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Abstract
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Unified Framework for Pointwise Explainable Information Retrieval

by Harsh Agarwal

As Machine Learning (ML) models become increasingly sophisticated and opaque,
the necessity for explainability to ensure transparency and accountability in
their applications grows. Despite numerous proposed methods for explaining
these complex models, there remains a lack of a unified framework that en-
compasses these approaches for comprehensive experimentation and analysis.
This thesis introduces “ir_explain”, an integrated Python module that con-
solidates various explainability techniques specifically for Information Retrieval
(IR). While the entire module represents a collaborative effort, my focus has
been on the implementation and analysis of Pointwise explanations. By consoli-
dating these methods into a single package, ir_explain simplifies their applica-
tion and facilitates robust analysis. Through a series of experiments, this thesis
showcases the module’s practicality and effectiveness, contributing to the de-
velopment of more transparent and interpretable ML models in the IR domain,
with a primary focus on Pointwise explanations.
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Chapter 1

Introduction

Machine Learning (ML) models have become exceedingly advanced and com-
plex, often reaching scales of billions of parameters, that render them incom-
prehensible to human understanding. These sophisticated models are typically
perceived as “black boxes” where the internal decision-making processes are
opaque and difficult to interpret. Despite this, such models are increasingly de-
ployed in critical applications ranging from healthcare to finance, necessitating
a higher level of transparency, regulation, and accountability.

With these concerns in mind, this thesis focuses on one specific domain: Infor-
mation Retrieval (IR). We begin by briefly introducing IR and formally defining
key Explainable IR (ExIR) concepts in this chapter. In Chapter 2, we delve into
Pointwise Explanations in greater detail. Chapter 3 presents the ir_explain
library, which we developed to integrate various explainable IR techniques into
a single Python module. In Chapter 4, we demonstrate the ease of use of this
module and conduct experiments using Pointwise explainability techniques. Fi-
nally, Chapter 5 concludes the thesis by summarizing the key points discussed
and offering suggestions for future research directions.

1.1 Information Retrieval

Information Retrieval (IR) is a field of computer science focused on obtaining
relevant information from large collections of data, such as databases, the in-
ternet, or digital libraries. It involves developing algorithms and systems that
search, filter, and rank information based on user queries, ensuring efficient
access to pertinent data. Information Retrieval permeates every part of our
lives today by enabling seamless access to relevant information across various
digital platforms, from search engines and social media to streaming services
and online shopping. For example, platforms like Spotify and YouTube leverage
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IR [9, 11, 3] to enhance user experience through efficient search functionalities
and personalized content recommendations. By analyzing user behavior, pref-
erences, and query patterns, these platforms deliver tailored playlists and video
suggestions, improving user satisfaction, engagement, and content discovery.

1.2 Explainable Information Retrieval

Given how ubiquitous IR has become, it becomes important to take a step back
and understand how the underlying models work. Is the data used to train
the models fair and unbiased? Are the incentives of the people providing the
aforementioned services aligned with those who are using them?

To understand the importance of the former, let us think of job searching plat-
forms, where CVs or resumes are often deemed relevant or “fit” for a particular
job using IR techniques. It’s necessary to know that the models make such a de-
cision based on skills and metrics relevant for the job instead of some underlying
social or economic bias [10].

Commercial incentives can significantly affect Information Retrieval (IR) by
prioritizing content that maximizes user engagement and click-through rates,
often at the expense of relevance and quality. Algorithms may be tuned to
favor ads or sponsored content, leading to a biased ranking of search results and
recommendations. This can result in users being presented with commercially
driven content rather than purely relevant information, potentially diminishing
the user experience.

This forms a strong basis for the need for Explainable Information Retrieval.
When other incentives influence IR systems, it becomes crucial to have trans-
parency in how search results and recommendations are generated. Explain-
able IR can help users understand why certain content is prioritized, ensuring
that the system’s decision-making process is clear and trustworthy. This trans-
parency can mitigate potential biases introduced by commercial interests.

Explainable Information Retrieval also aids model developers by revealing inher-
ent biases within algorithms and datasets. Through transparency in decision-
making processes, developers can identify and comprehend biases present in
data or introduced during training. This insight enables deliberate actions to
be taken to address biases, thereby promoting fairness and equality.
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1.3 Formalizing Explainable AI concepts

Interpretability can be defined as “the ability to explain or to present in un-
derstandable terms to a human” [4]. In literature, interpretability and explain-
ability are often used interchangeably. Thus, Explainable IR is the attempt
to make the workings of complex black box models used in modern IR more
understandable to a human.

Inherent interpretability: Certain IR models are naturally understandable
to humans. For example, it is easy for humans to understand how Decision
Trees generate outputs. The decision made for splitting at each internal node
can be tracked down to arrive at the final output. Sparse linear models, such as
Linear Regression are also considered inherently interpretable, since they model
linear relationships between input features and the output which is relatively
simple for a human to understand.

Global vs. Local interpretability: Global interpretability refers to the abil-
ity to understand the overall behavior or decision of an ML model. It aims
to provide insights into how the model makes decisions across all possible (or
most) inputs. Local interpretability focuses on understanding the model’s be-
havior for individual predictions or small regions of the input space. It provides
explanations for specific instances, explaining why the model made a particular
decision for a given input.

Model-agnostic explanations: Model-agnostic explanations provide insights
into the decision-making processes of machine learning models without requiring
access to their internal workings. They treat the model to be explained as a
black box, without making any assumptions about the model architecture or
parameters. These type of explanations are extremely useful when one does not
have access to the model itself, but only to the outputs produced by the model.
This is true in many real life applications, such as search engines, where the
users do not have access to the ranking model but only to the ranked results
provided by the search engine.

Post-hoc explanations: They primarily seek to explain the output generated
by an ML model, rather than explain the inner workings of the model. Post-hoc
explanations work by analyzing the relationship between the input features and
the output of the model after the model has been trained. They do not require
access to the internal architecture or the training process of the model.
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1.4 Standard paradigm in modern neural IR

In the general setting of Information Retrieval, users type in questions or key-
words, and the system searches through all available documents to find the ones
that best match the user’s query. The standard approach in modern Neural In-
formation Retrieval employs a two-stage process. Initially, a sparse retrieval
model like BM25 is used as the first stage (M1) to retrieve the top k documents
based on the given query Q. The value of k is selected to be significantly smaller
than the total number of documents in the collection. In the second stage (M2),
dense retrieval methods are then applied to re-rank this subset of k documents.
The first stage of the pipeline is considered to be inherently intrepretable in lit-
erature, as discussed. However, the second stage re-ranking by complex neural
models are often inscrutable.

Based on this paradigm, post-hoc ExIR attempts to explain the re-rankings
obtained by the dense retrieval models. Furthermore, post-hoc Explainable
IR can be broadly grouped into the following three categories, i) pointwise
explanations, ii) pairwise explanations, and iii) listwise explanations. Figure 1.1
shows these three explantion categories.

1.4.1 Pointwise explanations

Pointwise explanation considers a particular document and aims to explain the
document’s score (in terms of relevance to the query) or position in the list of
documents retrieved by the complex retrieval model, for the given query. In
this framework, each document is considered independently. Given a query Q,
let us consider that a document D was given a score Ds and retrieved at a rank
Dr by the complex model C. The pointwise explanation aim to explain why
the particular document D was retrieved at a rank r.

1.4.2 Pairwise explanations

Pairwise explanation considers a pair of documents and aims to explain why
one of the documents was given a higher score (in terms of relevance to the
query) or a higher position in the list of documents retrieved by the complex
retrieval model, than the other, for the given query.
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Figure 1.1: Three approaches of ExIR, namely, pointwise, pair-
wise and listwise explanations.

1.4.3 Listwise explanations

Listwise Explanations consider the entire ranked list of documents retrieved by
the complex ranking model C. Given a query Q, we aim to explain the ranked
list of top k documents retrieved by C.
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Chapter 2

Pointwise Explanations

2.1 Problem setting

Given a query Q, a document D, and a complex neural reranking model C,
our goal is to comprehend why the reranking model assigns a specific score
to this document. Alternatively, given a list of ranked documents, we seek to
understand why the reranking model assigns a particular rank to this document.

2.2 Baseline methods

In the survey for ExIR [13, 2], have shown several baseline methods for Pointwise
Explanations. We focus here on two of these popular methodologies.

2.2.1 Local interpretable model-agnostic explanations

Local model-agnostic interpretability techniques generate explanations for in-
dividual decisions by approximating the local behavior of a complex black-box
model with a simple linear model [12]. This is achieved by training the linear
model in an interpretable feature space using training data generated through
perturbations of the instance to be explained, constrained by locality, and query-
ing the black-box model for labels.

Consider a complex classifier C whose output we aim to explain for a specific
task on a given dataset. For each input instance d, we generate a set D0 consist-
ing of slightly perturbed versions of d. For instance, if d is a text document, D0

might be created by randomly deleting words from various positions in d. The
goal is to train a simple classifier S that closely approximates C’s behavior on
D0. Since no assumptions are made about C, S is model-agnostic. Moreover,
S is local because it replicates C’s behavior for the given instances. Generally,
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Figure 2.1: Schematic diagram of how LIME proposes to ap-
proximate the behaviour of a complex model locally via a set of

perturbed instances. Image from the LIME paper [12].

no claim is made about the similarity between C and S across the entire input
space of C.

Figure 2.1 shows the LIME framework schematically. The neural model has a
complex and non-linear decision boundary. For a given instance, perturbations
are made and labels are generated for these perturbations using the model. A
simple linear model is then trained to classify this generated dataset of per-
turbed instances.

2.2.2 Feature Attribution

Feature attribution is a technique used to determine the contribution of each
input feature to the predictions made by a machine learning model. It helps to
understand which features are most influential in the model’s decision-making
process.

Occlusion is a method used in feature attribution to understand the impor-
tance of individual features in a model’s prediction. In this technique, parts of
the input data are systematically masked or occluded, and the model’s output
is observed to see how it changes. By measuring the impact on the prediction
when a feature or group of features is occluded, one can infer the contribution
of those features to the model’s decision.
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2.3 Explainable Search (EXS)

EXS [15] is an adaptation of the previously discussed LIME methodology de-
signed to explain the output of a pointwise ranker for a given query. The main
challenge in LIME is obtaining labels for the perturbed documents. While this
task is straightforward for classification models, it is more complex for ranking
models. EXS proposes three methods to acquire these labels.

Consider a query q and let Dk
q be the set of top-k ranked documents provided

by the complex reranking model R. We need to determine whether a perturbed
document d0 is relevant to build a sparse linear model that locally approximates
the reranking model around the base document d 2 Dk

q .

Let X be a binary random variable indicating the relevance of d0 given the query
q. We aim to estimate

P (X = relevant|q, d0,R)

Top-k Binary: Here, we assume that P (X = relevant | q, d0, R) = 1 if R(q, d0)

exceeds R(q, d0k), where d0k is the k-th document in the list.

Score-based: In this scenario, we calculate P (X = relevant | q, d0, R) as:

1� R(q, d1)�R(q, d0)

R(q, d1)

where d1 is the top-ranked document in the list. If R(q, d0) � R(q, d1), P (X =

relevant) = 1.

Rank-based: Here, we consider the rank of d0 in Dk
q . If R(q, d0)  R(q, dk),

P (X = relevant) = 0. Otherwise, 1� rank(d0)
k , where rank(d0) is the rank of the

perturbed d0 in Dk
q .

2.4 LIRME

LIRME [17] is another adaptation of LIME but in this method, we do not
investigate ways of transforming document scores into class probabilities as in
the case of EXS above. The sparse explanation models can be trained directly to
predict the scores assigned by any ranking model, using the perturbed dataset.

By default, a Ridge regression model is fitted to the perturbed dataset, to
predict the relevance scores of the perturbed documents, for the given query.
The feature space is formed by the terms present in the document. Once the
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model is fitted, the coefficients obtained from the regression model form the
respective explanation scores of each term.
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Chapter 3

The ir_explain library

ir_explain [14] is an open-source Python library1 which incorporates several
established techniques for Explainable Information Retrieval. It encompasses
the standard categories of post-hoc explanations, including pointwise, pairwise,
and listwise explanations. My contribution to this library has focused on in-
tegrating the concepts of pointwise explainability discussed in earlier chapters.
This library equips users with multiple methods to generate pointwise explana-
tions, along with features for visualization and evaluation of these explanations.
Subsequent sections will explore the functionalities offered by the library, em-
phasising pointwise explanations.

3.1 Perturbed document generator

Perturbation and sampling is a key aspect of LIME, crucial for understanding
how models make specific predictions. The EXS and LIRME methods pro-
vide different sampling strategies. All these strategies are combined in the
ir_explain library in a single class named PerturbDocument. The class has
three different methods corresponding to the different strategies. Any one of
these methods can be used to produce the perturbed dataset.

3.1.1 Random sampler

This strategy takes the original document and randomly selects and removes
words independently from the original document text. The number of words
removed is also random.

1https://github.com/souravsaha/ir_explain
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3.1.2 Masking sampler

In this strategy, the original document text is divided into a number of chunks
of a given size. Each of the chunks are then present in the perturbed document
with a given probability. Both the chunk size and the probability of any chunk
being present are parameters which can be changed by the user.

3.1.3 Term frequency sampler

Term frequency sampler builds the perturbed document based on the term
frequencies of the terms present in the original document. It uses the term-
frequency data from the index itself for a given document. The index stores the
terms of the document after performing stemming and lemmatization, along
with their term frequencies. Out of all the n terms stored in the index, the
method randomly samples some k number of terms, say t1, t2, ..., tk. Let each
of these terms have term-frequencies f1, f2, ..., fk. The perturbed document has
each of these k terms with the term ti present fi number of times. The number
of terms sampled, k, is again a parameter which can be set by the user.

3.2 Explanation Generator

The ir_explain library implements the EXS and LIRME methodologies in
two separate classes. These classes can instantiated with their respective set of
parameters. Sample usage of these classes are shown below.

3.2.1 LIRME

The LIRME class needs to be instantiated with index_path, the path where
the index is stored, from which information regarding the documents are to be
fetched.

The explain method is used to generate the explanations. The query, document-
id, document-score and the reranker model needs to be passed to the method.
Other parameters required for generating explanations, for example, which sam-
pling strategy is to be used, or how many terms to keep in the explanations,
are passed as a dictionary, as shown in the code snippet.

# set parameter for LIRME

params = {

"sampling_method" : "random", # sampling method

"top -terms" : 10, # num of explanation terms

...

}



Chapter 3. The ir_explain library 12

# Instantiate object of LIRME explainer

lirme_explainer = LIRME(index_path)

# generate explanation vector

explanation_vectors , ranked_lists = lirme.explain(query , doc_id , \

doc_score , reranker , params)

3.2.2 EXS

The EXS class needs to be instantiated with the reranker model and the type
of linear classification model to be fitted, i.e. either svm or logistic regression.
Based on this parameter, the corresponding linear classification model is used
to fit the perturbed dataset and obtain term explanation scores, as described
in section 2.3.

Similar to LIRME above, explain method is used to generate explanations for
the document at some given rank.

# Instantiate object of EXS explainer

exs_explainer = ExplainableSearch(reranker , "svm", num_samples =100)

#The rank of the document that needs to be explained

rank = 2

# generate explanation vector

explanation = explainer.explain(query , doc_ids , \

rerank_scores , rank , doc_at_r , Method="topk -bin")

3.3 Evaluation metrics

In general, it is difficult to measure how good the explanation is, mostly because
of the lack of ground truth data. Benchmark collections of IR do not provide
any annotations for explanations. In literature researchers often use human
evaluation to quantify the evaluation of explanations.

3.3.1 Proposed in LIRME

LIRME proposes two evaluation metrics for the explanations, namely, correct-

ness and consistency. These involve first generating a ground truth vector. More
details are provided in the following sections.

Ground truth vector

To generate the ground truth vector, we make use of benchmark datasets, like
TREC and MS MARCO collections. These datasets contain benchmark queries
with corresponding relevant documents. For any such benchmark query, we go
through its set of relevant documents. For each unique term in this entire set
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of relevant documents, we assign it an explanation score by averaging out its
LMJM scores over the documents in which the term occurs. This forms the
ground truth explanation vector for the given benchmark query.

An obvious drawback of this method is the requirement of such a benchmark
dataset. Without these benchmark queries and the set of documents marked
relevant for the query, above vector cannot be computed. The authors do not
mention why LMJM based scoring was used to sample ground truth terms.

Correctness

Correctness of an explantion generated using any one of the pointwise tech-
niques can be computed as the similarity between the explanation vector gen-
erated and the ground truth vector generated above. Cosine similarity is one
such similarity measure which can be used to compute correctness.

Consistency

For a given query-document pair for which we want to generate an explanation,
it is intuitively desirable that the explanations do not differ much if we change
the parameters of the aforementioned explain functions. This can be quantified
by the consistency of explanations which measures the correlation between the
ordered list of explanation terms. LIRME proposes the use of Kendall tau rank
correlation coefficient.

Such correlation can also be measured between a generated explanation and
the ground truth vector to see how similar these two are. One difficulty here
is that the ground truth vector can have terms not present in the generated
explanation which makes computing kendall tau difficult.

3.3.2 Proposed metrics

We propose two evaluation metrics, i) occlusion based and ii) explanation score
based measures to quantify explanations produced by pointwise explanation
methods.

Occlusion based ground truth

For any arbitrary query-document pair, and a ranking model which assigns
a relevance score to this pair, we can measure the importance of each term
in the document by masking all occurrences of it and taking the change in
relevance score as its importance. If a term has multiple occurrences, masking
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(a) some terms more important (b) all terms have similar importance

Figure 3.1: A toy example showing two explanations with all
terms having the same rank but very different scores. These ex-
planations have perfect ranking correlation but are very different

in relative importance of terms.

all occurrences will have greater impact. Hence we divide the change in relevance
score by the number of occurrences of a term. This gives us the occlusion based
ground truth, without the need of benchmark queries and relevant document
datasets.

Explanation score based dis-similarity

In the correlation based consistency metric, we do not consider the explanation
scores of the terms. Only the relative order of the terms is taken into account.
However, given the same order, the respective scores can vary significantly.
Figure 3.1 shows a toy example consisting of just five terms, say term1, term2,
. . ., term5. The figure on the left shows the top terms having relatively higher
scores in comparison to term4 and term5. On the other hand, the figure on the
right shows all these terms having similar scores. Although the ranked order
of the terms is same in both explanations, the relative importance of terms are
quite different. A ranking correlation metric fails to capture this difference.

Given two term vector explanations, E1 and E2, let us consider there are m

common terms in both of them. Let these be t1, t2, . . . , tm with explanation
scores e11, e12, . . . , e1m and e21, e22, . . . , e2m in the two vectors. The dis-similarity
between explanation scores for any term can be measured by the absolute dif-
ference in the two scores. We can then sum these absolute differences in scores
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across the two explanations for each of these m terms to get the total dis-
similarity for these two explanations. Thus, we can define,

D(E1, E2) =
mX

i=1

|e1i � e2i|

Important thing to consider here is the number of common terms m. If m is low,
it automatically implies higher dis-similarity between the two explanations as
they have very distinct terms and vice versa. To incorporate this observation,
we include a factor of r = m

N , where N is the total number of unique terms
across the two explanations, to get the final dis-similarity measure. If m = 0,
the measure is obviously undefined since there are no common terms. Thus,

D(E1, E2) =
1

r

mX

i=1

|e1i � e2i|

Using this measure along with the correlation metric, we can have better com-
parisons between two explanation vectors.
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Chapter 4

Experiments

For the experiments carried out in this chapter, we have used the index msmarco-
v1-passage-full, unless otherwise specified. The queries for the experiments
are taken from the set of benchmark queries for this dataset. The following
sections provide more details on the dataset and the queries used.

4.1 Usage of ir_explain

In this section we show an end to end usage of the ir_explain library for
pointwise explanations. First documents are retrieved and re-ranked based on
the two stage pipeline described in section 1.4 for a particular query. The top
document according to the reranker is selected and explanations are generated
using EXS and LIRME and visualizations for these explanations are shown.
Evaluation metrics are then computed as described in the previous chapter.

4.1.1 Retrieve and rerank:

As dicussed previously, modern IR often involves a two stage pipeline � using a
sparse retrieval model to fetch top-k documents, followed by reranking of these
top-k documents by a complex neural model.

The query used is “what is the daily life of thai people”. This is one of the
benchmark queries in the MS MARCO passage collection with query-id 1112341.

The function get_results_from_index in the ir_explain library uses the py-
serini1 module to search a given index. By default BM25 similarity is used to
fetch documents from the index in pyserini. The num_docs parameter can be
used to specify the number of documents to be retrieved in the first stage of
the pipeline. The BEIR [16] python module is used to instantiate a neural

1https://pypi.org/project/pyserini/
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reranker. We have used an SBERT based cross-encoder model named ms-
marco-electra-base. The code is shown below.

#Use pyserini to search the index "msmarco -v1-passage -full"

searcher = LuceneSearcher.from_prebuilt_index("msmarco -v1-passage -full")

query = "what is the daily life of thai people"

retrieved_dict = get_results_from_index(query , searcher , num_docs =10)

doc_ids = retrieved_dict["doc_ids"]

docs = retrieved_dict["docs"]

# Load a reranking model

from beir.reranking.models import CrossEncoder

model = "cross -encoder/ms-marco -electra -base"

reranker = CrossEncoder(model)

#Rerank using the Neural model

rerank_scores = reranker.predict(list(zip([query ]*len(doc_ids),docs)), batch_size =10)

retrieved_dict["rerank_scores"] = rerank_scores

print(rerank_scores)

The table 4.1 shows the list of documents retrieved along with their scores at
the two stages of the pipeline. The document at the 5th rank is given the highest
score in the second stage of reranking.

doc_id Sparse retrieval score Reranked score
8139256 10.47 0.97951
2096429 10.18 0.00002
6740558 10.10 0.00002
8139258 10.01 0.98405
8139255 9.97 0.98601
2096427 9.32 0.00003
90432 9.29 0.00040

2735215 9.16 0.00006
6016292 9.11 0.00003
6164791 8.96 0.00052

Table 4.1: Results of the retrieve and rerank pipeline. Top
score in each stage of the ranking is marked in bold.

We select the document with docid: 8139255 which is ranked highest by the
re-ranker, for further analysis. The content of this document is shown below.

“An important thing in everyday life is SANUK. Thai people love to have fun

together. SANUK can represent many things : eat together, to be with friends

and chat, to go out with friends. For Thai people SANUK happens with several

persons.”
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4.1.2 EXS explanation and visualization

We now use the EXS class to generate explanations for the document at rank
1. Note that, in the re-ranking stage, we are not removing the stopwords as we
are using neural ranking model. Since the document contains stopwords, the
generated explanation also contains these stopwords. We have a method named
remove_stopwords_from_explanation which can be used to remove these stop-
words from the explanations.

explainer = ExplainableSearch(reranker , "svm", 100)

rank = 1

doc_at_r = retrieved_dict["docs"][np.argsort(retrieved_dict["rerank_scores"])][- rank]

results = explainer.explain(query , doc_ids , rerank_scores , \

rank , doc_at_r , Method = "topk -bin")

#remove stopwords

results_no_stopword = explainer.remove_stopwords_from_explanation (\

results , stopword_file_path = "stop.txt")

#Visualize

explainer.visualize(list(zip(results_no_stopword[query ][0], \

results_no_stopword[query ][1])))

The table 4.2 shows the top-10 explanation terms with their scores after remov-
ing the stopwords. The figure 4.1 shows the visualization as well.

S.No. Term Explanation score
1 life 12.80
2 thai 11.54
3 fun 9.95
4 contents 5.60
5 thing 4.48
6 people 4.19
7 eat 2.98
8 8139255 1.22
9 persons 0.62
10 things 0.54

Table 4.2: Top-10 explanation terms with their explanation
scores according to EXS.
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Figure 4.1: EXS term vector visualization after removing stop-
words. Horizontal bars represent score of the term, with green
denoting positive score and red, negative. Starting from the
middle, we have top-5 positive and top-5 negative terms listed

downwards and upwards respectively.

4.1.3 LIRME explanation and visualization

The LIRME class is used to generate explanations for the same document above.
The visualization function can be used to show only positively influencing terms
as well,using the parameter show_pos_only. This is demonstrated in Figure 4.2,
which shows the top-5 positively influencing terms generated by LIRME.

query = "what is the daily life of thai people"

doc_id = "8139255"

doc_score = 0.98600733

params = {

"sampling_method" : "masking",

"top_terms" : 20,

"kernel_range" : [5,10]

}

index_path = "/path/to/index/stored/"

lirme = Lirme(index_path)

explanation_vectors , ranked_lists = lirme.explain(query , doc_id , \

doc_score , reranker , params)

lirme.visualize(explanation_vectors [0]["term_vector"], show_top = 5, show_pos_only=True)
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Figure 4.2: LIRME term vector visualization. Only two terms
eat and can were given negative scores, which were relatively
very low. Only the top-5 terms with positive scores are shown.

4.1.4 Evaluation:

query_id="1112341"

rel_docs_list = lirme.find_relevant_docs(query_id , num_rel_docs =10, \

dataset_name = "msmarco -passage/trec -dl-hard")

relevant_doc_vector = lirme.generate_ground_truth_terms(rel_docs_list)

lirme.correctness(doc_id , explanation_vectors [0]["term_vector"], relevant_doc_vector)

Relevant-doc Vector

For the given query, we fetch the the set of documents marked relevant from
the benchmark dataset msmarco-passage/trec-dl-hard using the python module
ir_datasets [8]. Using these relevant documents, we create the ground truth
vector as described in LIRME. Table 4.3 shows the term vector obtained and
Figure 4.3 shows the visualization of the same.
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S.No. term explanation score
1 thai 0.73
2 songkran 0.35
3 thailand 0.34
4 chiang 0.21
5 languag 0.17
6 à 0.14
7 siames 0.13
8 april 0.13
9 festiv 0.12
10 isan 0.11

Table 4.3: Term vector obtained from the 10 relevant docs for
the given query.

Figure 4.3: Term vector obtained from the 10 relevant docs for
the given query.

Correctness The cosine similarity between the explanation generated and the
ground truth vector comes out to be 0.25

4.1.5 Occlusion based ground truth

Figure 4.4 shows the terms with their occlusion based importance scores. The
top-5 and bottom-5 terms are shown in green and red respectively.
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Figure 4.4: Term vector obtained by occluding all occurrences
of each unique term, one by one.

4.1.6 Observations

• EXS considers life , thai and fun as the top three terms, two of which are
part of the query, marked in bold here.

• LIRME considers sanuk, life and thai as the top three terms, two of
which are again part of the query, marked in bold.

• The ground truth vector considers thai , songkran and thailand as the top
three terms. Songkran is the Thai New Year.

• Occlusion based approach considers thai , everyday and life as the top
three terms. The next term is people . All these terms can be considered
to be part of the query or minor modification of it (if we look at everyday
as a modification of daily).

Looking at the document text manually, SANUK is referred multiple times and
seems to be important to the query. In fact, SANUK is used in English to
describe the Thai cultural idea that values fun and enjoyment as “a regular and
important component of everyday life” [6]. This makes the document highly
relevant for the query in concern.

Both EXS and the occlusion based approach consider sanuk to be negatively
influencing the relevance score. However, LIRME considers sanuk as the most
important term.

One possible reason for the low score to sanuk by two of the methods above
could be the way the reranking model tokenizes the input string.
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#Using AutoTokenizer library from huggingface for the reranking model used

tokenizer = AutoTokenizer.from_pretrained("cross -encoder/ms -marco -electra -base")

query = "An important thing in everyday life is SANUK."

# Tokenize the text

tokenized_text = tokenizer.tokenize(query)

print(tokenized_text)

#Output:

["an", "important", "thing", "in", "everyday", "life", "is", "san", "##uk", "."]

As we can see above, sanuk is broken into two components, “san” and “##uk”
by the tokenizer. This may lead to the low explanation scores as the ranking
model does not indentify sanuk in the context of Thai culture. However, why
LIRME considers it to be the most important word needs further analysis.

4.2 Robustness

In literature, Robustness of explanations, that is, explanations generated for
similar input instances should be similar, is considered desirable. [1, 5] In-
tuitively, if the input being explained is altered slightly, just enough to avoid
significantly affecting the model’s prediction, we would expect that the expla-
nation given by the interpretability method for this new input should remain
largely unchanged. The similarity in explanations can be computed using the
methods described previously, and indeed requires further work.

4.2.1 Manual perturbation example

Given the document D we have used above, we create D0 by making slight
perturbations to D without changing the document’s actual intent. Table 4.4
displays the contents of both documents, and Figures 4.1, 4.5 illustrate the
explanation terms and weights generated by EXS for D and D0. The first
notable observation is the significant difference in explanation terms between D
and D0.

The term life positively influences both D and D0 the most, while represen-

t/represents negatively influences both D and D0 the most. However, thai has
negative score for D0.

It is evident that the explanations provided by EXS are unstable in this example.
Although this single instance does not definitively prove that the explainer lacks
robustness, it illustrates that ir_explain enables a more thorough analysis of
such explainers.
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Figure 4.5: EXS term vector visualization after manually per-
turbing the original document D.

Query (qid: 1112341) what is the daily life of thai people

Rank Document Rel. Content

1 D (docid: 8139255) 3 An important thing in everyday life is SANUK. Thai people love to
have fun together. SANUK can represent many things : eat together,
to be with friends and chat, to go out with friends. For Thai people
SANUK happens with several persons.

- D0 (Perturbed) - An important thing in everyday life is SANUK. Thai people love to
have fun together. SANUK can represents many things : eat together,
to be with friends and chat, to go out with friends. For most Thai
people SANUK happens with multiple persons.

Table 4.4: The contents of the original and the manually per-
turbed document. In this example, D is the original document
and D0 is the perturbed instance of the document D. The
changes made to D are highlighted using strike-throughs, un-
derlined and bold words for removal, modification and addition
of words, respectively. It can be observed that there is only a

slight difference between these two documents.

4.3 Consistency experiment

For a particular query-document pair, we first generate an explanation using
EXS and consider the top-10 terms. For each of these top-10 terms, we calculate
their occlusion based importance scores and rank the terms accordingly. The
kendall tau correlation is computed between the order of terms according to the
EXS explanation and occlusion. The score based dissimilarity is also calculated
between the two, as described in section 3.3.2.

This procedure is repeated for 10 benchmark queries from the msmarco-passage/

trec-dl-hard dataset and the top-5 documents for each query. The results for a
few of these query-document pairs are shown in table 4.5. The mean kendall tau
value across all 10 queries with 5 documents each, comes out to be 0.16. This
indicates that the explanations generated by EXS are not very consistent with
those generated by occlusion, on average. For query-id 156493 and document-
id 3288600, quite high kendall tau value of 0.69 is obtained. However, for the
same query and document-id 1960255, a negative value of -0.16 is obtained.



Chapter 4. Experiments 25

To see the utility of the score based dissimilarity measure, let us consider the
query-id 489204 and the documents 1778458 and 1051498 (towards the end
of table 4.5). The kendall tau value for both is 0.07. The normalized term
vectors obtained by EXS and occlusion for documents 1778458 and 1051498 are
shown in figures 4.6 and 4.7 respectively. We can see that the term-vectors in
4.6 have a much similar shape, with respect to relative importance of each of
the top-10 terms, than that in 4.7. This is captured by the dissimilarity score of
document 1051498 of 0.51 being much higher than that of document 1778458
of 0.30.

query_id doc_id kendall tau explanation score
coefficient based dis-similarity

156493 1960255 -0.16 0.34
156493 3288600 0.69 0.51
156493 8182159 0.33 0.44
1110199 4511137 0.38 0.24
1110199 8160520 -0.02 0.37
1110199 3838645 0.11 0.34
1063750 4788295 -0.11 0.39
1063750 7778351 0.20 0.30
1063750 6093904 0.29 0.28
130510 799647 0.02 0.51
130510 1494936 0.07 0.35
130510 8612906 0.60 0.33
489204 1778458 0.07 0.30
489204 1051498 0.07 0.51
489204 8737051 -0.16 0.38

Table 4.5: Consistency between EXS and Occlusion explana-
tions. The scores for 5 benchmark queries, with top-3 documents

for each query, are shown.
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(a) EXS term vector (b) occlusion term vector

Figure 4.6: Term vectors obtained by EXS and occlusion as
described in section 4.3, for the query “right pelvic pain causes”

(query-id: 489204) and document id 1778458.

(a) EXS term vector (b) occlusion term vector

Figure 4.7: Term vectors obtained by EXS and occlusion as
described in section 4.3, for the query “right pelvic pain causes”

(query-id: 489204) and document id 1051498.
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Chapter 5

Summary and Future Work

While numerous frameworks for Information Retrieval (IR) explanations ex-
ist, a unified framework that integrates these diverse approaches is uncommon.
The ir_explain library addresses this gap by consolidating various explain-
ability techniques into a single, cohesive module. This integration facilitates
diverse and comprehensive analyses, as demonstrated in this thesis, by simpli-
fying the application of multiple explanation methods. It is anticipated that
ir_explain will encourage and enable further advancements in the field of IR
explanations, promoting the development of more transparent and interpretable
machine learning models.

5.1 Future Work

As the immediate next step, we discuss two possible future directions: i) eval-
uating pointwise explanations, and ii) making explanations robust and stable.
In this section, we provide a brief overview of these.

5.1.1 Evaluation

As evident from several use cases described in this thesis, the evaluation met-
rics for explainability in Information Retrieval (IR) are insufficient. The cur-
rent metrics do not comprehensively capture the effectiveness and reliability
of explanations provided by different techniques. Future work should focus on
developing and refining evaluation metrics that are better suited to assess the
quality of IR explanations.
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5.1.2 Robustness

Another critical area for future research is the robustness of explanation meth-
ods. Adversarial perturbations [18, 7] pose a significant challenge, as they can
drastically alter the output of IR models and their explanations. Investigating
the impact of such perturbations on explanation stability and reliability is es-
sential. Future work should build on these insights to develop more resilient
explanation techniques that can withstand adversarial attacks and maintain
their integrity in various scenarios.
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