2) = [0.15, 0.2].

In Fig. 2.4b, two sets of intervals need to be aggregated: S3 = {I1, I4} and S4 =

{I1, I5}, where I4 = [0.3, 0.4]} and I5 = [0.2, 0.3]. Here also, agr0 will fail to distin-

guish between them.

agr0(S1) = agr0(S2) = I1.

But according to definition, agre will give same degenerate interval [0.2, 0.2] for both

S3 and S4. However, agrnew can differentiate between them as it will aggregate and

give the resultant intervals as [0.3, 1] and [0.2, 0.2] for S3 and S4 respectively.

agre(S3) = agre(S4) = [0.2, 0.2].

agrnew(S3) = [0.3, 1],

agrnew(S4) = [0.2, 0.2].

As I1 and I4 are non-intersecting, agrnew will be able to capture the uncertainty and

express it by assigning a broader interval.

Table 2.1: Comparison between three interval aggregators.

Interval 1 Interval 2 agr0 agre agrnew
[0.1,0.2] [0.1,0.3] [0.1,0.2] [0.1,0.2] [0.1,0.2]
[0.1,0.2] [0.15,0.3] [0.1,0.2] [0.15,0.2] [0.15,0.2]
[0.1,0.2] [0.3,0.4] [0.1,0.2] [0.2,0.2] [0.3,1]
[0.1,0.2] [0.2,0.3] [0.1,0.2] [0.2,0.2] [0.2,0.2]

The agre will perform well if the two intervals have a non-null intersection. So, when-

ever the node features are not very diverse, agre will be as powerful as the agrnew

aggregator.

46

2.4. Proposed Framework: Interval-Valued Graph Neural Network (IV-GNN)

2.4.5 Model Training

To estimate the model parameters of IV-GNN, we need to specify an objective function

to optimize. Since the task we focus on in this work is Graph Classification task,

loss is computed as the sum of the difference between the actual graph class and the

predicted graph class for the graphs in the dataset. The objective function L can be

mathematically formulated as follows,

L =
∑
G∈G

|yG − y′G|, (2.4.4)

where yG be the actual class label of graph G, and y′G be the predicted class label of

graph G.

2.4.6 Time and Space Complexity of Training the Embedding Gen-

eration Process of IV-GNN

In order to find the worst-case scenario, we assume that all ||E|| edges are connected to

all ||V || nodes of the graph G. As IV-GNN is a full-batch gradient descent process, it

requires storing all the embeddings found from the intermediate layers, which requires

O(Kn) storage for one node. Here, K denotes the number of layers, and n denotes the

dimension of the embedding space. For the sake of simplicity, we keep the embedding

space dimension the same for every layer. Furthermore, at every layer, a weight matrix

of size n× n is involved, which includes O(Kn2) storage in total. Therefore, overall,

IV-GNN has a space complexity of O(K||V ||n+Kn2).

Now, we illustrate the time complexity of our proposed model. As discussed previ-

ously, IV-GNN stores intermediate embeddings of every node generated from each

lower layer. In contrast to mini-batch algorithms like GraphSAGE [35], IV-GNN uti-

lizes those saved embeddings and reuses those in the upper layer. Therefore, at every

layer, previous layers’ embeddings are multiplied with the weight matrix of size n×n,

which includes n2-many multiplications, followed by some element-wise operations.

Therefore, as a whole, for K many layers and ||V || many nodes, IV-GNN has time

47

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

complexity O(K||V ||n2 +K||E||n).

2.5 Experimental Results

This section discusses the dataset used for experiments, and we evaluate our theoret-

ical findings by comparing the training and test set performances of IV-GNN on the

synthetic and real-life datasets.

2.5.1 Datasets

We have used six synthetic datasets and six real-life datasets (four bioinformatics

datasets and two social network datasets) to demonstrate the efficiency of our model.

1. Synthetic Datasets: Our basic idea is to generate random graphs with various

numbers of nodes. Then based on two topological properties, we give tag and

feature interval to the nodes and classify every graph in the datasets. The sum-

mary statistics of these synthetic datasets are provided in Table-2.2. The topo-

logical properties are listed below,

• Density The density of a graph is defined as the ratio of the number of

edges and the number of nodes [55], i.e.,

density(G) =
|E|
|V |

,

where G = (V,E) denotes a graph, V is the set of nodes and E is the edge

set of the graph G. Average density of the dataset D = {Gi, i = 1, ..., n}

can be calculated as,

avg density =
∑n

i=1 density(Gi)

n
.

We assign,

Graph class (G) =

1, if density (G) < avg density,

0, otherwise.

48

2.5. Experimental Results

We assign,

tag(v) =

1, if degree (v) < average degree,

0, otherwise,

where the average degree is calculated over all nodes in the dataset.

To assign the interval-valued feature to a node v, we follow the following

rule,

feature interval(v) =


[dmin, dmax], if|N(v)| > 1,

[−1, dmax], if|N(v)| = 1,

[−1, 0], otherwise,

where

dmin= min
u∈N(v)

degree(u),

dmax= max
u∈N(v)

degree(u).

We have created three datasets, SYNTHETIC 1 200, SYNTHETIC 1 1000,

SYNTHETIC 1 2000, with 200, 1000, 2000 graphs, respectively, accord-

ing to this construction.

• Average clustering coefficient The clustering coefficient c(u) of a node

u,is a measure of the likelihood that any two neighbors of u are connected

[56]. Mathematically, the clustering coefficient of a node u can be formu-

lated as:

c(u) =
λ(u)

τ(u)
.

where λ(u) is the number of triangles engaging the node u. By triangle, we

mean a complete graph with three nodes and

τ(u) =
degree(u)(degree(u)− 1)

2
,

i.e., the number of triples a node u has.

49

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

Figure 2.5: Explanation of assigning feature interval to a node. For node A,
it has two neighbors of degree 3, resulting in dmin = dmax = 3. Hence the
feature interval(A) = [dmin, dmax] = [3, 3]. Similarly, node F has 4 neighbors
of degree 2, 2, 3, 3. Hence dmin and dmax are 2 and 3 respectively. Therefore,
feature interval(F) = [2, 3] [2].

In other words, the clustering coefficient for node u is the ratio of the actual

number of edges between two nodes from the neighbors of u and the maxi-

mally possible numbers of edges between them. The clustering coefficient

C(G) of a graph G is the average of c(u) taken over all the nodes in the

graph, i.e.,

C(G) =
1

n

n∑
i=1

c(ui)

. Average clustering coefficient of the dataset D = {Gi, i = 1, ..., n} can

be calculated as,

avg cluster =
∑n

i=1 C(Gi)

n
.

We assign,

Graph class(G) =

1, if C(G) < avg cluster,

0, otherwise.

50

2.5. Experimental Results

We use the node’s degree as its tag.

tag(v) = degree(v).

To assign the interval-valued feature to a node v, we follow the following

rule,

feature interval(v) = [cmin, cmax],

where

cmin= min
u∈N(v)

c(u),

cmax= max
u∈N(v)

c(u).

We have created three datasets SYNTHETIC 2 200, SYNTHETIC 2 1000,

SYNTHETIC 2 2000 with 200, 1000, 2000 graphs respectively according

to this construction.

Table 2.2: Statistics of the synthetic datasets

Dataset Size Classes Avg. nodes labels
SYNTHETIC 1 200 200 2 19.94 2

SYNTHETIC 1 1000 1000 2 19.83 2
SYNTHETIC 1 2000 2000 2 19.92 2
SYNTHETIC 2 200 200 2 19.94 23

SYNTHETIC 2 1000 1000 2 19.83 25
SYNTHETIC 2 2000 2000 2 19.92 25

2. Real-life datasets: We have used 4 bioinformatic datasets namely MUTAG,

PROTEINS, PTC, NCI1 and 2 datasets namely IMDB-BINARY and COLLAB

[57] for our experiment.

(a) Bio-informatics datasets: 4 datasets MUTAG, PROTEINS, PTC and NCI1

[57] have been used for our experiment. The summary statistics of these

bioinformatic datasets are provided in Table-2.3.

51

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

• MUTAG consists of 188 graphs which have 7 discrete node labels.

Each graph in the dataset represents a chemical compound [58].

• In the dataset PROTEINS, nodes represent secondary structure ele-

ments (SSEs) and two nodes share an edge if they appear as adjacent

in the amino-acid sequence. Graph nodes have 3 different labels such

as helix, sheet or turn [59].

• PTC includes 344 chemical compounds that describes the carciogenic-

ity for male and female rats having 19 discrete node labels [60].

• NCI1 is a balanced dataset with 4100 nodes with 37 discrete labels,

published by the National Cancer Institute (NCI). It contains chemical

compounds, that are found to have the ability to suppress or inhibit the

growth of a panel of human tumor cell lines [61].

Table 2.3: Statistics of the Bioinformatics datasets used

Dataset Size Classes Avg. nodes labels
MUTAG 188 2 17.9 7

PTC 344 2 25.5 19
PROTEINS 1113 2 39.1 3

NCI1 4110 2 29.8 37

(b) Social network datasets: 2 datasets, IMDB-BINARY and COLLAB [57]

have been used for our experiment. The summary statistics of these datasets

are provided in Table-2.4.

• Movie Collaboration Dataset: IMDB-BINARY is a dataset of movie

collaboration, wherein in each graph, nodes represent actors/actresses

and two nodes share an edge if two actors/actresses act in the same

movie. There are two graph classes Action and Romance genres.

• Scientific collaboration dataset: COLLAB is a dataset of scientific col-

laboration, acquired from 3 public collaboration datasets, namely High

Energy Physics, Condensed Matter Physics and Astro physics [62]. In

[63], ego-networks of various researchers from each field has been

52

2.5. Experimental Results

generated, and each graph has a label according to the field of the

researcher. Now the task will be to determine an ego-collaboration

graph’s label of a researcher.

Table 2.4: Statistics of the Social network datasets used

Dataset Size Classes Avg. nodes labels
IMDBBINARY 1000 2 19.8 -

COLLAB 5000 3 74.5 -

2.5.2 Results of Comparative Study on Model Performance

Our goal is to allow the model to capture structural information and feature infor-

mation from the graph. Therefore, we like to evaluate our model IV-GNN on Graph

Classification task with interval-valued features of the nodes.

2.5.2.1 Data Preparation

To convert the feature values into intervals, we prepare the data as follows: rather than

using the tag of a node as a node feature, we give a bias of k1 and k2, where k1 and k2

are selected from the normal distribution N(0, 1) to generate an interval-valued feature

for that particular node. For example, if in a graph, a node has a tag as c, then we assign

[c− k1, c+ k2] as its feature interval.

2.5.2.2 Baselines

We evaluate our IV-GNN by comparing it with other frameworks with different in-

terval aggregation functions. As there is no existing model that can handle interval-

valued features of the nodes, we use existing interval aggregation functions with the

same neural architecture as of IV-GNN, which will show expressive power of agrnew

against that of others experimentally. The details of the baselines are discussed below.

• agr0-based GNN: In this model, we choose agr0 for interval-aggregation and

SUM as Graph-Level READOUT function.

53

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

• agre-based GNN: In this model, interval-aggregation function agre has been

used as AGGREGATE function. Like before, we use SUM as the Graph-

Level READOUT function.

We report the training set performance and test set performance in Figure 2.6 and Table

2.5, respectively.

2.5.3 Performance with Degenerate Interval: A Special Case of

IV-GNN

In order to examine the performance of IV-GNN for single-valued features, we com-

pare IV-GNN with respect to the state-of-the-art approaches that accept single-valued

features. For this experiment, we treat the exact value of the feature as a degenerate

interval, i.e., we use the exact feature value as the same starting and end points of the

interval. We report the training set performance and test set performance in Figure 2.7

and Table 2.6, respectively.

2.5.3.1 Baselines

We compare IV-GNN with three state-of-the-art GNN models GraphSage [35], GCN

[9], and GIN [36] as briefly discussed in the introduction section(See-1.3.2.2).

2.5.4 Parameter Settings

For IV-GNN, we adopt the parameter settings based on our hyperparameter study [see

2.5.7], and details are as follows

• We have used 5-layers of each GNN block where every MLP will have 2 layers

excluding the input layer.

• Each hidden layer has {32, 128} hidden units. We have used Batch Normaliza-

tion in each hidden layer.

• We have used Adam optimizer [64] with the initial learning rate of 0.01 and

decay the learning rate by 0.5 after every 50 epochs.

54

2.5. Experimental Results

• Input batch size of training is {16, 64}.

• The final layer dropout is 0.5 [65].

As recommended for GIN, we have performed a 10-fold cross-validation with LIB-

SVM [57, 66] for 350 epochs.

2.5.5 Results and Discussion

2.5.5.1 Training Set Performance

We have already theoretically analyzed the representational power of our proposed IV-

GNN. Now, we validate our theoretical findings by comparing training accuracies on

various datasets. Ideally, the architecture, which has stronger representational power,

should fit the data more accurately, resulting in better training performance. Training

set performance gives an idea about how well the model learned from training data.

Fig. 2.6 shows training curves of IV-GNN and interval-valued GNN with alternative

aggregation functions with the same hyperparameter settings. In comparison, the GNN

variants, which use a less powerful interval aggregator as AGGREGATE function,

cannot learn from many datasets. The reason behind this observation is that agrnew has

more distinguishing power than agr0 and agre. Between agr0 and agre, agre performs

better because, as we have seen theoretically, with nonrepetitive feature value, agre is

equally powerful as agrnew.

Fig. 2.7 shows training curves of IV-GNN accepting degenerate interval-valued fea-

tures and other state-of-the-art GNN models that accept single-valued features. As

we can see, the curve of IV-GNN outgrows that of others, which proves that IV-GNN

learns from the data much better than other models in most of the cases. In cases of

dataset IMDB-BINARY, GIN captures the dataset slightly better than IV-GNN. How-

ever, our proposed model IV-GNN is able to beat the other two models quite efficiently.

55

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

Figure 2.6: Training set performance of IV-GNN and less powerful interval-
valued feature accepting GNNs. The X-axis and Y-axis show the epoch number
and the accuracy of training respectively [2].

56

2.5. Experimental Results

Figure 2.7: Training set performance of IV-GNN accepting degenerate interval
value and other single value feature accepting GNN. The X-axis and Y-axis show
the epoch number and the accuracy of training, respectively [2].

57

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

2.5.5.2 Test Set Performance

Now, we compare test set accuracies with respect to different interval aggregation-

based GNN models and state-of-the-art GNN models.

We have performed this experiment for the synthetic as well as real-life datasets for

350 epochs and report the best cross-validation accuracy mean and standard deviation

averaged over the 10 folds after performing each experiment ten times. In Table 2.5,

we have seen that IV-GNN can capture graph structures and generalize well in most of

the cases among other variants, showing 4% better accuracy on average.

Table 2.5: Test set classification accuracies in percentage

Dataset agr0-based model agre-based model agrnew-based model IV-GNN
SYNTHETIC 1 200 89.33 ± 0.13 95.00 ± 0.19 98.39 ± 0.24

SYNTHETIC 1 1000 87.82 ± 0.66 89.82 ± 0.42 95.01 ± 0.24
SYNTHETIC 1 2000 81.80 ± 0.40 92.88 ± 0.36 96.05 ± 0.31
SYNTHETIC 2 200 82.98 ± 0.10 92.48 ± 0.89 98.92 ± 0.39

SYNTHETIC 2 1000 83.92 ± 0.55 87.75 ± 0.26 92.10 ± 0.79
SYNTHETIC 2 2000 83.31± 0.19 86.75 ± 0.27 88.54 ± 0.67

MUTAG 85.79 ± 0.04 89.85 ± 0.22 92.37 ± 0.26
PTC 61.10 ± 0.19 63.6 ± 0.23 67.6 ± 0.25

PROTEINS 78.09 ± 0.04 80.7 ± 0.54 83.3 ± 0.06
NCI1 75.6 ± 0.05 77.7 ± 0.03 80.3 ± 0.10

IMDB-B 69.24 ± 0.03 72.41 ± 0.12 72.5 ± 0.16
COLLAB 65.6 ± 0.02 69.4 ± 0.02 71.1 ± 0.16

In the special case for degenerate intervals, we perform experiments ten times on real-

life datasets only and report the mean and standard deviation of the accuracies. We

could not perform experiments of GraphSAGE and GCN on the dataset COLLAB due

to memory bound. As we can see in the table 2.6, IV-GNN performs much better than

the other state-of-the-art approaches on four out of six datasets and achieves a perfor-

mance gain of 7% on average. On the other hand, for datasets like IMDB-BINARY

and COLLAB, IV-GNN’s accuracy is not strictly the highest among GNN variants.

However, IV-GNN is still comparable to the best-performing GNN because a paired

t-test at significance level 10% does not distinguish IV-GNN from the best.

58

2.5. Experimental Results

Table 2.6: Test set classification accuracies in percentage

Dataset GraphSAGE GCN GIN IV-GNN
MUTAG 85.4 ± 0.77 82.9 ± 0.66 89.4 ± 0.84 94.7 ± 0.24

PTC 63.3 ± 0.94 66.9 ± 0.19 64.6 ± 0.74 68.5 ± 0.34
PROTEINS 75.8 ± 0.34 76.23 ± 0.14 76.75 ± 0.98 88.1 ± 0.63

NCI1 78.1 ± 0.34 79.2 ± 0.75 82.5 ± 0.11 83.92 ± 0.96
IMDB-B 71.38 ± 0.97 72.41 ± 0.9 74.1 ± 0.2 73.35 ± 0.68
COLLAB - - 80.2 ± 0.53 79.85 ± 0.3

2.5.6 Runtime Comparison

We have conducted an extensive experimental evaluation of IV-GNN, comparing its

performance with three other state-of-the-art approaches, namely GraphSAGE, GCN,

and GIN, on five diverse datasets. Unfortunately, we were unable to include the COL-

LAB dataset in our experiment due to memory constraints, as both GraphSAGE and

GCN exceeded the available memory. Our results, illustrated in Fig. 2.8, reveal that

IV-GNN and GIN exhibit comparable computational efficiency, with similar runtime

performances. This is consistent with our theoretical expectations, as both IV-GNN

and GIN leverage the previously computed nodes’ embeddings to reduce computa-

tional overhead. In contrast, GraphSAGE and GCN rely on more traditional methods,

which result in higher computational costs. Notably, GraphSAGE failed to outperform

GCN on these datasets, which can be attributed to the fact that mini-batch-based al-

gorithms, such as GraphSAGE, are more effective when dealing with extremely large

graphs, where the benefits of batching can be fully realized. Overall, our experimental

results demonstrate the efficacy of IV-GNN and GIN in achieving a balance between

accuracy and computational efficiency, making them suitable choices for large-scale

graph learning tasks. Additionally, the results highlight the importance of considering

the trade-offs between different algorithmic approaches and the characteristics of the

datasets being used.

2.5.7 Empirical Study on Hyperparameter Setting

We have performed empirical study on various hyperparameters involved in the model

and our experimental finding can be depicted in Fig. 2.9.

59

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

Figure 2.8: Comparison in runtime of different GNN models [2].

Effect of Batch Size Batch size means the number of training examples to work

through before updating the internal model parameters. We have experimented with the

batch size {16, 32, 64, 128} and as we can see for the relatively smaller datasets such

as MUTAG, PTC, and PROTEINS, smaller batch size works better and learn from the

more enormous datasets such as COLLAB, NCI1 and IMDB-BINARY, larger batch

size performs better. So we take batch size as {16, 64} depending on the size of the

datasets.

Effect of Different Learning Rate The learning rate is a measure of the step size to-

wards moving to the minimum of the loss function [67]. A lower learning rate can

slow down the convergence process, while a too-high learning rate may jump over

the minima and oscillate. Based on the experimental result, we find that between

{0.1, 0.01, 0.001}, 0.01 gives maximum accuracy for IV-GNN.

Effect of Hidden Dimension We have experimented with the different number of units

in the hidden layer of the MLP, such as {16, 32, 64, 128}. Here also, smaller hidden

dimension works well for smaller datasets as larger hidden dimension may cause un-

derfitting. So, we take 32 as a hidden dimension for the bioinformatics dataset. On the

60

2.5. Experimental Results

Figure 2.9: Empirical study on hyper-parameter setting. X-axis and Y-axis show
the name of the dataset and the accuracy of training respectively [2].

other hand, for the social network datasets, hidden dimension 128 captures the struc-

tures efficiently.

Effect of Graph-level Readout Function We have experimented with two different

Graph-level Readout functions, Sum and Average. As shown in the figure, Sum per-

forms much better than the function Average, which establishes the fact that Sum has

better representational capacity than Average.

Effect of Number of GNN layers We have tried our model with three different num-

bers of GNN layers (including the input layer), such as {3, 5, 7}. As we can see from

the output, using 5 GNN layers in our model gives a better performance than others.

Effect of Division of Datasets We have divided the datasets in three ways, as shown

in the figure, and found out that using 81%, 9% and 10% of the datasets for training,

validation, and testing respectively fits best for most of the datasets.

61

Chapter 2. Handling Interval Valued Data in Graph Neural Network: IV-GNN

2.6 Conclusion

This chapter describes a new interval aggregation function and compares its discrimi-

native power between different intervals with that of the existing aggregation function.

Keeping this newly developed function as an AGGREGATE function, a GNN-based

architecture IV-GNN has been developed to deal with those graphs having node fea-

tures as intervals.

However, in the embedding generation process, IV-GNN fails to capture the flow of

information from the higher-order neighborhood of a node without stacking a large

number of GNN layers. To deal with this situation, in the next chapter, we aim to

develop a more powerful model that will capture the hierarchical structure hidden be-

hind the graph, which will make the flow of information from a distant node easier.

We propose GraMMY as a novel framework for hierarchical semantics-driven graph

representation learning based on Micro-Macro analysis.

62

Chapter 3

Graph Representation Learning Based

on Micro-Macro Analysis: GraMMy

3.1 Introduction

The aggregation and combination strategies used in the GNN layer by the existing

models primarily accommodate only local information from the surroundings of each

node. To encode features of the higher-order neighborhood of a node in its node em-

bedding, two strategies can be applied [68]. The first one is to increase the iterations

so that the GNN learning process spreads all nodes’ information over the entire graph.

The second strategy can be stacking more GNN layers. However, both strategies have

some practical drawbacks. Increasing iterations will need a large number of training

examples to train the model [69], and increasing the GNN layer will lead to a vanishing

gradient problem during training [70].

3.1.1 Related Works and their limitations

Though the generalized k-dimensional GNNs (k-GNNs) [37] take into account the

higher-order structures by employing k-dimensional WL algorithm (k-WL), these only

look into the overall feature information received from the neighbors. Consequently,

63

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

similar to the other GNN models, the k-GNNs also ignore several interesting facts,

such as through which path the information flows from a specific neighbor. Such in-

formation may be crucial for generating better embedding of the target node [71].

In order to encode the information flow within the graph, the existing Random-Walk

based methods, such as Node2vec [72] and Struc2vec [73] have their own limitations.

Node2vec performs graph classification tasks but fails to maintain the structural equiv-

alence within the graph. Two nodes with neighborhoods that are structurally similar

but that are far apart will not have similar latent representations in Node2vec. Cap-

turing the hierarchy within the graph may be one way to address this issue. On the

other hand, Struc2vec only considers structural similarity but does not consider any

node feature-related information. To explain this with an example, see Figure-3.1. Let

there be two triangles, one with three nodes of color yellow and the one with a mix of

yellow and green. As struc2vec only considers the structural similarity, the model will

ignore the difference in feature of the nodes, i.e., the node color, and as a result, these

two triangles will be treated as equal. In a nutshell, we can say that neither node2vec

nor struc2vec can consider the feature as well as structural information of the graph

simultaneously.

(a) (b)

Figure 3.1: Two triangles with similar structures but differently colored nodes [3].

In this chapter, we demonstrate that hierarchically analyzing the semantics behind

graph structure can help GNN in better capturing the information flow from both local

and higher-order neighbors while eliminating the need for increasing training samples

and/or increasing layers in the GNN model.

64

3.2. Proposed Framework: GraMMy

3.1.2 Research Contribution

Intending to address the above-discussed limitations of the existing models in learn-

ing global and local information together from a graph, in this chapter, we describe

GraMMy, a novel framework for hierarchical semantics-driven graph representation

learning based on Micro-Macro analysis [3]. GraMMy allows a flexible flow of infor-

mation from higher-order neighborhood and better captures the neighborhood infor-

mation. The hierarchical study is conducted using Locality Sensitive Hashing (LSH)

as a micro-macro scalar, while the semantics-driven analyses are accomplished by em-

ploying a recurrent autoencoder-based context modeling scheme. We also theoreti-

cally explain how the proposed micro-macro analysis approach maintains a trade-off

between information loss and flexibility of information flow while dealing with macro

and micro views of the graph structure. Thus, our major contributions are as follows.

• A GNN-based framework, GraMMy, is proposed, which learns from graphs by

focusing on its different hierarchical levels through micro-macro analysis of the

structure.

• We theoretically investigate the variations of several statistical and network prop-

erties with the change in abstraction levels of the graph structure.

• We capture semantics through context generation, which magnifies the flow of

the information passing through various nodes of the graph in different abstrac-

tion levels.

• We empirically evaluate our model concerning the graph classification task on

six benchmark datasets.

3.2 Proposed Framework: GraMMy

An overview of the proposed framework GraMMy is shown in Fig. 3.2. As depicted

in the figure, the framework is comprised of three key modules engaged in micro-

macro analyses of the graph structure, semantic modeling of the graph nodes, and

65

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

node embedding through flat message passing, respectively. Each module, along with

the relevant theoretical background, is discussed in subsequent subsections.

Figure 3.2: An overview of the proposed framework: GraMMy [3].

3.2.1 Micro-Macro Analysis of the Graph Structure

The Micro-Macro analysis follows a similar notion of human vision. For example, to

understand the complete structure of a house, it is necessary to look into the bricks as

well as the formation/organization of the bricks to construct the whole building. Sim-

66

3.2. Proposed Framework: GraMMy

ilarly, to view a graph from various levels of observability, we consider a framework

based on Micro-Macro analysis [74]. It sheds light on the graph with respect to the

level of abstraction, i.e., with a certain level of detailing. The closer a graph is to the

“micro” level, the more precisely it will capture the connectivity of each node. Con-

versely, the more we go towards the “macro” level of the graph, the more cumulative

behaviors of the nodes it will capture.

Now, we formally define the notion of Micro-Macro analysis of a graph. µ is said to

be a Micro-Macro scalar that takes a graph G and an amount of detail f as inputs and

outputs another graph G′
f and an epimorphism Φf such that,

• if f = 1 then µ(G, f) = (G′
1,Φ1) with |G′

1|V = 1.

• if f < f ′ then |G′
f |V ≥ |G′

f ′|V .

• if f < f ′ then |G′
f |E ≥ |G′

f ′ |E .

Where, |G|V = The number of nodes in the graph G, |G|E = The number of edges in

the graph G and f is a real number in the range (0, 1]. That is, for any graph G and

level of abstraction f , we receive a modified version of G, G′
f and an epimorphism Φf

such that Φf will decide correspondence between G and the new graph G′
f . A smaller

value of f corresponds to the micro view of the graph, and with f = 1, the whole

graph will be seen as a single node graph with the maximum macro view possible.

To be noted, as per [74], f is allowed to take any value from the interval [0, 1]. How-

ever, we alter this definition a little since there may be several cases where two or

more nodes in a graph have exactly the same set of neighbors. For example, in the

Fig. 3.3(a), the node 1 and 4 have neighbor set as {2, 3}. Then with f = 0, the nodes

{1, 4} and {2, 3} will be clubbed together and will end up looking like Fig. 3.3(b),

which needs to be exempted.

Given a micro-macro scalar and a set of abstraction levels or detailing levels {f1, f2,

..., fk}, the first module of our framework generates a spectrum of different abstract

views of the graph G, {G′
f1
, G′

f2
, ..., G′

fk
}. Each of these is exploited in subsequent

67

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

a b

1

2
3

4

1

2 3

4

Figure 3.3: Micro-Macro analysis of a graph [3].

modules of GraMMy to describe the behaviour of the network from different levels of

detail.

In the form of a Micro-Macro scalar, we have chosen Locality Sensitive Hashing

(LSH), denoted by µL henceforth. In LSH, similar items are hashed to the same bucket

with high probability. In order to use LSH as a micro-macro scalar, we define the fol-

lowing rule: With a given graph G and a level f ∈ (0, 1], whether two nodes should be

grouped or not is decided based on the Jaccard Similarity coefficient, which is a com-

monly used indicator of the similarity between two sets[75]. Now, we explain how we

have used Jaccard Similarity in order to perform this task. In case the node labels n

are known, for any two nodes u and v, we consider the sets as follows,

Lu = {nw | w ∈ N (u)}, and

Lv = {nw | w ∈ N (v)}, where N (u) and N (v) are neighboring nodes of u and v

, respectively.

(3.2.1)

Let J(A,B) be the Jaccard Similarity between two sets A and B. For a given f ∈

(0, 1], if J(Lu,Lv) ≥ (1− f), then u and v will be clubbed together in G′
f , otherwise

not.

68

3.2. Proposed Framework: GraMMy

On the other hand, when no node labels are present, we construct the sets Lu and Lv

using the degree d as follows,

Lu = {dw | w ∈ N (u)}, and

Lv = {dw | w ∈ N (v)}
, (3.2.2)

and the remaining procedure is the same.

When there are additional feature-related information available other than node labels,

we calculate the Jaccard Similarity between the sets as follows,

Lfi
u = {fi(w) | w ∈ N (u)},

Lfi
v = {fi(w) | w ∈ N (v)},

(3.2.3)

where fi(w) is the i-th feature value of the node w. Then, J(Lu,Lv) = mini{J(Lfi
u ,Lfi

u)}.

LSH based on the Jaccard Similarity measure in the above-mentioned way generates

a modified graph structure, considering each cluster to be a node at a higher level of

abstraction. We also discard the original edges, which completely lie within a cluster.

We denote the correspondence between two graphs G and G′
f as ΦL

f . Below, we show

that ΦL
f is an epimorphism and µL satisfies three properties as mentioned in the micro-

macro scalar definition.

Proposition 5. ΦL
f is an epimorphism.

To show, ΦL
f is an epimorphism, we have to show that, ∀v ∈ G,ΦL

f (v) ∈ G′
f . Ac-

cording to the definition of µL, for a detailing level f ∈ (0, 1], a node v in G will be

mapped to the cluster of nodes having atleast (1 − f) Jaccard Similarity, as defined

previously. Hence, every node in G has an image in G′
f , proves the fact that, ΦL

f is an

epimorphism.

Proposition 6. If f = 1 then µL(G, f) = (G′
1,Φ1) with |G′

1|V = 1.

When f = 1, two nodes will be clustered together if they have at least (1−1)×100% =

0% similarity in the sets of neighbors. Essentially, the whole graph will be clustered to

69

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

one node with no edge.

Proposition 7. If f < f ′ then |G′
f |V ≥ |G′

f ′ |V .

For a given f , nodes having at least (1− f) Jaccard Similarity, as defined earlier, will

be clustered and let cf many clusters are generated, i.e., |G′
f |V = cf .

Similarly, for f , cf ′ many clusters are generated, i.e., |G′
f ′ |V = cf ′ .

Now, we have the following relations, f ∼ 1
cf

, as the increase in the level of detail will

decrease the number of clusters. Therefore, f ≤ f ′ =⇒ cf ≥ cf ′ , equality occurs as

the nodes having atleast (1− f ′) Jaccard Similarity may have (1− f) Similarity also.

Hence, |G′
f |V ≥ |G′

f ′ |V .

Proposition 8. If f < f ′ then |G′
f |E ≥ |G′

f ′|E .

From the Proposition 3, we have |G′
f |V ≥ |G′

f ′|V . As we are left with only inter-cluster

edges and discarding the intra-cluster edges, the greater number of clusters will lead to

a greater number of edges in the resulting graph. Hence, |G′
f |E ≥ |G′

f ′|E .

3.2.1.1 Significance of Micro-Macro Analysis

Our proposed Micro-Macro analysis is primarily driven by the need to maintain a trade-

off between information propagation and information loss. The higher the detailing

value (f), the larger the information loss. On the other hand, a higher degree of ab-

straction (Macro view) ensures more flexible propagation of information from distant

nodes in a graph, compared to its lower level of abstraction (Micro view).

Information propagation flexibility vs. Micro-Macro analysis. Typically, the flexibil-

ity of information propagation can be attributed by influence score [54] and charac-

teristic path length [76]. The influence score reflects the effect of a node v on another

node u by calculating the amount of change in the representation of u with respect to

the changes in the input feature of v. Formally, the influence score is defined as follows

[54].

70

3.2. Proposed Framework: GraMMy

Definition 8. Let G = (V,E) be a simple graph. hv be the input feature of node v

and h′
u be the modified feature of node u. Then, the influence score I(u, v) of u by v is

defined by the sum of the entries in the Jacobian matrix
[
δh′

u

δhv

]
.

Figure 3.4: Impact of the amount of detail in Influence Score [3].

As we have already mentioned, for the newly constructed graph G′ from the original

graph G at a particular micro-macro level, we treat a cluster of nodes as a node. It

is to be noted that, in order to generate feature vector h′
u of a node u in a different

level of abstraction, we select a node with maximal degree from the cluster to treat as

a representative of the cluster. We give preference to the node with a higher degree

because we believe that a node with greater connectivity will be more informative

about the cluster of the nodes (influenced by the concept of degree centrality in Social

Network [77]). After that, we generate the context for the representative node using

Algorithm 2 and share this generated context among the other nodes in the cluster.

In order to find the influence score I(u, v) of u by v, applying chain rule, we get:

[
δh′

u

δhv

]
=

P∑
p=1

[
δh′

u

δhv

]
p

. (3.2.4)

where, P is the number of distinct paths from v to u through which changes in feature

vector of v will affect u. It is assumed that the information that reaches a particular

node will be equally distributed among its neighbors, and hence, it can be normalized

by multiplying with the inverse of the degree (deg) of that node. Hence, we can express

71

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

the influence score as follows.

[
δh′

u

δhv

]
=

P∑
p=1

1∏
l=kp

1

deg(vpl−1)

[
δhvpl−1

δhvpl

]
. (3.2.5)

where kp is the length of the p-th path and vpl is the l-th node in the p-th path starting

from v and ending at u. It is evident here that the influence score value decreases

exponentially with the increasing value of kp. Since, for any u and v, the kp at the

macro-level view would be lesser than that in the micro-level view of a graph (for

example, refer Fig. 3.4), we can arrive at the following proposition.

Proposition 9. If f < f ′, the influence score of any node u by v, I(u, v) in G′
f is

greater than or equal to I(u, v) in G′
f ′ .

For example, consider the two abstract views G′
f and G′

f ′ of a graph G, where f < f ′,

as depicted in Figure 3.4. Accordingly, the calculation of the influence score of node

6 on node 1 in G′
f and G′

f ′ can be done as follows: As per the figure, we have 4 paths

from node 6 to node 1 in G′
f . Let the change in the feature vector of node 6 be δh6.

Then the flow of change from 6 to node 1 is as shown below,

• 1

 1

81
δh6


←−−−−− 2

 1

27
δh6


←−−−−− 3

1
9
δh6


←−−−−− 4

1
3
δh6


←−−−−− 5

[δh6]←−− 6.

• 1

 1

27
δh6


←−−−−− 2

1
9
δh6


←−−−−− 3

1
3
δh6


←−−−−− 5

[δh6]←−− 6.

• 1

 1

81
δh6


←−−−−− 2

 1

27
δh6


←−−−−− 4

1
9
δh6


←−−−−− 3

1
3
δh6


←−−−−− 5

[δh6]←−− 6.

• 1

 1

27
δh6


←−−−−− 2

1
9
δh6


←−−−−− 4

1
3
δh6


←−−−−− 5

[δh6]←−− 6.

The amount written over the arrows is the fraction of the information that reaches the

next node in the path. Hence, for G′
f , we have

[
δh′

u

δhv

]
=

P∑
p=1

[
δh′

u

δhv

]
p

= (
1

81
+

1

27
+

1

81
+

1

27
)δh6 =

8

81
δh6,

72

3.2. Proposed Framework: GraMMy

whereas, for G′
f ′ , we achieve the following influence score.

[
δh′

u

δhv

]
= δh6.

This supports our Proposition 9.

As mentioned earlier, the flexibility of influence propagation is also attributed to the

characteristic path length, which measures how two vertices in a graph are separated.

Formally, the characteristic path length can be defined as follows [76].

Definition 9. Let G = (V,E) be a simple graph, where n = |V | is the number of nodes

in the graph and distij is the smallest path length between any pair of nodes vi ∈ V

and vj ∈ V . Then, the characteristic path length of the graph becomes L(G) =
1

n(n− 1)

∑
vi ̸=vj∈V distij .

Since, in the clustered graph two distinct nodes can be thought of as a single node based

on their similarity and the level of abstraction provided, we define distij = 0 in G′
f if

vi ̸= vj ∈ G but vi = vj ∈ G′
f . Intuitively, we can say that a smaller characteristic

path length assures a better flow of information within the graph. Our claim is also

supported by the definition of influence score in Eq. 3.2.5. Eventually, we came up

with the following proposition that shows how the characteristic path length is related

to the amount of detail provided for the micro-macro scalar.

Proposition 10. If f < f ′ then L(G′
f) ≥ L(G′

f ′).

As the whole set of nodes of the graph G is present in both G′
f and G′

f ′ in different

clustered form, it is enough to show that

∑
vi ̸=vj∈G′

f

distij ≥
∑

vi ̸=vj∈G′
f ′

distij.

From Proposition 3 and Proposition 4, we have |G′
f |V ≥ |G′

f ′ |V and |G′
f |E ≥ |G′

f ′ |E .

As shown in Fig. 3.5, smaller f ′ will result in more nodes collapsing into a single

cluster. Therefore, reaching from one node to another via the shortest path will take

73

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

less number of hops through different clusters. Hence proved.

Figure 3.5: Impact of the amount of detailing in the Characteristic path length of
a graph. Two graphs shown in the picture are G′

f (left) and G′
f ′ (right), where

f < f ′. In G′
f , let us assume that each node cluster is a singleton node. Here,

to reach v from u, the shortest path is of length 3. Whereas in G′
f ′ , an increase

in abstraction level will allow more nodes to collide and make only 3 distinct
clusters. Hence, the node v will be just 1 hop away from u [3].

Information Loss vs. Micro-Macro analysis. The basic idea behind the micro-macro

level analysis is to place nodes with certain levels of similarities into the same buckets

or clusters. As mentioned earlier, by similar nodes, we mean that the distance between

the feature vectors of two nodes, as calculated based on Jaccard Similarity, is less than

a specific threshold value. For a particular LSH function µL, where µL(G, f) = G′
f , a

collision occurs when two different nodes are mapped to the same cluster in G′
f , which,

eventually, leads to loss of information. Accordingly, we can define the information

loss for a micro-macro scalar µL
f as the sum of the divergence or distance between the

feature vectors of the nodes in the original graph (G) and that in the resultant graph

(G′
f). That is,

IL(G,G′
f) =

∑
v∈G

Distance(hv, h
′
v) (3.2.6)

where, hv is the feature vector of v in G and h′
v is the feature vector of v in G′

f . Hence,

the larger the divergence between the original and modified feature vectors of the nodes

in the two graphs, the more the amount of information loss.

74

3.2. Proposed Framework: GraMMy

As a consequence, we arrive at the following proposition that indicates that the higher

the level of abstraction (f), the larger the information loss (IL).

Proposition 11. If f < f ′, then IL(G,G′
f) ≤ IL(G,G′

f ′).

IL(G,G′
f) =

∑
v∈G

Distance(hv, h
′
v)

∝ −|G′
f |V , as more number of nodes in G′

f implies

more nodes’ feature remains unchanged after hashing.

∝ −(1− f), as threshold of similarity, (1− f),

is proportional to |G′
f |V .

∝ f

Therefore, if f < f ′, then IL(G,G′
f) ≤ IL(G,G′

f ′)

Trade off between Information propagation flexibility and Information Loss.

From the above-discussed Propositions 10 and 11, we have seen that, with an increas-

ing value of f, the influence score of a node on another node increases. On the other

hand, with a larger value of f , two nodes with Jaccard Similarity more than the thresh-

old value ((1 − f)) are treated as the same node, although they are not exactly equal.

Therefore, as a result of oversimplification of the graph, the information loss increases.

The motivation behind doing micro-macro analysis on a graph is to capture every pos-

sible information at different levels of abstraction. For example, as shown in Fig. 3.6,

node 1 is at a 5 hop distance from node 8. To convey the information about node 1

to node 8 using the original graph will need the GNN algorithm to run for a relatively

large number of epochs (in this case, the algorithm needs to run for 5 epochs), which

is not computationally feasible and also, it might cause vanishing gradient problem in

such a small graph. Therefore, with a larger value of f , when the graph appears as

a graph of its most prominent clusters, the influence propagation within the graph is

75

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

much easier. In this example, one can reach from node 1 to node 8 using only 1 hop in

the macro-view of the graph (refer Fig. 3.6(b)). On the other hand, the reduction of a

graph with 8 nodes to a graph with 4 nodes leads to information loss as finer details of

the individual nodes are being neglected at the macro level.

1

2 3

4

5

6 7

8

1,4

5,8

2,3

6,7

(a) Micro View

(Original Graph)

(b) Macro View

Figure 3.6: Information propagation flexibility vs Information Loss. (a) The graph
on the left side is the original graph, a micro view of that graph, which focuses
on the local information of every node. (b) The graph on the right-hand side is a
more macro view of the graph, where the graph is seen in a more clustered manner
based on the similarity of the node’s neighborhood set [3].

3.2.2 Capturing Semantics through node Context Generation from

Different Levels of Abstraction

This module of GraMMy aims to capture the flow of information from various local

or higher-order neighbors to a target node, considering the different abstract views of

the graph as obtained through micro-macro analyses in the previous module. In order

to account for the semantics of information propagation through various nodes within

each information flow path, we propose a novel approach of node context generation

by employing an Encoder-Decoder model based on a recurrent neural network with

long short-term memory (LSTM). To the best of our knowledge, this is the first work

76

3.2. Proposed Framework: GraMMy

in GNN literature that attempts to explicitly capture the impact of the information flow

path in the graph representation learning process.

Typically, we generate the context of a node at a particular view Gf of the graph G,

using all k-length node sequences ending at that node. We use a pre-trained LSTM

Sequence-to-Sequence Encoder-Decoder model (primarily an LSTM auto-encoder model),

which takes every k-length sequence as an input to the encoder and generates a fixed-

length context vector. We have trained the LSTM auto-encoder with 10, 000 sequences

with sequence lengths ranging from 2 to 100. This context vector is treated as the se-

mantic representation of the information flow path, consisting of the considered node

sequence. To ensure that the node will encode the details from every precision level,

we repeat this process for every level of abstraction. Finally, the sum of all these has

been taken to obtain the overall context of the node, which is utilized in the subse-

quent module of GraMMy to generate the graph representation in low dimensional

space. Note that our objective is not to find out the optimum f , which will capture

the maximum information about the network, but to study the network from different

micro/macro views. Hence, by using sum, we primarily ensure that the context from

every view gets equal importance. Further, as per the existing research findings, the

other functions, like mean, max, or min, have less discriminative power than sum

[36]. The max and the min may be useful for identifying representative elements.

The mean function may capture the distributional information. However, to accumu-

late information from different detailing views with equal importance, we find sum to

be the most appropriate function. Algorithm 2 formally presents the proposed method

of node context generation. The final context for a node u is generated using the fol-

lowing equation and treated as the feature value xu for the node u for the rest of the

model

xu =
∑

f∈{f1,f2,...,fk}

Cuf
. (3.2.7)

77

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

Algorithm 2 Context generation for a node u through sequence learning in the graph
G′

f from a particular level of abstraction f

Input : Node u; neighborhood N (u) in G′
f ; depth k;

a pre-trained Encoder-Decoder ModelM = [Enc,Dec]

Output : Context Cuf

Function: SequenceGeneration(v,l)
1: if l > 1 then
2: for w ∈ N (v) do
3: seq = SequenceGeneration(w, l − 1)
4: end for
5: for s ∈ seq do
6: s = CONCAT (s, w)
7: Finalsequence = Finalsequence ∪ {s}
8: end for
9: else

10: Finalsequence = {v}
11: end if
12: return Finalsequence

1: for v ∈ N (u) do
2: sequenceset = SequenceGeneration(v, k − 1)
3: end for
4: for sequence ∈ sequenceset do
5: sequence = sequence ∪ {u}; Cuf

= Cuf
+ Enc(sequence)

6: end for

3.2.2.1 Significance of Context Generation

It may be noted here that, in existing GNN models, the feature vector of any node

initially contains information about merely the node itself. Contrarily, in our approach,

the feature vector of a node not only embeds information about O(nk) nodes, that

are present in any k-length path coming towards this node, but also the sequential

behaviour within the path. Since the context generation is performed using a pre-

trained LSTM encoder, this ultimately becomes a constant time operation. However,

the pre-training of the LSTM encoder has a computational complexity of O(W), where

W is the number of parameters involved in the LSTM model.

78

3.3. Experimental Results

3.2.3 Information Capturing of neighborhood using Flat Message

Passing

This module of GraMMy finally generates the node embedding in lower dimensional

space by employing GNN message passing scheme. As mentioned earlier, rather than

using the original feature value of the nodes, we use the context-aware feature vector

of the nodes as it is already rich with knowledge about local as well as higher order

neighborhood, gained from both micro and macro views of the original graph. The

overall process is formally presented as Algorithm 1 in the Introduction chapter. As

our aim is to perform a graph classification task, we generate embedding hG for the

graph G from the node embeddings hk
u for all u ∈ G from depth k = 0, 1, ..., K.

Finally using a MLP, the class of the graph is predicted from the embedding of the

graph.

hG = CONCAT (
∑
u∈G

hk
u | k = 0, 1, ..., K) (3.2.8)

Here, hK
u = zu, h0

u = xu and xu =
∑

f∈{f1,f2,...,fk}Cuf
.

3.3 Experimental Results

We empirically validate our theoretical findings and evaluate GraMMy in comparison

with state-of-the-art GNN models.

3.3.1 Datasets

Experimentation is carried out using four bio-informatic datasets, namely MUTAG,

PROTEINS, PTC and NCI1, and two social datasets, namely IMDB-BINARY and

COLLAB [57]. The details of the datasets are provided in the Sec 2.5.1.

3.3.2 Experimental Settings

Since the increase in path length for context generation can be computationally ex-

pensive, we consider a 3-length sequence for context generation. We choose f ∈

{0.1, 0.2, 0.3,

79

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} to generate the spectrum of graphs with different levels of

abstraction. We sum all the context-aware features of a node extracted from differ-

ent micro and macro views of the graph. This gives a semantically enriched feature

representation of the node, which is subsequently utilized by the core GNN model to

accomplish the graph classification task. For the GNN model, as used in GraMMy to

perform graph representation learning, we adopt the parameter settings recommended

for GIN [36] that achieved the best performance reported in the literature. Specifically,

we use 5-layers of each GNN block where every MLP has 2-layers excluding the input

layer. Each hidden layer contains 64 hidden units and uses batch normalization. We

employ 2-layer MLP [48, 78] as the UPDATE function and Sum as the READOUT

function. The number of epochs is set as 350 and the input batch size of training is

considered as 32. We use Adam optimizer [64] with the initial learning rate 0.01. The

learning rate is decayed by 0.5 after every 50 epochs. The final layer dropout is set as

0.5 [79]. We perform 10-fold cross-validation with LIB-SVM [57, 80].

3.3.3 Baselines Models

The performance of GraMMy is compared with those of six state-of-the-art GNN mod-

els, namely GraphSage [35], GCN [9], GIN [36], k-GNN [37], g-U-Nets [38] and PNA

[39] as briefly discussed in the Sec 1.3.2.2 of Chapter 1. As a representative of k-GNN,

we use the hierarchical variant 1-2-3-GNN. The hyper-parameter settings for all these

baselines are kept the same as that of our proposed framework.

Table 3.1: Test set classification accuracies

Models MUTAG PTC PROTEINS NCI1 IMDB-B COLLAB
GraMMy 0.91862± 0.055 0.63889 ± 0.091 0.78571± 0.059 0.82500 ± 0.022 0.75520 ± 0.054 0.72459 ± 0.061
k-GNN 0.89528 ± 0.046 0.62812 ± 0.054 0.76438 ± 0.040 0.81738 ± 0.023 0.74755 ± 0.106 0.72131 ± 0.092

g-U-Nets 0.84211 ± 0.113 0.6484 ± 0.132 0.76786 ± 0.200 0.71776 ± 0.191 0.746 ± 0.148 0.718 ± 0.108
PNA 0.84043 ± 0.197 0.60465 ± 0.162 0.70916 ± 0.114 0.62336 ± 0.120 0.730 ± 0.158 0.715 ± 0.115
GIN 0.88421± 0.073 0.62209 ± 0.039 0.76840 ± 0.021 0.79913± 0.029 0.74482 ± 0.155 0.71851 ± 0.081
GCN 0.85645± 0.186 0.62391 ± 0.086 0.76062 ± 0.075 0.78245 ± 0.043 0.73653 ± 0.018 0.70402± 0.155

GraphSAGE 0.82314± 0.018 0.59737± 0.024 0.72968 ± 0.108 0.77512 ± 0.092 0.72177 ± 0.047 -

80

3.3. Experimental Results

3.3.4 Results and Discussions

The results of the experimental study are summarized in Table 3.1 and also depicted in

Figs. 3.7-3.10.

3.3.4.1 Graph Classification Performance

In order to evaluate the performance of our model, we compare both training and test

accuracies of GraMMy with that of the state-of-the-art algorithms. It is evident from

Fig. 3.7 that, for all the datasets, GraMMy achieves better training performance com-

pared to the considered baselines. Further, note that, although we have run our ex-

periment for 350 epochs for each model, to give chance to converge, GraMMy conver-

gences to its optimal training accuracy within 250 epochs in most of the datasets. As in

general, GNN algorithms are generally computationally expensive, faster convergence

is always desired. Our proposed framework has better knowledge gaining capability

with faster convergence while being trained under the same experimental set-up.

Similar competitive performance of GraMMy can be noticed when compared with re-

spect to test accuracies also (refer Table 3.1). We have performed the experiments 10

times and reported the mean and standard deviation of the accuracy for each model. It

may be noticed that our proposed scheme of viewing the graph from different levels of

abstraction and utilization of contextual information about the nodes helps GraMMy

to always attain the best performance in graph classification. (We could not execute

GraphSAGE on COLLAB due to memory constraints). Although PNA uses four ag-

gregation functions in order to increase the expressiveness of the model, it can not

outperform our model GraMMy because it is designed in such a way that it relies on

feature-related information of the nodes of the graph. The datasets that we have used

for validation of our model are rich in structural information rather than feature-related

information. Therefore, the hierarchical semantics-driven approach used in our model

turns out to be more useful in this case.

81

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

(a) MUTAG (b) PTC

(c) PROTEINS (d) NCI1

(e) IMDB-BINARY (f) COLLAB

Figure 3.7: Comparison of Training set performance of GraMMy with the state-
of-the-art models on several benchmark datasets. The X-axis and Y-axis denote
the number of iterations and training accuracy, respectively [3].

3.3.4.2 Validation of Theoretical Findings

In order to empirically validate our theoretical findings, we have applied LSH-based

micro-macro scalar ΦL
f on the aforesaid datasets and visualized the effect of the amount82

3.3. Experimental Results

Figure 3.8: f vs. Average no. of nodes: The effect of the amount of detail f on
an Average number of nodes [3].

of detailing (f) on the graph properties. Fig. 3.8 shows the changes in average number

of nodes and Fig. 3.9 shows the changes in average characteristic path length with

respect to the change in f . Further, we have depicted the change in information loss

with respect to the change in f in Fig. 3.10. As expected, both the average number

of nodes and average characteristic path length decrease with the increasing value of

83

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

Figure 3.9: Effect of the amount of detail (f) on Average characteristic path length
[3].

f . Moreover, Fig. 3.10 shows that the information loss increases as the value of f

increases, and this is consistent with our Proposition 11. Further, we see that, for

IMDB-BINARY, the average count of nodes with f = 0.1 is 5.2, that is much less

than the average node count 19.8 in the original dataset. This means here, the neighbor

sets of various nodes in the graphs are not very different. So, even if the threshold of

84

3.3. Experimental Results

Figure 3.10: f vs. IL :The effect of amount of detail f on Information Loss (IL)
[3].

similarity to be hashed to the same cluster is very high, these can easily be clustered

together. As a result, the information loss for this dataset is much higher, even for low

values of f . In contrast, the average node count in MUTAG for f = 0.1 and f = 0.2

are 17.9 and 17.8, respectively, which are almost equal to that in the original dataset

(17.9). Hence, the nodes in this dataset are less likely to be clustered together at a

85

Chapter 3. Graph Representation Learning Based on Micro-Macro Analysis:
GraMMy

particular graph view.

3.4 Conclusion

This chapter has introduced a novel approach to graph representation learning based

on the notion of hierarchical information extraction from higher-order neighborhoods.

The idea is inspired by the human vision mechanism, which studies an object from

different levels of abstraction. GraMMy also offers a unique way of aggregating neigh-

boring node information in a context-aware fashion. Apart from providing the theoret-

ical foundation, we have demonstrated that our approach outperforms state-of-the-art

GNNs on benchmark graph classification tasks.

While the strategies developed across chapters 2 and 3 target to solve the Graph Clas-

sification Task on the homogeneous graph, next in chapters 4 and 5, we develop two

models for social recommender system where the graph has a heterogeneous structure.

86

Chapter 4

SInGER: A Recommendation System

Based on Social-Influence-aware

Graph Embedding Approach

4.1 Introduction

With the growth of the e-commerce system, people can browse, purchase, review, or

rate different products online. A customer can choose from a wide range of products,

compare the prices on various websites, and read the reviews of the users in the e-

commerce system who have already bought those products. From the seller’s point of

view, launching a product to the e-commerce system essentially opens up the market

to a large scale in front of him. However, the explosive growth of products can be an

overburden to a person [81]. Moreover, knowing the set of potential customers before-

hand will leverage the seller to adopt a proper marketing strategy. Thus, highlighting

relevant items to a user has become the most challenging task for a recommender sys-

tem.

The job of a recommender system is to provide a better experience to the customers by

suggesting products relevant to their lives. For example, from the previously bought

87

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

products of a customer, an e-commerce system can understand that the customer is

interested in buying electronic items. Then recommending electronic items may in-

crease the business of the system. Now, there are numerous electronic items present in

the e-commerce system. Here, the rating given by customers who have already bought

these and the relationship between the customers are essential.

Recommending relevant items to the customer is about modeling the user’s previously

rated items, opinions of other customers about that item, the user’s connection in social

networks, and, lastly, the choices of products of the user’s friends. Information prop-

agation in large networks using the User-User Interaction and User-Item Interaction

has become an interesting area of research, and many extensive studies have been pro-

posed so far [82, 83]. However, in most cases, while capturing the flow of information,

existing models overlook the influence of a user that spreads within a community and

has an impact on other users in the community as well.

To tackle this issue, this chapter aims to discover the type of interaction, termed as

the influence of a user on another based on the type/category of items. The structural

information expressed by explicit friendship in the social interaction graph is not ca-

pable enough to describe the strength of the communication and does not explain one

important emotional factor, namely the influence of a user within the community [84].

Moreover, people tend to form a group among themselves based on the choice of items

and tend to ask opinions about an item before buying from other users within the group

only. For example, a person who loves to travel can easily be imagined as a part of a

community where other people also travel and share their views on several products

required for trekking or traveling. Therefore, it is evident that the information will

spread much more rapidly than when shared by any person from another domain, say

a musician or a sportsman. The intuition behind this would be the frequent traveler is

much more influential on other users regarding travel.

Several studies [85, 86] have been carried out to establish the fact that the most in-

fluential person in social media need not be the person with the maximum number of

friends. Following this idea, instead of considering the structural connections within

88

4.2. Related Works and their limitations

the users, this chapter aims to define the Influence Score of a user based on the category

of items. Finally, this category-based influence of each user has been used to develop a

recommendation system, SInGER [4], that is based on a Social-Influence-aware Graph

Neural Network to predict missing ratings.

The major contributions of our work [4] can be summarized as follows:

• We propose a novel technique to quantify the Influence Score of a user in the

social recommendation system by constructing the Category-wise information

exchange graph, which approximates the usefulness of the ratings given by the

user for the Category of the items rated.

• We incorporate the Category-wise User-Influence Score in a Graph Neural Net-

work model to develop a Social Influence-aware recommendation system, SInGER

[4], to perform the missing rating prediction task.

• We examine the usefulness of the Category-wise User-Influence Score in rating

prediction task, comparing the performance with the state-of-the-art models on

two real-life benchmark datasets, namely Ciao and Epinion.

4.2 Related Works and their limitations

There is a rich literature on the missing rating prediction problem for social recom-

mender systems. We can categorize the various approaches for solving this problem

into two principal groups, namely Matrix Factorization-Based Recommender System

and Neural Network-Based Recommender System. (see Fig. 4.1).

4.2.1 Matrix Factorization (MF)-Based Recommender System:

This kind of system solves the rating prediction problem by factorizing the information

matrix into smaller matrices since, in general, the data in recommender systems are

very sparse. This can incorporate implicit information that is not directly given in the

data but can be derived by analyzing the data.

89

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

Among the various popular MF-based social recommendation systems, the works of

Mnih and Salakhutdinov [87], Ma et al. [88],Jamali and Ester [89], Zhao et al. [90],

and Yang et al. [91] are worth mentioning. The social recommendation system pro-

posed by Mnih and Salakhutdinov [87] is based on a probabilistic matrix factorization

method (PMF) that models the user preference matrix as a product of two lower-rank

matrices, namely user matrix and product matrix, using Gaussian distribution. How-

ever, it uses the User-Item graph only. The probability matrix factorization approach

has also been exploited in SoRec, a social recommendation system proposed by Ma et

al. [88]. SoRec captures the fact that the users on the Web are not independent. A per-

son’s behavior also affects his/her friends’ behaviors on the Web. To implement this,

the probabilistic matrix factorization in SoRec has been performed over both the Social

Network Matrix and User-Item Matrix. Ma et al. have proposed two other variants of

MF-based social recommendation, namely RSTE [92] and SoReg [93], to learn the im-

plicit/explicit social relations and to capture the taste diversity of users’ friends, respec-

tively. RSTE fuses the user’s choices and the choices of his/her trusted friends simulta-

neously, using an ensemble parameter, whereas SoReg employs a regularization-based

factorization technique to serve the purpose. The MF-based social recommendation

approach (SocialMF), as proposed in [89], is one of the pioneering works that captures

the trust propagation to improve the prediction quality for new users and has given

very few ratings. In the work of Zhou et al. [90], the MF technique has been utilized

to achieve tag-based social recommendations. Their model, termed TTMF, captures

topic-specific trust relations, where the term “topic” actually refers to a latent factor,

and it is extracted from the tag information. The TrustMF, another recent variant of

the social recommendation system proposed in [91], has utilized the MF technique to

generate two distinct latent feature vectors corresponding to truster and trustee, respec-

tively. These help in characterizing the behaviors “to trust others” and “to be trusted

by others” for each user.

90

4.2. Related Works and their limitations

viii) ADA (2021)

Figure 4.1: Summary of works on Social Recommender Systems.

4.2.2 Neural Network (NN)-Based Recommender Systems:

One of the major limitations of matrix factorization-based recommendation systems is

that they are not always capable of estimating low-dimensional vector representations

for user-item interaction and social interaction. Increasing dimensions may also lead

to the overfitting of these models. To overcome these shortcomings, NN-based ap-

proaches have been introduced, which have more generalization ability than MF-based

recommender systems. Typically, the NN-based approaches solve the rating predic-

tion problem by employing multi-layer perceptrons (MLPs). Since MLP, followed by

a non-linear activation, can approximate any continuous function, it becomes suitable

enough for modeling the features of users and items in a recommendation system.

Among the various NN-based approaches for recommendation, NeuMF [94], Deep-

SoR [95], GCMC+SN [96], DASO [97], GraphRec [98], RSGAN [99], DiffNet [100]

and ADA [101] are recent and well-known. Though NeuMF [94] uses a neural net-

work model to learn the latent features of the users and the items, it does not include the

social network information of the user to predict the rating. In the DeepSoR method

[102], the intrinsic non-linear feature of the user is extracted from its social relation

by using a deep neural network, and the final rating prediction is performed based

91

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

on the probabilistic matrix factorization technique. DNN-MF[103] method infuses

neural networks (DNN) and matrix factorization (MF) with social spider optimization

technique to develop a multi-criteria recommender system. Therefore, both DeepSoR

and DNN-MF turn out to be hybrid approaches of MF and NN. GCMC+SN [96] uses

the Graph-Auto encoder framework, which generates a representation of users and

items through a message-passing technique. DASO [97] uses a bidirectional mapping

method to transfer users’ information between the social domain and item domain

using adversarial learning. GraphRec [98] is a state-of-the-art approach to capturing

information about the item and user using the GNN framework. This model can cap-

ture information about both interaction and rating for a user-item connection. DiffNet

[100] uses a layer-wise diffusion method to capture the change of user embedding with

respect to the change of its surroundings. RSGAN [99] generates reliable friends who

can perfectly predict the current user’s preference using GAN.

4.3 The Proposed Framework

This section introduces basic definitions and notations required to develop our model [4].

Subsequently, we present the model architecture and methodological details.

4.3.1 Problem Scenario

Let G = {N,E} be a graph, where N is the set of nodes, and E is the set of edges.

N = (U ∪ I) consists of two types of nodes, namely User and Item, which makes

Social Recommender system a heterogeneous graph. U = {u1, u2, ..., un} represents

the set of users and I = {i1, i2, ..., im} represents the set of items, where n denotes the

number of users and m denotes the number of items. Edges are of two types: Social

Interaction between users and User-Item Interaction between users and items (refer

Fig. 4.2).

Two users are connected through an edge in the Social Interaction graph if they are

socially connected. In the User-Item Interaction graph, an edge between a user and an

92

4.3. The Proposed Framework

3

4

 5
 user

u

Figure 4.2: In the Social Recommender system, the graph contains two sub-
graphs, user-item interaction [left sub-graph] and Social interaction [right sub-
graph]. As per the figure, the user u trusts users u2 and u4 and rated i1, i2 and i3.
The numbers mentioned on the user-item connection denote the ratings given by
the user u to the respective items [4].

item indicates the user has an opinion about the item. For the Social Interaction, we

denote F = {fkj} ∈ Rn×n as the Friendship matrix, where

fkj = 1, if user uk trusts uj ,

= 0, Otherwise.
(4.3.1)

For User-Item Interaction, we denoteR = {rkj} ∈ Rn×m as the Rating matrix, where

rkj ̸= 0, if user uk has rated the item ij .

= 0, if user uk has not given his/her opinion on ij .
(4.3.2)

Let O = {< uk, ij >| rkj ̸= 0} be the set of observed ratings and T = {< uk, ij >|

rkj = 0} be the set of unknown ratings. In the data, three types of “neighboring”

concepts are present.

• neighbor of user in U: N (k) is the set of users who share direct connections

with uk, i.e.,

N (k) = {uj | fkj ̸= 0}. (4.3.3)

93

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

• neighbor of a user in I: D(k) is the set of items, which are directly connected

with uk.

D(k) = {ij | rkj ̸= 0}. (4.3.4)

• neighbor of item in U: B(j) is the set of users, who have rated item ij , i.e.,

B(j) = {uk | rkj ̸= 0}. (4.3.5)

Our aim is to predict the unknown ratings, i.e., we have to predict rkj ∈ R such that

< uk, ij >∈ T , using Graph Neural Network.

4.3.2 An Overview of the Proposed Model: SInGER

As depicted in Fig. 4.3, the proposed model SInGER in [4] comprises three major mod-

ules, namely Item-category-based User Influence Estimation, Social-Influence-Aware

Graph Embedding Generation, and Rating Prediction.

4.3.3 Item-category-Based Influence Estimation of a User in Social

Networks

This section briefly discusses the method of estimating the influence of a user among

others in social networks. By this Category-based Influence Score, we aim to estimate

the authoritativeness of each user in the considered category of items. This section can

be further divided into two modules, namely Category-based Influence Propagation

Graph generation, and Category-based Influence Score generation, a real number be-

tween [0, 1], which will be treated as a feature of a user that expresses the influence of

each user on other users based on the considered category of item. Therefore, each user

will acquire different influence scores based on the categories of items. We discuss the

details of the modules in the following subsections.

94

4.3. The Proposed Framework

1

2

3

4

5

67

8

9 10

11

12

13

14

15 16

Figure 4.3: The overall framework for our proposed social-influence-aware graph
embedding based recommender system : SInGER [4].

95

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

Table 4.1: Table of Notations

Notations Descriptions

⊕ The concatenation operator of two vectors

B(j) The set of neighbors of the item ij in the User-Item Interaction Graph

cj The context, generated by Encoder LSTM for the user uj

dj The degree of the user uj in Social Interaction Graph

D(k) The set of neighbors of the user uk in the User-Item Interaction Graph

er The embedding of the rating r ∈ {1, 2, 3, 4, 5}
fkj The kj-th entry of the adjacency matrix of Social Interaction graph

F The Friendship matrix from the Social Interaction Graph

hI
j The item-space embedding for the user uj

hS
j The Social Interaction embedding for the user uj

hj

The user embedding combining item-space embedding

and Social Interaction embedding of the user uj

I The set of all items

N (k) The set of neighbors of the user uk in the Social Interaction graph

O The set of observed ratings

pk The embedding of the user uk

qj The embedding of the item ij

rkj The actual rating that user uk has given to the item ij

r′kj The predicted rating that user uk may give to the item ij

R The Rating matrix from the User-Item Interaction Graph

tl The reliability of the user ul

T The set of unknown ratings

U The set of all users

xja

The opinion and User-Reliability-aware representation of the interaction
of the user uj with the item ia

yjl
The opinion and User-Reliability-aware representation of the interaction

of the item ij with the user ul

zj The item embedding of the item ij

4.3.3.1 Item-Category Specific Influence Propagation Graph Generation

An elementary goal of our approach is to capture information propagation among the

users in the social network based on the category of products. To consider the Propa-

96

4.3. The Proposed Framework

gating and Composing nature of the influence of users [86], we define Item-category

specific Influence propagation graph, Gc(Uc, Ec), where c is a given category of item,

Uc consists of those users who have rated at least one item of the category c, and Ec

is the set of undirected edges, and two users share an edge if they are friends on social

network.

3

5

67

11

12

13

15 16

(a)

(c)

 :User-Item Interaction

 :User-User Interaction

1

2

3

4

5

67

8

9 10

11

12

13

14

15 16
1

2

7

8

9

4

14

14

16

(b) (d) (e)
15

Figure 4.4: Overview of our proposed Item-Category specific Influence prop-
agation graph generation process:(a)-Social Recommender System framework,
where the items can be categorized into 4 types, namely Books, Movies, Elec-
tronics and Music. (b)- influence propagation graph for item category books. (c)-
influence propagation graph for item category movies. (d)- influence propagation
graph for item category electronics. (e)- influence propagation graph for item cat-
egory music. For example, the Influence Score of user no. 11 (marked in green)
regarding the ”Movie” category (marked in blue circle), the set of users, who have
rated the movie that u11 has also rated, will be considered, i.e.{u12, u13, u15, u16},
all are marked in yellow [4].

4.3.3.2 Influence Score of a User based on Item-Category

In this module, we define a measure, Influence Score, denoted by inf(ui,c), which

represents the influence of the ith user for rating item belonging to category c. More

formally, the Influence Score of a user ui with respect to items of a category c is defined

97

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

as

inf(ui,c) =
∑

item∈Ii,c

(

∑
uj∈Uitem

|Ij,c|
dist(ui, uj)

|Uitem|
), (4.3.6)

where,

Ii,c =The set of items of category c that the user

ui has rated.

Uitem =The set of users who have rated the item

other than the user ui.

dist(ui, uj) =The distance of user ui and uj in the social

network graph.

Motivation behind using this Formula We have estimated the Influence Score of

each user ui on the community with respect to items belonging to category c by analyz-

ing ui’s rating activities and the activities of the other users towards the same category.

In other words, for each user ui, we aim to analyze all the items of category c, Ii,c, that

are rated by ui in order to understand the effect of this rating by ui spreading all over

the network, where every user is interested in the same category of items. We have

also taken into account the set of users, Uitem, who have an opinion about that item.

Moreover, it can be noticed that, with the function dist(ui, uj), we aim to take into

account the distance in the social network between the persons. Note that we want to

consider the whole social interaction graph, not the Category-specific Influence graph

because it will allow the users to look at other item categories, which they may not

have rated before. The higher the distance between the users, the less the effect of the

considered person’s rating on another. We believe that the influence of a friend of a

friend cannot be considered of the same importance as of a direct friend of a user. The

function dist allows the assigning of weight to the flow of information. Consequently,

the Influence Score is used for weighting the rating provided by the user.

To express the Influence Score of a user for a given category as a feature of the user,

98

4.3. The Proposed Framework

we normalize the value based on the Influence Score of the other users to infer who

has greater influence between two users regarding a particular type of item. Therefore,

the normalized Influence Score of uj about the product category c is denoted by Icj and

can be expressed as follows:

Icj =
inf(uj,c)−minul∈Uc inf(ul,c)

maxul∈Uc inf(ul,c)−minul∈Uc inf(ul,c)
∈ [0, 1], (4.3.7)

where, minul∈Uc inf(ul,c) is the minimum and maxul∈Uc inf(ul,c) is the maximum

of all users’ influence values {inf(u1,c), inf(u2,c), ..., inf(un,c)} in U for the item-

category c.

4.3.4 Social-Influence-Aware Graph Embedding Generation

In this module, we infuse the Influence Score of the users in a Graph Neural Networks-

based Recommender model so that the model is able to generate the embeddings in a

social-influence aware manner. This module consists of two components, namely User

Embedding Generation and Item Embedding Generation. The utility of a Graph Neu-

ral Network is that it finds Euclidean representations of nodes and edges of a graph,

which is non-Euclidean in nature, preserving structural and feature information of the

graph. As we have discussed earlier, in the social recommender system, two types of

nodes are present, namely, user and item. Users interact with other users on social net-

works and also rate the items in the e-commerce system. Hence, to find the Euclidean

representation of users, it is necessary to include information from social interaction

as well as the user-item interaction. On the other hand, as items are connected with

users, one must be aware of the following facts while finding item embedding: How

many users have rated the item? Who are they? And how much they have rated?

4.3.4.1 User Embedding Generation

As user nodes interact with items as well as other users, the User Embedding Genera-

tion consists of two components, i.e., Item aggregation and Social aggregation.

99

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

Item Aggregation This component aims to capture a user’s interaction with the

items. Each user-item interaction contains the following types of information.

• which items the user has rated,

• how much rating he/she has given, and

• how much Influential he/she is when that particular kind of items is concerned.

To get the item-space embedding of the user using the Graph Neural Network frame-

work, we start with two embeddings: qa for the item and er for the opinion/rating.

Both are initialized randomly by d’-dimensional vectors.

The framework for item-space embedding generation can be expressed as follows.

hI
j = σ(W.Aggreitems({xja,∀a ∈ D(j)}) + b). (4.3.8)

where D(j) is the set of items in the User-Item graph, which the user uj has already

rated. W is a learnable matrix, b is a bias and σ is a non-linear activation function.

Aggreitems is an aggregation function to accumulate information from all of the neigh-

boring nodes of uj in the User-Item graph.

xja is a representation of the interaction between user uj and item ia, which capture

the connection as well as the rating information.

However, as discussed earlier, in reality Influence of a user can play a crucial role and

we bring Influence Score based on the item category to include a user’s Trustworthi-

ness in this task. For this purpose, MLP gv is used to get a combined representation of

the embedding of the item and the rating, weighted by users’ User-Reliability-value.

Therefore, the embedding generation for a rating relation between a user ua and item

ij in our model can be expressed as,

xja = gv([qa ⊕ er.Ica]), (4.3.9)

where, c is the category of the item ij and Ica is the Influence Score of the user ua

regarding the c category items. Also, we have seen many choices of this aggregation

100

4.3. The Proposed Framework

function available in the GNN literature. It can be a MAX function as of Graph-

SAGE [35], then the embedding generation step becomes,

hI
j = σ(W.MAX({xja,∀a ∈ D(j)}) + b). (4.3.10)

Another choice of Aggreitems is MEAN function as used in Graph Convolutional

Networks (GCN) [9]. Accordingly, the Eq. 4.3.8 can be presented as follows,

hI
j = σ(W.MEAN({xja,∀a ∈ D(j)}) + b). (4.3.11)

However, to develop a maximally powerful GNN, Graph Isomorphism Network(GIN)

in [36] has used SUM as an aggregation function, and this has been found to achieve

the maximum discriminative power among all GNNs. So, in that case, Aggreitems

function will look like,

hI
j = σ(W.SUM({xja,∀a ∈ D(j)}) + b). (4.3.12)

All of these above-discussed aggregation functions give the same weightage to every

connection with the user uj . However, in the present scenario of social recommenda-

tion, this is not the case. Different connections may contribute differently to generate

the representation vector for uj . For example, connections with some items may be

more informative about the user’s preference than other connections. Similarly, a user

may have a large number of neighbors in the graph, but every neighbor may not be

equally revealing about the user. While aggregating, the Attention mechanism aims at

modeling the relevance between connections corresponding to (uj, ia) pairs. Hence, to

generate the representation vector for uj , the attention mechanism is used as inspired

by [104]. Here,

hI
j = σ(W.{

∑
a∈D(j)

αjaxja}+ b) (4.3.13)

where αja denotes the attention weight of the connection between the user uj and the

item ia. To learn this attention weight αja, a two-layer neural network has been used,

101

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

which takes the concatenation of xja and the user embedding pj of user uj . The user

embedding pj is also initialized randomly and learned during the training of the model.

Finally, the weights are normalized to get the attention weight.

The framework for item aggregation step in our model can be summarized as,

xja = gv([qa ⊕ er.Ica])

α∗
ja = wT

2 .σ(w1.[xja ⊕ pj] + b1) + b2)

αja =
exp(α∗

ja)∑
a∈D(j) exp(α

∗
ja)

hI
j = σ(W.{

∑
a∈D(j)

αjaxja}+ b).

(4.3.14)

Here, c is the category of the item ij and Ica is the Influence Score of the user ua

regarding the c category items. pj is the randomly initialized user embedding vector,

which is to be learned during the training of the model. A two-layer neural network

has been used to find the attention weight using the concatenation of xja and pj and

the weights are normalized among all the items that user uj has rated. Finally, the

item-space embedding of a user ua is generated using a learnable weight matrix W ,

non-linear function σ and the bias vector.

Social Aggregation This component focuses on a user’s interactions with other users

in social media. As we are interested in predicting whether a user will like or dislike a

particular item, it is important to include the opinion of the user’s friends opinion about

that item because a user is usually influenced provoked by user’s friends’ recommen-

dations. In the previous Item aggregation component, we have generated item-space

embedding of a user based on the items he/she has rated, the amount of rating he/she

has given and how influential he/she is with respect to various categories of the items.

So, the most natural intuition will be to aggregate the item-space embedding of the

friends of the user to encode their choice of items. As for, in the previous compo-

nent, an attention mechanism is used to find the weightage at the time of aggregating

the item-space embedding of the social friends of the user. Hence the social-space

102

4.3. The Proposed Framework

embedding generation of a user uj can be summarized as,

β∗
jo = wT

2 .σ(w1.[h
I
o ⊕ pj] + b1) + b2

βjo =
exp(β∗

jo)∑
o∈N (j)exp(β∗

jo)

hS
j = σ(W.{

∑
o∈N (j)

βjoh
I
o}+ b).

(4.3.15)

Embedding Of A User A l′-layer MLP has been used to accumulate the item-space

embedding and social-space embedding for a user, that are generated in the previous

components.

γ
(0)
j = [hI

j ⊕ hS
j]

γ
(i)
j = σ(Wi.γ

(i−1)
j + bi), for i = 1, 2, ..., l′

hj = γ
(l′)
j .

(4.3.16)

Here, W is a learnable weight matrix, σ is a non-linear function and b is the bias vector.

4.3.4.2 Item Embedding Generation

For the set of items, as they interact only with the users, we gather information through

social aggregation from the User-Item graph. We aim to generate item embedding for

each item considering three aspects as follows.

• Which users have rated the item,

• How much influential the users are, and

• What are their opinions about that item.

As in our previous approach, for an item ij , we use the embeddings of those users,

who have rated the item ij and the rating embedding for the opinion that the user has

expressed about that item. Similar to the approach of item-space embedding genera-

tion of a user, we scale the rating based on the Category-specific Influence Score Icl
of the user ul for category c. Hence, the item embedding generation process can be

103

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

summarized as,

yjl = gu([pl ⊕ er.Ica),

µ∗
jl = wT

2 .σ(w1.[fjl ⊕ qj] + b1) + b2,

µjl =
exp(µ∗

jl)∑
l∈B(j) exp(µ

∗
jl)

,

zj = σ(W.{
∑
l∈B(j)

µjlyjl}+ b).

(4.3.17)

4.3.5 Rating Prediction Module

The rest of the work is to estimate the rating value, that are missing in the dataset

using the embeddings of the user and the item. The concatenated vector of the user

embedding and item embedding has been fed to a simple MLP with l′ hidden layers.

The steps of rating prediction module can be formalized as,

g(0) = [hk ⊕ zj]

g(i) = σ(Wi.g
(i−1) + bi), for i = 1, 2, ..., l′ − 1

r
′

kj = wT .g(l
′−1)

. (4.3.18)

Here, r′

kj is the predicted rating value for the user-item interaction between the user

uk and item ij . The forward propagation steps of SInGER can be summarized as

Algorithm 3.

Model Training To train the model, the square of the differences between the pre-

dicted rating r′kj and actual rating rkj given by the user uk to the item ij is taken as the

loss function, i.e.,

Loss =
1

2|O|
∑

<uk,ij>∈O

(r′kj − rkj)
2 (4.3.19)

104

4.4. Experimental Results

Algorithm 3 Prediction for the missing rating rjk in SInGER (Forward propagation)

Input : user uj ; item ik; a pre-trained l′- layer MLP model

MLP ;User-User graph U ;User-Item graph I; a pre-

trained Attention Model Atten; a pre-trained weight

matrix W ;User-Influence set{Ica : ua ∈ U}
Output : Predicted missing rating r′jk

1: hj = User Embedding generation(uj , U, I, Atten,MLP,W, {Ica : ua ∈ U})
2: zk = Item Embedding generation(ik, I, Atten,W, {Ica : ua ∈ U})
3: g = [hj ⊕ zk]
4: r′jk = MLP (g)
5: return r′jk ▷ The prediction for the missing rating rjk

4.4 Experimental Results

This section gives the details of the datasets used for experiments, performance evalu-

ation metrics, parameter settings and comparison of our model’s performance against

four state-of-the-art approaches. All experiments are performed on the computer with

Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz ×8 and 8 GB RAM. All implementa-

tions are done using Python3.

4.4.1 Datasets

The experimentation is carried out using two benchmark datasets of popular product

review sites, namely Epinions and Ciao [96]. In both datasets, two sets of information

are provided: rating information and trust network information. Rating information

consists of tuples of the form (1, 2, 3, 4, 5). It means user 1 has given item 2 of type 3

a rating of 4. The helpfulness of this rating is 5. On the other hand, the trust network

information consists of tuples of the form (1, 2), which means user 1 trusts user 2.

Ciao is a European-based online-shopping portal established in the United Kingdom,

France, Spain, Germany, the Netherlands, Italy, and Sweden. In February 2008, the

company launched an American version of the site, www.ciao.com. CIAO has 7376

number of users and 106798 number of items, respectively. The total number of rating

connections is 28331, and the number of user-user interactions is 112365. The den-

105

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

sity of the User-Item graph and social interaction graph are 0.03596% and 0.2065%,

respectively, which shows the fact that both graphs are very sparse in nature.

Epinion is a well-known general consumer review site established in 1999. The num-

ber of users and items in the EPINION dataset is 49290 and 139739, respectively. The

total number of rating connections is 764353, and the number of user-user interactions

is 502513. The density of the user-item graph and social interaction graph are 0.013%

and 0.028%, respectively. The details of the datasets can be found in Table 4.2.

Table 4.2: Characteristics of the datasets

Datasets CIAO EPINION
of users 7376 42290
of items 106798 139739

of ratings 283319 764352
Density of the User-Item graph 0.03596% 0.01293%

of social connections 112365 502513
Density of social interaction graph 0.2065% 0.02809%

Number of product category 28 27

4.4.2 Performance Metrics

Two evaluation metrics, namely Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE), are used to assess the effectiveness of our model. These are defined as,

MAE =

∑n
i=1 |yi − xi|

n
,

RMSE =

√∑n
i=1 |yi − xi|2

n
,

(4.4.1)

where yi and xi are the predicted value by the model and true value, respectively. n

is the total number of data points on which the model has been evaluated. Essentially,

smaller values of MAE and RMSE mean that the ratings are more accurately predicted,

and when it is exactly equal to the actual rating, MAE and RMSE will be 0.

106

4.4. Experimental Results

4.4.3 Parameter Settings

We have used 80% of each dataset to train the model, 10% to validate and the rest 10%

of the dataset to test the performance of the model. The details of hyper-parameters

are as follows: <embedding size: 64, batch size: 256 and learning rate: 0.001 >. The

experimental results of an empirical study on hyper-parameter settings can be found

later in 4.4.5.2.

4.4.4 Baselines

We have compared our proposed model with four state-of-the-art neural network-based

recommender system.

• NeuMF [94]: This model uses a neural network approach for the first time to

generate users encoding using the User-Item interaction network only.

• GCMC+SN [96]: This model uses a graph auto-encoder model to generate user

embedding and graph convolutional matrix completion approach to perform to

social recommendation task.

• GraphRec [98]: This is a newly developed model which includes a User-User In-

teraction graph and User-Item Interaction graph to perform the rating prediction

task using Graph Neural Network.

• RSGAN [99]: This recent work includes two modules, namely, generator and

discriminator. Generative Adversarial Net (GAN) has been used to create friends

of a user to correctly predict a user’s preference and a discriminator to assess the

generated friend’s preferences.

4.4.5 Results and Discussion

4.4.5.1 Results of Comparative Study on Model Performance

The performance of our model on CIAO and EPINION datasets is summarized in

Table 4.3, in comparison with the considered baselines. Our experimental findings can

107

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

Table 4.3: Performance Comparison with other Recommender System Models

Datasets CIAO EPINION

Evaluation Metric MAE RMSE MAE RMSE

M
od

el
s

NeuMF 0.8229 1.0850 0.9223 1.1510

GCMC+SN 0.8169 1.1012 0.8802 1.0709

GraphRec 0.7928 1.0812 0.8426 1.1232

RSGAN 0.7492 0.9879 0.8398 1.0480

SInGER 0.6857 0.7592 0.5843 0.8961

be summarized as follows.

• The performance of NeuMF is poorer than all competing methods, which shows

that to capture the user’s preference completely, modelling the user-item inter-

action is not enough. Social interaction related information helps to improve the

prediction performance.

• The two models GCMC+SN and GraphRec follow Graph Neural Network-based

approaches and achieve better performance by utilizing the power of GNN to

encode Non-Euclidean objects in low dimensional vector.

• RSGAN beats other models since penalizing the unreliable connections helps to

improve the model’s performance.

• Our model outperforms all other state-of-the-art approaches, showing that con-

sideration of the user’s Influence Score, in addition to the utilization of GNN to

user-user interactions and user-item interactions, is important for predicting the

missing rating.

4.4.5.2 Empirical Results for Different Parameter Settings

This empirical study is done on the choice of aggregation function and other hyper-

parameters, including learning rate, batch size, and embedding size. Below we analyze

our model performance while considering the effects of these parameters.

108

4.4. Experimental Results

Effect of Aggregation Functions: We have performed experiments with four different

functions, namely Attention mechanism, SUM, MEAN, and MAX. As can be interpreted

from the figure Fig. 4.5, the Attention Mechanism as used in SInGER works best on

both the datasets. SUM performs much better than MEAN and MAX on CIAO dataset.

However SUM and MEAN work almost equivalently on EPINION dataset and outper-

form MAX.

Effect of Embedding Size: SInGER predicts the missing rating values in the dataset

MAE RMSE
0

0.2

0.4

0.6

0.8

1 Attention

SUM

MAX

MEAN

(a) CIAO

MAE RMSE
0

0.1

0.2

0.3

0.4
Attention

SUM

MAX

MEAN

(b) EPINION

Figure 4.5: Effect of different aggregation function used for embedding genera-
tion for recommendation [4].

using three embeddings: User Embedding, Item Embedding, and Rating Embedding.

The dimension of the space in which the users, items and ratings are to be embedded

is another hyper-parameter.We have experimented with 5 different embedding sizes,

namely 8, 16, 32, 64, 128 as depicted in Fig. 4.6. As can be seen from the figures, with

embedding sizes of 64 and 128, appeared to be performing the best. However, gener-

ating embedding in space R128 takes much more time than in R64. Hence, we use 64

as the dimension for embedding generation.

Effect of Different Batch Size: Batch size means the number of training examples

that are used in each iteration. To speed up fetching the data from memory, batch

size is normally taken as a power of 2. We have experimented with the batch sizes

{32, 64, 128, 256, 512}. As shown in Fig. 4.7, our model SInGER works best for batch

size of 256.

109

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

MAE RMSE
0

0.2

0.4

0.6

0.8

1 8

16

32

64

128

(a) CIAO

MAE RMSE
0

0.1

0.2

0.3

0.4
8

16

32

64

128

(b) EPINION

Figure 4.6: Effect of different embedding size used for user-embedding, item-
embedding and rating-embedding [4].

MAE RMSE
0

0.5

1

1.5

2

32

64

128

256

512

(a) CIAO

MAE RMSE
0

0.2

0.4

0.6

0.8

1 32

64

128

256

512

(b) EPINION

Figure 4.7: Effect of different batch size during training [4].

110

4.5. Conclusion

Effect of Learning Rate: The learning rate is a measure of the step size while mov-

MAE RMSE
0

0.5

1

1.5

2

0.0001

0.001

0.01

(a) CIAO

MAE RMSE
0

0.2

0.4

0.6
0.0001

0.001

0.01

(b) EPINION

Figure 4.8: Effect of learning rate during the training of the model [4].

ing to the minimum of the loss function [67]. There is a trade-off while setting the

learning rate. If the learning rate is too high, the search may jump over the minima.

On the other hand, if the learning rate is too low, the search may take a long time to

converge. We have executed SInGER with the learning rates {0.0001, 0.001, 0.01} and

finally set the learning rate to be 0.001, since this leads to the best performance of our

model, as can be seen from Fig. 4.8.

4.5 Conclusion

In this chapter, a new framework, SInGER [4] for GNN-based social recommendation

has been introduced, which integrates item category-based influence of a user to pre-

dict the missing rating values. The proposed model has been evaluated by experiment-

ing with real-life benchmark datasets that proves its efficiency over the state-of-the-art

models.

Although capturing the influence of a user in the way that has been defined in SInGER

improves the rating prediction performance by a substantial amount, this kind of emo-

tional aspect can not be captured perfectly by a pre-defined formula. Hence, in the

next chapter, we propose a learnable approach to quantify the usability of a given rat-

111

Chapter 4. SInGER: A Recommendation System based on Social-Influence-aware
Graph Embedding Approach

ing, which we named as Reliability of a user.

112

Chapter 5

User-Reliability-Aware Social

Recommendation Framework based

on Graph Neural Network

5.1 Introduction

Influence, Reliability, and Trust: these are emotional aspects and, hence, difficult to

capture using a predefined formula. They may vary from network to network. There-

fore, it is better to make the model learn from the network data ”How the Reliability

of a user should be defined for that particular data.” In order to ensure maximum user

satisfaction, the traditional recommendation primarily exploits the User-Item-Rating

information. However, there has been an increasing interest in developing Trust-aware

recommendation systems. Li et al. in [105] have categorized the social trust in rec-

ommender systems into two categories: Trustworthiness of Recommender Systems

and Trust-based Recommender Systems. The former deals with a series of noises that

a recommender system faces due to attacks of spammers or other manual interfer-

ence. In the latter category, trust has been formulated as a metric incorporating user

113

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

trust information extracted from the available social network or social interaction data.

Typically, such Trust-based recommendation systems are based on the hypothesis that,

while making decisions, a user usually likes to consult trusted friends’ preferences

rather than referring to those of others unknown to the user. Inferring the missing pref-

erence of a user by referring to the known ratings of friends of the user helps to address

‘cold-start’ issue in the recommendation system [105]. Our model, SInGER [4], dis-

cussed in Chapter-4, tries to quantify the user’s trustworthiness as the Influence Score

of a user, but it fails to deal with the ’cold-start’ problem. It is a serious concern

for the recommender system when insufficient information is available for some users

or items. It is important to note here that, although GNNs have intrinsic ability to

integrate node information and topological structure, this area of Trust-aware social

recommendation is still primarily unexplored [98]. In this chapter, we aim to augment

further the GNN-based trust-aware recommendation systems with the added facility of

taking into account the User-Reliability, which aids in better evaluation of user trust

and ultimately improves the quality of recommendation [84].

5.1.1 Motivation

The works SoURA [5] and CateReR are primarily motivated by two of the critical

aspects of user trust in the social network, namely trust propagation and trust compos-

ability.

1) Trust propagation: In practice, a user’s ratings are influenced not only by the rat-

ings of the user’s friends but also by the ratings of the friend’s friends, to a certain

extent. This happens primarily due to the propagative nature (sometimes called tran-

sitivity) of user trust, in which trust information can be transmitted from one user to

another in a social network, creating chains of user trusts [106]. However, many of

the social recommendation models, especially those based on GNNs, are found to pay

little attention towards exploiting such trust propagation within a trust network of the

users [98].

2) Trust composition: Due to the trust propagation in a trust network, whenever a user

114

5.1. Introduction

receives multiple chains recommending different amounts of trusts, the user needs to

compose the trust information to decide whether and how much he/she can trust the

others [106]. The composability of trust also plays a vital role in effectively evaluating

user trust in social networks. However, while making social recommendations, the

existing models often ignore such trust composability traits of users in a trust network.

5.1.2 Contributions

This chapter first discusses User-Reliability-Aware Social Recommendation Frame-

work based on Graph Neural Network, termed SoURA, developed in [5] that provides

an effective means of implicitly accounting for trust propagation and composability

while performing GNN-based analyses to accomplish the overall task of item rating

prediction. In particular, we exploit the sequence modeling power of long short-term

memory recurrent neural network (RNN-LSTM) to jointly learn the trust propagation

and trust composability in terms of a new measure, termed as ‘User-Reliability’. Sub-

sequently, we utilize the ‘User-Reliability’ value to scale the respective ratings at the

time of GNN-based learning of latent factors for both the user and the item. Note that,

though the GNN-based analyses for rating prediction are influenced by the work of

Fan et al. [98], SoURA has a more advanced approach to trust evaluation in terms of

‘User-Reliability’, which further improves the prediction performance. To the best of

our knowledge, this is the first work on a social recommendation based on GNN ap-

proaches that deals with trust propagation and trust composability issues in user trust

networks.

However, SoURA could not predict missing ratings based on categories of the items.

Later in this chapter, we extend SoURA to overcome this drawback and discuss the

proposed GNN-based Model for Category-wise Reliability-aware Recommendation

(CateReR) that models the Reliability Value of a user based on the category of the

items.

Thus, the major contributions of this chapter can be summarized as follows.

• A novel approach, proposed in [5], has been discussed to capture the User-

115

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

Reliability. User-Reliability has been formulated considering the user’s social

connectivity, which in turn helps to evaluate the user trust during social recom-

mendation in a better way;

• SoURA [5] is extended to Category-wise Reliability-aware Recommendation

(CateReR) to approximate the utility/usefulness of the user’s ratings depending

on the item’s category;

• User-Reliability is incorporated during User-Item interaction and User-User in-

teraction to generate user embedding and item embedding, respectively;

• The effectiveness of our proposed recommendation models is validated by us-

ing real-life benchmark datasets and in comparison with eleven state-of-the-art

recommendation algorithms.

5.2 Related Works and their limitations

As we have already discussed existing models of recommender system and their draw-

backs in the previous chapter (see Sec. 4.2), here we discuss the existing works on the

Social Recommender System that capture the trustworthiness of the users in a super-

vised way.

Trust in Social Recommender System: Several models of social recommender sys-

tems capture the notion of trust from different viewpoints. For example, to develop

a trustworthy recommender system, Adversarial dual autoencoder [101] uses one au-

toencoder as a predictor to infer the user preference and another as a discriminator that

carries out cohort rating patterns. The work in [107] combines fake news propagation

and recommender system to improve trust and transparency of the system. On the

other hand, to capture the credibility or trustworthiness of individual users in a social

network, in [108] the model processes location, time, weather, and user requests from

the mobile device. In [109], trust has been defined using the clustering coefficient of

the social network. However, these methods of capturing trust for a user differ from

ours in two aspects. Firstly, these do not include the propagating and composite nature

116

5.3. SoURA: A User-Reliability-Aware Social Recommendation System based on
Graph Neural Network

of trust. Secondly, none of these except [101] exploit the embedding generation ability

of GNN. Our model is also different from Adversarial dual autoencoder (ADA) [101]

as ADA’s focus is to improve the trustworthiness of a recommender system, but the

proposed models capture the trust of the users at an individual level.

In this chapter, we design models in such a way that they have a unique capability

of handling together the trust propagation and the trust composition, which are basi-

cally captured by our proposed measure of User-Reliability of a user. This helps our

model better evaluate user trust from social interaction data and eventually improves

the prediction quality.

5.3 SoURA: A User-Reliability-Aware Social Recom-

mendation System based on Graph Neural Network

This section discusses the model architecture and methodological details of SoURA.

SoURA is consists of four modules, allotted for User-Reliability Modeling, User Em-

bedding Generation, Item Embedding Generation, and Rating Prediction (see Fig. 5.1).

As we have two graph structures in the data, our job is to extract information from

both graphs and use them to perform the rating prediction task. In the module for

User-Reliability Modeling, we use the information about the user’s social connectivity

to model the Reliability Value for each user. The module for User Embedding Gen-

eration aggregates the Social Graph information and User-Item Graph information of

the user to get an embedding for the user in Euclidean space. In the Item Embedding

Generation module, we use the information about the various ratings of an item, given

by the different users to model the Item Embedding. Finally, User Embedding and

Item Embedding are used in Rating Prediction module to predict the missing rating

values. A more detailed description of these four modules is given in the subsequent

subsections. We follow the same notations as previous chapter, which is summarized

in Table 4.1.

117

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

Figure 5.1: Overview of our proposed User-Reliability-Aware Social Recommen-
dation Framework (SoURA)[5]

5.3.1 User-Reliability Modeling

Before explaining the User-Reliability modeling process, it is important to discuss

what we mean by User-Reliability and why it is important in the context of social rec-

ommendation.

We define User-Reliability as a feature of the user that will measure the future help-

fulness of his/her rating based on present connectivity, including direct and indirect

trust relations, in the social network. Note that the success of any social recommen-

dation system significantly depends on the appropriate extraction of such user-trust

118

5.3. SoURA: A User-Reliability-Aware Social Recommendation System based on
Graph Neural Network

information from the given social network and effective utilization of the same during

predictive analytics. However, to evaluate trust between any two users, the majority of

the existing models, including our previous work SInGER [4], only consider their di-

rect interactions while ignoring the impact of trust-propagation and trust-composability

[106].

In the last decade, due to the exponential increase of social media, modeling users’

choices has become incomplete without studying his/her behavior in social media. In

many cases, a user finds an item relevant in his/her life if any friend of the user, whom

he/she trusts, uses the item. To make an item accessible to all, it is necessary to intro-

duce the item to a set of users who are connected to a substantially good number of

users in the social media and trace the spread of information in the network (also called

contamination [86]). Information propagation and spread in networks have a similar

analogy with the spread of a disease in a social environment [86]. A person is first

susceptible to an infectious disease. When the person is in contact with an infected

person, he/she becomes infected and turns out to be a potential carrier of the disease

or infector. A similar analogy can be seen in the social recommender system. Every

probable customer comes to buy an item if his/her friend or friends of friend use the

item. A perfect strategy to promote an item will be to find potential customers who

have substantially good connectivity in the social network site.

As already mentioned, none of the existing works on GNN-based social recommen-

dation has incorporated the impact of trust propagation and trust-composability. In

order to address this issue, in this section, we propose a novel scheme of augmenting

the GNN-based social recommendation through explicit modeling of User-Reliability,

while indirectly accounting for the propagation and composition properties of user

trust. Our proposed User-Reliability measure is quantified by the number of neighbors

(i.e., user node degree) and the number of neighbors’ neighbors it has in the social net-

work. The consideration of neighbors’ neighbors aids in modeling trust propagation,

whereas the use of the degree of a user helps us in composing the user trust.

We measure the amount of Reliability of a user using the Sequence-to-Sequence Encoder-

119

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

Decoder model consisting of two LSTM units and incorporate this into our model to

improve the quality of the prediction task. Before introducing the User-Reliability

modeling scheme, we give a required background of the Sequence-to-Sequence Encoder-

Decoder model and the motivation behind using this model to extract User-Reliability

value.

Figure 5.2: The sequence used for generating User-Reliability value.
Left Panel: The graph contains four nodes A, B, C and D, representing four

users. The node A has three neighbors B, C, D, with degrees (Number of
first-order neighbors) 3, 2, 2, respectively. Middle Panel: The rooted subtree

structure at node A. Right Panel: Three possible permutations of the degree set
are < 3, 2, 2 >, < 2, 2, 3 >, and < 2, 3, 2 >. One among these three sequences is
selected randomly and used as the input to generate a User-Reliability value of

A.

5.3.1.1 Sequence-to-Sequence Encoder-Decoder Architecture

Sequence-to-Sequence Encoder-Decoder architecture consists of two LSTMs: En-

coder LSTM and Decoder LSTM. The encoder takes a sequence as input and generates

a fixed-sized vector C, which we call the context of the input sequence. This context is

given as input to the decoder LSTM to generate the output sequence. Thus, the context

can be thought of as a summary of the input sequence.

120

5.3. SoURA: A User-Reliability-Aware Social Recommendation System based on
Graph Neural Network

5.3.1.2 Motivation behind the use of Sequence-to-Sequence Encoder-Decoder

Architecture

The purpose of our User-Reliability Modeling is to assign a weight value to each of

the ratings given by a user based on its own and its neighbors’/friends’ social con-

nectivity. one way to measure social connectivity is using the degree of the users.

A summarized form of this degree sequence is used to model the Reliability of the

user.As mentioned in the previous section, Sequence-to-Sequence encoder-decoder ar-

chitecture is capable of summarizing a long sequence with variable length into a low

dimensional vector and again generating the sequence from the summary vector. Un-

like other N-D lattices (e.g., sentences, images, or 3-D volumes), a node in a graph does

not have any fixed-sized neighborhood. To capture this arbitrariness, we prefer to use

Sequence-to-Sequence Encoder-Decoder architecture over auto-encoder, as traditional

auto-encoders can not process sequences with variable sequence lengths. However, it is

important to note that the Sequence-to-Sequence Encoder-Decoder architecture is not

inherently permutation invariant, as they process inputs in a sequential manner. But,

we have modeled the User-Reliability generation problem on a similar notion of word

ordering problem in a sentence [110]. Even if the words in a sentence are wrongly

arranged, a recurrent neural network (RNN)-based Encoder-Decoder architecture is

capable of performing any task on the input sentence and giving equally good results

as that of a correctly organized sentence. The reason is, a recurrent Encoder-Decoder

architecture does not start giving output right after seeing the first input word. It ac-

cepts the set of words and encodes the input data into a dense representation, which

can be treated as the summary of the whole set of words and performs the task of learn-

ing based on this summary. Although the appropriate encoding method of input data

remains an open question, existing methods can be decomposed into two categories:

1. Finding a representative of the set of elements using pooling techniques such as

max, min, mean, sum etc.

2. A RNN-based approach to represent the set as a densely encoded vector.

121

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

The major difference between pooling and RNN-based methods lies in the fact that

pooling methods treat the elements of the set independently, while RNN-based meth-

ods model the relationships between the entities by treating the input records as a se-

quence. In our case, two entries of a sequence are not independent. These stand for the

number of nodes that share a common grandparent. Also, the length of the sequence

eventually represents the number of child nodes of the particular node. As shown in

[35], the LSTM-based Aggregator outperforms other pooling techniques while aggre-

gating information from the neighbors of a node. Similar to our application, here also,

no straight forward ordering is present in the neighbor set, but the promising result of

the sequential model suggests that capturing the dependencies among the input records

is helpful. So, inspired by this performance, we feed 10, 000 sequences with sequence

lengths ranging from 1 to 100 and repeat each sequence 10 times with different orders

of words during training. The model is trained to output the same sequence as the in-

put. Also, to avoid a problem like “Link Farm” (A set of densely connected artificially

created users in the system [111]), we use the connectivity strength of the first-order

neighbors only to measure the User-Reliability Value of the user. We use this trained

architecture to generate a User-Reliability value. The process of generating sequence

for a node in a graph is demonstrated in Fig.- 5.2.

5.3.1.3 User-Reliability Value Generation

We want our model to capture the strength of the connectivity of a user through this

Sequence-to-Sequence model. As shown in Algorithm 4, we construct a sequence of

degrees of the neighbors of a node in the social graph and feed this to the Encoder

unit. We want our Decoder unit to output the same sequence. After the training of the

model, we extract the Encoder output as the context, which we scale into the interval

[0, 1] and use as the reliability value of the user trust. As shown in the Fig. 5.3, the

intuition behind this idea is that the Encoder LSTM model will extract useful infor-

mation about the degree sequence and express it in terms of the context so that the

Decoder can again reconstruct the degree sequence from the context. To explain this

idea mathematically, we formalize the concept as follows, Let the user uj has neighbor

122

5.3. SoURA: A User-Reliability-Aware Social Recommendation System based on
Graph Neural Network

Figure 5.3: Encoder-Decoder system contains two LSTM units, functioning as
Encoder [left box] and Decoder [right box], respectively. Every encoder unit
takes one element of the degree sequence, say dp(jl), and the hidden state hl−1

generated from the previous encoder unit. After the degree sequence finishes,
Encoder outputs a context vector C, which is fed to the Decoder LSTM. Each
decoder unit takes a hidden state, say sl−1 and the output dp(jl), generated by the
previous decoder unit at every timestamp and produces the next term of the output
sequence and the hidden state for the next decoder unit. Our aim is to collect the
context C and generate the User-Reliability value by scaling it.

Algorithm 4 Forward propagation of User-Reliability generation for user uj through
context learning

Input : Node uj ; neighborhood N (j); a pre-trained Encoder-
Decoder ModelM = [Enc,Dec],

Output : User-Reliability tj

1: sequence=<>
2: for v ∈ N (j) do
3: sequence = CONCAT (sequence, degree (v))
4: end for
5: context(uj) = Enc (sequence)
6: tj =

context(uj)−Minuk∈U (context(uk))

Maxuk∈U (context(uk))−Minuk∈U (context(uk))

123

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

set N (j) = {uj1 , uj2 , ..., ujk}.

Then, the sequence used for generating the Trust-Reliability value of uj is < dp(j1), dp(j2),

..., dp(jk) >, where p is a permutation on {1, 2, ...k} and d is the degree of a user. Ac-

cordingly, the context can be presented as,

cj = Encoder(< dp(j1), dp(j2), ...,dp(jk) >) such that

< dp(j1), dp(j2), ..., dp(jk) >=Decoder(cj)

Then, User-Reliability of uj = tj =
cj −mink ck

maxk ck −mink ck

(5.3.1)

where, mink ck is the minimum and maxk ck is the maximum of all users’ context set

{c1, c2, ..., cn} in U . Hence, tj ∈ [0, 1].

5.3.2 User Embedding Generation

This module captures the latent factors of user preferences through a trust-aware anal-

ysis based on GNN. Though our User Embedding Generation approach is same as our

previous work SInGER [4], this model exploits trust propagation and trust compos-

ability, as indirectly captured through the module for User-Reliability Modeling. As

discussed earlier, User’s item embedding includes information about the user from the

User-Item graph, and social embedding includes information from the social (User-

User) graph. Algorithm 5 presents the user embedding generation process.

5.3.3 Item Embedding Generation

As in our previous approach, for an item ij , we use the user’s embedding of neighbors

of the item ij in B(j), and the rating embedding for the opinion that the user has

expressed about that item. Here also, we do not want to treat different ratings given by

different users equally. These are scaled based on their User-Reliability values. The

summary of this module can be found in the Algorithm 6.

124

5.3. SoURA: A User-Reliability-Aware Social Recommendation System based on
Graph Neural Network

Algorithm 5 Forward propagation of User-Embedding generation for the user uj

Input : Node uj;User-User graph U ;User-Item graph I;

a pre-trained Attention Model Atten; a pre-trained
l- layer MLP model MLP ; a pre-trained weight
matrix W ;User-Reliability set{tk : uk ∈ U}

Output : User embedding hj.

1: function USER-ITEM SPACE EMBEDDING GENERATION(
uj, I, Atten,W, tj)

2: for a ∈ D(j) do
3: xja = W ([qa ⊕ er.tj])
4: end for
5: hI

j = Atten({xja : a ∈ D(j)})
6: return hI

j ▷ The Item-space embedding of the user uj

7: end function
8: function USER-SOCIAL SPACE EMBEDDING GENERATION(

uj, U, I, Atten,W, tj)
9: for o ∈ N (j) do

10: hI
o = User-Item Space Embedding generation(o, I, Atten,W, tj)

11: end for
12: hS

j = Atten({hI
o : o ∈ N (j)})

13: return hS
j ▷ The Social-space embedding of the user uj

14: end function
15: procedure USER EMBEDDING GENERATION(

uj, U, I, Atten,MLP,W, tj)
16: hI

j = User-Item Space Embedding generation(uj, I, Atten,W, tj)
17: hS

j = User-Social Space Embedding generation(uj, U, I, Atten,W, tj)

18: c
(0)
j = [hI

j ⊕ hS
j]

19: for i ∈ 1, 2, ..., l do
20: c

(i)
j = MLP (c

(i−1)
j)

21: end for
22: hj = clj
23: return hj ▷ The embedding of the user uj

24: end procedure

125

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

Algorithm 6 Forward propagation of Item-Embedding generation for the item ij

Input : Item ij ;User-Item graph I; a pre-trained Attention Model
Atten; a pre-trained weight matrix W ;User-Reliability
set{tk : uk ∈ U}

Output : Item embedding zj

1: for a ∈ B(j) do
2: fja = W ([pl ⊕ er.ta])
3: end for
4: zj = Atten(fja : a ∈ B(j))
5: return zj ▷ The embedding of the item ij

5.3.4 Rating Prediction

This is the final module to finish the overall task of social recommendation. In this

module, we focus on predicting the missing ratings using the embeddings of the user

and the item. In order to accomplish this, we concatenate these two types of embed-

dings and feed this to an MLP.

g(0) = [hk ⊕ zj]

g(i) = σ(Wi.g
(i−1) + bi), for i = 1, 2, ..., l′ − 1

r′kj = wT .g(l
′−1)

(5.3.2)

where l′ is the number of hidden layer in the MLP and r′kj is the predicted rating of

user uk for the item ij . The various steps in the Rating prediction module has been

summarized in Algorithm 7.

5.3.5 Limitation of SoURA

As we have already seen, in a social recommender system, the trust relationships may

not be limited to only the immediate neighbors [98, 106]. Higher-order neighbors of a

person in the social network can also influence his/her perception of a product, which

is termed as Trust Propagation [98]. The method, SoURA [5] introduced the notion

of User-Reliability and utilized it for missing rating prediction. However, SoURA cal-

126

5.4. CateReR: A Graph Neural Network-based Model for Category-wise
Reliability-aware Recommendation

Algorithm 7 Prediction for the missing rating rjk (Forward propagation)

Input : user uj ; item ik; a pre-trained l′- layer MLP model

MLP ;User-User graph U ;User-Item graph I; a pre-

trained Attention Model Atten; a pre-trained weight

matrix W ;User-Reliability set{tl : ul ∈ U}
Output : Predicted missing rating r′jk

1: hj = User Embedding generation(uj , U, I, Atten,MLP,W, tj)
2: zk = Item Embedding generation(ik, I, Atten,W, {tk : uk ∈ U})
3: g = [hj ⊕ zk]
4: r′jk = MLP (g)
5: return r′jk ▷ The prediction for the missing rating rjk

culates the User-Reliability simply by assuming that “a user has greater connectivity

because people find his/her review useful”. This completely ignores the users’ experi-

ence in reviewing items under specific categories and thus, produces a gross estimate of

User-Reliability. However, this is not always the case. The trust may depend on several

other factors, such as ‘item category’, in an e-commerce system. For example, a user

knowing electronics items may not be well-informed about clothes or books. Thus, the

reliability or trust value of a user may not be the same for every item category.

Following this intuition, instead of only taking into account the structural connections

among users, we aim to discover the nature of their trust relationship based on their

exchange of information about each specific item category. This can better evaluate

the user-trust and ultimately improve the quality of recommendations.

5.4 CateReR: A Graph Neural Network-based Model

for Category-wise Reliability-aware Recommenda-

tion

In the following subsections, we overcome the previously discussed limitation of SoURA

and develop the next model for category-wise reliability-aware recommendation (CateReR).

We aim to examine ”how much one user influences other users” depending on the cat-

egory of the products. For this purpose, we propose a technique to quantify the relia-

127

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

bility of a user in a category-specific manner to improve the missing rating prediction

task.

Item-Category specific Reliability Value Generation We define category-wise User-

Reliability value as the measure of the helpfulness of the user’s rating given to a spe-

cific category of items. We use the sequence summarizing feature of the Encoder-

Decoder LSTM model and express Category-specific User-Reliability value tcj of a

user uj as a real number in the range [0, 1]. We use the sequence of degrees of the

neighbors of a user in the category-specific Trust propagation graph (see Sec. 4.3.3.1)

instead of the original User-Item Interaction Network as input, assuming that a person

who has rated more number of items under a particular category is more knowledgeable

about that product category. Considering the degrees of the neighbors in the Category-

specific Trust propagation graph helps to incorporate the trustworthiness of the user’s

friends as well. We formalize the idea as follows, Let a user uc
j has a set of neighbors

in the Category specific Trust propagation graph Gc(U c, Ec) {uc
j1
, uc

j2
, ..., uc

jk
}, i.e.,

among all friends of uc
j in social media, this set of friends have rated some items of the

category c. Let the degree of the user uc
jl

is dcjl for l ∈ {1, 2, ..., k}. Then, we consider

a permutation of the degree sequence of the neighbors of uc
j as input to the Encoder to

generate the Category-specific Reliability value of uc
j for category c. The steps of the

Category-specific Reliability value generation process can be presented as follows,

Ccj = Encoder(< dp(jc1), dp(jc2), ..., dp(jck) >) such that

< dp(jc1), dp(jc2), ..., dp(jck) >= Decoder(Ccj).

Then, in order to express the Category-specific Reliability value as an attribute of the

user, the value has been normalized based on the other users’ value. It allows us to

compare the users’ reliability for a specific type of items. Hence, the User-Reliability

value of uj regarding c category turns out to be:

128

5.5. Experimental Results

tcj =
Ccj −minl Ccl

maxl Ccl −minl Ccl
∈ [0, 1], (5.4.1)

where, minl Ccl is the minimum and maxl Ccl is the maximum of all users’ context set

{Cc1, Cc2, ..., Ccn} in U for the item-category c.

The rest of the process flow within the rating prediction module of CateReR is same

as that of our previous model SoURA model.

5.5 Experimental Results

In this section, we demonstrate the performance of our proposed models SoURA [5]

and CateReR by comparing their performance on two real-world datasets from social

networking websites against that of other baselines. As our proposed models are pri-

marily based on GraphRec [98], the checking for effectiveness of the User Embedding

Generation and Item Embedding Generation modules have been skipped. The details

of the experimental study are discussed below.

5.5.1 Datasets

The experimentation is carried out using two benchmark datasets of popular product

review sites, namely Epinions and Ciao [96]. The details of the datasets are provided

in the Sec. 4.4.1.

5.5.2 Performance Metrics

Similar to SInGER [4], The quality of rating prediction is measured with respect to two

Performance Metrics, namely Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE). The formal definitions of MAE and RMSE can be found in Sec. 4.4.2.

5.5.3 Parameter Settings

We have divided the dataset as follows: 80% of each dataset is used as training exam-

ples to train the model parameters, 10% as the validation set, and the remaining 10%

to test the performance of the model. Three types of embeddings are generated in the

129

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

model, namely for users, items, and ratings. Dimension of the embedding is varied as

per the following set: {8, 16, 32, 64, 128, 256}, and the size of the hidden layer is kept

the same as the size of the embedding. The empirical analysis is also conducted us-

ing variants of batch size: {32, 64, 128, 256} and considering different learning rates:

{0.001, 0.01, 0.1}.

5.5.4 Baselines

Our proposed models are compared with state-of-the-art recommendation models as

summarized below.

• PMF [87]: This is a probabilistic matrix factorization-based technique, which

utilizes only the User-Item graph information to perform the prediction task.

• SoRec [88]: This variant of the recommendation algorithm employs a matrix

factorization technique on both the User-Item interaction and the social interac-

tion graphs.

• SocialMF [89]: This is a representative of a trust-aware recommendation system

that extracts the user’s trust information from the social network and incorporates

the same while accomplishing the recommendation task.

• SoReg [93]: This variant of the social recommendation algorithm utilizes so-

cial interaction graph information for attaining regularized matrix factorization.

This, in turn, helps the model to capture diversity in users’ preferences.

• TrustMF [91]: This model achieves trust-aware recommendation by means of

generating two latent vectors for each user, one for capturing the users whom

he/she trusts and the other one to capture those users who trust him/her.

• NeuMF [94]: This is one of the pioneering recommendation models based on a

neural network, where the user’s representation is learned only from the rating

network.

130

5.5. Experimental Results

• GCMC+SN [96]: This model offers a graph convolutional matrix completion ap-

proach for the social recommendation while using a graph auto-encoder frame-

work to generate the user embedding.

• DeepSoR [102]: This variant of the social recommendation algorithm is primar-

ily attributed to its deep neural network-based approach to extract the hidden

features of the users.

• GraphRec [98]: This is a recently proposed model for social recommendation,

which is based on GNN analysis. The comparison with GraphRec is necessary

since our proposed recommendation approach is influenced by this model.

• RSGAN [99]: This is another state-of-the-art approach that primarily includes

two modules, namely, generator, which will create users’ friends who will give a

prediction about user’s preference using Generative Adversarial Net (GAN) and

discriminator to asses the generated friends preferences.

• Adversarial Dual Autoencoders(ADA) [101]: This is an extension work on GraphRec,

which uses dual autoencoders to find embeddings capturing social trust and rat-

ing patterns.

While comparing with these baselines, we have used the same hyper-parameter set-

tings as mentioned in their respective source files and manuscripts. Also, we report

the performance of the model Adversarial Dual Autoencoders as mentioned in the

manuscript.

5.5.5 Results and Discussions

The results of model performance with respect to MAE and RMSE are summarized in

Table 5.1 Our interpretations of these results are discussed below.

5.5.5.1 Results of comparative study on model performance

The main observation from Table 5.1 are listed below,

131

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

Table 5.1: Comparative results on models performance

Name of the dataset CIAO EPINION
Performance Metric MAE RMSE MAE RMSE

R
ec

om
m

en
da

tio
n

M
od

el
s

PMF 0.9292 1.1408 1.014 1.2139
SoRec 0.8551 1.0727 0.9187 1.1436
SoReg 0.9082 1.1090 0.9254 1.1679

SocialMF 0.8386 1.0653 0.8909 1.1398
TrustMF 0.7842 1.0645 0.8979 1.1624
NeuMF 0.8229 1.0850 0.9223 1.1510

DeepSoR 0.8819 1.0335 0.8518 1.1496
GCMC+SN 0.8169 1.1012 0.8802 1.0709
GraphRec 0.7928 1.0812 0.8426 1.1232
RSGAN 0.7492 0.9879 0.8398 1.0480

ADA 0.748 0.976 0.815 1.054
SInGER(Proposed) 0.6857 0.7592 0.5843 0.8961

SoURA (Proposed) 0.4854 0.6941 0.2020 0.3200
CateReR (Proposed) 0.2112 0.3550 0.1813 0.2572

• The neural network-based recommendation models outperform the matrix factorization-

based models in a majority of the cases. This emphasizes the fact that the neural

networks are able to capture the intrinsic features of the user and item more

accurately than the matrix factorization techniques.

• Among the various MF-based and NN-based baselines considered, the PMF and

the NeuMF use only the User-Item interaction graph to predict the missing rat-

ings. The poor performances of these models indicate that the mere considera-

tion of the User-Item graph results in missing useful information about the users.

• The DeepSoR, GCMC+SN, and GraphRec, all of which take advantage of the

deep network and utilize both rating and social network information, are found

to perform notably better than the other baselines.

• The stronger performances of GCMC and GraphRec further reveal the power of

GNN-based analysis.

• RSGAN beats other GNN-based models, which shows that penalizing unreli-

able connections and producing reliable friends help in better predicting users’

132

5.5. Experimental Results

preferences.

• ADA improves the performance of the recommender system over GraphRec es-

tablishing the fact that introducing the trustworthiness of a recommender system

benefits the rating prediction task.

• SInGER outmatches all other baseline approaches, proving that inclusion of

user’s influence score is an important task while predicting the missing rating.

• SoURA outperforms all the baseline approaches, which establishes that cap-

turing User-Reliability enables the model to further improve its rating predic-

tion ability. Also, it can be noted that SoURA beats ADA and SInGER as well

proving the fact that rather than capturing the trustworthiness of a recommender

system using autoencoder or unsupervised way, LSTM based encoder-decoder-

based technique performs better. Also, it proves that trust does not only depend

on the immediate neighbors of a node; higher order neighborhood also has effect

on the reliability of a node. Therefore, considering a higher order neighborhood

helps to capture the trust of a user in a composite and propagative manner and

predict the missing rating value consequently.

• CateReR outperforms all the state-of-the-art approaches including SoURA as

well, which demonstrates that the Reliability of a user highly depends on the

product category.

5.5.5.2 Ablation Study for User-Reliability Module

In order to examine the effectiveness of the User-Reliability modules defined above

for our three models, we have experimented with and without the said modules. It is

evident from Table 5.2 that the modules have played a vital role in the encouraging

performance of respective models.

133

Chapter 5 User-Reliability-Aware Social Recommendation Framework based on
Graph Neural Network

Table 5.2: Effect of User-Reliability generation module on prediction performance

Name of the dataset CIAO EPINION
Performance Metric MAE RMSE MAE RMSE

V
ar

ia
nt

s Without User-Reliability 0.7928 1.0812 0.8426 1.1232

w
ith

U
se

r-
R

e
lia

bi
lit

y SInGER(Proposed) 0.6857 0.7592 0.5843 0.8961

SoURA (Proposed) 0.4854 0.6941 0.2020 0.3200
CateReR (Proposed) 0.2112 0.3550 0.1813 0.2572

5.5.5.3 Empirical Study on Effect of Different User-Reliability Computation Strat-

egy

We have tried two other strategies for calculating the reliability value of the users: i)

treating the scaled value of the degree of connectivity between 0 and 1, ii) keeping

every user’s Reliability as 1 together with our proposed strategies to generate User-

Reliability, that we have discussed in the previous section. The experimental result

(see Table 5.3) shows that our approaches outperform the other strategies by a large

margin.

Table 5.3: Effect of different strategies for User-Reliability generation

Name of the dataset CIAO EPINION

Performance Metric MAE RMSE MAE RMSE

R
el

ia
bi

lit
y

Sc
he

m
es Degree/Popularity 0.5787 0.7872 0.5289 0.8956

Equal Reliability Value 0.7928 1.0812 0.8426 1.1232

Category specific unsupervised approach(SInGER) 0.4854 0.6941 0.2020 0.3200

Encoder-Decoder-based(SoURA) 0.7928 1.0812 0.8426 1.1232

Category specific Encoder-Decoder-based(CateReR) 0.7928 1.0812 0.8426 1.1232

5.6 Conclusion

In this chapter, two User-Reliability augmented GNN models have been introduced

to predict the missing rating in a user-reliable manner. To be precise, we have pro-

posed approaches to capture the User-Reliability using Encoder-Decoder architecture

134

5.6. Conclusion

respectively, which allow us to give weightage to the ratings based on the Reliability of

the users. Our experimental section shows that the proposed methods far outperforms

the state-of-the-art approaches on two real-life datasets. The results demonstrate the

importance of incorporating User-Reliability for finding user-embedding and item em-

bedding.

135

Chapter 6

Conclusions and Future Scope of

Research

This chapter summarizes the research contributions of each contributory chapter. Ad-

ditionally, it provides insight into future research directions related to the research work

proposed in this thesis.

6.1 Research Contribution

The main focus of this thesis is to develop novel Graph Neural Network-based ap-

proaches to embed different types of graph data. Focusing on the goal of this thesis,

four contributing chapters have been designed. The prediction performance of the pro-

posed models, both for homogeneous and heterogeneous graphs, has been validated by

corresponding experimental results available in the literature.

Chapter 2 describes a new interval aggregation scheme, having much better discrimina-

tive power than the existing interval aggregation functions. Using this newly developed

aggregation operator as an AGGREGATE function, a Graph Neural Network-based

architecture IV-GNN has been developed, relaxing the condition of the single-valued

feature space. Despite being much more general in nature, the proposed method far

outperforms the state-of-the-art approaches on several synthetic and real-life datasets

137

Chapter 6. Conclusions and Future Scope of Research

(comparable results for IMDB-BINARY and COLLAB).

As the embedding generation process of IV-GNN is primarily motivated by the Weisfeiler-

Lehman Graph Isomorphism Test, it also accumulates information from the immediate

neighborhood only. As a result, it fails to encode information from higher-order neigh-

borhoods. To overcome this drawback, Chapter 3 presents a novel approach, GraMMy,

that studies a graph from different levels of abstraction. Rather than stacking a number

of GNN layers to capture information from distant nodes, it uses Locality Sensitive

Hashing as a micro-macro scalar to see a graph as a set of clusters. Also, it aggregates

information from the neighborhood of a node in a context-aware fashion.

In Chapter 4 and 5, two frameworks have been proposed for social recommendation

using Graph Neural Networks. GNN exploits the User-User Interaction and User-Item

Interaction to generate embeddings. Also, the novelties of the works lie in estimating

the usefulness of the ratings given by the users based on the Influence Score (Chap-

ter 4) and Reliability (Chapter 5). The metric Influence Score in Chapter 4 has been

formulated by analyzing the user rating activities, the other users’ activities, and the

distance between the users in the social interaction graph. The inclusion of this In-

fluence Score in the embedding generation process improves the quality of missing

rating prediction tasks substantially. However, figuring out the influence of a user is

not always straightforward. Therefore, in Chapter 5, we made the model to learn the

Reliability of a user using an Encoder-Decoder architecture. As a result, the quality of

missing rating prediction tasks has been improved further in Chapter 5.

6.2 Limitations and Future Scope

This thesis develops several GNN frameworks to generate embeddings for various

graph data. However, there remain a few areas open with scope for future study. Such

areas are enlisted as follows:

1. The aggregation function proposed in Chapter 2 is not continuous. Therefore,

some situations may arise where a slight change in aggregating intervals may

bring a significant change in the resultant interval, which is not expected. Hence,

138

6.2. Limitations and Future Scope

designing a continuous aggregating function for intervals may greatly interest the

GNN researcher.

2. There are architectures that have the summarizing ability of continuous data,

such as LSTM. It would be an interesting direction for research to include the

interval-valued feature as a summarized embedding and investigate the quality

of the performance on the graph classification task.

3. An exciting direction for future work is exploring different interval aggregation

methods according to the demand of the situation.

4. The process of mining all possible sequences as described in Chapter 3 to gener-

ate contextual information of a node becomes more expensive as the sequences

become longer. In the future, we plan to handle this issue by adopting a parallel

processing scheme.

5. Although GraMMy gives equal weightage to the embeddings from different ab-

straction levels, these weights can be learnable. Examining how attention mech-

anisms work to determine these weights would be interesting.

6. In the social recommender system, the interactions between User-User and User-

Item are always evolving. Dealing with the time-varying nature of these inter-

actions can be an interesting research area that we would like to explore in the

future.

7. As all of these proposed models in this thesis use the Stochastic Gradient Descent

approach, developing a Gradient-free algorithm for graph-embedding generation

could be an interesting area for research.

139

Bibliography

[1] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Sig-
nal Processing Magazine, 34(4):18–42, 2017.

[2] Sucheta Dawn and Sanghamitra Bandyopadhyay. IV-GNN: interval Valued data
handling using graph neural network. Applied Intelligence, 53(5):5697–5713,
2023.

[3] Sucheta Dawn, Monidipa Das, and Sanghamitra Bandyopadhyay. GraMMy:
Graph Representation Learning based on Micro-Macro Analysis. Neurocom-
puting, 2022.

[4] Sucheta Dawn, Monidipa Das, and Sanghamitra Bandyopadhyay. Singer: A
recommendation system based on social-influence-aware graph embedding ap-
proach. In 2021 IEEE 18th India Council International Conference (INDICON),
pages 1–6. IEEE, 2021.

[5] Sucheta Dawn, Monidipa Das, and Sanghamitra Bandyopadhyay. SoURA: a
user-reliability-aware social recommendation system based on graph neural net-
work. Neural Computing and Applications, 35(25):18533–18551, 2023.

[6] Sucheta Dawn and Monidipa Das. Graph representation learning for protein
classification. In Artificial Intelligence Technologies for Computational Biology,
pages 1–28. CRC Press, 2022.

[7] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamil-
ton, and Jure Leskovec. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 974–983, 2018.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[9] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

141

Bibliography

[10] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. A comprehensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 2020.

[11] Kairanbay Magzhan and Hajar Mat Jani. A review and evaluations of shortest
path algorithms. Int. J. Sci. Technol. Res, 2(6):99–104, 2013.

[12] Richard Bellman. On a routing problem. Quarterly of applied mathematics,
16(1):87–90, 1958.

[13] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

[14] Uwe Schöning. Graph isomorphism is in the low hierarchy. In Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 114–124. Springer,
1987.

[15] Brendan L Douglas. The weisfeiler-lehman method and graph isomorphism
testing. arXiv preprint arXiv:1101.5211, 2011.

[16] Stephen G Hartke and AJ Radcliffe. Mckay’s canonical graph labeling algo-
rithm. Communicating mathematics, 479:99–111, 2009.

[17] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[18] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM (JACM), 19(2):248–
264, 1972.

[19] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–
50, 1956.

[20] Robert Clay Prim. Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36(6):1389–1401, 1957.

[21] Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen
Chang, Jie Fu, Jure Leskovec, and Doina Precup. When do graph neural net-
works help with node classification? investigating the homophily principle on
node distinguishability. Advances in Neural Information Processing Systems,
36, 2024.

[22] ChunYan Meng and Hooman Motevalli. Link prediction in social networks us-
ing hyper-motif representation on hypergraph. Multimedia Systems, 30(3):123,
2024.

142

Bibliography

[23] Bingjun Li and Sheida Nabavi. A multimodal graph neural network framework
for cancer molecular subtype classification. BMC bioinformatics, 25(1):27,
2024.

[24] Max Welling and Thomas N Kipf. Semi-supervised classification with graph
convolutional networks. In J. International Conference on Learning Represen-
tations (ICLR 2017), 2016.

[25] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec.
Graphrnn: Generating realistic graphs with deep auto-regressive models. In
International conference on machine learning, pages 5708–5717. PMLR, 2018.

[26] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of
small graphs using variational autoencoders. In Artificial Neural Networks and
Machine Learning–ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27,
pages 412–422. Springer, 2018.

[27] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2008.

[28] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. Computational capabilities of graph neural networks.
IEEE Transactions on Neural Networks, 20(1):81–102, 2008.

[29] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[30] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Syncspeccnn: Synchro-
nized spectral cnn for 3d shape segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 2282–2290, 2017.

[31] Xian-Hua Han, Boxin Shi, and Yinqiang Zheng. Ssf-cnn: Spatial and spectral
fusion with cnn for hyperspectral image super-resolution. In 2018 25th IEEE
International Conference on Image Processing (ICIP), pages 2506–2510. IEEE,
2018.

[32] Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-
based graph convolutional network for directed graphs. In 2018 IEEE Data
Science Workshop (DSW), pages 225–228. IEEE, 2018.

[33] Derek Allan Holton and John Sheehan. The Petersen Graph, volume 7. Cam-
bridge University Press, 1993.

[34] Juergen Schmidhuber. Annotated history of modern ai and deep learning. arXiv
preprint arXiv:2212.11279, 2022.

143

Bibliography

[35] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In Advances in neural information processing systems,
pages 1024–1034, 2017.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[37] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[38] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on
machine learning, pages 2083–2092. PMLR, 2019.

[39] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar
Veličković. Principal neighbourhood aggregation for graph nets. Advances in
Neural Information Processing Systems, 33:13260–13271, 2020.

[40] Lucas Lacasa, Bartolo Luque, Fernando Ballesteros, Jordi Luque, and Juan Car-
los Nuno. From time series to complex networks: The visibility graph. Proceed-
ings of the National Academy of Sciences, 105(13):4972–4975, 2008.

[41] Lynne Billard and Edwin Diday. Regression analysis for interval-valued data. In
Data Analysis, Classification, and Related Methods, pages 369–374. Springer,
2000.

[42] Eufrasio de A Lima Neto, Francisco AT de Carvalho, and Camilo P Tenorio.
Univariate and multivariate linear regression methods to predict interval-valued
features. In Australasian Joint Conference on Artificial Intelligence, pages 526–
537. Springer, 2004.

[43] Jeongyoun Ahn, Muliang Peng, Cheolwoo Park, and Yongho Jeon. A resam-
pling approach for interval-valued data regression. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 5(4):336–348, 2012.

[44] L Billard and E Diday. Symbolic data analysis: Conceptual statistics and data
mining john wiley, 2006.

[45] Benjamı́n René Callejas Bedregal and Adriana Takahashi. The best inter-
val representations of t-norms and automorphisms. Fuzzy Sets and Systems,
157(24):3220–3230, 2006.

[46] Soma Dutta, Benjamı́n RC Bedregal, and Mihir Kr Chakraborty. Some instances
of graded consequence in the context of interval-valued semantics. In Indian
Conference on Logic and Its Applications, pages 74–87. Springer, 2015.

144

Bibliography

[47] Tomasa Calvo, Anna Kolesárová, Magda Komornı́ková, and Radko Mesiar. Ag-
gregation operators: properties, classes and construction methods. In Aggrega-
tion operators, pages 3–104. Springer, 2002.

[48] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[49] Qingshan Liu, Jun Wang, and Finite-Time Convergent Recurrent Neural Net-
work. With a hard-limiting activation function for constrained optimization with
piecewise-linear objective functions. IEEE Transactions on Neural Networks,
22(4):601–613, 2011.

[50] Bernardo Llanas, Sagrario Lantarón, and Francisco J Sáinz. Constructive ap-
proximation of discontinuous functions by neural networks. Neural Processing
Letters, 27(3):209–226, 2008.

[51] Antonio Muñoz San Roque, Carlos Maté, Javier Arroyo, and Ángel Sarabia.
imlp: Applying multi-layer perceptrons to interval-valued data. Neural Pro-
cessing Letters, 25(2):157–169, 2007.

[52] Kangjie Li, Yixiong Feng, Yicong Gao, and Jian Qiu. Hierarchical graph at-
tention networks for semi-supervised node classification. Applied Intelligence,
50:3441–3451, 2020.

[53] Ling Chen, Jun Cui, Xing Tang, Yuntao Qian, Yansheng Li, and Yongjun Zhang.
Rlpath: a knowledge graph link prediction method using reinforcement learn-
ing based attentive relation path searching and representation learning. Applied
Intelligence, pages 1–12, 2021.

[54] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with
jumping knowledge networks. arXiv preprint arXiv:1806.03536, 2018.

[55] Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier
Corporation, 2001.

[56] Geng Li, Murat Semerci, Bulent Yener, and Mohammed J Zaki. Graph classi-
fication via topological and label attributes. In Proceedings of the 9th interna-
tional workshop on mining and learning with graphs (MLG), San Diego, USA,
volume 2, 2011.

[57] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1365–1374, 2015.

[58] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J
Shusterman, and Corwin Hansch. Structure-activity relationship of mutagenic

145

Bibliography

aromatic and heteroaromatic nitro compounds. correlation with molecular or-
bital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–
797, 1991.

[59] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. Protein function prediction
via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

[60] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and
Christoph Helma. Statistical evaluation of the predictive toxicology challenge
2000–2001. Bioinformatics, 19(10):1183–1193, 2003.

[61] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowledge and In-
formation Systems, 14(3):347–375, 2008.

[62] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 177–187, 2005.

[63] Anshumali Shrivastava and Ping Li. A new space for comparing graphs. In 2014
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2014), pages 62–71. IEEE, 2014.

[64] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[65] Fei Yang, Huyin Zhang, and Shiming Tao. Simplified multilayer graph convo-
lutional networks with dropout. Applied Intelligence, pages 1–16, 2021.

[66] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector ma-
chines. ACM transactions on intelligent systems and technology (TIST), 2(3):1–
27, 2011.

[67] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[68] Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. Hierarchical message-passing
graph neural networks. arXiv preprint arXiv:2009.03717, 2020.

[69] Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou
Huang, Nitesh Chawla, and Zhenhui Li. Graph few-shot learning via knowl-
edge transfer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 6656–6663, 2020.

[70] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can
gcns go as deep as cnns? In Proceedings of the IEEE International Conference
on Computer Vision, pages 9267–9276, 2019.

146

Bibliography

[71] Sebastian A Rios, Felipe Aguilera, J David Nuñez-Gonzalez, and Manuel
Graña. Semantically enhanced network analysis for influencer identification
in online social networks. Neurocomputing, 326:71–81, 2019.

[72] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 855–864, 2016.

[73] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec:
Learning node representations from structural identity. In Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 385–394, 2017.

[74] Massimo Marchiori and Lino Possamai. Micro-macro analysis of complex net-
works. PloS one, 10(1):e0116670, 2015.

[75] Otmar Ertl. Probminhash–a class of locality-sensitive hash algorithms for the
(probability) jaccard similarity. IEEE Transactions on Knowledge and Data
Engineering, 2020.

[76] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[77] Kim Dong-Young, Pengcheng Zhu, Xiao Wenli, and Lin Yen-Ting. Customer
degree centrality and supplier performance: the moderating role of resource
dependence. Operations Management Research, 13(1-2):22–38, 2020.

[78] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[79] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[80] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning con-
volutional neural networks for graphs. In International conference on machine
learning, pages 2014–2023, 2016.

[81] Xiwang Yang, Yang Guo, Yong Liu, and Harald Steck. A survey of collaborative
filtering based social recommender systems. Computer communications, 41:1–
10, 2014.

[82] Eytan Adar and Lada A Adamic. Tracking information epidemics in blogspace.
In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence
(WI’05), pages 207–214. IEEE, 2005.

147

Bibliography

[83] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in-
fluence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 137–
146, 2003.

[84] Parham Moradi and Sajad Ahmadian. A reliability-based recommendation
method to improve trust-aware recommender systems. Expert Systems with Ap-
plications, 42(21):7386–7398, 2015.

[85] Meeyoung Cha, Fabrı́cio Benevenuto, Hamed Haddadi, and Krishna Gummadi.
The world of connections and information flow in twitter. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(4):991–998,
2012.

[86] Mario Cataldi and Marie-Aude Aufaure. The 10 million follower fallacy: audi-
ence size does not prove domain-influence on twitter. Knowledge and Informa-
tion Systems, 44(3):559–580, 2015.

[87] Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. In
Advances in neural information processing systems, pages 1257–1264, 2008.

[88] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec: social recom-
mendation using probabilistic matrix factorization. In Proceedings of the 17th
ACM conf. on Information and knowledge management, pages 931–940, 2008.

[89] Mohsen Jamali and Martin Ester. A matrix factorization technique with trust
propagation for recommendation in social networks. In Proceedings of the 4th
ACM conference on Recommender systems, pages 135–142, 2010.

[90] Tong Zhao, Chunping Li, Mengya Li, Qiang Ding, and Li Li. Social recom-
mendation incorporating topic mining and social trust analysis. In Proceedings
of the 22nd ACM international conference on Information & Knowledge Man-
agement, pages 1643–1648, 2013.

[91] Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. Social collaborative filtering
by trust. IEEE transactions on pattern analysis and machine intelligence,
39(8):1633–1647, 2016.

[92] Hao Ma, Irwin King, and Michael R Lyu. Learning to recommend with ex-
plicit and implicit social relations. ACM Transactions on Intelligent Systems
and Technology (TIST), 2(3):1–19, 2011.

[93] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. Rec-
ommender systems with social regularization. In Proceedings of the 4th ACM
international conference on Web search and data mining, pages 287–296, 2011.

148

Bibliography

[94] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web, pages 173–182, 2017.

[95] Wenqi Fan, Qing Li, and Min Cheng. Deep modeling of social relations for
recommendation. In Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18), pages 8075–8076. AAAI press, 2018.

[96] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional
matrix completion. arXiv preprint arXiv:1706.02263, 2017.

[97] Wenqi Fan, Tyler Derr, Yao Ma, Jianping Wang, Jiliang Tang, and Qing Li. Deep
adversarial social recommendation. arXiv preprint arXiv:1905.13160, 2019.

[98] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei
Yin. Graph neural networks for social recommendation. In The World Wide
Web Conference, pages 417–426, 2019.

[99] Junliang Yu, Min Gao, Hongzhi Yin, Jundong Li, Chongming Gao, and Qiny-
ong Wang. Generating reliable friends via adversarial training to improve so-
cial recommendation. In 2019 IEEE International Conference on Data Mining
(ICDM), pages 768–777. IEEE, 2019.

[100] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. A
neural influence diffusion model for social recommendation. In Proceedings of
the 42nd international ACM SIGIR conference on research and development in
information retrieval, pages 235–244, 2019.

[101] Manqing Dong, Lina Yao, Xianzhi Wang, Xiwei Xu, and Liming Zhu. Adver-
sarial dual autoencoders for trust-aware recommendation. Neural Computing
and Applications, pages 1–11, 2021.

[102] Wenqi Fan, Tyler Derr, Yao Ma, Jianping Wang, Jiliang Tang, and Qing Li.
Deep adversarial social recommendation. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, pages 1351–
1357. International Joint Conferences on Artificial Intelligence Organization, 7
2019.

[103] Bam Bahadur Sinha and R Dhanalakshmi. Dnn-mf: Deep neural network matrix
factorization approach for filtering information in multi-criteria recommender
systems. Neural Computing and Applications, pages 1–15, 2022.

[104] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. Neural attentional
rating regression with review-level explanations. In Proceedings of the 2018
World Wide Web Conference, pages 1583–1592, 2018.

149

Bibliography

[105] Chenhao Li, Jiyin Zhang, Amruta Kale, Xiang Que, Sanaz Salati, and Xiao-
gang Ma. Toward trust-based recommender systems for open data: A literature
review. Information, 13(7):334, 2022.

[106] Wanita Sherchan, Surya Nepal, and Cecile Paris. A survey of trust in social
networks. ACM Computing Surveys (CSUR), 45(4):1–33, 2013.

[107] Oumaima Stitini, Soulaimane Kaloun, and Omar Bencharef. Towards the de-
tection of fake news on social networks contributing to the improvement of trust
and transparency in recommendation systems: Trends and challenges. Informa-
tion, 13(3):128, 2022.

[108] Moon-Hee Park, Jin-Hyuk Hong, and Sung-Bae Cho. Location-based recom-
mendation system using bayesian user’s preference model in mobile devices.
In International conference on ubiquitous intelligence and computing, pages
1130–1139. Springer, 2007.

[109] Weiwei Yuan, Donghai Guan, Young-Koo Lee, Sungyoung Lee, and Sung Jin
Hur. Improved trust-aware recommender system using small-worldness of trust
networks. Knowledge-Based Systems, 23(3):232–238, 2010.

[110] Lajanugen Logeswaran, Honglak Lee, and Dragomir Radev. Sentence order-
ing and coherence modeling using recurrent neural networks. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[111] Arnon Rungsawang, Komthorn Puntumapon, and Bundit Manaskasemsak. Un-
biasing the link farm effect in pagerank computation. In 21st International
Conference on Advanced Information Networking and Applications (AINA’07),
pages 924–931. IEEE, 2007.

150

	Introduction and Scope of the Thesis
	Introduction
	Graph - The Power of Connectivity
	Definitions
	Types of Graphs
	Common Graph Theoretic Problems and their Solutions
	Graph Problems and Traditional Algorithms
	Graph Algorithms using Machine Learning

	Graph Neural Networks: From Nodes to Knowledge
	Spectral Graph Neural Networks bronstein2017geometric
	Drawbacks of Spectral Approaches
	The Weisfeiler-Lehman Isomorphism Test: An Isomorphism Check for Graphs

	Spatial Graph Neural Networks
	Embedding Generation Approach of a Spatial GNN
	Some Widely Used GNN Models

	Scope of the Thesis
	Graph Classification on Homogeneous Graphs
	Handling Interval Valued Data in Graph Neural Network: IV-GNN dawn2023iv
	Graph Representation Learning based on Micro-Macro Analysis: GraMMy dawn2022grammy

	Link Prediction on Heterogeneous Graphs
	A Recommendation System Based On Social-Influence-aware Graph Embedding Approach: SInGER dawn2021singer

	User-Reliability-Aware Social Recommendation Framework based on Graph Neural Network dawn2023soura

	Handling Interval Valued Data in Graph Neural Network: IV-GNN
	Introduction
	Related Works and their Limitations
	Research Contribution

	Background And Definition
	Basic Mathematics of Intervals
	Aggregation Functions

	Theoretical Framework
	Proposed Framework: Interval-Valued Graph Neural Network (IV-GNN)
	AGGREGATE and UPDATE functions of IV-GNN
	Details of Updation Step
	Neural Architecture of IV-GNN

	Graph-Level READOUT function of IV-GNN
	Challenging Structures for agr0 and agre .
	Model Training
	Time and Space Complexity of Training the Embedding Generation Process of IV-GNN

	Experimental Results
	Datasets
	Results of Comparative Study on Model Performance
	Data Preparation
	Baselines

	Performance with Degenerate Interval: A Special Case of IV-GNN
	Baselines

	Parameter Settings
	Results and Discussion
	Training Set Performance
	Test Set Performance

	Runtime Comparison
	Empirical Study on Hyperparameter Setting

	Conclusion

	Graph Representation Learning Based on Micro-Macro Analysis: GraMMy
	Introduction
	Related Works and their limitations
	Research Contribution

	Proposed Framework: GraMMy
	Micro-Macro Analysis of the Graph Structure
	Significance of Micro-Macro Analysis

	Capturing Semantics through node Context Generation from Different Levels of Abstraction
	Significance of Context Generation

	Information Capturing of neighborhood using Flat Message Passing

	Experimental Results
	Datasets
	Experimental Settings
	Baselines Models
	Results and Discussions
	Graph Classification Performance
	Validation of Theoretical Findings

	Conclusion

	SInGER: A Recommendation System Based on Social-Influence-aware Graph Embedding Approach
	Introduction
	Related Works and their limitations
	Matrix Factorization (MF)-Based Recommender System:
	Neural Network (NN)-Based Recommender Systems:

	The Proposed Framework
	Problem Scenario
	An Overview of the Proposed Model: SInGER
	Item-category-Based Influence Estimation of a User in Social Networks
	Item-Category Specific Influence Propagation Graph Generation
	Influence Score of a User based on Item-Category

	Social-Influence-Aware Graph Embedding Generation
	User Embedding Generation
	Item Embedding Generation

	Rating Prediction Module

	Experimental Results
	Datasets
	Performance Metrics
	Parameter Settings
	Baselines
	Results and Discussion
	Results of Comparative Study on Model Performance
	Empirical Results for Different Parameter Settings

	Conclusion

	User-Reliability-Aware Social Recommendation Framework based on Graph Neural Network
	Introduction
	Motivation
	Contributions

	Related Works and their limitations
	SoURA: A User-Reliability-Aware Social Recommendation System based on Graph Neural Network
	User-Reliability Modeling
	Sequence-to-Sequence Encoder-Decoder Architecture
	Motivation behind the use of Sequence-to-Sequence Encoder-Decoder Architecture
	User-Reliability Value Generation

	User Embedding Generation
	Item Embedding Generation
	Rating Prediction
	Limitation of SoURA

	CateReR: A Graph Neural Network-based Model for Category-wise Reliability-aware Recommendation
	Experimental Results
	Datasets
	Performance Metrics
	Parameter Settings
	Baselines
	Results and Discussions
	Results of comparative study on model performance
	Ablation Study for User-Reliability Module
	Empirical Study on Effect of Different User-Reliability Computation Strategy

	Conclusion

	Conclusions and Future Scope of Research
	Research Contribution
	Limitations and Future Scope

	Bibliography

