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Abstract

Extreme rainfall events, commonly known as cloudbursts, are significant weather

phenomena characterized by exceptionally high intensity of precipitation within a

short period. These events can result in devastating flash floods, landslides, and

avalanches, causing extensive damage to infrastructure, property, and significant loss

of life. Despite various measures and advancements in meteorological science to mit-

igate their impact, predicting these events with high accuracy remains a formidable

challenge. This study focuses on applying cutting-edge machine learning techniques

to anticipate heavy rainfall events in the Indian subcontinent, specifically leverag-

ing ConvLSTM neural networks. By integrating diverse meteorological datasets,

including potential vorticity, relative humidity, cloud cover, temperature, and sur-

face pressure, this research aims to develop a robust predictive model. Leveraging

the historical data, the ConvLSTM model is trained to discern intricate patterns

and correlations between the input variables and cloudburst incidence, thus en-

abling accurate predictions of cloudburst probabilities within future timeframes.

The empirical findings of this study reveal the ConvLSTM-based prediction model’s

remarkable accuracy and its capacity to furnish valuable insights into cloudburst

event occurrences. To summarize, this project encompasses the development of

an advanced ConvLSTM-based prediction model for cloudburst events, effectively

harnessing historical meteorological data.
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Chapter 1

Introduction

This report investigates and predicts extreme rainfall events, commonly known as

cloudbursts, on an particular region in India. Cloudbursts are intense weather phe-

nomena that occur when a large amount of moisture in the air condenses rapidly

into water droplets, resulting in a sudden and heavy downpour over a small area. In

India, cloudbursts are most frequently observed in the Himalayan region, which is

particularly susceptible to heavy rainfall due to its proximity to the monsoon winds.

This region includes states such as Uttarakhand, Himachal Pradesh, and Jammu

Kashmir, where steep terrain exacerbates the consequences of these events [3]. The

high intensity of rainfall during cloudbursts can lead to flash floods, landslides, and

avalanches, causing widespread damage and loss of life. [4]

To reduce the impact of extreme rainfall in India, various measures have been

undertaken. One such measure is the construction of check dams—small, temporary

barriers built across rivers and streams to reduce water flow velocity and prevent

erosion. Additionally, early warning systems utilizing meteorological data have been

established to predict the likelihood of cloudbursts and alert communities to take

necessary precautions. These systems help authorities evacuate people from danger

zones to safer locations before a disaster strikes.

Despite these efforts, preventing the impact of cloudbursts entirely remains a

significant challenge due to their unpredictable nature. Factors such as deforesta-

tion, illegal mining, and uncontrolled urbanization have exacerbated the effects of

cloudbursts in some regions. Deforestation, for example, has led to soil erosion,

increasing the likelihood of landslides during cloudbursts.

This study aims to advance the prediction of extreme rainfall events in India us-

ing advanced machine learning techniques, specifically ConvLSTM neural networks.

By integrating diverse meteorological datasets, this research seeks to develop a ro-

bust predictive model.

10



1.1. SOMEMAJOR ATMOSPHERIC VARIABLES INFLUENCING RAINFALL11

Figure 1.1: Condensation-precipitation-rain shadow effect [1]

1.1 Some major Atmospheric variables influenc-

ing Rainfall

Extreme rainfall events in the Indian region are influenced by a variety of atmo-

spheric variables. Understanding these can help in predicting and mitigating the

impacts of such events. Here are some major atmospheric variables that can cause

extreme rainfall:

1.1.1 Monsoon Winds:

Southwest Monsoon

The primary driver of rainfall during the summer months (June to September).

The strength and onset of the southwest monsoon can significantly influence rainfall

patterns.

Northeast Monsoon

Affects the southern parts of India, particularly Tamil Nadu, during the winter

months (October to December).
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1.1.2 Temperature:

Surface temperatures can affect the convective activity. Higher temperatures can

lead to increased evaporation and subsequently more moisture in the atmosphere.

1.1.3 Relative Humidity:

High humidity levels in the lower and mid-troposphere provide the necessary mois-

ture for rainfall. Heavy precipitation may occur due to the presence of winds carrying

moisture from the Bay of Bengal and the Arabian Sea.

1.1.4 Potential Vorticity:

Potential vorticity (PV) is a crucial atmospheric dynamic quantity that helps in un-

derstanding and predicting heavy rainfall events. It combines the effects of rotation

(vorticity), stratification (static stability), and thickness (depth of the atmospheric

layer). High PV values often indicate the presence of cyclonic activity, which can

enhance upward motion and lead to heavy rainfall. When a region of high PV

interacts with moist air, it can trigger strong convection, leading to intense and

localized rainfall. This interaction is particularly significant in regions where atmo-

spheric conditions are already conducive to storm development, such as during the

monsoon season. Therefore, monitoring PV can provide valuable insights into the

development and intensification of heavy rainfall events.

It is important to note that cloudbursts can be unpredictable and difficult to

forecast, making them a significant natural hazard. Proper disaster management

and preparedness measures are crucial to minimize the impact of cloudbursts on

communities and infrastructure.

1.2 Some Extreme Rainfall Events

1.2.1 Recent Floods

During the summer monsoon of 2016, the central Indian region faced severe and

extreme rainfall events, which resulted in extensive flooding. These floods caused

significant damage to both life and property along the west coast, including the

city of Mumbai, and led to the submergence of Kaziranga National Park in Assam,

located in northeastern India. Analysis of satellite rainfall data from this period

reveals a major heavy rainfall event that persisted for three days. The regional extent

of this event mirrors the growing trends in extreme rainfall incidents. Similarly, the

floods in Mumbai in 2017 exhibited a comparable pattern
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1.2.2 Historical Floods

We investigated several historical floods that led to significant loss of life and prop-

erty. Notable examples include the central Indian floods of 1989 and 2000, the

Mumbai floods of 2005, and the South Asian floods of 2007. These events were

marked by intense rainfall over a span of three days, with moisture sourced from

the westerly flow of the Arabian Sea.

1.3 Problem Definition

The objective of this project is to study and predict extreme rainfall events in the

Indian region, with a particular focus on Mumbai. Mumbai, being a coastal city, is

highly susceptible to severe weather conditions, including severe rainfall occurrences

that have the potential to cause serious socioeconomic problems like flooding, traffic

jams, and property and human casualties. Precise and prompt forecasting of these

occurrences is essential for efficient catastrophe management and reduction tactics.

To address this problem, we employ advanced machine learning techniques,

specifically Convolutional Long Short-Term Memory (ConvLSTM) networks and

ConvLSTM networks augmented with Attention mechanisms. These methods are

chosen for their ability to capture both spatial and temporal dependencies in the

data, which are essential for accurately modeling complex atmospheric processes

leading to extreme rainfall.



Chapter 2

Related Work

Recent advancements in deep learning algorithms have greatly improved perfor-

mance in tasks such as image classification, pattern recognition, and computer vi-

sion. Convolutional Neural Networks (CNNs) have been particularly successful in

applications like object detection and tracking.

• Tiwari and Verma (2015) [5] proposed a method using Arduino, an open-

source electronics platform, as a central component for cloudburst prediction.

The system integrates various sensors and data processing capabilities to per-

form real-time calculations of rainfall intensity. This setup allows for con-

tinuous monitoring and immediate assessment of rainfall data, aiding in the

prediction of potential cloudburst events.

• Dimri, Thayyen, et al. (2016) [6] focused on predicting cloudburst events

in the Indian Himalayan region using an Artificial Neural Network (ANN)

model. By collecting meteorological data and applying the ANN model, they

provided valuable insights into forecasting cloudburst occurrences in this area.

• Goswami (2017) [7] introduced a cloudburst prediction mechanism based

on detecting cumulonimbus clouds by utilizing the brightness temperature

(TB) difference between 19 and 91 GHz values in horizontal polarization from

NASA’s SSMI satellite. This method relies on a threshold for the TB difference

to identify cumulonimbus clouds, often associated with cloudbursts. Tests

conducted across multiple locations in India from 2013 to 2016 indicated that

this approach could provide cloudburst predictions with a lead time of 1-4

days.

• Pabreja and Datta (2016) [8] employed data mining techniques to analyze

weather forecasts, aiming to extract valuable insights about cloudburst events.

By exploring and analyzing large datasets, they sought to uncover patterns

and trends that could signal the likelihood of cloudbursts. Their objective was

14
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to enhance the interpretation of weather forecasts, improving the accuracy

and timeliness of cloudburst predictions through the identification of specific

weather patterns or indicators.

• Sivagami et al. (2021) developed a novel cloudburst prediction model lever-

aging deep learning techniques. Their model is based on a comprehensive

dataset of cloudburst events in Uttarakhand over the past decade. They eval-

uated the model using Long Short-Term Memory (LSTM) and Gated Recur-

rent Unit (GRU) time series sequence models, demonstrating its effectiveness

in forecasting cloudbursts in specific geographical regions.

• In their 2016 study, Gope et al. [9] introduced a novel deep-learning ap-

proach utilizing a Stacked AutoEncoder (SAE) model for predicting heavy

rainfall in Mumbai and Kolkata with a lead time ranging from 6 to 48 hours.

Their model incorporated various climatic parameters including temperature,

relative humidity, and also other atmospheric variables to enhance rainfall fore-

casts. Despite these advancements, the study fell short in addressing extreme

weather events, and there was room for improvement in capturing spatial vari-

ability.



Chapter 3

Proposed Architecture

In our study on predicting rainfall, we employed two main models: the random forest

regressor and the convLSTM2d model. We tested both with and without attention

mechanisms to see which performed better.

3.1 Baseline Models

3.1.1 Random forest regressor

The random forest regressor is a type of machine learning algorithm used for pre-

diction tasks, like forecasting rainfall. It works by creating multiple decision trees

during training and then averaging their predictions to improve accuracy. In rain-

fall prediction, the random forest regressor considers various input factors such as

temperature, humidity, cloud coverage percentage, and historical rainfall data to

make predictions about future rainfall amounts. It’s favored for its ability to handle

complex relationships between input variables and output predictions.

3.1.2 Vanilla stacked LSTM Model

Long Short-Term Memory (LSTM) networks were introduced to address the lim-

itations of traditional Recurrent Neural Networks (RNNs) in learning long-term

dependencies in sequential data. Traditional RNNs struggle with vanishing and ex-

ploding gradient problems, making them ineffective for capturing relationships over

long time intervals. LSTMs, with their unique cell structure, including forget, input,

and output gates, can selectively remember and forget information, making them

well-suited for handling long-term dependencies.

In time series forecasting, LSTMs are highly effective as they can learn patterns

and trends over time. They are used to model sequences of data points, such as

weather data, stock prices, or any other sequential dataset. By capturing temporal

16
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dependencies, LSTMs can predict future values based on past observations, making

them a powerful tool for forecasting tasks. Their ability to handle varying lengths of

sequences and maintain relevant information over long periods makes LSTMs ideal

for time series analysis and prediction.

3.2 ConvLSTM 2D model

The ConvLSTM2d model, introduced by Shi et al. in 2015 [10], combines convolu-

tional and LSTM layers. Convolutional layers extract spatial features, while LSTM

layers capture temporal dependencies. This architecture is valuable for analyzing

spatio-temporal data like video sequences or time-series data. It finds application

in video prediction, action recognition, and anomaly detection. Specifically, it ex-

cels in predicting future frames of a video by understanding temporal relationships

between frames. During training, backpropagation through time (BPTT), a vari-

ant of backpropagation accounting for temporal dependencies, optimizes the model.

The objective is to minimize the mean squared error (MSE) between predicted and

actual outputs, as outlined by Kato and Hotta in 2021.

The input to the ConvLSTM2d model is a 4D tensor, defined by dimensions

(batch size, time steps, channels, height, width). Here, the batch size signifies the

number of samples in a batch, time steps indicate the frames in a video sequence or

time-series data, channels represent the input feature maps, while height and width

denote the spatial dimensions of the input.

The ConvLSTM model leverages convolutional layers to extract spatial features

from the input data, enabling the capture of significant patterns and relationships.

To improve upon this model, we can consider extending or modifying the basic time

series ConvLSTM structure by integrating various layers or experimenting with dif-

ferent combinations of weights for the input data. These adjustments could poten-

tially boost the model’s overall performance and accuracy.

The methodological flowchart of the model outlines the process steps, including

selecting input variables for 2D spatial grids, preparing and normalizing data, defin-
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ing the ConvLSTM2D model layers, and generating model outputs for the selected

grids. Figure 2 [11] then delves into the inner architecture of the ConvLSTM model.

This model controls data flow within the cell through the forget gate (ft), input gate

(it), and output gate (ot). The forget gate decides how much information the model

should retain or discard, determining whether to remove or keep relevant data at

each iteration’s end. In ConvLSTM2D models, the memory cell (ct−1) serves as an

information accumulator, helping to gather information at every state. The LSTM

uses multiple self-parametrized gates to manage access to the cell. The input gate

gathers information into the cell, allowing new data to be incorporated into long-

term memory. The forget gate helps to remove outdated information from the cell

state (ct−1). And, finally that information will passes to next LSTM cell through the

output gate. The updated cell information is multiplied by the output gate values,

and the result is the hidden state ht), which is then calculated using an activation

function (tanh, in this case).

The expression (mathematical) of the ConvLSTM layer is as follows (for each

time step t):

1. Input gate

it = σ(wxi ∗ xt + whi ∗ ht−1 + wci ⊙ ct−1 + bi)

2. Forget gate

ft = σ(wxf ∗ xt + whf ∗ ht−1 + wcf ⊙ ct−1 + bf )

3. Cell state

ct = ft ⊙ ct−1 + it ⊙ tanh(wxc ∗ xt + whc ∗ ht−1 + bc)

4. Output gate

ot = σ(wxo ∗ xt + who ∗ ht−1 + wco ⊙ ct + bo)

5. Hidden state

ht = ot ⊙ tanh(ct)

where ∗ denotes the convolution operation and ⊙ is the elementwise Hadamard

product.
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3.3 Data Details

3.3.1 Area of interest

Our area of interest is Mumbai, which is situated in the Western Ghats and has a

tropical monsoon climate.The city, which has a 437.79 km2 area, is situated between

18◦ and 19.2◦ N latitude and 72◦ and 73◦ E longitude (see Figure 3.1).

Mumbai experiences heavy rainfall primarily due to the southwest monsoon

winds, which bring moisture-laden air from the Arabian Sea. When these winds

hit the Western Ghats, they rise and cool, leading to intense precipitation. The

city’s coastal location and proximity to the Western Ghats contribute to orographic

rainfall, where moist air is forced to ascend the mountains, cooling and condens-

ing to form heavy rains. The urban heat island effect, created by Mumbai’s dense

infrastructure, can enhance local convection, leading to increased rainfall. Addition-

ally, cyclonic activity in the Arabian Sea can bring heavy rains and strong winds,

contributing to extreme weather events.

Climate change also plays a role, with increased sea surface temperatures and

altered atmospheric circulation patterns leading to more frequent and intense rainfall

events. Other meteorological phenomena, such as the Madden-Julian Oscillation

(MJO), can influence rainfall patterns, resulting in periods of heavy rain. These

factors, individually or in combination, contribute to the heavy rainfall events that

Mumbai frequently experiences.

3.3.2 Used Data Details

For this project purpose we collected data from ’ERA-5’ (re-analysis data). In

this study we mainly focused on 6 predictor variables to forecast rainfall.These

variables are temperature (t), potential vorticity(pv), relative humidity (rh), total

cloud coverage (tcc), cloud coverage at high level (hcc), and surface pressure (sp).

We collected hourly data for these variables from 2012 to 2023, which created a large

dataset for our purpose. For the ConvLSTM2D model, we chose ”total precipitation

(tp)” as the target variable.

In this study, I used data in the NetCDF file format. NetCDF (Network Com-

mon Data Form) is a widely used format for storing array-oriented scientific data.

The basic structure of a NetCDF file includes dimensions, variables, and attributes.

Dimensions define the axes of the data, such as time, latitude, and longitude. Vari-

ables contain the data values and are associated with these dimensions. Attributes

provide additional metadata, such as units and descriptions, to help interpret the

data.
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Figure 3.1: Interested region of study in India

Figure 3.2: A netCDF data (temparature) on map.
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Figure 3.3: A netCDF data (potential vorticity) on map.
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Methodology

In this chapter, we outline the approach taken to carry out the study. This includes

the selection of data, preprocessing steps, model development, and evaluation met-

rics used to assess the performance of our predictive models. We start by detailing

the data sources and the variables selected for analysis, followed by the methods

employed to preprocess and normalize the data. Next, we describe the architecture

and training process of the ConvLSTM2D model used for precipitation forecasting.

Finally, we explain the criteria and techniques used to evaluate the accuracy and

reliability of the predictions.

4.1 Selection of Data

The research examines four grid areas covering Mumbai. We used the ERA-5 re-

analysis (global) dataset [12]. The data was specifically tailored to Mumbai’s geo-

graphical coordinates for the period from 2012 to 2023, resulting in 105,194 hourly

observations for the selected six predictor variables.

4.2 Data Preprocessing

The data preprocessing involved loading and normalizing the dataset to ensure con-

sistency and facilitate effective model training. The key steps are as follows:

Loading Data: The data was read from NetCDF files using the xarray library,

which provides a convenient way to handle multi-dimensional arrays.

Normalization: Each variable’s data was normalized to a range between 0 and

1. This was done by subtracting the minimum value and dividing by the range

(maximum value minus minimum value). This step ensures that all variables are on

a comparable scale, improving the performance and convergence of the model.

Next, we examined the relationship between the predictor and predicted variables

22
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using a correlation matrix heat map. The matrix is displayed below.

Figure 4.1: The correlation matrix of the atmospheric variables.

Out of the 6 predictors analyzed, surface pressure and temperature at 1000 hPa

are the only ones showing a negative correlation with ’tp’ (total precipitation).

The correlation heat map clearly shows that the predictor variables are not

correlated with each other. Therefore, we cannot ignore any of the six predictor

variables when predicting the amount of precipitation.

4.3 Model Development

Our proposed model is designed to predict precipitation using a ConvLSTM2D with

attention architecture. Below are the details of the model:

4.3.1 Architecture:

ConvLSTM2D Layers:

• The first ConvLSTM2D layer has 256 filters, a kernel size of 2x2, and uses

the ReLU activation function. It takes the input shape and returns sequences,

maintaining the same padding.

• The second ConvLSTM2D layer has 128 filters, a kernel size of 2x2, and also

uses the ReLU activation function. It continues to return sequences with the

same padding.
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Batch Normalization: Batch normalization is applied after each ConvLSTM2D

layer to improve training stability and performance.

Attention Layer: An attention mechanism is added to focus on the most

relevant parts of the input sequences.

Flatten Layer: This layer flattens the 3D output from the previous layers into

a 1D array.

Dense Layers: The model includes two dense layers:

• The first dense layer has 256 units with ReLU activation and includes a

dropout rate of 0.4 to prevent overfitting.

• The second dense layer has 4 units with a linear activation function, corre-

sponding to the 2x2 grid output.

4.3.2 Compilation:

• The model is compiled using the Adam optimizer with a specified learning

rate of 0.0001.

• The loss function used is Mean Squared Error (MSE), suitable for regression

tasks such as precipitation prediction.

4.3.3 Training details:

The ConvLSTM2D model was trained using sequences created for 12-hour forecasts.

We set the sequence length to 24 time steps and split the dataset into training and

testing sets with an 85%-15% ratio. The data was reshaped to fit the input shape

required by the model.

The model architecture includes ConvLSTM2D layers, batch normalization, an

attention mechanism, and dense layers. The model was compiled with the Adam

optimizer and a learning rate schedule that reduces the learning rate if the validation

loss does not improve for 5 epochs.

Training was performed with a validation split of 15%, for 75 epochs, and a batch

size of 32. After training, predictions were made on both the training and testing

sets, reshaped to match the 2x2 grid format.

4.4 Experimental Details

In the context of rainfall prediction, it is crucial to use appropriate evaluation metrics

to assess the performance of different models. Here are brief definitions of the

evaluation metrics used:
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Figure 4.2: An overview of the used convLSTM with attention model.
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Correlation Coefficient: The correlation coefficient measures the strength and

direction of the linear relationship between the predicted and actual values. It ranges

from -1 to 1, where 1 indicates a perfect positive correlation, -1 indicates a perfect

negative correlation, and 0 indicates no correlation.

Normalized Root Mean Square Error (NRMSE): NRMSE is a measure

of the differences between predicted and actual values, normalized by the range of

the observed data. It is calculated by taking the square root of the average squared

differences between predictions and actual observations, divided by the range of the

observed values. A lower NRMSE indicates better model performance, as it means

the model’s predictions are closer to the actual values relative to the variability of

the data.

Precision: Precision, in the context of precipitation prediction, refers to the

accuracy of the positive predictions. It is calculated as the ratio of true positive

predictions (correctly predicted rainfall events) to the total number of positive pre-

dictions (true positives plus false positives). Higher precision means fewer false

alarms.

Recall: Recall measures the model’s ability to identify all relevant instances.

In precipitation prediction, it is the ratio of true positive predictions to the total

number of actual positive instances (true positives plus false negatives). Higher

recall indicates the model is good at capturing all rainfall events, though it may

include some false positives.

Specificity: Specificity, also known as the true negative rate, is a metric used

in classification problems to measure the proportion of actual negatives that are

correctly identified as such by the model. In other words, it tells us how well the

model is at identifying negative cases.

4.4.1 Using Random Forest Regressor:

We used 100 estimators, which corresponds to the number of trees in the forest. This

number was chosen to balance computational efficiency and model performance.

Followings are the results obtained from training set using Random Forest Re-

gressor:
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Figure 4.3: Actual vs Predicted rainfall using Random Forest regressor.

Followings are the results obtained from testing set using Random Forest Re-

gressor:

Figure 4.4: Actual vs Predicted rainfall using Random Forest regressor.
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4.4.2 Using vanila stacked LSTM model:

In this section, we present the experimental results of vanila stacked LSTM model

designed to predict rainfall 12 hours into the future.

Followings are the results obtained from training set using LSTM model:

Figure 4.5: Actual vs Predicted rainfall using LSTM model.

Followings are the results obtained from testing set using LSTM model:
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Figure 4.6: Actual vs Predicted rainfall using LSTM model.

4.4.3 Using ConvLSTM model:

In this section, we present the experimental results of our ConvLSTM model de-

signed to predict rainfall using 24-hour time steps. The model was trained and

evaluated on a dataset derived from ERA-5 reanalysis data, which includes a vari-

ety of meteorological variables. Sequences of 24-hour time steps were used to forecast

rainfall 12 hours into the future.

Followings are the results obtained from training set using convLSTM model:
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Figure 4.7: Actual vs Predicted rainfall using convLSTM model.

Followings are the results obtained from testing set using convLSTM model:
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Figure 4.8: Actual vs Predicted rainfall using convLSTM model.

4.4.4 Using ConvLSTM model with Attention:

In this section, we present the experimental results of our enhanced ConvLSTM

model, which includes an additional attention layer to predict rainfall using 24-hour

time steps.The inclusion of an attention layer in our model allows it to focus on

the most relevant parts of the input sequences, thereby improving its predictive

capabilities.

Followings are the results obtained from training set using convLSTM model

with attention:
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Figure 4.9: Actual vs Predicted rainfall using convLSTM with attention model.

Followings are the results obtained from testing set using convLSTM model with

attention:

Figure 4.10: Actual vs Predicted rainfall using convLSTM with attention model.
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4.5 Thresholding for Extreme Rainfall Classifica-

tion

The model is predicting rainfall values at 12-hour intervals, not hourly. This means

that it forecasts the amount of rainfall expected to occur over a specific area every

12 hours. So, the model provides predictions for two distinct time periods within a

day, typically covering daytime and nighttime intervals.

Therefore, when determining the threshold for classifying an event as extreme, we

should consider the cumulative rainfall amount predicted for each 12-hour interval

rather than hourly predictions.

The following table depicted the rainfall intensity classifiaction provided by IMD

2015:

Table 4.1: Rainfall intensity classification (IMD 2015) [2].

No. Terminology Rainfall range (mm)
01 Very light rainfall Trace–2.4
02 Light rainfall 2.5–15.5
03 Moderate rainfall 15.6–64.4
04 Heavy rainfall 64.5–115.5
05 Very heavy rainfall 115.6–204.4
06 Extremely heavy rainfall ≥204.5

Based on the observed data, the city experiences extreme rainfall events (ERF) of

204.5 mm per day approximately once every other year during the summer monsoon

season. To classify an event as extreme rainfall, I have set a threshold value of 180

mm per day. This threshold is used to identify extreme rainfall events if the predicted

rainfall amount exceeds 180 mm within a 24-hour period. Additionally, since our

model provides predictions at 12-hour intervals rather than on an hourly basis, the

threshold value for each 12-hour interval is set to 90 mm. This ensures consistency

and accuracy in classifying extreme events based on the 12-hour predictions [13].

The following table depicted some extreme rainfall days in Mumbai:

Table 4.2: Extreme rainfall days.

No. Extreme rainfall days Rainfall amount (mm)
08 13 Jul 2000 351.5
09 26 Jul 2005 944.4
10 24 Jun 2007 279.4
11 15 Jul 2009 274.1
12 19 Jun 2015 283.4
13 29 Aug 2017 331
14 20 Sep 2017 303.7
15 1 Jul 2019 375



34 CHAPTER 4. METHODOLOGY

For classification using your threshold of 180 mm per day (or 90 mm per 12-hour

interval), these can be identified as follows:

• TP: Predicted rainfall ≥ 180 mm (or 90 mm per 12-hour interval) and actual

rainfall ≥ 180 mm (or 90 mm per 12-hour interval).

• TN: Predicted rainfall < 180 mm (or 90 mm per 12-hour interval) and actual

rainfall < 180 mm (or 90 mm per 12-hour interval).

• FP: Predicted rainfall ≥ 180 mm (or 90 mm per 12-hour interval) but actual

rainfall < 180 mm (or 90 mm per 12-hour interval).

• FN: Predicted rainfall < 180 mm (or 90 mm per 12-hour interval) but actual

rainfall ≥ 180 mm (or 90 mm per 12-hour interval).

4.5.1 Comparison of results

Table 4.3: Results using Random Forest Regressor

CC NRMSE
Area 1(Train) 0.56 0.0231
Area 2(Train) 0.58 0.0200
Area 3(Train) 0.57 0.0228
Area 4(Train) 0.60 0.0274
Area 1(Test) 0.52 0.0370
Area 2(Test) 0.49 0.0325
Area 3(Test) 0.56 0.0301
Area 4(Test) 0.53 0.0511

Table 4.4: Results using vanilla stacked LSTM model

CC NRMSE
Area 1(Train) 0.73 0.0193
Area 2(Train) 0.70 0.0202
Area 3(Train) 0.73 0.0281
Area 4(Train) 0.72 0.0266
Area 1(Test) 0.67 0.0378
Area 2(Test) 0.62 0.0312
Area 3(Test) 0.69 0.0332
Area 4(Test) 0.65 0.0372
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Table 4.5: Results using convLSTM model

CC NRMSE
Area 1(Train) 0.72 0.0202
Area 2(Train) 0.71 0.0223
Area 3(Train) 0.76 0.0278
Area 4(Train) 0.74 0.0251
Area 1(Test) 0.65 0.0391
Area 2(Test) 0.64 0.0301
Area 3(Test) 0.71 0.0311
Area 4(Test) 0.68 0.0361

Table 4.6: Results using convLSTM with attention

CC NRMSE
Area 1(Train) 0.75 0.0137
Area 2(Train) 0.74 0.0213
Area 3(Train) 0.78 0.0235
Area 4(Train) 0.79 0.0240
Area 1(Test) 0.67 0.0344
Area 2(Test) 0.69 0.0312
Area 3(Test) 0.75 0.0337
Area 4(Test) 0.71 0.0381

The following table describes the precision,recall and specificity values obtained

from the classification task of extreme rainfall events based on predictions from

different models:

Table 4.7: Comparison of Precision, Recall and Specificity

Precision Recall Specificity
Random Forest Regressor 0.722 0.713 0.701
vanilla stacked LSTM 0.877 0.881 0.823

convLSTM 0.873 0.891 0.843
convLSTM with attention 0.893 0.914 0.883



Chapter 5

Conclusions and Future Work

In this study, we compared the performance of four different models for predict-

ing extreme rainfall events: the random forest regressor, vanilla stacked LSTM,

ConvLSTM without attention and ConvLSTM with attention. Our results clearly

demonstrate that the ConvLSTM model with attention mechanisms outperforms

the other three models in terms of accuracy and predictive capability. The inclu-

sion of attention mechanisms allows the model to focus on the most relevant parts

of the input data, leading to improved performance in capturing complex temporal

and spatial dependencies inherent in rainfall prediction. This enhanced performance

underscores the importance of incorporating attention mechanisms in deep learning

models for more accurate and reliable weather forecasting.

Moving forward, there are several ways to improve our model. One approach

is to incorporate enhanced attention layers, which could help the model focus even

more effectively on the most important parts of the data, potentially leading to

better results.

Additionally, we could analyze the main atmospheric factors that cause extreme

rainfall and use this information to improve our predictions. By identifying and

incorporating these key factors into our model, we can make our rainfall predictions

more accurate and reliable.

Another area for improvement is the integration of real-time data, such as live

satellite and radar images, which could enhance the model’s ability to predict sudden

changes in weather patterns. We could also explore the use of more advanced ma-

chine learning techniques, such as hybrid models that combine different approaches,

to leverage the strengths of multiple methods.
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