
1 | P a g e

Enhancing Axiomatic Explanations for Pairwise
Ranking

A dissertation submitted in partial fulfilment of

the requirements for the M. Tech. (Computer

Science) degree of the Indian Statistical Institute.

By

Swastik Mohanty

under the supervision of

Dr. Debapriyo Majumdar

2 | P a g e

Indian Statistical Institute
203, B.T. Road. Kolkata: 700108

CERTIFICATE

I certify that I have read the thesis titled “Enhancing Axiomatic Explanations

for Pairwise Ranking”, prepared under my guidance by Swastik Mohanty, and

in my opinion it is fully adequate, in scope and in quality, as a dissertation for

the degree of Master of Technology in Computer Science of the Indian

Statistical Institute.

 Dr. Debapriyo Majumdar
 Assistant Professor
 CVPRU

KOLKATA

JULY, 2024

3 | P a g e

Declaration of Authorship

I, Swastik Mohanty, declare that this thesis titled "Enhancing Axiomatic Explanations for
Pairwise Ranking" and the work presented within it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Swastik Mohanty

Signed:

Date: 17/06/24

4 | P a g e

Acknowledgements

To Dr. Debapriyo Majumdar whose expert guidance, infinite patience and

constant encouragement has endowed me with a strong foundation in

Information Retrieval and made this dissertation possible.

To Sourav Saha who was always available to answer all my queries and

helped me in using the various tools required for my project. He supplied me

with a variety of research papers and libraries to enhance my knowledge on

explainable IR and helped me build solid foundation before diving deep into

pairwise explanations. Thanks for always being available to answer all my doubts

and always pointing me in the right direction when I was stuck.

To Dr. Mandar Mitra for always being there to provide me with the domain

knowledge and key insights regarding my project.

Swastik Mohanty

June, 2024.

5 | P a g e

Table of Contents

Declaration of Authorship .. 3

Acknowledgements .. 4

List of Tables and Figures ... 6

Chapter 1 - Introduction to Explainability ... 7

1.1 Explainable AI ... 7

1.2 Explainability for IR .. 8

1.3 Axiomatic Approaches for Explainable IR ... 8

Chapter 2 - Related Work ... 9

2.1 Information Retrieval Toolkits ... 9

2.1.1 Pyserini .. 9

2.1.2 PyTerrier .. 9

2.2 Ir_axiom .. 10

2.2.1 Implementation details ... 11

2.2.2 Re-ranking using ir_axioms ... 11

2.2 Ir_explain .. 12

2.2.1 Understanding the library ... 13

2.2.2 Pairwise Explanation ... 13

2.2.3 Installation ... 14

Chapter 3 - Our contribution to IR_Explain ... 15

3.1 Implementing the Axioms .. 15

3.1.1 List of Axioms .. 16

3.2.2 Combining and Adding new axioms ... 22

3.3 Explain_More ... 23

Chapter 4 - Experiments and Use Cases .. 24

4.1 The Dataset ... 24

4.2 Experiments .. 25

4.2.1 Use Case 1 .. 25

4.2.2 Use Case 2 .. 26

4.2.2 Use Case 3 .. 27

4.2.4 Use Case 4 .. 28

Chapter 5 - Future Work .. 31

5.1 ARES (Axiomatic Regularization for ad-hoc Search) ... 31

Bibliography ... 33

6 | P a g e

List of Tables and Figures

Figure 1: Re-reanking using ir_axioms taken from Hagen 2016 [3] .. 11

Table 1: Requirements to run ir_explain .. 14
Table 2: Binary operators in ir_explain ... 22
Table 3: Unary operators in ir_explain ... 22
Table 4: pairwise.explain() in Use Case 1 ... 26
Table 5: explain_details() on Prox1 in Use case 2 ... 27
Table 6: Pairwise.explain() on Use Case 3 ... 28
Table 7: explain_details on PROX1 in Use Case 4 ... 29
Table 8: explain_details on PROX2() Use Case 4 ... 30

7 | P a g e

Chapter 1 - Introduction to Explainability

1.1 Explainable AI

Explainable AI (XAI) is a critical framework designed to enhance human comprehension and
confidence in the outcomes produced by artificial intelligence (AI) and machine learning (ML)
models. It addresses the inherent "black box" nature of many AI systems by offering clear,
understandable, and transparent explanations for their decisions and actions. This
transparency is particularly crucial in high-stakes domains such as healthcare, finance, law
enforcement, and autonomous systems, where the ability to interpret AI reasoning is
essential for ensuring accountability, fairness, and trust. Key aspects of XAI include –

1. Transparency: This involves making the internal workings of AI systems visible and
understandable. It includes documenting how the AI model was developed, the data
it was trained on, the algorithms it uses, and the logic behind its predictions or
decisions.

2. Interpretability: The extent to which a human can understand the cause of a decision

made by an AI system. Models that are interpretable can provide insights into how
they arrive at specific outputs, making it easier to identify potential biases or errors.

3. Justifiability: This aspect ensures that the decisions made by AI can be justified with

respect to domain knowledge and societal norms. The explanations provided should
make sense to domain experts and be aligned with human reasoning.

4. Reliability and Robustness: An explainable AI system should not only provide

understandable explanations but also be reliable and robust in its predictions. This
involves ensuring that the system behaves consistently and can handle a variety of
inputs without producing unexpected or incorrect results.

5. User Control and Feedback: Allowing users to interact with the AI system, provide

feedback, and have control over its outputs. This helps in refining the system and
aligning it more closely with user expectations and requirements.

8 | P a g e

1.2 Explainability for IR

Explainability in Information Retrieval (IR) is a crucial area that focuses on making the
decision-making processes of IR systems understandable and transparent to users. This is
particularly important given the complex nature of modern IR systems, which often involve
sophisticated neural models and large-scale data processing.

1.3 Axiomatic Approaches for Explainable IR

In the realm of information retrieval (IR), retrieval axioms play a pivotal role as formal
principles that define the desirable behavior of retrieval models. These axioms are designed
to ensure that IR systems rank documents in a manner that aligns with users' expectations
and needs. By establishing clear, theoretical guidelines for how documents should be ranked
in response to queries, retrieval axioms help to improve the effectiveness and reliability of IR
systems.

Retrieval axioms provide a structured way to evaluate and enhance the performance of
retrieval models. They serve as a theoretical foundation that guides the development and
refinement of these models, ensuring that they produce rankings that are both intuitive and
effective. For instance, axioms can specify that if a document is more relevant to a query than
another, the more relevant document should be ranked higher. Such principles help in
creating models that better understand and fulfill user intents, leading to more satisfactory
search experiences.

To evaluate and explain the adherence of IR models to these axioms, specialized tools such
as ir_axioms [1] and ir_explain [2] have been developed. These tools facilitate the
implementation and assessment of retrieval axioms by comparing pairs of documents and
generating scores that indicate preference according to specific axioms.
In the subsequent sections, we will examine the application of these tools.

9 | P a g e

Chapter 2 - Related Work

2.1 Information Retrieval Toolkits

The Information Retrieval (IR) community has a well-established tradition of providing open-
source libraries and resources that make it convenient for researchers to experiment with,
evaluate, and understand different retrieval models. Among these, Pyserini and PyTerrier
stand out as prominent modern IR toolkits that support both sparse and dense retrieval
models, facilitating a wide range of IR tasks and experiments.

2.1.1 Pyserini

Pyserini is a Python interface to the Anserini information retrieval toolkit, which is built on
top of the Apache Lucene search library. Designed to bridge the gap between robust,
production-grade search capabilities and the needs of the research community, Pyserini
provides a powerful yet accessible platform for IR experimentation. One of its core strengths
lies in its seamless integration with Lucene, allowing users to leverage Lucene’s high-
performance, full-featured text search engine capabilities. This integration ensures that
Pyserini can handle large-scale text retrieval tasks efficiently.

Moreover, Pyserini is designed with reproducible research in mind. It offers pre-built indices
for major datasets, ensuring that researchers can reproduce results and compare their work
against established benchmarks. The Python API provided by Pyserini makes it easy for
researchers to interact with the toolkit, facilitating the use of Python’s rich ecosystem for data
analysis and machine learning. This accessibility, combined with its state-of-the-art retrieval
methods, makes Pyserini a valuable tool for advancing IR research.

2.1.2 PyTerrier

PyTerrier, or Python Terrier, is another influential toolkit in the IR domain. Built on top of the
Terrier search engine platform, PyTerrier provides an efficient and flexible environment for
conducting IR research.

10 | P a g e

It integrates seamlessly with Terrier, a well-known platform celebrated for its extensible and
powerful IR capabilities. This integration allows PyTerrier to benefit from the robust search
and indexing functionalities that Terrier offers.

One of PyTerrier's key features is its emphasis on rapid experimentation with retrieval
models. Researchers can prototype and evaluate new IR methods quickly, thanks to the
modular and Pythonic design of PyTerrier. This modularity not only facilitates easy
customization and extension of retrieval pipelines but also enhances the toolkit’s adaptability
to various research needs. Additionally, PyTerrier supports the standard retrieve-and-rerank
pipeline on TREC collections, ensuring that researchers can work with widely recognized
benchmarks and datasets.

2.2 Ir_axiom

ir_axioms is an open-source Python framework designed to integrate axiomatic principles into
information retrieval (IR) systems [1]. The primary goal of ir_axioms is to incorporate retrieval
axioms into modern retrieval frameworks to enhance their performance and interpretability.
Retrieval axioms are fundamental principles or rules that define the behavior and properties
of effective retrieval models. By integrating these axioms, ir_axioms aims to enhances the
quality of initial search result rankings thereby improving the overall retrieval performance.
It ensures that the outcomes are more effective and aligned with fundamental retrieval
principles. Additionally, it provides insights and explanations for the rankings produced by
different retrieval models.

ir_axioms offers several key features that enhance its utility in information retrieval. It
includes reference implementations for several predefined retrieval axioms, each
representing a specific principle or rule pertinent to effective information retrieval. The
framework provides tools for preference aggregation, allowing users to incorporate and apply
user preferences to refine retrieval models.

One fundamental example is the Term Frequency Constraint (TFC1) axiom, which asserts that
documents containing more occurrences of query terms should be ranked higher. This
principle posits that a document that mentions the query term more frequently is more
relevant to the user's search intent. By incorporating the TFC1 axiom, an IR system ensures
that documents which are likely to be more informative and relevant to the user's query are
prioritized, leading to a more effective and satisfying search experience.

11 | P a g e

Additionally, ir_axioms includes methods for reranking search results based on axiomatic
principles, ensuring that the output aligns with the defined axioms. To evaluate the
performance of models enhanced by these axioms, ir_axioms offers robust evaluation tools.
Moreover, it facilitates the easy definition of new axioms; users can either create new axioms
by implementing an abstract data type or combine existing axioms using Python operators or
regression techniques, offering flexibility and extensibility in experimentation and
application.

2.2.1 Implementation details

ir_axioms seamlessly integrates with popular retrieval frameworks such as PyTerrier and
Pyserini, facilitating the application and experimentation of axiomatic principles within
various retrieval models. This integration ensures that users can easily implement and test
retrieval axioms without the need for extensive adjustments to their existing workflows.

Furthermore, ir_axioms provides comprehensive access to ir_datasets, which includes
standard retrieval models, corpora, topics, and relevance judgments. This access is
particularly valuable for facilitating experimentation with well-known datasets, such as those
used in the Text Retrieval Conference (TREC). By integrating with ir_datasets, ir_axioms allows
users to work with established benchmarks and datasets, ensuring that their experiments are
grounded in widely-recognized and reliable data sources. This integration not only
streamlines the process of setting up experiments but also enhances the credibility and
comparability of the results, making it an invaluable tool for advancing research in
information retrieval.

2.2.2 Re-ranking using ir_axioms

Figure 1: Re-reanking using ir_axioms taken from Hagen 2016 [3]

12 | P a g e

This figure illustrates the process of axiomatic re-ranking in three main steps. Let's break
down each part in detail:

Step 1: Initial Retrieval:

1. Corpus and Retrieval Model: The process begins with a corpus of documents. A
retrieval model R (e.g., BM25, a common information retrieval model) is used to
retrieve documents from the corpus based on a given query.

2. Initial Ranking: The retrieval model produces an initial ranking of the top-k

documents relevant to the query. These documents are labeled 1 through k.

Step 2: Axiomatic Evaluation:

1. Application of Axioms: Multiple axioms are applied to evaluate the initial rankings.
Examples include TFC1 and ORIG. Each axiom Mi generates a matrix where the rows
represent the top-k documents and the entries indicate the preferences or scores
assigned by the axiom to each document.

2. Meta Learning: The outputs of these axiomatic evaluations are fed into a meta-
learning component. Meta-learning helps to understand and estimate the impact of
each axiom on the ranking process, producing a function fR(M1, ..., M23) that
aggregates the preferences or impacts of all the axioms.

Step 3: KwikSort Algorithm:

1. Re-ranking with KwikSort: The aggregated preferences from the meta-learning
process are input into the KwikSort algorithm. KwikSort [4] then re-ranks the top-k
documents based on the combined axiomatic preferences, resulting in a new,
potentially more effective ranking of documents labeled 1’ through k’.

This process highlights how axiomatic principles can be systematically integrated into
retrieval models to refine and enhance the quality of search results.

2.2 Ir_explain

ir_explain is an open-source Python library that offers a range of well-established techniques
for Explainable Information Retrieval (ExIR) within a unified and extensible framework. It is
designed to simplify the reproduction of state-of-the-art ExIR baselines on standard test
collections and to enable the exploration of new methods for explaining IR models. To
encourage its use, ir_explain is seamlessly integrated with popular toolkits like Pyserini and
ir_datasets.

13 | P a g e

2.2.1 Understanding the library

The most common Information Retrieval (IR) task involves retrieving the top-𝑘 ranked
documents for a query 𝑄 from a large collection 𝐶 and presenting them to the end-user.
Modern Neural Information Retrieval (neuIR) typically uses a two-stage pipeline for this
process.

1. First Stage: An initial ranker, such as BM25 or language models with Jelinek-Mercer
(LMJM) or Dirichlet (LMDir) smoothing, retrieves a larger set of top 𝑘' documents
(where 𝑘' is much larger than 𝑘 but still small compared to the entire collection 𝐶). For
example, if 𝑘 is 100, 𝑘' might be 1000.

2. Second Stage: Dense retrieval techniques are then used to re-rank this initial set of 𝑘'

documents. This re-ranking is manageable for complex neural models.

The first-stage ranker is denoted as 𝑀1, and the second-stage ranker as 𝑀2. Explainable IR
(ExIR) aims to clarify different aspects of these two ranking stages. Explanation methods are
generally categorized into three types:

- Pointwise Explanations: Focus on individual document scores.

- Pairwise Explanations: Compare pairs of documents to explain ranking differences.

- Listwise Explanations: Consider the entire list of ranked documents to provide
explanations.

2.2.2 Pairwise Explanation

A pairwise explanation seeks to clarify why one document 𝐷𝑖 is preferred over another
document 𝐷𝑗 for a given query 𝑄. These explanations are typically based on retrieval axioms,

which are formalizations of intuitive retrieval heuristics outlining the constraints a good
ranking method should satisfy. Various sets of axioms have been developed in the literature,
and some relaxations have been proposed to make these axioms practical. Hagen et al. [3]
demonstrated that the axiomatic framework can also serve as the foundation for the second-
stage ranker 𝑀2. While this use of the axiomatic framework is not an explanation per se, it
helps illustrate how the intuitive, pairwise preferences indicated by axioms can be integrated
into a final ranking.

14 | P a g e

This is our contribution to the library and will be discussed in detail in the upcoming chapters.

2.2.3 Installation

The ir_explain library can be installed via GitHub repository:

• git clone https://github.com/souravsaha/ir_explain

beir==1.0.1 gensim==4.3.1 nltk==3.8.1 scipy==1.10.1

captum==0.6.0 h5py==3.9.0 numpy==1.24.4 torch==2.0.1

cvxpy==1.3.2 ir_datasets==0.5.5 pyserini==0.21.0 torchtext==0.15.2

Datasets==2.13.1 ir_measures==0.3.3 pytorch_lightning==2.0.5 tqdm==4.65.0

genosolver==0.1.0.6 ipython==7.29.0 scikit_learn==1.3.0 transformers==4.30.2

Table 1: Requirements to run ir_explain

15 | P a g e

Chapter 3 - Our contribution to
IR_Explain

Inspired from IR_axioms, pairwise component of ir_explain library implements such retrieval
axioms for experimentation with standard retrieval toolkits. These axioms are adapted for
practical use, such as reformulating them to work with arbitrary queries and expressing
pairwise preferences. Parameters are included to adjust the conditions of the axioms, and
term similarity axioms are provided in variants using WordNet synsets or fastText
embeddings.

3.1 Implementing the Axioms

While ir_axioms is closely integrated with the Pyterrier retrieval pipeline and lacks the
capability to compare arbitrary document pairs 𝐷𝑖 and 𝐷𝑗 , this feature is included in

ir_explain.

Similar to ir_axioms, ir_explain allows users to use binary and unary operators to combine
and aggregate different axioms, and also provides an easy way to define new axioms. The
primary function of an axiom object 𝐴 is to determine, given a query 𝑄 and two documents
𝐷𝑖 and 𝐷𝑗 , whether 𝐷𝑖 is preferred over 𝐷𝑗 for the query 𝑄. This is done by returning a

preference score 𝑝𝑟𝑒𝑓𝐴(𝑄, 𝐷𝑖 , 𝐷𝑗) ∈ {−1, 0, 1} defined as follows:

𝑝𝑟𝑒𝑓𝐴(𝑄, 𝐷𝑖 , 𝐷𝑗) = {

1, if 𝐷𝑖 is preferred over 𝐷𝑗

−1, if 𝐷𝑖 is preferred over 𝐷𝑗

0, if no preferrence given by A

Here is how you can use the pairwise class within the ir_explain framework to explain the
ranking of two documents (doc1 and doc2) for a given query (query) using a set of predefined
axiom classes:

pairwise = Pairwise(query, doc1, doc2, index_path)

 axiom_classes = [TFC1(), STMC1(), ...]

 pairwise.explain(axiom_classes)

16 | P a g e

Here, a Pairwise object is created, which represents the pairwise comparison between two
documents (doc1 and doc2) for a given query (query). The index_path variable represents the
path to the index or dataset used for retrieval.

A list axiom_classes is defined by user, where the user can specify which axioms it wants to
use for the given pair of documents. The explain method of the Pairwise class computes and
provides an explanation for the ranking of doc1 and doc2 for the given query based on the
specified axiom classes.

3.1.1 List of Axioms

In order to fulfil our requirements, we had to code the axioms from ir_axioms from scratch
following the logic proposed by the original authors of the axioms (along with the recent
modifications made to them) [3]. Here is a detailed summary of each axiom in the library -

TFC1:

The Term Frequency Constraint 1 (TFC1) is a fundamental axiom in information retrieval (IR)
that guides how documents should be ranked based on the frequency of a query term within
them [5]. Specifically, TFC1 asserts that when a query consists of a single term t, documents
containing higher occurrences of t should receive higher scores. In essence –

TFC1 (as given by Hagen et 2016 [3]): Let 𝑞 = { 𝑡 } be the query with one term t.
Assume |𝑑1| = |𝑑2|. If 𝑡𝑓(𝑡, 𝑑1) > 𝑡𝑓(𝑡, 𝑑2) then 𝑠𝑐𝑜𝑟𝑒(𝑑1, 𝑞) > 𝑠𝑐𝑜𝑟𝑒(𝑑2, 𝑞).

We transform TFC1 to our triple notation by setting (10% relaxation)

Precondition:= 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑1) ≈ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑2)

Filter := 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑1) ≈ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑2)

Conclusion:= 𝑑1 > 𝑑2

When dealing with queries that consist of more than one term, a generalized version of
TFC1 expands the principle to incorporate the sum of individual term frequencies. This
approach ensures that documents containing higher combined frequencies of all query
terms are ranked more favorably.

17 | P a g e

TFC3:

This axiom is designed to provide rules for scoring documents when the query contains two
terms. It considers two main factors: term frequency and term importance (inverse document
frequency, IDF).

Term Frequency (TF): As seen before, it refers to how often each term in the query appears
in the document. A document scores better if it includes the query terms more frequently, as
this indicates a stronger relevance to the query.

𝑡𝑓(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′𝜖𝑑

 𝑓𝑡,𝑑 is the raw count of a term in a document, i.e., the number of times that term t occurs in
document d. Note the denominator is simply the total number of terms in document d
(counting each occurrence of the same term separately).

Term Importance (IDF): IDF measures how unique or rare a term is across the entire document
collection. A higher IDF value indicates that a term is more important or distinctive. A
document scores better if it contains terms with higher IDF values, as these terms contribute
more to the uniqueness of the document.

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑: 𝑑 𝜖 𝐷 𝑎𝑛𝑑 𝑡 𝜖 𝑑}|

N is the total number of documents in the corpus. |{𝑑 𝜖 𝐷: 𝑡 𝜖 𝑑}| is the number of docs
where the term t appears (i.e. 𝑡𝑓(𝑡, 𝑑) ≠ 0). However, there is a potential issue with this
axiom i.e. if a query term is not present in the corpus, it can lead to a division by zero error.
To overcome this, we can adjust the formula to avoid such situations by changing the
numerator and denominator to 1 + 𝑁 and 1 + |{𝑑: 𝑑 𝜖 𝐷 𝑎𝑛𝑑 𝑡 𝜖 𝑑}| respectively.

To extend these scoring rules to longer queries (queries with more than two terms), the axiom
suggests applying the rules to every possible pair of terms within the query. [5]

18 | P a g e

PROX1:

It ranks documents by how closely query terms appear to each other on average. We define
𝜋(𝑞, 𝑑) which measures the average distance between pairs of query terms in a document.

𝜋(𝑞, 𝑑) =
1

|𝑃|
∑ 𝛿(𝑑, 𝑖, 𝑗)

(𝑖,𝑗) 𝜖 𝑃

Where 𝑃 = {(𝑖, 𝑗)|𝑖, 𝑗 𝜖 𝑞, 𝑖 ≠ 𝑗} is the set of all possible query term pairs and 𝛿(𝑑, 𝑖, 𝑗)
calculates the average number of words between the query terms ti and tj in the document d
based on all positions of ti and tj . Finally whichever doc has a smaller 𝜋(𝑞, 𝑑) is preferred. [6]

PROX2:

It follows the logic that a document where query terms appear earlier is likely more relevant,
as it suggests that the document addresses the query terms sooner, making it easier for the
searcher to find relevant information quickly. It ranks documents based on how early the
query terms first appear. If the first occurrences of query terms in document d1 happen earlier
than in document d2, then d1 is considered better. [6]

PROX3:

It ranks documents based on how early the entire query phrase appears. For each document,
find where the entire query q first appears as a single phrase. Identify the position where this
phrase first appears in the document. This position is called 𝜏(𝑑, 𝑞) . If the query does not
appear as a single phrase, assign 𝜏(𝑑, 𝑞) = ∞. Prefer the document with lower value of
𝜏(𝑑, 𝑞). [6]

19 | P a g e

PROX4:

It ranks documents based on how closely the query terms appear together with the fewest
non-query words in between and how frequently this close grouping occurs. We define:

𝜔(𝑑, 𝑞): Represented as a pair (𝑎, 𝑏) where:

• 𝑎 is the number of non-query words in the closest grouping of all query terms.

• 𝑏 is how often this gap value occurs.

Compare the pairs 𝜔(𝑑1, 𝑞) and 𝜔(𝑑2, 𝑞) for two documents 𝑑1 and 𝑑2. The one with lower
𝜔(𝑑, 𝑞) is preferred. [6]

PROX5:

It ranks documents based on the average size of the smallest text spans that contain all query
terms around each occurrence of each query term. We define 𝑠̅(𝑑, 𝑞):

• For each query term t in the document, determine the smallest text span that includes
all query terms.

• Measure the size (number of words) of this text span.
• Compute the average size of these smallest text spans for all occurrences of all query

terms in the document.

Compare the pairs 𝑠̅(𝑑1, 𝑞) and 𝑠̅(𝑑2, 𝑞) for two documents 𝑑1 and 𝑑2. The one with lower
𝑠̅(𝑑, 𝑞) is preferred. [6]

LNC1:

In this axiom, when we're comparing two documents that exhibit the same term frequency
for all the query terms (with the consideration of the 10% softening), a preference is given to
the shorter document. This means that if two documents have an equal number of
occurrences of the terms in the query, the document with fewer words overall is considered
more favorable. [5]

20 | P a g e

LNC2:

This axiom originally checks if one document is an m-times copy of another. In this scenario,
the original (shorter) document is favored. However, this condition is unlikely in real-world
documents. So, the axiom is modified:

1. It calculates the Jaccard coefficient of the documents' vocabularies (terms they share).
2. If this coefficient is at least 80%, it derives the value of m based on the ratio of the

minimum document length to the maximum.

This modification makes the axiom more practical and adaptable to real-world scenarios. [5]

TF_LNC:

Axiom TF-LNC combines term frequency and document length for single-term queries. When
comparing two documents without the term and having the same length (with a 10%
softening allowance), the one with the higher term frequency is preferred. This principle is
generalized for multi-term queries by summing the term frequencies, similar to the LNC1
generalization. In essence, TF-LNC prioritizes documents with higher term frequencies,
considering document length as a tiebreaker when frequencies are equal. [5]

LB1:

This axiom examines documents that have the same retrieval score score(q,d). This retrieval
score represents the relevance of a document d to a given query q. There's a 10%-softening
allowance, meaning small variations in the retrieval score are permitted. If a term in the
query appears in document d2 but not in document d1, it suggests that document d2 might
be more relevant to the query than d1. [7]

STMC1:

Matching words that are similar in meaning rather than exactly matching the query terms
can be beneficial in situations where there's a mismatch in vocabulary or to improve small
result sets. WordNet is utilized to find these semantically similar terms. Axioms like STMC1
and STMC2 are analyzed in this context to leverage this semantic matching approach.

21 | P a g e

For each word w in a document d and each query term t in the query q, the semantic similarity
between w and t is calculated using WordNet. These individual similarity values are then
averaged to derive the overall semantic similarity σ(d,q) between document d and query q.
From two documents d1 and d2, the one with the larger average semantic similarity value
σ(d,q) is preferred. [8] [9]

STMC2:

This axiom is generalized to compare pairs of documents 𝑑1 and 𝑑2 based on semantic
similarity between non-query terms and query terms. From either document, the non-query
term t that is most similar to any query term t’ identified using WordNet. It ranks 𝑑1 higher
than 𝑑2 if the ratio of their lengths is about 20% of the ratio of t's frequency in 𝑑2 to t′
frequency in 𝑑1. [9] [8]

|𝑑2|

|𝑑1|
= 𝑎𝑝𝑝𝑟𝑜𝑥 20%

𝑡𝑓(𝑡, 𝑑2)

𝑡𝑓(𝑡0, 𝑑1)

REG:

In this axiom first, identify the query term t that is most similar to the other query terms. This
similarity can be determined using WordNet. If both documents 𝑑1 and 𝑑2 contain all the
other query terms (except for t), compare the term frequency (tf) values of t in 𝑑1 and 𝑑2.
The document with a higher tf-value for t is preferred. [10] [11]

AND:

In this axiom, given a query, if there's a pair of documents 𝑑1 and 𝑑2 where only 𝑑1 contains
all the query terms, then 𝑑1 is favored. [10] [11]

DIV:

In this axiom we again use the Jaccard coefficient, denoted as 𝐽(𝑑, 𝑞), which measures the
similarity between the set of terms in a document d and the set of query terms q. If the Jaccard
coefficient 𝐽(𝑑, 𝑞) for document𝑑1 is lower than 𝐽(𝑑, 𝑞) for document 𝑑2, then 𝑑1 is
preferred. [12]

22 | P a g e

(Note – We haven’t included the Argumentativeness axioms as of now, since they do not
apply to the ad-hoc retrieval settings used in our experiments)

3.2.2 Combining and Adding new axioms

You can add a new axiom in the following way –

Class NewAxiom (Axiom):

Name = “NEW”

Initialization/parameters

def explain(self, Cindex , query, doc1, doc2) :

Rules for preferring doc1 over doc2 for the given query

 # Cindex for accessing term frequencies in an index

You can combine the axioms using the following binary and unary operators –

+ Add Add axiom preferences or
constants

- Subtract Subtract axiom preferences
or constants

* Multiply Multiply axiom preferences
by a weight

/ Divide Divide axiom preferences by
a weight

& Conjuction Return preferance if all
axioms agree

% Majority Take majority vote of axioms

Table 2: Binary operators in ir_explain

- Negate Negate axiom preference
+ Normalize Normalise axiom preference

to (-1,0,1)

Table 3: Unary operators in ir_explain

23 | P a g e

3.3 Explain_More

For more complex axioms such as PROX1, PROX2, and PROX3, the simplistic use of preference
scores alone falls short in adequately explaining why one document is preferred over another.
To address this limitation, we have the class explain_more which contains the function
`explain_details()`, offering a deeper understanding of the preference computation process.

This tool serves a crucial role in enhancing our comprehension of the preferences derived
from axioms, offering a deeper dive into their underlying mechanics. It enables us to scrutinize
intricate details that govern document prioritization.

For instance, if TFC1 indicates that document 1 is preferred over document 2 for a specific
query, `explain_details()` allows us to delve deeper. By examining the exact differences in
term frequency (TF) values, we can ascertain the extent to which this axiom influences the
ranking decision. If the TF difference is minor, it suggests that TFC1 may not accurately reflect
the documents' relevance for that query, prompting a reassessment of its significance in such
cases.

Similarly, consider LNC1, which asserts that two documents have an identical frequency of
query terms. Utilizing `explain_details()`, we gain insights into the documents' respective
lengths. This information aids in identifying whether discrepancies in document ranking could
be attributed to variations in document sizes. Such detailed analysis provided by the tool
enhances our understanding of how different factors, beyond simple term frequencies,
contribute to document relevance and ranking outcomes. This capability is essential for
refining and optimizing information retrieval strategies with a more nuanced approach.

The tool can be implemented in the following manner –

from explain_more import explain_details

pairwise.explain_details(query, doc1, doc2, axiomName)

We’ll see many use cases of the Pairwise class in the next section for better understanding
about how to use both the pairwise class and explain_more class

24 | P a g e

Chapter 4 - Experiments and Use Cases

4.1 The Dataset

We are using a collection of datasets known as the MS MARCO (Microsoft MAchine Reading
COmprehension) dataset for the TREC Deep Learning (TREC-DL) track in 2019, which is a
widely used benchmark dataset in the field of natural language processing (NLP) and
information retrieval (IR). It is designed specifically for the task of machine reading
comprehension and question answering, with a focus on real-world relevance and user intent
understanding.

Here are the key details and components of the MS MARCO datasets:

1. Size and Scope: The dataset consists of a large collection of real user queries and
corresponding passages extracted from web documents. It contains over 1 million
(1,010,916) unique queries along with their associated passages. The passages are
relatively short segments of text extracted from web pages, typically ranging from a
few sentences to a short paragraph in length.

2. Query Types: The queries in the dataset cover a wide range of topics and query

intents, reflecting the diversity of real user search queries encountered on the web.
These queries vary in terms of length, complexity, and specificity, representing
different aspects of information needs and user intents.

3. Passage Selection: The passages in the dataset are selected based on their relevance

to the corresponding queries. Each query is associated with a set of relevant passages,
which are manually annotated by human judges. These passages are intended to
provide relevant information or answer the query to the best extent possible.

4. Annotation and Evaluation: The relevance of passages to queries is assessed using

human judgments. Human annotators are tasked with evaluating the relevance of
passages to each query based on their understanding of the query intent and the
information provided in the passage. The judgments are typically binary (relevant or
not relevant) or graded on a relevance scale.

5. Challenges: Despite its richness and size, the MS MARCO TREC-DL dataset poses

several challenges for machine learning models. These challenges include
understanding complex queries, identifying relevant information from noisy passages,
handling ambiguity and diversity in query intents, and generalizing to unseen queries
and passages.

25 | P a g e

4.2 Experiments

To effectively demonstrate the diverse applications of our library and underscore its role in
explaining document rankings for specific queries, we will begin by selecting a sample query.
Subsequently, we will compile a list of the top-ranked documents relevant to this query.
Through the application of our axioms and explanations to these documents, we aim to
enhance our understanding of their respective rankings.

4.2.1 Use Case 1

The chosen query for this demonstration is:

query id: “183378”

query Text: “exons definition biology”

We take a list of the top 20 passages from the “msmarco-passage/trec-dl-2019” dataset for
the given query. After that we take the first and fifth document and see whether we can
explain the difference in their ranking using our library.

First rank document is as follows:

Body of Document ID 7135097:

Herbivory: Definition & Examples 4:44 Next Lesson............................

Fifth rank document is as follows:

Body of Document ID 719550:

Chitin (biology) definition,meaning online encyclopedia......................

We use the following axiom classes -

axiom_classes = [TFC1(), PROX1(), DIV()]

Before we apply the axioms, we apply stemming and stop words removal as part of pre-
processing.

26 | P a g e

We take document 1 as the top ranked document (doc id: 7135097) and document 2 as the
fifth ranked document (doc id: 719550). We apply our library to get the following results –

(Note: As mentioned, a value of 1 indicates a preference for Document 1, -1 indicates a
preference for Document 2, and 0 indicates no preference between the documents.)

Query Document 1 Document 2 TFC1() PROX1() DIV()

exon definit bilog herbivori definit.... chitin (biolog)........ 1 0 -1

Table 4: pairwise.explain() in Use Case 1

4.2.2 Use Case 2

The results returned by our library in the previous use case were quite intriguing because
TFC1() aligns with our ranking criteria, while DIV() diverges from our ranking, and PROX1()
doesn't exhibit any discernible preference. Let's delve deeper by taking a look at the internal
functioning to gain a clearer understanding of why these results are occurring using
“explain_details()” -

Using explain_details on TFC1() for the given query document pair –

Term Frequency of query terms in document1 is 4

Term Frequency of query terms in document2 is 2

As we can see, document 1 exhibits a higher cumulative term frequency for all query terms
compared to document 2 thus demonstrating that in this case higher term frequency of query
terms results in higher relevance to the query (might not be true always).

Using explain_details on DIV() for the given query document pair –

 Jaccard Co-efficient of doc1 is:0.09090909090909091

 Jaccard Co-efficient of doc2 is:0.07692307692307693

27 | P a g e

Here since Jaccard Co-efficient of document 1 is higher than that of document 2 with the qu
ery terms according to the definition of the axiom, document 2 is preferred (which contradic
ts the ranking). However, we can clearly see that the difference is very small (less than 0.02).
This suggests that the Jaccard coefficient alone may not be a decisive factor in determining t
he ranking of these two documents according to the axiom.

Using explain_details on PROX1() for the given query document pair –

Metric Document 1 Document 2

tf(exon) 0 0

tf(definit) 3 1

tf(bilog) 1 1

avg_dist(exon, definit) 0 0

avg_dist(exon, biolog) 0 0

avg_dist(definit, biolog) 8.5 0

num pairs 3 3

Total_avg_dist 2.83 0

Table 5: explain_details() on Prox1 in Use case 2

Here we can see that the term frequency of the first query term is 0 for both documents
indicating not all query terms are present in both documents thus as per rules of the axiom,
PROX1() would not be able to give any preferences.

4.2.2 Use Case 3

We can combine and weight the axioms using binary and unary operators. We have defined
the library functions such that after any linear combinations the scores would be normalized
to {−1,0,1} using the unary “+”.

𝑝𝑟𝑒𝑓+𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) = {

1, 𝑖𝑓 𝑝𝑟𝑒𝑓𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) > 0

−1, 𝑖𝑓 𝑝𝑟𝑒𝑓𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) < 0

0, 𝑖𝑓 𝑝𝑟𝑒𝑓𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) = 0

28 | P a g e

For demonstration let us take use case 1 and define new axiom class by combining the axioms
in the following way –

 axiom_classes = [3*LNC1() + 4*TFC1(), - DIV(), PROX1() + PROX2() + PROX3()]

we get the following results (keeping the query, document1 and document 2 same as use
case 1) by applying our library –

Query Document 1 Document 2 4*TFC1() +

3*LNC1()

PROX1()+PROX2

()+PROX3()

- DIV()

exon definit

bilog

herbivori

definit....

chitin

(biolog)........

1 0 1

Table 6: Pairwise.explain() on Use Case 3

Here we have combined the axioms as per the following logic:

TFC1() prefers documents with higher term frequencies of query terms whereas LNC1()
prefers documents with shorter lengths, we have combined them so that our new axiom gives
preference to both (kind of like TF_LNC) however, we give slightly more weightage to tf values
over document lengths. We have combined 3 proximity axioms to ensure documents
containing query terms near to one other and in the beginning are preferred. Finally we have
negated the DIV() axiom to ensure preference is given to less diverse documents.

Thus, this approach allows us to experiment by logically combining multiple axioms to
determine document preferences based on our specific criteria. By synthesizing these axioms,
we can effectively gauge the relevance of documents to a given query according to our
tailored logic.

4.2.4 Use Case 4

To fully explore the capabilities of proximity axioms, let us use another dataset within MS
Marco with larger documents where all query terms are present. We'll then execute the
"explain_details" function to analyze the preferences generated by the axioms involved. This
will provide comprehensive insights into how proximity-based considerations influence
document rankings based on the given query.

29 | P a g e

So, we take the same query:

query id: “183378”

query Text: “exons definition biology”

We take the “msmarco-document/trec-dl-2019” dataset. MS Marco also has documents
assigned a particular relevance level based on how relevant they are for a particular query.
The relevance levels are defined as follows:

• 3: Perfectly relevant

• 2: Highly Relevant

• 1: Relevant

• 0: Irrelevant

We take doc id: D1077802 (which has been assigned a relevance of 3 for the given query) as
document 1 and doc id: D1806793 (relevance 1) as document 2.

We run both TFC1() and PROX1() and find that where TFC1() prefers document 2, PROX1()
prefers document 1 To further understand this phenomenon we run “explain_details” on
PROX1() and get the following table –

Metric Document 1 Document 2

tf(exon) 23 21

tf(definit) 7 56

tf(bilog) 1 25

avg_dist(exon, definit) 174.43 2728.07

avg_dist(exon, biolog) 354.71 3287.24

avg_dist(definit, biolog) 315.04 2864.24

num pairs 3 3

Total_avg_dist 281.39 2959.85

Table 7: explain_details on PROX1 in Use Case 4

30 | P a g e

We also run PROX2() and PROX3() on the given setup. We find that PROX2() prefers document
1 whereas PROX3() doesn’t return any preference. Using “explain_details” on PROX2() returns
the following –

Query Term Document First Occurrence

exon 1 27

definit 1 38

biolog 1 51

exon 2 1604

definit 2 24

biolog 2 82

Table 8: explain_details on PROX2() Use Case 4

Whereas “explain_details” on PROX3() returns that the entire query phrase doesn’t appear in
either of the two documents thus helping us understand the preferences returned by our two
axioms.

Therefore, a key insight emerges: despite document 2 having higher term frequencies for
query terms, these terms are dispersed throughout the document. This sparse distribution
contrasts with document 1, where query terms are closely clustered together. Additionally,
query terms in document 1 appear earlier compared to document 2. These proximity factors
significantly influence relevance determination. This underscores that the mere presence of
more query terms doesn't automatically translate to higher relevance. Proximity and
placement of query terms are crucial criteria in assessing document relevance alongside term
frequency.

31 | P a g e

Chapter 5 - Future Work

In future one direction we can move into is to incorporate the IR axioms into the pre-training
process of neural ranking models. There are studies have indicated that incorporating these
axioms can enhance the effectiveness and interpretability of IR models. However, there has
been little effort to integrate these axioms into pre-training methods for IR.

One such method proposed was a novel pre-training method called Axiomatic Regularization
for ad hoc Search (ARES) is proposed [13]. ARES uses a set of re-organized IR axioms to
generate training samples that guide neural rankers in learning desirable ranking properties
during the pre-training process. This approach makes ARES more intuitive and explainable
compared to existing pre-training methods.

5.1 ARES (Axiomatic Regularization for ad-hoc Search)

The Axiomatic Regularization for ad hoc Search (ARES) framework addresses the challenge of
incorporating IR axioms into the pre-training of neural ranking models, given the difficulty of
directly applying axioms that require pairwise document comparisons when only documents
are available. ARES consists of three main stages:

1. Pseudo Query Sampling (PQS): Generates pseudo queries from documents using a
contrastive sampling strategy. This stage ensures that each document in the corpus
can be associated with a set of pseudo queries, facilitating the next steps.

2. Preference Predictor Constructing (PPC): Collects ordered query pairs through four

different sampling settings. Extracts axiomatic features for each query pair, which are
essential for training. Trains a preference predictor (an axiomatic binary decision
model) using the axiomatic feature map and weak preference labels. This predictor
helps in understanding which query-document pairs should be ranked higher based
on the axioms.

3. Axiomatically Regularized Pre-training (ARP): Integrates query pairs regularized with

axioms into the pre-training process. Instead of relying on document pairs, ARES uses
these query pairs to guide the neural ranking model, embedding the axiomatic
knowledge directly into the model's training.

32 | P a g e

However, testing this model on standard datasets revealed only marginal improvements in
test metrics. This indicates a need for a more refined approach to enhance its performance
further. Future work should focus on developing a more elegant solution that builds upon
ARES, incorporating pairwise explanations to improve interpretability and effectiveness.

33 | P a g e

Bibliography

[1] Alexander Bondarenko, Maik Fröbe, Jan Heinrich Reimer, Benno Stein, Michael Völske,
and Matthias Hagen. 2022. Axiomatic Retrieval Experimentation with ir_axioms. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR '22). Association for Computing
Machinery, New York, NY, USA, 3131–3140. https://doi.org/10.1145/3477495.3531743

[2] Sourav Saha et al. “ir_explain: a Python Library of Explainable IR Methods”. In: arXiv
preprint arXiv:2404.18546 (2024).

[3] Matthias Hagen, Michael Völske, Steve Göring, and Benno Stein. Axiomatic result re-
ranking. In Proceedings of the 25th ACM International Conference on Information and
Knowledge Management, CIKM 2016. ACM, 721–730. https:
//doi.org/10.1145/2983323.2983704

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking
and clustering. J.ACM, 55(5), 2008.

[5] H. Fang, T. Tao, and C. Zhai. A formal study of information retrieval heuristics. In
Proceedings of SIGIR 2004, pp. 49–56.

[6] T. Tao and C. Zhai. An exploration of proximity measures in information retrieval. In
Proceedings of SIGIR 2007, pp. 295–302.

[7] Y. Lv and C. Zhai. Lower-bounding term frequency normalization. In Proceedings of
CIKM 2011, pp. 7–16

[8] H. Fang and C. Zhai. Semantic term matching in axiomatic approaches to information
retrieval. In Proceedings of SIGIR 2006, pp. 115–122.

[9] H. Fang. A re-examination of query expansion using lexical resources. In Proceedings of
ACL 2008, pp. 139–147.

34 | P a g e

[10] W. Zheng and H. Fang. Query aspect based term weighting regularization in
information retrieval. In Proceedings of ECIR 2010, pp. 344–356.

[11] H. Wu and H. Fang. Relation based term weighting regularization. In Proceedings of
ECIR 2012, pp. 109–120.

[12] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In
Proceedings of WWW 2009, pp. 381–390.

[13] Jia Chen, Yiqun Liu, Yan Fang, Jiaxin Mao, Hui Fang, Shenghao Yang, Xiaohui Xie, Min
Zhang, and Shaoping Ma. 2022. Axiomatically Regularized Pre-training for Ad hoc
Search. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR '22). Association for Computing
Machinery, New York, NY, USA, 1524–1534. https://doi.org/10.1145/3477495.3531943

	Declaration of Authorship
	Acknowledgements
	List of Tables and Figures
	Chapter 1 - Introduction to Explainability
	1.1 Explainable AI
	1.2 Explainability for IR
	1.3 Axiomatic Approaches for Explainable IR

	Chapter 2 - Related Work
	2.1 Information Retrieval Toolkits
	2.1.1 Pyserini
	2.1.2 PyTerrier

	2.2 Ir_axiom
	2.2.1 Implementation details
	2.2.2 Re-ranking using ir_axioms

	2.2 Ir_explain
	2.2.1 Understanding the library
	2.2.2 Pairwise Explanation
	2.2.3 Installation

	Chapter 3 - Our contribution to IR_Explain
	3.1 Implementing the Axioms
	3.1.1 List of Axioms
	3.2.2 Combining and Adding new axioms

	3.3 Explain_More

	Chapter 4 - Experiments and Use Cases
	4.1 The Dataset
	4.2 Experiments
	4.2.1 Use Case 1
	4.2.2 Use Case 2
	4.2.2 Use Case 3
	4.2.4 Use Case 4

	Chapter 5 - Future Work
	5.1 ARES (Axiomatic Regularization for ad-hoc Search)

	Bibliography

