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SUMMARY

Empirical Bayes procedure is employed in simultaneous estimation of vector parameters [rom a number
of Gauss-Markoff linear models. It is shown that with respect to quadratic loss flunction, empirica) Bayes
estimators are better than least squares estimators. While estimating the parameter for a particular linear
model, a suggestion has been made for distinguishing between the loss due to decision maker and the loss
due to individual. A method has been proposed but not fully studied to achieve balance between the two
losses. Finally the problem of predicting future observations in a linear model has been considered.

1. INTRODUCTION
We consider k linear models
Y, =XB. +¢e,7=1,-,k (L)

where Y, is an n-vector of observations, X is a known n X m matrix, and 8, is an m-vector
and ¢, is an n-vector of unobservable random variables. We assume that

E(e;|8) = 0,D(. | 8) = o'V (1.2)
E@) =8 D@) =F,cov(B,B)=0,¢5j (1.3}

(In (1.2) and (1.3), operator E stands for expectation and D for dispersion, i.e., variances
and covariances.) The following problems will be considered.

1. Simultaneous estimation of p'§,, ¢ = 1, -+ - , k, where p is any given vector. We note
that the problem of estimating 8, is the same as that of estimating a general linear function
p’8. . If we use the criterion of minimum mean square error (MSE) in estimating p’B. , we
automatically obtain estimate of §, with a minimum mean dispersion error matriz (MDE).

Such a problem of simultaneous estimation arises in the construction of a selection
index for choosing individuals with a high intrinsic genetic value. For instance, 3, may
represent unknown genetic parameters and Y. are observable characteristics on the ith
individual, while p’8. for given p is the genetic value to be estimated in terms of observed
Y. . Early examples of such estimation (which may be called empirical Bayes) by comput-
ing the regression of p’8; on Y. (suggested by R. A. Fisher) is due to Fairfield Smith {1936]
and Panse (1946). A detailed study of this problem from a decision theoretic view point
with an estimated prior distribution of 8. is given by Rao [1953]. Some applications are
given in Rao [1952, 1953).

Interest in the problem of simultaneous estimation of parameters was revived by
James and Stein {1961]. They showed that individual unbiased estimators of unrelated
scalar parameters can be uniformly improved with respect to a quadratic loss function.
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Research in this direction is being pursued by Effron (1974] and Effron and Morris (1972,
1973a, 1873b). A slight modification of the James-Stein estimator is given in Rao [1974b] and
the caution required in using such estimators is discussed in Rao [1974a].

Recently a number of authors considered this problem (see, e.g., Lindley and Smith
[1972], Smith {1973] and Swamy [1970] and the references given in their papers). Lindley
end Smith [1972) use Bayesian methods assuming suitable prior distributions. We shall
review some of these methods in section 2, but our emphasis will be more on empirical
Bayes procedures es discussed in Rao (1952, 1953, 1965, 1973] leading to the James-Stein
type of estimators.

2. Suppose we have a (k + 1)th linear model in addition to the past k linear models
(D,

Yiir = Xfoor + 1 (1.4)
and the parameter to be estimated is only p’Gi.,, the parameters p'3,, --- , p8s being
no longer of interest. Do the observations Y, , -+ -, Y, in (1.1) obtained in the past contain

information on the curren! parameler B.,,? If 80, how can they be used in addition to Y.,
for estimating p'Gu..?

A problem of this type was mentioned and solved in a simple case by the author in
recent papers (Rao[1974a, 1974b]). Individuals are continuously observed from a popula-
tion and on each individual measurements are obtained, such as blood pressure which are
subject to error. In such a case an observation y, on the ith individual has the structure

=8+« (1-5)

where 8, is the true value and ¢ is the error such that E(¢; | 8;) = Oand V(e | 8,) = o”
The object is to estimate 8, , the true value for the ith individual currently under observa-
tion. Estimation of true values for individuals observed in the past may not be of current
interest, but the observations on these (¢ — 1) individuals may be useful in estimating the
current parameter 8, . The problem posed in (1.4) is an extension of the simpler problem
considered in Rao [1974b].

3. Suppose that in the (k + 1)th model, only the first (n — r) components of the vector
Y.., have been observed. How can the last r component of Y,., be predicted on the basis
of the past observations Y,, -+, Y, and (» — r) components of Y,., observed on the
current (¢ + 1)th individual?

Such a problem arises in prediction of growth. For instance, the components of Y, may
represent the heights of the ith individual observed at n points of time and Y, has the
structure (1.1) with §, as a parameter specific to the ith individual. We have records of
observed heights at n points of time on each of k individuals and for the first (n — r) points
of time on a (k + 1)th individual. How can all the available data be used to predict the
heights of the (k + 1)th individual at the last r time points.

The problem of prediction of growth has been extensively studied by Geisser [1970,
1971, 1974), Lee and Geisser (1972, 1973), Lee [1972) and others. These authors examine a
wide variety of prediction procedures and compare their relative efficiencies. Of course, the
success of any method depends on the validity of an assumed growth model. A broad con-
clusion that has emerged from various studies is that growth curves are highly individual-
istic in nature and data on completed growth curves of individuals observed in the past
may not contribute very much to the efficiency of prediction of growth in future cases.
This is somewhat disturbing. In the present paper we consider the problem of prediction
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under a general linear model and obtain some results to supplement those of Geisser and
Lee.

We use the following notations and results throughout the paper.

Consider a linear model

Y=Xg+¢ (1.6)

where § is an m-vector of unknown parameters and E(e) = 0, D(e) = ¢"V. To avoid some
complications, let us assume that V is nonsingular and rank of X is m.

The least squares estimator of § is

g = (XV'X)'XVT'Y [6%))
and a ridge regression estimator of § is
8 = (G + XVI'X)"'XV'Y (1.8)

form some chosen non-negative (positive or positive semi) definite matrix G. (Ridge re-
gression estimator was introduced by Hoel and Kennard [1970a, 1970b] in the special case
V = I with the particular choice G = kL) It may be noted that

o(n = To(” (1.9)

where T = (G + X'V'X)"'X'V7'X has all its latent roots less than unity if G is not the
null matrix. The following matrix identities, which are well known and quoted in Smith
[1973] will prove useful:

(V+ XFX')"' = V' - V'XX'V'X + Fy'Xv™? (1.10)
V+XF)"'' =V'—V'XI+ FV'X)"'FV™' (1.11)
V+FR ' =V =VY(V'+FYy'v! (1.12)

(See also Rao [1973] p. 33).
We shall say that matrix A is larger than matrix B if A — B is non-negative definite.

2. ESTIMATION OF PARAMETERS FROM DIFFERENT LINEAR MODELS
Let us consider % linear models

Y. =X +e,i=1,- k& 2.1)

as mentioned in (1.1) with
Ee [8) =0, D(|g) =0V (2.2)
Eg)=86  D@)=F (2.3)

where X and V are known matrices with full rank. We shall find a linear function a, + a,’Y:
such that

EQ@G — a—a'Y) 2.9)

is a minimum for given p. The problem as stated is easily solvable when ¢°, § and F are
known (see e.g., Rao (1965, 1973] section 4a.11, Lindley and Smith [1972]). We shall review
known results and also consider the problem of estimation when ¢*, § and F are unknown
but can be estimated.
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2.1 Case 1 (¢", B and F are known)

Theorem 1: The oplimum eslimalor of p'B: in the sense of (2.4) is p'B.‘"’ where §,*
can be wrilten in the following allernative forms (where U = (X'V7'X)™)

8 = ¢ + FX'(XFX’ + o'V)"'(Y, — X0) (2.5)
=8+ (@'F' + U)'X'V'(Y, — Xp) (2.6)
= ('F + U F G + @7
= §+ F(F + 703" — 0 239
= ¢UF + <'U)"'$ + F(F + #U)'g," 29
=" = SUF + V'3 — 0). (2.10)

where §,"" 18 the ridge regression estimator as defined tn (1.8) with G = o’F~". The prediction
error is p'Qp where

Q =dEF'+U0")! @.11)
= 'F(F + o'U)"'U (2.12)
= ¢'(U — 'U(F + +'0)"'0). (2.13)

Some of the results are proved in section 4a.11 of Rao [1965, 1973] and others can be
easily deduced using the identities (1.10)-(1.12). We shall refer to §.'*’ as the Bayes esti-
mator of §, with parameters of its prior distribution as defined in (2.3). We make the fol-
lowing observations.

Note 1: Barnard [1974] has noted in a recent paper that the ridge regression estimator
(1.8) originally defined with V = I and G = k’I is Bayes estimator when the prior distribu-
tion of the regression parameter has 0 (null vector) as the mean and o*k’I as the dispersion
matrix. More generally, we find from (2.7) that the ridge regression estimator as defined
in (1.8) is Bayes estimator when the mean and dispersion matrix of prior distribution are
the null vector and ¢°G™", respectively.

Nole 2. The Bayes estimator of §, is a weighted linear combination of its least squares
estimator and the mean of its prior distribution.

Note 8: The estimator §;' as defined in Theorem 1 is optimum in the class of linear
estimators. However, it is optimum in the entire class of estimators if the regression of
§. on Y, is linear. A characterization of the prior distribution of §, is obtained in Rao
[1974b] using the property that the regression of §; on Y, is linear.

Note 4: The matrix

E(O,“’ - 5:)(0:"’ - 0:)' - E(Gs"’ - g‘)(g‘m - 0:)’ (2.14)

is non-negative definite. Of course, Bayes estimator has the minimum MDE compared to
any other linear estimator.

Thus when ¢”, ¢ and F are known, p’g, is estimated by p’,*"’ fori = 1, -.- , k and the
compound loss

E Y (0% — 8" (2.15)

is minimum compared to any other set of linear estimators. We shall consider the modifica-
tions to be made when o*, §, F are unknown.
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Note 5: It may be noted that for fixed 8, , the expected value of (2.14) may not be
non-negative definite. Indeed, as shown later in section 3, the optimality of Bayes estimator
over the least squares estimator is not uniform for all values of @, . It is true only for a
region of @; such that ||¢; — Bl , the norm of 3, — @ where § is the chosen prior mean
of @, , is less than a preassigned quantity depending on ¢°, F and U.

2.2 Case £ o*, 3, and F are unknown)

When o°, § and F are unknown, we shall substitute for them suitable estimates in the
formulae (2.5)-(2.10) for estimating §; . The following unbiased estimates ¢,? @, , and
F, of ¢*, B and F are well known.

kg, = .Z 8" (2.16)
k(n — m)o,” = imv-'v‘ — Y/VXG) = W 217
k — DF, +,0) = Z|Z 6" -8)6'" —8,) =B (2.18)

Substituting constant multiplies of these estimators for ¢°, § and F in (2.10) we obtain the
empirical Bayes estimator of pg. as p’g.‘"’ e

where 8, is
6: = 6" — cWOBT'(0.Y — 0,0 =1, -+, &, (2.19)
with¢ = (k — m — 2)/(kn — km + 2) as determined in (2.30).
Theorem 2: Lel 8, and ¢, have multivariate normal distributions in which case W and
B are independently distributed with
W ~ o’x"(kn — km) (2.20)
B~ W.k—1,F + ¢'0) (2.21)

i.e., a8 chi-square on k(n — m) degrees of freedom and Wishart on (k — 1) degrees of freedom,
respectively. Then

E X0 - 000 - 0y = ey — TREZmEC S 2YE + /)0 (229

for the optimum choice c = (k — m — 2)/(kn — km + 2) in (2.19) provided k > m + 2.
Consider

TG - 06 - 8)
= 2@ - 86" ~ 8 + CWUB'T — 2%WU
+ W Z‘: 6:6:'" — 8,)'B™'U + cWUB™' Z 6 — 8,8/ . (2.23)
Let us observe that

EW) = kin — m)e®, E(W?) = k(n — m)(kn — km + 2)¢* 2.24)
EB ) =(k—m—-2'(F +0)" (2.25)
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E ; 6.(3:"" — 8B = F(F + '0)* (2.26)
EB").: 6" - 8,8 = (F + J/U)'F. (2.27)
Then (2.23) reduces to
k'O + o*yU(F + ¢'0U)"'0 (2.28)
where
'L(n — m)kn — km + 2) — 2ck{n — m). (2.29)
k—m-—2
The optimum choice of ¢ in (2.29) is
=(k—m—2)/tkn — km + 2) (2.30)

which leads to the value (2.22) given in Theorem 2.

Note 1@ The results of Theorem 2 are generalizations of the results in the estimation
of scalar parameters considered in an earlier paper of the author Rao [1974b].

Nole 2: The expression (2.22) for the compound loss of empirical Bayes estimators is
somewhat larger than the corresponding expression for Bayes estimators, which is k times
(2.2), and the difierence is the additional loss due to using estimates of ¢*, § and F when
they are unknown.

Note 3: If B, is estimated by §.'”’, then the compound MDE is

E ; @ — 6@ — 8. = k'O (2.31)

and the difference between (2.31) and (2.22), the MDE for empirical Bayes estimator, is

o*k(n — m}tk — m — 2) -
T M- m+z U(F + 4'0)"'0 (2.32)

which is non-negative definite.

Thus the expected compound loss for the estimation of p’B;, i = 1, --- | k, is smaller
for the empirical Bayes estimator than for the least squares estimator.

Note 4: It may be easily shown that the expectation of (2.23) for fixed values of
B, -, Bu is smaller than ko’U, as in the univariate case (Rao, 1974b). Thus the empirical
Bayes estimators (2.19) are uniformly better than the least squares estimators without
any assumption on the priori distribution of 8, . The actual expression for the expectation
of (2.23) for fixed §,, - - - , 8. has been worked out by C. G. Khatri in the form

o*tk — m — 2%k(n — m) .
k(n — m) + 2 E(UB™'D)

ko’U —

which gives an indication of the actual decrease in loss by using empirical Bayes esumators

Note 5: In the speclﬁcauon of the linear models we have d that the disp
matrix {(¢°V) of the error vector is known apart from a constant multiplier. If V is unknown,
it cannot be completely estimated from the observations Y,, --- , Y, alone. However, if
V has a suitable structure, it mey be possible to estimate it. Such problems will be considered
in a later paper.
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2.3 Estimation under different ptions on linear model

Let us consider k linear models
Y= X +e,i=1--- k (2.33)
where X; = n, X m matrix and
E@ |8) =0, Dl |g)=0a'V,, (2.34)
E@)=06  D@)=F. (2.35)
If o.”, § and F are known, then the optimum estimate of B, is, using formula (2.10),
6 = 8" — o 'UF + ¢V (3" - 6 (2.36)
where
8 = (XY, X)XV, U = (XOVUX)T (2.37)

The prediction error is
¢’U: — o.'U(F + 0'U) 00 (2.38)

If ¢,%, § and F are unknown, we may use suitable estimates and substitute them in
(2.36) to obtain empirical Bayes estimates,

6. = 6" — 0, )U(F, + 0, V)G — B,). (2.39)
The following estimates are suggested,
(n, — m)a‘,’ =YV Y, - Y/VI'XpMi=1, -,k (2.40)
b=+ X" (2.41)
(k—DF, +,"'T00,)=B=2 @"-80" —-6,) (242
¢k —DF, =B — (k— 1)k Y Ug,° (2.43)

The computation of the prediction error for (2.39) is complicated.

3. ESTIMATION OF PARAMETERS FOR CURRENT INDIVIDUAL

We consider the same set up of k linear models as given in (2.1)-(2.3) and a (k + 1)th
linear model of the same type

Y = XBinr + sy . 3.1)

Our object is to estimate only the current parameter p’,., using Y,,, and the past observa-
tions Y, , - -+, Y. The estimation of p'§, ,7 = 1, - - , k, associated with the past observa-
tions Y,, --- , Y, are no longer of interest.

If §,., is considered as a random variable with E(@,.,) = § and D(Bs.,) = F, then the
Bayes estimator is p’fu.."’ where, using the formula (2.10),

Gin™ = Gt — FUF + TG — §). (3.2)

When ¢*, 3 and F are unknown, we substitute their estimates obtained from the past
observations ¥Y,, -+, Y, using the formulae (2.16)-(2.18) and compute the empirical
Bayes estimator
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Banr = Gans® — WB ' (Buer™ — 8,) (3.3)

wherec = (k — m — 2)/(kn — km + 2). An alternative is to use the least squares esti-
mator @,,"" ignoring the previous observations, Y,, -+, Y,.
If Bu.. is the true value, then the MDE matrix for the empirical Bayes estimator (3.3) is

o'U — 2ca’WUB™'U + 'W’UB ™' (3%’ + «’U)B™'U (3.4)

where 8 = (.. — @, , while that for the least square estimator is ¢"U. The ezpecled value
of (3.4) over all possible 5 is likely to exceed ¢’U depending on how close the estimates W
and B™' are to their expected values. But for large individual velues of 58’, the expression
(3.4) will exceed ¢°U indicating higher loss for empirical Bayes estimator in individual cases.
Such a phenomenon involving higher loss due to underestimation when parameter value
is large, and overestimation when parameter value is small, and possible dangers in using
Bayes estimators in & routine way were noted in an earlier paper of the author Rao [1974b]
while discussing the univariate case.

From a decision maker's viewpoint, the estimator (3.3) is probably the best in the
sense of minimising quadratic loss, but for an individual whose ‘intrinsic value’ is being
assessed, the estimator (3.3) may not do full justice, éspecially when the intrinsic value

N hlfg(:'. a given estimator g(Y,, - -+, Y4,)) of p’fas., there are two expressions of loss, one
relevant to a decision maker
BB~ )" | Yu, -+, Yuul] (3.5)
and another concerning an individual
E[(g - P'0lc|)= | ghl]- (3.6)

The decision theory, as developed in statistical literature, ignores the individual aspect and
minimises the expression (3.5), thus achieving a minimum over all loss. Perhaps one should
see to what extent an individual could be protected by increasing the overall loss. In the
present example it is worth examining whether it is possible to choose an alternative esti-
mator g defined by
g=p6ha'” i PR <d (3.7)
=pBn' i [pBen | > d 3.8)
where d is suitably determined. The consequences of such a decision rule aimed at providing
a suitable balance between the expected loss to the decision maker and the loss to an in-
dividual can be easily worked out. Some numerical values will be given in a forthcoming
paper.

Note1: In (3.3), we used the estimates of ¢, § and F based on past observa-
tions Y,, -+, Y,. We could, indeed, use the current observation Y,,, also and obtain
updated estimates of ¢*, §, F, using the formulae (2.16)-(2.18) with & + 1 instead of k,
for substitution of unknown values in (3.2). The empirical Bayes estimator so obtained may
be better than (3.3) although the expression for its variance would be complicated.

4. PREDICTION OF A FUTURE OBSERVATION

As in section 3, we have (k + 1) linear models, except that the last component y, of
Y..: i8 not available and has to be estimated (predicted). Let us first suppose that o', §
and F are known and consider the partitioned matrices
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el w

where V1 is (n — 1) X (n — 1) matrix u, is the vector of the first n — 1 components of
Yior and X; is (n ~ 1) X m matrix. Let us define

vV, v

v w

V=

V= (X,/V,'X,)"'X' V.Y, U, = (X,V,'X)™ 4.2)
Theorem 3; When o', § and F are known, the regression (Vinear prediclor) of y, on Y, i
X8 + (XFXy + o'V)(X.FX + V)" (Y, — X,0) 4.3)

and the prediction variance 18

dw + LFX, - (XFX’ + o)(XFX’ + V) (XFXY + o).  (44)

The results (4.3) and (4.4) are obtained on standard lines. These expresaions do not in-
volve Y, , -+, Y,.

When ¢°, § and F are not known, their estimates can be obtained based on Y, , - -, Y,
a8 in (2.16)-(2.18) and substituted in (4.3). In such a case the prediction error will be
larger than (4.4) depending on how close the estimates of o*, § and F are to their true values.

If the problem is simultaneous prediction of the last r components y.—,4:, *+* , ¥a of
Yi+1, then we consider partitions asin (4.1) withV, a8 (n ~r) X (n — r)andwasr X r
matrices, u, as the vector of the first (» — r) components and u, of the last r componenta
of Y,,,and X, as (n — #) X m matrix. With V., v, w, X, and X, sv defined, the formula
(4.3) provides best predictors of u, , the vector of last r components of Y,,, and the formula
(4.4) represents the mean dispersion error matrix.

ESTIMATION SIMULTANEE DES PARAMETRES DANS DIFFERENTS MODELES
LINEAIRES ET APPLICATION A DES PROBLEMES BIOMETRIQUES

RESUME
Une procédure de Bayes irique est employée dans l'estimation simuitante de de param-
&tres pour un certain nombre de modéles linéaires de Gauss-Markoff. On montre que les estimateurs de Bayes
sont meilleurs que ceux des moindres carrés par rapport 4 la fonction de perte drati En esti

le paramstre d’un modéle linéaire particulier, on fait ls suggestion de distinguer la perte propre au décideur
et celle propre & I’individu. On propose une methode sans I'étudier complétement qui réalise I'équilibre entre

ces deux partes. On idere enfin le probl de la prédiction d’observations futures dans le modéle
lintaire.
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