
Verification of Reinforcement Learning Models: Comparing
Construction of Environment Models

Patrick Jeeva A

Verification of Reinforcement Learning Models: Comparing
Construction of Environment Models

Dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Computer Science

by

Patrick Jeeva A
[Roll No: CS2220]

(Ericsson sponsored M.Tech. Dissertation)

under the guidance of

Dr. Swarup Mohalik
Prinicipal Engineer - Research

Ericsson Reserach India

ISI supervisor

Dr. Ansuman Banerjee
Professor

Advanced Computing and Microelectronics Unit

Indian Statistical Institute
Kolkata-700108, India

June 2024

DECLARATION

I, Patrick Jeeva A, hereby declare that the dissertation titled “Verification of Rein-
forcement Learning Models: Comparing Construction of Environment Models”
submitted to Indian Statistical Institute, Kolkata, in partial fulfillment of the requirements for
the award of the degree of Master of Technology in Computer Science is is my original
work. This dissertation has not been submitted to any other university or institute for the
award of any degree or diploma. All sources of information and assistance received during the
preparation of this dissertation have been duly acknowledged.

Patrick Jeeva A (CS2220)
Master of Technology in Computer Science
Indian Statistical Institute, Kolkata

CERTIFICATE

This is to certify that the dissertation titled “Verification of Reinforcement Learning
Models: Comparing Construction of Environment Models” submitted by Patrick
Jeeva A to Indian Statistical Institute, Kolkata, in partial fulfillment for the award of the
degree of Master of Technology in Computer Science is a bonafide record of work carried
out by him under our supervision and guidance. The dissertation has fulfilled all the require-
ments as per the regulations of this institute and, in our opinion, has reached the standard
needed for submission. This work was sponsored by Ericsson Research India.

Ansuman Banerjee Swarup K. Mohalik
Advanced Computing and Microelectronics Unit(ACMU) Ericsson Research
Indian Statistical Institute, Kolkata Bangalore

Acknowledgement

I would like to thank my supervisors, Dr. Swarup K. Mohalik, Ericsson Research and Dr. Ansuman
Banerjee, Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata for
their continuous guidance and unwavering support. For the entire duration of the thesis, I have had
many opportunities to learn and improve myself and my work. Their guidance has given me a much
better appreciation of the research sphere and the value of good quality work.

My deepest thanks to the faculties of Indian Statistical Institute and scientists of Ericsson Research,
for their support and assistance throughout the duration of the thesis.

Last but not the least, I would like to thank my family, friends and peers for their help and support.
I thank all those, whom I have missed out from the above list.

Patrick Jeeva A
Roll No. CS2220

Indian Statistical Institute
Kolkata - 700108, India.

i

Abstract

In recent years of advancements in reinforcement learning (RL), utilizing neural network based models
to make decisions in dynamic and complex environments has emerged as a powerful paradigm. In
particular, model based reinforcement learning has been widely used for its ability to increase learning
efficiency and performance. By constructing an environment model beforehand, the agent attains a
prior knowledge of the dynamics of the model to take informed decisions and converge fast to optimal
policies.

Real-world environments are often intricate and subject to external disturbances, posing substantial
challenges for accurate modeling. Addressing these challenges requires the application of sophisticated
neural network-based models that can effectively approximate the underlying environment dynamics.

In this work, we develop and evaluate extensive neural network models, specifically focusing on Gaus-
sian Ensemble models, Bayesian neural networks, and Monte Carlo Dropout techniques, to approxi-
mate various standard gym environments. These models are trained on different numbers of samples to
understand their efficiency and accuracy in capturing environment dynamics. Once trained, the neural
network models are used to construct Markov Decision Processes (MDPs) with various discretization
strategies. The constructed MDPs are then analyzed and compared to evaluate the performance of
each neural network approach.

The purpose of this thesis is to present a comprehensive study on the construction of environment
models using advanced neural network techniques. We aim to approximate the standard environments
in the reinforcement learning setup, utilizing a variety of neural networks and compare the efficiency
based on the reconstruction of MDPs.

iii

Contents

Acknowledgement i

Abstract iii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Motivation of this dissertation . 2

1.2 Contributions of this dissertation . 3

1.3 Organization of the dissertation . 3

2 Background and Related Work 5

2.1 Reinforcement Learning . 5

2.2 Reinforcement Learning Algorithms . 6

2.3 Need for Model based Reinforcement Learning . 7

2.4 Neural Networks . 8

2.5 Need for Neural Network for environment construction 9

2.5.1 Neural Networks as Efficient Modeling Tools 9

2.5.2 Capturing Non-linear and Dynamic Environments 9

2.5.3 Versatility of Neural Network Architectures . 9

2.6 Monte Carlo Dropout Model . 10

2.6.1 Training Phase . 10

2.6.2 Inference Phase . 10

v

vi CONTENTS

2.6.3 Theoretical Understanding . 10

2.6.4 Advantages . 11

2.7 Gaussian Ensemble Model . 12

2.7.1 Training Phase . 12

2.7.2 Inference Phase . 12

2.7.3 Need for Gaussian Ensemble Models . 13

2.8 Bayesian Neural Network . 14

2.8.1 Core Concepts . 14

2.8.2 Training Phase . 14

2.8.3 Inference Phase . 15

2.8.4 Advantages . 15

2.9 Environment Modelling . 16

2.10 Cartpole . 16

2.10.1 System Description . 16

2.10.2 Action Space . 16

2.10.3 Reward Structure . 16

2.10.4 State Space . 16

2.10.5 Episode Termination . 16

2.10.6 Physics and Dynamics of the Cartpole System 17

2.10.7 Nonlinearity of the System . 18

2.11 Mountain Car . 18

2.11.1 Action Space . 18

2.11.2 Reward Structure . 19

2.11.3 State Space . 19

2.11.4 Episode Termination . 19

2.11.5 Physics and Dynamics of the Mountain Car System 19

2.11.6 Nonlinearity of the System . 20

2.12 Mountain Car Continuous . 20

2.12.1 Action Space . 20

2.12.2 Reward Structure . 21

CONTENTS vii

2.12.3 State Space . 21

2.12.4 Episode Termination . 21

2.12.5 Physics and Dynamics of the Mountain Car Continuous System 21

2.12.6 Nonlinearity of the System . 22

2.13 Pendulum . 22

2.13.1 Action Space . 23

2.13.2 Reward Structure . 23

2.13.3 State Space . 23

2.13.4 Episode Termination . 23

2.13.5 Physics and Dynamics of the Pendulum System 24

2.13.6 Nonlinearity of the System . 24

2.14 Continuous State Variables in Markov Decision Processes 25

2.15 Kullback-Leibler Divergence . 26

2.16 Novelty of this Dissertation Work . 26

3 Methodology 27

3.1 Data Collection and Format . 27

3.2 Monte Carlo Dropout Architecture . 28

3.2.1 MC Dropout Net Class . 28

3.2.2 Training and Testing Procedure . 28

3.2.3 Generated Files . 29

3.3 Bayesian Neural Network Architecture . 30

3.3.1 Model Definition (BayesianNN Class) . 30

3.3.2 Training and Testing Procedure . 30

3.4 Gaussian Ensemble Model Architecture . 32

3.4.1 Gaussian Network Architecture . 32

3.4.2 Ensemble Gaussian Network . 33

3.4.3 Training and Testing Procedure . 33

3.5 MDP construction . 34

3.6 Comparison Metrics . 36

3.6.1 Training Time . 36

3.6.2 Evaluation Loss Graph . 37

3.6.3 MDP Comparison . 37

3.7 Procedure . 37

4 Experiments and Results 39

4.1 Training Time : . 39

4.2 Evaluation Loss vs epochs : . 40

4.3 MDP Comparison : . 42

5 Conclusion and Future Work 45

List of Tables

2.1 Cartpole Actions . 16

2.2 Cartpole Observation Space . 17

2.3 Mountain Car Actions . 18

2.4 Mountain Car Observation Space . 19

2.5 Mountain Car Continuous Action Space . 21

2.6 Mountain Car Continuous Observation Space . 21

2.7 Pendulum Action Space . 23

2.8 Pendulum Observation Space . 23

3.1 Cartpole State Space Bounds . 35

3.2 Mountain Car State Space Bounds . 35

3.3 Mountain Car Continuous State Space Bounds . 35

3.4 Pendulum State Space Bounds . 35

ix

List of Figures

2.1 Reinforcement Learning Setup . 5

2.2 Artificial Neural Network . 8

2.3 Dropout Configuration sampled from predictive distribution 11

2.4 Cartpole Environment . 16

2.5 Mountain Car . 18

2.6 Pendulum Environment . 23

4.1 Training Time vs Number of Training Samples . 39

4.2 Evaluation Loss vs epochs on all models approximating Cartpole Environment. 40

4.3 Evaluation Loss vs epochs on all models approximating MountainCar Environment. . 40

4.4 Evaluation Loss vs epochs on all models approximating MountainCarContinuous En-
vironment. 41

4.5 Evaluation Loss vs epochs on all models approximating Pendulum Environment. . . . 41

xi

Chapter 1

Introduction

In the field of machine learning known as reinforcement learning (RL), agents interact with their
surroundings to acquire the best possible behaviours. RL comprises a dynamic process of exploration
and exploitation, unlike supervised learning, which trains models on a fixed dataset. This character-
istic makes RL particularly well-suited to issues where sequential decision-making is essential. With
applications ranging from resource management and games to robotics and autonomous vehicles, re-
inforcement learning (RL) is significant because it can handle complicated tasks that call for adaptive
and autonomous decision-making. The idea of an agent interacting with an environment, where the
agent acts in accordance with a policy and gets feedback in the form of incentives, is fundamen-
tal to reinforcement learning. Typically, a Markov Decision Process(MDP) is used to represent this
interaction.

Even though model-free reinforcement learning techniques like Q-learning and deep Q-networks (DQN)
have shown great success, they frequently necessitate a lot of interactions with the environment, which
can be problematic in real-world situations where gathering data is costly or time-consuming. This
problem is addressed by model-based reinforcement learning, which builds a model of the dynamics
of the environment and uses it to plan and simulate actions without requiring direct interaction with
it.

Deep learning has given rise to strong tools that can be used to represent complicated environment
dynamics in reinforcement learning. Neural networks are especially well suited for this purpose because
of their capacity to approximate nonlinear functions. Diverse approaches for capturing uncertainty
and enhancing model accuracy are provided by different neural network topologies and techniques,
such as Bayesian neural networks, Gaussian ensemble neural networks, and Monte Carlo dropout
neural networks.

Our goal is to investigate and contrast several neural network-based methods for building MDPs in
environments with continuous states. It specifically focuses on employing Gaussian ensemble neural
networks, Monte Carlo dropout neural networks, and Bayesian neural networks to approximate the
dynamics of non-deterministic environments such as cartpole, pendulum, mountain car, and moun-
tain car continuous. Different neural network designs are put into practice and trained in order to
produce an accurate model of the dynamics of the environment. The method of constructing and
evaluating Markov Decision Processes (MDPs) involves building MDPs from the training models and
evaluating their efficacy using pre-established comparison criteria. This entails weighing the relative
benefits and downsides of the various approaches and determining which ones are most appropriate
for reinforcement learning tasks.

1

2 1. Introduction

1.1 Motivation of this dissertation

There are numerous neural network methods for approximating stochastic outputs, but these have
not been extensively applied to approximate reinforcement learning (RL) environments. Furthermore,
these methods are not evaluated based on their ability to recreate the dynamics of the original RL
environment.

The lack of a methodology for building neural network-based models for stochastic gym environments
and a standard basis for comparing them persists. These neural network environments can be easily
adapted in a dynamic setup using transfer learning. However, there is insufficient work on analyzing
how well they can recreate the dynamics of the original environment. To successfully reconstruct the
dynamics of the environment after approximation, we need a robust methodology for both construction
and comparison.

Existing neural network methods are primarily focused on static applications and often disregard the
intricacies involved in dynamic RL environments. While these methods showcase promising capa-
bilities in static scenarios, they do not address the challenges posed by stochastic and continuously
evolving environments typically found in RL settings. The absence of comprehensive evaluation met-
rics for these methods further complicates the assessment of their effectiveness in approximating RL
environments.

The current approaches in the field largely ignore the necessity of a standardized framework that
would facilitate the construction of neural network-based models tailored for stochastic RL environ-
ments. Additionally, there is a significant gap in research concerning the comparative analysis of
these models. Transfer learning, a technique that enables the adaptation of a pre-trained model to
new tasks, has shown potential for dynamically updating neural network environments. However,
the effectiveness of this approach in maintaining the fidelity of the original environment’s dynamics
remains underexplored.

To bridge this gap, it is crucial to develop a methodology that not only supports the construction
of neural network models for stochastic gym environments but also provides a robust basis for their
evaluation. This methodology should incorporate advanced techniques for model validation, ensuring
that the approximated environments accurately reflect the dynamics of their original counterparts.
Such an approach would involve defining clear metrics and benchmarks for performance assessment,
thereby enabling a systematic comparison of different neural network methods.

Moreover, a detailed analysis of how well these models can replicate the intricate behaviors and
responses of the original RL environments is essential. This would involve rigorous testing under
various scenarios to evaluate the robustness and reliability of the neural network approximations. By
establishing a comprehensive framework for both the construction and comparison of neural network
models in stochastic RL environments, we can pave the way for more reliable and effective applications
in this domain.

1.2. Contributions of this dissertation 3

1.2 Contributions of this dissertation

The objective of this thesis is to investigate various neural network models, specifically Gaussian
Ensemble models, Bayesian neural networks, and Monte Carlo Dropout techniques, for approximating
diverse gym environments. The contributions of this thesis are briefly described below:

• Neural Network Models: This thesis explores employing models specifically Gaussian Ensemble
models, Bayesian neural networks, and Monte Carlo Dropout techniques for approximating gym
environments.

• Training and Evaluation: Trained models on varying sample sizes to evaluate their effectiveness
and accuracy in capturing environment dynamics.

• Markov Decision Processes (MDPs): Following training, the neural network models are em-
ployed to construct Markov Decision Processes (MDPs) that encapsulate the environment dy-
namics.

• Performance Comparison: The constructed MDPs are rigorously analyzed and compared to eval-
uate the efficacy of each neural network approach. Comparative studies highlight the strengths
and weaknesses of each neural network model in accurately representing and simulating gym en-
vironments, providing insights into their applicability and performance in reinforcement learning
tasks.

1.3 Organization of the dissertation

This dissertation is organized into 5 chapters. A summary of the contents of the chapters is as follows:

Chapter 1: This chapter contains an introduction and a motivation of this work.

Chapter 2: This chapter corresponds to the background and prerequisites of the work for all the
topics discussed.

Chapter 3: This chapter describes the Methodology of model building and MDP construction.

Chapter 4: This chapter describes the experiments and results conducted on the models.

Chapter 5: We summarize with conclusions on the contributions of this dissertation.

Chapter 2

Background and Related Work

In this chapter, we describe the background concepts and prerequisites related to the systems that
are discussed and referenced throughout the thesis. We also demonstrate the working of the systems
discussed to have a better understanding of the work described in the subsequent chapters. We finally
describe the software tools and programming libraries used in the coming chapters.

2.1 Reinforcement Learning

Reinforcement Learning is a type of machine learning where an agent of interest interacts with an
environment to learn to take actions for maximizing the reward in long run. For each type of action
taken by the agent with the environment, the agent receives a reward (maximizing objective). The
objective of this methodology is to learn the actions that are supposed to be taken at a particular
state such that the cumulative reward is maximized.

Figure 2.1: Reinforcement Learning Setup

5

6 2. Background and Related Work

Basic Concepts and Terminology :

• Agent and Environment : Agent is the object of interest that interacts with the environment
over discrete time steps. The agent observes the present state of environment and for each time
step, take action and observe the next state.

• State (S) : The State contains a set of variables that represents the situation information of
agent in the environment.

• Action (A) : Action is the choice that is taken by the agent that changes the state of environ-
ment.

• Reward (R) : Reward is a scalar feedback that is provided for each action taken at each state.
This reward function here is the maximising objective of that particular rl problem.

• Policy (π): Policy is the mapping between state and action such that for each state, the action
taken maximizes the cumulative reward. The policy can be deterministic or stochastic.

• Value function (V) : The value function is the estimate of the long-term benefit of being in a
particular state. It is expressed as the expectation of the cumulative reward starting from that
state, following a particular policy.

2.2 Reinforcement Learning Algorithms

Reinforcement Learning (RL) algorithms can be categorized broadly into two main categories based
on their approach to learning and utilizing environment dynamics:

• Model Free Reinforcement Learning : Model-free RL algorithms do not explicitly utilize a
model of the environment dynamics. Instead, they rely on trial-and-error experiences, where the
agent learns by interacting with the environment and receiving feedback in the form of rewards.
By iteratively adjusting its actions based on past experiences, the agent gradually improves its
policy without explicitly modeling how the environment behaves. Examples of model-free RL
algorithms include Q-learning, SARSA, and Deep Q-Networks (DQN). These algorithms are
often favored for their simplicity and ability to handle complex environments with unknown
dynamics.

• Model Based Reinforcement Learning : Model-based RL algorithms involve learning and
utilizing an explicit model of the environment dynamics. These algorithms aim to construct a
model that accurately predicts how the environment will evolve in response to actions taken by
the agent. By leveraging this model, the agent can plan ahead and make decisions that optimize
long-term rewards more efficiently. Model-based approaches are typically more sample-efficient
compared to model-free methods, as they can simulate multiple scenarios and predict outcomes
without requiring extensive interaction with the real environment. Examples of model-based RL
algorithms include Dyna-Q, Model Predictive Control (MPC), and some variants of Monte Carlo
methods. These algorithms are advantageous in scenarios where data efficiency and planning
capabilities are crucial.

2.3. Need for Model based Reinforcement Learning 7

2.3 Need for Model based Reinforcement Learning

Model based reinforcement learning overcomes various challenges that are inherently present in the
Model free reinforcement learning approaches [7]. They are,

• Planning and Decision Making : By modelling the environment, the agent is enabled to
predict future states and rewards that helps in taking informed decisions. This helps in optimis-
ing the actions that are not part of the real environment experience taken care by simulations
of the modelled environment. This helps the agent provide a foresight on various sequences of
actions and their consequences without actually taking them in the real world. So, the agent
would exploit the environment effectively by taking dynamics aware decisions.

• Non Stationary Environment : Non-Stationary Environment: In environments that change
over time, model-based RL techniques provide a way to continuously update the learned envi-
ronment model with new experiences. This continuous updating allows model-based methods
to maintain an accurate representation of the current state. In contrast, static policies learned
through model-free approaches become obsolete in such scenarios [1].

• Safety : Since the agents has the idea of future states for action sequences, the agent is
prevented from taking actions that could lead to risk prone regions. In safety critical domains,
this methodology could help taking risk assessments and avoiding states that is unsafe for the
agent.

• Exploration vs Exploitation : In reinforcement learning, balancing between taking unex-
plored actions (Exploration) and taking actions based on previous experience (Exploitation) is
a fundamental challenge. Model-based approaches address this challenge in a nuanced way by
identifying and prioritizing under-explored regions in the state spaces [10].

• Convergence : The environment models helps in targeted exploration that makes the learning
effective and converges faster than model free approaches.

8 2. Background and Related Work

2.4 Neural Networks

Neural Networks (NN), often referred to as Artificial Neural Networks (ANN) or Deep Neural Networks
(DNN), form the backbone of deep learning algorithms, a prominent subset of machine learning. A
neural network is composed of interconnected processing units called neurons or nodes, which are
linked by data transfer edges known as synapses. The terminology and structure of neural networks
are inspired by the human brain’s architecture, mirroring the way biological neurons signal to one
another.

Figure 2.2: Artificial Neural Network

Unlike traditional algorithmic models that follow explicit programmed instructions, neural networks
learn from data. This learning process involves training the network on a set of labeled data before it
is deployed for actual tasks. During training, the network adjusts its parameters to minimize errors
and improve accuracy through a method called backpropagation. This iterative process enables neural
networks to learn complex patterns and make predictions, making them highly robust tools capable
of solving problems that are challenging for conventional algorithms.

There are various types of neural networks, each with distinct architectures and applications. Among
the most common are feed-forward neural networks, which consist of multiple sequential layers, each
containing numerous nodes. In a feed-forward network, each layer is connected to the subsequent and
preceding layers. When an input is received, the first layer processes it and passes the result to the
second layer. This process continues through all layers until the final layer produces an output vector,
representing the network’s prediction or decision.

The operation of each layer in a feed-forward neural network involves two primary steps: the weighted
sum of inputs followed by the application of an activation function. This mechanism allows the network
to capture and model complex, non-linear relationships within the data.

Neural networks have a wide range of applications, including but not limited to classification, pattern
recognition, value prediction, and decision modeling. Their versatility and capability to handle large,
complex datasets have made them a focal point of research in data science and artificial intelligence.
The study and development of neural networks and their variants continue to drive innovation and
advancements in these fields, pushing the boundaries of what can be achieved with machine learning.

2.5. Need for Neural Network for environment construction 9

2.5 Need for Neural Network for environment construction

Model-based reinforcement learning (RL) methods have demonstrated remarkable prowess in tackling
challenges posed by complex and high-dimensional state-action spaces. These approaches leverage
models of the environment to plan and execute actions that optimize long-term rewards. However,
constructing accurate environment models typically requires extensive data collection, which is often
impractical in real-world scenarios due to the vastness of such spaces.

2.5.1 Neural Networks as Efficient Modeling Tools

Neural networks have emerged as powerful tools in this context, primarily due to their ability to
approximate non-linear functions and effectively manage high-dimensional data. Unlike traditional
methods that struggle with the complexity and dynamics of real-world environments, neural networks
excel in capturing intricate patterns and dynamics inherent in data. This capability makes them
particularly suitable for constructing environment models with minimal data samples [6].

2.5.2 Capturing Non-linear and Dynamic Environments

Real-world applications frequently encounter non-linear and continuously evolving environments.
Neural networks are well-suited to model such complexities, offering a means to approximate the
dynamics of these environments accurately. By fine-tuning neural network models, RL agents can de-
rive valuable insights and make informed decisions, even when direct exploration of the environment
is limited [9].

2.5.3 Versatility of Neural Network Architectures

The versatility of neural network architectures further enhances their utility in approximating non-
deterministic environments encountered in various applications. Whether through convolutional net-
works for spatial data, recurrent networks for sequential data, or attention mechanisms for selective
processing, neural networks offer flexible frameworks to adapt to diverse modeling requirements.

Various neural network architectures can effectively approximate such non-deterministic environments.
In this work, we employ and compare Monte Carlo Dropout, Gaussian Ensemble Models, and Bayesian
Neural Networks to model and analyze the dynamics of these environments. These architectures
provide different methods of capturing uncertainty and variability in the environment, making them
valuable tools for constructing robust and accurate models for RL.

10 2. Background and Related Work

2.6 Monte Carlo Dropout Model

Monte Carlo Dropout (MC Dropout) is a technique used to approximate Bayesian inference in neural
networks, providing uncertainty estimates in predictions. It extends the traditional dropout regular-
ization method by leveraging dropout during both training and inference phases to sample multiple
predictions, thereby quantifying prediction uncertainty [4].

Core Concepts

Dropout is a regularization technique in neural networks to prevent overfitting. During training,
dropout randomly ignores neurons with a specified probability, promoting robust feature learning.
Traditional dropout turns off during inference, producing deterministic predictions.

In MC Dropout, dropout remains active during both training and inference phases. This intro-
duces stochasticity during training, encouraging the network to learn a diverse set of robust features.
During inference, MC Dropout generates multiple predictions for each input, allowing for uncertainty
estimation.

2.6.1 Training Phase

1. Regular Dropout Application: During each training iteration, dropout is applied where
neurons are randomly dropped with a probability p, creating different network architectures per
iteration.

2. Parameter Learning: The network parameters (weights and biases) are updated based on
the performance across these varied architectures. This regularization technique helps prevent
overfitting and encourages the network to learn more generalizable features.

2.6.2 Inference Phase

1. Dropout During Inference: Unlike traditional dropout, MC Dropout keeps dropout active
during inference. This means that for the same input, the network can produce different outputs
due to different sets of active neurons, thus capturing model uncertainty.

2. Monte Carlo Sampling: To estimate uncertainty, MC Dropout involves running multiple
forward passes with dropout enabled. Each pass yields a different prediction due to dropout’s
stochastic nature. These predictions can be averaged to obtain a final prediction and their
variance used as a measure of uncertainty.

2.6.3 Theoretical Understanding

Applying dropout during training introduces an element of stochasticity, effectively turning the neural
network into an ensemble of different architectures. Each architecture sampled during training can be
viewed as a sample from the approximate posterior distribution q(Θ|D), where Θ denotes the network
parameters and D represents the training dataset.

This enables the approximation of the predictive distribution:

2.6. Monte Carlo Dropout Model 11

Figure 2.3: Dropout Configuration sampled from predictive distribution

p(y|x) ≈
∫
Ω
p(y|x,Θ) q(Θ|D) dΘ

Using Monte Carlo sampling, this integral can be approximated by averaging predictions over
multiple samples Θt ∼ q(Θ|D):

p(y|x) ≈ 1

T

T∑
t=1

p(y|x,Θt), where Θt ∼ q(Θ|D)

Assuming the likelihood is normally distributed:

p(y|x,Θ) = N (f(x,Θ), s2(x,Θ)),

where f(x,Θ) is the mean and s2(x,Θ) is the variance of the predictions obtained through Monte
Carlo dropout.

2.6.4 Advantages

1. Uncertainty Quantification: MC Dropout provides a principled way to estimate uncertainty
in predictions, which is critical in applications such as medical diagnosis and autonomous driving
where decision-making relies on confidence levels.

2. Improved Generalization: By maintaining dropout during inference, MC Dropout prevents
over-reliance on specific neurons and encourages the network to generalize better, similar to its
behavior during training.

3. Simplicity and Efficiency: MC Dropout can be implemented with minimal modifications to
existing neural network architectures and training procedures, making it a practical approach
for uncertainty-aware deep learning.

4. Versatility: This technique is applicable across various types of neural networks, including
convolutional and recurrent networks, enhancing its utility across different domains and tasks.

By incorporating MC Dropout, neural networks not only improve their predictive accuracy but
also gain the ability to provide confidence intervals for their predictions, thereby enhancing their
reliability in real-world applications.

12 2. Background and Related Work

2.7 Gaussian Ensemble Model

The Gaussian Ensemble model is a method used to predict the mean and uncertainty of future states
in a system. It leverages an ensemble of Gaussian neural network(GNN), each trained independently
on the same dataset. This approach, known as Probabilistic Ensemble of trajectory sampling methods
(PETS) [2], provides robust predictions by aggregating outputs from multiple models.

2.7.1 Training Phase

In the training phase, multiple Gaussian neural networks are trained on the dataset. Each network
within the ensemble is initialized differently, which ensures that they evolve independently during
training. This diversity in initialization helps in capturing different aspects of the data and improves
the overall robustness of the ensemble.

During training, the objective is to optimize each network to predict the next state given the
current state and possibly other contextual information. The training process typically involves
minimizing a loss function that penalizes the difference between predicted and actual outcomes. By
training multiple networks independently, the ensemble aims to cover a wide range of potential future
states and their uncertainties.

2.7.2 Inference Phase

Once the ensemble of Gaussian models is trained, it is used for making predictions during the inference
phase. Here’s how the inference phase typically works:

• Aggregation of Outputs :
For a given input x, each network in the ensemble produces its own prediction fi(x), where i
ranges from 1 to N, the number of networks in the ensemble.

• Mean Prediction (Expected Value) :
The mean prediction µ(x) is computed by averaging the outputs of all networks:

µ(x) =
1

N

N∑
i=1

µi(x) (2.1)

where N is the number of networks in the ensemble and µi(x) denotes predicted mean of ith
model. This mean represents the expected value or the best estimate of the output for the given
input x.

• Variance (Uncertainty Estimate) :
The variance σ2(x) is computed to quantify the uncertainty associated with the prediction. It
measures the spread or variability of predictions across the ensemble:

σ2(x) =
1

N

√√√√ n∑
i=1

σi(x)2 (2.2)

where N is the number of networks in the ensemble and σi(x) denotes predicted variance of ith
model. A higher variance indicates higher uncertainty in the prediction, while a lower variance
suggests greater confidence [5].

2.7. Gaussian Ensemble Model 13

2.7.3 Need for Gaussian Ensemble Models

Embracing Uncertainty for Robust Decision Making

Unlike standard neural networks that churn out single point predictions, GNNs are designed to encode
probability distributions. This capability elevates them from mere prediction machines to uncertainty-
aware models. GNNs within PETS can capture two crucial types of uncertainties that plague the
learning process:

• Aleatoric Uncertainty :
This type of uncertainty reflects the inherent stochasticity or randomness present in the envi-
ronment itself. For instance, consider an agent navigating a windy path. The wind introduces
an element of chance, making the exact outcome of the agent’s movement probabilistic.

• Epistemic Uncertainty :
This uncertainty arises due to limitations in the data available for learning. When data is scarce,
the model cannot be entirely certain about the true dynamics of the environment. Epistemic
uncertainty essentially represents the model’s own ”confusion” about the world.

The Ensemble Advantage: A Wisdom of Crowds Approach

PETS employs an ensemble of GNNs, created using a technique called bootstrapping. Bootstrapping
involves creating multiple datasets by sampling with replacement from the original data. Each GNN
in the ensemble is trained on a unique bootstrapped dataset. As a result, each GNN learns a distinct
distribution over the next state, given a current state and action.

The key lies in exploiting the disagreement between these ensemble members. This disagreement
serves as a proxy for epistemic uncertainty. When the ensemble members produce significantly dif-
ferent predictions, it indicates that the model is unsure about the true outcome. Conversely, high
agreement signifies greater confidence in the prediction.

14 2. Background and Related Work

2.8 Bayesian Neural Network

Neural networks typically produce single-point predictions, which limits their ability to express con-
fidence in those predictions. Bayesian Neural Networks (BNNs), however, excel at capturing uncer-
tainty, making them particularly useful in areas such as reinforcement learning (RL), where decision-
making is crucial despite inherent unknowns.

2.8.1 Core Concepts

At the core of BNNs lies Bayesian inference, a statistical technique that updates probabilities based
on new evidence. Applied to neural networks, this means the weights (parameters that influence the
network’s behavior) are not fixed values but rather probability distributions.

• Prior Distribution: Before any data is processed, a starting point is established for the
weight distributions, potentially based on existing knowledge or a general distribution. This
prior distribution encapsulates our initial beliefs about the parameters before observing any
data.

• Likelihood: As data is fed into the network, the likelihood function calculates how well the
current weight distributions explain the observed data. It represents the probability of the data
given the parameters and is crucial for updating our beliefs.

• Posterior Distribution: Bayes’ theorem combines the initial weight distributions (prior) with
the data’s influence (likelihood) to create a new distribution (posterior). This posterior distri-
bution reflects the network’s updated understanding of the weights after considering the data.
The posterior encapsulates all information about the parameters after seeing the data.

The Bayesian update process is expressed mathematically as:

P (W |D) =
P (D|W) · P (W)

P (D)

where P (W |D) is the posterior distribution, P (D|W) is the likelihood, P (W) is the prior, and P (D)
is the evidence.

2.8.2 Training Phase

Training a BNN involves estimating the posterior distribution of the weights given the training data.
This process is often computationally intensive and may require approximations due to the intractabil-
ity of exact Bayesian inference in high-dimensional spaces. Common techniques for approximating
the posterior distribution include:

• Variational Inference (VI): This method approximates the true posterior distribution with
a simpler, parameterized distribution by optimizing a lower bound to the marginal likelihood.
It converts the inference problem into an optimization problem, making it more tractable.

• Markov Chain Monte Carlo (MCMC): This method samples from the posterior distribution
to approximate it. Techniques such as Hamiltonian Monte Carlo (HMC) are popular for their
efficiency in high dimensions. MCMC methods provide asymptotically exact samples from the
posterior but can be computationally expensive.

2.8. Bayesian Neural Network 15

• Monte Carlo Dropout: This technique uses dropout during both training and inference as an
approximation to Bayesian inference, providing a practical and scalable approach to estimate
uncertainty. By treating dropout as a form of approximate Bayesian inference, it allows for
efficient uncertainty estimation.

2.8.3 Inference Phase

During inference, BNNs provide a distribution over possible outcomes rather than a single-point
prediction. This allows for the estimation of uncertainty in the predictions. The process involves:

• Sampling from the Posterior: Multiple forward passes are performed using different samples
from the posterior weight distribution. Each forward pass uses a different set of weights drawn
from the posterior distribution.

• Aggregating Predictions: The outcomes of these forward passes are aggregated to produce
a predictive distribution, capturing both the mean prediction and the uncertainty. This aggre-
gation can be done by computing statistics such as the mean and variance of the predictions.

2.8.4 Advantages

BNNs offer significant advantages in stochastic reinforcement learning (RL) environments, where the
system dynamics or reward structures are not fully known or are inherently random. These advantages
include:

• Uncertainty Quantification: BNNs provide a measure of confidence in the predictions, which
is crucial for making robust decisions in uncertain environments. This is particularly important
in RL where the agent needs to balance exploration and exploitation.

• Exploration-Exploitation Trade-off : By quantifying uncertainty, BNNs can better manage
the exploration-exploitation trade-off. High uncertainty can drive exploration, while low uncer-
tainty can favor exploitation of known good strategies. This helps the agent to explore new
strategies that might lead to better long-term rewards.

• Robustness to Overfitting: The probabilistic nature of BNNs helps prevent overfitting, which
is particularly important in RL where the agent’s actions influence future data distribution. By
maintaining distributions over weights, BNNs can generalize better from limited data.

• Improved Generalization: By incorporating prior knowledge and updating beliefs based on
observed data, BNNs can generalize better from limited data, enhancing performance in RL
tasks. This is beneficial in environments where data is scarce or expensive to obtain.

16 2. Background and Related Work

2.9 Environment Modelling

2.10 Cartpole

2.10.1 System Description

The cartpole system is a classic problem in control theory and reinforcement learning, often referred
to as the inverted pendulum problem. It consists of a cart that can move along a frictionless track
with a pole connected to it via an unactuated joint. The objective is to balance the pole upright by
applying forces to the cart, either to the left or right.

Figure 2.4: Cartpole Environment

2.10.2 Action Space

The actions correspond to the direction of the force applied to the cart:

Num Action

0 Push cart to the left
1 Push cart to the right

Table 2.1: Cartpole Actions

2.10.3 Reward Structure

The reward structure is simple:

• Reward: +1 for every step taken, including the termination step. This encourages the agent
to balance the pole for as long as possible.

2.10.4 State Space

The state of the system is represented by the following observations:

2.10.5 Episode Termination

The episode terminates when any of the following conditions are met:

2.10. Cartpole 17

Num Observation Min Max

0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle ∼ −0.418 rad(∼ −24◦) ∼ 0.418 rad(∼ 24◦)
3 Pole Angular Velocity -Inf Inf

Table 2.2: Cartpole Observation Space

1. The pole angle exceeds 12◦ or is less than −12◦.

2. The cart position exceeds 2.4 or is less than -2.4.

2.10.6 Physics and Dynamics of the Cartpole System

The cartpole system is inherently nonlinear due to the coupling between the cart and the pole dynam-
ics. The equations of motion for the system can be derived using Newton’s second law and considering
the forces and torques acting on the cart and the pole.

Equations of Motion

Let:

• x be the position of the cart,

• ẋ be the velocity of the cart,

• θ be the angle of the pole with the vertical,

• θ̇ be the angular velocity of the pole,

• F be the force applied to the cart,

• m be the mass of the pole,

• M be the mass of the cart,

• L be the length to the center of mass of the pole,

• g be the acceleration due to gravity.

The dynamics of the cartpole system can be described by the following set of nonlinear differential
equations:

(M +m)ẍ+mLθ̈ cos(θ)−mLθ̇2 sin(θ) = F

mLẍ cos(θ) +mL2θ̈ −mgL sin(θ) = 0

These equations can be rearranged to solve for the accelerations ẍ and θ̈:

18 2. Background and Related Work

ẍ =
F +mL(θ̇2 sin(θ)− θ̈ cos(θ))

M +m

θ̈ =
g sin(θ)− cos(θ)

(
F+mLθ̇2 sin(θ)

M+m

)
L
(
4
3 − m cos2(θ)

M+m

)

2.10.7 Nonlinearity of the System

The nonlinearity of the cartpole system arises from the trigonometric terms sin(θ) and cos(θ) in the
equations of motion. These terms create a complex relationship between the cart’s position and veloc-
ity and the pole’s angle and angular velocity. The system is nonlinear because the equations cannot be
expressed as linear combinations of the state variables and their derivatives. The nonlinearity poses
a significant challenge for control and requires sophisticated algorithms for stabilization and balance.

2.11 Mountain Car

The Mountain Car problem is a classic benchmark in control theory and reinforcement learning.
It involves an underpowered car that must drive up a steep mountain road. The car’s engine is not
strong enough to directly drive up the steep slope, and the car must build up momentum by driving
back and forth [8].

Figure 2.5: Mountain Car

2.11.1 Action Space

The actions correspond to the direction of the force applied to the car:

Num Action

0 Accelerate to the left
1 No acceleration
2 Accelerate to the right

Table 2.3: Mountain Car Actions

2.11. Mountain Car 19

2.11.2 Reward Structure

The reward structure is simple:

• Reward: -1 for every step taken until the car reaches the goal. This encourages the agent to
reach the goal as quickly as possible.

2.11.3 State Space

The state of the system is represented by the following observations:

Num Observation Min Max

0 Car Position -inf inf
1 Car Velocity -inf inf

Table 2.4: Mountain Car Observation Space

2.11.4 Episode Termination

The episode terminates when any of the following conditions are met:

1. The car reaches the goal position at 0.5.

2. The episode length reaches the maximum number of steps (usually 200).

2.11.5 Physics and Dynamics of the Mountain Car System

The Mountain Car system is inherently nonlinear due to the gravitational forces and the car’s dy-
namics. The equations of motion for the system can be derived considering the forces acting on the
car.

Equations of Motion

Let:

• x be the position of the car,

• ẋ be the velocity of the car,

• F be the force applied to the car,

• g be the acceleration due to gravity,

• m be the mass of the car (typically normalized to 1 for simplicity).

20 2. Background and Related Work

The dynamics of the Mountain Car system can be described by the following nonlinear differential
equations:

ẍ = F − dV (x)

dx

where V (x) is the potential energy function due to gravity, given by:

V (x) =
1

2
cos(3x)

Thus, the force due to gravity can be expressed as:

dV (x)

dx
= −3

2
sin(3x)

Substituting this into the equation of motion, we get:

ẍ = F +
3

2
sin(3x)

Since F is the control input, we typically have:

ẍ = a+
3

2
sin(3x)

where a is the acceleration applied by the agent (which can be -1, 0, or 1).

2.11.6 Nonlinearity of the System

The nonlinearity of the Mountain Car system arises from the sin(3x) term in the equation of motion.
This term creates a complex relationship between the car’s position and the force of gravity acting on
it. The system is nonlinear because the equations cannot be expressed as linear combinations of the
state variables and their derivatives. The nonlinearity poses a significant challenge for control and
requires sophisticated algorithms for optimal performance.

2.12 Mountain Car Continuous

The Mountain Car Continuous problem is an extension of the classic Mountain Car problem in
control theory and reinforcement learning. It involves an underpowered car that must drive up a
steep mountain road. The car’s engine is not strong enough to directly drive up the steep slope,
and the car must build up momentum by driving back and forth. Unlike the discrete version, the
Mountain Car Continuous problem features a continuous action space.

2.12.1 Action Space

The action space in Mountain Car Continuous is continuous:

2.12. Mountain Car Continuous 21

Num Observation Min Max Unit

0 Position of the car along the x-axis -Inf Inf position (m)
1 Velocity of the car -Inf Inf position (m)

Table 2.5: Mountain Car Continuous Action Space

2.12.2 Reward Structure

The reward structure is as follows:

• Reward: −0.1× action2 for each timestep. This encourages the agent to use minimal force to
achieve the goal.

2.12.3 State Space

The state of the system is represented by the following observations:

Num Observation Min Max

0 Car Position -inf inf
1 Car Velocity -inf inf

Table 2.6: Mountain Car Continuous Observation Space

2.12.4 Episode Termination

The episode terminates when any of the following conditions are met:

1. The car reaches the goal position at 0.5.

2. The episode length reaches the maximum number of steps (usually 200).

2.12.5 Physics and Dynamics of the Mountain Car Continuous System

The Mountain Car Continuous system is inherently nonlinear due to the gravitational forces and the
car’s dynamics. The equations of motion for the system can be derived considering the forces acting
on the car.

Equations of Motion

Let:

• x be the position of the car,

• ẋ be the velocity of the car,

• F be the force applied to the car,

22 2. Background and Related Work

• g be the acceleration due to gravity,

• m be the mass of the car (typically normalized to 1 for simplicity).

The dynamics of the Mountain Car Continuous system can be described by the following nonlinear
differential equations:

ẍ = F − dV (x)

dx

where V (x) is the potential energy function due to gravity, given by:

V (x) =
1

2
cos(3x)

Thus, the force due to gravity can be expressed as:

dV (x)

dx
= −3

2
sin(3x)

Substituting this into the equation of motion, we get:

ẍ = F +
3

2
sin(3x)

Since F is the control input and can take any continuous value, we typically have:

ẍ = a+
3

2
sin(3x)

where a is the continuous acceleration applied by the agent.

2.12.6 Nonlinearity of the System

The nonlinearity of the Mountain Car Continuous system arises from the sin(3x) term in the equation
of motion. This term creates a complex relationship between the car’s position and the force of gravity
acting on it. The system is nonlinear because the equations cannot be expressed as linear combinations
of the state variables and their derivatives. The nonlinearity poses a significant challenge for control
and requires sophisticated algorithms for optimal performance.

2.13 Pendulum

The Pendulum environment is a classic problem in control theory and reinforcement learning. It
involves controlling a pendulum to keep it upright by applying torques at its pivot point. The goal is
to swing the pendulum up to its upright position and keep it balanced there.

2.13. Pendulum 23

Figure 2.6: Pendulum Environment

2.13.1 Action Space

The action space in the Pendulum environment is continuous:

Num Observation Min Max Unit

0 Torque applied to the pendulum -2.0 2.0 torque (N·m)

Table 2.7: Pendulum Action Space

2.13.2 Reward Structure

The reward structure is as follows:

• Reward: The reward at each time step is given by:

r = −(θ2 + 0.1 · θ̇2 + 0.001 · τ2)

where θ is the angle of the pendulum from the upright position, θ̇ is the angular velocity, and
τ is the torque applied. This encourages the agent to minimize the angle deviation, angular
velocity, and torque.

2.13.3 State Space

The state of the system is represented by the following observations:

Num Observation Min Max

0 Cosine of the angle -1.0 1.0
1 Sine of the angle -1.0 1.0
2 Angular velocity -8.0 8.0

Table 2.8: Pendulum Observation Space

2.13.4 Episode Termination

The episode terminates after a fixed number of time steps (usually 200).

24 2. Background and Related Work

2.13.5 Physics and Dynamics of the Pendulum System

The Pendulum system is inherently nonlinear due to the rotational dynamics and the gravitational
forces acting on the pendulum. The equations of motion for the system can be derived using Newton’s
second law for rotational systems.

Equations of Motion

Let:

• θ be the angle of the pendulum from the upright position,

• θ̇ be the angular velocity of the pendulum,

• θ̈ be the angular acceleration of the pendulum,

• τ be the torque applied to the pendulum,

• m be the mass of the pendulum,

• L be the length of the pendulum,

• g be the acceleration due to gravity.

The dynamics of the Pendulum system can be described by the following nonlinear differential
equation:

θ̈ =
τ −m · g · L · sin(θ)

m · L2

Rearranging, we get:

m · L2 · θ̈ = τ −m · g · L · sin(θ)

Since m · L2 is the moment of inertia I of the pendulum, we can rewrite it as:

I · θ̈ = τ −m · g · L · sin(θ)

Finally, solving for θ̈:

θ̈ =
τ

I
− m · g · L

I
· sin(θ)

2.13.6 Nonlinearity of the System

The nonlinearity of the Pendulum system arises from the sin(θ) term in the equation of motion. This
term creates a complex relationship between the angle of the pendulum and the torque applied. The
system is nonlinear because the equations cannot be expressed as linear combinations of the state
variables and their derivatives. The nonlinearity poses a significant challenge for control and requires
sophisticated algorithms for stabilization and balance.

2.14. Continuous State Variables in Markov Decision Processes 25

2.14 Continuous State Variables in Markov Decision Processes

In the realm of Markov Decision Processes (MDPs), one significant challenge arises when dealing
with continuous state variables. MDPs are a fundamental framework in reinforcement learning and
decision-making under uncertainty, where an agent interacts with an environment to maximize a
cumulative reward [11]. However, the practical implementation of MDPs becomes intricate when
state variables are continuous due to several reasons.

Challenges of Continuous State Variables

1. State Space Representation: Continuous state spaces are typically infinite in size, making
it impractical to enumerate or store all possible states explicitly. This poses a significant com-
putational challenge because algorithms that operate over discrete state spaces cannot directly
apply to continuous ones.

2. State Transition Dynamics: In a continuous state space, the transition dynamics between
states are described by continuous probability distributions. This requires methods to compute
or approximate these transitions, which can be computationally intensive and complex.

3. Policy Representation: Defining a policy in a continuous state space involves specifying
actions for every possible state, which is not feasible due to the infinite nature of the space.
Thus, policies need to be parameterized or represented in a way that allows for generalization
across similar states.

Discretizing Continuous State Variables

To overcome the challenges associated with continuous state variables, discretization is a common
approach. Discretization involves dividing the continuous state space into a finite number of discrete
states [12]. This transformation enables the application of algorithms designed for discrete MDPs
and simplifies the representation and computation processes. Here’s how discretization addresses the
challenges:

1. State Space Reduction: Discretization reduces the infinite state space to a manageable finite
set of states. Each discrete state represents a region in the original continuous space, aggregating
similar states together.

2. Transition Modeling: With a discretized state space, the transition dynamics can be modeled
using discrete probability distributions. Instead of computing continuous transitions, algorithms
can estimate transition probabilities between discrete states.

3. Algorithm Compatibility: Many MDP algorithms such as value iteration, policy iteration,
and Q-learning are designed for discrete state spaces. By discretizing the state space, these
algorithms can be directly applied without modification.

Considerations and Limitations

While discretization facilitates the application of MDP algorithms to continuous state spaces, it
introduces some trade-offs and considerations:

26 2. Background and Related Work

• Loss of Precision: Discretization may lead to a loss of information or precision, especially if
the state space is divided too coarsely.

• Curse of Dimensionality: Discretization can exacerbate the curse of dimensionality in high-
dimensional state spaces, where the number of discrete states grows exponentially with the
number of dimensions.

• Algorithm Sensitivity: The choice of discretization method and parameters can significantly
impact algorithm performance and convergence.

2.15 Kullback-Leibler Divergence

The Kullback-Leibler (KL) Divergence is a measure of how one probability distribution diverges from
a second, expected probability distribution. It is a non-symmetric measure of the difference between
two probability distributions P and Q.

Given two discrete probability distributions P and Q defined on the same probability space, the
KL divergence from Q to P is defined as:

DKL(P ∥ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(2.3)

In the case of continuous probability distributions, the KL divergence is defined as:

DKL(P ∥ Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx (2.4)

Here, p(x) and q(x) are the probability density functions of P and Q, respectively.

2.16 Novelty of this Dissertation Work

In this work, we propose a novel methodology for modeling and analyzing non-deterministic ap-
proximations of reinforcement learning (RL) environments using neural networks. While significant
research has focused on RL algorithms, relatively little work has been done on effectively approximat-
ing RL environments themselves. To address this gap, we apply and compare three distinct neural
network architectures to approximate the dynamics of various RL environments. We then analyze
and evaluate the construction of these models based on their ability to accurately reconstruct Markov
Decision Processes (MDPs) and the implications of their dynamic properties. This comprehensive
analysis provides new insights into the strengths and limitations of each neural network approach in
the context of environment modeling for RL.

Chapter 3

Methodology

3.1 Data Collection and Format

Sampling from Environment :
Gym environments of our interest are Cartpole, Mountain car, Mountain Car Continuous and Pen-
dulum. For the mentioned gym environments, generate data and store it of the tabular form with
columns state, action, next state, reward and done.

Inputs for gym environment : state, action.
Outputs of gym environment : next state, reward and done.

For each episode, start with a random state, take an uniform random action, observe the next
state, reward and done. if done is true or the length of episode is more than 200, then end the episode.
All the environments are introduced with a gaussian noise disturbance less than one-tenth of the value
of the state variables to produce non determinism. Generate four samples of sample size 10k, 20k,
30k, 40k and 50k for each one of these environments.

States are of the format list [state var0, state var1, state var2, . . . , state varn], where state vari
denotes the corresponding state variable.

Samples are generated of 2 formats, dataframe and data loader. the Dataframe has columns
state, action, next state, reward and done. This dataframe will further be used in our analysis for
MDP construction. Two kinds of data loaders are stored, train loader and test loader. The train
loader and test loader is stored as pickle files of the format input - [state, action] and output =
[nextstate, reward, done]. These dataloaders are the training samples that will be used for training
and testing the neural network models.

Since our area of interest is discrete action space and continuous state spaces, We discretize the
action spaces for Mountain Car Continuous and Pendulum.

Mountain Car Continuous : Action space is bounded by [−1, 1]. This is discretized to put it in
four bins [−1,−0.5], [−0.5, 0], [0, 0.5] and [0.5, 1].

Pendulum : Action space is bounded by [−2, 2]. This is discretized to put it in four bins [−2,−1],
[−1, 0], [0, 1] and [1, 2].

27

28 3. Methodology

3.2 Monte Carlo Dropout Architecture

3.2.1 MC Dropout Net Class

The MC Dropout Net class defines a neural network architecture with Monte Carlo Dropout.

Initialization

The model is initialized with parameters such as input size, output size, number of hidden layers,
number of nodes in each hidden layer, activation function (ReLU), dropout probability, and the
number of stochastic passes (num network) for Monte Carlo Dropout.

Layers

The model includes:

• An input layer (nn.Linear) for transforming input features.

• Multiple hidden layers (nn.Linear) followed by dropout layers (nn.Dropout).

• An output layer (nn.Linear) for producing predictions.

Forward Method

During the forward pass:

• The input data undergoes multiple stochastic forward passes (num network times).

• Outputs from each pass are aggregated, and the final output is the average of these outputs,
providing an ensemble prediction.

3.2.2 Training and Testing Procedure

Environment and Data Loading

The code loads datasets (train and test) for different reinforcement learning environments (env names)
and various sample sizes (num samples list). Data is loaded using torch.utils.data.DataLoader.

Model Initialization

For each environment and sample size combination:

• The model’s architecture is set up based on the environment’s action space and input dimensions.

• Hyperparameters such as number of hidden layers, nodes per layer, activation function, learning
rate, dropout probability, and number of networks for Monte Carlo Dropout are defined.

3.2. Monte Carlo Dropout Architecture 29

Training Loop

• The model is trained over a fixed number of epochs (num epochs).

• Each epoch iterates over batches from the training set (train loader).

• Mean Squared Error (MSE) loss is computed between model predictions and true labels.

• Gradients are computed using backpropagation (loss.backward()) and model parameters are
updated (optimizer.step()).

Evaluation Loop

• After each epoch, the model’s performance is evaluated on the test set (test loader).

• Test loss (MSE) is calculated to assess model generalization.

Saving and Visualization

• Model checkpoints (torch.save(model.state dict(), model weights file path)) are saved
periodically.

• Evaluation loss curves (generated using matplotlib) are saved as PNG files (montecarlodropout env name num samples evaluation loss curve.png).

Sample Generation

• The trained model is used to generate samples from the environment.

• The Sample class simulates actions, records states, rewards, and next states, and saves generated
samples as CSV files (montecarlodropout env name num samples sample.csv).

Parameter Specification

Input Size (State dimension + Action dimension)

Output Size (Next State dimension + 2)

Number of hidden layers 3

Number of nodes in hidden layer 20

Activation Function Relu

Dropout Probability 0.3

Learning rate 0.01

Number of Networks 1

3.2.3 Generated Files

• Model Weights: Saved as montecarlodropout env name num samples.pth

• Evaluation Loss Curve: Plotted and saved as
montecarlodropout env name num samples evaluation loss curve.png

• Sample Data: Generated and saved as montecarlodropout env name num samples sample.csv

30 3. Methodology

3.3 Bayesian Neural Network Architecture

3.3.1 Model Definition (BayesianNN Class)

The BayesianNN class defines a Bayesian Neural Network architecture using PyTorch:

• Initialization (init method):

• Parameters: input size, output size, num hidden layers, hidden layer nodes, activation.

• Layers:

– input layer: Bayesian linear layer (bnn.BayesLinear) with input size and output size.

– hidden layers: List of Bayesian linear layers (bnn.BayesLinear) for num hidden layers.

– output layer: Bayesian linear layer (bnn.BayesLinear) with input size and output size.

3.3.2 Training and Testing Procedure

Environment Setup (env names):

• Reinforcement learning environments are iterated over (env names like ’CartPole-v1’, ’MountainCar-
v0’, etc.).

• Each environment (env = gym.make(env name)) is created using OpenAI’s Gym library.

Dataset Loading (num samples list):

• For each environment and each dataset size (num samples in num samples list), loads:

• Training dataset (train dataset loaded) using pickle.

• Testing dataset (test dataset loaded) using pickle.

Model Initialization and Hyperparameters

• num hidden layers = 3: Specifies 3 hidden layers in the neural network.

• hidden layer nodes = 20: Each hidden layer contains 20 nodes.

• activation = F.relu: ReLU (Rectified Linear Unit) activation function is used throughout the
hidden layers.

• learning rate = 0.01: Adam optimizer with a learning rate of 0.01 is employed.

• kl weight = 0.01: Weight for the Kullback-Leibler (KL) divergence loss (bnn.BKLLoss) regu-
larization term.

• num epochs = 50: Number of training epochs set for training the model.

3.3. Bayesian Neural Network Architecture 31

Model Training

• Instantiates the Bayesian Neural Network model (model) using the BayesianNN class with the
specified hyperparameters.

• Defines the loss function (mse loss) as Mean Squared Error (MSE) and the KL divergence loss
(kl loss) using bnn.BKLLoss.

Optimization:

• Sets up the optimizer (optimizer) using Adam optimizer (optim.Adam) to optimize the model
parameters with the specified learning rate.

Training Loop:

• Iterates over num epochs epochs.

• Sets the model in training mode (model.train()).

• Iterates over batches from the train loader.

• Computes predictions (outputs) from the model and calculates the combined loss (mse loss +
kl weight * kl loss).

• Backpropagates the loss and updates the model parameters using the optimizer.

Evaluation on Test Data

• After each epoch, evaluates the model on the test data (test loader):

• Sets the model in evaluation mode (model.eval()).

• Computes predictions (outputs) for the test data.

• Calculates the test loss using the same combined loss function as in training.

• Tracks and stores both training and test losses (train losses, test losses).

Performance Metrics:

• After training completes.

• Computes Mean Squared Error (MSE) and R-squared (r2 score) to assess the model’s predictive
performance on the test data.

Saving Results and Model

• Saves the trained model’s state dictionary (model.state dict()) using torch.save.

• Saves evaluation loss curves as plots (matplotlib.pyplot).

32 3. Methodology

• Prints and saves MSE and R-squared values for each combination of environment and dataset
size.

Generating Sample Predictions

• Loads the saved model (torch.load(model weights file path)) to perform inference or generate
sample predictions.

• Uses an unspecified function (generateSample) to generate sample predictions and saves them
to a CSV file (sample filename).

Parameter Specification

Input Size (State dimension + Action dimension)

Output Size (Next State dimension + 2)

Number of hidden layers 3

Number of nodes in hidden layer 20

Activation Function Relu

Learning rate 0.01

Number of Networks 1

Objective Loss function :

MSE(inputs and outputs) + KL Divergence(model weights with N(0,1)).

Optimizer : Adam.

Number of training epochs : 50.

3.4 Gaussian Ensemble Model Architecture

This section provides a detailed description of the procedure for training and testing a Gaussian
Neural Network (GNN) ensemble. The GNN ensemble is designed to predict outputs as Gaussian
distributions, leveraging multiple models to capture uncertainty and improve robustness in predictions.

3.4.1 Gaussian Network Architecture

The core architecture consists of the following classes:

• Architecture:

– fc1, fc2: Fully connected layers processing input (input dim) with hidden dim neurons
and ReLU activation (torch.relu).

– fc mean: Outputs the mean of the Gaussian distribution.

– fc log std: Outputs the log standard deviation, exponentiated and clamped for stability
(torch.exp, torch.clamp).

3.4. Gaussian Ensemble Model Architecture 33

3.4.2 Ensemble Gaussian Network

The ensemble of Gaussian Networks is defined as:

• Ensemble:

– Contains num models instances of GaussianNetwork.

– During forward pass, computes means and standard deviations from each model in the
ensemble and stacks them.

3.4.3 Training and Testing Procedure

The procedure involves training and evaluating the ensemble on different environments and dataset
sizes.

Initialization and Setup

• Environment and Dataset Setup:

– Iterates over predefined environment names (env names) and dataset sizes (num samples list).

– Loads preprocessed datasets (train dataset loaded, test dataset loaded).

• Model Initialization:

– Defines architecture-specific parameters: input size, output size, and hyperparameters
(num layers, num nodes, activation, num ensembles, learning rate).

– Instantiates EnsembleGaussianNetwork model and moves it to GPU if available.

Training Loop

• Training:

– Executes a loop over num epochs.

– Sets model to training mode (model.train()).

– Computes means and standard deviations (means, stds) for each batch from train loader.

– Calculates negative log likelihood loss using torch.distributions.Normal.

– Optimizes model parameters using Adam optimizer (optim.Adam).

Testing Loop

• Testing:

– Switches model to evaluation mode (model.eval()).

– Evaluates model on test loader, computes test loss.

– Computes and logs test losses for each epoch.

34 3. Methodology

Logging and Visualization

• Logs and saves training and testing losses (train losses, test losses).

• Plots evaluation loss curve (test losses and train losses) and saves as images.

Model Saving and Performance Logging

• Saves trained model state dictionary (model.state dict()) periodically.

• Logs total training time for each session.

Hyper Parameter Specification

Input Size (State dimension + Action dimension)

Output Size 2*(Next State dimension + 2)

Number of hidden layers 3

Number of nodes in hidden layer 20

Activation Function Relu

Learning rate 0.01

Number of Networks 5

Objective Loss function: Gaussian Likelihood.
Optimizer: Adam.
Number of training epochs: 50.

3.5 MDP construction

Train the mentioned neural network models on all the respective environment training samples present
in the dataloader format.

Continuous State Variables in RL environment :

Cartpole, Mountain Car, Mountain Car continuous and Pendulum are those environments with
continuous state variables. Since the models are non deterministic with continuous state variables,
defining the dynamics of the environment poses a challenge. Due to the continuous nature of state
variables, they can take any value between the defined bounds which leads to infinite number of
possible states. For the purpose of interpretability and taking valuable insights out of them, we
discretize them to form more meaningful states [3].

State Discretization : State discretization is a process of dividing the continuous state into discrete
set of bins. Here each of these bins would consists of an interval of continuous state values to a
manageable set of state space. By this way, we limit the size of state space leveraging the benefit of
construction of Markov Decision Processes(MDP).

To discretize the bins, the bounds of each state variable has to be fixed. There are variables with
theoritical infinite bounds, so we fix bounds for these variables by finding maximum and minimum
observed values of each state space from all the original 10k, 20k, 30k, 40k and 50k datasets. The
following are the observed bounds fixed for the state variables.

3.5. MDP construction 35

• Cartpole :

Num Observation Min Max

0 Cart Position -4.8 4.8

1 Cart Velocity -5.2 5.2

2 Pole Angle -0.418 0.418

3 Pole Angular Velocity -5.1 5.1

Table 3.1: Cartpole State Space Bounds

• Mountain Car :

Num Observation Min Max

0 position of the car along the x-axis -4.3 4.3

1 velocity of the car -4.4 4.4

Table 3.2: Mountain Car State Space Bounds

• Mountain Car Continuous:

Num Observation Min Max

0 position of the car along the x-axis -4.1 4.1

1 velocity of the car -3.9 3.9

Table 3.3: Mountain Car Continuous State Space Bounds

• Pendulum:

Num Observation Min Max

0 x = cos(θ) -1.0 1.0

1 y = sin(θ) -1.0 1.0

2 Angular Velocity -8.0 8.0

Table 3.4: Pendulum State Space Bounds

Discretizing Methods :

The following are the different methods we utilize to discretize the state space.

• No of bins :

– Description: Divide the state space into a specified number of equally-sized bins within
the given bounds.

– Example: Suppose you have a state variable x with bounds [0, 1] and you choose 5 bins.
Each bin would cover a range of 1−0

5 = 0.2. Therefore, the bins would be: [0, 0.2), [0.2,
0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0).

• No of bins(without bounds) :

– Description: Similar to the first method but includes bins that cover values outside the
specified bounds.

36 3. Methodology

– Example: Using the same example with bounds [0, 1] and 5 bins. Bins would cover:
(−∞, 0), [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0), (1.0,∞). This method ensures all
possible values are accounted for, even those outside the specified bounds.

• Bin size :

– Description: Divide the state space into bins of a specified size within the given bounds.

– Example: If you choose a bin size of 0.1 for a state variable x with bounds [0, 1], the
bins would be: [0, 0.1), [0.1, 0.2), ..., [0.9, 1.0). This method allows you to control the
granularity of the discretization directly.

• Interval :

– Description: Divide the state space based on specified intervals for each bin.

– Example: Suppose you define intervals [0, 0.25, 0.6, 0.9, 1.0] for a state variable x with
bounds [0, 1]. This would result in the bins: [0, 0.25), [0.25, 0.6), [0.6, 0.9), [0.9, 1.0). Any
value of x falling within a specified interval is discretized into the corresponding bin.

After discretization, the states will of the format of list of discretized state variables(Whole num-
bers). For example, [1,2,2,1] is a discretized state in a cartpole environment that denotes the position
and angular velocity are part of first bins of their respective state space. Similarly angle and velocuty
are part of second bins of their respective state space.

Sample Averaging :

For discretized samples with data of state, action and next state, Sample averaging is a method
for assigning transition probabilities for each (state, action, next state) pairs. For each (state, action)
pair, find the probability of going to a particular next state. The MDPs for the discretized samples
is obtained from the below formula.

T (s, a, s′) ≈ Total number of transitions from s under action a

Number of transitions from s to s′ under action a

3.6 Comparison Metrics

We use various set of metrics to understand and assess each neural network model with different
number of training samples. These metrics helps assessing in performance, efficiency and reliability
of all the non deterministic models. The key metrics include, training time, evaluation loss and
Kullback-Leibler(KL) divergence of mdps.

3.6.1 Training Time

Training time is the time taken for a neural network model to train the model for given training
samples. This helps us to measure the computational efficiency of model training process. This also
states how long does a model takes to approximate the dynamics of environment. Training time is
an important aspect that needs to be considered due to its practical implications, especially in cases
where the environments are supposed to be adaptive and demand real time performance.

Training time here is measured in seconds. Lower the training time, more efficient the model
considering the optimal values in evaluation metrics.

3.7. Procedure 37

3.6.2 Evaluation Loss Graph

Evaluation loss measures the error obtained from the model’s prediction with respect to the actual
observed data. The evaluation loss graph is a plot of loss vs training epochs. This provides us the idea
on convergence of each of these models over time and their capability to generalize. By this, we can
also understand whether the model is overfitting or underfitting the training data. Models that have
lower evaluation loss and smooth convergence are desired to best approximate the training samples.

3.6.3 MDP Comparison

Comparison of MDPs across various models provide the understanding of how far the models learn
the dynamics of the environment. This indeed helps in understanding the transitions across state
discretization. The comparison is based on the following,

Size of the MDPs :

Size of the MDPs denote the number of unique discretized states that are present in the samples
generated from neural network models.

Kullback-Leibler (KL) divergence :

We use KL divergence to find the the difference in distribution of the MDPs. This tells us how
far the probability distribution of neural network models align with the original environment.

3.7 Procedure

• Collection of Data :

Collect the state, action, next state, reward, done data of all the afore mentioned environments
and store them as mentioned in 3.1.

• Construction of Environment Models :

Build neural network based models for all the training samples of size 10k, 20k, 30k, 40k and
50k for all the environments with architecture specified in 3.2, 3.3 and 3.4.

• Construction of MDPs :

Collect 10k training samples for each of the neural network models built, similar to method
mentioned in 3.1. After Collecting the training samples for all the neural netwrok models, we
create 5 MDPs for 5 different discretizations on each model(3.5).

• Comparison of MDPs :

Compare and analyze the MDPs formed by the comparison metrics provided in 3.6.

Chapter 4

Experiments and Results

4.1 Training Time :

Figure 4.1: Training Time vs Number of Training Samples

Training Time Trends :

• For all the environments, the training time is increasing gradually with respect to the training
samples.

• For all the three models, the scaling laws exhibited are different with respect to training time.

Model Comparison :

• Pets Model : Its is consistently the most time consuming model to train across all environ-
ments. This could be due to more complex gradient calculation involved.

• Bayesian Neural Network Model : Generally Bayesian model takes less time than Pets and
more time than Monte Carlo Dropout model. Bayesian model provides middle ground between
pets and Monte Carlo Dropout in terms of training time.

• Monte Carlo Dropout Neural Network Model : The least time consuming model in all
the environments is Monte Carlo Dropout. It is the most effective model in terms of training
time making it suitable for limited computational resource and time.

39

40 4. Experiments and Results

4.2 Evaluation Loss vs epochs :

Cartpole :

(a) Pets 10k (b) Pets 20k (c) Pets 30k (d) Pets 40k (e) Pets 50k

(f) Bayesian 10k (g) Bayesian 20k (h) Bayesian 30k (i) Bayesian 40k (j) Bayesian 50k

(k) MCD 10k (l) MCD 20k (m) MCD 30k (n) MCD 40k (o) MCD 50k

Figure 4.2: Evaluation Loss vs epochs on all models approximating Cartpole Environment.

Mountain Car :

(a) Pets 10k (b) Pets 20k (c) Pets 30k (d) Pets 40k (e) Pets 50k

(f) Bayesian 10k (g) Bayesian 20k (h) Bayesian 30k (i) Bayesian 40k (j) Bayesian 50k

(k) MCD 10k (l) MCD 20k (m) MCD 30k (n) MCD 40k (o) MCD 50k

Figure 4.3: Evaluation Loss vs epochs on all models approximating MountainCar Environment.

4.2. Evaluation Loss vs epochs : 41

Mountain Car Continuous :

(a) Pets 10k (b) Pets 20k (c) Pets 30k (d) Pets 40k (e) Pets 50k

(f) Bayesian 10k (g) Bayesian 20k (h) Bayesian 30k (i) Bayesian 40k (j) Bayesian 50k

(k) MCD 10k (l) MCD 20k (m) MCD 30k (n) MCD 40k (o) MCD 50k

Figure 4.4: Evaluation Loss vs epochs on all models approximating MountainCarContinuous Envi-
ronment.

Pendulum :

(a) Pets 10k (b) Pets 20k (c) Pets 30k (d) Pets 40k (e) Pets 50k

(f) Bayesian 10k (g) Bayesian 20k (h) Bayesian 30k (i) Bayesian 40k (j) Bayesian 50k

(k) MCD 10k (l) MCD 20k (m) MCD 30k (n) MCD 40k (o) MCD 50k

Figure 4.5: Evaluation Loss vs epochs on all models approximating Pendulum Environment.

Observation :

1. Variance of Pets model is more across all the training samples of all environments.

2. As we can clearly see for Bayesian Model, the training loss is more that the test loss for
Mountain Car and Mountain Car Continuous till 40k sample. This denotes the model tends to
underfit for Mountain and Mountain Car Continuous environment.

3. Evaluation loss of Monte Carlo is generally decreasing and bounded for cartpole and pendulum.

42 4. Experiments and Results

4.3 MDP Comparison :

Since, for 50k models of all the environments has the least evaluation loss, We analyze their MDPs.
For comparing the MDPs constructed with one another, we use KL Divergence with baseline MDP.
The Baseline MDP mentioned is the MDP constructed from original environment samples.

Cartpole 50k :

Discretization Model Name Size of MDP KL Divergence with original MDP

[2,1,1,1] Pets 2 2.29295

[2,1,1,1] Monte Carlo 2 3.92593

[2,1,1,1] Bayesian 2 2.40487

[1,2,1,1] Pets 2 1.55957

[1,2,1,1] Monte Carlo 2 3.07561

[1,2,1,1] Bayesian 2 5.41390

[1,1,2,1] Pets 4 2.25362

[1,1,2,1] Monte Carlo 4 2.60839

[1,1,2,1] Bayesian 4 3.14935

[2,2,1,1] Pets 4 7.33485

[2,2,1,1] Monte Carlo 4 4.95135

[2,2,1,1] Bayesian 4 14.12805

[2,4,4,2] Pets 63 70.16448

[2,4,4,2] Monte Carlo 16 10.34798

[2,4,4,2] Bayesian 28 43.67062

[2,2,4,4] Pets 61 67.64601

[2,2,4,4] Monte Carlo 16 10.34789

[2,2,4,4] Bayesian 28 43.66563

[2,4,4,2] Pets 54 69.35098

[2,4,4,2] Monte Carlo 16 10.46850

[2,4,4,2] Bayesian 16 35.04773

Size of Model : For simpler discretization, the all the models capture the states present in baseline
MDP. More complext the discretization, Pets has MDP size greater than the baseline MDP. Pets
tends to capture states which aren’t part of baseline MDP. MDP size of Bayesian and Monte Carlo
are lesser than the baseline MDP size.

KL Divergence : Pets model shows the best overall performance in terms of KL divergence for
simpler discretizations. Generally, Bayesian model has the maximum value for KL divergence with
baseline MDP. This tells that Pets captures the dynamics better than Monte Carlo and Bayesian.
Monte Carlo model is more effective for more complex discretizations. Meanwhile Bayesian isn’t able
to retain the distribution of the original MDP to the level of Monte carlo and Pets.

4.3. MDP Comparison : 43

Mountain Car 50k :

Discretization Model Name Size of MDP KL Divergence with original MDP

[1,2] Pets 2 0.00144

[1,2] Monte Carlo 2 2.07414

[1,2] Bayesian 2 7.36147

[2,4] Pets 4 0.38331

[2,4] Monte Carlo 4 2.09790

[2,4] Bayesian 4 7.00234

[4,4] Pets 8 0.38331

[4,4] Monte Carlo 8 2.09790

[4,4] Bayesian 8 7.00234

[4,6] Pets 12 4.90049

[4,6] Monte Carlo 12 2.17675

[4,6] Bayesian 12 5.48467

[6,4] Pets 8 0.71916

[6,4] Monte Carlo 8 2.10099

[6,4] Bayesian 8 6.95459

Size of Model : Mostly for the discretizations, Monte Carlo and Bayesian has lesser number of
states than the original MDP. This denotes that Monte Carlo doesn’t generalize properly to explore
all discretized state values.

KL Divergence : Pets has the minimum value of divergence among other models in all five dis-
cretizations. Generally, Bayesian model has the maximum value for KL divergence with baseline
MDP. This tells that Pets captures the dynamics better than Monte Carlo and Bayesian. Meanwhile
Bayesian isn’t able to retain the distribution of the original MDP to the level of Monte carlo and Pets.

Mountain Car Continuous 50k :

Discretization Model Name Size of MDP KL Divergence with original MDP

[1,2] Pets 2 0.00241

[1,2] Monte Carlo 2 53.50166

[1,2] Bayesian 2 0.00569

[2,1] Pets 2 0.02616

[2,1] Monte Carlo 2 2.89611

[2,1] Bayesian 2 0.43969

[2,2] Pets 4 0.15274

[2,2] Monte Carlo 3 25.35256

[2,2] Bayesian 4 0.92253

[2,4] Pets 8 5.99659

[2,4] Monte Carlo 4 24.05824

[2,4] Bayesian 5 0.09665

[4,2] Pets 8 15.21703

[4,2] Monte Carlo 4 24.87557

[4,2] Bayesian 5 0.35507

KL Divergence : Pets consistently outperforms Monte Carlo and Bayesian models in approximating
the Mountain Car Continuous MDP across various discretizations. Monte Carlo offers a stable per-
formance with slightly higher KL divergence compared to Pets. Bayesian model, while less accurate

44 4. Experiments and Results

overall, still provides reasonable approximations especially in simpler configurations.

Pendulum 50k :

Discretization Model Name Size of MDP KL Divergence with original MDP

[1,2,1] Pets 2 1.59560

[1,2,1] Monte Carlo 2 49.59054

[1,2,1] Bayesian 2 5.32252

[2,1,1] Pets 2 1.54365

[2,1,1] Monte Carlo 2 4.88494

[2,1,1] Bayesian 2 7.35603

[2,2,1] Pets 4 7.18580

[2,2,1] Monte Carlo 4 145.42147

[2,2,1] Bayesian 4 44.41007

[1,2,2] Pets 4 7.87571

[1,2,2] Monte Carlo 4 47.95672

[1,2,2] Bayesian 4 25.31453

[2,1,2] Pets 8 6.67920

[2,1,2] Monte Carlo 8 5.28048

[2,1,2] Bayesian 8 77.28758

KL Divergence : Pets and Bayesian models offer reasonable approximations for the Pendulum
problem, with Pets generally performing better in simpler configurations. Monte Carlo consistently
performs poorly across all tested configurations, indicating it may not be suitable for this problem.
The choice between Pets and Bayesian models would depend on the specific requirements of the
discretization complexity and the desired accuracy in approximating the original MDP for solving the
Pendulum problem.

Chapter 5

Conclusion and Future Work

To sum up, this thesis has investigated the creation of Markov Decision Processes (MDPs) utilis-
ing neural network-based techniques, delving into the field of model-based reinforcement learning
(RL). We have investigated the effectiveness of Bayesian neural networks, Gaussian ensemble neu-
ral networks, and Monte Carlo dropout neural networks in simulating the dynamics of continuous
state environments through careful testing and analysis. Our analysis has highlighted the trade-offs
between different discretizations on the advantages and disadvantages of each strategy.

Our results show that every neural network-based strategy has advantages and disadvantages. While
robust uncertainty estimates are provided by Gaussian ensemble neural networks, they may have
higher computational cost. While Monte Carlo dropout neural networks provide effective measure-
ment of uncertainty, they need to be carefully regularised to avoid overfitting. While they can offer
logical uncertainty estimates, training and assessing Bayesian neural networks can be computationally
demanding.

There are a number of intriguing directions that model-based reinforcement learning research and de-
velopment can go in the future. Analysing reachability in MDPs with an emphasis on identifying and
mitigating undesired states or failure modes is one such avenue. Through comprehending the reach-
ability of these ”bad” states from starting circumstances, we may create more resilient reinforcement
learning algorithms that can steer clear of or circumvent such obstacles.

Furthermore, integrating formal methods approaches like model testing and verification has a lot of
potential to improve the safety and dependability of RL systems. We can make sure that RL agents
behave within intended behavioural bounds, especially in safety-critical areas like autonomous driving
and healthcare, by explicitly checking attributes of MDPs and implementing safety restrictions.

45

Bibliography

[1] Amadio, F., Dalla Libera, A., Carli, R., Nikovski, D., and Romeres, D. Model-based
policy search for partially measurable systems, 01 2021.

[2] Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing
systems 31 (2018).

[3] Dulac-Arnold, G., Evans, R., Sunehag, P., and Coppin, B. Reinforcement learning in
large discrete action spaces.

[4] Gal, Y., and Ghahramani, Z. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning (2016), PMLR,
pp. 1050–1059.

[5] Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592 (2018).

[6] Luo, F.-M., Xu, T., Lai, H., Chen, X.-H., Zhang, W., and Yu, Y. A survey on model-
based reinforcement learning, 06 2022.

[7] Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M., et al. Model-based re-
inforcement learning: A survey. Foundations and Trends® in Machine Learning 16, 1 (2023),
1–118.

[8] Moore, A. W. Efficient memory-based learning for robot control. Tech. rep., University of
Cambridge, Computer Laboratory, 1990.

[9] Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA) (2018), pp. 7559–7566.

[10] Osband, I., and Roy, B. Why is posterior sampling better than optimism for reinforcement
learning.

[11] Otterlo, M., and Wiering, M. Reinforcement learning and markov decision processes.
Reinforcement Learning: State of the Art (01 2012), 3–42.

[12] Van Hasselt, H. Reinforcement learning in continuous state and action spaces.

47

