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Abstract

Graph neural networks (GNNs) have become essential tools for graph repre-
sentation learning,withmodels likeGraphConvolutionalNetworks (GCNs),Graph-
SAGE, and Graph Attention Networks (GATs). It has achieved notable success in
variousapplications. HSGATv2, a recentadvancement, enhancesattentionmech-
anisms for nodes with the same class label. However, traditional GNN weight as-
signmentmethods, which often depend onnode degrees or pair-wise representa-
tions, are less effective inheterophilicnetworks inwhich the labelsorpropertiesof
connectednodes differ. It has been shown thatmost existingmodels are primarily
prone to homophilic graphs and lack generalization to heterophilic settings, and
multi-layer perceptrons and othermodels that neglect the graph structure some-
times exceed these models in terms of performance. This dissertation explores
the effectiveness of GNNs in node classification tasks within heterophilic or low-
homophily environments, where many common GNNs fail to perform well. So,
in this dissertation, we try to address it and introduce a representation learning
methodology that is comparatively suitable for both homophilic and heterophilic
graphs. By thoroughly examining local structure and heterophily distributions,
our approach effectively manages networks with diverse homophily ratios. Addi-
tionally, wepropose a regularizedoptimization function to enhancemodel adapt-
ability toanygraphstructure. Ourevaluationsonvariousnodeclassificationdatasets
demonstrate that the proposed method is competitive to the standard baseline
models, and promisingly generalizable.
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1 Introduction

In learning expressiveness and representations from graph data, Graph Neural Net-
works (GNNs) have made substantial advancements. Because of their ability to han-
dle irregular graph structures, GNNs are successfully used in various fields across var-
ious domains including social analysis, computer vision, and natural language pro-
cessing, bioinformatics, physics, and many others. For instance, GNNs have been
employed todesignmoleculeswithparticular chemical properties. Most importantly,
their applications aremainly divided into three types of tasks: tasks at the node, edge,
and graph levels. This dissertation focuses on how effective GNNs are for supervised
node classification. The goal is to use partially labeled node attributes and the net-
work topology to predict unknown node labels.

Prior research has focusedmainly on networks having strong homophily, inwhich
linked nodes frequently possess same class or identical features. For example, friends
often have similar political views or ages, academic papers frequently cite other pa-
pers from the samefield; Students in the same school or study group are likely to have
similar academic interests or performance level; Residents in the sameneighborhood
often share socio-economic status, cultural background, or lifestyle preferences. This
homophily notion is captured by GNNs through feature spreading and aggregation
inside graph neighborhoods.

However, real-worldnetworks sometimesdisplayheterophily,where theconnected
nodes have unique properties or belong to separate classes. Examples include dating
networks, where individuals frequently interact with people of the opposite gender;
Protein structures where different amino acids connect; In collaborative work envi-
ronments where in amultidisciplinary project team, members from different profes-
sional backgrounds (e.g., engineers, marketers, designers) work together, contribut-
ing diverse perspectives and expertise; online purchasing networks where fraudsters
connectwithaccomplices rather thanother fraudsters. ThisdissertationexploresGNNs’
ability to representdata innetworkswithvaryingdegreesofhomophilyandheterophily.

Graph Convolutional Networks (GCNs) [12, 1] as well as their variations use struc-
tural information, like symmetric normalization of node degrees, to set edge weights.
GraphSAGE [8] expands on this by usingmore than just averaging for aggregation and
treats the pointing node feature and neighbor node features separately in its sampled
neighborhoods. Meanwhile, Graph Attention Networks (GATs) [18, 3, 10] use a self-
attention mechanism to create attention scores for each node’s neighbors, allowing
nodes to selectively focus on the most relevant neighbors. Different attention-based
weight assignment methods have been developed using various pair-wise attention
functions.
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(a) High Homophily (b) LowHomophily

Figure 1.1: Depending on the label assignment yv , the same underlying graph G can
exhibit: Figure1.1 (a)highhomophily (hG = 0.80, left) andFigure1.1 (b) lowhomophily
(hG = 0.20, right).

These models mainly differ in how they aggregate node representations with dif-
ferent weight assignments, helping each node combine its features with those of its
neighbors. They are also interpretable because the attention scores indicate the rel-
evance of neighboring nodes. However, recent studies [20, 15] have found that these
weightassignmentmethodsdonotperformwell inheterophilic graphs, incaseswhere
the labels or characteristics of linked nodes vary, as opposed to homophilic graphs. In
such cases, even simplemodels likemultilayer perceptrons (MLPs), which ignore the
graph structure, can sometimes perform better than existing GNNs.

One recent approach aims to reduce noise in the graph using an attentionmecha-
nism. This involves a loss function that promotes nodes to concentratemore on other
nodes in their class and less on those of different classes. This method, called HS-
GATv2 [4], has shown thatwhen increased edge homophily is present, GNNs function
better.

A key interest in GNN research is designing effective weight assignment schemes
to determine the importance of different node and neighbor representations. How-
ever, in real-world scenarios, calculating edge heterophily is challenging, especially
when most node labels are unknown, such as in semi-supervised settings. Previous
attempts to estimate edge heterophily using a pre-trainedMLP based on node labels
have been difficult because accurate labels are hard to predict.

Recent studies [13, 14, 19] indicate that localdistribution,whichdescribes thechar-
acteristics of the local neighborhood structure, is crucial for handling heterophilic
graphs. Additionally, the topological structure, node features, and positional identity
are important for estimating effective local distributions and improving the weight
assignment scheme.
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In this dissertation, we first highlight the limitations of Graph Neural Networks
(GNNs) in learning fromnetworksexhibitingheterophily, a challengeoftenoverlooked
due to evaluations ona limited set of benchmarkswith similar properties. Wepropose
a straightforward solution by designing a GNN that assigns different weights to edges
based on their heterophilic types. This allows the GNN to develop an effective local
attention to similarities or patterns in the graph, enabling nodes to gather relevant
information from both similar and dissimilar nodes.

More specifically, we create anattentionmechanism that considers prior edgehet-
erophily, fully utilizing the informationof local structure. OurproposedGNNmodel is
comparatively suitable for both homophilic and heterophilic graphs. Additionally, we
introduce a regularized optimization function to increase themodel’s capacity to ad-
just to different graph configurations. We test the model’s effectiveness using bench-
mark graph datasets with high homophily ratios (e.g., Cora, CiteSeer, Pubmed) and
low homophily ratios (e.g., Cornell, Wisconsin, Texas, Actor, Squirrel).
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2 RelatedWork

2.1 Graph Attention Networks

The Graph Attention Network (GAT) [18] is an effective graph neural network archi-
tecture. designed for learning some interactions and relationship in graph-structured
data. It produces an attention mechanisms to prioritize important nodes. By dy-
namicallyweighting the influence of neighboring nodes, GAToffers enhancedperfor-
mance in various graph tasks. After GAT, several variations have been proposed that
use different ways to find these attention coefficients. Additionally, other approaches
havebeenproposed toenhanceGAT further. For example, SuperGATwhichemploysa
self-supervisedstrategy to learnattentioncoefficientsbasedonedge information. CS-
GNN improves GAT by predicting attention coefficients using separate scoring repre-
sentations instead of combined ones. GATv2 [2] points out that the attention scores
learned by GAT do not account for the node’s own representation and offers an im-
proved versionby altering the sequenceof operations. Brody et al. showed thatGATv2
[2] implements dynamic attention, whereas the earlier GAT model depicts static at-
tentionmechanism. These attention basedGraphNeuralNetworks (GNNs)workwell
under the assumption of homophily, meaning they measure similarities or distances
using variouspair-wise attention functions, but they are less effective inhandlingnet-
works with heterophily. In addition, one recent work with the goal ofmitigating noise
within graphsby employing anattentionmechanism. Thismethodencouragesnodes
to pay more attention to other nodes that are similar to them and less attention to
those that are different. It’s called HSGATv2 [4], and it has shown that when connec-
tions between nodes are more similar, graph neural networks work better. Previous
studies [21, 9] use a pre-trained MLP to predict the edge heterophily based on node
labels.

2.2 BeyondHomophily GNNDesigns

According to recent studies, graph neural networks (GNNs) face challenges when try-
ing to classify nodes, especially in networks where the labels and attributes of con-
nected nodes can often be different. This is called heterophily. To address these chal-
lenges, the authors of theH2GCN [22]model have identified several key design strate-
gies that enhance GNN learning in heterophilous settings. These strategies include
separating pointing node and neighbor node embeddings, utilizing neighborhoods
that are inhigherorder, andcombining intermediate representations. The integration
of these strategies in the H2GCNmodel has led to significant performance improve-
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ments. Empirical tests reveal that these design enhancements can increase accuracy
byup to 40%on synthetic networks and 27%on real-world networkswith heterophily,
while also delivering competitive performance in homophilous networks. Also there
are some path based approaches for designing GNNmodels which give better results
over graphs with various homophily ratios.

Recent research [19, 13] suggests that understanding the local distribution, or the
traits of nearby nodes, is essential for effectively dealing with graphs that exhibit het-
erophily. A recent work [19] uses node class labels and heterophily preference matrix
to assign attention weights to overcome the limitation stated. Moreover, factors like
the graph’s structure, the features of individual nodes, andwhere they are locatedplay
significant roles in accurately determining these local distributions and enhancing
howweights are assigned.
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3 Preliminary and Notations

3.1 Notation

Consider the undirected graphG = (V ,E), where V represents nodes and E represents
edges [7], where M , number of edges and N , number of vertices, i.e.,M = |E | and
N = |V |. Explicitly, V = {v1, v2, . . . , vN }. Each node vi is associated with feature xi ∈ Rd .
The set of all the features in all the nodes is denoted by X ∈ RN×d . Let A = [ai j ] ∈
{0,1}N×N be the associated adjacency matrix corresponding to graph G, where nodes
vi and v j are linked if ai j = 1, and else ai j = 0. Neighbors of node v that are pre-
cisely i hops distant are indicated by Ni (v)(Note that, edges of Gmay have self-loops).
For instance, N1(v) = {u : (u, v) ∈ E } denotes v ’s adjacent neighbors. Let the vector
Y = [y1, y2, . . . , yN ]⊤ ∈ {1, . . . ,C }N hold the nodes corresponding class labels, and C de-
notes the number of classes.

Figure 3.1: Visualization of the neighborhoods around a central node v . The imme-
diate neighbors N1(v) are shown in light green, and the neighbors at exactly two hops
away N2(v) are shown in sky-blue. The central node v is displayed in yellow.

The degree of node vi is given by di =∑
j ai j , and the degree matrix D is defined as

D =diag(d1,d2, . . . ,dN ). Additionally, N̂1(vi ) = N1(vi )∪ {vi } represents the set containing
the node vi and its immediate neighbors.

The target in the supervised node classification is to find a function that maps
nodes to labels given a collection of training nodes. Our primary goal is to acquire
the knowledge of a mapping f : {v1, v2, . . . , vN } → {0,1, . . . ,C }.
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3.2 Message Passing in Graph Neural Networks

In this section,weprovide themathematical formulations formessagepassing in three
popular designs of graph neural networks: (i) Graph Convolutional Networks (GCN)
[12, 1], (ii) GraphSAGE [8], and (iii) GraphAttentionNetworks (GAT) [18]. First, we ini-
tialize h(0)

v = xv for every node v . As additional notations, An activation function is σ.
The parameters of layer k that can be learned are M (k) .

Graph Convolutional Networks (GCN) [12]: Message Passing at Layer k is formu-
lated as

h(k)
v =σ

( ∑
u∈N̂1(v)

M (k) · h(k−1)
u

∥N̂1(v)∥

)
, ∀v ∈V

GraphSAGE [8]: Message Passing at Layer k is formulated as

h(k)
v =σ

(
W (k) ·CONCATENATION

(
h(k−1)

v ,AGGRG
(
{h(k−1)

u ∀u ∈ N (v)}
)))

, ∀v ∈V

Graph Attention Networks (GAT): Message Passing at Layer k is formulated as

h(k)
v =σ

( ∑
u∈N1(v)

αvu ·M (k) ·
(
h(k−1)

u

))
, ∀v ∈V ,

where αvu represents the normalized attention coefficient between nodes u and
v . More specifically calculating the normalized attention weights has the following
procedure

evu = aT ·CONCATENATION(W k ·hk−1
u , M k ·hk−1

v )

αvu = exp(evu)∑
j∈N1(v) exp(ev j )

3.3 Edge Homophily Ratio

In our study, within class labels, we investigate the idea of heterophily. To measure
the degree of homophily inside a graph, we provide the edge homophily ratio hG , use
this term in graphs to delineate characterized by distinct levels of homophily or het-
erophily:

Definition: The percentage of connections in a graph that connect nodes with the
same class label, or intra-class edges, is known as the edge homophily ratio hG , over
the graph’s entire number of edges. Mathematically edge homophily ratio can be ex-
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plicitly written as following:

hG = |{(vp , vq ) : (vp , vq ) ∈ E ∧ yp = yq }|
M

We note that,hG ∈ [0,1]. Graphs with strong homophily possess a lot of edges con-
necting nodes such that it has the same class label. So, the edge homophily ratio is
nearly equal to one, showing that most edges link nodes of the same class. On the
other hand, graphs with strong heterophily have fewer edges between nodes of the
same class. This means edge homophily ratio is nearly equal to zero, indicating that
there are nodes with the same class label are connected by fewer edges.

The edge homophily ratio provides an overview of how often nodes with the same
class label are connected by edges in the graph. However, It’s essential to note that
heterophily, which we’re exploring in this study, isn’t the same as heterogeneity. Het-
erogeneity, as defined in network science, refers to networks with two or more differ-
ent kinds of nodes, as well as different connections between them. For instance an
example could be, knowledge graphs typically exhibit heterogeneity.Conversely, ho-
mogeneous networks consist of only one type of node, like users, and one type of rela-
tionship, like friendship. Every node and every edge in these networks is of the same
kind.

10



4 Limitation in earlier GNNModels

In this section we point out the weakness of Using Graph Neural Networks to learn
from networks with heterophily, a problem often overlooked because most evalua-
tions are done on benchmarks with similar characteristics. While many GNNmodels
have been developed,most assume homophily and struggle with heterophily. Table 1
[22], for instance, shows the average accuracy on classification of a number of the best
graph neural network models on simulated benchmark data (syn-cora), in which we
may change the edge homophily ratios. We look at two edge homophily ratios situa-
tions. All current methods performworse than aMultilayer Perceptron (MLP), which
is a basemodel that is independent of graphs and just classifies nodes based on their
attributes only. We can clearly see, GCN [12] andGAT [18] perform significantly worse
than MLP, demonstrating that techniques that work well in settings of high edge ho-
mophily (h = 0.7) could not performwell in networks that have low edge homophily.

Models hG = 0.1 hG = 0.7
GCN 37.14 84.52

GraphSAGE 70.89 85.56
GAT 33.11 84.03
MLP 74.85 88.28

Table 1: An use-case of a heterophilic environment with an edge homophily score of
hG = 0.1. In such a scenario, traditional GraphNeural Networks (GNNs) often struggle
to generalize effectively. On the other hand, a typical homophilic setting, where the
edge homophily score is hG = 0.7, tends to bemore favorable for thesemodels.

Comprehensive analysis of benchmark datasets is presented in the appendix sec-
tion(9.1, 9.2).
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5 ProposedMethod

This section introduces our proposed model, which uses local structures and het-
erophilydistributionpatterns tohandlegraphswithdifferent levelsof similarityamong
nodes so that it can address the limitations stated. In the Empirical Analysis section,
we have shown performances of our models in comparison with the existing mod-
els, with respect to F1 scores as stable accuracy measure in graphs with different ho-
mophily ratios. Tobeginwith,we introduceanattentionmechanismin theheterophily
settings, and state how modeling the differences in edges can be beneficial. Specifi-
cally, ourGraphNeuralNetwork (GNN) gives differentweights to edges based on their
category types so that it can learn effective local attention strategies, helping nodes
gather relevant information from their diverse neighbors.

5.1 Proposed Attention Scheme

This section develops an attention mechanism that recognizes heterophily by allow-
ing it to adaptively assign weights by fully utilizing the differences in edge types.

5.1.1 Motivation

Wehave discovered two essential design strategies that can enhance the the effective-
ness of GNN’s in heterophily settings:

(i) Separation of Node-Embedding and Neighbor-Embedding:
In this approach, The embedding of every node is represented independently of

the sum of the embeddings of its neighbors, acknowledging the differences that may
exist in heterophily contexts. Formally, for a node v , the representation learning at
layer k can be written as:

h(k)
v =COMBINE

(
h(k−1)

v ,AGGRG
(
{h(k−1)

u : u ∈ N1(v)}
))

Here, important thing is to note that the neighborhood N1(v) exclude the node v .

Intuition 1: By definition, in heterophily contexts, the class label yv and initial fea-
tures xv of a node differ from those in its surrounding neighbors {(yv , xu) : u ∈ N1(v)}. In
anyway, Thefinal embeddingsproducedby typicalGCNdesigns,which combine em-
beddings by averaging as theCOMBINE function, are comparable for adjacent nodes.
This is suitable for graphs with high homophily but problematic for high heterophily
settings. In suchcases, differentiatingbetweenneighborsbelonging todistinct classes
with identical learnt representations is challenging. Hence, employing a COMBINE
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function thatmaintains separate representations so that it is more expressiveness for
each node v and its neighbors N1(v).

(ii) Utilizing Higher-Order Neighborhoods:
Information from higher-order neighborhoods in each layer k, which go beyond

one-hop neighbors, are aggregated in this scheme.:

h(k)
v =COMBINE

(
h(k−1)

v ,AGGRG
(
{h(k−1)

u : u ∈ N1(v)}
)

,AGGRG
(
{h(k−1)

u : u ∈ N2(v)}
)

, . . .
)

In this context, Neighbors of node v that are precisely i hops distant are indicated
by Ni (v).

Intuition 2: Higher-order neighborhoods enable GNNs to perform better in het-
erophily settings. Although immediate neighbors might have different labels, more
distant It’s conceivable that nodeswith the same label canbe found inneighbors. This
pattern aids GNNs inmakingmore accurate predictions. Recent studies [22] indicate
that leveraging extended neighborhoods significantly improves GNN performance,
particularly in binary classification tasks.

5.1.2 Adaptive Attention: Preprocessing

Adaptive attention mechanism that we propose in this section which is designed to
dynamically allocate weights by thoroughly utilizing edge heterophily. The local dis-
tribution concept is employed to characterize the distribution based on certain fea-
tures within each local neighborhood. Recent research uses node labels to calculate
these distributions. In this work we calculate it using local attributes.

The local distribution for anode v is generally derived from itsneighborhoodusing
the following generalizable expression:

dv =Φ(
xv , {xu1 }u1∈N1(v), {xu2 }u2∈N2(v), . . .

)
where the functionΦ(·) is taskedwith estimating the appropriate local distribution

based on specificmeasurements; dv ∈Rh denotes the local distribution of node v , and
Neighbors of node v that are precisely i hops distant are indicated by Ni (v).

Each element dvk ≥ 0 in dv indicates the probability of node v being assigned to
category k, with the sum of all elements in dv equal to 1 i.e.,

∑
k dvk = 1.

This estimation enhances the node classification process by accurately capturing
the characteristics of the local neighborhood.

Now, in this stage our goal is to generate local distribution. We delve into extract-
ing local information from the smoothed features within a local neighborhood. This
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approach is driven by the followingmain considerations.
Recent studies demonstrate that local distributions generated from node features

and topological informationcanenhanceweight assignment schemes inpractical ap-
plications where heterophily is a common pattern to observe.

As we just discussed inmotivation subsection,We have discovered two crucial de-
signs that, when properly combined, can enhance the functionality of GNN models
in heterophily scenarios, multi-hop graphSAGE [8] can be one of such choice to be in
use. More specifically, GraphSAGE [8] can performwell by capturing these smoothed
local features, as the local distributions derived from node labels are quite distinct.
By using two-layer GraphSAGE, we can better utilize the local information and topo-
logical context to enhance the model’s adaptability and accuracy in diverse network
structures. Additionally we apply SOFTMAX to each of the smoothed features corre-
sponding to each node.

So we assume, D = {d1,d2, . . . ,dN } ∈ RN×h which represents the local distributions
for each node in the network. Note that hidden dimension h of each smoothed local
distributionmay not be the same as node class labelsC .

Asmentioned earlier, we operate under the assumption that the local distribution
reflects the corresponding node categories (classification). Thus, by utilizing D, we
can approximatelymodel the underlying heterophily by combining the learnable pa-
rameter matrices associated with GraphSAGE [8]. Consequently, each dv represents
the category distribution among the underlying categories (classification) of node v .

The underlying heterophily matrix of each edge is formulated as follows:

Pvu = dv ⊗du

where Pvu ∈Rh×h represents the probability distribution of the h×h heterophilic types
for the edge evu . The element in Pvu can be expressed as (Pvu)i j = dv i ·dv j , signifies the
heterophily matrix of the edge evu connecting two nodes with categories (classifica-
tion) i and j respectively.
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Figure 5.1: The diagram illustrates how our model leverages the local structure and
distribution patterns within the data.

Given that ∑
i dv i = 1 and ∑

j du j = 1, therefore, Pvu is also a probability matrix, i.e.,∑
i
∑

j (Pvu)i j = 1. So, in one sentence we can say, Pvu indicates the heterophily matrix
of the edge evu , and this can be is used in the adaptive attention scheme to generate
the attention coefficients.
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5.1.3 Attention Scheme

As we have discussed in the earlier section Pvu ∈ Rh×h be regarded as the probability
distribution of the h ×h heterophilic types for the edge evu . The heterophily matrix
Pvu for each edge is then explained using another learnable parametermatrix to gen-
erate the attention coefficient in each layer. In the k-th layer, the parameter matrix
W1

(k) ∈ Rh×h is optimized during training. The attention coefficient for each edge evu

is adaptively predicted as follows:

w (k)
vu = 〈Pvu ,ψ(W1

(k))〉F = tr
(
PT

vuψ(W1
(k))

)
,

where 〈·, ·〉F represents the Frobenius inner product, an inner product operation
between two matrices, and The symbol tr(·) represents a matrix’s trace. The function
ψ(·)performselement-wisecomputation todetermine theeachheterophilic edge type’s
significance depending on real-valued parameters. For each parameter w (k) in W1

(k),
ψ(w (k)) = max(λ ·w (k),0), where λ> 0 is a gradient scaling factor used to adjust the gra-
dient magnitude of each element in the learnable matrix W1

(k). If L is the associated
loss function that is aimed tominimize as the optimizationproblem, this gradientwill
indicate how L changes with changes in W1

(k).

So, in the final stp, unlike traditional normalization techniques, we introduce a
Neighbor Norm to normalize the attention coefficients. This is defined as:

α(k)
vu = w (k)

vu∑
i∈N̂1(u) w (k)

ui

,where N̂1(u) = N (u)∪ {u} represents the set containing the node u and its neighbors.
Therefore each attention coefficient α(k)

vu for the edge evu is normalized by the adjoin-
ing nodes’ weighted degree. This approach assumes these connections to general
neighbors (nodes with lower weighted degrees) aremore reflective of the node’s char-
acteristics compared toconnections topopularneighbors (nodeswithhigherweighted
degrees).

16



5.2 Our Attention Network

Figure 5.2: Thefigure illustrates the overall structure of thenetwork anddemonstrates
its application to the node classification task.

Now we are ready to introduce the network layer updation strategy. The normal-
ized attention coefficients are determined in the earlier section. The message aggre-
gation step is similar to the existing GAT [18]mechanismmessage passing and aggre-
gation. So, the following is the execution of aggregation for the (k +1)-th layer:

h(k+1)
v =σ

( ∑
u∈N̂1(v)

α(k+1)
vu W2

(k)h(k)
u

)
,

whereW2
(l ) is a parameter matrix, and the activation function is represented by σ.
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5.3 Custom Loss Function

Overall, we want amodel that should give better accuracy over any graph with differ-
ent edge homophily ratios. Our attention mechanism is good to capture several dis-
tinct heterophilies in the graphsbut to ensure it is performingwell for highhomophily
graphs as well, For the training, we suggest a personalized loss function.

By giving labels that indicate whether an edge is between two separate category
nodes or the same category node, we are able to oversee the attentions across the
edges. Denote byVtrain a set containing the nodes in the training set. Consider Etrain as
well. Any edge that canbe foundwherebothnodes in theVtrain correspond is included
in the set that contains the training edge set, Specifically,

Etrain = {(vp , vq ) : (vp , vq ) ∈ E ∧ vp ∈Vtrain∧ vq ∈Vtrain}.

In particular, our custom loss function consists of the next two terms: (i) the loss
due to overseeing averaging attention for edges (between training set nodes) [let’s say
LE ]; and (ii) the cross-entropy loss (between the ground truth of node class labels and
model predictions, let us say LV ). Let us write it mathematically as follows:

L = LV + f (hG ).LE

where the two terms are formally written as,

LV =− 1

|Vtrain|
∑

vi∈Vtrain

C∑
c=1

y(vi ,c) log(p(vi ,c))

LE =− 1

L|Etrain|
L∑

l=1

∑
e∈Etrain

(
ye log(σ(w (l )

e ))+ (1− ye ) log(1−σ(w (l )
e ))

)
y(vi ,c) showswhethernode vi is amember of class (let us say) c ornot, p(vi ,c) denotes

theprobability thatnode vi is amemberof class c,w (l )
e denotesTheedge e’s unnormal-

ized attention score in the l-thmessage passing layer, and ye is symbolizes the source
and target nodes are in the same class, this indicates the edge’s label, which is 1; oth-
erwise, it indicates that they are in separate classes. Interestingly, f (hG ) is monotoni-
cally increasing continuous function of homophily ratio corresponding to that graph
or network, with a constraint such that f ranges to (0,1). Note that hG varies in the
open interval (0,1).
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Figure 5.3: The diagram illustrates our custom loss function, highlighting how it inte-
grates two key components LV and LE .

The supervision will be regularized using this parameter f (hG ) with the goal of re-
ducing the loss function. Accordingly, the corresponding weight for edges connected
to the same category in a network with a high homophily ratio should be larger, and
vice versa.
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5.4 Comparison with GATs

Several graphattentionnetworks (GATs)havebeenexaminedbyus. This sectionpresents
acomparisonbetween thecurrentvariantsofGATsmodelsandourproposedattention-
based approach. At themoment, attention-based GNNs typically take advantage of a
self-attention strategy, in which the representations of the nodes to which the edges
are correlated with the attention coefficients on the edges are as follows:

w (k)
vu =Φ(k)

(
h(k−1)

v ,h(k−1)
u

)
,

where h(k)
v is the representation of node v in the k-th layer and w (k)

vu is the attention
coefficient of edge evu in the k-th layer. Also, the well-designed attention function
Φ(k)(·) differs from the designs used in the current approaches.

For example in simple GATv2 [2] proposed in 2021, the un-normalized attention
score calculated as,

wvu
(k) = aT ·LeakyReLU · (W kCONCAT(hk−1

u ,hk−1
v ))

Then, the attention coefficient is normalized by a softmax function, i.e.,

αvu
(k) = exp wvu

(k)∑
i∈N (v) exp(evi )

Conversely, the underlying heterophily matrix Pvu for every edge evu in our sug-
gested attention method is correlated with the local neighborhood in the attributed
graph. Generally, one can get the heterophily matrix Pvu from its neighbors by apply-
ing the following generalizable expression:

Pvu =Φ(
xv , {xu1 }u1∈N1(v), {xu2 }u2∈N2(v), . . .

)
The attention coefficients in each layer are then calculated using Pvu as,

w (k)
vu =ϕ(k) (Pvu) ,

where ϕ(k)(·) is the function to be used in the k-th layer to construct the adaptive
attention coefficient from the heterophily matrix, as previously shown in the section.
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6 Empirical Analysis

We thoroughly assess our approach in this part. We used standard node classification
datasetswith different homophily ratios andCompare itwith the state of the art graph
neural networks (GNNs) available.

6.1 Dataset Details

Below is a list of the datasets that we used for the experiment: First three dataset Cora,
CiteSeer and PubMed [17] are high homophilic graph data whereas rest of the follow-
ing are low homophilic or heterophilic graph data.

Cora: A network of scientific literature citations makes up the Cora dataset. A pa-
per is represented by each node, and a citation from one paper to another is repre-
sented by each edge. The nodes are labeled with one of seven classes, representing
the research area of the paper. It has 2708 nodes (papers) and 5429many edges (cita-
tion links). And Every document is represented by a word vector with a value of 0/1,
signifying the existence of certain terms froma lexicon including 1,433 distinct terms.
Additionally, the seven classes/categories that each node belongs to are: Reinforce-
ment Learning, Rule Learning, Probabilistic Methods, Neural Networks, Genetic Al-
gorithms, Case Based, and Theory.

CiteSeer: CiteSeer is another citation network dataset, similar to Cora but typi-
cally larger and more complex. It also represents a network of scientific publications
with citation links. It has 3327 nodes (papers) and 4732 many edges (citation links).
A binary-valuedword vector based on a vocabulary of 3,703 distinct words character-
izes eachdocument. Additionally eachnodebelongs tooneof the following six groups
or classes: information retrieval, machine learning, database, artificial intelligence,
human-computer interaction, and algorithms.

PubMed: ThePubMeddataset is derived from thePubMeddatabaseof biomedical
literature. It consists of a citationnetwork of scientificpapers from thebiomedical do-
main.It has 19717 nodes (papers) and 44338 many edges (citation links). And a Term
Frequency-InverseDocument Frequency (TF-IDF)weightedword vector drawn from
a lexicon of 500 distinct terms characterizes each document. Additionally each node
is either one of diabetes mellitus experimental, diabetes mellitus type 1 or diabetes
mellitus type 2 among these three groups or classifications.

Wisconsin, Texas, andCornell: Wisconsin, Texas andCornell are three small-scale
datasets derived fromuniversitywebpages. Eachdataset represents a network ofweb
pages (nodes) linkedbyhyperlinks (edges). Eachdatasethasa fewhundrednodes rep-
resentingweb pages. It consists of typically around five classes, representing different
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types of web pages (e.g., student, professor, project). A feature vector with a sparse
bag of words is used to describe each node, derived from the text content of the web
pages.

Actor: Based on the actor co-occurrence network, the Actor dataset (also called
the Film dataset) was created. Edges indicate co-occurrences on the sameWikipedia
page, while nodes denote actors. It consists of 7600 nodes (actors) and 26752 edges
(co-occurrences). Additionally eachnode is oneoffive classesbasedon theactors’ age
groups.A bag-of-words feature vector taken from the actor’sWikipedia page describes
each actor.

Squirrel: The Squirrel dataset is part of the WebKB dataset collection, specifically
from the Squirrel [16] web graph. It represents web pages connected by hyperlinks,
similar to the Cornell, Texas, and Wisconsin datasets but generally larger and more
complex. It consists of 5201 nodes (web pages) and 198353 edges (hyperlinks). A bag-
of-words feature vector characterizes each web page.

Cora CiteSeer PubMed Cornell Texas Wisconsin Actor Squirrel
Nodes 2708 3327 19717 183 183 251 7600 5201
Edges 5429 4732 44338 277 295 466 26752 198353
Feature 1433 3703 500 1703 1703 1703 932 2089
Classes 7 6 3 5 5 6 5 5

hG 0.82 0.70 0.76 0.31 0.11 0.21 0.16 0.22

Table 2: Datasets description in detail: (i)Cora, (ii)CiteSeer, (iii)PubMed, (iv)Cornell,
(v)Texas, (vi)Wisconsin, (vii)Actor and (viii)Squirrel
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6.2 Experimental Set-Up

We are primarily interested in exploring and implementing methods in a supervised
manner to achieve high accuracy and reliability in our predictive GNNmodel. For the
supervised node classification tasks, we follow a robust and standardized strategy to
ensure the effectiveness and fairness of ourmodel training and evaluation processes.
This involves a systematic approach to splitting our dataset, optimizing our training
process, and selecting hyperparameters.

60% of the nodes are used for training the model and this partition of the data is
utilized to fit themodel parameters. 20% of the nodes are used for validation and this
partition helps in tuning the model’s hyperparameters and prevents overfitting. And
the remaining 20% of the nodes are used for testing. This partition is used to evaluate
the model’s performance on unseen data (independent test set). This 60%/20%/20%
split [5] is crucial for a balanced and comprehensive evaluation of themodel’s perfor-
mance.

Wemakeuseofourcustomloss function throughout the trainingprocedure,which
is specifically adaptively designed to optimize the performance of our node classifi-
cation tasks in graphs with different homophily ratios. This particular loss function
plays an eventual role in guiding the parameters optimization process, ensuring that
themodel learns thepatterns in the data effectively. For this use-case, wehave chosen
f (hG ) as (hG )2 tomake sure the requirements are satisfied. All thehyperparameters are
determined using a grid-search strategy. Also we note that we used Glorot initializa-
tion [6] to initialize all the trainable parameters.

We use the Adam optimizer [11] to optimize the model parameters, which effi-
ciently handles sparse gradients and noisy data. Adam [11] incorporates the benefits
of twomore stochastic gradient descent improvements.: RSMProp and AdaGrad.

During the preprocessing phase, we initialize each of the parameter in W1
(k) to 1

λ ,
ensuring thatψ(λ·W1

(k))equalsone. This setupensures that all heterophilic edge types
are initially assigned equal importance at the start of training.

The learning rate and dropout rate are pivotal hyperparameters that substantially
impact the model’s performance. We here pre-define the weight decay rate as 5 ×
10−5. Tofind theotherbesthyperparameter values,weextensively followagrid-search
strategy. The hidden layer sizes are selected from the set {8, 16, 32, 64}, the learning
rateoptions include {0.001, 0.003, 0.005}, and thedropout rate choicesare {0.0, 0.2, 0.4,
0.6}. The combination that achieves thehighest validationperformance is selected for
training the final model.
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6.2.1 baselines

We compare our proposedmodel against five leading methods in the field. which we
have re-implemented from scratch. (i) Muti-layer Perceptron, (ii) Graph Convolution
Network (GCN) [12], (iii) GraphSAGE [8], (iv)GraphAttentionNetwork (GAT) [18], and
(v) Graph Attention Network v2 (GATv2) [2]

6.3 Results

Aswe are already known, the Benchmark datasets were utilized for the purpose of our
model. In situations where the prior edge heterophily is available, our approach ex-
tracts effective local distributions. Considering that ourproposedapproach fails to at-
tain state-of-the-art performance in overall comparisons, but here, we use real-world
graphs with varying homophily ratios to illustrate the efficacy of our suggested strat-
egy for supervised categorization andwenote that our proposedmodel is able to pro-
vide stable results on node classification tasks on different edge homophily ratios.

Cora CiteSeer PubMed
MLP 0.749 0.706 0.792
GCN 0.847 0.749 0.859

GraphSAGE 0.856 0.744 0.876
GAT 0.874 0.776 0.843
GATv2 0.865 0.774 0.855

HSGATv2 0.892 0.791 0.859
OurMethod 0.843 0.738 0.860

Table 3: This table displays the test accuracy (F1 score) results for high homophily
graphbenchmarks innodeclassification, includingmodels suchasMLP,GCN,Graph-
SAGE, GAT, and our proposedmethod.

Thefigures (seeFig. 9.4)presentevaluationson thedatasets (Cora,CiteSeer, PubMed):
the confusionmatrix is displayed on the left side, while the AUC-ROC curve is shown
on the right side.
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Wisconsin Texas Cornell Actor Squirrel
MLP 0.725 0.648 0.702 0.357 0.296
GCN 0.451 0.621 0.459 0.302 0.260

GraphSAGE 0.664 0.620 0.567 0.349 0.321
GAT 0.372 0.540 0.459 0.283 0.271
GATv2 0.451 0.594 0.378 0.288 0.261

HSGATv2 0.588 0.513 0.351 0.289 0.279
OurMethod 0.684 0.648 0.756 0.379 0.310

Table 4: This table displays the test accuracy (F1 score) results for low homophily
graphbenchmarks innodeclassification, includingmodels suchasMLP,GCN,Graph-
SAGE, GAT, HSGATv2, and our proposedmethod.

The figures(9.6) present evaluations on the datasets (Actor and Squirrel): the con-
fusion matrix is displayed on the left side, while the AUC-ROC curve is shown on the
right side.
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7 Conclusion

This dissertation has presented an approach for addressing the challenges posed by
heterophily in graph neural networks (GNNs). Our proposed model incorporates an
adaptive attention mechanism that leverages local distribution patterns to enhance
the performance of GNNs across graphs with varying levels of node similarity. By dif-
ferentiating between node-embedding and neighbor-embedding separation, and by
incorporating higher-order neighborhoods, we have enabled our model to more ef-
fectively capture and utilize the heterophilic nature of certain graphs.

The empirical analysis demonstrates that our approachmaintains stable accuracy
across datasets with different homophily ratios. This stability is achieved through the
innovative use of adaptive attention weights, which are dynamically allocated based
on theheterophilic typesof edges. The localdistribution-basedattentionschemepro-
vides a significant improvement in the ability to distinguish between nodes in het-
erophilic settings, which is a key limitation of traditional GNNs.

Theevaluationof ourmodel on standarddatasets, includingbothhigh-homophily
and low-homophily graphs, reveals its robustness and adaptability. In particular, the
results indicate that Ourmodel’s performance on high-homophily datasets is close to
that of recent techniques that are discussed, while significantly outperforming them
on low-homophily datasets. Considering that our proposed approach fails to attain
state-of-the-art performance in overall comparisons. This performance is attributed
to the custom loss function designed to optimize node classification tasks by con-
sidering the homophily ratio, further enhancing the model’s capability to generalize
across different graph structures.

To put everything in a nutshell, this dissertation tried to contribute to the field of
graph neural networks by providing a robust and adaptive solution for handling het-
erophily, a common challenge in real-world networks. The proposed methodology
attempted to bridge the performance gap in any graph with different homophily ra-
tios.
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8 FutureWork

Our proposed method, though effective, is more complex than existing models. This
added complexity can be a downside, especially when dealing with large datasets or
networks. Also, due to time limitations,weonlyexplored themethodusing supervised
learning.

A key part of our method is a special loss function that relies on knowing the ho-
mophily ratio of the network beforehand. The homophily ratio helps measure how
similar connected nodes are. However, in real-life networks, this ratio is usually un-
known and hard to determine in advance. Some recent studies suggest that it’s pos-
sible to estimate this ratio through initial analysis of the network, but this is not yet a
common practice.

In the future, our method could be applied in semi-supervised settings. Semi-
supervised learningusesboth labeledandunlabelednodes,making it easier tohandle
large graphs where it is difficult to get all the nodes labeled. This approach could help
reduce complexity and improve efficiency. Additionally, exploring how our method
workswith unsupervised learning could be valuable. Unsupervised learning does not
rely on labeled nodes, which couldmake our methodmore flexible and applicable in
situations where labeling data is not feasible.

Another important direction is improving our loss function to estimate the ho-
mophily ratioautomatically,withoutneeding toknowitbeforehand. Thiswouldmake
ourmethodmoreadaptableanduseful forawider rangeof real-worldnetworks,where
the homophily ratio is often unknown and can change over time. Additionally, our
work is limited to the node classification task. Therefore, a significant direction for
future research is to expand our approach to more benchmark challenges, including
edge-level or graph-level tasks. This expansionwouldhelpdemonstrate the versatility
and robustness of our approach across various types of network analyses.
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9 Appendix

(a) (b)

Figure 9.1: Figure (a) shows the accuracy comparison betweenMLP, GraphSAGE, GAT
and GCN on ’Cora’ dataset and Figure (b) shows the accuracy comparison between
MLP, GraphSAGE, GAT and GCN on ’Citeseer’ dataset.

(a) (b)

Figure 9.2: Figure (a) shows the accuracy comparison betweenMLP, GraphSAGE, GAT
andGCNon ’Cornell’ dataset and Figure (b) shows the accuracy comparison between
MLP, GraphSAGE, GAT and GCN on ’Wisconsin’ dataset.

From these figures, it can be observed that MLP outperforms traditional state-of-
the-art graph neural network models, especially in scenarios where graphs with low
homophily ratios (hG) are provided as input.
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(a) Cora (b) Citeseer (c) PubMed

(d) Wisconsin (e) Texas (f) Cornell

(g) Actor (h) Squirrel

Figure 9.3: The benchmark datasets that have been used in this dissertation are de-
picted in these figures. While figures (d), (e), (f), (g), and (h) are of low homophilic
type, figures (a), (b), and (c) are of high homophilic type.
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Figure 9.4: The figures present evaluations on the datasets (Cora, CiteSeer, PubMed):
the confusionmatrix is displayed on the left side, while the AUC-ROC curve is shown
on the right side.
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Figure 9.5: Thefigures present evaluations on thedatasets (Wisconsin, Texas andCor-
nell): the confusionmatrix is displayed on the right side, while the AUC-ROC curve is
shown on the left side. (Contd.)
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Figure 9.6: The figures present evaluations on the datasets (Actor and Squirrel): the
confusion matrix is displayed on the left side, while the AUC-ROC curve is shown on
the right side. (Contd.)

34


	Introduction
	Related Work
	Graph Attention Networks
	Beyond Homophily GNN Designs

	Preliminary and Notations
	Notation
	Message Passing in Graph Neural Networks
	Edge Homophily Ratio

	Limitation in earlier GNN Models
	Proposed Method
	Proposed Attention Scheme
	Motivation
	Adaptive Attention: Preprocessing
	Attention Scheme

	Our Attention Network
	Custom Loss Function
	Comparison with GATs

	Empirical Analysis
	Dataset Details
	Experimental Set-Up
	baselines

	Results

	Conclusion
	Future Work
	Appendix

