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Chapter 1 - Introduction to Explainability 
 

 
 

1.1 Explainable AI 
 
 
Explainable AI (XAI) is a critical framework designed to enhance human comprehension and 
confidence in the outcomes produced by artificial intelligence (AI) and machine learning (ML) 
models. It addresses the inherent "black box" nature of many AI systems by offering clear, 
understandable, and transparent explanations for their decisions and actions. This 
transparency is particularly crucial in high-stakes domains such as healthcare, finance, law 
enforcement, and autonomous systems, where the ability to interpret AI reasoning is 
essential for ensuring accountability, fairness, and trust. Key aspects of XAI include –  
 
 

1. Transparency: This involves making the internal workings of AI systems visible and 
understandable. It includes documenting how the AI model was developed, the data 
it was trained on, the algorithms it uses, and the logic behind its predictions or 
decisions. 

 
2. Interpretability: The extent to which a human can understand the cause of a decision 

made by an AI system. Models that are interpretable can provide insights into how 
they arrive at specific outputs, making it easier to identify potential biases or errors. 

 
3. Justifiability: This aspect ensures that the decisions made by AI can be justified with 

respect to domain knowledge and societal norms. The explanations provided should 
make sense to domain experts and be aligned with human reasoning. 

 
4. Reliability and Robustness: An explainable AI system should not only provide 

understandable explanations but also be reliable and robust in its predictions. This 
involves ensuring that the system behaves consistently and can handle a variety of 
inputs without producing unexpected or incorrect results. 

 
5. User Control and Feedback: Allowing users to interact with the AI system, provide 

feedback, and have control over its outputs. This helps in refining the system and 
aligning it more closely with user expectations and requirements. 
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1.2 Explainability for IR 
 
 
Explainability in Information Retrieval (IR) is a crucial area that focuses on making the 
decision-making processes of IR systems understandable and transparent to users. This is 
particularly important given the complex nature of modern IR systems, which often involve 
sophisticated neural models and large-scale data processing. 
 
 

1.3 Axiomatic Approaches for Explainable IR 
 
 
In the realm of information retrieval (IR), retrieval axioms play a pivotal role as formal 
principles that define the desirable behavior of retrieval models. These axioms are designed 
to ensure that IR systems rank documents in a manner that aligns with users' expectations 
and needs. By establishing clear, theoretical guidelines for how documents should be ranked 
in response to queries, retrieval axioms help to improve the effectiveness and reliability of IR 
systems. 
 
Retrieval axioms provide a structured way to evaluate and enhance the performance of 
retrieval models. They serve as a theoretical foundation that guides the development and 
refinement of these models, ensuring that they produce rankings that are both intuitive and 
effective. For instance, axioms can specify that if a document is more relevant to a query than 
another, the more relevant document should be ranked higher. Such principles help in 
creating models that better understand and fulfill user intents, leading to more satisfactory 
search experiences. 
 
To evaluate and explain the adherence of IR models to these axioms, specialized tools such 
as ir_axioms [1] and ir_explain [2] have been developed. These tools facilitate the 
implementation and assessment of retrieval axioms by comparing pairs of documents and 
generating scores that indicate preference according to specific axioms. 
In the subsequent sections, we will examine the application of these tools. 
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Chapter 2 - Related Work 
 
 

2.1 Information Retrieval Toolkits 
 
 
The Information Retrieval (IR) community has a well-established tradition of providing open-
source libraries and resources that make it convenient for researchers to experiment with, 
evaluate, and understand different retrieval models. Among these, Pyserini and PyTerrier 
stand out as prominent modern IR toolkits that support both sparse and dense retrieval 
models, facilitating a wide range of IR tasks and experiments. 
 
 

2.1.1 Pyserini 
 
 
Pyserini is a Python interface to the Anserini information retrieval toolkit, which is built on 
top of the Apache Lucene search library. Designed to bridge the gap between robust, 
production-grade search capabilities and the needs of the research community, Pyserini 
provides a powerful yet accessible platform for IR experimentation. One of its core strengths 
lies in its seamless integration with Lucene, allowing users to leverage Lucene’s high-
performance, full-featured text search engine capabilities. This integration ensures that 
Pyserini can handle large-scale text retrieval tasks efficiently. 
 
Moreover, Pyserini is designed with reproducible research in mind. It offers pre-built indices 
for major datasets, ensuring that researchers can reproduce results and compare their work 
against established benchmarks. The Python API provided by Pyserini makes it easy for 
researchers to interact with the toolkit, facilitating the use of Python’s rich ecosystem for data 
analysis and machine learning. This accessibility, combined with its state-of-the-art retrieval 
methods, makes Pyserini a valuable tool for advancing IR research. 
 
 

2.1.2 PyTerrier 
 
 
PyTerrier, or Python Terrier, is another influential toolkit in the IR domain. Built on top of the 
Terrier search engine platform, PyTerrier provides an efficient and flexible environment for 
conducting IR research.  
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It integrates seamlessly with Terrier, a well-known platform celebrated for its extensible and 
powerful IR capabilities. This integration allows PyTerrier to benefit from the robust search 
and indexing functionalities that Terrier offers. 
 
One of PyTerrier's key features is its emphasis on rapid experimentation with retrieval 
models. Researchers can prototype and evaluate new IR methods quickly, thanks to the 
modular and Pythonic design of PyTerrier. This modularity not only facilitates easy 
customization and extension of retrieval pipelines but also enhances the toolkit’s adaptability 
to various research needs. Additionally, PyTerrier supports the standard retrieve-and-rerank 
pipeline on TREC collections, ensuring that researchers can work with widely recognized 
benchmarks and datasets. 
 
 
 

2.2 Ir_axiom  

 
ir_axioms is an open-source Python framework designed to integrate axiomatic principles into 
information retrieval (IR) systems [1]. The primary goal of ir_axioms is to incorporate retrieval 
axioms into modern retrieval frameworks to enhance their performance and interpretability. 
Retrieval axioms are fundamental principles or rules that define the behavior and properties 
of effective retrieval models. By integrating these axioms, ir_axioms aims to enhances the 
quality of initial search result rankings thereby improving the overall retrieval performance. 
It ensures that the outcomes are more effective and aligned with fundamental retrieval 
principles. Additionally, it provides insights and explanations for the rankings produced by 
different retrieval models. 
 
ir_axioms offers several key features that enhance its utility in information retrieval. It 
includes reference implementations for several predefined retrieval axioms, each 
representing a specific principle or rule pertinent to effective information retrieval. The 
framework provides tools for preference aggregation, allowing users to incorporate and apply 
user preferences to refine retrieval models. 
 
One fundamental example is the Term Frequency Constraint (TFC1) axiom, which asserts that 
documents containing more occurrences of query terms should be ranked higher. This 
principle posits that a document that mentions the query term more frequently is more 
relevant to the user's search intent. By incorporating the TFC1 axiom, an IR system ensures 
that documents which are likely to be more informative and relevant to the user's query are 
prioritized, leading to a more effective and satisfying search experience. 
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Additionally, ir_axioms includes methods for reranking search results based on axiomatic 
principles, ensuring that the output aligns with the defined axioms. To evaluate the 
performance of models enhanced by these axioms, ir_axioms offers robust evaluation tools. 
Moreover, it facilitates the easy definition of new axioms; users can either create new axioms 
by implementing an abstract data type or combine existing axioms using Python operators or 
regression techniques, offering flexibility and extensibility in experimentation and 
application. 
 
 

2.2.1 Implementation details 
 
 
ir_axioms seamlessly integrates with popular retrieval frameworks such as PyTerrier and 
Pyserini, facilitating the application and experimentation of axiomatic principles within 
various retrieval models. This integration ensures that users can easily implement and test 
retrieval axioms without the need for extensive adjustments to their existing workflows.  
 
Furthermore, ir_axioms provides comprehensive access to ir_datasets, which includes 
standard retrieval models, corpora, topics, and relevance judgments. This access is 
particularly valuable for facilitating experimentation with well-known datasets, such as those 
used in the Text Retrieval Conference (TREC). By integrating with ir_datasets, ir_axioms allows 
users to work with established benchmarks and datasets, ensuring that their experiments are 
grounded in widely-recognized and reliable data sources. This integration not only 
streamlines the process of setting up experiments but also enhances the credibility and 
comparability of the results, making it an invaluable tool for advancing research in 
information retrieval. 
 
 

2.2.2 Re-ranking using ir_axioms 
 
 

 

 
 

Figure 1: Re-reanking using ir_axioms taken from Hagen 2016 [3] 
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This figure illustrates the process of axiomatic re-ranking in three main steps. Let's break 
down each part in detail: 
 
Step 1: Initial Retrieval: 
 

1. Corpus and Retrieval Model: The process begins with a corpus of documents. A 
retrieval model R (e.g., BM25, a common information retrieval model) is used to 
retrieve documents from the corpus based on a given query. 

 
2. Initial Ranking: The retrieval model produces an initial ranking of the top-k  

documents relevant to the query. These documents are labeled 1 through k. 
 
Step 2: Axiomatic Evaluation: 
 

1. Application of Axioms: Multiple axioms are applied to evaluate the initial rankings. 
Examples include TFC1 and ORIG. Each axiom Mi generates a matrix where the rows 
represent the top-k documents and the entries indicate the preferences or scores 
assigned by the axiom to each document. 

 

2. Meta Learning: The outputs of these axiomatic evaluations are fed into a meta-
learning component. Meta-learning helps to understand and estimate the impact of 
each axiom on the ranking process, producing a function fR(M1, ..., M23) that 
aggregates the preferences or impacts of all the axioms. 

 
 
Step 3: KwikSort Algorithm: 
 

1. Re-ranking with KwikSort: The aggregated preferences from the meta-learning 
process are input into the KwikSort algorithm. KwikSort [4] then re-ranks the top-k 
documents based on the combined axiomatic preferences, resulting in a new, 
potentially more effective ranking of documents labeled 1’ through  k’. 

 
 
This process highlights how axiomatic principles can be systematically integrated into 
retrieval models to refine and enhance the quality of search results. 
 
 

2.2 Ir_explain 
 
 

ir_explain is an open-source Python library that offers a range of well-established techniques 
for Explainable Information Retrieval (ExIR) within a unified and extensible framework. It is 
designed to simplify the reproduction of state-of-the-art ExIR baselines on standard test 
collections and to enable the exploration of new methods for explaining IR models. To 
encourage its use, ir_explain is seamlessly integrated with popular toolkits like Pyserini and 
ir_datasets. 
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2.2.1 Understanding the library 
 
The most common Information Retrieval (IR) task involves retrieving the top-𝑘 ranked 
documents for a query 𝑄 from a large collection 𝐶 and presenting them to the end-user. 
Modern Neural Information Retrieval (neuIR) typically uses a two-stage pipeline for this 
process. 
 

1. First Stage: An initial ranker, such as BM25 or language models with Jelinek-Mercer 
(LMJM) or Dirichlet (LMDir) smoothing, retrieves a larger set of top 𝑘' documents 
(where 𝑘' is much larger than 𝑘 but still small compared to the entire collection 𝐶). For 
example, if 𝑘 is 100, 𝑘' might be 1000. 

 
2. Second Stage: Dense retrieval techniques are then used to re-rank this initial set of 𝑘' 

documents. This re-ranking is manageable for complex neural models. 
 
The first-stage ranker is denoted as 𝑀1, and the second-stage ranker as 𝑀2. Explainable IR 
(ExIR) aims to clarify different aspects of these two ranking stages. Explanation methods are 
generally categorized into three types: 
 

- Pointwise Explanations: Focus on individual document scores. 
 

- Pairwise Explanations: Compare pairs of documents to explain ranking differences. 
 

- Listwise Explanations: Consider the entire list of ranked documents to provide 
explanations. 

 
 

2.2.2 Pairwise Explanation  
 
 
A pairwise explanation seeks to clarify why one document 𝐷𝑖  is preferred over another 
document 𝐷𝑗   for a given query 𝑄. These explanations are typically based on retrieval axioms, 

which are formalizations of intuitive retrieval heuristics outlining the constraints a good 
ranking method should satisfy. Various sets of axioms have been developed in the literature, 
and some relaxations have been proposed to make these axioms practical. Hagen et al. [3] 
demonstrated that the axiomatic framework can also serve as the foundation for the second-
stage ranker 𝑀2. While this use of the axiomatic framework is not an explanation per se, it 
helps illustrate how the intuitive, pairwise preferences indicated by axioms can be integrated 
into a final ranking.  
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This is our contribution to the library and will be discussed in detail in the upcoming chapters. 
 
 

2.2.3 Installation  
 
 
The ir_explain library can be installed via GitHub repository: 
 

• git clone https://github.com/souravsaha/ir_explain 
 
 
 

beir==1.0.1 gensim==4.3.1 nltk==3.8.1 scipy==1.10.1 

captum==0.6.0 h5py==3.9.0 numpy==1.24.4 torch==2.0.1 

cvxpy==1.3.2 ir_datasets==0.5.5 pyserini==0.21.0 torchtext==0.15.2 

Datasets==2.13.1 ir_measures==0.3.3 pytorch_lightning==2.0.5 tqdm==4.65.0 

genosolver==0.1.0.6 ipython==7.29.0 scikit_learn==1.3.0 transformers==4.30.2 
 

Table 1: Requirements to run ir_explain 
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Chapter 3 - Our contribution to 
IR_Explain 
 
 
Inspired from IR_axioms, pairwise component of ir_explain library implements such retrieval 
axioms for experimentation with standard retrieval toolkits. These axioms are adapted for 
practical use, such as reformulating them to work with arbitrary queries and expressing 
pairwise preferences. Parameters are included to adjust the conditions of the axioms, and 
term similarity axioms are provided in variants using WordNet synsets or fastText 
embeddings. 

 

3.1 Implementing the Axioms 
 
 

While ir_axioms is closely integrated with the Pyterrier retrieval pipeline and lacks the 
capability to compare arbitrary document pairs 𝐷𝑖  and 𝐷𝑗  , this feature is included in 

ir_explain.  
 
Similar to ir_axioms, ir_explain allows users to use binary and unary operators to combine 
and aggregate different axioms, and also provides an easy way to define new axioms. The 
primary function of an axiom object 𝐴 is to determine, given a query 𝑄 and two documents 
𝐷𝑖  and 𝐷𝑗 , whether 𝐷𝑖  is preferred over 𝐷𝑗   for the query 𝑄. This is done by returning a 

preference score 𝑝𝑟𝑒𝑓𝐴(𝑄, 𝐷𝑖 , 𝐷𝑗)  ∈ {−1, 0, 1} defined as follows: 

 
 

𝑝𝑟𝑒𝑓𝐴(𝑄, 𝐷𝑖 , 𝐷𝑗) =   {

1, if 𝐷𝑖 is preferred over 𝐷𝑗

−1, if 𝐷𝑖 is preferred over 𝐷𝑗

0, if no preferrence given by A

 

 
 
Here is how you can use the pairwise class within the ir_explain framework to explain the 
ranking of two documents (doc1 and doc2) for a given query (query) using a set of predefined 
axiom classes: 
 

pairwise = Pairwise(query, doc1, doc2, index_path)  

 axiom_classes = [TFC1(), STMC1(), ...] 

 pairwise.explain(axiom_classes) 
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Here, a Pairwise object is created, which represents the pairwise comparison between two 
documents (doc1 and doc2) for a given query (query). The index_path variable represents the 
path to the index or dataset used for retrieval. 
 
A list axiom_classes is defined by user, where the user can specify which axioms it wants to 
use for the given pair of documents. The explain method of the Pairwise class computes and 
provides an explanation for the ranking of doc1 and doc2 for the given query based on the 
specified axiom classes. 
 
 
 

3.1.1 List of Axioms 
 
 
In order to fulfil our requirements, we had to code the axioms from ir_axioms from scratch 
following the logic proposed by the original authors of the axioms (along with the recent 
modifications made to them) [3]. Here is a detailed summary of each axiom in the library -  
 
 
TFC1: 
 

The Term Frequency Constraint 1 (TFC1) is a fundamental axiom in information retrieval (IR) 
that guides how documents should be ranked based on the frequency of a query term within 
them [5]. Specifically, TFC1 asserts that when a query consists of a single term t, documents 
containing higher occurrences of t should receive higher scores. In essence –  

TFC1 (as given by Hagen et 2016 [3]): Let 𝑞 = { 𝑡 } be the query with one term t. 
Assume |𝑑1| = |𝑑2|. If 𝑡𝑓(𝑡, 𝑑1) > 𝑡𝑓(𝑡, 𝑑2) then  𝑠𝑐𝑜𝑟𝑒(𝑑1, 𝑞) > 𝑠𝑐𝑜𝑟𝑒(𝑑2, 𝑞).  

We transform TFC1 to our triple notation by setting ( 10% relaxation ) 

Precondition:=   𝑙𝑒𝑛𝑔𝑡ℎ (𝑑1) ≈ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑2)    

Filter :=  𝑙𝑒𝑛𝑔𝑡ℎ (𝑑1) ≈ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑2)   

Conclusion:=   𝑑1 > 𝑑2 
 

When dealing with queries that consist of more than one term, a generalized version of 
TFC1 expands the principle to incorporate the sum of individual term frequencies. This 
approach ensures that documents containing higher combined frequencies of all query 
terms are ranked more favorably. 
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TFC3: 

This axiom is designed to provide rules for scoring documents when the query contains two 
terms. It considers two main factors: term frequency and term importance (inverse document 
frequency, IDF).  

Term Frequency (TF): As seen before, it refers to how often each term in the query appears 
in the document. A document scores better if it includes the query terms more frequently, as 
this indicates a stronger relevance to the query. 

 

𝑡𝑓(𝑡, 𝑑) =  
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′𝜖𝑑
 

 

 𝑓𝑡,𝑑  is the raw count of a term in a document, i.e., the number of times that term t occurs in 
document d. Note the denominator is simply the total number of terms in document d 
(counting each occurrence of the same term separately). 

Term Importance (IDF): IDF measures how unique or rare a term is across the entire document 
collection. A higher IDF value indicates that a term is more important or distinctive. A 
document scores better if it contains terms with higher IDF values, as these terms contribute 
more to the uniqueness of the document. 

 

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑: 𝑑 𝜖 𝐷 𝑎𝑛𝑑 𝑡 𝜖 𝑑}|
 

 

N is the total number of documents in the corpus.  |{𝑑 𝜖 𝐷: 𝑡 𝜖 𝑑}| is the number of docs 
where the term t appears (i.e. 𝑡𝑓(𝑡, 𝑑) ≠ 0 ). However, there is a potential issue with this 
axiom i.e. if a query term is not present in the corpus, it can lead to a division by zero error. 
To overcome this, we can adjust the formula to avoid such situations by changing the 
numerator and denominator to 1 + 𝑁 and 1 +  |{𝑑: 𝑑 𝜖 𝐷 𝑎𝑛𝑑 𝑡 𝜖 𝑑}| respectively.  

To extend these scoring rules to longer queries (queries with more than two terms), the axiom 
suggests applying the rules to every possible pair of terms within the query. [5] 
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PROX1: 

It ranks documents by how closely query terms appear to each other on average. We define    
𝜋(𝑞, 𝑑) which measures the average distance between pairs of query terms in a document.  
 

 

𝜋(𝑞, 𝑑) =
1

|𝑃|
∑ 𝛿(𝑑, 𝑖, 𝑗)

(𝑖,𝑗) 𝜖 𝑃

 

 

Where 𝑃 = {(𝑖, 𝑗)|𝑖, 𝑗 𝜖 𝑞, 𝑖 ≠ 𝑗} is the set of all possible query term pairs and 𝛿(𝑑, 𝑖, 𝑗) 
calculates the average number of words between the query terms ti and tj in the document d 
based on all positions of ti and tj . Finally whichever doc has a smaller 𝜋(𝑞, 𝑑) is preferred. [6] 

 

PROX2: 

It follows the logic that a document where query terms appear earlier is likely more relevant, 
as it suggests that the document addresses the query terms sooner, making it easier for the 
searcher to find relevant information quickly. It ranks documents based on how early the 
query terms first appear. If the first occurrences of query terms in document d1 happen earlier 
than in document d2, then d1 is considered better. [6] 

 

PROX3: 

It ranks documents based on how early the entire query phrase appears. For each document, 
find where the entire query q first appears as a single phrase. Identify the position where this 
phrase first appears in the document. This position is called 𝜏(𝑑, 𝑞) . If the query does not 
appear as a single phrase, assign 𝜏(𝑑, 𝑞) =  ∞. Prefer the document with lower value of 
𝜏(𝑑, 𝑞). [6] 
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PROX4: 

It ranks documents based on how closely the query terms appear together with the fewest 
non-query words in between and how frequently this close grouping occurs. We define: 
 
𝜔(𝑑, 𝑞): Represented as a pair (𝑎, 𝑏) where: 

• 𝑎 is the number of non-query words in the closest grouping of all query terms. 

• 𝑏 is how often this gap value occurs. 

Compare the pairs 𝜔(𝑑1, 𝑞) and 𝜔(𝑑2, 𝑞) for two documents 𝑑1 and 𝑑2. The one with lower 
𝜔(𝑑, 𝑞)  is preferred. [6] 

 

PROX5: 

It ranks documents based on the average size of the smallest text spans that contain all query 
terms around each occurrence of each query term. We define 𝑠̅(𝑑, 𝑞): 

• For each query term t in the document, determine the smallest text span that includes 
all query terms. 

• Measure the size (number of words) of this text span. 
• Compute the average size of these smallest text spans for all occurrences of all query 

terms in the document. 

Compare the pairs 𝑠̅(𝑑1, 𝑞) and 𝑠̅(𝑑2, 𝑞) for two documents 𝑑1 and 𝑑2. The one with lower 
𝑠̅(𝑑, 𝑞)  is preferred. [6] 

 

LNC1: 

In this axiom, when we're comparing two documents that exhibit the same term frequency 
for all the query terms (with the consideration of the 10% softening), a preference is given to 
the shorter document. This means that if two documents have an equal number of 
occurrences of the terms in the query, the document with fewer words overall is considered 
more favorable. [5] 
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LNC2: 

This axiom originally checks if one document is an m-times copy of another. In this scenario, 
the original (shorter) document is favored. However, this condition is unlikely in real-world 
documents. So, the axiom is modified:  

1. It calculates the Jaccard coefficient of the documents' vocabularies (terms they share).  
2. If this coefficient is at least 80%, it derives the value of m based on the ratio of the 

minimum document length to the maximum.  

This modification makes the axiom more practical and adaptable to real-world scenarios. [5] 

 

TF_LNC: 

Axiom TF-LNC combines term frequency and document length for single-term queries. When 
comparing two documents without the term and having the same length (with a 10% 
softening allowance), the one with the higher term frequency is preferred. This principle is 
generalized for multi-term queries by summing the term frequencies, similar to the LNC1 
generalization. In essence, TF-LNC prioritizes documents with higher term frequencies, 
considering document length as a tiebreaker when frequencies are equal. [5] 

 

LB1: 

This axiom examines documents that have the same retrieval score score(q,d). This retrieval 
score represents the relevance of a document d to a given query q. There's a 10%-softening 
allowance, meaning small variations in the retrieval score are permitted. If a term in the 
query appears in document d2 but not in document d1, it suggests that document d2 might 
be more relevant to the query than d1. [7] 

 

STMC1: 

Matching words that are similar in meaning rather than exactly matching the query terms 
can be beneficial in situations where there's a mismatch in vocabulary or to improve small 
result sets. WordNet is utilized to find these semantically similar terms. Axioms like STMC1 
and STMC2 are analyzed in this context to leverage this semantic matching approach. 
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For each word w in a document d and each query term t in the query q, the semantic similarity 
between w and t is calculated using WordNet. These individual similarity values are then 
averaged to derive the overall semantic similarity σ(d,q) between document d and query q. 
From two documents d1 and d2, the one with the larger average semantic similarity value 
σ(d,q) is preferred. [8] [9] 

 

STMC2: 

This axiom is generalized to compare pairs of documents 𝑑1 and 𝑑2 based on semantic 
similarity between non-query terms and query terms. From either document, the non-query 
term t that is most similar to any query term t’ identified using WordNet. It ranks 𝑑1 higher 
than 𝑑2 if the ratio of their lengths is about 20% of the ratio of t's frequency in 𝑑2 to t′ 
frequency in 𝑑1. [9] [8] 

 

|𝑑2|

|𝑑1|
=  𝑎𝑝𝑝𝑟𝑜𝑥 20% 

𝑡𝑓(𝑡, 𝑑2)

𝑡𝑓(𝑡0, 𝑑1)
 

 

REG: 

In this axiom first, identify the query term t that is most similar to the other query terms. This 
similarity can be determined using WordNet. If both documents 𝑑1 and 𝑑2 contain all the 
other query terms (except for t), compare the term frequency (tf) values of t in 𝑑1 and 𝑑2. 
The document with a higher tf-value for t is preferred. [10] [11] 

 

AND: 

In this axiom, given a query, if there's a pair of documents 𝑑1 and 𝑑2  where only 𝑑1  contains 
all the query terms, then 𝑑1  is favored. [10] [11] 

 

DIV: 

In this axiom we again use the Jaccard coefficient, denoted as 𝐽(𝑑, 𝑞), which measures the 
similarity between the set of terms in a document d and the set of query terms q. If the Jaccard 
coefficient 𝐽(𝑑, 𝑞) for document𝑑1  is lower than 𝐽(𝑑, 𝑞) for document 𝑑2, then 𝑑1  is 
preferred. [12] 
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(Note – We haven’t included the Argumentativeness axioms as of now, since they do not 
apply to the ad-hoc retrieval settings used in our experiments) 

 

3.2.2 Combining and Adding new axioms  
 
 

You can add a new axiom in the following way –  
 
Class NewAxiom (Axiom): 

Name = “NEW” 

# Initialization/parameters 

 

def explain(self, Cindex , query, doc1, doc2) : 

# Rules for preferring doc1 over doc2 for the given query 

 #  Cindex for accessing term frequencies in an index 

You can combine the axioms using the following binary and unary operators –  

 

+ Add Add axiom preferences or 
constants   

- Subtract Subtract axiom preferences 
or constants 

* Multiply Multiply axiom preferences 
by a weight 

/ Divide Divide axiom preferences by 
a weight 

& Conjuction Return preferance if all 
axioms agree 

% Majority Take majority vote of axioms 
 

Table 2: Binary operators in ir_explain 

 

- Negate Negate axiom preference 
+ Normalize Normalise axiom preference 

to (-1,0,1) 
 

Table 3: Unary operators in ir_explain 
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3.3 Explain_More 
 

 
For more complex axioms such as PROX1, PROX2, and PROX3, the simplistic use of preference 
scores alone falls short in adequately explaining why one document is preferred over another. 
To address this limitation, we have the class explain_more which contains the function 
`explain_details()`, offering a deeper understanding of the preference computation process.  
 
This tool serves a crucial role in enhancing our comprehension of the preferences derived 
from axioms, offering a deeper dive into their underlying mechanics. It enables us to scrutinize 
intricate details that govern document prioritization. 
 
For instance, if TFC1 indicates that document 1 is preferred over document 2 for a specific 
query, `explain_details()` allows us to delve deeper. By examining the exact differences in 
term frequency (TF) values, we can ascertain the extent to which this axiom influences the 
ranking decision. If the TF difference is minor, it suggests that TFC1 may not accurately reflect 
the documents' relevance for that query, prompting a reassessment of its significance in such 
cases. 
 
Similarly, consider LNC1, which asserts that two documents have an identical frequency of 
query terms. Utilizing `explain_details()`, we gain insights into the documents' respective 
lengths. This information aids in identifying whether discrepancies in document ranking could 
be attributed to variations in document sizes. Such detailed analysis provided by the tool 
enhances our understanding of how different factors, beyond simple term frequencies, 
contribute to document relevance and ranking outcomes. This capability is essential for 
refining and optimizing information retrieval strategies with a more nuanced approach. 
 
The tool can be implemented in the following manner –  
 
 

from explain_more import explain_details 

pairwise.explain_details(query, doc1, doc2, axiomName) 

 
 
We’ll see many use cases of the Pairwise class in the next section for better understanding 
about how to use both the pairwise class and explain_more class 
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Chapter 4 - Experiments and Use Cases 
 

4.1 The Dataset 
 
We are using a collection of datasets known as the MS MARCO (Microsoft MAchine Reading 
COmprehension) dataset for the TREC Deep Learning (TREC-DL) track in 2019, which is a 
widely used benchmark dataset in the field of natural language processing (NLP) and 
information retrieval (IR). It is designed specifically for the task of machine reading 
comprehension and question answering, with a focus on real-world relevance and user intent 
understanding. 
 
Here are the key details and components of the MS MARCO datasets: 
 

1. Size and Scope: The dataset consists of a large collection of real user queries and 
corresponding passages extracted from web documents. It contains over 1 million 
(1,010,916) unique queries along with their associated passages. The passages are 
relatively short segments of text extracted from web pages, typically ranging from a 
few sentences to a short paragraph in length. 

 
2. Query Types: The queries in the dataset cover a wide range of topics and query 

intents, reflecting the diversity of real user search queries encountered on the web. 
These queries vary in terms of length, complexity, and specificity, representing 
different aspects of information needs and user intents. 

 
3. Passage Selection: The passages in the dataset are selected based on their relevance 

to the corresponding queries. Each query is associated with a set of relevant passages, 
which are manually annotated by human judges. These passages are intended to 
provide relevant information or answer the query to the best extent possible. 

 
4. Annotation and Evaluation: The relevance of passages to queries is assessed using 

human judgments. Human annotators are tasked with evaluating the relevance of 
passages to each query based on their understanding of the query intent and the 
information provided in the passage. The judgments are typically binary (relevant or 
not relevant) or graded on a relevance scale. 

 
5. Challenges: Despite its richness and size, the MS MARCO TREC-DL dataset poses 

several challenges for machine learning models. These challenges include 
understanding complex queries, identifying relevant information from noisy passages, 
handling ambiguity and diversity in query intents, and generalizing to unseen queries 
and passages. 
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4.2 Experiments 
 
 
To effectively demonstrate the diverse applications of our library and underscore its role in 
explaining document rankings for specific queries, we will begin by selecting a sample query. 
Subsequently, we will compile a list of the top-ranked documents relevant to this query. 
Through the application of our axioms and explanations to these documents, we aim to 
enhance our understanding of their respective rankings. 
 
 

4.2.1 Use Case 1 
 
 
The chosen query for this demonstration is: 
 
query id: “183378” 

query Text: “exons definition biology” 

 
We take a list of the top 20 passages from the “msmarco-passage/trec-dl-2019” dataset for 
the given query. After that we take the first and fifth document and see whether we can 
explain the difference in their ranking using our library. 
 
First rank document is as follows: 
 
Body of Document ID 7135097: 

Herbivory: Definition & Examples 4:44 Next Lesson............................ 

 
Fifth rank document is as follows: 
 
Body of Document ID 719550: 

Chitin (biology) definition,meaning online encyclopedia...................... 

 
 
We use the following axiom classes -  

 
axiom_classes = [TFC1(), PROX1(), DIV()] 

 
 
Before we apply the axioms, we apply stemming and stop words removal as part of pre-
processing. 
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We take document 1 as the top ranked document (doc id: 7135097) and document 2 as the 
fifth ranked document (doc id: 719550). We apply our library to get the following results – 
 
(Note: As mentioned, a value of 1 indicates a preference for Document 1, -1 indicates a 
preference for Document 2, and 0 indicates no preference between the documents.)  
 
 

Query Document 1 Document 2 TFC1() PROX1() DIV() 

exon definit bilog  herbivori definit.... chitin (biolog)........ 1 0 -1 
 

Table 4:  pairwise.explain() in Use Case 1 

 
 

4.2.2 Use Case 2 
 
 
The results returned by our library in the previous use case were quite intriguing because 
TFC1() aligns with our ranking criteria, while DIV() diverges from our ranking, and PROX1() 
doesn't exhibit any discernible preference. Let's delve deeper by taking a look at the internal 
functioning to gain a clearer understanding of why these results are occurring using 
“explain_details()” -  
 
 
Using explain_details on TFC1() for the given query document pair –  
 
 

Term Frequency of query terms in document1 is 4 

Term Frequency of query terms in document2 is 2 

 

 
As we can see, document 1 exhibits a higher cumulative term frequency for all query terms 
compared to document 2 thus demonstrating that in this case higher term frequency of query 
terms results in higher relevance to the query (might not be true always). 
 
 
 
Using explain_details on DIV() for the given query document pair –  
 
 
 Jaccard Co-efficient of doc1 is:0.09090909090909091 

 Jaccard Co-efficient of doc2 is:0.07692307692307693 
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Here since Jaccard Co-efficient of document 1 is higher than that of document 2 with the qu
ery terms according to the definition of the axiom, document 2 is preferred (which contradic
ts the ranking). However, we can clearly see that the difference is very small (less than 0.02). 
This suggests that the Jaccard coefficient alone may not be a decisive factor in determining t
he ranking of these two documents according to the axiom. 
 
 
Using explain_details on PROX1() for the given query document pair –  
 
 

Metric Document 1 Document 2 

tf(exon) 0 0 

tf(definit) 3 1 

tf(bilog) 1 1 

avg_dist(exon, definit) 0 0 

avg_dist(exon, biolog)    0 0 

avg_dist(definit, biolog)     8.5 0 

num pairs     3 3 

Total_avg_dist    2.83 0 
 

Table 5: explain_details() on Prox1 in Use case 2 

 
 
Here we can see that the term frequency of the first query term is 0 for both documents 
indicating not all query terms are present in both documents thus as per rules of the axiom, 
PROX1() would not be able to give any preferences. 
 
 

4.2.2 Use Case 3 
 
 
We can combine and weight the axioms using binary and unary operators. We have defined 
the library functions such that after any linear combinations the scores would be normalized 
to {−1,0,1} using the unary “+”. 
 
 
 
 

𝑝𝑟𝑒𝑓+𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) =  {

1, 𝑖𝑓  𝑝𝑟𝑒𝑓𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) > 0

−1, 𝑖𝑓  𝑝𝑟𝑒𝑓𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) < 0

0, 𝑖𝑓  𝑝𝑟𝑒𝑓𝐴(𝑞, 𝑑𝑖, 𝑑𝑗) = 0
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For demonstration let us take use case 1 and define new axiom class by combining the axioms 
in the following way – 
 
 
 axiom_classes = [3*LNC1() + 4*TFC1(), - DIV(), PROX1() + PROX2() + PROX3()] 

 

 
we get the following results (keeping the query, document1 and document 2 same as use 
case 1) by applying our library  –  
 
 

Query Document 1 Document 2 4*TFC1() + 

3*LNC1() 

PROX1()+PROX2

()+PROX3() 

-  DIV() 

exon definit 

bilog  

herbivori 

definit.... 

chitin 

(biolog)........ 

1 0 1 

 

Table 6: Pairwise.explain() on Use Case 3 

   
 
Here we have combined the axioms as per the following logic: 
 
TFC1() prefers documents with higher term frequencies of query terms whereas LNC1() 
prefers documents with shorter lengths, we have combined them so that our new axiom gives 
preference to both (kind of like TF_LNC) however, we give slightly more weightage to tf values 
over document lengths. We have combined 3 proximity axioms to ensure documents 
containing query terms near to one other and in the beginning are preferred. Finally we have 
negated the DIV() axiom to ensure preference is given to less diverse documents.  
 
Thus, this approach allows us to experiment by logically combining multiple axioms to 
determine document preferences based on our specific criteria. By synthesizing these axioms, 
we can effectively gauge the relevance of documents to a given query according to our 
tailored logic. 
 
 

4.2.4 Use Case 4 
 
 
To fully explore the capabilities of proximity axioms, let us use another dataset within MS 
Marco with larger documents where all query terms are present. We'll then execute the 
"explain_details" function to analyze the preferences generated by the axioms involved. This 
will provide comprehensive insights into how proximity-based considerations influence 
document rankings based on the given query. 
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So, we take the same query: 
 
query id: “183378” 

query Text: “exons definition biology” 

 
 
We take the “msmarco-document/trec-dl-2019” dataset. MS Marco also has documents 
assigned a particular relevance level based on how relevant they are for a particular query. 
The relevance levels are defined as follows: 
 

• 3: Perfectly relevant 

• 2: Highly Relevant 

• 1: Relevant 

• 0: Irrelevant 
 
We take doc id: D1077802 (which has been assigned a relevance of 3 for the given query) as 
document 1 and doc id: D1806793 (relevance 1) as document 2. 
 
We run both TFC1() and PROX1() and find that where TFC1() prefers document 2, PROX1() 
prefers document 1 To further understand this phenomenon we run “explain_details” on 
PROX1() and get the following table –  
 
 
   

Metric Document 1 Document 2 

tf(exon) 23 21 

tf(definit) 7 56 

tf(bilog) 1 25 

avg_dist(exon, definit) 174.43 2728.07 

avg_dist(exon, biolog)    354.71 3287.24 

avg_dist(definit, biolog)     315.04 2864.24 

num pairs     3 3 

Total_avg_dist    281.39 2959.85 
 

Table 7: explain_details on PROX1 in Use Case 4 
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We also run PROX2() and PROX3() on the given setup. We find that PROX2() prefers document 
1 whereas PROX3() doesn’t return any preference. Using “explain_details” on PROX2() returns 
the following –  
 
  

Query Term Document First Occurrence 

exon 1 27 

definit 1 38 

biolog 1 51 

   

exon 2 1604 

definit 2 24 

biolog 2 82 
 

Table 8: explain_details on PROX2() Use Case 4 

 
  
Whereas “explain_details” on PROX3() returns that the entire query phrase doesn’t appear in 
either of the two documents thus helping us understand the preferences returned by our two 
axioms.   
 
Therefore, a key insight emerges: despite document 2 having higher term frequencies for 
query terms, these terms are dispersed throughout the document. This sparse distribution 
contrasts with document 1, where query terms are closely clustered together. Additionally, 
query terms in document 1 appear earlier compared to document 2. These proximity factors 
significantly influence relevance determination. This underscores that the mere presence of 
more query terms doesn't automatically translate to higher relevance. Proximity and 
placement of query terms are crucial criteria in assessing document relevance alongside term 
frequency. 
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Chapter 5 - Future Work 
 
 
 
In future one direction we can move into is to incorporate the IR axioms into the pre-training 
process of neural ranking models. There are studies have indicated that incorporating these 
axioms can enhance the effectiveness and interpretability of IR models. However, there has 
been little effort to integrate these axioms into pre-training methods for IR.  
 
One such method proposed was a novel pre-training method called Axiomatic Regularization 
for ad hoc Search (ARES) is proposed [13]. ARES uses a set of re-organized IR axioms to 
generate training samples that guide neural rankers in learning desirable ranking properties 
during the pre-training process. This approach makes ARES more intuitive and explainable 
compared to existing pre-training methods. 
 
 

5.1 ARES (Axiomatic Regularization for ad-hoc Search) 
 
 

The Axiomatic Regularization for ad hoc Search (ARES) framework addresses the challenge of 
incorporating IR axioms into the pre-training of neural ranking models, given the difficulty of 
directly applying axioms that require pairwise document comparisons when only documents 
are available. ARES consists of three main stages: 
 

1. Pseudo Query Sampling (PQS): Generates pseudo queries from documents using a 
contrastive sampling strategy. This stage ensures that each document in the corpus 
can be associated with a set of pseudo queries, facilitating the next steps. 

 
2. Preference Predictor Constructing (PPC): Collects ordered query pairs through four 

different sampling settings. Extracts axiomatic features for each query pair, which are 
essential for training. Trains a preference predictor (an axiomatic binary decision 
model) using the axiomatic feature map and weak preference labels. This predictor 
helps in understanding which query-document pairs should be ranked higher based 
on the axioms. 

 
3. Axiomatically Regularized Pre-training (ARP): Integrates query pairs regularized with 

axioms into the pre-training process. Instead of relying on document pairs, ARES uses 
these query pairs to guide the neural ranking model, embedding the axiomatic 
knowledge directly into the model's training. 
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However, testing this model on standard datasets revealed only marginal improvements in 
test metrics. This indicates a need for a more refined approach to enhance its performance 
further. Future work should focus on developing a more elegant solution that builds upon 
ARES, incorporating pairwise explanations to improve interpretability and effectiveness. 
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