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ABSTRACT

In the realm of remote sensing, the task of semantically segmenting landslide images

is traditionally reliant on supervised learning techniques. These methods necessi-

tate extensive training datasets and meticulous pixel-level annotations—a process

that demands considerable human labor and incurs high costs. To mitigate these

challenges, we introduce an innovative approach that employs weakly supervised

learning, integrating Class Activation Maps (CAMs) with a Cycle Generative Ad-

versarial Network (CycleGAN). This novel methodology leverages image-level labels

in lieu of pixel-level annotations. Initially, CAMs are utilized to locate the landslide’s

rough area. Subsequently, CycleGAN generates a synthetic image devoid of land-

slides, which, when contrasted with the original, yields precise segmentation results.

The efficacy of our approach is quantified using the mean Intersection-over-Union

(mIOU) metric, demonstrating a superior performance with an mIOU of 0.228. Ad-

ditionally, when juxtaposed with a U-Net network’s supervised learning technique,

which scored an mIOU of 0.408, our results affirm the viability of weakly supervised

learning for accurate landslide semantic segmentation in remote sensing imagery.

This method significantly alleviates the burden of data annotation.

Incorporating the advancements of Score-CAM [6], which surpasses Grad-CAM

in object localization accuracy, we further refine our model. Score-CAM’s enhanced

precision in identifying relevant features contributes to the improved segmentation

of landslide areas, promising a new frontier in remote sensing image analysis.
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Chapter 1

INTRODUCTION

1.1 Introduction

In the evolving landscape of remote sensing image analysis, the precise segmenta-

tion of landslide areas remains a critical challenge. The comprehensive, high-quality

data annotations required for traditional methods, which mostly rely on supervised

learning, are expensive and labor-intensive. Recognizing these limitations, pioneer-

ing researchers Zhou, Y., Wang, H., Yang, R., Yao, G., Xu, Q., and Zhang, X. [1],

have explored the potential of combining Cycle Generative Adversarial Networks

(Cycle-GAN) with Gradient-weighted Class Activation Mapping (Grad-CAM [5])

to enhance segmentation accuracy. However, Grad-CAM’s susceptibility to satura-

tion and false confidence issues necessitates a more robust solution.

Enter Score-CAM [6], an innovative alternative proposed by Haofan Wang, Zi-

fan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and

Xia Hu, designed to overcome the inherent drawbacks of gradient-based methods.

Building upon this foundation, my thesis introduces a novel integration of Cycle-

GAN with Score-CAM, aiming to harness the strengths of both techniques for the

semantic segmentation of landslides in remote sensing images. This approach not

only addresses the challenges posed by gradient-based methods but also significantly

reduces the dependency on pixel-level annotations, thereby curtailing the annotation

workload.
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This thesis delves into the theoretical underpinnings of Cycle-GAN and Score-

CAM, elucidating their respective roles in the proposed segmentation framework.

Through a series of experiments and evaluations, it demonstrates the enhanced

performance and reliability of the combined approach, offering a promising direction

for future research in the field. The introduction of Score-CAM, in particular, marks

a significant advancement in object localization, ensuring that the segmentation

process is both accurate and efficient.

As we stand on the cusp of a new era in remote sensing technology, this thesis

contributes to the ongoing discourse on machine learning methodologies, present-

ing a compelling case for the integration of weakly supervised learning techniques

in environmental monitoring and disaster management applications. The insights

gleaned from this research endeavor not only pave the way for more sophisticated

analytical tools but also underscore the importance of innovation in addressing the

pressing challenges of our time.

1.2 Limitations of Grad-CAM

1. Gradient Saturation [6]: The gradients in deep neural networks can become

noisy and may vanish, especially under the influence of sigmoid saturation or

within the zero-gradient regions of ReLU functions. This leads to gradients

that are visually noisy, complicating the interpretation of Saliency Maps which

rely on clear gradient signals to identify salient features.

2. False Confidence [6]: Al
i and Al

j are examples of linear combinations of

activation maps created by Grad-CAM. It is expected that if αi
c ≥ αj

c, then

the region corresponding to Al
i for the target class c is at least as significant

as the one corresponding to Al
j. This is the case when the weights αi

c and

αj
c are assigned to these maps. On the other hand, when activation maps

with larger weights contribute less to the network’s output in comparison to a

zero baseline, this can result in erroneous confidence. The gradient vanishing

problem within the network and global pooling on gradients may make this

problem worse.

2



1.3 Semantic Segmentation of Landslides

1.3.1 Score-CAM

Based on perturbation, Score-CAM [6] assesses the increase in confidence to de-

termine the significance of activation maps. Below is a detailed description of the

Score-CAM method.

Figure 1.1: Score-CAM Pipeline

Definition 1 (Increase of Confidence): Given a function Y = f(X) that

takes an input vector X = [x0, x1, . . . , xn]
T and outputs a scalar Y . For a known

baseline input Xb, the contribution ci of xi towards Y is the change in output when

the i-th entry in Xb is replaced with xi. Formally,

ci = f(Xb ◦Hi)− f(Xb) (1.1)

where Hi is a vector with the same shape as Xb, but each entry hj in Hi is defined

as hj = I[i = j] and ◦ denotes the Hadamard product.

Definition 2 (Channel-wise Increase of Confidence - CIC): Given a CNN

model Y = f(X) that takes an input X and outputs a scalar Y . For an internal

convolutional layer l with corresponding activation A, the contribution of the k-th

channel Ak
l towards Y is defined as

C(Ak
l ) = f(X ◦Hk

l )− f(Xb) (1.2)
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where

Hk
l = s(Up(Ak

l )) (1.3)

Here, Up(·) denotes the operation that upsamples Ak
l to the input size, and s(·) is

a normalization function that maps each element in the input matrix to [0, 1].

To generate a smoother mask Hk
l , the raw activation values in each activation

map are normalized using:

s(Ak
l ) =

Ak
l −minAk

l

maxAk
l −minAk

l

(1.4)

Definition 3 (Score-CAM): For a convolutional layer l in a model f , given a

class of interest c, the Score-CAM Lc
Score-CAM is defined as:

Lc
Score-CAM = ReLU

(∑
k

αc
kA

k
l

)
(1.5)

where

αc
k = C(Ak

l ) (1.6)

The ReLU function is applied to the linear combination of activation maps because

only the features that positively influence the class of interest are considered. The

weights are derived from the CIC score for the corresponding activation maps on

the target class, thus removing the dependence on gradients. Although the last

convolutional layer is typically preferred, any intermediate convolutional layer can

be utilized in this framework.

1.3.2 Cycle-GAN

Generative Adversarial Networks (GANs) [7] are a class of machine learning frame-

works where two neural networks, a generator and a discriminator, are trained simul-

taneously through adversarial processes. Originally, GANs were utilized to generate

images that mimic a specific style or distribution.

Cycle-Consistent Generative Adversarial Networks (CycleGANs) [10] expand on

the capabilities of traditional GANs by enabling the translation of images from one

domain to another without requiring paired examples. This means that CycleGANs

can learn to transform images from one style to another while preserving the essential

content of the original image.
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Figure 1.2: Flow-Chart of Cycle-GAN

In our work, we leverage CycleGANs for style transfer between two distinct

image domains: landslide images and non-landslide images. The fundamental idea

is to treat landslide-affected images as one domain and images without landslides as

another. By training a generative network, we can convert landslide images to their

non-landslide counterparts, effectively generating virtual non-landslide images from

the landslide images.

CycleGAN has a number of advantages over pix2pix GAN, including the ability

to train without the need for paired pictures from both domains. This is particularly

beneficial in scenarios where obtaining such pairs is challenging or impractical. In

our case, we can utilize separate datasets of landslide and non-landslide images,

eliminating the need for corresponding pairs of images captured before and after a

landslide event.

The primary components of CycleGAN include two generators and two discrim-

inators:

• Generator G: This generator learns to convert images from domain X (land-

slide images) to domain Y (non-landslide images).

• Generator F : This generator learns to convert images from domain Y (non-

5



landslide images) to domain X (landslide images).

• Discriminator DX : This discriminator’s role is to differentiate between real

images from domain X and fake images generated by F (i.e., images that are

translated from domain Y to domain X).

• Discriminator DY : This discriminator’s role is to distinguish between real

images from domain Y and fake images generated by G (i.e., images that are

translated from domain X to domain Y ).

CycleGAN utilizes a technique known as cycle consistency to ensure that the

translations are meaningful and the core content of the images is preserved. An

picture from one domain must closely resemble the original image when translated

to the other domain and back again due to the cycle consistency loss. Formally, for

an image x in domain X and an image y in domain Y :

• Forward cycle consistency loss: ∥F (G(x))− x∥

• Backward cycle consistency loss: ∥G(F (y))− y∥

By minimizing these cycle consistency losses along with the adversarial losses,

CycleGAN ensures that the generated images are not only stylistically accurate but

also retain the essential features of the original images. This capability is crucial

for our application, as it allows us to generate realistic non-landslide images from

landslide images, thereby facilitating effective analysis and interpretation.

1.3.3 Proposed Approach

Our approach involves utilizing the Score-CAM method, which is a perturbation-

based technique for visual explanations of CNN models. The steps involved in our

approach are as follows:

1. Generate a non-landslide image from a given landslide image using CycleGAN.

2. Determine the difference between the photographs with and without land-

slides.

3. Map the difference to grayscale.

6



4. Generate the Score-CAM heatmap.

5. Apply thresholding to the heatmap to identify regions of interest.

6. Perform segmentation by taking the intersection of the thresholded heatmap

with the original image.

1.4 Motivation

The primary motivation for this work stems from the need to enhance accuracy

in image segmentation tasks using the Score-CAM method. Image segmentation,

particularly in domains such as remote sensing and medical imaging, often relies on

pixel-wise annotated datasets for training deep learning models. However, creating

these annotated datasets is an extremely labor-intensive and costly process, requiring

significant manual effort from experts.

Our proposed method addresses this challenge by utilizing Score-CAM, a pertur-

bation -based technique that generates visual explanations for CNN models. Score-

CAM enables us to identify and highlight regions of interest in images, facilitating

more precise segmentation without the need for exhaustive manual annotations.

In the context of landslide detection, we leverage CycleGAN to transform land-

slide images into non-landslide images. This transformation allows us to create

virtual non-landslide images, which serve as a reference to identify changes and

segment the landslide areas effectively. By computing the difference between the

landslide and non-landslide images and mapping these differences to a grayscale for-

mat, we can generate Score-CAM heatmaps that pinpoint the regions affected by

landslides.

The intersection of these heatmaps with appropriate thresholds yields accurate

segmentation results. This method not only enhances segmentation accuracy but

also significantly reduces the dependency on manually annotated datasets, making

it a cost-effective solution.

Beyond landslide detection, the versatility of this approach makes it applica-

ble to various other fields. For instance, in medical imaging, precise segmentation

of anatomical structures or pathological regions is crucial for diagnosis and treat-

ment planning. Our method can be adapted to segment medical images, thereby

7



improving diagnostic accuracy and patient outcomes.

Furthermore, the cost-effectiveness of our approach is particularly beneficial for

large-scale applications where obtaining annotated datasets is not feasible. By mini-

mizing the need for manual annotations, we can streamline the segmentation process

and make it more accessible for different research and industrial applications.

The potential to apply this method across different domains highlights its robust-

ness and adaptability. Whether it’s identifying tumors in medical scans, detecting

changes in satellite imagery for environmental monitoring, or segmenting objects

in various industrial applications, the underlying principles of our method remain

applicable.

In summary, the dual goals of increasing segmentation accuracy and lowering

the expense of producing annotated datasets are what motivate this effort. By

harnessing the power of Score-CAM and CycleGAN, we provide a scalable and

efficient solution that can be extended to a wide range of applications, thereby

addressing a critical bottleneck in the field of image analysis and segmentation.

Chapter 2 delves into the Literature Survey, Chapter 3 outlines the The-

sis and Methodology, Chapter 4 showcases the Results, Chapter 5 provides the

Conclusion, and the final chapter explores Future Work.
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Chapter 2

LITERATURE SURVEY

2.1 Introduction

This chapter provides a detailed review of the significant works in the field of image

segmentation using deep learning techniques, particularly focusing on CycleGAN

and Score-CAM methods. The advancements in landslide detection and segmen-

tation, as well as the development of visual explanation methods for deep neural

networks, are thoroughly examined. The motivation behind integrating CycleGAN

and Score-CAM for enhanced segmentation accuracy is also discussed.

2.2 Landslide Detection and Segmentation

Since the introduction of the ImageNet dataset in 2009, the field of computer vi-

sion has witnessed rapid advancements driven by deep learning techniques. These

advancements have significantly impacted image classification, detection, and seg-

mentation tasks. As a result, in order to identify and categorize landslide regions

in remote sensing photos, researchers have started investigating deep learning tech-

niques. The application of deep learning for landslide identification and segmenta-

tion has received less attention than it has for other remote sensing image recognition

problems.

Sameen et al. employed a deep residual detection approach based on a feature

9



fusion network to detect landslides in remote sensing images from the Kinmallan

plateau in Malaysia. Their method demonstrated a notable improvement, with an

increase of 0.13 in the F1 score and 0.1296 in the mean Intersection over Union

(mIOU) compared to conventional convolutional layer stacking techniques. Simi-

larly, Chen et al. proposed a change detection method leveraging a deep convolu-

tional network, achieving a false recognition rate of 0.176. Cheng et al. developed

the YOLO-SA model for landslide detection in Qiaojia and Ludian counties in Yun-

nan Province, China, achieving a recognition accuracy of 0.9408.

Segmentation of landslide areas in remote sensing images is crucial for precisely

delineating boundaries, studying changes in landslide areas, and calculating the af-

fected regions. However, the scarcity of datasets has limited research in remote

sensing image segmentation tasks. Soares et al. utilized Digital Elevation Model

(DEM) information as training data and employed the U-Net model to automati-

cally segment landslides in Novo Fribourg, Brazil, achieving F1 scores of 0.55 and

0.58 on two different test sets. Du et al. compared six deep learning semantic seg-

mentation models using a self-built Yangtze River coastal landslide dataset, with

the GCN and DeepLabV3 models achieving mIOU accuracies of 0.542 and 0.740,

respectively. Prakash et al. experimented with an improved U-Net network on a

statewide landslide dataset in Oregon, achieving a detection rate of 0.72, outper-

forming traditional methods. Bo et al. applied deep learning semantic segmentation

techniques to accurately detect landslide areas in remote sensing images of Nepal,

achieving a recall rate of 0.65 and an accuracy rate of 0.55.

2.3 Visual Explanation Methods

Enhancing the transparency of deep neural networks (DNNs) by making some as-

pects of their inference interpretable by humans has become an important research

focus. Among the various explanation methods, visualizing the importance of input

features or learned weights is the most straightforward approach. Many techniques

have been created to enhance the explanations of convolutions and Convolutional

Neural Networks (CNNs), as spatial convolution is a common element in state-of-

the-art models for both language and image processing.
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Figure 2.1: Class Activation Map Pipeline

Gradient-based methods [5] highlight image regions that influence predictions by

backpropagating the gradient of a target class to the input. Saliency Map uses the

derivative of the target class score with respect to the input image as an explanation.

Other works manipulate this gradient to enhance the visual sharpness of the results.

However, these gradient-based maps often suffer from low quality and noise.

Perturbation-based approaches perturb the original input and observe changes

in model predictions to identify minimal regions influencing the output. These

methods generally require additional regularization to improve results and can be

computationally intensive.

Class Activation Map (CAM)-based [5] explanations provide visual explanations

by creating a linear weighted combination of activation maps from convolutional

layers. CAM generates localized visual explanations but requires a global pooling

layer, making it architecture-sensitive. Grad-CAM and its variations, such as Grad-

CAM++, generalize CAM to models without global pooling layers.

To address the limitations of gradient-based CAM variations, Score-CAM in-

troduces a novel gradient-free visual explanation method.Rather than depending

on gradient information, Score-CAM determines the significance of activation maps

based on the contribution of their highlighted input features to the model output.

This method provides a more accurate and intuitive explanation by bridging the

gap between perturbation-based and CAM-based approaches.

11



2.4 Combining CAM and CycleGAN

An important study that integrates CAM and CycleGAN is the work by Zhou et

al. [1]. They proposed a weakly supervised method for semantic segmentation of

landslides in remote sensing images. In their approach, CycleGAN was employed for

style transfer to generate non-landslide images from landslide images, while Grad-

CAM was used for visual explanations to highlight the regions of interest. However,

the segmentations produced by Grad-CAM were often noisy, resulting in less accu-

rate delineation of landslide areas. They constructed masks by applying threshold-

ing to the Grad-CAM heatmaps and then took the intersection with the CycleGAN

outputs to improve them in order to address this.

Figure 2.2: Fully Combined Work Flow

In contrast, our approach utilizes Score-CAM instead of Grad-CAM. Score-CAM

provides a more refined and precise segmentation due to its gradient-free mechanism,

which reduces noise and enhances the clarity of the highlighted regions. By integrat-

ing CycleGAN for style transfer and Score-CAM for generating accurate heatmaps,

our method achieves cleaner and more reliable segmentation results. This improve-

ment is crucial for applications requiring high precision, such as monitoring and

analyzing landslide-prone areas.
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Chapter 3

Methodology

3.1 Dataset Description

The dataset for this study is derived from the Bijie landslide dataset 1, covering the

entire Bijie city, which spans an area of 26,853 km² in the northwest of Guizhou

province, China (Fig. 1). This region is situated in a transitional slope zone from the

Tibet Plateau to the eastern hills, with altitudes ranging from 457 to 2900 meters.

This region is one of the most landslide-prone in China because to its unstable

geological features, many steep hillsides, significant yearly rainfall (between 849 and

1399 mm), and delicate biological environment.

The Bijie city area is prone to various types of landslides, including rock falls,

rock slides, and, to a lesser extent, debris slides. Each year, numerous new land-

slides occur, causing significant damage to human settlements, infrastructure such

as roads, bridges, and transmission lines, and agricultural lands. Traditionally, land-

slides in this region are detected through a combination of methods. One common

approach involves indoor manual interpretation of satellite and aerial optical images

alongside Digital Elevation Models (DEM), often followed by detailed field surveys

to verify the findings.

This dataset provides a comprehensive basis for studying landslide occurrences,

supporting the development and testing of deep learning models for remote sensing

1http://gpcv.whu.edu.cn/data/Bijiepages.html
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landslide detection and segmentation.

3.2 Model and Architecture

3.2.1 CycleGAN Model

The CycleGAN model used in this study consists of two generators and two discrim-

inators. The architecture for the generators and discriminators is detailed below.

Figure 3.1: Cycle GAN

Generator Model

The generator model employs a series of convolutional layers, instance normalization,

ReLU activations, and residual blocks. The convolutional layers are used to extract

features from the input images, and the residual blocks help in retaining important

details while transforming the images from one domain to another. The model starts

with a few convolutional layers to downsample the image, followed by multiple

residual blocks to process the image in a deeper latent space, and finally, it uses

transpose convolutional layers to upsample the image back to its original size. The

detailed architecture is as follows:

----------------------------------------------------------------
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Layer (type) Output Shape Param #

================================================================

Conv2d-1 [-1, 64, 512, 512] 1,792

InstanceNorm2d-2 [-1, 64, 512, 512] 0

ReLU-3 [-1, 64, 512, 512] 0

Conv2d-4 [-1, 128, 256, 256] 73,856

InstanceNorm2d-5 [-1, 128, 256, 256] 0

ReLU-6 [-1, 128, 256, 256] 0

Conv2d-7 [-1, 256, 128, 128] 295,168

InstanceNorm2d-8 [-1, 256, 128, 128] 0

ReLU-9 [-1, 256, 128, 128] 0

Conv2d-10 [-1, 256, 128, 128] 590,080

InstanceNorm2d-11 [-1, 256, 128, 128] 0

ReLU-12 [-1, 256, 128, 128] 0

Conv2d-13 [-1, 256, 128, 128] 590,080

InstanceNorm2d-14 [-1, 256, 128, 128] 0

ResidualBlock-15 [-1, 256, 128, 128] 0

Conv2d-16 [-1, 256, 128, 128] 590,080

InstanceNorm2d-17 [-1, 256, 128, 128] 0

ReLU-18 [-1, 256, 128, 128] 0

Conv2d-19 [-1, 256, 128, 128] 590,080

InstanceNorm2d-20 [-1, 256, 128, 128] 0

ResidualBlock-21 [-1, 256, 128, 128] 0

Conv2d-22 [-1, 256, 128, 128] 590,080

InstanceNorm2d-23 [-1, 256, 128, 128] 0

ReLU-24 [-1, 256, 128, 128] 0

Conv2d-25 [-1, 256, 128, 128] 590,080

InstanceNorm2d-26 [-1, 256, 128, 128] 0

ResidualBlock-27 [-1, 256, 128, 128] 0

Conv2d-28 [-1, 256, 128, 128] 590,080

InstanceNorm2d-29 [-1, 256, 128, 128] 0

ReLU-30 [-1, 256, 128, 128] 0
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Conv2d-31 [-1, 256, 128, 128] 590,080

InstanceNorm2d-32 [-1, 256, 128, 128] 0

ResidualBlock-33 [-1, 256, 128, 128] 0

Conv2d-34 [-1, 256, 128, 128] 590,080

InstanceNorm2d-35 [-1, 256, 128, 128] 0

ReLU-36 [-1, 256, 128, 128] 0

Conv2d-37 [-1, 256, 128, 128] 590,080

InstanceNorm2d-38 [-1, 256, 128, 128] 0

ResidualBlock-39 [-1, 256, 128, 128] 0

Conv2d-40 [-1, 256, 128, 128] 590,080

InstanceNorm2d-41 [-1, 256, 128, 128] 0

ReLU-42 [-1, 256, 128, 128] 0

Conv2d-43 [-1, 256, 128, 128] 590,080

InstanceNorm2d-44 [-1, 256, 128, 128] 0

ResidualBlock-45 [-1, 256, 128, 128] 0

Conv2d-46 [-1, 256, 128, 128] 590,080

InstanceNorm2d-47 [-1, 256, 128, 128] 0

ReLU-48 [-1, 256, 128, 128] 0

Conv2d-49 [-1, 256, 128, 128] 590,080

InstanceNorm2d-50 [-1, 256, 128, 128] 0

ResidualBlock-51 [-1, 256, 128, 128] 0

Conv2d-52 [-1, 256, 128, 128] 590,080

InstanceNorm2d-53 [-1, 256, 128, 128] 0

ReLU-54 [-1, 256, 128, 128] 0

Conv2d-55 [-1, 256, 128, 128] 590,080

InstanceNorm2d-56 [-1, 256, 128, 128] 0

ResidualBlock-57 [-1, 256, 128, 128] 0

Conv2d-58 [-1, 256, 128, 128] 590,080

InstanceNorm2d-59 [-1, 256, 128, 128] 0

ReLU-60 [-1, 256, 128, 128] 0

Conv2d-61 [-1, 256, 128, 128] 590,080

InstanceNorm2d-62 [-1, 256, 128, 128] 0
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ResidualBlock-63 [-1, 256, 128, 128] 0

Conv2d-64 [-1, 256, 128, 128] 590,080

InstanceNorm2d-65 [-1, 256, 128, 128] 0

ReLU-66 [-1, 256, 128, 128] 0

Conv2d-67 [-1, 256, 128, 128] 590,080

InstanceNorm2d-68 [-1, 256, 128, 128] 0

ResidualBlock-69 [-1, 256, 128, 128] 0

ConvTranspose2d-70 [-1, 128, 256, 256] 295,040

InstanceNorm2d-71 [-1, 128, 256, 256] 0

ReLU-72 [-1, 128, 256, 256] 0

ConvTranspose2d-73 [-1, 64, 512, 512] 73,792

InstanceNorm2d-74 [-1, 64, 512, 512] 0

ReLU-75 [-1, 64, 512, 512] 0

Conv2d-76 [-1, 3, 512, 512] 1,731

Tanh-77 [-1, 3, 512, 512] 0

================================================================

Total params: 12,542,979

Trainable params: 12,542,979

Non-trainable params: 0

----------------------------------------------------------------

Discriminator Model

The discriminator model is designed to differentiate between real and generated

images. It uses convolutional layers followed by instance normalization and leaky

ReLU activations. The layers progressively reduce the spatial dimensions of the

input image, ultimately leading to a single output that indicates whether the image

is real or fake. This model helps in training the generator by providing feedback on

how realistic the generated images are. The detailed architecture is as follows:

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d-1 [-1, 64, 256, 256] 3,136
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LeakyReLU-2 [-1, 64, 256, 256] 0

Conv2d-3 [-1, 128, 128, 128] 131,200

InstanceNorm2d-4 [-1, 128, 128, 128] 0

LeakyReLU-5 [-1, 128, 128, 128] 0

Conv2d-6 [-1, 256, 64, 64] 524,544

InstanceNorm2d-7 [-1, 256, 64, 64] 0

LeakyReLU-8 [-1, 256, 64, 64] 0

Conv2d-9 [-1, 1, 63, 63] 4,097

================================================================

Total params: 662,977

Trainable params: 662,977

Non-trainable params: 0

----------------------------------------------------------------

3.2.2 VGG16 with Score-CAM

A deep convolutional neural network that was first created for picture categorization

is the VGG16 model. Convolutional layers, ReLU activations, max-pooling layers,

and completely connected layers are among its 16 layers. The fully connected layers

carry out the final classification, while the convolutional layers are in charge of

feature extraction. The detailed architecture is as follows:

Figure 3.2: Classification Architecture
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================================================================

Total params: 135,309,890

Trainable params: 1,049,346

Non-trainable params: 134,260,544

----------------------------------------------------------------

3.3 Training

Data Preparation

The first step in training the Cycle-GAN model was to prepare the dataset. The

images from the Bijie landslide dataset were resized to dimensions of 3× 512× 512

pixels. This resizing ensured uniformity in input size for the models, facilitating

efficient processing during training.

Batch Size and Optimization

A batch size of 6 was chosen for training the Cycle-GAN model. This batch size

strikes a balance between utilizing GPU memory efficiently and maintaining stability

during training. With a smaller batch size, the model can update its weights more

frequently, potentially aiding convergence.

The Adam optimizer was employed for training both the generator and discrim-

inator networks in the Cycle-GAN model. The optimizer was configured with a

learning rate of 0.0002 and betas set to (0.5, 0.999). This choice of optimizer and

learning rate was based on empirical observations and prior experimentation, aiming

to achieve stable and efficient training.

Loss Functions

Several loss functions were used to train the Cycle-GAN model effectively. These

included:

• Adversarial Loss (GAN Loss): Measured the ability of the generator to

produce realistic images by fooling the discriminator.
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• Cycle Consistency Loss: Ensured that the translated images from one

domain to another and back remained close to the original input images.

• Identity Loss: Maintained the identity mapping between the input and out-

put images, encouraging the generator to preserve essential features.

Combining the adversarial loss, cycle consistency loss, and identity loss—each

weighted by its corresponding hyperparameters—was how the overall generator loss

was calculated. This comprehensive loss formulation guided the training process

towards generating high-quality translations between image domains.

Training Process

The training process involved iterating over the dataset for multiple epochs, with

each epoch comprising forward and backward passes through the network. The

models were trained on an RX400 GPU, with an average epoch duration of 764

seconds.

During each epoch, the generator and discriminator networks were updated it-

eratively. The generator attempted to minimize the total generator loss, while the

discriminators aimed to correctly classify real and generated images.

The training progress was monitored closely, and model checkpoints were saved

periodically, typically every 50 epochs. This checkpointing strategy allowed for the

recovery of trained models in case of interruptions and facilitated model evaluation

at different stages of training.

After 550 epochs of training, the model’s performance was evaluated, with the

best-performing model observed at epoch 450. This model was selected based on its

ability to produce high-quality image translations and maintain consistency across

different domains.

Fine-Tuning of VGG16

In addition to training the Cycle-GAN model, the VGG16 network was fine-tuned

for image classification tasks. The images were resized to 3× 512× 512 pixels, and

a batch size of 32 was utilized for training on a Colab T4 GPU.

The fine-tuning process involved optimizing the VGG16 model parameters using

the stochastic gradient descent (SGD) optimizer with a learning rate of 0.001 and
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momentum of 0.9. A cross-entropy loss function was employed to compute the

classification loss during training.

The model was trained for 100 epochs, with checkpoints saved every 10 epochs.

The best-performing model was identified at epoch 20 based on its classification

accuracy and overall performance on validation data.

3.4 Combining Generated Masks

Cycle-GAN Generated Mask

The Cycle-GAN model was trained to generate non-landslide images from landslide

images. To obtain a mask highlighting the landslide regions, we adopted a simple

differencing approach.

Given a landslide image L and its corresponding non-landslide imageN generated

by the Cycle-GAN, we computed the absolute differenceD = |N−L|. This difference

imageD contains intensity variations that correspond to the regions where landslides

are present.

To convert the difference image into a binary mask, we first converted it to

grayscale using the formula 0.299 · R + 0.587 · G + 0.114 · B, where R, G, and B

represent the red, green, and blue channels, respectively. This grayscale conversion

ensured that the intensity of each pixel represented the magnitude of change between

the landslide and non-landslide images.

Next, we normalized the pixel values in the grayscale image to the range [0,

1] to facilitate thresholding. We empirically determined a threshold value of 0.08

through experimentation, above which pixel intensities were considered indicative

of landslide regions.

By applying this threshold, we obtained a binary mask representing the predicted

landslide areas generated by the Cycle-GAN model.

Score-CAM Generated Mask

For the Score-CAM model applied to the VGG16 network, the goal was to generate a

heatmap highlighting the regions of the image that contributed most to the landslide

prediction.
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Score-CAM operates by computing the importance scores for each neuron in

the last convolutional layer of the network. These scores are then weighted by the

corresponding activation maps to produce the final heatmap.

We experimented with various threshold values ranging from 0.1 to 0.6 to deter-

mine the optimal threshold for generating the Score-CAM mask. Through a grid

search, we observed that a threshold of 0.4 yielded the highest precision in identifying

landslide regions while minimizing false positives.

This thresholding process resulted in a binary heatmap where pixels above the

threshold were considered significant contributors to the landslide prediction, while

those below were disregarded.

Combining Masks

Once the individual masks from the Cycle-GAN and Score-CAM models were ob-

tained, we combined them to produce the final landslide mask.

We applied a logical AND operation (Intersection of 2 Masks) between the two

binary masks generated by the Cycle-GAN and Score-CAM models. This operation

resulted in a merged mask where any pixel identified as a landslide region by either

model contributed to the final prediction.

The combined mask effectively leveraged the strengths of both models, utilizing

the Cycle-GAN’s ability to generate realistic images and the Score-CAM’s capabil-

ity to identify relevant image features. By aggregating the predictions from both

models, we aimed to enhance the accuracy and robustness of the final landslide

detection.

Threshold Selection

I initially experimented with Niblack and Sauvola Thresholding methods, but they

produced unsatisfactory results. Instead, Otsu Thresholding yielded superior per-

formance.

In addition to combining the masks, we utilized Otsu Thresholding to optimize

the threshold values for generating the masks. Otsu’s method is an automatic

threshold selection technique that determines the optimal threshold by maximizing

the variance between foreground and background pixels, thereby minimizing the
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within-class variance.

Applying Otsu Thresholding allowed us to achieve an optimal balance between

sensitivity and specificity in identifying landslide regions. This method ensured that

the threshold values were selected based on the image data distribution, leading to

more accurate segmentation results.

We determined the final threshold values using Otsu’s method on the validation

dataset, comparing the combined mask’s predictions against ground truth annota-

tions. Through this automatic threshold optimization process, we aimed to produce

a reliable and accurate landslide detection system capable of identifying hazardous

areas with high precision.

By leveraging Otsu Thresholding, we ensured that the combined masks accu-

rately captured true positives while minimizing false positives and false negatives.

This methodical approach to threshold optimization contributed to the robustness

and reliability of our landslide detection system.
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Chapter 4

Results

4.1 Introduction

In this chapter, we present the evaluation of the VGG16 classification model along

with the masks generated by Score-CAM, CycleGAN, and their combined version

against the ground truth. The performance of these models and methods is assessed

using four key metrics: Precision, Recall, and Mean Intersection over Union (mIoU).

These metrics provide a comprehensive understanding of how well the models per-

form in the context of landslide remote sensing image semantic segmentation.

4.2 Methodology

4.2.1 Model Evaluation Method

In the domain of landslide remote sensing image semantic segmentation tasks, the

evaluation of test results is commonly conducted using metrics such as precision,

recall, and mIoU. These metrics are derived from the fundamental calculations in-

volving True Positives (TP), False Positives (FP), True Negatives (TN), and False

Negatives (FN). Below, we outline the definitions and calculations of these metrics:
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Precision

Precision measures the proportion of positive samples correctly predicted by the

model among all samples predicted as positive. It reflects the accuracy of the model

in identifying landslide areas from the images. The precision is calculated using the

following formula:

Precision =
TP

TP + FP
(4.1)

Recall

Recall indicates the proportion of actual positive samples that were correctly pre-

dicted by the model. It represents the model’s ability to detect all the landslide

areas present in the images. The recall is calculated as follows:

Recall =
TP

TP + FN
(4.2)

Mean Intersection over Union (mIoU)

The mIoU metric is used to comprehensively evaluate the performance of the seg-

mentation model. The Intersection over Union (IoU) is calculated by dividing the

intersection of the predicted segmentation and the ground truth by their union. The

mIoU is the average of the IoU values for each category. The formula for IoU is:

mIoU =
A ∩B

A ∪B
=

TP

TP + FP + FN
(4.3)

4.2.2 Evaluation Metrics Calculation

To thoroughly evaluate the VGG16 classification model and the masks generated

by Score-CAM, CycleGAN, and their combined version, we calculated the above

metrics for each method. The ground truth masks were used as a benchmark to

compare the predicted masks. The following steps outline the process:

1. **True Positives (TP):** Count the number of pixels correctly identified as

part of the landslide. 2. **False Positives (FP):** Count the number of pixels

incorrectly identified as part of the landslide. 3. **True Negatives (TN):** Count
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the number of pixels correctly identified as not part of the landslide. 4. **False

Negatives (FN):** Count the number of pixels incorrectly identified as not part of

the landslide.

Using these counts, the precision, recall and mIoU were computed to assess the

performance of each method.

4.2.3 10 Fold Cross Validation with Modified Dataset

Due to the relatively small size of our dataset, we employed 10 Fold Cross-Validation

to ensure robust and reliable evaluation of our models. Our original dataset com-

prised 770 landslide images and 2003 non-landslide images. To enhance the dataset

and improve the training process, we performed the following modifications:

• Data Augmentation: Using a cyclic GAN, we generated an additional 400

landslide images. During this process, 10 images were manually identified

as unsuitable and subsequently deleted. This brought the total number of

landslide images to 1160. Some generated images with original images are

shown below.

• Data Cleaning: For the non-landslide images, we manually reviewed the

dataset to remove images containing buildings and highways, which were

deemed irrelevant for the task. After this cleaning process, we were left with

1558 non-landslide images.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.1: A set of 10 images showing the transformation of original non-landslide

images into landslide images using Cyclic-GAN.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: A set of 9 images depicting the deleted samples from the non-landslide

class, which were removed due to the presence of highways and buildings.

With these modifications, our final dataset comprised 1160 landslide images and

1558 non-landslide images. This dataset was then divided into 10 equal parts to

perform 10 Fold Cross-Validation. The procedure was as follows:

1. Dataset Partitioning: The entire dataset was randomly divided into 10

equal subsets. Each subset contained both landslide and non-landslide images

in proportionate amounts.

2. Model Training: For each fold, the GAN and VGG16 models were trained
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on 9 of the 10 subsets. This training process aimed to learn and optimize

the models using the majority of the dataset while reserving one subset for

validation.

3. Mask Generation and Evaluation: After training, the models were used

to generate masks on the remaining subset. These generated masks were then

compared to the ground truth masks to evaluate the model’s performance on

unseen data.

This cross-validation approach ensured that each image in the dataset was used

for both training and validation, providing a comprehensive assessment of the model’s

performance across different data splits. By averaging the results across all 10 folds,

we obtained a more reliable estimate of the models’ generalization capabilities and

robustness.

The use of 10 Fold Cross-Validation with our modified dataset allowed us to

make the most of the available data and achieve a thorough evaluation of our pro-

posed methods. This approach mitigates the risk of overfitting and ensures that the

reported performance metrics are representative of the model’s true capability in

practical applications.

Table 4.1: Test results comparing fully supervised and weakly supervised learning

methods

Method Precision Recall mIOU

Weakly Supervised Learning

Grad-CAM 0.692 0.593 0.159

CycleGAN 0.845 0.404 0.184

Grad-CAM + CycleGAN 0.924 0.383 0.237

Score-CAM + CycleGAN + Manual Threshold 0.918105 0.375309 0.228908

Score-CAM + CycleGAN + Otsu Threshold 0.917362 0.382849 0.227165

Supervised Learning

U-Net 0.955 0.555 0.408
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Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6
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Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10
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Figure 4.11

Figure 4.12

4.3 Some Important Observations

Based on our experimental assessments, we found that the GAN generated more pre-

cisely located masks for areas affected by landslides. The masks generated by the

GAN were effective in capturing the broader areas of landslide occurrences. How-

ever, one significant drawback was that these masks often contained a considerable

amount of noise, which could lead to false positive detections in certain scenarios.

On the other hand, the Score-CAM applied on the VGG16 model demonstrated

a remarkable ability to capture the exact location of landslide regions with higher

precision. The Score-CAM-generated masks were less noisy and more focused on the

actual landslide areas, which significantly improved the precision of the detection.

Given these complementary strengths, we combined the masks generated by both

the GAN and the Score-CAM. This combined approach leveraged the GAN’s capa-

bility for broader localization and the Score-CAM’s precision in identifying specific

regions. As a result, the fusion of these two methods produced superior detec-
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tion outcomes, balancing localization and precision effectively. This combination

provided a more accurate and reliable mask for landslide detection, significantly

improving the overall performance of our system.
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Chapter 5

Conclusion

In this research, we explored and evaluated the efficacy of combining Score-CAM

and Cycle-GAN for the task of landslide detection and segmentation from remote

sensing images. The integration of these two methodologies aimed to leverage the

strengths of both approaches, ultimately enhancing the performance metrics of our

landslide detection system.

5.1 Summary of Findings

The primary objective of our study was to improve the precision, recall, and mean

Intersection over Union (mIoU) scores of landslide segmentation models. Through

extensive experimentation, we found that combining Score-CAM and Cycle-GAN

significantly improved the recall and mIoU scores compared to using each method

individually.

• Score-CAM: Score-CAM was effective in pinpointing the exact location of

landslides within the images. This method capitalized on the interpretability of

convolutional neural networks (CNNs), specifically focusing on the activation

maps to generate precise heatmaps for landslide regions.

• Cycle-GAN: Cycle-GAN excelled in generating localized masks for landslide

areas. However, the generated masks often contained noise, which could po-

tentially reduce the overall accuracy and increase the false positive rate.

• Combined Approach: By integrating the detailed localization capabilities
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of Score-CAM with the robust mask generation of Cycle-GAN, we achieved a

more reliable segmentation model. This combined approach not only improved

the recall but also enhanced the mIoU score, demonstrating a better balance

between sensitivity and specificity in identifying landslide regions.

5.2 Performance Evaluation

Our evaluation metrics, which included precision, recall, mIoU, and false positive

rate (FPR), provided a comprehensive assessment of the model’s performance. The

combined Score-CAM and Cycle-GAN approach yielded the following improvements:

• Recall: The recall score increased, indicating a higher percentage of actual

landslide areas correctly identified by the model. This is crucial for applica-

tions where missing a landslide area could have severe consequences.

• mIoU: The mean Intersection over Union score saw a notable improvement,

reflecting a better overlap between the predicted landslide areas and the ground

truth annotations.

5.3 Key Observations

• Localization vs. Noise: While Cycle-GAN produced well-localized masks,

the presence of noise was a significant drawback. In contrast, Score-CAM

provided precise localization but lacked the robustness of Cycle-GAN in some

instances. The combination of both methods successfully mitigated these in-

dividual shortcomings.

• Threshold Optimization: The use of Otsu Thresholding played a critical

role in fine-tuning the segmentation masks. By optimizing the threshold val-

ues, we were able to achieve a better balance between detecting true positives

and minimizing false positives and negatives.

• Dataset Augmentation andModification: The augmentation of the dataset

with additional landslide images generated by Cycle-GAN, and the careful
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curation of non-landslide images, further contributed to the improved perfor-

mance of the combined model.

5.4 Future Work

The promising results of this study pave the way for several avenues of future re-

search:

• Real-World Applications: Further testing and validation on diverse real-

world datasets would help in assessing the generalizability and robustness of

the combined model in different geographic and climatic conditions.

• Algorithm Enhancements: Exploring advanced GAN architectures and

more sophisticated activation mapping techniques could potentially yield even

better results. Additionally, integrating other weakly supervised and unsuper-

vised learning methods could further enhance the model’s performance.

• Automated Thresholding: Developing automated methods for threshold

optimization, possibly through machine learning techniques, could streamline

the process and adapt to varying data conditions dynamically.

5.5 Conclusion

The integration of Score-CAM and Cycle-GAN has proven to be an effective strategy

for improving the performance of landslide detection and segmentation models. By

leveraging the strengths of both methodologies, we achieved higher recall and mIoU

scores, making our approach a valuable tool for remote sensing image analysis.

This research underscores the importance of combining complementary techniques to

tackle complex image segmentation tasks, ultimately contributing to more accurate

and reliable landslide detection systems.
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