
M.Tech. (Computer Science) Dissertation Series

Exploring Deep Learning for IR within
the TREC DL Track

Submitted in partial fulfillment of

the requirements for the degree of

Master of Technology in Computer Science

By

Ritesh Kumar Tiwary
Roll No: CS2224

Under the supervision of

Dr. Mandar Mitra

INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road

Kolkata-700108

Indian Statistical Institute

203. B.T. Road. Kolkata : 700108

Kolkata

June, 2024.

CERTIFICATE

I certify that I have read the thesis titled Exploring Deep Learning for IR
within the TREC DL Track, prepared under my guidance by Ritesh Kumnar
Tiwary, and in my opinion it is fully adequate, in scope and in quality, as a dis
sertation for the degree of Master of Technology in Computer Science of the
Indian Statistical Institute.

Mandar Mitra

Professor

Computer Vision and Pattern Recognition Unit
Indian Statistical Institute

Declaration

I, Ritesh Kumar Tiwary, declare that this dissertation titled, �Exploring Deep
Learning for IR within the TREC DL Track', which is submitted in fulfllment
of the requirements for the Degree of Master of Technology in Computer Scicnce,
represcnts my own work cxccpt where duc acknowledgemcnt has bcen made. I
further declare that it has not been previously included in a thesis, dissertation, or
report submitted to this University or to any other institution for a degree, diploma
or other qualifications.

Signed:

Date:

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Mandar Mitra,
whose expert guidance, infinite patience, and constant encouragement have endowed
me with a strong foundation in Information Retrieval and made this dissertation
possible. His insightful feedback and unwavering support throughout my dissertation
journey have been instrumental in shaping this work. I feel truly blessed to have
had the opportunity to work under his mentorship.

I would also like to extend my heartfelt thanks to Mr. Saurav Saha for his
invaluable assistance and support throughout my dissertation work. His willingness
to help and his constructive advice have greatly contributed to the completion of
this thesis.

Ritesh Kumar Tiwary
Indian Statistical Institute

June 12, 2024

iii

Contents

Declaration i

Acknowledgements ii

List of Tables v

List of Abbreviations vi

1 Introduction 1
1.1 Neural IR . 1
1.2 About TREC . 2

1.2.1 TREC Deep Learning Track 2
1.3 Problem Statement . 3
1.4 Datasets . 4
1.5 Applied Models . 4

1.5.1 BERT-Base-Uncased . 5
1.5.2 DeBERTa-V3 . 5

2 Methodologies 7
2.1 Background . 7
2.2 Preliminaries . 8
2.3 Localized Negatives from Target Retriever 8
2.4 Contrastive Loss . 9
2.5 LCE Batch Update . 9
2.6 SPLADE and its Methodology . 9

2.6.1 SPLADE . 9
2.6.2 Distillation, Hard Negative Mining, and PLM Initialization . . 10
2.6.3 SPLADE++ Models . 11

3 Experimental Setup 12
3.1 Initial Stage Retriever . 12
3.2 Implementation . 12

iv

4 Results 14
4.1 Document Ranking Performance . 14
4.2 Analysis . 14

4.2.1 Model Performance Overview 15
4.2.2 Hyperparameter Influence . 15
4.2.3 Key Observations . 16

5 Conclusion 17

Bibliography 18

A : Training Setup 22

B : Judgement Process 24

v

List of Tables

1.1 Summary of statistics on TREC 2019 Deep Learning Track datasets. 4
1.2 Comparison of BERT models . 5
1.3 Comparison of Different DeBERTa-V3 models 6

4.1 Performance comparison of different models on TREC DL Track 2019. 14

A.1 Hyperparameters for Training on TREC DL 2019 Track Datasets . . 23
A.2 Hyperparameter changes for the fourth model (CoCondenser-SelfDistil). 23

vi

List of Abbreviations

IR Information Retrieval
NLP Natural Language Processing
BERT Bidirectional Encoder Representations from Transformers
PLM Pre-trained Language Model
MS MARCO MicroSoft MAchine Reading COmprehension
TREC Text REtrieval Conference
NIST National Institute of Standards and Technology
IARPA Intelligence Advanced Research Projects Activity
NDCG Normalized Discounted Cumulative Gain
MAP Mean Average Precision
MRR Mean Reciprocal Rank
NLU Natural Language Understanding
NCE Noise Contrastive Estimation
LCE Localized Contrastive Estimation
SPLADE SParse Lexical And Dense Embeddings
MLM Masked Language Model
HDCT Hierarchical Document Context Term

1

1 Introduction

Information Retrieval (IR) is crucial in today’s world, underpinning many practical
applications such as web searches, question-answering systems, personal assistants,
chatbots, and digital libraries. The primary aim of IR is to find and retrieve in-
formation that matches a user’s query. Since multiple records can be relevant, IR
systems often rank the results based on their relevance to the query.

1.1 Neural IR

Traditional text retrieval systems primarily rely on matching terms between a query
and the documents. However, these term-based retrieval systems face several chal-
lenges, such as polysemy (words with multiple meanings), synonymy (different words
with the same meaning), and lexical gaps between the query and the documents [11].

In recent years, advancements in computing power and the availability of large
labeled datasets have significantly influenced the field of Natural Language Pro-
cessing (NLP). More specifically these advancements have enabled researchers to
apply deep learning techniques, leading to numerous innovations. By leveraging
deep learning, traditional text retrieval systems have also been improved to address
the limitations of term-based retrieval systems.

However, implementing these advanced techniques demands substantial amounts
of data and computing resources. Consequently, researchers are continuously devel-
oping more sophisticated deep learning algorithms to meet these requirements and
achieve superior results in NLP tasks [26]. With these advanced algorithms, the
performance of IR systems has markedly improved, resulting in more accurate and
efficient information retrieval for end-users.

Several advancements in deep learning techniques have been applied to IR, in-
cluding neural network architectures such as convolutional neural networks (CNNs)
[25] and recurrent neural networks (RNNs) [27]. Additionally, transfer learning and
pre-training techniques have been employed to enhance text data representation and
improve IR systems’ ability to understand natural language queries [15].

2 Chapter 1. Introduction

Moreover, attention-based mechanisms, like the Transformer architecture [36],
have been utilized to improve IR systems’ capability to focus on the most relevant
parts of the query and documents. Pre-trained language models, such as BERT
[15] and GPT-2 [34], have further demonstrated their effectiveness in enhancing IR
systems by providing a deeper understanding of the semantics and context of natural
language queries and documents. These advancements have collectively contributed
to the enhanced performance and reliability of modern IR systems.

1.2 About TREC

TREC, co-sponsored by NIST and IARPA, began in 1992 as part of the TIPSTER
Text program[1]. Its primary purpose is to support and foster research in the IR com-
munity by providing a platform for large-scale evaluation of text retrieval method-
ologies and accelerating the transfer of technology from research labs to commercial
products[35].

Each TREC track features a challenge where NIST supplies data sets and test
problems to participating groups [2]. These problems may involve questions, topics,
or target extractable features. Uniform scoring ensures fair evaluation, and the
results are discussed in a workshop that facilitates the exchange of ideas and future
research directions.

Relevance judgments in TREC define relevance as the utility of a document’s in-
formation for a report on the topic. Most tasks use binary relevance, while some em-
ploy graded relevance to capture varying degrees of relevance. The pooling method
aggregates top-ranked documents from each run for evaluation, as complete rele-
vance assessment is impractical for large collections[23].

1.2.1 TREC Deep Learning Track

The Deep Learning Track in TREC focuses on studying information retrieval within
a large training data regime. This scenario involves having a substantial number of
training queries, each with at least one positive label, potentially numbering in the
tens or hundreds of thousands. Such a regime mirrors real-world applications, such
as training models using click logs or labels from shallow pools[7], like those used in
the TREC Million Query Track or evaluations based on early precision metrics [3].

1.3. Problem Statement 3

Machine learning methods, particularly those based on deep learning, often
require extensive datasets for effective training. The scarcity of large-scale datasets
has historically impeded the development of these methods for common IR tasks,
such as document ranking. The Deep Learning Track addresses this limitation by
providing large-scale datasets and fostering a concentrated research effort.

The Deep Learning Track aims to advance the understanding and development
of deep learning methods in information retrieval, ultimately enhancing the perfor-
mance and applicability of these methods in real-world scenarios.

1.3 Problem Statement

The Deep Learning track, introduced at TREC 2019, focuses on exploring informa-
tion retrieval with large training datasets. The TREC DL 2019 dataset is founda-
tional, establishing baseline benchmarks for subsequent years, and is highly stable
and consistent, reducing complications from later variations. It has been exten-
sively studied and cited, offering a rich body of literature and comparative analyses.
Using the 2019 dataset allows for historical comparisons, highlighting methodolog-
ical advancements. This makes TREC DL 2019 a robust choice over datasets from
2020-2023.

This track includes two main tasks: passage ranking and document ranking,
both of which use a substantial set of human-generated training labels from the MS
MARCO∗ dataset. Each task has two associated subtasks: full ranking and top-k
re-ranking. In the full ranking subtask, the goal is to rank passages or documents
directly from the entire provided document collection. In the re-ranking subtask,
the aim is to re-rank based on an initial set of top-k passages or documents.

For official evaluation, depth pooling is used, creating separate pools for pas-
sage ranking and document ranking tasks. NIST assessors then label passages and
documents in these pools using multi-graded judgments, allowing for the measure-
ment of the NDCG metric. Out of the 200 test queries, 43 ground truth queries are
selected through the process described in Appendix B and used for evaluation.

In our study, we aim to advance the field of information retrieval by leverag-
ing state-of-the-art transformer models to enhance document ranking performance.
Our primary objective is to compare these advanced models—bert-base-uncased[15],

∗https://msmarco.org/

4 Chapter 1. Introduction

deberta-v3[20], and Naver’s splade-cocondenser-ensembledistil and splade-cocondenser-
selfdistil [17]—by achieving competitive results. Additionally, we investigate the im-
pact of hyperparameter tuning on their effectiveness. By pushing the boundaries of
current methodologies, we seek to provide more accurate and efficient retrieval sys-
tems, contributing valuable insights and advancements to the research community.

This report is structured as follows: Chapter 2 provides a detailed introduction
to the approach used in our experiments, Chapters 3 and 4 presents the experimental
settings and results respectively. Chapter 5 concludes the report.

1.4 Datasets

Both tasks utilize large training sets based on human relevance assessments from MS
MARCO. These assessments are sparse, featuring no negative labels and often only
one positive label per query, similar to real-world training data such as click logs
[10]. The document corpus, newly released for use in TREC, includes three fields for
each document: (i) URL, (ii) title, and (iii) body text. Table 1.1 provides descriptive
statistics for the datasets. More information about the datasets, including download
instructions, is available on the TREC 2019 Deep Learning Track website†.

Table 1.1: Summary of statistics on TREC 2019 Deep Learning Track datasets.

File description Document retrieval dataset Passage retrieval dataset
Number of records File size Number of records File size

Collection 3,213,835 22 GB 8,841,823 2.9 GB
Train queries 367,013 15 MB 502,940 19.7 MB
Train qrels 384,597 7.6 MB 532,761 10.1 MB
Validation queries 5,193 216 KB 12,665 545 KB
Validation qrels 519,300 27 MB 59,273 1.1 MB
Test queries 200 12 KB 200 12 KB

1.5 Applied Models

In this section, we will explain the various models used in our work.
†https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019

1.5. Applied Models 5

1.5.1 BERT-Base-Uncased

BERT (Bidirectional Encoder Representations from Transformers) is a method for
pre-training language representations. It involves training a general-purpose "lan-
guage understanding" model on a large text corpus, such as Wikipedia, which is
then used for downstream NLP tasks like question answering. BERT surpasses pre-
vious methods because it is the first unsupervised, deeply bidirectional system for
pre-training NLP. Unsupervised training means BERT was trained using only plain
text data, making use of the vast amount of publicly available text on the web in
various languages.

In this work, we used the pre-trained BERT-Base-Uncased model for tokeniza-
tion. The tokenization process followed three key steps:

1. Text Normalization: Convert all whitespace characters to spaces. Lower-
case the input and strip out accent markers for the Uncased model. Example:
"John Johanson’s," becomes "john johanson’s,".

2. Punctuation Splitting: Split all punctuation characters on both sides (i.e.,
add whitespace around all punctuation characters). Punctuation characters
are defined as anything with a P* Unicode class. Any non-letter/number/space
ASCII character (e.g., characters like $ which are technically not punctuation).
Example: "john johanson’s," becomes "john johanson ’ s ,".

3. WordPiece Tokenization: Apply whitespace tokenization to the output of
the above procedure. Apply WordPiece tokenization to each token separately.
Example: " john johanson ’ s ," becomes " john johan ##son ’ s ," .

Table 1.2: Comparison of BERT models

Model Layers Hidden Units Heads Parameters
BERT-Base, Uncased 12 768 12 110M
BERT-Large, Uncased 24 1024 16 340M
BERT-Base, Cased 12 768 12 110M
BERT-Large, Cased 24 1024 16 340M

1.5.2 DeBERTa-V3

In our experiments, we also utilized the DeBERTa-V3 model. DeBERTa (Decoding-
enhanced BERT with disentangled attention) is a Transformer-based neural lan-
guage model that introduces two novel techniques to improve upon previous state-
of-the-art pre-trained language models (PLMs): a disentangled attention mechanism

6 Chapter 1. Introduction

and an enhanced mask decoder.

Disentangled Attention: Unlike BERT, where each word in the input layer is
represented by a single vector (the sum of its word (content) embedding and position
embedding), DeBERTa represents each word with two separate vectors that encode
its content and position. The attention weights among words are computed using
disentangled matrices based on their content and relative positions. This approach
recognizes that the attention weight between word pairs depends on both their
contents and their relative positions. For instance, the dependency between "deep"
and "learning" is stronger when they are adjacent than when they are in different
sentences.

Enhanced Mask Decoder: Similar to BERT, DeBERTa[21] is pre-trained
using masked language modeling (MLM), where the model predicts masked words
based on the surrounding context. DeBERTa uses content and position information
for MLM. While the disentangled attention mechanism considers the contents and
relative positions of context words, it does not account for their absolute positions,
which can be crucial for prediction. For example, in the sentence "a new store
opened beside the new mall," understanding the syntactic roles of "store" and "mall"
depends on their absolute positions. DeBERTa incorporates absolute word position
embeddings before the softmax layer to enhance the prediction of masked words
based on aggregated contextual embeddings.

In further development, DeBERTa-V3[20] was introduced, which improves the
original DeBERTa by replacing MLM with replaced token detection (RTD), a more
sample-efficient pre-training task. Analysis showed that vanilla embedding sharing
in ELECTRA[9] reduces training efficiency and model performance due to conflicting
training losses between the discriminator and generator. DeBERTa-V3 addresses
this with a gradient-disentangled embedding sharing method, improving training
efficiency and model quality. Pre-trained under the same settings as DeBERTa,
DeBERTa-V3 demonstrates exceptional performance across a variety of downstream
natural language understanding (NLU) tasks.

Table 1.3: Comparison of Different DeBERTa-V3 models

Model Vocabulary (K) Parameters (M) Hidden Size Layers
DeBERTa-V3-Large 128 304 1024 24
DeBERTa-V3-Base 128 86 768 12
DeBERTa-V3-Small 128 44 768 6
DeBERTa-V3-XSmall 128 22 384 12

7

2 Methodologies

2.1 Background

The separation of retrieval into stages arose naturally due to the efficiency-effectiveness
trade-off among different ranking models: fast but less accurate models (e.g., BM25)
retrieve from the entire corpus, while slower but more accurate models (e.g., BERT)
refine the ranking in the top candidate list. Heuristic retrievers like BM25 rely
solely on exact match signals, allowing the use of inverted list data structures for
low-latency full corpus retrieval. However, their scoring is limited by document
statistics. To address this, deep language models can be used to re-estimate term
weights in the search index [12, 14]. Alternatively, probable query terms can be
added to documents [29].

Pre-trained deep language models [33, 15] have shown strong supervised trans-
fer performance on reranking tasks. Recent popular works [28, 13] fine-tune BERT
[15] with a binary classification objective, demonstrating significant improvements
over earlier models. However, we question whether this simple paradigm fully real-
izes BERT’s potential, especially for high-performance deep retrievers that generate
candidates with harder negatives.

An alternative to the binary classification objective is contrastive learning ob-
jectives, which directly consider negatives [19]. The popular Noise Contrastive Es-
timation (NCE) loss calculates scores for a positive instance and several negative
instances, normalizes them into probabilities, and trains the model to assign a higher
probability to the positive instance [38]. Incorporating negatives in the loss prevents
the model from collapsing. While contrastive loss has been extensively studied in
representation learning [38, 8], there are few prior works adopting it for training
deep language model rerankers.

8 Chapter 2. Methodologies

2.2 Preliminaries

We aim to train a BERT reranker to score a query-document pair using the following
formula:

s = score(q, d) = v⊤
p cls(BERT(concat(q, d))) (2.1)

where cls extracts BERT’s [CLS] vector and vp is a projection vector. This ap-
proach, commonly referred to as the V anilla method [13, 28], involves sampling
query-document pairs independently and computing on each individual pair using
binary cross-entropy (BCE) based on the query q, document d, and the correspond-
ing label (positive/negative).

The loss function for the Vanilla method is defined as:

Lv :=

BCE(score(q, d),+) if d is positive

BCE(score(q, d),−) if d is negative
(2.2)

The Vanilla method treats the reranker training as a general binary classifi-
cation problem. However, rerankers have a unique nature; they handle the top
portion of retriever results, each potentially containing many confounding features.
Therefore, the reranker must exile at handling the top portion of retriever results
and avoid collapsing by not matching with confounding features [18]. To address
these challenges, we introduce Localized Contrastive Estimation (LCE) loss in this
section. The contrastive loss prevents the model from collapsing, while localized
negative samples focus the reranker on the top retriever results, ensuring it handles
these effectively and avoids confounding features.

2.3 Localized Negatives from Target Retriever

Given a target initial-stage retriever and a set of training queries, we utilize the
retriever to search the entire corpus, producing a set of document rankings for these
queries. For each query q, we then sample n non-relevant documents as negative ex-
amples from the set Rm

q of the top m ranked documents. These sampled documents
collectively form the negative training set. Reconstructing the training set based on
the specific target retriever is crucial for ensuring robust training [18].

2.4. Contrastive Loss 9

2.4 Contrastive Loss

After aggregating all negatives sampled from the target retriever, we form a group
Gq for each query q. This group consists of a single relevant positive document d+q

and the sampled non-relevant negative documents from Rm
q . We treat the BERT

scoring function as a deep distance function,

dist(q, d) = score(q, d) = v⊤
p cls(BERT(concat(q, d))) (2.3)

The contrastive loss for a query q is then defined as,

Lq := − log
exp(dist(q, d+q))∑
d ∈ Gq exp(dist(q, d))

(2.4)

In this formulation, the loss and gradient are conditioned not only on the rele-
vant pair but also on the retrieved negatives. This approach helps prevent the model
from collapsing into simple confounding matchings[18].

2.5 LCE Batch Update

Bringing everything together, we can express the Localized Contrastive Estimation
(LCE) loss for a training batch of a set of queries Q as follows:

LLCE :=
1

|Q|
∑

q∈Q,Gq∼Rq
m

− log
exp(dist(q, d+q))∑
d∈Gq

exp(dist(q, d))
(2.5)

In contrast to the standard noise contrastive estimation (NCE) loss, LCE employs
the target retriever to localize negative samples, thereby concentrating the learning
process on the top portion rather than on randomly sampled noisy negatives.

2.6 SPLADE and its Methodology

2.6.1 SPLADE

SPLADE (Sparse Lexical and Dense Embeddings) is a sparse retrieval model that
predicts term importance using the BERT WordPiece vocabulary. It leverages the
Masked Language Modeling (MLM) layer from pre-training to perform implicit term

10 Chapter 2. Methodologies

expansion[17]. For a given query or document t, let wi,j denote the importance
of the j-th vocabulary token for the i-th input token. Text representations are
obtained by pooling these importance predictors over the input sequence with a log-
saturation effect. SPLADE originally used sum pooling, but experimental findings
revealed that max pooling significantly improves performance [24]. Therefore, the
formulation used is:

wj = max
i∈t

log(1 + ReLU(wi,j)) (2.6)

The ranking score s(q,d) is computed as the dot product between the query q and
document d representations.
Training
The model is trained using a query q, a positive document d+, a negative document
d− mined from BM25, and additional in-batch negatives d−j [16]. The training
objective combines a contrastive InfoNCE loss [30] and FLOPS regularization [31]
to achieve the desired sparsity:

L = LInfoNCE,BM25 + λqL
FLOPS
q + λdL

FLOPS
d (2.7)

2.6.2 Distillation, Hard Negative Mining, and PLM Initial-

ization

To improve SPLADE, several techniques are applied, such as distillation, hard neg-
ative mining, and pre-trained language model (PLM) initialization[16].
Distillation: Using MarginMSE loss[22], SPLADE distillation optimizes the model
by matching the positive-negative margins of a cross-encoder teacher and the student
model.

L = LMarginMSE,BM25 + λqL
FLOPS
q + λdL

FLOPS
d (2.8)

Hard Negative Mining: This involves generating higher quality negative samples
to enhance training, replacing standard BM25 negatives with negatives mined from
more sophisticated models [16].
Pre-training: Utilizing pre-trained checkpoints from retrieval-oriented tasks, such
as CoCondenser, improves SPLADE’s performance by initializing the model with
embeddings that contain more informative knowledge for retrieval tasks[16].

2.6. SPLADE and its Methodology 11

2.6.3 SPLADE++ Models

The improved SPLADE strategies are collectively referred to as SPLADE++[16].
For our experiments, we used two configurations:

1. CoCondenser-EnsembleDistil
CoCondenser-EnsembleDistil combines CoCondenser initialization with en-
semble mining for hard negatives, followed by distillation[16]. This approach
leverages the msmarco-hard-negatives dataset, which includes hard negatives
mined from various dense retrievers and BM25. The ranking loss for this
scenario is:

L = LMarginMSE,ensemble + λqL
FLOPS
q + λdL

FLOPS
d (2.9)

By using multiple models to mine negatives, the ensemble approach aims to
improve the quality of negative samples, leading to better training and perfor-
mance.

2. CoCondenser-SelfDistil
CoCondenser-SelfDistil combines CoCondenser initialization with self-mining
for hard negatives, followed by distillation[16]. This involves a two-step train-
ing process:

(a) Train a SPLADE model and a cross-encoder re-ranker using distillation.

(b) Generate triplets using the trained SPLADE model and score them with
the cross-encoder for another round of training.

The ranking loss for this scenario is:

L = LMarginMSE,self + λqL
FLOPS
q + λdL

FLOPS
d (2.10)

This self-distillation approach aims to improve the quality of negative samples
by iteratively refining the training process.

12

3 Experimental Setup

3.1 Initial Stage Retriever

We experimented with the initial retriever HDCT [14]. HDCT (Hierarchical Doc-
ument Context Term) is the method for augmenting document search indices with
term weights re-estimated using BERT. We used the rankings provided by the au-
thors [4]. The top 100 candidate lists from HDCT were input to our rerankers
for further experimentation. This approach enhances the traditional bag-of-words
(BoW) representation by incorporating context-aware term weighting. The frame-
work operates in two main stages:

1. Semantic Importance Estimation: HDCT first estimates the semantic
importance of each term within the context of individual passages of the doc-
ument. This process involves understanding the role and relevance of a term
relative to the surrounding text, thereby capturing more nuanced information
than simple term frequency.

2. Aggregation and Indexing: The context-aware term weights derived in
the first stage are then aggregated into a document-level representation. This
enriched BoW representation is compatible with standard inverted indexes,
ensuring that the enhanced document vectors can be stored and retrieved
efficiently using existing search engine infrastructure.

3.2 Implementation

Our experiments are conducted on the TREC Deep Learning (DL) Track 2019
dataset using four models: two from HuggingFace (BERT-base and DeBERTa-V3)
and two from Naver Labs Europe (NLE) (CoCondenser-selfDistil and CoCondenser-
EnsembleDistil). We detail the implementation and training setup for these models
in Appendix A.

We follow the setup inspired by [13], where the input to the rerankers consists
of the concatenated document title, URL, and the first 512 tokens of the docu-
ment body. This approach ensures that the model processes a rich context for each

3.2. Implementation 13

document.

For our specific implementation, we used the top 100 candidate lists as input
from HDCT. A Python script, build_train_from_ranking.py, generated JSON
files for all 367,013 queries. Each JSON file contains the query ID (qid), tokenized
query, and both positive and negative examples. The positive and negative examples
include document IDs (did) and their truncated tokenized document bodies. These
JSON files are used for positive and negative sampling as well as hard negative
mining.

During training and evaluation, we randomly sampled 10 documents from the
top 100 documents for each query. These 10 documents were divided into 8 for the
training set and 2 for the evaluation set. We saved checkpoints in the checkpoint
directory after every 2000 or 6000 steps. The maximum number of tokens per
document was limited to 512.

The rerankers are implemented in mixed precision using PyTorch [32] and are
based on HuggingFace’s BERT implementation [37] as well as Naver’s SPLADE im-
plementation[5]. Negative sampling is performed from the top 100 documents ranked
by the target retriever, similar to the reranking depth. This strategy ensures that
the model is trained on challenging examples, improving its ranking performance.

Additionally, we preprocessed the data to create a test.d100.tsv file. This
file’s columns include qid, query, did, URL, title, body, and an unused field. This
preprocessing step ensured that our test data was in a consistent format for evalu-
ation purposes.

The output of our reranking process is a TSV file containing the query ID (qid),
document ID (did), and the score value. These files are used to rank the documents
for test queries, which are further used for evaluation purposes. All the score files
along with the detailed processes are uploaded to GitHub repository∗.

For the training process, we utilized the GitHub repository of Reranker by
cloning to download requirement files as method mentioned in below Github Repo.
This setup, detailed in Appendix A, ensures a comprehensive training regime, lever-
aging state-of-the-art techniques for efficient and effective training of the reranker
models on the TREC DL Track 2019 dataset.

∗https://github.com/RiteshKTiwary/Reranking-of-TREC-Deep-Learning-2019-Track-
Datasets-using-neural-method/

14

4 Results

4.1 Document Ranking Performance

In this section, we compare the performance of four models on the TREC DL
Track 2019: two models from HuggingFace (BERT-base and DeBERTa-V3) and
two models from Naver Labs Europe (CoCondenser-selfDistil and CoCondenser-
EnsembleDistil). We evaluated the models using three IR measures: nDCG@10,
MRR, and MAP, with a primary focus on nDCG@10.

For the first three models (BERT-base, DeBERTa-V3, and CoCondenser-Ensem-
bleDistil), we used the same hyperparameters as mentioned in Table A.1 in Appendix
A. Among the first three models, DeBERTa-V3 outperformed the others in terms
of nDCG@10. However, with the adjusted hyperparameters with slight modifica-
tions mentioned in Table A.2, the fourth model (CoCondenser-SelfDistil) achieved
the best performance across all measures, demonstrating the effectiveness of proper
hyperparameter tuning.

The following table summarizes the performance of the four models across the
three IR measures:

Table 4.1: Performance comparison of different models on TREC DL Track 2019.

Model nDCG@10 MRR MAP
BERT-base 0.5807 0.8682 0.2399
DeBERTa-V3 0.6197 0.9050 0.2497
CoCondenser-EnsembleDistil 0.5924 0.8709 0.2398
CoCondenser-SelfDistil 0.6207 0.8992 0.2498

4.2 Analysis

In this section, we analyze the performance of the four models: BERT-base, DeBERTa-
V3, CoCondenser-SelfDistil, and CoCondenser-EnsembleDistil, in the context of the
TREC DL Track 2019. Our focus is on understanding the impact of model archi-
tecture and hyperparameter settings on the evaluation metrics: nDCG@10, MRR,
and MAP.

4.2. Analysis 15

4.2.1 Model Performance Overview

BERT-base: As a well-established baseline, BERT-base achieved reasonable per-
formance across all metrics. However, it was outperformed by the other models,
indicating that more recent advancements in model architecture and training strate-
gies offer significant improvements.
DeBERTa-V3: DeBERTa-V3 demonstrated superior performance among the mod-
els trained with the same hyperparameters in Table A.1. This model’s advanced
architecture, featuring disentangled attention and enhanced mask decoding, likely
contributed to its higher nDCG@10, MRR, and MAP scores compared to BERT-
base and CoCondenser-selfDistil.
CoCondenser-EnsembleDistil: This model also showed competitive performance,
outperforming BERT-base but slightly trailing DeBERTa-V3 in the same hyperpa-
rameter setting. The ensemble approach, thorough distillation process and improved
negative sampling contributed to its effectiveness, yet there was room for further op-
timization.
CoCondenser-SelfDistil: After adjusting the hyperparameters, CoCondenser-
SelfDistil emerged as the best-performing model. The self-distillation technique
and improved negative sampling, coupled with optimized training settings, led to
significant gains in all metrics. This highlights the critical role of hyperparameter
tuning in maximizing model performance.

4.2.2 Hyperparameter Influence

Save Steps: Increasing the save_steps to 6000 for the fourth model (CoCondenser-
SelfDistil) allowed for less frequent saving of checkpoints. This adjustment poten-
tially led to more stable and extended training intervals. The save steps for the first
three models were set at 2000, ensuring a baseline for comparison.
Batch Size: The per_device_train_batch_size was increased to 8 for the fourth
model helped achieve better gradient estimates per training step, thus enhancing the
learning process. The first three models had a batch size of 1, providing a clear con-
trast in the impact of this parameter change.
Gradient Accumulation Steps: The gradient_accumulation_steps was in-
creased to 2 for the fourth model, compared to 1 for the first three models. This
change allowed for the accumulation of gradients over more steps, which can lead to
improved stability and performance during training.
Evaluation Batch Size: Reducing the per_device_eval_batch_size to 8 for the
fourth model, in contrast to 64 for the first three models, may have contributed to

16 Chapter 4. Results

more efficient evaluation, balancing computational load and performance accuracy.
Single GPU Utilization: Consistently training all models on a single NVIDIA
RTX A5000 GPU ensured uniform use of computational resources, thereby avoiding
discrepancies due to varying hardware. This setup facilitated a fair comparison of
the models’ performance under different hyperparameter settings.

4.2.3 Key Observations

Architectural Improvements: Advanced model architectures like DeBERTa-V3
and CoCondenser-SelfDistil offer substantial improvements over older models such
as BERT-base. Innovations in attention mechanisms and distillation processes con-
tribute significantly to these gains.
Hyperparameter Optimization: The performance of CoCondenser-SelfDistil un-
derscores the importance of fine-tuning hyperparameters. By carefully adjusting pa-
rameters like batch size and checkpoint saving frequency, significant improvements
in model performance can be achieved.
Effectiveness of Distillation: The use of distillation techniques, particularly in
CoCondenser-SelfDistil, proves to be highly effective. This method helps in transfer-
ring knowledge from more complex teacher models, resulting in better performance
for the student models.

17

5 Conclusion

In this study, we evaluated the performance of four neural IR models—BERT-
base, DeBERTa-V3, CoCondenser-selfDistil, and CoCondenser-EnsembleDistil—on
the TREC DL Track 2019. Our experiments demonstrated that modern archi-
tectures and advanced training techniques significantly enhance document ranking
performance. DeBERTa-V3, with its disentangled attention and enhanced mask de-
coding, outperformed BERT-base and CoCondenser-EnsembleDistil under the same
hyperparameters. However, CoCondenser-SelfDistil, after fine-tuning hyperparam-
eters, achieved the best results across all evaluation metrics. This underscores the
importance of both architectural innovations and hyperparameter optimization in
developing effective IR models. Our findings highlight the potential for further im-
provements in neural IR models through continued advancements in model design
and training methodologies.

18

Bibliography

[1] In: (web). url: https : / / en . wikipedia . org / wiki / Text _ Retrieval _

Conference.

[2] In: (web). url: https://trec.nist.gov/tracks.html.

[3] In: (web). url: https://microsoft.github.io/msmarco/TREC- Deep-

Learning.

[4] In: (web). url: http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-
Zhuyun-Dai/.

[5] In: (web). url: https://huggingface.co/naver.

[6] M. Abualsaud, N. Ghelani, H. Zhang, M. D. Smucker, G. V. Cormack, and
M. R. Grossman. “A System for Efficient High-Recall Retrieval”. In: The 41st
International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval. ACM. 2018, pp. 1317–1320.

[7] N. Arabzadeh, A. Vtyurina, X. Yan, and C. L. A. Clarke. Shallow pooling for
sparse labels. 2022. arXiv: 2109.00062 [cs.IR].

[8] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. “A simple frame-
work for contrastive learning of visual representations”. In: arXiv preprint
arXiv:2002.05709 (2020).

[9] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. “Electra: Pre-training
text encoders as discriminators rather than generators”. In: arXiv preprint
arXiv:2003.10555 (2020).

[10] N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and E. M. Voorhees. “Overview
of The TREC 2019 Deep Learning Track”. In: arXiv preprint arXiv:2003.07820
(2020).

[11] W. Croft, D. Metzler, and T. Strohman. Search engines: Information retrieval
in practice. Vol. 520. Addison-Wesley Reading, 2010.

[12] Z. Dai and J. Callan. “Context-aware term weighting for first stage passage
retrieval”. In: Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2020.

https://en.wikipedia.org/wiki/Text_Retrieval_Conference
https://en.wikipedia.org/wiki/Text_Retrieval_Conference
https://trec.nist.gov/tracks.html
https://microsoft.github.io/msmarco/TREC-Deep-Learning
https://microsoft.github.io/msmarco/TREC-Deep-Learning
http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/
http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/
https://huggingface.co/naver
https://arxiv.org/abs/2109.00062

Bibliography 19

[13] Z. Dai and J. Callan. “Deeper text understanding for ir with contextual neural
language modeling”. In: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2019.

[14] Z. Dai and J. P. Callan. “Context-aware document term weighting for ad-hoc
search”. In: Proceedings of The Web Conference 2020. 2020.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). 2019, pp. 4171–4186.

[16] T. Formal, C. Lassance, B. Piwowarski, and S. Clinchant. “From Distillation
to Hard Negative Sampling: Making Sparse Neural IR Models More Effec-
tive”. In: Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’22. New York,
NY, USA: Association for Computing Machinery, 2022, pp. 2353–2359. isbn:
9781450387323. doi: 10.1145/3477495.3531857. url: https://doi.org/
10.1145/3477495.3531857.

[17] T. Formal, B. Piwowarski, and S. Clinchant. SPLADE: Sparse Lexical and
Expansion Model for First Stage Ranking. 2021. arXiv: 2107.05720 [cs.IR].

[18] L. Gao, Z. Dai, and J. Callan. Rethink Training of BERT Rerankers in Multi-
Stage Retrieval Pipeline. 2021. arXiv: 2101.08751 [cs.IR].

[19] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality reduction by learning an
invariant mapping”. In: 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006, pp. 1735–
1742.

[20] P. He, J. Gao, and W. Chen. DeBERTaV3: Improving DeBERTa using ELECTRA-
Style Pre-Training with Gradient-Disentangled Embedding Sharing. 2021. arXiv:
2111.09543 [cs.CL].

[21] P. He, X. Liu, J. Gao, and W. Chen. DeBERTa: Decoding-enhanced BERT
with Disentangled Attention. 2021. arXiv: 2006.03654 [cs.CL].

[22] S. Hofstätter, S. Althammer, M. Schröder, M. Sertkan, and A. Hanbury. Im-
proving Efficient Neural Ranking Models with Cross-Architecture Knowledge
Distillation. 2021. arXiv: 2010.02666 [cs.IR].

https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2101.08751
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2010.02666

20 Bibliography

[23] K. Järvelin and J. Kekäläinen. “IR evaluation methods for retrieving highly
relevant documents”. In: New York, NY, USA: Association for Computing
Machinery, 2000. isbn: 1581132263. doi: 10.1145/345508.345545. url:
https://doi.org/10.1145/345508.345545.

[24] O. Khattab and M. Zaharia. ColBERT: Efficient and Effective Passage Search
via Contextualized Late Interaction over BERT. 2020. arXiv: 2004 . 12832

[cs.IR].

[25] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2014, pp. 1746–1751.

[26] J. Lin, R. Nogueira, and A. Yates. Pretrained transformers for text ranking:
Bert and beyond. Vol. 14. Synthesis Lectures on Human Language Technolo-
gies. 2021, pp. 1–325.

[27] Y. Liu. “Recurrent Convolutional Neural Networks for Text Classification”.
In: Proceedings of the 25th International Joint Conference on Artificial Intel-
ligence. 2016, pp. 2397–2403.

[28] R. Nogueira and K. Cho. “Passage re-ranking with bert”. In: arXiv preprint
arXiv:1901.04085 (2019).

[29] R. Nogueira, W. Yang, J. Lin, and K. Cho. “Document expansion by query
prediction”. In: arXiv preprint arXiv:1904.08375 (2019).

[30] A. van den Oord, Y. Li, and O. Vinyals. Representation Learning with Con-
trastive Predictive Coding. 2019. arXiv: 1807.03748 [cs.LG].

[31] B. Paria, C.-K. Yeh, I. E. H. Yen, N. Xu, P. Ravikumar, and B. Póczos.
Minimizing FLOPs to Learn Efficient Sparse Representations. 2020. arXiv:
2004.05665 [cs.LG].

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. “Pytorch: An imperative style, high-
performance deep learning library”. In: Advances in Neural Information Pro-
cessing Systems 32. Curran Associates, Inc. 2019, pp. 8024–8035. url: http:
//papers.neurips.cc/paper/9015- pytorch- an- imperative- style-

high-performance-deep-learning-library.pdf.

[33] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L.
Zettlemoyer. “Deep contextualized word representations”. In: arXiv preprint
arXiv:1802.05365 (2018).

https://doi.org/10.1145/345508.345545
https://doi.org/10.1145/345508.345545
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2004.05665
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Bibliography 21

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI. 2019.

[35] B. R. R. D. W. W. A. N. L. D. A. Simoni. Economic Impact Assessment of
NIST’s Text REtrieval Conference (TREC) Program. Tech. rep. RTI Interna-
tional, 2010.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin. “Attention Is All You Need”. In: Advances in Neural
Information Processing Systems. 2017, pp. 6000–6010.

[37] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et al. “Huggingface’s transformers: State-
of-the-art natural language processing”. In: arXiv preprint arXiv:1910.03771
(2019).

[38] Z. Wu, Y. Xiong, S. Yu, and D. Lin. “Unsupervised feature learning via non-
parametric instance discrimination”. In: 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. IEEE. 2018, pp. 3733–3742.

22

A : Training Setup

This appendix details the training setup used for the experiments. We utilized a
single NVIDIA RTX A5000 GPU with the following command line setup:

Command Line Setup

torchrun \

--nproc_per_node 1 run_marco.py \

--output_dir /path/to/checkpoints \

--model_name_or_path <model_used> \

--do_train \

--save_steps 2000 \

--train_dir /path/to/train_data \

--max_len 512 \

--fp16 \

--per_device_train_batch_size 1 \

--train_group_size 8 \

--gradient_accumulation_steps 1 \

--per_device_eval_batch_size 64 \

--warmup_ratio 0.1 \

--weight_decay 0.01 \

--learning_rate 1e-5 \

--num_train_epochs 2 \

--overwrite_output_dir \

--dataloader_num_workers 8

The training configuration includes the hyperparameters mentioned in Table
A.1. For the fourth model (CoCondenser-SelfDistil), we made some slight modifica-
tions to the hyperparameters mentioned in Table A.2.

Appendix A. : Training Setup 23

Table A.1: Hyperparameters for Training on TREC DL 2019 Track Datasets

Hyperparameter Value Explanation

nproc_per_node 1 Number of processes to run per node. Set
to 1 for single-GPU training.

save_steps 2000 Save a checkpoint every 2000 steps.
max_len 512 Maximum sequence length for inputs.

fp16 True
Use mixed precision training (fp16) to
reduce memory usage and speed up
training.

per_device_train_
batch_size

1 Number of training samples per batch per
device.

train_group_size 8
This parameter is specific to certain
training scripts; often not used in standard
BERT training.

gradient_accumula-
tion_steps

1 Number of steps to accumulate gradients
before updating the model parameters.

per_device_eval_
batch_size

64 Number of evaluation samples per batch per
device.

warmup_ratio 0.1
Ratio of steps to perform linear learning
rate warmup to the total number of training
steps.

weight_decay 0.01 Weight decay to apply for regularization.
learning_rate 1e-5 Initial learning rate for training.
num_train_epochs 2 Number of epochs to train the model.

dataloader_num_
workers

8
Number of subprocesses to use for data
loading. More workers can speed up data
loading but use more CPU resources.

Table A.2: Hyperparameter changes for the fourth model (CoCondenser-
SelfDistil).

Hyperparameter First Three Models Fourth Model
save_steps 2000 6000
per_device_train_batch_size 1 8
gradient_accumulation_steps 1 2
per_device_eval_batch_size 64 8

24

B : Judgement Process

In official evaluations, depth pooling is employed to create distinct pools for passage
ranking and document ranking tasks. NIST assessors label the passages and docu-
ments in these pools using multi-graded judgments, facilitating the measurement of
the NDCG metric. The results are based on 200 test queries, with NIST initially se-
lecting 52 of these queries for both the passage ranking and document ranking tasks.
These topics were chosen based on the behavior of submitted Document Ranking
task runs on the entire test set, evaluated using the sparse MARCO judgments.
Test questions with median MRR scores greater than 0.0 but no more than 0.5 were
considered for judgment.

An additional 43 topics were selected through a four-step process:

1. For each question, a top-10 pool was created across all runs in the task, in-
cluding any document with a judgment in the MARCO sparse judgments,
resulting in a set of size P , which varies by topic. Assessors first judged these
pool documents, followed by another 100 documents chosen using the Univer-
sity of Waterloo’s HiCAL system [6]. HiCAL builds a relevance model from
the current set of judgments and selects the next document most likely to be
relevant for judgment. At the end of this stage, there are R known relevant
documents. If 2R < P , judging is finished for the topic.

2. The difference between the number of judged documents and the desired num-
ber of 2R+100 judgments is labeled G. An additional G documents are judged
using HiCAL, resulting in a total of J = P +100+G judgments for the topic,
and a new count of relevant documents, R∗. If 2R∗ + 100 < J , assessment is
finished for the topic. If R∗ ≈ J , the topic is discarded due to the high cost of
obtaining "sufficiently complete" judgments.

3. If the topic remains viable, a new increment proportional to the number of
known relevant documents is added to the topic budget. This process iterates
until the number of known relevant documents is less than half the number of
judged documents.

Appendix B. : Judgement Process 25

4. The process terminates when assessors run out of time or have no documents
left to judge.

The evaluation set included topics with at least three relevant documents and
a ratio of R∗/J < 0.6. This method resulted in 43 topics for both the Document
Ranking and Passage Ranking tasks, with a slightly different set of 43 topics for
each task.

	Acknowledgements
	List of Tables
	List of Abbreviations
	Introduction
	Neural IR
	About TREC
	TREC Deep Learning Track

	Problem Statement
	Datasets
	Applied Models
	BERT-Base-Uncased
	DeBERTa-V3

	Methodologies
	Background
	Preliminaries
	Localized Negatives from Target Retriever
	Contrastive Loss
	LCE Batch Update
	SPLADE and its Methodology
	SPLADE
	Distillation, Hard Negative Mining, and PLM Initialization
	SPLADE++ Models

	Experimental Setup
	Initial Stage Retriever
	Implementation

	Results
	Document Ranking Performance
	Analysis
	Model Performance Overview
	Hyperparameter Influence
	Key Observations

	Conclusion
	Bibliography
	: Training Setup
	: Judgement Process

