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Abstract

Accurate segmentation of medical images is a critical task in the field of healthcare, aiding

in precise diagnosis and effective treatment planning. This project explores the enhance-

ment of image segmentation models through the integration of advanced attention mech-

anisms. Our primary objective is to compare various attention techniques to develop a

lightweight yet highly accurate model suitable for real-time applications. Given the signifi-

cant body of work in medical image segmentation, our approach seeks to balance accuracy

with computational efficiency. By incorporating different attention mechanisms and rigor-

ously evaluating their performance, we aim to identify the optimal strategy for improving

segmentation outcomes. The results demonstrate the potential for improved segmentation

accuracy and efficiency, highlighting the effectiveness of attention-based models in captur-

ing intricate patterns and dependencies within medical imaging data. We found out in

our work that the CNN-based attention mechanism, or Convformer, effectively overcomes

the issues related to the training conflict between CNNs and transformers. This project

sets the groundwork for future advancements in semi-supervised and weakly-supervised

learning, and we plan to expand our model’s applicability across a broader range of medi-

cal imaging scenarios. Our ultimate objective is to contribute towards the development of

robust, efficient, and adaptable segmentation models that can enhance diagnostic accuracy

and patient care in various medical fields.

Keywords: Segmentation, Depth-wise Convolutions, Attention, Dice Score,

Kvasir-Seg, ISIC2017, BraTS2020

iv



Contents

Certificate i

Acknowledgement ii

Declaration iii

Abstract iv

1 Introduction 1

1.1 Formulation of Image Segmentation Problem . . . . . . . . . . . . . . . . . 3

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 U-Net and Depth-wise Convolution 7

2.1 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Architecture of U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Depth-wise Separable Convolutions . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Working of Depth-wise Separable Convolutions . . . . . . . . . . . . 9

2.3 DW U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Experiment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Types of Attention Methods 17

3.1 Convolution Block Attention Mechanism(CBAM) . . . . . . . . . . . . . . . 18

3.1.1 Channel Attention Block . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Spatial Attention Block . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Self Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Convformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Modified Convformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Experiment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.6 State-of-the-art Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Conclusion and Future Work 40

Bibliography 42

vi



List of Figures

1.1 (A) depicts the noisy/ill defined boundary of skin lesion present in ISIC

2017[1] dataset. (B) and (C) depicts irregularity in shapes of tumours in

Kvasir Seg polyp dataset[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Working of Convolution operation[3] . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Mechanism of Depth-Wise Convolution[3] . . . . . . . . . . . . . . . . . . . 10

2.4 Mechanism of Point-Wise Convolutions[3] . . . . . . . . . . . . . . . . . . . 10

2.5 Block diagram of DW U-Net. Here each DW Conv Block contains two

depth-wise convolution operation where each of them is succeeded by point-

wise convolution. Apart from that the basic working of the architecture

remains same as explained in subsection 2.1.1. . . . . . . . . . . . . . . . . . 11

2.6 Examples of images and corresponding masks from Kvasir-SEG polyp dataset[2] 13

2.7 Pictorial representation of Dice Score . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Scatter Plot of Number of Parameters vs Dice Score . . . . . . . . . . . . . 16

3.1 Basic Attention based DW U-Net model . . . . . . . . . . . . . . . . . . . . 17

3.2 An illustration of CBAM module[4]. The module has two sequential sub-

sections: channel attention and spatial attention. . . . . . . . . . . . . . . . 18

3.3 Channel Attention Block[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Spatial Attention Block[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 (left) Scaled Dot-Product Attention.(right) Multi-head attention containing

several attention layers running parallelly.[5] . . . . . . . . . . . . . . . . . . 20

3.6 Attention Collapse Visualization among layers . . . . . . . . . . . . . . . . . 21

3.7 Comparison between vanilla Vision Transformer and Convformer. [6] . . . . 23

3.8 Images and their corresponding masks from ISIC2017 skin lesion dataset[1]. 26

3.9 Some examples from BraTS2020 dataset. Please note that the masks dis-

played here are after the processing done on them. We will see in the

subsequent parts how the masks are transformed from their original repre-

sentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Transformation of Masks. Mask1 indicates the ground truth and Mask2

indicates the transformed mask. Please note that the images are based on

the FLAIR modality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



3.11 Training graphs of the models on Kvasir-SEG polyp dataset. (a) denotes

Loss vs Epoch graph for DW U-Net with Modified Convformer. Similarly

(b), (c) and (d) indicates to DW U-Net with Convformer, DW U-Net with

Self Attention and DW U-Net with CBAM respectively. . . . . . . . . . . . 31

3.12 Visualization of Results on polyp dataset. . . . . . . . . . . . . . . . . . . . 32

3.13 Training graphs of the models on ISIC2017 skin lesion dataset. (a) denotes

Loss vs Epoch graph for DW U-Net with Modified Convformer. Similarly

(b), (c) and (d) indicates to DW U-Net with Convformer, DW U-Net with

Self Attention and DW U-Net with CBAM respectively. . . . . . . . . . . . 33

3.14 Visualization of Results on skin lesion dataset. . . . . . . . . . . . . . . . . 34

3.15 Training graphs of the models on BraTS2020 brain tumour dataset. (a)

denotes Loss vs Epoch graph for DW U-Net with Modified Convformer.

Similarly (b), (c) and (d) indicates to DW U-Net with Convformer, DW

U-Net with Self Attention and DW U-Net with CBAM respectively . . . . . 36

3.16 Visualization of Results on brain tumour dataset considering all the modal-

ities together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.17 Visualization of Results on brain tumour dataset when model was trained

on different modalities separately. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.18 This figure illustrates that the DW U-Net with Modified Convformer model

achieves higher accuracy when trained on all modalities combined, com-

pared to training on each modality separately. In the second row of the

image, the outputs generated from training on FLAIR, T1, T1ce, T2, and

their concatenated form are displayed from left to right. . . . . . . . . . . . 37

viii



List of Tables

2.1 Parameter comparison between U-Net and DW U-Net. Note that parameter

count is based on 3 encoding/decoding and bottleneck layers. . . . . . . . . 11

2.2 Comparison of U-Net and DW U-Net . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Comparison study to determine the optimal number of layers for DW U-Net.

Kindly note that the channel progression through layers is also mentioned

in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Parameter Comparison among different Attention based DW U-Net models. 24

3.2 Comparison study of different architectures of DW U-Net with Self Attention 29

3.3 Comparative Study based on Kvasir-SEG polyp data for the different At-

tention Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Comparative Study based on ISIC2017 skin lesion dataset for the different

Attention Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Comparative study based on the BraTS2020 brain tumor dataset for various

attention techniques reported across each modality. . . . . . . . . . . . . . . 35

3.6 Comparative study based on the BraTS2020 brain tumor dataset for various

attention techniques, considering all modalities together. . . . . . . . . . . . 35

3.7 State-of-the-art Comparison based on Kvasir-SEG polyp dataset . . . . . . 38

ix



x



Chapter 1

Introduction

Image segmentation involves identifying a set of pixels with similar characteristics, where

each pixel is assigned a label indicating its category. This process is essential in clinical

usages such as diagnosis, treatment planning, and surgical interventions. It plays a vital

role in delineating anatomical structures, tumors, lesions, or other regions of interest

within medical images. Formally, medical image segmentation refers to the process of

delineating boundaries of anatomical structures across various types of 2D/3D medical

images. There are some critical challenges in this field of study. Firstly we have a data

constraint issue, i.e. obtaining thousands of training images is typically unattainable. One

of the most prominent reasons for it is the requirement of precise and accurate annotations

which can only be performed by medical professionals such as radiologists, pathologists,

or specialized technicians. Thus annotating these images accurately requires significant

expertise, making the process labor-intensive and costly affair. Secondly, medical images

contain sensitive patient information, and there are stringent laws and ethical guidelines

around data sharing to protect and preserve patient privacy. This limits the availability of

large, publicly available, and accessible datasets. Thirdly, images in the medical domain

often have noisy/ill-defined boundaries, varying pixel intensities, and irregular shapes with

significant variability(Figure 1.1 depicts the mentioned issues). Lastly, medical data is

often isolated within individual hospitals, i.e. they purposely avoid sharing the data with

other institutions making it difficult to aggregate large datasets from multiple sources.

Figure 1.1: (A) depicts the noisy/ill defined boundary of skin lesion present in ISIC
2017[1] dataset. (B) and (C) depicts irregularity in shapes of tumours in Kvasir Seg polyp
dataset[2]

Several traditional computer vision techniques such as thresholding [7], region growing

[8], and active contours [9] have been historically employed for the task of image segmenta-

tion. However, these methods have some notable disadvantages. Thresholding methods are
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highly sensitive to variations in lighting and contrast, making them unreliable for images

with varying intensities. Similarly, the effectiveness of region-growing techniques heavily

relies on the selection of initial seed points. Poorly chosen seeds can lead to sub-optimal

segmentation results. Active contour models (snakes contour) require careful initialization

and are sensitive to the initial contour placement and they often get stuck in local min-

ima and fail to converge to the desired boundaries. However, the advent of deep learning

has revolutionized this field, with deep learning-based models consistently outperforming

classical techniques because of their capacity to autonomously extract high-level, abstract

information from data through multiple hidden layers and their provision to get trained

through multiple images, makes them robust to the variations in the input images. These

models can identify intricate patterns and features from raw data which eliminates the

need for manual feature extraction.

Convolutional Neural Networks (CNNs) have established themselves as the pioneering

and most valuable models in the field of image segmentation because of their remarkable

capacity to extract hierarchical features from raw pixel data. CNNs can autonomously

identify complex patterns through multiple layers of convolution and pooling operations.

This hierarchical feature extraction helps CNNs to capture low-level details like edges and

textures in the initial layers, and simultaneously learn higher-level features like shapes in

deeper layers. Convolutional layers, pooling layers, and fully connected layers in CNN

architectures allow them to effectively handle the spatial hierarchies present in images.

Convolutional layers apply a set of trainable kernels/filters to the input image, creating

feature maps that highlight important aspects of the image. Pooling layers then down-

sample these feature maps, reducing their dimensions and retaining the most significant

information, which helps in making the model invariant to small translations and dis-

tortions in the input data. Moreover, CNNs leverage large amounts of labeled data and

powerful computational resources to optimize their performance through backpropaga-

tion and gradient descent techniques. This training process enables CNNs to fine-tune

their filters’ weights, resulting in highly accurate and robust segmentation models. Ad-

ditionally, advancements in network architectures, such as U-Net[10], Mask RCNN[11],

and Fully Convolutional Networks (FCNs)[12], have specifically tailored CNNs for image

segmentation tasks, further enhancing their effectiveness.

Among all the CNN models used for image segmentation, U-Net[10] is the most popular

model in the realm of medical image segmentation due to its architectural brilliance. U-

Net features a symmetric encoder-decoder structure that effectively captures contextual

details at multiple scales. Along with this U-Net possesses the most advantageous feature

which is the concept of skip connections. Connecting corresponding layers in the encoder

and decoder paths, skip connections concatenate feature maps from the encoder to the

decoder, allowing the network to preserve high-resolution features essential for precise

segmentation. This helps U-Net to combine the low-level data (details) with high-level data

(context), leading to more accurate and detailed segmentation. Along with this, attention

mechanism[5] also comes into the picture in the domain of medical image segmentation due

to its ability to capture long-range dependencies and concentrate on critical areas of an
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image, enhancing the detection and segmentation of small or subtle regions such as lesions

or tumors. This capability improves boundary accuracy, which is essential for precise

medical diagnosis by accurately delineating complex structures with very fine boundaries.

Attention mechanisms are also accustomed to managing multi-scale features effectively,

enhancing segmentation capabilities across different object sizes within medical images.

Deep learning models offer numerous advantages, but they come with a few notable

drawbacks. One significant challenge is the slow training process, attributed to the ex-

tensive parameter count. This necessitates high-performance computational resources like

expensive GPUs to expedite training. This in turn presents before us a challenge to bal-

ance between cost and performance. To mitigate this issue, there is a need for lightweight

models that uphold high performance standards keeping the parameter count as less as

possible. Additionally, the substantial parameter count with limited training data can

lead to the problem of over-fitting, thus resulting in poorer performance on test data.

In this study, our focus lies in exploring different attention techniques, presenting a

comparative study of their efficiency, and proposing a lightweight model that has good

efficacy in terms of both parameter count as well as accuracy. Leveraging U-Net as our

backbone network, we assess our models across a range of diverse datasets, spanning polyp,

skin lesion, and brain tumor datasets. These datasets are carefully chosen to test the

robustness of our models. Our primary aim is to maintain a harmonious balance between

model intricacy and performance, striving for efficient training without compromising

accuracy significantly.

1.1 Formulation of Image Segmentation Problem

Let us take an image X ∈ RH×W×C where H, W , and C are the height, width and number

of channels (e.g., 3 for RGB images) respectively. The objective of image segmentation is

to assign a label li from a set of possible labels {1, 2, . . . , L} to each pixel i in the image.

This can be expressed mathematically as:

Define a segmentation function f : RH×W×C → RH×W×L such that:

Ŷ = f(X)

where Ŷ ∈ RH×W×L is the output segmentation map, and each pixel i in Ŷ contains

a vector of length L representing the probability distribution over the L possible labels.

For a task of binary segmentation, the number of output labels is two which indicates the

foreground and background pixels, and a multi-class segmentation task outputs more than

two labels which indicates the different clusters present in the output map.

We have the ground truth segmentation map denoted by Y ∈ RH×W×L and the pre-

dicted segmentation map denoted by Ŷ .

The loss, denoted as L, is computed as the mismatch between the predicted segmen-

tation map Ŷ and the actual segmentation map Y .

L = Loss(Y, Ŷ )
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where Loss can be Binary Cross Entropy(BCE) Loss, Mean Squared Error(MSE) Loss,

Dice Loss etc.

During the training process, the model parameters are adjusted iteratively to minimize

this loss. The aim is to improve the accuracy of the segmentation model by making the

predicted segmentation map Ŷ as identical as possible to the ground truth segmentation

map Y . Now we provide a general algorithm for the training process involved in medical

image segmentation task which we have used to train our models as discussed in the later

sections.

Algorithm 1 Training Model for Medical Image Segmentation

1: Initialize the model architecture, loss function, evaluation metric, learning rate and
optimization algorithm.

2: Split dataset into training and test sets.
3: Pre-process images and corresponding segmentation maps with suitable transforma-

tions.
4: repeat
5: for every batch in training set do
6: Forward pass: Calculate predicted segmentation masks.
7: Calculate loss between predicted and ground truth masks.
8: Backward pass: Calculate gradients and update model parameters accordingly.
9: end for

10: Evaluate model on test set and save model based on highest obtained test score.
11: until Number of epochs is completed
12: Evaluate final model on test set and report the score based on the evaluation metric.

1.2 Objective

The objective of this thesis work is two-fold: first, explore various attention-based con-

volutional neural network (CNN) models( more specifically attention-based U-Net mod-

els) for medical image segmentation, and secondly, to develop lightweight architectures

to address computational complexities and challenges in deep learning-based segmenta-

tion. The exploration of attention mechanisms involves analyzing the effectiveness of

self-attention, spatial attention, channel attention, and convolution-based self-attention

models in enhancing CNNs’ ability to capture relevant spatial and contextual informa-

tion within medical images. By integrating these mechanisms into U-Net architecture,

the aim is to improve the accuracy and robustness of segmentation across various medical

imaging datasets. Simultaneously, the development of lightweight models focuses on op-

timizing model complexity and parameter efficiency to minimize computational resource

requirements. The objective aims to facilitate efficient training of segmentation models in

resource-constrained clinical environments. Together, these objectives seek to present a

comparative study on various kinds of attention techniques and simultaneously propose an

alternative lightweight architecture that is efficient both accuracy-wise and parameters-

wise.
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1.3 Related Work

Numerous related works in medical segmentation have employed U-Net as the founda-

tional architecture. One notable example is UNet++[13] which is a deeply supervised

encoder-decoder network that features dense, nested skip pathways between the encoder

and decoder sub-networks. These redesigned skip connections intend to minimize the se-

mantic disparity between the encoder and decoder feature maps. To address issues in

UNet++, UNet 3+[14] was introduced, incorporating full-scale skip connections and deep

supervision. These full-scale skip connections blend high-level semantics with low-level de-

tails from feature maps across different scales, while deep supervision facilitates learning

hierarchical representations derived from the combined feature maps.

Another advancement is UNeXt[15], ”A Convolutional multilayer perceptron (MLP)

based network for image segmentation”. UNeXt features an initial convolutional stage

followed by an MLP stage in the latent phase, with an efficiently tokenized MLP block.

In addition to these, V-Net[16] was introduced for 3D image segmentation, utilizing

a volumetric, fully convolutional neural network. To mitigate the high computational

demands of 3D convolutions, H-DenseUNet[17] was proposed. This model integrates a 2D

DenseUNet for efficient feature extraction within individual slices and its three-dimensional

equivalent to hierarchically aggregate volumetric contexts, particularly for liver and tumor

segmentation.

ResUNet-a[18], a residual learning U-Net model, combines a U-Net architecture incor-

porating an encoder/decoder backbone, along with atrous convolutions, residual connec-

tions, pyramid scene parsing pooling, and multitasking inference capabilities.

Recently, transformer-based networks have gained prominence in medical image seg-

mentation due to their ability to capture global image contexts. ViT[19], a model initially

designed for image classification, uses a Transformer-like architecture over image patches.

This approach divides an image into patches of fixed size, followed by linearly embedding

them with position embeddings, and feeding the resulting sequence into a conventional

Transformer encoder. ViT marked one of the earliest applications of transformers in med-

ical image segmentation.

Further developments include TransUNet[20], which combines a hybrid CNN-Transformer

architecture designed to harness detailed high-resolution spatial information from CNN

features alongside the global context encoded by transformers. MedT[21] addresses data

constraints in medical datasets by introducing a gated axial-attention model, enhancing

self-attention mechanisms with an additional control layer. MedT also introduces a Local-

Global training strategy (LoGo) aimed at enhancing performance.

Prior Attention Network (PANet[22]) employs a a coarse-to-fine strategy for segment-

ing multiple lesions in medical images. PANet integrates a lesion-related spatial attention

mechanism within the network and utilizes intermediate supervision to generate lesion-

related attention, thereby accelerating convergence and enhancing segmentation perfor-

mance.

These advancements underscore the ongoing evolution of medical image segmentation

models through the integration of sophisticated attention mechanisms and transformer

5



architectures with traditional convolutional neural networks (CNNs). However, these ad-

vanced techniques often result in a significant increase in the parameter count. For ex-

ample, the base ViT model[19], a benchmark in this field, contains 86 million parameters,

which is notably high. Therefore, our objective was to reduce the parameter count without

substantially compromising the accuracy of the model.

The outline of the dissertation is as follows: chapter 2 explains in detail the working

of U-Net, depth-wise convolutions and DW U-Net. It also presents why DW U-Net can

be used as a substitute of U-Net with experiment details and results. chapter 3 presents

different attention techniques and their results on three datasets and finally chapter 4

presents the concluding remarks and future direction of work.
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Chapter 2

U-Net and Depth-wise

Convolution

This chapter primarily delves into the core structure of our project, focusing on two key

components: the U-Net architecture and depth-wise separable convolutions. The following

sections will provide an in-depth understanding of these topics.

2.1 U-Net

U-Net is a commonly employed and tested deep learning model that was initially intro-

duced in the paper ”U-Net: Convolutional Networks for Biomedical Image Segmentation”

[10]. Addressing the challenge of limited annotated data in the medical area of research

was the main purpose of this architecture. This network was designed to address these

challenges by efficiently utilizing a smaller dataset while preserving both speed and accu-

racy.

Figure 2.1: U-Net architecture
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2.1.1 Architecture of U-Net

Overview

The framework of U-Net [10] is uniquely designed with both an expansive and a contracting

path. The encoder layer forms the contracting path, which reduces the spatial dimension

of the input while capturing contextual information. The expansive path, containing a

decoder layer, decodes the encoded data, upsamples the data and utilizes the informa-

tion extracted from the contracting path with the help of skip connections to generate

a segmentation map. The contracting path in U-Net has the responsibility to identify

pertinent features within the input image. The encoder layers perform convolutional and

pooling operations that reduce the spatial resolution of the feature maps while increasing

their depth, i.e. they decrease the spatial dimensions and increase the number of channels,

thus capturing progressively abstract representations of the input. This contracting path

is similar to the feed-forward layers in other convolutional neural networks. Conversely,

the expansive path has the responsibility to decode the encoded data and locate its’ fea-

tures while maintaining the spatial resolution of the input. The decoder layers up-sample

the feature maps, performing transpose convolutional operations. The skip connections

from the contracting path to the expansive path aid in retaining the spatial information

that is lost in the contracting path, enabling the decoder layers for more precise feature

localization.

Detailed Explanation

Figure 2.1 explains in detail the overall architecture of U-Net. In the figure, convolution

blocks Conv Block 1, Conv Block 2, Conv Block 3 and Conv Block 4 represent convolution

blocks in the encoder layer and Conv Block 5, Conv Block 6, Conv Block 7 and Conv Block

8 represent convolution blocks in the decoder layer. We give input of dimension 224 × 224

× 3 to Conv Block 1 and we get output of 224× 224× 1 as output from Conv Block 8. In

each convolution block of the encoder layer, we do two successive convolution operations

with kernel size 3×3, padding 1 and stride 1. At the end of two convolutions in one block,

the pooling operation (Max Pool with kernel size 2 × 2) is done and the feature map is

passed onto the next Conv Block. For example, in the first convolution block 224 × 224

× 3 is the input after two convolutions the feature map becomes 224 × 224 × 64, and

then pooling is done to make the dimension 112 × 112 × 64 (as the kernel size is 2 × 2

thus the dimension gets divided by 2). Subsequently, the other 3 convolution blocks are

executed and the dimension of the feature map becomes 14 × 14 × 512 before entering

the bottleneck layer. In the bottleneck layer also there are 2 convolution operations and at

the end of it, we get the feature map of dimension 14 × 14 × 1024. After that transpose

convolution operation is performed which makes the dimension of the feature map 28 × 28

× 512. With this feature map, the feature map from Conv Block 4 is concatenated with

the help of a skip connection. In each block of the decoder section after up-convolution

and concatenation through skip connections, two convolution operations are successively

performed with kernel size 3 × 3, padding 1 and stride 1. Thus the output at the end
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of Conv block 5 has dimension 28 × 28 × 512. Subsequently, three other blocks of the

decoder layer are executed and finally, we have an output of dimension 224 × 224 × 1.

2.2 Depth-wise Separable Convolutions

Convolutions are of many types. One of the most important types of convolution is the

depth-wise separable convolution. The major advantage of depth-wise separable convolu-

tions is that they have fewer parameters to adjust as compared to normal convolutions

which in turn reduces the chances of overfitting. Also, they are computationally cheaper

due to the lesser number of computations involved in the process.

2.2.1 Working of Depth-wise Separable Convolutions

Convolution Operation

Let us take an input of dimension Df×Df×M , where Df×Df represents the image spatial

dimensions and M denotes the number of channels present(3 for an RGB image). Suppose

there are N kernels whose size is Dk ×Dk ×M . According to convolution mathematics,

if a convolution operation is performed, the output size will be Dp ×Dp ×N .

The number of multiplications in one convolution operation is equal to Dk ×Dk ×M ,

which is actually the size of the filter.

Figure 2.2: Working of Convolution operation[3]

Now, we have N filters, and each of them slides in both the vertical and horizontal

directions Dp times. Thus the total number of multiplications in such case becomes

N×Dp×Dp× (multiplications per convolution). Therefore, total number of multiplications

for a standard convolution operation is given by:[3]

Total number of multiplications = N ×D2
p ×D2

k ×M.

Depth-Wise Separable Convolutions

When considering depth-wise separable convolutions, the process can be divided into two

distinct steps:
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1. Depth-wise convolutions

2. Point-wise convolutions

• In the depth-wise convolution step, the convolution operation is applied to each

channel separately, in contrast to the standard CNNs which apply it across all M

channels simultaneously. Thus, the convolutional kernels will be two dimensional

and have dimensions Dk × Dk × 1. Given the input data has M channels, we will

need M such 2D filters. Consequently, the output will have dimensions Dp×Dp×M .

Each individual convolution operation involves Dk×Dk multiplications. As the filter

slides over the input Dp ×Dp times for all M channels,

Thus total number of multiplications for the depth-wise convolution = M × D2
k ×

D2
p.

Figure 2.3: Mechanism of Depth-Wise Convolution[3]

• In point-wise convolution step, a 1× 1 convolution is applied across all the M chan-

nels. The filters’ dimension for this operation will be 1 × 1 ×M . If we use N such

filters, the output will have dimensions Dp ×Dp ×N . Each point-wise convolution

operation thus requires 1×M multiplications. As the filter is applied Dp×Dp times,

Then total number of multiplications for the point-wise convolution = D2
p×M×N .

Figure 2.4: Mechanism of Point-Wise Convolutions[3]

Therefore, for the complete depth-wise separable convolution operation,

Total multiplications = Depth-wise convolution multiplications + Point-wise convolution multiplications

Total multiplications = M ×D2
k ×D2

p + D2
p ×M ×N

= D2
p ×M × (D2

k + N)

Computational cost of depth-wise separable convolutions

Computational cost of standard convolutions
= RATIO (R)
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For instance, considering N = 100 and Dk = 512, we find the ratio R to be 0.01.

This implies, in this example, the depth-wise separable convolution method performs

100 times fewer multiplications compared to a conventional convolutional method.

2.3 DW U-Net

Now we propose a novel form of the U-Net architecture that is both lightweight and main-

tains high accuracy. Traditional U-Net models employ standard 2D convolutions, which,

although effective, result in a large number of parameters, leading to increased chances

of overfitting, large computational costs, and higher memory usage. Our approach seeks

to mitigate these drawbacks by incorporating depth-wise separable convolutions, which

consist of depth-wise convolution operation followed by point-wise convolution operation,

in place of the standard 2D convolution operations. Thus, in our proposed architecture the

basic framework of the U-Net model remains the same. Only in place of two standard 2D

convolutions in each convolution block of both encoder and decoder layers(Figure 2.1), two

depth-wise separable convolutions are incorporated. Apart from this, other architectural

designs of this model are similar to the original U-Net model.

Figure 2.5: Block diagram of DW U-Net. Here each DW Conv Block contains two depth-
wise convolution operation where each of them is succeeded by point-wise convolution.
Apart from that the basic working of the architecture remains same as explained in sub-
section 2.1.1.

Table 2.1: Parameter comparison between U-Net and DW U-Net. Note that parameter
count is based on 3 encoding/decoding and bottleneck layers.

Models Number of Parameters

U-Net 31.03 M

DW U-Net 1.49 M

From Table 2.1 it is clear that this modification significantly decreases the number of

parameters. Now we claim that our proposed model DW U-Net achieves comparable accu-

racy to conventional U-Net with lesser number of parameters. To establish this claim, we
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conducted experiments whose detailed explanation is provided in the subsequent sections.

2.4 Experiment and Analysis

To validate our claim that the proposed DW U-Net (Depth-Wise U-Net) achieves com-

parable accuracy to the conventional U-Net with fewer parameters, we carried a series of

experiments. The detailed methodology and results of these experiments are presented in

the following subsections. The first experiment rigorously compares the performance and

efficiency of DW U-Net and the original U-Net, substantiating our claim that DW U-Net

is an effective and efficient alternative for medical image segmentation tasks. The second

experiment involves an empirical study to determine the optimal number of layers needed

in the DW U-Net structure.

2.4.1 Dataset

For this experiment, we utilized the Kvasir-SEG polyp dataset[2] (Segmented Polyp Dataset

for Computer-Aided Gastrointestinal Disease Detection). Pixel-level image segmentation

is of high demand in the domain of medical image analysis. It is challenging to obtain

annotated medical images with corresponding segmentation masks due to the requirement

for domain-specific expertise, which is typically possessed only by highly trained doctors

and medical practitioners. Kvasir-SEG is an free-access dataset containing images of gas-

trointestinal polyp and their corresponding segmentation masks. To ensure the standard

and authenticity of the dataset, these masks are manually annotated and verified by an

experienced gastroenterologist.

The human gastrointestinal (GI) tract comprises various sections, one of which is the

large bowel. This section can be affected by several abnormalities and diseases, such as

colorectal cancer. Colorectal cancer is the second most common cancer type where polyps

are the precursors. They are found in nearly half of individuals at the age of 50 who

undergo screening colonoscopy, with incidence increasing with age. Colonoscopy is the gold

standard for detecting and assessing these polyps, followed by biopsy and removal. Early

detection of disease significantly impacts survival rates from colorectal cancer, making

polyp detection crucial. Several studies have shown that there is a tendency of polyps

being often overlooked during colonoscopies, with miss rates ranging from 14% to 30%

depending on the type and size of the polyps. Increasing the accuracy of polyp detection

significantly reduces the risk of colorectal cancer. Therefore, automatic detection of polyps

at an early stage is necessary for both the prevention and survival rates of colorectal cancer.

This serves as the main motivation and utility of the Kvasir-SEG dataset.

The Kvasir-SEG dataset comprises 1000 images of polyps and their corresponding

ground truth masks, with resolutions ranging between 332×487 and 1920×1072 pixels.

Thus, we selected the Kvasir-SEG dataset for our experiment to measure the robustness

of our proposed DW U-Net model and provide an unbiased comparison study of U-Net

and DW U-Net.
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Figure 2.6: Examples of images and corresponding masks from Kvasir-SEG polyp
dataset[2]

2.4.2 Experiment Details

For our experiment, we used the Kvasir-SEG[2] polyp dataset. This dataset comprises of

1000 images which is divided into train and test datasets. Upon splitting, we resized both

the image and its corresponding mask to dimensions 224 × 224 in both the training and

test datasets. As loss function we used Binary Cross Entropy(BCE loss) and Dice Score as

the evaluation metric and ADAM[26] as the optimizer. The training process was executed

for 100 epochs and the dice score was calculated on the test set.

Loss Function

We used Binary Cross Entropy(BCE) Loss as the loss function. The BCE Loss is a

combination of a Sigmoid layer and the Binary Cross-Entropy Loss in one single class.

This loss is more stable than a plain Sigmoid followed by a Binary Cross-Entropy Loss.

The formula for the BCE Loss is given by:

LBCE(x, y) = − 1

N

N∑
i=1

[yi log (σ(xi)) + (1 − yi) log (1 − σ(xi))] ,

where xi are logits, yi are target labels, N is the number of samples and

σ(xi) =
1

1 + exp(−xi)

Evaluation Metric

We utilized the Dice Score as our evaluation metric, a widely recognized measure in com-

puter vision and medical imaging for assessing the overlap or similarity between two sets.

This metric is particularly common in image segmentation tasks, where it evaluates how

accurately the predicted region matches the ground truth region, reflecting the actual

location of objects within the image.

The Dice Score which is also known as the Sørensen–Dice coefficient is evaluated using
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the following formula.

Dice Score =
2 × Area of Intersection

Total Area of Both Sets

Figure 2.7 gives us a visual representation of Dice score. Let C1 in green be the predicted

region and C2 in red be the ground truth region. Then area of intersection refers to

the overlapping elements(pixels) i.e. the region that belongs to both C1 and C2 and the

total area of both sets refers to the sum of the number of pixels belonging to sets C1

and C2. The value of Dice Score lies between 0 and 1 where 0 indicates that there is no

overlap between the two sets, meaning the predicted mask has no common elements with

the ground truth and a score of 1 indicates perfect overlap, where the predicted mask is

identical to the ground truth mask. A higher Dice Score indicates better segmentation

accuracy. In medical imaging tasks, precise object delineation is critical. Thus we selected

Dice Score as our evaluation metric as it can assess how well our model can capture the

spatial information and boundaries of objects within the images.

Figure 2.7: Pictorial representation of Dice Score

2.4.3 Results and Discussion

We conducted two experiments and both of them were conducted on the Kvasir-SEG[2]

polyp dataset. Firstly to study the comparison of U-Net and DW U-Net and assess

whether DW U-Net can be an efficient alternative to the standard U-Net architecture and

secondly to present a comparison study for determining the optimal number of layers for

DW U-Net. Please note that in the first experiment, we kept three encoding and decoding

layers with one bottleneck layer in the architecture of both U-Net and DW U-Net.

For both experiments, we made sure that the data was well-shuffled before dividing

it into train and test datasets. Shuffling prevents biases like patient-level and temporal

bias and enhances the model’s generalization ability. For both experiments, we did not

use any transformation other than resizing both the image and its’ corresponding mask to

dimensions 224 × 224 and also ensured that the training conditions were similar for all the

models. This was purposefully done such that no external factors could affect the results of

the experiments. Both experiments were done to find the most appropriate backbone for

our upcoming models which are defined in the subsequent chapters. Below are the results

14



of these experiments. Note that, these results are based considering 3 encoding/decoding

and 1 bottleneck layer in both the cases of U-Net and DW U-Net.

Table 2.2: Comparison of U-Net and DW U-Net

Models Number of parameters Execution time Dice Score

U-Net 31.03 M 62 mins 0.6502

DW U-Net 1.49 M 45 mins 0.6413

From Table 2.2, we have made several key observations. Firstly, the DW U-Net has

significantly fewer parameters, approximately 20 times less than the original U-Net. This

substantial reduction in parameters translates to a more lightweight model, which is ad-

vantageous for computational efficiency. In addition to it, the execution time of DW U-Net

is about 1.4 times faster than that of the U-Net which further highlights its efficiency in

terms of speed.

Despite these reductions, the Dice Score of DW U-Net is only slightly lower than that

of U-Net, with U-Net achieving a score just 1.01 times higher. This minimal difference

in performance indicates that the DW U-Net maintains a high level of accuracy in this

particular segmentation task, even with its reduced complexity. These results indicate

that the reduction in the number of parameters does not significantly deteriorate the Dice

Score. Therefore, we can confidently conclude that DW U-Net is an effective alternative to

the original U-Net, offering similar segmentation performance with the added advantages

of lower computational requirements and faster execution times.

Table 2.3: Comparison study to determine the optimal number of layers for DW U-Net.
Kindly note that the channel progression through layers is also mentioned in brackets.

Number of layers Number of parameters Dice Score

2 encoding/decoding and 1 bottleneck
(64 - 128 - 256)

0.37 M 0.5544

3 encoding/decoding and 1 bottleneck
(64 – 128 – 256 – 512)

1.49 M 0.6413

3 encoding/decoding and 1 bottleneck
(32 - 64 – 128 – 256 )

0.38 M 0.6146

4 encoding/decoding and 1 bottleneck
(64 – 128 – 256 – 512 - 1024)

5.99 M 0.6571

5 encoding/decoding and 1 bottleneck
(64 – 128 – 256 – 512 - 1024 - 2048)

23.88 M 0.6853

Table 2.3 reveals an important trend: upon increasing the number of layers in the

model, the Dice Score tends to get enhanced thereby improving the segmentation accu-

racy. This improvement, however, results in a corresponding increase in the number of

parameters. A higher number of parameters can lead to increased computational demands

and potentially long training duration, which might not be an ideal situation for all appli-

cations. Also, our main objective is to find out an appropriate backbone for our subsequent

models. Thus choosing a model with more parameters will eventually increase the chances

of overfitting. Please note that the figures shown in brackets for each layer mentioned in

Table 2.3 represent the progression of the number of channels in the encoder block of the
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DW U-Net.

Figure 2.8: Scatter Plot of Number of Parameters vs Dice Score

Form Figure 2.8 we see that the model having Dice Score 0.6571 balances the trade-off

between performance and number of parameters. Thus we carefully selected that model

configuration for our subsequent experiments. Specifically, we have chosen the model

architecture that includes four encoding/decoding layers and one bottleneck layer. With

this model configuration, we aim to strike a balance between providing a high Dice Score

and maintaining a manageable number of parameters. By doing so, we ensure that our

proposed model remains efficient in terms of both accuracy and number of parameters.
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Chapter 3

Types of Attention Methods

In the domain of medical image segmentation, incorporation of attention mechanisms is

crucial for enhancing model performance and reliability. Attention mechanisms help the

model to concentrate on the most pertinant parts of the image, improving the localization

of critical structures and handling the variability and complexity inherent in medical data.

They help extract multi-scale features, reduce false positives and negatives, and provide

interpretability by visualizing the model’s focus areas. This focused approach improves

data efficiency, making better use of limited labeled data, and allows adaptive computation,

enhancing both accuracy and efficiency. Thus, attention mechanisms significantly improve

the precision and trustworthiness of segmentation models in medical applications.

Here we present various attention techniques utilized in the experimental process. For

each attention mechanism, the backbone model is kept as DW U-Net(Table 2.2) with

4 encoding/decoding layers(Table 2.3) and the attention block is incorporated into the

bottleneck layer of the model. The following sections will discuss the workings and theo-

retical foundations of three different attention techniques followed by our proposed model

of attention.

Figure 3.1: Basic Attention based DW U-Net model
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3.1 Convolution Block Attention Mechanism(CBAM)

Given a feature map F ∈ R C×H×W as input at a certain stage, CBAM sequentially derives

a 1D channel attention map Mc ∈ R C×1×1 and a 2D spatial attention map Ms ∈ R 1×H×W

as shown in Figure 3.2. The comprehensive attention process can be depicted as[4]:

F′ = Mc(F) ⊗ F

F′′ = Ms(F
′) ⊗ F′,

where ⊗ represents element-wise multiplication.

Figure 3.2: An illustration of CBAM module[4]. The module has two sequential subsec-
tions: channel attention and spatial attention.

3.1.1 Channel Attention Block

By harnessing the inter-channel relationships within the features, the channel attention

map[4] is generated . It identifies ’what’ parts of the input image are significant. In

this process, the spatial dimension of the feature map is compressed to compute channel

attention efficiently. Average pooling and max pooling are utilized to aggregate spatial

information and distinguish object features.

Let Fc
avg and Fc

max represent the average-pooled features and max-pooled features,

respectively. These feature maps are fed into a shared network to generate the channel

attention map Mc. In our case, the shared network consists of two convolutional layers.

The first convolutional layer reduces the number of channels by a factor of r and then the

second convolutional layer restores the number of channels. After the shared CNN network

is applied to each feature map, the output feature vectors are merged using element-wise

addition. Precisely, the channel attention [4] is computed as:

Mc(F) = σ(CNN(AvgPool(F)) + CNN(MaxPool(F)))

= σ(W2(W1(Fc
avg)) + W2(W1(Fc

max))),

where σ denotes the sigmoid function and W1, W2 are the shared CNN weights of

the two layers. Figure 3.3 depicts the mechanism of channel attention.
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Figure 3.3: Channel Attention Block[4]

3.1.2 Spatial Attention Block

The spatial attention mechanism enhances the channel attention by identifying the specific

locations of informative regions within an image or focusing on ’where’ the informative

parts of an image are. To compute spatial attention, both max pooling and average

pooling are applied along the channel axis. The resulting pooled features are joined to

form an efficient feature descriptor. A convolutional layer is subsequently applied to this

concatenated feature map to produce a spatial attention map Ms(F) ∈ RH×W, which

identifies the regions of the image to highlight or diminish.

Figure 3.4: Spatial Attention Block[4]

Channel specific information of a feature map is aggregated by using two pooling

operations, generating two 2D maps: Fs
avg ∈ R1×H×W and Fs

max ∈ R1×H×W. Those are

then concatenated and convoluted by a standard convolution layer with kernel size 7 × 7,

producing a 2D spatial attention map. Precisely, the spatial attention[4] is computed as:

Ms(F) = σ(f7×7([AvgPool(F); MaxPool(F)]))

= σ(f7×7([Fs
avg;Fs

max])),

where σ denote sigmoid function and f7×7 denotes convolution with kernel size 7 × 7.

Figure 3.4 depicts the mechanism of spatial attention.
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3.2 Self Attention

Attention function converts a query and a group of key-value pairs into an output where

the query, keys, values, and output all are represented as vectors. The output is computed

by taking a weighted sum of the values. The weights for each value are calculated using

a similarity function that assesses the similarity between the query and each key. In this

context, the queries and keys have a dimension of dk, while the values have a dimension

of dv. To compute the weights, we perform the dot product of the queries with all keys,

followed by division of each result by
√
dk, and then application of a softmax function.

This process produces the final weights for the values.

In practice, the attention function is computed on a collection of queries at the same

time, which are combined into a matrix Q. The values and keys are also stacked together

into matrices V and K. Then the matrix of outputs is computed as[5]:

Attention(Q,K, V )[5] = softmax

(
QKT

√
dk

)
V

Figure 3.5: (left) Scaled Dot-Product Attention.(right) Multi-head attention containing
several attention layers running parallelly.[5]

Until now we saw the entire process confined to only one attention function. Instead

of that we can linearly project the queries, keys, and values h times using varying learned

linear projections to dk, dk, and dv dimensions, respectively. Now after executing this, the

attention function is executed parallelly on each of these projected versions, generating

dv-dimensional output values. These outputs are concatenated and projected again to

produce the output values, as illustrated in Figure 3.5. This process is called Multi-Head

and is calculated as: .

MultiHead(Q,K, V )[5] = Concat(head1, . . . ,headh)WO

where headi = Attention(QWQ
i ,KWK

i , V W V
i ),

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel .
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3.3 Convformer

In medical image segmentation, attention collapse within self-attention matrices poses a

significant challenge. As neural networks progress through deeper layers, these matrices

increasingly become uniform across patches, impeding the capture of essential long-range

dependencies within the data. This issue is enhanced by the limited availability of training

data in medical imaging tasks. With insufficient data, transformers struggle to learn opti-

mal representations, intensifying the attention collapse problem (Figure 3.6 illustrates this

scenario in some attention-based CNN models). Additionally, integrating convolutional

neural networks (CNNs) with transformers can introduce biases towards CNN-based rep-

resentations. This bias usually comes from CNNs’ tendency towards relatively smoother

convergence, especially when trained on smaller datasets. By addressing attention collapse

and balancing the learning dynamics between CNNs and transformers, we can enhance

the effectiveness of these models for medical image segmentation tasks.

Figure 3.6: Attention Collapse Visualization among layers

To address this issue Convformer[6] was presented. In Convformer, 2D images main-

tain long-range dependencies without the need for splitting into 1D sequences. It replaces

tokenization, self-attention, and feed-forward networks with pooling, CNN-style self at-

tention (CSA), and convolutional feed-forward network (CFFN) respectively. Initially, the

image’s dimension is reduced through series of convolution and max-pooling operations.

CSA adaptively generates convolutional layers to capture appropriate dependencies, ad-

justing the size for local or global interactions. CFFN further refines pixel features through

continuous convolutions.

Vision Transformer[19] being one of the benchmark architectures where attention

mechanism is used for image segmentation tasks, a comparison of Convformer’s archi-

tecture is made with ViT. The Vision Transformer (ViT) is a type of transformer based

neural network architecture designed for image classification and segmentation tasks. Con-

trary to traditional convolutional neural nets (CNNs), which process images as 2D grids

of pixels, ViT treats images as sequences of patches. These patches are linearly embedded

using positional embedding and then processed by a transformer architecture consisting

of self-attention layers and feed-forward layers. On the contrary Convformer processes

2D inputs directly. Convformer employs a pooling module to replace tokenization and

preserves both the locality and positional information without the need for any additional

positional embeddings. In the core of Convformer, the CNN-style self-attention (CSA)
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module takes the place of self-attention (SA) module of ViT to establish long-range de-

pendencies using adaptive and scalable kernels. Additionally, Convformer employs a con-

volutional feed-forward network (CFFN) to fine-tune pixel features, contrasting with the

standard feed-forward network (FFN) in ViT. Unlike ViT, Convformer does not require

an upsampling step to resize the output to match the input size as the pooling module

adjusts the output size by varying the number of max-pooling operations. Convformer’s

reliance on convolution operations minimizes the training tensions between transformers

and CNNs mentioned earlier.

Pooling vs Tokenization

The pooling module harnesses tokenization’s benefits (i.e., adapting the input for trans-

formers in the channel dimension by reshaping and decreasing the input size when neces-

sary) while preserving spatial details, unlike tokenization. For an input Xin ∈ Rc×H×W , a

convolution with a kernel size of 3× 3 is initially applied, followed by batch normalization

and ReLU activation to capture local features. To match the resolution corresponding to

each patch size S in ViT, a total of d = log2 S downsampling operations are performed

in the pooling module. Each downsampling operation includes max-pooling with a kernel

size of 2 × 2 and a sequence of 3 × 3 convolution, batch normalization, and ReLU. As a

result, Xin is transformed into X1 ∈ Rcm× H

2d
×W

2d through the pooling module, where cm

corresponds to the embedding dimension in ViT. For our scenario, since we incorporate

the attention module into the bottleneck layer, we have already passed through four en-

coding layers. These encoding layers already take care of our requirement of downsampling

as each conv block is succeeded by a maxpool operation. Thus this module is not very

important in our proposed architectural structure. Following are the main modules that

differentiate Convformer from the standard technique of self attention.

CNN-style vs Sequenced Self Attention

Convformer utilizes CNN-style self-attention (CSA) to establish long-range dependencies.

CSA dynamically adjusts the receptive field for each pixel by crafting a tailored convolution

kernel. In detail, for every pixel xi,j in X1, the convolution kernel Ai,j is formed using two

intermediary variables:[6]

Qi ,j =
1∑

l=−1

1∑
g=−1

E q
2+l ,2+gxi+l ,j+g ,

Ki ,j =

1∑
l=−1

1∑
g=−1

E k
2+l ,2+gxi+l ,j+g ,

where Eq and Ek, belonging to Rcq×cm×3×3, serve as the learnable projection matrices.

Here, cq denotes the embedding dimension of Q, K, and V , encompassing the features from

neighboring pixels within a 3 × 3 vicinity into xi,j . Subsequently, the initial customized
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convolutional kernel Ii,j for xi,j is determined by evaluating the cosine similarity:[6]

Im,n
i,j =

∑cq
l=0Qi,jKm,n√∑cq

l=0Q
2
i,j

√∑cq
l=0K

2
m,n

.

Here, Im,n
i,j ∈ [−1, 1] and it seldom occurs that Im,n

i,j = 0. The attention score calculation

is denoted by Im,n
i,j . Subsequently, the size of the convolution kernel for xi,j is dynamically

adjusted by incorporating a trainable Gaussian distance map M :[6]

Mm,n
i,j = e

− (i−m)2(2d/H)2+(j−n)2(2d/W )2

2(θ×α)2 ,

where θ ∈ (0, 1) is also a trainable parameter controlling the receptive field of A, and

α is a hyper-parameter regulating the tendency of the receptive field, with θ being propor-

tional to the receptive field. Based on Ii,j and Mi,j , Ai,j is computed as Ai,j = Ii,j ×Mi,j .

This Ai,j represents the size-scalable convolutional kernel, which, when multiplied by V

(obtained similarly to Q), facilitates the establishment of adaptive long-range dependen-

cies. Finally, a combination of 1×1 convolution, batch normalization, and ReLU activation

is employed to integrate features learned from long-range dependencies.

Convolution vs Vanilla Feed-Forward Network

Similar to the working of Feed-Forward layers in the architecture of transformers, the

Convolution Feed-Forward Network (CFFN) works with the objective to refine the output

generated by the CSA. It contains two modules of CBR, i.e. 1 × 1 convolution, batch

normalization, and ReLU activation. By this modification, CFFN renders Convformer

to be entirely CNN-oriented. This design choice circumvents the conflict between CNN

and Transformer during training, a scenario frequently encountered in CNN-Transformer

hybrid approaches.

Figure 3.7: Comparison between vanilla Vision Transformer and Convformer. [6]

23



3.4 Modified Convformer

We have seen that Convformer is presented as an alternative to conventional self-attention

techniques. This when plugged in with a CNN architecture avoids the competition between

CNN and Transformer during training which often occurs in CNN-Transformer hybrid ap-

proaches and overcomes the issues of attention collapse. Having said that, this incurs a

load of a huge number of parameters to be trained. This in turn makes its’ training a slow

process and thus it requires high-performance computational resources like costly GPUs to

expedite the training process. To mitigate this issue we have proposed a modified version

of the Convformer. We have seen Convformer has 3 major changes compared to standard

techniques of self-attention used in ViT. The first one is tokenization and positional em-

bedding is replaced by pooling operations that uphold the necessary spatial information of

the image, secondly, the self-attention module is replaced by a convolutional self-attention

module whose main objective is to provide a size-scalable convolutional kernel for each

pixel and thirdly standard feed-forward network is replaced by Convolutional feed-forward

network. As previously mentioned, we do not need to focus on the first change, i.e., replac-

ing tokenization and positional embeddings with pooling. This is because, in our model’s

inherent architecture, the feature map passes through encoder layers containing a combi-

nation of convolution and pooling operations before the attention mechanism is applied.

Instead, we focus on the other two changes. Rather than using standard 2D convolutions

in CSA and CFFN modules, we used depth-wise and point-wise convolutions in each of

them. That is we have used depth-wise convolutions to obtain the values of Q, K, and V

in the CSA module, and the CFFN module’s convolution network is transformed to DW

Convolution Network. Thus our proposed modification of Convformer contains DW-CNN-

style self attention and DW-Convolution Feed-Forward Network.

Table 3.1: Parameter Comparison among different Attention based DW U-Net models.

Model Parameters

DW U-Net with Modified Convformer 18.66 M

DW U-Net with Convformer 68.92 M

DW U-Net with Self Attention 18.6 M

DW U-Net with CBAM 6.12 M

We clearly see from Table 3.1 that number of parameters in Modified Convformer is

significantly less(around 4 times) than the number of parameters in the original version of

Convformer. In the subsequent sections we will see the performance comparison of these

four proposed models on three different types of datasets.

3.5 Experiment and Analysis

To present a comparison study among the proposed models of attention mechanism, we

conducted a series of experiments. At first (Experiment 1), we decided on the depth of the

transformer and the hidden dimension of the MLP layer of the transformer architecture

for the model DW U-Net with Self Attention. After finding out the appropriate depth
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and hidden dimension, we used that particular configuration subsequently in DW U-Net

with Self Attention for the remaining experiments. Please note that the depth of the

transformer in DW U-Net with Modified Convformer and DW U-Net with Convformer

has been maintained according to the specifications in [6]. This was done to fully eval-

uate the model’s potential and ensure a fair comparison with our proposed model, DW

U-Net with Modified Convformer. Secondly (Experiment 2), we studied the accuracy com-

parison of the above-mentioned models in Table 3.1 by experimenting on three datasets

namely Kvasir-SEG polyp[2], ISIC2017 skin lesion[1] and BRATS brain tumour[23][24][25]

datasets. We present in the following subsections a detailed description of these datasets

along with experiment details and results of those experiments.

3.5.1 Datasets

Among the three datasets used in this experiment, a description of the Kvasir-SEG polyp[2]

dataset is already given in subsection 2.4.1. In this section, we will explore in detail the

other two datasets namely ISIC2017 skin lesion[1] and BRATS brain tumour[23][24][25]

datasets.

ISIC2017 Skin lesion dataset

The International Skin Imaging Collaboration (ISIC) has evolved into one of the largest

and foremost repositories for researchers in the field of machine learning for medical image

analysis, particularly in the realm of skin cancer detection and malignancy assessment.

Skin cancer stands as the most prevalent of all cancers, with a greater number of diagnoses

each year compared to all other cancers combined. In the United States alone, approxi-

mately 9,500 new cases are diagnosed daily ([27]). Melanoma, the most lethal form of skin

cancer, is projected to reach nearly half a million cases by 2040, marking a 62% increase

since 2018. Tragically, one person succumbs to skin cancer every four minutes. Many der-

matologists view the escalating incidence of skin cancer as a global epidemic. To enhance

survival rates among patients afflicted with skin cancer, early intervention is deemed cru-

cial. Identifying the lesion area is thus of utmost importance, and segmentation activities

aid in pinpointing the Region of Interest (ROI) from images. Dermoscopy serves as a

widely utilized imaging technique for visualizing the skin surface, yet its diagnostic accu-

racy heavily relies on the expertise of dermatologists. Consequently, a scarcity of expert

resources significantly hampers timely treatment for skin cancers. Given the escalating

global incidence of skin cancer, the demand for remote automated diagnosis solutions is

growing more critical. This serves as the driving force behind the selection of this dataset

for experimental analysis.

The ISIC2017 skin lesion dataset[1] is already pre-splitted at source into the train, test,

and validation sets with each having 2000, 600 and 150 images and their corresponding

masks respectively. The images are in JPEG format and their corresponding masks are

in PNG format. For Experiment 2 we merged the training and validation sets. The main

reason behind this merging is that it provides a larger training set which facilitates the

model to learn more robust features and improve its capability of generalization. The other
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Figure 3.8: Images and their corresponding masks from ISIC2017 skin lesion dataset[1].

point is that the validation set size (150 images) is relatively small compared to the training

set (2000 images). This small validation will not provide a sufficiently robust estimate of

model performance. By merging the sets, we try to ensure that the model is trained on a

more diverse set of examples, potentially leading to better generalization. Also, note that

an increase of 150 training samples would not raise any chances of overfitting.

BraTS2020 dataset

Brain tumors are among the most deadly cancers worldwide, classified as either primary

or secondary tumors depending on their origin. The predominant histological type of

primary brain cancer is glioma, arising from the brain’s glial cells and accounting for

80% of all malignant brain tumors. A timely diagnosis is crucial for effective patient

treatment. Magnetic Resonance Imaging (MRI) is extensively utilized by radiologists

to assess and evaluate brain tumors. It encompasses several complementary 3D MRI

modalities, including Fluid-Attenuated Inversion Recovery (FLAIR), T1-weighted, post-

contrast T1-weighted (T1ce), and T2-weighted acquired based on different excitation and

repetition times.

The training set consists of 369 multi-contrast MRI scans stored as NIfTI files (.nii ex-

tension, where NIfTI stands for Neuroimaging Informatics Technology Initiative) with di-

mensions of 240×240×155. Each scan includes four modalities: Fluid Attenuated Inversion

Recovery (FLAIR), native T1-weighted, post-contrast T1-weighted (T1ce), T2-weighted

(T2). Each scan is annotated with four classes: background (label 0), GD-enhancing tu-

mor (ET, label 4), peritumoral edema (ED, label 2), and necrotic/non-enhancing tumor

core (NET/NCR, label 1). The validation set comprises 125 multi-contrast MRI scans

with the same modalities, but the ground truths are concealed. The dataset’s objective is

to delineate three tumor regions: enhancing tumor, tumor core, and whole tumor area. In

our experiment, we evaluated the model’s accuracy in identifying the entire tumor area.

In our task, we focused on identifying the whole tumor area. Due to this reason, it

was important to binarize the ground truth mask. Thus we first identified a pixel value
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Figure 3.9: Some examples from BraTS2020 dataset. Please note that the masks displayed
here are after the processing done on them. We will see in the subsequent parts how the
masks are transformed from their original representations.

that was suitable for the threshold and then applied thresholding to binarize the mask.

Figure 3.10 shows the original as well as the transformed masks.

Figure 3.10: Transformation of Masks. Mask1 indicates the ground truth and Mask2
indicates the transformed mask. Please note that the images are based on the FLAIR
modality.
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After converting the (.nii) files into corresponding JPG format, it was observed that

out of the 155 images out of each scan, the first ten and the last ten did not contain

any significant information. It was also observed that images at some particular intervals

contained redundant information. Thus we chopped off the first ten and last ten images

from each scan and considered images at an interval of 9. Other than this we removed

the 354th scan due to some technical glitches present in that particular file. Out of 155

images in each scan, we considered only 15 of them. This pre-processing technique helped

us decrease the sample size of the image set which was previously 57195 (155 × 369) to

5520 (15 × 368). This reduction helped us greatly in saving computational time and also

reduced the chances of overfitting.

3.5.2 Experiment Details

For Experiment 1, we used the Kvasir-SEG polyp dataset[2] which contains polyp images

and their corresponding ROIs carefully delineated by experienced gastroenterologists and

expert medical practitioners. As already mentioned earlier, this dataset contains 1000

images and their corresponding masks which were divided into train and test datasets.

For our experiment, we resized the images as well as their masks to dimension 224 ×
224. We used Binary Cross Entropy as the loss function and Dice Score as the evaluation

metric(please refer section 2.4.2 and ADAM[26] as the optimizer. The training process

was executed for 100 epochs and the dice score was calculated on test dataset.

For Experiment 2, we conducted a comparative study to gauge the effectiveness of

various attention techniques described in earlier subsections. The goal was to determine

how each technique impacts the performance of our model on the given task of segmen-

tation. For this experiment, we used 3 datasets Kvasir-SEG polyp dataset, the ISIC2017

skin lesion dataset, and the BraTS2020 brain tumor dataset and results are reported

for each model on each dataset separately. When we experimented on the Kvasir-SEG

polyp dataset, we used five five-fold cross-validation technique. Since this dataset has less

number of images, five fold cross validation ensured all data points to be used for both

training and testing, maximizing the use of the dataset and providing a comprehensive

evaluation. Also, averaging the performance across five different splits reduces the impact

of any single split being unrepresentative, leading to more reliable and robust performance

estimates. For the ISIC2017 skin lesion dataset and BraTS2020 dataset, we did not per-

form any cross-validation techniques because, firstly, the ISIC2017 dataset already has its

training and test dataset pre-splitted at the source and secondly cross-validation, espe-

cially on large medical imaging datasets like BraTS2020, is computationally intensive and

time-consuming. Please note that we had to perform a train test split on the BraTS data

despite having a validation set because the validation set is hidden at the source and it is

not available for general use.

Other than cross-validation, when we experimented on the Kvasir-SEG polyp dataset,

we used several transformations like random rotation by 90 degrees, flip and resize to

dimensions 224×224 on both the image and its’ corresponding mask. Applying trans-

formations such as random rotation and flipping helps to artificially increase the size and
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diversity of the training dataset. This makes the model more robust and helps it generalize

better to unseen data by exposing it to a wider variety of scenarios. On the other hand, we

only used resize to 224×224 transformation when working with ISIC2017 and BraTS2020

datasets. The reason behind it is, that the orientation and position of skin lesions are

relatively consistent in clinical images. Therefore, augmentations like rotation may not be

necessary, as they might not represent the natural variability in the real-world scenarios of

skin lesion presentations. Similarly, MRI scans of brain tumors have a specific anatomical

orientation. Rotating these images could lead to anatomically incorrect data, which might

confuse the model rather than help it generalize. Hence the choice of augmentation tech-

niques depends on the specific requirements and characteristics of each dataset. For the

Kvasir-SEG polyp dataset, augmentations like rotation and flipping enhance variability

and generalization. However, for datasets like ISIC2017 and BraTS2020, maintaining clin-

ical and anatomical integrity is crucial, which might lead to a more conservative approach

to augmentation, focusing on transformations that preserve the natural characteristics of

the data.

Apart from this, we used Binary Cross Entropy(section 2.4.2) as the loss function and

Dice Score(section 2.4.2) as the evaluation metric, and ADAM[26] as the optimizer with

learning rate 0.001. The training process was executed for 150 epochs and the dice score

was calculated on the test dataset.

3.5.3 Results and Discussion

First, we look at the result of the first experiment where did the experiment to find out the

depth of the transformer and the hidden dimension of the MLP layer of the transformer

architecture. In this experiment, we take some standard depth and hidden dimension

values and implement the same in our architecture DW U-Net with Self Attention and

find out the optimal combination. In this experiment, we did not use any transformation

other than resizing both the image and its’ corresponding mask to dimensions 224 × 224

and also ensured that the training conditions were similar for all the models. This was

purposefully done such that no external factors could affect the results of the experiments.

Below is the result of this experiment.

Table 3.2: Comparison study of different architectures of DW U-Net with Self Attention

Model Number of parameters Dice Score

4 encoding/decoding & 1 bottleneck with Self Attention
(with depth=1 and mlp dim=128)

8.36 M 0.6705

4 encoding/decoding & 1 bottleneck with Self Attention
(with depth=4 and mlp dim=512)

18.6 M 0.6816

4 encoding/decoding &amp; 1 bottleneck with Self Attention
(with depth=6 and mlp dim=2048)

(tested with the parameters of ViT[19])
43.79 M 0.6238

From Table 3.2, it is clear that the model with 4 encoding/decoding layers and 1

bottleneck layer with Self Attention(depth = 4 and mlp dim=512) achieves the highest

Dice Score with 18.6 million parameters. Increasing the depth and mlp dim significantly

(depth = 6 and mlp dim = 2048) results in a much larger model with 43.79 million
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parameters, but the performance decreases significantly. This clearly indicates that merely

increasing the model complexity does not always lead to enhanced performance but can

even degrade it due to the potential chances of overfitting. The intermediate model appears

to balance the number of parameters and performance effectively, indicating that there

is an optimal range of model complexity specific to this task. Too few parameters might

limit the model’s capacity to learn, while too many parameters might lead to overfitting

or other issues.

Thus to summarize, Table 3.2 highlights that there is a balance to be struck between

model complexity and performance. A moderately complex model offers the best perfor-

mance in this comparison, whereas both simpler and much more complex models perform

worse. This also highlights the importance of tuning model parameters to find out the

optimal model architecture for any given task.

Now we dive into the results of Experiment 2. For Experiment 2, we conducted a com-

parative study to evaluate the effectiveness of the various described attention techniques.

The goal was to determine how each technique impacts the performance of our model

on the given task of segmentation. Here we used 3 datasets Kvasir-SEG polyp dataset,

the ISIC2017 skin lesion dataset, and the BraTS2020 brain tumor dataset and results are

reported for each model on each dataset separately.

Results based on Kvasir-SEG Polyp Dataset

Firstly, we look into the results of Kvasir-SEG polyp dataset. Note that, here we applied

five fold cross validation technique and reported the result corresponding to each fold.

Table 3.3: Comparative Study based on Kvasir-SEG polyp data for the different Attention
Techniques.

Models Parameters
Dice Score Mean

Score
Standard
DeviationK=1 K=2 K=3 K=4 K=5

DW U-Net with
Modified Convformer

18.66 M 0.8383 0.8311 0.8242 0.8107 0.818 0.8245 ±0.0108

DW U-Net
with Convformer

68.92 M 0.8247 0.8072 0.8118 0.8387 0.7906 0.8146 ±0.0182

DW U-Net
with Self Attention

18.6 M 0.7863 0.7786 0.75 0.7868 0.7226 0.7649 ±0.0280

DW U-Net
with CBAM

6.12 M 0.8008 0.7831 0.7536 0.801 0.765 0.7807 ±0.0212

From Table 3.3, we observe that for each fold (from K=1 to K=5), the Dice Scores

are reported for all four models. Additionally, the average Dice Score and its standard

deviation are provided for each model. A closer look at these results reveals that the

models DW U-Net with Modified Convformer and DW U-Net with Convformer consis-

tently achieve the highest Dice Scores across all folds. This suggests that, regardless of

the training and testing sets, these two models outperform the other models in terms of

segmentation accuracy.

We also observe that DW U-Net with Modified Convformer not only has a higher mean

Dice Score compared to DW U-Net with Convformer but also exhibits a lower standard

deviation. This suggests that DW U-Net with Modified Convformer is not only more accu-
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rate but also more consistent in its performance compared to DW U-Net with Convformer.

With fewer parameters, DW U-Net with Modified Convformer is more efficient and leads

to faster training and inference times. The combination of high accuracy, low variability,

and fewer parameters implies that DW U-Net with Modified Convformer is more robust

and resource-efficient.

Figure 3.11: Training graphs of the models on Kvasir-SEG polyp dataset. (a) denotes
Loss vs Epoch graph for DW U-Net with Modified Convformer. Similarly (b), (c) and (d)
indicates to DW U-Net with Convformer, DW U-Net with Self Attention and DW U-Net
with CBAM respectively.

From Figure 3.11, it is evident that the training process is most stable for DW U-Net

with Modified Convformer, as indicated by its smooth training curve compared to the

other models. This smoothness suggests that the model experiences fewer fluctuations in

training loss, which can be attributed to better optimization and convergence behavior.

Additionally, the stability of the training curve indicates that the model is less prone to

overfitting and is able to learn more generalizable features from the data.

From Figure 3.12, it is evident that DW U-Net with Modified Convformer is the

best-performing model among the compared models. In the fourth row, DW U-Net with

Modified Convformer uniquely identifies the connection between the two tumor areas as

shown in the ground truth mask, whereas other models depict the mask as two separate

regions. This demonstrates that our model is more adept at learning spatial characteristics

compared to others.
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Figure 3.12: Visualization of Results on polyp dataset.

Results based on ISIC2017 Skin Lesion Dataset

Now we look into the results of the ISIC2017 Skin Lesion Dataset. For this dataset, the

data was pre-splitted at the source itself. Thus there was no need to manually shuffle and

split the data and neither there was any need to apply any cross-validation technique.

Below are the results.

Table 3.4: Comparative Study based on ISIC2017 skin lesion dataset for the different
Attention Techniques

Model Parameters Dice Score

DW U-Net with Modified Convformer 18.66 M 0.8287

DW U-Net with Convformer 68.92 M 0.8199

DW U-Net with Self Attention 18.6 M 0.8023

DW U-Net with CBAM 6.12 M 0.7995

The comparative study presented in Table 3.4 reveals several key insights regarding

the performance of different attention techniques on the ISIC2017 skin lesion dataset. The

DW U-Net with Modified Convformer achieves the highest Dice Score of 0.8287. This in-

dicates its superior effectiveness in segmenting skin lesions compared to the other models.

Additionally, it maintains a relatively moderate parameter count of 18.66 million, suggest-

ing a well-balanced trade-off between model complexity and performance. In contrast, the

DW U-Net with CBAM which has the lowest parameter count at 6.12 million, achieves a

Dice Score of 0.7995. This makes it the least computationally intensive but slightly less

accurate model. Interestingly, the DW U-Net with Convformer, despite having the highest
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parameter count at 68.92 million, only reaches a Dice Score of 0.8199, illustrating that an

increase in parameters does not necessarily lead to better performance and may result in

diminishing returns. The DW U-Net with Self Attention, with 18.6 million parameters,

attains a Dice Score of 0.8023, positioning itself as a viable but less optimal technique com-

pared to the Modified Convformer. However, its’ training process being very erratic(as

shown in Figure 3.13), makes it a less viable architecture to be used. Overall, the DW

U-Net with Modified Convformer emerges as the most efficient and effective model for

skin lesion segmentation on the ISIC2017 dataset, providing the best Dice Score with a

reasonable number of parameters.

Figure 3.13: Training graphs of the models on ISIC2017 skin lesion dataset. (a) denotes
Loss vs Epoch graph for DW U-Net with Modified Convformer. Similarly (b), (c) and (d)
indicates to DW U-Net with Convformer, DW U-Net with Self Attention and DW U-Net
with CBAM respectively.

From Figure 3.13, it is evident that the training process of all the models apart from

DW U-Net with Self Attention is fairly smooth i.e. loss constantly decreases as we progress

through the epochs. Now we look into the visualization of this result by checking out some

sample test images and see how the models perform on them.

From Figure 3.14, we observe that the performance of the models on most test dataset

points is nearly comparable, except for the last image. In this case, DW U-Net with

Modified Convformer significantly outperforms the other models, demonstrating nearly
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Figure 3.14: Visualization of Results on skin lesion dataset.

twice the performance. This indicates that the Modified Convformer mechanism excels in

texture analysis compared to the other models and can identify false positive cases more

accurately.

Results based on BraTS2020 Brain Tumour Dataset

Lastly, we look into the results of the BraTS2020 brain tumor dataset. As described in the

previous sections section 3.5.1, BraTS2020 is a multimodal dataset. It contains modalities

namely FLAIR, T2-weighted, T1-weighted, and post-contrast T1-weighted(T1ce). The

training set contained scans of 369 patients where each scan was of dimension 240×240×155.

We already discussed earlier about the pre-processing of this data in detail in the previous

sections. Despite having a validation set, we needed to split the training dataset into train

and test data due to the restricted usage of the validation set. Our goal here is to iden-

tify the whole tumor area. For that not only did we compile our models on the different

modalities separately but also concatenated all the modalities and tested our models on

the concatenated entity (having dimension 224×224×4). Below we provide the results of

those experiments.

From Table 3.5, it is evident that the FLAIR and T2 modalities are the most effective

in identifying the entire tumor region. The results reveal that different models achieve the

highest Dice Score for different MRI modalities, indicating each model’s unique strengths

in brain tumor segmentation. For the FLAIR modality, the DW U-Net with Modified

Convformer achieves the highest Dice Score (0.8508), demonstrating its effectiveness at
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Table 3.5: Comparative study based on the BraTS2020 brain tumor dataset for various
attention techniques reported across each modality.

Models Parameters
Dice Score

FLAIR T2 T1 T1ce

DW U-Net with Modified Convformer 18.66 M 0.8508 0.8004 0.7482 0.7242

DW U-Net with Convformer 68.92 M 0.8458 0.8017 0.748 0.7321

DW U-Net with Self Attention 18.6 M 0.8405 0.7661 0.7233 0.6955

DW U-Net with CBAM 6.12 M 0.8387 0.811 0.7268 0.7145

capturing features relevant to detecting tumor regions in FLAIR images, which are known

for their high sensitivity to edema. In the T2 modality, the DW U-Net with CBAM attains

the highest Dice Score (0.811). Benefiting from CBAM’s ability to focus on important

spatial and channel-wise features, DW U-Net with CBAM is able to highlight fluid-filled

structures and provide good contrast between normal and pathological tissues. For the

T1 modality, the DW U-Net with Modified Convformer again stands out with the highest

Dice Score (0.7482), leveraging the excellent anatomical detail provided by T1-weighted

images for accurate tumor segmentation. Lastly, in the T1ce modality, the DW U-Net with

Convformer excels with a Dice Score of 0.7321. T1ce images include contrast enhancement,

crucial for highlighting more active or aggressive tumor areas. Convformer’s robust feature

extraction capabilities outperform the other models in this case. These findings mark the

need to consider the specific strengths of different models for each imaging modality in

brain tumor segmentation, suggesting that an ensemble approach or modality-specific

model selection could yield the best overall performance in clinical practice. Now we

present below the result considering all the modalities together.

Table 3.6: Comparative study based on the BraTS2020 brain tumor dataset for various
attention techniques, considering all modalities together.

Models Parameters Dice Score

DW U-Net with Modified Convformer 18.66 M 86.76

DW U-Net with Convformer 68.92 M 86.74

DW U-Net with Self Attention 18.6 M 86.66

DW U-Net with CBAM 6.12 M 85.65

The Table 3.6 presents a comparative study of different attention techniques based

on the BraTS2020 brain tumor dataset, considering all MRI modalities together. Here

performance of all the models is relatively close to each other with DW U-Net with Mod-

ified Convformer achieving the highest Dice Score of 86.76 with 18.66 million parameters,

indicating its superior performance in segmenting brain tumors. Also, we see from Ta-

ble 3.5 and Table 3.6 that, all the models work better when we consider all the modalities

together. This happens because each modality is responsible for identifying a particular

area of the tumor, thus concatenating all modalities help us to identify the whole tumor

area more accurately. The upcoming sections will provide visualizations of our results,

focusing on a single scan. We assessed the performance of our model, DW U-Net with

Modified Convformer, based on separate training on each modality and combined training

on all modalities. These visualizations will offer insights into how the model performs
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better when considering all the modalities together rather than training on each modality

separately.

Figure 3.15: Training graphs of the models on BraTS2020 brain tumour dataset. (a)
denotes Loss vs Epoch graph for DW U-Net with Modified Convformer. Similarly (b), (c)
and (d) indicates to DW U-Net with Convformer, DW U-Net with Self Attention and DW
U-Net with CBAM respectively

Figure 3.16: Visualization of Results on brain tumour dataset considering all the modalities
together.
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Figure 3.17: Visualization of Results on brain tumour dataset when model was trained on
different modalities separately.

Above Figures 3.17 and 3.16 show that when training is done on each modality sepa-

rately as well as simultaneously, our proposed model DW U-Net with Modified Convformer

outperforms other models in both cases.

Figure 3.18: This figure illustrates that the DW U-Net with Modified Convformer model
achieves higher accuracy when trained on all modalities combined, compared to training
on each modality separately. In the second row of the image, the outputs generated from
training on FLAIR, T1, T1ce, T2, and their concatenated form are displayed from left to
right.

Figure 3.18 illustrates the performance comparison of DW U-Net with Modified Con-
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vformer model when trained on different modalities and all modalities combined. The

results show that the model achieves higher accuracy when trained on all modalities com-

bined, as opposed to training on each modality separately. This indicates that integrating

information from multiple modalities allows the model to better capture the underlying

patterns and improve segmentation performance.

From Table 3.3, Table 3.4, Table 3.5, and Table 3.6, it is clear that DW U-Net with

Modified Convformer and DW U-Net with Convformer are the top-performing models

across all datasets. Among them, DW U-Net with Modified Convformer consistently

shows slightly better performance. Additionally, DW U-Net, having fewer parameters, is

more computationally efficient.

3.6 State-of-the-art Comparison

For all three datasets namely Kvasir-SEG polyp [2] dataset, ISIC2017 skin lesion[1] dataset

and BraTS2020 brain tumor[24][25][23] dataset, we have compared our best proposed

model with some of the state-of-the-art models whose results are in this section.

For the Kvasir-SEG polyp dataset, in terms of accuracy, our proposed model performed

better than some benchmark models like ResUNet++ and UNet++. It showed comparable

results when compared with models like PEFNet, DoubleUnet-DCA, and TransNetR.

Below is the table showing the same.

Table 3.7: State-of-the-art Comparison based on Kvasir-SEG polyp dataset

Model Parameters Dice Score

Unet++[13] 9.16 M 0.821

ResUNet++[30] 4.06 M 0.8133

DoubleUnet-DCA[28] 30.68 M 0.8516

TransNetR[29] 27.27 M 0.8706

DW Unet with Modified Convformer 18.66 M 0.8245

In this comparative analysis(Table 3.7 of state-of-the-art models’ performance on the

Kvasir-SEG polyp dataset, it is worthy of mention that the DW Unet with Modified

Convformer tries to demonstrate a balance between model complexity and performance.

While models like DoubleUnet-DCA and TransNetR achieve higher Dice scores of 0.8516

and 0.8706 respectively, they do so at the expense of significantly higher number of param-

eter counts (30.68 M and 27.27 M). In contrast, the DW Unet with Modified Convformer,

with only 18.66 M parameters, achieves a commendable Dice score of 0.8245.

For the ISIC2017 skin lesion dataset, our proposed model demonstrates comparable

performance to leading models such as FAT-Net[31], FAC-Net[32], EIU-Net[33], and DEU-

Net[34], which achieve Dice scores of 0.85, 0.8491, 0.8550, and 0.8716, respectively. Our

model attains a Dice score of 0.8287, highlighting its competitive efficiency in skin lesion

segmentation. Please note that the dice scores of the mentioned models are taken from

paper[34].

For the BraTS2020 dataset, we compared our model against those that reported Dice

scores on the training data due to restrictions preventing us from evaluating our model
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on the validation set. Our proposed model, which achieved a Dice score of 0.8676, out-

performs the V-Net with modifications[35], which has a Dice score of 85.13 on training

set. Additionally, our model is competitive with other advanced models such as the 3D

dResU-Net[36], which has a Dice score of 0.9212 with 30.47 million parameters, and the

SGEResU-Net[37], which has a Dice score of 0.9048 with over 19.07 million parameters.
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Chapter 4

Conclusion and Future Work

In our work, we have seen comparisons between various kinds of attention techniques like

Modified Convformer, Convformer, Self Attention, and CBAM. We used different datasets

to gauge the efficiency of those models and validate our findings. We have noticed that our

proposed model Modified Convformer outperforms other models across all three datasets

namely the Kvasir-SEG polyp dataset, ISIC2017 skin lesion dataset, and BraTS2020 brain

tumor dataset in terms of accuracy, and is also computationally efficient. The datasets were

meticulously selected from various fields of medical science, including dermatology, gas-

troenterology, and MRI, to evaluate our model’s robustness and adaptability across diverse

medical imaging domains. By integrating advanced attention mechanisms and convolu-

tion techniques, our model effectively captures intricate patterns and dependencies within

the data, leading to significantly improved segmentation performance. Additionally, the

Modified Convformer exhibits a balanced trade-off between accuracy and computational

cost, making it a viable choice for real-time applications where both precision and speed

are critical.

However, there is still room for improvement. Due to time constraints and limited

resources, our work remains a preliminary investigation work in this particular domain.

Future work could explore several promising avenues to improve our model’s performance

further. One potential direction is to experiment with different loss functions tailored for

medical image segmentation. Using loss functions such as Dice loss, Boundary loss, or

focal loss could improve the model’s ability to handle imbalanced data and small lesions,

leading to more precise segmentation results.

Another area for enhancement is the application of attention mechanisms across various

layers of the architecture and not just in the bottleneck layer. By incorporating attention

at multiple stages, the model has increased chances of potentially capturing more hier-

archical and contextual information, thereby improving its overall performance. Having

said that, maintaining computational efficiency while enhancing the model’s complexity is

also crucial. Thus the use of lightweight attention mechanisms could help in keeping the

model efficient without sacrificing performance.

Also as a part of future work, we would like to check our models’ performance in

multiple-class segmentation problems. Our current study focuses on datasets involving

brain tumors, skin lesions, and colorectal polyps. Thus we would like to extend our work
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to datasets involving other vital organs such as the heart, lungs, kidneys, and liver. Test-

ing our model’s performance on these additional datasets will provide a more detailed and

comprehensive understanding of its adaptability and capabilities across a more wider range

of medical imaging applications. This expansion will help in developing a more universally

applicable and robust model for medical image segmentation, ultimately contributing to

improved diagnostic and treatment outcomes in diverse clinical settings. Apart from these

points, we would also like to extend this work to weakly-supervised domains. Exploring

weakly-supervised learning methods can be beneficial, especially in scenarios where obtain-

ing fully annotated data is challenging or expensive. Weakly-supervised learning allows

models to learn from partially labeled or noisy data by leveraging auxiliary information

or weak labels.

In summary, Convformer emerges as a superior attention mechanism compared to

traditional self-attention techniques. This highlights the significance of integrating convo-

lutions within attention modules, effectively addressing the inherent challenges like atten-

tion collapse and other issues encountered in the joint training of CNNs and transformers.

Furthermore, the inclusion of Modified Convformer yields significant performance improve-

ments, emphasizing the benefits of utilizing models with reduced parameters to eliminate

the risks of overfitting.

While our study demonstrates promising outcomes with Modified Convformer, there

exists ample scope for further advancements. Exploring diverse loss functions, extending

the application of attention mechanisms across the network, and implementing strategies

to ensure computational efficiency are avenues worth exploring. By pursuing these avenues,

we can continue to propel the field of medical image segmentation forward, fostering the

development of more resilient, precise, and resource-efficient models.
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