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Abstract

This thesis explores the application of the entropy compression technique to various graph col-

oring problems, offering an innovative approach to addressing significant challenges in graph

theory. Entropy compression, particularly the Moser-Tardos [12] framework, transforms prob-

abilistic existence proofs into explicit, constructive algorithms, thereby enhancing our under-

standing and expanding the toolkit available for solving these challenges.

Graph coloring problems involve assigning colors to the vertices or edges of a graph under

specific constraints, such as ensuring no two adjacent vertices or edges share the same color.

These problems are both theoretically rich and practically significant, with applications in

scheduling, register allocation in compilers, and network frequency assignment. Motivated

by the work of Esperet and Parreau [6], this research focuses on the acyclic edge chromatic

number. Through rigorous analysis and algorithmic design, this study demonstrates how

entropy compression has the potential to improve existing bounds to complex combinatorial

problems.
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Introduction

Graph coloring problems are a fundamental area of study in combinatorics and computer

science. They involve assigning colors to the vertices or edges of a graph under specific

constraints, such as ensuring no two adjacent vertices (or edges) share the same color. These

problems are theoretically rich and have practical applications in areas like scheduling, register

allocation in compilers, and network frequency assignment. One of the pivotal techniques in

this domain has been the Lovász Local Lemma (LLL), a powerful probabilistic tool that

provides a way to prove the existence of certain combinatorial structures. The LLL has been

instrumental in establishing bounds for various combinatorial constructs, including diagonal

Ramsey numbers and edge colorings in graphs. The essence of the LLL lies in its ability to

handle events with limited dependencies, making it an invaluable tool for demonstrating the

existence of rare configurations that meet specific criteria. However, the LLL is inherently

non-constructive; it shows that certain objects exist but does not provide a direct method to

find them, which often limits its direct application in algorithm design.

Entropy Compression:

Entropy compression is a method that transforms probabilistic existence proofs into explicit,

constructive algorithms. This thesis explores how this technique can be effectively applied to

various graph coloring problems, enhancing our understanding and expanding the methods

available for solving these issues. Moser’s entropy compression argument represents a signif-

icant advancement in addressing this limitation. This method offers a constructive approach

that converts probabilistic existence proofs into explicit algorithms [13]. This approach has

proven particularly effective in problems like acyclic edge coloring, where it not only estab-

lishes bounds but also guarantees the existence of valid colorings through a deterministic

process. Building on this foundation, Esperet and Parreau [6] (2013) applied a deterministic

variant of Moser’s entropy compression [12] to enhance the bounds on the acyclic chromatic

index, illustrating the method’s potential for improving existing results in graph theory and

beyond.

Acyclic Edge Chromatic Number:

The acyclic edge chromatic number, denoted a′(G), of a graph G is the minimum number of

colors needed to color the edges of G such that no two adjacent edges share the same color and

no cycle in G is bichromatic. This concept is important for ensuring efficient and conflict-free

resource allocation in various applications.
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Esperet and Parreau’s work:

Esperet and Parreau used the entropy compression method to show that every graph with a

maximum degree ∆ has an acyclic edge chromatic number a′(G) of at most 4∆−4. Their anal-
ysis hinges on a simple procedure that systematically recolors edges to eliminate bichromatic

cycles. The method involves recording the history of corrections (and sometimes the steps

taken to resolve conflicts). In our research, we placed a greater emphasis on understanding the

mechanics of the entropy compression method rather than focusing on counting precisely the

records produced by the algorithm. By applying this method to various other problems, we

aimed to gain deeper insights into its underlying principles and operational dynamics. This

approach allowed us to become more familiar with the method and also exploring its practical

applications. By experimenting with different combinatorial problems, we were able to observe

how the method performs in diverse scenarios, thus providing a comprehensive understanding

of what the entropy compression technique fundamentally does and how it achieves its results.

At this time we are also not focusing on the running time of the algorithm, rather we are in-

terested to the analysis of the algorithm and how the entropy compression argument gives the

results involving some particular properties of the graph used as the input of algorithm.

Using straightforward counting and less constraints in the algorithm, we initially tried

to showcase how the method actually works and we got the result that a′(G) ≤ 6∆ − 5.

This involved a basic application of the entropy compression technique, where the algorithm

iteratively attempts to recolor edges while avoiding the creation of bichromatic cycles. By

counting in a more concise way, we further enhanced the bound on the acyclic chromatic

index to 4.9∆− 5.

In more detail, our initial approach applied standard combinatorial arguments combined

with the entropy compression method to establish that the acyclic chromatic index a′(G) for a

graphG with maximum degree ∆ satisfies a′(G) ≤ 6∆−5. The algorithm used in this approach

iteratively selects edges to recolor in a way that prevents the formation of bichromatic cycles.

At each step, the algorithm records the sequence of changes and the history of the recoloring

process grows.

To achieve the enhanced bound of 4.9∆−5, we refined our counting method a little bit more

precise for the analysis of the combinatorial objects related to the encoding of the algorithm’s

history.

However, Esperet and Parreau went further by employing one more constraint in the

algorithm and more sophisticated counting techniques involving Dyck words and rooted plane

trees. Dyck words are binary strings that represent valid sequences of matched parentheses,

and they can be used to model certain types of paths in graphs. Rooted plane trees are trees

embedded in the plane such that no two edges cross, which can be used to represent hierarchical

structures in graphs. By counting records more precisely using these combinatorial objects,

they improved the bound to 4∆− 4.
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Diagonal Ramsey numbers:

For diagonal Ramsey numbers, denoted R(s, s), the goal is to determine the smallest number

n such that any graph of order n will contain either a clique or an independent set of size s.

This problem is a classic example of a combinatorial problem where the existence of certain

structures is guaranteed by probabilistic methods, but finding those structures constructively

is challenging.

Traditionally, the Erdős probabilistic method has established that R(s, s) > 2s/2. This

method relies on the probabilistic construction of graphs and shows that, with high probability,

a randomly chosen graph will not contain a clique or independent set of the specified size,

thereby proving the lower bound. However, this approach does not provide a constructive way

to find such graphs.

We applied the entropy compression method to this problem in two different ways:

Basic Entropy Compression (ECC(G, S)): This approach reproduces the Erdős bound by

employing a simple entropy compression technique. Here, the algorithm iteratively attempts

to construct a graph while avoiding the formation of cliques or independent sets of size s.

The method ensures termination by demonstrating that the entropy increases faster than the

information content, guaranteeing R(s, s) > 2s/2.

Modified Entropy Compression (MECC(G, S)): This refined approach incorporates ele-

ments from the Lovász Local Lemma to enhance the bounds further. By carefully analyz-

ing the dependencies between edges and using a more sophisticated compression scheme, we

achieve the same bound given by LLL i.e. R(k, k) > n if e · 21−(
k
2) ·

(
k
2

)(
n−2
k−2

)
< 1. This

method not only provides a more rigorous bound but also retains the constructive nature of

the entropy compression argument.

The deterministic entropy compression method is also adapted to k-uniform hyperedge

coloring and the k-SAT problem. In this problem, the goal is to color the edges of a hypergraph

(a generalization of a graph where edges can connect more than two vertices) such that no

monochromatic hyperedges exist. By applying the entropy compression method, we aim to

establish bounds on the minimum number of colors required for such a coloring and guarantee

the existence of valid colorings.

*****
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Acyclic Edge Chromatic Number

In graph theory, edge coloring is a fundamental concept where edges of a graph are assigned

colors such that no two adjacent edges share the same color. A more restrictive and intriguing

variation of this concept is the acyclic edge coloring, where the colored graph must not only

avoid adjacent edges having the same color but also ensure that no cycle in the graph is

bichromatic (i.e., it must not contain a cycle with only two colors).

The acyclic edge chromatic number, denoted as a′(G), is the minimum number of colors

required to achieve an acyclic edge coloring of a graph G. This parameter extends the classical

edge chromatic number, or chromatic index, by incorporating an additional layer of complexity

through the acyclic condition.

Formally, for an integer k ≥ 2, a proper edge k-coloring of a graph G = (V,E) is a mapping

c : E(G)→ {1, 2, . . . , k}

such that for any two adjacent edges e1 and e2, c(e1) ̸= c(e2). A graph G is edge k-colorable

if it has a proper edge k-coloring. The chromatic index χ′(G) is the smallest k such that G is

edge k-colorable.

An acyclic edge coloring is a proper edge coloring with the additional property that no

cycle in the graph is bichromatic. In other words, for every cycle in the graph, at least three

distinct colors must appear among its edges.

The acyclic edge chromatic number a′(G) of a graph G is the smallest number of colors

needed to achieve an acyclic edge coloring of G. Formally,

a′(G) = min{k | ∃ an acyclic edge coloring c : E → {1, 2, . . . , k}}.

Observe, in any proper edge coloring there cannot be any odd length cycle which is bichro-

matic.

Various bounds on a′(G)

For a graph G with maximum degree ∆(G) = 1, it is trivial that a′(G) = 1. For ∆(G) = 2, we

have a′(G) = 2 if G is a linear forest and a′(G) = 3 if G contains a cycle. For the graphs with

maximum degree ∆(G) = 3, Fiamč́ık [8] [9] proved that a′(K4) = a′(K3,3) = 5. If ∆(G) = 3

and G is connected and G ̸= K4, G ̸= K3,3, then a′(G) < 4. He then further investigated the

classes of graphs with ∆(G) = 3 for which a′(G) = 3 or a′(G) = 4. For other general graphs

7



with ∆(G) > 4, only some bounds are known. For the lower bound of a′(G), the inequality

∆(G) < χ′(G) < a′(G)

trivially holds, where χ′(G) is the edge chromatic number of a graph G satisfying Vizing’s

inequality [17]:

∆(G) < χ′(G) < ∆(G) + 1,

Conjecture 1 (Fiamč́ık [7], and Alon, Sudakov, and Zaks [1]). For every graph G, a′(G) ≤
∆+ 2.

This conjecture has been verified up to now only for ∆ = 1, 2, and 3. Later Guldan [10]

showed that there exists a large class of graphs with a′(G) ≥ ∆+ 2.

Theorem 1 (Guldan [10]). Let k be a positive integer, and let G = (V (G), E(G)) be a graph

with maximum degree ∆(G) = ∆, |V (G)| = 2k, and |E(G)| > (∆ + 1)(k − 1) + 1. Then

a′(G) > ∆+ 2.

Proof. By contradiction. Assume G has an acyclic regular edge coloring with ∆ + 1 colors.

Let L1, L2, . . . , L∆+1 be the monochromatic sets of edges of this coloring. For any i ̸= j, it

must hold that |Li ∪ Lj| < 2k, otherwise Li ∪ Lj would contain a cycle, contradicting the

acyclic property. From this, it follows that for the maximum number of colored edges, we

have:

∆+1∑
i=1

|Li| < k + (k − 1)∆ = (∆ + 1)(k − 1) + 1.

This is a contradiction to the assumption |E(G)| > (∆ + 1)(k − 1) + 1, so ∆ + 1 colors

cannot suffice. Thus, a′(G) ≥ ∆ + 2. From the theorem, it follows that there exists a large

class of graphs with a′(G) ≥ ∆(G) + 2.

The study of acyclic edge coloring has a rich history, marked by significant contributions

from eminent researchers in the field. In 1991, Alon et al. [14] introduced the application of the

Lovász Local Lemma to establish bounds on the acyclic chromatic index a′(G), demonstrating

that a′(G) ≤ 64∆, where ∆ denotes the maximum degree of the graph G. This seminal work

laid the foundation for subsequent advancements in acyclic edge coloring. Building upon

this result, Molloy and Reed (1998) [11] further refined the bound to 16∆, showcasing the

continuous evolution of techniques in this area. In 2011, Ndreca et al. [15] enhanced the bound

to ⌈9.62(∆ − 1)⌉ by leveraging a stronger version of the Lovász Local Lemma developed by

Bissacot et al. [2] These milestones underscore the significance and ongoing progress in the

study of acyclic edge coloring.
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We first show how Esperet and Parreau [6] use entropy compression to show that every

graph with maximum degree ∆ has an acyclic edge chromatic number a′(G) of at most 6∆−6,
and then show how this bound can be enhanced to 4.9∆ − 5. The bound results from the

analysis of a very simple procedure using the so-called entropy compression method.

The algorithm and its analysis

Let k be a positive integer. We describe an algorithm that takes a graph G and an input string

s whose symbols are from the alphabet {1, 2, . . . , k − 2∆ + 2} and uses it to try to find an

acyclic edge coloring of G using the colors {1, 2, . . . , k}. Let G = (V,E), the maximum degree

of G be ∆, |V | = n and |E| = m. The algorithm first fixes an ordering ≺ on the vertices

of G and an ordering ≺′ on the edges of G. In the beginning, all edges of G are uncolored.

Repeat the following steps until either they have been executed |s| times or there are no more

uncolored edges. In the i-th iteration, where 1 ≤ i ≤ |s|, do the following steps:

• Take the uncolored edge that is smallest in the ordering ≺′. Let us denote this edge as

ei.

• Assign ei the s[i]-th smallest color from the set of colors that do not appear on any edge

adjacent to ei.

• If this assignment creates a 2-colored cycle, then uncolor ei and all the other edges in

this cycle except two of them (we will understand it later).

Note that at the end of each iteration, the colors that have been assigned to the edges of G

form a partial acyclic edge-coloring of G; i.e. an assignment of colors to a subset of edges in

such a way that no two adjacent edges get the same color, and there is no 2-colored cycle.
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Algorithm 1 : Acyclic Edge Coloring Algorithm

1: procedure AEC(G, s) ▷ Input: G and a string s ∈ {1, 2, . . . , k − 2∆ + 2}∗
2: Fix an ordering ≺ on V (G) and an ordering ≺′ on E(G)
3: Initialize the color of every edge to 0
4: i← 0
5: while G is not fully colored and i < |s| do
6: i← i+ 1
7: Let ej be the first uncolored edge in the edge ordering ≺′

8: Let S be the set of colors on the edges incident with ej
9: Color ej with the s[i]-th smallest color in {1, 2, . . . , k} \ S

10: ▷
Since there are at most 2(∆−1) edges that are
adjacent to ej, |{1, 2, . . . , k} \S| ≥ k− 2∆+2.
So such a color always exists.

11: Output “0”
12: if a bicolored cycle C of length 2l is present in the graph then

13: ▷

Note that bicolored cycles are of even length
and since none existed before this step, C con-
tains ej

14: Let ej = uv, where u ≺ v
15: Let h1, h2, . . . , h2l be the edges of C listed in the cyclic order in which h1 = uv,

and v is the common vertex between h1 and h2

16: Uncolor all edges of C except the h2 and h3

17: Output x ∈ {1, 2, . . . ,∆− 1}2l−2 ▷ How to compute x will be described later
18: end if
19: end while
20: Output for each edge e ∈ E(G) the color assigned to it; this is a string in
{0, 1, 2, . . . , k}m.

21: end procedure
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Let s ∈ {1, 2, . . . , k − 2∆ + 2}∗ such that |s| = t. Let f(s) be the string that is printed

by the algorithm AEC(G, s). Suppose that the graph G does not get fully colored by the

algorithm AEC(G, s). Then the main loop of the algorithm gets executed exactly t times,

and therefore the algorithm prints exactly t zeroes before the final step in which it outputs

the partial coloring. Suppose that the algorithm detects the formation of a 2-colored cycle

r times. For j ∈ {1, 2, . . . , r}, let xj be the string that is output by the j-th invocation of

line 17 of the algorithm (i.e., just after detecting the j-th 2-colored cycle).

Let Φ be the string corresponding to the partial coloring that is output by the algorithm

in its final step. Then the output string f(s) has the form

f(s) = 00 . . . 0x100 . . . 0x20 · · · 0xr00 . . . 0Φ

where for each j ∈ {1, 2, . . . , r}, we have that |xj| is even, and each block of consecutive zeroes

has length at least 1, except the last block of zeroes, which may not necessarily exist.

Encoding of an xj, for j ∈ {1, 2, . . . , r}:
Let Cj be the j-th bicolored cycle detected by the algorithm. Let Cj be of length 2l. Also let

us assume that Cj was detected during the i-th iteration of the main loop of the algorithm. As

mentioned before, it is clear that ei is an edge in the cycle Cj. The string xj is an encoding of

the cycle Cj such that |xj| = 2l−2. Let ei = uv, where u ≺ v. Let h1, h2, . . . , h2l be the edges

of Cj listed in the cyclic order where h1 = uv, and v is the common vertex between h1 and h2.

Let zp be the common vertex for the edges hp and hp+1 (where the indices are cyclic and from

the set {1, 2, . . . , 2l}). For each p ∈ {1, 2, . . . , 2l}, let Ep be the edges that are incident on zp

and we define yp to be the position of the edge hp+1 in the ordering ≺′ restricted to Ep \ {hp}.
We define xj to be the string y1y2 . . . y2l−2. Since |Ep| ≤ ∆ for each p ∈ {1, 2, . . . , 2l}, we have
that yp ∈ {1, 2, . . . ,∆− 1}. Thus xj ∈ {1, 2, . . . ,∆− 1}2l−2.

The partial edge coloring Φ:

The partial edge coloring Φ of G that is output at the final step is a string of length m where

Φ[i] is color of the i-th edge in the edge ordering ≺′, where the symbol 0 is used to denote

the fact that the corresponding edge is uncolored. Thus Φ ∈ {0, 1, . . . , k}m. Hence Φ is one

of (k + 1)m possible strings of length m.

Blocks of f(s):

Let block(i) be the substring of f(s) that is printed by the algorithm in the i-th iteration of its

main loop. Thus f(s) is of the form block(1)block(2) . . . block(t)Φ. One can think of block(i) as

a record of the actions performed by the algorithm in the i-th iteration of its main loop. Note

that given f(s), the strings block(1), block(2), . . . , block(t) can be determined easily: every

iteration that prints non-zero symbols prints a 0 followed by a string of non-zero symbols,

and every other iteration prints a single 0. Thus, for each i ∈ {1, 2, . . . , t}, the string block(i)

is either 0 or a string of non-zero symbols prefixed with a 0, and these can be derived easily
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from the string f(s).

For i ∈ {1, 2, . . . , t}, let Xi represent the collection of uncolored edges after the i-th

iteration of the main loop of the algorithm. We let X0 be the set of uncolored edges of G at

the beginning of the algorithm. Also, for i ∈ {1, 2, . . . , t}, let Φi denote the partial coloring of

the graph G at the end of the i-th iteration of the main loop. We will now demonstrate that

f(s) uniquely identifies s.

Lemma 1. For each i ∈ {1, 2, . . . , t}, Xi is uniquely determined by the output f(s).

Proof. Clearly, X0 = E(G). We claim that given Xi−1 and f(s), Xi is uniquely determined

for each i ∈ {1, 2, 3, . . . , t}. Note that this will complete the proof of the lemma. Notice

that in the i-th iteration of the main loop, the algorithm chooses as ei the smallest edge in

the ordering ≺′ that is uncolored. Since Xi−1 is the set of uncolored edges at the end of the

(i− 1)-th iteration of the loop, and also at the beginning of the i-th iteration of the loop, it is

clear that ei = min≺′ Xi−1. Thus, ei is uniquely determined given f(s) and Xi−1. If block(i)

is of the form “0”, then Xi = Xi−1 \ {ei}, since ei is the only edge that gets colored in the

i-the iteration of the loop and no edges are uncolored (as otherwise block(i) would not have

been just 0). Since ei is uniquely determined given f(s) and Xi−1, we have that Xi is uniquely

determined given f(s) and Xi−1, and we are done in this case. Otherwise, block(i) = 0x,

where x ∈ {1, 2, . . . ,∆ − 1}2l−2. This means that a bicolored cycle C was detected after the

edge ei was colored. From the way the string x is encoded, it can be seen that the cycle C is

uniquely determined by the string x and the edge ei. Let h1, h2, . . . , h2l be the edges of C as

defined in the algorithm. Note that the edges h1, h2, h3, . . . , h2l are uniquely determined by

the string x and the edge ei. Then Xi = Xi−1 ∪ (E(C) \ {h2, h3}), since every edge of C other

than h2 and h3 get uncolored during this iteration of the algorithm, and no other edges are

uncolored. This means that Xi is uniquely determined given f(s) and Xi−1.

Lemma 2. For each i ∈ {1, 2, . . . , t}, Φi−1 and s[i] are uniquely determined given f(s).

Proof. Clearly, Φt = Φ. We claim that given Φi and f(s), Φi−1 is uniquely determined for

each i ∈ {1, 2, 3, . . . , t}. Note that this will complete the proof of the lemma.

So using the previous lemma one can find ei i.e. the edge colored in the i-th iteration of

the main loop of the algorithm. Then the corresponding set of colors (S) of the adjacent edges

of ei can also be found. Now if block(i) = 0, that means ei is the only edge that gets colored

in the i-the iteration of the loop and no edges are uncolored (as otherwise block(i) would not

have been just 0), then one can find the corresponding entry for ei in Φi according to the

ordering in ≺′ and changing only that entry to 0 results Φi−1. To determine s[i], find the

position of color(ei) from the elements of the set {1, 2, . . . , k}\S arranged in ascending order,

say p. So s[i] = p. Otherwise, block(i) = 0x, where x ∈ {1, 2, . . . ,∆− 1}2l−2. This means that

a bicolored cycle C was detected after the edge ei was colored in i-th iteration. From the way

the string x is encoded, it can be seen that the cycle C is uniquely determined by the string

x and the edge et. Let h1, h2, . . . , h2l be the edges of C as defined in the algorithm. Note that
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the edges h1, h2, h3, . . . , h2l are uniquely determined by the string x and the edge et. Since

every edge of C other than h2 and h3 get uncolored during this iteration, so to get the colors of

edges of (E(C) \ {h2, h3}), first one can find the corresponding colors for h2 and h3 from their

corresponding entries in Φi, then coloring the edges {h1, h4, h5, . . . , h2l} alternatively using

the colors of h2 and h3 results Φi−1. Then get the position of color(h3) from the elements of

the set {1, 2, . . . , k} \ S arranged in ascending order, say p∗. So, here s[i] = p∗.

Corollary 1. Let s1 and s2 be distinct input strings such that neither AEC(G, s1) nor

AEC(G, s2) colors the graph fully. Then f(s1) ̸= f(s2).

Let t ∈ N. Suppose that AEC(G, s) does not fully color the graph for any input string s

of length t. Let Z be the set of input strings of length t — i.e Z = {1, 2, . . . , k − 2∆ + 2}t.
Hence, |Z| = (k − 2∆ + 2)t. Let f(Z) be the set of output strings corresponding to input

strings in Z; i.e. f(Z) = {f(s) : s ∈ Z}.
Let s ∈ Z. Removing Φ, i.e. last m characters of f(s), get f ∗(s). Then by replacing each

non-zero character with 1 in f ∗(s), we get f •(s), as shown below:

f(s) = 0000x10000x2 · · · 0xr00 Φ︸︷︷︸
last m characters

⇒ f ∗(s) = 0000x10000x2 · · · 0xr00

⇒ f •(s) = 0000 11 . . . 11︸ ︷︷ ︸
|x1| many 1’s

0000 11 . . . 11︸ ︷︷ ︸
|x2| many 1’s

0 11 . . . 11︸ ︷︷ ︸
|xr| many 1’s

00

Lemma 3. For each s ∈ Z, |f •(s)| ≤ 2t, implying that |f •(Z)| ≤ 22t. Therefore, |f ∗(Z)| ≤
22t.(∆− 1)t.

Proof. Observe that every 1 in f •(s) corresponds to an action of uncoloring of some colored

edge (we shall call this an “uncoloring step”) that is done by the algorithm. Clearly, the AEC

algorithm does the action of coloring an edge (a “coloring step”) exactly t times. Because

the number of uncoloring steps cannot be greater than the number of coloring steps, we have

that the number of 1-s in f •(s) is at most the number of 0-s. Thus, |f •(s)| ≤ 2t. Since

f •(s) is a binary string, so |f •(Z)| ≤ 22t. As each 1 in an f •(s) corresponds to an element of

{1, 2, . . . ,∆− 1} in f ∗(s), we have |f ∗(Z)| ≤ 22t.(∆− 1)t.

Lemma 4. |f(Z)| ≤ (k + 1)m · 22t · (∆− 1)t.

Proof. As Φ can take at most (k + 1)m different values,

|f(Z)| ≤ (k + 1)m · |f ∗(Z)| ≤ (k + 1)m · 22t · (∆− 1)t.

Recall that we have assumed that the algorithm does not fully color the graph G for any

string in Z. From Lemma 1, we know that |f(Z)| ≥ |Z|. Thus:

(k + 1)m · 22t · (∆− 1)t ≥ (k − 2∆ + 2)t
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⇒ (k + 1)m · (4∆− 4)t ≥ (k − 2∆ + 2)t

⇒ t ≤ m log(k + 1)

log(k−2∆+2
4∆−4

)

Thus, if the algorithm does not fully color the graph for any string of length t, then t must

satisfy the above inequality. Notice that if we choose k = 6∆ − 5, then the above inequality

becomes

t ≤ m log(6∆− 4)

log(4∆−3
4∆−4

)

⇒ t ≤ m log(6∆− 4)

log(1 + 1
4∆−4

)

This means that if k = 6∆− 5, then for every integer t > m log(6∆−4)

log(1+ 1
4∆−4

)
, the assumption that

the algorithm does not fully color the graph G for any input string of length t must be false.

In other words, for every integer t > m log(6∆−4)

log(1+ 1
4∆−4

)
, there is some string of length t, which when

given as input to the algorithm causes the graph G to be fully colored. This implies that there

is some acyclic edge coloring of the graph G using at most k = 6∆ − 5 colors, or in other

words, a′(G) ≤ 6∆− 5.

To use a tighter bound instead of |f •(Z)| ≤ 22t, we use a slightly different approach. For

each s ∈ Z, let f ◦(s) be the string obtained by replacing the substring “11” with “1” in f •(s),

as shown below:

f •(s) = 0000 11 . . . 11︸ ︷︷ ︸
|x1| many 1’s

0000 11 . . . 11︸ ︷︷ ︸
|x2| many 1’s

0 11 . . . 11︸ ︷︷ ︸
|xr| many 1’s

00

⇒ f ◦(s) = 0000 11 . . . 11︸ ︷︷ ︸
|x1|
2

many 1’s

0000 11 . . . 11︸ ︷︷ ︸
|x2|
2

many 1’s

0 11 . . . 11︸ ︷︷ ︸
|xr|
2

many 1’s

00.

Recall that each of |x1|, |x2|, . . . , |xt| is even. Note that f •(s) = f •(s′) if and only if

f ◦(s) = f ◦(s′). Hence, there is a clear bijection between f •(Z) and f ◦(Z). This implies that

|f bullet(Z)| = |f ◦(Z)|.

Lemma 5. For each s ∈ Z, |f ◦(s)| ≤ 3t
2
and so, |f ◦(Z)| ≤ 2

3t
2 .

Proof. As we have seen that |f •(s)| ≤ 2t, and the total number of 0-s is exactly t, we have

that there are at most t 1-s in f •(s). Since we construct f ◦(s) by replacing “11” with “1” in

f •(s), there are at most t
2
many 1-s in f ◦(s), which means that the length of f ◦(s) is at most

3t
2
.

From the above lemma, it follows that |f(Z)| ≤ (k + 1)m · |f •(Z)| · (∆ − 1)t = (k +

1)m · |f ◦(Z)| · (∆ − 1)t ≤ (k + 1)m · 2 3t
2 (∆ − 1)t. Recall that from our assumption that the

algorithm does not fully color the graph G for any input string in Z and Lemma 1, we know
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that |f(Z)| ≥ |Z|. Thus:

(k + 1)m · 2
3t
2 · (∆− 1)t ≥ (k − 2∆ + 2)t

⇒ (k + 1)m · (2
√
2∆− 2

√
2)t ≥ (k − 2∆ + 2)t

⇒ t ≤ m log(k + 1)

log( k−2∆+2
2
√
2∆−2

√
2
)

Thus, if the algorithm does not fully color the graph for any string of length t, then t must

satisfy the above inequality. Notice that if we choose k = (2 + 2
√
2)∆− (1 + 2

√
2), then the

above inequality becomes

t ≤ m log(2 + 2
√
2(∆− 1))

log(1 + 1
2
√
2(∆−1)

)

This means that if k = (2+2
√
2)∆−(1+2

√
2), then for every integer t > m log(2+2

√
2(∆−1))

log(1+ 1
2
√
2(∆−1)

)
,

the assumption that the algorithm does not fully color the graph G for any input string of

length t must be false. In other words, for every integer t > m log(2+2
√
2(∆−1))

log(1+ 1
2
√
2(∆−1)

)
, there is some

string of length t, which when given as input to the algorithm causes the graph G to be fully

colored. This implies that there is some acyclic edge coloring of the graph G using at most

k = (2 + 2
√
2)∆− (1 + 2

√
2) ≈ ⌈4.9∆− 4⌉ colors, or in other words, a′(G) ≤ ⌈4.9∆− 4⌉.

Discussion

From the above proof, it follows that for every graph G having maximum degree ∆, a′(G) ≤
⌈4.9∆− 4⌉. Put in another way, suppose that there exists a graph G having maximum degree

∆ such that a′(G) > ⌈4.9∆ − 4⌉. Let k = (2 + 2
√
2)∆ − (1 + 2

√
2). Then the algorithm

AEC(G, s), which tries to color the edges of G using k colors, will not succeed in fully coloring

the graph G for any input string s. Let t ∈ N such that t > m log(2+2
√
2(∆−1))

log(1+ 1
2
√
2(∆−1)

)
and let Z be the

set of all possible input strings of length t. From the proof above, we can see that the number

of possible output strings produced by input strings of length t, i.e. |f(Z)|, is strictly smaller

than |Z|, the number of input strings of length t. This means that the number of bits required

to encode the input strings in Z is strictly more than the number of bits required to encode

the output strings produced by the algorithm when given those input strings. Moreover, as

we proved, the input strings are recoverable from the output strings. Thus our algorithm is

an impossible compression algorithm — a contradiction.

*****
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Diagonal Ramsey Number

The diagonal Ramsey number R(k, k) is defined as the smallest positive integer n such that any

complete graph on n vertices, with edges colored using two colors, contains a monochromatic

k-clique — here, a monochromatic k-clique is a subset of k vertices such that all edges between

those vertices have the same color. Formally, a k-edge coloring of a graph G is a mapping

c : E(G)→ S, where |S| = k. Note that a k-edge coloring need not be a proper edge coloring.

Then R(k, k) is the smallest integer n such that for every 2-edge coloring c : E(Kn)→ {R,B}
of the complete graph Kn, there is a subgraph isomorphic to a Kk whose all edges are colored

R, or all edges are colored B.

In other words,

R(k, k) = min{n ∈ N | ∀c : E(Kn)→ {R,B},∃H ⊆ Kn that is isomorphic to Kk

such that c(e) = R ∀e ∈ E(H), or c(e) = B ∀e ∈ E(H)}.

This definition emphasizes that within any sufficiently large complete graph, a certain

degree of order is unavoidable, no matter how the edges are colored.

Theorem 2 (Erdős [5]). For k ≥ 3, R(k, k) > 2k/2.

Proof. Consider a random coloring of Kn where each edge is colored independently red or

blue with probability 1/2. For any particular S ⊆ V (Kn) such that |S| = k, the probability

that the edges between pairs of vertices in S all receive the same color is 2 · (1
2
)(

k
2) = 21−(

k
2).

The number of subsets S of V (Kn) of cardinality k is
(
n
k

)
, and therefore, using the union

bound, the probability that there is at least one monochromatic k-clique is at most(
n

k

)
21−(

k
2).

Now if
(
n
k

)
·21−(

k
2) < 1, then there exists a coloring with no monochromatic k-clique. If n < 2

k
2

then we have: (
n

k

)
· 21−(

k
2) <

(
2

k
2

2

)
·
(
1

2

)(k2)−1

< 21−
k2+k

2 · 2
k2

2

k!
< 1

Hence, if n < 2
k
2 , there exists a coloring with no monochromatic k-clique, proving that

R(k, k) ≥ 2
k
2 .
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Frank Ramsey [16] first showed the existence of R(k, k) for all k ∈ N. Please refer to [3]

for a survey of bounds on R(k, k). In the next theorem, we derive an upper bound for R(k, k).

The statement of the theorem and its proof are similar to those that can be found in [4].

Theorem 3. There is a monochromatic clique of size k in every coloring of the edges of Kn

using two colors if n ≥ 22k−1 − 1; i.e. R(k, k) ≤ 22k−1 − 1.

Proof. Consider a coloring of the edges of Kn using two colors {R,B}. We define S1 = V (Kn)

and define v1 to be an arbitrarily chosen vertex of S1. We now define v2, v3, . . . , v2k−1 and

S2, S3, . . . , S2k−1 inductively. We shall also ensure that for each i ∈ {2, 3, . . . , 2k − 1}, |Si| ≥
22k−i−1 − 1. Suppose that for some i ∈ {2, 3, . . . , 2k − 1}, vi−1 and Si−1 are defined, and that

|Si−1| ≥ 22k−i − 1. We then define vi and Si as follows. Note that |Si−1| ≥ 22k−i − 1. Since

i ≤ 2k − 1, this means that |Si−1| ≥ 1. We choose an arbitrary vertex of Si−1 as vi. Note

that there are |Si−1| − 1 ≥ 22k−i − 2 edges from vi to other vertices in Si−1. By Pigeonhole

Principle, at least
⌈
22k−i−2

2

⌉
= 22k−i−1 − 1 of these edges are of the same color, say ‘R’. We

define Si = {u ∈ Si−1 \ {vi} | uvi is colored ‘R’}. Clearly, we have |Si| ≥ 22k−i−1 − 1. Note

that the edges from vi to vertices in Si all have the same color. Also note that it is possible

that S2k−1 = ∅.
Notice for each i ∈ {1, 2, . . . , 2k − 2}, the edges vivi+1, vivi+2, . . . , viv2k−1 are all of the

same color since vi+1, vi+2, . . . , v2k−1 ∈ Si and the edges from vi to each vertex in Si have

the same color. We say that the vertex vi is of type ‘R’ if the edges vivi+1, vivi+2, . . . , viv2k−1

are all colored ‘R’; otherwise, i.e. if the edges vivi+1, vivi+2, . . . , viv2k−1 are all colored ‘B’, we

say that the vertex vi is of type ‘B’. Again by Pigeonhole Principle, we know that there is

a subset S ⊆ {v1, v2, . . . , v2k−2} such that |S| ≥ k − 1 and all vertices in S are of the same

type. Now consider the set S ∪ {v2k−1}. Let us assume without loss of generality that each

vertex in S is of type ‘R’. Then we have by our observations above that each vertex vj ∈ S,

where j ∈ {1, 2, . . . , 2k− 2}, is connected to vertices in ({vj+1, vj+2, . . . , v2k−2} ∩ S)∪ {v2k−1}
through edges of color ‘R’. It follows that S ∪ {v2k−1} is a monochromatic clique of size at

least k.

Definition 1 ( [18]). Given events E1, . . . , En ⊂ Ω (where Ω is a finite probability space) and

a subset J ⊂ [n], the event Ei is said to be mutually independent of {Ej : j ∈ J} if for all

choices of disjoint subsets J1, J2 ⊂ J ,

P

(
Ei ∩

⋂
j1∈J1

Ej1 ∩
⋂

j2∈J2

Ej2

)
= P [Ei] · P

( ⋂
j1∈J1

Ej1 ∩
⋂

j2∈J2

Ej2

)
.

Equipped with this notion, we state a commonly used form of the Lovász Local Lemma.
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Theorem 4 (Symmetric version of Lovász Local Lemma [18]). Suppose p ∈ (0, 1), d ≥ 1, and

E1, . . . , En are events such that P [Ei] ≤ p for all i. If each Ei is mutually independent of all

but d other events Ej, and ep(d+ 1) ≤ 1, where e = 2.71828 . . . is Euler’s number, then

P

[
n⋂

i=1

Ei

]
> 0.

Theorem 5 ( [18]). If e · 21−(
k
2) ·
(
k
2

)(
n−2
k−2

)
< 1, then R(k, k) > n.

Proof. Consider a random 2-edge coloring c of Kn with the vertex set V (Kn) = {1, 2, . . . , n}
in which each edge of the Kn is colored with R or B uniformly at random. For distinct

i, j ∈ {1, 2, . . . , n}, define a random variable Xij that takes the value c(ij), i.e. the color of

the edge ij. Clearly, P [Xij = R] = P [Xij = B] = 1
2
∀ij ∈ E(Kn). For S ⊆ V (Kn) such that

|S| = k, let AS be the event that the clique formed by the vertices of S is monochromatic in

the coloring c.

Notice that the set E = {AS | S ⊆ V (G) and |S| = k} is a collection of
(
n
k

)
events. Observe

that each event AS ∈ E is uniquely determined by the
(
k
2

)
random variables in {Xij | i, j ∈ S}.

It can be seen that if AS ∈ E and A ⊆ E , then AS is mutually independent of the collection

A of events if and only if for each AS′ ∈ A, we have |S ∩ S ′| < 2.

We define the dependency graph G for E to be the graph on vertex set E with an edge

between two events AS and AS′ in E if S ̸= S ′ but |S ∩ S ′| ≥ 2. Define Γ(AS) to be the

neighborhood of AS in this dependency graph. Notice that |Γ(AS)| ≤
(
k
2

) ((
n−2
k−2

)
− 1
)
≤(

k
2

)(
n−2
k−2

)
− 1. Notice that an AS ∈ E is mutually independent of the events E \ {Γ(AS)∪AS}.

Thus each event AS ∈ E is mutually independent of all but |Γ(AS)| other events in E . We

also know that for each AS ∈ E , just like in the proof of the previous lemma, we have

P [AS] = 21−(
k
2).

By the assumption in the statement of the lemma, we have

e · P [AS] · (|Γ(AS) + 1|) < 1.

Therefore, applying Theorem 4,

P

[ ⋂
AS∈E

AS

]
> 0.

Thus, there is a non-zero probability that none of the events AS occurs; i.e. no clique on k

vertices is monochromatic. Therefore, we can conclude that R(k, k) > n.

Using the entropy compression method

We shall study how the entropy compression method can be applied to derive lower bounds

on R(k, k) without using the probabilistic techniques employed in the proofs of Theorems 2
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and 5. As in the previous chapter, we shall construct an algorithm that takes as input a

complete graph G of n vertices (i.e. Kn) and a string s, and attempts to construct a 2-edge

coloring of G that does not contain a monochromatic clique on k vertices. In this case, the

string s ∈ {R,B}∗. The algorithm chooses an arbitrary ordering ≺ on the edges of G. In the

i-th iteration of the main loop of the algorithm, it chooses the uncolored edge that is smallest

with respect to the ordering ≺ and assigns it the color s[i]. Our aim is to show that if n is

smaller than some particular value, then the graph G gets colored without any monochromatic

clique of k vertices for some input string s.

The algorithm and its analysis

Let s be a string of length t from the alphabet {R,B}. The algorithm orders the cliques of

size k in G as C1, C2, . . . , C(k2)
arbitrarily. At step i of the algorithm, the i-th entry s[i] of s

will be utilized to assign a color to the smallest edge with respect to ≺ among the uncolored

edges of G. If a monochromatic clique of size k is created after the coloring of this edge, say

Cj, then uncolor all the edges of Cj except the edge in Cj that is smallest with respect to ≺,
and output j. The algorithm applied on G returns output (j1, j2, j2, . . . , jr,Φ) i.e. the indices

of the monochromatic cliques of size k formed, and the partial edge coloring Φ of G created by

the algorithm at the time of its termination (here, r is the number of monochromatic cliques

that were formed during the execution of the algorithm).

Algorithm 2 : Edge Coloring Algorithm for Complete Graph

1: procedure ECC(G, s) ▷ Input: Complete graph G and a string s ∈ {R,B}∗
2: Choose an arbitrary ordering ≺ on the edges of G
3: Order the cliques of size k of G as C1, C2, . . . , C(nk)
4: Initialize the color of every edge to ‘U ’ ▷ U stands for “uncolored”
5: i← 0
6: while G is not fully colored and i < t do
7: i← i+ 1
8: Let ei be the first uncolored edge in the edge ordering ≺
9: Color ei with the color s[i]
10: if a monochromatic clique C (containing ei) of size k is present in the graph then
11: Get the smallest edge emin in E(C) \ {ei} with respect to ≺
12: Uncolor all edges in C except emin

13: Output the index of C in the ordering C1, C2, . . . , C(nk)
14: end if
15: end while
16: Output for each edge e in G the color assigned to it; this is a string in {R,B,U}(

k
2).

17: end procedure

Suppose that for each q ∈ {1, 2, . . . , r}, the q-th instance of the appearance of a monochro-

matic clique appears in the iq-th iteration of the main loop of the algorithm (the monochro-

matic clique that appears during this iteration is Cjq). We let i0 = 0. For each q ∈ {1, 2, . . . , r},
let Xq be the set of uncolored edges after the iq-th iteration of the main loop. We define
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X0 = E(G). Also, let Φq be the partial edge coloring of G after the iq-th iteration of the main

loop. We let Φ0 denote the coloring in which every edge is uncolored. For each q ∈ {1, 2, . . . , r},
we denote emin

q = min≺{E(Cq)} \ {eiq} and emax
q = max≺{E(Cjq)}. For ease of writing, for

any edge e ∈ E(G), we define E(G)⪯e to be the edges in G that are smaller than or equal to e

with respect to the ordering ≺. Let f(s) denote the output string of the algorithm when given

s as the input string. We will prove that if the algorithm does not fully color the graph G for

some input string s, then the output string f(s) = (j1, j2, j2, . . . , jr,Φ) uniquely determines s.

Note that given f(s), we can determine j1, j2, . . . ,Φ, since Φ consists of the last
(
n
2

)
symbols

on the string, and the symbols before that on the string are j1, j2, . . . , jr.

Suppose that the graph G is not fully colored by the algorithm when given a string s as

input. Let t = |s|. Then it is clear that the main loop of the algorithm is executed t times.

Lemma 6. r ≤ t

(k2)−1
.

Proof. For each q ∈ {1, 2, . . . , r}, we define for each edge e ∈ E(Cjq) \ {emin
q }, the index

f(e, q) = max{i ∈ {1, 2, . . . , iq} | ei = e}. Further, define F (q) = {f(e, q) | e ∈ E(Cjq) \
{emin

q }}. It is clear that |F (q)| =
(
k
2

)
− 1. We claim that for distinct q, q′ ∈ {1, 2, . . . , r},

F (q) ∩ F (q′) = ∅. Suppose for the sake of contradiction that i ∈ F (q) ∩ F (q′). Then clearly,

ei ∈ E(Cjq) ∩ E(Cjq′
). Let us assume without loss of generality that q < q′. Since i ∈

F (q) ∩ F (q′), we have that f(ei, q) = f(ei, q
′) = i, and therefore i ≤ iq. If there exists

i′ ∈ {iq + 1, iq + 2, . . . , iq′} such that ei′ = ei, then it must be the case that i = f(ei, q
′) =

f(ei′ , q
′) ≥ i′ > iq, which contradicts our earlier observation that i ≤ iq. So there does not

exist i′ ∈ {iq+1, iq+2, . . . , iq′} such that ei′ = ei. Since the edge ei is uncolored after the iq-th

iteration (notice that ei ̸= emin
q ), this means that the edge ei is uncolored at the time that the

monochromatic clique Cjq′
is about to be uncolored in the iq′-th iteration of the main loop.

As ei ∈ E(Cjq′
), this contradicts the fact that all edges of the clique Cjq′

are colored when it is

just about to be uncolored. This shows that for distinct q, q′ ∈ {1, 2, . . . , r}, F (q)∩F (q′) = ∅.
As F (q) ⊆ {1, 2, . . . , t} for each q ∈ {1, 2, . . . , r}, it now follows that r ≤ t

(k2)−1
.

Lemma 7. For each q ∈ {0, 1, . . . , r}, the set Xq is uniquely determined by the output string

f(s).

Proof. To prove this result, we apply induction on q. As the base case, we have that X0 =

E(G) (and so it is uniquely determined, no matter what f(s) is). Let q ∈ {1, 2, . . . , r}. We

assume inductively that Xq−1 is uniquely determined given f(s). We shall show that Xq is

uniquely determined given Xq−1 and f(s). It is easy to see that max{Xq−1 ∩ E(Cjq)} = eiq .

Clearly, when the clique Cjq is about to be uncolored, every edge in E(G)⪯eiq
must be colored.

Hence Xq =
(
Xq−1 \E(G)⪯eiq

)
∪
(
E(Cjq) \ emin

q

)
. This shows that Xq is uniquely determined

for each q ∈ {0, 1, . . . , r} given f(s).

Recall that Φ is the partial edge coloring of G after the t-th iteration of the main loop. We

define Φr+1 = Φ. Similarly, let Xr+1 denote the set of uncolored edges after the t-th iteration
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of the main loop. Note that Xr+1 is uniquely determined given f(s), since it can be directly

derived from the partial edge coloring Φ of G that is part of f(s).

Lemma 8. For each q ∈ {1, 2, . . . , r}, the partial edge coloring Φq is uniquely determined by

the output string f(s).

Proof. Given f(s), we have the partial edge coloring Φr+1 of G. It can be seen that we can

uncolor all the edges in the set Xr \ Xr+1 from the coloring Φr+1 to obtain the coloring Φr.

Now suppose that Φq+1 is uniquely determined given f(s) for some q ∈ {1, 2, 3, . . . , r − 1}.
By Lemma 7, we know that X1, X2, . . . , Xq are uniquely determined given f(s). We shall be

done if we show that Φq is uniquely determined given Φq+1, Xq+1 and Xq. It is easy to see

that Φq can be obtained from Φq+1 by uncoloring all the edges of the set (Xq \Xq+1) and then

coloring all the edges of Cjq+1 \ Xq using the color of the edge emin
q+1 in Φq+1. This completes

the proof.

Lemma 9. The input string s of the algorithm is uniquely determined by the output string

f(s).

Proof. For each q ∈ {1, 2, . . . , r}, we define Φ∗
q to be the partial edge coloring of G constructed

by the algorithm just before it uncolors the edges of the clique Cjq . It can be seen that for each

q ∈ {1, 2, . . . , r}, Φ∗
q can be obtained from Φq by coloring the edges in E(Cjq)\{emin

q } using the
color of the edge emin

q in Φq. For each q ∈ {0, 1, . . . , r}, the edges of G that get colored during

iterations iq + 1 to iq+1 are exactly the ones in Y = (Xq \Xq+1) ∪ (E(Cjq+1) ∩Xq) (these are

exactly the edges that are colored in Φ∗
q+1 but not in Φq). Hence we have that |Y | = iq+1− iq.

Let Y = {e1, e2, . . . , e|Y |} where e1 ≺ e2 ≺ · · · ≺ e|Y |. It is clear from the algorithm that

the color of the edge ep in Φ∗
q+1, where p ∈ {1, 2, . . . , |Y |}, is s[iq + p]. Since we know by

Lemma 7 and Lemma 8 that for each q ∈ {0, 1, . . . , r+1}, Xq and Φq are determined uniquely

given f(s), it follows that Φ∗
q is also determined uniquely for each q ∈ {1, 2, . . . , r}, given

f(s). Now we have from the argument above that s[iq+1], s[iq+2], . . . , s[iq+1] are determined

uniquely given f(s), for each q ∈ {0, 1, . . . , r − 1}. This means that s[1], s[2], . . . , s[ir] are

determined uniquely given f(s). The edges that get colored during the iterations ir + 1 to

t of the algorithm are exactly the edges in Y = Xr \ Xr+1. Here, |Y | = t − ir. Again if

Y = {e1, e2, . . . , e|Y |} where e1 ≺ e2 ≺ · · · ≺ e|Y |, we get that the color of ep in Φ is exactly

s[ir + p], for each p ∈ {1, 2, . . . , |Y |}. This proves that s is uniquely determined given f(s).

Corollary 2. Let s1 and s2 be two input strings of length t. If s1 ̸= s2, then f(s1) ̸= f(s2).

Let Z be the total number of possible input strings of length t, so |Z| = 2t. And also

suppose that f(Z) be the total number of output strings corresponding to input strings in

Z. Recall each output string is of the form (j1, j2, . . . , jr,Φ), where each jq has
(
n
k

)
possible

values and Φ can be one among 3(
n
2) possibilities (because |E(G)| =

(
n
2

)
and the edges are of

3 types, i.e. R or B or uncolored). Hence using Lemma 6, we have |f(Z)| ≤ 3(
n
2) ·
(
n
k

) t

(k2)−1 .
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Recall that we have assumed that the algorithm does not fully color the graph G for any

string in Z. From Corollary 2, we know that |f(Z)| ≥ |Z|. Thus:

3(
n
2)
(
n

k

) t

(k2)−1 ≥ 2t

⇒ 3
(n2)((k2)−1)

t

(
n

k

)
21−(

k
2) ≥ 1

⇒
(
n

k

)
21−(

k
2) ≥

(
1

3

)(n2)((k2)−1)
t

Now suppose that
(
n
k

)
21−(

k
2) < 1. Let ϵ = 1 −

(
n
k

)
21−(

k
2). Then clearly,

(
n
k

)
21−(

k
2) = 1 − ϵ

and ϵ > 0. Then from the above inequality, we have

(
1

3

)(n2)((k2)−1)
t

≤ 1− ϵ

⇒
(
1

3

)(n2)((k2)−1)
≤ (1− ϵ)t

⇒
(
n

2

)((
k

2

)
− 1

)
log

1

3
≤ t log(1− ϵ)

⇒
(
n

2

)((
k

2

)
− 1

)
log(3) ≥ t log

(
1

1− ϵ

)
⇒
(
n

2

)((
k

2

)
− 1

)
log(3)

log
(

1
1−ϵ

) ≥ t

This means if t >
(
n
2

) ((
k
2

)
− 1
) log(3)

log( 1
1−ϵ)

, then it is not possible that the algorithm fails to

fully color the graph G for every input string of length t. From this, we can conclude that if(
n
k

)
21−(

k
2) < 1, then there is some input string for which the algorithm fully colors the graph

G; i.e. or in other words, the complete graph on n vertices has a 2-edge coloring in which

there is no monochromatic clique of size k. We thus have an alternative proof for Theorem 2.

So the inequality becomes(
n

k

)
21−(

k
2) ≥ 1

⇒ (
en

k
)k · 21−(

k
2) ≥ 1((using Stirling’s approximation))

⇒ n ≥ k

e
· 2

(k+1)(k−2)
2k

⇒ n >
k

2e
· 2

k
2
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A modified algorithm

We now modify the previous algorithm ECC(G, s) a little bit and design a new algorithm

MECC(G, s). We output a “0” every time we color an edge in MECC(G, s) and when a

monochromatic clique is detected we output the index of the clique as before. But unlike in

the algorithm ECC(G, s), where the index is from a global list of cliques, here the index is

from a list of cliques that the current edge is a part of. We analyse the algorithm MECC(G, s)

similarly as we did in previous algorithm to get a better lower bound on R(k, k).

Algorithm 3 : Modified Edge Coloring Algorithm for Complete Graph

1: procedure MECC(G, s) ▷ Input: Complete graph G and a string s ∈ {R,B}∗
2: Choose an arbitrary ordering ≺ on the edges of G
3: For each edge e ∈ E(G), choose an arbitrary ordering Ce

1 , C
e
2 , . . . , C

e

(n−2
k−2)

of the cliques

of size k of G that contain e
4: Initialize the color of every edge to ‘U ’ ▷ U stands for “uncolored”
5: i← 0
6: while G is not fully colored and i < t do
7: i← i+ 1
8: Let ei be the first uncolored edge in the edge ordering ≺
9: Color ei with the color s[i]
10: Output “0”
11: if a monochromatic clique C (containing ei) of size k is present in the graph then
12: Get the smallest edge emin in E(C) \ {ei} with respect to ≺
13: Uncolor all edges in C except emin

14: Output the index of C in the ordering Cei
1 , C

ei
2 , . . . , C

ei

(n−2
k−2)

15: end if
16: end while
17: Output for each edge e in G the color assigned to it; this is a string in {R,B,U}(

k
2).

18: end procedure

Suppose that the MECC(G, s) algorithm when applied to a complete graph G on n ver-

tices, and input string s, fails to fully color the graph. Let g(s) be the string that is printed by

the algorithm, and let |s| = t. The main loop of the algorithm executes exactly t times, and

therefore the algorithm prints exactly t zeroes before the final step, in which it outputs the

partial edge coloring. Suppose that the algorithm detects the formation of a monochromatic

clique of size k a total of r times. If we denote the partial edge coloring of G created by the

algorithm at the time of its termination as Φ, then the output string is of the form

000 . . . 0j1000 . . . 0j20 . . . jr000 . . . 0Φ

where each jq represents the indices of the monochromatic cliques formed and each block

of consecutive zeroes has length at least 1, except the last block of zeroes, which may not

necessarily exist.
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Analysis

Suppose that for each q ∈ {1, 2, . . . , r}, the q-th instance of the appearance of a monochromatic

clique appears in the iq-th iteration of the main loop of the algorithm (the monochromatic

clique that appears during this iteration is C
eiq
jq

. We let i0 = 0. We define Xi to be the set of

uncolored edges after the i-th iteration of the main loop of the algorithm and also define Φi to

be the partial edge coloring ofG after this iteration. Note that Φ = Φt. We letX0 = E(G). We

will prove that output string g(s) = 000 . . . 0j1000 . . . 0j20 . . . jr000 . . . 0Φ uniquely determines

the corresponding input string s used in the algorithm. For each q ∈ {1, 2, . . . , r}, we let

emin(C
eiq
jq

) = min≺

(
E(C

eiq
jq

) \ {eiq}
)
.

Note that Φ can be thought of as a string in {U,R,B}(
n
2). Hence Φ is one of 3(

n
2) possible

strings of length
(
n
2

)
. Also note that for each q ∈ {1, 2, . . . , r}, we have 1 ≤ jq ≤

(
n−2
k−2

)
.

Blocks of g(s):

Let block(i) be the substring of g(s) that is printed by the algorithm in the i-th iteration of its

main loop. Thus g(s) is of the form block(1)block(2) . . . block(t)Φ. One can think of block(i) as

a record of the actions performed by the algorithm in the i-th iteration of its main loop. Note

that given g(s), the strings block(1), block(2), . . . , block(t) can be determined easily: every

iteration that prints non-zero symbols prints a 0 followed by an index jq, and every other

iteration prints a single 0. Thus, for each i ∈ {1, 2, . . . , t}, the string block(i) is either 0 or an

index prefixed with a 0, and these can be derived easily from the string g(s).

Lemma 10. For each i ∈ {1, 2, . . . , t}, Xi is uniquely determined by the output g(s).

Proof. Clearly, X0 = E(G). We claim that given Xi−1 and g(s), Xi is uniquely determined

for each i ∈ {1, 2, 3, . . . , t}. Note that this will complete the proof of the lemma. Notice

that in the i-th iteration of the main loop, the algorithm chooses as ei the smallest edge in

the ordering ≺ that is uncolored. Since Xi−1 is the set of uncolored edges at the end of the

(i − 1)-th iteration of the loop, and also at the beginning of the i-th iteration of the loop, it

is clear that ei = min≺Xi−1. Thus, ei is uniquely determined given g(s) and Xi−1. If block(i)

is of the form “0”, then Xi = Xi−1 \ {ei}, since ei is the only edge that gets colored in the

i-the iteration of the loop and no edges are uncolored (as otherwise block(i) would not have

been just 0). Since ei is uniquely determined given g(s) and Xi−1, we have that Xi is uniquely

determined given g(s) and Xi−1, and we are done in this case. Otherwise, block(i) = 0j,

where j ∈ {j1, j2, . . . , jr}. This means that a monochromatic clique of size k, namely Cei
j was

detected after the edge ei was colored. Then Xi = Xi−1∪(E(Cei
j )\emin(Cei

j )), since every edge

of Cj other than emin(Cei
j ) get uncolored during this iteration of the algorithm, and no other

edges are uncolored. This means that Xi is uniquely determined given g(s) and Xi−1.
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Lemma 11. For each i ∈ {1, 2, . . . , t}, Φi−1 and s[i] are uniquely determined given g(s).

Proof. Using the previous lemma we know that e1, e2, . . . , et are all uniquely determined given

g(s). Clearly, Φt = Φ, and therefore Φt is uniquely determined given g(s). For convenience,

we also assume that s[t+1] (which does not exist) is also uniquely determined given g(s). We

assume inductively that Φi and s[i+1] are uniquely determined given g(s) and prove that then

Φi−1 and s[i] are also uniquely determined. Now if block(i) = 0, that means ei is the only edge

that gets colored in the i-th iteration of the loop and no edges are uncolored (as otherwise

block(i) would not have been just 0), then one can obtain Φi−1 from Φi by just uncoloring

the edge ei. Moreover, s[i] is the color of the edge ei in Φi. Otherwise, block(i) = 0j, where

j ∈ {j1, j2, . . . , jr}. This means that a monochromatic clique of size k, namely Cei
j , was

detected after the edge ei was colored in i-th iteration. Since every edge of Cei
j other than

emin(Cei
j ) gets uncolored during this iteration of the algorithm, one can obtain Φi−1 from Φi by

coloring every edge in E(Cei
j ) \ {emin(Cei

j )} with the color of the edge emin(Cei
j ) in Φi. Again,

s[i] is the color of the edge emin(Cei
j ) in Φi. This completes the proof.

Corollary 3. Let s1 and s2 be two input strings of length t. If s1 ̸= s2, then g(s1) ̸= g(s2).

It is not hard to see that using arguments similar to that in the proof of Lemma 6, we can

obtain the same result; so we give the statement without proof.

Lemma 12. r ≤ t

(k2)−1
.

Let Z be the total number of possible input strings of length t, so |Z| = 2t. And also

suppose that g(Z) be the total number of output strings corresponding to input strings in

Z. Recall that each output string is of the form (000 . . . 0j1000 . . . 0j20 . . . jr000 . . . 0Φ), where

each jq has
(
n−2
k−2

)
possible values. As observed before, Φ has 3(

n
2) possible values. Consider

g∗(s) be the string excluding Φ from g(s), and then replacing every non-zero symbol by ‘1’,

as follows:

g(s)=000 . . .0j1 000 . . .0j2 0 . . . jr 000 . . .0 Φ︸︷︷︸
is removed

g∗(s)=000 . . .0 1 000 . . .0 1 0 . . . 1 000 . . .0

Notice that two jq’s cannot be printed consecutively and block(1) is always 0. And recall

that the algorithm prints exactly t 0’s after the termination of the algorithm. So there are at

most
(
t
r

)
many total possible values for g∗(Z). Then,

|g(Z)| ≤ 3(
n
2)
(
t

r

)(
n− 2

k − 2

)r

Therefore, using Lemma 12 (observe that t

(k2)−1
> 2),

|g(Z)| ≤ 3(
n
2)
(

t
t

(k2)−1

)(
n− 2

k − 2

) t

(k2)−1
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Recall that we have assumed that the algorithm does not fully color the graph G for any

string in Z. From Corollary 2, we know that |f(Z)| ≥ |Z|. Thus:

3(
n
2)
(

t
t

(k2)−1

)(
n− 2

k − 2

) t

(k2)−1 ≥ 2t

3(
n
2)

 et
t

(k2)−1

 t

(k2)−1 (
n− 2

k − 2

) t

(k2)−1 ≥ 2t(using Stirling’s approximation)

⇒ 3
(n2)((k2)−1)

t · e ·
((

k

2

)
− 1

)
·
(
n− 2

k − 2

)
· 21−(

k
2) ≥ 1

⇒ e ·
((

k

2

)
− 1

)
·
(
n− 2

k − 2

)
· 21−(

k
2) ≥

(
1

3

)(n2)((k2)−1)
t

Now suppose that e ·
((

k
2

)
− 1
)
·
(
n−2
k−2

)
· 21−(

k
2) < 1. Let ϵ = 1− e ·

((
k
2

)
− 1
)
·
(
n−2
k−2

)
· 21−(

k
2).

Then clearly, e ·
((

k
2

)
− 1
)
·
(
n−2
k−2

)
· 21−(

k
2) = 1− ϵ and ϵ > 0. Then from the above inequality,

we have

(
1

3

)(n2)((k2)−1)
t

≤ 1− ϵ

⇒
(
1

3

)(n2)((k2)−1)
≤ (1− ϵ)t

⇒
(
n

2

)((
k

2

)
− 1

)
log

1

3
≤ t log(1− ϵ)

⇒
(
n

2

)((
k

2

)
− 1

)
log(3) ≥ t log

(
1

1− ϵ

)
⇒
(
n

2

)((
k

2

)
− 1

)
log(3)

log
(

1
1−ϵ

) ≥ t

This means if t >
(
n
2

) ((
k
2

)
− 1
) log(3)

log( 1
1−ϵ)

, then it is not possible that the algorithm fails to

fully color the graph G for every input string of length t. From this, we can conclude that if

e ·
((

k
2

)
− 1
)
·
(
n−2
k−2

)
· 21−(

k
2) < 1, then there is some input string for which the algorithm fully

colors the graph G; or in other words, the complete graph on n vertices has a 2-edge coloring

in which there is no monochromatic clique of size k. We thus have an alternative proof for

Theorem 5.

So the inequality becomes

e ·
((

k

2

)
− 1

)
·
(
n− 2

k − 2

)
· 21−(

k
2) ≥ 1

⇒ e ·
((

k

2

)
− 1

)
·
(
e(n− 2)

k − 2

)k−2

· 21−(
k
2) ≥ 1(using Stirling’s approximation)
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⇒ n ≥ 2 +
k − 2

e

(
2(

k
2)−1

e(
(
k
2

)
− 1)

) 1
k−2

⇒ n ≥ 2 + o(1) · (k − 2) · 2
k+1
2

By the LLL, we had obtained a bound of e · 21−(
k
2) ·
(
k
2

)(
n−2
k−2

)
< 1 (Theorem 5), and we are

also getting similar bounds, i.e. e ·
((

k
2

)
− 1
)
·
(
n−2
k−2

)
· 21−(

k
2) < 1 . Our future plan is to count

g(Z) accurately using N-Dyck words (see the conclusion) to enhance the bound.

*****
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k-Uniform Hypergraph

In the domain of combinatorial mathematics, hypergraphs provide a framework for studying

relationships between objects where hyperedges (or hyperedges) can connect more than two

hyperedges. A k-uniform hypergraph G = (V (G), E(G)) is a mathematical structure consisting

of a finite set of vertices, V (G), and a collection of k-element subsets of V (G) known as

hyperedges, denoted by E(G).

This work investigates the concept of 2-coloring for k-uniform hypergraphs. A 2-coloring

of G assigns a color, either R or B, to each vertex in V (G). A valid 2-coloring satisfies the

following property: no hyperedge in E(G) is monochromatic, meaning every hyperedge must

contain vertices colored both red and blue. A k-uniform hypergraph that admits such a

2-coloring is classified as 2-colorable.

Let G be a k-uniform hypergraph with vertex set V and edge set E. We consider the

scenario where each vertex of G is colored uniformly at random, either R or B. Suppose Ei

denotes the event that the hyperedge Hi ∈ E(G) is monochromatic, i.e., all vertices incident

to this hyperedge have the same color. Since each vertex is independently colored with equal

probability of being R or B, the probability that the hyperedge Hi is monochromatic is 21−k.

Theorem 6. If G has fewer than 2k − 1 hyperedges, then in a 2-coloring of G, there exists at

least one monochromatic hyperedge in G with probability less than 1.

Proof. Since G has fewer than 2k− 1 hyperedges, we can employ the union bound to estimate

the probability that there exists at least one monochromatic hyperedge in G. By the union

bound, the probability that the union of all events E occurs is bounded above by the sum of

the individual probabilities:
|E|∑
i=1

P (Ei) < |E| · 21−k

where |E| denotes the number of hyperedges in G. Substituting |E| < 2k − 1, we get:

|E| · 21−k < (2k − 1) · 21−k = 1

Thus, the probability that there exists at least one monochromatic hyperedge in G is less

than 1. Consequently, we can conclude that there exists a valid 2-coloring of G i.e. G is

2-colorable.
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However, this argument breaks down when G has more than 2k − 1 hyperedges, as the

probability bound obtained from the union bound may exceed 1, rendering the conclusion

of G being a valid 2-colorable invalid. But using the symmetric version of the Lovász Local

Lemma (refer to Theorem 4), the following result is found.

Theorem 7. Suppose G be a k-uniform hypergraph with maximum degree d (every vertex of

G has maximum degree d) |E(G)| = m and ∀i ≤ m hyperedge Hi ∈ E(G), Ei denotes the

event that Hi is monochromatic. And ∀i ≤ m Ei is mutually independent of all other events

except D of them, where D + 1 < 2k−1

e
, then G is 2-colorable.

Proof. Given total m events, which are E1, E2, . . . , Em, ∀i ≤ m Ei is mutually independent

of all other events except d of them. Consider fixing an hyperedge Hi; now, any vertex-

coloring on the hyperedges disjoint from Hi is independent of Ei, since the node colors are

independent and identically distributed (i.i.d.) Bernoulli random variables. We also have that

P [Ei] = 21−k. Therefore, the assumptions of the Symmetric Lovász Local Lemma are satisfied

as long as:

D + 1 <
2k−1

e
⇒ e · (D + 1) · P [Ei] < 1

Hence

P

[
m⋂
i=1

Ei

]
> 0.

That is the probability that none of these events E1, E2, . . . , Em happens is non-zero. Hence,

we conclude that G is 2-colorable.

It is important to note that this condition is invariant with respect to the number of

hyperedges in the hypergraph G.

We shall study how the entropy compression method can be applied to derive upper bounds

on d without using the probabilistic techniques employed in the proof of Theorem 7. As in the

previous chapter, we shall construct an algorithm that takes as input a k-uniform hypergraph

G with |V (G)| = n, |E(G)| = m and maximum degree d and a string s, and attempts to

construct a 2-coloring of G that does not contain any monochromatic hyperedge. In this case,

the string s ∈ {R,B}∗. The algorithm chooses an arbitrary ordering ≺ on the vertices of G.

In the i-th iteration of the main loop of the algorithm, it chooses the uncolored vertex that

is smallest with respect to the ordering ≺ and assigns it the color s[i]. Our aim is to show

that if d is smaller than some particular value, then the graph G gets colored without any

monochromatic hyperedge for some input string s. Notice that a hyperedge H containing a

vertex v, can intersect with at most k(d− 1) (= D, say) many other hyperedges.
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Algorithm 4 : Vertex Coloring Algorithm for k-uniform hypergraph

1: procedure VHPG(G, s) ▷ Input: k-uniform hypergraphG and a string s ∈ {R,B}∗
2: Choose an arbitrary ordering ≺ on the vertices of G
3: For each vertex v ∈ V (G), choose an arbitrary ordering Hv

1 , H
v
2 , . . . , H

v
D of the hyper-

edges of G that contain v
4: ▷ D = k(d− 1)
5: Choose an arbitrary ordering ≺′ on the hyperedges of G
6: Initialize the color of every vertex to ‘U ’ ▷ U stands for “uncolored”
7: i← 0
8: while G is not fully colored and i < t do
9: i← i+ 1
10: Let vi be the first uncolored vertex in the vertex ordering ≺
11: Color vi with the color s[i]
12: Output “0”
13: if a monochromatic hyperedge H (containing vi) of size k is present in the graph

then
14: Get the smallest vertex vmin in V (H) \ {vi} with respect to ≺
15: Uncolor all vertices in H except vmin

16: Output the index of H in the ordering Hv
1 , H

v
2 , . . . , H

v
D

17: end if
18: end while
19: Output for each vertex v in G the color assigned to it; this is a string in {R,B,U}n.
20: end procedure

Suppose that the VHPG(G, s) algorithm is applied to the k-uniform hypergraph G. Let

g(s) be the string that is printed by the algorithm, and let |s| = t. The main loop of the

algorithm executes exactly t times, and therefore the algorithm prints exactly t zeroes before

the final step, in which it outputs the partial vertex coloring. Suppose that the algorithm

detects the formation of a monochromatic vertex a total of r times and the partial vertex

coloring Φ of G created by the algorithm at the time of its termination, then the example

output is as the following

000 . . . 0j1000 . . . 0j20 . . . jr000 . . . 0Φ

where each jq represents the indices of the monochromatic hyperedges formed and each block

of consecutive zeroes has length at least 1, except the last block of zeroes, which may not

necessarily exist.

Analysis

Suppose that for each q ∈ {1, 2, . . . , r}, the q-th instance of the appearance of a monochromatic

hyperedge appears in the iq-th iteration of the main loop of the algorithm (the monochromatic

hyperedge that appears during this iteration is H
eiq
jq

. We let i0 = 0. We define Xi to be the set

of uncolored vertices after the i-th iteration of the main loop of the algorithm and also define

Φi to be the partial vertex coloring of G after this iteration. Note that Φ = Φt. We let X0 =
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V (G). We will prove that output string g(s) = 000 . . . 0j1000 . . . 0j20 . . . jr000 . . . 0Φ uniquely

determines the corresponding input string s used in the algorithm. For each q ∈ {1, 2, . . . , r},
we let vmin(H

viq
jq

) = min≺

(
V (H

viq
jq

) \ {viq}
)
.

The partial vertex coloring Φ of G that is output at the final step is a string of length n

where Φ[i] is color of the i-th vertex in the vertex ordering ≺, where the symbol U is used to

denote the fact that the corresponding vertex is uncolored. Thus Φ ∈ {U,R,B}n. Hence Φ is

one of 3n possible strings of length n.

Blocks of g(s):

Let block(i) be the substring of g(s) that is printed by the algorithm in the i-th iteration of its

main loop. Thus g(s) is of the form block(1)block(2) . . . block(t)Φ. One can think of block(i) as

a record of the actions performed by the algorithm in the i-th iteration of its main loop. Note

that given g(s), the strings block(1), block(2), . . . , block(t) can be determined easily: every

iteration that prints non-zero symbols prints a 0 followed by an index jq, and every other

iteration prints a single 0. Thus, for each i ∈ {1, 2, . . . , t}, the string block(i) is either 0 or an

index prefixed with a 0, and these can be derived easily from the string g(s).

Lemma 13. For each i ∈ {1, 2, . . . , t}, Xi is uniquely determined by the output g(s).

Proof. Clearly, X0 = E(G). We claim that given Xi−1 and g(s), Xi is uniquely determined

for each i ∈ {1, 2, 3, . . . , t}. Note that this will complete the proof of the lemma. Notice that

in the i-th iteration of the main loop, the algorithm chooses as vi the smallest vertex in the

ordering ≺ that is uncolored. Since Xi−1 is the set of uncolored vertices at the end of the

(i − 1)-th iteration of the loop, and also at the beginning of the i-th iteration of the loop, it

is clear that vi = min≺Xi−1. Thus, vi is uniquely determined given g(s) and Xi−1. If block(i)

is of the form “0”, then Xi = Xi−1 \ {vi}, since vi is the only vertex that gets colored in the

i-the iteration of the loop and no vertices are uncolored (as otherwise block(i) would not have

been just 0). Since vi is uniquely determined given g(s) and Xi−1, we have that Xi is uniquely

determined given g(s) and Xi−1, and we are done in this case. Otherwise, block(i) = 0j, where

where j ∈ {j1, j2, . . . , jr}. This means that a monochromatic hyperedge, Hvi
j was detected

after the vertex vi was colored. Then Xi = Xi−1 ∪ (V (Hvi
jq
) \ vmin(Hvi

j ))), since every vertex of

Hvi
j other than vmin(H

viq
j ) get uncolored during this iteration of the algorithm, and no other

vertices are uncolored. This means that Xi is uniquely determined given g(s) and Xi−1.

Lemma 14. For each i ∈ {1, 2, . . . , t}, Φi−1 and s[i] are uniquely determined given g(s).

Proof. Using the previous lemma we know that v1, v2, . . . , vt are all uniquely determined given

g(s). Clearly, Φt = Φ, and therefore Φt is uniquely determined given g(s). For convenience,

we also assume that s[t+1] (which does not exist) is also uniquely determined given g(s). We

assume inductively that Φi and s[i + 1] are uniquely determined given g(s) and prove that

then Φi−1 and s[i] are also uniquely determined. Now if block(i) = 0, that means vi is the

only vertex that gets colored in the i-th iteration of the loop and no vertices are uncolored

(as otherwise block(i) would not have been just 0), then one can obtain Φi−1 from Φi by
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just uncoloring the vertex vi. Moreover, s[i] is the color of the vertex vi in Φi. Otherwise,

block(i) = 0j, where j ∈ {j1, j2, . . . , jr}. This means that a monochromatic hyperedge, namely

Hvi
j , was detected after the vertex vi was colored in i-th iteration. Since every vertex of Hvi

j

other than vmin(Hvi
j ) gets uncolored during this iteration of the algorithm, one can obtain

Φi−1 from Φi by coloring every vertex in V (Hvi
j ) \ {vmin(Hvi

j )} with the color of the vertex

vmin(Hvi
j ) in Φi. Again, s[i] is the color of the vertex vmin(Hvi

j ) in Φi. This completes the

proof.

Corollary 4. Let s1 and s2 be two input strings of length t. If s1 ̸= s2, then g(s1) ̸= g(s2).

It is not hard to see that using arguments similar to that in the proof of Lemma 6 in the

previous Chapter, we can obtain the same result; so we give the statement without proof.

Lemma 15. r ≤ t

k − 1
.

Let Z be the total number of possible input strings of length t, so |Z| = 2t. And also

suppose that g(Z) be the total number of output strings corresponding to input strings in Z.

Recall each output string is of the form (000 . . . 0j1000 . . . 0j20 . . . jr000 . . . 0Φ), where each jq

has D possible values. And Φ can be one among 3n possiblities. Consider g∗(s) be the string

excluding Φ from g(s), and then replacing every non-zero symbol by ‘1’, as follows:

g(s)=000 . . .0j1 000 . . .0j2 0 . . . jr 000 . . .0 Φ︸︷︷︸
is removed

g∗(s)=000 . . .0 1 000 . . .0 1 0 . . . 1 000 . . .0

Notice that two jq’s cannot be printed consecutively and block(1) is always 0. And recall

that algorithm prints exactly t 0’s after the termination of the algorithm. So there are
(
t
r

)
many total possible g∗(s)’s. Then,

|g(Z)| ≤ 3n
(
t

r

)
Dr

Therefore, using Lemma 15,

|g(Z)| ≤ 3n
(

t
t

k−1

)
D

t
k−1

Recall that we have assumed that the algorithm does not fully color the graph G for any string

in Z. From Corollary 4, we know that |g(Z)| ≥ |Z|. Thus:

3n
(

t
t

k−1

)
D

t
k−1 ≥ 2t

3n

(
et
t

k−1

) t
k−1

D
t

k−1 ≥ 2t(using Stirling’s approximation)

3
n(k−1)

t · e · (k − 1) ·D · 21−k ≥ 1
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e · (k − 1) ·D · 21−k ≥
(
1

3

)n(k−1)
t

Now suppose that e · (k − 1) ·D · 21−k < 1. Let ϵ = 1− e · (k − 1) ·D · 21−k. Then clearly,

e · (k − 1) ·D · 21−k = 1− ϵ and ϵ > 0. Then from the above inequality, we have

(
1

3

)n(k−1)
t

≤ 1− ϵ

⇒
(
1

3

)n(k−1)

≤ (1− ϵ)t

⇒ n (k − 1) log
1

3
≤ t log(1− ϵ)

⇒ n (k − 1) log(3) ≥ t log

(
1

1− ϵ

)
⇒ n (k − 1)

log(3)

log
(

1
1−ϵ

) ≥ t

This means if t > n (k − 1) log(3)

log( 1
1−ϵ)

, then it is not possible that the algorithm fails to

fully color the graph G for every input string of length t. From this, we can conclude that if

e · (k−1) ·D ·21−k < 1, then there is some input string for which the algorithm fully colors the

graph G; i.e. or in other words, the k-uniform hypergraph G with n vertices and m hyperedges

has a 2-edge coloring in which there is no monochromatic hyperedge.

So the inequality becomes

e · (k − 1) ·D · 21−k < 1

⇒ D <
2k−1

e(k − 1)

By the LLL 7 we had D + 1 < 2k−1

e
, but our bound D < 2k−1

e(k−1)
is comparatively weaker.

Our future plan is to count g(Z) accurately using N-Dyck words (see conclusion) to enhance

the bound.

*****
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Conclusion and future works

The success of this research opens several avenues for future work. One promising direction is

to apply the entropy compression method to other graph-theoretic problems and those related

to the Lovász Local Lemma. Potential applications include list coloring, where each vertex

in a graph is assigned a list of allowable colors, and edge-disjoint path problems, which have

practical implications for routing and network optimization.

A significant challenge identified during this research is the counting of specific combinato-

rial objects, we defined them as partial N -Dyck words. These are the binary strings in which

every prefix contains at least N times as many 0’s as 1’s. Developing a method to efficiently

count these words is crucial for refining our bounds and enhancing our understanding of the

underlying combinatorial structures.

Addressing these future research directions will not only refine the current bounds but

also broaden the practical and theoretical applications of entropy compression in combina-

torial optimization and graph theory. The ongoing development of algorithmic methods for

these problems will further contribute to the field, providing deeper insights and more robust

solutions to complex combinatorial challenges.

*****
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