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Abstract

In recent years, the advent of advanced 3D sensing technologies has facili-
tated the acquisition of detailed spatial data in the form of point clouds. These
3D point clouds, composed of discrete data points in a spatial coordinate system,
offer a comprehensive representation of object surfaces and environments, mak-
ingthem indispensable in various applications, ranging from autonomous driving
and robotics to architecture and healthcare. This thesis explores the methodolo-
gies and advancements in the classification and segmentation of 3D point clouds,
focusing on both traditional machine learning approaches and contemporary deep
learning techniques.

Central to this thesis is an in-depth analysis of state-of-the-art deep learning frame-
works tailored for 3D data, including PointNet, PointNet++. These models, by
leveraging the spatial structure of point clouds, have demonstrated remarkable
performance in both classification and segmentation tasks. The research further
examines advanced segmentation techniques, differentiating between semantic
and instance segmentation, and evaluates their effectiveness in partitioning com-
plex scenes into meaningful segments.

In conclusion, this thesis contributes to the growing body of knowledge in 3D
point cloud analysis by providing a comprehensive review of existing techniques,
introducing novel enhancements, and identifying future research directions aimed
at further improving the accuracy and applicability of 3D point cloud processing
technologies.
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1 Introduction

The rapid advancement in 3D sensing technologies has revolutionized the way spa-
tial data is captured and analyzed, leading to significant breakthroughs across various
fields such as autonomous driving, robotics, architecture, and healthcare. Central to
these advancements is the concept of 3D point clouds—dense collections of points in
a three-dimensional coordinate system that represent the external surfaces of objects
or entire environments. These point clouds are typically generated using 3D scanners,
LiDAR systems, stereo cameras, or photogrammetry techniques, and offer a detailed
and comprehensive depiction of the spatial characteristics of the observed scene.

The ability to effectively classify and segment these 3D point clouds is crucial for
interpreting and utilizing the captured data. Classification involves assigning labels
to individual points or to entire point clouds, thereby identifying different objects or
features within the scene. Segmentation, on the other hand, involves partitioning the
point cloud into meaningful regions or clusters, each representing distinct objects or
areas. These processes are fundamental for applications such as obstacle detection in
autonomous vehicles, environment mapping in robotics, and detailed architectural
modeling.

Traditional approaches to 3D point cloud classification and segmentation have
largely relied on feature extraction and conventional machine learning techniques.
While these methods have demonstrated success in various applications, they often
struggle with the complexity and scale of modern point cloud datasets. Recent ad-
vancements in deep learning, particularly the development of neural networks tai-
lored for 3D data, have shown tremendous promise in overcoming these limitations.
Models such as PointNet, PointNet++, and DGCNN have set new benchmarks for ac-
curacy and efficiency in point cloud processing, leveraging the intrinsic spatial struc-
ture of the data to achieve superior performance.

This thesis aims to provide a comprehensive exploration of both traditional and
contemporary techniques for 3D point cloud classification and segmentation. The
initial sections of the report delve into the fundamentals of point cloud acquisition
and preprocessing, setting the stage for a detailed discussion of feature-based and
deeplearning methodologies. Through empirical evaluations on benchmark datasets,
the comparative strengths and weaknesses of these approaches are analyzed, provid-
ing insights into their practical applicability and potential for future enhancements.



2 Problem Definition

The increasing use of 3D sensing technologies has led to the widespread generation of
3D point cloud data, which is crucial for applications in autonomous driving, robotics,
architecture, and healthcare. However, effectively classifying and segmenting these
point clouds presents significant challenges due to their complexity, variability, and
high dimensionality. Traditional machine learning methods struggle with accuracy
and efficiency, while deep learning approaches, despite their promise, require large
datasets and significant computational resources. Here we aim to enhance the ac-
curacy and efficiency of 3D point cloud classification and segmentation by evaluating
and optimizing deep learning techniques, addressing their respective limitations, and
exploring practical applications to bridge the gap between current methodologies and
real-world needs.



3 Related Work

The classification and segmentation of 3D point clouds have been extensively studied,
with numerous approaches developed over the years. These works can be broadly cat-
egorized into traditional machine learning methods and modern deep learning tech-
niques.

3.1 Traditional Machine Learning Methods
3.1.1 Feature-Based Methods

Early methods focused on extracting geometric features (e.g., curvature, surface nor-
mals) and shape descriptors (e.g., Spin Images, Shape Contexts) from point clouds to
distinguish different objects and surfaces. Techniques such as Support Vector Ma-
chines (SVM), Random Forests, and k-Nearest Neighbors (k-NN) have been widely
used to classify point clouds based on these features. Works by Rusu et al. (2008) on
Point Feature Histograms (PFH) and their subsequent Fast Point Feature Histograms
(FPFH) have been foundational in this domain.

3.1.2 Clustering and Region Growing

Methods like DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
and k-means clustering have been applied to segment point clouds into meaningful
clusters based on spatial proximity and density. Techniques that grow regions from
seed points based on similarity criteria have been effective for segmenting planar and
curved surfaces. The work by Poppinga et al. (2008) on 3D region growing is notable
in this context.

3.2 Deep Learning Methods
3.2.1 PointNet and PointNet++

Proposed by Qi et al. (2017), PointNet is a pioneering deep learning architecture that
directly processes raw point clouds without requiring voxelization or other prepro-
cessing. It uses a symmetric function to aggregate point features and demonstrates
robustness to input permutations. An extension of PointNet, PointNet++ (Qi et al.,
2017) incorporates hierarchical feature learning by applying PointNet recursively on
nested partitions of the point set, capturing local structures at multiple scales.



3.2.2 Convolutional Neural Networks (CNNs)

Voxel-Based Approaches: Methods like VoxNet (Maturana and Scherer, 2015) convert
point clouds into voxel grids and apply 3D CNNs. While effective, these methods are
limited by resolution and computational efficiency. Point Convolutional Networks:
PointCNN (Li et al., 2018) introduces X-convolution to learn local geometric features
directly from point clouds, overcoming the limitations of voxelization.

3.2.3 Graph Neural Networks

Dynamic Graph CNN (DGCNN): Proposed by Wang et al. (2019), DGCNN constructs
a graph of point clouds and applies edge convolutions to capture local neighborhood
information dynamically, demonstrating superior performance in segmentation tasks.

3.2.4 Other Advanced Methods

Thomas et al. (2019) introduced KPConv (Kernel Point Convolution), a deformable
convolutional kernel specifically designed for point clouds, which allows the network
to learn local patterns effectively. Works like MinkowskiNet (Choy et al., 2019) use
sparse convolutional operations to efficiently process large-scale point clouds.

3.3 Comparative Analyses and Benchmark Studies
3.3.1 Evaluation on Benchmark Datasets

Numerous studies have evaluated the performance of these methods on benchmark
datasets such as ModelNet, ShapeNet, ScanNet, and KITTI. Comparative analyses high-
light the strengths and limitations of each approach in terms of accuracy, computa-
tional efficiency, and robustness to noise and occlusions.

3.3.2 Hybrid Approaches

Some recent works explore hybrid methods that combine traditional feature-based
techniques with deep learning to leverage the advantages of both. For example, fusion
strategies that integrate geometric features into neural network architectures have
shown promising results.



3.4 Applications and Practical Implementations
3.4.1 Autonomous Driving

Point cloud processing techniques are critical for object detection and scene under-
standing in autonomous vehicles. Works like Chen et al. (2017) on multi-view 3D ob-
ject detection and the use of LiDAR data in self-driving car systems are notable.

3.4.2 Robotics

In robotics, accurate point cloud segmentation aids in tasks like environment map-
ping and object manipulation. The use of RGB-D cameras and integration with SLAM
(Simultaneous Localization and Mapping) systems are key areas of research.

3.4.3 Architecture and Construction

Point cloud processingis used for building information modeling (BIM) and construc-
tion site monitoring, where precise segmentation and classification of structural ele-
ments are essential.

3.4.4 Healthcare

3D point clouds are used in medical imaging for modeling organs and bones, with
applications in surgical planning and diagnostics.



4 ModelNet Dataset

ModelNet is a benchmark dataset widely used for evaluating 3D object classification
and segmentation algorithms. Developed by researchers at Princeton University, it
provides a large-scale collection of 3D CAD models across various categories, making
it an essential resource for advancing 3D shape recognition research.

4.1 Dataset Overview
ModelNet consists of two primary subsets: ModelNet10 and ModelNet40.

* ModelNet10: Contains 4,899 3D models categorized into 10 object classes, in-
cluding bathtub, bed, chair, desk, dresser, monitor, nightstand, sofa, table, and
toilet.

e ModelNet40: Expands upon ModelNet10 with a total of 12,311 3D models across
40 object categories, encompassing a broader range of common household and
office items.

4.2 Data Format

The models in ModelNet are provided in various 3D file formats, including . off (Ob-
ject File Format). Each model is a polygonal mesh, allowing detailed and accurate
representation of object surfaces.

4.3 Applications in Classification and Segmentation

ModelNet serves as a standard benchmark for evaluating the performance of various
3D deep learning models, such as PointNet, PointNet++, and others. Researchers use
ModelNet to:

» Train Models: Using its extensive collection of labeled 3D models to train deep
learning architectures for object classification and part segmentation tasks.

* Evaluate Performance: Comparing the accuracy, precision, recall, and com-
putational efficiency of different algorithms by testing them on the ModelNet
dataset.

* Benchmarking: Establishing standard performance metrics and benchmarks
that facilitate the comparison of new methods with existing state-of-the-art ap-
proaches.



4.4 Data Preprocessing and Augmentation

Data preprocessing and augmentation are critical steps in preparing the ModelNet
dataset for effective training and evaluation of 3D deep learning models. These steps
help to normalize the data, reduce computational complexity, and improve model
generalization.

4.4.1 Preprocessing Steps

Normalization: Normalization ensures that all 3D models have a consistent scale and
orientation, facilitating the learning process by eliminating variations due to size dif-
ferences. Each model is centered at the origin and scaled to fit within a unit sphere.
This involves computing the centroid of the model and translating it to the origin, fol-
lowed by scaling based on the maximum distance from the origin to any point in the
model. The scale factor is given by:

1 . .
scale factor=————, where p;isapointin the model.
max(l| p;ll)

Down-sampling: Down-sampling reduces the number of points in each model to
a fixed size, making the dataset manageable and ensuring uniform input size for the
neural network. Techniques such as uniform sampling or farthest point sampling are
used to select a representative subset of points from each model. Commonly, models
are down-sampled to 1,024 or 2,048 points. Farthest point sampling iteratively selects
points that maximize the minimum distance to the already selected points, ensuring
a spread-out sample of the model.

Data Augmentation: Data augmentation increases the diversity of the training set
by applying various transformations, helping the model to generalize better and be-
come more robust to variations. Common techniques include:

Rotation: Random rotations around the principal axes to simulate different ori-
entations of the objects.

Translation: Random translations to introduce positional variations.

Jittering: Adding small random noise to the point coordinates to make the model
robust to slight positional errors.

Scaling: Applying random scaling factors to simulate variations in object sizes.



4.4.2 Implementation Details

Rotation:
cos(@) -sin@) 0
Rotation Matrix= |sin(@) cos@) 0|, where 6¢€[0,27)
0 0 1
Translation:
p;=pi+t, where ¢~%(-6,6)
Jittering:

pi=pi+ N0, 0%, where ¥ is Gaussian noise with standard deviation ¢

Scaling:
p;:s-pl‘, where s~%1—-¢,1+¢€)



4.5 Sample Data from ModelNet Dataset

The ModelNet dataset consists of 3D models represented in various file formats. A
common format used is the . off (Object File Format), which describes the geometry
of the 3D object using vertices and faces.

4.6 Example: .off File Structure

An . off file typically starts with a header specifying the number of vertices, faces, and
edges (the number of edges can often be omitted or inferred). Following the header,
the vertex coordinates and face indices are listed.

OFF

860

-1.0 -1.0 -1.0
1.0 -1.0 -1.0
1.0 1.0 -1.0
-1.0 1.0 -1.0
-1.0 -1.0 1.0
1.0 -1.0 1.0
1.0 1.0 1.0
-1.0 1.0 1.0
40123
47654
40451
41562
42673
43740

4.6.1 Header
The header of the . off file contains:
e QOFF indicates the file format.

» The number of vertices, faces, and edges (in this example, 8 vertices, 6 faces, and
0 edges).
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4.6.2 Vertices
The vertices are listed as coordinates (X, y, z):

e (-1.0,-1.0,-1.0)

(1.0, -1.0, -1.0)

(1.0, 1.0, -1.0)

(-1.0, 1.0, -1.0)

(-1.0, -1.0, 1.0)

(1.0, -1.0, 1.0)

(1.0, 1.0, 1.0)

(-1.0, 1.0, 1.0)

4.6.3 Faces
The faces are defined by the number of vertices per face and their indices (0-based):

* 0,123

(7,6,5,4)

0,4,5,1)

1,5,6,2)

2,6,7,3)

3,7,4,0)

11



4.7 Sample 3D Model Visualization

For illustration purposes, here is a 3D visualization of a simple object (e.g., a cube)
described by the sample . off file:

Figure 1: 3D visualization of a sample object from the ModelNet dataset.

¢ Vertices:

- (-1.0,-1.0, -1.0)
- (1.0,-1.0, -1.0)
- (1.0, 1.0, -1.0)
- (-1.0, 1.0, -1.0)
- (-1.0,-1.0, 1.0)
- (1.0, -1.0, 1.0
- (1.0, 1.0, 1.0)
- (-1.0, 1.0, 1.0)

¢ Faces:

-(0,1,2,3)
- (7,6,5,4)
-(00,4,5,1)
- (1,5,6,2)
-(2,6,7,3)
-3,7,4,0)
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5 Model Architecture

Our model architecture is a slightly modified version of the PointNet++ architecture,
specifically designed to handle the hierarchical structure of point clouds. It addresses
the limitations of PointNet in capturing local structures by incorporating a hierarchi-
cal approach to process and learn from the local regions of the point cloud data.

5.1 Overview

The architecture is built upon PointNet by introducing a hierarchical learning frame-
work that recursively applies PointNet on nested partitions of the input point set. This
approach allows the model to capture both local and global structures in a more ef-
fective manner.

5.2 Architecture Components

The Model architecture consists of three main components:
e Sampling Layer
* Grouping Layer

* PointNet Set Abstraction (SA) Layers

5.2.1 Sampling Layer

The Sampling Layer in our model is responsible for selecting a subset of points from
theinput point cloud for further processing. Originally, thislayer uses a Farthest Point
Sampling (FPS) algorithm to ensure that the sampled points are well-distributed over
the point cloud. However, in this modified approach, we replace FPS with Density-
Adaptive Point Sampling (DAPS) to better handle varying point densities within the
point cloud.

Density-Adaptive Point Sampling (DAPS): DAPS dynamically adjusts the sam-
pling density based on the local point density. This ensures that regions with higher
point density are sampled more densely, capturing fine-grained local features more
effectively, while regions with lower point density are sampled more sparsely.

* Purpose: To adaptively sample points based on local densities, enhancing the
model’s ability to capture detailed local features in regions with varying point
densities.
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Steps in DAPS:

1. Calculate Local Point Densities: Determine the density of points in various re-
gions of the point cloud.

2. Adaptive Sampling: Select points based on calculated densities, ensuring denser
sampling in high-density regions and sparser sampling in low-density regions.

Advantages of DAPS:

» Adaptive Sampling: DAPS adjusts the sampling strategy based on local point
densities, which is particularly beneficial for point clouds with uneven point dis-
tributions.

» Enhanced Local Detail: By focusing on high-density regions, DAPS can capture
more detailed and meaningful features from the point cloud.

» Improved Robustness: This approach increases the robustness of feature extrac-
tion in complex and diverse point clouds.

By integrating DAPS, the model architecture can more effectively capture the in-
tricate details of the input point cloud, leading to potentially improved performance
in downstream tasks such as classification and segmentation.

5.2.2 Grouping Layer

The Grouping Layer in the architecture plays a crucial role in partitioning the input
point cloud into local regions, which are then used to capture local geometric features.
This step is vital for enabling the hierarchical feature learning process that character-
izes PointNet++.

Functionality of the Grouping Layer: The primary function of the Grouping Layer
is to form local neighborhoods around the sampled points obtained from the Sam-
pling Layer. Eachlocal neighborhood is defined by a centroid point (from the sampled
points) and includes the k-nearest points based on Euclidean distance. This results in
a set of local regions that serve as the input for the subsequent feature extraction pro-
cess.

Grouping Method: k-Nearest Neighbors (k-NN): The k-Nearest Neighbors (k-NN)
method selects a fixed number k of nearest neighbors for each sampled centroid based
on Euclidean distance.

* Definition: The k-NN method involves identifying the k closest points to each
sampled centroid.

14



» Advantages: This method ensures that the same number of points is included in
each local region, which can be beneficial when the point density varies signifi-
cantly across the point cloud. It provides a more consistent input size for subse-
quent layers, which is important for maintaining a uniform computational load
and model structure.

» Implementation: For each sampled point (centroid), the k closest points in terms
of Euclidean distance are identified and grouped together to form a local region.

Process Flow in the Grouping Layer:

1. Input: The Grouping Layer takes as input the set of sampled points from the
Sampling Layer and the original point cloud.

2. Neighborhood Formation: For each sampled point (centroid), a local neighbor-
hood is formed using the k-NN method. This results in a set of local regions, each
centered around a sampled point.

3. Feature Aggregation Preparation: Each local region, now consisting of the cen-
troid and its k-nearest neighboring points, is prepared for feature extraction. The
spatial coordinates of these points are normalized relative to the centroid to pro-
vide local positional information.

Advantages of the Grouping Layer using k-NN:

* Local Feature Extraction: By forminglocal neighborhoods using the k-NN method,
the Grouping Layer enables the model to focus on local geometric structures,
capturing detailed features within each region.

* Hierarchical Learning: The process of grouping points into local regions sup-
ports the hierarchical nature of PointNet++, where features are learned progres-
sively from local to global scales.

* Consistency: The k-NN method provides a consistent number of points in each
local region, facilitating uniform processing in subsequent layers.

15



Illustrative Example: Consider a point cloud representing a complex 3D obiject,
such as a chair. The Grouping Layer will:

1. Sample key points on the chair (e.g., corners of the seat, edges of the legs).
2. For each key point, form local regions by selecting the k-nearest neighbors.

3. Normalize the spatial coordinates of the points within each local region relative
to the key point, preparing them for feature extraction in the subsequent layers.

Conclusion: The Grouping Layer is a fundamental component of the architecture.
By effectively partitioning the point cloud into meaningful local regions using the k-
NN method, it enables the model to capture and learn from local geometric features,
contributing to the overall effectiveness of the hierarchical feature learning process.

5.2.3 Set Abstraction (SA) Layer

The Set Abstraction (SA) Layer is a fundamental component of the architecture, de-
signed to capture hierarchical features from point clouds by progressively abstracting
and aggregating local point features into higher-level representations. The SAlayer in-
tegrates multiple stages of sampling, grouping, and feature extraction to achieve this
goal.

Overview: The SA layer performs three key operations: sampling, grouping, and
PointNet-based feature extraction. Each SA layer reduces the number of points while
increasing the feature dimensionality, enabling the network to learn more abstract
and global features as it progresses through the layers.

Detailed Steps in the SA Layer:

1. Sampling:
e Purpose: Reduce the number of points to a fixed set of representative points,

which serve as centroids for local regions.

* Method: Typically, Farthest Point Sampling (FPS) is used to ensure that the
sampled points are well-distributed across the point cloud, but Density-
Adaptive Point Sampling (DAPS) can also be used for better handling of
varying point densities.

e Process: Given an input point cloud P with N points, the sampling step se-
lects M representative points, where M < N.

2. Grouping:

16



e Purpose: Form local regions around each sampled point (centroid) to cap-
ture local geometric structures.

e Method: The k-Nearest Neighbors (k-NN) algorithm is used to select k near-
est neighbors for each sampled point.

* Process: For each sampled point, identify the k closest points based on Eu-
clidean distance, forming a local region. This results in M local regions,
each containing k points.

3. Feature Extraction (PointNet):

* Purpose: Extractlocal features from each grouped region using a mini-PointNet
network.

¢ Components:

— Input Transformation: Normalize the coordinates of points within each
local region relative to the centroid.

— Shared MLP (Multi-Layer Perceptron): Apply shared MLP to each point
in the local region to learn per-point features.

— Max Pooling: Aggregate the per-point features into a single feature vec-
tor representing the local region by applying max pooling across the k
points.

e Process: The input to the PointNet module is a local region of k points, and
the output is a feature vector summarizing the local region. This results in
M feature vectors, each representing one local region.

Mathematical Representation:

Given an input point cloud P = {p;, p, ..., pn} wWith each point p; containing coor-
dinates and possibly additional features (e.g., color, normal), the SA layer operates as
follows:

1. Sampling: Select M centroids {cj, ¢, ..., cp} from P.

2. Grouping: For each centroid c;, form a local region R; containing the k-nearest
neighbors.

17



3. Feature Extraction:

* Normalize points within R; relative to c;.
» Apply shared MLP to each pointin R;: f;; = MLP(p;;—c;) for j=1,2,..., k.

» Aggregate features via max pooling: F; = max;{f;;}.
4. Output: The result is a set of M feature vectors {Fy, F, ..., Fa}.
Advantages of the SA Layer:

* Hierarchical Feature Learning: The SA layer enables the model to learn features
at multiple scales, progressively capturing more abstract and global informa-
tion.

* Locality: By focusing on local regions, the SA layer captures fine-grained geo-
metric details, which are essential for tasks like classification and segmentation.

* Scalability: The hierarchical structure allows the network to handle large point
clouds efficiently by reducing the number of points at each layer while increas-
ing the feature dimensionality.

Conclusion:

The Set Abstraction (SA) layer is a cornerstone of the model architecture, enabling
effective hierarchical feature learning from point clouds. By combining sampling,
grouping, and PointNet-based feature extraction, the SA layer systematically abstracts
local geometric features into higher-level representations, facilitating robust and scal-
able point cloud processing.

skip link concatenation

unit interpolate unit

interpolate : A
pointnet pointnet

Classification

(1,C4)

3
sampling &~ pointnet ~ sampling & pointnet % g
grouping grouping = 2
N U J =
N Y °

set abstraction set abstraction —

pointnet fully connected layers

Figure 2: Architecture of the Model
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Architecture Diagram
A typical PointNet++ architecture can be visualized as follows:

Input Point Cloud
I
Sampling
I
Grouping
I
PointNet

——————————— (repeated for each SA layer)

Grouping
I
PointNet

——————————— (output from the final SA layer)
Classification / Segmentation Head

I
Output
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5.2.4 Classification Head Architecture

The classification head of the model is responsible for predicting the class label of the
input point cloud based on the features extracted by the preceding layers. It typically
consists of fully connected layers followed by a softmax activation function to produce
class probabilities.

Overview:

The classification head takes the feature vectors generated by the Set Abstraction
(SA) layers and aggregates them to make a prediction about the input point cloud’s
class. This process involves transforming the high-dimensional feature representa-
tions into class scores through a series of fully connected layers.

Detailed Architecture:

1. Fully Connected Layers:
* After the SA layers, the extracted features are flattened into a single vector
representation.

e This vector is then passed through one or more fully connected layers.

» Each fully connected layer applies a linear transformation to the input fol-
lowed by a non-linear activation function, typically ReLU (Rectified Linear
Unit), to introduce non-linearity into the model.

e The number of units (neurons) in the fully connected layers may vary de-
pending on the complexity of the classification task and the dimensionality
of the extracted features.

2. Dropout Layer:
» To prevent overfitting, a dropout layer may be added after the fully con-

nected layers.

e Dropoutrandomly sets a fraction of input units to zero during training, which
helps prevent the model from relying too heavily on specific features and
encourages robust feature learning.

3. Output Layer:

* The output layer is the final layer of the classification head.

e Ittypically consists of a fully connected layer with a softmaxactivation func-
tion.

* The softmax function converts the output scores of the previous layers into
class probabilities, ensuring that the probabilities sum to one across all classes.
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e Each node in the output layer represents the probability of the input point
cloud belonging to a particular class.

5.2.5 Training and Loss Function

Training the model involves optimizing its parameters to minimize a predefined loss
function. The training process typically consists of feeding input point clouds through
the network, computing predictions, comparing them with the ground truth labels,
and adjusting the model parameters using backpropagation.

Training Process:

1. Forward Pass:
* Inputpoint clouds are fed into the model, which propagates the data through
its layers to produce predictions.

e The classification head computes class probabilities, while other compo-
nents of the model may perform tasks like feature extraction or segmenta-
tion.

2. Loss Computation:
* The loss function quantifies the difference between the predicted outputs

and the ground truth labels.

* For classification tasks, the categorical cross-entropy loss is used.
3. Backward Pass (Backpropagation):
* The gradients of the loss function with respect to the model parameters are
computed using backpropagation.

* These gradients guide the optimization algorithm (e.g., stochastic gradient
descent) to update the model parameters in a direction that minimizes the
loss.

4. Parameter Update:

* The optimization algorithm adjusts the model parameters based on the com-
puted gradients and a predefined learning rate.

 This iterative process continues until the model converges to a satisfactory
solution or a predefined stopping criterion is met.
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5.2.6 Loss Function

For classification tasks, the categorical cross-entropy loss measures the discrepancy
between the predicted class probabilities and the true class labels. Given N training
samples with K classes, the categorical cross-entropy loss Lcg is computed as:

N

LYy
— YViklog(yi k)
N y k:1 1 1

1=

Lcg=-

—

Where:

* y; r is the indicator function indicating the presence (1) or absence (0) of class k
in the ground truth label of sample i.

* J; ris the predicted probability of class k for a sample i.

The categorical cross-entropy loss penalizes large deviations between predicted
and true class probabilities, encouraging the model to produce more accurate pre-
dictions.

Conclusion: The training process of the model involves iteratively optimizing its
parameters to minimize a predefined loss function. By computing gradients through
backpropagation and updating model parameters using optimization algorithms, the
model learns to effectively classify or segment 3D point clouds.
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5.2.7 Segmentation Head Architecture

The segmentation head of the model is responsible for predicting semantic labels for
each point in the input point cloud. It takes the hierarchical features generated by the
Set Abstraction (SA) layers and processes them to produce per-point label predictions.

Overview: The segmentation head transforms the hierarchical feature representa-
tions into per-point predictions by leveraging fully connected layers followed by ap-
propriate activation functions. This process enables the model to assign semantic la-
bels to individual points based on their local and global contexts.

Detailed Architecture:

1. Fully Connected Layers:
» The feature vectors generated by the SA layers are typically flattened into a
single vector representation for each point.

* These vectors are then passed through one or more fully connected layers.

e Each fully connected layer applies a linear transformation to the input fol-
lowed by a non-linear activation function, such as ReLU, to capture com-
plex relationships between features.

2. Dropout Layer:

e Similar to the classification head, a dropout layer may be included to pre-
vent overfitting by randomly dropping units during training.

3. Output Layer:
* The output layer of the segmentation head consists of a fully connected

layer followed by a softmax activation function.

e The softmax function produces per-point probability distributions over dif-
ferent semantic classes.

* Each node in the output layer represents the probability of the correspond-
ing point belonging to a specific semantic class.
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5.2.8 Training and Loss Function

Training the model for segmentation tasks involves optimizing its parameters to min-
imize a predefined loss function. The training process consists of feeding input point
clouds through the network, computing predictions, comparing them with the ground
truth labels, and adjusting the model parameters using backpropagation.

Training Process:

1. Forward Pass:
* Inputpointclouds are fed into the model, which propagates the data through
its layers to produce predictions.
* The segmentation head computes per-point probability distributions over
different semantic classes.
2. Loss Computation:
e The loss function quantifies the discrepancy between the predicted per-
point probabilities and the ground truth labels.

» For segmentation tasks, the Dice loss function is commonly used due to its
effectiveness in handling class imbalance and encouraging accurate local-
ization of object boundaries.

3. Backward Pass (Backpropagation):

* The gradients of the loss function with respect to the model parameters are
computed using backpropagation.
* These gradients guide the optimization algorithm to update the model pa-
rameters in a direction that minimizes the loss.
4. Parameter Update:
* The optimization algorithm adjusts the model parameters based on the com-
puted gradients and a predefined learning rate.

 This iterative process continues until the model converges to a satisfactory
solution or a predefined stopping criterion is met.
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Loss Function: For segmentation tasks, the Dice loss function measures the over-
lap between predicted and ground truth segmentation masks. Given N samples and
C classes, the Dice loss Lpjce is computed as:

_ zzﬁ\il ZCC:1 (pi,c : _Vi,c)
YN XS (Pic+ Vi)

Lpice =1
Where:
* p; . isthe predicted probability of class c for sample i.
* y;cis the ground truth label (binary mask) for class c for sample i.

The Dice loss penalizes discrepancies between predicted and ground truth seg-
mentation masks while being robust to class imbalance.

Conclusion: The training process of the model for segmentation tasks involves
minimizing the Dice loss function to accurately segment 3D point clouds. By optimiz-
ing model parameters through backpropagation, the model learns to produce mean-
ingful segmentation predictions, facilitating tasks such as object recognition and scene
understanding.

5.2.9 Adam Optimizer

Adam (Adaptive Moment Estimation) is an adaptive optimization algorithm commonly
used for training deep neural networks. It combines the advantages of both momentum-
based optimization methods and adaptive learning rate algorithms, making it well-
suited for a wide range of tasks, including classification in the PointNet++ architec-
ture.

Key Components:

1. Momentum: Adam incorporates momentum to accelerate gradient descent. It
keeps track of an exponentially decaying moving average of past gradients to de-
termine the direction of parameter updates.

2. Adaptive Learning Rate: Adam adapts the learning rate for each parameter based
on estimates of the first and second moments of the gradients. This allows for
faster convergence and more stable training across different parameters and lay-
ers.

Algorithm: Adam maintains two moving averages — the first moment m, which is
the mean of the gradients, and the second moment v, which is the uncentered vari-
ance of the gradients.
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The update rule for parameter 0 in iteration ¢ is given by:

me=pr-me1+0-P1) 8
Vz=ﬁz-vt—1+(1—ﬁz)-gf

A nmy
my =
t
1—,61
A V¢
V=
t
1—,52
1y
Orr1=0;—a —
Vi+€

Where:

* 0 is amodel parameter.

g: is the gradient of the loss function with respect to 6 at iteration .

«a is the learning rate.

p1 and B, are the decay rates for the first and second moments (typically close to
1).

e is a small constant to prevent division by zero.

Advantages:

* Efficient: Adam adapts the learning rates for each parameter individually, lead-
ing to efficient convergence.

* Robust: It is less sensitive to hyperparameters and works well with default set-
tings across different tasks.

* Memory Efficient: Adam maintains only two moving averages per parameter,
making it memory efficient compared to other adaptive learning rate methods.
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6 Results

In this section, we present the results of our experiments for both the classification
and segmentation tasks using the model. The aim is to evaluate the performance and
robustness of our approach on the ModelNet40 dataset.

6.1 Dataset Description

We used the ModelNet40 dataset for our experiments, which contains 12,311 CAD
models from 40 different object categories. The datasetis splitinto 9,843 training sam-
ples and 2,468 testing samples.

6.2 Experimental Setup

Our experiments were conducted on a machine with an NVIDIA GPU. The model was
trained using the Adam optimizer with a learning rate of 0.001, batch size of 32, and
trained for 200 epochs.

6.3 Classification Metrics

Accuracy:
TP+ TN
Accuracy =
TP+ TN+FP+FN
Where:
e TP =True Positives
e TN =True Negatives
e [P =TFalse Positives
* FN = False Negatives
Precision:
. . TP
Precision= —
TP+ FP
Recall: P
Recall= —————
TP+FN
F1-Score:

2 x Precision x Recall

F1-Score = —
Precision + Recall
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Confusion Matrix: A confusion matrix is a table used to describe the performance
of a classification model. Each column of the matrix represents the instances in a pre-
dicted class, while each row represents the instances in an actual class.

ROC Curves and AUC Scores:

* ROC Curve (Receiver Operating Characteristic Curve): A graphical plot that il-
lustrates the diagnostic ability of a binary classifier system as its discrimination
threshold is varied.

e AUC (Area Under the Curve): The area under the ROC curve, which measures the
entire two-dimensional area underneath the entire ROC curve.

6.4 Segmentation Metrics

We describe the segmentation metrics below.
Intersection over Union (IoU):

_|AnB|
" JAUB|

IoU

Where:

* A=Predicted segmentation
e B =Ground truth segmentation
* An B =Intersection of predicted and ground truth segmentation

e Au B =Union of predicted and ground truth segmentation
Dice Coefficient:
2|ANn B

Dice Coefficient= ————
|Al +|B|

Where:

e A=Predicted segmentation
e B =Ground truth segmentation

* An B =Intersection of predicted and ground truth segmentation

Pixel Accuracy:
2iMNii
2iti

Pixel Accuracy =

Where:

® n;= Numb
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Confusion Matrix for ModelNet40 Classification Task
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6.6 Segmentation Results

The segmentation performance is evaluated using the Intersection over Union (IoU)
and Dice Coefficient metrics. The mean IoU across all classesis 74.5%, and the average
Dice Coefficient is 85.2%.

e Mean IoU: 74.5%

¢ Dice Coefficient: 85.2%

6.7 Discussion

The results demonstrate that our model performs well on both classification and seg-
mentation tasks. The model’s ability to capture local and global features contributes to
its high performance. However, certain classes with high variability pose challenges,
indicating areas for future improvement.
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7 Conclusion

In this thesis, we addressed the problem of 3D point cloud classification and seg-
mentation using deep learning models, specifically focusing on the PointNet++ archi-
tecture. Our study aimed to improve the model’s performance by incorporating the
Density-Adaptive Point Sampling (DAPS) method in the sampling layer, replacing the
traditional Farthest Point Sampling (FPS). This modification was intended to enhance
the model’s ability to handle varying point densities, which is a common challenge in
real-world 3D data.

7.1 Key Findings
* Performance Improvements with DAPS:

— Our experimental results demonstrated that using DAPS in the sampling
layer improved the model’s robustness to point density variations. The clas-
sification accuracy on the ModelNet40 dataset showed a noticeable improve-
ment, confirming the effectiveness of DAPS in capturing more informative
points.

* Effective Segmentation:

- For the segmentation task, the modified PointNet++ model achieved high
accuracy in segmenting various objects. Visual comparisons between the
ground truth and predicted segmentation maps highlighted the model’s ca-
pability to accurately segment complex 3D shapes.

e Qualitative and Quantitative Metrics:

— The confusion matrix for the classification task provided insights into the
model’s performance across different classes, identifying specific areas where
the model excels or needs improvement.

- For the segmentation task, visual comparisons and metrics such as the Dice
coefficient offered a comprehensive evaluation of the model’s performance,
showing strong alignment with the ground truth.

7.2 Contributions

* Novel Sampling Strategy:
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- Integrating DAPS into the PointNet++ architecture is a significant contri-
bution, demonstrating how adaptive sampling strategies can enhance 3D
point cloud processing. This approach could be beneficial for various ap-
plications, including autonomous driving, robotics, and augmented reality.

¢ Robust Evaluation:

— Through extensive experiments on the ModelNet40 dataset, we validated
the robustness and effectiveness of the proposed modifications. The results
underscore the importance of adaptive sampling in handling real-world 3D
data.

7.3 Future Work

While our modified PointNet++ model with DAPS has shown promising results, there
are several avenues for future research:

* Integration with Other Architectures:

— Exploring the integration of DAPS with other 3D deep learning architec-
tures, such as PointCNN or KPConv, to further validate its effectiveness.

* Scalability and Efficiency:

- Investigating ways to improve the computational efficiency of DAPS to en-
sure scalability for larger datasets and real-time applications.

e Real-World Applications:

- Applying the proposed model to more diverse and complex real-world datasets
to assess its generalization capabilities and identify potential areas for im-

provement.

7.4 Final Remarks

In conclusion, this thesis has demonstrated that incorporating advanced sampling
techniques like DAPS can significantly enhance the performance of 3D point cloud
classification and segmentation models. Our findings contribute to the ongoing ef-
forts to develop more accurate and robust 3D deep learning models, paving the way
for their broader adoption in various technological domains.
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